
Received March 24, 2020, accepted April 3, 2020, date of publication April 7, 2020, date of current version April 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2986298

Adaptive Real-Time Hybrid Neural Network-
Based Device-Level Modeling for DC
Traction HIL Application
TIAN LIANG , (Student Member, IEEE), ZHEN HUANG , (Student Member, IEEE),
AND VENKATA DINAVAHI , (Fellow, IEEE)
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada

Corresponding author: Tian Liang (tian.liang@ualberta.ca)

This work was supported by the Natural Science and Engineering Research Council of Canada (NSERC). The work of Zhen Huang was
supported by the China Scholarship Council (CSC).

ABSTRACT DC traction drive systems require high-frequency switching in the power converter whose
device-level switching transients have a significant impact on the accuracy of hardware-in-the-loop emula-
tion. Real-time device-level emulation has high computation demand for calculating the switch on and off
transients. This paper introduces a new method to estimate the switching transients by utilizing artificial
intelligence in the hardware design. In the hybrid neural network, the k-nearest neighbors (kNN) concept
and the recurrent neural network (RNN) have been employed to emulate the transient waveforms in the DC
traction drive. The kNN module classifies the switching states while the RNN module predicts the transient
current for a specific condition. This work also proves that the classification of the input switching states with
the help of kNN can play an essential role. The hardware implementation of the study case can be executed
at a time-step of 100 ns with device-level transients. The results have been validated by PSCAD/EMTDCr

at system-level and SaberRDr at device-level.

INDEX TERMS Behavioral model, device-level transients, field programmable gate array (FPGA),
hardware-in-the-loop (HIL), insulated-gate bipolar transistor (IGBT), k-nearest neighbors (kNN), recurrent
neural network (RNN), real-time systems.

I. INTRODUCTION
The DC traction system, shown in Fig. 1, has been utilized
to reduce land commute congestion for intercity traffic and
subway transportation since the late nineteenth century. Due
to the insulation constraint, the DC traction voltage level was
limited to several hundred volts in the nineteenth century [1].
The high energy loss of overhead line restricted the develop-
ment of high-speed DC traction. In the meantime, AC traction
dominated the market of high-speed traction in the twenti-
eth century with the help of on-board high-voltage capable
equipment which reduced the loss in the power conversion
stage. However, existing AC traction systems suffer from
the reactive power loss, inductive line voltage drop, bulky
transformer, and extra on-board AC-DC converters. With
the development of power semiconductor and isolation tech-
nology, high-voltage DC circuit breaker, motor, and power
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FIGURE 1. DC traction system.

electronic components are being increasingly adopted in the
medium-voltage DC (MVDC) electrified system [2]. There
is a potential trend that some of the current AC high-speed
traction systems will be replaced or upgraded to MVDC
high-speed traction systems to reduce the manufacturing
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and maintenance costs. However, field testing the physical
MVDC traction system is time-consuming and uneconomi-
cal, and might lead to possible equipment damage in certain
scenarios.

Hardware-in-the-loop (HIL) technology, which is a
non-destructive environment to the equipment, plays a vital
role in the newly designed control algorithm, machine,
and power converter topology [3]. field programmable gate
array (FPGA) based HIL high-performance computing hard-
ware has been used previously in algorithm execution accel-
eration [4], state estimation [5], filter optimization [6], [7],
controller design [8]–[11], and the development of
physics-based device-level models for the power electronic
applications [12].

Detailed modeling of the power electronic switching tran-
sients is necessary for device-level emulation in HIL applica-
tion. Device-level power electronic models are available in
three types: 1) equation-based analytical model [13], [14],
2) physics-based numerical model [15], [16], 3) accurate
transient curve oriented behavioral model [17], [18]. The
nonlinear analytical and numerical models require substan-
tial computation power. By solving the nonlinear equations,
Newton-Raphson iteration multiplies the execution time.
Although the behavioral model can reduce the complexity
of HIL implementation, the circuit admittance-based matrix
still needs to be renewed in each time-step and demands high
computation power. Device static and dynamic characteris-
tics may vary over time due to device aging process. If the
real-time device-level emulation still follows the datasheet
oriented modeling procedures, the emulation results will
deviate from the field tests. Therefore, it is imperative to
develop a characteristic adaptive model for power electronics
converters due to device aging and individual device differ-
ences. With the development of artificial intelligence and
IC technology over many decades, applying an appropri-
ate neural network for device-level power electronic mod-
eling becomes available, which can help reduce calculation
latency for solving the reasonably large application circuits in
real-time.

In 1943, the artificial neural network (ANN) concept was
developed with the discovery of enhanced connection in
neurons and the possibility of representing the neuron con-
nections with the modern electrical knowledge [19]–[21].
Furthermore, several types of ANNs have been investi-
gated in device transient simulation: 1) multi-layer per-
ceptron (MLP) [22], 2) Radial-basis function (RBF) [23],
3) time-delay neural network (TDNN) [24], and 4) recurrent
neural network (RNN) [25]. MLP requires an extremely large
training set to get accurate results for the simulation. RBF
performance degrades in the dynamic characteristic simula-
tion while TDNN generates different training results for the
same training set in different orders. RNN can provide an
accurate prediction of dynamic behaviors and require less
training time. With the recurrent path, the new experimental
results can be studied and learned within expected training
speed. Meanwhile, the model order reduction of RNN can

also shorten the training processes and scale down the neural
network topology if the negligible factors have little impact
on the simulation accuracy.

However, if the power converter application scenario
become complex, the number of neurons and buffers of RNN
would be enlarged exponentially. It is necessary to classify
the switching scenarios to reduce the hardware consump-
tion for real-time HIL application. The selected classifier
needs to fulfill the requirement on the real-time device-level
transients timing, which is of several hundred nanoseconds
scale. By applying the kNN classifier to distinguish the power
electronic switch application scenario, the RNN topologywill
require less hardware computing resources during the training
process [20], [21]. Accordingly, the emulation circuit size can
be enlarged for the same hardware setup with the accurate
dynamic transients in multiple application scenarios.

This paper proposes a power electronic device modeling
method based on hybrid kNN-RNN neural network topology
with hardware emulation of device-level switching transients
on the FPGA. A complete DC traction system is utilized
as the study case to evaluate and validate the performance
of the proposed real-time device-level model. The paper is
organized as follows: Section II explains the power electronic
device characteristics, the concept of kNN and RNN, the pro-
posed hybrid kNN-RNN architecture, permanent magnet
synchronous machine (PMSM) model, and circuit transient
solver; Section III describes the study case of the neutral
point clamped (NPC) based DC traction drive system, com-
plete DC traction system, hardware implementation platform,
and detailed hardware implementation of RNN module and
the circuit solver; Section IV shows the proposed hybrid
kNN-RNN module training performance, the system-level
and the device-level real-time emulation results verified by
commercial off-line simulation tools, and hardware resource
consumption; Finally, Section V gives the conclusion.

II. ADAPTIVE HYBRID NEURAL NETWORK MODELING
FOR POWER ELECTRONIC DEVICES
In this section, the switching device characteristics, k-nearest
neighbor concept, recurrent neural network, and circuit
transient solver are introduced with detailed diagrams and
equations.

A. IGBT AND DIODE DEVICE-LEVEL CHARACTERISTICS
Normally, a discrete IGBT module package consists of an
IGBT and a freewheeling diode. The Norton equivalent of
the IGBT module is shown in Fig. 2. The IGBT is repre-
sented by the conductance gS1 in parallel with the voltage
controlled current source (VCCS) iS1, while the diode acts as
the conductance gD1 in parallel with VCCS iD1. The model
of IGBT module can be classified into static and switching
characteristics. The static features are highly related to the
junction temperature Tvj and the operating current. According
to the value of the current, the static characteristics can be
divided into two linear regions: low current region and high
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FIGURE 2. IGBT module characteristics and its thermal circuit.

current region, given as:

gregion(Tvj) =
Tvj − 25
25− 125

(g25region − g
125
region)+ g

25
region, (1)

vregion(Tvj) =
Tvj − 25
25− 125

(v25region − v
125
region)+ v

25
region, (2)

iregion(Tvj) = vregion(Tvj) · gregion(Tvj), (3)

where gregion(Tvj) and iregion(Tvj) are specific region con-
ductance and VCCS, respectively. Linear approximation has
been applied to obtain the conductance and the VCCS under
the designated temperature.

The thermal circuit consists of a series of thermal resistors
in parallel with thermal capacitors, VCCS, and the voltage
source. The VCCS on the left side of Fig. 2 indicates the
power loss and the voltage source on the right represents the
ambient temperature. Tvj, Tcase, Ths, and Tamb are the temper-
atures of junction, case, heatsink and ambient, respectively.

B. k-NEAREST NEIGHBOR CONCEPT
The k-nearest neighbor utilizes distance calculation and
majority voting mechanism to classify the test data. With
more samples, the classification can be performed with
higher correctness; however, the computational burden and
the hardware resource consumption also increase linearly.
The distance calculation uses the Euclidean distance function,
given as:

Distance =

√√√√ m∑
i=1

(ai − bi)
2
, (4)

where ai is the test data and bi is the sample from the database,
m is the number of the features to be classified.

FIGURE 3. k-nearest neighbor.

In Fig. 3, k-nearest neighbor concept is shown with various
geometrical shapes treated as different classes of samples.
k is the number of the nearest neighbors. For example, when
k equals three, two green squares and one red triangle are
included inside the circle. Based on themajority votingmech-
anism, the interest point belongs to the green square class
if the weights of the instances are set equally. Correspond-
ingly, when k equals 9, four red triangles and three green
squares are encircled. If the majority voting weights are still
balanced, the classification result becomes red triangle class.
If the weight is set to the square of the distance, the outcome
changes to the green square class. Hence the classification
result is highly related to the weight of the voting mechanism.

C. RECURRENT NEURAL NETWORK
An RNN is a class of ANN that allows the network to
maintain a series of historical states and better performance
in sequence prediction model. The typical recurrent neural
network structure is shown in Fig. 7 with the detail of the
hidden layer and output layer neurons. The historical values
from the input layer and output layer are saved and delivered
to the hidden layer for the next time-step prediction. The
hidden layer neuron receives the signals from the input layer
and multiply them with weights, and provides the summation
of the product. With the nonlinear activation function ψ ,
the multiplication and summation product θ becomes the
input product λ of the output layer. The relation between input
and hidden layer is given as:

θm =

Kp−1∑
c=0

Np∑
d=1

pd (t − c ·1t)wm[KyNy+c·Np+d]

+

Ky∑
e=1

Ny∑
f=1

yf (t − e ·1t)wm[(e−1)Ny+f ] + bm,

m = 1, . . . ,Nh, (5)

λm = ψ(θm), (6)

where Kp and Ky are the numbers of time delay buffers for
input parameters pd of input layer and output product yf of
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output layer, respectively; Np, Nh and Ny are the number of
input parameters, hidden layer products, and output products,
respectively; w and b are the weight and bias in the hidden
layer neuron, respectively; 1t is the emulation time-step in
the study case, ψ is the nonlinear activation function (Sig-
moid) in the hidden layer neuron. The relation between the
hidden layer and output layer is given as:

yi(t) =
Nh∑
j=1

µijλj + δi, (7)

where yi(t) is the output of the output layer, µij is the weight
of the output layer, λj is the input of the output layer, δi is
the bias of the output layer. The training scheme utilized the
back propagation through time (BPTT) method to derive the
Jacobianmatrix. The training objective is tominimize the loss
function [25], given as:

min
1
2

Nw∑
a=1

Ny∑
b=1

Ns∑
c=1

(yba(g)− y′ba(g))
2, (8)

where Ns is the total number of transient points in a single
sample waveform, Nw is the total number of sample wave-
form, yba(t) is the hybrid kNN-RNN neural network output
product while y′ba(t) is the real test result, g is the time sample
index.

D. CIRCUIT TRANSIENT SOLVER
The circuit transient solver is based on Nodal analysis
method [26]. Linear elements are discretized by Trape-
zoidal rule [27]; however, to avoid a time-varying admit-
tance matrix, the nonlinearities (including switches) are first
viewed as either current or voltage sources whose values
are taken from the kNN-RNN results. These current/voltage
sources are then represented by an equivalent constant resis-
tor in parallel with a time-varying current source in the circuit.
In such a configuration, the following matrix equation can be
constructed:

GV = I′, (9)

where G is a constant admittance matrix; V is the node volt-
age vector and I′ is the summation vector of current source at
each circuit node. Then, equation (9) can be transformed into
the following form:

GV = I′ = TI, (10)

where I is the independent current source vector and T is
the corresponding current incidencematrix (whose entries are
±1 or 0) for every individual node. Obvisouly,T is only deter-
mined by circuit topology and remains unchanged during the
simulation. The node voltage vector can be calculated using
the following equation:

V = G−1TI = AI, (11)

where A = G−1T is also a constant matrix. Equation (11)
implies that as long as the companion current source of every

element in the circuit is known, the node voltage is the result
of constant matrix-vector multiplication.

The companion current source of the linear element can
be computed using the Trapezoidal Rule. To expedite the
solution process of the companion current source, the values
of their equivalent resistors are chosen to be 1 so as that
the matrix for solving I only has a time-varying part on the
diagonal, as given below.

MI = b, (12)

where matrixM has the time-varying diagonals and constant
off-diagonals and b is a known vector based on historical
information. Based on the feature ofM, several high efficient
algorithms like Sherman-Morrison formula can be employed
for solving I. It is worth mentioning that the varying forms of
M are related to the switching states of the converter and M
is always non-singular under normal switching states. Once
the values of vector I are known, the node voltage vector V
can be easily obtained by the use of (11).

There are two types of components in the DC traction
model: 1) the linear components (resistors, capacitors and
inductors); 2) the nonlinear components (switching devices
and the electric machines). These two types of compo-
nents are dealt with different strategies in the simulation.
The linear components are discretized using the Trapezoidal
rule, which is guaranteed to be stable because the numer-
ical stability region of Trapezoidal rule is the whole left
half part of the complex plane. As long as the eigenvalues
of the system have negative real parts, the system will be
numerically stable using the Trapezoidal rule, which is true
when all the resistors, capacitors and inductors have positive
values.

The nonlinear components, however, cannot be discretized
using typical numerical methods. They are viewed as voltage
or current sources according to their nature and operating
conditions. When interfaced with linear components, they
are represented by a resistor whose value is 1 in parallel
with a companion current source. In this way, the conduc-
tance matrix becomes constant, and the nonlinear feature
can be incorporated by adjusting the companion current
source value. By mathematical transformation, the compan-
ion current source values of the nonlinear components are
obtained by solving a matrix equation whose diagonals are
time-varying but off-diagonal entries are constant, which
is a relatively easier task compared with solving a whole
time-varying matrix. When combining these two types of
components together, it is like solving a system that contains
only linear components and voltage/current sources, which is
always stable using the Trapezoidal rule. This kind of con-
figuration is not as accurate as solving nonlinear components
using iterative methods like Newton-Raphson, but it’s much
more time-efficient. This strategy sacrifices a little accuracy
to trade for computation speed, which is extremely important
in real-time simulation. On the other hand, the side effect
on accuracy can be alleviated by using very small time-step
(100 ns) and some advanced modeling techniques. This is
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also the reason why we use neural-networks to deal with the
nonlinearities in our emulation.

III. HARDWARE EMULATION OF HYBRID kNN-RNN
BASED DC TRACTION DRIVE SYSTEM
This section presents the DC traction drive system and its
control system, complete DC traction system, implementa-
tion platform, and detailed hardware implementation of the
kNN classification module, the RNN prediction module and
circuit transient solver.

FIGURE 4. DC traction drive system case study employing the proposed
hybrid kNN-RNN modules.

A. DC TRACTION DRIVE SYSTEM
The three-level DC traction drive system is the study case
for testing the proposed hybrid kNN-RNN neural network
concept. The study case parameters and the IGBT module
part number are provided in the Appendix. As presented
in Fig. 4, the three-level DC traction inverter is composed
of 12 IGBTs and 18 diodes. These switches are treated as
voltage sources during turn-on transient and steady on state,
and as current sources during turn-off transient and steady off
state. Closed-loop speed regulator is realized. abc/dq coordi-
nate transformation is implemented where d-axis current is
always tuned to zero to keep the magnetic field constant and
q-axis current is tuned by the output of speed control loop to
adjust the electromagnetic torque. Space vector pulse width
modulation (SVPWM) is employed to generate the switch
drive signals. The neutral point voltage balance is achieved
by a closed-loop hysteresis type control scheme. Based on the
current direction information in each phase, the small vectors
that will move the neutral point voltage in the direction
opposite of the unbalance direction. Therefore, the small vec-
tors can be selected to maintain the dc-link voltage balance.
The hybrid kNN-RNN module is embedded in each power
electronic device. In this work, three practical IGBT modules

are considered to connect in parallel as one module in the
emulation to meet the current rating requirement.

Pulse-Width Modulation (PWM) techniques have drawn
tremendous interest in high power traction application due
to its favorable harmonic rejection capabilities. Various
pulse-PWM techniques have been studied in the area of sinu-
soidal pulse width modulation (SPWM) carrier-based mod-
ulation, space vector PWM (SVPWM), selective harmonic
elimination modulation method (SHEPWM), and predictive
control. Among these techniques, SVPWM is considered as
the most popular one for the simplicity in both hardware
and software design, low modulation ratio performance at
lowmodulation ratio, and low implementation difficulty [28].
Although SPWM can be easily deployed in FPGA, SVPWM
has shown superior performances due to less total harmonic
distortion (THD), higher power factor and less switching
losses compared to SPWM [29]. However, the SVPWM has
its drawback during the implementation for high-level con-
verter topology due to exponentially increased vectors. The-
oretically, SHEPWM can provide the highest quality output
among all the PWM methods but the excessive number of
switching angles increased the FPGA usage significantly.
For predictive control based method, the high-efficient per-
formance of active power ripple reduction can be achieved
with highly-sequential computation but it still requires a large
amount of hardware resource and leads to reduced perfor-
mance for massive parallel FPGA. Thus, the three-level NPC
drive with SVPWM is sufficient for medium voltage DC
traction drive application in Xilinx VCU118 FPGA hardware
platform in this paper.

B. COMPLETE DC TRACTION SYSTEM
The DC traction system, shown in Fig. 5, employs the cur-
rent geometric distance and the speed requirement of the
Guangzhou-Zhuhai intercity railway AC traction system. The
geometric distance is 115.625 km and the designed railway
speed limit is 200 km/h. Based on the requirement of the
speed limit and the current station spacing distance, 3 kV is
selected as the voltage rating of the system. Thus, we pro-
posed the 3 kV DC substation configuration with a 20 km
substation spacing to theGuangzhou-Zhuhai intercity railway
DC traction system. The proposed DC traction system con-
sists of seven DC substations with 20 km substation spacing,
which make up the complete network as a 120 km railway
configuration. Inside the DC traction system, autotransformer
rectifier units (ATRUs) are considered to provide the power
to train via the catenary system and the DC contact wire,
modeled as a traveling wave line model, in the emulation
process.

Both system-level and device-level models are employed
in the complete DC traction system with the proper system
order-reduction modeling method. The traveling wave line
model can decompose the system into two sections without
any computation precision loss. For each side, the traveling
wave line model represents a characteristic impedance in
parallel with the VCCS which utilizes the previous time
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FIGURE 5. Complete DC traction system.

step information of the other side to compute the value of
the current. With this technique, the complete system can
be separated into four subsystems: two DC traction drive
systems and two substation systems. The substation system
applies the system-level model while the traction drive sys-
tem utilizes the device-level model. The system-level model
employs the ideal model while the device-level model applies
the proposed hybrid neural network topology.

FIGURE 6. Hardware configuration of hybrid kNN-RNN based drive
modeling.

C. HARDWARE PLATFORM
The Virtexr Ultrascale+ VCU118 evaluation board, shown
in Fig. 6, employs the XCVU9P-L2FLGA2104 FPGA which
contains 2,586,000 logic cells and 6,840 DSP slices. The
board consists of 2.5 GB DDR4, 120 GTY transceivers,
832 general purposes I/O, dual QSFP28 interfaces, 16-lane
PCI-E interface and other components.

D. IMPLEMENTATION OF kNN CLASSIFICATION MODULE
From the point of hardware implementation, when the k
value is tuned or the number of sample points is increased,
the resource consumption of kNN classifier increases lin-
early, which fits the optimized parallel computing structure
in FPGA hardware. kNN calculation processes can be sim-
plified into three main portions: 1) Distance calculation,
2) Minimum sorting, and 3) Majority voting. Distance cal-
culation and minimum sorting are considered as the most
time-consuming parts. Distance calculation can be imple-
mented into the massive paralleled structure which reduces
the calculation time to the same time as the single distance
calculation unit. Minimum sorting can apply different sorting
algorithms. For a small k value, using the traditional algo-
rithms is time-consuming and also needs to go through each
element several times. By applying the tournament sorting,
it only requires 7 clock cycles for a scale of 128 elements for
sorting one minimum element. This work adopts this sorting
method to reduce the time in the process. The k value is
selected as four for the sorting, which is based on the sorting
performance and the hardware resource consumption. The
performance of the kNN is summarized by the confusion
matrix which gives an error case table.

E. IMPLEMENTATION OF RNN PREDICTION MODULE
The detailed implementation of the RNN prediction module
is shown in Fig. 7. After the initial training process of RNN,
the trained weight values are stored in the look-up table
of the hardware. After classification by the kNN module,
the kNN module selects the appropriate RNN prediction
module parameters. The weights and the input parameters
are transmitted in parallel to the RNN prediction module.
After the first layer of multiplication, intermediate variables
need to be processed by multiple layers of summation to get
the hidden layer intermediate variable θ and the output layer
output y. The activation function has been reshaped into the
form of piece-wise linear function, which utilizes the slope s
and the bias l to calculate the activation output. The total
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FIGURE 7. RNN prediction module hardware implementation block diagram.

RNN prediction delay time can be calculated in the following
form:

tpred = max[ceil(tm + (log2Np + log2Kp)ts),

ceil(tm + (log2Ny + log2Ky)ts)]+ 2tm
+ ceil(log2Nh + 4)ts, (13)

where tm and ts are the delay for a single multiplication and
summation operations, respectively. Multiple similar struc-
tures are also computed in parallel to get similar intermediate
variables and the final output. Both tm and ts require one
system clock cycle (10 ns) at 100 MHz FPGA operating
frequency. Both delay buffer numberKp andKy equal 4 while
input number Np equals 2. The hidden layer number Np
equals 10 while the output number Ny equals 1. The hard-
ware prediction time delay is 140 ns for 100 ns time-step
emulation requirement. However, the natural switching delay
usually takes several microseconds. Thus, the RNN module
can predict the 20 transient points before the end of switching
transient.

F. PROPOSED HYBRID kNN-RNN REPRESENTATION OF
IGBT AND DIODE SWITCHING CHARACTERISTICS
In Fig. 8, the flowchart of the proposed hybrid kNN-RNN
structure is given with detailed processes. In this paper, all
the function operations utilize the 59-bit fixed point format
to reduce the hardware resource consumption and meet the

FIGURE 8. Flow chart of hybrid kNN-RNN structure for drive modeling.

requirement on hybrid neural network and circuit solver
accuracy.When the hybrid structure begins to work, the RNN
module starts the initial training with the pre-classified
(12 regions) samples which are categorized by current rating
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(59-bit fixed point format), device junction temperature
(59-bit fixed point format), and the switch on and off states
(1-bit fixed point format). The pre-classified samples for
training include the following 59-bit fixed point format
time-series data in 100 ns time-steps: 1) switch on or off
transient power loss based on static IGBT collector current
IC (59-bit fixed point format) or diode forward current IF
(59-bit fixed point format), and device junction tempera-
ture Tvj (59-bit fixed point format), 2) system-level collec-
tor current (IGBT) or forward (diode) current (59-bit fixed
point format), which can be obtained by the transient circuit
solver. The training waveform of transient power loss is
gathered by four sets of device junction temperature (Tvj =
25, 35, 45, 55 . . . 125 ◦C, within 0.5 ◦C error) with a step
of 10 ◦C and device operating current (0, 50, 75, 100, 125,
200, 350, 500, 650, 900, 1200A, within 2A error). Thus, there
are 484 samples (on and off state), which are device-level
simulation results from SaberRDr; 15% of the samples
are utilized as the validation set to avoid over-fitting while
another 15% samples are used for testing, and the rest 70%
of samples are for model training. The output of the RNN
module is the transient IGBT collector current iC or diode
forward current iF (59-bit fixed point format). The IGBT
module current combines these two currents as the output
(59-bit fixed point format).

With the initial circuit parameters and control signals
(1-bit fixed point format), the dynamic kNN module starts to
classify the current (59-bit fixed point format), temperature
(59-bit fixed point format) and the on-off states (1-bit fixed
point format) mentioned above. The kNN module (59-bit
fixed point format) classifies the scenarios into two cur-
rent regions (low and high), three temperature regions (low,
medium, high) and two states (on or off). Thus, 12 regions
are classified before entering the RNN module. In the train-
ing process, each region can obtain different weight update
information. Data normalization process (59-bit fixed point
format), which converts original data to the similar range in
terms of the number value, is applied in the input data to
help the kNN module to get better classification result. After
normalization, distance calculation with the samples can be
implemented in parallel. When the product of the distance
calculation (59-bit fixed point format) comes out, the major-
ity votingweighted by distance gives themost possible switch
state transient scenarios. Based on the temperature and cur-
rent rating, newly generated transient power loss (59-bit fixed
point format) for each test scenario can be obtained by linear
approximation.

The dynamic RNN module loads the data from the kNN
module. From the input layer to the hidden layer, the input
data multiplies the weights and adds up the bias and gets
the product for the activation function. The result of the
activation function goes into the output layer which also con-
tains the operation of weight multiplication and summation,
after which, the prediction values of the transient current are
transmitted to the circuit transient solver (59-bit fixed point
format).

G. IMPLEMENTATION OF CIRCUIT TRANSIENT SOLVER
The circuit transient solver (59-bit fixed point format) is
composed of two modules: one is responsible for solving the
companion current sources of all components in the circuit;
and the other is in charge of solving the node voltages based
on the admittance matrix and the corresponding companion
current sources. As illustrated in Fig. 9, the companion cur-
rent sources of the nonlinear elements (switching devices
and PMSM) are solved by I = M−1b while counterparts of
linear elements are computed using the trapezoidal rule. After
the companion current source vector I is obtained, the node
voltage vector is calculated by matrix-vector multiplication
V = AI. The 18 switching devices are decomposed into
3 groups, each corresponding to one phase leg. As a result,
the matrix size of M−1 is 6 × 6 and A is 12 × 23. The total
clock cycles consumed by circuit solver is 2tm+[ceil(log26)+
ceil(log223)]ts = 10 (100 ns).

FIGURE 9. Circuit transient solver hardware implementation block
diagram.

IV. RESULTS AND DISCUSSION
In this section, the performance of the hybrid kNN-RNN
module, system-level and device-level results comparisons,
hardware resource consumption are provided with detailed
discussion.

In Table 1, the kNN classification regions are shown
with the labeled region number (RX). LT, MT, and HT
are the abbreviations for low temperature (25 ◦C - 58 ◦C),
medium temperature (59 ◦C - 92 ◦C), and high temperature
(93 ◦C - 125 ◦C), respectively. LC and HC are the abbrevia-
tions for low current (0 - 200 A) and high current (200 A and
higher), respectively.

In Table 2 and Table 3, the confusion matrices are given
for both turn-on and turn-off states. A confusion matrix is
utilized to describe the performance of a classifier based
on the test data. The row stands for the true class and the
column represents the predicted class by kNN. The classi-
fication results are collected from 100 linearized data from
25 ◦C to 125 ◦C in terms of temperature and current value
of 0 to 1000 A.

In Fig. 10, the hybrid kNN-RNN performance is
shown in comparison with the absence of kNN module.
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TABLE 1. kNN classification region.

TABLE 2. Confusion matrix in turn-on state for kNN.

TABLE 3. Confusion matrix in turn-off state for kNN.

FIGURE 10. Error-cost curves of kNN-RNN: (a) With fixed learning rate
and kNN classification. (b) With fixed hidden layer and kNN
classification. (c) With fixed study but without kNN classification. (d) With
fixed hidden layer but without kNN classification.

The training initializes the weights with random parameters.
All the input parameters have been normalized in order to
get better training result with few epochs. In Fig. 10 (a),
the error-cost curve with kNN classification shows the per-
formance of a fixed learning rate and different hidden layer
neuron number. With kNN classification, the RNN module
with higher hidden layer neuron number under a fixed learn-
ing rate gets to the target error with fewer epochs. Fig. 10 (c)
presents the performance of the same setup parameters in
training without kNN classification. It is noticeable that the
error rate stops decreasing at 30% to 40%. The increase of
the hidden layer neuron number cannot help reduce the error

with the same epochs but gives a higher error in return. The
performance of different learning rates with fixed hidden
layer neuron number is provided in Fig. 10 (b) and Fig. 10 (d).
It is obvious that a higher learning rate can accelerate the
training processes, but the error increases after epochs if the
learning rate is over the RNN training capacity. Low learning
rate can make the training error decrease properly but may
need more epochs to reach the target error. The possibility of
finding the local optimal point increases with low learning
rate in the training processes. Without kNN classification,
error rate stays between 30% and 40%with different learning
rates in training.

FIGURE 11. kNN-RNN prediction for IGBT module current: (a) Under
specific temperature. (b) Under different temperatures.

Fig. 11 (a) gives prediction result of the hybrid kNN-RNN
module under different current operating conditions of IGBT
module with fixed hidden layer number, learning rate and
junction temperature in the training processes. The thermal
impact of the power electronics drive and the training results
are presented in Fig. 11 (b). Clearly, the thermal issue shows
less impact than different current ratings. The solid lines
represent the transient current waveform of analytical model
from SaberRDr, running at 0.1ns resolution. In comparison,
single points represent the proposed kNN-RNNmodel which
can predict the current waveform accurately in real-time at the
time-step of 100ns. In term of execution speed, SaberRDr

take 2640s to run 5s time in real world, which is 528 times
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slower than real-time. While our proposed model can execute
the device-level emulation in real-time with 100ns time-step.
Real-time capable Wiener-Hammerstein (W-H) behavioral
model has been proposed in the previous paper [30]. The
W-H model requires a highly sequential clocking compute
device (ARMr-based) to achieve small time-step compu-
tation. As such, W-H model limits the size of the circuit
topology. The proposedmodel can be fitted on both paralleled
and sequential compute architectures which means that the
circuit topology is not limited by the proposed model.

FIGURE 12. Device-level results comparison between real time HIL
emulation (top oscilloscope sub-figure) and off-line simulation tool
(bottom sub-figure).

In Fig. 12, the comparison between real-time HIL imple-
mentation and off-line software simulation results are shown
with switching transients at device-level. The ideal switch
model represents the off state as the low conductance and
the on state as the high conductance and gives the emulation
result close to the simulation result in PSCAD/EMTDCr.
SaberRDr utilizes the IGBT module behavioral model to
represent the device-level model and the proposed hybrid
kNN-RNNmodel provides highly similar transient current in
hardware emulation where current overshoot and tail current
can be observed.

Fig. 13 (a) and (b) show the device junction temperature
from 1 ∼ 6s while Fig. 13 (c) and (d) show the device
junction temperatures from 5.8 ∼ 6s. The time period with
no power loss or less power loss would introduce temperature
cooldown for the specific power electronic device. S11 is
considered as the most power demanding device in the arm
and its temperature peaks at 54 ◦C. S12 temperature does

FIGURE 13. Device junction temperature from real-time emulation (top
oscilloscope subfigure) and off-line simulation by SaberRDr software
(bottom subfigure) for: (a) S12, D11, (b) S11, D1,and D12, (c) Zoomed-in
S12, D11, (d) Zoomed-in S11, D1,and D12. Scale: (a) (b) x-axis: 0.5 s/div,
(c) (d) x-axis: 0.02 s/div.

not stop increasing at the time of 6 s but its temperature
would not exceed the one of S11. D11 and D12 have a lower
power loss on each switch-off transients which introduces
lower temperature during the operation. D1 has both more
conduction and switching time than the other two diodes
in the arm. Thus, a higher operating temperature has been
observed from real-time emulation and off-line simulation.

TABLE 4. PSCAD/EMTDCr simulation and FPGA emulation result
comparison of left arm and right arm current.

Table 4 exhibits the comparison result of PSCAD/
EMTDCr simulation and FPGA emulation for left and right
arm current of the DC traction system. Different locations of
the train result in different current distributions on the DC
contact wire; 10 km, which is the middle point between the
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TABLE 5. PSCAD/EMTDCr simulation and FPGA emulation result
comparison of DC contact wire voltage.

two stations, requires the maximum of current summation for
the train. In return, the maximum DC contact wire voltage
loss can been observed in Table 5 at the distance of 10 km.
Thus, the middle point between the stations can be considered
as the most power demanding point for the traction power
conversion stage. If the design of the DC traction desires
lower voltage drop, a higher DC voltage rating of contact
wire, up to 10.5 kV , can reduce the line loss and extend
the station spacing to 55 km according to simulation results.
However, the investment of the high-voltage capable equip-
ment might increase exponentially. High-level modular mul-
tilevel converter (MMC), high-voltage silicon carbide power
electronics, high-voltage isolation equipment will become
the expensive options to the high-voltage capable traction
drive system. There is a trade-off point for each specific
application. For intercity transit, 3 kV is considered as the
trade-off point.

TABLE 6. SPWM and SVPWM power loss comparison per cycle.

Table 6 gives the power loss comparison of SPWM and
SVPWM method. The power loss of each device, whose
energy in Joules is calculated per cycle, is similar and close
to the other method. However, the total harmonic distor-
tion (THD) results of these two methods show some differ-
ences in Fig. 14. During the stable operation of DC traction
system, the THD of SPWM is around 45% while that of
SVPWM is around 38%. In the SPWMmethod, 1800 Hz and

FIGURE 14. FFT analysis of converter output voltage from real-time
simulation (top subfigure) and off-line simulation by
PSCAD/EMTDCrsoftware (bottom subfigure) for (a) SPWM method,
(b) SVPWM method. Scale: (a)–(b) x-axis: 1 kHz/div.

3600 Hz harmonics are obvious due to the carrier’s operating
frequency. Another concern of SPWM method is that most
of the commercial software utilizes a very small time-step to
generate a high fidelity carrier waveform which in turn leads
to excessive model computation time.

The proposed adaptive model is able to utilize the existing
aging and individual turn-on and turn-off transients as data
to retrain the model to get the precise individual switching
transients. It shows the adaptability of deviated characteris-
tics of the device in Table 7. Training the proposed hybrid
kNN-RNN neural network with the 5% and 10% positive
deviated rise time and fall time device data is given for each
epoch. From the training results, the proposed model is able
to achieve the same training target with similar number of
epochs and perform the similar mean square error (2.3981%
for standard, 2.3996% for 5% deviation, 2.3978% for 10%
deviation, ) in the HIL application, which shows that the
proposedmodel is able to adapt to the deviated characteristics
of the device.

TABLE 7. Error rate during hybrid kNN-RNN adaptability test.

10.6% Block RAM, 36% DSP slices, 11.3% flip-flops and
43.1% look-up-table have been utilized during the imple-
mentation. The kNN module takes 360 ns with fully paral-
leled and pipelined hardware design optimization in FPGA.
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FIGURE 15. System-level results for DC traction drive system from real-time emulation (top oscilloscope sub-figure) and off-line simulation by
PSCAD/EMTDCr software (bottom sub-figure) for: (a) (h) Rotor electrical speed. (b) (c) Three-phase PMSM currents. (d) (i) Electromagnetic torque.
(e) (f) Converter output voltages. (g) Station 1 power output. Scale: (a) (d) (h) (i) x-axis: 1s/div. (b) (c) x-axis: 5ms/div. (e) (f) x-axis: 2ms/div.
(g) x-axis: 0.5s/div.
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The RNN trains the samples with 0.4% error training tar-
get, 10 hidden layer neurons, a learning rate at 0.01, and
four delay buffers. The RNN prediction takes 140 ns to
perform a 100 ns time-step wise of the transient current.
The mean square error (MSE) of the prediction is less
than 2.4%. The delay time of the IGBT module is usu-
ally several microseconds so the RNN prediction part can
give the result before switching happens. This low pre-
diction time can ensure that the predicted transient cur-
rent data is delivered to the circuit transient solver in time,
which allows the conducting of 100 ns time-step real-time
emulation.

The system-level output waveforms from the hybrid
kNN-RNN based model and PSCAD/EMTDCr are shown
in Fig. 15 with a detailed comparison. Fig. 15 (a) and (d) show
the rotor electrical speed and electromagnetic torque when
speed command increases linearly from 0 to 1.0 p.u. dur-
ing 1 ∼ 4 s and decreases abruptly from 1.0 p.u. to 0.7 p.u.
at t = 6.0 s and back to 1.0 p.u. at t = 7.5 s.
Fig. 15 (h) and (i) show the rotor electrical speed and elec-
tromagnetic torque when speed command decreases linearly
from 1.0 p.u to 0 during 360 ∼ 364 s. 15 (b) and (c)
illustrate the three-phase machine stator currents when the
speed command is applied to the drive system, respectively.
Fig. 15 (e) and (f) give the corresponding converter out-
put voltages. Fig. 15 (g) presents the station power output,
in which the DC contact wire energization can be observed in
the first 0.3 s. Stable output power can be seen at 5 s. Indis-
putably, these closelymatched simulation results indicate that
the hybrid kNN-RNN model can provide high-precision and
convincing system-level results.

Traditional analytical and numerical models need complex
and time-consuming calculations for the device switching
transients.We proposed a newmethod based on hybrid neural
network (kNN-RNN) to emulate the device-level transients
and thermal stresses at a fast pace. Based on previous data,
the proposed method can retrain the model to follow the
device aging dynamics, which is considered as a device aging
adjustable feature. The kNN can significantly reduce the
level of hidden layers and their neuron numbers to meet the
hardware requirement, which is taken as a hardware resource
adjustable feature. The emulation application based on the
DC traction system would become the future of traction
application. Previously, DC traction has been applied in trans-
portation application but the lack of DC isolation technology
confines the applications in low DC voltage which would
cause large power losses in the transmission system. With
the development of medium-voltage direct current (MVDC)
technology, the voltage isolation problem has been resolved,
which caught the interest of transportation engineers. The
future traction system will be a combination of AC and DC
traction. Thus, this study case has novelty and true value on
the way of investigating the future traction system. This work
also utilized the state-of-the-art hardware-in-the-loop plat-
form to emulate of the DC traction application with low-cost
and real-time capable features.

V. CONCLUSION
Detailed modeling of device-level power electronic device
switching transients is onerous. This paper proposed the
adaptive hybrid kNN-RNN based device-level model for the
IGBT module, which is implemented on the FPGA platform
and tested on the study case of a complete DC traction sys-
tem. The kNN module is utilized to distinguish the transient
switching state with a latency of 360 ns. With the help of kNN
module, RNN module can be operated with less hidden layer
neurons and training epochs. RNNmodule is divided into two
sections: training and prediction. The training error target is
set at 0.4% within 20 epochs while the prediction can be per-
formed within 140 ns for a 100 ns time-step transient results
with MSE of 2.4%. The device-level transients are emulated
with a latency of 100 ns in circuit solver. The emulation
results are validated by the professional simulation tools at the
system-level and device-level. The proposedmethod provides
a solution to model complex power converter topologies for
practical applications such as transportation power systems,
which maintains sufficient device-level accuracy.

APPENDIX
See Tables 8 and 9.

TABLE 8. Parameters of DC traction inverter.

TABLE 9. Parameters of PMSM.
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