
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films 

the text directly from the original or copy submitted. Thus, some thesis and 

dissertation copies are in typewriter face, while others may be from any type of 

computer printer.

The quality of this reproduction is dependent upon the quality o f the  

copy submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleedthrough, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and continuing 

from left to right in equal sections with small overlaps.

ProQuest Information and Learning 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



NOTE TO USERS

This reproduction is the best copy available.

UMI'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UNIVERSITY OF ALBERTA

ATTENDING IN MATHEMATICS: A DYNAMIC VIEW ABOUT STUDENTS’
THINKING

by

IMMACULATE KIZITO NAMUKASA

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment 
of the requirements for the degree of Doctor of Philosophy.

Department of Secondary Education

Edmonton, Alberta 

Spring 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1*1 Library and 
Archives Canada

Published Heritage 
Branch

Bibliotheque et 
Archives Canada

Direction du 
Patrimoine de I'edition

0-494-08280-1

395 Wellington Street 
Ottawa ON K1A0N4 
Canada

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference  
ISBN:

O ur file N oire  reference  
ISBN:

NOTICE:
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'Internet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n’y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



It is a Dynamical Landscape Laid in Living: A Space Enlarged in Doing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Dedication

To my Father Elifazi Sekalo and my Sister Eva Samalie Kakooza

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

This study is an inquiry into the nature of mathematical thinking. Particularly I 

explore the embodied, embedded and extended nature o f mathematical attentiveness. The 

writing is both theoretical and empirical.

I examine the ways in which students enact mathematical words in which they 

are not only invited to think mathematically but also where it makes deep sense for them 

to do so. I draw upon enactivist and complexity research to understand inner level aspects 

of students’ engagement on tasks.

Through close observations of the diversity and subtleties among students’ 

interactions, my research suggests that students enact what they attend to. This bringing 

forth of worlds is not only conscious and formal. Mathematical attentiveness spans other 

layers o f signification including the bodily, the social collective, the cultural and the 

material. To understand how this could be, I explore ecological and geographical 

metaphors o f complexity. Emergence shows how mathematical attentiveness is a global, 

relational property. M utual feedback illustrates how there is multi-threaded interaction 

among the many aspects. Dynamical attractors illustrate how subtle differences may 

actually give rise to larger differences in objects attended to.

This study is hermeneutic. Interpretations are organized around interpretive 

moments. I use the metaphor o f a landscape transformed in living to share the insights 

gained. These include: good mathematical problems might not only evoke adequate 

mathematical behaviors, but they may also structure students’ attention. Observing 

students’ attentiveness involves a layering o f the structural gaze with the cognitive gaze 

that are in turn successively layered by the subjective, inter-subjective, inter-objective

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and inter-domain gazes. Mathematically adequate actions like writing appear central; 

they, in addition to originating, sustain mathematical attentiveness. During mathematical 

activity students act and interact themselves into thinking mathematically, concepts are 

represented, re-presented and presented.

The phenomenology of learning aside, mathematics educators have yet to 

problematize radically the ontology of mathematical concepts. Thinking mathematically 

is more than perceiving, interpreting and experiencing mathematically; it is seen as acting 

and being in ways that expand the living landscape of what is mathematically possible. In 

sensing, perceiving and observing mathematics we enact mathematical objects of 

attention and ways of attending.
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1. INTRODUCTION

1.1 A Classroom Vignette

Let me begin with a vignette from a junior high classroom in which I 

participated as a research assistant. The teacher had been engaging the grade seven 

students in a range of mathematical experiences to promote the learning of fractional 

concepts. In preceding lessons, the students had done paper-folding activities, like many 

recent reform initiatives that appeared to have the potential to generate varied experiences 

with fractions. In the particular lesson from which I draw the vignette the teacher 

introduced the fraction k it1:

She gave each student a fraction kit; an envelope containing different colored 

pieces. After explaining that the kits had been assembled by cutting different colored 

sheets of paper into specific sizes, she took a white piece and two red pieces out of her 

kit. Holding the two red pieces against the white piece she asserted, “If this white piece is 

a whole, then each of these two reds will be ...?” “A half,” the students responded in 

chorus.

The teacher then affirmed, “If this white piece is a whole and it takes two reds to 

cover it, then a red is a half” Next the teacher asked the students to find the sizes of the 

rest of the pieces in the kit. All students appeared to be engaged in the task. Some of them 

occasionally talked to a nearby student about their findings, but most students worked 

independently. (A few students put up their hands up, mainly asking for technical help. 

For example, one student noted, “I am missing a pink!”)

After the teacher had circulated around the class observing what the students 

were doing she reminded them to record their results. Most of their records were in the 

form: White—whole (1), Red—halves ('A), Orange—thirds ('A), and so on.

A brief glance around the room indicated that the students seemed to be working

1 A  fraction kit is a manipulative activity that was developed by Dr. T. E. Kieren at the University o f  
Alberta to provide learners with a range o f  experiences with fractions. It is constructed by cutting sheets o f  
different colored paper into halves, thirds, fourths, sixths, eighths, tw elfths and twenty-fourths (Kieren, 
D avis & M ason, 1996).

1
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on the task in somewhat different ways. In addition to the approach directly prompted by 

the teacher—that of placing the smaller pieces against the whole—another approach was 

evident. Some members of the class were neatly arranging the pieces of a given color in a 

stack without covering the whole piece.

I began to wonder about the ways in which students were able to figure out the 

sizes of the pieces without covering the whole. How were the students who stacked 

pieces reasoning and visualizing? Although the stacking approach differed from the one 

that the teacher demonstrated, most of the students who used it finished ahead of the 

other students. A third approach was evident among a few students who neither stacked 

nor covered the whole piece. Instead of covering the whole white piece, they covered 

smaller pieces, that is to say they had quarters covering halves, eighths covering quarters, 

and so on. This seemed close to the teacher’s approach. However, this method appeared 

to be more complex since it involved reasoning in terms of parts of parts—a recursive 

approach to covering.

There could have been a fourth approach, one of finding out how many pieces of 

a given set make up a whole (by assembling wholes of different colors rather than 

covering a white whole), but this was not noticed by the teacher or myself, the research 

assistant. However I have observed this approach in a workshop with schoolteachers.

After the students were done with figuring out the size of the pieces, the teacher 

asked them to explore ways of covering a half piece. “What do you mean by covering? 

Should we use same color pieces?” a few students asked anxiously as they shifted in their 

chairs. The teacher explained individually to those who asked while the rest of the class 

proceeded to generate combinations for a half. Some students created a half piece from 2 

one-quarter pieces or 1 one-quarter piece plus 2 one-eighth pieces. Others produced more 

complicated combinations such as a half covered by [(j^of j4i)+Y4 + Y 4] minus

something.

In a conversation after the lesson the teacher commented, “I noticed that the 

students who used the stacking approach rather than the intended—covering—approach 

on the first task were the ones who found difficulty with understanding the second task.”

The relevance of this vignette for me is centered on the following questions: 

What did the students attend to when the teacher held two red pieces against a white 

piece? W hat did they see, or not see? What was mathematically relevant for the students

2
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to attend to in the fraction kit task? Or more specifically, what distinctions did the 

students need to make in order to perceive each of the reds as a half, each of the oranges 

as thirds, each of the yellows as quarters, etc.?

By holding two red pieces, the only red pieces in the kit, against the white sheet, 

how was the teacher inviting the students to perceive the Fraction Kit? The teacher had 

included in the kit one whole, two halves, three thirds, and so on. What possibilities and 

constraints would such a manipulative offer? In which mathematical world(s) does the 

statement, “If this white piece is a whole and it takes two reds to cover it, then a red piece 

is a half of a whole” make sense?

Whereas the mathematical task posed by the teacher was unitary, it appears to 

have triggered different responses from different students (or should we say different 

tasks?) two of which are distinct: one of stacking to count the pieces in a set, and the 

other of covering a whole to figure out the portion of the whole covered by a piece of a 

given color. Given the distinct approaches and the responses of the students who stacked 

on the second task, it is tempting to ponder about whether there were radical differences 

in what the students were attending to. I reflect on the ways in which these students, 

whether they stacked or covered, perceived the wholes, halves, thirds, and so on. More 

generally I ask, “How did students think mathematically when they engaged in this task?” 

This study investigates how students think mathematically by closely looking at 

their experiences in mathematical activities. I take an ontological stance. The 

phenomenology of learning aside, mathematics education researchers have yet to 

problematize radically the ontology of phenomena, events and tasks experienced. While 

thinking mathematically could be viewed as perceiving, interpreting and experiencing

3
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mathematically, to enactivist researchers such as Maturana and Varela (1987/1992) and 

Towers (1998) it is acting and being in ways that enact mathematical worlds. Perceived 

objects and thoughts arise with acts o f  observation and thinking. W hat we know 

constrains what we perceive and what we perceive suddenly influences what we know. I 

am, therefore, interested in the dynamics of what students attend to in mathematical tasks 

and how they attend. I am hoping that by examining the ways students pay attention as 

they engage in mathematical tasks, researchers, educators and teachers will be able to 

examine the conditions under which students produce, or to use Maturana and Varela’s 

(1987/1992) term, bring forth  mathematical worlds.

In the lesson described above, different students brought forth a variety of 

aspects. The pieces were of different sizes, quantity, colors, areas and perimeters, but it 

appears specific attributes had to be made salient for the students to manipulate the paper 

pieces as fractional amounts. The students had to enact a fractional world, a world in 

which paper pieces were defined in relation to a whole piece o f paper. This world 

included more than the explicit attributes o f the pieces. There seem to be basic conditions 

of possibilities, however implicit, that are necessary for relational properties such as 

fractions to be emphasized. It might be the case that the grade seven students, depending 

on the approach they used, enacted distinct mathematical properties.

It is common in mathematics classes, as we will see, for students to respond to 

tasks differently, and at times they enact radically different tasks. In the fraction kit 

lesson, there arose a time-saving parallel approach that worked equally well, albeit only 

for this particular kit. For instance, as long as there were four one-quarter, yellow size 

pieces in the kit, the students who used this approach were able to figure out that each

4
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yellow was without laying yellow pieces down to cover or assemble a whole. Had the

fraction kit had more or fewer pieces of each size this approach would have still worked, 

but not in the same way.

In most mathematics classrooms, students’ alternative approaches, especially 

when they are valenced and novel, pass unnoticed by many teachers. At other times the 

teacher may notice varied approaches, but amidst the flow of classroom activity he or she 

might interpret them as mere alternatives to the desired approach. Indeed they might be 

just alternatives. In unfortunate situations, they might be assessed simply as “wrong” 

approaches and thus not examined further. Yet the emergent approaches could be 

window's to the distinct mathematical or even non-mathematical embodiments that 

students bring forth. Thus it appears significant to ask: In what ways do the students think 

mathematically as they engage in mathematical tasks? How do they attend?

The Fraction Kit vignette is an empirical example of the phenomena that engage 

me. In Chapter 5 , 1 will return to this vignette to tease out the nuances of what students 

attended to and how they attended.

1.2 The Research Interest

During my first two years o f graduate studies, I came to embrace mathematical 

thinking as my area of research interest. In part, I can trace this interest to my own 

experience, first as a student and later on as a teacher of school mathematics. My interest 

in how students make sense of mathematical tasks was mainly cultivated in one-to-one 

experiences I had as a teacher tutoring students (mostly weaker students) in mathematics.

In my teaching and tutoring experiences, I began to develop a hunch that 

whereas explaining mathematics content or telling it to students helped, it was not all that

5
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was required for students to make sense of mathematics. It appeared there was more to 

teaching or tutoring mathematics than explaining. During those tutoring moments I felt 

uncomfortable when some of my “best” explanations did not translate into deeper 

understandings for the students. So I began to develop the idea that what I thought were 

pre-given mathematical structures to be explored are not always given. Or are they?

Later on, the courses I took and the discussions I participated in during my early 

graduate work furthered my interest in gaining insight into the sense making that co- 

emerges with students’ everyday mathematical behavior. I began to explore what it 

meant for students to bring forth their own mathematical worlds in which the 

mathematics content and procedures make perfect sense.

In this study I broadly ask questions such as: W hat is the nature o f the actions 

and thinking that mathematics requires from students? Does it arise with doing 

mathematics, or is it a prerequisite to adequate mathematical behavior? Perhaps 

addressing these questions will offer insight into ways of creating space for students to 

bring forth worlds o f  mathematical significance in which it makes deep sense for them to 

do so.

1.3 Statement of the Problem

In the mathematics education community there have been many efforts to reform 

learning in ways that make mathematics more meaningful. Notions o f mathematical 

cognitive processes, mathematical conceptualization, mathematical understanding, 

mathematical meaning making, mathematical power and mathematical knowledge have 

been constructed by researchers who seek to understand how students learn mathematics. 

In most o f the research the terms conceptualizations and thinking are understood to be

6
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individual psychological processes.

In a few studies, ways other than the individual psychological processes have 

been explored to understand mathematical cognition. Some studies promote a more 

discursive understanding of mathematics learning by using terms like mathematical 

knowing as opposed to mathematical knowledge, and thinking mathematically rather than 

mathematical thinking. In my study I have chosen to use mathematical thinking as a 

synonym for all efforts that seek to study how students learn mathematics. I extend the 

term thinking beyond ways that assume the thinker to play a physically passive, mentally 

mechanical and solely internal, all in the head, conscious role.

In the vast amount of literature on mathematical thinking, three questions remain 

challenging: (a) W hat is the nature of mathematical thinking? (b)To what extent or in 

what ways is it an individual, a social or a contextual phenomenon? And (c) In what ways 

do teachers or researchers observe and occasion students to think mathematically?

Recent post-structural, and ecological and complexity frameworks such as 

enactivism attempt to move beyond the debate o f whether mathematical thinking is 

psychological or social, native or learnt, and whether its potential is quasi-universal or a 

talent. I draw from enactivism and complexity research to explore the nature of students’ 

mathematical behavior.

In the case of the Fraction Kit activity, taking this non traditional view of 

mathematical thinking I am interested in the: (a) perturbations and regularities caused by 

the nature o f the fraction kit and other environmental factors; (b) initial conditions and 

internal dynamics that inclined some students to stack and yet others to cover; (c) nature 

o f influence that the social environment including the teacher had on what students

7
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attended to; (d) other elements that correlated with the Fraction Kit manipulative to enact 

fractional worlds; and (e) ways to occasion students to enact adequate mathematical 

fractional worlds. My study involves both theoretical and empirical research.

1.4 Overview of the Research Narrative

This study is an inquiry into mathematical thinking, particularly the dynamics of 

mathematical attentiveness. The dissertation is outlined in seven main parts with eleven 

chapters altogether.

R e p ro d u c e d  with pe rm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited w ithout perm iss ion .
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Dissertation Landscape

Part I 
Introduction

Chapter 5 
Methodologies

Chapter 8 
A Layering of Research Attention

Chapter 6 
Ecological Complexity

Chapter 1 O 
O rienting Mathematical Attentiveness

Chapter 2 
Paradigm s on Mathematical Thinking

Chapter 4 
Design

Chapter 9 
Theoretical Dynamics of Attention

Chapter 7 
A ttend ing to Students' Attention

Chapter 1 1 
Dynamics of Mathematical A ttentiveness

Chapter 3 
Insights about Mathematical Thinking

Part 11 
Situating the Study

Part III
Design and Methodologies

Part VI
Dynamical View of Attention

Part V
Attending to the Journey

Part VII
Questions Answered and Problems Raised

Part IV 
Theoretical Explorations

Attending in Mathematics 
A Dynamic View
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Chapter 1 is the first part, in which I introduce the study. I situate the study and 

survey the literature on mathematical thinking in two chapters in the second part: Chapter 

2 is a general review of research on mathematical thinking classified by paradigm, and 

Chapter 3 is an analysis of insights gained from the reviewed studies. The third part 

consists o f an elaboration of the research design and methodologies in two chapters 

(chapters 4 and 5). Chapter 4 is a description o f the design and context of the study. In 

Chapter 5 , 1 explore the research methodologies o f  this study. In the fourth part, Chapter

6 . 1 return to elaborate on enactivism and on metaphors I draw from complexity science 

to investigate students’ mathematical thinking. The fifth part, chapters 7 and 8, traces 

how the research focus and question have evolved during the study. In Chapter 7 , 1 pay 

particular attention to how I attended to students’ mathematical attentiveness. In Chapter

8 . 1 trace the layering o f my research attention to explore the shifts in what I attended to. 

The sixth part is Chapter 9, which is consists o f further theoretical explorations. In this 

chapter, I explore a dynamic view of sensation, perception and observing. This 

appearance o f theory far into the dissertation is appropriate for a study that seeks to offer 

an alternative view of the role of sensation, perception and observation in mathematical 

thinking. In the seventh part, the last two chapters return to the questions that motivated 

the study— questions answered and problems raised— and to envisioning new 

possibilities. Chapter 10 is an exploration o f how to orient systemically students’ 

mathematical attentiveness. In Chapter 11,1 conclude by first summarizing the ways of 

thinking about mathematical thinking and lastly by reflecting on the implications and 

consequences o f study.

The writing relates my experiences. A t many times I use the first person to

10
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narrate the landscape that has been formed during the study. It is a fractal landscape with 

many self-similar micro-theoretical and -empirical inquiries popping up within the parts, 

chapters and sections. Also, interwoven in all the parts are explications of my own 

understanding and expectations at different times during the study, reflections on the 

transformations I underwent, and comments on the surprises I encountered in the process. 

I believe by sharing the explications of my observations there is potential to transform the 

reader’s landscape and hence the community mind to a novel understanding o f the nature 

of students’ mathematical thinking. Also, as in Chapter 1 ,1 interweave research vignettes 

from the classroom or research sessions in all chapters, except chapters 2, 3 and 10. It is a 

multiple threaded writing with theoretical and methodological research brought into 

conversation with my experiences in the research projects. As well it is multi-layered 

with my observations in the projects, my initial interpretations and elaborations enacted 

from attending to my earlier interpretations.

I began this writing by introducing my research interest and stating the research 

problem. In the remaining sections o f this chapter, I outline the purpose of the research, 

the research questions, necessary definitions and the significance of the study.

1.5 The Research Purpose

This study explores the dynamics of what students attend to in mathematical 

tasks and seeks a deeper understanding of the embodied, embedded and extended nature 

o f students’ mathematical thinking. I seek to engage in a conversation about thinking as 

complex human phenomenon. This conversation aims at triggering new ways of thinking, 

talking and acting about students’ learning. The emphasis on emergent structures offers 

insights for studying the dynamics that afford individual and collective learning and

11
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knowledge systems, coherence and novelty without collapsing them into one. This study 

is informed by ecological and complexity— ecological complexity— frameworks, 

including enactivist theory, that consider most learning as a complex adaptive and 

emergent phenomenon.

1.6 The Research Questions

My study seeks to engage in the emerging conversation that foregrounds the 

dynamic and complex nature o f students’ mathematical thinking. How do students, on a 

moment-to-moment basis, develop worlds o f mathematical significance in which they are 

not only invited to think mathematically but where it also makes integrated sense for 

them to do so? How do students, in a setting-to-setting basis, bring forth mathematical 

worlds?

To guide the study I initially asked:

1. W hat do students attend to in mathematical tasks?

2. When do shifts in attention to that which is mathematically relevant occur?

3. In what ways does a deeper understanding o f what students attend to offer 

insights into how teachers occasion students’ mathematical thinking?

As I navigated the research orientations and methodology and sought to make 

coherent my observations from preliminary research sessions and conversations, the 

research question evolved from “what” and “when” do students attend to, to “how” and 

“in what ways” do students attend. I then asked:

1. How do students attend as they engage in mathematical tasks?

2. Elaborating question 1, in what ways do students, not only as individual 

beings with mental and physiological structures, but also as learning, organic,

12
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social systems embedded in social collectives, enabled by cultures, extended 

by language and technology, and as systems embodied with a neuro-motor 

system and body, attend to mathematical tasks?

3. In what ways do secondary school students await and dwell with 

mathematical objects?

W hat might appear as a subtle shift in the research question involved a radical 

change o f  focus. At the conception o f the study the focus was on the individual child 

believed to possess particular psychological structures responsible for mirroring given 

mathematical content. As I observed students working in pairs, in groups and in whole 

classrooms, broader issues such as collective and distributed sense-making began to call 

for my attention. Rather than focusing solely on what in the students’ minds 

corresponded to particular mathematical structures, I began to attend to students’ actions 

and interactions, the materials they worked with, and the collectives that sprang from 

their continued interaction. These aspects began to appear as i f  they were constituents of 

mathematical thinking, and not just external factors.

This shift also involved a drift toward considering attention and perception as 

participatory acts. In attending, it appears the attendee also enacts what is attended to. 

Attention is pregnant contact; it is active and participatory (van Lennep, 1987). It is not, 

as M erleau-Ponty (1964) critiqued, passive. Probably in learning mathematics, there is 

more to the mastering of mathematical rules, formulae, definitions, and the like that are 

usually assumed to exist outside the learner. For Heidegger (1927-1964), the properties 

and structure that we attend to or think about must also call us to attend and to think. The 

shift in the research questions also involved a drift toward considering the dynamic

13
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nature o f mathematical objects, tasks and environments. To Heidegger (1927/1964):

W e are capable o f doing only what we are inclined to do. And again, we truly 

incline toward something only when it in turn inclines toward us, toward our 

essential being, by appealing to our essential being as what holds us there, (p.

369)

In a Heideggerian, circular manner the research questions could be paraphrased as:

1. How are students inclined to attend in mathematical tasks?

2. In what ways do mathematical tasks call secondary school students to attend?

3. In what ways could teachers make mathematics appeal to the essential being 

of students as what motivates or grips them to attend, as what holds them to attend 

mathematically?

1.7 Definitions

1.7.1 Mathematics

Bearing in mind that only that which does not have a history can be precisely 

defined I attempt to offer an observer-laden description o f mathematics in the context of 

this study. Mathematics, at least proto-mathematics, has a history as old as humanity, or 

perhaps, as some researchers have argued, even older (Butterworth, 1999; Joseph, 1991). 

Both proto-mathematics— the less rigorous mathematical activities that humans engage 

in— and modem mathematics appear to be ways of knowing the world; it is difficult to 

imagine our daily lives without basic mathematical technologies such as counting, 

shaping, comparing and locating. Historical and contemporary evidence show that every 

human culture, however small, motivated not only by utility but also by aesthetics, 

religion or enchantment, is capable of developing some form o f mathematics (P. Davis &
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Hersh, 1981; Joseph, 1991). Contemporary basic mathematical activities such as 

enumerating, estimating and calculating are now globally understood languages; they are 

approaches to engaging with the world.

In this study, mathematics appears not only to be a way of perceiving and 

understanding the structure of our worlds but also, with advancements in the field of 

mathematics, it becomes apparent that it is a way of constructing our worlds. 

Mathematical activity is taken to arise from the engagement o f human beings who have 

particular bodies and brains in a world that has particular forms. Whereas mainstream 

mathematics incorporated mathematical inventions from diverse traditions, it mainly 

grew from the classical mathematics of the Greeks, who privileged the formal over the 

informal and the abstract over the concrete (Joseph, 1991). In my view, it is when 

educators view school mathematics to be in the service of preparing future 

mathematicians that school mathematics inevitably continues in the spirit of classical 

Greek mathematics. In addition to this achievement classical Greek mathematics also had 

its drawbacks such as elitism, gender bias, religious ties and formalism (Confrey, 1999). 

For this and other reasons researchers are increasingly contesting that school mathematics 

has to be distinct from research mathematics (Cobb & Bauersfeld, 1995; Cobb, Wood & 

Yackel, 1993; Putnam, Lampert & Peterson, 1989).

School and classroom mathematics are related to research and societal 

mathematics in intimately complex ways. With contemporary societal needs, there is a 

tendency for mathematics education reform on most continents to shift away from a 

mathematics curriculum that is true to its origin in the mathematics of the masters, scribes 

and accountants, toward school mathematics for all contemporary citizens (Bishop, 1997;
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D ’Ambrosio, 1990). This shift has been supported by historical, cultural, sociological and 

ecological studies that have called attention to other strands of mathematics such as street 

mathematics (Nunes, Schliemann & Carraher, 1993), ethnomathematics (D ’Ambrosio, 

1990), children’s mathematics (Steffe & Thompson, 2000), pre-classical mathematics 

(Joseph, 1991) and to the universality of proto-mathematics (Lakoff & Nunez, 2001). In 

reform studies, mathematical activity has been broadened to include activity such as 

conjecturing, conversation and inquiry (Putnam et al., 1989; Freudenthal, 1991; Gordon- 

Calvert, 2001, National Research Council, 1989; NCTM, 2000).

M y study appears to be undertaken at a moment in the history o f mathematics 

education when school mathematics is being redefined as a formal domain that emerges 

from human activities in a particular context and era, rather than being considered as a 

formalistic domain. School mathematics, as B. Davis (1994/1996) asserts, is a discipline 

that is centered more on acting and interacting mathematically rather than on acquiring 

mathematical knowledge. Enactivist researchers maintain that mathematical actions 

rather than mathematical knowledge should be the focus o f a mathematics curriculum 

(Gordon-Calvert, 2001; B. Davis, 1994). W hat counts as adequate school mathematics 

behavior, activity and knowledge is relational in nature (B. Davis, 1995).

In the reform model of teaching mathematics that is leaning toward more 

activity- and interaction-based learning, school mathematics— especially in early 

grades— appears to involve classical mathematics as well as proto-mathematics. 

Historically, it appears that proto-mathematics, which arises as humans make sense of 

their immediate activities and environments, leads to formal mathematical systems as 

people recursively draw generalities from and about these common human activities
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(Mac Lane, 1981). The latter is a recursive elaboration o f  the former.2 Researchers 

increasingly believe that formal mathematics emerges from basic as well as advanced 

human behaviors (Lakoff, 1991). According to Mac Lane (1981), such activities range 

from the mundane, such as counting, measuring, shaping, forming, estimating and 

moving, to the esoteric, such as calculating, proving, puzzling and grouping. For instance, 

Mac Lane explains, arithmetic and number theory as tangible formal systems emerge 

from human engagement in counting, geometry and topology emerge from shaping, 

symmetry and group theory emerges from forming, and probability, measure theory and 

statistics emerge from estimating.

In this research, it is emphasized that mathematics is a human activity that is 

historical, and its historical developments are considered to have implications for the 

teaching and learning of mathematics in the classroom (Confrey, 1999; Sfard, 1995). As 

well, mathematical meaning is embedded in contemporary human activities. Mathematics 

always bears the mark of its spatial and temporal locality.

1.7.2 Mathematical Behavior

In this research, I define mathematical thinking as the sense making that is 

observed to co-arise with adequate mathematical behavior. In enactivism, behavior is 

considered to be synonymous with induced, planned or spontaneous action of the 

organism in interaction with its environment. From an ecological perspective, actions are 

changes in the state o f an organism embedded in a medium as seen by an observer 

(Maturana & Varela, 1987/1992). Behavior is adequate when it fits with the individual’s

2 B. D avis (2002) adopted the phrase recursive elaboration o f ( REO) to refer to cases that the term beyond , 
say, constructivism  do not capture the com plex relation between two consecutive understandings w ell. 
W hereas b eyon d  appears to im ply to getting over with, REO em phasizes a relation o f  the latter with the 
former. The latter ow es its existence to the former and the latter does not leave the former unchanged.
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world, in his/her interactions or in his/her community.

Dreyfus (1990), like many mathematics researchers, defined mathematical 

behavior as “behaving like a mathematician.” In light of my working definition of 

mathematics, I prefer to define it in a more contextual manner. For a mathematician, 

adequate mathematical behavior is behaving in an acceptable manner in a community (or, 

to use M aturana’s (2000) term, in a consensual domain) of mathematicians. Yet for a 

school mathematics student o f a given age and experience, in a given context, who is 

acting and interacting with a certain others and within a certain environment, his or her 

behavior may be considered mathematically adequate if it is acceptable and adaptive in 

that context and community of school mathematics observers at that particular time.,

Even among mathematicians, mathematical behavior seems to be contextual and highly 

dependent on the mathematical domains in which particular mathematicians participate 

(Burton, 1999a, 1999b). A few researchers, contrary to the widely held view, have by 

studying the behaviors of mathematicians observed that mathematical behavior varies 

with individuals, institutions and areas of specialization, to mention a few factors 

(Burton, 1999a, 1999b; P. Davis & Hersh, 1981; Hadamard, 1945/1996). In later chapters 

I will return to this enactivist understanding of classroom mathematics as a nested 

consensual domain. Next, I explore what I have come to uphold as mathematical thinking 

for secondary school students.

1.7.3 Mathematical Thinking

In this study, mathematical thinking is inferred by adequate mathematical 

behavior. This is not simply because thoughts are inaccessible and unobservable, as a 

radical behaviorist might say. Instead, it is because thinking, acting and being are
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inseparable. In schools, students are not only learning “what to do” (behavior) and “how 

and why they do it” (knowing). They are also learning “who and how to be” (being, 

becoming & belonging). Put differently, thinking is partly a description an observer 

makes of the observable structural changes in a system that is in perpetual interaction. 

Thinking might involve thinking-to-act, thinking-in-action or thinking-to-reflect on 

action and more. To use Bateson’s (1980) phrase, this w id e r  th in k in g  involves structural 

changes to compensate for recurrent triggers from the e n v iro n m e n t  with which and in 

which a system—be it individual humans, human communities or other adaptive 

systems—interacts.

In the case of this study, the system will be individual and collective learners 

whose environment includes the mathematical task, the other students, the physical, 

cultural and technological objects and more. Therefore, mathematical thinking will be 

defined locally, in the context of the research participants and settings, but nested within 

and thus under the constraints of the broader setting of the community of school 

mathematics. It will also be seen to extend beyond the individual learner. Like Pirie and 

Kieren (1994) in their model of understanding, I, as an observer, will consider students’ 

and my own potentially fruitful mathematical actions and interactions as adequate 

thinking-in-action.

1 .7 .4  M a th e m a tic a l T asks  

This research considers a mathematical task to include questions, exercises and 

prompts that may be offered to students in a mathematics classroom. However, in a 

manner aligned to research that supports current reforms in mathematics education, I 

specify that the tasks should be g o o d  en ou gh , n o n -ro u tin e  and v a r ia b le -e n tr y .  Simmt
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(2000) adopted the term variable-entry to refer to prompts that are triggers to encourage 

participation, and at the same time have multiple and varied entry points into 

mathematical activity. Polya (1945/1973) observes that a problem is routine “if it can be 

solved either by substituting special data into a formerly solved problem or by following 

step by step, without any trace of originality, some well-worn conspicuous example” (p. 

171). Elsewhere in the research literature, to emphasize both the mathematical and 

situational analyses required in adopting them, tasks that are non-routine and variable- 

entry are referred to as insight (Sfard, 2000a), non-standard  (Schoenfeld, 1985), rich 

learning tasks (Flewelling & Higginson, 2001), or structured problems (Lampert, 1991).

In preparing a task, one can only determine whether the problem is good enough 

with respect to the particular learners. Yet what happens when learners are engaged in the 

task, though contingent upon the task is not caused by the task. The outcome, the 

mathematical activity, is triggered by the task. In this study, I attempt as much as possible 

to offer students tasks that have the potential to, in Heidegger’s words, incline students of 

varied interest and background to behave in ways that are mathematically adequate. An 

example o f such a task that I have used is the Chessboard Squares (CS) task in Figure 1. 

Other tasks I used in the study are available in Appendix A. I invite the reader who has 

not encountered this problem before to solve it.
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Figure 1. Chessboard Square Taska
How many squares are on a chessboard?

aAdopted from Mason, Burton & Stacey (1982/1985)

How is this Chessboard Squares task a variable-entry, non-routine and good-

enough task? I answer this question in the context of the junior high students, student-

teachers and colleagues I have observed engaging in the task. Junior high school students

in the study usually responded to the question right away by saying, “There are 64

squares.” But even before the teacher interrupted many were quick to correct themselves.

“Wait, there is one more square— the big one”, “There are a few more than 64”, or

“There are many more.” Such responses marked the beginning of an engagement in the

task. The checkerboard appeared to call students to attend. To the extent that all junior

high students in the study who attempted the problem appeared to be motivated to engage

in the task, at least for the first ten minutes, the task was good enough.

It is also a variable-entry prompt since youth in different contexts as well as

student-teachers and adults have had variable ways of engaging in it. To the students who
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engaged in the study, however, this prompt and many other prompts would after 

successful engagement on this task no longer be considered non-routine.

I noticed a fourth aspect of good enough, non-routine and variable-entry tasks 

during the study. The CS task and other tasks on an ongoing basis triggered students to 

behave in ways that were mathematically fruitful such as recording, organizing work and 

looking for generalizations. Rather than being a one-time activation  at the beginning, the 

task appeared to contribute to guiding, sustaining and occasioning o f students’ 

mathematical behavior. For example, in the process o f engaging in this task, many 

students realized that there are many squares of different sizes, so they needed to record 

what they were counting systematically. A few students, for some reasons, needed to be 

prompted to record and to organize their work; otherwise they were stuck. With time 

when no easy answer was up and coming, many students realized there had to be “a 

shorter way o f figuring out the answer” . They then began to search for varied patterns, 

and patterns that led to solving the task and to posing new problems. To students who 

were inclined towards, say, recording systematically and generalizing, this task appealed 

to their essential being attracting their attention and holding them to engage in the task. 

To these students the CS task was good enough and was, for lack of a better term, a 

dynamical attractor, in the sense that it occasioned students to think mathematically. It 

structured their mathematical behavior. For a majority sessions this and some other tasks 

I adopted were good enough, non-routine, variable-entry as well as dynamically 

attracting and mathematically structuring.

2 2
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1.8 Contextualizing the study

I have limited my investigation on mathematical thinking to focusing on the 

dynamics of the ways students attend to as they engage in mathematical tasks. All 

observations and interpretations in this study are confined to aspects related to 

understanding mathematical thinking within the enactivists’ perspective and drawing 

from ecological metaphors of complexity science. Other aspects, such as the mental states 

and maps, cognitive images or information structures that are postulated by information 

processing  psychologists, and other frameworks whose relevance to an ecological- 

complexity inquiry cannot be demonstrated, lie outside the scope of the study.

Furthermore, a small-scale and short-term study elucidates the general nature of 

students’ mathematical thinking only in particular ways. I attempt to briefly address the 

broader issues only when they are evoked by my inteipretations of students’ activities. 

Also, there are specific research design limitations that I introduced right from the start 

for feasibility of the study: to work mainly with junior high school students and to focus 

mainly on students’ engagement in good enough, non-routine, variable entry tasks.

The study will make no claim that what is observed or told by the participants is 

the thinking of the individuals and collectives involved. Observations and interpretations 

made in the study, as second-order observations in Maturana (1988a, 1988b) and von 

Foerster’s (1992, 2003) sense will only reveal aspects of students’ mathematical thinking 

from my understanding.

Furthermore, like any human effort, the view of mathematical thinking as 

effective behavior is likely to leave many aspects of learning mathematics out of the 

study. Nonetheless, it includes much more than the strictly mental and formally defined
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reasoning. Lakoff and Johnson (1999), Lakoff and Nunez (2001), and Ndrrentranders 

(1998) assert that most “mental” processes occur at a non-conscious level. Even through 

trained informant introspection, one does not have direct access to these deepest3 forms 

of understanding. Therefore this study by way of introspection might be limited to that 

which bubbles into the consciousness of a learner and of the researcher. Nevertheless, the 

whole body, the instruments we use, the collectives we form and the works we create are 

cognitive. Much more could be inferred from close observation of the worlds enacted by 

the learners.

Like any other study this study is limited by human perception and 

interpretation. In von Foerster’s (2003) terms, the distinctions made in this study have 

their own blind spots. Wherever possible I will attempt to illuminate these blind spots by 

interrogating the world I enact in this research, by repeatedly returning to earlier 

interpretations, by varying scales of observation, and by reflecting on the choices made 

during the study. Nevertheless, every observation, reflection and scale still operates 

within a domain of coherences.

1.9 Significance of the Study

Researchers in mathematics education seek “better developed ways o f looking 

[or of understanding students’ mathematical behavior], organized into more penetrating 

theories of mathematical thinking” (Sfard, 2001a, p. 18). This study, even though it has 

been done mainly with students in extra-curricular settings, appears to have knowledge 

implications for classroom research and teaching. As with many studies, distinctions

3 1 mean “deepest” in the sense that these forms o f  understanding are not alw ays available to the actor for 
interrogation; they represent different ways o f  know ing that w e are not yet able to tap into; and they happen 
m ostly as not-conscious and not personal activity.
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made, questions reframed or answered and further questions posed will inevitably 

contribute to how the mathematics education community views mathematics learning in 

classrooms. The study will contribute insights to the emerging conversation on embodied, 

embedded and extended learning. Enactivists hope that these conversations will help 

researchers, educators, and eventually teachers, textbook authors and policy-makers to 

think differently about teaching and learning.

The conversations found in my writing may provide a language that will enable 

the community to observe and to comment closely on how students make sense of their 

mathematical worlds in novel ways. A study that closely examines mathematical 

attention as a consequence is bound to elaborate on mathematics subject matter for 

prospective teachers.

Much research has been done in the area of mathematical thinking, mostly from 

a traditional point o f view of teaching students to think about and to practice given 

mathematical content. The next part of this writing is a review of the literature on 

mathematical thinking and students’ mathematical behavior.
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2. PARADIGMS ON MATHEMATICAL THINKING

The question at the heart o f most mathematics education research is how to 

meaningfully engage students in acting and thinking mathematically. M ost researchers 

emphasize that learning to think mathematically is an important goal of mathematics 

education (English & Halford, 1995; Nunez, Edwards & Matos, 1999; Schoenfeld, 1985). 

There are a variety of views on what mathematical thinking is, all depending on theory of 

learning espoused and views about the aims o f school mathematics and nature of 

mathematics.

Each school o f thought focuses on a distinct area of analysis, as evidenced in 

their overriding metaphors, which they use to understand mathematical thinking. 

Although the theories o f learning and schools o f thoughts might appear distinct, B. Davis, 

Sumara and Luce-Kapler (2000) observe that some of them share basic assumptions 

about cognition in general and mathematical thinking in particular. Table 1 offers an 

organizational chart of the schools o f thought that I explore in this chapter and their 

views about mathematical thinking. I have grouped schools of thought that share 

fundamental assumptions into paradigms. In my view educators in North America, and 

English-speaking scholars,4 over the last half century appear to have studied 

mathematical thinking from four different paradigms: the child  and structural (individual 

and content) psychology paradigm, the cognitive paradigm, the co-emergent paradigm, 

the coherent and post-structural paradigm and, recently, the ecological and systems 

paradigm. To situate my study, I examine how mathematical thinking is construed in

4 In review ing the literature I am limited by language to research published in English.
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these paradigms here. In Chapter 3 , 1 explore insights from the existing studies on

mathematical thinking.

D isserta tio n  L a n d s c a p e  F o rm in g
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Table 1. Various Views about Mathematical Thinking

School of Thought Views and Overriding Metaphors

Individual and Content Psychology

Content Structuralism Thinking is mathematically proficient when it has mastered 
content. Structures o f Content, Acquisition

Individual Psychology Thinking is mathematically well developed when a child can 
conceptualize things the way mathematicians do. Stages, 
Growth

The Cognitive Paradigm

Computer Psychology5 Mathematical thinking is mental processing to solve 
problems. Processes

The Co-emergent Paradigm

Radical Constructivism Mathematical thinking involves reflection on one’s actions 
and operations. Revised or New Conceptualizations

Social Constructivism Thinking is internalized social discourse. Communicating 
Mathematical Knowledge.

Socio-Practice Theorists Mathematical thinking is reflected by proper participation in 
socially organized practices. Practice

Situated Cognitionists Thinking the way mathematics practitioners do. Mimic 
Experts, Produce knowledge Work/Inquiry

The Coherence and Post-structuralism Paradigm

Socio-cultural Theorists Cultural and linguistics mathematical activities are the bases 
for mathematical thinking. Enculturation

Critical and Political 
Theory

Students as cultural, gendered and socially situated beings 
should think critically about socio-political settings. 
Emancipation

Symbolic Interactionism 
& Didactic theory

Thinking is a process of meaning making, reflexively revising 
your meaning in relation to what others think. Negotiating 
meaning

Connectionism Thought processes involve re-organizing and networking 
earlier made connections. Connections and Recalibration

Distributed Cognitionists Thinking is extended to how one uses mathematical tools 
and materials. Distributed Intelligence

Ecological and Systems Paradigm

See Chapter 6

5 First schools in cognitivism  were sym bolism  and representationism and later connectionism  and 
dynam icism .
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2.1 Individual and Content Psychology

Brownell (1935/1970) championed a movement toward meaningful arithmetic as 

a backlash to meaningless drill and practice and incidental learning. This movement 

emphasized sense-making in what students learnt. It later consisted of psychological 

studies, most o f which were based on Piagetian theory, though a few arose out of 

structuralists’ studies and gestalts and others remained loyal to Thorndike’s (1970/1924) 

connectionist studies. The structuralists and conceptionalists of the 1960s, mostly 

research mathematicians and school teachers, among them Cuisenaire and Gattegno 

(1957), Dienes and Goldings (1971), Hadamard (1945/1996) and Polya (1945/1973), 

argued that subject matter was the basis for students’ thoughts and emphasized the 

fundamental structures of mathematics (Bruner, 1960). The dominant metaphor of 

mathematical thinking for structuralists was having students attain and be able to 

demonstrate mathematical structures that are assumed to be mind independent (Steffe & 

Kieren, 1994); A metaphor that, while it enabled a rigorous analysis of mathematics, 

limited the consideration of the factors in which learning is embedded.

From a psychological perspective, Dreyfus (1990) critiqued structuralists for 

insufficiently taking into account the details o f children’s thinking. Confrey (1991) 

remarked that teachers found it difficult to understand the structuralists’ analyses of 

learning in terms of logic and/or sets, for example. In contrast to the structuralists, who 

turned to mathematics for founding learning in content, other researchers turned to 

psychology,6 particularly to experimental and behavioral psychology, for a tradition of 

scientific inquiry (Schoenfeld, 1994). Schoenfeld (1994) observes that it was in the late

6 This w as at a tim e when psychology as an objective d iscipline was advancing in m ethodology.
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1960s that structuralism was replaced by studies in behavioral psychology. The 

behaviorists argued that it was impossible to study thought objectively. They considered 

the mind to be, for matters of analysis, a black box. They criticized introspective 

observation. Instead, they focused on the observable behaviors induced by external 

stimulus. In the early 1970s, Piagetian studies, such as Steffe’s (1970), began to draw 

from Piaget’s developmental psychology to demonstrate how Piagetian genetic structures 

could, alongside the basic mathematical structures, explain children’s thinking in terms of 

stages, Steffe and Kieren (1994) observe. Together with Piaget’s and Bruner’s work on 

play, Dienes and Goldings (1971), Cuisenaire and Gattegno (1957) and Gattegno’s 

(1970) modem mathematics work ushered in studies, such as Kieren (1971), that 

explored the role o f children’s hands-on activities, story and play in enhancing concept 

learning (English & Halford, 1995; Steffe & Kieren, 1994).

During the early years in mathematics education, learning pre- and well-defined 

mathematical structures and concepts appears to have been the overriding metaphor for 

understanding mathematical thinking: A child who had mastered a given logical concept 

and carried out mathematical procedures proficiently was said to be thinking 

mathematically. Whereas the unit of analysis for the structuralists was the mathematical 

concepts, for the behavioral psychologist it was the child’s performance. Yet for the 

Piagetian psychologists it was the child’s abilities in relation to stages of conceptual 

growth. In this paradigm, as evidenced in a review of the research published in the early 

years of the Journal fo r  Research in Mathematics Education (see the Journal’s subject 

index for 1970-19817), researchers mainly focused on instruction in an effort to prompt

7 In 1981, JRME stopped classifying its publications in terms o f  Title index and Subject index. They now  
go by Author index under the classifications: Articles, B rief reports and review s
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thinking. The structure of a child did not appear to contribute much beyond their 

functions of acquiring knowledge.

2.2 The Cognitive Paradigm

Later in the 1970s and 1980s, the cognitive revolution renewed interest in 

studying mind, thinking and perception. At this time, research came to be dominated by 

cognitive psychology in which the human mind was construed, among other things, as a 

thinking machine. Distinctions such as spaces, loads or data were evoked to explain 

thinking (see Barnard, 1999). In the information processing view, mathematical thinking 

was and, for many, still is construed as acquiring, processing and mentally representing 

given concepts. W hereas many researchers in the 1980s only drew tools for thinking and 

metaphorical language from information-processing to understand mental states, the 

cognitivists strongly drew from the computer to study mathematical thinking.

o

In strongly viewing the mind as a trivial machine, cognitivists construed 

mathematical thinking, especially conscious thinking as the symbolic processing to 

produce expected output (Bereiter, 1997). Mathematical processing is presumed to 

precede mathematical responses and behavior. Thus cognitivists considered what was 

presumed to happen in the child’s mind during learning as the unit of analysis for 

studying mathematical thought. The cognitivists held a functionalist view o f the brain, 

mind and body, in which their physical nature and experiences were not considered to be 

as crucial as the mental processes— the processing unit or software of the mind (Dehaene, 

1997). Cognition was understood to be far from a biological and an experiential 

phenomenon.

8 1 am using the distinction trivial/non-trivial in von Foerster’s sense. Non-Trivial in this sense refers to 
machines w hose output might w idely vary even when the input remains the same.
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Cognitive and structural psychology paradigms maintained a division among 

mathematics, the environmental and the internal dynamics o f the learner. Nevertheless, 

they raised educators’ awareness of the significance of the environment and of the 

thinker’s structure— particularly the age and instruction. More importantly, Kieren and 

Steffe (1994) maintain that constructivism was implicit in the critiques to some of the 

perspectives in the structuralists and cognitive paradigm. To most contemporary 

researchers, these early paradigms were limited in their ability to explain the richness and 

messiness o f mathematical behavior as it occurs in the mathematics classrooms (Cobb & 

Bauersfeld, 1995). Also, the assumption of the pre-existing fixed mathematical structures 

that exist independently of the individual learner’s activity is considered to be flawed, by 

the radical constructivists (Nunez et al., 1999). Researchers that pay attention to the 

social and cultural factors find the consideration o f mathematical thinking as solely an 

aspect of an individual’s psychological processes to be too narrow.

2.3 The Co-emergent Paradigm

Social theorists contended that mathematical thinking is an aspect of social 

practices and social discourses (Balacheff, 1990b; Boaler, 2000a; Lerman, 2001). To 

these didactic theorists, the classroom situation determines what is accepted as thinking 

mathematically (Balacheff, 1990c). Research work of social theorists such as Balacheff 

(1986), Bauersfeld (1995), Lave and Wenger (1991), and W alkerdine (1988) have 

pioneered a movement away from individual psychology and mathematics to other 

disciplines such as sociology, activity theory, anthropology, cultural studies, linguistic 

studies, and critical and political discourses.

I refer to those schools o f thought that seek explanations from either the
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material, social, cultural or political contexts or those that look for explanations from 

connectionism and distributed learning as the co-emergent schools of thought. I also 

include in this paradigm attempts to juxtapose9 the various co-emergent perspectives (e.g. 

Cobb, 1989,2000). I use the term co-emergence for three reasons. Firstly, most 

researchers in this paradigm view cognition as a property that occurs within and 

through— co-emerges with— individual or social activity, community or expert practices, 

and socio-cultural or political contexts. Secondly, from an ecological point o f view, 

although these perspectives may seem disparate, each of them seems to be focusing on 

cognition at a different scale. As I will demonstrate in Chapter 6, different theories in this 

paradigm focus on a different emergent level. Thirdly, from a complexity sensibility, 

when insights from these varied schools of thought are made to interact in significant 

ways, novel metaphors for understanding mathematical thinking are bom. Historically 

speaking, research in the co-emergent paradigm was necessary for further paradigm shifts 

toward the post-structural, ecological and systems theories.

2.3.1 Constructivism

First among the researchers who turned to other disciplines to frame 

investigations on mathematics learning are the constructivists, including radical 

constructivists (e.g. Confrey, 1987; Steffe & Kieren, 1994; Steffe & Wiegel, 1992; von 

Glasersfeld, 1995; von Glasersfeld & Steffe, 1991). Radical constructivists focus on the 

individual child actively constructing his/her own knowledge. For these theorists, thought 

develops when an individual reflects on their practical-object and material oriented 

activity. In explicating a theory o f learning as active engagement, radical constructivists

9 Or even to dissociate the perspectives— See Lerman (2000)
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draw heavily on Piaget’s genetic epistemology and von Glasersfeld’s conceptual structure 

development (Confrey, 1994a; Steffe & Thompson, 2000). They mainly focus on aspects 

such as mental operations and conceptual structures, and knowledge schemas. However, 

the social constructivists have critiqued the radical constructivists for not paying attention 

to the influence o f social participation. They are also criticized for completely eliminating 

the structuralist’ emphasis from their analyses (Ginsburg & Seo, 1999).

2.3.2 Social Constructivism

Second, the social constructivists (Balacheff, 1986, 1990a; Bauersfeld, 1992; 

Cobb, Yackel & Wood, 1991, 1992; Driver et al. 1994; Ernest, 1991, 1994) focus on the 

individual in social interaction. Social activity is more than a background to thinking, 

they contend (Cobb & Bauersfeld, 1998; Cobb, Yackel &  Wood, 1992). Participation in 

social interaction is crucial in enhancing a child’s mathematical thinking. Social 

constructivists focus on the child’s interactions, such as communication, arguments and 

explanations (Cobb & Bauersfeld, 1995). Some researchers specifically draw analogies 

from social activities, such as speech, conflict, negotiation and dialogue, to understand 

thinking. For instance, after Vygotsky (1978), mathematical thinking is considered by 

some to be synonymous with mathematical communication, except that thinking is an 

internal dialogue with oneself whereas communication is an external dialogue with 

others. However, most social constructivists, like their radical counterparts, also delimit 

their focus by ignoring linkages with broader socio-cultural-political settings. They too 

focus on the individual learner as the only cognizing system in the classroom (Burton, 

1999c; Cobb, Yackel & Wood, 1992; Kieren & Simmt, 2002; Sfard, 2001a).
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2.3.3 Social Practice Theorists

Third, social practice theorists, particularly the situated cognition scientists 

such as Greeno (1991), and Lave and W enger (1991) draw from the apprenticeship model 

of learning to consider mathematical thinking as an aspect of participation in specialized 

community practices and work settings. They assert that mathematical thinking is situated 

within the context and community in which it is invented as a tool to be used (Griffin & 

Griffin, 1996). When students engage in or even mimic mathematical practices they are 

thinking mathematically. Cobb et al. (1993) contend that since research mathematics (the 

practice o f experts) is different from school mathematics (the practice of novices) then 

situated cognitive studies have little to offer to school mathematics. To Bereiter (1997), 

from a cognitivist framework situated thinking is a small portion of human thinking.

Researchers who searched outside cognitive science study the influence of 

individual and social activity or the influence o f socio-cultural and political contexts on 

learning. It seems researchers in this paradigm construe mathematical thinking as the 

sense that emerges through individual activity, inter-individual interactions or community 

and cultural practices. This is the discursive view of thinking as inner or internalized 

action and interaction— whether speaking or writing (Lerman, 2001; Sfard, 2000a, 2001; 

Vygotsky, 1978).

2.4 The Coherent and Post-structuralist Paradigm

Recently the mathematics education community draws from coherence and post- 

structural human science theories to understanding mathematical thinking and learning. 

Drawing from post-structural theories, they seek to explore how the varied views about 

learning cohere.
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2.4.1 Socio-Cultural Theorists

The socio-cultural theorists draw from Bakhtin and other social theorists to 

examine the dialectic between thinking and culture and language (e.g. Boaler, 2000a; 

Lerman, 2001; van Oers, 2001). Another group o f researchers that is closely related to 

socio-cultural theorists are the interaction theorists (such as Bauersfeld, 1995; Voigt, 

1994, 1995), who draw from Blum er’s symbolic interaction theory to highlight the social 

negotiation o f mathematical meaning. Voigt (1994) in a manner similar to social-practice 

theorists, asserts that mathematical knowing happens between, not inside or outside, 

individuals. Students’ mathematical thinking develops reflexively as students socialize 

their own behavior in relation to other participants’ understanding. Mathematical thinking 

is synonymous with adjusting one’s interpretations to converge with mathematical 

conventions (Voigt, 1994).

French scholars such as Balacheff (1990c) and Chevallard integrate Piaget’s 

work with Vergnaud’s situational analysis and Brousseau’s didactical theory. They 

consider the socio-cultural in broader terms to include situational and institutional factors 

that give status to some thoughts as mathematical and others as non-mathematical 

(Balacheff, 1990c).

To some social-cultural theorists, mathematical m eaning-m aking and shared 

understanding are better theoretical constructs than mathematical thinking. Social 

practice theorists and socio-cultural theorists believe that mathematical thinking develops 

with interactions within socially organized practices and cultural activities (Cobb & 

Bauersfeld, 1995). (Mental activity involves refining and revising what first appears on 

the individual plane in response to what appears on the social plane rather than
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appropriating what appears first on the social plane, Wenger (1998) asserts.) These 

schools o f thought delimit their analysis to how the micro-politics o f a classroom, school 

and community institutionalize students’ mathematical thinking. W hereas for 

constructivists mathematical thinking is re-organizing one’s conceptions to fit either 

empirical facts, for socio-culturalists and the interactionists it is to fit with social 

conventions. To both constructivists and social theorists thinking is considered to be 

about avoiding social or cognitive conflicts or as solving problems.

2.4.2 Politico-Critical Theorists

The social critical theorists (e.g. Apple, 1992; Lerman, 2000; W alkerdine, 1990) 

focus on macro aspects o f mathematics education that economically, anthropologically 

and politically subjugate and those that emancipate learners. Critical theorists critique 

traditional as well as reform-learning theories such as constructivism for further 

perpetuating undemocratic societies. Mathematical thinking is mainly construed in terms 

of critical thinking and political awareness about the form atting  power o f mathematics 

(Skovsmose, 1990, 1992, 2001). Politico-critical theorists attempt to contest thinking that 

is governed by institutional expectations, and therefore produce uncritical citizens. Some 

scholars, being pragmatic, argue that critical mathematical thinking is synonymous with 

an equity-seeking stance that examines relationships between mathematics and the larger 

societal setting. Thinking mathematically should not only be about correctness but also 

about consistency and appropriateness, Apple (2000) and Skovsmose (1992) contend.

The overriding metaphor of thinking is reasoning and seeing through political injustices 

and inequalities of organized society.

W alkerdine (1990) further questions the whole discourse around what
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mathematical thinking is. To her it was unsoundly constructed around the fear of the 

marginalized other— be it the girl, the poor or the colonized other— whom this discourse 

so to speak baptizes as a non-mathematical thinker.

Efforts at inclusive mathematics circular, however, in some places such as 

South Africa, are seen by the marginalized people themselves as efforts by White male 

researchers to perpetuate social economic differences (Vithal & Skovsmose, 1997). Also 

in advancing the notion o f social determinism, critical theorists brushed aside the 

influence of biological and environmental constraints, just as many social and cultural 

theorists did.

2.4.3 Connectionism  

The search outside cognitive science was paralleled by a shift in perspective 

within cognitive science itself. In the 1990s there was a movement from cognitivism to 

connectionism. Recently there is a shift from connectionism to dynamicism. 

Connectionism arose as an alternative to the cognitivists’ view o f learning as a 

phenomenon based on rules and symbols. Designs of intelligent systems and neural 

networks led to stressing that understanding involves recognizing similarities and making 

connections. It involves network dynamics rather than mastering rules (Bereiter, 1991; 

English & Halford, 1995). The overriding metaphor of mathematical thinking for the 

connectionists appears to be recalibrating in response to recurrent interaction to 

strengthen the connections. Connectionists nonetheless retain the basic cognitivists’ 

assumption of a mind with architecture that is capable of knowing an independent world.

2.4.4 Distributed Learning Theorists 

Another recent perspective on learning that is yet to influence views about
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mathematics thinking is that of distributed learning systems (Wertsch, Tulviste & 

Hangstrom, 1993). Distributed learning theorists contend that not only is intelligence 

distributed within in an individual’s body, it is also distributed among environmental 

dimensions. This being a recent school of thought, as is the case with connectionism and 

dynamicism, not much work in mathematics education draws directly from it.

2.5 State of the Research: Contributions and Deficiencies

Research in the co-emergent, coherent and post-structural paradigm has 

contributed to the recognition that most learning processes are not as linear and easily 

defined as was described by earlier psychology-based research such as bond, incidental 

learning or meaning theories. It specifically challenges the passive and computational 

mode o f thinking. Socio-cultural and critical-political theories have gradually expanded 

the perceived limits of cognitive activities away from strictly head-based structures 

(Confrey, 1994b; Nunez et al., 1999). Practically speaking, they have offered better10 

metaphors o f thinking. Today, mathematical thinking is construed in broader terms than 

simply the mastery of arithmetic facts.

In addition to offering a wider conceptual focus, co-emergent, coherent and 

post-structural theorists have led to the widening o f foci in investigative analyses away 

from solely measuring the effectiveness of instruction. Instead, they analyze a range o f 

aspects: individual children’s actions, student interactions and micro classroom cultures; 

and social practices, cultures of groups and political structures of organized society. More 

importantly, from an ecological and systems perspective, when the varied perspectives of

10 T hey are better in that they enable us to see through the myths o f  the old (H oy, 1991; Rorty, 1982), also  
to the extent that they allow  us to see, to do and to say a lot o f  things not possible before.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the co-emergent paradigm are considered in light of each other, they generate theoretical 

expansions that are not only reconciliations11 between perspectives or departures from 

them. Rather, they produce dramatic iterations to bring forth hybrid perspectives (B. 

Davis & Sumara, 2000; Kieren, 2000). B. Davis & Sumara (2000) assert that these 

schools share a metaphoric commitment to a single body— biological, social, cultural, 

epistemological or political. As I will explain each of these bodies could be construed as 

emerging from the other body at yet another body o f cognition. M ore ecological, 

distributed and situated theories of learning have arisen from the incompatibility of 

theories in these paradigms. This is another connotation o f the term co-emergent theories, 

one related to the complexity research notion of emergence (see Chapter 6). Broader and 

deeper understandings of mathematical thinking are springing forth from discussions of 

the limitations of earlier paradigms. As such, researchers such as Confrey (1995a,

1995b), Kieren (2000) and Sfard (2000b) have desired to understand these often- 

contradictory perspectives. A view o f each of these theories as intertwined bodies o f 

mathematical thinking is evolving. M any theorists now believe each of these schools of 

thought shows a small part o f the big picture (Cobb, 1994; Kieren, 2000). Many 

researchers are exploring what the whole picture could be. They are looking at the 

oversights o f earlier theories.

11 At tim es these juxtapositions have been sim plistic. For pragmatic reasons, som e researchers haven’t been 
bothered by the inconsistencies (Kieren, 2000).
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In summary, the aspects o f mathematical thinking that needed a recursive 

elaboration by the late 1990s include:

• an understanding o f the centrality o f the physical nature o f the brain and 

body in cognition;

• a recognition of other cognizing systems in the classroom;

• a positive construal o f thinking as more than problem solving, overcoming 

obstacles or negotiating conflicts;

• a revision of the linear view that thinking is separate from and always 

precedes action;

• an inclusion of biological, contextual and historical influences of thinking;

• a closer examination o f the dialectic between individual actions, social 

activity, organized practice, physical environments, broader political and 

cultural milieu and mathematical thinking;

• an exploration of how the physical environments and tools determine what 

it means to think mathematically;

• an admission of novelty and divergence in students’ mathematical thought.

Most co-emergent, coherent and post-structural perspectives, apart from radical

constructivism, have neglected the behaviorists’ focus on the biological contexts that 

shape knowing (Nunez et al., 1999). To all theorists, including those who focus on social 

practice, cultural and political aspects thought activities are still limited to the inner and 

conscious activities of the individual student (Burton, 1999c ; Kieren & Simmt, 2002; 

Namukasa & Simmt, 2003). Some studies are tacitly underlain by M odern assumptions of 

the mind as machine creating internal representations through symbolic manipulation.
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Also these paradigms do not explicitly challenge the Cartesian “either-or” approach or 

the “reduction add-on” model. Lerman (1999,2001) insists on the impossibility of 

theoretical conflation of the individualistic psychological views with the discursive 

views. Rightly so, the overemphasis on the individual person as the only cognizing 

system is a problematic view that will not go away by conflating radical constructivism 

with social constructivism. As well, although researchers in the co-emergent paradigm 

construe mathematical thinking as the sense that arises, say through individual activity, 

they have not yet elaborated on how students’ thinking turns back to influence the 

individual activity, inter-individual interactions or community practices within which it 

happens. Students’ mathematical thinking, as I will elaborate in this writing, is far from 

being an epiphenomenon; it is in reciprocal influence with actions, interactions and 

practices.

Furthermore, a person reviewing the studies on mathematical thinking is left to 

wonder how the categorized aspects and influences of mathematical thinking cohere. 

M any aspects appear to compete with one another. Also problematic is the empiricist 

unattainable desire to study students’ mathematical thinking as a fixed form, “a fixed 

object that needs nothing except itself in order to exist” (Jardine, 1998, p. 43), and that 

should therefore be prescribed explicitly. Kieren (2000), in his paper entitled “Binoculars 

or Dichotomies” , calls on researchers to view their theories as partial truths in order to 

“occasion for new and perhaps different ways of thinking/acting” (p. 231). It is not the 

1990s question about which one is the most crucial influence on mathematical thinking. 

Beyond this debate, researchers have begun to draw from juxtapositions of disciplines 

such as ecology and feminism, post-structuralism and complexity research theories,
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neuroscience and discursive psychology to inform the complex discussions on cognition.

2.6 Ecological and Systems Paradigm

Certain researchers have attempted to address the deficiencies by studying 

cognitions in its complexity without proclaiming that it is primarily psychological, social 

or cultural. To do this, they have drawn from the work of: (a) social biologists such as 

Bateson (1979), M aturana (1987) and Varela (1992, 1987), (b) adherents to complexity 

theoiy  such as Capra (1996), Johnson (2001) and W aldrop (1992), (c) post-structural 

theorists such as Bahktin, Bourdieu, Brousseau, Foucault, and (d) ecological 

mathematicians and mathematics educators such as Dehaene (1997), Jardine (1998), and 

Lakoff and Nunez (2001). By questioning the assumptions that underlie the desire to 

reduce complex phenomena to sums of their components, researchers in the ecological 

and systems paradigm are recursively elaborating o f the preceding paradigms. Enactivists 

and com plexivists,12 as I shall elucidate in Chapter 6, maintain that not everything in the 

preceding perspectives, such as the radical behaviorist and radical constructivists 

schools, need be thrown out.

Some of the perspectives that have been taken on by mathematics educators in 

this paradigm are eco-feminism (Confrey, 1995b), enactivism (B. Davis et ah, 2000; B. 

Davis et. ah, 1996; Gordon, 2002; Kieren, 2000; Simmt, 2000, 1998; Towers 1998), and 

neuro-biology (Butterworth, 1999).

In particular, Confrey (1995b) draws from eco-fem inism to propose an 

evolutionary biology metaphor of intellectual development that iterates on both Piaget’s

12 D avis, Sumara and Sim m t (2003) adopt the term com plexivist to refer to researchers in human sciences 
who draw from com plexity science theories.
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and Vygotsky’s theories. Boaler (2000a), drawing from situated cognition and narrative 

inquiry, explores how human agency is closely intertwined with mathematical cognition. 

Furthermore, other researchers like Confrey (1999) and Sfard (1995) extend the 

constructivist belief o f individual construction of knowledge to trace the history of 

mathematics in an evolutionary manner and on a grander scale. Sfard’s and Confrey’s 

developmental and historical analyses, Nunez’ (2000) mathematical idea analysis and 

Freudenthal’s (1991) mathematical studies anticipate that the phylogeny (evolutionary 

development over generations) and the ontogeny (development in an individual) of 

mathematics will reveal more than marginal similarities. They expect that the 

mathematical thinking o f an individual learner re-constructing knowledge may be quite 

close to that of generations and eras o f mathematicians as they constructed new 

knowledge.

Lakoff and Johnson (1980, 1999) and Lakoff and Nunez (2001) study how the 

peculiarities o f our bodies and brains, and our environments have evolved to create 

mathematical thought. By inferring that the mind is embodied in the “deep sense that our 

conceptual system and our capacity for thought are shaped by the nature o f our brains, 

our bodies and our bodily interactions” (Lakoff & Johnson, 1999, p. 265), Lakoff and his 

colleagues seek to study how mathematical thinking is grounded in everyday experiences. 

Nunez (2000) analyzes mathematical intuitions by developing ways o f studying largely 

unconscious ordinary everyday mathematical conceptual structures. Sfard (1994; 2000b) 

draws on Lakoff and Johnson’s explorations of the embodiment of conceptual metaphors 

to elucidate her earlier work on reification of mathematical objects. Radford (2003) also 

juxtaposes his critique to Lakoff and Nunez’ (2001) work with Peirce’s semiotics to
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explicate a theory o f social-cultural semiotics. Due to the limitations of space I have only 

mentioned a few of such studies.

Also included in this paradigm are researchers dubbed complexivists who draw 

metaphors from the complexity science theories to investigate mathematical cognition as 

a complex, dynamic and adaptive phenomenon (see Davis & Simmt, 2002; Kieren & 

Simmt, 2002; Towers & Davis, 2002). It is from the enactivist and complexivist 

perspectives that I would like to explore the nature of students’ mathematical thinking. 

Chapter 6 explores these perspectives. One wonders, however, whether coherent and 

post-structural schools of thought such as social-cultural semiotics and enactivism do 

address the deficiencies o f prior theories I identified earlier. If the mathematics education 

community is to broaden its views on mathematical thinking there is need for 

perspectives that pose novel questions about mathematical thinking in addition to 

addressing these deficiencies.

2.7 Historic Moments in Mathematical Thinking Research

I have briefly situated my interests on students’ mathematics thinking in the 

mathematics education community. The exploration is a historical sketch. Different 

paradigms appear to have marked different moments in mathematics education. At a 

macro level different questions dominated different decades or continents. Yet at a micro 

level, researchers such as Kieren and Schoenfeld, akin to Bruner, have asked different 

questions and worked with different epistemological presuppositions at different times. 

For example, it appears that in 1960 Bruner worked with a structuralist epistemology. In 

1986, he shifted to a more constructivist-linguistic approach that by 1990 had evolved 

into a socio-cultural epistemology. Yet in 1996 Bruner exhibits a more ecological
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perspective. For another detailed example of a mathematics education researcher who has 

subscribed to different epistemological presuppositions at different times see Schoenfeld 

(1986). Also for an analysis of a theoretical model that has evolved from the radical 

constructivist perspective through a discursive psychology to an ecological complexity 

perspective see Kieren and Simmt (2002), Kieren, Pirie and Gordon-Calvert (1999), and 

Pirie & Kieren (1989).

These examples have occasioned me to view each of the five paradigms—  

psychological, cognitivist, co-emergent, coherent and post-structural, and ecological and 

systems paradigms— in an ecological complexity manner as a recursive elaboration o f  

preceding paradigms, at least in the Western context.13 For instance, although researchers 

in the co-emergence paradigm may not agree on presuppositions made by researchers in 

the cognitive paradigm, studies in cognitivism were necessary for the co-emergence 

paradigm to evolve. More accurately, perspectives such as social constructivism to a 

large extent were embedded in the critique of earlier perspectives such as radical 

constructivism. Hence, even though this work is guided by an ecological-complexity 

orientation, I acknowledge that my research questions unfolded from questions that were 

investigated in the co-emergence and post-structural paradigms. Indeed later questions in 

this research, as we shall see in Chapter 8, evolved as my individualist and cognitivistic 

assumptions were progressively challenged. It is an ongoing process. Our participation 

expands the theories of learning.

I have reviewed varied perspectives that continue to inform research on 

mathematical thinking, but my exploration is bound by space and time. For instance, my

13 There are many exam ples on non-W estem  contexts in which eco log ica l-com p lexity  sensibilities arose 
not as recursive elaborations o f  Cartesian and positivistic sensibilities.
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review might be considered largely blind to theories that were central to developments in 

mathematics education on other continents and in other centuries, especially those 

theories that have not largely been taken on in North American research. Examples of 

such theories include experiential mathematics by Freudenthal in the Netherlands, the 

theory o f  didactical situations in mathematics (see Herbst & Kilpatrick, 1999 for a 

preliminary exploration o f the theory) and Mary Boole’s work in the later 1800s. For 

purposes o f delimiting the review to theories that have implication to mathematical 

thinking I have selectively left out theories such as social constructionism  and historical 

analyses (see for instance Gray, 1999) whose influence on studies on secondary school 

students’ mathematical thinking is still minimal. I have nonetheless attempted, as much 

as the locale o f this writing at a Canadian university in the early 21st century allows, an 

elaborate situating of my research interests. Because the purpose of this review was to 

situate my research, I have not concerned myself with more specific variations in what 

researchers consider central to mathematical thinking. In the next chapter, I look at 

insights from more specific studies on mathematical thinking.
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3. INSIGHTS FROM THE REVIEW ED STUDIES

Studies on mathematical thinking concern themselves with aspects that enhance 

mathematics learning. A large group of researchers has for a significant time concerned 

itself with studying representation and visualization as an aspect of mathematical 

thinking and interpretation. Recently, some researchers drawing from semiotics concern 

themselves with symbolization and signs. A few have studied the nature o f students’ 

errors and difficulties in learning mathematics. Researchers have studied the role o f these 

aspects in learning mathematics with the aim to help students to experience mathematics 

in a more meaningful and accessible way (Presmeg, 1986).

The nature o f mathematical representation, symbolization, visualization and 

difficulties and their relation to the nature of mathematical thinking have been 

approached from varied perspectives: psychological, mathematical, philosophical, 

anthropological and, recently, neurobiological and ecological. All of these approaches 

provide important insights in understanding the nature of students’ mathematical 

thinking. In Chapter 2 , 1 delimited the exploration to broader underlying assumptions and 

questions investigated about mathematical thinking by the schools of thought. In this 

chapter I examine more specifically the theoretical, methodological and practical insights 

gained from the varied studies. Most of the insights are theoretical insights; I categorize 

them around four questions about mathematical thinking in particular and thinking and 

perception in general.
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3 .1  Theoretical and Methodological Insights

In attempts to investigate the nature o f students’ mathematical thinking the 

following questions have been central:

1. W hat does it look like to think mathematically? Is thinking taken to include 

only the rational process o f reasoning or does it include the non-conscious, 

emotive and affective domains?

2. Is mathematical thinking confined to mathematics or is it applicable to 

learning in general? Further, is it considered domain or level-specific with in 

mathematics?

3. W hat is the role of body, brain and mind— its structure and functions in 

mathematical thinking? What, for the thinker, does it mean to think?

4. W hat is the role of perception in mathematical thinking? How about the role 

o f the environment?

3.1.1 Mathematical Thinking: What Does it Look Like 

A researcher’s view of the nature o f mathematics appears to influence how they 

define and study mathematical thinking. Researchers who take mathematics to be 

algorithmic and mainly to encompass abstract structures will tend to emphasize formal 

mathematical thinking. On the other hand, researchers who take mathematics to be 

intuitive and experiential will emphasize intuitive and affective aspects like conjecturing, 

expressing and the role of emotions (Burton, 1999a, 1999b; Drodge & Reid, 2000; 

Lampert, 1990). There are variations along this spectrum from formal to intuitive aspects. 

For example, the National Research Council (1989), emphasizing that mathematics is a
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science o f patterns but at the same time foregrounding formal processes, refers to 

mathematical modes o f thought like “modeling, abstraction, optimization, logical 

analysis, inference from data and use of symbols” to describe mathematical thinking (p. 

31). Burton (1984), focusing on mathematics as a problem-solving activity, describes 

mathematical thinking to consist of operations like iterating, enumerating and ordering; 

processes like specializing, conjecturing and generalizing; dynamics like manipulating 

and making sense; and the affective phase o f articulating (entry, attack and review).

There are recent shifts away from focusing on mathematics, hence mathematical 

thinking, as a solitary attribute that is entirely rational and highly structured, toward a 

more communal and situated approach in which emotions and social interactions also 

have a role to play. These shifts have resulted in the expansion of mathematical processes 

to include social processes such as adjusting to socio-mathematical norms, and being 

able to engage in mathematical conversations (e.g. Cobb et al., 1993; Mason et al., 1985; 

Schoenfeld, 1992; Gordon Calvert, 2001). W hat mathematical thinking might look like is 

changing. My view o f mathematics as a human activity inevitably influences what I study 

as mathematical thinking.

As well researchers’ perceived aims of school mathematics tacitly affect how 

they define mathematical thinking. When researchers view mathematics as a school 

discipline mainly geared toward preparing future mathematicians, they construe 

mathematical thinking in relation to presumed experiences o f mathematicians. 

Researchers such as Putman, Lampert and Peterson (1989) assert that the discourse of 

school mathematics should imitate the discourse of mathematicians, so that by engaging 

in inquiry mathematics (a parallel of research mathematics) students might think like
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mathematicians. In this case, researchers would study mathematicians’ practices to define 

mathematical thinking. Although an understanding o f adequate mathematical behavior 

among mathematicians might lead to a better understanding o f the nature of students’ 

mathematical thinking, this view is increasingly contested. To some researchers it is 

faulty to assume that the goal of school mathematics is solely in service of research 

mathematics (D’Ambrosio, 2001; B. Davis, 1995; P. Davis & Hersh, 1981). Do not 

school mathematics students, just like mathematicians, bring forth their own worlds of 

mathematical significance, worlds that might be somewhat different from 

mathematicians’ worlds but nonetheless mathematically legitimate? Should students’ 

mathematical thinking solely be defined in terms of research mathematicians’ ways of 

being? D ’Ambrosio (2001), and P. Davis and Hersh (1981) assert that the tacit view that 

school mathematics (or schooling in general) is preparation for work does not fit in times 

of rapid technological change. Researchers are considering learning mathematics in more 

than utilitarian and futurist ways. For instance, B. Davis (1995, 2001) asserts that school 

mathematics expands the domain of the possible for humans. In the mathematics 

education community school mathematics is increasingly seen to serve other aims 

including professional, cultural, social, civic and aesthetic. This broadened view of the 

aim of mathematics is redefining what students’ mathematical thinking might look like.

The belief that school mathematics should be in the service of research 

mathematics, when coupled with the belief that mathematical ability is a talent, casts 

mathematical thinking as a propensity of the few students who demonstrate higher 

mathematical ability. Social, historical and cultural investigations in mathematics 

education seem to be settling some of the motivations behind the question of whether
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mathematical ability is innate or learned. Many researchers do value both the influence of 

biological and environmental factors. In embodied mathematics, Lakoff and Nunez 

(2001) argue that the “basic cognitive mechanisms used by mathematical inferences are 

innate, others develop through childhood, and some develop only with special training” 

(p. 353). Dehaene (1997) studied behavior of both professional mathematicians and 

mentally deficient prodigies. He concludes, “Genes and other biological factors do not 

weigh much when compared to the power of learning, fueled by the passion o f numbers” 

(p. 170) and perhaps the passion o f other mathematical attributes such as change and 

patterns. It appears the environment, including educational experience, family, and social 

and economic factors, intertwines with biological factors such as hormones and genes in 

the emergence o f what is commonly defined as adequate mathematical thinking 

(Dehaene, 1997; Walkerdine, 1990).

W hen researchers view mathematics as geared toward offering learners skills, 

attitudes and knowledge that they need in life, then mathematical thinking is defined in 

the contexts of the students’ experiences, needs and abilities.

O ther researchers, such as Lutfiyya (1998), have rephrased the question o f the 

nature o f mathematical thinking to “what characterizes the thinking o f individuals who 

demonstrate a high ability in mathematics” (p. 56). Such studies distinguish behaviors of 

strong mathematics students from behavior of weak students. For instance, Presmeg

(1997) and Tall (1999) assert that low-achieving students focus on details whereas high- 

achieving students focus on abstractions. Comparing what characterizes students’ 

mathematical thinking with what strong mathematics students do is only part of what is 

needed. Researchers also need to investigate adequate mathematical behavior as it co-
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emerges when as students (whether fast, average or slow learners) work on mathematical 

tasks.

In studying mathematical thinkers, methods of observation such as introspection 

and speak-aloud protocols have been limited to conscious and explicit mathematical 

thinking. Yet recent advancements in neurological studies have resulted in what 

Nprrentranders (1998) has dubbed the composure of conscious activity. Conscious and 

formulated activity is a limited portion of human knowing (Nunez, 2000). As well, it 

might be the case that not questioning objective (observer-free) observations limits what 

some studies have defined as mathematical thinking. Is whatever is defined as 

mathematical thinking confined to mathematics? This is another question whose answer 

tacitly influences how one investigates mathematical thinking.

3.1.2 Mathematical Thinking: Is it Confined to Mathematics

Variations in the description of mathematical thinking at times point to whether 

or not a researcher considers mathematical thinking to be confined to mathematics, and 

whether or not within mathematics it is domain and level-specific. For some researchers 

mathematical thinking is viewed to be inclusive of other learning. Mason et al. (1985) 

describe mathematical thinking as a “dynamic process which, by enabling us to increase 

the complexity of ideas we can handle, expands our understanding” (p. 158). Burton 

(1992, quoted in English & Halford, 1995) preferring the term thinking mathematically to 

mathematical thinking, describes mathematical thinking as “the style o f processing which 

supports an enquiry which might ultimately lead to the learning o f some mathematics but 

equally might lead to the learning in other subject areas” (p. 259).

To other researchers, mathematical thinking is specific to mathematics. Love
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(1988) identifies the need to distinguish between mathematical and non-mathematical 

thinking. For instance, Schoenfeld (1992) describes it as having a mathematical point of 

view— a way o f seeing, and of being able to develop competence in mathematical sense- 

making and to use mathematical tools meaningfully. E. P. Goldenberg (1996) describes 

mathematical thinking as part of a set of mathematical “habits of mind,” and for Lutfiyya

(1998) “mathematical thinking involves using mathematically rich thinking skills to 

understand ideas” (pp. 55-56). Bauersfeld (1995) describes mathematical thinking as a 

way of seeing the world, of approaching the world in the ways mathematicians do. To 

Mason (1989), Radford (2003), Sfard (1991b) and others mathematical thinking involves 

abstracting as well as objectifying imagined, esoteric mathematical objects so as to act on 

them. It appears these researchers view mathematical thinking in terms of habits, tool use, 

language, attitude, skills or point of views that may not be applicable to learning in 

general but nonetheless central to learning mathematics.

In addition to describing mathematical thinking as specific to mathematics 

learning, certain researchers stress that mathematical thinking is also level- and content- 

specific. For example, Peterson (1988) contrasts low-level and high-level thinking skills 

and, like other researchers, likens high-level thinking skills to adequate mathematical 

thinking. Gray, Pinto, Pitta-Pantazi and Tall (1999) embrace a developmental view of 

mathematical thinking. They illustrate advanced mathematical thinking as a progression 

from the level o f procedure— doing routine mathematics accurately— through the 

procedure and process level o f performing mathematics flexibly and efficiently, to the
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procedure, processes and procept14 level o f thinking about mathematics symbolically. 

Dreyfus (1990), Gray et al. (1999) and Tall (1991), however, observe that although 

advanced mathematical thinking tends to involve more abstract actions, such as formal 

proofs, it is not considerably different from elementary mathematical thinking. There is 

mounting research evidence that elementary and junior high students do act and think in 

complex ways, though they might lack the formal linguistic tools to represent their 

actions in symbolic terms (Kieren, M ason & Davis, 1996). Kieren et al. (1999) 

demonstrate that learning is not linear and developmental from the concrete to the 

abstract, from procedural and routine to conceptual understanding, from the elementary 

to the advanced ways o f thinking. Rather, many times it involves moving back and forth, 

folding back to inner levels and to the primitive forms of knowing. Also from the 

Brousseau’s situational analysis, elementary mathematics might not be a mere 

“elementarization” of advanced or research mathematics (Balacheff, 1990c). One might 

conceptualize it as a distinct domain altogether.

Also, in addition to studying mathematical thinking at different levels and 

stages, some researchers have explored its content specificity in such areas as algebraic 

thinking, statistical thinking and geometrical thinking. A few researchers even consider 

content specific thinking such as algebraic thinking to be a counterpart o f mathematical 

thinking (Lee, 1997). If one believes mathematical thinking to be specific to mathematics 

and within mathematics to be specific to particular areas, then one might get caught up by 

the cognitivist assumption that the brain is compartmentalized by function, with specific 

regions o f the brain dedicated to particular domains of learning. The question o f whether

14 P ro cep t is a term coined by Gray and T all (1994) to refer to the amalgam o f a process and a concept 
produced by that process (quoted in Gray et al. 1999).
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mathematical thinking is exclusively specific to particular domains and age groups might 

need to be revisited in light of recent developments in neurological research. Are there 

such pre-demarcated and specialized compartments or selves as a mathematics module or 

even more specific modules for statistics or algebra in human bodies and worlds?

The argument that mathematical thinking is specific to mathematics and that 

distinct concepts utilize specific thinking might be an oversimplification (Butterworth,

1999; Dehaene, 1997). In neuro-physiological studies, scans of brain activity show that 

whereas distinct regions of the brain seem to be active, say when one is doing arithmetic, 

also distinct brain regions are active for subtly different mathematical activities, such as 

when remembering basic facts and performing a multiplication procedure. As well, 

neuropsychological studies of patients with dam age to particular brain regions illustrate 

that damage usually affects mathematical performance only in particular ways that might 

not be limited to domains of mathematics but to miniature skills. For example a patient 

might have lost their number facts yet can perform other mathematical procedures, all 

within the same domain of arithmetic thinking (Butterworth, 1999). On the other hand, in 

many cases, the same regions activated during specific mathematical tasks are also 

activated during non-mathematical tasks such as verbal and motor tasks. These 

hypotheses from brain studies challenge views about content specific mathematics and 

what cognitive researchers call mathematical processing. In the next section, I continue to 

review how conceptions about the mind tacitly influence theoretical insights gained from 

research on mathematical thinking.

3.1.3 Conceptions about the Mind, its Structure and its Functions 

Researchers’ conceptions of the mind greatly influence what they consider the
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role o f mind and brain in mathematical thinking to be. Does mind operate like a machine? 

Do not some systems without complex brains demonstrate qualities o f mind? What does 

it mean to think? How do our views on mathematical thinking change when mind is 

construed as the collective and emergent capability o f brain and body embedded in larger 

systems? Apart from the individual student what other agents could be observed to 

demonstrate thinking qualities? How can we construe thinking about thinking? Might 

thinking be a phenomenon that pertains to the domain o f descriptions, the meta-domain? 

Is thinking a commentary by an observer about a system acting and changing within its 

medium? Or could it be the case that other than being observer-relative thinking and 

other logical forms of mind just like properties of life are grounded in the intrinsic 

organizational complexity of particular material systems?

Mind, and consequently thinking, have largely been conceived as solely 

psychological human phenomena. Thought and action are taken to be separable. Many 

researchers for whom thinking is synonymous with reasoning about something, transitive 

thinking, have pervasively focused on mathematical thinking as reasoning about 

mathematical patterns and generalizations and even as thinking about this mathematical 

reasoning (R. B. Davis, 1983; Ginsburg, Jacobs & Lopez, 1993). Such researchers in an 

almost Cartesian dualist manner focus on thinking as a rational process or range of 

processing styles and skills involving non-corporeal, timeless and universal facts that 

need to be mirrored in the learner. To other researchers mathematical errors, illusions and 

difficulties have been the focus of analysis (Borasi, 1987; Sierpinska, 1990; Zazkis & 

Liljedahl, 2004). These researchers equate mathematical thinking to overcoming, 

eliminating or circumnavigating erroneous intuitions and perceptions. However, studies
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on epistemological and cognitive obstacles do not consider the extent to which thinking 

attributes such as errors are a commentary by an observer about a system acting and 

changing within its medium. Indeed, a majority of the studies have been based upon 

representationists’ and mechanists, views of mind. In many studies the information 

processing analogies to thinking limit researchers to the computational, rule governed and 

symbolic views o f thinking. One wonders how construing mathematical thinking, 

however abstract or advanced, in broader terms as recursive and organic sense-making of 

bodily-grounded ideas can challenge the thinker and thought dichotomy. Isn’t thinking 

also intransitive (non-object-oriented)? Isn’t much o f it deeper than what can be accessed 

consciously and introspectively or felt subjectively? How about pre-verbal, pre-reflective, 

self-referential, prim itive thinking?

W ith advancements in neuroscience and artificial intelligence, researchers such 

as Bruner (1996), Butterworth (1999), and Dehaene, Spelke, Pinel, Stanescu, and Tsivkin 

(1999) have begun to view mathematical thinking as constrained and enabled by 

evolutionary, biological, experiential and other micro factors, as well as grander ones. 

Bruner (1996) encourages educators to see that neurobiological studies “offer useful hints 

about mind for much more clearer hypothesis” (p. 164). Adding neurobiology to the 

bricolage of disciplines informing investigations on mathematical learning might 

inevitably redefine questions about what mathematical thinking is.

3.1.4 Views about the Role o f  Perception in Thinking

Studies o f mathematical thinking provide important insights about the role of 

perception in learning. A large group of researchers has for a significant time concerned 

itself with studying representation and visualization as an aspect of mathematical
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thinking and perception. They emphasize the importance o f visualization and 

representation in mathematics, saying that it is crucial because both ideograms (symbols, 

notations) and diagrams (drawings, sketches, graphs, etc) frequently accompany 

mathematical thinking (Presmeg, 1986). Some work on representations emerged in the 

1990s as a response to practical questions on multiple settings of representing concepts 

offered by graphical, analytic and diagrammatic as well as computerized means (Kaput, 

2002). Other researchers have studied representations with the aim o f helping students to 

experience mathematics in a more concrete and visual way (Presmeg, 1986).

To many scholars who focus on formal and symbolic mathematical structures, 

the question of mathematical thinking is synonymous with that of mathematical 

representations. It is argued that humans only have access to mathematical objects 

through representations (Otte, 2002). To some researchers, perception of mathematical 

entities and properties basically involves perceiving attributes that exist independently—  

transcendently or otherwise— of the observer. Writing, for instance, is seen as a medium 

for representing mathematics ideas from in there (intuitionism), from out there 

(Platonism), or from social games (formalism). Most studies on mathematical 

representations emphasize the stmctural factors, especially the symbolic and formal 

factors, in what students perceive in mathematical tasks. Much insight has been gained 

from the enormous work on images, visualization and representation. Indeed, these 

studies have provided a way of talking about how students think mathematically. I try to 

outline these insights below.

3.1.4.1 Modes of thinking and visualizations
Researchers in this approach to studying mathematical thinking have
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distinguished between verbal-logical (symbolic/abstract) and visual thinking (a 

geometrical/pictorial representation). Presmeg and Balderas-Canas (2002) view the visual 

mode o f cognition as a precursor to symbolic cognition. Flores (2002) asserts that 

particular representations might “provide a way of shifting students’ attention, from the 

purely procedural approach to considering the terms and operations involved in a 

numerical relationship as entities that are worthwhile to pay attention to” (p. 10). 

Representations, visual tools (diagrams and imagery) and geometrical forms are observed 

to smoothen the shifts from the numeric, the concrete, the arithmetic and the particular to 

the formal, the general, the abstract and the symbolic. However, it is noted that although 

visual illustrations and settings are helpful in formulating solutions to problems and in 

understanding unfamiliar concepts, they have limitations. Students at higher levels shy 

away from them. And many theorists maintain that the verbal-logical is a more central 

com ponent to mathematical ability.

Work that illuminates the modes o f representations that are common among 

weak students has been directly linked to how students think mathematically (Presmeg, 

2002). To Stylianou and Pitta-Pantazi (2002), and Tall (1999), there is a relation between 

modes o f visualizations and students’ strength in mathematics. Low-achieving students 

focus on detail, perceptual items, real things and actions, whereas high achieving students 

focus on abstractions, general strategies, symbols and objects of actions (Presmeg, 1997; 

Tall, 1999).

In the literature on mathematical representations, further distinction is made 

between kinds o f visualization: figural, concrete-visual images and relational, verbal 

images (Stylianou & Pitta-Pantazi, 2002). In Stylianou and Pitta-Pantazi’s study of
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elementary, secondary and advanced level students, low achievers introspectively 

reported to use figural and concrete images whereas successful visualizers reported to use 

images that were relational and verbal. Stylianou and Pitta interpreted their results to 

mean that low achievers use the former while high achievers use the latter images. Many 

researchers have noted that the one-case concreteness of an image may tie mathematical 

thought to insignificant detail and even introduce false data (Presmeg, 1986; Watson, 

2001). Also Presmeg (1986) observes that visualizers, that is, students who preferred to 

use visual methods when engaging in tasks used more time and had difficulty 

communicating mathematical concepts. Presmeg & Balderas-Canas (2002) observe, 

however, that it might be more useful to maintain that a combination o f visual and 

symbolic methods is useful, especially in the preparatory stage o f solving problems. 

Historically, classical mathematicians saw geometrical proofs as intuitive and hence 

inadequate (Watson, 2001). They were steadily replaced by analytical proofs. 

Nonetheless, for didactic purposes, in my view, the visual, the particular and the concrete 

might offer a preliminary understanding to mathematical concepts. As well exploration of 

other forms of imagery other than the pictorial might broaden our understanding of 

mathematical thinking.15 It appears the mathematics education community needs a 

conceptual framework that will consider perception to play more than a representing role.

Rotman (2000) warns against the view that diagrams are inferior to ideograms. 

To him it is platonic rigor that always seeks to replace diagrams with ideograms. Perhaps 

a closer look at the historical relationship among forms of representation might reveal the 

necessity of the diagrammatic as a condition of existence for more abstract settings of

15 Presm eg (1986) identifies five kinds o f  imagery: the concrete, pictorial imagery; pattern imagery; 
m em ory im ages o f  formulae; kinesthetic imagery; and dynam ic imagery.
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representation. Furthermore attempting to categorize which modes of visualization are 

common among weak students is likely to misguide how we define adequate 

mathematical behavior, especially since this categorization carries the message that the 

concrete, kinesthetic, dynamic and visual are insignificant in mathematical knowing. 

Some mathematical concepts require one mode of imagery more than another. For 

example, geometric concepts are more figural than other concepts, Fischbein (1999) 

maintains. They can be represented using figures and might trigger mental images of 

sensorial representations. They are figural-visual but at the same time conceptual-logical. 

Could evolutional metaphors adopted from complexity science help educators to avoid 

the tendency to privilege one mode of complexity at the expense of the other?

For humans with basic human capacities such as touching, listening, visualizing 

and imagining, one wonders what the repercussions of privileging one mode over the 

others are. It might be important to examine how physical, social and cultural 

experiences, as well as imaginative and volitional exertions, influence what students 

perceive even in abstract mathematical tasks.

3.1.4.2 Kinds of representations
Some literature, in addition to classifying modes o f representation common

among weak students, classifies representations used in mathematics as internal 

representations, external representations and representations systems. English and 

Halford (1995) have classified representations into the symbolic, mathematical, 

cognitive, computer and explanatory representations. The internal or cognitive 

representations are taken to be the mental representations, such as concept images, that 

are not directly observable. External representations are observable representations such
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as graphs, figures, words and computerized versions of these. Representation systems are 

those configurations that are specific to a particular science, such as mathematical 

representations. Hitt (2002) and others further the discussion from mental representations 

to include semiotic representations. To them semiotic representations, unlike mental 

representations, are external (but not organic) representations (see Appendix B). Hitt 

emphasizes the role o f both mental representations and semiotic representations in 

mathematical thinking. This diverse classification o f representations is evidence that 

mathematics is conceptualized as populated by what are commonly known as 

representations. But whether these representations are representations as in copies or 

resemblances is a distinction that the majority of researchers have not attended to. 

Researchers might be drawing the distinctions verbal-logical versus visual-concrete, 

internal versus external, organic versus inorganic, weak versus strong too sharply. Also 

the term representation with the connections it evokes in terms of mirror images is 

problematic. Do not mathematical representations participate in the evolution of the 

mathematical objects themselves? Drawing from Dienes’ construct of multiple 

embodiments, a few researchers such as Noble, Nemirovsky, Wright and Tierney (2002) 

have looked at mathematical representations as part of the origins of mathematics (Dienes 

& Goldings, 1971).

In a mathematics classroom there is drawing, sketching, writing, imagining, 

constructing and, recently, clicking and dragging. One wonders how evident and primary 

the division between external (organic vs. non-organic/semiotic) and internal 

representations actually is in mathematics learning? When and to whom is a 

representation a representation? Could a representation be appropriately considered
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solely external without invoking internal interpretations? What constructs, other than 

representations, could be evoked to understand perception and cognition in more useful 

ways? Such are the questions about representations and perception that are central in 

studying mathematical thinking.

Some researchers such as Ball (2002) and Confrey (1999) are instead studying 

mathematical interpretations. Others such as Marton and Booth (1997) are studying 

mathematical experiences. Duval (2002), Hitt (2002), Otte (2002), Presmeg (2002), 

Radford (2003) and Rotman (2000) study mathematics signs and sign practices. Saenz- 

Ludlow (2002), critiques the detachment o f internal from external representations. She 

argues that interpretation and representations are intertwined. Like many mathematics 

educators, Saenz-Ludlow and other semiotic theorists offer Peircean semiotics as a way 

forward in studying mathematical interpretations (see Appendix B for a discussion on 

semiotic representations and signs).

3.1.4.3 Representationism
A study of what students attend to in mathematical tasks begs some

understanding about why the traditional frameworks o f representation are almost 

irresistible in understanding mathematical thinking. In representationists’ models, 

perception is taken to be a reaction to an object that is initiated at the receptor or sense 

level. Perception is considered to be pick-up, detection or re-presentation o f some event 

or scene by an organism (Skarda, 1992). During a perceptual act, the organism centrally 

forms a more or less adequate internal representation of the event and its features.

In mathematics education most research done has taken this representationists’ 

approach. This is not surprising, given the fact that mathematics is at most times
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foundationally viewed in a formalist way as a solely symbolic subject, and in a platonic 

way as a subject about a priori objects. The intuitionist view of mathematics as a subject 

about observer constructions also fits with the recovering (instead of grasping) metaphor 

of perception. Any view of mathematical objects and properties that upholds the 

dichotomy between in here and out there, between the perceiver (machine) and the 

perceived (raw data), perception and action lends itself to a cognitivistic role of 

perception.

The representationists’ view o f perception further supports the stage-by-stage, 

machine-like understanding of cognition. The machine’s body, its context and history are 

taken not to participate in the processing to the same extent that the software, the thought 

processes does (Thompson, 1997). Additionally, the perceiver, his or her tools are co

implicated in what he/she perceives only to the extent of the quality o f their 

representation.

If we are to consider cognition as ongoing interpretation and experience that is a 

matter o f action and history and mathematics as a human activity, then what becomes of 

the role o f perception? There have been alternative views of cognition, o f foundations (or 

anti-foundations) of mathematics, and o f perception. The mathematics education 

community has begun to consider that non-symbolic aspects o f cognition, its context and 

its so-called hardware— the body-in-space and materiality— might have more to do with 

perception than what representationist frameworks allow. W hat these new views mean 

for the question o f mathematical thinking is unfolding.

The analysis o f theoretical insights from the studies has involved examining 

views about what I thought were central issues to studies on mathematical thinking. For
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instance, I have demonstrated that views about school mathematics, mind and perception 

influence not only the questions asked, but also the methods used to research 

mathematical thinking, as well as the interpretation o f research results. In the next sub

section, I return to an overview of the methodological insight from studies on 

mathematical thinking. This will lead to the next part o f this writing: an exploration of the 

research design and methodological framework of this research.

3.1.5 Methodological Insights

Most of the investigations done in the literature I have reviewed have been 

empirical studies involving school children. Some, such as Hadamard’s (1945/1996) and 

Burton’s (1999a, 1999b) studies, have involved the self-observation and introspection of 

mathematicians. Others, such as Sfard’s (1991a, 1995) have been historical studies. Some 

studies have been philosophical studies. Yet a few more recent ones such as Butterworth

(1999), Lakoff and Nunez (2001), and Dehaene et al. (1999) have been a bricolage, 

drawing from a juxtaposition of disciplines including neurobiological studies. My study 

as we will see is also a bricolage.

W hether empirical or theoretical research, the units of analysis for the different 

studies have varied with respect to the paradigm and general views espoused. For 

example, research that has led to the development of Cognitively Guided Instruction 

(Carpenter, Fennema, Franke, Levi, & Empson, 1999) by studying actions of children has 

categorized ways in which children think about mathematical concepts and operations.

For child and structural psychology the unit of investigation is instructional material and 

isolated children’s performance in terms of accuracy and speed. For the radical and social 

constructivists the unit of investigation is mainly the individual child’s conceptions (or
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misconceptions), while for the socio-practice theorists the practices o f a com m unity and 

social patterns are the unit of investigation; yet for socio-cultural and critical theorists the 

unit is how individual subjectivities that are produced by discursive discourses subjugate 

learners. In my study, I ponder the metaphors that will help in examining how these units 

relate to each other. As well, I explore other units of analysis that could enhance the 

understanding of students’ mathematical thinking.

Although the nature o f investigations varies, from the 1970s and 1980s studies 

with controlled experiments to the more recent prevalent naturalistic studies, most of 

them aim at generating recommendations for practice, usually in the form o f learning or 

teaching models. However, the meaning of the term model or o f any form of 

recommendations offered appears to vary with whether the study is framed by 

information processing psychology or by different kinds of constructivism. For example, 

studies that construe mind by using the machine metaphor consider a model as a 

mechanism that supports a child’s mathematical thinking. On the other hand, radical 

constructivists claim to use models as observer constructions of the children’s 

mathematical constructions, a view that is consistent with enactivism (Steffe & Kieren, 

1994; von Glasersfeld & Steffe, 1991). Pirie and Kieren (1989, 1994) provide an example 

of a radical constructivist model. The social constructivists, together with the 

interactionists, claim that their models describe group dynamics of students solving 

problems rather than offering models of individual mental actions and reflection (Cobb, 

Wood & Yackel, 1992; Voigt, 1994). In the next part o f this dissertation, I explore the 

research design, elucidating the units of analysis and the observation models which I 

adopt.
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4. DESIG N OF THE STU D Y

I have introduced and situated my study, but three tensions persist. How does 

one manifest the interrelatedness of question, reviewed literature and research orientation 

in a linear text? In what ways can the openness required by interpretive research be 

preserved in designing and carrying out a study, and in writing a dissertation? How does 

one work within research distinctions such as collecting data, and designing and piloting 

a study while remaining open to possibilities outside of the technical workings of these 

distinctions? I lessen the first two tensions by describing the evolution of the research 

design, research focus and questions respectively in Chapters 4, 7 and 8 .1 lessen the last 

tension in Chapter 5 by exploring the organic nature of this research. Although I make an 

effort to address the first tension, it persists until the last chapters where, by returning to 

the motivations o f the research, I endeavor to loop back onto the first chapter so as to 

make the writing more circular than linear.

Even though I outlined some form of a research design when I proposed the 

study, much o f it has developed with time. This chapter is about the research design that 

emerged with the study. In it, I discuss the empirical aspects including: choices about 

research sites and settings, the nature o f participants, my participation, and the means of 

gathering and analyzing data. For purposes o f maintaining the openness of interpretive 

inquiry, I weave aspects of the research design around lessons learned from the 

preliminary study. I discuss the ongoing choices I made and the happenstances that 

occurred, reflecting on the contexts that might have prompted me to value some 

particular designs. In most cases, the actualized designs were those enabled by the parts 

in the study, o f which I was just one. The design that arose was the emergent order that
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the system as a whole finally settled on given the relations among the context, time, 

participants and community.

D is s e r t a t io n  L a n d s c a p e  F o r m in g

Part III
Design and Methodologies

Preliminary Study

Data Gathering

Research Sites and Settings

Extra-Curricular Session Format

My Role as the Researcher

Lessons Learned

Data Analysis and Interpretation

Chapter 4 
Design

Part IV
Theoretical Explorations

Chapter 5 
Methodologies

Part II 
Situating the Study

Part I 
Introduction

Attending in Mathematics 
A Dynamic View
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4.1 Research Sites and Setting

The study involved five interpretive sites:

•  working with students in a research project outside the classroom;

•  participating as a research assistant in a junior high classroom;

•  reflecting on my experiences as a student and as a teacher;

•  studying related research, discussing and interacting in the community;

•  some writing and re-writing, conversations and informal observations with 

students, with pre-service and in-service teachers.

These sites can be grouped into two: the planned— the first two— and the spontaneous—  

the last three. Emergent sites come from my participation in activities such as research 

assistantships and in-service teacher education study; others arose from interactions with 

my supervisors, other researchers and graduate students at conferences, in classrooms and 

seminars.

I view my participation in the varied sites and contexts as participation in a 

hermeneutical conversation. Data was gathered through participation with secondary 

school students. Participation in informal sites informed the analyses of data. The 

students I observed were in two settings: extra-curricular research project and classroom 

research project, both in urban settings. The multi-site conversation has given me a more 

global understanding of the problem of study.

4.1.1 Extra Curricular Research Project 

One o f the planned sites of m y research involved secondary school students in a 

project outside the classroom. Twenty-seven students (6 from Edmonton and 21 from 

Uganda) participated. Whereas two students in Alberta who jo ined the study towards the
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end participated in only one session, the rest took part in an average of three sessions. 

Table 2 offers information about the participants, including the tasks they engaged in.

Table 2. Demographic and Participation Information
Edmonton Uganda

Boys 3 0

Girls 3 21

Grades at time of sessions 7, 8, 9,10 Senior 2

Years of birth 1987 (1), 1988 (3), 

1989(1), 1990(1),

1986 (1), 1987(1), 1988(5), 

1989(5)a

Year of participation 2001,2002, 2003 2001,2003

Schools represented 4 Schools5 1 School0

Number of sessions 1 - 2 Sessions 3 - 5  Sessions

Tasks done Pirates Aboard (PA) 

Chessboard Squares (CS) 

Bee Genealogy (BG) 

Consecutive Terms (CT) 

(see Appendix A for 

description of the tasks)

PA, CS, BG, CT, plus 

Dominoes, Cubes Cubed, 

Ladies Luncheon, Fifteen, 

Matches 1, Circular Disks, 

Ins and outs, Paper Strips, 

Triangular Count.

Note. “Only 12 out o f 21 Ugandan students completed the demographic survey (see 
Appendix C). bDay mixed public schools. CA11 girls boarding Christian secondary school

In Alberta, the children I recruited had parents or parents’ friends who were my 

colleagues who had shown interest in my research. The sessions were conducted at the 

Faculty of Education at the University of Alberta. In Uganda, I solicited students through 

the school principal, at the school where I taught before entering graduate school. 

Sessions were conducted at the school. I also taught a Senior Two class in 2001 for a 

school term. Senior 2 is an equivalent to grade 8 when you go by age— 13 to 15 years 

old. In terms o f syllabus coverage it is more equivalent to grade 7. In addition, I 

participated in a junior high year-long research project as a participant-observer in a 

school in Canada.
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4.1.2 Classroom-Based Research Site

At a school site another researcher taught 27 grade 7 mathematics students (15 

boys and 12 girls) in a public school during the entire 2001-2002 school year. I 

participated in the classroom as a research assistant helping out during group work and 

individual seatwork. I video-recorded the lessons and took field notes. The project posed 

questions such as, what can be done to enlarge the space o f the possible when engaging 

students in mathematical activity? This project was also about theory building. The 

principal researcher and I were interested in developing ways of making our observations 

about learning coherent. I found myself creating explanations based on my observations 

about students’ mathematical thinking and attentiveness. Moments when students made 

diverse sense o f activities,, had their understanding shift, or worked in novel or divergent 

ways, as in the Fraction Kit activity in Chapter 1, were o f particular interest to me.

4.2 Extra Curricular Research Session Format

In the extra-curricular project, I invited pairs of students to work on 

mathematical tasks. In each hour-long session, pairs of students engaged in a 

mathematical task and later participated in a conversational interview based on their 

activity. I provided the basic materials such as pen and paper, and tools such as geometry 

sets and calculators as well as furnishing concrete materials such as Fraction Kits and 

counters. I interacted with, observed and video-recorded students’ engagement and 

collected their written work. Follow-up sessions involved conversation about 

participation in earlier sessions as well.

In each conversational interview, I encouraged students to talk about, or observe 

and reflect on their actions. Carson (1986) has distinguished a conversational interview
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from the commonly undertaken research interview. He said that the latter is meant to 

gather information about the researched whereas a conversational interview reveals 

something held in common and so allows meaning to emerge through language. It is a 

continuation of the hermeneutic conversation between question and answer. In 

conversational interviews the researcher does not ask for proofs of assertions, but rather 

for examples and vivid recollections.

The conversations at the sessions were not structured; they were contingent on 

my observations. During the students’ engagement with the task, I noted possible 

conversational prompts. Sample prompts include: Can you explain how you got your 

answer? W hat did you have in mind when approaching the task in this way? By the last 

three sessions in Edmonton and the 2003 study in Uganda I had developed a more semi

structured list o f conversational prompts (see Appendix D). In some conversational 

interviews, I also I prompted students to talk about their mathematics classroom 

experiences. In a few sessions I showed the students parts of their video recording. In two 

sessions I showed the students a transcript of their earlier participation. I did this mainly 

to stimulate recall so as to talk about what interested the students and me. In Alberta, 

where I had access to more than one camera, I recorded the conversation around the 

viewing as well.

4.3 Role of the Researcher in the Project

Firstly, my role was to select and present non-routine, good enough and variable 

entry, dynamically attracting tasks that were likely to prompt students’ sustained 

engagement (see Chapter 1 for definitions). I adopted the mathematical tasks from 

problem-solving books such as Thinking Mathematically by Mason et al. (1985), and
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from research studies. During the preliminary study, I used a range o f tasks; however, in 

the actual study I had honed down the tasks to include Chessboard Squares (CS), 

Consecutive Terms (CT), Pirates Aboard  (PA) and Bee Genealogy (BG). These tasks in 

addition to being good enough, non-routine, variable-entry prompts had proved to sustain 

students’ mathematical engagement dynamically and to structure their behavior in 

mathematical ways. In Edmonton, I decided both pairs who had two sessions would do 

similar tasks. Tony & Ronald did the CT task in the first session in 2001 and the BG task 

in the second session in 2003. Tanya & Tam my worked on the BG task during their first 

session in 2002 and on CT task in the second session in 2003. Deo and Laura, who joined 

in July 2003, worked on PA task.

Secondly, through all the sessions I was a participant-observer (i.e. observed and 

participated with), specifically a close observer, van Manen (1998/1988) differentiates 

between a close observer and an observer by saying that a close observer maintains “a 

certain orientation of reflectivity while guarding against the more manipulative and 

artificial attitude that a reflective attitude tends to insert in a social situation” (p. 69). As a 

researcher who embraces the complexity of living, I was always first and foremost a 

participant in the tasks that I set for the students to engage in. I thought observing 

students engaging with tasks was not enough; during the activities, I offered the students 

additional prompts to facilitate their engagement (see Appendix D for prompts).

Thirdly, while students were engaged with the task I took note o f the students’ 

actions, phrases, gestures, artifacts and voice inflections. In the latter half o f the study, 

my notebook was organized under three headings: (a) things to do differently in or before 

the next session, (b) areas that I would require comments on from the students, and (c)
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comments on emerging themes and moments of possible interest.

4.4 Preliminary Study

One o f the very difficult decisions was what kind of data was necessary and/or 

useful to explore my questions. To prepare myself on the specific nature of data to gather 

I did an exploratory study both formally and informally. In traditional terms, the 

exploratory study would be referred to as the pilot study; however, I prefer to call it the 

preliminary study, since it was more o f an exploration. Its analyses are presented in this 

writing. Informally, I introspectively worked on mathematical tasks and had colleagues 

or family work on them. Formally, I worked with two boys, Tony (grade 7) and Ronald 

(grade 8) in Canada and with eight girls— Irene, Lillian, Rose, Norah and four other, all 

senior 2s— in Uganda. None o f the eight Ugandan students were able to take part in the 

3rd year o f the study.16

Insights gained from the preliminary study were crucial in gradually reducing 

my research tension. They offered me an opportunity to maintain the openness required 

by interpretive research. The preliminary study informed my ongoing literature review 

along with a reframing of the research questions, as it manifested the interrelatedness of 

the question, the literature and the research. It informed the design o f the actual study. 

Also it was an initial step in gathering data and in the analysis and writing. After I 

describe the design that emerged for the actual study, I discuss three lessons learned from 

the “pilot” study.

16 This was because the study took p lace during their end o f  O-Ievel year, when the students were focusing  
all their energy and time on preparing for the national achievem ent tests.
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4.5 Data Gathering

Simmt (2000) maintains that data collected are, to a large extent, also data 

created by the researcher. Etymologically, the term datum  is Latin for that which is given 

or granted. In my study, the elements that were given were the students who participated, 

the research questions I initially posed, the research orientations I embraced, the 

community and the literature I interacted with, as well as my teaching experiences. It is 

from the interaction o f these influences, which in complexity research are referred to as 

agents that the data surfaced.

As I proposed the study I anticipated three sources of data: direct participation 

with and observation of students, video records of students’ activity, and copies o f 

students’ writing. As the study progressed, I realized that the notes I scribbled during the 

sessions, my comments on the copies of students’ artifacts, the marks I made on the 

transcripts, the comments colleagues made on my observations, and the earlier drafts of 

this writing also became data for further analysis. Simmt (2000) refers to this as the layer 

of secondary data, which, in addition to the first layer of data, occasions interpretation.

4.6 Data Analysis and Interpretation

Morse (1994) observes that analyses do not just emerge from collected data. A

stage has to be set, data organized and the researcher must organize herself for the

analysis. She further says that

[D]ata analysis is a process that requires astute questioning, ...active 
observation...It is a process of...m aking the invisible obvious, of recognizing the 
significant from the insignificant, o f linking seemingly unrelated facts.... It is a 
process of conjecture and verification, ...o f  suggestion and defense, (p. 25)

During the study, the research artifacts— videotapes, transcripts, students’
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written work and my journal entries— were conceptually organized around moments that 

interested me, interpretive moments. I will elaborate on the concept o f interpretive 

moments in the next chapter.

To observe students’ thinking-in-action, I adopted the stance o f focusing on the 

mathematical worlds students enact. I understood students’ actions and interactions—  

what they said, used or wrote and how they said, used or wrote it— not as consequences 

of thinking, but as acts of cognition in themselves. Therefore it was crucial to pay close 

attention to the whole learning bodies along with their extensions to the concrete and 

social world. A t first, I sought to analyze the selective nature of students’ perception that 

filters meaning from what is taught. But with time, as I illustrate later, my focus drifted 

toward the dynamics of how students bring forth what they attend to.

I interpreted and re-interpreted individual data sets in light o f preceding and 

subsequent moments of interest. For each of the interpretive moments I asked:

•  W hat are the other experiences that this moment resonates with?

• W hat is this moment an example of?

•  Are there any micro or macro themes emerging in the data interpreted?

• In what other sessions are these themes evident or contradicted?

As I will demonstrate, interpretive moments served to organize the data, and acted as 

both the analysis and writing in progress. They were the ongoing, spontaneous and 

revisable study results and micro themes. Micro-themes began to constitute a developing 

whole. Toward the end of the study, I also carried out a brief retrospective analysis of the 

video clips and transcripts of interest, together with my research notes, the micro research 

narratives and student writings. This rigorous data analysis was only possible once I had
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stopped taking part in the projects. It was a way o f illuminating macro themes. The 

formal analysis was organized around themes that had become apparent in earlier 

interpretive moments. These included:

•  W hat are mathematically adequate actions and ways o f being?

• W hat are the other agents o f mathematical thinking in addition to writing, 

utterances, and students’ actions and interactions?

• In what ways could we think about mathematical concepts usefully as 

structures that cut though the mind-body-environment chasm?

In the formal analysis, as with the ongoing data analysis, the objects o f  analysis

mainly included (a) the individual’s interactions and (b) each pair’s or group’s collective

actions. At times I found myself reflecting on (c) each individual’s embodiment and

available tools, and (d) on the school social practices and larger cultural and institutional

contexts that appeared to constrain the students’ interactions. Simmt (1998) observes:

Features of the in-person embodiment are inferred from observing and listening to 
a person’s mathematical actions, body language, and tone of voice and by 
attending to the content of his or her utterances and written work. ...Features of 
this [collective] embodiment are noted by observing one’s interactions with 
others— usually in discourse... [The community embodiment] is observed in the 
actions and interactions of persons engaged in mathematical activity that sustain 
and contribute to the body of mathematics, (p. 12)

In the analysis, I maintained that individual’s mathematical thinking is nested in 

collective mathematical thinking, which in turn is nested in the larger body of school 

mathematics, which is also nested in other larger bodies such as research mathematics.

Although I engaged students in conversational interviews, I did not consider 

analysis o f the interviews to be central to the formal analysis. It is the students’ non

verbal and verbal gestures and expressions during engagement with the task that I 

transcribed. The transcribing process, though laborious, was invaluable. It not only
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provided ready excerpts to cut and paste into my writing, but in pausing, rewinding and 

re-playing I got a deeper sense of the sessions. The process o f transcribing was part of 

data observation and analysis. It amazed me to discover how much I either did not attend 

to, or had observed differently by just participating in the session or watching the video 

records only once. The transcripts also presented written traces for easy access to events.

W hen I proposed this study, I planned the analysis in definite phases. However, I 

did not follow the phases religiously. Below are the stages as stated in my research 

proposal (July 2002).

Phase I: After transcribing the tapes study the transcripts to select excerpts.

Phase II: Begin to scrutinize students’ actions. On the basis o f emerging

interpretations, have a conversation with my supervisors. Re-watch the 

tapes, re-view writings of earlier analyses and weave micro narratives 

around emerging interpretations in preparation for the conversations.

Phase III: In enactivist inquiry, researchers consider interpretation to be a co-

emergent phenomenon that happens with others. At this later phase of the 

analysis, prepare to present a mini-report to other researchers.

Nested within each o f the above phases would be the micro-inquiries, research 

moments of interest that I anticipated to materialize at any phase.17 With the 

layering of the phases by nearly complete micro-inquiries, the data analysis would 

take on a fractal nature, which is crucial in interpretive studies framed by 

enactivism (Simmt, 2000). It is a feature of the circularity between the 

spontaneous and the formal analyses.

17 I use the term m icro-inqu iries  to point to moments during the research when I pursue a particular event 
o f  interest.
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Phase IV: Watch more sessions in light of the interpretation to select clips that 

complement existing interpretations. If necessary, repeat the preceding 

three phases with the newly selected clips. Also begin to study the whole 

set of data in light o f the micro-inquiries to generate counter-examples.

Phase V: Make attempts to vary interpretation, prepare to share interpretations at 

seminars, participate in classroom teaching and teachers’ workshop, write 

articles for publications and edit the research narrative.

In retrospect, this phased formal analysis with its clear-cut boundaries was more 

prescriptive than is required for an interpretative study. To my surprise the analysis in the 

study did not wait for the rigorous viewing of the tapes to begin. By the time I carried out 

the final sessions, I had engaged in a couple of micro-inquiries and shared emerging 

themes. It is these themes that I pondered in the final sessions. W hat the pre-specified 

data analysis offered was a pool of potentialities that in the event of analyzing the data 

increased the probability for me to act in suitable ways. In the organic analysis that was 

occasioned by the rigidly phased plan only some possibilities were pulled into existence, 

and novel ones sprouted.

Data collection, analysis and writing were inextricably linked. In this organic 

analysis, I did not work in clear-cut phases, but instead moved back and forth. I also did 

not transcribe all the tapes. After watching some o f the tapes many times, possible 

counter examples and examples often involuntarily popped up into my consciousness so 

that all I had to do was to reach out for the tapes or transcripts where I recalled a 

particular example to be. I have yet to examine the whole set of data in light o f the 

macro-themes.
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My research has involved engagement with the community of researchers. The 

main artifacts o f my engagement in this community are papers presented at conferences 

or published. These include: Redefining school and progress (Namukasa, 2002a); The 

role of the observer (Namukasa, 2002c); The phenomenology of seeing (Namukasa, 

forthcoming); The relationship between globalization and school mathematics 

(Namukasa, 2004); What counts as knowing (Namukasa, 2003b); Collective 

mathematical thinking (Namukasa, 2002b; Namukasa & Simmt, 2003); and A theoretical 

rationale for multiplicity of mathematics models (Namukasa, 2003a).

4.7 Lessons Learned from the Preliminary Study

Given that the focus on student thinking could be approached from many 

frameworks my preliminary explorations engaged clarifying frameworks and tools of 

observation. To appreciate the choices made for the research design, I saw a need to 

articulate the major lessons I learned from the preliminary study: (a) the role of the 

participant observer, (b) observer co-implicitness, (c) the need for a theoretical 

observational tool, and (d) the ways in which observable features might indicate thinking. 

I explore the last lesson at length offering vignettes that I return to in Chapter 7.

4 .7.1 The Role o f the Participant-Observer

During the first sessions, I found m yself reflecting on my role as a researcher. 

Was I to participate as an investigator or as a detached observer? What did it mean to be a 

close observer o f Tony and Ronald, for example? While working with the participants 

aged 13 to 1 6 ,1 realized that my role was always better construed as teacher. Students 

always looked up to me as a teacher, and their presence, given my history in teaching, 

occasioned me to participate as a teacher. Boostrom (1994) observes that the observer is
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transformed by the act of observing as he/she learns how to observe and what to observe

concurrently. The teacher-student relationship co-emerged with my complex role as a

researcher interested in mathematical thinking. In addition to offering the tasks and

prompts, I explored with the students the mathematics evoked by the tasks, observed as

well as listened to their experiences with mathematics. Towers (2001) looks at the

participatory role o f a teacher. She identifies intervention modes o f an enactivist teacher.

Shepherding  is an extended stream of interventions directing a student towards 
understanding through subtle coaxing .... Inviting is the suggesting of a new and 
potentially fruitful avenue of exploration. Retreating is a deliberate strategy where 
by the teacher leaves the student(s) to ponder a problem. Rug-pulling is a 
deliberate shift of the student’s attention to something that confuses and forces the 
student to reassess what she or he is doing. (Towers, 2001, p. 334)

During the sessions I participated in an interventionist teacher mode (Towers, 

1998). However I soon learned that it is the students’ response to any particular mode of 

a teacher’s participation that determines whether the teacher shepherded, invited, and so 

on (B. Davis, 1994). In most o f the sessions, in order to observe what the students 

attended to in the tasks, I retreated or rug-pulled. However, there were moments when the 

ethical act was to invite students into fruitful avenues. For a particular pair of students 

who engaged in less mathematical ways, I shepherded using prompts. And for students 

who took big leaps that they were not ready for, after fruitless efforts at inviting and 

shepherding, I acted as an expert and shared the “facts” . I elaborate using a vignette from 

the exploratory study in Appendix E, Vignette E2.

4.7.2 Observer Co-implicitness

My participation with the students extended toward being a factor in their 

histories. With such co-implicitness in students’ mathematical behavior, I had to deal 

with the positivistic tension that underlies most neo-Piagetian clinical interviews: If you
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w ant to discover the students’ thought patterns, then let it be their thinking without

tainting it by your influence. As Tower (1998) explains, the realization of thorough

implication o f the researcher in the participation of the researched might

[pjrove troubling to a researcher convinced of his or her ability to remain 
removed from the data leaving those data “untainted” from bias. Instead, this 
realization simply foregrounds for me the growing call that researchers recognize 
and acknowledge their complicity in shaping the findings o f their research, (p. 33)

That being said, in retrospect, some of my participation during the initial 

sessions seemed regrettable; at least this is how I felt when transcribing some tapes. 

Specifically, as I was transcribing Tony and Ronald’s first, Lillian and Irene’s fourth 

session, and Rose and Norah’s fifth session, it occurred to me that some of my 

participation interrupted their actions. In some interruptions I had given unconscious 

clues that the students were onto a right or wrong path. Some o f my responses drastically 

changed students’ actions. This was an interpretive moment.

4.7.2.1 Tacit Influences at Work in my Observations
To explore ways in which my participation could be more supportive, I did a

micro-inquiry using Lillian and Irene’s transcript. I marked all the moments where I had 

overtly participated. I then studied how students’ participation had been altered after my 

participation. I began by classifying participations as supportive or not. I later teased out 

the particulars o f the actions that were supportive or not. Prior to the inquiry, I had 

expected my participation to be significant whenever I offered prompts, listened actively 

and carefully, encouraged active participation or reflected on students’ participation. I 

had also considered my participation to be unfortunate whenever I failed to listen, missed 

opportunities to offer prompts or interrupted students’ utterances. The following 

surprises, however, arose from the inquiry:
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• In some instances I barely listened to inaudible and non-verbal conversations and 

to silent and subtle participations.

• At times the questions I asked triggered the students to participate as if they were 

in a question-answer interview.

• The appropriateness of each of my interventional prompts highly depended on the 

responses it occasioned more than on my intention for it to be supportive.

As a lesson learned from the micro-inquiry, I tried to prevent myself from 

turning the sessions into structured clinical interviews by avoiding directed questions 

during students’ engagement in tasks and by reserving inquiry questions either for the 

conversational interviews or for further observation. Some prompts that were tacitly 

intended to encourage students to think aloud, so as to determine the mechanism at work 

in their thinking, were indeed unfortunate for a researcher who considers her input as 

engagement with the students’ unfolding worlds. W ith the ecological frameworks (see 

Chapter 6), unlike other dominant theories, it is exactly what happens in the interactions 

(rather than in the individuals’ heads) that a teacher is able to influence and therefore it is 

what ought to be o f interest to a researcher.

Recognizing that some of the less helpful modes o f participation may be 

inevitable, I reframed my concern about the role of the observer: When I define myself as 

a researcher-observer, what does that mean to the students, to me and to the study? W hat 

are the implicit factors influencing observations of my own research participation?

4.7.3 The Need fo r  an Observational Tool

During the study, especially after I reflected on substantive issues such as where 

to look fo r  what students attended to, it occurred to me that I needed to be inclined,
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consciously and unconsciously, towards what to pay attention to before I saw it.

Although I had theoretically decided to draw upon a complexity and ecological 

orientation, prevailing theories on mathematical thinking continued to influence my 

observations reflexively. For instance, in the case of the Fraction Kit task, was I going to 

reflect on the difference between the two approaches in terms of differences in Piagetian 

stages o f mathematical thinking or what? As we will see when I discuss students’ 

mathematical attentiveness, perceiving in particular ways takes orientation at many 

levels. This is applicable to the investigator as well. Eisner (1997) observes, “Perception 

is selective and the motives for selection are influenced by the tools [cultural, technical or 

otherwise] one has or knows how to use: we tend to seek what we know how to find.” (p. 

7) Interpreting behavior requires a fore-structure, a sense o f tradition that both shapes the 

observations and is modified by the observations (Kieren, 1992). I needed a background 

and a specific lens to be able to see things in specific and new ways. The lens I eventually 

brought to the study not only guided technical decisions like where to place the camera, 

but it acted as a springboard for the evolution of other lenses. This called for an ongoing 

theoretical study, especially in enactivism and complexity research theories as well as in 

studies on human thought and perception. To be engaged deeply by what I observed I 

participated in ongoing conversations with researchers about observations. I also adopted 

tools of observation from other researchers.

To find a language for and a way of observing both individual and collective 

activities, I began by drawing from Pirie and Kieren (1989), and Sim m t’s (2000) models 

of learning (Figure 2 & 4). Simm t’s model is helpful when observing person-person and 

person-environment interactions. Pirie and Kieren’s (1989) model is helpful when we
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hone down to the conceptual signification space of both individual and collective learning 

bodies. Both models offer a consideration of knowing as a recursive rather than a linear 

hierarchical process (Pirie & Kieren, 1994). They regard knowing not as a static state, but 

as a phenomenon that continuously unfolds as students interact.

The inner level distinctions— primitive knowing, image making, image having 

and property noticing—  of the Pirie and Kieren’s model might allow an observer to 

comment closely on students’ activity. For instance, in most o f my preliminary study 

sessions, I saw students begin to engage with a mathematical task by working with their 

already existing knowledge (primitive knowing) before proceeding to form, articulate and 

revise the images (image form ing  and image making), and later to fortnalize  the images as 

they began to notice properties, often after folding back to primitive knowing or image 

forming.

Understood in terms o f B. Davis et al.’s (2000) nested learning bodies metaphor 

(see Figure 3), these models are observational tools at different orders o f observation. I 

offer more about these in Chapter 6 and in Appendix B.
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4.7.4 Written Work, Concrete Manipulations and Utterances

Also the debate between mentalism and behaviorism was evoked at the onset of 

observing the dynamics of what students attended to. What was I to focus on? What 

indicated differences and shifts in how students attended? What would the data look like? 

To answer the questions I had to outgrow any mentalist tendencies that I tacitly held 

without falling back to behaviorists' trivializing o f the learner’s structure. Thinking was 

not “in there” and, therefore, separate from actions, language and culture.

I gradually began to notice things that were not separate from students’ 

mathematical thinking. The things they did, used and said appeared not to simply capture 

their conceptions. Actions and expressions give birth to and are themselves conceptions. 

They illuminate worlds which we bring forth. The deep sediments o f the worlds students 

enact— including what they articulate, manipulate and write— became the main forms of 

data that I needed to collect. In this section I elaborate on how this cam e to be.

4.7.4.1 Episodic Writing
In their first session Tony and Ronald worked individually yet collaboratively.

They, like Rose and Norah, wrote on separate sheets and convened at regular intervals (at 

times after my prompting) to share the progress of their work. W hile reviewing their 

videotape, I noticed that the boys had written in an intervallic form (I present their work 

in detail in Chapter 7). The shifts in their written work varied from seemingly subtle 

changes, such as where to place the equals sign, to what looked like a different focus of 

inquiry. On noticing the periodic nature of their written work, I conjectured that each new 

episode began after Tony and Ronald had convened to talk about their work. To pursue 

this hunch, I decided to re-watch the videotape wondering about what triggered the

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



changes. To my surprise, most of the breaks happened before the two boys reconvened. If 

the shifts in their written work were not occasioned by their talk, what could have 

occasioned them? Did the end of each episode mark a new conjecture made or a new 

world about to be enacted? Or was it about shifts to outer layers of knowing in terms of 

Pirie and K ieren’s (1989) model?

In the study, some students, especially those in Uganda, did not frequently use 

concrete materials as they engaged with mathematical tasks. This might have been due to 

the fact that in traditional secondary mathematics classes one does not often see concrete 

materials used. However, when the students did use concrete materials, their actions with 

these materials offered a rich source for observing mathematical thinking-in-action. To 

elucidate on this assertion let me share Irene and Lillian’s third session. Irene and Lillian 

took turns to write on shared paper and so, unlike Rose and Norah (see appendix E), and 

Ronald and Tony, verbalized most of their actions. In analyzing their engagement, I 

examine ways in which episodes in written work and students’ actions with concrete 

materials may indicate what students attend to.

4.7.4.2 Loud and Bold Utterances
In addition to written work and actions with concrete materials, another

observable feature that appeared to indicate shifts in attention is voice inflection and 

content of student utterances. At some moments during the sessions came the animated 

utterances, “But”, “W ait”, “Why don’t we?” “Oh Yeah” and “Oh just wait, I know”. I 

will call these animated utterances, aha utterances. During Irene and Lillian’s third 

session, m ost animated utterances appeared to mark a moment o f shift in thought which 

evoked at many times a change in the direction of the students’ line of inquiry. I elucidate
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these claims by drawing three excerpts from the girls’ transcript.

Vignette 2. Irene and Lillian’s Third Session: The Consecutive Terms (CT) Task
Some numbers can be expressed as the sum of a string of consecutive positive integers.

Exactly which numbers have this property? For example,

9 = 2 + 3 + 4 11=5  + 6 18 = 3 + 4 + 5 + 6

EXCERPT 1
In the first seven minutes on the CT task, Irene and Lillian generated a list of numbers 3, 5, 6, 9,

10, 11.. .that had the property. They began by working with dominoes and mental computations 

before they proceeded to write. The excerpt is taken from a time when they were investigating for 

a pattern in their list.

Not much of a pattern 
Because it is 2 1 3 1 1 
Okay. So the interval?
The interval is not helping
No [They both look at the list o f numbers and Lillian interrupts]
I think we ...|
|Why don’t we list down the numbers in a pattern?
Yes [Lillian replies after looking at Irene fo r a while. Irene turns to write and 
Lillian watches. When it comes to writing 11, Irene pauses and without saying 
anything she and Lillian look in quest at 11. Each of them appears to be doing 
some mental calculations.]
No it can’t, so let’s just go on with the list” [Irene writes down 12 as she 
says] 12 [They loudly count together] 1 plus 2 plus 3...

74a Irene:
75 Lillian:
76 Teacher:
77 Lillian:
78 Irene:
79 Lillian:
80 Irene:
81 Lillian:

82 Irene:

Note. [...] Stands for text that I left out. ... Stands for pauses in speech or inaudible utterances. | 
Marks a point at which a current speaker’s talk is interrupted by the talk of another, with the 
interrupting talk directly beneath. Utterances written in bold are animated or considerably louder 
utterances.
a This excerpt begins at the 74lh turn in the transcript

At a moment when they had concluded that the interval was not helping (turn 

77) Irene suggested, “Why don’t we list down the numbers in a pattern?” (turn 80). On 

the videotape this utterance is unique, for it is loud and bold. In addition to interrupting 

Lillian’s utterance, it interrupts their line o f inquiry. Grammatically, the utterance is a 

question, but it comes across as a suggestion to re-write the records. It is proactive rather
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than reactive (Sfard, 2001a). It suggests a new line o f action rather than being a response 

to Lillian’s previous utterances. To the extent that an utterance evokes a changed focus it 

would be reasonable to  hypothesize that it indicates a moment of insight. Let me use 

Irene and Lillian’s written work to explore the actions that Irene’s utterance evoked. 

Figure 5 is an excerpt from what the girls wrote. The writing in Episode A was done 

before Irene’s aha utterance. The writing in Episode B follows immediately after.

Figure 5. Irene and Lillian’s written work A and B
Episode A (Lillian writes) Episode B (Irene writes)”

1- 3 = 1  + 2
2-4=44= 5 = 2  + 3
3 - 1 + 2  6 = 1 + 2  + 3
4 -  8=4=3 9 = 2  + 3 + 4
5 - 2  + 3 1 0 = 1  + 2 + 3 + 4
6 - 1 + 2  + 3 11 = 5  + 6
3-
8~ §H4g 12 = 3  + 4 + 5
9 - 2  + 3 +  4 44=15 = 1 + 2  + 3 + 4 + 5
1 0 - 1 +2  + 3 + 4 1 4 = 2  + 3 + 4 + 5

16
3+3, 5+I, 6+I, 9+l, 10+1, 11

Note. aThe writing that follows 11=5  + 6 comes moments later. I leave the space to mark this 
break.

In analyzing Episodes A and B in relation to each other, it appears that in 

Episode A the girls systematically checked the numbers from 1 to 10, striking out 

numbers that could not be arranged as a string of consecutive numbers. After approaching 

each number separately they stepped back to check for the interval in the sequence. 

Irene’s assertion came at the moment when they were attending to the intervals in the set 

{3, 5, 6, 9, 10, 11 ...} at the bottom of Episode A. It appears her utterance suggested that 

they re-write the numbers in the form shown in Episode B. I infer that Irene’s utterance 

induced a technology that shifted their attention toward attending to something else.

In Episode A, the work was organized, recorded and systematic, but the
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recording in Episode B presents some aspects that Episode A did not. As Irene re-wrote 

the sums, she hesitated at 11. After doing some silent and ungestured work they 

concluded, “It [11] can’t, let’s go on with list” (turn 82). To the extent that a different 

form of recording allowed the girls to see a different aspect of 11, as I will show in 

Chapter 7, writing was more than a representation of what they thought.

4.7A3 Joint Thinking
It is interesting that Lillian did not object to or question Irene’s idea to record

differently. Rather, she followed closely as Irene listed the numbers. One might say the 

students engaged in a jo in t project. A t these moments it was not so clear whether one of 

them was merely emulating and following the other without sharing in what the other was 

seeing or whether they were jointly engaging. When Irene hesitated before writing 11, 

Lillian also saw the need to recheck 11. This appears to be evidence that the girls were 

engaged in a jo int project in which there was a possibility of jo in t thinking. The girls 

collectively formed an image that 11 violated. It seems it is because they as a collective 

held this image that neither of them was in position instantly to get an arrangement for 

12.

EXCERPT 2
This excerpt follows two minutes after Excerpt 1. The girls had been trying to write 12 as 1 + 2 

+ ...or as 2 + 3 +.... Lillian then asked, “Isn’t it possible for us to have 1 + 2 + 3 + 1  + 2 + 3?” 

(turn 85). Without hesitation, Irene replied, “I don’t think so, because it is a string of consecutive 

numbers... like they just ...” (uses her hand to imitate an on going process). “Keep on being 

consecutive”, Lillian joined in. She then asked for the materials, which they had worked with 

earlier as they searched for geometrical arrangements of the numbers 5, 9 and 11.
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94 Lillian:
95 Lillian:

96 Irene:
97 Lillian:
98 Irene:
99 Lillian:
100 Irene:
101 Lillian:
102 Irene:

Bring the dominoes [Irene passes the dominoes over to Lillian]
Will give us 3. Plus 2... 1, 2 [She speaks loudly as she arranges the 
dominoes for 3, 5, 6, 9.]
5...6 [Irene now does the arranging.]
For 5 we have 1 plus 2 plus 3.. .Then 2 plus 3 plus 4 ...
They really... [As she slides the dominoes for 9]
They don’t have a similar...|
|Yeah|
jPictorial [Looks at dominoes arranged as shown in Figure 6]
Wait. This one the one is there, this one the one is gone (not), the next
one the one is there, this one the one has a two [Irene looks and sounds 
pleased at the beginning but halfway through she changes]

Figure 6. Arrangement of Dominoes

For a moment Irene and Lillian engaged in folding back actions. Lillian checked 

whether it was possible to arrange 12 as a double of 6 arranged as a string o f consecutive 

terms before they returned to using the dominoes. Pirie and Kieren (1994) observe that 

students usually fo ld  back to inner levels of understanding when faced with difficulty at 

an outer level. In folding back to the dominoes Irene and Lillian seemed to be, once 

again, inspecting the pictorials— the geometry o f the sums. However, it appears that this 

time they looked for something more than whether the shapes were triangles or not. Irene 

joined in with another aha utterance about how one appeared and disappeared—  “this 

one the one is there, this one the one is gone, this next one the one is there, this one the 

one has a two” (turn 102). It appears Irene was attending to the four arrangements as a 

collection, possibly with a pattern. Moreover, Irene was now able to articulate the image, 

which they had been doing all along in Episode B— they imagined all numbers could be
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arranged starting with either one or two. Were 11 and 12 exceptions, or was the image 

faulty? The girls were getting frustrated for some numbers did not fit their pattern.

4.7.4.4 Concrete Materials
The role of the dominoes as concrete materials appeared critical. W hat the

students did with the dominoes seems inextricably linked with what they thought. They 

did not use the dominoes merely to illustrate what they had already formulated. Just as 

Lillian’s understanding intertwined with Irene’s understanding, that which they both 

attended to was thoroughly tied up with the materials they used. B. Davis (1997) 

postulates that manipulatives “serve as a common place for learners to talk about ideas, 

enabling the process o f re-presentation and revision [re-vision]” (p. 365). The act of ’ 

falling back on the dominoes, with the history o f the records in episode B embodied in 

the sensibilities that they had generated, enabled them to see a different aspect in the 

materials— the pattern of the beginning digits. The domino arrangement, together with 

the writing in Episode B, presented the pattern o f 1-2-1-2-1-2-1, which broke at 11.

EXCERPT 3
This excerpt comes 15 minutes after Excerpt 2. In those 15 minutes the girls checked out possible 

ways of arranging 11. When Lillian suggested that 11 was an odd man out, Irene disagreed, 

saying, “I don’t think so because 18 starts with 3”. Now Irene was able to stress that 18 began 

with a 3. All along it appears she attended to 18 as a number that had the property without 

noticing that it did not necessarily begin with a 1 or a 2. Lillian then suggested, “So let’s find 

some of the numbers in between 11 and 18”. As they tried to find a string for 13 (beginning with 

1, 2 and then 3) they realized they had “one for 12 actually”—12 = 3 + 4 + 5 (turn 85). But they 

failed to find one for 13. As they proceeded to find an arrangement for 14, they accidentally got 

one for 15— 1 + 2 + 3 + 4 +5. Excerpt 3 occurred when, together with the teacher, they were
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trying to make sense of the pattern “one two one two one”, which breaks at 11 and 12 and then

‘comes back” at 15.

202 Lillian:
203 Irene:
204 Lillian:
205 Irene:
206 Lillian:

207 Irene:

208 Teacher:

209 Lillian:
210 Teacher:

211 Lillian:

Fifteen is.
Even fourteen is.. .fourteen is 2 plus 3 plus 4 plus 5 
If we can’t find one |
|After all...|
jWe try to find the next, and then we find that we can actually 
have one...a pattern
I guess... [She shakes her head imitating a balancing scale, as if
to weigh the idea]
You try to find...what do you begin with? ...Do you begin with 
the number and then find the pattern or you...
Yes
[...] What if you try the pattern and then find the numbers? [...]. 
But this time when you began with picking 2 plus 3 then there you 
were sure you were going to get a number [that satisfies].
By the way... [she accompanies her speech with a subtle laugh] 
Actually when you start with a pattern, obviously there will be a 
sum, and that sum will be a number. [Lillian speaks fast and 
rhythmically at the end. Irene shakes her head as if to be slowly 
coming to agreement.]
Irene, are you with us? Do you get that?
Y-e-a-h. [She nods as she picks up a paper to write something.]
Okay.
So...
Are we using the pattern first? Okay. [She mumbles, hands pen to 
Lillian who smiles back, asks for afresh sheet o f paper and writes 
as she initiates a (first-order) reflective conversation with the 
teacher]
We didn’t think we were very right for the first one

II guess what we have to...do...is we start with one number, 
like we are starting with one and add on the next, and then we 
start with 2 and keep on adding the next, and then we start with 3 
to get all the|

4.7.4.5 G rad u a l Shifts

The aha utterance in Excerpt 3 is not as seamless as the ones in Excerpts 1 and

2; it is a chain of utterances. Lillian observes, “W e try to find the next, and then we find 

that we can actually have one...” (turn 206). Whereas for an observer it m ight have been 

clear that this utterance evoked the shift towards generating the numbers by beginning 

with sums, in the moment both the teacher and Irene seemed not to catch on to Lillian’s

212 Teacher:
213 Irene:
214 Lillian:
215 Lillian:
216 Irene:

217 Lillian: 
[Five turns later] 
222 Irene:
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suggestion. W hen they came to their moments o f insight later, in both the teacher’s (turn 

208) and Irene’s (turn 222) utterances there is no acknowledgment that they were 

paraphrasing Lillian’s earlier remark. Although the shift took time to spread to Irene and 

the teacher, like the shifts in the first two excerpts, it appears to be spontaneous. This 

insight happened more at the individual rather than collective level. One might also say 

that it was a gradual shift; but are not all shifts in understanding gradual? Figure 7 shows 

the written work that corresponds to this shift. No doubt this was a shift in attention that 

the girls experienced. Witness Lillian asking for a fresh sheet of paper (turn 216).

Figure 7. Irene and Lillian’s Written W ork B & C
Episode B (Irene writes) Episode C (Lillian writes)
2 = 1 + 2  1 + 2 = 3
5 = 2 + 3 1 + 2 + 3 = 6
6 = 1 + 2 + 3 1 + 2  + 3 + 4 = 1 0
9 = 2 + 3 + 4 1 + 2  + 3 + 4 + 5 = 15
1 0 = 1 + 2  + 3 + 4 1 + 2 + 3 + 4 + 5 + 6 = 21
11 =5  + 6 1 + 2  + 3 + 4 + 5 + 6 + 7 = 28

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36
12 =3  + 4 + 5
44-15 = 1 + 2 + 3 + 4 + 5 3, 6,10,15, 21, 28, 36 ...
14 = 2 + 3 + 4 + 5
16 2 + 3 = 5

2 + 3 + 4 = 9
2 + 3 + 4 + 5 = 14 
2 + 3 + 4 + 5 + 6 = 2 0  
2 + 3 + 4 + 5 + 6 + 7 = 27 
2 + 3 + 4 + 5 + 6 + 7 + 8 = 3 5  
2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 4 4

5, 9,14, 20, 27,35,44...

3, 5,6, 9, 10, 14, 15, 21, 27, 28, 35, 36,44,
45, 54,55 ...

In Episode C, as we shall see, the girls’ actions were more systematic, easier and 

elegant. They got strings for numbers as big as 44. Also, their attention had shifted 

toward randomly generating numbers by summing consecutive natural numbers. What 

could have caused this shift is a central question in this inquiry that I return to later. For
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now, I continue illustrating how students’ actions and interactions are observable aspects 

o f their mathematical thinking-in-action.

In Episode C, the girls altered the positioning of the equals sign, wrote more and 

did not cancel work. W hy this was the case begs an explanation that I will explore in light 

of other students’ written work on this task. Also in this episode they began with the 

strings themselves. The form of writing in Episode C is different in ways that seem to 

have created space for the girls to easily generate as many numbers as possible. This 

potentially shifted their attention towards noticing that they could solve the task by 

finding a property of the numbers that did not satisfy the consecutive terms property.

By looking closely at Lillian and Irene’s written work, together with their 

utterances, I have briefly illustrated how I observed what they attended to. I have also 

noted moments o f shifts in their attention, particularly those marked by a shift in written 

records, ways o f manipulating materials and aha utterances. Some shifts are individual. 

And some are more gradual than others. It appears that what students attend to includes 

what they write, their actions, what they manipulate, and what their pair mate attends to. 

My analysis suggests the temporal, contextual and relational nature o f what students 

attend to in mathematical tasks. It also alludes to the possibility of joint attention and the 

radical role of re-presentations. To escape the mentalists’ narrow view about thought, I 

had to conceive the mind in new terms. Conceiving the mind in broader terms as a 

complex organization with novel properties, Kieren (1992) postulates that a person or 

community’s thoughts usually manifest themselves in the world that the person brings 

forth. To Bruner (1996), “Mind is an extension of the hands and tools that you use and of 

the jobs to which you apply them” (p. 151). Thus, we may seek to observe students’
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works and expressions hermeneutically as the deep sediments of their (collective as well 

as individual) lives that emerge from lived experience (D. G. Smith, 1991). In the next 

chapter, I explore what such a hermeneutic stance for this study might be.
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5. RESEARCH METHODOLOGIES

5.1 What is Research?

As I prepared the research proposal I found m yself wondering about what it 

means to do research. W as research just a systematic investigation that discovers facts? In 

proposing to study about mathematical thinking, was I setting out to contribute 

generalizable knowledge to the field? Although this is how some fields define research, I 

gradually found m yself uncomfortable with the fmdings-reporting  metaphor. I take on the 

approach to research as, literally, to research  and re-look.

Re-observing suggests that as a researcher I may not just be looking to establish 

facts but may be re-searching more closely that which I already wonder about. Re

looking in hermeneutics is aimed at finding alternate ways of interpreting a phenomenon. 

In second-order cybernetic terms, it is to observe observing in order to illuminate the 

conditions for prior observations. It is this generative re-searching, the interpretive 

orientation, that I explore as the investigative orientation for my study.

The basic aim of my study is to gain insight into the nature of students’ 

mathematical thinking. I seek alternate ways in which this phenomenon— that we as 

teachers, educators and researchers always find ourselves with— can be re-interpreted. In 

enactivist theory, there is no place where objects can appear (or be discovered) apart from 

where there is an observer who observes, describes or explains them. It is in the history of 

describing and making distinctions that both the object of observation and the subject 

who observes already dwell (Crusius, 1991; Maturana & Varela 1987/1992).

This study requires a stance that will investigate mathematical thinking not as an 

objective property that can be ascribed to an individual, warranted by method and
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decided in general, but rather as a contingent and fluid accomplishment, which is enacted 

in doing (Jardine, 1998). In M aturana’s (1998a, 1988b) theory of observation, research 

requires the researcher to take the stance of objectivity-in-parenthesis. It is particularly 

important that I acknowledge that my own understandings and prior involvements as a 

student and teacher are the starting points of observation, the grounds o f interpretation of 

students’ learning. Because this study does not seek to establish objective facts or make 

observerless observations, it is an interpretive study.

Dissertation Landscape Forming

Part III
D esign  and M eth o do lo g i

R esearch  Structure

Interp retive M o m e nts

Interprelative Inquiry.

W hat is R esearch

Chapter s  
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5.2 Interpretive Inquiry

Etymologically, interpretation is deliberate construal, intended to pull together 

different categories o f  experience (Oxford English Dictionary, 1989). It involves 

realizing (making real) the meaning of something, often in light o f one’s own 

circumstances. Thus an interpretation may say as much about the interpreter, his world 

and the conditions o f interpretation as it does about the interpreted. Unlike analytic 

inquiry, interpretive inquiry never seeks to discover facts that can be verified to exist “out 

there” (Crusius, 1991). Even in the natural sciences, where explanation by pure reason 

has reigned for a long time, aspirations for a single refined and certain interpretation are 

being given up as undesirable ideals (Kuhn, 1991). Hiley, Bohman and Shusterman 

(1991) observe that in both the human and natural sciences there is a gradual shift from 

positivism toward a view in which observations are not considered to be neutral, 

empirical data are not considered independent of theoretical frameworks, and the ideal of 

a univocal language and the belief in the rational progress o f science are questioned. 

Attempts are made to investigate complex human phenomena in their complexity without 

desiring to control them (B. Davis et al., 1996).

To M aturana (2000), even the hard scientific laws o f  nature are observer 

constructions. “Anything said is said by an observer” to another observer who may be 

observing him or herself (von Foerster, 2003, p. 283). This has a significant theoretical 

impact. No longer are laws seen as objective phenomena but they are understood as 

human observations. As Maturana (1987, 2000) tells us, scientists generate the laws of 

nature. The choice to see research as interpretation rather than discovery is, for Maturana 

(1988a), an emotional choice. To Rorty (1991), it is a recontextualization o f the desire to
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know essences. To Varela (1999a), it is an ethical choice. Yet for von Foerster (2003), it 

is taking responsibility for our actions and interpretations.

5.2.1 The Hermeneutic Orientation

The hermeneutic orientation arose as an interpretation of historically distant 

texts, but is now increasingly conceived as the theory and practice of interpretation of 

texts and textures of life (Jardine, 1998). Hermeneutics derives from Hermes, the 

deliverer of messages in the Greek Pantheon (D. G. Smith, 1991; van Manen,

1988/1998). J. K. Smith (1993) describes hermeneutics as a philosophy of messages and 

meaning for all human expression. The interpretive problems we face in our attempts to 

understand historically distant texts and cultures also appear in our attempts to understand 

our current and intimate cultures, practices, relationships and lives.

The hermeneutic stance sees interpretation as the human mode of being, and 

therefore all human endeavors including theories are interpretive. Ellis (1998a) postulates 

that the dynamics o f interpretation constitute our very mode of being; we are continually 

interpreting events, people and objects in order to be in ways that make sense. On a 

moment-to-moment basis as we interpret the world we change it (Osberg & Biesta,

2003). By this reasoning, the ecological complexity stance that guides my study may be 

viewed as a hermeneutical endeavor that seeks to understand cognition so that the 

education community can go on living their lives to enhance students’ learning.

Ellis (1998a, 1998b) maintains that a hermeneutical study begins with an entry 

question, which is a practical concern, an openness to behold life in its wholeness. In 

M aturana’s (1991, 2000) terms, inquiry is evoked by the emotion of curiosity. As such, 

interpretive inquiry focuses on understanding concrete vicissitudes of human activity. It
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is when a researcher brings concerned engagement and genuine wonder to the problem 

that the creativity required for a fruitful inquiry is generated. W e engage in the inquiry to 

unearth, or should we say, to enact “alternate ways in which a phenomenon can be 

understood” (Misgeld & Jardine, 1989, p. 260).

Further, hermeneutic research is guided by an awareness of the intricacy of the 

relation between the researched and the researcher. Both parties engage in a conversation 

that Jardine (1998) calls the interplay o f lives. D. G. Smith (1991) observes, “[MJeaning 

is always arrived at referentially and relationally rather than absolutely” (p. 197). It is at 

the moment of belonging together of the researchers and the researched that research 

begins (Misgeld & Jardine, 1989). Research is oriented toward enacting conversations, 

fusing o f each other’s horizons and creating mutual understanding. In ecological 

complexity terms it is about bringing forth a collective, researchers-researched system. 

Therefore, a hermeneutic imagination involves a care and concern for the researched, 

without which the inquiry would be different, if not impossible. As the researcher 

recursively interacts with the researched and with the other researchers they have the 

potential to enact collective and emergent phenomena as well as a world of research 

significance.

Interpretive inquiry attempts to be self-conscious as a researcher is open to 

transformation. To use enactivist language, a question that engages us engages our beings 

and worlds. As we reflect on the conditions of earlier interpretation we rise to the level of 

collective self-consciousness. From a hermeneutic stance, understanding cannot be 

separated from self-understanding; hermeneutics is pedagogical as it leads to a deeper 

understanding of ourselves, albeit in relation to others.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.2.2 Central Tenets o f  Hermeneutics and the Hermeneutic Circle

Educational researchers have noted three central themes in hermeneutics. First, 

interpretation is a creative activity. Hermeneutics is always more about creating meaning 

(Ellis, 1998b; D. G. Smith, 1991). Second, hermeneutics insists on the articulation 

between the parts and the whole, between the general and the particular, the emergent and 

the agents in the development of understanding. The key role o f language and tradition in 

interpretation is a third central theme of hermeneutics. Language and tradition frame our 

interpretation. They are considered “double-edged” tools, as they both enable and 

constrain our interpretations.

The hermeneutic emphasis on language finds resonance in the enactivism work 

of M aturana and Varela (1992) which stresses that language is not a set o f words used to 

designate things. Rather, as I will demonstrate in Chapter 9, we human beings happen in 

language and it is in languaging— socially acting and interacting— that we bring forth 

human worlds. D. G. Smith (1991) and Gallagher (1992) contend that it is crucial for a 

researcher to develop a deep attentiveness to language itself, to notice how it is used, van 

Manen (1988/1998) observes that it helps to listen to the language that speaks through us. 

W e may search for etymological sources of words, examine idiomatic phrases and reflect 

on the sources of the common metaphors we use to “reflectively hold onto verbal 

manifestations that appear to possess interpretive significance” (p. 62).

In ontological hermeneutics it is acknowledged that what one already knows 

constrains what one can understand. Put differently, prior knowledge and experience are 

conditions of possibility for what the researcher can know. Thus the energy of the 

hermeneutic is in its acceptance o f the interconnectedness between an interpretation and
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its basis of interpretation. Essentially, the researcher’s practical understanding is the 

starting place. It configures the conditional probabilities for further observations. Packer 

and Addison (1989) define interpretation as the “working out of possibilities that have 

become apparent in a preliminary, dim understanding o f events” (p. 277).

Interpretation involves reflecting on ways of understanding and searching the 

assumptions that have been taken for granted. In von Foerster’s (2003) terms, it is 

understanding understanding— a second-order observation— of not only the problem but 

also of the looking itself. Observing observing involves an examination of what the 

grounds of interpretation and what the observing systems were in prior understandings. 

W hile interpreting, we read and re-read the text for the possibilities of understanding that 

it evokes. Hermeneutists deliberately (as far as it is possible) shift perspectives and call 

into question earlier readings. Read in a back and forth manner, outward and inward 

manner, the given reading and the evaluative reading together frame what is referred to as 

the hermeneutic cycle. In second order cybernetic terms, the interpretive circle is a 

recursion between first order and second order observation. It is an attempt to illuminate 

the blind spots, to see through the myths and assumptions o f earlier observations.

The concept o f the hermeneutic circle illustrates the circularity of inquiry. Our 

pre-understandings affect what we know and are in turn re-configured by what we come 

to know. This circularity is not considered a tautology in hermeneutics. Rather, as is the 

case with theories of observation, it is essential. It is a creative circle rather than a vicious 

cycle. Because it does not leave earlier observations unchanged, it is a recursive 

elaboration, for example, of the traditions that we are thrown into (B. Davis, 2002).;s In

18 For Maturana (2000) what constitutes a recursion “is the coupling o f  the cyclical dynam ics from  
recurrent interactions...w ith the linear dynam ics constituted by the disp lacem ent o f ’ understanding and
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the forw ard arc or first-order observing, a researcher approaches a phenomenon with 

some understandings that form the fore-structure o f the inquiry. In turn, the researcher’s 

understanding is suddenly enriched by the phenomenon. Moreover, as a researcher 

engages with, or is engaged by, that which comes to perturb him or her, novel 

understandings are generated.

Equally important in the hermeneutical circle is the backward arc of the circle, 

the loop that is marked by a deliberate and radical re-reading of the text. It is in this 

backward arc that uncoverings, to use a depth metaphor, the different ways of 

understanding and the unexpected insights are likely to happen. Also called evaluation, 

the backward arc entails an attempt to see what went unseen in the initial interpretation of 

the forward arc. In the evaluative stance, empirical materials are re-examined for 

contradictions and inconsistencies, interpretations are checked against counter-examples 

and probable counter-interpretation, and the conceptual framework is read against 

alternative frameworks. The backward arc is where interpretive re-search begins. It 

involves reflecting on the basis and usefulness of observations made.

5.2.3 Recursion in the Observation Circle

A comparison can be made between the recursion in the hermeneutic circle and 

orders o f observation studied in cybernetics. Consider the claim of cybernetics that there 

are (at least) three orders of observation which create a recursively layered interpretation: 

zero-order, first-order and second-order.

At the level o f the zero-order observing, observers act. Zero-order cybernetics is 

when activity becom es structured, when purposeful behaviour emerges. But one does not

relations that occurs in each interaction (p. 463). R ecursive elaboration is an elaboration that inevitably 
changes the original understanding and also sprouts novel understandings.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ask about the why and the how  of this behaviour. In this study, when learners or 

researchers act mathematically but do not seek to comprehend the nature of their 

mathematical thinking, they are engaging in zero-order observation. They just live in 

their actions.

First-order observing involves observing the what, how or why of behaviours. 

For instance, the education community studies the characteristics o f learning behaviours. 

It is in first-order cybernetics that one reflects on how students think mathematically. 

First-order observation leads to the development of notions like stages and modes of 

mathematical thinking. In first-order observation researchers observe mathematical 

thinking as a phenomenon with fixed properties.

Just like scientific observations, first-order observation is motivated by the 

desire to describe and to explain. However, every observation at this level is not aware of 

itself and the distinctions it makes. It is not even aware that it is making distinctions. 

Thus, Luhman (2002a, 2002b) and von Foerster (2003) argue that there is a need for 

observation to ascend above itself and attempt to interrogate its conditions and to reflect 

on the consequences of its observations. Since, as we shall see later, observations are 

operations that shape the world, then people who build theories about mathematical 

thinking ought to let the underlying ways of talking about aspects such as representations, 

modes, styles and thinking processes become explicit. Second-order observation reflects 

about these mechanisms that have been presumed to generate mathematical behaviour as 

well as on the properties of the observing system. The researcher as the observer re-enters 

the form which he or she distinguishes (Kauffman, 200; Varela, 1974).

Second-order cybernetic observing deals with observing observing (von Foerster
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(1992, 2003). We observe how prior distinctions and ways of researching were enacted. 

We illuminate the conditions and blind spots of first-order constructions. For instance, we 

ask: What is the motivation behind distinctions such as phases and stages of 

mathematical thinking? Why are the notions of thinking, objects and imagery used in the 

first place? Why not use notions o f patterns in behavior and transformation in worlds, for 

instance? In what ways do current distinctions such as cognitive representations and 

obstacles influence our actions and world? In second-order observation, which appears to 

include the hermeneutic backward arc, the observer stipulates his or her own conditions 

and properties of observing, or those o f another observing system. Second-order 

observation is about illuminating observing systems and seeking useful ones. Whereas in 

first-order cybernetics researchers just explain and solve problems in second-order 

cybernetics the motivations to solving problems and the way the solution might transform 

the world are reflected upon. In Chapter 3 , 1 reflected upon the motivations behind 

current research on mathematical thinking.

Von Foerster (2003) explains that if we enter into third-order cybernetics by 

reflecting upon our reflections we do not create a new order of observation, because by 

moving into second-order observation we have ascended into a circle that closes upon 

itself. In theories o f  distinction, as I will show, one is no longer an independent observer 

who watches the world go by, but a participant in the circularity o f human conditions.

5.2.4 Dynamic Landscapes: A Metaphor fo r  Interpretive Research

During interpretive analysis (first- and second-order observing), research 

questions are re-framed, one’s understanding changes and a deeper relationship with the 

setting and participants evolves. The spiral used in hermeneutic research might be better
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illustrated by a non-Euclidean geometry o f  fractals  or better still by the geographical 

metaphor o f landscapes. Such metaphors offer a more natural and continually changing 

form. Consider the hermeneutic circle. Through hermeneutic questioning a research 

landscape forms and through the process o f layered interpretations that research 

landscape is gradually transformed.

The metaphor of landscapes offers us some interesting interpretive possibilities. 

Firstly, it evokes images of valleys and hills of varied contours. Landscapes are always in 

the process of transformation both through gradual changes and radical alterations. 

Landscapes have similar detail in close up and on the larger scale. Mathematically 

speaking, landscapes illustrate fractal form, in contrast to planes, lines, circles and spirals 

which are understood as Euclidean. Euclidean surfaces and shapes are closed and regular; 

fractals like landscapes are irregular and open.

There are many factors in place that contribute to the transformation of a 

landscape: some external and others belonging to the topography and geology of the 

landscape itself. The hermeneutic research process could be visualized as a landscape 

forming and being transformed. At whatever stage of the research, there will be widening 

basins, smoothened valleys, raised ridges and the like. The space o f the possible will be 

in continual fractal change. This landscape metaphor highlights the phenomena of 

interdependency among the aspects of research, the non-linearity of the process, the 

influence of community, the inbuilt temporal dimension, and the relative stability as well 

as the gradual and sometimes sudden changes. More importantly, the metaphor 

emphasizes that the scale of observing research themes can be local or global and that 

there is a benefit in its being both. Although we can learn some things about a landscape
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by observing/studying the pebbles, and the rushing water, we must step back to see the 

river that has (trans)formed the valley.

Each valley in the research landscape represents a different attempt to get close 

to what interests a researcher or to what he or she hopes to understand. In complexity 

research, what one hopes to know changes during the inquiry process, hence a 

recalibration in the research landscape. It is a dynamic landscape whose basins o f varied 

sizes can be seen as dynamical attractors o f research themes and understanding. With 

time, interaction and action the valleys o f understanding deepen and widen. In addition, 

there is the possibility of novel and imaginary experiences that might arise globally at 

critical moments, from catastrophic changes in the landscape. It is a multithreaded and 

dynamic landscape formed in doing and living interpretive research.

5.2.5 The Role o f Complexity Theoty in Interpretive Research

In interpretive inquiry one may adopt a theory as a functional tool to assist in 

deepening understanding. One may choose a model to set boundaries or to reduce 

complexity so that they can understand better (Osberg & Biesta, 2003). As with 

Freem an’s (1999) studies, interpretive inquiry requires that the theories, tools of analysis 

and observational models as well as the spatial, technical and temporal scale of 

observation of the theoretical framework be suitable for the problem under study.19

In my study, complexity theories function to constitute ecological metaphors, 

shapes and figures for understanding learning. Those metaphors, however, are not mirror

19 Studies in neuro-physiology o f  animals and etym ological studies o f  the behavioral eco logy  o f  ants 
illustrate w ell that an adequate scale o f observation counts. For exam ple, a study o f  activities o f  single 
neurons in the brain is inadequate in comparison with the study o f  neural assem blies that transiently link 
m ultiple brain regions and areas during activity (Lutz & Thom pson, 2003; Freeman, 1991). Similarly, 
observing and thinking about individual ants or even  surveying given co lon ies o f  ants for days is not 
adequate for understanding the organization o f  ant colon ies w hich cycle through infancy, adolescence and 
maturity in up to fifteen years (Johnson, 2001).
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images o f reality. Hermeneutically, theory as a critical reflection (a higher order 

observation) in practice transforms reality. Moreover, the macro-theories—the culturally 

determined ways o f seeing— the folk theories and technologies o f our times tacitly frame 

how we perceive. For this reason, D. G. Smith (1991) maintains that macro paradigms 

too should be reflexively worked through to deepen our sense of what is at work in our 

interpretations. Smith further suggests that in evaluating our interpretations we should not 

only rely “on the more conventional perhaps-on-the-verge-of-exhaustion grand 

narratives... but also, importantly, on the more suffocated narratives o f our time” (p. 199). 

The grand narrative for construing mathematical thinking, as I expressed in Chapters 2 

and 3, seems to be the psychological view of thinking as the effortful processing of 

information. Emerging narratives include the discursive view of thinking as 

communication (Lerman, 2001; Sfard, 2000a, 2001; Vygotsky, 1978). Also, there are 

grand and em erging narratives about data-analysis procedures.

5.2.6 Nature o f  Data, Analysis, Writing and Evaluation

In hermeneutic (interpretive) research, data collection and analysis procedures, 

adapt and co-evolve, although conceptualized at the beginning. As the study proceeds and 

the researcher reflects on the process, a detailed methodology is laid down. Data analysis 

is ongoing; even the writing, as a vital part of the research, does not wait until the study 

ends.

In analytic studies, writing usually comes at the end of the inquiry as the 

researcher sets out to report the findings. However, in interpretive inquiry the “research 

process is itself practically inseparable from the writing process” (van Manen,

1988/1998, p. 167). In complexity terms, writing, data collections, reviewing literature,
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data analysis, and the like are coherent forms, agents from which novel interpretations 

surface. We at most times write our way into data analysis rather than writing results 

from analyzed data. One may make field notes, mark, write and rewrite micro research 

reports around events o f interest while paying incredible attention to the emergent themes 

that present themselves.

This suggests that a research narrative usually rolls up in a manner related to the 

question and the research orientation. In any interpretive text, distinct parts— the 

chapters, structure and themes— and the whole pattern— research tone and transformation 

triggers— are present. The autobiographical material that predisposed interpretations is as 

im portant as the literature related to the question. Researchers holistically trace the 

multithreaded paths they have laid, the transformations that the researcher and the 

researched underwent during the study (D. G. Smith, 1991). That being said, Ellis (2001) 

and van Manen (1988/1998) caution that a hermeneutic text is not a compilation of these 

presences— parts and the whole, the autobiography, journey and more. It is a well-argued 

essay with the researcher’s interpretations together with illustrative cases offered to the 

reader. The essay is offered to occasion the collective mind.

Appropriately, to evaluate an interpretive account “one should ask whether the

concern that motivated the inquiry has been advanced” (Ellis, 1998b, p. 20). Empiricist

legacies of validity and technical rigor give way to issues o f viability and convergence. J.

K. Smith (1993) observes that criteria for evaluation of an interpretive work are

conceptualized in ethical and practical terms rather than in epistemological terms. To

evaluate the adequacy o f an account, Ellis (1998b) observes, hermeneutists ask,

“ Is it plausible... ? Does it fit with other material we know? Does it have power to 
change practice? Has the researcher’s understanding been transformed? Has a
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solution been uncovered? Have new sensibilities been opened up?” (p. 30)

In saying that a particular study is “good or “not good” research, we find 

ourselves once again making a claim on the criteria for evaluating research. In 

hermeneutics the criteria themselves co-evolve with adequate studies (Gallagher, 1992; J. 

K. Smith, 1993).

In complexity research terms, in addition to issues o f  plausibility and fitness, a 

researcher might ask whether the study is coherent, and whether it is an agent in the 

emergence of novel and grander understandings. Was it done on the appropriate scale and 

w ith adequate tools? Did it expand the space o f the possible for research, teaching and 

learning? Theories and models generated by research are not adequate only when they fit 

w ith other existing theories (though that could be the case). Researchers might want to 

evaluate the models and conclusions for their functionality: D o they help those concerned 

to (re)negotiate their worlds (Osberg & Biesta, 2003)? Are they cast in pragmatic and 

temporal terms rather than in terms of truths? In a word, do they embrace complexity?

5.3 The Research Structure

As I write this research narrative I have a concern that labeling the phases in the 

study as literature review, research design, theoretical framework and so on will evoke 

technical tendencies o f looking at each phase as a separate entity. In Chapter 4 , 1 dealt 

with two tensions that I face: (a) maintaining the interrelations among research question, 

literature and orientation in a linear text; (b) maintaining the openness required by 

interpretive studies of complex phenomena. In this chapter, I deal with the third tension: 

“How can I work within distinctions such as collecting data, and designing and piloting a 

study while embracing complexity?” I resolve this tension by locating my study in the

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



traditions o f educational research and by introducing an important dimension of my 

study— interpretive moments.

5.3.1 Educational Research Traditions

In spite of my critique of the positivistic research paradigm, I have been 

acculturated in this paradigm, which continues to dominate educational research. Its 

legacies continue to shape my knowing. Gallagher (1992) observed that we cannot escape 

traditions, even those that hinder our understanding. Bruner (1996) and Merleau-Ponty 

(1964) say we use them instead. It is through hermeneutical reflection and second order 

observation that we consciously work at transforming and transcending ourselves and the 

limits of our traditions toward the generative.

M y research question is qualitative rather than quantitative. How do students, on 

a moment-to-moment basis, bring forth worlds of mathematical significance and 

relevance in which they find themselves thinking mathematically? In order to address the 

larger concern, I specifically focus on a phenomenon that cuts across knowing bodies. I 

investigate students’ mathematical attentiveness.

Creswell (1998) suggests that for “how” questions qualitative methods have a 

distinct advantage. M y questions require both a design and an attitude that allows for an 

in-depth exploration of students attention in its messiness and interconnectedness. In 

terms of the anticipated outcomes of the research, the study could be viewed as a second 

order, meta-descriptive project, rather than an evaluation project (Peshkin, 1993).

M errian (1998) classifies my starting place for the inquiry as basic (generic) 

qualitative research. She maintains that basic qualitative studies exemplify the 

characteristics o f naturalistic studies, and those studies
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[d]o not focus on culture or build a grounded theory; nor are they intensive case 
studies of a single unit or a bounded system. Rather researchers who conduct 
these studies...seek to...understand a phenomenon, (p. 11)

According to Bogdan and Biklen (1992), and Merrian (1998), qualitative studies 

have the researcher as the key instrument. They usually involve natural settings. Their 

empirical material and narratives are richly descriptive, and they tend to analyze data 

inductively. Denzin and Lincoln (1994) posit that qualitative studies may involve a wide 

repertoire of methods and perspectives, with the aim of deeply studying the phenomenon.

My main focus has been re-framed to seek insight into

1. How do students attend as they engage in mathematical tasks?

2. In what ways do students as embodied, embedded and extended agents 

attend?

3. In what ways do secondary school students await and dwell with 

mathematical concepts?

Had I found myself in subsequent loops of the inquiry analyzing narratives of 

students’ experiences o f how they attend and had I had the narrative inquiry skills, this 

study would have been a narrative inquiry. A phenomenological orientation to writing 

has in many respects been a more workable approach to this inquiry. Generally, to the 

extent that I have sought to reflect on students’ mathematical thinking a lived 

phenomenon and have recognized phenomenological sub-questions and sources when 

they emerged, the study is a hermeneutical phenomenology study (van Manen, 

1988/1998). Issues o f perception and thinking lend themselves to neuro-physiological 

and philosophical research on perception; this study draws heavily from these fields. As a 

result, I have found m yself with what Denzin and Lincoln (1994) named a bricolage
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methodology. Quantitative methods were never among my cartography, though some 

mathematical theories o f dynamical and stochastic processes provided metaphorical tools 

to think about non-deterministic complex phenomena. Statistical and analytic methods 

were not evoked— not even in efforts to create a thicker description.

Furthermore, because I specifically worked with a group of junior high school 

students, I initially understood my study as a set of case studies of students’ mathematical 

thinking (Merrian, 1998). According to Confrey (1994b), my study might be viewed as a 

mathematics teaching experiment. Confrey, as well as Steffe and Kieren (1994), explain 

that unlike clinical interviews, teaching interviews extend beyond a single episode and 

emphasize the student’s activity to facilitate an understanding of children’s 

conceptualizations. My study, however, is not a psychological clinical interview  as 

described by Ginsburg (1981). Even though I had students engage in mathematical tasks, 

the study was not problem-solving research in the mathematical research gist.

The co-emergent nature of interpretive projects requires flexibility on the side of 

the researcher. Just like life or adaptation, when proposing a study we do not know how 

the structure will evolve. It is in doing the study that we happen to choose directions, 

explore techniques and identify subsequent data sources, thus laying down a detailed 

design of the study. Educated fore-structuring and entry design are required at the onset. 

For that reason, instead o f thinking in terms o f a pre-specified research design, as I 

illustrated in Chapter 4 , 1 now look back on the proposed design as a research structure. 

This explains the title of this subsection. I entitled it “research structure” because for me 

it evokes the organic structure in addition to the pre-planned (modem architectural) 

structure. A biological structure embraces emergent and spontaneous forms in addition to

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the pre-determined forms. With time I began to envision general principles encompassing 

a “myriad of potentialities, one of which, [as we shall see,] will be pulled into 

existence— but only by living through the event” (B. Davis & Sumara, 2000, p. 842). 

Additional to the co-emergent research structure are the micro emergent structures that 

arose as moments o f interest. These micro-structures sparked off micro-inquiries— fractal 

parts. It is the interpretive moments that sustained a non-technical stance to inquiry in this 

study. Interpretive moments open up possibilities for novel forms that might arise while 

working within the structures that help organize the study and writing.

5.4 Interpretive Moments: The Focal Sites in the Study

Before I proceed to the next chapter, let me introduce the notion of interpretive 

moments by reflecting on the example I narrated at the beginning o f this writing.

In the study, I specifically worked with moments that happened to be salient for 

me. It is these moments that I took as micro-phenomena under study. The moments at 

times arose as questions, hunches or moments of surprise or discomfort. They seemed to 

have been the relevant moments, at particular moment. For example, as I read, a 

researcher’s remarks would strike me as interesting, or as I participated with students I 

might have noticed that different students were approaching the same exercise 

differently. Most o f these moments were salient only for a short time. The majority of 

them were subtle, and some of them were only observable in hindsight. I had to learn to 

listen for them (B. Davis, 1996) and to remark on them (Mason, 1994).

B. Davis (1994) refers to interpretive moments as watershed moments. He says 

that unlike orchestrated aspects of research, such moments are the day-to-day experiences 

that are part of the research conversation. Jardine (1998) refers to them as fecund
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individual cases. He observes that such cases are generative in gathering data, and in 

occasioning interpretations. In the Discipline o f  Noticing, Mason (1989, 2002) refers to 

them as moments o f  choice. Elsewhere in the literature they have been referred to as 

critical events (Confrey, 1998).

Mason (1994) observes that noticing is what we do all the time, but to engage in 

a conversation with and about a moment o f  noticing requires a deliberate choice on the 

part o f the researcher. M ason developed the discipline of noticing as a practice for 

working with and dwelling with moments o f noticing. Although most interpretive 

moments in the study were unformulated, for those I could mark so as to contemplate and 

record them, interpretive moments became the data that I gathered (as well as created). 

They were micro-data that I analyzed and made further inquiries about— micro-analyses 

and -inquiries—during the past four or so years.

The practice that I adopted in working with these moments drew from 

phenomenological inquiry and was methodically informed by the discipline of noticing. 

To mark the moments when they happened, I collected artifacts and wrote brief-but-vivid 

vignettes about what engaged me. The anecdotes were a lived description of my 

experiences o f what I both observed and participated in. In M ason’s (2003) terms, the 

vignettes, such as the ones I offered in Chapter 4, were the accounts-of the moment. 

Together with the vignettes, I also recorded my reflections or justifications of what I 

thought was going on in the moment, the accounts-for. It is the accounts-of and the 

immediate accounts-for that I began from and recursively returned to during the analysis. 

The practice o f working with interpretive moments was both anticipated and actualized in 

reading and re-reading related literature, in participating in varied research sites, in
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sharing interpretations, and in writing and re-writing micro-narratives. In the next 

section, by returning to Fraction Kit anecdote, I elaborate how generative interpretive 

moments can be. I offered other examples from the extra curricular project while looking 

at the lessons learned from the preliminary study in Chapter 4.

5.4.1 Fraction Kit Activity: An Example o f  an Interpretive Moment 

The story at the beginning of Chapter 1 is a description o f an interpretive 

moment— vivid accounts-of followed by scanty accounts-for. It happened in a lesson in 

which 27 students were exploring the sizes of Fraction Kit pieces. As a research assistant, 

I participated in different ways. I observed what the students were doing, and I assisted a 

student, Peter, who remarked that his kit was missing one pink piece. It was then that I 

observed that one student had her pieces neatly stacked at the com er o f her desk. I was 

surprised that she would consider stacking the pieces before figuring out their sizes, for 

that is what I thought she was doing. At first I pre-judged it as a “girl thing” of liking to 

organize and color work. Little did I know the stacking of pieces was more fundamental. 

As I walked around the class I noticed that some other students, including “rough” boys, 

were engaging in the task in an equally orderly way; they finished the task without 

covering a larger piece. Because this new  approach of stacking did not involve covering, I 

began to consider it as a distinct approach. But was the stacking approach adequate 

(rather than optimal), and in what way? I continued to wonder.

5.4.1.1 Mathematical Methods or Strategies
A major contribution of radical constructivist research is its support for diversity

among students’ interpretations (Confrey, 1994a; Steffe & W iegel, 1992). Constructivist 

teachers offer opportunities for students to use multiple approaches in solving problems
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and making meaning (Ball, 1990; Ball & Bass, 2000). For instance, teachers may teach 

fractions using measuring cups, paper pieces, fraction blocks or other materials. But, are 

different forms o f manipulative materials (or their symbolic records) merely varied 

versions of a concept?

Tony and Ronald, junior high student participants, as a pair engaged in the 

Consecutive Terms tasks. Tony used bingo counters whereas Ronald just worked with 

number symbols. Ronald worked with bigger numbers than Tony. When asked to explain 

his strategy, Ronald commented, “Which is like the same as the counters, pretty much, 

...except he [Tony] worked with bigger numbers” .

In such an environment it is crucial to ask; In what ways was working with 

counters and with smaller numbers the same as working with num ber symbols and bigger 

numbers? In what ways are any two methods or concrete, pictorial or symbolic 

representations similar? Thinking in terms of the Fraction Kit task, in what ways was the 

stacking method  an alternative method to the covering method? The stacking approach 

was a “less traditional other” , but was it less significant? In what ways did the students 

choose one approach over the other? Did the two methods require as well as generate 

similar mathematical experiences?

An apparent difference between the two approaches is that when using the

stacking approach, a student was likely to say that each pink piece was a _L instead of J_
23 24

if he or she, like Peter, saw only 23 instead of 24 pink pieces. However, there might be 

essential differences between the two approaches. Indeed, in what ways can we say a 

student who stacked the fraction pieces into piles and one who covered a larger sheet 

undertook the same sensory-motor, perceptual, conceptual, linguistic and form al tasks?
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5.4.1.2 Embodied Tasks: Analyzing Tasks
In some sense the differences in the stacking and covering methods are

differences in how students attended. For instance, as the students explored their kits, to 

some students the task-at-hand happened to be stacking. These students deeply chose to 

perceive the pieces as a set of discrete objects not so different from counting stones. The 

area of the pieces was a background attribute against which color was stressed. Hence, by 

stacking, a student was likely to have attended differently. In attending more to the 

numerical aspects of the pieces the students who stacked are likely to have overlooked 

the geometrical aspects— the area of the whole covered by any single piece. 

Consequently, the students who used the stacking approach brought forth a task different 

from (yet compatible with) the task intended by the teacher.

To figure out the size of pink pieces students asked, “Out of how many total 

pink pieces in the kit is a single pink piece?” They did not ask, “W hat portion (how 

much) o f the whole paper does a single pink piece cover?” The former question seems 

more likely to evoke a chain of thought from numerical aspects to stacking, to 

multiplicative ratios, and finally to a multiplicative relationship. By contrast, covering 

evokes portion of a whole, followed by an additive process and comparing o f fraction 

sizes (Kieren, 1990). As a result, it is likely that different imaginations, visualizations and 

metaphors were called forth for students who used the stacking approach. In an ongoing 

cognitive process the students brought forth an embodied task (Gordon-Calvert, 2001).

Kieren, Pirie and Gordon-Calvert (1999), for instance, have observed that when

(ej/), this is not

a reading error as it might appear on the surface. They explain that it is a conceptual 

issue, and eights is a legitimate label in a specific transient fractional understanding. The
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setting of paper folding stresses plurality of fraction pieces— 2 halves, 3 thirds, 4 fourths

and so on. Students might shade or tear off small pieces, say two thirds, but still these are

two objects of the kind third. W hen eight equal parts are shared among four children,

each of them gets two “one-eights” pieces (not so much a quarter of the cake)—adjective

is two, which modifies the idiosyncratic noun “one-eights” . It is the number of pieces— 2

pieces— rather than the size of the piece, plurality that is the substantial concern in a

folding-based fractional world. Children at this moment in learning fractions might write

four eights as four-one-eights 4 i / .  And it might follow that 6 y — six-one-eights— is the
/  8 /8

same amount as 3 y — three-one-fours. Kieren observed the same children when they

operated with the full Fraction Kit. The students then saw fractions differently with the 

numerators as modifiers o f denominators. They read^/ as six eighths, for in this fractional

setting, the size of a fraction piece was stressed against the background of multiplicity of 

pieces.

Since students worked independently on this seatwork activity, no verbal 

expressions are available for conversational analysis. Nevertheless, it is discernible that 

the sensory-motor acts, perceptual images and conceptual structures of the students who 

saw the pieces as discrete numerical models were different from those who saw the 

pieces as continuous geometrical models. For instance, the students who used the 

covering approach are likely to have developed an image of fractions as combinable, 

additive quantities, an idea that was required for the task that followed. Yet for the 

students who stacked, it appears relations across sets were most likely played down (e.g.
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yellow pieces (quarters) had no immediate relation with red pieces (halves)).20

At one level o f description— the level of the task posed by the teacher— all the 

students may have appeared to be solving the same task (figuring out the sizes o f the 

pieces). They even got the same values for the piece sizes. At this level, as I will expand 

later, we can examine what students attended to by examining properties o f the 

mathematical task, as if the properties existed without the problem solver. Task analyses 

omit another level o f description, in which particular students dependent on their histories 

and contexts bring forth relevant issues to be addressed. It appears necessary to analyze 

fractional worlds that students enact in interactions, as I am doing in this section. Just 

because the mathematical analysis is inadequate does not mean it is not necessary. On the 

contrary, it is a preliminary step in adopting tasks that are appropriate. Nonetheless, a 

task analysis ought to be interpretive. The objects, in this case the fractions, it infers are 

not objects o f a transcendent task, but are dependent on students’ activities.

A task analysis might not explain why different students enacted a different 

Fraction Kit task. Thus, to ask about “what students attend to in mathematical tasks” is 

not merely to ask about “W hat there is in a task to be attended to?” In a way it is to ask, 

“What are the students attuned to?” What choices and possibilities are allowed by their 

histories and structures, including external structures? As we shall see in Chapter 8, it is 

to ask about students’ experiences, their biological nature, traditions, pre-judgments, 

purposes and hopes, as well as language and cognitive domains they constitute. Indeed 

focusing on the ways students attend as a means to understand mathematical thinking 

evokes layered interpretational activity.

20 This is especially  so  because paper, unlike more volum inous material, did not offer opportunities for 
comparison o f  stacks by height
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W ithin the broader limits of figuring out the size o f the different fraction pieces, 

to some students the relevant issue to be addressed, given their enacted worlds, was “out 

o f how many in a set” rather than “what region of a whole was covered”. To most 

students who stacked, y  was likely to be one o f  fo u r , y  was an act o f selecting a single

piece out of a set, a collection o f four yellow pieces. This also seems to be the case with a 

student who covered, except that to a student who covered was also a portion of the

unit sheet. In the fraction space, a share unit of one m ust be presumed ( y  piece is y  of

a whole piece not one of “four”). In most cases, quantities are stressed over ratios, and 

1y= 2 3^ as well as y  + y  = y  (Confrey, 1998; Kieren, 1990). According to Confrey

(1998), a student who stacked was in the ratio space, which complements the fraction 

space. In Vergnaud’s (1988) terms, ratios are tied to the conceptual field of fractional 

amounts. Kieren (1990) maintains that children have to experience rational numbers both 

as quantities (covering, muchness) and as ratios (stacking, manyness). For this reason I 

wonder about the fractional worlds that were enacted by students who neither stacked nor 

covered, but assembled wholes of different colors to figure our the size of the pieces.

W hat is more, what the students attend to in a given task is likely to determine 

what they attended to in subsequent tasks. This appears to have been the case in the 

second task, when most students who used the stacking approach asked, “W hat do you 

mean by covering? Does it matter if the pieces overlap? Do the pieces have to be of the 

same color?” For the students who stacked, the distinction o f “covering a half piece” did 

not signify a common action. Covering was not in their embodied history and therefore 

its conditional probability of being enacted was low. I wondered whether the students 

who used the stacking approach would experience further problems with other fractional

1 2 5
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tasks. Let us see how a latter occurrence could have been originated by the stacking 

approach.

5.4.1.3 Rooted Errors: Dynamic Error Analyses
Two days later, the students approached conversions (converting mixed fractions

to improper numbers) by working out the number of unit fractions— pieces— in given 

mixed fractions. Arlene was one of the students who seemed to be in need o f one more 

illustrated example before working on her own. After listening to a student’s example, 

she animatedly turned to her notebook to work out how many quarters (^ /)  there were in

two wholes and three quarters (2 ^ /) . She drew three “fancy” triangular wholes, each

with four equal portions, and shaded all four portions in the first two triangles and only 

three portions in the third triangle. In an excited tone she then said, “It [two wholes three- 

fourths] is eleven-twelfths.” In total she had shaded 11 of the 12 small triangles. Indeed 

in Figure 8, eleven is an amount whose kind is twelfths not fourth! Because she was a 

relatively slow learner, Arlene’s performance on this task might not necessarily mean 

that the stacking approach constrained her actions. Or might it?

Figure 8. Diagram used by Arlene to write 2 as a fraction

M any researchers seek to identify the origin of common errors so as to eliminate 

the source or to circum-navigate them (Zazkis & Liljedahl, 2004). Sierpinska (1990) and 

others have explored epistemological obstacles posed by particular tasks. Other

1 2 6
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researchers, in a manner aligned to analyzing worlds enacted, seek to determine the 

domain o f validity of a perceived error (Balacheff, 1990c; Borasi, 1987). For in addition 

to analyzing tasks and speculating about sources of errors and how to overcome them, I 

speculate about what students might be attending to given their experiences. I ask, “What 

world o f significance does a student bring forth with others as he/she engages in 

activity?” This level of description, unlike the task and error analyses, is addressed in the 

fact or after-the-fact and is typically context-dependent. The view presented in this 

writing looks at Arlene’s response 2 ^ /  =  1 ^  from the perspective o f the learner as not

errors but legitimate sense in the world she enacted. It requires participating 

sympathetically— as a synonym for thoughtfully and helpfully— with the students in their 

mathematical worlds. In the world brought forth by stacking fraction pieces, it might 

have made perfect sense for Arlene to conclude that 2 3^ = l^ 2- Unlike the other students

who used the same figure to realize that 2 y  = i y , t o  Arlene it was 11 small (but whole)

shaded triangles out of a collection of 12. With the history o f the Fraction Kit activity, it 

is plausible that Arlene attended to the collection, the numerosity o f the smaller triangles. 

She stacked the small triangles, rather than covering the whole big triangle.

The challenge for interpretive research on mathematical thinking is, “In what 

ways can we invite students to bring forth a space in which the conventional is 

highlighted and concepts are understood in general terms?” It is important to 

hermeneutically attend with Arlene so that she will, in grade 8, be able to see 14 +14 in

fractional contexts as y  rather than as 2 / ,  which is also the case in many other contexts 
/ 2  /  8

In Chapter 8 I return to this point to discuss how task, error and world analyses ought to 

be layered by hermeneutic as well as systems analyses. To conclude this chapter, I reflect
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on the interpretive function o f analyzing events such as the Fraction Kit vignette.

5.4.2 Generativity o f  Interpretive Moments

In marking and reflecting on an interpretive moment, a person might be led to do 

further noticing, engage some literature or recall related events. Also, in a latter event of 

noticing, this particular interpretation may be called forth and iterated upon. No single 

interpretation is static, done once and for all and in a way that rules out other possible 

interpretations. To evaluate my Fraction Kit interpretations I ask: What are the other 

possible interpretations? Such a question requires me to review the data I collected in the 

form of vignettes, video records and photocopies of students’ work. More importantly, 

the question requires that I read related research and share my interpretations. In 

interacting with colleagues, both present and virtual, I ponder the following questions:

• W hat do colleagues say about my interpretations?

• W hy was this moment salient for me? Why did I interpret it the way I did?

• W hat traditions are at work in my specific observations?

• W hat else could be said about the moment?

• W hat experiences does the moment cause to resonate in other researchers?

• How does it relate to other interpretive moments I have explored?

• W hat is the observing system that evokes constructs like levels o f  

analysis?

• W hat are the blind spots, the observational properties of such a system?

• W hat shapes and metaphors am I thinking in terms of? Can I find better

ones?

I have used the Fraction Kit event to exemplify the centrality of interpretive
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moments in my research methodology. Interpretive moments are likely to occasion what 

one observes down stream and to recursively transform earlier (upstream) observations. 

They are opportunities to explore new avenues o f inquiry and to examine one’s own 

biases. By sharing interpretive moments with colleagues, one can participate in research 

conversations. Indeed, ongoing data gathering, data analysis and research writing were 

centered on interpretive moments in this study. Jardine (1998) has a caution though: in 

interpretive inquiry one ought to know when to stop before one goes too far, gets carried 

away and stretches the interpretation of an individual case “out of all proportion.” (p. 47) 

He re-affirms, “The implications [of any interpretation] are not meaningless. In spite of 

the fact that they can easily become too ‘wild’, they are not altogether ‘unfitting’. The 

‘analogical kinships’ o f meaning still seem to persist.” (p. 47)

I have elaborated on a hermeneutic stance from which I re-search students’ 

mathematical thinking. Hermeneutics has its counterpart in the hard science— second- 

order cybernetics. I have attempted to understand these two orientations in light of each 

other. Also I have illustrated how I juxtapose organic and designed research structures. I 

have shown how I work within traditional research distinctions and constructs while 

remaining open to possibilities outside of the technical workings of these distinctions. In 

the next part o f the dissertation I turn to a more detailed exploration of enactivism and of 

ecological-complexity as the frameworks that guide this study.
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6. THEORETICAL EXPLORATIONS: ECOLOGICAL
COMPLEXITY

Theoretical frameworks such as semiotics and discursive psychology are being 

appropriated to study the complexities of mathematical cognition. However, there is need 

to incorporate dynamic and embodied aspects of cognition if post-structural theories are 

to go far enough. Studies on mathematical thinking could benefit from a broader 

framework that accounts for the role of the body, of context, of history, and of materials 

in cognition. Enactivism is a theoretical framework that attends to these dimensions. It 

recursively elaborates on frameworks, such as constructivism, which are prevalent in the 

mathematics education research. Recently enactivist researchers, such as Kieren and 

Simmt (2002), Simmt et al. (2003), Towers and Davis (2002), have drawn from 

complexity science to further understand mathematics learning. Complexity science has 

been adopted as an umbrella term to refer to theories with common themes of 

complexity, adaptation, recursion and emergence that allow for understanding of dynamic 

phenomena in ecological and non reductictionist ways. In these theories, at times referred 

to as dynamic systems theories, there is a rigorous attempt to transcend the values 

inherent in mechanistic world-views (Capra, 1996; Waldrop, 1992). Complexity 

researchers consider problems as systems problems (Capra, 1996). They question 

underlying assumptions such as the reductionistic mentality o f modernism. Complexity 

theorists who study human cognition emphasize metaphors of learning which are 

centered on being and co-evolution. The study of human cognition as a complex 

phenomenon involves the study of a range of systems including the nervous system’s
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activity, individual cognition, group intelligence, cultural evolution, global, social, 

economic and political systems and similar temporal and spatial systems.

I take complexity theory as a source of metaphors for investigating mathematical 

thinking. In a manner closely aligned to the enactivist sub-discourse in cognitive studies,

I adopt metaphors that emerge from biological, ecological and geographical disciplines. 

My study therefore takes an ecological slant on complexity science. It is an ecological- 

complexity study.

Dissertation Landscape Form ing

Part I 
Introduction

Part IV
:aI Explorations

Systems ;ViewAbout;MT

Researching Complexity

Enactivist Research

Complexity Research
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■Chapter 6 
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Situating the Study

Part V
Attending to the Journey

Part III
Design and Methodologies

Attending in Mathematics 
A Dynamic View
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6.1 Complexity Research

As a meta-narrative, complexity research has unfolded from a synthesis of 

insights in specialized areas such as community and behavioral ecology, neuroscience, 

bio-mathematics, cybernetics, enactivism, socio-biology, non-Euclidean geometry, non- 

com putationalist artificial intelligence and deep ecology. Its theories range from the 

mathematical theories o f observation and chaos, through physical theories such as, fa r  

from  equilibrium thermodynamics to evolutional biological theories. Hence it is far from 

being a well-defined science; it has been criticized for over emphasizing theory but 

lacking practice (Rasch & Wolfe, 2000). It is also criticized for the possibility of its 

becoming a theory o f everything. Also its central tenets such as organization and 

emergence might mean different things in its different sub-discourses. Post-structural, 

particularly critical, theorists might doubt whether complexity research, given its genesis 

in varied fields of the cold war era, have anything to offer to human sciences.

Complexity research is an interconnected organic (rather than a linear) meta

narrative. It appears many complexity theorists are aware of the shortcomings of grand 

narratives. M any metaphors and notions of complexity research are ecological and 

relational. Within the field of second-order cybernetics, for example, objective 

observations are problematized as we are reminded that our actions affect the world. This 

perspective demands reflexivity and ethical responsibility. Complexity theory is 

increasingly embraced as a promising theoretical orientation even in social science such 

as in organizational theory. It offers an understanding of the dynamism of highly complex 

adaptive systems ranging from bodily, family and urbanite to ecosystem dynamics. To 

consider cognition as an organized complex phenomenon affects educational practice and
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research in significant ways. (This will become obvious as the dissertation progresses.)

W hat research methodologies might resonate with ecological complexity? 

Adopting a complexity stance encourages the study of broader social, historical, cultural 

and political contexts that shape and are shaped by human thinking, without eclipsing the 

biological and psychological aspects. Johnson (2001) challenges research at this stage in 

history to seek more than hermeneutical interpretations. In my work, I use complexity to 

identify and create research settings, frame my observations, and create tools for 

observing mathematical thinking.

6.1.1 Complex Systems

Complexity theorists concern themselves with systems that are: self-organizing (their 

organization changes as a result of their activity); adaptive (they learn from experience); 

and, co-evolving with other systems and with their environments.

Systems such as the immune system, bodily organs, and organisms are complex. 

They are spontaneous and adaptive; their output and behavior largely depend on their 

internal states (Waldrop, 1992). Individual humans, human communities and cultural 

varieties are dynamic and adaptive. Johnson (2001) defines adaptive as the quality of 

growing smarter over time. It is keeping fit in a changing environment: Adaptive systems 

“rarely settle in on a single, frozen shape; they form patterns in time” (p. 20). Adaptive 

systems are also more organic (B. Davis et al., 2000; Waldrop, 1992). They are 

composite systems with multiple, independent agents dynamically interacting in 

numerous ways (Johnson, 2001) and they possess a vitality that resists mechanical 

analyses. Indeed they are better understood in relation to other systems with which they 

interact and to their internal dynamics. Complex systems are self-organizing, autonomous

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



systems which change their structure but maintain their organization and overall patterns 

of living. W hatever perturbations or input they experience, they in-form it according to 

their internal coherences rather than in correspondence to some external agent (Varela, 

1987). Unique to complex systems is a logic o f  emergence. M ultiple coherent parts 

following local rules result in discernible behavior at the level o f a collective system. 

Observing complex systems one can note properties that lie on a scale above that o f 

agents and parts. These properties arise from relationships among agents that interact in a 

great many ways (Capra, 1996). The whole or collective unity that emerges has a new 

environment o f interaction (Johnson, 2001). For example, many organs and systems 

come together and from them emerge the human body; where many humans come 

together in interaction human collectives form. This three layered system displays a 

nested organization; nested organizations are common to complex systems.

As soon as a broader system arises local systems becom e related inner-level 

parts of an outer-level whole. Put differently, as soon as the emergent whole coheres, it 

turns back to nest and regulate the behavioral domain of its agents in intricate ways. 

Thompson and Varela (2001) call this agent-system causation. It is two-way feedback 

from nesting systems to nested agents and vice-versa. Other researchers have referred to 

it as local-to-global and global-to-local determination. Juarrero (1999) explains that the 

dynamics o f emergent properties “serve as orderly context that structures the behavioral 

characteristics and activities of the parts” (p. 130). As soon as parts are embedded in a 

complex whole, they are unable to access some of the states that might have been 

available to them as independent unities. The good news is that they can access novel 

states that might not have been available to them before (Juarrero, 1999). This feature
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will be further discussed in the last section of this thesis as it is significant to rethinking 

mathematical thinking.

In Figure 9 , 1 use nested ellipses to illustrate the agents and global wholes that 

participate in human learning. To the left of the figure, I illustrate the human collectives 

that emerge from individual learners and to the right the collectives that emerge from 

classroom experiences and instances. From the interactions with other agents at that level, 

an emergent system arises at yet another level, the darker nesting ellipse. Moving 

outwards from the inner white ellipse we may talk about conceptualizations, behaviors, 

experiences, interpretations, practices, communities, domains and traditions. This figure 

is similar to the Davis et al. (2000) model of nested bodies (see Figure 3 in Chapter 4).

Figure 9. The logic o f emergence and coherence

{1 B n a g a i t  W id e

Collective cf Learners

Incfvidual Learners

Incfvidual Instances
C bherait Parts

Feed back loops

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As in the Simmt (2000) model, in my model I have highlighted interaction between 

agents. As well, I have illuminated how outer coherent layers spring forth from inner 

coherent layers. I have also emphasized how outer and inner layers, to use Luhm an’s 

(2002a, 2002b) language, interpenetrate each other (feedback loops).

Enactivist and complexivist researchers study cognition in its complexity without 

reducing it to simple processes or aggregates, without dichotomizing its aspects, and 

without proclaiming that it is primarily psychological. They emphasize the dynamic 

interrelatedness and self-similarity among the psychology of the individual, the behavior 

of the classroom collective, the body of mathematical ideas, and the socio-cultural 

aspects of school and society (shown by the nesting ellipses).

Another useful principle is that o f positive feedback, in addition to the traditional 

principle of diminishing returns. Positive feedback might keep systems such as 

economies far from equilibrium. Positive feedback may at times propel a system 

onwards. Some complex systems are catastrophic as they may be driven to bifurcations 

into systems with totally new dynamics. N on-linear dynamics and fa r  from  equilibrium  

theory would explain why at times small changes in prior conditions might lead to huge 

differences as well as why some systems when perturbed are likely to settle on particular 

behaviors— dynamical attractors', yet after some threshold point they may break into 

unexpected behavior or disintegrate. In my view, notions o f emergence, feedback loops, 

degrees o f  autonomy, mutualistic constraints and nested organizational levels are 

promising for studying human learning. For instance, they allow researchers to move 

beyond the debate over whether learning is psychological, social or institutional.

Using the principle of emergence, many human abilities are viewed as a
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property arising, at a higher organizational layer, from the interplay of bodily and 

environmental agents at an inner layer. These emergent properties such as thinking and 

perception provide boundary conditions for inner-level human dynamics. Because with 

the emergent whole novel states can be accessed, studying one variable at a time and in 

controlled settings and drawing from atomism and laws o f  additivity o f elementary 

processes are adversely limited approaches. The understanding of emergent wholes that 

causally nest coherent agents at an inner level is a radical departure o f complexity 

perspectives from behaviorist, mentalist and cognitivist perspectives, as well as from 

positivist studies.

6.1.2 Complex Systems in a Classroom

The mathematics education community has moved beyond exploring reflex 

behavior, computational mental process and isolated psychological attributes (see 

Chapter 2). Since most learning involves many factors interacting in varied ways, it 

cannot be understood by a reductionist process.

There is need to go further than acknowledging the multifaceted nature of 

learning: cognition is dynamic and hard to predict; learners are complex adaptive 

systems; in classrooms there are many coherent agents acting and interacting in multiple 

ways to produce emergent orders that in turn regulate and expand what is possible.

The individual psychological system is not the only system with a high degree of 

autonomy that can be distinguished in a classroom. In classrooms, individual cognition is 

nested in social cognition in the neighborhood of other complex systems and nested in 

larger societal and cultural bodies.
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6.1.3 Collective Learning Agents

Individual students are autonomous learning agents, but as they continuously act 

and interact with each other dynamics of the collective (rather than an aggregate) arise. 

When students work in groups o f two or more, complexity research posits that collective 

learning behaviour buds in ways that would not have been imaginable if students worked 

on their own. From simple rules and local issues— we are solving the task, what I know is 

valuable, you are good at drawing— in the interaction of students a complex organism 

assembles itself. Two, three or even twenty-seven or more students self-organize into a 

coherent whole— a student collective that has its own domain of interaction (Namukasa 

& Simmt, 2003). Patterns of collective human engagement such as social norms and 

culture in turn become feedback for the individual’s habits, preferences, knowing patterns 

and ideas. W ith collectives and jo in t projects arising from individual students’ actions 

and interactions, individual students find themselves behaving and thinking in ways that 

were not possible for them as individuals. Classroom collectives, in a recursive manner, 

are a prompt to individual students’ learning (Kieren & Simmt, 2002; Namukasa & 

Simmt, 2003). Simmt et al. (2003) observe that it is important for collectives of students 

to emerge around the subject matter itself.

Collectives adapt and evolve, as well. Rather than evacuating individual student 

experiential and conceptual accounts, as suggested by some socio-cultural theorists, 

metaphors drawn from complexity research can be adopted to understand the behavior o f 

collectivities in a classroom, in a different domain which embeds an individual’s sense- 

making. Using a complexity frame, mathematics students in a classroom could be 

observed as a system of agents that are engaging in doing mathematics at both the
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individual and social level. Recurrent actions and interactions around classroom 

mathematics would then be valued as they allow students to transcend themselves to 

acquire new understandings that they might never have possessed individually or in 

previous environments. Parallel to individual and collective learning is the evolution of 

ideas and insights as evolving systems (B. Davis & Simmt, 2002; Namukasa & Simmt, 

2003; Waldrop, 1992). For example, abstract ideas, ways of doing things and patterns of 

behaviors evolve from ordinary classroom activities (Davis & Simmt, 2002). Cognizing 

agents in classrooms are in turn nested in broader linguistic, material, social, cultural, 

political and ecological influences that they recursively compose. What might cognition 

that involves emergence of collective learning systems look like? How are we to view 

individual learners in relation to all these systems?

6.1.4 Individual Students 

A student as an individual coherent unity is already a composite system 

(Maturana, 1988b). Learners are composed of many agents such as the neuro-motor, 

hormonal and sensorial, affective and emotive, volitional and intentional, and behavioral 

and semantic systems. Viewing individuals as complex systems that have embedded 

within themselves other learning systems illuminates how various divergent theories 

about mathematical thinking might interact as parts o f whole. Individual humans are 

organic systems embodying sub-personal systems and embedded within supra-personal 

systems. Indeed many cognitive spaces intersect in an individual learner: the neuro

motor, perceptual and pre-conceptual behaviors, conceptual and pre-linguistic 

experiences, linguistic and social practices, and formal and rigorous language traditions. 

Learners ought to be seen as systems comprised o f coherent agents and as agents who are
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building blocks for emergent-level behavior.

Complexity metaphors offer me an organizational tool for observing 

mathematical thinking that is embodied and embedded. In Chapter 4 , 1 related two 

observational tools taken from Pirie and Kieren (1989) and Simmt (2000) that I adopted 

in the study. In Figure 1 0 ,1 develop an encompassing model that juxtaposes these two 

models with the notion of emergent layers and extended structures o f cognition.

Figure 10. M odels for Observing Emergent Mathematical Thinking-in-Action

Guliural/Instituti onal S tructures

C o lle c tiv e  E m e rg e n c e

P e rso n a l C o h eren t. Agents

’riieritersoi'jl 
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6.2 Enactivism

Notions of identity, interaction and meaning are at the heart of studying 

mathematical thinking. How autonomous are learners? W hat is the extent of the influence 

from their environments? W hat meanings do learners make of mathematics? Many 

mathematics educators have rephrased questions about mathematical thinking in terms of 

relevance and signification. Enactivists pay particular attention to living. They view 

human behavior as essentially biological and experiential. Varela and Maturana, the 

originators of enactivism, are considered to be among researchers who laid a foundation 

for the broader framework of complexity science. Maturana and Varela (1980) drew from 

neuro-physiology and biology. Varela (1 9 9 1 ,1999a) later drew from phenomenology to 

understand cognition as a condition for living. Three of their theoretical constructs are 

central to my study: Autopoiesis, operational closure and bringing forth worlds.

To M aturana and Varela living systems are autopoietic entities in the way that 

they are bounded as autonomous unities and they self-produce their components. To 

complement their earlier notion of autopoiesis, Varela (1987) develops the notion of 

closure as another condition for living. Because it relies essentially on internal dynamics 

to specify a specific mode of coherence, the organism is operationally and functionally 

(but not interactively and structurally) closed. Enactivists further emphasize that 

autopoietic unities, since they are operationally closed, do bring forth  a world that is o f  

significance and relevance to them.

Mason (1988) asserts that relevance is a property of an appropriate fit between 

the topic of study and the learner’s structure, mathematical background, interest and 

context. It is relevance that stimulates involvement, he claims. Even though significance
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is often used as a synonym for relevance, there is more to it. Significance has, via 

signification, gained semiotic value as the relation between signifier and signified. It 

comes from the word signify. In enactivism, however, significance has more to do with 

potentialities arising from the interplay, the co-emergent causality between the organism 

and its environment. As I will show, significance has to do with foreshadowing and 

suggestiveness o f matters-at-hand for learning. It is about motivation and interest that 

select what is attended to, based on experiences from the past and conjectures about the 

future. In a way, signification evokes the centrality of the interpreter, the learning 

organism as a webbed  system. According to Varela (1991), in every event of 

interpretation there is a surplus o f  signification, the emergent regularity added by the 

whole matrix of the inteipreter in relation to the interpreted. In an ecological complexity 

manner, significance points to a complex adaptive system generating a space of 

possibilities, a world relevant to its continued living. Enactivism explores signification in 

relation to living.

6.2.1 A World Brought Forth

Merleau-Ponty (1974) has differentiated between environment and world, a 

distinction that for Heidegger was between universe and world. Merleau-Ponty (1964) 

quoted Scheler, saying that “Human perception is directed to the world; animal 

perception is directed to an environment” (p. 40). Gadamer (1992/1975) pursues 

Scheler’s distinction further by saying that all living beings have environments but 

“[m]an rises above the environm ent,... he arises to the ‘world’ as he constitutes it 

linguistically” (Gadamer, 1992, p.443). Varela (1997, 1999a) asserts that the cognitive 

subject— whether human or non-human— is in both the environment and the world, but
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not in the same way. Clearly the mind of the collective of philosophers— the world 

mind— is trying its best to study this difference. What is so engaging about the distinction 

between a world that is relational to being and one that is not? M aturana (1988a, 1988b) 

and Varela (1991, 1999a, 1999b) ask what counts as an environm ent/or any coherent 

unity?

In Autopoiesis and Cognition, Maturana and Varela (1980) make reference to 

the organism to talk about enacted worlds. M aturana’s (1988a, 1988b) later work makes 

reference to a coherent unity while in Varela’s (1997, 1999a, 1999b) later work, perhaps 

after the emergence o f complexity discourse, he refers to a living system.

Maturana and Varela begin by considering a single-celled organism that 

interacts with its environment. For this cell, the environment in which it is embedded has 

a survival value and curious status, for instance, as a physical-chemical milieu (Varela, 

1999a). Organisms as coherent autonomous forms are structurally determined; nothing 

external instructs or designs them, M aturana and V arela’s autopoietic theory asserts.

They are systems to which input is a marginal, triggering factor. The organism as a 

complex system has a perspective, a standpoint from which the exterior is one and from 

which perturbations are shaped. The organism’s orientation to its exterior cannot be 

confused with the material surroundings as they appear to human observers (Varela, 

1999a). The case is similar, albeit more complex, for multi-cellular organisms, Varela 

maintains. Whatever perturbations reach an organism from the environment they are in

formed according to the internal coherences o f the multi-cellular system— food/not food, 

obstacle/penetrable etc. Such perturbations cannot be information and signals until they 

are, according to the organism ’s operational coherences, interpreted as a difference to
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which the system can respond by a structural change (Nprretranders, 1998). According to 

Bateson (1980), these changes that result in more changes, the differences that make a 

difference, are in essence what information is.

6.2.1.1 A System’s World
To Maturana (1988b) and Varela (1991), the environment is what the observer

distinguishes without reference to the unity and the medium that is identified when he/she 

distinguishes an autonomous entity to exist (Maturana, 1988b). Observation is key. The 

environment as the system interacts with and operates in is distinct from the medium. 

Varela (1999a) refers to the environment that the organism knows as the environment fo r  

the organism. In other phrasing, Merleau-Ponty (1964) refers to it as the world whereas 

M aturana (1988b) calls it the environmental niche; for Spencer-Brown (1972/1979) it is a 

cut universe; and for Rosch (1999a) it is a categorized world.

A system’s world only exists in the mutual specification of the system. The 

niche changes on an ongoing basis. As the interactive domain of the unity changes, the 

unity undergoes the dynamics of structural change to compensate for the recurrent 

triggers (Maturana 1988b). In the end, the features of the world are inseparable from the 

history o f the system’s coupling. This has the following implications: in a way, the 

organism obscures its world; the organism-environment is a supra system; the organism 

in many ways extends through and beyond it (Juarrero, 1999; Osberg & Biesta, 2003). 

Other theorists have used the term person-plus to describe how the learner not only 

extends to the class collective but also to the physical environment. The environment for 

the system is not just a source of stimuli. It is more. The same breath that embeds an 

embodied system in its environment extends the system’s structure into the world.

1 4 4
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Although the behaviorists

[r]esuscitated the role of the environment, [their] ideal was doomed from the start 
[because they] never quite embedded the agent in the environment. They just 
plunked the organism in the environment and assumed that when the appropriate 
stimulus occurs, boom! The organism would automatically respond. (Juarrero, 
1999, p. 74-75)

When we conflate the organism’s world, its niche with its environment as we observe it, 

like the behaviorists we miss completely the signification added by the organism’s 

perspective (Varela, 1999a). Put differently, it is necessary that the students be 

permanently embedded in their worlds, in their extended structure as we explain their 

mathematical attentiveness. Viewing the student-learning environment as a larger 

complex system has wider implications. Had they considered a learner to be embedded, 

embodied and extended rather than just dropped into an environment, the logical and 

experimental behaviorists’ focus on observable behavior would have been quite 

appropriate. Ecological-complexity prompts us to consider the environment as an 

external structure of a learner who has also an internal structure.

6.2.1.2 Organismic Relevance and Significance
The adaptive system in its perpetual interactions with the environment is

constantly valuing or not valuing (or perceiving, interpreting or not) triggers from the

environment to bring forth significance that is not pre-existent. This gives rise to

constantly emerging regularity, dynamic meaning, and order and structure. This might be

what Merleau-Ponty (1964) meant when he said the coupling is double.

I have tried to re-establish the roots of mind in its body and in its world. The body 
has a double function— it models the world, but as an active body it turns back on 
the world to signify it. (p. 12)

In this way the system does not represent properties from the environment; it does not 

pay attention to objects in an exotic environment. Rather, it perceives as well as
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transforms the properties of its world from its perspective. Put differently a complex 

adaptive system's ontogenic pre-dispositions and phylogenetic dispositions are attuned to 

and they respond to its niche in ways that are intimately significant, be they of 

thermodynamic, chemical, biological, psychological, social, technological or cultural 

significance (Juarrero, 1999). The system as a functioning whole furnishes what is 

perceived. In this case, significance refers to the necessary emergence of a world that is 

proper fo r  that particular organism. An encounter, an instruction or a representation 

acquires significance in the context of an entire organism-environment system.

A student’s mathematical world, for instance, does not come completely 

structured into events with features and properties, definitions, proofs and procedures 

whose patterns and meaning he or she construes. Cognition and perception are the 

bringing forth of a world of action, perception and cognition. Maturana and Varela 

(1987/1992) assert that the world as seen from the point o f  view o f the living system 

points scientific observers to aspects that would not have been relevant had it not been for 

the existence o f the organism. This view of relevance occasions me to wonder about 

those aspects of students’ mathematical thinking to which their mathematical worlds 

point us?

The world fo r  the organism or system is “the particular way in which it has 

maintained a continuous history o f interacting and coupling ... without disintegrating”, 

Varela (1987, p. 52) explains. Through a history of changing its structure as it couples 

with its environment the organism in a manner contingent to the flow of interactions 

maintains its coherence within an ever-changing environment. The relentless and 

permanent engagement with what is lacking for the system’s coherence becomes, from
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the observer side, the system’s ongoing cognitive activity. The difference between the 

environment and the world “haunts the understanding o f the living and o f cognition” 

(Varela, 1991, p. 7). The living system, through its maintenance of coherence and its 

actions, shapes and changes its world, which changed world suddenly changes the space 

of the possible for the living system. Varela (1991, 1997) defines cognition as the 

constant bringing forth o f signification. Herein lies a wider understanding of cognition as 

changing the world and as adaptation to that ever-changing world.

6.3 Cognition Extended

Cognition, in enactivism, is viewed as perceptually guided action; it is an act of 

specifying, o f in-forming the relevant features o f the environment (Varela, Thompson & 

Rosch, 1991). For any living system, including humans, cognition involves bringing forth 

a world that is of significance to living (Merleau-Ponty, 1964; Varela, 2000). The 

enactive view o f cognition, in the spirit of educators such as John Dewey and Mary 

Boole, questions the stance that bases most learning on the doctrines of instruction,

o  1

training and telling. Cognition is wider than consciousness and habitual behavior.

In the ecological-complexity view such phenomena as thought and learning are 

construed not as solely individual-psychological events, but rather as part o f the more 

inclusive phenomenon that is cognition (von Foerster, 1981). Cognition is described as an 

emergent property of a level of organization that is above the level of the internal 

dynamics o f a system and its interactive dynamics (Maturana, 2000; Varela, 1979). For 

instance, in humans, cognitive properties arise from the interplay o f brain, body and

21 In the late 1890s M ary B o o le  decried the practice o f  explaining rules and presenting ideas to the mind 
and consciousness  o f  children w ho have not laid the basis o f  subconscious, non-conscious and unconscious 
know ledge in actual experience.
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social and physical environment.

Human cognition is embodied in that it is shaped by the structure of our brains, 

our bodies and our everyday interactions. It is co-emergent in that it arises in activities 

(Maturana & Varela, 1987/1992; Varela, Thompson & Rosch, 1991, see also Kieren, 

Calvert, Reid & Simmt, 1995; Lakoff & Nunez, 2001; Nunez et al., 1999). Ecological- 

complexity theorists view cognition to extend throughout and beyond the human body to 

encompass to social and symbolic-technological levels and other emergent and 

neighboring structures. That humans know with and through technologies o f intelligence 

and in collectives is more apparent in today’s highly technological and globally 

networked civilization. W hat does it mean to say that a learner is embedded as well as 

extended  in the world?

The exploration of the difference between the environment presumed by the 

observer and the world that the unity brings forth offers broader conception to perception, 

action and imagination. Learning is also redefined, from adapting to a static and 

independent environment, to co-adapting with a world that a dynamic learner structurally 

and socially enacts on an ongoing basis. Knowledge is also cast in functional, temporal 

and historical terms (Juarrero, 1999; Osberg & Biesta, 2003). Also, the histories of 

complex systems matter for they learn, adapt and evolve. Complex systems embody in 

their very structure the conditions under which they have coupled (evolutionarily and 

developmentally) with their environments (Juarrero, 1999). Experiences and 

interpretations emerge with a surplus (never a deficit) of signification.22 The cognitive 

agent specifies its own domain o f actions and problems to be solved (Varela, 1987;

22 In a w ay em ergence im plies an extra, a bonus at yet an outer level than that where the interactions are 
taking place.
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Varela et al., 1991). For example, in enacting mathematical worlds students pose 

problems and specify paths that must be trod to obtain solutions.

In this study, to embrace the extended, embodied and embedded nature of 

cognition evokes the following research orientations:

•  Foreground the co-implicitness of the observer and the instruments of 

measurement. Take responsibility for our observations and actions.

• Observe students as systems interconnected in the web of learning. Study 

cognitive systems as dynamic wholes, or as networks of activity (Juarrero, 

1999).

• Focus on individual students as nested systems within larger systems such as 

classrooms collectives. Use the notion of nestedness to study the 

phenomenon in question at the appropriate spatial configuration scale.

•  View psychic systems as just one kind of system constrained by social, 

cultural and political systems while at the same tim e offering constraints to 

bodily systems. Use the notion of feedback loops and extended internal 

structures.

•  Focus on patterns, stable structures and relationships rather than on isolated 

factors observable in students’ mathematical thinking. Observe complexity.

• Reflect on the extent to which distinctions made are in the observer domain 

or the behavioral domain of the system. Admit the active role of the 

observer.

• Interrogate preconceptions about students’ mathematical thinking to generate 

better metaphors for understanding and viable ways of acting. Observe the
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systems engaged in observation.

6.3.1 W ider K now ing a n d  Thinking

Education scholars who challenge the dominant view of factual knowing 

resonate with the enactivist notion of “knowing is doing”. Gray et al. (1999) observe that 

mathematical thinking is knowing-to-act in a situation rather than doing routine 

mathematics accurately. Ernest (1999), and Mason and Spence (1999) differentiate 

knowing-to-act in the moment from other kinds of knowing, such as knowing-about. 

Mason and Spence maintain that knowing-to-act, phronesis in Aristotle’s terminology, is 

dynamic and situated. Knowing that is inseparable from doing is Michael Polanyi’s tacit 

knowing : a state of awareness and a preparedness to attend that enables people to act 

creatively. In enactivism, Varela (1992) refers to knowing-to-act as common sense, “[A] 

readiness-to-hand, a know-how based on lived experience and a vast number o f cases, 

which entails an embodied history” (p. 252, italics mine). In hermeneutics, Gallagher 

(1992), after Aristotle, refers to it as practical wisdom  that entails technical knowing 

(techne).

In light o f discussions about knowing and thinking-in-action, the terms thinking 

mathematically and mathematical knowing might offer a better distinction than 

mathematical understanding and mathematical knowledge. Thinking mathematically 

exists only where students themselves through embodied coupling have brought forth 

mathematical worlds in which there is perpetual novelty. Mathematics educators have 

alluded to the fact that in learning mathematics students learn to operate in a 

mathematical world (Schoenfeld, 1992). However researchers are yet to explore how 

students enact these worlds o f mathematical significance. In this study, I wonder about
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aspects of wider knowing that the ecological complexity view evokes. I also ponder 

instances when humans act-to-know  rather than know-to-act or even when they know- 

with and through  others than know-about.

6.4 Systems Views about Students’ Mathematical Thinking

Learning and improved behaviors, M aturana (1988a, 1988b) maintains, could be 

commentaries made by observers who see an organism acting and interacting in ways 

that they could not before. According to M aturana (2001), the learner does not learn to do 

this or that. The learner changes in the continuous process of living together with others, 

with mathematical tools, and other learning circumstances. The learner couples such that 

he/she now can act in ways which he/she could not before. But the learner is also in a 

different world and his/her structures have changed (Maturana, 2001). A student does not 

learn to think mathematically; neither does he or she merely expand their cognitive 

repertoire and capacities; nor do they progress towards thinking about more mathematical 

knowledge. Thinking mathematically is all at once about expanding behavioral and 

cognitive possibilities as well as enacting unique worlds of significance (Davis, Sumara 

& Simmt, 2003; Kieren, 2000; Simmt, 2000). This is compatible with Rorty’s (1982) 

pragmatic sensibility about “progress towards new possibilities for humanity” (p. 8).

From the ecological complexity perspective, learning involves transforming the 

conditional probabilities of actions and interactions, shrinking some to zero while 

increasing some actions to one (Juarrero, 1999).

From this ecological and systems paradigm, a student’s mathematical thinking 

can “be observed as co-emergent: codetermined by and codetermining the personal 

structural dynamics, the dynamics of the interpersonal and the environment, and the
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cultural conversations in which he or she exists” (Kieren, 2000, p. 232). The overriding 

metaphor for mathematical thinking I develop in this study is bringing forth a 

mathematical world with a potential o f  signification. Bringing forth  captures the 

complexity sensibility better than the modem synonyms such as develop and create. 

Bringing forth akin to sprouting, leading out and springing forth points to the dance 

between novelty and habit, happenstance and expected, readiness-to-hand and technical 

knowing, as well as between the internal and external. To Kieren et al. (1995), after 

M aturana &Varela (1987/1992), thinking arises in action as the learner co-adapts with an 

ever-adapting world. That is to say, thinking or knowing is what is observed as the 

learner functions, as he/she is acting and being in a way that permits him/her to continue 

in existence in his/her ongoing unique world or to shape a new one (B. Davis, Sumara & 

Kieren, 1996; Varela, 1992).

Cognition encompasses the being o f the thinker within whom the ideas co- 

emerge (Lakoff & Nunez, 2001; Nunez et al., 1999). Therefore, mathematical thinking 

from this point of view is best studied in the moment and in the context that it co- 

emerges. It is inseparable from the functional and embodied history of the student. As 

any adaptive system interacts, thinking and knowing are seen to emerge from the simple 

rules and actions o f agents such as the neural and sensori-motor agents, and outward- 

inward from the nuances of community and culture. In the ecological and systems 

narrative, thinking is not necessarily an antecedent to action and actions are not the 

consequence of thinking: rather, as Kieren and Gordon-Calvert (1999) put it, thinking is 

in-action. Bruner (1996) would say that most o f the time we implicitly act our way into 

thinking. Mathematical thinking does not only emerge solely from activity, interaction or
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participation. It is not simply about mental operations that students build as they reflect 

on their actions, nor does it just arise as the learners are initiated in mathematical 

practice. Rather, the cognizing agent, either an individual learner or a group of learners, 

enacts mathematical knowing from their ongoing interaction within a dynamic 

environment. It is a conflation of knowing, of actions, of identity, of agency, of 

interactions and of enactment of worlds, of these varieties that are unique to living 

cognitions (B. Davis, 1995; Varela, 1999a). Herein is a radical departure of ecological 

complexity studies from many studies: cognition is action and living. Thinking is not 

contemplation on a given set of ideas but rather an enactment of these concepts in actions 

such as speaking, gesturing, writing and interacting. The dynamic grounds of an agent’s 

mathematical thinking is laid by her own structure (Butterworth, 1999; Nprretranders, 

1998; Waldrop, 1992). Learning involves a natural drift as a cognizing system self- 

organizes. W hat is more, learning systems self-organize at a distributed level (Johnson, 

2001) across emergent and embodied levels of signification.

In my writing mathematics thinking is construed as enacting a world that is 

relevant to the continued existence o f the learner. With thinking, as with evolution, many 

multi-dimensional paths are potentially possible. The multi-threaded path that is laid 

down in walking, the landscape that shifts in response to an agent’s steps is the one that 

had a higher conditional probability than others. The cognitive landscape laid in living is 

an expression of the particular kind of embodied history the system has lived in 

continuous tinkering and emergent constraints.

An enactivist approach provides an understanding o f mathematical knowing as 

adequately adapted mathematical behavior (B. Davis et al., 1996; Kieren, 2000; Simmt,
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1998). From the enactivist perspective, although thinking might include conscious 

imagination and reasoning it is more than this. It is webbing of formulated with 

unformulated thinking, as well as o f logical with instinctive sense. From this perspective, 

mathematical thinking is studied as all-at-once biological, psychological, socio-cultural 

and formal. These domains cannot be collapsed into each other. However, this in itself 

presents a problem. How does one study everything, all at once? Perhaps we ought to 

study aspects o f cognition that offer an interface o f all domains? Does the study o f the 

dynamics of students’ attention cut through most layers of signification?

It should be noted that ecological-complexity perspectives have escaped the 

pitfall of precluding preceding perspectives by evoking notions o f embodied, embedded 

and extended cognition. Like concentric ellipses, different theories o f learning, just like 

Davis et al.’s (2000) knowing bodies, can be seen to recursively nest into each other. 

Although varied schools of thought study different aspects o f mathematical thinking, 

each school o f thought is legitimate; each helps educators to understand the nature of 

students’ mathematical thinking, albeit on a different nesting scale. However ecological- 

complexity promises to focus on aspects that have largely been outside the focus of co- 

emergent, coherent and post-structural paradigms: (a) the collectives of learners that can 

be observed to think (b) other dynamic systems, such as abstract mathematical ideas, 

which bud as students continue to act and interact, (c) as well the ways by which 

students’ thinking is braided outwards through the physical learning environments as well 

as inwards through their physiological and emotional states.

In my research mathematical thought is not only interpreted as a resultant, an 

effect of mathematical activities, but since it suddenly turns back to constrain the
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activities it is inseparable from the learning activities themselves (Dienes, 2003; Kieren, 

Pirie & Gordon-Calvert, 1999). Adequate mathematical behavior and interaction are 

aspects o f  thinking mathematically. It is the aim of complexivist studies to tease out the 

agency o f  actions, interactions, history, community and observer descriptions in enacting 

students’ mathematical thinking.

6.4.1 Embodied Mathematical Action

As I explored in Chapter 3, most educational research and practice is tacitly

influenced by the representationists’ views of cognition. For example, the structuring of

mathematical instruction into exposition-example-practice is based on the view that

knowledge is cumulative internalization of facts (B. Davis et al., 2000). On the other

hand, based on the view that knowledge is individually and actively constructed, the

radical constructivists propose, structuring instruction by providing rich mathematical

activities that might occasion re-organization in the students’ conceptual structures

(Steffe & Thompson, 2000). To social theorists who view knowledge as established

practices, teaching involves initiating learners into the practices o f a community. The

view of knowledge as pre-given, as individually constructed or as communally

established is inadequate to address the question o f mathematical thinking-in-action.

Kieren et al. (1996) observed that:

A t the time when there seem to be conflicting views on mathematical cognition 
between those which observe it as personally driven and those which observe it as 
externally driven; between individually based and socially based views; between 
cognition as fundamentally active or fundamentally receptive; ...it is important 
and perhaps necessary to seek and apply ways o f thinking about cognition which 
are in the middle (p. 9).

In this middle-way view, mind and body, mathematical structures and learners, 

the individual and the collective exist in relation to each other (Maturana & Varela,
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1992). Furthermore, knowing, doing and being are brought together as embodied action. 

To quote Kieren (1995), “[m]athematical cognition is seen as an activity fully determined 

by a person’s structure” (p. 7). Mathematical knowing is about the dynamic co

emergence of the knower and known, of a fluid self and others in what M ason (1994) 

specifies as the I-You relation (B. Davis, 1995; Kieren et al., 1996; Kieren, 2000; Simmt, 

1998,2000). The students and teacher, along with their practices and mathematical 

traditions, all exist in relation to each other. Two quotations from M aturana and Varela 

(1987/1992) are worth noting. “ [A]ll doing is knowing and all knowing is doing” (p. 26). 

“Cognition is effective action” (p. 244). In this view, school mathematics is neither pre

given (product) nor does it just arise with activity (process), but it is enacted as a world in 

which effective mathematical action is the main required condition (Varela, 1992; see 

also Kieren, Calvert, Reid & Simmt, 1995). Here Simmt’s (2000) model for knowing in 

interaction is helpful (see Figure 4 in Chapter 4). This study, in line with further 

elaborations on Sim m t’s understanding (B. Davis & Simmt, 2002, Kieren & Simmt,

2002; Namukasa & Simmt, 2003), extends the model to focus on the knowing of a pair or 

a bigger collective of students. As persons continue living together they adopt both to 

their physical and social environments. As well the ideas themselves could be interactive 

agents co-specifying each others’ environments and bumping into each other to enact 

hybrid and more general ideas.

M aturana (1987) says that if we want to know if  someone knows about 

something we look for adequate conduct— patterns o f appropriate action. It is more 

fruitful to point to something mathematical in a moment than to define characteristics of 

mathematical thinking once and for all. Nevertheless, mathematical thinking is not
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always identical to observable behaviour so that to enhance it we would seek to 

reproduce those behaviours. Rather, it resides in that which makes the action 

mathematically adequate within a mathematical landscape laid down and transformed in 

living. Rather than being an antecedent o f adequate mathematical action, mathematical 

thinking inheres in students’ actions, responses and living.

6.4.2 Enactivist Views about Mind

Thought processes are not exactly “in there” . Mind is the collective, emergent 

capability that arises in the recursive interactions o f systems with their environments and 

in their layered embedment in larger systems (Varela, 2000). From the perspective of 

complexity research, it is not only the person that is capable o f properties of mind. At a 

micro-level, human organs and the immune system could be said to cognize, and at a 

macro-level, communities, cities and generations may also be observed to demonstrate 

emergent top-down control qualities (Johnson, 2001). The extent to which activities of 

mind pertain to the domain of descriptions and so are to a larger extent a commentary by 

an observer is an open question in this research.

Activities of mind such as thinking, perception and reflection in this dissertation 

are considered first and foremost to be a distinction made by the observer. As we will see 

in Chapter 9, we humans make such distinctions in order to converse about the 

coherences o f our experiences of others, be they human or non-human systems. Our 

conversations about mathematical thinking, for instance, come to partially constitute what 

we will ever know as mathematical thinking (Bruner, 1996). M aturana (1988a, 1988b) 

and von Foerster (1981) maintain that what we describe of a phenomenon or object is a 

property of our description more than of the phenomenon. As observers we can comment
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on how students think mathematically when they are seen engaging in mathematical 

activities. In the Fraction Kit task, for instance, it appeared to me that students thought 

mathematically by handling the pieces in particular ways— stacking or covering.

W ith advancements in neuroscience and artificial intelligence, researchers such 

as Bruner (1996), Butterworth (1999) and Dehaene, et al. (1999) have begun to view the 

mathematical mind as constrained and enabled by evolutionary, biological, experiential 

and other micro factors, as well as grander ones. The cartography of disciplines 

inform ing research necessarily increases when the community views mathematical 

learning in ways developed in this chapter. This inevitably redefines the ways in which 

students’ actions and interactions may be investigated.

6.5 Researching Eco-Complexity

Ecological and complexity perspectives— eco-complexity perspectives— have 

relevance to classroom research. In education research where, without exception, clinical 

research has prevailed, adopting metaphors from complexity theories faces challenges. 

Like certain researchers, I have taken complexity research, including its theories such as 

dynamic systems theory, as a theory and image-constitutive metaphor for classroom 

research and practice (Juarrero, 1999). Embracing complexity evokes evolutional, 

narrative, historical, interpretative and other context sensitive stances. Since complexity 

theory is a relatively new paradigm, my study is as well an engagement in a conversation 

regarding possible contributions and challenges of adopting complexity metaphors to 

investigate learning.

M ost learning is an ongoing behavior that is context dependent, fluid, evolving 

and organic. This implies that, in a way, we may never predict or control learning. We
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can nevertheless understand it enough to make decisions and to act in ways that respect 

and occasion its complexity. W e can observe learners’ behavior, seeking to understand its 

dynamics. M ost com plex phenomena depict patterns, patterns o f patterns that are not 

necessarily repeatable, but not radically different either. Since complex behaviors are not 

totally without regularities, they can be studied to understand local rules o f lower agents, 

broader level qualities and focal level behaviors.

A study o f a complex phenomenon may seek to explain the recurrent themes and 

to observe problems that transcend local cases. In education there are not many examples 

o f empirical studies done with complexity research sensibilities. For purposes of 

exemplifying, I take lessons from Freeman’s (1991) studies on the neuro-physiology of 

perception. W hile studying the physiology of perception, Freeman (1990) akin to 

Johnson (2001) maintains that an adequate understanding of particular phenomenon is 

only obtainable given the methods and metaphors proper at an appropriate temporal scale 

(milliseconds, seconds, hours, days etc.), level of description (cell, cell assemblies, brain 

regions, whole brain, etc.) and discourse. Freeman studies odor recognition and recall, for 

example, at the level o f  spatially as well as transiently integrated and extended patterns of 

activity in the nervous system. He maintains that a large-scale level of observation is 

more appropriate than the level of individual neurons, the genome or neuronal networks 

(Freeman, 1990, 1991, Freeman & Skarda, 1990). He draws metaphors from chaos theory 

that he uses as tools for understanding. As well he seeks to explore what his hypotheses 

on odor perception m ight mean for other kinds o f perception as well as for cognition as a 

whole. Freeman too, akin to researchers such as Schoenfeld and Kieren in mathematics 

education, has on an ongoing basis revised his understanding of perception, all the time
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seeking newer and more useful functional and temporal tools and perspectives.

Maturana (1988a, 1988b) maintains that in everchanging worlds, there are only 

opinions. In the spirit of the discussions about objectivity, subjectivity and inter

subjectivity, Maturana refers to research findings as “objectivity-in-parenthesis”, 

functional tools and opinions. A study informed by enactivism gives up the idea o f facts 

or “objectivity-without-parenthesis”. Observers are co-implicit in what they say. And as I 

will illustrate in Chapter 9 the objects of observation arise from continuous participation 

in particular communities o f observers. Researchers can only make conjectures. They can 

only by induction learn about a different reality or enact a new reality. In an analogous 

manner, the education community may seek for and open viable possibilities in the hope 

that they will be able to act in ways that are viable and appropriate.

In my research, ecological and systems interpretations offer more useful tools 

for understanding students’ mathematical thinking than mechanistic ones. I have 

illustrated this by interweaving in the discussion how systems’ views are closely aligned 

with or different from the prevalent views. In Chapter 9 , 1 return to many o f the theorists 

referenced here as I expand my theoretical framework for understanding the dynamics of 

students’ mathematical attentiveness. In the next two chapters I explore the insights I 

gained from empirical observations in my study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 6 0



7. ATTENDING  TO ATTENTION

At the onset of the study I asked about: what students attend to, when shifts in 

their attention occur, and how ways in which a deeper understanding o f what they attend 

to offer insights into occasioning their mathematical thinking. With experience the 

questions were broadened to focus on: how students attend, and the dynamics of what 

they attend to. In what ways do students— not only as individual persons with conceptual 

structures, but also as organic, learning systems embodied with a neural system and a 

body, embedded in social collectives and cultures, and enabled by and extended to 

technological, symbolic and material environments— attend as they engage in 

mathematical tasks? In this part of the writing I map the path through which my 

understanding has co-evolved.

How and exactly when the questioning was reframed is not easy to answer. But 

as I reflect on the landscape formed during this study, a juxtaposition o f factors has 

contributed to this growth: experiences from research sessions, interactions with other 

researchers and literature, engagement in preliminary analyses and writing, and further 

exploration of the complexivist and enactivist conceptual frameworks.

These factors can be summarized as embeddedness of the research and 

researcher in time and space. I elaborate only the last two o f the three factors: preliminary 

inquiry and framework explorations. These two factors appear to be most influential and I 

can articulate them. To elaborate I offer an analysis of the dynamics o f how students in 

the research sessions attended in this chapter. In Chapter 8 , 1 explore how, through initial 

readings of the data, the questions evolved to more ecological and systems questions. 

Looking back at the changes in questions, I see that when my questions changed my
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attention had shifted; a new world had been enacted. For the questions I ask speak to 

what I am attending and how I attend as a researcher investigating students’ mathematical 

thinking.

Dissertation Landscape Forming

Con c rete Mate rials as Extended Thin kin g

Emergent Layer of Data Analysis

A Dynamic Ensemble of Elements

Joint Thinking-in-lnteraction

Writing as Thinking-in-Action

Chapter 7\
Attending to Students' Attention

Chapter 8 
A Layering of Research Attention

Part II 
Situating the Study

Part VII
Questions Answered and Problems Raised

Part IV 
Theoretical Explorations

Part III
Design and Methodologies

Part VI
Dynamical View of Attention

Part I 
Introduction

Part V
Attending to the Journey

Attending in Mathematics 
A Dynamic View

16 2
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7.1 An Emergent Layer of Data Analysis

It was during the preliminary analysis of some of my data collected early in the 

study that m ost of my tacit assumptions, some of which were positivistic, were 

challenged. For instance, by looking closely at the artefacts of Irene and Lillian’s 

engagement with the Consecutive Terms (CT) prompt, presented in Chapter 4 , 1 

attempted to study what they attended to in that particular task, and to trace the shifts that 

occurred. Analysing the students’ written work together with their utterances and 

gestures, their actions and the concrete materials they worked with I looked at the shifts 

in attention and the objects that they attended to at different times. Although this was 

fruitful, like many first-order observations, it was narrow and was likely to generate 

conclusions prototypical to Irene and Lillian, to particular tasks, as well as unreflected 

upon assumptions and contexts. To observe patterns and regularities in engagement, I 

began to analyse Irene and Lillian’s engagement with the Consecutive Terms task in 

relation both to their engagement with other tasks, and to other students’ engagement 

with similar tasks. I related these analyses to my experiences at other research sites and to 

related research. I also interrogated the observing systems, the observational tools and 

tacit assumptions at work. This back-and-forth analysis o f parts in relation to other parts 

and to the emerging unity evoked a question about the dynamics of what students 

attended to and the ways by which they attended.

When I returned to data gathering, analysis and writing with the broader 

question o f the dynamics of students’ mathematical attentiveness, I observed the 

following influences:

• W riting is an agent in mathematical thinking.

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



• Actions with concrete materials, tools and media are extended thinking.

• Students talk and gesture their way into thinking-in-action.

• Actions and interactions with others are jo in t thinking-in-interaction.

• Thinking is a dynamic integration of co-related coherent forms.

As I share these insights I primarily discuss the role o f writing. I briefly return to 

the other influences— concrete materials, communication, jo in t activity and integrated 

forms. M ost o f my discussion of the written and concrete materials is also applicable in 

these other areas. For this reason the reader will find the last three subsections much less 

detailed than the first two.

7.2 Writing as Thinking-in-action

In Chapter 4 , 1 recounted that while analysing a session in which two boys— 

Tony and Ronald— engaged with the CT task, I noticed that they seemed to have written 

at intervals (see Figure 11 and 12). I dubbed each distinct phase in their writing an 

episode. This episodic writing was not unique to Tony and Ronald, nor was it unique to 

this task. The writing o f other students on this and other tasks also appeared episodic (see 

Appendix E for more examples). For specific tasks there were episodes that were 

common among different students and some that were unique. I analysed Tony and 

Ronald’s as well as Lillian and Irene’s engagement with the CT task to ascertain when 

and why their writing shifted. This raised the questions: were there conceptual 

differences between the episodes? Did differences and shifts in writing necessarily 

correspond with shifts in what the students attended to and how they attended? Did shifts 

in writing point to something about the dynamics of students’ attention?
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Figure 11. Tony’s written work Figure 12. Ronald’s written work
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As I analysed students’ written records over time and in light o f other factors—  

such as use of concrete materials, pictorial representations, and engagement in speech and 

jo int projects— the following questions emerged: (a) W hat is the role of written records in
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what students attend to? (b) When students record their work differently, what do they 

see and/or not see? For example, what is made salient when students horizontally (rather 

than vertically) list numbers? (c) W hat distinctions does a particular form of writing 

enact? And (d) how do writing activities expand the space o f the possible?

Given that many students wrote in episodes, I reflected on the ways in which 

what and how they wrote constrained how they perceived, acted and thought. The 

analysis revealed that students’ mathematical thoughts extend to include what they record 

and the writing activity itself. I use the word extend  in the same ways as Juarrero (1999) 

when she refers to the world we enact as our external structure. She says that we extend, 

what other theorists call leak, into our environmental niches.

In the analysis that follows, I draw from Irene and Lillian’s episodes because 

they are representative of other students’ writing. I present other students’ unique 

engagements whenever they are useful as illustrative cases. In Figure 13 below, I 

summarize Irene and Lillian’s written work into 4 episodes. For contrast I have added an 

Episode from another pair of students, Sonia and Gertrude’s work, Episode D n .
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Figure 13. Irene and Lillian’s written work ABCD
E p iso d e  A (L illian  
w rite s )

E p iso d e  B (I re n e  w r i te s ) a E p iso d e  C  (L illian  w rite s ) E p iso d e  D

1- 
2 -

3 - 1 + 2
4-S-+-3
5 - 2  + 3
6 -  1 + 2 + 3 
3-

9 -  2 + 3 + 4
10-1+2 + 3 + 4

y \ 5*‘,6 +l,9*', 10+\  11

3 = 1 + 2
5 =2  + 3
6 = 1 + 2 + 3
9 = 2 + 3 + 4
10 = 1 +2 + 3 + 4

11 =5  + 6
12

12 =3 + 4 + 5 
44-15 = 1+2  + 3 + 4 + 5 
14 = 2 + 3 + 4  + 5 
16

1+2 = 3 
1 +2 + 3=6  
1 +2 + 3 + 4=  10
1 + 2 + 3 + 4 + 5 = 15 
1+2 + 3 + 4  + 5 + 6 = 21 
1 + 2 + 3 + 4 + 5 + 6 + 7 = 2 8
1 +2 + 3+  4 + 5 + 6 + 7 + 8 = 36

3,6,10,15,21,28,36...

2 + 3 = 5
2 + 3 + 4 = 9 
2 + 3 + 4  + 5 = 14 
2 + 3 + 4  + 5 + 6 =20 
2 + 3 + 4 + 5 + 6 + 7 = 27 
2 + 3+ 4 + 5 + 6 + 7 + 8 = 35 
2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 4 4

5,9,14, 20,27,35,44 ...

3,5, 6,9, 10, 14, 15,21,27,28,35, 
36,44,45,54,55 ...

D  i (L illian  w rite s)  
1 6 = 1 + 2 + 3 + 4 + 5  

= 2 + 3 + 4 + 5 
z 3 + 4 + 5

4 + 5 + 6
5 + 6 + 7
6 + 7 + 8
7 + 8
8 + 9 
9+10

[D a (Sonia  & G ertrude)
2 consecutive num ber added

I + 2 - > 3  
2 + 3  ->5 
3 + 4  -97 
4 + 5 = 9 
5 + 6  = 11
6 + 7 = 13
7 + 8 = 15
8 + 9 = 17
9 + 10 = 19
10 +  11 =  21
I I  + 12 = 23 
12 + 13 = 25

C onjecture: O dd  num bers have  
the p roperty]

Notes. I have organized the episodes that were evident from Irene and Lillian’s work in at 
least four episodes. For more episodes see a copy of their work in Appendix F. Episode 
Dj is written work for Irene and Lillian that comes after they had noticed that the numbers 
{ 1 ,2 ,4 , 8} that did not satisfy the property were unique. In the written work it appears 
after episode B but on the video recording it comes after episode C. Through deduction 
they added 16 onto this list. They then sought to verify whether it really did not have the 
CT property. Episode Djj is written work from Sonia and Gertrude, who solved the task in 
a somewhat different manner by including a “paragraph” of 2, 3 ,4 , and 5 consecutive 
numbers added and recording their conjectures. Episode Djj specifically illustrates two 
consecutive numbers added. They also included commentaries on their work in their 
writing.

Studying Episodes A, B and C in relation to each other, and with Episode D  in the 

background, the noticeable differences and similarities among the episodes include the:

• Use of relation signs— dashes in A, equals sign in B and C, equals sign positioned 

differently in B and C

• Manner in which numbers are written— numbers are listed vertically elsewhere,
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but horizontally in a list, at the end of A and C. Intervals are included in the list in 

A but not in C; some numbers are crossed out in A and B 

•  Size and nature of numbers written— relatively higher numerical value and more 

numbers in C than in A and B.

Are these differences and similarities fundamental? As more than 

representations written records, it appears, open up spaces for learners to articulate and 

formulate the unformulable. Subtle variations in format of recording may call forth 

different thoughts, percepts and acts. Although I analyse students’ written work here, I do 

not look at it in isolation. In a later section I briefly argue that students’ actions with 

concrete materials and with tools are thinking-in-action as well. I also briefly discuss how 

other students’ understanding was co-implicated in how students attended.

7.2.1 Writing Down: Representing Mental and Concrete Work 

In the students’ written excerpt that I have labelled Episode A as well as in

93
concrete and mental work that preceded it we note the following. Irene and Lillian

appear to have attended to each number as a set o f units, an amount of 

dominoes to be decomposed into consecutive num ber of dominoes or 

to be arranged in stairs as shown figure 13a on the left. For instance, 

they asked, “What will 9 be?” They answered this question at first by 

physically arranging 9 dominoes in a staircase o f 2, 3 and 4 or by using

Qr trial and error computation— 9 will b e l + 2  + 3 + 4 that does not work,

9 -  2 + 3 + 4

Figure 13 a.

23 M y usage o f  the qualification m ental is aligned to its use in curriculum docum ents when they talk about 
mental mathematics. In my research w henever students gave a response that w as not im mediate and 
autom atic yet it did not involve any overt actions such as writing, talking and acting with material I label 
their work mental work. The term m ental how ever is theoretically loaded, and therefore there is need for a 
more practical label, especially  one that integrates brain and the rest o f  body, the individual and collective  
thinking, and internal and external structure.

1 6 8
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2 + 3 + 4, that works! That is to say, in Episode A they split numbers as collections of 

units. W henever they failed to split a number, as was the case for 2 ,4 , 7, 8, 13 and 14, 

they would cross it out of the list or omit it from the list in B. In Episodes A and B Irene 

and Lillian physically, perceptually and conceptually attended to the numbers more 

concretely than symbolically. Their actions and images with numbers— whether as 

number symbols or as a collection of dominoes were fairly specific and local. They did 

not yet appear to form any generalizations about numbers that have or do not have the 

property.

Episode A involved a systematic checking— by arranging concrete materials 

and/or computing sums— of the numbers from 1 to 10, approaching each number 

separately. A t the end o f Episode A their approach changed: At turn 53 of the transcript 

presented in Chapter 4 Lillian said, “So 10 does, I am going to list down [all] the 

numbers ... that can satisfy.” She then listed 3, 5, 6, 9 ,1 0  and 11 at the bottom of 

Episode A. “Then [what is] the pattern [in list 3, 5, 6, 9, 10, 1 1 ,....]? ” Irene asked Lillian 

(turn 59). At first they wondered about classification o f numbers: “Odd and even”, Lillian 

thought aloud. “Doesn’t” , Irene interrupted (turn, 72). “Doesn’t really make up 

anything,” (turn, 73) Lillian concluded as Irene turned to write the intervals +2, +1, +3, 

+1, +1. Lillian looked on the new list “3+3, 5+1, 6+1, 9+1, 10+1, 11” and said, “Not much of 

a pattern.” (turn 74)

After generating a reasonable amount o f numbers that had the property the 

students began to look at these numbers as a group that might have a common pattern. As 

they sought to describe the categoiy of numbers not crossed out, they examined whether 

it was a set o f odd, even, triangular arrangements or prime numbers (turn 68, 69 & 165).
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They did not yet examine pairs o f the numbers in relation to each other (i.e. in two 

dimensions) nor did they examine numbers that did not have the property. Examining the 

group o f numbers as a set of special numbers proved fruitless. At first they unconsciously 

and then later consciously began to look for what the pattern(s) among pairs could be.

The list at the end of Episode A evidences a move towards explicitly treating the group of 

numbers as a special set, a seq u en ced  This is evidenced by how they listed the numbers 

horizontally. Perhaps it is the writing action o f listing o f numbers horizontally that 

evoked the consideration of the numbers as a sequence and not vice versa.

The girls’ attention had drifted to explicitly attending to the set as a sequence— a 

class o f numbers with a recursive rule that could generate further terms, a pattern of 

patterns. They attended to the additive intervals in the sequence {3, 5, 6, 9, 10, 11...} as a 

possible rule. It was after they failed to find a common difference that Lillian responded 

to the teacher, “The interval is not helping” (turn 77). Irene then suggested, “W hy don’t 

we list down the numbers in a pattern?” (turn 80) But what did she mean by this? She 

proceeded to re-write the numbers in the form shown in Episode B as Lillian closely 

followed. It might be argued that Irene had formed a conjecture that she was seeking to 

articulate or verify. I believe that her recording in Episode B, rather than being a step to 

test an already formed conjecture, potentially shifted both students’ attention beyond 

attending to the summing or splitting itself. I explain.

W hat appears to be a neater re-write of Episode A, leaving out the numbers that 

did not have the property, in B is actually a mathematical technology that shifted the 

girls’ attention toward attending to the pattern in the strings of consecutive numbers.

24 In tw o d im ensions they exam ined the patterns in pairs such as (3, 5), (5, 6) and (6, 9). The pattern in 
Fibonacci sequence is in three dim ensions, powers o f  tw o in one but on ly  after looking at it in 2 
dim ensions.
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When it came to writing 11 in Episode B (see figure insert 13b,

Figure 13b
3 = 1 + 2  to the left), without saying anything Irene paused, she and
5 =2 + 3

9 = 2  + 3 + 4 Lillian looked puzzled (turn 81). Each of them appeared to be
10 = 1 +2 + 3 + 4

+ doing some unspoken, ungestured and unwritten— mental—
12 = 3 + 4  + 5
44-15=1+2 + 3 + 4  + 5 .
14 = 2 + 3 + 4  + 5 computations. Alter the silent but busy pose, they concluded,
16

“No it [11] can’t, so le t’s just go on with the list.” (turn 82) If what they were checking 

was 11 indeed, in what ways did it make sense to say 11 could not? The shift from 

Episode A to Episode B was deeper than just a shift in recording. Because it involved 

recording only the numbers that satisfy the property, it illuminated different differences 

from A. The writing in B was a distinction-making act. Episode B thus triggered a focus 

on unique patterns.

The girls’ attention had shifted from reflecting on the set o f numbers as a group 

to viewing it as a sequence and later on to focusing on the strings in the sums. To Bateson 

(1980), from our random, spontaneous actions and interactions emerge regularities, 

habits, signs and patterns. Meaningful cognition and perception involves recognizing 

differences and patterns as well as perceiving unities. But these patterns and rules rather 

than being latent patterns awaiting recognition, to the cognising agent they arise when 

experiences are ordered, rhythms in action are sensed, regularities in successive 

interactions stabilize, and when perceptions become lawful and iconic signs progressively 

become indices and then symbols.25 Repeated and recurrent actions and interactions are 

an opportunity to synthesize patterns and to order experiences. As von Foerster (2003) 

points out, from the restless dance of human actions, interactions and observations,

25 More and later is differ for human cognitive agents.
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irreversible, regular, lawful patterns, sign tokens and habits— eigenvalues— emerge. 

These patterns in turn guide cognitive acts.

With these observations one may wonder about the numbers such as 7 and 13 

whose strings the girls took so long to come up with in Episodes A and B. It might be the 

case that the strings of these numbers did not harmonize with or should we say they were 

not illuminated by the regularities, what Pirie and Kieren (1989) call image having, that 

had surfaced.

7.2.2 Re-writing: Re-presenting Mathematical Work

“Bring the dominoes,” Lillian asked Irene (turn 94). They then worked with the 

dominoes. Was this return to the materials a switch in actions or was it a more dynamic 

shift? W hen Irene and Lillian folded back to the dominoes after the w riting in Episode B 

they seemed to be once again inspecting the pictorials— the geometry o f the sums. But 

with the history of records in Episode B, the students enacted a different aspect in the 

arrangements— the pattern in the beginning digits. With a sense o f urgency, in an aha 

utterance Irene said, “Wait. This one the one is there, this one the one is gone (not), the 

next one the . . .” (turn 102) Beyond attending to whether or not the shapes were triangles; 

beyond attending to the four arrangements (of 3, 5, 6, & 9) as a group, they attended to 

the initial number in the arrangements. It appears the sensibilities and regularities 

cultivated during Episode B enabled them to stress a different aspect o f  the task. The 

records in Episode B as indexical, pointing signs directed attention.

In Episode A, the students’ work was recorded in a fairly organized and 

systematic way. It seems that the form of recording in A, although mathematically 

adequate, had gone as far as it could in evoking what the pupils needed in order to engage
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further with the task. Indeed, the recording in Episode B presented  an aspect o f the 

arrangements that Episode A did not. As the girls attended jointly in B they seemed to 

have form ed an image that 11 violated. It seems that because of this conjecture they took 

a long time to get an arrangement for 7 and 12. For 12 they tried, “ 1 plus 2 plus 3 plus 4 ” 

(turn 84) and “5 plus 6 can’t, 2 plus 3 is 5 ... 5 . . .” (turn 86) The image they had formed 

at that time did not appear to recognize 7 as 3 + 4 nor 12 as 3 + 4 + 5, nor could it create 

a possibility for them to comfortably record 11 as 5 + 6 the way it was stated on the 

question sheet.

Later in work that preceded transcript Excerpt 3 (see Chapter 4, p. 95), when 

Lillian suggested that 11 was an odd man out, Irene disagreed, saying, “I don’t think so 

because 18 starts with 3.” (turn 136) Irene had been able to see that in addition to having 

the property, 18 began with a 3. It appears all through Excerpt 1 and Excerpt 2 (p. 91 & 

93) they attended to numbers that had the property without paying particular attention to 

the initial numbers in their string. Alternatively the girls might have noticed that 11 and 

18 began with numbers other than 1 and 2. But because they did not fit some tacit 

expectation— the image they had formed— they delayed recording these odd  strings.

They might have thought that there must be a way of arranging 11 and 18 beginning with 

a 1 or 2. 7, 11, 12 and 13 did not fit the pattern 1-2-1-2 formed in Episode B.

After explicitly attending to the string of 18 as a string that began with a three, 

the girls then were able to accept 11 as 5 + 6 and to find a string for 12, 13 and 14 many 

turns later. “We have one for 12 actually” , Lillian discovered as they were searching for 

one for 14, starting with a 3 (turn 152). The writing in Episode B focused the girls’ 

attention on variation and order in the first digit— start with one, then with two, three and
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so on as you check a number. It originated this pattern. (Other students noticed this 

pattern at the onset.) Irene and Lillian then returned to recording numbers in what they, 

together with the teacher, called “start with one number, like we are starting with one and 

add on the next” (Lillian, turns 206-212). With the shift from  Episode B to Episode C, 

they altered the positioning o f the equal sign. W hy did they change the sign to write 1 + 2  

= 3 in Episode C instead of writing 3 = 1 + 2 as in A and B? What distinctions did this 

shift originate?

To the extent that a different form o f recording allowed the students to see a 

different aspect of their work, writing was a re-presentation in the true sense o f the word. 

That which they re-wrote re-presented— presented differently— ideas in a distinct form. 

Different forms of writing might not merely be varied re-writes of static ideas. Different 

formats are also a form o f dynamic presentation that evokes distinct sensations, 

perceptions and observations. As I see it, mathematical writing is a source of metaphors, 

visualizations and ways o f articulating. Writing assisted Irene and Lillian and the other 

students in grasping aspects that could easily have eluded them. Osberg and Biesta (2003) 

and von Glasersfeld (1992) have distinguished between representations and re

presentations to explore the co-implicit relation between the knower and the known, the 

pattern recogniser and the recognised patterns. Drawing from Davis (1994) and 

Gadamer’s (1992) exploration of works of art, I add presentation  as the third aspect of 

this distinction.

7.2.3 Writing as an Order o f  Signification: Presenting

Up until Episode A, it appears that the students’ writing activity served mainly 

to keep records o f their findings. In Episode B, however, the writing activity itself began
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to emerge as a problem-solving and problem-posing strategy. It became a source of more 

general images and began to present novel insights. In writing, the students were posing 

new problems and at the same time treading down paths to their solutions.

7.2.3.I. Same Signifier Varied Signified: A Case for the Equals Sign
c . , In Episode A, Irene and Lillian used a dash as a

F igure 13c. E pisode D  i r

16= 1 + 2  + 3 + 4 + 5 relational symbol between a number and its string (i.e. 2— 4=+
= 2 + 3 + 4 + S J b
: 3 + 4 + 5

^  + ̂  1 and 3 -  1 + 2). In Episode B they introduced the equal sign 3
6 + 7 + 8
^  = 1 + 2. In Episode C they altered its position 1 + 2 = 3. In Di,
9+10

as shown in Figure 13c, it gradually disappeared.

Other students, such as Sonia and Gertrude used an arrow, 1 + 2  —> 3 in Dn, before 

using the equal sign to relate the two sides. Some students had no sign at all for an 

episode where they started with 1 to produce triangular numbers— 1, 1+2, 1 + 2  + 3 , . . . .  

Also students who tabulated their records did not use any relational sign. In one of 

Ronald’s episodes, in which he used a “number line” he did not need the equals sign; 

instead he drew lines to mark the strings (see Figure 16). Are these differences in use of a 

symbol really insignificant?

Indeed, dashes are more appropriate signifiers for Episode A where all numbers, 

whether they had the property or not, were being recorded; an equal sign on the left when 

recording strings of consecutive terms; and on the right in C when recording numbers for 

given strings. An equal sign on the right was appropriate in Episode C, where, as Lillian 

put it, “When you start with a pattern, obviously there will be a sum, and that sum will be 

a number” (turn 211). It appears that in Episodes B and C the equals sign was used to 

indicate equivalence, rather than an operation of splitting or summing. Ginsburg and Seo

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(1999) and Sfard (1991b) have distinguished two uses of the equals sign— symbol of 

equivalence and a sign indicating a computation. Researchers argue that for students to 

function in algebra they should be able to see the equals sign as signifying equivalence. 

At an advanced level equality might represent true statements, introduce new variables or 

other relations (Artigue, 1999). When it is not necessary to compute 2 + 3 +  4 + 5 + 6 + 7 

+ 8 + 9 to get 44 the strings of consecutive positive integers can appear first; 9 could be 

added to 35 from the previous string to get 44, that is using the iterative process. It is 

probable that the next steps in C will not require an equals sign nor will the string of 

integers, 2 + 3 + 4 + .... This happened in the writing that followed. Irene and Lillian just 

wrote 54 and 65 without recording their strings. Instead they added 10, then 11 onto 44 

and 54 respectively. Tammy and Tanya replaced the plus sign with commas in latter 

episodes. The written records indicate many shifts during students’ engagement.

The writing and thinking activity in Episode C involved continuity in generating 

the strings. One wonders about how this continuity focuses attention. W hat pattern and 

tones form, little by little, fainter and fainter from this writing activity? In the semiotic 

theoretic, what new and enlarged signs present themselves as a new signifier to represent 

the signified? The students’ actions were more systematic and computationally elegant in 

C, even for numbers as high as 55. As the pupils worked on the sums in C Lillian could 

attend elsewhere. She managed to carry on a conversation with the teacher as she 

completed the sums. “W e didn’t think we were very right for the first one” (turn 215). 

Mason (2002), after Gattegno (in Cuisenaire & Gattegno, 1957), would say that part o f 

the pupils’ attention had usefully been released from doing to expressing and reflecting 

on the doing. This shift in awareness is important when doing mathematics.
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7.2.3.2 Problem-solving Strategies
By Episode C, Irene and Lillian’s attention had shifted toward generating

numbers by summing consecutive natural numbers the way Ivy and Noela approached the 

task from the very beginning (they considered strings o f numbers generated by 1, 2, 3 ,4  

and so on). The form of writing in Episode C, together with the attunements that Irene 

and Lillian had cultivated in prior engagement in A and B allowed them to generate 

strings for many numbers easily in a short time. As they continuously generated strings 

for bigger and bigger numbers their actions and attention reallocated toward noticing that 

the ongoing process, the set of numbers that have the property had an infinite size and 

was explicitly unique. Their attention then drifted to examining the numbers that did not 

have the property. Lillian began the aha utterance “But, one thing I’m getting to realize is 

that every number, every number is made up by something” (turn 284). Irene qualified, 

“Alm ost every ... apart from one.” (turns 288, 290) Lillian then added, “And two.” They 

then added 4 and 8 to the list o f numbers that could not be made up by strings o f sums. 

From my experience with observing students’ engagement on the CT task, the shift to 

focusing on numbers that do not satisfy the property is significant. Solving a problem or 

generating a proof by working with the opposite case is a general problem solving 

strategy. M any junior high students I observed in the study were not inclined to use this 

problem  solving strategy prior to engaging in the CT task. This raises a question about 

particular tasks that have the potential to evoke specific mathematical behaviour: should 

students experience such prompts specifically because they foster particular kinds and 

means o f mathematical thinking and attentiveness? As Tony and Ronald engaged in the 

CT task they debated whether or not by describing numbers that do not have the property 

they would have described the numbers that do (see Appendix B). In Chapter 1, while
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describing non-routine, good enough and variable-entry tasks, I instantiated that the 

Chessboard Squares (CB) task prompted systematic recording. Because such prompts on 

an occurring basis structure students’ behaviour in ways that are mathematical they are 

dynamically attracting  and mathematically structuring tasks. I will say more about 

dynamically structuring tasks in Chapter 11. For all of the students the writing activity 

was a site for transforming understanding.

7.2.3.3 Abstracting from the Concrete
In Episode A, as I explained, the approach to numbers involved local and non

formalized, image based activities with the numbers as amounts. They split each amount 

into consecutive amounts. This activity could be seen as parallel to the concrete stage in 

the historical evolution o f numbers. Historically, before numbers were conceived as 

abstract entities, people used them in ways tied to the concrete units they counted 

(Schmandt-Besserat, 1994).26 While in Episode A the girls used eight as an adjective that 

modified dominoes, in Episode C the girls seemed to be attending to numbers in fairly 

general and abstract terms. (“Eight” was at once a number of dominoes, a noun and a 

manifold of things). Also in Episode C, the girls seemed to have been attending to 

number symbols as objects in themselves. “Forty-four” was more than an adjective (44 

dominoes); it was the noun “forty-four”, distilled from any amount it counts or measures. 

Mason (1989) and Sfard (2000b) refer to this as reification— a shift in attention toward 

imaginary actions.

The form of writing in Episode C was computationally and notationally 

economic and mathematically effective. It allowed the girls to realize that both sets of

26 Remnants of concrete counting exist in our languages— twins for 2 babies or duet for 2 
musicians (Schmandt-Besserat, 1999; Swertz, 1994).

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



numbers, those that had the property and those that did not, were infinite in size.

However the latter grew faster and in a relational way, and was therefore easier to 

examine. They now focused on the set {2, 4, 8, 1 6 ,...}  of numbers without the property.

7.2.3.4 Writing as a Coherent Site of Interpretation
For Lillian and Irene’s engagement, writing served a third purpose presentation,

in addition to representation and re-presentation. W hat the students wrote down 

presented the numbers in a different way, a way that focused their attention in 

mathematically adequate ways. As students worked on a moment-to-moment basis, the 

product together with the activity of writing itself was an evocative site for mathematical 

interpretations. Besides being re-presentations of thoughts and actions they had already 

formulated, they, like works o f art rather than photocopies, were presentations in the true 

sense o f the word. As presentations, the written and writing opened up spaces for the girls 

to articulate the previously unformulated, and to formulate what was not possible at the 

beginning of the task. Written records are at once: (a) memory/records— a preservation of 

actions, and articulations of thoughts, (b) a reformulation o f ideas and a re-organization 

and meta-stabilization o f what we attend to, and (c) a space for writing ourselves into 

more novel and deep intuitions. I have summarized these three roles in Table 3.

It appears what students attend to extended to include the writing activity itself. 

Moreover, writing is a way of writing oneself into thinking mathematically.

Mathematical writing, like telling phenomenological stories and giving examples, is 

likely to assist in grasping aspects what would otherwise be nonexistent. Paper and pencil 

work facilitates the invention o f algorithms, and the noticing of patterns plus the 

enactment of mathematical properties. It presents yet-to-be conceived ideas. Writing
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technologies define and redefine what is mathematically articulate, elegant, visible, 

knowable, sensible and possible. This attending to students’ written work enables the 

study o f thinking to be extended to what students write and to their other activities.

Table 3. Representations, Re-presentations and Presentations

Writing to Record and 
Externalise

Writing as a Space for 
Noticing

Writing as an Agent in the 
Emergence of Insight

Episode A: Episode B: Episode C:
Arranging and splitting Noticing patterns in strings Experiencing recursion and
amounts of numbers continuity

Concrete numbers Forming an image A bstract numbers & objects

Individual numbers Articulating conjectures Elegance and economy

Group, set, sequence— Focusing individual Computational
interval attention effectiveness

Having an image Attending jointly Problem solving strategy

Insight on numbers that do 
not fit

Writing down Re-writing Writing activity

Representing work Re-presenting Presenting insight

Writing to avail Writing to bring into focus Writing to call ourselves to 
think (mathematically)

Extending memory Affording jo in t attention
Changing focus o f  attention

Records and artefacts Technology o f  thinking
Agent in growth o f  ideas

7.2.3.5 Writing as a Component in the Emergence of Mathematical Consciousness
W riting is one among many other technologies that have encouraged us to

mathematize our worlds. The written, however, is likely to be less dynamic when done in 

isolation from the touched, the felt, the spoken, the made, the shared and the experienced. 

At the advent o f writing, Plato wrote the following about written words, “ [They] seem to 

talk to you as though they were intelligent, but if  you ask them anything about what they
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say, from a desire to be instructed, they go on telling you just the same thing forever” 

(Phaedrus, 275d; quoted in Abram, 1996, p. 301). Indeed mathematical writing ought to 

be in interaction with other mathematical activities. In interaction with other agents, 

scribbling (as well as the surfaces and interfaces for writing and drawing, and possibly 

for clicking, selecting and dragging) calls forth the possible and thus transforms human 

understanding. Rotman (2000) recognizes writing as an order of signification (see 

Appendix B). Written signifiers and signified arise together (Sfard, 2001a). To use 

Bruner’s (1996) phrasing, we implicitly scribble, sketch and click ourselves into ways of 

perceiving and being. Sumara (2002) would say writing is a site o f  interpretation and 

transformation. In complexity terms, writing mathematically is a coherent unity, an inner 

level agent. It is a condition o f  possibility in the evolution of mathematical concepts and 

strategies. W riting— whether ideographic, diagrammatic or dynamical— when coupled 

with other elements in mathematical activity expands the space o f what is mathematically 

thinkable and comprehensible. It is an act o f distinction.

Research on the role o f writing in mathematics has recommended that students 

write about their mathematical experiences (see M o watt, 1992 for a review). What I am 

discussing here is different. It is about the mathematical writing experience and artefact 

itself. Simmt (2000) maintains that records are among the occasions for thinking. They 

open up a space for rigorous collective attention. Schoenfeld (1992) observes that it 

makes a difference when students look back at their earlier written work as they solve 

problems. In Heidegger’s terminology, organized records and the act of organizing and 

recording itself are among the many things that call us to think. They are what hold us 

there to enact mathematical worlds, to make mathematical distinctions.
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Joseph (1991) and Kaput (2002), who study the evolution o f mathematical 

technologies, note that in history different surfaces and forms o f inscriptions opened up 

spaces for the development o f insightful mathematical ideas. Butterworth (1999) traces 

the transition through different surfaces, forms and systems of writing. Kaput and Joseph 

remind us that permanent writing has moved from marks on cave walls and sand boards, 

to phonetic systems and inscriptions on clay tablets and papyrus rinds, to alphabetic- 

phonetic systems and placeholder systems on paper and in printing press, to algebra 

symbolism as well as visuo-graphic systems of the electronic interfaces. Technologies 

such as the printing press and dynamical environments allow for the development of 

conceptions that would have been next to impossible using surfaces such as animal hides 

and bones. With these distinction making acts of recording, interacting and thinking, the 

human consciousness can access novel states that were not previously available (Abram, 

1996). Many inventions (including early and “primitive” ones) change “the nature of 

what it means to be human by changing conditions, culture and the societies in which” 

these technologies ensue (Kaput, 2002, p. 81). While new signifying technologies and 

acts o f distinctions allow human consciousness to access novel states, they may also layer 

or even decimate states available before (Abram, 1996). Static and dynamic inscribing 

ought to be recognized as relational parts that change the nature o f what it means to make 

mathematical sense.

Spencer-Brown (1972/1979) asserts, “ [I]f a different surface is used, what is 

written on it, although identical in marking, may not be identical in meaning” (p. 86). 

Writing and the media o f writing are agents, conditions in the evolution o f abstract 

mathematical objects. Mathematical activities such as writing, talking and manipulating
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are agents of cognition at a level before that of mathematical activity. Moreover, as I 

argue in Chapter 10, writing systematically, carefully and promptly is a mathematically 

adequate action.

For now, I return to the other coherent agents in mathematical activity before 

looking at how the research question evolved with further exploration o f the eco- 

complexity framework. The idea of dynamic representations, re-presentations and 

presentations is analogously applicable to students’ use of concrete materials, as well as 

their spoken and gestured communication.

7.3 Concrete Materials as Extended Thinking

Vignette 3. Tony and Ronald’s First Session: The Consecutive Terms Task
Like Irene and Lillian, Tony and Ronald used manipulative materials on the CT

task. But they turned to them after getting stuck with their pencil and paper work. Tony

used materials to try out higher numerical value numbers whose strings had not been

easily discovered by mental computation. He commented that working with the discs he

was sure not to miss an arrangement that worked for a number.

Half way into the session, when the boys collected the numbers they had

generated independently, 16 appeared on both the yes and no sides, as shown in their

written work in Figure 14. How were the boys and the teacher going to explain this?

Excerpt 4 is taken from a moment when Ronald noticed that 16 appeared on both sides.

Figure 14. An excerpt of Tony and Ronald’s written work

No [ d o es  n o t  h a v e  the p r o p e r t y ]  Yes [ ha s  t he  c o n s e c u t i v e  t e r m s  p r o p e r t y ]

2, 4, 8, 13, 14, 

16, 24, 26, 32

1, 3, 5, 6, 7, 9, 10, 11, 12, 15, 

16, 17, 18, 19, 20, 21, 11, 23

14, 23, 31, 4 0 , 5 0 , 2 5 ,  13, 24

Notes: Ronald wrote first. He drew the chart headers on the shared paper. Tony wrote his 
numbers, drew a line below them and handed the paper to Ronald, who wrote below the 
line. Ronald only wrote numbers that were not on Tony’s list.
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EXCERPT 4

88 Ronald:
89 Teacher:
90 Tony:

116 appears on both sides!
Oh! You have 16 this side, so it is ... like it can?
So 16 ... Oh yeah. [Both turn to check on their papers for the string o f 
consecutive terms they had generated for 16. There was none, not even on 
Tony’s paper]
Can we try to have 16 and see whether there are any ways to do 16 
No [It does not have the property, Tony assures.]

[Tony reaches for counters to test 16, Ronald looks on as Tony moves counters to find an 
arrangement for 16. The teacher asks Tony to explain how he uses the counters]

Picture 1. Tony Moving the Counters to Check 16

91
92

Teacher:
Tony:

.— - -  -  •  i

wik>'*SS5

[Seven turns later]
100 Tony: [...] Just I use them and ... if there are no left over chips then that will

mean that there is a way. But if there are [leftover counters] ... then you 
know you did it the wrong way or there is no way.
Tony can you explain a little bit about that. I am lost. With the 
arrangement... First you said that that doesn’t work, but ...|
|There two together here, three, four then five, then these are the left over 
counters [He illustrates, taking care to be slower, as the teacher watches] 
[Ronald says something inaudible, as he looks on. Picture 1 shows 
Tony moving the counters.]
Four, five, six, two, ...six, two, ...seven, ...eight [slowly re-arranging the 
discs, and is at times inaudible and at times fast]. Sure I can’t find a way. 
[He concludes as Ronald reaches fo r  paper, cancels 16 off the yes side o f 
the list]

As Tony explained how he used the counters to check 16, in the moment I was 

not able to understand how he did so. He explained once more. But I was yet to get it. It

101 Teacher:

102 Tony:

103 Ronald:

104 Tony:
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was after watching the videotape and arranging the discs myself that I could follow his 

procedure. In Figure 15, 1 offer my reconstruction o f his actions with the counters.

Figure 15. Tony’s verification for 16 using manipulative materials3

a I have colour-coded the rows for a clear illustration. Tony used red and yellow counters. 
As in Picture 1 he did not pay attention to the colours; as well he did not keep the 
arrangements in a grid as I have done for clarification.

Tony began by counting off 16 counters. He then began with
Figure 15a.

^ teP 1 the triangular arrangement (Figure 15a), with 1 as the first number in a

string. This gave him a leftover o f one disc. He stack it at the bottom to 

begin the next row. He then slid the top row and the next to the bottom 

successively to com plete the bottom row as shown in Figure 16, step 2. In the Figure 15a 

on the left he would move the yellow disc to jo in  the left over white disc, then the pink 

row, the orange and so on, all the time ensuring he had consecutive rows and a left over 

row. He would do this until there were no left over discs. None leftover would mean he 

had a string o f consecutive terms. If there were left over discs at any n-1 step he 

continued, but not ad infinitum! (A student could go on moving counters or summing for 

an unnecessarily longer time.) Tony had a point at which he stopped. At this point he 

somehow knew that he had exhausted all the possibilities. After a few moves, in less than 

a minute, he was able to conclude, “Sure I can’t find a way [for 16]” (turn 104). There 

were left overs. “If there are [left overs] then you know you did it the wrong way or there
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is no way.” (turn 100) But how he knew that he had not missed a string for 16 begs 

further analysis. Were his actions with the counters organized, general and sophisticated 

enough to guarantee verification of numbers?

Tony and Ronald later checked 32, for which Ronald continued working with 

number symbols. Ronald wrote down a string o f sums from 1 to 23 (see Figure 16). 

When I asked about how he had used the number line, he explained, “I began with, 

[pointing at what he had written] from one all the way to 23, if  you keep on like adding 

them up. (turn 236). “I . .. Just like what he [Tony] is doing, except I wrote it. And I kept 

on adding it, and see if I can get 32, and if  I could not get 32 I would cut off a lower 

number and add the next ones and then keep on doing it” (turn 251). But how were 

Ronald’s actions with the number line similar or distinct from Tony’s with the counters?

Figure 16. Ronald’s number line with which he checked bigger numbers like 32

1/-K 2 - + !*  -V U 4-*C. A" 7 >  g -p/a -H Jr/t} -V R

^  _________________

Mathematics education researchers have recently turned to closely examining particular 

aspects o f students’ activity. Some have reconceptualized the notion of thinking 

mathematically in terms of viewing, acting, using tools, attending or even emotioning 

mathematically (Davis, 1994; Mason, 1989; Schoenfeld, 1992; Sfard, 2000b; Simmt, 

2000). By looking at students’ written work, together with how students used 

manipulative materials, I attempt to understand how what students attend to in 

mathematical tasks extends to include their actions with manipulative materials, cultural 

artefacts, technological media and symbolic tools. M ost times—especially if  we do not
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pay close attention to students’ activities—variations, details and shifts in students’ 

attention pass unnoticed. At other times they are interpreted as styles, repetitions, 

obstacles or idiosyncrasies. In unfortunate cases varied ways of working might be 

assessed as simply wrong, and their wrongness may not be examined further by teachers. 

Yet, as my analysis demonstrates, variations, details and shifts in students’ work could be 

taken as invitations to closely attend to students’ mathematical worlds. According to 

Steffe and Thompson (2000), a teacher ought to engage with students’ enacted 

mathematics so as to engender and sustain modifications in it.

7.3.1 Bodily Attending with Instruments 

It was interesting how Tony, by checking with counters, knew for sure that he had 

verified that a number could not have the property. I asked, “Tony can you explain a little 

bit about that.” (turn 101) To explain, he re-did the illustration, this time a little slower 

and counting along, but again I did not see how he knew when to stop for a number that 

did not have the property. For a number that has the property you stop when you get a 

string of consecutive numbers. But when do you stop for one that doesn’t? In the next 

section I reflect on how one could kinaesthetically know when to stop checking.

Figure 16a. Ronald’s verification of 16 and 32 using number symbols

20

1 + 2 + 3 + 4 + 5 + 6 +  7 + 8  + 9 + 1 0  + 11+ 12 +13  + 14  +15 +16 +17  + 18  +19  + 20+  21 + 23

A closer look at how Ronald did his written computations illustrates how 

systematic and procedural Tony might have been in moving the discs. Indeed, there are
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many ways in which Ronald’s method, which I have elaborated upon in Figure 16a, is 

similar to Tony’s. In fact it is highly sophisticated.

First, with counters, as is the case with number symbols, it appears im portant to 

be systematic when checking any number. As with Tony’s use of counters, Ronald began 

with the triangular string, 1 + 2  + 3 + 4 + 5 + 6 + 7 + 8 (the bottom dashed arrows) which 

does not work for 32. He then would drop the 1 and begin with a 2 (the upper thicker 

arrows), then begin with a 3 and so on until beginning with 16 + 17 = 33, that does not 

work, 17 + 18 = 35, that doesn’t either. After this he stopped at 17 computations in the 

least. But does one have to check all these sums. Tony using discs did not have to. Irene 

and Lillian using systematic records did not have to either.

Second, with the number of computations involved in checking a number as big 

as 32, it is important to come up with a method that minimises errors. Tony’s use o f 

counters was systematic and it ruled out errors. He began with 1 and worked through, 

each time beginning with the next integer. Note that when using counters one does not 

have to compute what l + 2  + 3 +  4 + 5 + 6 + 7 + 8 + 9 is . But Ronald using number 

symbols has to in order to check a sum. When Tony sees a left over he moves onto the 

next string by sliding the top row to the bottom

Third, to speculate about the point at which Tony knew he had exhausted the 

arrangements we look at work from other students. Tony and Ronald’s ways o f checking 

numbers were also similar to what Irene and Lillian did when they, in Episode D i-Figure 

13, were verifying that 16 did not have the property. See Insert 13d to the left.
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Irene and Lillian stopped checking 16 after they had sums 17, 19. Tony using 

counters stopped before these last two sums after which he would have had 8 + 8. In a 

way Irene and Lillian in Figure 13d stopped checking a little too late; one pair of students
Figure 13d. Lillian and Irene’s
verification o f 16, Episode d said they always stopped checking a  number when the

lb - I f  Zf  3 f  ty f 5  first term was a little over a half the number tested, for 32 at

~ t 5
1 7 + 1 8 . Was this what Irene and Lillian did to stop at 9 +

^ i" t5  f S  I® when checking 16? Did Tony have an explicit relation

5 H  f T -
-------------------------  about when to stop checking? Probably it was after he had

h n  j - s
moved the leftover chip—the white one in Figure 1 5 ,1 have

  thought. Or could it have been the turn shown in Insert 15b,

Q f  10
the 6 step in figure 15? After this step, 6 + 7 + left over 3, 

a few things happen: The next step is 7 + 8 + left over 1. And the next could not begin 

with 8 and have 8 left over. For numbers like 4, 8, 16 and 32 you also get
Figure 15b.
6 step 2  equal rows (2 + 2 ,4  + 4, 8 + 8 , . . . )  with no remainder. By the time Irene

  __
and Lillian were summing 8 + 9, and 9 + 10 they had exceeded the steps 

that could be accommodated using counters. The counters make it senseless to proceed 

beyond the steps 7 + 8 + 1 for 16. Before sliding the counters you realize that the next 

step will be 8 + 8. “Sure I can’t find a way” , Tony declared

W atching Tony know when to stop illuminated a  conceptual knowing that was 

embodied in his gestures, phrasings, timing and actions with the counters— you stop at 

the kind o f arrangement that always feels right to stop at! “If there are [left over counters] 

... then you know ... there is no way” (turn 100). (With the towers of Hanoi problem 

some participants also demonstrated this bodily knowing and attending. While moving
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the discs, one said some movements felt right. Another said after a few movements he 

picked up the rhythm of optimal moves.) But would his bodily and material knowing 

work for all numbers, including those that satisfied the property? Had there been more 

time in the session, these would have been good avenues to pursue with the pupils. How 

was Tony’s method distinct from Ronald’s? Did their methods work for all numbers? I 

came up against the broader institutional issue of time and curricular structures that 

teachers have to work around. Even extra-curricular explorations had to be carried out 

within a specified length of time. I was left to ponder the questions on my own as a 

teacher-researcher and during sessions with other students.

7.3.2. Importance o f  Kinaesthetic Knowing as a Perceptive Element 

Another pair of students, Eva and Faith approached the checking of a randomly

Figure 17. Era and Rrith decking selected number with actions derived from symbolic
W riter 19 satisfies the property

materials, as did Irene, Lillian and Ronald. They adopted a
19-> l + 2 + 3 + 4 + 5 + |6

^ + 4^+5+6 ^  new symbo1 i ”’ probably for the remainder or perhaps to

4 + 5 + 6
mark a point at which to stop while checking a particular 

number. Figure 17 is work with which they checked 19. After 4 steps they concluded that 

19 did not have the property.

Eva and Faith’s intuitive method did not work for many numbers, including 19. 

They stopped short of 9 + 10, which works for 19. Perhaps this foresight originated from 

the way they attended: They systematically increased the initial number in the sum, kept 

no records o f leftovers and had an upper bound at 6. In a way not recording (or keeping, 

in terms of discs) the leftover 4 in the first sum as 19 —>1 + 2 + 3 + 4 + 5 + \4, but 

instead recording the next number 6 in the sum as in 19 —>1 + 2 + 3 +  4 + 5 + \ 6 ,
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appears to incline one to ignore the left over 4 as they focus on the upper bound. And this

is not without repercussion. Inturn Eva and Faith were not checking 19, but discovering

strings in the neighborhood of 19.

I speculate that had Tony been prompted to symbolically record the actions

derived from concrete materials, in a way parallel to what Eva and Faith did, his method

would have w orked since it did not neglect the left over counters (see Figure 18). A lso to

the extent that the use of concrete materials ensured that the

19 -> l+ 2 + 3 + 4 + 5 + |4  left over was indicated it was a computationally more
2+3+4+ 5+ |5

4 +5 +6 + 4̂ 11 effective method. W orking w ith discs highlighted the

5+6+7+|1
6+7+| 6 importance o f the ever-changing left over strings as shown in
7+8+|4
8+9+| 2 Figure 18— when you adjust the first term  in the string the left
9+10

over changes but the amount 19 stays fixed. Actions with 

concrete materials provide perceptive clues to what is important to mark and notate. It 

offers ground for significant regularities and patterns to be illuminated. It too is a 

distinction making act. But is it safe to speculate that Tony’s method articulated in a 

symbolic manner would have allowed him to get an arrangement for 19? Or would he, 

like Eva and Faith, have stopped checking short o f 9+10 for some other reason? Rather, 

how are these significant questions? Or should the question be about how we can help 

students to articulate their bodily knowing and attending?

For classroom teachers observing students working, it is important to ponder and 

ask about how students know what they know, Ball (2002), and Simmt, Davis, Gordon 

and Towers (2003) observe. Ball (2002) observes that among the mathematical issues 

that teachers have to face in a classroom is the need to verify whether students’ invented
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methods work for particular domains of numbers or for all domains. Simmt et al. (2003) 

observe that such circumstances require that a mathematics teacher be curious about 

classroom mathematics. Simply using manipulative materials differently calls for a 

teacher’s close listening and interest in the mathematical enactments o f students. It would 

have helped if  I had encouraged Tony to express and reflect on his bodily knowing. 

Nonetheless, even pondering on Tony’s actions expands the space of the possible for me 

as a teacher. I can appreciate that Tony was working with discs in a more than informal 

way. His actions appeared to have gone beyond local manipulations of the discs.

7.3.3 Thinking and Attending With Materials

Tony used the discrete manipulative materials in 

ways that were distinct from how Irene and Lillian used 

them when they worked with dominoes. They used them at 

the beginning of the task, then folded back to them when 

they were stuck. Tony used them after working with 

symbols and it is discernible that he was engaged in fairly 

sophisticated and general mathematical activity with the 

materials. Witness how systematically he was in checking a 

number and how he took care o f the remainders as well as

The students’ use o f materials— whether in demonstrating, acting out, or 

verifying an idea— are inextricably tied to the dynamics o f their mathematical 

attentiveness. Different forms o f manipulative materials (or their symbolic records) might 

not be merely varied representations of static ideas. Different actions with concrete
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materials are a form of re-presentation and presentation; they are aesthetic texts that have

potential to present a particular aspect o f a concept and problem to a learner. Let us

revisit the concrete tree diagram in Appendix E that student teachers used to solve the

Bee Genealogy (BG) task. Actions with the tree diagram made of two coloured cubes and

toothpicks appeared to have made the Fibonacci sequence more salient. As a dynamic

sign, it aided the student teachers who worked with it to solve the task in less time. Had

they used a less illuminating representation or not used one at all the situation would have

been different. Although not predictable in detail, in my view, every kind o f

representation as a node in the network of mathematical distinctions evokes specific

patterns o f oral, gestured, silent and written actions.

Figure2Q. IvyarriNaie Concrete or pictorial representations students used
used checks and triangles to
drawiraleBeegerealogy varied for the BG task. Tammy and Tanya used two coloured

|\ I t  counters before they drew a genealogy tree. Lillian and Irene

materials, drawings or tabulate their results at all. Ivy and Neola used a shaded circle and 

a blank one before they used checks and triangles, as shown in Figure 20, to the left. As 

they completed drawing the tree, Ivy and Neola concurrently tabulated the results under 

the columns first generation, females and males. Had they completed the tree and 

tabulated the results consecutively, I conjecture that this would not have been a trivial 

variation. Each of these workings might trigger, sustain and structure down stream 

mathematical behaviours in distinct ways.

x A m  * Ax
used dominoes before they tabulated their results. Tony and

2  Ronald also used a tree diagram for the BG task. And other 

1
students used stick people pictures, yet some did not use
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Pimm (1995) reviews the role o f manipulative materials. Many educators now 

are open to the use o f materials in mathematics learning. However there might not be 

consensus on how central the materials and artefacts are to learning. W hat is their role? 

Like any reform recommendation, there is likelihood that students’ actions with concrete 

materials will be trivialized to making mathematics fun, colourful, tactile oriented and so 

on. To some researchers concrete materials are representations and illustrations of 

abstract ideas; to others they aid visualization, yet to others they are helpful for students 

to learn harder concepts or for weaker learners. Less is said about how different it is to 

know a concept with particular physical materials. In the BG and Pirates Aboard tasks 

students did not only use materials to represent, they also subjectively put themselves in 

the place of the materials that respectively represented the bees and sailors. Papert 

(1986), and Rasmussen and Nemirovsky (2003) have noted that kinaesthetic, emotive, 

linguistic and semantic relations that students develop as they puppeteer instrument 

extend students’ senses, emotions, motives and knowing. When we focus on the role of 

touching and moving materials just as mere manipulations, we neglect to highlight that 

these are not independent of the manipulator’s bodily orientation and actions. They are 

not independent o f expressions, spontaneous gestures as well as linguistic expressions 

perceptions and thoughts. Gordon-Calvert (2001) maintains that we do not manipulate 

concrete materials; our bodies become unified in action with them. In the eco-complexity 

understanding where mathematical properties are considered to be emergent properties, 

bodily actions— both spontaneous and cultural— and use of materials are central to 

mathematical thinking.

B. Davis (1997) proposes that concrete materials, in addition to being illustrative
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cases, are sources of metaphors and ways of articulating the verbally indescribable. 

Manipulative, symbolic, cultural and technological interfaces are central in deepening our 

intuitions. They participate in how we order, pattern and regularize our mathematical 

interactions. W e implicitly manipulate concrete materials into our own mathematical 

thinking. For distributed cognitivists as with eco-complexity theorists there is nothing 

surprising about these assertions: thinking extends to include the tools we use, the media 

we work in, and concrete materials and surfaces we work with (Hutchins, 1995; Wertsch, 

Tulviste & Hangstrom, 1993). To Juarrero (1999) our knowing is looped through the 

external structures including the physical and social environments. M aterials of 

intelligence and distinction making artefacts change the probabilities o f our conceptual 

possibilities.

Students’ actions with manipulative objects as well as semi- and symbolic 

representations provide grounds for the emergent. They are coherent sites for 

mathematical interpretation that are correlated with other component parts by the unities 

that emerge in the form of mathematical insights. Subtle variations in the use of concrete 

materials, as witnessed in the Fraction Kit activity discussed in Chapter 5, gradually 

present different thoughts. The surfacing of a distinct way of handling the kit points to the 

distinctions in worlds enacted by students. Indeed, mathematical worlds are of an 

emergent order. This outward order hems in the order of tools used. Students know-with 

artefacts, interfaces and instruments.

7.3.4 M athematical Thinking: An Emergent Unity Surrounding Mathematical Activity

Students, when engaged in rich mathematical activity together with their 

teachers, might suddenly find themselves conjecturing, thinking, reasoning and
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visualizing new patterns. This emergent mathematical behaviour, in eco-complexity 

terms, is far more than the sum of concrete materials, students’ interactions and written 

work. As an emergent order it surrounds that o f the written and the manipulated. Often 

the emergent is sudden— a phase transition, to borrow a word from catastrophe theory—  

and at other times it is a gradual progression— an unfolding. At all state and operation 

transitions, what Piaget would refer to as accommodation and equilibration, isolated 

patterns, hunches and noticings coalesce into sudden insights and broadened students’ 

conceptual understanding (Capra, 1996; Johnson, 2001). These insights, many of which 

arise from regularities, lawful linkages and habits in ongoing actions and interactions, 

suddenly change the students’ attentive landscape.

W hen I began the study, I observed students’ actions with materials and what 

they wrote down, made or said as articulations and representations o f their thinking. 

However, my focus has drifted to the dynamics of students’ attention— how they act 

themselves while attending to mathematical objects. I now analyse activities as more than 

illustrative cases. They are not mere visualizations or externalisation, nor are they solely 

triggers for recall o f already existent ideas. To consider them as growth of potentially 

existing ideas is teleological. Mathematical activity is an agent that inclines students to 

think mathematically. The inner-level agents of mathematical thinking discussed in this 

section hold students there, in an expanded space to pose mathematical questions, to lay 

down mathematical worlds tread to solve mathematical problems, and recalibrate their 

mathematical attentiveness spaces.
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7.4 Speaking and Gesturing our Way into Thinking

At the moment when looking for the interval in the sequence of numbers was not 

helping, Irene said to Lillian, “Why don’t we list down the numbers in the pattern?” What 

followed this utterance appears to be a radically different and fruitful focus o f attention. 

They recorded only the numbers that satisfied the CT property in Episode B and 

generated patterns in Episode C. Simmt (2000) asserts that words are all-at-once 

recording, thinking and conversational tools. W e talk and gesture our way into thinking 

both in a gradual and radical manner. M oreover our articulations are agents in the 

thinking of the people with whom we interact. Speech, mood, expressions and gestures 

are also conditions that facilitate mathematical thinking. Radford (2002) refers to them as 

means of objectification. They are marks that generate meaning

7.5 Joint Thinking-in-Interaction

W hat Irene attended to appeared to be thoroughly intertwined with Lillian’s 

understanding, and vice versa. When they checked 11 in Episode B, they appeared to be 

acting in accord, without one o f them having to signal what they were silently computing. 

In some o f these instances o f joint acting and thinking the girls appeared to be 

collectively engaging. Even their spontaneous bodily actions such as gestures, 

expressions, postures and mood seemed to be synchronized. Seamless and swift shifts in 

attention o f a pair of students might be taken as evidence of joint attention. Kieran (2001) 

notes that these moments when one of the interlocutors enters the world of thought o f the 

other in the moment of action and interaction are important in mathematical thinking.
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During such moments interlocutors are caught up in the emergent collective’s behaviour. 

For Bruner (1986), there is a “loan of consciousness” in the course o f such moments— 

moments of thinking-in-interaction, especially when the interaction is between an adult 

and a child or an expert and a novice. In neurological and second-order cybernetic terms 

working jointly is likely to be a source of energy-rich matter and enabling constraints for 

individual students (Newberg et al., 2001; Simmt 2000; von Foerster, 1981). As we saw 

in Chapter 6, once in place, the dynamics of the collective as a unity influence the 

behavioural characteristics o f individuals. And a collective of students can attend in ways 

that each of the students could not.

Even though each individual human being is organizationally closed and distinct 

at the matter level, at the interaction and dynamics level we are contextually, 

thermodynamically and operationally open systems. Individual student’s attending is in 

mutual causation with the collective mathematical attending of the groups that span them. 

Self-organizing systems in perpetual interaction live on the available energy, order, 

structuring processes, context-sensitive constraints, patterns and social habits from the 

neighbouring and embedding bodies. It takes an agent, nonetheless, with certain 

structural properties, sensibilities and history— a certain gradient— to take in socio

cultural energy and to generate order from noise, as it does for the perception o f patterns.

In some pairs of students, moments o f joint attention were limited. Kieran 

(2001) has referred to such pairs as non-mutually productive pairs because of the 

asymmetries evident in their participation. To Davis and Simmt (2003) the individuals 

must have much in common yet they must also have enough differences to keep the 

collective from disbanding. The pedagogical question would then be, “How do teachers

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



enhance mutually productive collectives in the classroom?” Davis and Simmt (2003), and 

Davis, Sumara and Simmt (2003) have discussed this topic in detail. In this research I 

find the social psychology distinction between a community and a collective (Moscovici, 

2001) quite telling. For Blumer (1969), human groups or societies exist in action either as 

individuals or as collectives.27 W hen more than one individual is jointly participating in 

an immediate action such as solving a problem, there is potential for a collective project 

to arise around the collaborative project. Otherwise the group o f people is an aggregate of 

people living and working together, a community not immediately and repeatedly 

coordinating and ordering actions toward the tasks-at-hand. Joint thinking-in action is not 

always a good thing, as non-mathematical ways of attending that were once accessible 

may become inaccessible. Under what circumstances would the emergence of a collective 

be at the expense of individual student’s mathematical thinking? In which kind of 

collectives does mathematical thinking sprout? These become the questions as we seek to 

create conditions for students to attend in mathematical ways.

7.6 Thinking-in-action as a Dynamic Ensemble of Elements

Students who completed mathematical tasks for this study attended not to a 

single item but to a chain of relationships. In discussing the agency of the writing 

activity, I illustrated how cognition involves a search for patterns, connections and 

relationships. W hen analysing students’ activity it becomes apparent that students’

27 In my work, to avoid pairing students on ly  at the com m unity level I had to provide on ly  one set o f  
m aterials, including writing materials. W hen I recruited the Ugandan students as a group from the same 
class, I asked the students to suggest people they thought they would work better with. U sually these 
groups worked w ell as collectives, but when they did not a random re-organization o f  the groups or pairs 
m any tim es rescued the students who had becom e unhelpfully dependent or dom ineering. M ost 
importantly, it helped in the research session s to provide a task that was likely  to, on an on going basis, 
trigger the involvem ent o f  both students in a pair. In the sessions a few  pairs o f  students divided the labour, 
som e worked in parallel, but many worked fully collaboratively.
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attention wanders across many relations and drifts on a milliseconds timescale.

Irene and Lillian’s, and Tony and Ronald’s written work has provided a focal 

space for articulating and gaining insight into what I consider as the dynamics o f what 

students attend to and how they attend. Other students who worked with the same tasks 

seemed to share in these dynamics. However, there were differences in how fast and keen 

students wrote, for example. There were also differences in how students were systematic 

and organized in their writing and in using concrete materials. Some behaviour was 

prototypical to particular mathematical tasks and others to particular students. Irene and 

Lillian’s engagement with the BG task, a task they engaged with during their second 

session, seemed to share some dynamics of what they attended to in the CT task. During 

the BG task, they began by using the manipulative materials to represent the bees, and 

then moved on to pictorial representation as they drew a generation tree when the 

dominoes they were using ran out. After finding the male ancestors in a few generations 

and after realizing that the generation tree was growing so fast and that it was becoming 

laborious and prone to error, at the fifth generation they set out to look for a pattern.

They, however, did not fold back to using manipulative materials again during this task. 

Other students did not proceed in this order, from materials, to pictures, to writing, and to 

pattern noticing.

Some pairs o f students were not keen to use manipulative materials; a few 

students, such as Norah and Rose, needed prompting to represent the bees concretely or 

pictorially. A few students were not keen on recording systematically, yet some students, 

like Tammy and Tanya and Ivy and Neola, drew the genealogy tree for all the twelve 

generations, with some errors.
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With such varied observations I continue to wonder broadly about the dynamics 

of what students attended to in mathematical tasks. For instance, what dynamics, if any, 

were prototypical to particular tasks and which ones are prototypical to secondary school 

students? At the meta-level of my attending to the dynamics of students’ attentiveness, 

what were the patterns that became salient for me as I observed and analysed more 

sessions?

A second layer of analysis emerged after the preliminary analysis and writing. It 

was a layer supported by further exploration o f the principles of complex adaptive 

systems. In a study of dynamic systems it makes more sense to study regularities even 

among differences, the patterns of patterns formed in time rather than to hold onto 

particular shapes as if adaptive systems could ever settle in static equilibrium. When 

observed at the appropriate temporal and spatial scale with appropriate tools, m eta

stabilities are discernible. One such meta stability that I began to attend to is the presence 

of coherent forms that themselves are subagents in the emergences of mathematical 

thinking. Neither written records and activity, concrete materials, utterances and bodily 

gestures, and jo in t projects are mathematical thinking. Yet put them together in the 

appropriate way, let them successfully interact, and dynamical behaviour, multi-stable 

regularities emerge. I conjecture that these regularities are what the mathematics educator 

calls mathematical thinking.

W hatever task, session, or aspect I analysed it became a node in the complex 

web that included theoretical understandings. In the next chapter I explore how the 

research question evolved with further exploration o f the theoretical framework. It is a 

chapter about how my attention shifted during the research.
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8. A LAYERING OF RESEARCH ATTENTION

As I analyzed the data, interacted with other researchers about it and did further

readings in eco-complexity research, my orientation to the research questions drifted. My

question about the specifics of what students attend to was reframed. As I demonstrated

in Chapter 7 , 1 began to ask questions about the dynamics of students’ mathematical

attentiveness. Through successive research sessions and analyses the research focus

extended beyond looking at: the structural aspects of the mathematical task— what do

students attend to? The psychological aspects of children— what mental mechanism do

students attend with? My personal experiences— what do I attend to and how?

As I sought to make my observations and analyses coherent and as I gained a

deeper understanding of cognition as embodied action, embedded action and extended 

28  •action , it made more sense to ask how  or in what ways rather than what and when 

questions. In particular, eco-complexity views about human perception and observation 

provoked me to ask interpretive questions: In what ways do secondary school students as 

embodied, embedded and extended systems attend as they engage in mathematical tasks? 

In what ways do students attend in mathematically adequate ways?

In this chapter, I elucidate how further exploration of the theoretical framework 

induced a re-framing of the question. I make an effort to relate this multi-threaded path to 

the historical development of research on mathematics learning. It appears to me that 

what appeared on the historical plane and time scale is somewhat parallel to how my 

understanding has drifted during the study. I have organized this section around the six 

questions I have asked at various points in this study:

28 A ll actions are extended to the leam er-environm ent unity.
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I. W hat is there to be attended to?

II. W hat psychological structures underlie mathematical thinking?

III. W hat do I attend to and how do I attend?

IV. How do students enact what they attend to?

V. In what ways do students attend?

VI. W hich observing systems are at work when students attend?

Metaphors and shapes adopted from eco-complexity research influenced my 

thinking. Old questions were answered or reframed and new ones arose. In particular, the 

theory o f distinction and observation informed my later analyses. In the last section of 

this chapter I introduce the theories of distinction. These theories have the potential to 

evoke a listening, sympathetic and participatory stance on the part o f a teacher and 

educator.
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8.1 My Theoretical Journey

As a schoolteacher faced with the challenge o f teaching mathematics better, 

especially to some struggling students, I used to wonder what needed to be emphasized 

for each topic. Most of my explorations involved reading collections of textbooks from 

which I would, to the extent that it was possible, make comprehensive notes. The bulk of 

the notes and explanations, as well as the examples and exercises I offered to high school 

students grew considerably. Yet this did not appear to help the struggling learners to 

think mathematically. It was always challenging and disappointing to see a few students 

who had excelled at their junior high school mathematics losing interest in mathematics 

while in my high school classes. In my teaching, the question remained: How can I 

occasion mathematical thinking in students for all topics and at all times?

When I returned to graduate school my hopes were raised. I thought that by 

discovering what psychological structures underlie mathematical thinking I would be able 

to understand how to occasion mathematical thinking. M y starting point was to explore 

work in the area o f cognitive studies. Yet cognitivists’ assumptions about mind and its 

architecture appeared too technical and theoretical for a teacher’s pragmatic problems. 

Nor did these studies address why students found particular levels or topics difficult.

I also explored research work that acknowledged that exposure to well-explained 

mathematical concepts does not guarantee that students will come to think 

mathematically. It was early in my graduate studies that I came to a turning point in my 

understanding of learning. I began to recognize experiential, socio-cultural and 

institutional influences on students’ mathematical thinking. My interest in matters of 

attention was evoked by the work of Greeno (1991), Mason (1989), Schoenfeld (1992)
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and Sfard (2001a); these are researchers who suggest mathematical knowing as coming to 

see what is mathematically significant. This resonated with my experiences. The question 

o f mathematical thinking now appeared to be synonymous with mathematical ways o f  

perceiving. John Mason introduced me to the question, what do students attend to? At 

that point I began to investigate mathematical tasks. I asked colleagues to consider the 

tasks and I attempted to determine what they saw or did not see. I learned that perception 

is selective. Different people attend to different aspects o f tasks, I thought. I began to 

wonder whether the variations actually pointed to the selective nature of perception or to 

the dynamic nature o f what is perceived as well. Drawing from hermeneutics, I began to 

emphasize that perception was selective but also prejudiced—never objective— and that it 

holistically included other sensory modalities. Enactivism, a theory that I had begun to 

explore, problematized the assumption o f pre-existing objects of attention. It emphasized 

mathematical ways o f  acting and being.

Enactivist theories challenged my earlier assumption o f an isomorphic mapping 

from given mathematical structures to corresponding psychological architecture. 

Perception, I came to understand, was enactive, hence selective and prejudiced. In 

attending, as we shall see in Chapter 9, perception enacts a world containing the objects, 

categories and properties to be attended to. I asked: W hat do students— conceived as 

embodied, extended and embedded— attend to? In enactivism, epistemological questions 

were cast for me as ontological questions. Through enactivism I began exploring eco- 

complexity theories. I then considered the notion o f learners being extended to their 

environments and their worlds of significance. Perception, cognition and action were 

recast, for me, as intertwined phenomena that are illuminated by attached  attention.
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In Figure 211 have included the observing I focused on and the metaphor at

work at each layer o f questioning. To show that my research question is unfinished I have 

included ellipses for further layers o f questioning beneath and beyond.

Figure 21. A  Layering of Questions

J  J -  _ r t  '• , n

-  J •  f  ' *  * ' . A T  - ’ ' i t  *  *

if i ,  .■
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8.2 What is Mathematically Present to be Attended to? Task Analysis

M y original question was focused on m athem atical tasks and the m athem atical 

structures that hum ans are conscious o f w hen they are doing m athem atics. I will call that 

approach structuralism . Here, the question o f w hat students attend to is synonym ous with 

asking w hat is structurally present to be attended to. W hat m athem atical concepts m ake 

up a given task? A  m athem atical appreciation o f  tasks— subject m atter analysis— is the 

m ain focus. As I illustrated in Chapter 5, the structural question is helpful to the teacher 

or researcher in selecting rich m athem atical tasks for students to engage in. Indeed it is 

im portant, when approaching any topic, that he or she consider w hat is im portant to learn 

(or to observe) and how the task will present critical aspects o f a particular concept for 

students. H ow ever the question o f what m athem atical concepts the Fraction Kit 

illum inates, as we saw, is insufficient in analyzing students’ activity. For exam ple, it does 

not address the prim ary activity the grade 7 students engaged in which was figuring out 

the size o f the pieces.

W ith only a task analysis, the teacher o r researcher in the context o f observing 

students engaged in the task m ight be b iased to look only at w hat fits or does not fit with 

m athem atical content assum ed in the task. Both historically and in this study, a structural 

stance has not been found sufficient to study students’ attentiveness in m athem atical 

tasks. From  m y earliest observations, it was evident that the students attend to legitim ate 

m athem atical structures, the relative size o r am ount o f fractional pieces, even when they 

w ere observed to be attending in ways divergent from  what the teacher and I expected.

From  a structural stance there is a lim ited fram ew ork for conceiving students’ 

novel and divergent understandings. At best these understandings are explained in terms
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of epistemological obstacles and misconceptions. The structural stance does not 

problematize the ontology o f mathematical ideas, and thus one is bound to consider any 

understanding that differs from the explicitly stated as erroneous. Historically, there has 

been a shift from solely analyzing tasks for structure and concepts and from considering 

students’ inadequate methods as errors toward looking closer at children’s work and 

toward conceiving divergent interpretations as legitimate, though at times unfitting, 

constructions (Confrey, 1994b). Many researchers see children’s inadequate methods as 

valid mathematics, children’s mathematics (Balacheff, 1990c). This was a shift from 

“what is there” to be attended to, towards “what do children attend to and how do they 

attend?” W ith the fraction activity, stacking the pieces rather than covering a whole was a 

legitimate way of attending that was valid in the ratio-multiplicative fractional world. As 

an observer, I had thought that all students would attend to the covering of the whole 

piece, but many students attended differently.

8.3 What Processes Underlie Children’s Thinking? Cognitive 

Analysis

In response to structuralism that turned only to mathematics for understanding 

the foundation of children’s mathematical thinking, other researchers turned to 

psychology to study the nature of children’s thinking. This psychological stance 

investigates the cognitive processes that support students’ understanding of a task. It is 

important to note here that the tasks themselves are still assumed to be conceptually 

precise. Therefore any difference in what children attend to can only be explained by 

inadequacies in their cognitive structures which lead to cognitive obstacles. The second 

question I asked focused on the child as a subject: W hat structures do learners impose on
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mathematical objects? Among other things, studies on cognitive structures allowed me to 

see hypothetical growth phases and concept images that were speculated to be at work as 

students engaged in a task. It is believed that it is these structures which evoke in children 

divergent perspectives on standard mathematical objects. During my observations in 

classrooms and research situations, students’ errors and novel approaches frequently 

triggered interpretive moments for me. But how was I going to interpret their actions, as 

epistemological errors or ontological differences?

A t the cognitive psychology level, students’ errors are to be understood as 

children’s partial conceptions— primitive knowing. In a way, children’s mathematics 

studies involve recognizing that children experience aspects o f the world differently; they 

do not experience it as adults do. By exploring children’s cognitive capabilities, 

researchers wanted to gain a window into how mathematical worlds (note pre-existing 

mathematical worlds) appear to children.

M any researchers are interested in the space between concepts as they are 

precisely reported— the objects— and how students come to understand them— the 

images. This is a useful shift from referring to students’ inadequate methods as 

misconceptions, to referring to them with such terms as students’ unmatching concept 

images (Tall, 1989), idiosyncratic inventions or problematics (Confrey, 1987 ,1994b), 

cognitive obstacles (Sierpinska, 1990), inappropriately carried-over discursive templates, 

or pseudo-structural conceptions (Sfard, 2000a; Sfard & Lincheski, 2000). My work 

comes close to these researchers’ work. However, in most o f these observer constructs 

the problem observed in the students’ actions is still essentially seen as an undesirable 

roadblock to be eliminated. For example, in the Fraction Kit activity it may be noted that
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the students who stacked pieces face a cognitive obstacle by working with as part of a 

discrete space rather than of a continuous area. From the enactivist/hermeneutic view 

although students who stacked brought forth a distinct task, stacking was not an obstacle 

that needed to be avoided. Stacking the pieces was one o f many possibilities that students 

were disposed to lay down.

In my early exploration o f enactivism and hermeneutics I began to realize that 

the space between students’ “idiosyncratic” conceptions and the “standard” mathematical 

concepts could be a space o f mathematical thinking-in-action and -interaction. In 

hermeneutics such a space is positively cast as fore-structures that are necessary 

conditions for further understanding.

To the extent that cognitive interpretation foregrounds the epistemological 

without reference to the ontological question about the human world, it maintains the 

structural stance. Studies by mathematics educators that involve isolating individual 

students in clinical interviews make sense at the structural and cognitive psychology level 

of investigation. Clinical interviews produce analyses that are much easier (than 

mathematical analyses) for teachers to understand (Confrey, 1991). However, this view 

assumes that the adult, the enlightened person’s or expert’s understanding is complete. 

Hermeneutically speaking, all understanding is partial. Some might be more desirable 

from one perspective or another but all is genuine and equally legitimate. For Maturana 

(2000) both questions: what is... and how things are for the children seek reference to a 

mathematical reality, whether empirical, rational or ideal. In this path of questioning, 

which M aturana refers to as objectivity-without-parenthesis, the claim to mathematical 

knowledge is a demand for obedience. It is a negation o f the realities of learners as it

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



entails a claim of privileged access to objective mathematics.

Many researchers now observe that there is no divide between how children and 

adults attend. It is rather a question o f how people experience the same event differently 

given their experiences and contexts. This is the phenomenological stance. Mason (2003) 

asks the question, “How am I attending?” He argues that if a teacher is to appreciate how 

his or her students think, he or she needs to reflect on his or her own engagement in 

mathematical tasks.

8.4 What Do I Attend To and How? Inter-subjective Analysis

According to Mason (1994), in order to answer the question, “W hat do students 

attend to in a mathematical task?” one ought to ask, “What do I attend to as I think 

mathematically?” This question adds a phenomenology flavor to the earlier two 

questions. It studies the experience o f the trained informant. Indeed, as human beings 

with the same evolutional endowment and history, and with common socio-cultural 

backgrounds and environments, we are likely to bring forth compatible tasks. In Rosch’s 

(1999a, 1999b) terms, some aspects of perception are focal aspects; they do not vary 

much across individual humans and across cultures. Our bodies place us in a relationship 

with other bodies (present, ancestral or virtual). Given our species and locale, specific 

needs and capacities, we relate to and interact with triggers from the environment in 

particular ways. We attend in shared and compatible ways. Gordon-Calvert (2001) 

asserts that humans bring forth common and overlapping cognitive realities and 

perspectives, partly due to the conversations they co-exist in. To her, our worlds are filled 

with echoes of other hum ans’ worlds. This phenomenological level analyses human 

experiences. M ason’s question is therefore crucial as long as it, unlike the structural
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question, “What objects make up a given mathematical task?” does not assume a 

mathematical task that is independent of the mathematician, the teacher or the student. 

Nor does it assume that children attend partially as the cognitive psychology question 

would.

A phenomenological treatment of questions on how students attend places 

primacy on the experience of attending mathematically. From this perspective the 

question o f what students attend to is broader than the structural and the psychological 

which focus on the mathematical and cognitive structures respectively. With the 

phenomenological inquiry children’s mathematical conceptions are not viewed as inferior 

to adults’ conceptions. What both adults and children already know is viewed as pre- 

understanding at any instant. It is a condition of possibility and grounds for further 

attending. The phenomenological layer of observing what we ourselves attend to in order 

to better understand what students attend to is crucial especially when it does not result in 

defining structural essences of phenomena that are independent o f the attendee. It allows 

us to anticipate what the students may attend to in a particular task. In my research, I ask 

M ason’s question not only to anticipate the students’ possible worlds. Through an 

awareness o f what I m yself attend to in a particular task, I may be able to tease out other 

ways in which people think mathematically, because I know that what I attend to in a task 

is one o f the many possible worlds (Bruner, 1986; Varela, 1992). Further I ask M ason’s 

question to guard against the tendency to listen unreflexively for what I attend to and 

judge students against that; rather than listening for the students’ experience o f attending 

within a particular context. I refer to this level o f analysis as the inter-subjective analysis. 

Listening to what a student in a particular setting might be attending to without negating
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their mathematical worlds is at the center o f my study.

Some researchers assert that any phenomenon we encounter is experienced in a 

limited num ber o f qualitatively different ways. Marton (1989) and others, drawing from a 

sub-field o f phenomenology called phenomenography, seek to ascertain from the 

experience of others the critical aspects that make an experience an experience of that 

particular object. In mathematics education, Booth, Wistedt and Hallden (1999), and 

Marton and Booth (1997) examine children’s experiences rigorously. They look across 

experiences for commonalities about how a phenomenon is seen, handled, related to or 

known. The discernible commonalities in the descriptions are taken to form a set of 

categories o f descriptions, the collective space of how a phenomenon is experienced, the 

various ways with which people experience a particular task (Booth et ah, 1999; Marton 

& Booth, 1997). These researchers suggest the thing-in-itself, the mathematical task itself 

is constituted by the outcome space— the constellation of meaning— of the qualitatively 

distinct ways o f experiencing. For example, constellations of experience and, what Booth 

et al. (1999) dub collective understandings of number concepts correspond to 

qualitatively different ways of experiencing number concepts. Knowing is recast from 

acquiring mathematical objects, developing cognitive structures, overcoming obstacles or 

seeing relevant objects, to being capable of experiencing things in certain ways. In the 

frame o f phenomenography, varied ways o f figuring out the size o f the pieces— whether 

by covering, stacking or assembling— would be the different ways o f experiencing the 

Fraction Kit activity as well as its meaning. Similarly the different ways students used to 

describe the set {2,4, 8, and 16} as doubling, 2 times 2 times, even numbers that are not 

multiples o f odd numbers would be what constitutes the meaning o f exponents o f two.
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Phenomenography and other interpretive studies have enormously enriched 

descriptions o f concepts from the precise, narrow and formal definitive approach 

common in mathematics textbooks. They are pedagogically helpful since they guide a 

teacher to listen to children and to welcome various interpretations. To the extent that it 

recognizes that what we observe is to some extent unique, the phenomenographic theory 

appears compatible to the enactivist view. But a closer examination reveals that the 

underlying assumptions and emotional desire guiding their research is different from the 

enactivists.

Enactivism asks, “In what ways do students attend as they enact mathematical 

worlds?” A set of invariants, identified by the phenomenographers may fall apart when 

interrogated with empirical studies across radically different cultures or classroom 

contexts; there might be no invariance in how non-basic events are perceived (Lakoff, 

1991; Namukasa, 2003b). In the enactivist view what is attended to is not taken to be 

fixed, once and for all. The mathematical world is considered to be a perceiver-dependent 

world.

Confrey (1994b) has developed a method of close listening as a way of paying 

attention to students’ “inventions” . B. Davis (1997) identifies three forms in which a 

teacher attends to students as the students attend to the mathematics: the evaluative, the 

interpretive and the hermeneutic modes. In evaluative listening, a teacher assesses 

students’ sense-making against “what is there” to be attended to, looking for matching 

and un-matching understanding. As I see it, evaluative listening is based on task analyses. 

In interpretive listening, a teacher tries to make sense o f  what students may be attending 

to\ he or she takes note o f the problematics. Interpretive listening requires an inter-

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



subjective analysis. Yet in hermeneutic listening, a teacher, in addition to anticipating 

differences, participates with the students in what they appear to be attending to\ he or 

she seeks to engage in their embodied tasks. A teacher lingers in students’ inventions 

(Gordon-Calvert, 2001).

It is in hermeneutic and enactivist attending/listening that we could seek to bring 

students to dwell in the required sensibilities for an effective and collective attending. 

However, hermeneutic listening calls for yet a deeper level o f analysis, one related to 

analyzing the worlds enacted as students engage in the task— multi- domains or worlds 

analysis. This later level of questioning involves participating with the students in their 

mathematical realities. From such a perspective we begin to rethink the role o f the 

observer or teacher as we note the possibilities for attending with students.

8.5 How Do Students Enact Worlds? Multi-domain Analysis

W e do not see the “space” o f the world; we live in our field o f vision. W e do not 
see the “colors” of the world; we live our chromatic space .... But when we 
examine more closely how we get to know this world, we invariably find that we 
cannot separate our history o f actions— biological and social— from how this 
world appears to us. (Maturana & Varela, 1987/1992, p. 23)

My study looks at the invariants as well as the regularities in what people attend 

to in mathematical tasks. It attempts to narrow the gap between the properties of the 

attendee and the attended. From an enactivist perspective to say something about what 

students attend to in mathematical tasks is to make statements about the broader domains, 

including:

•  Structure of the attendee— biological, historical and contextual;

•  Collectives in which the attendee participates. The attendee never attends only as 

an /, but as a we.
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•  Communicative, symbolic, technical and material m edia available to the attendee; 

In a sentence, my focus is on the world brought forth by the attendee.

As Merleau-Ponty (1974) concludes, perception is participation with the world 

that we are in (see Chapter 9). The desire to describe pools o f meaning so as to explain a 

concept thoroughly to students still lingered in me at both the phenomenological-inter- 

subjective and enactivist— multi-domain level of observing. Yet a century o f research on 

mathematics teaching informs us that teaching is not all about explicit and thorough 

expositions of concepts (Bass, 2002). Observing different individuals or pairs of students 

as they engage in a task might allow a researcher to access qualitatively different foci of 

attention, but they are not so much aspects of a fixed task as they are a world enacted in 

doing.

In enactive observing, a teacher or a researcher tries to make sense o f  what 

students are possibly attending to, the mathematical worlds rolled up in living. Even that 

which is different from conventional mathematics is a legitimate conception in a 

particular world. Directing students’ awareness to what teachers and educators attend to 

is thus a complex task. It involves studying how students enact their mathematical 

worlds. Moreover the differences in what a student might be attending to can be seen as 

an invitation to dwell in the domain in which the particular object of attention and ways 

of attending make sense. It is in a particular cognitive domain, for example, that the 

statement “a minus and a minus make a positive” makes sense.

I need not only seek to understand the mathematical worlds that students bring 

forth, but also to investigate the conventional mathematical domain as one of many 

possible worlds. I seek to understand the conditions of possibility for enacting adequate
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mathematical worlds. This is a desire to appreciate the conditions, patterns of behaviors 

and emotional urges that have a potential to generate mathematical worlds.

By analyzing mathematical worlds enacted, we, researchers and educators, 

might be able to offer ways that occasion adequate mathematical actions among students. 

By gazing at what students attend to and the dynamics o f this attention even when 

students are attending conventionally, we glimpse into the dynamics of thinking and its 

constraints. We can systemically and ecologically seek to understand the complexity and 

the dynamics of enacting adequate mathematical worlds. Also by studying the dynamics 

o f the space between and shifts from children’s mathematics toward conventional 

understanding, it becomes possible to analyze the conditions under which such shifts are 

likely to occur so as to engineer them and to be able to trigger significant shifts in other 

contexts. The eco-complexity question on mathematical attentiveness is driven by a 

desire to understand mathematical thinking in order to build conditions of possibility or 

to alter conditional probabilities for it to happen (Juarrero, 1999).

8.5.1 Embracing Eco-Complexity 

I began with the traditional gaze at the structure o f  an isolated concept. Then I 

followed it with the psychological gaze at children as yet-to-be adults; then took on the 

phenomenological gaze at phenomenal invariants in experiences of children and the 

enactivist gaze at worlds enacted in living. Enfolding all these four gazes, the eco- 

complexity orientation provokes a gaze at the nature of mathematical worlds as ever- 

changing, rooted in history and context dependent.

Eco-complexity researchers gaze at the conditions o f learning at many integrated 

levels: the neurological, the experiential, the collective, the symbolic, the material, the
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institutional and the ecological. Lakoff and Johnson (1999) assert that such a focus is 

aimed at generating convergent conclusions. To Bruner (1996), it serves to generate 

better-informed hypotheses. To me, human beings do not attend at only one level, but at 

many nested levels and so it appears necessary and useful that we study learners as 

systems that attend— observing systems. My questioning has evolved to focus on humans 

as observing systems who, in the operation of observing, enact worlds with blind spots of 

observation. In the next section, I elucidate the outer eco-complexity layer of 

questioning— studying students as observing systems. But before I do that let me 

summarize so far.

I have explored levels of analysis o f students’ engagement, including task 

analysis (mathematical and epistemological questions), cognitive analysis (child and 

developmental psychology questions), inter-subjective analysis

(philosophical/interpretive questions) and inter-domains analysis (enactivi st/hermeneutic 

questions). I asked these questions at different moments throughout my research; now 

they are layered  by the questions about nested observing systems. I use the verb layered  

to invoke nested levels and the metaphor of recursive elaboration that I explored in 

Chapter 3 while discussing how different theories of learning relate to one another (see 

also Appendix B where I explore how spaces of signification relate to one another).

Steffe and Thompson (2000) explain that a superseded question is not rejected but rather 

it is re-structured by the emergence o f a new, enfolding structure. The complexity 

metaphor o f emergence helps us to understand how emergent layers are dependent on 

superseded layers, but as soon as latter layers emerge they influence and co-relate the 

nested layers. In practical terms it would be less useful to compare inner nested questions
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with an outer surrounding one. Figure 21, at the beginning o f this chapter, provides a 

summary of the landscape formed for me in this research. Different questions interested 

me, but they were not unrelated.

8.6 In What Ways Do People Attend? Analyzing Observation

Lakoff (1991) asks a question parallel to that of how students attend: What do 

people attend to in an environment? Recognizing that people seem to cope with complex 

environments by categorizing, he has specifically asked: How do people categorize 

objects? For Rosch (1999b), categorized objects could be perceptual, semantic, 

biological, social, formal, biological or goal-derived objects. L akoff s question is close to 

the question of how people synthesize patterns as well as conceptualize abstract events.

Lakoff (1991), drawing heavily from Eleanor Rosch’s work, has concluded that 

what people observe in their environments and how they observe grows fundamentally 

out of embodiment and imagination. W hat people experience is limited, at the inner, sub

personal layer of description, by individuals’ perception, speech and motor movement. At 

the higher species and society layers o f description it is constrained by genetic 

organization of the species as well as by the nature of the physical and social 

environments in which the individuals integrate. What people see, as I will discuss in 

Chapter 9, are more than pre-existing symbols and signs. In attending, Lakoff would 

maintain, people categorize according to their experiences. Categories themselves are 

dynamic rather than static and arbitrary forms. They are humanly motivated. The 

properties of people’s descriptions and schemas, to use the gestalt psychologists’ 

terminology, are not as defined and well-formulated as postulated by the classical theory 

o f categorization and concept formation, Rosch (1999b) explains. Rather, they are a
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cross-product of nature, human biological capacities and experiences o f functioning in 

dynamic environments. Lakoff (1991) further observes that abstract events and entities, 

as those involved in mathematics, are attended to more or less as physical objects, for 

example by part-whole structuring. Following Rosch, he also says that while what people 

attend to may vary with culture, individuals, domains o f experience and age, the 

principles o f attending appear similar. Specific to mathematics, Gattegno (1970), Mason

(2000), Peirce (1965/1839-1914) and Watson (2003) claim that people have a general 

propensity to spot and use pattern, to generalize, to organize and to order. For Mason and 

Watson these human inclinations could be strengthened for learning mathematics.

8.6.1 Eleanor Rosch on Categorization 

Rosch (1999b) claims that categorization is “ [o]ne o f the most basic functions of 

living creatures.” (p. 61) “Every object and event is unique but we act towards them as 

members o f classes” (Rosch, 1999a, p, 4). W e live in a world we have regularized and 

categorized. Rosch developed the thesis that “categories form around ... salient rich or 

highly imaginable stimuli which become prototypes for the category. Other items are 

judged in relation to these prototypes; that is the way they form gradients of category 

membership” (Rosch, 1999a, p.5). Some stimuli provide good examples of a category 

while others are not. For example, some birds or triangles are better examples of birds or 

triangles, respectively. Better examples are more universal while others are not easily 

agreed on. There need not be any defining attributes that all category members have in 

common; there are no defining attributes, no overall invariants, no logic sets at all, Rosch 

(1999a, 1999b) explains. She further asserts that the content o f concepts or categories is 

not universal. But the structure o f categories and the processes by which people organize
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what they attend to are universal. How (rather than what) people categorize is universal. 

People in different environmental settings map out pieces o f meaningful lived reality and 

perceptual experiences. Some categories like chair, and, I should add, take away that 

derive from every day basic life categories are basic level prototypes, while others like 

furniture  or office chair and subtract or minus are non-basic and general. “Basic 

categories and concepts are  panhuman, species-specific perceptual universals, they are 

perceptually more salient, can be learned more rapidly, more easily remembered.”

(Rosch, 1999a, p. 5) They are usually biologically and species determined and are similar 

among groups o f people who share culture or context.

Further initial categories are essential, for as soon as you make a distinction, 

then a myriad of things are learnt and invented and just as many things are not. Culture 

and language intricately influence general categories held by groups of people. According 

to Rosch, the instant you shift ever so slightly away from prim ary knowing, it is 

recursions of distinctions, concepts and categorizations all the way down. Thingness and 

definite objects is one o f the delusions of our constricted mind. My exploration of 

R osch’s work raises these questions: Where on the spectrum of basic and non-basic does 

a given mathematical category lie? To what extent is mathematical content basic, thus 

easily attended?

Following after Rosch’s philosophical work, Lakoff (1991) emphasizes that it is 

important to study distinctions and categories, including distinctions that are frozen as 

our primary knowing. His work is an example o f a study at the layer of observing systems 

among people. W hat I learn from Rosch and Lakoff is that how people attend can be 

more hermeneutically studied than what people attend to. L ak o ff s experientialist work
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resonates with recent neuroscience hypothesis that humans are gifted at pattern 

recognition, organizing, seeing differences and giving meaning to percepts. There are 

numerous experimental research studies on how humans attend, albeit at the sensory 

attentiveness layer. Research within the ecological and systems paradigm prompts the 

question: How do people order and increase the energy so at to regularize their worlds?

The human brain is capable of recognizing even nuanced patterns of patterns 

(Johnson, 2001). Human beings as individuals or as collectives are observing systems 

that pattern and abstract the worlds they both attend to and create (Doll, 2003). Questions 

about humans as observing systems are central in systems and ecological paradigms, 

where, as I will explore, perception and attention are taken to play a participatory role. I 

will defer discussion of the eco-complexity theories of observing systems until the next 

chapter in which I discuss in detail the work of Luhman (2002a, 2002b), Maturana 

(1988a, 1988b), Spencer-Brown (1972/1979), Varela (1999a) and von Foerster (1981, 

2003). I now briefly return to the question that I have asked most recently in my research 

work.

8.7 In What Ways Do Observing Bodies Make Distinctions? 

Observing Observing Systems

I, through my recursive and enfolded questioning, intend not only to understand 

what students attend to, but seek to participate in what they attend to and to make it more 

probable that they will attend mathematically. How can I, as a researcher, educator or 

teacher, be a part of a student’s mathematical world? How can I invite my students to 

enact mathematically significant worlds? Arlene after the Fraction Kit activity thought
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that 2 ^  = instead ° f  2 %  = \ y  • Rather than look at this as an error, in Chapter 5 we

saw it is an embodied task that makes sense in the ratio and folding fractional world. 

Arlene as an individual learner had categorized fractions as a collection of numerous 

smaller parts. At an observing-system layer of analysis, the question becomes: How can 

we participate with Arlene in ways that will incline her to enact an adequate fractional 

world?

Maturana (1988a, 1988b, 2000) explains that cognitive beings on an operational 

basis constitute objects, entities or relations that make up their worlds. “Every cognitive 

domain is a domain o f co-ordinations o f actions in the praxis of living of a community of 

observers.” (Maturana, 1988a, p. 29) In the explanatory path of objectivity-in-parenthesis 

we are aware that there are different domains of reality, all equally valid. I will say more 

on this in Chapter 9.

If we observe that students are making mistakes or acting inadequately in 

mathematics, this implies that the students have made a distinction in an operational 

domain different from the one we expected. Such an explanation o f the students’ 

behavior is made from an explanatory path of objectivity-in-parenthesis. The world has 

objectivity but the operational domain in which a student finds herself specifies that 

objectivity. In the objective path that concerns itself with a one-size-fits-all world, what 

there is to be attended to identifies mistakes, poor instruction or disobedience. In the 

subjective path, mistakes point to children’s ill structured and illogical concepts. Yet in 

the inter-subjective paths they point to different ways of experiencing or to aspects of a 

concept. With objectivity in parenthesis— inter-objects and inter-systems analysis—  

mistakes point to the existence of a different cognitive domain from which the observer
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views the actions o f a student as mistaken. Conventional mathematical distinctions could 

also be construed as mistakes when observed from another cognitive domain or observing 

system.

In mathematics education terms, the question about observing systems invites us 

to listen to students as if  the students had invited us to share in their operational 

coherences, for it is within different operational coherences that it makes sense, for

instance, for a student to conclude that 2 ^  . It is in the same world of stacking

fraction pieces rather than covering a whole that the multiplicative-ratio embodiment of 

fractions makes sense (Kieren & Gordon-Calvert, 1999; Kieren & Simmt, 2002). In this

/  9Q
= y  . The sign = as well as the set {1,2, 4, 8 , . . .}  involves nested

and varied signifiers (see Appendix B). It all depends on the world enacted. In taking on 

invitations from students, a teacher seeks to participate with the students in what they 

appear to be attending to so as to alter the space o f  the possible fo r  the student. This 

questioning is interested in collectively constituting possible and adequate mathematical 

realities.

Having analyzed a task such as the Fractional Kit activity and reflected on what

I attend to in it, and having listened to varied and emergent tasks posed by learners, it

seems vital to explore the possibilities o f inviting students to enact jointly mathematically

significant worlds. Through this participation, the teacher also invites students to dwell in

cultural and conventional, yet embodied mathematical distinctions. Students are offered

environments that are likely to trigger from them and structure mathematically adequate

distinction while narrowing the conditional probability of non-mathematical distinctions.

29 T w o c lasses, each with a ratio o f  one textbook to four students, when com bined in one classroom  still 
gives a ratio o f  one textbook to four students rather than one textbook to two students!

2 2 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ratio world 1 / + 1/ /  4 / 4



It seems important to be attentive to the operational coherences necessary to see 

2% = iy and y + Y~ y *n  P a r t _ whole (rational number) world. This appears to be

what Davis and Simmt (2002) mean when they say that subject matter analyses must be

part of broadened appreciations of mathematical concepts’ experiential requisites. As I

observe students’ thinking and attentiveness, I affirm that VA+ ] / -  V. must make sense,
/ 4  / 4  / 4

but I do not terminate at this. I wonder in what ways it makes sense. I also ponder the 

ways by which y  + y  = y  makes sense. Nunez (2000), drawing from Lakoff and

Johnson’s (1980) work on unconscious conceptual structures, seeks to understand the full 

complexity o f ideas and intuitions. He studies the ways in which “standard” mathematical 

ideas really make sense. In what ways does y + y  = y  make perfect sense? Lakoff

(1991), Lakoff and Johnson (1999), and Lakoff and Nunez (2001) explore grounding and 

linking metaphors, metonym, image schemas, metaphorical projection, conceptual 

blending and imagination as cognitively implicit ways, the operational coherences by 

which mathematical intuitions make sense. These illuminate worlds enacted.

8.7.1 Objectivity-in-parenthesis 

W hereas Lakoff (1991), Lakoff and Johnson (1999) and Lakoff and Nunez

(2001) study the non-conscious linguistic and conceptual ways in which mathematical 

ideas make sense, M aturana (1988a) and others such as von Foerster (2003) seek to 

explore how we create the objects of our attention. How do objects, concepts and tools 

arise? This question calls for acknowledging the contingency of observation. The term 

observation is taken to refer inclusively to perception, conception and action— the 

fundamental operations of being. It spans body, mind and world. Luhman (2002a,
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2002b), M aturana (1988a, 1988b), and von Foerster (1981, 2003) appear to have 

elaborated on Spencer-Brown’s (1972/1979) theory of making indications. In a manner 

related to M erleau-Ponty’s (1964) work on perception and to recent neuro-physiological 

and neuro-psychological hypotheses in brain research, these researchers emphasize that 

senses do not work in isolation from each other, nor do they work in isolation from 

cognition.

All humans observe. By observing they make distinctions; they stress and 

ignore, categorize and generalize, pattern and organize, and abstract and reify. But what 

they abstract does not precede their operations of making distinctions. To Luhman 

(2002a, 2002b) and Spencer-Brown (1972/1979), observing involves carving our 

universes into a marked and unmarked state. Each observation generates the unmarked 

state of a distinction— a blind spot, according to Luhman (2002a). Thus to ask what 

students attend to is also to ask: What distinction is made? W hat are the marked and 

unmarked states o f such a distinction? W hat are the properties and conditions of the 

operation that makes such a distinction?

W ith an eco-complexity stance, I am motivated to attend systemically to 

students as observers whose being and state are precisely the distinctions, the operations 

they make (Maturana, 1988a, 1988b; Spencer-Brown, 1972/1979). In chapters 9 and 1 0 ,1 

will illustrate that a distinction arises as a coherent form from the integration of students’ 

experiences including linguistic, political and emotional experiences. As well, the 

system’s stance considers humans as observing systems nested within larger observing 

systems and interacting with other observing systems. By considering students, teachers, 

mathematicians, collectives of students and the culture of mathematics, each and all as

227

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



observing systems, second-order observation theorists attempt to ascertain the 

distinctions those systems make as they attend. A teacher engages in inter-systems 

analyses.

The inter-systems gaze emphasizes the temporal and contingent validity of 

observations. Just as there is a variety of biological observing systems— the species—  

there is a variety o f formal communicative observing systems of which the mathematical 

one is just one. Schoenfeld (1992) describes mathematical thinking as having a 

mathematical point of view— a way of seeing and using mathematical tools. Theories of 

distinctions are a radical interpretation of points o f  view. When students view negative 4 

times positive 3 as negative 12, this is a point o f view— a distinction by an observing 

system with specific conditions of possibilities. When a grade 7 student explains that the 

result negative 12 is because the negative number in the product is bigger, second-order 

observers appreciate the totally different distinctions the student is making. Different 

distinctions bring forth different objects as integers. Since it is the intention of 

mathematics teaching to trigger students to enact mathematical objects, it is important 

that teachers and educators seek to understand the realities and distinctions that students

TO
operationally constitute as observers. In Chapter 11, as I conclude this writing, I ask 

how different points o f view relate to mathematical concepts. Are they universals, 

invariants, generalities, abstractions, habits of mind, or what?

With observing observation, what was previously accepted as self-evident,

2 %  = ’ becomes visible as a peculiar way o f observing, with a particular web of

30 B . D avis and Sim m t (2003) illustrate the variety o f  points o f  view  that emerged when they asked students 
to explain how  they knew  that 3 X  -4 =  -12. From the charts that the students drew, the researchers saw a 
diversity o f  understanding integers as vectors, as directed displacem ents on a number line, as black and red 
counters, as negative and positive charges, or as rises and falls.
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meaning, or what semiotic theorists would call, particular series of signifiers. An 

observation is possible in a given network of settings and operational coherences, which 

include tools, objects, media and collectives— the properties of the observing system.

Any distinction that students may make is a distinction made with particular kind of 

initial conditions, within current state o f possibilities. To paraphrase Heidegger 

(1927/1964), humans are capable o f making distinctions that they are inclined to make, 

and when the distinctions in turn incline towards their essential being. Thus, as teachers, 

educators and researchers we may want to attempt to create observing domains in which 

students are prompted to make distinctions that mathematicians make. To do this it might 

be helpful to observe mathematics as an observer-constituted reality.

W hat human observers do is to observe or to make distinctions so as to 

constitute their ontologies— their very beings (Maturana, 1988b). There are operational 

preferences or choices, even where a volitional choice to attend to this and not to the 

other is just a small fraction of the choices we make at deeper levels. Therefore what an 

observer observing another observer system could appropriately do would be to attempt 

to understand the distinctions together with their properties that other particular observing 

systems make. One could attempt to make explicit the formal and the informal conditions 

o f observing.

In our daily lives and practices we, especially mathematics teachers, mostly act 

as if  we observe the same stable and transcendental objects— objectivity-without- 

parenthesis. However, for pedagogical and world citizenship reasons the standpoint of 

objectivity-in-parenthesis is different. A mathematician reporting his or her findings or 

explicitly stating his or her definitions and axioms acts and explains with objectivity-
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without-parenthesis, for he or she is acting within a community of observers who share 

constituted mathematical ontologies. Yet a teacher who interacts with students whose 

bodies are intersections o f various collectives (of which the teacher belongs to only a 

few) the case is different. This appears to be what Ball (2002) intends to evoke when she 

says that traditional college mathematics curriculum for mathematics students is surely 

not sufficient for mathematics student teachers. Mathematics courses are necessary for 

teachers of mathematics, but there is more that a teacher needs in order to be with 

students in sympathetic ways.31 A teacher can act with objectivity-in-parenthesis, be 

present with an attitude that seeks to perceive observer-constituted ontologies when they 

recognize that mathematical objects are inter-objects and students are intersections of 

many observing systems. This is as well an inter-objective stance to matters of students’ 

attentiveness that enfolds the inter-subjective, subjective and objective stances. How do 

students attend as systems that observe at many levels including subsystems, system and 

global systems?

The findings and conclusions from this systems layer o f questioning and 

observing could never be considered complete. Nonetheless those finding and 

conclusions change our worlds.

8.8 A Broadened Question? A Didactical Gaze

I consider the question of how  students attend in mathematical tasks to be 

broader than the initial research question of what students attend to. This level of 

questioning leads to the following: In what ways do students as coherent sensory-motor

31 The value o f  acquiring advanced and enriched descriptions o f  mathematical ideas lies more in how  it 
affects the teacher’s action in the presence o f  students than in what it does to the teacher’s mathematical 
know ledge (Sim m t et al., 2003).
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and somatic systems make distinctions? In what ways do they attend as conscious and 

emotional beings? In what ways do they attend as systems nested within particular 

collectives and cultures? In what ways do they attend as systems that extend to the 

material, technological and symbolic environments? To the extent that it is layered, this 

level of questioning is not positivistic. It embraces complexity. Conceptual distinctions 

that a student makes are construed to be a coherent form that spontaneously emerges 

from observations made by nested and nesting systems.

In asking in what ways students attend, the distinctions, whether cultural or not, 

can be viewed as different observer systems each operating within an experiential 

network that has a distinct history, initial conditions, and an internal and external 

structure. As researchers when we observe observation we are able to pay particular 

attention to the kinds of distinctions that the observed learning system is able to see, what 

does and does not yet exist for an observing system such as school mathematics.

Operating in the same observing systems in which the observed system operates 

we may not be able to observe the condition of a specific observation. If we are to reflect 

on a cognitive domain, second order cybernetics theorists say, we need to specify another 

domain in which the domain of the observed distinction is an object of observation. I 

speculate that one such domain is the mathematics education domain, a domain from 

which we can observe conditions of possibility for mathematical observations. I wonder 

what such a domain might be for the school mathematics students themselves.

Take the task I posed to grade 7 students on Consecutive Terms, for example. 

Students looked at the {1, 2 ,4 , 8,16} additively, multiplicatively or exponentially at 

different moments (see Appendix B where I discuss these differences in terms of
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Vergnaud’s (1988) construct of conceptual field). For a researcher who had not only done 

the task but who had also analyzed its content, it was very evident that the set was a set of 

positive powers of two— an exponential structure. When I asked another researcher to 

ascertain why it made sense for powers of two not to have the consecutive terms 

property, he observed that it made perfect sense for him. He offered an explanation based 

on a binary structure— his tools, settings, media and collectives that enacted his 

observation were distinct.

To the extent that theories of distinction motivate researchers to await a glimpse 

of the conditions o f possibility for a reality in which the operationally preferred 

description for the set {1, 2, 4, 8, 16 ,...}  is {2X; for x >0}, they offer a didactical gaze. 

But every distinction has a blind spot, yet this blind spot is a necessary condition for 

sense-making— for understanding (Luhman, 2002a; von Foerster, 2003). Observing 

observation illuminates the blind spots, the properties, and conditions of possibilities of 

mathematical observations. As Mason (2003), Sfard (2001a, 2001b) and others have put 

it, for any seeing there is something in focus while something else is peripherally 

attended to and another totally ignored. Since individual humans are embedded in socio

political observing systems and they embody biological observing systems the stressing 

and ignoring (Gattegno, 1970) is mostly done at a level beneath or beyond the one of 

conscious and formal attending.

Structural, psychological, philosophical and post structural layers of questions 

are for me conditions o f possibilities for the latter question o f observing of observation. 

Both historically, and in my research, systems questioning recursively loops back onto 

the structural question, as demonstrated by Nunez’s (2000) mathematical idea analysis.
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When I now ask questions about what mathematics is there to be attended to, I am 

inclined to approach them in ways that implicate students as complex observing systems.

To use M erleau-Ponty’s (1974) terminology, theories o f distinction “measure the 

distance between” understanding learning as bringing forth worlds of significance and 

understanding learning as acquiring knowledge (p. 29). All the layers of questioning that 

historically preceded the eco-complexity question mark the distance. Further, the 

question, “In what ways do students as embodied, embedded and extended observing 

systems attend?” is more than a one-discipline question. It calls for mathematical 

expositions after pondering about living, cognition, socio-cultural structures and 

neurological hypotheses.

In this chapter, I further explored how my research questions evolved. My 

current questioning is of an emergent order. It arose from the interaction of the literature I 

reviewed, from earlier interpretive moments, from preliminary analyses, from 

interactions with other researchers and from collective exploration o f both the 

methodological and theoretical frameworks. In research, it appears, questioning is one 

level above the other components of research, o f which time and place are important 

ones.
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9. PERCEPTION A N D  OBSERVATION: A  SY ST E M ’S VIEW

W hen work on the philosophy of perception by M erleau-Ponty (1964,1974) is 

read together with recent research into brain dynamics and with complexity research 

metaphors, they emphasize that what we attend to guides our actions ju st as our actions 

guide what we attend to. Attending is all at once a biological, psychological, linguistic, 

social, cultural and institutional phenomenon. What we observe, however supra-natural, 

mystic or esoteric, is co-implied by the species we belong to, the tools we have, the 

collective observing systems we participate in, and what we have observed before.

In this chapter, I explore a systems and dynamic view o f perception. While in 

Chapter 6 , 1 explored the theoretical frameworks for this study, in this later chapter I 

explore a dynamic theory that is specific to perception and observation, a theory that 

takes attention to span levels of signification. I differentiate between sensation, 

perception and observation. Non-cognitivists’ views emphasize that perception is 

intertwined with action. M erleau-Ponty’s (1964) work offers a philosophical approach, 

which views perception as a point of view. Recently, certain neuro-physiologists such as 

Newberg et al. (2001) and Freeman (1991) have illustrated that perception is an internally 

organized activity, a neurological choice to attend. Maturana and Varela (1987/1992) 

observe that any organism’s actions are perceptually guided. To von Foerster (1981) non

trivial systems, since their output-input relation is determined by their previous 

operations, are observing systems. M aturana (1988a, 1988b), Luhman (2002a, 2002b) 

and Spencer-Brown (1972/1979) advance a theory of distinctions, which illustrates that 

humans observe, both at the personal and collective level.
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9.1 Merleau-Ponty: The Perceptual World

Although Merleau-Ponty (1964) interpreted the same experimental data as his

behaviorist counterparts, he offered an alternative stance to the classical view that

perception is a taking up of external stimuli and the subsequent processing o f those

stimuli into internal representations and external responses. He drew from the work of

other philosophers such as Heidegger, Scheler and Husserl to uphold the idea that

perception is not an individualistic process and is more than reacting to stimuli (Freeman

& Skarda, 1990; O ’Regan & Noe, 2001). M erleau-Ponty’s philosophical insights guide

scholars that challenge perception as recovering reality.

Perception is not science of the world, it is not even an act, a deliberate taking up 
of a position; it is the background from which all acts stand out, and is also 
presupposed by them (p. xi). M atter is pregnant with its form s.... It is necessary 
that the meaning and signs, the form and matter of perception, be related from the 
beginning. (Merleau-Ponty, 1964, p. 12)

Merleau-Ponty re-establishes the linkage between perception and action and 

between matter and form. He maintains that what is perceived is not a result o f the 

perceiver interpreting a sensible matter according to a law. The duality o f what is 

observed— the matter— and the sense made due to observation— the form— is not 

necessary.

[T]he alleged signs [representations, signifiers] are not given to me separately 
from what they signify [so]...there is no deciphering, no immediate inference 
from sign what is signified, (p. 15)

For Merleau-Ponty, the perceptual world “is always a presupposed foundation of 

all rationality” (p. 15). Although what one may observe is necessarily unique, Merleau- 

Ponty observes that in some sense it is not entirely unique, since “[t]he thing [that I 

observe] imposes itself not as true for every intellect, but as real for everyone standing 

where I am” (p. 17). Accordingly, to perceive is to “render one self-present through the
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body” (p. 161). Moreover,

Associated bodies to mine must be brought forward along with my body— the 
‘others’, not merely as my congeners [sic], as the Zoologist says, but the others 
who haunt me and whom I haunt; the ‘others’ along with whom I haunt a single 
present, and actual beings as no animal haunted the beings o f his own species, 
locale or habitat, (p. 161)

It appears crucial that a study on students’ ways o f attending in addition to 

emphasizing the primacy of perception, must also view perception as a process in which 

the body, the context and the participatory collectives are not extraneous to what we 

perceive. For Merleau-Ponty, the inteipretation and the interpreted, the signifier and 

signified, form and matter, perception and action can only be separated for purposes of 

analysis.

W hen discussing perception Merleau-Ponty (1964) seems to keep in mind the 

entire sensory range of modalities. He uses examples from seeing and touching, and at 

most times avoids using the verb to see as a synonym for the verbs to perceive. In this 

way, he does not seem to restrict his ideas to visual perception, as is a common tendency. 

Examples from one sensory modality usually illuminate the general nature of perception, 

however for visual perception there is a physical distance maintained between the seer 

and the seen. As classical theories consider visual perception as an ideal metaphor for 

knowing, it is not surprising that a distance between the knower and the known appears 

necessary. Gadamer (1975/1992) and B. Davis (2000) suggest the auditory as a metaphor 

for interrupting this tendency, since with hearing one is literally embedded in what one 

hears. Seeing, touching, hearing, tasting and smelling involve almost the entire sensory- 

motor range o f modalities together with memory and expectation in ways that are 

complex. How can we capture their integration?

Merleau-Ponty (1974) also embraces socio-cultural embodiment. He talks about

r '
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associated bodies to mine that must be brought along with my body during perception. 

His views about perception as taking up a position, a perspective, are echoed in the idea 

that mathematical thinking is a mathematical point o f  view or a culture. For him, akin to 

Peirce, the object o f perception “is given as an infinite sum of an indefinite series of 

perspectival views” (p. 15). Thus we cannot “decompose a perception, to make it into a 

collection o f sensations, because in it the whole is prior to the parts” (p. 15). The 

perceptual views “blend with one another according to a given style, which determines 

the object in question.” (p. 16) Moreover, the interpretations, the perceptual objects, are 

real for every one who stands where I stand.

9.2 Varela, Thompson and Rosch: Perceptually-Guided Actions

“Perception does not just happen in the world; it contributes to the enactment of

the world,” Varela et al. (1991, p. 174) assert. Varela is among the cognitive scientists

who have rejected the representationists’ view. He adopts M erleau-Ponty’s (1964)

phenomenological interest in perception and integrates it with a neurological orientation.

The point of departure for understanding perception is the study of how the 
perceiver guides his [sic] actions in local situations. Since these local situations 
constantly change as a result of the perceiver’s activity, the reference point for 
understanding perception is no longer a pre-given, perceiver-independent world, 
but rather the sensorimotor structure o f the cognitive agent, the way in which the 
nervous system links sensory and motor surfaces.... The perceiver can act and be 
modulated by environmental events. (Varela, 1999a, p. 13)

For Varela (1999a), perceptually-guided actions are the basis of perception. 

Recurrent sensori-motor patterns, lawful linkages and contingencies enable action to be 

perceptually guided in a perceiver dependent world. Varela illustrates that perception and 

action, sensorium and motorium, are linked together by common principles and order, 

and successively arise from their mutual feedback. Since what counts as a perceptual
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world is inseparable from the structure of the perceiver, neuro-physiologists have begun 

to examine the feeling o f a perceiver independent world as a grand illusion. Even though 

we are aware o f experiencing a coherent world, when we turn to examine how we get to 

perceive this world, “[W]e invariably find that we cannot separate our history of 

actions— biological and social— from how the world appears to us” (Maturana & Varela, 

1987/1992, p. 23).

To Varela, after Merleau-Ponty, a “situated observer has a perspective” a 

position from which he or she stands and acts (Varela, 1999a, p. 54). Said differently, this 

perspective is not a matter of occupying a position from which to perceive by the sensory 

extraction of features. It is the sensory guidance of actions.

If as Merleau-Ponty asserts we participate in a not pregiven world then how do we 

perceive its attributes? In school mathematics, how do students perceive attributes such 

as measurement? What about the more abstract attributes? Varela (1997) says “the 

nervous system is such a gifted synthesizer o f regularities, that any basic material suffices 

as an environment to bring forth a compelling w orld.... That shows up through the 

enactment of the perceptuo-motor regularities” (p. 84-85).

In a similar manner we may study mathematical attributes as psychophysical, 

neurological and phenomenological experiences, and each of these expositions assumes a 

perceiving organism. Attributes are regularities that organisms synthesize. How an 

attribute appears, is perceived and is experienced might vary with species. It also likely 

varies with locality and culture. Recall how the same Fraction Kit was viewed and 

handled differently by students. Also Tony in moving the counters was able to synthesize 

regularities when testing whether a number had the Consecutive Terms (CT) property.
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If movement and other biological abilities affect what and how we perceive, 

how then do other abilities such as language and consciousness— whether individual or 

collective— affect our perception? Perception from the perspective I am exploring 

includes sensual and higher-level recursion on sensations. To summarize, basic-level 

perceptions are embodied (i.e. the sensori-motor structures participate), experiential (i.e. 

what has been sensed before and concurrently participates) and consensual (i.e. our 

cultural history and social interactions structure it). Drawing from the enactivist logic of 

coherence and the complexity logic of emergence we can see that the percept is the 

emergent layer above the coherence o f embodied, experiential and consensual perception 

(Varela, 1999a). This coherence offers entire readiness-for-action (the percept) in the 

next moment. Indeed as Merleau-Ponty (1964) observes, what we attend to is the 

background for actions. Our actions and what we attend to are inseparable (Varela et al., 

1991). But does this apply to mathematical cognition? Do students perceive mathematical 

objects, like the set {1, 2 ,4 , 8}, the same way they, say, smell a flower?

Some neuro-physiologists such as O ’Regan and Noe (2001) radically maintain 

that perception is a way of acting. It is about mastering the regularities of one’s 

possibilities. To put it in terms of my study, the nature o f students’ mathematical thinking 

(conceptions), action (behavior) and what they attend to (perceptions) as they engage in 

mathematical activities are co-implicative. W hat a learner attends to is not only a feature 

o f the task; it is also determined by his/her structures— the biological, socio-cultural and 

historical readiness (to use Bruner’s (1960) term) to attend. What we attend to is at once 

a feature of the task, a feature of our structures and a feature o f our experiences. Human 

perception is a way o f acting, interacting and being. In this understanding of perception,
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teaching and education in general might have to do with prompting students to notice, or 

should I say to regularize and pattern their worlds in particular ways (B. Davis et al.

2000; Mason, 1989, 1994). Tony and Ronald, for example, attended to the CT properties 

in ways that pointed to their experiences with numbers, number lines and systematically 

manipulating material. In verifying whether a number had a property or not students in 

the study perceived numbers in particular ways, as decomposable entities.

How are non-basic level perceptions enacted? On issues o f explaining the 

symbolic dimension that clearly exists in mammals, Varela draws from Rosch’s 

distinction of experiential, embodied categories as the most basic ones. He then goes on 

to explain that higher cognitive structures emerge from recurrent patterns o f perceptually 

guided actions (Varela, 1999a). They are outer-layer emergent properties. What we call 

the abstract, as in the mathematical domain, is an aggregate o f readiness-for mathematical 

action.

W hile the embodied view holds that perception and imagination o f abstract 

entities is emergent from experiential perception, there is little agreement on how this is 

possible. To me, it appears that to explain the perception o f mathematical objects we have 

to evoke the role o f language and socialization. O ’Regan and Noe (2001) and other 

neuro-physiologists speculate that in addition to movement, speech, imagination and 

thought play important roles in human perception. This is evidenced by effects of lesions 

in human brains that show two visual systems where impairment in one may exist 

independently o f impairment in another. A patient may be able to make verbal reports 

about the shape, features, categories and location of the object (using the ventral visual 

system) in the absence of the ability to locate the object with respect to the body and to
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grasp and manipulate it (using the dorsal visual system). These two parallel systems 

appear to have evolved separately, one with movement and the other with language and 

thought. But does this mean that the two (or three) systems do not interact in the 

perception o f people without this impairment? If they do not, then this might be viewed 

as an argument that abstract perception is independent of basic-object perception.

Some researchers consider imaginary and symbolic perception in living systems 

to be assigned to the system by the observer (Searle, 1997), while others consider self- 

conscious and intellectual perception as a resultant that has neural correlates and causes, 

and others consider it to be intrinsic to the biology o f organizationally complex organs 

like the brain (Thompson, 1997). To some the imaginary is metaphysical and so cannot 

be explained biologically. Each of these views will affect how we view and explain how 

students attend as they engage in mathematical tasks.

Many approaches to explaining mathematical perception have been top down— 

metaphysical. Advancements in neurology have shown that the relation between 

conscious and symbolic abilities and the physiology o f the brain exists in terms of 

emergence and mutual causation, and thus there is need for bottom-up views to 

perception, including perception o f mathematical attributes (Thompson, 1997; Varela, 

1999b). W hile the overlap between bodily movement and perception is increasingly 

demonstrated, the overlap between imagination, thought, consciousness, technologies of 

intelligence and perception has yet to be explored by neurologists.
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9.3 Neurological Basis for Attending

Recent studies in neurobiology consider perception to be more than reception 

(Freeman, 1991; Freeman & Skarda, 1990). At the basic neurological level, sensory data 

enter the neural system in the form of billions o f tiny bursts of electrochemical energy 

gathered by countless sensors of the skin, eyes, ears, mouth and nose— sensation is 

happening. Later they are channeled along appropriate pathways, be they visual (color, 

depth, spatial or form), proprieceptive, auditory, and so on (Freeman, 1991). Individual 

impulses are re-routed to appropriate cortical areas where they are sorted, cross- 

referenced, amplified or inhibited, and integrated with input from other centers and 

senses (Newberg et al., 2001). Finally, they are assembled into a percept, according to the 

emergent global states, that has useful, individual meaning to the owner o f the particular 

brain. Perception has happened. Many contemporary neuro-scientists believe global brain 

activity like nerve cell assemblies are the basis for memory, adapting to new situations 

and learning (Freeman & Skarda, 1990; E. H. Goldenberg, 2003). Large and distributed 

sub-ensembles of neurons are involved in any given percept they argue. Many now take 

the neurons that fire in synchrony or together to be the signatures of cognitive states. 

Newberg et al. (2001) postulate various cognitive operators or modules— various brain 

structures— that function collectively, such as the quantitative-number operator and 

abstract-categorizing cognitive operator. Even with the anatomical brain regions and 

lobes and hypothesized functional modules, each of these structures “has a set o f highly 

specialized functions, but each also cooperates with the rest o f the brain as a whole in 

complex and elegant ways, giving it the ability to channel, interpret and respond to the 

rush” (Newberg et al., 2001, p. 47) and torrent o f sensory data flooding the body’s neural
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pathways. The neural circuits and emergent nerve cell assemblies in humans afford 

highly efficient and harmonious ways of coupling action, thought and perception. In 

terms o f learning, this points to how sensory data is ju st a small fraction in the emergence 

of a multi-threaded percept. This might address the variations in what students attend to 

even when they are given the same stimulus such as a mathematical task or an activity.

Newberg et al. (2001) point to neurological obligations to perceive in particular 

ways. Choices to sense the way we do are made at the neurological level, they maintain. 

Species-specific, modality-specific and individual-specific neuro-physiology compels us 

to attend in particular ways. Humans are different from animals in the nuances created by 

their cortex. Specifically, the complexity o f the human brain adds new and significant 

wrinkles to any triggering stimulus. Because the cortical structures are so intimately 

linked to the more primitive functions of the limbic and autonomous systems (hormones 

and primal emotion centers), humans are able, for example, to trigger a biological fear 

response by simply thinking o f danger, Newberg et al. explain. The human mind is able 

to think o f many attributes in abstract and non-immediate terms.

The choices to attend extend beyond direct stimulus. You may instantaneously 

perceive and act in particular ways because your global neurological activity allowed you 

no other choice. Dimensional fullness, past experiences and emotional meaning are added 

to perception in the associational areas to develop a realistic, fully integrated experience 

o f gazing upon something, be it in ordinary life activities or in specialized domains like 

mathematics. But does this mean each human attends in a unique way?

Lakoff (1991) refers to this extra ability in humans as non-basic imaginative 

structures, in contrast to the basic level bodily structures. In the view I am developing
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here, it is important to couple this imaginary component, which is immensely 

strengthened by language, with the embodied dimension (Varela, 1991). Although each 

individual has an autonomous sensori-motor structure, perceptions and thoughts of 

archetypes that have been noted to exist as panhuman universals appear to exist in every 

human mind (Lakoff, 1991). Does this prompt a classification o f mathematical thoughts 

and meanings in elementary topics to be among perceptions that cannot help but be 

similar because they are shaped by unchanging aspects of the brain irrespective of 

languages spoken, culture grown into and geography known?

Newberg et al. (2001) go further to explain seemingly non-neurological 

phenomena, such as mystical experiences, as basically biological phenomena. This would 

imply that attending even to the most formal mathematical domains could in principle be 

explained neurologically. From an eco-complexity orientation, I would add that 

mathematical perception in addition to emerging from biological activity in turn 

influences neurological varieties.

With technological advancements in brain research, more work has been done to 

trace the biological signatures of symbolic expressions like thought and consciousness. It 

is imaginable that soon neurobiologists and educators will be together in laboratories 

attempting to figure out brain structures that are active during as well as those that change 

with mathematical attentiveness. Newberg et al. talk about the attention association area, 

a brain area that appears active when attention is focused on an object, idea or desired 

goal. Butterworth (1999) talks about regions which when dam aged affect specific 

mathematical performance. Some of these assertions are not widely agreed upon by 

neuro-physiologists, one o f the reasons being that many human studies have been done
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on anaesthetized patients and on animals. Even the recent ones that are done on healthy, 

awake humans could be used to support contradicting theories. In my view, neurological 

assertions, just like any other explanations and observations, are observations enacted by 

particular tools within particular human domains. The extent to which educators should 

depend on them is a matter of degree. Nonetheless I find them helpful in dislodging non

useful views about mathematical attentiveness. Let me offer a few more examples.

O f particular interest to the discussions on learning and perception are findings 

in neuro-physiological research that challenge the traditional view of perception as serial, 

stage-by-stage inputting (sensation), processing (thought) and outputting (action). For 

example, the ratio o f inter-neurons to sensory and motor neurons highly challenges serial 

processing. Motor neurons (neurons that serve the motor surfaces) relate closely to 

sensory neurons (neurons that serve the sensory surfaces). This relation is mediated and 

modulated by intervening neurons, the inter-neurons. The ratio o f inter-neurons to 

sensory-neurons to motor-neurons is 10,000: 10: 1 (actual figures that Newberg et al. and

• 1 1 7  6others give are 10 : 10 : 10 ). To have almost a negligible number o f neurons serving 

receptors and effectors surfaces in comparison to connections across inner surfaces 

illuminates the following:

• Perception goes beyond sensations.

•  Perception is a highly cooperative, distributed phenomenon with interconnected 

feedback loops. It begins with self-organized neural activity.

• The brain itself, through both negative (inhibitory) and positive (excitatory) 

feedback, creates conditions for perceptual-motor coherences.

•  Perception is active, not passive; it occurs when the organism interacts— moves,
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communicates and so on. It is co-emergent.

•  The percept is an emergent global phenomenon that arises from a background of 

incoherent activity of the network of overlapping assemblies.

•  The emergent percept, in turn, has causal powers, it feeds backward on neuronal 

activity.

The complexity of perception is also demonstrated by neuro-psychological and 

behavioral experimental findings about priming, change blindness, the blind spot, 

inattentional blindness and masking and the like, aspects of which normal observers 

would have no experience (James, 1981/1842-1910; Langer, 1997; Nprretranders, 1998; 

O ’Regan & Noe, 2001). Neuro-physiologists, like neuro-psychologists, draw from these 

paradigms to inform their quests. Consider the fact that contents o f a card flashed so 

quickly on a screen you are looking at that you do not even take note o f its presence 

might affect your downstream  actions. This phenomenon is called priming. The most 

recent paradigm is one of change blindness— while you observe a scene, some o f its 

characters m ight be changed without you ever noticing as long as the moment of 

transition is disguised. In many cases, the stranger a person was asking directions from 

was switched after an interruption without a majority of participants ever noticing! 

Magicians and comedians appear for a long time to draw from these perceptual 

phenomena. It appears the ways we think, or we have been made to think we perceive in 

our daily lives are very different from the ways we actually perceive. If this is the case for 

daily life, then I think we need to pay more attention to how we think students perceive 

mathematical objects, patterns and changes. How many of them do they notice the way 

we do?

247

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The multidirectional multiplicity in the neuronal network is reflected in the 

natural temporal parsing of 200-500 msec in humans before the “now-ness” of a 

perceptuo-motor unity (Nprretranders, 1998; Varela, 1992). It is interesting that we 

human beings do not notice this temporal parsing. Is this because it is too close for us to 

notice it? It happens on a timescale— milliseconds. Could it be that this timescale is 

behaviorally insignificant? Or is it that perhaps we adapt to it? For me this temporal 

parsing together with the view that perceptual awareness is a small fraction o f what we 

perceive has implications for how I view the role o f pointing students to volitionally see 

mathematical patterns.32

To summarize so far, perception is a coherence o f somewhat independent, 

parallel and distributed but cross-correlated sensations that are intimately coupled with 

motor, cognitive and affective aspects. There is more to perception than what a 

perceiving being can be aware of. Perception happens within the mobile, thinking and 

feeling humans as an internally generated neural activity that lays ground for further 

reception, thought and action. Perceivable attributes such as color and dimension do not 

just exist out there but are brought forth by the perceiver through a mostly hereditary and 

experiential participation that defines what counts as a perceivable world (Varela, 1992). 

W e do not view the world from a point of view per se; the world and its objects are 

enacted through perceptually guided activity. In the next sections I extend this discussion 

from sensation and perception to the domain o f observation.

32 A s w ell, studies from humans with bodily and psychological abilities that are different in pronounced  
w ays do illum inate the com plexities o f  human perception.
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9.4 Humans as Observers: Maturana’s Theory of Observation

Maturana (1988a, 1988b) has a radical take on human perception. He argues that

observation is a fundamental human operation. For Maturana (1988b) objects, language

and knowing arise with the operations of making distinctions.

We cannot operate with ob jec ts ... as if  they existed outside the distinctions of 
distinction that constitute them .... W ithout observers nothing exists, and with 
observers everything that exists [exists] in explanations, (p. 37) The 
understanding o f the ontological primacy of observing is the basis for 
understanding the phenomenon of cognition. (Maturana, 1988b, p.42)

All distinctions an observer makes take place in the network of operational and 

structural coherences specified by his or her operation. When I make a distinction, I 

cannot claim that I am distinguishing something that pre-existed the state or operation of 

distinction that brought it forth. All that I can claim is that as I make a distinction, I 

specify what I bring forth with it—  the entity distinguished, the observed together with its 

domain of existence. In addition, every distinction specifies a domain of possible 

distinctions as a constituted ontology, a world among many possible worlds. Each 

distinction an observer makes constitutes a node in the operational matrix of the 

observer. Through reflective languaging33, second-order observation according to von 

Foerster, an observer can become aware of the system o f  coherences implied by his or her 

local distinctions, and so make many locales o f such a matrix accessible to his or her 

actions.

An observer does more than specify the observed, with its domain and domains 

of possible distinctions. In the act of observing he/she as the agent, the coherent form that 

observes arises. All observers live in the domain of inter-objectivity, generated in

33 For a constructivist, reflective languaging means reflecting on action to create knowledge.
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language with other observers. The act o f  distinction that an observer performs could not 

be used to make a claim about an external reality. Distinctions that an observer makes 

exist more in the observer domain o f  descriptions as commentaries rather than in the 

phenomenal domain of the observed.

On the question of what humans do, Maturana (1988a, 1988b) explains that 

humans observe and make distinctions, both concrete and conceptual. As beings that 

happen in language they generate notions and relations (Maturana, 2000). Observing is an 

ongoing process “in which each distinction appears as the ground for the next,” without 

questioning its own ground. (Maturana, 2000, p. 461) The consideration that observations 

are done with a succession of coherences o f experiences appears to be key in 

mathematical observations. Mathematicians are mathematical observers that continually 

exist and live with others in a co-specified mathematical domain.

Human beings as biological entities exist in the praxis o f  living but, unlike 

organisms that do not reflect or attend to what they do or what happens to them, humans 

appear in their experience with a presence (Maturana, 1988a, 1988b). Maturana develops 

a theory of observation that might make us empathize with students at moments when 

they are not able to perceive what is evident for us. It appears crucial that mathematics 

students become mathematical observers as well. Maturana explains that this is possible 

by virtue of the domain of their coherences. And again students might need to be 

mathematical observers that do not just live in the flow of their classroom activities, but 

that are present in their mathematical worlds.

Human behavior, communication, domains of inter-objectivity and knowing are 

all aspects of M aturana’s evolutionary cognitive theory. M aturana takes the middle way
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between the observed object and the observer’s coherences; however this is necessarily 

circular. The encouraging point about such an approach is that it includes recursion; 

M aturana chooses a starting point by defining an observer, but he does not end where he 

began. W ith the help o f community, time and space, M aturana (2000) gains a 

displacement, what B. Davis (2002) has referred to as a recursive elaboration, as he lays 

down his theory. He transforms the collective landscape. On returning to the point of 

departure where he chose to begin his theory, the theory and the world he is theorizing 

about have been changed with the action of theorizing. I will demonstrate how this is 

done. (This is a key feature of my research, as well.)

9.4.1 Enacted Objects

For M aturana (1988a, 1988b), it is the observer who points at behaviors or 

doings as he or she distinguishes an entity that interacts in and with its medium. On the 

side of the organism it is ju st changing to adapt to its medium. Actions occur in the 

domain o f operation o f the whole and embedded organism, in its relational, the 

interactional domain. This might involve only its medium.

W hen two or more organisms live together they coordinate their actions, which 

are in turn transformed. This transformation might be by way of chemical, gestural, 

postural, vocal or tactile coupling, or by higher communicative behavior. The flow of 

interactions between systems might appear to an observer as communication. When in 

addition to innate behavior organisms come to develop new behavior through which they 

coordinate actions, M aturana and Varela (1987/1992) say the organisms are socially 

coupling in the linguistic domain that includes instinctive and learned coordination of 

action. If learned communicative behavior is observed to span generations, say among
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social animals, the observer refers to it as culture. However, humans are unique because 

“in their linguistic coordination o f behavior, they give rise to a new phenomenal domain, 

viz., the domain of language” (M aturana & Varela, 1987/1992, p. 209, italics mine).

Here M aturana’s theory begins its ascent into nested phenomenal domains— the 

operational domain of internal dynamics, the relational domain  o f behaviors, the 

linguistic domain  of social behavior including language and culture, and the semantic 

domain of inter-objects— in which humans make distinctions. For me his theory further 

clarifies how mathematical attentiveness might span more than one level— at one level as 

sensations, at another as perception and at yet a higher level as observation.

In the behavioral domain there is a flow in the dance of coordination of actions, 

which allows linguistic distinctions. As organisms recurrently make linguistic distinctions 

o f actions in their behavioral domains, this leads to other phenomenal domains. The 

domains of language and of objects arise as linguistic distinctions o f linguistic 

distinctions. Objects of distinction arise as tokens, eigenvalues34 of the dance of actions 

and distinctions. These tokens as patterns of interaction, as dynamical equilibrium in turn 

obscure the relations they coordinate. Numbers are stable tokens for counting and 

subitizing, and functions as dynam ically stable tokens for measuring, moving and 

calculating (in Appendix B, I offer two basic examples o f numbers as tokens from 

students’ work). Also in Chapter 7 we saw that the students began to attend to 

mathematical patterns through their writing, physical and communicative activities. In 

languaging we see ourselves as if  we distinguish and handle objects that exist 

independent o f what we do as we couple with other human beings and with our

34 An Eigenvalue is a mathematical value that remains stable amidst change.
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environments. By hiding the behaviors they coordinate objects as operational analogies 

enable further coordination of behavior. As well they enable different domains o f activity 

to arise. Maturana dubs them different domains of inter-objects. They might be non- 

academic or academic. Mathematical inter-objects differ from other inter-objects such as 

hunting or biological inter-objects as they arise from a particular manner o f languaging. 

Let us explore more.

9.4.2 Inter-Objectivity

For matters of analysis, M aturana (1998a) attempts to trace the initial interaction 

between two organisms. I find Bateson’s (1980) experience with a dolphin helpful for 

understanding Maturana. Bateson decided to experiment with different dolphins in a 

pool. Meanwhile he watched how the flow of their interaction proceeded given his 

ongoing interaction. With one dolphin he just stayed still as the dolphin swam around 

him getting closer each time. Finally after Bateson did not move even when the dolphin 

used its limb to strike him, the dolphin swam away. But on another occasion when he 

decided to initiate interaction and respond to a dolphin say by stroking it there was more 

activity between the dolphin and him. The emergence of meaningful behavior between 

humans and animals and human and humans is a well-known experience. M aturana 

explains that with the initial coordination o f behavior, usually in a form o f a gaze or 

gesture, mammals are still in the relational domain of doings. It is after the response to 

the initial coordination of actions, in the choreography of coordinated actions that they 

begin acting in a linguistic domain. If this process recurs often enough, at each stage of 

the cycle there is displacement of the relation and meaning o f behavior. In “recurrent 

social interactions, language appears when the operations in a linguistic domain result in
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repeated coordination of actions about actions that pertain to the linguistic domain itse lf’ 

(Maturana & Varela, 1987/1992, p. 209-210). Language occurs in the domain of 

regularities o f actions, in which particular communicative behaviors have consensual 

meanings. It is in this new operational domain of descriptions o f descriptions that 

observers arise. Through linguistic coordination of actions, which appear to an observer 

as distinctions, language allows humans new phenomenal domains such as the domain of 

formal behavior, reflection and self-awareness.

As an object or entity arises in our new relations, meanings— the distinctions— it 

arises in the domain in which it is distinguished. By explaining any ongoing coordination 

of human actions as a domain o f  inter-objectivity, Maturana’s theory stresses that objects 

could not exist as independent entities. To apply his theory to mathematics: Mathematics 

objects such as numbers, lines and curves are dependent on mathematical observers— the 

mathematicians who live the existence of the mathematical inter-objects as though they 

were independent o f their interactions.

Maturana being a scientist confines his illustrations to the scientific domain of 

inter-objectivity. I draw analogies from his explanations to understand school 

mathematics as a domain of inter-objectivity in which particular kinds o f objects arise as 

a network of mathematically significant interactions. M aturana’s notion o f inter

objectivity underscores the importance of interactions in enacting mathematical domains. 

In eco-complexity terms, mathematical objects, things and entities emerge, as signs, as 

patterns and patterns o f patterns that, with the help of time, become the ground for further 

mathematical actions.

Mathematical descriptions and generalizations are abstractions of the coherences
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of our operation that we distinguish as we explain our mathematical experiences. They 

arise in our existence in mathematical inter-objectivity as a way of understanding some of 

the regularities of what we do or what happens to us as we engage in mathematical 

activity. This means that what we mean when we speak of objects such as numbers, lines 

and functions we them about in our indications.

Symbolization is secondary to language; it takes place in the explicit acceptance 

that one particular operation o f distinction will participate in the flow o f continued 

coordination of behaviors in lieu of some other operation. In the language o f semiotics it 

appears M aturana (2000) is making a distinction that symbolization and formal signs, 

what most semiotic theorists focus on, happen in a domain higher than that of language, 

linguistic communication and coordinations o f doing, the formal-communicative domain. 

In this domain observers formally, institutionally or politically deliberate on how they 

wish to continue coordinating mathematical actions. That formal mathematics involves a 

multitude o f symbolization, for me, is an indicator that phenomenal domains— internal 

dynamics, relational behaviors, linguistic social behavior and the semantic domain of 

inter-objects layer it.

For teachers and educators, M aturana’s theory on observing appears 

pedagogical. Identifying the objects o f the domains we teach as inter-objects offers an 

ontological stance to matters of attending. Some theorists lament that for a long time the 

epistemological stance has dominated issues o f learning (Osberg & Biesta, 2003; Rorty, 

1982). W ouldn’t it be ethical for the education community to realize that the domain of 

objects— whether material or ideas— is always a new operational domain  that arises from 

ongoing interaction? Perhaps physical objects belong to domains of interaction that most
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humans participate in. They are basic distinctions, whereas cultural and more academic

ones are restricted to formally organized domains of interactions. Maturana’s theory of

observation implies that the foundational and epistemological background that we need to

support mathematical thinking and activity cannot be spoken. All that exists are the

domains of interaction, the perceptual world that humans bring about as they exist in

matrices of inter-objectivity.

To know is not a manner of reference to entities that are assumed to exist with 
independence from what we do. To know is to do, and all human knowing occurs 
as doings in the realization of our living in the domain of inter-objectivity that 
arises in our living in language. (Maturana, 2000, p. 466)

Maturana explains that we claim that we know when we do something adequate 

in a domain of inter-objectivity. In Figure 22 I summarize Maturana’s observation theory. 

The theory explains the centrality of observation, actions and interactions, and reflection 

in attending and being. It is a theory about how we come to attend in increasingly abstract 

and shared domains. In theories of distinction, observation is an operation that accounts 

for the ontology of human attentiveness and cognition. But is it only individual humans 

that observe?
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Figure 22  Layers of Distinctions and Centrality of Observation

ViVKiTi".

Volitional Domain
Reflection, Consciousness, Awareness 

Human Presence; Symbolization, Formal Domains 
’ Observer Commentary— Mental life-

Semantic Domain of Language
Linguistic Distinction o f Distinctions 
Observer, Inter-objectivity, Objects 

Observer Commentaiy—Independent Objects

Linguistic Domains, of Descriptions
Social and Culturally Learned Coordination o f Actions 

Observer Commentary—Learned Communicative Behavior

Relational Domain of Coordination of Actions
Continual Interaction 

Observer Commentary— Communicative Behavior

Internal Dynamics of Changes
Domain of Operational Coherences 

Observer Commentary-Leaming or Reaction

9.5 von Foerster: Studying Observing Systems

In second-order cybernetics35, von Foerster (1981, 2003) emphasizes that 

observation is the most basic operation for non-trivial systems. For von Foerster (1981) 

trivial systems like thermostats are not autonomous; their output remains the same when 

the input is the same. Their designers govern them externally. They are predictable and

35 Cybernetics is the mathematical study o f  control, recursiveness and information, o f  purposive system s.
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mostly independent of their past. Humans are non-trivial observing systems (von 

Foerster, 2003). Their feedback systems lead to changes in their operation. Over time 

non-trivial systems approach strange attractors and eigen behaviors as they exist in 

dynamic equilibrium. Whereas M aturana focuses his theory on individual human 

beings—perceiving-within-language, Von Foerster extends his theory to other systems. 

This is important since as we saw in Chapter 6 humans act as individuals as well as 

collectives. An exploration o f observing systems allows us to extend the study o f the 

dynamics o f attending to collectivities.

Out of an infinite abundance o f possibilities, humans, as non-trivial systems, 

after recurrent actions and interactions have the potential to behave in particular ways 

because they make distinctions. They mark. They designate and indicate what is 

observed. Also as we saw in Chapter 5, it is of paramount importance to study observing 

itself. Systems and ecological scientists, of whom von Foerster is one, shift to explore 

perceptual properties as i f  they resided within the operation of observing (von Foerster, 

2003). Observing observing systems is a shift that transcends the simplistic shift from 

looking at things “out there” to looking at things “in here”. For this study on how 

perception guides mathematical actions, the study o f observing— perceiving-within- 

dynamical stabilities in the temporal course of actions and interactions— is central, 

especially since mathematics is one of those domains that appears to be uniquely human, 

socially restricted and ever evolving. Von Foerster’s work leaves the list o f observing 

systems open.
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9.6 Luhman: Social Systems Observe and Attend

Luhman (2002a, 2002b) extends M aturana’s notions of observing toward human 

social systems. He draws from Spencer-Brown (1972/1979) and from von Foerster 

(1981) to conclude that all autopoietic— what von Foerster refers to as non-trivial—  

systems make distinctions. For Luhman, observing means indicating one side (and not the 

other side) of the distinction. Even socio-systems invoke differences and distinctions; 

they discriminate in a manner similar to individual human beings. Luhman defines 

observation abstractly to apply to all operations that discriminate: to perception in 

biological autopoietic organs, to thinking in humans, and to communication in social 

groups. Luhman would, for example, maintain that cognitive domains like mathematics 

and organized religion as well as social and political institutions observe at the socio- 

communicative level. Part of this appears to be what Peirce was attempting to articulate 

by noting:

Men [sic] who pursue a given branch [of science] herd together. They understand 
one another; they live in the same w o rld .... Sciences must be classified according 
to a peculiar means of observations that they employ ... great landmarks of 
history o f science are placed at the points where new instruments, or other means 
o f observation, are introduced. (CP 1.99-102)

Observing systems whether scientific or not are determined by the distinctions they 

make, which are determined by their conditions of observing.

Observing systems cannot choose the distinctions— food/not food, antigen/not 

antigen, exciting/not exciting, logical/illogical, mathematical/nonmathematical and 

moral/immoral— with which they dissect the world, Luhman (2002a) maintains.

Conscious choice is an untenable notion; for all observing systems, only conditioned (or
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should we say coherent and emergent?) designations are possible (Luhman, 2002a). To a 

degree humans choose only those frameworks of observation that have been made 

accessible to them in material, biological and social ways. Distinctions function blindly at 

the moment o f observation, Luhman emphasizes. Merleau-Ponty (1964) says perception 

is blind to itself. Thus we might need observation o f observation, a second order 

observation, to pay particular attention to what kinds of regularities and distinctions the 

observed observer uses. Second-order observations have the potential to illuminate what 

the observing system is able and unable to perceive with its distinctions. Second-order 

observations also observe the conditions by which the first-order observer discriminates. 

In M aturana’s (2000) language, through reflection observers can become aware o f the 

networks of coherences implied by their local distinctions. Nonetheless, as we saw in 

Chapter 5, the second-order observer is blind to the conditions o f his or her distinctions at 

that level of observation. Von Foerster (2003) observes that it is hard to find out what 

generates these stabilities and distinctions. Perhaps, we can hypothetically retrace their 

genesis as M aturana does with his theory.

To review so far, the theories of distinctions by Luhman (2002a, 200b),

M aturana (2000, 1988a, 1988b) and von Foerster (1981, 2003) imply that complex 

adaptive systems whether they are individual learners, collectives o f learners, or domains 

of human activities make distinctions. Bateson (1980) would say, such systems operate 

on differences. The work o f these scholars parallels the mathematical logical work of 

Spencer-Brown (1972/1979) on bringing into being a universe by marking out a space.
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9.7 Spencer-Brown: The M athem atics o f Observation

Spencer-Brown (1972/1979) asserts,

A universe comes into being when a space is severed or taken apart.... By tracing 
the way we represent such a severance we begin to reconstruct, with an accuracy 
and coverage that appear almost uncanny, the basic forms underlying ... 
mathematical, biological and physical science, and can begin to see how the 
familiar laws of our own experience follow inexorably from the original act of 
severance. The act itself is already remembered, even if unconsciously, as our 
first attempt to distinguish different things in a world where, in the first place, the 
boundaries can be drawn anywhere we please. At this stage the universe cannot be 
distinguished from how we act upon it, and the world may seem like shifting sand 
beneath our feet... All forms, thus all universes are possible, (p. xxix)

Spencer-Brown’s interest in observation is of the Boolean logical kind. His 

explanations of how a universe is severed include vocabulary such as distinctions, 

marking, states, form  and the observer. He writes, “W e see now that the first distinction, 

the mark and the observer are not only interchangeable, but in the form, identical” (p.

76). From Spencer-Brown’s assertion we might say that mathematicians are 

interchangeable with the distinctions they are making, for example: they too are marks 

that distinguish the mathematical domain. And so are mathematics students.

In Peirce’s terms, the sign and the explanation of what it signifies make up 

another sign. This larger sign may require an additional explanation producing an 

enlarged sign that will still make up a larger sign. And proceeding in this regression, we 

ultimately reach a sign of itself. It appears an observing system is this reflexive sign. An 

observer is a sign o f distinction and the distinction is a sign of the observer (Peirce, CP;

2. 231; See also Kauffman, 2001). Drawing from Spence-Brown, Varela (1974) dubs the 

observer the third state in the form. The first is the marked and the second is the 

unmarked state. The autonomous third state arises by self-indication. It is the distinction.

Spencer-Brown (1972/1979) uses the calculus o f circles. By drawing a circle, a
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distinction is made that distinguishes points in the circle from the points outside the 

circle. New distinctions can nest preceding ones as in nested circles, and there is a 

possibility o f self-reference and re-entry when marked states might appear to equate with 

unmarked ones (Varela, 1979; Kauffman, 2001). Kauffman (2001) has observed that the 

notation Spencer-Brown uses with his calculus o f indication is in line with C. S. Peirce’s 

notation on existential graphs, fifty years earlier. As a circumference of a circle cuts off 

the inside and outside in a plane, so does the skin o f an organism, Spencer-Brown 

explains; and I would add, so do the boundaries of collectives and manners o f languaging 

and domains o f inter-objectivity. Spencer-Brown views distinction-making as a major 

operation that causes a universe to come into being. Recall Merleau-Ponty and V arela’s 

notions of a perceptual and perceiver dependent world, respectively.

In my view, theories o f observation are aimed at facilitating reconstruction of 

the basic distinctions underlying individual and collective understandings such as 

mathematics. Interrogating acts of severance that underlie regularities in human actions 

and interactions could lead to seeing how the invariants and regularities in experience 

follow inexorably from the earlier acts o f distinctions. Spencer-Brown describes the act 

o f severance as early attempts to distinguish different things. In the first case, the borders 

of the forms could be marked anywhere. To Varela (1974), “We, observers, distinguish 

ourselves precisely by distinguishing what we apparently are not, the world” (p. 22). 

Indeed mathematics observers have marked and cut mathematical worlds.

In Chapter 8, by asking the question how do observing systems observe, I 

wondered about what the original act of severance could be for students’ mathematical 

thinking. At such an original stage of observation, the mathematical universe would not
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be distinguishable from how students acted upon it. The mathematical universe would 

seem like shifting sand beneath their feet. To pursue Spencer-Brown’s (1972/1979) 

insight further we may ask: How do familiar laws of our mathematical experiences, such 

as number operations, follow inexorably from earlier acts of severance? W here else could 

we seek these original acts o f severance than in the historical evolution of particular 

mathematical ideas? W hat happens among children learning to count? Should we say the 

original act o f numerical mathematics is a distinction other than reciting and practicing 

writing numbers? Is it not the case that at the stage of classifying units, grouping, 

unitizing and seeing plurality and symmetry, all forms, all universes, and many number 

worlds are possible? Anthropologically speaking, at the original stage of severance, many 

number systems were possible. Pragmatically speaking, the Hindu-Arabic is just one 

system among those that were easy to learn and use. In a similar manner, at the stage of 

shaping and seeing form, many geometrical worlds were possible, o f which Euclidean 

geometry was just one.

In my research study as I observed students making mathematical distinctions, I 

acknowledge that at every stage many other worlds— some non-mathematical, others 

mathematically unique— might be possible. Indeed the latest layer of my research 

questioning: “In what ways do observing bodies make distinctions?” is central in 

studying students’ mathematical thinking. For as students learn mathematics they sense, 

perceive and observe, all-at-once. In the dynamic view of attending I am developing, the 

operation of observing is taken to be primary to cognition. Peirce noted this: “All 

reasoning whatever has observation as its most essential part” (Collected Papers, 2.605). 

Individuals as well as collectives are observing, cognitive systems. From the
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philosophical and scientific views explored above, perception is divorced from an 

external world, to be placed by re-entry into the form, between the external and the 

internal. The learner who attends or perceives, whether it is individually or in a social 

collective or any other non-trivial system, is taken to specify a reality rather than to grasp 

one. That this is so is evidenced by students’ invention of signifiers that are meaningful to 

them. Leo, a student in the grade 7 class I observed, explained to the class how he 

generated rectangular arrangements for numbers. He said he would begin with one times 

the number (1 X n) and continue increasing one and reducing the number “until the sides 

met.” It appears Leo had specified a reality with it distinctions such as sides. A second- 

order observer attempts to understand what reality the student had enacted. After the 

sides had met, he would know he had exhaustively generated factors of a number.

This recent development in the theories of distinction is an idea that has a long 

tradition in hermeneutics. Varela (1999a) admits that the philosophical source for his 

attitude has its origin in philosophical hermeneutics. In Chapter 6 1 elucidated how 

enactivist and complexivist stances inevitably draw from and elaborate on hermeneutics. 

Next I briefly relate Gadamer’s notion of prejudices to theories of distinction.

9.8 Perception Viewed Hermeneutically

Gadamer (1992) observes that our prejudices constrain and enable our 

perception. Our tradition, historicity and language are conditions for understanding. 

“W hile it is true that prejudices limit what we are able to see, it is also true that, were it 

not for our prejudices (our pre-judgments) we would not be able to see at all.” (Davis, 

1994, p. 160) In M erleau-Ponty’s (1964) language, “We do not suppress our ties to time 

and space; in fa c t we utilized them” (p. 40) “ [Ojur prejudices constitute our being” (B.
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Davis, 1994, p. 160). Gadamer (like Davis) casts prejudices in enabling terms, as theories 

of distinction would cast the blind spot as an enabling constraint. Re-reading 

hermeneutics alongside ecological complexity prompts me to look beyond and within 

formal-mathematical factors— mathematical traditions, inherited histories and formal 

languages— as I study the dynamics of how students attend. Prejudices could be taken as 

readiness-to-attend in particular ways. My analyses illustrate that more than formal 

factors such as symbolization are at work when students are attending. For the most part 

they are inclined  to perceive and observe the way they do in ways that structurally 

embody their neuro-physiological and emotional make-up as well as their lived, shared 

and inherited histories. Students as individual unities, com posite unities, and socially 

embedded and technologically enabled attending systems attend in complex ways. But 

the radically embodied, embedded and extended view o f perception urged in this chapter 

is far from  being a folk theory or an educational theory. Is it ju st a philosophical view that 

has nothing to do with education practice? To answer this question involves studying 

senses of the verb to attend that are common in education practice. It may also involve a 

pondering on why educators as is the case with psychologists focus on conscious, 

outward, sensorial, focal and effortful attention at the expense o f non-conscious, 

peripheral, derived and intellectual (James 1992/1878-1899) attention.

9.9 Views of Attending in Education: William James

How can the education community study attention in ways that are not delimited 

to overt attention? To James (1981/1842-1910), attending is “the taking possession by 

mind, in clear and vivid form, of one out o f what seem several simultaneously possible 

objects or trains of thought” (p. 381). In theories o f distinction it could be paraphrased as
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the making of a distinction, be it at the conscious level or a deeper one, as enacting a 

world of significance. Given the dynamic views of perception explored in this chapter, it 

might help to search for the suffocated senses of the verb to attend such as stretching, 

being present, waiting and awaiting. Attending involves being present in a broadened 

sense. To James (1981/1842-1910,1992/ 1878-1899), an associationist, attending 

involves habits, interest, past experiences, emotions and social participations. When we 

attend, we are present in ways that span the biological, psychological, social, 

technological and cultural, this chapter adds. Perhaps instead of linking attention to 

interest the way James does, following Varela (1999a), we can use the terms 

preparedness-to-act that would apply even to other cognitive agents. It might be this 

readiness to act that arouses, orients, divides, selects and fixes as well as sustains 

attention. As Varela explains, when it falls apart then effortful attention and interest is 

needed among humans. But effortful attention cannot be sustained for many seconds 

without the support o f passive, derived and global attention (James, 1992/1878-1899). 

James explains that continued (strong) attentiveness in a particular domain inevitably 

makes one a genius in that domain. In manners supportive o f the eco-complexity view I 

have presented, James asserts that by attending we choose a universe to experience and 

inhabit. For him education should be geared toward adaptation of attentiveness to ideas 

and sensorial objects, say mathematical attentiveness.

In education, and in humanities in general, other scholars such as Langer (a 

sociologist) have studied the centrality o f perception in terms of awareness. Langer 

(1997) develops a theory about mindful awareness.36 Some researchers, such as Rosch

36 She contrasts her m indfulness learning theory to the traditional intelligence theories. M indfulness, and at 
times aw areness, is in the Tibetan sense taken to be open-ended reflection on the experiences o f  mind
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(1999a) and Varela et al. (1992) are increasingly drawing from Eastern meditating 

practices to extend the discussion to the phenomenological aspects of perception. Rosch 

(1999a) maintains that if the senses do not actually perceive the world, if they are instead 

participating parts of the mind-world whole, then a radical re-understanding of 

perception is necessary. These independent explorations all elucidate that teaching and 

learning need a dynamic view o f perception if they are to understand students’ difficulty 

in getting what is taught.

The work I have explored in this chapter broadens attention from sense 

impression and volitional effort toward sensation, perception and observation. Attention 

orients. It sustains engagement as it deeply chooses a universe to inhabit, it enacts an 

attentional world. Attention participates in making distinctions and creating its objects. 

Education could usefully draw from this dynamic view of attention. Given the nature o f 

school subject domains as subjects that involve sensorial activity as well as spatial 

imagination, mental imagery and abstraction, the participatory and dynamic view of 

perception explored here is useful. It is a philosophical and physiological basis for 

understanding perception in dynamic ways. In the next chapter I explore how 

mathematics educators could sharpen students’ mathematical attentiveness in ways that 

await mathematical objects and enact mathematical worlds.

(V arela et al., 1992). Langer critiques traditional intelligence theories’ emphasis on perception as 
representation o f  a world. She says this v iew  has upheld the notion o f  one right answer and one right 
perspective.
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10. ORIENTING MATHEMATICAL ATTENTIVENESS

The adoption o f computer models to understand cognitive states revived studies 

on the learner’s internal dynamics, particularly the presumed mental processes. These 

studies elaborate on gestalt psychologists and mentalists’ interest in mental aspects such 

as memory, perception and object recognition. Results o f studies on perception and 

attention in experimental psychology that were interpreted in support of behaviorist 

theory— stimulus-response patterns— are being re-interpreted in ways that do not bypass 

the internal coherences o f the learner. W ith cognitive scientists’ interest in the role of 

internal dynamics, specifically brain dynamics, research on consciousness, perceptual 

awareness and similar activities of mind is, so to speak, out of the closet. Constructivist 

theorists with their strong tradition o f  research in mathematics education have paid 

particular attention to students’ conceptual structures. In my view, research on 

mathematical thinking has much to benefit from drawing from recent non-cognitivists’ 

interpretations.

The emergent view developed in this writing underscores that studying the 

dynamics of students’ perception and attention in a particular human domain is central to 

investigating the nature of students’ cognition. How do students attend? In the last 

chapter I developed a view of attention, which does not delimit itself to visual, conscious 

and formal ways of attending, much less to individual and sensory attention. It is now 

time to return to the question that motivated my interest in students’ attentiveness: when 

do shifts in attention happen and how do teachers occasion students’ mathematical 

attentiveness?

There are multiple and mutual interactions in the dynamics o f attending.
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Therefore a layered and interconnected way o f orienting students to attend in 

mathematically adequate ways is needed. Further, since perception and attending are 

inseparable from action, an exploration of mathematically adequate activities is also in 

order. Already identified constructs in mathematics education offer a starting point for 

exploring the dynamics o f students’ attention. In this chapter I examine the ways in 

which shifts in attention in addition to being switches in modes could be irreversible 

changes in ways of attending as well as transformations in worlds enacted. I explore the 

dialectics that involve radical or irreversible changes. I draw from a classroom anecdote 

to illuminate these complexities o f attending. But before exploring all these, I look at 

isolated cases of research on how students attend.
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10.1 Studies on How Students Attend in Mathematics

Students’ mathematical attentiveness has not been a common focus in education. 

Apart from research done on representations, signs and visualizations, a few mathematics 

educators such as Mason (1989), Hewitt (2001a, 2001b), Watson (2003), Sfard (2000b, 

2001a), Marton and Booth (1997), and Booth and others (1999) study the significance of 

understanding what students pay attention to. In some other studies, such as Simmt 

(2000), Kieran (2001) and Davis (2000), the topic of students’ attention has been 

explored on the periphery. In earlier chapters, I briefly reviewed the insights gained from 

studies on, epistemological errors, visualization and representations. For the reason that 

Mason and associates, M arton and Booth, and Sfard and Kieran’s research on 

mathematical attentiveness appeared to be a special case that closely focuses on what 

students see, experience and communicate I chose not to explore it until now.

Mason (1982) asserts, “ [LJeaming consists of shifts in the structure o f attention” 

(p. 9). Mason (1989, 2003) focuses on the form  of attention— what is attended— and the 

structure— how it is attended. Hewitt (2001a, 2001b) and Mason maintain that it is 

important that students’ awareness be developed. Mason appears to use awareness and 

attention interchangeably. Hewitt (2001b) uses awareness in its everyday usage to refer 

to observation, be it sensory, idea or automatic. Both Mason and Hewitt offer ways in 

which students’ awareness can be studied, worked with and developed. W atson and 

M ason (1998), Mason (2000, 2003), W atson (2003), and Hewitt (2001b) offer some 

methodical ways to provoke and direct students to focus on mathematically significant 

forms. Among other things, they emphasize that the style o f tasks influence students’ 

mathematical attentiveness (Mason, 2000). Watson and Mason (1998), and Mason (2000)
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offer exposition formats, questioning styles and task designs such as student-generated 

examples that provoke core mathematical ways o f attending. Similarly, Hewitt (2001b) 

works with students’ common errors and structure of questions to direct or even force  

students’ awareness to be focused on the attributes mathematicians attend to. As we saw 

Mason, Hewitt and Watson infer how students should attend mainly by interrogating their 

own experiences. Sfard does so by closely analyzing students’ utterances.

To Sfard (2000b, 2001a), what students attend to as evidenced in their 

communication is significant, since communicating mathematically is thinking 

mathematically. Sfard (2000b) asserts that in any student utterance there is the 

pronounced focus, the attended focus  and the intended focus. For example, when Lillian 

said, “The interval is not helping” as she worked with Irene on the Consecutive Terms 

(CT) task, her pronounced focus was “the interval” . Her attended focus was the set o f  

numbers {3 ,5 , 6, 9 and 10}, and she and Irene were working at finding the common 

difference, their intended focus. With the same pronounced focus, students might be 

attending to varied things ranging, in the interval case, from a table, an arrangement o f  

concrete materials, a set such as (3+2, 5+l, 6+I, 9+1,1 0 +1}, or even an equation, all focus 

that involve relations among pairs of numbers. Sfard acknowledges that the attended 

focus— what students perceive— is usually instinctive, habitual and below conscious and 

thus not explicit, Vergnaud’s theorems-in-action (see Appendix B). Nonetheless, the 

attended focus, as a constituted ontology, has aspects that can be perceptually shown, 

linguistically explained, formally compared and externally regulated. These are what we 

observe to be mathematical structures. To foca lly  analyze students’ discourse Sfard 

(2000b) closely maps their gestures and verbalizations. She traces the mathematical
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objects that students might be attending to— the attended focus. She, in a manner similar 

to my work, emphasizes that students by attending engender mathematical objects.37 

Although Sfard restricts her investigation to individual students’ utterances, paying less 

attention to their written work, joint attention, use o f materials and tools, her analyses 

focus on the variations in what can possibly be attended with one pronounced focus.

Like Sfard, Kieran (2001) focuses on analyzing students’ talk as a way of 

understanding the individual student’s mathematical thinking that emerges through 

discourse. Sfard (2000b, 2001a, 2001b) and Kieran (2001) observe that students attend 

not only to the mathematical objects— object level attention—but also to the discursive 

patterns and meta-discursive rules— non-object level attention. In my research work, 

students have at times attended to clues, to each other’s attitudes and to non-mathematical 

contexts in the tasks. For example, Rose and Norah interpreted the phrase “how many 

ancestors does a male bee have in the twelfth generation back” as a clue to a fractional 

solution for the Bee Genealogy (BG) task, (refer to Vignette E2, Appendix E for detail). 

At many moments non-object level attention is not distinct from object level attention. 

Thus sometimes the duality between object and non-object levels, like any other 

observer-constructed duality, has been limiting. Kieran and Sfard nonetheless raise 

awareness of the fact that what students attend to, the form of attention, includes more- 

than-object-level aspects.

M arton and Booth (1997), as I showed in Chapter 8, study what students attend 

to from a phenomenology framework. They argue that studying what students attend to 

contributes to exploring how students experience mathematical concepts, or indeed, what

37 In mathematics, the scarcity o f  sensorial mediation o f  what is attended might be one o f  the reasons why 
students find learning it difficult, Sfard em phasizes.
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the concepts are in themselves (Booth et al., 1999).

Simmt (1998) asserts that emotions have a role to play. She observes that shifts 

in attention might sometimes be caused by mathematical constraints, and at other times 

by emotions such as excitem ent or frustration. Davis (2000), following Gadamer, notes 

that we seem to attend to our habits and prejudices, and our expectations cloud  our 

perception. For instance, Rose and Norah considered themselves done with the BG task 

in less than 7 minutes. They appeared to engage with the task in ways that were aligned 

better with the well-defined, quick-fix and simple pattern questions found in textbooks. It 

is not surprising that they did so, since when we enact new perceptual worlds we do not 

totally transcend our fam iliar perceptual worlds.

Whereas Sfard (200b, 2001a) views thinking mathematically in a linguistic- 

cultural manner as communicating mathematically, Mason (2003) uses philosophical- 

phenomenology to view thinking mathematically as coming to sense mathematically. To 

Mason, Hewitt and W atson mathematical attentiveness is a skill that can be encouraged 

(Watson, 2003). In addition to teasing out the sense made of mathematics by students, 

Sfard attempts to tease out the mathematical objects students engender. W hereas Marton 

and Booth (1997), in a m anner closely aligned to phenomenology, elaborate on concept 

descriptions.

Thinking mathematically, as I pointed out earlier on, in addition to being 

synonymous with speaking and sensing mathematically, is synonymous with perceiving 

and observing and acting, including touching, emotioning, gesturing, listening and 

writing mathematically. Herein lies the point of departure from some frameworks that 

view the role o f perception in learning to be peripheral and limited to already formulated
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and observable mathematical features. My own view is akin to the theorist noted above, 

except that my approach draws from a radically embodied view to examine not only the 

matter (what is attended) and structure (how it is attended), but also the coherences and 

dynamics of students’ mathematical attentiveness as well as the objects enacted by 

attending in particular ways. Attentiveness is participatory in enacting mathematical 

objects.

Further, as an embodied experience and a way of enacting worlds it can be 

oriented in complex ways. When we view students as embodied, embedded and extended 

systems we ask deeper questions about students’ mathematical attention or inattention. In 

my study, what counts as mathematical attentiveness expands to integrate many 

modalities of sensing, perceiving and observing, as well it spans more than one order of 

signification. Mason (2000), Hewitt (2001b) and Watson (2003) all emphasize that to 

encourage and orient students to attend mathematically takes degrees of explicitness and 

variation and happens over time. The dynamics o f multidimensional attentiveness, I 

explore below, support their assertion.

10.2 Orienting Attention at Integrated Levels

The question at the heart of my research is how to occasion students to attend in 

mathematically adequate ways. But to answer this question an understanding o f the 

dynamics of students’ mathematical attentiveness has to be sought. If mathematical 

structures do not cause perceptions, but there is instead a dynamic context that orients 

what students attend to and how they attend, then we ought to look at mathematical 

structure in relation to learning ecologies including students’ ways of attending. As we 

saw in Chapter 9 humans make biological, perceptual, semantic, social, political, formal
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and goal-directed distinctions— some of these are within (or constitute the) mathematical 

objects level, others are not. What makes mathematical objects salient for students 

derives from an assembly and synchrony of all these and more aspects. As an observer I 

note that the principles that children and learners use are the same as those used by adults 

and experts. However learners are unique in that they may not be aware o f  culturally and 

formally significant attributes (Lakoff, 1991; Rosch, 1999a), they may add “false” 

attributes or give salience to different attributes from those that experts would highlight. 

Their worlds might be distinct. Here are principles framing my speculation on how 

students may be oriented to attend mathematically:

•  Learners are self-organizing. Teachers are limited when it comes to directly

instructing students, but can create conditions that trigger certain attributes to 

spring forth.

• Learners are embodied systems. They have nested autonomous sub-personal

systems and signification spaces, such as nervous and motor systems. Teachers 

could be attentive and responsive to how learners attend by targeting more than 

the personal, conscious space of signification. The somatic and experiential 

spaces all participate.

•  Individual learners are embedded systems whose behavioral states exist in mutual

causation with the behavioral states of neighboring personal systems as well as 

of embedding supra-personal systems such as social collectives, cultural 

practices and formal structures. The collective and cultural, with its 

technological, linguistic and symbolization possibilities, provide another level at 

which mathematical attentiveness can be awakened.
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•  Learners, be they individual or collective, are extended systems with an external

structure that includes symbolic and cultural tools, technological media, and 

material instruments. Mathematical attention can be occasioned by mindfully 

braiding it through these extra-personal contexts.

•  Learners are personal and conscious individuals who have intentions and goals.

At this self-conscious level they can be motivated to attend in significant ways, 

but this space is just one in the patchwork o f intertwined levels of signification. 

Guided by the above principles it is helpful to talk about attuning, triggering, 

orienting, calling, disposing and occasioning learners’ attention, as well as enhancing 

mathematical propensities. When we dynamically view students’ attentiveness then the 

space from which a teacher can orient students expands to include the physiological, 

emotional and neurological, as well as social, technical and cultural experiences. A 

number o f these levels have been addressed in the existing work in mathematics 

education, particularly the conscious and formal symbolic levels. My contribution here is 

to provide a broader framework that synthesizes and orients existing suggestions. 

Understanding that the levels are integrated is key. Complexity research’s notions of 

emergence, nestedness and inter-level causality are m ost helpful. For purposes of 

analysis, I explore each level separately. Revisiting layered diagrams would be helpful at 

imagining how the levels are interconnected. Figure 23 organizes the learner’s contextual 

dependencies and internal dynamics into a unity.

10.2.1 Sub-Personal layer: Sensory-Motor and Pre-Conceptual Salience

In mathematics education, scholars such as Dienes and Goldings (1971), 

Cuisenaire and Gattegno (1957), and Bruner (1960) emphasize targeting the perceptuo-
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motor sphere by including concrete or enactive activities. A teacher can perturb changes 

by providing materials that students touch, feel, move, play with and orient their bodies 

to. To the extent that radical constructivists such as Steffe and Wiegel (1992) encourage 

offering students physical activity, they too attune students to attend mathematically at 

the perceptuo-motor, the sub-personal layer in Figure 23. In Chapter 7 , 1 explored the role 

o f manipulative materials as physical and sensory embodiments and linguistic enactions 

o f mathematical concepts. But there is more to sensory and perceptuo-motor mediation 

than the use o f manipulative materials.

Figure 23. M ulti-dimension Approach to Orienting Attention

PE R SO N A L  
M ental dynam ics: conceptual, pre-  
linguistic, sem antic, p sychological, 
’ em otional, affective; conscious  

w avs

SU B P E R SO N A L  
Em bodim ent dynam ics: neurological, 

physio log ica l, sensational, pre-concepiual  
abilities

There is emerging work on perceptuo-motor activity and knowing with
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instruments. At a research forum at the 27th International Psychology of Mathematics 

Education meeting (PME) Nemirovsky (2003b) asked:

• W hat are the roles of perceptuo-motor activity, by which we mean bodily actions,
gesture, manipulation o f materials, acts of drawing, etc., in the learning of 
mathematics?

• How do classroom experiences, as constituted by the body in interaction with
others, tools, technologies and materials, open up spaces for mathematics 
learning?

• How does bodily activity become part of imagining the motion and shape of
mathematical entities?

•  How does language reflect and shape kinesthetic experiences? (p. 104)

In my view, these are promising questions that put the body and bodily activity 

back into what it means to attend mathematically. Nemirovsky and other researchers 

emphasize gesture, rhythm, utterances, vocalization, and kinesthetic, tactile and 

proprieceptive resources in cognition. To a larger extent, mathematical thinking evolves 

from and with bodily attentiveness. Hence the structures noted as outer spheres in the 

diagram have feedback loops with the bodily action and ability.

10.2.2 Personal Mind: The Sentient and Rational Attendee 

More work has been done in understanding what students attend to and how 

they attend at the layer o f the personal mind than at the other layers in my diagram. When 

radical constructivists focus on bodily activity they are interested in how this activity 

triggers the re-organization o f a child’s conceptual structures. Most work on 

representations, signs and visualization focuses on students conceptual, semantic and 

psychological attributes. As well work on meta cognition and reflection focuses on the 

sentient, rational and logical personal level. It should be noted that there is more to this 

level than forming mental images, deciphering formal labels and learning concepts 

definitively. The personal, conceptual layer is interconnected with bodily activity at the
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sub-personal layer by reciprocal causation: it emerges from coupling of bodily activity 

with the environment in which it occurs. Semantic and conceptual distinctions at the 

personal layer in turn provide contextual dependencies for bodily perceptions and pre- 

conceptual experiences at the sub-personal layer. Language and linguistic forms at the 

supra-personal layer above the conceptual engagement nuance the dynamics of students’ 

conceptualization and pre-linguistic experiences o f the personal layer. Let me elaborate 

by exploring work on attending to logical definitions and on meta cognition.

10.2.2.1 Rational and Formal linguistic Ways
Pimm (1988) and Mason (1998) note that names and labels, especially those

agreed upon in the wider mathematics community (the supra-personal ellipse in my 

diagram), evoke connections in the minds of students (the personal ellipse). Even 

arbitrary notations may assist recall (Hewitt, 2001a; Simmt, 2000). Mason identifies 

frameworks generated in a classroom as either metonym  or metaphorical triggers of 

different associations for the personal mind. A label like powers o f  two could trigger 

shifts in the attention o f a student to that which is (or is not) mathematically significant 

(Mason, 1998), all depending on the student’s internal (sub-personal) dynamics and 

social and cultural (supra-personal) embodiment. For students from different cultures, 

social economic statuses and religious backgrounds, labels such as powers and mass may 

trigger political and religious connections (Zevenbergen, 1996). For example, Rose and 

Norah had a more colloquial understanding of generation than what was intended in the 

BG task.

Semantic structures and linguistic forms o f the supra-personal layer influence 

what students attend to in ways that do not exclude non-linguistic experiences at the other
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three layers. That this is the case is evident in the observation that it is not sufficient to 

teach mathematics definitively and by using only prototypical examples. For example, 

even when we formally define a triangle as a three-sided polygon, the diagrammatic 

examples offered in textbooks and in teaching as well as the technological environments 

used (the extra-personal aspects) further constrain students’ imagery o f a triangle. 

Teachers and textbook authors unconsciously use geometrical prototypes— usually 

triangles with non-obtuse angles or triangles with one side horizontal or vertical— to 

illustrate the triangle geometrical concept. Yet M onoghan (2000) observes that a 

generalized diagram or illustrative example for a given concept does not really exist. 

Given all these observation how can we teach students in ways that help recognize even 

special cases o f triangles? Sfard (2001b), and Ball and Bass (2003) point to examples of 

students who know the definition of a triangle but cannot recognize non-prototypical 

triangles, such as very thin ones. Sfard (2001b), favoring the verbal-definitive (the supra- 

personal and personal layer) way of orienting students’ mathematical attention, 

speculates that when students attend to the verbal definition of a triangle as a three-sided 

polygon rather than to the overall visual similarity to the prototype examples, the triangle 

shown in Figure 24 definitely appears to them as a triangle. Is favoring logical definitions 

against, say, sensory-motor experiences at the sub personal level a viable solution?
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Figure 24. A peripheral example of a triangle

Ball and Bass (2003), and Rotman (2000) offer a different view. Rotman (2000)

says that using mere definitions to teach geometry is absurd.

The triangle-as-geom etrical-object... is not only what makes it possible to think 
that there could be purely abstract or formal or mental triangles but also an always 
available point o f return for geometrical abstractions that ensures it never being 
abstracted out o f frame of mathematical discourse, (p. 57)

For Ball, verbal definitions are no better than prototypical examples, especially since a 

formal definition does not exist in isolation of other related definitions. Some standard 

definitions and categories are too narrow to include all cases that could be considered 

(Ball 2002; Ball & Bass, 2003). Ball offers, however, no ways o f generating rich and 

interconnected mathematical definitions. Logical definitions are only one aspect of the 

supra-personal layer— a formal linguistic aspect. As I will show later, definitions surface 

meaningfully from the interaction between aspects within the supra-personal layer 

including the cultural and informational as well as with aspects from the other three 

layers. Even in attending to concepts definitively we repeatedly return to perceptual and 

conceptual and draw from material experiences, and sensorial and bodily images. Affect 

is a factor o f the sub-personal layer that nuances rational discourse. I consider cultivating 

desires and emotions that are central in the mathematical domain of inter-objectivity as 

one of the ways of occasioning mathematical thinking. Also I speculate that concrete, 

rich situations do not only engender but they sustain relational mathematical objects.

The question of how the general, the formal and the patterned arise and in turn govern the
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concrete and particular is crucial. Eco-complexity theorists embrace the possibility of 

novelties and idiosyncrasies in emergent ideas that might result from different personal, 

sub-personal, extra-personal experiences.

In this study, mathematical thinking is more than formal linguistic mathematical 

discourse that concerns itself only with activities of the supra-personal space. It is a way 

o f being, acting and interacting within a community of mathematical observers who have 

bodies and minds that are intimately and on an ongoing basis coupled with the 

environment. It is a particular drift.

10.2.2.2 Heuristic and Metacognitive Ways of Orienting Attention
At the personal level o f signification, students can be invited to reflect on and

discuss the dynamics of their attention. They can be compelled to set goals to attend in 

mathematical ways. One way to do that is by making their mathematical attentiveness the 

object o f attention by way o f heuristics, problem-solving strategies and reflecting 

(Mason, 2000). Mason explores the difference between awareness-in-action and 

awareness o f awareness-in-action. He claims that the former involves a high degree of 

being immersed in what you are doing, whereas the latter involves freeing part of your 

attention to focus on how you act, perceive and think. Experts usually are aware o f what 

structure of attending is required by their discipline, Mason claims. Humans, as well- 

integrated psychic systems that engage in the personal behavioral domain with 

possibilities such as free will, control, planning actions and experiencing their 

observations, could eventually learn to guide themselves to pay attention to the themes, 

heuristics and processes o f a discipline. Maturana’s theory o f observation points to the 

significance of becoming a second-order observer of one’s own mathematical activity.
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In the educational research there is a distinction made between cognitive and 

meta-cognitive shifts in attention. Mathematical heuristics could provide learners with 

readiness-to-attend (Mason, 1989; 2000), in other words with a meta-cognitive heuristic. 

M aturana (2000) alerts us that when humans as observing beings do not attend or reflect 

about what they do or what happens to or in them, they do not experience. W ithout 

reflection or awareness of awareness the “human being” will not arise in the doing of 

what they do. For example, the students will not appear in their mathematical 

experiences, and they will not exist in the mathematical domain o f inter-objectivity. Said 

differently, their being and identity will not include a mathematical dimension. 

Schoenfeld (1985), among others, has examined how teacher awareness o f what is 

mathematically relevant can be taught to students’ strategies. Such researchers argue that 

learners can, through monitoring and reflection, develop their mathematical attentiveness 

(Albert, 2000; Mason et al., 1985; Powell, 1997; Watson & Mason, 1998). The 

contribution o f such studies cannot be overestimated. For instance, the problem-solving 

strategies developed by Polya (1945/1973), Schoenfeld (1985) and other researchers may 

help students leam from the structure o f mathematicians’ attentions (Romberg & 

Carpenter, 1990). Nonetheless, practices such as self-monitoring, developing an inner 

teacher and meta-discursive mles, when reduced to content or turned to routines, are not 

o f much use (P. J. Davis & Hersh, 1981; Love, 1988; Mason, 1988).

Meta-cognitive generalizations need to be viewed in the light of their biological 

constraints, for most thoughts and actions (including those that we would consider 

intelligible or those that were once formulated) are unformulated— they are just lived 

habits or deep ways of being. Indeed, as part of those processes enabled by tradition and

284

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



by the environment, much thinking is ineffable even to the reflecting and thinking agent 

(Blumer, 1969; Hadamard 1945/1996; Lakoff & Johnson 1999). W e seem more able to 

act our way into thinking than we are able to think our way into acting and interacting 

(Bruner, 1996). Higher levels of self-consciousness are not involved at all times— many 

times they have subsided into habitual behaviors and at other times it is patterns in 

behavior or established observation practices, at yet other times it is emergent surprises 

and sometimes it is attending in accord with evolving collectives and emerging cultural 

revolutions.

In the language o f theories o f distinction, by paying attention to the distinctions 

they make, together with their blind spots, people occasion more reflexive attending of 

their mathematical attentiveness. Nonetheless conscious awareness, if  we are to act in 

real time, needs to be assisted by habits, bodily knowing, technologies o f knowing, 

external memories and mathematically rich cultures and contexts. The attentive fabric is 

multi-dimensional. It has parallel yet correlated surfaces, external and deep structures. 

The contexts o f mathematical attentiveness are dynamic. As in other complex global 

systems, strengthening unified and interwoven threads rather than isolating them is 

central.

10.2.3 Supra-Personal Layer: Social and Human Collectives Attunements 

The social collective is a learning agent that constrains what is perceptually and 

conceptually possible for an individual learner. In the classroom, through interaction with 

other students and with the teacher, students might find themselves making 

mathematically adequate distinctions. As a significant part of a student’s external 

structure, by focusing on the drift o f the collective mind in the classroom, a teacher, can
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structure what and how students attend. Since the other students and the classroom 

intellectual environm ent constrain what students might be mathematically attentive to, 

the teacher might also focus on orienting the attention o f the classroom as a collective. In 

Merleau-Ponty’s (1964) phrasing, the other bodies could haunt a student’s body into 

attending mathematically.38 Davis et al. (2003) maintain that it is easier to observe and 

occasion the cognitive activity of the classroom collective than to do so for each 

individual student. Participating in varied and rich mathematical collectives enhances 

individual mathematical attentiveness. W ork by social constructivists and socio-cultural 

theorists appears to be targeted at attuning habits and abilities of collectives, cultures and 

institutions so as to incline students to attend mathematically.

It is increasingly emphasized that how we attend in mathematical tasks is not 

always a conscious and rational activity (Kieren & Simmt, 2002). We are aware of the 

world through the collectives that intersect in us and through our histories (Gui Gnon, 

1991; Nprretranders, 1998). Interpretively speaking, the traditional practices we are born 

into, the languages we speak, our experiences, and the collectives we constitute condition 

what we attend to. To put it differently, we attend in conscious and personal as well as 

unconscious, non-conscious and collective ways. This appears to be what Booth et al. 

(1999) point to when they describe learning as a jo in t constitution of insights in two 

senses, both as a broadening of an individual’s cognitive repertoire and as an experience 

that happens when individuals jointly make sense. Collective attending in the latter sense 

arises bottom-up from what individuals in a class initially and successively attend to. The 

dispositions that em erge from this collective attention in turn constrain individual

38 Haunting is not used here in the behaviorist sense o f  reinforcing and punishing. For a com plexity science  
theorist who consents to the idea that learning is being is living, haunting could be taken as a constraint to 
the states that are accessib le  to individual learning.
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student’s attention. W ithin the cognitive systems that emerge in the classroom, broader 

and invariant ideas emerge from a pool of situations. As a shift in what has been enacted, 

these in turn, suddenly and radically shift what can possibly be attended to.

In this system ’s view of attentiveness, we can note the dynamics of attention for 

individual students as well as those of a collective of students. Cobb et al. (2000) and 

Cobb (1999) identify reflective discourse as one of the shifts in attention that can be 

performed jointly in mathematical classrooms. Kieren and Simmt (2002) have elaborated 

on Pirie and Kieren’s (1989) model for observing the growth of mathematical 

understanding to trace the dynamics of students working in pairs. Distinctions made 

collectively have the potential to become embedded in the social dynamics creating 

patterns o f behavior that trigger and are nuance by cultural evolutions. We attend  and 

think within collectives and cultural consciousness as well as institutional boundaries.

Newberg et al. (2001), in their neurological work on ritual, caution that all 

routine work should not be eliminated in an attempt to embrace meaningful learning. 

Collective rituals, as is the case with individual routines, in themselves by virtue of their 

effect on sensory, m otor and pre-conceptual experiences have the potential to contribute 

to mathematical attentiveness and thinking. Rituals seem to induce affection and collegial 

conditions that are in themselves conducive to jo int attention. They also affect bodily and 

psychological states and abilities.

10.2.4 Extra-Personal layer: Technological and Material Affordances

The teacher can influence the dynamics of attention in the case of both the 

individual student and the collective of students by ordering cultural artifacts, symbolic 

media and technological means of observing. Although distributed cognitionists have
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done work in this area, in mathematics education the area needs more research. Rather 

than considering tools such as computer dynamical geometry environments as media for 

representing existing mathematical ideas, eco-complexity metaphors prompt us to study 

them as fundamentally cognitive factors that change what it means to know geometry. As 

I showed in Chapter 7, mathematical insights and ideas emerge from the interactions at 

an inner layer o f activity. Bartolini’s (2000) work on semiotic mediation focuses on this 

tool and artifacts level o f orienting students’ mathematical thinking. Nem irovsky’s 

(2003a) research forum and Radford (2003) also focus on classroom experiences as 

constituted by the body in interaction with tools, technologies, artifacts and materials.

Robutti and Arzarello (2003), and Borba and Scheffer (2003) explore the role of 

instruments in students’ thinking. They explore the idea of knowing-with  technologies 

such as orality, writing, reading, computer technologies and measuring instruments. They 

study how these media o f intelligence, acts of distinction combine with bodily activity, 

with everyday and mathematical language, and with imagination to enhance or redefine 

what is known. In the case o f my study, students came to know which elements do not 

have the CT property through writing, drawing, using manipulative materials and joint 

actions. Through physical environments the teacher may offer, students might be 

triggered to observe in mathematically adequate ways. We do not only think about. We 

think with tools, instruments, media and materials such as the Fraction Kits, counters, and 

number line to enact varied worlds of mathematical significance.

W hat it means to learn a disciplined and practiced way of living or working 

extends to include fluency and imagination with available tools. “The one who knows is 

not a ‘lonely know er’ nor a collective formed only o f humans. The basic unit o f knowing
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always involves non-human actors such as media” (Borba & Scheffer, 2003, p. 126). It is 

evident in daily life that during human perception, intelligence and memory the human 

skin and senses become connecting circuits to material and technological tools and other 

learning environments. A t this level of the extra-personal, it shall be recalled that 

cognitive systems have extended structures. (Unfortunately, in mathematics education 

there has been less sensitivity to the relation of media to the concepts to which they claim 

to offer access.)

10.2.5 Integrating the Layers into a Coherent Unity

What students attend to and the dynamics of their attentiveness could not depend 

on states and abilities at one layer. It depends on the learner’s overall dynamic state. My 

exploration of mathematical attentiveness might explain why a person may attend 

differently over time. It explains that original internal dynamics, personal history, 

interactions, current dynamics, physical, social, cultural or temporal contexts or unique 

circumstances do matter. When a student does not notice a mathematical pattern that 

another observer notes, it may be that the student’s attention is directed differently or 

elsewhere.

In my observations within the research sites and in my interpretations of the 

work of others I have come to appreciate how the background from which specific 

objects o f attention stand out involves a flexible dance o f the overall learning dynamics. I 

presume that to attend away from the mathematical entities, as some students do in their 

“erroneous” visualizations, is in some sense to attend— given the current structures, 

history and environment— to some other co-constituted ontologies.

To claim that students’ attention can be occasioned does not imply that it must
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be explicitly focused and directed. It is more a question o f creating a space for students to 

attend mathematically, which could be done by concurrently and over time making it 

conducive for them to carve out mathematical worlds. In enactivism and complexity 

research, we theorize that conscious, personal and communicative structures are a portion 

o f the structures that participate in learning (Nprretranders 1998; Nunez, 2000).

More-than-conscious and rational directing of personal attention guides our 

anticipative, concentrated and sustained attention. Linguistic attunements, bodily 

histories and activity, cultural dispositions, subliminal and external memory, collective 

orientations and extended structuring structures are among the many fundamental 

persons-plus (Perkins, 1993). These factors orient the ways in which we attend.

My work has been an unpacking of what had been thrown in the closet as un- or 

not-conscious influences, in metaphysical terms, the talents, abilities and energies. They 

needed to be taken out o f the closet and brought back as foci of mathematics education 

researchers’ attention. Mathematical attention binds body, mind and world together; both 

inward and outward aspects participate. In this way, it is a more useful aspect of 

mathematical cognition to investigate than representations.

W hen students interact with mathematical tasks, a myriad of mathematical 

worlds are possible, as has been shown in my and other research on children’s 

mathematics. Yet whatever sense is made, whatever object is attended or enacted it is not 

unique. The same distinction imposes itself as real for every one standing where that 

particular student as a complex system is “standing” . If it were a non-mathematical 

distinction, the student would view his way of attending as non-mathematical only if he 

or she were invited, consciously and in many other ways, to stand where mathematicians
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stand in relation to the task at hand. An attitude o f inviting students to stand where 

mathematical distinctions would impose themselves as real is what my development of a 

complexivist view of occasioning mathematical attentiveness is about (see Chapter 9). 

W ith such an inviting attitude teachers are likely to notice and legitimize the proto-, novel 

and creative mathematical forms that students enact.

In being attentive to how students attend we may work toward building the 

conditions that enable attention to mathematical ideas. We may also create spaces for 

novelties and hybrid ideas to emerge more regularly. Since mathematical attentiveness is 

an ongoing mathematical preparedness-to-hand, we might want to think about orienting 

attention by encouraging students to put themselves in situations that incline them to 

think mathematically. In the next section, I elaborate on mathematically adequate actions 

as one way o f ensuring that mathematics students are mathematical sensors, perceivers 

and observers.

10.3 Mathematically Adequate Actions

During my study, I noticed that the ways students attend braided physical and 

social environments, as well as lived experiences, into what they attended to. In the 

analysis it became apparent that students’ mathematical thinking is circularly originated 

by what I have referred to as adequate mathematical ways o f  being. These may include 

actions such as the act of recording systematically, carefully and creatively, desires such 

as the desire to make and test conjectures, and the urge for more elegant and general 

conclusions. In this section I elaborate on mathematically adequate actions as one way of 

looking at domains of distinctions made by mathematical observers. These are dynamic 

regularities that emerged as I observed students’ actions.
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If mathematics is a human activity, it must draw from species-specific 

endowments such as what Mason (2000) calls powers to categorize, pattern, reify and 

generalize. It must flourish from recurrent actions, such as repeatedly grouping together, 

and from interactions common in the human environment. Such interactions are 

prompted by specific language games, supported by patterns o f behavior and practiced 

within social criteria of acceptance. Mathematics is a domain o f inter-objectivity in which 

peculiar ways o f attending (Peirce, C.P., 1.99) are practiced and hence particular kinds o f 

objects and entities enacted. Observers in the school mathematics domain of distinctions 

acts have a particular manner of languaging and being.

During my research sessions, mathematically adequate ways and desires 

appeared to co-emerge with adequate mathematical actions. By the final sessions I had 

begun to notice mathematically adequate writing, speaking, reading, sensing, handling of 

manipulative materials and interacting in ways that were almost predictive. When 

students acted in certain ways, they enacted mathematical entities and attended to 

mathematically significant aspects; they, on an ongoing basis, acted themselves into 

thinking mathematically. The initial and ongoing dynamics that channeled and triggered 

mathematical ways of attending included:

• Organizing work

• Recording results and working systematically

• Searching for generalizations— looking for invariants

• Beginning with a particular case or simpler example— specializing

• Seeking a shorter and less laborious method— seeking elegance.

• Using notations that reduce the bulk o f written work—
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compressing

• Seeking error-free approaches

•  Looking for patterns and regularities while working

This list could also be seen as part of the criteria for acceptance of actions as 

mathematically adequate. In my view, when students’, actions fit these criteria they were 

working under the mathematical desire for systematic, general, organized, elegant or 

certain observations. Simmt (2000) maintains that the desire for simpler or elegant ways 

of doing what one is already capable of doing is an emotion implicated with 

mathematical thinking. Rather than reducing the numerical size o f the task, making 

random guesses, looking for clues to appropriate operations or shying away from the 

complexity and magnitude of a mathematical problem, many students sought structures, 

relationships and generalized patterns. They recursively threw away the nonessential for 

the sake o f economy, elegance and computational effectiveness. W hen they made 

conjectures, they sought to verify and justify them. Consequently, their behaviors 

converged on mathematical insights and rich conceptual understanding. My list focuses 

educators’ attention on students’ ways o f doing things even at basic levels such as 

reading the question, listening and writing. Freudenthal (1991) observes that in the 

activity of mathematizing, humans progressively organize, structure and schematize their 

experiences to generate mathematical ideas and concepts whose proofs are as important 

as their descriptions. Mason (2000) lists the mathematical powers o f stressing and 

ignoring, specializing and generalizing, imagining and expressing, conjecturing and 

convincing, ordering and classifying, and abstracting and instantiating. Like 

Freudenthal’s, M ason’s list appears to be a level above, and so emergent from and thus
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providing context to the adequate mathematical ways of being I have outlined above.

In sum: If you are to behave mathematically there are some things (although 

there are many more things including novel ones that you can do) you simply do not do. 

At this point a caution is in order. Outlining mathematically adequate actions is not the 

same as saying these actions linearly cause mathematical attentiveness; there is reciprocal 

causation, co-emergence. Each of these aspects is a cause and an effect. Stating that 

adequate mathematical actions are inseparable from mathematical attentiveness 

emphasizes this double bind of originating and constraining one another to a range of 

potentials. Acting mathematically is attending and thinking mathematically. In the last 

chapter after developing a new beginning and returning to the classroom to observe 

mathematical attentiveness, I elaborate on mathematically adequate actions as dynamical 

attractors of mathematical thinking.

10.4 Dialectic, Dynamic and Evolutional Shifts in Attention

One of the initial questions of this study was: When do students shift their 

attention to mathematically significant observation as they engage in mathematical tasks? 

In Chapter 3 , 1 reviewed various categorizations, some related to modes of thinking and 

others to ability in mathematics. Images are classified as relational or verbal, and modes 

o f thinking could be algorithmic or visual and concrete. Concepts are classified as 

conceptual/logical or figural/visual, and representations are external or internal, semiotic 

or non-semiotic, and not-formal or formal. We could examine shifts in attention along 

these distinctions, say from concrete images to relational ones. That is to say we might 

observe students’ attention shifting from one pole to another— observe the switches. For 

dyads where researchers have specified one mode as more mathematical than another,
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desirable shifts would then be from non-mathematical to mathematical foci. But given the 

dynamic view of mathematical attentiveness presented here we may want to pause and 

ask about the nature of relations between the poles. Must they be oppositional relations? 

Or might one pole be a node in a complex network of other poles? Rather than always 

viewing shifts as a switch from one mode of thinking to another, in Chapter 111 

emphasize their developmental and evolutional nature.

O ther poles describing what students attend to in mathematical tasks have 

included the trio of process, products and procepts, and the duality of object-level and 

non-object level responses. The process-product-procept triad has been helpful when 

related to the means of objectification in mathematics; especially in tracing how 

mathematical objects historically or developmentally emerge from successive empirical 

and imagined actions. Sfard and Linchevski (1994) offer the example of algebra that they 

trace from generalized arithmetic— the operational and functional phase— to abstract 

algebra— formal operations and abstract structures. For example, students as we saw with 

the CT task, may be observed to be working with algebra at the abstract level or 

arithmetic at a more concrete level. It should be emphasized, however, that sometimes 

these shifts involve folding back, and they always seem to involve leaky boundaries.

Distinctions such as those between abstract and concrete, images and concepts, 

and cognitive and meta-cognitive levels have limitations, as shifts between them not 

always appear to be linear and are, at times, seamless parts o f a unity. In some cases it is 

a dynamic interaction between two poles that is more important, as what was once 

abstract becomes concrete in the activity of mathematization (Mason, 1998; Sfard, 1991a, 

1991b). Pirie and Kieren’s (1989) model is structured in terms o f vertical levels along
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which one could observe growth instead of horizontal switches in students’ 

understanding. Given an eco-complexity sensibility we could think about different foci o f 

attention within mathematics as interrelated levels through which students’ understanding 

is observed to drift recursively and in an ongoing process. Further studies that will seek 

ways in which a multi-layered view of extended and deep mathematical thinking affects 

mathematics teaching are needed.

The fact that mathematics is not a unified domain adds additional shifts among 

sub domains (Cuisenaire & Gattegno, 1957; Freudenthal, 1991; Mac Lane 1981). Artigue 

(1999) identifies relations among incompatible mathematical worlds. She observes that 

adequate modes of thinking in calculus might not be adequate in algebra. In Chapter 7 , 1 

showed that the equals sign might mean something different depending on the sub- 

domain of mathematics being considered. There is also forgetting, including positive 

forgetting, and habituation. Shifts that are transformational may involve broadening or 

traversing existing mathematical thinking. Radical shifts that result in re-organization of 

earlier understandings as well as re-activation o f parallel ways of knowing appear to be 

central in learning. Many shifts involve enacting new perceptual and mathematical 

worlds. Some involve integration, yet others call for exclusion. How is this possible in 

real time? Complexity theory’s logic of emergence may help conceptualize radical and 

irreversible evolutions in addition to switches, shifts and growths. But is it able to explain 

all transformations and differences in objects and ways of attending mathematically? We 

need better metaphors to help visualize shifts in mathematical attention as a distributed 

yet integrated process. One such metaphor is the landscape metaphor that guides this 

writing. Offering the landscape metaphor, in Chapter 1 1 1 illustrate evolutional leaps in
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students’ mathematical attentiveness. Let me juxtapose the ongoing discussion about 

orienting students’ mathematical attentiveness with an anecdote.

10.5 An Anecdote on What Students Attended to in a Geometrical Task

This anecdote is drawn from two consecutive lessons on transformational 

geometry. It is from the classroom research project. Appendix G contains the entire 

transcript of the introductory part of the first lesson. I present a brief summary o f the first 

lesson here, with excerpts from the transcript. I will present the second lesson in the 

concluding chapter.

Vignette 4: Symmetry Review Lesson
The teacher started a class discussion by asking about objects that have three lines of 

symmetry. One student offered, “Triangle”. The teacher requested clarification, “What kind of 

triangle?” After a number of contributions, there was soon some agreement that an equilateral 

triangle was the only triangle that had three lines of symmetry. The teacher then asked, “Okay, 

how many lines of symmetry does a square have? Joseph.” Joseph paused, “Ummm, eight”. “Not 

a cube but a square,” the teacher responded as she drew a square on the overhead. A number of 

students began to call out, “Four”. Another student agreed with Joseph’s first response. “No. 

Eight.” “Let’s see ...” The teacher began drawing a vertical bisector on the square. “ There is a 

line here ...” “Horizontally and two diagonally,” Joseph said, guiding the teacher. In a soft voice 

another student said, “Eight”. “Eight?” The teacher acted confused. “Four,” another student re

asserted. “Can you think of an object that would have eight?” the teacher asked. In a chorus most 

of the students shouted, “Octagon”. John’s hand shot up. The teacher called on him to offer an 

answer. “I think it has more than eight”. As the teacher drew the octagon, Tim also, speaking to 

himself in an excited tone, said, “A circle, oh!” Janelle sitting close to Tim said, “A circle has 

180.” In the meantime, the teacher was still drawing bisecting lines in the octagon. It was obvious 

that she was unaware of Tim and Janelle’s conversation. The teacher completed her drawing and 

counted together with the students “So if we have 1, 2, 3, 4; 1,2, 3, 4 .1 think there are 8. Not 16. 

Where would the 16 be?” The excerpt below follows immediately.
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EXCERPT 5

38 James: I know one that has infi—nite!
39 Teacher: You know one that has an infinite? [Playfully] Don’t say it.
40 Kayla: There is a shape with lots.
41 Teacher: You know one that has ... lots. [Teacher points at individual 

students as they raise their hands one by one]
42 Ken: [Nearly inaudible] Me too.
43 Teacher: You know one that has what?
44 Ken: Lots.

Note: In the discussion that follows, the turn numbers refer to the transcript in Appendix G.

10.5.1 How Can a Teacher Attend to and with Students?

In the class discussions, most of the students were attending to what the teacher 

drew their attention to— a kind of object with three lines of symmetry, nature of 

symmetry in a square then in an octagon. However a few seemed to be behind— checking 

whether a square really had 4 lines of symmetry— and a few others seemed to be ahead, 

attending to the circle as an object with lots of symmetry. Put differently, students 

attended as a whole class to symmetry in polygons. They also attended in sub-collectives 

to the symmetry of a circle, for instance (turn 31). As individuals, some students attended 

to distinct aspects or idiosyncrasies of symmetry (Joseph-tum 10, Stella-turn 15, another 

student in turn 18— a square has 8 lines o f symmetry). The path o f the lesson appears to 

have been laid in ways that had not been directly anticipated by the teacher. The 

collective classroom mind drifted toward thinking about an object with the most lines of 

symmetry. This was not unfortunate, though.

After checking for an object with three lines o f symmetry, followed by checking 

for the kind of symmetry in a square, some students’ locus o f attention might inevitably 

have wandered to lines of symmetry in a pentagon, a hexagon and so on, or to objects 

with five, six, then seven or more lines of symmetry. As in most lessons in the class, the 

moment-to-moment actions of individuals unfolded into what could be observed as the
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foci and loci of attention o f the collective as well as of individual students. It was not the 

teacher’s explicit intention to explore with seventh graders the symmetrical properties of 

a circle, much less o f a sphere. While the teacher was drawing a square to assist students 

in determining whether it had four or eight lines (turns 1-20), in the cognitive domain of 

the collective it appears that the teacher and the students, given that some thought a 

square had 8 lines o f symmetry, were drifting into naming objects with 4, 8, 16, 3 2 ,. . .  

lines o f  symmetry. As the class was exploring objects with eight lines o f symmetry, 

James interrupted the discussion (turn 38) saying that he knew an object with infinite 

lines. Prior to that in an independent conversation among Tim, Edwin and Janelle they 

had considered whether a circle has 180 lines of symmetry. In the collective, a focus of 

attention had gradually but not slowly drifted to finding an object with most lines of 

symmetry. The individual and initial events, as well as ongoing dynamics and classroom 

context, determined the drift o f students’ attention, from square to objects with 8 to 16 

and more lines of symmetry. The students agreed that the circle was the object with lots 

of symmetry. The next excerpt comes at a time when the teacher is concluding this 

review part of the lesson.

EXCERPT 6

51 Teacher Okay, at the count of 3, [the teacher instructed.] “An object with
an infinite number of lines of symmetry. 1, 2, 3.”

52 Students Circle [the students called out.]
53 Edwin Nothing [Edwin was a lone voice that called out a different

answer]
[The teacher did not take up his suggestion, (It is not clear whether she heard it, on the 
video record Janelle, John and Tim can be observed discussing the question, o f whether 
it would be possible to draw lines o f symmetry for nothing. It was in that conversation 
that Tim turned to his colleagues saying,]
55 Tim I was thinking a sphere with the same diameter as a circle; a

sphere will have more lines of symmetry than the circle.
[At the end o f the class the researcher-observer asked Tim about his conjecture. He 
responded]
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56 Tim A sphere might have 360 times more lines than the circle.
The teacher followed up Tim’s conjecture in the lesson next day, on Monday. In the 
lesson as we will see in the concluding chapter students discussed how they knew that a 
circle had infinite symmetry.

10.5.2 Mathematical Attentiveness is more than Paying Attention

If we were to look at attention as paying focused attention to what the teacher was 

doing, then it would be easy to say that some students, like Tim, Janelle and Esther, were 

not paying attention. But does this description really fit Tim and Janelle, who were 

examining the properties o f symmetry in a circle and, later in turns 55 and 56, a sphere? 

How about Esther and Janelle who were pondering 16 lines of symmetry for an octagon 

(turn 50)? The non-dynamic way o f looking at attentiveness would reduce this 

complexity. The dynamic view suggests that how students attend is much more complex 

than keeping quiet and sitting in rows; it is a dimension of cognition that explicitly 

implicates the history, initial conditions, and internal and external dynamics of the 

students. Students like Tim and James, as well as Joseph, Stella and Esther were more 

than present in the class. They not only directed their ears and energies to what the 

teacher was reviewing, but they looked out for— the other etymological sense of attend— 

mathematical insights. Drawing from their past experiences and current interactions, they 

stretched their understanding. From their ways of engaging and their interaction emerged 

the whole classroom’s examination o f the symmetrical properties of a circle, a sphere and 

of nothing as well as students’ understanding of the infinite in the lesson that followed. 

But how did each individual student attend to symmetry?

10.5.3 Attending to Symmetry in Polygons

O f the above anecdote I ask: In what ways did the students attend in the task of 

finding the symmetrical properties o f a square, for example? In what ways were the
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students attending when they said a square has eight lines of symmetry? The teacher in 

this class appears to have asked this question. Witness her response, “Not a cube but a 

square.” As well the action of drawing a square on the overhead projector could be 

interpreted as an attempt to construe what Joseph was attending to when he thought that a 

square has eight lines o f symmetry. W hat is more interesting is that after the teacher drew 

in the vertical bisector of the square, Joseph is the one who guided her to draw the 

remaining three, “Horizontally and two diagonally.” How can we reconcile the fact that 

Joseph’s drawing of a square would not have been different from the teacher’s— a 

horizontal, a vertical and two diagonal lines with the fact that he thought it had eight lines 

o f symmetry?

We might argue that Joseph’s perception changed as he guided the teacher to 

draw in the lines of symmetry, but then what of those other students such as Stella who 

even after the drawing activity insisted, “An octagon doesn’t have ... [8 lines of 

symmetry]” (turn 27). How was Stella attending? Could it have been that she was making 

errors in counting the lines of symmetry? At least she did not disagree on the 

visualization of the polygons and on the drawn lines of symmetry.

By offering to draw on the OHP, the teacher seemed to implicitly rule out many 

possibilities of attending differently. In addition, the teacher loudly and systematically 

counted the lines of symmetry with the students. “W here would the 16 be?” (turn 360) 

she asked after counting the lines in an octagon. In the flow o f events the teacher had 

attempted to attend to students who attended to symmetry differently. It is then that 

James interrupted that he knew an object with lots.

With this interpretive moment I have continued to speculate about how students
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attend to mathematical concepts like symmetry. How did the few students enact 8 and 16 

lines of symmetry for a square and octagon, respectively? How about those students who 

were in agreement with the teacher? What could be the distinctions, acts of severance or 

observations that were the links of symmetry for these students? How students attended 

in this activity points to broader questions— what was the distinction “symmetry” for 

these grade 7 students? W hat ways of attending engender symmetry? W hat does the 

complexivist view o f cognition have to say about the nature o f  the concept o f symmetry? 

Is it a basic or non-basic category? How do people enact it?

Recall that in this analysis I am not solely examining the individual child’s 

understanding. Rather, embracing complexity and the assumption it makes about the 

emergence o f collectivities, I recognize that the individual student, as Bruner (1986) 

would put it, is not totally free from his or her culture, the language that speaks through 

him or her, the environment that he or she interacts with, as well as the broader social 

conditions, and human history at large. In addition, the individual child’s conceptual 

understandings are finely tuned by his or her neuronal activities, physiological dynamics 

and lived history. Mathematical attentiveness does require as many aspects as possible to 

override the aspects that might be driving the students’ state and operations o f awareness 

in non-mathematical ways.

Asserting that all sense and all worlds are possible, how does it make sense, for 

a square not a cube to have eight symmetry lines? With the dynamic view of attending 

that goes beyond sensation to perception and observation it is possible to see that even 

some o f the students who gave correct answers had enacted structures other than those 

conventionally attended to. For example, some students might have been attending to the
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vertices— “the com ers,” as one student was heard saying in the lesson. In fact an 

equilateral triangle has three comers and three lines of symmetry. An octagon, as shown 

in Figure 25, has eight comers and eight lines of symmetry. All regular polygons have as 

many lines o f symmetry as they have vertices. For a student who learned symmetry by 

examining only regular (prototypical, best examples of) polygons, it appears legitimate to 

identify symmetry with the number of vertices. Thus even among the students who 

attended correctly, there might have been some students who attended in ways that are 

mathematically inadequate, especially if they had learnt about and experienced symmetry 

in impoverished environments that did not explore rich and complex situations. As well 

even adequate ways of attending to symmetry in polygons are multiply realizable.

Figure 25. Symmetry in an Octagon

On the other hand, what could a regular octagon have 16 of? Taking on Stella’s 

invitation to see what an octagon has 16 of, in Figure 25 we see that an octagon, with all 

lines of symmetry drawn, has 16 radii, 16 possible images and objects, and 16 sectors. A 

student need only m ark a state that is not conventionally marked to enact more or fewer
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lines o f symmetry. Stella could have given salience to these background attributes as 

symmetry. Recall the Fraction Kit activity in which some students stressed the quantity 

rather than the size of the pieces. Students attend to their own perceptual worlds. Stella 

probably also added false attributes in addition to giving salience to attributes that are 

distinct from culturally significant attributes. But why this was the case is another focus 

o f this analysis.

Reflecting on what students attended to as symmetry in polygons raises broader 

questions about how the concept of symmetry was historically enacted. W hat is the 

nature of its grounding like in ordinary activities? How much o f it can children enact 

before formal instruction? W hat distinctions do mathematicians make when they talk 

about symmetry? What are the conditions for its emergence as an autonomous idea or 

concept that later becomes the grounds in reference to advanced concepts such as 

symmetrical matrices in linear algebra? W hat experiences and sensibilities should be 

provided to students in order that they may stand where they can see symmetry the way 

mathematics requires at a given time?

The view of distinctions and concepts as emergent properties, rather than as 

classical categories, helps in addressing these questions. From the non-cognitivists’ 

theories o f concepts, general ideas or categories appear to emerge from many cases of a 

graded structure, perhaps as the abstractions, invariances or emergent structures. They are 

not classical universals, commonalities or abstractions, nor are they logical sets per se 

(Juarrero, 1999). Concepts are bottom-up properties, never conceived as mere definitions 

or general categories but rather as global properties that arise from interaction at a level 

below that o f general concepts.
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Reading this chapter may tie up some threads that have emerged through this 

work and also prompt some new questions. The chapter you have just read is the 

beginning of the end. To conclude my dissertation I will not engage in the traditional 

practice o f summarizing the theory, themes and issues discussed. Rather I use the last 

chapter to end where I began with an interpretation of students enacting mathematics. 

However, I now do that interpretation with new tools, new concepts, and new 

interpretation o f mathematical thinking. After all, the real test of a theory is in its 

generative and interpretative power.
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11. D YNAM ICS OF M ATHEM ATICAL ATTENTIVENESS

My study was a theoretical effort to approach teaching as creating necessary 

conditions for mathematical sense-making. I addressed three questions that remain in the 

literature on mathematical thinking: What is the nature of mathematical thinking? To 

what extent or in what ways is it an individual, a social or a contextual phenomenon?

And in what ways do teachers or researchers observe and occasion students to think 

mathematically? This I did by particularly exploring the dynamics o f what students attend 

to in mathematical tasks. I addressed my investigation by specifically asking: How do 

secondary school students attend as they engage in mathematical tasks? In what ways do 

students attend in mathematically adequate ways? In what ways do they await and dwell 

with mathematical objects? When do shifts in attention to that which is mathematically 

relevant occur? In this writing a number of themes emerged. As well questions surfaced 

and I find m yself in a layer above the one at which my initial questions were posed when 

beginning my research. As a way of returning to the initial questions that motivated this 

study I share these emergent themes and questions. Because I believe interpretive 

research ought to be functional, this chapter also explores the possible consequences of 

the ideas developed throughout this dissertation.

To offer final thoughts about the study I re-viewed the preceding chapters. This 

re-looking is an act o f research itself. New ideas, images and thoughts continue to present 

themselves to me. Ideas that had not been well formulated become clearer. Yet others that 

I thought were well articulated appear to require more attention in order to understand 

them. Thus I find it impossible to make this conclusion a mere representation or summary 

o f the ideas presented throughout my work. I recognize the impossibility of simply
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summarizing; every re-reviewing, every thought is a new thought; in each moment, my 

identity, my very being is transformed.

This chapter is a re-presentation and presentation. It is a recursive elaboration of 

the ideas o f earlier chapters. Indeed as a chapter written after the writing of all the other 

chapters it is a chapter o f an emergent order. It is about exploring the landscape that I 

have formed and transformed in doing the research as well as envisioning the space of the 

possible implications that my work evokes.

I began Chapter 1 with a classroom anecdote. I begin this concluding chapter 

with a classroom anecdote as well. Drawing from this anecdote I explore themes and 

questions. I conclude by sharing the significances. But first here is a map showing where 

we have been and where we are.
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Vignette 5: Transform ational Geometry Lesson 2

In this second lesson on transformational geometry, there was a  twist as students 

discussed objects with most lines o f symmetry. Recall that at the end o f the first lesson, 

described in Chapter 10, while the majority o f the students agreed that the circle had 

many or infinite lines o f symmetry, Edwin offered “nothing” and Tim offered a sphere as 

objects with the most symmetry. The teacher, therefore, intended to follow up with other 

objects displaying reflectional or rotational symmetry in this next lesson. Instead, the 

class ended up discussing how it was possible that a circle could have infinite lines of 

symmetry. In the excerpt that follows we see how part of the class did not agree anymore 

with their conclusion from the previous lesson. I have bolded verbs a n d  clauses of 

particular interest. Verbs that are interpreted to REFER TO SYMMETRY are capitalized. 

I present the portions o f the conversation that are o f interest; the turn numbers on the left 

show that I am leaving out some of what was said. Excerpt 7 begins when the teacher 

together with the class examine a line of symmetry drawn by a student in an isosceles 

triangle.

EXCERPT 7

29  Teacher: I guess our question is: does this actually R EFLE C T.
34  Teacher: You need to imagine an object with three lines of symmetry,

something ... .which you can FOLD in three places and 
have perfect symmetry. W hat object might present that?
[Students offer, “Equilateral triangle One student comes 
over to the OHP to draw the triangle showing its symmetry 
lines.]

42  Teacher: I had asked last d ay ... I would like you to think about or I
asked you to imagine an object that has [...]  the greatest 
number o f lines o f symmetry that you could imagine?

[Student raises a question whether teacher requires a shape or object. In the
next thirty turns the class discusses the difference.]
74  Student3: Circle. Circle (has most lines o f symmetry)[quietly speaks

out but seems not to be heard by teacher]
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75

78

Teacher:

Teacher:

[After ensuring that
86 Teacher:
87 Kimie:
88  Teacher:

90
91

93
94

95

99

100
104

105
107
108

113
114
115
116 
118

123
124

Edwin:
Students:

Allen:
Teacher:

Saul:

Allen:

Tim:
Julius:

Student:
Joseph:
Students:

109 Teacher:
110 Julius:

Student:
Student:
Student:
Student:
Janelle:

Teacher:
Steno:

125 Teacher:

Do you have one in your head Saul? [Students begin 
signaling to the teacher by show o f  hands when they can 
imagine an object.]
Julius has one. So does Janelle. Greg, do you have an object 
in mind?
everybody has a shape in mind the teacher asks Kimie] 
Kimie, what if you told me, what shape is in your head?
A circle
A circle. So let's see, how many lines of symmetry does a 
circle have?
1800
Infinite [Other students do not wait to be chosen. In a burst 
o f  activity, many say their answers out and many break into 
small group discussions.]
Infinite
What do you mean by infinite? [Students have hands up, 
including Julius and Tim]
[Uses his pen to quickly m ark m any points on paper, he 
does not stop until turn 119 when teacher asks him to stop]
I was just thinking like basically when they GO ON 
FO R EV ER|
|It is IN CA LCU LA BLE
I don't think it is infinite though, because eventually it 
would not GO ON FO R EV ER .
It w ould stop.
Yeah, you will]
No No, it will ... [In a burst o f energy, most students try to 
say something; they spontaneously break into small group 
discussions.]
Okay let's listen to Julius, and everybody gets a turn [...]
No for like when she said a circle has infinite lines, I 
don't think it is infinite, because eventually it would 
WEAR OUT [Many students already have their hands up, 
including Janelle, Stella and Steno. Some want to support 
Julius’ assertion]
They will keep going
Yeah
No
It would not stop
It isn't infinite but, but it is INCALCULABLE. You 
can't, you don't know HOW MANY lines there are.
You may be able to calculate it, but can you COUNT? 
When you CUT a circle in half, only, only you have 
about one side and you see about how many lines are 
they. Once I get that...|
|When you CUT a circle in half, one side will be, how many
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131

133

143

144

148
150
154
155
156 
163 
168 
170 
173

182

183

187

188
190
193

194

202

204

lines will it be?
Stella: The lines would eventually cross like each other. So

there is no space in between the line, [laughter]
Tim: Yeah. But even if  there are no spaces in between the lines,

the line is urn... The line is just to tell you in (red/brain?) 
where the, the um (appropriate?) is. You know. W hen you 
go to the molecular level it is more than a line. A line is 
actually very thin at the molecular level.

Teacher: Let us think about this one: Right now let us imagine this
circle. [The teacher is holding up a protractor. This appears 
to be an idea that the teacher picked up from  Steno in turn 
124 when Steno talked about cutting a circle in halves.]
If we imagine this circle: how many lines of symmetry 

are noted at this point on this circle?|
Student: |360| [A student whispers to answer the teachers ’ question

about degree lines marked on a protractor]
Edwin: A—lot
Tim: |PIenty| [Stella has her hand up]
Stella: 36
Teacher: 36. Did you figure 36? W hy 36?
Stella: Because, like um there is a line for every degree.
Tim: If you MAKE them closer together
Tim: |There is only 18| [Tim corrects Stella]
Janelle: |180| [Janelle adds]
Teacher: 36 in half. There are 18 lines because the top and bottom go

together. Good point. [Teacher re-affirms T im ’s correction] 
Allen: Okay you go HALFWAY between each line, then they

would technically never touch,
Allen: Because you are going only half way, and you have to go

all the way, for them to ...touch.
Teacher: W hat if we go every 10th of a degree, not touching! This

has something to do with the question o f thickness of line, 
which we DRAW, which Tim raised|

Tim: The question is how thin can you go?
Tim: Because once you get down to a single molecule
Tim: |Because ... [unclear on videotape, explains how we can

keep getting thinner to molecules] you can even S P L IT  the 
molecules...

Tim: Because you can still split one thin line and still. Yeah—
DRAW another one.

Kay: I think it is infinite until like we don't have material to
actually see i t . .. [Inaudible at end]

John: I... I think it is infinite, like it keeps on going. Because if,
let's say if  even though we don't have, we can’t see how 
small it is we can still know it is possible so we can 
IMAGINE something may be small.
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205  John: So le t’s see, if the smallest would be 1 we IM A G IN E 0.5.
So we just keep on getting smaller no matter how small it is.

2 0 7  Kathy: I think it is just like those numbers that go on for like
forever. They can keep on getting smaller even though we 
necessarily can’t see it.

N ote : a I use the name Student when the student speaking is not identifiable on
the video record

In this Grade 7 discussion on what it might mean for a circle to have infinite 

symmetry, a number of questions and issues about students’ mathematical thinking and 

attentiveness are apparent. Using the themes developed through the thesis I note them 

here and follow up with brief discussions o f each of the issues I identify.

• W hat are the observable features of students’ thinking and attentiveness in this 

discussion on symmetry? Observing Thinking and Attention

•  W hat are students attending to as symmetry in a circle? Mathematical Objects 

of Attention

• How can we occasion students such as Julius and Stella to attend to symmetry 

and spatial concepts in general in ways that enact continuity so that the lines 

do not eventually cross each other nor does the circle space wear out? 

Orienting Multi Layered and Integrated Attentiveness

•  How could a teacher evoke shifts in students’ attention to that which is 

mathematically significant in the understanding of symmetry? Evolutional 

Shifts in Attention

•  In what ways does this task o f discussing symmetry o f a circle, particularly 

the use of a protractor, structure students’ mathematical thinking and 

attentiveness? Dynamically Structuring Tasks

In general, in what ways are students attending to symmetry in this lesson? How do they
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as embodied, extended and embedded systems observe symmetry? Let us explore each of 

the above as they relate to the themes suggested by the research.

11.1 Observing Thinking and Attention: Nested Level Aspects

What are the observable features o f students’ thinking and attentiveness in this 

discussion on symmetry? During the preliminary stages of the research I wondered about 

the observable features o f mathematical thinking. I soon learnt that what students said, 

used or wrote and how they said, used or wrote it not were always consequences of 

thinking, but were in themselves acts of thinking. When students explain infinite lines in 

a circle with phrases and actions such as, “they go on forever,” “uses his pen to mark 

many points on paper,” “would not wear out,” “keeps going,” “it is incalculable,” or 

“would never cross” this is their thinking-in-action. In chapters 4 and 7 ,1 explored 

students’ episodic writing, loud and bold utterances, jo in t thinking, and concrete 

materials as observable features of students’ thinking. Tony thought with counters during 

the Consecutive Terms task (CT). Irene and Lillian’s writing and re-writing was their 

observable mathematical thinking.

During mathematical activity, students talk, act and gesture their way into 

attending mathematically both in a gradual and radical manner. Particular kinds of 

utterances, written work and use o f manipulative materials, as was the case with the 

Fraction Kit activity and the CT task, may point to different symmetry worlds that 

students enact. Some students like Julius and Stella had enacted a symmetry world that 

was still tied to the materials and activities they used to explore symmetry. They were 

convinced that one could draw or cut plenty or lots of lines but there was a limit. Drawing 

from Lesson 1 we are not sure about what symmetry meant for the students. In the cutting
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and drawing actions where was the symmetry for them? Was it in the different ways a 

shape could be cut into congruent halves, was it in the pair o f halves or was it the number 

o f possible cut and fold lines? W ere some students attending to symmetry in ways that 

were not mathematically adequate?

In chapter 6 , 1 explored that the observable features could be understood as inner 

level aspects of students’ mathematical attentiveness. Students come to mathematics 

classrooms with unique ways o f attending and unique mathematical worlds. The 

continuous interaction of the structures of learners with their external structures, 

including mathematical tools and each other’s actions, as we saw in Chapter 7, provides 

feedback to the students’ ongoing mathematical thinking. This establishes higher order 

global properties in the form of hunches, insights, mathematical objects, abstract ideas 

and categories about the content that they are learning. The emergent properties in turn 

act as top-down constraints; they engender perceptual objects. My research illustrates 

how thinking can be observed as a dynamic integration o f co-related coherent forms 

including bodily and material forms.

11.1.1 Attending with and Extended Structures that A id  Attentiveness

Learners know-with cultural, symbolic and technological interfaces and 

instruments. Varied learning environments such as dynamical environments appear to 

change what it means to know a concept. Having been accustomed to geometrical figures 

on paper, when I used Geometer Sketchpad to construct and deconstruct dynamical 

shapes I found that this new dynamical environment seemed to stress distinct geometrical 

sensibilities, including the temporal dimension. It is amazing how commands as simple as 

“undo” and “iterate” that are available within dynamical environments may radically alter
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what it means to know geometry. Subtle alterations change the environmental triggers. In 

this work I found that tools and media influence the mathematics we come to know.

The students when discussing symmetry appeared to know, with the help of the 

protractor, that a circle could have 18, 36, 360,1800, 36000, incalculable, uncountable 

and many more lines of symmetry. Recall that in Lesson 1 in Chapter 10 Tim  also talked 

about a sphere having 360 times more lines of symmetry than a circle. In turn 90, Edwin 

offered 1800 lines o f symmetry. And in turn 143, the teacher explicitly used the 

protractor. The numerical figures students used were not random. They point to a relevant 

tool o f thought in their symmetry worlds. Steno’s reference to cutting a circle into two 

halves in turn 124 might also have had much to do with the protractor. In Namukasa and 

Simmt (2003) we explored how what these grade 7 students attended to as symmetry was 

braided with their familiarity with a protractor and degree measures. The significance of a 

protractor also exemplifies how signifiers and (inter-) objects can be chained, layered and 

nested. In the dynamical systems language we may say that the protractor as a cultural 

measuring instrum ent had also become a dynamical attractor for what students attended 

to as symmetry. Students’ familiarity with the protractor structured their attention and 

thoughts. But more about this in later sections. Let us explore the role of sensation, 

perception and observation in attending to mathematical concepts.

11.1.2 The role o f  Perception and Visualization in Mathematical Thinking

In mathematics education, many researchers relate inner level aspects o f 

thinking and attentiveness in ways that delegate to these aspects a secondary role. In this 

study, I have interrogated the metaphors o f representation and signs. Otte (2002), and 

Marton and Booth (1997) say that concrete materials, bodily activity and the like
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sensorially mediate or offer access to mathematical ideas. For me, writing and drawing 

are more than representational and sensorial mediators. In Chapter 7 we saw that they 

have re-presentational and presentational roles as well. General and abstract ideas, as 

emergent properties, come from  and in many ways remain dependent on artifactual, 

sensorial and bodily activity. In the flow of mathematical activity some mathematical 

aspects are attended to in a bodily and pre-conceptual manner, without the break to 

linguistically and formally formulate and articulate them. (Recall Tony attending with the 

counters when verifying numbers that had the CT property.)

During the study I revised my linear views including: thinking is separate from 

and must precede individual actions; that perception is pick-up o f sensorial information; 

and, that social, material and institutional milieu only provide context. My study shows 

that the physical environments and tools influence the mathematical objects students 

attend to. Perception is participatory and co-emergent. As perception guides actions 

mathematical objects come into existence and continue to evolve. As Merleau-Ponty 

(1974) put it, perceivable things are not a collection of sensations, nor are observable 

distinctions a totality of perceptions. Perceived things as Capra (1996) observes, are 

networks of relationships, embedded in larger networks of perceptual worlds. In sensing, 

perceiving and observing, in distinction making actions, the attendee also brings forth 

what is attended to. M oreover as we saw in Chapter 9 this we do as individuals and as 

collectives nested within institutional and cultural attending systems.

316

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11.1.3 M athematical W orlds o f  M athem atical Significance

W hat worlds of symmetry had the grade 7 students enacted? In my view, the 

psychology and phenomenology of learning aside, mathematics educators have yet to 

radically problematize the ontology of mathematical concepts and mathematical 

observers. W hile thinking mathematically could be viewed as perceiving, interpreting and 

experiencing mathematically, in the dynamic view of attending, thinking mathematically 

is acting and being in ways that expand what is mathematically thinkable and 

“attendable”. It is about enacting mathematically “manipulable”, perceivable and 

conceivable objects. In doing— we at once— as individuals as well as collectives, arise as 

mathematically attentive observers. When we, with others, attend to our mathematical 

observations and other distinction making acts we ourselves belong to the mathematical 

community of observers.

In the Fraction Kit activity I showed that stacking the pieces, covering a larger 

piece or assembling a whole have far-reaching effects on how students might know 

fractions since they involve enacting unique fraction worlds. As well I explored how the 

set {1, 2, 4, 8, 16 ...} could have different signifiers all depending on the world o f 

exponentiation enacted by students. (In Appendix B I explore at length how it could be 

the case for the signifier {1, 2 ,4 , 8, 16 ...} to have varied signifieds.) I wondered about 

the relationship between multiple-signifiers (-experiences, -representations and -  

interpretations) and the general concepts and categories they illuminate. How do the 

actions of cutting, splitting, drawing and folding relate to the general concept of 

symmetry that may apply to symmetrical matrices, for example? Contemplating this 

question became central to drawing threads from my research. Because the thread on
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emergent concepts and objects holds all the other themes, I explore it at length. But first I 

shall finish looking at the inner level aspects of mathematical attentiveness.

11.1.4 Examples, Models, Instances as Inner Level Agents

Considering mathematical concepts as emergent properties and mathematical 

attentiveness as participatory may help us to approach the components o f mathematical 

thinking at inner levels of organization. It also has theoretical implications as to how we 

view individual models, meaning, and situations which are used in teaching mathematics. 

Drawing from the logic o f emergence explored in chapters 6 to 10, individual events over 

time are necessary conditions for the advent o f learners’ global mathematical concepts. 

Different embodied meanings o f mathematical concepts, such as fractions and 

multiplication, are seen to emerge from the different models and experiences in 

enactment o f new mathematical worlds. During the symmetry lesson, as students sought 

to convince each other that the circle has infinite lines of symmetry, the attractors (the 

agents and components) that enabled the students to participate in the discussion 

included: cutting the circle into similar halves, folding a shape into two congruent parts, 

drawing m irror lines to detect similarity, and using protractor degree lines to imagine 

symmetry in a circle.

11.2 Mathematical Objects of Attention

W hat are students attending to as symmetry in a circle? By considering this 

discussion on symmetrical properties o f a circle in light o f the first lesson and even other 

activities such as the Fraction Kit Activity we are able to comment about what students 

attend to as symmetry. M any students such as Kay attended to symmetry in concrete and 

activity based terms. These students did not use verbs such as reflect, m irror and imagine.
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Only Allen, Tim, John and Kathy used IMAGINE and SPLIT. No students used 

MIRROR or REFLECT in the discussion. Only the teacher used REFLECT. Among 

those who used more activity-based  verbs such as cut, draw and fold some could explain 

how, say, by cutting along lines of symmetry in a circle one could, in their words “go on 

forever” or “technically never stop”. I consider these students to have enacted more 

general symmetry worlds. A few students such as Julius whose actions o f cutting or 

drawing were less generalized, hardly could imagine how you would DRAW  yet another 

and another, ad infinitum lines o f symmetry in a circle. Yet for some such as Kathy and 

Tim “even though they could not necessarily see it” they could IM AGINE the many more 

lines in a circle. In Chapter 7 I explored how students even when they use simple 

concrete materials (the way Tony did with counters) can attend to abstract ideas in ways 

that are sophisticated and verifiable. Allen explained that even with a protractor, if “you 

go half way between each line, they would technically never touch” (turn 182). For John, 

from one degree apart to point five degrees apart then continuously halving, “we just 

keep on getting smaller no matter how much smaller it is” (turn 205). W hen students 

attend to their physical actions and materials in more general ways, when they attend to 

the beat of the patterns and rhythms in their actions, they attend in more abstract ways. It 

is then that they can “imagine even though they can’t see it,” as Kathy explained (turn 

207).

To students who had not yet enacted mathematical worlds in which symmetry 

was the pattern— the imaginary congruence— in folding, cutting, drawing and splitting 

actions, the lines o f symmetry in a circle were many but finite. Recall the student in 

lesson one who said, “I think eventually ...it will run around” to explain that there are 8
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but not 16 symmetry lines in an octagon (turn 49, lesson 1). For some students symmetry 

lines in a circle would in a similar manner eventually “touch”. One student fervently 

explained that if you were drawing the lines, eventually you would have nowhere to draw 

them; it would all be thick pencil line covering the circle. Another student explained that 

if you were successively cutting the circle into halves, you would go on and on until you 

would have a very tiny piece o f paper left. But for those students who had enacted more 

sophisticated symmetry worlds, the leap from the numerable and foldable lines o f 

symmetry to imaginable infinite lines o f symmetry was swift. Such a shift in attention 

would have to happen for the other students as well in order for them to imagine lines of 

symmetry.

11.2.1. Mathematical Objects as Inter-objects and Meta-stabilities o f  Recursive Actions 

That students in the class used varied action verbs shows that they had multiple 

experiences with activities related to symmetry. W hat did these action verbs have to do 

with the abstract concept of symmetry? Many of these experiences might have been 

outside the classroom. These are what I am referring to as the inner nested parts, the 

actions from which the abstract concept o f symmetry emerges as a pattern o f patterns. It 

appears from the recursive coordination o f human actions, interactions and observations, 

irreversible, regular and lawful sign tokens and habits come into light as the m eta

stabilities among such actions and interactions. In von Foerster (2003) and Bateson’s 

(1979) language, symmetry is that which stabilizes as people draw, fold, cut, see, detect 

and mirror congruent halves. The emergent inter-objects and quasi actions enable further 

acts o f distinctions. While observing students noticing number patterns I learnt that what 

might appear to a mathematician as a fixed pattern, a representation or a sign, for a
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mathematics student it is dynamic patterns that come out of local actions and situations 

(see Chapter 6, see also Appendix B). For me, studying patterns and relational properties 

that emerge from our interactions help us understand how students enact worlds. It also 

helps us focus on how students’ activity engenders abstract concepts?

11.2.2 Concepts as Emergent Properties

The emergent properties such as the development o f insights, in combination 

with the students’ history and internal dynamics, may lead to the reshaping of a particular 

mathematical world. The overall world enacted by a learner proscribes the space of what 

can possibly be attended. For example, if a student understands the comers in a shape as 

signaling symmetry then a circle would have no (or have undefined or infinite) symmetry 

for them. In chapters 8 to 1 0 ,1 discussed the emergent potential of mathematical activity. 

I claimed that in attending students enact mathematical concepts and general categories. 

General concepts arise from the specific instances, happenstances, surfaces of inscription, 

exemplars, diagrams and settings which students’ work with. This could be the reason 

why it was possible that the students and teachers could use all the varied verbs but still, 

as a classroom, meaningfully and jointly attend to symmetry. There is a form of 

resemblance among the actions and imaginations evoked by each of the verbs, albeit this 

resemblance is by presentation, at an outer level.

Cutting and splitting may involve objects such as paper and scissors, and actions 

such as folding and cutting along a half line. Yet reflecting involves using a mirror to 

draw images. Folding and drawing appear to be inner layers of cutting or mirroring: You 

may fold before you cut. School mathematics activities on symmetry might also involve 

other activities such as measuring distances and tracing to complete the mirror image of

321

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



an object. Other researchers have dubbed such resemblance among actions invariants, 

generalities, totalities, collections, combinations, classification, universals or categories. 

For me the metaphor o f emergent properties assists in understanding the ways by which 

these varied actions and verbs come to refer to more abstract verbs and nouns such as 

symmetry or reflection. The metaphor as well helps with understanding the nature o f the 

resemblances among actions. Indeed calculating, imagining, splitting, counting, halving 

and making might have so much to do with symmetry. Just like harmony and melody are 

relational, outer-layer properties at a level above that of the music notes themselves 

(Varela, 1979), abstract and shared signs, non-basic level verbs and imaginary objects of 

attention sprout from exemplars and non-exemplars, prototypical and illustrative cases. 

Symmetry and transformational geometry concepts are at the global level o f organization

11.2.3 Ever Shifting Objects o f  Mathematical Attention  

Enacted concepts and objects as global wholes appear to have existed prior to 

the local actions. This is not the case. Concepts and objects emerge with them discernible 

boundaries, preciseness and logical structures. W aldrop (1992) claims that the most 

crucial thing we have got to get at in understanding complex systems such as insights and 

concepts is how they emerge, how they evolve from many significant parts. They are 

shifting and ever dynamic. And this is derived from their emergent nature. They are 

constantly recombining and changing shape in relation to other interacting factors. 

Concepts are patterns in time that come to light in considering many individual instances. 

From the enactivist perspective, mathematical ideas and abstract categories are nothing in 

themselves but (meta-) stable patterns among recurrent local mathematical activity. As I 

showed in chapters 9 and 10, these relational, inter-objects come about to coordinate
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further mathematical behavior. To reiterate, mathematical concepts have neither objective 

existence nor personal sense-making, but they arise through intersection with contexts, 

artifacts and the community o f learners (Kieren, 1995). From this perspective, 

redundancy in representations, diversity in interpretations, depth in individual instances, 

extension to symbolic and technological media and multiplicity o f experiences are 

necessary for the emergence and development of concepts, ideas and intuitions (Davis & 

Simmt, 2002). What might attending to symmetrical matrices be without the student 

having been offered the space and experience of folding, cutting and drawing symmetry?

In the literature on fractions part-whole, quotient, ratio and multiplicative 

approaches to fractions are flagged as multiple meanings of the fraction concept. In 

Zoltan D ienes’ terminology, they are the multi-embodiments of fractions. Lakoff,

Johnson and associates have explored these in terms o f metaphors. In mathematics 

education they are commonly referred to as representations and recently as 

interpretations. Drawing from the mathematical theory of dynamic systems I talk about 

these diverse experiences as dynamical attractors of concepts. Dynamical attractors at 

concrete, physical, sensorial and narrative ellipses enable the sensing, perceiving and 

observing of, say, multiplication concepts in complex ways that make sense even for 

imaginary objects such as scalar and vector products.

Unfortunately many teachers appear to view concrete models, physical 

materials, and illustrative media as merely tangible bases or visual illustrations for 

abstract ideas that exist “out there” (Towers & Davis, 2002). In methods classes I have 

taught, pre-service teachers who have recently done educational psychology courses 

quickly embrace varied approaches as attempts to reach out to learners who are tactile or
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visual, for example. They also admit that while these methods are helpful for the visuo- 

tactile learners, they also facilitate recall for weak students. Diversity in interpretations 

reinforces conceptual understanding of harder topics such as integers, some claim. Also, 

the use of multiple embodiments fits with the desire to make mathematics more 

interesting and accessible to all students. To some they are literal metaphors and 

analogies that offer many ways of expressing the same thing. Towers and Davis (2002) 

maintain that while reform recommendations have fit well with populist notions such as 

child-centered learning, individuated learning styles, and multiple intelligence theory, 

they have not affected how teachers view mathematical concepts in their teaching 

practice. Populist notions trivialize research discourses. The insights about mathematical 

attentiveness I have gained during the study, specifically the metaphors about the 

emergent and dynamical nature of mathematical concepts, offer a theoretical framework 

that challenges these populist views.

Abstract concepts transcend the inner level agents of experiences, signifiers, and 

interpretations, at the same time remaining in an evolutionary m anner linked to the lower 

level agents in their life span. There is also circularity: exemplars and specific instances 

as inner-level coherent forms are related, but only after the emergence of a general idea. 

Once they emerge they reset the meaning and significance o f the individual cases so that 

in the end it is not clear whether it is the global concepts that are primary or their local 

components. Concepts illuminate the invariants among the instances. Understood this 

way, mathematical concepts focus attention on mathematically significant forms. These 

assertions have resonance in the hermeneutic and interpretive semiotic views.
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11.2.4 Hermeneutic Views about the Fluidity o f  Objects o f  Attention

Gadamer (1992) asserts that concepts are constantly in the process o f being 

formed, or, more generally, that the thing-in-itself (in this case the mathematical objects 

and concepts) is nothing but the continuity with which the various perceptual 

perspectives shade into one another. He further asserts, “ [Ejvery ‘shading’ of the object 

of perception is exclusively distinct from every other, and each helps co-constitute the 

thing in itself as the continuum of these nuances” (p. 447). Gadamer's view that concepts 

are constantly in the process of being formed is not very far from the post-structural 

semiotic idea that in an infinite regression signifiers point to yet other signifiers. His use 

of the color paradigm is close to the idea of signification spaces and to the nested and 

color graded spheres, which I adopted in the diagrams in chapters 5 to 11. (I also develop 

the idea o f signification from a semiotic point of view in Appendix B.) 

Phenomenologically, van Manen (1988/1998) explains that variants and invariants in 

particular instances illuminate the meaning of an event. Structural phenomenology would 

refer to these invariants as the essences o f  things, the diverse ways o f experiencing or, for 

Marton and Booth (1997), the pool of meaning. To Rosch (1999a), they are the focal 

meanings, which once they crop up examples become graded.

As well, anthropological and historical research supports this dynamical and 

organic view o f mathematical concepts (see Joseph, 1991; & Nunes et al., 1993). 

Knowledge bears deep marks o f the practice communities, physical localities and 

political state o f affairs in which it is developed. For more ecological stances, varied 

explanations and presentations are considered to be the concepts themselves. Jardine 

(1998), after Gadamer and Wittgenstein, explains that the meaning o f the concept is as
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diverse as the instances in which it arises. Symmetry, for example, is an unnamed feature 

o f the earth and of the young child’s experiences and being, rather than a sacred, external 

structure to be acquired by the child. Akin to Jardine, I have explored the organic and 

earthly nature of observable objects. My views of the nature of concepts offer a theory 

from which to reflect on the classical view of concepts and categories as static, logical 

and infallible universals, and the computationalists’ view as a string of symbols as grand 

illusions o f enlightenment. Concepts and objects only appear logical and computational 

once they have arisen.

11.3 Orienting Integrated Students’ Attention

How can we occasion students such as Julius and Stella to attend to symmetry 

and spatial concepts in general in ways that enact continuity so that the lines do not 

eventually cross each other nor does the circle space wear out? In Chapter 5 , 1 introduced 

the landscape metaphor to explain how interpretive research progresses. Spaces enlarge 

as old landscapes are transformed and new ones are formed with time. In dynamical 

systems theory, basins o f a landscape are seen as basins of attraction; they are dynamical 

attractors. On the other hand, hills and ridges are perceived as the “separator” or repellers 

o f a system ’s behavioral states. As students cut, fold, reflect and make congruent halves 

their understanding of symmetry develops along these activity based lines. W e may 

visualize these different activities as small neighboring basins in a landscape. A general 

understanding o f symmetry arises as a result of gradual re-organization of students’ 

symmetry worlds. This can be seen as a widening and nesting o f these neighboring 

basins. As we saw in Chapter 4, with aha moments, some shifts in attention might involve 

sudden amalgamation or radical re-organization of attentiveness. The emergence of an
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abstract and new understanding— be it for an individual, a collective or for a culture— can 

be visualized as a transformation in the attentional landscape or as an expansion in the 

space o f the possible. It involves deepening, enlargement and/or a re-calibration in the 

basin o f attraction for a given concept.

In this way, to make sense o f the dynamics of worlds enacted by students I view 

that any abstract concept and general competences that surfaces for the learner carve out 

new contours that dynamically channel further mathematical thinking. Coming to know a 

certain concept in more refined ways is a transition. It involves a transformation of the 

overall dynamical organization of one’s attentional landscape. Such a transformation 

could be what Julius and Stella needed to understand how a circle had infinite lines of 

symmetry. In Namukasa (forthcoming) I have explored how at critical occasions people 

begin to see things as if  for the first time.

11.3.1 Dynamics fo r  the Emergence o f New Objects o f  Attention  

W hen we consider mathematical concepts as autonomous abstract objects or 

insight that emerge from, and in many ways remains tied to, actions and interactions, then 

the next step is to examine the conditions for emergence for specific concepts. How does 

a specific idea or percept emerge, say for junior high students? I reflected on this question 

in earlier chapters and now I tie some o f these ideas together.

The idea of symmetry, for example, appears to emerge from many cases, some of 

which, according to Rosch (1999a, 1999b), are better examples, while others are 

peripheral or even non-examples. In the analysis of Lesson 1 we saw that exploring with 

students only regular polygons might lead to an understanding o f symmetry as the 

vertices. Not only do cases o f the category symmetrical bear family resemblance, but also
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my dynamic understanding of symmetry and yours, as Jardine (1998) following 

Wittgenstein would put it, only bear familial resemblances. Which resemblances are focal 

and which ones are not?

It would be inappropriate to conceive abstract symmetry, a bottom-up property, 

as a mere frozen definition. Like other complex properties, concepts involve many-to- 

many relations and are multiply realizable. Different students might come to know a 

mathematical concept from varied perspectives and even attend to it, think about it, and 

explain it in somewhat different ways. My study has shown that these nuances are not 

arbitrary nor are they insignificant. They point to different worlds enacted, to situations, 

tools, times, contexts and communities in which particular sense is possible. Historically, 

this is exemplified by how ancient mathematical traditions of Aztec, China, Egypt, 

Arabia, Babylonia and others came to make parallel distinction about mathematical 

concepts such as numbers and geometry (Joseph, 1991). Analogously students’ solutions 

and solution paths may only bear family resemblances.

In this research I have observed individuals, pairs and collectives of students 

engaging in similar mathematical tasks. Different learners usually start out with different 

dynamics. Some begin by interpreting questions such as the Bee Genealogy (BG) task in 

less conventional ways, getting stuck here and there. Others read the question once, and 

some ask me about what a phrase in the question really means. Yet other learners take 

their time, reading and re-reading the question. One student underlined statements she 

thought were central in the question. Another pair discussed at length why the phrasing 

was the way it was. Even in the first few seconds of engagement in a task, different 

learners face different problems calling for different solutions. The spaces of what they
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attend to are different. Although all students solve the problem during the session (a few 

with intensive shepherding), to the extent that the engagement on the question on an 

ongoing basis re-configures their states of the possible and attractor dynamics, each pair 

generates a unique solution. Two pairs of students might find the same solution to the 

same task, but still their worlds transformed or enacted during their engagement would be 

distinct. The territories of engagement would have converged at the attractors and states 

that bear family resemblances, but they would depict different dynamics and regimes 

before and after the task. They would have attended differently. Julius and Stella had a 

basis to argue that the circle did not have infinite lines o f symmetry.

11.3.2 Observer Constituted Ontologies

Students enact worlds in which it makes sense to attend to some particular 

objects and to attend in specific ways. At times, the observer may not view these ways or 

objects as mathematically or culturally significant. However, to refer to Julius’ idea of a 

circle with limited space as an epistemological error, as shown in Chapter 8 with Arlene’s 

conversion of the fraction 2 ^ =l/ 12’ *s t0 denY the realities students bring forth.

Mathematics is an observer constituted ontology itself. Drawing from theories of 

distinction, I found referring to students’ divergent understanding as points of views or 

perspectives as trivializing as referring to them as errors. Stella and Esther’s idea that an 

octagon has 16 lines o f symmetry was deeper than a vantage point from which they could 

switch back and forth. In their worlds o f symmetry it made perfect sense (see Chapter 

10). Occasioning students to, on a moment-to-moment basis, collectively co-constitute 

ontologies which are mathematically significant was the thesis o f Chapter 10. In
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mathematically adequate ontologies students are not only invited to think mathematically 

but it makes embodied, embedded and extended sense for them to do so.

I have learnt that enacting mathematical worlds involves layered orientation of 

attention. It involves the structure of the concepts, the way learners attend, the 

possibilities hum ans have, the worlds which students enact, the observing systems at 

work and the nature of the mathematical observing system itself (see Chapter 8). For me, 

it is the layered stance that supports a positive construal o f  thinking as more than problem 

solving, overcom ing obstacles or negotiating conflicts but as expanding the space o f what 

is mathematically perceivable as well as transforming the landscapes o f what has been 

mathematically thought about and adopting mathematically adequate ways o f attending.

11.3.3 Orienting Multi-dimensional Attention

In w hat ways does the task of discussing symmetry in a circle structure students’ 

mathematical attentiveness? Complex systems have particular states that have higher- 

than-average probabilities of occurring— the basins of attraction. A system’s behavior is 

likely to converge on these basins of attractions. “The deeper the valley, the greater the 

propensity o f its being visited and the stronger the entrainment its attractor represents.” 

(Juarrero, 1999, p. 156). Tim and Janelle in many lessons were more inclined to act and 

interact themselves into attending to concepts in more general terms. Also for this grade 7 

class as a whole it was a more common phenomenon for “it” to spontaneously break into 

small groups for intense discussion. When a learning system finds itself in a basin of 

attraction, this means its immediate and future behavior will be dependent (but not 

determined) by the possibilities of that attractor—its depth, width, underlying structures 

and neighboring attractors and separators— the ridges. W hy it was the case that this class
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in general and students at many occasions were inclined to attend mathematically is a 

subject of another study.

When talking about attentiveness in Chapter 10, we saw that mathematical 

attentiveness is intricately threaded with sub-personal, personal, supra-personal and 

extra-personal dynamics. For example at the supra-personal layer the activities of the 

classroom collective and sub collectives as well as the broader school, family and societal 

happenings entrain what an individual student attends to and how they attend at any given 

moment. As students attended to symmetry the identity o f their mathematical 

attentiveness was the intersections of many factors including: (a) their embodied internal 

dynamics; (b) embedding social, cultural and institutional systems; (c) extended temporal 

and material environment; (d) interactions within the learning environment, which now 

involved a protractor as a dynamically attracting thinking tool; (e) understanding of other 

related topics; and (f) willingness to offer their understanding to the classroom and to 

listen to other students. There were ways of attending and objects o f attention that were 

highly possible for the class as a collective and for individual students. This might 

explain why, during my teaching experience in many cases it appeared to take more than 

explicit pointing to focus many of the senior high students on mathematically significant 

structures. But just like natural landscapes, one’s mathematical attentiveness 

continuously drifts. At certain critical points, when unified contours o f the attentional 

landscape drift in synchrony it might shift dramatically. The reverse is an unfortunate 

situation that happens to some students during impoverished school mathematics 

experiences— narrowing and contracting o f the basins for mathematical attentiveness.
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The few students with a more abstract understanding of the infinite offered 

explanations that you could use a thinner and thinner pencil to be able to draw more and 

more lines of symmetry. Tim, a student who had compared lines of symmetry in a circle 

and a sphere during the first lesson, and a few other students explained: “Because you can 

still split one thin line and still. Yeah— draw another one.” (Tim-tum 194) “I think it is 

infinite until like we don't have material to actually see it . . . .” (John-turn 202) “I think it 

is infinite, like it keeps on going.” (Kay-turn 204) “Because if, let's say if even though we 

don't have [material], [even if] we can’t see how small it is we can still know it is 

possible so we can imagine something may be small” “even though we necessarily can’t 

see it”(Kathy-turn 207). It appears that the difference between attentiveness to symmetry 

of learners who understood it in abstract and practiced terms and those who did not is that 

for the former and for the teacher the evolutional shift in understanding symmetry 

entirely in terms of imaginary actions of say similarity had already happened.

The mathematical attentiveness o f these latter students had yet to be re

organized or radically shifted towards a more complete understanding of symmetry. The 

question then becomes: How can a teacher occasion a re-configuration of the symmetry 

worlds o f students such as Esther, Joseph, Julius and Stella in the Symmetry activities? 

Would it take an enaction of new worlds with new emergent objects and novel ways of 

attending altogether, an upheaval? Or would it require just a subtle prodding in their 

existing domain?
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11.4 Evolutional Shifts in Attention

How could a teacher evoke shifts in students’ attention to that which is 

mathematically significant in the understanding of symmetry? In chapters 4 and 7 while 

tracking how Irene and Lillian’s attention shifted to that which is mathematically 

significant we saw that shifts in attention are gradual. In Chapter 10 I discussed relatively 

stable and reversible switches and drifts in what one attends to. In this section I discuss 

discontinuous, dynamic shifts that punctuate reversible shifts. The adoption o f novel 

ways o f attending is one such irreversible shift. The emergence o f  an understanding of an 

abstract idea from individual situations is another. These shifts might mark evolutional 

transitions with momentous effects on the dynamics of a student’s attention. Such 

evolutional shifts might be marked by the aha moments in students’ understanding (see 

Chapter 4). In a hermeneutic manner, shifts in attention could be considered as moving 

beyond one’s horizon, beyond one’s familiar world to a transformed world. This is not 

abandoning the fore-structures of understanding but challenging and involuntarily 

revising them (Gallagher, 1992). Shifts might also involve concepts combining and 

recombining to give rise to hybrid concepts (Davis & Simmt, 2002). They might involve 

a re-organization— gradual or sudden— in understanding (Sumara, 2002) akin to a 

geographical land formation.

This study has suggested that what students bring forth during aha moments is

39 T o Hadamard (1945), for an individual, during such mom ents “ideas pop up with brevity, suddenness 
and im m ediate certainty, after an incubation period, from  the unconscious [and not conscious] to the 
con scious.” (p. 14) To D avis and Hersh (1981) such m om ents indicate “that som ething has been brought 
forth w hich is genuinely n ew ... a new  understanding for the individual; a new concept placed before the 
com m unity.” (p. 283[0])
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not only a mathematical object as well as a novel way of attending but an object in an 

entire observer constituted ontology. It is a mathematical world in which it makes sense 

to think about particular objects and attend to them in certain ways.401 have learnt that 

recursive elaborations in what and how students attend mathematically involve concepts 

recombining to give rise to hybrid concepts and quasi actions.

In topological and dynamical terms, learning, gaining insight, forming abstract 

concepts and observing general categories and other such radical shifts are equivalent to a 

cataclysmic adjustments of a space and landscape— an earthquake or an eruption. Such 

shifts are not simply a question of deepening or smoothening existing valleys or hills: 

they are about reconfiguration of the overall territory. The dynamics that might have been 

resetting, widening or deepening part-by-part, basin by basin at aha moments o f insight, 

intellectual evolutions, cultural revolutions or paradigm shifts do reset all-at-a go. When 

Lillian and Irene, in Episode A, understood that when you begin with a sum this actually 

generates a number and later in a jum p o f insight, in Episode C when they noticed that by 

describing the numbers that did not have the property they would have exactly described 

the numbers that had the property, the entire neighborhood of their attentional regime had 

undergone a dramatic shift. A similar shift is what Julius and Stella needed. W ith the help 

o f the teacher, other students and other learning structures, Julius and Stella had to act 

and interact themselves into attending differently. Then with the understanding that a

40 U sin g  the analogy o f  paradigm shifts, W aldrop (1992 ) explains that paradigm changes are b iological, 
intellectual and cultural evolutions. During paradigm shifts concepts com bine and recom bine, they leap 
from mind to mind over m iles and generations. T o Johnson (2001), w hile paradigm shifts and the 
developm ent o f  novel understanding might appear as a great man’s theory (or as a one eureka mom ent), 
they are actually com plex, multithreaded tales with many agents interacting in a great many w ays over 
tim e. T hey are a result o f  new  tools and distinctions appearing on the horizon. T hey are distributed and 
com m unal efforts, w hich involve new layers o f  understanding. To Johnson, as it is for Nprretranders 
(1998), there must be an adequate number o f  coherent parts interacting in the system  before “isolated  
hunches and obsessions coalesce into a new w ay o f  looking” (Johnson, 2001, p. 64).
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circle had many and in fact infinite lines of symmetry, their understanding of infinite and 

infinitesimals, of scales of measurement, angle measurements, of symmetry and the like 

would also grow. New attractor basins would have appeared.

During phase transitions students gain a more elaborate, imaginary and global 

understanding of mathematical concepts, their earlier understanding are broadened and 

related memories re-activated, they learn a new procedure, or they form a unique 

mathematical habit. Further gradual and radical transitions result in transformed 

dynamics of attending such that mathematically inadequate ways of attending and objects 

of attention that were once habitual become impossible. It is a makeover o f the overall 

dynamical identity. Novel constraints, dispositions and propensities to attend to a 

particular mathematical object in mathematically adequate ways do present themselves.

A new perceptual world of mathematical significance and relevance is enacted. And this 

happens in real time.

11.5 Dynamical Structuring Mathematical Activity and Tasks

In what ways does the task of discussing symmetry of a circle structure the way 

students’ attend and think? My work with students also implies that mathematical tasks 

and activities that students engage in structure their mathematical attentiveness. Many 

activities during the study did so in more mathematically adequate ways than others. In 

Chapter 1, while I offered the Chessboard Squares (CS) as an example of a good enough, 

variable entry and non-routine mathematical task I mentioned that such a task has the 

potential to structure students’ mathematical attentiveness. The CT task just like the CS 

task prompted systematic recording among many students. In addition the CT task 

prompted junior high students to define a set by looking at its non-members. Some
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activities I modified during the preliminary study and some I dropped after observing one 

pair engaging in them. Activities might be variable-entry tasks and non-routine tasks but 

the ways they structured learners’ attention might in be many ways mathematically 

inadequate. I referred to the range of tasks and actions that students engage in which were 

likely to trigger them to think and attend mathematically as dynamically structuring tasks 

and acts. Tasks such as Pirates Aboard, Bee Genealogy (BG), CS and CT I offered to a 

majority pairs in the final study. In addition to offering a variable and motivating entry, 

these tasks on an occurring basis appeared to favor mathematical possibilities. I could 

also see them as a source of preparedness and readiness to attend mathematically in 

preceding sessions. Unlike the quick fix, textbook exercises they had a higher potential to 

expand common mathematical ways of attending as well as to evoke novel ones. That 

was what was routine about them. By engaging in such tasks students were practicing 

ways o f attending mathematically and ways of enacting mathematical worlds. In Chapter

1 0 ,1 also explored actions and interactions, what I have dubbed mathematically adequate 

actions and interactions. In a similar manner these actions appeared to originate as well as 

sustain mathematical attentiveness among students. They dynamically attracted and 

structured students’ attentiveness.

Students’ possibilities of mathematical attentiveness during their engagement on 

the CT might differ according to whether they have solved the CS task before or whether 

all they have done are routine and clue giving problems. As well it m ight differ 

depending on with whom they are solving the task and what other extended structure they 

have available. I learnt this when analyzing Rose and Norah’s engagement on the BG 

task in light o f Irene and Lillian’s engagement (see chapters 4 & 7; see also Appendix E,
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Vignette E2). Learning, thinking and attentiveness appear to be a “process o f dynamic 

self-organization that takes place as a result o f ongoing interaction and relationship 

between” the learner and the learning environment (Juarrero, 1999, p. 159). The worlds 

o f mathematical objects and relations are not one that learners walk into; the learners lay 

them down and transform them recursively. A Mathematical world rolls up in living and 

being mathematically.

11.6 Consequences and Implications

This study has been an inquiry into the nature of students’ mathematical 

attentiveness and thinking. Specifically I have explored the embodied, embedded and 

extended nature o f students’ mathematical attentiveness. By observing students solving 

mathematical problems, discussing mathematical concepts and participating in other 

mathematical activity I have explored ways in which students enact mathematical worlds 

in which they are not only invited to think mathematically but find it makes deep sense 

for them to do so. I have drawn upon enactivism and eco-complexity theories to 

understand aspects o f students’ engagement that are more than representations and 

visualizations. Through close observations of the diversity and subtleties among students’ 

interactions my research has suggested many things. To understand the themes I have 

explored ecological, dynamical systems and geographical metaphors of complexity 

research such as emergence, mutual feedback and dynamical landscapes. I have 

illustrated how subtle differences in activity may actually originate larger differences in 

objects attended. The approach to the inquiry has been hermeneutic I have juxtaposed the 

interpretive orientation with its counterpart in the hard sciences, second-order observation 

theories. The ideas presented in this work reflect my ways of attending to students’
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mathematical attentiveness and thinking. These ways implicate my history, the tools I 

have had to do this research, the research community in which I participate and the time 

and locale o f my work. This is an observer constituted ontology, a world experienced, 

transformed and brought forth in doing and living the research.

As a final remark to the study I outline the significance o f my work. This last 

section is about reflecting on the adequacy of the study. I ask whether the study is 

coherent: Is it an agent in the emergence o f novel and grander understandings? Does it 

expand the space o f the possible for research, teaching and learning? Have new 

sensibilities been opened up? Has the concern that motivated the inquiry— to understand 

the nature of students’ mathematical thinking— been advanced? Do the tools and models 

offered, and claims made embrace complexity?

11.6.1 Consequences and Implications o f  the Study

My exploration of students’ mathematical thinking in terms of mathematical 

attentiveness has subtle practical implications for the teacher, curriculum developer and 

textbook writers. These practical implications need to be gradually brought forth in the 

experiences of those educators. However, its implications and consequences for the 

research community are apparent in terms of theorizing and conceptualizing mathematics 

education.

Researchers who closely observe students’ mathematical actions maintain that 

an interested look at students’ thinking elaborates on school mathematics content 

(Vergnaud, 1988). My study has been a revisiting o f issues of mathematical structure 

from a more hermeneutic, evolutional and historical perspective. Within it one can find 

task analyses for topics such as fractions discussed in the context o f students who
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participated in the research. However, it is clear that elaborating on school mathematics 

content takes more than one study, researcher and thesis. Hence my study is intended to 

contribute to the existing body of knowledge. A recursive elaboration of various subject 

matter and error analyses studies from the ecological and dynamic view in terms of inner 

level aspects is a subject for further studies. As a consequence of closely observing what 

students attend to in mathematical tasks, mathematics content that engages prospective 

teachers “in ways connected to practice” (Ball, 2002, p. 11) may arise to enrich the 

prevalent university mathematics content that primarily engages mathematicians and 

mathematics students. For instance instructors can examine with student-teachers how 

subtle variations in students’ writing, utterances and use of materials might point to 

significant differences in attending and objects of attention. In my teaching of pre-service 

teachers and participation in in-service teachers workshops, that focus on the nuances in 

what learners attend to has shown potential for engaging teachers in ways that foreground 

the complex nature of students mathematical thinking.

Educators who conceptualize in-service and pre-service mathematics education 

may find guidance from claims made in this writing as they prepare mathematics teachers 

to be responsive to the dynamics o f students’ mathematical attentiveness and thinking. 

They may be prompted to work with teachers in an eco-complexivist and enactivist 

manner that upholds listening and attending to students’ interpretations so as to enhance 

mathematical learning. Teachers with an attitude of attentiveness and responsiveness are 

likely to occasion students’ to learn mathematics meaningfully.

As well, the study contributes to generating novel sensibilities for construing 

mathematical thinking. Theoretical constructs like signification spaces have been
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broadened, others like representations have been problem atized and new m etaphors and 

constructs such as presentations and re-presentations, structuring tasks have been 

introduced.

This study also offers the m athem atics education research com m unity another 

“unit o f analysis” for classroom  research: abstract concepts and m athem atical worlds that 

students enact during classroom  activity. It also dem onstrates that there are aspects of 

learning such as m athem atical attentiveness that cut through body-m ind-environm ent 

whole that can be prom isingly investigated. M y study has been an effort to engage in a 

broader conversation that seeks to understand the centrality o f body and brain in 

cognition.

Theoretical constructs and new  m etaphors offered by the study suggest ways o f 

observing closely  and com m enting students’ thinking. They offer observational tools for 

attending to s tuden ts’ m athem atical thinking as well as participation tools for attending 

with the students. This study was m otivated by the need for observational and theoretical 

tools to understand and occasion students’ mathematical thinking in ways that em brace 

the com plexity  o f  cognition.

The conclusions drawn from  this study illum inate the relation between 

m athem atical activity  and m athem atical thinking. For instance, it em phasizes that writing 

and other m athem atical activities are central to problem  solving, m athem atical 

understanding and to concept form ation. The claims made in this dissertation about the 

nature o f m athem atical concepts offer a theoretical rationale for use o f  multiple 

m athem atical experiences in teaching. In encouraging m athem atical thinking, m any 

researchers advocate the use o f m ultiple representations (Confrey, 1999; Ball, 1990). This
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recent view is penetrating practice from  the top dow n as contem porary teacher resource 

books encourage teaching w ith m ultiple models. H ow ever som e central questions have 

not been asked. For instance, what are the relationships betw een the representations and 

the m athem atical concepts associated w ith them  (Radford, 2002)? To me, there are parts 

that m ust be furnished, questions that have to be asked and m etaphors that have to be 

envisioned before system s and ecological views can inform  practice in fundam ental 

ways. O therw ise deeper and broader reform  views will be sw allow ed by shallow  populist 

theories (Towers & D avis, 2002). O ne could use th is study, am ong other contributions, to 

offer a rationale for w hy m athem atics teachers should use m ultiple representations in 

teaching school m athem atics.

B eyond the theoretical im plications, this research m ight have gradual 

contributions to m ake to the practice com m unity. H ow  m ight we build classroom s in 

w hich students’ actions and interactions occasion personal and collective m athem atical 

attentiveness in ways that enlarge the space o f the possib le? Based on my explorations of 

students’ m athem atical attentiveness, it is expected that ecological and system ic 

conversations on m athem atical thinking m ight eventually  m ight trigger am ong teachers 

novel ways o f organizing their teaching so as to enhance active, interactive, and situa ted  

m athem atical know ing. W orking out direct im plications o f  m y study for classroom  

teaching and learning is a  topic for future research.

In investigating the dynam ics o f  student attention and m athem atical thinking, I 

have engaged in a conversation about thinking as com plex hum an phenom enon. The 

conversation I have participated in triggers new w ays o f  thinking, talking and acting 

about students’ learning am ong the collective m inds o f  the m athem atics education
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community.
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APPENDICES

APPENDIX A Samples of Mathematical Tasks Adopted 

Cubes Cubed
I have eight cubes. Two of them are painted red, two white, two blue, and two yellow but 
otherwise they are indistinguishable. I wish to assemble them into one large cube with each color 
appearing on each face. In how many different ways can I assemble the cube?

Chessboard Squares
It was claimed that there are 204 squares on an ordinary chessboard. Can you justify this claim? 

Bee Genealogy
Male bees hatch from unfertilized eggs and so have a mother but no father. Female bees 
hatch from fertilized eggs. How many ancestors does a male bee have in the twelfth 
generation back? How many of these are male?

Consecutive Terms
Some numbers can be expressed as the sum of a string of consecutive positive integers. Exactly 
which numbers have this property? For example,

9 = 2 + 3  + 4  1 1 = 5  + 6 18 = 3 + 4 + 5 + 6

Patterns in Color
Color a pattern on squared paper and ask student to continue it?
Do it for a few more patters and then ask them to make their own patterns which their pair mate 
would solve. Let them vary easy problems and hard ones.

Pirates Aboard!
Pirates ordered all the sailors to be lined up around the edge of the ship. To the first sailor to the 
left they said, “You will die!” To the second they said, “You will live!” To the third sailor, you 
will die; the fourth you will live. They continued in this judgment, repeatedly going around the 
lined up sailors until only one sailor was left standing. “You will live,” they bellowed, “Join our 
pirate crew!” If you were one of the sailors on the captured ship, where would you stand in order 
to survive?

Ins and Outs
Take a strip of paper and fold it in half several times in the same fashion as paper strip. Unfold it 
and observe some of the creases are In and some are OUT. For example 
in in out in in out out
W hat sequence would arise from 10 folds (if that many were possible)?

Ladies Luncheon
Five women have lunch together seated around a circular table. Ms. Osborne is sitting between 
Ms Lewis and Ms. Norris. Ms. Lewis is between Ellen and Alice. Cathy and Doris are sisters. 
Betty is seated with Ms. Parkes on her left and Ms. Martin on her right. Match the first names to 
the surnames.

Fifteen
Nine counters marked with the digits 1 to 9 are placed on the table. Two players alternately take 
one counter from the table. The winner is the first player to obtain, amongst his counters, three 
with the sums of exactly 12.

367

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Matches 1
How many matchsticks are required to make 14 squares in a row, the side of each being the 
length of a match, as in the following sequence?

Paper Strip
Imagine a long thin strip of paper stretched out in front of your, left to right. Imagine taking the 
ends in your hands and placing the right hand end on top of the left. Now press the strip flat so 
that it is folded in half and has a crease. Repeat the whole operation on a new strip two more 
times. How many creases are there? How many creases will there be if the operation is repeated 
10 times in total?

Circular disks
Explore the growth pattern that occurs when rings of disks (pennies or bingo counters) are 
placed around a central disk.

Think about each ring as a stage. Find the number of disks it will take to make the first, second 
and third ring. How many disks will it take to make the 10th ring? The 100th ring? Write a rule 
explaining how to predict the number of disks in any stage.

Tiling Paths/dominoes
How many paths can you tile with a given number of dominoes (2x1 tiles) if the path must be two 
units wide. There is one path for one tile, two paths for two tiles and three paths for three tiles.

Towers of Hanoi
The object of this puzzle, published in 1883 by a French mathematician Edouard Lucas, 
is to move all the disks piled on one pole to a different pole. There are three poles 
altogether. You can only move one disk at a time and you must follow size order — a 
bigger disk can't go on a smaller disk.
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APPENDIX B Semiotic Interpretations of my Data

SEMIOTIC REPRESENTATIONS AND SIGNS 
Mathematics educators have recently appropriated the semiotics of both Peirce and 

Saussure to examine the concepts of sign and representations. For instance Duval (2002) has 
elaborated on semiotics to study representations systems. A few post-structural scholars have 
recently attempted broader conceptions of sign away from its usual delimitation to the formal- 
linguistic domain. Radford (2003) attempts to develop more contextual semiotics. His elaboration 
appears to be a step toward embodied mathematical signing when he talks about semiotic means 
o f objectification. However, as I discuss in a later section, he does not go far enough. He denies 
the central influence of the body on the signs. Rotman (2000) develops a more evolutionary 
approach. Unlike Radford, he emphasizes the role of the body and of materiality. Similarly, Brier
(2001), drawing from cybernetics, develops the construct of layered signification to illustrate how 
the concept of signification could accommodate the organic complexities of cognition. How do 
constructs such as orders o f signifying activity fit with and contribute to the conceptual 
underpinnings of this research?

This appendix is more about reading my framework against an alternative post- 
structural framework, semiotics. I use research data to bring two frameworks, ecological 
complexity and semiotics, into interplay. I illustrate how semiotics benefits this study. In 
addition, I illustrate how semiotics theories could benefit from the complexity metaphors.
B.l Appropriating Semiotics in Mathematics Education

Semiotics is commonly understood to be the study of signs and sign use. It has its origin 
in structuralism (Saussurean semiotics) as well as in pragmatism and formal logicism (Peircean 
semiotics). Structural semiotics has been elaborated by its post-structural critique— Lacanian 
inversion of the Saussurean model. To some scholars, such as Rotman (2000), semiotics is not a 
kind of philosophical stance but rather a distinct umbrella domain like philosophy, linguistics or 
science. In the Anglophone mathematics education literature, there is recent interest in semiotics. 
For instance, in the PME-NA book edited by the working group on representations and 
visualizations (Hitt, 2002), 8 out of the 22 papers were explicitly framed by semiotics. One of the 
central questions of the book is, how are meaningful signs in cognition created? Presmeg (2002) 
and Radford (2002) and others attempt to answer this question by drawing from Peirce. Let me 
offer a background to their discussion.

Semiotic activity, according to the Peircean model, is triadic. Three elements constitute 
the Sign: the object, representamen/sign vehicle and interpretant. There are three kinds of signs: 
the diagrammatic sign or icon which exhibits sensuous resemblance, relational likeness, and 
analogy; the index, which like a pronoun demonstratively or by connection directs attention to the 
object; and the symbol/token which signifies either by association, law or habit of mind (Peirce, 
Collected Papers, volume 2, pp. 274-299 [CP, 2. 274-299], 3.362). A few mathematics education 
researchers, such as Walkerdine, draw from Saussure’s and Lacan’s semiotics. To Saussure a sign 
is comprised of signifier and signified. In this dyadic model the interpreter seems to be implicit or 
even absent. Saussure focused mainly on linguistic signs, especially the spoken word (Chandler, 
2002). He is criticized for ignoring the written and other sign systems, which—as I will 
illustrate— are historically and developmental^ related to linguistic signs. For Saussure, the 
signified, which to him is purely psychological, takes precedence over the signifier.

B .l.I  Towards an Interpretive Semiotics 
Lacan inverted Saussure’s model to stress the priority of the signifier over the signified. 

The signified inevitably slips beneath the signifier, resisting our attempts to delimit it (Chandler, 
2002). The precedence of signifier over signified in post-structural semiotics allows for a 
redefinition of semiotics as a continuous process of signification (of what is signified), as the 
signifier in the previous sign might—via the interpretant for Peirce, via connotation for Barthes, 
via free  p lay  for Derrida, or via sliding for Lacan— become the signified in a new sign
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combination and so on (Chandler, 2002). According to Peirce this is limitless semiosis (Peirce, 
CP, 2. 303).

The object of representation can be nothing but a representation of which the first 
representation is the interpretant. But an endless series of representations, each 
representing the one behind it, may be conceived to have an absolute object at its limit. 
The meaning of a representation can be nothing but a representation... .So there is an 
infinite regression here. Finally, the interpretant is nothing but another representation to 
which the torch of truth is handed along; and as representation, it has its interpretant 
again. Lo, another infinite series. (Peirce, CP, 1. 339)

Saenz-Ludlow (2003) defines a chain o f signification as “the embedding of signs within 
new and more sophisticated signs that for their functioning depend upon prior simpler signs that 
are kept as a trace” (p. 186). Semiotically, a sign is more than its particular three (object, 
representamen, interpretant) or two elements (signifier, signified). It is also a relationship 
between them, what Pierce refers to as thirdness and Chandler (2002) as signification, Presmeg
(2002) also develops the chaining of signs to produce the concept of nested sign systems. In her 
model, the entire first sign with its triad constitutes the next sign in the chain and so on. Figure B1 
illustrates the layering of signs. In my view, as soon as what is to be signified, signified n is 
represented by a signifier, signifier n there is an excess of signification introduced leading out to a 
new signified, signified n + 1 that nests or slips under signifier n.

This chaining process has parallels in the mathematical processes that have come to be 
referred to as distillation, mathematization, abstraction or reification (Freudenthal, 1991; 
Kauffman, 2001; Mason, 1989; Sfard, 1991a). These notions attempt to explain how abstract 
ideas are directly or otherwise generated by more concrete, bodily, elementary and basic 
experiences and ideas.

Figure Bl. The c taining process of signification
Si gni f ier2 /  
S ignif ied 3

S ig nifier 1 /  
S ig n i f i ed 2

S i gn i f i ed l ------------►

Although, not much has been said on the relation of a sign with other signs that the sign 
user creates, most scholars of semiotics now acknowledge the co-implicitness of the sign user or 
creator (the interpretant) in the sign. This seems to be a point of departure from the structural 
approach. “Of course, nothing is a sign unless it is interpreted as a sign” (Peirce, CP, 2. 308). “A 
sign, or representamen is something which stands to somebody [italics added] for something” 
(Peirce, CP 2. 228). A sign must represent “something else, called its Object” (Peirce, CP 2. 230). 
Where there is interpretation and experience there are signs, information and messages (Bateson, 
1980; von Glasersfeld, 1999). Students at many times manipulate symbols only at a syntactic, 
game level. In fact Peirce uses the term representation in reference to only those signs that have 
an interpretant (CP, 2.274). In this respect and to the extent that it studies signs systems in 
relation to human activities semiotics is an alternative to traditional views of human cognition 
that pay less attention to the representamen.

Presmeg (forthcoming) explores Peirce’s ideas about a community’s mind—commens. 
Peirce acknowledges that specific disciplines enhance peculiar kinds and means of observations 
(Peirce, CP, 1.98). Many of Peirce’s ideas such as that of a self-reflexive sign (a sign of itself), 
diagrammatic thoughts, visual language and existential graphs foresee the systems ideas of the:
(a) interlocking relation between sign and object, (b) observer as a sign of distinction as well as 
the distinction as a sign of the observer—a Sign of itself (c) a sign with significant parts, 
circularity and self-reference, and (d) nested interpretants and collective thought. Saenz-Ludlow
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(2003) draws from Peirce to explore collective semiosis. In my view, there is need for educators 
who draw from semiotics to explore Peirce’s semiotic and logical work in light of other authors 
such as Spencer-Brown (1979), who independently took up similar explorations on patterns that 
relate logic, speech, writing and drawing to mathematics. Drawing from complexity science 
might elaborate how collective semiosis and kinds of observation are possible, for instance.

Peirce’s work has been interpreted in many different ways. The statement that “a sign is 
a vehicle conveying into the mind something from without” (Peirce, CP 1. 339) is closely aligned 
to the presumption that thinking is a matter of processing an external reality (a cognitivists’ 
assertion) via an inevitable bridge, the sign vehicle. This realist interpretation would imply that 
mathematical signifiers—the notations, numerals, diagrams and the like—have been developed to 
describe the universe of mathematics. Ernest (1997), Radford (2002) and others have, on the 
other hand, interpreted the statement in ways that avoid this naive realism:

Signifiers of mathematics do not correspond to unique signifieds. The relation is one- 
many, not a mapping, let alone a one-to-one correspondence.... The signifieds 
themselves of mathematics are unreachable, except through other signifiers. (Ernest,
1997, p. 26)

With elaborations of the endless series of signification, the elements of the sign are 
considered continuous (Presmeg, 2002; Saenz-Ludlow, 2002). However, signs would be 
considered more dynamic if objectivist views about body, mind and environment are challenged. 
Putting the cognizing agent together with the cognized world as a global system, as I did in 
Chapter 6, would allow semiotic research to be radical.
B.2 Semiotic Representations

Is the object of a sign, the object of representation the referent at the particular occasion 
the sign is uttered, or is it the totality of things that might be referred to by uttering the sign? Are 
signifieds unique to signifiers (Chandler 2002)? Put complexity theoretic, are the objects of 
representation multiply realizable? Researchers draw from semiotics to explain the role of 
mathematical representations. Otte (2002) notes, “A mathematical concept does not exist 
independently of the totality of its possible representations, but must not be confused with any 
such representation, either” (p. 366). The construction of mathematical objects is based on the use 
of several semiotic registers o f representations such as graphics and pictures, Otte (2002) 
explains. He further differentiates between semiotic and physical or organic and non-semiotic 
representations. He asserts that although both representations are cognitive representations, 
organic representations are not semiotic representations. He says it is because material 
representations are causally and automatically (not intentionally) produced either by an organic 
system (e.g. dream or memory visual images, footprints in snow) or by a physical device (e.g. 
reflections, photographs). It is only semiotic, intentional settings such as sentences, graphs, 
diagrams or drawings that produce semiotic representations. Otte insists that automatically 
produced registers do not bear an intentional character and therefore are non-semiotic. I wonder, 
however, whether he considers spontaneous gestures and facial expressions, sensory events and 
motor movements, kinaesthetic activity and material experiences, bodily postures and 
impressions, intonations and rhythm as non-semiotic representations? In mathematics, what is the 
role of non-semiotic registers?

In my work, I do not find it helpful to use Duval’s highly contested notions of intention 
and cause to make what seems to be a critical distinction. In his use of intention, he does not tell 
us whether he delimits this distinction to deliberate human actions. Would he include the non- 
conscious, circular and collective, as well as other kinds of non-linear causes and intentions?

Duval (2002) has contributed to the discussion on representations the construct of 
mathematical registers that refers to systems of symbols such as the graphical, analytical, 
algebraic and arithmetic signs. He says these can be either mental or external processes. Recalling 
English and Halford (1995), Chapter 3, classification of mathematics representations into the 
symbolic, mathematical, cognitive, computer and explanatory representations we may add
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semiotic registers and non-semiotic representations to get:
• Informal representations (real-life, natural, intuitive models and language)
• Formal representations (algebraic, geometric and other symbolic settings)
• Semiotic representations or sign systems (graphic and analytic language)
• “Non-semiotic” representations (organic signs, devices produced signs)

Although Otte’s distinction raises more questions, his mere observation about the 
existence of non-semiotic signs, if elaborated upon in ways that pay particular attention to full- 
bodied, rich device produced, material, imagistic and sensory-motor informal signs is 
informative. Organic, analogical and motivated signs, such as diagrams and spontaneous bodily 
knowing, appear to “call attention to the materiality of all signs and to the corporeality of those 
who manipulate them” (Rotman, 2000, p. 57). Besides all signs including mathematical signs 
have an iconic quality to the sign user. Even, symbols and indices are icons of a peculiar kind. 
For example, indices are icons whose resemblance is by association (Peirce, CP, 2. 247-249). In 
complexity terms, symbols are nested into indexical signs that are in turn nested in iconic signs.

B.2.1. Patterns, Regularities and Order in Enacted Worlds
There is need to interrogate the concept of representation itself. It appears the 

computational view of representations that correspond to some reality is evoked by an assumed 
chasm between mind, body and world. This raises the question about non-cognitivistic aspects of 
cognition that fall on the blind spot of such a view? What might appear to a mathematician as 
static representations and signs, for mathematics students might be dynamic regularities and 
contingencies, tokens as Peirce referred to them, that emerge out of local actions, signals, 
anatomy, situations and sequences. And more importantly these regularities have feedback loops 
that amplify the signs and patterns.

Whatever sense humans make might be more (re-) presentational rather than a 
representation of the world (Von Glasersfeld, 1999). For it seems, signs and visualizations are 
“pieces of experience that we have combined in order to form more or less complex structures, in 
our attempt to order and systematize the world in which we find ourselves living” (Von 
Glasersfeld, 1999, p. 4). If we fore-grounded aspects such as regularities and patterns (instead of 
representations), temporal tools that help us negotiate our worlds, in what ways would that 
change our views about students’ thinking?

Considering sign systems and mathematical representations as functional, ontology and 
pragmatic (instead of solely epistemological) tools that arise from what we do or can do is more 
useful. For instance, the Fraction Kit that students worked with, the tables in which they tabulated 
results as well as the number symbols that they worked with during the sessions could be looked 
at in functional ways. “They are tools which enable us to interact with the world in more complex 
ways ...[T]hrough experimenting with our world, we are [continuously] led to certain realizations 
about it which enable us to interact with it differently” (Osberg & Biesta, 2003, p. 9). Drawing 
from complexity sensibilities, we may begin to see representations as interdependent and open 
systems that admit novelty and foreground their participatory function in evervarying contexts 
(Rosch, 1999a).

Mathematical objects like fractions might be distinct in how they are attended. But to 
the extent that they are enacted objects, they are similar to objects in other domains. In 
neurological terms there is hardly any event that humans know without participation and 
interpretation. In a section on inter-objects and inter-objectivity, I show how all objects with 
which humans interact are necessarily human objects.41

If it is to be helpful in researching students’ mathematical thinking, semiotics needs to 
be nested in an ecological view of cognition. In my writing, the concept of a sign or, better still, 
signification, is taken to arise out of the operations and being of the cognitive organism to which

41 Objects that draw more from lower recursions of sensation, perception and imagination are easily dubbed 
natural (not cultural) objects since they appear to be humanly universal.
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signs have some value. It arises with interpretive activity that affords peculiar discriminations. 
Questions on signification call forth ontological questions on how signs relate to the 
mathematical concepts. Let me explore an example from my research.

Vignette B l. The Pirate’s Task
In my work with students I posed the following question:
Pirates ordered all the sailors to be lined up around the edge of the ship. To the 

first sailor to the left they said, “You will die!” To the second they said, “You will live!” 
To the third sailor, you will die; the fourth you will live. They continued in this judgment, 
repeatedly going around the lined up sailors until only one sailor was left standing. “You 
will live,” they bellowed, “Join our pirate crew!” If you were one of the sailors on the 
captured ship, where would you stand in order to survive?

NARRATION I
After scattered trials including some brainstorming, acting out the problem and written 

work with simple numerical values, students in the study began to make informed guesses about 
where in the line would they want to stand in order to survive. They eventually began to work 
more systematically seeking to ascertain which positions were safe for any numerical values.

B.2.2 Signing to Communicate as well as to Cognize 
Students use a variety of signs ranging from informal to formal signs, from non- 

semiotic to semiotic to as well as iconic, indexical and symbolic signs. At one time all students 
used numerals—symbolic signs—to stand for sailors. They also used other linguistic signs: They 
spoke natural language sentences, such as lives and dies, and mathematical sentences such as 2 
times 2. As they worked in pairs they talked as well as gestured spontaneously and used facial 
expressions. They also adopted notations; say for the sailors and for the action you live. Many 
sketched drawings of sailors lined up around the edge of the ship. Some used concrete materials 
like dominoes, knocking down sailors who would die. When they used concrete materials or their 
bodies—be it just body parts like fingers—to act out the problem many of their signs involved 
sensory, motor movements, affective, and material experiences. Bodily postures, orientation and 
images, intonations and rhythm were part of the signs systems they drew from. For whatever 
signs students used they, as the sign user, their body-in-space, material and environments were 
are central part of the signing activity. During the activity some of their spontaneous signs and 
representations grew into more formalized signs. They signed to communicate as well as to 
cognize. In my study, I am interested as well in how the sign systems interact with students' 
mathematical thinking and attentiveness.

B.2.3 Mathematical Signs in Relation to Worlds Enacted 
With time, as they engaged in the Pirates Aboard task, students noted that for 2 to 3 

sailors you were safe if you were in the second position; for 4 to 7, if you were in the fourth; for 8 
to 15 if you were in the eighth, for 16 to 31 if you were in the sixteenth and so on. But for bigger 
numbers solutions diverged. Was this divergence related to the kinds of signs and representations 
students used? In what ways could it have been related to the worlds that the students notated as 
well as enacted?

NARRATION II-V
For 50 and 100 sailors:

II. Some students reasoned that it would be the 16 + 16 = 32nd position that would be
safe if there were 50 sailors. For over a hundred some of these students kept on 
repeatedly adding 32: 32 + 32 = 64th, and so on.

III. Other students said it would be the 2 * 16th position for 50 to 63 sailors. For a
hundred sailors many of these students got 64 by multiplying 32 by 2.

When asked about 500 sailors this became tricky, especially for students who wanted to make a 
leap to a non-inductive rule:
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IV. Students who continued the sequence—either by repeatedly adding or by iteratively 
multiplying by two—did not have much trouble, other than the computational 
problems involved. They gradually generated the sequences 64, 128, 256, 512, 
1024. Using this sequence they concluded that for 500 sailors a sailor in the 256th 
position is safe and for 1000, 512th position.

V. Some junior high students who attempted a leap to using a general rule thought that for 
500 sailors it would be 5 * 64. Students reasoned that since for 100 it had been 2 
times the safe position for 50 sailors then for 500 it would be 5 * the safe position 
for 100. They had attempted to articulate the structure which they had been acting 
out.

By looking at students pursue the pattern to determine where a sailor would want to stand it is 
discernible that many students had noticed a regularity that involved doubling. To double, some 
students repeatedly added, others multiplied by a factor, say 2. Although for me to repeatedly 
double also signifies powers of two, none of the junior high students spontaneously used 
exponents of two to continue the sequence. Yet viewed from the perspective of a mathematician it 
would be less elegant to find the safe position for bigger number of sailors by thinking in terms of 
repeated addition and factors (Narration V). While analyzing this anecdote I wonder about how 1, 
2, 4, 8, 16, 32, 64, 128, 256, 512 and so on could signify repeated addition to one student, 
iterative multiplying by two to another and 2n to yet another student. Why did junior high 
students not spontaneously think about exponents? One response is that junior high students have 
not yet looked at exponents, {1,2,4, ...} will not signify 2 * 2 * 2 * ... for them. But this was not 
the case with students I worked with. Many professed to even knowing, “Any number to the 
power zero is one”. If students could not, by resemblance, association or by convention, 
recognize the objects represented by 1,2, 4, 8, 16 as 2 times 2 times 2 times, powers or exponents 
of two, I wonder how signs and representations relate to mathematical concepts. It appears {1,2, 
4, 8, 16} does not represent the same object to learners.
B.3 Conceptual Fields and Invariant Structures

In my view, the ways in which signs relate to mathematical concepts is a central 
question to studies on mathematical thinking. Vergnaud (1988) attempts to link the model of 
representations to subject-matter analysis and students’ conceptual understanding. He develops 
the constructs of conceptual fields. For him we need not only pay attention to formal symbols but 
also to situations in which concepts are rooted plus the invariants that are recognized by students. 
Akin to Otte (2002) when he talks about the relation between representations and concepts, 
Vergnaud asserts, “a single concept does not only refer to one type of situation, and a single 
situation cannot be analyzed with only one concept. Therefore we must study conceptual fields.” 
(p. 141) How is a mathematical idea such as doublings distinct from the settings, instances and 
representations that illuminate it?

Vergnaud views a concept as a triplet of sets: of situations, of invariants and of 
symbolic representations that can be used to point to the invariants. To Vergnaud (1988) symbols, 
the signifiers refer to cognitive components. He dubs the learners’ and knowers’ cognitive aspects 
conceptual fields. Conceptual fields, according to Vergnaud (1988), are a set of situations whose 
mastery requires mastery of concepts of varied nature. Examples of conceptual fields, he offers, 
include exponential, multiplicative and additive structures. Several mathematical concepts, such 
as multiplication, division, rational number, rate, ratio, fraction and vector spaces, are tied to the 
multiplicative conceptual field. Multiplicative structures are also related to other conceptual fields 
such as additive and exponential structures.

Vergnaud by inventing the construct of theorems-in-action to refer to students’ intuitive 
knowledge relates intuitive aspects to mathematical symbolism and analytic definitions. Students 
may not always represent their understanding symbolically and formally. Concepts exist in a 
larger context and their development extends over time (Rosch, 1999b). Viewed from this 
perspective concepts and conceptual fields are aspects of mind-in-world. They can be formal or
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intuitive.
Vergnaud’s conceptual fields appear to be a subset of what I refer to when I talk about 

worlds o f mathematical significance. It appears Vergnaud would refer to my classifications such 
as the fractional folding-ratio world and the covering-rational number world as concepts that 
make up the fraction conceptual field. To him, conceptual fields are not closed to each other in a 
manner that would apply to worlds enacted. But would Vegnaud’s theory of conceptual fields 
help me understand why students used different actions to double and why their responses 
diverged for higher numerical values? Or better still, what did students attend to in the pattern 1,
2, 4, 8, and 16? What was signified to learners by these numbers?

B.3.1 Worlds Enacted Vs. Conceptual Structures 
I will begin by mapping students’ work on three related structures: Additive, 

multiplicative and exponential as I show in Table B l. The students who repeatedly added the 
previous number onto itself engaged in the additive structure and those who multiplied by a factor 
in the multiplicative rather than in the exponential structure.

Number of sailors 
on the ship

Additive structure Multiplicative
structure

Exponential
structure

1 1 1 2°

2-3 1 + 1 = 2 2 * 1 2 ‘

4-7 2 + 2 = 4 2 * 2 22

8-15 4 + 4 2 * 4 2J

15-31 8 + 8 2 * 8 24

Many sailors 2n

Unlike the Fraction Kit activity in which some students by stacking strips were in the 
multiplicative ratio world and others by covering the whole were in the additive fractional world, 
in solving the Pirates Aboard task the additive and multiplicative structures were closely related. 
Some students who began by adding repeatedly later multiplied. Three more tasks in my study 
involved powers of two: the Consecutive Terms Rice Board and Chessboard squares. Many 
junior high students, during their engagement in these tasks, began to talk in terms of multiplying 
by two when adding to double became laborious. Some students kept doubling by using the 
operation of multiplication but that too became inefficient computationally and in notation. 
(Imagine having to keep adding repeatedly to the 63rd term as is required with the Rice Board 
task!) In ascertaining in which position a student would want to stand if there were 50000 sailors 
even iteratively multiplying by two was evidently tedious and less elegant. Even then, only a few 
junior high students in the study would notice that the whole sequence {2,4, 8, 16, 32, ...} was a 
sequence of doublings, of 2 times 2 times 2 ..., of powers of two—2°, 21, 22,2 3, .... Yet when 
prompted, by being asked what the sequence had in common with a sequence such as {1, 3, 9, 27, 
81...} or to express the sequence in the most simplified form, many students recalled, “O yeah, 
they are square numbers, I mean they are those numbers that you...remember, they a re ,... I do 
not mean 2 times 2, 3 times 3,4 times 4, 5 times 5 ,1 mean those numbers that a re ... o f  two...” 
Why did these students not easily use the signifier exponents of 21

Let me offer one more example from another vignette. It is taken from the activity on 
Consecutive Terms (CT) task. In it Ronald and Tony describe the sequence {2, 4, 8, 16, 32} of 
the numbers that did not have the CT property.
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Vignette B2. Ronald and Tony’s description o f the sequence {2, 4, 8,16, 32}
Tony began commenting that the numbers 2, 4, 8, 16 were all even. The excerpt 

begins when Ronald is responding to Tony’s utterance. I underline the signifieds that the
students used for the set of numbers. Aha utterances are in bold.

EXCERPT B1
199 Ronald: All even r...l
200 Tony: Thev can all be either divided or multiplied bv eight. [Some 

movements and noises, Ronald looks on as Tony writes]
201 Tony: Um
202 Teacher: They are all even. They are all multiplied or divided by 8. [...]
203 Ronald: Multiples of 2
204 Tony: Yeah
205 Teacher: Multiples of 2. Multiples of 2, what are [Tony writes down]
206 [Inaudible speaker]
207 Tony: So far.... [Inaudible] Oh yeah.
208 Ronald: 2, 4, 8,16
209 Teacher: But we also have ...|
210 Tony: 0  iust wait I know. Thev are doublings. So 2,4, then 8,16. So|
211 Ronald: |2 plus 2 is 4. 4 plus 4. 8 plus 8 is 16 [Ronald nodes as he counts 

loudly. Tony writes down, doublings]
212 Ronald: We don’t have 32 here [saying that 32 would be the next term]

The boys went ahead to verify whether 32 satisfied the CT property. They
worked separately. Tony used concrete materials counters and he also tried using dice

278 Teacher:

279 Tony:

and Ronald wrote down his calculations. The next excerpt comes after they have verified 
that 32 does not have the property. Tony had added it onto the list 2, 4, 8,16,32, written 
vertically. They then conjectured that the next term in the sequence 64 would also not 
have the CT property. They were then reflecting on whether they needed to verify this 
guess and whether describing numbers that did not have the property would be sufficient 
to answer the question, “Exactly which numbers have the property?”

EXCERPT B2 
271 Ronald: I think we can make an estimate
277 Tony: |So like numbers that don’t are just the.. .It is just like 2 being

doubled so...
1 will write that down. 2 being doubled .. ,| [teacher had taken on 
role o f a scribe to encourage the boys to write on a shared sheet] 
And we are starting with 2 being doubled and the next kind of 
number doubles. But we didn’t really find the property... 1 guess 
we didn’t really find a property for the yes’s [numbers that have 
the property] [referring to the fact that they were meant to look for  
numbers that had the property yet now they were working with 
numbers that did not]
2 being doubled. Do they have any other ... can we call it anything 
a name or can we use any another term? [Teacher probing]

Tony: I don’t know. ... [doublings, [laughter]
Ronald: IInaudible I .. .double. . .?
Tony: Urn...
Teacher: [ ...] 2 and then 4 . . . I want to write them as ... In terms of 2 .4 in

terms of 2 will be ...? [Sounds like she is writing aloud]
Tony: Um
Ronald: 4
Tony: Um uh Shhh... To the power of two I guess. So 2 will be... 1 to

282 Teacher:

283
284
285
286

287
288 
289
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the power of 2 ,1 think [laughter]. 4 will be 2 to the power of 2, 
then 3 to the power of 2,4 to the power of 2, 5 to the power of 2 
[On his paper he also wrote each o f l 2, 22, 32, 42, 52, directly under 
2, 4, 8, 16, 32 respectively on the shared paper]

With the teachers’ prompting, Tony had articulated that the sequence was “powers of 
two.” He added, “I guess.” Nonetheless he went on to elaborate what he meant, “So 2 
will be... 1 to the power of 2”. Was this a slip in speech? Excerpt 3 comes when the 
teacher was checking to see whether Ronald was familiar with exponents.

EXCERPT B3
290 Teacher: Do you agree Ronald ... [...]
291 Teacher: Can we check th a t... that’s ...
292 Ronald: 3 to the power of 2 is 9.
293 Tony: Wait. O yeah
294 Teacher: Tony you are thinking about something else that ...j
295 Tony: Yeah
296 Teacher: And then it didn’t work here, or you are|
297 Teacher: |No would it be uh,.. 2|
298 Teacher: Thinking of powers
299 Tony: It will be 2 to the power of 2. So I iust did these the wrong wav. I 

think.
300 Teacher: So can we write them the right way ...
301 Teacher: What you are thinking is the right way.
302: Tony: So 2 to the power of 1,
303 Ronald: 4
304 Tony: Yeah. 2 to the of 2. 2 to the Dower of 3. 2 to the power 4 and 2 to 

the power of 5. [His voice became louder and louderl
305 Teacher: Then we could... get a name for the numbers, another name. At 

first you said being doubled. And in terms of what you are writing 
we can call them

306 Ronald: To ... Powers of 2
307 Tony: Powers of 2 (Under lapping) Ronald’s
In the ongoing vignette I contemplate about the nature of the students’ difficulty in 

articulating and understanding exponents, much less writing them as xn. Six students in a 
Ugandan context had the same difficulty. Irene and Lillian first identified the set {2,4, 8, and 16} 
as a special group of even numbers, since 10 and 12 were excluded from the set. They then 
contemplated that it was a set of “multiples of two”, but that was not exact either. Then Lillian 
attempted, “2 times...Because 2 is 2 times ... Because 2 times 2 is 4 then 2 times 2 times 2 is 8.” 

Semiotically speaking, the difficulty with describing the set is about the conventional 
notation, the spoken, written and symbolized signifiers—exponents. But semiotically speaking is 
also about more. Do the students recognize the numbers 2, 4, 8,16 to be unique? Are they a set? 

Sequence? Does the list call their attention to some signified? What signified then? Tony 
2 wrote the numbers vertically as in the figure to the left and the teacher horizontally as 2,
4 4, 8, 16. Does this difference in written signs point to differences in mathematical worlds
8 enacted? Was what is signified by 2, 4, 8, 16 the same thing for both Tony and Ronald,
16 for example? To reiterate: the questions I asked about the Fraction Kit activity: What did
32 the students see? What distinctions did the students need to make in order to perceive the

set as a sequence of exponents? What regularities were possible for them?
B.3.2 Relation o f Signs to Regularities and Worlds in Enacted 

Initially to Tony the set was a set of, “all even” numbers (turn 297) and to Ronald of, 
“multiples of 2” (turn 203). Tony added, they “can all be either divided or multiplied by eight.” 
(turn 200). Then came his aha utterance, “0  just wait I know. They are doubling. So 2, 4, then 8,
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16” (turn 210) Ronald shared in Tony’s moment of insight, “2 plus 2 is 4. 4 plus 4, 8 plus 8 is 16 
(turn 211). It is just like 2 being doubled . . (turn, 277). Clearly Tony and Ronald were not yet 
attending in the exponential-doubling world.

The signified some even numbers implies a class not a sequence of numbers. Additive 
or multiplicative actions relate the numbers by “double the previous to get the next number.” This 
enabled the students to see the next number in the list 32 and the next. Later, Tony revised his 
description of the sequence as “2 being doubled” (turn 277). This was a more precise sign for it 
excluded sequences such as {3, 6, 12, 24,...} . But to the teacher there was a more formal sign, 
exponents of 2. She checked to see if the boys were familiar with it. Could the students have 
identified the signifier, powers of two without knowing the signified, what powers of two meant? 
Or is it that they had just forgotten the signifier but understood the set to be exponents of two?

In turn 282 the teacher prompted for a precise name. To this Tony said, “I don’t know |” 
(turn 283). But he interrupted himself‘jdoublings” Ronald said, “Double ...?” It appears, the 
boys were not conversant with the spoken and written description “powers or exponents” Or were 
they?

When the teacher hinted about expressing the numbers in terms of two “I want to write 
them ... in terms of 2.” After 2 turns, one from each of the boys, Tony said, “Um uh Shhh... to 
the power of two. But he talked about and wrote l 2, 22, 32,4 2, 52. To which Ronald disagreed 
saying, “3 to the power of 2 is 9.” In another aha utterance, Tony then recognized his error,
“Wait. 0  yeah”(turn 293). With some prompting from the teacher the boys corrected, “It will be 2 
to the power of 2 [instead of 3 to the power of 2]. So I just did these the wrong way” (Tony, turn 
299). At turn 306 Ronald articulated the formal category, “Powers of 2” A lot is happening in this 
vignette. This includes shifts in attention, familiarity with concepts, joint attention and aha 
utterances. I will focus on the relation of signs, representations with conceptual structures and 
worlds brought forth.

In my view, semiotics helps us recognize that students use formal labels—powers of 
two and 22—when they can recall them. However, what the set {2, 4, 8, 16} signifies to students 
varies in a manner similar to how what the fraction strips signified varied. At one extreme, it is 
not a unique set. In between, it could be a category. Operating in the additive structure (2, 4, 8, 
16} signified special even numbers. After some interactions, it was seen as a sequence that grows 
by doubling. In the additive, arithmetic progression world, a pair of students looked at, what in 
high school is described as, the common difference between the terms, which unhelpfully is also 
1, 2,4, and 8. Later they saw it as 2 being added onto itself repeatedly. In the multiplicative 
world, another pair tried the expression n = 2X. To Tony and Ronald in the multiplicative 
structure it signified multiples and factors of 8. It was then seen as a geometric progression with 
first term as one and common ratio 2. In both doubling senses and worlds—additive and 
multiplicative—students could by doubling generate many numbers. But there was a more precise 
description of the set, one that enacts and is within an exponential world.

So it seems, before it signifies exponents of 2 the sequence signifies doubles, in the 
additive then in the multiplicative world. This is a layering of semantic and lived significations. 
Hence, use of conventional spoken and written signs—2 plus 2, 2 times 2, 2 to the power of 2 and 
22 are inextricably linked to actions (e.g. repeated adding 2 or iteratively multiplying by 2) and 
conceptual understandings (i.e. of addition and multiplication) as well as to spontaneous signs— 
double 2. Signs as tokens that point to regularities, categories and patterns enacted in particular 
worlds. To me without the enactment of these worlds {2, 4, 8} signify none of these to learners. 
The aspect that a sign might represent something different to somebody else points to divergences 
in worlds enacted.

B.3.3 The Exponential Conceptual Structure
For many junior high students the exponential structure is not a comfortable conceptual 

structure to work. Its objects {1,2,4, 8, 16}, 2n, Xn and the like are not illuminated as such. But 
would this be the case for senior high participants and pre-service teachers? Given the
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exponential sequence 2n, is it easy to imagine where one would stand for a million sailors in the 
PA task? Even, some pre-service teachers, including those who recognized the sequence as 
powers of two and the rule as {2n, where n is the exponent position in the lower neighborhood}, 
folded back to the multiplicative structures—double 1024 to get 2048 as the safe position for 
3000 sailors and then double that continuously to approach a million sailors. This left me 
wondering about how the exponential structure is related to and the ways in which it is distinct 
from the additive and multiplicative structures?

A multiplicative structure appears to spring forth from repeated addition in developing 
the sequence {1,2,4, 8,16, 32 ...}. In one interpretation, when it is multiplication by the same 
multiplicand for a good number of cases, this in turn calls for an exponential structure. Put 
differently, the additive conceptual structure in this case constitutes the multiplicative structures, 
and in turn the additive and multiplicative structures are some constituents of the exponential 
structure as organized in Figure B2. In a way the inner structures of addition and multiplication 
are always there as available points o f return and grounding. To imagine a power of that is in the 
neighborhood of a million is not a voluntary action for a majority of people. It is very different, in 
fact more difficult even for mathematicians, from imagining the power of two near a2bx + d. Is it 
the case that operating across mathematical fields is what makes it hard to imagine an exponent of 
two that is in the neighborhood of a million sailors?

In my research looking at signs and representations is useful; however, it needs to be 
supported by looking at the worlds student enact, what Vergnaud has explored as conceptual 
fields. In looking at mathematical structures as conceptual fields, and, better still, as 
mathematical worlds enacted, four points appear to be discernible:
1) Mathematical structures—what researchers recently have dubbed, micro-cultures, views or 

universes—cut across mind-body-environment and thought-action-perception division. The 
situations that say the exponentiation field may consist of acts such as splitting, scales and 
growth are not merely structures of the environment. The symbols that point to the 
regularities that make up the exponential function are thought-action-perception creations.

2) Conceptual fields are not closed to each other. They have permeable boundaries. Witness 
the folding back. Some might be genetically related. More abstract and hybrid conceptual 
fields may spring forth from a juxtaposition of distinct mathematical settings (Artigue, 
1999).

3) Many worlds of relevance are radically distinct. At many times there are qualitative 
incoherences among fields (e.g. multiplying by 5, instead of doubling five times, was not a 
relevant action in the Pirates Aboard task that grew exponentially. Times 3 is not the same 
as tripling three times).

4) Abstract and advanced fields might be grounded in basic and common actions, interactions 
and distinctions. Lakoff and Johnson (1980) would say exponential growths are grounded 
in basic human conceptual fields such as unitizing, identifying plurality, equal partitioning, 
similarity and repeated splitting or folding.

In Figure B2 I diagrammatically relate the additive, multiplicative and exponential 
structures. The figure illuminates that mathematical signifiers have many related but partly 
overlapping signifieds, as has been articulated in many studies. However, the constitution by 
many, for lack of a better word, meanings, multi-embodiments, micro-worlds or regularities is of 
a kind that is not carefully depicted by such charts or by modern use of the terms structure or 
fields. One wonders how we can illustrate human generalities, categorization and abstractions to 
illuminate the four qualities: mind-body-environment qualities, permeable boundaries, 
incoherences across structures and genetic grounding of one structure in another. The noun world 
seems to capture many of these nuances.

It appears more illuminating to describe the dynamics of students’ mathematical 
thinking in terms of the regularities that arise with actions and interactions and universes enacted 
in doing. This illuminates the emergent nature of mathematical ideas and knowledge. I develop
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this further in the main text chapters 10-11. For now, I examine further semiotic constructs.

Figure B2. Networked mathematical conceptual worlds: A zoom in at multiplication

R e p e a t e d  
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B.4 Systems Elaborations on Semiotics
The recent turn to semiotics to understand mathematical cognition seems to be 

motivated by the view of mathematics as a domain populated by written notations and 
conventional representations. Perhaps semiotics researchers ought to study the ontology of 
mathematical reality that signs stand for as well as calls forth. When talking about the signifier 
and the signified it is tempting, to gloss over the existence of the interpreter, his or her multi
chaining and nested interpretational activity. There is more to mathematical cognition than 
formalized linguistic-institutional aspects. Sensuous, motivated (not arbitrary), analogical, 
metaphorical and other spontaneous signs are easily obscured by symbolic sign systems.
Wouldn’t it be more useful to acknowledge that the cognitive agent, the sign user has a body with 
its experiences and related orders of signifying including pre-conceptual signals? In the spirit of 
Lakoff (1991) one wonders whether by human beings are independent of their “animal” activity 
being rational and linguistic. In my work I am also interested in the distance, the layers between 
the zoo-semiotics and formal symbolic signing. A few researchers extend semiotics toward the 
informal, potentially symbolic or “non-semiotic” signs. It is the connection and trace between
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human semiotics and bio-, material- and social semiotics, the embodied as well as embedded and 
extended semiotics that would greatly benefit an ecological study. Certain researchers including 
Brier (2001), Radford (2003) and Rotman (2000) have attempted such elaborations in ways that I 
explore below.

B.4.1 Radford on Semiotic Means o f Objectification 
Radford (2003) both critiques and appropriates Lakoff and Johnson (1999), and Lakoff 

& Nunez’s (2001) discussions on the embodiment of mathematical concepts. He observes that 
learners have recourse to a broad set of means—not just written symbolic signs. These include 
manipulating objects, drawing, gesturing, and I will add writing, using tools, making 
presentations, metaphorically projecting and making commentaries on their own activity. Radford 
refers to these as (semiotic) means of objectification. Means of objectification are crucial since 
they “throw mathematical objects” to us. In Peirce (CP. 2. 98) these are the peculiar means and 
kinds of observation that allow people who herd together to understand each other. From the 
vignette on powers of two, we see that means of objectification make things perceptually, 
semantically, socially and linguistically accessible. They objectify. To Radford, these means are 
semiotic even when they are non-intentional, not formal and organic, just like the theorem-in- 
action.

My earlier list of signifiers involved in learning unfolds to accommodate non-symbolic 
aspects such as movement and gesture that objectify mathematics. Whereas Vergnaud’s 
conceptual fields are formal, means of objectification may be informal and “not informal”. They 
can be causes and effects, all at once

o Informal means (Real-life situations, mental configurations, etc.) 
o Formal means of representation (Mathematical branches) 
o Semiotic registers (Graphic, analytic, symbolic, etc.) 
o Conceptual structures or fields (Additive, multiplicative, etc.) 
o Semiotic means of objectification (actions with concrete things, gesture-based 

actions, natural language oral speech, written sentences, theorems-in-actions) 
Radford distinguishes that occurrence of mathematical objects is related to culturally 

embodied experiences but not to biological embodiment. The body for him, quoting Foucault, is 
only a surface of inscription of social, cultural, linguistic and historical experiences. To think 
mathematically is to transform mathematical-cultural objects into objects of one’s understanding 
(Radford, 2003). The body is thus affected by the socio-cultural, but, to use a complexity term, it 
has no significant feedback loops with these experiences. He prefers to use the term empracticed 
experiences instead of embodied experience. (Peirce, CP, 2.245, uses embodied.)

By appreciating the body and spontaneous actions as sources of biological, material and 
pre-linguistic constraints for formal mathematics Radford’s work adds a new wrinkle to 
mathematical didactic semiotics. He comes so close to the enactivist stance of “putting body 
back into mind”, but it appears he does not go all the way. He put minds back into body. And he 
takes on the material embodiment of signs, but he is reluctant to take on their biological 
embodiment in more fundamental ways. Why linguistic-cultural theorists find it hard to recognize 
that the body and its informal actions inscribe something on mathematical practices begs 
attention. The complexity notion of mutual causality would explain that both the body and culture 
constrain each other.42 Radford might also benefit from the principle of nested levels of 
emergence. This metaphor could place the body in its appropriate level of description without

42 As demonstrated in Chapter 5, whereas the body is a surface o f  socio-cultural inscriptions, which in 
many w ays is a result o f  culture and language, it also sim ultaneously inscribes a lot on mathematical 
culture and language. “The body is shaped by the w orld that it participates in shaping” (B . D avis, 1994, p. 
56). From an eco-com plexity  perspective, to deny the b iological ties o f  mathematical experiences does not 
sit w ell with any study o f  human actions, how ever virtual and esoteric the mathematical actions might be. It 
is functionalistic to consider the body, the signifying devices, irrelevant in signification (Rotman, 2000).
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threatening the importance of culture and history.
B.4.2 Mathematical Activity: Orders o f Signification

Rotman (2000) develops a semiotic model of mathematical activity in which he 
illustrates that a mathematician engages in the signifying activity at three levels: the lingual, 
sublingual and meta-lingual levels. Mathematical objects for Rotman are not ideal, platonic 
forms, pure formalistic thoughts or mere intuitionistic constructions of the mind, nor are they 
located in tangible written products without relation to reality. “Mathematical objects are 
mentally apprehensible and they owe something to human culture; they are with material, 
empirical, embodied, or sensory dimension. That is their existence, realness and objectivity.” (p. 
47) In a manner similar to enactivism, he emphasizes the role of the body, tools and technology, 
and of materiality in meaning.

To Rotman mathematical signifiers have a creative role rather than a merely descriptive 
one. It is neither the signifiers (as with Saussure) nor the signified (as with Lacan) that are 
secondary. The whole signifying activity is important in the generation, sustenance and 
perpetuation of mathematics. For example, numbers do not precede the numerals (the signifiers 
that bear them), nor can signifiers (the numerals) occur in advance of signifieds (the numbers). As 
Sfard (2001b) also put it, they are co-significant. Neither 2n nor the pattern doubling or 2 times 2 
times 2 ... is without the other.

For Rotman, mathematics rests on written signs and scribbling. He says written signs 
are marks with meaning. To explain how writing (in its broadest terms) is inseparable from 
thinking he states that writing and thinking are the mathematical orders o f signification. They are, 
“[Ojutside the purpose of analysis and the like, impossible to separate” (Rotman, 2000, p. 58). As 
orders of signification neither one of them is secondary to nor separate from the other. Rotman’s 
assertion adds yet another column to Mac Lane’s (1981) table that maps tangible formal 
mathematical systems, in a one-to-many relation, onto ordinary human activities. The column 
Rotman’s work suggests is of mathematical objects that arise from and in turn suddenly advance 
ordinary and mathematical activity. Rotman would add writing and thinking to the first column in 
each row of Table B2.1 would add another column, to would include notating, signifying, 
puzzling and other ways of being in ways that are mathematically adequate; I said more about this 
in Chapter 10. The rows of the table are ever incomplete. They grow.

Table B2: Basic Activities, Formal Domains and Mathematical objects
Basic Human Activities Mathematics Domains M athematical objects

Counting, writing, thinking Arithmetic, Number Theory Numbers, patterns, sequences
Measuring, writing & T Calculus and Analysis Units of measurement, Real 

Numbers, points, functions, lines
Shaping, W & T Geometry and Topology Geometrical shapes, spaces, 

dimensions,
Forming/Designing, W & 
T

Symmetry and Group 
Theory

Curves, groups or sets

Estimating, W & T Probability, Measure 
Theory and Statistics

Operations, relations,

Moving, W & T Mechanics, Calculus and 
Dynamics

Limits,

Calculating, W & T Algebra and Numerical 
Analysis

Equations, roots

Proving, W & T Logic operators

Puzzling, W & T Combinatorics and Number 
Theory

382

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Grouping, W & T Set Theory and Sets, elements
Combinatorics

On the question of whether the body or materiality are primarily and purely cultural 
constructions, Rotman (2000) argues that to exclude the biological, the experiential, the corporeal 
and the enactive from what is meant by embodiment “is servitude to theory and high
mindedness” (Rotman, 2000, p. 109). All signs are the work of the body. Actions, thoughts and 
perception makes them human objects. Latour (1996) would say that mathematical objects are 
quasi-sensorial and quasi-bodily—they are co-determined by sensory-motor, perceptual and 
imaginary sources (Cohen & Varela, 2000) They, like other emergent wholes, are rooted in the 
body yet they have an identity different from bodily aspects. Rotman (2000) identifies the belief 
that “signs are always signs of or about some pre-existing domain of objects” as the “poverty or 
platonicity of some semiotics.” (p. 52). Mathematics educators have to draw from Rotman’s 
semiotics.
Figure B3. Rotman’s Triadic model of mathematical activity

S u b je c t

A g e n t P e r so n

Rotman (2000) develops a triadic model of mathematical activity consisting of the 
subject, the person, and the agent (see Figure B3). For example, a mathematician as a subject 
engages in counting, measuring, proving, puzzling and, Rotman highlights, writing activities that 
have potential for formal mathematics. The subject engages in scribbling as well as thinking. At 
this level mathematical activity is lingual coded and usually involves material and sensory 
manipulations. Rotman adds, “Counting is not a progression through existing infinite sequence of 
timeless, spaceless, and originless objects” (Rotman, 2000, p. 78). Although it might appear that 
way to an agent for whom the universe of numbers has already been brought into being, to the 
child the subject who is yet to count and make marks about his/her counting, numbers do not yet 
exist.

From the activities of the subject arises the agent, who engages in the mathematical 
code. The agent’s activity includes sublingual imagined actions in which he/she can, for example, 
add elements of a divergent sequence, operate with exponential functions, thinks about infinite, 
work with infinitesimals, or talk about the average of x, y, and z unknown values. This is a level 
of imaginary action that is made possible by conventional signs and rigorously formulated sign 
practices. It is a level only carried out in principle: an imaginary, virtual universe.

The objects of the mathematical culture—the agents’ nouns such as the points, numbers 
or dimensions (column 3 in table 5)—are underlain by the activity of the subject, by the subject’s 
verbs such as draw, count, double and measure (column 1). In a sentence, “[Mathematical 
signifiers are themselves dependent on some prior signifying activity” (Rotman, 2000, p. 23).

Mathematical notations such as V, II, %, * and 2n arise informally or formally,
during the activities of the subject, to notate as well as to create the mathematical objects, the 
signified properties. In my view, mathematical symbols or signifiers such as numerals, 
symbolized notations and linguistic phrases (e.g. “multiples o f ’ and “exponent”) are signs by 
virtue of the interpretative role of the mathematical agent who has at some time acted, perceived 
and thought as a subject. To the agent, signs appear as signs about some existing domain, but one 
enacted by the subject’s activities. In enactivist terms objects and signs are, as I explored in
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chapters 7-11, inter-objects. Mathematical sign practices occur, in the first place, as informal and 
unrigorous elements in a merely descriptive, motivational or intuitive guise within the meta-code 
of the mathematician as a person, Rotman (2000) adds.

A mathematician as a person arises when he/she thinks and talks about the 
mathematical universe. This meta-code involves the meta-lingual activities of the person (column
2). All codes considered the junior high students I worked with had not yet engaged fluently in 
the exponential universe at the meta-code level of the person. They could repeatedly double to 
raise two to an exponent, but could not notate this conventionally. It might also have been that 
they had earlier on engaged in the agent and person’s code. Generally, mathematical activity 
might seem formalistic within a person’s activities, just as it might seem platonic within the 
activities of the agent, or as intuitionist within the activities of the subject. There is a layering of 
mathematical activity and experiences. Mathematical signs include the signs of the subject and 
agent.43 More layers can be added on Rotman’s three orders of signification. With technological 
and thought tools that can visualize more than three dimensions theorists may not want to limit 
themselves to triads much less to dyads. Not any more.

Although Rotman (2000) challenges the roots of the semiotic school of thought in 
structuralism, realism and rationalism, all his three layers—lingual, sublingual and meta- 
lingual—are of the linguistic order. A question arises: Is mathematics in particular, and human 
semiotics in general, basically a linguistic activity?

Brier (2001) elaborates on the concept of signification in ways that are commensurate 
with bodily and material signification. I take on Brier’s (2000, 2001) work for a more ecological 
semiotics that relates to multi-dimensional signifying systems, most of which are nested in, and 
therefore intricately related to, the formal-symbolic sign system. Indeed when Peirce’s semiotics 
is read with complexity metaphors it grows.

B.4.3 Nested layers o f signification: Embodied Sign Concept
Brier (2001) maintains that Peirce’s sign concept is less general than what is needed for 

a study of signs in its broadest terms. We need a concept of meaning and signification that 
integrates bodyhood and biological heritage plus post-linguistic sign systems. Perhaps this would 
be too broad a concept, but there are metaphors and tools that handle the complexity that comes 
with the consideration of interactions between many layers of signification. In addition to 
embracing the endless serial nature of sign systems, Brier (2000) has extended human semiotics 
to illuminate the biological, psychological, socio-linguistic and socio-cultural aspects of meaning 
making. In my view, even the more restricted understanding of sign as “something which presents 
itself to the senses as something other than itself to the mind” (Augustine (n.d.) quoted in 
Radford, 2003, p.42) could be usefully extended to span more than one level. Patterns of the body 
and regularities in actions, for instance, could be studied as signals, messages and signs at their 
scale of activity. The broadened concepts of the sign, sense or mind are not only relevant at the 
human communicative scale of explanation, but they are also relevant for meaning even in 
simpler organisms and at collective human cognition. I again orient my exploration of Brier’s 
cyber-semiotics with Davis et al.’s (2000) drawing of nested bodies that we saw earlier on. In a 
way Brier imagines that each of these six knowing bodies or organisms—bodily, personal, 
collective, societal, species and planetary—engages in signification. Redefining the scale of 
complexity will allow for the consideration of organic, material and technological signals as 
signs.

In Figure B4,1 juxtapose Rotman’s (2000) levels of mathematical activity with Brier’s

43 B ateson’s im plication that anything that triggers a response is a sign, even if  it occurs in a layer o f  
com plexity other than that o f  interpersonal com m unication is a far-reaching elaboration that potentially  
includes the study o f  signals and sem io-chem ical signs as w ell as en larged  signs o f  signs, patterns and 
order. It ushers in the study o f  how humans, both in the daily perception and in the observation o f  
mathematical properties, order their worlds.
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(2001) spheres of semiosis. I include the body as an inner level of activity that layers the subject, 
agent and person’s mathematical activities. It is layered signification that includes:
B.4.3.1 Endosemiosis: Sub-personal Semiosis

The nervous, hormonal and immune systems’ web of signals is continuously going on 
inside our bodies. The nervous system itself is a web of signals: synapses, firings and currents. 
These are organic signs. The semio-chemical, dynamical and physical level of signification might 
be called the somatic level o f semiosis. At this level of constituents and bodily activity, neural and 
emotive signals, gesturing, idiosyncratic coordination of actions and perceptual motor activity by 
virtue of the fact that they trigger responses in the states of the body, could be considered as pre- 
conceptual signification.44 These layer the pre-linguistic sphere of signification, which includes 
non-verbal thoughts, emotions and hunches.

Figure B4. Layered mathematical activity___________________________________________

B.4.3.2 Psychological: Personal Semiosis
It is from the coherences and interactivity at the bodily level of signification, as we saw 

in Chapter 5, that global, conceptual and psychological signification springs forth. Each

as the individual psychological signification sphere.

B.4.3.3 Social-Linguistic Semiosis
The psychological signification space is again perturbed by social interactions, 

including competition, cooperation, reproduction and socialization. The social, or more 
specifically in humans, the linguistic-cultural space of signification arises as they live together, as 
they recurrently interact and coordinate actions with others. When this is done successively

44 T his cla im  should not be interpreted as saying brain im pulses are sentient or that they are signs at the 
socio-com m unicative level. Quite the contrary; the different bodily states that spring from collectives o f  
biochem ical and physiological activities are causes and effects o f  conceptual and linguistic sign system s.

i f f l

articulate,  draw,  v i sual ize  and conjecture

■ Li ngui s t i c  a nd  S oc i a l  C o m m u n i c a t i o n :
A g e n t ’s act ions such as to record,  write,  organize ,  argue,

N e u r o - m o t o r ,  P e r c e p t u a l  and P re - co n c e p t u a i :
Bodi ly  activi t ies such sensory and kinesthetic images ,  
impress ion,  neural  activit ies,  emotional  states

C o n c e p t u a l  and Pr e- l i ngui s t i c  I nt er pr et at i ons :
Subject ’s act ions such as to experience,  gesture,  
manipulate  articulate,  sketch,  count,  classi fy and shape.

F o r m a l  and R i g o r o u s  L a n g u a g e  G a m e s :  P er son’s 
actions such as to formal ize ,  def ine,  theorize,  general ize ,  
schemat ize ,  prove and predict.

individual human has an emergent mind with imagination, goal-directed behavior and volitional 
capacities at a level different from the bio-chemical one. Brier (2001) refers to the mind’s activity
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within a specific group of humans that share fundamental motives, another level springs forth, 
one that is more organized and formal.
B.4.3.4 Symbolic-Communicative Signs

Another order of signification is made possible through human imaginative and 
symbolic capacities such as the capacity for language and symbolization. Brier (2001) explains 
that formal linguistic semiotics springs from symbiosis. Humans use their social and psychic 
minds to order and comment on their linguistic behavior with fellow members of a specific 
culture. This appears to be the case with formal mathematics and other formal disciplines.45 
B.4.3.5 Integrated and Multi-threaded Signification Spaces

Levels of signification relate to each other in complex ways. Outer symbolic signs layer 
and are layered by inner instinctual signals. In a way the para-lingual signals such as mental 
images, sensory images and bodily orientations are internal and embedded, but not internalized 
social signs. From the emergence principle, in addition to inner layers unfolding into outer ones, 
inner and outer layers constrain the space of the possible. Thus, in a way all spaces of 
signification nuance each other. To describe them distinctively in the above hierarchy is only 
possible in reference to their evolutional time scale, from single-celled to multi-celled, then 
animals, individual humans and human collectives. A more elaborate view of this inter-level 
interaction’s offered in Chapter 5.

BAA Layered Mathematical Signification 
Which levels are primary levels of signification in mathematics: The material-bodily, 

the conceptual and pre-linguistic, the socio-linguistic, or the formal language games level? This 
question, as explored in Chapter 2 with theories of learning, has been pertinent for studies on 
mathematical thinking. Rotman (2000) answers this question by saying the outer three spaces— 
the lingual coded—are primary in mathematical activity. Non-linear dynamics would suggest that 
all levels are significant. I pursued this further in chapters 9, 10 and 11 as I explore how to orient 
students’ mathematical attentiveness 46

Human semiotics, as interpreted after Peirce, Lacan and Saussure, is helpful, but is 
currently overly restricted to specific levels of description that are sufficient for researchers who 
consider mathematics to be largely, or even strictly, based on formally written, symbolic 
meaning. Modern mathematics flourished with and depends on diagrammatic, alphabetic and 
numeric writing systems and on formalizing. Historically (as well as developmentally), however, 
we do not have to look so far to remember non-classical, proto- and day-to-day mathematical 
activities. Classical mathematics has its origin in such activities as Pythagorean mathematics, 
abacus mathematics and syncopated algebra, which probably involved as much of the proto-sign 
systems as they did symbolic ones.

Less formal mathematics, from which formal mathematics arises and subsides into, is 
fundamental from the didactic point of view, particularly if we are to transcend the problems

45 This socio-com m unicative level o f  signification does not em erge on ly  from conceptual and pre-linguistic 
signification. It is a distinct level o f  signification with a high degree o f  autonom y, its own sign system , its 
dom ain o f  objects and with novel and at times fantastic processes that have distinct identities— o f  formal 
language, politics and culture. B ecause it is an em ergent w hole, it turns back to constrain the psychological 
and then the inner pre-conceptual and paralinguistic spheres. This effect o f  looping back applies to the 
other layers as w ell.
46 In m y writing I infer that the em ergent psychological, linguistic-cultural and form al-com m unicative sign  
system s remain constitutively and historically tied to their origins in the bodily signal system . Their origins 
and experiences reconfigure their horizons. In a study about the dynam ics o f  students’ mathematical 
attentiveness, to make no mention about lower layers o f  signification  and about the recursion o f  levels o f  
signification is to lim it the level o f  com plexity o f  the d iscussion . A s w ell to lim it the discussion to the 
physiological, b io-chem ical and artefactual traces o f  cognition w ould be the other side o f the coin. There 
could also be other, perhaps recent on the evolutional scale, outer signification spaces that influence 
students’ mathematical thinking. M y study is open to those post-linguistics spaces as well.
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encountered in understanding how  students think m athem atically. W hen thinking is taken as 
perception-in-action rather than perception-before-action non-linguistic sem iotics has to be called  
to mind.

F igure B5. N etw orked and Layered signification Spaces

r g a n i z e d  a n d  f o r m a l  
c o l le c t i v e s :  formal 

symbolic signification 
spaces such as 

mathematics

S o c ia l  a n d  h u m a n  
c o l le c t i v e s :

linguistic-cultural 
Space

M i n d :
conceptual, pre- 
linguistic Space

'*  / /

conceprpl  
organic

Feed backward loop-

Feed forward loop— Emergence

In many w ays sem iotics has been  recursively elaborated upon, from  Saussure’s 
em phasis on the spoken  w o rd  and purely psychological signs to the written and creative role o f  
signifiers, and to include non-sym bolic sign system s. Brier’s (2001 ) interest, and hence m y  
interest in his work, does not m ean that sem iotics at the level o f  language gam es is not important.
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Rather, the point is that it is important to understand the depth and dynamics of formal signs, to 
understand that there is connected causation from the body and materiality to symbolization. In 
Radford’s (2002) language, the body and its artifacts also inscribe so much on culture, language 
and history.

This discussion on eco-semiotics demonstrates how semiotic studies in mathematics 
education could benefit from broadening the conception of signs and representations. Figure B5 is 
an illustration of layered and networked mathematical signification spaces from a systems and 
ecological orientation that frames this study. It illuminates the nested yet fractal and multi
threaded nature of sign systems.
B.5 Is This Study a Semiotic Study? A Conclusion

I recognize that a study on perception and observation could benefit from post structural 
frameworks on signs and visualizations. Some semiotic vocabulary such as orders of signification 
and means of objectification could be usefully adopted in a study on the dynamics of students’ 
mathematical thinking and attentiveness. I view my exploration of semiotics as a recursive 
elaboration by way of reading and constructively critiquing semiotic theories. By considering 
sign systems in a broader framework to extend beyond the formal communicative level, semiotic 
theorists would develop systems understandings that study pre-linguistic and pre-formal signs as 
well. In light of my exploration, I consider my study to be about how regularities arise and how 
humans order their worlds; it is more about the development of patterns and of meaningful 
wholes that happen over time and with experience than about static signs and structures; it is 
about signification, concepts, representations and points of view understood in broad terms as 
tokens of actions and interaction. Whichever level of mathematical signification I study, in one 
way or another it ought to reflect interactions with other levels of signification. The complexities 
of nested, and multi-threaded signification need to be accommodated if the recent discussions on 
mathematical thinking that draw from semiotics are to avoid separating thought, action and 
perception. Eco-complexity frameworks have much to offer the embattled and broadly adopted 
field of semiotics and other post-structural frameworks.
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APPENDIX C Demographic Survey Form

Demographic Information of Participants in the Research On Mathematics Learning by
I. Namukasa, University of Alberta

Name:_________________________________________________________
Grade:___________________________________________________________
School: ___________________________________________________________
Year of Birth:______________________
Favorite school subjects:____________________________________________________

Rank the following statements (Circle whichever best describes you)
1. I enjoy mathematics.

Strongly agree 
Agree 
Neutral 
Disagree
Strongly Disagree

2. Mathematics is an easy subject.
Strongly agree 
Agree 
Neutral 
Disagree
Strongly disagree

3. I have always liked mathematics.
Strongly agree 
Agree 
Neutral 
Disagree
Strongly Disagree

4. I will do more math at college or University.
Strongly agree 
Agree 
Neutral 
Disagree
Strongly Disagree
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Please answer the following questions as best as you can

Which mathematics topics do you enjoy most?

Which mathematics topics do you find most difficult?

What mathematics topics have you done recently at school?

Do you ever do mathematics outside the mathematics classroom?______
If YES, in what situations do you do mathematics outside the classroom?

If NO, do you have a reason why you do NOT do mathematics outside the classroom?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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APPENDIX D Interview and Observation Prompts 

Interview Questions
Interview questions were contingent on observations of the researcher on preceding activities. 
Some were specific to a particular pair of students and others were generic.

Generic Interview Question and Activities
• Explain how you got your answer.
• What did you have in mind when approaching the task in this way?
• Can you convince me that your answer or strategy works?
• Why did you stop using counters and concentrated on writing instead?
• How can we be sure that the solution you have is right?
• Have you done a similar task in class before?
• What else would you like to find our about this task?

Pair Specific Interview Question
• Do you remember anything about the last task?
• Have you done something at school that relates to the last task?
• Would you like me to show you how I analyze and work with your data?
• How would you describe how you work as a pair or collective?
• What and when do you underline?

Observing Questions
Progressively I developed a list of questions to keep in mind as I observed students’ engagement 
during sessions, watched the video records, transcribed the sessions and studied the transcripts. 
The list of observational questions included, when the pair is solving a problem:

• What metaphors do they use?
• Are they solving it mathematically? And in what way?
• What actions are the bases of the mathematical concepts they use?
• What knowledge or mathematical objects are enacted by their actions?
• In what ways do the above models help me to understand students’ actions and 

interactions better?
• In what ways do the Simmt (2000), Pirie and Kieren (1989) and B. Davis et al. 

(2000) above models help me to understand students’ actions and interactions 
better?

• Are they solving the problem mathematically?
• Which concepts do they draw upon?
• Do they use natural language, formal mathematical language or symbolic 

language?
• What mistakes do they make? What difficulties do they encounter?
• What models, interpretational, images or intuitive tendencies do they have for a

particular concept?
• What procedures and skills do they use?
• What level do they work at and how do they progress through Pirie & Kieren’s 

(1989) model of understanding: Image making, image having,....
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APPENDIX E Extra-curricula Anecdotes and Vignettes with Preliminary Analyses

An example of students’ engagement in a variable-entry and good enough problem 
Chessboard Squares
It was claimed that there are 204 squares on an ordinary chessboard. Can you justify this claim?

Vignette El. Chessboard Squares (CS) Task 
Students worked on the CS problem using varied ways. For example to work out the number of 
squares in a chessboard, students proceeded in varied manners, some novel, others not:

(a) To a few students what was possible was to find in a systematic way how many 1X 1 
squares, 2 X 2  squares, 3 X 3  squares there are and so on. Finding out how many of each there 
were was done in a couple of ways. One pair of students systematically considered, for example, 
the number of 2 X 2 squares in a 2 X 8 row to get 7 squares, which they multiplied by 7, the 
number of 2 X 2 rows in the chessboard. They used the same method for the 3 X 3, 4 X 4 etc. To 
me an observer this was a novel approach and an efficient way to approach the problem.

(b) To others what was possible was to randomly recognize that there was an 8 X 8 
square, another square of different dimensions, and many more squares of varied dimensions. 
Usually this was a path full of frustrations.

(c) Other students carefully marked and counted the squares of varied sizes one by one 
until they got what they thought were all the 85, 100 or 204, or until they realized it was a 
laborious process. They were then, emotionally, prompted to look for an easier way. “There must 
be an easier way”, one student assured her partner as they contemplated how best to solve the 
problem.

(d) A few students tried to divide the chessboard, for example into quarters, for example. 
They worked with the quarter to get, say, nine 2 X 2  squares from which they inferred that the 
whole chessboard had thirty-six 2 X 2  squares—an error-laden approach that only a few students 
were able to correct.

(e) A few pairs of students went looking for patterns as soon as they had carefully worked 
out, for instance, how many squares there were of dimensions 8X8,  7 X 7 ,  5 X 5 ,  6 X 6  and so 
on. These students took a relatively short time and were able to detect errors more quickly.

None of the students that I have worked with has approached the task by considering 
game boards of size 1X1 ,  then 2X2 ,  then 3 X 3 to look for a pattern. This is an approach that is 
not only spontaneously possible for me now but one which now I view as optimal, having 
attempted the task myself, seen many students attempt it in varied ways, and read about other 
solutions.

There is a variation of this task that I usually offer to students who are not yet used to 
engaging less definite tasks or as a prompt for students who seem to despair at finding the number 
of squares in the chessboard.: For such students the task as it stated in Mason et al (1985) is good 
enough:

It has been claimed that there are 204 squares on an ordinary chessboard. Can you justify
this claim?

As the students work on the problems, I not only closely observe, I participate with them. Let me 
say more about my role as a participant observer.
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Illustration of the Role of Participant Observer
Vignette E2.The Bee Genealogy Task: Rose and Norah’s Fifth Session 

Male bees hatch from unfertilized eggs and so have a mother but no father. Female bees 
hatch from fertilized eggs. How many ancestors does a male bee have in the twelfth 
generation back? How many of these are males?

Rose and Norah participated in five sessions: the first on Dominoes, the second on 
Matches 1, the third on Ladies Luncheon, the fourth on Fifteen and the fifth on Bee Genealogy. 
Before narrating Rose and Norah’s engagement with the task let me offer a solution to the task to 
orient the reader to the task. I adopt it from a solution by pre-service teachers. A group of four 
pre-service teachers they chose to use toothpicks and two colors cube-a-links, one color for male 
bees and the other for female bees. They modeled the generation on the classroom floor as 
depicted in Figure El. One student, squatting down by the first bee, saw that there was a pattern 
in the model. “You add the number of bees in the two preceding rows to get the number of bees 
in the next row” he blurted out. His group mates listened in. As he pointed at the model he further 
explained, “1 + 1 = 2  bees in row three, 1 + 2 = 3 bees in row four, 2 + 3 = 5 bees in the fourth 
generation back, 3 + 5 = 8 ancestors in the fifth generation, 5 + 8 = 13 in the sixth generation and 
so on. Using this Fibonacci sequence in ten minutes the students were then able to find the 
number of ancestors the male bee had in the 12th generation back and to conjecture the value for 
the nth generation. Now we return to Rose and Norah’s engagement. The girls got their answer in 
less than 7 minutes! In the vignette my interventions are in bold.

After reading the question, Rose asserted, “Unfertilized eggs, it means it [the male bee] 
only has females [ancestors]” She then turned to me and asked, “A generation, does it mean that 
it should only be one bee?” I asked, “What do you think, Norah?” “1 think we should count one 
generation as one bee,” Norah replied. The girls then turned to their papers to write. After 2

Y 2 minutes, Norah asked Rose, “Did you get the answer?” Rose replied, “Eleven”. Then Norah

said, “Eleven-twelfths”. I then interrupted the girls saying that I did not understand how 
Norah had gotten . Rose explained, “If I am the 12th then I have 12-1 or \ y  -  .... If it

were fertilized it would have 24 ancestors.”
Figure E 2 .1. A concrete representation of the Male Bee Family Tree

When the students advanced to answer the second part of the question, “How many of 
these are males?” Rose with assurance said, “I think there are no males, they can’t be asking for 
males.” To this I retorted, “A male bee has a mother, how about the mother?” Norah replied, 
“I would have only male ancestors if I was the bee.” “I even wonder how the generation would 
continue,” Rose interrupted. Noticing that they had done little to represent their work, I prompted, 
“Could we have a male bee...could we have something to represent a male bee?” They then
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turned to their papers to write. Each of them 
drew a tree diagram in which they chose to 
follow, in Rose’s words, only the “exact 
lineage”. At each node they finished the left-most 
branch, which produced a skewed tree.

In their diagram to the left A is the 
male bee, M is for Mother and F is for the Father 
bee at every node. After a few minutes, Norah 
turned to Rose’s tree and counted: 10 male 
(Fathers) and 11 female (Mothers) ancestors. She 
asked Rose why they never had to draw the other 
branches. Rose responded, “To reduce the space 
it would take, we leave those others”. Noticing 
that they were making an assumption that served 
mainly to reduce the workload, I joined in by 
drawing attention to the fact that they were 
answering a question in which only “first 
ancestors” counted as ancestors, yet there was a 
possibility that all ancestors would count. When 
I asked which of the two possibilities they 
wished to consider, Norah replied, “The second 
one”. They then proceeded to complete the other 
lineages.
E2.1. Ongoing Prompts to trigger 

mathematical behavior
It appears at first the girls read twelfth as a clue to a fractional solution. In a couple of 

minutes they had the answer, a male bee has “Eleven-twelfths” ancestors in the twelfth generation 
back. They later chose to consider only one branch. This was “to reduce on the space it would 
take,” Rose explained. I then perceived that their ways fell short of mathematical activity. It was 
unlikely that they would behave in a mathematically adequate manner after choosing to neglect 
facts that made the task space and time-consuming. Instead of devising ways to make the task less 
laborious, they changed the question to a simpler one; Instead of searching for patterns, 
specializing or generalizing situations they reduced the task’s magnitude. When mathematicians 
and students when they behave mathematically do not they repeatedly throw away the 
nonessentials, not for simplicity but for the sake of elegance and computational effectiveness 
(Kauffman, 2001)? When they make conjectures, don’t they seek to verify them? They organize 
and systematize, or formalize, and progressively refine their fundamental intuitions and common 
sense (Dehaene, 1997; Ernest, 1991; Freudenthal, 1991; Joseph, 1991). For Freudenthal (1991) 
this process of mathematizing involves progressive organizing, formalizing, algorithmzing and 
symbolizing to distill, abstract and transform situations.

When I noticed that Rose and Norah had taken 7 minutes to get the answer “10 male 
and 11 female ancestors”, I contemplated: Should I offer them another task? Or should I explore 
with them the possibility that a boy bee might indeed have male ancestors? I had earlier on tried 
to shepherd Rose and Norah by subtle prompting: “What do you think, Norah?” “I don’t 
understand how you got .” When Rose concluded that there are no male ancestors I rug

pulled, “A male bee has a mother, how about the mother [what parents does she have]?” The girls 
proceeded to draw the family tree. Seeing that the girls were engaging in the task without any 
concrete or symbolic records, I invited the girls to have something on paper, a potentially fruitful 
action. “Could we have something to represent a male bee?”, I suggested. Even then the girls
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drew a skewed family tree. I then decided to invite them to explore a situation in which ancestors 
for a bee could mean more than immediate parents of female ancestors. I asked, thinking that by 
considering all ancestors the girls would encounter a constraint—computational size—that would 
prompt rigorous ordering, as well as noticing structures. The girls then proceeded to complete the 
other branches of the tree and to look for patterns. After reflecting on Rose and Norah’s fifth 
session I began to watch for basic actions that create the potential for adequate mathematical 
behavior. A new theme had emerged for me. I explore this theme later.
E 2.2. Relative Suitability of tasks

In retrospect, this incident challenged me to reflect further on the suitability of tasks 
with respect to a particular pair of students. What did I mean by an appropriate task in the context 
of Rose and Norah? Did the task dynamically motivate them? The girls appeared to understand 
generation in colloquial terms. Did they know what is biologically implied by fertilized eggl 
Whereas Lillian and Irene, students from the same classroom, seemed to have engaged on the 
same task a week before without much dependence on my interventions, Rose and Norah needed 
more ongoing prompting. Lillian and Irene had used dominoes (labeled the marked face as female 
and the other side male) with which they modeled an ancestral tree for the first five generations 
after which they tabulated their results to look for a rule. By contrast, Rose and Norah reduced the 
task magnitude. They made unfitting assumptions and read clues, a mathematically ineffective 
practice that Artigue (1999), Boaler (2000b) and Schoenfeld (1988) observed students in 
traditionally taught schools resort to.

Although Rose and Norah appeared to know that a fertilized egg had both a mother and 
father, the phrasing of the question might have posed a problem. I realized this during the actual 
study when a pair of students remarked on the incompleteness of the second sentence in the 
question. They said the sentence should have read, “Female bees hatch from fertilized eggs and 
so have a mother and father”, in parallel to the first one. They thought there had to be a reason 
why the “examiner” (to use their examination oriented language) had not added the last clause. 
But were these students reading clues as well, or were they reading more charily? Students 
stumbled on the phrasing in the Pirates Aboard and Ladies Luncheon tasks as well. Ugandan 
students particularly could not do the LL task until I switched the names in the task to those 
common in their context.
E 2.3. Broader Questions about Participation

Like many other students but unlike Rose and Norah, the fact that Lillian and Irene 
were not overwhelmed by a genealogy tree that grew exponentially, may be explained by the 
types of tasks each group had already been exposed to. Irene and Lillian had done some pattern 
noticing based on the Chessboard Squares and an Iterated Triangle task, but so had Rose and 
Norah on tasks like Dominoes and Matches 1. At a closer look, these pairs of tasks vary in 
computational intricacy—the former involve a faster growth rate and more than one sequence. 
Thus a task that had been appropriate for Lillian and Irene, given their embodiments that included 
tasks done in earlier sessions, may have been less appropriate for Rose and Norah. Boaler 
(2000b) and Schoenfeld (1988) remark that certain “expectations” occasion what students 
perceive in exercises: The manner of choosing to consider only the exact maternal lineage seems 
to be aligned with an attunement to more defined, quick-fix and easy pattern questions. I say 
more on attuning attention later.
E 2.4. Researchers’ Complicitness in Students’ Mathematical Behavior

Rose and Norah’s session also raises broader questions: Were they motivated to solve 
the problem? What was going on in their lives that evening? How well had they worked together 
as a pair? What were their classroom mathematical experiences like? These questions point to 
personal, interpersonal and institutional structures that structure students’ thinking. The BG task 
had the potential to structure students’ behavior in mathematical ways, but the girls did not appear 
to be inclined toward behaving mathematically. Why was this the case? In the preliminary study,
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before engaging the students in the tasks in their preliminary study, I had not looked at their 
demographic information. After analyzing the data from the preliminary study, I designed a two- 
page survey form (see Appendix C). I also planned to consult school records that documented 
participants’ performance in mathematics whenever possible.

Reflecting on the connection between previous tasks done and engagement in any 
mathematical task, I began to debate whether or not I was going to expose students to tasks that 
were unlike most classroom tasks during the first session. In a manner antithetic to mathematical 
thought many text book tasks, tend to be clue-giving, single-strategy and quick-fix. I wondered 
whether by offering richer tasks I would jeopardize the specific purpose of the study to explore 
the dynamics of students’ mathematical attention. However, framing my role first and foremost as 
a teacher helped me to resolve this tension. I decided that I would engage the students in Uganda, 
who appeared not to have wide experience with non-routine mathematical tasks, in pre-sessions 
on problem solving in which I prompted them to reflect on what they thought would help in 
solving problems.
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APPENDIX F Sample Students’ Written Work

Lillian & Irene’s work on the CT task Sonia & Gertrude’s Work on the CT task
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Aofes. I have only offered the first page of students’ work. Irene and Lillian used two pages and 
so did Susan and Grace. I guided students in the final study to use different ink whenever there 
appeared to be a shift in line of thought, hence the green, blue and black in Susan and Grace’s 
writing. Tony and Ronald, whose work appears in the main text, used one page each and two 
pages for joint writing.
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APPENDIX G Classroom Anecdotes and Transcripts

Anecdote Gl. Lesson 1
1. “Can you tell me the name of an 

object that would have 3 lines of 
symmetry? Some objects” A 
number of students raised their 
hands immediately but Edwin in a 
quiet voice blurted out.

2. “Triangle.”
3. Unaware that Edwin had made a 

response the teacher continued,
“Imagine in your heads an object 
that has 3 lines of symmetry.
Agnes.”

4. “Triangle.”
5. “What kind of triangle?” the teacher 

prompted.
6. “Equilateral.”
7. “Yeah. Do all triangles have 3 lines 

of symmetry?” the teacher asked.
8. In chorus the students responded.

“No.”
9. After a number of contributions, 

there was soon some agreement that 
an equilateral triangle was the only 
triangle that had three lines of 
symmetry. “Okay, how many lines 
of symmetry does a square have?
Joseph.”

10. “Ummm, eight.”
11. “Not a cube but a square,” the 

teacher responded as she drew a 
square on the overhead. A number 
of students began to call out,

12. “Four.”
13. But Joseph was not sure, “Four?”
14. “Four. Ah-ha, that is what people 

are saying,” the teacher nodded.
15. But another student agreed with 

Joseph’s first response. “No. Eight,”
Stella added loudly.

16. “Let us see ...” The teacher began 
drawing in a vertical bisector.
“There is a line here . ..”

17. “Horizontally and two diagonally,”
Joseph said, guiding the teacher.

18. In a soft voice another student said,
“Eight.”

19. “Eight?” the teacher acted confused.

on Geometry
20. “Four,” another student asserted. 

“Can you think of an object that 
would have eight?” the teacher 
asked.

21. Again in a chorus most of the 
students shouted, “Octagon.”

22. “This is an important question,” the 
teacher began. “Why did I pose it?”

23. John’s hand shot up.
24. The teacher called on him to offer 

an answer. “John.”
25. “I think it has more than eight.”
26. “Okay. Save it, save it for a second. 

Somebody said octagon. Let’s take a 
look.” The teacher drew an octagon.

27. Esther made an observation 
seemingly to herself but out loud. 
“An octagon doesn’t have ...”

28. Tim also speaking to himself in an 
excited tone, “A circle, oh!”

29. “Has more than 8,” Edwin said, 
possibly responding to Tim.

30. “Y-e-a-h,” Tim continued.
31. Janelle sitting close to Tim and 

Edwin said, “A circle has 180.”
32. “Really?” Tim asked Janelle.
33. In the meantime, the teacher was 

still drawing lines in the octagon. It 
was obvious that she was unaware 
of Tim, Janelle and Edwin’s 
conversation.

34. As the teacher was drawing in the 
diagonals she and the students 
counted, “two three four ...”

35. A few students audibly interjected 
her counting with a discussion of 
whether the octagon has 8 or 16 
lines of symmetry: “That is 16.” 
“Eight.”

36. The teacher concluded her drawing 
by counting together with the 
students “So if we have 1, 2, 3, 4; 1, 
2, 3 , 4 . 1 think there are 8. Not 16. 
Where would the 16 be?”

37. James interrupted as the teacher was 
waiting to hear from the students 
who thought it had 16.
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38. “I know one that has infi—nite!”
39. “You know one that has an 

infinite?” the teacher asked. “Don’t 
say it,” she said playfully.

40. “There is a shape with lots,” another 
student added.

41. By now a number of hands were up. 
“You know one that has ... lots,” 
the teacher pointed at students one 
by one as they shot their hands up to 
show that they knew.

42. “Me too,” a student uttered almost 
inaudibly.

43. “You know one that has what?”
44. “Lots,” he replied.
45. “Me too.”
46. “Infinite,” another student said.
47. “Infinite,” the teacher repeated. 

“Infinite,” another student said.
48. “There are 16,” another student said 

to another in the midst of the new 
“game.” She was likely referring 
back to the octagon that was still 
being projected on the screen.

49. “I think eventually ... It will run 
around,” another student 
commented.

50. Esther and Janelle had a side 
conversation, “There is 16....”
“Why did she say [there is 8]?” 
Esther asked.

51. “Okay, at the count of 3,” the 
teacher instructed. “An object with 
an infinite number of lines of 
symmetry. 1,2, 3.”

52. “Circle,” the students called out.
53. Edwin was a lone voice, “Nothing,” 

he said.
54. Although the teacher did not take up 

his suggestion. (It is not clear 
whether or not she heard it,) on the 
video record Janelle, John and Tim 
can be observed discussing the 
question, of whether it would be 
possible to draw lines of symmetry 
for nothing.

55. It was in that conversation that Tim 
turned to his colleagues saying, “I 
was thinking a sphere with the same 
diameter as a circle; a sphere will

have more lines of symmetry than 
the circle.”

56. At the end of the class the 
researcher-observer asked Tim 
about his conjecture. He responded, 
“A sphere might have 360 times 
more lines than the circle.
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Transcript Gl. Irene and Lillian’s Engagement on the CT task: Later turns

296 Irene They are 2, 4, 8
297 Teacher What could follow that sequence?
298 Irene 10 does
299 Lillian 

& Irene
12 does

300 Lillian 14 does
301 Teacher So they can’t be even numbers.
302 Lillian 

& Irene
No

303 Teacher What other property does 2, 8; 2, 4 and 8 have |?
305 Irene (Multiples of two (Almost inaudible)
306 Teacher Pardon (Also almost inaudible)
307 Teacher Multiples of 2. Multiples of two are even numbers.
308 Irene Yeah
309 Lillian 2 times
311 Teacher Or you meant something else
312 Teacher Did you mean 2 times 2|?
313 Irene |Yeah|
314 Teacher Or 2 times 3?|
315 Lillian 2 times.,.| (almost inaudible, gains no audience, and is interrupted)
316 Irene Yeah, but that
318 Teacher Or you
319 Irene Yeah, but that doesn’t ...
230 Lillian 2 tim es,..
321 Teacher You meant multiples of 2.
322 Lillian Because 2 is 2 times ... (Still almost inaudible & interrupted)
333 Irene But that doesn’t really ...
334 Lillian Because 2 times 2 is 4 then 2 times 2 times 2 is 8 (Last bit said so fast)
335 Teacher So you are thinking that she thought about even numbers and now you are 

thinking about ... what numbers are those?
336 Lillian Numbers which..ch..ch (laughter)

Transcript G2. Tony and Ronald’s Engagement on the CT task: Later turns
197 Tony: |The ones that don’t are all even now. (Inaudible)
198 Teacher: You can write that down
199 Ronald: All even [...]
200 Tony: They can all be either divided or multiplied by eight, (some movements 

noises) (Ronald looks on as Tony writes)
201 Tony: Urn
202 Teacher: They are all even. They are all multipliers or dividers by 8. [...]
203 Ronald: Multiples of 2
204 Tony: Yeah
205 Teacher: Multiples of 2. Multiples of 2, what are (Tony writes down)
206 Inaudible speaker
207 Tony: So far (Inaudible) Oh yeah.
208 Ronald: 2,4, 8, 16
209 Teacher: But we also have ...|
210 Tony: O just wait I know. They are doubling. So 2,4, then 8,16. So|
211 Ronald: 2 plus 2 is 4, 4 plus 4, 8 plus 8 is 16 (Ronald nodes as he counts loudly.
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212
[Many
271
277

278
279

283
284
285
286

287
288 
289

290
291
292
293
294
295
296
297
298
299
300
301 
302:
303
304

Ronald: 
turns later 
Ronald: 
Tony:

Teacher:
Tony:

282 Teacher:

Tony:
Ronald:
Tony:
Teacher:

Tony:
Ronald:
Tony:

Teacher:
Teacher:
Ronald:
Tony:
Teacher:
Tony:
Teacher:
Teacher:
Teacher:
Tony:
Teacher:
Teacher:
Tony:
Ronald:
Tony:

Tony writes down)
We don’t have 32 here 

after they have checked 32 and guessed that 64 will not satisfy the property]
I think we can make an estimate
|So like numbers that don’t are just the...It is just like 2 being doubled 
so...
1 will write that down. 2 being doubled .. ,|
And we are starting with 2 being doubled and the next kind of number 
doubles. But we didn’t really find the property... I guess we didn’t really 
find a property for the yes’s
2 being doubled do they have any other ... can we call it anything else or 
can we use any other term?
I don’t know |doublings? (laughter)
(Inaudible) double 

Um...
(Sounds like she is writing aloud) Property um, I think (Inaudible). 2 and 

then 4... I want to write them as ... In terms of 2. 4 in terms of 2 will be 
Um 
4
Um uh Shhh... To the power of two I guess. So 2 will be... 1 to the power 
of 2 ,1 think (laughter). 4 will be 2 to the power of 2, then 3 to the power of 
2, 4 to the power of 2, 5 to the power of 2 
Do you agree Ronald... [...]
Can we check th a t... that’s ... It looks close
3 to the power of 2 is 9.
Wait. O yeah
Tony you are thinking about something else that ...|
Yeah
And then it didn’t work here, or you are|
|No would it be uh... 2|
Thinking of powers
It will be 2 to the power of 2. So I just did these the wrong way, I think.
So can we write them the right way...
What do you think is the right way.
SO 2 to the power of 1,
4
Yeah. 2 to the of 2, 2 to the power of 3, 2 to the power 4 and 2 to the 
power of 5.

305 Teacher:

306
307

Ronald:
Tony:

Then we could... get a name for the numbers, another name. At first you 
said being doubled. And in terms of what you are writing we can call them 
To Powers of 2
Powers of 2 (Underlapping) Ronald’s

4 0 1
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