I*I National Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Otlawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every etfort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
originai pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Réproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

i NL-339 (r.86/04) ¢

>

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

Sl manque des pages, veuillez communiquer avec
l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser 4
désirer, surtout si les pages originales ont été dactylogra
phiées 4 'aide d'un ruban usé ou si l'université nous a tait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme es!

soumise a !a Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, el ses amendements subséquents.

Canada

UNIVERSITY OF ALBERTA

Communication in FLEX

by

“n
Q > Yan Li

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfiliment of the requirements for the degree of

Master of Science

Department of Computing Science

Edmonton, Alberta

Spring, 1990

National Libl
I*I ofac'g:aada' a du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

! pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualiié supérieure de reproduc-
tion.

S'il manque des pages, veuillez communiquer avec
funiversité qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées & I'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est
soumise 4 la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

148N 0-315-60276-7

NL-339 (r.88/04) C

Canadi

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: YanlLi
TITLE OF THESIS: Communication in FLEX
DEGREE: Master of Science

YEAR THIS DEGREE GRANTED: 1990

Permission is hereby granted to The University of Alberta Library to repro-
duce single copies of this thesis and to lend or sell such copies for private, scho-
farly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor exten-

sive extracts from it may be printed cr otherwise reproduced without the author’s

written permission.

/ 3[\
(Signed) :.}..ZCL!..\... Nervenne

Permanent Address:
11251-35 Ave.
Edmonton, Alberta
Canada T6J 3M8

Date: December 28, 1989

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research, for acceptance, a thesis entitled Communication
in FLEX submitted by Yan Li in partial fulfillment of the requirements for the

degree of Master of Science.

e Bn e

Supervisor: M. Tamer Ozsu

Date: Dt ¢)/ ’37

To my parents

ABSTRACT

The project (FLEX) has as its aim the creatior of an object-oriented operating
system which will be used in research on the architectural as well as algorithmic
problems associated with integrating distributed operating systems and distributed
database management systems. The focus of this thesis is on one component of

this operating system: computer communication in an object-oriented environment.

The thesis presents the design of a communication facility for FLEX and its
prototype implementation. It also contains a second variant of the design of

FLEX, which emerged as the implementation details were being worked out.

FLEX is implemented as a prototype system running as a collection of user
processes under the control of a time-sharing operating system (UNIX). The com-
munication facility is based on the LLC layer, as described in standard 802.2. The

lower layers are implemented using UNIX primitives.

ACKNOWLEDGEMENTS

It has been a heavy-weight process (see p.88).

I must thank Jasmine and the rest of my family for their cooperation and
endurance.

It would have been impossible for me to finish the thesis today without the
support from Mr. and Mrs. OuYang.

I would also like to thank my supervisor, Tamer Ozsu, for his patience, the
committee members for their helpful comments, and Keith Fenske for his help

along the way.

TABLE OF CONTENTS

1 INtrOdUCHON .cecorerireesvcsnsonsseasss

1.1 MOotivationcecoeeesssrsansnss

...

1.2 Distributed DBMS REGUITEMENLS ...ooovuuimeeremsussimmmusssmmsssenimssismmmsssssssssmsessamssserasess

1.3 Scope and Organization of the TRESIS .voveveercrcrereaesenesensasamanessssssanssasssnsssssasasasaas

2 Backgroundeveensesssninies

...

2.1 Communication in a Distributed ERVILONMENLoeeuereresrrsmsnssessmsserinsssssmscasssenes

2.2 Communication Schemes ..

..

2.3 Techniques in Implementing Communication in an Operating Systemc......

2.4 NEtWOIKS ..cccocreransesssressrense

...

2.5 Review of Distributed Operating SYSIEMS c..eeeurumssserssanssssusmmmsissmmmmsssrrmseesssss

3.3 Kemel Designcccvvveeenene

3.4 Non-Kemel Design

...

...

...

...

4 Design of the Communication Module i FLEX .vveiimmnmesssissmsisesssasinsisnsssssasenss

4.1 Communication Scheme PN TS i B LR o B 5 QR e

4.2 Design ISSUES ...cccouvenrnencans

4.3 Network Interface in FLEX

...

...

15

18

28

4]

41

43

46

54

56

56

57

60

4.4 Classification of Communication Partnerships w..c.cceeeceimmrussmnssemsccnssssnssinsssiense

4.5 Semantics Of COMMUIICALON ..cuorvreescerssrssinemmssesssssssssnssssssssmssmssssssssnsntssnsuseaseases

5 Implementation of the Communication Module in FLEX ...ccccoiininiscssnsisnniens

5.1 Implementation DELALSccuuummmmmmssmsssssessssssssmmssssssssssemsasssssssssamsssssseseanessssssseess

5.2 Comments on Implementation . reeeesasessssseresebesartasessterts s ReRsRsa st RSt st Rt On L atas .

6 Recommendations for INPrOVEMENLccevveeiscscens reereererereesttsassssannasnnanasess

6.1 Major Changes to the Previous DESIEN vuvererrisirnesinssensessssismmssmsnsissssssassasrsinssnns

6.2 The Proposed SYSIem DESIN ..ccuucimmimimmiissscrssianssmmsississtmsssenecsssssnssnssiasenesees

6.3 Overview of the Communication DESIZNcommmeseermecssisstinmmsmnuensessnenseninsenses

T CONCIUSIONS +..vevvurresrssersrasesocesssessrasessssmmssssessessssnsssasssssssissssssmsmsssstssssessussissssasnasisses

7.1 Notes on the Prototype IMplEMENIALONcccmmrerssescssiasmssnsmmsussussasnecsssmusnenes

7.2 Experience Gained from the RESEAICH wu.vuueciuvcnicmssmmssemssecnssssmnsssnassnassensneseess

73 Recommendations for Future Work on the PrOJECccecmirriusersicasenseusamsnasencensss

Bibliography

..

61

67

67

77

79

79

84

105

108

108

109

11

112

LIST OF FIGURES

Figure 2.1: The Comparison of Message and Procedural APPrOaCh w.vceceercnsinirisniarisenses

Figure 2.2: Frequency-division Multiplexing with Time-division Multiplexing

Figure 2.3
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4
Figure 3.5:
Figure 4.1:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 6.1:

Figure 6.2:

The NEtWOTK ATCHItECIUIES wuveurrrressessssssssssssisssssassmsssssusssssassassstenasssesensseseesss

802 Protocol Layers Compared t0 OSI cc.eeniemssmmumsssensmmnssmmenssessenssesemmases

Remote Communication in IMIECR oovevreccermressesesssissaensnsasssssnsnsasastasasassssness

An Example of a File Access in LOCUS .ooveceeererenesssnsnsnsmsnscssnmssssssasssasssnss

The Newcastie Connection .

Object Hierarchyccoeeeeeee

An Active Objectcccoveenee

...

...

...

...

An Example of Object Sharing with Different Capabilitiescoceeeeeeruees

Communication Partnerships in FLEX e p——terepe AR SRS RRR SRR RRSS

Structure of an ObJect DESCHPLOT ..ccuvummssremrusssersurmsssensssssssssssesmssssesssnsssseess

FLEX Kemelcccovveiiuvens

FLEX System Architecture

...

..

...

...

18

20

24

26

35

39

40

44

48

49

50

52

62

69

72

74

86

96

CHAPTER 1

Introduction

This thesis is part of an ongoing research on the design and implementation of a distri-

buted database operating system. This project, named FLEX, has two main aims:

(a) to investigate the architecture of a distributed operating system which can accommodate

both general computing requirements and the fundamental database constructs, and

(b) to look into the design and analysis of various operating system functions in order to

make them more suitable for database operations.

My contribution to the FLEX project is three-fold:
(1) participation in the overall design of FLEX ({[OzLLT-881),
(2) design and imp!ementation of the communication facility of FLEX, and
(3) anew, more general, design of the FLEX systcm.

This work is reflected in this thesis: chapter 3 contains a presentation of the initial
design, as described in [OzLLT-88), chapters 4 and 5 contain a presentation of my communi-

cation facility and its implementation, and, finally, chapter 6 describes my new design propo-

sal.

1.1. Motivation
Distributed systems are very fashionable nowadays; this trend is not unreasonable. There

arc numerous arguments supporting the usc of distributed systems in many circumstances.

Among the more commonly mentioned contexts in which distributed systems are applicable
are database systems.

Traditional database systems are built on top of existing operating systems that were not
designed with the requirements of database systems in mind. The lack of a reasonable para-
digm for co-operation between operating systems and database management systems (DBMS)
results in duplication of some common services leading to a degradation in system perfor-
mance. For example, the services required by a DBMS, such as synchronization, data and file
management, may be provided by an oberating system but at a different level. Thus, some of
the functions have to be re-implemented within the DBMS. This is particularly true of distri-
buted operating systems; there still remains insufficient concern for providing the neccssary
support for distributed database applications.

In a distributed setting, new problems are introduced on top of the problems alrcady
existing in centralized DBMSs. The issues like transparency, naming, fault tolerance, €tc., and

especially communication and concurrency control have to be dealt with.

More specific comments on the motivation fnr _onstructing operating systems for data-

base applications are presented in [Ozsu-88). These concems are summarized below.
1.2. Distributed DBMS Requirements

1.2.1. Cooperation with the Distributed Operating System and Networks

The coupling of distributed database managers and distributed operating systems is not
simple. All the traditional problems of interfacing the DBMS with its operating system
remain; more over, communication network protocols also need to be considered. The stan-

dards that arc being developed for communication networks and those used in the design of

distributed systems arc incompatible. Thus, porting a DBMS 1o a different networking

cnvironment can result in major re-work to accommodate the idiosyncrasies of each individual

network architecture. While interfacing the operating system with a network standard at a rela-

tively high level is essential for portability and compatibility with developments in networking

standards, the architectural paradigm should accommodate the basic axioms of distributed

DBMS functions.

1.2.2. Some DBMS Axioms

M

@)

3

@

Efficient management of the buffer pool.

The speed of accessing data buffers is a critical factor in the overall efficiency of the
DBMS, whether distributed or not. Alas, the buffer management algorithms used inside
a DBMS often collide with the algorithms used by memory management of the underly-

ing operating system. Hence this is a much bigger issue than it would seem at first.

Access transparcncy.

Distributed DBMSs typically require that access to the database(s) be transparent, even
though the database itself is distributed. A distributed DBMS should provide not only
data independency (i.e., changing data does not result in a change of application pro-

grams), but also distribution and replication transparencies.

Access control.

The distributed DBMS must ensure that any access to the database is subject to access

control, for the purpose of protecting data and information from unauthorized persons.

Reliable remote communication.

A distributed DBMS must use a reliable remote communication mechanism. This

o)

©

mechanism should not compromise transparent access L0 TCmolc resources, as mentioned
earlier.

Compatibility with networking protocols.

This permits the delegation of a considerable amount of the communication work to net-
work software. It should be pointed out that this is a controversial requircment not ncces-
sarily accepted by all the researchers.

Transaction management.

The operation of a transaction manager requires good concurrency control and a rccovery

mechanism.

1.2.3. Support from the Distributed Operating System

The previous section listed some axioms that apply to the operation of a DBMS. In prin-

ciple, these axioms could be satisfied by the DBMS directly, perhaps with a small loss of

efficiency. From a practical point of view, however, it is preferable to look for support for a

large part of them to the software that operates underncath the DBMS, i.c., the operating sys-

tem. This system support is needed in several areas:

M

Memory management.

The memory management policy of the operating system may support the operation of
the buffer pool manager; on the other hand, it may also reduce its cfﬁcicncy: if the two
are not well co-related. Thus, the buffer pool manager must be compatible with the algo-
rithms of the virtual memory manager (in the operating system); likewise, the operating
system must leave enough flexibility to make the existence of a scparate buffer pool

manager worthwhile.

@

3

@)

©)

(a)

®

File system,

Besides problems related directly to buffering, file system properties are at the root of a
few other, perhaps less spectacular problems. Among them are: Jocking and its granular-
ity, advanced access methods, etc. A primary example of a system that fails to support
DBMS applications on all these counts is UNIX .

Naming.

Naming is needed for maintaining transparent access to data and for replication support;
thus, a distributed DBMS would expect the distributed operating system to implement a
naming mechanism that provides transparent acCess to logical as well as physical system

resources.

As a.convenient byproduct, a good naming mechanism makes data sharing possible.

Access control and protection.
The DBMS should use the access control mechanism provided by the operating system,
provided that it is sufficiently general. Ideally, the operating system should offer a

capability-based access control method. The same should apply to protection.

Communication.

Efficient and powerful communication primitives implemented in a reliable fashion are

welcome. In particular:
do not lose messages, and

return all undeliverable messages to the sender.

These requircments point to the necessity of proper message buffering and hand-shaking

to ensure reliable host-to-host delivery.

(6) Concurrency control.
Concurrency control is provided by every operating system, but not necessarily in a way
that satisfies DBMS applications. Traditionally, the DBMS builds its own concurrency
control on top of that provided by the operating system. This causes an unnecessary
redundancy and inefficiency. Recent developments in operating systems scem to go in
the right direction: concepts such as heavyweight/lightweight processes and threads arc
sufficiently flexible to be used by the DBMS directly.

(7) Transaction management support.
In current DBMSs, the transaction manager is implemented as part of the DBMS. How-
ever, making transaction management part of the standard operating system scrvices
would permit using the concept of a transaction not only by the distributed DBMS, but
also any application that runs on the operating system. Such a support would require
that concurrency control and recovery primitives be implemented within the operating

system.

1.3. Scope and Organization of the Thesis

The emphasis of this thesis is on the communication aspect of the system. A suitablc
communication module is designed and implemented in the context of the existing FLEX
design. As a result of experimenting with the FLEX design during this research, a new version

of the design of FLEX is proposed.
The thesis is organized as follows:

Chapter 2 gives a general discussion on communication in operating systems, including a

brief review of some existing systcms.

Chapter 3 describes the version of the FLEX design that the implementation of communica-

tion is based on. This design is also presented in both [OzLLT-88] and [Lau-88].

Chapters 4 and 5 present the design and the implementation of communication in FLEX.
Chapter 6 proposes a new version of the design of FLEX; it includes highlights of several
major changes and a formal description of the system architecture.

Chapter 7 summarizes the thesis and provides a discussion of the ongoing research.

CHAPTER 2

Background

Many distributed operating systems have been developed for experimenting with distri-
buted computing. Since the major issue addressed in this thesis is communication, this chapter
provides some basic background information on the way that such systems address local and

network communication, namely on:

e Communication schemes,

o Implementation of communication schemes in operating systems,
» Network architectures, and

e Communication standards.

The chapter concludes with a presentation of the highlights of a few featurcs of some

existing systems that are related to the design of FLEX.

2.1. Communication in a Distributed Environment

A computer network is "an interconnected collection of autonomous computers”[Tancn-

81]. Communication in a distributed environment can be either local or remote (or network)

communication.

Local communication occurs between entities (c.g., processes, device drivers, ctc.) on
the same machine. It involves only one operating system kernel. On the other hand, network
communication happens when an entity on one machine wants to exchange information with
an entity on another machine or accesses (physical or logical) resources of another machinc.

8

Such communication involves the network connecting the machines and more than one operat-
ing system kernel. To provide a good understanding of the issues involved in communication,
the following sections (2.2, 2.3, and 2.4), will first present various communication schemes,
then discuss some of the techniques used in implementing communication facilities, and

finally look at network communication standards.

2.2. Communication Schemes
In typical operating systems, the basic active entity in the system is the process (includ-

ing daemons'). Communicauioa between processes takes on three basic forms:

e Message-based, or passive communication.

o Interrupt-driven, or active communication,

o Network communication, which is an unreliable version of passive communication.
Message-based communication permits the cooperation of independent user entities. A

receiver responds to a message only if it wants to. Network communication is a weak varia-

tion of passive communication: not only the receiver is not obliged to respond to the request,

but there is no obligation on the part of the kemel (on the receiving side) to forward the

request to the receiver.

Interrupt-driven communication is used when the communication is in the form of

imperative requests. Context switching occurs between user entities and/or the kemnel as a

result of such a request.

Daemons are server processes that are not associated with any users but do system-wide functions[Bach-86].

10

Active and passive communication schemes exist in almost cvery gencral-purpose
operating system. In some systems, passive and active communication schcmes are somewhat
artificially unified: interrupt-driven communication is presented as a form of message passing.
In such systems, a context ewitch can be forced by sending a message to the scheduler and

entering a wait state (e.g., the so-called "blocking send").

Besides the above, systems must allow some form of communication between processes
and kemel modules. Undemeath all of it is yet another communication level: communication
inside the kemnel? (i.., between kemel modules). This lowest level will not be discussed here,
as it is transparent to higher levels, and, as such, is only a matter of implementation expedi-
ence.

When a sender addresses a receiver by naming it, it communicates with the receiver
directly. As this is not always convenient or feasible (e.g., the name of the receiver is unk-
nown or the receiver has not yet been created), there is another form of communication that

does not require naming the receiver: indirect communication.

Note that in some systems, specifically those that are capability-based, a sender docs not
use the name of the receiver when addressing it: instead, it refers to the receiver by showing a
special indirect access handle, called capability. Although such a capability has the form of
an encoded string, it really does represent the receiver in a unique way, i.c., given a~capabi1ity,
the kernel can determine which recciver is in question. Thus, a capability is just an indirect

way of naming a receiver, with an additional level of protection.

24 kemnel can be viewed as onc large, monolithic, event-driven program[BIMaM-87}.

11

2.2.1. Passive Communication

Passive communication, denoted by
"pQ"

takes place when entity P sends a message to entity Q, requesting some service. The mes-

sage is placed in a message queue, usually following a first-in-first-out discipline. Q is not

forced to perform the service; it is not even required to accept the request at all. Thus, the fact
that a sender sends a message does not imply that the receiver will ever accept the message or,
in other words, does not imply that the message will ever be delivered.

There are many advantages of passive communication. The most important are:

L It permits anonymous processes (o communicate, which is an easy way of resolving the
difficult naming problems. This is done by using mailbox-like objects, which are inter-
mediate repositories for messages.

e Asitis a form of lazy binding (on demand by the receiver), it removes simple timing
problems that plague the active communication scheme. The producer-consumer rela-
tionship is a prime example of this situatica. If the consumer is created after the producer
sends the first message (due to scheduling), passive communication will work correctly,
while active communication will fail, having no one to interrupt.

« Asmessages are received on demand, the receiving process can organize its flow of con-
trol. This is particularly important in cases when a process has more than one communi-
cation partner (€.g., SErver process).

. No messages are ever lost in passive communication. They may remain undelivered, but

only because of a lack of interest on the part of the receiver.

12

Passive communication is not frce from deficicncics. Messages have 10 be queued, it is
impossible to guarantee the delivery of a message, and blocking receive may result in unncces-
sary waiting. These deficiencies make the passive communication a clumsy synchronization

tool, especially in contrast to active communication.

Although other queuing disciplines could be considered, only one is used in practice:

FIFO. It will be assumed here that FIFO queuing is used in passive communication.

2.2.2. Active Communication

Active communication between two entities P and Q , denoted by
"P =°Q 1"
takes place when entity P forces entity Q to perform some action by issuing a service call

(e.g., system call or procedure call).

Active communication immediately alters the flow of control: a context switch is per-
formed at the very instant of communication, passing control from the sender to the receiver
(i.e., from P to Q). This control switch does not resume Q at the point where it was deprived
of the CPU. Instead, it creates a new and independent operation through the code of @ . In par-
ticular, if @ is already in the midst of responding to an earlier demand (i.c., an carlier instance
of active communication), but lost the CPU for onc reason or another, the new demand will be
executed next. This phenomenon is known as stacking (as opposed to queuing' in passive
communication).

The main advantage of using active communication is the guarantee of delivery. This

simplifies greatly the code of the sender process, which may treal the operation of delivering a

message as a single indivisible opcration. As an indirect consequence of this fact, there is no

13

need for message buffers; moreover, active communication serves as an excellent synchroniza-
tion tool, as delivery of a message is immediate and guaranteed.

Systems that use active communication have to resolve a number of issues that are not
relevant to passive communication. One is naming: the sender must address the receiver
directly by name. Another is message stacking: a new message may arrive when its predeces-
sor is being processed. Naive code would almost certainly fail in such a situation (or at least

introduce an inconsistency); code handling message stacking correctly has to be quite com-

plex.

2.2.3. Network Communication

Communication to a remote site is performed by sending messages through a network
link. The very nature of the hardware makes active communication impractical, as the very
existence of the receiver can never be guaranteed. Thus, network communication is very simi-

lar to passive communication and could be regarded as such.

It is, however, convenient to consider network communication as a special communica-
tion scheme. In passive communication, the sender can rely on checking being done by the
kemnel: the sender knows that if a message is not rejected by the kemel fmmediately, it is
available to the receiver. Likewise, a potential recciver informed that there are no pending
messages can be sure that no one has sent any. This is, certainly not true of network communi-

cation.

The main property of network communication is that messages may be lost. The kernels
involved (two or more, as messages go through a network) can not determine in a direct way

whether a message was lost or not. They can only do it from contextual information, which in

14

turn, can not be proven correct.

Note that the above remarks relate to the operation of sending individual messages. In
many networks, there are additional network layers responsible for making network communi-
cation statistically reliable. This is achieved by acknowledgments, retransmission of messages,

etc. But even such precautions can not completely guarantee that messages arc never lost,

unless one assumes that the networking hardware and software are both immune to faults®.

2.2.4. Communication with Kernel Modules

In principle, either passive or active communication could be used in communicating
with kernel modules. In reality, all the systems that have a concem for efficiency adopt active
communication to avoid polling or busy wait. When a process wants to ask the kemel for a

service, it triggers a software interrupt (svc), which forces the kemecl to respond immediately.

2.2.5. Direct and Indirect Communication

Entities may communicate with each other directly by exhibiting the approprialc capa-
pilities. Such a communication scheme requires that all the partners involved are known to
each other and labeled directly. Sometimes, objects prefer indirect communication, because it
enables anonymous cooperating objects to exchange information without having to specify

their partners’ identities; this is accomplished via mailboxcs.
Therefore, one may envision three different communication schemes:

(1) Direct communication: all the partners know preciscly whom they want 10 communicate

with and identify their pariners directly, using a capability, which is intemally converted

3This is known as the Generals' problcm[Gray-?S].

15

into the name of the partncr.

(2) Consistent indirect communication: all the partners remain anonymous throughout the
whole communication session. Their only meeting ground is in the form of a named

mailbox (the name of this mailbox is needed to distinguish among the many unrelated
communication cooperatives).

(3) A mixed scheme, in which objects start as anonymous entities, but may choose to switch

to direct communication with a subset of the partners involved in the communicaw:on

cooperative.

2.3. Techniques in Implementing Communication in an Operating System

Interprocess communication (IPC) is an essential part of an operating system. It allows

arbitrary processes to exchange data and synchronize execution.
For processes on the same machine, IPC takes many forms, e.g.,

(1) message passing to allow processcs o send formatted data streams to arbitrary
processes,

(2) pipes to permit a reliable uni-directional data strcam between processes,

(3) semaphores to allow processes to synchronize execution,

(4) shared files to allow processes to sharc a common data area, .

(5) shared memory to allow processes to share parts of their virtual address space, and

(6) signals to provide software interrupts (o given processes.

Unfortunately some of the methods used for local process communication are not suit-

able in a distributed environment. As a result, IPC becomes one of the major issues in

16

distributed operating systems design. Many systems have been deveioped to investigate and
experiment with different IPC facilities as discussed in great detail in [TanvR-85]; here we

will look into a few of the concepts involved.
(1) Message Passing vs Shared Memory

In a centralized environment, a message passing system allows cooperating processes to
exchange messages. The operating system is responsible for communication, that is to move a
message from the sender’s address space 10 the receiver's address space, possibly involving

the kernel’s address space for buffering.

Shared memory systems allow communicating processes to share a block of variables;
thus, application programmers shoulder more responsibility for organizing communication.
Another possibility is to use the registers of a processor for fast interprocess
communication[Cheri-84_2). If a message is t0 be transferred from process A to process B,
the processor’s general registers can serve as shared memory between processcs: process

switch occurs without full register saving and restoring.

The concept of interprocess communication was introduced before the existence of dis-
tributed computing systems. In a distributed environment, it is not difficult to adapt the con-
cept of message passing. If a message is meant to be sent to a remote process, it is packaged
by the operating system and sent through the underlying network. Upon the arrival of the mes-
sage, the receiver side unpacks and processes it. But the shared memory scheme docs not
seem to fit in a distributed application very well. It is difficult for processes running on

different machines to share memory efficicntly; thus this solution is seldom proposed.

17

(2) Message Passing vs Remote Procedure Call

The basic building blocks for message-based communication vary from system to sys-
tem. While the UNIX system uses the term socket, the other systems may use names such as
port or maildex to represent a similar thing, that is a place to deposit a message. Message is
the essential unit in such a communication system. A message-based IPC has some obvious
advantages, e.g., simple and efficient implementation, direct introduction of parallelism (using

independent send and receive). But it tends to make programming tricky.

Remote procedure call (RPC) is defined in [Nelso-81] as "the synchronous language-
level transfer of control between processes in disjoint address spaces whose primary commun-
ication medium is a narrow channel”. The idea of RPC is conceptually simple; it is an exten-
sion based on a well-known and well-understood mechanism for transfer of control and data
within a program running on a single machine — procedure calls. Two steps are usually
involved in an RPC: first a message containing input arguments is sent to a server, and then a
message containing the reply is sent back. The sender is blocked until a reply is received.
Thus, unlike message-passing, RPC does not encourage a frequent exchange of information
between processes without the notion of master and slave. On the other hand, RPC approach
does provide clean and simple semantics. It also reduces program complexity (and tends to
de-cmphasize concurrency).

Although operating systems usually provide message-passing primitives for IPC, RPC is
a language-level concept; it can be viewed as application-level IPC. It is possible to combine

the two approaches; an RPC facility can be built on top of a message-based IPC facility.

18

Communication between processcs in a distributed system has two main purposes. Onc
is the transfer of information, and the other is the transfer of control. Based on [Nelso-81], the

implications of the two different approaches can be summarized as in Figure 2.1.

Message Approach Procedural Approach
means of IPC messages sent betweenenti- | procedure calls
ties
control multiple threads of control independent single threads,
one/process
concurrency con- | using independent send and creating and destroying
trol receive processes

Figure 2.1: The Comparison of Message and Procedural Approach

2.4. Networks

The previous sections discussed the aspects of communication from an operating
system'’s point of view. To send data from one machine to another, the interprocess communi-
cation facility of the operating system kernels involved must interface with the underlying net-
work that connects the machines. The understanding of some basic concepls of networks is

important to the design of an operating system.

There are two aspects associated with a network, physical (or pure communication) and
logical (or application, including operating sysiems). As we have looked at the issues in

operating systems earlier, the following discussion focuses mainly on the physical characteris-

tics of a network with emphasis on local area networks (LAN)“.

4 |ocal area networks are designed for distributed applications over small geographical arcas. They arc faster
and more reliable than other types of computer networks.

19

2.4.1. Physical Transmission

Transmission Medium

The physical media for the transmission of information range from open-wire pairs to
high-speed satellite links. Although most of the media used in conventional telecommunica-
tions could be employed in the construction of LANS, twisted—wire pairs , coaxial cable , and

fiber optic links are the most often used media in current LAN implementations.

Transmission Techniques

Two techniques can be used for transmitting signals over a physical communication
medium: baseband using digital signalling and broadband using analog techniques . Note
that the communicating devices attached to a network are digital, regardless of whether the
network uses baseband or broadband signalling.

With baseband transmission, the entire channel capacity is used to transmit a single data
signal, which is in the form of a discrete pulse of electricity or light.
Time —division multiplexing (TDM) may be used to allow multiple devices on a network to

share the same communication channel.

With broadband transmission, a signal is superimposed on a carrier sigtial by modulating
one or more of the three wave characteristics of the carrier signal: amplitude, frequency, and
phase. Frequency—division multiplexing (FDM) is often used to divide up the physical
transmission medium into multiple channels. When multiple devices share the same channel
for data transmission, TDM can be uscd to divide up access to the channel. Figure 2.2 (from

[Marti-89]) illustrates the combination of FDM and TDM.

20

Station A Station B Station C

ra op o

---_-_----------_@.@@Q.I_Iit@fuﬁequemy 1
____________ Video Signal _____________._——.__-.frequency 2
____________ \% Q’Lc.e_Chanucl_______________________f_fequency 3

Qther lses frequency 4

Figure 2.2: Frequency-division Multiplexing with Time-division Multiplexing

2.4.2. Access Control Methods

Access control methods are uscd to control the sharing of access to the transmission
medium. The following is a summary of network topologies (which concerns the physical
configuration of the devices and the medium that connects them) and some examples of access

control methods employed in a LAN environment.
Network Topologies

Physical (hardware) connection between machines is of one of two types: point-to-point
or multipoint.

(1) Point-to-Point
In a point-to-point subnet, (w0 stations (e.g., IMPs) are connected via a channel, Store-
and-forward is necessary if the communicating partners arc indirectly connccted. Some

possible topologies for such a subnet are star, ring, tree, complete, intersecting loop, and

irregular.

21

(2) Multipoint
In a multipoint subnet, all nodes share the same communication channel. A message on
the channel is received by every node. If a node finds a message irrelevant, it ignores it.

Bus, ring, and satellite/radio are a few possible topologies.

For LANS, the star , the bus and the ring are the three most commonly used topologies.

Transmission Control
The transmission control methods can be generally classified as random control, distri-
Suted control, and centralized control, A few examples of different control methods com-

monly used are presented below.

(1) CSMA/CD

CSMA/CD stands for "Carrier Sense Multiple Access with Collision Detection”. The
access method is most commonly used for LANs that employ a bus or tree topology. It is a
random transmission control method. Any station can transmit, and specific permission is not
required. Before a station transmits a message, it checks the medium to see if it is free. Occa-
sionally, more than one station sends messages simultaneously, resulting in collisions. To

resolve it, each station waits for a random period of time before transmitting again.

The CSMA/CD access method has the advantage of being typically very fast when traffic
is not heavy. But under heavicr traffic load, the performance may deteriorate due to the

increased number of collisions and the time spent responding to collisions and retransmitting.

(2) Slotted Ring

Slotted ring is another random access control method used. As the name suggests, it is

suited to a network that uses a ring topology. The ring is slotted into a number of fixed

22

packets; each packet sl ' has a marker that tells whether it is full or empty. If a station has a

message to transmit, it waits for an empty slot, marks it as full, and puts its data in the slot.

The slotted-ring technique is relatively simple. It works well for short messages, i.c., the
message packets are small enough to fitina packet slot. For messages requiring multiple slots
to transmit, the technique may not be efficient because of the increase in the overhead for
addressing and control informatic. ..

(3) Token Passing

Token passing can be used on a network that has a ring, bus, or tree topology. It uses
distributed transmission control; all stations on the network co-operate in controlling access to
the transmission medium. With the token passing technique, a token (a small message) is cir-
culated among the stations connected to the network. Monitoring is necessary 1o detect prob-
lems with the token. With the roken ring method, a station receives a token marked as free
can transmit messagess. The token is then marked as busy and appended to the messages. The
sender is responsible for resetting the token from busy to free after the token comes back. With
the token bus method (which is used with both a bus or a tree topology), the station that has

the token can transmit messages. The token is then sent to the next station.

The token method has the advantage of allowing greater control over transmission
among the stations on the network. But the complexity and overhead involved in token pro-

cessing and monitoring is high.

(4) Polling

STherec usually is a time limit on how long a station can conlinue transmitling messages.

23

This is an cxample of an access method that uses centralized control. One station on the
network is designed as the master station; it polls messages from all other stations one at a
time. It also relays the message from the sender to the receiver. It is most commonly used
with a star topology with the central station serving as the master station which is more com-
plex and more powerful.

The polling method has the advantage of flexibility since it allows a station to send a
number of messages before the next station is polled. It also makes priority message transmis-
sion simple to implement. But the master station becomes heavily loaded, which may cause
performance problems. Further more, it creates a single point of failure; if it fails, the entire

network fails.

2.4.3. Network Architectures and Communication Standards

Over the years, a number of standards for network architectures have been proposed by
standards organizations (e.g., CCITT, 1SO, and IEEE), common carriers (e.g., AT&T), and
computer manufacturers (e.g., IBM with SNA and DEC with DECnet) to define the rules of a
network and how the components of a network can interact. The network architectures are
designed to achieve the objectives summarized in [Marti-89]: connectivity, modularity, ease of

implementation, case of use, reliability, and case of modification.
Network Architectures and the ISO OSI Reference Model .

A network is usually organized as a series of layers like the ISO (Intemational Standards
Organization) OSI (Open Systems Interconnection) reference model. Although the number of
layers, and the names and functions of the layers may be different from network to network,

the basic approach is the same: to build the layers so that the details of the lower layers are

24

hidden and the services required by the higher layer arc provided. Figure 2.3 shows a few
examples of network architecturcs and their relationship to ISO OSI reference model (from
[Tanen-81]).

Corresponding layers on different machines communicate via a predefined protocol. If
one process on machine A needs to send a message to another process on machine B, both
machines must be connected by a communication subnet, which is defined in [Tanen-81] as
consisting of the lower three layers of ISO OSI reference model, i.¢., Physical layer, Data link
layer, and Network layer. It is sometimes called subnet for short. The message is dclivered
from the source machine to the destination machine through the communication subnet — the
actual data can only be transferred by going through the lowest layer, that is the Physical layer.

On the receiving end, the message is received by the Physical layer and gradually moved up to

Layer ISO ARPANET SNA DECNET
7 | Application User End user
Application
6 |Presentation Telnet, FTP NAU services
. Data flow
5 Session (nonc) control (nonc)
Transmission
-ho control
4 Transport Host-hcst Network
Source to services
Destination Path
3 Network IMP control Transport
IMP-IMP ata 1i i
2 Data link Data link Data link
control control
1 Physical Physical Physical Physical

Figure 2.3: The Network Architecturcs

25

higher network layers. Eventually, the message is reccived by the destination process.

The general functions performed by each of the seven layers in the OSI model are as

follows{Marti-89,Tanen-81}:

o))

)

€))

@)

&)

©

The physical layer is responsible for the transmission of bit streams across a particular

transmission medium. The design issues largely deal with mechanical, electrical and pro-
cedural interface to the subnet.

The data link layer is to provide reliable data transmission with the error-free transmis-
sion of data and to shield higher layers from any concems about the physical transmis-
sion medium.

The network layer controls the operation of the subnet. It is concerned with routing data
from one network node to another.

The transport layer determines the type of service (¢.g., virtual circuit, broadcasting) to
provide to higher layers. It is responsible for providing data transfer between two users at
a level of quality agreed upon .

The session layer takes the bare bones bit-for-bit communication service offered by the
transport layer and adds to it application-oriented functions. It focuses ;)n providing ser-

vices used to organize and synchronize the dialogue that takes place between users and
to manage the data exchange.

The presentation layer is responsible for the presentation of information in a way that is
meaningful to the network users. This may include character code translation, data

conversion, or data compression and cxpansion.

26

(7) The application layer provides a means for application processes 10 access the system

interconnection facilities in order to exchange information.
Local Area Network (LAN) and 802 Standards
ANSVIEEE 802 Standards are one set of standards[IEEE-84] for local area networks.

The family of 802 standards deals with the physical and data link layers as defined by

the ISO OSI reference model. Figure 2.4 shows the relationship.

MAC stands for "Medium Access Control". There are separate standards describing

each medium access method individually. In particular, the access standards define three types

of medium access technologies and associated physical media:®

Application
Presentation
Session
Transport
Service Access Points
Network l
------- (O
Data Link .. Logical Link Control
——— Medium Access Control
Physical Physical

Figure 2.4: 802 Protocol Layers Compared to OS]

27

802.3: a bus utilizing CSMA/CD as the access mcthod,
802.4: 2 bus utilizing token passing as the access method,

802.5: a ring utilizing token passing as the access method.
The service specification for the interface between LLC and MAC provides a description of
the services that the LLC layer requires of the MAC layer (or that the MAC layer provides to
the LLC layer). The services are defined to be independent of the form of the medium access
methodology.

LLC stands for "Logical Link Control". This layer constitutes the top layer in the Data
Link Control Layer of the LAN reference model and is common to the various medium access
methods that are defined and supported by the IEEE/Std 802 activity. The LLC layer interface
service specifications to the network layer, 10 the MAC layer, and to the LLC layer manage-

ment function are all described by the 802.2 standard.
The 802.2 standard identifies three LLC services[Stall-87].

e Unacknowledged Connectionless service, which is a datagram service simply allowing
for sending and receiving frames.

e Connection-oriented service, which provides a virtual-circuit-style connection between
service access points with flow control, sequencing, and error recovery.

« Acknowledged Connectionless service, which is also a connectionless service, but pro-

vides for acknowledgment.

Some other access methods are under investigation.

28

When an operating system is designed to interface with the network based on the 802
standards, it assumes that there is LLC layer support. Thus, the featurcs of a particular net-

work become unimportant. The network is hidden from the operating systcm.

2.5. Review of Distributed Operating Systems
There have been many research projects carricd out in attempt to investigate distributed
operating systems. In this section we review the relevant featurcs of some of these systems

that have commonalities with FLEX.

2.5.1. Capability-based, Object-oriented Systems

FLEX is designed as a capability-based object-oriented operating system;, the prototype

of it is to run on top of UNIX. Some systcms that have these functionalitics arc Amoeba,

Eden, and Hydra.
Amoeba

Amoeba [MulTa-84,MulTa-85,TanMu-81] is an operating system developed for a distri-

buted computing environment at the Vrije Universiteit in Amsterdam. It is a capability-based,

object-oriented distributed operating system.

The design of Amocba is based on the object model in which the sysiem deals with
objects, each of which has some set of operations that can be performed on it. The basic para-
digm of Amocba is a service. Every object within a cenain service can only be accessed
through one of the servers, the processes that constitute the service. Each server accepts
requests in the form of messages from a port on a client proccss 1o a port on the server pro-

cess. The server then sends a reply from its port to the client port. Clicnts can manipulatc

29

objects only via a set of allowed messages. The basic components of Amoeba are processes,

messages, and ports.

Protection in Amoeba is based on capabilities to ports. A capability in the system is a
bit string that gives the holder permission to use some services, that is to perform some set of
operations on some object managed by a certain server.

Communication in Amoeba consists of message-passing between objects via their pors
using addresses supplied by capabilities. The communication protocol used by Ameoba is
implemented in four layers, instead of the seven (proposed for the ISO OSI reference
model)[MulTa-85]:

(1) the bottom layer (the physical layer), which deals with the network hardware,

(2) the port layer, which is responsible for the transmission of 32K byte datagrams,

(3) the transaction layer, which guaraniees the arrival of requests and replies7, and
(4) the final layer which takes care of the semantics of the requests and replies.

To achieve simplicity , the kemel uses a pure datagram facility as its interprocess com-
munication mechanism. Note that although most distributed systems hgve a connection
mechanism, Amoeba has joined the trend towards connectionless interprocess communication

services[MulTa-85). The main function of the transaction layer8 is to provide an end-to-end

message service built on top of the underlying datagram service, with the main difference

being that the former uses timers and acknowledgements 1o guarantee delivery whereas the

latter does not.

™[t can be climinated by the use of Acknowledged Connectionless Service provided by 802.2.

8A transaction in Amocba is a request-reply pair.

30

The concept of tasks is provided in the Amocba system to handle multiple requests from
different clients simultaneously without introducing non-blocking transaction primitives. A
number of tasks in one address space form a cluster; there are specific rules goveming the
scheduling of tasks within a cluster. As a result, a server can be constructed as a collection of
co-operating tasks, each of which handles one request. Non-blocking message transaction
primitives become unnecessary. Note that the terms task and cluster used in Amoeba are
similar to light—weight process (or thread) and heavy-weight process (ot task) used in

other systems.
Eden

Eden [AIBLN-85,Black-85,LLAFFV-81] is a capability-based object-oriented operating
system developed at the University of Washington. The emphasis in Eden design is on
exploring an object-based approach for building distributed applications. Communication is a

secondary issue.

An Eden object (Eject) has a system-wide unique name, a representation (data part)
including a long-term state representing the data encapsulated by the object and a short-term
state consisting of the local data of invocations currently in progress, a collection of pro-
cedures defining the operations on the object shared by the objects of the same class (Eden-
type), and some number of invocations, which are the only means by which one objgcl obtains
services from another. Objects refer to one another using capabilities, which contain both

unique names (object identificrs) and access rights.

Eden objects exist in two possiblc states: active and passive. An active object has onc or

more processes executing within the virtual memory of one machine and can initiate activitics

31

as well as respond to messages (which are invocations). In addition, an active object may also
contain processes that perform internal housekeeping operations. In particular, an active object
can be viewed as a tree structure of processes with the root being a coordinator process. The
coordinator process consists of kernel code responsible for maintenance of the object, recep-
tion of invocation requests and responses, verification of rights, and dispatching of processes
to invocations. A passive object has no processes; it is a result of being deactivated or being

forced to crash. Passive objects can be reactivated.

The implementation of Eden is built on top of Berkeley 4.2 UNIX [Black-85]; processes,
virtual address spaces, access to the disk and network, etc. are all provided by UNIX. The
Eden kemel on each machine is implemented as a UNIX process; Eden objects and the kernel
process communicate via UNIX IPC. The communication of Eden kemel processes on
different machines is done via a simple datagram protocol. Higher level TCP/IP protocols are
used only for remote transfer of exccutable Edentype image files and passive representation. It
has been concluded that the high overhead of communication in Eden severely limits its per-
formance (it is one of the disadvantages of building it on top of an existing system)[AIBLN-
85]. Although the prototype of Eden is implemented using the facilities of UNIX , it does pro-
vide users with a complete environment for program development and execution.

The Eden Programming Language (EPL) was developed to give the programmer the iliu-
sion of multiple threads of contro! within each Eject, and to make an invocation iook like a
procedure call’. It provides dircct support for the fundamental abstractions (capabilities and

invocations) of Eden. It makes the use of Eden significantly easier.

%]t autornatically generates stubs for both the cailer and the callee.

32

Hydra

Hydra[WCCJLPP-74,WuLeH-81] is an operating system for C.mmp, the Camecgic-
Mellon Multi-Mini-Processor. It was one of the first object-oriented operating systems. The
initial design of FLEX was strongly influenced by it.

In Hydra, an object is an instance of a resource, whether physical . - virtual. It can be
thought of as a triple:

< unique-name, type, representation >
where the unique-name identifies the object, the type dstermines the nature of the resource
represented by the object (indicating which operations may be applied to it), and the represen-
tation contains the actual information content of the object. Protection is achieved using
capabilities, which are pairs
< unique-name, allowed-rights >.

A capability identifies an object and a list of operations that can be applied to the object.
The message system of Hydra is based on the following concepts:

(1) port: Messages are sent between objects of type port. A port represents a service and can

be shared. Each port has a set of output channels , input channels , message slots, and a
blocked process queue .

(2) connections: Anoutput channel of one port may be linked to an input channcl-of another
port to form a connection along which messages may travel. The rclationship of the con-
nection between output and input channels is onc-to-many. Thus, once a conncction is
established, it is not necessary t0 specify the destination of a message; an indication of

the output channel is all it needs. Input channels can receive and queuc messages from

33

the output channels connccied to them.

(3) messages: A message consists of three parts, a text/capability buffer , a message type,
and a stack of reply frames . It can be thought of as a real piece of storage that can be
passed from port to port and can be read and written.

(4) replies: The reply stack in a message is central to the message reply mechanism. When-
ever a message is sent, a new reply frame with information about the sender is pushed on
the message’s stack. A reply operation pops off the top frame and uses its contenis t0
determine the return destination. It is possible for a message to be forwarded many times
and still return to each point along the inverse route.

A network control program (NCP) is built to interface with ARPANET[WuLeH-81]. It
serves as a connection manager providing mechanisms for establishing and breaking connec-
tions, creating and destroying the sockets that define the participants in a conversation, and

transmitting data over connections.

2.5.2. Process-based Systems

Various distributed operating systems are implemented without supporting the concept
of user-level objects. Some of the features associated with them also give ciucs to the design
of FLEX.
Accent and Mach

Mach [BBBCGRTY—87.JonRa-86,Rashi-86,Sanso-88] is the successor of
Accent[RasRo-81); both are examples of message-based operating systems, designed for dis-

tributed systems. The research projects were carried out at Carnegie Mellon University.

34

There arc five objects types supporied by the Mach kemel, tasks, threads, ports, mes-

sages, and memory objects. The communication facility of the system is capability-based.

The term process is not used in Mach. Ins;ad. the concept of task and thread is intro-
duced. A task is the basic unit of resource allocation. Its address space is represented by an
ordered collection of memory objects. A thread is the basic unit of computation within a
task. All threads within a task share access to all of the task’s resources. A traditional process
in the UNIX sense can be seen as a task with a single thread of control. Higher level utility
programs can be provided (e.g., C Thread Package [CooDr-88)) to interface the low-level,
language-independent primitives for manipulating threads of control so that parallel program-
ming under Mach operating system is supported. Matchmaker{JonRa-86} is another pro-
gramming language support developed for specifying and automating the generation of multil-
ingual interprocess communication interfaces for distributed, object-oriented programming in

Mach.

Message and port are the basic abstractions used for communication in Mach. Each task
has a port in which a message can be placed and later removed. Ports are protected kernel
objects. Only the tasks that have a capability (which contains both a port idenliﬁcalion and
access rights) can send a message 10 the port identificd. A network server task exists on each
node of the Mach distributed system to provide lranspareﬁt nétwork communication. It acts as

the local representative for tasks on remote nodes as depicted in Figure 2.5.

Message-passing is the primary means of communication both among tasks and between
tasks and the operating system kemel itself. The only functions implcmented by systemn traps
are those directly concemned with message communication, all the rest arc implemented by

messages to a task’s port; send and receive arc the only primitive operations. All data passcd

35

Network

network
Message server
Protocol
send receive
KERNEL A KERNEL B

Figure 2.5: Remote Communication in Mach

in a message is typed. All messages have a standard format: a (standard) header with a vari-
able size message body.

Virtual memory management can be used in facilitating interprocess communication as
described in [FitRa-86) for Accent. Data between processes can be transferred by integrating
copy-on-write virtual memory management with interprocess communication. In particular,
Accent provides a flat, 32-bit, sparsely allocatable, paged virtual address space to each pro-
cess, and uses mapping'® to transfer large data objects between processes and to provide
mapped access to files and other data objects. With the concept of memor)f object, access to
virtual memory is simple in Mach with no arbitrary restrictions on allocation, deallocation and
virtual copy operations. It also allows both copy-on-write and read-write sharing[JonRa-86].
The Mach operating system kemel also provides flexible sharing of memory between tasks, so
that a child task can share the physical memory of its parent task if it inherits shared access to

memory from the parent. The tasks may specify different protection or inheritance for their

19.¢, the manipulation of virtual memory data structures.

36

shared regionslBBBCGRTY-87].
V Kernel

The distributed V kemel[Cheri-84_1,CheZw-83], developed at Standford University,

implements transparent message-based communication between processcs.

V system uses a global (flat) naming space for specifying processes. It also supports the
concept of process groups. A group is an entity treated like a single process. It is defined as a
set of processes referenced by a single identifier. The concept of a group allows the sysicm 10
take advantage of LAN broadcast service.

V kemel provides two sets of communication primitives. One is for short messages and
the other is for large volume of data transfers. It uses a request-response form of communica-
tion. The client process that execuies a Send operation 0 a server is suspended until the
server completes a Receive operation and eventually a Reply operation to respond with a reply
message back to the client.

Protection policies are not implemented by the V kemel. They are left to the individual
control of servers.

The V kemel permits multiple processes per address space; these proccéses form a team.
The kernel manages memory as team spaces. A team space disappears when the last process
in that team space is terminated. The notion of team provides intra-address space multitasking.
In a sense, it is similar to the concept of task and thread in Mach.

An important concem in the implementation of the V kernel is efficiency. Special effort

is put into it, €.8.,

37

(1) Remote operations are implemented directly in the kemel instead of through a process-
level network server like in Mach.

(2) ‘The inter-kemel protocol is basically a request-response protocol; it implements reliable
message transmission on an unreliable datagram service without using an extra layer to

implement reliable transport.

2.5.3. Distributed UNIX-like Systems

UNIX was designed initially for a single-machine system; it did not provide primitives
for distributed applications. The area of interprocess communication has previously been very
weak. Pipes were the only standard mechanism which allowed two processes to communicate
(prior to the Berkeley 4BSD facilities). Unfortunately, pipes restrict the two communicating
processes being related through a common ancestor, the semantics of pipes make them almost
impossible to maintain in a distributed environment.

Many versions of UNIX have been developed; Berkeley UNIX and System V are ex2m-
ples of them. Although they are not distributed operating systems themselves, they do provide
convenient building blocks for constructing distributed facilities on top of them. But because

of the success of UNIX , there arc also quite a few systems developed to enhance UNIX with
distributed facilities'".
Berkeley UNIX

Interprocess communication is onc of the important additions to UNIX in the 4.2BSD

version: the release of 4.3BSD completes some of the IPC facilitics and provides an upward-

Even Mach is binary compatible with the BSD 4.3 distribution of UNIX.

38

compatible interface. A system entity, socket, which is an abstract object through which mes-
sages are sent and received, has becn introduced. High-level facilities can be constructed out
of this primitive entity. Sockets permit arbitrary processes (0 communicate with each other.
They also make it very easy t0 extend interprocess communication to a distributed environ-

ment.

To support communication networks that use different protocols, different naming con-
ventions, and different hardware, the concept of communication domain is used in UNIX,

i.e., sockets are created within a communication domain.

All sockets are typed; each type represents a kind of service, e.g., datagram socket of
stream socket. Connections need to be established between sockets, either on the same
machine or across the network, before data can be transferred. Pipes between any pairs of
processes (i.e., processes with different ancestors Or processes ofi different machines), can also

be built using sockets. Sockets exist only as long as they are referenced.

Locus

Locus[PopWa-85, WPEKT-83] is an operating systcm implemented at UCLA. It pro-
vides a facility for linking computer systems together so as to give thc appearance of a single
UNIX -like hierarchical file store and the standard Shell command language. It can be extended
to provide remote file access. Locus is a completely redesigned operating system rather than a
modification of an existing UNIX system.

Locus uses a special file access protocol. A file access involves three logical sites: using

site (US), storage site (SS), and current synchronization site (CSS). If the file to be accessed

by the US is local, then a local call is made. If the file is at a remotc site, the access request

39

must go to the CSS first. The CSS locates the SS. If the SS decides to provide the service, it
replies to the CSS. The CSS then sends a message back to the US to notify it the fact. Figure
2.6 gives an example of it.

LOCUS also integrated network communication into UNIX -like system in the form of
transparent remote file access. It does not attempt to provide applications with general IPC

across a network. Instead, an RPC mechanism is used for inter-kernel communication.

Newcastle Connection

The Newcastle Connection[BrMaR-82] makes much use of the existing UNIX operating
system. A software subsystem is added to a set of standard UNIX systems to connect them
together. The overall hierarchical system structure conceptually is a simple extension of a
UNIX file system.

The connection is a layer of software sitting on top of the resident UNIX kemel, as
shown in Figure 2.7. To the layers above it, it is part of the kemel. To the kernel underneath

it, it appears to be the same as a normal user process. The role of the connection layer is to

Current
Synchronization
Site

request (e.g. open()) request

Storage
Site

Figurc 2.6: An Example of a File Access in LOCUS

40

User programs, User programs,
rion-resident non-resident
UNIX software UNIX software
Newcastle - RPC Newcastle
Connection Connection
UNIX Kemel UNIX Kemel

Figure 2.7: The Newcastle Connection

filter the system calls that have to be re-directed to another UNIX system, and to accept sys-
tem calls that have been directed to it from other systems. In other words, if the call is local, it
is passed unchanged to the local kemel; if the call is remote, some e€xtra information is pack-
aged and passed to a remote machine. An RPC protocol is used to provide the communication
between the connection layers on the various systems. Note that the communication actually
occurs at hardware level. The kemel includes means for handling low level communication
protocols.

The Newcastle Connection provides network transparency. It is donc wilhoul any
modification o either the UNIX operating system or uscr programs. The idca is applicable 0

non-UNIX distributed systems.

CHAPTER 3

Overview of FLEX

This chapter describes the design of FLEX. A more detailed description of the system is

given in {[OzLLT-88].

3.1. Design Philosophy of FLEX

FLEX is the name of a flexible distributed operating system kernel being investigated.
The kemel is developed not only as a testbed, but also as an experiment of an architectural

paradigm, so that both architectural and algorithmic issucs can be studied. To avoid being res-
tricted to a particular existing operating system, compatibility is not taken into consideration’.

The FLEX kemel should enable us to investigate issues like:

(a) the integration of database management systems (distributed as well as centralized) with

operating systems in order to provide better performance and functionality, and

(b) the development of a general-purpose object-oriented computing environment for,

among other, distributed object-oriented database managers.
The design philosophy of FLEX is discussed in [OzLLT-88]; here is a summary list of
it.

Design goals

IFLEX is not designed to be compatible with any existing operaling system.

41

42

All (or almost all) operating systems share the same general goals, such as usability,
generality, efficiency, flexibility, transparency, integrity, sccurity, reliability, extensibility, ctc.
While complying better or worse with these general goals, cach operating system has its

emphasis. For FLEX, the following design premises are essential.

(1) The fundamental goal of FLEX is to provide the necessary support for distributed data-
base management functions within a general-purpose distributed computing environ-
ment.

(2) The FLEX kemnel should be small and memory-resident for better flexibility and perfor-
mance.

(3) FLEX must provide fully transparent access 10 system entities, i.c., transparcnt nctwork
access.

(4) FLEX architecture must be modular and easily extensible.

(5) FLEX is designed to work in a broadcasting local arca network cnvironment. Thus, it
must conform with the IEEE 802 LAN standard at the Logical Link Control
Layer{IEEE-84] for remote communication.

(6) FLEX must provide reliable and secure operalionz.

Design Principles
There are three principles employed in the design of FLEX.

Principle 1: The operating system should provide support for only thosc DBMS functions that

can be provided efficiently within the operating system. It should not, however, adversely

owever, it is not intended for use in highly sensitive applications where there is malicious intent to
compromise the system.

43

affect the efficienit implementation of other scrvices within the DBMS.

Principle 2: Operating systcm mechanisms should be separated from policy decisions; the
kemel should provide the basic mechanisms as basic primitives available to higher levels of
software.

Principle 2 gives a way of building a minimal kemel. The kemel implements only the
low-level mechanisms that support the policies defined at the user level. This enables us to
investigate the issues like the appropriate algorithms for performing the classical database
functions within an operating system.

Principle 3: The operating system should support the use of objects at the user-level.

3.2. FLEX Paradigm

FLEX is an attempt to address some of the problems associated with the interface
between operating systems and databasc management Systcms. Figure 3.1 shows the overall
structure of FLEX. The kernel is kept small with five modules to provide low-level mechan-
isms for managing system resources. Services arc implemented outside the kemel as user-
level objects. In particular, the file system, the scheduler, and the memory manager are placed
outside of the kernel. Such an approach allows altenative implementation .of services to be
made available to user programs. For example, one file server can be implemented
specifically for database applications, and another can be implemented to emulate the UNIX
file system. This also enables us to cxperiment with different algorithms.

FLEX is not a pure object-oriented system in the sense that the primitive data types such
as integers, reals, and characters arc not treated as objects. The objects in FLEX are typically

large and complex. We believe that this decision will significantly improve the performance

44

Transaction User-level Uscr-level
Manager Object e Object
Non-Kemel -
Memory File
Scheduler Manager System
InterObject Communication Manager
Kernel Object Local Device Page
Process
Manager Manager Manager Manager
3
A |
Hardware Communication
Network

Figure 3.1: FLEX Architecture

of the system because there are fewer objects 1o manage and less communication for somc
primitive operations.

The architectural paradigm can be summarized in four points:
(1) Use of a client-server approach 1o structure operaling system modulcs.

This approach is taken to provide better co-operation between the operaling system, the
computer network, and the database management sysicm running on top of ithe operating sys-
tem. The approach facilitates the use of a dynamic laycriing approach to operating system

design instead of the traditional static layering approach. Layering occurs only during the

45

exccution of the software and is specific to the requirement of that software. For example, if
the DBMS does not need the service of a file system, then the file system does not exist as part
of the operating system as far as the DBMS is concemed.

This approach fits in a distributed environment very well, especially in an object-
oriented system. An (active) object in FLEX can be a provider as well as a consumer of ser-
vices. All objects are prepared to be invoked as well as invoking others. The client and server

objects can be distributed to various machines 10 maintain a balanced load.

(2) Separation of policies from mechanisms.

This principle was first argued for in Hydra[LCCPW-75]. The kemel implements only
the basic mechanisms that are necessary for supporting the definition of policies at the user
Jevel which govern the altocation of resources. The separation allows the system developers (o
tune the policies to suit individual applications. For example, there can be one page replace-

meni policy (algorithm) for non-database applications and another for database applications.
This approach miakes it possible t0 implement different policy modules at the user level.
As a result, the DBMS can co-exist with the general purpose operating system services — one
of the goals in FLEX design.
(3) Use of an objcct-oriented design methodology.
The object model was first investigated in programming languages, but has’since been
applicd to softwarc development such as the design of operating systems[Joncs-78,Pasht—82].
Some examples of it have been presented in the previous chapter.

This design methodology simplifics the design of complex systems. It also makes a sys-

tcm casy to cxtend and modify[Mcycr-S?.NiBlW-87]. Such an approach is, in a way, the

46

result of the design decisions of FLEX such as the dynamic layering approach and the separa-
tion of policies and mechanisms.
(4) Use of capabilities in naming, access control, and protcction.

In an object-oriented system, an object, which is the abstracted notion of an arbitrary
resource and the only entity known in the system, is the unit of protection. Using capabilitics
is one way of providing naming, access control, and protection. Reliability of a system is
improved because objects can not corrupt onc another. The only way to manipulate an object
is through a set of operations defined for the object. The name of the object and the desired

operation are only identified by an appropriate capability.

3.3. Kernel Design
The most important features of FLEX kemel can be summarized as follows:

o The object types supported by the kemnel arc commonly needed in managing centralized

and distributed computer systems as well as in distributed databasc management.

e A functionally identical kemcl exists on each machine.

e Access to objects is uniform: both kernel and non-kemel objects are accessed via capa-
bilities.

d Access to system services and other services provided by uscr applications is by invoca-
tion.

¢ Message passing is used as the communication paradigm. The InterObject Communica-

tion Manager provides fully transparcnt 4CCCSS to remole objccls.

47

The FLEX kemel consists of the following five modules: Object Manager, InterOb-
ject Communication Manager, Local Process Manager, Device Manager, and Page

Manager. The general design of each of them is discussec here.

Object Manager

The Object Manager provides the mechanisms for creating and deleting objects. Itis
discussed extensively in [Lau-88].

The Object Manager assigns a sysiem-wide unique name to each new object. Foreach
object, the Object Manager maintains an object descriptor (OD) which contains information
about the object. Each site of the distributed system maintains a local object directory which
consists of descriptors for each of the objects that exist at that site. The structure of a directory
and the manipulation of it will be described in Chapter 4, together with other data structures

involved in interobject communication.

A FLEX object can be viewed as a triple:
< name, type, rcpresentation >
where name is a system-wide unique identifier; fype indicates the class that the object belongs
t0; and representation consists of two parts: one describes the resources that the object encap-

sulates and the other contains the capabilitics that the object holds for other objects.

Each object is an instance of a type which is represented by a type manager.: The type
manager contains the code of the operations that are defined for that type as part of its
representation. Type managers themselves are instances of an object of a type "object” that is
implemented inside the kernel. This organization forms a hierarchy of objects whose root isin

the kemel. Figure 3.2 shows an example of an object and Figure 3.3 depicts an example of the

Filel File2

" FILE — _— FILE
N /

> FILE capability

FILE capability
Read
FILE
TYPE MANAGER Write
P

PAGE capability \ Open

DISK capability
Close

Figure 3.2: An Example of an Object Structure
type (or class) hierarchy.

A FLEX objeci can be either active or passive. Active objecls are those that.have been
invoked for services and are being serviced concurrently by the CPU. An active object may
become passive following the termination of all the invoked operations. Each active object is
managed by an object coordinator (OC) which is a generic picce of code responsible for pro-

viding a number of services on behalf of the object. In partic ilar, the OC has the following

49

Type . !
Manager Object | Presentation

AN

. T . Type .
File Mayrgaﬁger Prescntation | - [Page| prano qer Presentation
Filel | File |Presentation |-- {File2 | - Pagel| Page |Presentation
Figure 3.3: Object Hierarchy
responsibilities:

(1) message resolution: t0 determine from an incoming message which operation is being
addressed;

(2) right verification: to determine whether the invoker actually has the right to perform this
operation on this object; and

(3) operation activation: to activate the procedure that is being invoked by creating a unit of
scheduling and ask the scheduler to schedule it for execution. Figure 3.4 shows the
structure of an active object.

In FLEX, an object is the unit of protection because it is the abstracted notion of an arbi-
trary resource and is the only entity known in the system. Access to all objects is done via
capabilities. A capability scrves (w0 purposcs. it identifies the object and it indicates the rights
the holder has for the object. When an object is created, a capability is also created. This new
capability includes all the access rights defined for the object and is the owner’s key 10 the

object. Sharing of an object is donc by having multiple capabilitics to the object. These capa-

OBJECT

Object Coordinator

Operation

C Operation

Figure 3.4: An Active Object

bilities might have different sct of access rights so that different holders can have different

privileges to the object.
InterObject Communication Manager

The InterObject Communication Manager in FLEX handles all the communication
between objects, whether they are local or remote. The details of the design and implementa-
tion of communication in FLEX are oresented in the next chapter; here we highlight the

important aspects of the communication subsystem.

The InterObject Communication Manager links together all the objects in the system
by means of allowing (facilitating) invocations. All invocation calls to an object are, in fact,

messages in the system: they must go through the InterObject Communication Manager.

FLEX supports both synchronous and asynchronous communication. In synchronous

communication, the sender blocks until a reply is reccived. It is useful for a possible imple-

51

mentation of remote procedure calls at the programming language level. Asynchronous com-
munication allows the sender to continue operation after a message is sent. A reply may or

may not be expected. In any case, the sender will not be blocked. It maximizes parallelism and

increases flexibility, but tends to make programming tricky and hard to debug.

The format of a message can be viewed as:
< capability, operation, message >
where capability is a token that gives the holder permission to _inyoke an object; operation
specifies which routine for the object is to be invoked; and message is the parameter list for
the routine. A detailed description of how capabilities are used and maintained can be found

in [Lau-88]. An outline of how capabilities are used in communication is presented below.

There are two differcnt formats for a FLEX capability. One is called UserCap, and the
other is called RealCap. A UserCap is the capability given to the client object, which has a
structure as

< object-id, copy-no >
where object-id uniquely identifies the object and copy-no is a unique integer generated by the
system and is used to obtain the corresponding RealCap. A RealCap, on the plhcr hand, is the
capability stored in the kemel as an entry in the C-list of the object descriptor. The structure
of a RealCap is:
< copy-no, generic rights, auxiliary rights, pointer >

where copy-no is the same as the copy-no explained in the UserCap; generic rights and auxili-
ary rights are bit maps where cach bit defines onc operation that can be performed on that
objcct; and pointer is for linking up the C-list. Figure 3.5 shows an example of object sharing

with different capabilitics.

52

The capability used in a message transfer is a UserCap. The InterObject Communica-
tion Manager finds the appropriatc OD of the recciver object using the information provided
in the object-id part of the UserCap. Then the C-list of the OD is searched to obtain the Real-
Cap with the same copy-no. The rights are then sent together with the message (o the receiver.
As mentioned earlier, it is the responsibility of the OC of the receiver objcct to enforce the

protection of the object by checking the access rights.

object_id copy_no

UserCap 1001 123
. object . . next next
internal extemal coordinator . Object clist owner internal external
name name 9P poinrer oPUCR locadon pointer id pointer pointer
DObje{:t
escriptor
Por| o1 | Fitle1| FILE | s0261| 1 | 6024C 17 >
L—
generic auxiliary
copy N0 rights rights
" 123 |1 | uu
RealCap
139 1010101 | 0110 ¢
245 |1000111 | 0011 ¢ @

Figure 3.5: An Example of Object Sharing with Different Capabilitics

53

Local Process Manager

The Local Process Manager implements the execution environment. A process is a unit
that may be scheduled for execution. The Local Process Manager performs the following
functions related to process and processor management:

o provides mechanism to create and destroy processes,

o performs process dispatching which involves giving control of the CPU to the process
that is selected for execution, and

o implements methods to handle deadlocks.

Note that the scheduler makes the decision regarding the execution order of processes; the

Local Process Manager is simply responsible for context switching.

The operations defined by the Local Process Manager can only be invoked by objects
that are local to the machine. Remote process creation is not supported. A detailed discussion
of it, together with process dispatching, is in [Lau-88].

Device Manager

The Device Manager in the FLEX kemel consists of all device drivers. A device driver
implements the code that is necessary to interface with the device that the driver handles. The
hardware of the system is embedded in the Device Manager so that device-independent

-

software can be constructed. The device drivers are no different from any other existing
operating system.

Page Manager

54

The existence of the Page Manager is the result of the design philosophy: the scparation
of mechanisms and policies. The Page Manager provides the mechanisms to support thc
implementation of a virtual memory system as well as the implementation of various buffer
management strategies, both of which are important in implementing database management
systems.

It should be pointed out that it is very difficult to enforce the rule of separating policies
from mechanisms for this service. Any decision to place some component of the memory and
buffer manager outside the kemel has considerable performance implications. In the case of
FLEX, the minimal facilities for memory and buffer management are provided by the kernel
module, the Page Manager. The implementation of the policy decisions arc left to objects

outside of the kernel.
The fundamental operations that the Page Manager provides arc
(1) toswapina page identified by its number, and

(2) toswap outa page.

3.4. Non-Kernel Design

The FLEX kemel leaves a number of systcm functions to be implemented outside of the
kemel as user objects, which include the scheduler and the memory manager. The scheduler
makes all scheduling decisions and is described in {Lau-88). Thec mcmory man:;gcr imple-
ments the policies that govern the usc of main memory. Some other functions, such as the file

server and the user shell, are also implemented above the kemnel.

Little DBMS functionality is implemented in the kernel, but developing a distributed or

centralized DBMS on top of the FLEX kemel should not be very difficult. The kemnel

55

provides cssential services, such as transparent access o distributed objects, mechanisms for

manipulating memory pages, uniform naming of objects, and access control facilities. Many
operating system functions are pulled out of the kemel. This will not inconvenience the

DBMS. For example, the DBMS can implement its own buffer manager that is independent of

the operating system men:- -~ "% 9L The suitability of the FLEX for database applications

is yet to be verified.

CHAPTER 4

Design of the Communication Module in FLEX

Based on the general design of FLEX presented in the previous chapter, this chapter

describes the detailed design of the communication module in the system.

4.1. Communication Scheme Adopted in FLEX

FLEX adopts a unified approach, adopting active communication, as described in
Chapter 2, as its basic communication scheme. Whenever an operation wants to have another
operation performed on an object, it issues a request to the corresponding OC, which is a dac-
mon. This request is first passed to the kemel via a svc; subsequently, the kemel interrupts the
daemon and forces it to accept the request. The daemon sees the request as a software inter-

rupt; it can not avoid accepting this interrupt.

It is tempting to demand that the daemon perform the request immediately (without
relinquishing the CPU). This would simplify programming: every operation on any objecl
would be atomic. Unfortunately, many applications require that blocks of data be passed
around as a result of executing operations on objects (c.g., copy a record of a file). Others may
require synchronization operations (c.g.,aPona semaphore). As a result, they may also want
to exchange messages with other operations. In either casc (and many others), it is not possible
to perform the demanded action immediately; in cxtremc cascs, such as a deadlock, it may

never become possible to do it.

57

Requests to an OC dacmon can be trivial, which do not cause inconvenience. But non-
trivial requests may introduce a source of concurrency problems: several operations may exc-
cute concurrently on the same object; morcover, they may be stacked even before they star

their execution. The effects of pre-execution stacking may be seen in the following example:

Code of an operation: Action performed
i++ submit request: (i, add , 1)
i*=2; submit request: { i , multiply ,2)

If these operations are considered non-trivial and the original value of i is 1, the final
value of i will be either 3 or 4, depending on scheduling.

At present, the full design of the OCs is not yet complete. Among many responsibili-
ties, an OC daemon performs one of the following once a request is forced upon it:

. processes it immediately @if it is a trivial request) and re'zases the CPU (goes back to
sleep).

« starts a new operation on the object and goes back to sleep. This new operation executes
concurrently with all the other operations operating on the same object as well as con-
currently with the requesting operation.

o discovers that the request actually is a2 message to an operation in progress. In such a

case, the OC places the message in a message qucue and goes back to sleep.

4.2. Design Issues

4.2.1. Message Queues

There is no passive ¢ ‘munication dirccted to an OC. But in reality, passive communi-

catior still exists. When a message is to be sent from one operation Lo another operation, the

S8

receiver’s OC needs to providc a means of storing the message becausce the receiver operation

may or may not be ready to process the new message.

Passive communication is polling-driven. An episode P—¢ can be complcted only
when O expresses interest in hearing something from either anybody or, perhaps, just from
P. The most reasonable implementation of polling-driven communication uses message

queues to prevent losing messages when the speed of the sender exceeds the speed of the

receiver.

For every request, the receiver is represented by an OC, whether the reguest is an invo-
cation to the OC asking for a service or a data message to a particular operation as a result of a
service. OCs are daemons and they can be expected to take care of the messages addressed to
them (i.e., creating a new operation) without any serious delays. On the other hand, operations
on objects can cause arbitrarily long delays, as they may never ask for a message. Therefore,
OCs have to have a storage facility for pending messages which can not be "forwarded" from
the OC. The te'm supermailbox is used to denote this storage facility, which is a qucuc for
storing the 7..c.isages in the OC. The OC is the owner of the supermailbox. Note that a super-
mailbox differs from a mailbox as used in operating systems terminology: a supermailbox con-

tains messages that are in transit, i.c., the OC is not their recciver.

4.2.2. Synchronization .

Cooperating operations have the choice of conducting their commutiication in a synchro-
nous or asynchronous manner. The system provides two versions of sysicin calls —a blocking
call for synchronous communication and a non-blousing onc for asynchronous communica-

tion. It is up to the user objects 10 coordinate their activities in an orderly fashion.

59

(1) Nonblocking-send: the call retums afici the ~.cssage is dcposited in the supermailbox of

the receiver,;

Blocking-send: the call retums after some sort of reply has been received.

(2) Nonblocking-receive: the call retums after an attempt to receive a message from the OC
of the object, whether it is successful or not;
Blocking-receive: the call retumns after obtaining a message successfully.

For any blocking primitive, a timeout can be sct so that a process will never be blocked

indefinitely.

4.2.3. Reliability
One of the basic criteria of FLEX is to provide reliable message passing. Once a mes-
sage is posted, it is expected to be delivered. This is not always feasible, though. ‘Therefore,
the following definition is adopted:
Communication is called reliable when the kernel guarantees that a message, once scnt,
arrives safely to the destination supermailbox. Note that a reliable communication does
not guarantec that the receiver will read the message, but only that the message will be
forwarded to the appropriate supermailbox. The sendcr may choosc lo. enforce an added

degree of reliability by issuing a blocking-send.

4.2.4. Protection Enforcement
The protection of objects is enforced by capabilitics. This involves the InterObject
Communication Manager and the receiver's OC. The InterObject Communication

Manager checks the authenticity of the capability and obtains (from the object descriptor)

60

both the access rights (the key) associatcd with it and the address of the OC where the mes-
sage is to be buffered, and then the receiver’s OC checks the key against the information about
the local operations stored in its address space (the lock). Only when a matching pair of key

and lock is found, the operation specified can tie carried out.

43. Network interfacein I LEX

In a netwoik enviroament, successful message sransfer can not always be guaranteed.
These is always a chance that some site is down. A reliable message transfer does not deal
with this. it guarantees that no messages arc lost and all the messages received are in the right
order.

FLEX needs a reliable message passing service. To guarantec it, Connection-oriented
service (802 standards) provided by the network should be employed. But unfortunately, the
data link level connections are only for point-:0-point data wransfer between link layer service
access points. That means that it does not support a reliable broadcast feature, as required by
the system. To broadcast in a connection-oriented scrvice mode implics establishing conncc-

tions with everybody, which certainly is not desirable.

To solve the problem, cither Unacknowledged Connectivnless service or Ack-
nowledged Connecti¢nless service (802 standards y may bc used. But because of the restric-
tion associated with the a-knowledged connectionless service, i.c., "{the requesting uscr can-
not present a sccond packet io the link layer for delivery until the previous one is cither suc-
cessfully delivered or determined to be undeliverable"{Jones-88], the unacknowledged connec-
tionless service is the only onc used in the current implementation of the FLEX kemel. It pro-

vides the means by which network entitics can cxchange link service data units without the

61

cstablishment of a data link level connection. The data transfer can be point-to-point, multi-
cast, or broadcasl.
Although the degree of reliability s»» «ompromised with such a decision, the gains ar=
very desirable, i.c.,
(1) It improves the efficiency of the system, as there is no need for establishing, using, resct-
ting, and terminating data link layer connections.
(2) It helps in achieving one of the goals in an operaling system design, simplicity.

(3) It also provides higher degree of flexibility to users. If necessary, reliable transmission
can be guarantced by higher lever protocols, €.g., a transport layer above the kemcl,
Note that it is also possible to make use of the acknowledged connectionless service

instead of building a transport layer.

4.4. Classification of Communication Partnerships

The communication partnerships in FLEX arc illustraica in Figurc 4.1. X’s are operal-
iiig, system kernels running on different machincs; o, B, and y arc OCs representing differcat
objects; P’s, @'s, and R’s arc individual operations running on 0G,=¢ls 0, B, and 7y respec-
tively. o.and P are on the same machine; Y represents a remote object.

The possible communication scenarios can be classified as the following:
(1) PP, coinmunication between operations belonging to the same object.

In the existing design, the system docs not differentiate whether the receiver shares the

same OC with the sender; a message is always sent to the OC of the receiver first. Thus,

P -+»P can e decomposed as P 1=20—P; scenario (2) gives a morc detailed description.

62

Figure 4.1: Communication Partnerships in FLEX

(2) P,-»Q;: communication between operations on different objects, but within the same
machine.

Two steps, i.e., P, =p—Q,, arc involved in sending a message from Py 10 0. Onc is
to pass the message from P 10 B after going through the kemel to obtain the necessary infor-
mation based on the UserCap supplicd with the message, and to storc the message in B's
address space after having found a pair of matching key and lock in B; the other is to poll the
message from B by Q. All operations and their OCs 2rc indcpendent scheduling units. Thus,
if P, sends two messages 10 Q,. onc immediatcly following the other: P=p-0,,

P =B—Q,, the order of arrival is not necessarily as desired. It is the programmer’s responsi-

63

bility to choose suitable calls (blocking or nonblocking) to synchronizc the opcrations.
(3) P ,--R,: communication bciween operations on diflerent machines.

Because of the naming scheme chosen for FLEX (sce {Lau-88] for details), external or
intemal names, do not provide any information about the location of objects. Thus, after a
message is sent, the local object table (which will be discussed later in the impiementation
scction) is searched first in an attempt to locaw the receiver (we expect the majority of com-
munication transactions to be local). If the receiver can not be found locally, remote sites must
be checked. The message must first be stored in the local kemel waiting for the stub module
to package it and broadcast it via the underlying network. The stub modules on each machine
connected to the network are responsible for interpreting and unpacking the incoming mes-
sage. The message is ignored unless the receiver can be located at that site. The message is
treated as 2 local one there after. The whole message transaction can be viewed as
P =2K9K=27-R,.

4) P,-P:arcquesttoan OC.

A request to an OC implics that the OC is the actual receiver: e.g., a request for starting
new operation, or a request asking for a capability. The OC processes the request immedi-
ately. All OCs are daemons; they are always interrupted when a message arrives, i.c., P1=>f,

whether the OC is the actual recciver or only the receiver's OC. .
(5) Py arequest by an operation to the kemel that the object belongs to.

It is the: same as any orher onerating system, i.c., P =>K;; but the system calls are dis-

guised as messages addressed (o a particubar kemel module.

64

(6) Any intra-kernel communication is done in the form of procedure calls.

4.5. Semantics of Commurication

There are several perspectives on the implementation of message communication:
(1) the user’s view of the system,
(2) the function of an OC in message passing,

(3) the network interaction,

4.5.1. The User’s View of the System

The user processes do not sec the intcmal implementation of the message-passing facil-
ity. To them, the only way o communicate with anybody clsc (cither another process or the
kemel) is to use a subset of the following four system calls:
(a) bsend(UserCap, operation, msg, size, remole_r’'¢. flag)
(b) nbsend(UserCap, operation, msg, size, remote_msg_flag)

These are the blocking and non-blocking send primitives mentioned carlicr. The argu-
ments of the priritives are the following:
UserCap: the UserCap of the sender; it is used to locate the receiver OC and the access rights
to the receiver,
cperation: the identifier of the receiver (if the process docs not exist, the OC must invoke it
by creating a new process),
msg: the content of the actual message 10 the "operation” (i.c., the paramcters for the invoca-

tion of the operation or a block of data for the existing operation),

size: the size of "msg", and
remote_msg_flag: a flag indicating whether the message is originated from a remote site.

A call to bsend will not return until the entire message transmission is executed success-
fully; the message is processed and 2 reply is sent back ("nbsend” is used for sending a reply).
If the expected reply is not received by the sender within a certain time limit, the delivery of
the messagg is assumed to have failed.

A call to nbsend returns when the message has reached the supermailbox of the recciver.
No reply can be expected. It is up to the cooperating objects (or their operations) to synchron-
ize their exccutions. Whether an acknowledgement i required can oe indicated in the body of
a message. In particular, they may sci up their own acknowledgement/timeout protocol.

(c) breceive(sender_id, msg, size)
(d) nbreceive(sender_id, msg, size)

These are the blocking and non-blocking receive primitives. sender_id allows the
receiver to specify the sender of a message. It is desirable when an operation is communicat-
ing with a number of other operations. msg and size arc paramctcrs for the message to be
received and its maximum acceptable size.

A call to breceive will not return until the expected message is moved from the super-

mailbox of the OC to the actual receiver's address spacc.
A call to nbreceive returns rcgardless the presence of a message in the supermailbox. If
rhe expected message is there, the receiver operation accepts it; if not, the receiver operation

relums anyway (with an appropriatc status).

66

4.5.2. The Function of an OC in Message Passing
The OCs play an important rolc in communication. They arc responsible not only for
providing protection to the objects (the OC has extra responsibility in checking the access
rights of the sender), but also for managing their supermailboxes and rclaying transit messages
to subsequent points. Two types of messages may arrive at an 0C.
(1) A transit message, addressed to an operation of the object. The OC stores such a mes-
sage in its supermailbox and passes it farther at an appropriate time.
(2) An invocation requesting the execution of some action on the object represented by the
OC. In such a case, a new process is generated.
The code of OC is provided by the system. The communication primitives used by 0Cs
are not expected 1o be used by user applications. The primitives arc non-blocking and do not
guarantee success; the main purpose of their existence is to diminish the risk of deadlock in

arbitrary communication sequences.

4.5.3. The Network Interaction

The network is represented as a stub modulc at cach site. The stub modules arc imple-
mented as system daemons. Each of them is also a link with onc end of it connected to the net-
work software (LLC of 802 standards) and the other end 1o the kemel of the sitc where it

resides.

CHAPTER 5

Implementation of the Communication Module in FLEX

This chapter describes the implementation of the design of the FLEX communication

module presented in the previous chapter.

5.1. Implementation Details

The prototype implementation of FLEX is done on top of UNIX; UNIX processes, sig-
nals, files, sockets, etc. are used to simulate the environment. Remote communication is also
simulated by running the FLEX kernel on several machines.

The communication facility implemented is only a part of FLEX. At this moment, it
does not interface with other parts of the system. Thus, some assumptions are made for the
purposc of testing the commupication subsystem.

(1) Capabilities arc assigned statically; no support exists in the prototype for dynamic crca-
tion of capabilities. The internal names and access rights arc simulated.

(2) Operations are all independent processcs. Objects arc represented by dCs. with no real
physical or logical realization.

Note that a timeout parameter may be sct for cach request to avoid indeﬁnite. postpone-
ment. It can be set up as an option 10 users or as a default controlled by the system. In the pro-

totype, the problem is not dealt with.

67

68

5.1.1. Representation of Senders and Receivers in FLEX

When a nonkemnel object is first created, an OC process is generated to represent the
object. It manages any operations to be performed on the object which it represents. All the

information about the operations on the object is stored in the OC.

An operation on an object can be performed by either a procedure call or an independent
process. Both are initiated by the OC according to a request. While a procedure call is exe-
cuted in the context of the caller, which is the OC in FLEX, a process runs independent of its
creator. At any moment only one opcration of each kind can be active; if an operation is
addressed by its name, there is no ambiguity. But because of the responsibility of an OC in
protection enforcement, a procedure running in its context may jeopardize the security of the
system; thus, only an independent process can be used to represent an operation in the proto-

type implementation of FLEX.

In summary, the sender of a message in FLEX can be any operation represcnted by a
UNIX process; a receiver can be cither an OC or an operation, both of which are represented

by UNIX processes.

5.1.2. Representation of Kernel Address Space

The prototype implementation of FLEX runs as a collection of UNIX uscr processcs.
thus, it can not access real kernel address space. To solve the problem, files are used to simu-
late kemel address spaces on difTerent macines. The data structures uscd by the FLEX ker-

nel are all stored in files so that kemel modules can access them.

69

5.1.3. Representation of Network Support

A stub module in the kemnel is responsible for handling remote communication. It is sup-
posed to interface with Ethernet according to IEEE 802 standards. We take advantage of the
remote network communication facility provided by NFS . Thus, when the kemnel residing on
one machine sends a message to another kerncl (residing on a different machine), remote file

access is used to move the text of the message from the sender’s address space (a file) to the
receiver's address space (a file on a different machine).

A broadcast is not available to processes using NFS . Therefore, it is simulated by send-

ing individual messages to all the machincs controlled by the FLEX system.

5.1.4. The Data dtructures Involved in the FLEX Kernel

(1) Object descriptor
An object descriptor (OD) stores information about an object. It is created when an
object is created. It is maintained by the kemel. The format of an OD is given in Figure 5.1,

with the following ficld definitions:

internal name
external name
type
object coordinator pointer
replica number
object location
c-list pointer
owner 1d
next internal pointer
next external pointer

Figure 5.1: Structurc of an Object Descriptor

70

internal name: an integer, generated by the kernel, that uniquely identifics the object.
external name: a character string that the user chooses to name the object. It needs not be
unique

type: a character string describing the type of the object.

object coordinator pointer. an integer that stores the process identifier for the object coordi-

nator of the object.
replica number. an integer describing the number of existing replicas of the object.

object location: a disk address/pointer to the object. This field is updated if the object is

moved to another location.

c-list pointer: a disk address/pointer to the capability list held for the object. The structure of

a capability and its manipulation is discussed in [Lau-88].
owner id: an integer that identifies the owner of the object.
next internal pointer: a disk address/pointer (o the next OD based on the internal name.

next external pointer: adisk address/pointer L0 the next OD based on the extemnal name.

(2) Object table and Local active object table

All local ODs form a single level dircctory at each site. It can be managed by using
hashing with the help of two tables, which are an Internal object table (IOT) and an Exter-
nal object table (EOT). The tables have internal names or external names as their access

keys. Each entry points to a corresponding OD.

MThe string can either be “type manager” or the name of the “type manager” that defines the object type for
the object. The detailed description is in [Lau-88].

71

IOT and EOT can be treated as onc entity — Object table (OT), which keeps all the
ODs of the objects created at that sitc. An aclive object has an entry not only in the local OT,
which is stored in secondary storagc, but also in Local Active Object Table (LAOT), which
is a subset of OT kept in the main memory all the time for faster access. LAOT has the same
structure as OT and contains objects which are currently active. An object is always created
as an active object. It may later become passive because of a scheduling decision or an expli-
cit passive command. When an object becomes passive, it loses its entry in LAOT. Of course,
when it becomes active again, the opposite happens.

As mentioned above, OT and LAOT store the information about all objects and active
objects respectively. They arc constructed as hash tables, the size of which is defincd at the
system initialization time. Colliding entries in the tables are arranged in linked lists of ODs.
The object manager maintains the tables. The InterObject Communication Manager

accesses them (at least LAOT) for every message transfer.

OT and LAOT can be accessed by cither external (user defined) or internal (system
assigned) names. While the internal names are unique, the external names are not. The

description of the internal organization of the OT and LAOT tables can be found in [Lau-88].

(3) Message format
All messages in the system have the samc format as shown in Figure 5.2: a messagc

header plus the body of the message.

72

UserCap
Operation
ccess rights
Sender 1d

Size

Message

Figure 5.2: Format of a Message

A message header consists of five ficlds: the capability of the sender (UserCap), the
name of the operation in question, the access rights associated with the capability, the
identification of the sender, which consists of the internal name of the sender object and the
name of the sender operation, and the size of the body of the message. The body of a message
can be anything, e.g., parameters for the operation specified or a block of data as a result of an
operation.

The access rights field is only filled if the receiver is found locally. The sender’s infor-

mation is provided by the kemel. The rest is the same as what is specificd by the sender.

As the format of the header of a message is fixed, it is casy to find out where the body of
a message starts. To maintain the uaiformity of thc message passing Sysierit, information

which may not be necessary at the final destination is nevertheless provided.
5.1.5. Message Buffering in Supermailboxes

5.1.5.1. Location of Supermailboxes

As the design includes a non-blocking send, onc must cxpecet that there will be a queue

of pending messages. The qucuc is represented as a supermailbox belonging to the OC of the

73

recciving object. The choice of where to store the supermailboxes with messages is not obvi-
ous, as there arc two options:

(a) 1o storc messages in the kernel address space, and

(b) to store messages in the OC’s address space.

If the messages are buifered in the kemel, & nniform message buffering scheme for both
local and remote communication is achieved. But, as communication with an object is
intcrrupt-driven, the requests to an OC can be taken care of with no significant delay; it is
never necessary to buffer those requests. The real necessity of a buffer’ng scheme is for the
messages scnt 1o operations. Since operations arc sccn as par of an obsect, which is
represented by an OC, the OC has to store all the messages for the operations somehow?,
Thus, there is no reason why a message has 0 be buffered twice, both in the ker: nd in the
0cC.

If a supcrmailbox is put in the address space of an OC, the number of times that a mes-
sage has to be moved is once: from the sendei’s address space 1o the address space of the OC
that owns 3 supermailbox. It makes the message passing facility more cfficient. But note
that it fails in previding a uniform message buffering scheme for local and remotce communica-
tion; a remote message needs to be stored in the kemnel waiting for the stub inodule to handle
it. .

For the reasons outlined above, FLEX storcs messages (1.2, supermailboxes) within the

address space of the corresponding 0cC.

2How the messages are going to be passed to the operations from their Cs is “internal” to the objects.

74

5.1.:.2. Structure of a Supermailbox

The size of 2 .- ailbox is fixec by the sysiem. That means that ihe number of mes-
cages that ~an be swas’t 2 supermailbox is limited. If there is no space for an incoming mes-
sagc, the sender will be blocked even in a "nonblocking send”.

A superi. -ibox has a slot for each operation: running on the object. It also has special
slots for zﬁe messages that have not been looked at by the OC, and for mrssages that can not

be selivered (e.g., orphan messages). Figure 5.3 outlincs the structure of 4 supermailbox.

Semetimes, a sender sends @ message 10 @ process that does not exisi at the moment of
sending. Such messages, called crphan messages cufi cither be discarded as faulty or kept

until the receiver materializes. FLEX uses the later approach — this ielps avoiding difficuit

Unattended —_— @ - @ -> @
Operation-1 | —> @ - @ - @9 @
Operation-2 | ——> @

Operation-n

Figure 5.3: Structure of a Supermailbox

75

synchronization problcms involving unpredictable scquences of scheduling decisions. A slot
in a supermailbox is providud 0 buffer orphan messages; it i checked every time a new slot
for a new operation is started. A time limit can be sct for how long an orphan me.: ;age is

allowed to exist. If U:: message has to be terminated, the OC will send a message to the

sender of the orphan message indicating the status.

5.1.5.3. Mechanics of Message Transmission

There are two ways of deposiling @ messayc it & supertanilbox. One is to force-write the
message into the address space of the QC, which does not require any cooperatiorn: :rom the
paii of the OC; an interrupt {e.g., a signal) can be :ent to the OC 10 norify it of the fact that a
message has arrived and is waiting for being processed. Tiie other is to wait untii the OC is
willing to reccive the message. The former corresponds 10 uctive communication and is the
approach taken in FLEX.

Note that communication can be combined with - ~tual memory management; move-

mert of local myrsages only iivolves updating page table entries.

5.1.6. Message Movemeni in FLEX
For each successful message transfer, the following steps may take place:

(1) Locate the OD of the receiver .

When a message is trapped by th: InterObject Communication Manager, the kernel
looks at the UserCap sent together with the text of the message and trics to locate the OD of
the receiver. This is done by hashing the internal name ("object id" part of the UserCap) into

the LAOT of the system; the resulting OD should have all the information necessary for the

76

message transfer. Note that if the search fails, it implics that the receiver is on a remole site.
‘I'he messag. needs to be buffered in the keme} spacs wi ‘Gug for the stub module t2 package it

and broadcast it to the network.
(2) Locate the supermailbox and access rights

The identification of the process representing the OC is available in the ODj it gives the
information necessary for locating the supermailbox. Tc obtain the access rights, the c-list of
the OD must be searched to find the matching copy of the RealCap using the “copy number”
part of the UserCap. 1f a RealCap is found, it means that the UserCz is authentic. The mes-
sage should be passed to the OC of the receiver object wi™ the access rights stated in the
RealCap.

(3) Process the message by ar oC

The message is updated with the access rights from the RealCap. It is put into a special
slot of the supermailbox of the OC waiting for the OC 1o process it. The OC dacmon is inter-
rupied so that the message is handled immediately. If the message is for the 0OC, it is taken
care of by the OC and the slot is clearcd. If it is for an operation under the care of the OC, the
message is moved to the slot that is dedicated to that opcration.

(4) Deliver the message 1o the receiver

This step only occurs if the message is for an operation. The operation polls the message
from the supermailbox. It sends a request (o its OC, and the OC finds the message from the

supermailbox for the operation, tie real recciver of the message.

(5) Remote message transfer

77

If 2 message has to be sent to a remotce site, it will be a remote message. In such a casc,

several stub modules must get involved. The message transfer becomes more complex.

If the InterObject Communication Manager can not locate the OD successfully, it
implies that the receiver object is not local to the sender. Thus, the message needs to be put in
the kemel (-:2ilbox) of the sender and be broadcast to a!* the machines connected to the net-
work. A local stub module working like a deomon waits for an interrupt informing it that a
remote message can be found in the kernel mailbox. Then it packages the message properly
for the network transmission.

The stub module on each machine connc:d 1o the network receives the message. It
mupacks it and tries to locate the OF using the information provided by the UserCap. If it

fails, the message is ignored; if it succeeds, the message is treated as a local one.

5.2. Comments on Implementation

Due 1o the lack of hardware support, the implementation is simiuiated using the C pro-
gramming language running on top of UNIX . The purposc of such a simulation is to prove
that the prototype of the design works and t¢ get some insight for potential improvement of
the design. The simulation code will eventually be moved onto a real machine. Of course,

changes have to be made to deal with the rcal hardware.

The simulation was based on the original design of FLEX. UNIX isonly a 1ot to facil-
itate the development of the system; it provides an cnvironment that is much easier to use than
a bare machine. Notc that the FLEX communicaiioa facility is conceptually independent of
the operating system it currently runs on. For cxample, the UNIX IPC facility (i.c., socket) is

used to implement intra-object communication (polling) and remote filc access is used 10

78

simulate remote message transfer. Also note that some of the design featurces can not be simu-

lated accurately on top of UNIX becanse UNIX docs not support the virtual machine concept.

CHAPTER 6

Recommendations for Improvement

The previous chapters presented the first version of FLEX, cspecially its design and
implementation in communication. As the understanding of the issues involved became better
during the work on this thesis, it led us o some recommendations for improvement in the next
version of the FLEX design.

This chapter highlights some major changes which may be applied to the first version of
FLEX as possible improvemerits for the next version. it then proposes a basic design of a
new version of FLEX with the changes, and an overview of communication in the new

design.

6.1. Major Changes to the Previous Design
Although some changes are recommended for the design of FLEX, overall design goals
and principles remain the same. As FLEX is an ongoing research project, more changes are

expected in future work.

6.1.1. Capability Concept

The term capability was used in presenting the sysiem earlier. But a close look at it
shows that the capability discussed earlier is actually a hybrid of the concepts of capability and

access rights, which is referred as a lock/key mechanism in [SilPc-88].

In a system that uses access rights as means of protection, an access right list is the pro-

perty of a service, which can only be modified by "trustworthy" procedures. In the case of

79

80

FLEX, object coordinators shouldcred the responsibility of maintaining the lists of access
rights. Since the code of an object coordinator was provided by the kernel, i.c., it was a gen-
eric piece of code and, as long as there were no processes . ing in the context of the object

coordinator and the code was correct, "trustworthyness" was guaranteed.

A capability is like a key to a service. It is owned and stored by a client. If aclicnt hasa
capability to a particular service, it will get the service unless scmething extraordinary hap-
pens (e.g., server dies in the meantime). The capability specifies the service, and the owner-
ship of a capability guarantees that the service will be provided. There arc no access rights
involved; in particular, there is no need to check whether a capability is legitimate. The kernel
translates a capability supplie:t by = ciient into the appropriate operation on the given object.
As defined in [Pasht-82], a. +pakiiit- i a pair

{ object , operation).

Because of the concept of ownership, capabilities can be duplicated and passed around as

the owner wishes. Of course, 3 detailed design of a capability-based systcm may be quite

complex, e.g., some capabilitics may not be allowed to be duplicated.

The UserCap in FLEX played part of this roie. The problem was that even after obtain-
ing the RealCap using the UserCap, the success of the operation requested was still not
guaranteed. The kemel was responsible for checking the authenticity of a capabili}y, but not
the rights for the operation requested.

In the updated version of FLEX, classcs and objects can be created dynamicaily; class

hierarchy is supported. A subclass can inherit all the propertics of its parents, including the

ability 10 access other objecis — and this is cssentially the same as the notion of capability.

81

Thus, in the proposed version of the FLEX design, the concept of capability (in the strict
sense) is employed.

If the capability approach is used, access rights Licome unnecessary. The responsibility
of checking access rights can be removed from object coordinators, which will be redefined
later. For the purpose of communication, we assume that a capability identifies the receiver

and the operation to be performed. The detailed design of it is left as part of future research.

6.1.2. Object Model

The FLEX kemel designed carlizr could not support multilevel class hierarchy.
Although a class can be defined dynamically, it is always an object of type "Object” as shown
in Figure 3.3. —

It is essentizl that FLEX provides an environment that allows users to build their own
class hierarchy. As a result, they can create their own subsystems if necessary. Thus, two
features are added to the kemel:

o Object classes can be created dynamically during the execution of the code of other
objects; thus, the concept of subciuss is supported.

e An operation on an objcct is the unit of scheduling. The kemel of FLEX treats classes
in the same way as more traditional operating systems treat (heavy-weight) processes; it

treats operations on objects as (light-weight) threads.

6.1.3. Object Coordinator

The concept of object coordinator (OC) was introduced in the earlier design. One OC

was associated with one object. Among other things, il was responsible for access rights

82

enforcement.

As the result of supporting multilevel class hicrarchy and the use of capabilities, the role

of an OC is changed.

0y

@

©)]

@

&)

The code of OCs is not generic — a part of it is defined by the user as part of the appli-
cation. In other words, users write their own OC code for the classes that they want 10

create.
There is one CC for each object class instcad of each object.

An OC represents a class. It keeps the information about the objects of its class; it also
keeps some context information about operations in progress (threads).

Whenever there is a need to either ¢:i.4i¢ an object 0 Horm 2n aoeration on an exist-
ing object, an appropriate message s 10 b sent io the cciresponding OC. The OC is
responsible for converting thesc messages into kemel requests and passing them 1o the

Object Manager or Thread Manager.

It is not possible to send messages (0 objects directly: they must be sent to theit OC
instead, as in:

{0 ,read, text of the message)
In a way, the OC buffers the messages 0 the objects of its class. This scheme allows the

use of any sort of message passing in user applications. It also helps to overcome trivial

timing proble:iis, €.8.. -’nessages' 10 an objcct that has not been created yet.

n the sequel, the term message will have wo somewhat differen: meanings: an operation invocation ad-

dressed to an object coordinator, or a block of data addressed to an object.

83

(6) OCs arc responsible for local clean-up after an objcct is deleted.
(7) OCs do not enforce access rights in a capability based system. The protection is done by
the kemel. Note that in this design, a capability represents an unconditional right to start

an operation on an object (i.c., 2 thread).

6.1.4. Object Manager and Local Process Manager

In the proposed version of the FLEX design, the responsibilitics of the Object Manager
are changed. Instead of having a Local Process Manager, a new kemel module — the
Thread Manager — is defined. Yet another kemel module, the DMspatcher, dispatches

threads; besides, it takes care of the kemel side of CPU scheduling.

The kemel must be able to create and delcte objects. It also crraic 5. fispatches and ier-

minates light-weight threads.

¢ The Object Manager creates a new object by allocating the appropriate resources to the

requesting object coordinator.
o The Object Manager is also responsible for global clean-up afizr an object is deleted.

. FLEX treats light-weight thr::ds as units of scheduling. Each thread represents one
operation performed on an object of a class. Thread creation is triggered by a request to

the Thread Manager issued by the object coordinator of this class.

-

¢ The Dispatcher is not part of the Thread Manager; it is an independent module in the
kernel. When the CPU becomes available, the Dispatcher selects onc heavy-weight
process and invokes the uscr-supplicd scheduler associated with this process. This

scheduler (which resides outside of the kemel) sclects one thread belonging to the

84

heavy-weight process. Based on the decision made by this scheduler, the Dispatcher

assigns the CPU to the selected thread.

The data structures used by the Object Manager (and the way they are manipulated) arc
still the same, e.g., the OD, the single level directories.

Note that in the future, the Object Manager will have to be augmented, so that it can

perform more complex operations than those discussed above.

6.2. The Proposed System Design
This section proposes the basic design of FLEX, the :nain emphasis being on objects
and object manipulation. The main subject of the tiiesis, communication is only touched and

not desczibed in detail here.

6.2.1. The Overall Structure of FLEX
FLEX is an operating system based on the concepts of object-oricnted programming.

In programming languages, an objcct is an instance of an abstract data type (object
class). It is defined 2s an entity upon which a predefined set of operations can be performed.
While it is not very easy to use the concept of objects in the design of operating systems, ¢spe-
cially their kernels, it is convenient 1o use this approach in the design of the uscr-level inter-
face. The objcct concept provides a convenicnt tool in designing and impicmenting process
management and communication in an operating systcm, especially from the point of view of

protection mechanisms {Joncs-78, Pasht-82].

At the heart of FLEX is an cntity called the KERNEL; it is made up of several kemnel

modules; among inem are Object Manager, Thread Manager, Dispatcher, Page Manager,

85
Communication Manager and Device Drivers. Kemcl modules can access directly the
hardware? of the system.

Several important system functions arc left outside of the kemel of FLEX; among them,
the Scheduler and the Memory Manager.

All the other entities in FLEX are * iplemented as non-kernel object classes. Some
standard classcs are created by the keinel antomatically at start-up time. They provide some
basic facilities to the users and application software: |
. a filc svstem,

o the ability to execute 3 program,
e 1 wility to communicate with the outside world.

While the standard classes are always present, additional classes can be defined freely by

application progsuns. This can be done in a dynamic fashion, during the cxecution of these

programs.

6.2.1.1. The Kernel

Figure 6.1 shows the kerne; structurs of FLEX.

The basic modules of the kernel arc:

e Object Manager, responsible for creating and deleting class objects. It also’ maintains

definitions of user-defined classes.

« Thread Manager, responsibiz for creating and terminating units of scheduling (threads).

2As in any other operating systers, the network is simply treated as yet arother physical device.

86

manager s object

KERNEL

Object ead Dis- Page Comm. | | Device

Manager | | Manager patcher | | Manager| | Manager| |Drivers

\ y

Communication

Hardware
Netvrork

Figure 6.1: FLEX Kemnel

Dispatcher, responsible for rolling new contexts into the CPU.
Page Manager, responsible for low-level management of virtual and real mcn;ory.

Communication Manager, responsible for routing communication items from their
senders to their receivers. As a byproduct of this activity, the Communication Manager

is also responsible for creating capabilitics, decoding them and garbage collection of

87

objects”.
o Pevice Drivers.

Resides these modules, the kemel contains a software-interrupt handler, which catches

all the system-call interrupts (svcs).

6.2.1.2. Applications

A user who is interested in using FLEX may write a program and submit it for execu-
tion. This program may be written in any language that has a resident compiler, but the design
of FLEX is meant to facilitate the use of object-oriented programming languages. For simpli-
city, we assume that user application programs arc indeed written in object-oricnted program-
ming languages. The semantics of these languages will not, however, be taken into account in

this discussion.

When an application program is submitted for exccution, it contains the definition of at
least one class. FLEX gives the facilitics needed to define object classes and sub-classcs

within these classes. Classes may be defined at load time or at execution time.

One of the assumptions about FLEX is that it will control a distributed computer sys-
tem. As a result, it should have a good mechanism for concurrent (if not parallel) exccution of
several operations on one and the same object. Such a mechanism is supplied in the form of
threads. The presence of such a mechanism has an obvious side cffect: it puts thc.obligation

on concurrency control squarely on the shoulders of the application programmecr. This is both

good and bad, as, on the one hand, it allows the implementation of arbitrary synchronization

3An object is considered an orphan when no other object has the capability to access it. In such a case, the or-
phan object should be terminated.

88

schemes, while on the other hand, it forces application programmers (0 perform additional
programming work (of a kind that they hardly are familiar with). It is believed that the nega-
tive aspect can be relieved through the creation of a library of standard synchronization tools

that will be made available to applications.

6.2.1.3. Daemons and Threads

The traditional operating system recognizes two types of active entities (capable of using
the CPU): processes and daemons. A daemon is similar to a process, but it is in the form of an
infinite loop, sieeping in this loop until it is awaken by an interrupt. Traditionally, dacmons

have been used to implement mainly system servers (such as the UNIX pagedaemon).

In traditional systems, when there is a need for several operations performed on a
resource concurrently, several processes are generated, each of them independently performing
one operation. This is often impossible to implement safely, and more contemporary systems
use the concept of a multi-thread process.

The idea is to split the concept of a process into two levels:

o a global entity, containing the whole context of the process, its code and data, etc. This
level is called heavy-weight process. |

« a number of local cntities, each of which represents one currently performed operation
on the data of the process. Such an entity is called a light-weight proces.s. or, in a

slightly different jargon, a thread. A thread represents a small part of the context of the

process: location counter, stack pointer and other registers, and maybe a few other items.

Several threads may concurrently share onc heavy-weight process: they represent the

concurrent execution of several pieces of code which share the same global data area, but are

89

independent of cach other.
In this approach, every heavy-weight process behaves in just the same way as a (reen-
trant) daemon. It sleeps until an operation is to be performed on its data; then it wakes up,

launches a thread to perform the operation, and goes back to sleep.

The concept of threads is of great value in 2 system that supports object-oriented pro-
gramming. The most obvious interpretation is to implement a class or an object as a daemon
(heavy-weight process) and to implement an operation on an object as a thread through this

heavy-weight process.
6.2.2. Classes and Objects

6.2.2.1. Classes

An object class is an abstract data type represented as a triple:
(initialization code , data type template , set of operations).

In the subsequent discussion classes arc denoted by Greek letters, €.8., O B.

A class is defined either by the kemel at start-up time, or from within user programs. The
definition is in the form of a number of 1ables, similar to load tables used in traditional operat-
ing systems. Once a class definition is submitted to the Object Manager of the system, a
heavy-weight process is created; this process represents the class (it is called the Ob:iect Coor-
dinator of the class). Then, one thread through the process is started: the initialization codc of
the class. Note that there is no restriction on the contents of the initialization code. It may
contain the entire program, which will be the case if the program is a sclf-contained computa-
tion which does not cooperate with (he outside world; it may also be cmpty, if the class is

defined solely for the purpose of creating objects.

90

6.2.2.2. Objects
An instance of a class will be called object for short and will be denoted by a capital

Roman letter in italics. Thus, P e o means that P is an instance of the object class .

An object is a data structure eenerated from the data type template defined as part of the
definition of the class. As the declaration of an object may have run-time parameters, different

objects of the same class are not necessarily identical; but they always have identical proper-

ties from the point of view of the outside world.

The definition of a class contains a set of operations that may be appli=d to objects of the
ciass. These operations may be quite simple, or they may be arbitrarily complex, e.g., whole
programs. For completeness, this set of operations is artificially augmented by all the opera-

tions that are performed on the class itself, such as create subclass or terminate.

An operation on an object of a class (or on the class itself) is performed by a thread.
From now on, the term thread will be used to denote operations on objectz or the class itself.

t(A) stands for an operation represenied by thread ¢ performing on entity (object) A.

6.2.2.3. Requests

In an object-oriented environment, performing a computation amounis (o executing a
sequence of operations on classes and objects of classes. Some systems view an operation as
an atomic step, but such an approach would not be appropriate in FLEX, which is a'system for
distributed applicaiions. In FLEX, scveral operations on objects may be in progress con-
currently (or even simuitaneously, if many processors are used). Moreover, one object may be

the target of several concurrent operations. AS mentioned above, these operations are imple-

mentced as light-weight threads.

91

An operation is performed on demand, i.e., there must be an entity (2 thread) that wants
this operation to be performed. In order to achieve this, the thread must be able to communi-
cate this need to the daemon which executes the desircd operation. It docs this by sending a
message, which contains the description of the requested operation. In FLEX, all the mes-
sages are in the form of operation requests. In order to avoid any misinterpretation, the term

message will not be used; instead, the term request will be used.
When created by a thread, a request is a block of memory containing the following
fields:
» acapability, which describes the operation and the target object (in encrypted form),
o optional arguments relevant 10 the opcration.

After a request is created, it is submitted for delivery (i.e., it is sent). When it passes
through the Communication Manager, the capability is decoded to determine the receiver
(the daemon of the target object), the target object, and the name of the operation to be per-
formed. The Communication Manager replaces the capability with a plain name of the

operation. Then, it iaterrupts the target daemon, forcing it to accept the request.

6.2.2.4. Additional Considerations

Some applications require that blocks of data be passcd from object to object. An exam-

ple would be a matrix-manipulation package in which an objcct (a matrix) is assigned a new

value. In FLEX, such an operation is considered to be a request? 1o the class dacmon: a thread

will be started, and it will accept the block of data and store it in the matrix. Thus, an object is

“In the sequel, the term request will have two somewhat different meanings: an operation invocatien ad-
dressed to an object coordinator, or a block of data addressed to an object.

92

a totally passive data structure; all the processing abilitics are part of the daemon, in the form

of operations.

As a corollary to the above, it i$ not possible to send old-fashioned text messages to

objects directly: instead, they must be ser.t to their dacmons in the form of requests, as in:
(encrypted(d, O, read), text of message)
where O and 8 denote the target object and its class daemon, respectively.

The dacmon accepts this request and creates a thread, which processes the text message.
This scheme allows the use of any scheme of message passing in user applications.

In some special situations, a thread may send a request to establish a direct communica-
tion line® with an object. Such a request is needed only if the thread does not have the capabil-
ity to perform operations on the object directly and can only identify the target object by a
name in plain text (as opposed 1o an encrypted capability).

In such a situation, it may happen that there is no object bearing the specified plaintext
name. This may be due to scheduling decisions or timing. If a daemon receives a request
involving an object that has not yet been created (as opposed to an object that was deleted), it
does not reject such a request, but stores it, expecting that the object will be-created at a later

date. Garbage collection will discard such requests periodically.

6.2.3. Special Classes

As FLEX is an operating system to support object-oriented applications, it should treat

all the entitics that form it as classes and objects. There are threc major parts of the system

SE.g., to set up a virtual circuit or some other form of handshaking.

93

that do not fit into the class/object concept niccly: the kemel itsclf, the loader (exec in UNIX)
and network communication.

It is natural to try to masquerade these three entitics as classes (and objects), cven though
they do not fit the appropriate definitions too well, as their purpose is not (o serve as a vehicle

for creating objects.

6.2.3.1. Classx

The kernel is made of a number of independent modules and interrupt handlers. Inter-
nally, these modules communicate in a variety of ways, but mainly by issuing system calls
(svcs). This method of communication is not available to user programs, as the recipient of a

system call must be part of the kemel.

In order to make interprocess communication uniform in appearance, the kemcl of
FLEX is treated as a very special class K. This class, like all the other classes, is a triple:
{ initialization code , data type template , set of operations)
with the initialization code representing the bootstrap code, the data type template describing
the hardware configuration of the system, and the sct of operations representing the set of sys-

tem services offered by the kernel.

Interrupts result in the creation of new threads in the kemel; this fits the conventional
approach of the kernel being reentrant. There is no need to worry about the fact that'the kernel
is actually made of a number of independent dacmons, and not of just one heavy-weight pro-
cess. From any point of view, it amounts to the same, as all of them have the ability to cxe-
cute in kernel mode, i.e., access the data of all the other dacmons; thus, they share the same

context, like threads in a heavy-weight process.

94

6.2.3.2. ClassTl

Initially, two predefined classes exist — these classes are defined by the kemnel at system
initialization time. One of them is x, the kemel itself; the other is the very important root
class of the user class hiefarchy. It will be denoted by IT and contains the declaration of a
number of operations, such as load an execatable file and a large variety of object-
management and communication-control operations. It should be noted that IT is not a class
containing privileged code; however, the execution of an operation in IT may result in kernel
calls.

Class IT is an umbrella class that enables users to declare their application software. As
a result of executing the load operation, a new object of class I1 is created. It corresponds to
the traditional notion of executing a user program. This new object most likely contains a
numkber of object class definitions. Unlike other object classes, IT is not a template for identi-

cal objects; every object of class IT represents an independent user program6.

The set of all object classes currently in existence (excluding) forms a tree rooted at I1.
We call it class-tree.

When the kemnel creates I, the initialization code of IT is executed. This code contains
the declaration of a number of object classes, such as a stub class, a file class, and a number of
application classes. .

One of the primary responsibilities of IT is to enable threads to communicate with each

other, locally or remotely. Thus, IT contains a number of communication operations. These

0One could also claim that an object of I is a control block similar to the PCB (Process Control Block) used
in traditional systems.

95

operations provide access points to the Communication Manager.
As II contains a library of communication operations, threads exccuting on objects of
class IT and its sub-classes may have the right (o perform these operations. This right may be

inherited by their descendants.”

The library support can be divided into two categorics:

(1) local nequest8 passing, which is accomplished via manipulation of page tablc cntries
representing pages in local memory,

(2) remote request passing, which results in RPCs on objects residing on differcnt machincs

via the underlying network software (IEEE 802 standards) and hardwarc (Ethernet).

6.2.3.3. Stub Class

Communication between two different machines (via a network), I, and I1,, uscs a vir-
tual edge connecting tile two objects of their stub classes. For IT; and [1,, the other tree is a
single node represented by one object of its stub class. Figure 6.2 illustrates the FLEX sys-
tem architecture.

The stub class is created during the initialization of class I1. Its responsibility is to pro-
vide transparency for network communication. The initialization code of the stub class creates
a number of stub objects. Each stub object represents one network port. For different network

connections, the objects may be differcnt.

"The operations inherited may be reduced to a subsct of the library.

SFLEX supports only one form of communication: passing requests Lo exccute an opcration on an object.

96

Figure 6.2: FLEX System Architecture

Whenever a connection between the machine and a remote site is necessary, a thread
through the stub daemon is started; it operates on the corresponding stub object. The stub dae-
mon manages the connecticn between the machine that it resides on and the network that the
machine is connected to. The job of the stub class’ is to transform a local request to one or
more network packets and send the packets to the network. It also accepts data from the net-

work and translates them into local requests.

%0r, more accurately, the job of a thread through the stub dacmon.

97

All remote requests must go through a stub thread. Broadcast modc is uscd in transmit-
ting requests to the network. When the stub daemon receives a network request, it determines
whether the request is relevant to the site, or should be ignored. This may involve accessing

kemel data.

The necessity to broadcast is due to the design of FLEX. If thread ¢(A) sends a request
to B, then P is searched for locally first. If the search fails, that means P resides on a different
machine, then the request is sent through the network. Since the cxact location of is unk-
nown, the request must be broadcast to all the machines on the system. B is then looked for in

each machine. The communication between ¢(4) and B is established after B is located.

6.2.4. Life Cycle of Classes and Objects

A class starts its existence when it is defined by some entity in the system. It is
represented by a daemon (OC) which exists through the lifc duration of the class. Once a class
is in existence, objects of this class may be created. Then, operations may be performed on
these objects, as well as on the class as a whole. Eventually, objects of a class will be dcleted,
either one at a time or all at once. It is also possible to deletc the class as a whole, which also

deletes all its objects.

While a class and its objects live, opcrations may be exccuted on them. A thread that
wants to execute such an operation must possess the right to do so; this right is in the form of
a capability. Besides all the features related to object protection cic., capabilitics have onc
other very useful property: they can be used for garbage collection: if an object is not "pointed

to" by any capability, it can be deleted, as it cannot be rcached any more, and is uscless.

98

The information nceded to perform garbage collection is not casily available. The Com-
munication Manager is responsible for it, but it has to rely on the support of Object Coordi-
nators of all the classes. As the code of the Object Coordinators is supplied by application
programmers, it may be incorrect; thus, garbage collection will either be imperfect, or will
require an additional restriction: capabilities passed at run-time are revoked automatically
when their original owner terminates.

Note that the design of FLEX provides a very sophisticated hierarchy for object manipu-
lation. User-level applications may choose to take advantage of these functions, or ignore
them. For example, a simplistic program may be implemented as the initialization code of a

class with an empty set of object operations and, obviously, no objects whatsoever.

6.2.4.1. The Object Manager
The kemel module Object Manager is responsible for creating and deleting objects.

e The Object Manager creates a new object by allocating the appropriate resources to the
requesting object coordinator. Note that object creation is triggered by a request issued
by the object coordinator of the object to be created. This request is, in turn, triggered by

a request to create the object sent to the coordinator by another entity.

e The Object Manager is also responsible for global clean-up after an object is deleted,

while the appropriate OC is responsible for the local clean-up.

Note that in the future, the Object Manager will have to be augmented, so that it can

perform more complex operations than those discusscd.

99

6.2.4.2. Class Creation

When a thread executes, it may nced to define a new class. The operation of defining a
new class is performed in a number of steps, as shown in the following cxample, which
assumes that thread ¢, executing an operation on an object of class o, wants to define a sub-
class.

e ¢ assembles together the tables containing the definition of a new class.

« t sends to o a request to perform the operation create subclass with these tables as argu-
ment.

o a processes the tables and sends a request to the Object Manager to define the new
class.

e the Object Manager creatcs the new class — let it be called B. It then requesls the
Communication Manager to create capabilities to perform the operations stated in the

definition of .
o then, the Object Manager returns (o 0. the capabilities.
e ¢ retums the capabilities to .

Operations on the new class B and its instances can be requested by any thread that has a

copy of the capabilities created while the class was being defined.

The notation: pco means that class B is a sub-class of class @, i.c., that some object of

class o declared class B, possibly indirectly.

When a new class is defined, three new entities are created:

100

(1) Asctof load tables containing the description of the code of the opcrations that can be
performed on objects of this class, as well as on the class itself,

(2) A sct of data tables containing the description of the data type of the template for an
object,

(3) A special dacmon called the Object Coordinator of this class. The code of QCs is not
generic — a pant of it is defined by the usei as part of the application. In other words,
users can write part of their own OC code for the classes that they want 1o create.

The OC daemon represents the class and all of its objects in all interaction with the out-
side. The life of an OC lasts precisely as long as the life of the class; in other words, the class

and its OC dacmon are synonymous.

6.2.43. The Role of the Class Daemon
The role of the class daemon (OC), depends on the attitude towards the relationship

between the class as a whole and its instances. Instances of this class are called objects. But

what exactly is part of each object and what is common to the whole class? There are two very
different interpretations.

e Onec may treat an object as a passive data structure that is manipulated by the class dae-
mon. From the point of view of the kemel, there is only one process per class: the
demand-driven class daemon. Whenever there is a nced to perform an operation on an
object, the daemon is awaken — a new thread representing the operation is created. At
any given time, many concurrent threads may pass through the daemon; a thread disap-

pearing only when the operation is completed.

101

. One may also view every object as an cntity that is indcpendent from its siblings and, to
the outside world, from its class daemon. The role of the class dacmon is reduced 10 that
of bookkeeping. There are as many processes as therc are objccts. An operation on the

object is performed by the object itself. The object controls its activities by reading

operation requests (in the form of messages) and processing them.

The first interpretation is more elegant than the second and should be adopted in
FLEX™.

In the first interpretation, an operation request is passed in the form of a request (o creatc
a new thread. The request is sent 10 the OC of the object 10 which the operation is 10 be
applied. The OC is responsible for reading arriving requests and processing them in somc
order. This gives a simple global mechanism for executing several operations on the samc
object concurrently.

Note that there are other kinds of requests passcd to an 0C, c.g., a request for creating a
new object or a block of data to be sent back as a result of an operation. These requests also

result in the creation of new threads, although they do not cxecute on an existing object.

6.2.4.4. Object Creation

When a thread executes, it may need to create a new object of a class. This is donc in a
manner similar to the process of defining a class, as shown in the following example. This
example assumes that thread ¢ cxecuting an operation on an object of class o wants 10 creatc

an object of class B.

0However, as the current implementation is cmbedded in UNIX . it is very difficult to implement, as
UNIX does not know the concept of threads.

102

« ¢ builds a request frame containing the capability (identifies B and the create object
operation), the name for the new object in the argument ficld followed by, if needed,
additional arguments to the object creation operation.

e ¢ sendsto B the request to perform the create object operation.

. P processes the request frame and creates another request frame: a request to the Object
Manager to allocate the resources needed to create the data structure that forms the
object.

o the Object Manager allocates the resources needed to create the object.

« the Object Manager gives to 3 the resources.

6.2.4.5. Executing an Operation

When a thread wants to execute an operation on an object, it creates a request and passes
it to the Communication Manager, which in tum passes it to the target class dacmon by forc-
ing a software interrupt upon it. The requested operation may be trivial, when its execution
does not require any synchronization with any other thread operating concurrently (such as
returning the time-of-day), or non-trivial, if its immediate and unconditional execution may

lead to concurrency €rrors.

If the operation is trivial, the class daemon execulcs the operation immediately without
consulting the kernel. On the other hand, if the operation is non-trivial, the class daemon must
create a new flow of control (thread) that will be capable of running concurrently with other

threads operating on the same object.

103

In the case of a non-trivial operation, the class dacmon can not creaic a new thread itself,
as the existence of a thread must be known to the kemel (a thread is a unit of scheduling).
Therefore, the class dacmon asks the kemel to create the new thread. It decomposcs the opera-
tion request and converts it into another request: requesting the kernel to create the thread. A
special kernel module, the Thread Manager, creates and terminates light-weight threads.

Note that in this design, a capability represents an unconditional right to start an opera-
tion on an object (i.e., a thread). In particular, OCs do not enforce access rights, as it is a
capability based system.

When a request reaches its target class dacmon, its address ficld has already been
decrypted, i.e., the operation and the target object are in plaintext. The class dacmon inspects
this request and determines which operation is to be performed and which object (if any) is its
target. If the operation is trivial, the daecmon execules it immediately and goes back 0 sleep.

If it is non-trivial, the daemon builds a new request frame containing the partial context of the

thread to be created:

e aprogram counter pointing to the beginning of the code of the operation,

d a stack counter pointing to the top of the stack to be used by the new thread,
. an appropriate content for the remaining CPU registers, including the PSW.

When the new frame is ready, the dacmon passes it dircctly to the Thread Manager by
issuing an svc. No capability or other protection mechanism is nceded here, as the dacmon has
an unrestricted right to creatc a thread through itself'!. The Thread Manager creaics the

thread by building the new partial context. Then, it inserts the thread into the queue of thrcads

gybject o general limitations, such as a system-wide limit on the total number of threads.

104

ready for execution.

6.2.4.6. The Dispatcher

Threads are the basic units of scheduling. All the threads that are ready to execute (i.c.,
are not waiting for an event) arc grouped in a ready queue. This queue is accessed by the
Scheduler which is a module residing outside of the kerncl.

The decisions of the Scheduler are communicated to a kernel module called the
Dispatcher. Based on the decisions made by the scheduler, the Dispatcher assigns the CPU

to an appropriate thread. This is done by forcing a conlext switch.

6.2.5. Example

Many programs require multi-dimension arrays during their execution. Commonly, the

sizes of these arrays are not known at compilation time; they are derived at execution time
instead.

To create an nxn malrix, an operation 1(0) will start the following sequence of events:

e t(0) sends a request to the OC of class o, the class defining multi-dimensional arrays.

This request asks for the creation of a class, say 0a(n,n) of nXn arrays.
« o.creates a thread that will be responsible for the creation of the requested sub-class.

« The new thread of o checks whether such a class has already been created. If not, the
thread of o creates sub-class 0,(n,n) and its object coordinator. It also sends back to

£(0) the capabilities needed to manipulate this sub-class. Then, the thread terminates.

e t(0)sends arequest 0 0Oy(n .n), asking for the creation of an instance of this class.

105

o 0,(n ,n) creates an instance of its class. Let this object be callecd A.

. Now, if £{0) wants to perform the assignment: Ali,j1=1, it sends to 0,(n,n) the
request: {encrypted(0, , A, assign), i, j,)

. When op(n ,n) receives this message, it creates a new thread; this thread will perform the

assign operation.

6.3. Overview of the Communication Design

The basic communication scenario is very close to what has been described in Chapter 3.
A request must be sent to an OC, whether it is asking the OC to create a new thread or it is
actually a block of data sent back as a reply to a thread (operating on an object of the class that
the OC stands for) in progress. In the sense, operations in the previous design are like threads
in this proposed version of FLEX. Note that the communication primitives remain the samc,

and Supermaifboxes still exist in 0OCs.

6.3.1. Message Objects

The previous sections presented some possible changes in the existing design. Therc arc
other ideas that could be adopted in FLEX, not for the purpose of changing its behavior, but
for improving efficiency.

One such idea is to introduce the concept of message objects forming special classcs.
This does not introduce a new perspective to FLEX: it is compatible with the existing system
architecture.

A message class will be denoted as |L; it must be created before the concept of a message

becomes necessary for applications, ¢.g., at systcm initialization time. Each machinc can have

106

more than one message class. Each class may specify a message type.

1L is a very special class. There are no operations defined for this class. If £(A) wants to
send a message to ¢(B), a message object M of class | must be created. Note that no mes-
sages can be sent tc M, and M can not send any messages, either. It is best to view message
objects as a collection of memory buffers manipulated by the kemnel. Their existence is a result

of taking advasage of virtual memory management.

M consists of one or more pages. The number of pages allocated for M depends on the
size of the message to be sent. After it is created, M is passed from the sender to the receiver,
in a number of steps. This is done by changing page table entries. First, the sender acquires a
block of memory for M. It writes in it the desired message. Then the sender releases M to the
system. M disappears from the address space of the sender (it is in transit). At some later
time, the kernel puts the page table entries for M into the supermailbox of the receiver oC.
Because of the concept of heavy-weight process. the threads within one heavy-weight process
share the same address space; thus, shared memory may be used for getting a message 10 &
thread once the message has arrived at the supermailbox of the corresponding class daemon.
As a result, no movement of data really occurs for a local message transfer. This is significant
in achieving high performance.

If a message has to be sent across the network, the actual data must be.transferred
through the network. Memory references used in a local environment do not work for remotc
message passing. The messages needed 1o be sent to the network stay first in the supermailbox

of the stub class. From there, they are passed to remote sites.

)

@

107

There are two altcmatives in managing M :

M is created to allow both read and write. The sender produces in it a message (possi-
bly editing it in situ); then it releases M 1o the system. The message is then passed to
the receiver, which can read and modify this message at will. When the receiver docs

not need the message space any more, it returns it to the system.

When M is first created for the sender, write only is allowed. Then, when it is relcased
from the sender, it becomes read only. The operating system is responsible for protect-

ing the memory access to 8 message object.

Simplicity of an operating system is desirable. Therefore, option (1) is chosen for

FLEX. With this option, a more efficicnt message passing mechanism is also fcasible, that is

to use the same piece of memory for both request and reply. If t(A) sends M to t(B), t(B)

can write its reply over M and then send it back to ¢(A). With option (2), M must be allocated

each time a new message is created.

CHAPTER 7

Conclusions

The FLEX project is an attempt to investigate the architectural as well as algorithmic
problems associated with integrating distributed operating systems and distributed database
management systems. This thesis presents one of the components of FLEX: its focus is on
computer communication in an object-oriented system. Originally, the scope of the work was
restricted to implementing a communication facility for FLEX. While the work progressed, it
became apparent that some of the decisions made initially could not be retained for reasons
that became visible only at later stages of the project. Therefore, the thesis refers to two
designs of FLEX: the original design with which the work started, and a modified design,

which emerged as the implementation details were (slowly) being worked out.

The thesis starts by presenting some background material on network communication
and distributed operating system design. Then, it presents the initial design of FLEX, fol-
lowed by the detailed design and implementation of one of the major components of the
FLEX kemel, the communication module.

Finally, chapter 5 contains a list of proposed improvements 10 the original design. These

modifications are based on the experience gained during the course of the work.

7.1. Notes on the Prototype Implementation

An operating system has to run on a barc machinc (or a virtual machine). At present,

FLEX is implecmented as a prototype sysicm running as a collection of user processes under

108

109

the control of a time-sharing operating systcm (UNIX). Uscr processes can not cxccule
privileged instructions nor can they interface with the hardware directly. Becausc of this ina-
bility to reach the hardware and of the lack of privilege instruction support, the efficiency of
the system is difficult to measure. The usefulness of the system can not be proven at this
point.

The design of an operating system is affected by the underlying machine architecture,
particularly in the areas of:

. multiprogramming (if more than one CPU is uscd),

e virtual memory management,

e remote communication,

e logical organization of permancnt storage (commonly referred 10 as file system).

At this point it is not clear which machines FLEX will be running on, therefore the
design and implementation adopted eventually may change drastically from what has bcen
presented in the thesis.

For instance, if the system werc 10 be implemented on a machine that supports efficient
paged segmentation, many of its aspects should probably be replaced by the use of segments,

as in Multics ((Organ-72)).

7.2. Experience Gained from the Research

This research had as its goal the implementation of a prototypc object-oricnted operating
system. This system was expecied 10 provide adcquate support for distributcd DBMS applica-

tions. A research project of this magnitude can not be donc by one person working alone.

110

Thus, it was divided into smaller sub-projects, cach of them dealing with one aspect of the
whole system.

When several people work on the same project, invariably there are different ideas and
points of view. Before the work on my part of the project started in eamest, a common system
design was mutually agreed upon. The validity of this design was proven by the work of
Christina Lau ({Lau-88]) on object management and scheduling. However, as subsequent work
on communication showed, this design was not perfectly suited for communication purposes.
Therefore, this thesis contains a chapter proposing modifications and enhancements of the ori-
ginal design.

While it is clear that the performance of communication affects directly the performance
of the entire operating system, it is only one of its many components. Therefore, it is necessary
to balznce communication performance with the performance of other components. Moreover,
the very objective of creating a high-performance system should not outweigh other desired
properties, in particular simplicity, usability, and extensibility.

Work on the project exposed another important dichotomy in operating system design.
There is no doubt that a reliable communication facility is a highly desired. feature. It makes
application programming easier since there is no need to be concerned with missing messages,
ctc. However, a system like FLEX requires another important feature: message broadcasting.
As it turned out, it was not possible to implement broadcasting efficiently using reliable mes-

sage passing. A less reliable, but more efficicnt scheme was used instead.

On a personal note, work on the FLEX project exposed me to many ideas in operating

systems. I acquired a much stronger understanding of such concepts as: capabilities, tasks and

111

threads, plus a number of issucs in message-based computer communication. It also gave me

a better understanding of the basic concepts of object-oricnted methodology.

7.3. Recommendations for Future Work on the Project

It seems that the design of FLEX reached a stage where the next logical step is to imple-

ment it as a stand-alone operating system, either on a bare machine or on a virtual machinc.

The above is not meant to imply that the prototype is complete. But it became difficult to
do further work on a prototype that runs under the control of another operating system, as
many useful ideas can not be implemented. For cxample, it is not possible to work on memory
management, network interface, file system, ctc. (they are monopolized by UNIX). Further
design work is needed in these arcas, and also on objcct manipulation.

The existing system can be expanded by incorporating several useful features. A list of
such features could include the following:

(1) Load balancing, which is a desired feature of any distributed system. Although in the
current design of FLEX object migration is not supported, it should cventually be feasi-
ble. Note that some design features of FLEX arc derived with it in mind, for example,
the naming scheme.

(2) The support of high level languages (such as Edcen), in which objects and classes can
easily be expressed, should be provided to make the system practical.

Begides all of the above, there is @ need for an object-oricnted distributed DBMS imple-

mented on top of FLEX. This would make a validation and a performance study possible.

Bibliography

{AIBLN-85]
Almes, Guy T., Andrew P. Black, Edward D. Lazowska, and Jerre D. Noe, "The Eden

System: A Technical Review", IEEE Trans. Software Eng., SE-11, 1 (Jan. 1985), 43-58.

{Bach-86]
Bach, Maurice J., The Design of the Unix Operating System, Prentice-Hall, Inc., 1986.

[BBBCGRTY-87]
Baron, R. V., D. Black, W. Bolosky, J. Chew, D. B. Golub, R. F. Rashid, A. Tevanian,

Jr., and M. W. Young, MACH Kernel Interface Manual, Department of Computer Sci-
ence, Camegie-Mellon University, 1987.

(Black-85]
Black, Andrew P., "Supporting Distributed Applications: Experience with Eden”, ACM

SIGOPS Proceedings of the 10th Symposium on Operating Systems Principles, 19,5
(Dec. 1985), 181-193.

[BIMaM-87]
Blair, Gordon S., Jon R. Malone, and John A. Mariani, "A Critique of UNIX", Softw.

Pract. Exper., 15,12 (Dec. 1987), 1125-1139.

(BrMaR-85]
Brownbridge, D. R., L. F. Marshall, and B. Randell, "The Newcastle Connection or

UNIXes of the World Unite!", Softw. Pract. Exper., 12,12 (Dec. 1982), 1147-1162.

[Cheri-84_1)
Cheriton, David R., "The V Kemel: A Software Base for Distributed Systems", /[EEE

Software, 1,2 (April 1984), 19-42.

[Cheri-84_2]
Cheriton, David R., "An Experiment Using Registers for Fast Message-Based Interpro-
cess Communication”, ACM SIGOPS Operating Systems Review, 18,4 (Oct. 1984), 12-

20.

112

113

[CheZw-83]
Cheriton, David R. and Willy Zwaenepoel, "The Distributed V Kemel and Its Perfor-
mance for Diskless Workstations", ACM SIGOPS Proceedings of the 9th Symposium on

Operating Systems Principles, 17, 5 (Oct. 1983), 129-140.

[CooDr-88]
Cooper, Eric C. and Richard P. Draves, "C Threads", Technical Report, CMU-CS-88-

154, Department of Computer Science, Camegie Mellon University, 1988.

[FitRa-86]
Fitzgerald, Robert and Richard F. Rashid, "The Integration of Virtual Memory Manage-
ment and Interprocess Communication in Accent", ACM Trans. Comput. Syst., 4.2 (May
1986), 147-177.

[Goldb-83]
Goldberg, Adele, Smalltalk-80: the Language and its Implementation, Addison-Weslcy

Publishing Company, Inc., 1983.

[Gray-78]
Gray, J. N., “Notes on Data Basc Operating System", Operating Systems: An Advanced
Course Ed. Bayer, R. et al., Lecture Notes in Computer Scicnce 60, Springer-Verlag,

1978.

[IEEE-84]
The Institute of Electrical and Electronics Enginecrs, Inc, An American National Stan-
dard, IEEE Standard for Local Area Networks: Logical Link Control, IEEE, 1984.

[Jones-78]
Jones, Anita K., "The Object Model: A Conceptual Tool for Structuring Software",
Operating Systems: An Advanced Course, Ed. Bayer, R. et al., Lecture Notcs in Com-
puter Science 60, Springer-Verlag, 1978.

[Jones-88]
Jones, Vincent C., MAPITOP Networking, McGraw-Hill, Inc., 1988.

[JonRa-86]
Jones, Michael B. and Richard F. Rashid, “Mach and Matchmaker: Kemel and Language
Support for Object-Oriented Distributed Systems", OOPSLA 1986 Conference Proceed-

ings, Sep. 1986, 67-77.

[Lau-88]
Lau, Christina, Object Management, Protection and Scheduling in FLEX, M.SC. thesis,

University of Alberta, 1988.

114

[LCCPW-75]
Levin, R., E. Cohen, W. Corwin, F. Pollack, and W. Waulf, "Policy/Mechanism Separa-

tion in Hydra", ACM SIGOPS Proceedings of the S5th Symposium on Operating Systems
Principles, 9,5 (Nov. 1975), 132-140.

[LI.AFFV-81]
Lazowska, E. D., H. M. Levy, G. T. Almes, M. J. Fischer, R. J. Fowler, and S. C. Vestal,
“The Architecture of the Eden Systems”, ACM SIGOPS Proceedings of the 8th Sympo-

sium on Operating Systems Principles, 15,5 (Dec. 1981), 148-159.

[Marti-59]
Martin, James, Local Area Networks, Prentice-Hall, Inc., 1989.

[MetBo-76]
Metcalfe, Robert M. and David R. Boggs, "Ethemet: Distributed Packet Switching for

Local Computer Networks", Comm. ACM, 19,7 (July 1976), 395-404.

[Mcyer-87]
Meyer, Bertrand, "Reusability: The Case for Object-Oriented Design”, IEEE Software,

4,2 (March 1987), 50-64.

[MulTa-84]
Mullender, Sape J. and Andrew S. Tanenbaum, "Protection and Resource Control in Dis-

tributed Operating System", Computer Networks, 8,5/6 (Nov. 1984), 421-432.

[MulTa-85]
Mullender, S. J. and A. S. Tanenbaum, "The Design of a Capability-based Distributed

Operating System", ACM SIGOPS Proceedings of the 10th Symposium on Operating
Systems Principles, 19,5 (Dec. 1985), 51-62.

[Nelso-81]
Nelson, Bruce Jay, "Remote Procedure Calls", Technical Report, CMU-CS-81-119,

Department of Computer Science, Camegie Mellon University, 1981.

[NiBIW-87]
Nicol, John R., Gordon S. Blair, and Jonathan Walpole, "Operating System Design:
Towards a Holistic Approach?", ACM SIGOPS Operating Systems Review 21,1 (Jan.

1987), 11-19.

[Organ-72]
Organick, E., The MULTICS System, MIT Press, 1972.

115

[OzLLT-88]
Ozsu, M. Tamer, Christina Lau, Yan Li, and Meei-Fen Teo, "The Architecture of FLEX:
A Distributed Database Operating System Testbed", Technical Report TR88-4, Depart-
ment of Computing Science, University of Alberta, Edmonton, Alberta, Canada, April
1988.

[Ozsu-88]
Ozsu, M. Tamer, "Distributed Database Operating Systems", Technical Report TR88-2,
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada,

Feb. 1988.

[Pasht-82]
Pashtan, Ariel, "Object Oriented Operating Systems: An Emerging Design Methodol-
ogy", Proceedings of the ACM’ 82 Conference (Oct. 25-21, 1982), 126-131.

[PopWa-85]
Popek, Gerald J. and Bruce J. Walker, The LOCUS Distributed System Architecture,
MIT Press, 1985.

[Rashi-86]
Rashid, R. F., "Threads of a New System", Unix Review, 4,8(Aug.1986),37-49.

[RasRo-81]
Rashid, Richard F. and Geroge G. Robertson, "Accent: A Communication Oriented Net-
work Operating System Kernel", ACM SIGOPS Proceedings of the 8th Symposium on
Operating Systems Principles, 15,5 (Dec. 1981), 64-75.

[Sanso-88]
Sansom, Robert Daniell, "Building a Secure Distributed Computer System”, Technical
Report, CMU-CS-88-141, Department of Computer Science, Camegie Mellon Univer-

sity, 1988.

[SilPe-88]
Silberschatz, A., and J. Peterson, Operating System Concepts, Addison-Weslcy Publish-
ing Company, Inc., 1988.

[Stall-87]
Stallings, William, Local Nemworks, Macmillan Publishing Company, 1987.

[Tanen-81]
Tanenbaum, Andrew S., Computer Networks, Prentice-Hall, Inc., 1981.

116

[TanvR-85]
Tanenbaum, Andrew S., and Robert van Renesse, "Distributed Operating Systems",

ACM Computing Surveys, 17,4 (Dcc. 1985), 419-470.

[TanMu-81]
Tanenbaum, Andrew S. and Sape J. Mullender, "An Overview of the Amoeba Distri-

buted Operating System", ACM SIGOPS Operating Systems Review 15,3 (July 1981),
51-64.

[WCCILPP-74]
Wulf, W., E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack,

"HYDRA: The Kermel of a Multiprocessor Operating System”, CACM, 17,6 (June
1974), 337-345.

[WPEKT-83]
Walker, B., G. Popek, R. English, C. Kline, and G. Thiel, “The LOCUS Distributed

Operating System", ACM SIGOPS Proceedings of the 9th Symposium on Operating Sys-
tems Principles, 17,5 (Oct. 1983), 49-70.

[WuLeH-81]
Wulf, W. A., R. Levin, and S. Harbison, Hydra/C.mmp: An Experimental Computer Sys-

tem, McGraw-Hill, 1981.

Material used, but not referenced

[ArChF-87)
Artsy, Yeshayahu, Hung-Yang Chang, and Raphael Finkel, "Interprocess Communica-
tion in Charlotte”, IEEE Sofiware, 4, 1 (Jan. 1987), 43-28.

[BarLi-85]
Barak, Amnon and Ami Litman, "MOS: A Multicomputer Distributed Operating Sys-

tem", Softw. Pract. Exper., 15,8 (Aug. 1985), 725-737.

[BirNe-84]
Birrell, A. D. and B. J. Nelson, "Implementing Remote Procedurc Calls", ACM Trans.

Comput. Syst., 2,1 (Feb. 1984), 36-59.

[BroWu-86]
Brown, Geoffrey and Chuan-lin Wu, "Operating System Kemel for a Reconfigurable
Multiprocessor System”, /EEE Proc. 1986 International Conference on Parallel Pro-

cessing, 234-241.

117

[ColLe-82]
Collins, John P. and Miles M. Lewit, "Object Oriented Operating Systcm for Micro-
computers”, Computer Design, 12,6 (Junc 1982), 165-172.

[Kaare-83]
Christian, Kaare, The UNIX Operating System, John Wiley & Sons, Inc., 1983.

[LeGeC-84]
LeBanc, Thomas J., Robert H. Gerber and Robert P. Cook, »StarMod Distributed Pro-
gramming Kemel", Softw. Pract. Exper., 14,12 (Dec. 1984), 1123-1139.

[Lisko-82]
Liskov, B., "On Linguistic Support for Distributed Programs”, /EEE Trans. Software
Eng., SE-8 (May 1982), 203-210.

[Marin-86]
Marinescu, Dan C., "Inter-process Communication in MVS/XA and Applications for
Scientific and Engineering Information Processing”, Softw. Pract. Exper., 16,5 (May
1986), 1123-1139.

[QuSiP-85]
Quarterman, John S, Abraham Silberschatz, and James L. Peterson, "4.2BSD and
4.3BSD as Examples of the UNIX System", ACM Computing Surveys, 174 (Dec. 1985),
379-418.

[Rashi-80]
Rashid, Richard F., "An Inter-Process Communication Facility for Unix", Technical
Report, CMU-CS-80-124, Department of Computer Science, Camegie Mellon Univer-
sity, 1980.

[Spect-82]
Spector, A. Z., "Performing Remote Opeiations Efficiently on a Local Computer Net-
work", CACM, 25,4 (April 1982), 246-260.

[Strou-88]
Stroustrup, Bjame, "What is Object-oricnted Programming?", /EEE Software, 5,3 (May

1988), 10-20.

[Tanen-87]
Tanenbaum, Andrew S., Operating Systems: Design and Implementation, Prentice-Hall,

Inc., 1987.

