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Abstract

Animal group formation has often been studied by mathermktiologists through PDE models, producing
classical results like traveling and stationary waves. eR#y, Eftimie et al. introduced a 1-D PDE model
that considers three social interactions between indalglin the relevant neighborhoods, specifically re-
pulsion, alignment, and attraction. It takes into accotmt drientation of the neighbors when consider-
ing if they can communicate. This has resulted in excitingg neovement behaviors like zig-zag pulses,
breathers, and feathers. In this work, we translate thenkgftmodel into a Lagrangian implementation.
Currently, the results from the Lagrangian formulationsveimany of the results displayed by Eftimie’s
original PDE model, producing patterns like the zig-zagdbhner traveling, and stationary pulses. In addi-
tion, we model animal movement with an ODE approach to cotaple investigation regarding the role of
direction-dependent communication mechanism in disepéee. This implementation generates patterns
like traveling breathers, traveling trains, and statignaulses. Finally, we explore what types of patterns
the Lagrangian model would generate if repulsion was pizad. We discover that the sizes of the inter-
action ranges are significant in determining whether statip semi-zig-zag, zig-zag, or traveling pulses
are formed. For all three model implementations, we find thatincorporation of direction-dependent

communication enriches the model behavior.
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Chapter 1

| ntroduction

1.1 Overview

Social organization is a topic of interest for mathematlmialogists because group formation is an im-
portant survival skill for certain animals. For exampler impler animals like fish, where there are no
group leaders, schooling provides benefits like protediiom predators and efficiency in catching prey
([9], [10], [11]).

When considering how animals interact, it is important asoadefer to determine the crucial interaction
forces. A large class of movement models focuses on thregaiction forces, namely attraction, alignment,
and repulsion, as shown in Figure 1.1 ( [4], [14], [17], [22B], [26]). Typically, repulsion is assumed to act
over a short distance from the reference individual. In #yfsion zone, the individuals would turn away
from adjacent neighbors to avoid collision. Attraction eprimarily between neighbors from a farther
neighborhood to ensure that animals can still form groups usually assumed that alignment acts in an
intermediate area located between the repulsion and idinamnes. While many models include repulsion,

alignment, and attraction forces between neighbors, sétoese to ignore alignment.

attraction alignment repulsion alignment attraction
| Il Il Il Il |

T L
—Sq —Sal —Sr 0 Sr Sal Sa

Figure 1.1: Illustration of the interaction zones. A refage individual is repulsed by the neighbors who are
in the region immediately adjacent to it. It tends to aligthithose who are in an intermediate range and is
attracted by those who are in a farther range. The paramgtgrs are the limits of the interaction zones.



For self-organizing animals like fish, there are two gensratieling approaches: Lagrangian and Eu-
lerian. The main difference is that the Lagrangian appraact an individual level, while the Eulerian
approach is at a population level. The Lagrangian formaatiacks individuals and follows their paths,
and the Eulerian formulation examines a fixed location aedathount of traffic passing through ( [24]).

Because the Lagrangian approach focuses on the individddaha decision-making process, it is useful
for simulating animal behavior and making predictions. Example, biological experiments can motivate
hypotheses that attempt to explain how animals congregadethese predictions can easily be tested by the
mathematical model. Also, Lagrangian formulations prevadast, convenient way to explore the parameter
space ( [12]). Since the numerical simulations are modetad & reference individual's view, the signifi-
cance of each parameter is intuitive ( [28]). The main disatlge is that there are no analytical solutions.
Thus, there is usually no gain of theoretical insight as tg tile interactions result in the observed behavior.
In addition, the simulations can be computationally expens

One of the benefits of using a Lagrangian formulation is taate the model and provide visualizations.
Some researchers may use a property like the average disianm the closest neighbor for statistical
analysis purposes ( [18]). Essentially, Lagrangian mockfsonly provide an answer as to what a particular
parameter set and initial condition would generate, butaameot show decisively with any mathematical
theory how the behavior may change according to each pagam¥thile the Lagrangian framework is
useful for determining which properties are crucial forl#himg a suitable mathematical model, it must be
translated into an Eulerian model for rigorous mathembdinalysis.

In contrast, the Eulerian approach allows for the applicatf established mathematical ideas, like
bifurcation theory. It is easier to compare results fronfedént Eulerian models, as they are often more
mathematically rigorous and can therefore be describedtijagvely rather than qualitatively. Because
there are many mathematicians interested in this area #termany references available and a number of
formulas for certain well known partial differential eqigat systems. In addition, even if the system is too
complicated to have an explicit solution, one can often firelsteady-state or equilibrium state.

In this thesis, we model animal movement using assumptiams the Eftimie model ( [9], [10], [11]).
The reason why we work with this model is because it introdwsreexciting new idea: direction-dependent
communication. The incorporation of this element in therki#t PDE model led to many new aggregation
patterns. Interestingly, these communication rules hawembeen used in a Lagrangian implementation
before. Therefore, we would like to investigate a Lagrangimvement model using these assumptions
from the Eftime model and see if any new patterns can be found.

In Section 1.2, we will review Lagrangian movement modeld@xamine the different aspects of animal



motion that can be incorporated into a Lagrangian formaifatin Section 1.3, Eulerian movement models
are reviewed briefly to explain why they are useful in studypattern formation. In Section 1.4, we formu-
late the questions we would like to investigate in this pebj€inally, in Section 1.5, we outline the chapters

in the thesis and discuss the objectives of this project.

1.2 TheDevelopment of Lagrangian Movement Models

The mechanism of animal group formation has been studiexhsixiely. There are a few common traits that
can be found amongst most of these models. The underlyingg®n in the Lagrangian models discussed
below is that one or more local interaction forces betweendference individual and its neighbors produce
a global pattern throughout the population. In generalctbsest neighbors produce a repulsion force and
the farthest neighbors result in an attractive force. Atigmt is also considered in some models. Depending
on how these forces are calculated, different Lagrangiatetsaan produce a range of aggregation patterns
formed by simple animals, like birds and fish. It is importemestablish a thorough understanding of the
development in modeling animal movement from the Lagrampe&rspective. Therefore, in this section, we

will be discussing several important movement models thaefintroduced new ideas in the field.

1.2.1 TheHuth and Wissael M odel

In 1992, Huth and Wissel ( [16]) formulated a Lagrangian maadévo-dimensional space describing how
fish schools aggregate with the consideration of threeant&m zones. Fish are an ideal choice for modeling
group formation because they have been shown to swim in gneithout external influences from any prey
or predator. The set-up of the interaction zones is similahat described in Figure 1.1 except the zones
are now in the shape of concentric circles because of thdiaulal spatial dimension. There is a “blind”
area behind each individual where no neighbor is detecteaddlition, only a fixed number of neighbors
is considered when determining the turning probabilitytihese assumptions, the model establishes that
fish can aggregate in two different types of structures: latliiknit group with very high polarization and a

loosely gathered group with low polarization.

1.2.2 The Couzin Modd

While the Huth and Wissel model can be thought of as a simg|ifigo-dimensional version of an animal
movement model without directional dependence, the Lagaanmodel of Couziret al. ( [4]) is much

more complicated by incorporating inhomogeneities in titviduals traveling in three-dimensional space.



Again, the three interactions considered are repulsiggniadent, and attraction, but in this model, repulsion
is the most important consideration to avoid collisions. eéWfanimals are present in the repulsion zone,
alignment and attraction are ignored when consideringuhertg probability. The behavior of the group is
described by two vectorg,andw, which store respectively the location and velocity of guadividual. All

the neighbor’s influences on the reference individual asé dalculated, and then the subsequent velocity of
the reference individual is determined according to thaflaences. The surroundings of an individual is
divided into interaction zones as in Figure 1.1 except thezare now in the shape of spheres.

The two model variables arg andw;, which respectively keep track of the location and velooity
thei*" individual. 7 is an independent variable designating the constant tiepe 3o calculate the turning
probability of each animal, Couziet al. introduce three new terms, .; ., whered is the influence from
surrounding neighbors and the subscript refers to the tipe@romunication mechanism involved. Repulsion
is denoted by the subscriptalignment byz/, and attraction by.. The values:, 4, define the limits of the
repulsion, alignment, and attraction zones. The modelthgsf®llowing equations, which are of a common

form that is found in many Lagrangian animal movement madels

> _ e )
do(t+7) = z;; ROk (1.1)
AP < /] )
dar(t +7) 2 F O (1.2)
T - NS Ta®) 3
dy(t +17) 20 (1.3)
(1.4)
where o
7y = G =G) (1.5)

|(¢j — &)

Equation (1.1) essentially sums the relative position$efrieighbors in the repulsion zone and directs the
reference individual away from this direction, while eqaat(1.3) does the exact opposite by directing
the reference individual towards the sum of the relativetjprs of the neighbors in the attraction zone.
Equation (1.2) determines the net orientation of the neighin the alignment zone and turns the individual
in that particular direction.

If there are any individuals in the repulsion zone, then éigna (1.2) and (1.3) are not used and the new
direction is given by:

Gi(t+71)=d(t+ 7). (1.6)

N



Given the case where there is no repulsion and only attraatiol alignment, the new direction after a time
step is given by:

Bl +7) = 5(dy + ). (17)
The model also has the feature of restricting the animal t@simmum turning angle. If the angle between
d(t + 7) andd(t) is greater than this limit, then the animal only turns the imasn angle towards(t + 7)
instead of simply using the vector as its new direction.

With this formulation, Couziret al. observed four types of patterns: swarm, torus, dynamiallghr
group, and highly parallel group. A swarm is where the irdiixls aggregate in a condensed region with
low polarization. A torus is where the individuals contittyaotate around an empty domain. Both dynamic
and highly parallel groups are structures where the ind&igimove in one direction collectively. However,
in the dynamic parallel group, the individuals are much ntikedy to exchange positions within the internal
structure than in the highly parallel group.

In comparison to the model of Huth and Wissel, an additioeature that the Couzin model explores is
the dependence of group formation on the present patterothbr words, the initial conditions can affect
how the group transitions into different behaviors as thavidual interactions change. This discovery
shows that animal movement and group formation does, in faké into account previous patterns and

collective memory plays an importantrole.

1.2.3 The Gueron Modedl

Although most of the Lagrangian models assume constantspggs may not always be the case. Gueron
et al. ( [14]) studied the transition from separately travelindividuals to aggregated groups with the as-
sumption that speed can vary. This is achieved by the incatipm of speeders, a subgroup that travels
faster than the rest, leaders, animals at the front who teslbtv down and wait for those behind them, and
trailers, animals in the rear zone who can speed up to catclnupis particular two-dimensional model,

repulsion and attraction act on a short and long range régplsc The repulsion and attraction zones are
separated by a neutral territory, where no social intewsads considered. The authors conclude that the
probability of fragmentation increases with the level digmogeneity. Most importantly, the authors find

that with this movement model, there is an optimal size fentautral zone where animals can simply travel
at a constant speed and maintain a coherent group structiln@nvacceleration or deceleration, allowing

them to conserve energy.



1.24 TheKolpasModel

Kolpas’ model describes animals moving on a 1-D lattice {)[1Bis important to discuss the Kolpas model
in detail as an example because its framework is similar toymiagrangian 1-D movement models. Its
pseudocode is also useful because the general set-up capledo variations of animal networks that
communicate with different mechanisms. A variation of th&udocode is used in this project, and this
discussion will be further continued in Chapter 3 after ottmponents of the project are introduced.

In the Kolpas model, the velocity is1. There are three distinct zones where neighbors exert ésiepu
alignment, or attraction force. There is no interactiomlegrsince all neighbors in the relevant neighbor-
hoods are assumed to have the same effect on the referendduadl In the repulsion zone, the average of
all the neighbors’ relative position is calculated.

V= — G (t) — Ci(t) (18)

;i (t)EZy, (t) ¢ (1) = ci(t)]

wherec;(t) is the position of theé!” individual at time tu;(t) is the velocity of the*” individual at time t,
andZ,, (t) is the repulsion zone for thg” individual. It is a priority for the reference individual twient
itself away from its adjacent neighbors according to thevalemuation to avoid any collisions. Therefore,
it is of emphasis that equation (1.8) is the only equatiorduee calculating the new velocity if there are
individuals present in the repulsion zone. In other worlls, hodel no longer considers alignment and
attraction as an effective interaction force for an indiiatiwho senses neighbors in its repulsion zone. The
non-zero value given by equation (1.8) is then normalizezbaling to equation (1.10), which is given
below.

If there are no neighbors in the repulsion zone, the ind&idould tend to follow the average direction
of the neighbors in the alignment zone and move towards tighbers in the attraction zone. In other words,
the following equation for calculating velocity will onlygbrelevant if equation (1.8) is not applicable. Both
these influences affect the reference individual’s turrpngbability equally, as shown by the following

equation where the two are averaged to determine the net.effe

v v;(t) +ch(t)€Zoj (1) Vi (t) N
i) + X wez,, i v ]

() —cilt
5 @ 16O =il
whereZ,, (t) andZ,, (t) are the alignment and attraction zones of jHeindividual respectively. IV is
determined to be zero, this means that the attraction agdraént effects cancel out each other and the

individual continues in the previous direction. OtherwiBeis normalized and used as the velocity for the



following time step:

5= { “ﬁ)’ V=0, (1.10)
\%

4k otherwise
wherev;(t) is the current velocity.
Finally, stochasticity is incorporated with the parameigfh < p < 1. p is the probability that an

individual changes its direction randomly.

U, X <p,

vi(t—i—l)—{ -

v, otherwise (1.11)

wherev; (¢t 4 1) is the velocity at the following time step add is a uniform random variable between 0 and
1.

The initial position and velocity vectors are chosen ranlypend the simulations are run until a steady
state emerges. At each step, the interactions from the beiglare calculated according to the given equa-
tions.

The pseudocode of the Kolpas model is given by the followaigeme:
1. Create a finite 1-D lattice with the spacing defined by theabs step size.
2. Distribute the total number of individuals over the legtand assign directions to them randomly.

3. For each individual, scan its repulsion zone. If it is eyngkip to step 4. Otherwise, determine
whether or not the animal would turn according to equatio8)(1f yes, negate the direction and skip

to step 5.

4. If the repulsion zone is empty, scan the alignment an@gaiitm zones and use equation (1.9) to

determine whether the animal should turn. If yes, negatditieetion.
5. Use equation (1.11) to determine whether or not the aniritlaurn simply due to stochasticity.
6. Repeat steps 3-5 for all the individuals.
7. Let the animals move one step along the lattice accorditiggtir directions.
8. Repeat step 3-7 until the animals have completed themisid number of steps.

With the above mechanism, the Kolpas model has been abletlupe stationary and traveling pulses.
In fact, the animals transition between the two behavioessamply due to stochastic effects, which is a
result not seen in any previous discussed models. The ssepsay Kolpagt al. will be discussed again in

Chapters 3 and 5, for the purposes of simulating anotherammvement model.



1.25 Modelsfrom a Physics Point of View

The Lagrangian formulation is not only limited to discretelocities and locations. For example, many
models use Newton’s second law of motion to describe a fgtirajectory under the imposed forces. For
example, Leviret al. [20] use the following system of equations to describe tesyof N self-propelled,

interacting particles:

midti = afi — Bt — 0zU, (1.12)
oE;, = T, (1.13)

where each particle is defined by mass, positionZ;, and velocitys;. Furthermore, each particle is
driven by a self-propelling force with fixed magnitudeand hindered by a friction force with coefficient
B. The interaction functio/ characterizes a communication mechanism where eachlpastiender the
influence of its neighbors via two forces, a long-range etiwa force limited by the interaction rangeand
a short-range repulsion force limited by the interactiomge,.. Like the discrete velocity models above,

the interaction terms are incorporated ibtan the following form:

U_anexp(ml_”j')—Zc,,exp<|”il_“j|>. (1.14)

J# J#i

For the movement models with Newton’s second law as a bassgyeneral form of the equations de-
scribing the displacement and velocity do not change. Hewedw varying the forces the particles are
subject to, different results can be obtained. In fact, sarmadytical results may be obtained if the interac-
tions functions are of a simple form. In particular, existegonditions have been derived for perfect schools
and mills ( [21], [30]). The perfect school refers to an aggiteon where all the inter-particle distances and
speeds are identical. For example, fish display this typ@whétion. The perfect mill is a group pattern
where particles travel behind one another in a closed cagleally spaced from one another. This implies
that the group has a constant angular velocity, circle mdind inter-particle spacing. For exampleelal.

[30] discuss a model that deals with perfect schools. Inrttadel, only repulsion and attraction between the
reference individual and its closest neighbor are consitleFhis simplification is necessary to find the ex-
istence condition analytically and prove that only locaénactions depending on inter-distance are required
to form a perfect school.

The mechanism by which birds form perfect groups has also eeglored by Cuckest al., but without

the incorporation of Newton’s second law ( [6]). Insteads thodelers track how the energy of the flock



Figure 1.2: Scaling factor for the alignment foragy()). This is a sample plot to show that the alignment
force decreases as the distance between reference individual and the neiglimcreases. Parameters:
K=10c=1[8=2.

varies according to the configuration. The equations gargmotion are given by the following:

k
vt + 1) —vilt) = Y ay(v(t) —wi(t)), (1.15)
=1
a; = (|l zi -z |?), (1.16)
K
n(y) = CETLA (1.17)

The above system of equation considers a totdl birds, each possessing a velocity described bgnd

1 = 1, ..., k. Equation (1.16) specifies the scaling factor for the aligntrforce given by equation (1.15)
depending on the relative distance between the referenibédoal and the neighbor. There are several
important properties af, the function specified in equation (1.17) used for cal@udgthis scaling factor. It

is positive and non-increasing. The parameférando define the location and value of the maximumof
and is the decay rate of the alignment signal.

The only interaction force considered is the alignmentdpand the bird’s velocity changes according to
the difference between its own velocity and those of its Imledgs. Interestingly, with the distance-dependent
functionn (see Figure 1.2), Cucket al. found that the emergence of a perfect flock with uniform giyo
depends on the parameter When 3 is sufficiently small, a perfect flock is guaranteed under iaitial
conditions. Whers becomes too large, a perfect flock will only emerge undeageihitial conditions.

Again using a physics perspective, the Lukeratzal. model ( [21]) studies milling formations with only

short-range repulsion and long-range attraction. The intstesting aspect of this paper is that it derives



analytically the form of the schooling force, which dependghe inter-particle distance:

2 (T — 7)

fi=g(|Z; —fil)ﬁ, (1.18)

where; indicates the closest neighbor to the reference individlibke existence condition for the perfect

mill is that the interaction function must satisfy the following:

g(d) = sd, (1.19)

s = ——cos?(

). (1.20)

wheres is a function ofy andn, which represent the drag coefficient and the population g@gpectively.
While some previous models have also been able to generbitegdrmations, the Lukeman model con-
siders a more general form of the interactions.

Given very simple interaction functions, some Lagrangiaueis have been able to produce some ana-
lytical results. However, for a more complex system, to sigely determine the effects of each parameter
on the system and look for steady-state solutions, a Lagaarsystem must still be translated into an Eule-
rian model for analysis purposes. In the Eulerian modelear$ of tracking the velocity and location of the
individual, the system examines the averaged behavioreoéttire system. Depending on the purpose of

the model, either a Lagrangian or an Eulerian model may be. use

1.3 SomeEulerian Movement Models and their Results

Because no rigorous proofs can be deduced from a Lagrangidelpa Lagrangian model is often trans-
lated into an Eulerian model for the application of mathecadfinalytical techniques by using approxima-
tions. Often, a set of PDE equations are derived from masjigateons which describe how the individuals
interact and travel collectively. Many movement modelke lthe Mogilneret al. model ( [23]), use a
one-dimensional advection-diffusion equation to degctlie geometries a swarm can exhibit ( [5]). The
population densityf, is described by the following equation:

9f 0 0
o~ Par VD (20

wherez is the spatial coordinatejs the time,D is the diffusion coefficient, ant is a drift term accounting

for velocity changes from social interactions, namely sihange repulsion and long-range attraction. The
results only show swarming behavior with constant intediensity and sharp profiles. More factors can be
incorporated to this basic form. For example,may be a function of the population density instead of a

constant parameter.
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If factors like birth, death, emigration, and immigratiaie agnored, then the following population con-

versation equation must also be obeyed:

fi+ v - (Uf) =0, (1.22)

where is the velocity vector. Similar to the Lagrangian formubati this vector has two components:
aggregationy, and dispersaf,:
U= Uy + Ug. (1.23)

Depending on how,, andv, are calculated, different group patterns can be obtained.

The general form of equation (1.21) is not only limited to thesscription of animal movement but also
microscopic organisms like bacteria as well. However, irstrad these systems, there is a growth term
instead of a drift term because bacteria reproduce much quickly than animals. A well-known example

is the Fisher-Kolmogorov equation, which satisfies theofeihg form:

0
8—1; =D u+ f(u), (1.24)

where f(u) is a reaction function and is the population fraction. In the case of the Fisher-Kolomoy

equation,f(u) is a growth term written as:
f(u) =u(l —u). (1.25)

Similar to the animal movement models, there can be comnatiaitincorporated into a system describing
a bacterial colony too. For example, the bacteria may relattgaction or repulsion signals to each other by
secreting chemicals ( [2]).

One trait that these PDE models share is that they do notgisphide variety of behaviors. They usually
only show one type of behavior. For example, most PDE mouhalksiding the previous one mentioned, only
support swarms, either traveling or stationary. Oftentli@se PDE models, it is difficult to decide on a set
of realistic interaction rules that would generate biotadjiy relevant results. The difficulty arises from the
fact that traveling groups of animals show sharp profilehatfitont and the back ( [7], [23]). In contrast,
for the Eftimie model, which will be discussed in more det#ikere is a wide range of results due to the
flexibility from choosing the communication mechanisms]( [20], [11]). The stationary pulses can also
exhibit uniform interior density and sharp edges or conit@i@rior subgroups where the population density
is higher.

In [9], [10], and [11], Eftimieet al. developed a 1-D Eulerian model for animal grouping. Thigieio

is applicable for simple animals without a hierarchy or iafiaes from any predator or prey, like fish and
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insects. The Eftimie model only considers neighbors wittadigular direction for each social interaction,

and this additional feature has allowed many new movemedetsoThis is particularly interesting because
previous models were only able to show congregation behaNim complex patterns could be found, even
when more factors are considered like movement in higheedsions, hierarchal structures in the animal
groups, and an ability to change velocity ( [1], [4], [18]9]2 In fact, they have only produced stationary
and traveling pulses, meaning that the animals are cong@gaone or more groups either being stationary
or traveling in a single direction. In contrast, the Eftimmi@del is able to produce two types of stationary
pulses, one with uniform interior density and sharp edgesmerwith interior subgroups where the popu-
lation density is higher ( [9], [10], and [11]). The fact thetarger range of results is available is due to
the flexibility in choosing the communication mechanismshbuld be emphasized that the primary distin-
guishing factor between the Eftimie model and the previoodefs mentioned is that direction dependent

animal communication is now considered.

1.4 Statement of Problem

The Eftimie model, by introducing direction-dependentaali communication, has expanded the range of
patterns observed with Eulerian models, which have onlynlz#e to show behavior like traveling and
stationary pulses and, in some cases, vortices. The newibehanclude patterns like breathers and zig-zag
patterns. A zig-zag pulse is formed when animals travel goghteneously switch directions together. A
breather pulse is similar to a stationary pulse, but the alsitontinually move away from the centre of the
pulse and then return. These new patterns demonstratbéfarimulation of this model is more general and
hence more appropriate to model the movement of a largef sehple animals. Therefore, it is important
to confirm the results of the model and further explore otlegiations of this general framework to seek
new patterns.

Having established the benefits of the general frameworke&ftimie model, the logical question to
ask is: will the results produced by the Eulerian model apihygulation level be reflected by a model on an
individual level? Will the new behaviors still be presentemtthe direction-wise communication rules are
applied to each individual animal in the system? A transtathto a Lagrangian formulation would help
answer these questions. By doing this, we are verifyingttt@individual behavior does, in fact, reflect the
conclusion reached by the mean field approximation.

The current goal is to use the assumptions of the Eftimie iio@e_agrangian formulation in a discrete-

space and discrete-time system to see if the analyticaltsesitained for the Eftimie model can be repli-
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cated. The motivation for building an individual-based mlodith the same assumptions is to provide a
more convenient framework for incorporating both deteistio and stochastic factors and an easier, faster
way to simulate animal motion. Also, any additional appnoations when the master equations are trans-
formed into partial differential equations would be avald&hese are common benefits of the Lagrangian
approach, as it is more focused on the individual level ratth@n the population level ( [28]). The main
problem is to determine the parameter space for which theaoagan model would generate similar results
to the Eulerian model and if all the patterns from the anedytresults are obtainable from the computer
simulations. If there are significant differences betwdenresults of the Eulerian and Lagrangian model,
then what is the reason?

As a further exploration of direction-dependent commutidcain Lagrangian models, we apply the
same communication rules from the Eftimie model into thepgésimodel. The Kolpas model mainly differs
from the Eftimie model by assuming that animals prioritizpulsion over alignment and attraction over
repulsion in order to prevent collisions. A question we stigate is how this emphasis on repulsion will
affect the range of behaviors produced. Also, how will treesiof the interaction zones influence the
animal movement? By extending our research in Lagrangiatielspwe can compare the two different
formulations, the Lagrangian Eftimie model and the EftiKi@pas hybrid, and have a better insight of
what factors are critical for animals to move collectivetyagroup.

In addition to a discrete-space and discrete-time systasilso possible to keep track of the number of
animals at each grid-point in continuous time by using ardisespace, continuous-time formulation. This
results in an ODE system with each equation keeping tradkeopbpulation at a grid-point. Again, here the
question is if results from the Eulerian model are availatité this formulation. If so, given that a certain
pattern is observed for both the Lagrangian systems, howdibe parameters for the discrete-space and
time system vary with respect to those of the ODE system? \&dnages this change? These are questions
that will be addressed in this project in order to gain a beaitelerstanding the role of communication

mechanisms in animal movement.

1.5 ThesisOutline

In Chapter 2, we give a review of the Eftimie model, for untkemnsgling the Eulerian model better allows us
to build a more accurate individual-based version. Due ¢dottnefit of being able to use established math-
ematical theory and determine bifurcation values and teeaision relation, Eftimiet al. chose to use the

Eulerian approach for modeling animal movement under tfheance from neighbors in the relevant neigh-
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borhoods. This is the suitable choice for finding mathera#ljicigorous conditions for pattern formation.
We briefly discuss the useful analytical results that hawntestablished.

However, an unanswered question is whether the approxinsataken when deriving the PDE’s from
the master equations would alter the behavior of the modsdcifically, the objective of this project is to
compare the results from the Eftimie model to those prodimged Lagrangian formulation. To achieve
this, we use a Lagrangian approach to simulate pattern temavhich will be presented in the following
chapters.

In Chapter 3, the Lagrangian model will be discussed in Hafée formulate an individual-based com-
putational scheme that reflects the behavior and commimncaiechanism of animals that are described in
the Eftimie model. Here, we find that this scheme can gener&tgge range of behaviors, some of which
have never been found by previous Lagrangian models.

In Chapter 4, we focus on the question of how a system in disg@ace and continuous time would
be different from one with both time and space continuoussurdte. First, we use the method of lines to
derive an ODE system from the Eftimie PDE model. It is very arpnt to ensure that the spatial derivative
discretization is numerically stable. The ODE system candresidered to be an intermediate between the
Lagrangian and Eulerian formulations, since it has oneicoats and one discrete continuous variable.
The ODE model generates another set of aggregation patkernthis set does not completely overlap with
those of the Lagrangian or PDE formulation. This work woutdphidentify how three different models that
describe animals following the same set of interactionsgelen generate different results, simply based on
which independent variables, time and space, are contquou

In Chapter 5, we incorporate Eftimie’s direction-depertd@mmunication mechanisms in the Kolpas
model and implement two separate versions, one with interakernels and one without. A relationship
is established between the sizes of the interaction zongsh&naggregation behavior, and more patterns
are generated with the hybrid model when compared to thénatigolpas model. Also, we find that some
submodels do not display any aggregation behavior whenibtghraction kernels and direction-dependent
communication are incorporated into the Kolpas model.

Finally, in Chapter 6, we compare and contrast the resulispattern range generated with the differ-
ent formulations. The three different formulations effesly complete the set of possible continuous and
discrete time and space systems that can be implementedirajlus to thoroughly explore the movement
mechanism proposed by Eftiméeal. in various settings. Because of the differences in theélization of
the variables, it is expected that not all patterns will bailable in the Lagrangian and ODE models. In addi-

tion to discussing the implementations of the Eftimie moudel also discuss the behaviors and trends found
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with the Eftimie-Kolpas model. Most importantly, we giveagmples of where these patterns are observed
in nature and how these mathematical models have helpedthefunderstand the role of communication

signals in animal movement.
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Chapter 2

Review of the Eftimie M odd

2.1 Introduction

In this chapter, we discuss the formulation and results efftimie model thoroughly, as it will serve as
a foundation for our project. In Section 2.2, we review thew@gion of the model from first principles to
describe how the animals move in 1-D space as they changgidire according to the influences of their

neighbors. Then, in Section 2.3, we review the behaviordéps generated by this PDE system.

2.2 Formulation of the Moded

In the 1-D Eulerian model by Eftimiet al. ([9], [10], [11]), three social interactions, specifigalepulsion,
alignment, and attraction, are considered, and the aniaral@ssumed to be moving at constant speed.
Eftimie et al. included a direction dependence when considering whigfhbers contribute to each social
interaction ( [9], [10], [11]). This dependence gives risentany submodels (see Figure 2.1). Submodels
differ from each other in which set of neighbors is involvedietermining whether the reference individual
turns or not. For example, the most general submodel, suehiéd, would consider all neighbors for
every social interaction, while a modification, submodel, M8uld be where the individuals only sense the
neighbors ahead of them.

According to the Eulerian model by Eftimat al. , the following system of partial differential equations
can be used to describe an animal group split into two difesebgroups defined by their directions of

movement, where™ (z, t) is the number of right-moving (+) and left-moving (-) indilials at location:
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Figure 2.1: Description of submodels. The above figures sarz@the interaction rules by right-moving
individuals for all five submodels considered in the Eftinmedel. For example, in submodel M1, attraction
and repulsion consider all neighbors in the relevant zomk#e alignment only takes into account those that
are moving towards the individuals.
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at timet, and\* is the probability of a right (left)-moving individual to steh direction:

uf (o, t) +yuf(z,t) = —ATut(z,t) + A u (z,1), (2.1)

uy (z,t) —yuy (x,t) = AtuT(2,t) — A "u (2,1), (2.2)

where~ is the constant speed of the individual.

In the Eulerian model, the total turning probabilities aikeg by the following functions ([9], [10], [11]):

Mo Xfyf —yE+yd)
ME(yE —yE +yh) 5t 5 L

fuF —yE+yh) = 05+05tanh(yE —yF +y5 — wo), (2.4)

(2.3)

where); is a random turning probability ankl, f is a turning probability as a function of interactions with
neighbors. The functionaj;;‘t [u*,u~] represent repulsion, attraction, and alignment signata fieighbors
that determine the turning rate, and:, a/ denote repulsion, attraction, and alignment respectivglys a
constant chosen such thatis small when the input is small. Equation (2.4) has two ingarproperties.
First, it is positive and non-decreasing. Secofiés close to zero when the signals are very low and close
to one when they are strong. We would like to emphasize fhiat not restricted to the form shown in
equation (2.4). In fact, any function satisfying the twopedies is a possible candidate for calculating the
turning probability.

Signals from neighbors to the left and to the right are ressand processed by the individual to decide
whether to turn or not (see Figure 2.1). Depending on thaqudat submodel and the criterion for the
neighbor to be detected, there are many variations for thatems describing signal strength considered by
Eftimie et al. , five of which are shown in Figure 2.1. The equations can fegried from the accompanying
figures describing how the individuals interact in each soitbeh

The following is the set of equations for right-moving indivals that are of interest, expanded from the

description of submodel M1 in Figure 2.1:

1/:[ = {qal /OOOKGZ(S)(U (x+s)— u+(17 —s))ds, (2.5)
W o= e / TR () (ule + 5) — u(z - 5))ds, (2.6)
W= /0 " Ka(s)(ule + ) — u(z — ))ds, 2.7)

whereu = u™ + u~. The K;(s) are interaction kernels (discussed below), anshdicates the strength of

the social interaction’s influence.
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Figure 2.2: Gaussian interaction kernels from the EftimiéeEian model.

In the continuous-space Eulerian model, the strength oiintieeaction signal from a neighbor is deter-
mined by the interaction kernel, defined by a translated &angunction (see Figure 2.2):

1 —(Isl — 5:)?
\/W eXp( 2m3 )7 s € [_005 OO), (28)
wheres is the distance between an individual and its neighlgiis width of interaction zone, and is dis-
tance between the peak of the interaction kernel and theithdil. Because of the underlying assumptions

of the repulsion, alignment, and attraction zones (seer€idl), s, is the smallest, ang, is the largest.

Using the above formulation, the Eulerian model can prodguwegde variety of different behaviors. It is
reasonable to expect similar behaviors in the discreteesmhiscrete-time system.

A closer look at the formulation af,; andy, , for each submodel would show that the equations them-
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selves are a reflection of how these animals impact each'sitieections of motion. For every set of
equations described in Figure 2.1, the following factoesiavolved: ¢, , o; and K, , i, Whereg, 4, are

the strengths of the interaction signals aiid,; , are the interaction kernels. The reason why these two
factors must be present is because the first scales how legeighbors’ social influence is and the latter
adjusts the strength of the signal from a particular locegiccording to the distance away from the reference
individual. To give a more detailed description of how eaélthese equations are formed, the equations
from submodel M1 are carefully analyzed below as an example.

The first point of interest is that the integration is onlyaalover the positive spectrum. This is because
the interaction kernel is assumed to be even over the emi@reesand the same equation can be applied to
neighbors on either side (see Figure 2.2). Therefore, anichahl would feel the same magnitude of impact
from a neighbor on the right and another on the left if theyegeidistant from the reference individual.
Because the reference individual in submodel M1 only dstdaise moving towards it for alignment pur-
poses, equation (2.5) only involves the neighbors on theHaf are moving right,™(z — s), and those on
the right that are moving left,~ (x + s). For a right-moving reference individual; (x4 s) would increase
the probability of a turn, while:™ (x — s) would decrease the probability because the referenceidhuil/
would like to align with them.

Because repulsion and attraction involve all neighborsndigss of their directions, equations (2.6)
and (2.7) considet(z + s) for both left- and right-moving neighbors. Equation (2.&jaqgtifies how a
right-moving individual is repulsed by its neighbors. Natly, a higher number of individuals to the right
would increase the turning probability. Similarly, a higiember of individuals to the left would decrease
the turning probability, since the reference individualukblike to stay on the same track to avoid the
others. The equations describing repulsion and attraetierdentical because these two social interactions
act like exact opposites of each other. When consideringattiaction influences, one simply needs to
take the calculations for the repulsion signals and ne@&tedsults. The same logic can be applied to find
the turning probabilities of a left-moving individual undiae influence of the repulsion, alignment, and
attraction interactions. As well, the equations relatetheoother submodels can be derived using the same
method as above using the interaction rules given in Figire 2

This is only one of the submodels considered by Eftietial., and there are four other submodels as

shown in Figure 2.1. The following section offers an ovenwa the results and how they can be applied.
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2.3 Discussion of the Eftimie M odel

With the Eulerian model, Eftimiet al. have been able to establish the criteria for pattern fdonatna-
lytically. Although these results will not be discussed @tation to the numerical implementation of the
Lagrangian version, they are an important part of the E&imbdel. Using equations (2.1) and (2.2), the
steady states of the system can be found. Furthermgrethe strength of the alignment signal, is deter-
mined to be a bifurcation parameter determining whether timee, or five steady states are possible. The
dispersion relation can also be calculated. This is us@futife purposes of examining how the param-
eters affect the stability of each steady state. For exaniyyléncreasing the attraction zone, it is found
that fractionation in the population decreases and langeg®ups are formed. This is a biological realistic
behavior, as an increase in the attraction zone would allumals to sense each other at larger distances.
Therefore, animals would be less likely to separate fronhedler. Analytical results show that spatially
inhomogeneous patterns can be stable steady states, anthtleeical results reflect this conclusion.

The numerical investigations of the Eftimie model have picet a wide range of movement behaviors,
including traveling and stationary pulses as well as tiagdtains (see panels 1, 2, 5, and 6 of Figure 2.3),
which have been previously produced by models without thection dependence. The abundance of aggre-
gation patterns occurs in spite of the model’'s simplicitgd ahoice to ignore factors like the social structure
within an animal group and higher dimensions. With the adno®etsideration of direction dependence, new
patterns like breathers, feathers, and zig-zag pulses [19], [11]) as shown in panels 8, 4, and 7 respec-
tively of Figure 2.3. Feathers are pulses where individnaks the boundaries are moving in and out, and
breathers are where individuals near the boundary can esehite the the rest of the group travels in a
zig-zag pulse. After a while, because the boundary conditare periodic, those that have escaped must
re-join the group. Figure 2.3 illustrates the full rangeeadults displayed by the various submodels.

By transitioning between different parameter spaces, weesamine how an animal may change its
behavior according to its changes in the external enviranmEor example, prey animals often move in
a zig-zag pattern in an attempt to be unpredictable and sorguo a predator. In fact, the group may
fragment into smaller fractions so that the danger of oneeepopulation being eaten is reduced. However,
they are usually able to re-group into one single traveling@again after the threat of predation is removed.
Animals that display such defense mechanism include theg&an hare, nandu, ptarmigan, jack snipes, and
snipes ( [15]). An alternating series of traveling and stadiry pulses is another example that demonstrates
animals transitioning between different behaviors. Iis ttase, the patterns represent a group of animals

migrating in one direction and taking breaks in between.sItay only the general framework of the Eftimie
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Figure 2.3: Results of the Eftimie Eulerian model. See sulet®oM1-M5 in Figure 2.1. The above figure
is taken from [9].
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PDE model can incorporate both of these behaviors by chgrigegparameter space.

One additional feature of the Eftimie Eulerian model is tisgrametry of interaction influence from
neighbors on the left and the right. Precisely, Eftiri@l. incorporates two additional parameters.and
p1, into the signal functiongy®, to assign the strength of the interaction signals from éffieaind from the

right. As an example, equation (2.5) is shown in this modifagdh with the introduction op, ;:

yvho= qa /OOOKaz(S)(prU(x +35) —put(z — s))ds, (2.9)
br 7é pi- (210)

All of the other signal functions are modified in a similardam. The consequence of this modification is
most evident in the zig-zag pattern, where the group tri@nsitfrom an unbiased random movement to a
biased movement.

With the wealth of behavioral patterns that the Eftimie nigateduces, it is logical to continue explor-
ing the general framework of the movement model with thediiioa-wise communication mechanism. A
question is whether or not an individual-based model cam génerate the same patterns or even produce

new patterns. This is the focus of the Lagrangian model, vhidl be discussed in the following chapter.
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Chapter 3

TheLagrangian M odel

3.1 Introduction

In this chapter, we explain how the Lagrangian formulat®derived from the Eftimie Eulerian model. The
key question is how we can preserve the properties of thénatifprmulation as much as possible while
discretizing the system in both space and time. This prolenid recur in numerous stages while building
the Lagrangian model. How should the pseudocode be writterplicate the animals described by the
Eftimie model? How should we translate the infinite Gauskenmels into discrete-space functions? What
is the best way to calculate the integral of the neighbogsaals as a finite sum? More importantly, after
incorporating all the modifications needed for the discnetelel, would the results be similar to those of the
Eulerian model, except with a change in the parameter spBeefd of these questions are investigated in
this chapter.

In Section 3.2, we will demonstrate that the PDE Eulerian ehdglactually based on a group of ani-
mals moving in 1-D space with constant speed. Understartimfundamental behavior of the individual
modeled with the equations would allow us to portray theesysinore accurately with the pseudocode. In
Section 3.3, we further explore the aspect of writing a slét@omputational scheme by reviewing previous
models that are similar in the set-up of the interaction scamed communication mechanisms. After set-
ting up the numerical implementation, we must ask oursedegsral questions. What boundary conditions
should be used? How should we discretize space and time cand/buld our choice affect the outcome of
the model? We will tackle these two issues in Sections 3.8ahcespectively. In Sections 3.6, 3.7, and 3.8,
we explain the interaction kernel choices and discuss tttenpa generated. The first kernel is a uniform
kernel, the second is a piece-wise linear function in th@sta a triangle, and the third is a normalized

Gaussian function with a cut-off value. We expect that themadized Gaussian function would produce
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more similar results to the Eftimie model, given that it hagreater similarity to the original continuous
Gaussian interaction kernel. After the investigation wtiita three kernels, we modify the Lagrangian model
by incorporating asymmetry in signal reception and presentesults in Section 3.9. Finally, we discuss

our findings in Section 3.10.

3.2 Modd Derivation

Because the PDE system from the Eftimie model is derived f@et of interaction rules that describes how
an animal determines whether or not to turn, it makes the i suitable for simulations with a discrete
time and space system. With a Lagrangian formulation, tipecagmations that arise from generating a PDE
system are avoided, and this is a general advantage of usiimgli@idual-based model.

To fully understand this system, it is important to derive éguations from first principles in the discrete
time and space version. The first step is to set up a 1-D spgtit@m with grid-sizé\z. Also, in this model,
all the animals move simultaneously after a time-step\of Therefore, the master equations can be given

by the following, with the variables®™ and\* as defined previously:

ut(,t+At) = ut(z— Az, t)(1 — ATAL) +u™ (z + Az, t) A\~ At, (3.1)
u(zt+ At) = u (x4 Az, t)(1 - AAY) +ut(z — Az, t)AT AL, (3.2)

where At is the time-step and\z is the grid-size. Equations (3.1) and (3.2) respectivelgutate the
population of right- and left-moving individuals. For expla, in equation (3.1), the total sum of right-
moving individuals includes the adjacent left-moving riagrs to the right who decided to change direction
and the adjacent right-moving neighbors to the left who kiapir orientation after the previous time step.
This assumption implies that the animals first move accorttirtheir designated orientation and then decide
whether to turn or not at each time step. Equation (3.2) imtdated similarly.

Here, we explain the procedures taken to translate theadéssystem into the continuous form given
by equations (2.1) and (2.2). As an example, we will deriveatign (2.1) from equation (3.1). One can
perform similar steps to find equation (2.2) starting fron2f3First-order Taylor series expansions are taken
for the termsu™ (z,t + At) andu™(x &+ Az, ) aroundu(z, t) in equation (3.1):

N Ou™ n du™ L _ ou~ - 2 A42
u (x,t)—i—AtW(x,t) = (u (x,t)—Axa—(a:,t))(l—)\ At)+(u (x,t)—i—Axa—(a:,t))/\ At+O(Az?, At?).
x x

(3.3)
Because space and time increments are taken to be infindysismall to derive a continuous system, it

is justifiable to neglect the higher order terms in the follogvsteps. Then, we expand equation (3.3) and
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divide by At to arrive at the following:

out Az ouT Loy 4+ A Out o _ . Ou”
W‘FEW——/\ ut A A,TE-‘FU AT+ A Axg (3.4)

To transform the discrete system into the continuous systemmust take the limit where bothz and At

approach zero. In addition, we define the following quantity

Az

7= Aml,lAHtl—>O At’ (3.5)

Finally, after taking the limits, equation (3.4) arrivedfa¢ final form seen in equation (2.1). These calcula-
tions show that the Eftimie model is derived from the mastgrations (3.1) and (3.2). Note that the master
equations do not involve the speed parameter seen in the PDE system yet. In fact, speeglisiily
present in equations (3.1) and (3.2) via the choicAofand At.

In the Lagrangian model, we try to preserve the Eftimie madainuch as possible while translating it
into a discrete time and space system. Since time is dis¢heteurning probability is determined at each
time step for every individual according to the same funwigf * (y* (r, al, a)) and \*(y*), used in the
Eulerian version. The basic computational scheme is sirtoléghat of Kolpaset al. ( [18]) and Couziret
al. ( [4]), in which the individuals’ locations are stored in actor and updated every time step according
to their directions. We introduce the pseudocode and cationls used to discretize the Eulerian model and

transform it into a Lagrangian model in Section 3.3.

3.3 Numerical Implementation

In this section, we give a detailed account of how the disci@mulation of the Eftimie model is modified
from the Kolpas model, previously discussed in Section4l.Phe numerical implementation of the Kolpas
model can be easily adapted for use with the Eftimie modet rBlason is that both models share the same
underlying assumptions. Namely, they model animals in Jp&s with turning rates that are influenced by
the interaction signals from their neighbors in three zottes repulsion, alignment, and attraction zones.
However, we must also recognize that the Eftimie model issncomplicated in its calculation of the turning
probability with additional considerations like the ditien-wise communication mechanisms. Therefore,
we will discuss the key components in the Kolpas scheme #watires modification for application in the
Eftimie model.

The Kolpas formulation assumes that alignment and attmaési considered only if repulsion is absent.

In contrast, the Eftimie model considers all three socisrimctions simultaneously. In fact, it assigns
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three variablesy,, ¢.;, andg,., to describe the strengths of the social interactionsagtton, alignment,
and repulsion, respectively. The Eftimie model also assutinat certain neighbors are weighted more in
the interactions, as seen by the Gaussian interaction lkertige continuous formulation. The repulsion,
alignment, and attraction zones in the Eftimie model carrlape while the Kolpas model does not allow
for this feature. In this section, we will explain how we adkte the turning probabilities for the Eftimie
model. Except for the calculation of the turning probaigit the numerical implementation of the Eftimie
model will follow that of the Kolpas model.

Since the Lagrangian formulation of the Eftimie model tmtike movement of an animal individually,
we will explain the numerical implementation from the saneénp of view. Each animal is described by
two quantities, its position; and velocityv;, where the index indicates the individual being referred to.
According to the model derivation described in Section h&,animals first update their positions and then

decide whether or not to turn. They move according to the¥atg equation:
T; = x; + Ssv;, (3.6)

wheres adjusts how far forward the individual moves every time stBpen, the individuals continue with
the process of examining their surroundings to determia@ésired orientation.

The interactions between neighbors and individuals ardasino that in the Eulerian version, but the
width of the interaction zones can now be defined by the nurobgrid-points, as seen in Figure 3.3. The
set up of the interaction zones identical to the continugpesze version, where the repulsion zone is located
closest to the individual and the attraction zone is thén&st. Each social interaction, repulsion, alignment,
and attraction, contribute to the turning probability. Eanimal scans through all the interaction zones for
any neighbors and decide whether or not to change directicordingly. We use a right-moving individual
in submodel M1 to explain the steps in the numerical simoifati

First, the repulsion signal is calculated via the followaguation:

vi= Y Kz —wl), 3.7)
©;€2Zy,
whereZ,., denotes the repulsion zone of t#é individual, andK.. is the interaction kernel for repulsion,
which will be further explained in Sections 3.7 and 3.8. Tlteaation signal is calculated in a similar

fashion:

ve= Kallzj —ml), (3.8)

CCjGZai
where Z,, denotes the attraction zone of tif& individual. The calculation of both the attraction and re-

pulsion signals is very similar to that of the Kolpas modekept for the incorporation of the interaction
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Figure 3.1: How animals measure their interaction zonefénliagrangian formulation. Animals now
measure distance in terms of number of grid-points.

kernels to consider spatial effects on signal strengthss iStbecause the rules of submodel M1 dictate that
all neighbors in the attraction and alignment zones are wobsidered.

The calculation of the alignment signal will be differentedio two reasons. First, for the purposes of
alignment, we consider the neighbors’ velocities instefth@ir locations. Second, we will only consider
neighbors who are moving towards the reference individuralother words, the right moving individual
considers two distinct groups for alignment: the right-ingwneighbors in the left alignment zon&, s ., ,
and the left-moving neighbors in the right alignment zafig g+, a1, -

Yor = > Ka(lz; — xil) — > Ka(lzj — il), (3.9)
v;<0,2;€Zright,al; v;>0,2;€Z1c st al,

When all the interaction signals are known, we use equai@@y and (2.3) to evaluate the turning
probability, namelW*(y;"al,a). The individual-based approach allows us to use a unifontaee variable,

X, to determine whether or not the animal turns. Specifically,

_ o ’Ui(t), X > Ai’+,
vit +7) = { —uv;(t), otherwise. (3.10)

With the uniformly generated random variable we incorporate stochastic effects, which is one of the
advantages of the Lagrangian formulation. Like the origEfimie model,y, .; , are varied depending
on the submodel and its communication mechanisms. The ssarfeupdating position and direction is
repeated for each individual until a pattern is established

One of the issues regarding the numerical implementatibtoylee discussed is the choice of boundary

conditions, which will be explored in the following section
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3.4 Boundary Conditions

Like the Eftimie Eulerian model, the Lagrangian model usssqalic boundary conditions. An interpretation
of the periodic boundary condition is that the animals ara aircular domain. In this case, the model may
be describing animals living on a mountain at a particulatuale, insects that travel around a plant or tree
stalk, or aquatic animals traveling around an island. Fraotteer point of view, using periodic boundary
conditions allows us to simulate a system infinitely largaiiea. This is an effective method for reducing
the computational time when modeling very large population

The reason is that, by using periodic boundary conditioresave essentially repeating the data on the
domain and connecting them consecutively so that an anitnahe end of the domain would feel the
influence of an animal at another end. The implications afdlssumption is that the habitat being examined
does not contain any spatial inhomogeneities or edge sfteat may affect the animal movement. Only
the data on the function domalii, L] is available, but for the simulations to run with the permloundary
conditions, we need to consider the influences of neighbassde the domain for the animals living close
to the boundaries; = 0, L. To extend the domain when incorporating these externalénties into the
signal functiong/® (u™), we setu(x + L,t) = u(z, ).

In addition, we must consider where to stop considering #ighbors outside the function domain. In
other words, with the assumption thatr + nL,t) = u(z,t), wheren = 0,1, ..., oo, the calculation of
the signal functions from the neighbors would be extremelnputational expensive. This is due to the
fact that the Gaussian kernel with no compact support in therian model implies that every neighbor,
no matter how far away, contributes to the turning probghiliherefore, we must choose some reasonable
limit where the interaction kernel becomes negligible tduse the computational cost of using periodic
boundary conditions. To reproduce the results in the E&imodel, only the periodic boundary conditions

are used because they were the only ones explored extgnisitkeé original work.

3.5 Spaceand Time Discretization

An interesting aspect that has arisen from the discretimadf the original Eftimie model is the missing
parametery. According to equation (3.5); is the ratio of the spatial step to the grid-size in the limlitare

both values approach zero. In other worglssan be regarded as a measure of the speed all the animals
are traveling at. With the Lagrangian formulation, becauseare no longer using an infinitesimally small
grid-size and time step to make the system variables camiihere is no explicit parameter for speed that

plays arole in the numerical simulations. However, the hagian formulation has two additional numerical
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parameters that are of concert andAz, which are the time and spatial increments respectively.

The first numerical parameted\¢t, does not change the patterns generated. That is begdtuisenot
explicitly involved in the numerical simulation in Secti@B. Further, it is implicitly implemented because
each iteration, involving the decision to change directiod update in position, represents one time step. If
At does not play a role, then how do we adjust the speed of theidudils? To answer this question, we
look at equation (3.6).

To vary the speed, we need to adjust step size and not the nionenient, as previously discussed.
However, the definition of the Lagrangian formulation doesnequire for discrete space; it simply implies
that the model tracks the animals’ movement from an indi@igwint of view. In fact, there is no limitation
on what speed the animal travels at. We are thus motivatesktoin equation (3.6) to designate the distance
that an animal travels per time step, which is effectivéig, speed.

Interestingly, we find that an optimal speed must be usechahimals to be able to aggregate. When
the speed is too fast, the animals have a tendency to move faerayeach other very quickly, and no
consistent pattern can be found. When the speed is too dlewsame patterns form, but a longer time
period is needed to observe the formation of these pattérhsrefore, to optimize the results range and
computational time, the default speed is set to be 0.1, wtdctesponds to the speeds used by Eftiehi.

To emphasize the need to use an appropriate speed, we vagridmaetes while keeping all other model
parameters constant. The impact of speed on the patteresaged is clear in Figure 3.2, which displays
three different results depending on the valug.ofn the case where the speed is too slow, the algorithm
must run for twice as long compared to the optimal speed teeaehhe same equilibrium zig-zag state (see
Figure 3.2a,c). In the case where the speed is too high, iifisult to observe any aggregation between the
individuals (see Figure 3.2b).

The default value ofy is set at 0.1 because this is in the range of values usegifothe original PDE
model. We also do not put an emphasis on the speed becausectisedf this project is to investigate
how different communication mechanisms lead to differggragation behaviors. Therefore, only the three
parameters related to the strength of these interactigns,,, are varied in the simulations, whereas the

other parameters are simply kept at constant values ttoat &ir pattern formation.
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Figure 3.2: The effect of speed on the aggregation pattéajd.ow speed{=0.01); (b) high speed€l);

(c) optimal speeds=0.1). Each trace represents an individual's trajectoy. fnalls (a), we observe a
zig-zag pulse after a long transient period. For lar¢e), aggregation behavior is lost. When the speed is at
an intermediate value (b), the individuals form zig-zagspslafter a short transient period.

3.6 TheUniform Kerne

As a starting point for exploring the Lagrangian model, tinggest option is a uniform kernel. The uniform
kernel is given by: )

KZ(S) = { 276”7

s; is the centre of each interaction zone, angd defines the width (see Figure 3.3). The uniform kernel

ENS] [SZ — Mi, S + mi]7

otherwise. (3.11)

does not vary the impact of neighbors at different locatiwitkin the interaction zones. Only traveling and

stationary pulses are found as shown in Figure 3.4.

3.7 TheTriangular Kernel

Motivated by the results of the previous section, a triatgke suitable candidate for the shape of the inter-
action kernel. The equation for this interaction kernel pgeaewise linear function of space is given by the
equation below (see Figure 3.5.)

S o 1—|%, SG[Si—mi,Si‘i‘mi],
Kils) = { 0, otherwise. (3.12)

Thus far, only the zig-zag, traveling, and stationary psilsave been observed from the Lagrangian
implementation of all the submodels. Not a single submodelgroduce all four patterns. Submodels M1,

M2, and M4 are the ones with the greatest pattern range, ggmgthree aggregation patterns. The details
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Figure 3.3: The uniform kernel. Each curve is a uniform kéused in the Lagrangian model described by

equation (3.11)s, = 0.25, 54 = 0.5, 84 = 1, My a1, = Z2E82.
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Figure 3.4: Patterns produced by the uniform kernel usihgsdel M1. (a) Stationary pulses wijh;, = 0.
(b) Traveling pulse withy,; = 1. All other parameters arg; = 0.2, A = 0.9,¢, = 1,9, = 1,5, =
0.25,54, = 0.5, 54 = 1, andmy 41,4 = ST%

and implications of the results will be further discussad, first, we must have a clear description of each
of these patterns.

To better compare the results between the Eulerian and hggma models, we explain the definitions
of different behavioral patterns. We will only be discugsihose that exist for both formulations, which are
the stationary, traveling, and zig-zag pulses so far. Whenretis one group that travels in one consistent
direction, it is a traveling pulse. In the definition of thatibnary pulses, it is irrelevant how many groups
the animals have aggregated in. As long as the individuaiairein the same general area, we define them
as stationary pulses.

The zig-zag pattern is a pattern that has not been observethkey mathematical models. The zig-
zag pulse is simply where the main group, like the statiopange, remains in the same general vicinity.
However, this is now caused by the entire group changingdriggtion periodically (see grid 7 in Figure 2.3).
The semi-zig-zag pattern is not included in Figure 2.3, tistdone of the results found by the Eftimie model
([9], [10], [11]). Here, the animals transition in and outlding stationary pulses and traveling pulses.
Specifically, they repeat the cycle of traveling in one ditconsistently before remaining still for a short
period of time. This seems to mimic immigration in a grandeedth breaks incorporated.

With the behavioral patterns formally defined, we discussrésults produced by two different interac-
tion kernels in the following sections. The first is a triatagunteraction kernel, and the second is a cut-off

Gaussian kernel. Also, we offer some explanations why omiyespatterns are produced.
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Figure 3.5: Triangular interaction kernels. These curuesthe kernels used in the Lagrangian model
described by equation (3.12). Parametets= 1,s, = 0.5,s, = 0.25,m; = %J in the Gaussian kernel
andm; = s; in the discrete formulatiory, = r, al, a.

Stationary pulse Stationary pulse Traveling | Zig-zag
Submodel
(large groups) | (small groups) pulse pulse
M1 Y Y Y N
M2 Y Y Y N
M3 Y N Y N
M4 Y Y N Y
M5 N N Y N

Table 3.1: Results produced with the triangular kernel.
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Figure 3.6: Patterns obtained with the Lagrangian modéi tiangular kernels. (a) Stationary pulse (large
groups); (b) stationary pulse (small groups); (c) trawglnlse; (d) zig-zag pulse. In (a) and (c), animals
form stationary pulses. In (b), we observe a traveling pwih a small population of strayers. In (d),

the animals travel in a zig-zag pulse. Parameters

0.9,¢, = 0.7.(B) M2: \; = 1.33, A0 = 6,¢ = 0,qas = 1,0 = 1. (C) M3: A\; = 1.33, A2 = 6.,

used |r'Ma) A =04, = 1.8,q¢, = 0.5,qa

10, gq; = 0.1,q, = 10. (d) M4: A1 = 0.2, Ao = 0.9, ¢ = 20,94 = 0,9, = 19. In all of the above cases,

sp =0.25,54 = 0.5,5, = 1, andmy o1 ¢ = Sr.ala-

Figure 3.6 shows four different behaviors found with tharnigular kernels, and every trace shows an

individual trajectory. In panel (a), large stationary mdsare shown. Here, the animals are not stationary,

although the group as a whole remains in the same

neighborihotact, the individuals vary their locations

within the group, and sometimes they may even deviate frenmtain group. However, the animal is always

able to return to the main group because of its neighbongi@ton signals. In panel (b), small stationary

pulses are shown. Here, the animals are in small groups gfteml or three. The groups are in close

proximity to each other, but there is no merging behavior.
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In panel (c), a traveling pulse is shown. Interestinglyrétie a group that has strayed away and remained
uninfluenced by the main group. A few individuals have dedatnough from the population so that it is
outside the attraction zone of the members in the travelingm The emergence of this separate subgroup
is a rare phenomenonin this model because usually wandamintals cannot escape the sink formed by the
attraction zones of the group, which forces escapees totbhaeads the centre of the crowd. Therefore, the
initial departure is a result of the inherent stochastititihow the animals choose to turn using a uniformly
distributed random number. A question to ask is whether ttayyars would be able to re-join the main
group due the periodic boundary conditions. To answer Wésrun the simulation for a longer period of
time so that the main group arrives at the left domain boundarenters at the right domain boundary,
and continues traveling in a pulse towards the strayers.ubmedel M3, the animals can only receive
communication signals from the neighbors in front of therhefefore, the strayers should be able to sense
the main group after it has passed in front of them. Whetheobthey decide to change their direction to
re-join the larger group depends on the relative sizes oftifagers and the main group. It is observed that
the main group must be sufficiently large to form an attractarce strong enough to pull the strayers back
in.

In panel (d), the animals aggregate in a zig-zag patterrs i§tanother behavior where the stochasticity
in the Lagrangian model is highlighted. In the zig-zag pagdound by the Eulerian formulations, animals
change directions periodically, and the group moves badkarh about the same center. In panel (d), the
individuals do not turn in a predictable manner, and the gemrection that the zig-zag travels in appears
to be random.

A general trend is that a large; and A\, reduces the size of aggregations. This is because indigidua
change direction at a higher frequency and this makes trayebnsistently in one direction unlikely, dis-
couraging merging behavior. There must also be a balanegebat\; and)\,, for an increase in; means
that the animal is more likely to turn, even without any sigrfeom neighbors. Therefore, X; > A1, the
effects of the communication mechanism can be overwhelmeki® constant turning probability.

Some of the behaviors can be formed with only two social ations. For example, submodel M4 can
produce zigzag pulses and stationary pulses without akginThis echoes the results of some of the previ-
ous Lagrangian models discussed where not all of the thi@al soteractions are used ([6], [20], [21], [30]).
Submodel M3 shows some interesting behavior where indalgdare more easily lost because only those
who are heading towards the reference individual are censitin the social interactions.

Submodel M5 produces the smallest range of behaviors (ibngngenerate zig-zag pulses) because it

considers the smallest number of neighbors, specifically those are who are ahead and moving towards
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Submodel Traveling | Stationary| Biased zig-zag Unbiased zig-zag Breather
pulse pulse pulse pulse
M1 Y Y N N N
M2 Y Y N N N
M3 Y Y N N Y
M4 Y Y Y Y N
M5 N N Y N N

Table 3.2: Results produced with the Gaussian cut-off kerne

the reference individual. With this restriction, it is natrgrising that other submodels can produce more
patterns. The original Eftimie model and the Lagrangiani@ngentation both share the result that submodel

M5 only produces one aggregation behavior.

3.8 The Cut-off Gaussian Kernel

Another option for the interaction kernel is to simply cheascut-off value for which the Gaussian interac-
tion kernels are assumed to be zero. This would give an ictierakernel with a shape that is closer to that
used in the Eftimie model. The essential difference is thahé continuous model, because the Gaussian
kernel does not have compact support, the individuals anasd to have no limit in their ability to detect
neighbors far away. In the discrete version, with the inticithn of the cut-off value, the individuals can
only sense neighbors in a defined neighborhood. Since theetiisversion aims to reproduce the results of
the Eulerian formulation, the cut-off value is chosen to b# bf the total domain size. This implies that
the individual can see all of its neighbors because it israssuto look in both directions to determine the
turning probability. Through this action, the individuaess the entire domain without counting the same
neighbor twice with the periodic boundary conditions. Tokofving equation, therefore, is another sensible

choice for an interaction kernel that is to be tested:

R 1 ox (-(3—802) s € [S' _ dom . + dom]
Ki(s) = { 2mm? Oz ) iT % T D (3.13)
0, otherwise

wheredom is the total domain size.
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Figure 3.7: Results of Lagrangian model with cut-off Gaasdiernel. (a) Stationary pulse; (b) breather;
(c) unbiased zig-zag pulse; (d) biased zig-zag pulses. )inw@ observe a stationary pulse. Panel (b)
shows a breather, where animals temporarily deviate fraamthin group before being drawn in by the
attraction force. In (c), there is an unbiased zig-zag puwidere the animals remain in the same general
vicinity. This is different from the biased zig-zag pulse(#@), where the group’s position is shifting to the
right. Parameters used in (a). M3; = 0.2, A2 = 0.9,¢, = 4,94 = 30,q, = 30. (b) Ay = 0, )y =
0.8,¢- = 30,qu = 0,9, = 10. (¢) M5: X\; = 0,X2 = 0.8,¢- = 50,9, = 30,q, = 50. (d) M4:

A1 =0, 2 =0.8, ¢ =50, ¢, = 30,q, = 50.

Results are shown in Figure 3.7. In panel (a), the statiopalse shows non-constant interior density.
There are more animals at the boundary compared to the céiger we see how two groups merge because

their attraction zones overlap, causing the two pulsesduigte towards, and eventually, join each other.
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In panel (b), breathers, which have not been found with thagular kernels, are shown. Here, animals can
actually deviate quite far away from the main group befoterréng. This is the main difference separating
it from the stationary pulse, where animals can only trawehall distance away before being pulled back to
the main group by attraction. In panel (c), we see the zigedge again, with no directional bias. In panel
(d), the biased zig-zag pulse shows animals traveling indireetion between short, temporary switches to
traveling in the opposite direction.

Comparing the parameters used for the Gaussian kernel andatirangian kernel, we see that the
Gaussian kernel formulation requires thatis zero for aggregation to occur. Using a non-zesavith the
parameter sets eliminates any patterns. This indicateéswittathe Gaussian kernel, we must emphasize
the effects of the communication mechanism by ignoring amstant turning probability. Even when is
zero, panels (b) and (c) show that stochastic effects alaneause loss of individuals from the main group.

With this kernel, there is a larger range of movement pattdrserved, similar to that of the Eftimie
model. In general, submodels M1 and M2 produce the usuapatseen in most movement models, like
traveling and stationary pulses. Submodels M3, M4, and Miegee some of the new pattens from the

Eulerian model, like breathers, and zig-zag pulses.

3.9 Asymmetry in Communication M echanisms

One of the aspects that the Eftimie model explored is asymynretommunication mechanisms, as men-
tioned in Section 2.3. Essentially, the individuals sensigimbors on one side stronger than on the other,

which is described in equation (2.9). The following equagxpresses the same scenario in discrete space:

Yai = Dr > Ka(lz; — z:]) — pu > Ka(|z; — z3), (3.14)

v;<0,2;€Zright,al; v; >0,2;€Z1cft,al;

pr # D (3.15)

Like the Eulerian formulation, the repulsion and attractignals are modified in a similar fashion to incor-
porate asymmetry.

However, in patterns like the traveling and stationary esiishe asymmetry does not produce a notice-
able change. To observe the effects of varying the influermee heighbors on the right and the left, we use
the zig-zag pulse. Figures 3.8(b) and 3.8(c) show the grebplior when the signal strength is stronger on
one side than the other. As a result, the zig-zag pulse isi@svards the side where the interaction signals
are stronger. When the interaction signals are the sameg#ren either side, the group forms a zig-zag

pulse that moves about in the same area (Figure 3.8(a)).
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Figure 3.8: The effect of asymmetry on the zig-zag patteayw, (= p,; (b) pi > p,; () pi < pr-. If pr = p»-

(a), the animals sense neighbors on each side equally amddreeform a symmetric pattern where the main
group has no biased tendency to move left or right. Therefbeezig-zag pulse remains in the same general
vicinity. If p; > p, (b), the animals travel to the left. # < p, (c), the animals travel to the right.

3.10 Discussion

In this chapter, we investigated how we transform the oabaontinuous-time and space movement
model into a discrete-time and space formulation using #meesmaster equations that govern the turning
probabilities based on interactions with neighbors. Thgraagian model has succeeded in generating some
of the patterns found in the Eulerian model, with the zig-ang breather pulses never before produced by
any other individual-based model. In addition to these nattepns, we have also found the traveling and
stationary pulses. Feathers, ripples, and and traveligstare not found.

The reason that not all patterns from the Eulerian model enegted may be simply due to the effects
of the discretization or the changes made to the interag@onels. On the other hand, this may also be
because the parameter space was not explored sufficiertilg. iSwhere the advantages of the Eulerian
formulation become evident. With the application of bifation theory, Eftimiect al. are able to determine
the relevant parameter ranges for the existence of varteasg states. In a Lagrangian model, we can only
run multiple simulations with various parameter sets to #ifttrent aggregation patterns.

Comparing Figures 3.7 and 3.8 to Figure 2.3, we see thatasticteffects play a much more significant
role in the Lagrangian formulation. This is demonstratedhry fact that none of the patterns from the
original model displays any random loss of individuals friiva main group. Also, an interesting feature in
Figure 2.3 is that we can observe the gradients in the papaolathere the group can smoothly transition

between a dense to a sparse area. With the Lagrangian farom/lae do not observe this phenomenon.
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The simulations with the triangular and Gaussian intesadternels have generated encouraging results,
which bring us to the following question. If the system noved#&es animals moving in continuous time
using the same movement and communication principles, watérns would we observe? Would the
parameters have the same impact as in the Lagrangian fdiom#aWhat is the most accurate way to
translate Eftimie’s PDE model into an ODE model? With thesestjions in mind, we investigate pattern

formation in a discrete-space, continuous time systemdridhiowing chapter.
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Chapter 4

Pattern Formation in a Discrete-Space,
Continuous-Time System

4.1 Introduction

In [9], [10], and [11], the individuals were modeled inteting and traveling in a continuous-time, con-
tinuous space system. In the previous chapter, the samd sge@ction rules were taken to produce a
Lagrangian system with discrete-time and discrete-spdt® further question to investigate is how the
behavior compares if the individuals were described by dicoaus-time and discrete-space system. The
derivation of this model would require taking the PDE systiaaeloped in [9], [10], and [11] and translat-
ing the equations into a set of ODEs for each spatial poinsicened. In the following sections, we will
describe how the ODE set is formed and the results of the aiiouk.

In Section 4.2, we derive an ODE system from the PDE systerhdrEftimie model. Then, in Sec-

tion 4.3, we present the aggregation patterns generatdd$@DE model.

4.2 Numerical Implementation

Similar to the original Eftimie model, we have two populaisao track: the left-moving and right-moving
individuals. Therefore, the solution is described by twetees with lengths determined by the grid-size;
one vectorji ™, contains the number of right-moving individuals at eadd-goint, while the other one;—,
records the number of left-moving individuals at each gridat.

The system that is to be discretized over space is given batiems (2.1) and (2.2), and the model is to be

considered over a finite 1-D domain divided into a totahafrid-points with periodic boundary conditions.
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Time then becomes the only continuous variable, allowirggapplication of a Matlab ODE solver. This
technique is referred to as the method of lines. To expressyhtial derivatives with finite differences, the
upwind-downwind schemes must be considered so that thestlizgtion is consistent. Since equation (2.1)
and (2.2) describe right and left-moving individuals redpely, it is clear that the backward difference
must be used for equation (2.1) and the forward differencstrbe used with equation (2.2). The reason
is clear when we consider the available information on ai@ddr individual’s previous traveling history.
For example, given one entry ifi", it is known that these individuals in the relevant gridmavould be

in the left adjacent grid-point at the previous time-step.afconsequence, only the backward discretization
scheme can be used because no information is given for théemof individuals in the right adjacent

grid-point at the previous time-step. The discretizatian be described by the following equation:

Ou™ ul —uf
M o), (4.1)
i = 1,..,n, (4.2)

where the index indicates the grid-point along the domain being describ@tbte that this definition is
different from that used in Chapter 3, whereefers to the individual.) Similarly, one entry i would
only contain information about the number of individualste right adjacent grid-point at the previous
time-step. Here, the forward discretization scheme musisked:

ou~ Uy g — Uy

5 = o +0(Aa), (4.3)

i = 1,..n. (4.4)

The discretization scheme used has a first-order approximetror. Using a higher-order scheme like the
central difference approximation is not possible becaust schemes require past information from both
sides of the relevant grid-point, which is not possible wttendirectionality of an animal determines that
information is only given on one side.

Using equations (4.2) and (4.4), equations (2.1) and (@) transformed into the following system
of ODEs:

du; §-ul
i i Auz L= e R, (4.5)
X
du- u-_Jrl —u, o
it Attt N 4.6
a T Az e i (4.6)
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After rearranging the terms, the following ODE system isrfdu

+ - ur
duiit(:v) _ _7(%) — Nt (@) 4 AT up (@), (4.7)
du; 7 — Ug o
uzdt(:v) — " +1Ax Yy NFu (@ t) — AT g (x,8), (4.8)
i = 1,..,n. 4.9

The turning probabilitiesA®, must be calculated for each spatial point and travelingatiion. To
calculate this turning probability, we use the same equnativen in the Eftimie model (see equations (2.3)
and (2.4)). The numerical integration method used to apprate the integral of the interaction kernels is
the composite Simpson'’s rule, restrictingo be an even number. To achieve this, we define a vector

representing the kernel strength, whose entires are gizen b

X 4K;(x;), if jevenand € (1,%),

Ki(zj) = ¢ 2Ki(x;), if joddandj e (1,5%), (4.10)

Ki(z;), ifj=1,%,

wherei = r,al,a andj = 1,..., 5. Herex; are the grid-points along the function domain. Assuming tha
the total domain size i&, =; can be defined aéll. K only goes through half of the total domain because
an individual only scans through half the domain when logkmthe left or to the right. Depending on the
particular submodel, the neighbors who determine thengrprobability vary. To illustrate exactly how the
turning probability is calculated for a reference indivadiltan example is given.

Assuming that the individual follows the interaction rulgisen by submodel M1, there are two dif-
ferent interaction modes. Essentially, attraction andilspn follow the same interaction mode, where all
neighbors are considered regardless of their orientgtioimite alignment is in a different category; only the
neighbors who are moving towards the reference individtmlcansidered. To be clear which neighbors
are relevant, four vectors are define]ﬁlj,i.ght andﬁift. The subscripts, left and right, indicate where the
neighbor is located with respect to the reference individla other Words,ﬁ;tight would be simply the
vector formed by taking all the entries that follow the refece location in the vectorig.. For example,
if the reference location is;, thenﬁfmht would bew* from the indexj + 1 to n, andﬁiﬁ would bei*
from the indexl to j — 1. Since the boundary conditions are periodic, to ensureﬂﬁj%t andﬁlieft have
the same number of entries, we can shift a section of the toregor to the shorter one (see Figure 4.1).

to 7~ .. asthe

For instance, ifi;; ,, are longer thaniy, ,,, then we would shift right-most entry i, aht

right
right-most entry until the vectors are of the same lengtmil@rly, if Ujj.ght are shorter thaﬁ’iﬁ, then we
would shift left-most entry ini;5 s to ik 1+ as the left-most entry. We can perform these operationaiseca

the model is applied with periodic boundary conditions.
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Figure 4.1: In case (@), the individual is situated in thé sefe. Thereforeﬁ?;ft wraps around the left end

and extends into the right end of the domain to have the sangd’iasﬁ;ﬁght. Similarly, case (b) shows that

ﬁ;ﬁqht wraps around the right end and extends into the left end addineain when the reference individual

is situated in the right side.
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Here, we take submodel M1 as an example for calculatioyfof ,, and the reference location:is.

y;.,_al = %l(ﬁal (ﬁ;ight - ﬁ?;eft))’ (4.11)

y;:r,a = qr,a(Kr,a(ﬁright - ﬁleft))- (412)

The signals for the various submodels can be formulatedaiwmiThe turning probability is then calculated
using the same functions as the Eftimie model with equati@r® and (2.4).

After having calculated the turning probabilities, the OBJEStem can simply be solved numerically by
Matlab using the function ode45, which is based on an exjtiehge-Kutta (4,5) formula and the Dormand-
Prince method. The Runge-Kutta (4,5) formula, used forisglODE with initial conditions given, is an
explicit adaptive-size formula that minimizes the errordayculating and then comparing the results found
with a Runge-Kutta-4 and Runge-Kutta-5 method, both réogisix function evaluations at each time step.
As a result of using the Dormand-Prince method, a fifth-oi@ution is produced. It is important to
recognize the numerical errors in our methods used for sglthhe ODEs because this helps us realize

where the differences in patterns formed with the PDE and @idHels arise.

4.3 Resultsusing Discrete Space, Continuous Time For mulation

Since the ODE formulation is an intermediate version, wecgrgte that the results would include patterns
that have been found in both of the Lagrangian and PDE mo8elscifically, the traveling, stationary, and
zig-zag pulses are expected. However, with the ODE sinaulafian unexpected result previously unseen
in the Eulerian PDE formulation is that a homogeneous smius generated with most parameter sets used
in the PDE simulations for inhomogeneous patterns like thexa and traveling pulses. This may be a
consequence of the additional numerical errors incorpdrdtie to the space discretization. In factfis
large, meaning that there is a significant random compomeotporated into the turning probability, it is
difficult to find an inhomogeneous distribution. This imglidat with a space discretization, random effects
may be already incorporated into the system and an incradke random turning probability overwhelms
the effects of the turning signals from neighbors.

When the random turning probability;, is reduced, more spatial patterns are formed. The patterns
found include traveling and stationary pulses, traveliains, breathers, and traveling breathers. Traveling
breathers have not been produced by the previous disgrate-sand-time formulations. These patterns are
shown in Figure 4.2, and the color scale is a representafitregopulation density. For example, in panel
(a) with stationary pulses, all the colored lines remairhatdame location for each time step, which means

that the animals have aggregated in stationary groups.
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Submodel Traveling | Stationary Travglmg Breather| Traveling breather
pulse pulse train
M1 Y Y Y N N
M2 Y Y N N N
M3 Y N N N Y
M4 Y N N N Y
M5 Y Y N Y Y
Table 4.1: Results produced by ODE formulation.
(a) (b) (©)
Time ste ; Ti t
Time step Ime step 1.1
300 1‘21 200" e =0.9967 /7T 1
. 120y // /
200 300 3 1.06
1.0 ‘ i ¥, 1.02
200 80 ;o
0.8 0.9966 y. / //// 0.98
100 40 v
0.6 100 / | /777 | 0.94
olutill MITETLY Mo.a (/0 /1.9
0O 40 80 00 2040 60 80  0-9963 % 20 40 60 80
Location of individuals Location of individuals Location of individuals
(d) (e) ()
Time step Time step
400 0.97 "
400 ‘ 2.2 lerr(}%step 101
\ 1.004
200 ' 0.93 ‘ 1.4 120
200 1.0
: 0.91 | : 80
100 ’ 100 bLE 4 02934
0.89 / ‘ 0'2 =/a\ |
% 20 40 60 80 00'2'0_'40 60 80100 026 60 100 099
Time step Location of individuals Location of individuals

Figure 4.2: Results of Lagrangian ODE model. (a) Statiomparige; (b) traveling pulse; (c) traveling train;
(d) traveling breathers; (e) traveling breather; (f) bheas. A = v = 0.1 in all figures. Other parameters
used in (a) M1: A = 0.2, = 0.9, = 10,94 = 5,q, = 10. (b) M2: A\ = 0.4; ) = 1.8,q¢, =
0.2,qar = 2,qa = 2. (C)M3: Ay = 0,X2 = 6,4 = 5,qa1 = 2,qo = 5. () M3: Ay =0,X2 = .9,¢- =
2,qal = 2,qa = 6. () M5: A1 = 0,02 = .9,¢, = 10,¢a1 = 5,qa = 10. () M5: Xy = 0,X2 = .9,¢, =

0, qa = 30, ¢, = 30.
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Interestingly, zig-zag pulses could not be found at all,levliaveling breathers are a prevalent pattern
for submodels M3-5 in spite of its absence in the previougéagian formulations. In panels (a) and (b)
of Figure 4.2, the population density is displayed, wheeeghimals are in a stationary and traveling pulse.
In the traveling trains in panel (c), the animals are sepdratto two different groups while moving in the
same direction. This pattern was very rare because in messcaaveling groups joined into one traveling
pulse. There are two ways that animals move in travelingtbezs, one from submodels M3-4 and another
from submodel 5. In panel (d), the traveling breathers aasianimals who periodically move towards and
away from the center of the group. In panel (e), the groupsiohals mostly travel in a straight line, but
some at the edge periodically move outwards before refjgittieir group to form a single file again. Not
all of the groups exhibit this behavior, and those who do natydisplay the same degree of expansion and
contraction. For example, the groups in the centre of theadlomxhibit more fluctuations in the size than
those closer to the boundary of the domain.

Having explored the discrete-space-and-time, ODE, and f@&ulations, we can now take a look at
incorporating direction-dependent communication in otlagrangian models that have a different approach
to modeling animal movement. In the following chapter, we tige Kolpas model as the modeling frame-
work while adding components from the Eftimie model. Wouié model produce the same patterns as
the Eftimie model or the Kolpas model? What trends would ltlyisrid model share with its predecessors?

These are key questions that we explore.
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Chapter 5

A Eftimie-Kolpas Hybrid Moddl:
Prioritizing Repulsion

5.1 Introduction

The Kolpas model, as previously discussed in subsectiad,lsBares many features as the Eftimie model.
Both consider repulsion, alignment, and attraction betweeividuals, but the Kolpas model does not have a
direction-dependent component in the interactions. Aeiotignificant difference in the assumptions for the
Kolpas model is that individuals prioritize repulsion oe¢ignment and attraction. Individuals in the Kolpas
model consider alignment and attraction only if there ar@@ighbors in the repulsion zone, as illustrated
in Figure 5.1. We assume that animals move at a constant gffeetl Kolpas found that the size of the
alignment zone determines whether the group is stationargweling. When the size of the alignment zone
is small, animals are in the stationary phase. As the sizhealignment zone increases, the animals are
more likely to be traveling. The Kolpas model shows that foirtermediate size in the alignment zone,
animals spontaneously switch from the stationary and lirayphases (see Figure 5.2). Kolpas termed this
behavior stick-slip.

To understand animal aggregation behavior, we incorpaiiegetion-dependent communication mech-
anisms from the Eftimie model into the modeling frameworkkolpaset al. and investigate whether or
not animals can spontaneously transition between diffdrenaviors using only one parameter set, similar
to the stick-slip behavior in the Kolpas model. A questioattls answered at the same time is whether
or not more patterns can be produced from the Kolpas franieifvtite direction-dependent mechanism is
incorporated.

In Section 5.2, we combine the Kolpas and Eftimie models.drigular, we discuss the modifications
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Check for
neighbors in
repulsion zone

Check for
neighbors in
alignment and
attraction zones

Calculate repulsion
signal

J

Calculate weighted
signal with both
attraction and
alignment

Update position
according to
designated
direction

Figure 5.1: The decision-making process of the Eftimiegésl hybrid model. The individuals scan the
alignment and attraction zones only if the repulsion zoremsty.
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Figure 5.2: The behaviors of the Kolpas model. (a) Smallnatignt zone with size of 0.1 unit; (b) inter-
mediate alignment zone with size of 0.6 unit; (c) large atigmt zone with size of 1.1 unit. Each blue line
represents an animal’s trajectory. The animals travel vihealignment zone is large (c) and remain station-
ary when the alignment zone is small (a). For an alignmené zdrintermediate size, they spontaneously
switch between the two phases (b). This behavior is calliek-stip.

introduced into the Kolpas framework and explain why thdsanges are significant. Then, we present
results from two differentimplementations in Section 3=Bhally, we discuss the implications of our results

in Section 5.4.

5.2 Building the Eftimie-Kolpas Hybrid

An important consideration in building the Eftimie-Kolphgbrid is to determine what assumptions from
the Eftimie model should be incorporated into the Kolpas eto@ince the distinguishing feature of the
Eftimie model is the direction-dependent communicatiorcihagism, we choose to incorporate it in our
hybrid model. Therefore, the first step is to find what behavibe Kolpas model can generate if we apply
the communication mechanisms described by Figure 2.1., Mereise the Kolpas modeling scheme from
subsection 1.2.4 as our starting point.

Equations (1.8) and (1.9) must be modified depending on theedel implemented. These are equa-
tions from the Kolpas model that calculate the interactignals, the former considering repulsion and the
latter attraction and alignment. Equation (1.9) is apflieanly if the repulsion zone is completely empty.
To demonstrate how they must be changed to include a diredgépendent component, we show the equa-
tions for communication signals of submodel M1. Becausenats take into account all neighbors in the
repulsion zone, equation (1.8) remains the same. Howeaveerid alignment signals, the neighbor must

be moving towards the reference individual in the relevataraction zone. According to this requirement,
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equation (1.9) is modified into:

v (t) + ch(t)ezalj (t),0; (1) (cj (1) —ci(t))<0 v;(t) N Z c;(t) — ¢i(t) . (5.1)

i (t) + ch(t)ezalj (©),0s(1) (e (t)—ci (1)) <0 Vi (B)] 3 (1)€Z0, (1) |cj(t) — ci(t)]
The additional condition in the alignment termy(t)(c;(t) — c;(t)) < 0, means that neighbors in the
alignment zone must be moving towards the reference indilioh order to be detected.
For notational convenience, we define the notatigrwherei = r, al, a, to represent the conditions that
the neighbors must satisfy to be considered in the sociadantions. With this notation, equation (5.1) can

be rewritten as:

v vi(t) + 32, vi(t) Y cj(t) —ci(t) | (52)
vi(t) + 22, 0]~ £ lei(t) — ai(t)]

wherex, = c;(t) € Za,(t),vi(t)(c;(t) — ci(t)) < 0andx, = c;(t) € Zq,;(t). The conditions vary

according to the submodel, but they all share the commonifedhat the neighbor must be within the

relevant interaction zone.

Another question is whether or not we should further develaphybrid by adding interaction kernels
and parameters to assign the weights of the interactions.r@sults from the Lagrangian implementation
of the Eftimie model imply that interaction kernels play ampiortant role in finding a larger pattern range.
To determine whether this also applies to the Eftimie-Kelpgbrid, we simulate animal motion with and
without interaction kernels. In the Eftimie model, the goaxhibits various grouping behaviors according
to the different weights assigned to each interaction. imrest, the Kolpas framework always prioritizes
repulsion over alignment and attraction, meaning that weordy adjust the significance of alignment and
attraction but not repulsion. We introduce the paramétemwhich is the relative strength of attraction
compared to alignment.

In summary, if the repulsion zone is not empty, we use thewlg equation to determine the individ-

ual’'s velocity:
|¢; (1) — ci(t)]
Otherwise, the individual proceeds to scan the alignmethdinaction zones to calculate its direction:

Cout) + 3, Kalle(t) —a(®) ;) o) ey Gt — )
=T o Rl @y @+ 2 Kalles® — O = 64

The definitions ofK, ,; , remain unchanged from equation (3.13), and the final veldgitalculated ac-

V= =3 Knlle (1) — eatt)) D =) (5.3)

cording to equation (1.10), which normalizes the veloaityatvalue oft+1. Periodic boundary conditions

are used in all of the simulations to ensure that the anineatem within a confined region, increasing the
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probability that they are close enough to interact with eattter. In contrast, the Kolpas model does not
use any boundary conditions because it simulates animaément on an infinite domain. Its results do not

show many strayers, therefore eliminating the possibilftipsing group members.

5.3 Aggregation Patterns of the Eftimie-Kolpas Hybrid

In this section, we discuss two differentimplementatiofthe Eftimie-Kolpas hybrid. Their difference lies

in that the one involves interaction kernels while the otth@gs not. In Sections 5.3.1 and 5.3.2, we present
the patterns generated. In all of the simulations below, eepkspeed constant at 0.075 space increment
per time step for easier comparison. Then, in Section 5.4jis@iss the common trends between the two

implementations.

5.3.1 TheEftimie-Kolpas Model with No Interaction Kernels

In this subsection, we explore what types of behavior th@&simodel generates if only direction-dependent
communication is included. We investigate all the subm®dkbwn in Figure 2.1. The trends discussed in
this subsection can be generalized to all submodels evergthee may only display results from a subset
of the submodels. Like the Kolpas model, we observe threenatfor the different submodels: traveling,
semi-zig-zag, and stationary pulses. It is important togedze that the stick-slip behavior mentioned in the
Kolpas model is analogous to the semi-zig-zag pulses frenkflimie model. Both are used to describe the
movement that spontaneously switches between travelidgesting. The pattern generated depends on the
parameters used.

In particular, we look at the effect of varying the attraotiforce by adjusting the paramet@r. As
shown in Figure 5.3, we find that the attraction force actsgisi@and maintains the integrity of the group.
In the case of smalf,, we observe a traveling pulse with more strayers.gAs$s increased, strayers are
pulled back into the group, and the traveling pulse gives t@aemi-zig-zag solutions.

In the original Kolpas model, the behavior is controlled bg size of the alignment zone,,,;. Accord-
ing to the results from Kolpaet al., we would expect that a larger alignment zone increase®titehcy of
the group to be in the mobile phase. To verify if this holdstfa hybrid model, we vary the alignment zone
for behavior generated with a large and sngall Results are shown in Figure 5.4. We observe that in con-
trast to the Kolpas model, the size of the alignment zone doeaffect the general qualitative behavior of
the group. For a largg,, the group remains stationary, as shown in Figures 5.4ja)f(stead, we see fewer

stationary pulses spaced farther apartgsis increased. The distance between each pulse is deterinyned
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Figure 5.3: Different behaviors of the Eftimie-Kolpas highwith no interaction kernels for varying values
of the relative attraction strength. (@) = 0.3; (b) G,=3; (c) ¢, = 30. For a small, (a), a traveling pulse

is formed. For an intermediate valuegf(b), semi-zig-zag pulses are formed. For a lajgéc), the group
also forms semi-zig-zag pulses, but these are spaced fuaflaet compared to those formed in (b). The
figure shows how the aggregation behavior changes for suélividasg, is increased. Panels (a)-(c) show
different spatial scales because only the region that iexg@ by the animals is presented. Parameters used:
n =100,p = 0.001,m, = 3,mg =1, my = 3.

where the attraction zone starts, as Figures 5.4(a)-(d)sgllay a spacing of approximately, + m,;. For

a smallg,, as shown in Figures 5.4(d)-(f), traveling pulses are aMaymed. For this behavior, it is more
difficult to define the edges of the pulses because there amg stiayers. However, Figures 5.4(d)-(f) show
that asm,,; increases, the traveling pulse becomes less dense and ispeesgéd. Whem,,; is sufficiently
large, the animals in the traveling pulse no longer appebetmoving in a single cohesive group. Rather,
there are two files traveling in the same direction adjacem®iaich other, similar to the behavior shown in
traveling trains (see Figure 5.4(f)).

Given that the paramet@y, has such a profound effect on the behavior of the animalswondd expect
that the size of the attraction zone also plays an imporialetin determining the aggregation behavior.
However, this does not seem to be the case as no qualitativeyel are observed as the parameigiis
increased.

Finally, we investigate how the population would react tar@ér repulsion zone. Figure 5.5 shows that
as the repulsion zone becomes larger, the traveling puéseses less compact and there are more strayers.
If m,. is sufficiently large, we predict that no aggregation woutdwr at all. Yet, it is most likely that this
threshold value ofn,. is so large that it is no longer biologically relevant. Taidtrate why settinga, > 8
is not realistic, we consider the scenario illustrated iguFé 5.5(c). Using a repulsion zone of eight units,
animals can still form a coherent traveling pulse, despigeltigh number of strayers. This suggests that

we should further increase,. to test whether or not the aggregation behavior is lost afissing a certain
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Figure 5.4: Different behaviors of the Eftimie-Kolpas highwith no interaction kernels for varying sizes of
alignment zone. (a)ia; = 1; (b) ma = 3; (C) mar = 6; (d) mar = 1; (&) mar = 5; (f) ma = 7. The
figure shows how the aggregation behavior changes for sudlnhbtl asm,; is varied. In panels (a)-(c),
stationary pulses are formed. In panels (d)-(f), travefintses are formed. In general,7ag; increases, the
spacing between the pulses increases as well. Parametersws 100, p = 0.001, m,. = 1,m, = 3 for
two values ofj, (¢,=3 in (a)-(c);G,=0.3 in (d)-(f)).

55



« 200 © 200 v
g S S
T 100 T100 o
= = >
g 2 2
g O 5 ° 5
s S S
=-100 =-100 =
(v} (9] |9
o o o
- ~-20 ~ 200
-20 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 2000 4000 6000 8000
Time step Time step Time step

@ (b) ©

Figure 5.5: Different behaviors of the Eftimie-Kolpas highwith no interaction kernels for varying sizes of
the repulsion zone. (ay, = 0.1; (b) m,. = 2; (¢) m,- = 8. The figure shows how the aggregation behavior
changes for submodel M3 as, is varied. For all three values af,. used in this figure, a traveling pulse is
formed. Asm,. is increased, the pulse becomes less dense. Parametersiuseth0, p = 0.001, my =
1,me =1,G, = 0.3.

threshold value. However, given that the animals move atrestent speed of 0.075 space increment at
each time step, an animal would have to walk approximatek/stéps to cover a repulsion zone of eight
grid-points. Therefore, it is doubtful that an animal wobklrepelled by a neighbor that is so far away.
Another interesting aspect to explore is whether or notha#ié interactions are needed for aggregation
behavior. In particular, are both alignment and attractexjuired to keep the group together? From Fig-
ure 5.6, we can deduce that repulsion pulls the group apaite &lignment and attraction help maintain
the integrity of the group. Interestingly, even though dsjmn is prioritized, as long as either alignment
or attraction is present, the animals can form one cohesivepg Figure 5.6(a) shows a pulse in random
movement, emphasizing the importance of alignment in then&tion of a traveling pulse. Figure 5.6(b)
shows the traveling pulse loses individuals consistehilyhlighting how attraction can act as a glue be-

tween individuals.

5.3.2 TheEftimie-KolpasHybrid with Cut-off Gaussian Kernels

In this subsection, we discuss the aggregation patternsrgia if both interaction kernels and direction-
dependent communication mechanisms are included in thgalkahodel. The first noticeable difference
between the hybrid version with and without interactiomlads is the significant increase in the number of
strayers when cut-off Gaussian kernels are added. Thigrieat especially evident in submodels M3 and
M5, where aggregation behavior is lost. Animals in submddiglscatter especially quickly, likely due to

the fact that the social interactions involve fewer neigisbwehen compared to submodel M3. According to
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Figure 5.6: Aggregation patterns for the Eftimie-Kolpadtig with no interaction kernels using two social
interactions only. (ajn,; = 0; (b) m, = 0. This figure shows that aggregation occurs as long as attnact
or alignment is present. For no alignment (a), even thouginesgation occurs, the individuals cannot form
a traveling pulse. For no attraction (b), traveling pulses farmed. Parameters used for both figures:
Go = 3,n = 100,p = 0.001. Interaction zone sizes in Figure 5.6(a);. = 2, m, = 2. Interaction zone
sizes in Figure 5.6(b)yn,. = 2, my; = 3.

Figure 2.1, submodels M3 and M5 are the two submodels thgttaké into account neighbors which are
in front of the reference individual. This implies that ftwet Eftimie-Kolpas model with cut-off Gaussian
kernels, it is important to receive communication signedef both directions. Therefore, in the discussion
below, we focus on submodels M1 and M4.

The first parameter that we explore for submodel Mg, i¢see Figure 5.7). The value ¢f affects how
cohesive the group is. Whej is sufficiently small, the animals cannot form groups (segifé 5.7(a)).
For larger values of;,, the animals aggregate in stationary pulses (see Figu(b)manid 5.7(c)). This is
expected because attraction is the force keeping the theils together.

For submodel M1, regarding the size of the attraction zomenatice a different trend from the Eftimie-
Kolpas hybrid without any interaction kernels. When ther@a attraction force present, the group travels
uniformly (Figure 5.8(a)). When there is a small attraczone, the group exhibits stick-slip or semi-zig-zag
behavior (Figure 5.8(b)). Finally, when the attraction e sufficiently large, the animals form stationary
pulses (Figure 5.8(c)). The impact of the attraction zon¢herpatterns formed is reminiscent of the trend
with regards to the size of the alignment zone in the Kolpadehavhere animals travel for a large alignment

zone and remain stationary for a small alignment zone.
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Figure 5.7: Aggregation patterns for varying valuegpfn the Eftimie-Kolpas hybrid submodel M1 with
interaction kernels. (&), = 1; (b) . = 7; (¢) ¢, = 10. Wheng, is sufficiently small, aggregation behavior
is lost (a). In (b) and (c), where intermediate and strongtied attraction signal strengths are applied
respectively, stationary pulses are formed. The numbeulsEs increases gs decreases. Parameters used
for all three figuresn = 100, p = 0.001,m, = 0.1, my = 1,m, = 1.
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Figure 5.8: Aggregation patterns for varying valuesqf in the Eftimie-Kolpas hybrid submodel M1 with
interaction kernels. (an, = 0.; (b) m, = 1; (¢) m, = 4. In (a), where there is no attraction, animals
form a traveling pulse. This figure shows that a larger dftstaczone decreases the likelihood of the group
to be in the mobile phase ((b),(c)). Parameters used forfimpires: ¢, = 10,n = 100,p = 0.001, m,. =
1,mal =1.
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The next aspect to investigate is how the animals’ behavmuldvvary according to the size of the
alignment zonem,;. Figure 5.9(a) shows that for a small alignment zone, arsmehain stationary. As the
size of the alignment zone is increased, the group firstitians from stationary into semi-zig-zag pulses,
and then from semi-zig-zag into zig-zag pulses (see Fighu@®) and 5.9(c)). It is noteworthy that even
whenm,; = 5.9, the animals do not form traveling pulses. This is due to #u that the attraction zone
used is too large for a traveling pulse to be formed, a phenomebserved in Figure 5.8. Hence, when the
attraction zone is reduced, the group forms a single tragglulse (see Figure 5.9(d)).

Finally, we explore the effects of varying the size of theulsjpn zone,n,. With a small repulsion
zone, animals are mobile. When the repulsion zone is sufflgiéarge, the animals no longer travel (see
Figure 5.10).

We summarize the results found from Figures 5.8, 5.9, ar@lib.hifurcation diagrams (see Figure 5.11
and 5.12). These diagrams are not exact; rather, they atiatjua descriptions of how the behaviors
change according to the sizes of the interaction zones.¥@ongle, Figure 5.11 shows how the aggregation
behavior in the hybrid submodel M1 with interaction kerrelianges according to the sizes of the alignment
and attraction zones, which are givenny,; andm,. For a largen,; and smalln,, traveling pulses are
formed. For a largen,, either zig-zag, semi-zig-zag, or stationary pulses arméd depending on the
maghnitude ofn,,;.

Having explored how each interaction affects the behavisubmodel M1, we now discuss the patterns
produced by submodel M4. In submodel M4, we observe manyeo$éime behaviors from submodel M1.
However, for most parameter sets, there is a noticeablgtargmber of strayers and the pulses become
more difficult to define. There are also a number of surprising counterintuitive outcomes that we have
not yet observed in previous implementations of the subisotiée discuss some of these below.

The first counterintuitive phenomenon is the transitiomfrivaveling pulses into a complete loss of
aggregation behavior when the attraction zone is increased submodel M1, a larger attraction zone
decreases the number of strayers (see Figure 5.8). For sigbidd, a sufficiently large attraction zone
results in the animals not being able to aggregate in grougis@ee Figure 5.13).

Consistent with the scenario above, the animals lose thaityeto form groups when the repulsion zone
is decreased (see Figure 5.14). When s sufficiently large, stationary pulses are formed. An éase
in m,. results in a larger distance between each pulse. Figurd§f.And 5.14(c) suggest that the animals
prefer to form pulses that are spaced approximatgly+ m,; apart, or where the attraction zone begins.
The threshold value of:,. where the behavior transitions from stationary pulses torgemized motion is

approximately at 0.9. Whem,. is near this threshold, animals can be in any one of the tweipest The
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Figure 5.9: Aggregation patterns for varying valuesof in the Eftimie-Kolpas hybrid submodel M1 with
interaction kernels. (a) Stationary pulses with smallratignt zonem,; = 0.1, m, = 1. (b) Semi-zig-zag
pulses with intermediate alignment zone,; = 4.9,m, = 1. (c) Zig-zag pulses with large alignment
zone and large attraction zonei,; = 5.9, m, = 1. (d) Traveling pulses with large alignment zone and
small attraction zonemn,; = 5.9, m, = 0.1. This figure shows that a smaller alignment zone decreases th

Location of individuals
100

L
o el
/—-—/;7 il 5

1500 3000 4500
Time step

(b)
Location of individuals
2000 '

100

0

-100

20001500 3000 4500

Time step
(d)

a

likelihood of the group to be in the mobile phase. Parametsesl for all figuresg, = 10,n = 100,p =

0.001,m, = 1.

60



Location of mdnnduals

Location of individuals
20 : -

20 16

10 T2

0 8

-10: 1 4 -

202000 4000 Oo 2000 4000
Time step Time step

(@) (b)

Figure 5.10: Aggregation patterns for varying valuesgfin the Eftimie-Kolpas hybrid submodel M1 with
interaction kernels. (a) Semi-zig-zag pulses with = 0.1. (b) Stationary pulses witih,. = 0.5. This
figure shows that a smaller repulsion zone increases thiéhlikel of the group to be in the mobile phase.
Parameters used for both figurgs:= 10,n = 100, p = 0.001, m, = 1, m, = 1.

equilibrium configuration most likely depends on the randbitial conditions. Figures 5.13 and 5.14 give
two criteria for forming cohesive groups in submodel M4: afirattraction zone and a large repulsion zone.
If both requirements are not satisfied, the group does nabixdny aggregation behavior. We would like
to emphasize that to encourage group formation, we canralf@ease the attraction zone or increase the
repulsion zone. The effects from using a smaller attractmme or a larger repulsion zone are similar since
the two interactions are essentially opposites of eachr.offfee alignment zone was also varied to explore
its influence on the group behavior, but no noticeable chairghe patterns generated are found.

Having summarized the trends regarding the sizes of thactittn zones and the alignment zones, we
discuss and summarize the surprising trends of submodelsk® Figure 5.15). From the results of sub-
model M1, we observe similar phenomena where large repulsiaes produce stationary pulses and small
attraction zones produce traveling pulses. However, ardikomodel M1, submodel M4 cannot generate
semi-zig-zag or zig-zag pulses. Instead, when eithgor m, is outside of the range where stationary and
traveling pulses are found, animals simply do not aggred@aiteen that the number of neighbors considered
in submodel M4 are fewer compared to that in submodel M1, rié&sonable that the parameter space for

pattern formation is smaller.
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Figure 5.11: Two-parameter bifurcation diagram of thergig-Kolpas hybrid submodel M1 with interaction
kernels. The two parameters arg,; (size of the alignment zone) amal, (size of the attraction zone). The
group forms a traveling pulse if the alignment zone is lamgtthe attraction zone is small. For intermediate
sizes of alignment and attraction zones, the animals arenm-sig-zag or zig-zag pulses. For a small
alignment zone and large attraction zone, stationary p@esegenerated.
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Figure 5.12: Two-parameter bifurcation diagram of therfig-Kolpas hybrid submodel M1 with interaction
kernels. The two parameters are. (size of the repulsion zone) amd, (size of the attraction zone). The
group forms a traveling pulse if both the attraction and Fepa zones are small. For intermediate sizes of
repulsion and attraction zones, the animals travel in segazag pulses. For large repulsion and attraction
zones, stationary pulses are generated.
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Figure 5.13: Loss of aggregation behavior in the Eftimidgas hybrid submodel M4 with increased attrac-
tion zone. (ayn, = 0; (b) m, = 1. When there is no attraction (a), traveling pulses are foinW¢hen a
small attraction zone is added (b), the individuals loseathiity to form a cohesive pulse. Parameters used
for both figuresg, = 30,n = 100, p = 0.001,m, = 0.1, my; = 1.9.
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Figure 5.14: Loss of aggregation behavior in the Eftimidgas hybrid submodel M4 with decreased repul-
sion zone. (ajn,- = 0.5; (b) m,. = 2; (c) m,» = 3. When the repulsion zone is too small (a), the individuals
lose the ability to form a cohesive pulse. When the repul&@aufficiently large ((b) and (c)), stationary
pulses are formed. Parameters used for both figgres: 30,n = 100, p = 0.001,my = 1,m, = 1.
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Figure 5.15: Two-parameter bifurcation diagram of therfig-Kolpas hybrid submodel M4 with interaction
kernels. The group forms a traveling pulse if the repulsiamezis in an intermediate range and the attraction
zone is small. For intermediate sizes of repulsion anddaitmazones, there is no aggregation behavior. For
a large repulsion zone, stationary pulses are generated.
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5.4 Discussion

In this chapter, we built a hybrid model based on the KolpakEitimie models and investigated what types
of behaviors the simulations would generate. We took theéwmork from the Kolpas framework and added
direction-dependent communication. We investigated ytiieid model without and with interaction kernels.
Because of the prioritization of repulsion, we find that irttbeersions of the Eftimie-Kolpas hybrid, the
sizes of the interaction zones, instead of the paranggtedetermine the behavior of the group. Also, in
the hybrid model with interaction kernels, the referencivitlual must be able to receive signals from both
sides to form patterns. This is a criterion that is not preseany other Lagrangian implementation in this
project thus far.

The general behavior of the Eftimie-Kolpas hybrid depenta celatively small set of parameters, which
allows us to identify general trends easily. The resultsligdnt the importance of the size of the interaction
zones, as the group favors either being stationary or frayelith different values ofn, q; . The results
establish that a large repulsion zone encourages the gooo@ stationary (see Figures 5.10 and 5.14), a
large alignment zone increases the likelihood of the grougetin the mobile phase (see Figure 5.9), and a
large attraction zone maintains the integrity of the gronghleeeps them in stationary pulses (see Figure 5.8).
This is contradictory to what has been found by SchonfisciT])[2ZThe results from the cellular automata
simulations in [27] show that while alignment alone can iefloe the animals so that they are traveling in
one direction uniformly, no groups can be formed if attractis not added. On the other hand, the Eftimie-
Kolpas hybrid shows that alignment alone can produce tirayqdulses, but an increase in the attraction,
either by changing, or m,, results in the disappearance of this mobile behavior véttef strayers (see
Figures 5.8 and 5.4). This result is not surprising for thbridymodel since a stronger attraction means
that animals attempt to minimize the number of strayersclvlidoes not require for the animals to be
traveling. Moreover, many of the traveling pulses produftech the rules of the Eftimie-Kolpas hybrid
contain strayers, which explains why animals choose to irestationary to preserve the population within
the pulse when attraction is large. The optimal distancevden each stationary pulse is determined by
where the attraction zone begins. Submodel M1 produces tis¢ patterns, including stationary, semi-zig-
zag, zig-zag, and traveling pulses. This is most likely duthé fact that individuals in submodel M1 detect
more neighbors than any other submodels displayed in FRjdre

The Eftimie-Kolpas hybrid has produced many interestirsgiits, some of which echo the findings from
the Lagrangian version of the Eftimie model. For examplega-aniform interaction kernel is required for

the animals to exhibit interesting behaviors like zig-zadsps. This discovery is encouraging because it
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suggests that animals may, in fact, require such a stratefgyrn the interesting patterns that we observe in

nature.
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Chapter 6

Conclusion

6.1 Introduction

In this thesis, we explored direction-dependent commuioicanechanisms introduced by Eftimée al.
(9], [10], [11]) in the context of Lagrangian approachesiodeling animal movement. The models share
the common trait that individuals receive communicatigmais from neighbors in repulsion, alignment, and
attraction zones. We explored two implementations: th&iddals in the first implementation consider the
signals in no preferential order, while the individuals e tsecond one prioritize repulsion over alignment
and attraction signals. In addition, we investigated an Qb@&ement model with direction-dependent
communication mechanisms, which is an intermediate bettlezLagrangian models and the Eftimie PDE
model.

One of our goals with animal movement modeling is to find thetdis that determine what, if any,
patterns can be formed with the Lagrangian and ODE versibtiedEftimie model. For these simulations,
we assume that no communication signal is prioritized. Wt Lagrangian models, we had the choice
of using different interaction kernels to vary the signaésgth, depending on the distance between the
neighbor and the reference individual. Since the individhessed model was to be as similar to the Eftimie
PDE model as possible, we chose to work with triangular anebffuGaussian kernels, which share many
similarities with the original Gaussian kernels used byrkitt et al. We also examined how different weights
of signal strengths can affect the patterns formed in therdregjan models. Using different parameter
sets, we were able to generate many of the patterns thati&#tral. found with the PDE model. Since
the incorporation of direction-dependent communicati@cthanisms in the PDE and Lagrangian models
generated such exciting results, we added the same comationicules in an ODE model. Here, we only

used the Gaussian cut-off kernels in our simulations. Coatpto the Lagrangian implementations, the
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ODE model generated more patterns found by the Eftimie PD&emd his is due to the fact that the ODE
model is a closer translation of the PDE model.

Finally, we introduced a hybrid model that incorporatesHfigmie model’s direction-dependent com-
munication rules in the Kolpas model, where repulsion isniized. Since repulsion is the only signal
considered whenever it is present, we can only vary theivelateighting between alignment and attraction
when there is no repulsion. As expected, a shift in this winghhas less of an influence when compared to
the Eftimie ODE and Lagrangian models. Therefore, for theridymodel, we focus on how the sizes of the
interaction zones impact the behavior. The results shotatlgmment is very important for animals to form
traveling pulses, which echoes the findings of the origirapis model.

The results of this thesis confirm that many of the patternadaowith the Eftimie PDE formulation can
be generated with a Lagrangian and ODE model. These incliedghers, traveling breathers, stationary
and traveling pulses, traveling trains, and zig-zag pulssme patterns, like the breathers and traveling
breathers, have never been produced by any previous Lagrafagmulations. An alternating series of
traveling and stationary pulses represents a group of daimigrating in a consistent direction and taking
breaks in between.

In general, patterns generated with the models are anatpopatterns observed for real groups of
animals as they interact with their surroundings. In faggragating in groups offers many advantages. For
example, many types of fish, including guppies and peladictiiavel in schools for anti-predatory purposes,
as the per-capita predation risk is assumed to decreasslaugto the group size ([19]). Therefore, being
able to aggregate in traveling trains and pulses is an irapbsurvival skill. An alternating series of traveling
and stationary pulses represents a group of animals nmigratia consistent direction and taking breaks in
between. Depending on the situation, the group may be moleserdensely packed. For instance, the
groups may compress depending on whether vessels aregassine them ( [13]). In this case, the fish
are in the arrangement of a breather while the group expamtisantracts continuously. In this formation,
those at the boundary may deviate momentarily before rietgto the group. Birds have also been known
to display this type of behavior ( [8]). Zig-zag patterns,igthhave been found in the Lagrangian, ODE,
and Kolpas-Eftimie-hybrid models, are a part of the protgaenomena, where animals show unexpected
movement and behavior so the predator cannot predict tlyespoeation ( [15]). Buchanast al. describe
how dunlins escape predation from the merlins by rapidlytavimg orientation as an entire group ( [3]).
These biological examples highlight how important it is &rimals to be able to aggregate and exhibit
different patterns to adapt to the environment.

In the following section, we compare specific results from Hulerian and Lagrangian formulations.
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Finally, we discuss the implications and future work in $®t6.3.

6.2 Resultsfrom the Eulerian, ODE, and L agrangian Formulations

Based on the interaction rules established by the Eftimideh¢ [9], [10], [11]), we simulated animal
movement with both ODE and Lagrangian models. Each fornmuadias produced a different range of
results. The Lagrangian models have produced biased andsaabzig-zag pulses, breathers, traveling
trains, and stationary and traveling pulses. Except foizaig pulses, the ODE model has generated all of
the patterns exhibited by the Lagrangian models. In addificcan generate the traveling breather, which
could not be found with the individual-based simulationfisTprompts us to ask when we should apply
each model. In particular, we should consider the spectii@gons where these aggregation patterns are
displayed in nature.

The Lagrangian formulation models the process where eaotehsenses its neighbors, decides whether
or not to turn, and moves along the domain. There are sevévahtages that the Lagrangian approach has
compared to the Eulerian one. First, instead of being abtedeive signals from those who are infinitely
far away, animals cannot sense their neighbors if they atavitbin a defined area. Second, by avoiding
the use of any Taylor series to derive a PDE system, nonlingsactions are included. Third, we factored
in stochastic effects with the use of a uniformly generatatiom variable to decide if an animal changes
direction.

In Chapter 3, we thoroughly explored the Lagrangian impletaigon of Eftimie’s PDE model with three
different interaction kernels: the uniform, triangulandacut-off Gaussian kernels. With a uniform kernel,
only stationary and traveling pulses were found. The pattenge using triangular and cut-off Gaussian
kernels is much larger. By varying ,; ., weights of the repulsion, alignment, and attraction dgnae
found breathers, traveling, stationary, and zig-zag pigeis largely reproducing the results obtained with
Eftimie’s PDE model. We note that the groups generated by #iggangian formulation show a significant
number of strayers, which is not the case for those genebgtéte Eulerian formulation. This emphasizes
that stochasticity plays an important role in the individbased formulations.

In Chapter 5, we further explored the role of direction-defent communication mechanism in another
Lagrangian model, namely the Kolpas model. In the resufiftignie-Kolpas hybrid, repulsion is prioritized
over alignment and attraction. We generated patterns withvwathout interaction kernels using the hybrid
model. The main parameters that we varied are the sizes aftdraction zones. A general trend that we

have discovered from these simulations is that attractlapjspa central role in maintaining the integrity
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of the group, while alignment is crucial in forming travejipulses. When a cut-off Gaussian interaction
kernel is used, reference individuals must observe neigifbmm both sides to lower the number of strayers
and preserve the aggregation behavior. Moreover, the ¢hylwoidel has led us to discover interesting links
between the interaction zones and the aggregation patiergeneral, a large attraction zone encourages
animals to form groups, while a large repulsion zone has giposite effect of increasing the number of
strayers from groups. With a large alignment zone, anima&sreore likely to be traveling. We found many
patterns with the hybrid model, including stationary, seigizag, zig-zag, and traveling pulses.

While the results are biologically relevant for both the higiland the Lagrangian Eftimie models, one
important limitation they share is that animals are resddo moving only at certain times. This is not
the case for most organisms, which leads us to look for anatteghod to model animal movement in
Chapter 4. The ODE formulation using assumptions from tharif model removes this restriction by
making time continuous and keeping space discrete. We eanthie spatial step as a representation of the
species’ average stride length. Similar to the Lagrangiadet) the cut-off Gaussian interaction kernels have
compact support, defining a specific neighborhood wheréhbeig can exert an influence on the reference
individual's movement. Using different values @f,; ., this model has produced traveling and stationary
breathers and pulses along with traveling trains. Botheliag and stationary breathers and pulses are
common in nature. Traveling trains are simply when an egtioeip travels one direction in several files.

The PDE formulation with only continuous variables has picetl the largest range of aggregation
patterns. Continuous space is suitable for describinglsimpimals like fish and snakes who do not move
forward in steps. Those unique to the PDE model are featimersipples. When animals are in the feather
formation, they are stationary, but individuals at the taany are lost slowly, traveling away from the group
until they return to the group due to the periodic boundanditions. This may not be biologically realistic,
as departing from the main group is usually not beneficiagfoup animals. In fact, it is shown that many
predators tend to attack those who stray far away from themf3]). The biggest benefit of using the PDE
formulation is that it is effective in determining the effexf each parameter on pattern formation, using
analytical results from bifurcation theory and dispergielations.

Having fully exploited the use of continuous and discretgaldes in the Eftimie animal movement
model, we now have an improved understanding of the moddloatained further insight into the effect
of such direction-dependent communication mechanismgeieral, the inclusion of direction-dependent
communication mechanisms significantly enriches modeabieh in the sense that a broader range of ag-
gregation patterns can be obtained. Many of the simulatédrpa can be found in nature. This underscores

the likely importance of direction-dependent commun@atnechanisms.
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6.3 Future Work

In this thesis, we continued the work of Eftingeal. in modeling animal movement with direction-dependent
communication mechanisms. Similar to its Eulerian predsae the ODE and Lagrangian models have suc-
ceeded in producing a wide range of behaviors. This is, hewenly a small part in fully understanding
how the individual social interactions may influence thebglogroup structure. In this section, we will
discuss some unanswered questions and possible futueggkshrections.

In Chapter 3, we translated the Eftimie model into a disetiete Lagrangian model. While the main
features of the original model have been preserved, ottedad to be altered to accommodate the dis-
cretization and change in modeling perspective. One oféhtufes that we modified is the interaction ker-
nel, which has been thoroughly introduced in Sections 3d73a8. The main modification from the kernels
used in the original Eftimie model is that the interactiomes are now bounded. Compared to the original
kernels, the modified kernels can be argued to be a moretreatipresentation of what is found in nature
because animals cannot sense neighbors from infinitelyway.a However, the cut-off of the originally
infinite interaction kernel domain may have altered the micaéresults of the Lagrangian formulation, and
perhaps explain why we found a smaller range of patterns aoedgo the Eulerian model. More work is
needed to confirm this. Second, the representation of désoreeraction kernels is not limited to the two
that we have chosen for this project, and there are many rhateve could explore. Currently, the neigh-
bors who are adjacent to the reference individual exertrfadlest repulsion force. This is not biologically
realistic, providing a motivation to explore interactiogrkels which are not similar to the Gaussian kernel.
Another question that remains to be answered is how exaothye nonlinear interactions and stochastic
effects incorporated in the Lagrangian implementatioaafbur results?

In Chapter 4, we modeled how animals move on a gridline ininanus time. Again, we followed the
basic principles from the Eftimie model with the exceptidrspace discretization. Here, we see a larger
range of results produced from one implementation comp@arbdth the Lagrangian implementations with
two different interaction kernels. This is expected beedahss formulation incorporates less changes into
the system by avoiding time discretization. However, wauthaote that the ODE formulation is no longer
a Lagrangian implementation because the model tracks thb@uof animals at each location instead of
the individuals themselves. An interesting variation tosider for future research is if a model in discrete
time and continuous space is possible. For such a systenouitvbe possible to track each individual in
continuous space.

In Chapter 5, we added components of the Eftimie model irgd<bipas Lagrangian model, which has
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a similar framework to the Lagrangian model in this projate assume that the communication between
animals is direction-dependent and repulsion is the mgsbitant social interaction. Using the five different
submodels introduced in Figure 2.1, we are able to find statip semi-zig-zag, zig-zag, and traveling
pulses. Interestingly, submodels 3 and 5 are not able taygmdny aggregation patterns at all when cut-off
Gaussian interaction kernels are added. This suggestshieatrepulsion is prioritized, the ability to receive
signals from all directions is important in forming group&oreover, the results reflect the general trend that
a large alignment zone encourages the animals to travetalérge attraction zone helps animals aggregate
in groups. For the Kolpas model, there is a statistical nreathat helps quantify the effects that the size
of the alignment zone has on the model behavior. It would terésting to introduce a similar measure to
the hybrid model to define the influence of each interactiamgjtatively, as we now only have a qualitative
description for the impact of each parameter.

Finally, there are more possibilities in how we choose th@maoinication mechanisms. Eftimie sug-
gests extending the model to higher dimensions, which isngoment not explored in this project ( [8]).
Modeling in higher dimensions raises complications in dateing which neighbors send communication
signals according to their orientation and location. Ondtieer hand, this is a very important step because
animals like fish that exhibit behavior generated by theniitimodel move in 3-D space. Also, we have
not exhausted the possibilities for the rules dictatingdihection-wise communication mechanism. Having
extended the model to higher dimensions, we are no longéelino only differentiating the neighbors at
the front or the back. In fact, in the example of fish, many caly see on the side but not at the front
because of the position of their eyes. Therefore, we mayrjprate more factors into how signals from
the side may be stronger than the signals from the front aokl. bEhere are many areas that remain to be
explored on this topic, and the consideration of additidaetiors will allow us to find more patterns formed

by animals in different situations.
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