
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f A lberta

Aestimo: A F e e d b a c k -D ire c te d O p t im iz a t io n E v a lu a t io n T o o l

by

Paul Normand Janies Berube

A thesis submitted to the Faculty o f Graduate Studies and Research in partial fu lfillm ent o f the
requirements for the degree o f M aster o f Science.

Department o f Computing Science

Edmonton, Alberta
Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0-494-09125-8

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa OIn K1A 0N4
Canada

Biblioth^que et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN:
Our file Notre reference
ISBN:

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L’auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquanf.

i + i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Feedback-directed optimization (FDO) is a compiler technique that enhances the ability o f a com

piler to make good optimization decisions. A training run provides the compiler with a profile that

summarizes the run-time behavior o f the program. Most studies that use FDO techniques use either

a single input for both training and performance evaluation, or a single input for training and a sin

gle input for evaluation. However, the run-time behavior o f a program is influenced by the data it

is processing. Benchmark creators and compiler designers rely on the assumption that selecting a

“ representative” training input w ill result in effective FDO.

This exploratory study addresses an important open question: How important is the selection o f

training data for FDO? Likely, the answer to this question is not constant across all optimizations

that use profile information. How sensitive are individual compiler transformations to the selection

o f training data used with FDO? Does training on different inputs result in different optimization

decisions at compile time? Furthermore, do these different decisions result in changes in program

performance?

This thesis introduces Aestimo, a tool developed to quantify the differences between FDO logs

for inlining and i f conversion from the Open Research Compiler (ORC) for SPEC CINT2000

benchmark programs trained on a large number o f inputs. Aestimo also compares the performance

o f programs trained on different inputs, and the performance o f programs compiled with and without

FDO.

Training on different inputs does lead to different optimization decisions and different levels o f

program performance in most cases. Training on different inputs results in as much as a 5% differ

ence in performance with i f conversion, and in as much as a 6% difference in performance with

inlining, on a workload o f inputs. Also, evaluating FDO performance on different inputs can lead to

substantially different performance results. Aestimo finds differences in best-case FDO performance

on different inputs for the same program larger than 13% for i f conversion, and larger than 20%

for inlining. Finally, Aestimo reveals that the current if-conversion heuristics in the ORC always

results in performance degradation for the Itanium 2 processor when FDO is used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to thank my supervisor, Dr. Amaral, for his guidance and assistance during my stud

ies. Also, several people provided assistance and additional inputs for benchmark programs: Mar

tin Schoenert, Steve Linton, and Alexander Hulpke for GAP, Robert M . Hyatt for c r a f t y , and

David Temperley for p a r s e r . Thanks to Reinhold Weicker and Kaivalya D ix it from SPEC for our

conversations about the procedures and guidelines for selecting the ref and train inputs for SPEC

benchmarks. Also, I am indebted to George Hicks and Henryk Modzelewski for providing me with

access to the Itanium machines in the Monster cluster at the University o f British Columbia.

I would also like to thank the members o f my examining committee for their insightful questions

regarding my work, and for their suggestions for improving this thesis.

Finally, I want to thank my Mom and Dad for supporting me and putting up with me over the

last two years, and for the last months in particular. I couldn’ t have done it without you.

This work was supported by a Post-Graduate Scholarship from the Natural Sciences and Engi

neering Research Council o f Canada (NSERC).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1

2 Background 5
2.1 Profiling and Feedback-Directed O ptim iza tion.. 5
2.2 Compiler In frastructure.. 5

2.2.1 I f conversion ... 6
2.2.2 In l in in g ... 9

3 Experimental Setup 11
3.1 Metrics ... 11

3.1.1 Difference ... 12
3.1.2 Alignment ... 13
3.1.3 Differences Between L o g s ... 14

3.2 Benchmarks and In p u ts .. 14
3.3 A rch itec tu res ... 20

4 Results 22
4.1 Profile D iffe re n c e s ... 24

4.1.1 I f conversion .. 25
4.1.2 In l in in g ... 36
4.1.3 Conclusions... 52

4.2 Run-Time Perform ance.. 52
4.2.1 I f conversion .. 53
4.2.2 In l in in g ... 62
4.2.3 Conclusions... 71

4.3 Resubstitution... 71
4.3.1 I f conversion .. 73
4.3.2 In l in in g ... 79
4.3.3 SPEC In p u ts .. 92
4.3.4 Conclusions... 93

4.4 Feedback-Directed O p tim iza tio n .. 93
4.4.1 I f conversion .. 93
4.4.2 In l in in g ... 99
4.4.3 Conclusions... 105

5 Related Work 106
5.1 Input Selection and B enchm arking... 106
5.2 Feedback-Directed O p tim iza tio n .. 107
5.3 Compiler-Decision O p tim iza tion .. 108

6 Conclusion 110
6.1 Future W o rk .. 110
6.2 Conclusions.. I l l

Bibliography 113

A Metric Values 116

B Alignment vs Performance 129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 Values for the difference m e tric ... 12
3.2 Workload for b z ip 2 and g z i p ... 16
3.3 Workload for M CF.. 17
3.4 Workload for c r a f t y .. 17
3.5 Workload for p a r s e r .. 18
3.6 Workload for G A P.. 19
3.7 Workload for V P R .. 20

4.1 Total processor time o f e xpe rim en ts ... 24
4.2 I f conversion metric scores for b z ip 2 on the I ta n iu m .. 27
4.3 I f conversion metric scores for b z ip 2 on the Itanium 2 ... 28
4.4 I f conversion metric scores for b z ip 2 low cut group (cut = 55%) on the Itanium . 28
4.5 I f conversion metric scores for b z ip 2 high cut group (cut = 55%) on the Itanium 28
4.6 I f conversion metric scores for c r a f t y on the I ta n iu m ... 29
4.7 I f conversion metric scores for c r a f t y on the Itanium 2 .. 29
4.8 I f conversion metric scores for GAP on the Itan ium ... 30
4.9 I f conversion metric scores for GAP SPEC inputs on the Itanium 30
4.10 I f conversion metric scores for GAP snf inputs on the I ta n iu m 31
4.11 I f conversion metric scores for GAP on the Itanium 2 .. 31
4.12 I f conversion metric scores for g z ip on the Ita n iu m .. 32
4.13 I f conversion metric scores for g z ip on the Itanium 2 ... 33
4.14 I f conversion metric scores for MCF on the Itan ium ... 34
4.15 I f conversion metric scores for MCF on the Itanium 2 .. 34
4.16 I f conversion metric scores for p a r s e r on the I ta n iu m .. 35
4.17 I f conversion metric scores for p a r s e r on the Itanium 2 35
4.18 I f conversion metric scores for VPR (place) on the Itan ium 36
4.19 I f conversion metric scores for VPR (place) on the Itanium 2 37
4.20 I f conversion metric scores for VPR (route) on the Ita n iu m 38
4.21 I f conversion metric scores for VPR (route) on the Itanium 2 39
4.22 Inlin ing metric scores for b z ip 2 on the Itanium .. 41
4.23 Inlin ing metric scores for b z ip 2 low cut group on the Ita n iu m 41
4.24 Inlin ing metric scores for b z ip 2 high cut group on the I ta n iu m 41
4.25 Inlin ing metric scores for b z ip 2 on the Itanium 2 ... 42
4.26 Inlin ing metric scores for c r a f t y on the Ita n iu m .. 43
4.27 Inlin ing metric scores for c r a f t y on the Itanium 2 ... 43
4.28 Inlin ing metric scores for GAP on the I ta n iu m .. 44
4.29 Inlin ing metric scores for GAP on the Itanium 2 ... 44
4.30 Inlin ing metric scores for g z ip on the I ta n iu m .. 45
4.31 Inlin ing metric scores for g z ip on the Itanium 2 ... 45
4.32 Inlin ing metric scores for MCF on the I ta n iu m .. 46
4.33 Inlin ing metric scores for MCF on the Itanium 2 ... 47
4.34 Inlin ing metric scores for p a r s e r on the Ita n iu m .. 47
4.35 Inlin ing metric scores for p a r s e r on the Itanium 2 ... 48
4.36 Inlin ing metric scores for VPR (place) on the I ta n iu m ... 48
4.37 Inlin ing metric scores for VPR (place) on the Itanium 2 .. 49
4.38 Inlining metric scores for VPR (route) on the I ta n iu m ... 50
4.39 Inlin ing metric scores for VPR (route) on the Itanium 2 .. 51
4.40 Rank o f resubstitution binaries for i f conversion on b z i p 2 80
4.41 Rank o f resubstitution binaries for i f conversion on c r a f t y 80
4.42 Rank o f resubstitution binaries for i f conversion on G A P 80
4.43 Rank o f resubstitution binaries for i f conversion on g z i p 81
4.44 Rank o f resubstitution binaries for i f conversion on M C F 81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.45 Rank o f resubstitution binaries for i f conversion on p a r s e r 81
4.46 Rank o f resubstitution binaries for i f conversion on VPR (p lace)............................ 82
4.47 Rank o f resubstitution binaries for i f conversion on VPR (ro u te)............................ 82
4.48 Rank o f resubstitution binaries for inlining on b z i p 2 ... 88
4.49 Rank o f resubstitution binaries for inlining on c r a f t y .. 88
4.50 Rank o f resubstitution binaries for inlining on G A P 89
4.51 Rank o f resubstitution binaries for inlining on g z ip ... 89
4.52 Rank o f resubstitution binaries for inlining on M C F .. 89
4.53 Rank o f resubstitution binaries for inlining on p a r s e r .. 90
4.54 Rank o f resubstitution binaries for inlining on VPR (p la c e) 90
4.55 Rank o f resubstitution binaries for inlining on VPR (r o u te) 91
4.56 Number o f cases where training on SPEC-provided inputs results in best FDO per

formance .. 92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 A motivating example for F D O ... 2

2.1 High-level example o f i f conversion ... 7

3.1 Callsites in a simple p rog ram .. 11
3.2 Some possible inlining lo g s .. 12
3.3 Log files converted to vectors.. 12

4.1 Overview o f A e s tim o ... 23
4.2 Compilation process ... 23
4.3 I f conversion performed in the log e x c e rp t.. 26
4.4 I f conversion log excerpt .. 26
4.5 In lin ing log e x c e rp t... 40
4.6 Average performance o f FDO i f conversion .. 53
4.7 Performance o f b z ip 2 with i f conversion on the I ta n iu m 54
4.8 Performance o f b z ip 2 with i f conversion on the Itanium 2 54
4.9 Performance o f c r a f t y with i f conversion on the I ta n iu m 55
4.10 Performance o f c r a f t y with i f conversion on the Itanium 2 55
4.11 Performance o f GAP with i f conversion on the Itan ium ... 56
4.12 Performance o f GAP with i f conversion on the Itanium 2 .. 56
4.13 Performance o f g z ip with i f conversion on the Ita n iu m .. 57
4.14 Performance o f g z ip with i f conversion on the Itanium 2 57
4.15 Performance o f MCF with i f conversion on the Itan ium ... 58
4.16 Performance o f MCF with i f conversion on the Itanium 2 .. 58
4.17 Performance o f p a r s e r with i f conversion on the I ta n iu m 59
4.18 Performance o f p a r s e r with i f conversion on the Itanium 2 59
4.19 Performance o f VPR (place) with i f conversion on the Itan ium 60
4.20 Performance o f VPR (place) with i f conversion on the Itanium 2 60
4.21 Performance o f VPR (route) with i f conversion on the Ita n iu m 61
4.22 Performance o f VPR (route) with i f conversion on the Itanium 2 61
4.23 Average performance o f FDO in l in in g .. 62
4.24 Performance o f b z ip 2 with inlining on the Itan ium ... 63
4.25 Performance o f b z ip 2 with inlining on the Itanium 2 .. 63
4.26 Performance o f c r a f t y with inlining on the Ita n iu m .. 64
4.27 Performance o f c r a f t y with inlining on the Itanium 2 ... 64
4.28 Performance o f GAP with inlining on the I ta n iu m .. 65
4.29 Performance o f GAP with inlining on the Itanium 2 ... 65
4.30 Performance o f g z ip with inlining on the Itanium ... 66
4.31 Performance o f g z ip with inlining on the Itanium 2 .. 66
4.32 Performance o f MCF with inlining on the I ta n iu m .. 67
4.33 Performance o f MCF with inlining on the Itanium 2 ... 67
4.34 Performance o f p a r s e r with inlining on the Ita n iu m .. 68
4.35 Performance o f p a r s e r with inlining on the Itanium 2 ... 68
4.36 Performance o f VPR (place) with inlining on the I ta n iu m .. 69
4.37 Performance o f VPR (place) with inlining on the Itanium 2 69
4.38 Performance o f VPR (route) with inlining on the I ta n iu m .. 70
4.39 Performance o f VPR (route) with inlining on the Itanium 2 70
4.40 Resubstitution for i f conversion on b z i p 2 ... 73
4.41 Resubstitution for i f conversion on c r a f t y .. 73
4.42 Resubstitution for i f conversion on GAP .. 74
4.43 Resubstitution for i f conversion on g z i p .. 74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.44 Resubstitution for i f conversion on MCF ... 75
4.45 Resubstitution For i f conversion on p a r s e r .. 76
4.46 Resubstitution for i f conversion on VPR (place) .. 77
4.47 Resubstitution for i f conversion on VPR (route) .. 78
4.48 Resubstitution for in lin ing on b z ip 2 ... 83
4.49 Resubstitution for inlining on c r a f t y ... 83
4.50 Resubstitution for in lin ing on G A P .. 84
4.51 Resubstitution for inlining on g z i p ... 84
4.52 Resubstitution for inlining on M C F .. 85
4.53 Resubstitution for inlining on p a r s e r .. 85
4.54 Resubstitution for inlining on VPR (p la c e)... 86
4.55 Resubstitution for inlining on VPR (ro u te) ... 87
4.56 Static vs. FDO performance for i f conversion on b z ip 2 93
4.57 Static vs. FDO performance for i f conversion on c r a f t y 94
4.58 Static vs. FDO performance for i f conversion on G A P ... 94
4.59 Static vs. FDO performance for i f conversion on g z i p .. 95
4.60 Static vs. FDO performance for i f conversion on M C F ... 95
4.61 Static vs. FDO performance for i f conversion on p a r s e r 96
4.62 Static vs. FDO performance for i f conversion on VPR (p la c e) 97
4.63 Static vs. FDO performance for i f conversion on VPR (ro u te) 98
4.64 Static vs. FDO performance for inlining on b z i p 2 ... 99
4.65 Static vs. FDO performance for inlining on c r a f t y 100
4.66 Static vs. FDO performance for inlining on G A P.. 100
4.67 Static vs. FDO performance for inlining on g z i p .. 101
4.68 Static vs. FDO performance for inlining on M CF.. 101
4.69 Static vs. FDO performance for inlining on p a r s e r 102
4.70 Static vs. FDO performance for inlining on VPR (p lace)................................... 103
4.71 Static vs. FDO performance for inlining on VPR (ro u te)................................... 104

A . l Metric scores for i f conversion on b z ip 2 ... 117
A.2 Metric scores for i f conversion on c r a f t y .. 117
A .3 Metric scores for i f conversion on G A P ... 118
A.4 Metric scores for i f conversion on g z i p .. 118
A.5 Metric scores for i f conversion on M C F ... 119
A.6 Metric scores for i f conversion on p a r s e r .. 120
A.7 Metric scores for i f conversion on VPR (p la ce)... 121
A .8 Metric scores for i f conversion on VPR (ro u te) ... 122
A.9 Metric scores for inlining on b z i p 2 .. 123
A. 10 Metric scores for inlining on c r a f t y ... 123
A. 11 Metric scores for inlining on GAP ... 124
A .12 Metric scores for inlining on g z i p ... 124
A. 13 Metric scores for inlining on MCF ... 125
A. 14 Metric scores for inlining on p a r s e r .. 126
A. 15 Metric scores for in lin ing on VPR (place) .. 127
A. 16 Metric scores for in lin ing on VPR (route) .. 128

B .l Alignment vs. performance for i f conversion on b z i p 2 130
B.2 Alignment vs. performance for i f conversion on c r a f t y 130
B.3 Alignment vs. performance for i f conversion on GAP 131
B.4 Alignment vs. performance for i f conversion on g z i p 131
B.5 Alignment vs. performance for i f conversion on MCF 132
B.6 Alignment vs. performance for i f conversion on p a r s e r 132
B.7 Alignment vs. performance for i f conversion on VPR (place) 133
B.8 Alignment vs. performance for i f conversion on VPR (route) 133
B.9 Alignment vs. performance for inlining on b z ip 2 ... 134
B.10 Alignment vs. performance for inlining on c r a f t y ... 134
B .l 1 Alignment vs. performance for inlining on G A P ... 135
B. 12 Alignment vs. performance for inlining on g z i p .. 135
B. 13 Alignment vs. performance for inlining on M C F ... 136
B. 14 Alignment vs. performance for inlining on p a r s e r 136
B. 15 Alignment vs. performance for inlining on VPR (p la c e)................................ 137
B. 16 Alignment vs. performance for inlining on VPR (ro u te) 137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Traditionally, programs are compiled statically, that is, without any information beyond what the

compiler can extract from the source code. When static optimization is used, the compiler must use

heuristics to guess which are the important, frequently executed sections o f the code and which are

infrequently or never-executed sections o f the code, such as initialization routines and error handlers.

This situation is problematic, as many optimizations attempt to make the frequent case fast, often

at the expense o f less-frequently-executed sections o f code. Therefore, static optimization must be

conservative in cases where the runtime behavior o f the program cannot be confidently predicted at

compile time.

Feedback-directed optimization (FDO), also known as profile-guided optimization, is tradition

ally a compiler technique that enhances the ability o f a compiler to make good optimization de

cisions [12]. In a very general sense, FDO can be considered to be a spectrum o f performance-

enhancing techniques that rely on measurements o f run-time program behavior [36]. This spectrum

includes a large variety o f methods to enhance program performance, including: a developer manu

ally tweaking program code, hardware mechanisms such as branch predictors, and run-time program

optimizations such as just-in-time compilation o f Java bytecode to native assembly code. However,

this thesis uses a much narrower, traditional definition o f FDO.

When traditional FDO is used, several additional steps are required during the compilation pro

cess. First, the program is compiled w ith additional instrumentation code to record statistics about

run-time program behavior to a file. Then, this instrumented binary is run on a training input to

generate a file containing run-time program statistics, which is called a profile. Finally, the program

is recompiled. The compiler reads the profile file and replaces its static estimates o f program be

havior with 'the values recorded in the profile. Usually an internal compiler variable is set to tell

optimizations that profile information has replaced the static estimates.

Because FDO requires multiple compilations o f the same program, it is important to distinguish

between a program, which is the algorithm encoded in the source code, and a binary, which is

a particular compiled version o f a program. When any o f the inputs to the compilation process

are changed {e.g., compiler, command-line parameters, profile information, target architecture, or

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d a ta = g e tD a ta B lo c k (b lo c k N u m) ;
i c r c = i n t e g r i t y C h e c k (d a t a) ;
i f (i c r c == DATA.OK) {

I I . . . some p r e p a r a t io n co d e . . .
p r o c e s s D a ta (d a ta , b lo c k N u m);
I I . . . some f i n a l i z a t i o n / c l e a n u p c o d e . . .

} e ls e {
/ / . . . lo g th e e r r o r . . .
/ / . . . i n i t i a l i z e r e c o v e r y . . .
r e T r y (b lo c k N u m) ;

}

Figure 1.1: A motivating example for FDO

source code), a different binary is produced. Thus, compiling a program using FDO and training on

one input w ill result in one binary, but training on a different input w ill result in a different binary.

Consider the code fragment in Figure 1.1. Statically, a compiler might consider both branches o f

the i f equally likely. In that case, the true branch w ill probably not be optimized i f it would reduce

performance on the false branch. Should inlining o f p ro c e s s D a ta (d a ta , b lo ckN u m) or

r e T r y (b lockN u m), or both, be performed? To lim it code growth, only a frequently executed

function call should be inlined, but which branch is more frequently executed?

Alternately, some compilers perform additional branch analysis (6). Since error codes are con

ventionally represented by negative integers, the test against DATA.OK (which is presumably a non

negative constant) could be correctly identified as checking for an error condition. In this case, the

compiler assumes that an error is an infrequent exception, and optimizes the true path. I f this code is

acquiring data from a reliable source, such as a hard drive or a wired network connection, error rates

would be very low and the false branch would almost never be executed. On the other hand, i f the

data comes from an unreliable source, such as a noisy wireless connection, then the false branch may

execute very frequently. By recording statistics during the execution o f the program running on real

data, FDO provides more accurate information to the compiler to allow for better code generation in

such cases.

Most studies that use FDO techniques use either a single input for both training and performance

evaluation, or a single input for training and a single input for evaluation [11, 17, 18, 37,28,25, 14,

33, 16, 40]. This is not a wise practice because the run-time behavior o f a program is influenced

by the data it is processing. Few studies have investigated the impact o f the training input used

in FDO on the performance o f the resulting binary, either on an individual input or on a workload

o f inputs. Instead, both benchmark creators and compiler designers rely on the assumption that

selecting a single “ representative” training input w ill result in effective FDO. The tasks o f defining

what representative means and o f selecting some input that meets this definition are typically left to

the benchmark creator, who is usually familiar with the program.

There are several problems with this approach. First, most compiler users w ill likely be less

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

successful than a benchmark designer at selecting a representative training input when they use

FDO on a non-benchmark program. Second, there are several possible definitions o f a representative

input. Is a representative input representative o f a typical workload o f inputs to the program, or is

it representative o f the input that w ill be used for performance evaluation? In the latter case, should

the training input be distinct from the evaluation input? Should it be a subset o f the evaluation input?

Or, should it be a mix o f those two options?

While it may seem that one solution is obviously correct, there are competing schools o f thought

on the issue [38]. On one side o f the issue are those who believe that including any portion o f the

evaluation input in the training input represents an unrealistic scenario. A program would rarely

be run on the same data twice, since the results o f the first computation could be stored and reused

directly. Including evaluation data in the training input thus provides the compiler with more accu

rate data than would be available in a production environment, and may exaggerate the performance

benefits o f FDO.

On the other hand, some benchmark designers point out that including a portion o f the evaluation

data in the training data is an easy way to ensure that the training data is representative o f a real

workload. They argue that since a large portion o f the evaluation data is not used for training, the

characteristics o f that portion o f the data could vary substantially from the data used for training.

This would counteract any possible impact o f providing the compiler w ith artificially accurate profile

information. Furthermore, they argue that there are several classes o f programs where it is perfectly

reasonable to select a subset o f the actual data as the training set in a production environment. Data

is frequently organized as records, which are processed independently. Selecting a sample o f records

from the full data set is a natural and easy method to create a representative training data set.

A t this time, there are no regulations for the SPEC benchmarks [19] to specify whether training

data should or should not include data from the reference input set. In fact, there are examples o f

both situations in the benchmarks used in this study.

Therefore, an important question remains open: How important is the selection o f training data

for FDO? It is likely that the answer to this question is not constant across all optimizations that

use profile information. Therefore, a more appropriate question is: How sensitive are individual

compiler transformations to the selection o f training data used with FDO?

This large question should be decomposed into more manageable parts. First, does the selection

o f training data change the optimization decisions that are made during compilation? For example,

does the selection o f a different training input change which callsites are inlined in a program? I f the

answer to this question is “ no,” then the task is complete: Input selection is irrelevant for feedback-

directed optimization. More likely, however, different optimizations applied to different programs

exhibit varied measures o f input selection sensitivity.

Even i f different optimization decisions are made, these differences might not be significant.

Thus, an important second question is: Do the differences in optimizations decisions result in dif-

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ferent levels o f performance? I f training on different inputs results in significantly different levels o f

performance, then input selection for FDO is an important issue.

These questions w ill not be easily answered. Furthermore, the answers w ill likely vary depend

ing on the selection o f compiler and architecture investigated. This thesis reports the results o f an

initia l exploratory investigation that provides the follow ing contributions:

• Defines two metrics to quantify differences in optimization decisions.

• Introduces an experimental methodology to investigate the impact o f input selection on a

single optimization.

• Performs an extensive experimental study using the SPEC CINT2000 benchmarks with a

large number o f additional program inputs to investigate the feedback-directed i f conversion

and inlining optimizations in the Open Research Compiler (ORC) for the IA-64 family o f

processors.

• Determines that training input selection does impact the optimization decisions made during

FDO compilation.

• Observes that training input selection often has a significant impact on program performance,

both on a workload o f inputs and on individual inputs.

• Confirms that FDO has the potential to significantly improve program performance, and de

termines that this is usually the case with inlining.

• Demonstrates that feedback-directed i f conversion in the ORC usually reduces program per

formance.

• Confirms that using the same input for both training and evaluation usually leads to the best

performance results.

Chapter 2 provides additional background information about FDO and the ORC infrastructure.

Chapter 3 describes the experimental setup, and defines the metrics used to measure profile differ

ences. The results o f an experimental study are presented in Chapter 4. Related work is discussed

in Chapter 5. Chapter 6 identifies future work and concludes.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

2.1 Profiling and Feedback-Directed Optimization

Feedback-directed optimization uses a program execution profile to determine which portions o f

the code are frequently executed and how control flows through the program at run time. This

information is useful to optimize code that contains control flow such as i f statements. On the other

hand, control flow due to loops does not benefit from profile information because loop behavior is

easily predicted at compile time. Moreover, optimizing loop code is virtually always beneficial. In

fact, the Open Research Compiler (ORC), used in this study, includes loop frequency counts in its

profile information but ignores this information when performing loop optimizations.

Ball and Larus show how to place counters to capture the frequency o f each branch in a program

with a minimum number or counters [7]. They also show that simply counting branch frequencies

is insufficient to correctly identify the most frequently taken path through a section o f code. They

then present an efficient instrumentation technique to capture the frequency o f each execution path

through a function [8].

Despite the existence o f these profiling techniques, the ORC inserts counters to record the fre

quencies o f every branch in a program. The ORC does not implement path profiling.

2.2 Compiler Infrastructure

The Open Research Compiler (ORC) is an open-source compiler [1], The principal contributors to

the development o f the ORC are Intel and the Chinese Academy o f Sciences. The ORC is based

on the code base o f SGI’s Pro64 compiler [5], which was released as the open-source Open64

compiler [2] in 2001. The ORC focuses on producing high-performance code, and is frequently

used for compiler research. To support this aim, the ORC has a rich profiler to support its FDO

infrastructure that provides, among other things:

• Dynamic instruction counts for each function

• Invocation count o f each function

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Taken and not-taken frequency counts for each branch

• Loop statistics

• S w itc h - c a s e case frequencies

• C a l l and r e t u r n frequencies for each callsite

• Stride profiles

• Value profiles

The IA-64 processor family is the only target for the ORC. Consequently, the ORC combines a

mature code base with state-of-the-art compiler technology tuned for Itanium processors. When a

3-stage FDO compilation process is used, the performance o f the ORC 2.1 on the SPEC CINT2000

benchmarks is w ithin 5% o f Intel’s ECC 7.0 compiler, and exceeds the performance o f GCC 3.1 [4,

3]. This study uses the latest release o f the ORC, version 2.1.

This thesis investigates two optimizations that make use o f the frequency information provided

by profiling: i f conversion and function inlining. The code base o f the ORC is roughly 130MB,

spread across nearly 8500 files and 267 directories. Thus, locating, understanding, and correctly

instrumenting an optimization has the potential to be a very involved task. This task is made more

involved by the scarcity o f detailed documentation for the compiler. I f conversion was selected

because (1) it was moderately easily located in the source code, (2) it is contained in a small number

o f source files, and (3) it is easily instrumented to output and use the optimization logs required for

the study. In lin ing was selected because it is an optimization known to have a significant impact on

performance. Furthermore, inlining provides a natural starting point for the investigation because

the facilities to output and use the inlining log were pre-existing in the ORC.

2.2.1 I f conversion

I f conversion is a program transformation that attempts to reduce branch misprediction penal

ties and hazards that arise in code with control flow. Furthermore, as a side effect o f eliminating

branches, i f conversion can increase the amount o f Instruction Level Parallelism (ILP) in program

code and allow greater flexib ility for instruction scheduling. Both these properties are important for

EPIC architectures such as the Itanium1 and the Itanium 2, as discussed in Section 3.3. In addition,

i f conversion can enhance the performance improvements gained by software pipelining loops.

In order to execute if-converted code, an architecture must support predicated instructions. A

predicate is a special-purpose single-bit register, pO, p i, etc.. Predicates can be set or cleared by the

results o f comparisons, or can be calculated from other predicate values. A predicated instruction

is a normal machine instruction, prefaced by a reference to a predicate register. I f the bit in that

1 Itanium and Itanium 2 arc trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s e t p O , p l
2 * k - j
2 * k + j
j + k
k - j

(a) Original code (b) Original CFC! (c) I f c o n v e r t e d CFG

Figure 2.1: High-level example o f i f conversion

predicate register is on, or the predicate is true, then the results o f the instruction are committed;

otherwise the result o f any computation is discarded and does not change any state in the machine.

Figure 2.1(a) shows a simple branch. Figure 2.1(b) shows the same branch as a control flow

graph (CFG). A CFG is composed o f basic blocks (BBs). A basic block is a single-entry single-exit

sequence o f instructions where execution can only start with the first instruction in the sequence.

Moreover, i f the first instruction is executed, then every instruction in the BB must be executed in

order. Consequently, the first instruction in a BB must be either the first instruction in a function,

or the target o f a branch instruction. Either the last instruction o f a BB is a branch or a return

instruction, or the next instruction after the BB is the target o f a branch. Every branch is the last

instruction o f some BB.

Since i f conversion changes branches into predicate calculations, i f conversion allows BBs to

be merged together. In Figure 2.1(c), the p i predicate is set to 1 and the pO predicate is set to 0 i f

j is less than k. Otherwise, when the result o f the test is false, the values assigned to the predicates

are reversed. The instructions on the Yes path are guarded by the p i predicate, and the instructions

on the No path are guarded by the pO predicate. Then, the instructions from both branches can be

merged into the BB that contained the test before i f conversion. The instructions from the two paths

can be intermingled arbitrarily, and can be scheduled anywhere in the new BB after the instruction

that computes the predicate values.

When the code is not if-converted, the direction o f the branch determines whether the instruc

tions on the i f or e ls e path should be executed. Either set o f instructions may enter the execution

pipeline, but not both. I f the processor mispredicts the branch, then the wrong instructions w ill be

fetched and put into the pipeline. Subsequently, the pipeline w ill be flushed, and execution w ill

restart with instructions from the correct path. Many branches are easily predicted. For example,

the exit test at the beginning o f a loop is only taken once in each loop execution, but is not taken for

every iteration o f the loop. However, some branches are inherently d ifficult to predict [6], [23] (pp.

313-314), and thus benefit most from i f conversion.

On the other hand, ifthecode is i f c o n v e r te d , then all the instructions from both sides o f the

7

i f (j < k)
{

a = 2 * k + j ;
b = k - j ;

}
e ls e
{

a = 2 * k - j ;
b = j + k ;

}

Yes No

= 2 * k - j
= j + k

a = 2 *k+ j
b = k - j

I t j , k
p O: a =
p i : a =
p O: b =
p i : b =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

branch are fetched and enter the execution pipeline. A ll o f these instructions do consume processing

resources, though the expectation is that the processor would otherwise have idle functional units.

In exchange, there is no danger o f a branch misprediction since the branch has been eliminated.

Predicates are computed in time to determine which instructions should be committed and which

should be discarded without delaying execution.

When making an if-convers ion decision, the branch is first checked to ensure that i f conver

sion is legal. Then, the execution times for both the predicated and non-predicated versions o f the

code are estimated to determine the profitability o f the transformation. These estimates are based on

the following factors:

1. Taken vs. Not-Taken T im e: I f the code for one side o f the branch is much longer than the

other, if-conversion w ill delay the execution o f the shorter path. The execution time for each

path is estimated statically.

2. Resource Use: I f i f conversion would lead to stalls due to insufficient processor resources,

it may not be beneficial. Resource use is estimated statically.

3. Branch Probability : The probability that the branch is taken is used to estimate the branch

misprediction cost and to weigh the above characteristics when estimating execution times.

The branch probability is taken from profile information i f available, or estimated based on

the type o f branch otherwise.

I f the average estimated execution time is reduced by i f conversion, the transformation is per

formed. The transformed region may be part o f a path from another branch, and may become part

o f a larger predicated region i f additional i f conversion is performed.

Hyperblocks are single-entry multiple-exit scheduling regions that rely on i f conversion to

remove control flow within a region. Hyperblocks were introduced by Mahlke [31]. He found,

through simulation, that they could provide on average a 3-fold speedup for a collection o f programs

on a hypothetical EPIC processor capable o f issuing 4 instructions per cycle and implementing fu ll

support for predicated execution. These simulations provided incentive for the design o f hardware

implementations o f similar processors, such as the Itanium. However, later studies using the Itanium

revealed that the performance benefits o f i f conversion on this architecture are fairly small. In

particular, Choi et al. concluded that the performance benefits o f i f conversion due to reduced

branch misprediction for the SPEC CINT2000 benchmarks on the Itanium are upper-bounded at

about 2-3% [13].

The ORC contains algorithms to produce predicated code using either hyperblocks (path-based

predication) or i f conversion (individual branch-based predication). I f conversion is used by de

fault unless hyperblocks are explic itly selected by a command line option. We expect that the com

piler designers had good reasons to prefer i f conversion over hyperblocks, and therefore perform

our study using i f conversion.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.2 Inlining

Function inlining, or simply inlining, is a common optimization that results in significant perfor

mance gains. Inlining replaces a function call with the code o f the function that would ordinarily be

called. The function call is referred to as the callsite, the function that contains the callsite as the

caller, and the function that would be called as the callee. There may be multiple callsites for the

same callee, and each is treated individually.

Inlining improves performance in several ways. Most obviously, inlining a function removes

the function call and the associated overhead o f pushing arguments onto the stack and saving and

restoring registers. Also, since the function code is included in the body o f the caller, locality in

the instruction stream can be improved. Most importantly, other optimizations have the potential

to be more effective. For example, optimizations such as dead code elimination, constant propaga

tion, and redundant subexpression elimination can propagate changes into the callee code without

the requirement to maintain the generality o f the original function. Consider a function that does

additional or alternate processing i f a parameter is true or false. I f the compiler can prove that the

parameter is always set to true (e.g., it is hard coded to true) at a particular callsite, then the test on

that parameter and the non-taken branch can be eliminated from the inlined code.

However, excessive inlining can degrade performance. Inlin ing increases code size, and can re

duce instruction cache performance. Furthermore, larger functions require more time to optimize.

This is particularly problematic since several static optimizations have super-linear compile times.

To prevent excessive compile times, many optimizations are guarded by timers that abort optimiza

tion after an extended period o f time. Therefore, excessive code growth can lim it the effectiveness

o f more expensive optimizations. Finally, the inlined code introduces more variables and temporary

values that increase register pressure. I f these values do not fit in the register file, then additional

register spills and restores are needed.

There are many factors that determine i f inlining is performed at a callsite. The main intuition

for the majority o f the filters that control inlining is that the callsite should be frequently executed

to maximize the benefits o f inlining, and both the caller and the callee should be small to avoid the

negative effects o f code size expansion. In the ORC, the compiled size o f a function is estimated

from higher-level representations according to the formula:

size = S ta tem en tC ount + C a llC ou n t + 5 * BasicB lockC oun t

Each statement results in one or more machine instruction. Each function call requires code to push

arguments on the stack and a call instruction. A basic block is a section o f code with a single entry

point at the first instruction, and no exits until the last instruction, which may be a branch or a return

instruction. Since many basic blocks are small, five instructions per basic block is a reasonable

rough estimate.

Inlining in the ORC uses a temperature heuristic, which is augmented by Zhao’s adaptive in-

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lining and cycle jlensity heuristics [40]. Temperature measures the expected benefit o f inlining, and

can roughly be explained as the ratio o f the contribution o f a callsite to the execution time o f the

program compared to the proportion o f the size o f the callee to the size o f the entire program. A

hot callsite is one that accounts for a large amount o f program execution time from a small callee.

Therefore, the hotter a callsite, the more benefit is expected from inlining that callsite.

Inlin ing is performed i f the temperature o f a callsite exceeds a threshold. Adaptive inlining

allows the threshold to vary depending on the program size. Small programs benefit from a lower

threshold and more aggressive inlining, while larger programs require a higher threshold to prevent

excessive inlining. Applications are categorized as Large, Median, or Small, and the temperature

threshold is adjusted accordingly.

Callsites may account for a large proportion o f execution time due to frequent execution or due

to high trip-count loops inside the callee. The temperature heuristic is not effective at distinguishing

these two cases. However, inlining w ill only be effective at enhancing performance in the case where

the call is made frequently. A high trip-count loop can be optimized effectively without inlining, but

inlining it w ill likely produce the negative effects described above. The cycle.density ratio identifies

these heavy functions by comparing the amount o f execution time spent in the function to the number

o f times the function was called. Only those callees with a low cycle_density should be inlined.

Zhao shows that the addition o f adaptive inlining improves performance on the SPEC CINT2000

benchmarks by more than 5% compared to temperature alone. Also, while cycle_density has little

impact on performance, it reduces code bloat by as much as 27% by preventing the inlining o f a

small number o f infrequently called functions. These experiments were performed on an Itanium

processor, with FDO training on the SPEC training inputs, and evaluated on the SPEC reference

inputs.

As discussed above, the ORC’s inlining heuristics rely heavily on the frequency o f execution

o f each callsite, the execution frequency o f each function, and the number o f cycles spent in each

function. While these measures can be estimated statically, they can be much more accurately de

termined by collecting profile information. Loop optimization classically assumes that each loop

iterates 10 times. There are standard expectations o f branch probabilities for various classes o f

branches. These estimates can be used to generate estimates for the quantities used by the in lin

ing heuristics. However, profile information is very valuable for calculating heuristic values. In

particular, profile information can provide much better measures o f loop trip counts for use with

the cycle-density heuristic, and w ill result in much more accurate temperature values. Therefore,

inlining should be more effective when FDO is used.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Experimental Setup

3.1 Metrics

This thesis addresses two primary questions: (1) does profiling on different training inputs result in

different optimization decisions in the compiler? and (2) do these modified decisions significantly

affect program performance? The latter question can be answered by experimentation, and w ill be

dealt with in Chapter 4. This section addresses the first question. It develops methods to quan

titatively measure the differences between sets o f optimization decisions. These metrics provide

a concrete measure o f the extent to which the selection o f training data influences the way that a

program is optimized by a compiler.

During the compilation process, selected compiler decisions are written to a log file. For clarity,

a particular instance where a decision is made is referred to as a choice, and the selected outcome o f

the choice is a decision. For example, at a callsite foo in a program, the compiler has a choice about

in lin ing/oo, which results in a yes or no decision.

Figure 3.1 shows the callsites o f a simple program that w ill serve as a running example. Assume

that there is additional code, which is omitted for brevity and clarity, in each o f the functions. Three

possible inlining logs are presented in Figure 3.2. The notation c a l l e r . c a l l e e is used to name

callsites.

Log files record the compiler’s choices and decisions for an optimization during a single corn-

v o id f o o () { }

v o id b a r () {
f o o () ;

}

i n t m a in (i n t a r g c , c h a r * a r g v []) {
f o o () ;
b a r () ;

}

Figure 3.1: Callsites in a simple program

1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

callsite logl log 2 log 3 log 4
b a r . fo o i n l i n e c a l l i n l i n e c a l l
m a in . fo o c a l l c a l l c a l l i n l i n e
m a in .b a r c a l l i n l i n e i n l i n e i n l i n e
m a in . b a r . f o o i n l i n e i n l i n e i n l i n e

Figure 3.2: Some possible inlining logs

callsite v\ v-i #3 V.\

b a r . fo o 1 0 1 0
m a in . fo o 0 0 0 1
m a in .b a r 0 1 1 1
m a in . b a r . fo o 0 1 1 1

Figure 3.3: Log files converted to vectors

pilation. A ll the logs for a given benchmark and optimization are processed together. Each log is

converted into a vector. Each vector is the same length, with one entry for every unique choice

recorded in the set o f logs. By convention, a 0 is recorded in the vector for a negative decision

(choosing not to perform an optimization), while a positive non-zero value is recorded for a positive

decision (choosing to perform the optimization). In the case where a choice is not present in one or

more logs, a default value o f 0 is recorded. This situation may arise any time the existence o f one

decision depends on a previous positive decision. By making a negative decision for one choice, the

compiler im plic itly makes negative decisions for all choices that depend on a positive decision for

that first choice. For example, the main.bar.foo callsite does not exist in log 1 in Figure 3.2, so it is

assigned the default value o f 0 in the vectors in Figure 3.3.

Once each o f the n logs has been converted into a vector tf,-, the Difference and Coverage metrics

can be calculated. The terms log and vector are used interchangeably to refer to vectors

3.1.1 Difference

The difference metric quantifies the difference between two logs. It is defined as the squared length

o f the difference vector between two log vectors i7, and V j:

6(vi ,Vj) = \vj - v j |2

In the case where binary decisions are recorded in the vectors as Os and Is, 5 (v i,V j) is simply the

V i Vo #3 VA

V i 0 3 2 4
Vo 0 1 1
V3 0 2
V.\ 0

Table 3.1: Values for the difference metric

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hamming distance between the vectors1. Difference values for the example are given in Table 3.1.

<5 grows as the number o f choices that resulted in different decisions in the two logs increases.

Therefore, this metric gives a direct indication o f the extent to which a different selection o f training

input can result in different optimization decisions during compilation. However, <5 has no concept o f

the relative importance o f the decisions. Two logs that differ only regarding insignificant decisions

may have the same 5 value as two logs that only differ with respect to a few key decisions. Therefore,

there may be no correspondence between the difference score and performance.

3.1.2 Alignment

The common im plicit assumption o f most work that uses FDO is that as long as the training dataset

is “ representative” o f usual program behavior, the particular dataset used for training is inconsequen

tial. I f this is the case, then the optimization logs based on profiles from different training inputs

should not vary significantly. The difference metric can identify differences between a pair o f logs,

but does not answer the question o f how much the logs agree with each other across the entire set o f

logs. The alignment metric quantifies the level o f agreement between one optimization log and the

collective choices made across the logs from all the inputs for a program.

To calculate an alignment score for a log, first calculate the combined total vector:

f = £ >
i

f can be seen as a measure o f agreement between all the logs. A choice that frequently results in

a positive decision w ill have a high value recorded at its index in T , while a decision that is usually

decided negatively w ill have a low value in T . In the example, T = [2 1 3 3]r .

The alignment o f a log vi is defined as:

T - V i
Oti = ----------- = —

EjTtf]

a is most usefully reported as a percentage, where the sum o f the elements o f T is used as the

denominator. Recall that the dot product o f two vectors, x • y = \x\\y\cos(8), where 6 is the angle

between the vectors. Therefore, a is related to the angle between a log and T . Since a,- is the

accumulation o f the element-wise products o f T and u,-, a w ill be large only i f F; has positive values

(i.e., positive decisions) at the same indexes as many other logs. I f a log has no positive decisions,

a w ill be 0. On the other hand, i f a log has a positive decision for every choice for which any log

records a positive decisions, a w ill be 100%. In the example, cvi = | = 22%, cto = § = 67%,

« ;t = ! = 89%, and a., = £ = 78%.

'The Hamming distance is the number o f bits that are different between two equal-lcngth binary vectors

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.3 Differences Between Logs

Logs may differ in two primary ways. First, the positive decisions in one log may be a superset

(or subset) o f the positive decisions in another. Alternately, two logs may make different decisions,

such that the intersection o f the two sets o f positive decisions is small. Practically, the differences

between two logs w ill fall somewhere on the continuum between these extremes, but w ill generally

tend toward one or the other. It would be useful to distinguish between these two cases, since the first

case represents more aggressive application o f an optimization, while the second case represents a

divergence o f optimization strategies. Intuitively, the second case shows a more fundamental change

in the behavior o f the compiler than the first, and consequently a more significant difference between

the training inputs that generated the logs in question.

The difference metric cannot distinguish between the two cases, since it merely counts the d if

ferences between the sets o f positive decisions, without regard for whether one log is performing

more optimization or different optimization than the other. On the other hand, the alignment metric

does not directly measure the relationship between any pair o f logs. However, when alignment and

difference are considered together, they provide insight into the relationships between logs.

Let us consider first the cases where difference scores are low. In this case, the low difference

scores are sufficient to identify the logs as very similar. Since there are few differences between the

logs, alignment values are expected to be very high.

However, i f differences between logs are larger, and one log has a higher alignment score than

the other, it is likely that one log is roughly a superset o f the other. Conversely, i f the logs differ

but have very similar alignment, then the difference is likely due to different optimization strate

gies rather than a difference in how frequently an optimization was performed. A low alignment

value reinforces this conclusion, since it indicates that a larger proportion o f choices were different

between the logs.

3.2 Benchmarks and Inputs

Feedback-directed optimization involves a multi-step compilation process. First, an instrumented

version o f the program is compiled. This instrumented binary is run on a training input, and emits

a profile that describes the run-time behavior o f the program during that run. Finally, the program

is recompiled. During this compilation, the compiler uses information from the profile file to guide

code transformations. This study uses a workload o f inputs for each program. Training is done

once for each input in the workload. The evaluation o f each o f the resulting binaries is measured by

running it on all the inputs in the workload.

In order to study the impact o f various training datasets on the performance o f feedback-directed

optimizations, this study uses the standard SPEC CINT2000 benchmarks and their corresponding

datasets. SPEC provides three sets o f inputs for each program for use during performance evaluation.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The test input set is a very small input that is provided to allow easy verification that the system

is configured properly for the compilation and execution o f the benchmark program. The train

input set consists o f a small or medium-sized input for use during the training run o f FDO. The ref

(reference) input set is the input set used for performance evaluation. The reference inputs are large,

and usually run for several minutes. SPEC provides one test and one train input for each program

in the suite. The reference input set often contains a single ref input, but occasionally consists o f

several inputs that are processed in consecutive runs o f the program.

The inputs provided by SPEC are insufficient for this study. The test inputs are very small, and

thus might not be adequate for use during the training run for FDO. Both the test and train inputs are

reduced in size compared to the ref inputs, and thus may be unsuitable for use during performance

evaluation. Even in the best cases, there are only a small number o f inputs in the SPEC reference

workload. Therefore, all the SPEC inputs are included in the workloads for our programs, and are

supplemented with additional inputs. These additional inputs are chosen to be representative o f a

larger range o f inputs to the benchmark programs. Where possible, the benchmark authors have

been consulted during the input selection process so that their expert knowledge o f the program can

provide insight and intuition to select inputs.

Some SPEC benchmark programs were omitted due to problems compiling them with the ORC.

A ll benchmarks were used unmodified from the source code provided by SPEC. In some cases,

newer versions o f the programs were available that may have alleviated some experimental d ifficu l

ties. Nonetheless, this study uses the original benchmark code in order to preserve consistency with

other works.

Following are brief descriptions o f the benchmark programs and the workloads used. Tables

summarize the workload for each program, and provide additional details about each input. The

average time for a statically optimized binary to run on each input on the Itanium 2 is presented as

a quantitative measure o f each input’s size and complexity.

B z ip 2 is a popular compression u tility that uses the Burrows-Wheeler block sorting text com

pression algorithm and Huffman coding. The additional inputs for b z ip 2 are a collection o f files in

common formats. Files in these formats are often distributed over the Internet, or archived by users,

and compression is usually employed in both o f these scenarios. The b z ip 2 workload is given in

Table 3.2. B z ip 2 was not run on the log and combined inputs.

G z ip is another popular compression u tility that uses Lempel-Ziv coding (LZ77). G z ip uses

the same workload as b z ip 2 (Table 3.2), with the addition o f the log and combined inputs. SPEC

does not provide details about the combined input, but judging by its name and the fact that it is

g z ip ’s train input, it is reasonable to speculate that combined is a collection o f parts taken from

the g z ip reference inputs.

MCF is a multi-commodity flow solver that uses the network simplex algorithm. The workload

for MCF consists o f the SPEC inputs along with several randomly generated problem instances using

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Description Size (M B)
R untir
bzip2

ne (s)
gzip

mp3 An audio file encoded as an MPEG1 layer 3
audio stream using 128 Kbps constant b it rate
encoding.

34 163.32 42.78

jpeg A large image compressed using the JPEG image
format, using a high quality setting.

15 147.42 40.99

xml An exported iTunes [24] music library in X M L
format. The library contains approximately 2800
songs.

4.2 93.83 15.01

docs A collection o f Word, WordPerfect and RTF
formated text documents. Excel and Quattro Pro
spreadsheets, and PowerPoint presentations.

4.8 521.11 31.64

pdf A collection o f developer manuals for digital
signal processors, as PDF documents.

16 117.85 36.89

mpeg A video encoded as an MPEG-1 video stream. 2.9 157.21 42.86

compressed The SPEC train input for b z ip 2 , and the SPEC
test input for g z ip .

1.0 26.75 1.29

reuters ASCII text from the Reuters collection [30]. 4.4 55.35 44.37

gap The 254.gap SPEC CINT2000 benchmark
program binary compiled with optimization and
without feedback by the ORC 2.1 compiler.

3.4 86.53 72.75

graphic A SPEC reference input for both b z ip 2 and
g z ip . A large TIFF image.

6.3 73.67 41.23

program A SPEC reference input for both b z ip 2 and
g z ip . A program binary.

3.3 73.15 67.62

random A SPEC test input b z ip 2 , and a SPEC refer
ence input for g z ip . Random data.

8.0 5.79 33.85

source A SPEC reference input both for b z ip 2 and
g z ip . A tarball o f source code.

9.1 53.00 37.44

log A SPEC reference input for g z ip . A Webserver
log.

4.2 71.37 17.98

combined The SPEC train input for g z ip . 3.0 131.70 22.45

Table 3.2: Workload for b z ip 2 and g z ip

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t
T ri

Time-Tabled
as

Dead-IIead
Runtime (s)

ref 16555 194581 530.34
test 646 2789 0.21
train 5985 84449 31.42
synth-0 10000 200000 596.99
synth-1 11000 200000 814.63
synth-2 12000 200000 1168.17
synth-3 13000 200000 1566.10
synth-4 14000 200000 1999.12
synth-5 5000 200000 56.78
synth-6 6000 200000 100.56
synth-7 7000 200000 162.47
synth-8 8000 200000 269.21
synth-9 9000 200000 386.11

Table 3.3: Workload for MCF

In pu t Board Positions Search Depth L im it Runtim e (s)

ref 5 11-12 133.60
test 4 7 - 8 2.99
train 4 8 - 10 18.61
wac-001 10 12 113.46
wac-051 10 12 165.31
wac-151 10 12 347.76
wac-251 10 12 275.01

Table 3.4: Workload for c r a f t y

varied parameters. Each problem instance is composed o f timetabled trips and dead-head trips,

which are used to create the problem graph. Our testing showed that the difficulty o f a problem

instance is related to the ratio between the number o f the two trip types. Unfortunately, efforts to

contact the benchmark author to verify this result or gather additional insight into the problem failed.

Therefore, we selected a number o f deadhead trips similar to the SPEC reference input, and varied

the number o f timetabled trips. Table 3.3 provides additional details. Notice that the run times for

the synthetic inputs span a range from about 10% to almost 400% the runtime o f the SPEC reference

input.

C r a f t y is a high-performance chess-playing program. The SPEC inputs used in the workload

are each collections o f chess positions to solve (determine i f the current player w ill w in or loose).

The additional inputs are small collections o f board positions arbitrarily selected from a large set

provided by the program’s author. Additional details can be found in Table 3.4. The additional

inputs for c r a f t y also show variation in program difficulty, based on program runtime.

P a r s e r is a natural language parser that attempts to label words in English sentences with

their correct part o f speech. The version o f parser in the SPEC CINT2000 suite is version 2, while

the current version is version 4.0. The newer version can parse sentences faster, and can handle

sentences that cause the SPEC version to abort in mid-run. Manual checking o f inputs was required

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Description Sentences Runtime (s)

ref The SPEC ref input. 7759 292.54

test The SPEC test input. 848 1.87

train The SPEC train input. 343 6.66

alice Text from “A lice ’s Adventures in Wonderland”
by Lewis Carroll. Digital text is from the Project
Gutenberg repository [10].

773 609.36

pa Text from the news posts from December 29, 2004
through May 6, 2005 at Penny-Arcade [27], a
popular video-game news and webcomic website.

2227 432.20

relativity Text o f “ Relativity: The Special and General
Theory” by Albert Einstein. Digital text is from
Project Gutenberg [22]. Some manual processing
was performed to fix sentences with equations and
figure references.

590 534.52

worlds Text from “ The War o f the Worlds” by H. G. Wells.
Digital text is from Project Gutenberg [39].

2456 592.83

02-05words Those sentences with only 2 - 5 words, inclusive,
from the pa, alice, relativity and worlds inputs.

452 0.33

06-10 words Sentences with 6 - 10 words from the Project
Gutenberg inputs.

1181 2.33

1 l-15words Sentences with 1 1 - 1 5 words from the Project
Gutenberg inputs.

1271 8.95

16-20words Sentences with 1 6 - 2 0 words from the Project
Gutenberg inputs.

1220 37.30

21-25 words Sentences with 2 1 - 2 5 words from the Project
Gutenberg inputs.

1083 141.66

Table 3.5: Workload for p a r s e r

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In pu t Parameter Runtime (s)

ref N /A 173.29
test N /A 0.87
train N /A 6.67
snf200-300 200 and 300 0.73
snf525 525 4.86
snf750 750 18.99
snf900 900 35.99
snfl025 1025 59.82
s n fll5 0 1150 84.34
snfl260 1260 114.47

Table 3.6: Workload for GAP

to prune our additional input o f such offending sentences. Descriptions o f our additional inputs are

given in Table 3.5. The pa input was selected to exercise p a r s e r 's code that handles words not

found in its dictionary, and is an example o f informal writing. Alice was selected as an example o f

unusual word use and sentence structure. Relativity provides an example o f more formal technical

writing, while worlds provides more common word use and sentence structure, as well as dialog.

The inputs for p a r s e r are varied in both the number o f sentences and the resulting runtime, though

the two measures are not strongly correlated.

GAP (Groups, Algorithms and Programming) is an interpreter for a mathematical language o ri

ented for computations on groups. The version in the SPEC benchmark is V3R4P3, modified for

the benchmarks to run on 64-bit architectures. However, the 64-bit porting was not complete, and

only ensured that the test, training, and reference inputs, supplied to SPEC when the benchmark was

submitted, ran correctly [35]. Therefore, there are limitations on the variety o f input programs that

can be selected for GAP. Several additional inputs were tried, but most caused incorrect behavior

(e.g., infinite loops). Consequently, there must be sections o f code in the benchmark that none o f

our inputs exercise, namely those sections responsible for incorrect program behaviors. Our addi

tional inputs are a single program, with a varied input parameter. The goal o f varying the parameter

is two-fold: first, as the parameter grows, the numbers used in calculations w ill grow and the inter

preter w ill shift from machine integer arithmetic to long integer arithmetic. Second, as the parameter

increases, the performance bottleneck should shift from the CPU to the memory hierarchy. While

the SPEC test and train inputs are distinct, both overlap the computations specified in the SPEC ref

input (i.e. some o f the calculations performed by the test and train inputs are also exactly performed

in the ref input) [35]. The inputs used in the GAP workload are listed in Table 3.6. The table does not

indicate i f the desired changes in program behavior are realized, but the run times for the additional

inputs are quite varied.

VPR (Versatile Place and Route) is a tool to place and route circuits for Field-Programmable Gate

Arrays (FPGAs). This benchmark has been split in two, with one copy for each o f the main program

tasks. In this way, training on placement inputs is prevented from creating binaries that perform

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Size (Logic Blocks)
Runt

Place
ime (s)

Route

ref (clma) 8383 87.63 82.52
test N/A 1.05 0.44
train N/A 9.90 9.23
alu4 1522 7.34 6.32
apex2 1878 10.77 7.97
apex4 1262 6.06 5.53
bigkey 1707 9.73 8.54
des 1591 9.11 16.81
diffeq 1497 8.03 4.79
dsip 1370 7.12 5.60
elliptic 3604 26.75 21.37
exlOlO 4598 38.17 23.98
ex5p 1064 5.15 6.23
frisc 3556 27.14 23.82
misex3 1397 6.89 5.79
pdc 4575 39.09 127.63
s298 1931 9.55 4.16
s38417 6406 59.96 28.75
S38584.1 6447 60.63 30.80
seq 1750 9.59 7.52
spla 3690 28.59 30.80
tseng 1407 5.17 2.41

Table 3.7: Workload for VPR

poorly on routing inputs (and vice versa), as these effects would exaggerate the differences between

training inputs. Both the placement and routing versions o f the experiments use the same set o f input

circuits, but perform only the appropriate task. The additional inputs for the VPR workloads are the

circuits from the FPGA Place-and-Route Challenge [9]. The SPEC ref input is the clma input from

the FPGA challenge, thus this input is only included once. Table 3.7 lists the inputs in the VPR

workloads. While there is variation in the run times for the inputs, for both placement and routing,

13 o f the 22 inputs have run times o f less than 10s.

O f the remaining SPEC CINT2000 benchmark programs, perlbmk, vortex, and twolf
caused the ORC to crash during compilation when flags to emit the inlining log were used. GCC and

eon are known problems with the ORC 2.1 when optimization is used in conjunction with feedback.

Since these benchmarks could not be compiled, they were thus omitted from this study.

3.3 Architectures

Both the Itanium and the Itanium 2 implement the 64-bit IA-64 Exp lic itly Parallel Instruction Com

puting (EPIC) Instruction Set Architecture (ISA) [32], EPIC uses in-order issue o f bundles o f in

structions. Each bundle contains 3 instructions that can be executed in parallel, and must conform

to one o f the 10 patterns o f instruction types specified by the ISA (such as Memory-Integer-Branch

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(M IB) or Memory-Integer-Integer (M il)) . The EPIC ISA relies heavily on compiler technology. The

compiler is responsible for exposing Instruction Level Parallelism (ILP) and effectively scheduling

instruction to ensure (I) that bundles contain few null operations, and (2) that stop instructions (a

barrier to parallel execution) are avoided. Furthermore, the compiler must make effective use o f

the advanced features o f the architecture such as hardware-supported control and data speculation,

instruction predication, the Register Stack Engine (hardware spill and restore), cache hints and data

cache prefetch instructions.

While both the Itanium and the Itanium 2 are theoretically capable o f fetching, issuing, executing

and retiring two bundles in each cycle, the Itanium does not have sufficient execution resources to

frequently achieve this level o f performance in practice. The Itanium 2 increases the number o f

integer units from 4 to 6, the number o f multimedia units from 4 to 6, and the number o f load/store

ports from 2 to 4. O f the 100 possible sequences o f two bundle types (e.g., an M IB bundle followed

by a M il bundle), only 28 can be fu lly issued on the Itanium. The additional execution resources

o f the Itanium 2 allow an additional 47 sequences to be fu lly issued. O f course, the performance

gained by this additional capability depends on the actual sequences o f bundle types generated by

the compiler for a particular program.

Additionally, the Itanium has a 10-stage pipeline, while the Itanium 2 has an 8-stage pipeline.

Due to this shorter pipeline, the negative impact o f branch misprediction is expected to be reduced,

since a pipeline flush results in less lost work. Consequently, the benefit o f i f conversion should be

less on the Itanium 2since the performance gain from i f conversion is partially due to a reduction

in branch mispredictions.

This study does not directly compare performance on the two platforms since the Itanium 2 has

a distinct advantage in terms o f both computational resources and clock frequency. Furthermore, we

are not interested in raw system performance, but rather on the effect o f compiler decisions during

feedback-directed optimization on system performance.

Our experiments on the Itanium were performed on two 4-processor 733-MHz machines with

6 GB o f RAM. Files are located in an NFS-mounted directory, though file-system performance

should have a negligible performance impact since the SPEC benchmarks are specifically modified

to minimize disk access. Our Itanium 2 machine has a 1.3-GHz processor and 1 GB o f RAM. Files

are located on the local disk. A ll the machines run RedHat Linux 7.2 with version 2.4 SMP kernels.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Results

In order to evaluate FDO in the ORC, we created Aestimo '. Aestimo is a performance evaluation

tool that automates the process o f compiling, executing, and evaluating the input programs on their

workloads. Figure 4.1 provides an overview o f Aestimo.

The experiments performed by Aestimo required the creation o f a large number o f binaries. A

flow diagram for Aestimo's compilation process is presented in Figure 4.2. The bold boxes indicate

“ final products” that are subsequently used by Aestimo. Each benchmark program is compiled stat

ically once for each optimization being studied to create the “ static” binary, and to create the static

optimization logs. The compiler flags used for the static compilation are the same as for the profiled

case, except for the omission o f flags that refer to the profile file. Only one instrumented binary is

created for each program. However, the remaining steps in the flow diagram are performed for each

optimization/input pair.

Aestimo produces binaries that only use profile-guided decisions for the optimization under in

vestigation for each o f the inputs in the workload. First, a training run executes the instrumented

binary on the input. Then, the benchmark is compiled using the generated profile data, and an

optimization log is emitted for the optimization in question. The binary produced at this point is

discarded. Finally, Aestimo recompiles the benchmark statically. However, the optimization log is

used to instruct the compiler to make the same decisions for that optimization as it did during the fu ll

profile-guided compilation. In this way, optimization decisions based on profile information (rather

than static estimates) are used only for the optimization in question. The binaries produced by this

final compilation are referred to as FDO binaries.

During the final compilation, the compiler may not be able to perform every optimization listed

in the log. For example, i f the log is for i f conversion, there may be a function that is not inlined

without profile guidance. In that case, any i f conversion listed in the log for the inlined code w ill

be ignored. On the other hand, any additional optimizations that become profitable due to a forced

decision w ill still be available to the compiler. For example, i f the log forces a callsite to be inlined,

any static optimizations applicable to the inlined code w ill still be applied. Therefore, our technique

1 Aestim o is a Latin verb whose meaning is similar to that of the English verb evaluate

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Compilation

Execution

Analysis

P erform ance Alignm ent

F D O vs. Static Difference

O ptim ization
Logs

Program
W orkload

Binaries

Resubstitution

Figure 4.1: Overview o f Aestimo

/ ^fnstm nnenling~\
V . C o m p ila tio rT y

Instrumented
Source Code

C”” Static
C o m p ila t io n /

Training

Input
Training

Run
Profile

FD O
Compilation

Optimization

Log

Optimization

Log

Static
Compilation

Figure 4.2: Compilation process

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Benchmark
Processor T

Itan ium
imc (hr:m in:sec)

Itanium 2

bzip2 433:56:13 79:13:22
crafty 67:06:19 22:30:59
gap 44:47:15 14:46:52
gzip 61:12:16 24:05:20
parser 246:14:46 94:23:45
m cf 822:05:34 306:02:20
vpr.place 84:53:30 30:12:08
vpr.route 104:46:11 31:19:45
Total 1865:02:06 602:34:34

Total 2467:36:40 (102.8 days)

Table 4.1: Total processor time o f experiments

ensures that any opportunity to apply the optimization in question w ill result in the same decision as

in the fu ll feedback-directed case, while not ignoring cascading effects due to the interrelatedness o f

optimizations.

After the compilation process, Aestimo executes each o f the FDO binaries on each o f the inputs

in the program workload five times. The combined run times o f the experiments performed by

Aestimo are presented in Table 4.1. These figures include only the time required to perform the

five trial executions o f each FDO i f conversion or inlining binary on each input in the workload.

The time to compile each o f the 976 binaries (8 instrumented binaries, 16 static binaries, 232 fu ll-

FDO binaries, 116 FDO i f conversion binaries, and 116 FDO inlining binaries, for each o f the

two processors) is not included. Furthermore, the time to perform the 464 training runs on the

instrumented binaries (which can run an order o f magnitude slower than the optimized binary) to

generate profiles for FDO are omitted from these figures. Nonetheless, the experiments represent

more than 102 machine days worth o f processing.

Once execution is complete, Aestimo analyses the program run times and the optimization logs,

and reports the results. The optimization logs are used to calculate the difference and alignment

metric scores (Section 4.1). The run times o f the static and FDO binaries are compared to eval

uate performance on the workload (Section 4.2) and the effectiveness o f FDO compared to static

optimization (Section 4.4). FDO run times are also used to investigate the usefulness more accu

rate profile information by comparing resubstitution with the performance o f other FDO binaries

(Section 4.3).

4.1 Profile Differences

Let’s return to the first question: Does training on different inputs result in different compile-time

decisions? Aestimo calculates scores for the difference and alignment metrics defined in Chapter 3

for each o f the benchmarks. These scores are summarized in tables similar to Table 4.2. Each pairing

o f logs results in a difference score. The second and third columns o f the table report the mean and

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

standard deviation o f the difference scores, defined in Section 3.1, for the FDO log listed in the

first column paired with all the other FDO logs. The Max column reports the maximum difference

between a log and any other FDO log. The Static column reports the difference metric when a log

is compared to the static log. The final column o f the table reports the alignment score for the log.

The static log is included in the combined total vector when calculating alignment scores.

Other relevant information is recorded in the last four rows o f each table. The number o f distinct

positive decisions encountered in all i f conversion logs, or the number o f callsites listed in the

inlining logs, indicates the length o f the vectors used to calculate the metrics. Choices with Yes or

No consensus are those where the same decision is made in every log. Full consensus is achieved

when every log is in agreement about the decision. FDO consensus ignores the static log, and checks

for consensus among the FDO logs only. The number o f choices without consensus indicates the

maximum possible number o f choices where two logs could disagree. For example, in Table 4.2

there are 87 branches that are i f c o n v e r te d in at least one log. A ll the FDO logs agree that 15

branches should be i f c o n v e r te d , and that 31 o f them should not be. Therefore, 41 branches

remain where different FDO logs make different decisions.

References to logs in this section refer only to the FDO logs, and omit the static optimization

log. When relevant, the static log w ill be identified explicitly.

Graphs o f the raw difference and alignment scores can be found in Appendix A.

4.1.1 I f conversion

Emitting the logs o f if-conversion decisions required a small change to the ORC. We inserted a small

segment o f code to output the source file name, function name, and area and basic block lists for

each region that is if-converted. Therefore, only positive choices are recorded in the log file.

An excerpt from the static i f conversion log for b z ip 2 is provided in Figure 4.4. The transfor

mations indicated by this excerpt are illustrated in Figure 4.3. The four i f conversion transforma

tions occur in the se nd M F T V a lue s function, and result in the creation o f a large predicated region

from five basic blocks. An area is a data structure used by the ORC to represent a single-entry region

o f code. Before i f conversion, each BB in a program is an area. However, as i f conversion re

moves branches and merges BBs, areas grow to include multiple BBs. In Figure 4.3, each rectangle

represents an area, and each number represents a BB. A dashed box represents a BB that has been

merged into a larger area. The edges between areas represent control flow transitions. Initially, each

area consists o f a single basic block and is named for the BB that it contains. For example, an area

containing BB 42 is named A42.

The first two lines in Figure 4.4 are for i f statements that do not have an e ls e path, as shown

i f Figure 4.3(a). The first line indicates a positive i f conversion decision for the branch at the end

o f A97. Area A99 is the branch target when the i f at the end o f A97 evaluates to false. Thus, A99

is not predicated. Instead, the branch in the A97 is converted to a predicate calculation, and A98 is

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

101

99

101101101

100
100 i 100

(a) (b) (c) (d) (c)

Figure 4.3: I f conversion performed in the log excerpt

File Function Areas Area L is t
b z ip 2 . c se nd M T F V a lue s 3 A97{ 97} A98{ 9 8 } A99{ 99}
b z ip 2 . c se nd M T F V a lue s 3 A99{ 99} A 100{ 1 00 } A 101{ 101}
b z ip 2 . c se nd M T F V a lue s 2 A97{ 97 98} A 99{ 99 100}
b z ip 2 . c se nd M T F V a lue s 2 A 97{ 97 98 99 1 00 } A 101{ 101}

Figure 4.4: I f conversion log excerpt

predicated. The contents o f A98 (BB 98) are then appended to A97 (Figure 4.3(b)). The second line

records that the branch at the end o f A99 should also be if-converted. This decision causes A100

to be predicated and appended to A99 (Figure 4.3(c)).

The last two lines in Figure 4.4 record decisions to eliminate unnecessary control flow. Line

three o f the log records a decision to append A99 to A97 (Figure 4.3(d)). Line four is similar for

A97 and A 101 (Figure 4.3(e)). The final area is larger than any o f the five original BBs, and contains

no control flow. Therefore, it provides more opportunities for optimizations such as common subex

pression elimination and instruction scheduling than the same region o f code before i f conversion.

As explained in Section 3.1, when Aestimo processes the logs, any choices that are missing from

a log are (correctly) assumed to be a negative decision (not i f - c o n v e r t e d) . Neither the differ

ence nor the alignment metric are affected by recording only positive choices. A choice that is nega

tive in all logs w ill not appear in the vectors. Thus, it cannot contribute to the difference. Moreover,

negative choices never contribute to the alignment score. A consequence o f recording only positive

decisions is that there can never be a choice with No consensus: such a choice would not appear in

any log, and thus Aestimo does not know about it. However, there are a very large number o f regions

in every program that are evaluated for i f conversion, but are never if-converted. Recording only

positive decisions also means that the number o f choices that have a No FDO consensus is exactly

the number o f choices where Static performed i f conversion but no FDO log did.

In most cases, the largest differences between logs are between the static log and FDO logs.

Therefore, profiling does, in general, result in significantly different optimization decisions that

static optimization. Nonetheless, the selection o f training input can also result in significant differ-

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Mean Std Dev M ax Static A lignm ent (%)
combined 13.64 10.32 27 43 84.21
compressed 14.64 10.38 27 45 82.81
docs 14.43 10.37 28 42 84.74

gap 19.57 12.17 33 62 48.60
graphic 11.93 9.50 25 41 86.49
jpeg 16.21 12.04 28 61 51.40
log 15.43 11.18 30 38 89.47
mp3 16.21 12.04 28 61 51.40
mpeg 16.29 11.82 27 60 52.81
pdf 13.50 11.17 29 39 90.35
program 16.29 11.82 27 60 52.81
random 19.00 12.62 31 64 46.32
reuters 17.07 12.01 33 39 91.58
source 13.36 11.34 29 39 90.53
xml 13.29 11.09 28 40 89.12
Distinct Positive Decisions
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

87
14 Full, 15 FDO
0 Full, 31 FDO

73 Full, 41 FDO

Table 4.2: I f conversion metric scores for b z ip 2 on the Itanium

ences in the optimizations decisions made by the compiler.

B z ip 2 presents some interesting alignment values. In Tables 4.2 and 4.3, 6 o f the 15 inputs

result in alignment scores less than 55%, while the remaining 9 have alignment scores greater than

80%. There is no similar pattern in the difference scores. Aestimo can perform a cut operation,

where the inputs in a workload are split into two groups according to their alignment score. I f an

input has an alignment score greater than the cut value, it is assigned to the high cut group, but i f it

has an alignment score lower than the cut value, it is assigned to the low cut group. The static log

is included in both groups. After the cut is made, the metric scores are recalculated for each group

separately. Tables 4.4 and 4.5 show the results o f cutting the b z ip 2 workload on the Itanium at

55%.

Differences between logs after the cut are small in both groups. This indicates that training on

different inputs results in two distinct i f conversion optimization strategies for the Itanium. The

consensus values for the cut groups show that training on inputs that result in larger alignment

scores results in more i f conversion than training on the inputs with lower alignment scores. The

low alignment scores after the cut for inputs in the low cut set are due to their large differences with

static. Unfortunately, there do not appear to be significant differences between the decisions made

when training uses members o f the same cut group.

On the Itanium 2, the results o f the cut are similar to the Itanium. However, in the high cut

group, the combined input still results in a mean difference score larger than 41, while the other

inputs have difference scores less than 12. Therefore, training on the combined input results in

significantly different i f conversion decisions than training on any other input in the workload.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean Std Dev Max Static Alignment (%)
combined 52.93 20.24 69 5 90.20
compressed 19.36 15.96 44 45 81.87
docs 20.93 15.95 44 45 82.60
gap 26.00 20.21 69 70 41.67
graphic 18.07 15.69 42 43 85.67
jpeg 23.29 20.58 69 70 44.44
log 18.64 16.47 40 41 87.57
mp3 24.57 20.54 67 72 40.64
mpeg 23.29 20.58 69 70 44.44
pdf 18.07 15.69 42 43 85.67
program 23.29 20.58 69 70 44.44
random 24.57 20.54 67 72 40.64
reuters 21.43 16.24 39 40 88.30
source 18.64 16.47 40 41 87.57
xml 18.64 16.47 40 41 87.57
Distinct Positive Decisions
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

94
14 Full, 14 FDO

0 Full, 3 FDO
80 Full, 77 FDO

Table4.3: I f conversion metric scores for b z ip 2 on the Itanium 2

Input Mean Std Dev Max Static Alignment (%)
gap 6.00 3.24 8 62 62.37
jpeg 2.00 2.24 5 61 65.98
mp3 2.00 2.24 5 61 65.98
mpeg 2.40 2.78 6 60 67.53
program 2.40 2.78 6 60 67.53
random 4.40 3.02 8 64 60.31
Distinct Positive Decisions
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

81
14 Full, 15 FDO
0 Full, 57 FDO
67 Full, 9 FDO

Table 4.4: I f conversion metric scores for b z ip 2 low cut group (cut = 55%) on the Itanium

Input Mean Std Dev Max Static Alignment (%)
combined 5.88 3.65 10 43 83.04
compressed 6.88 3.78 12 45 81.94
docs 6.75 4.05 11 42 83.48
graphic 4.62 2.31 8 41 84.36
log 7.00 3.61 10 38 88.11
pdf 4.88 2.53 7 39 88.77
reuters 8.12 4.22 12 39 90.31
source 4.62 2.96 8 39 88.99
xml 4.75 3.03 8 40 87.67
Distinct Positive Decisions
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

86
36 Full, 37 FDO

0 Full, 32 FDO
50 Full, 17 FDO

Table 4.5: I f conversion metric scores for b z ip 2 high cut group (cut = 55%) on the Itanium

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In pu t Mean Std Dev M ax Static A lignm ent (%)
ref 225.83 128.88 384 492 53.29
test 247.33 120.64 341 405 54.28
train 230.83 130.40 390 494 46.75
wac-001 239.50 147.55 436 516 52.04
wac-051 239.83 147.54 442 516 50.28
wac-151 244.17 144.14 434 524 51.96
wac-251 404.50 185.23 442 194 60.73
Distinct Positive Decisions
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

920
75 Full, 78 FDO
0 Full, 104 FDO

845 Full, 738 FDO

Table 4.6: I f conversion metric scores for c r a f t y on the Itanium

In pu t Mean Std Dev M ax Static A lignm ent (%)
ref 156.17 71.47 173 511 59.27
test 176.50 81.90 219 491 57.71
train 193.33 91.67 234 520 54.63
wac-001 188.33 90.17 234 560 64.04
wac-051 179.33 84.16 222 550 61.19
wac-151 180.67 82.67 202 544 62.21
wac-251 157.00 71.57 166 518 60.96
Distinct Positive Decisions
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

935
79 Full, 117 FDO

0 Full, 338 FDO
856 Full, 480 FDO

Table 4.7: I f conversion metric scores for c r a f t y on the Itanium 2

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Mean Std Dev Max Static A lignm ent (%)
ref 419.56 174.81 488 335 83.93
snf 1025 173.33 250.54 517 206 95.70
snf 1150 173.33 250.54 517 206 95.70
snf 1260 189.78 239.81 506 233 94.74
snf200-300 177.78 244.86 517 198 95.59
snf525 175.56 245.35 512 203 95.68
snf750 173.33 251.19 518 207 95.66
snf900 173.33 250.54 517 206 95.70
test 444.89 215.04 518 577 77.49
train 430.22 215.63 510 517 79.75
Distinct Positive Decisions
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

1723
1021 Full, 1024 FDO

0 Full, 32 FDO
702 Full, 667 FDO

Table 4.8: I f conversion metric scores for GAP on the Itanium

Input Mean Std Dev Max Static A lignm ent (%)
ref 260.00 264.41 294 335 91.62
test 200.00 240.15 294 577 85.31
train 166.00 186.43 226 517 88.23
Distinct Positive Decisions
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

1700
1079 Full, 1104 FDO

0 Full, 283 FDO
621 Full, 313 FDO

Table 4.9: I f conversion metric scores for GAP SPEC inputs on the Itanium

Alignment scores for all inputs on c r a f t y are low, in the 50-60% range, compared to the

other benchmarks where alignment is usually greater than 80%. Furthermore, difference scores are

quite large compared to the number o f choices without consensus. Therefore, there is significant

disagreement between the logs, and no dominant optimization strategy. These results indicate that

the inputs selected for crafty are significantly varied, in terms o f the i f conversion decisions they

produce. Consequently, any performance variations between these FDO binaries can be more confi

dently linked to the selection o f training input than in cases such as b z ip 2 , where the selection o f

training input has a limited impact on optimization decisions.

Recall from Section 3.2 the difficulty o f selecting additional inputs for GAP. Table 4.8 and 4.11

indicates that varying the parameter in the additional input, snf, may not have induced the changes

in memory behavior and large-number processing methods that we desired. Alternatively, these

changes did occur, but did not result in different i f conversion decisions. The differences scores

for the snf inputs are less than half those o f the SPEC ref, test, and train inputs. Furthermore, the

high alignment scores for the snf inputs suggests that they tend to agree with each other. On the

other hand, the high difference scores and lower alignment scores o f the SPEC inputs suggest that

training on these inputs results in substantially different decisions than training on the snf inputs.

Further investigation reveals that the maximum differences occur between snf and SPEC inputs.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Mean Std Dev M ax Static A lignm ent (%)
snf 1025 11.83 14.72 35 206 98.20
snf1150 11.83 14.72 35 206 98.20
snf 1260 36.33 16.68 43 233 97.08
snf200-300 20.50 14.60 43 198 98.01
snf525 17.67 12.83 38 203 98.10
snf750 11.33 12.47 32 207 98.18
snf900 11.83 14.72 35 206 98.20
Distinct Positive Decisions
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

1635
1394 Full, 1413 FDO

0 Full, 172 FDO
241 Full, 50 FDO

Table 4.10: I f conversion metric scores for GAP snf inputs on the Itanium

Inpu t Mean Std Dev M ax Static A lignm ent (%)
ref 461.78 238.91 554 626 76.29
snf 1025 185.78 275.76 553 219 96.10
snf 1150 186.44 276.06 554 220 96.12
snf 1260 193.78 258.98 537 239 95.18
snf200-300 189.33 271.33 550 208 96.14
snf525 186.44 270.99 547 213 96.17
snf750 185.78 275.76 553 219 96.10
snf900 185.78 275.76 553 219 96.10
test 438.89 235.50 532 600 78.58
train 446.00 245.51 545 613 77.95
Distinct Positive Decisions
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

1782
1002 Full, 1012 FDO

0 Full, 119 FDO
780 Full, 651 FDO

Table 4.11: I f conversion metric scores for GAP on the Itanium 2

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean Std Dev M ax Static A lignm ent (%)
combined 10.57 11.04 43 62 87.24
compressed 44.36 12.63 50 25 83.37
docs 14.14 10.85 47 66 76.88

gap 15.07 9.87 40 59 82.92
graphic 12.36 9.96 40 65 88.38
jpeg 10.57 11.19 43 62 87.24
log 19.50 11.59 50 55 75.97
mp3 12.14 11.62 45 64 85.88
mpeg 10.57 10.52 43 60 85.54
pdf 12.00 11.50 45 62 84.28
program 12.36 9.93 42 59 83.26
random 15.50 11.42 48 59 80.75
reuters 14.36 10.18 44 59 81.66
source 16.36 10.48 46 63 76.20
xml 15.00 10.64 45 60 78.36
Distinct Positive Decisions
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

108
28 Full, 28 FDO

0 Full, 12 FDO
80 Full, 68 FDO

Table 4.12: If conversion metric scores for g z ip on the Itanium

Additionally, the differences between the snf and SPEC inputs are the only differences in this study

where comparison to another FDO i f conversion log results in a larger difference than comparison

to the static log.

Cutting the workload at 85% separates the snf inputs from the SPEC inputs. Table 4.9 shows

metric scores for the SPEC inputs on the Itanium. While the mean difference scores for these inputs

are lower than when calculated for the entire workload, they are still quite large. Therefore, there are

significant differences in the i f conversion decisions made depending which SPEC input is used

for training. On the other hand, Table 4.10 shows the scores for the snf inputs. In this case, all the

inputs are very similar. The consensus results indicate that the inputs make different decisions for no

more than 50 o f the 1635 i f conversion choices recorded in the logs. On the Itanium 2, the results

o f this cut are very similar. Therefore, it is less likely that selecting different training inputs from

among the snf inputs w ill result in significant performance differences.

In Table 4.12 difference and alignment scores are fairly uniform across all logs for g z ip on the

Itanium. However, compressed has a much larger difference score than the other logs. On average,

compressed disagrees with other logs for more than 2/3 o f the choices without consensus. This

large difference score appears to have no impact on compressed’s alignment score. Examination o f

the log files reveals that training on compressed leads to more i f conversion than training on other

inputs. While training on other inputs results in 47-54 positive i f conversion decisions, training on

compressed results in 77 positive i f conversion decisions. On the Itanium 2, compressed’s

metric scores do not distinguish it from the other inputs. For this processor, FDO i f conversion

results in between 49 and 59 positive i f conversion decisions, and training on compressed results

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Mean Std Dev M ax Static A lignm ent (%)
combined 12.36 5.91 21 74 87.46
compressed 15.29 8.52 26 67 77.67
docs 21.29 7.87 30 77 77.78
gap 17.71 8.34 30 71 82.62
graphic 17.43 7.25 26 71 84.60

jpeg 12.00 6.56 22 71 87.02
log 22.43 9.08 30 67 79.21
mp3 15.57 8.93 28 71 78.99
mpeg 11.64 5.15 19 70 84.71
pdf 14.64 7.27 25 74 82.18
program 17.43 7.64 26 73 84.49
random 16.00 8.77 26 65 78.99
reuters 16.71 7.50 28 71 83.39
source 19.36 7.96 27 76 74.92
xml 16.71 6.70 24 69 78.22
Distinct Positive Decisions
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

125
27 Full, 30 FDO

0 Full, 43 FDO
98 Full, 52 FDO

Table 4.13: I f conversion metric scores for g z ip on the Itanium 2

in only 49.

As shown in Tables 4.14 and 4.15, there are virtually no differences between the FDO logs for

MCF. In fact, on the Itanium 2, the FDO logs have no more than four different decisions between

them, synth-5 results in the most distinct i f conversion decisions on the Itanium, with a difference

scores o f 8-10 when compared to the other FDO logs. However, unless some o f these few decisions

are critical to performance, it is unlikely that there w ill be any significant variation in performance

between the FDO binaries for MCF.

Tables 4.16 and 4.17 suggests a negative correlation between the difference and alignment scores

for parser. One might suspect that higher alignment scores correspond to more i f conversion.

However, this is not the case. The FDO i f conversion logs for the both processors have between

103 and 131 positive decision recorded in them. The median, 121, corresponds to alice in both

cases, while the log for ref records 123 positive i f conversion decisions. Despite this result, alice

has the lowest alignment score, while ref has the largest alignment score. Therefore, the differences

between inputs to parser represent substantially different i f conversion decision. Comparing

the results on the Itanium and Itanium 2, it appears that FDO results in similar decisions on both

processors.

However, static optimization performs significantly more i f conversion on the Itanium 2 than

on the Itanium: the static log contains 58 decisions on the Itanium, but 204 on the Itanium 2. This

result is in contrast to the other programs, where results were similar across processors. Furthermore,

the larger number o f functional units in the Itanium 2 should make i f conversion profitable in more

cases than on the Itanium. Therefore, intuition suggests that i f conversion should be performed

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Mean Std Dev Max Static A lignm ent (%)
ref 1.25 2.33 8 32 92.43
synth-0 2.58 2.62 10 34 93.46
synth-1 2.58 2.62 10 34 93.46
synth-2 1.83 2.39 9 33 93.05
synth-3 1.25 2.33 8 32 92.43
synth-4 1.25 2.33 8 32 92.43
synth-5 8.58 2.74 10 40 79.75
synth-6 1.25 2.33 8 32 92.43
synth-7 1.25 2.33 8 32 92.43
synth-8 1.25 2.33 8 32 92.43
synth-9 1.25 2.33 8 32 92.43
test 3.08 2.49 10 34 92.84
train 1.25 2.33 8 32 92.43
Distinct Positive Decisions
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

67
23 Full, 28 FDO

0 Full, 27 FDO
44 Full, 12 FDO

Table 4.14: I f conversion metric scores for MCF on the Itanium

In pu t Mean Std Dev M ax Static A lignm ent (%)
ref 1.08 1.05 2 31 92.14
synth-0 2.42 1.50 4 33 93.15
synth-1 2.42 1.50 4 33 93.15
synth-2 1.67 1.11 3 32 92.74
synth-3 1.08 1.05 2 31 92.14
synth-4 1.08 1.05 2 31 92.14
synth-5 1.92 1.50 4 33 93.75
synth-6 1.92 1.50 4 33 93.75
synth-7 1.92 1.50 4 33 93.75
synth-8 1.08 1.05 2 31 92.14
synth-9 1.08 1.05 2 31 92.14
test 1.92 1.50 4 33 93.75
train 1.08 1.05 2 31 92.14
Distinct Positive Decisions 63
Choices with Yes Consensus 28 Full, 33 FDO
Choices with No Consensus 0 Full, 26 FDO
Choices without Consensus 35 Full, 4 FDO

Table 4.15: I f conversion metric scores for MCF on the Itanium 2

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean Std Dev Max Static Alignment (%)
02-05words 65.73 22.20 75 135 66.20
06-10 words 34.82 16.76 55 142 82.22
11-15words 31.36 18.44 62 145 84.71
16-20words 26.45 22.63 71 158 90.91
21-25words 26.45 23.64 71 158 90.91
alice 33.55 19.78 70 155 85.32
pa 25.91 23.15 71 158 90.24
ref 38.09 18.27 64 155 84.51
relativity 32.27 23.35 75 154 86.26
test 45.00 18.65 53 139 74.61
train 40.45 18.76 59 150 80.74
worlds 27.00 23.24 73 156 89.02
Distinct Positive Decisions
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

200
5 Full, 62 FDO
0 Full, 35 FDO

195 Full, 103 FDO

Table 4.16: I f conversion metric scores for p a r s e r on the Itanium

Input Mean Std Dev Max Static Alignment (%)
02-05words 64.00 21.29 72 171 65.58
06-1 Owords 35.45 17.54 55 198 78.56
11-15words 34.18 19.04 61 206 79.53
16-20words 28.18 21.70 67 202 84.78
21 -25words 29.27 22.72 70 205 85.51
alice 34.55 19.54 66 199 80.01
pa 28.73 22.33 68 203 84.18
ref 40.55 18.65 62 199 78.80
relativity 34.55 23.26 72 197 81.64
test 48.00 20.02 58 195 70.95
train 42.91 19.50 57 196 75.36
worlds 30.91 23.24 72 199 83.57
Distinct Positive Decisions
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

280
33 Full, 66 FDO
0 Full, 111 FDO

247 Full, 103 FDO

Table 4.17: I f conversion metric scores for p a r s e r on the Itanium 2

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Mean Std Dev Max Static A lignm ent (%)
alu4 3.90 3.54 12 45 96.49
apex2 3.90 3.54 12 45 96.49
apex4 3.90 3.54 12 45 96.49
big key 3.90 3.54 12 45 96.49
des 6.76 3.96 16 45 95.39
diffeq 7.33 4.15 14 41 98.61
dsip 6.76 3.96 16 45 95.39
elliptic 10.38 4.29 16 43 95.72
ex1010 5.81 3.75 14 47 94.88
ex5p 3.90 3.54 12 45 96.49
frisc 6.19 3.98 12 39 98.24
misex3 3.90 3.54 12 45 96.49
pdc 8.10 4.18 14 49 93.96
ref 6.19 3.98 12 39 98.24
s298 6.57 3.55 12 47 93.74
S38417 6.19 3.98 12 39 98.24
S38584.1 6.19 3.98 12 39 98.24
seq 3.90 3.54 12 45 96.49
spla 8.10 4.18 14 49 93.96
test 6.95 3.72 16 49 95.24
train 3.90 3.54 12 45 96.49
tseng 7.33 4.15 14 41 98.61
Distinct Positive Decisions 158
Choices with Yes Consensus 102 Full, 106 FDO
Choices with No Consensus 0 Full, 32 FDO
Choices without Consensus 56 Full, 20 FDO

Table 4.18: I f conversion metric scores for VPR (place) on the Itanium

more frequently on the Itanium 2than on the Itanium, not less.

VPR metric scores are similar to those o f MCF. Mean difference scores are low, and alignment

scores usually exceed 90%. Therefore, it is unlikely that there w ill be performance differences

between FDO binaries. On the other hand, static differences are higher, particularly for the routing

component o f VPR, and performance differences between the FDO and Static binaries are more

likely.

4.1.2 Inlining

In lin ing logs are generated using existing ORC compiler flags. In particular, the flag combination:

-W j , - t t l 9 : 0x40000 -W j , - t t l 9 : 0 x80000 emits the inlining decision to the file

o r c . s c r i p t . lo g . This file contains a section for each function that is compiled, and lists each

callsite as either a CALL or IN L IN E decision. An example from b z ip 2 is given in Figure 4.5. The

entry is for the function s o r t l t , which has callsites for p a n ic on line 2268, q S o r t3 on line

2235, and s im p le S o r t on line 2146. A ll three called functions, as well as s o r t l t , are found in

the b z ip 2 . o object file. O f the three calls, only the call to q S o r t3 is inlined. Some optimizations

can change the number o f entries in a log file. Thus, each callsite encountered in a log is inserted

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Mean Std Dev Max Static A lignm ent (%)
alu4 4.29 3.61 12 50 96.16
apex2 4.29 3.61 12 50 96.16
apex4 4.29 3.61 12 50 96.16
bigkey 5.43 3.51 14 48 96.58
des 8.48 4.51 18 48 95.46
diffeq 6.57 4.41 12 44 97.83
dsip 8.48 4.51 18 48 95.46
elliptic 10.76 4.86 18 48 95.42
ex1010 6.19 3.83 14 52 94.62
ex5p 4.29 3.61 12 50 96.16
frisc 6.57 4.41 12 44 97.83
misex3 4.29 3.61 12 50 96.16
pdc 8.48 4.42 16 54 93.75
ref 6.57 4.41 12 44 97.83
s298 6.95 3.78 14 52 93.54
S38417 6.57 4.41 12 44 97.83
S38584.1 6.57 4.41 12 44 97.83
seq 4.29 3.61 12 50 96.16
spla 8.48 4.42 16 54 93.75
test 8.67 4.23 18 52 95.32
train 4.29 3.61 12 50 96.16
tseng 9.05 4.19 16 44 98.53
Distinct Positive Decisions 169
Choices with Yes Consensus 108 Full, 111 FDO
Choices with No Consensus 0 Full, 36 FDO
Choices without Consensus 61 Full, 22 FDO

Table 4.19: I f conversion metric scores for VPR (place) on the Itanium 2

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean Std Dev Max Static Alignment (%)
alu4 6.29 5.62 15 87 92.29
apex2 6.29 5.62 15 87 92.29
apex4 8.00 4.69 19 84 94.08
bigkey 8.29 4.41 22 87 93.38
des 8.19 4.79 19 84 93.99
diffeq 9.62 5.91 25 86 94.30
dsip 7.33 4.77 18 91 91.73
elliptic 8.86 5.95 23 87 93.12
ex1010 6.29 5.62 15 87 92.29
ex5p 7.24 4.64 18 83 93.95
frisc 8.86 5.95 23 87 93.12
misex3 6.29 5.62 15 87 92.29
pdc 19.62 6.88 29 73 86.50
ref 8.29 5.14 21 85 94.43
s298 6.95 5.11 18 90 91.42
S38417 12.19 5.70 28 83 96.69
S38584.1 10.95 6.48 28 85 95.21
seq 6.29 5.62 15 87 92.29
spla 6.29 5.62 15 87 92.29
test 17.05 5.78 29 78 93.08
train 6.29 5.62 15 87 92.29
tseng 10.19 6.23 27 84 95.08
Distinct Positive Decisions 170
Choices with Yes Consensus 73 Full, 83 FDO
Choices with No Consensus 0 Full, 47 FDO
Choices without Consensus 97 Full, 40 FDO

Table 4.20: I f conversion metric scores for VPR (route) on the Itanium

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean Std Dev Max Static Alignment (%)
alu4 5.90 5.28 15 86 93.05
apex2 5.90 5.28 15 86 93.05
apex4 7.62 4.47 19 83 94.65
bigkey 8.57 4.10 20 84 93.79
des 7.81 4.54 19 83 94.57
diffeq 8.57 4.93 21 81 96.10
dsip 7.62 4.72 17 88 92.31
elliptic 7.81 5.17 21 82 95.04
ex1010 5.90 5.28 15 86 93.05
ex5p 6.86 4.39 18 82 94.53
frisc 9.14 5.45 23 84 93.56
misex3 5.90 5.28 15 86 93.05
pdc 18.29 6.01 29 72 89.14
ref 7.81 5.17 21 82 95.04
s298 7.24 5.14 18 87 92.03
S38417 11.71 5.84 26 80 97.07
S38584.1 9.90 5.62 24 80 96.92
seq 5.90 5.28 15 86 93.05
spla 5.90 5.28 15 86 93.05
test 16.67 5.57 29 77 93.75
train 5.90 5.28 15 86 93.05
tseng 9.14 5.31 23 79 96.80
Distinct Positive Decisions 180
Choices with Yes Consensus 85 Full, 95 FDO
Choices with No Consensus 0 Full, 46 FDO
Choices without Consensus 95 Full, 39 FDO

Table 4.21: I f conversion metric scores for VPR (route) on the Itanium 2

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COMPILE ("bzip2.o",sortlt,NOREG) {
CALL (2268,0,"bzip2.o",panic,NOREG)
INLINE (2235,0,"bzip2.o",qSort3,NOREG) {
}
CALL (2146,0,"bzip2.o",simpleSort,NOREG)

}

Figure 4.5: Inlining log excerpt

into a table with its caller, its callee, and its line number, to ensure that all vectors are o f the same

length, and that each choice has a unique index that is the same in every vector.

Unfortunately, the information written to the log file is not sufficient to uniquely identify every

callsite. I f multiple calls to the same function occur on the same line o f source code, they w ill

have identical entries in the log file and w ill collide in the table. Furthermore, multiple calls in long

statements (such as an i f statement with many tests) that span multiple lines are considered to occur

on the same line. In these cases, the choice is recorded as a 1 in the vector i f any o f the callsites are

inlined. However, this aliasing problem is minor: in total, there are 128 callsites for the Itanium and

126 callsites for the Itanium 2 where aliasing occurs. For both processors, there are only 8 aliased

callsites where the same decision is not made for all o f the indistinguishable log entries: 3 (o f 246)
for gzip, 4 (o f 4366) for GAP, and 1 (o f 1464) for bzip2.

The results o f metric calculations for inlining are similar to those presented for i f conversion

in Section 4.1.1. The results from the two processors are very similar. Static inlining results in the

largest differences compared to other logs, while the differences between the profile-guided logs are

much smaller. The tendency for alignment scores to be high suggest that either there is insufficient

variety between the inputs in the workloads, or that inlining in the ORC is not very sensitive to

inputs selection.

The consensus values for the b z ip 2 indicate that the FDO inlining logs are not very similar.

While there are a large number o f callsites where there is consensus to not perform inlining, there

are no callsites that are universally inlined for either processor. This fact is related to the observation

that the FDO logs either have difference scores larger than 140 and alignment scores less than 7%, or

difference scores less than 90 and alignment scores greater than 45%. The logs with lower difference

scores also have much lower differences compared to static. Tables 4.23 and 4.24 show the results

o f cutting the inputs for the Itanium into two groups. The inputs that resulted in alignment scores

greater than 45% are quite similar. Inputs in this group have difference scores and high alignment

values when they are cut from the rest o f the inputs. In fact, there are only 15 callsites where training

on different inputs from this group results in different inlining decisions.

On the other hand, cutting the inputs with low alignment scores from the rest o f the workload

reveals that there are significant differences between the inputs in this group. Difference values are

still very high, and alignment scores are only slightly larger than when calculated using the entire

workload. Furthermore, there is very little consensus between the logs in this groups, and there is

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean Std Dev Max Static Alignment (%)
combined 82.21 82.79 162 69 53.22
compressed 81.00 80.91 159 74 51.51
docs 155.50 43.23 158 203 5.89

gap 81.93 83.05 162 71 52.81
graphic 80.93 81.97 160 75 52.53

jpeg 159.21 44.25 162 207 6.23
log 80.21 78.64 156 77 50.14
mp3 157.36 43.74 160 205 6.10
mpeg 159.21 44.25 162 207 6.23
pdf 156.43 43.48 159 204 6.03
program 82.36 82.66 162 73 53.01
random 80.00 79.83 157 76 51.30
reuters 156.43 43.48 159 204 6.03
source 81.00 82.90 161 72 53.15
xml 149.93 41.63 152 197 5.48
Callsites (Vector Length)
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

1464
0 Full, 0 FDO

779 Full, 835 FDO
685 Full, 629 FDO

Table 4.22: In lin ing metric scores for b z ip 2 on the Itanium

Input Mean Std Dev Max Static Alignment (%)
docs 155.00 69.42 158 203 11.45
jpeg 158.33 70.89 162 207 12.12
mp3 156.67 70.16 160 205 11.85
mpeg 158.33 70.89 162 207 12.12
pdf 155.83 69.79 159 204 11.72
reuters 155.83 69.79 159 204 11.72
xml 150.00 67.10 152 197 10.65
Callsites (Vector Length)
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

1464
0 Full, 0 FDO

793 Full, 919 FDO
671 Full, 545 FDO

Table 4.23: Inlin ing metric scores for b z ip 2 low cut group on the Itanium

Input Mean Std Dev Max Static Alignment (%)
combined 5.43 3.63 10 69 91.74
compressed 6.29 3.03 9 74 88.78
gap 4.57 3.23 9 70 92.56
graphic 4.86 2.66 7 75 90.55
log 7.71 3.44 10 77 86.42
program 5.71 3.46 9 73 91.38
random 6.00 2.71 7 76 88.43
source 4.00 2.45 7 72 91.62
Callsites (Vector Length)
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

183
58 Full, 69 FDO
43 Full, 99 FDO
82 Full, 15 FDO

Table 4.24: Inlin ing metric scores for b z ip 2 high cut group on the Itanium

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Mean Std Dev Max Static A lignm ent (%)
combined 79.50 23.08 88 121 3.99
compressed 86.14 78.69 159 74 48.70
docs 150.50 46.01 158 203 6.23

gap 87.50 80.60 162 71 49.86
graphic 86.07 79.85 160 75 49.71
jpeg 154.21 46.91 162 207 6.59
log 84.79 76.77 156 77 47.54
mp3 154.21 46.91 162 207 6.59
mpeg 154.21 46.91 162 207 6.59
pdf 153.29 46.69 161 206 6.52
program 87.64 80.46 162 73 50.14
random 84.86 77.79 157 76 48.55
reuters 151.43 46.24 159 204 6.38
source 86.43 80.59 161 72 50.22
xml 144.93 44.62 152 197 5.80
Callsites (Vector Length)
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

1464
0 Full, 0 FDO

774 Full, 830 FDO
690 Full, 634 FDO

Table 4.25: In lin ing metric scores for b z ip 2 on the Itanium 2

still no callsite that all logs agree should be inlined. The low cut group logs contain an order o f

magnitude more callsites than the logs o f the high cut group. Nonetheless, all FDO logs contain

between 82 and 93 positive inlining decisions. Therefore, training on inputs in the low cut group

must result in the repeated inlining o f callsites in inlined code. Each callsite in an inlined callee

creates a new callsite in the logs. In order to increase the number o f callsites in the logs from 183

to 1464, this situation must have occurred very frequently. Since the logs in the low cut group do

not agree on which callsites should be inlined, they must represent decisions to inline different call

chains. Consequently, training on different input in this group must result in different hot sections

o f code. Thus, training on different inputs from the low cut group results in significantly different

inlining decisions, and are thus well suited to our study.

The results o f cutting the workload for the Itanium 2 generates very similar results to those

discussed above for the Itanium. However, the combined input results in significantly different

results. First, on the Itanium combined is in the high cut group, but is in the low cut group on the

Itanium 2. Furthermore, training on combined results in inlining only 9 callsites. Consequently,

combined’s mean difference score o f 85.43 is approximately the mean number o f inlined callsites

in the other logs, while its alignment score o f 1.71% reflect nearly complete disagreement with the

other inlining logs.

In Tables 4.26 and 4.27 the consensus information indicates that FDO reduces the amount o f

inlining performed for c r a f t y . The number o f choices without consensus indicates that there are

about 200 callsites where static optimization makes a different decision than all the FDO logs. These

differences are explained by the number o f callsites with No consensus: the FDO logs agree to not

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Mean Std Dev M ax Static A lignm ent (%)
ref 17.00 11.97 26 230 86.96
test 33.33 16.63 44 244 81.39
train 16.67 12.14 26 228 87.42
wac-001 22.67 13.28 40 230 86.91
wac-051 27.33 15.06 44 234 86.17
wac-151 22.50 11.85 33 239 86.17
wac-251 18.50 11.54 31 229 86.96
Callsites (Vector Length)
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

891
198 Full. 204 FDO
429 Full, 629 FDO

264 Full, 58 FDO

Table 4.26: In lin ing metric scores for c r a f t y on the Itanium

Inpu t Mean Std Dev M ax Static A lignm ent (%)
ref 20.33 10.72 26 230 86.60
test 34.67 16.79 44 244 81.29
train 25.00 12.30 34 234 85.11
wac-001 23.33 13.44 40 230 86.92
wac-051 27.00 15.00 44 234 86.32
wac-151 24.17 12.27 33 239 86.04
wac-251 20.17 11.17 31 229 86.83
Callsites (Vector Length)
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

891
196 Full, 202 FDO
428 Full, 626 FDO

267 Full, 63 FDO

Table 4.27: In lin ing metric scores for c r a f t y on the Itanium 2

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean Std Dev Max Static Alignment (%)
ref 178.33 155.40 554 960 60.38
snf 1025 120.56 166.11 499 1019 59.71
snf 1150 120.56 165.96 499 1017 59.34
snf 1260 120.56 165.96 499 1017 59.34
snf200-300 143.67 165.31 541 1049 58.06
snf525 125.67 167.40 517 1033 60.86
snf750 122.56 167.68 504 1024 59.59
snf900 535.00 193.81 602 536 81.03
test 210.33 170.22 602 1014 62.19
train 198.56 171.63 600 1014 60.86
Callsites (Vector Length)
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

4366
223 Full, 225 FDO

2986 Full, 3445 FDO
1157 Full, 696 FDO

Table 4.28: In lin ing metric scores for GAP on the Itanium

Input Mean Std Dev Max Static Alignment (%)
ref 131.00 49.75 167 960 66.71
snf 1025 65.22 82.14 189 1019 66.78
snf1150 65.44 81.67 189 1017 66.34
snf 1260 65.44 81.67 189 1017 66.34
snf200-300 90.11 60.82 167 1049 64.76
snf525 70.56 74.04 179 1033 68.03
snf750 67.00 83.05 192 1024 66.67
snf900 65.44 82.60 190 1020 66.86
test 164.56 73.13 192 1014 68.60
train 151.89 69.72 182 1014 67.19
Callsites (Vector Length)
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

4366
223 Full, 225 FDO

2993 Full, 3894 FDO
1150 Full, 247 FDO

Table 4.29: In lin ing metric scores for GAP on the Itanium 2

inline about 200 callsites that are inlined by static optimization. W hile the maximum difference

between FDO logs is moderate, the mean difference scores are large compared to the maximum,

indicating that training on different inputs results in different optimization strategies.

With GAP. there are a large number o f callsites without consensus. Furthermore, mean differ

ences are quite large, and the maximum differences between FDO logs approach the total number

o f choices without consensus. On the Itanium, the snf900 log has a much larger difference and

alignment values than the other logs. Training on snf900 results in more inlining than training on

the other inputs: Other logs inline between 297 and 405 callsites, but the snf900 log inlines 820

callsites. Unlike the results o f i f conversion, training on different snf inputs does cause different

inlining decisions to be made.

There are a small number o f differences between most o f the FDO logs for g z ip . However, on

the Itanium, the log for docs has a mean difference score more than four times larger than any other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean Std Dev Max Static Alignment (%)
combined 14.79 24.07 96 108 78.38
compressed 15.00 24.38 97 109 77.25
docs 91.79 25.92 102 80 83.73

gap 12.21 22.08 86 104 69.74
graphic 13.36 23.27 92 108 72.24

jpeg 15.00 24.38 97 109 77.25
log 12.50 22.65 88 104 67.69
mp3 13.57 23.43 93 109 71.10
mpeg 12.50 22.71 90 106 71.22
pdf 12.50 22.65 88 104 67.69
program 12.29 22.41 87 103 68.83
random 21.36 24.10 102 108 66.21
reuters 12.50 22.65 88 104 67.69
source 14.64 23.25 94 106 74.97
xml 12.29 22.41 87 103 68.83
Callsites (Vector Length) 246
Choices with Yes Consensus 18 Full, 31 FDO
Choices with No Consensus 80 Full. 109 FDO
Choices without Consensus 148 Full, 106 FDO

Table 4.30: In lin ing metric scores for g z ip on the Itanium

Input Mean Std Dev Max Static Alignment (%)
combined 7.86 5.05 14 108 87.97
compressed 8.07 5.36 13 109 86.72
docs 6.79 5.83 17 103 76.19
gap 6.71 5.49 18 104 77.19
graphic 7.14 4.43 18 108 80.58
jpeg 8.07 5.36 13 109 86.72
log 7.14 5.81 16 104 74.81
mp3 7.50 4.05 17 109 79.20
mpeg 6.57 3.15 14 106 79.20
pdf 7.86 5.05 14 108 87.97
program 6.79 5.83 17 103 76.19
random 15.14 5.00 18 108 73.93
reuters 7.14 5.81 16 104 74.81
source 8.43 2.92 12 106 83.58
xml 6.79 5.83 17 103 76.19
Callsites (Vector Length)
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

246
18 Full, 33 FDO

110 Full, 192 FDO
118 Full, 21 FDO

Table 4.31: Inlin ing metric scores for g z ip on the Itanium 2

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Mean Std Dev Max Static A lignm ent (%)
ref 0.58 1.45 5 9 95.22
synth-0 0.58 1.45 5 9 95.22
synth-1 0.58 1.45 5 9 95.22
synth-2 0.58 1.45 5 9 95.22
synth-3 0.58 1.45 5 9 95.22
synth-4 1.50 1.52 6 10 89.57
synth-5 0.58 1.45 5 9 95.22
synth-6 0.58 1.45 5 9 95.22
synth-7 0.58 1.45 5 9 95.22
synth-8 0.58 1.45 5 9 95.22
synth-9 0.58 1.45 5 9 95.22
test 5.00 1.57 6 12 92.17
train 1.33 0.97 4 10 96.09
Callsites (Vector Length)
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

32
11 Full, 14 FDO
7 Full, 12 FDO
14 Full, 6 FDO

Table 4.32: In lin ing metric scores for MCF on the Itanium

input, as well as an elevated alignment score. Training on docs results in inlining 136 callsites on

the Itanium, while training on the other inputs results in only 42-55 inlined callsites. Conversely,

random also has larger than average difference scores on both processors. However, random also

has the lowest alignment score in both cases. Therefore, while training on random results in about

the same quantity o f inlining as training on other inputs, the inlining decisions that are made are

significantly different than when other training inputs are used. This result is not surprising: random

data has no structure and, in general, cannot be compressed. Thus, it is unlikely that training on

random data w ill exercise any o f the paths in the code that perform compression.

As with if conversion, there are virtually no differences between the inlining logs for MCF.
Tables 4.32 and 4.33 show that the FDO logs had different decisions for no more than 6 callsites,

while the average difference between logs is less than 1 different decision. Therefore, unless in lin

ing this single callsite is a key factor for performance, MCF w ill likely achieve the same levels o f

performance regardless o f which training input is used.

With p a r s e r , mean difference scores are large, and there are a significant number o f callsites

without consensus. Therefore, training on different inputs does result in different inlining decisions

for p a r s e r . Alice on the Itanium has a larger difference score than the other logs, and a much

lower alignment score. Training on alice likely results in about half as much inlining as training on

other inputs for the Itanium.

There are virtually no differences between the FDO inlining logs for the placement task o f VPR.
O f the 877 callsites in the program, training on different inputs results in different decisions for at

most 4 callsites. However, the differences between the FDO logs and the static log are large. The

consensus data shows that static optimization inlines 457 callsites that not inlined in any o f the FDO

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Mean Std Dev Max Static A lignm ent (%)
ref 0.58 1.45 5 9 95.22
synth-0 0.58 1.45 5 9 95.22
synth-1 0.58 1.45 5 9 95.22
synth-2 0.58 1.45 5 9 95.22
synth-3 0.58 1.45 5 9 95.22
synth-4 1.50 1.52 6 10 89.57
synth-5 0.58 1.45 5 9 95.22
synth-6 0.58 1.45 5 9 95.22
synth-7 0.58 1.45 5 9 95.22
synth-8 0.58 1.45 5 9 95.22
synth-9 0.58 1.45 5 9 95.22
test 5.00 1.57 6 12 92.17
train 1.33 0.97 4 10 96.09
Callsites (Vector Length)
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

32
11 Full, 14 FDO
7 Full, 12 FDO
14 Full, 6 FDO

Table 4.33: In lin ing metric scores for MCF on the Itanium 2

Inpu t Mean Std Dev Max Static A lignm ent (%)
02-05words 164.09 68.25 228 385 52.53
06-1 Owords 137.36 59.10 202 383 58.28
11 -15words 126.45 60.16 213 350 74.70
16-20words 119.00 59.36 197 356 75.05
21 -25words 133.91 53.36 186 355 71.85
alice 191.36 68.20 260 427 38.69
pa 159.36 67.12 228 367 75.23
ref 120.64 56.88 198 369 77.60
relativity 128.82 51.92 179 386 68.29
test 161.55 64.08 260 357 76.02
train 125.18 60.51 213 372 72.64
worlds 122.27 56.11 189 376 74.66
Callsites (Vector Length)
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

1186
62 Full, 82 FDO

542 Full, 714 FDO
582 Full, 390 FDO

Table 4.34: In lin ing metric scores for parser on the Itanium

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean Std Dev Max Static Alignment (%)
02-05words 178.73 72.70 245 414 67.12
06-10words 129.45 56.35 196 399 72.19
11-15words 114.55 51.74 180 353 81.77
16-20words 109.64 55.04 189 361 81.06
21-25words 118.55 61.58 229 355 82.80
alice 129.09 61.84 198 395 68.46
pa 148.55 69.67 245 367 75.42
ref 110.91 52.25 195 369 79.83
relativity 117.64 54.58 182 386 70.28
test 148.73 56.12 198 357 78.71
train 113.64 52.35 185 372 76.40
worlds 111.09 58.47 206 376 76.38
Callsites (Vector Length)
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

1186
111 Full, 152 FDO
519 Full, 688 FDO
556 Full, 346 FDO

Table 4.35: In lin ing metric scores for parser on the Itanium 2

Input Mean Std Dev Max Static Alignment (%)
alu4 1.14 1.30 3 472 71.77
apex2 1.14 1.30 3 472 71.77
apex4 1.14 1.30 3 472 71.77
bigkey 1.14 1.30 3 472 71.77
des 1.14 1.30 3 472 71.77
diffeq 1.14 1.30 3 472 71.77
dsip 1.81 1.56 4 471 72.08
elliptic 1.43 0.68 2 471 70.93
ex1010 2.38 1.56 4 469 68.99
ex5p 1.14 1.30 3 472 71.77
frisc 1.43 0.68 2 471 70.93
misex3 1.14 1.30 3 472 71.77
pdc 2.38 1.56 4 469 68.99
ref 2.38 1.56 4 469 68.99
s298 1.81 1.56 4 471 72.08
S38417 2.38 1.56 4 469 68.99
S38584.1 2.38 1.56 4 469 68.99
seq 1.14 1.30 3 472 71.77
spla 2.38 1.56 4 469 68.99
test 1.81 1.56 4 471 72.08
train 1.14 1.30 3 472 71.77
tseng 1.81 1.56 4 471 72.08
Callsites (Vector Length) 877
Choices with Yes Consensus 39 Full, 50 FDO
Choices with No Consensus 366 Full, 823 FDO
Choices without Consensus 472 Full, 4 FDO

Table 4.36: In lin ing metric scores for VPR (place) on the Itanium

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Mean Std Dev M ax Static A lignm ent (%)
alu4 1.14 1.30 3 472 71.77
apex2 1.14 1.30 3 472 71.77
apex4 1.14 1.30 3 472 71.77
bigkey 1.14 1.30 3 472 71.77
des 1.14 1.30 3 472 71.77
diffeq 1.14 1.30 3 472 71.77
dsip 1.81 1.56 4 471 72.08
elliptic 1.43 0.68 2 471 70.93
ex1010 2.38 1.56 4 469 68.99
ex5p 1.14 1.30 3 472 71.77
frisc 1.43 0.68 2 471 70.93
misex3 1.14 1.30 3 472 71.77
pdc 2.38 1.56 4 469 68.99
ref 2.38 1.56 4 469 68.99
s298 1.81 1.56 4 471 72.08
S38417 2.38 1.56 4 469 68.99
S38584.1 2.38 1.56 4 469 68.99
seq 1.14 1.30 3 472 71.77
spla 2.38 1.56 4 469 68.99
test 1.81 1.56 4 471 72.08
train 1.14 1.30 3 472 71.77
tseng 1.81 1.56 4 471 72.08
Callsites (Vector Length) 877
Choices with Yes Consensus 39 Full, 50 FDO
Choices with No Consensus 366 Full, 823 FDO
Choices without Consensus 472 Full, 4 FDO

Table 4.37: In lin ing metric scores for VPR (place) on the Itanium 2

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Mean Std Dev Max Static A lignm ent (%)
alu4 9.86 12.54 36 456 80.28
apex2 9.86 12.54 36 456 80.28
apex4 9.76 12.87 37 457 79.90
bigkey 15.57 6.77 28 458 82.16
des 12.05 12.95 41 455 77.51
diffeq 12.52 9.79 31 459 81.25
dsip 30.33 10.75 41 452 84.06
elliptic 9.76 12.87 37 457 79.90
ex1010 9.86 12.54 36 456 80.28
ex5p 12.43 12.33 39 451 76.65
frisc 11.29 11.90 37 453 77.82
misex3 9.76 12.87 37 457 79.90
pdc 26.62 10.01 45 447 69.96
ref 14.14 12.56 41 451 76.02
s298 33.48 12.51 45 450 84.55
S38417 9.86 12.54 36 456 80.28
S38584.1 9.86 12.54 36 456 80.28
seq 9.76 12.87 37 457 79.90
spla 13.86 12.39 41 451 75.33
test 32.33 11.80 42 451 83.75
train 9.76 12.87 37 457 79.90
tseng 23.38 7.15 37 458 83.30
Callsites (Vector Length) 877
Choices with Yes Consensus 66 Full, 87 FDO
Choices with No Consensus 327 Full, 732 FDO
Choices without Consensus 484 Full, 58 FDO

Table 4.38: In lin ing metric scores for VPR (route) on the Itanium

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t Mean Std Dev M ax Static A lignm ent (%)
alu4 9.86 12.54 36 456 80.28
apex2 9.86 12.54 36 456 80.28
apex4 9.76 12.87 37 457 79.90
bigkey 15.57 6.77 28 458 82.16
des 12.05 12.95 41 455 77.51
diffeq 12.52 9.79 31 459 81.25
dsip 30.33 10.75 41 452 84.06
elliptic 9.76 12.87 37 457 79.90
ex1010 9.86 12.54 36 456 80.28
ex5p 12.43 12.33 39 451 76.65
frisc 11.29 11.90 37 453 77.82
misex3 9.76 12.87 37 457 79.90
pdc 26.62 10.01 45 447 69.96
ref 14.14 12.56 41 451 76.02
s298 33.48 12.51 45 450 84.55
S38417 9.86 12.54 36 456 80.28
S38584.1 9.86 12.54 36 456 80.28
seq 9.76 12.87 37 457 79.90
spla 13.86 12.39 41 451 75.33
test 32.33 11.80 42 451 83.75
train 9.76 12.87 37 457 79.90
tseng 23.38 7.15 37 458 83.30
Callsites (Vector Length)
Choices with Yes Consensus
Choices with No Consensus
Choices without Consensus

877
66 Full, 87 FDO

327 Full, 732 FDO
484 Full, 58 FDO

Table 4.39: Inlin ing metric scores for VPR (route) on the Itanium 2

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

logs. On the other hand, FDO results in the inlining o f at most 54 callsites. VPR’s routing task results

in larger variations between the FDO logs. However, the differences between static optimization and

FDO inlining are still very large compared to the differences between FDO logs. Therefore, profiling

makes a significant difference in the compiler’s ability to identify hot callsites in VPR, and, as w ill

be presented in Section 4.2.2, consequently improves program performance.

4.1.3 Conclusions

Overall, different training inputs result in different optimization decisions for both i f conversion

and inlining. In almost every case, there are much more significant differences between the static

logs and the profile-guided logs than between any pair o f FDO logs. Furthermore, the consensus

data shows that FDO usually results in the same decisions for the majority o f choices, and that

in most cases the differences between FDO logs are confined to a fa irly small proportion o f the

choices made for a program. In the extreme, several inputs for MCF and for the placement task o f

VPRresult in identical optimization decision. Therefore, using or not using FDO appears to have a

more significant impact on the optimization decisions made by a compiler than the selection o f the

training input used for FDO. However, since the performanceof a program is often most significantly

impacted by a small number o f important optimization decisions, these results do not imply that the

selection o f training input is not important.

4.2 Run-Time Performance

Aestimo measures the run times for the binaries produced with the FDO optimization log from

training on each o f the inputs in the workload, as well as for the statically optimized binary. Each

binary is run on each o f the inputs in the workload five times. Unfortunately, a larger number o f

trials would have taken a prohibitive amount o f computing time. Therefore, along with the average

performance, Aestimo reports results based on the minimum and maximum times from among the

five trials. The main bar in the graphs shows the average o f the five trials, while the error bars

show the minimum and maximum values obtained. Values for the error-bars are determined using

identical calculations to those used with the average time. A ll run times are measured as the user

component reported by the U N IX t im e command. A ll the graphs presenting performance results

in this chapter w ill use these conventions.

Reported performance results may vary depending on the method used to summarize the raw run

time data [23] (pp. 24-39). I f the total run times for a workload are compared, a few long-running

inputs could dominate the run time and the comparison would effectively ignore shorter-running

inputs. Alternatively, the run time for each element o f the workload can be normalized. In this case,

each input is equally important in the comparison, but this is not always a desirable characteristic.

Therefore, Aestimo provides performance results calculated using two methodologies: an arith

metic sum o f run times and a geometric sum o f run times. The arithmetic sum aggregates the raw

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program Program

o

(a) Itanium (b) Itanium 2

Figure 4.6: Average performance o f FDO i f conversion

run times on each o f the inputs in the workload for a given binary. The sum is reported as a percent

faster than the same measure for the statically compiled binary. The geometric sum is similar, but it

normalizes the run times against the (arithmetic average) static time before aggregating. Precisely,

the geometric sum is defined as:

where W is the workload, I G W is the training input used to create the binary, and t i m e j (j) , j S

W, is the time for the binary trained in input I to run on the input i . The results labeled Static

are included in the graphs to display the variance between the minimum and maximum times for

execution with the statically optimized binary.

The metrics referred to in this section are the difference and alignment metrics defined in Sec

tion 3.1 and reported in Section 4.1.

4.2.1 I f conversion

I f conversion is known to provide modest performance improvements at best [13]. On the Itanium,

profile-guided i f conversion has mixed effects on performance. On the Itanium 2, Aestimo finds

that profile-guided i f conversion invariably results in an (often substantial) performance reduction.

Apparent performance may vary between the two evaluation metrics, but the conclusions o f the

performance evaluation are not affected by the run time aggregation metric chosen.

Figure 4.6 presents the average arithmetic performance o f the FDO binaries for each program.

On the Itanium, FDO i f conversion results are mixed, but on average FDO i f conversion has little

effect on performance. FDO i f conversion makes little difference to the g z ip and VPR routing.

B z ip 2 and p a r s e r are consistently slightly improved by FDO i f conversion, while it reduces

performance on c r a f t y , g z ip , and VPR’s placement task. GAP and MCF show small performance

t ime i (j)

t i m e a t n i i c (j)

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ft
2.5

4

3

2
0.5

0
I
•2

Training DalasctTraining Dataset

■§11 O. u eo oo r f t oo S=
a a s. ^ & g. -a I I s n

l ! 8 §

a . u to do n co 'zz

a % £ - I | *
I I e <■» ►»

e ao «

(a) Arithmetic (b) Geometric

Figure 4.7: Performance o f b z ip 2 with i f conversion on the Itanium

i
I*

I
0
1
2
3
4
5
6
7
8
9

Training Dataset

•sa .s 1 1 ec_
E

oo eo m
& ‘ ~H U iB fa.

■>

0
■)

4

ft

8 Lu
0

i
a .
E

eo co m
8. -2 g-

(a) Arithmetic (b) Geometric

Figure 4.8: Performance o f b z ip 2 with i f conversion on the Itanium 2

reduction when trained on most inputs, but also have small performance gains when trained on two

or three o f the inputs in the workload.

Results on the Itanium 2 are disappointing. FDO is intended to improve performance, but this is

clearly not the case with FDO i f conversion. For nearly every benchmark, performance is reduced

uniformly regardless o f which training input is used. Furthermore, the average difference score

appears to have no correlation with performance. For example, with p a r s e r , average difference

scores range from 28 to 64, but all FDO binaries exhibit identical performance. Perhaps the most

important observation o f FDO i f conversion is that performance is nearly always reduced by more

than 3%, by 5% on average, and by as much as 8% for M C F.

Run time variances for FDO i f conversion binaries are frequently large, making it impossible

to distinguish between the performance o f binaries trained on different inputs. Recall that the i f

conversion alignment scores for b z ip 2 are split into two groups: inputs with alignment scores less

than 55%, and inputs with alignment scores greater than 80%. Despite these differences, Figures 4.7

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

y
3

-0.5

Li.

-2.5
Training Dalaset

a a

y

I -05s
•§ . i
u
1

-2.5
Training Dalascl

2 a
£ Ni *

(a) Arithmetic (b) Geometric

Figure 4.9: Performance o f c r a f t y with i f conversion on the Itanium

2U.
I*

0

2

4

5

6
Training Dataset

%
■5
0
1
£

0

•6
Training Dataset

2 a

(a) Arithmetic (b) Geometric

Figure 4.10: Performance o f c r a f t y with i f conversion on the Itanium 2

and 4.8 show no significant performance differences between the FDO binaries.

There are distinguishable differences in the performance o f several c r a f t y binaries on both

processors, though the difference between the best and worst performance seen in Figures 4.9

and 4.10 is less than 1%. The average difference metric does not vary substantially between the

binaries, expect for wac-251 on the Itanium, which has a score o f 405 (see Table 4.6). The other

inputs result in scores less than 248. Training on wac-251 also results in the best performance

on c r a f t y , which suggests that the different profile information provided by this input results in

different optimization decisions that do impact performance.

Similarly, there is some correspondence between larger average difference scores and greater

performance for GAP on the Itanium. Most inputs result in difference scores less than 200 (see Ta

ble 4.8), and performance penalties o f about 1%. The SPEC ref, test, and train inputs have average

difference scores exceeding 400. Figure 4.11 shows that they also result in the best performance on

this benchmark. However, training on the snf1260 input results in better performance than training

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

*7
Fa

st
er

 t
ha

n
St

at
ic

rA
Fa

st
er

tha

n
S

ta
tic 0.5

•0.5

Training Dataset

8
g
Ci

c
5

0
1 0.5
on

« -0.5

I

•1.5

Training Dataset

•a * a

(a) Arithmetic (b) Geometric

Figure 4.11: Performance o f GAP with i f conversion on the Itanium

0.5

o H
•0.5

•2.5

Training Dataset

8 S 8— ci m
i i g* £

§

3u.

0.2
0

- 0.2
-0.4
- 0.6
•0.8

-1
- 1.2

-1.4
• 1.6

L \ J

1.8
Training Dataset

(a) Arithmetic (b) Geometric

Figure 4.12: Performance o f GAP with i f conversion on the Itanium 2

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

u
I 0.2

0.3
0.4
0.5
0.6
0.7

V)

1
Lrw

i

0.9

U *0
5 .E

e
g 8
K *°

ob o0
S. -2 M s

B e ho U C
■° S 5n § s

u.

0.2
0.3
0.4
0.5
0.6
0.7

0.9

•8 -3
3 .S

Jrt Q. O Ob 00
I I -

s s

(a) Arithmetic (b) Geometric

Figure 4.13: Performance o f g z ip with i f conversion on the Itanium

i
£

o

2
3

4

5

6
Training Dataset

•3
c

1

co so m
8. -2 ‘c 8. 22 &

3u.

1
0
1
2
3

•4

5
6

Training Dataset

3 .E • i f 2 E
E E
hi
8. §

(a) Arithmetic (b) Geometric

Figure 4.14: Performance o f g z ip with i f conversion on the Itanium 2

on ref, but results in an average difference score o f only 190.

On the other hand, GAP on the Itanium 2 also displays distinguishable levels o f performance, as

seen in Figure 4.12. In this case, most inputs have an average difference score o f about 185, while

the SPEC ref, test, and train inputs have average difference scores larger than 400. However, while

training on ref results in the best performance among the FDO binaries, training on test and train

results in the two worst performing binaries.

G z ip and MCF on the Itanium are also cases where changes in metric scores do not correlate

with changes in performance. With g z ip , there are two statistically distinct levels o f performance

in Figure 4.13: 0.5% slower and 0.8% slower than static. Unfortunately, these differences are too

small to be practically significant. There are no trends in the metric scores to suggest these two levels

o f performance. Both the log and docs logs have lower than average alignment scores, but display

different levels o f performance. The mean difference scores for the binaries that are 0.8% slower

than static appear to be higher than average, but many binaries at the -0.5% performance level have

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
Fa

st
er

tha

n
St

at
ic

%
 F

as
te

r
tha

n
S

ta
tic

3

2

0

•2
•3

■4
Training Dataset

a
Vi

5
■5
Uu

u.

3

0

■3

■4
Training Dataset

o —• n
•S -5 -S

« ^ — r i e %- ^ w n ' O r ^ o o e '
I ^ • S ' S - S - S - S - S - S - S - S - S

(a) Arithmetic (b) Geometric

Figure 4.15: Performance o f MCF with i f conversion on the Itanium

o

-to
Training Dataset

o —
-S -5

o

k»a
i

-to
-12

-14
Training Dataset

• S S - S ' B S - B S S “ e ’5 9 T r,‘ <? T "?
c -5 s s s s e ■S S S a 2

(a) Arithmetic (b) Geometric

Figure 4.16: Performance o f M C F with i f conversion on the Itanium 2

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Js

V 0.5
i2

-0.5

A A A A A .80 O O o o ’S
1 2 2
9 1
g s

I a
“ 1 s I 1

i: 0.5

-0.5

Training Dataset

■2 *2
o ois Jin a

9

■H ■§ S B. H .§•
© o *3 .£
<1 >o |ri cl g

» 1 1 =>
S = S Fi

(b) Geometric(a) Arithmetic

Figure4.17: Performance o f p a r s e r with i f conversion on the Itanium

0.5

•0.5u
*S -1

-1.5

I «
-2.5u

I
ts -3.5

-4.5

Training Dataset

I
0
■I

4

■5

■6
■7

•8
Training Dataset

l i l t2 o o ow * 2 *
>n o >n
9 T *7g s =

■§ •§ s0 o 73
1 &
n rl

—
— n

1 1
I

■g -g •§ s a
g a g *
- e sq

|
o

— — n

(a) Arithmetic (b) Geometric

Figure 4.18: Performance o f p a r s e r with i f conversion on the Itanium 2

differences larger than graphic. Furthermore, while all other inputs have mean difference scores

less than 20, compressed results in a mean difference score o f 44. However, the performance o f

the binary trained on compressed is indistinguishable from 5 other binaries.

Similarly, synth-5 for MCF results in a significantly larger mean difference score and a lower

alignment score than the other inputs, but does not display any significant differences in perfor

mance. Conversely, training on synth-8, synth-9, test, and train results in improved performance,

but they have nearly the same metric scores as the other input. Therefore, there is no clear connection

between the difference and alignment scores and performance.

Despite the moderate mean difference scores for p a r s e r , differences in i f conversion deci

sions do not appear to result in any variations in performance among the FDO binaries. Recall that

the FDO logs had consensus for about half o f the i f conversion choices for p a r s e r . Therefore,

it is likely that the choices that do not have consensus among the FDO logs are those that are not

important for the performance o f the program, while those choices with consensus are a superset

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

2
0

•4

6
-8

•10
Training Dataset

u *tr i* t >* y? 0*0.00 o.umu'froor- — a* n - s e&
■s 3 x x u x *9 y S •= s
§ « 8 .8 .*3 /a iS -3 .& 2 d«S S * • ^ 3 3 x S - - S «

3 3 2 ’ ^ = <2«
*3

2
I
0
1
2
3

4

6
7

j - t n - t >, v5 c r o . u o D. o m
: 3 x x t> _2>t> ■- '3 — </-» .vj x — **2 "3 & 8.-3/°£-8 J-2 " r "

n ■£ u « 1

00 P- —u - co r-
• • *9 S o -
g a. n -tS is s a-

3S

cr « tZ c w>

’ ■■si

(a) Arithmetic (b) Geometric

Figure 4.19: Performance o f VPR (place) with i f conversion on the Itanium

0.5

•0.5

w

i •2.5

■3.5

Training Dataset
u -t
‘S 3
373

*x x ?T ^ J

S.S.'S

0.5

oo

Training Dataset

r-S S ^'a -S 'sscc^ s-£s.|
■a « ‘5 r3So

>» X 3* C. 3 © C .o m u '^
li •* -7 -s — in .£ x *3 g

3 .S - P i i E u s . u3 -3 S.g.-S,’ i = - 3 *n n ■= -o =

CO r e -
a, — .rj a o

=■.2 s;.!S t j

(a) Arithmetic (b) Geometric

Figure 4.20: Performance o f V P R (place) with i f conversion on the Itanium 2

o f the most important i f conversion choices. The large reduction in performance on the Itanium 2

is likely due to some o f the 111 i f conversion choices that the FDO logs had consensus not to i f

convert, but that static optimization chooses to i f convert.

The pdc, s298, and spla inputs for the placement task o f V P R have the worst performance

for this program on the Itanium (see Figure 4.19). These inputs also have the lowest alignment

scores. Therefore, there may be a correlation between alignment score and performance in this case.

However, on the Itanium 2, there are no inputs with distinguishing metric scores, nor any that result

in very significantly different performance. There are no distinguishing features for the inputs for

the routing task o f V P R , either (see Figures 4.21 and 4.22). The consensus numbers indicate that

the main difference between static and feedback-directed optimization is about 50 i f conversion

choices where static performs i f conversion but FDO does not. This result suggests that not enough

i f conversion is being performed on the Itanium 2 when FDO is used.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
 F

as
te

r
tha

n
St

at
ic

%
Fa

st
er

 t
ha

n
St

at
ic

0.8
0.6
0.4
0.2

♦0.2
-0.4
•0.6

Training Dataset
u «t n *t >> fi :rc .uo c. u f i u — am' — w_i* w &u
•2 a x * t> ,u -s *s <-• .£ k*3 V "£. t> '?5 sa-a S £ K *• SS g * S’ - 3 2

U.
£

o*“ e o r* - c 50

0.8

0.6

0.2

0
- 0.2

•0.4

• 0.6

i * t n n > * £ t c . u o t a n a V . w >s " a ' 3 *s c so
* “ x x u i t .« 7 - — ,25 x * a e C ' — v ^ . S ‘ 2 c “3 .s «« <-> *r ♦> g, ri *t 2 « rr- H ;2*3 g . t f0'3‘=-3.£-2 X 1

* a « -x -a = x c
: S 5

(a) Arithmetic (b) Geometric

Figure 4.21: Performance o f VPR (route) with i f conversion on the Itanium

o

2

3

4

6
7

Training Dataset
y t r i t y> era .

' S 3 K X U U . O ' J
a-s K.«.V3i=-3n a ■= -o

Wg-f sM S
5-2 s£ s x rJS 3 K I S
“ “ ’§ ^ °°

0 f
u
3
C/5

§
■5
b

Training Dutusct

T» *

u t n t >>
'2 3 X X tl2-3 a. jt-a3 n •=

r- c r a y o o. u r t u 'rr oo r* •
« .o 3 - 2 — «r» . 2 x ■g H C ' » ,^ e -3 .9 -0 « £ j{ a. *- r j s ;

13 -3 S 1

7 9 K CU
“ &a I S

(a) Arithmetic (b) Geometric

Figure 4.22: Performance o f VPR (route) with i f conversion on the Itanium 2

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to
8
6
4

2
0
7

•4
Program

3
2
1
0
-1
-2
*3

-4

-5

-6

•S- yB, = 3 M

(a) Itanium (b) Itanium 2

Figure 4.23: Average performance o f FDO inlining

4.2.2 Inlining

In lin ing is an important optimization that can benefit greatly by knowing the hot functions and

frequent callsites in a program. Therefore, we expect significant performance gains from profile-

guided inlining. However, i f different inputs exercise different parts o f the code, or otherwise result

in different relative frequencies for important functions and callsites, overall performance on the

workload may vary.

The experimental results show that there are significant performance impacts from feedback-

directed inlining. Furthermore, there are several cases where the selection o f training input has a

significant and substantial impact on performance. Figure 4.23 shows the average arithmetic perfor

mance o f FDO inlining on each program. FDO inlining improves performance by 6% on average

on the Itanium. However, while FDO inlining has little impact on performance for the Itanium 2 on

average, the largest average performance gain is slightly more than 2%, but the largest performance

reduction is almost 5%. For individual binaries, FDO inlining improves performance by as much as

12% or reduces it by up to 6%, while the performance difference between training on two inputs can

approach 7%.

Figure 4.24 shows performance gains for b z ip 2 from profile-guided inlining on the Itanium.

Despite the large variances, training on the combined input results in performance gains o f about

8%, while training on xml improves performance by only 2%. Figure 4.25 indicates that training

input selection is also important for b z ip 2 on the Itanium 2. Training on some inputs, such as

log or docs, has a negligible impact on performance. However, training on combined reduces

performance by over 5%. Recall from Section 4.1.2 that inputs resulted in either difference scores o f

about 150 and alignment scores o f about 6%, or difference scores o f about 80 and alignment scores

o f about 50% for both processors. However, there is no obvious correlation between these scores

and performance. For example, training on either mpeg or program results in similar performance

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
 F

as
te

r
tha

n
St

ati
c

%
 F

as
te

r
tha

n
St

at
ic

10

8

6

4

2

0

*2

•S "8
3 .£

Ui eo n
& -2 3- S. 'K.

E
e e a
■§ 3 15 t s

I
£

10

8

6

4

0

■2

£ *s
3 .£

to to
& 2 S. ■2.£

£ C o « ~2 3n a
1 i
a

(a) Arithmetic (b) Geometric

Figure 4.24: Performance o f b z ip 2 with inlining on the Itanium

o -j-

Training Dataset

i l l
£ ex o c u 5

u oo bo m oo is

£ & ° | *r3 &
£ w u £
I a

,3U.

I
0
-1
>2
•3

4

5
6

•7
Training Dataset

•2 *8
£3 .S

00 60
8. -2 §• £ U

E 1 a

(a) Arithmetic (b) Geometric

Figure 4.25: Performance o f b z ip 2 with inlining on the Itanium 2

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

12
10
3

6
4

0

Training Dataset

u
3
to
c
rj

JZ

4>
1

o •—J-

8
•A <A •s

3
a t> I S •A

O
«A •A

n

y k k y V) k k k ki * * * s

(a) Arithmetic (b) Geometric

Figure 4.26: Performance o f c r a f t y with inlining on the Itanium

3co
s
•5

i

5

4

3

2

[ZiZIo

.2

■3
Training Dataset

a
i

4

3

*>

0

•2
•3

Training Dataset

19
o
r»z

(a) Arithmetic (b) Geometric

Figure 4.27: Performance o f c r a f t y with inlining on the Itanium 2

despite mpeg having an alignment score o f about 6% and program having an alignment score o f

about 50%.

C r a f t y on the Itanium achieves the largest performance improvement from profile-guided in

lining observed in our study. As shown in Figure 4.26, training on most inputs results in performance

improvement o f 8%. However, 10% and 12% gains can be achieved by training on wac-151 and

wac-001 respectively. However, the metric scores do not distinguish these inputs in any way. There

are inputs with both higher and lower mean difference and alignment scores. In particular, test has

the largest mean difference score and lowest alignment score, while train has the smallest mean

difference score and largest alignment score. Nonetheless, the performance o f the binaries trained

on these two inputs is identical.

The performance impact o f FDO inlining for c r a f t y on the Itanium 2 varies significantly

with the training input chosen, as seen in Figure 4.27. However, these variations in performance

seem uncorrelated to the difference or alignment metrics. Ref and wac-251 have the lowest mean

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

3

2

0

Training Dataset

s s •n ©
r i inC C

M
u
3

o

4

0

oin s § a
£ e
C!s

(a) Arithmetic (b) Geometric

Figure 4.28: Performance o f GAP with inlining on the Itanium

2.5

0
1

0.5

Training Dataset
u * r ; « n O Q O i n ©
*3 c ri »n o © ri «n
« o — ri ri *n r>

C C C i *5 ce c c © »* *«M « ». a
5

2.5
u
.1

u

u. 0.5

Training Dataset

a S S 8 !Q 8O — r i m r~
C C C ci c cc c c 5 u. irt

C!5

(a) Arithmetic (b) Geometric

Figure 4.29: Performance o f GAP with inlining on the Itanium 2

differences, and also the worst performance. However, test has the largest mean difference, but

also results in reduced performance. On the other hand, train improves performance by 4%, but has

mean difference and alignment scores that are on neither extreme when compared to the scores o f

other inputs.

GAP on the Itanium displays small performance variations across the workload. Figure 4.28(a)

shows that the least performance improvement is about 3% for test, and the greatest is about 4.5%

for snf750. snf750 and snf200-300 have very similar metric scores, but dissimilar performance.

The SPEC ref, test, and train inputs all have mean difference scores approximately 50% larger

than the other inputs, but have similar levels o f performance. The performance impact o f inlining

for GAP on the Itanium 2 is small. However, for both the snf200-300 and snf750 inputs, the

arithmetic measure results in slightly worse performance than static on the workload, while the

geometric measure shows a small performance improvement. Training on these two inputs results

in a longer total time to process the entire workload, despite an average improvement in per-input

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9
8
7
6
5
4
3
2
1
0
1

r h

Training Dalasct

£ *8 0 . 0 to M W 60 != P
t s. * I £

on |
g I

12 ?J *2
S i s
§ 2

9
8
7
6
5
4
3
2
I
0
•I

oo on m eo !=
& -2 g- & £ £

feb *|
g 1

(a) Arithmetic (b) Geometric

Figure 4.30: Performance o f g z ip with inlining on the Itanium

I
&

2.5

2

1.5

1

0.5

0

-0.5
Training Dataset

o*p*o’5 C U3 .S SI
** •§ 6

to n eo £ 12

I

y -a -o

Training Dataset
o . o oo oo m oo i ;
a 2 ts. 2 §• s. x E e

I 1s §

(a) Arithmetic (b) Geometric

Figure 4.31: Performance o f g z ip with inlining on the Itanium 2

processing time. Furthermore, there is no visible connection between the metric scores and observed

performance.

Figure 4.30 shows fairly consistent performance improvements for g z ip on the Itanium, docs

has a very large mean difference score, more than four times larger than any other input. However,

this large difference does not correspond to any impact on performance. The performance improve

ments on the Itanium 2 are small, as shown in Figure 4.31. Training on random produces a markedly

smaller improvement in performance than training on the other inputs on both processors, random

also has a mean difference score nearly twice as large as any other input on the Itanium 2, and about

50% larger than all inputs except docs on the Itanium. Recall that random’s low alignment score

was due to it inlining a significantly different set o f callsites than other logs. The performance results

reveal that these different decisions result in inferior performance on our workload. Therefore, the

selection o f random as the training input for g z ip does result in different inlining decisions that

do result in different performance than training on other inputs.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
 F

as
te

r
tha

n
St

at
ic

%
 F

as
te

r
th

an

S
ta

tic

10

8

6

4
•y

0

Training Dataset
o — n m
■ £ • £ • £ -S

I

12

10
8
6
4

y

0
•2

Training Dataset

•s s «s -s -s 3
© — n

•s -s -s -s -s -s - ee e? e e e e "■*

(a) Arithmetic (b) Geometric

Figure 4.32: Performance o f MCF with inlining on the Itanium

i
o
•t
.n

•3
■4

-5

■6
•7

Training Dataset

•s £ O — rj m
•g £ .e . 5 ■S € 5 *5 *5

3
.au.
£

2
1
0
■1
2
3
4
5
6
7
8
9

Training Dataset

1 e
O — r'l m

c c c c c c c c c S a

(a) Arithmetic (b) Geometric

Figure 4.33: Performance o f MCF with inlining on the Itanium 2

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10
9
8
7
6
5
4
3
2
1
0
-I

Training Dataset

(a) Arithmetic

to
r-l—,

8

6

4

■y

0

■2

•= -8 *£ •§ ■§ -S .8 3- ’E = 5 -I 3
2 o o o o o *3 "* h n
" * j* * I is H I

V» © «"> © 'O — ^
p — — r» ri v
r l ^ - O - o O — — ri

(b) Geometric

Figure 4.34: Performance o f p a r s e r with inlining on the Itanium

0.6

0.4

0.2

u

-0.2

-0.4

- 0.6

•0.8
Training Dataset

•- *2
2 o1/1 S

* 7

■8o
<1

•h s a. s * I 1

(a) Arithmetic

0.5
u

W w
S
S -0.5
4i

I

Training Dataset

I 1 " ■*
•Ho*

9 *7 T

*H ‘H .ao o 13
is i

10

‘Tj >* 3* ■I *9
is 5 s

s£ = s ri

(b) Geometric

Figure 4.35: Performance o f p a r s e r with inlining on the Itanium 2

FDO inlining results in equivalent performance regardless o f the training input chosen for MCF

for both processors. Performance is improved about 7-8% on the Itanium, see Figure 4.32, but re

duced by 4-5% on the Itanium 2, see Figure 4.32. Since the mean difference scores for all inputs

on both processors are very small, these similarities in performance across training inputs are ex

pected. Recall that the metric scores for MCF are identical for the same training input on the two

processors, and that the inlining decisions are identical as well. Clearly, these decisions are effective

at improving performance on the Itanium, but are inappropriate for the Itanium 2.

Figure 4.34 illustrates that the large mean difference scores for p a r s e r on the Itanium do

not impact performance, as performance is improved uniform ly by 9%. Furthermore, alice has a

much larger mean difference score and significantly lower alignment score than the other inputs, but

achieves identical performance. Therefore, the differences between the logs must be for infrequently

executed callsites.

In Figure 4.35 different training inputs clearly result in different levels o f performance for

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4
3
2
I
0
1
2
3
4
5
6
7

‘['raining Dataset
u * tr i- t >>

3*3 & S/ft*9 § ■» - - 2
1/1 » n •= rs =

vj a- c . u o o. u r~. y — » r - — o* « to
w .u — irt ,i2 x *3 £ !? '--• y 3 •: v 2. D t z * br - b 8

2.5
y

y

I
* -0.5

Training Dataset
y -t r> -*t >» « 7 e. y o c . y <n y V. c
•s a x x u « ,y *3 — «rj * x "3 H c
S a g . g.fo^ 15 *3.9-2 5 £ a *• f
1/1 « «•* -a = x ‘g

s so

IS

(a) Arithmetic (b) Geometric

Figure 4.36: Performance o f VPR (place) with inlining on the Itanium

1.5

0.5

o

■0.5

1.5

t n r in >» f-
* — ** x y Jf.373 ta/S.’ ! * *

c. y O t y w a 2 - 7 ^ “ c so

§•s — «n .5 x *3 so - j y*£.y’5 =e-o * £ v c- r j 2 « 1/5 5r “ 2 g

0.6
0.4

0.2
y
I •0.2
* -0.4

-0.6
-0.8

Training Dataset

■ i t V t 5^ I t * 2 * as-s's
373 g . 8 . ^ I - s * 2 S-E.Sj =•

eo r- — 7 a •

V <5 00
8g

c. y

(a) Arithmetic (b) Geometric

Figure 4.37: Performance o f VPR (place) with inlining on the Itanium 2

p a r s e r on the Itanium 2. Most inputs achieve a distinct level o f performance from the other inputs.

Unfortunately, the performance impacts are small, w ith improvements and reductions all less than

1%, which lim its the practical significance o f these results. Nonetheless, there does appear to be

a weak correlation between alignment and performance. Conversely, there is likely a weak inverse

correlation between performance and mean difference score. 02-05words has the worst perfor

mance, the highest mean difference score, and the lowest alignment. Meanwhile, 11-15words has

the best performance, the second largest alignment score and a low mean difference score. There

fore, the better-performing binaries likely have more inlined callsites than the worse-performing

binaries. The effectiveness o f training on alice varies between the arithmetic and geometric mea

sures. Unlike the two inputs for GAP, training on alice results in a reduction in processing time

for the entire workload, compared to Static. Despite this fact, the average per-input performance o f

p a r s e r is reduced compared to static.

FDO inlining usually has a small impact on performance for VPR. The routing component o f

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
 F

as
te

r
tha

n
St

at
ic

%
 F

as
te

r
tha

n
St

at
ic

7

6
5

4

3

2

0

Training Dataset
U t f l t >»

•3 3 x x t» j ,»# oi — — .
a s & S.-S, !5 -3 -S-2 g

a a •= 13 —

- c ra u o a. u m t> '*■: oo r» — t3 c 60i f .o vs 3 — >n .12 x T3 e o — . * u "S. u ‘5 c
^ ----------'•- •• a & ri -t 2 * S' - 2 «

u.

9
8
7

6
3
4

3

2
I
0
•t

Training Dataset

(a) Arithmetic (b) Geometric

Figure 4.38: Performance o f VPR (route) with inlining on the Itanium

0.8

0.6

0.4

0.2

0.6
Training Dataset

a N *t >» « a- c. *J o & u n
3 3 X X U i f —
3 a S . 8 *

Ŝ l - r ■=-*.? «-3 a S - r v l s - l = ■3.S-2 g£ s £ rJ s 3 * S 5!
a g = *2 S

U

1 0,6
*5 0.4w

0.2
0 f

•0.2
•0.4

Training Dataset
• J t c i n >>« o’ c . u o a v n b ' r o o t ' - u* « 3 s ;«

• 3 3 x x u i f .V 3 3 — m .12 x * 3 g e t - j V *5. u 'S3 c3 a 8.8.f0̂ i=-3^2 g£ St =■ 2SS g *
3* « « 5 50 - - - iS

(a) Arithmetic (b) Geometric

Figure 4.39: Performance o f VPR (route) with inlining on the Itanium 2

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VPR on the Itanium is the only exception, where performance is improved by more than 4%. It is not

surprising that performance is nearly identical regardless o f the training input used. The maximum

difference between logs for routing on both processors is 4, indicating that the optimization decisions

made during compilation are virtually identical regardless o f the training input. The difference

scores are a bit larger for the placement component o f VPR. However, the scores are still fairly

small, and there are no significant differences in performance between the binaries. The benefit o f

FDO inlining for routing on the Itanium is likely due to a small number o f callsites that are easily

identified as important using any training input.

4.2.3 Conclusions

The experimental results indicate that training on different inputs does lead to different decisions by

the compiler, and that there are often performance differences between binaries trained on different

inputs. Ideally, there would be a correlation between the alignment and/or difference metrics and

performance. Visually comparing the graphs for i f conversion from Section 4.1.1 with the tables

from Section 4.2.1, there is no obvious correlation. A similar situation exists for inlining. There

may be a slight correlation between alignment and performance for b z ip 2 on the Itanium, where

xm l and docs have reduced alignment and reduced performance. However, the GAP snf900 and

the g z ip docs inputs on the Itanium both have elevated alignment and difference scores compared

to the other inputs, but no apparent corresponding variation in performance. There are no visually

identifiable trends or anomalies in the Itanium 2 data.

In order to further examine a possible correlation between alignment and performance, we

graphed the alignment score o f each training input against its performance on the workload for

each benchmark. These graphs do not suggest any correlation between alignment and performance.

For completeness, these graphs can be found in Appendix B.

A significant finding o f this performance study is that while profile-guided inlining usually does

not reduce performance (the main exceptions being b z ip 2 and MCF on the Itanium 2), the same

cannot be said o f profile-guided i f conversion. I f conversion almost always reduces performance

on the Itanium (though b z ip 2 is improved about 4% and parser is improved about 1.5%), and re

duces performance on the Itanium 2 for every training input for every program in our study. Further

more, performance is reduced by more than 5% on average. An improved design o f i f conversion

in the ORC with respect to the way that profile information is used may correct the performance

degradation caused by this transformation. Similarly, there is also potential to improve inlining for

the Itanium 2.

4.3 Resubstitution

An important question when using FDO is whether or not the compiler makes good use o f the profile

information. More precisely, does the accuracy o f the profile impact the resulting performance o f

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the optimizations? Resubstitution is the practice o f using the same input for both the training and

evaluation runs. While running a program on identical input multiple times would seldom, i f ever,

be done in practice (since the results o f the computation would be known after the first run), resub

stitution allows for the evaluation o f how well the compiler uses so-called “ perfect information.”

Since the profile contains only branch and callsite frequency counts, instead o f fu ll path frequency

counts, the information is not perfect. However, no other input could produce a profile that is more

accurate than resubstitution.

Ideally, a compiler that makes good use o f profile information w ill produce the fastest binary for

a given input when resubstitution is used. I f this is not the case, then:

• The collected profile may be insufficient to capture important program behaviors, or the in

formation may not be sufficient to be representative o f the actual program behavior in certain

situations.

• The compiler may not properly use profile information. Heuristics that use the profile in

formation might not make correct decisions, or perhaps the machine model is insufficient or

inaccurate.

• Performance improvements may arise unexpectedly under another input due to complex in

teractions between optimizations.

Whatever the reason, the use o f FDO can be questioned i f it does not consistently result in per

formance improvements when provided with an ideally accurate profile. Resubstitution should not

be expected to produce the fastest binary in every instance. I f this were the case, the optimization

would likely perform poorly in non-resubstitution cases. However, i f resubstitution does not per

form well, there is no reason to expect that providing the compiler more accurate information about

program behavior (i.e., via profiling) should result in improved program performance.

We present Aestimo's resubstitution results in a similar manner to the performance results o f

Section 4.2. Instead o f calculating the speedup over static compilation, Aestimo calculates the per

formance improvement between the fastest FDO binary for each input and the resubstitution case.

The training input that resulted in the fastest binary is indicated in parenthesis beside the resubsti

tution training data below the graph. For example, in Figure 4.40(a) resubstitution on the xml input

with i f conversion is about 3% slower than the fastest binary, which was trained on the program

input.

The execution performance results suggest that the ORC generally makes good use o f profile

information. While resubstitution seldom results in the fastest average execution time, it is often the

fastest or nearly the fastest when the range o f run times is considered. Resubstitution is less than

2% slower than the fastest FDO binary in 81% o f cases. However, there are also several cases where

resubstitution is substantially slower than the fastest FDO binary. In one case, the performance

difference is over 17%.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8
7

6
5
4
3
2
I
0
■I

Input Dataset (Fastest Training Input)

I t
r £ tg .'

co
3

2.5

u
8 0.5u-

0
•0.5

Input Dataset (Fastest Training Input)

" l

(a) Itanium (b) Itanium 2

Figure 4.40: Resubstitution for i f conversion on b z ip 2

1.8
1.6
1.4
1.2

I
0.8
0.6
0.4
0.2

0
■0.2
•0.4

Input Dataset (Fastest Training Input)

eo
•3
3

| 0.8u
“ 0.6

•5 0.4
U

I
0.2

■0.2
Input Dataset (Fastest Training Input)

re
f

25
1) te
st

25
1)

tra
in

25
1) ©© a «no a a i nN a rer

CJ

£
u
r»

6
r t

£

6
p*
*

u
PS

£

6

* £
s

urs
*

u
£

N
s S4

(a) Itanium (b) Itanium 2

Figure 4.41: Resubstitution for i f conversion on c r a f t y

4.3.1 I f conversion

Figure 4.40 shows resubstitution results for b z ip 2 . On the Itanium, the ORC usually uses profile

information effectively. In most cases, resubstitution is less than 2% slower than the fastest binary,

and with 10 o f the 15 inputs resubstitution leads to the fastest binary when range o f runtime is

considered. On the Itanium 2, the ORC makes good use o f perfect information, and resubstitution

is less than 2% slower than the fastest binary for all inputs. Furthermore, resubstitution achieves the

fastest execution, when the range o f run times is considered, for 5 o f the 15 inputs.

With c r a f t y resubstitution consistently results in nearly the same performance as the fastest

FDO binaries. On both architectures, resubstitution is slower than the fastest binary by about 1.2%

in the worst cases, as shown in Figure 4.41. Interestingly, training on the wac-251 input on the

Itanium, and training on the train input on the Itanium 2, always results in the fastest binary. This

suggests that these two inputs result in a particularly good profile for i f conversion on their re-

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5
e
.2
3 3.5

•s
2.5

Ii 1
t* 0.5

Input Dulasel (Fastest Training Input)

a sO u ’ 5 3= 8 5 3
I G — 2 T — £ = ~ 'c — 8 S

a S f s e a I ss m

I

co
3

.n
3 0.8

I 06
■s 0.4

0.2
U

l
*

•0.2
Input Dataset {Pastes! Training Input)

t i c *OC S O <50 5 0 ''■jC o . r o c- SO CO
KK S s 2 2 G S s ® s S £ g s l s a S § £,w Ow C ' ^ C w ^ w ' c' ^c c w —'*'

(a) Itanium (b) Itanium 2

Figure 4.42: Resubstitution for i f conversion on GAP

e
o•a
3
•3

■§ 1
0.8

0.6

s °-4| 0.2
t?

-0.2

0 -1-1

Inpul Dataset (Fastest Training Input)

0.6
co 0.5•aa

0.4
3i/lU0£ 0.3

Sa; 0.2

U

i
$

•o.i
Input Dataset (Fastest Training Input)

(a) Itanium (b) Itanium 2

Figure 4.43: Resubstitution for i f conversion on g z ip

spective platforms, and manage to capture some aspect o f program behavior that is not effectively

represented or exploited in the profiles based on other inputs.

Figure 4.42 presents the resubstitution result for the GAP benchmark. On the Itanium, resubsti

tution usually produces a binary that is more than 2%, and as much as 3.5%, slower than the fastest

binary. Accurate information does not result in increased performance in these cases. However, ac

curate information does result in competitive levels o f performance for the same benchmark on the

Itanium 2. In this case, resubstitution is no more than 0.2% slower than the fastest binary for all but

two inputs. In another case where training on a single input consistently outperforms resubstitution,

the ref input results in the fastest binary for all inputs except test. However, since the differences

between resubstitution and training on ref are so small, this phenomenon could be coincidental. The

worst-case performance is for train, where resubstitution is less than 0.6% slower than ref.

G z ip also demonstrates effective use o f accurate profile information. As shown in Figure 4.43,

resubstitution is usually within 0.2% o f the fastest binary. The worst-case resubstitution performance

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c
o

•aa
•a
JS
3i/>O«
e3€
h>u

I
£

0 — ^

Input Dataset (I'astest Training Input) Input Dataset (Fastest Training Input)

C? t? *Tf? *Tm *>£ 'rw ? i
•s f -s f s I s f -s f -s | £ i«3 ’H-s f -s "i’is S.a £ s 5,a i s 5e 5 S.s j , s 5s s.:

(a) Itanium (b) Itanium 2

Figure 4.44: Resubstitution for i f conversion on MCF

occurs on the Itanium, where resubstitution on graphic is slightly more than 0.5% slower than using

the binary trained on source.

Figure 4.44 presents both effective and extremely ineffective use o f accurate feedback informa

tion with MCF. On the Itanium, there are 4 cases where resubstitution performs as well as the fastest

binary when the run time range is considered. However, MCF on the Itanium also results in the worst

resubstitution performance in our study. Resubstitution on the synth-1 input is more than 17%

slower than running the same input on the binary trained on synth-9. A t the same time, synth-1

produces the fastest binary for synth-6, which is more than 10% faster than resubstitution. Inter

estingly, synth-9 and train most frequently produce the fastest binaries, while synth-9 achieves the

best performance on the workload (refer back to Figure 4.15 in Section 4.2.1), but neither is close to

achieving the best performance under resubstitution. Unfortunately, greater understanding o f these

inputs and their effect on program behavior is required to speculate on why these performance results

are observed. This issue is discussed in more detail in Section 6.1.

Resubstitution for MCF on the Itanium 2 fares better. Here, resubstitution is within 2% o f the

fastest binaries in most cases, and within 3% in all cases expect for test. In fact, seven inputs result

in best performance when the range o f run times are considered. However, resubstitution perfor

mance on the test input is particularly poor, about 13% slower than the binary trained on synth-6.

In this particular case, it may be that the test input is not sufficient to generate a useful profile,

and that a profile from a longer running input captures additional information that can improve the

performance o f even a short-running input. However, this explanation does not apply to the results

on the Itanium. Refer back to the run times reported in Table 3.3. The test input only runs for 0.21

seconds. However, all the other inputs run for at least 30 seconds, and for several minutes in most

cases. Therefore, the synth-1 input on the Itanium and the test input on the Itanium 2 are likely

candidates to discover a scenario where the i f conversion heuristics fail to make the right decision.

Further analysis o f this scenario could lead to a better understanding o f i f conversion, and a better

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

co
3•3
a
u
OS

u

I o — 1

Input Dataset (Fastest Training Input)

f I I f f 11f | f I f “f |s h If P
? f f S 2 s l 5 “ '
3 Sg = - 3 g g ±

3.5
co
3

2.5
ja
3
u

u

I 0.5

•0.5
Input Dataset (Fastest Training Input)

I f I f I f I f | f I f ^ “i I I s | I I I f

s= Si =g *3 s

o ‘ses. o — o o i

' I *£w-i v> c* o9 T = 1
a = £

(a) Ilanium (b) Itanium 2

Figure 4.45: Resubstitution for i f conversion on p a r s e r

i f conversion heuristic.

The results for p a r s e r in Figure 4.45 show effective use o f accurate information. On both

processors, resubstitution is within 0.5% o f the fastest binary, and results in the best performance

in the majority o f cases. On the Itanium, the key exceptions are for 02-05words and 11-15words,

where resubstitution is about 2% and 3% slower than the fastest binary, respectively. The only

exception on the Itanium 2 is 02-05words, where resubstitution is 3% slower than training on 11-

1 Swords.

Figure 4.46 presents results for the placement task o f VPR. Resubstitution performance is mixed

on the Itanium. H a lf o f the inputs result in resubstitution performance less than 2% slower than the

fastest binary. However, among these, only three are as fast as the fastest binary. Also, resubstitution

is more than 4% slower than the fastest binary in 4 cases, and nearly 9% slower than the fastest

binary on the apex2 input. Also, it is curious that the best FDO performance on dsip is obtained

by training on ref, but conversely the best performance on ref is obtained by training on dsip. The

run-time range running on ref is large enough that resubstitution may be as fast as using the binary

trained on dsip. Therefore, it seems likely that the binary trained on ref is fastest on the dsip input,

and that the binaries trained on the two inputs achieve equivalent performance on the ref input. On

the Itanium 2, resubstitution universally leads to high levels o f performance compared the fastest

FDO binaries, which are always less than 1.5% faster than resubstitution.

Resubstitution performs well for the routing task o f VPR, as seen in Figure 4.47. Resubstitution

is never more than 1.5% slower than the fastest binary on the Itanium, and no more than 0.6% slower

than the fastest binary on the Itanium 2.

Rank Analysis

Despite the encouraging resubstitution performance results discussed above, it is possible that the

range o f performance among FDO binaries is frequently small, and that this situation results in

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
 F

as
te

r
tha

n
R

es
ub

st
itu

tio
n

%
 F

as
te

r
tha

n
R

es
ub

st
itu

tio
n 10

8
6
4
2
0

-2
Input Dataset (Fastest Training Input)

■3<S '"Ju &P St? g-- . s o .a p o p a.^ y p .g p - p g-p J2P = p g>£•a K v-r ?P -*P "o.s £p flt o; o-r «■£ i; Ct 5-, ■-•n S.a -t-g 3p S>w 8>t S.g g- a.g
a*' E Sa mg £ =3 - 3 o£ '“ S ,2W oo 3 “ <£ m3 SS 3 m £ “ 2 2£a p . DM -=M p . —W ~ SS = to ^ W ro JQM t^ to w M w

'a ^

(a) Itanium

2.5
2

1.5
1

0.5
0

0.5
Input Dataset (Fastest Training Input)

%= TE=
•aa g j gain « «J « in

00 w 00

St? go? _ _
— | p -sg 2 a

S «H g=
S’? 4!t i t .5. =3
33 ?

t ; O 'T a c o '* '_ o 1- U m — >*Cr

■fi s a « i £3 sS^— — *n cS
m
Sjg ? 'B ? § |

M
tti= MoS “ .S'
“ “ s l l

fto 2?! I I
.§-a s??«i 4

(b) Itanium 2

Figure 4.46: Resubstitution for i f conversion on VPR (place)

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
 F

as
te

r
tha

n
R

es
ub

st
itu

tio
n

%
Fa

ste
r

tha
n

R
es

ub
st

itu
tio

n 2.5
2

1.5
1

0.5
0

0.5

U6 [p c b

Input Dataset (Fastest Training Input)

a * ? -2 * 0 1 a 2 ? i^ c t’ ft*— ^ K. ^3 H goo * 2 o S 'S • § «11 U p I t II -I II s| si is B || *g -1 § i sg 3 a “3 So Sg la §s
« .o a u o'"" E "" — 2*5 w k w. 05 c 'Ctw

(a) Itanium

1.2
1

0.8
0.6
0.4
0.2

0
0.2
0.4

Input Dataset (Fastest Training Input)

t j - Co- u cr ST5 .s-= •=4t§ da d’5 2£ ■og eo ̂ ‘3 a» §-=■ .gfe - '-33 I =
•o n . — >t t tx i fp t» -8 t j “ "c t : s; g r? -2'w .5 — g<?

o u x ‘ 5 *C x u . £ £.*2 ~ r i ' r t - r u 7Z v * x S*.2 S 3 g _ j 3 3. f-s, ss £ k .2,= °-s a ^ s s s s u , g. ” § s s3Es “ 1 =~ <5 “ x ~3 s a

(b) Itanium 2

Figure4.47: Resubstitution for i f conversion on VPR (route)

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the small performance differences between resubstitution and the fastest FDO binaries. In order to

investigate this possibility, Aestimo also provides the rank o f each binary according to performance

on each input. A rank o f 1 indicates that a binary is the fastest on a particular input. Likewise, a

rank o f 2 indicates that the binary achieved the second-best performance for the input.

Tables 4.40 through 4.47 list each input in the program workloads. For each input, and for each

processor, the rank o f the i f conversion resubstitution binary for the input is listed, along with the

performance difference between the resubstitution binary and the rank-1 FDO binary. For instance,

the first row o f Table 4.40 show that among the FDO binaries for b z ip 2 on the Itanium, the binary

trained on combined is the 8th fastest when evaluated using the combined input. Furthermore, the

binary trained on combined was 1.06% slower than the fastest FDO binary.

Except for M C F (see Table 4.44), the differences in performance between resubstitution and

the rank-1 binary are small, regardless o f the rank o f the resubstitution binary. With M C F , the

performance differences between the rank-1 binary and the resubstitution binary vary greatly, but

the performance differences are not correlated to the rank o f the resubstitution binary. For example,

on the Itanium, the resubstitution binaries for the synth-2 and synth-3 inputs both have a rank

o f 12, and result in performance about 2% slower than the rank-1 binaries. On the other hand,

resubstitution with either ref or synth-0 results in a rank o f 5. However, resubstitution for ref is

6% slower than the rank-1 binary, while resubstitution for synth-0 is less than 0.5% slower than the

rank-1 binary.

The rank results are quite sim ilar for all the benchmarks. While resubstitution achieves a low

rank on some inputs for every program, resubstitution achieves very high ranks with similar fre

quency. For every benchmark, on both processors, there is an input where resubstitution gets a rank

o f I or 2, but also an input where resubstitution gets the highest or second-highest possible rank.

Furthermore, resubstitution ranks are scattered across the possible range o f ranks for each program.

Therefore, the rank analysis suggests that the frequently good performance o f resubstitution

binaries compared to their peers is due to small performance differences among the FDO binaries,

and not due to the more accurate information provided by resubstitution allowing the compiler to

make better optimization decisions. In fact, the rank results show that many other FDO binaries are

often faster then the resubstitution binary.

4.3.2 Inlining

Inlining is an important optimization that yields large performance gains. Consequently, it has been

the focus o f many studies. Therefore, the heuristics for inlining in a mature compiler should be

finely tuned, and resubstitution should perform well. While inlining resubstitution does, in general,

perform better than i f conversion, there are several cases where inlining resubstitution results in

significantly reduced performance compared to the fastest FDO binaries.

Resubstitution on b z ip 2 performs fairly well. Figure 4.48 shows that resubstitution is as fast

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input II
Rank

anium
Slower! %)

It:
Rank

mium 2
Slower! %)

combined 8 1.06 11 0.76
compressed 3 1.88 11 0.93
docs 7 1.35 3 0.24
gap 6 0.37 14 1.40
graphic 10 0.89 10 2.00
jpeg 3 0.59 5 0.43
log 3 0.47 9 0.74
mp3 8 0.39 2 0.25
mpeg 14 1.08 7 0.57
pdf 15 1.75 10 0.47
program 1 0.00 10 1.11
random 9 0.42 2 0.49
reuters 3 0.15 3 0.07
source 11 1.04 6 0.47
xml 13 2.93 6 1.60

Table 4.40: Rank o f resubstitution binaries for i f conversion on b z ip 2

Input II
Rank

anium
Slower(%)

It:
Rank

inium 2
Slower! %)

ref 2 0.20 5 0.75
test 2 0.43 3 0.65
train 3 0.39 1 0.00
wac-001 6 1.25 6 0.87
wac-051 6 1.26 7 1.21
wac-151 5 0.84 3 0.61
wac-251 1 0.00 2 0.06

Table 4.41: Rank o f resubstitution binaries for i f conversion on c r a f t y

Input II
Rank

anium
Slower! %)

It:
Rank

inium 2
Slower! %)

ref 3 1.29 1 0.00
snf1025 6 2.89 2 0.05
snfl 150 9 2.18 2 0.09
snf1260 3 2.51 9 0.12
snf200-300 8 3.50 1 0.00
snf525 6 1.92 2 0.41
snf750 7 2.45 4 0.10
snf900 7 2.33 2 0.06
test 1 0.00 1 0.00
train 9 0.76 10 0.58

Table 4.42: Rank o f resubstitution binaries for i f conversion on GAP

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input
If

Rank
anium

Slo\vcr(%)
Its

Rank
inium 2

SIo\ver(%)
combined 2 0.02 14 0.37
compressed 9 0.24 1 0.00
docs 1 0.00 1 0.00
gap 3 0.07 4 0.01
graphic 10 0.51 6 0.09
jpeg 6 0.06 3 0.07
log 10 0.07 13 0.05
mp3 3 0.02 15 0.11
mpeg 2 0.01 7 0.06
pdf 5 0.04 8 0.03
program 8 0.10 10 0.13
random 12 0.45 1 0.00
reuters 11 0.30 11 0.24
source 10 0.18 5 0.03
xml 15 0.14 1 0.00

Table 4.43: Rank o f resubstitution binaries for i f conversion on g z ip

Input II
Rank

anium
Slo\ver(%)

Its
Rank

inium 2
SIower(%)

ref 5 6.02 13 2.51
synth-0 5 0.46 5 0.61
synth-1 13 17.50 12 2.11
synth-2 12 1.99 10 0.57
synth-3 12 2.04 9 1.34
synth-4 5 4.47 10 1.62
synth-5 5 2.13 13 2.82
synth-6 12 9.90 10 1.47
synth-7 7 2.14 8 0.56
synth-8 4 1.08 4 0.39
synth-9 11 3.79 3 0.32
test 8 7.53 10 13.04
train 11 4.47 1 0.00

Table 4.44: Rank o f resubstitution binaries for i f conversion on MCF

Input II
Rank

anium
Slo\ver(%)

Its
Rank

inium 2
Slower(%)

02-05words 8 2.11 4 3.03
06-10words 1 0.00 1 0.00
11-15words 12 3.07 7 0.30
16-20words 2 0.21 12 0.35
21-25words 2 0.05 5 0.04
alice 6 0.07 11 0.15
pa 7 0.12 4 0.16
ref 10 0.34 5 0.11
relativity 5 0.29 6 0.04
test 9 2.10 4 0.48
train 8 0.26 3 0.14
worlds 10 0.33 1 0.00

Table 4.45: Rank o f resubstitution binaries for i f conversion on p a r s e r

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input
I

Rank
anium
Slo\ver(%)

It!
Rank

inium 2
Slower! %)

alu4 13 1.48 7 0.53
apex2 18 8.79 6 0.27
apex4 13 1.27 5 0.48
bigkey 6 1.63 7 0.62
des 9 1.43 19 0.98
diffeq 17 3.43 4 0.24
dsip 11 2.15 21 0.83
elliptic 17 4.21 4 0.11
ex1010 3 1.51 9 0.87
ex5p 11 1.29 20 1.31
frisc 12 1.51 5 0.36
misex3 12 1.38 7 0.70
pdc 19 3.92 18 1.19
ref 6 1.21 4 0.03
s298 21 3.85 10 0.20
S38417 8 2.22 17 0.99
S38584.1 8 3.15 2 0.02
seq 14 1.48 5 0.49
spla 22 5.50 3 0.10
test 5 1.09 5 0.92
train 16 2.17 17 0.78
tseng 19 4.56 5 0.19

Table 4.46: Rank o f resubstitution binaries for i f conversion on VPR (place)

Input
II

Rank
anium
Slower(%)

It!
Rank

inium 2
SIower(%)

alu4 9 0.38 7 0.29
apex2 22 1.14 2 0.12
apex4 4 0.39 15 0.50
bigkey 8 0.32 5 0.11
des 20 1.01 10 0.11
diffeq 18 0.95 5 0.19
dsip 1 0.00 9 0.33
elliptic 2 0.22 16 0.31
ex1010 7 0.24 11 0.27
ex5p 19 0.91 5 0.30
frisc 12 0.30 18 0.35
misex3 20 0.92 2 0.16
pdc 14 0.62 1 0.00
ref 21 1.37 7 0.25
s298 19 0.86 2 0.22
S38417 1 0.00 2 0.06
S38584.1 13 0.26 16 0.24
seq 20 0.85 6 0.12
spla 7 0.23 19 0.43
test 13 1.32 1 0.00
train 22 1.41 10 0.30
tseng 11 0.66 15 0.38

Table 4.47: Rank o f resubstitution binaries for i f conversion on VPR (route)

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

6

4 rl-i

m0
.7

■4
Input Dutnsct (Fastest Training Input)

I f l l l l * f Jug ■{

£ ! 1 1 i t
I I >1

o
8
7
6
5
4
3
1
I
0
■I

- i - - u

Input Datusct (Fastest Training Input)

i f ■* 1
I ̂ IS §£> **

(a) Itanium (b) Itanium 2

Figure 4.48: Resubstitution for inlining on b z ip 2

I

6
5

4
3

2
I
0

Input Dataset (Fastest Training Input)

a S i l l =? s
» a * *

6
5

4

0

Input Dataset (Fastest Training Input)

.5 3 .= *3 .E © .5 «n .= v> .5 *o .5rs *"2 1*2 < 2 ? 2 "72 i 2
” - ~ ^ ~ ^ ~ ^ w ̂ ~

(a) Itanium (b) Itanium 2

Figure 4.49: Resubstitution for inlining on c r a f t y

as the fastest binary for 8 o f the 13 inputs on the Itanium. However, there are also 3 inputs where

other training inputs result in performance gains o f more than 4% over resubstitution. Results are

similar for the Itanium 2. However, in this case, training on the program input is nearly 8% faster

than resubstitution for the mp3 and jpeg inputs. The binary trained on program is also more than

3% faster than resubstitution on pdf. The fact that program is a SPEC reference input raises the

possibility that inlining heuristics in the ORC may be over-fit to these inputs. However, there is no

supporting evidence for this hypothesis in the Itanium case. Section 4.3.3 w ill revisit this issue.

Unlike the if-convers ion case, resubstitution performs poorly with inlining for c r a f t y . In

Figure 4.49 resubstitution is slower than the fastest binary, by over 3% in most cases, for both

architectures. As in the if-convers ion case, there is a single fastest binary on each architecture. On

the Itanium, wac-001 is always the fastest (wac-251 was fastest for i f conversion), while train

is again the fastest in all cases on the Itanium 2. As expected, these two inputs achieve the best

performance on the workload.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r h

Input Datusct (Fastest Training Input)

e | g s IBs g o | a g o g o s s | o1 gc = c Sc 2a ic fc a ̂ c~ ^ = e ^ = e ^ = e g e 5 e 5 c S c c c„« e * s « » « »
S

(a) Itanium

I 2

c b ,

Input Dataset (Fastest Training Input)

s-I ga §5 I S I S as pS l a2 So —© — © _?o c© c© e©•- v - •— •_ * - • „ — © — c r- c « e r*
5 c 5 c S ' c ^ c 1/1 c ^ c ^ cvn </i i/i U </i w w io

(b) Itanium 2

•a c

l l

Figure 4.50: Resubstitution for inlining on GAP

co 2.5
r h3

3

U 0.5

*0.5
Input Datusct (Fustcst Training Input)

i i i ? I
if i r3 la a 3 o o

Input Dataset (Fastest Training Input)

1111 f t SI 15 £11515 p I f i f IS I f
i l l! r I ^ 1 - - i l l■ “a

(a) Itanium

Figure 4.51: Resubstitution for inlining on g z ip

(b) Itanium 2

Figure 4.50 show resubstitution results for GAP. On the Itanium, resubstitution only achieves

the fastest performance in two cases, though resubstitution is usually less than 2% slower than the

fastest binary. The test input is anomalous, where training on snf525 is more than 5% faster than

resubstitution. Performance on the Itanium 2 is generally better, with resubstitution usually as fast

or nearly as fast as the fastest binary. However, training on the train input outperforms resubstitution

on ref by more than 3%, and nearly 5% on test.

Resubstitution performs fairly well for g z ip . In Figure 4.51(a), resubstitution is never more

than 2.5% slower than the fastest binary. Resubstitution is always within 0.6% o f the fastest binary

on the Itanium 2. Note that on the Itanium, all the fastest binaries were trained on SPEC inputs.

Figure 4.52 show that MCF is problematic for inlining resubstitution. While 6 o f 13 inputs

produce resubstitution binaries as fast as those trained on other inputs, resubstitution is more than

5% slower than the fastest binaries in 5 cases. In particular, the binary trained on the train input

is nearly 12% faster than resubstitution on the synth-1 input. Results are better on the Itanium 2,

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

12
10
8
0
4

■>
0

Input Datusct (Fastest Training Input)

5<= t ; <■?? ■?« 2 ? 2 ? ■?(? 2 ? 2 * 2 ? a? -I.aS * “ rt «3ja 5 x •S j : *5 1> ■S.o "3 ,£ 5 2«I sf es s.1 s.- S.S a. sl~ a 1 a

os
cn•s
§
i

10

8

6

4

2

0

•2
Input Dataset (Fastest Training Input)

v i 2^2*
S.S

(a) Itanium (b) Itanium

Figure 4.52: Resubstitution for inlining on MCF

£
*

c b E i i i i i t x j C D

Input Dataset (Fastest Training Input)

i

1
6
5

4

3

ci=3 r*~l r~ *~ 1 f-i—1 rh -1 -0
1

Input Dataset (Fastest Training Input)

! -H-3 -H-3 -g-3 K.| 5 f ■
° ? rs> S S *2 0 QO b - = c

^ i . t -Z £ * = -s - J 3 3§ ! 25 35 q -es —

(a) Itanium

8= == S i

(b) Itanium 2

gin in in

I I I Is o ob

Figure 4.53: Resubstitution for inlining on parser

where resubstitution is fastest for 7 inputs. Test is the only input where resubstitution is more than

2% slower than the fastest binary, at nearly 5% slower than binary trained on synth-0.

Accurate profile information is used effectively for inlining with parser. Figure 4.53 shows

that on the Itanium, 9 o f the 12 inputs result in best performance using resubstitution. In the worst

case, resubstitution is slightly more than 1% slower than the fastest binary. Results are almost as

good on the Itanium 2. Here, resubstitution is within 0.5% o f the fastest binary for 10 o f the 12

inputs. However, performance degrades for the inputs containing the shortest sentences. Resub

stitution is more than 3% slower for 02-05w ords, and almost 2% slower for 06-10words. In

terestingly, in both these cases the fastest training input was the input containing the next-shortest

sentences. Since the run times for these inputs is very small (see Table 3.5), it might be the case

that the profile generated by those inputs does not contain sufficient information to achieve the best

performance. The slightly larger inputs probably have fairly similar program behavior (since they

have only slightly longer sentences), but gather more information in their profiles, which allow the

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c
o

Q£
c«

js

UL.

£

14
12
10

8
6
4
2
0

-2
rim

Input Dataset (Fastest Training Input)

S'*s
“u j7 oo «3 eo 5"rT .9‘3 > 2

S-f *S " S 1 8. 4 S- ̂ 2;=>= sS 3 -o f - u - 3 S;
2 — &•?? St'S 'as d s ^
2 3 ? | I f - S ^ 3 3 S 3 ^
S3 S “ £I I I S'2 S I

2 "oara u * •Sir
- X ^S. — oi)3 15

(a) Itanium

.s3
Q£
eC3

3
2.5

2

1.5
1

0.5
0

0.5
Input Dataset (Fastest Training Input)iiipui uuiasci vrubiubi ira iu

*3^ ^ 0̂ 7 STo •®/y -s's 2« in“-~ 8t? '2̂ ? -g'S
^ I s l n l i ’ a i a - | | £ 2 I ^ 3 S S | 1 ^

•5-° 3 * *> 8 j2 £ ~

K̂|gS«.f 35 If If « 3g «h. 2 it 3r2w 52 « « «<si O

■== i"3
S3 3.1-

VI —
oo o
•a ~

(b) Itanium 2

Figure 4.54: Resubstitution for inlining on VPR (place)

compiler to make better decisions. This hypothesis warrants further investigation.

Resubstitution results are mixed for the placement task o f VPR. Figure 4.54 shows that for 13

cases on the Itanium, resubstitution performs as well as the fastest FDO binary. Nonetheless, it is

over 4% slower than the fastest binary for the elliptic input. Results are better on the Itanium 2.

While only 8 inputs achieve the best performance using resubstitution, resubstitution is always

within 2% o f the fastest binary. Resubstitution is also effective for the routing task, particularly

on the Itanium 2. On the Itanium, 8 o f the 22 inputs resulted in best performance using resubstitu

tion. On the remaining inputs, resubstitution was within 2% o f the fastest binary for all but 4 inputs,

and these exceeded 2% only slightly. On the Itanium 2, resubstitution obtained the best performance

in 14 cases, and was always within 0.5% o f the fastest binary.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
 F

as
te

r
tha

n
R

es
ub

st
itu

tio
n

%
Fa

ste
r

tha
n

R
es

ub
st

itu
tio

n 3.5
3

2.5
2

1.5
1

0.5
0

0.5
-1

Input Dataset (Fastest Training Input)

=5
3 g.

i- S o S fo -SO [^3
uc Or? Cio- *7;o
1 - 2 £ ̂ & £ if Sjgj
v 53 w 3 g^

ao
mOO 1 l o ff“ 8 ■§£ 582

“ o
KO

CC e*tT»
§ 3 K 5 8 “ S-

(a) Itanium

Input Dataset (Fastest Training Input)

(b) Itanium 2

Figure 4.55: Resubstitution for inlining on VPR (route)

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input
II

Rank
anium

Slower(%)
It:

Rank
mium 2

SIo\ver(%)
combined 1 0.00 14 6.44
compressed 10 3.40 12 4.87
docs 8 2.12 1 0.00

gap 4 0.53 1 0.00
graphic 9 2.73 6 1.81
jpeg 7 3.63 9 1.63
log 11 3.54 5 1.05
mp3 12 5.28 10 2.64
mpeg 3 2.04 10 3.15
pdf 2 1.40 8 2.14
program 5 0.59 4 1.59
random 8 3.32 13 7.23
reuters 11 4.80 5 0.82
source 8 3.01 4 0.81
xml 12 3.30 1 0.00

Table 4.48: Rank o f resubstitution binaries for inlining on b z ip 2

Input II
Rank

anium
Slower(%)

Itt
Rank

inium 2
Slower(%)

ref 5 4.32 6 5.02
test 3 3.65 5 4.81
train 6 3.84 1 0.00
wac-001 1 0.00 2 2.60
wac-051 3 4.69 4 4.12
wac-151 2 1.80 2 3.39
wac-251 7 4.38 7 5.58

Table 4.49: Rank o f resubstitution binaries for inlining on c r a f t y

Rank Analysis

The Tables 4.48 through 4.55 provide the rank o f each resubstitution binary for inlining. These

results are similar to those presented for i f conversion in Section 4.3.1. Once again, the ranks o f

resubstitution binaries are scattered across the possible range o f ranks. Resubstitution achieves both

high and low ranks for inputs for every program.

However, the performance differences between resubstitution and the rank-1 binary are signifi

cantly larger for inlining than for i f conversion. While there is no clear correlation between rank

and performance overall, a lower rank is usually associated with a smaller performance difference

compared to the rank-1 binary for both b z ip 2 (Table 4.48) and c r a f ty(TabIe 4.49). For these

programs, cases where resubstitution achieves good performance compared to the rank-1 binary are

more likely to correspond to situations where better feedback information results in better inlining

decision. However, the small number o f low-rank resubstitution binaries suggests that the FDO

system seldom makes effective use o f more accurate feedback information.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t
It

Rank
anium

Slower(%)
It:

Rank
in ium 2

SIo\ver(%)
ref 8 1.31 3 3.43
snf 1025 4 1.04 1 0.00
snf1150 5 1.44 1 0.00
snf 1260 6 1.45 3 0.07
snf200-300 3 1.64 7 1.45
snf525 1 0.00 4 0.21
snf750 1 0.00 6 0.43
snf900 8 2.04 2 0.08
test 9 5.46 10 5.00
train 8 1.66 1 0.00

Table 4.50: Rank o f resubstitution binaries for inlining on GAP

Inpu t
It

Rank
anium

Slo\ver(%)
It:

Rank
in ium 2

S lower(%)
combined 2 0.30 10 0.23
compressed 5 1.78 1 0.00
docs 2 0.03 4 0.03

gap 9 0.74 4 0.08
graphic 5 1.87 5 0.03
jpeg 6 2.32 11 0.31
log 2 0.12 6 0.11
mp3 9 2.45 14 0.56
mpeg 3 1.27 12 0.39
pdf 4 1.03 3 0.03
program 4 0.59 7 0.07
random 5 1.40 1 0.00
reuters 4 0.89 9 0.09
source 1 0.00 1 0.00
xml 7 0.59 4 0.07

Table 4.51: Rank o f resubstitution binaries for inlining on g z ip

Inpu t
II

R ank
anium

Slo\ver(%)
It:

Rank
in ium 2

Slo\ver(%)
ref 5 1.21 13 1.95
synth-0 2 4.14 7 0.62
synth-1 5 11.92 3 0.37
synth-2 3 0.10 1 0.00
synth-3 8 1.00 7 0.75
synth-4 5 0.68 1 0.00
synth-5 7 1.15 5 0.61
synth-6 4 1.65 10 1.79
synth-7 7 2.29 12 1.40
synth-8 8 6.03 10 1.05
synth-9 3 8.59 4 0.32
test 11 9.88 3 4.76
train 1 0.00 13 1.61

Table 4.52: Rank o f resubstitution binaries for inlining on MCF

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In pu t
II

Rank
anium
Slo\ver(%)

It:
Rank

m ium 2
S lower(%)

02-05words 3 1.08 10 3.13
06-1 Owords 4 0.26 8 1.69
11 -1 Swords 8 0.60 1 0.00
16-20words 2 0.11 2 0.19
21-25words 6 0.21 8 0.43
alice 8 0.13 7 0.21
pa 2 0.09 3 0.26
ref 10 0.25 7 0.36
relativity 12 0.57 2 0.06
test 10 1.16 1 0.00
train 3 0.09 1 0.00
worlds 12 0.56 7 0.22

Table 4.53: Rank o f resubstitution binaries for inlining on p a r s e r

In pu t
II

R ank
anium

Slower(%)
It:

Rank
m ium 2

S lower(%)
alu4 4 0.10 19 1.09
apex2 9 2.01 3 0.09
apex4 2 0.06 6 0.16
bigkey 6 0.41 16 0.95
des 9 0.74 6 0.11
diffeq 7 0.19 22 1.51
dsip 15 0.82 12 0.43
elliptic 22 4.68 11 0.42
ex1010 11 1.49 3 0.05
ex5p 1 0.00 22 1.76
frisc 19 1.18 22 0.64
misex3 8 0.28 22 1.74
pdc 19 2.91 2 0.03
ref 10 3.00 15 0.28
s298 22 1.45 16 0.62
S38417 12 1.95 18 0.31
S38584.1 20 5.03 6 0.05
seq 3 0.04 20 1.52
spla 10 0.58 5 0.03
test 11 0.38 1 0.00
train 4 0.08 6 0.30
tseng 22 1.75 13 0.60

Table 4.54: Rank o f resubstitution binaries for inlining on VPR (place)

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input
I

Rank
anium
Slower(%)

It:
Rank

inium 2
SIower(%)

alu4 2 0.40 2 0.16
apex2 15 2.26 2 0.13
apex4 15 2.12 1 0.00
bigkey 15 1.73 3 0.12
des 11 0.98 6 0.12
diffeq 9 1.19 8 0.42
dsip 18 2.41 1 0.00
elliptic 21 1.56 21 0.33
ex1010 10 0.54 6 0.04
ex5p 12 1.16 4 0.33
frisc 13 1.16 2 0.04
misex3 20 1.53 9 0.17
pdc 18 1.22 16 0.44
ref 20 1.91 7 0.28
s298 20 2.16 1 0.00
S38417 11 1.37 19 0.25
S38584.1 3 0.23 21 0.36
seq 1 0.00 4 0.27
spla 11 0.47 19 0.39
test 1 0.00 1 0.00
train 6 0.35 10 0.22
tseng 15 0.63 1 0.00

Table 4.55: Rank o f resubstitution binaries for inlining on VPR (route)

4.3.3 SPEC Inputs

The SPEC CINT2000 benchmarks are the most frequently used programs and inputs for the eval

uation o f compiler optimizations. Therefore, we were curious i f the consistent use o f the SPEC-

provided inputs may have unintentionally biased the ORC’s heuristics toward the profiles produced

by these inputs. Stated differently, have the compiler’s heuristics been over-fit to the SPEC inputs,

to the detriment o f other inputs? Since most compiler designers use at least a significant portion o f

the suite to evaluate their work, optimizations and heuristics should be generally applicable, and not

tailored to any particular program. However, it is possible that the SPEC inputs do not present the

fu ll spectrum o f possibilities that exist in alternate inputs, and that heuristics may not deal with these

unencountered situations properly.

Table 4.56 presents a summary o f information from the graphs in Section 4.3. For each bench

mark, we list the number o f inputs in the workload, the number o f those inputs provided by SPEC,

and the number o f cases where training on a SPEC input resulted in the fastest binary for a single

input. Ideally, resubstitution would always produce the fastest binary, though this is often not the

case. I f it were the case, it would be reasonable to expect that the proportion o f times that SPEC

inputs produce the fastest FDO binary would be equal to the proportion o f SPEC inputs in the work

load, assuming that the selected inputs are spread across the spectrum o f possible inputs for each

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Benchmark
In|

Total
nits

SPEC
Itaniur

If-Conversion
n

Inlining
Itaniun

If-Conversion
i2

Inlining
bzip2 15 7 7 13 7 5
crafty 7 3 0 0 7 7
GAP 10 3 8 1 10 3

gzip 15 7 3 15 10 8
MCF 13 3 4 7 3 1
parser 12 3 5 0 1 3
VPR (Place) 22 3 2 1 0 3
VPR (Route) 22 3 5 5 5 1

Total 116
32

28%
38

33%
42

36%
43

37%
31

27%

Table 4.56: Number o f cases where training on SPEC-provided inputs results in best FDO perfor
mance

program. Unfortunately, we do not yet have a methodology to adequately characterize inputs, nor

to describe the space from which benchmark inputs are selected. However, the selected inputs were

chosen with care, with the intent to create a workload as varied as possible while still using realistic

inputs for each program.

The potential limitations o f the inputs notwithstanding, the results in Table 4.56 show that the

experimental results are not too far from the idealized expectation. SPEC inputs account for 28% o f

the entire workload, while binaries trained on SPEC inputs accounted for the fastest times on 31%

o f the inputs. Furthermore, the results in Section 4.4 show that performance on the SPEC inputs is

frequently poor compared to other inputs in the workload. Therefore, while the selected inputs are

not guaranteed to span the space o f possible inputs or fo llow any particular distribution in that space,

there does not appear to be any reason to be concerned about the ORC’s heuristics being over-fit to

the SPEC inputs.

4.3.4 Conclusions

Overall, resubstitution with the ORC leads to high levels o f performance compared to other FDO

cases. However, rank analysis shows that resubstitution does not consistently result in faster-than-

average FDO binaries. Therefore, the more accurate profile information provided by resubstitution

is not used effectively to make better optimization decisions. This result is in agreement with the

conclusion in Section 4.2 which stated that profile-guided inlining, and particularly i f conversion,

require more attention to become effective optimizations, since compiling without profile informa

tion often results in substantially better performance than even the best FDO binaries. Additionally,

an overview o f the experimental results suggests that there is little evidence that compiler heuristics

are unintentionally tailored toward the profiles generated by the SPEC inputs.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nnnir rt~i m
Inpul Dataset (Fastest Training Input)

III! IIIIif
t

u

s

I

•10

Input Dataset (Fastest Training Input)

f | "is,
£ E g - at l

(a) llanium (b) Itanium 2

Figure 4.56: Static vs. FDO performance for i f conversion on b z ip 2

4.4 Feedback-Directed Optimization

Feedback-Directed Optimization is intended to improve program performance above that obtainable

by static optimization by providing compiler heuristics with accurate information about dynamic

program behavior. Therefore, an effective FDO system should be able to meet or exceed the perfor

mance o f static optimization for the majority o f programs and inputs. In this section the performance

o f statically optimized binaries is compared to the performance o f the fastest FDO binaries for each

input o f every program in the study. These measures represent the best case performance o f FDO

recorded by Aestimo, and as such represent an upper bound on FDO performance given the inputs

selected for each program.

4.4.1 I f conversion

Section 4.2.1 showed that protile-guided i f conversion seldom improves workload performance on

the Itanium, and always reduced workload performance on the Itanium 2. Similar results are ob

tained when best-case FDO performance is compared to the performance o f the statically optimized

binary.

Figure 4.56 shows large differences in best-case FDO if-conversion performance for both the

Itanium and the Itanium 2. On the Itanium, performance is often improved by less than 2% over

static optimization. These cases may indicate inputs where the additional information provided by

the profile is not required to make good i f conversion decisions. However, there are three inputs

where FDO i f conversion increases performance by more than 4%, with performance nearly 12%

faster than static on the docs input. This impressive gain highlights the potential o f FDO. On the

other hand, FDO results in performance reductions on the Itanium 2 as large as 10%. FDO only

results in a performance gain on the docs input, and the gain is only 2% over static.

In Figure 4.57 best-case FDO performance approaches the performance o f static optimization

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0
-0.2

-0.4

- 0.6
- 0.8

-1
- 1.2

-1.4

- 1.6

- 1.8

- 4 -

I

— t -

Input Dataset (Fastest Training Input)

a - a la ° a
u 6 u M y
Z Z Z * Z

9 JQ T
* % «* 2 s

9•jn
Z

0

■>

4

5

6
7

Input Dataset (Fastest Training Input)

a .s
z 2 1

•3 .S 2 .5 c .=i ! i i s a 1
h - *

(a) Itanium (b) Itanium 2

Figure 4.57: Static vs. FDO performance for i f conversion on c r a f t y

s
•5
u

I
*

2.5

2

1.5

I

0.5

0

k s a
S' O

Input Dataset (Fastest Training Input)

5 8= SS as °,E i.S 5so — a M n rntj {no r- g ^ g "" 5CC - “ O e c ~ e - —{™ 1' 5“ s”' o u> i/i E5«• ci -
■S8t! H~.

3

0

•3

•4

Input Dataset (Fastest Training Input)
' s o J Q O g o Q O 5 C
K II o' K 2 K S f i S K

~ = “ = “ = ~ s i ''
to c o oH u ■o ua s c £

3 = , | C ! ! ! S t

a

(a) Itanium (b) Itanium 2

Figure 4.58: Static vs. FDO performance for i f conversion on GAP

on the Itanium, but is significantly slower than static optimization on the Itanium 2. Since the fastest

FDO binary is always the same on each processor, the graph also shows that testing performance on

different inputs can lead to different conclusions. I f FDO performance on the Itanium 2 is evaluated

by training on the SPEC train input and evaluated using the SPEC ref input, performance is only

reduced by 2%, which may be acceptable i f the optimization is more successful for most other

programs. However, i f the same FDO binary is evaluated using the wac-051 input, a performance

reduction o f more than 6% is observed. It is much less likely that such a large performance penalty

would be acceptable to a compiler designer. Furthermore, recall that training on train resulted in the

best performance on wac-051 . Training on other inputs results in even larger performance penalties.

In the best case, FDO i f conversion results in performance similar to static optimization for

GAP. However, Figure 4.58(b) shows that even the fastest FDO binary for the ref inputs results in

nearly a 5% performance degradation, while best-case FDO degrades performance on the train input

by over 2.5%.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.2

U
•0.2

u

I - 0.6

•0.8

Input Dataset (Fastest Training Input)

j i i i j i m i m n m m i p| - i | - - fe* “ | - i~ 5- *

0

0

•S i -4

4 -6
0

1 •8

-10

-12

§3 53
t i i

n 0 0 o n n

Input Dataset (Fastest Training Input)

Is *f | f I? gi I f I? p i? I f l i p |1 |1
f II | I -

(a) Itanium (b) Itanium 2

Figure 4.59: Static vs. FDO performance for i f conversion on g z ip

u.
I*

14
12
10
8
6
4

2
0

.2
-4

-6
•8

Input Dataset (Fastest Training Input)

“ I i "■3~ ■Si -3̂ 3j3 3 4s's c — 5 ^ a ~ a ~r® ST® X® ?“ S'®

Input Dataset (Fastest Training Input)

•2S i * 1?> 2
’ 3 | 3 | 3 s 3 13 | 3 f £ |-3 | 3 | 3 f

a 5» a 5,? 5, a 5,8 5.8 5, 5, a 5.B g,s a
I 2? II

(a) Itanium (b) Itanium 2

Figure 4.60: Static vs. FDO performance for i f conversion on MCF

FDO i f conversion also negatively impacts performance for g z ip . While performance on the

Itanium nearly matches the performance o f static optimization, even the best-case FDO binaries

result in large reduction in performance on the Itanium 2. FDO reduces performance by at least 6%

on 8 o f the 15 inputs, and by over 10% on 4 inputs. However, performance is within 2% o f static

on 6 other inputs. Interestingly, the same training inputs created the fastest binaries for inputs where

FDO had both large and small performance reductions, strengthening the hypothesis that the choice

o f inputs used for evaluation is important.

For MCF, FDO generally results in performance gains on the Itanium. Figure 4.60 shows per

formance improvements exceeding 8%. On the Itanium 2, the fastest FDO binaries are at least 5%

slower than the static binary in all but one case, and almost 12% slower in the worst case. Recall

that all the FDO binaries for MCF have very similar workload performance, and were produced by

nearly identical optimization logs. It is therefore likely that the performance o f the FDO binaries

does not vary significantly on a given input. Consequently, the observed performance o f FDO i f

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t Dataset (Fastest Training Input)

e iif s ift l i11-1 J-i■s-g a ? ■§

o
-2
-t
-6
-8

-10

-12
- 1*1

•
u

— 1— — — —

T

Input Dataset (Fastest Training Input)

■§•§ " i f ■af a i j j :
Is i f I f I? io
92 “ I r l ^ >9-
S£ §g 2^ ?;

! B| 'S£ H

9
rto

si'0 '
1
s

If I I
fa§ MIA ?.

(a) Itanium (b) Itanium 2

Figure 4.61: Static vs. FDO performance for i f conversion on p a r s e r

conversion for MCF on the Itanium 2 could vary by more than 10% depending on which input is

used for evaluation.

Best-case FDO i f conversion barely outperforms static optimization for all inputs to p a r s e r

on the Itanium, while FDO i f conversion always reduces performance on the Itanium 2. Even with

the fastest FDO binaries, performance is degraded by more than 12% on the 06-1 Owords input, and

by at least 7% on all but 4 inputs.

According to Figures 4.62 and 4.63, best-case FDO i f conversion is able to match the perfor

mance o f static optimization on the Itanium, and is usually w ithin 2.5% for the placement task on

the Itanium 2. However, routing on the Itanium 2 shows the typical failure o f FDO i f conversion to

approach the performance o f static optimization. Performance o f the fastest FDO binary is between

4% and 12% slower than static on every input in the workload.

Results for FDO i f conversion on the Itanium are generally unimpressive. Performance im

provements are mostly small, but the occasional performance reductions are also fairly insubstan

tial. Nonetheless, there are a few cases, such as for b z ip 2 and MCF, where FDO i f conversion

displays its potential to have a significant positive impact on program performance. Selecting the

fastest FDO binary for each input is optimistic, but could help compensate for the deficiencies in the

FDO system suggested by Section 4.3.

Based on the results in this section, feedback-directed i f conversion, as implemented in the

ORC 2.1 compiler, does not correctly use profile information to improve performance on the Ita

nium 2. Even when the fastest FDO binary for each input is used, performance is reduced compared

to static optimization in 111 out o f 116 cases. Furthermore, there is an input for each program where

FDO i f conversion reduced performance by at least 5%, while reductions in performance in excess

o f 10% are not uncommon.

We suspect that the i f conversion heuristics, originally designed for the Itanium, were not mod

ified to deal with the architectural differences o f the Itanium 2. Considering that i f conversion

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
Fa

st
er

th

an

St
at

ic

%

Fa
st

er

th
an

S

ta
ti

c

6

4
2

0
■2

4
6

Input Dataset (Fastest Training Input)

1 ? *3 «£ s| S3 -3-5 i^ 3R -
V) t/>

3 JR : is 2 ̂-oSn
co

ac uc a,-r> u r me 'So '3^ — "T «n 8 «
^ - 1 5 23 S i ‘F "■■

urn !.S■a
oo •=
m E

•o~cut00
V)
CO

a cL § tf ^
i pjs i 3 ir

0*0 *3£oo SnS
' g d m

23— S'G' =P 2>o
g-n 2 - 5.2
°° s a§ s nm ■—

(a) Itanium

0
-0.5
-1

-1.5
-2

-2.5
-3

-3.5
-4 -I

-4.5
-5

4-1L+J

4-14-1 4-1

Lj-J

4-*

Input Dataset (Fastest Training Input)

ôo»/■»
*3 9 ■$-
|§ §3

'ffi -“ 3
m w

str gv? .e-s «s 2P °-tr yp
i s r i - i a=3 I ?| 3 -as g= = a

s t i f S ?
.S2,“ •— co
E3 3 S

• v 2*50 ~ ci 5i
— _ -t-s X c S-c a,
M M £ .£ • 3 * u 1mirt S= 3

} o* .5 'co
i .o 5 c 5,ot 4 S t

d -a

(b) Itanium 2

Figure 4.62: Static vs. FDO performance for i f conversion on VPR (place)

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
Fa

ste
r

tha
n

St
ati

c
%

Fa
ste

r
tha

n
St

at
ic

2
1.8
1.6
1.4 -I
1.2 -

1 -
0.8 -

0.6 -

0.4 -
0.2 -

0

n
f t - n•i•

rh 1 T11 i

i••i
r

A
T1

-i rh
r hi

- t -
111 r h

rhi r h •x

11•1

1 H - i ! rhrh T T 1
I1 .-4 - .

1 j rh I

- H ' •* j 4 “ 1I
J 1

I
11 1 I ■

r h
J

! r h
1 - t - 11

11 1
! r h

_i
- J . 111 !

4 -g.
n c -t TT x p x y
4 -

Input Dataset (Fastest Training Input)

fr? s= g 's.s-s-gasi •H.B =2 -S'a as O.s .spg. “ ^a a =a -zi
fp'al ‘u'n .£T 5"5? -2©

y C o*5i &;a c ,s m b r t * ” c' 9—Ss>-~S!g 1 g r4 2
e ~ w “ •aSsss - -

!o 5S.SS? “tr
io SS | i

(a) Itanium

0

-2 -

-4 -
- 6

-8
-10
-12

L^J4_I

Input Dataset (Fastest Training Input)

t r n c
3 >» X *i

oo §—
15

*2 a. ^cry 35
q.*0 oo—7 3 15;5

u o’ 2"-r .£*=? .y a 2 iR‘ = ‘ 'P 'u ■go' <y £ '
3 » i - i •31 .§■:§ 2-2 E 3 K;S

733 3 =5® S f - I £ “ S
CT>.S —* t
cl n *t « t uCO ^ •Cl 00«1S

, r i — u, x O. VI

g. " §
i = 2. SK?sa

•AOOfA

(b) Itanium 2

Figure 4.63: Static vs. FDO performance for i f conversion on VPR (route)

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i m

Inpul Dataset (Fastest Training Inpul)

S e lf ?f j?
Zi f l i l t “| i i W '

| | | I K - *

I

a 3

11I I 1! 1111 If i f 1!I "I i i! si ^*1 I
5 5 3 a 3 - 5

4

3

2

0

Input Dataset (Fastest Training Input)

H P 1!

(a) llanium (b) llanium 2

Figure 4.64: Static vs. FDO performance for inlining on b z ip 2

is commonly acknowledged to have little impact on performance, Amdahl’s Law [23] (pp. 40-42)

would dictate that limited compiler-developer resources should be used to address more significant

issues. However, the results presented in this section suggest that FDO i f conversion may have

a more significant impact on program performance than previously expected, and that more inves

tigation into this optimization may be warranted. Unfortunately, the importance o f i f conversion

to performance does not appear to be in its potential to reduce program run times, but rather in the

potential for poor i f conversion decisions to significantly degrade performance.

4.4.2 Inlining

Profile-guided inlining performs well against static optimization, particularly on the Itanium, where

performance gains in excess o f 10% are common. In the best case, performance is improved over

static optimization by more than 20%.

Figure 4.64 presents best-case FDO inlining for b z ip 2 . Performance on the Itanium is very

good, with a minimum improvement o f about 4% and a maximum gain o f about 13%. On the

Itanium 2, performance gains are small, at most 3% faster than static. However, three inputs suffer

a small loss in performance, but the loss is only 1% in the worst case.

The fastest FDO inlining binaries perform well on c r a f t y , as shown in Figure 4.65. On the

Itanium, FDO inlining is more than 11.5% faster than static optimization for all inputs. Results on

the Itanium 2 are also positive, though the performance gains o f the fastest FDO binary over static

are much smaller. As was the case for i f conversion, one FDO binary is the fastest for all inputs

on each processor. The selection o f the evaluation input could change the reported performance

improvement over static optimization by 2.5%.

In Figure 4.66 best-case FDO inlining always improves performance for GAP. On the Itanium,

improvements range from more than 3% to over 9%, while on the Itanium 2 improvements range

from around 1% to 8%. Binaries trained on snf525 and snf750 account for most o f the fastest

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
 F

as
te

r
tha

n
St

at
ic

%
 F

as
te

r
tha

n
St

at
ic

16

14

12

10
8
6
4

->
0

Input Dataset (Fastest Training Input)

“ I 6 FJ

2 5 1 § S § S g S |

u.
£

2 .5
Input Dntusct (Fastest Training Input)

S .1 =
“ I

.5 Q .S ‘o . £ «n .S

b I 1 I H I I
* * *

a •§
js

(a) Itanium (b) Itanium 2

Figure 4.65: Static vs. FDO performance for inlining on c r a f t y

12

10

8

6

4

Input Dataset (Fastest Training Input)

S o S o § £1 P S 5 £ H o
= H 2P sS EK CP §P IP= 9 1=9 S ' s S ’S s's *9 S 9

rirnm
Input Dataset (Fastest Training Input)

k-I §a §a la la ag §a fa
2 S o Z o S o 7 o G o C o 00— t*. — — ■*.— O — e —■ c —

5s gs as “ s "s ”5
•I 'S’lG t 5

(a) llanium (b) Itanium 2

Figure 4.66: Static vs. FDO performance for inlining on GAP

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53£
*5

15
16
14
12
10
8
6
4
2
0 C D

.2

4
Input Dataset (Fastest Training Input)

m m
SW *51? **1? ‘

H* •§ a S_
111! - I y i i ? I1 £l

Input Dataset (Fiistcst Training Input)

I IP ' p i l l s w i l l 4! !£i I
i | §
! 2

(a) Itanium (b) Itanium 2

Figure 4.67: Static vs. FDO performance for inlining on g z ip

T

o 20 •

1“) ■g
u

3
10

u.

5 ■

0 •

rh

i

m
Input Dataset (Fastest Training Input)

a? "s 2? 2^ 1? 2a %<z
s "3 f* 3 js ■5js t j f l s H -3 .c ■a* a
1 g.~ g.5 g ,| g j g , | g.~ 5,5 g. 5.

I

Input Dataset (Fastest Training Input)

- 1 -5̂5 T
Ê. **£.Xs S,a 5,s Xs >.

(a) Itanium (b) Itanium 2

Figure 4.68: Static vs. FDO performance for inlining on MCF

binaries on the Itanium, while snfl 025 produces most o f the fastest binaries for the Itanium 2.

Depending on which inputs are used to evaluate the performance o f these binaries, performance

varies by 3%, 2%, or 4.5%, respectively.

Figure 4.67 presents best-case FDO inlining results for g z ip . On the Itanium, there are perfor

mance gains o f over 12% for 7 o f the 15 inputs, with gains over 16% on 4 inputs. However, there are

also several inputs with small performance gains, and 2 which experience slightly reduced perfor

mance. It is noteworthy that the log input is provided by SPEC, and thus commonly used to evaluate

performance, but still does not gain performance from the fastest FDO inlining binary. Results are

similar on the Itanium 2. A ll inputs have improved performance compared to static optimization,

though the gain is less than 1% for 5 inputs. However, 6 inputs have performance gains over 4%,

with the maximum gain approaching 7%.

M C F displays the most dramatic results with FDO inlining, and highlights FDO’s potential for

performance improvement, as shown in Figure 4.68. In the worst cases on the Itanium, performance

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12
y
2 10
Cr,

5 8

5 6
3u . ,}

2

0
Input Dataset (Fastest Training Input)

-§ s ■§? ■§? ■a? US a5 s a 'IS 2
n i§ n i§ 11 ^1 1 i l l “- ‘■s 1
? °a t-2- nto •?■§ 2 a aar» o * — O ’ ' • '
0 ®n “ “ V » r l — r» —

■t, o p

K T

£
]nuCL_0

Input Dataset (Fastest Training Input)

i-s i i t a 1-h i | hs b.| .f-g s-g g
S o S o S o S o S i: o <3 's o 0=00*3 * w .2 * i* * *CjO — —w"> r i ’o r.| — u"i gin in m
s | 3= =± 2£ A ~ ± ± ± ±

•as

(a) llanium (b) llanium 2

Figure 4.69: Static vs. FDO performance for inlining on p a r s e r

on ref is degraded by a small amount, while performance on synth-9 is about 2.5% faster than

static. For the rest o f the workload, performance is at least 5% faster than with static inlining. In

three cases, performance is improved by 20% or more. On the Itanium 2, these results are inverted.

MCF on the Itanium 2 is the only case where even the fastest FDO inlining binaries consistently

degrade performance. Static is faster than the best FDO inlining by at least 2% in all by two cases,

and is more than 7% faster in the worst cases.

Results for parser are shown in Figure 4.69. The fastest FDO inlining binaries achieve significant

performance gains over static for all inputs on the Itanium. On the other hand, while the fastest FDO

binaries match the performance o f static optimization on the Itanium 2, they do not result in any

significant improvements in performance.

The fastest FDO inlining binaries usually exceed the performance o f static optimization for the

placement component o f VPR, and achieve significant performance gains for VPR routing on the

Itanium. However, performance for both the ref and s298 inputs for placement is more than 4%

slower than static. The fastest FDO inlining binaries generally achieve slightly better performance

that static on the Itanium 2. However, there appears to be little potential for FDO inlining to improve

performance compared to static optimization on the Itanium 2.

Overall, on the Itanium, FDO inlining exhibits the potential to significantly improve performance

o f each benchmark program on nearly every input in the workload. The best-case FDO performance

is slower than static in only 6 out o f 116 cases. Furthermore, the fastest FDO inlining binary is more

than 10% faster than static in 41 cases. However, on the Itanium 2, while the fastest FDO inlining

binaries match or exceed the performance o f static optimization for 96 inputs, performance is only

more than 3% faster than static in 19 o f the 116 cases.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
Fa

ste
r

tha
n

St
ati

c
%

 F
as

ter
 t

ha
n

St
at

ic

10
8
6
4
2
0

-2
-4
-6
-8
10

Input Dataset (Fastest Training Input)

a t r,< a ^ u « m u eo •S’J? 2 — i^ rT 8 c u f3 'o -grn u o — O ~ Sj"S. .S^t
^ U S ^ g S ^ J H I S S g S E S I i ^ S ° $ 3 3 5 S i t *?. * £ * * 3 d Mo STS -T-JZ

; u k 5? CL i>a. - g jr ,2— u £
2 "oo oo2 s - " ,ri~ wy f*-.

- a. - K .

(a) Itanium

4
3
2
1

0

1

2

om d b

Input Dataset (Fastest Training Input)

mi la ^ r- ^ TS ~ ~ 6 * ~~ Cd*-’
d i) C n ^ — .£ y © =>o

3 ~ 3 E g . 2 c. 3 - 3 a *
•3 S3 d s “ S §

(b) Itanium 2

Figure 4.70: Static vs. FDO performance for inlining on VPR (place)

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
Fa

st
er

th

an

St
at

ic

%
Fa

st
er

th

an

S
ta

ti
c

18
16
14
12
10
8
6
4
2
0

-2
-4

Input Dataset (Fastest Train ing Input)

— X Uffi y . i
3 8. IS §■=

FEBO—
J5

S o STct .S':
I s

*

- 2 m
•o S .£•/*

M U isc i v* u a iv a i i la m in g iu^

2n *3 Sff •a£ £ ~ g
2S ss * 2 “ 2 §'
8 s “ s ' § "

m —oo 'B ’eo S’ a1
2 ^ 3 S 3 g s a Sb;
" S a s s S

m </i

5§
" o

.==■ sw
S3 Sjj.

12 js00 wf i

(a) Itanium

2.5

2

1.5

1

0.5

0

r h

n
r h

Input Dataset (Fastest Training Input)

52 Itv *r S*>» 8*3“ .£•>! -s’s 22 #3“ **2 •a'y *32 §2 £ 2 "35= S 3.2 3 x ■» « ecv * o E.*S S = x~ *c— 3 3 £.2 c * Sa J t - B*£ fts 8-8.SC* ^foH3 ?3 s2 *“ 3 | « § {s.tf-aSasA•* n JO •— •“ ■— ■“ 91 . . V r»-i P fS

s 'o £ 2 . 2 2 Sft2
^ .. S's 2i 3 3 x § xj> ss S K * g. ".s- 3 - g. a ss.

(b) Itanium 2

Figure 4.71: Static vs. FDO performance for inlining on VPR (route)

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.3 Conclusions

FDO appears to have the potential to substantially improve program performance on the Itanium.

On the other hand, even the fastest FDO binaries are often significantly slower than static optimiza

tion on the Itanium 2. In particular, fastest FDO inlining binaries for MCF on the Itanium 2 are

significantly slower than static for nearly all inputs. We find this fact surprising, given that both MCF

and inlining are frequently studied. The performance results reported here are consistent with the

performance results measured on the entire workload in Section 4.2. Possible explanations for bet

ter FDO results on the Itanium are that it has more resource limitations than the Itanium 2, and thus

more potential for performance improvement, while the Itanium also benefits from a more mature

code base since it is an older processor.

One unanticipated result o f this study comes from the observation o f the performance o f the

fastest FDO binaries for the c r a f t y benchmark. For both i f conversion and inlining, on both

processors, one FDO binary had the best performance for all inputs. However, the performance o f

these binaries compared to static is not consistent across the workload. In particular, significantly

different performance results arc obtained for i f conversion on the Itanium 2. I f the SPEC training

input train is used, performance on the SPEC evaluation input ref is 2% slower static, the best result

from the workload. However, i f the wac-051 input is used for evaluation, performance is reduced

by more than 6%. This result confirms that evaluating optimization using a single evaluation input

can lead to conclusions about performance that do not generalize to other program inputs.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Related Work

5.1 Input Selection and Benchmarking

Input selection and benchmark creation are difficult, but important, tasks. Compiler writers, hard

ware designers, and system vendors all use benchmarks. However, the goals and requirements o f

these communities differ. System vendors may favor codes that are hard to optimize to help ensure

fairer comparisons between systems, while compiler designers wish to investigate how a compiler

feature affects the performance o f typical programs. Where system vendors and compiler designers

run programs on larger inputs to reduce measurement errors and better represent fu ll system behav

ior on real-world problems, architecture researchers strive for the smallest representative inputs to

lim it simulation times.

In [21], Eeckhout et al. attempt to find a minimal set o f representative programs and inputs for

architecture research. They cluster program-input combinations using principal-component analysis

based on low-level program behavior such as cache misses and branch mispredictions. They found

that while different inputs to the same program were often clustered together, there were several

cases where different inputs to the same program resulted in data points in separate clusters. This

finding supports our conclusion that the input to a program does have an impact on program behavior.

Phansalkar et al. survey the four generations o f the SPEC benchmark suite and investigate how

the suite has evolved [34]. They measure low-level architecture-independent program behaviors

such as instruction mix, basic-block size, various branch statistics, and locality. They use principal-

component analysis to cluster and compare the benchmark programs. The benchmarks are found to

have changed little in terms o f static instruction count, branch behavior, or ILP. However, temporal

locality has lessened in more recent benchmarks. The authors suggest that, based on their clustering,

several benchmarks in the SPEC suites are redundant. Based on their overall characteristics, b z ip 2

and g z ip form the entirety o f one cluster. Looking back to Chapter 4, Aestimo finds significantly

different results for b z ip 2 and g z i p in nearly every case. Therefore, we caution compiler de

signers against omitting programs from a benchmark suite based on clustering analysis o f low-level

program behaviors.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MinneSPEC proposes reduced inputs to the SPEC CPU2000 benchmarks based on function-

level execution profiles and instruction mix profiles to reduce simulation time for architecture re

search [26]. For more than half o f the program-input pairs the reduced inputs have function profiles

that are statistically similar to the original inputs, while they have instruction mixes similar to the

original inputs in nearly every case. However, the authors warn that memory behavior may be sub

stantially different with the reduced inputs. MinneSPEC inputs should not be considered equivalent

to the original inputs supplied by SPEC. Eeckhout et al. analyze program behavior on the reduced

inputs suggested by MinneSPEC [20]. They use a larger mix o f behavior measures that are more

closely related to program performance than those used to create the MinneSPEC inputs. PCA and

clustering show that while the MinneSPEC set o f large (Igred) inputs remain similar to the orig i

nal SPEC inputs from which they are derived, the medium (mdred) and small (smred) input sets

generally lead to dissimilar program behavior.

Citron has investigated the use o f the SPEC benchmarks by research reported in computer ar

chitecture conferences [15]. He found that while the SPEC benchmarks are very commonly used,

the suite is seldom used as intended. Two important issues are failure to use all the benchmark

programs from the integer or floating-point collections, and infrequent use o f the floating-point

benchmarks. When reported results are adjusted by assuming that the reported techniques have no

effect on missing benchmark programs from the collection used, large speedups were reduced to

moderate speedups. For example, one reported speedup o f 1.76 was reduced to 1.15. Our results

compound this problem. We have shown that the training input used with FDO as well as the testing

input used to evaluate performance can significantly vary the observed performance impact o f an

optimization. The common practice o f using only the inputs supplied with the SPEC benchmarks is

likely to further obscure the true performance impact o f a technique when used outside the lab.

5.2 Feedback-Directed Optimization

Cohn and Lowney investigate FDO in Compaq’s compiler tools for the Alpha processor using the

SPEC CINT95 benchmarks [16].

They report the performance impacts when several FDO optimizations are applied individually.

In particular, they find that FDO inlining improves performance by up to 45%, and by 10% on aver

age over static inlining. While these results are similar to ours, they report that FDO inlining never

results in a performance penalty. However, differences in compiler, architecture, and benchmark

programs makes meaningful comparisons between the performance results impossible.

Langdale also investigates the sensitivity o f FDO to the training data used [29]. The programs

and inputs from the SPEC95 and SPEC2000 benchmark suites are used in conjunction with D igita l’s

GEM compiler and the A lto link-time optimizer for the Alpha architecture. The study concludes that

there is a statistically significant difference in performance when different training inputs are used.

Our study expands on this work in two ways. First, we have used a large number o f additional non-

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SPEC inputs for both training and evaluation. Second, we have investigated individual optimizations

that benefit from FDO rather than considering the entire FDO system as a whole. In our study, we

have also observed variations in performance when different training inputs are used. However, the

differences in performance in our study are much larger, and can be observed without resorting to

statistical techniques. Langdale also investigates resubstitution, and concludes that profile accuracy

is not tightly coupled to performance gains. We have also observed a general failure o f resubstitution

to achieve the best performance. However, given the frequently poor performance o f FDO compared

to static optimization, we believe that further improvements to the FDO system must be made before

we can provide a final verdict on the usefulness o f perfect information.

5.3 Compiler-Decision Optimization

Several researchers have used iterative compilation techniques to improve program performance. It

erative compilation is the pinnacle o f FDO: a program is compiled and run repeatedly, while statistics

collected at run time improve performance. However, in many cases, iterative compilation systems

do not consider the impact o f data inputs on the performance changes observed between different

compilations. They often use a single input for both training and evaluation, and do not evaluate the

performance o f the final binary on any additional inputs.

Pan and Eigenmann break a program into regions, called Tuning Sections (TS), and attempt to

find an optimal optimization strategy for each TS [33]. They compare the performance o f multiple

versions o f each TS using three methods. Context-Based Rating is used i f the same TS is exe

cuted frequently in the same execution context. In this case, versions o f the TS can be swapped to

determine their performance during a single run o f the program. Model-Based Rating applies math

ematical relationships between contexts to enable comparisons between versions o f a TS executed

in different contexts. Finally, Re-execution-Based Rating restores state and restarts execution at the

beginning o f a TS when different versions o f a TS would be otherwise incomparable. Using these

techniques, their offline compilation system based on GCC is able to improve performance on four

SPEC 2000 benchmarks by an average o f 26%, while reducing tuning time by 80%. Tuning is per

formed by running on the SPEC train inputs, while final performance evaluation uses the SPEC ref

inputs. I f the ref input is resubstituted instead, much larger performance gains are observed on two

o f the benchmarks. The performance improvement obtained by this approach is often small com

pared to the performance variations we have seen between inputs, or compared to the benefits o f the

usual FDO inlining used in our study. In 5 o f 8 cases, the largest performance gain for a benchmark

is less than 4%, and is less than 10% in another two cases. Average performance is inflated by

the remaining case, where the technique improves performance by more than 170%. Therefore, we

suspect that normal FDO should provide a larger and more consistent benefit when applied across a

larger collection o f programs.

Cooper et al. [17] and Kulkarni et al. [28] find solutions to the problem o f ordering the phases in

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a compiler using genetic algorithms. Iterative compilation obtains performance improvements for

the given program and input data. We have observed that testing a version o f a program on different

inputs can lead to different conclusions regarding the performance o f that version o f the program.

Therefore, using a single input for training and performance evaluation during iterative compilation

may result in a final program that does not have the best performance in general.

Stephenson et al. also uses genetic algorithms to learn compiler heuristics for hyperblock for

mation, register allocation, and data prefetching. They observe significant performance differences

between running resubstitution and non-resubstitution cases for some programs, which indicates

that over-fitting heuristics to input data is a danger. This result compounds the implications o f our

findings, and further cautions against the use o f a single (or small sample) o f inputs when evaluating

FDO techniques.

Cooper and Waterman use iterative compilation to determine the optimal blocking size for a ma

trix o f a fixed size with a matrix multiplication kernel [18]. Execution time is significantly improved

as the matrix dimensions grow because the profile-guided compiler heuristic fails to consider cache

size. It is unfortunate that rather than correcting this deficiency in the compiler, they propose an iter

ative compilation technique that bypasses the problem. In our study, we also discovered a deficiency

in compiler heuristics regarding i f conversion. We suggest that the i f conversion heuristics o f the

ORC should be amended before any other technique uses them as the basis for comparison.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion

6.1 Future Work

This study has raised several new questions. First, is there a metric that can link compile-time deci

sions to performance impacts? Most likely, such a metric w ill need to be able to identify “ important”

choices, but it is unclear i f there is a way to estimate the importance o f a choice short o f some sort o f

iterative compilation framework. After all, compiler heuristics already attempt to make the best de

cisions for the most important choices in order to maximize program performance. However, it may

be possible to further analyze our data to determine decision importance “ after the fact” , and then

use this information to evaluate and possibly augment the existing compiler heuristics. In particular,

since feedback-directed i f conversion reduces performance compared to static i f conversion, there

is clearly an opportunity to improve the i f conversion heuristics.

In a similar vein, we would like to understand how our inputs differ, and how these differences

impact optimization decisions. PCA and clustering techniques could be applied, but we have seen in

Chapter 5 that it can be difficult to get meaningful results from these techniques. Furthermore, these

techniques rely on a set o f aggregate measure to characterize program performance. These measures

are well-known to be important for architecture research where these techniques have been used.

However, a different approach is required in the realm o f compilers and FDO. While a particular

architecture must use the same branch-prediction mechanism for every branch encountered during

the execution o f every program, a compiler must make an if-convers ion decision for each branch

in a program, and makes each decision individually. Furthermore, for many optimizations only a

small number o f choices have a significant impact on program performance. It is therefore doubtful

that aggregate measures can adequately characterize inputs for use by a compiler. In fact, it is

likely that the failure o f the difference and alignment metrics to correspond in any consistent way to

performance is due to this same problem.

Therefore, it would be advantageous to develop input comparison techniques that work at a level

similar to that present in a compiler. These techniques should work at the control-fiow graph and

call-graph levels, rather than using low-level measures like ILP and cache miss rates. We have

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

started development o f a tool called Prof Edit that is an initial step in this direction. A t present,

ProfEdit is an interactive program that allows a user to view and modify the frequency counts

stored in an ORC profile file. However, the profile does not contain information about the struc

ture o f the program. Thus, it is impossible to maintain the consistency o f profile information. An

extension o f ProfEdit would allow the frequencies recorded in different profile files to be com

pared. However, the volume o f information being compared necessitates the use o f a summarization

technique for the results to be manageable by a human compiler designer. It is unclear what sort o f

summarization would reduce the quantity o f such data to an understandable volume without unac-

ceptably compromising its usefulness.

Another problem regarding input selection is that the space o f possible profiles, as well as the

location o f a profile from a particular input in this space, is unknown. I f program structure informa

tion can be integrated into ProfEdit, it could be used as part o f a system to automatically explore

the space o f possible profiles, without the need to find actual inputs that correspond to any o f the

particular profiles used for exploration. I f the profile-space o f a program is characterized, and inputs

can be mapped into this profile space, then the distance between inputs in this space can be deter

mined, and the distribution o f inputs in an evaluation workload can be measured. Furthermore, i f

certain areas in the profile space are found to be “ interesting,” the feasibility o f real inputs mapping

into that area can be investigated.

Finally, more study is needed. Similar experiments should be run using different compilers and

different architectures, and should investigate a larger range o f optimizations and programs in order

to increase the generality o f any conclusions about FDO’s sensitivity to training inputs.

6.2 Conclusions

Our extensive experimental study provides important insights into feedback-directed optimization.

Most significantly, training on different inputs does lead to different optimization decisions and

different levels o f performance in the FDO binaries in most cases. Training on different inputs

results in as much as a 5% difference in performance with i f conversion, and as much as a 6%

difference in performance with inlining, on a workload o f inputs. On the other hand, evaluating

FDO performance on different inputs can lead to substantially different performance results. We

observe differences in the best case FDO performance on different inputs for the same program

larger than 13% for i f conversion, and larger than 20% for inlining. Therefore, the selection o f

training inputs for FDO does impact performance. Furthermore, the measured performance for any

particular binary is dependent on the inputs used for testing. Consequently, performance evaluations

that use multiple training inputs as well as multiple evaluation inputs w ill result in more reliable

performance measures than typical compiler and architecture evaluations that use a single training

input and a single evaluation input.

Furthermore, these results enable an assessment o f the FDO infrastructure o f the ORC. Resubsti-

1 1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tution often results in the fast binaries on a given input. However, rank analysis shows that the high

levels o f performance o f resubstitution binaries compared to the fastest FDO binaries are a result o f

small difference in performance between FDO binaries. The rank o f resubstitution binaries cover

the fu ll spectrum o f possible ranks, from best performance to worst performance, for each program

in this study. Furthermore, there are several cases were resubstitution is substantially slower than

training on a different input. Resubstitution is more than 17% slower than the fastest binary for i f

conversion, and nearly 12% slower than the fastest binary for inlining in the worst cases. Therefore,

the FDO system in the ORC does not make effective use o f the more accurate profile information

provided by resubstitution.

In general, feedback-directed inlin ing is effective at increasing performance on both a workload

and on individual inputs. However, we also observe that feedback-directed i f conversion seldom

improves performance. In fact, it always reduces performance on the Itanium 2, which strongly

suggests that further work is required for the i f conversion heuristics to use profile information

effectively.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Open research compiler for Ita n iu m p ro c e s s o r family, http://ipf-orc.sourceforge.net/. Latest
release: ORC 2.1, July 15,2003.

[2] Open64 compiler. http://sourceforge.net/projects/open64/,
http://sourceforge.net/projects/open64/. Latest release: Open64 0.16, March 21, 2003.
Page maintainer: Alban Douillet (douillet@capsl.udeI.edu).

[3] ORC performance on Itanium 2/Linux. http://ipf-orc.sourceforge.net/orc2-Utanium2-
Perf.ppt. Powerpoint Graph.

[4] ORC performance on Itanium/Linux. http://ipf-orc.sourceforge.net/orc2-Utaniuml-Perf.ppt.
Powerpoint Graph.

[5] SGI pro64 compiler. http://oss.sgi.com/projects/Pro64/. webpage copyright 1993-2003 Silicon
Graphics, Inc.

[6] Thomas Ball and James R. Larus. Branch prediction for free. In Proceedings o f the ACM
SIGPLAN '93 Conference on Programming Language Design and Implementation (P L D I93),
volume 28, pages 300-313, June 1993.

[7] Thomas Ball and James R. Larus. Optimally profiling and tracing programs. ACM Transactions
on Programming Languages and Systems, 1 G(4): 1319— 1360, July 1994.

[8] Thomas Ball and James R. Larus. Efficient path profiling. In MICRO 29: Proceedings o f the
29th annual ACM/IEEE international symposium on Microarchitecture, pages 46-57, Wash
ington, DC, USA, 1996. IEEE Computer Society.

[9] Vaughn Betz. FPGA place-and-route challenge.
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.htmI. University o f Toronto,
Department o f Electrical and Computer Engineering.

[10] Lewis Carroll. Alice's Adventures in Wonderland. Project Gutenberg, January 1991.
http://www.gutenberg.Org/etext/l 1.

[11] John Cavazos, J. Eliot, and B. Moss. Inducing heuristics to decide whether to schedule. In
PLDI ’04: Proceedings o f the ACM SIGPLAN 2004 conference on Programming language
design and implementation, pages 183-194, New York, NY, USA, 2004. ACM Press.

[12] Pohua P. Chang, Scott A. Mahlke, and Wen mei W. Hwu. Using profile information to assist
classic code optimizations. Software - Practice and Experience, 21(12): 1301—1321,1991.

[13] Youngsoo Choi, Allan Knies, Luke Gerke, and Tin-Fook Ngai. The impact o f if-conversion
and branch prediction on program execution on the Intel Itanium processor. In 34th Annual
International Symposium on Microarchitecture (MICRO'OI), pages 182-191,2001.

[14] Kingsum Chow and Youfeng Wu. Feedback-directed selection and characterization o f com
piler optimizations. In MICRO 32, Isreal, Nov 1999.

[15] Daniel Citron. MisSPECuIation: Partial and misleading use o f SPEC CPU2000 in computer
architecture conferences. In Proceedings o f the 30tli Annual International Symposium on Com
puter Architecture (ISCA'03), pages 52-59,2003.

[16] Robert Cohn and P. Geoffrey Lowney. Feedback directed optimization in Compaq’s compila
tion tools for Alpha. In 2nd ACM Workshop on Feedback-Directed Optimization, Haifa, Israel,
November 1999.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ipf-orc.sourceforge.net/
http://sourceforge.net/projects/open64/
http://sourceforge.net/projects/open64/
mailto:douillet@capsl.udeI.edu
http://ipf-orc.sourceforge.net/orc2-Utanium2-
http://ipf-orc.sourceforge.net/orc2-Utaniuml-Perf.ppt
http://oss.sgi.com/projects/Pro64/
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.htmI
http://www.gutenberg.Org/etext/l

[171 Keith D. Cooper, Devika Subramanian.and Linda Torczon. Adaptive optimizing compilers for
the 21st century. J. Supercomput., 2 3 (l) :7 -2 2 ,2002.

[181 Keith D. Cooperand Todd Waterman. Investigating adaptive compilation using the MIPSpro
compiler. In Los Alamos Computer Science Institute Symposium, 2003.

[19] Standard Performance Evaluation Corporation. SPEC: The standard performance evaluation
corporation. http://\v\vw.spec.org/.

[20] Liven Eeckhout, Hans Vandierendonck, and Kocn De Bosscherc. Designing computer archi
tecture research workloads. In IEEE Computer, volume 36, pages 65-71, February 2003.

[211 Liven Eeckhout, Hans Vandierendonck, and Koen De Bosschcre. Quantifying the impact o f
input data sets on program behavior and its applications. Journal o f Instruction-Level Paral
lelism, 5 :1-33,2 2003.

[22] Albert Einstein. Relativity: the Special and General Theory. Project Gutenberg, January 2004.
http://www.gutenberg.org/etext/5001.

[23] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, 3rd edition, 2003.

[24] Apple Computer Inc. Apple iTunes. http://www.apple.com/itunes/. version 4.7.

[25] Toru Kisuki, Peter M . W. Knijnenburg, and Michael F. P. O 'Boyle. Combined selection o f tile
sizes and unroll factors using iterative compilation. In IEEE PACT, pages 237-248,2000.

[26] AJ KleinOsowski and David J. L ilja . MinneSPEC: A new SPEC benchmark workload for
simulation-based computer architecture research. In Computer Architecture Letters, volume 1,
June 2002.

[27] M ike Krahulk and Jerry Jerry Holkins. http://www.penny-arcade.com/.

[28] Prasad Kulkarni, Stephen Hines, Jason Hiser, David Whalley, Jack Davidson, and Douglas
Jones. Fast searches for effective optimization phase sequences. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 165-198,2004.

[29] Geoff Langdale. The Effect o f Profile Choice and Profile Gathering Methods on Profile-Driven
Optimization Systems. PhD thesis, Carnegie-Mellon University, 2004.

[30] David D. Lewis. Reuters-21578 text categorization test collection.
http://www.daviddlewis.com/resources/testcoIlections/reuters21578/, May 2004. D istri
bution 1.0.

[31] Scott Alan Mahlke. Exploiting Instruction Level Parallelism in the Presence o f Conditional
Branches. PhD thesis, University o f Illinois at Urbana-Champaign, 1996.

[32] Hewlett Packard. Inside the Intel Itanium 2 processor. Technical re
port, Hewlett Packard Developer & Solution Partner Program, July 2002.
http://h21007.www2.hp.eom/dspp/ddl/ddl-Download_File_TRX/l, 1249,952,00. pdf.

[33] Zhelong Pan and Rudolf Eigenmann. Rating compiler optimizations for automatic perfor
mance tuning. In ACM/IEEE Conference on High Performance Networking and Computing
(SC04), pages 14-23, November 2004.

[34] Aashish Phansalkar, Ajay Joshi, Lieven Eeckhout, and Lizy K. John. Measuring program
similarity: Experiments with SPEC CPU benchmark suites. In IEEE International Symposium
on Performance Analysis o f Systems and Software (ISPASS), 2005.

[35] Martin Schoenert and Steve Linton. Re: [GAP support] additional inputs for254.gap. Personal
email correspondence, April 2005.

[36] Michael D. Smith. Overcoming the challenges to feedback-directed optimization. In Proceed
ings o f the ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation and Optimization
(Dynamo’00), pages 1-11, Boston, M A, January 2000.

[37] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May O-Reilly. Meta opti
mization: Improving compiler heuristics with machine learning. In ACM SIGPLAN Confer
ence on Programming Language Design and Implementation, pages 77-90,2003.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http:///v/vw.spec.org/
http://www.gutenberg.org/etext/5001
http://www.apple.com/itunes/
http://www.penny-arcade.com/
http://www.daviddlewis.com/resources/testcoIlections/reuters21578/
http://h21007.www2.hp.eom/dspp/ddl/ddl-Download_File_TRX/l

[38| Reinhold Weicker and Kaivalya D ixit, (osgcpu-10955) re: Your question to SPEC about input
data selection for benchmarks. Personal email correspondences, July 2004.

[39) Herbert George Wells. The War o f the Worlds. Project Gutenberg, October 2004.
http://www.gutenberg.org/etext/36.

[40] Peng Zhao and Jose Nelson Amaral. To inline or not to inline? Enhanced inlining decisions.
In Languages and Compilers fo r Parallel Computing: 16th International Workshop, October
2003.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.gutenberg.org/etext/36

Appendix A

Metric Values

This appendix presents the raw data for the difference and alignment metrics defined in Chapter 3.

These graphs are similar to the first one in Figure A .l(a). The name o f the training input who’s log

is used to calculate the metrics is listed below the graph. The wide bar represents the alignment

score (as a percent), and encompasses the narrow bars which show pairwise difference scores. The

difference bars are in the same order as the coverage bars. For example, the log for compressed has

a coverage score just over 80%, while GAP has a coverage score just over 50%. Within the large bar

for compressed coverage, we see that the first difference score, 6(compressed, compressed), is 0,

and the second difference score, 5(compressed, docs), is about 2.25.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<u
a
c
u
t-H

H-14-<

T3 T3 Vi CL O 60 bo m
<u <U o CCS »«—» <u o CL
a Vi

Vi
o

~o
60 CL CL s!S <D CCS

6 l-H
CL

l-HbOoo 6o
o

o
'O

r f c
S 2a, M
60

co 1)
i i o<U

■4—*

<Dl-l

l-l
3
O wj
co

£3 X

(a) Itanium

<U
O
c
<D
Jj5
S*-*
<4-1

Q m m

100
80
60
40
2 0
0

X3 T3
<U <D

C/3
C/3
<DX>

so
o

co
U
O

T3

CL
6o
o

a o bo bo m 60 £y g g
5>.S « p & & H § §

6 & ^ gn x i*50 p .
C3l-i
6 0

6 0
O
Vh
CL

CO I—I
(D *-1
d
<Dl-i

1>
O
l-H
3o
co

• 1 ^ccS Xj . r >

(b) Itanium 2

Figure A . l: Metric scores for i f conversion on b z ip 2

600

500

400

300

200

too

0

100

80

60

40

20

0

600

500

400

300

200

100

0

100

80

60

40

20

0

2 8 k •=

(a) Itanium (b) Itanium 2

Figure A .2: Metric scores for i f conversion on c r a f t y

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A
lig

nm
en

t
(%

)
A

lig
nm

en
t

(%
)

■s § Ss 8 aN M c e 2

100700
600

500

I 400

300 o
200

100

e

(a) Itanium (b) Itanium 2

Figure A.3: Metric scores for i f conversion on GAP

<o
o
G
a

as

g
sc
00

X3
<d <uc

♦ *“4

lao
o

C/3
C/3

a

%o
o

co a o oo oo m oo £ S £ o
o o o - 5 & - < c g - a 2 ^ - s l > <

irk H cS kn00 ^ u,

3
O
co

aJH—I
CO

(a) Itanium

<D
O
a
<ui-i

.<u

£

c
<u
6
G
00

X)(U <D
G

*6o
o

CO
CO
<D
l-H

lo
o

^ d - yO C3 ‘
O

XJ

“ “ ■ a g i ! I S a

« ■ & . & - e i ^ a - a | §
2 3 K 00
Oh ^

a-
c3
1 -4
dO

3 x
CO

(b) Itanium 2

Figure A.4: Metric scores for i f conversion on g z ip

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

083

D
iff

er
en

ce

D
if

fe
re

nc
e

o o CN CO '=t VO t~~ OO CV

C/D
■ s
c

X ! X x X X X X X X
4-4
C

4-4
c

4—4

c
4—*
c

4—4

c
4—*

c
4—>

c
4-4

c
4—1

c
> 4 > 5 >4 > 4 >4 > 4 > 5

CO CO C/D CO C/5 CO CO CO CO CO

(a) Itanium

O T-H C|) c o t o VO OO CV
X X X X X X X X X X
4-4 4—* 4—» 4—4 •*—J 4—4 4—4 4—4 4—4 4—4

a c c c e c c c C e
> 4 >4 >4 >4 > 4 >-4 > 4

CO CO CO CO CO CO CO CO CO CO

(b) Itanium 2

Figure A.5: Metric scores for i f conversion on MCF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A
lig

nm
en

t
(%

)

4054

- 1 0 0 g
- 80 r
- 60 g
- 40 |
- 2 0 .HP
- 0 <

£ 150 -
£ 100 -

S 50 '
o -

(b) Itanium 2

Figure A.6: M etric scores for i f conversion on p a r s e r

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w C/3 C/3 OO C/3
T 3 T 3 T 3 T 3

Vh v-i l-i l - l Vh
O O O O o
£ £ £ £ £o m o m
o (N < N

(N s i 16 r*H
O o 1-H 1-H c s

(a) Itanium

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

t o

alu4
31

OQ*
Cn

apex2
apex4

o> bigkey
des

2 diffeq
o
n
o ’
00
o

dsip
elliptic
exlOlOon

o
V i cr

ex5p
frisc

o-n eF3 misex3H*
hti 5‘

3 PdcO
O to ref
3< s298
On
Vi S38417
5 ’
3 S38584.1
O
3 seq
<in spla
u static

^ET test
E3
n train
o tseng

Difference Difference

o o o o o o o

O tO ON OO •—>o o o o o o

alu4
apex2
apex4

bigkey
des

diffeq
dsip

elliptic
exlOlO

ex5p
frisc

misex3
pdc
ref

s298
S38417

S38584.1
seq

spla
static

test
train

tseng

' ' ' i t ' ' '

O t o 4 ^ Os OO i—o o o o o o

Alignment (%) Alignment (%)

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

alu4
3

00*
c“t

apex2
apex4

CD

> bigkey
00 des
2 diffeq
2-n
cT
c/i
n

dsip
elliptic
exlOlO

o■n
O
V) 3

ex5p
frisc

O•n misex3
t-h c ’

3 pdc
O
O ro ref
3< s298
*nc/i S38417
5 *
3 S38584.1
O
3 seq
<
h*1

spla
'U static
•n
o test
c train
o tseng

Difference Difference

>—(nJlUPOCv JXXO

i i i i i i i i i

O K> 4^ ON OOo o o o o o

Alignment (%)

>-Na>4x/Dv-®<saD

alu4
apex2
apex4

b ig k e ydes
diffeq

dsip
»

ex5p
frisc

misex3
p&

s298
s 3 8 4 l2S38584.1

seq
spla

static
test

train
tseng

i— i— i— r

O to 4^ O s 0 0 i— o o o o o o

Alignment (%)

D
iff

er
en

ce

D
iff

er
en

ce

~a
<u
c

♦

6o
o

730)
c/3
C /3
<D
d
6o
a

c/3 a- O 60 60 m 60^5y « -a <u o a u ^
o e o - 5 Q , ' - c d e x -a cx-> b g

U00

§ 6
S Jg

S 2d 1-1

C/5 <D o
J - i
Q•4—*

ou«
S3 c3

£
O
C/3

c/3

(a) Itanium

7 3 73
<U (D
C c/3

c /3
<D
l - i

c /3 f t O 60 too co 60

X>
6
O
o

d
6o
o

a -a <d o
b0 d .S? ~

ai-i
b0

d <u "2
£ g - a

§ S
2 £
g> c
2 2 d u

c/3 03 O 73
* 2 -a £o
3
£

3
O
CO

C3 xj
CO

(b) Itanium 2

Figure A.9: Metric scores for in lin ing on b z ip 2

250

200

150

100

50

0

100

80

60

40 Jo
<

20

0

250

200

150

100

50

0

100

80

60 re
1

40 .§.
<

20

0

B I e — — — —•= o *n in
2 © o — r»

(a) Itanium (b) Itanium 2

Figure A. 10: Metric scores for inlining on c r a f t y

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A
lig

nm
en

t
(%

)
A

lig
nm

en
t

(%
)

39

D
iff

er
en

ce

D
iff

er
en

ce

1001200
1000

800u
sH 600,o

b
400

200

1200 100
1000

800

600

400

200

0

t a 8 s 8 a S
O — n ^ t

U
a

5

e }f) % 8 8 a 8
O — rt r-l £»

(a) Itanium (b) Itanium 2

Figure A . l 1: Metric scores for inlining on GAP

<u
e • ̂x>
Bo
o

73
<u
CO
CO

CX

O
o

c/5 a u 60 60 on bo i s_ - <d o
bD c l ~

1-t
60

§ s
2 -§
60 3

a,

co <u
o

03

<D
•4—*

P
a

Ch
P
O
CO

O *73
'■P S13 x

(a) Itanium

120
1 0 0

1 0 0
80
60
40
2 0
0

T3 "d co
<1) <D oc CO O

co T)-O <D
6 CXoo Boo

co a o bo eo m 60
03
60 cx .

03
t-i
60

<u o cx o . H5 T3
6

03

CX

co <D o
o
1-4
Po
co

<D4-4
P
<0

03
4—4
co

(b) Itanium i

Figure A. 12: Metric scores for inlining on g z ip

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A
lig

nm
en

t
(%

)
A

lig
nm

en
t

(%
)

D
iff

er
en

ce

D
iff

er
en

ce

12
10

8
6
4
2
0

100
80
60
40
2 0
0

M-h O <D .55♦2 W
■4-*
C/3

45 43
-4 -» W
c c
co co

cm cni i43 43
4— * -4—1£3 5
co co

'r f in vo r*- oo oni i i i i i43 43 4= 43 43 43
4—» 4—» 4—» 4-J -4—» -4—4

G C C C G G
^

CO CO CO CO CO CO

CO
<L>

G
’c3

(a) Itanium

12
10

8
6
4
2
0

1 0 0
80
60
40
2 0
0

‘f t o O r - H C N m - t f i n ^ o t ^ o o c N to c
• r t i i i i » i i i i i ^ \ * G

* - < r t ^ 4 3 43 43 43 43 43 43 43 43 jy g_i i j i j i _i i _i i i . * ». * j A j A -i i *—*

c c c c c c c c c c
C / 3 C / 3 C / 3 C / 5 C / 3 C / 5 C / 5 C / 5 C O C / 5

(b) Itanium i

JD

Figure A. 13: Metric scores for inlining on MCF

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A
lig

nm
en

t
(%

)

D
iff

er
en

ce

D
iff

er
en

ce t- C 100
80
60
40
2 0
0

CO CO T3 -O
l- i i->
0 O
£ £ in o

o1 i
CM VO
O O

co
T3i-i
O

IT)

CO
-a

i- io
£ o

CM <Ni

co
’Ho
si

>n

vo

<D
O
C3

CM

03 ‘It!
cl,

C3

CO
<U C3

is

co
2T ho
£

(a) Itanium

100
80
60
40
2 0
0

CO

T3
co

T3
0
£

in o1 i
CM VOo o

o
£:o

co
T3

l - i
O
£

in

co
T3

L- lo
Sio

co
T3l_
O
£

in

<D
O d t+T*

CU g

CM CM
I I

VO

a

a
<Du»

C/3
<D

a
*3
h

CO

Ut
O
£

(b) Itanium 2

Figure A. 14: M etric scores for inlining on p a r s e r

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A
lig

nm
en

t
(%

)
A

lig
nm

en
t

(%

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

alu4
21 apex2

era’
c
o

apex4
bigkey

> des
diffeq

g dsip
2

o '

elliptic
exlOlO

Vi
o ex5p
w
O frisc
Vi
3*

B
5. misex3

O c*
3 pdc

EL
to ref

5* s298
3

era s38417
o
3 S38584.1
<
na

seq
spla

H1 static
ra
o
o test

train
tseng

Difference Difference

U O /Q U Q /O U O

' ' ' i ' i i ' i

I I I I I

o t o C \ OO Mo o o o o o

t_*Oi/OuQ>Q>0

alu4
apex2
apex4

bigkey
des

diffeq
dsip

elliptic
exlOlO

ex5p
frisc

misex3
pdc
ref

s298
s38417

S38584.1
seq

spla
static

test
train

tseng

■ i i i i i i i i

F

o K) C\ 00 »— o o o o o o

Alignment (%) Alignment (%)

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

alu4
3 apex2
00*c apex4
s bigkey
> des
Os diffeq
s i,.dsiP
o
■n
o"

elliptic
exlOlO

COo ex5p
O
CD frisc
CO E? misex3
-i
3]

5*3
to

pdc
ref

5* s2983
00 s38417
o
3 S38584.1
< seq
* spla
o static
c test

train
tseng

Difference Difference

U Q > 0 t/rt.*0 i/O

i t i t i i i 1

z

i
1

o to -F i- 0 \ O O I—
o o o o o

o

Alignment (%)

a lu 4
a p e x 2
a p e x 4

b ig k e y
des

d if fe q
dsip

e llip t ic
exlOlO

e x 5 p
frisc

m is e x 3
pdc
r e f

s298
S 3 8417

S 3 85 8 4 .1
seq

spla
static

test
tra in

tseng

U O / Q u O / Q J O

I t I I I I I I I

O tO G N CXI h -
o o o o o

o

Alignment (%)

Appendix B

Alignment vs Performance

In the following graphs, there is one point for each o f the binaries for a benchmark. The x-axis

o f the graph represents the alignment score for the optimization log used to create the binary. The

y-axis represents the performance o f the binary on the workload as a percent faster than the static

binary, while the error-bars show the variance in performance. Performance is computed using the

arithmetic measure exactly as in Chapter 4. There is one point for the static binary, which always

has a performance value o f 0% faster than static. This point shows the alignment score for static, as

well as the variance in performance o f the static binary.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
 F

as
te

r
tha

n
St

ati
c

'
%

Fa
st

er
 t

ha
n

St
at

ic

2.5

o

u
0.5 i

♦0.5

♦10-1.5
80 9040 50 60 70 100100

Alignment (ft) Alignment (%)

(a) Itanium (b) Itanium 2

Figure B . l: Alignment vs. performance for i f conversion on b z ip 2

o

♦2

•3

•5

•6
56 58 60 62 64 6650 52 54

0.5

0

♦0.5

1.5

•2

-2.5
50 52 58 60 6246 48 54 56

Alignment (%) Alignment (%)

(a) Itanium (b) Itanium 2

Figure B.2: Alignment vs. performance for i f conversion on c r a f t y

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ft
Fa

st
er

 t
ha

n
St

ati
c

ft
Fa

st
er

 t
ha

n
St

at
ic

0.2

•0.2

•0.4

•0.6

u

95 10080 85 90100 75

Alignment (f t) Alignment (ft)

(a) Itanium (b) Itanium 2

Figure B.3: Alignment vs. performance for i f conversion on GAP

0.2
0.3

0.4

0.5

0.6

0.7

0.9
82 84 86 88 9078 8074 76

Alignment (ft)

(a) Itanium

76 78 80 82

Alignment (%)

(b) Itanium 2

Figure B.4: Alignment vs. performance for i f conversion on g z ip

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f
Fa

ste
r

tha
n

Si
ali

c
%

Fa

sl
er

 t
ha

n
St

at
ic U

2

•10

• 12

-14
84 85 86 87 88 89 90 91 92 93 9494

Alignment (%) Alignment (ft)

(a) Itanium (b) Itanium 2

Figure B.5: Alignment vs. performance for i f conversion on MCF

2.5

0.5

•0.5

10 20 30 40 50 60 70 80 90 100

i

?JJ i **!!

Alignment (ft)Alignment (ft)

(a) Itanium (b) Itanium 2

Figure B.6: Alignment vs. performance for i f conversion on p a r s e r

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
 F

as
te

r
tha

n
St

ati
c

%
 F

as
te

r
tha

n
St

at
ic

0.5

•0.5

uo
S3 -2.5u.
* -1

-3.5

-4.5
99 93.5 94 94.5 95 95 5 96 96.5 97 97.5 98 98.5 99

Alignment (%) Alignment ('*)

(a) Itanium (b) Itanium 2

Figure B.7: Alignment vs. performance fo r i f conversion on VPR (place)

0.8

0.6

0.4

0.2

0

•0.2

•0.4

•0.6
94 96 989288 9082 84 86

Alignment (1)

(a) Itanium

I
0
-t
-2
-3

-4

-5

-6
-7

-8
-9

84 86 88 90 92 94 96 98

Alignment (%)

(b) Itanium 2

t

Figure B.8: Alignment vs. performance for i f conversion on VPR (route)

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
 F

as
te

r
tha

n
St

at
ic

%
Fa

st
er

tha

n
St

at
ic

10

8

6

4

2

0

■2
5 10 15 20 25 30 35 40 45 50 55

Alignment (%)

(a) Itanium

<3
3u.

0

■2

•3

-4

•5

•6

■7
0 5 10 15 20 25 30 35 40 45 50 55

Alignment (%)

(b) Itanium 2

Figure B.9: Alignment vs. performance for inlining on b z ip 2

a
i
ts

82 84 86 88 90 92 94 96 98

Alignment (%)

(a) Itanium

80 82 84 86 88 90 92 94 96 98

Alignment (%)

(b) Itanium 2

Figure B. 10: Alignment vs. performance for inlining on c r a f t y

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
Fa

st
er

tha

n
St

at
ic

%
Fa

st
er

tita

n
St

at
ic

6

5

4

3

2

0

30 85 90 9565 70 7555 60

3

2.5

2

1.5

0.5

0

-0.5
70 75 80 85 9060 65

Alignment (%) Alignment (9t)

(a) Itanium (b) Itanium 2

Figure B. 11: Alignment vs. performance for in lin ing on GAP

65 70 75 80

Alignment (%)

I
£

70 75 80

Alignment (%)

(a) Itanium (b) Itanium 2

Figure B.12: Alignment vs. performance for inlining on g z ip

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
Fa

st
er

 t
ha

n
St

at
ic

%
 F

as
te

r
tha

n
St

at
ic

12

10

8

6

4

2

0

•2
80 82 84 86 88 90 92 94 96 98

Alignment (%)

(a) llanium

o

i
3

4

6

7

8

9
80 82 84 86 88 90 92 94 96 98

Alignment (%)

(b) Itanium 2

Figure B.13: Alignment vs. performance for inlining on MCF

10

8

6

4

2

0

■2
35 40 45 50 55 60 65 70 75 80

i
&

0.5

0

•0.5

I

1.5

•2
66 68 70 72 74 76 78 80 82 84

Alignment (%)

(a) Itanium

Alignment ('£)

(b) Itanium 2

Figure B.14: Alignment vs. performance for inlining on p a r s e r

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%
Fa

st
er

tita

n
St

at
ic

Fa
st

er
 U

lan

St
at

ic

3.5

0.6
rj

Cn

■s

0.4

0.2
u0.5

i 0

* - 0.2
•0.5

-0.4

- 0.6

72 74 76 78 80 82 8468 7084

Alignment (ft)

(a) Itanium

Alignment (ft)

(b) Itanium 2

Figure B. 15: Alignment vs. performance for inlining on VPR (place)

0.6

0.4
o
3u. 0.2

-0.2

-0.4
68 70 72 74 76 78 80 82 84 8686

Alignment (%)

(a) Itanium

Alignment (ft)

(b) Itanium 2

Figure B.16: Alignment vs. performance for inlining on VPR (route)

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

