INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Aestimo: A FEEDBACK-DIRECTED OPTIMIZATION EVALUATION TooL

by

Paul Normand James Berube @

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i+l

0-494-09125-8

Library and Bibliothéque et
Archives Canada Archives Canada
Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Volre référence
ISBN:
Our file Notre rerérence
ISBN:

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télecommunication ou par I'lnternet, préter,
distribuer et vendre des théses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique

" et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Feedback-directed optimization (FDO) is a compiler technique that enhances the ability of a com-
piler to make good optimization decisions. A training run provides the compiler with a profile that
summarizes the run-time behavior of the program. Most studies that use FDO techniques use either
a single input for both training and performance evaluation, or a single input for training and a sin-
gle input for evaluation. However, the run-time behavior of a program is influenced by the data it
is processing. Benchmark creators and compiler designers rely on the assumption that selecting a
“representative” training input will result in eftective FDO.

This exploratory study addresses an important open question: How important is the selection of
training data for FDO? Likely, the answer to this question is not constant across all optimizations
that use profile information. How sensitive are individual compiler transformations to the selection
of training data used with FDO? Does training on different inputs result in different optimization
decisions at compile time? Furthermore, do these different decisions result in changes in program
performance?

This thesis introduces Aestimo, a tool developed to quantify the differences between FDO logs
for inlining and if conversion from the Open Research Compiler (ORC) for SPEC CINT2000
benchmark programs trained on a large number of inputs. Aestimo also compares the performance
of programs trained on different inputs, and the performance of programs compiled with and without
FDO.

Training on different inputs does lead to different optimization decisions and different levels of
program performance in most cases. Training on different inputs results in as much as a 5% differ-
ence in performance with 1 f conversion, and in as much as a 6% difference in performance with
inlining, on a workload of inputs. Also, evaluating FDO performance on different inputs can lead to
substantially different performance results. Aestimo finds differences in best-case FDO performance
on different inputs for the same program larger than 13% for 1f conversion, and larger than 20%
for inlining. Finally, Aestimo reveals that the current i £-conversion heuristics in the ORC always

results in performance degradation for the Itanium 2 processor when FDO is used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to thank my supervisor, Dr. Amaral, for his guidance and assistance during my stud-
ies. Also, several people provided assistance and additional inputs for benchmark programs: Mar-
tin Schoenert, Steve Linton, and Alexander Hulpke for GAP, Robert M. Hyatt for crafty, and
David Temperley for parser. Thanks to Reinhold Weicker and Kaivalya Dixit from SPEC for our
conversations about the procedures and guidelines for selecting the ref and train inputs for SPEC
benchmarks. Also, I am indebted to George Hicks and Henryk Modzelewski for providing me with
access to the Itanium machines in the Monster cluster at the University of British Columbia.

I would also like to thank the members of my examining committee for their insightful questions
regarding my work, and for their suggestions for improving this thesis.

Finally, I want to thank my Mom and Dad for supporting me and putting up with me over the
last two years, and for the last months in particular. I couldn’t have done it without you.

This work was supported by a Post-Graduate Scholarship from the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
2 Background 5
2.1 Profiling and Feedback-Directed Optimization 5

2.2 CompilerInfrastructure0 e 5
22,1 Ifconversion0.0... e e e e e e e e e e 6

222 Inlining o . o e e e e e e e e e 9

3 Experimental Setup 11
K T8 T) (-4 T3 11
3.1.1 Difference e 12

312 ANGNIMENt . . v e e e e e e 13

3.1.3 DifterencesBetweenLogs0 . 14

3.2 BenchmarksandInputs i e 14

3.3 Architectures o o i i e e e e e e e e e 20

4 Results 22
4.1 ProfileDifferences e 24
41,1 TEconversion i i it e e e e e e 25

412 Inlining o 0 e e e e e 36

4.1.3 Conclusions. o i i i it e e e e e e e e e e 52

42 Run-TimePerformance i it i it i et 52
42,1 TECONVEISION . . v v v v v v i i e et e e e et et e e e e e 53

422 Inlining e e e e 62

423 Conclusions. i i it i e e e e e e e e 71

4.3 Resubstitution L. e e e e e e e e 71
43,1 Ifconversion e e e 73

432 Inlining o v e e e e e e e e e e e 79

433 SPEClInputs i i ittt ittt e e e 92

434 Conclusions v i i i e e e e e e e e e e e e e e e e 93

4.4 Feedback-Directed Optimization 93
44,1 TECONVEISION v i v i it e e e e e e e e e e e e e 93

442 Inlining o o e e e e e 99

443 Conclusions. v v i it e e e e e e e e e e e 105

5 Related Work 106
5.1 Input Selectionand Benchmarking, 106

5.2 Feedback-Directed Optimization 107

5.3 Compiler-Decision Optimization 108

6 Conclusion 110
6.1 Future Work o o e e e e e e e e e e e e 110

6.2 Conclusions . . . v v v v v i e e e e e e e e e e e e e e e e e 111
Bibliography 113
A Metric Values 116
B Alignment vs Performance 129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Nobhprwio—

ARAARAARAARARAREREL LLLLLWLL
b ot pns s s s s e \D) 0O <) O\ LN B LD DD e

Values for the difference metric o v o v v v i i i e e e e e
Workload forbzip2andgzip i v v i i e e
Workload for MCFE & . . . v v i e
Workload forcrafty o i i i e e e e e
Workload forparser i i e e e e
Workload for GAP o i e e e e e e e e e e e e e
Workload for VPR . . . o i i s i e e e e e e e e e e e e e e e e e e

Total processor time of experiments 0.
If conversion metric scores forbzip2 ontheltanium
If conversion metric scores for bzip2 ontheltanium?2
If conversion metric scores for bzip2 low cut group (cut = 55%) on the Itanium .
If conversion metric scores for bzip2 high cut group (cut = 55%) on the Itanium
If conversion metric scores forcraftyontheltanium
1f conversion metric scores for craftyonthe Itanium2
If conversion metric scores forGAPontheltanium.
I £ conversion metric scores for GAP SPEC inputs on the Itanium
If conversion metric scores for GAP snf inputs on the Itanium
If conversion metric scores for GAPonthe Itanium2.
If conversion metric scores forgzipontheltanium
If conversion metric scores forgzipontheltanium?2
If conversion metric scores forMCFontheltanium.
If conversion metric scores forMCFonthe Itanium2.
If conversion metric scores for parser onthe Itanium
If conversion metric scores for parser onthe Itanium2
If conversion metric scores for VPR (place) on the Itanium

If conversion metric scores for VPR (route) on the Itanium
If conversion metric scores for VPR (route) on the Itanium2
Inlining metric scores for bzip2 ontheltanium
Inlining metric scores for bzip2 low cut group on the Itanium
Inlining metric scores for bzip2 high cut group onthe Itanium
Inlining metric scores for bzip2 onthe Itanium2
Inlining metric scores for craftyontheltanium
Inlining metric scores for craftyontheltanium2
Inlining metric scores for GAPon theItanium
Inlining metric scores for GAP on the Itanium?2
Inlining metric scores forgziponthe Itanium
Inlining metric scores forgziponthe Itanium2
Inlining metric scores for MCF on the Itanium
Inlining metric scores for MCF on the Itanium2
Inlining metric scores for parserontheltanium
Inlining metric scores for parserontheltanium?2
Inlining metric scores for VPR (place) onthe Itanium
Inlining metric scores for VPR (place)on the Itanium?2
Inlining metric scores for VPR (route) on the Itanium
Inlining metric scores for VPR (route) on the Itanium2
Rank of resubstitution binaries for i £ conversiononbzip2
Rank of resubstitution binaries for 1 f conversiononcrafty
Rank of resubstitution binaries for 1 £ conversiononGAP
Rank of resubstitution binaries for 1 f conversionongzip
Rank of resubstitution binaries for i1 £ conversiononMCF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.45 Rank of resubstitution binaries for i £ conversiononparser 81

4.46 Rank of resubstitution binaries for i £ conversionon VPR (place) 82
4.47 Rank of resubstitution binaries for i £ conversionon VPR (route) 82
4.48 Rank of resubstitution binaries for inliningonbzip2 88
4.49 Rank of resubstitution binaries for inliningoncrafty 88
4.50 Rank of resubstitution binaries for inliningonGAP v .. 89
4.51 Rank of resubstitution binaries for inliningongzip 89
4.52 Rank of resubstitution binaries for inliningonMCF 89
4.53 Rank of resubstitution binaries for inliningonparser 90
4.54 Rank of resubstitution binaries for inliningon VPR (place) 90
4.55 Rank of resubstitution binaries for inliningon VPR (route) 91
4.56 Number of cases where training on SPEC-provided inputs results in best FDO per-
formance e e e e e e 92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 A motivatingexampleforFDO o 2
2.1 High-levelexampleof ifconversion 7
3.1 Callsitesinasimple program o i it it i e e e 11
3.2 Somepossibleinlininglogs L. o o e 12
3.3 Logfilesconvertedtovectors o i o e 12
4.1 OverviewofAestimo e e e e e e e 23
42 Compilation process v it e e e e e e e 23
4.3 If conversionperformedinthelogexcerpt 26
44 1Ifconversionlogexcerpt e e e e 26
4.5 Inlininglogexcerpt e e e 40
4.6 Average performanceof FDO if conversion 53
4.7 Performance of bzip2 with if conversionon the Itanium 54
4.8 Performance of bzip2 with if conversiononthe Itanium2 54
4.9 Performance of crafty with i f conversionontheItanium 55
4.10 Performance of crafty with if conversionon the Itanium2 55
4.11 Performance of GAP with i f conversionontheltanium. 56
4.12 Performance of GAP with if conversionon the Itanium2 56
4.13 Performance of gzip with if conversiononthe Itanium 57
4.14 Performance of gzip with if conversionon the Itanium?2 57
4.15 Performance of MCF with i f conversionontheltanium. 58
4.16 Performance of MCF with if conversiononthe Itanium2. 58
4.17 Performance of parser with i £ conversiononthe Itanium 59
4.18 Performance of parser with if conversionon the Itanium2 59
4.19 Performance of VPR (place) with i f conversionon the Itanium. 60
4.20 Performance of VPR (place) with i f conversion on the Itanium2. 60
4.21 Performance of VPR (route) with if conversionon the Itanium 61
4.22 Performance of VPR (route) with i f conversionon the Itanium?2 61
4.23 Average performance of FDO'inlining 62
4.24 Performance of bzip2 with inliningontheItanium. 63
4.25 Performance of bzip2 with inlining on the Itanium2 63
4.26 Performance of crafty with inliningon the Itanium 64
4.27 Performance of crafty with inlining on the Itanium?2 64
4.28 Performance of GAP with inliningonthe Itanium 65
4.29 Performance of GAP with inliningonthe Itanium2 65
4.30 Performance of gzip with inliningonthe Itanium 66
4.3]1 Performance of gzip with inliningonthe Itanium2 66
4.32 Performance of MCF with inlining on the Itanium 67
4.33 Performance of MCF with inlining on the Itanium?2 67
4.34 Performance of parser with inliningon the Itanium 68
4.35 Performance of parser with inlining on the Itanium?2 68
4.36 Performance of VPR (place) with inlining on the Itanium 69
4.37 Performance of VPR (place) with inlining on the Itanium2 69
4.38 Performance of VPR (route) with inlining on the Itanium 70
4.39 Performance of VPR (route) with inlining on the Itanium2 70
4.40 Resubstitution for i f conversiononbzip2, 73
4.41 Resubstitution for 1 f conversiononcrafty 73
4.42 Resubstitution for i £ conversiononGAPo e e oo 74
4.43 Resubstitution for 1 £ conversionongzip., 74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.44 Resubstitution for 1f conversiononMCF o e 75
4.45 Resubstitution for 1 f conversiononparser 76
4.46 Resubstitution for 1 f conversionon VPR (place) 77
4.47 Resubstitution for 1 f conversionon VPR (route) 78
4.48 Resubstitution for inliningonbzip2, 83
4.49 Resubstitution for inliningoncrafty 83
4.50 Resubstitution forinliningonGAP e 84
4.51 Resubstitution for inliningongzip o 84
4.52 Resubstitution forinliningonMCF o oo i e 85
4.53 Resubstitution for inliningonparser. oo oL 85
4.54 Resubstitution for inliningon VPR (place) 86
4.55 Resubstitution for inliningon VPR (route) o 87
4.56 Static vs. FDO performance for if conversiononbzip2 93
4.57 Static vs. FDO performance for i f conversiononcrafty 94
4.58 Static vs. FDO performance for 1 £ conversiononGAP 94
4.59 Static vs. FDO performance for i f conversionongzip 95
4.60 Static vs. FDO performance for 1 £ conversiononMCF 95
4.61 Static vs. FDO performance for 1 f conversiononparser 96
4.62 Static vs. FDO performance for 1 £ conversionon VPR (place) 97
4.63 Static vs. FDO performance for i f conversionon VPR (route) 98
4.64 Static vs. FDO performance for inliningonbzip2 99
4.65 Static vs. FDO performance forinliningoncrafty 100
4.66 Static vs. FDO performance forinliningonGAP 100
4.67 Static vs. FDO performance forinliningongzip 101
4.68 Static vs. FDO performance forinliningonMCF 101
4.69 Static vs. FDO performance for inliningonparser 102
4.70 Static vs. FDO performance for inliningon VPR (place) 103
4.71 Static vs. FDO performance for inliningon VPR (route) 104
A.l Metric scores for i £ conversiononbzip2 117
A.2 Metric scores for 1 £ conversiononcrafty 117
A.3 Metric scores for 1£ conversiononGAP 118
A.4 Metric scores for 1 £ conversionongzip e e 118
A.5 Metric scores for 1f conversiononMCF e 119
A.6 Metric scores for 1 £ conversionon parsert ittt 120
A.7 Metric scores for 1 f conversionon VPR (place) 121
A.8 Metric scores for 1 £ conversionon VPR (route) v v v v v v v v u . 122
A9 Metric scores forinliningonbzip2, 123
A.10 Metric scores forinliningoncrafty 123
A.l1l1 Metric scores forinliningonGAP 124
A.12 Metric scores for inliningongzip 0 .. 124
A.13 Metric scores forinliningonMCF e 125
A.14 Metric scores for inliningonparser 126
A.15 Metric scores for inliningon VPR (place) 127
A.16 Metric scores for inliningon VPR (route), 128
B.l Alignment vs. performance for 1 £ conversiononbzip2 130
B.2 Alignment vs. performance for 1 f conversiononcrafty 130
B.3 Alignment vs. performance for 1 £ conversiononGAP 131
B.4 Alignment vs. performance for if conversionongzip. 131
B.5 Alignment vs. performance for if conversiononMCF 132
B.6 Alignment vs. performance for if conversiononparser 132
B.7 Alignment vs. performance for if conversionon VPR (place) 133
B.8 Alignment vs. performance for if conversionon VPR (route) 133
B.9 Alignment vs. performance for inliningonbzip2 134
B.10 Alignment vs. performance for inliningoncrafty 134
B.11 Alignment vs. performance for inliningonGAP 135
B.12 Alignment vs. performance for inliningongzip 135
B.13 Alignment vs. performance for inliningonMCF 136
B.14 Alignment vs. performance for inliningonparser 136
B.15 Alignment vs. performance for inliningon VPR (place) 137
B.16 Alignment vs. performance for inliningon VPR (route) 137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Traditionally, programs are compiled statically, that is, without any information beyond what the
compiler can extract from the source code. When static optimization is used, the compiler must use
heuristics to guess which are the important, frequently executed sections of the code and which are
infrequently or never-executed sections of the code, such as initialization routines and error handlers.
This situation is problematic, as many optimizations attempt to make the frequent case fast, often
at the expense of less-frequently-executed sections of code. Therefore, static optimization must be
conservative in cases where the runtime behavior of the program cannot be confidently predicted at
compile time.

Feedback-directed optimization (FDO), also known as profile-guided optimization, is tradition-
ally a compiler technique that enhances the ability of a compiler to make good optimization de-
cisions [12]. In a very general sense, FDO can be considered to be a spectrum of performance-
enhancing techniques that rely on measurements of run-time program behavior [36]. This spectrum
includes a large variety of methods to enhance program performance, including: a developer manu-
ally tweaking program code, hardware mechanisms such as branch predictors, and run-time program
optimizations such as just-in-time compilation of Java bytecode to native assembly code. However,
this thesis uses a much narrower, traditional definition of FDO.

When traditional FDO is used, several additional steps are required during the compilation pro-
cess. First, the program is compiled with additional instrumentation code to record statistics about
run-time program behavior to a file. Then, this instrumented binary is run on a training input to
generate a file containing run-time program statistics, which is called a profile. Finally, the program
is recompiled. The compiler reads the profile file and replaces its static estimates of program be-
havior with the values recorded in the profile. Usually an internal compiler variable is set to tell
optimizations that profile information has replaced the static estimates.

Because FDO requires multiple compilations of the same program, it is important to distinguish
between a program, which is the algorithm encoded in the source code, and a binary, which is
a particular compiled version of a program. When any of the inputs to the compilation process

are changed (e.g., compiler, command-line parameters, profile information, target architecture, or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data = getDataBlock(blockNum) ;
icrec = integrityCheck(data):
if(icrc == DATA.OK) {

// ... some preparation code

processData(data, blockNum) ;

// ... some finalization/cleanup code
} else {

// ... log the error

// ... initialize recovery ...

reTry (blockNum) ;

Figure 1.1: A motivating example for FDO

source code), a different binary is produced. Thus, compiling a program using FDO and training on
one input will result in one binary, but training on a different input will result in a different binary.

Consider the code fragment in Figure 1.1. Statically, a compiler might consider both branches of
the i £ equally likely. In that case, the true branch will probably not be optimized if it would reduce
performance on the false branch. Should inlining of processbData (data, blockNum) or
reTry (blockNum), or both, be performed? To limit code growth, only a frequently executed
function call should be inlined, but which branch is more frequently executed?

Alternately, some compilers perform additional branch analysis [6]. Since error codes are con-
ventionally represented by negative integers, the test against DATA_OK (which is presumably a non-
negative constant) could be correctly identified as checking for an error condition. In this case, the
compiler assumes that an error is an infrequent exception, and optimizes the true path. If this code is
acquiring data from a reliable source, such as a hard drive or a wired network connection, error rates
would be very low and the false branch would almost never be executed. On the other hand, if the
data comes from an unreliable source, such as a noisy wireless connection, then the false branch may
execute very frequently. By recording statistics during the execution of the program running on real
data, FDO provides more accurate information to the compiler to allow for better code generation in
such cases.

Most studies that use FDO techniques use either a single input for both training and performance
evaluation, or a single input for training and a single input for evaluation {11, 17, 18, 37, 28, 25, 14,
33, 16, 40}. This is not a wise practice because the run-time behavior of a program is influenced
by the data it is processing. Few studies have investigated the impact of the training input vused
in FDO on the performance of the resulting binary, either on an individual input or on a workload
of inputs. Instead, both benchmark creators and compiler designers rely on the assumption that
selecting a single “representative” training input will result in effective FDO. The tasks of defining
what representative means and of selecting some input that meets this definition are typically left to
the benchmark creator, who is usually familiar with the program.

There are several problems with this approach. First, most compiler users will likely be less

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

successful than a benchmark designer at selecting a representative training input when they use
FDO on a non-benchmark program. Second, there are several possible definitions of a representative
input. Is a representative input representative of a typical workload of inputs to the program, or is
it representative of the input that will be used for performance evaluation? In the latter case, should
the training input be distinct from the evaluation input? Should it be a subset of the evaluation input?
Or, should it be a mix of those two options?

While it may seem that one solution is obviously correct, there are competing schools of thought
on the issue [38]. On one side of the issue are those who believe that including any portion of the
evaluation input in the training input represents an unrealistic scenario. A program would rarely
be run on the same data twice, since the results of the first computation could be stored and reused
directly. Including evaluation data in the training input thus provides the compiler with more accu-
rate data than would be available in a production environment, and may exaggerate the performance
benefits of FDO.

On the other hand, some benchmark designers point out that including a portion of the evaluation
data in the training data is an easy way to ensure that the training d.ata is representative of a real
workload. They argue that since a large portion of the evaluation data is not used for training, the
characteristics of that portion of the data could vary substantially from the data used for training.
This would counteract any possible impact of providing the compiler with artificially accurate profile
information. Furthermore, they argue that there are several classes of programs where it is perfectly
reasonable to select a subset of the actual data as the training set in a production environment. Data
is frequently organized as records, which are processed independently. Selecting a sample of records
from the full data set is a natural and easy method to create a representative training data set.

At this time, there are no regulations for the SPEC benchmarks [19] to specify whether training
data should or should not include data from the reference input set. In fact, there are examples of
both situations in the benchmarks used in this study.

Therefore, an important question remains open: How important is the selection of training data
for FDO? It is likely that the answer to this question is not constant across all optimizations that
use profile information. Therefore, a more appropriate question is: How sensitive are individual
compiler transformations to the selection of training data used with FDO?

This large question should be decomposed into more manageable parts. First, does the selection
of training data change the optimization decisions that are made during compilation? For example,
does the selection of a different training input change which callsites are inlined in a program? If the
answer to this question is **no,” then the task is complete: Input selection is irrelevant for feedback-
directed optimization. More likely, however, different optimizations applied to different programs
exhibit varied measures of input selection sensitivity.

Even if different optimization decisions are made, these differences might not be significant.

Thus, an important second question is: Do the differences in optimizations decisions result in dif-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ferent levels of performance? If training on different inputs results in significantly different levels of
performance, then input selection for FDO is an important issue.

These questions will not be easily answered. Furthermore, the answers will likely vary depend-
ing on the selection of compiler and architecture investigated. This thesis reports the results of an

initial exploratory investigation that provides the following contributions:

e Defines two metrics to quantify differences in optimization decisions.

¢ Introduces an experimental methodology to investigate the impact of input selection on a

single optimization.

e Performs an extensive experimental study using the SPEC CINT2000 benchmarks with a
large number of additional program inputs to investigate the feedback-directed i £ conversion
and inlining optimizations in the Open Research Compiler (ORC) for the 1A-64 family of

Processors.

e Determines that training input selection does impact the optimization decisions made during

FDO compilation.

e Observes that training input selection often has a significant impact on program performance,

both on a workload of inputs and on individual inputs.

e Confirms that FDO has the potential to significantly improve program performance, and de-

termines that this is usually the case with inlining.

e Demonstrates that feedback-directed i £ conversion in the ORC usually reduces program per-

formance.

e Confirms that using the same input for both training and evaluation usually leads to the best

performance results.

Chapter 2 provides additional background information about FDO and the ORC infrastructure.
Chapter 3 describes the experimental setup, and defines the metrics used to measure profile differ-
ences. The results of an experimental study are presented in Chapter 4. Related work is discussed

in Chapter 5. Chapter 6 identifies future work and concludes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

2.1 Profiling and Feedback-Directed Optimization

Feedback-directed optimization uses a program execution profile to determine which portions of
the code are frequently executed and how control flows through the program at run time. This
information is useful to optimize code that contains control flow such as i £ statements. On the other
hand, control flow due to loops does not benefit from profile information because loop behavior is
easily predicted at compile time. Moreover, optimizing loop code is virtually always beneficial. In
fact, the Open Research Compiler (ORC), used in this study, includes loop frequency counts in its
profile information but ignores this information when performing loop optimizations.

Ball and Larus show how to place counters to capture the frequency of each branch in a program
with a minimum number or counters [7]. They also show that simply counting branch frequencies
is insufficient to correctly identify the most frequently taken path through a section of code. They
then present an efficient instrumentation technique to capture the frequency of each execution path
through a function [8].

Despite the existence of these profiling techniques, the ORC inserts counters to record the fre-

quencies of every branch in a program. The ORC does not implement path profiling.

2.2 Compiler Infrastructure

The Open Research Compiler (ORC) is an open-source compiler [1]. The principal contributors to
the development of the ORC are Intel and the Chinese Academy of Sciences. The ORC is based
on the code base of SGI's Pro64 compiler [5], which was released as the open-source Open64
compiler [2] in 2001. The ORC focuses on producing high-performance code, and is frequently
used for compiler research. To support this aim, the ORC has a rich profiler to support its FDO

infrastructure that provides, among other things:

¢ Dynamic instruction counts for each function

¢ Invocation count of each function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¢ Taken and not-taken frequency counts for each branch
o Loop statistics
e Switch-case case frequencies

e Call and return frequencies for each callsite

Stride profiles

Value profiles

The 1A-64 processor family is the only target for the ORC. Consequently, the ORC combines a
mature code base with state-of-the-art compiler technology tuned for Itanium processors. When a
3-stage FDO compilation process is used, the performance of the ORC 2.1 on the SPEC CINT2000
benchmarks is within 5% of Intel’s ECC 7.0 compiler, and exceeds the performance of GCC 3.1 [4,
3]. This study uses the latest release of the ORC, version 2.1.

This thesis investigates two optimizations that make use of the frequency information provided
by profiling: 1£ conversion and function inlining. The code base of the ORC is roughly 130MB,
spread across nearly 8500 files and 267 directories. Thus, locating, understanding, and correctly
instrumenting an optimization has the potential to be a very involved task. This task is made more
involved by the scarcity of detailed documentation for the compiler. If conversion was selected
because (1) it was moderately easily located in the source code, (2) it is contained in a small number
of source files, and (3) it is easily instrumented to output and use the optimization logs required for
the study. Inlining was selected because it is an optimization known to have a significant impact on
performance. Furthermore, inlining provides a natural starting point for the investigation because

the facilities to output and use the inlining log were pre-existing in the ORC.

2.2.1 TIf conversion

If conversion is a program transformation that attempts to reduce branch misprediction penal-
ties and hazards that arise in code with control low. Furthermore, as a side effect of eliminating
branches, i £ conversion can increase the amount of Instruction Level Parallelism (ILP) in program
code and allow greater flexibility for instruction scheduling. Both these properties are important for
EPIC architectures such as the Itanium' and the Itanium 2, as discussed in Section 3.3. In addition,
if conversion can enhance the performance improvements gained by software pipelining loops.

In order to execute if-converted code, an architecture must support predicated instructions. A
predicate is a special-purpose single-bit register, p0, pl, etc.. Predicates can be set or cleared by the
results of comparisons, or can be calculated from other predicate values. A predicated instruction

is a normal machine instruction, prefaced by a reference to a predicate register. If the bit in that

!tanium and Itanium 2 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countrics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

J{-f(:] < k) if(3 < k) 1t j,k set p0,pl
= * i . p0: a = 2*k-j
ﬁ ;]2< }f+?],' Yes No pl: a = 2*k+j
! YT p0: b = j+k
a = 2*k+j a = 2%k-j 1: b = k-j
<(alse b = k-3 b = j+k P
a = 2*k-3j; *
b = 3j +k; . -
) | : |
(a) Original code (b) Original CFG (c) If converted CFG

Figure 2.1: High-level example of i f conversion

predicate register is on, or the predicate is true, then the results of the instruction are committed;
otherwise the result of any computation is discarded and does not change any state in the machine.

Figure 2.1(a) shows a simple branch. Figure 2.1(b) shows the same branch as a control flow
graph (CFG). A CFG is composed of basic blocks (BBs). A basic block is a single-entry single-exit
sequence of instructions where execution can only start with the first instruction in the sequence.
Moreover, if the first instruction is executed, then every instruction in the BB must be executed in
order. Consequently, the first instruction in a BB must be either the first instruction in a function,
or the target of a branch instruction. Either the last instruction of a BB is a branch or a return
instruction, or the next instruction after the BB is the target of a branch. Every branch is the last
instruction of some BB.

Since i £ conversion changes branches into predicate calculations, i £ conversion allows BBs to
be merged together. In Figure 2.1(c), the p1 predicate is set to | and the p0O predicate is set to 0 if
j is less than k. Otherwise, when the result of the test is false, the values assigned to the predicates
are reversed. The instructions on the Yes path are guarded by the p1 predicate, and the instructions
on the No path are guarded by the p0 predicate. Then, the instructions from both branches can be
merged into the BB that contained the test before 1 £ conversion. The instructions from the two paths
can be intermingled arbitrarily, and can be scheduled anywhere in the new BB after the instruction
that computes the predicate values.

When the code is not i £-converted, the direction of the branch determines whether the instruc-
tions on the i f or else path should be executed. Either set of instructions may enter the execution
pipeline, but not both. If the processor mispredicts the branch, then the wrong instructions will be
fetched and put into the pipeline. Subsequently, the pipeline will be flushed, and execution will
restart with instructions from the correct path. Many branches are easily predicted. For example,
the exit test at the beginning of a loop is only taken once in each loop execution, but is not taken for
every iteration of the loop. However, some branches are inherently difficult to predict [6], [23] (pp.
313-314), and thus benefit most from i £ conversion.

Onthe other hand, if the codeis i £ converted, then all the instructions from both sides of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

branch are fetched and enter the execution pipeline. All of these instructions do consume processing
resources, though the expectation is that the processor would otherwise have idle functional units.
In exchange, there is no danger of a branch misprediction since the branch has been eliminated.
Predicates are computed in time to determine which instructions should be committed and which
should be discarded without delaying execution.

When making an i £-conversion decision, the branch is first checked to ensure that i £ conver-
sion is legal. Then, the execution times for both the predicated and non-predicated versions of the
code are estimated to determine the profitability of the transformation. These estimates are based on

the following factors:

1. Taken vs. Not-Taken Time: If the code for one side of the branch is much longer than the
other, if-conversion will delay the execution of the shorter path. The execution time for each

path is estimated statically.

2. Resource Use: If if conversion would lead to stalls due to insufficient processor resources,

it may not be beneficial. Resource use is estimated statically.

3. Branch Probability: The probability that the branch is taken is used to estimate the branch
misprediction cost and to weigh the above characteristics when estimating execution times.
The branch probability is taken from profile information if available, or estimated based on

the type of branch otherwise.

If the average estimated execution time is reduced by i £ conversion, the transformation is per-
formed. The transformed region may be part of a path from another branch, and may become part
of a larger predicated region if additional i £ conversion is performed.

Hyperblocks are single-entry multiple-exit scheduling regions that rely on 1f conversion to
remove control flow within a region. Hyperblocks were introduced by Mahlke [31]. He found,
through simulation, that they could provide on average a 3-fold speedup for a collection of programs
on a hypothetical EPIC processor capable of issuing 4 instructions per cycle and implementing full
support for predicated execution. These simulations provided incentive for the design of hardware
implementations of similar processors, such as the Itanium. However, later studies using the Itanium
revealed that the performance benefits of if conversion on this architecture are fairly small. In
particular, Choi et al. concluded that the performance benefits of i f conversion due to reduced
branch misprediction for the SPEC CINT2000 benchmarks on the Itanium are upper-bounded at
about 2-3% [13].

The ORC contains algorithms to produce predicated code using either hyperblocks (path-based
predication) or if conversion (individual branch-based predication). I £ conversion is used by de-
fault unless hyperblocks are explicitly selected by a command line option. We expect that the com-
piler designers had good reasons to prefer if conversion over hyperblocks, and therefore perform

our study using if conversion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.2 Inlining

Function inlining, or simply inlining, is a common optimization that results in significant perfor-
mance gains. Inlining replaces a function call with the code of the function that would ordinarily be
called. The function call is referred to as the callsite, the function that contains the callsite as the
caller, and the function that would be called as the callee. There may be multiple callsites for the
same callee, and each is treated individually.

Inlining improves performance in several ways. Most obviously, inlining a function removes
the function call and the associated overhead of pushing arguments onto the stack and saving and
restoring registers. Also, since the function code is included in the body of the caller, locality in
the instruction stream can be improved. Most importantly, other optimizations have the potential
to be more effective. For example, optimizations such as dead code elimination, constant propaga-
tion, and redundant subexpression elimination can propagate changes into the callee code without
the requirement to maintain the generality of the original function. Consider a function that does
additional or alternate processing if a parameter is true or false. If the compiler can prove that the
parameter is always set to true (e.g., it is hard coded to true) at a particular callsite, then the test on
that parameter and the non-taken branch can be eliminated from the inlined code.

However, excessive inlining can degrade performance. Inlining increases code size, and can re-
duce instruction cache performance. Furthermore, larger functions require more time to optimize.
This is particularly problematic since several static optimizations have super-linear compile times.
To prevent excessive compile times, many optimizations are guarded by timers that abort optimiza-
tion after an extended period of time. Therefore, excessive code growth can limit the effectiveness
of more expensive optimizations. Finally, the inlined code introduces more variables and temporary
values that increase register pressure. If these values do not fit in the register file, then additional
register spills and restores are needed.

There are many factors that determine if inlining is performed at a callsite. The main intuition
for the majority of the filters that control inlining is that the callsite should be frequently executed
to maximize the benefits of inlining, and both the caller and the callee should be small to avoid the
negative effects of code size expansion. In the ORC, the compiled size of a function is estimated

from higher-level representations according to the formula:
size = StatementCount + CallCount + 5 * BasicBlockCount

Each statement results in one or more machine instruction. Each function call requires code to push
arguments on the stack and a call instruction. A basic block is a section of code with a single entry
point at the first instruction, and no exits until the last instruction, which may be a branch or a return
instruction. Since many basic blocks are small, five instructions per basic block is a reasonable
rough estimate.

Inlining in the ORC uses a temperature heuristic, which is augmented by Zhao’s adaptive in-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lining and cycle. density heuristics [40]. Temperature measures the expected benefit of inlining, and
can roughly be explained as the ratio of the contribution of a callsite to the execution time of the
program compared to the proportion of the size of the callee to the size of the entire program. A
hot callsite is one that accounts for a large amount of program execution time from a small callee.
Therefore, the hotter a callsite, the more benefit is expected from inlining that callsite.

Inlining is performed if the temperature of a callsite exceeds a threshold. Adaptive inlining
allows the threshold to vary depending on the program size. Small programs benefit from a lower
threshold and more aggressive inlining, while larger programs require a higher threshold to prevent
excessive inlining. Applications are categorized as Large, Median, or Small, and the temperature
threshold is adjusted accordingly.

Callsites may account for a large proportion of execution time due to frequent execution or due
to high trip-count loops inside the callee. The temperature heuristic is not effective at distinguishing
these two cases. However, inlining will only be effective at enhancing performance in the case where
the call is made frequently. A high trip-count loop can be optimized effectively without inlining, but
inlining it will likely produce the negative effects described above. The cycle_density ratio identifies
these heavy functions by comparing the amount of execution time spent in the function to the number
of times the function was called. Only those callees with a low cycle_density should be inlined.

Zhao shows that the addition of adaptive inlining improves performance on the SPEC CINT2000
benchmarks by more than 5% compared to temperature alone. Also, while cycle_density has little
impact on performance, it reduces code bloat by as much as 27% by preventing the inlining of a
small number of infrequently called functions. These experiments were performed on an Itanium
processor, with FDO training on the SPEC training inputs, and evaluated on the SPEC reference
inputs.

As discussed above, the ORC’s inlining heuristics rely heavily on the frequency of execution
of each callsite, the execution frequency of each function, and the number of cycles spent in each
function. While these measures can be estimated statically, they can be much more accurately de-
termined by collecting profile information. Loop optimization classically assumes that each loop
iterates 10 times. There are standard expectations of branch probabilities for various classes of
branches. These estimates can be used to generate estimates for the quantities used by the inlin-
ing heuristics. However, profile information is very valuable for calculating heuristic values. In
particular, profile information can provide much better measures of loop trip counts for use with
the cycle_density heuristic, and will result in much more accurate temperature values. Therefore,

inlining should be more effective when FDO is used.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Experimental Setup

3.1 Metrics

This thesis addresses two primary questions: (1) does profiling on different training inputs result in
different optimization decisions in the compiler? and (2) do these modified decisions significantly
affect program performance? The latter question can be answered by experimentation, and will be
dealt with in Chapter 4. This section addresses the first question. It develops methods to quan-
titatively measure the differences between sets of optimization decisions. These metrics provide
a concrete measure of the extent to which the selection of training data influences the way that a
program is optimized by a compiler.

During the compilation process, selected compiler decisions are written to a log file. For clarity,
a particular instance where a decision is made is referred to as a choice, and the selected outcome of
the choice is a decision. For example, at a callsite foo in a program, the compiler has a choice about
inlining foo, which results in a yes or no decision.

Figure 3.1 shows the callsites of a simple program that will serve as a running example. Assume
that there is additional code, which is omitted for brevity and clarity, in each of the functions. Three
possible inlining logs are presented in Figure 3.2. The notation caller.callee is used to name
callsites.

Log files record the compiler’s choices and decisions for an optimization during a single com-
void foo() {}
void bar() {

foo();
}

int main(int argec, char* argv[]) {
foo();
bar();

}

Figure 3.1: Callsites in a simple program

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

callsite log1 log 2 log 3 log 4
bar.foo inline call inline call
main. foo call call call inline
main.bar call inline | inline | inline
main.bar.foo inline | inline | inline

Figure 3.2: Some possible inlining logs

callsite | Us | U3 | Uy
bar. foo 1 0 1 0
main. foo 0 0 0 1
main.bar 0|1 (111
main.bar.foo | 0 1 1 1

Figure 3.3: Log files converted to vectors

pilation. All the logs for a given benchmark and optimization are processed together. Each log is
converted into a vector. Each vector is the same length, with one entry for every unique choice
recorded in the set of logs. By convention, a 0 is recorded in the vector for a negative decision
(choosing not to perform an optimization), while a positive non-zero value is recorded for a positive
decision (choosing to perform the optimization). In the case where a choice is not present in one or
more logs, a default value of 0 is recorded. This situation may arise any time the existence of one
decision depends on a previous positive decision. By making a negative decision for one choice, the
compiler implicitly makes negative decisions for all choices that depend on a positive decision for
that first choice. For example, the main.bar.foo callsite does not exist in log 1 in Figure 3.2, so it is
assigned the default value of 0 in the vectors in Figure 3.3.

Once each of the n logs has been converted into a vector ¥, the Difference and Coverage metrics

can be calculated. The terms log and vector are used interchangeably to refer to vectors ;.

3.1.1 Difference

The difference metric quantifies the difference between two logs. It is defined as the squared length

of the difference vector between two log vectors ¥; and v;:
- = | = 2
8(7i, 0;) = |U; — T4

In the case where binary decisions are recorded in the vectors as Os and 1s, §(%;, ;) is simply the

|9 & @ &
7|0 3 2 4
7 0o 1 1
7 0o 2
7 0

Table 3.1: Values for the difference metric

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hamming distance between the vectors'. Difference values for the example are given in Table 3.1.
d grows as the number of choices that resulted in different decisions in the two logs increases.
Therefore, this metric gives a direct indication of the extent to which a different selection of training
input can result in different optimization decisions during compilation. However, d has no concept of
the relative importance of the decisions. Two logs that differ only regarding insignificant decisions
may have the same § value as two logs that only differ with respect to a few key decisions. Therefore,

there may be no correspondence between the difference score and performance.

3.1.2 Alignment

The common implicit assumption of most work that uses FDO is that as long as the training dataset
is “representative” of usual program behavior, the particular dataset used for training is inconsequen-
tial. If this is the case, then the optimization logs based on profiles from different training inputs
should not vary significantly. The difference metric can identify differences between a pair of logs,
but does not answer the question of how much the logs agree with each other across the entire set of
logs. The alignment metric quantifies the level of agreement between one optimization log and the
collective choices made across the logs from all the inputs for a program.

To calculate an alignment score for a log, first calculate the combined total vector:
FeYs
i

T can be seen as a measure of agreement between all the logs. A choice that frequently results in
a positive decision will have a high value recorded at its index in T, while a decision that is usually
decided negatively will have a low value in T. In the example, T = [2 1 3 3]T.

The alignment of a log ¥; is defined as:
_
Tl

Qa;

« is most usefully reported as a percentage, where the sum of the elements of T is used as the
denominator. Recall that the dot product of two vectors, & - § = |&||§]cos(6), where 6 is the angle
between the vectors. Therefore, a is related to the angle between a log and T. Since a; is the
accumulation of the element-wise products of T and 7, o will be large only if #; has positive values
(i.e., positive decisions) at the same indexes as many other logs. If a log has no positive decisions,
a will be 0. On the other hand, if a log has a positive decision for every choice for which any log
records a positive decisions, a will be 100%. In the example, ¢y = % = 22%, a2 = § = 67%,

oy = % = 89%, and oy = % = 78%.

2
9

The Hamming distance is the number of bits that are different between two equal-length binary vectors

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.3 Differences Between Logs

Logs may differ in two primary ways. First, the positive decisions in one log may be a superset
(or subset) of the positive decisions in another. Alternately, two logs may make different decisions,
such that the intersection of the two sets of positive decisions is small. Practically, the differences
between two logs will fall somewhere on the continuum between these extremes, but will generally
tend toward one or the other. It would be useful to distinguish between these two cases, since the first
case represents more aggressive application of an optimization, while the second case represents a
divergence of optimization strategies. Intuitively, the second case shows a more fundamental change
in the behavior of the compiler than the first, and consequently a more significant difference between
the training inputs that generated the logs in question.

The difference metric cannot distinguish between the two cases, since it merely counts the dif-
ferences between the sets of positive decisions, without regard for whether one log is performing
more optimization or different optimization than the other. On the other hand, the alignment metric
does not directly measure the relationship between any pair of logs. However, when alignment and
difference are considered together, they provide insight into the relationships between logs.

Let us consider first the cases where difference scores are low. In this case, the low difference
scores are sufficient to identify the logs as very similar. Since there are few differences between the
logs, alignment values are expected to be very high.

However, if differences between logs are larger, and one log has a higher alignment score than
the other, it is likely that one log is roughly a superset of the other. Conversely, if the logs differ
but have very similar alignment, then the difference is likely due to different optimization strate-
gies rather than a difference in how frequently an optimization was performed. A low alignment
value reinforces this conclusion, since it indicates that a larger proportion of choices were different

between the logs.

3.2 Benchmarks and Inputs

Feedback-directed optimization involves a multi-step compilation process. First, an instrumented
version of the program is compiled. This instrumented binary is run on a training input, and emits
a profile that describes the run-time behavior of the program during that run. Finally, the program
is recompiled. During this compilation, the compiler uses information from the profile file to guide
code transformations. This study uses a workload of inputs for each program. Training is done
once for each input in the workload. The evaluation of each of the resulting binaries is measured by
running it on all the inputs in the workload.

In order to study the impact of various training datasets on the performance of feedback-directed
optimizations, this study uses the standard SPEC CINT2000 benchmarks and their corresponding

datasets. SPEC provides three sets of inputs for each program for use during performance evaluation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The test input set is a very small input that is provided to allow easy verification that the system
is configured properly for the compilation and execution of the benchmark program. The train
input set consists of a small or medium-sized input for use during the training run of FDO. The ref
(reference) input set is the input set used for performance evaluation. The reference inputs are large,
and usually run for several minutes. SPEC provides one test and one train input for cach program
in the suite. The reference input set often contains a single ref input, but occasionally consists of
several inputs that are processed in consecutive runs of the program.

The inputs provided by SPEC are insufficient for this study. The test inputs are very small, and
thus might not be adequate for use during the training run for FDO. Both the test and train inputs are
reduced in size compared to the ref inputs, and thus may be unsuitable for use during performance
evaluation. Even in the best cases, there are only a small number of inputs in the SPEC reference
workload. Therefore, all the SPEC inputs are included in the workloads for our programs, and are
supplemented with additional inputs. These additional inputs are chosen to be representative of a
larger range of inputs to the benchmark programs. Where possible, the benchmark authors have
been consulted during the input selection process so that their expert knowledge of the program can
provide insight and intuition to select inputs.

Some SPEC benchmark programs were omitted due to problems compiling them with the ORC.
All benchmarks were used unmodified from the source code provided by SPEC. In some cases,
newer versions of the programs were available that may have alleviated some experimental difficul-
ties. Nonetheless, this study uses the original benchmark code in order to preserve consistency with
other works.

Following are brief descriptions of the benchmark programs and the workloads used. Tables
summarize the workload for each program, and provide additional details about each input. The
average time for a statically optimized binary to run on each input on the Itanium 2 is presented as
a quantitative measure of each input’s size and complexity.

Bzip?2 is a popular compression utility that uses the Burrows-Wheeler block sorting text com-
pression algorithm and Huffman coding. The additional inputs for bzip?2 are a collection of files in
common formats. Files in these formats are often distributed over the Internet, or archived by users,
and compression is usually employed in both of these scenarios. The bzip2 workload is given in
Table 3.2. Bzip2 was not run on the log and combined inputs.

Gzip is another popular compression utility that uses Lempel-Ziv coding (LZ77). Gzip uses
the same workload as bzip2 (Table 3.2), with the addition of the log and combined inputs. SPEC
does not provide details about the combined input, but judging by its name and the fact that it is
gzip's train input, it is reasonable to speculate that combined is a collection of parts taken from
the gz ip reference inputs.

MCF is a multi-commodity flow solver that uses the network simplex algorithm. The workload

for MCF consists of the SPEC inputs along with several randomly generated problem instances using

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. e . Runtime (s)

Input Description Size (MB) baip2 | gzip

mp3 An audio file encoded as an MPEG! layer 3 34 | 163.32 | 42.78
audio stream using 128 Kbps constant bit rate
encoding.

jpeg A large image compressed using the JPEG image 15 | 147.42 | 40.99
format, using a high quality setting.

xml An exported iTunes [24] music library in XML 42| 93.83 | 15.01
format. The library contains approximately 2800
songs.

docs A collection of Word, WordPerfect and RTF 4.8 | 521.11 | 31.64
formated text documents, Excel and Quattro Pro
spreadshcets, and PowerPoint presentations.

pdf A collection of developer manuals for digital 16 | 117.85 | 36.89
signal processors, as PDF documents.

mpeg A video encoded as an MPEG-1 video stream. 29 | 157.21 | 42.86

compressed | The SPEC train input for bzip2, and the SPEC 1.0} 2675 1.29
test input for gzip.

reuters ASCII text from the Reuters collection [30]. 4.4 [55.35 | 44.37

gap The 254.gap SPEC CINT2000 benchmark 34| 86.53 | 7275
program binary compiled with optimization and
without feedback by the ORC 2.1 compiler.

graphic A SPEC reference input for both bzip2 and 6.3 | 73.67 | 41.23
gzip. A large TIFF image.

program A SPEC reference input for both bzip2 and 33| 73.15| 67.62
gzip. A program binary.

random A SPEC test input bzip2, and a SPEC refer- 8.0 5.79 | 33.85
ence input for gzip. Random data.

source A SPEC reference input both for bzip2 and 9.1 | 53.00 | 37.44
gzip. A tarball of source code.

log A SPEC reference input for gzip. A webserver 42| 71.37 | 17.98
log.

combined The SPEC train input for gzip. 3.0 | 131.70 | 22.45

Table 3.2: Workload for bzip2 and gzip

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Trips .
INPUt | rime-Tabled | Dead-Head | RUMtIMe ()
rof 16555 194581 530.34
test 646 2789 021
train 5985 84449 3142
synth-0 10000 | 200000 596.99
synth-1 [1000 | 200000 814.63
synth-2 [2000 | 200000 | 1168.17
synth-3 [3000 | 200000 | 1566.10
synth-4 [4000 | 200000 | 1999.12
synth-5 5000 | 200000 56.78
synth-6 6000 | 200000 100.56
synth-7 7000 | 200000 162.47
synth-8 8000 | 200000 369,21
synth-0 5000 | 200000 386,11

Table 3.3: Workload for MCF

Input | Board Positions | Search Depth Limit | Runtime (s) |

ref 5 I1-12 133.60
test 4 7-8 2.99
train 4 8-10 18.61
wac-001 10 12 113.46
wac-051 10 12 165.31
wac-151 10 12 347.76
wac-251 10 12 275.01

Table 3.4: Workload for crafty

varied parameters. Each problem instance is composed of timetabled trips and dead-head trips,
which are used to create the problem graph. Our testing showed that the difficulty of a problem
instance is related to the ratio between the number of the two trip types. Unfortunately, efforts to
contact the benchmark author to verify this result or gather additional insight into the problem failed.
Therefore, we selected a number of deadhead trips similar to the SPEC reference input, and varied
the number of timetabled trips. Table 3.3 provides additional details. Notice that the run times for
the synthetic inputs span a range from about 10% to almost 400% the runtime of the SPEC reference
input.

Crafty is a high-performance chess-playing program. The SPEC inputs used in the workload
are each collections of chess positions to solve (determine if the current player will win or loose).
The additional inputs are small collections of board positions arbitrarily selected from a large set
provided by the program’s author. Additional details can be found in Table 3.4. The additional
inputs for craf ty also show variation in program difficulty, based on program runtime.

Parser is a natural language parser that attempts to label words in English sentences with
their correct part of speech. The version of parser in the SPEC CINT2000 suite is version 2, while
the current version is version 4.0. The newer version can parse sentences faster, and can handle

sentences that cause the SPEC version to abort in mid-run. Manual checking of inputs was required

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| Input | Description | Sentences | Runtime (s) |

ref The SPEC ref input. 7759 292.54

test The SPEC test input. 848 1.87

train The SPEC train input. 343 6.66

alice Text from “Alice’s Adventures in Wonderland” 773 609.36
by Lewis Carroll. Digital text is from the Project
Gutenberg repository [10].

pa Text from the news posts from December 29, 2004 2227 432.20
through May 6, 2005 at Penny-Arcade [27], a
popular video-game news and webcomic website.

relativity Text of “Relativity: The Special and General 590 534.52
Theory” by Albert Einstein. Digital text is from
Project Gutenberg [22]. Some manual processing
was performed to fix sentences with equations and
figure references.

worlds Text from “The War of the Worlds” by H. G. Wells. 2456 592.83
Digital text is from Project Gutenberg [39].

02-05words | Those sentences with only 2 - 5 words, inclusive, 452 0.33
from the pa, alice, relativity and worlds inputs.

06-10words | Sentences with 6 - 10 words from the Project 1181 2.33
Gutenberg inputs.

11-15words | Sentences with 11 - 15 words from the Project 1271 8.95
Gutenberg inputs.

16-20words | Sentences with 16 - 20 words from the Project 1220 37.30
Gutenberg inputs.

21-25words | Sentences with 21 - 25 words from the Project 1083 141.66
Gutenberg inputs.

Table 3.5: Workload for parser

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input | Parameter | Runtime (s) |

ref N/A 173.29
test N/A 0.87
train N/A 6.67
snf200-300 | 200 and 300 0.73
snf525 525 4.86
snf750 750 18.99
snf900 900 35.99
snf1025 1025 59.82
snfl 150 1150 84.34
snf1260 1260 114.47

Table 3.6: Workload for GAP

to prune our additional input of such offending sentences. Descriptions of our additional inputs are
given in Table 3.5. The pa input was selected to exercise parser’s code that handles words not
found in its dictionary, and is an example of informal writing. Alice was selected as an example of
unusual word use and sentence structure. Relativity provides an example of more formal technical
writing, while worlds provides more common word use and sentence structure, as well as dialog.
The inputs for parsex are varied in both the number of sentences and the resulting runtime, though
the two measures are not strongly correlated.

GAP (Groups, Algorithms and Programming) is an interpreter for a mathematical language ori-
ented for computations on groups. The version in the SPEC benchmark is V3R4P3, modified for
the benchmarks to run on 64-bit architectures. However, the 64-bit porting was not complete, and
only ensured that the test, training, and reference inputs, supplied to SPEC when the benchmark was
submitted, ran correctly [35]. Therefore, there are limitations on the variety of input programs that
can be selected for GAP. Several additional inputs were tried, but most caused incorrect behavior
(e.g., infinite loops). Consequently, there must be sections of cade in the benchmark that none of
our inputs exercise, namely those sections responsible for incorrect program behaviors. Our addi-
tional inputs are a single program, with a varied input parameter. The goal of varying the parameter
is two-fold: first, as the parameter grows, the numbers used in calculations will grow and the inter-
preter will shift from machine integer arithmetic to long integer arithmetic. Second, as the parameter
increases, the performance bottleneck should shift from the CPU to the memory hierarchy. While
the SPEC test and train inputs are distinct, both overlap the computations specified in the SPEC ref
input (i.e. some of the calculations performed by the test and train inputs are also exactly performed
in the ref input) [35]. The inputs used in the GAP workload are listed in Table 3.6. The table does not
indicate if the desired changes in program behavior are realized, but the run times for the additional
inputs are quite varied.

VPR (Versatile Place and Route) is a tool to place and route circuits for Field-Programmable Gate
Arrays (FPGAs). This benchmark has been split in two, with one copy for each of the main program

tasks. In this way, training on placement inputs is prevented from creating binaries that perform

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Size (Logic Blocks) I’lRa lcl:timle{(:fn)te
ref (clma) 8383 | 87.63 82.52
test N/A 1.05 0.44
train N/A | 990 9.23
alud 1522 | 7.34 6.32
apex2 1878 | 10.77 7.97
apex4 1262 | 6.06 5.53
bigkey 1707 | 9.73 8.54
des 1591 9.11 16.81
diffeq 1497 | 8.03 4.79
dsip 1370 | 7.12 5.60
elliptic 3604 | 26.75 | 21.37
ex1010 4598 | 38.17 | 23.98
ex5p 1064 | 5.15 6.23
frisc 3556 | 27.14 | 23.82
misex3 1397 | 6.89 5.79
pdc 4575 | 39.09 | 127.63
s298 1931 9.55 4.16
s38417 6406 | 59.96 | 28.75
s38584.1 6447 | 60.63 | 30.80
seq 1750 | 9.59 7.52
spla 3690 | 28.59 | 30.80
tseng 1407 | 5.17 241

Table 3.7: Workload for VPR

poorly on routing inputs (and vice versa), as these effects would exaggerate the differences between
training inputs. Both the placement and routing versions of the experiments use the same set of input
circuits, but perform only the appropriate task. The additional inputs for the VPR workloads are the
circuits from the FPGA Place-and-Route Challenge [9]. The SPEC ref input is the clma input from
the FPGA challenge, thus this input is only included once. Table 3.7 lists the inputs in the VPR
workloads. While there is variation in the run times for the inputs, for both placement and routing,
13 of the 22 inputs have run times of less than 10s.

Of the remaining SPEC CINT2000 benchmark programs, perlbmk, vortex, and twolf
caused the ORC to crash during compilation when flags to emit the inlining log were used. GCC and
eon are known problems with the ORC 2.1 when optimization is used in conjunction with feedback.

Since these benchmarks could not be compiled, they were thus omitted from this study.

3.3 Architectures

Both the Itanium and the Itanium 2 implement the 64-bit IA-64 Explicitly Parallel Instruction Com-
puting (EPIC) Instruction Set Architecture (ISA) [32]. EPIC uses in-order issue of bundles of in-
structions. Each bundle contains 3 instructions that can be executed in parallel, and must conform

to one of the 10 patterns of instruction types specified by the ISA (such as Memory-Integer-Branch

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(MIB) or Memory-Integer-Integer (MII)). The EPIC ISA relies heavily on compiler technology. The
compiler is responsible for exposing Instruction Level Parallelism (ILP) and effectively scheduling
instruction to ensure (1) that bundles contain few null operations, and (2) that stop instructions (a
barrier to parallel execution) are avoided. Furthermore, the compiler must make effective use of
the advanced features of the architecture such as hardware-supported control and data speculation,
instruction predication, the Register Stack Engine (hardware spill and restore), cache hints and data
cache prefetch instructions.

While both the Itanium and the Itanium 2 are theoretically capable of fetching, issuing, executing
and retiring two bundles in each cycle, the Itanium does not have sufficient execution resources to
frequently achieve this level of performance in practice. The Itanium 2 increases the number of
integer units from 4 to 6, the number of multimedia units from 4 to 6, and the number of load/store
ports from 2 to 4. Of the 100 possible sequences of two bundle types (e.g., an MIB bundle followed
by a MII bundle), only 28 can be fully issued on the Itanium. The additional execution resources
of the Itanium 2 allow an additional 47 sequences to be fully issued. Of course, the performance
gained by this additional capability depends on the actual sequences of bundle types generated by
the compiler for a particular program.

Additionally, the Itanium has a 10-stage pipeline, while the Itanium 2 has an 8-stage pipeline.
Due to this shorter pipeline, the negative impact of branch misprediction is expected to be reduced,
since a pipeline flush results in less lost work. Consequently, the benefit of i f conversion should be
less on the Itanium 2since the performance gain from i £ conversion is partially due to a reduction
in branch mispredictions.

This study does not directly compare performance on the two platforms since the Itanium 2 has
a distinct advantage in terms of both computational resources and clock frequency. Furthermore, we
are not interested in raw system performance, but rather on the effect of compiler decisions during
feedback-directed optimization on system performance.

Our experiments on the Itanium were performed on two 4-processor 733-MHz machines with
6 GB of RAM. Files are located in an NFS-mounted directory, though file-system performance
should have a negligible performance impact since the SPEC benchmarks are specifically modified
to minimize disk access. Our Itanium 2 machine has a 1.3-GHz processor and 1 GB of RAM. Files

are located on the local disk. All the machines run RedHat Linux 7.2 with version 2.4 SMP kernels.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Results

In order to evaluate FDO in the ORC, we created Aestimo'. Aestimo is a performance evaluation
tool that automates the process of compiling, executing, and evaluating the input programs on their
workloads. Figure 4.1 provides an overview of Aestimo.

The experiments performed by Aestimo required the creation of a large number of binaries. A
flow diagram for Aestimo’s compilation process is presented in Figure 4.2. The bold boxes indicate
“final products” that are subsequently used by Aestimo. Each benchmark program is compiled stat-
ically once for each optimization being studied to create the *static” binary, and to create the static
optimization logs. The compiler flags used for the static compilation are the same as for the profiled
case, except for the omission of flags that refer to the profile file. Only one instrumented binary is
created for each program. However, the remaining steps in the flow diagram are performed for each
optimization/input pair.

Aestimo produces binaries that only use profile-guided decisions for the optimization under in-
vestigation for each of the inputs in the workload. First, a training run executes the instrumented
binary on the input. Then, the benchmark is compiled using the generated profile data, and an
optimization log is emitted for the optimization in question. The binary produced at this point is
discarded. Finally, Aestimo recompiles the benchmark statically. However, the optimization log is
used to instruct the compiler to make the same decisions for that optimization as it did during the full
profile-guided compilation. In this way, optimization decisions based on profile information (rather
than static estimates) are used only for the optimization in question. The binaries produced by this
final compilation are referred to as FDO binaries.

During the final compilation, the compiler may not be able to perform every optimization listed
in the log. For example, if the log is for i f conversion, there may be a function that is not inlined
without profile guidance. In that case, any i£f conversion listed in the log for the inlined code will
be ignored. On the other hand, any additional optimizations that become profitable due to a forced
decision will still be available to the compiler. For example, if the log forces a callsite to be inlined,

any static optimizations applicable to the inlined code will still be applied. Therefore, our technique

Aestimo is a Latin verb whose meaning is similar to that of the English verb evaluate

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Compilation

Binaries

Optimization
Logs

Program
Workload

i

Performance Alignment

FDO vs. Static Difference

Resubstitution

Figure 4.1: Overview of Aestimo

Instrumented

Source Code
Binary

Static
Compilation

nstrumenting
Compilation
Training
Profile
Input
FDO
Compilation

Optimization

FDO Binary

Optimization

Static Binary Log

Log

Static
Compilation

Figure 4.2: Compilation process

Final Binary

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Benchmark Proccs§or Time (hr:min.:sec)

Itanium | Itanium?2
bzip2 433:56:13 79:13:22
crafty 67:06:19 22:30:59
gap 44:47:15 14:46:52
gzip 61:12:10 24:05:20
parser 246:14:46 94:23:45
mcf 822:05:34 306:02:20
vpr.place 84:53:30 30:12:08
vpr.route 104:46:11 31:19:45
Total 1865:02:006 602:34:34

[Total | 2467:36:40 (102.8 days) |

Table 4.1: Total processor time of experiments

ensures that any opportunity to apply the optimization in question will result in the same decision as
in the full feedback-directed case, while not ignoring cascading effects due to the interrelatedness of
optimizations.

After the compilation process, Aestimo executes each of the FDO binaries on each of the inputs
in the program workload five times. The combined run times of the experiments performed by
Aestimo are presented in Table 4.1. These figures include only the time required to perform the
five trial executions of each FDO if conversion or inlining binary on each input in the workload.
The time to compile each of the 976 binaries (8 instrumented binaries, 16 static binaries, 232 full-
FDO binaries, 116 FDO if conversion binaries, and 116 FDO inlining binaries, for each of the
two processors) is not included. Furthermore, the time to perform the 464 training runs on the
instrumented binaries (which can run an order of magnitude slower than the optimized binary) to
generate profiles for FDO are omitted from these figures. Nonetheless, the experiments represent
more than 102 machine days worth of processing.

Once execution is complete, Aestimo analyses the program run times and the optimization logs,
and reports the results. The optimization logs are used to calculate the difference and alignment
metric scores (Section 4.1). The run times of the static and FDO binaries are compared to eval-
uate performance on the workload (Section 4.2) and the effectiveness of FDO compared to static
optimization (Section 4.4). FDO run times are also used to investigate the usefulness more accu-
rate profile information by comparing resubstitution with the performance of other FDO binaries

(Section 4.3).

4.1 Profile Differences

Let’s return to the first question: Does training on different inputs resuit in different compile-time
decisions? Aestimo calculates scores for the difference and alignment metrics defined in Chapter 3
for each of the benchmarks. These scores are summarized in tables similar to Table 4.2. Each pairing

of logs results in a difference score. The second and third columns of the table report the mean and

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

standard deviation of the difference scores, defined in Section 3.1, for the FDO log listed in the
first column paired with all the other FDO logs. The Max column reports the maximum difference
between a log and any other FDO log. The Static column reports the difference metric when a log
is compared to the static log. The final column of the table reports the alignment score for the log.
The static log is included in the combined total vector when calculating alignment scores.

Other relevant information is recorded in the last four rows of each table. The number of distinct
positive decisions encountered in all if conversion logs, or the number of callsites listed in the
inlining logs, indicates the length of the vectors used to calculate the metrics. Choices with Yes or
No consensus are those where the same decision is made in every log. Full consensus is achieved
when every log is in agreement about the decision. FDO consensus ignores the static log, and checks
for consensus among the FDO logs only. The number of choices without consensus indicates the
maximum possible number of choices where two logs could disagree. For example, in Table 4.2
there are 87 branches that are 1f converted in at least one log. All the FDO logs agree that 15
branches should be 1£ converted, and that 31 of them should not be. Therefore, 41 branches
remain where different FDO logs make different decisions.

References to logs in this section refer only to the FDO logs, and omit the static optimization
log. When relevant, the static log will be identified explicitly.

Graphs of the raw difference and alignment scores can be found in Appendix A.

4.1.1 If conversion

Emitting the logs of if-conversion decisions required a small change to the ORC. We inserted a small
segment of code to output the source file name, function name, and area and basic block lists for
each region that is if-converted. Therefore, only positive choices are recorded in the log file.

An excerpt from the static 1 £ conversion log for bzip?2 is provided in Figure 4.4. The transfor-
mations indicated by this excerpt are illustrated in Figure 4.3. The four if conversion transforma-
tions occur in the sendMFTValues function, and result in the creation of a large predicated region
from five basic blocks. An area is a data structure used by the ORC to represent a single-entry region
of code. Before if conversion, each BB in a program is an area. However, as if conversion re-
moves branches and merges BBs, areas grow to include multiple BBs. In Figure 4.3, each rectangle
represents an area, and each number represents a BB. A dashed box represents a BB that has been
merged into a larger area. The edges between areas represent control flow transitions. Initially, each
area consists of a single basic block and is named for the BB that it contains. For example, an area
containing BB 42 is named A42.

The first two lines in Figure 4.4 are for i £ statements that do not have an else path, as shown
it Figure 4.3(a). The first line indicates a positive 1 £ conversion decision for the branch at the end
of A97. Area A99 is the branch target when the if at the end of A97 evaluates to false. Thus, A99

is not predicated. Instead, the branch in the A97 is converted to a predicate calculation, and A98 is

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B B (oo {oo Y
l___.l __o.Jd L

m m 1100 1 11001 100
l___-l I____I ~___l

o] o] i
U.’-J

() (b) (c)) (c)

Figure 4.3: I£ conversion performed in the log excerpt

File Function Areas Area List

bzip2.c sendMTFValues 3 a97{ 97} A98{ 98} A99{ 99}
bzip2.c sendMTFValues 3 A99{ 99} A100{ 100} A101{ 101}
bzip2.c sendMTFValues 2 A97{ 97 98} A99{ 99 100}
bzip2.c sendMTFValues 2 A97{ 97 98 99 100} A101{ 101}

Figure 4.4: Tf conversion log excerpt

predicated. The contents of A98 (BB 98) are then appended to A97 (Figure 4.3(b)). The second line
records that the branch at the end of A99 should also be i £-converted. This decision causes A100
to be predicated and appended to A99 (Figure 4.3(c)).

The last two lines in Figure 4.4 record decisions to eliminate unnecessary control flow. Line
three of the log records a decision to append A99 to A97 (Figure 4.3(d)). Line four is similar for
A97 and A101 (Figure 4.3(e)). The final area is larger than any of the five original BBs, and contains
no control flow. Therefore, it provides more opportunities for optimizations such as common subex-
pression elimination and instruction scheduling than the same region of code before i £ conversion.

As explained in Section 3.1, when Aestimo processes the logs, any choices that are missing from
a log are (correctly) assumed to be a negative decision (not 1 £-converted). Neither the differ-
ence nor the alignment metric are affected by recording only positive choices. A choice that is nega-
tive in all logs will not appear in the vectors. Thus, it cannot contribute to the difference. Moreover,
negative choices never contribute to the alignment score. A consequence of recording only positive
decisions is that there can never be a choice with No consensus: such a choice would not appear in
any log, and thus Aestimo does not know about it. However, there are a very large number of regions
in every program that are evaluated for i f conversion, but are never i £-converted. Recording only
positive decisions also means that the number of choices that have a No FDO consensus is exactly
the number of choices where static performed i £ conversion but no FDO log did.

In most cases, the largest differences between logs are between the static log and FDO logs.
Therefore, profiling does, in general, result in significantly different optimization decisions that

static optimization. Nonetheless, the selection of training input can also result in significant differ-

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
combined 13.64 10.32 27 43 84.21
compressed | 14.64 10.38 27 45 82.81
docs 14.43 10.37 28 42 84.74
gap 19.57 12.17 33 62 48.60
graphic 11.93 9.50 25 41 86.49
jpeg 16.21 12.04 28 6l 51.40
log 15.43 11.18 30 38 89.47
mp3 16.21 12.04 28 6l 51.40
mpeg 16.29 11.82 27 60 52.81
pdf 13.50 11.17 29 39 90.35
program 16.29 11.82 27 60 52.81
random 19.00 12.62 31 64 46.32
reuters 17.07 12.01 33 39 91.58
source 13.36 11.34 29 39 90.53
xmi 13.29 11.09 28 40 89.12
Distinct Positive Decisions 87
Choices with Yes Consensus 14 Full, 15 FDO
Choices with No Consensus 0 Full, 31 FDO
Choices without Consensus 73 Full, 41 FDO

Table 4.2: If conversion metric scores for bzip2 on the Itanium

ences in the optimizations decisions made by the compiler.

Bzip2 presents some interesting alignment values. In Tables 4.2 and 4.3, 6 of the 15 inputs
result in alignment scores less than 55%, while the remaining 9 have alignment scores greater than
80%. There is no similar pattern in the difference scores. Aestimo can perform a cut operation,
where the inputs in a workload are split into two groups according to their alighment score. If an
input has an alignment score greater than the cut value, it is assigned to the high cut group, but if it
has an alignment score lower than the cut value, it is assigned to the low cut group. The static log
is included in both groups. After the cut is made, the metric scores are recalculated for each group
separately. Tables 4.4 and 4.5 show the results of cutting the bzip2 workload on the Itanium at
55%.

Differences between logs after the cut are small in both groups. This indicates that training on
different inputs results in two distinct i f conversion optimization strategies for the Itanium. The
consensus values for the cut groups show that training on inputs that result in larger alignment
scores results in more if conversion than training on the inputs with lower alignment scores. The
low alignment scores after the cut for inputs in the low cut set are due to their large differences with
static. Unfortunately, there do not appear to be significant differences between the decisions made
when training uses members of the same cut group.

On the Itanium 2, the results of the cut are similar to the Itanium. However, in the high cut
group, the combined input still results in a mean difference score larger than 41, while the other
inputs have difference scores less than 12. Therefore, training on the combined input results in

significantly different i £ conversion decisions than training on any other input in the workload.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
combined 52.93 20.24 69 5 90.20
compressed | 19.36 15.96 44 45 81.87
docs 20.93 15.95 44 45 82.60
gap 26.00 20.21 69 70 41.67
graphic 18.07 15.69 42 43 85.67
jpeg 23.29 20.58 69 70 44 .44
log 18.64 16.47 40 41 87.57
mp3 24.57 20.54 67 72 40.64
mpeg 23.29 20.58 69 70 44 .44
pdt 18.07 15.69 42 43 85.67
program 23.29 20.58 69 70 44 .44
random 24.57 20.54 67 72 40.64
reuters 2143 16.24 39 40 88.30
source 18.64 16.47 40 41 87.57
xml 18.64 16.47 40 41 87.57
Distinct Positive Decisions 94
Choices with Yes Consensus 14 Full, 14 FDO
Choices with No Consensus 0 Full, 3 FDO
Choices without Consensus 80 Full, 77 FDO

Table 4.3: I £ conversion metric scores for bzip2 on the Itanium 2

Input Mean | Std Dev | Max | Static | Alignment (%)
gap 6.00 3.24 8 62 62.37
jpeg 2.00 2.24 5 6l 65.98
mp3 2.00 2.24 5 61 65.98
mpeg 2.40 2.78 6 60 67.53
program 2.40 2.78 6 60 67.53
random 4.40 3.02 8 64 60.31
Distinct Positive Decisions 81
Choices with Yes Consensus 14 Full, 15 FDO
Choices with No Consensus 0 Full, 57 FDO
Choices without Consensus 67 Full, 9 FDO

Table 4.4: If conversion metric scores for bzip2 low cut group (cut = 55%) on the Itanium

Input Mean | Std Dev | Max | Static | Alignment (%)
combined 5.88 3.65 10 43 83.04
compressed 6.88 3.78 12 45 81.94
docs 6.75 4.05 11 42 83.48
graphic 4.62 2.31 8 41 84.36
log 7.00 3.6l 10 38 88.11
pdf 4.88 2.53 7 39 88.77
reuters 8.12 4.22 12 39 90.31
source 4.62 2.96 8 39 88.99
xml 4.75 3.03 8 40 87.67
Distinct Positive Decisions 86
Choices with Yes Consensus 36 Full, 37 FDO
Choices with No Consensus 0 Full, 32 FDO
Choices without Consensus 50 Full, 17 FDO

Table 4.5: I£ conversion metric scores for bzip2 high cut group (cut = 55%) on the Itanium

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
ref 225.83 128.88 | 384 492 53.29
test 247.33 120.64 | 341 405 54.28
train 230.83 13040 | 390 494 46.75
wac-001 | 239.50 147.55 | 436 516 52.04
wac-051 | 239.83 147.54 | 442 516 50.28
wac-151 | 244.17 144.14 | 434 524 51.96
wac-251 | 404.50 185.23 | 442 194 60.73
Distinct Positive Decisions 920
Choices with Yes Consensus 75 Full, 78 FDO
Choices with No Consensus 0 Full, 104 FDO
Choices without Consensus 845 Full, 738 FDO

Table 4.6: I£ conversion metric scores for crafty on the Itanium

Input Mean | Std Dev | Max | Static | Alignment (%)
ref 156.17 71.47 173 511 59.27
test 176.50 8190 | 219 491 57.71
train 193.33 91.67 | 234 520 54.63
wac-001 | 188.33 90.17 | 234 560 64.04
wac-051 | 179.33 84.16 | 222 550 61.19
wac-151 | 180.67 82.67 | 202 544 62.21
wac-251 | 157.00 71.57 166 518 60.96
Distinct Positive Decisions 935
Choices with Yes Consensus 79 Full, 117 FDO
Choices with No Consensus 0 Full, 338 FDO
Choices without Consensus 856 Full, 480 FDO

Table 4.7: I£ conversion metric scores for crafty on the Itanium 2

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
ref 419.56 174.81 | 488 335 83.93
snf1025 173.33 250.54 | 517 206 95.70
snf1150 173.33 250.54 | 517 206 95.70
snf1260 189.78 239.81 506 233 94.74
snf200-300 | 177.78 24486 | 517 198 95.59
snf525 175.56 24535 | 512 203 95.68
snf750 173.33 251.19 | 518 207 95.66
snfa00 173.33 250.54 | 517 2006 95.70
test 444.89 215.04 | 518 577 77.49
train 430.22 215.63 | 510 517 79.75
Distinct Positive Decisions 1723
Choices with Yes Consensus 1021 Full, 1024 FDO
Choices with No Consensus 0 Full, 32 FDO
Choices without Consensus 702 Full, 667 FDO

Table 4.8: If conversion metric scores for GAP on the Itanium

Input | Mean | Std Dev | Max | Static | Alignment (%)
ref 260.00 264.41 294 335 91.62
test 200.00 240.15 | 294 577 85.31
train 166.00 186.43 | 226 517 88.23
Distinct Positive Decisions 1700
Choices with Yes Consensus 1079 Full, 1104 FDO
Choices with No Consensus 0 Full, 283 FDO
Choices without Consensus 621 Full, 313 FDO

Table 4.9: I£ conversion metric scores for GAP SPEC inputs on the Itanium

Alignment scores for all inputs on crafty are low, in the 50-60% range, compared to the
other benchmarks where alignment is usually greater than 80%. Furthermore, difference scores are
quite large compared to the number of choices without consensus. Therefore, there is significant
disagreement between the logs, and no dominant optimization strategy. These results indicate that
the inputs selected for crafty are significantly varied, in terms of the i £ conversion decisions they
produce. Consequently, any performance variations between these FDO binaries can be more confi-
dently linked to the selection of training input than in cases such as bzip2, where the selection of
training input has a limited impact on optimization decisions.

Recall from Section 3.2 the difficulty of selecting additional inputs for GAP. Table 4.8 and 4.11
indicates that varying the parameter in the additional input, snf, may not have induced the changes
in memory behavior and large-number processing methods that we desired. Alternatively, these
changes did occur, but did not result in different i f conversion decisions. The differences scores
for the snf inputs are less than half those of the SPEC ref, test, and train inputs. Furthermore, the
high alignment scores for the snf inputs suggests that they tend to agree with each other. On the
other hand, the high difference scores and lower alignment scores of the SPEC inputs suggest that
training on these inputs results in substantially different decisions than training on the snf inputs.

Further investigation reveals that the maximum differences occur between snf and SPEC inputs.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
snf1025 11.83 14.72 35 206 98.20
snf1150 11.83 14.72 35 206 98.20
snf1260 36.33 16.68 43 233 97.08
snf200-300 | 20.50 14.60 43 198 98.01
snf525 17.67 12.83 38 203 98.10
snf750 11.33 12.47 32 207 98.18
snfa00 11.83 14.72 35 206 98.20
Distinct Positive Decisions 1635
Choices with Yes Consensus 1394 Full, 1413 FDO
Choices with No Consensus 0 Full, 172 FDO
Choices without Consensus 241 Full, 50 FDO

Table 4.10: I£ conversion metric scores for GAP snf inputs on the Itanium

Input Mean | Std Dev | Max | Static | Alignment (%)
ref 461.78 23891 | 554 626 76.29
snf1025 185.78 27576 | 553 219 96.10
snf1150 186.44 276.06 | 554 220 96.12
snf1260 193.78 258.98 | 537 239 95.18
snf200-300 | 189.33 271.33 | 550 208 96.14
snf525 186.44 270.99 | 547 213 96.17
snf750 185.78 275.76 | 553 219 96.10
snfa00 185.78 275.76 | 553 219 96.10
test 438.89 235.50 | 532 600 78.58
train 446.00 24551 | 545 613 77.95
Distinct Positive Decisions 1782
Choices with Yes Consensus 1002 Full, 1012 FDO
Choices with No Consensus 0 Full, 119 FDO
Choices without Consensus 780 Full, 651 FDO

Table 4.11: If conversion metric scores for GAP on the Itanium 2

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
combined 10.57 11.04 43 62 87.24
compressed | 44.36 12.63 50 25 83.37
docs 14.14 10.85 47 66 76.88
gap 15.07 9.87 40 59 82.92
graphic 12.36 9.96 40 65 88.38
ipeg 10.57 11.19 43 62 87.24
log 19.50 11.59 50 55 75.97
mp3 12.14 11.62 45 64 85.88
mpeg 10.57 10.52 43 60 85.54
pdf 12.00 11.50 45 62 84.28
program 12.36 9.93 42 59 83.26
random 15.50 11.42 48 59 80.75
reuters 14.36 10.18 44 59 81.66
source 16.36 10.48 46 63 76.20
xml 15.00 10.64 45 60 78.36
Distinct Positive Decisions 108
Choices with Yes Consensus 28 Full, 28 FDO
Choices with No Consensus 0 Full, 12 FDO
Choices without Consensus 80 Full, 68 FDO

Table 4.12: If conversion metric scores for gzip on the Itanium

Additionally, the differences between the snf and SPEC inputs are the only differences in this study
where comparison to another FDO 1i £ conversion log results in a larger difference than comparison
to the static log.

Cutting the workload at 85% separates the snf inputs from the SPEC inputs. Table 4.9 shows
metric scores for the SPEC inputs on the Itanium. While the mean difference scores for these inputs
are lower than when calculated for the entire workload, they are still quite large. Therefore, there are
significant differences in the if conversion decisions made depending which SPEC input is used
for training. On the other hand, Table 4.10 shows the scores for the snf inputs. In this case, all the
inputs are very similar. The consensus results indicate that the inputs make different decisions for no
more than 50 of the 1635 if conversion choices recorded in the logs. On the Itanium 2, the results
of this cut are very similar. Therefore, it is less likely that selecting different training inputs from
among the snf inputs will result in significant performance differences.

In Table 4.12 difference and alignment scores are fairly uniform across all logs for gzip on the
Itanium. However, compressed has a much larger difference score than the other logs. On average,
compressed disagrees with other logs for more than 2/3 of the choices without consensus. This
large difference score appears to have no impact on compressed’s alignment score. Examination of
the log files reveals that training on compressed leads to more i £ conversion than training on other
inputs. While training on other inputs results in 47-54 positive i £ conversion decisions, training on
compressed results in 77 positive 1 £ conversion decisions. On the Itanium 2, compressed’s
metric scores do not distinguish it from the other inputs. For this processor, FDO if conversion

results in between 49 and 59 positive if conversion decisions, and training on compressed results

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
combined 12.36 5.91 21 74 87.46
compressed | 15.29 8.52 26 67 77.67
docs 21.29 7.87 30 77 77.78
gap 17.71 8.34 30 71 82.62
graphic 17.43 7.25 26 71 84.60
ipeg 12.00 6.56 22 71 87.02
log 22.43 9.08 30 67 79.21
mp3 15.57 8.93 28 71 78.99
mpeg 11.64 5.15 19 70 84.71
pdf 14.64 7.27 25 74 82.18
program 17.43 7.64 26 73 84.49
random 16.00 8.77 26 65 78.99
reuters 16.71 7.50 28 71 83.39
source 19.36 7.96 27 76 74.92
xml 16.71 6.70 24 69 78.22
Distinct Positive Decisions 125
Choices with Yes Consensus 27 Full, 30 FDO
Choices with No Consensus 0 Full, 43 FDO
Choices without Consensus 98 Full, 52 FDO

Table 4.13: I£ conversion metric scores for gzip on the Itanium 2

in only 49.

As shown in Tables 4.14 and 4.15, there are virtually no differences between the FDO logs for
MCF. In fact, on the Itanium 2, the FDO logs have no more than four different decisions between
them. synth-5 results in the most distinct i £ conversion decisions on the Itanium, with a difference
scores of 8-10 when compared to the other FDO logs. However, unless some of these few decisions
are critical to performance, it is unlikely that there will be any significant variation in performance
between the FDO binaries for MCF.

Tables 4.16 and 4.17 suggests a negative correlation between the difference and alignment scores
for parser. One might suspect that higher alignment scores correspond to more if conversion.
However, this is not the case. The FDO if conversion logs for the both processors have between
103 and 131 positive decision recorded in them. The median, 121, corresponds to alice in both
cases, while the log for ref records 123 positive i f conversion decisions. Despite this result, alice
has the lowest alignment score, while ref has the largest alignment score. Therefore, the differences
between inputs to parser represent substantially different 1 £ conversion decision. Comparing
the results on the Itanium and Itanium 2, it appears that FDO results in similar decisions on both
processors.

However, static optimization performs significantly more i £ conversion on the Itanium 2 than
on the Itanium: the static log contains 58 decisions on the Itanium, but 204 on the Itanium 2. This
result is in contrast to the other programs, where results were similar across processors. Furthermore,
the larger number of functional units in the Itanium 2 should make i £ conversion profitable in more

cases than on the Itanium. Therefore, intuition suggests that i f conversion should be performed

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alighment (%)
ref 1.25 2.33 8 32 9243
synth-0 2.58 2.62 10 34 93.46
synth-1 2.58 2.62 10 34 93.46
synth-2 1.83 2.39 9 33 93.05
synth-3 1.25 2.33 8 32 92.43
synth-4 1.25 2.33 8 32 9243
synth-5 8.58 2.74 10 40 79.75
synth-6 1.25 2.33 8 32 92.43
synth-7 1.25 2.33 8 32 92.43
synth-8 1.25 2.33 8 32 92.43
synth-9 1.25 2.33 8 32 92.43
test 3.08 2.49 10 34 92.84
train 1.25 2.33 8 32 92.43
Distinct Positive Decisions 67
Choices with Yes Consensus 23 Full, 28 FDO
Choices with No Consensus 0 Full, 27 FDO
Choices without Consensus 44 Full, 12 FDO

Table 4.14: I £ conversion metric scores for MCF on the Itanium

Input Mean | Std Dev | Max | Static | Alighment (%)
ref 1.08 1.05 2 31 92.14
synth-0 2.42 1.50 4 33 93.15
synth-1 2.42 1.50 4 33 93.15
synth-2 1.67 1.11 3 32 92.74
synth-3 1.08 1.05 2 31 92.14
synth-4 1.08 1.05 2 31 92.14
synth-5 1.92 1.50 4 33 93.75
synth-6 1.92 1.50 4 33 93.75
synth-7 1.92 1.50 4 33 93.75
synth-8 1.08 1.05 2 31 92.14
synth-9 1.08 1.05 2 31 92.14
test 1.92 1.50 4 33 93.75
train 1.08 1.05 2 31 92.14
Distinct Positive Decisions 63
Choices with Yes Consensus 28 Full, 33 FDO
Choices with No Consensus 0 Full, 26 FDO
Choices without Consensus 35 Full, 4 FDO

Table 4.15: I£ conversion metric scores for MCF on the Itanium 2

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
02-05words | 65.73 22.20 75 135 66.20
06-10words | 34.82 16.76 55 142 82.22
11-15words | 31.36 18.44 62 145 84.71
16-20words | 26.45 22.63 71 158 90.91
21-25words | 26.45 23.64 71 158 90.91
alice 33.55 19.78 70 155 85.32
pa 25.91 23.15 71 158 90.24
ref 38.09 18.27 64 155 84.51
relativity 32.27 23.35 75 154 86.26
test 45.00 18.65 53 139 74.61
train 40.45 18.76 59 150 80.74
worlds 27.00 23.24 73 156 89.02
Distinct Positive Decisions 200
Choices with Yes Consensus S Full, 62 FDO
Choices with No Consensus 0 Full, 35 FDO
Choices without Consensus 195 Full, 103 FDO

Table 4.16: I£ conversion metric scores for parser on the Itanium

Input Mean | Std Dev | Max | Static | Alignment (%)
02-O5words | 64.00 21.29 72 171 65.58
06-10words | 35.45 17.54 55 198 78.56
11-15words | 34.18 19.04 6l 206 79.53
16-20words | 28.18 21.70 67 202 84.78
21-25words | 29.27 22.72 70 205 85.51
alice 34.55 19.54 66 199 80.01
pa 28.73 22.33 68 203 84.18
ref 40.55 18.65 62 199 78.80
relativity 34.55 23.26 72 197 81.64
test 48.00 20.02 58 195 70.95
train 4291 19.50 57 196 75.36
worlds 3091 23.24 72 199 83.57
Distinct Positive Decisions 280
Choices with Yes Consensus 33 Full, 66 FDO
Choices with No Consensus OFull, 111 FDO
Choices without Consensus 247 Full, 103 FDO

Table 4.17: I£ conversion metric scores for parser on the Itanium 2

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
alud 3.90 3.54 12 45 96.49
apex2 3.90 3.54 12 45 96.49
apex4 3.90 3.54 12 45 96.49
bigkey 3.90 3.54 12 45 96.49
des 6.76 3.96 16 45 95.39
diffeq 7.33 4.15 14 41 98.61
dsip 6.76 3.96 16 45 95.39
elliptic 10.38 4.29 16 43 95.72
ex1010 5.81 3.75 14 47 94.88
ex5p 3.90 3.54 12 45 96.49
frisc 6.19 3.98 12 39 98.24
misex3 3.90 3.54 12 45 96.49
pdc 8.10 4.18 14 49 93.96
ref 6.19 3.98 12 39 98.24
s298 6.57 3.55 12 47 93.74
s38417 6.19 3.98 12 39 98.24
s38584.1 6.19 3.98 12 39 98.24
seq 3.90 3.54 12 45 96.49
spla 8.10 4.18 14 49 93.96
test 6.95 3.72 16 49 95.24
train 3.90 3.54 12 45 96.49
tseng 7.33 4.15 14 41 98.61
Distinct Positive Decisions 158
Choices with Yes Consensus 102 Full, 106 FDO
Choices with No Consensus 0 Full, 32 FDO
Choices without Consensus 56 Full, 20 FDO

Table 4.18: I£ conversion metric scores for VPR (place) on the Itanium

more frequently on the Itanium 2than on the Itanium, not less.

VPR metric scores are similar to those of MCF. Mean difference scores are low, and alignment
scores usually exceed 90%. Therefore, it is unlikely that there will be performance differences
between FDO binaries. On the other hand, static differences are higher, particularly for the routing
component of VPR, and performance differences between the FDO and static binaries are more

likely.

4.1.2 Inlining

Inlining logs are generated using existing ORC compiler flags. In particular, the flag combination:
-Wj,-tt19:0x40000 -Wj,-tt19:0x80000 emits the inlining decision to the file

orc_script.log. This file contains a section for each function that is compiled, and lists each
callsite as either a CALL or INLINE decision. An example from bzip?2 is given in Figure 4.5. The
entry is for the function sortIt, which has callsites for panic on line 2268, gSort3 on line
2235, and simpleSort on line 2146. All three called functions, as well as sortIt, are found in
the bzip2 . o object file. Of the three calls, only the call to gSort3 is inlined. Some optimizations

can change the number of entries in a log file. Thus, each callsite encountered in a log is inserted

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
alu4 4,29 3.601 12 50 96.16
apex2 4.29 3.61 12 50 96.16
apex4 4.29 3.61 12 50 96.16
bigkey 5.43 3.51 14 48 96.58
des 8.48 4.51 18 48 95.46
diffeq 6.57 441 12 44 97.83
dsip 8.48 4.51 18 48 95.46
elliptic 10.76 4.86 18 48 95.42
ex1010 6.19 3.83 14 52 94.62
ex5p 4.29 3.0l 12 50 96.16
frisc 6.57 4.41 12 44 97.83
misex3 4.29 3.0l 12 50 96.16
pdc 8.48 4.42 16 54 93.75
ret 6.57 441 12 44 97.83
s298 6.95 3.78 14 52 93.54
s38417 6.57 441 12 44 97.83
§38584.1 6.57 4.41 12 44 97.83
seq 4.29 3.61 12 50 96.16
spla 8.48 4.42 16 54 93.75
test 8.67 4.23 18 52 95.32
train 4.29 3.61 12 50 96.16
tseng 9.05 4.19 16 44 98.53
Distinct Positive Decisions 169
Choices with Yes Consensus 108 Fuli, 111 FDO
Choices with No Consensus 0 Full, 36 FDO
Choices without Consensus 61 Full, 22 FDO

Table 4.19: If conversion metric scores for VPR (place) on the Itanium 2

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
alu4 6.29 5.62 15 87 92.29
apex2 6.29 5.62 15 87 92.29
apex4 8.00 4.69 19 84 94.08
bigkey 8.29 441 22 87 93.38
des 8.19 479 19 84 93.99
diffeq 9.62 591 25 86 94.30
dsip 7.33 4.77 18 91 91.73
elliptic 8.86 5.95 23 87 93.12
ex1010 6.29 5.62 15 87 92.29
ex5p 7.24 4.64 18 83 93.95
frisc 8.86 5.95 23 87 93.12
misex3 6.29 5.62 15 87 92.29
pdc 19.62 6.88 29 73 86.50
ref 8.29 5.14 21 85 94.43
298 6.95 5.11 18 90 91.42
s38417 12.19 5.70 28 83 96.69
s38584.1 | 10.95 6.48 28 85 95.21
seq 6.29 5.62 15 87 92.29
spla 6.29 5.62 15 87 92.29
test 17.05 5.78 29 78 93.08
train 6.29 5.62 15 87 92.29
tseng 10.19 6.23 27 84 95.08
Distinct Positive Decisions 170
Choices with Yes Consensus 73 Full, 83 FDO
Choices with No Consensus 0 Full, 47 FDO
Choices without Consensus 97 Full, 40 FDO

Table 4.20: If conversion metric scores for VPR (route) on the Itanium

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
alug 5.90 5.28 15 86 93.05
apex2 5.90 5.28 15 86 93.05
apex4 7.62 4.47 19 83 94.65
bigkey 8.57 4.10 20 84 93.79
des 7.81 4.54 19 83 94.57
diffeq 8.57 4.93 21 81 96.10
dsip 7.62 4.72 17 88 92.31
elliptic 7.81 5.17 21 82 95.04
ex1010 5.90 5.28 15 86 93.05
ex5p 6.86 4.39 18 82 94.53
frisc 9.14 5.45 23 84 93.56
misex3 5.90 5.28 15 86 93.05
pdc 18.29 6.01 29 72 89.14
ref 7.81 5.17 21 82 95.04
s298 7.24 5.14 18 87 92.03
s38417 11.71 5.84 26 80 97.07
s38584.1 9.90 5.62 24 80 96.92
seq 5.90 5.28 15 86 93.05
spla 5.90 5.28 15 86 93.05
test 16.67 5.57 29 77 93.75
train 5.90 5.28 15 86 93.05
tseng 9.14 5.31 23 79 96.80
Distinct Positive Decisions 180
Choices with Yes Consensus 85 Full, 95 FDO
Choices with No Consensus 0 Full, 46 FDO
Choices without Consensus 95 Full, 39 FDO

Table 4.21: I£f conversion metric scores for VPR (route) on the Itanium 2

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COMPILE ("bzip2.0",sortIt,NOREG) {
CALL (2268,0,"bzip2.0",panic, NOREG)
INLINE (2235,0,"bzip2.0",gSort3, NOREG) {

CALL (2146,0,"bzip2.0",simpleSort, NOREG)

Figure 4.5: Inlining log excerpt

into a table with its caller, its callee, and its line number, to ensure that all vectors are of the same
length, and that each choice has a unique index that is the same in every vector.

Unfortunately, the information written to the log file is not sufficient to uniquely identify every
callsite. If multiple calls to the same function occur on the same line of source code, they will
have identical entries in the log file and will collide in the table. Furthermore, multiple calls in long
statements (such as an i £ statement with many tests) that span multiple lines are considered to occur
on the same line. In these cases, the choice is recorded as a 1 in the vector if any of the callsites are
inlined. However, this aliasing problem is minor: in total, there are 128 callsites for the Itanium and
126 callsites for the Itanium 2 where aliasing occurs. For both processors, there are only 8 aliased
callsites where the same decision is not made for all of the indistinguishable log entries: 3 (of 246)
for gzip, 4 (of 4366) for GAP, and 1 (of 1464) for bzip?2.

The results of metric calculations for inlining are similar to those presented for i £ conversion
in Section 4.1.1. The results from the two processors are very similar. Static inlining results in the
largest differences compared to other logs, while the differences between the profile-guided logs are
much smaller. The tendency for alignment scores to be high suggest that either there is insufficient
variety between the inputs in the workloads, or that inlining in the ORC is not very sensitive to
inputs selection.

The consensus values for the bzip2 indicate that the FDO inlining logs are not very similar.
While there are a large number of callsites where there is consensus to not perform inlining, there
are no callsites that are universally inlined for either processor. This fact is related to the observation
that the FDO logs either have difference scores larger than 140 and alignment scores less than 7%, or
difference scores less than 90 and alignment scores greater than 45%. The logs with lower difference
scores also have much lower differences compared to static. Tables 4.23 and 4.24 show the results
of cutting the inputs for the Itanium into two groups. The inputs that resulted in alignment scores
greater than 45% are quite similar. Inputs in this group have difference scores and high alignment
values when they are cut from the rest of the inputs. In fact, there are only 15 callsites where training
on different inputs from this group results in different inlining decisions.

On the other hand, cutting the inputs with low alignment scores from the rest of the workload
reveals that there are significant differences between the inputs in this group. Difference values are
still very high, and alignment scores are only slightly larger than when calculated using the entire

workload. Furthermore, there is very little consensus between the logs in this groups, and there is

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
combined 82.21 82.79 162 69 53.22
compressed | 81.00 80.91 159 74 5151
docs 155.50 43.23 158 203 5.89
gap 81.93 83.05 162 71 52.81
graphic 80.93 8197 160 75 52.53
ipeg 159.21 44.25 162 207 6.23
log 80.21 78.64 156 77 50.14
mp3 157.36 43.74 160 205 6.10
mpeg 159.21 44.25 162 207 6.23
pdf 156.43 4348 159 204 6.03
program 82.36 82.66 162 73 53.01
random 80.00 79.83 | 157 76 51.30
reuters 156.43 4348 159 204 6.03
source 81.00 82.90 161 72 53.15
xmi 149.93 41.63 152 197 5.48
Callsites (Vector Length) 1464
Choices with Yes Consensus 0 Full, 0 FDO
Choices with No Consensus 779 Full, 835 FDO
Choices without Consensus 685 Full, 629 FDO

Table 4.22: Inlining metric scores for bzip2 on the Itanium

Input Mean | Std Dev | Max | Static | Alignment (%)
docs 155.00 69.42 158 203 11.45
ipeg 158.33 70.89 162 207 12.12
mp3 156.67 70.16 160 205 11.85
mpeg 158.33 70.89 162 207 12.12
pdf 155.83 69.79 159 204 11.72
reuters | 155.83 69.79 159 204 11.72
xmi 150.00 67.10 152 197 10.65
Callsites (Vector Length) 1464
Choices with Yes Consensus 0 Full, 0 FDO
Choices with No Consensus 793 Full, 919 FDO
Choices without Consensus 671 Full, 545 FDO

Table 4.23: Inlining metric scores for bzip2 low cut group on the Itanium

Input Mean | Std Dev | Max | Static | Alignment (%)
combined 5.43 3.63 10 69 91.74
compressed 6.29 3.03 9 74 88.78
gap 4.57 3.23 9 70 92.56
graphic 4.86 2.66 7 75 90.55
log 7.71 344 10 77 86.42
program 5.71 346 9 73 91.38
random 6.00 271 7 76 88.43
source 4.00 2.45 7 72 91.62
Callsites (Vector Length) 183
Choices with Yes Consensus 58 Full, 69 FDO
Choices with No Consensus 43 Full, 99 FDO
Choices without Consensus 82 Full, 15 FDO

Table 4.24: Inlining metric scores for bzip2 high cut group on the Itanium

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
combined 79.50 23.08 88 121 3.99
compressed | 86.14 78.69 159 74 48.70
docs 150.50 46.01 158 203 6.23
gap 87.50 80.60 162 71 49.86
graphic 86.07 79.85 160 75 49.71
ipeg 154.21 46.91 162 207 6.59
log 84.79 76.77 156 77 47.54
mp3 154.21 46.91 162 207 6.59
mpeg 154.21 46.91 162 207 6.59
pdf 153.29 46.69 161 206 6.52
program 87.64 80.46 162 73 50.14
random 84.86 77.79 157 76 48.55
reuters 151.43 46.24 159 204 6.38
source 86.43 80.59 161 72 50.22
xml 144.93 44.62 152 197 5.80
Callsites (Vector Length) 1464
Choices with Yes Consensus 0 Full, 0 FDO
Choices with No Consensus 774 Full, 830 FDO
Choices without Consensus 690 Full, 634 FDO

Table 4.25: Inlining metric scores for bzip2 on the Itanium 2

still no callsite that all logs agree should be inlined. The low cut group logs contain an order of
magnitude more callsites than the logs of the high cut group. Nonetheless, all FDO logs contain
between 82 and 93 positive inlining decisions. Therefore, training on inputs in the low cut group
must result in the repeated inlining of callsites in inlined code. Each callsite in an inlined callee
creates a new callsite in the logs. In order to increase the number of callsites in the logs from 183
to 1464, this situation must have occurred very frequently. Since the logs in the low cut group do
not agree on which callsites should be inlined, they must represent decisions to inline different call
chains. Consequently, training on different input in this group must result in different hot sections
of code. Thus, training on different inputs from the low cut group results in significantly different
inlining decisions, and are thus well suited to our study.

The results of cutting the workload for the Itanium 2 generates very similar results to those
discussed above for the Itanium. However, the combined input results in significantly different
results. First, on the Itanium combined is in the high cut group, but is in the low cut group on the
Itanium 2. Furthermore, training on combined results in inlining only 9 callsites. Consequently,
combined’s mean difference score of 85.43 is approximately the mean number of inlined callsites
in the other logs, while its alignment score of 1.71% reflect nearly complete disagreement with the
other inlining logs.

In Tables 4.26 and 4.27 the consensus information indicates that FDO reduces the amount of
inlining performed for crafty. The number of choices without consensus indicates that there are
about 200 callsites where static optimization makes a different decision than all the FDO logs. These

differences are explained by the number of callsites with No consensus: the FDO logs agree to not

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
ref 17.00 11.97 26 230 86.96
test 33.33 16.63 44 244 81.39
train 16.67 12.14 26 228 87.42
wac-001 | 22.67 13.28 40 230 86.91
wac-051 | 27.33 15.06 44 234 86.17
wac-151 | 22.50 11.85 33 239 86.17
wac-251 | 18.50 11.54 31 229 86.96
Callsites (Vector Length) 891
Choices with Yes Consensus 198 Full, 204 FDO
Choices with No Consensus 429 Full, 629 FDO
Choices without Consensus 264 Full, 58 FDO

Table 4.26: Inlining metric scores for crafty on the Itanium

Input Mean | Std Dev | Max | Static | Alignment (%)
ref 20.33 10.72 26 230 86.60
test 34.67 16.79 44 244 81.29
train 25.00 12.30 34 234 85.11
wac-001 | 23.33 13.44 40 230 86.92
wac-051 | 27.00 15.00 44 234 86.32
wac-151 | 24.17 12.27 33 239 86.04
wac-251 | 20.17 11.17 31 229 86.83
Callsites (Vector Length) 891
Choices with Yes Consensus 196 Full, 202 FDO
Choices with No Consensus 428 Full, 626 FDO
Choices without Consensus 267 Full, 63 FDO

Table 4.27: Inlining metric scores for crafty on the Itanium 2

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
ref 178.33 155.40 | 554 960 60.38
snf1025 120.56 166.11 | 499 1019 59.71
snf1150 120.56 16596 | 499 1017 59.34
snf1260 120.56 165.96 | 499 1017 59.34
snf200-300 | 143.67 165.31 541 1049 58.06
snf525 125.67 16740 | 517 1033 60.86
snf750 122.56 167.68 | 504 1024 59.59
snf900 535.00 193.81 | 602 536 81.03
test 210.33 170.22 | 602 1014 62.19
train 198.56 171.63 | 600 1014 60.86
Callsites (Vector Length) 4366
Choices with Yes Consensus 223 Full, 225 FDO
Choices with No Consensus 2986 Full, 3445 FDO
Choices without Consensus 1157 Full, 696 FDO

Table 4.28: Inlining metric scores for GAP on the [tanium

Input Mean | Std Dev | Max | Static | Alignment (%)
ref 131.00 49.75 167 960 66.71
snf1025 65.22 82.14 | 189 1019 66.78
snf1150 65.44 81.67 189 1017 60.34
snf1260 65.44 81.67 189 1017 66.34
snf200-300 | 90.11 60.82 167 1049 64.76
snf525 70.56 74.04 | 179 1033 68.03
snf750 67.00 83.05 192 1024 66.67
snfg00 65.44 82.60 y 190 | 1020 606.86
test 164.56 73.13 192 1014 68.60
train 151.89 69.72 182 1014 67.19
Callsites (Vector Length) 4366
Choices with Yes Consensus 223 Full, 225 FDO
Choices with No Consensus 2993 Full, 3894 FDO
Choices without Consensus 1150 Full, 247 FDO

Table 4.29: Inlining metric scores for GAP on the [tanium 2

inline about 200 callsites that are inlined by static optimization. While the maximum difference
between FDO logs is moderate, the mean difference scores are large compared to the maximum,
indicating that training on different inputs results in different optimization strategies.

With GAP, there are a large number of callsites without consensus. Furthermore, mean differ-
ences are quite large, and the maximum differences between FDO logs approach the total number
of choices without consensus. On the Itanium, the snf800 log has a much larger difference and
alignment values than the other logs. Training on snf300 results in more inlining than training on
the other inputs: Other logs inline between 297 and 405 callsites, but the snf900 log inlines 820
callsites. Unlike the results of if conversion, training on different snf inputs does cause different
inlining decisions to be made.

There are a small number of differences between most of the FDO logs for gzip. However, on

the Itanium, the log for docs has a mean difference score more than four times larger than any other

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
combined 14.79 24.07 96 108 78.38
compressed | 15.00 24.38 97 109 77.25
docs 91.79 25.92 102 80 83.73
gap 12.21 22.08 86 104 69.74
graphic 13.36 23.27 92 108 72.24
ipeg 15.00 24.38 97 109 77.25
log 12.50 22.65 88 104 67.69
mp3 13.57 23.43 93 109 71.10
mpegd 12.50 22.71 90 106 71.22
pdf 12.50 22.65 88 104 67.69
program 12.29 2241 87 103 68.83
random 21.36 24.10 | 102 108 66.21
reuters 12.50 22.65 88 104 67.69
source 14.64 23.25 94 106 74.97
xmi 12.29 2241 87 103 68.83
Callsites (Vector Length) 246
Choices with Yes Consensus 18 Full, 31 FDO
Choices with No Consensus 80 Full, 109 FDO
Choices without Consensus 148 Full, 106 FDO

Table 4.30: Inlining metric scores for gzip on the Itanium

Input Mean | Std Dev | Max | Static | Alignment (%)
combined 7.86 5.05 14 108 87.97
compressed 8.07 5.36 13 109 86.72
docs 6.79 5.83 17 103 76.19
gap 6.71 5.49 18 104 77.19
graphic 7.14 443 18 108 80.58
ipeg 8.07 5.36 13 109 86.72
log 7.14 5.81 16 104 74.81
mp3 7.50 4.05 17 109 79.20
mpeg 6.57 3.15 14 106 79.20
pdf 7.86 5.05 14 108 87.97
program 6.79 5.83 17 103 76.19
random 15.14 5.00 18 108 73.93
reuters 7.14 5.81 16 104 74.81
source 8.43 2.92 12 106 83.58
xml 6.79 5.83 17 103 76.19
Callsites (Vector Length) 246
Choices with Yes Consensus 18 Full, 33 FDO
Choices with No Consensus 110 Full, 192 FDO
Choices without Consensus 118 Full, 21 FDO

Table 4.31: Inlining metric scores for gzip on the Itanium 2

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
ref 0.58 1.45 5 9 95.22
synth-0 | 0.58 1.45 5 9 95.22
synth-1 0.58 1.45 5 9 95.22
synth-2 0.58 1.45 5 9 95.22
synth-3 0.58 1.45 5 9 95.22
synth-4 1.50 1.52 6 10 89.57
synth-5 0.58 1.45 5 9 95.22
synth-6 0.58 1.45 5 9 95.22
synth-7 0.58 1.45 5 9 95.22
synth-8 0.58 1.45 5 9 95.22
synth-9 0.58 145 5 9 95.22
test 5.00 1.57 6 12 92.17
train 1.33 0.97 4 10 96.09
Callsites (Vector Length) 32
Choices with Yes Consensus 11 Full, 14 FDO
Choices with No Consensus 7 Full, 12 FDO
Choices without Consensus 14 Full, 6 FDO

Table 4.32: Inlining metric scores for MCF on the Itanium

input, as well as an elevated alignment score. Training on docs results in inlining 136 callsites on
the Itanium, while training on the other inputs results in only 42-55 inlined callsites. Conversely,
random also has larger than average difference scores on both processors. However, random also
has the lowest alignment score in both cases. Therefore, while training on random results in about
the same quantity of inlining as training on other inputs, the inlining decisions that are made are
significantly different than when other training inputs are used. This result is not surprising: random
data has no structure and, in general, cannot be compressed. Thus, it is unlikely that training on
random data will exercise any of the paths in the code that perform compression.

As with if conversion, there are virtually no differences between the inlining logs for MCF.
Tables 4.32 and 4.33 show that the FDO logs had different decisions for no more than 6 callsites,
while the average difference between logs is less than | different decision. Therefore, unless inlin-
ing this single callsite is a key factor for performance, MCF will likely achieve the same levels of
performance regardless of which training input is used.

With parser, mean difference scores are large, and there are a significant number of callsites
without consensus. Therefore, training on different inputs does result in different inlining decisions
for parser. Alice on the Itanium has a larger difference score than the other logs, and a much
lower alignment score. Training on alice likely results in about half as much inlining as training on
other inputs for the Itanium.

There are virtually no differences between the FDO inlining logs for the placement task of VPR.
Of the 877 callsites in the program, training on different inputs results in different decisions for at
most 4 callsites. However, the differences between the FDO logs and the static log are large. The

consensus data shows that static optimization inlines 457 callsites that not inlined in any of the FDO

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
ref 0.58 1.45 5 9 95.22
synth-0 0.58 1.45 5 9 95.22
synth-1 0.58 1.45 5 9 95.22
synth-2 0.58 1.45 5 9 95.22
synth-3 0.58 1.45 5 9 95.22
synth-4 1.50 1.52 6 10 89.57
synth-5 0.58 1.45 5 9 95.22
synth-6 0.58 1.45 5 9 95.22
synth-7 0.58 1.45 5 9 95.22
synth-8 0.58 1.45 5 9 95.22
synth-9 0.58 1.45 5 9 95.22
test 5.00 1.57 6 12 92.17
train 1.33 0.97 4 10 96.09
Callsites (Vector Length) 32
Choices with Yes Consensus 11 Full, 14 FDO
Choices with No Consensus 7 Full, 12 FDO
Choices without Consensus 14 Full, 6 FDO

Table 4.33: Inlining metric scores for MCF on the Itanium 2

Input Mean | Std Dev | Max | Static | Alignment (%)
02-05words | 164.09 68.25 | 228 385 52.53
06-10words | 137.36 59.10 | 202 383 58.28
11-15words | 126.45 60.16 | 213 350 74.70
16-20words | 119.00 59.36 197 356 75.05
21-25words | 133.91 53.36 186 355 71.85
alice 191.36 68.20 | 260 427 38.69
pa 159.36 67.12 | 228 367 75.23
ref 120.64 56.88 198 369 77.60
relativity 128.82 51.92 179 386 68.29
test 161.55 64.08 | 260 357 76.02
train 125.18 60.51 213 372 72.64
worlds 122.27 56.11 189 376 74.66
Callsites (Vector Length) 1186
Choices with Yes Consensus 62 Full, 82 FDO
Choices with No Consensus 542 Full, 714 FDO
Choices without Consensus 582 Full, 390 FDO

Table 4.34: Inlining metric scores for parser on the Itanium

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
02-05words | 178.73 72.70 | 245 414 67.12
06-10words | 129.45 56.35 196 399 72.19
11-15words | 114.55 51.74 180 353 81.77
16-20words | 109.64 55.04 189 361 81.06
21-25words | 118.55 61.58 | 229 355 82.80
alice 129.09 601.84 198 395 68.46
pa 148.55 69.67 | 245 367 75.42
ref 110.91 52.25 195 369 79.83
relativity 117.64 54.58 182 386 70.28
test 148.73 56.12 198 357 78.71
train 113.64 52.35 185 372 76.40
worlds 111.09 5847 | 2006 376 76.38
Callsites (Vector Length) 1186
Choices with Yes Consensus {11 Full, 152 FDO
Choices with No Consensus 519 Full, 688 FDO
Choices without Consensus 556 Full, 346 FDO

Table 4.35: Inlining metric scores for parser on the Itanium 2

Input Mean | Std Dev | Max | Static | Alignment (%)
alud 1.14 1.30 3 472 71.77
apex2 1.14 1.30 3 472 71.77
apex4 1.14 1.30 3 472 71.77
bigkey 1.14 1.30 3 472 71.77
des 1.14 1.30 3 472 71.77
diffeq 1.14 1.30 3 472 71.77
dsip 1.81 1.56 4 471 72.08
elliptic 143 0.68 2 471 70.93
ex1010 2.38 1.56 4 469 68.99
ex5p 1.14 1.30 3 472 71.77
frisc 1.43 0.68 2 471 70.93
misex3 1.14 1.30 3 472 71.77
pdc 2.38 1.56 4 469 68.99
ref 2.38 1.56 4 469 68.99
298 1.81 1.56 4 471 72.08
s38417 2.38 1.56 4 469 68.99
§38584.1 2.38 1.56 4 469 68.99
seq 1.14 1.30 3 472 71.77
spla 2.38 1.56 4 469 68.99
test 1.81 1.56 4 471 72.08
train 1.14 1.30 3 472 71.77
tseng 1.81 1.56 4 471 72.08
Callsites (Vector Length) 877
Choices with Yes Consensus 39 Full, 50 FDO
Choices with No Consensus 366 Full, 823 FDO
Choices without Consensus 472 Full, 4 FDO

Table 4.36: Inlining metric scores for VPR (place) on the Itanium

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
alud 1.14 1.30 3 472 71.77
apex2 1.14 1.30 3 472 71.77
apex4 1.14 1.30 3 472 71.77
bigkey 1.14 1.30 3 472 71.77
des 1.14 1.30 3 472 71.77
diffeq 1.14 1.30 3 472 71.77
dsip 1.81 1.56 4 471 72.08
elliptic 1.43 0.68 2 471 70.93
ex1010 2.38 1.56 4 469 68.99
ex5p 1.14 1.30 3 472 71.77
frisc 1.43 0.68 2 471 70.93
misex3 1.14 1.30 3 472 71.77
pdc 2.38 1.56 4 469 68.99
ref 2.38 1.56 4 469 68.99
s298 1.81 1.56 4 471 72.08
s38417 2.38 1.56 4 469 68.99
s38584.1 2.38 1.56 4 469 68.99
seq 1.14 1.30 3 472 71.77
) spla 2.38 1.56 4 469 68.99
test 1.81 1.56 4 471 72.08
train 1.14 1.30 3 472 71.77
tseng 1.81 1.56 4 471 72.08
Callsites (Vector Length) 877
Choices with Yes Consensus 39 Full, 50 FDO
Choices with No Consensus 366 Full, 823 FDO
Choices without Consensus 472 Full, 4 FDO

Table 4.37: Inlining metric scores for VPR (place) on the Itanium 2

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
alu4 9.86 12.54 36 456 80.28
apex2 9.86 12.54 36 456 80.28
apex4 9.76 12.87 37 457 79.90
bigkey 15.57 6.77 28 458 82.16
des 12.05 12.95 41 455 77.51
diffeq 12.52 9.79 31 459 81.25
dsip 30.33 10.75 41 452 84.06
elliptic 9.76 12.87 37 457 79.90
ex1010 9.86 12.54 36 456 80.28
ex5p 12.43 12.33 39 451 76.65
frisc 11.29 11.90 37 453 77.82
misex3 9.76 12.87 37 457 79.90
pdc 26.62 10.01 45 447 69.96
ref 14.14 12.56 41 451 76.02
s298 33.48 12.51 45 450 84.55
s38417 9.86 12.54 36 456 80.28
s$38584.1 9.86 12.54 36 456 80.28
seq 9.76 12.87 37 457 79.90
spla 13.86 12.39 41 451 75.33
test 32.33 11.80 42 451 83.75
train 9.76 12.87 37 457 79.90
tseng 23.38 7.15 37 458 83.30
Callsites (Vector Length) 877
Choices with Yes Consensus 66 Full, 87 FDO
Choices with No Consensus 327 Full, 732 FDO
Choices without Consensus 484 Full, 58 FDO

Table 4.38: Inlining metric scores for VPR (route) on the Itanium

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Mean | Std Dev | Max | Static | Alignment (%)
alu4 9.86 12.54 36 456 80.28
apex2 9.86 12.54 36 456 80.28
apex4 9.76 12.87 37 457 79.90
bigkey 15.57 6.77 28 458 82.16
des 12.05 12.95 41 455 77.51
diffeq 12.52 9.79 31 459 81.25
dsip 30.33 10.75 41 452 84.00
elliptic 9.76 12.87 37 457 79.90
ex1010 9.86 12.54 36 456 80.28
ex5p 12.43 12.33 39 451 76.65
frisc 11.29 11.90 37 453 77.82
misex3 9.76 12.87 37 457 79.90
pdc 26.62 10.01 45 447 69.96
ref 14.14 12.56 41 451 76.02
s298 33.48 12.51 45 450 84.55
s38417 9.86 12.54 36 456 80.28
s38584.1 9.86 12.54 36 456 80.28
seq 9.76 12.87 37 457 79.90
spla 13.86 12.39 41 451 75.33
test 32.33 11.80 42 451 83.75
train 9.76 12.87 37 457 79.90
tseng 23.38 7.15 37 458 83.30
Callsites (Vector Length) 877
Choices with Yes Consensus 66 Full, 87 FDO
Choices with No Consensus 327 Full, 732 FDO
Choices without Consensus 484 Full, 58 FDO

Table 4.39: Inlining metric scores for VPR (route) on the Itanium 2

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

logs. On the other hand, FDO results in the inlining of at most 54 callsites. VPR's routing task results
in larger variations between the FDO logs. However, the differences between static optimization and
FDO inlining are still very large compared to the differences between FDO logs. Therefore, profiling
makes a significant difference in the compiler’s ability to identify hot callsites in VPR, and, as will

be presented in Section 4.2.2, consequently improves program performance.

4.1.3 Conclusions

Overall, different training inputs result in different optimization decisions for both i £ conversion
and inlining. In almost every case, there are much more significant differences between the static
logs and the profile-guided logs than between any pair of FDO logs. Furthermore, the consensus
data shows that FDO usually results in the same decisions for the majority of choices, and that
in most cases the differences between FDO logs are confined to a fairly small proportion of the
choices made for a program. In the extreme, several inputs for MCF and for the placement task of
VPRresult in identical optimization decision. Therefore, using or not using FDO appears to have a
more significant impact on the optimization decisions made by a compiler than the selection of the
training input used for FDO. However, since the performance of a program is often most significantly
impacted by a small number of important optimization decisions, these results do not imply that the

selection of training input is not important.

4.2 Run-Time Performance

Aestimo measures the run times for the binaries produced with the FDO optimization log from
training on each of the inputs in the workload, as well as for the statically optimized binary. Each
binary is run on each of the inputs in the workload five times. Unfortunately, a larger number of
trials would have taken a prohibitive amount of computing time. Therefore, along with the average
performance, Aestimo reports results based on the minimum and maximum times from among the
five trials. The main bar in the graphs shows the average of the five trials, while the error bars
show the minimum and maximum values obtained. Values for the error-bars are determined using
identical calculations to those used with the average time. All run times are measured as the user
component reported by the UNIX time command. All the graphs presenting performance results
in this chapter will use these conventions.

Reported performance results may vary depending on the method used to summarize the raw run-
time data [23] (pp. 24-39). If the total run times for a workload are compared, a few long-running
inputs could dominate the run time and the comparison would effectively ignore shorter-running
inputs. Alternatively, the run time for each element of the workload can be normalized. In this case,
each input is equally important in the comparison, but this is not always a desirable characteristic.

Therefore, Aestimo provides performance results calculated using two methodologies: an arith-

metic sum of run times and a geometric sum of run times. The arithmetic sum aggregates the raw

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U P

]
i
i
i

e R

Avearge % Faster than Static
DR - I - A B SV I M)

Avearge % Faster than Static
DN =0 =W

S &

Prograim Program
(o] 2 =3 a b] k4 2 o o) 2 a. =3 ‘S] v 1 L
(=3 = § 'R = 4 (=3 13 Q. = 1) B] o &
5 & g [| 3 g K] L g = 2
2B o E = & & 5 3 B E 28 ¢
& B G -
(a) Itanium (b) ltanium 2

Figure 4.6: Average performance of FDO i f conversion

run times on each of the inputs in the workload for a given binary. The sum is reported as a percent
faster than the same measure for the statically compiled binary. The geometric sum is similar, but it
normalizes the run times against the (arithmetic average) static time before aggregating. Precisely,
the geometric sum is defined as:
Jjew static\]

where W is the workload, I € W is the training input used to create the binary, and time;(j),7 €
W, is the time for the binary trained in input I to run on the input 7. The results labeled static
are included in the graphs to display the variance between the minimum and maximum times for
execution with the statically optimized binary.

The metrics referred to in this section are the difference and alignment metrics defined in Sec-

tion 3.1 and reported in Section 4.1.

4.2.1 If conversion

If conversion is known to provide modest performance improvements at best [13]. On the Itanium,
profile-guided i £ conversion has mixed effects on performance. On the Itanium 2, Aestimo finds
that profile-guided i £ conversion invariably results in an (often substantial) performance reduction.
Apparent performance may vary between the two evaluation metrics, but the conclusions of the
performance evaluation are not affected by the run time aggregation metric chosen.

Figure 4.6 presents the average arithmetic performance of the FDO binaries for each program.
On the Itanium, FDO if conversion results are mixed, but on average FDO 1if conversion has little
effect on performance. FDO if conversion makes little difference to the gzip and VPR routing.
Bzip2 and parser are consistently slightly improved by FDO if conversion, while it reduces

performance on crafty, gzip, and VPR’s placement task. GAP and MCF show small performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-
.
P

H

I

!

3
] 31 . . . i
Poodog . L i i
g Pl 1 ~l}" }
5 1 3 1, 3
< < AR |
5 e IR E EB ﬂ i
é i 0 i [H T
] = 05 |} ¢ i |
i
N
22 1.5
Training Dataset Training Dataset
3 0 T = = 9 ©0 =
£I7ER4EFREREEEEE ETEREEEFREREEELET
*g 3 g g g E & &% £
w S o i
W 3
(a) Arithmetic (b) Geometric
Figure 4.7: Performance of bzip2 with i f conversion on the Itanium
1 2
o :
g 11 2 o
g .2 2
& 2 & -2
53 3
S 4 £ 4
u .5 _l_‘
l-% -6 i g -0
SR ® s ;
-8 1 i } : PTT 17
9 -10 : =
Training Dataset Training Dataset
$EF 882 KE8BEREEEEE ’§§§§EE§§“'§~§§§EEEE
ASESTESTEET BTG F5ESUES 2883
§ % 0 =% g E_ [>Y g
2 8
(a) Arithmetic (b) Geometric

Figure 4.8: Performance of bzip2 with if conversion on the Itanium 2

reduction when trained on most inputs, but also have small performance gains when trained on two
or three of the inputs in the workload.

Results on the Itanium 2 are disappointing. FDO is intended to improve performance, but this is
clearly not the case with FDO 1if conversion. For nearly every benchmark, performance is reduced
uniformly regardless of which training input is used. Furthermore, the average difference score
appears to have no correlation with performance. For example, with parser, average difference
scores range from 28 to 64, but all FDO binaries exhibit identical performance. Perhaps the most
important observation of FDO 1if conversion is that performance is nearly always reduced by more
than 3%, by 5% on average, and by as much as 8% for MCF.

Run time variances for FDO i £ conversion binaries are frequently large, making it impossible
to distinguish between the performance of binaries trained on different inputs. Recall that the i £
conversion alignment scores for bzip2 are split into two groups: inputs with alignment scores less

than 55%, and inputs with alignment scores greater than 80%. Despite these differences, Figures 4.7

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

05 0.5
0] 0 {~i~ — .
2 L H
2 .05 2 054 i s
g g
£ SR : . "t
5 k4 ! ! .
] H H —i
2 .15 ! @ 15 1 -
® ® A
22 H L 2 4 i H 3
2.5 25
Training Dataset Training Dataset
.2 ‘s 3 g = a n - 8 ‘S z £ s @ b b
3 £ § 8 &8 =2 4 i - ¢ § &8 ¢ =2 4
v g 4 3 Ed e 8 4 4 ol
z z ES z z z z z
(a) Arithmetic (b) Geometric
Figure 4.9: Performance of crafty with i £ conversion on the Itanium
! 1
0 {—+— — r 0 {—1—
2 g
5 -l S-S
v v
s 2 8§ <24
£ S
5 31 rog 34
[+] I
e 3 e :
-5 H 3 3 L .5 4 1 H ; 1
-6] 6
Training Dataset Training Dataset
g 5 7 £ =5 © & @ KT 7 £ 3z @& @& &
g = ¢ ET 8§ 8 =2 ¢ §g - * B & =2 7
e 8] k] 8 “ 8 8 8 g
2 3 3 z 3 2 z 2
(a) Arithmetic (b) Geometric

Figure 4.10: Performance of crafty with if conversion on the Itanium 2

and 4.8 show no significant performance differences between the FDO binaries.

There are distinguishable differences in the performance of several crafty binaries on both
processors, though the difference between the best and worst performance seen in Figures 4.9
and 4.10 is less than 1%. The average difference metric does not vary substantially between the
binaries, expect for wac-251 on the Itanium, which has a score of 405 (see Table 4.6). The other
inputs result in scores less than 248. Training on wac-251 also resuits in the best performance
on crafty, which suggests that the different profile information provided by this input results in
different optimization decisions that do impact performance.

Similarly, there is some correspondence between larger average difference scores and greater
performance for GAP on the Itanium. Most inputs result in difference scores less than 200 (see Ta-
ble 4.8), and performance penalties of about 1%. The SPEC ref, test, and train inputs have average
difference scores exceeding 400. Figure 4.11 shows that they also result in the best performance on

this benchmark. However, training on the snf1260 input results in better performance than training

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.5 15
I . 11 -
% 05 4 os i
3 . F 3 .5 H ¢
& . a
It 0 ds ol 0 T
% .0‘5 m [l 3 . % .0'5 ‘ m D E If} ‘ H[.
v HI ! i P
-1.5 A 3 -1.5 - § i S R E :
2 2 -
Training Datasct Training Dataset
o (=3 k= - (=1 o - o "y b4 b1 =4
§ 85238488883 i T8 288888 % ¢
i T §E §E 8 5% 5 B - T §E §E 8 % 8 %
8§ &8 § 8 E 8 § 8
g g
(a) Arithmetic (b) Geometric
Figure 4.11: Performance of GAP with if conversion on the Itanium
05 0.2
0 -+ - 0 1
g 05 - g 021
- | 5 04
-0.6 -
_§ 1.5 4 _g 08
5 -2 g -1 .
é__-z.s Lé-l.z- N R S L
w3 ® ! [R i :
-3.5 - -1.6 } 1
-4 -1.8
Training Dataset Training Dataset
U s o O o % o8 v % O "n o % S
FEECEREEER LG s 8282888 TE
“ E T £ 8 8 B B @ T §E § 8 5% % &
i u w wn “n ':_l
2 g
(a) Arithmetic (b) Geometric

Figure 4.12: Performance of GAP with if conversion on the Itanium 2

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.1 0.1

o+ STl ae 0+ —1 —
e 01 o 01
g -0.2 ;57 -0.2
5 0.3 4 g -0.3
: 04 v T 0.4 1
3 -0.5 i 3 0.5 1 ! ¥
w006 0.6 A i
¥ .07 ¥ 07 . i
+ + :—
-0.8 H ;“ f 0.8 1 i i
09 = -09 -
Training Dataset Training Dalasct
U T W Y QAU oh b b v o " WL b S0 SL = & k'
LTTEELEPREREEELT fIFET4{EFRELEEELE
"EE g FogsiEs “EE & gaes
g E = g E =
v 1]
(a) Arithmetic (b) Geometric
Figure 4.13: Performance of gzip with i £ conversion on the Itanium
1 1
01— - 0 1+ —
o (%]
g -1 R
w w
g 2] 2 2]
Eg 3 L % 3
w i L w4)
= 4 el
.5 L .5 4
-6 -6 _
Training Dataset Training Datasct
Q D Y g U Sn o8 en oD g v u v w QO 60 o0 q on = E v v
SEFESSETFREEESEEE SEYEEZETFRERSEEE
w3 g g 2T B g - £ $ 8 22
E a4 5o = ca e 2
g g & g E =
8 8
(a) Arithmetic (b) Geometric

Figure 4.14: Performance of gzip with i £ conversion on the Itanium 2

on ref, but results in an average difference score of only 190.

On the other hand, GAP on the Itanium 2 also displays distinguishable levels of performance, as
seen in Figure 4.12. In this case, most inputs have an average difference score of about 185, while
the SPEC ref, test, and train inputs have average difference scores larger than 400. However, while
training on ref results in the best performance among the FDO binaries, training on test and train
results in the two worst performing binaries.

Gzip and MCF on the Itanium are also cases where changes in metric scores do not correlate
with changes in performance. With gzip, there are two statistically distinct levels of performance
in Figure 4.13: 0.5% slower and 0.8% slower than static. Unfortunately, these differences are too
small to be practically significant. There are no trends in the metric scores to suggest these two levels
of performance. Both the log and docs logs have lower than average alignment scores, but display
different levels of performance. The mean difference scores for the binaries that are 0.8% slower

than static appear to be higher than average, but many binaries at the -0.5% performance level have

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

aNMS uey 1315y 9

Training Dataset

Training Dataset

uien
159

6- ks
8-iufs
L-yuks
9-uks
S-iuks
$-uks
€-uis
T-uAs
[-tpuAs
0-yuks
§EY]

aums

unn
1591
6-Yuls
8-Yyiufs
L-Ytuds
9-us
S-quuds
£-yiuks
€-Yuuks
T-Yuds
1-qiuks
0-Yiuks
pE]

onus

(b) Geometric

(a) Arithmetic

Figure 4.15: Performance of MCF with i f conversion on the Itanium

x:_i..x..

1-07%4680”
0

-14

Mg uey) 13seg 9%

Training Dataset

Truining Dutaset

uten
159
6-Yuis
g-1iuds
L-Ypuds
9-tiufs
S-tuds
+-1puks
€-uks
C-uks
1-uks
0-Yiuhs
J

s

uien
1531
6-YIuks
8-yiuks
L-yuks
9-puks
§-iuks
t-1puks
€-iuds
T-puds
1-puds
0-uks
jcti

onms

(b) Geometric

(a) Arithmetic

Figure 4.16: Performance of MCF with i f conversion on the Itanium 2

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 - :
L] NN
g 3 £ Pl
E 5 |
v v H
; I : Hn |
£ s g
& s
X 1 =
S 0 »
B el
0.5 -5
Training Dataset ‘Training Dataset
R EEEE R EEEEEE R T
a3 3 z = -2 oz H z g =
5€24587 E EREER E g
a8 = 2 5 88 = 2 5
(a) Arithmetic (b) Geometric
Figure 4.17: Performance of parser with i £ conversion on the Itanium
0.5 1
(IR 1o | e § s £ e | | s s | e e N 0
o 051 o .1
g 0 E
— 3 7 4
@ .15 5 2
=
2 -2 2
v 25 1 I
k- -3 1 g 5
. wooo
® -3.5 1 I =
4 L
454 bALL LI Lt L L 0y -7 1 H
5 -8
Training Dataset Training Dataset
I AL A EEEEEEREEREE
%z S z ‘2 =2 “ z 2z 2 z 3 ki 3
EEEE E : EEREE: E :
88=23 g8z ¢ 3
(a) Arithmetic (b) Geometric

Figure 4.18: Performance of parser with i £ conversion on the Itanium 2

differences larger than graphic. Furthermore, while all other inputs have mean difference scores
less than 20, compressed results in a mean difference score of 44. However, the performance of
the binary trained on compressed is indistinguishable from 5 other binaries.

Similarly, synth-5 for MCF results in a significantly larger mean difference score and a lower
alignment score than the other inputs, but does not display any significant differences in perfor-
mance. Conversely, training on synth-8, synth-9, test, and train results in improved performance,
but they have nearly the same metric scores as the other input. Therefore, there is no clear connection
between the difference and alignment scores and performance.

Despite the moderate mean difference scores for parser, differences in i £ conversion deci-
sions do not appear to result in any variations in performance among the FDO binaries. Recall that
the FDO logs had consensus for about half of the i £ conversion choices for parser. Therefore,
it is likely that the choices that do not have consensus among the FDO logs are those that are not

important for the performance of the program, while those choices with consensus are a superset

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2
L 11 } ,L i
g i g 0 QJ -
: T » ﬂm | mmT iTin
] H m m mm & - f I
3 T I -1 i : H
2 RERRL AR NIRRT - I
FREE I ERRRNEL L8 B REL N | EH i
Lo ' ! | i w4
i A
-8 1 4 i S 6 i !
-10 -7
Training Dataset Truining Dataset
23T 882828 8NE RS2 EY 23N LTS 228808 ERS T IESEY
EEERESEYESHERR" A48 EE FRRRASSEESRERRTNZA YRR
T35 S OF¥T E T® T 5 8 FY O OE a8
“ %
(a) Arithmetic {b) Geometric
Figure 4.19: Performance of VPR (place) with i £ conversion on the Itanium
1 05 T
0.5 i 0 ‘, -
2 01 g 0579
5’:; 0.5 1} g -1
g -1 1i 5: -1.5
R EE s 2
-‘;_; 2 2 25
b o
:E- 25 ' 1 e 3 i ; 1
i = UL : N i
3 I L i H 33 [: 1 t i ! L H i i
351 4 it ! P 44 A :
g L -4.5
Training Dataset Training Dataset
23U LT E228ENYERESTREE Y 23T PETE226298 887 72gsY
§RERECE3ESRER O3 R 53LE4S83ESCER AT 49% 08}
" |Fag 9 T‘ﬁ =] r;;% - 4 saFE 9 35 é '3§ -
w v
(a) Arithmetic (b) Geometric

Figure 4.20: Performance of VPR (place) with i f conversion on the Itanium 2

of the most important i £ conversion choices. The large reduction in performance on the Itanium 2
is likely due to some of the 111 if conversion choices that the FDO logs had consensus not to i f
convert, but that static optimization chooses to i f convert.

The pdc, 298, and spla inputs for the placement task of VPR have the worst performance
for this program on the Itanium (see Figure 4.19). These inputs also have the lowest alignment
scores. Therefore, there may be a correlation between alignment score and performance in this case.
However, on the Itanium 2, there are no inputs with distinguishing metric scores, nor any that result
in very significantly different performance. There are no distinguishing features for the inputs for
the routing task of VPR, either (see Figures 4.21 and 4.22). The consensus numbers indicate that
the main difference between static and feedback-directed optimization is about 50 i £ conversion
choices where static performs 1 £ conversion but FDO does not. This result suggests that not enough

i £ conversion is being performed on the Itanium 2 when FDO is used.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

aumg ueg) AN W,

Training Dataset

Training Dataset

Suas)
umen

189

elds

bas
1'+868¢s
L1£8ES

gxastu
asuy
dgxa
0101%3
andya
disp
hajyip
sap
Kayfy
pxade
xade
e
anes

Suas)
umen

159

elds

bas
1'+858¢ES
LIrges
868

(b) Geometric

(a) Arithmetic

Figure 4.21: Performance of VPR (route) with i £ conversion on the Itanium

[
_
_
-

0
3

-y e L - ol
O Tovow

onms ueyy 3245 9,

-8

(=)
0

3

o

3

7}

-

3

e ol

o3

S ~ & oo
DR S E

Mg unys 1345T o

-]
v

~
»

Training Datasct

Training Dataset

3ussy
umn
1531
eids
bas
1°+868¢s
L1t8es
86T
It

apd
£xasIW
as1)
dgxa
010ix?
sudjja
disp
bayp
sap
£oydiq
pxade
cxade
tnje
anms

3uasy
umn

159}

rids

bas
1'4868€S
L18ES
86¢CS

0101%?
andip
disp
bayp
sap
Aaxdng
$+xadn
Txade
Tl
anms

(b) Geometric

(a) Arithmetic

ance of VPR (route) with i f conversion on the Itanium 2

Figure 4.22: Perform

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3
) - g 2
g 3 [) g 2
7] s | . L2 B
ENRA el 2o
8 4 1 l 5 -1
Li!! 2 ! s IE -2 4
= l i LR
% 0 = %
] i 83 44
2 2 ! v
< - < -5
-4 -6
Program Program

ol > a (=% - s o o o o) > a a b+ A= v u v

e 5 § § 2 g £ 3 7 e § 7 9§ 2 g g8 3 @

Eog "% 7 i g B o Eog 0t % 7 og e B

o (=8 ke o a)

> b - Ed
(a) ltanium (b) Itanium 2

Figure 4.23: Average performance of FDO inlining

4.2.2 Inlining

Inlining is an important optimization that can benefit greatly by knowing the hot functions and
frequent callsites in a program. Therefore, we expect significant performance gains from profile-
guided inlining. However, if different inputs exercise different parts of the code, or otherwise result
in different relative frequencies for important functions and callsites, overall performance on the
workload may vary.

The experimental results show that there are significant performance impacts from feedback-
directed inlining. Furthermore, there are several cases where the selection of training input has a
significant and substantial impact on performance. Figure 4.23 shows the average arithmetic perfor-
mance of FDO inlining on each program. FDO inlining improves performance by 6% on average
on the Itanium. However, while FDO inlining has little impact on performance for the Itanium 2 on
average, the largest average performance gain is slightly more than 2%, but the largest performance
reduction is almost 5%. For individual binaries, FDO inlining improves performance by as much as
12% or reduces it by up to 6%, while the performance difference between training on two inputs can
approach 7%.

Figure 4.24 shows performance gains for bzip2 from profile-guided inlining on the Itanium.
Despite the large variances, training on the combined input results in performance gains of about
8%, while training on xml improves performance by only 2%. Figure 4.25 indicates that training
input selection is also important for bzip2 on the Itanium 2. Training on some inputs, such as
log or docs, has a negligible impact on performance. However, training on combined reduces
performance by over 5%. Recall from Section 4.1.2 that inputs resulted in either difference scores of
about 150 and alignment scores of about 6%, or difference scores of about 80 and alignment scores
of about 50% for both processors. However, there is no obvious correfation between these scores

and performance. For example, training on either mpeg or program results in similar performance

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

% Faster than Static
o

% DII ?

% Faster than Static

— =

!

Training Dataset
$TTIEEEERRREELLE
A5 ESYESTFETELE G

‘g E. =] ‘5_ (&4 g
° 8

(b) Geometric

Figure 4.24: Performance of bzip2 with inlining on the Itanium

: |
V]
-2
Training Dataset
ST7BELEPRERESELE
"EET g EEES
¢35
(a) Arithmetic
1
o - -+] -
TG
3 T TP eg e
w2 i : H
5 2 1L
E 3 : L
3
® 4]
-5
.6 i

Training Dataset

o v o QU o oh o oD lm E 2 ¥
EEJESSEFRERGEEEEE
“ et] 5 5 g 8
(=% o S
s g &
v s
o

(a) Arithmetic

% Faster than Static

I ?Q@Q%@?@@

static

combined
compressed

docs

g
graphic

Training Dataset
B 80 0 6O =
B2 ER B

=

(b) Geometric

Figure 4.25: Performance of bzip2 with inlining on the Itanium 2

63

program

rundom

reuters

source

xml

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14 14
12 1] b 12
2 1 - 210 1
g 10 o 4
VE: 8 - —t -2 8 4 3t
g 4 2 4] L
& £
® 2 ® 2 L
0 11— e b 0 1—— !
2 2
Training Dataset Truining Dataset
¢ 8T f § 8 &z % 7 § T ¥ § 8 8 @ §
“ 2 g g 2 “ | g 8 4
H 3 H z E 2 E z
(a) Arithmetic (b) Geometric
Figure 4.26: Performance of crafty with inlining on the Itanium
5 4
4 4 3 4
g] g
§ 3 {;, 2
s ? + g 1 ;
-y] e]
3 4 ——
% 0} . L 30 ;
: [Z
® -l r®
2 G L 2 +
3 -3
Training Dataset Training Dataset
[1 = — — — -— K3 o @ = — — — —
§ 8 8 § B & ©° & 3 ® &8 § B8 B o2 &
v g g g g “ | 4 4 8
2 2 z 2 3 z E z
(a) Arithmetic (b) Geometric

Figure 4.27: Performance of craf ty with inlining on the Itanium 2

despite mpeg having an alignment score of about 6% and program having an alignment score of
about 50%.

Crafty on the Itanium achieves the largest performance improvement from profile-guided in-
lining observed in our study. As shown in Figure 4.26, training on most inputs results in performance
improvement of 8%. However, 10% and 12% gains can be achieved by training on wac-151 and
wac-001 respectively. However, the metric scores do not distinguish these inputs in any way. There
are inputs with both higher and lower mean difference and alignment scores. In particular, test has
the largest mean difference score and lowest alignment score, while train has the smallest mean
difference score and largest alignment score. Nonetheless, the performance of the binaries trained
on these two inputs is identical.

The performance impact of FDO inlining for crafty on the Itanium 2 varies significantly
with the training input chosen, as seen in Figure 4.27. However, these variations in performance

seem uncorrelated to the difference or alignment metrics. Ref and wac-251 have the lowest mean

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[
4 N 51
5] : u s .
3 31 3 * : j i
1~ = 4
3 3 2
£ 1 £
= . =
0 1+ - 0 -+
-1 -1
Training Dataset Training Datasct
g% =] =] 3 £ g 5 =] =] % .
§ Eg 28338488 E8 %% s 8288888 8%
” F § §E 8 % % 8 “ T E §E 2 % 8 B
c i n w m
g g
(a) Arithmetic (b) Geometric
Figure 4.28: Performance of GAP with inlining on the Itanium
25 3
2 4 25
2 2 + 1
g 15 5 2 J i
] & .
5 1 ‘-:: 1.5 { i .
S £
£ 051 g 14 |
oy 0 1+ LT_] 3 D o 0.5 1
-0.5 H 3 0 1-+
-1 -0.5 :
Training Dataset Training Dataset
g2 5 e w2 % £ KT 2 =] 7 £
§ 88 2 883828 ¢ 3 $ 882 38888 ¢ ¢
@ Sz = g E & © = @ bl o B o 8 E & E
8 &8 &8 § ° g 8 8 &
G g
(a) Arithmetic (b) Geometric

Figure 4.29: Performance of GAP with inlining on the Itanium 2

differences, and also the worst performance. However, test has the largest mean difference, but
also results in reduced performance. On the other hand, train improves performance by 4%, but has
mean difference and alignment scores that are on neither extreme when compared to the scores of
other inputs.

GAP on the Itanium displays small performance variations across the workload. Figure 4.28(a)
shows that the least performance improvement is about 3% for test, and the greatest is about 4.5%
for snf750. snf750 and snf200-300 have very similar metric scores, but dissimilar performance.
The SPEC ref, test, and train inputs all have mean difference scores approximately 50% larger
than the other inputs, but have similar levels of performance. The performance impact of inlining
for GAP on the Itanium 2 is small. However, for both the snf200-300 and snf750 inputs, the
arithmetic measure results in slightly worse performance than static on the workload, while the
geometric measure shows a small performance improvement. Training on these two inputs results

in a longer total time to process the entire workload, despite an average improvement in per-input

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 9
8 7 1 3
e 7 g 7
306 ;5’ 6
E 5 s 5
£ g £ 44
£ 3 5 5
3 2 3
é 2 w2
=] C
0 4L L 0 1+
-1 -1
Training Dataset Training Dataset
$E}EELEERPRESELT $73IBLLEREREEELE
EE R 5323 BEESCEATFETREE G
€ E Y g2¢t E & 5 g 8¢k
S E 3 E
Q Q
1>} v
(a) Arithmetic (b) Geometric
Figure 4.30: Performance of gzip with inlining on the Itanium
25 == 3
2 25 ' T
73 12
2 2 ,
g 15 a -
| g 15
£ 14 =
g 5]
'5? 05 1 & 05
® =
0 [. — O ——
-0.5 0.5
Training Dataset Training Dataset
L LI - I R o U DY Y &9 60 m b v o
SI3EESEFREREESEE EEI3EEZEFREREEELE
“a g g E 2588 - g E P5E 8
8 a. c0 a g CEL) a o
8 8
(a) Arithmetic {b) Geometric

Figure 4.31: Performance of gzip with inlining on the Itanium 2

processing time. Furthermore, there is no visible connection between the metric scores and observed
performance.

Figure 4.30 shows fairly consistent performance improvements for gzip on the Itanium. docs
has a very large mean difference score, more than four times larger than any other input. However,
this large difference does not correspond to any impact on performance. The performance improve-
ments on the Itanium 2 are small, as shown in Figure 4.3 1. Training on random produces a markedly
smaller improvement in performance than training on the other inputs on both processors. random
also has a mean difference score nearly twice as large as any other input on the Itanium 2, and about
50% larger than all inputs except docs on the Itanium. Recall that random’s low alignment score
was due to it inlining a significantly different set of callsites than other logs. The performance results
reveal that these different decisions result in inferior performance on our workload. Therefore, the
selection of random as the training input for gzip does result in different-inlining decisions that

do result in different performance than training on other inputs.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Truining Datasct

Truining Dataset

208 ury SN Y,

uien
1531
6-Yuks
g-yiuks
L-tpuks
9-qiuks
S-quuds
+-q1uks
£-uks
T-Yuks
1-uuks
0-Yiuhs
J1

sums

uien
153
6-tpuks
g-{uuks
Luhs
9-tlufs
S-iufs
-iuks
€-qiuks
T-quds
1-yiuks
0-yuks
o

anes

(b) Geometric

Training Datasct

Figure 4.32: Performance of MCF with inlining on the Itanium

(a) Arithmetic

Training Dataset

anmg urey) Jase ¥,

uren
1531
6-yiuks
g-yiuks
L-yruds
9-yiuds
S-tuds
t-1puks
€-iuks
T-Yuds
1-Yiuks
0-Ytuks
Jou

anums

uen
1591
6-Yyiuks
g-[uis
L-pudks
9-yiuks
G-1puds
-uks
€-tiuks
T-Yuds
1-tpuks
0-Yyiuks
e

anwis

(b) Geometric
67

(a) Arithmetic
Figure 4.33: Performance of MCF with inlining on the Itanium 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-

1t rE el rh
+ .

% Faster than Static
_—0 e VWAl R OD
et od
i
! s
% Faster than Static
o w S [~ -]

Training Datasct Training Dataset
£ € 834 88 L ae 2g g 3 2 2 £ 2 8 2 L &% g g 3
252358 g3 z % E % 253585 ¢ 87 z % E %
R g : EEEE 3 :
g8 =25 28 =23
(a) Arithmetic (b) Geometric
Figure 4.34: Performance of parser with inlining on the Itanium
1 1 1
038 : | ! .
o8 h ‘ 05 | DE:' D .
(7 E a o
g 0 2 , } . ..
. B I SRR s R SR
g8 02 ; . l 5 : |—:[A
g 0 iy El B L g -05 1 - r
£ .02 SRS I .
™ 04 4 Io®
-1.5
0.6) 3
08 : 2
Training Dataset Training Dataset
£ 4 8¢ g 8 L e g g3 2 8 g 2 2§ L &t 2§ § 3
R 2 % 5 3 §ecggs¢e= z % B 3
52244 I 52283 i
g% =23 g8 =25
(a) Arithmetic {b) Geometric

Figure 4.35: Performance of parser with inlining on the Itanium 2

FDO inlining results in equivalent performance regardless of the training input chosen for MCF
for both processors. Performance is improved about 7-8% on the Itanium, see Figure 4.32, but re-
duced by 4-5% on the Itanium 2, see Figure 4.32. Since the mean difference scores for all inputs
on both processors are very small, these similarities in performance across training inputs are ex-
pected. Recall that the metric scores for MCF are identical for the same training input on the two
processors, and that the inlining decisions are identical as well. Clearly, these decisions are effective
at improving performance on the Itanium, but are inappropriate for the Itanium 2.

Figure 4.34 illustrates that the large mean difference scores for parser on the Itanium do
not impact performance, as performance is improved uniformly by 9%. Furthermore, alice has a
much larger mean difference score and significantly lower alignment score than the other inputs, but
achieves identical performance. Therefore, the differences between the logs must be for infrequently

executed callsites.

In Figure 4.35 different training inputs clearly result in different levels of performance for

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L

H
ir

i

154 ol
.
0 1 $

% Faster than Static
% Faster than Static
=}
K

(=]
wn
S

Training Dataset Training Dataset
LN P8 TS 2258REERE g5 2AUR LT EE2285293°
FERRECSSGESTERRCa %R E EERE4SE3E50ES
“ sy S =9f_. ‘g 73% bl 4 aag B =05 ‘2
(a) Arithmetic (b) Geometric
Figure 4.36: Performance of VPR (place) with inlining on the Itanium
LS
1
g 2
VS, 0.5 1g %
£, :
-
s |F 5
& 051 &
® i ®
-1 1
-1.5
Training Datase Training Dataset
BUOE XL TEUO EYMUGON— FEEC LT 2L TEUO V@
ERFEREER A E AL EPRE LN FERE49S3E89E)
* aag = 3 5 E '3%; s aR el = 5 [
(a) Arithmetic (b) Geometric

Figure 4.37: Performance of VPR (place) with inlining on the Itanium 2

parser on the Itanium 2. Most inputs achieve a distinct level of performance from the other inputs.
Unfortunately, the performance impacts are small, with improvements and reductions all less than
1%, which limits the practical significance of these results. Nonetheless, there does appear to be
a weak correlation between alignment and performance. Conversely, there is likely a weak inverse
correlation between performance and mean difference score. 02-05words has the worst perfor-
mance, the highest mean difference score, and the lowest alignment. Meanwhile, 11-15words has
the best performance, the second largest alignment score and a low mean difference score. There-
fore, the better-performing binaries likely have more inlined callsites than the worse-performing
binaries. The effectiveness of training on alice varies between the arithmetic and geometric mea-
sures. Unlike the two inputs for GAP, training on alice results in a reduction in processing time
for the entire workload, compared to static. Despite this fact, the average per-input performance of
parser is reduced compared to static.

FDO inlining usually has a small impact on performance for VPR. The routing component of

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 EEEm——
S —
T M—
N S —

e

OOV MN =D

sumg ury sasey W,

Y T Y Y T +

~ O Nt N = O e

anmg urip a5 9,

Truining Dataset

Training Dataset

Suasy
uien

159)

vids

bas
1'+858¢€s
L1$8ES
86CS

o101x%?
andy[2
disp
bayyp
s3p
Aaydq
t+xadr
xade
e
onris

Suas)
uien

1591

r|ds

bas
1'+868¢€s
LITSES
86¢S

(b) Geometric

(a) Arithmetic

Figure 4.38: Performance of VPR (route) with inlining on the Itanium

T
[~}

-0.2 1

®Q e 2
S © S <

TS UTL INST &)

-04

-0.6

Training Dataset

Training Dataset

Tuasy
HLT)

s

vyds

bas
1'+868¢ES
L1+8Es
86¢CS

0101x?
andiya
disp
baygip
sap
KaxBiy
txade
oxade
tne
anms

fuas)
uen
3
eids
bas
1'+BLBLS
LITBES
86C%
RE

apd
cxasnu
sy
dexa
o101xa
audia
disp
bajpp
sap
Kaydy
$xade
oxade
+nje
anes

(b) Geometric

(a) Arithmetic

Figure 4.39: Performance of VPR (route) with inlining on the Itanjum 2

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VPR on the Itanium is the only exception, where performance is improved by more than 4%. It is not
surprising that performance is nearly identical regardless of the training input used. The maximum
difference between logs for routing on both processors is 4, indicating that the optimization decisions
made during compilation are virtually identical regardless of the training input. The difference
scores are a bit larger for the placement component of VPR. However, the scores are still fairly
small, and there are no significant differences in performance between the binaries. The benefit of
FDO inlining for routing on the Itanium is likely due to a small number of callsites that are easily

identified as important using any training input.

4.2.3 Conclusions

The experimental results indicate that training on different inputs does lead to different decisions by
the compiler, and that there are often performance differences between binaries trained on different
inputs. Ideally, there would be a correlation between the alignment and/or difference metrics and
performance. Visually comparing the graphs for i f conversion from Section 4.1.1 with the tables
from Section 4.2.1, there is no obvious correlation. A similar situation exists for inlining. There
may be a slight correlation between alignment and performance for bzip2 on the Itanium, where
xml and docs have reduced alignment and reduced performance. However, the GAP snf900 and
the gzip docs inputs on the Itanium both have elevated alignment and difference scores compared
to the other inputs, but no apparent corresponding variation in performance. There are no visually
identifiable trends or anomalies in the Itanium 2 data.

In order to further examine a possible correlation between alignment and performance, we
graphed the alignment score of each training input against its performance on the workload for
each benchmark. These graphs do not suggest any correlation between alignment and performance.
For completeness, these graphs can be found in Appendix B.

A significant finding of this performance study is that while profile-guided inlining usually does
not reduce performance (the main exceptions being bzip2 and MCF on the Itanium 2), the same
cannot be said of profile-guided i f conversion. I £ conversion almost always reduces performance
on the Itanium (though bzip2 is improved about 4% and parser is improved about 1.5%), and re-
duces performance on the Itanium 2 for every training input for every program in our study. Further-
more, performance is reduced by more than 5% on average. An improved design of 1 £ conversion
in the ORC with respect to the way that profile information is used may correct the performance
degradation caused by this transformation. Similarly, there is also potential to improve inlining for

the Itanium 2.

4.3 Resubstitution

An important question when using FDO is whether or not the compiler makes good use of the profile

information. More precisely, does the accuracy of the profile impact the resulting performance of

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the optimizations? Resubstitution is the practice of using the same input for both the training and
evaluation runs. While running a program on identical input multiple times would seldom, if ever,
be done in practice (since the results of the computation would be known after the first run), resub-
stitution allows for the evaluation of how well the compiler uses so-called “perfect information.”
Since the profile contains only branch and callsite frequency counts, instead of full path frequency
counts, the information is not perfect. However, no other input could produce a profile that is more
accurate than resubstitution.

Ideally, a compiler that makes good use of profile information will produce the fastest binary for

a given input when resubstitution is used. If this is not the case, then:

e The collected profile may be insufficient to capture important program behaviors, or the in-
formation may not be sufficient to be representative of the actual program behavior in certain

situations.

e The compiler may not properly use profile information. Heuristics that use the profile in-
formation might not make correct decisions, or perhaps the machine model is insufficient or

inaccurate.

o Performance improvements may arise unexpectedly under another input due to complex in-

teractions between optimizations.

Whatever the reason, the use of FDO can be questioned if it does not consistently result in per-
formance improvements when provided with an ideally accurate profile. Resubstitution should not
be expected to produce the fastest binary in every instance. If this were the case, the optimization
would likely perform poorly in non-resubstitution cases. However, if resubstitution does not per-
form well, there is no reason to expect that providing the compiler more accurate information about
program behavior (i.e., via profiling) should result in improved program performance.

We present Aestimo’s resubstitution results in a similar manner to the performance results of
Section 4.2. Instead of calculating the speedup over static compilation, Aestimo calculates the per-
formance improvement between the fastest FDO binary for each input and the resubstitution case.
The training input that resulted in the fastest binary is indicated in parenthesis beside the resubsti-
tution training data below the graph. For example, in Figure 4.40(a) resubstitution on the xml input
with if conversion is about 3% slower than the fastest binary, which was trained on the program
input.

The execution performance results suggest that the ORC generally makes good use of profile
information. While resubstitution seldom results in the fastest average execution time, it is often the
fastest or nearly the fastest when the range of run times is considered. Resubstitution is less than
2% slower than the fastest FDO binary in 81% of cases. However, there are also several cases where
resubstitution is substantially slower than the fastest FDO binary. In one case, the performance

difference is over 17%.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 35
g7 g 3 I
g ¢ 2 s it
z 5 2 i
5 3 2 it
:'g . P & i ; §
: ! 15 “Ir IR
£ 2 1 P R il
5‘1[@ Ll & s ff] 3
g t c::u[fl CLOLL &8 9 qit U [:| i m
g0 *]Eb = +5P5 =) lle ey i =§=
oL [05 '

22 Input Dataset (Fastest Training Input) Input Dataset (Fastest Training Input)

7 3% 48 ET £ - ~ TF% 47 §7 20 ¥R PSS E3 P GE 52 82 §3 B3 ER
TEIRIEERAR IR EIRRER GG E: FERPRTRIE FR O K R gy a—-?si-é
HESSURRRRTLHERT p o T
3 g - 3 T = 3 2 3 <

(a) Ianium (b) ltanium 2
Figure 4.40: Resubstitution for i £ conversion on bzip2
1.8 14
3 1.6 1 F e h
2 14 ; ‘ . g 12 z i
E 12 i f ‘g ! i H
z 1 ! 2 084 i ! 1
2 0.8 T H] T H H
&= I3 :
0.6 1 1
E, 0.6 . . 1 g l
T 04 H + ' S 04
o 1 b
a2 %] I | E 02
E .02 it e o —— '
04 y ini 0.2
- Input Dataset (Fastest Training Input) Input Dataset (Fastest Training Input)
$2 §S £2 52 852 52 g2 T
i 3 § %3 33 33 353 =T T ET T 8T 8=
(a) Itanium (b) ltanium 2

Figure 4.41: Resubstitution for i £ conversionon crafty

4.3.1 If conversion

Figure 4.40 shows resubstitution results for bzip2. On the Itanium, the ORC usually uses profile
information effectively. In most cases, resubstitution is less than 2% slower than the fastest binary,
and with 10 of the 15 inputs resubstitution leads to the fastest binary when range of runtime is
considered. On the Itanium 2, the ORC makes good use of perfect information, and resubstitution
is less than 2% slower than the fastest binary for all inputs. Furthermore, resubstitution achieves the
fastest execution, when the range of run times is considered, for 5 of the 15 inputs.

With crafty resubstitution consistently results in nearly the same performance as the fastest
FDO binaries. On both architectures, resubstitution is slower than the fastest binary by about 1.2%
in the worst cases, as shown in Figure 4.41. Interestingly, training on the wac-251 input on the
Itanium, and training on the train input on the Itanium 2, always results in the fastest binary. This

suggests that these two inputs result in a particularly good profile for i £ conversion on their re-

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45 14 :
g N i & 121 ,
EREEE :
g t i £ 08 ‘
& 25] g i
& ; o | :
g 2 i _5 0.6 H
FHEREE R | £ 04 4 Dopi- i
g i] P
g 11’ . o3 0y, o {J .
=05 | I—i’ . 0.-1_::‘:[1']@_&_ A s L
o — : 02 L2
Input Dataset (Fastest Training Input) Input Datasct (Fastest Training Input)
5SS NS ST RE ST QS QE 8% 58 S8 - - a
SRR 2§ 9% 3% 8 5E 4% 2% 8% 13 T
T ETETE 5T 8= 8= 3 SETETETETETETET = 57
2 s 8 5 8 % &
@ ﬁ E
(a) ltanium (b) hanium 2
Figure 4.42: Resubstitution for i £ conversion on GAP
0.6 1.6
g ; s E 14
g 05 ! g
2 2 1.2 1
g 04 2
E 1 5 11
w wv
g 03 g os
g 02 ; haf & 98
-_;‘; 011, e ’D T8 g.z ‘:’ .
& ; i i - .. ; [
= 04:*:, ‘}‘E] E]D-?:%:m @ 0+ _...*_J-E]:J[:J[jfbmm_z.mda-u.
-0.1 0.2
Input Dataset (Fastest Training Input) Input Datasct (Fastest Training Input)
2339935328 PR LRI B9 55 ST EF 6E B8R BT 35089 53 LR PR EIEAYREF I EGR R TR
23333580 3 ?_ g;"'iu Qg’é -i‘_g d0E¥ pe 2z Y2 d) dg sr i e EY
F5 52 35 St]) 3 cat] 2 ps L8 32 32 3 =2
g:’.gééégé 5'3 -'s é 3. R .g £ ?Eéﬁa g
3 33 3 8 3 3
(a) Itanium {b) hanium 2

Figure 4.43: Resubstitution for i £ conversion on gzip

spective platforms, and manage to capture some aspect of program behavior that is not effectively
represented or exploited in the profiles based on other inputs.

Figure 4.42 presents the resubstitution result for the GAP benchmark. On the Itanium, resubsti-
tution usually produces a binary that is more than 2%, and as much as 3.5%, slower than the fastest
binary. Accurate information does not result in increased performance in these cases. However, ac-
curate information does result in competitive levels of performance for the same benchmark on the
Itanium 2. In this case, resubstitution is no more than 0.2% slower than the fastest binary for all but
two inputs. In another case where training on a single input consistently outperforms resubstitution,
the ref input results in the fastest binary for all inputs except test. However, since the differences
between resubstitution and training on ref are so small, this phenomenon could be coincidental. The
worst-case performance is for train, where resubstitution is less than 0.6% slower than ref.

Gz ip also demonstrates effective use of accurate profile information. As shown in Figure 4.43,

resubstitution is usually within 0.2% of the fastest binary. The worst-case resubstitution performance

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20 . 18 ;
g ; 5 16 1
215 CRETE
2 ‘ ‘ 2)
5 w0 i+ b o
n: H ' 1 ‘: 8 1
.i_;" sj + H :D;' -5'1 6 1 ‘% .
5 ; e . . g 41, 1 :
N I L]{IIDEJ _ [fi]rja[{] L2 L4 P . ;
" : N Kl PO | [s PP B
.5 -2

Input Dataset (Fastest Training Input) Input Dataset (Fastest Training Input)

ref
{1rain)
synth-0
train
(rc)
refl
(synth-9)
synth-}
(synth-T)
synth-1
(symh-7)
symth-3
(synth-7)
synth-4
ot

(synth-2)
synth-5
treD

(ynih-8)

synth-2

(a) ftanium (b) Itanium 2

Figure 4.44: Resubstitution for i £ conversion on MCF

occurs on the Itanium, where resubstitution on graphic is slightly more than 0.5% slower than using
the binary trained on source.

Figure 4.44 presents both effective and extremely ineffective use of accurate feedback informa-
tion with MCF. On the Itanium, there are 4 cases where resubstitution performs as well as the fastest
binary when the run time range is considered. However, MCF on the Itanium also results in the worst
resubstitution performance in our study. Resubstitution on the synth-1 input is more than 17%
slower than running the same input on the binary trained on synth-9. At the same time, synth-1
produces the fastest binary for synth-6, which is more than 10% faster than resubstitution. Inter-
estingly, synth-9 and train most frequently produce the fastest binaries, while synth-9 achieves the
best performance on the workload (refer back to Figure 4.15 in Section 4.2.1), but neither is close to
achieving the best performance under resubstitution. Unfortunately, greater understanding of these
inputs and their effect on program behavior is required to speculate on why these performance results
are observed. This issue is discussed in more detail in Section 6.1.

Resubstitution for MCF on the Itanium 2 fares better. Here, resubstitution is within 2% of the
fastest binaries in most cases, and within 3% in all cases expect for test. In fact, seven inputs result
in best performance when the range of run times are considered. However, resubstitution perfor-
mance on the test input is particularly poor, about 13% slower than the binary trained on synth-6.
In this particular case, it may be that the test input is not sufficient to generate a useful profile,
and that a profile from a longer running input captures additional information that can improve the
performance of even a short-running input. However, this explanation does not apply to the results
on the Itanium, Refer back to the run times reported in Table 3.3. The test input only runs for 0.21
seconds. However, all the other inputs run for at least 30 seconds, and for several minutes in most
cases. Therefore, the synth-1 input on the Itanium and the test input on the Itanium 2 are likely
candidates to discover a scenario where the i £ conversion heuristics fail to make the right decision.

Further analysis of this scenario could lead to a better understanding of i £ conversion, and a better

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 35
§ s 5§ 3
3 E]
£ 4 g 23
£ E-]
2 3 2
& 31 4
& Z 5
2 21 é 1 .
g g s i
2 3 v T 1)
S oo Jr ch o < e Cch L0 _Lm[i_’—..il("__ld::-a—[j:::_,_
-1 . -0.5
Input Dataset (Fastest Training Input) Input Dataset (Fastest Training Input)

C 87 Yo 4T BT 85 55 ET 45 4% 8% 95 4% 93 83 25 93 25 53 55 95
fEfEfEgE s &t 2 Ei el CEfRlEdEiE R tE TR T EE
2252 EZS 232 73 Z 3 33 2523222329 9 3 33T 55 2%
8 222 874 3 § 274 8h252583102 2 5 A% & 372
RN 283HN iz &4

(a) ltanium (b) Itanium 2

Figure 4.45: Resubstitution for 1 £ conversion on parser

if conversion heuristic.

The results for parser in Figure 4.45 show effective use of accurate information. On both
processors, resubstitution is within 0.5% of the fastest binary, and results in the best performance
in the majority of cases. On the Itanium, the key exceptions are for 02-05words and 11-15words,
where resubstitution is about 2% and 3% slower than the fastest binary, respectively. The only
exception on the Itanium 2 is 02-05words, where resubstitution is 3% slower than training on 11-
15words.

Figure 4.46 presents results for the placement task of VPR. Resubstitution performance is mixed
on the Itanium. Half of the inputs result in resubstitution performance less than 2% slower than the
fastest binary. However, among these, only three are as fast as the fastest binary. Also, resubstitution
is more than 4% slower than the fastest binary in 4 cases, and nearly 9% slower than the fastest
binary on the apex2 input. Also, it is curious that the best FDO performance on dsip is obtained
by training on ref, but conversely the best performance on ref is obtained by training on dsip. The
run-time range running on ref is large enough that resubstitution may be as fast as using the binary
trained on dsip. Therefore, it seems likely that the binary trained on ref is fastest on the dsip input,
and that the binaries trained on the two inputs achieve equivalent performance on the ref input. On
the Itanium 2, resubstitution universally leads to high levels of performance compared the fastest
FDO binaries, which are always less than 1.5% faster than resubstitution.

Resubstitution performs well for the routing task of VPR, as seen in Figure 4.47. Resubstitution
is never more than 1.5% slower than the fastest binary on the Itanium, and no more than 0.6% slower

than the fastest binary on the Itanium 2.

Rank Analysis

Despite the encouraging resubstitution performance results discussed above, it is possible that the

range of performance among FDO binaries is frequently small, and that this situation results in

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
i
1
t
H
4

_mDmHDﬂ

ﬁ-

2s11y)
IS

(L1$8€9)
uen

(asu3)
1531

; S
M"“ amwnwm)

. 5)
Mv_o Mwﬂwm
(L1£8€3)

1'+868€s
(s3p)
LIE8ES
(asuy)
86cS
(disp)
._u._

(1'+868¢S)
J)

ga)
£xasiu

(L1$8€S)
sy
(9suy)
dexa
(1'+868ES)
o1o1x?
(L1$8¢€S)
sudyd
1)

1sp
(1 s)
e
(asup)
sIap

g

Input Dataset (Fastest Training Input)

()
e

=

G
e

T
S o0 O <
—{

2
0 -
2

UONMINSQNSIY ULyl 1NST 94

(a) Itanium

uonMINSQNSaY e Jalsed 9

Input Dataset (Fastest Training Input)

(bayyip)
Suds
(3uasy)
ulen
(baypp)
1591
(Suas1)
vlds
Suasy)
25

(ondija)
1'+858¢S
(1°+858€5)
LIP8ES
(osuy)
8675

(1'+8¢8¢5)
ge
(bay1p)

J

(bagyip)
£XasI

(1'+868¢5)
sy
Mu_a___uv
X3
(onduyga)
olorx>
(bayip)
sndypd
M_U.E_E
isp

(, S
e
(ondid)
sap

(baygy
P
(1'$858€S)
pxade
Juas
mﬁx_nv

(17858€5)
e

(b) Itanjium 2

Figure 4.46: Resubstitution for i £ conversion on VPR (place)

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L L L
N N — 1 O n
(g\] — o 0_

uonMUSqNSaYy uey) 1Sty

Input Dataset (Fastest Training Input)

ord)

us)
(8675)
uren

(disp)
1831

Ao._c_xuv

vds

Muma&&
5

(gxasuu)
1'+868¢€S
(L1£8€S)
L1+8¢€S
Suasy)
8678
(uren)
It
(uma)
apd
(disp)
gxasnu

a9
osuy
]
$x2
(asuy)
010ix?
dis,
M._E““u
mu_we
15p
disp)
L1p
Ga)
sap
(pxade;
Nsm_..v
(asuy)
pxade
)
Boohe
(¢x>de)
e

(a) Itanium

uonmnsqnsay ueyl INsey 9

Input Dataset (Fastest Training Input)

ey

oudsy
(1'+858¢5)
ugen
(¢npe)

59

(asuy)
n_%.-

MWM&S

(£5y319)
1'#858¢S
(1sa1)
LI8ES
(uren)
86TS
(L1+8€5)
=

I
G
(asuy)
£xasnu
(gxastuw)
sy
(uten)
dgxa
(£ayS1g)
0101%3
dis|
M__.nm“u
ures)
Isp
ynye)
WP
(bs)
sap
(bagye
»uuum_mv
(disp)
pxade
(159,
Zxade
(Aox31q)
e

(b) ltanium 2

Figure 4.47: Resubstitution for 1 £ conversion on VPR (route)

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the small performance differences between resubstitution and the fastest FDO binaries. In order to
investigate this possibility, Aestimo also provides the rank of each binary according to performance
on each input. A rank of | indicates that a binary is the fastest on a particular input. Likewise, a
rank of 2 indicates that the binary achieved the second-best performance for the input.

Tables 4.40 through 4.47 list each input in the program workloads. For each input, and for each
processor, the rank of the i f conversion resubstitution binary for the input is listed, along with the
performance difference between the resubstitution binary and the rank-1 FDO binary. For instance,
the first row of Table 4.40 show that among the FDO binaries for bzip2 on the Itanium, the binary
trained on combined is the 8" fastest when evaluated using the combined input. Furthermore, the
binary trained on combined was 1.06% slower than the fastest FDO binary.

Except for MCF (see Table 4.44), the differences in performance between resubstitution and
the rank-1 binary are small, regardless of the rank of the resubstitution binary. With MCF, the
performance differences between the rank-1 binary and the resubstitution binary vary greatly, but
the performance differences are not correlated to the rank of the resubstitution binary. For example,
on the Itanium, the resubstitution binaries for the synth-2 and synth-3 inputs both have a rank
of 12, and result in performance about 2% slower than the rank-1 binaries. On the other hand,
resubstitution with either ref or synth-0 results in a rank of 5. However, resubstitution for ref is
6% slower than the rank-1 binary, while resubstitution for synth-0 is less than 0.5% slower than the
rank-1 binary.

The rank results are quite similar for all the benchmarks. While resubstitution achieves a low
rank on some inputs for every program, resubstitution achieves very high ranks with similar fre-
quency. For every benchmark, on both processors, there is an input where resubstitution gets a rank
of I or 2, but also an input where resubstitution gets the highest or second-highest possible rank.
Furthermore, resubstitution ranks are scattered across the possible range of ranks for each program.

Therefore, the rank analysis suggests that the frequently good performance of resubstitution
binaries compared to their peers is due to small performance differences among the FDO binaries,
and not due to the more accurate information provided by resubstitution allowing the compiler to
make better optimization decisions. In fact, the rank results show that many other FDO binaries are

often faster then the resubstitution binary.

4.3.2 Inlining

Inlining is an important optimization that yields large performance gains. Consequently, it has been
the focus of many studies. Therefore, the heuristics for inlining in a mature compiler should be
finely tuned, and resubstitution should perform well. While inlining resubstitution does, in general,
perform better than 1if conversion, there are several cases where inlining resubstitution results in
significantly reduced performance compared to the fastest FDO binaries.

Resubstitution on bzip2 performs fairly well. Figure 4.48 shows that resubstitution is as fast

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Itanium Itanium 2
Rank | Slower(%) || Rank | Slower(%)
combined 8 1.06 11 0.76
compressed 3 1.88 11 0.93
docs 7 1.35 3 0.24
gap 6 0.37 14 1.40
graphic 10 0.89 10 2.00
jpeg 3 0.59 S 0.43
log 3 0.47 9 0.74
mp3 8 0.39 2 0.25
mpeg 14 1.08 7 0.57
pdf 15 1.75 10 0.47
program 1 0.00 10 1.11
random 9 0.42 2 0.49
reuters 3 0.15 3 0.07
source 11 1.04 6 0.47
xml| 13 2.93 6 1.60

Table 4.40: Rank of resubstitution binaries for i £ conversion on bzip2

Input Itanium Itanium 2
Rank | Slower(%) || Rank | Slower(%)
ref 2 0.20 5 0.75
test 2 0.43 3 0.65
train 3 0.39 1 0.00
wac-001 6 1.25 6 0.87
wac-051 6 1.26 7 1.21
wac-151 5 0.84 3 0.0l
wac-251 | 0.00 2 0.06

Table 4.41: Rank of resubstitution binaries for i £ conversionon crafty

Input Itanium Itanium 2
Rank | Slower(%) || Rank | Slower(%)
ref 3 1.29 1 0.00
snf1025 6 2.89 2 0.05
snf1150 9 2.18 2 0.09
snf1260 3 251 9 0.12
snf200-300 8 3.50 1 0.00
snf525 6 1.92 2 0.41
snf750 7 2.45 4 0.10
snf900 7 2.33 2 0.06
test 1 0.00 | 0.00
train 9 0.76 10 0.58

Table 4.42: Rank of resubstitution binaries for i f conversion on GAP

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Itanium Itanium 2
Input Rank | Slower(%) || Rank | Slower(%)
combined 2 0.02 14 0.37
compressed 9 0.24 1 0.00
docs 1 0.00 1 0.00
gap 3 0.07 4 0.01
graphic 10 0.51 6 0.09
jpeg 6 0.06 3 0.07
log 10 0.07 13 0.05
mp3 3 0.02 15 0.11
mpeg 2 0.01 7 0.06
pdf 5 0.04 8 0.03
program 8 0.10 10 0.13
random 12 0.45 1 0.00
reuters 11 0.30 11 0.24
source 10 0.18 5 0.03
xml 15 0.14 1 0.00

Table 4.43: Rank of resubstitution binaries for i £ conversionon gzip

Input Itanium Itanium 2
Rank | Slower(%) || Rank | Slower(%)
ref 5 6.02 13 2.51
synth-0 5 0.46 5 0.61
synth-1 13 17.50 12 2.11
synth-2 12 1.99 10 0.57
synth-3 12 2.04 9 1.34
synth-4 5 4.47 10 1.62
synth-5 5 2.13 13 2.82
synth-6 12 9.90 10 1.47
synth-7 7 2.14 8 0.56
synth-8 4 1.08 4 0.39
synth-9 H 3.79 3 0.32
test 8 7.53 10 13.04
train 11 4.47 1 0.00

Table 4.44: Rank of resubstitution binaries for i £ conversion on MCF

Input Itanium Itanium 2
Rank | Slower(%) || Rank | Slower(%)
02-05words 8 2.11 4 3.03
06-10words 1 0.00 1 0.00
11-15words 12 3.07 7 0.30
16-20words 2 0.21 12 0.35
21-25words 2 0.05 5 0.04
alice 6 0.07 11 0.15
pa 7 0.12 4 0.16
ref 10 0.34 5 0.11
relativity 5 0.29 6 0.04
test 9 2.10 4 0.48
train 8 0.26 3 0.14
worlds 10 0.33 i 0.00

Table 4.45: Rank of resubstitution binaries for i £ conversion on parser

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Itanium Itanium 2
Rank | Slower(%) || Rank | Slower(%)
alu4 13 1.48 7 0.53
apex2 I8 8.79 6 0.27
apex4 13 1.27 5 0.48
bigkey 6 1.63 7 0.62
des 9 1.43 19 0.98
diffeq 17 343 4 0.24
dsip 11 215 || 21 0.83
elliptic 17 4.21 4 0.11
ex1010 3 1.51 9 0.87
ex5p 1L 1.29 20 1.31
frisc 12 1.51 5 0.36
misex3 12 1.38 7 0.70
pdc 19 392 18 1.19
ref 6 1.21 4 0.03
s298 21 3.85 10 0.20
s38417 8 2.22 17 0.99
$38584.1 8 3.15 2 0.02
seq 14 1.48 5 0.49
spla 22 5.50 3 0.10
test 5 1.09 5 0.92
train 16 2.17 17 0.78
tseng 19 4.56 5 0.19

Table 4.46: Rank of resubstitution binaries for i £ conversion on VPR (place)

Input Itanium Itanium 2
Rank | Slower(%) || Rank | Slower(%)
alu4 9 0.38 7 0.29
apex2 22 1.14 2 0.12
apex4 4 0.39 15 0.50
bigkey 8 0.32 5 0.11
des 20 1.01 10 0.11
diffeq 18 0.95 5 0.19
dsip | 0.00 9 0.33
elliptic 2 0.22 16 0.31
ex1010 7 0.24 11 0.27
ex5p 19 091 5 0.30
frisc 12 0.30 18 0.35
misex3 20 0.92 2 0.16
pdc 14 0.62 1 0.00
ref 21 1.37 7 0.25
298 19 0.86 2 0.22
s38417 1 0.00 2 0.06
s§38584.1 13 0.26 16 0.24
seq 20 0.85 6 0.12
spla 7 0.23 19 043
test 13 1.32 | 0.00
train 22 141 10 0.30
tseng I 0.66 15 0.38

Table 4.47: Rank of resubstitution binaries for i £ conversion on VPR (route)

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 9
=3 } s 8
e H 2
5 ¢ . 5 ER
% | Z 6 - |
.; 4 § 5 H L
4] N u !
& 2 i & 41 . 3
200 [[l] 1 m [y U = b -
T oo+ s} e L, H
g g 2- i, 3
3 g !
2. Y
& & 9 -+ b EI _}_
-4 -1
Input Dataset (ﬁslesl Training Input) Input Dataset (Fastest Training Input)
535 932 53 ¢2 13 73 2 =2 aa o weme B R B RE WD
MEATERELELT DSy T E SR S e
§EE ‘é ‘E FEE BgEzaz f £
3 3333373 G-
(a) Itanium (b) Itanium 2
Figure 4.48: Resubstitution for inlining on bzip?2
6 6
£ s 1 g s
] 1 T } 3
£ 4 1 1 i 2 g4 }
E i El 3
K 3 4 ﬁ R] ;
Ea R
S 1 4 D 1
3 @
& i 4
= 0 =
® ! = 0
-1
at ini -1
Input Dataset (Fastest Training Input) Input Dataset (Fastest Training Input)
PSS 52 E2 3T 3= A= a-= e om e A P e Y
g %3 53 88 88 28 98 EZ 5% §E 35 5% 585 58
$ 0§ %L g% 84 #35 §3 § "E 55 9§85 g5 3k Y&
E & & i i P:Z % i 57 5 %
(a) ltanium (b) Htanium 2

Figure 4.49: Resubstitution for inlining on crafty

as the fastest binary for 8 of the 13 inputs on the Itanium. However, there are also 3 inputs where
other training inputs result in performance gains of more than 4% over resubstitution. Results are
similar for the Itanium 2. However, in this case, training on the program input is nearly 8% faster
than resubstitution for the mp3 and jpeg inputs. The binary trained on program is also more than
3% faster than resubstitution on pdf. The fact that program is a SPEC reference input raises the
possibility that inlining heuristics in the ORC may be over-fit to these inputs. However, there is no
supporting evidence for this hypothesis in the ltanium case. Section 4.3.3 will revisit this issue.
Unlike the if-conversion case, resubstitution performs poorly with inlining for crafty. In
Figure 4.49 resubstitution is slower than the fastest binary, by over 3% in most cases, for both
architectures. As in the i f-conversion case, there is a single fastest binary on each architecture. On
the Itanium, wac-001 is always the fastest (wac-251 was fastest for if conversion), while train
is again the fastest in all cases on the Itanium 2. As expected, these two inputs achieve the best

performance on the workload.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 7
8 61 i £ 61]
2 s 2 s |
£ 4 5 4]
g 3 € 37
PO - H
Z] o £] ; !
3 - 1 o
000 3 |
; 0 4 _}_ —}—. L ; 0 4 e g o = [ﬁ enrdeany ——t
-1 -1
Input Dataset (Fastest Training Input) Input Dataset (Fastest Training [nput)
—m N A A DS NS O O B g SE 0R OF8 Q5 95 98 OF QG S £2
SEIREEEEEEECE ;o8 S%5%5%38: 55 °8 -
(a) Itanium (b) Itanium 2
Figure 4.50: Resubstitution for inlining on GAP
3 T 1.6
8 ’ & 14
E . 2 12
2 2 }
2 i 3 3 1
i I 8 i
r-'f] 2 o8 :
] i it i
= . H £ o061, i I
g | U 04 1|
: UUUSUUUOUU L & o |
= - T s 0] H -
05 o L S e e I 10| N e TP 0 I
Input Dataset (Fastest Training Input) Input Dataset (Fastest Training Input)
339303 SIS PR ESREUREI AT E E’gA?A 2EFEEER AT LR YISl VIR N EE ED B ER
3 =g = = E E’% K 3 = Fo 3% 58 8 g—" B2 g2 £2 0 é ol
I RRLARLERLILLE HEENEREEL L
g 3 3 > 3 38 T
(a) Hanium (b) Nanium 2

Figure 4.51: Resubstitution for inlining on gzip

Figure 4.50 show resubstitution results for GAP. On the Itanium, resubstitution only achieves
the fastest performance in two cases, though resubstitution is usually less than 2% slower than the
fastest binary. The test input is anomalous, where training on snf525 is more than 5% faster than
resubstitution. Performance on the Itanium 2 is generally better, with resubstitution usually as fast
or nearly as fast as the fastest binary. However, training on the train input outperforms resubstitution
on ref by more than 3%, and nearly 5% on test.

Resubstitution performs fairly well for gzip. In Figure 4.51(a), resubstitution is never more
than 2.5% slower than the fastest binary. Resubstitution is always within 0.6% of the fastest binary
on the Itanium 2. Note that on the Itanium, all the fastest binaries were trained on SPEC inputs.

Figure 4.52 show that MCF is problematic for inlining resubstitution. While 6 of 13 inputs
produce resubstitution binaries as fast as those trained on other inputs, resubstitution is more than
5% slower than the fastest binaries in 5 cases. In particular, the binary trained on the train input

is nearly 12% faster than resubstitution on the synth-1 input. Results are better on the Itanium 2,

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% Faster than Resubstitution
>

% Faster than Resubstitution
E=N

_+@¢$mu ?ﬂm¢;®;¢@@é¢ﬂi

Input Dataset (Fustest Training Input) Input Dataset (Fastest Training Input)

NS 4

ref

(synth-1)
test

et
Gynth-0)

(synth-t)

synth-6
(el
synth-9
(synh-S)
train
Gynili-1)

synth<)
(synth-8)

(a) Itanium (b) Itanium 2

Figure 4.52: Resubstitution for inlining on MCF

3 7
5 2 £ o -
5 241 } 3 5 L
2 154 i -8
R et A 1 L 3 4
€ g5 :] P € 3
.3 H : 1 i 7 1 r
s Ul ddbam@DLO] 5 2
o P : L5
ER I [. -
- = o S S e R Y. DU = |
-1.5
.2 -1
Input Dataset (Fastest Training Input) Input Dataset (Fastest Training Input)
P
s A B G O T b e o G s A B B B d e b S m g
B $5 8989 8285 838y 29 gR 5287 2 8382 95 L2 89 ¥E 29 §3 55 8¢
S8 B2 2SR a8 g rEEE BaEEEE gg TETETETESE L E Y EEEEE
232343382488 2 £ “E2 532 323242324 5 Z 3z 2z 23°
S SQg=-9qds 2 3 2 T 2 Q2 T T A A g2 200
S &= |8 2 T8 Sg8z=c=2" =z £ =
(a) ltanium (b) Itanium 2

Figure 4.53: Resubstitution for inlining on parser

where resubstitution is fastest for 7 inputs. Test is the only input where resubstitution is more than
2% slower than the fastest binary, at nearly 5% slower than binary trained on synth-0.

Accurate profile information is used effectively for inlining with parser. Figure 4.53 shows
that on the Itanium, 9 of the 12 inputs result in best performance using resubstitution. In the worst
case, resubstitution is slightly more than 1% slower than the fastest binary. Results are almost as
good on the Itanium 2. Here, resubstitution is within 0.5% of the fastest binary for 10 of the 12
inputs. However, performance degrades for the inputs containing the shortest sentences. Resub-
stitution is more than 3% slower for 02-05words, and almost 2% slower for 06-10words. In-
terestingly, in both these cases the fastest training input was the input containing the next-shortest
sentences. Since the run times for these inputs is very small (see Table 3.5), it might be the case
that the profile generated by those inputs does not contain sufficient information to achieve the best
performance. The slightly larger inputs probably have fairly similar program behavior (since they

have only slightly longer sentences), but gather more information in their profiles, which atlow the

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. 14
8 12 H L
E; !
10 - ; -
= _ H -
2 8 i H
o 6 i H : L
g ; 1
- - |
s 4 1 - E Hi
2 2 -1 1 - 9 1 |
8 (] e O e mmlﬂ ch [
[0 + 3-ch s 54— =3 - [= = e
@ 2 4 4 _:
Input Dataset (Fastest Training Input)
PRI S T A g A U O O AN AN QN N e N e e T3 M e ep
1292 %o bw dw g4 25 27 25 §4 42 2T L2 a7 =2 43 88 68 82 5T =2
SR EE Sy EEi 98 S3o TR ER R R "E g gE g2 P vE MY 5]
L Sz 52 E27°% 35 & “EF E § @ Up = g 2 3B
2 m > s 2 G -~ ‘4 ~
(a) ltanium

g 3 3
;
§ 2'5 —E T T i
= : - : 1
3 2 i . : : ot
17 ' H |
é 1.5 "E i E E_
= 1 H 4. 4 ': H
(] a] - [
5 : ik . 3 P 5 ‘
1
R B A i [R S P X
1 4
£ 0 ::]:C!:l ch = +|:t] PN N P B
.05
Input Dataset (Fastest Training Input)
A NS I AR e TS SO NGO A T NS LRSS R D =S TS B2 By B wy
IS HS 3o T 8T TS 2R €525 85 S RE YR EE RS SE 4 g8 27 §F 55 BT
REEE RSB Sf el Pt ci e CE R IS aE A T S P Eg iE
§° 27y T8 g ET T 8YTEE E 2 7 B %
2
(b) Itanium 2

Figure 4.54: Resubstitution for inlining on VER (place)

compiler to make better decisions. This hypothesis warrants further investigation.

Resubstitution results are mixed for the placement task of VPR. Figure 4.54 shows that for 13
cases on the [tanium, resubstitution performs as well as the fastest FDO binary. Nonetheless, it is
over 4% slower than the fastest binary for the elliptic input. Results are better on the Itanium 2.
While only 8 inputs achieve the best performance using resubstitution, resubstitution is always
within 2% of the fastest binary. Resubstitution is also effective for the routing task, particularly
on the Itanium 2. On the Itanium, 8 of the 22 inputs resulted in best performance using resubstitu-
tion. On the remaining inputs, resubstitution was within 2% of the fastest binary for all but 4 inputs,
and these exceeded 2% only slightly. On the Itanium 2, resubstitution obtained the best performance

in 14 cases, and was always within 0.5% of the fastest binary.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NON NN —INO N~

32100

uonMINSqNSaY ueyl JAIsed 9

Input Dataset (Fastest Training Input)

(gxade)
w.m:uc

(1'+8¢8¢S)
uien

(0101%3)
pinl]

:.._ +8€5)
rids
wvu&

25
(Suasy)
1'+868¢S
(8675)
L1$8€S
(dgxs)
86T
(1sa1)
=

159)
el
(8625)
gxasiu
(baygip)
sy
M_n_%v

[$'c)
(gxodr)
0101%2

a1
S

(1s21)
disp
(b3s)
baytp

0101%2)
sap

(3o1)
Laxdiq
(3s113)
txade
(86¢S)
Txade
(gxade)
nje

(a) Itanium

uonMNSqNSay ueys 191se, %

Input Dataset (Fastest Training Input)

(zxade)
3u25)

(gxade)
umen
(tnpe)
151

(ond1a;
vrds 119)

WWM&E
(opd)
1'+858¢s
(dgx2)
LIt8ES
(en[e)
86T
($xade)
Ju

251,

M o 1)
(Fnie)
£xas1u

(L1£8€S)
B
(0101%3)
X3
(tnre)
0101x3
(ds|
u:._mwu
(£3%91q)
.__m_u 9
(86¢S)
~UM.M.w_r__.
(Kay3i1q)
sap
(8678)
&ia
(txade)
fxade
(ast1y)
xade

(sa1)
$nje

(b) ltanium 2

Figure 4.55: Resubstitution for inlining on VPR (route)

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Itanium Itanium 2
Input Rank | Slower(%) || Rank | Slower(%)
combined I 0.00 14 6.44
compressed 10 3.40 12 4.87
docs 8 2.12 1 0.00
gap 4 0.53 1 0.00
graphic 9 2.73 6 1.81
jpeg 7 3.63 9 1.63
log 11 3.54 5 1.05
mp3 12 5.28 10 2.64
mpeg 3 2.04 10 3.15
pdf 2 1.40 8 2.14
program 5 0.59 4 1.59
random 8 3.32 13 7.23
reuters 11 4.80 5 0.82
source 8 3.01 4 0.81
xml 12 3.30 1 0.00

Table 4.48: Rank of resubstitution binaries for inlining on bzip2

Input Itanium Itanium 2
Rank | Slower(%) {| Rank | Slower(%)
ref 5 4.32 6 5.02
test 3 3.65 5 481
train 6 3.84 1 0.00
wac-001 | 0.00 2 2.60
wac-051 3 4.069 4 4.12
wac-151 2 1.80 2 3.39
wac-251 7 4.38 7 5.58

Table 4.49: Rank of resubstitution binaries for inlining on crafty

Rank Analysis

The Tables 4.48 through 4.55 provide the rank of each resubstitution binary for inlining. These
results are similar to those presented for if conversion in Section 4.3.1. Once again, the ranks of
resubstitution binaries are scattered across the possible range of ranks. Resubstitution achieves both
high and low ranks for inputs for every program.

However, the performance differences between resubstitution and the rank-1 binary are signifi-
cantly larger for inlining than for if conversion. While there is no clear correlation between rank
and performance overall, a lower rank is usually associated with a smaller performance difference
compared to the rank-1 binary for both bzip2 (Table 4.48) and crafty(Table 4.49). For these
programs, cases where resubstitution achieves good performance compared to the rank-1 binary are
more likely to correspond to situations where better feedback information results in better inlining
decision. However, the small number of low-rank resubstitution binaries suggests that the FDO

system seldom makes effective use of more accurate feedback information.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Itanium Itanium 2
Rank | Slower(%) || Rank | Slower(%)
ref 8 1.31 3 3.43
snf1025 4 1.04 | 0.00
snf1150 5 1.44 I 0.00
snf1260 6 1.45 3 0.07
snf200-300 3 1.64 7 1.45
snf525 | 0.00 4 0.21
snf750 | 0.00 6 0.43
snf900 8 2.04 2 0.08
test 9 5.46 10 5.00
train 8 1.66 I 0.00

Table 4.50: Rank of resubstitution binaries for inlining on GAP

Input Itanium Itanium 2
Rank | Slower(%) || Rank | Slower(%)
combined 2 0.30 10 0.23
compressed 5 1.78 | 0.00
docs 2 0.03 4 0.03
gap 9 0.74 4 0.08
graphic 5 1.87 5 0.03
peg 6 2.32 I 0.31
og 2 0.12 6 0.11
mp3 9 2.45 14 0.56
mpeg 3 1.27 12 0.39
pdf 4 1.03 3 0.03
program 4 0.59 7 0.07
random 5 1.40 1 0.00
reuters 4 0.89 9 0.09
source 1 0.00 1 0.00
xml 7 0.59 4 0.07

Table 4.51: Rank of resubstitution binaries for inlining ongzip

Input Itanium Itanium 2
Rank | Slower(%) || Rank | Slower(%)
ref 5 1.21 13 1.95
synth-0 2 4.14 7 0.62
synth-1 5 11.92 3 0.37
synth-2 3 0.10 1 0.00
synth-3 8 1.00 7 0.75
synth-4 5 0.68 1 0.00
synth-5 7 1.15 5 0.61
synth-6 4 1.65 10 1.79
synth-7 7 2.29 12 1.40
synth-8 8 6.03 10 1.05
synth-9 3 8.59 4 0.32
test 11 9.88 3 4.76
train 1 0.00 13 1.61

Table 4.52: Rank of resubstitution binaries for inlining on MCF

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Itanium Itanium 2
Rank | Slower(%) || Rank | Slower(%)
02-05words 3 1.08 10 3.13
06-10words 4 0.26 8 1.69
11-15words 8 0.60 i 0.00
16-20words 2 0.11 2 0.19
21-25words 6 0.21 8 043
alice 8 0.13 7 0.21
pa 2 0.09 3 0.26
ref 10 0.25 7 0.36
relativity 12 0.57 2 0.06
test 10 1.16 | 0.00
train 3 0.09 1 0.00
worlds 12 0.56 7 0.22

Table 4.53: Rank of resubstitution binaries for inlining on parser

Input Itanium Itanium 2
Rank | Slower(%) || Rank | Slower(%)
alud 4 0.10 19 1.09
apex2 9 2.01 3 0.09
apex4 2 0.06 6 0.16
bigkey 6 041 16 0.95
des 9 0.74 6 0.11
diffeq 7 0.19] 22 1.51
dsip 15 0.82 12 0.43
elliptic 22 4.68 11 0.42
ex1010 11 1.49 3 0.05
ex5p 1 0.00 22 1.76
frisc 19 1.18 22 0.64
misex3 8 0.28 22 1.74
pdc 19 291 2 0.03
ref 10 3.00 15 0.28
s298 22 1.45 16 0.62
38417 12 1.95 18 0.31
s§38584.1 20 5.03 6 0.05
seq 3 0.04 20 1.52
spla 10 0.58 5 0.03
test 11 0.38 1 0.00
train 4 0.08 6 0.30
tseng 22 1.75 13 0.60

Table 4.54: Rank of resubstitution binaries for inlining on VPR (place)

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Itanium Itanium 2
Rank | Slower(%) || Rank | Slower(%)
alu4 2 0.40 2 0.16
apex2 15 2.26 2 0.13
apex4 15 2.12 1 0.00
bigkey 15 1.73 3 0.12
des 11 0.98 6 0.12
diffeq 9 1.19 8 0.42
dsip 18 241 1 0.00
elliptic 21 1.56 21 0.33
ex1010 10 0.54 6 0.04
ex5p 12 1.16 4 0.33
frisc 13 1.16 2 0.04
misex3 20 1.53 9 0.17
pdc 18 1.22 16 0.44
ref 20 1.91 7 0.28
5298 20 2.16 1 0.00
s38417 11 1.37 19 0.25
§38584.1 3 0.23 21 0.36
seq 1 0.00 4 0.27
spla 11 0.47 19 0.39
test | 0.00 1 0.00
train 6 0.35 10 0.22
tseng 15 0.63 1 0.00

Table 4.55: Rank of resubstitution binaries for inlining on VPR (route)

4.3.3 SPEC Inputs

The SPEC CINT2000 benchmarks are the most frequently used programs and inputs for the eval-
uation of compiler optimizations. Therefore, we were curious if the consistent use of the SPEC-
provided inputs may have unintentionally biased the ORC’s heuristics toward the profiles produced
by these inputs. Stated differently, have the compiler’s heuristics been over-fit to the SPEC inputs,
to the detriment of other inputs? Since most compiler designers use at least a significant portion of
the suite to evaluate their work, optimizations and heuristics should be generally applicable, and not
tailored to any particular program. However, it is possible that the SPEC inputs do not present the
full spectrum of possibilities that exist in alternate inputs, and that heuristics may not deal with these
unencountered situations properly.

Table 4.56 presents a summary of information from the graphs in Section 4.3. For each bench-
mark, we list the number of inputs in the workload, the number of those inputs provided by SPEC,
and the number of cases where training on a SPEC input resulted in the fastest binary for a single
input. 1deally, resubstitution would always produce the fastest binary, though this is often not the
case. If it were the case, it would be reasonable to expect that the proportion of times that SPEC
inputs produce the fastest FDO binary would be equal to the proportion of SPEC inputs in the work-

load, assuming that the selected inputs are spread across the spectrum of possible inputs for each

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Benchmark Inputs Itanium Itanium?2
Total | SPEC || If-Conversion | Inlining || If-Conversion | Inlining
bzip2 15 7 7 13 7 5
crafty 7 3 0 0 7 7
GAP 10 3 8 1 10 3
azip 5 7 3 15 10 g
MCF 13 3 4 7 3 1
parser 12 3 5 0 1 3
VPR (Place) 22 3 2 1 0 3
VPR (Route) 22 3 5 5 5 |
3 38 42 43 31
Total L6 1 2gq, 33% 36% 37% 27%

Table 4.56: Number of cases where training on SPEC-provided inputs results in best FDO perfor-
mance

program. Unfortunately, we do not yet have a methodology to adequately characterize inputs, nor
to describe the space from which benchmark inputs are selected. However, the selected inputs were
chosen with care, with the intent to create a workload as varied as possible while still using realistic
inputs for each program.

The potential limitations of the inputs notwithstanding, the results in Table 4.56 show that the
experimental results are not too far from the idealized expectation. SPEC inputs account tor 28% of
the entire workload, while binaries trained on SPEC inputs accounted for the fastest times on 31%
of the inputs. Furthermore, the results in Section 4.4 show that performance on the SPEC inputs is
frequently poor compared to other inputs in the workload. Therefore, while the selected inputs are
not guaranteed to span the space of possible inputs or follow any particular distribution in that space,
there does not appear to be any reason to be concerned about the ORC'’s heuristics being over-fit to
the SPEC inputs.

4.3.4 Conclusions

Overall, resubstitution with the ORC leads to high levels of performance compared to other FDO
cases. However, rank analysis shows that resubstitution does not consistently result in faster-than-
average FDO binaries. Therefore, the more accurate profile information provided by resubstitution
is not used effectively to make better optimization decisions. This result is in agreement with the
conclusion in Section 4.2 which stated that profile-guided inlining, and particularly 1 £ conversion,
require more attention to become effective optimizations, since compiling without profile informa-
tion often results in substantially better performance than even the best FDO binaries. Additionalily,
an overview of the experimental results suggests that there is little evidence that compiler heuristics

are unintentionally tailored toward the profiles generated by the SPEC inputs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14 2 U
12 ! 0
9 —‘- g
§, 10 1 i a 2
© g -4
3 £
5 £ 61 -
® ; i o= i
’Vrl ' ' - | | '
. : ! .o i H
I’rlr*lr?"lr*lmmrzﬂ,zﬁmm 12
Input Dataset (Fastest Training Input) Input Dataset (Fastest Training Input)
FI° 0 & 27 ¥ = NS BT ET ED ES KD EYBUE By a2 gza_‘;‘%"‘i $5 5E 5"- £2 E? "'E 3
Rt N o R TR TR TR IR e L R
T RRELE) 1L LS | S R R L L
g E-2— 3 > 3 pd '.=‘ 2
(a) ltanium (b) Itanium 2

Figure 4.56: Static vs. FDO performance for i £ conversion on bzip2

4.4 Feedback-Directed Optimization

Feedback-Directed Optimization is intended to improve program performance above that obtainable
by static optimization by providing compiler heuristics with accurate information about dynamic
program behavior. Therefore, an eftective FDO system should be able to meet or exceed the perfor-
mance of static optimization for the majority of programs and inputs. In this section the performance
of statically optimized binaries is compared to the performance of the fastest FDO binaries for each
input of every program in the study. These measures represent the best case performance of FDO
recorded by Aestimo, and as such represent an upper bound on FDO performance given the inputs

selected for each program.

4.4.1 If conversion

Section 4.2.1 showed that profile-guided i f conversion seldom improves workload performance on
the Itanium, and always reduced workload performance on the Itanium 2. Similar results are ob-
tained when best-case FDO performance is compared to the performance of the statically optimized
binary.

Figure 4.56 shows large differences in best-case FDO i£f-conversion performance for both the
Itanium and the Itanium 2. On the Itanium, performance is often improved by less than 2% over
static optimization. These cases may indicate inputs where the additional information provided by
the profile is not required to make good if conversion decisions. However, there are three inputs
where FDO i £ conversion increases performance by more than 4%, with performance nearly 12%
faster than static on the docs input. This impressive gain highlights the potential of FDO. On the
other hand, FDO results in performance reductions on the Itanium 2 as large as 10%. FDO only
results in a performance gain on the docs input, and the gain is only 2% over static.

In Figure 4.57 best-case FDO performance approaches the performance of static optimization

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 0
-0.2 4 I 1 - 1
g 04 i . ! ; .)
= H H = 9
8 06 1 =] -
g -08; i g3
g BRI : 5 4 ’) 3
a2 3
254
Sy 5 5
-1.6 1 -6 1
-1.8 — : a2 t
Input Dataset (Fastest Training Input) Input Dataset (Fastest Training Input)
om m~ Em~ oA o m A
[T 8 = - = e = n = o= n o= tee -~ S A e AN e A e A e A
g =8 & 2 28 =84 94 85 35 & E QE G E £
509 "% 8% P oBY &Y s %8 f5 §8 38 38 Q¢
i E 3 %3 %Pz %z % $T 87 &7 3
(a) lanium (b) Itanium 2
Figure 4.57: Static vs. FDO performance for 1 £ conversionon crafty
2.5 3
2 4
g 211 2 1] m
fx] =
v . v 4 ——
R i ro 5 ° O~ T opso
< | | 5 1
¥ 05 | s 3
3 ! -4
0 Topm Dataset (Fastcst Traiming | -
nput Dataset (Fastest Trtining Input) Input Dataset (Fastest Training Input)
t7 A% RS [E 8% A7 RE [E 8 €8 < o
"E0EZfIFTELEEEIE R BB °% 0 3% §€ 58 §% 2€ 58 9§ £¢
BT g g8 5T BT 5= B g ETETET g ET 8T % s ==
8 BT ET 8 £ g =~ ~ E & §
S = MG » g
g g
(a) ltanium (b) Itanium 2

Figure 4.58: Static vs. FDO performance for 1 £ conversion on GAP

on the Itanium, but is significantly slower than static optimization on the Itanium 2. Since the fastest
FDO binary is always the same on each processor, the graph also shows that testing performance on
different inputs can lead to different conclusions. If FDO performance on the Itanium 2 is evaluated
by training on the SPEC train input and evaluated using the SPEC ref input, performance is only
reduced by 2%, which may be acceptable if the optimization is more successful for most other
programs. However, if the same FDO binary is evaluated using the wac-051 input, a performance
reduction of more than 6% is observed. It is much less likely that such a large performance penalty
would be acceptable to a compiler designer. Furthermore, recall that training on train resulted in the
best performance on wac-051. Training on other inputs results in even larger performance penalties.

In the best case, FDO if conversion results in performance similar to static optimization for
GAP. However, Figure 4.58(b) shows that even the fastest FDO binary for the ref inputs results in
nearly a 5% performance degradation, while best-case FDO degrades performance on the train input

by over 2.5%.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.2 0 — U
NI . 1, ULJ L LI [HLL
2 0] 0] Ll 2
2 021 g 4
-5 04 L -."E‘. -6 1
] z
£ 06 3 g
-08 : s -10] W
1 == 12
Input Datasct (Fastest Training Input) Input Dataset (Fustest Training Input)
RS és-“'”” "ii: ‘Eiﬁigi'ﬁ BriElIaiiREEYIEE in%‘ﬁ PEgER
& = = £5 ¢ £z &Z <S¢ S JS %S
I AL L 108 b SRR L
3 s 558 3 H =
(a) Itanium (b) ltanium 2
Figure 4.59: Static vs. FDO performance for i f conversionon gzip
4 0
12 4 i 2 H
e 1 } g ;
5 8 T2 0 R
7] 6 } o t : .
e Y ¢ s -8 i
2 : ‘ é D | g ” E 2 :
5 27 i o g :) I
2 21 | th(o Menenl] & o ,
SR £]
w® T i ! ®
-4 16 !
64! .18 i
-8 - -20
Input Dataset (Fastest Training Input)
EE 3T IT 82525993558 15 2 2% 2%
() Itanium (b) Itanium 2

Figure 4.60: Static vs. FDO performance for 1 £ conversion on MCF

FDO 1if conversion also negatively impacts performance for gzip. While performance on the
Itanium nearly matches the performance of static optimization, even the best-case FDO binaries
result in large reduction in performance on the ftanium 2. FDO reduces performance by at least 6%
on 8 of the 15 inputs, and by over 10% on 4 inputs. However, performance is within 2% of static
on 6 other inputs. Interestingly, the same training inputs created the fastest binaries for inputs where
FDO had both large and small performance reductions, strengthening the hypothesis that the choice
of inputs used for evaluation is important.

For MCF, FDO generally results in performance gains on the Itanium. Figure 4.60 shows per-
formance improvements exceeding 8%. On the ltanium 2, the fastest FDO binaries are at least 5%
slower than the static binary in all but one case, and almost 12% slower in the worst case. Recall
that all the FDO binaries for MCF have very similar workload performance, and were produced by
nearly identical optimization logs. It is therefore likely that the performance of the FDO binaries

does not vary significantly on a given input. Consequently, the observed performance of FDO if

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—

% Faster than Static

+ Faster than Static
— o -
A
-
=
K,
-+

L -4

Input Dataset (Fastest Training Input) Input Dataset (Fastest Training Input)

he e NE Am A NE 80 SR BT B BT 95 9% 9T 9 43 4T BE 3% ST 2T BE 57 4T
EERCR R R CR U R T ERch o ot R RO
SSsESScBSERE 5 s5E2°555%8 26 26253582575 & S&ES ¢ =g SF
E &2 3 A& 2 oz oz 3 3 2 2z 22 &3 523228 2 2z 232 z 3 28
2 522 83 82 8 g 22 8225228592 2 53 a4 2 3 2
2 2= 25 4 g 9 OSBRI S 8A 2 A a4 = g

g g 8 = s = = =978 3 g = g g

(a) Itanium (b) tanium 2

Figure 4.61: Static vs. FDO performance for i £ conversion on parser

conversion for MCF on the Itanium 2 could vary by more than 10% depending on which input is
used for evaluation.

Best-case FDO i f conversion barely outperforms static optimization for all inputs to parser
on the Itanium, while FDO i f conversion always reduces performance on the Itanium 2. Even with
the fastest FDO binaries, performance is degraded by more than 12% on the 06-10words input, and
by at least 7% on all but 4 inputs.

According to Figures 4.62 and 4.63, best-case FDO if conversion is able to match the perfor-
mance of static optimization on the Itanium, and is usually within 2.5% for the placement task on
the Itanium 2. However, routing on the Itanium 2 shows the typical failure of FDO i £ conversion to
approach the performance of static optimization. Performance of the fastest FDO binary is between
4% and 12% slower than static on every input in the workload.

Results for FDO if conversion on the Itanium are generally unimpressive. Performance im-
provements are mostly small, but the occasional performance reductions are also fairly insubstan-
tial. Nonetheless, there are a few cases, such as for bzip2 and MCF, where FDO 1if conversion
displays its potential to have a significant positive impact on program performance. Selecting the
fastest FDO binary for each input is optimistic, but could help compensate for the deficiencies in the
FDO system suggested by Section 4.3.

Based on the results in this section, feedback-directed i £ conversion, as implemented in the
ORC 2.1 compiler, does not correctly use profile information to improve performance on the Ita-

nium 2. Even when the fastest FDO binary for each input is used, performance is reduced compared
to static optimization in 111 out of 116 cases. Furthermore, there is an input for each program where
FDO i £ conversion reduced performance by at least 5%, while reductions in performance in excess
of 10% are not uncommon.

We suspect that the i f conversion heuristics, originally designed for the Itanium, were not mod-

ified to deal with the architectural differences of the Itanium 2. Considering that if conversion

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Datasct (Fastest Training Input)

E d:mljm[blmm

asuy)
1351

(L1£8€S)
uien

(asuy)
159

(1'+858£S)
vids

(1 s)
_ux.wmmm

(L1t8¢€S)
I'+858¢s
(sap)
LIL8ES
(3s11y)
86¢S
(disp)

Jai
(1°¢858€S)
%Mw 8
a1
gxastu
(L1+8¢€)
xy
(asuy)
dgxa
(1'+858€S)
0101x3

(L158¢€5)
2ndye

33)

1sp
(1"+858€S)
bajjip

(asuy)
sap

(s)
A
(s)
Fiode:
(osuy)
Zxade

(Jan
e

S—

SURIS UeL) INIST] %

(a) ltanium

JNeIS ULy 1915e4 %)

Input Dataset (Fastest Training Input)

(baytp)
Suss)
(Suas)
uren
(bayp)
1591
(Suasy)
vids

Suasy)
bas
(ondiy2)
1'+868€s
(1°+858€S)
LI+8€S
(as1y)
86¢S
(1"t+8S8ES)
Fel

(bagyip)
)

(bagsp)
£xasiw

(1'+868¢5)
sy
Mea___uv

9 &)
(ondyp2)
0101X3
Gﬂh_s
ondgs
(bagzp)
disp
L1$8€S)
P
(ondu2)
sap
{bayn,
iy
{{zgeee
Juasy
mn&nv

(1'+8$8€S)
e

(b) ltanium 2

Static vs. FDO performance for 1 f conversion on VPR (place)

Figure 4.62

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OO N —00O T NO
Y et et e OO0

2NTIS ULy 1AL %,

Input Dataset (Fastest Training Input)

(o)

ouds)
(8625)
uen
(disp)
153)

(0101%2)
vids
(86T,
fheee)
(gxasiu)
1"£868¢S
(L1£8€5)
L1t8€s
Suasy)
86¢CS
{uren)
FEY]

upen,
Gl
(disp)
£xasiu
@an

sy
i
cx2
(as1yy)
ol01xa
(dis)
u_anwu
.@ﬁ
isp
(disp)
bajyip
(a2)
sap
(pxadr)
3y319
(suy)
+xade
1
Mxow_...

(¢xadr)
g

(a) Itanium

SO N T O 00 O
' i 1 U e
1 !

J1EIS UBY) IOIST %

Input Dataset (Fastest Training Input)

(¢nie)
Suasy

(1'+868¢s)
e

(+ne)
s

(9suy)
rids
(cxadr)
bas
(£2y31q)
1"$8S8ES
(1sa1)
LIt8ES
{men)
86CS
(L1$8€3)
a1
(opd)
.
(asuy)
£xasnu
(gxasnu)
sy
(uren)
dexa
(£3y81q)
o1o1x>
dis|
Au_&“wu
(umen)
disp
(¢npe
uwa__,w
(bas)
sap
(baju;
kousia.
(dis;
n.x‘uw_w
(15,
Txadre

(£ay3:1q)
e

(b) Itanium 2

Figure 4.63: Static vs. FDO performance for i £ conversion on VPR (route)

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14 1 _*_ 3 }

+

% Faster than Static

% Faster than Static
L+
I

N..qi..
=i
B.
-

i

i -
Input Dataset (Fastest Training lnput) Input Datasct (Fastest Training Input)

S WV = O ®

HENKagany TS Rk ok e e
BrEiE I A FE T F sE
3 3 R = 3 3
(a) Itanium (b) Itanium 2

Figure 4.64: Static vs. FDO performance for inlining on bzip2

is commonly acknowledged to have little impact on performance, Amdahl’s Law [23] (pp. 40-42)
would dictate that limited compiler-developer resources should be used to address more significant
issues. However, the results presented in this section suggest that FDO if conversion may have
a more significant impact on program performance than previously expected, and that more inves-
tigation into this optimization may be warranted. Unfortunately, the importance of if conversion
to performance does not appear to be in its potential to reduce program run times, but rather in the

potential for poor i £ conversion decisions to significantly degrade performance.

4.4.2 Inlining

Profile-guided inlining performs well against static optimization, particularly on the Itanium, where
performance gains in excess of 10% are common. In the best case, performance is improved over
static optimization by more than 20%.

Figure 4.64 presents best-case FDO inlining for bzip2. Performance on the Itanium is very
good, with a minimum improvement of about 4% and a maximum gain of about 13%. On the
Itanium 2, performance gains are small, at most 3% faster than static. However, three inputs suffer
a small loss in performance, but the loss is only 1% in the worst case.

The fastest FDO inlining binaries perform well on crafty, as shown in Figure 4.65. On the
Itanium, FDO inlining is more than 11.5% faster than static optimization for all inputs. Results on
the Itanium 2 are also positive, though the performance gains of the fastest FDO binary over static
are much smaller. As was the case for i £ conversion, one FDO binary is the fastest for all inputs
on each processor. The selection of the evaluation input could change the reported performance
improvement over static optimization by 2.5%.

In Figure 4.66 best-case FDO inlining always improves performance for GAP. On the Itanium,
improvements range from more than 3% to over 9%, while on the Itanium 2 improvements range

from around 1% to 8%. Binaries trained on snf525 and snf750 account for most of the fastest

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vy hed Ll o -— [~}

-}
NG uwey 1058 ¥,
I8
© 2O ®O MO

NTIS UTY) IS

Input Dataset (Fastest Training Input)

Input Dataset (Fastest Training Input)

(uen)
I§T-oum
(uren)
151-9tm
(uren)
150-tm
(uien)
100-5Tm
(uien)
uten

(uren)
133

(uien)
Rl

(100-50)

1€C-omm

(100-otW)
161-9tm

(100-2t4)
160-9™m

(100-3em)
100-9tA

(100-2t4)
uien

(100-3ea)
3

(100-9c4)
Ju

(b) ltanium 2

(a) ltanium

Figure 4.65: Static vs. FDO performance for inlining on crafty

Mg umy IANST ¥,

Input Dataset (Fastest Training Input)

Input Dataset (Fastest Training Input)

(un)
uman
(uira)
153
(szo1jus)
006JUs
(s2olyus)
osLyus

(5T013us)
STeus
(STo1yus)
00€-00Tus
(sc01us)
09T 1us
(5TO1Jus)
0S11Jus
(szoLyus)
STotus
(umeny
A

QS Lsus)
ufen

(Scgius)
159

QS Lyus)
006)us
(osLjus)
osLius

(6T Sius)
STSIus
(STsyus)
00E-00Tus
(05L3us)
09T1yus
(0sLyus)
ost1jus
(oSLyus)
cTonjus
(uren)
I

(b) Itanium 2

(a) Itanium

Figure 4.66: Static vs. FDO performance for inlining on GAP

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

14 1
12

A IR N ¥ I - BN)

% Faster than Static
9

—=ll DD (e

% Faster than Static
AN ONEC®RD

4 ; e e HH ﬂﬂ

3

Input Dataset (Fastest Training Input) Input Dataset (Fastest Training Input)
HE A T R e e A TR R T
HE RN THE RS AR LR HE N
8 L0 0 AR SR b B T g BT ST
(a) Itanium (b) Itanium 2
Figure 4.67: Static vs. FDO performance for inlining on gzip
25 0
o]
o 2] M : r g 2]
= : i mﬁ 3
7] { .
5 15 1 1 § -4
: I
u 1 H H v .6 4
] 10 1 7 6 1
e H Lo .79 i
5 il R : -
[o]
0 : -10
Input Dataset (Fastest Training Input) Input Dataset (Fastest Training [nput)
BT IGZERTRG I 27 IR NG 27 3¢ iF 52 T 27 IT Y I 39 8% 52
(a) Itanium (b) Itanium 2

Figure 4.68: Static vs. FDO performance for inlining on MCF

binaries on the Itanium, while snf1025 produces most of the fastest binaries for the Itanium 2.
Depending on which inputs are used to evaluate the performance of these binaries, performance
varies by 3%, 2%, or 4.5%, respectively.

Figure 4.67 presents best-case FDO inlining results for gzip. On the Itanium, there are perfor-
mance gains of over 12% for 7 of the 15 inputs, with gains over 16% on 4 inputs. However, there are
also several inputs with small performance gains, and 2 which experience slightly reduced perfor-
mance. It is noteworthy that the log input is provided by SPEC, and thus commonly used to evaluate
performance, but still does not gain performance from the fastest FDO inlining binary. Results are
similar on the Itanium 2. All inputs have improved performance compared to static optimization,
though the gain is less than 1% for 5 inputs. However, 6 inputs have performance gains over 4%,
with the maximum gain approaching 7%.

MCF displays the most dramatic results with FDO inlining, and highlights FDO’s potential for

performance improvement, as shown in Figure 4.68. In the worst cases on the Itanium, performance

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

;:Dummmﬂmmmm¢

H
H

‘4 Faster than Static
o
% Faster than Static

S N
-

Input Datasct (Fastest Training Input) Input Dataset (Fastest Training Input)
T Mo o o A e g g e ey S g s
2889898582 Ly By B £ TE 52 83 TEEESETEE 83 BE £ 53 §g 88
S5 95 $E S5 S2F8 5 HEs — 5268 g5 25 25 25 28 & LZ5°5 E5EE
2223292525 2 2 2332 ‘g 232 328z 432 &2 A& z S Hz 3z 3z 3%
g 23329398 2 3 Ra) s 2 s 28 2a 80 Q Fal ga @ 9
- DN R N O = < g I - SO ORI - JOREORO
8 85= =587 2 g = g BgBz = =CA = =z =

(a) Itanium (b) ltanium 2

Figure 4.69: Static vs. FDO performance for inlining on parser

on ref is degraded by a small amount, while performance on synth-9 is about 2.5% faster than
static. For the rest of the workload, performance is at least 5% faster than with static inlining. In
three cases, performance is improved by 20% or more. On the Itanium 2, these results are inverted.
MCF on the Itanium 2 is the only case where even the fastest FDO inlining binaries consistently
degrade performance. Static is faster than the best FDO inlining by at least 2% in all by two cases,
and is more than 7% faster in the worst cases.

Results for parser are shown in Figure 4.69. The fastest FDO inlining binaries achieve significant
performance gains over static for all inputs on the Itanium. On the other hand, while the fastest FDO
binaries match the performance of static optimization on the Itanium 2, they do not result in any
significant improvements in performance.

The fastest FDO inlining binaries usually exceed the performance of static optimization for the
placement component of VPR, and achieve significant performance gains for VPR routing on the
Itanium. However, performance for both the ref and s298 inputs for placement is more than 4%
slower than static. The fastest FDO inlining binaries generally achieve slightly better performance
that static on the Itanium 2. However, there appears to be little potential for FDO inlining to improve
performance compared to static optimization on the Itanium 2.

Overall, on the Itanium, FDO inlining exhibits the potential to significantly improve performance
of each benchmark program on nearly every input in the workload. The best-case FDO performance
is slower than static in only 6 out of 116 cases. Furthermore, the fastest FDO inlining binary is more
than 10% faster than static in 41 cases. However, on the Itanium 2, while the fastest FDO inlining
binaries match or exceed the performance of static optimization for 96 inputs, performance is only

more than 3% faster than static in 19 of the 116 cases.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

]
£
]

]

t
]
]
]

]

i
B

f
f]

T

-4

L L

SO FTANONFT OO
— D A g
1

mel§ uey) Jasey 9,

Input Dataset (Fastest Training Input)

(£oy31q)
Budsy 4
(+xadr)
uten
(txadre)
159

[

n_mw !
(dgxa)
bas

(2)
1'+868Ls
(0101%2)
LIt8ES
(1'+8S8Es)
86¢CS
(0101%2)
11
(gxasuu)
5
(ondy2)
gxasn
(dgxa)
sy
(gxade)
m.wxo
(1'+858¢€s)
o101x3
(e
qu:“u
(vids
a_r.v
(gxode)
bagytp
Suasy)
sap
(Suasy)
Aay3iq
(andafa)
xade
(disp)
nxuw...
(dgxa)
tne

(a) Itanium

QUDDDDEBU

(ond

mﬂmmﬂ%i

4
-+
4

——ay

1 dh

4321042

ne1g ueyl 11sey %

Input Dataset (Fastest Training Input)

Suasy

(I'+858¢€S)
umen

(tnie)
159
(pxade)
vids
l{ x3)
o
(gyade)
I"+8S8ES
(uien)
L1t8ES
(L1£8¢€S)
86CS
(sap)
Ju
(dgxa)
uvw
(tn[e)
£xasiu
(opd)
sy
1°+858€S)
[e'c]
(opd)
0101x2

1)
Auu_a___u

(9suy)
.__%b
(0101%)
bajsip
(pxade)
s3p

(disp)
Aaxaiq
(Lax31q)
xade
(apd,
<xade
(321)
toge

(b) Itanium 2

Figure 4.70: Static vs. FDO performance for inlining on VPR (place)

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONOHANICOONOHTANONN

] e e g et "1

oURIS Uey] 19)SB 9%

Input Dataset (Fastest Training Input)

(gxadr)
Suasy

(1I'+8¢8¢€S)
e

(0101%3)
1531

(ﬁ +8¢£5)
e[ds

(bas)
bas

Suasy)
U'+8S8€ES
(86cS)
LIt8ES
(dgx3)
86¢s
(1s2)
o

1591,
S
(8625)
£xasu

(bayyip)
sy
(zrds)
doxa
(gxade)
01013
21)
m_a_:o
(s
n_mvv
(bas)
bayp
(0101%3)
sap
(1)
ay3ig
(osuy)
rxade
(86¢S)
Nw»ou.mﬂ
(Txade)
e

(a) Itanium

‘N
™

i L]

T
— o

SIS UBY) 115 9

Input Dataset (Fastest Training Input)

wﬂxu&u
Suas)
(zxadr)
upesy
(tnge)
1591
(oudyya;
vids H12)
Zx2de)

25
(opd)
1'$868€S
(dgxa)
LIt8ES
(¢n[e)
86TS
(xade)
Ju

asuy)
g
(tne)
gxasiw
(L1+8¢€s)
sy
(0101%3)
Gx2
(tnje)
0101%2
(disp)
u_a__ﬂ_u
(£ax81q)
.__w_u 9
(8625)
_mww_v
(£ax581q)
sap
(8625)
umm_n
(txadr)
prade
(osuy)
xade
(1sm)
e

(b) ltanium 2

Figure 4.71: Static vs. FDO performance for inlining on VPR (route)

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.3 Conclusions

FDO appears to have the potential to substantially improve program performance on the Itanium.
On the other hand, even the fastest FDO binaries are often significantly slower than static optimiza-
tion on the Itanium 2. In particular, fastest FDO inlining binaries for MCF on the Itanium 2 are
significantly slower than static for nearly all inputs. We find this fact surprising, given that both MCF
and inlining are frequently studied. The performance results reported here are consistent with the
performance results measured on the entire workload in Section 4.2. Possible explanations for bet-
ter FDO results on the Itanium are that it has more resource limitations than the Itanium 2, and thus
more potential for performance improvement, while the Itanium also benefits from a more mature
code base since it is an older processor.

One unanticipated result of this study comes from the observation of the performance of the
fastest FDO binaries for the crafty benchmark. For both if conversion and inlining, on both
processors, one FDO binary had the best performance for all inputs. However, the performance of
these binaries compared to static is not consistent across the workload. In particular, significantly
different performance results arc obtained for i £ conversion on the Itanium 2. If the SPEC training
input train is used, performance on the SPEC evaluation input ref is 2% slower static, the best result
from the workload. However, if the wac-051 input is used for evaluation, performance is reduced
by more than 6%. This result confirms that evaluating optimization using a single evaluation input

can lead to conclusions about performance that do not generalize to other program inputs.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Related Work

5.1 Input Selection and Benchmarking

Input selection and benchmark creation are difficult, but important, tasks. Compiler writers, hard-
ware designers, and system vendors all use benchmarks. However, the goals and requirements of
these communities differ. System vendors may favor codes that are hard to optimize to help ensure
fairer comparisons between systems, while compiler designers wish to investigate how a compiler
feature affects the performance of typical programs. Where system vendors and compiler designers
run programs on larger inputs to reduce measurement errors and better represent full system behav-
ior on real-world problems, architecture researchers strive for the smallest representative inputs to
limit simulation times.

In [21], Eeckhout et al. attempt to find a minimal set of representative programs and inputs for
architecture research. They cluster program-input combinations using principal-component analysis
based on low-level program behavior such as cache misses and branch mispredictions. They found
that while different inputs to the same program were often clustered together, there were several
cases where different inputs to the same program resulted in data points in separate clusters. This
finding supports our conclusion that the input to a program does have an impact on program behavior.

Phansalkar et al. survey the four generations of the SPEC benchmark suite and investigate how
the suite has evolved [34]. They measure low-level architecture-independent program behaviors
such as instruction mix, basic-block size, various branch statistics, and locality. They use principal-
component analysis to cluster and compare the benchmark programs. The benchmarks are found to
have changed little in terms of static instruction count, branch behavior, or ILP. However, temporal
locality has lessened in more recent benchmarks. The authors suggest that, based on their clustering,
several benchmarks in the SPEC suites are redundant. Based on their overall characteristics, bzip?2
and gzip form the entirety of one cluster. Looking back to Chapter 4, Aestimo finds significantly
different results for bzip2 and gzip in nearly every case. Therefore, we caution compiler de-
signers against omitting programs from a benchmark suite based on clustering analysis of low-level

program behaviors.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MinneSPEC proposes reduced inputs to the SPEC CPU2000 benchmarks based on function-
level execution profiles and instruction mix profiles to reduce simulation time for architecture re-
search [26]. For more than half of the program-input pairs the reduced inputs have function profiles
that are statistically similar to the original inputs, while they have instruction mixes similar to the
original inputs in nearly every case. However, the authors warn that memory behavior may be sub-
stantially different with the reduced inputs. MinneSPEC inputs should not be considered equivalent
to the original inputs supplied by SPEC. Eeckhout ¢t al. analyze program behavior on the reduced
inputs suggested by MinneSPEC [20]. They use a larger mix of behavior measures that are more
closely related to program performance than those used to create the MinneSPEC inputs. PCA and
clustering show that while the MinneSPEC set of large (Igred) inputs remain similar to the origi-
nal SPEC inputs from which they are derived, the medium (mdred) and small (smred) input sets
generally lead to dissimilar program behavior.

Citron has investigated the use of the SPEC benchmarks by research reported in computer ar-
chitecture conferences [15]. He found that while the SPEC benchmarks are very commonly used,
the suite is seldom used as intended. Two important issues are failure to use all the benchmark
programs from the integer or floating-point collections, and infrequent use of the floating-point
benchmarks. When reported results are adjusted by assuming that the reported techniques have no
effect on missing benchmark programs from the collection used, large speedups were reduced to
moderate speedups. For example, one reported speedup of 1.76 was reduced to 1.15. Our results
compound this problem. We have shown that the training input used with FDO as well as the testing
input used to evaluate performance can significantly vary the observed performance impact of an
optimization. The common practice of using only the inputs supplied with the SPEC benchmarks is

likely to further obscure the true performance impact of a technique when used outside the lab.

5.2 Feedback-Directed Optimization

Cohn and Lowney investigate FDO in Compagq’s compiler tools for the Alpha processor using the
SPEC CINT95 benchmarks [16].

They report the performance impacts when several FDO optimizations are applied individually.
In particular, they find that FDO inlining improves performance by up to 45%, and by 10% on aver-
age over static inlining. While these results are similar to ours, they report that FDO inlining never
results in a performance penalty. However, differences in compiler, architecture, and benchmark
programs makes meaningful comparisons between the performance results impossible.

Langdale also investigates the sensitivity of FDO to the training data used [29]. The programs
and inputs from the SPEC95 and SPEC2000 benchmark suites are used in conjunction with Digital’s
GEM compiler and the Alto link-time optimizer for the Alpha architecture. The study concludes that
there is a statistically significant difference in performance when different training inputs are used.

Our study expands on this work in two ways. First, we have used a large number of additional non-

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SPEC inputs for both training and evaluation. Second, we have investigated individual optimizations
that benefit from FDO rather than considering the entire FDO system as a whole. In our study, we
have also observed variations in performance when different training inputs are used. However, the
differences in performance in our study are much larger, and can be observed without resorting to
statistical techniques. Langdale also investigates resubstitution, and concludes that profile accuracy
is not tightly coupled to performance gains. We have also observed a general failure of resubstitution
to achieve the best performance. However, given the frequently poor performance of FDO compared
to static optimization, we believe that further improvements to the FDO system must be made before

we can provide a final verdict on the usefulness of perfect information.

5.3 Compiler-Decision Optimization

Several researchers have used iterative compilation techniques to improve program performance. It-
erative compilation is the pinnacle of FDO: a program is compiled and run repeatedly, while statistics
collected at run time improve performance. However, in many cases, iterative compilation systems
do not consider the impact of data inputs on the performance changes observed between different
compilations. They often use a single input for both training and evaluation, and do not evaluate the
performance of the final binary on any additional inputs.

Pan and Eigenmann break a program into regions, called Tuning Sections (TS), and attempt to
find an optimal optimization strategy for each TS [33]. They compare the performance of multiple
versions of each TS using three methods. Context-Based Rating is used if the same TS is exe-
cuted frequently in the same execution context. In this case, versions of the TS can be swapped to
determine their performance during a single run of the program. Model-Based Rating applies math-
ematical relationships between contexts to enable comparisons between versions of a TS executed
in different contexts. Finally, Re-execution-Based Rating restores stiate and restarts execution at the
beginning of a TS when different versions of a TS would be otherwise incomparable. Using these
techniques, their offline compilation system based on GCC is able to improve performance on four
SPEC 2000 benchmarks by an average of 26%, while reducing tuning time by 80%. Tuning is per-
formed by running on the SPEC train inputs, while final performance evaluation uses the SPEC ref
inputs. If the ref input is resubstituted instead, much larger performance gains are observed on two
of the benchmarks. The performance improvement obtained by this approach is often small com-
pared to the performance variations we have seen between inputs, or compared to the benefits of the
usual FDO inlining used in our study. In 5 of 8 cases, the largest performance gain for a benchmark
is less than 4%, and is less than 10% in another two cases. Average performance is inflated by
the remaining case, where the technique improves performance by more than 170%. Therefore, we
suspect that normal FDO should provide a larger and more consistent benefit when applied across a
larger collection of programs.

Cooper et al. [17] and Kulkarni et al. [28] find solutions to the problem of ordering the phases in

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a compiler using genetic algorithms. Iterative compilation obtains performance improvements for
the given program and input data. We have observed that testing a version of a program on different
inputs can lead to different conclusions regarding the performance of that version of the program.
Therefore, using a single input for training and performance evaluation during iterative compilation
may result in a final program that does not have the best performance in general.

Stephenson et al. also uses genetic algorithms to learn compiler heuristics for hyperblock for-
mation, register allocation, and data prefetching. They observe significant performance differences
between running resubstitution and non-resubstitution cases for some programs, which indicates
that over-fitting heuristics to input data is a danger. This result compounds the implications of our
findings, and further cautions against the use of a single (or small sample) of inputs when evaluating
FDO techniques.

Cooper and Waterman use iterative compilation to determine the optimal blocking size for a ma-
trix of a fixed size with a matrix multiplication kernel [18]. Execution time is significantly improved
as the matrix dimensions grow because the profile-guided compiler heuristic fails to consider cache
size. It is unfortunate that rather than correcting this deficiency in the compiler, they propose an iter-
ative compilation technique that bypasses the problem. In our study, we also discovered a deficiency
in compiler heuristics regarding i £ conversion. We suggest that the i £ conversion heuristics of the

ORC should be amended before any other technique uses them as the basis for comparison.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion

6.1 Future Work

This study has raised several new questions. First, is there a metric that can link compile-time deci-
sions to performance impacts? Most likely, such a metric will need to be able to identify “important”
choices, but it is unclear if there is a way to estimate the importance of a choice short of some sort of
iterative compilation framework. After all, compiler heuristics already attempt to make the best de-
cisions for the most important choices in order to maximize program performance. However, it may
be possible to further analyze our data to determine decision importance “after the fact”, and then
use this information to evaluate and possibly augment the existing compiler heuristics. In particular,
since feedback-directed i £ conversion reduces performance compared to static i f conversion, there
is clearly an opportunity to improve the i f conversion heuristics.

In a similar vein, we would like to understand how our inputs differ, and how these differences
impact optimization decisions. PCA and clustering techniques could be applied, but we have seen in
Chapter 5 that it can be difficult to get meaningful results from these techniques. Furthermore, these
techniques rely on a set of aggregate measure to characterize program performance. These measures
are well-known to be important for architecture research where these techniques have been used.

However, a different approach is required in the realm of compilers and FDO. While a particular
architecture must use the same branch-prediction mechanism for every branch encountered during
the execution of every program, a compiler must make an i f-conversion decision for each branch
in a program, and makes each decision individually. Furthermore, for many optimizations only a
small number of choices have a significant impact on program performance. It is therefore doubtful
that aggregate measures can adequately characterize inputs for use by a compiler. In fact, it is
likely that the failure of the difference and alignment metrics to correspond in any consistent way to
performance is due to this same problem.

Therefore, it would be advantageous to develop input comparison techniques that work at a level
similar to that present in a compiler. These techniques should work at the control-flow graph and

call-graph levels, rather than using low-level measures like ILP and cache miss rates. We have

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

started development of a tool called ProfEdit that is an initial step in this direction. At present,
ProfEdit is an interactive program that allows a user to view and modify the frequency counts
stored in an ORC profile file. However, the profile does not contain information about the struc-
ture of the program. Thus, it is impossible to maintain the consistency of profile information. An
extension of ProfEdit would allow the frequencies recorded in different profile files to be com-
pared. However, the volume of information being compared necessitates the use of a summarization
technique for the results to be manageable by a human compiler designer. It is unclear what sort of
summarization would reduce the quantity of such data to an understandable volume without unac-
ceptably compromising its usefulness.

Another problem regarding input selection is that the space of possible profiles, as well as the
location of a profile from a particular input in this space, is unknown. If program structure informa-
tion can be integrated into ProfEdit, it could be used as part of a system to automatically explore
the space of possible profiles, without the need to find actual inputs that correspond to any of the
particular profiles used for exploration. If the profile-space of a program is characterized, and inputs
can be mapped into this profile space, then the distance between inputs in this space can be deter-
mined, and the distribution of inputs in an evaluation workload can be measured. Furthermore, if
certain areas in the profile space are found to be “interesting,” the feasibility of real inputs mapping
into that area can be investigated.

Finally, more study is needed. Similar experiments should be run using different compilers and
different architectures, and should investigate a larger range of optimizations and programs in order

to increase the generality of any conclusions about FDO’s sensitivity to training inputs.

6.2 Conclusions

Our extensive experimental study provides important insights into feedback-directed optimization.
Most significantly, training on different inputs does lead to different optimization decisions and
different levels of performance in the FDO binaries in most cases. Training on different inputs
results in as much as a 5% difference in performance with if conversion, and as much as a 6%
difference in performance with inlining, on a workload of inputs. On the other hand, evaluating
FDO performance on different inputs can lead to substantially different performance results. We
observe differences in the best case FDO performance on different inputs for the same program
larger than 13% for if conversion, and larger than 20% for inlining. Therefore, the selection of
training inputs for FDO does impact performance. Furthermore, the measured performance for any
particular binary is dependent on the inputs used for testing. Consequently, performance evaluations
that use multiple training inputs as well as multiple evaluation inputs will result in more reliable
performance measures than typical compiler and architecture evaluations that use a single training
input and a single evaluation input.

Furthermore, these results enable an assessment of the FDO infrastructure of the ORC. Resubsti-

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tution often results in the fast binaries on a given input. However, rank analysis shows that the high
levels of performance of resubstitution binaries compared to the fastest FDO binaries are a result of
small difference in performance between FDO binaries. The rank of resubstitution binaries cover
the full spectrum of possible ranks, from best performance to worst performance, for each program
in this study. Furthermore, there are several cases were resubstitution is substantially slower than
training on a different input. Resubstitution is more than 17% slower than the fastest binary for i £
conversion, and nearly 12% slower than the fastest binary for inlining in the worst cases. Therefore,
the FDO system in the ORC does not make effective use of the more accurate profile information
provided by resubstitution.

In general, feedback-directed inlining is effective at increasing performance on both a workload
and on individual inputs. However, we also observe that feedback-directed i £ conversion seldom
improves performance. In fact, it always reduces performance on the Itanium 2, which strongly
suggests that further work is required for the 1f conversion heuristics to use profile information

effectively.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

(1] Open research compiler for Itanium”™ processor family. http://ipf-orc.sourceforge.net/. Latest
p
release: ORC 2.1, July 15, 2003.

[2] OpenG4 compiler. http://sourceforge.net/projects/open64/,
http://sourceforge.net/projects/open64/. Latest release: Open64 0.16, March 21, 2003.
Page maintainer: Alban Douillet (douillet@capsl.udel.edu).

[3] ORC performance on Itanium 2/Linux. http://ipf-orc.sourceforge.net/orc2- I itanium?2-
Perf.ppt. Powerpoint Graph.

[4] ORC performance on Itanium/Linux. http://ipf-orc.sourceforge.net/orc2- 1 itanium1-Perf.ppt.
Powerpoint Graph.

[5] SGI pro64 compiler. http://oss.sgi.com/projects/Pro64/. webpage copyright 1993-2003 Silicon
Graphics, Inc.

[6] Thomas Ball and James R. Larus. Branch prediction for free. In Proceedings of the ACM
SIGPLAN '93 Conference on Programming Language Design and Implementation (PLDI 93),
volume 28, pages 300-313, June 1993.

[7] Thomas Ball and James R. Larus. Optimally profiling and tracing programs. ACM Transactions
on Programming Languages and Systems, 16(4):1319-1360, July 1994.

[8] Thomas Ball and James R. Larus. Efficient path profiling. In MICRO 29: Proceedings of the
29th annual ACM/IEEE international symposium on Microarchitecture, pages 46-57, Wash-
ington, DC, USA, 1996. IEEE Computer Society.

[9] Vaughn Betz. FPGA place-and-route challenge.
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html. ~ University of Toronto,
Department of Electrical and Computer Engineering.

[10] Lewis Carroll. Alice’s Adventures in Wonderland. Project Gutenberg, January 1991.
http://www.gutenberg.org/etext/11.

[11] John Cavazos, J. Eliot, and B. Moss. Inducing heuristics to decide whether to schedule. In
PLDI '04: Proceedings of the ACM SIGPLAN 2004 conference on Programming language
design and implementation, pages 183-194, New York, NY, USA, 2004. ACM Press.

[12] Pohua P. Chang, Scott A. Mahlke, and Wen mei W. Hwu. Using profile information to assist
classic code optimizations. Software — Practice and Experience,21(12):1301-1321, 1991.

[13] Youngsoo Choi, Allan Knies, Luke Gerke, and Tin-Fook Ngai. The impact of if-conversion
and branch prediction on program execution on the Intel Itanium processor. In 34th Annual
International Symposium on Microarchitecture (MICRO'01), pages 182-191,2001.

[14] Kingsum Chow and Youfeng Wu. Feedback-directed selection and characterization of com-
piler optimizations. In MICRO 32, Isreal, Nov 1999.

[15]) Daniel Citron. MisSPECulation: Partial and misleading use of SPEC CPU2000 in computer
architecture conferences. In Proceedings of the 30th Annual International Symposium on Com-
puter Architecture (ISCA’03), pages 52-59, 2003.

[16] Robert Cohn and P. Geoffrey Lowney. Feedback directed optimization in Compag’s compila-
tion tools for Alpha. In 2™ ACM Workshop on Feedback-Directed Optimization, Haifa, Israel,
November 1999,

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ipf-orc.sourceforge.net/
http://sourceforge.net/projects/open64/
http://sourceforge.net/projects/open64/
mailto:douillet@capsl.udeI.edu
http://ipf-orc.sourceforge.net/orc2-Utanium2-
http://ipf-orc.sourceforge.net/orc2-Utaniuml-Perf.ppt
http://oss.sgi.com/projects/Pro64/
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.htmI
http://www.gutenberg.Org/etext/l

[17] Keith D. Cooper, Devika Subramanian, and Linda Torczon. Adaptive optimizing compilers for
the 2Lst century. J. Supercomput.,23(1):7-22,2002.

[18] Keith D. Cooper and Todd Waterman. Investigating adaptive compilation using the MIPSpro
compiler. In Los Alamos Computer Science Institute Symposium, 2003.

[19} Standard Performance Evaluation Corporation. SPEC: The standard performance evaluation
corporation. http://www.spec.org/.

[20] Liven Eeckhout, Hans Vandierendonck, and Koen De Bosschere. Designing computer archi-
tecture research workloads. In JEEE Computer, volume 30, pages 65-71, February 2003.

[21] Liven Eeckhout, Hans Vandierendonck, and Koen De Bosschere. Quantifying the impact of
input data sets on program behavior and its applications. Journal of Instruction-Level Paral-
lelism, 5:1-33, 2 2003.

[22] Albert Einstein. Relativity : the Special and General Theory. Project Gutenberg, January 2004.
http://www.gutenberg.org/etext/5001.

[23] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, 3rd edition, 2003.

[24]) Apple Computer Inc. Apple iTunes. http://www.apple.com/itunes/. version 4.7.

[25] Toru Kisuki, Peter M. W. Knijnenburg, and Michael F. P. O’Boyle. Combined selection of tile
sizes and unroll factors using iterative compilation. In /EEE PACT, pages 237-248, 2000.

126] AJ KleinOsowski and David J. Lilja. MinneSPEC: A new SPEC benchmark workload for
simulation-based computer architecture research. In Computer Architecture Letters, volume 1,
June 2002.

[27] Mike Krahulk and Jerry Jerry Holkins. http://www.penny-arcade.com/.

[28] Prasad Kulkarni, Stephen Hines, Jason Hiser, David Whalley, Jack Davidson, and Douglas
Jones. Fast searches for effective optimization phase sequences. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 165-198, 2004.

[29] Geoff Langdale. The Effect of Profile Choice and Profile Gathering Methods on Profile-Driven
Optimization Systems. PhD thesis, Carnegie-Mellon University, 2004.

[30] David D. Lewis. Reuters-21578 text categorization test collection.
http://www.daviddlewis.com/resources/testcollections/reuters2 1578/, May 2004. Distri-
bution 1.0.

[31]) Scott Alan Mahlke. Exploiting Instruction Level Parallelism in the Presence of Conditional
Branches. PhD thesis, University of Illinois at Urbana-Champaign, 1996.

[32] Hewlett Packard. Inside the Intel Itanium 2 processor. Technical re-
port, Hewlett Packard Developer & Solution Partner Program, July 2002.
http://h21007.www2 .hp.com/dspp/ddl/ddl_Download _File_.TRX/1,1249,952 00.pdf.

[33] Zhelong Pan and Rudolf Eigenmann. Rating compiler optimizations for automatic perfor-
mance tuning. In ACM/IEEE Conference on High Performance Networking and Computing
(SC04), pages 14-23, November 2004.

[34] Aashish Phansalkar, Ajay Joshi, Lieven Eeckhout, and Lizy K. John. Measuring program
similarity: Experiments with SPEC CPU benchmark suites. In IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2005.

[35] Martin Schoenert and Steve Linton. Re: [GAP support] additional inputs for 254.gap. Personal
email correspondence, April 2005.

{36] Michael D. Smith. Overcoming the challenges to feedback-directed optimization. In Proceed-
ings of the ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation and Optimization
(Dynamo’00), pages 1-11, Boston, MA, January 2000.

[37] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May O-Reilly. Meta opti-
mization: Improving compiler heuristics with machine learning. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pages 77-90, 2003.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http:///v/vw.spec.org/
http://www.gutenberg.org/etext/5001
http://www.apple.com/itunes/
http://www.penny-arcade.com/
http://www.daviddlewis.com/resources/testcoIlections/reuters21578/
http://h21007.www2.hp.eom/dspp/ddl/ddl-Download_File_TRX/l

[38] Reinhold Weicker and Kaivalya Dixit. (osgcpu-10955) re: Your question to SPEC about input
data selection for benchmarks. Personal email correspondences, July 2004.

[39] Herbert George Wells. The War of the Worlds. Project Gutenberg, October 2004.
http://www.gutenberg.org/etext/36.

[40] Peng Zhao and José Nelson Amaral. To inline or not to inline? Enhanced inlining decisions.
In Languages and Compilers for Parallel Computing: 16th International Workshop, October
2003.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.gutenberg.org/etext/36

Appendix A

Metric Values

This appendix presents the raw data for the difference and alignment metrics defined in Chapter 3.
These graphs are similar to the first one in Figure A.1(a). The name of the training input who's log
is used to calculate the metrics is listed below the graph. The wide bar represents the alignment
score (as a percent), and encompasses the narrow bars which show pairwise difference scores. The
difference bars are in the same order as the coverage bars. For example, the log for compressed has
a coverage score just over 80%, while GAP has a coverage score just over 50%. Within the large bar
for compressed coverage, we see that the first difference score, §(compressed, compressed), is 0,

and the second difference score, §(compressed, docs), is about 2.25.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(%) wswus Y

QOUAIRJJIQ

[wrx
onels
99In0S
SI9INAI
wopuel
weisoid
Jpd

Sodw

¢dux

301

Sadl
oydeIs

de3

soop
passaidwos
PauIquUIOd

(a) Itanium

(%) 1uouus Iy

QOUAIJJIT

[urx
oness
32In0S
SI9INAI
wopuel
weidoid
jpd

Zodw

¢dw

801

Sadl
orydess

de3

SO0p
passaiduiod
pauIquIod

(b) Itanium 2

gure A.l: Metric scores for i f conversionon bzip2

Fi

(2,) wawudyy

100

asuataiq

(%) wawudiy

ouAI

157-omm
1§1-otm
1503t
100-2tm
uren

1
onets

Ju

1§z-otm
161-98M
1509t
100-91M
uren

159
anms

L]

2

(b) Itanium

(a) Itanium

.2: Metric scores for i £ conversionon crafty

Figure A

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(35) a3y

700
600

amaNg

(1) WwnUSYY

SRR

ouaa

uien

1531

snrls
00GIUS
osL3us
szgyus
00£-00TuS
09z 13us
0s113us

Scojus
™

uen

153

s
00GIus
osLius
sTspus
00€-00Tus
09T13us
os1jus

solyus
Fril

(b) Itanium 2

(a) Itanium

Figure A.3: Metric scores for i f conversion on GAP

(%) WwauIusNY

QouaIalI

X

onels
901N0S
SI3INAI
wopuel
weidoxd
jpd

Sodw
¢dw

301

Sadf
oydeisd
de3

SJ0p
passa1duwiod
pauIquIod

(a) ltanium

(%) WwaWuS Y

Q0URIJIA

X

onels
90IN0S
SI9INAI
uIopuel
weidoxd
jpd

Sodwr
¢dw

3o1

gad(l
owydeis
de3

So0p
passaidwod
pauIquIod

(b) ltanium 2

Figure A.4: Metric scores for i £ conversionon gzip

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Q
Q
=
>
b
oo
A
G L O N T o0y &
N i 4 &£ S5 S5 & o 88
w & = 8 8 £ g 28 € 2 g9
A A A AN AN A A AN AN A
7, N7 N7 I, N7, N 7, N7, N 7 N 7 R 7,
(a) Hanium
8 § 0 l!}‘;lli..l‘
& H‘
2 24
g] ||
A I 1

TR — NNt O~y 8
'Sllllllllllq)"-'
L~ S = N o B o S o S N B = A B = I = - B
B B e . T e e R e e b

»n 8 8 &£ £ £ &£ 8 8 & &

A AR AN AN AR AR A AR AN A

(7 N, N7 N, N7, D7, N 7, I 7, B 7, N 7,

(b) Itanium 2

Figure A.5: Metric scores for i £ conversion on MCF

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Alignment (%)

Alignment (%)

S
8 <
& =
g b5
= 5
a 2
<
[T
8888888828553
o R e e R~ T B =~
6 6 6 8 © & > 8 < 85
= 2 5 B 2 g “ 2
n S n O n _
7T 7 aQq 2
AN O — \O
©C O - —~ QN
(a) Itanium
o
g S
S =
g 5}
= &
a &
<

L2 T B T B D B~ B R 7 T = 2
tEEgEgELeates @i
S 8 0 @ & 2z 2 = 5 ¥
2 2 2 B 2 g © g
v © n O W —

ST T qa =

N O — O —

© S = = A

(b) Itanium 2

Figure A.6: Metric scores for 1 £ conversion on parser

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uolssiwiad 1noyum pagiyosd uononpoidal Jayun 1aumo ybuAdoo ayj Jo uoissiwiad yum paonpoiday

Icl

(20e]d) Md A UO UOISISAUOD F T JOJ $9103S DLNDIA L'V 2InT1

Z wniuo| (q)

s38417
$38584.1
seq

spla
static
test

train
tseng

(=

Difference

[\ e e
COOO

Alignment (%)

001

wnuey] (e)

s298
s38417
s38584.1
seq

spla
static
test

train
tseng

Difference

Alignment (%)

‘uolssiwiad 1noyum pagiyosd uononpoidal Jayun 1aumo ybuAdoo ayj Jo uoissiwiad yum paonpoiday

(44|

(31N01) YA UO UOISIDAUOD J T 10 §100S DDA :8'Y andig

7 wnuey (q)

alu4
apex2
apex4
bigkey
des
diffeq
dsip
elliptic
ex1010
exSp
frisc
misex3
pdc
ref
§298
s38417
s38584.1
seq
spla
static
test
train
tseng

Difference

Alignment (%)

wnuej (v)

$38584.1
seq

spla
static
test

train
tseng

Difference

Alignment (%)

Difference

Difference

250

200 1

Difference

50 1

250

250

Gy
228820 dRAPTEELESSE
£ @ O ons Q -~ o, QL 5w
- T Q<-—-1 E ""U:;ﬁa—a
8 O IS = 50 o »
=Y

£ a &b gEgr@®
OE o
© 9

134

(a) ltanium

150 1

123

T T YO0 b0 bohn b 2O IS W
ouONEoomm'UgEbO'SE
£ @2 Q oo o — 2. & OS2 5 %
E 83 (IR = Eg g5 33
B O] £ Sesgow
= = O g B @
£ & oh = N
o g =
© 9
13}
(b) Itanium 2
Figure A.9: Metric scores for inlining on bzip2
100
- L
80
0 3z g
E 3
SEU -
Z
20
L i 0
: £ E & § B 5 %
(a) Manium (b) hanium 2
Figure A.10: Metric scores for inlining on crafty

Alignment (%)

Alignment (%)

Alignment (%)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(%) waxuudyy

100
I 80

60

40

1200
000
800
600
400

auag

(%) wanudipy

100
80
60
40

duaa

uen
1531

anes
006Jus
osLyus
Scsius
00¢-00cjus
09cC1ius
osiyus

sconus
2

uen

13

anrgs
006IUS
osLus
scsius
00€-00TJus
09z 13us
ostus

scoyus
Ju

(b) Itanium 2

(a) Itanium

Figure A.11: Metric scores for inlining on GAP

(%) yuourugIYy

QOUAIAYJI(T

[wx
onels
95In0S
SIoINaI
wopuel
uresgoxd
jpd

Saodw

¢du

301

Sadl
oiydes3

des

So0p
passardwod
PaUIqUIOD

(a) ltanium

(%) ywourug Iy

QouRIJJIQ

urx
onels
991108
SI91nal
wopuel
ureigoxd
jpd

Sodur

cdw

301

8adf
oryderd

de3

So0p
passaidwos
pauIquiod

(b) ltanium 2

Figure A.12: Metric scores for inlining on gzip

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(%) wowudy

ANOR0OFTANO
——

QOUIYI(]

uren
1591
6-JIuAs
Q-IUAS
L-YIuAs
9-IuAks
G-IuAhs
$-yiuhs
¢-IuAhs
Z-YIuAs
[-YIuAs
0-YluAs
onels
Jo1

(a) Itanium

(%) yourugny

Q0UQIRJJI

uren
159)
6-IuAs
Q-UiuAs
L-YiuAks
9-IuAks
G-YiuAs
$-Iuks
€-YIuAs
Z-QuAks
1-YIuAhs
0-Quks
onels
Jo1

(b) Itanium 2

Figure A.13: Metric scores for inlining on MCF

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 §

§ i i l‘fn il ; 0 0 80 :z
5 | 6 2
& A 40 §
= i e 2 2

558888822858

© © © © O § 2z S 2 5 F

2 2 3 2 3 s @ S

v O n O n —

O = = AN N 1

A O~ O

O O — = O

(a) ltanium

Difference
Alignment (%)

16
21

N O o~
o O -

(b) Itanium 2

Figure A.14: Metric scores for inlining on parser

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uolssiwiad 1noyum pagiyosd uononpoidal Jayun 1aumo ybuAdoo ayj Jo uoissiwiad yum paonpoiday

LTl

(a0t]d) ¥d A uo Sururur J0J §2109S DA GV NS

Z wnuey (q)

s38584.1
seq

spla
static
test

train
tseng

Difference

Alignment (%)

wntuy| (¢)

s38584.1
seq

spla
static
test

train
tseng

e

Difference

N B OV
COO O

001

Alignment (%)

‘uolssiwiad 1noyum pagiyosd uononpoidal Jayun 1aumo ybuAdoo ayj Jo uoissiwiad yum paonpoiday

8C1

(In0J1) UJA uo Suruui J0J $3100S NI (9] 'V 21nS1

Z wnwey (q)

alu4
apex2
apex4
bigkey
“des
diffeq
dsip
elliptic
ex1010
exSp
frisc
misex3
pdc
ref
$298
$38417
$38584.1
seq
spla
static
test
train
tseng

Difference

Alignment (%)

wne| (e)

alu4
apex2
apex4
bigkey
“des
diffeq
dsip
elliptic
ex1010
ex5p
frisc
misex3
pdc
ref
$298
$38417
$38584.1
seq
spla
static
test
train
tseng

Difference

Alignment (%)

Appendix B

Alignment vs Performance

In the following graphs, there is one point for each of the binaries for a benchmark. The x-axis
of the graph represents the alignment score for the optimization log used to create the binary. The
y-axis represents the performance of the binary on the workload as a percent faster than the static
binary, while the error-bars show the variance in performance. Performance is computed using the
arithmetic measure exactly as in Chapter 4. There is one point for the static binary, which always
has a performance value of 0% faster than static. This point shows the alignment score for static, as

well as the variance in performance of the static binary.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% Faster than Static

-1.5

% Faster than Static

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45 50 55 60 65 7

T

Alignment (%)

(a) ltanium

0 75 80 85 9 95 100

% Faster than Static

Figure B.1: Alignment vs. performance for if conversionon bzip2

————

L}
H
v
I i
!
46 48 50 52 54 56 58 60 62
Aligninent (‘%)

(a) ltanium

% Faster than Static

1
1]
i i
'] : }
40 50 60 70 80 90 100
Alignment (%)
(b) Itanium 2
4 3 -
: L
: t
¥ H]
Bl 4 ’ 9 e
50 52 54 56 58 60 62 64 66
Alignment (%)

(b) tanium 2

Figure B.2: Alignment vs. performance for i f conversionon crafty

130

% Faster than Static

% Faster than Static
&
.

0.8 1

-0.9

% Faster than Static

>——
e poneens

80 85 9% 95 100
Alignment (%)

(a) Itanium

-1.6 1

-1.8
5

80

85 920 95 100

Alignment (%)

(b) hanium 2

Figure B.3: Alignment vs. performance for i £ conversion on GAP

—a—

——

% Faster than Static

————
—e
e
t———
-

78 80 82 84 86 88 90
Alignment (%)

(a) Itanium

] N
0 40 -
BER L
2 L
3 L
-4 L
.5 L
v N LA AR B] LR

-0 y T T T T T T T

7 72 74 6 78 8 8 84 8 88

Alignment (%)

(b) ltanium 2

Figure B.4: Alignment vs. performance for i f conversion on gzip

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% Faster than Static

% Faster than Static

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

[—
e e e e em e mn e nnt
e e e e e e s st

25

[¥}

80 82 84 86 88 90 92 94
Alignment (%)

(a) ltanium

Figure B.5: Alignment vs. performance for i £ conversion on MCF

sty

[et

et
[T ey pssrsvesy

20 30 40 50 60 70 80 9%
Alignment (%)

(a) ltanium

% Faster than Static

% Faster than Static

-10 4

.12

-14

84 8 8 87 8 8 9 91 92 93 9

Alignment (%)

(b) Itanium 2

<

13134

55

60

65 70 15
Alignment (%)

(b) Itanium 2

80

Figure B.6: Alignment vs. performance for i f conversion on parser

132

85

2

% Faster than Static

% Faster than Static

..‘
teaevens @aremnce
ORI

08

0.6 1

0.4

0.2 1

04

0.0

Alignment (%)

(a) ltanium

% Faster than Static

935 94 945 95 955 96 965 97 97.5 98 98.5 99

4.5

oS
pov—
———————
-

Alignment (‘%)

(b) Itanium 2

Figure B.7: Alignment vs. performance for 1 £ conversion on VPR (place)

% Faster than Static

84 86 88 90 92 94
Alignment (%)

(a) ltanium

98

93.5 94 945 95 955 9 965 97 915 98 985 99

-

o

84

86 88 %0 92
Alignment (%)

(b) Itanium 2

Figure B.8: Alignment vs. performance for 1 £ conversion on VPR (route)

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% Faster than Static

% Faster than Static

2

[

% Faster than Static

0

5

10 15 20 25 30 35 40 45 S0 S5
Alignment (%)

(b) hanium 2

Figure B.9: Alignment vs. performance for inlining on bzip2

1
|
.
!
i
i
5 10 15 20 25 30 35 40 45 S0 S5
Alignment (%)
(a) anium
4 H
'
B
’ ?;, ‘%‘
2
1]
&
®
)
1
80 82 84 8 8 90 92 94 9 98

Alignment (%)

(a) ltanium

3

80

82

T T v T

86 8 90 9N
Alignment (%)

84 94 9% 98

(b) ltanium 2

Figure B.10: Alignment vs. performance for inlining on crafty

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% Faster than Static

% Faster than Static

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-

N W & NN 0 O

) 3 R . . .
} |)
] H
!‘ 25 1 i
" 3
|)rs P
¢ 8 2 1
[| h
: 5 151 l
H] ; 1 J
& 1
3
E os
0 4 al.
55 60 65 70 75 80 85 2% 95 60 65 70 75 80 85 920 95
Alignment (%) Alignment (%)
(a) ltanium (b) Itanium 2
Figure B.11: Alignment vs. performance for inlining on GAP
3 . R .
P ’ [b
H | LI i
TR] 25 11 : i
LR H
L i H
o 2
3 L 38
S 151
- 2 i
L 8 1 4
£
% 05
. F 01
T r T T T 05 v v T T T
60 65 70 75 380 85 % 60 65 70 5 80 85 %
Alignment (%) Aligniment (%)
(a) Itanium (b) Itanium 2

Figure B.12: Alignment vs. performance for inlining on gzip

135

% Faster than Static

% Faster than Static

12 ! . s
i 1] i
% 1 ! i
10 i : 0 i
; IR i
g { R e M1
i } ! 2 .24 i
¢ w
6 1 ;;- .3
4 5 i
i]
z
2 1 -6 i
7 ‘
o 4
-8 1 !
80 8 8 8 8 9 92 94 9 98 30 8 84 8 8 9 92 94 9 98
Alignment (%) Alignment (%)
(a) ltanium (b) Itanium 2
Figure B.13: Alignment vs. performance for inlining on MCF
10 +—— —)
} b PR ;
| I oAb i .
8 ¢) i
0.5 ; . |
N SENIINI
i 0 ! | |
wv
4 4 b2 s .
R
g
149
2 4 & -1
H
!
0 1 H BER I
; i
!
2 r v + . v v v . 2 . v y —r v r r
35 40 45 S0 S5 60 65 70 75 80 66 6 70 72 74 76 718 80 82 84
Alignment (%) Alignment (%)

(a) ltanjum

(b) Itanium 2

Figure B.14: Alignment vs. performance for inlining on parser

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% Faster than Static

% Faster than Static

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N W e NN e O

% Faster than Static

0.2
-0.4
-0.6

7 12 M 7 18 80
Alignment (%)

(a) Itanium

82

-0.8
84

08 1
0.6 1
0.4 1
02 1

Figure B.15: Alignment vs. performance for inlining on VPR (place)

——
——a———

% Faster than Static
(=]
-

68

7 72 74 7 78 80 82
Alignment (%)

(a) Itanium

86

] l
68 7'0 ';2 7'4 ';6 7'8 !;0 1;2 84
Aligninent (%)
(b) Itanium 2
, 1 il
| I ‘ | Il“
i |
| H] §] b M
i o i
|
|
!
!
63 7'0 ';2 7'4 7'6 7'; 8'0 8.2 8'4 86

Aligniment (%)

(b) Itanium 2

Figure B.16: Alignment vs. performance for inlining on VPR (route)

137

