l*l National Library Biblioth
of Canada

Acquisitions and

ue nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

335 Wellington Street
Qttawa, Ontario
K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

el

ada

395, rue Wellington
Ottawa (Ontario)
K1A ON4

Your lila Volie réldrence

Out tife Notre 1éldronce

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

$'il manque des pages, veuillez
communiquer avec luniversité
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a l'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

University of Alberta

Variable-Resolution Techniques for Boundary Detection and
Character Thinning

by

Manoj Kumar Jain

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree
of Master of Science

Department of Computing Science

Edmonton, Alberta
Fail 1992

A+H

National Library ibliothéque nationale
of Canada du Canada

Canadian Theses Service Service des théses canadiennes

Ottawa,
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
ofCanadatoreproduce.loatn.distributeorsen
copies of hisfher thesis by any means and in

any form or format, making this thesis avallable
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission, -

L'auteur a accordé une licence irévocable et
non exclusive permettant & ta Bibliethéque
nationale dis Canada de reproduire, préter,
distribuer ou vendre des coples de sa thése
de quelque manidre et sous quelque forme
que ce soit pour metire des exemplaires de
cette thése 4 la disposition des personnes
intéressées.

Lauteur conserve fa propriété du droit d'auteur
qui protége sa thése. Nila thase ni des extraits
Substantiels de celle-ci ne doivent &tre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-77095-3

Canady

UNIVERSITY OF ALBERTA

RELFEASE FORM

NAME OF AUTHOR: Manoj Kumar Jain
TITLE OF THESIS: Variable-Resolution Techniques for Boundary Detection
and Character Thinning

DEGREE: Master of Science
YEAR THIS DEGREE GRANTED: 1992

Permission is hereby granted to UNIVERSITY OF ALBERTA LIBRARY
to reproduce single copies of this thesis and to lend or sell such copies for
private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis not
extensive extracts from it may be printed or otherwise reproduced without

the author’s written permission.
(Signed) . . H}"z/ C.
Permanent Address:

39 Parasnath St.,
Muzaffarnagar City
India 251 002

Date: 28 Aﬁ 1992

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty
of Graduate Studies and Research, for acceptance, a thesis entitled Variable-
Resolution Techniques for Boundary Detection and Character Thinning
submitted by Manoj Kumar Jain in partial fulfillment of the requirements for
the degree of Master of Science.

A. BaSu (Co-Supervisor)

Z. Kole%A

P} Gburzynski

ed Sciences in Medicine)

Abstract

Boundary detection and Character thinning are the two most important op-
erations in the field of Computer Vision. The purpose of boundary detection
algorithms is to give meaningful shapes to the relatively featureless edge im-
age generated as a result of applying some standard edge detection technique.
Similarly, the objective of the thinning algorithms is to generate the skeleton
of a character one stroke thick which can be later used for the purpose of
recognition. Most Computer Vision algorithms in the literature have relied
on using either uniform resolution or multi-resolution techniques to extract
information out of a picture. The question answered in this thesis is: how
can varying resolution spatially within an image help in character thinning
and boundary detection? For these problems variable resolution (VR) masks
are designed, whose centers are windows in normal resolution, with each of
the peripheral cells used to keep some information at a reduced resolution.
Thus VR approaches effectively look at a large region of the original image,
at a cost only slightly higher than processing a small region using uniform
resolution schemes. The proposed algorithms are demonstrated to perform
better than various well-known methods. The VR procedures described here
are inherently parallel in nature. They can also be efficiently implemented
on a serial computer.

Acknowledgements

I would like to thank my supervisors, Dr. Xiaobo Li and Dr. Anup Basu,
for their valuable advice, inspiration and direction to this thesis. Thanks are
due to the thesis examining committee members, Dr. Zoley Koles, Dr. Hong
Zhang, and Dr. Pawel Gburzynski for their valuable time and suggestions.
Thamks also to Mr. Steve Sutphen, Mr. Bruce Folliot, and Ms. Carol Smith
for their help in preparing this thesis.

I wish to express my appreciation to my family for their patience, sup-
port, and encouragement. Finally, I would like to thank all my friends in the
Computing Science department for their helpful and not so helpful sugges-

tions.

Contents

1 Introduction

1.1 Motivation.

2 Previous work

2.1 Boundary Detection Algorithms
2.1.1 Dynamic Programming
2.1.2 Graph Searching Methods
213 Hough Transform
214 Contour Following

2.2 Thinning Algorithms

3 Edge Detection and Thresholding

31 Overview.

11
14
17

3.2.1 Gradient Operators 23
3.22 CompassOperators 26
3.23 Laplacian Operators and Zero Crossings 27
3.24 Marr and Hildreth Operator 28
33 Thresholding 28
Boundary detection 31
4.1 Limitations of previous approaches 3
4.2 Variable-resolutionmasks 32
4.2.1 VR Masks for Boundary Detection 34
4.3 A VR approach to boundary following 36
4.3.1 Complexity of the Algorithm. 42
44 Experimentalresults 44
Character thinning 59
5.1 Limitations of small templates 59
5.2 Shape preservation using VR scheme 63
5.3 Complczity analysis of sequential method. 69
54 Experimentalresults 71
Conclusion 84
6.1 Contribution. 84

7 Bibliography
A Masks and Rule Windows for Boundary Detection

B Some more results on Character Thinning

87

92

96

List of Figures

>

© 0 g O o»

11

Linkage Rule in Graph Search Technique e 10
The Hough transform e e e e e e 12
Different typesof Edges 22
Common Gradient Operators 25
A variable resolution template 33
Rasterization of Straight Lines 35
Mask for 22.5° orientationline 36
(2) a 3 x 3 template (b) a9 x 9 template 40
Example Templates for detecting a verticaledge 41

From the top left corner in clockwise direction: Original Image
of a cup, Edge Image, Image after Thresholding, Result of VR
algorithm 45
Results of Williams’ method (left side) and Lacroix’s method

(rightside). 46

12

i3

14

15

16

17

18

19

Test Image with no noise. From the top left corner in clock-
wise direction: Original image, Williams’ method, Lacroix’s
method, VRmethod.
Test Image with Gaussian Noiseof ¢ = 0, 5 = 8. From
the top left corner in clockwise direction: Original image,
Williams’ method, Lacroix’s methed, VR methed.
Test Image with Gaussian Noise of 4 = 0, n = 32. From
the top left corn.r in clockwise direction: Original image,
Williams’ method, Lacroix’s method, VR method.
Test Image with Gaussian Noise of ¢ = 0, 5 = 4. From
the top left corner in clockwise direction: Original image,
Williams’ method, Lacroix’s method, VR method.
Test Image with Gaussian Noise of g = 0, n = 32. From
the top left corner in clockwise direction: Original image,
Williams’ method, Lacroix’s method, VR method.
From the top left corner in clockwise direction: Original Image
of the cup , Williams’ method, Lacroix’s method, VR method
From the top left corner in clockwise direction: Original Image
of the book, Williams’ method, Lacroix’s method, VR method
From the top left corner in clockwise direction: Original Image

of a block, Williams’ method, Lacroix’s method, VR method .

54

55

56

20

21

22

23

24

25

26

27

28

From the top left corner in clockwise direction: Original Image
of a block, Williams’ method, Lacroix’s method, VR method . 57
From the top left corner in clockwise direction: Original Image

of a block, Williams’ method, Lacroix’s method, VR method . 58

Character “B” and some thinning results using Guo's algo-
rithm Al (a) input, (b) neighborhood of pixel “Z”, (c) after
iteration 5, (d) neighborhood of pixel “V", (e) the final skeleton 60
Character “B” and some thinning results using Holt's algo-
rithm (a) input, (b) neighborhood of pixel “Z”, (c) after iter-
ation 2, () neighborhood of pixel “W™, (e) the final skeleton . 61
Example templates (a) a 3 x 3 template, (b) and (c) are vari-
able resolution templates.
A variable resolution template 65
Character “B” and some thinning results using the proposed
algorithm (a) input, (b) neighborhood of pixel “Z”, (c) after
iteration 5, (d) neighborhood of pixel “T™”, (e) the final skeleton 66
Character “T” and some thinning results using the proposed
algorithm (a) input, (b) neighborhood of pixel “2”, (c) after
iteration 3, (d) neighborhood of pixel “H”, (e) the final skeleton 67

Thinning results of the proposed algorithm for lines of various

orientations

29

30

31

32

33

34

35

36

37

38

39
40

Character “D” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (¢) Guo’s method, (d) proposed method 72
Character “R” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method 73
Character “I" and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method 74
Character “I” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method 75
Character “N” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method 75
Character “2” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method 76
Character “E” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method 77
Character “H” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method 78
Character “G” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method 78
Character “Q” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method 79
Input Gray ScaleImage 80
Input Gray Scale Image After Thresholding 80

41
42
43

44

45

46

47

48

49

50

51

52

Output of Guo’s Thinning Algorithm 81
Output of Holt’s Thinning Algorithm 82

Output of proposed Thinning Algorithm 83

Character “A” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo's method, (d) proposed method 97
Character “C” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method 97
Character “F” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method 98
Character “J” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method 98
Character “L” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method 99
Character “M” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed methed 99
Character “O” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method100
Character “P” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method100
Character “S” and thinning results of three algorithms (a) in-

put, (b) Holt’s method, (c) Guo’s method, (d) proposed method101

53

54

55

56

57

Character “U” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method101
Character “V” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method102
Character “W” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method102
Character “X” and thinning results of three algorithms (a) in-
put, (b) Holt’s method, (c) Guo’s method, (d) proposed method103
Character “Y” and thinning results of three algorithms (a) in-

put, (b) Holt’s method, (c) Guo’s method, (d) proposed method103

Chapter 1

Introduction

1.1 Motivation

The detection of object contours is one of the most important operations in
the fields of Computer Vision and Pattern Recognition. A common approach,
in the field of pattern recognition, makes use of contours to characterize and
recognize objects represented in images. A contour or boundary is defined as
the set of connected pixels which gives the outline of an object in a gray scale
image. Boundary detection generally consists of two steps: (i) to detect all
the edge elements in images and (ii) to link edge elements together to form
meaningful boundary lines. The problem of detecting closed boundaries has
been extensively dealt with in the literature, reflecting the importance ai-

tached to the use of contours as image features and the difficulty of achieving

an optimal method for boundary detection. Due to the presence of noise in
the image, the task of locating a meaningful boundary becomes non-trivial.
For example, the edge elements can exist in the absence of any boundary
and may be absent at places where the boundary should be. These missing
or extra edges make the task of boundary detection still more complicated.

Character thinning or skeletonization constitutes the first step in charac-
ter recognition. When a written or printed character is digitized an image
of the character several pixels thick is generated. The objective of thinning
is to eliminate the redundant information by the successive removal of the
outer layers and generate the skeleton of the character. The result of this
process, during which connectivity should be preserved, is a skeleton of unit
width.

Existing computer vision algorithms rely on uniform resolution and multi-
resolution techniques. They use a small window (usually 3 x 3 template) dué
to the heavy computational load ‘ajttached with large templates. However,
small templates fail to provide global ‘information about the shape of the
character being thinned. This lack of information results in shape distor-
tion in a thinned character. An ideal thinning algorithm should preserve
the shape of the character so that misrecognition will not happen. A similar
problem arises in the case of boundary extraction algorithms. One important
concept has generally been overlooked: a variable resolution imaging system

such as human eye can simplify visual tasks [4]. The human visual system has

a high resolution fovea and a low resolution periphery. The central viewing
window allows detailed identification of objects, and the peripheral low reso-
lution field allows fast processing. Is it possible to design thinning/boundary
following algorithms which emulate this process? This problem is addressed
in the thesis. The variable-resolution approaches to character thinning and
boundary detection are proposed in this thesis. It is shown that the proposed

methods improves upon the existing techniques.

1.2 Variable-resolution Vision

The human visual system has a high resolution sampling area and a wide
visual field. The distribution of the photosensitive elements in the human
retina is such that the highest resolution is limited to the central part of
the sensor (fovea) and decreases towards the periphery. The role of foveal
vision is to probe the environment at high resolution and, at the same time,
to limit the amount of detailed information. Thus foveal vision concentrates
on the objects of interest and keep intricate details about them whereas the
peripheral vision provides a broad field of view [43].

Even though anthropomorphic visual systems and sensors have been fairly
well studied and understood [43, 48, 44, 42, 53] their application to various
vision problems still needs to be investigated. A fundamental problem with

the use of such a system is the reduction of information in the periphery. in

human vision, the structure of the visual sensor and the coordinated, task-
driven, active control of eye movements have an essential role in the reduction
of visual information [43]. The exploitation of this structure in the context
of different tasks can be partly achieved by using variable resolution tem-
plates. An extremely simplified version of variable resolution is considered.
Specifically, we consider templates having two levels of resolution. A normal
resolution 3 x 3 center, and a low resolution periphery of 8 cells, each of
which represents a 3 x 3 region in normal resolution. The peripheral cells are
used to take a “rough” view of a large neighborhood (a 9 x 9 window). This

enables us to develop paralle} algorithms which are also shape-preserving.

1.3 Organization of Thesis

The remaining portion of this thesis is organized as follows: Chapter 2 de-
scribes previous work in boundary detection and character thinning. Several
existing techniques for extraction of contours are discussed with their rela-
tive advantages and disadvantages. Similarly, a brief overview of the existing
thinning algorithms is given. Chapter 3 describes the principles behind edge
extraction and thresholding. It briefly reviews the existing techniques and
analyze them. Chapters 4 and 5 outline how VR techniques can be used to
develop better boundary detection and thinning algorithms. In Chapter 4,

first the basic concept behind the VR technique for extraction of boundaries

in the image is described, and then results of the method are compared with
the two other existing algorithms. Chapter 5 describes the VR thinning and
compares the results with two other well known approaches. Finally, Chapter

6 gives the conclusions of the work and directions for future research.

Chapter 2

Previous work

In this chapter we first describe previous work in the area of boundary

detection, then we review existing literature on character thinning.

2.1 Boundary Detection Algorithms

Several boundary detection algorithms have been proposed by previous re-
searchers. These methods, inherently sequential in nature, can be broadly
classified into two categories based on the amount of knowledge incorporated
into it: algorithms which incorporate a priori knowledge in order to form
closed boundaries of the objects in images and techniques which do not rely
on prior information. The term @ priori knowledge means implicit or explicit

constraints on the likelihood of a given grouping [3].

Most of the boundary following algorithms have two objectives: to mea-
sure the degree of “edgeness” at a particular image point, and to link the
groups of points to obtain closed contours. For clean images most of the
existing algorithms are able to obtain closed boundaries of the objects in the
image. However when the image is noisy, the task of locating a good bound-
ary becomes difficult, and often disconnected contours are obtained. Many
techniques proposed in the literature use sequential segmentation which at-
tempts to link together all the single contour elements to form either the
whole object outline or a significant part of it. To achieve this, the algo-
rithms use some amount of prior knowledge that maps the edge elements
into meaningful boundaries. Ashkar and Modestino (2] list four approaches
of incorporating a priori knowledge in sequential segmentation algorithms.
- These approaches are: exhaustive search, dynamic programming, structured

tree search, and heuristics graph search.

2.1.1 Dynamic Programming

Dynamic Programming is a method of finding ths global optimum of mul-
tistage processes. It is based on Bellman’s prisiple of optimality [5), which
states that the optimum path between &wo given points is also optimum be-
tween any two points lying on the path. i: also reduces the computational

load of exhaustive search. Montanari [35] itrst proposed the use of dynamic

programming to perform edge detection. He proposed a method which em-
beds the properties of a curve in a figure of merit representing the heuristic
information. This figure of merit was then used to find the relative value of
different paths. The figure of merit was then used to find the relative value
of different paths. The figure of merit of a path z;,...,z, was defined as:
n n
h(zy,...,z,) = iZ;s(:c.-) +a g i, Tig1)

where s(z;) is the edge strength at point z; in the image and ¢(z;,z;41) is
the slope between the adjacent points z; and z;y,. In the above equation
consecutive z;’s must be grid neighbors. This figure of merit gave the best
path once all of them have been enumerated. The idea is to select the path
which is a weighted sum of high cumulative edge strength and low cumulative
curvature [3]. A dynamic programming technique is then used to determine
the optimal curve in the image with respect to the given figure of merit.
Since the figure of merit function does not guide the search, the computation
time is relatively independent of the noise level in the image. This is a
drawback of the method, since an ideal method should vary its computation
time depending on the level of noise present in the image. The dynamic
programming technique was applied by Chien and Fu [9] to find boundaries

of lungs in chest X-ray films.

2.1.2 Graph Searching Methods

A boundary can also be viewed as a path through a graph formed by linking
the edge elements together. Linkage rules give the procedure for connecting
the edge elements [22]. In the exhaustive search technique, every contour
in the image is examined and the best candidate is selected. The main
drawbacks of this method are the extensive computation time and storage
required. This algorithm can be applied only to images of low dimensions
and is rarely used. Also, the dynamic programming approach is favored over
exhaustive search technique as it reduces the computational load attached to
exhaustive search.

Martelli (33, 34] formulated the problem of minimizing the figure of merit
as a heuristic search for the shortest path in a graph. The graph search
method needs considerably less time compared to dynamic programming. In
addition, the time taken varies with the level of noise present in the image.
In this technique, the candidate boundary elements are represented as graph
nodes while the two neighboring boundary elements in the image defines the
directed arc of the graph. The direction of the arc is obtained with the con-
vention of moving clockwise around the first candidate boundary element.
The contour is then started at an arbitrary point whicfx qualifies as a bound-
ary point. Thus for an edge to exist from z; to z;, z; must be one of the

three possible eight neighbors in front of the edge direction ¢(z;) and edge

yl
x x
y s
1 ¥,
y,
y 2 y3
3

Figure 1: Linkage Rule in Graph Search Technique

strength s(z;) > T and s(z;) > T where T is the chosen threshold and
{[#(z:) — d(z;)] (mod 27)} < Z. For example, in Figure 1 a pixel z is
considered to be linked to y if the latter is one of the three eight-connected
neighbors (y1, y2, y3) in front of the contour direction.

Thus a boundary is a path in the graph representing the state space and
the problem of finding the best boundary reduces to finding the optimal
path in the graph. The optimal path can be found by using the heuristic
search technique. In heuristic search methods, an evaluation function which
incorporates the properties of edges is used and the path which minimizes
this function is taken as the boundary. For example, let A and B be the start
and goal node in a graph with node locations z;, i = 1, 2, ... and §(=;)
be the evaluation function which gives the value of the path from A to B
constrained to go through the node z;. First the successors of the start node

are examined and the node which which minimizes §(z;) is selected. The

selected node now becomes the new start node and the process is repeated

10

until B is reached. The sequence of selected nodes then constitutes the
boundary path.

Though this procedure reduces the computation time, it is inherently
sequential in nature. Another difficulty is the selection of a good evaluation
function. Ashkar and Modestino [2] incorporated the idea of negative costs in
the evaluation function to obtain good boundaries. The contour extraction
problem was formulated as one of minimum cost tree searching. Branch
costs incorporated both global and contextual information obtained from the
heuristics of the problem under consideration. These costs were indicative of
the likelihood that a particular branch was located on the true contour [2].
A minimum cost tree search strategy based on the Zigangirov-Jelinek stack

algorithm [55, 23] was then used to extract the contours.

2.1.3 Hough Transform

Another technique which is widely used to find boundaries in images, is
the Hough transform [21]). This technique for curve detection is applicable
if the shape of the object in the image is known and can be described as
a parametric curve. Duda and Hart [13] used Hough transforms to detect
straight lines and curves. This method involves the transformation of a
curve in Cartesian coordinate space to a point in polar coordination space.

Consider the detection of straight lines in an image. A straight line at a

11

12

9)
(P, 6)
p
0
\ >
X p
(a) Straight line in cartesian coordinate space (b) Hough transform

Figure 2: The Hough transform

distance p from the origin and orientation § can be represented as

» = zcosl + ysind

‘

Using Hough transform this line can be defined by a single point (p,) in the
p — 0 plane; that is all the points on this line map into a single point. Fig-
ure 2(a) shows a straight line in Cartesian coordinate space and Figure 2(b)
shows the same line after Hough transform in p — 8 plane. To detect straight
lines in a given set of boundary points, a parameter space is defined which
gives the points that lie on the line. In this parameter space, an accumulator

array Alp, 6] initialized to 0 for all values of p and 6 is defined. Now V(z,y)

where it is supposed that (z,y) belongs to an edge, the members of A[p, 6]
for which (p,8) is a solution of the above equation are incremented. The
local maxima in the accumulator array now correspond to the points that lie
on the straight line in the image. The value of the accumulator array gives
the number of points on the line. A detailed implementation of this method
is given in [13]. This method can be easily generalized to detect arbitrary
parametric curves. For example, to detect a circle, the edge points are trans-
formed into the parameter space (a,b) where the equation of the circle in
z — y plane is

(z-a)’+(y-b) =+

The main weakness of Hough transform based methods is that the compu-
tational cost and the size of accumulator array increases exponentially with
the number of parameters. The Hough transform is relatively unaffected by
the noise present in the image, and connects the edge elements using line
and curve fitting techniques. This technique has been used successfully in
several medical applications which involve radiographs. Kimme et al. [24],
Wechsler and Sklansky [49], and Lantz et al. [3] used Hough transform to
extract boundé.ries in a wide variety of applications, such as in the detection

of tumors and ribs in chest radiographs.

13

2.1.4 Contour Following

If there is no prior knowledge about the shape of the object in the image
then boundaries of the object can be recovered by using one of the simplest
contour following operations. Boundary following techniques are generally
sequential in nature and need a starting point. Here the image is scanned
until a pixel believed to be on the boundary is encountered. This pixel is
taken as the starting point of the contour. To locate the next boundary
point the eight-connected neighbors are examined in the counter clockwise
direction. This approach usually finds the curves in the image one at a time.
A detailed survey of the boundary following algorithms can be found in [41].

Several researchers [25, 27] have used the contour following algorithm to
detect boundaries. Contour following algorithms for gray-ievel image use
edge strength and edye direction information to compute the next boundary
point. Lacroix [27] used a three module strategy extract the boundaries of the
objects in the images. The first module uses a conventional edge detector
to compute the edge strength and orientation. The gradient direction, so
computed, is digitized to point to one of the eight nearest neighbors. The
second module assigns a likelihood of being an edge (LBE) to each pixel. The
corresponding process is a generalization of nonmaximum deletion algorithm
[6] in the sense that pixels with LBE = 0 are deleted, pixels with LBE =

1 are definitely kept as edge elements, while pixels with 0 < LBE < 1 have

14

to wait for contextual information to know their status. The last module is
based on Kunt’s contour following algorithm [25]. In this module, a decision
using contextual information is made regarding the deletion of pixels with
0 < LBE < 1. A contour is started where the pixels have LBE = 1 and is
continued along the edge direction as long as the LBE is < 0. A test on
the length of contours so obtained is performed to remove short meaningless
contours. The algorithm performs satisfactorily for less noisy images, but
tends to give erroneous results if the image is contaminated with noise.
Classical contour following techniques use a search mechanism which pro-
ceed along the best path along each step and never reverse a decision once
made. An alternative to this is to allow backup, that is, if an acceptance de-
cision seems to be leading to a poor subsequent acceptance, one can go back
and alter the decision. Liu [30] proposed a boundary detection algorithm
with a feedback loop for backtracking. The feedback loop was incorporated
into the algorithm so that the results could be checked and refined using feed-
back whenever necessary. Backtracking is used whenever uncertainty arises
in locating the next boundary pixel. This procedure enables the algorithm
to recover from errors caused by noise, but the method failed to give good
results when the quality of images was poor. Chen and Siy [7] improved
this algorithm by using feedback to locate the noisy areas of the image,
which are smoothed to remove irregularities. The feedback mechanism is ac-

tivated only when the contours obtained by the conventional algorithm are

15

not closed. The process continues until all the contours obtained are closed.
The algorithm, tested on a 60 x 64 chromosome image, gave satisfactory
results.

Williams and Shah [51] used the concept of scale space [52] to obtain
contours. The choice of scale to use in smoothing an image has been studied
in detail. Smaller scales result in too much noise and fine texture while
larger scales result in delocalization of edges and gaps. In scale space, zero
crossings of the second derivative are examined for a continuous spectrum of
scales rather than a few discrete values. A detailed analysis of scale space
can be found in [11, 45]). Here, the image is first convolved with a gradient

of Gaussian operator given by

1 $2+y2
o(e,9) = 5 ewp(- 5L

The set of all possible edge points are then placed on a priority queue with
the edge point having largest magnitude on the top. A weight is assigned to
each edge pixel based on measure of noise, a measure of curvature, contour
length and gradient magnitude. The edge point with the largest magnitude
is retrieved from the queue and it becomes the current boundary point. Next
the direction of next edge point is computed and the point in the computed
direction is examined first and then those in the adjacent directions on either
side of it. The point with the maximum weight is selected as the next edge

point. The weights are designed to favor the longest, strongest, and the

16

straightest path. The search terminates when there is no potential point left
to be incorporated in the contour. Once this search is over, a similar search
is started in the opposite direction and the result of two searches is combined
to form a closed contour. Contours are first detected at higher scales. If a
closed contour is not obtained by this process then the next finer scale is
chosen and the procedure repeated until the contour cannot be extended at
the finest scale. The use of finer scales produces improved detection of weak
edges and helps in obtaining closed boundaries.

All the above techniques are inherently sequential in nature and require
extensive computational time. A non-sequential technique for determining
the boundaries is described in [39, 18]. The method incorporates knowledge
in terms of a curve representing a typical shape (model) of the contour. The
final contour is obtained by minimizing a function, radial inertia, defined
over the gradient of the object image. Though the method is able to obtain
closed contours, it requires a good estimation of parameters like centroid and

orientation of the model. Errors in these parameters result in poor solutions.

2.2 Thinning Algorithms

Previous research on character thinning can be broadly classified into two
categories. One group of methods [19] performs a series of tests on the

neighborhood of a given pixel in order to decide whether or not the pixel

17

should be deleted from the character. Other schemes [10] match a set of
templates with the pixel values in a given window. If a match is obtained
the central pixel is removed from the binary outline.

Many thinning algorithms have previously been proposed [1, 8, 10, 14,
17, 26, 36, 54). Surveys of various approaches can be found in [46, 38]. Guo
and Hall [19] proposed two thinning algorithms, Al and A2. Algorithm A2 is
suitable for parallel processing, but A1 generates more desirable results. The-
oretical proofs and extensive experimental results are given in [19] for these
methods. Comparisons with several well-known thinning algorithms favor
algorithm A1 over the other methods. Suen and Plamondon [38] conducted
an intensive study on human thinning behavior. The character skeletons gen-
erated by human operators were used as criteria to judge machine thinning
algorithms. However, it is still unclear how one can make machines simulate
this human behavior.

In order to retain necessary information for correct recognition, it is im-
portant for the skeleton to preserve the shape of the original input character.
For algorithm A1, and most other thinning methods, a 3 x 3 window is used,
and the programs do not make use of information outside this window. In
many situations, the lack of global knowledge about the entire character
causes severe shape distortion in the resulting skeleton and leads to mis-
classification of the character. This point will be demonstrated in detail in

Chapter 5.

18

The human thinning operator tends to preserve shape. For example,
we do not have any difficulty distinguishing between the character “B” and
the digit “8”. Strictly speaking, humans “cheat” in the thinning process.
We have global knowledge about the character and some knowledge about
what the character and its skeleton “should” look like. On the other hand a
computer program has no knowledge whatsoever outside a small (say, 3 x 3)
window. Some thinning algorithms [17, 50] use templates larger than 3 x 3
to obtain knowledge of a larger neighborhood of the character pixel currently
being considered, which significantly reduces the skeleton shape distortion.
However, the problem with using large uniform resolution templates lies in

the high computational compiexity involved in the process.

19

Chapter 3

Edge Detection and
Thresholding

3.1 Overview

Edges ar:: image attributes which are useful for image analysis and classifi-
cation in a wide range of applications. Usually edge extraction is the first
step in boundary detection. One might expect that algorithms could be de-
signed that find the boundaries of objects directly from the gray-level values
in the image. This task is difficult when the boundaries have complicated
shapes. A good strategy is to first transform the image into an intermediate
image of local gray level discontinuities, or edges, and then connect these

into meaningful boundaries.

20

An edge refers to places in the image where there is an abrupt change in
gray level or in texture, indicating the end of one region and the beginning
of another. The cross section of an ideal step edge and a more realistic
representation of it is shown in Figures 3(a) and 3(b). However step edges
are not the only kind of edge. Depending on the class of picture being
analyzed, a variety of edge cross-sections are obtained. For example, if we
look at solid objects, which contain surfaces at different orientations, meeting
at sharp angles, then roof type edges and spike edges are also present (12].
For example, if the brightness values in an image increase steadily and then
after a certain point decrease steadily, an edge exists at the point of change
from increasing to decreasing brightness values. Such edges are called roof
edges. The cross-section of a roof edge is shown in Figure 3(c). In the rest of
the thesis, the word “edge” will refer to the step edge since they are by far
the most common type of edges encountered.

Detection of edges usually involves two steps after an optional preprocess-
ing. First edge strength and direction is assigned to each pixel. The strength
may be thresholded to remove the weak pixels. Next the pixels are selected
and combined into edges. These two steps are considered independently.
The rest of this chapter is organized as follows: Section 3.2 reviews some
of the existing edge detection algorithms. Section 3.3 gives the thresholding

techniques used to remove the noise from the edge image.

21

1-D Signal

£ (x) + £ix) |
ps—— Midpoint
- |
X x
a) An Ideal Step Edge b) More Realistic Representation of an Edge
£(x)
£ (x) ‘ A
: _
x
x
c) Roof Edge d) Spike Edge

Figure 3: Different types of Edges

3.2 Edge Detection Methods

The existing edge extraction operators can be broadly classified into three
categories; gradient operators, compass operators and laplacian cperators.
A detailed survey of the various operators can be found in [28, 12, 37, 41, 29).

In this section we will briefly review the most commonly used edge detectors.

3.2.1 Gradient Operators

Gradient operators are the first-order derivative operators. The gradient for

a continuous two dimensional function is defined by

Vv flz,y) = (g{,%)

The magnitude and orientation of the gradient vector are given by the fol-

2 N 2
V() = \l (&) +(%)

. -1[9f/0y
¢ = tan l(af/ém)

For a digital image, the partial derivatives can be approximated with finite

lowing equations

differences along the two orthogonal directions z and y, thus the gradient for

discrete case can be computed as
sz(zvy) = f(zay) - f(z - nay)

Vyf(z,'.'/) = f(zyy) _f(z’y - n)

24

where n is the span of the gradient and is a small integer, usually unity. Thus

¥ f(z,y) for orientation ¢ is given by

vf(z,y)= (V=f(z,y)cosd , Vyf(z,y)sind)

and its magnitude is

IVf(z,9)| = V(@4 + Vo (7, 9)?

Some commonly used gradient operators are the Roberis uperator 3], Prewitt
operator [40], and Sobel operator [12]. The Roberts operator computes the
finite differences about an ideal edge located at (z + },y + 3). Thus the
finite differences are calculated diagonally instead of in orthogonz! directions
z and y with respect to a particular pixel. The Prewitt and Sobel operators
use a 3 x 3 mask to approximate the gradient. These two operators compute
horizontal and vertical differences of local sums and thereby reduce the effect
of noise. The Sobel operator uses weights in the summation of the values of
the elemenis to give a smoothing effect. Figure 4 shows the various gradient

difference operators.

Roberts

Prewitt

Sobel

)

0 1

-1 0
0 -1 1
0 -1 0
0 -1 -1
0 -1 1
o] -2 0
0 -1 -1

Boxed element indicates the location of f(x,y)

Figure 4: Common Gradient Operators

0
-1

1 1
0 0
-1 -1

2 1

0 0
2 -1

26

3.2.2 Compass Operators

Compass operators measure gradients in a selected number of directions.
An example of compass operator is Kirsch which uses a 3 x 3 neighborhood
to compute the gradient in eight possible directions. The mask used for

calculating the gradient is given by

3 _5 -5
G(x,y) = 3 0 -5
3 3 3

Each clockwise circular shift of elements about the center rotates the

gradient direction by 45°. The gradient 7 f(z,y) is thus given by

v f(z,y) = max (| Gi(z,y)|)

Larger templates can also be used with Kirsch operator. The advantage of
using larger templates is increased smoothing and reduced noise sensitivity.
However, larger templates are computationally expensive and hence avoided.
Also, the same smoothing effect can be obtained by using the Sobel operator
with higher weights. The use of weights enhances {he computation over the
central pixel of the window giving a smdothing effect over the rest. Another
exarnple of compass operator is the Frej ans Chen operator [15] which is not

discussed here.

3.2.3 Laplacian Operators and Zero Crossings

The Laplacian operator for a continuous function f(z,y) is defined as

of 0*f
2 o e ———
V f(w’y) - 622 + 3y2

and can be approximated in the same way as the gradient operators for the

discrete case. For 4-connected neighbors, the Laplacian is approximated by

Vif(z,9) = flz+1,9)+ flz=1+9)+ f(2,y + 1)+ f(z,y — 1) - 4+ f(=,y)

and for 8-connected neighbors it is given by

ViEy)=fle-Ly-D+flz-Ly+ 1)+ flz+1,y+1) + f(z,y + 1)
+f(z,y—1)+flz+1,y-1)+ f(z—1,y)+ f(z+1,y) ~8+ f(z,y)

The masks used for calculating the Laplacian are given by

010 1 1 1
Vicy = |14 1 Viy) = |1 -8 1
1

0 10 11

The Laplacian operator has two disadvantages as an edge measure: (i)
useful direction information is not available, and (ii) the Laplacian, being
an approximation to the second derivative, doubly enhances any noise in the
image [3]. A better utilization of Laplacian is to use its zero-crossings to

detect the edge locations [22].

27

3.2.4 Marr and Hildreth Operator

Marr and Hildreth [32] suggest an edge operator based on the zero-crossings
of a generalized Laplacian operator. The generalized Laplacian operator is

given by sampling the kernel

$2+y2 z2_'_y2
A{l—k p exp(— 57

at each image point (z,y). The parameter o controls the width of the Gaus-

sian kernel and value of k is adjusted such that the sum of the elements of a
given mask size is zero. Zero-crossings of a given image, after convolving it
with the kernel, give its edge locations.

In general, the Marr and Hildreth [32, 31] edge detection scheme is based
on a filtering step consisting of a 2-D symmetric Gaussian, followed by the
localization of zero-crossings of the Laplacian of the filtered image. This
operator performs rather well, but its optimality was not rigorously proved
[47]. Also, the operator has the advantage that it automatically forms closed

boundaries.

3.3 Thresholding

After the edges are extracted, thresholding is performed to select the mean-
ingful edge elements. Thresholding is thus useful to filter out the weak edges,

the edges having a low edge strength. This operation removes some of the

28

spurious edges arising due to noise.

The two most widely used approaches for thresholding an edge image are:
fixed cut-off technique and adaptive thresholding. When a fixed threshold
is used, all edge pixels characterized by edge strength less than the cut-off
value are discarded. If f(z,y) is the given picture having a gray-level range
[21,2] and T is any number between 2; and zj, the result of thresholding

f(z,y) at T is the binary picture defined by [16, 41]

fieg) = 1 if flz,y) 2T
0 otherwise

However, using fixed thresholding is not a very good method. Such a
technique is noise sensitive and its result depends on the quality of the input
image. For example, this approach may delete important information in
relatively clean images and retain spurious edges in noisy images.

An adaptive threshold on the other hand is relatively independent nf the
noise present in the image. In this technique, a certain percentage of the
edge pixels are retained after thresholding.

Another method utilizes the average edge strength of a contour over part
of its length to remove the redundant information from the edge image.
This technique was used successfully by Pentland with Marr-Hildreth zero-
crossings [6). If the average is above the threshold, the entire segment is

retained. If the average is below cut-off level, no part of the contour appears

is the thresholded image. This procedure is quite useful to eliminate weak

29

Chapter 4

Boundary detection

4.1 Limitations of previous approaches

There are two major drawbacks in most previous algorithms for boundary
detection. First, they are inherently sequential in nature. Processing starts
at a given pixel (or a set of pixels) and proceeds one pixel at a time accord-
ing to a specified set of rules. This implies that similar operations cannot
be performed simultaneously all across the image. This is undesirable for
most real time applications which require a high recognition rate. The VR
approach on the other hand is inherently parallel. The decision made at any
pixel does not depend on the actions taken at the neighboring pixels. Thus
all image pixels can be processed in parallel without affecting the output.

The second limitation of several boundary following methods lies in their

31

inability to take a “rough look” at a large neighborhood of a pixel, while
processing using a small mask. This shortcoming can result in noisy contours
being detected, as well as meaningful contours being dropped. Also, in the
conventional boundary following algorithms tracking proceeds along the best
path at each step and once a point is selected to be on boundary, the decision
is never reversed. Due to the small size of the mask, a traditional algorithm
may choose a wrong path resulting in spurious boundary. Although feedback
mechanisms can be used [30] to overcome this problem, these are not very
effective if the image is noisy. On the other hand, if information about the
large neighborhood surrounding the pixel is available, the task of selecting
the true boundary points becomes easier and the boundaries so obtained are
largely independent of the noise present in the image. The VR algorithm is
designed to avoid the drawbacks of the existing algorithms. Noisy contours
are largely ignored by the proposed method, which can also fill in small

missing gaps in significant boundaries.

4.2 Variable-resolution masks

The variable resolution approaches to improve current thinning and bound-
ary detection algorithms were designed. The basic concept behind the pro-
posed method is the variable resolution mask. These masks (templates) are

partitioned into 9 equal square-shaped parts as shown in Figure 5. The cen-

32

1 23 45617809

Figure 5: A variable resolution template

ter part is a regular 3 x 3 template. Each one of the eight peripheral parts
also covers a 3 x 3 region, but at a rednced resolution. Thus the resulting
9 x 9 window is called a variable resolution (VR) window.

The VR masks are used as follows: First the result of the application
of the high resolution center is examined. Then, if certain conditions are
satisfied, some of the low resolution peripheral cells are used for further test-
ing. Variable resolution templates have two advantages. First, the peripheral
cells can be used to obtain a “rough” look at a large neighborhood around a
given pixel. Second, the computational cost involved in the process is only
marginally higher than the cost of using small uniform resolution templates.
It is also important to note that the techniques described here are inherently
parallel. That is, the decision taken based on the computations performed

in one peripheral cell is completely independent of the decisions made in any

of the adjacent regions.

33

4.2.1 VR Masks for Boundary Detection

The aim is to detect the contours in all the orientations. If a 3x3 mask is used
then the maximum number of directions that can be checked for locating the
next boundary point is 8, assuming the pixel (2, j) is 8-connected. Since the
VR technique uses a larger mask of 9x9, it can be used to look for the lines in
16 directions. The extensive experiments conducted on various images prove
that use of 16 directions is enough to detect the contours of all orientations.
To design the variable resolution masks for the lines of various orientations we
use a simple technique from computer graphics. Since straight lines should
appear as straight lines with constant brightness, along their length, the
selection of the pixels along the length of the line should be given special
consideration. Horizontal, vertical and 45 degree lines are easy to detect as
there is no conflict in selection of the pixel to be highlighted. However for
lines of all other orientations, an optimum raster location should be selected
since not all lines pass precisely through a raster point. This is illustrated in
the Figure 6. The pixels which lie on the line are shown by “e” in the figure.
Figure 6(a) shows the rasterization of horizontal, vertical, and diagonal lines.
As it can be seen, there is no conflict in proper selection of the pixels that
lie on the lines. Figure 6(b) shows a line of 22.5° orientation which does not
pass exactly through a raster point. The line starts at (0, 0) and subsequently
crosses 6 pixels. To select the right pixel, let us assume that the pixels are
represented by a square on the square grid. Since we have a VR mask of
9x 9, our center pixel is at location (0,0). To find out the pixels lying on the

line of 22.5° orientation, the basic idea from trigonometry'is utilized. The

34

¢ 0 r=ry
/’.’ ©

oo o
0,0)
(a) Rasterization of horizontal, vertical (b) Rasterization of a line of 22.5 degree orientation
and 45 degree orientation lines

Figure 6: Rasterization of Straight Lines

end point of the line will be at location (4,y). Now the y intercept of the

line is given y the following equation
y = [z tanf]

where 0 is the orientation of the line. To find out the pixels lying on a
line of particular orientation, 6 is kept fixed, while the z-intercept keeps on
changing. For 6 = 22.5 and z = 4 a value of y=2 is obtained implying that
the end point should be at location (4,2). Similarly, other pixels lying on the
line whose end points are at (0,0) and (4,2) can be found. For this, either a
simple line rendering technique from computer graphics can be used or the
above equation can be utilized. In this case, the above equation was used
to derive the other points which will lie on the line. The points so obtained
are shown in the Figure 7. This figure corresponds to the VR mask for

detecting lines of 22.5° orientation. The symbol “sf x” in the figure denotes

4 -3 -2 -1 012 3 4

Figure 7: Mask for 22.5° orientation line

the pixels which line on a line of 22.5°™ orientation. Similarly the masks for
- all other orientations can be designed. The masks for detecting lines in all

the orientations are given in the appendix A.

4.3 A VR approach to boundary following

In this section the VR boundary detection aigorithm is presented. The
method essentially consists of two steps: the edge detection and thresholding
step followed by the boundary construction step.

The main purpose of the first step is to highlight those points which lie
in the neighborhood of the boundaries. Let I(z,y) be the given image. The
edges are detected by convolving the image with the second derivative of the

Gaussian and extracting the zero crossings. Two-dimensional Gaussian with

36

37

a standard deviation ¢ is defined by the function

z2+y2
202)

1
G(z,y) = WCXP(-

Thus it is needed to find the zero-crossings in

f(z,9) = V*[G(=,y) * I(z,y)]

where “*” is the convolution operator. However, using this method does not
give the gradient strength and orientation of the zero-crossings. To obtain the
gradient strength and the gradient direction, the two-dimensional Gaussian

is separated into the product of two one-dimensional functions given by

2

1 T
G(z) = Tore exP(—g)

1 y?
G(y) = \/27; €Xp _%'2')

The first derivative of the Gaussian is computed for every point in the image

and directional derivatives I, and I, are obtained. From these directional

derivatives the strength and direction for each zero-crossing pixel is computed

s(z,y) = VIJ»'2+III2
#(z,y) = tan™ (L/I)

An adaptive thresholding technique is used to delete the zero crossings
with very low gradient strength. The advantage of using an adaptive thresh-
old is that it is relatively independent of the quality of image. The pixels
which survive thresholding are assigned weights depending on the gradient
magnitude and gradient direction. For example, a pixel is assigned the maxi-
mum weight if it has a high edge strength and difference between the gradient

by the following

38

angle with the adjacent pixel is minimum. In the second step, the pixels are
linked together, to get the meaningful boundaries, using the VR boundary
detection algorithm. The VR boundary detection algorithm can be described
by the following pseudocode:

procedure VR _Boundary_Detection

for (for all image neighborhoods) do
if (center pizel of small window has mazimum weight)
{ FhK gron 1 *E*
check 3 x 3 neighborhood for edge in vertical,
horizontal and other directions;
if (no edge is found in the small window)
{ *hK gtop 2 *h*
take a “rough” look at appropriate peripheral cells;
if (larger window suggests the presence of an edge)
Mark the appropriate pixels in the smaller window
as edge pixels to gei a continuous boundary;

For the purpose of assigning weights, the edge image was thresholded to
a three-valued image depending on the edge strength. We used an adaptive
threshold to classify a certain percentage of pixels as High, Medium, and Low.
Pixels in the percentile ranges [0,25], [25,60], [60,100] are classified as low,
medium, and high, respectively. Extensive experimental results suggest the
use of the above thresholds. Similarly, the gradient angle is digitized into 16

different directions. The total weight is defined as the sum of the following:

1. Strengths classified as High, Medium, and Low are assigned weights 3,

2, and 1, respectively.

2. A weight of 3 is assigned if the difference in gradient direction of the
two adjacent pixels is less than 45 degrees. Similarly a weight of 2 is
assigned if the direction difference is between 45 degrees and 90 degrees,
a weight of 1 is assigned if it is between 90 degrees and 180 degrees,
and a weight of zero is assigned for direction difference greater than

180 degrees.

Based on this scheme the maximum weight a pixel can have is 6 (it has a
high edge strength and a low direction difference) and the minimum weight
is 1 (it has a low strength and a hiéh direction difference). The algorithm
uses the high resolution central window to detect the boundary pixels in all
the 16 possible directions. Only if it is unable to decide which boundary
pixels are suitable, does it look at the outside low resolution periphery.

The information in the peripheral cells is reduced in a manner similar to
VR thinning. By having a rough look at a larger neighbarhood, we can fill
in $¢» small gaps and also avoid small noisy contours. The method is inher-
#ntiy parallel as each window is independent and can therefore be processed
sitsutianeously.

Two steps in the al;ove pseudocode need further explanation - how the
information in the peripheral cells is reduced, and what is the criteria of
making a decision in the high resolution central window? Peripher. . cells
are reduced to a single hit, a. This bit essentially answers questions such as:

“is there a vertical edge?”, “is there a horizontal edge?”, “is there a diago-

39

ple R
e |n
Ps P7 Ps

(a) 3x 3 template

40

Py | Pz | Pp | Psa | Pz | Pp | Bg | By | By
Ps [Po | Pan | Pss | Poo [Py |Bs | P | Py
Pis | Pz | Pag | P3¢ | Ps7 [Pss | Bs | Pr | P
e [Py [P | P |n | B [P | B | Py
Ps [P0 [P | B |m | B Ps | Po | Py
Psg | Ps; | Psg P | By BB | P | P7 | Pis
Pa | Py | P2 | Pra | Pz | P | Poa | Pss | Po
Pes | Po [Pt | Pis | Po | Pn | Bes | Peo | Doy
Pec | P7 | Pss | Ps | P | Prs | Pss | Por | Pss

Figure 8: (a) a 3 x 3 template (b) a 9 x § template

(b) a 9x9 template

41

H H X x

H H H H

H X H X
(b) © d

Figure 9: Example Templates for detecting a vertical edge

nal edge?”, or is there an edge of any other orientation, for example, 22.5°
angle. This term « is obtained by using a simple technique for the relevant
peripheral cell. For example, for locating a vertical edge, a thresholding is

used to determine « as

o =

0 X(pso+ps3s+ps) <15
1 otherwise

Similarly, @ can be determined for locating edges of other orientations by
selecting the relevant pixels in the peripheral cells. Figure 8(b) shows a 9x 9
neighborhood and the technique used to identify each pixel.

It is worth mentioning at this point that this larger 9 x 9 template is
used only if no decision about the center pixel, py of the 3 x 3 high reso-
lution window, being on the boundary is made on step 1 of the algorithm.

Figure 8(a) shows the 3 x 3 template. To explain the decision criteria wsid

in step 1 of the VR technique, consider Figure 9(a). The three pixels “H”
pixels forming a straight line in the 3 X 3 region shown in the figure indicates
the presence of a vertical edge. In such a situation, the larger 9 x 9 template
is not checked and the pixels marked with “H” in the figure are declared as
the boundary pixels. Now consider the Figures 9(b-d). The pixel marked
with “x” indicates a don’t care condition. This necessitates a check on the
relevant peripheral cells to detect the presence of a vertical edge. A value of
a = 1 indicates a vertical stroke. Similarly, the edges of all other orientations

can be detected.

4.3.1 Complexity of the Algorithm
The VR boundary detection algorithm involves two steps:

1. Checking the high resolution central window to check if the pixel forms
a part of the boundary.

2. Looking at the peripheral cells in case no decision about the center
pixel of high resolution window being on the boundary is made based

on step 1.

The center pixel is marked to be on the boundary if either (1) holds or (2)
holds. It is worth mentioning here that if (1) is true than (2) is not executed.
Thus the worst case complexity of the VR algorithm equals the complexity
of step (1) plus the complexity of step (2).

Let I be the image, an N x N array of pixels each taking one of 256 gray
values; M be the template, which is n X n with n << N. Each of then x n

42

subimages of I can be uniquely referenced by its upper left corner coordinates
(3,7). Thvs there are (N = n+ 1) (N ~n + 1) such (i,5)s. If a template of
size n X n is used, n? — 1 pixels are involved. Since we are checking for 16
different directions in step (1), the complexity would be 8(n? ~ 1). Further
if step (2) is to be executed, we at the most look at a total of 2n pixels in
the peripheral cells, which implies that the complexity of step (2) is 8(2n).

Hence the worst case compiexity of the algorithm would be
{(8n*-1) + 8(2n)) (N —n + 1%}

Since n is much smaller than N, the effective complexity of the algorithm
is (8(n? + 2n — 1)N?) which is O(n?N?). Thus the use of the VR mask
does not increase the order of the complexity which remains the same as
when a uniform resolution template of n x n is used. However, the use of
VR templates increase the total number of computations required. From the
above analysis we see that the VR boundary detection algorithm will need at
most 1.6 times the number of computations required by methods using 3x 3
windows. It is important to note that the above analysis is for the sequential

implementation of the algorithm.

43

4.4 Experimental results

Two-dimensional images were generated for testing the boundary detec-
tion algorithm. Test images were prepared using additive Gaussian noise at
varying levels. In all, five levels of noise are represented in the test images.
Gaussian noise is additive, with a mean of 0 and a standard deviation, de-
noted by 9, of 4, 8, 16, 32, and 64. The test images contained 256 gray
levels and had objects of both regular and irregular shapes. In addition to
the synthetic test images, the algorithm was tested on several real images to
verify its robustness. All the images were 256 x 256 pixels large.

Both test images and real images were subjected to two versions of the
boundary detection algorithm. The first version utilized only the mean gra-
dient magnitudes in the computation of costs while the second version com-
bined mean gradient magnitude and gradient direction. Both versions of
the algorithm were tested with various values of ¢ and different thresholds.
Finally, an optimal value of & = 2 was chosen based on the experimental
results. Figure 10(a) shows the image of a cup. The figure has several well-
defined edges. Figure 10(b) shows the edges extracted from Figure 10(a) and
10(c) gives the remaining edges after thresholding. Figure 10(d) shows the
result of the VR algorithm.

In all, the algorithm was tested on nearly 100 different images. Typical
results obtained are shown in the figures. It was observed that version 2 of
the algorithm, incorporating both the gradient direction and the gradient
magnitude, gave slightly better results on images with very high levels of

noise (n 2> 32). For comparison with the proposed method, two previous

45

Figure 10: From the top left corner in clockwise direction: Original Image of
a cup, Edge Image, Image after Thresholding, Result of VR, algorithm

Figure 11: Results of Williams’ method (left side) and Lacroix’s method
(right side)

algorithms [51, 27] were chosen. The first module of the algorithm given
in [27] was implemented using the local operator with unweighted masks,
as described in the paper. In [27], a test on the length of the contour was
performed to delete edges less than 4 pixels in length. We implemented the
algorithm given in [27] without performing the aforementioned test in order
to maintain compatibility with our algorithm which retains short contours.
The source code for the other algorithm [51] was obtained from its authors.
The same values of & mentioned in the paper [51] were used. However, a
different threshold of 0.25 had to be applied as the algorithm failed to give
good results with a threshold of 0.08 (as stated in [51)).

46

The cup image as shown in Figure 10(a) was also subjected to Williams’
and Lacroix’s methods. The results obtained are shown in Figure 11. Lacroix’s
method failed completely on this image as several double contours were ob-
tained. This happened because the number of pixels retained after threshold-
ing was quite large and thus resulted in redundant contours — one drawback
of the Lacroix method which was observed in all the images. T~ quality
of the boundaries depended directly on the threshold. Though tie paper
claimed the use of an adaptive threshold where only a certzin percentage of
the pixels, say x percent, were retained after the edge detection phase, the
value of x depended entirely on the quality of image. Most of the images gave
good resnlts when only 10-15 percent of the pixels were retained. However in
some images it resulted in loss of in‘.:'nation while in others, for example in
the cup image, it resulted in deuble contours. Williams’ method gave good
results on this image though it missed out some of the details. Figures 12— 16
present the results on artificial test images generated. Figures 17— 21 show
the results on the real images.

Figure 12 shows the artificial image of a gray-level band. For a clean image
with no noise, all the algorithms were able to extract perfect boundaries.
However as the noise level increased in the image, the boundaries obtained
by the Lacroix and Williams methods did not give straight lines. On the
other hand, the VR method was still able to obtain straight lines for even
high noise levels (n > 16). For p > 4, Williams’ method was unable

to obtain a closed boundary. For noise levels greater than # = 16, both

Williams’ and Lacroix’s methods gave poor results whereas the VR algorithm

retained all the boundaries.

47

48

Figure 12: Test Image with no noise. From the top left corner in clockwise
direction: Original image, Williams’ method, Lacroix’s method, VR method.

49

.P.

fu = 0, n=8. From the

ian Noise o

Test Image with Gauss
top left corner in clockwise direction: Original image, Williams’ method,

Lacroix’s method, VR method.

Figure 13

50

Original image, Williams’ method,

ith Gaussian Noise of g = 0, n = 32. From

Test Image w
the top left corner in clockwise direction

Figure 14

ix’s method, VR methed.

Figure 15 shows an artificial image of a cone intersecting a triangle. For
this image Williams’ method failed to obtain all the contours, especially
the contours of the cone. This phenomenon was also observed on some other
images where Williams’ method failed to extract all the boundaries. Lacroix’s
algorithm performed quite well on images with a low level of noise but its
performance deteriorated as the noise level increased. The method failed to
obtain meaningful boundaries fo: the noise level of = 32. On the other
hand, the VR algorithm gave consistently good results. Even for the noise
level of n = 32, the VR method was able to obtain fairly clean boundaries.
Figures 15— 16 show the results of the various algorithms.

Now some experiments with real images will be described. First results
with a different cup image - one with sharply defined edges - are shown.
Williams’ method obtained good results on this image but missed out one of
the boundaries. Lacroix’s method, on the other hand, was able to obtain the
whole cup boundary but missed out other relevant edges. The VR algorithm
was able to pick up the complete boundary details as well as the other details
on the surface of the cup. Figure 17 shows the results of the three methods.

Similarly, Figure 18 shows the results of the three methods on the image
of a book. Here both Williams’ and VR methods obtained better results
than Lacroix’s method. Fo: very noisy images, the VR method obtained
better results than the other two methods. Figures 19— 21 show the results
of the three methods on images with a high degree of noise. Here the VR
method was still able to obtain a sufficiently large number of contours unlike
Williams’ method. Lacroix’s method generated several noisy contours in

addition to the meaningful ones.

51

52

Figure 15: Test Image with Gaussian Noise of 4 = 0, 5 = 4. From the

top left corner in clockwise direction: Original image, Williams’ method,
Lacroix's method, VR method.

53

Py e
f".-_-‘l'o'
AL RRS

Figure 16: Test Image with Gaussian Noise of p = 0, 7 = 32. From

the top left corner in clockwise direction: Original image, Williams’ method,
Lacroix’s method, VR method.

54

Figure 17: From the top left corner in clockwise direction: Original Image of
the cup , Williams’ method, Lacroix’s method, VR method

55

PELINTIDRE A
RECIZES ip
\'_‘M

"-2-&\3'

et
— r. s
"1 re—.

[N [——
N e ———

Figure 18: From the top left corner in clockwise direction: Original Image of
the book, Williams’ method, Lacroix’s method, VR method

56

Figure 19: From the top left corner in clockwise direction: Original Image of
a block, Williams’ method, Lacroix’s method, VR method

57

Figure 20: From the top left corner in clockwise direction: Original Image of
a block, Williams’ method, Lacroix’s method, VR method

58

Figure 21: From the top left corner in clockwise direction: Original Image of
a block, Williams’ method, Lacroix’s method, VR method

Chapter 5

Character thinning

5.1 Limitations of small templates

The following examples demonstrate the severe limitations of current
thinning algorithms using small templates. To illustrate this point consider
the distortions caused on the character “B” by various well-known methods.
Figure 22(a) shows the input character. A symbol “#” indicates a character
pixel, i.e., a pixel with value 1. Background pixels with value 0 are shown
as blanks for the ease of visualization. A human thinning operator would
generate a skeleton with a straight vertical stroke at the left end. None of
the computer thinning algorithms (using 3 x 3 templates) can achieve this.

The 3 x 3 neighborhood of pixel “Z” is given in Figure 22(b). Figure 22(c)
shows the result of Guo’s thinning algorithm A1 [19] after iteration 5. Con-
sider the contour pixel marked “V” at the middle of the left-most column.

Figure 22(d) gives the neighborhood of this pixel. Since only 3 x 3 templates

59

HEves
100068008
(LA INi]]
00000008090 ———— (2111] "
FR008A0RENS 1 011 (I 1l]] [|
=v==> 20041000040 {021 | (1] | I
150880000000 | 011) ¢ (1] [}]
TE088 S06008 W -——--- 4 [} 1]]
0008 0840 [} [1]]
S0045 400409 [} [}]]
SEI00E000040 [] " § ’
100605048009 H i eeee- .
160000004400 f8004 | 011 | | B
060040004 ———=> Vidsi#d | ovl | i
06004000400 8944 1 011 | [B |
1660004400014 (A 1]] ————— [] []
046000040000] 4"] []
15088 10800 | §] ’
10608 08403 [} [} [] [}
S0005 Shad00 [} [} [} [}
100504800409 1] 114 ’ '
SO06E0000004 LI 1] [] [}
(LI I ELE] 400409 [N
(RIR2RIEL]]] (12X 1] (]
(RIIi 1] "
seidanINg
00049
{a) v tc) (d} te)

Figure 22: Character “B” and some thinning results using Guo’s algorithm
Al (% irput, (b) neighborhood of pixel “Z”, (c) after iteration 5, (d) neigh-
borh-ad of pixel “V”, (e) she final skeleton

are used, the matching result for pixel “V'” is no different from that of pixel
“Z™. Thus pixel “V™ will be deleted from the character in iteration 6, just
as pixel “Z™ was deleted in iteration 1. Several other pixels near pixel “V”
(see Figure 22(c)) are in a similar situation to “V”, and are also deleted.
As a result, a “valley” is formed at the middle-left part of the character
(Figure 22(e)). A character classification procedure is likely to recognize
Figure 22(e) as the number “8” rather than the letter “B”. Several existing
thinning algorithms using 3 x 3 templates will generate a skeleton similar to
this. This problem cannot be solved as long as only 3 x 3 templates are used.

Holt et al. [20] use a 4 x 4 window, which is still too small to correct the

above problem. Figure 23 shows a similar phenomenon when Holt’s method

60

(1111l

1869000498

1985600044 19408

06908504000 —————— 6044000 "

00000000000 I 0111 | (2212171 [2 1)
====> 200408000400 | 0211 | (L1121)]) [[}

80600000008 | 0111 | [I 1]] [] [}

00840 400404 | 0111 |] (1} § []

0088 dEds ——————] " [} §

$0034 Bo0ies [] "] [}

160040000004 " N [} 1

168400000004 1800008 emeee [.1

16800040004 (AXIX1]] | 0111 | M.

900005008 ——e=> WiSDIOS | oWl | (11)

4040000000 48409 | 0111 ¢ [I |

SHE400040004 (L LI N]) 1 0111 | . "

$ER060000404 " e] []

10408 BEdI0H [} [[}]

6008 S0000 [] (1] ’)

0004 dions [} (1] ’ [}

f00000008000 " " ’ [}

18080000484 1080080 [2

sebssiinegs siesseN [I2])

I IXI210)

108004400 111

196000000

(21122

(a) (b) () {d) (e)

Figure 23: Character “B” and some thinning results using Holt’s algorithm
{a) input, (b) neighborhood of pixel “Z”", (c) after iteration 2, (d) neighbor-
hood of pixel “W™”, (e) the final skeleton

is applied to the same input character.

Figure 23(b) shows the neighborhood of pixel (10,5) which is marked “Z”
in Figure 23(a). Figure 23(c) gives the result of iteration 2 of Holt’s method.
Pixel (18,8) is marked “W”. Figure 23(d) gives the neighborhood of pixel
“W”, which is identical to that of pixel “Z". Figure 23(e) gives the final
result.

The above examples demonstrate the fact that vertical strokes are criti-
cal in distinguishing between characters, such as “B” and “8”, “K” and “X",
“E” and “L”. In processing common characters, a shape-preserving thin-
ning algorithm should pay special attention to retaining vertical, horizontal,

and diagonal strokes. This problem was first noticed by Govindan and Shiv-

61

aprasad [17] who proposed a sequential method to make thinning algorithms
more shape-adaptive. In their method, contour-tracing algorithms are used
to identify the presence of right-angles, T-corners and acute-angle corners.
The pixels of the character contours are examined sequentially following a
contour-tracing algorithm. The chain code of several previous pixels is stored
to help in the decision about the current contour pixel. In the test for differ-
ent corners a neighborhood larger than 3 x 3 is required. Wigena and Li [50)
use part of a large template (5 x 5) to make thinning more shape-adaptive.
It is becoming more obvious that a larger window is necessary to improve
the quality of thinning, thus it is desirable to efficiently obtain information
from a larger neighborhood of the contour pixels.

Shape adaptive methods use larger templates which either require larger
memory or more complex testing. Because of the time and space limitation
of current computer technology, 9 x 9 templates have not been used. This
thesis proposes a simple parallel thinning algorithm which efficiently uses
information from a large neighborhood to preserve the shape of the resulting

skeleton.

62

5.2 Shape preservation using VR scheme

The variable resolution thinning algorithm can be best described by the

following pseudocode:

procedure VR _Thinning

repeat (for desired number of iterations)

{

for (for all image neighborhoods) do
if (small window suggests deletion of pizel)

{

take “rough” look at appropriate peripheral cells;
delete pixei only if there is no shape distortion;

}

Two steps in the above pseudocode need further explanation — how the
information in the peripheral cells is reduced, and how the shape distortion
is prevented using this information? Peripheral cells are reduced to a single
bit, 7. This bit essentially answers questions such as: “is there a vertical
stroke?”, “is there a horizontal stroke?”, or “is there a diagonal stroke?”. In
order to understand how 4 is obtained consider two values, a and B, for the
relevant peripheral cells. In the current experiment, a simple thresholding is

used to determine a as

{ 0 if there are > 5 character pixels in this region
a=

1 otherwise

63

a=1
B=1
0]1 0]1 o " |
0|1 0|1 0]
01 011 011
a=1
B=1
(a) (b) (c)

Figure 24: Example templates (a) a 3 x 3 template, (b) and (c) are variable
resolution templates.

The binary variable o is used to determine if the character has been
sufficiently thinned in this region. Care needs to be taken to prevent shape
distortion once a peripheral region is reduced to almost a line. This is done
using variable 8 which records some special pattern of the pixel arrangement
in a 3 x 3 peripheral region. For example, a 3 x 3 region with three “1” pixels
randomly arranged should be distinguished from three “1” pixels forming
a straight line in this region. In this work 8 is used to represent vertical,
horizontal and diagonal patterns. Before deleting a pixel, the a and 8 values
in the periphery are checked to avoid shape distortion. For example, if the
pixels immediately above and below the contour pixel are both object pixels
(with value “17), as shown in Figure 24(a), then a set of larger VR templates
are used. Figures 24(b) and 24(c) give examples of such templates. Here the
wym

value “1” for f represents a vertical edge. Other large templates are similar.

D \' D
H H
D \% D

1 23 45 67 89

Figure 25: A variable resolution template

These larger templates specify that the character possibly has a long
vertical stroke. A contour pixel should NOT be deleted if its neighborhood
matches any of these templates.

For any peripheral cell the number of meaningful values of the pair (a, B)
is 3. When a = 0, 8 is unimportant. When a = 1 only one value of
is checked, depending on the position of the peripheral cell with respect to
the central template. This point needs some further clarification. Consider
Figure 25 below. For the cells marked V' it is required to check if 8 = z vs.
B # z, where z is the value of J representing a vertical edge. Similarly, for
the cells marked H a test for horizontal edges, and for the corners marked
D a check for diagonal edges oriented towards the center is done. This
implies that for any outside cell the tests for a and § are: (i) @ = 0 or
(@ = 1,8 # z), and (ii) (@ = 1,8 = z). The binary variable ~ for each
peripheral cell is defined as follows: y = 0 if (i) above is true, and 4 = 1

if (ii) holds. Note that at most two of the peripheral cells are considered,

65

13111} 000 011 111

80000000 000 011 111

[ALLLI)] 000 011 111

904000000 2 meeee (1111}

40600000404 000 | 011 | 111 §6640 448 6044
~=> 286800400009 000 | 021 | 111 i I §]

004000009 000 | 011 | 111 [] "]]

$0544 S00000 —————] [} [}]

s8588 0004 000 011 111 [} [} 000 010 000]]

$6000 400004 000 011 111 [} [] 000 010 000 § [}

00000000000 000 011 111 [} (1} 000 011 o001] '

AL LT ITT) i e —————] §

S80000004009 06484 000 § 011 § 111 ¢ 4

000008000 ~=> THfis¢ 000 | 0T1 | 111 84

15000000009 144104 000 | 011 | 111 | .

V00000000000 " 0 ———-]]

(ALI LTl [} " 000 011 001]]

168840 s60804] § 000 010 000] 1]

SO0 40389 [} [} 000 010 000 1]]

$9004 400089 [}] § [}

60000000904 [} (1) [} []

setasesniscy [11 [}]

SRE0RARER0ND tiineg (11111

(A1 LN (211111 (]

1500004009 (11

0000800t

1Him

(a) (b} (c} (d) (e)

Figure 26: Character “B” and some thinning results using the proposed
algorithm (a) input, (b) neighborhood of pixel “Z”, (c) after iteration 5, (d)
neighborhood of pixel “T”, (e) the final skeleton

depending on the conditions prevailing in the inner window. That is, the v
values are generated for at most two peripheral regions.

Very few large templates are needed and the peripheral part of a tem-
plate can be stored and tested separately from the central part. Figure 26
demonstrates the use of the proposed method. Consider again the input
character “B” from Figure 22. Figure 26(b) gives the neighborhood of pixel
“Z". Figure 26(c) shows the result of iteration 5 with pixel (18,7) marked
“T”. The neighborhood of pixel “T™ is shown in Figure 26(d). The rules
described above can distinguish this neighborhood with that of pixel “Z”.
Figure 26(e) gives the final result, which looks more like the letter “B” rather

66

iHiiseaene 111 111 1
Hitireieny 111 111 111
Hhbitidasie 111 111 111

e L 1 L T A— HREIREIEE <—- I
it 000 | 111 | 100 i t
T 000 | 121 | 100 t 000 000 000 '
T 000 | 111 { 100 4 000 000 000 '
HiE e ' 000 000 000 '
Hid 000 111 100 b e '
i 000 111 100 ' 000 | 000 | 000 '
i 000 111 100 ' 111 | 181 | 111 '
i ' 000 | 111 | 000 '
T '
144 ' 000 010 000 '
i i 000 010 00N '
T ' 000 010 00D i
4 ' '
(a) (b) () (d) te)

Figure 27: Character “T” agc . .+ thinning results using the proposed

algorithm (a) input, (b) re‘sthertec i of pixel “Z”, (c) after iteration 3, (d)
neighborhood of pixel “E ° ‘' :'i¢ final skeleton
than numeral “8” since the straight vertical stroke is preserved.

Horizontal and diagonal edge preservation play an equally important role
in character recognition. Consider, for example, the characters “T” and “Y™.
Unless the horizontal stroke on a “T” is retained it may look like a “Y” with a
short top part. Figure 27 shows how a VR approach preserves the horizontal
part on a “T™.

The algorithm used to decide deletion of a pixel keeps a contour con-
nected. This has been proved in detail by Guo and Hall [19]. The VR thin-
ning algorithm, in addition, retains certain pixels if some conditions hold
in the periphery. Since a connected outline already exists before the VR
method is applied, all that is required to be shown is: peripheral tests do not

generate isolated object pixels. To prove this, consider a pixel that is not

Figure 28: Thinning results of the proposed algorithm for lines of various
orientations

deleted because it is part of a vertical stroke, (as in Figure 26(c)). The pixels
above and below this pixel will not be deleted because they are either part
of the vertical stroke, or part of the periphery which is thinned to almost
a line. This method starts retaining the pixels only when the periphery is
sufficiently thin. Therefore the peripheral cells are connected by Guo’s proof.
Also the pixels retained are connected to the peripheral outline by the argu-
ment above. Thus the pixels that are not deleted for preserving a vertical

stroke do not generate any disconnected contour.

68

69

Similar reasoning can be used to show that pixels retained in order to
maintain horizontal and diagonal edges keep the resulting contour connected.
Experimentally, a situation where the algorithm generated disjoint regions
was not encountered. Figure 28 shows the results for lines of various orien-

tations, demonstrating the connectedness property.

5.3 Complexity analysis of sequential method

Over the years different sets of templates and various functions and tests
have been proposed for character thinning. The (time and space) complexi-
ties of these methods are difficult to compare because of the different ways
in which algorithms are implemented. A simple way to directly compare
the complexity of thinning algorithms is to convert all the rules (templates,
functions, tests) into a large look-up table. If a template of size n x n is used,
n? — 1 pixels are involved, thus a table of 2"~ entries can be used. The
table entries are indexed by the values of the neighborhood pixels, and the
content of each entry should be either 0 (“do not delete”) or 1 (“delete”).
The table lookup operation takes one step, so the complexity of the algo-
rithm is completely converted to space complexity, which provides a ground
for comparison among algoritlims. It is obvious that the size of the table
grows rapidly as n increases.

The VR algorithm involves two stages:

(i) Checking the high resolution central window to determine if pixel needs
to be deleted.

(ii) Looking at the v value in the peripheral celis to ensure that deleting

center pixel does not distort the shape of the character being thinned.

A pixel is deleted only if (i) holds, and then (ii) is true. Thus the worst
case complexity of the VR algorithm equals the complexity of stage (i) plus
the complexity of stage (ii).

Each peripheral cell covers a 3 x 3 region. Hence the maximum number
of possible templates for a peripheral cell is 2%. The central window can have
at most 28 combinations. When the high resolution center suggests that a
pixel be deleted, at most two peripheral cells need to be checked to confirm
the deletion. For this situation the total number of computations is 3 x 28.
When the center test does not require deletion there is no need to perform
step (ii) above. In this case the computation of « values is not required, hence
the number of operations is at most 28. To compute the average number of
operations per pixel it is necessary to find out what proportion of pixels in a
given array are candidates for deletion. If a fraction p (between 0 and 1) of
pixels are considered for deletion then average cost equals (3p + (1 — p))28 =
(142p)28. The proportion p depends on the character being thinned and also
on the size of the array in which the digital shape is stored. For example, if
the character ‘T’ is stored in a 10 x 10 array the number of pixels considered
for deletion in a given iteration is at most 20 (one vertical and one horizontal
stroke). In this case p = -120% = 0.2, and the average complexity of the VR
scheme is (1 4 2 x 0.2)28 = 1.4 x 28, Similar analysis can be done for other
characters and array sizes. For the experiments reported in this thesis a
30 x 25 array was used. Most characters had 4 prominent strokes or less.

Thus for the examples considered p was less than or equal to -24—5, and the

0

average complexity was at most (1 42 x 5¢)2% = 1.32 x 25. That is, on the
average our method needs less than 1.5 times the amount of computation
required by procedures using 3 x 3 windows, for most practical situations.
The analysis given above considers sequential implementation of the al-
gorithm. It is important to note that our method is inherently parallel, and

can be very efficiently programmed on parallel computers.

5.4 Experimental results

The proposed algorithm was tested on all the letters of the English al-
phabet. The experiments with letters demonstrate preservation of vertical,
harizantal, and diagonal segments, as well as combinations of them. First
"t o e cince of the method on artificially generated binary characters is
shewn. ¥hen experiments with real images are presented.

In all of the following figures the symbol “~” indicates an object pixel
which has beep deleted and “#" represents a skeleton pixel. Each figure
contains four parts:

(a) input binary image,

(b) final skeleton generated by Holt's method [20] which uses 4 x 4 tem-
plates,

(c) final skeleton generated by Guo’s method [19] which uses 3 x 3 tem-
plates,

(d) improved skeleton generated by the variable resolution method.

Figures 29— 30 present the results on characters “D”, “P”, and “R”. For

these characters the VR algorithm preserves the vertical edges, which the

T o] e B =00 RRIN - LTI A

T I TTT LIt R —foemee- - ~fummmmnanf -
1989 0969 “4-- -1-- -4-- -f-- ~g=- -4--
1] e “§-- -~ -4-- == -4-- —f—
"es e -4-- -4-- ~4-- -f=-- -4-- N
1T " -4 -4 -f-- e -4-- e
0944 e ~f-- g -t-- e -§-- -—f-
1804 1eee -$-- -—t-- -4-- e -9-- Y
TT]) e -§-- - -4-- e -#-- -—--
1T i -f-- - ~4-- --i-- ~b- -
(111 1) -§-- e ~4=- o —§-- -
e T ~4-- - -4-- - ~§- e
thed 10804 -t~ S o == -t -#-- -—f--
111 e 4= e -fe- wefo- -4-- -
1 111 “te- -—f-- -§-- et -4-- -
111 e -4-- e -f-- -=f=- -§-- ~—fe-
1o e ~=m =t -1-- -—fe- -#-- -
ey tn -4-- b= ~t-- 4= -4-- -§--
11T Wi -4-- - o b - -
1eEasEnIIn e e f-- et i-- o §--
FORINRENININY e LTI AT T o e §--- S B .
L T T e 11 T IS S LTI TR
COBEDRNNNINS eemmeemmeaes mmmeeececeee emmeseeeseee

(a) {b) (c) td)

Figure 29: Character “D” and thinning results of three algorithms (a) input,
(b) Holt’s method, (c) Guo’s method, (d) proposed method

other two methods fai! to do. For the character “D” it can be seen that the
previous methods fail to retain the ve tical stroke, which makes it difficult to
differentiate the resulting outline from “O”. The output of the VR procedure
does retain the vertical edge on the left, hence the skeleton generated can be
clearly distinguished from an “O”. 2 similar phenomenon may be observed
in Figure 30. Here the other methods fail to retain the junction between the
vertical and horizontal edges in the middle part. This makes the resulting
outline appear like “A”. Part (d) of the figure shows that the VR technique
does not distort the shape.

Examples of horizontal edge preservation are shown in Figures 31 and
32. They illustrate how the edges of characters I and T are better preserved

by the variable-resolution scheme.

(111 (111}

i1ee 15548

i (113

[111 12112}

1111} (212

[111 1544
(a)

R R "-

-y-- _TE
-4-- ~tim
- -5
- -
-§-- T
e g
. —f-
o -
e LT 5

e e

T e I
——— by -
e
e

-~ -8-
o e
o e
-g-- —§--
= Y
e -
ofum —f-
{b)

e LI T T AT
[P t--
o -
- -t
—f-- -4
bt Rl -4
- -
-4 —f-
-4 -
-t~ PR
[U B
— e -

—mefo R
PRSI Y SR
———p - dam
e fom

[P J

[PEOUE Y
o —fe-
-4 [Y.
—fo— e
- -
~§-- ~~f 4=

(c)

-f-- -
—§-- -
- [o
- R P
- -
Y . —f
= —f-
-f-- -
(d)

Figure 30: Character “R" and thinning results of three algorithms (a) input,
(b) Holt’s method, (c) Guo’s method, {d) proposed method

CIBOOERERIIENE —mmmmememeene

CIORSIIINIIEND HER e "i--

CORROUBOINNENE —eech i me Y TTT RS TI I T I S T IITI

L L L T T T Re—— fommmmmem " '
s g -t —f--
T -t -t ——fun
08 ——fe -—-- ——p-
1o ——f-- —t-- —fe
16060 ——fum ——fee -
006 - ——po —f--
1T N —f- A
7] -t —fe- ——fen
T -—f-- “efo- ——fn-
T -—t-- - -—4--
" -t - —fm-
T - Sy g —f-
T e -—t-- =
i ——f— —-—t-- -—t--
e —t-- - —f-
i -—t-- —-—f-- —f--
T —y-- - —t--

T T YL T T e— fomomaen " '

CHUSORIERININE SIS HNN-RN RN T IS S TS

FONOONMIRIINEY —memmmmemeeeee

SOORBVEARIIINE emmcmmee

(a) (b) {c) (d)

Figure 31: Character “I” and thinning results of three algorithms (a) input,
(b) Holt’s method, (c) Guo’s method, (d) proposed method

The distortion of the horizontal edges for the character “I” can cause
it to be misclassified as an “X", especially when the vertical stroke is short.
Similar problems may arise when the T-junction is not preserved in Figure 32.
This can result in the character “T” being interpreted as “Y” by mistake.
Such errors are unlikely to occur in a VR scheme, as evident from the results
in part (d) of the two examples.

For some other characters such as N and Z, it is important that diagonal
edges be preserved. Figures 33— 34 exhibit this capability of the proposed
algorithm. The performance of variable-resolution thinning can be observed
to be much better for the characters “N” and “Z”. The outputs in (b) and
(c) of Figure 33 do not seem to resemble “N” as muc’ as in part (d). The

distortions caused by Guo's and Holt’s approaches (Figure 34) make the

74

IEREENININS N I I '"-

MIEEEIEIENN e 11T e TY TR Y 1T RO T TTYTTTY e

T ' ' ~4
1 -4-- “$-- -8
44 -4 -4-- -4-
T -9-- -em -1--
04 -4-- ~4-- ~4--
4 ~4e- —4e- -4--
" -4 ~$- -§--
T -$-- 4= -$--
T -4e e -9--
" -8 -4-- -4--
e -4 -4 -#--
s909 “4e- -4 -4--
at -4-- -§-- -4--
" -f-- -f-- -4--
" -4 -4-- -4--
“0es -t -0-- -4
e —— -4-- -4--
1544 -—-- ——-- ——--

(a) (o) {c) {d)

Figure 32: Character “T” and thinning results of three algorithms (a) input,
(b) Holt’s method, (c) Guo’s method, (d) proposed method

" I wmee el ———— eeae- ——— emea
i 1T T T e— m— e memsme eceme e L
T YT T T R— o mmmeen T P S
TITIIT YT T T "y - B Py ——fes —epepe- -
TTIIT [T T T BT 'Y e eoge- ——fme ecge-g- e
OITRT) s g - S P —pen
1S B T R T amfmm aefee ge ——fme eefem - —b--
TIITEIT Y —efe -p- B T mefmm mmfen f- Y
I LTI R e —mm e e —fem emfee - —pe-
TN YT Y T S T, S P T e eafee og- -—f--

BHESE W88 M mefee o= cefee acfes e mefen mofen afe —efe
SOR0E 00 I ~cl- ol e eofen ofe mefen acfem o aefa-
HEBE B BRI elem ofe cefen acfen e cwfes eafem wfe amfe-
I8 B0 HIIE el ofe e eafme ofe eefen cmfen efe eefes

) TR T TRy e L Ry . b —epee
T TN T IT - B P e e Y DY P
i 40 SEEIE - L T [O e ompm-
Ve YT T R D L " P L - e e
i T - R Ty | Y TRUR— § oeetee
s T TR . Y T T DY T P J e
e YT YT T R - e e eepe- S T
" 00008 ~epom emen - e —tpe-
(12 1))) eecce | cdm e mddae emmeee mmmee memesa
T T T R—— c—— mm—ae c——— - ———

(a) (D) {c} {d)

Figure 33: Character “N” and thinning results of three algorithms (a) input,
{b) Holt’s method, (c) Guo’s method, (d) proposed method

76

ISNNBINRININININENNY
FOEONNNNOIERIONTONInS SRAROIIRINIEI Il e
PESOUEONNIENIENIIENNY —mmommmemme e T Y Y Y I T T TT I T T e —EREERESRENIINNINEI—-
TANONEARETNNNININIINY ' --- §
TIIT] —foee —fm- B -
I ———- s ———f—
T — - ——fm—— ——ffoe—
T — e o
T ———- ———fmm—- ———fm——
T ———f e ———f——— T
I B $——- ——
T R p— S - ——fmee
Tt R——T— ———fee ———f——-
1909909 S — ———fomm S p—
1800048 —f— e P — -
o e - m—f—-
T B e -
TIITL e $ mem -
Ty —mm- ee- T ——f——
I ——f—- o ——f—

10004000 ———feee- S P U -

T ———fee e ——fee
HEBINESNEINUIINIIE) —aani — §
I T T — T T T T I e — SOREESHINININI- R ERER R OEIININEY-
HENLONNNNNRRIREIING
T AT AT I

{a) (b) (c) (d)

Figure 34: Character “Z” and thinning results of thre¢ algorithms (a) input,
(b) Holt’s method, (c) Guo’s method, (d) proposed 1+ i0d

resulting skeleton appear like the digit “2”. The proposed method, however,
preserves the corners sufficiently to obtain an almost perfect “Z”.

Several letters, such as E and H, are formed by a combination of horizontal
and vertical edges. The output for these characters is shown in Figures 35 and
36. It is easy to recognize “E” as “¢”, based on the output in Figure 35(b)
and (c). Also “H” can be wrongly classified as “X” (Figure 36(b) and (c)).
Such misclassification will not occur if the VR approach is used (part (d) of
Figures 35 and 36).

A comparison of results for various other letters which do not belong to
any of the above categories is shown in Figures 37— 38. Some more skeletons

generated by the Guo method, the Holt method, and the VR algorithm are

SHRERIREIINIES
SHOEDEEINSEITIN
THORREIIIRINIE ——— IR ————l ORI I ICON 00—
SAOISIERNINENIS s ¢ cfmmm mem——
SOENNNERENNNNNE o fovmammnneme a= fommmmm——————
T —fe- -—te- ——pe-
T - -—pe- ——fee
T - —f- e
o0 - —t-- -
T e —fen ——foe
I R PR —— cefomecmames am R
PERNENNIOANS S A — caefrarmees ccfemmem————
T I LTI IS
SE0PSRISINIS memfocmmonee aen fumemeace cofecmmme——-
HEEE0E000 804 . fmrmnmemen S S,
1117 - ——t-- ——fe-
TITT] e ——g-- -
PYTIT] S—— —fen o
T - - ——pe-
T XY IIITT) SO PR S P ccfemmm———m——
I, cmmfmecmrnecas cew foommemacooe cofmeccmemc————
SIENIINENITINN e LTI —— IR I IR -
EIINAIIIIIIIIIE mmmmmememm | eeecitit ceccmcm—ce———-
YT LI

(a) (b) {c} (d)

Figure 35: Character “E” and thinning results of three algorithms (a) input,
(b) Holt’s method, (c) Guo's method, (d) proposed method

presented in Appendix B. The present implementation does not attempt to
preserve circular or curved edges. This topic is left for future research. It
can be observed that the special appendages that are crucial to recognizing
the characters “G” and “Q” are fairly well preserved by the VR approach
(as well as by Guo’s algorithm). Holt’s method deletes some special features,
making a “G” look like a “C”.

The following figures demonstrate the performance of the proposed algo-
rithm on real images of printed text. Figure 39 shows the real image. The
image is converted to an integer array and thresholded. Figure 40 shows the
image after thresholding. Figures 41— 42 show the thinned outlines obtained

by Guo’s and Holt’s methods respectively. Finally, Figure 43 gives the cutput
g

[

T T T T T . abe memem emm cmme e
T T T T iy’ S T
000 G088 —mfmm == oo = o= =g
0008 00D ——f= ofe eefee) == o=
908 G088 == == emfee o afee e
0088 MBS - == eofee o —fe= e
$505 $H08 —=fo- efe mmfom of e e
1060 4808 = o= eefes eej ofee -
000 BHF = efn ecfee oo efe= ==
OOUROIEININ —cfumeeeen D Y TEer S — "-
0050440009 ' ' '] '] ' "

T T T T R T T Y A T T YT Y I I T IS
$E000RNINING ' s * '] ' '

L T LTI T T T T Y NORR - ' - - '

160 S0 e afm eofee enf e —afe
000 IR emfem ofe eefem caf afee e
1000 HIF efem =fm eefen eaf o= e
08 D eefee aBe eefee cof efee e
L L T T R T e R
00 HIFF mefee ofe eefee cofp efem e
L T T T R T Y S PO -
L T T S
T I T T 1 B cee mmem mmem

{a) {b) {c) {d)

Figure 36: Character “H” and thinning results of three algorithms (a) input,
(b) Holt’s method, (c) Gno’s method, (d) proposed method

L T I e T —
I =M= eemeeee e
T T —bhf - -ihe88--

I00EE000 R P — Y P . Y AT

TTTNTT] P Y R —hoe 4=

TITENTT B T — B - Y L

T -fa- -0-- -4~

" b -y -§n

1o -4-- -4-- R

1 -f-- -4-- -4--

T -4-- -4-- -

I e -4 -4--

1T “f-u -f-- ~§--

104 -4-- -be- -

TR R — R Lt

TR B P — B L — e

I HESRINY B P - L T T S LR T TT I

TR e g “foe —efe- R L

T Y T R T P T

T Y P - ——fmemfm “pomamefen
MINIB —=t0N- ——phie- ~$988 09
i eeeeeeeeeiciee mmeaan

(2) {db) (c) (d)

Figure 37: Character “G” and thinning results of three algorithms (a) input,
(b) Holt’s method, (¢) Guo’s method, (d) proposed method

o
fomo— —— —
S—— - —— NN
P———— -t —t —
- - - - - - -
w - - = - 4 4+
- - - - - - 4+
- - - - - o
- - o ol o, S S
- - - - - o
- - — 4 - -
- - e ol o S
- - - - - 4
" - — 4+ - - 4
- - 4 A A= - -
X o - - —
- . - -
o .- —— - - 4
S —-—t— ——— —
N - i —
o—— — — - -
RN —— ——— ——
™ -— - -—
) -} -] -]

Figure 38: Character “Q” and thinning results of three algorithms (a) input,
(b) Holt’s method, (c) Guo’s methed, (d) proposed method

of the VR approach. Note that the outline of the VR algorithm is superior
to those obtained by other techniques. Also the method preserves the shapes

of the characters “R”, “E”, “P”, and “L” much better than both Guo's and

Holt’s schemes.

79

80

Input Gray Scale Image

Figure 39

0L T E L
-———————u"____“---.--
*ssasesasesEanRanay) ——
.uuuﬁuuumm.a__“__
___—____——ﬂm“““-.....-..-

Ulll”. 0
.., 1

-
A

L —
M, 1

ing

Input Gray Scale Image After Threshold

40

igure

F

81

i1 : _

LT
___:rr::x M 4

I
1 *+++++++++++++
LU __:
HIL _ﬁ___
41483411 t::_
Hi T

st ‘__

T LLLULLLLL I n
P,

PiEttttttttttitttted '——_

HittiHH
11

st

+Htite44444411

— -~

———— ————

1t4444
114t

+
114

-0-—0— -

A___ #;tx
rif i
_# H4444 -;rx
.H JaRARALS H

Tttt
AL
T
‘ TIL N1
THH44H44444444
_;fx 444
‘ 1t 4++
44 Tt

I
I

Hi

|

il
til

Algorithm

inning

Output of Guo’s Thi

Figure 41

82

__+++++*+*+++W+w++++* ____
ittt
:Iﬁ*riti 141014
A TIL Nt ’:
_ e

HHHHHHHHHH

1l
Tl
_:EE ﬁ il
Hi HHI
HHTHH :_

e

444l
TEItHHHHHHHHHH ’__

Llabbabibbidiadtiitt

___*****b#”#*ﬁ_h_
el
____++**#ﬁwwww+++k+k++k+__

H“++h_ _ _ﬂ_ .__
L.

|
1

|

.I...I Hi

o
N
L
It

]
|
_ [y g

|
__*__

]

b

_+++++ il

! _:xx___

ing Algorithm

inn

Output of Holt’s Th

Figure 42

83

LI
AR RRRRAARRE]
T
HHiH
Mﬁk+++h
Litigaradddsll
Y RARARAARARARARAN]

—aammas - ——

4 _

TFT T

I

dddddddrilan bl

_—+~hhbbb-hbhbhbhhbb [
44444444444~4d4dd — —

il

1
I

ing Algorithm

mi

Output of proposed Thi

Figure 43

Chapter 6

Conclusion

6.1 Contribution

In this thesis, edge and corner preserving schemes for thinning and boundary
detection were presented, using a new variable-resolution approach. The
method takes a “rough” view of the peripheral region outside of the central
neighborhood when certain conditions exist in the inner window.

Normally, in existing boundary extraction algorithms the edge detection
is performed using the gradient operators, compass operators or using the
differentiation method. Though this stage is a parallel process, the subse-
quent edge linking is carried out as a sequential process. The VR boundary
extraction and character thinning algorithms are inherently parallel in nature
and are implementable on exi#ing parallel computers. When programmed
on a serial computer, the average complexity of the proposed scheme is only

a few times higher than methods using small uniform resolution windows.

84

Extensive experiments demonstrate that the VR scheme pexforms much
better on English letters compared to the best known existing techniques.
The VR thinning algorithm is able to preserve the shape of the corners and
the vertical and horizontal strokes thereby generating better skeletons. Cur-
rently this algorithm works for letters of English language. Similarly, the VR
method was able to extract better contours. The scheme is robust in nature

and performs well even when images are noisy.

6.2 Directions for Future Work

A gross test of boundary accuracy is whether the boundary succeeds in gen-
erally delineating the object. In some cases, the boundary extraction al-
gorithms fail to detect the accurate boundary of the object in the image.
Similarly the accuracy of the skeletons generated by the thinning algorithms
can only be compared visually. No quantitative measurement for evalusiing
the algorithms exist in the literature.

However, if such a quantitative critetion can be derived then a true cuiv
parison of the techniques, human independent, can be achieved. For bouné -
ary extraction, one method to test the accuracy of the algorithm is to store &
model of the object and then test the accuracy of the boundary with respect
to the model. The accuracy test that can be used hesé is to measure the
distance of the located boundary elements from the model and then apply
a statistical analysis to find the mean distance and maximum distance from
the ideal boundary. The performance of the method would then be inversely

proportional to the value of these two parameters. Though this approach of

85

testing the robustness of the algorithm is sound, it depends entirely on the
edge detector used in the preliminary stage of boundary extraction.

Also, it would be worth while to implement these algorithms on the exist-
ing multiprocessor architectures and compare the execution time, speed-up

obtained, and the quality of the resultant output with the other methods.

86

Bibliography

[1) C. Arcelli and G.S. Anuiti Di Baja. A width-independent fast thinning algo-
rithm. IEEE Trans. PAMI, 7(4):463-474, 1985.

[2] B. P. Ashkar and J. W. Modestino. The contour extraction problem with
biomedical applications. Computer Graphics and Image Processing, 7:331-
355, 1978.

[3) D. H. Ballard and C. M. Brown. Computer Vision. Prentice Hall, Englewood
Cliffs, New Jersey, 1982.

(4] A. Basu and X. Li. Variable resolution vision. Technical Report TR 90-14,
Dept. of Computing Science, University of Alberta, 1990.

[5] R. Bellman and S. Dreyfus. A pplied Dynamic Programming. Princeton Univ.
Press, Princeton, NJ, 1962.

[6] J. Canny. A computational approach to edge detection. IEEE Trans. PAMI,
8(6):679-698, 1986.

[7] B. D. Chen and P. Siy. Forward/backward contour tracing with feedback.
IEEE Trans. PAMI, 9(3):438-446, 1987.

(8] Y. Chen and W. Hsu. A modified fast parallel thinning algorithms for digital
patterns. Pattern Recognition Letters, 7(2):99-106, 1988.

[9] Y.P. Chien and K. S. Fu. A decision function method for boundary detection.
Computer Graphics and Image Processing, 3:125-140, 1974.

87

[10] R.T. Chin, H-K Wan, D.L. Stover, and R.D. Iverson. A one-pass thinning
algorithm and its parallel implementation. Computer Vision, Graphics and
Image processing, 40:30-40, 1987.

[11] J. 3. Clark. Singularity theory and phantom edges in scale space. IEEE
Trans. PAMI, 10:720-727, 1988.

[12] L. S. Davis. A survey of edge detection techniques. Computer Graphics and
Image Processing, 4:248-270, 1975.

[13] R. O. Duda and P. E. Hart. Use of the hough transformation to detect lines
and curves in pictures. Comm. ACM, pages 11-15, 1972,

[14] C. Dyer and A. Rosenfeld. Thinning algorithm for gray-scale pictures. IEEE
Trans. on PAMI, 1:88--89, 1979.

[15] W. Frei and C. C. Chen. Fast boundary detection: A generalization and a
new algorithm. IEEE Trans. Computers, 26(10):988-998, 1977.

[16] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison Wesley,
1992.

[17] V. Govindan and A. Shivaprasad. A pattern adaptive thinning algorithm.
Pattern Recognition, 20(6):623-637, 1987.

(18] P. Grattoni, F. Pollastri, and A. Premoli. A contour detection algorithm
based on the minimum radial inertia. Computer Vision, Graphics, and Image
Processing, 43:22-36, 1988.

(19} Z. Guo and R. Hall. Parallel thinning with two subiteration algorithms.
Comm. ACM, 32(3):359-373, 1989.

[20] C. Holt, A. Stewart, M. Clint, and R. Perrott. An improved parallel thinning
algorithm. Comm. ACM, 30(2):156-160, 1987.

[21] P. V. C. Hough. Methods and means of recognizing complex patterns. US
Patent 3069654, 1962.

88

[22] A. K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, Engle-
wood Cliffs, NJ 07632, 1989.

[23] F. Jelinek. A fast sequential decoding algorithm using a stack. IBM Journal
Res. Dev., 13:675-685, 1969.

[24] C. Kimmie, D.H. Ballard, and J. Sklansky. Finding circles by an array of
accumulators. Comm. ACM, 18:120-122, 1975.

[25] M. Kunt. Edge detection: A tutorial review. In Proc. ICASSP, pages 1172-
1175, 1982.

[26] P. Kwok. A thinning algorithm by contour generation. Comm. ACM,
31:1314-1324, 1988.

[27) V. Lacroix. A three-module strategy for edge detection. IEEE Trans. PAMI,
10(6):803-810, 1988.

[28] S. Levialdi. Edge extraction techniques. INRIA-CREST course on Computer
Vision, 1982.

[29] S. Licardie. Survey of edge detection techniques. Project Report for CM-
PUT509, Department of Computing Science, Univ. of Alberta, 1992.

[30] H. K. Liu. Two and three dimensional boundary detection. Computer Graph-
ics and Image Processing, 6:123-134, 1977.

[31) D. Marr. Vision. W.H. Freeman: San Francisco, 1982.

~ [32] D. Marr and E. Hildreth. Theory of edge detection. Proc. R. Soc. Lond. B,
207:187-217, 1980.

[33] A.Martelli. Edge detection using heuristic search methods. Computer Graph-
ics and Image Processing, 1:169-182, 1972.

[34] A. Martelli. An application of heuristic search methods to edge and contour
detection. Comm. ACM, 19(2):73-83, 1976.

89

[35) U. Montanari. On the optimal detectior of curves in noisy pictures. Comm.
ACM, 14:335-345, 1971.

[36] T.Pavlidis. A flexible parallel thinning algorithm. Proc. Conf. Pattern Recog-
nition Image Processir.g, pages 162-167. 1981.

[37] T. Peli and D. Malah. A study of edge detection algorithms. Computer
Vision, Graphics, and Image Processing, 20:1-21, 1982.

[38] R. Plamondon and C.Y. Suen. On the definition of reference skeletons for
comparing thinning algorithms. Proc. Vision Interface ’88, pages 70-75, 1988.

[39] A. Premoli, P. Grattoni, and F. Pollastri. A non-sequential contour detection
with a priori knowledge. Pattern Recognition Letters, 9:45-51, 1989.

[40] J. M. S. Prewitt. Object enhancement and extraction. In B. S. Lipkin
and A. Rosenfeld, editors, Picture Processing and Psychopictorics. Academic
Press, New York, 1970.

[41] A. Rosenfeld and A. C. Kak. Digital Picture Processing. Academic Press,
New York, 1976.

[42] J. Rovamo and V. Virsu. An estimation and application of the human cortical
magnification factor. Ezperimental Brain Research, 37:495-510, 1979.

[43] G. Sandini and V. Tagliasco. An anthropomorphic retina-like sensor for scene
analysis. Computer Graphics and Image Processing, 14(3):365-372, 1980.

[44) E. L. Schwartz. Computational anatomy and functional architecture of striate
cortex: A spatial-mapping approach to perceptual coding. Vision Research,
20:645-670, 1980.

[45] M. Shah, A. Sood, and R. Jain. Pulse and staircase edge models. Computer
Vision, Graphics, and Image Processing, 34:321-341, 1986.

[46] H. Tamura. A comparison of line thinning algorithms from Jigital geometry
view point. Proc. {th Int. Joint Conf. Patt. Rec., pages T15-719, 1978.

[47) V. Torre and T. A. Poggio. On edge detection. JEEE Trans. PAMI, 8(2):147-
163, 1986.

[48] V. Virsu znd J. Rovamo. Visual resolution, contrast sensitivity, and the
cortical ragnification factor. Ezperimental Brain Research, 37:475-494,1979.

[49] H. Wechsler and J. Sklansky. Finding the rib cage in chest radiographs.
Pattern Recognition, 9:21-30, 1977.

[50] A. Wigena and X. Li. Thinning algorithms and criteria. Proc. Canadian
Conf. Electrical and Computer Engineering, pages 765-770, 1989.

[51] D. J. Williams and M. Shah. Edge contours using multiple scales. Computer
Vision, Graphics, and Image Processing, 51:256-274, 1990.

[52] A. Witkin. Scale-space filtering. In Int’l Joint Conf. Al, pages 1019-1021,
1983.

[53] Y. Yeshurun and E.L. Schwartz. Shape description with a space varying
sensor: Algorithms for scan-path, fusion, and convergence over multiple scans.
IEEE Trans. PAMI, 11:1217-1222, 1989.

[54] S. Yu and W. Tsai. A new thinning algorithm for gray-scale images by the
relaxation technique. Pattern Recognition, 23:1067-1076, 1990.

[55] K. Sh. Zigangirov. Some sequential decoding procedures. Probl. Peredachi
Inf., 2:13-25, 1966.

91

Appendix A

Masks and Rule Windows for
Boundary Detection

1. Mask for Vertical Edge.

AR I LA LI L LA Ll Rl K

1 2 3 4 6 7 8 9

2. Mask for Horizontal Edge

x| x| x[x]x]x[x]x]x

1 23 45617289

3. Mask for Various Rotated Positions: Position 45 degrees

X

X

X
1 23 4561789

4. Mask for a Rotation of 135 degrees.

X
X
X
X
X
X
X
X
1 2 3 4 6 7 8 9
5. Rotation of 67.5 degrees
X
X
x!
X
X
X
X
1 2 3 4 6 7 8 9
6. Rotation Mask for 112.5 degrees
X
X
X
X
X
X
X
1 2 3 4 6 7 89

94

7. Rotation Mask for 157.5 degrees

1 2 3 45 6 7 89

95

Appendix B

Some more results on

Character Thinning

97

o - - -~ -+~ -+~ -
) - ~ -~ +— - -
- e =4 -+ -+~ -+ —+
- - - - +— -~
- -+~ -+ — -
- —— - — = —
- — —_— - — - —_—
(d)

(@) {b) {c)

Figure 44: Character “A” and thinning results of three algorithms (a) input,
(b) Holt’s method, (c) Guo’s method, (d) proposed method

HEH —t -
HEHH ——t- — S+ —
HEHH - . S
HEE d— — 4 - A+
Hit - e
Hit 4 4 +—
s 4 - -4—
Hit -+ $— -4
Hi -4 4 4
Hi 4 4 4
HH -+ -4 ~4—-
Hit 4 4 4
HH 4 4 4
Hib - - 4
HH b = A= - A -
HE I R S i &
HEHH b A i
HEHH —H- —HH- -
HHH — —_— —_—
@

{a) {b) (c)

Figure 45: Character “C" and thinning results of three algorithms (a) input,
(b) Holt's method, (c) Guo’s method, (d) proposed method

2 ||++++++++-BJ-+++++J-T*
s |+++++++++4.¢4...+++++J.*
s |+++++++++4~;+--+++++«-$

Figure 46: Character “F” and thinning results of three algorithms (a) input,
(b) Holt’s method, (c) Guo’s method, (d) proposed method

I
I ——
i) — - -
I ~+ + -+
" + -+ +
" + -+ +
" -+ -+ -+
" -+ -+ +
- -+ -+ <+
w -+ + -+
" -+ -+ +
" -+ -+ +
" -+ -+ +
" “+ -+ .
Lt -+ -+ -+
H W - 4+ - -+ - <4
" wm - 4 - 4 -+
W -+ 4 -+ -+ -+ -+
] - + +—4
Ll —H— —f— -t
e —_ - ——
" _— -+ —
He — — —
@)] @ L

Figure 47: Character “J” and thinning results of three algorithms (a) input,
(b) Holt's method, (c) Guo's method, (d) proposed method

98

99

[1+144HHHH41HE111

| 14111441111

|1+t+14HH111EEH4

]

p

|
|
|
|

input,

inning results of three algorithms (a) i
, () Guo’s method, (d) proposed method

Character “L” and th

(b) Holt’s method

Figure 48

TTT3veteseeannntasssasand
+++++#+_

__*HwHHHH+++++++*++++++++_

I +#+++++++++++++++++++++ |
+++++#+_

$4td
NE2 S ETUURTRRRTRRITYY

| +#++++++++++++++I+++++ |

sl
TLES A HHHTTTTTUTTITIOTIRY

input,

ing results of three algorithms (a)

inn
(b) Holt's method, (c) Guo’s method, (d) proposed method

+

Character “M” and th

Figure 49

i
i —t— —tHH— -H“""!—

I R e e e I
T s s s S T
W W - 8— b= —b— -i—
WA WA - - b= b d— -
W W - e b = —f— i
. I e e e e I
WA W - d— —d— — -i— -
WA WA - - b= d— —d— -
L R R e i o
W W - e b~ b— — -
R R e e S T
L T s o S T
W W b b b e e i
WA W e b= b— -i— -b— i
I B e e o
WA WA e e b b— -b— -
WA ~—p———e —f———ffm e}
WA S — el i
L R s L L L B
RN
(a)) (c) (d)

Figure 50: Character “O” and thinning results of three algorithms (a) input,
(b) Holt’s method, (c) Guo’s method, (d) proposed method

—

WONENE NN —N— -HE—
W ——t —
-meom - W - - - 4
w4 o+ -+ - o+
w4+ - -+
- w4 - - o+
"meom - A -+
- N - 4+ - - o+
" ow - - -+
- - W - - -+
— — A —
e . Y = 5
— — —— e
e —-—— 4 —
- + - -+
" + +- -+
- -+ +~ -+
" + +- -+
- + -+ -+
- -+ + -+
o . + +~
- + -+~ -+~
- - +~ -~
- -+ +~ -+~
- —_ -+~ +~
" — — —_—
] -] -] -]

Figure 51: Character “P” and thinning results of three algorithms (a) input,
(b) Holt’s method, (c) Guo’s method, (d) proposed method

HEHHHHHE
HAH
HEHHH
HH
HHH
HH¥
i
Hi
4

HE
HHEH
HHHH
FHEHH

(a)

Figure 52: Character “S” and thinning results of three algorithms (a) input,
{b) Holt’s method, (c) Guo’s method, (d) proposed method

n Hin
1 i
N L
LiLild i
Hin Hin
Hin it
Ll Wi
Hin i
i Hni
1 Hin
nn "N
e Hn
il Hn
L H
Ll Hn
L Lilld Han
Hin e
il Ha
sl
st
st
Hsinnann
HInrnnn

(a)

Figure 53: Character “U” and thinning results of three algorithms (a) input,
(b) Holt’s method, (c) Guo’s method, (d) proposed method

——EH-

—# - -

+— - 4

+— 4 4

+— ~+— +—

4 4 +—

4 4 +—

-+ +- -

“ei— ———

——H—- ——HIH—
—4- —- —f-
—4- —4- —4-
—t- —t- —3-
—4- —4- —4-
—t- —4- —4-
—4- - —+

HHHH— Pl $

o MMM -HEH-

(b) {c) @

P . e
- s i
- S-S s i
- SO s e
—tm A e e =t~ -
fem e —om b = -
—her e o A =i b
B e e s
- S ot el o
- e e S o
B B e e
- i i
- e e =
B s e el
B s o sl o
ot eedem b A= e -
e B —— - ——— —

(b)

(e)

{d)

101

m’m S ——— PP e e —
" 1N -4— —_— —_— — —_—
1084600 NN —f— —f— —— ——
00898 1IN —— ’ ’ 4 ' '
580009 I —p— ' ' s H H
900000 LTI p—— —y— ' ' + '
Wt e ' 4 ' 4 + '
HH HIH ' 4 + § ' H
HHHH SN —— H ’ ¢ '
T ¢ ' ' —_—— —_—— ——
SI0080 SIS ’ ’ ' ' -+ H
NINI0 SRIRONEE —— ——fi— ’ + ' ’
I I —_—— ' ¢ ' '
0000 $00N00S —— e ' M H '
15500099 10040840 —— —— ' ’ H '
POUEIEE BORRNNE —t— —r— —— —f— e
1594000 HIR1OND et o —— —— —f— e
SHUIHIIISIN ——— e ———p—
TSI —feepme B -
FIORIININENN ——f— ——— ——p—
FUISINNININE — —fp— —f————
HINIIN —— e —— e
IR —_— —— —_—
SONO0IE00E —_——
SHHESN _— — ——
I —_— —_— —_—
SEsERNINN —_— — -
O — _
e —_— ——
{a) {b) C] {d

Figure 54: Character “V” and thinning results of three algorithms (a) input,

(b) Holt’s method, (c) Guo’s method, (d) proposed method

W W —_— —— —_—— —
W Wi — R “fom e ——
Vil W -+— R t— -t
W Wl . —p— ~— .
W o -4— e e ——
W W -y b= e —— -4
W Wi -+— o o afom —p— -t
W Wl -+— - = e -
N W - —— = e -4—
W Wi -+— o e b Era.
W W e —t— -t - e -t
W Wi —-4— - - g
W W -t— ~tm - L -§—
W W e . — ~fm - — b —_ -t
[I T B e e
WAM VR W I S e o i N T L T
WA M e . e e e el o
W VR W T . o T e e
WM VRN WML W - e S el ey T T
W W W W - T e e it it
VW W YO W T i R e e e S o
W T W W B R T e e N e
VO T WA - T e e e et sons o
WA WA e el il ——— -§00— A
WA W ——— ——— ————
(a) ® © @

Figure 55: Character “W” and thinning results of three algorithms (a) input,

(b) Holt’s method, (c) Guo’s method, (d) proposed method

102

" "
it "
Liiid "
i un
s un
Hin
"t 1
sHitun
s
Hin
i
Liliiliddd
s 1
e N
i an
e Hn
" 1L
Hu "
" "

{a)

Figure 56: Character “X” and thinning results of three algorithms (a) input,

- -§-
- ~-§-
S — T,
- -t
—f—
e —f—
e

—t-t—-

b=t
e
e e
—f —f—
g
o -
—§— -3-

(b)

. '
—f -
S
—fe
g
——fomaf—
-3
——
-
—f—ef—
o
—f— —f—
- -
o ==
-y -4~
s -t

(c)

(d

(b) Holt's method, (c) Guo’s method, (d) proposed method

W W 4 -
[I I T
W W - -t
B s
W W N
WA e
WA e
e —y—
e B
o e
W -t
W 4
W -4
W -4—
W -y
W -+
WO -4
W -+
W -4
W 4
W ———
(a) ®)

Figure 57: Character “Y” and thinning results of three algorithms (a) irput,

(c)

-}
-t
-
-4
o

Y

(b) Holt’s method, (c) Guo's method, (d) proposed method

103

