
Robust Image Classification and Clustering via
Distribution learning

by

Zijie Tan

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Zijie Tan, 2024

Abstract

Distribution learning has long been a key area of research in computer vision.

However, the potential of combining distribution learning with deep learning

remains underexplored. To bridge this gap, this thesis discusses two proposed

methods. The first, Differentiable Arithmetic Distribution Module (DADM),

introduces differentiability to the construction of histograms, enabling deep

learning models to leverage distributional information more effectively. By

employing Kernel Density Estimate (KDE) within a deep learning framework,

DADM captures distribution information that is nearly invariant to affine

transformations, significantly enhancing the robustness of image classification

models against such variations. The second method, Deep Clustering via Dis-

tribution Learning (DCDL), extends the application of distribution learning

to clustering tasks, particularly in high-dimensional data spaces. DCDL inte-

grates distribution learning into deep clustering frameworks through the intro-

duction of Monte-Carlo Marginalization for Clustering (MCMarg-C), an algo-

rithm that optimizes cluster formation by directly learning the underlying data

distribution. This method improves clustering performance by maintaining

data structure through dimensionality reduction and manifold approximation.

Overall, this thesis aims to leverage the integration of distribution learning and

deep learning to address the limitations of traditional deep learning methods,

thereby developing more robust and scalable models for computer vision tasks

such as image classification and clustering.

ii

Preface

The main chapters in this thesis are based on papers that either have been

published or currently under review. Chapter 2 is based on the article pub-

lished as “Affine-Transformation-Invariant Image Classification by Differen-

tiable Arithmetic Distribution Module” in 4th International Conference on

Smart Multimedia, 2024. I was responsible for the idea formulation, imple-

mentation, and manuscript writing. Chapter 3 is based on the article “Deep

Clustering via Distribution Learning” which is submitted to Applied Intelli-

gence. I am a co-first author and was responsible for the idea formulation,

theoretical analysis, and manuscript writing.

The work in which I was involved during my MSc study are listed below

in chronological order:

• Zhao, C., Dong, G., Zhang, S., Tan, Z., & Basu, A. (2023). Fre-

quency Regularization: Reducing Information Redundancy in Convo-

lutional Neural Networks. In IEEE Access.

• Tan, Z., Dong, G., Zhao, C., & Basu, A. (2024). Affine-Transformation-

Invariant Image Classification by Differentiable Arithmetic Distribution

Module. In International Conference on Smart Multimedia

• Dong, G., Tan, Z., Zhao, C., & Basu, A. (2024). Deep Clustering via

Distribution Learning.

iii

To the Count

For teaching me everything I need to know about math.

iv

If people do not believe that mathematics is simple, it is only because they do

not realize how complicated life is.

– John von Neumann

v

Acknowledgements

First, I would like to express my sincere gratitude to my supervisor, Prof.

Anup Basu, for his valuable guidance and support across my MSc study. I

have learned a lot while studying in the Multimedia Research Center in the

last two years, which I believe will certainly benefit me for the rest of life.

I would like to thank my colleagues, Dr. Chenqiu Zhao and Guanfang

Dong, for all the great suggestions and feedback they gave me. They helped

me learn how to do research from the very beginning.

Also, I would like to thank Dr. Charles Chan for offering me the Chan

Pang-Kuen Memorial Scholarship. Without him, I wouldn’t be able to pursue

my studies in Canada.

Finally, I wish to express my deep gratitude to my family for their love

throughout this journey. Thank you to my parents for all their encouragement,

and thank you to Shuying for all her support.

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Statement . 3
1.3 Contributions . 3
1.4 Thesis Layout . 4

2 Affine-Transformation-Invariant Image Classification by Dif-
ferentiable Arithmetic Distribution Module 5
2.1 Introduction . 5
2.2 Related Work . 7
2.3 Method . 8

2.3.1 Differentiable Histogram 10
2.3.2 Differentiable Arithmetic Distribution Learning 12

2.4 Experimental Results . 13
2.4.1 Dataset . 15
2.4.2 Comparison with Convolutional Neural Network 15
2.4.3 Ablation Study . 17
2.4.4 Case Study . 19

2.5 Discussion . 21
2.6 Conclusion . 22

3 Deep Clustering via Distribution Learning 23
3.1 Introduction . 23
3.2 Related Work . 26

3.2.1 Deep Clustering . 26
3.2.2 Distribution Learning 27

3.3 Methodology . 28
3.3.1 Problem Statement and Challenges 28
3.3.2 Relationship between Distribution Learning and Clus-

tering . 29
3.3.3 Implementation Details of Deep Clustering via Distribu-

tion Learning (DCDL) 32
3.3.4 Image Encoding . 34
3.3.5 Uniform Manifold Approximation and Projection (UMAP) 34
3.3.6 Algorithm for Deep Clustering via Distribution Learning

(DCDL) . 37
3.4 Experimental Results . 37

3.4.1 Experimental Setting 37
3.4.2 Experimental Design 38
3.4.3 Experimental Results 40

3.5 Conclusion . 47

vii

4 Conclusion and Future Work 48
4.1 Conclusion . 48
4.2 Future Work . 49

References 50

viii

List of Tables

2.1 Details of architecture of the proposed model and the networks
selected for experiments. 14

2.2 Results of experiments comparing LeNet and our method on
the original and transformed data in MNIST, reported in Top-1
accuracy (%). Numbers in parentheses are the performance de-
crease compared to tests on original images, where lower values
represent better performance. 16

2.3 Results of experiments comparing the base classifier, CNN, and
our method on the original and transformed data in MNIST,
reported in Top-1 accuracy (%). Numbers in parentheses are
the performance decrease compared to tests on original images,
where lower values represent better performance. 18

2.4 The class-wise classification performance of LeNet and DADM
on MNIST, reported in Top-1 accuracy (%). 20

3.1 Comparison of different methods on MNIST, Fashion-
MNIST, USPS, and Pendigits datasets. Black bold rep-
resents the leading values, while red bold represents the second-
ranked values. 41

3.2 Comparison of DCDL (EM), DCDL (MCMarg), and
DCDL (MCMarg-C) on MNIST, FashionMNIST, USPS,
and Pendigits datasets. Bold values signify the top perfor-
mance metrics across the datasets. 43

ix

List of Figures

2.1 Network architecture and pipeline for our proposed method.
First, an image is transformed into a smoothed histogram via
Kernel Density Estimation (KDE). Then, the smoothed his-
togram is processed by the Sum Distribution Layer and Prod-
uct Distribution Layer to learn distributional information. Each
layer incorporates two 256 × 1 histogram kernels. Finally, the
outputs from both layers are classified through a Fully Con-
nected Layer. During testing, to verify affine transformation in-
variance, the input images are rotated, flipped, translated, and
shuffled. These affine transformations are applied only during
the testing phase. 9

2.2 An example of KDE-based approximations of histogram with
different bandwidth B. Note that the smoothed histogram gets
closer to the original histogram as B grows. We choose B =
0.001 in our implementation. 10

2.3 Histogram showing the Top-1 accuracy (%) of baseline methods
and DADM on MNIST dataset under various transformations. 15

2.4 An example of features extracted by CNN and DADM. From
top to bottom, the rows are: input images, feature maps ex-
tracted from LeNet, and the histograms computed by DADM.
From left to right, the columns represent: original, rotated,
translated, flipped, and shuffled images. 19

3.1 The Relationship between Clustering and Distribution
Learning. (a): Gray points represent the data to be clustered.
(b): The process of distribution learning. We consider each
data point is sampled from an underlying distribution, shown
as Step 0 with each point possessing a distinct color. Then, to
formulate an explicit expression of the distribution with cluster
information, we redistribute the model components and align
with the underlying prior distribution iteratively, as shown from
Step 1 to the last step. This optimization objective aligns with
clustering. 24

3.2 Pipeline of Deep Clustering via Distribution Learning
(DCDL). The symbols depicted in the figure can be found
with corresponding explanations in Algorithm 1. Different col-
ors in subfigures (a), (b), and (c) represent different labels in
the MNIST dataset. The arrows in (c) represent the direction of
marginalization in Monte Carlo Marginalization for Clustering
(MCMarg-C). 33

x

3.3 Visualizing latent space of the MNIST dataset using
autoencoder with and without using UMAP. We visual-
ize the plane projections of 0- and 1-dimensional spaces. We
observe that the latent space transformed by UMAP exhibits
sparser distributions between different labels and denser con-
centrations of points within each label. 36

3.4 Visual Comparison of MCMarg and MCMarg-C Clus-
tering Result. In each row, there is a separate control group.
On the left side are the visual results of MCMarg, while on
the right side are the visual results of MCMarg-C. Each clus-
ter is represented by points of different colors. The pie chart
illustrates the proportion of different points in the overall dis-
tribution. We can observe that MCMarg-C exhibits a more uni-
form clustering pattern, while MCMarg tends to use a smaller
number of Gaussians to describe the data distribution. 45

3.5 DCDL Error Cluster Examples on the MNIST Dataset.
Real Label represents the true label of the images on the right.
Incorrect Cluster Visualization shows the visual results of mis-
clustered examples. The label results of DCDL are shown above
each image. For Human Accuracy, we sought annotations from
three individuals considering randomized image presentation.
Accuracy reflects the agreement between human annotations
and the ground truth labels in the dataset. 46

xi

Chapter 1

Introduction

1.1 Motivation

Distribution learning refers to a category of machine learning techniques which

focus on understanding and modeling an underlying probability distribution

from which a set of independent data samples are drawn. It has been a classic

and popular research topic in computer vision [12], [20], [35]. The commonly-

used distribution learning methods are often divided into parametric and non-

parametric approaches based on whether they assume that the data follows

a known distribution with a fixed number of parameters [6], [30], [51]. For

example, Gaussian Mixture Model (GMM), one of the most popular paramet-

ric distribution learning method, is based on the assumption that the data is

generated from a mixture of a certain amount of Gaussian distributions [20].

On the other hand, Kernel Density Estimate (KDE) does not make such as-

sumptions, making it more flexible and, therefore, applied in both Chapter 2

and Chapter 3 in this thesis.

Recently, researchers also develop various deep learning techniques that in-

volves distribution information, covering a wide range of applications such as

image generation, style transfer, text classification, and etc [14], [44], [86], [90].

Despite these advancements, the connection between distribution learning and

deep learning is still not fully explored, especially in terms of how these two

techniques can be integrated to improve performance in computer vision tasks.

This thesis hence aims to bridge this gap by investigating the effective inte-

gration of distribution learning into deep learning models. The two proposed

1

methods discussed in this thesis dong2024deep, [69] are designed to explore

and leverage the integration between distribution learning and deep learning

techniques in the context of computer vision tasks.

The first work [69], discussed in Chapter 2, presents a distribution learning-

based approach for the task of image classification, named Differentiable Arith-

metic Distribution Module (DADM). It contributes to this topic by introducing

differentiability to the construction of histogram , since the histograms of pixel

values are commonly used to capture the distribution information in images.

Traditionally, the construction of histograms is not differentiable, limiting their

integration with deep learning frameworks that rely on gradient-based opti-

mization. To the best of our knowledge, this is the first work to incorporate

differentiable histograms within the context of distribution learning. By mak-

ing histograms differentiable, this approach allows models to efficiently lever-

age distributional information while fully utilizing gradient-based optimization

techniques. This is significant because conventional deep learning models of-

ten focus on spatial information, making them sensitive to variations such as

affine transformations, which can distort the spatial structure of images. In

contrast, DADM employs Kernel Density Estimation (KDE) to build differ-

entiable histograms within a deep learning framework, capturing distribution

information that is nearly invariant to affine transformations. We demonstrate

through the experimental results that the model becomes more robust to such

variations, enhancing its overall performance in image classification tasks.

Chapter 3 discusses the second study, Deep Clustering via Distribution

Learning (DCDL) dong2024deep. It extends the application of distribution

learning to clustering tasks, particularly in high-dimensional data spaces where

traditional algorithms like k-means often suffer from the curse of dimensional-

ity. DCDL integrates distribution learning into deep clustering frameworks to

improve clustering accuracy and robustness. The method introduces Monte-

Carlo Marginalization for Clustering (MCMarg-C), a novel algorithm that di-

rectly learns the underlying data distribution and optimizes cluster formation.

Additionally, DCDL employs an autoencoder for dimensionality reduction and

uses Uniform Manifold Approximation and Projection (UMAP) to maintain

2

the data’s structure in a lower-dimensional space. This integration creates a

more principled approach to clustering, supported by a theoretical foundation

that bridges distribution learning and clustering. Experimental results show

that DCDL outperforms state-of-the-art deep clustering methods, particularly

in high-dimensional contexts, making it a significant contribution to both the

theory and practice of clustering in computer vision.

1.2 Thesis Statement

This thesis proposes novel methodologies for integrating distribution learning

and deep learning in the tasks of image classification and clustering to enhance

the robustness and scalability of models in computer vision. By leveraging

the statistical properties and probability models of the data, the proposed

approaches aim to alleviate the limitations of traditional deep learning tech-

niques, particularly their sensitivity to affine transformations and the curse of

dimensionality.

1.3 Contributions

In this thesis, we present the following contributions:

• We propose the Differentiable Arithmetic Distribution Module (DADM)

for image classification, which employs kernel density estimation to ex-

tract differentiable histograms from images. This method enables the

model to learn distributional information that is invariant to affine trans-

formations, thereby enhancing robustness.

• We introduce the Deep Clustering via Distribution Learning (DCDL)

method, which integrates distribution learning into a deep clustering

framework. This approach incorporates manifold learning and Monte

Carlo marginalization techniques to improve clustering performance on

high-dimensional data. We also conduct a theoretical analysis to explore

the connection between distribution learning and clustering.

3

• Through extensive experimental evaluations, we demonstrate the effec-

tiveness and robustness of the proposed methods compared to traditional

deep learning techniques in the scenarios of image classification and clus-

tering.

1.4 Thesis Layout

The rest of this thesis is organized as follows: In Chapter 2, we introduce

the background, design, and evaluation of DADM. In Chapter 3, we cover

the details of DCDL and discuss how we connect clustering and distribution

learning. Chapter 4 gives the conclusion of the thesis and discusses about the

potential future work.

4

Chapter 2

Affine-Transformation-Invariant
Image Classification by
Differentiable Arithmetic
Distribution Module

2.1 Introduction

Convolutional Neural Network (CNN) has been a powerful and popular tool for

extracting features from images, enabling state-of-the-art performance in var-

ious computer vision tasks, such as object detection, image segmentation, and

image classification [16], [39], [60], [74]. However, CNNs are inherently weak

against some simple affine transformations such as rotation, since they rely

strongly on the spatial patterns in data [91]. Compared to the pattern infor-

mation, distribution information has the potential to provide affine-transform

invariance. Because it concentrates on the overall statistical properties and

probability distribution of pixels regardless of their exact spatial arrangement.

Therefore, to alleviate the aforementioned issue, we propose to learn the dis-

tribution information for classification task, in which the distribution learning

techniques are incorporated.

Distribution learning techniques are a group of methods wherein the fo-

cus is shifted from learning explicit patterns to understanding the underlying

statistical distributions and characteristics of the data. These approaches of-

ten seek to capture the broader, holistic properties of datasets rather than

5

narrowly focusing on specific, local patterns. For example, DIDL network [15]

utilizes the temporal distribution of pixel values across video frames, and learns

the underlying statistical features of background and foreground in different

scenes. In this work, we will instead focus on learning the spatial distribution

information of pixels in images, which can enable our model to capture the

affine-transformation-invariant features in input data, and thus make it more

robust against transformations such as rotation.

A common approach to describe distribution in computer vision is the

histogram of pixel values. However, the construction of histograms is not dif-

ferentiable, which makes it hard to efficiently integrate histograms and neural

networks. To address this problem, we utilize the Kernel Density Estima-

tion (KDE) to approximate the histogram. The key idea is that rather than

counting pixels and assigning them to discrete bins, we represent the data

distribution by overlaying a kernel function at each data point and summing

the contributions of these kernels across all data points. In this way, the bins

of histograms are transformed into smoothed probability density instead of

discrete counts, while preserving the statistical information.

In this work, a KDE-based method is formulated for constructing differen-

tiable histograms from images. Based on this, we propose a novel differentiable

arithmetic distribution module, which is explicitly crafted to learn the under-

lying probability distribution of the input space. This global feature fortifies

the model’s robustness against specific affine distortions, notably rotations.

At the same time, the differentiability enables spatial feature extraction for

the distribution learning techniques. The main contributions of this work are

summarized below:

• We propose the Differentiable Arithmetic Distribution Module (DADM)

that is adept at extracting inherent distribution information from images

while also offering resilience to certain affine transformations, such as

rotations.

• We utilize a KDE-based approach of constructing smoothed and differ-

entiable histograms, enabling a seamless integration of histograms and

6

neural network.

• We conduct experiments to evaluate and demonstrate the effectiveness

and robustness of the formulated method, including comparison with

the famous CNN-variant LeNet and an ablation study of the proposed

DADM network.

2.2 Related Work

Distribution learning is a technique that focuses on understanding the under-

lying probability distributions of data from the observed samples, rather than

solely identifying explicit patterns or features [35]. Modelling the entire data

distribution can provide a holistic view, which enhances invariance to common

transformations such as translations, scalings, and rotations. In addition, the

distribution information has been shown to be instrumental in many tasks

in computer vision, including image generation, background subtraction, seg-

mentation [89].

Although a histogram is an appropriate way to describe the probability

density function and thus to convey the distribution information, traditional

histogram is discrete and non-differentiable, making it challenging to be di-

rectly integrated into modern neural network frameworks that rely on gradient-

based optimization and backpropagation [57]. To address this issue, multiple

methods have been proposed to approximate the soft histogram in a continu-

ous and differentiable manner. One notable approach is the HOG [11] which

utilizes linear filtering operations and convolutions to approximate a piece-

wise differentiable histogram for pose estimation. Wang et al. proposed the

first learnable histogram layer for neural networks by formulating HOG with

a series of convolutional modules [75]. Furthermore, Sedighi et al. presented

a globally differentiable histogram layer by utilizing radial basis functions as

step functions in the backpropagation [64]. Peeples et al. further extended

their work to have adaptive number and width of bins [56].

While most of the aforementioned methods assume a predefined distribu-

tion of the data, KDE offers the flexibility to estimate the underlying distribu-

7

tion directly from the samples without prior assumptions [17]. For example,

though not directly applying KDE, HistoGAN [2] uses an inverse-quadratic

kernel function to compute a weighted contribution of pixels to the bins of

output histogram. Another related method is DeepHist [4], which is also based

on KDE. It uses a sigmoid-based kernel function to estimate the histogram of

pixels to separate the edge and color features in images. Nevertheless, this

method does not thoroughly explore the application of probability and distri-

bution information, but primarily use the histogram as a way to represent color

information. Our method, on the other hand, utilizes the Gaussian kernel and

considers the histogram in a probabilistic viewpoint, which adds values to the

robustness and effectiveness in image classification.

Based on these explorations, researchers seek to optimize the integration

of histograms and neural networks. For example, ImHistNet [32] is capable of

learning complex and subtle task-specific textural features and global statisti-

cal features directly from the image intensity, which is defined by a set of con-

volution operations. Similarly, PTFEM [94] is a texture enhancement network

module that uses an adaptive histogram equalization mechanism that pays spe-

cific attention to texture details and propagates the distribution information

across pyramid layers. While these traditional neural networks only use con-

volution operations to handle distribution information, the DIDL network [15]

presents the arithmetic distribution layers that directly consider histograms

as probability density functions. However, the construction of histogram in

a DIDL network is not differentiable, limiting its feature extraction ability

and computation speed. In this work, we enhance the arithmetic distribution

modules in the DIDL network with the proposed KDE-based differentiable

histogram module.

2.3 Method

In this section, we will discuss the mathematical details and implementations

of the proposed differentiable histogram module and the corresponding DADM

network. Since we focus on the task of image classification, we can first assume

8

Training

KDE

Approximation

Smoothed

Histogram

Kernel Size: 𝐵 × 2 × 256 × 1

Sum

Distribution Layer

Product

Distribution Layer

Kernel Size: 𝐵 × 2 × 256 × 1 Flatten

FC1: 512 → 256
Activated by ReLu

𝐵 × 256 × 1

FC2: 256 → 10
Sigmoid

𝐵 × 10 × 1
Testing

Rotate

Flip

Translation

Shuffle

Verifying

Affine-Transformation-

Invariantion
Model

KDE estimation formula

(see Section III.A)

Figure 2.1: Network architecture and pipeline for our proposed method. First, an image is transformed into a smoothed
histogram via Kernel Density Estimation (KDE). Then, the smoothed histogram is processed by the Sum Distribution Layer and
Product Distribution Layer to learn distributional information. Each layer incorporates two 256× 1 histogram kernels. Finally,
the outputs from both layers are classified through a Fully Connected Layer. During testing, to verify affine transformation
invariance, the input images are rotated, flipped, translated, and shuffled. These affine transformations are applied only during
the testing phase.

9

that the input space is the set of gray-scale images with one single channel

ranging from 0 to 255. This will not compromise the generalizability of our

approach because each channel of multi-channel images can also be seen as a

gray-scale image. In our implementation, the pixel values are narrowed into

the range of [−1, 1].

2.3.1 Differentiable Histogram

𝐵 = 0.001𝐵 = 0.05𝐵 = 0.1
…

Figure 2.2: An example of KDE-based approximations of histogram with
different bandwidth B. Note that the smoothed histogram gets closer to the
original histogram as B grows. We choose B = 0.001 in our implementation.

We represent the distribution of pixels in image with histogram since it is

simple and straightforward to interpret. And more importantly, it does not

assume a specific distribution for the data. This can be advantageous when

dealing with data of an unknown or complex distribution [37]. To integrate

histogram into the arithmetic distribution model, we approximate it using

differentiable functions, as illustrated in Fig 2.2.

To transform the discrete histogram into a smooth, differentiable approxi-

mated representation, we will first need to partition the range of pixel values.

The details of partitioning and the notations for deriving the differentiable

histogram are given below.

Notation: Let N be the number of bins in the desired representation of

histogram, where each bin will have the width W = 1−(−1)
N

= 2
N

and span

∆ = W
2
. For the i-th bin, it has left bound Li = −1 + (i − 1)W and right

bound Ri = −1+ iW . Therefore, the i-th bin is Xi = [−1+(i−1)W,−1+ iW]

centering at µi = −1 + (i− 1
2
)W , where i = 1, 2, 3, ..., N .

Inspired by DeepHist [4], we also utilize the KDE to compute the differen-

10

tiable approximation of the histogram, which operates by placing a kernel on

each data point (or pixel value in our case) and summing up the contributions

from all these kernels to obtain a smooth probability density function. Given

a set of pixel values x1, x2, ..., xM from image, the KDE estimate at point x in

the input space is given by:

f̂(x) =
1

MB

M
∑

j=1

K(
x− xj

B
), (2.1)

where K(·) is the selected non-negative kernel function, and B > 0 is a free

parameter called bandwidth which controls the smoothness of the estimated

function. And then by definition, the probability of a bin Xi is given by the

integral of the KDE function over the bin’s range:

P (Xi = µi) =

∫ Ri

Li

f̂(x)dx =

∫ µi+∆

µi−∆

f̂(x)dx (2.2)

Combining the Equations 2.1 and 2.2, we derive a unified expression for

computing the probability of bins with respect to the kernel function:

P (Xi = µi) =

∫ µi+∆

µi−∆

f̂(x)dx

=

∫ µi+∆

µi−∆

1

MB

M
∑

j=1

K(
x− xj

B
)dx

=
1

MB

M
∑

j=1

[
∫ µi+∆

µi−∆

K(
x− xj

B
)dx

]

(2.3)

The actual value of the above equation will depend on the selection of

kernel function K(·). Some popular kernel functions in KDE include Gaussian

Kernel, Epanechnikov kernel, Uniform Kernel, etc. In this paper, we choose

the Gaussian distribution K(x) = 1√
2π
e−

x2

2 as the kernel function. The final

11

equations for computing our differentiable histogram are given by:

P (Xi = µi) =
1

MB

M
∑

j=1

[
∫ µi+∆

µi−∆

K(
x− xj

B
)dx

]

=
1

MB

M
∑

j=1

[

erf(
x− xj

B
)

∣

∣

∣

∣

µi+∆

µi−∆

]

=
1

MB

M
∑

j=1

Gi(xj), (2.4)

where Gi(x) = erf(
µi − x+∆

B
)− erf(

µi − x−∆

B
)

and erf(x) =
2√
π

∫ x

0

e−t2dt.

2.3.2 Differentiable Arithmetic Distribution Learning

Together with the obtained differentiable function above, we adapt the product

distribution layer and sum distribution layer proposed in our previous work

[15] to design the differentiable arithmetic distribution module. For under-

standability, we will also introduce these two layers below.

In contrast to the convolution layer, which view input histograms merely

as vectors, the product distribution layer and sum distribution layer interpret

them as distributions to better describe the probability information and the

correlation between histogram entries. To accomplish this, these two layers

represent their learning kernels as histograms. That is, given the input and

output distributions denoted by random variables X and Z, the distribution

layers learn the distributions of learning kernels denoted by random variables

W and B such that Z = WX+B. Note that all distributions are described by

histograms in our work. The expressions of forward pass and backpropagation

are formulated as follow:

Product distribution layer:

fZ(z) =

∫ ∞

−∞
fW (w)fX(

z

w
)
1

|w|dw, forward

∇wi =
∞
∑

j=−∞
∇zjfX(

zj
i
)
1

|i| , backward
(2.5)

12

where fZ(z), fW (w), and fX(x) are probability density functions (PDF) that

represent the distributions of Z, W , X, respectively. And z, w, and x are the

entries of corresponding histogram.

Sum distribution layer:

fZ(z) =

∫ ∞

−∞
fB(b)fX(z − b)db, forward

∇bk =
∞
∑

j=−∞
∇zjfX(zj − k), backward

(2.6)

where, likewise, fB(b) and b are the PDF and histogram entries of the distri-

bution represented by B, respectively.

The proposed neural network module consists of a differentiable histogram

layer, a product distribution layer, and a sum distribution layer. Specifically,

the input images of size B× 1×H ×W will be first fed into the differentiable

histogram layer to generate the smoothed histograms of size B×N ×1, where

B is the batch size and N is a parameter representing the number of bins

in the desired histogram. The distribution layer then employs the learning

kernel of size N × 1 on this histogram and generate the output of the same

shape. This output will be further fed into the classifier module for image

classification result. More details of network architecture and the pipeline are

show in Fig. 2.1. The parameter configuration of network architecture is given

in Tab 2.1.

2.4 Experimental Results

In this section, we will discuss the experiments we conducted to evaluate the

performance of method and examine the affine transformation invariance. All

training and testing are performed on a NVIDIA RTX A4000. During training,

we applied the Adam optimizer with a learning rate of 0.001 and the Negative

Log Likelihood function as the loss function. An overall illustration of the

evaluation results is shown in Figure 2.3.

13

Table 2.1: Details of architecture of the proposed model and the networks selected for experiments.

LeNet Base Classifier CNN DADM
type size type size type size type size
Conv (1, 5, 5)× 6
Relu
MaxPool (2, 2)
Conv (6, 5, 5)× 16
Relu Conv (1, 3, 3)× 4 DiffDis
MaxPool (2, 2) Relu ProDis 1× 256× 1
Linear 120× 256 Linear 256× 784 Linear 256× 784 SumDis 1× 256× 1
Relu Relu Relu Relu
Linear 84× 120 Linear 512× 256 Linear 512× 256 Linear 512× 256
Relu Relu Relu Relu
Linear 10× 84 Linear 10× 512 Linear 10× 512 Linear 10× 512
Softmax Softmax Softmax Softmax

Note: Conv - Convolution layer, Relu - Rectified Linear Unit, ProDis - Product Distribution Layer, SumDis - Sum Distribution Layer,
DiffDis - Differentiable Histogram Layer.

14

Figure 2.3: Histogram showing the Top-1 accuracy (%) of baseline methods
and DADM on MNIST dataset under various transformations.

2.4.1 Dataset

To validate the robustness of our proposed model, we employ the MNIST

dataset, which is a widely-recognized benchmark in computer vision research.

The dataset encompasses 60,000 training images and an additional 10,000

testing images, each featuring handwritten digits ranging from 0 to 9. All

images are in grayscale and have dimensions of 28×28 pixels. We subject the

MNIST images to various transformations in order to evaluate and compare

the models’ performance under varying conditions.

2.4.2 Comparison with Convolutional Neural Network

To highlight the advantages of our proposed methodology over traditional Con-

volutional Neural Networks, we conduct a comprehensive comparative analysis

against the well-known LeNet [38] architecture. The details of architecture and

parameter are given in Table 2.1. Specifically, we evaluate the model’s robust-

15

Table 2.2: Results of experiments comparing LeNet and our method on the original and transformed data in MNIST, reported
in Top-1 accuracy (%). Numbers in parentheses are the performance decrease compared to tests on original images, where lower
values represent better performance.

Original Rotate Translate Flip Shuffle
LeNet 97.39 55.20 (42.19) 39.30 (58.09) 31.09 (66.3) 10.33 (87.06)
DADM 96.57 85.02 (11.65) 77.93 (18.74) 96.34 (0.33) 96.56 (0.11)

16

ness and performance under various affine transformations. The transforma-

tions in experiments include rotation, translation, and flipping. In addition,

we also test the model’s performance on randomly shuffled images. Training is

performed on the training set of the original MNIST dataset, while the testing

are performed on the testing set of the original and transformed dataset.

The details of selected transformation in experiment are listed as follow:

for the rotation, input images are rotated by a random degree ranging from 0

to 90; for the translation, input images are shifted to a arbitrary direction for

a random number of pixels with a maximum offset of 8; for the flipping, input

images are randomly flipped horizontally or vertically.

The results of experiments are listed in Table 2.2. Through the result of

comparison between LeNet and our method, we can see that though both

method perform closely on the original MNIST dataset with our method be-

ing only slightly less favorable, our method significantly outperforms LeNet

across all other categories of experiments where specific transformations are

applied to the input images. This demonstrates that our method is much

more robust against affine transformations than the classic CNN architectures

such as LeNet, while maintaining a comparable power to them in terms of

effectiveness.

2.4.3 Ablation Study

We perform an ablation study to further demonstrate the contributions of

individual components in our proposed neural network architecture. Specif-

ically, we investigate the role of DADM. As shown in Table 2.1, we derive

two baseline models for comparative analysis by removing the differentiable

arithmetic distribution module and replacing it with a convolution module.

They are tested under a similar experiment configuration to the one in Sec-

tion 2.4.2, where various transformations are applied to input data. Likewise,

the training only use the training images of the original MNIST dataset, and

the testing use the original and transformed testing images.

The results are summarized in Table 2.3. Several observations can be made

from the results. For the original data, the extremely narrow gap between our

17

Table 2.3: Results of experiments comparing the base classifier, CNN, and our method on the original and transformed data in
MNIST, reported in Top-1 accuracy (%). Numbers in parentheses are the performance decrease compared to tests on original
images, where lower values represent better performance.

Original Rotate Translate Flip Shuffle
Base 96.29 61.23 (35.06) 25.97 (70.32) 29.69 (66.60) 9.39 (86.90)
CNN 97.03 48.82 (48.21) 22.65 (74.38) 32.37 (64.66) 10.43 (86.60)
DADM 96.57 85.02 (11.65) 77.93 (18.74) 96.34 (0.33) 96.56 (0.11)

18

method and the two baselines suggests that the proposed approach maintains

a similar power as the CNN in terms of effectiveness. While for the trans-

formed data, our method again demonstrates its robustness against the affine

transformations since its accuracy are significantly higher than that of the

baselines.

2.4.4 Case Study

Figure 2.4: An example of features extracted by CNN and DADM. From top
to bottom, the rows are: input images, feature maps extracted from LeNet,
and the histograms computed by DADM. From left to right, the columns

represent: original, rotated, translated, flipped, and shuffled images.

To further reveal the reason behind such robustness of our model, we also

conduct a case study on the class-wise performance of DADM. The results are

detailed in Table 2.4, where the class-wise accuracy of LeNet is also listed as

the baseline. While both methods demonstrate high accuracy on the unaltered

images, LeNet shows relatively high sensitivity to various transformations of

images across all categories, especially for digits with complex shapes or less

distinct features such as “3” or “6”. This sensitivity in LeNet can be attributed

to its reliance on spatial features, which can be significantly altered by trans-

formations like rotation or flipping. DADM, on the other hand, shows higher

19

Table 2.4: The class-wise classification performance of LeNet and DADM on MNIST, reported in Top-1 accuracy (%).

Original Rotate Translate Flip Shuffle
LeNet DADM LeNet DADM LeNet DADM LeNet DADM LeNet DADM

Class 0 98.44 96.07 87.77 91.90 26.21 69.09 59.55 95.84 3.14 96.07
Class 1 98.40 99.43 63.38 96.22 35.34 98.41 81.49 99.20 6.33 99.43
Class 2 96.73 95.05 55.12 80.37 44.07 70.28 6.28 94.82 20.15 95.05
Class 3 97.44 96.59 47.99 79.36 48.34 72.50 38.72 96.35 21.05 96.59
Class 4 97.54 96.74 53.79 85.84 38.44 79.75 39.22 96.51 6.88 96.74
Class 5 98.11 95.58 56.10 82.16 51.4 71.81 0.48 95.35 22.04 95.58
Class 6 96.31 95.25 36.74 77.51 45.41 76.94 1.06 95.02 1.32 95.25
Class 7 97.75 97.28 42.49 91.68 39.26 84.36 2.51 95.05 12.96 97.28
Class 8 97.16 96.62 66.40 82.69 34.41 74.20 71.08 96.39 9.81 96.62
Class 9 95.89 96.56 42.32 80.49 31.28 78.49 3.23 96.33 0.59 96.56

20

stability under these transformations across different categories. Such stability

is largely due to DADM’s ability to learn and utilize the global distributional

information, which to some extent is invariant to spatial change.

Figure 2.4 shows an example of the feature extraction in LeNet and DADM

when classifying the digit “2”, providing further insights. While the image

is changed by various transformations, the histograms computed by DADM

maintain a consistent pattern, which is in contrast to the feature maps from

LeNet where each transformation results in a visibly different feature represen-

tation. This highlights that DADM can recognize the underlying distribution

despite the change of spatial arrangement of pixels, and thus can robustly

perform image classification against affine transformation or even more chal-

lenging transformations such as shuffling pixels.

2.5 Discussion

One significant advantage of this work is that it explores a new direction

that more closely resembles human visual capabilities, particularly regarding

handling affine transformations such as rotations. The presented method is

indeed more robust under these conditions, thereby making the model more

applicable to real-world scenarios where data can be in various orientations

and positions.

Furthermore, the proposed approach provides a differentiable histogram

construction method for the distribution layers. This differentiability allows

the distribution layers to learn not only the probability information in the raw

input images, but also the distributions of features extracted by other neural

network layers such as CNNs. This can further add value to distribution

learning and enhance the explainability of the input feature. We will further

our study to explore the abilities of our model in terms of these potential

directions in future work.

21

2.6 Conclusion

In this work, we proposed differentiable arithmetic distribution learning to

tackle the inherent limitations of CNNs in handling affine transformations. A

cornerstone of our approach was the application of a KDE-based differentiable

histogram as a replacement for traditional histograms. This provides us with a

differentiable approach to model data distributions, thereby paving the way for

seamless integration between distribution and neural networks. Accordingly,

we formulate a novel neural network module called DADM that effectively

captures the inherent distributional attributes of the input data. This results

in a model that is not only robust to affine transformations, but also retains

the advantages of conventional CNNs in local spatial feature extraction. Our

experiments, which includes an ablation study and a comparison with LeNet,

demonstrates the effectiveness and robustness of our approach. The results

show that, while the performance is comparable on original datasets, the re-

silience of our model against affine transformations is notably superior.

22

Chapter 3

Deep Clustering via
Distribution Learning

3.1 Introduction

Clustering is a fundamental task in the fields of data mining and computer

vision [93]. It involves grouping data points from a dataset into clusters, where

data points within the same cluster exhibit high similarity. While the opti-

mization target seems straightforward, the design of an end-to-end clustering

optimization method is not easy, especially considering high dimensional data.

Thus, deep clustering is proposed by leveraging the fitting ability of deep neu-

ral networks to reduce the dimensionality of data, which achieves better results

[61]. With this motivation, we embed the concept of deep clustering in our

proposed algorithm.

Given the dimension-reduced data, we still need a clustering algorithm to

form clusters in an unsupervised manner. In contrast to traditional clustering

algorithms like k-means, distribution learning aims to learn the probability

density functions from a set of data samples. Although some existing methods

embed distribution learning models such as Gaussian Mixture Model (GMM)

in deep clustering, there is still a lack of theoretical analysis to support their

relationship. Besides, most distribution learning methods are not optimized

for deep clustering. This leads to a constrained search space for distribution

learning algorithms, where dimensionality of the data cannot be high. Also,

unoptimized algorithms may form imbalanced or meaningless clusters.

23

(a) Data to be Clustered (b) Distribution Learning Process

Step:0 Step:1

……

Last Step
……

Figure 3.1: The Relationship between Clustering and Distribution Learning. (a): Gray points represent the data to
be clustered. (b): The process of distribution learning. We consider each data point is sampled from an underlying distribution,
shown as Step 0 with each point possessing a distinct color. Then, to formulate an explicit expression of the distribution with
cluster information, we redistribute the model components and align with the underlying prior distribution iteratively, as shown
from Step 1 to the last step. This optimization objective aligns with clustering.

24

The aforementioned limitations and the lack of theoretical foundations mo-

tivated us to propose Deep Clustering via Distribution Learning (DCDL). In

DCDL, we first theoretically analyze the relationship between the clustering

task and distribution learning. As Figure 3.1 shows, by treating each data

point as a sample from an underlying distribution and considering the entire

dataset as a mixture model, we can consider clustering as a process of simplify-

ing a prior distribution. Subfigure (a) demonstrates the data to be clustered.

Each point can represent a distribution component to form the initial mix-

ture distribution, as shown in Subfigure (b) at Step 0. However, the explicit

expression from Step 0 is meaningless since it does not convey the clustering

information. We need to redistribute to learn a meaningful distribution for

the clustering task. That is similar to compressing the prior distribution, as

shown in the last step.

Following this concept, distribution learning can have the same optimiza-

tion objective as clustering. The clustering results achieved by distribution

learning can now be supported by theory rather than relying solely on empir-

ical observation. Besides this, we propose a clustering-optimized distribution

learning method called Monte-Carlo Marginalization for Clustering (MCMarg-

C). In MCMarg-C, we penalize excessively large or small clusters and initialize

centers of clusters by prior guidance. In addition, MCMarg-C can also di-

rectly learn distributions from very high dimensions (784 dimensions). These

features, along with the remarkable experimental results on popular datasets,

suggest that our MCMarg-C may be one of the best distribution learning

methods in clustering.

The contributions in this paper are:

1. We conduct a theoretical analysis of the relationship between distribu-

tion learning and clustering. The analysis provides a novel perspective by

viewing each data point as a distribution component. Thus, the distri-

bution learning process can be seen as a redistribution of these Gaussian

kernels. This aligns with the optimization objectives of clustering, pro-

viding theoretical support for using distribution learning in clustering

25

problems.

2. We introduce Deep Clustering via Distribution Learning (DCDL). In

DCDL, we integrate distribution learning into the deep clustering frame-

work. We employ an auto-encoder for dimensionality reduction and

embed the latent vectors into a manifold space through manifold ap-

proximation. Finally, we use the proposed Monte-Carlo Marginalization

for Clustering (MCMarg-C) algorithm for distribution learning to ob-

tain cluster labels. Experimental results demonstrate that our DCDL

outperforms state-of-the-art deep clustering methods.

3. We propose a distribution learning method that is specifically designed

for the clustering task, named Monte Carlo Marginalization for Cluster-

ing (MCMarg-C). In MCMarg-C, we introduce prior guidance for means

of cluster centers and penalize excessively large or small clusters. Con-

sidering that Monte Carlo Marginalization can also be used for extremely

high dimensional data, MCMarg-C may be one of the best distribution

learning methods in clustering.

3.2 Related Work

3.2.1 Deep Clustering

Due to the suboptimal performance of traditional clustering methods when

applied directly to high-dimensional data, deep clustering methods have been

proposed to map high-dimensional data into a feature space that is more suit-

able for clustering. In general, algorithms for deep clustering can be catego-

rized into four main types: Deep Autoencoders (DAE) based algorithms [1],

[10], [24], [26], [31], [40], [47], [58], [62], [65], [66], [79], [84], [85], Variational

Autoencoders (VAE) based algorithms [8], [13], [21], [34], [41], [59], [77], Gen-

erative Adversarial Networks (GAN) based algorithms [23], [29], [49], [50], [68],

[83], [92], and Graph Neural Networks (GNN) based algorithms [7], [70], [72],

[87].

For DAE based deep clustering methods, Huang et al. introduced Deep

26

Embedding Network (DEN) [31] to enforce local constraints and group sparsity

constraints on the learning objectives of DAE. Peng et al. [58] proposed deeP

subspAce clusteRing with sparsiTY prior (PARTY) to enhance DAE with

structural priors on the samples. Ren et al. introduced Deep Density-based

Image Clustering (DDIC) [62] for density-based clustering on learned low-

dimensional features. Xie et al. proposed Deep Embedding Clustering (DEC)

[79] inspired by t-Distributed Stochastic Neighbor Embedding (t-SNE) [71],

which jointly optimizes the learning of features and clustering objectives. Guo

et al. improved DEC and introduced Improved Deep Embedded Clustering

(IDEC) [26]. Their improvements ensure local structure preservation during

the fine-tuning phase of DEC. Subsequently, Guo et al. also introduced Deep

Embedded Clustering with Data Augmentation (DEC-DA) [27] to enhance the

performance of DEC using data augmentation.

Recently, there has been a growing trend of DAE-based deep clustering

methods with traditional machine learning algorithms. Affeldt et al. in-

troduced Spectral Clustering via Ensemble Deep Autoencoder Learning (SC-

EDAE) [1] to integrate spectral clustering into DAE. Chen et al. introduced

Deep Manifold Clustering (DMC) [10]. They defined a locality-preserving ob-

jective to classify and parameterize unlabeled data points lying on multiple

manifolds. Although Deep Clustering via Distribution Learning (DCDL) also

embeds Uniform Manifold Approximation and Projection (UMAP), the only

purpose is to map features to a suitable space for distribution learning. In

fact, manifold space transformation is a common practice in both deep and

non-deep clustering methods [10], [18], [47], [67].

3.2.2 Distribution Learning

Distribution Learning focuses on finding the explicit expression for a given

distribution. Although distribution learning seems straightforward, there are

a limited number of methods for approximating distributions. Kernel Density

Estimation (KDE) [63] estimates the Probability Density Function (PDF) by

selecting an appropriate kernel function and computing the density. Gaussian

Mixture Model (GMM) [6] is a linear combination of multiple Gaussian distri-

27

butions, and each component distribution has its own mean, covariance, and

mixture weights. For GMM, the Expectation-Maximization (EM) [12] algo-

rithm is frequently used to update the GMM parameters. However, the EM

algorithm suffers from challenges in handling high-dimensional data and non-

differentiability, making it difficult to integrate with deep learning networks

[14], [36]. Thus, based on these needs, we proposed Monte-Carlo Marginal-

ization (MCMarg) [89] earlier, which is differentiable and can directly approx-

imate high-dimensional data. Also, some deep-learning distribution learn-

ing methods have been proposed. Arithmetic Distribution Neural Network

(ADNN) [90] converts distributions to histograms and histogram distribution

kernels are updated. Based on ADNN, some applications have also been pro-

posed, including moving object segmentation [15], vessel segmentation [88],

and affine-transformation-invariant image classification [69].

3.3 Methodology

In this section, we first provide a theoretical analysis that explains the rela-

tionship between clustering and distribution learning. Subsequently, guided

by the theoretical analysis, we demonstrate the pipeline and implementation

detail of Deep Clustering via Distribution Learning (DCDL).

3.3.1 Problem Statement and Challenges

The purpose of clustering is to divide data points into k groups or clusters, such

that points within the same cluster are similar to each other. However, due

to the high-dimensionality of images (a 28 × 28 image has 784 dimensions),

the complexity of searching for and optimizing cluster regions may increase

exponentially with increase in the number of dimensions [28]. Thus, directly

applying traditional clustering algorithms like K-means in a high-dimension

yields suboptimal results [14].

Using Monte Carlo Marginalization (MCMarg) and direct observations in

distribution learning, we significantly alleviated this issue, resulting in notable

advantages over traditional clustering methods. Nonetheless, a formal analy-

28

sis of the relationship between distribution learning and clustering is missing,

which leads to inefficiencies when directly applying distribution learning meth-

ods to clustering problems. In light of this, we will next provide a theoretical

review about the relationship between distribution learning and clustering and

extend our prior work accordingly.

3.3.2 Relationship between Distribution Learning and
Clustering

Given a clustering task in a multi-dimensional space, we want to give a theoret-

ical analysis that bridges the problems of distribution learning and clustering.

Let us start from the perspective of distribution learning and consider that all

data points are sampled from an intractable distribution. We first approxi-

mate the Probability Density Function (PDF) F(·) of this underlying target

distribution1 using Kernel Density Estimation (KDE) with Gaussian kernels.

Here, KDE places a kernel over each data point, and computes the density

estimate by adding these kernels. This process can be seen as computing a

mixture model of distributions whose probability density functions are kernel

functions. Mathematically, given a multi-dimensional dataset X = {xi} ⊂ R
d,

the estimated probability density function F(·) is:

F(x) =
1

N · |H| 12

N
∑

i=1

K(H− 1

2 · (x− xi)), (3.1)

where N = |X |, K(·) is the multivariate kernel function, and H is a positive-

definite d× d bandwidth matrix. Since we use the Gaussian kernel:

K(x) =
1

√

(2π)d
exp(−1

2
xTx), (3.2)

we can rewrite F(·) as:

F(x) =
1

N

N
∑

i=1

1
√

(2π)d|H|
exp(−1

2
(x− xi)

TH−1(x− xi))

=
N
∑

i=1

1

N
N (x;xi, H).

(3.3)

1The target distribution is the distribution we want to learn. It means that this distri-
bution has no explicit expression.

29

Compared to the PDF of a Gaussian Mixture Model (GMM):

p(x) =
K
∑

k=1

wkN (x;µk,Σk), (3.4)

where wk, µk and Σk are weight vector, mean vector and covariance matrix.

We can conclude that the estimated target distribution in Equation 3.3 can be

seen as another GMM that has N equal-weighted Gaussian components, each

of which is centred at a unique data point xi, and uses the bandwidth H as

its covariance matrix, as Figure 3.1 (b), Step 0 shows.

Thus, the optimization in a clustering problem can be reformulated from

the viewpoint of a distribution learning problem. That is, given the dataset

X , we consider it as a mixture model of N underlying distributions, where

each data point is sampled from the corresponding distribution component.

This underlying mixture model can be approximated by an equal-weighted

GMM mirroring the entire dataset q(x) =
∑N

i=1
1
N
N (x;xi, H). We then need

to optimize a set of parameters Θ = {(µk,Σk)|k = 1, . . . , K} for our GMM

p(x; Θ) =
∑K

k=1 wkN (x;µk,Σk), where K corresponds to the number of clus-

ters. The optimization is guided by minimizing its divergence D(·) from the

underlying distribution q(x). Mathematically,

Θ∗ = argmin
Θ

D(p(x; Θ)||q(x)). (3.5)

Now, each data point x must be assigned to exactly one cluster, which is

represented by a Gaussian component in our context. Hence, we can define a

latent variable zk such that zk = 1 if the k-th cluster is selected; and zk = 0

otherwise. Thus,
∑

k P (zk = 1) = 1. Now, we can formulate the process of

assigning data points to clusters as finding the k that maximizes the probability

of zk = 1. That is, given the GMM parameter Θ, the cluster of data point x

is:

C(x) = argmax
k

P (zk = 1|x,Θ). (3.6)

From Bayes’ theorem, we have P (zk = 1|x,Θ) = P (x|zk=1,Θ)P (zk=1)
P (x|Θ)

. Now, since

we have P (x|Θ) =
∑

k P (zk = 1)P (x|zk = 1,Θ) =
∑

k wkN (x; Θk), it can be

inferred that the a prior probability of P (zk = 1) can be represented by wk in

30

this scenario. Thus, Equation 3.6 can be rewritten as:

C(x) = argmax
k

wkN (x; Θk)
∑

i wiN (x; Θi)
. (3.7)

Additionally, to prevent any Gaussian component from having a signifi-

cantly larger weight, we introduce a loss penalty term to minimize the variance

of the weights of each Gaussian component. Specifically, we introduce GMM

Weight Standard Deviation Loss (LGMM-WSD):

LGMM-WSD =

√

√

√

√

1

K

K
∑

k=1

(wk − w̄)2 (3.8)

Where w̄ is the mean of weights in the learned GMM. Since standard deviation

of the weights is penalized, the weights are stabilized. We can use the following

Equation to determine the clusters:

C(x) = argmax
k

wkN (x; Θk)
∑

i wiN (x; Θi)

≃ argmax
k

N (x; Θk).
(3.9)

This way, the clustering problem is reformulated as a distribution learning

problem.

In practice, we use the monte-carlo marginalization method to approximate

the Kullback-Leibler (KL) divergence and guide the optimization process. It

first selects random unit vectors u⃗, and marginalizes both the estimated target

distribution q(x) and our GMM p(x; Θ) along u⃗ to obtain their respective

marginal distributions, which are then compared in a lower-dimensional space.

The optimization of the GMM parameters Θ is guided by minimizing the

KL divergence between these marginal distributions. Mathematically, this is

formulated as:

LKL(q(x), p(x; Θ)) =

∫

u⃗∈U
DKL(qu⃗(x · u⃗)||pu⃗(x · u⃗; Θ))du⃗

≃
∑

u⃗∈U
DKL(qu⃗(x · u⃗)||pu⃗(x · u⃗; Θ)),

(3.10)

where DKL(·) is the KL divergence, and U = {u⃗ ∈ M | ∥u⃗∥ = 1}.

31

Combining Equations 3.8 and 3.10, we can now derive a complete objective

function L(·). In our implementation, we also vectorize the computation of

this objective function for efficiency as follows:

L(x,w,Θ) = LKL(q(x),w
TΨ(x; Θ)) + c× LGMM-WSD, (3.11)

where w = [w1 w2 · · · wK]
T is a vector consisting of weights in the GMM,

c is a parameter that controls the impact of LGMM-WSD, and Ψ(x; Θ) =

[N (x; Θ1) N (x; Θ2) · · · N (x; ΘK)]
T is a vector-valued function, with each

entry representing a Gaussian component of the GMM.

Therefore, the learning and clustering can be expressed as:

C(x) = argmax
(k,w,Θ)

L(x,w,Θ)−1. (3.12)

3.3.3 Implementation Details of Deep Clustering via
Distribution Learning (DCDL)

As depicted in Figure 3.2, the proposed Deep Clustering via Distribution

Learning (DCDL) demonstrates significant improvements and modifications

compared to previous approaches. Consider a high-dimensional dataset X =

{xi}Ni=1, where xi ∈ R
n represents a high-dimensional data point. Initially,

dimensionality reduction is performed through a non-linear transformation by

an Autoencoder, i.e., fenc : Rn → R
m where m ≪ n, to find a compact rep-

resentation zi = fenc(xi) for each high-dimensional data point xi. As this

process involves deep neural networks, DCDL can also be categorized as a

Deep Clustering algorithm.

Subsequently, all the low-dimensional encoded data Z = {zi}Ni=1 under-

goes manifold approximation through Uniform Manifold Approximation and

Projection (UMAP), denoted as fumap : Rm → R
m′

. This maps the data to

a manifold space M = {m′
i}Ni=1, where m′

i = fumap(zi), to maintain the local

and global structure of the data in the new space.

Following this theoretical analysis in Section 3.3.2, we introduce an im-

proved version of the MCMarg distribution learning algorithm, named MCMarg-

C, specifically optimized for clustering tasks. The main enhancements in

32

…

𝑋 = {𝑥𝑖}𝑖=1𝑁
𝑓𝑒𝑛𝑐(𝑋) 𝑔𝜙(𝑍)𝑍 𝑀𝑀 = 𝑈𝑀𝐴𝑃(𝑍)

(a) Autoencoder Latent Variable Space (b) Manifold Space

Manifold

Transformation

(c) Distribution Learning by Monte Carlo

Marginalization for Clustering (MCMarg-C)

: Encoder

: AE latent variables

: Decoder

: Manifold transformed variables

: Random marginalization vector

Figure 3.2: Pipeline of Deep Clustering via Distribution Learning (DCDL). The symbols depicted in the figure can
be found with corresponding explanations in Algorithm 1. Different colors in subfigures (a), (b), and (c) represent different
labels in the MNIST dataset. The arrows in (c) represent the direction of marginalization in Monte Carlo Marginalization for
Clustering (MCMarg-C).

33

MCMarg-C include: (i) estimation of the Gaussian Mixture Model (GMM)

means µk through the k-means algorithm, i.e., µk = k-means (M), to enhance

the independence between model components; (ii) the introduction of a Gaus-

sian Mixture Model Weight Standard Deviation Loss (LGMM-WSD), to achieve

a balanced distribution of weights during the model learning process. This

enhances the stability of the clustering results and avoids the bias of an overly

dominant Gaussian component.

3.3.4 Image Encoding

The autoencoder (AE) is a commonly used method in deep clustering to re-

duce data dimension. AE consists of an encoder fenc(x) and a decoder gϕ(z);

the encoder maps a high-dimensional data point into a latent vector like

fenc : R
n → R

m. The decoder performs the opposite operation, mapping

from the latent space of dimension m back to the original high-dimensional

space, as gϕ(z) : R
m → R

n. Suppose we have N input data points in our high-

dimensional dataset X ; by applying the encoding function, we can obtain N

points in the latent space, collected into a matrix Z = {zi|i ∈ [1, N]} ∈ R
N×m.

We approximate the distribution of Z in the next step.

We use a simple autoencoder to perform feature embedding for high-

dimensional data. The first layer reduces the dimension from n to 500, followed

by another layer maintaining the dimension at 500. Finally, we pass the data

to a bottleneck layer that compresses the data into an m-dimensional latent

space. The decoder part of the AE operates in the reverse direction. It takes

the m-dimensional latent vector and gradually reconstructs the data back to

its original dimensionality.

3.3.5 Uniform Manifold Approximation and Projection
(UMAP)

In the previous section, our high-dimensional data X was mapped to Z =

{zi|i ∈ [1, N]} ∈ R
N×m. A manifold is a hypothetical space where locally it re-

sembles a Euclidean space, but globally it may have different shapes and struc-

tures. In our implementation, we chose to perform a Manifold Approximation

34

of the embedded data obtained from the autoencoder using Uniform Manifold

Approximation and Projection (UMAP) [48]. Specifically, the UMAP algo-

rithm consists of two steps. First, it reconstructs a neighborhood graph. In

this step, for each point xi in the dataset, UMAP determines its neighborhood

size and calculates a distance metric, such as the Euclidean distance metric.

Then, UMAP constructs a weighted graph w, where the weight of each point

xj in the local neighborhood of point xi is given by:

wij = exp

(

−d(xi, xj)
2

σi

)

(3.13)

Here, d(xi, xj) represents the distance between points xi and xj, and σi is a

parameter that adjusts the density of the local neighborhood.

Next, UMAP randomly selects some points in the manifold space for ini-

tialization. UMAP uses stochastic gradient descent to optimize the positions

of points in the manifold space. The objective is to minimize the cross-entropy

loss function, which quantifies the difference between the neighborhood graphs

in the high-dimensional and manifold spaces. Specifically, the following loss

function C is applied:

C =
∑

i,j

wij log

(

1

1 + a||yi − yj||2b
)

+ (1− wij) log

(

1− 1

1 + a||yi − yj||2b
)

(3.14)

Here, yi and yj represent points in the manifold space, and a and b are

curve parameters learned from the data using a robust regression model.

We visualize the embeddings of these two different spaces in Figure 3.3 for

the MNIST dataset. The data distribution without transformation appears

more disordered. However, the two-dimensional visualization results obtained

with UMAP are more cohesive.

35

(a) MNIST latent space without UMAP (b) MNIST latent space with UMAP

Figure 3.3: Visualizing latent space of the MNIST dataset using autoencoder with and without using UMAP.
We visualize the plane projections of 0- and 1-dimensional spaces. We observe that the latent space transformed by UMAP
exhibits sparser distributions between different labels and denser concentrations of points within each label.

36

3.3.6 Algorithm for Deep Clustering via Distribution
Learning (DCDL)

Algorithm 1 Deep Clustering via Distribution Learning (DCDL) with n Clus-
ters

Require: High-dimensional data {xi}Ni=1, where xi ∈ R
n

Ensure: Transformed representation {m′
i}Ni=1, GMM parameters {θGMM,k}nk=1

1: Initialize autoencoder parameters θenc
2: for each training iteration do
3: Encode xi to get zi = fenc(xi)
4: Decode zi to reconstruct x̂i = gϕ(zi)

5: Update θenc by minimizing
∑N

i=1 ∥xi − x̂i∥2
6: end for
7: Apply UMAP on encoded data {zi}Ni=1 to obtain {m′

i}Ni=1

8: Initialize GMM parameters {θGMM,k}nk=1 for n clusters
9: for each transformed sample m′

i do
10: for each cluster k = 1 to n do
11: Update parameters θGMM,k using MCMarg-C with m′

i

12: // The update can be represented as: θ
(t+1)
GMM,k =

MCMarg-C
(

θ
(t)
GMM,k,m

′
i

)

13: end for
14: end for

In order to better understand the proposed Deep Clustering via Distribu-

tion Learning (DCDL), we present the algorithm for DCDL in this section,

namely Algorithm 1.

3.4 Experimental Results

3.4.1 Experimental Setting

Our experiments are conducted on a NVIDIA RTX A4000 GPU. For the Auto-

Encoder (AE), we utilize the Adam optimizer with a learning rate of 0.001

and apply batch normalization before generating the encoded vector. For the

Gaussian Mixture Model (GMM), we use the Adam optimizer with a learning

rate of 0.0001, and the number of unit vectors sampled each time is 32. For

more experimental details, please refer our publicly available code.

37

3.4.2 Experimental Design

We first conduct a qualitative and quantitative analysis of the clustering results

for Deep Clustering by Distribution Learning (DCDL) on different datasets.

Next, we compare DCDL with the traditional Gaussian Mixture Model up-

dating algorithm, i.e., the Expectation-Maximization (EM) algorithm. Addi-

tionally, we present a qualitative and quantitative comparison between Monte

Carlo Marginalization Clustering (MCMarg-C) and the original MCMarg. Fi-

nally, we discuss the limitations of applying distribution learning in clustering

problems and potential improvement strategies.

Baseline Methods: Our initial motivation for designing DCDL is to achieve

state-of-the-art results. With this motivation, we conduct comparisons with

state-of-the-art deep clustering methods on popular datasets to demonstrate

the effectiveness of DCDL. These methods include DeepCluster [9], DCN [80],

IDEC [26], SR-k-mean [33], VaDE [34], ClusterGAN [50], JULE [81], DEPICT

[24], and DBC [40]; they have top performance in the field of deep clustering.

Subsequently, a deep neural network encodes the high-dimensional image

data into a low-dimensional space. This makes it possible to directly com-

pare our distribution learning approach (MCMarg-C) with the Expectation-

Maximization (EM) algorithm. Finally, we make a direct comparison with the

original MCMarg method to demonstrate the superiority of MCMarg-C.

Evaluation Metric: Our clustering performance is evaluated by three met-

rics: Adjusted Rand Index (ARI) [76], Normalized Mutual Information (NMI)

[19] and Top-1 Accuracy (ACC).

Adjusted Rand Index (ARI) is a corrected version of the Rand Index (RI)

and considers the effect of chance, making it suitable for evaluating the simi-

larity between true and predicted cluster assignments. The formula for calcu-

lating the Adjusted Rand Index takes into account the combinations of items

within the clusters:

ARI =

∑

ij

(

nij

2

)

−
[

∑

i

(

ai
2

)
∑

j

(

bj
2

)

]

/
(

n

2

)

1
2

[

∑

i

(

ai
2

)

+
∑

j

(

bj
2

)

]

−
[

∑

i

(

ai
2

)
∑

j

(

bj
2

)

]

/
(

n

2

)

, (3.15)

where nij is the number of objects in both cluster i of the true clustering and

38

cluster j of the predicted clustering. ai is the sum of nij over all j for a fixed

i. bj is the sum of nij over all i for a fixed j.

Normalized Mutual Information (NMI) is a statistical tool used to mea-

sure the similarity of clustering effects between two datasets. NMI is developed

based on the concept of Mutual Information (MI) and involves normalization

to ensure the evaluation is not affected by the size of clusters. Here, Mu-

tual Information is a measure of the mutual dependence between two random

variables. The definition of Mutual Information is given by:

MI(U, V) =
∑

u∈U

∑

v∈V
P (u, v) log

P (u, v)

P (u)P (v)
, (3.16)

where U and V are two random variables, P (u, v) is their joint probability

distribution, and P (u) and P (v) are their marginal probability distributions.

To overcome the issue of MI increasing with the number of clusters, normal-

ization is introduced. Normalized Mutual Information (NMI) is achieved by

dividing the MI value by a form of normalization, typically expressed as:

NMI(U, V) =
2×MI(U, V)

H(U) +H(V)
, (3.17)

where H(U) and H(V) are the entropies of the random variables U and V

respectively. This normalization ensures that the NMI value lies between 0

and 1, where 0 indicates no correlation and 1 indicates perfect correlation.

Top-1 Accuracy (ACC) is defined as the ratio of the number of times the

clustering algorithm correctly predicts the most likely category to the total

number of predictions made. Mathematically, assume a dataset contains N

samples. For each sample i, we can generate a predicted category ŷi using the

clustering algorithm and a true category yi. Top-1 Accuracy can be represented

by the following formula:

Top-1 Accuracy =
1

N

N
∑

i=1

1(ŷi = yi) (3.18)

Here, 1(ŷi = yi) is an indicator function that takes the value 1 when the

clustered category ŷi equals the true category yi, and is 0 otherwise.

39

3.4.3 Experimental Results

Comparison with State-of-the-Art Methods

Table 3.1 compares the clustering results of DCDL with state-of-the-art

methods on different datasets. Since these datasets come with labeled data,

we are able to calculate accuracy (ACC) and Normalized Mutual Information

(NMI). Quantitative comparisons based on ACC and NMI demonstrate the

promising clustering performance of DCDL. As a deep clustering algorithm,

DCDL achieves three first-place rankings in ACC and one second-place rank-

ing. For NMI, DCDL secures first-place ranking across all datasets.

In particular, although both explicit and implicit distribution learning

methods are indirectly used in deep clustering, they are both unable to deal

with high-dimensional data and imbalanced clusters. For example, DeepGMM

[73] learned the distribution explicitly via GMM. The EM algorithm they used

to update GMM is not specifically designed for the clustering task, which pro-

duces unsatisfactory result. On the other hands, VaDE [34] and ClusterGAN

[50], which learn implicit distribution formation, also achieves suboptimal re-

sults. VaDE utilizes Variational Autoencoder [36] to map the data into the

hypothetical distribution space. However, the actual data distribution may

not follow the distribution hypothesized by VAE, as shown by [3], [52], [78],

[89]. Thus, due to the differences between actual and presumed distributions,

the clustering task does not perform well. This drawbacks are also presented

in GAN based methods, where GAN [25] adversarially updates generators to

produce data that are close to the real data distribution. For deep cluster-

ing, GAN may learn better data distributions than VAE, as ClusterGAN is

better than VaDE in Table 3.1. However, MCMarg-C directly learns the ex-

plicit distribution without the concerns of high-dimensionality, which helps

MCMarg-C achieve better result than EM-based, VAE-based and GAN-based

deep clustering methods.

Moreover, for other deep clustering methods, we observe that DGG [82]

achieves higher accuracy on MNIST (0.9760) compared to DCDL (0.9722).

However, DGG’s NMI score is significantly lower than ours (0.8800, com-

40

Table 3.1: Comparison of different methods on MNIST, FashionMNIST, USPS, and Pendigits datasets. Black
bold represents the leading values, while red bold represents the second-ranked values.

Method MNIST FashionMNIST USPS Pendigits
ACC NMI ACC NMI ACC NMI ACC NMI

DeepGMM [73] 0.7250 0.6400 0.4540 0.4100 0.6540 0.5100 - -
DeepCluster [9] 0.7970 0.6610 0.5420 0.5100 0.5620 0.5400 - -
DCN [80] 0.8300 0.8100 0.5010 0.5580 0.6880 0.6830 0.7200 0.6900
DEC [79] 0.8630 0.8340 0.5180 0.5460 0.7620 0.7670 0.7010 0.6780
IDEC [26] 0.8810 0.8670 0.5290 0.5570 0.7610 0.7850 0.7840 0.7230
SC-EDAE [1] 0.9323 0.8793 - - 0.8178 0.8317 0.8731 0.8100
SR-k-means [33] 0.9390 0.8660 0.5070 0.5480 0.9010 0.9120 - -
VaDE [34] 0.9450 0.8760 0.5780 0.6300 0.5660 0.5120 - -
ClusterGAN [50] 0.9640 0.9210 0.6300 0.6400 - - 0.7700 0.7300
JULE [81] 0.9640 0.9130 0.5630 0.6080 0.9500 0.9130 - -
DBC [40] 0.9640 0.9170 - - - - - -
DEPICT [24] 0.9650 0.9170 0.5830 0.6200 0.8990 0.9060 - -
DGG [82] 0.9760 0.8800 0.6060 0.6100 0.9040 0.8200 - -

DCDL (Our) 0.9722 0.9278 0.6331 0.6992 0.9687 0.9222 0.8940 0.8768

41

pared to DCDL’s 0.9278). This also validates that our algorithm can actually

produce more balanced clustering results. Compared with non-distribution

learning deep clustering methods, these methods usually do not consider the

formation of data distribution but form clusters based on other evidences, such

as distance. However, since we provide a theoretical analysis for distribution

learning and design MCMarg-C that is more suitable for clustering, distribu-

tion learning may become a good choice for deep clustering. The superior

performance compared to non-distribution methods also verifies this.

Comparison with Expectation-Maximization (EM) and Original Monte

Carlo Marginalization (MCMarg)

The Expectation-Maximization (EM) algorithm is an iterative optimiza-

tion strategy used for estimating parameters in probabilistic models. The EM

algorithm was introduced in the 1970s [12]. Over the following 50 years, al-

though there have been numerous variations to the EM algorithm [20], [22],

[42], [43], [53], [54], most of them have been based on theoretical innovations

built upon the EM framework. No algorithm has managed to surpass the

prominence of EM.

In the E-step, based on the current parameter estimates, EM computes

or estimates the expected values of hidden variables. Then, the M-step up-

dates the parameter estimates to maximize the likelihood of the observed data.

When applied to a high-dimensional space, the EM algorithm faces two pri-

mary challenges. First, the EM algorithm is very sensitive to initial values and

may converge to a local optima in high-dimensional spaces. Second, the EM

algorithm requires update of the mean and covariance matrices for each Gaus-

sian component during the M-step. Since this process has polynomial time

complexity, the efficiency of the EM algorithm is significantly influenced by

dimensionality, making its convergence difficult and time-consuming in high-

dimensional spaces. Note that this is also one of the reasons why Variational

Autoencoders (VAE) [36] and Evidence Lower Bound (ELBO) were intro-

duced. As mentioned in the original VAE paper (Section 2.1.1), “the EM

algorithm cannot be used” if the distribution is intractable.

Since a deep neural network is involved in reducing the data dimensionality,

42

Table 3.2: Comparison of DCDL (EM), DCDL (MCMarg), and DCDL (MCMarg-C) on MNIST, FashionMNIST,
USPS, and Pendigits datasets. Bold values signify the top performance metrics across the datasets.

Method MNIST FashionMNIST
ACC NMI ARI ACC NMI ARI

DCDL(EM) 0.9721 0.9276 0.9397 0.5899 0.6629 0.4668
DCDL(MCMarg) 0.8331 0.8882 0.8188 0.5332 0.6521 0.4543
DCDL(MCMarg-C) 0.9722 0.9278 0.9399 0.6331 0.6992 0.5207

Method USPS Pendigits
ACC NMI ARI ACC NMI ARI

DCDL(EM) 0.9580 0.9012 0.9404 0.8928 0.8744 0.8070
DCDL(MCMarg) 0.8834 0.8976 0.8654 0.7307 0.8024 0.6359
DCDL(MCMarg-C) 0.9687 0.9222 0.9396 0.8940 0.8768 0.8090

43

we create a condition favorable to the EM algorithm. Thus, we also use the EM

algorithm to update the GMM components and compared it with MCMarg-C.

The comparison results are shown in Table 3.2.

In the comparisons, we find in all dataset, MCMarg-C marginally outper-

forms others. In this experiment, we utilized the EM algorithm implemented

in scikit-learn [55]. This experiment also confirms the excellent distribution

learning capabilities of the EM algorithm in low-dimensional spaces, which

is widely recognized in the academic community. Given a situation that is

beneficial to EM, MCMarg-C achieves even better results. Considering that

MCMarg-C is able to directly learn high-dimensional distributions and is dif-

ferentiable, MCMarg-C may be the best distribution learning method in the

field of clustering.

Table 3.2 presents a quantitative comparison between MCMarg-C and the

original MCMarg [14]. We can see that the performance gap between MCMarg-

C and MCMarg is even bigger than EM. The advantages of MCMarg-C come

from two factors. First, MCMarg-C incorporates the GMM-Weight Standard

Deviation Loss, which prevents clusters from dominating each other. Sec-

ond, MCMarg-C utilizes k-means as a prior to initialize the GMM means,

which accelerates the convergence of distribution learning. Thus, the improved

MCMarg-C can achieve better performance compared to our original MCMarg.

To further validate the above statement, we generate images using Dalle-3

[5] and obtain their two-dimensional data points based on the grayscale values.

Then, we perform distribution learning using both the MCMarg-C and MC-

Marg methods. The results are shown in Figure 3.4. Each row in the figure

represents a separate group. Different colors are used to represent each cluster

with points. The pie chart illustrates the proportion of different points in the

overall distribution. We can observe that MCMarg-C exhibits a more uniform

clustering trend, while MCMarg tends to use a smaller number of Gaussians

to describe the data distribution. For a clustering problem, MCMarg-C’s per-

formance is noticeably better.

44

(a) Bear Clustering Result by MCMarg (b) Bear Clustering Result by MCMarg-C

(c) Lion Clustering Result by MCMarg (d) Lion Clustering Result by MCMarg-C

(e) Shoe Clustering Result by MCMarg (f) Shoe Clustering Result by MCMarg-C

(g) Star Clustering Result by MCMarg (h) Star Clustering Result by MCMarg-C

Figure 3.4: Visual Comparison of MCMarg and MCMarg-C Cluster-
ing Result. In each row, there is a separate control group. On the left side are
the visual results of MCMarg, while on the right side are the visual results of
MCMarg-C. Each cluster is represented by points of different colors. The pie
chart illustrates the proportion of different points in the overall distribution.
We can observe that MCMarg-C exhibits a more uniform clustering pattern,
while MCMarg tends to use a smaller number of Gaussians to describe the
data distribution.

45

Further Discussion

Figure 3.5 presents incorrect clustering examples by DCDL on the MNIST

dataset. The Incorrect Cluster Visualization displays the misclassified exam-

ples. The numbers on each image represent DCDL’s clustering labels. Ad-

ditionally, we conduct a subjective study by three individuals with a back-

ground in computer vision to manually annotate these images. Before manual

annotation, we shuffle the order of the images. Finally, we compute the accu-

racy of manual annotations compared to the ground truth labels. The results

show that we do not achieve particularly high accuracy. The average accuracy

among the three individuals was 65%.

Through the observation of misclassified images, we find that these images

are indeed prone to confusion. For instance, digits belonging to category ‘3’

achieve only 39% correct classification. For the digit ‘3’, misclassified samples

tend to share a similar appearance with other digits, which is one of the reasons

for the ineffectiveness of DCDL. This finding shows the potential for DCDL

in detecting mis-labelled data.

3.5 Conclusion

In this paper, we introduced a novel deep clustering algorithm called Deep

Clustering via Distribution Learning (DCDL). This algorithm combines dis-

tribution learning with a deep clustering framework. With the theoretical anal-

ysis that supports distribution learning in clustering, we proposed clustering-

optimized Monte Carlo Marginalization for clustering (MCMarg-C) to obtain

clustering labels. Through the theoretical analysis and the improvements of

MCMarg specifically designed for clustering, DCDL demonstrated superior

performance compared to EM-based, VAE-based and GAN-based distribution

learning deep clustering methods.

46

Incorrect Cluster Visualization,

With Error Labels from DCDL above the images.

Real

Label

0

1

2

3

4

5

6

7

8

9

Human

Accuracy

86%

86%

53%

39%

46%

66%

56%

60%

76%

80%

Figure 3.5: DCDL Error Cluster Examples on the MNIST Dataset.
Real Label represents the true label of the images on the right. Incorrect
Cluster Visualization shows the visual results of mis-clustered examples. The
label results of DCDL are shown above each image. For Human Accuracy,
we sought annotations from three individuals considering randomized image
presentation. Accuracy reflects the agreement between human annotations
and the ground truth labels in the dataset.

47

Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this thesis, we introduced two novel approaches for integrating distribution

learning and deep learning into image classification and clustering tasks. The

primary objective was to explore the connection between distribution learn-

ing and deep learning, and enhance the robustness and scalability of models

accordingly, particularly in handling affine transformations and the curse of

dimensionality.

In Chapter 2, the Differentiable Arithmetic Distribution Module (DADM)

was proposed, which utilizes kernel density estimation to create differentiable

histograms from images. This method enables the model to learn distribu-

tional information that is invariant to affine transformations, significantly en-

hancing the robustness of image classification models. Chapter 3 presented the

Deep Clustering via Distribution Learning (DCDL), which integrates distri-

bution learning into a deep clustering framework. By incorporating manifold

learning and Monte Carlo marginalization techniques, DCDL can capture the

underlying statistical distributions of embedded features, which improves the

clustering performance on high-dimensional data.

Comprehensive experimental evaluations were also conducted to demon-

strate the effectiveness and robustness of the proposed methods in comparison

to the traditional and state-of-the-art approaches. Furthermore, this work pro-

vided theoretical insights into the relationships among distribution learning,

deep learning, affine transformation invariance, and clustering. This can con-

48

tribute to a deeper understanding of the benefits and limitations of distribution

learning techniques, offering insights for future research and development.

4.2 Future Work

The findings from this thesis have several implications for the field of computer

vision. The integration of distribution learning into image classification and

clustering frameworks offers a viable approach to enhancing the robustness of

models against affine transformations and high-dimensional data challenges.

Additionally, the proposed methods contribute to the development of more

scalable deep learning models, capable of handling large and complex datasets

more effectively and robustly.

Future research directions may include extending the principles and tech-

niques developed in this thesis to other computer vision tasks such as ob-

ject detection, semantic segmentation, and image generation. Further work

could also focus on optimizing the computational efficiency of DADM and

DCDL, making them more suitable for real-time applications. Investigating

other distribution learning techniques and their integration with deep learning

frameworks could yield additional improvements in model performance and

robustness.

49

References

[1] S. Affeldt, L. Labiod, and M. Nadif, “Spectral clustering via ensem-
ble deep autoencoder learning (sc-edae),” Pattern Recognition, vol. 108,
p. 107 522, 2020.

[2] M. Afifi, M. A. Brubaker, and M. S. Brown, “Histogan: Controlling colors
of gan-generated and real images via color histograms,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2021, pp. 7941–7950.

[3] J. Aneja, A. Schwing, J. Kautz, and A. Vahdat, “A contrastive learn-
ing approach for training variational autoencoder priors,” Advances in
neural information processing systems, vol. 34, pp. 480–493, 2021.

[4] M. Avi-Aharon, A. Arbelle, and T. R. Raviv, “Deephist: Differentiable
joint and color histogram layers for image-to-image translation,” arXiv
preprint arXiv:2005.03995, 2020.

[5] J. Betker, G. Goh, L. Jing, et al., “Improving image generation with bet-
ter captions,” Computer Science. https://cdn. openai. com/papers/dall-
e-3. pdf, 2023.

[6] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning. Springer, 2006, vol. 4.

[7] D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, and P. Cui, “Structural deep
clustering network,” in Proceedings of the web conference 2020, 2020,
pp. 1400–1410.

[8] L. Cao, S. Asadi, W. Zhu, C. Schmidli, and M. Sjöberg, “Simple, scalable,
and stable variational deep clustering,” in Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, Springer,
2020, pp. 108–124.

[9] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for
unsupervised learning of visual features,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 132–149.

[10] D. Chen, J. Lv, and Y. Zhang, “Unsupervised multi-manifold clustering
by learning deep representation,” in Workshops at the thirty-first AAAI
conference on artificial intelligence, 2017.

50

[11] W.-C. Chiu and M. Fritz, “See the difference: Direct pre-image recon-
struction and pose estimation by differentiating hog,” in Proceedings of
the IEEE International Conference on Computer Vision, 2015, pp. 468–
476.

[12] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the royal statis-
tical society: series B (methodological), vol. 39, no. 1, pp. 1–22, 1977.

[13] N. Dilokthanakul, P. A. Mediano, M. Garnelo, et al., “Deep unsuper-
vised clustering with gaussian mixture variational autoencoders,” arXiv
preprint arXiv:1611.02648, 2016.

[14] G. Dong, C. Zhao, and A. Basu, “Bridging distribution learning and im-
age clustering in high-dimensional space,” arXiv preprint arXiv:2308.15667,
2023.

[15] G. Dong, C. Zhao, X. Pan, and A. Basu, “Learning temporal distribution
and spatial correlation for universal moving object segmentation,” arXiv
preprint arXiv:2304.09949, 2023.

[16] G. Du, X. Cao, J. Liang, X. Chen, and Y. Zhan, “Medical image seg-
mentation based on u-net: A review.,” Journal of Imaging Science &
Technology, vol. 64, no. 2, 2020.

[17] A. Elgammal, R. Duraiswami, D. Harwood, and L. S. Davis, “Back-
ground and foreground modeling using nonparametric kernel density es-
timation for visual surveillance,” Proceedings of the IEEE, vol. 90, no. 7,
pp. 1151–1163, 2002.

[18] E. Elhamifar and R. Vidal, “Sparse manifold clustering and embedding,”
Advances in neural information processing systems, vol. 24, 2011.

[19] P. A. Estévez, M. Tesmer, C. A. Perez, and J. M. Zurada, “Normalized
mutual information feature selection,” IEEE Transactions on neural net-
works, vol. 20, no. 2, pp. 189–201, 2009.

[20] J. A. Fessler and A. O. Hero, “Space-alternating generalized expectation-
maximization algorithm,” IEEE Transactions on signal processing, vol. 42,
no. 10, pp. 2664–2677, 1994.

[21] J. A. Figueroa and A. R. Rivera, “Is simple better?: Revisiting simple
generative models for unsupervised clustering,” in NIPS Workshop on
Bayesian Deep Learning, 2017.

[22] A. E. Gelfand and A. F. Smith, “Sampling-based approaches to calculat-
ing marginal densities,” Journal of the American statistical association,
vol. 85, no. 410, pp. 398–409, 1990.

[23] K. Ghasedi, X. Wang, C. Deng, and H. Huang, “Balanced self-paced
learning for generative adversarial clustering network,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2019, pp. 4391–4400.

51

[24] K. Ghasedi Dizaji, A. Herandi, C. Deng, W. Cai, and H. Huang, “Deep
clustering via joint convolutional autoencoder embedding and relative
entropy minimization,” in Proceedings of the IEEE international confer-
ence on computer vision, 2017, pp. 5736–5745.

[25] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative adversar-
ial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144,
2020.

[26] X. Guo, L. Gao, X. Liu, and J. Yin, “Improved deep embedded clustering
with local structure preservation.,” in Ijcai, vol. 17, 2017, pp. 1753–1759.

[27] X. Guo, E. Zhu, X. Liu, and J. Yin, “Deep embedded clustering with
data augmentation,” in Asian conference on machine learning, PMLR,
2018, pp. 550–565.

[28] P. Hammer, Adaptive control processes: A guided tour (r. bellman), 1962.

[29] W. Harchaoui, P.-A. Mattei, and C. Bouveyron, “Deep adversarial gaus-
sian mixture auto-encoder for clustering,” 2017.

[30] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The el-
ements of statistical learning: data mining, inference, and prediction.
Springer, 2009, vol. 2.

[31] P. Huang, Y. Huang, W. Wang, and L. Wang, “Deep embedding net-
work for clustering,” in 2014 22nd International conference on pattern
recognition, IEEE, 2014, pp. 1532–1537.

[32] M. A. Hussain, G. Hamarneh, and R. Garbi, “Learnable image histograms-
based deep radiomics for renal cell carcinoma grading and staging,”
Computerized Medical Imaging and Graphics, vol. 90, p. 101 924, 2021.

[33] M. Jabi, M. Pedersoli, A. Mitiche, and I. B. Ayed, “Deep clustering: On
the link between discriminative models and k-means,” IEEE transactions
on pattern analysis and machine intelligence, vol. 43, no. 6, pp. 1887–
1896, 2019.

[34] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational deep
embedding: An unsupervised and generative approach to clustering,”
arXiv preprint arXiv:1611.05148, 2016.

[35] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. E. Schapire, and L.
Sellie, “On the learnability of discrete distributions,” in Proceedings of
the twenty-sixth annual ACM symposium on Theory of computing, 1994,
pp. 273–282.

[36] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[37] P. Kontkanen and P. Myllymäki, “Mdl histogram density estimation,”
in Artificial intelligence and statistics, PMLR, 2007, pp. 219–226.

52

[38] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[39] X. Lei, H. Pan, and X. Huang, “A dilated cnn model for image classifi-
cation,” IEEE Access, vol. 7, pp. 124 087–124 095, 2019.

[40] F. Li, H. Qiao, and B. Zhang, “Discriminatively boosted image clustering
with fully convolutional auto-encoders,” Pattern Recognition, vol. 83,
pp. 161–173, 2018.

[41] X. Li, Z. Chen, L. K. Poon, and N. L. Zhang, “Learning latent super-
structures in variational autoencoders for deep multidimensional clus-
tering,” arXiv preprint arXiv:1803.05206, 2018.

[42] C. Liu and D. B. Rubin, “The ecme algorithm: A simple extension of em
and ecm with faster monotone convergence,” Biometrika, vol. 81, no. 4,
pp. 633–648, 1994.

[43] C. Liu, D. B. Rubin, and Y. N. Wu, “Parameter expansion to accelerate
em: The px-em algorithm,” Biometrika, vol. 85, no. 4, pp. 755–770, 1998.

[44] H. Liu, F. Zhang, X. Zhang, et al., “Boosting few-shot text classification
via distribution estimation,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 37, 2023, pp. 13 219–13 227.

[45] L. Liu, Z. Pan, and B. Lei, “Learning a rotation invariant detector with
rotatable bounding box,” arXiv preprint arXiv:1711.09405, 2017.

[46] L. Liu, M. Saerbeck, and J. Dauwels, “Affine disentangled gan for inter-
pretable and robust av perception,” arXiv preprint arXiv:1907.05274,
2019.

[47] R. McConville, R. Santos-Rodriguez, R. J. Piechocki, and I. Craddock,
“N2d:(not too) deep clustering via clustering the local manifold of an au-
toencoded embedding,” in 2020 25th international conference on pattern
recognition (ICPR), IEEE, 2021, pp. 5145–5152.

[48] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold ap-
proximation and projection for dimension reduction,” arXiv preprint
arXiv:1802.03426, 2018.

[49] N. Mrabah, M. Bouguessa, and R. Ksantini, “Adversarial deep embedded
clustering: On a better trade-off between feature randomness and feature
drift,” IEEE Transactions on Knowledge and Data Engineering, vol. 34,
no. 4, pp. 1603–1617, 2020.

[50] S. Mukherjee, H. Asnani, E. Lin, and S. Kannan, “Clustergan: Latent
space clustering in generative adversarial networks,” in Proceedings of
the AAAI conference on artificial intelligence, vol. 33, 2019, pp. 4610–
4617.

[51] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press,
2012.

53

[52] E. Nalisnick, A. Matsukawa, Y. W. Teh, D. Gorur, and B. Lakshmi-
narayanan, “Do deep generative models know what they don’t know?”
arXiv preprint arXiv:1810.09136, 2018.

[53] S. K. Ng, T. Krishnan, and G. J. McLachlan, “The em algorithm,”
Handbook of computational statistics: concepts and methods, pp. 139–
172, 2012.

[54] S.-K. Ng and G. J. McLachlan, “On the choice of the number of blocks
with the incremental em algorithm for the fitting of normal mixtures,”
Statistics and Computing, vol. 13, pp. 45–55, 2003.

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[56] J. Peeples, W. Xu, and A. Zare, “Histogram layers for texture analysis,”
IEEE Transactions on Artificial Intelligence, vol. 3, no. 4, pp. 541–552,
2021.

[57] J. Peeples, A. Zare, J. Dale, and J. Keller, “Histogram layers for synthetic
aperture sonar imagery,” in 2022 21st IEEE International Conference on
Machine Learning and Applications (ICMLA), IEEE, 2022, pp. 176–182.

[58] X. Peng, S. Xiao, J. Feng, W.-Y. Yau, and Z. Yi, “Deep subspace clus-
tering with sparsity prior.,” in IJCAI, 2016, pp. 1925–1931.

[59] V. Prasad, D. Das, and B. Bhowmick, “Variational clustering: Leverag-
ing variational autoencoders for image clustering,” in 2020 international
joint conference on neural networks (IJCNN), IEEE, 2020, pp. 1–10.

[60] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, 2015.

[61] Y. Ren, J. Pu, Z. Yang, et al., “Deep clustering: A comprehensive sur-
vey,” arXiv preprint arXiv:2210.04142, 2022.

[62] Y. Ren, N. Wang, M. Li, and Z. Xu, “Deep density-based image cluster-
ing,” Knowledge-Based Systems, vol. 197, p. 105 841, 2020.

[63] M. Rosenblatt, “Remarks on some nonparametric estimates of a density
function,” The annals of mathematical statistics, pp. 832–837, 1956.

[64] V. Sedighi and J. Fridrich, “Histogram layer, moving convolutional neu-
ral networks towards feature-based steganalysis,” Electronic Imaging,
vol. 29, pp. 50–55, 2017.

[65] S. A. Shah and V. Koltun, “Robust continuous clustering,” Proceedings
of the National Academy of Sciences, vol. 114, no. 37, pp. 9814–9819,
2017.

54

[66] C. Song, F. Liu, Y. Huang, L. Wang, and T. Tan, “Auto-encoder based
data clustering,” in Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications: 18th Iberoamerican Congress, CIARP
2013, Havana, Cuba, November 20-23, 2013, Proceedings, Part I 18,
Springer, 2013, pp. 117–124.

[67] R. Souvenir and R. Pless, “Manifold clustering,” in Tenth IEEE Inter-
national Conference on Computer Vision (ICCV’05) Volume 1, IEEE,
vol. 1, 2005, pp. 648–653.

[68] J. T. Springenberg, “Unsupervised and semi-supervised learning with
categorical generative adversarial networks,” arXiv preprint arXiv:1511.06390,
2015.

[69] Z. Tan, G. Dong, C. Zhao, and A. Basu, “Affine-transformation-invariant
image classification by differentiable arithmetic distribution module,”
arXiv preprint arXiv:2309.00752, 2023.

[70] Z. Tao, H. Liu, J. Li, Z. Wang, and Y. Fu, “Adversarial graph embedding
for ensemble clustering,” in International Joint Conferences on Artificial
Intelligence Organization, 2019.

[71] L. Van Der Maaten, “Learning a parametric embedding by preserving
local structure,” in Artificial intelligence and statistics, PMLR, 2009,
pp. 384–391.

[72] C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang, “Attributed
graph clustering: A deep attentional embedding approach,” arXiv preprint
arXiv:1906.06532, 2019.

[73] J. Wang and J. Jiang, “Unsupervised deep clustering via adaptive gmm
modeling and optimization,” Neurocomputing, vol. 433, pp. 199–211,
2021.

[74] W. Wang, Y. Yang, X. Wang, W. Wang, and J. Li, “Development of
convolutional neural network and its application in image classification:
A survey,” Optical Engineering, vol. 58, no. 4, pp. 040 901–040 901, 2019.

[75] Z. Wang, H. Li, W. Ouyang, and X. Wang, “Learnable histogram: Sta-
tistical context features for deep neural networks,” in Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11–14, 2016, Proceedings, Part I 14, Springer, 2016, pp. 246–
262.

[76] M. J. Warrens and H. van der Hoef, “Understanding the adjusted rand
index and other partition comparison indices based on counting object
pairs,” Journal of Classification, vol. 39, no. 3, pp. 487–509, 2022.

[77] M. Willetts, S. Roberts, and C. Holmes, “Disentangling to cluster: Gaus-
sian mixture variational ladder autoencoders,” arXiv preprint arXiv:1909.11501,
2019.

55

[78] Z. Xiao, K. Kreis, J. Kautz, and A. Vahdat, “Vaebm: A symbiosis be-
tween variational autoencoders and energy-based models,” arXiv preprint
arXiv:2010.00654, 2020.

[79] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in International conference on machine learning,
PMLR, 2016, pp. 478–487.

[80] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-means-
friendly spaces: Simultaneous deep learning and clustering,” in interna-
tional conference on machine learning, PMLR, 2017, pp. 3861–3870.

[81] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of deep
representations and image clusters,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2016, pp. 5147–5156.

[82] L. Yang, N.-M. Cheung, J. Li, and J. Fang, “Deep clustering by gaussian
mixture variational autoencoders with graph embedding,” in Proceedings
of the IEEE/CVF international conference on computer vision, 2019,
pp. 6440–6449.

[83] X. Yang, J. Yan, Y. Cheng, and Y. Zhang, “Learning deep generative
clustering via mutual information maximization,” IEEE Transactions on
Neural Networks and Learning Systems, 2022.

[84] X. Yang, C. Deng, K. Wei, J. Yan, and W. Liu, “Adversarial learning
for robust deep clustering,” Advances in Neural Information Processing
Systems, vol. 33, pp. 9098–9108, 2020.

[85] X. Yang, C. Deng, F. Zheng, J. Yan, and W. Liu, “Deep spectral cluster-
ing using dual autoencoder network,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 4066–
4075.

[86] I. Yusuf, G. Igwegbe, and O. Azeez, “Differentiable histogram with hard-
binning,” arXiv preprint arXiv:2012.06311, 2020.

[87] X. Zhang, H. Liu, Q. Li, and X.-M. Wu, “Attributed graph clustering via
adaptive graph convolution,” arXiv preprint arXiv:1906.01210, 2019.

[88] C. Zhao and A. Basu, “Pixel distribution learning for vessel segmentation
under multiple scales,” in 2021 43rd Annual International Conference of
the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE,
2021, pp. 2717–2721.

[89] C. Zhao, G. Dong, and A. Basu, “Learning distributions via monte-carlo
marginalization,” arXiv preprint arXiv:2308.06352, 2023.

[90] C. Zhao, K. Hu, and A. Basu, “Universal background subtraction based
on arithmetic distribution neural network,” IEEE Transactions on Image
Processing, vol. 31, pp. 2934–2949, 2022.

[91] J. Zhao12, J. Li, F. Zhao, S. Yan13, and J. Feng, “Marginalized cnn:
Learning deep invariant representations,” 2017.

56

[92] P. Zhou, Y. Hou, and J. Feng, “Deep adversarial subspace clustering,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 1596–1604.

[93] S. Zhou, H. Xu, Z. Zheng, et al., “A comprehensive survey on deep
clustering: Taxonomy, challenges, and future directions,” arXiv preprint
arXiv:2206.07579, 2022.

[94] L. Zhu, D. Ji, S. Zhu, W. Gan, W. Wu, and J. Yan, “Learning statisti-
cal texture for semantic segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp. 12 537–
12 546.

57

	Introduction
	Motivation
	Thesis Statement
	Contributions
	Thesis Layout

	Affine-Transformation-Invariant Image Classification by Differentiable Arithmetic Distribution Module
	Introduction
	Related Work
	Method
	Differentiable Histogram
	Differentiable Arithmetic Distribution Learning

	Experimental Results
	Dataset
	Comparison with Convolutional Neural Network
	Ablation Study
	Case Study

	Discussion
	Conclusion

	Deep Clustering via Distribution Learning
	Introduction
	Related Work
	Deep Clustering
	Distribution Learning

	Methodology
	Problem Statement and Challenges
	Relationship between Distribution Learning and Clustering
	Implementation Details of Deep Clustering via Distribution Learning (DCDL)
	Image Encoding
	Uniform Manifold Approximation and Projection (UMAP)
	Algorithm for Deep Clustering via Distribution Learning (DCDL)

	Experimental Results
	Experimental Setting
	Experimental Design
	Experimental Results

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	References

