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Abstract

Distribution learning has long been a key area of research in computer vision.
However, the potential of combining distribution learning with deep learning
remains underexplored. To bridge this gap, this thesis discusses two proposed
methods. The first, Differentiable Arithmetic Distribution Module (DADM),
introduces differentiability to the construction of histograms, enabling deep
learning models to leverage distributional information more effectively. By
employing Kernel Density Estimate (KDE) within a deep learning framework,
DADM captures distribution information that is nearly invariant to affine
transformations, significantly enhancing the robustness of image classification
models against such variations. The second method, Deep Clustering via Dis-
tribution Learning (DCDL), extends the application of distribution learning
to clustering tasks, particularly in high-dimensional data spaces. DCDL inte-
grates distribution learning into deep clustering frameworks through the intro-
duction of Monte-Carlo Marginalization for Clustering (MCMarg-C), an algo-
rithm that optimizes cluster formation by directly learning the underlying data
distribution. This method improves clustering performance by maintaining
data structure through dimensionality reduction and manifold approximation.
Overall, this thesis aims to leverage the integration of distribution learning and
deep learning to address the limitations of traditional deep learning methods,
thereby developing more robust and scalable models for computer vision tasks

such as image classification and clustering.
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Preface

The main chapters in this thesis are based on papers that either have been
published or currently under review. Chapter 2 is based on the article pub-
lished as “Affine-Transformation-Invariant Image Classification by Differen-
tiable Arithmetic Distribution Module” in 4th International Conference on
Smart Multimedia, 2024. 1 was responsible for the idea formulation, imple-
mentation, and manuscript writing. Chapter 3 is based on the article “Deep
Clustering via Distribution Learning” which is submitted to Applied Intelli-
gence. 1 am a co-first author and was responsible for the idea formulation,
theoretical analysis, and manuscript writing.
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Chapter 1

Introduction

1.1 Motivation

Distribution learning refers to a category of machine learning techniques which
focus on understanding and modeling an underlying probability distribution
from which a set of independent data samples are drawn. It has been a classic
and popular research topic in computer vision [12], [20], [35]. The commonly-
used distribution learning methods are often divided into parametric and non-
parametric approaches based on whether they assume that the data follows
a known distribution with a fixed number of parameters [6], [30], [51]. For
example, Gaussian Mixture Model (GMM), one of the most popular paramet-
ric distribution learning method, is based on the assumption that the data is
generated from a mixture of a certain amount of Gaussian distributions [20].
On the other hand, Kernel Density Estimate (KDE) does not make such as-
sumptions, making it more flexible and, therefore, applied in both Chapter 2
and Chapter 3 in this thesis.

Recently, researchers also develop various deep learning techniques that in-
volves distribution information, covering a wide range of applications such as
image generation, style transfer, text classification, and etc [14], [44], [86], [90].
Despite these advancements, the connection between distribution learning and
deep learning is still not fully explored, especially in terms of how these two
techniques can be integrated to improve performance in computer vision tasks.
This thesis hence aims to bridge this gap by investigating the effective inte-
gration of distribution learning into deep learning models. The two proposed
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methods discussed in this thesis dong2024deep, [69] are designed to explore
and leverage the integration between distribution learning and deep learning
techniques in the context of computer vision tasks.

The first work [69], discussed in Chapter 2, presents a distribution learning-
based approach for the task of image classification, named Differentiable Arith-
metic Distribution Module (DADM). It contributes to this topic by introducing
differentiability to the construction of histogram , since the histograms of pixel
values are commonly used to capture the distribution information in images.
Traditionally, the construction of histograms is not differentiable, limiting their
integration with deep learning frameworks that rely on gradient-based opti-
mization. To the best of our knowledge, this is the first work to incorporate
differentiable histograms within the context of distribution learning. By mak-
ing histograms differentiable, this approach allows models to efficiently lever-
age distributional information while fully utilizing gradient-based optimization
techniques. This is significant because conventional deep learning models of-
ten focus on spatial information, making them sensitive to variations such as
affine transformations, which can distort the spatial structure of images. In
contrast, DADM employs Kernel Density Estimation (KDE) to build differ-
entiable histograms within a deep learning framework, capturing distribution
information that is nearly invariant to affine transformations. We demonstrate
through the experimental results that the model becomes more robust to such
variations, enhancing its overall performance in image classification tasks.

Chapter 3 discusses the second study, Deep Clustering via Distribution
Learning (DCDL) dong2024deep. It extends the application of distribution
learning to clustering tasks, particularly in high-dimensional data spaces where
traditional algorithms like k-means often suffer from the curse of dimensional-
ity. DCDL integrates distribution learning into deep clustering frameworks to
improve clustering accuracy and robustness. The method introduces Monte-
Carlo Marginalization for Clustering (MCMarg-C), a novel algorithm that di-
rectly learns the underlying data distribution and optimizes cluster formation.
Additionally, DCDL employs an autoencoder for dimensionality reduction and

uses Uniform Manifold Approximation and Projection (UMAP) to maintain
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the data’s structure in a lower-dimensional space. This integration creates a
more principled approach to clustering, supported by a theoretical foundation
that bridges distribution learning and clustering. Experimental results show
that DCDL outperforms state-of-the-art deep clustering methods, particularly
in high-dimensional contexts, making it a significant contribution to both the

theory and practice of clustering in computer vision.

1.2 Thesis Statement

This thesis proposes novel methodologies for integrating distribution learning
and deep learning in the tasks of image classification and clustering to enhance
the robustness and scalability of models in computer vision. By leveraging
the statistical properties and probability models of the data, the proposed
approaches aim to alleviate the limitations of traditional deep learning tech-
niques, particularly their sensitivity to affine transformations and the curse of

dimensionality.

1.3 Contributions

In this thesis, we present the following contributions:

e We propose the Differentiable Arithmetic Distribution Module (DADM)
for image classification, which employs kernel density estimation to ex-
tract differentiable histograms from images. This method enables the
model to learn distributional information that is invariant to affine trans-

formations, thereby enhancing robustness.

e We introduce the Deep Clustering via Distribution Learning (DCDL)
method, which integrates distribution learning into a deep clustering
framework. This approach incorporates manifold learning and Monte
Carlo marginalization techniques to improve clustering performance on
high-dimensional data. We also conduct a theoretical analysis to explore

the connection between distribution learning and clustering.



e Through extensive experimental evaluations, we demonstrate the effec-
tiveness and robustness of the proposed methods compared to traditional
deep learning techniques in the scenarios of image classification and clus-

tering.

1.4 Thesis Layout

The rest of this thesis is organized as follows: In Chapter 2, we introduce
the background, design, and evaluation of DADM. In Chapter 3, we cover
the details of DCDL and discuss how we connect clustering and distribution
learning. Chapter 4 gives the conclusion of the thesis and discusses about the

potential future work.



Chapter 2

Affine-Transformation-Invariant
Image Classification by
Differentiable Arithmetic
Distribution Module

2.1 Introduction

Convolutional Neural Network (CNN) has been a powerful and popular tool for
extracting features from images, enabling state-of-the-art performance in var-
ious computer vision tasks, such as object detection, image segmentation, and
image classification [16], [39], [60], [74]. However, CNNs are inherently weak
against some simple affine transformations such as rotation, since they rely
strongly on the spatial patterns in data [91]. Compared to the pattern infor-
mation, distribution information has the potential to provide affine-transform
invariance. Because it concentrates on the overall statistical properties and
probability distribution of pixels regardless of their exact spatial arrangement.
Therefore, to alleviate the aforementioned issue, we propose to learn the dis-
tribution information for classification task, in which the distribution learning
techniques are incorporated.

Distribution learning techniques are a group of methods wherein the fo-
cus is shifted from learning explicit patterns to understanding the underlying
statistical distributions and characteristics of the data. These approaches of-

ten seek to capture the broader, holistic properties of datasets rather than



narrowly focusing on specific, local patterns. For example, DIDL network [15]
utilizes the temporal distribution of pixel values across video frames, and learns
the underlying statistical features of background and foreground in different
scenes. In this work, we will instead focus on learning the spatial distribution
information of pixels in images, which can enable our model to capture the
affine-transformation-invariant features in input data, and thus make it more
robust against transformations such as rotation.

A common approach to describe distribution in computer vision is the
histogram of pixel values. However, the construction of histograms is not dif-
ferentiable, which makes it hard to efficiently integrate histograms and neural
networks. To address this problem, we utilize the Kernel Density Estima-
tion (KDE) to approximate the histogram. The key idea is that rather than
counting pixels and assigning them to discrete bins, we represent the data
distribution by overlaying a kernel function at each data point and summing
the contributions of these kernels across all data points. In this way, the bins
of histograms are transformed into smoothed probability density instead of
discrete counts, while preserving the statistical information.

In this work, a KDE-based method is formulated for constructing differen-
tiable histograms from images. Based on this, we propose a novel differentiable
arithmetic distribution module, which is explicitly crafted to learn the under-
lying probability distribution of the input space. This global feature fortifies
the model’s robustness against specific affine distortions, notably rotations.
At the same time, the differentiability enables spatial feature extraction for
the distribution learning techniques. The main contributions of this work are

summarized below:

e We propose the Differentiable Arithmetic Distribution Module (DADM)
that is adept at extracting inherent distribution information from images
while also offering resilience to certain affine transformations, such as

rotations.

e We utilize a KDE-based approach of constructing smoothed and differ-

entiable histograms, enabling a seamless integration of histograms and
6



neural network.

e We conduct experiments to evaluate and demonstrate the effectiveness
and robustness of the formulated method, including comparison with
the famous CNN-variant LeNet and an ablation study of the proposed
DADM network.

2.2 Related Work

Distribution learning is a technique that focuses on understanding the under-
lying probability distributions of data from the observed samples, rather than
solely identifying explicit patterns or features [35]. Modelling the entire data
distribution can provide a holistic view, which enhances invariance to common
transformations such as translations, scalings, and rotations. In addition, the
distribution information has been shown to be instrumental in many tasks
in computer vision, including image generation, background subtraction, seg-
mentation [89)].

Although a histogram is an appropriate way to describe the probability
density function and thus to convey the distribution information, traditional
histogram is discrete and non-differentiable, making it challenging to be di-
rectly integrated into modern neural network frameworks that rely on gradient-
based optimization and backpropagation [57]. To address this issue, multiple
methods have been proposed to approximate the soft histogram in a continu-
ous and differentiable manner. One notable approach is the HOG [11] which
utilizes linear filtering operations and convolutions to approximate a piece-
wise differentiable histogram for pose estimation. Wang et al. proposed the
first learnable histogram layer for neural networks by formulating HOG with
a series of convolutional modules [75]. Furthermore, Sedighi et al. presented
a globally differentiable histogram layer by utilizing radial basis functions as
step functions in the backpropagation [64]. Peeples et al. further extended
their work to have adaptive number and width of bins [56].

While most of the aforementioned methods assume a predefined distribu-

tion of the data, KDE offers the flexibility to estimate the underlying distribu-
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tion directly from the samples without prior assumptions [17]. For example,
though not directly applying KDE, HistoGAN [2] uses an inverse-quadratic
kernel function to compute a weighted contribution of pixels to the bins of
output histogram. Another related method is DeepHist [4], which is also based
on KDE. It uses a sigmoid-based kernel function to estimate the histogram of
pixels to separate the edge and color features in images. Nevertheless, this
method does not thoroughly explore the application of probability and distri-
bution information, but primarily use the histogram as a way to represent color
information. Our method, on the other hand, utilizes the Gaussian kernel and
considers the histogram in a probabilistic viewpoint, which adds values to the
robustness and effectiveness in image classification.

Based on these explorations, researchers seek to optimize the integration
of histograms and neural networks. For example, ImHistNet [32] is capable of
learning complex and subtle task-specific textural features and global statisti-
cal features directly from the image intensity, which is defined by a set of con-
volution operations. Similarly, PTFEM [94] is a texture enhancement network
module that uses an adaptive histogram equalization mechanism that pays spe-
cific attention to texture details and propagates the distribution information
across pyramid layers. While these traditional neural networks only use con-
volution operations to handle distribution information, the DIDL network [15]
presents the arithmetic distribution layers that directly consider histograms
as probability density functions. However, the construction of histogram in
a DIDL network is not differentiable, limiting its feature extraction ability
and computation speed. In this work, we enhance the arithmetic distribution
modules in the DIDL network with the proposed KDE-based differentiable

histogram module.

2.3 Method

In this section, we will discuss the mathematical details and implementations
of the proposed differentiable histogram module and the corresponding DADM

network. Since we focus on the task of image classification, we can first assume
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that the input space is the set of gray-scale images with one single channel
ranging from 0 to 255. This will not compromise the generalizability of our
approach because each channel of multi-channel images can also be seen as a
gray-scale image. In our implementation, the pixel values are narrowed into

the range of [—1,1].

2.3.1 Differentiable Histogram

Original Histogram

Value

Figure 2.2: An example of KDE-based approximations of histogram with
different bandwidth B. Note that the smoothed histogram gets closer to the
original histogram as B grows. We choose B = 0.001 in our implementation.

We represent the distribution of pixels in image with histogram since it is
simple and straightforward to interpret. And more importantly, it does not
assume a specific distribution for the data. This can be advantageous when
dealing with data of an unknown or complex distribution [37]. To integrate
histogram into the arithmetic distribution model, we approximate it using
differentiable functions, as illustrated in Fig 2.2.

To transform the discrete histogram into a smooth, differentiable approxi-
mated representation, we will first need to partition the range of pixel values.
The details of partitioning and the notations for deriving the differentiable
histogram are given below.

Notation: Let N be the number of bins in the desired representation of
histogram, where each bin will have the width W = # = % and span
A =% For the i-th bin, it has left bound L; = —1 + (i — 1) and right
bound R; = —1+iW. Therefore, the i-th bin is X; = [-1+ (i — 1)W, =1 +iW]
centering at p; = —1 + (1 — )W, where ¢ = 1,2,3,..., N.

Inspired by DeepHist [4], we also utilize the KDE to compute the differen-

10



tiable approximation of the histogram, which operates by placing a kernel on
each data point (or pixel value in our case) and summing up the contributions
from all these kernels to obtain a smooth probability density function. Given
a set of pixel values x1, x2, ..., £ from image, the KDE estimate at point z in

the input space is given by:

(2.1)

where IC(+) is the selected non-negative kernel function, and B > 0 is a free
parameter called bandwidth which controls the smoothness of the estimated
function. And then by definition, the probability of a bin X; is given by the

integral of the KDE function over the bin’s range:

= 1) / flx dx—/uﬁAf(a:)da: (2.2)

—A
Combining the Equations 2.1 and 2.2, we derive a unified expression for

computing the probability of bins with respect to the kernel function:

HitA
P(X, = i) = / f(x)de

i—A
,Um,‘i’A 1
/u _A MB
N1+A I'—.T‘
]\/[B Z [/ B ])dxl (2.3)

The actual value of the above equation will depend on the selection of

kernel function K(-). Some popular kernel functions in KDE include Gaussian

Kernel, Epanechnikov kernel, Uniform Kernel, etc. In this paper, we choose

»

x

the Gaussian distribution K(z) = \/%76_7 as the kernel function. The final

11



equations for computing our differentiable histogram are given by:

1 M ep+A T — T
P =g | [ RS
MB ; N B
1 Mo T —x; pith
= mz er f( B ) ._A]
]:1 L 1223
| M
= mjzlgz(lﬁ% (24)
_ W —x+ A i —xr — A
where G;(x) = erf( 3 ) —erf( B )

2 ("
and erf(z) = — [ e "dt.
7

2.3.2 Differentiable Arithmetic Distribution Learning

Together with the obtained differentiable function above, we adapt the product
distribution layer and sum distribution layer proposed in our previous work
[15] to design the differentiable arithmetic distribution module. For under-
standability, we will also introduce these two layers below.

In contrast to the convolution layer, which view input histograms merely
as vectors, the product distribution layer and sum distribution layer interpret
them as distributions to better describe the probability information and the
correlation between histogram entries. To accomplish this, these two layers
represent their learning kernels as histograms. That is, given the input and
output distributions denoted by random variables X and Z, the distribution
layers learn the distributions of learning kernels denoted by random variables
W and B such that Z = W X + B. Note that all distributions are described by
histograms in our work. The expressions of forward pass and backpropagation
are formulated as follow:

Product distribution layer:

fz(2) = /_Z fW(w)fx(%)ﬁdw, forward
> P (2.5)

Vuw,; = Z VijX(%)m’ backward

j=—o00

12



where f7(2), fw(w), and fx(z) are probability density functions (PDF) that
represent the distributions of Z, W, X, respectively. And z, w, and x are the
entries of corresponding histogram.

Sum distribution layer:

Fa(z) = / (0 fx(z — b)db, forward
o (2.6)
Vb, = Z Vz;fx(z; — k), backward
j=—o0
where, likewise, fp(b) and b are the PDF and histogram entries of the distri-
bution represented by B, respectively.

The proposed neural network module consists of a differentiable histogram
layer, a product distribution layer, and a sum distribution layer. Specifically,
the input images of size B x 1 x H x W will be first fed into the differentiable
histogram layer to generate the smoothed histograms of size B x N x 1, where
B is the batch size and N is a parameter representing the number of bins
in the desired histogram. The distribution layer then employs the learning
kernel of size N x 1 on this histogram and generate the output of the same
shape. This output will be further fed into the classifier module for image
classification result. More details of network architecture and the pipeline are

show in Fig. 2.1. The parameter configuration of network architecture is given

in Tab 2.1.

2.4 Experimental Results

In this section, we will discuss the experiments we conducted to evaluate the
performance of method and examine the affine transformation invariance. All
training and testing are performed on a NVIDIA RTX A4000. During training,
we applied the Adam optimizer with a learning rate of 0.001 and the Negative
Log Likelihood function as the loss function. An overall illustration of the

evaluation results is shown in Figure 2.3.
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Table 2.1: Details of architecture of the proposed model and the networks selected for experiments.

4!

LeNet Base Classifier CNN DADM
type size type size type size type size
Conv (1,5,5) x 6
Relu
MaxPool (2,2)
Conv (6,5,5) x 16
Relu Conv (1,3,3) x 4 DiffDis
MaxPool (2,2) Relu ProDis 1 x 256 x 1
Linear 120 x 256 Linear 256 x 784 Linear 256 x 784 SumDis 1 x256 x1
Relu Relu Relu Relu
Linear 84 x 120 Linear 512 x 256 Linear 512 x 256 Linear 512 x 256
Relu Relu Relu Relu
Linear 10 x 84 Linear 10 x 512 Linear 10 x 512 Linear 10 x 512
Softmax Softmax Softmax Softmax

Note: Conv - Convolution layer, Relu - Rectified Linear Unit, ProDis - Product Distribution Layer, SumDis - Sum Distribution Layer,
DiffDis - Differentiable Histogram Layer.
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Figure 2.3: Histogram showing the Top-1 accuracy (%) of baseline methods
and DADM on MNIST dataset under various transformations.

2.4.1 Dataset

To validate the robustness of our proposed model, we employ the MNIST
dataset, which is a widely-recognized benchmark in computer vision research.
The dataset encompasses 60,000 training images and an additional 10,000
testing images, each featuring handwritten digits ranging from 0 to 9. All
images are in grayscale and have dimensions of 28 x28 pixels. We subject the
MNIST images to various transformations in order to evaluate and compare

the models’ performance under varying conditions.

2.4.2 Comparison with Convolutional Neural Network

To highlight the advantages of our proposed methodology over traditional Con-
volutional Neural Networks, we conduct a comprehensive comparative analysis
against the well-known LeNet [38] architecture. The details of architecture and

parameter are given in Table 2.1. Specifically, we evaluate the model’s robust-
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Table 2.2: Results of experiments comparing LeNet and our method on the original and transformed data in MNIST, reported
in Top-1 accuracy (%). Numbers in parentheses are the performance decrease compared to tests on original images, where lower
values represent better performance.

= ‘ Original ‘ Rotate ‘ Translate ‘ Flip ‘ Shuffle
LeNet | 97.39 55.20 (42.19) 39.30 (58.09) 31.09 (66.3) 10.33 (87.06)
DADM | 9657 | 85.02 (11.65) 77.93 (18.74) 96.34 (0.33) 96.56 (0.11)




ness and performance under various affine transformations. The transforma-
tions in experiments include rotation, translation, and flipping. In addition,
we also test the model’s performance on randomly shuffled images. Training is
performed on the training set of the original MNIST dataset, while the testing
are performed on the testing set of the original and transformed dataset.

The details of selected transformation in experiment are listed as follow:
for the rotation, input images are rotated by a random degree ranging from 0
to 90; for the translation, input images are shifted to a arbitrary direction for
a random number of pixels with a maximum offset of 8; for the flipping, input
images are randomly flipped horizontally or vertically.

The results of experiments are listed in Table 2.2. Through the result of
comparison between LeNet and our method, we can see that though both
method perform closely on the original MNIST dataset with our method be-
ing only slightly less favorable, our method significantly outperforms LeNet
across all other categories of experiments where specific transformations are
applied to the input images. This demonstrates that our method is much
more robust against affine transformations than the classic CNN architectures
such as LeNet, while maintaining a comparable power to them in terms of

effectiveness.

2.4.3 Ablation Study

We perform an ablation study to further demonstrate the contributions of
individual components in our proposed neural network architecture. Specif-
ically, we investigate the role of DADM. As shown in Table 2.1, we derive
two baseline models for comparative analysis by removing the differentiable
arithmetic distribution module and replacing it with a convolution module.
They are tested under a similar experiment configuration to the one in Sec-
tion 2.4.2, where various transformations are applied to input data. Likewise,
the training only use the training images of the original MNIST dataset, and
the testing use the original and transformed testing images.

The results are summarized in Table 2.3. Several observations can be made

from the results. For the original data, the extremely narrow gap between our
17



Table 2.3: Results of experiments comparing the base classifier, CNN, and our method on the original and transformed data in
MNIST, reported in Top-1 accuracy (%). Numbers in parentheses are the performance decrease compared to tests on original
images, where lower values represent better performance.

& ‘ Original ‘ Rotate ‘ Translate ‘ Flip ‘ Shuffle
Base | 96.29 61.23 (35.06) 25.97 (70.32) 29.69 (66.60) 9.39 (86.90)
CNN | 97.03 48.82 (48.21) 22.65 (74.38) 32.37 (64.66) 10.43 (86.60)

DADM| 96.57 | 85.02 (11.65) 77.93 (18.74) 96.34 (0.33) 96.56 (0.11)




method and the two baselines suggests that the proposed approach maintains
a similar power as the CNN in terms of effectiveness. While for the trans-
formed data, our method again demonstrates its robustness against the affine
transformations since its accuracy are significantly higher than that of the

baselines.

2.4.4 Case Study

1.0 1.0

0.8 0.8

0.6 0.6

-1 ) 1 -1 o] 1 1 1

Figure 2.4: An example of features extracted by CNN and DADM. From top
to bottom, the rows are: input images, feature maps extracted from LeNet,
and the histograms computed by DADM. From left to right, the columns
represent: original, rotated, translated, flipped, and shuffled images.

To further reveal the reason behind such robustness of our model, we also
conduct a case study on the class-wise performance of DADM. The results are
detailed in Table 2.4, where the class-wise accuracy of LeNet is also listed as
the baseline. While both methods demonstrate high accuracy on the unaltered
images, LeNet shows relatively high sensitivity to various transformations of
images across all categories, especially for digits with complex shapes or less
distinct features such as “3” or “6”. This sensitivity in LeNet can be attributed
to its reliance on spatial features, which can be significantly altered by trans-

formations like rotation or flipping. DADM, on the other hand, shows higher
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Table 2.4: The class-wise classification performance of LeNet and DADM on MNIST, reported in Top-1 accuracy (%).

Original Rotate Translate Flip Shuffle
LeNet DADM LeNet DADM LeNet DADM LeNet DADM LeNet DADM
Class 0 | 98.44 96.07 87.77 91.90 26.21 69.09 59.55 95.84 3.14 96.07
Class 1 | 98.40 99.43 63.38 96.22 35.34 98.41 81.49 99.20 6.33 99.43
Class 2 | 96.73 95.05 55.12 80.37 44.07 70.28 6.28 94.82 20.15 95.05
Class 3 | 97.44 96.59 47.99 79.36 48.34 72.50 38.72 96.35 21.05 96.59
Class 4 | 97.54 96.74 53.79 85.84 38.44 79.75 39.22 96.51 6.88 96.74
Class 5 | 98.11 95.58 56.10 82.16 51.4 71.81 0.48 95.35 22.04 95.58
Class 6 | 96.31 95.25 36.74 77.51 45.41 76.94 1.06 95.02 1.32 95.25
Class 7 | 97.75 97.28 42.49 91.68 39.26 84.36 2.51 95.05 12.96 97.28
Class 8 | 97.16 96.62 66.40 82.69 34.41 74.20 71.08 96.39 9.81 96.62
Class 9 | 95.89 96.56 42.32 80.49 31.28 78.49 3.23 96.33 0.59 96.56




stability under these transformations across different categories. Such stability
is largely due to DADM’s ability to learn and utilize the global distributional
information, which to some extent is invariant to spatial change.

Figure 2.4 shows an example of the feature extraction in LeNet and DADM
when classifying the digit “2”, providing further insights. While the image
is changed by various transformations, the histograms computed by DADM
maintain a consistent pattern, which is in contrast to the feature maps from
LeNet where each transformation results in a visibly different feature represen-
tation. This highlights that DADM can recognize the underlying distribution
despite the change of spatial arrangement of pixels, and thus can robustly
perform image classification against affine transformation or even more chal-

lenging transformations such as shuffling pixels.

2.5 Discussion

One significant advantage of this work is that it explores a new direction
that more closely resembles human visual capabilities, particularly regarding
handling affine transformations such as rotations. The presented method is
indeed more robust under these conditions, thereby making the model more
applicable to real-world scenarios where data can be in various orientations
and positions.

Furthermore, the proposed approach provides a differentiable histogram
construction method for the distribution layers. This differentiability allows
the distribution layers to learn not only the probability information in the raw
input images, but also the distributions of features extracted by other neural
network layers such as CNNs. This can further add value to distribution
learning and enhance the explainability of the input feature. We will further
our study to explore the abilities of our model in terms of these potential

directions in future work.
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2.6 Conclusion

In this work, we proposed differentiable arithmetic distribution learning to
tackle the inherent limitations of CNNs in handling affine transformations. A
cornerstone of our approach was the application of a KDE-based differentiable
histogram as a replacement for traditional histograms. This provides us with a
differentiable approach to model data distributions, thereby paving the way for
seamless integration between distribution and neural networks. Accordingly,
we formulate a novel neural network module called DADM that effectively
captures the inherent distributional attributes of the input data. This results
in a model that is not only robust to affine transformations, but also retains
the advantages of conventional CNNs in local spatial feature extraction. Our
experiments, which includes an ablation study and a comparison with LeNet,
demonstrates the effectiveness and robustness of our approach. The results
show that, while the performance is comparable on original datasets, the re-

silience of our model against affine transformations is notably superior.
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Chapter 3

Deep Clustering via
Distribution Learning

3.1 Introduction

Clustering is a fundamental task in the fields of data mining and computer
vision [93]. It involves grouping data points from a dataset into clusters, where
data points within the same cluster exhibit high similarity. While the opti-
mization target seems straightforward, the design of an end-to-end clustering
optimization method is not easy, especially considering high dimensional data.
Thus, deep clustering is proposed by leveraging the fitting ability of deep neu-
ral networks to reduce the dimensionality of data, which achieves better results
[61]. With this motivation, we embed the concept of deep clustering in our
proposed algorithm.

Given the dimension-reduced data, we still need a clustering algorithm to
form clusters in an unsupervised manner. In contrast to traditional clustering
algorithms like k-means, distribution learning aims to learn the probability
density functions from a set of data samples. Although some existing methods
embed distribution learning models such as Gaussian Mixture Model (GMM)
in deep clustering, there is still a lack of theoretical analysis to support their
relationship. Besides, most distribution learning methods are not optimized
for deep clustering. This leads to a constrained search space for distribution
learning algorithms, where dimensionality of the data cannot be high. Also,

unoptimized algorithms may form imbalanced or meaningless clusters.
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(a) Data to be Clustered (b) Distribution Learning Process
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Figure 3.1: The Relationship between Clustering and Distribution Learning. (a): Gray points represent the data to
be clustered. (b): The process of distribution learning. We consider each data point is sampled from an underlying distribution,
shown as Step 0 with each point possessing a distinct color. Then, to formulate an explicit expression of the distribution with
cluster information, we redistribute the model components and align with the underlying prior distribution iteratively, as shown
from Step 1 to the last step. This optimization objective aligns with clustering.



The aforementioned limitations and the lack of theoretical foundations mo-
tivated us to propose Deep Clustering via Distribution Learning (DCDL). In
DCDL, we first theoretically analyze the relationship between the clustering
task and distribution learning. As Figure 3.1 shows, by treating each data
point as a sample from an underlying distribution and considering the entire
dataset as a mixture model, we can consider clustering as a process of simplify-
ing a prior distribution. Subfigure (a) demonstrates the data to be clustered.
Each point can represent a distribution component to form the initial mix-
ture distribution, as shown in Subfigure (b) at Step 0. However, the explicit
expression from Step 0 is meaningless since it does not convey the clustering
information. We need to redistribute to learn a meaningful distribution for
the clustering task. That is similar to compressing the prior distribution, as
shown in the last step.

Following this concept, distribution learning can have the same optimiza-
tion objective as clustering. The clustering results achieved by distribution
learning can now be supported by theory rather than relying solely on empir-
ical observation. Besides this, we propose a clustering-optimized distribution
learning method called Monte-Carlo Marginalization for Clustering (MCMarg-
C). In MCMarg-C, we penalize excessively large or small clusters and initialize
centers of clusters by prior guidance. In addition, MCMarg-C can also di-
rectly learn distributions from very high dimensions (784 dimensions). These
features, along with the remarkable experimental results on popular datasets,
suggest that our MCMarg-C may be one of the best distribution learning
methods in clustering.

The contributions in this paper are:

1. We conduct a theoretical analysis of the relationship between distribu-
tion learning and clustering. The analysis provides a novel perspective by
viewing each data point as a distribution component. Thus, the distri-
bution learning process can be seen as a redistribution of these Gaussian
kernels. This aligns with the optimization objectives of clustering, pro-

viding theoretical support for using distribution learning in clustering
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problems.

2. We introduce Deep Clustering via Distribution Learning (DCDL). In
DCDL, we integrate distribution learning into the deep clustering frame-
work. We employ an auto-encoder for dimensionality reduction and
embed the latent vectors into a manifold space through manifold ap-
proximation. Finally, we use the proposed Monte-Carlo Marginalization
for Clustering (MCMarg-C) algorithm for distribution learning to ob-
tain cluster labels. Experimental results demonstrate that our DCDL

outperforms state-of-the-art deep clustering methods.

3. We propose a distribution learning method that is specifically designed
for the clustering task, named Monte Carlo Marginalization for Cluster-
ing (MCMarg-C). In MCMarg-C, we introduce prior guidance for means
of cluster centers and penalize excessively large or small clusters. Con-
sidering that Monte Carlo Marginalization can also be used for extremely
high dimensional data, MCMarg-C may be one of the best distribution

learning methods in clustering.

3.2 Related Work

3.2.1 Deep Clustering

Due to the suboptimal performance of traditional clustering methods when
applied directly to high-dimensional data, deep clustering methods have been
proposed to map high-dimensional data into a feature space that is more suit-
able for clustering. In general, algorithms for deep clustering can be catego-
rized into four main types: Deep Autoencoders (DAE) based algorithms [1],
[10], [24], [26], [31], [40], [47], [58], [62], [65], [66], [79], [84], [85], Variational
Autoencoders (VAE) based algorithms [8], [13], [21], [34], [41], [59], [77], Gen-
erative Adversarial Networks (GAN) based algorithms [23], [29], [49], [50], [68],
[83], [92], and Graph Neural Networks (GNN) based algorithms [7], [70], [72],
87].

For DAE based deep clustering methods, Huang et al. introduced Deep
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Embedding Network (DEN) [31] to enforce local constraints and group sparsity
constraints on the learning objectives of DAE. Peng et al. [58] proposed deeP
subspAce clusteRing with sparsiTY prior (PARTY) to enhance DAE with
structural priors on the samples. Ren et al. introduced Deep Density-based
Image Clustering (DDIC) [62] for density-based clustering on learned low-
dimensional features. Xie et al. proposed Deep Embedding Clustering (DEC)
[79] inspired by t-Distributed Stochastic Neighbor Embedding (t-SNE) [71],
which jointly optimizes the learning of features and clustering objectives. Guo
et al. improved DEC and introduced Improved Deep Embedded Clustering
(IDEC) [26]. Their improvements ensure local structure preservation during
the fine-tuning phase of DEC. Subsequently, Guo et al. also introduced Deep
Embedded Clustering with Data Augmentation (DEC-DA) [27] to enhance the
performance of DEC using data augmentation.

Recently, there has been a growing trend of DAE-based deep clustering
methods with traditional machine learning algorithms. Affeldt et al. in-
troduced Spectral Clustering via Ensemble Deep Autoencoder Learning (SC-
EDAE) [1] to integrate spectral clustering into DAE. Chen et al. introduced
Deep Manifold Clustering (DMC) [10]. They defined a locality-preserving ob-
jective to classify and parameterize unlabeled data points lying on multiple
manifolds. Although Deep Clustering via Distribution Learning (DCDL) also
embeds Uniform Manifold Approximation and Projection (UMAP), the only
purpose is to map features to a suitable space for distribution learning. In
fact, manifold space transformation is a common practice in both deep and

non-deep clustering methods [10], [18], [47], [67].

3.2.2 Distribution Learning

Distribution Learning focuses on finding the explicit expression for a given
distribution. Although distribution learning seems straightforward, there are
a limited number of methods for approximating distributions. Kernel Density
Estimation (KDE) [63] estimates the Probability Density Function (PDF') by
selecting an appropriate kernel function and computing the density. Gaussian

Mixture Model (GMM) [6] is a linear combination of multiple Gaussian distri-
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butions, and each component distribution has its own mean, covariance, and
mixture weights. For GMM, the Expectation-Maximization (EM) [12] algo-
rithm is frequently used to update the GMM parameters. However, the EM
algorithm suffers from challenges in handling high-dimensional data and non-
differentiability, making it difficult to integrate with deep learning networks
[14], [36]. Thus, based on these needs, we proposed Monte-Carlo Marginal-
ization (MCMarg) [89] earlier, which is differentiable and can directly approx-
imate high-dimensional data. Also, some deep-learning distribution learn-
ing methods have been proposed. Arithmetic Distribution Neural Network
(ADNN) [90] converts distributions to histograms and histogram distribution
kernels are updated. Based on ADNN, some applications have also been pro-
posed, including moving object segmentation [15], vessel segmentation [88],

and affine-transformation-invariant image classification [69].

3.3 Methodology

In this section, we first provide a theoretical analysis that explains the rela-
tionship between clustering and distribution learning. Subsequently, guided
by the theoretical analysis, we demonstrate the pipeline and implementation

detail of Deep Clustering via Distribution Learning (DCDL).

3.3.1 Problem Statement and Challenges

The purpose of clustering is to divide data points into k£ groups or clusters, such
that points within the same cluster are similar to each other. However, due
to the high-dimensionality of images (a 28 x 28 image has 784 dimensions),
the complexity of searching for and optimizing cluster regions may increase
exponentially with increase in the number of dimensions [28]. Thus, directly
applying traditional clustering algorithms like K-means in a high-dimension
yields suboptimal results [14].

Using Monte Carlo Marginalization (MCMarg) and direct observations in
distribution learning, we significantly alleviated this issue, resulting in notable

advantages over traditional clustering methods. Nonetheless, a formal analy-
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sis of the relationship between distribution learning and clustering is missing,
which leads to inefficiencies when directly applying distribution learning meth-
ods to clustering problems. In light of this, we will next provide a theoretical
review about the relationship between distribution learning and clustering and

extend our prior work accordingly.

3.3.2 Relationship between Distribution Learning and
Clustering

Given a clustering task in a multi-dimensional space, we want to give a theoret-
ical analysis that bridges the problems of distribution learning and clustering.
Let us start from the perspective of distribution learning and consider that all
data points are sampled from an intractable distribution. We first approxi-
mate the Probability Density Function (PDF) F(-) of this underlying target
distribution® using Kernel Density Estimation (KDE) with Gaussian kernels.
Here, KDE places a kernel over each data point, and computes the density
estimate by adding these kernels. This process can be seen as computing a
mixture model of distributions whose probability density functions are kernel
functions. Mathematically, given a multi-dimensional dataset X = {x;} C R?,
the estimated probability density function F(-) is:
1 < L
F(z) = m;K(H 2 (X —X5)), (3.1)
where N = |X|, KC(-) is the multivariate kernel function, and H is a positive-
definite d x d bandwidth matrix. Since we use the Gaussian kernel:
K(x) = ;e:r;p(—lex), (3.2)
(2m) 2

we can rewrite F(-) as:

Vv (2m) H]

Al
:;NN(X;Xi,H).

SRR N SR T
pa (3:3)

!The target distribution is the distribution we want to learn. It means that this distri-
bution has no explicit expression.
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Compared to the PDF of a Gaussian Mixture Model (GMM):

p(x) = ZwkN(XS [k k), (3.4)

where wy, pr and X are weight vector, mean vector and covariance matrix.
We can conclude that the estimated target distribution in Equation 3.3 can be
seen as another GMM that has N equal-weighted Gaussian components, each
of which is centred at a unique data point xz;, and uses the bandwidth H as
its covariance matrix, as Figure 3.1 (b), Step 0 shows.

Thus, the optimization in a clustering problem can be reformulated from
the viewpoint of a distribution learning problem. That is, given the dataset
X, we consider it as a mixture model of N underlying distributions, where
each data point is sampled from the corresponding distribution component.
This underlying mixture model can be approximated by an equal-weighted
GMM mirroring the entire dataset ¢(x) = S0, +N(x;x;, H). We then need
to optimize a set of parameters © = {(ug, L)k = 1,..., K} for our GMM
p(x;0) = Zszl wpN (X5 g, 21, ), where K corresponds to the number of clus-
ters. The optimization is guided by minimizing its divergence D(-) from the

underlying distribution ¢(x). Mathematically,
©" = arg min D(p(x; 0)]|q(x))- (3.5)

Now, each data point x must be assigned to exactly one cluster, which is
represented by a Gaussian component in our context. Hence, we can define a
latent variable zj such that z, = 1 if the k-th cluster is selected; and 2z, = 0
otherwise. Thus, >, P(z, = 1) = 1. Now, we can formulate the process of
assigning data points to clusters as finding the k that maximizes the probability
of zp = 1. That is, given the GMM parameter O, the cluster of data point x
is:

C(x) = arginax P(z, = 1]x, 0). (3.6)

P(x|z,=1,0)P(z=1)
P(x[©)

we have P(x|0) = >, P(z; = 1)P(x|z, = 1,0) = Y, wpeN(x; Oy), it can be

From Bayes’ theorem, we have P(z; = 1|x,0) = . Now, since

inferred that the a prior probability of P(z; = 1) can be represented by wy in
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this scenario. Thus, Equation 3.6 can be rewritten as:

_ wpN (x; Of)
C(x) = arginax S N0,

(3.7)

Additionally, to prevent any Gaussian component from having a signifi-
cantly larger weight, we introduce a loss penalty term to minimize the variance
of the weights of each Gaussian component. Specifically, we introduce GMM

Weight Standard Deviation Loss (Lgynvwsp):

K
1
Levm-wsp = 174 E (wp — w)? (3.8)
k=1

Where w is the mean of weights in the learned GMM. Since standard deviation
of the weights is penalized, the weights are stabilized. We can use the following
Equation to determine the clusters:
wpN (x; ©
C(x) = arg max —— (x; Ox)

e 2 wiN(x6;) (3.9)
~ arg max N (x; Oy).
k

This way, the clustering problem is reformulated as a distribution learning
problem.

In practice, we use the monte-carlo marginalization method to approximate
the Kullback-Leibler (KL) divergence and guide the optimization process. It
first selects random unit vectors , and marginalizes both the estimated target
distribution ¢(x) and our GMM p(x;©) along @ to obtain their respective
marginal distributions, which are then compared in a lower-dimensional space.
The optimization of the GMM parameters © is guided by minimizing the
KL divergence between these marginal distributions. Mathematically, this is

formulated as:

Lxu(q(x),p(x:0)) = [ ’ Drr(ga(x - U)||pa(x - 4; ©))du
e (3.10)
= Z Dir(qa(x - @)||pa(x - 4; ©)),

where Dk (+) is the KL divergence, and U = {& € M | ||u|| = 1}.
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Combining Equations 3.8 and 3.10, we can now derive a complete objective
function £(-). In our implementation, we also vectorize the computation of

this objective function for efficiency as follows:
£(X, W, @) = EKL(q(X), WT‘I’(X; @)) +c X LGMM—WSDa (311)

where w = [wy wy --- wK}T is a vector consisting of weights in the GMM,
¢ is a parameter that controls the impact of Lowniwsp, and ¥(x;0) =
IV(x;01) N(x:05) --- N(x;0x)]" is a vector-valued function, with each
entry representing a Gaussian component of the GMM.

Therefore, the learning and clustering can be expressed as:

C(x) = argmax L(x,w,0)" . (3.12)
(k,w,0)

3.3.3 Implementation Details of Deep Clustering via
Distribution Learning (DCDL)

As depicted in Figure 3.2, the proposed Deep Clustering via Distribution
Learning (DCDL) demonstrates significant improvements and modifications
compared to previous approaches. Consider a high-dimensional dataset X =
{x;}X |, where z; € R™ represents a high-dimensional data point. Initially,
dimensionality reduction is performed through a non-linear transformation by
an Autoencoder, i.e., fene : R” — R™ where m < n, to find a compact rep-
resentation z; = fene(x;) for each high-dimensional data point z;. As this
process involves deep neural networks, DCDL can also be categorized as a
Deep Clustering algorithm.

Subsequently, all the low-dimensional encoded data Z = {z}Y, under-
goes manifold approximation through Uniform Manifold Approximation and
Projection (UMAP), denoted as fumap : R™ — R™ . This maps the data to
a manifold space M = {m/}¥ |, where m} = fumap(2:), to maintain the local
and global structure of the data in the new space.

Following this theoretical analysis in Section 3.3.2, we introduce an im-
proved version of the MCMarg distribution learning algorithm, named MCMarg-

C, specifically optimized for clustering tasks. The main enhancements in
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be found with corresponding explanations in Algorithm 1. Different colors in subfigures (a), (b), and (c) represent different

labels in the MNIST dataset. The arrows in (c) represent the direction of marginalization in Monte Carlo Marginalization for
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MCMarg-C include: (i) estimation of the Gaussian Mixture Model (GMM)
means /i, through the k-means algorithm, i.e., p, = k-means (M), to enhance
the independence between model components; (ii) the introduction of a Gaus-
sian Mixture Model Weight Standard Deviation Loss (Lgyvywsp), to achieve
a balanced distribution of weights during the model learning process. This
enhances the stability of the clustering results and avoids the bias of an overly

dominant Gaussian component.

3.3.4 Image Encoding

The autoencoder (AE) is a commonly used method in deep clustering to re-
duce data dimension. AE consists of an encoder fe,.(z) and a decoder g,(2);
the encoder maps a high-dimensional data point into a latent vector like
fene @ R" — R™. The decoder performs the opposite operation, mapping
from the latent space of dimension m back to the original high-dimensional
space, as g4(2z) : R™ — R". Suppose we have N input data points in our high-
dimensional dataset X’; by applying the encoding function, we can obtain N
points in the latent space, collected into a matrix Z = {z]i € [1, N]} € RV*™,
We approximate the distribution of Z in the next step.

We use a simple autoencoder to perform feature embedding for high-
dimensional data. The first layer reduces the dimension from n to 500, followed
by another layer maintaining the dimension at 500. Finally, we pass the data
to a bottleneck layer that compresses the data into an m-dimensional latent
space. The decoder part of the AE operates in the reverse direction. It takes
the m-dimensional latent vector and gradually reconstructs the data back to

its original dimensionality.

3.3.5 Uniform Manifold Approximation and Projection
(UMAP)

In the previous section, our high-dimensional data X was mapped to Z =
{zli € [1, N]} € R¥*™_ A manifold is a hypothetical space where locally it re-
sembles a Euclidean space, but globally it may have different shapes and struc-

tures. In our implementation, we chose to perform a Manifold Approximation
34



of the embedded data obtained from the autoencoder using Uniform Manifold
Approximation and Projection (UMAP) [48]. Specifically, the UMAP algo-
rithm consists of two steps. First, it reconstructs a neighborhood graph. In
this step, for each point z; in the dataset, UMAP determines its neighborhood
size and calculates a distance metric, such as the Euclidean distance metric.
Then, UMAP constructs a weighted graph w, where the weight of each point
x; in the local neighborhood of point z; is given by:

w;j = exp (—Cl(x;’—jjj)Q) (3.13)
Here, d(z;, ;) represents the distance between points x; and z;, and o; is a
parameter that adjusts the density of the local neighborhood.

Next, UMAP randomly selects some points in the manifold space for ini-
tialization. UMAP uses stochastic gradient descent to optimize the positions
of points in the manifold space. The objective is to minimize the cross-entropy
loss function, which quantifies the difference between the neighborhood graphs
in the high-dimensional and manifold spaces. Specifically, the following loss

function C' is applied:

1 1
Cm2 s (=) + 0w (1 =)

(3.14)
Here, y; and y, represent points in the manifold space, and a and b are

curve parameters learned from the data using a robust regression model.
We visualize the embeddings of these two different spaces in Figure 3.3 for
the MNIST dataset. The data distribution without transformation appears
more disordered. However, the two-dimensional visualization results obtained

with UMAP are more cohesive.
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Figure 3.3: Visualizing latent space of the MNIST dataset using autoencoder with and without using UMAP.
We visualize the plane projections of 0- and 1-dimensional spaces. We observe that the latent space transformed by UMAP
exhibits sparser distributions between different labels and denser concentrations of points within each label.



3.3.6 Algorithm for Deep Clustering via Distribution
Learning (DCDL)

Algorithm 1 Deep Clustering via Distribution Learning (DCDL) with n Clus-
ters

Require: High-dimensional data {z;}Y,, where z; € R"

Ensure: Transformed representation {m/}Y ;, GMM parameters {fcymk } 7y
. Initialize autoencoder parameters 0,

. for each training iteration do

Encode z; to get z; = fenc(2;)

Decode z; to reconstruct &; = g4(z;)
Update ene by minimizing 337 [|lz; — #|

end for

. Apply UMAP on encoded data {2}, to obtain {m/}¥,
. Initialize GMM parameters {0k }p_; for n clusters

. for each transformed sample m/ do

10:  for each cluster k =1 to n do
11: Update parameters Oy, using MCMarg-C with m/
12: //  The update can be represented as: Hgﬁ\)dk =

MCMarg-C (98\41\4,,6, m;>
13: end for
14: end for

In order to better understand the proposed Deep Clustering via Distribu-
tion Learning (DCDL), we present the algorithm for DCDL in this section,
namely Algorithm 1.

3.4 Experimental Results

3.4.1 Experimental Setting

Our experiments are conducted on a NVIDIA RTX A4000 GPU. For the Auto-
Encoder (AE), we utilize the Adam optimizer with a learning rate of 0.001
and apply batch normalization before generating the encoded vector. For the
Gaussian Mixture Model (GMM), we use the Adam optimizer with a learning
rate of 0.0001, and the number of unit vectors sampled each time is 32. For

more experimental details, please refer our publicly available code.
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3.4.2 Experimental Design

We first conduct a qualitative and quantitative analysis of the clustering results
for Deep Clustering by Distribution Learning (DCDL) on different datasets.
Next, we compare DCDL with the traditional Gaussian Mixture Model up-
dating algorithm, i.e., the Expectation-Maximization (EM) algorithm. Addi-
tionally, we present a qualitative and quantitative comparison between Monte
Carlo Marginalization Clustering (MCMarg-C) and the original MCMarg. Fi-
nally, we discuss the limitations of applying distribution learning in clustering
problems and potential improvement strategies.

Baseline Methods: Our initial motivation for designing DCDL is to achieve
state-of-the-art results. With this motivation, we conduct comparisons with
state-of-the-art deep clustering methods on popular datasets to demonstrate
the effectiveness of DCDL. These methods include DeepCluster [9], DCN [80],
IDEC [26], SR-k-mean [33], VaDE [34], ClusterGAN [50], JULE [81], DEPICT
[24], and DBC [40]; they have top performance in the field of deep clustering.

Subsequently, a deep neural network encodes the high-dimensional image
data into a low-dimensional space. This makes it possible to directly com-
pare our distribution learning approach (MCMarg-C) with the Expectation-
Maximization (EM) algorithm. Finally, we make a direct comparison with the
original MCMarg method to demonstrate the superiority of MCMarg-C.
Evaluation Metric: Our clustering performance is evaluated by three met-
rics: Adjusted Rand Index (ARI) [76], Normalized Mutual Information (NMI)
[19] and Top-1 Accuracy (ACC).

Adjusted Rand Index (ARI) is a corrected version of the Rand Index (RI)
and considers the effect of chance, making it suitable for evaluating the simi-
larity between true and predicted cluster assignments. The formula for calcu-
lating the Adjusted Rand Index takes into account the combinations of items

within the clusters:

S () = [ () 2 ()] /6)
@+ 0] - (2@ sG]/
where n;; is the number of objects in both cluster ¢ of the true clustering and
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cluster j of the predicted clustering. a; is the sum of n;; over all j for a fixed
t. b, is the sum of n;; over all ¢ for a fixed j.

Normalized Mutual Information (NMI) is a statistical tool used to mea-
sure the similarity of clustering effects between two datasets. NMI is developed
based on the concept of Mutual Information (MI) and involves normalization
to ensure the evaluation is not affected by the size of clusters. Here, Mu-
tual Information is a measure of the mutual dependence between two random

variables. The definition of Mutual Information is given by:

MIUV) =Y P(u,v)log %, (3.16)

uelU veV

where U and V' are two random variables, P(u,v) is their joint probability
distribution, and P(u) and P(v) are their marginal probability distributions.
To overcome the issue of MI increasing with the number of clusters, normal-
ization is introduced. Normalized Mutual Information (NMI) is achieved by
dividing the MI value by a form of normalization, typically expressed as:

2x MI(U,V)

NMI(U,V) = ) L)

(3.17)

where H(U) and H (V') are the entropies of the random variables U and V'
respectively. This normalization ensures that the NMI value lies between 0
and 1, where 0 indicates no correlation and 1 indicates perfect correlation.
Top-1 Accuracy (ACC) is defined as the ratio of the number of times the
clustering algorithm correctly predicts the most likely category to the total
number of predictions made. Mathematically, assume a dataset contains N
samples. For each sample i, we can generate a predicted category ¢; using the
clustering algorithm and a true category y;. Top-1 Accuracy can be represented

by the following formula:

N
1
Top-1 Accuracy = N Z Wy = yi) (3.18)
=1

Here, 1(y; = v;) is an indicator function that takes the value 1 when the

clustered category g; equals the true category y;, and is 0 otherwise.
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3.4.3 Experimental Results

Comparison with State-of-the-Art Methods

Table 3.1 compares the clustering results of DCDL with state-of-the-art
methods on different datasets. Since these datasets come with labeled data,
we are able to calculate accuracy (ACC) and Normalized Mutual Information
(NMI). Quantitative comparisons based on ACC and NMI demonstrate the
promising clustering performance of DCDL. As a deep clustering algorithm,
DCDL achieves three first-place rankings in ACC and one second-place rank-
ing. For NMI, DCDL secures first-place ranking across all datasets.

In particular, although both explicit and implicit distribution learning
methods are indirectly used in deep clustering, they are both unable to deal
with high-dimensional data and imbalanced clusters. For example, DeepGMM
[73] learned the distribution explicitly via GMM. The EM algorithm they used
to update GMM is not specifically designed for the clustering task, which pro-
duces unsatisfactory result. On the other hands, VaDE [34] and ClusterGAN
[50], which learn implicit distribution formation, also achieves suboptimal re-
sults. VaDE utilizes Variational Autoencoder [36] to map the data into the
hypothetical distribution space. However, the actual data distribution may
not follow the distribution hypothesized by VAE, as shown by [3], [52], [78],
[89]. Thus, due to the differences between actual and presumed distributions,
the clustering task does not perform well. This drawbacks are also presented
in GAN based methods, where GAN [25] adversarially updates generators to
produce data that are close to the real data distribution. For deep cluster-
ing, GAN may learn better data distributions than VAE, as ClusterGAN is
better than VaDE in Table 3.1. However, MCMarg-C directly learns the ex-
plicit distribution without the concerns of high-dimensionality, which helps
MCMarg-C achieve better result than EM-based, VAE-based and GAN-based
deep clustering methods.

Moreover, for other deep clustering methods, we observe that DGG [82]
achieves higher accuracy on MNIST (0.9760) compared to DCDL (0.9722).
However, DGG’s NMI score is significantly lower than ours (0.8800, com-
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Table 3.1: Comparison of different methods on MNIST, FashionMNIST, USPS, and Pendigits datasets. Black
bold represents the leading values, while red bold represents the second-ranked values.

Method MNIST FashionMNIST USPS Pendigits
ACC NMI ACC NMI ACC NMI ACC NMI

DeepGMM (73] 0.7250  0.6400 | 0.4540  0.4100 | 0.6540  0.5100 - -
DeepCluster [9] 0.7970  0.6610 | 0.5420  0.5100 | 0.5620  0.5400 - -
DCN [80] 0.8300  0.8100 | 0.5010  0.5580 | 0.6880  0.6830 | 0.7200  0.6900

DEC [79] 0.8630  0.8340 | 0.5180  0.5460 | 0.7620 0.7670 | 0.7010  0.6780
IDEC [26] 0.8810 0.8670 | 0.5290  0.5570 | 0.7610 0.7850 | 0.7840  0.7230
SC-EDAE [1] 0.9323 0.8793 - - 0.8178 0.8317 | 0.8731 0.8100
SR-k-means [33] | 0.9390 0.8660 | 0.5070  0.5480 | 0.9010  0.9120 - -
VaDE [34] 0.9450 0.8760 | 0.5780  0.6300 | 0.5660  0.5120 - -
ClusterGAN [50] | 0.9640 0.9210 | 0.6300 0.6400 - - 0.7700  0.7300
JULE [81] 0.9640 0.9130 | 0.5630  0.6080 | 0.9500 0.9130 - -
DBC [40] 0.9640  0.9170 - - - - - -
DEPICT [24] 0.9650  0.9170 | 0.5830  0.6200 | 0.8990  0.9060 - -
DGG [82] 0.9760 0.8800 | 0.6060  0.6100 | 0.9040  0.8200 - -

DCDL (Our) |0.9722 0.9278 | 0.6331 0.6992 | 0.9687 0.9222 | 0.8940 0.8768




pared to DCDL’s 0.9278). This also validates that our algorithm can actually
produce more balanced clustering results. Compared with non-distribution
learning deep clustering methods, these methods usually do not consider the
formation of data distribution but form clusters based on other evidences, such
as distance. However, since we provide a theoretical analysis for distribution
learning and design MCMarg-C that is more suitable for clustering, distribu-
tion learning may become a good choice for deep clustering. The superior
performance compared to non-distribution methods also verifies this.
Comparison with Expectation-Maximization (EM) and Original Monte
Carlo Marginalization (M CMarg)

The Expectation-Maximization (EM) algorithm is an iterative optimiza-
tion strategy used for estimating parameters in probabilistic models. The EM
algorithm was introduced in the 1970s [12]. Over the following 50 years, al-
though there have been numerous variations to the EM algorithm [20], [22],
[42], [43], [53], [54], most of them have been based on theoretical innovations
built upon the EM framework. No algorithm has managed to surpass the
prominence of EM.

In the E-step, based on the current parameter estimates, EM computes
or estimates the expected values of hidden variables. Then, the M-step up-
dates the parameter estimates to maximize the likelihood of the observed data.
When applied to a high-dimensional space, the EM algorithm faces two pri-
mary challenges. First, the EM algorithm is very sensitive to initial values and
may converge to a local optima in high-dimensional spaces. Second, the EM
algorithm requires update of the mean and covariance matrices for each Gaus-
sian component during the M-step. Since this process has polynomial time
complexity, the efficiency of the EM algorithm is significantly influenced by
dimensionality, making its convergence difficult and time-consuming in high-
dimensional spaces. Note that this is also one of the reasons why Variational
Autoencoders (VAE) [36] and Evidence Lower Bound (ELBO) were intro-
duced. As mentioned in the original VAE paper (Section 2.1.1), “the EM
algorithm cannot be used” if the distribution is intractable.

Since a deep neural network is involved in reducing the data dimensionality;,
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Table 3.2: Comparison of DCDL (EM), DCDL (MCMarg), and DCDL (MCMarg-C) on MNIST, FashionMNIST,

USPS, and Pendigits datasets. Bold values signify the top performance metrics across the datasets.

Method MNIST FashionMNIST

ACC NMI ARI ACC NMI ARI
DCDL(EM) 0.9721 09276 0.9397 | 0.5899 0.6629  0.4668
DCDL(MCMarg) 0.8331 0.8882 0.8188 | 0.5332 0.6521  0.4543
DCDL(MCMarg-C) | 0.9722 0.9278 0.9399 | 0.6331 0.6992 0.5207
Method USPS Pendigits

ACC NMI ARI ACC NMI ARI
DCDL(EM) 0.9580 0.9012 0.9404 | 0.8928 0.8744  0.8070
DCDL(MCMarg) 0.8834 0.8976  0.8654 | 0.7307 0.8024 0.6359
DCDL(MCMarg-C) | 0.9687 0.9222 0.9396 | 0.8940 0.8768 0.8090




we create a condition favorable to the EM algorithm. Thus, we also use the EM
algorithm to update the GMM components and compared it with MCMarg-C.
The comparison results are shown in Table 3.2.

In the comparisons, we find in all dataset, MCMarg-C marginally outper-
forms others. In this experiment, we utilized the EM algorithm implemented
in scikit-learn [55]. This experiment also confirms the excellent distribution
learning capabilities of the EM algorithm in low-dimensional spaces, which
is widely recognized in the academic community. Given a situation that is
beneficial to EM, MCMarg-C achieves even better results. Considering that
MCMarg-C is able to directly learn high-dimensional distributions and is dif-
ferentiable, MCMarg-C may be the best distribution learning method in the
field of clustering.

Table 3.2 presents a quantitative comparison between MCMarg-C and the
original MCMarg [14]. We can see that the performance gap between MCMarg-
C and MCMarg is even bigger than EM. The advantages of MCMarg-C come
from two factors. First, MCMarg-C incorporates the GMM-Weight Standard
Deviation Loss, which prevents clusters from dominating each other. Sec-
ond, MCMarg-C utilizes k-means as a prior to initialize the GMM means,
which accelerates the convergence of distribution learning. Thus, the improved
MCMarg-C can achieve better performance compared to our original MCMarg.

To further validate the above statement, we generate images using Dalle-3
[5] and obtain their two-dimensional data points based on the grayscale values.
Then, we perform distribution learning using both the MCMarg-C and MC-
Marg methods. The results are shown in Figure 3.4. Each row in the figure
represents a separate group. Different colors are used to represent each cluster
with points. The pie chart illustrates the proportion of different points in the
overall distribution. We can observe that MCMarg-C exhibits a more uniform
clustering trend, while MCMarg tends to use a smaller number of Gaussians
to describe the data distribution. For a clustering problem, MCMarg-C’s per-

formance is noticeably better.
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(g) Star Clustering Result by MCMarg (h) Star Clustering Result by MCMarg-C

Figure 3.4: Visual Comparison of MCMarg and MCMarg-C Cluster-
ing Result. In each row, there is a separate control group. On the left side are
the visual results of MCMarg, while on the right side are the visual results of
MCMarg-C. Each cluster is represented by points of different colors. The pie
chart illustrates the proportion of different points in the overall distribution.
We can observe that MCMarg-C exhibits a more uniform clustering pattern,
while MCMarg tends to use a smaller number of Gaussians to describe the
data distribution.
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Further Discussion

Figure 3.5 presents incorrect clustering examples by DCDL on the MNIST
dataset. The Incorrect Cluster Visualization displays the misclassified exam-
ples. The numbers on each image represent DCDL’s clustering labels. Ad-
ditionally, we conduct a subjective study by three individuals with a back-
ground in computer vision to manually annotate these images. Before manual
annotation, we shuffle the order of the images. Finally, we compute the accu-
racy of manual annotations compared to the ground truth labels. The results
show that we do not achieve particularly high accuracy. The average accuracy
among the three individuals was 65%.

Through the observation of misclassified images, we find that these images
are indeed prone to confusion. For instance, digits belonging to category ‘3’
achieve only 39% correct classification. For the digit ‘3’, misclassified samples
tend to share a similar appearance with other digits, which is one of the reasons
for the ineffectiveness of DCDL. This finding shows the potential for DCDL

in detecting mis-labelled data.

3.5 Conclusion

In this paper, we introduced a novel deep clustering algorithm called Deep
Clustering via Distribution Learning (DCDL). This algorithm combines dis-
tribution learning with a deep clustering framework. With the theoretical anal-
ysis that supports distribution learning in clustering, we proposed clustering-
optimized Monte Carlo Marginalization for clustering (MCMarg-C) to obtain
clustering labels. Through the theoretical analysis and the improvements of
MCMarg specifically designed for clustering, DCDL demonstrated superior
performance compared to EM-based, VAE-based and GAN-based distribution

learning deep clustering methods.
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Real Human Incorrect Cluster Visualization,
Label Accuracy With Error Labels from DCDL above the images.

(6) (3) (1) (2) (6) (8) (8) (2) (3) (6)

o IIIIIIEI

Figure 3.5: DCDL Error Cluster Examples on the MNIST Dataset.
Real Label represents the true label of the images on the right. Incorrect
Cluster Visualization shows the visual results of mis-clustered examples. The
label results of DCDL are shown above each image. For Human Accuracy,
we sought annotations from three individuals considering randomized image
presentation. Accuracy reflects the agreement between human annotations
and the ground truth labels in the dataset.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this thesis, we introduced two novel approaches for integrating distribution
learning and deep learning into image classification and clustering tasks. The
primary objective was to explore the connection between distribution learn-
ing and deep learning, and enhance the robustness and scalability of models
accordingly, particularly in handling affine transformations and the curse of
dimensionality.

In Chapter 2, the Differentiable Arithmetic Distribution Module (DADM)
was proposed, which utilizes kernel density estimation to create differentiable
histograms from images. This method enables the model to learn distribu-
tional information that is invariant to affine transformations, significantly en-
hancing the robustness of image classification models. Chapter 3 presented the
Deep Clustering via Distribution Learning (DCDL), which integrates distri-
bution learning into a deep clustering framework. By incorporating manifold
learning and Monte Carlo marginalization techniques, DCDL can capture the
underlying statistical distributions of embedded features, which improves the
clustering performance on high-dimensional data.

Comprehensive experimental evaluations were also conducted to demon-
strate the effectiveness and robustness of the proposed methods in comparison
to the traditional and state-of-the-art approaches. Furthermore, this work pro-
vided theoretical insights into the relationships among distribution learning,
deep learning, affine transformation invariance, and clustering. This can con-
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tribute to a deeper understanding of the benefits and limitations of distribution

learning techniques, offering insights for future research and development.

4.2 Future Work

The findings from this thesis have several implications for the field of computer
vision. The integration of distribution learning into image classification and
clustering frameworks offers a viable approach to enhancing the robustness of
models against affine transformations and high-dimensional data challenges.
Additionally, the proposed methods contribute to the development of more
scalable deep learning models, capable of handling large and complex datasets
more effectively and robustly.

Future research directions may include extending the principles and tech-
niques developed in this thesis to other computer vision tasks such as ob-
ject detection, semantic segmentation, and image generation. Further work
could also focus on optimizing the computational efficiency of DADM and
DCDL, making them more suitable for real-time applications. Investigating
other distribution learning techniques and their integration with deep learning
frameworks could yield additional improvements in model performance and

robustness.
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