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ABSTRACT

Current techniques for high temperatuie microwave dielectric
measurements utilize an external heater to raise the sample’s tempera-
ture. The temperature range in such a conventional sample heating
scheme is limited by overheating and expansion of the test chamber. To
overcome this limitation, a dielectrometer system using microwave power
for sample heating is developed. By virtue of the selectivity of
microwave heating, a sample can be rapidly heated up to its melting
point whereas the test chamber remains at room temperature.

A modified coaxial re-entrant cavity is designed as the test
chamber using a hollow center conductor for ease and repeatabllity of
sample insertion. Two quasi TEM modes, at about 3GHz and 915MHz respec-
tively, are used for sample measuring and heating. The electromagnetic
rields in this sample loaded cavity are analyzed using a four-subarea
mode-matching formulation. The calculated resonant frequency and Q-
factor directly provide two theoretical calibration curves for the
dielectric determinations.

An automatic measuring and heating system is implemented which has
three channels connected to the cavity, each for testing, heating and
temperature measuring and controlling. The sample’s temperature is
controlled so that the heating rate is almost a constant. An analog
circuit is designed to electronically tune the heating source frequency
to that of the sample lcaded resonator. A small cylindrical sample can
readily be inserted into the cavity to be heated and tested simulta-
neously. Via the computer data acquisition program, one dielectric
measurement takes one second and a complete curve of complex dielectric
constant versus temperature needs about one minute.

All possible error sources in the dielectric determination are
examined in detail and the worst-case errors in the determined dielec-
tric data are evaluated. The room temperature permittivity results
obtained from a numhter of well characterized materials are compared
with the published data, showing a good agreement between the two.

Various ceramic samples are measured from room temperature up to
1600°C and based on the results, the polarization and loss mechanisms
are discussed.
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CHAPTER 1
INTRODUCTION

1.1 Thesis Objective

In order to use microwave energy to advantage in high temperature
material processing, this thesis is devoted to the investigation of and
improvement on the technique of high temperature dielectric measure-
ments. This improved technique will allow the measurement of materials
with a wider range of dielectric properties at a higher temperature than
existing techniques. It has an acceptable accuracy and is also very
fast, versatile and convenient to use so that it is not only suitable
for lab research but also applicable to quality control in industrial
production.

In conventional heating, heat is first transferred to the material
surface by either conduction, convection or radiation, and then to the
interior by thermal conduction. In comparison, microwave heating is
fundamentally different. First, in microwave heating, microwave energy-
to~heat conversion takes place directly inside the material. This vol-
umetric heating leads to a reduced thermal gradient, a higher heating
rate and a better temperature uniformity. Second, microwave heating is
nearly instantaneous since the heat source can be turned on or off
without the thermal inertia that exists in conventional heating sources.
The highly ordered microwave energy eases the heating process control.
Finally, microwave heating is also material dependent. This selectivity
is one of the essential features which make microwave heating effective
and unique.

The field of microwave heating has become firmly established after
millions of microwave ovens entered homes in Northern America, Europe,
Japan and other countries [1,2]. The popularity of domestic microwave
ovens increases the awareness of the advantages of microwave heating in
society, which in turn, encourages the development of microwave process-
ing of materials In various industries, such as in the ceramic industry
which requires an enormous amount of energy input [3]. The use of micro~
wave energy may benefit these industries in many ways. Less energy
consumption and processing time reduces processing cost. The other bene-
fits include improved or unique microstructure and physical properties



and opportunity for new material synthesis [4].

In recent years, considerable progress has been made in applying
microwave energy to various ceramic processes, including drying, calcin-
ing, sintering and joining [4]. However, many of the possible benefits
of microwave heating have yet to be realized because some problems
remain unsolved. These problems range from a lack of theoretical
understanding of microwave-material interaction to a need for optimum
processing and equipment design. Their solution depends heavily on
making available a broad data base of dielectric properties from room
temperature to very high temperatures for a wide range of ceramic
materials,

The need for dielectric data is evident from the principles of
microwave heating. The heat generated by a microwave fleld is propor-
ticnal to the power absorbed per unit volume which is given as

=%weoe:f£2 (1.1)
It shows the absorbed power density, p, is proportional to the loss
factor, e:_’. of the material and the square of the electric field inside
the material. It should be noted that the internal E-field 1s a
function of many factors; among them is the dielectric constant, el’_. of
the material. In the simplest case of a Plane wave striking the material
interface, the field inside the material can be readily shown to be [5]

E=—2_F

1+\/E:° (1.2)

if the E-fleld is parallel to the interface, or

1
E=-lg

if the E-fleld is perpendicular to the interface, shere Eo is the E-
field of the incident wave. In general, th2 snisi‘ion of the E~fleld
inside the material has to be found directly or indirectly from the
Helmholtz equation [6]

V2E+wpeE =0 (1.4)
under specific boundary conditions. In this equation, the complex
dielectric constant,



€= eo(er-jer) (1.5)

appears as the only parameter describing the electric behavior of the
material.

We have seen that energy conversion via microwave heating depends
on the dielectric properties of a material, with the internal field,
power absorption, heating rate and temperature profile all depending on
them. What complicates the microwave heating analysis more is that the
dielectric properties are generally functions of temperature. In order
to predict the internal field and the heating pattern, one must know the
dlelectric properties of the material and their temperature dependence.
The predictability of heating response is essential for developing
optimum processing parameters to meet given product requirements.

Unfortunately, dielectric property data are lacking at high tem-
peratures (over 500°C) and present techniques of dielectric measurements
are far from satisfactory at these temperatures. The lack of develop-
ment of high temperature techniques is mainly attributed to the fact

hat most processes for which dielectric data are required remain at or
near room temperature. Only with the increasing application of micro-
wave heating in high temperature material processing such as sintering
and Jolning does the demand for high temperature data and their
measurement techniques rise. Another factor is the technical difficulty
associated with high temperatures, mainly due to the conflicting
requirements between efficient sample heating and accurate measurement
as we will see later in this chapter.

1.2 Evaluation of Dielectric Measurement Techniques

Dielectric measurements at room and at high temperatures differ in
technique rather than in principle; however, the methods for high
temperatures are far less developed than those for room temperature [7]
partly due to technical difficulties involved in sample heating. The
earliest and the most extensive dielectric measurements were primarily
carried out at room temperature by von Hippel and his co-workers, though
some elevated temperature data up to 500°C were also obtained [8].
Since then, progress has been made towards accurate, fast, flexible,
automatlc tests and the dielectric data obtained have covered a wide



variety of materials and different frequency bands [8-11]. However, only
a few papers have been published on the high temperature techniques
[84]. Though being subject to certain limitations, it is necessary to
review and evaluate previous work which may serve as a starting point
for this thesis work.

Brydon et al. [12]) used the short-circuit~line method to conduct
dielectric measurements at 9375MHz over the temperature range of 20-
700°C. In this method, a section of silver cylindrical waveguide 1s
heated and the temperature is measured by a thermocouple external to the
shorted end of the waveguide. The maximum measurement teriperature \s
limited to 750°C due to distortion and melting of the silver guide.

Tinga and Wong (13,14] measured dielectric constants of metal
oxides using a rectangular waveguide impedance bridge at 2450MHz. The
sample was contained in a quartz holder centered in a section of
stainless steel waveguide and was heated by an external electric strip
heater. A modified commercial infrared detector was employed to monitor
the actual sample surface temperature through a hole in the guide wvall.
The upper temperature limit of 1000°C was set by insufficient heating
ability and significant thermal loss.

Rockwell International Science Center [15] has developed two
separate facilities for measuring millimeter wave dielectric constant at
temperatures up to 1600°C. One of them is the free-wave transmission and
reflection method. A plate of the sample is placed between a set of
transmitter and receiver horns. In such a scheme, only the sample needs
to be heated but it must be much larger than the wavelength. Therefore,
this scheme is impractical at decimeter wavelengths. The other Rockwell
scheme {s a cavity perturbation measurement system consisting of a rec-
tangular cavity operating in the TEzo7 mode. A very small cylindrical
sample (<0.04” diameter by 0.75” length) is inserted into the cavity
through holes in the wall and aligned parallel to the maximum electric
field. A small tungsten heating coil wound around the sample is used to
generate high sample temperatures. Cooling water colls are attached to
the cavity body to maintain the cavity wall at or near room temperature.
It is also difficult to adapt this method for decimeter waves and yet
achieve the same upper temperature limit and good thermal insulation.

We have shown schemes using conventional sample heating suffering
from an upper temperature limit. Since the test chamber (a waveguide or



a cavity) is unavoidably heated along with the sample, it is eventually
overheated, resulting in an expansion and distortion which severely
degrades the accuracy of dielectric determinations. Moreover, the
sample temperature in such a scheme is hardly uniform as it takes time
to transfer heat from an external heater to the sample via thermal
conduction. This thermal inertia also leads to a low heating rate, which
in turn increases the heat loss, in particular at a high temperature.

Some investigators have pursued other schemes to avoid overheating
the test chamber. Hutcheon et al. [16] have recently developed an
ingenious system for studying the temperatures dependence of the dlelec-
tric constant at 2450MHz. After being heated in a separate furnace, a
sample is quickly inserted into a copper cavity. Dielectric tests are
made as the sample cools. A computer-controlled network analyzer ls
employed for rapid testing and data recording. In this cooling curve
approach, the cavity’s temperature will not be raised significantly.
The other advantage is that the sample temperature does not need to be
measured, instead, it can be inferred from the cooling curve of the
vavity. However, the practical upper temperature is limited to 800°c due
to heat loss. Another recent paper [17] reported a technique using an
open-ended air-filled coaxial probe to measure mineral samples. The
probe is brought in contact with the surface of the sample which is
heated by an electric heater, and then the reflection coefficient is
measured to determine the dielectric data. The temperature range of
25°C to 325°% cannot be extended easily because the problems of probe-
sample contact and probe expansion become more intractable at higher
temperatures. Furthermore, the open-ended coaxial line method, by its
very nature [18-19], is not accurate for low permittivity and low loss
materials.

Significant progress is achieved when microwave energy ls used to
heat the sample under test. Couderc et al [20] used a cylindrical cavity
operating in two different resonant modes, one for measuring and the
other for heating. Since the power levels required for heating and
testing are different by several orders of magnitude, two microwave
gaurces were employed. Ollivon et al. [21] did use a single generator
{6W) for both heating and testing a sample in a rectangular waveguide.
Jaw et al. [22] also employed this one~generator method for on-line
monitoring of epoxy curing in a cylindrical cavity, but the heating and



dielectric measuring were conducted at a power level of 12-14W and 3-6W
respectively. In both cases, the low power generator used for both
heating and testing was not sufficient to raise the sample temperature
over 200°C. It should be noted that all these microwave sample heating
techniques use a resonant cavity as a test chamber in which a sample is
positioned in the area of maximum E-field so that it can be heated
effectively. What should also be mentioned is that the sample volume is
very limited because the first-order perturbation method is always used
to determine the dielectric properties.

In summary, we can say that the method using conventional sample
heating is handicapped by an upper limit to its attainable temperature
range. One of the promising solutions is to use microwave energy for
sample heating as well as dielectric testing as the selectivity of
microwave heating makes it possible to hea: the sample only and maintain
the test chamber at or near room temperature. Theoretically speaking, a
righer practical measurement temperature should be obtainable when using
microwave sample heating. Moreover, microwave heating promises a higher

heating rate, better temperature uniformity and easier control.
1.3 Solution to High Temperature Measurement Problems

Based on the above evaluation, the microwave sample heating scheme
is chosen in this thesis. However, as a relatively new technique, this
scheme is presently faced with the following difficulties.

(a) The testing cignal must be isoiated {rom the heating power
because the heating power needs to be higher than the testing signal by
several orders of magnitude. The heating capability is very limited if
only one microwave source is used for both heating and testing due to
the cross-coupling and the conflicting requirements between them.

(b) Though a resonant flield was exploited for sample heating by
other researchers, sample temperatures obtained were hardly higher than
those using conventional heating. This suggests that either a more
focused field or a higher power should be chosen. A focused field
allows us to use a lower heating power level to achieve a higher sample
temperature. However, a standard cavity structure seems to be incapable
of providing a sufficlently focused field.

(c) Heating capability is also affected by the detuning and mis-



matching which arise from changing dielectric properties of the sample
with temperature. Even if the detuning and mismatching are eliminated,
one should not expect that a very low loss sample can be heated easily.

(d) Sample volume or the practical dielectric measurement range has
to be restricted due to the use of the first order perturbation formula-
tion, otherwise the accuracy of dielectric determination will decrease
quickly. This limitation is common to all cavity perturbation methods.
Besides, in microwave power sample heating, the sample volume and the
measurement range are also limited by the heating ability mentioned in
(b) and (c).

The solutions to these problems are the following:

(a) Two separate microwave sources of different frequencies are
utilized, one for testing in the band around 2450MHz; the other for
heating at another ISM (Industrial, Scientific and Medical) frequency -
915MHz. Consequently, the testing signal can be easily separated from
the heating power by using a high-pass filter. If interested in dielec-
tric properties at 915MHz, one can interchange the testing and the
heating source and use a low-pass filter instead.

(b) A coaxial re-entrant structure is selected because it presents
an intense E-field in its gap center due to its 1/r dependence. The
cavity <osigned for the test chamber is shown in Figure 1.1. It has a
hollow center conductor and a hole in its endplate, so that a sample can
be easily loaded into the cavity without disassembling the cavity.
Tinga et al. developed this cavity into a microwave applicator and
achieved a heating rate up to 700%C/s [23].

(c) An external tuning approach is chosen rather than an internal
tuning method. This approach can avoid internal adjustments which will
complicate the procedure of dielectric determinations. A controller is
to be designed for performing the tuning automatically.

(d) The cavity fields are analyzed in terms of a sample’s volume
and dielectric properties, commonly referred to as sample loading [24],
to construct theoretical calibration curves for determining dielectric
constants and loss factors. This can overcome the limitation of pertur-
bation methods and ensure a better accuracy. To analyze the field in the
coaxial re-entrant cavity, a numerical method is needed since the
analytical solution is not available. In addition, the presence of the

sample insertion holes alters the gap fields and thus complicates the
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Figure 1.1 Cross section of the coaxial re-entrant cayity designed for

the high temperature dielectric measurement.

analysis further, making the numerical approach the only choice.

To sum up, the proposed scheme for high temperature dielectric
measurements in this thesis is a cavity method where a modified coaxial
re-entrant cavity serves both as a test chamber and as a microwave
heater. Microwave sources at different ISM bands — 2450MHz and 915MHz
will be used for testing and heating respectively. Dielectric determina-
tion is based on the results of a numerical analysis of the loaded
cavity, surpassing the limitation of perturbation methods on the sample
volume and the measurement range. An external control system will be
implemented to tune the heating source dynamically.

1.4 Thesis Content Overview

Chapters in this thesis are arranged almost ln accordance with the
on-going process of the thesis research. Although the contents of each
chapter are closely related, they are organized in such a manner that
each chapter stands independently from the others.

In Chapter 2, resonant cavity methods for dielectric determina-
tions are reviewed. Three approaches: experimental calibration, pertur-
bation formula and direct field analysis are inspected and compared. It
follows that the direct field analysis is most suitable for this thesis.

Chapter 3 is devoted to the mode-matching formulation for fleld
analysis of a dielectric loaded coaxial re-entrant cavity, The formula-



tion is developed from the simplest to the most complex case in which a
sample insertion hole and a sample holder are included. The numerical
algorithm and computer program for the computation are then briefly
described. The calculation error is also examined. Finally, calculation
results and corresponding measurement results are presented and compared
with each other, showing the reliability of the formulation and the high
accuracy of the numerical results.

Cavity characteristics are covered in Chapter 4. With the aid of
the mode~matching program, field distributions, energy depositions,
resonant frequencies and Q-factors are calculated and presented in
graphical form. The results are discussed with emphasis on the effects
of sample loading on the cavity characteristics. The effects of a sample
insertion hole and a holder are also closely examined. Most importantly,
calibration curves are obtained from the mode-matching analysis and used
for determining the dielectric constant and loss factor of a sample from
the measured frequency shift and Q-factor change produced by the sample.

The actual measurement and control system and its performance are
described in Chapter 5. This system has three channels connected to the
cavity for testing, heating and temperature measurinrg. The cavity
design is addressed first. Then, the errors in the frequency shift and
Q-factor measured by the testing channel are analyzed. This is followed
by a description of apparatus and techniques used for sample heating and
temperature measuring. In particular, the techniques involved in
automatic tuning and sample temperature controlling are covered. At the
end of this chapter, the upper and lower limits of measurablée dielectric
constant and loss factor are evaluated. This evaluation shows that
these limits are mainly determined by heating ability of the heating
channel and measurement accuracy of the testing channel.

In Chapter 6, the experimental results are presented. First, cali-
bration curves for dielectric determinations are given in both graphical
and polynomial form. Then, the errors in the determined dielectric
constant and loss factor are analyzed and their limits are evaluated.
The data found for a number of well-characterized samples, measured at
room temperature, are then listed together with the published data as a
verification of the experimental system. Flnally, results for various
ceramics and oxides from 300°C to 1500°C are presented and discussed.

Chapter 7 is the conclusion which completes the thesis.



CHAPTER 2
DIELECTRIC DETERMINATION USING RESONANT CAVITY METHOD

A material’s complex relative dielectric constant, e, or dielec-
tric constant, e;. and loss factor, e:, can be determined by any
measurable effect the material may have on an electromagnetic field
since it is the only constitutive parameter present in Maxwell’s equa-~
tions that completely specifies the electric behavior of the material.
The dielectric constant of a material determines its ability to store
the electric energy, while the loss factor determines its ability to
convert the stored energy into heat. In a resonant cavity method, the
dielectric constant and the loss factor are obtained from the mersured
resonant frequency shift, Afo, and Q-factor change, A(1/Q). Compared
with the other methods, this method is narrowband due to the flltering
nature of a resonant cavity. However, it is this very nature that makes
a resonant cavity method very sensitive even to a sample with a small
volume or a low permittivity and loss. In fact, broad band methods often
have reduced sensitivity. On the other hand, many engineering appllca-
tions need only a relatively narrow band or a single frequency. For
instance, an industrial or medical application mainly uses the ISM
frequencies of 2450 and 915MHz. In such a case, the resonant cavity
method, though being narrowband, is sufficient.

As in any dielectric measurement method, a resonant cavity method
starts with model developing, in which a relationship is built up
between measurable parameters, that is, Afo and A(1/Q), and c; and e:.
To do this, one of the three approaches can be chosen: experimental
calibration, perturbation formula and direct fileld analysls. Each
approach will be reviewed and discussed in this chapter but the focus
will be on the cavity perturbation theory: its approximation, limitation
and application in dielectric measurements.

2.1 Experimental Calibration

This is an experimental approach in which a cavity’s frequency
response is calibrated against some known materials. In calibrating the
cavity, Afo and A(1/Q) or transmission attenuation produced by a series
of materials with known dielectric values are measured and the obtained
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data are used to construct calibration curves by regression or fitting
methods. Such a calibration procedure has to be repeated if the cavity
or sample geometry changes, therefore, it is time consuming. Even
neglecting the experimental errors from sample preparations and
measurements, the calibration curves obtained may not be reliable unless
the reference values of the calibrating materials are accurate.
Unfortunately, this is not always the case since, oftentimes, the
dielectric values for the same material from different sources show a
large variation.

Nevertheless, this approach is less restricted in the sense that a
detailed knowledge of the cavity field is not necessary and a larger
sample volume or a more complex sample shape can be used. As a result,
it is an effective engineering approach, especially, in dealing with a
complex cavity structure. Several authors have adopted this approach in
their use of a cylindrical cavity in TM012 mode for measuring food and
liquid samples [25-27].

2.2 Perturbation Formula

The well-known equation for the shift of complex resonant frequency

= o+io

produced by the insertion of a non-magnetic sample into a resonant

cavity with lossless walls is given by [9, 28, 29]

]
-IVD(ez-el)El.Ezdv
=f - . (2.2)
2 Vc 851'52+#H1'Hz)dv

Q-a,
Q

where Vc and VD are the cavity and sample volume, subscript 1 and 2
designate values before and after the sample insertion, and an asterisk
denotes the complex conjugate. It should be noted that this equation
is not an approximation at all. Thus, calling it a perturbation
equation is a misnomer. However, this equation is of little use in
practice unless the following simplifications are made.

(1) Complex frequency shift. In order to relate Eq. (2.2) to reson-

ant frequency and Q-factor change, the complex frequency shift needs to
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be simplified as follows,

[5) (01
Q-2 A ZQl)
AQ /7Q =
1 Q
2 w (1+j2—0—-)
W -0 w,
~r 2 1 1 1 .2
-[wj(é—dwzQ)[lj - g
2 2
W -0 w
VI VTSR SR T T
w, 2Qz v, ZQ1 (2.3)

for 1/(202)«1. Furthermore, if the frequency shift, lwz-wll/uz«l, we
have wzzwm and then

Q-Q f-f Af
21 21 1 1
% +lom = 50) = =t JA(se) (2.4)
Qz f1 2Q2 ZQ1 f1 ZQ1

Thus, Eq.(2.2) becomes

*
-f\,n(ea-s:1 JE “E,dv
_f (¢E ~E_+uH *H_)d
Vc € 1 2 unx 2 v

Af
f +Jb (5%

ZQ (2.5)

This equation holds to better than 1% if Q2>50 and Afl/f1<1%.

(2) Denominator. If the energy variation caused by sample insertion
can be neglected compared with the total energy in the cavity, WE. the
denominator of the right side of Eq.(2.5) can be simply reduced to four
times the electric energy stored in the cavity before sample insertion,
i.e.,

-, (ee )EEd
Af v ez € 1 2 v

~ D
W= 3 elEIdv (2.7)
=2y

It is important to note that this condition is what the name
“perturbation" implies. Eq.(2.6) is the so called perturbation formula.
It should also be understood that the condition of small energy
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perturbation is equivalent to a small AQl/Q2 or small Afl/f1 and 4(1/Q)
and 1/(202)«1. A Justifiable perturbation condition can be either a
small dielectric sample with a large e ora large sample with a low € .

(3) Field E1 and Ez' In order to use the perturbation formula of
Eq. (2.6) in practice, we must know E1 and Ez‘ There is no difficulty in
obtaining E1 if a standard cavity such as a rectangular or cylindrical
cavity is used since the field expressions for such a cavity are given
in most text books [30-32]. For a known E1’ E2 can be evaluated approxi-
mately by first assuming that the electric field just outside the

sample, E » iIs the same as the known empty cavity value, El,

2out

EZout & E1 (2.8)

and then finding the link between E2°ut and the field inside the sample,

E. .
2in
location, usually a region with a relatively uniform or maximum electric

If a sample with a proper shape is positioned in a particular

field, inside the cavity, the relation of EZln and E2°ut can be of the

simple form,

= gE (2.9)

=gE .

2in 2out

where g is the geometry factor. It is actually a function of the
sample’s dielectric constant and has values from O to 1. The form of
this function depends on the sample’s shape and location. It is usually
derived from a static field solution. Following are some examples [9].
A. When a sample is positioned in such a way that the electric
fleld in the cavity is parallel to its surface everywhere, g is
simply unity,

g=1 (2.10)

B. If a sample has all of its surface perpendicular to the E-
field, again using the boundary condition, one can write,

g = 1/e; (2.11)

C. When a spherical or an ellipsoidal sample is placed in a
uniform E-field region and far from the cavity walls, g is close-
ly approximated by
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= (2.12)

r

g=

D. If an infinite cylindrical sample is placed perpendicular
to a uniform E-field, g can be expressed by

2

e’ +]
r

g= (2.13)

We can now simplify the perturbation formula of Eq. (2.6) further by
expressing E2 inside the sample using the function g(c;). Substituting
the complex form of e into Eq.(2.6) and separating its real and

imaginary part, we have,

Af

LA PR
—?; = 4g(cr)(er 1) (2.14)
1o _F  vou
A(Gz = zg(er)er (2.15)
2
[, IE 12av
- Vo4 _ (2.16)
I&clgil dv

where F is called the generalized filling factor and is defined as the
ratio of the stored electric energy in the volume occupied by a sample
to that in the whole cavity before the sample is introduced. In the
special case of a uniform E-field throughout the cavity, F turns out to
be the sample-to-cavity volume ratio. It is interesting to note that
A(I/Ql) can be related to Af1 without knowing the details of g and F,
Substituting Eq.(2.14) into Eq. (2.15), we can express A(l/Q1) in terms
of Af1 as

1 ZAf1

A(Q) = - E=1)F
1 r

oe” (2. 17)
r

1

Using this relation, one needs only one calibration curve, i.e.,

e’ = ¢’ (Af)) (2.18)
r r 1

for experimental determinations of e: as well as e;. However, one
should not take this advantage for granted because Eq. (2.17) is valid
only when the real-imaginary separation is possible in Eq.(2.6). If the
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field integration result of Eq.(2.6) is not a real va.ue, due tv ~ ther
the filling factor or the geometry factor being complex, the sepa:=ticr
would be very difficult or even impossible.

If the perturbation condition is satisfied, the error due {¢ tne
above approximations can be negligible, making the accuracy i the
perturbation formulas higher than what one might expect. Thig ¢~ .aitlesn
can be fulfilled whenever the electric energy perturbed by s suiple is
much less than the total energy stored in the cavity. A small resonant
frequency shift and a small Q-factor change are a good indication of a
valid perturbation condition. To use the perturbation formula for die-
lectric determinations, one needs to know the field distribution inside
as well as outside the sample. This will impose little difficulty if a
standard cavity is chosen and the sample is properly shaped and
positioned. However, it is a problem for our coaxlal ra=-entrant cavity,
for its electric field is as yet unknown.

2.3 Direct Field Analysis

In sjtuations where the cavity field is unknown or a more rigorous
treatment 1s desired for a more accurate dielectric determinmation, an
alternative to the perturbation formula is to directly analyze the
cavity fleld in terms of the sample loading. To illustrate this method,
we use the simple example of a Tﬂ%lo cylindrical cavity loaded with a
cylindrical sample along its axis as shown in Figure 2.1. This is also
an example of the simplest mode-matching formulation where only one mode
and two subareas are involved. The treatment given below mainly follows
Horrer’s [34].

The presence of the sample does not affect the circular symmetry of
the electromagnetic field, but modifies the radial distribution. Differ-
ent field expressions are needed for the interior of the sample (denoted
as subarea B) and for the air space between the sample and the cavity
cylindrical wall (denoted as subarea A). The fleld expressions are
given for subarea B by

H® = bJ (k Ve )
{ ¢ 170 e (2.19)
B J“’“o
E, = "bJ (k Ve r)
kofe—r- 0O r
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Figure 2.1 A sample loaded cylindrical cavity and its mow mode fleld
configuration.

and for subarea A by

[
g Jat,

z ko

HA=aJ(kr)+aY(kr)
{ 1170 2o (2.20)

. [ax‘lo(kor)+azyo(kor)]

where k°=2n/A° is the free-space wave number, a L and b are the
amplitude constants and Jo' J1 and Yo' Y1 are the Bessel functions of
the first and the second kind. The boundary conditions that muyst be met

are

Ez(r=l‘2) =0 (2.21)
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Ez(r—rl) Z(r =r ) (2.22)
A, y°

H¢(r—r1) ¢(r-r ) (2.23)

Applying these conditions to Eqs. (2.19) and (2.20), we have

a, J (k r ) azYo(korz) =0 (2.24)
Ve*r[alJo(korl)mzvo(korl)l = bJO(kofe:r1) (2.25)
a‘Jl(korlHazvl(kori)l = le(ko\fs:rl) (2.26)

Elimipating a, a2 and b from these equations leads to a relation which
gives the resonant wavelength, Ao or Zn/k° of the loaded cavity in terms
of the dielectric constant and radius of the sample as follows

- J, (k »/"r ) [Yo(korz)/Jo(korz%Yl(kof*'l)/J1(korl)].Ji(korl)
r
J (k, »/"r ) Yo(korz)/Jo(kor2)~Y°(kor1)/J0(k°r1) Jo(korl)

(2.27)

This transcendental equation can be simplified and can also be reduced
to the same result as that from the perturbation formula when the sample
radius is very small [34,35]).

Eq.(2.27) gives not only the relation of the resonant frequency
with the dielectric constant but also that of the Q~factor with the loss
factor if ko and € are replaced by their complex values. However, to
avold solving such a complex transcendental equation, the Q-factor is
normally expressed directly in terms of the field integration. By
definition, the loaded cavity Q-factor is

wws
Q = Pw+Po (2.28)

vhere HE is the energy stored in the cavity,

W, = H 3¢, |E1%dv (2.29)

P" is the power dissipated on the cavity wall,

Vo 70z [ Lo imiPas (2.30)
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and PD is the power loss in the sample,

P
D

wtanawb (2.31)

W = ”fvbéeolslzdv (2.32)

Therefore, tand can be expressed by

ws 1 Pw
wI) QL QWE

If P"/wwE is  approximated by its empty cavity value, namely, the
inverse of the empty cavity Q-factor, l/Qo.

1 Pu
~6; x ~5ﬁ; (2.34)
ve finally have
tandé = .-.‘.’_E(~].'.s - \L) = —.]'__A(l/Q ) (2.35)
un QL Qo Fl °
wn
Ft = - (2.36)

where Ft Is the loading factor which is defined as the ratio of the
stored energy in the sample to that in the whole cavity. Recalling the
definition of the generalized filling factor, F, in Eq. (2.16), we can
find the relation between Fl and F as

e;ﬂfvn%eomadv @ fl]y pegt, av

= = ¢'gF
¢ WE WE r

F

(2.37)

We see that a small loading factor means a sample with a small volume or
a low e;. or a sample placed in a weak E-field region or its surface
perpendicular to the E-field. When the loading factor becomes very
small, we should obtain the identical loss tangent whether from Eq.
(2.15) of the perturbation approximation, which is rewritten as
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tand = s;gF

-A(I/Qo) (2.38)

or from Eq.(2.35) of the direct field analysis. Equating Eq. (2.38) with
Eq. (2.35) gives

g =172 (2.39)

which is simply the average value of geometry factors for all possible
sample shapes and orientations to the E-field.

This approach of direct field analysis was also called the exact
resonance method in [33]. A number of authors adopted this approach in
their resonant field analyses of non-standard cavities {33,36-381, or
cavities having a modified structure due to, for instance, a sample
insertion hole and a sample holder [39-41]), or cavities with a less
restricted sample, such as a sample with a relatively large radius or a
length less than the cavity heig..t [34,42]. For a complex structure, an
analytical method such as the method used in the above example may not
be feasible; instead, a numerical technique must be chosen. As we will
see in the next chapter, a mode-matching technique is chosen for the
field analysis of the dielectric loaded coaxial cavity with a hollow
center conductor which is to be used for the high temperature dielectric
determinations in this thesis.
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CHAPTER 3
CAVITY ANALYSIS USING MODE-MATCHING METHOD

The focus of this chapter is the formulation of the mode-matching
analysis for our dielectric loaded coaxial re-entrant cavity. A sample
insertion hole and a sample holder are considered in this formulation.
The numerical algorithm and computation program are then briefly des-
cribed with a look at the calculation error. Eventually, a comparison of
the calculation results and the corresponding measurement data is made,
reflecting the formulation reliability and the calculatjon accuracy.

3.1 Mode-Matching Method

Numerical methods are chosen on the basls of trade-offs among
accuracy, speed, storage requirement, versatility and so forth. A more
irmnortant factor is that every method is more or less problem dependent,
in particular, structure dependent. The problem Lf the cavity analysis
in this thesis has two peculiarities. First, the structure depicted in
Figure 1.1 is circularly symmetrical, hence; its fleld analysis is re-
duced to a two-dimensional problem. Moreover, the shape of the structure
is quite regular, though several media - the air space, the sample and
the sample holder - are involved. Second, the principal parameter to be
derived is the resonant frequency; its accuracy 1is a decisive factor
which affects the accuracy of evaluation of the sample’s dielectric
constant. In addition, the field distribution is also required for cal-
culating the energy deposition or the Q-factor to determine the sample’s
loss factor.

Some well-known methods, such as the finite difference method (FDM)
and the finite element method (FEM), are least analytical [43,44]. The
mathematical preprocessing is limited. They can be applied to a wide
range of structures. However, they are not the best cholice for simple
structures because of their numerical inefficiency, program complexity
and large memory capacity requirement. In contrast, the mode-matching
method is very efficient when the structure can be identified as a Junc-
tion of two or more regions, each having a set of well-defined field
solutions that satisfies all the boundary conditions except those at the
Junction [44-47). Unlike discrete results from the FDM or FEM tech-~
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niques, this method gives the final field solution in a series form,
thus avoiding the discretization procedure and requiring little computer
storage. This series form result shows directly the mode composition of
the fields under analysis and also offers great convenience for integra-
tion and differentiation. However, it is mathematically very involved.
As a result, a large portion of this chapter is devoted to the formula-
tion of the method. Once the formulation is obtained, the programming is
straightforward.

Electromagnetic field analysis through mode-matching involves three
steps. In the first step, the unknown fields in the individual regions,
or the so called subareas, are expressed in the expansion of their res-
pective normal modes. The functional form of the normal modes is known.
For example, the radial function is Bessel and the axial function is
sinusoidal and cosinusoidal in a cylindrical region with metallic ends.
Thus, the problem is reduced to the determination of modal coefficients
associated with the field expansions in each region. The second step is
to match the fields of neighboring regions along the common surface by
applying the field continuity properties. By virtue of the orthogonali-
ty property of the normal modes, this procedure eventually leads to an
infinite system of equations. Finally, these equations are solved with
numerical approximation techniques such as truncation ﬁnd iteration. The
condition for a non~trivial solution of the equation set gives the
resonant frequency if the analyzed structure is a cavity.

Several authors employed the mode-matching method to analyze re-
entrant cavities for dielectric measurements. Karpova [36] formulated a
single-post cavity loaded with a dielectric which has the same diameter
as that of the center conductor. The restricted sample diameter does not
allow measurements beyond values of er=30 because of a large degree of
detuning. Milewski [37] analyzed a double-post structure, in which the
sample is positioned a distance away from the endplate. Being present in
the region of a weaker E-field, the sample produces less detuning,
resulting in a wider measurement range [48]. Recently, Kaczkowski and
Milewski [38] extended the formulation to allow the sample diameter to
be smaller than the center conductor. The lower fililng factor of the
sample further widens the practical measurement rangs and samples with
€. up to 240 were measured. However, this double-post structure makes
sample loading difficult.
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The cavity structure under analysis in this thesis is shown in
Figure 1.1, It is a single-post structure having a hollow center
conductor and a sample insertion hole in the endplate. A cylindrical
sample can thus be easily inserted into the cavity and further into the
hollow center conductor. To accommodate liquid or powder samples, a
sample holder must be used. Such a composite sample insertion hole
greatly complicates the analysis. For this reason, the formulation
given in the next section will be gradually developed from the initial
structure to the final version used in practice.

3.2 Mode-Matching Formulations

The emphasis of this section will be on the method and results of
mode-matching formulations. The following derivation is intended to be
as concise as possible yet showing each step. A consistent system of
notation will be used throughout this section. Superscripts A, B, C and
D denote the subareas, subscripts n, m and ¢ designate each mode integer
and a, b, ¢ and d are the expansion constants, i.e., modal coefficients,
of subareas A, B, C and D. The symbols for matrices are underlined upper

case letters; matrix elements are expressed by their lower case letters.
3.2.1 Case 1: Gap completely filled with Sample

When a sample fills the re-entrant gap completely, the whole cavity
Is composed of only two subareas A and B as shown in Figure 3.1. This is
the simplest and also the best case for illustrating the procedure of
mode-matching formulations.

A. Step one: Expressing subarea fields

According to the structure symmetry, an infinite number of clrcu-
larly symmetric normal modes, TMox' can be assumed for the field expan-
sions in each subarea. Using a generalized notation, the field expan-

sions for subarea X, say, A or B, are expressed by [31]

o0
X _ X ,.X )
Ez = 1§oxgzon(er)°°531(2+zo) (3.1)
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z=0

Figure 3.1 Subarea area division for mode-matching formulation of case
1 - gap completely filled with sample.

. ]
X _ X o XyoX . X X X
Er = l§1x1([31/k‘)2“(k1r)sinﬁl(z+z°) (3.2)
x 2 X, XX oo X X, . X
H¢ = loni(Jweoer/k‘)zu(klr)cosﬁl(z+zo) (3.3)
Bf = 1oL (3.4)
X\ 2 X, 2 .X.2
(k1) = crko (Bi) (3.5)
X o Xy _ X\ _eX. X
2, Ur) = J (k/r) F’: Y, (kir) (3.6)
X Xy _ X _\_oX, X
211(k1r) = Jltklr) Fl Yttklr) (3.7)
2nf
_ 2n o_w
ko === =2 (3.8)

where:
zz = distance between the coordinate origin and the right boundary;
Bf. kf = axial and radial wave number;
k°'= free space wave number;
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f . A = resonant frequency and wavelength;

= relative dielectric constant of the medium;

2, Z' = a combination of the first and the second kind Bessel

functions, referred to as combinational Bessel function
in this thesis;

Ff = constant associated with the combinational Bessel function;
Jo‘ J1 = first and second order Bessel function of the first kind;
Yb. Y1 = first and second order Bessel function of the second kind.

Referring to Figure 3.1, we can write for subarea A

i =n (3.9)
X =a (3.10)
i n
X =0 (3.11)
(o]
*=rL (3.12)
=t (3.13)
r r

X _ oA _ .o A A
Fo=Fo=J (ke )Y (k) (3.14)

i=mn (3.15)
X =b {(3.18)
1 [
x —
z° =0 (3.17)
*=p (3.13)
e = = (3.19)
r r rs
FF=rFf=o (3.20)
i [

The following explanations may be hecessary for understanding the
above expressions.

(1) No approximation is made in these expressions except that the
cavity walls are assumed to be perfect conductors.
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(2) The field expansions are also valid for a complex dielectric
constant. To avold the calculation of a complex resonant frequency, how-
ever, a real value is used.

(3) In subarea A, r does not vanish so that the Bessel functions of
the second kind cannot be excluded from the solutions as in subarea B.
As a result, the combinational Bessel functions are used.

(4) vhen L/n<A°/2 and D/m<Ao/(2VE:s), k: and k: become imaginary
values and the Bessel functions are reduced to the following modified

ones [49]:
Jo(jx) = Io(x) (3.21)
Y (Jx) = K (x) (3.22)
Jl(jx) = in(x) (3.23)
Yi(jx) = -jKI(x) (3.24)

These imaginary radial wave numbers imply that the corresponding TM
modes become cut-off. For instance, If Ao=10, L=20 and D=icm, the T™M
modes are below the cut-off in subarea A for n>4 and in subarea B for
all non-zero m until ers>25.

(5) It seems that the TEM term should be included in the field
expansions for subarea A. Strictly speaking, however, the TEM mode does
not exist as long as the gap exists. However, we expect that the cavity
fields will be close to those of the TEM mode in the region far away
from the gap.

(6) Er has already disappeared on the circular surfaces of 2=0, D
and L because of using {sinBz} as the axial mode functions. Ez has also
been made zero on the cylindrical surface of r=r, by the selection of F:
in Eq.(3.14). The remaining boundary conditions to be satisfied are

those at rar..
B. Step two: Matching the fields between two subareas

The tangential components Ez and H¢ must be continuous at r=r.
that is,
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E:(r=r1) 0sz<D

EA(r=r ) = { (3.25)

\}
=

HA (r= = = sz<
¢(r rl) o (r=r ) O0szsD (3.26)

Substituting the field expressions of Egs.(3.1)-(3.20) into Egs.
(3.25) and (3.26), we have

-]

0 , mrz

2,3 cos(I) = | Ppcos() 0sz<D (3.27)
= 0 Dsz=L

® A nZ ® mnz

T a’Rcos(B2) = £ b’RBcos (M%) 0s=2=D (3.28)
n=0 n n L m=0 m m D

where a’ =az" (') (3.29)

n nOn n1l

' = B B

bm = bm2°m(kmr1) (3.30)
R* = ('Y 2 Gtz (kM) (3.31)
n r n in n 1 On n1
R® = (e2/K%)-2® (®r ) 28 (KBr ) (3.32)
m r m im m 1 Om m 1

In order to obtain the relation between a and bm, ohe has to get
rid of the variable z from Eqs.(3.27) and (3.28). To do this, let us
first recall the Fourier expansion ({50].

A function f(x), which is continuous over an interval of [0,T] can
be expanded into a series of {cos(inx/T)} as

-]
- inx
f(x) = IEOEICOST O=xsT (3.33)

vwhere Ex (1=0, 1, ..., ®) is the Fourier coefficient which is given by

al T inx
g, = = J £ 00 cost B ax (3.34)
_, 1 t=0
ai = ( > 120 (3.35)

Therefore, considering the left side of Eq.(3.27) as the Fourlier expan-
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sion of the right side over [0,L], we can readily express the Fourier

coefficient, a;, as

o J.D ©
n , nnz, nnz,
T o(“Eobmcos 5 ) cos~—-L dz

w\
L]

[+ ]
. rod WZ, o072,
A m§0bm (DJ.Zcos - COST, dz)

[}
I“AU

oy D
b’-e (+,0) (n=0, 1, :+-, ®) (3.36)
mn L

ne0m

[}
l“'&b

vwhere the calculation of e in Appendix 1 results in

(an)? . (~1)®.5in(anm)

2 ann
(an)“~-m

e (a,0) = (3.37)
on
Similarly, treating the right side of Eq.(3.28) as the Fourier expan-

sion of the left over [0,D], we can also write

o ©
B nJ'o Py nnz, mnz
mem K o(ngoaancosT ) cos-—-D dz

[ ]
=a-sR e (20) (m=0, 1, ++-, @) (3.38)
mn=0nn mnL

If the modes with nzN and mzM are truncated, Eqgs.(3.36) and (3.38)
become a finite linear equation system. Using matrix notation and
recalling Egs. (3.29)~(3.32), we rewrite Egs. (3.36) and (3.38) as

A=EB (3.39)
B=QA (3.40)
where A= (ao, a, a"_i)r (3.41)
B=(b, b, -, b ) (3.42)
B = [pnuluxn (3.43)
Q=lq 1. . (3.44)
B B
p_=rea Zomk"y) emn(g.o) (3.45)
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e:k:Ztn(k:rl) D
q =a- ‘e (+,0) (3.46)
nn m eBkAZB (kBr y ™ L
rnim m1
forn=0,1, .-, N-landm=0, 1, *++, M~1. The superscript T denotes
matrix transposition. It should be noted that c:=1 and 2:_::.)o and

ZB =J since FB=0 in this case.
in 1 m
C. Step 3: Solving system equations

Having derived the system equations of (3.39) and (3.40), we can
now solve them for the resonant frequencies and modal coefficlents.
Replacing A in Eq. (3.40) by Eq. (3.39), we obtain a homogeneous equation,

G'B=20 (3.47)

where G=I[g ] *P-1

) e = B (3.48)

and I and Q are the unity matrix and the zero vector.

N-1

24 p

Then, 85 = nZodinPny” 4,

AB .B , B A A
erkt_zoj(kjr1)'"’1 anzin(k r)

D n1 D D
= ‘e (=,0)-e (+~,0)-&
L™ B 8 ,. B ns0 , AjA . A in'L’ n L’ 1)
er 211 (klrl) anOn(kan)
(3.49)
= ¢ 1 1=
8,={0 123 (3.50)

One should be aware that all elements of G, glj. are functions of the

cavity dimensions, r, r_, L and D, the sample’s dielectric constant,

S
er, and the resonant wavelength, Ao. To avoid a trivial solution of the
homogeneous equation set of (3.47), the determinant of G must be zero,

i.e.,
det|G|l = 0 (3.51)

This equation has multiple solutions, thus resulting in a series of
resonant wavelengths for a given cavity and sample.
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There is a fleld distribution corresponding to each resonant wave-
length. For a given resonant wavelength, cavity dimensions and sample,
all elements of G and P become known values. Since only the relative
field magnitude is of interest, we can let one of the modal coefficients
a or bm say bo' be equal to unity. Substituting

b =1 (3.52)

0
into Eq. (3.47), we can find b1’ bz, N bu-x with no difficulty, from
which a a, "', 2, can be calculated immediately by Eq. (3.39).

3.2.2 Case 2: Gap partially filled with sample

When the radius of a sample is smaller than that of the center con-
ductor, an extra subarea needs to be added to account for the radius
difference as shown in Figure 3.2. The field expansions for subarea A
remain unchanged. The expansions for subarea B are almost the same as
those in case 1 except that

*0 (3.53)
e =1 (3.54)

The expansions for subarea C can be readily obtained by assigning the
following parameters to Egs. (3.1)-(3.7).

i=nm ' (3.55)
X =¢ (3.56)
i m
x 3
z, =0 (3.57)
¥ =p (3.58)
X ___C _
er = er - crg (3. 59)
FF=r=0 (3.60)
1 m

The procedure of mode-matching at r=rl is the same as that employed in
case 1. The results thereof, Egs.(3.39)-(3.50), are applicable here
except that F.#0. In fact, the F. have to be determined from the mode-
matching between subarea B and C.
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A(€y)

2c,
2\')

z=0
Figure 3.2 Subarea area division for mode-matching formulation of case
2 ~ gap partially filled with sample,

Applying the continuity property of Ez and H¢ at r=r’. one can
write

B -~ = c = <7<
Ez(r—rs) Ez(r rs) O=z<D (3.61)
Ho(r=r ) = HS(r=r ) Osz=D (3.62)
9 s ¢ s

Substituting the field expressions for subarea B and C, the above boun-~
dary conditions become

-} -]
B ,. B B_ _ c (»

m‘g‘omeOH(kmr')cosBmz = mgocho(kmr.)cosBmz (3.63)

® B,B\,,B ,. B B @ c,.C c c

Eb (e k)2 (k'r JeosBz = T ¢ (e°7k")J (k°r JeosB "z

m=0m r ®m 1Im m s [ ] m=0m r m 1 ms [

(3.64)

Examining the above equations and noting that B:=B: and cosB:zacosB:z.

it is clear that we require

b2® (kPr ) =c J Cr ) (3.65)
m0mn s n0 as



b (e®k%)28 (&°r ) = ¢ (%) (5r ) (3.66)
m r m 1m ms m r m 1 ms
From Eqz. (3.65) and (3.66), we can relate c, and bm by
2% (k®r )
o) ms

c = ---“‘-—c--~--t>m (3.67)
Jo(kmrs)

and derive F; as

%3 (k°r I (Pr )-e5kPT (kCr g (kBr )
rmO0O ms 1 ms rml ms 0O ms

B
o eTkCI (K )Y (Kor )-e ko), (Cr )Y, (kr ) 13 68)

It should be realized that we have the convenience of deriving cn and F:
directly without using the Fourier expansion because subarea B and C
share the same metallic boundary at 2z=0, D. Otherwise, the derivation
would be substantially different as we will see in the case having
sample insertion holes.

3.2.3 Case 3: Arbitrary gap position

In Figure 3.3, the gap, which contains a sample with r srl. is lo~
cated at an arbitrary position between the two erdplates of the cavity.
Compared with case 2, the only difference in the field expansion is that

z =1L (3.69)

Consequently, in matching the fields of subarea A with B, we should
change Egs. (3.27) and (3.28) to

o0
Eo2,2, (Kir dcosTR (24 ) = {50 b,Zo (KT, Jeos gz 0<z<D
- 0 —Lzszso and DszsLl

(3.70)

[
2 a (e /k )Z‘(k r, Yeosh (z+L ) = 2°b (e2x%)28 (°r )cos™hz
m=0m r m Im ®B1 D

0<z<D (3.71)
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Figure 3.3 Subarea area division for mode-matching formulation of case
3 - arbitrary ap position.

Defining z’=z+L2 and again using Eqs. (3.29) and (3.30), we can rewrite
Eq. (3.70) as

(3.72)

«
PN | PU ,
Z ancosnnz’ - {mgobncosﬁ—(z L,) L <z <D+Lz

L 0 Osz'st and D+Lzsz'5L

Using the Fourier expansion procedure as before, we can also derive a
as follows:

mn o m ’
L 3 m-o : [DID cos-ﬁ(z L,)cos T2dz ]

=D .. %JD mr nn
= %, .sob. [ ocos—ﬁzcos~E(z+Lz)dz]

= . ngobm'enn(D/L.Lz/L) {3.73)

Thus, Eq.(3.70) can be rewritten in matrix form as

= gog (3.74)



22 (r)

D _ . om m1 .
with pm = E an m emn(D/L'LZ/L) (3.75)
On n 1
where
2 n
e (a,b) = —t(an) (=1} sin(atb)nr sinbnm, (3.76)
mn (an)z-ma ann ann

as shown in Appendix 1. Likewise, from Eq. (3.71), we acquire

B =QA (3.77)

: ehk’z) (kr )
with qm = ¢.'m'emn(D/L,L2/L) (3.78)
rnima m1}

Finally, we obtain the elements of matrix G as

N-1

&4 p

85 = ntodinPny” 611

A, B B Apy A
.crkl ’Z:J(kjrt) 'u-xanzln(knrl) .

D
e (o"‘ [
L™ ea ZB (kBr)n=0kAzA (kA.r) inL’'L "“in'L'L 1)
r 11 11 nOn ni

(3.79)

When L2= 0, Eqs.(3.75) and (3.79) reduce to Eqgs.(3.45) and (3.49).
It should be mentioned that if the gap is at the midplane of the

cavity, l.e.,

l..2 = (L-D)/2 (3.80)

L will vanish unless m and n have the same parity, as proved in Appen-
dix 1. This is understandable because the structure symmetry cannot
support odd modes in the gap if even modes are established in the
coaxial section and vice versa.

3.2.4 Case 4: Gap with sample insertion holes
The sample insertion holes in the coaxial re-entrant cavity are

provided by the hole in the center conductor and the endplate hole
formed by a metallic support tube (Figure 1.1). Using the insertion
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Figure 3.4 Subarea area division for mode-matching formulation of case

4 - gap with sample insertion holes.

hole, a sample can be easily introduced into the cavity without opening
it each time, thus ensuring testing repeatability. In addition, the
sample inserted through such holes avoids such air gaps that would exist
at its ends otherwise. It has been reported that the air gaps may cause
significant errors in the dielectric measurement [38]. Furthermore, the
insertion holes provide a concentric alignment for a sample in the
cavity.

The oles in the center conductor and the endplate are designed to
be so smaj! =2owpared with the wavelength that only evanescent modes
exist even when an inserted sample has a relatively high permittivity.
Therefore, the fields will be strongly attenuated inside the holes, and
so the geometrical discontinuities at the sample ends will be invisible
to the cavity flelds. If we assume that the fields vanish at the points,
say, z=H1 and z=-H2 as shown in Figure 3.4, a metallic wall can be
erected there to simplify the formulation.

In Figure 3.4, subareas A and B are the same as case 2, but subarea
C is different since’ it now includes not only the gap region but also

the hole region. This difference makes the mode matching between subarea
B and C much more complicated.

All the expressions far tha fialde In cttharaa A B and  (n anca 9



are valid for this case except that the following parameter changes are

made for subarea C.

i=0 (3.81)
X _ ¢ _

z, =2z = H2 (3.82)

X < Lc =H = H1+H2 (3.83)

where H is the length of subarea C which can be called the effective
length of the sample. Note that the symbol for the mode integer in
subarea C is changed from m to £ to avoid confusion as the axial wave
number in subarea C is no longer the same as in B.

To match the fields between subarea C and B as in the last case
(Egs. (3.70) and (3.71)), one can write the continuity conditions at r=r_
as

-]
@ B B m
egocezge(kzr )cosg%(z+H2) = m§5bﬂ20m(kmrs)cos-ﬁz 0<z<D
= s 0 -H,52=0 and DszsH

(3.84)

-} (-4
€ ,CC O n _ B,B,,B B mr
e§o°2(8p/k£)zxe(k£rs)°°S"ﬁ(z+ﬂz) —mgbbm(sr/km)zlm(kmrs)cos—ﬁz

Osz=<D
(3.85)

As seen in previous cases, these field-matching equations will eventual-

ly lead to the relations between c, and bm which are expressed in matrix
form as

€C=U-B (3.86)

B

]

v-C (3.87)

One can find the elements of U and V without lengthy calculations if one
recognizes the simllarity between the boundary conditions on the common
surface of subarea C and B in this case and the conditicns of subarea A
and B in case 3. As a matter of fact, Egs.(3.70) and (3.71) will turn
out to be the same as Egs. (3.84) and (3.85) if the parameters of subarea
A in case 3 are substituted by those of subarea C in the present case,
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and T Ll. I.2 and L by ros H1’ I~I2 and H. Making these substitutions in
Eqgs. (3.75) and (3.78), ene can easily obtain u, and Ve as

D sz(k:rs)
Z(k r)
(¢
> k Z Z(k r)
Vme =q -————-———-——— me(D/H’ HE/H) (3.89)

n C
r lzfm(km s

where m=0, 1, ..., M-1 and €0, 1, ..., L-1. L is the number of the
modes in subarea C considered in practical calculations and it should
not be confused with the cavity length. As before, replacing C in Eq.
(3.87) by Eq.(3.86) results in

I'B=¢0 (3.90)
where I= [tu]uxn =Vu-1 (3.91)
L-1

Then, tiJ = egokuu- 51)

) Qa e‘_kl 2 (k r’) '-;“ezxc“‘t" ) (D Ha)e D ;_) &
TEY T ..occ VAU T
€ Z (k r ) e ot(ke )
i, §=0, 1, ..., M~1 (3.92)

To this point, F:. the constant of the combinational Bessel function in
subarea B, is still unknown. Unlike case 2, subarea B and C in this case
do not share the same axial modal function. As a result, F: cannot be
calculated directly but can be found along with the resonant wavelength,
Ao' by solving simultaneously Eq. (3.90) and

G'B=2g0 (3.93)

Note that Eq.(3.90) and Eq.(3.93) result from matching the fields of
subarea C with B and A with B respectively. To calculate Fp(m=0,1,...,
M-1) and A, we need (M+1) equations. Firstly, the b, by = b
acquired from Eq. (3.90) should be identical to those from Eq.(3.93),



(b) =1(b) (m=1, 2, -+-, M-1) (3.94)
m' G m' T
Secondly, to avoid a trivial solution from Eqgs.(3.90) and (3.93), it is
required that

det(G) =0 (3.95)

and det(T)

0 (3.96)

Thus, we have just (M+1) equations required to search for F: and A It
should be noted that all these equations are nonlinear. The numerical
algorithm for their solution will be discussed later in this chapter.

3.2.4 Case S: Sample with holder

It is clear that a sample holder is needed when a liquid or powder
sample is to be tested. Even for a solid sample, using a non-metallic
sample holder is advantageous for thermal insulation since it slows dowm
the thermal conduction between the hot sample and the cool cavity walls.
This insulation effect reaches a maximum if a sample is suspended in the
gap. In fact, the suspended sample scheme can also be visualized as a
holder for which e ,=1. It will also be shown in Chapter & that the
sample holder made from a low permittivity material can reduce the air
gap error.

Adding a sample holder does not present much complexity to the for-
mulation though one more subarea needs to be added. As shown in Figure
3.5, subarea C which denotes the holder has the same length as the sub-
area D, l.e. the sample; therefore, the field expansions for these two
subareas will have the same axial modal functions. It presents no more
difficulties to match their fields than to the fields of subarea B and C
in case 2.

Subarea A and B still have the same field expansions as before. The
field expansions for subarea D ¢an be obtained simply by changing super-
script C and <, in those for subarea C in case 4 to D and dt‘ To obtain
the expansions for subarea C, one can substitute the following into Egs.
(3.1)-(3.7).

i =¢ (3.97)
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A(gy)

Figure 3.5 Subarea area division for mode-matching formulation of case
S - sample with sample holder.

x1 =c, (3.98)
X _ ¢ _ = 0

z, = z, = H2 z (3.99)
X _,C_ o _ D

L1 = Le =H = LZ (3.100)

e* = e = e (3.101)
r r rh

F’: = F: 20 (3.102)

The results of the field matching between subarea A and B are still
identical to those in case 2. Using the same procedure as in case 4, the
formulation of the field matching between B and C can be easily derived.
The flelds of C can be matched with those of D directly without Fourler
expansion as we have seen in case 2 (Eqs.(3.67) and (3.68)). Therefore,
the formulation process for the present case is not given here. Instead,
below are listed the results which include all the formulas required for
actual calculations of mode coefficients and resonant wavelengths, Some
of these have appeared before but are repeated below to make the list
complete.

The resonant wavelength, AQ, and the unknown constants, F: (m=0, 1,
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*+, M-1) are determined by

(b) =1(b) (m=1, 2, ---, M~1) {3.103)
m'G m T

det|G| = 0 (3.104)

det|T] =0 (3.105)

where (bn) . 2re computed by

T —
Ge[1, b, b, ==+, b _1"=0 (3.106)
and (b )_ by
n
T =
T-(1, bz' bz' ) bu-1] 0 (3.107)

The elements of the matrix G and T are given by

22 (&°r ) w-1¢ Z* (7))
niln n1

=Dy kB0 J1 s e, (E.ore 2o0) -

&, *° & !
yJ L7t 7y B B n=0 A_A , A m'L 1)
2, (kir ) k:ZOn(knrl)
(1, J=0, 1, +-+, M-1) (3.108)
B , B c ,.C
e 2Dy .. kB.ZOJ(kJro).Lémtzd(ktro).e 2 ilg)e 0 I;lg)-a
1) H% "rhy 2 (Br ) £=okczc xSr ) ('H'H "T3¢'H'H 1)
11 10 ol 8o
(jn j = On 10 "ty M”l) (3- 109)
where
_, 1 1=0
al = ( 2 1 *o (3.110)
¢! 1=
_ (an)® _(~1)%sin(a+b)nr  sinbnm
em(a.b) = YR ( A e ] (3.112)

After B is found, the modal coefficients in subarea A, C and D can be

calculated by

A =PB (3.113)
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€=UB

D =W-C

Elements of the matrices P, U and W are given by

z? (k%)
o .—22_—2_1_-e (

n ZA (k‘l‘ ) mn
on n 1

D
LD

b Lo |

p_= 0)

nm

(h=0,1, -, Nland m=0, 1, -+, M~1)

B . B
ZOm(kmro)

<D... .

C C
Zoe(kero)

(=0,1, -+, L-landm=0, 1, «+-, M-1)

(=01, +--, L-1)

A2 _ 2 A2
(kn) = ko (3n)

A oAy Ay oA, A
2k F) = 5 ) ~FRy (k)
2 ) = 3 )Py it

in n 1 n n {1 n

- A A
p: = Jo(knrz)/Yo(knrz)
8% = mn/D

]

B.2 2 B 2
(k_) = ko-(a.)

B B B B
z; (ki) = Jo(k.r)~F:'Yo(k.r)
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28 (®r) = 3 Br)-FP.y (Bn (3.128)
im m 1 o m 1 m

B; = In/H (3.128}
(kp)? = e, ko=@’ (3.130)
20, (kyr) = 3, apr)-Fp ¥ (cgn (3.131)
27, (kyr) = 3, egr)-Fy ¥ (kgn (3.132)

D D c c D ¢
e . crhktJo(kzr‘)Jl(kers)ﬂ:”ke.ll(kars)Jo(kcrs)

(3.133)

L D D c c D c
srhkt.lo(kers )Y1 (kers )-cmsz1 (kers )Yo(ker. )
33 = tn/H (3.134)
D2 _ 2_pD,2
(kp)* = _kZ-(8} (3.135)
Fg =0 (3.136)

The above formulation is also applicable to case 4, 2 and 1. If € h

= , then kc=k° and F¢=0. Therefore, w,=1, that is, ¢,=d,. Subarea C
rs e ¢ L e

and D thus become virtually one subarea. e'l'hls is case 4. If we further
assume that H=D, or H1=Ha=°’ we can show that “t.=° unless {=m since
e.£(1.0)=6_t/an. Thus, Eq.(3.117) is the same as Eq.(3.67). We now
arrive at case 2. From Egs. (3.67) and (3.68), we can also see that cu=b'
and F:=0 if c:=e:=e". Now, we have case 1. Moreover, the formulation of
the present case can be easily extended to case 3, i.e., arbitrary gap
position, by simply replacing e(D/L,0) in Eqs.(3.108) and (3.116) by
e(D/L.La/L).

3.3 Numerical Algorithm and Computer Program
Without the sample insertion hole, the numerical calculation for

the cavity fields and resonant frequency formulated above is a routine
task. First, the resonant wavelength can be found from the zero-determi-
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nant condition, Eq.i3.104). Then, the linear equation set, Eq. (3.106).
is solved for the modal coefficients B, from which, A and C can be
readily calculated,

With the introduction of the sample imssrtion hole, the constants
F: cannot be known before the resonant frequency is found. Instead, they
have to be found along with the resonant frequency from the simultaneous
equation set of Egs.(3.103), (3.104) and (3.105). However, direct calcu-
lations may not be feasible because these equations are implicit and
nonlinear functions of F: and Ao. From a practical point of view, we may
be content with an approximate solution which can be obtained through a

minimization procedure [S1]. By constructing the following objective
function

fi=1
B By _ -
OB (£ 5 Fopwe*sFy_y) = W [det(G) 14U, [det (T) 1+W, £ 1 (b ) (b )_|

(3.137)

where wl, wz and wa are positive constants called weighting factors, we
can see that when Ob reaches a minimum value, i.e.,

* _RBe B® o

Ob(fo,Fo , ’Fu-1) > min(Ob) (3.138)

th bles £, Fo o+, F5" sati

e variables fo. 0’ Py satisfy
det(G) = 0 (3.139)
det(I) = 0 (3. 140)
(b.)c % (bu)T (3.141)
* B¢ B®
Therefore, fo’ Fo' ...,F“_1 are the approximate solutions which we seek.

Such a minimization algorithm can converge rapldly if the number of
variables 1s small and well-chosen initlal values are used. In fact, M
can be as small as four because the field expansions in subarea B for a
gap much smaller than the wavelength are rapidly convergent series.
Computer programs in FORTRAN have been implemented for the coaxial
re-entrant cavity field analysis based on the above mode-matching
formulation, Different versions are designed specifically for each case;
the programs analyzing the structures from case 1 to 5 are named MMMCI
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to MMMCS5 respectively. All programs are essentially similar to each
other. The main steps involved are as follows:

1. Enter the dimensions of the cavity and the sample, the dielec~
tric constant of the sample (and the holder), and the initial values of
the resonant frequency (and F:};

2. Search for the resor::int frequency (and F:);

3. Compute modal coefficients for each subarea;

4. Integrate the flelds to give thue Q-yuwu. 1,

Programs for no-hsle cases, MMMC1-MMMC3, us# ti.¢ Newton method [S53]
to find the resonant wavelength, o the root of the determinsi func-
tion. Programs for the cases having the insertion hole, MMMC4 and 5,
employ the simplex method [51,52] to search for Ao and F:. The simplex
method is one of the direct minimizing methods which is effective when a
small number of variables are involved. The pivot elimination method
[S3] is chosen to find the inverse matrix and the determinant of G (and
T). All the Bessel functions are evaluated by approximating polynomials
with an error less than 10°° [54].

3.4 Calculation Errors

The calculation errors normally consist of the truncation error and
the round-off error. Since the amount of calculation outlined above is
not very great, the round-off error were found to be insignificant and
only the truncation error will be considered here.

Table 3.1 lists the calculated modal coefficients in subarea A and
B. It exhibits a fast convergence in both subareas. The modal coeffi-
clent in subarea B converges faster than that in subarea A obviously due
to D«L. Fligure 3.6 shows the variations in the calculated resonant
frequency, fo' and the frequency shift, Afo. versus N for a fixed M and
versus M for a fixed N. It is expected that the truncation error has a
lesser effect on Afo than on fo' In this particular example, the error
in Afo will not exceed 0.1MHz in the band around 2450MHz 1f M24 and Nz
60. In this figure, the CPU time spent on the calculation is also
plotted and shown to be proportional to MxN. Since the round-off error
usually increases with the modal number in the calculation, we should
choose the minimum M and N which satisfy the accuracy requirement.
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Figure 3.6 Truncation error in f o and Af 0 and required computation time
on an Amdahl(5870) computer (r'-:.O. r1-1.zs, r2-4. S, D=1.0,
L=17. Ocm, f°-2.8314 and 2. 4391GHz for €.*1 and 51, by MMMC2).
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Table 3.1 Convergence of modal coefficients (r2=4.5, r1=1.25,
r'=1.0. L=1}.0, D=1.0cm, er=51, by MMMC2)

‘2~ Ian/aol _T_ lbm/bol
0 1.0 0 1.0
1 1.89 1 2.61x10°
2 1.46 2 5.08x10
3 1.81x1072 3 1.02x10™*
4 1.87x10°} 4 2.17xi0™°
5 3.59x10"2 5 6.41x10”7
6 8.46x10™3 6 1.06x1078
7 2.12x1073 7 1.83x10°°
8 5.45x107° 8 3.27x10° 12
9 1.41x107* 9 5.96x107t*

The calculated Q-factor is less sensitive to the effect of the
truncation error due to the fact that the Q-factor is evaluated by inte-
grating the cavity E-fields and the integration tends to average out the
possible random calculation errors. As an example, for the same cavity
dimensions and frequency as used in Figure 3.6, the calculated Q-factor
varies 0.15% as N is reduced from 80 to 10 and 0.08% as M decreases from
10 to 2.

3.5 Verification for Calculation

The calculated results have been compared with the our experimental
measurement data and with the data published by Karpova [36].

In Table 3.2, the calculated results from this work are listed with
Karpova’s data. It shows that the difference between the two is less
than 0.22%. Karpova determined dielectric constants from the measured
r#sonant frequency and, hence, her data are subject to experimental as
welll as calculation errors.

The experimental verifications are presented in Tables 3.3, 3.4 and
3.5. Table 3.3 lists the resonant frequency of an empty cavity with a
warying gap. It reveals a maximum discrepancy of 0.06%. Such a discre-
Fpancy is caused not only by the calculation errors but also by the
measurement errors which are to be discussed in Chapter S. Tables 3.4
and 3.5 give the resonant frequency shifts produced by Teflon and water
samples. These results show a larger discrepancy mainly due to the
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Table 3.2 Calculated resonant frequencies compared with Karpova’s
data for the same cavity (r1=0.75. ra=2.56. r.=rl, L=
2.0 and D=0.5cm)

fo(GHz)
rs This work Karpova' [ afo/fo (%)
2.495 1.9741 1.9745 -0.02
2.735 1.9184 1.9223 -0.20
3.734 1.7284 1.7322 -0.22
S.605 1.4854 1.4837 0.11
30.83 0.6969 0,6959 0.14

Table 3.3 Calculated resonant frequancy of an empty cavity for

for varying gap widths, compared with the experimental
data (r1=1.23. r2=4.51. L=20.0cm, by MMMC1)

f (GHz) .
Dlcm) Calculated Heasured 8f°/f°(/.)
0.20 2.3119 2.3131 ~0. 082
0.50 2. 3673 " 3682 ~-0.038
0.75 2.4047  2.4059 -0. 0S50
1.00 2.4384 2.4380 0.016
1.20 2.4639 2.4649 -0. 040
1.50 2.5004 2.5003 0. 000
2.00 2.5580 2.5579 0.000
3.00 2.6616 2.6621 -0.019
4.00 2.737S 2.7376 0. 000

Table 3.4 Calculated resonant frequency shift produced by Teflon
samples, compared with the experimental data (rl=1.23.
rzvd.SI. L=20, D=1.0cm and er=2.0. by MMMC2)

. Af (MHz) Difference
r.(cm) Hode Cé!lcu.o Measu. (MHz)
TEMss4 25.9 28.7 0.2
0.75 TEM7/74 28.0 27.0 1.0
TEMoss 24.3 24.7 -0.4
TEMsz¢ 6.0 6.0 0.0
0.35 TEM7/4 6.7 7.3 -0.6
TEMors 5.9 S.4 ~0.5

*When the cavity is empty, the messured fO at TEMS/4, TEM7/4
and TENS/4 are 1.744, 2,438¢ and 3.1341CHz respectively., The
mode definition will be given in Chapter 4.
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Table 3.5 Calculated resonant frequency shift produced by distil-
led water (T225°C) for varying cavity length, compared
with measured data (r2=5.08, rl=1.2'7, r'°=0.35, r.=0.24,
D=0.25cm, e"=79.5. erh=3.8. by MMMCS)

L(cm) Af‘o( Miz) Difference
Calculated Heasurasd (MHz)
19.5 27.0 27.6 -0.8
19.7 26.6 27.3 -0.7
19.9 26.2 27.1 -0.9
20.1 26.0 26.8 -0.8
20.3 25.9 26.7 -0.8
20.5 25.6 26.5 -0.9

larger experimental errors involved. The Teflon data were obtained
using the cavity without the sample insertion hole. As a result, opening
the cavity to load the sample degrades the repeatability and causes a
significant measurement error. The air gaps at the sample ends will also
contribute to the experimental error, causing the measured resonant
frequency to be smzller than the true value. However, this air gap error
should be negligible for low permittivity materials such as Teflon. The
water data, though the sample insertion hole and the holder were used,
are also subject to several types of uncertainty such as the value of
€., used in the calculation, temperature variation and the dimensional
errors in L .od r. Nevertheless, the discrepancy shown in Table 3.5 is
less than 4%.

These comparisons have demonstrated the reliability of the mode-
matching caleulatlon, As a matter of fact, the high accuracy of the
calculated resonant frequency is partly due to the high sensitivity of
the determinant function. Figure 3.7 is a typical plot of the function
det |G| which shows a very steep valley wround the resonant frequency. In
addition, it is interesting to note that the poles of det |G| coincide
with the resonant wavelength of the standard coaxial cavity (D=0), that
is, IGl=w at A=2L/n. The designation and the naming of resonant modes in
our re-entrant coaxial cavity will be discussed in the next chapter,
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FIGURE 3.7 The determinant of matrix G as a function of wavelength (rl-
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CHAPTER 4
THEORETICAL CAVITY RESONANCE CHARACTERISTICS

With the aid of the mode-matching analysis presented in Chapter 3,
we are able to quantitatively examine the characteristics of the dielec-
tric sample loaded coaxial re-entrant cavity (Figure 1.1). In this
chapter, the major cavity characteristics will be presented based on the
numerical results and discussed focusing on the dielectric sample load-
ing effects, namely, changes in the resonant frequency and the electric
energy deposition caused by the insertion of a dielectric sample into a
cavity [24]. This chapter starts with the description of the cavity
field distribution and the definition of the resonant modes. The calcu-
lated resonant frequency and Q-factor are then given in the form of mode
charts and normalized Q diagrams. It is followed by a discussion of the
resulting practical importance and the theoretical insight from these
results. Effects of the sample insertion hole and holder [S5] are
elaborated on, which indicate significant differences between the cavity
used in this thesis work and an ordinary coaxial re-entrant cavity.
Finally, two calculated calibration curves are proposed for determining
the dielectric constant and loss tangent of the sample tested in this
cavity. After all, the purpose of this chapter is to provide a theor-
etical understanding of this cavity and to give practical guidance for
designing the cavity into a new high temperature microwave dielectro-

meter.
4.1 Field Distribution

It is well known that a standard coaxial cavity has a series of
fundamental TEM modes. The TEM field has only a radial electric compo-~
nent, Er. and an angular magnetic component, H¢, which can be expressed
by [S6]

- nz
Er = GO(IO/P)Sin(—A—o') (4. 1)
Io 2nz
H¢=(-2-;I-F)COS (-7‘;) (4.2)
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where Io is the current flowing through the center conductor, and is
here referred to as TEM current. The amplitude ratio of E and H¢ is

simply the free space impedance, i.e.
M = 120w (4.3)

The resonant wavelength, ho’ is given by

_2
xo = Ee (4.4)

for a closed cavity and

_ 4
Ao = iﬁ:fe (4.5)
L ]
for a cavity opened at one end, where n = 1, 2,... and ¢ is the civity

length.

With a gap cut in the center conductor as shown in Figure 4.1a, the
axial component Ez appears in the gap section, hence, the field is no
longer an exact TEM field. However, if the gap is much smaller than the
wavelength, it is reasonable to expect that the fleld pattern away from
the gap will nearly be TEM except for a change 1in its resonant
wavelength. This can be shown from the calculated field distributions.
Figures 4.2a and 4.3a show the axial distribution of E e H¢ and E at
(r *r, )72 before and after a sample of € ‘=50 is loaded in the cavity
gap, plotted together with the TEM field of the same wavelength. We see
that at a distance of about 3D away from the g2p, Er and H¢ are almost
the same as those of the TEM field and E » A component associated with
TM modes, decays to about 10Y%. Moreover. the field pattern of ¢ —SO is
alinost the same as that obtained by stretching the field pattern of c'-l
along the z axis, since it is only the resonant wavelength that changes
in the coaxial section. However, the net energy stored in the gap
section is substantially different. Figures 4.2b and 4.3b demonstrate
the radial distribution of gap fields normalized by the TEM current, and
clearly show that the gap with e;=1 is electrically dominant, f.e., it
has much more electric energy than magnetic energy, while the gap with

D ———

In this thesis, "opened" is referred to “ideally opened" which corres-
ponds to a zero fringe capacitance.
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Figure 4.1 Coaxial re-entrant cavity with a gap partially filled with a
dielectric sample. (a) Schematic diagram of the structure
and (b) Equivalent circuit.

c;=50 is magnetically dominant. Therefore, it is justified to call the
former gap capacitive and the latter inductive.

The gap fields shown in Figures 4.2b and 4.3b are close to those of
the TMOlo mode of a cylindrical cavity if r is small, i.e., Ez=constant.
H¢uJ1(kr) and Er=0. As a result, a rather uniform temperature profile
will be achieved when the cavity is used as a microwave heater. In addi-
tion, since the resonant fleld pattern in the coaxial section is very
close to the TEM pattern as shown in Figures 4.2a and 4.3a, one can
expect that the cavity field and the resonant frequency will not change

if the cavity length increases or decreases by one half of the wave-
length,

s1



-1.5

n

I‘I“lll"l‘lll“lll‘ll‘l‘l"l‘l

E.. E,and Hy

E.. E, and Hyg
LY

+++4 Ep
osoe Hy}by mode-matching
xxou E,

x

A X
KX
nnnnnknxxm R GOECNONOMBOUOOER

? A

>
'R SR |

(a)

|

A l
&& |
T TEM st Al
| ]

/]

“
N
3
%
AN

FETER TN SNSRI AV SRRV USUN TR JEN U FNENE SR

2 2 4 6 8 18 12 14 16 18 29
z(em)

-'T"TI_l‘l—l‘rl_II-lT'lTl_'rIrlle!_ITITU—TI_ITIT"I'[—"I'ITI‘II_I ]

(b)

%) A o2 .3 .4 S .8 .7 .8 .8 1
r/ro
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L=20.0cm,e"=1.0. f°=2.4386Hz), normalized by the TEM field
in the coaxial section. (a) Axial distribution between the
center and outer conductor, compared with TEM fields and
(b) Radial distribution in the gap midplane.
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L=20.Qcm, c"=50.0,f°=2.2126Hz). normalized by the TEM field
in the coaxial section. (a) Axial distribution between the
center and outer conductor, compared with TEM fields and (b)
Radial distribution in the gap midplane.
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4.2 Quasi-TEM Resopant Modes

In general, a coaxial re-entrant cavity can be reduced to an
equivalent circuit as shown in Figure 4.1b, where the transmission line
represents the coaxial section and the admittance, Yo' models the gap
section of the cavity. Thus, the resonant condition can be easily

written as (56]

cot(lw/c) = -on/Yc (4.6)

where Yo = ijo (4.7)

for a capacitive gap and

Yo = l/ijo (4.8)

for an inductive gap. C° and Lo are the equivalent lumped gap capaci-
tance and inductance and Yc is the characterisitic admittance of the
coaxial section which is given by

_ 1
Yc - 601n(r2/rli (4.9)

If Co and Lo are Independent of the resonant frequency, the resonant
frequency can be solved for graphically as shown in Figure 4.4. Such a
graphical solution will help to make the following mode definition more
illustrative.

Figure 4.4 shows that the solutions for the resonant frequency of a
capacitive gap are all above the horizontal axis and between (n-1)m and
(n-172)n, i.e.,

(n~1)h°/2 <l < (2n-l)A°/4 (4.10)
or 4ql/(2n~1) < Ao< 2/ (n~1) (4.11)

These modes are defined as capacitive quasi~TEM modes and designated as
2n-1)/4° For an inductive gap, the solutions are all located below
the axis and between (n-1/2)x and nr, i.e.,

(2n-1)A°/4 <8< ZnAo/4 (4.12)
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Figure 4.4 Graphic solution for resonant frequencies of an ideal coax-
ial re-entrant cavity with lumped gap parameters C° and Lo

and the ‘el of the resonant frequencies of a real cavity.

or 2l/mn < A°< 4/ (2n~1) (4.13)

Similarly, these modes are named inductive quasi-TEM modes and desig-
nated as TEMav4‘ As the gap capacitance disappears or approaches an
infinite value, al'. these quasi TEM modes become exact TEM modes as in
an ldeally opened or closed coaxial cavity. Compared with a coaxial
cavity opened at one end, a capacitive mode {or gap) virtually shortens
the cavity whereas an inductive mode (or gap) lengthens the cavity.

Understanding these two types of modes is helpful in making more
efficient use of coaxial re-entrant cavities. For example, when design-
ing a microwave applicator (23], a capacitive mode should be chosen for
heating non-magnetic materials and an inductive mode for magnetic
materials so that a maximum material-field interaction and, therefore, a
high temperature or a high heating rate can be achieved,
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4.3 Equivalent Gap Capacitance

Generally speaking, the lumped gap parameter C0 or Lo depends not
only on cavity dimensions and the sample in the gap but also on resonant
modes (or frequency). As shown in Figure 4.4, the resonant frequencles
of a given cavity, marked by crosses (c;=10) and dots (e;=50). are no
longer located along a straight line or a hyperbolic curve, which means
that C0 and L° are frequency dependent. Nevertheless, it will be shown
below that a gap capacitance can be frequency independent under certain
conditions.

As mentjoned above, a capacitive gap can be represented by a lumped
capacitance, which can be derived from the known resonant frequency via
Eqs. (4.6) and (4.7), i.e.,

Co = chot(bw/c)/w (4.14)

On the other hand, Marcuvitz [57] gave an expression for the equivaleni
capacitance for an empty coaxial re-entrant gap as follows:

o‘ 2 _
Co = eourI/D + 4eor11n((r2 rl)/D) (4.15)

This capacitance is composed of a parallel plate capacitance

2
Cop = eourllD (4.16)

and a fringe capacitance

L ]
Cor = 4eor11n((r2-r1)/D) (4.17)

To extend the expression to the case of a gap partially filled with
a dielectric, C;p can be modified to

s _ 2, ., _ 2
Cop = cou(ro(cr 1)*r1)/D (4. 18)
and C°; remains unchanged. Therefore, Eq. (4.15) becomes

L 2 _,_ 2 R
C, = eon(ro(cr 1)+rt)/D + 4c°r?1n((r2 rl)/D) (4.19)

To examine the validity of Eq.14.19), a comparison between C; of Eq.
(4.19) and Co of Eq.(4.14) is made and presented in Figure 4.5 for dif-
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ferent radii and dielectric constants of the sample. These curves show
that Eq.(4.19) is valid if the gap width is much smaller than the wave-
length in the dielectric. Ve can adopt the same conditions as given by
Marcuvitz, that is, 2rD/.1 and D/(ra-rl)cl. where A=A°/¢E: .

4.4 Resonant Frequency

Resonant frequencies are computed for a typical gap width, D,
sample radius, T and sample dielectric constant, e;. and are presented
in Figure 4.6 in the form of mode charts. On these mode charts, capaci-
tive modes are shown by solid lines and inductive modes by dashed lines.

First of all, we see that reducing the gap width and increasing the
dlelectric constant or radius of the sample have an equivalent effect on
the reduction of resonant frequencies. Recalling that the sample load-
ing factor is proportional to the sample’s dielectric constant and
volume and the square of the gap E-field (Eq.(2.37)), we see that the
larger the loading factor, the greater the frequency reduction. For a
loaded cavity, the frequency reduction with decreasing gap width slows
down especially at a wider gap or for a higher mode because the length
or the volume of the sample decreases as well.

Secondly, in contrast to the modes in standard cavities which are
distinct from each other, capacitive and inductive modes exhibit a
smooth transition between each other as D, r and c; are varied. At the
transition point, both the coaxial and gap sections have equal electric
and magnetic energy and are therefore loosely coupled. It is important
to understand the mode transition due to the variations in the sample,
in particular, changes of dielectric properties with temperature. The
mode transition from a capacitive mode to an inductive mode may weaken
the interaction of the sample with the electric field. This will cause
problems in high temperature material heating since the dielectric
constant of most oxides, ceramics and glasses increases with tempera-
ture. On the other hand, it is possible to make use of this mode transi-
tion to suppress the temperature run-away which arises from the positive
temperature coefficient of the material’‘s loss factor. It is under-
standable that the mode transition happens more frequently for a larger
sample radius. Figure 4.7 is an example, where a smaller slope corres-
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Figure 4.7 Resonant wavelength as a function of the dielectric constant
of a sample with the same diameter as the center conductor
(r1=rs=1.25. r2=4.5, L=20.0, D=1.0cm, by MMMC1).

ponds to an inductive mode which relates to a weaker gap E-field. This
curve also reveals that the mode transition is responsible for a nca-
linear frequency shift with increasing dielectric constant.

4.5 Cavity Q-factor

The Q-factor of a dielectric loaded cavity is expressed in two
parts as

I/QL = I/QC*I/QD (4.20)

where Qc is the cavity Q due to the wall loss, and QD is the cavity Q
due to the sample’s dlielectric loss, i.e.,

Qc = qu/Pw (4.21)
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and Qn = WE/(HDtanG) = 1/(Fetan6) (4.22)

vhere HE and WD are the stored energy in the whole cavity and in the
sample, P" i{s the power dissipated in the cavity walls which is inverse-
ly proportional to the square root of the wall conductivity, ¢, and FZ
is the sample loading factor. If QD and Qc differ by a factor more than
10, the lower one dominates the loaded cavity Q-factor. From this point
of view, vwhen a very lossy sample is loaded into a cavity, QL will not

be very high no matter how high the Qc is.
4.5.1 Normalized Qc

To be useful generally, we define a normalized Q-factor, 6c' vwhich
is independent of o, as follows

6c= QCNE (4.23)

The inverse of ﬁc is presented as a function of D, e; and ro/r1 in
Figure 4.8. Although it seems that the cavity Q-factor varies with D, e;
and ro in different ways, it is almost always true that Qc for a set of
arbitrary parameters is intrinsically determined by the cavity resonant
frequency, that is, Qc increases with the resonant frequency. An excep-
tion may occur if the frequency is so high that the increase in wall
loss overrides the increase in the stored energy as shown in Figure 4.8a.

The cavity Q-factor, Qc' may be approximated by the value for a
zero-gap cavity, i.e., a standard coaxial cavity. As derived in Appendix
2, 1f LaD and A /4n, 6c can be expressed by

_ ln(rz/rl)
Qc = 0'4'"fo 1/r1+1/r2+(4/L)ld1r2/r;f

(4.24)

where fo is in GHz and ro T, and L in em. This formula is actually the
same as the Q expression of a standard coaxial cavity [56]. To exarine
its accuracy, let r1=l.25. r2=4.5 and L=20.0, Eq.(4.24) becomes

Qc - 1.26ff; (4. 25)
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Using this formula, 6c is calculated and compared with the results of
the mode-matching analysis for selected D, r, and e;in Table 4.1. As ex-
pected, the error decreases with reducing gap width and wavelength. What
is not expected is that the accuracy becomes better for a larger c; and
Po' This may be due to the fact that a dielectric loaded gap makes a re-
entrant cavity behave more like a zero-gap cavity than would an unloaded

gap.

Table 4.1 Calculated Normalized Qc' Approximated Analytical results
(Eq. (4.24)) vs. numerical results (r1=1.25,r2=4.5,L=20.0cm).

D/L r/r e A/(4nL) Q Difference
- Eq. (2.24) MMMC2

0.05 0.5 10 0.121 1.37 1.25  -8.6%

0.05 0.5 10 0.072 1.76 1.62  -7.74

0.05 0.5 10 0.0S1 2,04 1.93  -5.5%

0.05 0.5 10 0.033 2.25  2.20  -2.4%

0.10 0.5 10 0.038  2.42  2.20  -8.9%

0.06 0.5 1.0 0.038  2.52  2.24  -11.2%
0.06 0.5 20 0.040 2.10  2.18 4.0%

0.05 0.2 10 0.038  2.44  2.22  -8.6%

4,5.2 Normaljized QD and sample energy density

As 66, the normalized dielex*#ic cavity Q-factor is defined as

Q = Qntané = WE/ND = 1/F2 (4.26)

We see that the inverse of 60 is simply the sample loading factor, Ft’
which is the ratio of the energy stored in the sample to that in the
cavity. To be more meaningful, Ft is divided by a volume filling factor
Fo. resulting in an energy density ratio ft as follows:

f& = Ft/Fo = (Hb/VD)/(NE/VC) (4.27)
FZ = HD/WE (4.28)
FO = VD/Vc (4.29)
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where VD and VC are the volume of the sample and the cavity. Therefore,
QD is related to f& by

1/QD = tanG/QD = Fc'fe-tané (4.30)

Curves of fZ versus D, e; and ro/r1 are plotted in Figure 4.9. They
clearly exhibit a strongly focused electric field existing in the gap
which explains the high heating rate obtained from this structure (23].
However, the focused gap field also imposes limitations on processable
volume and loss range of the sample. For example, if f£=500 and tand=
0.1, a sample with a filling factor of 1/500 will deteriorate the total
cavity Q-factor from any high value, say 2000, to a Q of less than 10.
Therefore, it is necessary to reduce the sample volume or increase the
input power to maintain a certain heating rate.

In addition, the following conclusions can be made based on the
results of the fe curves:

(1) The sample energy density rises exponentially as the gap is
reduced in Figure 4.9a. An increase in wavelength virtually reduces the
gap width which suggests that low frequency operation is preferred to
heat samples with practical dimensions.

(2) In Figure 4.9b, the sample energy density increases almost
linearly with e; for low e;. It then tends to saturate and drop off
slowly with increasing e; due to the mode shifting away from being a
capacitive mode. This relatively flat portion cf the curve is advan-
tageous in maintaining a stable heating rate while the sample’s permit-
tivity varies with temperature.

(3) The decrease in sample energy density in Figure 4.9c with
increase of sample radius is mainly due to the gap E~field being
approximately a Jo(kr) function which decreases with large r. In order
to have a relatively uniform radial field profile, the sample radius
should be restricted to less than 40% of the center conductor radius.

4.6 Effects of Insertion Hole

The presence of the sample insertion hole in the re-entrant gap has
similar effects on cavity characteristics as widening the gap. Using
this analogy, we may qualitatively expect that the holes will cause the
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gap capacitance and gap E-field to decrease or the resonant frequency to
Increase. The reduced gap fields will in turn lessen the sample loading
effects, namely the frequency shift and Q-factor drop caused by the

sample. On the other hand, some of the electric energy now also exists
inside the holes, equivalently increasing the sample length or volume.
In this section, we will closely examine these effects by comparing the
numerical results with those of the no-hole case. Also discussed is the

case using a sample holder, which acts to enhance the hole effects.

4.6.1 Hole field attenuation

Due to the hole diameter being much less than the wavelength,
fields cannot propagate but decay along the path deeper into the holes.
As shown in Figure 4.10, the E-field at some distance into the hole is
attenuated to a negligible level, say 5%, a number corresponding to a
negligible variation in the calculated resonant frequency. This
distance may be called effective hole depth, z . It will increase with
sample permittivity. The dependence of the effective depth on the permi-
ttivity is f1liwtorted in Figure 4.11. It shows that as the dlelectric
constant ir -oxosas i~ effective depth increases, and eventually

reaches infinity where <se hole is no longer cut-off.

4.6.2 Gap field distribution

As expected, the E-field intensity in the gap ls weakuned and lits
peak value shifts away from the axis when the holes appear in the gap.
This is demonstrated in Figure 4.12, where radial distributions of Ez in
the midplane of the gap are plotted for three cavities: (1) without hole
or a sample holder; (2) with holes but without the holdes and (3) with
both holes and the holder. It shows that the peak field is shifted from
the axis to the radial edge of the holes and the presence of a sample
holder further reduces the gap field.

4.6.3 Resonant frequency shift

For the same cavity structures of (1), (2) and (3) as in Figure
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z (cm)

Figur2 4.10 Axial distribution of the normalized Ez in the gap and adja-
cent hole region at r=0 and at about 3GHz (rs=0.24.r1=1.23,r2
=4.51,L=20.5,D=0.3cm, for cavity (2) and (3) see Figure 4.12).
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Figure 4.11 The effective hole depth of cavity (3) (see Figure 4.12) as
a function of dielectric constant.

67



cavity (1) cavity (2) cavity (3)

cavity (1) - without hole and holder (ro=0)
cavity (2) ~ with hole and without holder (ro=rs)
cavity (3) -~ with both hole and holder (ro=0.37cm. € . =3.78)
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Figure 4,12 Radial distribution of the normalized Ez at the gap mid-
plane at about 3GHz in three structures (The other cavity
dimensions are the same as in Figure 4.10 and cr’azo).

4.12, resonant frequency shifts are calculated and plotted as a function
of permittivity in Figure 4.13. The results are in qualitative agree-
ment with those of the gap field in Figure 4.12, In other words, the
stronger the gap fleld, the greater the shift in resonant frequency when
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Figure 4.13 Resonant. frequency shift produced by a sample at about 3GHz
in cavity (1), (2) and (3) (see Figure 4.12).

loading the gap. The slope of Afo versus e; determines the sensitivity
of dielectric determinations. However, it also controls the measurable
range of dielectric properties because a larger detuning of a resonator
tends to bring about more difficulties such as impedance mismatch in
practical measurements. Therefore, a coaxial cavity with sample inser-
tion holes and holder can extend the measurable range of dielectric
properties. Moreover, it presents a better linearity of frequency shift
as a function of dielectric constant. As shown in Figure 4.13, curve (3)
is almost a straight line up tc =80, which is a great convenience in
dielectric determinations. For iﬁstance. one can have a linear cavity
length variation in the length variation method (see section 4.7). This
improvement in linearity is not only the consequence of a reduction of
the gap fleld but also the outcome of an increased effective hole depth
at a higher dielectric constant which offsets the saturation exhibited

in 2 normal detuning curve, such as the curve for cavity (1) in Figure
4.13.
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4.6.4 Energy stored and dissipated in sample

The electric energy stored in a dielectric sample loaded through an
insertion hole can be broken into two parts, namely the gap portien and
the hole portion energy. The presence of the holes reduces the gap
portion energy because of the decreased gap field but also yields an
additional amount of energy in the holes. To examine these two portions
of energy closely, the stored energy in a sample is integrated over the
volume of the gap and the holes separately for varied dielectric con-
stants, and presented in Figure 4.14 together with the results of the
no-hole case. It shows that the hole portion contributes an appreciable
percentage of the total energy and that it increases with diele-tric
constant at an increasing rate. It is this hole portion energy that
compensates for the reduction of the E-field in the sample due to the
increase of the dielectric constant, thus extending the linear range in

the curve of the resonant frequency shift versus dielectric constant.

ETT fl']‘l"'l" r"rTI 1°? rl‘lTl L2 § rl_'T'—"[ L2 I rr"f

cavity (1)

[

cavity (3)

. [ [ 4

Sample Energy
D —~ N W s O N DWW -

%) 18 28 30 48 S0 68 7?3 @@

Figure 4.14 Normalized electric energy stored in a sample as a3 function
of the sample’s dielectric constant of cavity (1) and (2)
(see Figure 4.12).
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As stated in Eq.(2.31), the dissipated energy in a sample is direct-
ly proportional to the stored energy, with the proportionality constant
being the loss tangent of the sample. Consequently, for a constant loss
tangent, the dissipated energy in the sample increases with the dielec-
tric constant, e;, in the same manner as the stored energy, i.e, at a
nearly constant rate in a lower range of e; and at an increasing rate at
higher e;. When the cavity is loaded with a sample having both a high
dielectric constant and a high loss tangent, it will present a very low
Q-factor and will be severely under-coupled. Therefore, in order to
obtajn a wider measurable permittivity range, the volume of samples must
still be limited, even though the insertion hole has already lowered the
gap fleld.

4.6.5 Hole effect and wavelength

It is evident that the hole effects discussed above depend on the
wavelength. Considering the hole as a dielectric filled cylindrical
waveguide operating in TMox mode, we can write the cutoff condition as
[31]

Ay > A, 14.31)
~— ’
A, = 2.62r0»/2:‘r (4.32)
or r < a/(2.62ve’) (4.33)
0 0 r

We can define a critical hole radius as

Toc = AO/(Z.SZVCimax) (4.34)

where e;n‘x is the maximum dielectric constant to be measured. This
equation gives the maximum hole size one can use in practice.

Under the cutoff condition, the decay rate of the hole fields is
determined by the ratio of AO/AC. For a given hole, the hole effects on
the cavity characteristics is weakened by the increase of wavelength. To
show this, the hole field distribution and the frequency shifts by the
sample are plotted in Figure 4.15 for two different frequency bands. We
can see that the hole field is attenuated faster and the frequency shift
curve becomes less linear at 915MHz than at 3GHz.
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Figure 4.15 (a) The axial distribution (r=0) of normalized Ez and (b) the
resonant frequency shift as a function of sample’s dielectric

constant in two different frequency bands (r'=0.24. r°=0.355.

r1=1.244, r2=5.0, L=20.0, D=0.3cm, and r°=0 for the no-hole
case and r0=0.355cm and erh=3.78 for the hole case).
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4.7 Calibration Curves for Dielectric Determination

To determine dielectric constants and loss tangents, it is essen-
tial to find their relationships to the measurable parameters which are
the resonant frequency shift and the Q-factor change produced by the
sample in most cases. Such relationships can be readily obtained by the
mode-matching analysis. In fact, they have implicitly been presented
already in the above discussions of cavity characteristics.

The calibration curve for determining dielectric constants can be
constructed by plotting curves of e; vs. Afo. The steeper the curve, the
wider the range of dielectric constant that can be measured for a given
max imum Afo but the poorer the accuracy of the determination.

The loss tangent can be related to the cavity Q change via the
sample loading factor as

—_ - =) (4.35)

The loading factor Ft has been plotted in gzure 4.9 as a function of
e;, in the form of the sample energy density, ft' which is equal to Fz
divided by the volume filling factor Fo. It should be pointed out that
Qc is not a constant but a function of e;, hence; it is hardly a measur-
able parameter. Nevertheless, we can use the empty cavity Q-factor, Qo.
as an approximation of QC. so that Eq. (4.35) becomes

1 1 1 1
tand # —=:(— - —-) = —-4(1/Q) (4.36)
F) QL Qo Ft 0

We now see that F! is the only parameter required to determine tand from
the measured A(l/Qo). Therefore, F1=F£(e;) is the calibration curve for
the determination of the loss tangent.

The approximation made in Eq. (4.36) may cause an error in loss tan-
gent determinations since Qo is only the value of Qc at c;=1. Such an
error may be reduced by a simple correction. Recalling that Qc is
proportional to the square root of fo (Eq. (4.24)), one can express Qc by
Q° approximately as follows

Qc ® QOV(f°+Af°5/fo ® QQ(1+0.SAfd/f°) (4.37)
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where f is the resonant frequency of the empty cavity and Af is the
frequency shift produced by the sample and always has negative values

As discussed in Chapter 2, if the sample loading factor is very
small and the perturbation condition is satisfied, the loss tangent can
also be found from the frequency shift, thus eliminating the need for
the calibration curve of Fe(e;). Rewriting Eq.(2.17) as follows

tans = —-4(1/Q,) (4.38)
) 0
e; 2Af°
F{ = - ~ 1 F (439)
] e’ 1 fo

We expect that‘Fz of Eq.(4.39) should be equal to Ft of Eq.(4.28) for a
small sample with a low dielectric constant. This 1s confirmed by the
plot of FE and F in Figure 4.16 which are the calculated results for a

given cavity. The flgure indicates that the difference between Fl and
F is rather small for € ' s10.

g
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5 oot =3~ perurbation equation ( p'z)

0001 =yt Py
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ets

Figure 4.16 The sample loading factor as a function of the sample’s die-
lectric constant; perturbation compared with mode-matching
results. The cavity is the same as that in Figure 4.15a.
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The dielectric constant can also be determined in a CW mode, i.e..
at a single frequency, rather than in the sweeping mode, by the so-
called length variation method (9]. In this method, a sample loaded
cavity is re-resonated by an adjustment of the cavity length; thus the
dlelectric constant of the sample is found from the length variation. To
do so, a calibration curve is required to relate the dielectric constant
to the length variation. It can be obtained from the mode-matching
analysis as well. Figure 4.17 is an example of such a calibration curve.
It is calculated for a cavity having an insertion hole and operating at
3GHz. Since both functions of AL vs. Afo and Afo vs. s; are almost
linear, the obtained caiibration curve is roughly a straight line. In
this length variation method, one can also adjust the gap width instead
of the cavity length to re-resonate the loaded cavity. For this purpose,
a calibration curve of e; vs. AD is calculated and presented in Figure
4.18. It shows that the curve tends toward saturation at larger e; due
to the increase of the sample volume with the gap width.

80 < f=3.05GHz
L=20.0cm

€rs

.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-A L (mm)

Figure 4.17 Calibration curve for determining dielectric constant in the
length variation method. The cavity is the same as that in
Figure 4. 15a.
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Figure 4.18 Calibration curve for determining dielectric constant in ..e

gap variation method. The cavity is the same as that in Fig.
4.15a.
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CHAPTER S
MEASUREMENT AND COKTROL SYSTEM

The high temperature dielectriz measurement technique proposed in
this thesis,as stated in Chapter 1, is a resonant cavity method in which
a coaxial re-entrant cavity is designed as a sample heater as w2ll as a
test chamber. As a test chamber, the cavity resonates in the testing
band and the measurement of the changes in the resonant parameters
produced by a sample allows the determinatior 1 its complex dielectric
constant. As a sample heater, the cavity s.fy.ies a focused E-field
which is also a resonant field to raise the sample’s temperature via its
microwave absorption. A sample is tested and heated simultaneously in
different frequency bands to avoid the crcss coupling of heating power
and measurement signal.

To realize this scheme, an experimental system is implemented and
shown in the block diagram of Figure S.1 (58,59]. In such a setup, the
cavity is connected with three channels. The testing channel is basical-
ly a reflectometer which measures the reflection spectrum, that is,

reflection coefficient versus frequency, of the cavity in S-band (2-

| |
_____ | Testing Channel
=~ Osallator @ JGHZ)
! Temperature | P l !
Channel
| [ I ey i‘.“'“ N '
I [ Coupler -etwo |
I Thermometer I ' Amlyur l
& controller |
l_ R I ! Filter {
| |
OFT Probe
3
I Matchin i |
" o 8 | _jTuning [ | Heaung
Smp%::j caviry O { Device Controller Source {
' Heating Channel (915£15MHz) !

Figure 5.1 Experimental system for high temperature dielectric measure-

ments.



iGHz). The resonant frequency shift and Q-factor can then be derived
from the reflecticn spectrum. The heating channel is mainly a solid
state microwave power source at 915MHz, tunable over a 30MHz band and
capable of providing a maximum output of 120W. The power 1is delivered to
the sample loaded cavity via a matching device and a tuning controller
which ensure maximum power delivery to the cavity. A high pass filter is
connected between the cavity and the reflectometer operating over S-band
to block the power from the 915MHz heating source. The third channel is
a thermometer for measuring and controlling the sample’s temperature,
using an optical fiber probe which does not disturb microwave fields as
much as a thermocouple. In this chapter, the design of the cavity will
pe addressed first due to the central role whicih it plays in the system.
The testing, heating and temperature measuring techniques involved in
this system will then be presented. Thereafter, the associated errors

and the dynamic measurement range are discussed.
5.1 Cavity Design
5.1.1 Design considerations

The cavity to be designed is schematically shown in Figure 5.2. The

main considerations for such a design are:
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Figure 5.2 Cavity structure of dielectrometer.



1. The heating and testing operations require two resonant modes.
One is within the band for which the heating power source is available,
namely 915%15MHz; the other is chosen to be around 3CHz.

2. To ensure good measurement reliabilitwv and a high cavity Q-fac-
tor, we prefer that all the cavity dimensic.s could be fixed. However,
we often need to change cavity dimensions, particularly the gap width
and the cavity length. In order to maintain mechanical simplicity, we
choose the gap width as the only adjustable dimension.

3. The sample volume which interacts with the cavity E-field is
determined by the gap width and the insertion hole diameter. These
dimensions are chosen based on a compromise between the test sensitivity
and the dynamic measurement and heating range. Though a larger sample
volume produces a greater resonant frequency shift and Q change, and
therefore, better sensitivity in dielectric determinations, it causes
more detuning and mismatching problems in a practical testing and

heating situation.
5.1.2 Determination of cavity dimensions
A. Cavity radius

As indicated in Appendix 2, at a given frequency, the unloaded Q-
factor of a coaxial cavity is proportional to the radius of its outer
conductor, rz, and for a fixed ra, it reaches a maximum value when r~2/rx
=3.58, a ratlo which corresponds to a characteristic impedance of 77Q
[60]. We choose r2=5.1cm(2“), then r1=5.1/3.58=1.42cm(0.56"). 1" stan-
dard pipe is used for the center conductor, i.e., r1=1.27cm at the
machining stage.

It is necessary to check for the exist:nce of possible transverse
modes., In a coaxial line of r1=1.27cm and r2=5.1cm. the cutolf fre-
quencies of all the transverse modes are above 3.8GHz except for TE11
and TE21 modes whose fc is 1.55GHz and 2.83GHz respectively [31]. Neg~
lecting the gap effect and assuming L=20cm, we can find that there are

two transverse resonant modes, TE211 and TE whose resonant fre-

212’
quencies are close to 3GHz. fo(TE211)=2.SGHz and fo(TE212)=3.ZGHz. The
testing band should be chosen in between these two modes, i.e., centered

at 3.05GHz.



B. Cavity length

The cavity length is mainly determined by the resonant modes and
the frequency band. For capacitive modes, the length of the coaxial sec-

tion is given by Eq.(4.10), i.e.,

(n-1)Ao/2 < g« (2n-1)Ao/4 (5.1)

Considering that the short-circuit design of Figure 5.2 requires the
cavity length to be larger than a quarter wavelength, we choose the
second lowest mode (n=2), i.e., TEM3/4, in the heating band. Substitut-
ing A0=30(cm-ns'l) /0.930(GHz)=32. 26cm and n=2 into Eq.(5.1), we have

16.13cm < £ < 24.19cm (5.2)

Similarly, in the testing band, f0=3.OSGHz, Ao=9.84cm. so the length

required for the '1"EM9/4 mode, i.e., n=5, is
19.86cm < £ < 22.12cm (5.3)

The exact cavity length cannot be determined until other cavity
dimensions are given. Neglecting the hole effects and taking D=0.3cm, we
can compute the unloaded resonant frequencies of the TEM3/4 and TEMQ',4
modes for L varying from 19.5cm to 20.5cm, using the mode-matching ana-
lysis program MMMC1l. The calculated results plotted in Figure 5.3 show
that the cavity of L=20cm can resonate at both 817MHz and 3.05 GHz. It
may be useful to know that this cavity also resonates at 2.326H2(TEM7/4)
which is the closest to the 2.45GHz band. The actual resonant
frequencies will be slightly higher because of the presence of the
insertion hole and the coupling loop. The insertion hole reduces the gap
capacitance and the coupling loop tends to shorten the cavity length;

both resulting in a higher resonant frequency.
C. Insertion hole radius and gap width

The insertion hole radius, ry and gap width, D, actually determine
the effective sample volume which interacts with the gap E-field. As
developed in section 5.5, Ty and D determine the measurement range of
dielectric constant and loss tangent. The requirements for extending the

upper and lower limit of measurable e; and tand are in conflict with one
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another. Moreover, a wider measurement range is usually obtained at the
pricé of losing the measurement sensitivity. To be flexible, therefore,
the gap width is made adjustable by moving the center conductor, while
the sample insertion hole radius can be altered by replacing the
detachable end of the center conductor and the insertion hole supperting
pipe on the endplate, as indicated in Figure S.2.

Tihe maximum ro is limited by the cutoff condition expressed by Eq.
(4.34). Using e;max=81 and Ao=10cm (fo=3.0GHz), we find rbc=0.4ZCm. To
ensure sufficient cutoff, we can take r°=85%r°c=0.36cm. In order to use
standard quartz tubes as sample holders, 2r° is chosen to be the outer
diameter of the standard tubes, say, 7mm and 6mm. Using 7mm and 6mm
sample holders, the sample radius is about 2.4 and 2.0mm. The gap width
may be as large as permitted by the detuning and mismatching limits of
the testing and heating channels. It can also be very small as long as
arcing does not occur in the gap. However, the sample cannot be arbit-

rarily small for practical reasons.



5.1.3 Design of the non-contact short circuit

To allow the gap width to be adjustable, we have to design a
movable center conductor. A non-contact short circuit design is thus
required to ensure electrical reliability. A bucket structure as shown
in Figure 5.4 1is selected. To evaluate its performance, we should
inspect the normalized input impedance at the effective shorting plane
which is found to be [61]

Z
S

ZS/ZC = RS+JXS

1+j2 tan8
= - . g b —— (5.4)
[1+(1+Zg)tan Bb]+J[(1/Zg-1)+tan eb/Zgltaneb

where 2C is the characteristic impedance of the coaxial section, i.e.,
Z.= 601n(r2/r1) (5.5)

Zg is the normalized characteristic impedance of the gap space between

the bucket and the center conductor:

.\\\\\\\\\\\\\\\\\\\\\\\\\\\Y\\\\\\:

R T SN

Figure 5.4 Simplified cross section of the shorting bucket.
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) = 0g/r (5.6)
< 1

c 1 c

and eb is the electrical length of the bucket:

9b = anb/h (5.7)

The real part of 25 is the energy loss through the short circuit and it

is usually expressed in decibel form as

LR = IOIOg(RS) (dB) (5.8)

It should be mentioned that this energy loss does not include the bucket
surface loss, which is estimated to be about -35dB if the plunger is
made of brass or is silver plated [62]. For this reason, it is unnecess-
ary to reduce LR below -35dB. The imaginary part of fs is the reactance
created by the short circuit assembly and can be viewed as an electrical
length variation in degrees:

- -1 v
Aeb = tan (Xs) (5.9)

or as an equivaient length shift

Aeb = AAGb/Zn (5.10)

In Figure 5.5, LR and Aeb are plotted against eb from 50° to 90° for the
structure of Figure 5.4 with r2=5.1 r1=1.27 and g=0.1cm. The curve of Ln
is symmetric and Aeb is anti-symmetric about 90°. Both LR and 46
periodic functions with a period of 180°.

are
b

The shorting bucket under desigr must have a very small ﬁs and is
in both the testing and the heating tand. If £bs7.5cm. the electrical
length of the bucket deviates from 90° by less than 10° in both the 3.0-
<. 1GHz and 900-930MHz bands. From Figure 5.5, we see that LR and Aeb
corresponding to 80° are about -58dB and 0°. which meang that a bucket

with £b=7.SCm and g=imm simulates an ideal short circuit very well.
5.1.4 Mechanical tolerances of cavity dimensions

Permissible mechanical tolerance can be evaluated from the maximum
tolerable resonant frequency changes produced by cavity dimension varia-

tions. The results of such an evaluation are summarized in Table 5.1,
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Table S.

1 Evaluation of mechanical tolerance of cavity (fo=3GHz, r2=

5.0, 1=1.25. r

Dimension X

[l B BN |

o
AA/Bx
mm/ mm

+0.088

+0,.088

-0.030

+0.48

~0,35

-
=

0.

It should be mentioned that,

35, L=20.0, D=0.3cm, ¢ _=1.0, by MMMC4)

Af /A%

-2.8
~2.7
+0.90
-15.0
+11.0

although
sensitive to the varlation in the hole

Ax{mm) at
MHz/mm Af=*1.0MHz

70.36
70.37
£1.1
70.068
£0.091

Ax{mm) at
Af=+0.SMHz

70.18
#0.19
$0.56
+0.034
*0.045

the resonant frequency 1is not

radius,

vwhen the cavity is

empty as shown in Table 5.1, it will become rather sensitive if a high

permittivity sample is loaded.

The error in the dielectric determi-

nation due to such a variation is analyzed in Chapter 6.



5.2 Testing Channel Operation

The requirement for the test channel is to measure the resonant
frequency and the Q-factor of a sample loaded cavi‘'y precisely and
rapidly. Standard measurement methods are adopted which are briefly sum-
marized in this section. However, the associated errors will be
discussed in detail. The preogram designed for automatic measurements is
also described.

With a swept reflectometer, which consists of a sc. 'ar network
analyzer, a sweep oscillator and a dual directional coupler as shown in
Figure 5.1, it is straightforward to measure the resonant frequency.
Using the HP87S56A analyzer, the resonant frequency can be found using
the Cursor Min function [63]. In determining dielectric constants, i% is
the resonant frequency shift not the frequency itself that must be accu-
rate. The factors affecting the accuracy of Afo include the linearity of
the sweep voltage-frequency correlation, the frequency stability and the
frequency display resolution. The nonlinearity of the HP8623A sweep
oscillator plug-in is less than $0.154% of the swept band [64], or
*0.045MHz over a 30MHz band. The frequency of the plug-in output fluctu-
ates typically #0.2MHz per 10 minute interval after 1 hour warm-up [64],
due to the changes in temperature, line voltage and load SWR. The
frequency display resolution is found to be better than 0.01MHz [63].
Therefore, the total measurement uncertainty in frequency shift is less
than 0.26 MHz. For a short test period of 1 minute, this uncertainty can
be as small as 0.05MHz.

The deteriiination of the cavity Q-factor is much more complicated.
The cavity Q-factor cannot be measured directly but is derived from the
measured Q-factor, Qm. and the coupling factor, B. Bothk of them can be

determined from the measured reflection spectrum I'(f) as shown :n Figure
5.6 (65].

Q= (I*B)Qm (5.11)

= ¢ SWR if over-coupled
B={1em if under-coupled (5.12)

SWR = (1+FO)/(1~F°) (5.13)
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f
- 0 .
Qm = -2—5-{.‘- X (5.14)
0
Bfo = fo-fx (5.15)
2 _ 2_n2 _re
x° = (I‘x 1"0)/(1 I'x) - {S.16)

Where,

x = the normalized frequency increment;
fo' fx = the resonant frequency and its neighboring point;
Fo. Fx = the reflection coefficlent at fo and fx.

When
2 _ 2
rx = (1+r°)/2 (5.17)
then x=1 and
f
Q = =ene (5.18)
m 28f '

o



where Sfo = fo-f1/2 (5.19

This is the case for the half-power r=int usually used in practice. As
analyzed in Appendix 3, the uncertainty of Qm determined at the half-

povwer point can be expressed by
+
(dg Q) = 102 2 .4 * (5.20)

Eq. (5.20) indicates that the Qm error increases with the degree of
mismatch and is proportional to the amount of return loss uncertainty.
In practice, one cannot do much about the former factor because the
required matching adjustment in the testing band would disturb the
resonant frequency of ih= cavity. The latter factor depends on the
return loss itself. In a well calibrated reflectometer, the uncertainty
in return loss measurements is mainly due to the finite directivity of
the directional coupler and the effective source mismatch. For low load
reflection, a finite coupler directivity is the dominant error source,
while for high load reflection, source mismatch is the primary error
source. If the equivalent source mismatch is neglected and the direct-
ivity of the dual directional coupler employed is 30dB or 40dB, we find
that Ide/Qm|=12.5% or 3.5% in the worst case. Details of this error
analysis are presented in Appendix 3.

The error in the cavity Q determined by Eq.(S.11) is contributed by
both the Qm error discussed above and the error in the coupling factor,
B. The B error is a minor one unless the cavity is over coupled and is
seriously mismatched as indicated in Appendix 3.

As a sample is being heated rapidly in the cavity, manual measure-
merts of the frequency shift and Q-factor are unsatisfactory in terms of
bolli reliability and speed. Therefore, a computer is employed to carry
out the measurement automatically. A program called DIELEC is written in
BASIC for instrument setup, data acquisition and dielectric data calcu-
lations. Via the HP-IB instrument interface, the computer can receive an
entire measured resonant trace with 401 points and 0.01dB resolution
from the HP87S6A analyzer within 40 milliseconds (63}. The frequency
resolution is therefore 0.25% of the sweep bandwidth, that is, 0.1MHz
for a 40MHz band. This resolution is improved in the program by a para-~



bolic interpolation technique in determining fo and 6?0 required for the
Q calculations. The program uses the half-pnwer point for aro unless
this point is rather close to the trace shoulder. The dielectric con-
stant and loss factor are evaluated by the polynomial obtained through
fitting the calibration data from the mode-matching analysis (see
Chapter 6). As each trace is transferred, the program also logs the
sample’s temperature data from an Accufiber thermometer via the RS232
serial interface. In this manner, one data point takes about one second
and one complete curve of complex dielectric constant versus temperature

is obtained in only one minute.
5.3 Heating Channel Operation

The heating channel consists of a heating power source, a matching
device and a tuning device. Its aim is to deliver a sufficient power
level to the cavity to raise the sample’s temperature effectively. For a
given power level, the main task is to minimize the reflection which
arises from detuning and mismatching.

A solid-state microwave power source (AMT~1120A) is employed. It
has 8 independent channels, each providing a maximum output of B0W in
the band of 915*15MHz. Four channels are used at the present time via a
power combiner so that a power level of 120W is obtained. The output
level can be varied either manually or electronically. Using the tem-
perature control mode, the power level can be automatically adjusted to
hold the sample’s temperature at a given temperature setpoint. To
realize electronic tuning, we use an external voltage controlled oscil-
lator (VCO) as the input to this power source as shown in Figure 5.7a.

A three stub coaxial tuner is chosen as the matching device due to
its wide matching range. For example, it can match both an empty cavity
(Qx4000) and the cavity loaded with a saline (0.1M) sample (Qx80),
whereas, an internal movable coupling loop [66] can only match samples
iess lossy than distilled water (Q=400). On the other hand, the disad-
vantages of using a stub tuner include the difficulty in automating its
operation and its disturbance to the testing band response. It is pre-
ferable not to adjust the stub tuner during the data collection for
dielectric determinaticns. Experiments show that, after several nilot

runs of heating, an optimum stub position can be found for a given



sample and temperature range so that the stub tuner can be fixed at such
an optimum position during the heating and testing.

It is essential to tune the heating power source frequency auto-
matically. Due to the variation of the dielectric properties of a
sample with temperature, the resonant frequency of a loaded cavity in
the heating band changes all the time. A slight detuning will cause a
large heating power reflection. For example, if Qm=2250 and f0=900MH2.
a 0.2MHz deviation of the heating source frequency from the resonant
point can produce a power reflection of 50%. The objective of the auto-
matic tuner is to sweep the heating band, i.e, 915*1SMHz, and search for
the resonant poiat and then to adjust the source frequency accordingly.
An analog circuit, as described in Appendix 4, has been designed using
common type circuit blocks [67-69].

This tuning circuit uses as input the reflection voltage, VR. from
the heating band and its output is a frequency tuning voltage, Vf. used
to control the heating sourre’s external VCO. As illustrated in Figure

5.7, the timing cycle of the circuit can be divided into a searching

Vs 5 Ph1
> VCO =t Amplifier Cavity
i vV P refl
T
Automatic
Tuner
1
(a)
Searching Period (1) Holding Period (tp)
Sweeping Mode: f+ f, CW Mode: f =f
(b)

Figure 5.7 (a) Block diagram of the external tuning system and (b) time
cycle of the automatic tuner (f1=900, f2=930MHz. f0=resonant
frequency, ts=0.1 and th=1.0s).



pericd and a holding period. Within the searching period, two frequency
sweeps are triggered. During the first frequency sweep, the value of VR
at the resonant point, VR(fo), is found by a peak detector. This is
followed by the second sweep during which the frequency at the resonant
point, fo’ is located by a comparator which compares the current VR with
VR(fo) obtained from the first sweep. A sample/hold circuit then

captures the correct tuning voltage V The circuit then enters the

£

holding period in which V and hence the heating source frequency, is

f’
kept unchanged. At the end of the holding period, the circuit starts

another searching period. Typical waveforms of VR and V. are plotted in

f
Figure S.8.
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Figure 5.8 Typical waveform of the reflection voltage, Vn’ and the tun-~
ing voli.age, Vr' in the circuit of the automatic tuner, ob-
tained by a digital storage oscilloscope (TEKTRONIX 2220).



5.4 Temperature Measuring Channel

An optical fiber thermometer (CFT) [70] is employed in sample
temperature measurements. The reason for using the OFT is not only its
extraordinary performance (71] such as wide range (300—1900°C). high
accuracy (0.2% at 1000°C), high resolution (0.1°C at 1000°C) and fast
response, but also its minimal disturbance to the microwave field due to
its non-metallic optical sensor. In a microwave environment, commonly-
used thermocouples directly perturb the field and hence give a false
temperature indication. Moreover, RF current coupled into the thermo-
couple-detector circuit 1is mixed with the true temperature change
signal, thereby further corrupting the results [72].

Using the OFT to monitor the temperature of a small sample, one
cannot obtain the accuracy it promises if it is not properly placed. If

a lightpipe probe is chosen, it should be placed in close proximity to

, Themmometer Power
| & Controller . Source
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OFT Probe
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[ ] Cavity |
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Setpoint
® e

Temperature
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Time

Figure 5.9 Sample’s temperature control. (a) Block diagram of the cen-

trol loop and (b) Temperature response of a properly tuned
PID controller.



the sample though a direct contact with the sample is not necessary. It
is found that the temperature reading does not vary greatly with the
probe-sample distance hut will be misleading if the probe does not aim
right at the hot zone of the sample.

In addition to the measurement function, our Accufiber (M100C) OFT
has a temperature controller option installed. Selecting its output con-
trol function and connecting the analog output to the power level con-
troller in the heating source, as illustrated in Figure 5.9, a negative
feedback loop is formed. The proportional, integral and derivative (PID)
controller [73] in the Accufiber is then able to control the sample’s
temperature at the set point with an error less than 0.5°C at 1000°C.
This allows us to measure dielectric properties as a function of tem-~
perature in a programmed manner, ensuring a stable and repeatable test
and heating process and also eliminating the common temperature run-away
phenomenon. In the simplest temperature control mode the setpoint
increases in equal increments so that the heating rate of a sample is
nearly counstant. In Figure 5.10, a heating curve of Macor obtained in
*~is step-wise fashion is compared with one without temperature control.

The dielectric measurement made on these steps is more reliable.
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Figure 5.10 Controlled and uncontrolled microwave heating curve of Macor.



S.5 Dynamic Measurement Range

The evaluation of the dynamic range is quite involved since it
needs the knowledge of both the sample loadimg degree and the testing
and heating ability of the system. In this section, such an evaluation
is attempted using an analytical approach based on the numerical results
obtained from the mode-matching znalysis. This approach can overcome
experimental limitations such as the unavailability of samples with the
required dielectric data and it also gives better insight into the
dielectric sample loading effect.

5.5.1 Dielectric constant range

The upper limit of the measurement range of dielectric constant for
a given sample geometry depends on the maximum detuning, or the resonant
frequency shift, Afo, which the system will allow. In the testing band,
the maximum Afo is limited by the presence of transverse modes; whereas
in the heating band, it is restricted by the tunable range of the
heating source. Due to the narrow tuning range of medium and high power
microwave sources, the latter factor is dominant over the former in
determining the maximum Afo. Given (Afo)max=30MHz in the heating band,
the maximum measurable e; is calculated as a function of the gap width
and shown in Figure 5.11. It shows that the smaller the sample’s radius
and gap width, the higher the upper measurement limit of e;.

On the other hand, the minimum dielectric constant which can be
measured is only limited by the frequency measurement resolution of the
testing channel. For the same cavity dimensions as in Figure 5.11, a
sample of e;=2 and rs=0.24 and 0.2cm produces a frequency shift of 0.5
and 0.4MHz, so that the minimum c; is 1.10 and 1.13, respectively, if

the measurement error in frequency shift is 0.0SMHz.
5.5.2 Loss factor or loss tangent range

The maximum loss tangent of a sample which can be effectlively
heated and measured depends on the maximum mismatch which the system can
tolerate. Assuming that the empty cavity is matched in both the testing
and heating channel, we can express the normalized input resistance of

the loaded cavity as
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Figure S5.11 Maximum measurable dielectric constant, el’_(max), as a func-

tion of the gap width, calculated from the maximum detuning
a)lowed in the heating band, i.e., 30MHz (r1= 1.244, r2=5.0.
=20.0cm, crh=3.8, by MMMCS).

R = QO/QL = QO(I/QC+1/QD) = HQO/QD (5.21)

Note that Qonc is assumed throughout this section. The reflection coef -

ficient at the resonant frequency can then be expressed in terms of

QO/QD as

Q,7Q,

2 0 (5.22)
QC/QD+2

r = (R-1)/(R+1) =
In the testing channel, the error in measured Q-factor, Qm’ normally
increases with l‘o. so that the maximum QO/Q]J must be limited. For
example, using a reflectometer with a directivity of 30dB, the return
loss uncertainty will cause a Qm error larger than 134 if I‘o>0.5. If a
134 Qm error is intolerable, then according to Eq.(5.22), the maximum
QO/QD allowed is found to be 2.0. Likewise, in the heating channel,
(Qo/Qn)max is restricted by the matching ability of the matching device.
The three stub tuner employed can match a loaded cavity with 1‘050.8

which corresponds to a QO/QDs7.7. Recalling Eq. (4.22), we can write



QO/QD = QoFetané (5.23)

Then, tana(max) = (QO/QD)max/ (QOFZ) (5.24)
e
or, € (max) = (QO/QD)maX'—ﬁgﬁz (5.25)

This equation simply shows us that for a given (Qo/Qn) the maximum

measurable tand is inversely proportional to the samplzaﬁoading factor
which increases with the gap E-field and the sample’s dielectric con-
stant and volume. It should also be noted that (tana)max decreases with
an increase of the unloaded cavity Q. Conversely, we require a high Q
cavity for testing and heating a low loss sample as analyzed below.

At the other end of the range, the minimum measurable loss tangent
is limited by the heating ability and the Q measurement uncertainty. In
the heating band, sample heating tends to be very ineffective when the
sample loss is comparable to the cavity wall loss. In this situation,
the competition between microwave absorption by the sample and the
cavity wall may result in an overheated cavity and a cool sample. It is
true that the positive temperature dependence of loss factors for most
ceramics should help to raise the sample’s temperature. However, the
metal surface loss also tends to increase with temperature. To account

for this limit, we can define a minimum loss tangent as

tané(min) = 1/(Q0F£) (5.26)

at which the sample loss or QD equals the wall loss or QQ. In the
practical use of this relation, Q° should also include external losses
due to the stub tuner, the coupling loop and the cable. As a result,
tana(min) is higher than that given in Eq. (5.26).

However, the minimum loss tangent may be lower than that of Eq.
(5.26) if thermal loss factors are considered. A hot object invariably
loses thermal energy from its surface via conduction, convection and
radiation. The larger the volume-surface ratio the slower the thermal
loss. This ratio is approximately equal to rs/z for a cylindrical sample
and equal to the skin depth for a metal cavity body. Since the skin
depth of a cavity at microwave frequencies is of the order of 10um which

is smaller than a sample radius by several orders of magnitude, the



thermal loss on the internal cavity wall surface is enormous compared
with that on the sample’s surface. Besides the difference in the volume-
surface ratio, the thermal loss of a sample can be further reduced by
suspending the sample in the gap or using a thermally insulating sheath
around the sample to avoid a direct contact with the cavity wall. As a
result, the heating rate of the sample can still be much higher than
that of the cavity even if an equal or lesser amount of microwave power
is absorbed by the sample at the beginning of heating. With the help of
a positive temperature coefficient of its loss factor, the sample will
absorb more power once its temperature starts to rise.

In the testing band, the measurable tand also reaches a lower limit

when the Q change due to the sample loss, that is

A{1/Q) = l/QD (5.27)

is close to that due to the measurement error, namely,

A(1/Q) = 1/(Q +8Q)-1/Q = 1— §9 (5.28)
0 (] Qo Q
where 8Q/Q is the relative error in Q measurements as evaluated in sec

tion 5.3. Equating Eq. (5.27) and Eq. (5.28) gives

Q
o _ dQ
T (5.29)
D
or QoFetana = 86Q/Q (5.30)

Similar to the case for the heating band, a minimum loss tangent can

also be defined as

tans = 61——-5—% (5.31)
o ¢

It should be pointed out that the values of the parameter QoFZ in Eq.
(5.31) and in Eq.(5.26) are different because they are defined in dif-
ferent frequency bands. If QoFZ of the testing band is the same as that
in the heating band, the low limit of tand in the testing band is only
3Q/Q percent of that in the heating band as indicated by Egs.(5.26) and
(5.31).

The above analysis, resulting in Egs. (5.24), (5.26) and (5.31),



shows that both the upper and lower limit of measurable loss tangent or
loss factor are determined by the same parameter, namely 1/(QoF£)' which
actually is the ratio of the energy stored in the sample to that lost on
the cavity wall. This reveals the fact that the upper and lower limits
of the allowed loss tangent in the testing and heating bands cannot be
extended at the same time. To evaluate these limits, e"_/(QoFe) is
calculated and plotied against e; for both bands in Figure S.12. Let
(QO/QD)max'-'Z.O and 7.7 for the testing and heating band respectively,
and assume the Q measurement error to be 8Q/Q=10%; then the uppar and

lower limits of the loss tangent and loss factor are shown in Table 5.2.
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Figure 5.12 The parameter (e;/QCFZ) used for estimating the maximum and
minimum loss factor which can be covered by the testing and
heating systems, plotted as functions of dielectric con-
stant (Qc=3000 and 2000 in the testing and heating bands, r,
=1. 244, r2=5.0. L=20.0, D=0.3cm, erh=3.8 by MMMCS).



Table 5.2 Lower and upper limits of loss factor and loss tangent,

evaluated from e;/(QoFt) of Figure 5.12.

Testing Band Heating Band
£’=10 £’=30 €’=50 ¢’=70 ¢€’=10 £’=30 ¢’'=50 €’=70
r r r r r r r r

o rs=0.24 0.120 0.140 0.138 0.117 0.350 0.550 0.730 0.880
r(min) Ps=0.20 0.147 0,185 0.197 0.185 0.420 0.650 0.870 1.04

r;=0.24 0.012 0.005 0.003 0.002 0.035 0.018 0.915 0.013

tand  in) r=0.20 0.015 0,005 0.004 0.003 0.L.2 0.022 0.017 0.015

r=0.24 2.40 2.80 2.76 2.34 2.70 4.24 5.62 6.78
€ (max) r=0.20 2.95 3.70 3.95 3.70  3.23 5.0l 6.70 8.01

Ps=0.24 0.240 0.093 0.055 0.033 0.270 0,141 0.112 0.087

tand ax) r=0.20 0.295 0.123 0.079 0.053 0.323 0.167 0.134 0.114



CHAPTER 6
EXPERIMENTAL RESULTS AND ERROR ANALYSIS

In this chapter, the calculated calibration curves for determining
dielectric constants and loss factors are presented first. These are
followed by an error analysis of the determined dielectric data. The
final part reports on the dielectric measurement results. The experi-
mental system outlined in Chapter 5 is checked by measuring a number of
well characterized materials at room temperature. Using this systenm,
various ceramic and oxide samples are heated and tested simultaneously.
The obtained data are plotted as a function of temperature. These
results are discussed and some important measurement details are also

emphasized.
6.1 Calibration Curves

The dielectric constant, c;. and loss tangent, tand, or loss
factor, c:, are determined from the measured resonant frequency shift,
Afo, and cavity Q-factor change, 4(1/7Q). To do this, two theoretically
calculated calibration curves are proposed in section 4.7. The first is
'

€’ versus Af ,
r 0

c; = cr(Afo) (6.1)

which is obtained by calculating Afo as a function of e; for a given
cavity and sample geometry, in "he frequency band of interest, by the
cavity mode-matching analysis program. The second is the loading fac-
tor, Fe. which is a functior c;,
= 4 6
Fe Fe(er) (6.2)

and can also be calculsizd by the mode-matching program. Knowing Fe,
tané or c: can be determined readily by

tané = (I/FZ)'A(I/Q) (6.3)
or e’ = (e'/F,)-A0(1/Q) (6.4)
r r &

In fact, the parameter e;/Fe is simply the loss factor for unit 4(1/Q).



For this reason, it is more convenient to use c;/Fe than FZ as the
second calibration curve.

In Figures 6.1, 6.2 and 6.3, calibration curves for both s; and e:
are presented for different sample holders, sample radii and gap widths.
The other cavity dimensions used in the calculation are r1=1.244, r2=
5.0, and L=20.0cm. The frequency of the calculation is around 3GHz which
corresponds to the testing band. In Figure 6.1, the curves of a sus-
pended sample (crh=l.0) are presented together with those using two
different quartz sample tubes (crh=3.78), the larger one having an 0D of
0.71cm and an 'D of 0.48cm; the smaller having an OD of 0.6cm and an ID
of 0.4cm. Since the air space between the sample and the insertion hole
wall reduces the gap E-field, the suspended sample produces less fre-
quency shift and a smaller loading factor. The calibration curves for
various gap widths and sample radii are given in Figures 6.2 and 6.3.
As expected, the larger the gap width and sample radius, the greater the
frequency shift and loading factor, because of the increased sample
volume which interacts with the cavity field.

For the convenience of dielectri. determipations, the calibration

curves can also be expressed by polynomials using a least square fit as

[ - 2 3 LEREY
€ = 1 + axlAfol + aalAfol + aslAfo| + (6.5)

” - ’ 12 ‘ 3 "o

er/Fe = b° +be + bz(cr) + ba(er) + (6.6)

The coefficients a and bl are listed in Tables 6.1, 6.2 and 6.3 for the
curves presented in Figures 6.1, 6.2 and 6.3. Note that the coeffi-
cients a correspond to the Afo measured in MHz and r.m.s.e. stands for

root-mean-square-error.
6.2 Error Analysis

To estimate the error in the dielectric constant determined by
Eq. (6.1), we need to examine the differential of Eq.(6.1)

ac’
. L
Acr = Eﬁ?—;)- A(Afo) (6.7)

where ac;/a(Afo) is the slope of the calibration curve and A(Afo) is the
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Table 6.1 Polynomial fitting coefficients for the permittivity cali-
bration curves in Figure 6.1 (Curve 1: rs=0.24cm,ro=0.355cm.
¢ =3.78; curve 2: r =0.20cm,r =0.30cm,e =3.78; curve 3: r
rh s 0 rh s
=0.24cm,r0=0.355cm.crh=1.0; the other cavity dimensions are
r1=1.244, r2=5.0. L=20.0 and D=0.3cm)

Curve a1 a2 a3 a4 r.m.s.e.
1 1.835 7.2955E-2 -2.1011E-3 1. 4779E-5 0.037
2 2.157 1.1107E-1 -2.3930E-3 0.0 0.035
3 2.060 3.1812E-1 ~1.5546E~2 2. 1540E-4 0.028
Curve bo b1 b2 b3 b4 r.m.s.e./b0
1 2.764E+3 1.005E+2 -2.083 1.5231E-2 <~5.2645E-5 0.24%
2 3.249E+3 1.392E+2 -2.630 2.2036E-2 -~8.2244E-S 0.28%
3 3.175E+3 2.978E+2 -~7.538 7.7304E~2 -~3.3555E-4 O0.75%

Table 6.2 Polynomial fitting coefficients for the permittivity calli-

bration curves in Figure 6.2 (rs=0.24cm.r0=0.355cm.crh=3.78)

D(cm) a, a2 a, a, r.m.s.e.
0.25 2.228 1.2545E-1 ~4.5256E-3 4.1137E-5 0.040
0.30 1.835 0. 7296E-1 ~2.1011E-3 1.4779E-5 0.037
0.35 1.525 0.4723E-1 ~1.0710E-3 0.5365E-5 0.074
0.40 1.333 0.3210E-1 ~0.6454E-3 0. 3082E-5 0.038
0.45 1.180 0.2374E-1 ~0.4341E-3 0. 1962E-5 0.064
0.50 1.070 0.1794E-1 ~0.3133E-3 0. 1499E-5 0.094
D(cm) bo b1 ba b3 b4 r.m.s.e./bo

0.25 3417 133.14 -2.865
0.30 2764 100.54 -2.083
0.35 2313 82.12 -1.784
0.40 2026 67.12 -1.540
0.45 1804 54.72 -1.249
0.50 1661 43.37 -0.991

.3103E-2 -8.9896E-5 0.31%
.5231E-2 -5.2645E-5 0.24%
. 4422E-2 -5.5333E-5 0.24%
.3870E-2 -6.0026E-5 0.20%
.0478E-2 -4,0675E-5 0.22%
.780SE-2 -2,7422E-~5 0.21%

Oy = = N
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Table 6.3 Polynomial fitting coefficients for the permittivity cali-

bration curves in Figure 6.3 (r0=0.355cm.erh=1.0.D=0.3cm)

rs(cm) a a, a3 a, r.m.s.e.
0.20 3.137 6.520E-1 -4. 4054E-2 8.4806E-4 0.032
0.22 2. 400 4,739E~1 -2.7534E-2 4,.6491E-4 0.082
0.24 2.060 3.181E~1 ~1.5546E-~2 2.1540E-4 0.028
0.26 1.709 2.202E~1 -0. 3949E-~2 1.0189E-4 0.036
0.28 1.432 1.475E~1 -0. 4837E-2 0.4331E-4 0. 042
0.30 1.217 0.924E-1 -0.2301E-2 0.1436E-4 0.050
rs(cm) bo b1 b2 b3 b4 r.m.s.e./b0
0.20 4759 417.62 =~10.104 1.0214E-1 -4.3711E-4 0.73%
0.22 3559 339.68 -8.252 0.8136E-1 -3.4277E-4 0. 65%
0.24 3174 297.80 -7.538 0.7730E-1 -3.3555E-4 0.69%
0.26 2643 243.53 -6.060 0.6023E-1 -2.5663E-4 0.69%
0.28 2229 192.07 ~4.544 0.4227E-1 ~-1.7343E-4 0.62%
0.30 1911 143.28 =3.131 0.2648E-1 -1.0417E-4 0. 36%

total frequency shift uncertainty. For a given Afo, the greater the
curve slope, the larger the dielectric constant error but the wider the
measurement range. Neglecting the higher order terms in Eq.(6.5), we
have

! ~
acr/a(Afo) % a (6.8)

a1z1—3 as listed in Tables 6.1-6.3; therefore, one MHz A(Afo) will
produce a Ae; of 1-3.
The total frequency shift uncertainties are the sum of the uncer-

tainties in calculated Afo and measured Afo, i.e.,

A(Af ) = A(Af ) + A(AF ) (6.9)
0 0 calc.

| 0 meas.

The uncertainty in calculated Afo includes not only numerical but
also other errors. One such error is due to the uncertainties in cavity
dimensions. The other error arises from departures of a real cavity from
the ideal mathematical model due to eccentricity of the sample placement

and presence of the movable short circuit and coupling loop. Being a
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relative parameter, Afo is affected little by these errors. Numerical
errors in Afo are also negligible if the modal number used in the field
calculation is large enough, as demonstrated in section 3. 3.

The uncertainty in measured Afo includes the measurement error and
also includes other possible experimental errors due to the sample,
sample holder and cavity as described below.

(1) Error due to the sample. The variations in sample radii due to
size measurement uncertainty and thermal expansion can cause a signifi-
cant error. In Figure 6.4, the relative error in e; due to one percent
r_ variation is plotted as a function of e; for different sample radii.
It is shown that the error does not exceed 3% for rs/r°=0.676 but it
increases drastically when the sample radius approaches the insertion
hole radius, especially for high permittivity samples. For this reason,
even a slight looseness of the sample in the hole would produce a signi-

ficant error if there was not sufficient air space between the sample

~ 12
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Figure 6.4 The relative error in the dielectric constant due to a 1%
variation in sample’s radius at different sample radili (r°=
0. 355, r1=1.244. r2=5.0, L=20.0, D=0.3cm, crh=1.0).
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and the hole wall or if a sample holder made of a low permittivity
materlial was not used. Besides radius variations, sample length varia-
tions can also cause errors if the length is not longer than the effec-
tive hole depth.

(2) Errors due to the sample holder. Since there are always dimen-
sional variations in sample holders, one particular sample holder should
be usad in both the empty and loaded cavity tests to avoid an erroneous
Afo. Moreover, in the case of liquid samples, the variation in the
holder’s inner diameter causes the same variation in the sample’s dia-
meter, thus resulting in a sample radius error as examined in (1).

(3) Errors due to the cavity. Since the resonant frequenry is a
sensitive function of the cavity dimensions, for example, Af0=15MHz for
a 1mm length variation, the thermal expansion during the sample test can
produce a misleading Afo. For example, the linear expansion coefficient
of brass is about 2x10°>/%C , thus, a 10-degree change in overall cavity
temperature will bring about a length change of 0.04mm to a 20cm long
brass cavity, leading to a resonant frequency shift of 0.04mmx15MHz/mm=
0.6MHz. By our use of localized microwave sample heating and a small
sample volume, cavity expansion is very minimal while this same design
feature also shortens heating time.

It should be mentioned that the cavity structure with the sample
insertion holes not only makes the sample insertion easier but also
reduces some of the experimental errors which would be significant
otherwise. Firstly, loading a sample without opening the cavity each
time ensures greater test repeatability. Secondly, the insertion holes
also help to reduce the eccentricity of sample placement. Finally, the
contact of the sample ends with cavity walls is avoided, thus elimi-
nating the usual air gap error which typically is greater than 104 in a
cavity without insertion holes [38].

However, the presence of the insertion hole can also be a drawback.
The hole effects, as discussed in Chapter 4, make the axjal distribution
of the E-field, and therefore the temperature, non-uniform in the sample.
Always being a function of temperature, the sample’s dielectric constant
will not be a constant. The dielectric constant determined under the
assumption of homogeneous dielectric properties is really some type of
average value. This value is between e;(Tl) and e;(Tz) where T1 and 'I'2

are the highest and the lowest temperatures over the sample volume which
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interacts with the E-field. Ideally, in order to reduce the difference
in e;(Tl) ard e;(Tz), the sample must reach a temperature equilibrium.
In practice, however, the temperature equilibrium is not necessary and a
slightly longer sample heating time can reduce this difference to a neg-
ligible degree. This is confirmed by a detailed analysis and experi-
mental results presented in Appendix 5.

Errors in the loss tangent can be calculated by Eq.(6.3). Differ-
entiating Eq. (6.3}, we have

A(tand) _ a(a(1/Q))
tand ~  3(1/Q)

+ FQA(I/FE) (6.10)

This equation indicates that the relative error in tanéd is composed of

two parts, the part due to the Q-measurement error

2
gAltans), _ A(A(1/Q)) QLAQ Q " (6.11)
tand ‘o A(1/Q)" ~ QQ,1Q, -01 '

and the part due to the error in dielectric constant transferred through
the loading factor

[A(tana)

where the calculation error in FZ is neglected. If the approximation is
made that 6=(QL+QO)/2»(QO-QL) and AQLzAQozAG, Eq. (6.11) becomes

[A(tana)]

tand = ~24Q0/Q (6.13)

where AQ/Q can be treated as an average relative error in Q measure-
ments. Because the parameter e:_/F2 is used as the calibration curve, we
express the second part of the loss tangent error in terms of e;/Fe and

its derivative as follows

6(1/Fe) e’ ale’'/F,)

A(tand), _ .. At o rv-t e 8 I net
[W]C = FZ -—~55-:-- ACr = [(FE) “—3-6-:—-—‘ I/Cr] ACr

(6.14)

Defining
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£ . 3(er/F£)

= (I, LI |
q - (F , ael af{' 1 (6- 15)
[ r
Altand), _ ... .,
then [W]s = g Acr/er (6.16)

We may call ¢ the error transfer function which amplifies the error in
c; when ¢>1 and compresses the error when g<i, This function can be
easily derived from the calibration curve c;/FZ. According to Eq. (6.1S),
it can be shown that th c;/Fq curve with a steep rising section and a
flat ralling section leads to a small {. In Figure 6.5, { is plotted for
the case of the calibration curves in Figure 6.1b. 1t shows that { s
dielectric constant dependent and <1 if c;<35. We also see that ¢
varies greatly with sample size and a small sample size results in a
small . However, this may not reduce the tand error of Eq.(6.16) as the
error of Ac;/e; tends to increase with decreasing sample radius (see
curve 1 and 2 in Figure 6.1a).

1 —— Curve 1:1,=024,1,=0355cm, €, =378

209 oo s~ Curve 2: rs=0.20. 1'0=0.300 cm, €y = 3.78
{ --.0-- Curve 3:1,=024,7,=0355cm, &} =1.00 o
)

Eeror Transfer KFunction

0.0 LR S Shesn M S Dt Bt Easie S SRS SER M e R
0 5 10 15 20 25 30 35 40 45 S50 55 60 65 70 75 80

Dielectric Constant

Figure 6.5 The error transfer function, l.e. the relative error in the
loss tangent due to an error of 100% in the dielectric con-

stant for three types of sample holders (see Figure 6.1).



To summarize the above error analysis, we will calculate the worst-
case error in the dielectric constant and loss tangent for a suspended
sample with rs=0.24 and D=0.3cm. As discussed above, for this case, the
calculational errors and most experimental errors are minimal. Only the
Af0~measurement uncertainty, sample radius variation and Q-measurement

error needs to be considered. Therefore, we can express the error limit

as
Be;
4 T e 7
IAerl alAfol IAfolm + I(Aer)rsl (6.17)
Atand, _ ' s
I—EEHEI = 2|AQ/Q|m + g (Aer/cr)l (6.18)

vhere as;/alAfol is the slope of the calibration curves for dielectric
constant given in Figures 6.1a, 6.2a and 6.3a, IAfOIm is the Afo-
measurement uncertainty limit which has been estimated to be 0.05MHz for
the HP8623A sweep osclillator plug-in, (Ae;)rs is the error due to sample
radius variations as shown in Figure 6.4, IAQ/QIm is the Q-measurement

uncertainty limit which has been found to be 12.5% or 3.5% for a direc-

Table 6.4 Evaluation of the worst-case error in the determined dielec-
tric constant and loss tangent (rs=0.24. r0=0.355, rl=1.244.
r2=5.0, D=0.3, L=20.0cm and crh=1.0)

U

e 2 5 10 20 30 40 50 60
de’/8l4f | 2.33 2.94 3.61 4.31 4.60 4.62 4.44 4.10
|Af1 x3e’/alaf | 0.12 0.1S 0.18 0.22 0.23 0.23 0.22 0.21
I(Ae;)rsl 0.03 0.15 0.38 0.87 1.33 1.73 2.04 2.20
lae’ | 0.1S 0.30 0.56 1.09 1.56 1.96 2.26 2.41
lae’ /el ) (%) 7.5 6.0 5.6 S5 52 49 4.5 4.0

o

T4 .86 0.75 0.69 0.77 0.92 1.11 1.32 1.59
IC'(Ae;/e;)l () 6.5 4.5 3.9 4.2 4.8 54 59 6.4

([atand/tandl (K) 5 5 595 28,9 29.2 29.8 30.4 30.9 31.4
(Directivity=30d4B)

|Atand/tané| (%) 10.0 80 7.4 7.7 83 89 9.4 9.9
(Directivity=40dB)
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tional coupler with a directivity of 30dB or 40dB, and { is the error
transfer function as given in Figure 6.5, Assuming Ars/rs=1%. we can
evaluate Eqs. (6.17) and (6.18) as shown in Table 6.4. We can find that
the worst-case error in the dielectric constant is 4-7% and that in the
loss tangent is 30% or 10% for 30dB or 40dB directivity. It should be
pointed that these errors are typically much less in practice because

the random error vectors are seldom in phase.
6.3 Room Temperature Measurements

To verify the accuracy of the high temperature dielectric measure-
ment method presented in this thesis, a number of different samples were
measured at room temrerature and their dielectric data were determined
using the calculated calibration curves. The results are listed in Table
6.5 along with the published data for the sake of comparison.

The samples chosen are in solid, powder and liquid form and they
cover a wide range of dielectric properties: c;=2-75 and tané= 0.001-0.7.
We see tha' the discrepancy between this work and the published data, in
most cases, is less than 0.1+5% for e; and 0.005+10% for tand, which is
well within the worst-case error estimated in the last section. It
should be emphasized that the method of dielectric determination based
on the calculated calibration curves is an absolute method which does
not rely on the reference data. Nevertheless, it still glves resulis in

good agreement with the reference data as shown in Table 6.S.
6.4 High Temperature Measurement Procedure

The principle and method for the high temperature dielectric
measurements have already been addressed. This section is intended to
outline major experimental steps involved. Although not all the details
can be covered, those critical to the measurement accuracy will be
emphasized.

6.4.1 Sample preparation

Samples to be measured are cylinders with a diameter smaller than
the insertion hole and a length not shorter than twice the effective
hole depth (see Figure 4.11). For a 0.3cm re-entrant gap and a 0.36cm
hole, the minimum sample length is about (0.75+0.05cr‘)cm and the maxi-
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Table 6.5

Experimental results of dielectric constants and loss tan-

gent at f=3.0GHz and T=23°C as compared with published data

Present Work

Reference pata

Sample e’ tané e’
r r
Teflon 1.94 0.0025 2.05
2.10
Nylon 2.94 0.010 3.04
Quartz (Corning) 3.74 0.0006 3.78
Soda Lime Glass 6.45 0.012 6.71
(0080, Corning)
Alumina 8.70 0.0008 9.30
(AL-23, JM)
Cu0 3.44 0.247 3.20
(powder, 2. 7g/cc)
Benzene 2.24 0.004 2.28
Monochlorobenzene 5.39 0.110 5.54
Methanol 19.9 0.744 18.9
21.0
Distilled Water 76.S 0.153 77.3
NaCl (0. 1M) 73.3 0.219 75.2
10%A, 20%M and 6.66 0.278 7.30
70%B
40”%W and 60%M 45.9 0.426 46.0
20%W and 80%D 10.6 0.236 9.19
40%W and 60%D 23.6 0.267 23.5
60%W and 40%D 42.8 0.243 39.3
80%W and 20%D 58.9 0.207 59.5

o O O OO0

QO O OO0 O O

o O O o o

Discrepancy
tansd Ac; Atand
.0083 1) -0.11 -0.00s8
.0002 (2) ~0.16 +0.0027
.012 -0.10 -0.0u¢
.0005 (3) ~0.04 +0.00¢1
.013 (2 -0.16 -0.001
.0002 (3) -0.60 +0.0006
.28 (5) +0.22 -0.033
. 002 (6) -0.04 +C.002Z
. 120 -0.15 -0.0t
.75 «(8) +1.0 -0. 06
.62 (2) 1.1 -0.124
. 155 (2) ~-0.8 -0. 002
. 225 (9) -1.9 -0. 006
.22 (7 ~-0.64 +0.058
.37 n -0.1 +0. 056
. 257 (10 +1.41 -0.021
. 290 (10) +0.1 -0.023
. 275 (o) -3 -0.032
. 194 (0 -U. o +0.013

A~Acetone, B-Benzene, D-Dioxane, M-Methanol and W-Distilled Water
(1) HP Product Note 8510-3, Aug. 198S.

(2) A.R.von Hippel, Dielectric Materlials and Application,MIT Press, 1954.
(3) A.C.Metaxas,et al, Industrial Microwave Heating, IEE England, UK, 1988.

(4) Data from Superior Technical Ceramics Corp., St. Albans, VT, USA.
(S) W.R. Tinga, Electromagnetic Energy Reviews, vol.l, p.47, 1988.
(6) B.Terselius, et al, J. of Microwave Power, 13(4), p. 327, 1978.
(7) P.O. Risman, et al, J. of Microwave Power, 6(2), p.101, 1971.
(8) B.P.Jordan, et al, J. Phys. D: Appl. Phys., vol.11, p.695, 1978.
(9) A. stogryn, IEEE Trans., vol.MTT~19, p.733, Aug. 1971.
(10) D. Misra, et al, IEEE Trans., vol.MIT-38, p.8, Jan. 1990,
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mum sample diameter is around 80% of the hole size. If a sample diameter
is too close to the hole diameter, arcing may occur in that narrow space.
Also, a small variation in sample diameters will produce a significant
error in the dielectric data as discussed in the previous section. On
the other hand, a smaller sample will be subject to a larger error for
the given measurement system accuracy.

Whether to use a sample holder or not depends on several factors.
Obviously, powdered and fibrous samples must be contained in a holder,
usually a quartz tube. Even in the case of solid samples, a holder makes
sample inserting and positioning easier. It also improves the sample
temperature uniformity and prevents possible contamination to the cavity.
However, a holder which contacts the cavity wall is a heat sink; thus
greatly lowering the sample heating rate [55].

6.4.2 System setup check

After having set up the measurement and heating system as described
by the block diagram of Figure 5.1, one should check the following:

1. Choose a proper sweep band and CRT scale. A resonant curve
should appear on the right end of the screen, free of noise and irregu-
larities and having a reasonable resolution;

2. Tighten every connector reasonably so that a stable resonant
curve can be maintained even with a gentle knock on the bench;

3. Allow the analyzer a two-~hour warm-up period to ensure a stable
measurement;

4. Adjust the orientation of the coupling loop on the testing port
to a roughly matched but slightly under-coupled condition;

5. Adjust the coupling loop and the three-stub tuner on the heating
port to obtain critical coupling for a low loss sample and over-coupling
for a medium loss sample;

6. Measure some of the samples listed in Table 6.5 at room tem-
perature and compare the results with those in the table;

7. Heat one of the samples to be tested to make sure that the
microwave heating power source, the tuning clrcuit and the temperature
controller operate properly.
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6.4.3 Heating and testing

The whole sample heating and testing process is controlled by the
BASIC program DIELEC on an HP200 computer. The steps involved are (1)
calibrating the reflectomet~- by replacing the cavity by a short; (2)
testing the empty cavity; (3) heating and testing the sample at each
temperature set point assigned; and (4) calculating the dielectric data.
At the end of the test, the empty cavity is measured again to check the
thermal expansion effect. Water cooling is used to keep the center con-
ductor near room temperature. Even then, to minimize the thermal expan-
sion effects, the time for measuring a sample up to 1000°c has to be

limited to 2-3 minutes; typically 20-30 points and about 4-6 seconds for
each point.

6.5 Experimental Result< and Discussion

Samples of various types of materials are measured and their
results are summarized in Table 6.6. The data of dielectric constants
and loss factors are plotted »s functions of temperature in Figures 6.6a
through 6.6m, where dots are experimental results and lines are results
of polynomial fitting. The results presented are typical ones among
several sample tests using the same material.

The machinable ceramic has the usual ceramic properties of good
chemical and thermal stability and high compressive strength and, at the
same time, offers the ease of conventional machining. By virtue of its
machinability, the sample dimension can be controlled accurately. The
samples used are Cotronics Rescor Series Machinable Ceramics. The
measured data of three types of machinable ceramics are shown in Figures
6.6a~c [S8). Macor(915) is an opaque white, odorless, porcelain-like
material composed of S55% fluorophlogopite mica and 45% borosilicate
glass [74]. This composition makes its dielectric properties similar to
borosilicate glasses (see Figures 6.6e and f). Macor is usable until
1000°C; however, after being heated to SOOOC. it becomes more trans-
parent and less machinable. The second type is alumina silicate(902)
which offers the highest machinability with the lowest cost. With a
simple heat treatment at 1000°C after machining, its operation tempera-
ture can be extended from 600°C to 1150°C. If not heat treated, it tends
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Table 6.6 High temperature dielectric properties of ceramics, measured
at 3GHz while the sample is being heated by a 120W, 915MHz
solid state power source.

. 0 0 0 0 0
Material @25°C @300 C @500 C 2800° @T C Remarks
e max max
r
e/I
r
Macor (915) 5.8 6.5 7.0 9.0 9.0 800 softens at 850°C
{Cotronics)
0.05 0.32 0.52 2.3 2.3

Alumina 4.8 5.1 5.4 .9 6.6 1100 heat treatment

silicate before test;

(Cotronics) <0.05 <0.05 0.05 0.28 0.66 melted at 1200°C

Machinable 4.1 / ) .3 7.2 1600 preheated to 500°C

alumina volume reduced

(Cotronics) <0.05 / 0.05 0.20 1.90 by 70%4 at 1600°C

Soda lime 6.7 7.5 8.0 21.5 750 softens at 700°C

glass

(Corning 0080) 0.08 0.10 0.70 14.5

Borosilicate 4.1 4.5 4.9 6. 7.5 880 softens at 800°C

glass

(Corning 7740) <0.05 <0.05 0.24 3.2

Borosilicate 4.2 4.7 4.9 .8 8.1 950 softens at 800°C

glass ¢

(Corning 3320) <0.05 <0.05 0.12 80 3.3

Mullite 54 / 6.4 7.0 8.8 1350 loca% melting at

{McDanel MV20) <0.05 0.0S 0.27 1.6 1400°C

Alumina 9.1 / J 9.8 7/ / externally heated

(Coors AD995) <0.05 <0. 05 to 800 C

CuO; pressed 5.4 8.% 14.5 42.6 49.6 850 large power re-

powder; 4.3g/cc  <0.27 9.0 7.0 31.0 27.0 flection & locgl

(J.T.Baker) melting at 900

A1203 (lO%HZO) 4.2 3.8 3.5 / / / air gap occurs &

pressed powder; 0.6 0.2 0.08 density changes

1.5gs/cc; (IM)

SiC powder 10.% 13.0 13.4 22.0 / / unstable heating;

1.63g/cc X data show oscil-

(C~Axis) i / / lation pattern



(Table 6.6 continued)

Material @25°c @300°C ©500°C @800° T T  °C Remarks
e’ max max
r
8”
r
Aluminum 2.7 3.7 3.4 4.1 S.6 1150 thermal radiation
nitride powder; ¢ loss & power re-
1.68g/cc 0.050.2 0.2 1.1 2.4 flection
(C~Axis)
Zeolite 3.1 4.5 5.8 / 5.8 500 locgl melting at
pressed powder; 600°C
0.9g/cc 0.27 1.75 4.
(Linde 13X)
Alumina cement 3.6 4.3 4.8 5.1 5.4 1150 local melting at
dried; 0. 5g/cc 1200°C
<0. . ) . .
(Zircar AC56) 0.05 <0.05 0.04 0.08 0.29
Zirconia cement 3.6 3.3 3.1 3.3 4.1 1100 burnt at 1200°C

dried; 1. 4g/cc

(Zircar Z089) 0.17 0.14 0.05 0.34 1.0
Zirconia felt 1,6 1.8 2.0 2.3 2.5 1000 1local temperature
(Zircar ZYF100) <0.0S <0.05 0.20 0.60 1.1 oscillation

to crack or melt beyond 600°C with a heating rate greater than 25%C/sec.
As shown in Figure 6.6b, its dielectric data have a quite linear tem-
perature dependence over the range of 500°C to 1100°C. The third type is
the machinable alumina (960) which is porous 96% alumina. It can be
used continuously to 1660°C with no post-machining heat treatment
required. However, it can be densified to 70% of the original volume
after being heated to 1500°C over a period of 2 minutes. Due to this
volume reduction, the high temperature data shown in Figure 6.6c are
lower than the true values. It should also be mentioned that the pre-
heat is used because of its low dielectric loss at room temperature. The
sample is first heated in a resistance heater to about 500°C and then
quickly inserted into the cavity. At this temperature, 960 is able to
effectively absorb microwave energy.

Three types of glass from Corning are measured and their results
are presented in Figures 6.6d-f. All the dielectric data show a sharp



cant concentration of alkali ions (Na", Ca++, etc), i.e., modifiers,
whose mobility increases exponentially with temperature. Also, the net-
work-forming ions (si**,B*>, etc) become more mobile at temperatures
above the freezing point (several hundred degrees) [75]. As a comse-
quence, the ionic polarization and the dipole orientation contribution
increase, resulting in a dramatic rise in the dielectric constant at
high temperatures. Since the conductivity is proportional to the ion
mobility, the dielectric loss will be an exponential function of tem-
perature. Actually, the relaxation curves of glasses have a loss peak at
frequencies below the microwave range. As temperature is increased, the
peak shifts to higher frequencies ([76]. If the peak shape remains the
same, the shift gives rise to the positive temperature coefficient of
the dielectric loss. By comparing Figure 6.6d with 6.6e and 6.6f, we can
see that soda lime glass has a higher dielectric constant and loss fac-
tor than borosilicate glasses at all temperatures. This is probably due
to the fact that the alkali ion concentration is higher in soda lime
glass (IS%Nazo. 7%Ca0, 4%Mg0 and others) than in borosilicate glasses
(4%Mg0, 3’/,A1203 «od others) [(77].

The measured dielectric data of MV20 is given in Figure 6.6g over
the temperature range of 500°C to 1350°C. The MV20 is a dense mullite
(A16'812'013) in a glassy matrix. It is a silica-alumina binary system
with S5%A1,0, and 42‘/.5102 (78]. This composition and structure makes the
dielectric properties fall between those of amorphous glass and micro-
crystalline materials such as pure alumina. Attempts were made to
measure the high temperature dielectric properties of high purity
alumina by microwave absorption. A sample of 99.5% purity alumina from
Coors ls almost transparent to the microwave field in the cavity with a
Q-factor of 2000 and its temperature cannot be raised by microwave
heating. Using a conventional furnace to preheat the sample and then
measuring it in the cavity, we find that its dielectric constant
increases only slightly (from 9.1 to 9.8) and loss factor is almost
unchanged (<0.05) up to 800°C.

Powder samples of several types of materials are measured. The
obtained data from cupric oxide, aluminum nitride and =zeolite are
plotted in Figures 6.6h-j. It is known that the dielectric propertles
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lectric properties. Moreover, local melting and arcing are more likely
to take place in a non-uniform sample. Therefore, the powder is pressed
so that the density can remain relatively constant. The cupric oxide
data in Figure 6.6h show a rapid increase in both c; and c: with tem-
perature. The fall of e: after 730°C canhot be easily explained since
the pressed sample after being heated has almost the same density as
before. Also, the phase change of CuD does not take place below 1200°C
and at one atmosphere [14]. On the curves of alumina nitride powder in
Figure 6.61, the slight drop at 450°C is more likely due to a local
density change because the sample is not pressed. Figure 6.6} is the
data of pressed 13X zeolite powder from Linde, showing that zeolite is a
strong microwave absorber as reported in [79]. Without using tempera-
ture control, zeolite can be melted in a matter of seconds with only a
few watts of microwave power. 2eolite has a cage structure formed by
linking SiO4 and AlO4 tetrahedra at all the corners. The possible
dielectric loss mechanism is ionic “rattling" in the cage [80]. Another
ceramic powder with a large microwave absorption which we measured is
silicon carbide powder. The measurement reveals that the data of SiC
powder are unstable and unrepeatable at elevated temperatures [58],
exhibiting an oscillation pattern, especially in the loss factor. Also
measured is 90% aluminum oxide powder. We fail to obtain consistent
dielectric data from this material due to the density changes. It
should be pointed out that the data of powder samples presented here are
always subject to the density uncertainty though care has been taken.

Other samples measured are alumina cement, zirconia cement and
zirconia felt from Zircar. The cement samples are cast in the test tube,
fully dried and baked at about 400°C for one hour. The sample of zir-
conia felt is cut and fits the test tube, maintaining the original
density of 0.24g/cc. The data obtained from these samples are presented
in Figures 6.6k-m. Figures 6.6k and 6.6l show that alumina cement has
much less loss than zjrconia cement. Figure 6,6m shows that zirconia
felt, though having 90% volds, has a pronounced rise in the loss factor
beyond 400°C. It is also noticed that the heating is intermittent, indi-
cated by a flickering glow of the sample.



Figure 6.6 Measured dielectric constants and loss factors of various
ceramics, at 3GHz, as functions of temperature. The worst
case error is about 8% and #30% for dielectric constant

and loss tangent (see Table 6.4).

(a) Macor (Cotronics 915), one type of machinable ceramics;

(b) Alumina silicate (Cotronics 902), one type of machinable
ceramics;

(¢) Machinable alumina (Cotronics 960), one type of machin-
able ceramics;

(d) Soda lime glass (Corning 0080);

(e) Borosilicate glass (Corning 7740);

(f) Borosilicate glass (Corning 3320);

(g) Mullite (McDanel MV20);

(h) Cupric oxide powder (J.T.Baker, pressed, 4.3g/cc);

(1) Aluminum nitride powder (C-Axis, 1.67g/cc);

(j) Zeolite powder (Linde 13X, pressed, 0.9g/cc);

(k) Alumina cement (Zircar ACS6, fully dried, 0.5g/cc);

(1) Zirconia cement (2ircar 2C89, fully dried, 1.4g/cc);

(m) 2irconia felt (2ircar ZYF100).
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CHAPTER 7
CONCLUSION

An automatic high temperature microwave dielectrometer system has
been presented which is demonstrated to be capable of measuring complex
dielectric constant versus temperature curves up to 1600°C, at 3GHz, in
a few minutes, while the sample is being rapidly heated by 120W of 91S
MHz microw. -e power. Four main features characterize this system.

(1) A coaxial re-entrant cavity is designed to be used both as a
test chamber and as a microwave sample heater. By virtue of a strongly
focused E-field in the re-entrant gap, a high heating rate and high
measurement sensitivity have been achieved. The use of fast and selec-
tive microwave sample heating together with a small sample volume
greatly reduces the cavity thermal expansion errors which exist in a
conventional sample heating scheme.

(2) Sample heating and testing are conducted at the same time but
in different frequency bands, i.e., 915MHz and 3GHz. As a result, the
testing signal can easily be isolated .rom the heating power by a high-
pass filter. If interested in dielectric properties at 915MHz, one can
interchange the testing and heating source and use a low-pass filter
instead. Moreover, this dual frequency approach allows a much higher
heating power level.

(3) Dielectric data are determined from the calculated instead of
experimentally obtained calibration curves. The accuracy in this abso-
lute method does not suffer from the uncertainty in the reference data.
The calibration curves can be easily obtained for arbitrary sample and
cavity dimensions without repeating experimental callibration procedures.

(4) The use of a sample insertion hole and hollow center conductor
greatly eases the sample preparation and loading, making instant on-line
measurement possible. It also avoids the contact of the sample ends with
the cavity walls and thus eliminates the usual air gap errors in a
cavity without insertion holes. Furthermore, the analysis shows that the
hole effects linearize the resonant frequency shift by the sample.

The cavity characterlistics are fully explored with the ald of a
mode-matching analysis. They can be summarized as follows.

(1) There exists a series of quasi TEM modes, which are the TEM



from the gap region, the TEM field pattern is a good approximation for
the cavity field distribution.

(2) The gap field cannot be represented by a lumped capacitor or an
inductor. Instead, it varies greatly with the frequency or gap par-
ameters such as gap width, sample radii and permittivity.

(3) The electric energy density in a sample loaded in a narrow gap
can be higher than the average cavity value by a factor of several
hundred, though the stored energy in the sample is only a fraction of
the total energy in the cavity. The power dissipation in a medium loss
sample (tand=0.01-0.1) is comparable to that on the cavity wall.

(4) The presence of the suzmple insertion holes reduces the gap E-
field but causes an additional amount of stored energy inside the holes.
This portion of energy compensates the sensitivity drop in the dielec-
tric determination, and hence, provides a nearly linear frequency shift
with dielectric loading.

(S) For a given sample radius, the use of a sample holder equival-
ently increases the hole size (by the holder’s wall thickness), thereby
enhancing the hole effects, especially for a low permittivity holder. It
also considerably reduces the sample radius variation error which is
minimized when the holder’s permittivity is unity, i.e., the sample is
suspended in the gap.

The resultant errors in the determined dielectric data are examined
in detail. The analysis shows that the measurement error of the dielec-
trometer is the single largest error source. For example, for a total
loss tangent error of 30%, 25% is due to the uncertainty in the return
loss measurement. This error can be reduced to 4% if the directivity of
the reflectometer is improved from 30dB to 40dB. It is also shown that
the cavity thermal expansion will cause a larger error in the resonant
frequency shift than the measurement uncertainty if the cavity body
temperature is raised by 10°C.

The dynamic measurement range is mainly limited by the measurement
uncert.inty of the testing channel and the heating ability of the
heating channel. Clearly, it is difficult to heat a very low loss sample
effectively by microwave absorption. Sample preheating and sample
thermal insulation can overcome this limitation to a certain degree.

The main disadvantage of this svstem is the comnlexitv due tn the



heating also increases the complexity due to the requirement for dynamic
tuning and matching. Nevertheless, the methodology used has resulted in
a microwave dielectrometer exceeding the high temperature limitation of
other methods. Its speed, convenience and reliability make it useful not
only in laboratory measurements but also in industry processing and
quality control, especially for fiber, rod or liquid products. With both
microwave testing and heating capability, this system can also be used
in dynamic studies of microwave heating of ceramics. The dielectric
data obtained as functions of time, temperature or heating rate or power
level will be wvery informative in understanding the mechanism of
microwave~-material interaction.

[t is believed that the work, as reported in this thesis, has laid
the basis for a better understanding of the characteristics of the
dielectric loaded coaxial re-entrant cavity. This work will also
contribute substantially to the technique of high temperature dielectric
measurement and to the more effective industrial wutilization of

microwave power in general.
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APPENDIX 1 INTEGRATION FUNCTION OF e, J(a .b)

This appendix evaluates and discusses the following integration

~ 1J‘ jn in
eij = % Ocos-§(2+zo)005—xzdz (A1. 1)
i'.j=0' 1' ...v «©

e‘J can be directly integrated as follows:

1 R L in
e, = Afocos~§(z+zo)cos~xzdz
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Let A/B=a (A1.2)

and ZO/B=b. (A1.3)

Then, eij = eij(a. b)

1
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First let’s prove that eU is a convergent sequence.
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Now let’s look at some special caszes.
(1) i#0 and j=0
e o= 0 (A1.5)
(2) 1=0 and j=0
1

e = 355-[sin(a+b)jn-sinbjn] (A1.6)
(3) 1=j=0
€00 }53 oy
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(A1.10)

(Al.11)

(A1.12)

This means that eU will vanish if i and j do not have the same parity.
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APPENDIX 2 APPROXIMATED CALCULATION OF CAVI:Y Q-FACTOR

In this appendix, the Q-factor of a dielectric loaded re-entrant
coaxial cavity 1is evaluated. The main approximation made in this
evaluation is that the gap width is very narrow compared with the cavity
length and the wavelength. The cavity structure considered is case 2 as

shown in Figure A2.1.

Ty
\\ A
\ — ——
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\ \ I .
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I l by
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/ / \
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S s®
£/
[~ L

Z=0

Figure A2.1 Schematic dlagram of a coaxial re-entrant cavity with a par-
tially dielectric loaded gap.

Cavity Q-factor is defined as angular frequency times the ratio of
the stored energy to the dissipated power in the cavity, that is,

Q= wWE/P = wWE/(P“+PD) (A2-1)
The stored electric energy is given by
21 2,52 -
v = te [l], e (E2EDrav (A2-2)

The dissipated power consists of the metal surface loss

R

= 3 2 -
P =5 ffs Hads (A2~3)
Rg = Vuuo/(ZGS (A2-4)
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and the dielectric loss

— C -
PD = wtanswE (A2-5)
c_1 2 .2 _
WE = Zeofffvncr(Ez*Er)dv (A2-6)

First, let’s consider subarea A. For a narrow gap, we need only

consider the TEM fields which are expressed by

601
_ o . 2n
EI' = ——F—-smx——z (A2-7)
Ez =0 {A2-8)
H, = —igcosg!z (A2-9)
¢ 2nr Ao

Therefore, the stored energy and the dissipated power on surfaces

(1)-(4) can be evaluated as the follows

€ .r € r A
A _ of 2 2 <0 2 2y(y__0_. 4nL
WE = E—J-rlJ.: EI‘ 2nrdrdz = ) (6010) nL(lnrl)(l ansin-i;)
(A2-10)
ar_ R P Ist Ao 4n(L-D)
P" = Tanlr H¢(r=r1 )dz = é?zﬁr '(L'D)'{1+4nTL_D)sin Fy l
o 1 0
(A2-11)
2
R IR A
2 _ s 2, _ . Os o_. 4nL -
P, = §~2nr2IL H¢(r-r2)dz = §EF~L(1*IEEsin-X~ (A2-12)
0 2 )
2
R .r IR r
3 _ s 22 __ = 08, 2 -
Py =3 Jr: H¢(z 0)2nrdr —-ﬁ—lnr1 (A2-13)
2
R .r I'R r
_ sf 2,2, _ - 08 2 272nL -
P, = E-Iri H¢(z-L)2nrdr = —7Ing-cos (—X;) (A2-14)

Since L»D and 4nL»Ao. the above results can be simplified as

€ r

0 2 2

= — = ~15
i (6010) nLlnrl (A2-1S)

A
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a LR

p'tl= 02 (A2-16)
W 8nr1
@ TR

plele 2.8 (A2-17)
W 8nr

2

(3) ‘3“ T,

p V= 2 Z1p2 (A2-18)
W n "' r

1

For the same reason, the contribution of subarea B and C to WE and Pu
can be negligible. However, the dielectric loss cannot be ignored. To
estimate Po' we first need to evaluate the electric energy stored in
the sample, i.e., wg. For a narrow gap and a small sample radius, we
can assume the E-field in the sample to be uniform and in axial

direction only. Thus

c_1 2 _
UE = ZcoerVDEo (A2-19)
=1 2 -
and PD = 2wtan&eoerVDEo (A2-20)

where, VD is the sample volume

w— 2 -
VD = nrOD (A2-21)

- P,* and P into Eq.(A2-1), we finally have

Substituting W:. P
Q= O.003974ch°-ln(rz/rl)/(l/rl+1/r2+

rzD E

2 0 0,2,
(2/L)+ [l4cos (ZnL/Ao)] ln(rz/r1)+0.003974\/cf0-(T)-(B-G—I;) cr)
(A2-22)

The last term in the denominator relates to the dielectric loss.

Take a typical numerical example:

o=10"7(Sm), f =3GHz, A =10cm, 0.003974/T_=6882/cm
r1=1.25. r2=5.0, L=20.0, D=0.3, r°=0.25cm

_ e 2_ -2
EO/(6OI°/r2)-2.S. Eo/(GOIo)-Z/rz-O.S/cm. (Eo/(6010)) 0.25cm
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rsD/L=O. 938x10 " >cm?

The wall loss term = 2.04/cm

The dielectric loss term = 1.6148:/cm

We see that the dielectric loss .s comparable to the wall loss in this
example.

If the resonant wavelength is close to that of TEM modes in a
closed coaxial cavity, cos(ZnL/Ao)zl and the empty cavity Q becomes

ln(ra/rl)

-
.

Qo= 0.003974»/570 1/r1+1/r2+(4/L)1n(r2 /?7 (A2-23)

This is identical to the formula for the Q-factor of a coaxial cavity
given in [S6]. This equation can be rewritten as

Qo=0.003974V0f0r2'H (A2-24)
ln(rz/rl)
H= (A2-25)
1+r2/r1+(4r2/L71n(r2/r1)

If take a derivative of H against rz/r1

dH rl/r2+1~1n(r2/r1)

.= {(A2-26)
d(r /r ) 2
2" "1 [1+r2/r1*(4r2/L)ln(ra/ri)]

and let it equal to zero, we find that H therefore Qo reaches maximum
when r_/r_=3.58.
2 1
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APPENDIX 3
EVALUATION OF RETURN LOSS AND Q-MEASUREMENT UNCERTAINTY

This appendix covers the error analysis of the cavity Q-factor
determined from a reflectometer. This error mainly originates from
uncertainties in the measured return loss. In this appendix, the return
loss uncertainty is analyzed first. The Q-factor error limit is then

evaluated.
A3.1 Return Loss Uncertainty

Using a reflectometer configuration, the uncertainty ¢. measured
return loss of a device under test (DUT) has two primary sources, namely
the finite directivity of the directional coupler and the mismatch of
the signal source. Due to the phase ambiguity of a reflectometer, we are
only able to estimate these errors limits, i.e., the errors in the worst
case. Moreover, it should be noted that in this appendix, RL denotes the
positive value of return loss and I' is only the amplitude of the reflec-

tion coefficient.
A3.1.1 Directivity uncertainty

With a finite directivity, D, the measured return loss, RLm, will

be [81]

-20103(F+FD) < RLm = -2010g(r—rD) (A3.1)
vhere

r, = 10720 1A3.2)

r = 10-RL/20 (A3.3)

and RL is the true return loss of DUT. Thus, the error

SRL = RLm-RL (A3.4)

can be expressed by
-2010g(F+FD)-RL s 3RL = -2010g(F-FD)-RL (A3.5)

Using Egs. (A3.2) and (A3.3) in Eq. (A3.5), we obtain the error range



~201log(1+107 PR 720y ¢ apt < -u010gl1-107 (PR /20
(A3.6)

Hence, the upper error limit is given by

SRL'= -2010g(1~10" (P~RL! /20, (A3.7)
and the lower error limit is

SRL™= -201og(1+10” (P-RL1/20, (A3.8)

+ - -

or (SRL™) | = ~2010g(1¥10 (D-RLY/20, (A3.9)

where subscript D denotes the directivity uncertainty. Expressing this

in terms of FD and I', we have
+
SRL™ = -ZOlog(lirb/r) "A3.10)

It is shown that the return loss error is significant when the return
loss (or T) is close to the directivity value (or FD) and its upper
limit will be infinite if the return loss equals the directivity. If
D-RL>20, that is, the return loss is 20dB lower than the directivity,

the error will not exceed *1dB.
A3.1.2 Source mismatch uncertainty

If there is a source mismatch, i.e., a mismatch looking back to the
source, the reflected power from the DUT will be re-directed to the DUT.
This amount of power is added to the incident power, resulting in a

measured return loss error which is given by [82]

2010g(1-rrs)5 8RL = 2010g(1+rrs) (A3.11)

+
or (SRL')S = ZOIOg(ltFFS) (A3.12)
where Fs = (SNRS-I)/(SWRS+1) (A3.13)

and SWRS is the effective source mismatch. Define RLS as

RL_ = -20logl’ (A3.14)

we can rewrite Eq. (A3.12) as
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(3RL7)_ = 20 oy (BBl

2

(A3.15)

It can also be shown that the RL error due to a source mismatch is
smaller than #1dB when RL+RLS>20dB. Therefore, (6RL:)s Wwill never exceed
*1dB if RLS>20dB which corresponds to SWRS<1.22. In practice, the source
mismatch can be reduced by connecting a matched attenuator (6-10dB) at

the source output.
A3.1.3 Graphical presentation of return loss uncertainty

By comparing Eq. (A3.9) and Eq. (A3.15), we see that (5RL")S=-(FRL*)D
if RL+RLS=D—RL. This fact suggests us to use a single graph to present
both the directivity and source mismatch uncertainty as shown in Figure
A3. 1.

2.5
é 2.0 i "
z 1S (SRL)  or - (3RL)p
'E 0 . -“~—-5=-
5 o0s ———
Q
5 0.0
g <05 e
= ~1.0
= . +
3 -15 > (ESRL)Sor-(SRL)D
o~ 20 yd

-25 /

10 15 20 25 30 35

RL+RLs or D-RL (dB)
Figure A3.1 Return loss uncertainty in a reflectometer; (SRLt)S and

+
(SRL’)D are the upper and lower limit of source mismatch

and directivity uncertainty.
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A3.1.4 Total return loss uncertainty

The ozl RL uncertainty is the superposit.on of the directivity
and the source mismatch uncertainty. Adding Eq. (A3.10) to Eq.(A3.12)
gives

. . . Ty
8RL™= (SRL™)_ +(SRL") = 20logee—mo (A3.16)
s D = 1:rn/r '

Since the directivity error is the dominant error term for a high RL
(small reflection) and the source mismatch is the main error term for a
low RL (large reflection), we expect that the total RL uncertainty will

arrive at a minimum at a medium RL. It can be found that when

r = FD[V1+1/(FDFS)+1] = VFb/Fg (A3.17)

the upper limit, 6RL+, is minimized and when

= FD[V1+1/(FDTS)—1] > vrb/rs (A3.18)

the lower limit, BRL-, is maximized. In other words, the return loss

around \/I‘D/l"r can be measured most accurately.
A3.2 Uncertainty of Measured Cavity Q-factor

A measured Q-factor includes the loss of both the cavity under test
and the measurement system used. Tris Q-factor can be determined from a

measured reflection spectrum (see Figure 5.6) which can be expressed by

r§+x2
X) = (A3.19)

2
1+x

r(

where x is the normalized frequency increment defined as

X = ZQm-(f—fo)/f0 (A3.20)

and Fo is the reflection coefficient at the resonant point, f=f0 or x=0.

Therefore,

£
0

O T X
[0}

(A3.21)
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and %2 = (rz-ri)/(x—rz) (A3.22)

At the half power point,

r? = (1+r§)/2 (A3.23)
x=1 (A3.24)
fO
and Qm = m (A3. 25)
/2 0

This is the commonly used method for Q-determination.
In order to find the variation of Qm caused by an error in the

return loss
RL = -20logl (A3. 26)

we take the differential of Egs. (A3.21), (A3.22) and (A3.26) as follows

de/Qm = dx/x {A3.27)
242
dx/x = (1*: )2°Fdr (A3. 28)
(1—r0)x
r§+x2
Fdl = ~(20/1n10) -T2dRL = -(20/1n10)" —+dRL (A3.29)
1+x

Substituting Eq. (A3.29) into Eq.(A3.28) and then into Eq. (A3.27) results

in

2.2 2
de/Qm ) _1n10.(ro*x YJ(1+x7) (43.30)
dRL 20 (l_rz)xz
0
2 2
/ -
. de Qm _ _Inio, r<a ro) (43.31)
dRL 20 :

2 2 2
(1-r*)3(r -ro)

This equaticn gives the relative error of measured Q-factor due to a 1dB
RL uncertainty for different increments, x, at which the Qm is
calculated. This relative error is plotted in Figure A3.2 as a function
of x for r0=o.1. 0.3 and 0.5 which shows that there is an x at which,

for the same amount of RL uncertainty, Q can be determined with a
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I, =0.5 (RL_=6dB)

rror (%)

~
)
-

-dQ /Q Per One dB RL 1

Normalized Frequency Increment x

Figure A3.2 Relative error in measured Q-factor caused by a one dB return
loss uncertainty as a function of the normalized frequency

increment, x, at which Qm is determined.

minimum error. This point is found to be
x = V[ (A3.32)

which corresponds to the steepest point of a reflection rescnant curve.
At x=x , we get

r=r-= VF; (A43.33)

inio Mo

min = 20 1-T
0

de/Qm ) (de/Qm

and aRL dRL

)

= -o.11sswP.0 (A3.34)

It should be emphasized that Eq. (A3.34) gives only the minimum of de/Qm
per one dB RL uncertainty not fhe minimum of de/Qm itself. In fact,
de/Qm may be rather large at x as a significant error occurs in RL for
a large RL if the directivity uncertainty is considered. Substituting Eq.
(A3.10) into Eq. (A3.31), we have
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. r#(1-r2)
(g0 /Q )" = ‘In(12F /T) (A3.35)

n (1-r2)(r3-r%)
0

This equation gives the limits of relative error in the Qm which is
determined at an arbitrary point on a reflection rescnant curve. There
should also be a point at which Qm can be determined most accurately.
Detailed calculations show that the half-power point is a fairly good
approximation of such a point. Substituting ' at the half-power point
glven in Eq. (A3.23) into Eq. (A3.3S) gives

. (1+72) 1ere
(dQ,/Q, )5, & ——5= In(1r /(=) ) (A3.36)
(1-T7)
0
(1412172
SIS K 1 (A3.37)
(1-r,)

In Figure A3.3, these Qm limits are plotted agairnst ro for D=30 and 4. .3.

25
20
§l5-
o4
)
Y 10 4
Sd
0 [ e T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Reflecton Coefficient at 0

Figure A3.3 Relative error in measured Q-factor versus the reflection
coefficient, Fo. at the resonant frequency for a reflecto-
meter directivity of D=30 and 40dB.
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We see that de/Qm is within #12.5% and 3.5% for D=30 and 40dB respec-
tively, if Fo<0.47 or RL>6.5dB.

A3.3 VUncertainty of Intrinsic Cavity Q-factor

The Q-factor of a cavity which may aclude a sample is derived from

the measured Q-factor, Qm. and the coupling faclor, 3, as

Q

(14»[3)0m (A3.38)
where

SWRO if over-coupled
{ {A3.39)

l/SWR0 if under-coupled

We can write the relative error of Q as

dQrQ = dB/(1+B)+de/Qm (A3.40)

The term of de/Qm has been evaluated above and dB/(1+8) can be found to
be

dr r
1B/ (1+4) | = xp = Inlo _ o

20 1%
0

|

* |dRL | (A3.41)

=3

0

for over- and under-coupling respectively. It shows that the error in
coupling factor due to return loss uncertainty is larger in the over
coupling case. If only under coupling is assumed and the directivity
uncertainty of Eq. (A3.10) at fo is used, Eq. (A3.41) becomes

Iy

1+
0

dB \t _
(Trg)” = In(1#r /T ) (A3. 42)

The calculation can show that this B8 term contributes to cavity Q-factor
error less than 3.5% or 0.9% for D=30 or 40dB if Fo>0.l (RL0<20dB).
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APPENDIX 4 AUTOMATIC TUNING CIRCUIT

Designed for automatically tuning the frequency of the microwave
heating source, the control circuit is illustrated by the block diagram
of Figure A4.1. The idea is to operate a sample loaded cavity at reso-
naice to maximize the heating power delivered to the load. The actual
circuit is given in Figure A4.2. Since each function block in this cir-
cuit is a common type which is well explained in most text books [67-691],
this appendix will only cover the operation principle of the circuit.

The inputs of the circuit are analog voltages, Vi and Vr, which are
proportional to the incident and reflected power, while the output is
the frequency tuning voltage, Vf, for the voltage controlled oscillator
(VCO) which drives the heating source. The circuit structure mainly
consists of a sweeping circuit and a searching circuit. The operation
sequence of the entire circuit can be divided into the searching period
and the holding period as shown in Figure A4.1. During the searching
period which includes two consecutive sweeps, the input resonant curve
is searched for the resonant frequency. The first sweep is used to
determine the resonant curve magnitude at the resonant point, whereas
the second sweep is used to determine the tuning voltage at the resonant
point. During the holding period, this voltage, and therefore the heat-
ing source frequency, is kept unchanged, resulting in a minimized power
reflection. The length of the holding period is about 0.5-2 seconds.
This can be set low or high depending on the rate of change in the
sample’s dielectric constant with heating time. The searching period
should be as short as possible since there is virtually no power coupl-
ing to the cavity within this period. However, it can be no less than
about one tenth of the holding period primarily due to the limited
tuning rate of our power source.

Referring to the sweeping circuit in Figure A4.1, an astable
multivibrator (AMV) generates a train of negative-going pulses, V ,
which serve as a clock signal for the entire circuit. The rising edge of
the pulse is used to trigger a monostable multivibrator (MMV) to produce
a single negative-going pulse, Vz, with about the same width. Therefore,
the AMV acts as a master, while the MMV works as a slave. The pulses V1
and V2 are then used to trigger two separate bootstrap ramp generators

(BRG). Adding the two ramps together, we obtain two consecutive sweep

154



e e, e mrcacnewe

neH HON

R ILEER G

Sujuny ojjeUOINE

ayy Jo wealetip oo(d

0
e weavdmo )}

- mopy

N ~> PYIAL

o——

1] 102003,

||=l npasry
A

vy 3UNOIdA

e = - . e e e —-—— o s

J PSS P S atadbadiadiadia il

piata

ms
indu}

=
>

lilllllllllllllll|Illlll|llllllllll|l|lllllll'll||ll|l|llll

.
-
-
-
o
-

A

Lbucerecememononewewat

J0)RIA

~Wngy -4

LIND WD ONLEGIAS

203338(L “ FEYUIITESY|
nea ] R ane PRTYPIT x>
£ c- =

' [)

'

" v
[ QD 1
i
31N2a1D LINDAL) HNININVIS
Josay :

\ ] TR R

4 '

. ’

' ' FIOCIEIE )
I dumy
SR pa— _N — | denisiooy

]
1
, \._..—“...:..—M. nppy ot 1l 0
) 1
Y FTILYELETEY
dutnyg
degpspongy

>
-~

f === =="1

LN
.

|ajquisouogy

h 0

L

diiA
=npN

A

ISy

Leravarcwunosocnrarswnened

155



= : hehantel - T Tem T ST T T T ’ vs - MG .._
1 3e Y veeug 2EEY Ry emee T ciere . l~n“h“"\ww-ﬂ"- A
d T - 9w
'
sne =N -tllluoLl.. e HOLMVeNDD ROONIN - IA ®#NF>I1I0 Wede - Q4
- nne S e et wNid 31 guun . e ®I79101 LLEuMNIE - 26 - woM
1AHONE e JAWRONIIN MO 8 INO0L D) IwenIne -1 e @:..xt T v )0 il - o1 T e
S er ot e o mE T e -.ﬂ" s L1 XY NN ) ) G L LT T2 wigiaga - At0
WOIWRAIAL) WM D IBVISW - AUv
L - - I T n R eon aree »tane - oaw
. P al 3. :
ERT 3 eece .— e ar3 J. (XTI R ‘o0,
A cn . .
. m . N - U T
- wan — g~
LId % . L 4 cLepmt
(R Y] » o B At TN . Lt €10 E S
LI S — ]
' eenyl e 2 39A- . hf
- wet = = .
4 \,\“ T O ‘ ' wivn Da’c“.. —t % 33a- .
. 1en
on 18 ua: .- - e S SN wiww 23A N-Q
»G -\u N o s . (2101 14 : )
e — Jﬁ;ﬁ ...... . s S W . 2 [ 2l viant ';x. .an.. i Maw.l e te@ l—\ IN we e
LT & ! ~fe - 3; .-1 »an D I onu 3.
ern Sew ote
o vetn w0 er0 an.. - { .
S A - Y 4 . "
atn Rl S - s, S - o wia
(LTI R I 3
" < 1\.-/.. 234 Add |
gen Pl e T
~ .“ veernc| &7 w~
cem e - ween tve N
LRTYSS ~ . -y ~ . b4
(232L]) P M ‘.".. aty ~le GSLT ;;ﬂ(t\vs
1 NS S, orn
I - 1GeRNe s 200 B
e o S mmmme e T I Ty LT
LTI y -

wl ¢ 7H PR A S o . ! 1 R
_:.;1_.~ ;:x . < i:

: "
N _ $ 0 41— nu it
W N b t"w" re 1 o ‘! ) (L Y] i w— r
-y tiy At S L] NN . — e -
‘ ore SR R PR 1 ~ M..\ .w*i . Je e PE M i.” ‘Je
, ’ B ©on e Je pyt v oL el Gt .
- EXYN 34 s A L SV (PRSP
-..r.... N < N H h s veTeta = T e M 22 314 23
rn oI _ “iee w —3 ‘ S I T
32" vesrur m et et e e e g b =] Tew Teen .xvlw —- - 234
- ~ L] © 3e - o
,uu,ﬁg D I . ) FL s e S
1040 . T M) tve - 5 W e 2
“ Nhyy v- irm LT ¥ = hn.u L ot ' Pl ks M-nn._ A et
LIRS . w Nr - A\ S g} eV Ay g T 334 -
{ey MRy o € e e -
» i von n = =
en ¢ v a4 sen Len Y A .- S aaa- = A
- B R R Y LAREE TR ey vy -
. 1S K. e N T 234 v 334 ° 44 35 J.
1. o DA miee 3 B — 01 - ter 1 e e
po . " _ - -
o R S R R A L
- = -p - i IIA - ‘.!’ . !l' »! — - ——— -
..:;,Z DO & -1 u 16N J ots L\ 3 N .a-:.a ~v e f rosinz BENN{ J 5%
S ouﬂw: T ~. - ~ . vq‘ ¥ T win T o 338 O3 e kW - ' ..H.\
< » - .t — A SN H -
LGRS [ N .~ M B .Ma .. L4 \.aw..m\ Ye- ,\H.-)H . 3 " AWY MM &
_ e yit LasLNT 11t ~jr— &< wein o0t &4 - ——
....‘ . - re .:nh 31T [21] ...wvl!( -.a S.
. ~ LEEN T . ey everns i
: I - 4o ST 3. aay 194 ta
. M‘.r.r/\l - -
-z
an

jihoato Sutuny drjewolny Z gV IUNDIL



voltages which drive the VCO via a sample-hold (S/H). When the S/H's
control signal, Vs’ is high, the S/H is simply a voltage follower which
replicates the sweeping voltage. During this state, the power source is
operating in a sweep mode. Conversely, at the instant VS switches from
high to low, the S/H holds the oscillator control voltage at a fixed
value. Thereafter, the power source operates in the CW mode at the last
found resonant frequency.

In the searching circuit, the input signals Vr and Vl are first
conditioned to produce VR and VI in the range of 0.5 to 5SV. Vn is then
divided by VI by an analog divider (DIV100) ([83], resulting in a normal-
ized reflection voltage, VR. which is proportional to the reflection
coefficient, Using this normalization procedure, the circuit still
functions correctly when the incident power or V changes. After being
inverted, V becomes V which has a maximum 1nstead of a minimum at the
resonant po1nt. This maximum is found and held by a peak detector (PD)
and is compared with 3; by a window comparator (WC). When V; is within
a given AV of the PD’s output, the WC switches to low. This low output
is used to trigger the S/H into the hold state through a NOR gate and a
Schmitt trigger. Note that the WC goes into the low state not only at
the resonant point during the second sweep but also on the rising
portion of V; during the flrst sweep. This ambiguity is removed by
using a NOR gate which disables the WC’s output (Vc) during the first
sweep because the NOR gate has a high output only if both VC and V2 are
low.  Therefore, at the instant the NOR gate goes high, the tuning
voltage corresponding to the resonant point, i.e., Vr(t'). has been
determined. The NOR gate output then drives the Schmitt trigger (ST1)
into the low state which causes the S/H to shift to the hold state. As
shown the ST1 has two derivative inputs, one from the NOR gate and the
other from the AMV, connected to the ST1 through a summing network. In
this way, the ST1 is triggered to its low output state as the NOR gate
goes high, and to its high output state as V1 goes negative,

The function blocks yet to be explained are the retrace remover and
the reset circuit. It should be noted that at the beginning of the first
and second sweep, or t=to and t1' the VCO may also respond to the
switching transients in the sweep voltage. As a result, two spikes may
appear in the input signal Vr and confuse the searching operation. The
second spike is blocked from the PD's input by a circuit called retrace
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remover (RR). This circuit is basically a JFET switch which is turned
off for a short period (less than half a percent of the sweep period)
centered at tl, i.e., the transition point from the first sweep to the
second. The first spike is not removed; instead, its effect is avoided
by the design of the reset circuit. It is necessary to reset the PD so
that it holds only the most recent peak value. With this circuit, the
PD is virtually disabled by shorting the capacitor (C19 in Figure A4.2).
The interval in which the PD is enabled almost coincides with the length
of the entire searching period, i.e., the first plus tle second sweep
time, except that it starts slightly later than to. In this manner, the
first spike which occurs at to does not affect the searching operation
because the PD has not been enabled yet.

The experiment shows that this automatic tuning circuit works

satisfactorily though its design Is by no means optimized.
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APPENDIX 5
ANALYSIS OF SAMPLE TEMPERATURE NON-UNIFORMITY

In this appendix, we will analyze the problem illustrated in Figure
A5.1, in which, (a) is a schematic diagram of a sample positioned in the
cavity re-entrant gap and extending into both the holes in the center
conductor and the endplate; (b) and (c) are the distributions of E: and
E:, the E-fields inside the sample in the testing and heating band.~with
E: exhibiting a sharper profile due to its longer wavelength; (d) and
(e) are the sample’s temperature and permittivity profiles associated
with the E: distribution. The field E: determines the amount of the
cavity’s resonant frequency shift and (-factor change produced by the
sample. These disturbances to the cavity are measured and used to deter-

mine the <ample’s dielectric properties which are assumed to be uniform

withiin - “fective sample volume. However, the dielectric properties
throughcui <+ .- volume are not uniform at elevated temperatures due to
the -z .t . ‘eating field and temperature distributions. Hence, an error

n the «etermined permittivity will result.
To analyze the error in the determined dielectric data due to the

temperature non-uniformity, one can use the perturbation equation of Eq.
(2.6) which is rewritten below

r_eTeT
Afo eofvn(er 1)E0E1dv
+ =- W (AS.1)
0 E
wpTeT
1 eof;ocrEoEldv
A=) = - (AS.2)
Qo ZwE

where E: and EI are the testing flield before and after the sample is
inserted. First, we examine Eq. (AS.1). Let

f°e°/(4ws) = C (AS.3)

and X = e;-l (AS.4)

then of = cf (EEdv (45.5)
(o) VD 01
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Figure AS.1 Dielectric non-uniformity due to the E-fields and the sample

temperature distribution.
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where ¢ is a constant and x is the sample’s dielectric susceptibility.
Assuming that the E-field inside the sample is uniform in the r-
direction, symmetrical about the gap midplane and oriented only in the

z-direction, i.e., ET=E; and E:=O. we can write Egq. (A5.5) as

2 o T T
= 2 d 5.6
Afo nrschsznEz1 2 (AS.6)
which is also valid for an inhomogeneous sample. Since we have assumed

in our method that,

then sf = 2nriex J°ET ET dz (AS.7)
0 s 00 zZo 21

Dividing Eq. (A5.7) by Eq.(A5.6), we have

) T LT

- J.o XEzoszdz

o Iw ET ET dz
0 "zo 21

X (A5.8)

This equation shows that the determined X, is really a weigi.ted average
value of distributed x over the entire sample volume with E;OE;i as the
weighting factor. The temperature dependence of ¥, as a first order

approximation, can be considered to be a linear function, l.e.,

T-T
X =x, (xc-xH)-T—:%‘ (A5.9)
G i
where subscripts G and H denote the values at z=0 (gap midplane) and z=
z, (inside the hole). If we further assume that only the heating field
distribution is responsible for the temperature gradient, we can write

Eq. (AS.9) as
_ el 2
x =2, *+ (x;-2,)(E) (AS. 10)
Note here that the effect of thermal diffusion is neglected and E: is

the normalized value. Substituting this expression into Eq.(AS.8)

produces
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0 et 2y T T
jo (z”*(xc x,) (EZJ ] EZOE21dZ

~
"

0 Iw ET ET dz
o 20 21
=t p'(xc~xﬁ) (A5.11)
fj (€))% -E] £} da
p = — (A5.12)
Jo €T Ef 42
o 20 2%

Therefore, when the sample’s temperature in the gap midplane is measured,
as in our method, the error in the determined dielectric constant is
found to be

Ae’ = ¢’ -’ = x -
r ro rG XO xG

-(1G~><H)'(1-P) = -(c‘rc-e'rH)-(l-p) (A5.13)

Obviously, p=1 and Ac’=0 if E: is a constant. To evaluate the E-field
r

integral in p, we approximate the axial distribution of EZ by a normal

function

-(z/oc)2
e

ylz) = (A5.14)

where, a is a parameter signifying the flatness of the distribution, or
the degree of the hole effect in this case. Actual calculations show
that this function is a valid approximation for Ez if 8;520. Recalling
that the effective hole depth, z,, is defined as the distance into the
hole where the gap E-field is attenuated to S% in section 4.6.1, we can
find that a=zh/3 since y(3a)=e'920.05=y{zh). Making use of the result

o --(x/a)2
[2e dx = Via/2 (AS.15)

we can calculate p of Eq. (A5.12) as follows



fm “2(z/a )¢ (2 )° -(z2/a =
e 2 e Q0 e 1 -dz

p = — S ——

2 2
fm -(z/x ) ~{z/a )
e o - 1
0

0 e -dz

o 2 2 2, 2
J exp-{2/u_+1/a +1/a” j2" - dz
o &¥P-l 2 0 y 12

fm exp-[l/a?+l/u2]zz'dz
o] (8] 1

1/a§+1/af 12
[ > > 5 (A5.16)
270 +1/a +1/a° 4
2 0 1
where, ao, al and aa are the a parameters corresponding to the E-fields
of E;o' sz and E:. For a small dielectric perturbation to the cavity,

o o , then
o 1

I (A5.17)

V 1+{a /a )2
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This indicates that the larger the ratio az/al, the closer p is to unity
and the less the difference between the permittivity’s measured average

2

value, € o and its true value in the gap, e;c. To give examples, « and
p values for different sample geometries and dielectric constants are
calculated and listed in Table A5.1 . Since the testing field has a
shorter wavelength than that of the heating field, a1>a2 and p iIs about
0.€-0.8.

if the temperature distribution is al.o approximated by a normal

function, Eq.(AS.%) is rewritten as

x=x + (X -x )-e‘(Z/“L)Z (AS.18)
H c¢ “H
2
Comparing with Eq. (A5.10) and noting that (Ef)2=e 2(z/a2)' we find that
o = a?s2 (A5.19)
t 2

Therefore, Eq. (AS.17) becomes
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Table AS.1 The parimewer o and p for evaluating the error of the

sample’s temperature non-uniformity.

Cavity Gap Parameters €

rs;0.24, r0=0.355cm. crh=3.78 S 0.44 0. 46 0.32 0.58
rs=0.24, r0=0.355cm. crh=1.0 S 0.47 0.51 0.42 0.65
" 10 " 0.53 0.49 .71
: 20 " 0.63 0.61 0.76
rS=O.24, r0=0.30cm. crh=1.0 S 0.32 0.37 0.31 0.67
" 10 " 0.42 0.41 0.75
" 15 " 0.50 0.47 0.78
p = ! {A5.20)

v 1+0.5(a_/a )2
1 t

If the sample’s temperature profile is close to or flatter than that of
the testing fleld, i.e., atzal. then p20.82. In practice, this condition
can be satisfied if a longer sample heating time is used. Using a ther-
mal insulating material as the sample holder can also increase at.

To have an estimation of the error analyzed above, let’s take a
numerical example. A sample has a temperature of 1000°C and 700°C at z=0
(gap midplane) and 2=1.5cm (zero-field point inside the hole). Assuming
Lthat c;(1000)=11.0, c;(700)=10.0 and p=0.9, we find that the determined
c;0=10+0.9x(11-10)=10.9 and As;/e;(1000)=(10.9-11)/11=~0.9% wnich 1is
negligible compared with other measurement errors (5-10%).

To find the error in the loss factor due to a non-uniform sample
temperature, we can make use of the results derived for the dieleciric
constant because of the similarity between Eq.(A5.1) and (A5.2). Simply
replacing e; by s: in Eq. (AS.13) leads to

AC” = ell ~8ll - _(ell
r r0 rG rG

~¢” )+ (1-p) (A5.21)

Here the parameter p is the same as that given by Eq. (AS.16).
In Figure AS5.2, the measured sample temperature distribution at

700°C along the z-axis is plotted together with the testing and heating
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Figure AS.2 The measured axial temperature distribution of a glass

sample (Corning 3320) at 700°C for 1.5 minutes, compared
with the calculated testing and heating fleld profiles.
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Figure AS.3 The dielectric data measured at a fixed temperature, S

seconds for each data point.
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fields. It clearly demonstrates a much flatter temperature profile than
the field distribution profiles. Therefore, the uncertainty in measured
diclectric data due to the temperature non-uniformity is quite minimal
it the overall sample heating time is not shorter than 1 minute. Figure
AS.3 shows the dielectric data of two samples measured at a fixed
temperature, at 5 second intervals. We see that the data become stable
after 0 seconds and the data variations can be within 3% for e; and 10%

"

for £ after 10 seconds. In actual measurements, the sample is heated
r

gradually from room temperature and the temperature uniformity is better

than the case of Figure A3.3. Therefore, it takes less time for the

measured dielectric data to reach stable values.
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