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Abstract 

Freshwater aquatic systems in North America are being invaded by many different species, ranging 

from fish, mollusks, cladocerans to various bacteria and viruses. These invasions have serious 

ecological and economic impacts. Human activities such as recreational boating are an important 

pathway for dispersal. Gravity models are used to quantify the dispersal effect of human activity. 

Gravity models currently used in ecology are deterministic. This paper proposes the use of 

stochastic gravity models in ecology, which provides new capabilities both in model building and in 

potential model applications. These models allow us to use standard statistical inference tools such 

as maximum likelihood estimation and model selection based on information criteria. To facilitate 

prediction, we use only those covariates that are easily available from common data sources and can 

be forecasted in future. This is important for forecasting the spread of invasive species in 

geographical and temporal domain. The proposed model is portable, that is it can be used for 

estimating relative boater traffic and hence relative propagule pressure for the lakes not covered by 

current boater surveys. This makes our results broadly applicable to various invasion prediction and 

management models. 
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Introduction 

 

Biological invasions are widespread amongst freshwater aquatic ecosystems.  In North America, 

macroscopic invasive species cover a broad range of phyla, from plants (e.g. Eurasian watermilfoil 

Myriophyllum spicatum L., Cabomba caroliniana), exotic fish (e.g. Asian carp) and invertebrates 

(e.g. zebra mussels Dreissena polymorpha, spiny waterflea Bythotrephes longimanus). Added to 

these are the microscopic invaders, including bacteria and viruses.  The better-known biological 

invaders have major ecological and economic impacts on the ecosystems they encounter.  These 

impacts include interference with the feeding, growth, movement and reproduction of native 

species, bioaccumulation of pollutants, and the fouling of recreational and industrial facilities 

(Parker et al., 1999; Burbidge and Manly, 2002; Lovell et al., 2006; Crowl et al., 2008). 

 

In many systems, it is human activity that is the dominant factor governing transfer of invasive 

propagules. For example, with zebra mussels and spiny waterfleas, the most important factor in 

overland transportation from invaded to uninvaded lakes is tied to recreational boats (Johnson and 

Padilla, 1996; Schneider et al., 1998; MacIsaac et al., 2004). When a boat is used at an invaded lake, 

invaders can attach to the boat, trailer or fishing equipment. If the boat or equipment is used at a 

different lake within a short enough time, the invader may be released into a new lake.  This may, in 

turn, lead to the establishment of new invader populations in previously uninvaded lakes.  

 

Controlling the spread of invasion due to human transport requires knowledge of the present 

invasion status and quantification of spread rate. Intensive sampling effort has gone into measuring 

the current distributions of some of the more notorious invaders, such as zebra mussels and spiny 

water fleas (Kraft et al., 2002; MacIsaac et al., 2004; Bobeldyk et al., 2005). Much effort has also 

gone into assessing the propagule pressure (characterized by rate of transfer of invasive propagules) 

from invaded to uninvaded water bodies. To estimate it, one needs to know the number of boaters 

traveling between the lakes or the boater flow.  For N lakes, assuming the flows symmetric, this 

requires estimating N(N-1)/2 parameters, and hence the proportional amount of data about boater 

movement, that is detailed surveys.  
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Similar problem aroused long ago in economics and geography, where it was necessary to estimate 

transport flows between the cities. At present the common approach to it is the use of so-called 

gravity models (Thomas and Huggett, 1980).  In deterministic gravity models, the propagule 

pressure is characterized by its mean value ij from location i (“origin” or “source”) to location j 

(“destination”).  In turn, this mean propagule pressure is approximated by product of three factors: 

 ijjiij dWT  ~ , where Ti is the number of potential travelers at location i or “repulsiveness” of 

the location; Wj is “attractivity” of location j;  
ijd  is a “distance deterrence” factor, which 

describes the fact that short trips are more frequent than long ones; dij is the distance between the 

source and the destination (Thomas and Huggett 1980; Sen and Smith 1995). Ti and Wj depend on 

covariates characterizing source and destination locations respectively.  Sometimes, when sources 

and destinations possess similar characteristics, Tj and Wj may coincide: in economics both may be 

proportional to population in the locations. Then  

   ijjiij dWW  ~ .       (1) 

The gain from using such model is quite obvious: the number of parameters to be estimated from 

data become fewer.  The name “gravity model” appeared because the form of the first models 

resembled Newton’s Law of Gravity, where city population played the role of attracting mass, and 

  2 dd . 

 

Deterministic gravity models have been successfully applied in invasion ecology for estimating 

propagule pressure of invaders transported by the boaters into a lake (Baxter and Ewing, 1981; 

Bossenbroek et al., 2001; Leung et al., 2004; Muirhead 2007).  Building a gravity models for 

recreational boater movement includes the following steps: 

1. Define the set of covariates determining attractivity and repulsiveness terms in (1) and 

functional forms of the dependencies for these covariates. We assume that the covariates and the 

distances are available, so only a few parameters in the model remain unknown. 

2. Obtain survey data on actual boater movement between sources and destinations. The surveys 

provide the actual number of travelers between the locations nij, or some data, from which nij 

may be derived. 

3. Obtain the model parameters by fitting the model to the data. Different types of gravity models 

vary according to ways of fitting the model parameter in (1) to the data nij. 
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For the step 1 a number of functional forms have been tested. For example, the deterrence term is 

taken in the form of    dd  (Bossenbroek et al., 2001) or    dd  exp  (Muirhead, 2007) 

with  unknown. Attractivity of a lake may be postulated as proportional to lake area Ai as Wi=CiAi 

(Bossenbroek et al., 2001) or to its logarithm (Muirhead, 2007).  Step 2 is the hardest to do.  Step 3 

depends on the model type and will be discussed below in more details. 

 

In applications there are two important requirements for a gravity model: accuracy and portability. 

Accuracy is achieved mainly in step 1, by the choice of the model terms and parameters.  Portability 

means that one can add to the model sources and/or destinations, not covered by the boater survey, 

without rebuilding the model. In particular, portability allows one to fit a model to one set of lakes 

and later apply it to another one. Portability of a model is important for prediction and management 

of biological invasions, when the number of invaded lakes changes in time, because surveys are 

expensive and time-consuming.  

 

It appears that not all existing types of gravity models are portable. For example, to achieve better 

accuracy, source-specific or destination-specific coefficients are introduced like in the above 

example, Wi=CiAi. Then these coefficients are not available for new locations, and the model loses 

portability towards sources, destinations, or both.  Therefore, portability requires a reduction of the 

number of region-specific parameters to a minimum.  

 

One more typical problem in deterministic gravity model fitting to survey data is that for some lake 

pairs there may be only a few boaters using it. If only a small part of boaters respond to a survey, 

this may be true for most lake pairs. In such situation it may be more reasonable to consider nij as a 

realization of an integer-valued random process rather than an approximation to the mean boater 

flow, and maximum likelihood fitting might be more natural than least squares one.  

 

To address all the mentioned problems, we have developed a stochastic gravity model.  Although 

such approaches have been applied to economic gravity models (e.g. Flowerdew and Atkin, 1982) 

and there is some similarity with the way of gravity model parameters fitting in (Ferrari et al. 2006), 

they are new to ecological gravity models.  We consider the boater movement as a Poisson process 

with the intensity ij, which has the form (1).  The framework of statistical model selection allows 
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us to use maximum likelihood approach to model fitting, to use information-based model selection 

criteria (Burnham and Anderson, 2002) for choosing the best functional forms for lake attractivity 

and distance deterrence and for choosing the best set of covariates determining them. There is no 

need to confine their set only to lake area.  Attractivity of a lake potentially may depend on many 

lake covariates, e.g. perimeter, depth, availability of certain facilities, fish species living in a lake 

and so on, and using model selection framework one can test these hypotheses and determine the 

relevant ones, provided they are known.  Flexibility due to model selection capabilities enabled us 

to build a portable gravity model without location-specific coefficients, and its use in another 

modeling project confirmed its efficiency in a new region. Finally, if more detailed surveys will be 

available in the future, this approach may allow the researches to study variability of propagule 

pressure, which may lead to more advanced invasion risk models.  

 

The gravity model developed in this paper was a part of bigger project on analysis of risk of 

invasion of Ontario lakes by a zooplanktonic invader spiny waterflea Bytotrephes longimanus (Yan 

et al. 2002), which poses a serious threat for lake ecosystems (see e.g. Boudreau and Yan, 2003). 

This invader quickly spreads between Ontario lakes (MacIsaac et al., 2004, ), and therefore 

portability of a gravity model for its propagule pressure is an important issue.   

 

2. The general structure of gravity models: accuracy and 

portability  

 

Most of deterministic gravity models used for predicting recreational boaters movement 

(Bossenbroek et al., 2001; Leung et al. 2004; Keller et al., 2009) are the so-called constrained 

gravity models (Thomas and Huggett, 1980). Here we briefly describe the main idea of constraining 

and explain, why do we need a different approach. 

 

The idea of a doubly constrained gravity model is to ensure good agreement between the model 

estimates ij  and actual data ijn  by introducing fitting parameters and imposing constraints: at each 

of NS source locations the total outflow in the model should be equal to that for the data, 
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Sj ijj ij Nin ,...,1,   ; similarly, at each of ND destinations the total inflows have to be equal, 

Di iji ij Njn ,...,1,   . To be able to satisfy the constraints, the model must have at least 

NS+ND free parameters.  The parameters are introduced as NS factors for the source terms (CTi), and 

ND factors for the attractivity terms (CWj).  The expression for the mean flow becomes 

 ijjWjiTiij dWCTC  , formulas for obtaining CTi and CWj can be found e.g. in (Thomas and 

Huggett, 1980).  At the same time, the dependencies of T, W, and  d  on the location covariates 

are fixed or contain only a few free parameters. For example, (Bossenbroek et al., 2001) use T={the 

number of boaters in a county}, W={lake area},    dd , where  to be fitted to data. These 

remaining parameters are obtained by minimizing the total squared error   
ij

ijij n
2

 or Pearson 

statistic  
ijij ijij n  /

2
. 

 

Partially constrained models use fewer unknown factors and constrain only outflows (production- 

constrained model) or only inflows (attraction-constrained model). This significantly simplifies 

expressions for CTi or CWj (Thomas and Huggett, 1980), though at the cost of quality of 

approximation and model efficiency (Muirhead, 2007). 

 

In some cases the constrained gravity models are enough for practical purposes. Muirhead (2007) 

has successfully used constrained gravity models to calculate Bythotrephes flow between the lakes 

named in the survey. This model was a part of the bigger model for predictions of Bythotrephes 

invasion risk. In this study, propagule pressure, as estimated by a production constrained gravity 

model, accounted for most of the inland lake invasions when combined with data on habitat 

suitability and fish community composition (Muirhead and MacIsaac, submitted). This class of 

gravity models has also successfully captured invasions for other species.  Similar production-

constrained gravity models for zebra mussel invasions have captured long-distance dispersal of 

zebra mussels across the U.S. (Bossenbroek et al., 2007), and estimates of boater traffic from these 

types of models correspond well with creel surveys (Leung et al., 2006).  

 

However, constraints impose a serious restriction on portability of the model to a new region or just 

to ability to add new locations.  For production-constrained models one has to know CTi, and hence 
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it is impossible to introduce a new source without doing a new survey and rebuilding the model. 

New destinations, on the other hand, can be added. Similarly, for attraction-constrained model one 

can add new sources, but not destinations. Finally, doubly constrained models do not allow any 

extensions. Modeling of invasion progress typically require adding new sources, and considering 

different region require adding new destinations, that is full model portability.  In our studies we 

needed a portable gravity model that can be fitted to data for the part of Ontario lakes covered by 

the boater survey, and subsequently used for the lakes from a different part of Ontario, where no 

survey data were available. 

 

To achieve full portability, it is necessary to minimize the number of model parameters that are 

uniquely related to a certain lake or the whole region. Attractivity of a location W must have the 

same functional form for all locations, and dependence on the specific location must appear only 

through covariates characterizing it.  For example, the relation  iii AAW 


exp  where  and  are 

the same for all locations is portable, while i
ii AW


  with different i for each location is not.  We 

may assume that parameters  and  reflect some patterns of boater decision-making, and hence 

may be used at a different place. Parameters i also may reflect the same patterns, but they are not 

defined outside the survey region.  

 

At the same time, at least one parameter cannot be transferred to other region: all estimated ij  must 

be proportional to the total number of travelers in a system. Some models satisfy explicit constraint 

 
ij

ij
ij

ij n  or an equivalent one, or it may implicitly emerge from data fitting.  In another 

region the total number of travelers is different, and hence the common factor should change. 

However, a portable model in a new region should be able to provide relative intensities of transport 

flows, and hence relative invasion risks.  This may be valuable information for prediction and 

management of invasions. 

 

Therefore, a natural strategy to build a portable model is to increase the number of common fitting 

parameters in attractivity and deterrence terms, and to reduce the region-dependent parameters to a 

common factor only, that is  
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      parameters,parameters,covariatesparameters,covariates ijWjjWiiij dWWC  (2) 

 

Parameters may be fitted by standard least squares methods, as with other deterministic models. The 

number of parameters has to be sufficiently large to ensure good fitting properties.  However, this 

raises a problem of model selection: what is the reasonable number of parameters that describes the 

transportation mechanism, but does not entail overfitting. Within deterministic framework this 

question cannot be easily answered.  In principle, one can consider least square fitting as likelihood 

maximization with a special form of likelihood function   
ij ij

2
errorexp~ . This formally allows 

one to apply statistical model selection criteria, such as AIC. However, such an introduction of 

stochasticity is artificial.  

 

More natural approach is to develop a stochastic gravity model and to apply information-based 

model selection criteria. In economical applications there are examples of stochastic gravity models 

(e.g. Flowerdew and Atkin, 1982; Sen and Smith, 1995). We decided to develop a portable 

stochastic gravity model suitable for ecological applications.  

 

3. Stochastic gravity model and inference 

 

3.1. The boater flow as a Poisson process 

 

We assume that individual boaters randomly decide to visit a certain pair of lakes, but probability of 

this decision depends on the lake characteristics.  The total number of boaters using lakes i and j, nij 

we describe by a Poisson distributed random variable, 

 ijijn Poisson~ ,         

We will apply gravity model of the form (2) for ij , the mean number of boaters visiting one of the 

lakes after visiting another.  As we have mentioned before, the results of the survey contain only the 
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list of lakes visited by each boater, and therefore they do not distinguish nij and nji.  We shall assume 

that nij=nji. This means that our formulas have to be symmetric in i and j.  

 

As we have said above, in ecological applications it has been assumed that lake attractivity is 

determined by area of the lake, though the form of the dependency may be different.  The same is 

true for the deterrence function. Most of the forms previously used can be combined in a single 

expression as follows,  

     max3max321 /expln/lnlnlnexp 21 AAaAAAAaAaAaW i

a

i

a

iiiii  ,  (3) 

      max5max54 /exp/lnexp 4 ddadddadad
a

 .     (4) 

Similarly, one can add dependence on perimeter and any other available lake and region 

characteristics.  Eventually this brings us to the framework of Poisson generalized linear models 

(GLM) with  

  ijkkij xaa0exp  ,        (5) 

where ak to be fitted to data nij, and xijk represent either  lndij, or  dij/dmax,  or a symmetric 

combinations of lake parameters like ji AA lnln   or  
max/ PPP ji  . (See the Appendix for an 

example of the derivation.)  We normalize distances, areas and perimeters to their maximum values 

to avoid situations when meaningful values of coefficients ak may be too small. The maximum 

likelihood fitting of such GLM models is a well-elaborated procedure that can implemented in R 

(Crawley, 2007). 

 

3.2. Available covariates for the stochastic model 

 

The covariates for a gravity model should reflect lake properties important for a traveler: 

convenience for boat launching and using, fishing, living, and so on.  It is accepted that lake area is 

the most important covariate, though there may be others.  Here we present the list of all 

characteristics we have tried.  Others may be important as well and potentially may be used for 

gravity model improvement when available. 
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Primary covariates 

 

Lake parameters: 

 Lake area Ai. 

 Lake perimeter Pi. 

 Lake coordinates, UTM easting and northing or longitude and latitude. 

 Distance between two lakes dij.  We have used distances along the roads and Euclidean 

distances between lake centroids.  The results were practically indistinguishable. Since 

Euclidean distances are easier to obtain, we shall consider them as distance data. 

 Elevation of lake surface above sea level.   

 

Population data: 

 2006 population census data from Stats Canada for Ontario forward sortation areas (FSA2), 

corresponding to first two letters of the postal code, Popk. We assume that the number of 

boaters in a certain region is proportional to the population of this region. 

 Coordinates for the centroids of FSA2 and distances from k-th area to i-th lake, lki. 

 

Derived covariates 

 

Our first experiments in fitting gravity models provided a number of covariate combinations that are 

statistically important but seem senseless from mechanistic point of view.  (See Section 5 for 

motivation and more details.)  Instead, it is more reasonable to use meaningful combinations of 

primary covariates as listed below. 

 Normalized area AN.  According to our results, lake attractivity saturates for large lakes, and 

better attractivity measure is  

0

0

0/1 AA

AA

AA

A
A

i

i

i

i
Ni





 ,    A03200km

2
.          (6) 

 

  Effective estimate of the number of boaters that may be attracted to a lake or boater 

“pressure”. We used a secondary gravity model to estimate boater pressure for lake i as    
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 areas FSA2
 allover 

Pop

k

kikbi lCb ,        (7) 

where (l) is a distance deterrence function and Cb is a normalization constant.  

 

  “Fitted perimeter” PFi. If we try to fit a linear model for the dependency of lake perimeter 

on lake area as 02.060.0,loglog 1101010  cAccP iii , this gives the expression 

for fitted perimeter: 

1010
c

i
c

Fi AP  .         (8) 

 

3.3. Statistical inference 

 

Likelihood and parameter estimates 

 

According to the form of our model, the log-likelihood function for the survey data is 

         


















ij ijijijijij ij

ij

n

ij
nn

n
l

ij

!lnlnexp
!

ln ,    (9) 

where ij  is defined by equation (5) and  denotes the set of covariates used in the model.  For the 

fixed model structure we obtained ML estimates of the parameters and characterized model 

performance by AIC, BIC and cross-validation.  Different sets of covariates were compared with the 

help of model selection criteria.   

 

Whenever possible, we used R function glm for model fitting and parameter estimates (Crawley, 

2007; R Development Core Team, 2009).  Otherwise we used R routine optim for likelihood 

maximization. 

 

On model selection criteria 

 

At present most popular model selection criteria seem to be AIC and BIC (Burnham and Anderson 

2001, 2004; Ghosh and Samanta, 2001). Their performance has been analyzed by several authors in 
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numerical experiments. In particular, it has been noted that there are two classes of problems: 

building the best predictor for the observed data and ''discovering the truth'' (Ghosh and Samanta, 

2001), that is building a model that best reflects the structure of the original system which generated 

the data. It has been hypothesized that AIC is better for the former task while BIC is better for the 

latter. In Burnham and Anderson (2004), this observation has been stated differently: BIC is better 

for detecting simple true models while AIC is good when the true model is complicated. As we had 

already said in the beginning, our major task was to make a ''portable'' model that can be calibrated 

for one set of lakes and then used for the other. A simpler model has a better chance to satisfy our 

requirements, and hence such problem should be closer to ''discovering the truth''. This makes BIC 

the main candidate for model selection tool. 

 

Burnham and Anderson (2001) note that the model with smaller AIC should not automatically be 

accepted as the best: AIC decrease by ~2 in practice often does not mean real improvement. 

Doubtless improvement requires 8AIC . Unfortunately, the authors did not specify, for what data 

set size their recommendations have been tested, and should they be adjusted with the size of the 

data set or not.  From the expression for nkL lnln2BIC   and our data set size of n=13790 lake 

pairs with 5.9ln n  it means that for formally better model with 0BIC  implies 5.7AIC . 

Applying Burnham and Anderson’s idea to our case, we can say that if 10~AIC  or 1~BIC , 

then acceptance of a more complicated model is not automatic and may be debatable. Below we 

apply these selection criteria and accompany it with the estimates of residual sum of squares 

  
ij

ijijn
2

RSS . 

 

Similarly, when we compare the models with the same number of variables, we choose one with the 

smallest BIC, and hence AIC. However, there may be other variable combinations giving models 

with only slightly higher BIC.  We shall call such models “potential competitors”.  If the BIC 

difference between competing models is small, with 10~BIC , a possible explanation may be that 

there are correlations among the used covariates, and the true model must contain less covariates.  

For definiteness, we consider as potential competitors models with BIC difference less than 30. 
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Cross-validation 

 

For validation purposes we applied the approach resembling “leave k out” algorithm.  To keep the 

amount of computations reasonable we have taken k equal to 10% of the data.  The brief description 

of the algorithm is as follows.   (a) We randomly split the data set into 10 groups. (b) We exclude 

one group, fit the model to the remaining data, and then calculate log-likelihood and RSS for the 

excluded part.  (c) This is repeated for each of 10 groups, then all likelihoods and RSS are added up 

to form the validated log-likelihood, RSS, AIC and BIC.  (d) Calculations are repeated for 10 

different data set groupings, and we calculated the mean validated AIC, BIC and RSS. 

 

Validated BIC and RSS were used to verify BIC and RSS obtained during model fitting.  

 

4. Data for fitting the gravity model  

 

Our data came from existing surveys (Muirhead, 2007) within one of the mentioned above projects 

on Bythotrephes invasions in Ontario. The data for patterns of recreational travel were collected by 

the surveys. The surveys consisted of 17 questions designed to assess the risk of transporting aquatic 

invasive species during recreational boating and fishing.  At the basic level, trip information was 

collected on lakes that were visited previously, including whether recreational boaters visited lakes 

known to be invaded by Bythotrephes, and the maximum distance they trailed a boat after leaving 

one of these lakes.  

  

In July 2004 10,000 surveys were sent to owners of fishing licenses registered with the Ontario 

Ministry of Natural Resources (OMNR). 741 answers were received, and 394 of the responded 

owners kept their boat at a single lake and did not move to the others.  Boaters who travel with the 

boat have provided lists of the lakes that they visited during their trips. We assume that trips 

between all lakes in each list are likely.  Based on survey results, boaters visited 55 invaded (source) 

and 273 uninvaded (destination) lakes, Fig. 1.  For this set of lakes there was the table of road 

distances between source and destination lakes.  Due to invasion history, 49 out of 55 lakes were 

treated as both sources and destinations, that is were present in both categories.  This leaves only 
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13790 unique distances in the table.  The remaining 24991 pairs of destination-destination and 

source-source lake pairs were of no interest from invasion point of view, there were no road 

distance data for them, and we did not consider these pairs.  Therefore we have considered 13790 

lake pairs assuming symmetrical boater movement between these lakes, which provides sufficient 

amount of data for studying boater movement.  Processing of the survey data gave us the values of 

the observed number of travelers ijn  for 13790 lake pairs. Only 787 of the lake pairs were used by 

at least one boater ( 0ijn ), and only 34 of them were used by more than 4 boaters.  The most 

popular pair of lakes was used by 17 boaters.   

 

Geospatial data for each lake was provided by the OMNR through the Ontario Geospatial Data 

Exchange.  In addition to latitude and longitude of the lake centroid, data on lake area (in km
2
) and 

perimeter (km) were extracted through ArcGIS software (v 9.1, ESRI).  Road distance between lake 

pairs (dij) was calculated based on the minimum distance between lake centroids.  

 

5. A Hitch-Hiker’s guide to fitting stochastic gravity models 

5.1. Best model using only basic lake characteristics available from GIS 

data 

 

Building a gravity model for Ontario lakes we have started with search for the best functional form 

for a model using the most popular and basic lake characteristics: areas A and distances between the 

lakes d. Lake perimeter P has never been used before, but it is as basic characteristic as area, and we 

have added it as well. Distances between the lakes can be estimated in two ways: as a path along the 

roads and as Euclidean distance between lake centers. The first way is more accurate but requires 

information about roads as well, while the second one requires only knowledge of the lake 

coordinates.  For a part of lake pairs we had road distances, obtained in (Muirhead, 2007), and in 

likelihood estimates we used only this subset of lake pairs to compare results for both types of 

distances. The results were practically identical, in most cases the relative difference in AIC or BIC 

was less than 410 .  To save space and simplify the description of the results, below we present only 

those for the distances between lake centers. 



15 

 

Since we had no a priori information, what should be the model dependence on A, P, and d, we 

used three functional forms for area, as in (3), and two functional forms for both distance and 

perimeter, as in (4). This gives 7 potential GLM covariates xkij in (5), named in Table 1.  We tried all 

possible combinations of these covariates, that is 128=2
7
 different models. We split them in 8 

groups, according to the number of covariates used, and within each group we have selected the 

model with the minimum BIC.  

 

The results of model selection are presented in Table 1.  It shows, that up to 3 covariates there is 

significant decrease of BIC of 200 and more.  Starting with 4 variables the BIC decreases only by 

values ~1, and the model form becomes less and less interpretable mechanistically.  For this reason 

we selected the 3-covariate model with minimum BIC as the best one, which was  

  .19.1,53.0,2exp
max










 




A

AA
dAAC

ji

ijjiij     (10) 

This function is in good agreement with the ideas of gravity models, except for the exponential 

term. It corresponds to lake attractivity of the form  max/2exp~ AAAW iii 


, which shows, that 

lake attractivity attains its maximum for max26.0 AA  , and then decreases. This conclusion 

contradicts our understanding of attractivity mechanism.  We suggest the following interpretation of 

the exponential term: lake attractiveness increases only up to a certain lake size and does not grow 

further.  Very big and huge lakes have almost equal attractivity. Exponential term is the best 

possible approximation of this dependence within our set of models. 

 

To verify this hypothesis, we introduced normalized lake area AN  (6), such that for a very big lake 

normalized area tends to its maximum value A0. To determine A0, we did maximum likelihood fit to 

the 4-parameter model    
 ijNjNiij dAAC .  The resulting estimate of the limiting area is 

A03200km
2
. After that we have repeated the variable selection procedure replacing Ai with ANi, and 

the best model is  

   .18.1,58.0, 


ijNjNiij dAAC       (11) 

It has almost the same BIC as (7), 5925 vs 5924, but an easy and transparent interpretation. 
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The cross-validation technique provided very close values of validated AIC/BIC to those given in 

Table 1 or cited above.  For example, for model (11) the verified mean BIC was 5938.  What is 

important, the ordering of the validated BIC values was the same as for standard BIC, and hence 

they led to the same conclusion.  This was true for the cases below as well. 

 

Therefore, model (11) is the best one using only basic lake parameters. 

 

5.2. Model improvement with additional covariates 

 

One can assume that lake attractivity for boaters may be related not only with lake area, but with 

some other characteristics as well. To check this, we have enhanced model (11) with more 

covariates available (see Section 3.2): geographic coordinates and elevation.  Model selection 

procedure has shown that there was only one significant effect: use of latitude as a covariate 

decreases BIC  from 5925 down to 5757. The only reasonable interpretation is that it is related with 

proximity of the lakes to the boater’s residence.  Therefore, model improvement requires knowledge 

of the boater home locations.  We assumed that the number of boaters in a region is proportional to 

total population of the region.  Information about population is available in 2006 census, and to 

describe potential number of visitors to a certain lake we have used the secondary gravity model (7), 

which uses coordinates for both lakes and FSA domains. For its distance deterrence function we 

used the same type of dependence as in (11),    
 kiki ll .  Since  is very close to 1, in test 

calculations we use =1.  

 

The model (7) provides value proportional to potential number of visitors to lake i, bi.  Denoting 

lake attractivity by Wi, we may assume that the number of visitors to lake i is ~Wibi, and the number 

of those who decide to visit lake j later that is ~WibiWj.  Similarly the number of visitors to lake j, 

who decide to go to lake i is ~WjbjWi.  Therefore one can expect that  jijiij bbWW  ~ . We 

repeated the model selection procedure with elevation, coordinates, and one more covariate 

jiAij bbb  .  The best was a 3-variable model with BIC=5675 and cross-validated BIC=5687: 

     .36.1,01.1,58.0, 


jiijNjNiij bbdAAC    (12) 
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Lake coordinates were not significant covariates any longer. 

 

5.3. Final result: interpretation 

 

Mechanistic interpretation of model terms is always an asset.  Typically it is easier when the value 

that appears in the model has a simple dimension.  It would be easy to interpret if the following 

would be true: a) =0.5, then A

 has the dimension of length and may represent lake radius or 

perimeter. b) ==1, then there is just inverse proportionality for distance. c) =1, then the number 

of travelers is proportional to the total population size. Otherwise, if the population increases, say, 

two times, the number of travelers should increase 2
1.36

2.57 times.  

 

For this reason we have compared models that contain mean lake radius  2/AR  normalized by 

 2/00 AR  and some of the parameters fixed.  The results are shown in Table 2.  They allow us 

to make the following conclusions. 

 

1) Using mean lake radius provides significantly worse results, therefore 0.5. 

2) The hypothesis ==1 is consistent with the data and so attractivity of lake pairs scales with 

inverse distance. 

3) Setting =1 gives increase of BIC about 6, which does not allow us to completely reject the 

hypothesis that the number of travelers is proportional to population size. 

 

For the value of  we can suggest the following explanation.  It is very close to the value c1 in (8), 

where lake perimeter is fitted to area.  Therefore, we may assume that lake attractivity is 

proportional to the estimated or expected lake perimeter: the value that one may expect from 

glancing at the map.  If this is true, then  is related with a psychological effect, and the best way to 

estimate attractivity is through the area, not actual perimeter.  

 

Eventually we come to the best model  

     .1,01.058.0,09.037.1,
1




jiijNjNiij bbdAAC   (13) 
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6. Discussion 

 

The stochastic gravity models approach provides a number of benefits to the technical side of model 

building. It can be easily extended if additional covariates appear, and it may allow for more general 

modeling approaches with new research and management goals. 

 

From the technical side, most important features are more realistic data fitting for rarely used lake 

pairs and applicability of information-based model selection criteria for choosing the optimal set of 

covariates and functional forms for them. These features allowed us to build a portable gravity 

model. Portability may be an important property of gravity models, and not all models possess it, 

due to data requirements and constraints under which the gravity models are parameterized.  For 

example, the most highly constrained type of gravity model, the doubly-constrained gravity model, 

requires data on both outflows from invaded sources and inflows into invaded and noninvaded 

destinations to parameterize the model (Haynes and Fotheringham, 1984).  Portability is thus 

limited, as the pairwise number of trips between lakes i and j must be re-calculated as new lakes are 

added to the data set.  Unconstrained (this study) and production-constrained gravity models, on the 

other hand, are well suited for invasion risk management where propagule pressure estimates to 

each lake j, 
i

ij , can be easily recalculated for lakes not covered by previous surveys.  In 

production-constrained gravity models, the sum of pairwise trips for each source lake i must equal 

to data on the observed number of trips leaving each source, but pairwise trips to lakes from 

different data sources requires data on only measures of attraction, such as lake area (e.g. Siderelis 

and Moore, 1998, Leung et al., 2006) and distance between source and destination lakes. 

 

 In the final relation for the stochastic gravity model (13) we do not present the value of the 

factor C. Likelihood maximization with respect to it (or a0 in (5)) results in the constraint on the 

total number of trips:   
ij ijij ij n , and this equality defines C. Therefore, absolute values of 

ij  are still tied to the survey region and survey data.  However, it is natural to assume that other 

coefficients, , , , , and consequently the relative ij  values are associated with the principles of 

boater’s decision making, and hence can be used at other regions where the boaters behavior is 
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expected to be similar.  In some cases the unknown constant C can be estimated for the new region 

through the total number of boaters. In other cases, e.g. in fitting a binary classifier to 

presence/absence data,  is used with a factor to be fitted, and hence the value of C is not important. 

In other words, the gravity model (13) appears to be portable from one region to another. 

 

Stochastic gravity models, fitted by maximum likelihood estimation, have some advantages over 

their deterministic counterparts because it becomes possible to test hypotheses concerning 

additional covariates to ij and to simplify the functional form of the model if the covariates are not 

significantly different from zero. In our final model (13), the number of boat trips arriving at a lake 

depends on the population density of recreationalists surrounding the lakes (FSA2) and the distance 

of these population centers to each of the lakes.  Although data was not available on the absolute 

numbers of recreationalists that travel from specified regions (e.g. Bossenbroek et al., 2001), here 

we are assuming that the proportion of the population that trailers boats is the same across the FSA 

zones. 

 

When an invader spreads beyond the areas covered by surveys, portable gravity models can be 

applied there.  We are now using the model developed in this paper to determine the most important 

covariates for lake invasibility by Bythotrephes (Potapov et al. 2010) in 306 lakes not included in 

Muirhead’s 2004 survey (Section 4).  Using the relative mean boater flows (13), we have calculated 

total relative inflows of propagules into each lake, which appeared to be significantly better single 

predictor of invasions than the next best one, lake pH, with AIC=13.   

 

The stochastic gravity model approach can be easily extended if more covariates are available for 

the lakes covered by survey. Covariates influencing lake attractivity may include the presence of 

game fish species in the lake, water clarity, accessibility of the lake, as well as a suite of socio-

economic factors.  Interpretation of these factors in terms of perceived attractiveness is not always 

straightforward, however.  Similar to other gravity models of recreational boater movement 

(Bossenbroek et al., 2001, Leung et al., 2006), we used lake area as a measure of lake attractivity.  

Lake area may also be confounded as a primary measure of attractiveness since area is also 

correlated with highly desired attributes such as the number of boat launches and availability of 

support facilities (Siderelis and Christos, 1998).   
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The approach may be also extended by adding submodels of individual-decision making process 

such as a Random Utility Model.  The probability of choosing one destination over another is 

weighted by the cost to travel to those lakes, which is then nested as input into the gravity model 

(Siderelis and Moore, 1998). 

 

Although the number of boater trips between lakes was used as a measure of propagule pressure in 

this study, data may be collected from field experiments on actual number of invasive propagules 

per trip.  Propagule loads may be quantified for vectors associated with recreational boating such as 

the number of individual propagules collected from contaminated fishing lines, bait buckets, bilge 

water, etc.  Statistical techniques such as likelihood ratio testing may be used to test the significance 

or relative importance of each vector in the transportation pathway of recreational traffic. Such an 

approach would correspond with the EPPO’s (2007) recommendations to assess 1) the ease at which 

invasive propagules may be detected within specific vectors, 2) what is the distribution pattern of 

the vector with respect to destinations. 

 

The stochastic gravity model approach may also be extended by trying other statistical distributions 

beyond the Poisson for the number of trips from one lake to another.  As a result, statistical 

techniques may improve quality of gravity models in ecology. This is an area of ongoing research. 

 

Stochastic gravity models may allow to set up new modeling problems as well. Given that the mean 

number of boater flows between lakes follows a statistical distribution and maximum likelihood 

model fitting requires casting a gravity model in a probability mass function, a series of probability-

based management scenarios may be explored.  Such a framework has been recommended 

frequently for invasive species management (Maguire, 2004).  For example, a scenario may ask: 

given an expected mean number of boat trips between lakes from the model, what is the probability 

of observing at least one trip between specific invaded and non-invaded lakes. For invasive species 

that reproduce clonally such as zooplankton (e.g. Bythotrephes) or by vegetative fragmentation (e.g. 

Eurasian watermilfoil, Myriophyllum spicatum), small inocula size may be sufficient to establish a 

population providing environmental conditions are suitable (Drake et al., 2006).  The number of 

individuals of sexually-reproducing species required to establish a population, however, is likely 2-3 
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times higher in order of magnitude, with many more required for populations that experience Allee 

effects due to low mate densities and to withstand environmental variability (Leung et al., 2004; 

Lodge et al., 2006). 

 

Stochastic gravity models can provide both estimates of the boat traffic and information about its 

uncertainty arising from stochastic nature of the process errors in estimated model parameters.   

Availability of traffic estimates allows managers to assess the invasion risks and to make decisions, 

for example, about location and number of boater treatment stations, education posters etc.  

Uncertainty of predictions also may be important for better choice of management decisions (Regan 

et al., 2005; Cooney and Lang, 2007). 

 

In this paper we have proposed to use stochastic gravity models for modeling movement of boaters, 

and have developed an example of such a model based upon J. Muirhead 2004 survey. This 

approach naturally integrates randomness and uncertainty, and uses statistical model selection 

instead of constraints to improve the prediction accuracy. We hope that our model may be useful in 

further ecological studies and management applications. At the same time, there is a lot of room for 

model improvement in the statistical framework. 
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Appendix. An example of GLM form of stochastic gravity 

model. 

 

Let the attractivities Wi and Wj have the form (3), distance deterrence function (d) has the form (4), 

and we are building a gravity model of the form (2).  Then taking logarithm of  we obtain  

 ijjiij dWWC  lnlnlnlnln . 

Denoting a0=lnC and substituting (3) and (4), we have  
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Now let us denote  
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In this notation  

,ln 55443322110 ijijijijijij xaxaxaxaxaa   

or 

  .exp 55443322110 ijijijijijij xaxaxaxaxaa   

This is the expression for Generalized Linear Model (GLM), Eq. (5).  Therefore, representing the 

values of the lake covariates as their symmetric combinations xkij allows us to apply standard R 

routine glm for fitting a stochastic gravity model to survey data. 
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Table 1. Variable selection for Poisson generalized linear model (5) with the number of covariates xkij in the sum varying from 0 to 7. 

For each number of variables the model with the minimum BIC value has been selected. The corresponding AIC, BIC, and RSS 

values and the values of the coefficients ak in the sum are shown in respective columns.  The potentially competing models are those 

with BIC not exceeding the best BIC+30.  The best 3-covariate model is chosen as a result of model selection (bold). 

 

# of 

varia- 

bles 

Best 

BIC 

 

AIC 

 

RSS 

ak other models 

lndij dij/dmax lnA lnlnA A/Amax lnP P/Pmax # of 

competing 

models 

Next 

Best 

AIC 

Next 

Best 

BIC 

0 9572 9564 3915        0   

1 7559 7544 3393   0.30     0 7578 7593 

2 6144 6121 2466 -1.17  0.42     0 6320 6343 

3 5924 5894 2097 -1.19  0.53  -2.0   0 6049 6079 

4 5920 5883 2060 -1.18  0.56  -1.9  -0.4 5 5886 5924 

5 5915 5870 2114 -1.19  0.66 -0.37 -2.2  -0.6 8 5879 5924 

6 5909 5856 2101 -1.19  0.66 -0.61 -2.0 0.17 -1.1 4 5867 5920 

7 5914 5854 2087 -1.12 -0.7 0.66 -0.60 -2.0 0.17 -1.0 0   
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Table 2.  Testing hypotheses about model parameters. We fix part of the model coefficients 

according to the tested hypothesis and calculate the difference of the BIC for the tested model and 

the model (12) (row 4 here).  The results show that hypothesis that ==1 agrees with the data. The 

corresponding model (row 6) is reported as the best one, see (13). This model has the minimum AIC 

as well. 

# Model 

ij  

Fixed 

coefficients 

Fitted 

coefficients 

AIC BIC BIC 

1  
jiijNjNi bbdRCR 

1
 =1,   =1, =1  5735 5743 68 

2  
jiijNjNi bbdRCR 


 =1,   =1 

 

=0.9330.026 5730 5745 70 

3    
jiijNjNi bbdAAC 


 =1,   =1 =1.050.03 

=0.590.01 

5659 5682 7 

4    
 jiijNjNi bbdAAC  =1 =1.360.09 

=1.010.03 

=0.580.01 

5645 5675 0 

5    
 jiijNjNi bbdAAC   =1.910.03 

=0.990.04 

=0.580.01 

=0.740.20 

5645 5683 8 

6    
 jiijNjNi bbdAAC

1
 =1,   =1 =1.370.09 

=0.580.01 

5643 5663 -12 
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Fig. 1.  Ontario lakes covered by J. Muirhead’s survey and used for creating our stochastic gravity 

model. 


