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Abstract

Feedback-directed optimization (FDO) is a compiler technique that enhances the ability o f a com

piler to make good optimization decisions. A  training run provides the compiler with a profile that 

summarizes the run-time behavior o f the program. Most studies that use FDO techniques use either 

a single input for both training and performance evaluation, or a single input for training and a sin

gle input for evaluation. However, the run-time behavior o f a program is influenced by the data it 

is processing. Benchmark creators and compiler designers rely on the assumption that selecting a 

“ representative”  training input w ill result in effective FDO.

This exploratory study addresses an important open question: How important is the selection o f 

training data for FDO? Likely, the answer to this question is not constant across all optimizations 

that use profile information. How sensitive are individual compiler transformations to the selection 

o f training data used with FDO? Does training on different inputs result in different optimization 

decisions at compile time? Furthermore, do these different decisions result in changes in program 

performance?

This thesis introduces Aestimo, a tool developed to quantify the differences between FDO logs 

for inlining and i f  conversion from the Open Research Compiler (ORC) for SPEC CINT2000 

benchmark programs trained on a large number o f inputs. Aestimo also compares the performance 

o f programs trained on different inputs, and the performance o f programs compiled with and without 

FDO.

Training on different inputs does lead to different optimization decisions and different levels o f 

program performance in most cases. Training on different inputs results in as much as a 5% differ

ence in performance with i f  conversion, and in as much as a 6% difference in performance with 

inlining, on a workload o f inputs. Also, evaluating FDO performance on different inputs can lead to 

substantially different performance results. Aestimo finds differences in best-case FDO performance 

on different inputs for the same program larger than 13% for i f  conversion, and larger than 20% 

for inlining. Finally, Aestimo reveals that the current if-conversion heuristics in the ORC always 

results in performance degradation for the Itanium 2 processor when FDO is used.
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Chapter 1

Introduction

Traditionally, programs are compiled statically, that is, without any information beyond what the 

compiler can extract from the source code. When static optimization is used, the compiler must use 

heuristics to guess which are the important, frequently executed sections o f the code and which are 

infrequently or never-executed sections o f the code, such as initialization routines and error handlers. 

This situation is problematic, as many optimizations attempt to make the frequent case fast, often 

at the expense o f less-frequently-executed sections o f code. Therefore, static optimization must be 

conservative in cases where the runtime behavior o f the program cannot be confidently predicted at 

compile time.

Feedback-directed optimization (FDO), also known as profile-guided optimization, is tradition

ally a compiler technique that enhances the ability o f a compiler to make good optimization de

cisions [12]. In a very general sense, FDO can be considered to be a spectrum o f performance- 

enhancing techniques that rely on measurements o f run-time program behavior [36]. This spectrum 

includes a large variety o f methods to enhance program performance, including: a developer manu

ally tweaking program code, hardware mechanisms such as branch predictors, and run-time program 

optimizations such as just-in-time compilation o f Java bytecode to native assembly code. However, 

this thesis uses a much narrower, traditional definition o f FDO.

When traditional FDO is used, several additional steps are required during the compilation pro

cess. First, the program is compiled w ith additional instrumentation code to record statistics about 

run-time program behavior to a file. Then, this instrumented binary is run on a training input to 

generate a file containing run-time program statistics, which is called a profile. Finally, the program 

is recompiled. The compiler reads the profile file and replaces its static estimates o f program be

havior with 'the values recorded in the profile. Usually an internal compiler variable is set to tell 

optimizations that profile information has replaced the static estimates.

Because FDO requires multiple compilations o f the same program, it is important to distinguish 

between a program, which is the algorithm encoded in the source code, and a binary, which is 

a particular compiled version o f a program. When any o f the inputs to the compilation process 

are changed {e.g., compiler, command-line parameters, profile information, target architecture, or

1
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d a ta  = g e tD a ta B lo c k ( b lo c k N u m ) ; 
i c r c  = i n t e g r i t y C h e c k ( d a t a ) ; 
i f  ( i c r c  == DATA.OK) {

I I  . . .  some p r e p a r a t io n  co d e  . . .
p r o c e s s D a ta ( d a ta ,  b lo c k N u m );
I I  . . .  some f i n a l i z a t i o n / c l e a n u p  c o d e  . . .

} e ls e  {
/ /  . . .  lo g  th e  e r r o r  . . .
/ /  . . .  i n i t i a l i z e  r e c o v e r y  . . .
r e T r y ( b lo c k N u m ) ;

}

Figure 1.1: A  motivating example for FDO

source code), a different binary is produced. Thus, compiling a program using FDO and training on 

one input w ill result in one binary, but training on a different input w ill result in a different binary.

Consider the code fragment in Figure 1.1. Statically, a compiler might consider both branches o f 

the i f  equally likely. In that case, the true branch w ill probably not be optimized i f  it would reduce 

performance on the false branch. Should inlining o f p ro c e s s D a ta  ( d a ta ,  b lo ckN u m ) or 

r e T r y  (b lockN u m ), or both, be performed? To lim it code growth, only a frequently executed 

function call should be inlined, but which branch is more frequently executed?

Alternately, some compilers perform additional branch analysis (6). Since error codes are con

ventionally represented by negative integers, the test against DATA.OK (which is presumably a non

negative constant) could be correctly identified as checking for an error condition. In this case, the 

compiler assumes that an error is an infrequent exception, and optimizes the true path. I f  this code is 

acquiring data from a reliable source, such as a hard drive or a wired network connection, error rates 

would be very low and the false branch would almost never be executed. On the other hand, i f  the 

data comes from an unreliable source, such as a noisy wireless connection, then the false branch may 

execute very frequently. By recording statistics during the execution o f the program running on real 

data, FDO provides more accurate information to the compiler to allow for better code generation in 

such cases.

Most studies that use FDO techniques use either a single input for both training and performance 

evaluation, or a single input for training and a single input for evaluation [11, 17, 18, 37,28,25, 14, 

33, 16, 40]. This is not a wise practice because the run-time behavior o f a program is influenced 

by the data it is processing. Few studies have investigated the impact o f the training input used 

in FDO on the performance o f the resulting binary, either on an individual input or on a workload 

o f inputs. Instead, both benchmark creators and compiler designers rely on the assumption that 

selecting a single “ representative”  training input w ill result in effective FDO. The tasks o f defining 

what representative means and o f selecting some input that meets this definition are typically left to 

the benchmark creator, who is usually familiar with the program.

There are several problems with this approach. First, most compiler users w ill likely be less

2
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successful than a benchmark designer at selecting a representative training input when they use 

FDO on a non-benchmark program. Second, there are several possible definitions o f a representative 

input. Is a representative input representative o f a typical workload o f inputs to the program, or is 

it representative o f the input that w ill be used for performance evaluation? In the latter case, should 

the training input be distinct from the evaluation input? Should it be a subset o f the evaluation input? 

Or, should it be a mix o f those two options?

While it may seem that one solution is obviously correct, there are competing schools o f thought 

on the issue [38]. On one side o f the issue are those who believe that including any portion o f the 

evaluation input in the training input represents an unrealistic scenario. A  program would rarely 

be run on the same data twice, since the results o f the first computation could be stored and reused 

directly. Including evaluation data in the training input thus provides the compiler with more accu

rate data than would be available in a production environment, and may exaggerate the performance 

benefits o f FDO.

On the other hand, some benchmark designers point out that including a portion o f the evaluation 

data in the training data is an easy way to ensure that the training data is representative o f a real 

workload. They argue that since a large portion o f the evaluation data is not used for training, the 

characteristics o f that portion o f the data could vary substantially from the data used for training. 

This would counteract any possible impact o f providing the compiler w ith artificially accurate profile 

information. Furthermore, they argue that there are several classes o f programs where it is perfectly 

reasonable to select a subset o f the actual data as the training set in a production environment. Data 

is frequently organized as records, which are processed independently. Selecting a sample o f records 

from the full data set is a natural and easy method to create a representative training data set.

A t this time, there are no regulations for the SPEC benchmarks [19] to specify whether training 

data should or should not include data from the reference input set. In fact, there are examples o f 

both situations in the benchmarks used in this study.

Therefore, an important question remains open: How important is the selection o f training data 

for FDO? It is likely that the answer to this question is not constant across all optimizations that 

use profile information. Therefore, a more appropriate question is: How sensitive are individual 

compiler transformations to the selection o f training data used with FDO?

This large question should be decomposed into more manageable parts. First, does the selection 

o f training data change the optimization decisions that are made during compilation? For example, 

does the selection o f a different training input change which callsites are inlined in a program? I f  the 

answer to this question is “ no,”  then the task is complete: Input selection is irrelevant for feedback- 

directed optimization. More likely, however, different optimizations applied to different programs 

exhibit varied measures o f input selection sensitivity.

Even i f  different optimization decisions are made, these differences might not be significant. 

Thus, an important second question is: Do the differences in optimizations decisions result in dif-

3
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ferent levels o f performance? I f  training on different inputs results in significantly different levels o f 

performance, then input selection for FDO is an important issue.

These questions w ill not be easily answered. Furthermore, the answers w ill likely vary depend

ing on the selection o f compiler and architecture investigated. This thesis reports the results o f an 

initia l exploratory investigation that provides the follow ing contributions:

•  Defines two metrics to quantify differences in optimization decisions.

•  Introduces an experimental methodology to investigate the impact o f input selection on a 

single optimization.

•  Performs an extensive experimental study using the SPEC CINT2000 benchmarks with a 

large number o f additional program inputs to investigate the feedback-directed i f  conversion 

and inlining optimizations in the Open Research Compiler (ORC) for the IA-64 family o f 

processors.

•  Determines that training input selection does impact the optimization decisions made during 

FDO compilation.

•  Observes that training input selection often has a significant impact on program performance, 

both on a workload o f inputs and on individual inputs.

•  Confirms that FDO has the potential to significantly improve program performance, and de

termines that this is usually the case with inlining.

•  Demonstrates that feedback-directed i f  conversion in the ORC usually reduces program per

formance.

•  Confirms that using the same input for both training and evaluation usually leads to the best 

performance results.

Chapter 2 provides additional background information about FDO and the ORC infrastructure. 

Chapter 3 describes the experimental setup, and defines the metrics used to measure profile differ

ences. The results o f an experimental study are presented in Chapter 4. Related work is discussed 

in Chapter 5. Chapter 6 identifies future work and concludes.

4
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Chapter 2

Background

2.1 Profiling and Feedback-Directed Optimization

Feedback-directed optimization uses a program execution profile to determine which portions o f 

the code are frequently executed and how control flows through the program at run time. This 

information is useful to optimize code that contains control flow such as i  f  statements. On the other 

hand, control flow due to loops does not benefit from profile information because loop behavior is 

easily predicted at compile time. Moreover, optimizing loop code is virtually always beneficial. In 

fact, the Open Research Compiler (ORC), used in this study, includes loop frequency counts in its 

profile information but ignores this information when performing loop optimizations.

Ball and Larus show how to place counters to capture the frequency o f each branch in a program 

with a minimum number or counters [7]. They also show that simply counting branch frequencies 

is insufficient to correctly identify the most frequently taken path through a section o f code. They 

then present an efficient instrumentation technique to capture the frequency o f each execution path 

through a function [8].

Despite the existence o f these profiling techniques, the ORC inserts counters to record the fre

quencies o f every branch in a program. The ORC does not implement path profiling.

2.2 Compiler Infrastructure

The Open Research Compiler (ORC) is an open-source compiler [1], The principal contributors to 

the development o f the ORC are Intel and the Chinese Academy o f Sciences. The ORC is based 

on the code base o f SGI’s Pro64 compiler [5], which was released as the open-source Open64 

compiler [2] in 2001. The ORC focuses on producing high-performance code, and is frequently 

used for compiler research. To support this aim, the ORC has a rich profiler to support its FDO 

infrastructure that provides, among other things:

• Dynamic instruction counts for each function

• Invocation count o f each function

5
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•  Taken and not-taken frequency counts for each branch

•  Loop statistics

•  S w itc h - c a s e  case frequencies

•  C a l l  and r e t u r n  frequencies for each callsite

•  Stride profiles

•  Value profiles

The IA-64 processor family is the only target for the ORC. Consequently, the ORC combines a 

mature code base with state-of-the-art compiler technology tuned for Itanium processors. When a 

3-stage FDO compilation process is used, the performance o f the ORC 2.1 on the SPEC CINT2000 

benchmarks is w ithin 5% o f Intel’s ECC 7.0 compiler, and exceeds the performance o f GCC 3.1 [4, 

3]. This study uses the latest release o f the ORC, version 2.1.

This thesis investigates two optimizations that make use o f the frequency information provided 

by profiling: i f  conversion and function inlining. The code base o f the ORC is roughly 130MB, 

spread across nearly 8500 files and 267 directories. Thus, locating, understanding, and correctly 

instrumenting an optimization has the potential to be a very involved task. This task is made more 

involved by the scarcity o f detailed documentation for the compiler. I f  conversion was selected 

because (1) it was moderately easily located in the source code, (2) it is contained in a small number 

o f source files, and (3) it is easily instrumented to output and use the optimization logs required for 

the study. In lin ing was selected because it is an optimization known to have a significant impact on 

performance. Furthermore, inlining provides a natural starting point for the investigation because 

the facilities to output and use the inlining log were pre-existing in the ORC.

2.2.1 I f  conversion

I f  conversion is a program transformation that attempts to reduce branch misprediction penal

ties and hazards that arise in code with control flow. Furthermore, as a side effect o f eliminating 

branches, i f  conversion can increase the amount o f Instruction Level Parallelism (ILP) in program 

code and allow greater flexib ility for instruction scheduling. Both these properties are important for 

EPIC architectures such as the Itanium1 and the Itanium 2, as discussed in Section 3.3. In addition, 

i f  conversion can enhance the performance improvements gained by software pipelining loops.

In order to execute if-converted code, an architecture must support predicated instructions. A  

predicate is a special-purpose single-bit register, pO, p i,  etc.. Predicates can be set or cleared by the 

results o f comparisons, or can be calculated from other predicate values. A  predicated instruction 

is a normal machine instruction, prefaced by a reference to a predicate register. I f  the bit in that

1 Itanium and Itanium 2 arc trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States 
and other countries.
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s e t  p O , p l  
2 * k - j  
2 * k + j  
j + k  
k - j

(a) Original code (b) Original CFC! (c) I  f  c o n v e r t e d  CFG

Figure 2.1: High-level example o f i f  conversion

predicate register is on, or the predicate is true, then the results o f the instruction are committed; 

otherwise the result o f any computation is discarded and does not change any state in the machine.

Figure 2.1(a) shows a simple branch. Figure 2.1(b) shows the same branch as a control flow 

graph (CFG). A  CFG is composed o f basic blocks (BBs). A basic block is a single-entry single-exit 

sequence o f instructions where execution can only start with the first instruction in the sequence. 

Moreover, i f  the first instruction is executed, then every instruction in the BB must be executed in 

order. Consequently, the first instruction in a BB must be either the first instruction in a function, 

or the target o f a branch instruction. Either the last instruction o f a BB is a branch or a return 

instruction, or the next instruction after the BB is the target o f a branch. Every branch is the last 

instruction o f some BB.

Since i f  conversion changes branches into predicate calculations, i f  conversion allows BBs to 

be merged together. In Figure 2.1(c), the p i  predicate is set to 1 and the pO predicate is set to 0 i f  

j  is less than k. Otherwise, when the result o f the test is false, the values assigned to the predicates 

are reversed. The instructions on the Yes path are guarded by the p i  predicate, and the instructions 

on the No path are guarded by the pO predicate. Then, the instructions from both branches can be 

merged into the BB that contained the test before i f  conversion. The instructions from the two paths 

can be intermingled arbitrarily, and can be scheduled anywhere in the new BB after the instruction 

that computes the predicate values.

When the code is not if-converted, the direction o f the branch determines whether the instruc

tions on the i f  or e ls e  path should be executed. Either set o f instructions may enter the execution 

pipeline, but not both. I f  the processor mispredicts the branch, then the wrong instructions w ill be 

fetched and put into the pipeline. Subsequently, the pipeline w ill be flushed, and execution w ill 

restart with instructions from the correct path. Many branches are easily predicted. For example, 

the exit test at the beginning o f a loop is only taken once in each loop execution, but is not taken for 

every iteration o f the loop. However, some branches are inherently d ifficult to predict [6], [23] (pp. 

313-314), and thus benefit most from i f  conversion.

On the other hand, ifthecode is i f  c o n v e r te d ,  then all the instructions from both sides o f the

7

i f ( j  < k )
{

a = 2 * k + j ;  
b  = k  -  j ;

}
e ls e
{

a = 2 * k - j ;  
b  = j  + k ;

}

Yes No

= 2 * k - j  
= j + k

a = 2 *k+ j 
b = k - j

I t  j  , k 
p O: a  = 
p i : a  = 
p O: b  = 
p i : b  =
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branch are fetched and enter the execution pipeline. A ll o f these instructions do consume processing 

resources, though the expectation is that the processor would otherwise have idle functional units. 

In exchange, there is no danger o f a branch misprediction since the branch has been eliminated. 

Predicates are computed in time to determine which instructions should be committed and which 

should be discarded without delaying execution.

When making an if-convers ion  decision, the branch is first checked to ensure that i f  conver

sion is legal. Then, the execution times for both the predicated and non-predicated versions o f the 

code are estimated to determine the profitability o f the transformation. These estimates are based on 

the following factors:

1. Taken vs. Not-Taken T im e: I f  the code for one side o f the branch is much longer than the 

other, if-conversion w ill delay the execution o f the shorter path. The execution time for each 

path is estimated statically.

2. Resource Use: I f  i f  conversion would lead to stalls due to insufficient processor resources, 

it may not be beneficial. Resource use is estimated statically.

3. Branch Probability : The probability that the branch is taken is used to estimate the branch 

misprediction cost and to weigh the above characteristics when estimating execution times. 

The branch probability is taken from profile information i f  available, or estimated based on 

the type o f branch otherwise.

I f  the average estimated execution time is reduced by i f  conversion, the transformation is per

formed. The transformed region may be part o f a path from another branch, and may become part 

o f a larger predicated region i f  additional i f  conversion is performed.

Hyperblocks are single-entry multiple-exit scheduling regions that rely on i f  conversion to 

remove control flow within a region. Hyperblocks were introduced by Mahlke [31]. He found, 

through simulation, that they could provide on average a 3-fold speedup for a collection o f programs 

on a hypothetical EPIC processor capable o f issuing 4 instructions per cycle and implementing fu ll 

support for predicated execution. These simulations provided incentive for the design o f hardware 

implementations o f similar processors, such as the Itanium. However, later studies using the Itanium 

revealed that the performance benefits o f i f  conversion on this architecture are fairly small. In 

particular, Choi et al. concluded that the performance benefits o f i f  conversion due to reduced 

branch misprediction for the SPEC CINT2000 benchmarks on the Itanium are upper-bounded at 

about 2-3% [13].

The ORC contains algorithms to produce predicated code using either hyperblocks (path-based 

predication) or i f  conversion (individual branch-based predication). I f  conversion is used by de

fault unless hyperblocks are explic itly selected by a command line option. We expect that the com

piler designers had good reasons to prefer i f  conversion over hyperblocks, and therefore perform 

our study using i f  conversion.

8
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2.2.2 Inlining

Function inlining, or simply inlining, is a common optimization that results in significant perfor

mance gains. Inlining replaces a function call with the code o f the function that would ordinarily be 

called. The function call is referred to as the callsite, the function that contains the callsite as the 

caller, and the function that would be called as the callee. There may be multiple callsites for the 

same callee, and each is treated individually.

Inlining improves performance in several ways. Most obviously, inlining a function removes 

the function call and the associated overhead o f pushing arguments onto the stack and saving and 

restoring registers. Also, since the function code is included in the body o f the caller, locality in 

the instruction stream can be improved. Most importantly, other optimizations have the potential 

to be more effective. For example, optimizations such as dead code elimination, constant propaga

tion, and redundant subexpression elimination can propagate changes into the callee code without 

the requirement to maintain the generality o f the original function. Consider a function that does 

additional or alternate processing i f  a parameter is true or false. I f  the compiler can prove that the 

parameter is always set to true (e.g., it is hard coded to true) at a particular callsite, then the test on 

that parameter and the non-taken branch can be eliminated from the inlined code.

However, excessive inlining can degrade performance. Inlin ing increases code size, and can re

duce instruction cache performance. Furthermore, larger functions require more time to optimize. 

This is particularly problematic since several static optimizations have super-linear compile times. 

To prevent excessive compile times, many optimizations are guarded by timers that abort optimiza

tion after an extended period o f time. Therefore, excessive code growth can lim it the effectiveness 

o f more expensive optimizations. Finally, the inlined code introduces more variables and temporary 

values that increase register pressure. I f  these values do not fit in the register file, then additional 

register spills and restores are needed.

There are many factors that determine i f  inlining is performed at a callsite. The main intuition 

for the majority o f the filters that control inlining is that the callsite should be frequently executed 

to maximize the benefits o f inlining, and both the caller and the callee should be small to avoid the 

negative effects o f code size expansion. In the ORC, the compiled size o f a function is estimated 

from higher-level representations according to the formula:

size =  S ta tem en tC ount +  C a llC ou n t +  5 * BasicB lockC oun t

Each statement results in one or more machine instruction. Each function call requires code to push 

arguments on the stack and a call instruction. A  basic block is a section o f code with a single entry 

point at the first instruction, and no exits until the last instruction, which may be a branch or a return 

instruction. Since many basic blocks are small, five instructions per basic block is a reasonable 

rough estimate.

Inlining in the ORC uses a temperature heuristic, which is augmented by Zhao’s adaptive in-

9
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lining  and cycle jlensity  heuristics [40]. Temperature measures the expected benefit o f inlining, and 

can roughly be explained as the ratio o f the contribution o f a callsite to the execution time o f the 

program compared to the proportion o f the size o f the callee to the size o f the entire program. A 

hot callsite is one that accounts for a large amount o f program execution time from a small callee. 

Therefore, the hotter a callsite, the more benefit is expected from inlining that callsite.

Inlin ing is performed i f  the temperature o f a callsite exceeds a threshold. Adaptive inlining 

allows the threshold to vary depending on the program size. Small programs benefit from a lower 

threshold and more aggressive inlining, while larger programs require a higher threshold to prevent 

excessive inlining. Applications are categorized as Large, Median, or Small, and the temperature 

threshold is adjusted accordingly.

Callsites may account for a large proportion o f execution time due to frequent execution or due 

to high trip-count loops inside the callee. The temperature heuristic is not effective at distinguishing 

these two cases. However, inlining w ill only be effective at enhancing performance in the case where 

the call is made frequently. A  high trip-count loop can be optimized effectively without inlining, but 

inlining it w ill likely produce the negative effects described above. The cycle.density ratio identifies 

these heavy functions by comparing the amount o f execution time spent in the function to the number 

o f times the function was called. Only those callees with a low cycle_density should be inlined.

Zhao shows that the addition o f adaptive inlining improves performance on the SPEC CINT2000 

benchmarks by more than 5% compared to temperature alone. Also, while cycle_density has little 

impact on performance, it reduces code bloat by as much as 27% by preventing the inlining o f a 

small number o f infrequently called functions. These experiments were performed on an Itanium 

processor, with FDO training on the SPEC training inputs, and evaluated on the SPEC reference 

inputs.

As discussed above, the ORC’s inlining heuristics rely heavily on the frequency o f execution 

o f each callsite, the execution frequency o f each function, and the number o f cycles spent in each 

function. While these measures can be estimated statically, they can be much more accurately de

termined by collecting profile information. Loop optimization classically assumes that each loop 

iterates 10 times. There are standard expectations o f branch probabilities for various classes o f 

branches. These estimates can be used to generate estimates for the quantities used by the in lin 

ing heuristics. However, profile information is very valuable for calculating heuristic values. In 

particular, profile information can provide much better measures o f loop trip counts for use with 

the cycle-density heuristic, and w ill result in much more accurate temperature values. Therefore, 

inlining should be more effective when FDO is used.

10
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Chapter 3

Experimental Setup

3.1 Metrics

This thesis addresses two primary questions: (1) does profiling on different training inputs result in 

different optimization decisions in the compiler? and (2) do these modified decisions significantly 

affect program performance? The latter question can be answered by experimentation, and w ill be 

dealt with in Chapter 4. This section addresses the first question. It develops methods to quan

titatively measure the differences between sets o f optimization decisions. These metrics provide 

a concrete measure o f the extent to which the selection o f training data influences the way that a 

program is optimized by a compiler.

During the compilation process, selected compiler decisions are written to a log file. For clarity, 

a particular instance where a decision is made is referred to as a choice, and the selected outcome o f 

the choice is a decision. For example, at a callsite foo  in a program, the compiler has a choice about 

in lin ing/oo, which results in a yes or no decision.

Figure 3.1 shows the callsites o f a simple program that w ill serve as a running example. Assume 

that there is additional code, which is omitted for brevity and clarity, in each o f the functions. Three 

possible inlining logs are presented in Figure 3.2. The notation c a l l e r . c a l l e e  is used to name 

callsites.

Log files record the compiler’s choices and decisions for an optimization during a single corn-

v o id  f o o ( )  { }

v o id  b a r ( )  { 
f o o ( ) ;

}

i n t  m a in ( i n t  a r g c ,  c h a r *  a r g v [ ] )  { 
f o o ( ) ;  
b a r ( ) ;

}

Figure 3.1: Callsites in a simple program 

1 1
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callsite logl log 2 log 3 log 4
b a r . fo o i n l i n e c a l l i n l i n e c a l l
m a in . fo o c a l l c a l l c a l l i n l i n e
m a in .b a r c a l l i n l i n e i n l i n e i n l i n e
m a in . b a r . f o o i n l i n e i n l i n e i n l i n e

Figure 3.2: Some possible inlining logs

callsite v\ v-i #3 V.\

b a r . fo o 1 0 1 0
m a in . fo o 0 0 0 1
m a in .b a r 0 1 1 1
m a in . b a r . fo o 0 1 1 1

Figure 3.3: Log files converted to vectors

pilation. A ll the logs for a given benchmark and optimization are processed together. Each log is 

converted into a vector. Each vector is the same length, with one entry for every unique choice 

recorded in the set o f logs. By convention, a 0 is recorded in the vector for a negative decision 

(choosing not to perform an optimization), while a positive non-zero value is recorded for a positive 

decision (choosing to perform the optimization). In the case where a choice is not present in one or 

more logs, a default value o f 0 is recorded. This situation may arise any time the existence o f one 

decision depends on a previous positive decision. By making a negative decision for one choice, the 

compiler im plic itly  makes negative decisions for all choices that depend on a positive decision for 

that first choice. For example, the main.bar.foo callsite does not exist in log 1 in Figure 3.2, so it is 

assigned the default value o f 0 in the vectors in Figure 3.3.

Once each o f the n  logs has been converted into a vector tf,-, the Difference and Coverage metrics 

can be calculated. The terms log and vector are used interchangeably to refer to vectors

3.1.1 Difference

The difference metric quantifies the difference between two logs. It is defined as the squared length 

o f the difference vector between two log vectors i7, and V j:

6(vi ,Vj)  =  \vj -  v j |2

In the case where binary decisions are recorded in the vectors as Os and Is, 5 (v i,V j)  is simply the

V i  Vo #3 VA

V i 0 3 2 4
Vo 0 1 1
V3 0 2
V.\ 0

Table 3.1: Values for the difference metric
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Hamming distance between the vectors1. Difference values for the example are given in Table 3.1.

<5 grows as the number o f choices that resulted in different decisions in the two logs increases. 

Therefore, this metric gives a direct indication o f the extent to which a different selection o f training 

input can result in different optimization decisions during compilation. However, <5 has no concept o f 

the relative importance o f the decisions. Two logs that differ only regarding insignificant decisions 

may have the same 5 value as two logs that only differ with respect to a few key decisions. Therefore, 

there may be no correspondence between the difference score and performance.

3.1.2 Alignment

The common im plicit assumption o f most work that uses FDO is that as long as the training dataset 

is “ representative”  o f usual program behavior, the particular dataset used for training is inconsequen

tial. I f  this is the case, then the optimization logs based on profiles from different training inputs 

should not vary significantly. The difference metric can identify differences between a pair o f logs, 

but does not answer the question o f how much the logs agree with each other across the entire set o f 

logs. The alignment metric quantifies the level o f agreement between one optimization log and the 

collective choices made across the logs from all the inputs for a program.

To calculate an alignment score for a log, first calculate the combined total vector:

f = £ >
i

f  can be seen as a measure o f agreement between all the logs. A  choice that frequently results in 

a positive decision w ill have a high value recorded at its index in T , while a decision that is usually 

decided negatively w ill have a low value in T . In the example, T  =  [2 1 3 3]r .

The alignment o f a log vi is defined as:

T - V i  
Oti =  ----------- = —

EjTtf]

a  is most usefully reported as a percentage, where the sum o f the elements o f T  is used as the 

denominator. Recall that the dot product o f two vectors, x  • y  =  \x\\y\cos(8), where 6 is the angle 

between the vectors. Therefore, a  is related to the angle between a log and T . Since a,- is the 

accumulation o f the element-wise products o f T  and u,-, a  w ill be large only i f  F; has positive values 

(i.e., positive decisions) at the same indexes as many other logs. I f  a log has no positive decisions, 

a  w ill be 0. On the other hand, i f  a log has a positive decision for every choice for which any log 

records a positive decisions, a  w ill be 100%. In the example, cvi =  |  =  22%, cto =  § =  67%, 

« ;t =  ! =  89%, and a., =  £ =  78%.

'The Hamming distance is the number o f bits that are different between two equal-lcngth binary vectors
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3.1.3 Differences Between Logs

Logs may differ in two primary ways. First, the positive decisions in one log may be a superset 

(or subset) o f the positive decisions in another. Alternately, two logs may make different decisions, 

such that the intersection o f the two sets o f positive decisions is small. Practically, the differences 

between two logs w ill fall somewhere on the continuum between these extremes, but w ill generally 

tend toward one or the other. It would be useful to distinguish between these two cases, since the first 

case represents more aggressive application o f an optimization, while the second case represents a 

divergence o f optimization strategies. Intuitively, the second case shows a more fundamental change 

in the behavior o f the compiler than the first, and consequently a more significant difference between 

the training inputs that generated the logs in question.

The difference metric cannot distinguish between the two cases, since it merely counts the d if

ferences between the sets o f positive decisions, without regard for whether one log is performing 

more optimization or different optimization than the other. On the other hand, the alignment metric 

does not directly measure the relationship between any pair o f logs. However, when alignment and 

difference are considered together, they provide insight into the relationships between logs.

Let us consider first the cases where difference scores are low. In this case, the low difference 

scores are sufficient to identify the logs as very similar. Since there are few differences between the 

logs, alignment values are expected to be very high.

However, i f  differences between logs are larger, and one log has a higher alignment score than 

the other, it is likely that one log is roughly a superset o f the other. Conversely, i f  the logs differ 

but have very similar alignment, then the difference is likely due to different optimization strate

gies rather than a difference in how frequently an optimization was performed. A low alignment 

value reinforces this conclusion, since it indicates that a larger proportion o f choices were different 

between the logs.

3.2 Benchmarks and Inputs

Feedback-directed optimization involves a multi-step compilation process. First, an instrumented 

version o f the program is compiled. This instrumented binary is run on a training input, and emits 

a profile that describes the run-time behavior o f the program during that run. Finally, the program 

is recompiled. During this compilation, the compiler uses information from the profile file to guide 

code transformations. This study uses a workload o f inputs for each program. Training is done 

once for each input in the workload. The evaluation o f each o f the resulting binaries is measured by 

running it on all the inputs in the workload.

In order to study the impact o f various training datasets on the performance o f feedback-directed 

optimizations, this study uses the standard SPEC CINT2000 benchmarks and their corresponding 

datasets. SPEC provides three sets o f inputs for each program for use during performance evaluation.
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The test input set is a very small input that is provided to allow easy verification that the system 

is configured properly for the compilation and execution o f the benchmark program. The train 

input set consists o f a small or medium-sized input for use during the training run o f FDO. The ref 

(reference) input set is the input set used for performance evaluation. The reference inputs are large, 

and usually run for several minutes. SPEC provides one test and one train input for each program 

in the suite. The reference input set often contains a single ref input, but occasionally consists o f 

several inputs that are processed in consecutive runs o f the program.

The inputs provided by SPEC are insufficient for this study. The test inputs are very small, and 

thus might not be adequate for use during the training run for FDO. Both the test and train inputs are 

reduced in size compared to the ref inputs, and thus may be unsuitable for use during performance 

evaluation. Even in the best cases, there are only a small number o f inputs in the SPEC reference 

workload. Therefore, all the SPEC inputs are included in the workloads for our programs, and are 

supplemented with additional inputs. These additional inputs are chosen to be representative o f a 

larger range o f inputs to the benchmark programs. Where possible, the benchmark authors have 

been consulted during the input selection process so that their expert knowledge o f the program can 

provide insight and intuition to select inputs.

Some SPEC benchmark programs were omitted due to problems compiling them with the ORC. 

A ll benchmarks were used unmodified from the source code provided by SPEC. In some cases, 

newer versions o f the programs were available that may have alleviated some experimental d ifficu l

ties. Nonetheless, this study uses the original benchmark code in order to preserve consistency with 

other works.

Following are brief descriptions o f the benchmark programs and the workloads used. Tables 

summarize the workload for each program, and provide additional details about each input. The 

average time for a statically optimized binary to run on each input on the Itanium 2 is presented as 

a quantitative measure o f each input’s size and complexity.

B z ip 2  is a popular compression u tility  that uses the Burrows-Wheeler block sorting text com

pression algorithm and Huffman coding. The additional inputs for b z ip 2  are a collection o f files in 

common formats. Files in these formats are often distributed over the Internet, or archived by users, 

and compression is usually employed in both o f these scenarios. The b z ip 2  workload is given in 

Table 3.2. B z ip 2  was not run on the log and combined inputs.

G z ip  is another popular compression u tility  that uses Lempel-Ziv coding (LZ77). G z ip  uses 

the same workload as b z ip 2  (Table 3.2), with the addition o f the log and combined inputs. SPEC 

does not provide details about the combined input, but judging by its name and the fact that it is 

g z ip ’s train input, it is reasonable to speculate that combined is a collection o f parts taken from 

the g z ip  reference inputs.

MCF is a multi-commodity flow solver that uses the network simplex algorithm. The workload 

for MCF consists o f the SPEC inputs along with several randomly generated problem instances using
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Inpu t Description Size (M B)
R untir
bzip2

ne (s) 
gzip

mp3 An audio file encoded as an MPEG1 layer 3 
audio stream using 128 Kbps constant b it rate 
encoding.

34 163.32 42.78

jpeg A large image compressed using the JPEG image 
format, using a high quality setting.

15 147.42 40.99

xml An exported iTunes [24] music library in X M L  
format. The library contains approximately 2800 
songs.

4.2 93.83 15.01

docs A collection o f Word, WordPerfect and RTF 
formated text documents. Excel and Quattro Pro 
spreadsheets, and PowerPoint presentations.

4.8 521.11 31.64

pdf A  collection o f developer manuals for digital 
signal processors, as PDF documents.

16 117.85 36.89

mpeg A  video encoded as an MPEG-1 video stream. 2.9 157.21 42.86

compressed The SPEC train input for b z ip 2 ,  and the SPEC 
test input for g z ip .

1.0 26.75 1.29

reuters ASCII text from the Reuters collection [30]. 4.4 55.35 44.37

gap The 254.gap SPEC CINT2000 benchmark 
program binary compiled with optimization and 
without feedback by the ORC 2.1 compiler.

3.4 86.53 72.75

graphic A  SPEC reference input for both b z ip 2  and 
g z ip .  A large TIFF image.

6.3 73.67 41.23

program A  SPEC reference input for both b z ip 2  and 
g z ip .  A program binary.

3.3 73.15 67.62

random A  SPEC test input b z ip 2 ,  and a SPEC refer
ence input for g z ip .  Random data.

8.0 5.79 33.85

source A  SPEC reference input both for b z ip 2  and 
g z ip .  A tarball o f source code.

9.1 53.00 37.44

log A  SPEC reference input for g z ip .  A  Webserver 
log.

4.2 71.37 17.98

combined The SPEC train input for g z ip . 3.0 131.70 22.45

Table 3.2: Workload for b z ip 2  and g z ip
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Inpu t
T ri

Time-Tabled
as

Dead-IIead
Runtime (s)

ref 16555 194581 530.34
test 646 2789 0.21
train 5985 84449 31.42
synth-0 10000 200000 596.99
synth-1 11000 200000 814.63
synth-2 12000 200000 1168.17
synth-3 13000 200000 1566.10
synth-4 14000 200000 1999.12
synth-5 5000 200000 56.78
synth-6 6000 200000 100.56
synth-7 7000 200000 162.47
synth-8 8000 200000 269.21
synth-9 9000 200000 386.11

Table 3.3: Workload for MCF

In pu t Board Positions Search Depth L im it Runtim e (s)

ref 5 11-12 133.60
test 4 7 - 8 2.99
train 4 8 -  10 18.61
wac-001 10 12 113.46
wac-051 10 12 165.31
wac-151 10 12 347.76
wac-251 10 12 275.01

Table 3.4: Workload for c r a f t y

varied parameters. Each problem instance is composed o f timetabled trips and dead-head trips, 

which are used to create the problem graph. Our testing showed that the difficulty o f a problem 

instance is related to the ratio between the number o f the two trip types. Unfortunately, efforts to 

contact the benchmark author to verify this result or gather additional insight into the problem failed. 

Therefore, we selected a number o f deadhead trips similar to the SPEC reference input, and varied 

the number o f timetabled trips. Table 3.3 provides additional details. Notice that the run times for 

the synthetic inputs span a range from about 10% to almost 400% the runtime o f the SPEC reference 

input.

C r a f t y  is a high-performance chess-playing program. The SPEC inputs used in the workload 

are each collections o f chess positions to solve (determine i f  the current player w ill w in or loose). 

The additional inputs are small collections o f board positions arbitrarily selected from a large set 

provided by the program’s author. Additional details can be found in Table 3.4. The additional 

inputs for c r a f t y  also show variation in program difficulty, based on program runtime.

P a r s e r  is a natural language parser that attempts to label words in English sentences with 

their correct part o f speech. The version o f parser in the SPEC CINT2000 suite is version 2, while 

the current version is version 4.0. The newer version can parse sentences faster, and can handle 

sentences that cause the SPEC version to abort in mid-run. Manual checking o f inputs was required
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Inpu t Description Sentences Runtime (s)

ref The SPEC ref input. 7759 292.54

test The SPEC test input. 848 1.87

train The SPEC train input. 343 6.66

alice Text from “A lice ’s Adventures in Wonderland”  
by Lewis Carroll. Digital text is from the Project 
Gutenberg repository [10].

773 609.36

pa Text from the news posts from December 29, 2004 
through May 6, 2005 at Penny-Arcade [27], a 
popular video-game news and webcomic website.

2227 432.20

relativity Text o f “ Relativity: The Special and General 
Theory”  by Albert Einstein. Digital text is from 
Project Gutenberg [22]. Some manual processing 
was performed to fix sentences with equations and 
figure references.

590 534.52

worlds Text from “ The War o f the Worlds”  by H. G. Wells. 
Digital text is from Project Gutenberg [39].

2456 592.83

02-05words Those sentences with only 2 - 5  words, inclusive, 
from the pa, alice, relativity and worlds inputs.

452 0.33

06-10 words Sentences with 6 - 10 words from the Project 
Gutenberg inputs.

1181 2.33

1 l-15words Sentences with 1 1 - 1 5  words from the Project 
Gutenberg inputs.

1271 8.95

16-20words Sentences with 1 6 - 2 0  words from the Project 
Gutenberg inputs.

1220 37.30

21-25 words Sentences with 2 1 - 2 5  words from the Project 
Gutenberg inputs.

1083 141.66

Table 3.5: Workload for p a r s e r
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In pu t Parameter Runtime (s)

ref N /A 173.29
test N /A 0.87
train N /A 6.67
snf200-300 200 and 300 0.73
snf525 525 4.86
snf750 750 18.99
snf900 900 35.99
snfl025 1025 59.82
s n fll5 0 1150 84.34
snfl260 1260 114.47

Table 3.6: Workload for GAP

to prune our additional input o f such offending sentences. Descriptions o f our additional inputs are 

given in Table 3.5. The pa input was selected to exercise p a r s e r 's  code that handles words not 

found in its dictionary, and is an example o f informal writing. Alice was selected as an example o f 

unusual word use and sentence structure. Relativity provides an example o f more formal technical 

writing, while worlds provides more common word use and sentence structure, as well as dialog. 

The inputs for p a r s e r  are varied in both the number o f sentences and the resulting runtime, though 

the two measures are not strongly correlated.

GAP (Groups, Algorithms and Programming) is an interpreter for a mathematical language o ri

ented for computations on groups. The version in the SPEC benchmark is V3R4P3, modified for 

the benchmarks to run on 64-bit architectures. However, the 64-bit porting was not complete, and 

only ensured that the test, training, and reference inputs, supplied to SPEC when the benchmark was 

submitted, ran correctly [35]. Therefore, there are limitations on the variety o f input programs that 

can be selected for GAP. Several additional inputs were tried, but most caused incorrect behavior 

(e.g., infinite loops). Consequently, there must be sections o f code in the benchmark that none o f 

our inputs exercise, namely those sections responsible for incorrect program behaviors. Our addi

tional inputs are a single program, with a varied input parameter. The goal o f varying the parameter 

is two-fold: first, as the parameter grows, the numbers used in calculations w ill grow and the inter

preter w ill shift from machine integer arithmetic to long integer arithmetic. Second, as the parameter 

increases, the performance bottleneck should shift from the CPU to the memory hierarchy. While 

the SPEC test and train inputs are distinct, both overlap the computations specified in the SPEC ref 

input (i.e. some o f the calculations performed by the test and train inputs are also exactly performed 

in the ref input) [35]. The inputs used in the GAP workload are listed in Table 3.6. The table does not 

indicate i f  the desired changes in program behavior are realized, but the run times for the additional 

inputs are quite varied.

VPR (Versatile Place and Route) is a tool to place and route circuits for Field-Programmable Gate 

Arrays (FPGAs). This benchmark has been split in two, with one copy for each o f the main program 

tasks. In this way, training on placement inputs is prevented from creating binaries that perform
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Inpu t Size (Logic Blocks)
Runt

Place
ime (s) 

Route

ref (clma) 8383 87.63 82.52
test N/A 1.05 0.44
train N/A 9.90 9.23
alu4 1522 7.34 6.32
apex2 1878 10.77 7.97
apex4 1262 6.06 5.53
bigkey 1707 9.73 8.54
des 1591 9.11 16.81
diffeq 1497 8.03 4.79
dsip 1370 7.12 5.60
elliptic 3604 26.75 21.37
exlOlO 4598 38.17 23.98
ex5p 1064 5.15 6.23
frisc 3556 27.14 23.82
misex3 1397 6.89 5.79
pdc 4575 39.09 127.63
s298 1931 9.55 4.16
s38417 6406 59.96 28.75
S38584.1 6447 60.63 30.80
seq 1750 9.59 7.52
spla 3690 28.59 30.80
tseng 1407 5.17 2.41

Table 3.7: Workload for VPR

poorly on routing inputs (and vice versa), as these effects would exaggerate the differences between 

training inputs. Both the placement and routing versions o f the experiments use the same set o f input 

circuits, but perform only the appropriate task. The additional inputs for the VPR workloads are the 

circuits from the FPGA Place-and-Route Challenge [9]. The SPEC ref input is the clma input from 

the FPGA challenge, thus this input is only included once. Table 3.7 lists the inputs in the VPR 

workloads. While there is variation in the run times for the inputs, for both placement and routing, 

13 o f the 22 inputs have run times o f  less than 10s.

O f the remaining SPEC CINT2000 benchmark programs, perlbmk, vortex, and twolf 
caused the ORC to crash during compilation when flags to emit the inlining log were used. GCC and 

eon are known problems with the ORC 2.1 when optimization is used in conjunction with feedback. 

Since these benchmarks could not be compiled, they were thus omitted from this study.

3.3 Architectures

Both the Itanium and the Itanium 2 implement the 64-bit IA-64 Exp lic itly  Parallel Instruction Com

puting (EPIC) Instruction Set Architecture (ISA) [32], EPIC uses in-order issue o f bundles o f in

structions. Each bundle contains 3 instructions that can be executed in parallel, and must conform 

to one o f the 10 patterns o f instruction types specified by the ISA (such as Memory-Integer-Branch
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(M IB ) or Memory-Integer-Integer (M il)) . The EPIC ISA relies heavily on compiler technology. The 

compiler is responsible for exposing Instruction Level Parallelism (ILP) and effectively scheduling 

instruction to ensure ( I )  that bundles contain few null operations, and (2) that stop instructions (a 

barrier to parallel execution) are avoided. Furthermore, the compiler must make effective use o f 

the advanced features o f the architecture such as hardware-supported control and data speculation, 

instruction predication, the Register Stack Engine (hardware spill and restore), cache hints and data 

cache prefetch instructions.

While both the Itanium and the Itanium 2 are theoretically capable o f fetching, issuing, executing 

and retiring two bundles in each cycle, the Itanium does not have sufficient execution resources to 

frequently achieve this level o f performance in practice. The Itanium 2 increases the number o f 

integer units from 4 to 6, the number o f multimedia units from 4 to 6, and the number o f load/store 

ports from 2 to 4. O f the 100 possible sequences o f two bundle types (e.g., an M IB bundle followed 

by a M il bundle), only 28 can be fu lly issued on the Itanium. The additional execution resources 

o f the Itanium 2 allow an additional 47 sequences to be fu lly  issued. O f course, the performance 

gained by this additional capability depends on the actual sequences o f bundle types generated by 

the compiler for a particular program.

Additionally, the Itanium has a 10-stage pipeline, while the Itanium 2 has an 8-stage pipeline. 

Due to this shorter pipeline, the negative impact o f branch misprediction is expected to be reduced, 

since a pipeline flush results in less lost work. Consequently, the benefit o f i f  conversion should be 

less on the Itanium 2since the performance gain from i f  conversion is partially due to a reduction 

in branch mispredictions.

This study does not directly compare performance on the two platforms since the Itanium 2 has 

a distinct advantage in terms o f both computational resources and clock frequency. Furthermore, we 

are not interested in raw system performance, but rather on the effect o f compiler decisions during 

feedback-directed optimization on system performance.

Our experiments on the Itanium were performed on two 4-processor 733-MHz machines with 

6 GB o f RAM. Files are located in an NFS-mounted directory, though file-system performance 

should have a negligible performance impact since the SPEC benchmarks are specifically modified 

to minimize disk access. Our Itanium 2 machine has a 1.3-GHz processor and 1 GB o f RAM. Files 

are located on the local disk. A ll the machines run RedHat Linux 7.2 with version 2.4 SMP kernels.
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Chapter 4

Results

In order to evaluate FDO in the ORC, we created Aestimo '. Aestimo is a performance evaluation 

tool that automates the process o f compiling, executing, and evaluating the input programs on their 

workloads. Figure 4.1 provides an overview o f Aestimo.

The experiments performed by Aestimo required the creation o f a large number o f binaries. A  

flow diagram for Aestimo's compilation process is presented in Figure 4.2. The bold boxes indicate 

“ final products”  that are subsequently used by Aestimo. Each benchmark program is compiled stat

ically once for each optimization being studied to create the “ static”  binary, and to create the static 

optimization logs. The compiler flags used for the static compilation are the same as for the profiled 

case, except for the omission o f flags that refer to the profile file. Only one instrumented binary is 

created for each program. However, the remaining steps in the flow diagram are performed for each 

optimization/input pair.

Aestimo produces binaries that only use profile-guided decisions for the optimization under in

vestigation for each o f the inputs in the workload. First, a training run executes the instrumented 

binary on the input. Then, the benchmark is compiled using the generated profile data, and an 

optimization log is emitted for the optimization in question. The binary produced at this point is 

discarded. Finally, Aestimo recompiles the benchmark statically. However, the optimization log is 

used to instruct the compiler to make the same decisions for that optimization as it did during the fu ll 

profile-guided compilation. In this way, optimization decisions based on profile information (rather 

than static estimates) are used only for the optimization in question. The binaries produced by this 

final compilation are referred to as FDO binaries.

During the final compilation, the compiler may not be able to perform every optimization listed 

in the log. For example, i f  the log is for i f  conversion, there may be a function that is not inlined 

without profile guidance. In that case, any i f  conversion listed in the log for the inlined code w ill 

be ignored. On the other hand, any additional optimizations that become profitable due to a forced 

decision w ill still be available to the compiler. For example, i f  the log forces a callsite to be inlined, 

any static optimizations applicable to the inlined code w ill still be applied. Therefore, our technique 

1 Aestim o  is a Latin verb whose meaning is similar to that of the English verb evaluate
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Benchmark
Processor T  

Itan ium
imc (hr:m in:sec) 

Itanium 2

bzip2 433:56:13 79:13:22
crafty 67:06:19 22:30:59
gap 44:47:15 14:46:52
gzip 61:12:16 24:05:20
parser 246:14:46 94:23:45
m cf 822:05:34 306:02:20
vpr.place 84:53:30 30:12:08
vpr.route 104:46:11 31:19:45
Total 1865:02:06 602:34:34

Total 2467:36:40 (102.8 days)

Table 4.1: Total processor time o f experiments

ensures that any opportunity to apply the optimization in question w ill result in the same decision as 

in the fu ll feedback-directed case, while not ignoring cascading effects due to the interrelatedness o f 

optimizations.

After the compilation process, Aestimo executes each o f the FDO binaries on each o f the inputs 

in the program workload five times. The combined run times o f the experiments performed by 

Aestimo are presented in Table 4.1. These figures include only the time required to perform the 

five trial executions o f each FDO i f  conversion or inlining binary on each input in the workload. 

The time to compile each o f the 976 binaries (8 instrumented binaries, 16 static binaries, 232 fu ll- 

FDO binaries, 116 FDO i f  conversion binaries, and 116 FDO inlining binaries, for each o f the 

two processors) is not included. Furthermore, the time to perform the 464 training runs on the 

instrumented binaries (which can run an order o f magnitude slower than the optimized binary) to 

generate profiles for FDO are omitted from these figures. Nonetheless, the experiments represent 

more than 102 machine days worth o f processing.

Once execution is complete, Aestimo analyses the program run times and the optimization logs, 

and reports the results. The optimization logs are used to calculate the difference and alignment 

metric scores (Section 4.1). The run times o f the static and FDO binaries are compared to eval

uate performance on the workload (Section 4.2) and the effectiveness o f FDO compared to static 

optimization (Section 4.4). FDO run times are also used to investigate the usefulness more accu

rate profile information by comparing resubstitution with the performance o f other FDO binaries 

(Section 4.3).

4.1 Profile Differences

Let’s return to the first question: Does training on different inputs result in different compile-time 

decisions? Aestimo calculates scores for the difference and alignment metrics defined in Chapter 3 

for each o f the benchmarks. These scores are summarized in tables similar to Table 4.2. Each pairing 

o f logs results in a difference score. The second and third columns o f the table report the mean and
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standard deviation o f the difference scores, defined in Section 3.1, for the FDO log listed in the 

first column paired with all the other FDO logs. The Max column reports the maximum difference 

between a log and any other FDO log. The Static column reports the difference metric when a log 

is compared to the static log. The final column o f the table reports the alignment score for the log. 

The static log is included in the combined total vector when calculating alignment scores.

Other relevant information is recorded in the last four rows o f each table. The number o f distinct 

positive decisions encountered in all i f  conversion logs, or the number o f callsites listed in the 

inlining logs, indicates the length o f the vectors used to calculate the metrics. Choices with Yes or 

No consensus are those where the same decision is made in every log. Full consensus is achieved 

when every log is in agreement about the decision. FDO consensus ignores the static log, and checks 

for consensus among the FDO logs only. The number o f choices without consensus indicates the 

maximum possible number o f choices where two logs could disagree. For example, in Table 4.2 

there are 87 branches that are i f  c o n v e r te d  in at least one log. A ll the FDO logs agree that 15 

branches should be i f  c o n v e r te d ,  and that 31 o f them should not be. Therefore, 41 branches 

remain where different FDO logs make different decisions.

References to logs in this section refer only to the FDO logs, and omit the static optimization 

log. When relevant, the static log w ill be identified explicitly.

Graphs o f the raw difference and alignment scores can be found in Appendix A.

4.1.1 I f  conversion

Emitting the logs o f if-conversion decisions required a small change to the ORC. We inserted a small 

segment o f code to output the source file name, function name, and area and basic block lists for 

each region that is if-converted. Therefore, only positive choices are recorded in the log file.

An excerpt from the static i f  conversion log for b z ip 2  is provided in Figure 4.4. The transfor

mations indicated by this excerpt are illustrated in Figure 4.3. The four i f  conversion transforma

tions occur in the se nd M F T V a lue s  function, and result in the creation o f a large predicated region 

from five basic blocks. An area is a data structure used by the ORC to represent a single-entry region 

o f code. Before i f  conversion, each BB in a program is an area. However, as i f  conversion re

moves branches and merges BBs, areas grow to include multiple BBs. In Figure 4.3, each rectangle 

represents an area, and each number represents a BB. A  dashed box represents a BB that has been 

merged into a larger area. The edges between areas represent control flow transitions. Initially, each 

area consists o f a single basic block and is named for the BB that it contains. For example, an area 

containing BB 42 is named A42.

The first two lines in Figure 4.4 are for i f  statements that do not have an e ls e  path, as shown 

i f  Figure 4.3(a). The first line indicates a positive i f  conversion decision for the branch at the end 

o f A97. Area A99 is the branch target when the i f  at the end o f A97 evaluates to false. Thus, A99 

is not predicated. Instead, the branch in the A97 is converted to a predicate calculation, and A98 is

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

101

99

101101101

100
100 i 100

(a ) (b ) (c ) (d ) (c)

Figure 4.3: I f  conversion performed in the log excerpt 

File Function Areas Area L is t
b z ip 2 . c se nd M T F V a lue s  3 A97{ 97} A98{ 9 8 } A99{ 99}
b z ip 2 . c  se nd M T F V a lue s  3 A99{ 99} A 100{ 1 00 } A 101{ 101}
b z ip 2 . c  se nd M T F V a lue s  2 A97{ 97 98} A 99{ 99 100}
b z ip 2 . c  se nd M T F V a lue s  2 A 97{ 97 98 99 1 00 } A 101{ 101}

Figure 4.4: I f  conversion log excerpt

predicated. The contents o f A98 (BB 98) are then appended to A97 (Figure 4.3(b)). The second line 

records that the branch at the end o f A99 should also be if-converted. This decision causes A100 

to be predicated and appended to A99 (Figure 4.3(c)).

The last two lines in Figure 4.4 record decisions to eliminate unnecessary control flow. Line 

three o f the log records a decision to append A99 to A97 (Figure 4.3(d)). Line four is similar for 

A97 and A 101 (Figure 4.3(e)). The final area is larger than any o f the five original BBs, and contains 

no control flow. Therefore, it provides more opportunities for optimizations such as common subex

pression elimination and instruction scheduling than the same region o f code before i f  conversion.

As explained in Section 3.1, when Aestimo processes the logs, any choices that are missing from 

a log are (correctly) assumed to be a negative decision (not i f - c o n v e r t e d ) .  Neither the differ

ence nor the alignment metric are affected by recording only positive choices. A choice that is nega

tive in all logs w ill not appear in the vectors. Thus, it cannot contribute to the difference. Moreover, 

negative choices never contribute to the alignment score. A  consequence o f recording only positive 

decisions is that there can never be a choice with No consensus: such a choice would not appear in 

any log, and thus Aestimo does not know about it. However, there are a very large number o f regions 

in every program that are evaluated for i f  conversion, but are never if-converted. Recording only 

positive decisions also means that the number o f choices that have a No FDO consensus is exactly 

the number o f choices where Static performed i f  conversion but no FDO log did.

In most cases, the largest differences between logs are between the static log and FDO logs. 

Therefore, profiling does, in general, result in significantly different optimization decisions that 

static optimization. Nonetheless, the selection o f training input can also result in significant differ-
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Inpu t Mean Std Dev M ax Static A lignm ent (% )
combined 13.64 10.32 27 43 84.21
compressed 14.64 10.38 27 45 82.81
docs 14.43 10.37 28 42 84.74

gap 19.57 12.17 33 62 48.60
graphic 11.93 9.50 25 41 86.49
jpeg 16.21 12.04 28 61 51.40
log 15.43 11.18 30 38 89.47
mp3 16.21 12.04 28 61 51.40
mpeg 16.29 11.82 27 60 52.81
pdf 13.50 11.17 29 39 90.35
program 16.29 11.82 27 60 52.81
random 19.00 12.62 31 64 46.32
reuters 17.07 12.01 33 39 91.58
source 13.36 11.34 29 39 90.53
xml 13.29 11.09 28 40 89.12
Distinct Positive Decisions 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

87
14 Full, 15 FDO 
0 Full, 31 FDO 

73 Full, 41 FDO

Table 4.2: I f  conversion metric scores for b z ip 2  on the Itanium

ences in the optimizations decisions made by the compiler.

B z ip 2  presents some interesting alignment values. In Tables 4.2 and 4.3, 6 o f the 15 inputs 

result in alignment scores less than 55%, while the remaining 9 have alignment scores greater than 

80%. There is no similar pattern in the difference scores. Aestimo can perform a cut operation, 

where the inputs in a workload are split into two groups according to their alignment score. I f  an 

input has an alignment score greater than the cut value, it is assigned to the high cut group, but i f  it 

has an alignment score lower than the cut value, it is assigned to the low cut group. The static log 

is included in both groups. After the cut is made, the metric scores are recalculated for each group 

separately. Tables 4.4 and 4.5 show the results o f cutting the b z ip 2  workload on the Itanium at 

55%.

Differences between logs after the cut are small in both groups. This indicates that training on 

different inputs results in two distinct i f  conversion optimization strategies for the Itanium. The 

consensus values for the cut groups show that training on inputs that result in larger alignment 

scores results in more i f  conversion than training on the inputs with lower alignment scores. The 

low alignment scores after the cut for inputs in the low cut set are due to their large differences with 

static. Unfortunately, there do not appear to be significant differences between the decisions made 

when training uses members o f the same cut group.

On the Itanium 2, the results o f the cut are similar to the Itanium. However, in the high cut 

group, the combined input still results in a mean difference score larger than 41, while the other 

inputs have difference scores less than 12. Therefore, training on the combined input results in 

significantly different i f  conversion decisions than training on any other input in the workload.
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Input Mean Std Dev Max Static Alignment (%)
combined 52.93 20.24 69 5 90.20
compressed 19.36 15.96 44 45 81.87
docs 20.93 15.95 44 45 82.60
gap 26.00 20.21 69 70 41.67
graphic 18.07 15.69 42 43 85.67
jpeg 23.29 20.58 69 70 44.44
log 18.64 16.47 40 41 87.57
mp3 24.57 20.54 67 72 40.64
mpeg 23.29 20.58 69 70 44.44
pdf 18.07 15.69 42 43 85.67
program 23.29 20.58 69 70 44.44
random 24.57 20.54 67 72 40.64
reuters 21.43 16.24 39 40 88.30
source 18.64 16.47 40 41 87.57
xml 18.64 16.47 40 41 87.57
Distinct Positive Decisions 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

94
14 Full, 14 FDO 

0 Full, 3 FDO 
80 Full, 77 FDO

Table4.3: I f  conversion metric scores for b z ip 2  on the Itanium 2

Input Mean Std Dev Max Static Alignment (%)
gap 6.00 3.24 8 62 62.37
jpeg 2.00 2.24 5 61 65.98
mp3 2.00 2.24 5 61 65.98
mpeg 2.40 2.78 6 60 67.53
program 2.40 2.78 6 60 67.53
random 4.40 3.02 8 64 60.31
Distinct Positive Decisions 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

81
14 Full, 15 FDO 
0 Full, 57 FDO 
67 Full, 9 FDO

Table 4.4: I f  conversion metric scores for b z ip 2  low cut group (cut = 55%) on the Itanium

Input Mean Std Dev Max Static Alignment (%)
combined 5.88 3.65 10 43 83.04
compressed 6.88 3.78 12 45 81.94
docs 6.75 4.05 11 42 83.48
graphic 4.62 2.31 8 41 84.36
log 7.00 3.61 10 38 88.11
pdf 4.88 2.53 7 39 88.77
reuters 8.12 4.22 12 39 90.31
source 4.62 2.96 8 39 88.99
xml 4.75 3.03 8 40 87.67
Distinct Positive Decisions 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

86
36 Full, 37 FDO 

0 Full, 32 FDO 
50 Full, 17 FDO

Table 4.5: I f  conversion metric scores for b z ip 2  high cut group (cut = 55%) on the Itanium
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In pu t Mean Std Dev M ax Static A lignm ent (% )
ref 225.83 128.88 384 492 53.29
test 247.33 120.64 341 405 54.28
train 230.83 130.40 390 494 46.75
wac-001 239.50 147.55 436 516 52.04
wac-051 239.83 147.54 442 516 50.28
wac-151 244.17 144.14 434 524 51.96
wac-251 404.50 185.23 442 194 60.73
Distinct Positive Decisions 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

920
75 Full, 78 FDO 
0 Full, 104 FDO 

845 Full, 738 FDO

Table 4.6: I f  conversion metric scores for c r a f  t y  on the Itanium

In pu t Mean Std Dev M ax Static A lignm ent (% )
ref 156.17 71.47 173 511 59.27
test 176.50 81.90 219 491 57.71
train 193.33 91.67 234 520 54.63
wac-001 188.33 90.17 234 560 64.04
wac-051 179.33 84.16 222 550 61.19
wac-151 180.67 82.67 202 544 62.21
wac-251 157.00 71.57 166 518 60.96
Distinct Positive Decisions 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

935
79 Full, 117 FDO 

0 Full, 338 FDO 
856 Full, 480 FDO

Table 4.7: I f  conversion metric scores for c r a f t y  on the Itanium 2
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Inpu t Mean Std Dev Max Static A lignm ent (% )
ref 419.56 174.81 488 335 83.93
snf 1025 173.33 250.54 517 206 95.70
snf 1150 173.33 250.54 517 206 95.70
snf 1260 189.78 239.81 506 233 94.74
snf200-300 177.78 244.86 517 198 95.59
snf525 175.56 245.35 512 203 95.68
snf750 173.33 251.19 518 207 95.66
snf900 173.33 250.54 517 206 95.70
test 444.89 215.04 518 577 77.49
train 430.22 215.63 510 517 79.75
Distinct Positive Decisions 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

1723
1021 Full, 1024 FDO 

0 Full, 32 FDO 
702 Full, 667 FDO

Table 4.8: I f  conversion metric scores for GAP on the Itanium

Input Mean Std Dev Max Static A lignm ent (% )
ref 260.00 264.41 294 335 91.62
test 200.00 240.15 294 577 85.31
train 166.00 186.43 226 517 88.23
Distinct Positive Decisions 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

1700
1079 Full, 1104 FDO 

0 Full, 283 FDO 
621 Full, 313 FDO

Table 4.9: I f  conversion metric scores for GAP SPEC inputs on the Itanium

Alignment scores for all inputs on c r a f t y  are low, in the 50-60% range, compared to the 

other benchmarks where alignment is usually greater than 80%. Furthermore, difference scores are 

quite large compared to the number o f choices without consensus. Therefore, there is significant 

disagreement between the logs, and no dominant optimization strategy. These results indicate that 

the inputs selected for crafty are significantly varied, in terms o f the i f  conversion decisions they 

produce. Consequently, any performance variations between these FDO binaries can be more confi

dently linked to the selection o f training input than in cases such as b z ip 2 ,  where the selection o f 

training input has a limited impact on optimization decisions.

Recall from Section 3.2 the difficulty o f selecting additional inputs for GAP. Table 4.8 and 4.11 

indicates that varying the parameter in the additional input, snf, may not have induced the changes 

in memory behavior and large-number processing methods that we desired. Alternatively, these 

changes did occur, but did not result in different i f  conversion decisions. The differences scores 

for the snf inputs are less than half those o f the SPEC ref, test, and train inputs. Furthermore, the 

high alignment scores for the snf inputs suggests that they tend to agree with each other. On the 

other hand, the high difference scores and lower alignment scores o f the SPEC inputs suggest that 

training on these inputs results in substantially different decisions than training on the snf inputs. 

Further investigation reveals that the maximum differences occur between snf and SPEC inputs.
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Inpu t Mean Std Dev M ax Static A lignm ent (% )
snf 1025 11.83 14.72 35 206 98.20
snf1150 11.83 14.72 35 206 98.20
snf 1260 36.33 16.68 43 233 97.08
snf200-300 20.50 14.60 43 198 98.01
snf525 17.67 12.83 38 203 98.10
snf750 11.33 12.47 32 207 98.18
snf900 11.83 14.72 35 206 98.20
Distinct Positive Decisions 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

1635
1394 Full, 1413 FDO 

0 Full, 172 FDO 
241 Full, 50 FDO

Table 4.10: I f  conversion metric scores for GAP snf inputs on the Itanium

Inpu t Mean Std Dev M ax Static A lignm ent (% )
ref 461.78 238.91 554 626 76.29
snf 1025 185.78 275.76 553 219 96.10
snf 1150 186.44 276.06 554 220 96.12
snf 1260 193.78 258.98 537 239 95.18
snf200-300 189.33 271.33 550 208 96.14
snf525 186.44 270.99 547 213 96.17
snf750 185.78 275.76 553 219 96.10
snf900 185.78 275.76 553 219 96.10
test 438.89 235.50 532 600 78.58
train 446.00 245.51 545 613 77.95
Distinct Positive Decisions 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

1782
1002 Full, 1012 FDO 

0 Full, 119 FDO 
780 Full, 651 FDO

Table 4.11: I f  conversion metric scores for GAP on the Itanium 2
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Input Mean Std Dev M ax Static A lignm ent (% )
combined 10.57 11.04 43 62 87.24
compressed 44.36 12.63 50 25 83.37
docs 14.14 10.85 47 66 76.88

gap 15.07 9.87 40 59 82.92
graphic 12.36 9.96 40 65 88.38
jpeg 10.57 11.19 43 62 87.24
log 19.50 11.59 50 55 75.97
mp3 12.14 11.62 45 64 85.88
mpeg 10.57 10.52 43 60 85.54
pdf 12.00 11.50 45 62 84.28
program 12.36 9.93 42 59 83.26
random 15.50 11.42 48 59 80.75
reuters 14.36 10.18 44 59 81.66
source 16.36 10.48 46 63 76.20
xml 15.00 10.64 45 60 78.36
Distinct Positive Decisions 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

108
28 Full, 28 FDO 

0 Full, 12 FDO 
80 Full, 68 FDO

Table 4.12: If conversion metric scores for g z ip  on the Itanium

Additionally, the differences between the snf and SPEC inputs are the only differences in this study 

where comparison to another FDO i f  conversion log results in a larger difference than comparison 

to the static log.

Cutting the workload at 85% separates the snf inputs from the SPEC inputs. Table 4.9 shows 

metric scores for the SPEC inputs on the Itanium. While the mean difference scores for these inputs 

are lower than when calculated for the entire workload, they are still quite large. Therefore, there are 

significant differences in the i f  conversion decisions made depending which SPEC input is used 

for training. On the other hand, Table 4.10 shows the scores for the snf inputs. In this case, all the 

inputs are very similar. The consensus results indicate that the inputs make different decisions for no 

more than 50 o f the 1635 i f  conversion choices recorded in the logs. On the Itanium 2, the results 

o f this cut are very similar. Therefore, it is less likely that selecting different training inputs from 

among the snf inputs w ill result in significant performance differences.

In Table 4.12 difference and alignment scores are fairly uniform across all logs for g z ip  on the 

Itanium. However, compressed has a much larger difference score than the other logs. On average, 

compressed disagrees with other logs for more than 2/3 o f the choices without consensus. This 

large difference score appears to have no impact on compressed’s alignment score. Examination o f 

the log files reveals that training on compressed leads to more i  f  conversion than training on other 

inputs. While training on other inputs results in 47-54 positive i f  conversion decisions, training on 

compressed results in 77 positive i f  conversion decisions. On the Itanium 2, compressed’s 

metric scores do not distinguish it from the other inputs. For this processor, FDO i f  conversion 

results in between 49 and 59 positive i f  conversion decisions, and training on compressed results
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Inpu t Mean Std Dev M ax Static A lignm ent (% )
combined 12.36 5.91 21 74 87.46
compressed 15.29 8.52 26 67 77.67
docs 21.29 7.87 30 77 77.78
gap 17.71 8.34 30 71 82.62
graphic 17.43 7.25 26 71 84.60

jpeg 12.00 6.56 22 71 87.02
log 22.43 9.08 30 67 79.21
mp3 15.57 8.93 28 71 78.99
mpeg 11.64 5.15 19 70 84.71
pdf 14.64 7.27 25 74 82.18
program 17.43 7.64 26 73 84.49
random 16.00 8.77 26 65 78.99
reuters 16.71 7.50 28 71 83.39
source 19.36 7.96 27 76 74.92
xml 16.71 6.70 24 69 78.22
Distinct Positive Decisions 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

125
27 Full, 30 FDO 

0 Full, 43 FDO 
98 Full, 52 FDO

Table 4.13: I f  conversion metric scores for g z ip  on the Itanium 2

in only 49.

As shown in Tables 4.14 and 4.15, there are virtually no differences between the FDO logs for 

MCF. In fact, on the Itanium 2, the FDO logs have no more than four different decisions between 

them, synth-5 results in the most distinct i f  conversion decisions on the Itanium, with a difference 

scores o f 8-10 when compared to the other FDO logs. However, unless some o f these few decisions 

are critical to performance, it is unlikely that there w ill be any significant variation in performance 

between the FDO binaries for MCF.

Tables 4.16 and 4.17 suggests a negative correlation between the difference and alignment scores 

for parser. One might suspect that higher alignment scores correspond to more i f  conversion. 

However, this is not the case. The FDO i f  conversion logs for the both processors have between 

103 and 131 positive decision recorded in them. The median, 121, corresponds to alice in both 

cases, while the log for ref records 123 positive i f  conversion decisions. Despite this result, alice 

has the lowest alignment score, while ref has the largest alignment score. Therefore, the differences 

between inputs to parser represent substantially different i f  conversion decision. Comparing 

the results on the Itanium and Itanium 2, it appears that FDO results in similar decisions on both 

processors.

However, static optimization performs significantly more i f  conversion on the Itanium 2 than 

on the Itanium: the static log contains 58 decisions on the Itanium, but 204 on the Itanium 2. This 

result is in contrast to the other programs, where results were similar across processors. Furthermore, 

the larger number o f functional units in the Itanium 2 should make i f  conversion profitable in more 

cases than on the Itanium. Therefore, intuition suggests that i f  conversion should be performed
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Inpu t Mean Std Dev Max Static A lignm ent (% )
ref 1.25 2.33 8 32 92.43
synth-0 2.58 2.62 10 34 93.46
synth-1 2.58 2.62 10 34 93.46
synth-2 1.83 2.39 9 33 93.05
synth-3 1.25 2.33 8 32 92.43
synth-4 1.25 2.33 8 32 92.43
synth-5 8.58 2.74 10 40 79.75
synth-6 1.25 2.33 8 32 92.43
synth-7 1.25 2.33 8 32 92.43
synth-8 1.25 2.33 8 32 92.43
synth-9 1.25 2.33 8 32 92.43
test 3.08 2.49 10 34 92.84
train 1.25 2.33 8 32 92.43
Distinct Positive Decisions 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

67
23 Full, 28 FDO 

0 Full, 27 FDO 
44 Full, 12 FDO

Table 4.14: I f  conversion metric scores for MCF on the Itanium

In pu t Mean Std Dev M ax Static A lignm ent (% )
ref 1.08 1.05 2 31 92.14
synth-0 2.42 1.50 4 33 93.15
synth-1 2.42 1.50 4 33 93.15
synth-2 1.67 1.11 3 32 92.74
synth-3 1.08 1.05 2 31 92.14
synth-4 1.08 1.05 2 31 92.14
synth-5 1.92 1.50 4 33 93.75
synth-6 1.92 1.50 4 33 93.75
synth-7 1.92 1.50 4 33 93.75
synth-8 1.08 1.05 2 31 92.14
synth-9 1.08 1.05 2 31 92.14
test 1.92 1.50 4 33 93.75
train 1.08 1.05 2 31 92.14
Distinct Positive Decisions 63
Choices with Yes Consensus 28 Full, 33 FDO
Choices with No Consensus 0 Full, 26 FDO
Choices without Consensus 35 Full, 4 FDO

Table 4.15: I f  conversion metric scores for MCF on the Itanium 2
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Input Mean Std Dev Max Static Alignment (%)
02-05words 65.73 22.20 75 135 66.20
06-10 words 34.82 16.76 55 142 82.22
11-15words 31.36 18.44 62 145 84.71
16-20words 26.45 22.63 71 158 90.91
21-25words 26.45 23.64 71 158 90.91
alice 33.55 19.78 70 155 85.32
pa 25.91 23.15 71 158 90.24
ref 38.09 18.27 64 155 84.51
relativity 32.27 23.35 75 154 86.26
test 45.00 18.65 53 139 74.61
train 40.45 18.76 59 150 80.74
worlds 27.00 23.24 73 156 89.02
Distinct Positive Decisions 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

200
5 Full, 62 FDO 
0 Full, 35 FDO 

195 Full, 103 FDO

Table 4.16: I f  conversion metric scores for p a r s e r  on the Itanium

Input Mean Std Dev Max Static Alignment (%)
02-05words 64.00 21.29 72 171 65.58
06-1 Owords 35.45 17.54 55 198 78.56
11-15words 34.18 19.04 61 206 79.53
16-20words 28.18 21.70 67 202 84.78
21 -25words 29.27 22.72 70 205 85.51
alice 34.55 19.54 66 199 80.01
pa 28.73 22.33 68 203 84.18
ref 40.55 18.65 62 199 78.80
relativity 34.55 23.26 72 197 81.64
test 48.00 20.02 58 195 70.95
train 42.91 19.50 57 196 75.36
worlds 30.91 23.24 72 199 83.57
Distinct Positive Decisions 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

280
33 Full, 66 FDO 
0 Full, 111 FDO 

247 Full, 103 FDO

Table 4.17: I f  conversion metric scores for p a r s e r  on the Itanium 2
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Inpu t Mean Std Dev Max Static A lignm ent (% )
alu4 3.90 3.54 12 45 96.49
apex2 3.90 3.54 12 45 96.49
apex4 3.90 3.54 12 45 96.49
big key 3.90 3.54 12 45 96.49
des 6.76 3.96 16 45 95.39
diffeq 7.33 4.15 14 41 98.61
dsip 6.76 3.96 16 45 95.39
elliptic 10.38 4.29 16 43 95.72
ex1010 5.81 3.75 14 47 94.88
ex5p 3.90 3.54 12 45 96.49
frisc 6.19 3.98 12 39 98.24
misex3 3.90 3.54 12 45 96.49
pdc 8.10 4.18 14 49 93.96
ref 6.19 3.98 12 39 98.24
s298 6.57 3.55 12 47 93.74
S38417 6.19 3.98 12 39 98.24
S38584.1 6.19 3.98 12 39 98.24
seq 3.90 3.54 12 45 96.49
spla 8.10 4.18 14 49 93.96
test 6.95 3.72 16 49 95.24
train 3.90 3.54 12 45 96.49
tseng 7.33 4.15 14 41 98.61
Distinct Positive Decisions 158
Choices with Yes Consensus 102 Full, 106 FDO
Choices with No Consensus 0 Full, 32 FDO
Choices without Consensus 56 Full, 20 FDO

Table 4.18: I f  conversion metric scores for VPR (place) on the Itanium

more frequently on the Itanium 2than on the Itanium, not less.

VPR metric scores are similar to those o f MCF. Mean difference scores are low, and alignment 

scores usually exceed 90%. Therefore, it is unlikely that there w ill be performance differences 

between FDO binaries. On the other hand, static differences are higher, particularly for the routing 

component o f VPR, and performance differences between the FDO and Static binaries are more 

likely.

4.1.2 Inlining

In lin ing logs are generated using existing ORC compiler flags. In particular, the flag combination: 

-W j , - t t l 9  : 0x40000  -W j , - t t l 9  : 0 x80000  emits the inlining decision to the file 

o r c . s c r i p t . lo g .  This file contains a section for each function that is compiled, and lists each 

callsite as either a CALL or IN L IN E  decision. An example from b z ip 2  is given in Figure 4.5. The 

entry is for the function s o r t l t ,  which has callsites for p a n ic  on line 2268, q S o r t3  on line 

2235, and s im p le S o r t  on line 2146. A ll three called functions, as well as s o r t l t ,  are found in 

the b z ip 2  . o object file. O f the three calls, only the call to q S o r t3  is inlined. Some optimizations 

can change the number o f entries in a log file. Thus, each callsite encountered in a log is inserted
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Inpu t Mean Std Dev Max Static A lignm ent (% )
alu4 4.29 3.61 12 50 96.16
apex2 4.29 3.61 12 50 96.16
apex4 4.29 3.61 12 50 96.16
bigkey 5.43 3.51 14 48 96.58
des 8.48 4.51 18 48 95.46
diffeq 6.57 4.41 12 44 97.83
dsip 8.48 4.51 18 48 95.46
elliptic 10.76 4.86 18 48 95.42
ex1010 6.19 3.83 14 52 94.62
ex5p 4.29 3.61 12 50 96.16
frisc 6.57 4.41 12 44 97.83
misex3 4.29 3.61 12 50 96.16
pdc 8.48 4.42 16 54 93.75
ref 6.57 4.41 12 44 97.83
s298 6.95 3.78 14 52 93.54
S38417 6.57 4.41 12 44 97.83
S38584.1 6.57 4.41 12 44 97.83
seq 4.29 3.61 12 50 96.16
spla 8.48 4.42 16 54 93.75
test 8.67 4.23 18 52 95.32
train 4.29 3.61 12 50 96.16
tseng 9.05 4.19 16 44 98.53
Distinct Positive Decisions 169
Choices with Yes Consensus 108 Full, 111 FDO
Choices with No Consensus 0 Full, 36 FDO
Choices without Consensus 61 Full, 22 FDO

Table 4.19: I f  conversion metric scores for VPR (place) on the Itanium 2
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Input Mean Std Dev Max Static Alignment (%)
alu4 6.29 5.62 15 87 92.29
apex2 6.29 5.62 15 87 92.29
apex4 8.00 4.69 19 84 94.08
bigkey 8.29 4.41 22 87 93.38
des 8.19 4.79 19 84 93.99
diffeq 9.62 5.91 25 86 94.30
dsip 7.33 4.77 18 91 91.73
elliptic 8.86 5.95 23 87 93.12
ex1010 6.29 5.62 15 87 92.29
ex5p 7.24 4.64 18 83 93.95
frisc 8.86 5.95 23 87 93.12
misex3 6.29 5.62 15 87 92.29
pdc 19.62 6.88 29 73 86.50
ref 8.29 5.14 21 85 94.43
s298 6.95 5.11 18 90 91.42
S38417 12.19 5.70 28 83 96.69
S38584.1 10.95 6.48 28 85 95.21
seq 6.29 5.62 15 87 92.29
spla 6.29 5.62 15 87 92.29
test 17.05 5.78 29 78 93.08
train 6.29 5.62 15 87 92.29
tseng 10.19 6.23 27 84 95.08
Distinct Positive Decisions 170
Choices with Yes Consensus 73 Full, 83 FDO
Choices with No Consensus 0 Full, 47 FDO
Choices without Consensus 97 Full, 40 FDO

Table 4.20: I  f  conversion metric scores for VPR (route) on the Itanium
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Input Mean Std Dev Max Static Alignment (%)
alu4 5.90 5.28 15 86 93.05
apex2 5.90 5.28 15 86 93.05
apex4 7.62 4.47 19 83 94.65
bigkey 8.57 4.10 20 84 93.79
des 7.81 4.54 19 83 94.57
diffeq 8.57 4.93 21 81 96.10
dsip 7.62 4.72 17 88 92.31
elliptic 7.81 5.17 21 82 95.04
ex1010 5.90 5.28 15 86 93.05
ex5p 6.86 4.39 18 82 94.53
frisc 9.14 5.45 23 84 93.56
misex3 5.90 5.28 15 86 93.05
pdc 18.29 6.01 29 72 89.14
ref 7.81 5.17 21 82 95.04
s298 7.24 5.14 18 87 92.03
S38417 11.71 5.84 26 80 97.07
S38584.1 9.90 5.62 24 80 96.92
seq 5.90 5.28 15 86 93.05
spla 5.90 5.28 15 86 93.05
test 16.67 5.57 29 77 93.75
train 5.90 5.28 15 86 93.05
tseng 9.14 5.31 23 79 96.80
Distinct Positive Decisions 180
Choices with Yes Consensus 85 Full, 95 FDO
Choices with No Consensus 0 Full, 46 FDO
Choices without Consensus 95 Full, 39 FDO

Table 4.21: I f  conversion metric scores for VPR (route) on the Itanium 2
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COMPILE ("bzip2.o",sortlt,NOREG) {
CALL (2268,0,"bzip2.o",panic,NOREG)
INLINE (2235,0,"bzip2.o",qSort3,NOREG) {
}
CALL (2146,0,"bzip2.o",simpleSort,NOREG)

}

Figure 4.5: Inlining log excerpt

into a table with its caller, its callee, and its line number, to ensure that all vectors are o f the same 

length, and that each choice has a unique index that is the same in every vector.

Unfortunately, the information written to the log file is not sufficient to uniquely identify every 

callsite. I f  multiple calls to the same function occur on the same line o f source code, they w ill 

have identical entries in the log file and w ill collide in the table. Furthermore, multiple calls in long 

statements (such as an i f statement with many tests) that span multiple lines are considered to occur 

on the same line. In these cases, the choice is recorded as a 1 in the vector i f  any o f the callsites are 

inlined. However, this aliasing problem is minor: in total, there are 128 callsites for the Itanium and 

126 callsites for the Itanium 2 where aliasing occurs. For both processors, there are only 8 aliased 

callsites where the same decision is not made for all o f the indistinguishable log entries: 3 (o f 246) 
for gzip, 4 (o f 4366) for GAP, and 1 (o f 1464) for bzip2.

The results o f metric calculations for inlining are similar to those presented for i f  conversion 

in Section 4.1.1. The results from the two processors are very similar. Static inlining results in the 

largest differences compared to other logs, while the differences between the profile-guided logs are 

much smaller. The tendency for alignment scores to be high suggest that either there is insufficient 

variety between the inputs in the workloads, or that inlining in the ORC is not very sensitive to 

inputs selection.

The consensus values for the b z ip 2  indicate that the FDO inlining logs are not very similar. 

While there are a large number o f callsites where there is consensus to not perform inlining, there 

are no callsites that are universally inlined for either processor. This fact is related to the observation 

that the FDO logs either have difference scores larger than 140 and alignment scores less than 7%, or 

difference scores less than 90 and alignment scores greater than 45%. The logs with lower difference 

scores also have much lower differences compared to static. Tables 4.23 and 4.24 show the results 

o f cutting the inputs for the Itanium into two groups. The inputs that resulted in alignment scores 

greater than 45% are quite similar. Inputs in this group have difference scores and high alignment 

values when they are cut from the rest o f the inputs. In fact, there are only 15 callsites where training 

on different inputs from this group results in different inlining decisions.

On the other hand, cutting the inputs with low alignment scores from the rest o f the workload 

reveals that there are significant differences between the inputs in this group. Difference values are 

still very high, and alignment scores are only slightly larger than when calculated using the entire 

workload. Furthermore, there is very little consensus between the logs in this groups, and there is
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Input Mean Std Dev Max Static Alignment (%)
combined 82.21 82.79 162 69 53.22
compressed 81.00 80.91 159 74 51.51
docs 155.50 43.23 158 203 5.89

gap 81.93 83.05 162 71 52.81
graphic 80.93 81.97 160 75 52.53

jpeg 159.21 44.25 162 207 6.23
log 80.21 78.64 156 77 50.14
mp3 157.36 43.74 160 205 6.10
mpeg 159.21 44.25 162 207 6.23
pdf 156.43 43.48 159 204 6.03
program 82.36 82.66 162 73 53.01
random 80.00 79.83 157 76 51.30
reuters 156.43 43.48 159 204 6.03
source 81.00 82.90 161 72 53.15
xml 149.93 41.63 152 197 5.48
Callsites (Vector Length) 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

1464 
0 Full, 0 FDO 

779 Full, 835 FDO 
685 Full, 629 FDO

Table 4.22: In lin ing metric scores for b z ip 2  on the Itanium

Input Mean Std Dev Max Static Alignment (%)
docs 155.00 69.42 158 203 11.45
jpeg 158.33 70.89 162 207 12.12
mp3 156.67 70.16 160 205 11.85
mpeg 158.33 70.89 162 207 12.12
pdf 155.83 69.79 159 204 11.72
reuters 155.83 69.79 159 204 11.72
xml 150.00 67.10 152 197 10.65
Callsites (Vector Length) 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

1464 
0 Full, 0 FDO 

793 Full, 919 FDO 
671 Full, 545 FDO

Table 4.23: Inlin ing metric scores for b z ip 2  low cut group on the Itanium

Input Mean Std Dev Max Static Alignment (%)
combined 5.43 3.63 10 69 91.74
compressed 6.29 3.03 9 74 88.78
gap 4.57 3.23 9 70 92.56
graphic 4.86 2.66 7 75 90.55
log 7.71 3.44 10 77 86.42
program 5.71 3.46 9 73 91.38
random 6.00 2.71 7 76 88.43
source 4.00 2.45 7 72 91.62
Callsites (Vector Length) 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

183
58 Full, 69 FDO 
43 Full, 99 FDO 
82 Full, 15 FDO

Table 4.24: Inlin ing metric scores for b z ip 2  high cut group on the Itanium
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Inpu t Mean Std Dev Max Static A lignm ent (% )
combined 79.50 23.08 88 121 3.99
compressed 86.14 78.69 159 74 48.70
docs 150.50 46.01 158 203 6.23

gap 87.50 80.60 162 71 49.86
graphic 86.07 79.85 160 75 49.71
jpeg 154.21 46.91 162 207 6.59
log 84.79 76.77 156 77 47.54
mp3 154.21 46.91 162 207 6.59
mpeg 154.21 46.91 162 207 6.59
pdf 153.29 46.69 161 206 6.52
program 87.64 80.46 162 73 50.14
random 84.86 77.79 157 76 48.55
reuters 151.43 46.24 159 204 6.38
source 86.43 80.59 161 72 50.22
xml 144.93 44.62 152 197 5.80
Callsites (Vector Length) 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

1464 
0 Full, 0 FDO 

774 Full, 830 FDO 
690 Full, 634 FDO

Table 4.25: In lin ing metric scores for b z ip 2  on the Itanium 2

still no callsite that all logs agree should be inlined. The low cut group logs contain an order o f 

magnitude more callsites than the logs o f the high cut group. Nonetheless, all FDO logs contain 

between 82 and 93 positive inlining decisions. Therefore, training on inputs in the low cut group 

must result in the repeated inlining o f callsites in inlined code. Each callsite in an inlined callee 

creates a new callsite in the logs. In order to increase the number o f callsites in the logs from 183 

to 1464, this situation must have occurred very frequently. Since the logs in the low cut group do 

not agree on which callsites should be inlined, they must represent decisions to inline different call 

chains. Consequently, training on different input in this group must result in different hot sections 

o f code. Thus, training on different inputs from the low cut group results in significantly different 

inlining decisions, and are thus well suited to our study.

The results o f cutting the workload for the Itanium 2 generates very similar results to those 

discussed above for the Itanium. However, the combined input results in significantly different 

results. First, on the Itanium combined is in the high cut group, but is in the low cut group on the 

Itanium 2. Furthermore, training on combined results in inlining only 9 callsites. Consequently, 

combined’s mean difference score o f 85.43 is approximately the mean number o f inlined callsites 

in the other logs, while its alignment score o f 1.71% reflect nearly complete disagreement with the 

other inlining logs.

In Tables 4.26 and 4.27 the consensus information indicates that FDO reduces the amount o f 

inlining performed for c r a f t y .  The number o f choices without consensus indicates that there are 

about 200 callsites where static optimization makes a different decision than all the FDO logs. These 

differences are explained by the number o f callsites with No consensus: the FDO logs agree to not
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Inpu t Mean Std Dev M ax Static A lignm ent (% )
ref 17.00 11.97 26 230 86.96
test 33.33 16.63 44 244 81.39
train 16.67 12.14 26 228 87.42
wac-001 22.67 13.28 40 230 86.91
wac-051 27.33 15.06 44 234 86.17
wac-151 22.50 11.85 33 239 86.17
wac-251 18.50 11.54 31 229 86.96
Callsites (Vector Length) 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

891
198 Full. 204 FDO 
429 Full, 629 FDO 

264 Full, 58 FDO

Table 4.26: In lin ing metric scores for c r a f t y  on the Itanium

Inpu t Mean Std Dev M ax Static A lignm ent (% )
ref 20.33 10.72 26 230 86.60
test 34.67 16.79 44 244 81.29
train 25.00 12.30 34 234 85.11
wac-001 23.33 13.44 40 230 86.92
wac-051 27.00 15.00 44 234 86.32
wac-151 24.17 12.27 33 239 86.04
wac-251 20.17 11.17 31 229 86.83
Callsites (Vector Length) 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

891
196 Full, 202 FDO 
428 Full, 626 FDO 

267 Full, 63 FDO

Table 4.27: In lin ing metric scores for c r a f t y  on the Itanium 2
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Input Mean Std Dev Max Static Alignment (%)
ref 178.33 155.40 554 960 60.38
snf 1025 120.56 166.11 499 1019 59.71
snf 1150 120.56 165.96 499 1017 59.34
snf 1260 120.56 165.96 499 1017 59.34
snf200-300 143.67 165.31 541 1049 58.06
snf525 125.67 167.40 517 1033 60.86
snf750 122.56 167.68 504 1024 59.59
snf900 535.00 193.81 602 536 81.03
test 210.33 170.22 602 1014 62.19
train 198.56 171.63 600 1014 60.86
Callsites (Vector Length) 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

4366
223 Full, 225 FDO 

2986 Full, 3445 FDO 
1157 Full, 696 FDO

Table 4.28: In lin ing metric scores for GAP on the Itanium

Input Mean Std Dev Max Static Alignment (%)
ref 131.00 49.75 167 960 66.71
snf 1025 65.22 82.14 189 1019 66.78
snf1150 65.44 81.67 189 1017 66.34
snf 1260 65.44 81.67 189 1017 66.34
snf200-300 90.11 60.82 167 1049 64.76
snf525 70.56 74.04 179 1033 68.03
snf750 67.00 83.05 192 1024 66.67
snf900 65.44 82.60 190 1020 66.86
test 164.56 73.13 192 1014 68.60
train 151.89 69.72 182 1014 67.19
Callsites (Vector Length) 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

4366
223 Full, 225 FDO 

2993 Full, 3894 FDO 
1150 Full, 247 FDO

Table 4.29: In lin ing metric scores for GAP on the Itanium 2

inline about 200 callsites that are inlined by static optimization. W hile the maximum difference 

between FDO logs is moderate, the mean difference scores are large compared to the maximum, 

indicating that training on different inputs results in different optimization strategies.

With GAP. there are a large number o f callsites without consensus. Furthermore, mean differ

ences are quite large, and the maximum differences between FDO logs approach the total number 

o f choices without consensus. On the Itanium, the snf900 log has a much larger difference and 

alignment values than the other logs. Training on snf900 results in more inlining than training on 

the other inputs: Other logs inline between 297 and 405 callsites, but the snf900 log inlines 820 

callsites. Unlike the results o f i f  conversion, training on different snf inputs does cause different 

inlining decisions to be made.

There are a small number o f differences between most o f the FDO logs for g z ip .  However, on 

the Itanium, the log for docs has a mean difference score more than four times larger than any other
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Input Mean Std Dev Max Static Alignment (%)
combined 14.79 24.07 96 108 78.38
compressed 15.00 24.38 97 109 77.25
docs 91.79 25.92 102 80 83.73

gap 12.21 22.08 86 104 69.74
graphic 13.36 23.27 92 108 72.24

jpeg 15.00 24.38 97 109 77.25
log 12.50 22.65 88 104 67.69
mp3 13.57 23.43 93 109 71.10
mpeg 12.50 22.71 90 106 71.22
pdf 12.50 22.65 88 104 67.69
program 12.29 22.41 87 103 68.83
random 21.36 24.10 102 108 66.21
reuters 12.50 22.65 88 104 67.69
source 14.64 23.25 94 106 74.97
xml 12.29 22.41 87 103 68.83
Callsites (Vector Length) 246
Choices with Yes Consensus 18 Full, 31 FDO
Choices with No Consensus 80 Full. 109 FDO
Choices without Consensus 148 Full, 106 FDO

Table 4.30: In lin ing metric scores for g z ip  on the Itanium

Input Mean Std Dev Max Static Alignment (%)
combined 7.86 5.05 14 108 87.97
compressed 8.07 5.36 13 109 86.72
docs 6.79 5.83 17 103 76.19
gap 6.71 5.49 18 104 77.19
graphic 7.14 4.43 18 108 80.58
jpeg 8.07 5.36 13 109 86.72
log 7.14 5.81 16 104 74.81
mp3 7.50 4.05 17 109 79.20
mpeg 6.57 3.15 14 106 79.20
pdf 7.86 5.05 14 108 87.97
program 6.79 5.83 17 103 76.19
random 15.14 5.00 18 108 73.93
reuters 7.14 5.81 16 104 74.81
source 8.43 2.92 12 106 83.58
xml 6.79 5.83 17 103 76.19
Callsites (Vector Length) 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

246
18 Full, 33 FDO 

110 Full, 192 FDO 
118 Full, 21 FDO

Table 4.31: Inlin ing metric scores for g z ip  on the Itanium 2
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Inpu t Mean Std Dev Max Static A lignm ent (% )
ref 0.58 1.45 5 9 95.22
synth-0 0.58 1.45 5 9 95.22
synth-1 0.58 1.45 5 9 95.22
synth-2 0.58 1.45 5 9 95.22
synth-3 0.58 1.45 5 9 95.22
synth-4 1.50 1.52 6 10 89.57
synth-5 0.58 1.45 5 9 95.22
synth-6 0.58 1.45 5 9 95.22
synth-7 0.58 1.45 5 9 95.22
synth-8 0.58 1.45 5 9 95.22
synth-9 0.58 1.45 5 9 95.22
test 5.00 1.57 6 12 92.17
train 1.33 0.97 4 10 96.09
Callsites (Vector Length) 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

32
11 Full, 14 FDO 
7 Full, 12 FDO 
14 Full, 6 FDO

Table 4.32: In lin ing metric scores for MCF on the Itanium

input, as well as an elevated alignment score. Training on docs results in inlining 136 callsites on 

the Itanium, while training on the other inputs results in only 42-55 inlined callsites. Conversely, 

random also has larger than average difference scores on both processors. However, random also 

has the lowest alignment score in both cases. Therefore, while training on random results in about 

the same quantity o f inlining as training on other inputs, the inlining decisions that are made are 

significantly different than when other training inputs are used. This result is not surprising: random 

data has no structure and, in general, cannot be compressed. Thus, it is unlikely that training on 

random data w ill exercise any o f the paths in the code that perform compression.

As with if conversion, there are virtually no differences between the inlining logs for MCF. 
Tables 4.32 and 4.33 show that the FDO logs had different decisions for no more than 6 callsites, 

while the average difference between logs is less than 1 different decision. Therefore, unless in lin 

ing this single callsite is a key factor for performance, MCF w ill likely achieve the same levels o f 

performance regardless o f which training input is used.

With p a r s e r ,  mean difference scores are large, and there are a significant number o f callsites 

without consensus. Therefore, training on different inputs does result in different inlining decisions 

for p a r s e r .  Alice on the Itanium has a larger difference score than the other logs, and a much 

lower alignment score. Training on alice likely results in about half as much inlining as training on 

other inputs for the Itanium.

There are virtually no differences between the FDO inlining logs for the placement task o f VPR. 
O f the 877 callsites in the program, training on different inputs results in different decisions for at 

most 4 callsites. However, the differences between the FDO logs and the static log are large. The 

consensus data shows that static optimization inlines 457 callsites that not inlined in any o f the FDO

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Inpu t Mean Std Dev Max Static A lignm ent (% )
ref 0.58 1.45 5 9 95.22
synth-0 0.58 1.45 5 9 95.22
synth-1 0.58 1.45 5 9 95.22
synth-2 0.58 1.45 5 9 95.22
synth-3 0.58 1.45 5 9 95.22
synth-4 1.50 1.52 6 10 89.57
synth-5 0.58 1.45 5 9 95.22
synth-6 0.58 1.45 5 9 95.22
synth-7 0.58 1.45 5 9 95.22
synth-8 0.58 1.45 5 9 95.22
synth-9 0.58 1.45 5 9 95.22
test 5.00 1.57 6 12 92.17
train 1.33 0.97 4 10 96.09
Callsites (Vector Length) 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

32
11 Full, 14 FDO 
7 Full, 12 FDO 
14 Full, 6 FDO

Table 4.33: In lin ing metric scores for MCF on the Itanium 2

Inpu t Mean Std Dev Max Static A lignm ent (% )
02-05words 164.09 68.25 228 385 52.53
06-1 Owords 137.36 59.10 202 383 58.28
11 -15words 126.45 60.16 213 350 74.70
16-20words 119.00 59.36 197 356 75.05
21 -25words 133.91 53.36 186 355 71.85
alice 191.36 68.20 260 427 38.69
pa 159.36 67.12 228 367 75.23
ref 120.64 56.88 198 369 77.60
relativity 128.82 51.92 179 386 68.29
test 161.55 64.08 260 357 76.02
train 125.18 60.51 213 372 72.64
worlds 122.27 56.11 189 376 74.66
Callsites (Vector Length) 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

1186
62 Full, 82 FDO 

542 Full, 714 FDO 
582 Full, 390 FDO

Table 4.34: In lin ing metric scores for parser on the Itanium
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Input Mean Std Dev Max Static Alignment (%)
02-05words 178.73 72.70 245 414 67.12
06-10words 129.45 56.35 196 399 72.19
11-15words 114.55 51.74 180 353 81.77
16-20words 109.64 55.04 189 361 81.06
21-25words 118.55 61.58 229 355 82.80
alice 129.09 61.84 198 395 68.46
pa 148.55 69.67 245 367 75.42
ref 110.91 52.25 195 369 79.83
relativity 117.64 54.58 182 386 70.28
test 148.73 56.12 198 357 78.71
train 113.64 52.35 185 372 76.40
worlds 111.09 58.47 206 376 76.38
Callsites (Vector Length) 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

1186
111 Full, 152 FDO 
519 Full, 688 FDO 
556 Full, 346 FDO

Table 4.35: In lin ing metric scores for parser on the Itanium 2

Input Mean Std Dev Max Static Alignment (%)
alu4 1.14 1.30 3 472 71.77
apex2 1.14 1.30 3 472 71.77
apex4 1.14 1.30 3 472 71.77
bigkey 1.14 1.30 3 472 71.77
des 1.14 1.30 3 472 71.77
diffeq 1.14 1.30 3 472 71.77
dsip 1.81 1.56 4 471 72.08
elliptic 1.43 0.68 2 471 70.93
ex1010 2.38 1.56 4 469 68.99
ex5p 1.14 1.30 3 472 71.77
frisc 1.43 0.68 2 471 70.93
misex3 1.14 1.30 3 472 71.77
pdc 2.38 1.56 4 469 68.99
ref 2.38 1.56 4 469 68.99
s298 1.81 1.56 4 471 72.08
S38417 2.38 1.56 4 469 68.99
S38584.1 2.38 1.56 4 469 68.99
seq 1.14 1.30 3 472 71.77
spla 2.38 1.56 4 469 68.99
test 1.81 1.56 4 471 72.08
train 1.14 1.30 3 472 71.77
tseng 1.81 1.56 4 471 72.08
Callsites (Vector Length) 877
Choices with Yes Consensus 39 Full, 50 FDO
Choices with No Consensus 366 Full, 823 FDO
Choices without Consensus 472 Full, 4 FDO

Table 4.36: In lin ing metric scores for VPR (place) on the Itanium
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Inpu t Mean Std Dev M ax Static A lignm ent (% )
alu4 1.14 1.30 3 472 71.77
apex2 1.14 1.30 3 472 71.77
apex4 1.14 1.30 3 472 71.77
bigkey 1.14 1.30 3 472 71.77
des 1.14 1.30 3 472 71.77
diffeq 1.14 1.30 3 472 71.77
dsip 1.81 1.56 4 471 72.08
elliptic 1.43 0.68 2 471 70.93
ex1010 2.38 1.56 4 469 68.99
ex5p 1.14 1.30 3 472 71.77
frisc 1.43 0.68 2 471 70.93
misex3 1.14 1.30 3 472 71.77
pdc 2.38 1.56 4 469 68.99
ref 2.38 1.56 4 469 68.99
s298 1.81 1.56 4 471 72.08
S38417 2.38 1.56 4 469 68.99
S38584.1 2.38 1.56 4 469 68.99
seq 1.14 1.30 3 472 71.77
spla 2.38 1.56 4 469 68.99
test 1.81 1.56 4 471 72.08
train 1.14 1.30 3 472 71.77
tseng 1.81 1.56 4 471 72.08
Callsites (Vector Length) 877
Choices with Yes Consensus 39 Full, 50 FDO
Choices with No Consensus 366 Full, 823 FDO
Choices without Consensus 472 Full, 4 FDO

Table 4.37: In lin ing metric scores for VPR (place) on the Itanium 2
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Inpu t Mean Std Dev Max Static A lignm ent (% )
alu4 9.86 12.54 36 456 80.28
apex2 9.86 12.54 36 456 80.28
apex4 9.76 12.87 37 457 79.90
bigkey 15.57 6.77 28 458 82.16
des 12.05 12.95 41 455 77.51
diffeq 12.52 9.79 31 459 81.25
dsip 30.33 10.75 41 452 84.06
elliptic 9.76 12.87 37 457 79.90
ex1010 9.86 12.54 36 456 80.28
ex5p 12.43 12.33 39 451 76.65
frisc 11.29 11.90 37 453 77.82
misex3 9.76 12.87 37 457 79.90
pdc 26.62 10.01 45 447 69.96
ref 14.14 12.56 41 451 76.02
s298 33.48 12.51 45 450 84.55
S38417 9.86 12.54 36 456 80.28
S38584.1 9.86 12.54 36 456 80.28
seq 9.76 12.87 37 457 79.90
spla 13.86 12.39 41 451 75.33
test 32.33 11.80 42 451 83.75
train 9.76 12.87 37 457 79.90
tseng 23.38 7.15 37 458 83.30
Callsites (Vector Length) 877
Choices with Yes Consensus 66 Full, 87 FDO
Choices with No Consensus 327 Full, 732 FDO
Choices without Consensus 484 Full, 58 FDO

Table 4.38: In lin ing metric scores for VPR (route) on the Itanium
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Inpu t Mean Std Dev M ax Static A lignm ent (% )
alu4 9.86 12.54 36 456 80.28
apex2 9.86 12.54 36 456 80.28
apex4 9.76 12.87 37 457 79.90
bigkey 15.57 6.77 28 458 82.16
des 12.05 12.95 41 455 77.51
diffeq 12.52 9.79 31 459 81.25
dsip 30.33 10.75 41 452 84.06
elliptic 9.76 12.87 37 457 79.90
ex1010 9.86 12.54 36 456 80.28
ex5p 12.43 12.33 39 451 76.65
frisc 11.29 11.90 37 453 77.82
misex3 9.76 12.87 37 457 79.90
pdc 26.62 10.01 45 447 69.96
ref 14.14 12.56 41 451 76.02
s298 33.48 12.51 45 450 84.55
S38417 9.86 12.54 36 456 80.28
S38584.1 9.86 12.54 36 456 80.28
seq 9.76 12.87 37 457 79.90
spla 13.86 12.39 41 451 75.33
test 32.33 11.80 42 451 83.75
train 9.76 12.87 37 457 79.90
tseng 23.38 7.15 37 458 83.30
Callsites (Vector Length) 
Choices with Yes Consensus 
Choices with No Consensus 
Choices without Consensus

877
66 Full, 87 FDO 

327 Full, 732 FDO 
484 Full, 58 FDO

Table 4.39: Inlin ing metric scores for VPR (route) on the Itanium 2
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logs. On the other hand, FDO results in the inlining o f at most 54 callsites. VPR’s routing task results 

in larger variations between the FDO logs. However, the differences between static optimization and 

FDO inlining are still very large compared to the differences between FDO logs. Therefore, profiling 

makes a significant difference in the compiler’s ability to identify hot callsites in VPR, and, as w ill 

be presented in Section 4.2.2, consequently improves program performance.

4.1.3 Conclusions

Overall, different training inputs result in different optimization decisions for both i f  conversion 

and inlining. In almost every case, there are much more significant differences between the static 

logs and the profile-guided logs than between any pair o f FDO logs. Furthermore, the consensus 

data shows that FDO usually results in the same decisions for the majority o f choices, and that 

in most cases the differences between FDO logs are confined to a fa irly small proportion o f the 

choices made for a program. In the extreme, several inputs for MCF and for the placement task o f 

VPRresult in identical optimization decision. Therefore, using or not using FDO appears to have a 

more significant impact on the optimization decisions made by a compiler than the selection o f the 

training input used for FDO. However, since the performanceof a program is often most significantly 

impacted by a small number o f important optimization decisions, these results do not imply that the 

selection o f training input is not important.

4.2 Run-Time Performance

Aestimo measures the run times for the binaries produced with the FDO optimization log from 

training on each o f the inputs in the workload, as well as for the statically optimized binary. Each 

binary is run on each o f the inputs in the workload five times. Unfortunately, a larger number o f 

trials would have taken a prohibitive amount o f computing time. Therefore, along with the average 

performance, Aestimo reports results based on the minimum and maximum times from among the 

five trials. The main bar in the graphs shows the average o f the five trials, while the error bars 

show the minimum and maximum values obtained. Values for the error-bars are determined using 

identical calculations to those used with the average time. A ll run times are measured as the user 

component reported by the U N IX  t im e  command. A ll the graphs presenting performance results 

in this chapter w ill use these conventions.

Reported performance results may vary depending on the method used to summarize the raw run

time data [23] (pp. 24-39). I f  the total run times for a workload are compared, a few long-running 

inputs could dominate the run time and the comparison would effectively ignore shorter-running 

inputs. Alternatively, the run time for each element o f the workload can be normalized. In this case, 

each input is equally important in the comparison, but this is not always a desirable characteristic.

Therefore, Aestimo provides performance results calculated using two methodologies: an arith

metic sum o f run times and a geometric sum o f run times. The arithmetic sum aggregates the raw
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Figure 4.6: Average performance o f FDO i  f  conversion

run times on each o f the inputs in the workload for a given binary. The sum is reported as a percent 

faster than the same measure for the statically compiled binary. The geometric sum is similar, but it 

normalizes the run times against the (arithmetic average) static time before aggregating. Precisely, 

the geometric sum is defined as:

where W  is the workload, I  G W  is the training input used to create the binary, and t i m e j ( j ) , j  S 

W, is the time for the binary trained in input I  to run on the input i . The results labeled Static 

are included in the graphs to display the variance between the minimum and maximum times for 

execution with the statically optimized binary.

The metrics referred to in this section are the difference and alignment metrics defined in Sec

tion 3.1 and reported in Section 4.1.

4.2.1 I f  conversion

I f  conversion is known to provide modest performance improvements at best [13]. On the Itanium, 

profile-guided i f  conversion has mixed effects on performance. On the Itanium 2, Aestimo finds 

that profile-guided i f  conversion invariably results in an (often substantial) performance reduction. 

Apparent performance may vary between the two evaluation metrics, but the conclusions o f the 

performance evaluation are not affected by the run time aggregation metric chosen.

Figure 4.6 presents the average arithmetic performance o f the FDO binaries for each program. 

On the Itanium, FDO i f  conversion results are mixed, but on average FDO i f  conversion has little 

effect on performance. FDO i f  conversion makes little difference to the g z ip  and VPR routing. 

B z ip 2  and p a r s e r  are consistently slightly improved by FDO i f  conversion, while it reduces 

performance on c r a f t y ,  g z ip ,  and VPR’s placement task. GAP and MCF show small performance

t ime i  ( j )

t i m e a t n i i c ( j )

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ft
2.5

4

3

2
0.5

0
I
•2

Training DalasctTraining Dataset

■§11 O. u  eo oo r f t  oo S=
a a s. ^  & g. -a I I  s n

l !  8 §

a . u  to  do n  co 'zz

a % £  -  I  |  *
I I  e <■» ►»

e ao «

(a) Arithmetic (b) Geometric

Figure 4.7: Performance o f b z ip 2  with i f  conversion on the Itanium

i
I*

I
0
1
2
3
4
5
6
7
8 
9

Training Dataset

•sa .s 1 1 ec_
E

oo eo m  
&  ‘  ~H U iB fa.

■>

0
■)

4

ft

8 Lu
0

i
a .
E

eo co m
8. -2 g-

(a) Arithmetic (b) Geometric

Figure 4.8: Performance o f b z ip 2  with i f  conversion on the Itanium 2

reduction when trained on most inputs, but also have small performance gains when trained on two 

or three o f the inputs in the workload.

Results on the Itanium 2 are disappointing. FDO is intended to improve performance, but this is 

clearly not the case with FDO i f  conversion. For nearly every benchmark, performance is reduced 

uniformly regardless o f which training input is used. Furthermore, the average difference score 

appears to have no correlation with performance. For example, with p a r s e r ,  average difference 

scores range from 28 to 64, but all FDO binaries exhibit identical performance. Perhaps the most 

important observation o f FDO i f  conversion is that performance is nearly always reduced by more 

than 3%, by 5% on average, and by as much as 8% for M C F.

Run time variances for FDO i f  conversion binaries are frequently large, making it impossible 

to distinguish between the performance o f binaries trained on different inputs. Recall that the i f  

conversion alignment scores for b z ip 2  are split into two groups: inputs with alignment scores less 

than 55%, and inputs with alignment scores greater than 80%. Despite these differences, Figures 4.7
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Figure 4.10: Performance o f c r a f t y  with i f  conversion on the Itanium 2

and 4.8 show no significant performance differences between the FDO binaries.

There are distinguishable differences in the performance o f several c r a f t y  binaries on both 

processors, though the difference between the best and worst performance seen in Figures 4.9 

and 4.10 is less than 1%. The average difference metric does not vary substantially between the 

binaries, expect for wac-251 on the Itanium, which has a score o f 405 (see Table 4.6). The other 

inputs result in scores less than 248. Training on wac-251 also results in the best performance 

on c r a f t y ,  which suggests that the different profile information provided by this input results in 

different optimization decisions that do impact performance.

Similarly, there is some correspondence between larger average difference scores and greater 

performance for GAP on the Itanium. Most inputs result in difference scores less than 200 (see Ta

ble 4.8), and performance penalties o f about 1%. The SPEC ref, test, and train inputs have average 

difference scores exceeding 400. Figure 4.11 shows that they also result in the best performance on 

this benchmark. However, training on the snf1260 input results in better performance than training
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Figure 4.13: Performance o f g z ip  with i  f  conversion on the Itanium
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Figure 4.14: Performance o f g z ip  with i  f  conversion on the Itanium 2

on ref, but results in an average difference score o f only 190.

On the other hand, GAP on the Itanium 2 also displays distinguishable levels o f performance, as 

seen in Figure 4.12. In this case, most inputs have an average difference score o f about 185, while 

the SPEC ref, test, and train inputs have average difference scores larger than 400. However, while 

training on ref results in the best performance among the FDO binaries, training on test and train 

results in the two worst performing binaries.

G z ip  and MCF on the Itanium are also cases where changes in metric scores do not correlate 

with changes in performance. With g z ip ,  there are two statistically distinct levels o f performance 

in Figure 4.13: 0.5% slower and 0.8% slower than static. Unfortunately, these differences are too 

small to be practically significant. There are no trends in the metric scores to suggest these two levels 

o f performance. Both the log and docs logs have lower than average alignment scores, but display 

different levels o f performance. The mean difference scores for the binaries that are 0.8% slower 

than static appear to be higher than average, but many binaries at the -0.5% performance level have
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Figure 4.15: Performance o f MCF with i f  conversion on the Itanium
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Figure 4.18: Performance o f p a r s e r  with i f  conversion on the Itanium 2

differences larger than graphic. Furthermore, while all other inputs have mean difference scores 

less than 20, compressed results in a mean difference score o f 44. However, the performance o f 

the binary trained on compressed is indistinguishable from 5 other binaries.

Similarly, synth-5 for MCF results in a significantly larger mean difference score and a lower 

alignment score than the other inputs, but does not display any significant differences in perfor

mance. Conversely, training on synth-8, synth-9, test, and train results in improved performance, 

but they have nearly the same metric scores as the other input. Therefore, there is no clear connection 

between the difference and alignment scores and performance.

Despite the moderate mean difference scores for p a r s e r ,  differences in i f  conversion deci

sions do not appear to result in any variations in performance among the FDO binaries. Recall that 

the FDO logs had consensus for about half o f the i f  conversion choices for p a r s e r .  Therefore, 

it is likely that the choices that do not have consensus among the FDO logs are those that are not 

important for the performance o f the program, while those choices with consensus are a superset
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Figure 4.19: Performance o f VPR (place) with i f  conversion on the Itanium
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Figure 4.20: Performance o f V P R  (place) with i f  conversion on the Itanium 2

o f the most important i f  conversion choices. The large reduction in performance on the Itanium 2 

is likely due to some o f the 111 i f  conversion choices that the FDO logs had consensus not to i f  

convert, but that static optimization chooses to i f  convert.

The pdc, s298, and spla inputs for the placement task o f V P R  have the worst performance 

for this program on the Itanium (see Figure 4.19). These inputs also have the lowest alignment 

scores. Therefore, there may be a correlation between alignment score and performance in this case. 

However, on the Itanium 2, there are no inputs with distinguishing metric scores, nor any that result 

in very significantly different performance. There are no distinguishing features for the inputs for 

the routing task o f V P R , either (see Figures 4.21 and 4.22). The consensus numbers indicate that 

the main difference between static and feedback-directed optimization is about 50 i f  conversion 

choices where static performs i f  conversion but FDO does not. This result suggests that not enough 

i f  conversion is being performed on the Itanium 2 when FDO is used.
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Figure 4.21: Performance o f VPR (route) with i f  conversion on the Itanium
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Figure 4.22: Performance o f VPR (route) with i f  conversion on the Itanium 2
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Figure 4.23: Average performance o f FDO inlining

4.2.2 Inlining

In lin ing is an important optimization that can benefit greatly by knowing the hot functions and 

frequent callsites in a program. Therefore, we expect significant performance gains from profile- 

guided inlining. However, i f  different inputs exercise different parts o f the code, or otherwise result 

in different relative frequencies for important functions and callsites, overall performance on the 

workload may vary.

The experimental results show that there are significant performance impacts from feedback- 

directed inlining. Furthermore, there are several cases where the selection o f training input has a 

significant and substantial impact on performance. Figure 4.23 shows the average arithmetic perfor

mance o f FDO inlining on each program. FDO inlining improves performance by 6% on average 

on the Itanium. However, while FDO inlining has little impact on performance for the Itanium 2 on 

average, the largest average performance gain is slightly more than 2%, but the largest performance 

reduction is almost 5%. For individual binaries, FDO inlining improves performance by as much as 

12% or reduces it by up to 6%, while the performance difference between training on two inputs can 

approach 7%.

Figure 4.24 shows performance gains for b z ip 2  from profile-guided inlining on the Itanium. 

Despite the large variances, training on the combined input results in performance gains o f about 

8%, while training on xml improves performance by only 2%. Figure 4.25 indicates that training 

input selection is also important for b z ip 2  on the Itanium 2. Training on some inputs, such as 

log or docs, has a negligible impact on performance. However, training on combined reduces 

performance by over 5%. Recall from Section 4.1.2 that inputs resulted in either difference scores o f 

about 150 and alignment scores o f about 6%, or difference scores o f about 80 and alignment scores 

o f about 50% for both processors. However, there is no obvious correlation between these scores 

and performance. For example, training on either mpeg or program results in similar performance
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Figure 4.24: Performance o f b z ip 2  with inlining on the Itanium
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Figure 4.25: Performance o f b z ip 2  with inlining on the Itanium 2
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Figure 4.26: Performance o f c r a f t y  with inlining on the Itanium
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Figure 4.27: Performance o f c r a f t y  with inlining on the Itanium 2

despite mpeg having an alignment score o f about 6% and program having an alignment score o f 

about 50%.

C r a f t y  on the Itanium achieves the largest performance improvement from profile-guided in

lining observed in our study. As shown in Figure 4.26, training on most inputs results in performance 

improvement o f 8%. However, 10% and 12% gains can be achieved by training on wac-151 and 

wac-001 respectively. However, the metric scores do not distinguish these inputs in any way. There 

are inputs with both higher and lower mean difference and alignment scores. In particular, test has 

the largest mean difference score and lowest alignment score, while train has the smallest mean 

difference score and largest alignment score. Nonetheless, the performance o f the binaries trained 

on these two inputs is identical.

The performance impact o f FDO inlining for c r a f t y  on the Itanium 2 varies significantly 

with the training input chosen, as seen in Figure 4.27. However, these variations in performance 

seem uncorrelated to the difference or alignment metrics. Ref and wac-251 have the lowest mean

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

3

2

0

Training Dataset

s s •n  ©  
r i  inC C

M
u
3

o

4

0

oin s § a
£ e
C!s

(a) Arithmetic (b) Geometric
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Figure 4.29: Performance o f GAP with inlining on the Itanium 2

differences, and also the worst performance. However, test has the largest mean difference, but 

also results in reduced performance. On the other hand, train improves performance by 4%, but has 

mean difference and alignment scores that are on neither extreme when compared to the scores o f 

other inputs.

GAP on the Itanium displays small performance variations across the workload. Figure 4.28(a) 

shows that the least performance improvement is about 3% for test, and the greatest is about 4.5% 

for snf750. snf750 and snf200-300 have very similar metric scores, but dissimilar performance. 

The SPEC ref, test, and train inputs all have mean difference scores approximately 50% larger 

than the other inputs, but have similar levels o f performance. The performance impact o f inlining 

for GAP on the Itanium 2 is small. However, for both the snf200-300 and snf750 inputs, the 

arithmetic measure results in slightly worse performance than static on the workload, while the 

geometric measure shows a small performance improvement. Training on these two inputs results 

in a longer total time to process the entire workload, despite an average improvement in per-input
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Figure 4.30: Performance o f g z ip  with inlining on the Itanium
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Figure 4.31: Performance o f g z ip  with inlining on the Itanium 2

processing time. Furthermore, there is no visible connection between the metric scores and observed 

performance.

Figure 4.30 shows fairly consistent performance improvements for g z ip  on the Itanium, docs 

has a very large mean difference score, more than four times larger than any other input. However, 

this large difference does not correspond to any impact on performance. The performance improve

ments on the Itanium 2 are small, as shown in Figure 4.31. Training on random produces a markedly 

smaller improvement in performance than training on the other inputs on both processors, random 

also has a mean difference score nearly twice as large as any other input on the Itanium 2, and about 

50% larger than all inputs except docs on the Itanium. Recall that random’s low alignment score 

was due to it inlining a significantly different set o f callsites than other logs. The performance results 

reveal that these different decisions result in inferior performance on our workload. Therefore, the 

selection o f random as the training input for g z ip  does result in different inlining decisions that 

do result in different performance than training on other inputs.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



%
 F

as
te

r 
tha

n 
St

at
ic 

%
 F

as
te

r 
th

an
 

S
ta

tic

10

8

6

4
•y

0

Training Dataset
o  — n  m  
■ £ • £ • £  -S

I

12

10
8
6
4

y

0
•2

Training Dataset

•s s  «s -s -s 3
© — n

•s -s -s -s -s -s - ee e? e e e e  "■*

(a) Arithmetic (b) Geometric

Figure 4.32: Performance o f MCF with inlining on the Itanium
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Figure 4.33: Performance o f MCF with inlining on the Itanium 2
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Figure 4.34: Performance o f p a r s e r  with inlining on the Itanium
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Figure 4.35: Performance o f p a r s e r  with inlining on the Itanium 2

FDO inlining results in equivalent performance regardless o f the training input chosen for MCF 

for both processors. Performance is improved about 7-8% on the Itanium, see Figure 4.32, but re

duced by 4-5% on the Itanium 2, see Figure 4.32. Since the mean difference scores for all inputs 

on both processors are very small, these similarities in performance across training inputs are ex

pected. Recall that the metric scores for MCF are identical for the same training input on the two 

processors, and that the inlining decisions are identical as well. Clearly, these decisions are effective 

at improving performance on the Itanium, but are inappropriate for the Itanium 2.

Figure 4.34 illustrates that the large mean difference scores for p a r s e r  on the Itanium do 

not impact performance, as performance is improved uniform ly by 9%. Furthermore, alice has a 

much larger mean difference score and significantly lower alignment score than the other inputs, but 

achieves identical performance. Therefore, the differences between the logs must be for infrequently 

executed callsites.

In Figure 4.35 different training inputs clearly result in different levels o f performance for
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Figure 4.36: Performance o f VPR (place) with inlining on the Itanium
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Figure 4.37: Performance o f VPR (place) with inlining on the Itanium 2

p a r s e r  on the Itanium 2. Most inputs achieve a distinct level o f performance from the other inputs. 

Unfortunately, the performance impacts are small, w ith improvements and reductions all less than 

1%, which lim its the practical significance o f these results. Nonetheless, there does appear to be 

a weak correlation between alignment and performance. Conversely, there is likely a weak inverse 

correlation between performance and mean difference score. 02-05words has the worst perfor

mance, the highest mean difference score, and the lowest alignment. Meanwhile, 11-15words has 

the best performance, the second largest alignment score and a low mean difference score. There

fore, the better-performing binaries likely have more inlined callsites than the worse-performing 

binaries. The effectiveness o f training on alice varies between the arithmetic and geometric mea

sures. Unlike the two inputs for GAP, training on alice results in a reduction in processing time 

for the entire workload, compared to Static. Despite this fact, the average per-input performance o f 

p a r s e r  is reduced compared to static.

FDO inlining usually has a small impact on performance for VPR. The routing component o f
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Figure 4.38: Performance o f VPR (route) with inlining on the Itanium
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Figure 4.39: Performance o f VPR (route) with inlining on the Itanium 2
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VPR on the Itanium is the only exception, where performance is improved by more than 4%. It is not 

surprising that performance is nearly identical regardless o f the training input used. The maximum 

difference between logs for routing on both processors is 4, indicating that the optimization decisions 

made during compilation are virtually identical regardless o f the training input. The difference 

scores are a bit larger for the placement component o f VPR. However, the scores are still fairly 

small, and there are no significant differences in performance between the binaries. The benefit o f 

FDO inlining for routing on the Itanium is likely due to a small number o f callsites that are easily 

identified as important using any training input.

4.2.3 Conclusions

The experimental results indicate that training on different inputs does lead to different decisions by 

the compiler, and that there are often performance differences between binaries trained on different 

inputs. Ideally, there would be a correlation between the alignment and/or difference metrics and 

performance. Visually comparing the graphs for i f  conversion from Section 4.1.1 with the tables 

from Section 4.2.1, there is no obvious correlation. A  similar situation exists for inlining. There 

may be a slight correlation between alignment and performance for b z ip 2  on the Itanium, where 

xm l and docs have reduced alignment and reduced performance. However, the GAP snf900 and 

the g z ip  docs inputs on the Itanium both have elevated alignment and difference scores compared 

to the other inputs, but no apparent corresponding variation in performance. There are no visually 

identifiable trends or anomalies in the Itanium 2 data.

In order to further examine a possible correlation between alignment and performance, we 

graphed the alignment score o f each training input against its performance on the workload for 

each benchmark. These graphs do not suggest any correlation between alignment and performance. 

For completeness, these graphs can be found in Appendix B.

A  significant finding o f this performance study is that while profile-guided inlining usually does 

not reduce performance (the main exceptions being b z ip 2  and MCF on the Itanium 2), the same 

cannot be said o f profile-guided i f  conversion. I f  conversion almost always reduces performance 

on the Itanium (though b z ip 2  is improved about 4% and parser is improved about 1.5%), and re

duces performance on the Itanium 2 for every training input for every program in our study. Further

more, performance is reduced by more than 5% on average. An improved design o f i f  conversion 

in the ORC with respect to the way that profile information is used may correct the performance 

degradation caused by this transformation. Similarly, there is also potential to improve inlining for 

the Itanium 2.

4.3 Resubstitution

An important question when using FDO is whether or not the compiler makes good use o f the profile 

information. More precisely, does the accuracy o f the profile impact the resulting performance o f
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the optimizations? Resubstitution is the practice o f using the same input for both the training and 

evaluation runs. While running a program on identical input multiple times would seldom, i f  ever, 

be done in practice (since the results o f the computation would be known after the first run), resub

stitution allows for the evaluation o f how well the compiler uses so-called “ perfect information.”  

Since the profile contains only branch and callsite frequency counts, instead o f fu ll path frequency 

counts, the information is not perfect. However, no other input could produce a profile that is more 

accurate than resubstitution.

Ideally, a compiler that makes good use o f profile information w ill produce the fastest binary for 

a given input when resubstitution is used. I f  this is not the case, then:

•  The collected profile may be insufficient to capture important program behaviors, or the in

formation may not be sufficient to be representative o f the actual program behavior in certain 

situations.

•  The compiler may not properly use profile information. Heuristics that use the profile in

formation might not make correct decisions, or perhaps the machine model is insufficient or 

inaccurate.

•  Performance improvements may arise unexpectedly under another input due to complex in

teractions between optimizations.

Whatever the reason, the use o f FDO can be questioned i f  it does not consistently result in per

formance improvements when provided with an ideally accurate profile. Resubstitution should not 

be expected to produce the fastest binary in every instance. I f  this were the case, the optimization 

would likely perform poorly in non-resubstitution cases. However, i f  resubstitution does not per

form well, there is no reason to expect that providing the compiler more accurate information about 

program behavior (i.e., via profiling) should result in improved program performance.

We present Aestimo's resubstitution results in a similar manner to the performance results o f 

Section 4.2. Instead o f calculating the speedup over static compilation, Aestimo calculates the per

formance improvement between the fastest FDO binary for each input and the resubstitution case. 

The training input that resulted in the fastest binary is indicated in parenthesis beside the resubsti

tution training data below the graph. For example, in Figure 4.40(a) resubstitution on the xml input 

with i f  conversion is about 3% slower than the fastest binary, which was trained on the program 

input.

The execution performance results suggest that the ORC generally makes good use o f profile 

information. While resubstitution seldom results in the fastest average execution time, it is often the 

fastest or nearly the fastest when the range o f run times is considered. Resubstitution is less than 

2% slower than the fastest FDO binary in 81% o f cases. However, there are also several cases where 

resubstitution is substantially slower than the fastest FDO binary. In one case, the performance 

difference is over 17%.
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Figure 4.40: Resubstitution for i f  conversion on b z ip 2
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Figure 4.41: Resubstitution for i f  conversion on c r a f t y

4.3.1 I f  conversion

Figure 4.40 shows resubstitution results for b z ip 2 .  On the Itanium, the ORC usually uses profile 

information effectively. In most cases, resubstitution is less than 2% slower than the fastest binary, 

and with 10 o f the 15 inputs resubstitution leads to the fastest binary when range o f runtime is 

considered. On the Itanium 2, the ORC makes good use o f perfect information, and resubstitution 

is less than 2% slower than the fastest binary for all inputs. Furthermore, resubstitution achieves the 

fastest execution, when the range o f run times is considered, for 5 o f the 15 inputs.

With c r a f t y  resubstitution consistently results in nearly the same performance as the fastest 

FDO binaries. On both architectures, resubstitution is slower than the fastest binary by about 1.2% 

in the worst cases, as shown in Figure 4.41. Interestingly, training on the wac-251 input on the 

Itanium, and training on the train input on the Itanium 2, always results in the fastest binary. This 

suggests that these two inputs result in a particularly good profile for i f  conversion on their re-
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Figure 4.43: Resubstitution for i f  conversion on g z ip

spective platforms, and manage to capture some aspect o f program behavior that is not effectively 

represented or exploited in the profiles based on other inputs.

Figure 4.42 presents the resubstitution result for the GAP benchmark. On the Itanium, resubsti

tution usually produces a binary that is more than 2%, and as much as 3.5%, slower than the fastest 

binary. Accurate information does not result in increased performance in these cases. However, ac

curate information does result in competitive levels o f performance for the same benchmark on the 

Itanium 2. In this case, resubstitution is no more than 0.2% slower than the fastest binary for all but 

two inputs. In another case where training on a single input consistently outperforms resubstitution, 

the ref input results in the fastest binary for all inputs except test. However, since the differences 

between resubstitution and training on ref are so small, this phenomenon could be coincidental. The 

worst-case performance is for train, where resubstitution is less than 0.6% slower than ref.

G z ip  also demonstrates effective use o f accurate profile information. As shown in Figure 4.43, 

resubstitution is usually within 0.2% o f the fastest binary. The worst-case resubstitution performance
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Figure 4.44: Resubstitution for i f  conversion on MCF

occurs on the Itanium, where resubstitution on graphic is slightly more than 0.5% slower than using 

the binary trained on source.

Figure 4.44 presents both effective and extremely ineffective use o f accurate feedback informa

tion with MCF. On the Itanium, there are 4 cases where resubstitution performs as well as the fastest 

binary when the run time range is considered. However, MCF on the Itanium also results in the worst 

resubstitution performance in our study. Resubstitution on the synth-1 input is more than 17% 

slower than running the same input on the binary trained on synth-9. A t the same time, synth-1 

produces the fastest binary for synth-6, which is more than 10% faster than resubstitution. Inter

estingly, synth-9 and train most frequently produce the fastest binaries, while synth-9 achieves the 

best performance on the workload (refer back to Figure 4.15 in Section 4.2.1), but neither is close to 

achieving the best performance under resubstitution. Unfortunately, greater understanding o f these 

inputs and their effect on program behavior is required to speculate on why these performance results 

are observed. This issue is discussed in more detail in Section 6.1.

Resubstitution for MCF on the Itanium 2 fares better. Here, resubstitution is within 2% o f the 

fastest binaries in most cases, and within 3% in all cases expect for test. In fact, seven inputs result 

in best performance when the range o f run times are considered. However, resubstitution perfor

mance on the test input is particularly poor, about 13% slower than the binary trained on synth-6. 

In this particular case, it may be that the test input is not sufficient to generate a useful profile, 

and that a profile from a longer running input captures additional information that can improve the 

performance o f even a short-running input. However, this explanation does not apply to the results 

on the Itanium. Refer back to the run times reported in Table 3.3. The test input only runs for 0.21 

seconds. However, all the other inputs run for at least 30 seconds, and for several minutes in most 

cases. Therefore, the synth-1 input on the Itanium and the test input on the Itanium 2 are likely 

candidates to discover a scenario where the i f  conversion heuristics fail to make the right decision. 

Further analysis o f this scenario could lead to a better understanding o f i f  conversion, and a better
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Figure 4.45: Resubstitution for i f  conversion on p a r s e r

i f  conversion heuristic.

The results for p a r s e r  in Figure 4.45 show effective use o f accurate information. On both 

processors, resubstitution is within 0.5% o f the fastest binary, and results in the best performance 

in the majority o f cases. On the Itanium, the key exceptions are for 02-05words and 11-15words, 

where resubstitution is about 2% and 3% slower than the fastest binary, respectively. The only 

exception on the Itanium 2 is 02-05words, where resubstitution is 3% slower than training on 11- 

1 Swords.

Figure 4.46 presents results for the placement task o f VPR. Resubstitution performance is mixed 

on the Itanium. H a lf o f the inputs result in resubstitution performance less than 2% slower than the 

fastest binary. However, among these, only three are as fast as the fastest binary. Also, resubstitution 

is more than 4% slower than the fastest binary in 4 cases, and nearly 9% slower than the fastest 

binary on the apex2 input. Also, it is curious that the best FDO performance on dsip is obtained 

by training on ref, but conversely the best performance on ref is obtained by training on dsip. The 

run-time range running on ref is large enough that resubstitution may be as fast as using the binary 

trained on dsip. Therefore, it seems likely that the binary trained on ref is fastest on the dsip input, 

and that the binaries trained on the two inputs achieve equivalent performance on the ref input. On 

the Itanium 2, resubstitution universally leads to high levels o f performance compared the fastest 

FDO binaries, which are always less than 1.5% faster than resubstitution.

Resubstitution performs well for the routing task o f VPR, as seen in Figure 4.47. Resubstitution 

is never more than 1.5% slower than the fastest binary on the Itanium, and no more than 0.6% slower 

than the fastest binary on the Itanium 2.

Rank Analysis

Despite the encouraging resubstitution performance results discussed above, it is possible that the 

range o f performance among FDO binaries is frequently small, and that this situation results in
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Figure 4.46: Resubstitution for i f  conversion on VPR (place)
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Figure4.47: Resubstitution for i f  conversion on VPR (route)
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the small performance differences between resubstitution and the fastest FDO binaries. In order to 

investigate this possibility, Aestimo also provides the rank o f each binary according to performance 

on each input. A rank o f 1 indicates that a binary is the fastest on a particular input. Likewise, a 

rank o f 2 indicates that the binary achieved the second-best performance for the input.

Tables 4.40 through 4.47 list each input in the program workloads. For each input, and for each 

processor, the rank o f the i f  conversion resubstitution binary for the input is listed, along with the 

performance difference between the resubstitution binary and the rank-1 FDO binary. For instance, 

the first row o f Table 4.40 show that among the FDO binaries for b z ip 2  on the Itanium, the binary 

trained on combined is the 8th fastest when evaluated using the combined input. Furthermore, the 

binary trained on combined was 1.06% slower than the fastest FDO binary.

Except for M C F  (see Table 4.44), the differences in performance between resubstitution and 

the rank-1 binary are small, regardless o f the rank o f the resubstitution binary. With M C F , the 

performance differences between the rank-1 binary and the resubstitution binary vary greatly, but 

the performance differences are not correlated to the rank o f the resubstitution binary. For example, 

on the Itanium, the resubstitution binaries for the synth-2 and synth-3 inputs both have a rank 

o f 12, and result in performance about 2% slower than the rank-1 binaries. On the other hand, 

resubstitution with either ref or synth-0 results in a rank o f 5. However, resubstitution for ref is 

6% slower than the rank-1 binary, while resubstitution for synth-0 is less than 0.5% slower than the 

rank-1 binary.

The rank results are quite sim ilar for all the benchmarks. While resubstitution achieves a low 

rank on some inputs for every program, resubstitution achieves very high ranks with similar fre

quency. For every benchmark, on both processors, there is an input where resubstitution gets a rank 

o f I or 2, but also an input where resubstitution gets the highest or second-highest possible rank. 

Furthermore, resubstitution ranks are scattered across the possible range o f ranks for each program.

Therefore, the rank analysis suggests that the frequently good performance o f resubstitution 

binaries compared to their peers is due to small performance differences among the FDO binaries, 

and not due to the more accurate information provided by resubstitution allowing the compiler to 

make better optimization decisions. In fact, the rank results show that many other FDO binaries are 

often faster then the resubstitution binary.

4.3.2 Inlining

Inlining is an important optimization that yields large performance gains. Consequently, it has been 

the focus o f many studies. Therefore, the heuristics for inlining in a mature compiler should be 

finely tuned, and resubstitution should perform well. While inlining resubstitution does, in general, 

perform better than i f  conversion, there are several cases where inlining resubstitution results in 

significantly reduced performance compared to the fastest FDO binaries.

Resubstitution on b z ip 2  performs fairly well. Figure 4.48 shows that resubstitution is as fast
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Input II
Rank

anium 
Slower! %)

It:
Rank

mium 2 
Slower! %)

combined 8 1.06 11 0.76
compressed 3 1.88 11 0.93
docs 7 1.35 3 0.24
gap 6 0.37 14 1.40
graphic 10 0.89 10 2.00
jpeg 3 0.59 5 0.43
log 3 0.47 9 0.74
mp3 8 0.39 2 0.25
mpeg 14 1.08 7 0.57
pdf 15 1.75 10 0.47
program 1 0.00 10 1.11
random 9 0.42 2 0.49
reuters 3 0.15 3 0.07
source 11 1.04 6 0.47
xml 13 2.93 6 1.60

Table 4.40: Rank o f resubstitution binaries for i f  conversion on b z ip 2

Input II
Rank

anium
Slower(%)

It:
Rank

inium 2 
Slower! %)

ref 2 0.20 5 0.75
test 2 0.43 3 0.65
train 3 0.39 1 0.00
wac-001 6 1.25 6 0.87
wac-051 6 1.26 7 1.21
wac-151 5 0.84 3 0.61
wac-251 1 0.00 2 0.06

Table 4.41: Rank o f resubstitution binaries for i f  conversion on c r a f t y

Input II
Rank

anium 
Slower! %)

It:
Rank

inium 2 
Slower! %)

ref 3 1.29 1 0.00
snf1025 6 2.89 2 0.05
snfl 150 9 2.18 2 0.09
snf1260 3 2.51 9 0.12
snf200-300 8 3.50 1 0.00
snf525 6 1.92 2 0.41
snf750 7 2.45 4 0.10
snf900 7 2.33 2 0.06
test 1 0.00 1 0.00
train 9 0.76 10 0.58

Table 4.42: Rank o f resubstitution binaries for i f  conversion on GAP
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Input
If

Rank
anium

Slo\vcr(%)
Its

Rank
inium 2 

SIo\ver(%)
combined 2 0.02 14 0.37
compressed 9 0.24 1 0.00
docs 1 0.00 1 0.00
gap 3 0.07 4 0.01
graphic 10 0.51 6 0.09
jpeg 6 0.06 3 0.07
log 10 0.07 13 0.05
mp3 3 0.02 15 0.11
mpeg 2 0.01 7 0.06
pdf 5 0.04 8 0.03
program 8 0.10 10 0.13
random 12 0.45 1 0.00
reuters 11 0.30 11 0.24
source 10 0.18 5 0.03
xml 15 0.14 1 0.00

Table 4.43: Rank o f resubstitution binaries for i f  conversion on g z ip

Input II
Rank

anium
Slo\ver(%)

Its
Rank

inium 2 
SIower(%)

ref 5 6.02 13 2.51
synth-0 5 0.46 5 0.61
synth-1 13 17.50 12 2.11
synth-2 12 1.99 10 0.57
synth-3 12 2.04 9 1.34
synth-4 5 4.47 10 1.62
synth-5 5 2.13 13 2.82
synth-6 12 9.90 10 1.47
synth-7 7 2.14 8 0.56
synth-8 4 1.08 4 0.39
synth-9 11 3.79 3 0.32
test 8 7.53 10 13.04
train 11 4.47 1 0.00

Table 4.44: Rank o f resubstitution binaries for i f  conversion on MCF

Input II
Rank

anium
Slo\ver(%)

Its
Rank

inium 2 
Slower(%)

02-05words 8 2.11 4 3.03
06-10words 1 0.00 1 0.00
11-15words 12 3.07 7 0.30
16-20words 2 0.21 12 0.35
21-25words 2 0.05 5 0.04
alice 6 0.07 11 0.15
pa 7 0.12 4 0.16
ref 10 0.34 5 0.11
relativity 5 0.29 6 0.04
test 9 2.10 4 0.48
train 8 0.26 3 0.14
worlds 10 0.33 1 0.00

Table 4.45: Rank o f resubstitution binaries for i  f  conversion on p a r s e r
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Input
I

Rank
anium
Slo\ver(%)

It!
Rank

inium 2 
Slower! %)

alu4 13 1.48 7 0.53
apex2 18 8.79 6 0.27
apex4 13 1.27 5 0.48
bigkey 6 1.63 7 0.62
des 9 1.43 19 0.98
diffeq 17 3.43 4 0.24
dsip 11 2.15 21 0.83
elliptic 17 4.21 4 0.11
ex1010 3 1.51 9 0.87
ex5p 11 1.29 20 1.31
frisc 12 1.51 5 0.36
misex3 12 1.38 7 0.70
pdc 19 3.92 18 1.19
ref 6 1.21 4 0.03
s298 21 3.85 10 0.20
S38417 8 2.22 17 0.99
S38584.1 8 3.15 2 0.02
seq 14 1.48 5 0.49
spla 22 5.50 3 0.10
test 5 1.09 5 0.92
train 16 2.17 17 0.78
tseng 19 4.56 5 0.19

Table 4.46: Rank o f resubstitution binaries for i  f  conversion on VPR (place)

Input
II

Rank
anium
Slower(%)

It!
Rank

inium 2 
SIower(%)

alu4 9 0.38 7 0.29
apex2 22 1.14 2 0.12
apex4 4 0.39 15 0.50
bigkey 8 0.32 5 0.11
des 20 1.01 10 0.11
diffeq 18 0.95 5 0.19
dsip 1 0.00 9 0.33
elliptic 2 0.22 16 0.31
ex1010 7 0.24 11 0.27
ex5p 19 0.91 5 0.30
frisc 12 0.30 18 0.35
misex3 20 0.92 2 0.16
pdc 14 0.62 1 0.00
ref 21 1.37 7 0.25
s298 19 0.86 2 0.22
S38417 1 0.00 2 0.06
S38584.1 13 0.26 16 0.24
seq 20 0.85 6 0.12
spla 7 0.23 19 0.43
test 13 1.32 1 0.00
train 22 1.41 10 0.30
tseng 11 0.66 15 0.38

Table 4.47: Rank o f resubstitution binaries for i f  conversion on VPR (route)
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Figure 4.48: Resubstitution for inlining on b z ip 2
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Figure 4.49: Resubstitution for inlining on c r a f t y

as the fastest binary for 8 o f the 13 inputs on the Itanium. However, there are also 3 inputs where 

other training inputs result in performance gains o f more than 4% over resubstitution. Results are 

similar for the Itanium 2. However, in this case, training on the program input is nearly 8% faster 

than resubstitution for the mp3 and jpeg inputs. The binary trained on program is also more than 

3% faster than resubstitution on pdf. The fact that program is a SPEC reference input raises the 

possibility that inlining heuristics in the ORC may be over-fit to these inputs. However, there is no 

supporting evidence for this hypothesis in the Itanium case. Section 4.3.3 w ill revisit this issue.

Unlike the if-convers ion  case, resubstitution performs poorly with inlining for c r a f t y .  In 

Figure 4.49 resubstitution is slower than the fastest binary, by over 3% in most cases, for both 

architectures. As in the if-convers ion  case, there is a single fastest binary on each architecture. On 

the Itanium, wac-001 is always the fastest (wac-251 was fastest for i f  conversion), while train 

is again the fastest in all cases on the Itanium 2. As expected, these two inputs achieve the best 

performance on the workload.
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(b) Itanium 2

Figure 4.50 show resubstitution results for GAP. On the Itanium, resubstitution only achieves 

the fastest performance in two cases, though resubstitution is usually less than 2% slower than the 

fastest binary. The test input is anomalous, where training on snf525 is more than 5% faster than 

resubstitution. Performance on the Itanium 2 is generally better, with resubstitution usually as fast 

or nearly as fast as the fastest binary. However, training on the train input outperforms resubstitution 

on ref by more than 3%, and nearly 5% on test.

Resubstitution performs fairly well for g z ip .  In Figure 4.51(a), resubstitution is never more 

than 2.5% slower than the fastest binary. Resubstitution is always within 0.6% o f the fastest binary 

on the Itanium 2. Note that on the Itanium, all the fastest binaries were trained on SPEC inputs.

Figure 4.52 show that MCF is problematic for inlining resubstitution. While 6 o f 13 inputs 

produce resubstitution binaries as fast as those trained on other inputs, resubstitution is more than 

5% slower than the fastest binaries in 5 cases. In particular, the binary trained on the train input 

is nearly 12% faster than resubstitution on the synth-1 input. Results are better on the Itanium 2,
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Figure 4.53: Resubstitution for inlining on parser

where resubstitution is fastest for 7 inputs. Test is the only input where resubstitution is more than 

2% slower than the fastest binary, at nearly 5% slower than binary trained on synth-0.

Accurate profile information is used effectively for inlining with parser. Figure 4.53 shows 

that on the Itanium, 9 o f the 12 inputs result in best performance using resubstitution. In the worst 

case, resubstitution is slightly more than 1% slower than the fastest binary. Results are almost as 

good on the Itanium 2. Here, resubstitution is within 0.5% o f the fastest binary for 10 o f the 12 

inputs. However, performance degrades for the inputs containing the shortest sentences. Resub

stitution is more than 3% slower for 02-05w ords, and almost 2% slower for 06-10words. In

terestingly, in both these cases the fastest training input was the input containing the next-shortest 

sentences. Since the run times for these inputs is very small (see Table 3.5), it might be the case 

that the profile generated by those inputs does not contain sufficient information to achieve the best 

performance. The slightly larger inputs probably have fairly similar program behavior (since they 

have only slightly longer sentences), but gather more information in their profiles, which allow the
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Figure 4.54: Resubstitution for inlining on VPR (place)

compiler to make better decisions. This hypothesis warrants further investigation.

Resubstitution results are mixed for the placement task o f VPR. Figure 4.54 shows that for 13 

cases on the Itanium, resubstitution performs as well as the fastest FDO binary. Nonetheless, it is 

over 4% slower than the fastest binary for the elliptic input. Results are better on the Itanium 2. 

While only 8 inputs achieve the best performance using resubstitution, resubstitution is always 

within 2% o f the fastest binary. Resubstitution is also effective for the routing task, particularly 

on the Itanium 2. On the Itanium, 8 o f the 22 inputs resulted in best performance using resubstitu

tion. On the remaining inputs, resubstitution was within 2% o f the fastest binary for all but 4 inputs, 

and these exceeded 2% only slightly. On the Itanium 2, resubstitution obtained the best performance 

in 14 cases, and was always within 0.5% o f the fastest binary.
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Input
II

Rank
anium

Slower(%)
It:

Rank
mium 2 

SIo\ver(%)
combined 1 0.00 14 6.44
compressed 10 3.40 12 4.87
docs 8 2.12 1 0.00

gap 4 0.53 1 0.00
graphic 9 2.73 6 1.81
jpeg 7 3.63 9 1.63
log 11 3.54 5 1.05
mp3 12 5.28 10 2.64
mpeg 3 2.04 10 3.15
pdf 2 1.40 8 2.14
program 5 0.59 4 1.59
random 8 3.32 13 7.23
reuters 11 4.80 5 0.82
source 8 3.01 4 0.81
xml 12 3.30 1 0.00

Table 4.48: Rank o f resubstitution binaries for inlining on b z ip 2

Input II
Rank

anium 
Slower( %)

Itt
Rank

inium 2 
Slower(%)

ref 5 4.32 6 5.02
test 3 3.65 5 4.81
train 6 3.84 1 0.00
wac-001 1 0.00 2 2.60
wac-051 3 4.69 4 4.12
wac-151 2 1.80 2 3.39
wac-251 7 4.38 7 5.58

Table 4.49: Rank o f resubstitution binaries for inlining on c r a f t y

Rank Analysis

The Tables 4.48 through 4.55 provide the rank o f each resubstitution binary for inlining. These 

results are similar to those presented for i f  conversion in Section 4.3.1. Once again, the ranks o f 

resubstitution binaries are scattered across the possible range o f ranks. Resubstitution achieves both 

high and low ranks for inputs for every program.

However, the performance differences between resubstitution and the rank-1 binary are signifi

cantly larger for inlining than for i f  conversion. While there is no clear correlation between rank 

and performance overall, a lower rank is usually associated with a smaller performance difference 

compared to the rank-1 binary for both b z ip 2  (Table 4.48) and c r a f  ty(TabIe 4.49). For these 

programs, cases where resubstitution achieves good performance compared to the rank-1 binary are 

more likely to correspond to situations where better feedback information results in better inlining 

decision. However, the small number o f low-rank resubstitution binaries suggests that the FDO 

system seldom makes effective use o f more accurate feedback information.
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Inpu t
It

Rank
anium

Slower(% )
It:

Rank
in ium  2 

SIo\ver(%)
ref 8 1.31 3 3.43
snf 1025 4 1.04 1 0.00
snf1150 5 1.44 1 0.00
snf 1260 6 1.45 3 0.07
snf200-300 3 1.64 7 1.45
snf525 1 0.00 4 0.21
snf750 1 0.00 6 0.43
snf900 8 2.04 2 0.08
test 9 5.46 10 5.00
train 8 1.66 1 0.00

Table 4.50: Rank o f resubstitution binaries for inlining on GAP

Inpu t
It

Rank
anium

Slo\ver(%)
It:

Rank
in ium  2 

S lower(% )
combined 2 0.30 10 0.23
compressed 5 1.78 1 0.00
docs 2 0.03 4 0.03

gap 9 0.74 4 0.08
graphic 5 1.87 5 0.03
jpeg 6 2.32 11 0.31
log 2 0.12 6 0.11
mp3 9 2.45 14 0.56
mpeg 3 1.27 12 0.39
pdf 4 1.03 3 0.03
program 4 0.59 7 0.07
random 5 1.40 1 0.00
reuters 4 0.89 9 0.09
source 1 0.00 1 0.00
xml 7 0.59 4 0.07

Table 4.51: Rank o f resubstitution binaries for inlining on g z ip

Inpu t
II

R ank
anium

Slo\ver(%)
It:

Rank
in ium  2 

Slo\ver(% )
ref 5 1.21 13 1.95
synth-0 2 4.14 7 0.62
synth-1 5 11.92 3 0.37
synth-2 3 0.10 1 0.00
synth-3 8 1.00 7 0.75
synth-4 5 0.68 1 0.00
synth-5 7 1.15 5 0.61
synth-6 4 1.65 10 1.79
synth-7 7 2.29 12 1.40
synth-8 8 6.03 10 1.05
synth-9 3 8.59 4 0.32
test 11 9.88 3 4.76
train 1 0.00 13 1.61

Table 4.52: Rank o f resubstitution binaries for inlining on MCF
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In pu t
II

Rank
anium
Slo\ver(%)

It:
Rank

m ium  2 
S lower(% )

02-05words 3 1.08 10 3.13
06-1 Owords 4 0.26 8 1.69
11 -1 Swords 8 0.60 1 0.00
16-20words 2 0.11 2 0.19
21-25words 6 0.21 8 0.43
alice 8 0.13 7 0.21
pa 2 0.09 3 0.26
ref 10 0.25 7 0.36
relativity 12 0.57 2 0.06
test 10 1.16 1 0.00
train 3 0.09 1 0.00
worlds 12 0.56 7 0.22

Table 4.53: Rank o f resubstitution binaries for inlining on p a r s e r

In pu t
II

R ank
anium

Slower(% )
It:

Rank
m ium  2 

S lower(% )
alu4 4 0.10 19 1.09
apex2 9 2.01 3 0.09
apex4 2 0.06 6 0.16
bigkey 6 0.41 16 0.95
des 9 0.74 6 0.11
diffeq 7 0.19 22 1.51
dsip 15 0.82 12 0.43
elliptic 22 4.68 11 0.42
ex1010 11 1.49 3 0.05
ex5p 1 0.00 22 1.76
frisc 19 1.18 22 0.64
misex3 8 0.28 22 1.74
pdc 19 2.91 2 0.03
ref 10 3.00 15 0.28
s298 22 1.45 16 0.62
S38417 12 1.95 18 0.31
S38584.1 20 5.03 6 0.05
seq 3 0.04 20 1.52
spla 10 0.58 5 0.03
test 11 0.38 1 0.00
train 4 0.08 6 0.30
tseng 22 1.75 13 0.60

Table 4.54: Rank o f resubstitution binaries for inlining on VPR (place)
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Input
I

Rank
anium
Slower(%)

It:
Rank

inium 2 
SIower(%)

alu4 2 0.40 2 0.16
apex2 15 2.26 2 0.13
apex4 15 2.12 1 0.00
bigkey 15 1.73 3 0.12
des 11 0.98 6 0.12
diffeq 9 1.19 8 0.42
dsip 18 2.41 1 0.00
elliptic 21 1.56 21 0.33
ex1010 10 0.54 6 0.04
ex5p 12 1.16 4 0.33
frisc 13 1.16 2 0.04
misex3 20 1.53 9 0.17
pdc 18 1.22 16 0.44
ref 20 1.91 7 0.28
s298 20 2.16 1 0.00
S38417 11 1.37 19 0.25
S38584.1 3 0.23 21 0.36
seq 1 0.00 4 0.27
spla 11 0.47 19 0.39
test 1 0.00 1 0.00
train 6 0.35 10 0.22
tseng 15 0.63 1 0.00

Table 4.55: Rank o f resubstitution binaries for inlining on VPR (route)

4.3.3 SPEC Inputs

The SPEC CINT2000 benchmarks are the most frequently used programs and inputs for the eval

uation o f compiler optimizations. Therefore, we were curious i f  the consistent use o f the SPEC- 

provided inputs may have unintentionally biased the ORC’s heuristics toward the profiles produced 

by these inputs. Stated differently, have the compiler’s heuristics been over-fit to the SPEC inputs, 

to the detriment o f other inputs? Since most compiler designers use at least a significant portion o f 

the suite to evaluate their work, optimizations and heuristics should be generally applicable, and not 

tailored to any particular program. However, it is possible that the SPEC inputs do not present the 

fu ll spectrum o f possibilities that exist in alternate inputs, and that heuristics may not deal with these 

unencountered situations properly.

Table 4.56 presents a summary o f information from the graphs in Section 4.3. For each bench

mark, we list the number o f inputs in the workload, the number o f those inputs provided by SPEC, 

and the number o f cases where training on a SPEC input resulted in the fastest binary for a single 

input. Ideally, resubstitution would always produce the fastest binary, though this is often not the 

case. I f  it were the case, it would be reasonable to expect that the proportion o f times that SPEC 

inputs produce the fastest FDO binary would be equal to the proportion o f SPEC inputs in the work

load, assuming that the selected inputs are spread across the spectrum o f possible inputs for each
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Benchmark
In|

Total
nits

SPEC
Itaniur

If-Conversion
n

Inlining
Itaniun

If-Conversion
i2

Inlining
bzip2 15 7 7 13 7 5
crafty 7 3 0 0 7 7
GAP 10 3 8 1 10 3

gzip 15 7 3 15 10 8
MCF 13 3 4 7 3 1
parser 12 3 5 0 1 3
VPR (Place) 22 3 2 1 0 3
VPR (Route) 22 3 5 5 5 1

Total 116
32

28%
38

33%
42

36%
43

37%
31

27%

Table 4.56: Number o f cases where training on SPEC-provided inputs results in best FDO perfor
mance

program. Unfortunately, we do not yet have a methodology to adequately characterize inputs, nor 

to describe the space from which benchmark inputs are selected. However, the selected inputs were 

chosen with care, with the intent to create a workload as varied as possible while still using realistic 

inputs for each program.

The potential limitations o f the inputs notwithstanding, the results in Table 4.56 show that the 

experimental results are not too far from the idealized expectation. SPEC inputs account for 28% o f 

the entire workload, while binaries trained on SPEC inputs accounted for the fastest times on 31% 

o f the inputs. Furthermore, the results in Section 4.4 show that performance on the SPEC inputs is 

frequently poor compared to other inputs in the workload. Therefore, while the selected inputs are 

not guaranteed to span the space o f possible inputs or fo llow  any particular distribution in that space, 

there does not appear to be any reason to be concerned about the ORC’s heuristics being over-fit to 

the SPEC inputs.

4.3.4 Conclusions

Overall, resubstitution with the ORC leads to high levels o f performance compared to other FDO 

cases. However, rank analysis shows that resubstitution does not consistently result in faster-than- 

average FDO binaries. Therefore, the more accurate profile information provided by resubstitution 

is not used effectively to make better optimization decisions. This result is in agreement with the 

conclusion in Section 4.2 which stated that profile-guided inlining, and particularly i f  conversion, 

require more attention to become effective optimizations, since compiling without profile informa

tion often results in substantially better performance than even the best FDO binaries. Additionally, 

an overview o f the experimental results suggests that there is little evidence that compiler heuristics 

are unintentionally tailored toward the profiles generated by the SPEC inputs.
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Figure 4.56: Static vs. FDO performance for i f  conversion on b z ip 2

4.4 Feedback-Directed Optimization

Feedback-Directed Optimization is intended to improve program performance above that obtainable 

by static optimization by providing compiler heuristics with accurate information about dynamic 

program behavior. Therefore, an effective FDO system should be able to meet or exceed the perfor

mance o f static optimization for the majority o f programs and inputs. In this section the performance 

o f statically optimized binaries is compared to the performance o f the fastest FDO binaries for each 

input o f every program in the study. These measures represent the best case performance o f FDO 

recorded by Aestimo, and as such represent an upper bound on FDO performance given the inputs 

selected for each program.

4.4.1 I f  conversion

Section 4.2.1 showed that protile-guided i f  conversion seldom improves workload performance on 

the Itanium, and always reduced workload performance on the Itanium 2. Similar results are ob

tained when best-case FDO performance is compared to the performance o f the statically optimized 

binary.

Figure 4.56 shows large differences in best-case FDO if-conversion  performance for both the 

Itanium and the Itanium 2. On the Itanium, performance is often improved by less than 2% over 

static optimization. These cases may indicate inputs where the additional information provided by 

the profile is not required to make good i f  conversion decisions. However, there are three inputs 

where FDO i f  conversion increases performance by more than 4%, with performance nearly 12% 

faster than static on the docs input. This impressive gain highlights the potential o f FDO. On the 

other hand, FDO results in performance reductions on the Itanium 2 as large as 10%. FDO only 

results in a performance gain on the docs input, and the gain is only 2% over static.

In Figure 4.57 best-case FDO performance approaches the performance o f static optimization
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Figure 4.58: Static vs. FDO performance for i f  conversion on GAP

on the Itanium, but is significantly slower than static optimization on the Itanium 2. Since the fastest 

FDO binary is always the same on each processor, the graph also shows that testing performance on 

different inputs can lead to different conclusions. I f  FDO performance on the Itanium 2 is evaluated 

by training on the SPEC train input and evaluated using the SPEC ref input, performance is only 

reduced by 2%, which may be acceptable i f  the optimization is more successful for most other 

programs. However, i f  the same FDO binary is evaluated using the wac-051 input, a performance 

reduction o f more than 6% is observed. It is much less likely that such a large performance penalty 

would be acceptable to a compiler designer. Furthermore, recall that training on train resulted in the 

best performance on wac-051 . Training on other inputs results in even larger performance penalties.

In the best case, FDO i f  conversion results in performance similar to static optimization for 

GAP. However, Figure 4.58(b) shows that even the fastest FDO binary for the ref inputs results in 

nearly a 5% performance degradation, while best-case FDO degrades performance on the train input 

by over 2.5%.
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Figure 4.60: Static vs. FDO performance for i f  conversion on MCF

FDO i f  conversion also negatively impacts performance for g z ip .  While performance on the 

Itanium nearly matches the performance o f static optimization, even the best-case FDO binaries 

result in large reduction in performance on the Itanium 2. FDO reduces performance by at least 6% 

on 8 o f the 15 inputs, and by over 10% on 4 inputs. However, performance is within 2% o f static 

on 6 other inputs. Interestingly, the same training inputs created the fastest binaries for inputs where 

FDO had both large and small performance reductions, strengthening the hypothesis that the choice 

o f inputs used for evaluation is important.

For MCF, FDO generally results in performance gains on the Itanium. Figure 4.60 shows per

formance improvements exceeding 8%. On the Itanium 2, the fastest FDO binaries are at least 5% 

slower than the static binary in all but one case, and almost 12% slower in the worst case. Recall 

that all the FDO binaries for MCF have very similar workload performance, and were produced by 

nearly identical optimization logs. It is therefore likely that the performance o f the FDO binaries 

does not vary significantly on a given input. Consequently, the observed performance o f FDO i f

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



t Dataset (Fastest Training Input)

e iif s ift l i11-1 J-i■s-g a ?  ■§

o
-2
-t
-6
-8

-10

-12
- 1*1

•
u

— 1— — — —

T

Input Dataset (Fastest Training Input)

■§•§ " i f  ■af a i  j j : 
Is  i f  I f  I?  io  
92 “ I  r l  ^  >9-
S£ §g 2^ ?;

! B| 'S£ H

9
rto

si'0 '
1 
s

If I I
fa§ MIA ?.

(a) Itanium (b) Itanium 2

Figure 4.61: Static vs. FDO performance for i f  conversion on p a r s e r

conversion for MCF on the Itanium 2 could vary by more than 10% depending on which input is 

used for evaluation.

Best-case FDO i f  conversion barely outperforms static optimization for all inputs to p a r s e r  

on the Itanium, while FDO i f  conversion always reduces performance on the Itanium 2. Even with 

the fastest FDO binaries, performance is degraded by more than 12% on the 06-1 Owords input, and 

by at least 7% on all but 4 inputs.

According to Figures 4.62 and 4.63, best-case FDO i f  conversion is able to match the perfor

mance o f static optimization on the Itanium, and is usually w ithin 2.5% for the placement task on 

the Itanium 2. However, routing on the Itanium 2 shows the typical failure o f FDO i f  conversion to 

approach the performance o f static optimization. Performance o f the fastest FDO binary is between 

4% and 12% slower than static on every input in the workload.

Results for FDO i f  conversion on the Itanium are generally unimpressive. Performance im

provements are mostly small, but the occasional performance reductions are also fairly insubstan

tial. Nonetheless, there are a few cases, such as for b z ip 2  and MCF, where FDO i f  conversion 

displays its potential to have a significant positive impact on program performance. Selecting the 

fastest FDO binary for each input is optimistic, but could help compensate for the deficiencies in the 

FDO system suggested by Section 4.3.

Based on the results in this section, feedback-directed i f  conversion, as implemented in the 

ORC 2.1 compiler, does not correctly use profile information to improve performance on the Ita

nium 2. Even when the fastest FDO binary for each input is used, performance is reduced compared 

to static optimization in 111 out o f 116 cases. Furthermore, there is an input for each program where 

FDO i  f  conversion reduced performance by at least 5%, while reductions in performance in excess 

o f 10% are not uncommon.

We suspect that the i f  conversion heuristics, originally designed for the Itanium, were not mod

ified to deal with the architectural differences o f the Itanium 2. Considering that i f  conversion
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Figure 4.62: Static vs. FDO performance for i f  conversion on VPR (place)
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Figure 4.63: Static vs. FDO performance for i f  conversion on VPR (route)
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Figure 4.64: Static vs. FDO performance for inlining on b z ip 2

is commonly acknowledged to have little impact on performance, Amdahl’s Law [23] (pp. 40-42) 

would dictate that limited compiler-developer resources should be used to address more significant 

issues. However, the results presented in this section suggest that FDO i f  conversion may have 

a more significant impact on program performance than previously expected, and that more inves

tigation into this optimization may be warranted. Unfortunately, the importance o f i f  conversion 

to performance does not appear to be in its potential to reduce program run times, but rather in the 

potential for poor i f  conversion decisions to significantly degrade performance.

4.4.2 Inlining

Profile-guided inlining performs well against static optimization, particularly on the Itanium, where 

performance gains in excess o f 10% are common. In the best case, performance is improved over 

static optimization by more than 20%.

Figure 4.64 presents best-case FDO inlining for b z ip 2 .  Performance on the Itanium is very 

good, with a minimum improvement o f about 4% and a maximum gain o f about 13%. On the 

Itanium 2, performance gains are small, at most 3% faster than static. However, three inputs suffer 

a small loss in performance, but the loss is only 1% in the worst case.

The fastest FDO inlining binaries perform well on c r a f t y ,  as shown in Figure 4.65. On the 

Itanium, FDO inlining is more than 11.5% faster than static optimization for all inputs. Results on 

the Itanium 2 are also positive, though the performance gains o f the fastest FDO binary over static 

are much smaller. As was the case for i f  conversion, one FDO binary is the fastest for all inputs 

on each processor. The selection o f the evaluation input could change the reported performance 

improvement over static optimization by 2.5%.

In Figure 4.66 best-case FDO inlining always improves performance for GAP. On the Itanium, 

improvements range from more than 3% to over 9%, while on the Itanium 2 improvements range 

from around 1% to 8%. Binaries trained on snf525 and snf750 account for most o f the fastest
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Figure 4.65: Static vs. FDO performance for inlining on c r a f t y
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Figure 4.66: Static vs. FDO performance for inlining on GAP
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Figure 4.68: Static vs. FDO performance for inlining on MCF

binaries on the Itanium, while snfl 025 produces most o f the fastest binaries for the Itanium 2. 

Depending on which inputs are used to evaluate the performance o f these binaries, performance 

varies by 3%, 2%, or 4.5%, respectively.

Figure 4.67 presents best-case FDO inlining results for g z ip .  On the Itanium, there are perfor

mance gains o f over 12% for 7 o f the 15 inputs, with gains over 16% on 4 inputs. However, there are 

also several inputs with small performance gains, and 2 which experience slightly reduced perfor

mance. It is noteworthy that the log input is provided by SPEC, and thus commonly used to evaluate 

performance, but still does not gain performance from the fastest FDO inlining binary. Results are 

similar on the Itanium 2. A ll inputs have improved performance compared to static optimization, 

though the gain is less than 1% for 5 inputs. However, 6 inputs have performance gains over 4%, 

with the maximum gain approaching 7%.

M C F  displays the most dramatic results with FDO inlining, and highlights FDO’s potential for 

performance improvement, as shown in Figure 4.68. In the worst cases on the Itanium, performance
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Figure 4.69: Static vs. FDO performance for inlining on p a r s e r

on ref is degraded by a small amount, while performance on synth-9 is about 2.5% faster than 

static. For the rest o f the workload, performance is at least 5% faster than with static inlining. In 

three cases, performance is improved by 20% or more. On the Itanium 2, these results are inverted. 

MCF on the Itanium 2 is the only case where even the fastest FDO inlining binaries consistently 

degrade performance. Static is faster than the best FDO inlining by at least 2% in all by two cases, 

and is more than 7% faster in the worst cases.

Results for parser are shown in Figure 4.69. The fastest FDO inlining binaries achieve significant 

performance gains over static for all inputs on the Itanium. On the other hand, while the fastest FDO 

binaries match the performance o f static optimization on the Itanium 2, they do not result in any 

significant improvements in performance.

The fastest FDO inlining binaries usually exceed the performance o f static optimization for the 

placement component o f VPR, and achieve significant performance gains for VPR routing on the 

Itanium. However, performance for both the ref and s298 inputs for placement is more than 4% 

slower than static. The fastest FDO inlining binaries generally achieve slightly better performance 

that static on the Itanium 2. However, there appears to be little potential for FDO inlining to improve 

performance compared to static optimization on the Itanium 2.

Overall, on the Itanium, FDO inlining exhibits the potential to significantly improve performance 

o f each benchmark program on nearly every input in the workload. The best-case FDO performance 

is slower than static in only 6 out o f 116 cases. Furthermore, the fastest FDO inlining binary is more 

than 10% faster than static in 41 cases. However, on the Itanium 2, while the fastest FDO inlining 

binaries match or exceed the performance o f static optimization for 96 inputs, performance is only 

more than 3% faster than static in 19 o f the 116 cases.
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Figure 4.70: Static vs. FDO performance for inlining on VPR (place)
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Figure 4.71: Static vs. FDO performance for inlining on VPR (route)
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4.4.3 Conclusions

FDO appears to have the potential to substantially improve program performance on the Itanium. 

On the other hand, even the fastest FDO binaries are often significantly slower than static optimiza

tion on the Itanium 2. In particular, fastest FDO inlining binaries for MCF on the Itanium 2 are 

significantly slower than static for nearly all inputs. We find this fact surprising, given that both MCF 

and inlining are frequently studied. The performance results reported here are consistent with the 

performance results measured on the entire workload in Section 4.2. Possible explanations for bet

ter FDO results on the Itanium are that it has more resource limitations than the Itanium 2, and thus 

more potential for performance improvement, while the Itanium also benefits from a more mature 

code base since it is an older processor.

One unanticipated result o f this study comes from the observation o f the performance o f the 

fastest FDO binaries for the c r a f t y  benchmark. For both i f  conversion and inlining, on both 

processors, one FDO binary had the best performance for all inputs. However, the performance o f 

these binaries compared to static is not consistent across the workload. In particular, significantly 

different performance results arc obtained for i f  conversion on the Itanium 2. I f  the SPEC training 

input train is used, performance on the SPEC evaluation input ref is 2% slower static, the best result 

from the workload. However, i f  the wac-051 input is used for evaluation, performance is reduced 

by more than 6%. This result confirms that evaluating optimization using a single evaluation input 

can lead to conclusions about performance that do not generalize to other program inputs.
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Chapter 5

Related Work

5.1 Input Selection and Benchmarking

Input selection and benchmark creation are difficult, but important, tasks. Compiler writers, hard

ware designers, and system vendors all use benchmarks. However, the goals and requirements o f 

these communities differ. System vendors may favor codes that are hard to optimize to help ensure 

fairer comparisons between systems, while compiler designers wish to investigate how a compiler 

feature affects the performance o f typical programs. Where system vendors and compiler designers 

run programs on larger inputs to reduce measurement errors and better represent fu ll system behav

ior on real-world problems, architecture researchers strive for the smallest representative inputs to 

lim it simulation times.

In [21], Eeckhout et al. attempt to find a minimal set o f representative programs and inputs for 

architecture research. They cluster program-input combinations using principal-component analysis 

based on low-level program behavior such as cache misses and branch mispredictions. They found 

that while different inputs to the same program were often clustered together, there were several 

cases where different inputs to the same program resulted in data points in separate clusters. This 

finding supports our conclusion that the input to a program does have an impact on program behavior.

Phansalkar et al. survey the four generations o f the SPEC benchmark suite and investigate how 

the suite has evolved [34]. They measure low-level architecture-independent program behaviors 

such as instruction mix, basic-block size, various branch statistics, and locality. They use principal- 

component analysis to cluster and compare the benchmark programs. The benchmarks are found to 

have changed little  in terms o f static instruction count, branch behavior, or ILP. However, temporal 

locality has lessened in more recent benchmarks. The authors suggest that, based on their clustering, 

several benchmarks in the SPEC suites are redundant. Based on their overall characteristics, b z ip 2  

and g z ip  form the entirety o f one cluster. Looking back to Chapter 4, Aestimo finds significantly 

different results for b z ip 2  and g z i p  in nearly every case. Therefore, we caution compiler de

signers against omitting programs from a benchmark suite based on clustering analysis o f low-level 

program behaviors.
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MinneSPEC proposes reduced inputs to the SPEC CPU2000 benchmarks based on function- 

level execution profiles and instruction mix profiles to reduce simulation time for architecture re

search [26]. For more than half o f the program-input pairs the reduced inputs have function profiles 

that are statistically similar to the original inputs, while they have instruction mixes similar to the 

original inputs in nearly every case. However, the authors warn that memory behavior may be sub

stantially different with the reduced inputs. MinneSPEC inputs should not be considered equivalent 

to the original inputs supplied by SPEC. Eeckhout et al. analyze program behavior on the reduced 

inputs suggested by MinneSPEC [20]. They use a larger mix o f behavior measures that are more 

closely related to program performance than those used to create the MinneSPEC inputs. PCA and 

clustering show that while the MinneSPEC set o f large (Igred) inputs remain similar to the orig i

nal SPEC inputs from which they are derived, the medium (mdred) and small (smred) input sets 

generally lead to dissimilar program behavior.

Citron has investigated the use o f the SPEC benchmarks by research reported in computer ar

chitecture conferences [15]. He found that while the SPEC benchmarks are very commonly used, 

the suite is seldom used as intended. Two important issues are failure to use all the benchmark 

programs from the integer or floating-point collections, and infrequent use o f the floating-point 

benchmarks. When reported results are adjusted by assuming that the reported techniques have no 

effect on missing benchmark programs from the collection used, large speedups were reduced to 

moderate speedups. For example, one reported speedup o f 1.76 was reduced to 1.15. Our results 

compound this problem. We have shown that the training input used with FDO as well as the testing 

input used to evaluate performance can significantly vary the observed performance impact o f an 

optimization. The common practice o f using only the inputs supplied with the SPEC benchmarks is 

likely to further obscure the true performance impact o f a technique when used outside the lab.

5.2 Feedback-Directed Optimization

Cohn and Lowney investigate FDO in Compaq’s compiler tools for the Alpha processor using the 

SPEC CINT95 benchmarks [16].

They report the performance impacts when several FDO optimizations are applied individually. 

In particular, they find that FDO inlining improves performance by up to 45%, and by 10% on aver

age over static inlining. While these results are similar to ours, they report that FDO inlining never 

results in a performance penalty. However, differences in compiler, architecture, and benchmark 

programs makes meaningful comparisons between the performance results impossible.

Langdale also investigates the sensitivity o f FDO to the training data used [29]. The programs 

and inputs from the SPEC95 and SPEC2000 benchmark suites are used in conjunction with D igita l’s 

GEM compiler and the A lto link-time optimizer for the Alpha architecture. The study concludes that 

there is a statistically significant difference in performance when different training inputs are used. 

Our study expands on this work in two ways. First, we have used a large number o f additional non-
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SPEC inputs for both training and evaluation. Second, we have investigated individual optimizations 

that benefit from FDO rather than considering the entire FDO system as a whole. In our study, we 

have also observed variations in performance when different training inputs are used. However, the 

differences in performance in our study are much larger, and can be observed without resorting to 

statistical techniques. Langdale also investigates resubstitution, and concludes that profile accuracy 

is not tightly coupled to performance gains. We have also observed a general failure o f resubstitution 

to achieve the best performance. However, given the frequently poor performance o f FDO compared 

to static optimization, we believe that further improvements to the FDO system must be made before 

we can provide a final verdict on the usefulness o f perfect information.

5.3 Compiler-Decision Optimization

Several researchers have used iterative compilation techniques to improve program performance. It

erative compilation is the pinnacle o f FDO: a program is compiled and run repeatedly, while statistics 

collected at run time improve performance. However, in many cases, iterative compilation systems 

do not consider the impact o f data inputs on the performance changes observed between different 

compilations. They often use a single input for both training and evaluation, and do not evaluate the 

performance o f the final binary on any additional inputs.

Pan and Eigenmann break a program into regions, called Tuning Sections (TS), and attempt to 

find an optimal optimization strategy for each TS [33]. They compare the performance o f multiple 

versions o f each TS using three methods. Context-Based Rating is used i f  the same TS is exe

cuted frequently in the same execution context. In this case, versions o f the TS can be swapped to 

determine their performance during a single run o f the program. Model-Based Rating applies math

ematical relationships between contexts to enable comparisons between versions o f a TS executed 

in different contexts. Finally, Re-execution-Based Rating restores state and restarts execution at the 

beginning o f a TS when different versions o f a TS would be otherwise incomparable. Using these 

techniques, their offline compilation system based on GCC is able to improve performance on four 

SPEC 2000 benchmarks by an average o f 26%, while reducing tuning time by 80%. Tuning is per

formed by running on the SPEC train inputs, while final performance evaluation uses the SPEC ref 

inputs. I f  the ref input is resubstituted instead, much larger performance gains are observed on two 

o f the benchmarks. The performance improvement obtained by this approach is often small com

pared to the performance variations we have seen between inputs, or compared to the benefits o f the 

usual FDO inlining used in our study. In 5 o f 8 cases, the largest performance gain for a benchmark 

is less than 4%, and is less than 10% in another two cases. Average performance is inflated by 

the remaining case, where the technique improves performance by more than 170%. Therefore, we 

suspect that normal FDO should provide a larger and more consistent benefit when applied across a 

larger collection o f programs.

Cooper et al. [17] and Kulkarni et al. [28] find solutions to the problem o f ordering the phases in
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a compiler using genetic algorithms. Iterative compilation obtains performance improvements for 

the given program and input data. We have observed that testing a version o f a program on different 

inputs can lead to different conclusions regarding the performance o f that version o f the program. 

Therefore, using a single input for training and performance evaluation during iterative compilation 

may result in a final program that does not have the best performance in general.

Stephenson et al. also uses genetic algorithms to learn compiler heuristics for hyperblock for

mation, register allocation, and data prefetching. They observe significant performance differences 

between running resubstitution and non-resubstitution cases for some programs, which indicates 

that over-fitting heuristics to input data is a danger. This result compounds the implications o f our 

findings, and further cautions against the use o f a single (or small sample) o f inputs when evaluating 

FDO techniques.

Cooper and Waterman use iterative compilation to determine the optimal blocking size for a ma

trix o f a fixed size with a matrix multiplication kernel [18]. Execution time is significantly improved 

as the matrix dimensions grow because the profile-guided compiler heuristic fails to consider cache 

size. It is unfortunate that rather than correcting this deficiency in the compiler, they propose an iter

ative compilation technique that bypasses the problem. In our study, we also discovered a deficiency 

in compiler heuristics regarding i f  conversion. We suggest that the i f  conversion heuristics o f the 

ORC should be amended before any other technique uses them as the basis for comparison.
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Chapter 6

Conclusion

6.1 Future Work

This study has raised several new questions. First, is there a metric that can link compile-time deci

sions to performance impacts? Most likely, such a metric w ill need to be able to identify “ important”  

choices, but it is unclear i f  there is a way to estimate the importance o f a choice short o f some sort o f 

iterative compilation framework. After all, compiler heuristics already attempt to make the best de

cisions for the most important choices in order to maximize program performance. However, it may 

be possible to further analyze our data to determine decision importance “ after the fact” , and then 

use this information to evaluate and possibly augment the existing compiler heuristics. In particular, 

since feedback-directed i  f  conversion reduces performance compared to static i  f  conversion, there 

is clearly an opportunity to improve the i f  conversion heuristics.

In a similar vein, we would like to understand how our inputs differ, and how these differences 

impact optimization decisions. PCA and clustering techniques could be applied, but we have seen in 

Chapter 5 that it can be difficult to get meaningful results from these techniques. Furthermore, these 

techniques rely on a set o f aggregate measure to characterize program performance. These measures 

are well-known to be important for architecture research where these techniques have been used.

However, a different approach is required in the realm o f compilers and FDO. While a particular 

architecture must use the same branch-prediction mechanism for every branch encountered during 

the execution o f every program, a compiler must make an if-convers ion  decision for each branch 

in a program, and makes each decision individually. Furthermore, for many optimizations only a 

small number o f choices have a significant impact on program performance. It is therefore doubtful 

that aggregate measures can adequately characterize inputs for use by a compiler. In fact, it is 

likely that the failure o f the difference and alignment metrics to correspond in any consistent way to 

performance is due to this same problem.

Therefore, it would be advantageous to develop input comparison techniques that work at a level 

similar to that present in a compiler. These techniques should work at the control-fiow graph and 

call-graph levels, rather than using low-level measures like ILP and cache miss rates. We have
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started development o f a tool called Prof Edit that is an initial step in this direction. A t present, 

ProfEdit is an interactive program that allows a user to view and modify the frequency counts 

stored in an ORC profile file. However, the profile does not contain information about the struc

ture o f the program. Thus, it is impossible to maintain the consistency o f profile information. An 

extension o f ProfEdit would allow the frequencies recorded in different profile files to be com

pared. However, the volume o f information being compared necessitates the use o f a summarization 

technique for the results to be manageable by a human compiler designer. It is unclear what sort o f 

summarization would reduce the quantity o f such data to an understandable volume without unac- 

ceptably compromising its usefulness.

Another problem regarding input selection is that the space o f possible profiles, as well as the 

location o f a profile from a particular input in this space, is unknown. I f  program structure informa

tion can be integrated into ProfEdit, it could be used as part o f a system to automatically explore 

the space o f possible profiles, without the need to find actual inputs that correspond to any o f the 

particular profiles used for exploration. I f  the profile-space o f a program is characterized, and inputs 

can be mapped into this profile space, then the distance between inputs in this space can be deter

mined, and the distribution o f inputs in an evaluation workload can be measured. Furthermore, i f  

certain areas in the profile space are found to be “ interesting,”  the feasibility o f real inputs mapping 

into that area can be investigated.

Finally, more study is needed. Similar experiments should be run using different compilers and 

different architectures, and should investigate a larger range o f optimizations and programs in order 

to increase the generality o f any conclusions about FDO’s sensitivity to training inputs.

6.2 Conclusions

Our extensive experimental study provides important insights into feedback-directed optimization. 

Most significantly, training on different inputs does lead to different optimization decisions and 

different levels o f performance in the FDO binaries in most cases. Training on different inputs 

results in as much as a 5% difference in performance with i f  conversion, and as much as a 6% 

difference in performance with inlining, on a workload o f inputs. On the other hand, evaluating 

FDO performance on different inputs can lead to substantially different performance results. We 

observe differences in the best case FDO performance on different inputs for the same program 

larger than 13% for i f  conversion, and larger than 20% for inlining. Therefore, the selection o f 

training inputs for FDO does impact performance. Furthermore, the measured performance for any 

particular binary is dependent on the inputs used for testing. Consequently, performance evaluations 

that use multiple training inputs as well as multiple evaluation inputs w ill result in more reliable 

performance measures than typical compiler and architecture evaluations that use a single training 

input and a single evaluation input.

Furthermore, these results enable an assessment o f the FDO infrastructure o f the ORC. Resubsti-
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tution often results in the fast binaries on a given input. However, rank analysis shows that the high 

levels o f performance o f resubstitution binaries compared to the fastest FDO binaries are a result o f 

small difference in performance between FDO binaries. The rank o f resubstitution binaries cover 

the fu ll spectrum o f possible ranks, from best performance to worst performance, for each program 

in this study. Furthermore, there are several cases were resubstitution is substantially slower than 

training on a different input. Resubstitution is more than 17% slower than the fastest binary for i f  

conversion, and nearly 12% slower than the fastest binary for inlining in the worst cases. Therefore, 

the FDO system in the ORC does not make effective use o f the more accurate profile information 

provided by resubstitution.

In general, feedback-directed inlin ing is effective at increasing performance on both a workload 

and on individual inputs. However, we also observe that feedback-directed i f  conversion seldom 

improves performance. In fact, it always reduces performance on the Itanium 2, which strongly 

suggests that further work is required for the i f  conversion heuristics to use profile information 

effectively.
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Appendix A

Metric Values

This appendix presents the raw data for the difference and alignment metrics defined in Chapter 3. 

These graphs are similar to the first one in Figure A .l(a ). The name o f the training input who’s log 

is used to calculate the metrics is listed below the graph. The wide bar represents the alignment 

score (as a percent), and encompasses the narrow bars which show pairwise difference scores. The 

difference bars are in the same order as the coverage bars. For example, the log for compressed has 

a coverage score just over 80%, while GAP has a coverage score just over 50%. Within the large bar 

for compressed coverage, we see that the first difference score, 6(compressed, compressed), is 0, 

and the second difference score, 5(compressed, docs), is about 2.25.
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Appendix B

Alignment vs Performance

In the following graphs, there is one point for each o f the binaries for a benchmark. The x-axis 

o f the graph represents the alignment score for the optimization log used to create the binary. The 

y-axis represents the performance o f the binary on the workload as a percent faster than the static 

binary, while the error-bars show the variance in performance. Performance is computed using the 

arithmetic measure exactly as in Chapter 4. There is one point for the static binary, which always 

has a performance value o f 0% faster than static. This point shows the alignment score for static, as 

well as the variance in performance o f the static binary.
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