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Abstract

We explore the connection between Eynard-Orantin Topological Recursion

(EOTR) and the asymptotic solutions to differential equations constructed

with the WKB method (named for its creators Wentzel, Kramers and Bril-

louin). Using the Airy spectral curve as an initial example, we propose a

general connection between topological recursion and WKB solutions to the

quantum curve generated via quantization of the defining algebraic curve.

We proceed further by examining the proposed connection in the con-

text of the genus one family of Weierstrass spectral curves. We construct the

perturbative wave-function and show that it is annihilated by a differential

operator which is not a quantization of the spectral curve. Furthermore, as a

consequence of equivalent approaches we also obtain an infinite collection of

identities relating cycle integrals of elliptic functions to quasi-modular forms.
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Chapter 1

Introduction

A spectral curve can, for the purpose of the introduction, be described as

an irreducible algebraic curve (call this Σ) on C2. By definition we can ex-

press this curve as the zero locus of some polynomial expression P (x, y) = 0.

Eynard-Orantin topological recursion (or EOTR) is a recursive algorithm that

takes in the data of a spectral curve, and outputs an infinite sequence of ob-

jects known as correlation functions. Despite their name they are actually

symmetric meromorphic differentials on Σn with g ≥ 0 and n ≥ 1.

These correlation functions can be prescribed a meaning depending on the

spectral curve. For example they can be related to a number of enumerative

invariants such as Gromov-Witten invariants, Hurwitz numbers, knot invari-

ants, and others (See for example [5, 6, 11, 12, 13, 15, 16, 18, 20, 19, 24, 27,

25, 26, 28, 30, 29, 32, 34, 36]).

EOTR’s origins are firmly rooted in the context of matrix models [14, 21,

27, 25] and as it turns out these origins can suggest connections between EOTR

and some a priori unrelated mathematical constructs.
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For example it is not immediately obvious that a method typically used

to solve the Schrodinger equation in non-relativistic quantum mechanics is

related to a set of objects generated from a quantum field theory. However

matrix model theory tells us that EOTR and the WKB method1 are in fact

related to one another, albeit indirectly.

More concretely matrix model theory provides us with a method for ex-

tracting a perturbative wave-function ψ(z) from topological recursion. It is

then expected that for some spectral curves this perturbative wave-function is

“killed” by a differential operator P̂ (x̂, ŷ) such that,

P̂ (x̂, ŷ)ψ(z) = 0. (1.1)

This operator is a quantization (a mapping of variables to operators) of

the defining algebraic curve (i.e. P (x, y) 7→ P̂ (x̂, ŷ)) known as a quantum

curve. Furthermore this implies that the perturbative wave-function should

be the WKB asymptotic solution for the above differential equation, since they

have the same exponential form. This expectation follows from determinantal

formulae in matrix models [2, 3].

We can explore the existence of such quantum curves using only topolog-

ical recursion with no reference to its matrix model roots. In fact there is

a straightforward method for constructing ψ(z) directly from the correlation

functions generated by topological recursion. However the question remains

is this expectation from matrix model theory a fact? That is to say, is this

perturbative wave-function in fact the WKB asymptotic solution to the quan-

1The reader may refer to [1] for more details about the WKB method in particular.
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tization of the spectral curve?

This question was answered for a large class of genus zero spectral curves in

[8] using the formulation posited in [10, 9]. More precisely: all spectral curves

whose Newton polygons have no interior point and that are smooth as affine

curves2. One such curve that belongs to this class is the Airy curve, which we

will explore explicitly.

We can then pose another question, does this connection hold for higher

genus spectral curves? In [7] we set out to answer this question for a family of

genus one spectral curves known as the Weierstrass spectral curves, given by

y2 − (4x3 − g2(τ)x− g3(τ)) = 0. (1.2)

This work was split among three approaches, all of which were seeking a

quantum curve generated by building a wave-function ψ(z). The first approach

adapted the work presented in [8], producing a perturbative wave-function and

subsequently a quantum curve.

The second approach is equivalent to the first, and produces the same

perturbative wave-function. The quantum curve, although equivalent, had a

much different form which led to an infinite number of identities for cycle

integrals of elliptic functions. This approach will be the main focus of this

document, as it was my contribution to [7].

Both perturbative approaches generated the quantized spectral curve but

with an infinite number of corrections that are unobtainable from the quanti-

zation procedure. Implying that the perturbative formulation is not the best

2For a more detailed explanation of these properties see [8].
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approach to generating higher genus quantum curves.

This spurred the exploration with the third approach, which is nonper-

turbative in nature. This approach also generated a quantum curve with an

infinite number of corrections. These corrections however are “nicer” since

they certainly can be generated through a quantization of the classical equa-

tion.

The primary goal of this document is to elaborate and expand on my

contribution to [7], namely the second perturbative approach eluded to above.

As a secondary goal, we intend to fill a gap in the literature by providing

a more informal exposition of the connection between WKB and topological

recursion, with the hopes that an advanced undergraduate or new graduate

student may be introduced to the topic via this document.

1.1 Outline

In Chapter 2 we introduce the background material required to define Eynard-

Orantin topological recursion (typically referred to as simply topological re-

cursion). We then proceed to explicitly define the structure of topological

recursion, including both the input data and the objects it produces.

In Chapter 3 we start with the simplest genus zero case as a foothold, the

Airy spectral curve, satisfying the following equation,

y2 = x. (1.3)

We focus on the second perturbative approach from [7] to find the quantum

4



curve directly from topological recursion. The known result is replicated and

the connection between topological recursion and the WKB expansion is then

stated more formally.

In Chapter 4 we introduce the background information required for topo-

logical recursion on a genus one spectral curve. Namely we introduce the torus,

and the elliptic functions on said torus.

In Chapter 5 the original results are tabulated and proven. We explore the

connection between WKB and topological recursion for the family of genus

one spectral curves, described by the Weierstrass equation, given by:

y2 = 4x3 − g2(τ)x− g3(τ). (1.4)

More precisely we will construct the quantum curve from the correlation

functions produced by topological recursion on this family of curves.

In doing so we obtain a quantum curve which, as expected (from matrix

model theory), is not a straightforward quantization of the spectral curve.

Instead we obtain an infinite number of corrections, which cannot be resolved

by the ambiguity in the defining classical equation.

We then compare this result to that obtained from the approach given in

[8]. The equivalence of these two approaches leads to an infinite collection of

identities for elliptic functions, the first of which we calculate explicitly.
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Chapter 2

Topological Recursion

2.1 Spectral Curve

Definition 2.1.1. A spectral curve is a triple (Σ, x, y) where Σ is a Torelli

marked, genus ĝ, compact Riemann surface3 and x and y are meromorphic

functions on Σ, such that the zeros of dx do not coincide with the zeros of dy.

In topological recursion we are interested in the branched covering π :

Σ 7→ P1 given by the meromorphic function x. Given this branched covering

we define the set of ramification points as the points that satisfy dx = 0 or

the poles of x of order greater than or equal to two. Essentially, a ramification

point is wherever the function behaves locally as either zn or 1
zn

for n ≥ 2. We

will denote this set of ramification points as R.

For the remainder of the document we will assume that the meromorphic

functions x and y satisfy a polynomial equation of the form:

3A Torelli marked compact Riemann surface Σ is a genus ĝ Riemann surface Σ with a
choice of symplectic basis of cycles (A1, . . . , Aĝ, B1, . . . , Bĝ) ∈ H1(Σ,Z).
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P (x, y) = y2 − f(x) = 0. (2.1)

This requirement implies that x generates only a double cover, hence there

are only two sheets to this covering. Furthermore this implies that all ram-

ification points are simple (since there are only two sheets that can meet).

This simplifies both the formulation of topological recursion as well as the

properties of the extracted objects.

sa(z)

x(a) x(z)
P
1

Σ

Figure 2.1: Pictorial representation of a double covering with the deck transforma-
tion sa(z). Every point in P1 is mapped by the inverse projection π−1 to two points
in Σ. The deck transformation sends one point to other and vice versa. These two
points meet at the simple ramification points.

For a given ramification point a in R we can define a local deck transfor-

mation map sa(z) that satisfies the following two properties:

7



x(sa(z)) = x(z) and sa(a) = a. (2.2)

This deck transformation map jumps from one sheet of the covering to the

other. We can visualize this double covering alone with the deck transforma-

tion map in figure 2.1.

We now define a number of objects essential to formulating topological

recursion.

2.2 Fundamental Objects

2.2.1 Billinear Differential

Definition 2.2.1. The canonical bilinear differential of the second kind (de-

noted B(z1, z2)) is the unique bilinear differential on Σ2 satisfying the condi-

tions:

• It is symmetric, B(z1, z2) = B(z2, z1);

• It has only one pole, of order two, along the diagonal z1 = z2, with

leading order term (in any local coordinate z)

B(z1, z2) →
z1→z2

dz1dz2

(z1 − z2)2
+ . . . ; (2.3)

• It is normalized on A-cycles:

∮
z1∈Ai

B(z1, z2) = 0, for i = 1, . . . , ĝ. (2.4)

8



Remark 2.2.2. This definition refers to being normalized over the A cycle. This

is trivially true for genus zero spectral curves and as such we will withhold the

discussion of cycles for the time being, introducing it more explicitly in the

context of the genus one case.

2.2.2 Recursion Kernels

Given a spectral curve L = (Σ, x, y) we can define a recursion kernel for each

of the ramification points resulting in a “family” of recursion kernels.

Definition 2.2.3. For each a in the set of ramification points R, we define a

meromorphic one form in z0, known as a recursion kernel:

Ka(z0; z) =

∫ z
t=α

B(t, z0)

(y(z)− y(sa(z))) dx(z)
, (2.5)

where α ∈ Σ is an arbitrary base point.

Remark 2.2.4. It is important to note that 1
dx(z)

is actually the contraction

operator with respect to the vector field
(

dx
dz

)−1 ∂
∂z

. It can be assumed that

for the remainder of the document “division” by a differential means precisely

this contraction.

2.3 Eynard-Orantin Topological Recursion

With the preliminary definitions settled we can now define Eynard-Orantin

Topological Recursion, which will be referred to as simply topological recursion

for the remainder of the document.

9



Definition 2.3.1. Given a spectral curve L = (Σ, x, y), where x gives rise to

a double covering, a set of simple ramification points denoted R, and corre-

sponding deck transformations sa(z).

We first define the “initial conditions” by the following:

W0,1(z) = y(z)dx(z) and W0,2(z1, z2) = B(z1, z2). (2.6)

For all g, n ∈ N such that 2g+n−1 ≥ 1 there exists the following relation,

Wg,n+1(z0, z) =
∑
a∈R

Res
z=a

Ka(z0; z)R(2)Wg,n+1(z, sa(z); z), (2.7)

with the “recursive structure” explicitly defined as:

R(2)Wg,n+1(z, sa(z); z) = Wg−1,n+2(z, sa(z), z)

+
∑

g1+g2=g

′∑
I∪J=z

Wg1,|I|+1(z, I)Wg2,|J |+1(sa(z), J). (2.8)

The primed sum in (2.8) denotes that we are excluding the cases where either

(g1, |I|) or (g2, |J |) equals (0, 0).

Remark 2.3.2. It is worth emphasizing that we always exclude the cases where

g is negative, effectively setting any Wg,n = 0 with g < 0.

We call the Wg,n objects correlation functions, however they are not func-

tions but instead differential forms. Nevertheless we will stick to this nomen-

clature as it is standard throughout the literature.

We can segment the correlation functions into levels characterized by the

number 2g + n− 1 = k. We call the forms found via recursion “stable forms”

10



i.e. those on the levels k ≥ 2, and those not found with recursion (W0,1 and

W0,2) unstable forms.

Using the recursion structure we can write down the general form for the

k = 1, 2 and 3 levels.

k = 1

W0,2(z1, z2) = B(z1, z2) (2.9)

k = 2

W0,3(z0, z1, z2) =
∑
a∈R

Res
z=a

Ka(z0, z) {W0,2(z, z1)W0,2(sa(z), z2)

+W0,2(sa(z), z1)W0,2(z, z2)} (2.10)

W1,1(z0) =
∑
a∈R

Res
z=a

Ka(z0, z)W0,2(sa(z), z) (2.11)

k = 3

W0,4(z0, z1, z2, z3) =
∑
a∈R

Res
z=a

Ka(z0, z)

× {W0,3(z, z1, z2)W0,2(sa(z), z3) +W0,3(sa(z), z1, z2)W0,2(z, z3)

+W0,3(z, z2, z3)W0,2(sa(z), z1) +W0,3(sa(z), z2, z3)W0,2(z, z1)

+ W0,3(z, z1, z3)W0,2(sa(z), z2) +W0,3(sa(z), z1, z3)W0,2(z, z2)}

(2.12)

11



W1,2(z0, z1) =
∑
a∈R

Res
z=a

Ka(z0, z) {W0,3(z, sa(z), z1)+

+W1,1(z)W0,2(sa(z), z1) +W1,1(sa(z))W0,2(z, z1)} (2.13)

We can also list a number of useful properties for the stable forms.

2.3.1 General Properties of Stable Correlation Func-

tions

The correlation functions at levels k ≥ 2 have a few general properties that

are worth elaborating.

1. Symmetric with respect to exchange of coordinates

If we define a map that exchanges the ith and jth entries in the argu-

ment vector (denoted σij(z)), it can be proven that the stable correlation

functions satisfy the following property:

Wg,n(σij(z)) = Wg,n(z). (2.14)

That is to say that the correlation functions are symmetric.

2. Poles only at Ramification points

It can also be proven that if a stable correlation function has poles they

must be at ramification points.

3. Stable Forms are odd

It is also possible to show that when x gives rise to a double cover, all of

the correlation functions are odd except for W0,2(z1, z2). In other words

12



they satisfy the property:

Wg,n(z1, · · · , zn) +Wg,n(−z1, · · · , zn) = 0 for (g, n) 6= (0, 2), (2.15)

which by the symmetry property extends to all variables in the argument

vector.

W0,2(z1, z2) on the other hand satisfies its own special property:

W0,2(z1, z2) +W0,2(−z1, z2) =
dx(z1)dx(z2)

(x(z1)− x(z2))2
. (2.16)
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Chapter 3

Airy Spectral Curve

With the general framework of topological recursion established, we can now

demonstrate more explicitly how to work with this structure to calculate the

correlation functions. We will then replicate the known quantum curve result

(for example see [17]).

3.1 Topological Recursion on the Airy curve

The Airy spectral curve is given by the spectral curve L = (P1, x, y), with x

and y taking the following forms:

x(z) = z2, and y(z) = z. (3.1)

x and y obviously satisfy the following characteristic equation:

y2 − x = 0. (3.2)

14



There are two ramification points, one coming from the single zero of dx

at z = 0 and the other from the double pole of x at z = ∞. Thus the set of

ramification points is R = {0,∞}. The deck transformation map is globally

defined in this case and is the same for both ramification points, it is given by

sa(z) = −z.

We must also nail down the “initial conditions”, to do this we need to

find an appropriate differential for B(z1, z2) that satisfies all the conditions in

Definition 2.2.1. The only option we have is

B(z1, z2) =
dz1dz2

(z1 − z2)2
, (3.3)

since there is no holomorphic differential on P1, and hence nothing we can add

to this.

Finally we can write down our recursion kernel which is identical for both

ramification points,

K(z; z0) = − dz0

4z2dz

[
1

z − z0

− 1

α− z0

]
. (3.4)

Remark 3.1.1. It can be shown via recursion that the pole at z =∞ does not

contribute a residue for any correlation function calculation using topological

recursion. Hence we will exclude it from the sum over residues.

We can now use topological recursion to calculate the first few correlation

functions (those at the k = 2 level), beginning with the general form for

W0,3(z0, z1, z2) given in (2.10) and making the appropriate substitutions (again

noting that the residue at z =∞ does not contribute) results in:

15



W0,3(z0, z1, z2) = −dz0Res
z=0

1

4z2dz

[
1

z − z0

− 1

α− z0

]
×
{

dzdz1

(z − z1)2

−dzdz2

(z + z2)2
+
−dzdz1

(z + z1)2

dzdz2

(z − z2)2

}
. (3.5)

It is easy to see that none of the terms in brackets have a pole at z = 0. This

means that the residue will pick out the linear term in the bracketed part’s

power series. That is to say that we simply evaluate the partial derivative

(with respect to z) of the bracketed parts at z = 0. We can calculate this

derivative quite quickly by noting that

∂

∂z

[
1

(z − z1)2

1

(z + z2)2
+

1

(z + z1)2

1

(z − z2)2

∣∣∣∣
z=0

= 0. (3.6)

We obtain the following result:

W0,3(z0, z1, z2) = −dz0dz1dz2

2z2
0z

2
1z

2
2

. (3.7)

We can proceed in a similar fashion to obtain W1,1(z0), starting with the

general form given in (2.11) and continuing as before

W1,1(z0) = −dz0Res
z=0

1

4z2dz

[
1

z − z0

− 1

α− z0

]
−dz2

4z2
. (3.8)

Again the bracketed part has no pole at z = 0, meaning the residue will pick

out the cubic coefficient in its power series, leading to:

W1,1(z0) = − dz0

16z4
0

. (3.9)
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We can continue this process indefinitely to calculate any Wg,n, however

for both brevity and sanity we will move onto something more exciting.

3.1.1 Seemingly Arbitrary Combination

Now we will calculate a few quantities that appear to be pulled from thin air,

but as we will see this single calculation in conjunction with the next section,

will provide the core for the rest of our investigation.

S0(z) =

∫ z

∞
y(z)dx(z) =

∫ z

∞
2z2dz, (3.10)

S1(z) =

∫ z

∞

∫ z

∞
W0,2(−z1, z2), (3.11)

S2(z) =
1

3!

∫ z

∞

∫ z

∞

∫ z

∞
W0,3(z0, z1, z2) +

1

1!

∫ z

∞
W1,1(z0). (3.12)

Proceeding with these calculations, ignoring the infinite constants4 that

arise in S0, and S1 (as physicists love to do), and expressing the results in

terms of x = z2 we obtain the following:

S0(x) =
2

3
x3/2, (3.13)

S1(x) = −1

4
log(x), (3.14)

S2(x) =
5

48x3/2
. (3.15)

With these quantities lodged firmly in the back of our minds we will shift

the focus to a topic that seems unrelated to the preceding discussion. However

4More precisely we are not simply “ignoring” the constants, this is a perfectly well defined
regularization.
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as we was previously eluded to, there is a very interesting thread tying it into

the web we have woven thus far.

3.2 WKB Method

Typically discussed within the context of non-relativistic quantum mechanics,

the WKB method (named after its creators Wentzel, Kramers, and Brillouin)

is used to provide approximate solutions to ordinary differential equations,

more specifically the Schrodinger equation.

The treatment presented in most undergraduate textbooks focuses only on

a very rough version of this approximation, that is to say it only includes the

first term in a much larger asymptotic solution. In addition to this they also

obtain so called “connection formulae” for stitching a series of these solutions

together at special points. Most of this is irrelevant to the current discussion

and instead we will focus on the expansion itself.

3.2.1 Calculating the Expansion

Beginning with a differential equation of the following form5:

[
~2 d2

dx2
− V (x)

]
ψ(x) = 0 where ~ is a small parameter, (3.16)

5The WKB method can be used to provide asymptotic solutions to higher order differ-
ential equations, but since we deal only with second order equations in this document we
restrict its definition here.
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and inserting the ansatz given by

ψ(x) = exp

(
1

~

∞∑
k=0

~kSk(x)

)
, (3.17)

we obtain the following equation:

( ∞∑
k=0

~k+1S ′′k (x)

)
+

(
∞∑
k=0

~kS ′k(x)

)2

− V (x)

ψ(x) = 0. (3.18)

Collecting terms according to powers of ~ leads to

∞∑
k=1

~k
(
S ′′k−1(x) +

k∑
m=0

S ′m(x)S ′k−m(x)

)
+ S ′0(x)2 − V (x) = 0. (3.19)

Solving this order by order in ~ we obtain a recursion relation for the con-

stituent functions Sk(x):

S ′′k−1(x) +
k∑

m=0

S ′m(x)S ′k−m(x) = 0. (3.20)

Expanding this for the first few orders we see that the initial case S0(x) is

completely determined by the function V (x), and the rest are recursively de-

termined via the general formula:

O(~0) (S ′0(x))2 = V (x), (3.21)

O(~1) S ′1(x) = − S ′′0 (x)

2S ′0(x)
, (3.22)

O(~2) S ′2(x) = − 1

2S ′0(x)

[
S ′′1 (x) + (S ′1(x))2

]
. (3.23)
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As you may have guessed by now these quantities are related to the ones

calculated above from the topological recursion.

3.2.2 Constructing the Operator

Let us outline a way of constructing a differential operator from the spectral

curves characteristic equation P (x, y) = 0. We will assign operators to each

variable in this equation as follows:

y 7→ ŷ = ~
d

dx
and x 7→ x̂ = x. (3.24)

Remark 3.2.1. There is ambiguity in the ordering of terms involving products

of x and y, since the operators do not commute but the classical variables

do. This will be discussed when stating the connection between WKB and

topological recursion formally.

Labelling the resulting differential operator as P̂ (x̂, ŷ) and having it act on

its homogeneous solution denoted ψ(x) results in the differential equation:

P̂ (x̂, ŷ)ψ(x) = 0. (3.25)

We will now construct an operator from the Airy spectral curve with this

mapping and apply the WKB method to the resultant differential equation.

3.2.3 Airy Operator

If we apply this mapping to the Airy spectral curve we obtain the following

differential equation:
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[
~2 d2

dx2
− x
]
ψ(x) = 0. (3.26)

If we apply the WKB “algorithm” to the above differential equation, we

obtain the following results for the first few Sk’s:

S ′0(x) =
√
x, (3.27)

S ′1(x) = − 1

4x
, (3.28)

S ′2(x) = − 5

32x5/2
. (3.29)

Integrating each of these expressions and comparing the results to (3.13), (3.14)

and (3.15), we see that they are identical! Surely this hints to the deeper

connection between topological recursion and the WKB expansion.

We will first more formally define the general form of this connection. After

this we will explore it in the context of the Airy case, recovering this differential

operator (known as a quantum curve) from topological recursion, and in doing

so proving these identities for the Airy case at all orders of ~.

3.3 Definition of TR-WKB Connection

Conjecture 3.3.1. Given a spectral curve L = (Σ, x, y) we first submit its

data to topological recursion and construct the following perturbative wave-
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function:

ψ(z) = exp

{
1

~
∑

2g+n−1≥0

~2g+n−1

n!

∫ z

Q

· · ·
∫ z

Q

(
Wg,n(z1, · · · , zn)

− δg,0δn,2
dx(z1)dx(z2)

(x(z1)− x(z2))2

)}
.

(3.30)

where Q is a chosen pole of the meromorphic function x(z).

It is then proposed that there exists a differential operator P̂ (x̂, ŷ) such that,

P̂ (x̂, ŷ)ψ(z) = 0. (3.31)

This operator is constructed by applying the mappings given by

y 7→ ŷ = ~
d

dx
and x 7→ x̂ = x, (3.32)

to the spectral curve’s characteristic equation P (x, y) = 0. We call this process

quantizing the spectral curve and the result is known as a quantum curve.

There is ambiguity in the ordering of non-commutative operators, and as a

consequence this quantization is not unique, and the choice of P̂ (x̂, ŷ) is related

to the choice of pole Q.

To elaborate on the uniqueness issue, suppose we have a spectral curve

that includes terms with products of x and y (i.e. a term of the form xy).

When quantized the resulting quantum curve has some ambiguity, since x̂ and

ŷ do not commute. What this implies is we have a choice of ordering when

dealing with terms that commute in the classical equation but do not after

quantization.
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It is shown in [8] that the choice of pole Q used in the construction of ψ(z),

affects this ordering. That is to say that if we pick a pole Q and the “correct”

ordering this conjectured connection is uniquely satisfied. How to choose this

correct ordering based solely on the pole Q is not clear however.

This ordering issue does not arise in the following investigation since both

the Airy and Weierstrass spectral curves do not have terms involving products

of x and y. There is however, another issue pertaining to commutativity.

Using the Airy spectral curve as an example we see that classically the

following two polynomial expressions are equivalent:

y2 − x = 0 and y2 − x+ (xy − yx) = 0. (3.33)

However upon quantizing, the latter equation gains an extra additive constant

~ due to the commutation relation of the operators. What this means is it

is possible to have classically “transparent” terms that become opaque upon

quantization. This will be relevant when discussing the quantum curve in the

Weierstrass case since we end up with an infinite number of corrections in ~

to the quantum curve.

As previously mentioned, this conjecture was proven for a large class of

genus zero curves (see [8]), which includes the Airy spectral curve. In the

following section we will provide a proof for the Airy curve through alternative

means.
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3.4 Airy Quantum Curve

We will seek to show that the quantization of P (x, y) = 0, kills the perturbative

wave-function ψ(z) by following the steps outlined below.

1. Residues: We must first find the correlation functions, instead of ap-

pealing to a direct approach (which would be infinitely time consuming)

we use the fact that the sum of residues of a meromorphic differential

on a Riemann surface is zero. Using this fact we can generate a new

recursion relation that does not contain a residue calculation.

2. Integration: We then integrate the resulting expressions in all variables

along a path with base point at the single pole of x(z) at z =∞.

3. Specialization: We then specialize the result of the previous step by

setting all variables to the same value, i.e. send zi → z for all i ∈

{0, 1, · · · , n}.

4. Summation: Finally we sum over these expressions in the same fashion

as the exponential argument of the perturbative wave-function, that is

we couple each Wg,n with an appropriate factor of ~ and sum them

according to their level 2g + n− 1 = k.
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3.4.1 Residues

Proposition 3.4.1. For 2g + n− 1 ≥ 1,

Wg,n+1(z0, z)

dz0

=

1

4z2
0dz2

0

Wg−1,n+2(z0,−z0, z) +
′∑

g1+g2=g
I∪J=z

Wg1,|I|+1(z0, I)Wg2,|J |+1(−z0, J)


+

n∑
i=1

dzi

(
1

4z2
i dzi

[
1

zi − z0

+
1

zi + z0

]
Wg,n(−zi, z \ {zi})

)
. (3.34)

Proof. Starting with the Airy topological recursion (yet again noting that the

residue at z =∞ does not contribute),

Wg,n+1(z0, z) = −Res
z=0

dz0

4z2dz

[
1

z − z0

− 1

α− z0

]
R(2)Wg,n+1(z,−z; z). (3.35)

Now using the fact that the sum of residues of a meromorphic form on a

compact Riemann surface is zero, we can replace the residue calculation above

with an equivalent expression,

Wg,n+1(z0, z) =
∑
Poles
Q/∈R

Res
z=Q

dz0

4z2dz

[
1

z − z0

− 1

α− z0

]
R(2)Wg,n+1(z,−z; z).

(3.36)

Clearly there is a pole at z = z0 but there is also a collection of second

order poles at each of the marked points z = ±zi. To see where these extra

poles come from we must examine the recursive structure in (2.8) more closely.

More specifically we need to dissect the following summation
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∑
g1+g2=g

′∑
I∪J=z

Wg1,|I|+1(z, I)Wg2,|J |+1(−z, J)

=
∑
stable

Wg1,|I|+1(z, I)Wg2,|J |+1(−z, J)

+
n∑
i=1

W0,2(z, zi)Wg,n(−z, z \ {zi}) +W0,2(−z, zi)Wg,n(z, z \ {zi}),

(3.37)

where the stable6 sum indicates that we exclude the terms with (g1, |I|), (g2, |J |)

= (0, 0) or (0, 1).

Keeping in mind the fact that all the correlation functions only have poles

at z = 0 except for W0,2 means we only need to seek out such terms containing

W0,2. If we focus on the last line in (3.37) we see that there are two instances

of W0,2 for each marked point zi, these are the source of the additional poles

because of their limiting behavior

W0,2(z, zi)→
dzdzi

(z − zi)2
as z → zi, W0,2(−z, zi)→ −

dzdzi
(z + zi)2

as z → −zi.

(3.38)

All of this together means we only need to calculate the residue around z0 and

each of the marked points z = zi for i ∈ {1, · · · , n}.

For the pole at z = z0 we obtain

1

4z2
0dz0

Wg−1,n+2(z0,−z0, z) +
′∑

g1+g2=g
I∪J=z

Wg1,|I|+1(z0, I)Wg2,|J |+1(−z0, J)

 .

(3.39)

6We define the stable correlation functions as those calculated via recursion. In other
words all correlation functions except W0,2 and W0,1.
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The contributions from the poles at z = ±zi is given by

dzi

(
1

4z2
i dzi

[
1

zi − z0

+
1

zi + z0

]
Wg,n(−zi, z \ {zi})

)
dz0. (3.40)

Summing up all the contributions and dividing everything by dz0 results in

the proposed expression.

Corollary 3.4.2. For 2g + n− 1 ≥ 0,

−Wg−1,n+2(−z0, z0, z)

dx(z0)2
+

∑
g1+g2=g
I∪J=z

(
Wg1,|I|+1(−z0, I)

dx(z0)

)(
Wg2,|J |+1(−z0, J)

dx(z0)

)

+
n∑
i=1

((
dx(zi)

(x(z0)− x(zi))2

)
Wg,n(−z0, z \ {zi})

dx(z0)

−dzi

(
1

(x(z0)− x(zi))

Wg,n(−zi, z \ {zi})
dx(zi)

))
= 0,

(3.41)

while for (g, n) = (0, 0),

W0,1(−z0)

dx(z0)

W0,1(−z0)

dx(z0)
− x(z0) = 0. (3.42)

Proof. Starting with the previous proposition, we must massage this into a

form more suitable for integration and specialization. To do this we must deal

with any W0,2(z1, z2) terms in this expression since

W0,2(z1, z2)→∞ as z1 → z2. (3.43)

However if we negate an argument, this issue disappears:

W0,2(−z, z) = −dz2

4z2
. (3.44)
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Therefore we must seek to replace any instance ofW0,2(z1, z2) withW0,2(−z1, z2)

and deal with the singularity later. To begin we note that

dz1dz2

(z1 − z2)2
− dz1dz2

(z1 + z2)2
=

(2z1dz1)(2z2dz2)

(z2
1 − z2

2)2
, (3.45)

rewriting this in a more convenient form we see

W0,2(z1, z2) +W0,2(−z1, z2) =
dx(z1)dx(z2)

(x(z1)− x(z2))2
. (3.46)

This along with the fact that all other correlation functions are odd in all ar-

guments implies that we can simply switch the argument’s sign in the relevant

correlation functions.

Wg,n+1(z0, z)

dz0

=
n∑
i=1

1

4z2
0dz0

(
dx(z0)dx(zi)

(x(z0)− x(zi))2
Wg,n(−z0, z \ {zi})

)

+
1

4z2
0dz2

0

Wg−1,n+2(z0,−z0, z)−
′∑

g1+g2=g
I∪J=z

Wg1,|I|+1(−z0, I)Wg2,|J |+1(−z0, J)


+

n∑
i=1

dzi

(
1

4z2
i dzi

[
1

zi − z0

+
1

zi + z0

]
Wg,n(−zi, z \ {zi})

)
(3.47)

We can also clean up the final line by noting that

1

4z2
i dzi

[
1

zi − z0

+
1

zi + z0

]
= − 1

dx(zi)

1

x(z0)− x(zi)
. (3.48)
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Finally we make the following substitution 7,

Wg,n+1(z0, z)

dz0

= −Wg,n+1(−z0, z)

dz0

= 2
W0,1(−z0)

dx(z0)

Wg,n+1(−z0, z)

dx(z0)
, (3.49)

which results in the given corollary.

3.4.2 Integration

The next step is to integrate the expressions from Corollary 3.4.2 in each of the

coordinates except z0. These integrals are along a path with the base point at

the single pole of x(z) to the marked point itself. As was mentioned previously,

the correlation functions only have poles at z = 0, hence these integrals do

converge.

Definition 3.4.3. We define the following quantity:

Gg,n+1(z0; z) :=

∫ z1

∞
· · ·
∫ zn

∞
Wg,n+1(−z0, z1, · · · , zn). (3.50)

It is important to note that the first variable is negated and we do not integrate

over it.

7This is true since W0,1(−z0) = y(−z0)dx(−z0).
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Lemma 3.4.4. For 2g + n− 1 ≥ 0,

−
(

∂

∂x(zn+1)

Gg−1,n+2(z0; z, zn+1)

dx(z0)

)
zn+1=z0

+
∑

g1+g2=g
I∪J=z

(
Gg1,|I|+1(z0, I)

dx(z0)

)(
Gg2,|J |+1(z0, J)

dx(z0)

)

−
n∑
i=1

1

x(z0)− x(zi)

(
Gg,n(z0; z \ {zi})

dx(z0)
− Gg,n(zi; z \ {zi})

dx(zi)

)
= 0, (3.51)

while for (g, n) = (0, 0),

G0,1(z0)

dx(z0)

G0,1(z0)

dx(z0)
− x(z0) = 0. (3.52)

Proof. For 2g + n− 1 ≥ 0, all of the terms follow directly from the definition

of Gg,n except for the last term, where we must be careful of the base point

evaluation:

lim
zi→∞

1

x(z0)− x(zi)

(
Gg,n(z0; z \ {zi})

dx(z0)
− Gg,n(zi; z \ {zi})

dx(zi)

)
= 0. (3.53)

This is true since we know that x(z) has a pole at z =∞ and the Wg,n’s only

have poles at the ramification point z = 0.

For (g, n) = (0, 0) we do not need to integrate the expression so it follows

directly with the identification W0,1(−z0) = G0,1(z0).

3.4.3 Principal Specialization

Now we will send all of the variables to the same value, in other words we will

send zi → z for all the coordinates, including z0.
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Definition 3.4.5. We define the partial specialization of Gg,n+1(z0; z) as:

Ĝg,n+1(z0; z) = Gg,n+1(z0; z, · · · , z), (3.54)

and the full specialization is then given by

Ĝg,n+1(z; z). (3.55)

Before we can specialize the entire expression in Lemma 3.4.4 we must first

focus on the derivative term, which requires a few general results related to

specialization.

Proposition 3.4.6. For 2g + n− 1 ≥ 0,

(
∂

∂x(zn+1)

Gg−1,n+2(z0; z, zn+1)

dx(z0)

)
z0=z

...
zn+1=z

=
1

n+ 1

(
∂

∂x(z)

Ĝg−1,n+2(z0; z)

dx(z0)

)
z0=z

.

(3.56)

Proof. Letting each variable be a function of z except for z0 which we will

treat as independent of z:

∂

∂x(z)

Gg−1,n+2(z0; z, zn+1)

dx(z0)
=

n+1∑
i=1

(
∂

∂x(zi)

Gg−1,n+2(z0; z, zn+1)

dx(z0)

)(
∂x(zi)

∂x(z)

)
.

(3.57)

Letting zi(z) = z for each i ∈ {1, · · · , n+ 1} in the preceding expression leads

to:

∂

∂x(z)

Gg−1,n+2(z0; z, · · · , z)
dx(z0)

=
n+1∑
i=1

(
∂

∂x(zi)

Gg−1,n+2(z0; z, zn+1)

dx(z0)

)
z1=z

...
zn+1=z

.

(3.58)
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Finally using the following fact that the derivatives are symmetric when spe-

cialized:

(
∂

∂x(zi)

Gg−1,n+2(z0; z, zn+1)

dx(z0)

)
z1=z

...
zn+1=z

=

(
∂

∂x(zn+1)

Gg−1,n+2(z0; z, zn+1)

dx(z0)

)
z1=z

...
zn+1=z

(3.59)

for all i 6= 0. Setting z0 = z after this substitution leads to the proposed

result.

Lemma 3.4.7. For 2g + n− 1 ≥ 0,

− 1

n+ 1

(
∂

∂x(z)

Ĝg−1,n+2(z0; z)

dx(z0)

)
z0=z

+
∑

g1+g2=g

n∑
m=0

n!

m!(n−m)!

Ĝg1,m+1(z; z)

dx(z)

Ĝg2,n−m+1(z; z)

dx(z)

− n

(
∂

∂x(z0)

Ĝg,n(z0; z)

dx(z0)

)
z0=z

= 0, (3.60)

while for (g, n) = (0, 0),

G0,1(z)

dx(z)

G0,1(z)

dx(z)
− x(z) = 0. (3.61)

Proof. We proceed to specialize the expressions in Lemma 3.4.4.

For 2g + n − 1 ≥ 0 the first term follows directly from the preceding

proposition.

The second term specializes trivially, however once specialized the choice of

the sets I and J are no longer relevant, only their sizes. Hence the coefficient

is simply the number of ways to partition the variables into these sets, which
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happens to be
(
n
|I|

)
.

To calculate the final term we will treat each term in the sum separately

and combine them at the end. To begin we first send zi → z0, leading to

lim
zi→z0

1

x(z0)− x(zi)

(
Gg,n(z0; z \ {zi})

dx(z0)
− Gg,n(zi; z \ {zi})

dx(zi)

)
= lim

zi→z0

1

x′(z0)(zi − z0)

(
Gg,n(zi; z \ {zi})

dx(zi)
− Gg,n(z0; z \ {zi})

dx(z0)

)
=

∂

∂x(z0)

(
Gg,n(z0; z \ {zi})

dx(z0)

)
. (3.62)

Then setting all variables to z and summing up all the contributions results

in

n

(
∂

∂x(z0)

Gg,n(z0; z, · · · , z)
dx(z0)

)
z0=z

. (3.63)

Finally the (g, n) = (0, 0) case is again trivial, we simply make the substi-

tution z0 = z.

3.4.4 Summation

Now we must sum up these Gg,n’s and pair them with the small parameter ~

accordingly.

Definition 3.4.8. We define the following quantity:

ξ1(z′; z) = −
∞∑

g,n=0

~2g+n

n!

Ĝg,n+1(z′; z)

dx(z′)
. (3.64)
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Proposition 3.4.9.

~
d

dx(z)
ξ1(z; z) = −

∑
2g+n−1≥0

(
~2g+n

(n+ 1)!

(
∂

∂x(z)

Ĝg−1,n+2(z0; z)

dx(z0)

)
z0=z

+
~2g+n

(n− 1)!

(
∂

∂x(z0)

Gg,n(z0; z)

dx(z0)

)
z0=z

)
.

(3.65)

Proof. Rewriting the sum in the proposition as:

−~
∑

2g+n−1≥0

(
~2(g−1)+(n+1)

(n+ 1)!

(
∂

∂x(z)

Ĝg−1,n+2(z0; z)

dx(z0)

)
z0=z

+
~2g+n−1

(n− 1)!

(
∂

∂x(z0)

Gg,n(z0; z)

dx(z0)

)
z0=z

)
,

(3.66)

and reindexing the first term by sending g−1→ g and n+ 2→ n, we see that

the sum becomes:

−~
∑

2g+n−1≥0

~2g+n−1

(n− 1)!

((
∂

∂x(z)

Ĝg,n(z0; z)

dx(z0)

)
z0=z

+

(
∂

∂x(z0)

Gg,n(z0; z)

dx(z0)

)
z0=z

)
.

(3.67)

Making a substitution in the preceding expression according to

d

dx(z)

Ĝg,n(z; z)

dx(z)
=

(
∂

∂x(z0)

Ĝg,n(z0; z)

dx(z0)

)
z0=z

+

(
∂

∂x(z)

Ĝg,n(z0; z)

dx(z0)

)
z0=z

,

(3.68)

results in the proposed expression.

Lemma 3.4.10.

~
d

dx(z)
ξ1(z; z) + ξ1(z; z)2 − x(z) = 0. (3.69)
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Proof. Multiplying the expressions in Lemma 3.4.7 by ~2g+n

n!
and summing over

g, n, in conjunction with Proposition 3.4.9, leads directly to the result.

Now we define the perturbative wave-function which we will extract a quan-

tum curve from.

Definition 3.4.11. The perturbative wave-function is given by:

ψ(z) = exp

{
1

~
∑

2g+n−1≥0

~2g+n−1

n!

∫ z

∞
· · ·
∫ z

∞

(
Wg,n(z1, · · · , zn)

− δg,0δn,2
dx(z1)dx(z2)

(x(z1)− x(z2))2

)}
.

(3.70)

In addition to this we also define the following quantity:

ψ1(z′; z) := ψ(z)ξ1(z′; z). (3.71)

We can relate the two quantities in the definition via the following propo-

sition.

Proposition 3.4.12.

~
d

dx(z)
ψ(z) = ψ1(z; z). (3.72)
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Proof. Taking the derivative of ψ(z) with respect to x(z) results in:

d

dx(z)
ψ(z)

=
ψ(z)

x′(z)

{
d

dz

1

~
∑

2g+n−1≥0

~2g+n−1

n!

∫ z

∞
· · ·

∫ z

∞

(
Wg,n(z1, · · · , zn)

− δg,0δn,2
dx(z1)dx(z2)

(x(z1)− x(z2))2

)}
.

(3.73)

If we focus on the term in curly brackets and assume that each zi is a function

of z, then application of the partial derivative chain rule leads to:

1

x′(z)

d

dz

(∫ z1(z)

∞
· · ·
∫ zn(z)

∞
Wg,n(z1, · · · , zn)− δg,0δn,2

dx(z1)dx(z2)

(x(z1)− x(z2))2

)

= − 1

x′(z)

n∑
i=1

(
Ĝg,n(zi; z)

dzi

)
zi=z

= −n

(
Ĝg,n(z; z)

dx(z)

)
.

(3.74)

Substituting the preceding expression into the derivative of ψ(z) results in the

proposed result.

Corollary 3.4.13.

~2 d2

dx2
ψ(z) = ψ1(z; z)ξ1(z; z) + ~ψ(z)

d

dx
ξ1(z; z). (3.75)

Proof. Starting with the definition of ψ1(z; z) and taking its derivative with

respect to x(z) results in:

~
d

dx

(
~

d

dx
ψ(z)

)
= ~

d

dx
(ψ(z)ξ1(z; z)) , (3.76)
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applying the product rule on the right side of this expression leads directly to

the result.

Now we can construct the operator that acts on this perturbative wave-

function

Theorem 3.4.14. (
~2 d2

dx(z)2
− x(z)

)
ψ(z) = 0. (3.77)

Proof. Starting with 3.69, multiplying it by ψ(z) and utilizing the definition

of ψ1(z; z) results in

~ψ(z)
d

dx(z)
ξ1(z; z) + ξ1(z; z)ψ1(z; z)− x(z)ψ(z) = 0, (3.78)

recognizing the first two terms as precisely the right hand side of corollary

3.4.13, leads to the result.

Theorem 3.4.14 proves that the Airy spectral curve does satisfy Conjecture

3.3.1. That is to say that we recover the straightforward quantization of the

spectral curve from topological recursion. In fact this is true for a large class

of genus zero spectral curves8 as proven in [8].

This begs the question: Is this true for higher genus spectral curves? From

matrix model theory we expect that this is not the case, and as we will see for

the Weierstrass spectral curve, Conjecture 3.3.1 is not satisfied. Instead the

constructed quantum curve has an infinite number of corrections in ~.

8As mentioned previously, this is true for all spectral curves whose Newton polygons
have no interior point and that are smooth as affine curves.
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Chapter 4

Elliptic Functions

We wish to apply an analogous analysis to a spectral curve with a higher genus

Riemann surface, namely a torus. To do so we must first get a brief overview

of both the structure of this Riemann surface as well as the functions that live

on it, known as elliptic functions. A good reference for the following is [33].

4.1 Complex Lattice

Given a pair of complex numbers τ and σ such that Arg(τ) 6= ±Arg(σ), we

can construct a collection of evenly spaced points in the complex plane called

a lattice. This lattice, denoted by Λ, is the set of integer combinations of the

two parameters τ and σ:

Λ = {mτ + nσ
∣∣(m,n) ∈ Z2}. (4.1)

We can simplify this definition by requiring that one of these parameters be

unity and the other be contained in the upper half complex plane:
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Definition 4.1.1. We define complex lattice as the set of points given by

Λ = {mτ + n
∣∣(m,n) ∈ Z2}, (4.2)

where τ (known as the structure parameter) is a complex number with Im(τ) >

0.

This definition automatically segments the complex plane into a collection

of parallelograms, with the vertices lying on adjacent lattice points.

We can pick any one of these tiles to be the fundamental parallelogram (or

fundamental domain). The most obvious choice 9 is the tile whose bottom left

vertex lies at the origin. This can be visualized in Figure 4.1.

1 + ττ

1

Imaginary

Real

Figure 4.1: Lattice points define a “tiling” of the complex plane with copies of the
fundamental parallelogram (the tile with a heavy outline).

As it turns out if we identify opposite sides of this fundamental domain

9This tiling of the complex plane can also be shifted by a universal translation, that is to
say that the vertices don’t need to coincide with the lattice points, it is merely convenient
to define it this way initially. Furthermore, it becomes necessary to introduce a translation
when dealing with certain integration paths.
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with one another, we end up with a space that is topologically a torus. That

is to say that the quotient space C/Λ is the genus one Riemann surface known

as a torus. Again we can visualize this in Figure 4.2.

Figure 4.2: Identifying opposite sides of the fundamental domain results in a space
that is isomorphic to the torus (donut shape pictured on the right).

The functions that live on this surface are known as elliptic functions and

before we venture to describe them we should first discuss a vital consequence

of having a hole in our surface.

4.2 The Torus and its Cycles

On the Riemann sphere it is true that any two paths with the same endpoints

are homotopic. That is to say they can be continuously deformed into one

another. What this means is that integrals of a meromorphic function over

(non-closed) homotopic paths are equivalent. As a consequence of this we only

need the endpoints to fully describe a path integral on the Riemann sphere,

i.e. ∫ b

a

f(z)dz. (4.3)

On the torus however, it is possible for two paths with the same end points

to give different results. This is because we can “wind” around the torus an
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arbitrary number of times, effectively multiplying the result.

More precisely we say that paths with the same endpoints are not necessar-

ily homotopic. Instead they are grouped according to how they “wind” around

the torus. This is called a homology class and we say that any two paths with

the same endpoints and the same homology class are homotopic. These homol-

ogy classes are distinguished based on the paths decomposition in the basis

of cycles (more informally these are the directions we can wind around the

torus). We define this basis as the edges of the fundamental domain, as in

Figure 4.3.

A Cycle

B
C
yc
le

Figure 4.3: The representation of the canonical cycles on both the fundamental
domain, and the torus itself.

What this means is in order to fully describe a definite integral using only

the endpoints, we must also restrict the homology class of the path. The

easiest way to do this is to require the path does not wind around the torus

at all. Practically speaking it means that for an integral, we must enforce

that the argument of a function remains inside the fundamental domain on

the entire path. In other words the path does not intersect the basis of cycles.

Remark 4.2.1. For the remainder of the discussion, we will choose these cycles

such that: the A cycle is the linear path from zero to one, and the B cycle is

the linear path from zero to τ .
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We adopt the following notation to denote cycle integrals (remembering

that the path must remain in the fundamental domain.):

∮
A

f(z)dz =

∫ 1

0

f(z)dz and

∮
B

f(z)dz =

∫ τ

0

f(z)dz (4.4)

Now that this has been specified, we can now move on to define the family

of elliptic functions that is essential to the forthcoming discussion.

4.3 Weierstrass Elliptic Functions

It can be shown that the only possible holomorphic elliptic function is the con-

stant function. The next best thing is a meromorphic function, with isolated

distinct poles of finite order. Suppose we also want this function to have zero

residue around said poles. We can construct an elliptic function with these

properties using a very simple idea:

Given a lattice Λ. We begin with 1
z2

and add to it the translation of itself

by every possible lattice point ω ∈ Λ resulting in

f(z) =
∑
ω∈Λ

1

(z − ω)2
. (4.5)

Ignoring convergence for the time being, this function is guaranteed to be

elliptic by construction, since any translation by a lattice point will be absorbed

into this sum:

f(z + ω0) =
∑
ω∈Λ

1

(z − (ω − ω0))2
=
∑
ω′∈Λ

1

(z − ω′)2
= f(z). (4.6)
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As it turns out this function (with some appropriate modifications to guar-

antee convergence) is the Weierstrass ℘(z; τ) function.

4.3.1 Function Definitions

Following the immediately preceding discussion we can define the Weierstrass

℘(z; τ) function (spoken Weierstrass p function) with the following expression:

℘(z; τ) =
1

z2
+
∑
ω∈Λ∗

(
1

(z − ω)2
− 1

ω2

)
, where Λ∗ = Λ\{0}. (4.7)

This function is elliptic by construction and can be proven to be so with the

argument in the previous discussion. The extra 1
ω2 term is included to ensure

convergence. It is also worth noting that this function is even.

The Weierstrass ℘′(z; τ) is the derivative with respect to z of ℘(z; τ), its

definition follows directly from above:

℘′(z; τ) = −2
∑
ω∈Λ

1

(z − ω)3
. (4.8)

Fortunately this is convergent and again elliptic by the translation argument

posed before.

Finally we also need the Weierstrass ζ(z; τ) (not to be confused with the

Riemann zeta function), its definition is as follows:

ζ(z; τ) =
1

z
+
∑
ω∈Λ∗

(
1

z − ω
+

z

ω2
+

1

ω

)
. (4.9)
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ζ(z; τ) is not elliptic but instead quasi-elliptic since:

ζ(z + 1; τ) = ζ(z; τ) + 2ζ(1/2; τ), (4.10)

ζ(z + τ ; τ) = ζ(z; τ) + 2ζ(τ/2; τ). (4.11)

The Weierstrass zeta function is related to the Weierstrass ℘(z; τ) via a

derivative with respect to z:

− d

dz
ζ(z; τ) = ℘(z; τ). (4.12)

As it turns out these functions satisfy a rather neat differential equation.

4.3.2 Differential Equation

Taking expansions around z = 0 of both the Weierstrass ℘(z; τ) function and

its derivative, then comparing terms we can construct a differential equation

satisfied by the ℘(z) function:

℘′(z; τ)2 = 4℘(z; τ)3 − g2(τ)℘(z; τ)− g3(τ). (4.13)

Here the two coefficients g2(τ) and g3(τ) are called elliptic (or modular) in-

variants and denote the following convergent infinite sums:

g2(τ) = 60
∑
ω∈Λ∗

1

ω4
. (4.14)

g3(τ) = 140
∑
ω∈Λ∗

1

ω6
. (4.15)
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We also define the modular discriminant as,

∆(τ) = g2(τ)2 − 27g3(τ)3. (4.16)

4.3.3 Eisenstein Series

The sums used to define the modular invariants are called Eisenstein series

(we refer the reader to [38] for more detail) and they are given by the following

uniformly convergent sums:

G2n(τ) =
∑
ω∈Λ∗

1

ω2n
=

∑
(m,n)6=(0,0)

1

(m+ nτ)2n
for n ≥ 2. (4.17)

As noted this definition is only valid for n ≥ 2, since for n = 1 the sum

is not absolutely convergent. That being said, if we define an order in the

summation we can define G2(τ) :

G2(τ) =
∑
m6=0

1

m2
+
∑
n6=0

∑
m∈Z

1

(m+ nτ)2
. (4.18)

The absolutely convergent Eisenstein series are called modular forms of

weight 2n because they possess the following transformation properties:

G2n(γτ) = (cτ + d)2nG2n(τ), ∀γ =

a b

c d

 ∈ SL(2,Z), (4.19)

with

γτ =
aτ + b

cτ + d
. (4.20)
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G2(τ) however, is a quasi-modular form of weight 2, since it satisfies the

following property.

G2 (γτ) = (cτ + d)2G2(τ)− 2πic(cτ + d). (4.21)

4.3.4 Zeroes of the Weierstrass Functions

The zeroes of both the ℘(z; τ) and ζ(z; τ) functions are highly non-trivial

to find and express. In addition these are not relevant to the forthcoming

discussion. However the zeroes of ℘′(z; τ) are certainly relevant and very easy

to find.

Starting with the fact that the Weierstrass ℘(z; τ) function is elliptic:

℘(z + 1; τ) = ℘(z; τ), (4.22)

then taking the derivative with respect to z of both sides

℘′(z + 1; τ) = ℘′(z; τ). (4.23)

Substituting z = −1
2

in the preceding expression and using the oddness of

℘′(z; τ) we see that

℘′(1/2; τ) = −℘′(1/2; τ), (4.24)

which implies that

℘′(1/2; τ) = 0. (4.25)
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Following a similar procedure we obtain two more zeroes:

℘′(τ/2; τ) = 0 and ℘′((1 + τ)/2; τ) = 0. (4.26)

We denote these half periods as follows:

w1 = 1/2, w2 = τ/2, w3 = (1 + τ)/2. (4.27)

For convenience we also denote the value of ℘(z; τ) at these half periods as

follows:

e1 := ℘(w1; τ), e2 := ℘(w2; τ), e3 := ℘(w3; τ). (4.28)

It is also possible to define the modular discriminant in terms of e1, e2 and

e3:

∆(τ) := g2(τ)2 − 27g3(τ)3 = 16(e1 − e2)2(e1 − e3)2(e2 − e3)2. (4.29)

4.3.5 Series Expansion

For completeness we will state the series expansion of ℘(z; τ) about z = 0

℘(z; τ) =
1

z2
+
∑
k=0

G2k+2(τ)z2k. (4.30)

4.3.6 Normalization

As in the Airy case we will need to define W0,2(z1, z2) = B(z1, z2) such that it

satisfies the conditions given in Definition 2.2.1. In light of the fact that ℘(z1−
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z2; τ)→ 1
(z1−z2)2

as z1 → z2, it is clear that the ℘(z; τ) function satisfies the first

few conditions. That is to say that it is symmetric upon coordinate exchange,

with a double pole on the diagonal at z1 = z2 and no other poles. However

upon examination of the A-cycle integral, we see that is in fact nonzero,

∮
A

℘(z1 − z2; τ)dz1 = − (ζ(1− z2; τ)− ζ(z2; τ)) 6= 0. (4.31)

This means that we need to normalize the function ℘(z1−z2; τ) with respect

to the A-cycle. Before we can normalize the function, we must first understand

why the function isn’t normalized.

Examining the behaviour of the Weierstrass ζ(z; τ) function under trans-

lations by 1 in its definition (4.9), we see that the offending is the term of the

form ∑
ω∈Λ∗

1

ω2
. (4.32)

Assuming we sum appropriately, we can recognize this as the previously defined

Eisenstein series G2(τ). Given this fact we can define a new function, denoted

as P2(z; τ), with this offending term removed,

P2(z; τ) := ℘(z; τ) +G2(τ). (4.33)

Now in order to prove that this indeed does satisfy the final normalization

condition we must first define its indefinite integral which we will denote as

P1(z; τ) given by

P1(z; τ) :=

∫
P2(z; τ)dz = −ζ(z; τ) +G2(τ)z + A. (4.34)
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If we require that this function be odd, then the constant A is forced to be

zero.

Using the properties of the zeta function we see,

P1(z + 1; τ) = −ζ(z + 1; τ) +G2(τ)(z + 1) (4.35)

= −(ζ(z; τ) + 2ζ(1/2; τ)) +G2(τ)(z + 1) (4.36)

= P1(z; τ) + (G2(τ)− 2ζ(1/2; τ)). (4.37)

It can then be shown by a simple translation argument10 that P1(z; τ) =

P1(z + 1; τ) hence we can conclude that

1

2
G2(τ) = ζ(1/2; τ). (4.38)

Crafting a similar expression for a translation by τ leads to

P1(z + τ ; τ) = −ζ(z + τ ; τ) +G2(τ)(z + τ) (4.39)

= −(ζ(z; τ)− 2ζ(τ/2; τ)) +G2(τ)(z + τ) (4.40)

= P1(z; τ) + (τG2(τ)− 2ζ(τ/2; τ)). (4.41)

Using the following identity from [37]

τζ(1/2; τ)− ζ(τ/2; τ) = πi. (4.42)

10There is an alternative argument for this translation invariance involving the q-
expansion for P1(z; τ). For more details we refer the reader to [35].
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In conjunction with (4.38), implies that

τG2(τ)− 2ζ(τ/2; τ) = 2πi, (4.43)

resulting in the quasi-elliptic relations for P1(z; τ) ,

P1(z + 1; τ) = P1(z; τ), P1(z + τ ; τ) = P1(z; τ) + 2πi. (4.44)

This finally proves that the following differential can serve as the canonical

billinear differential for topological recursion on a genus one spectral curve,

B(z1, z2) = P2(z1 − z2)dz1dz2. (4.45)
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Chapter 5

Weierstrass Spectral Curve

We will begin by calculating the first few correlation functions for the Weier-

strass spectral curve. Then proceed to construct the perturbative wave-function

ψ(z) to be compared with the quantization of the Weierstrass spectral curve.

As was mentioned in the introduction this chapter is an expanded exposi-

tion of my contribution to [7].

5.1 Topological Recursion on the Weierstrass

Curve

The Weierstrass spectral curve is given by L = (C/Λ, x, y) where the defining

equation is

y2 = 4x3 − g2(τ)x− g3(τ). (5.1)
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In light of the previous section we can see that this can be parametrized by

the Weierstrass ℘(z; τ) function and its derivative, i.e

x(z) = ℘(z; τ) and y(z) = ℘′(z; τ). (5.2)

As in the Airy case this is a double cover, with the ramification points11 given

by the zeroes of dx(z) = ℘′(z; τ) along with the poles of x(z) = ℘(z; τ) with

order ≥ 2. The zeroes are precisely the half periods as written in (4.27) and the

double pole of x(z) is at z = 0. All together these form the set of ramification

points, denoted by R = {w1, w2, w3, 0}.

The corresponding deck transformation maps for the half periods are tech-

nically given by si(z) = 2wi−z, but since it can be shown that the correlation

functions are elliptic in each coordinate, we can ignore the 2wi shift and simply

write the map as si(z) = −z for i = {1, 2, 3}. In addition the deck transfor-

mation around z = 0 is given by s0(z) = −z, meaning the deck transformation

map is the same for all four ramification points. This fact implies that the

kernel is the same for all four ramification points.

We will now proceed to calculate W0,3(z0, z1, z2) and W1,1(z0). In order to

do this, we first need to calculate our kernel. As was mentioned above, the

deck transformation map is globally defined and the same for all ramification

points and hence we only have a single kernel given by

11More precisely the ramification points are the zeroes of dx and the poles of x that lie
within the fundamental domain
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Kτ (z, z0) =
dz0

2℘′(z; τ)2

(∫ z

α

P2(z′ − z0; τ)dz′
)

(5.3)

=
dz0

2℘′(z; τ)2
[P1(z − z0; τ)− P1(α− z0; τ)] . (5.4)

Remark 5.1.1. It can be shown via recursion that the ramification point z = 0

does not contribute to the total residue. Hence we can, and will, exclude its

contribution from all of the following calculations.

Unlike the Airy case, the pole structure of the kernel is not immediately

obvious. We know that ℘′(z; τ) has zeros at the half periods and hence 1
℘′(z;τ)2

has a pole at each of the half periods. We also know that P1(z−z0; τ) only has

a pole at z = z0 hence it will not have any principal part to its power series

about z = wi.

What this means is we need a power series expansion for both 1
℘′(z;τ)2

and

the bracketed term. Fortunately both are relatively easy to find. We begin by

re-expressing 1
℘′(z;τ)2

in a more power series friendly form:

1

℘′(z; τ)2
=

12

∆(τ)

(
3∑
i=1

(20G4(τ)− e2
i )(℘(z − wi; τ)− ei)

)
. (5.5)

Which we can expand around z = wi to obtain

1

℘′(z; τ)2
=

12

∆(τ)

(
(20G4(τ)− e2

i )

(
1

(z − wi)2
− 4ei

)

+
∞∑
k=1

A2k(wi)(z − wi)2k

)
.

(5.6)
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Where:

A2k(wi) = (20G4(τ)− e2
i )(2k + 1)G2k+2(τ)

+
(20G4(τ)− e2

j)

(2k)!
℘(2k)(wk; τ)

+
(20G4(τ)− e2

k)

(2k)!
℘(2k)(wj; τ)

for {i, j, k} = {1, 2, 3} with i 6= j 6= k. (5.7)

Remark 5.1.2. This identity and its power series are proven in appendix B.

We also need the power series around z = wi of

P1(z − z0; τ)− P1(α− z0; τ). (5.8)

Since this has no poles at any of the half periods, the power series is straight-

forward:

P1(z − z0; τ)− P1(α− z0; τ) = P1(wi − z0; τ)− P1(α− z0; τ)

+ (z − wi)
n∑
k=0

P
(k)
2 (wi − z0; τ)

(k + 1)!
(z − wi)k. (5.9)

Combining these two power series results in the desired power series about

z = wi for the kernel,

Kτ (z, z0) =
dz0

dz

6

∆(τ)

∞∑
k=−2

Bk(wi)(z − wi)k. (5.10)
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With the first few coefficients given by:

B−2(wi) = 20G4(τ)− e2
i , (5.11)

B−1(wi) = (20G4(τ)− e2
i )(P2(wi − z0; τ)), (5.12)

B0(wi) = (20G4(τ)− e2
i )

(
1

2
P ′2(wi − z0; τ)− 4ei(P1(wi − z0)− P1(α− z0))

)
,

(5.13)

B1(wi) = (20G4(τ)− e2
i )

(
−4eiP2(wi − z0; τ) +

1

6
P

(2)
2 (wi − z0; τ)

)
. (5.14)

The general expression for Bk(wi) is not required for the current discussion

hence we will leave it unspecified.

We now have the ability to calculate the k = 2 level correlation functions.

We will begin with W0,3(z0, z1, z2), using the general expression given in (2.10)

and inserting the relevant data we obtain

W0,3(z0, z1, z2) =
∑
a∈R

Res
z=a

Kτ (z, z0)(P2(z − z1; τ)P2(z + z2; τ)

+ P2(z − z2; τ)P2(z + z1; τ))(−dz2dz1dz2). (5.15)

It is clear that the expression in the brackets has no pole at any of the half pe-

riods, hence the residue at z = wi will be B−1(wi) multiplied by the bracketed

term evaluated at z = wi , resulting in

W0,3(z0, z1, z2) =

−12

∆(τ)
dz0dz1dz2

3∑
i=1

(20G4(τ)− e2
i )P2(z0 − wi; τ)P2(z1 − wi; τ)P2(z2 − wi; τ).

(5.16)

55



Finally we will calculate W1,1(z0) beginning with the general form in (2.11)

and again inserting the relevant terms leads to

W1,1(z0) =
∑
a∈R

Res
z=a

Kτ (z, z0)P2(2z; τ)(−dz2). (5.17)

From this expression it doesn’t seem obvious that P2(2z; τ) has a pole at the

ramification points, however using the elliptic property of P2 we see,

P2(2z; τ) = P2(2z − 2wi; τ) = P2(2(z − wi); τ), (5.18)

which implies that P2 has a second order pole around z = wi, meaning that

the two terms from the kernels power series that will contribute are (z − wi)1

and (z − wi)−1 leading to:

W1,1(z0) =
−6

∆(τ)
dz0

3∑
i=1

(20G4(τ)− e2
i )

(
(G2(τ)− ei)P2(z0 − wi; τ)

+
1

4!
P

(2)
2 (z0 − wi; τ)

)
.

(5.19)

We will now proceed to obtain the quantum curve from topological recur-

sion and compare it to the quantization of (5.1).

5.2 Weierstrass Quantum Curve

We will follow the four steps set out in the Airy chapter to construct the

Weierstrass perturbative wave-function and the corresponding quantum curve.

Remark 5.2.1. For readability, we will suppress the τ dependence in the elliptic
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functions and modular forms for the entirety of this section.

5.2.1 Residues

Beginning with the Weierstrass topological recursion:

Wg,n+1(z0, z) = dz0

∑
a∈R

Res
z=a

(∫ z

α

P2(z′ − z0)dz′
)
R(2)Wg,n+1(z,−z; z)

2℘′(z)2dz
(5.20)

The function given by u(z) =
∫ z
α
P2(z′ − z0)dz′, is well defined on the

complex plane, However it is not elliptic (and hence multiply defined on the

torus) since,

u(z + τ) =

∫ z+τ

α

P2(z′ − z0)dz′

= u(z) +

∮
B

P2(z′ − z0)dz′

= u(z) + 2πi.

(5.21)

A major consequence of this is that the sum of residues at all poles of the

right hand side of (5.20) is no longer zero. In fact this total residue is finite

and to calculate it we appeal to the Riemann billinear identity (For further

information we refer the reader to [4]).

Definition 5.2.2. The integral form of the Riemann bilinear identity can be

stated as follows,

∑
all poles b of uη

Res
z=b

uη =
1

2πi

g∑
j=1

(∮
Bj

ω

∮
Aj

η −
∮
Bj

η

∮
Aj

ω

)
,

where η is a meromorphic differential on the compact Riemann surface Σ of
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genus g, and (Aj, Bj), j = 1, . . . , g is a symplectic basis of cycles. Moreover,

u(z) =

∫ z

α

ω, (5.22)

where ω is a residueless meromorphic differential, α is an arbitrary base point,

and the line integral is taken in the fundamental domain.

As it turns out this works perfectly for calculating the total residue of

the right hand side of the Weierstrass recursion (5.20). By noting that the

integral satisfies the properties of u(z) and the remainder meets the criteria

for η, meaning we can apply the bilinear identity directly, leading to

∑
all poles b

Res
z=b

(∫ z

α

P2(z′ − z0)dz′
)
R(2)Wg,n+1(z,−z; z)

2℘′(z)2dz

=
1

2πi

(∮
B

P2(z − z0)dz

∮
A

R(2)Wg,n+1(z,−z; z)

2℘′(z)2dz

−
∮
B

R(2)Wg,n+1(z,−z; z)

2℘′(z)2dz

∮
A

P2(z − z0)dz

)
. (5.23)

We do not know the cycle integrals of the recursive part just yet, however

we do know explicitly the cycle integrals of P2(z − z0) (as established in the

quasi-elliptic relations of P1(z)).

∮
A

P2(z − z0)dz = 0,

∮
B

P2(z − z0)dz = 2πi. (5.24)
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Substituting these into (5.23) leads to the expression for the total residue

∑
all poles b

Res
z=b

(∫ z

α

P2(z′ − z0)dz′
)
R(2)Wg,n+1(z,−z; z)

2℘′(z)2dz

=

∮
A

R(2)Wg,n+1(z,−z; z)

2℘′(z)2dz
. (5.25)

We will denote the quantity on the right hand side as follows:

Bg,n+1(z) :=

∮
A

R(2)Wg,n+1(z,−z; z)

2℘′(z)2dz
. (5.26)

What this means is we can now do a similar replacement of the residue

calculation in (5.20) using Bg,n+1(z) as the total residue, leading to

Wg,n+1(z0, z)

dz0

= Bg,n+1(z)−
∑
Q/∈R

Res
z=Q

(∫ z

α

P2(z′ − z0)dz′
)
R(2)Wg,n+1(z,−z; z)

2℘′(z)2dz
.

(5.27)

With that replacement we can now proceed to construct the quantum

curve.
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Proposition 5.2.3. For 2g + n− 1 ≥ 1,

− Wg−1,n+2(−z0, z0, z)

dx(z0)2
+

∑
g1+g2=g
I∪J=z

(
Wg1,|I|+1(−z0, I)

dx(z0)

)(
Wg2,|J |+1(−z0, J)

dx(z0)

)

+
n∑
i=1

((
dx(zi)

(x(z0)− x(zi))2

)
Wg,n(−z0, z \ {zi})

dx(z0)
−

dzi

(
1

(x(z0)− x(zi))

Wg,n(−zi, z \ {zi})
dx(zi)

))
− 2Bg,n+1(z) +

n∑
i=1

dzi

(
2P1(zi)

℘′(zi)

Wg,n(−zi, z \ {zi})
dx(zi)

)
= 0. (5.28)

For (g, n) = (0, 1),

2
W0,2(−z0, z1)

dx(z0)

W0,1(−z0)

dx(z0)
− dx(z1)

(x(z0)− x(z1))2

W0,1(−z0)

dx(z0)

+ dz1

(
1

x(z0)− x(z1)

W0,1(−z0)

dx(z0)

)
− 2P2(z1)dz1 = 0, (5.29)

while for (g, n) = (0, 0),

W0,1(−z0)

dx(z0)

W0,1(−z0)

dx(z0)
−
(
4x(z0)3 − g2x(z0)− g3

)
= 0. (5.30)

Proof. Starting with (5.27), we first note that the only poles not in R, are z0

and the marked points z1, · · · , zn.

The residue at z = z0 is given by

−1

2℘′(z0)2dz2
0

Wg−1,n+2(−z0, z0, z) +
′∑

g1+g2=g
I∪J=z

Wg1,|I|+1(z0, I)Wg2,|J |+1(−z0, J)

 ,

(5.31)
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while the total residue at the poles z = ±zi is

dzi

(
(P1(zi − z0) + P1(zi + z0))

Wg,n(−zi, z)

2℘′(zi)2dzi

)
. (5.32)

Summing up all of the contributions results in

Wg,n+1(z0, z)

dz0

=
1

2℘′(z0)2

Wg−1,n+2(−z0, z0, z)

dz2
0

+
′∑

g1+g2=g
I∪J=z

Wg1,|I|+1(z0, I)

dz0

Wg2,|J |+1(−z0, J)

dz0


−

n∑
i=1

dzi

(
(P1(zi − z0) + P1(zi + z0))

Wg,n(−zi, z)

2℘′(zi)2dzi

)
+Bg,n+1(z). (5.33)

We must prepare this expression to be integrated in a similar fashion to

the Airy case, in other words we must make sure that all of the correlation

functions have their first argument negated. As we know from experience all

of the Wg,n’s are odd in all of the arguments except for W0,2(z1, z2) which has

the special property12:

W0,2(z1, z2) +W0,2(−z1, z2) =
dx(z1)dx(z2)

(x(z1)− x(z2))2
. (5.34)

Making the appropriate substitutions in the cross summation term (the

term with sums over I and J) in order to negate the first argument of Wg1,|I|+1,

12This can be proven directly using (A.2) listed in appendix A
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we end up with:

Wg,n+1(z0, z)

dz0

=
1

2℘′(z0)2

Wg−1,n+2(−z0, z0, z)

dz2
0

−
′∑

g1+g2=g
I∪J=z

Wg1,|I|+1(z0, I)

dz0

Wg2,|J |+1(−z0, J)

dz0


+

n∑
i=1

1

4z2
0dz2

0

(
dx(z0)d(zi)

(x(z0)− x(zi))2
Wg,n(−z0, z \ {zi})

)
−

n∑
i=1

dzi

(
(P1(zi − z0) + P1(zi + z0))

Wg,n(−zi, z)

2℘′(zi)2dzi

)
+Bg,n+1(z). (5.35)

Finally making the following two substitutions

P1(zi + z0) + P1(zi − z0) = 2P1(zi) +
℘′(zi)

℘(z0)− ℘(zi)
, (5.36)

and

Wg,n+1(z0, z)

dz0

=
W0,1(−z0)

dx(z0)

Wg,n+1(−z0, z)

dx(z0)
, (5.37)

results in the final expression of the proposition for 2g + n − 1 ≥ 1. For the

two remaining cases we do an explicit calculation involving terms that fit with

the overall structure.

5.2.2 Integration

Now we must augment Definition 3.4.3 to reflect the poles of x(z). In the Airy

case we integrated from z =∞, however now the pole of x(z) we are interested

in is z = 0. Hence we now need to integrate with the base point z = 0:
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Gg,n+1(z0; z) =

∫ z1

0

· · ·
∫ zn

0

Wg,n+1(−z0, z1, · · · , zn) (5.38)

Lemma 5.2.4. For 2g + n− 1 ≥ 1,

−
(

∂

∂x(zn+1)

Gg−1,n+2(z0; z, zn+1)

dx(z0)

)
zn+1=z0

+
∑

g1+g2=g
I∪J=z

(
Gg1,|I|+1(z0, I)

dx(z0)

)(
Gg2,|J |+1(z0, J)

dx(z0)

)

−
n∑
i=1

1

x(zi)− x(z0)

(
Gg,n(zi; z \ {zi})

dx(zi)
− Gg,n(z0; z \ {zi})

dx(z0)

)
− 2

∫ z1

0

· · ·
∫ zn

0

Bg,n+1(z) +
n∑
i=1

2P1(zi)

℘′(zi)

Gg,n(−zi, z \ {zi})
dx(zi)

= 0. (5.39)

For (g, n) = (0, 1),

2
G0,2(z0; z1)

dx(z0)

G0,1(z0)

dx(z0)
− 1

x(z1)− x(z0)

(
G0,1(z1)

dx(z1)
− G0,1(z0)

dx(z0)

)
− 2P1(z1) = 0,

(5.40)

while for (g, n) = (0, 0),

G0,1(z0)

dx(z0)

G0,1(z0)

dx(z0)
− (4x(z0)3 − g2x(z0)− g3) = 0. (5.41)

Proof. We are integrating the expressions found in proposition 5.2.3.

For 2g + n− 1 ≥ 1, the first, second and fourth term follow directly from

integration. The third term has a base point evaluation of the form:

n∑
i=1

lim
zi→0

1

x(zi)− x(z0)

(
Gg,n(zi; z \ {zi})

dx(zi)
− Gg,n(z0; z \ {zi})

dx(z0)

)
= 0, (5.42)

63



which vanishes since zero is a pole of x(z) and the Gg,n’s have poles only at

the half periods.

The fifth and final term results in a limit of the form:

n∑
i=1

lim
zi→0

2P1(zi)

℘′(zi)

Gg,n(−zi, z \ {zi})
dx(zi)

, (5.43)

which vanishes since ℘′(z) has a pole of order 3 at z = 0 and P1(z) has only a

simple pole at z = 0.

For (g, n) = (0, 1), the integration results in a limit of the form:

lim
z1→0

1

x(z1)− x(z0)

(
G0,1(z1)

dx(z1)
− G0,1(z0)

dx(z0)

)
− 2P1(z1)

= lim
z1→0

1

℘(z1)− ℘(z0)
(−℘′(z1) + ℘′(z0)) + 2P1(z1), (5.44)

But since as z1 → 0,

℘′(z1)→ − 2

z3
1

℘(z1)→ 1

z2
1

P1(z1)→ − 1

z1

,

we see this limit vanishes.

Finally, for (g, n) = (0, 0) we do not even integrate so the statement is

trivially true.

5.2.3 Principal Specialization

Using Definition 3.4.5 with no augmentations we proceed to principal specialize

the expressions from the previous lemma.

Lemma 5.2.5. For 2g + n− 1 ≥ 1,
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− 1

n+ 1

(
∂

∂x(z)

Ĝg−1,n+2(z0; z)

dx(z0)

)
z0=z

+
∑

g1+g2=g

n∑
m=0

n!

m!(n−m)!

Ĝg1,m+1(z; z)

dx(z)

Ĝg2,n−m+1(z; z)

dx(z)

− n

(
∂

∂x(z0)

Ĝg,n(z0; z)

dx(z0)

)
z0=z

− 2

∫ z

0

· · ·
∫ z

0

Bg,n+1(z) + 2n
P1(z)

℘′(z)

Ĝg,n(z; z)

dx(z)
= 0. (5.45)

For (g, n) = (0, 1),

2
Ĝ0,2(z; z)

dx(z)

Ĝ0,1(z)

dx(z)
− d

dx(z)

Ĝ0,1(z)

dx(z)
− 2P1(z) = 0, (5.46)

while for (g, n) = (0, 0),

Ĝ0,1(z)

dx(z)

Ĝ0,1(z)

dx(z)
− (4x(z)3 − g2x(z)− g3) = 0. (5.47)

Proof. For 2g + n− 1 ≥ 1, the first term follows from Proposition 3.4.6 since

this is a general result. The second and third terms follow from the same

arguments as in Lemma 3.4.7 which again are general arguments. The final

two terms follow trivially from specialization.

For (g, n) = (0, 1), the first and third terms follow trivially. The second

results in a limit of the form:

65



lim
z1→z0

1

x(z1)− x(z0)

(
G0,1(z1)

dx(z1)
− G0,1(z0)

dx(z0)

)
= lim

z1→z0

1

x′(z0)(z1 − z0)

(
G0,1(z1)

dx(z1)
− G0,1(z0)

dx(z0)

)
=

∂

∂x(z0)

(
G0,1(z0)

dx(z0)

)
, (5.48)

setting z0 = z in the final line completes the proof for this level.

As for (g, n) = (0, 0) we simply set z0 = z.

5.2.4 Summation

We now sum over the expressions in the previous lemma with appropriate

factors of ~.

Lemma 5.2.6.

~
d

dx(z)
ξ1(z; z) + ξ1(z; z)2 − (4x(z)3 − g2(τ)x(z)− g3)

− 2~
P1(z)

℘′(z)
ξ1(z; z)− 2

∑
2g+n−1≥1

~2g+n

n!

∫ z

0

· · ·
∫ z

0

Bg,n+1(z) = 0. (5.49)

Proof. Multiplying the equations in Lemma 5.2.5 by ~2g+n

n!
results in the fol-

lowing expressions:
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For 2g + n− 1 ≥ 1,

− ~2g+n

(n+ 1)!

(
∂

∂x(z)

Ĝg−1,n+2(z0; z)

dx(z0)

)
z0=z

+
~2g+n

(n− 1)!

(
∂

∂x(z0)

Gg,n(z0; z)

dx(z0)

)
z0=z

+
∑

g1+g2=g

n∑
m=0

(
~2g1+m

m!

Ĝg1,m+1(z; z)

dx(z)

)(
~2g2+n−m

(n−m)!

Ĝg2,n−m+1(z; z)

dx(z)

)

− 2
~2g+n

n!

∫ z

0

· · ·
∫ z

0

Bg,n+1(z) + 2
P1(z)

℘′(z)

(
~2g+n

(n− 1)!

Ĝg,n(z; z)

dx(z)

)
= 0. (5.50)

For (g, n) = (0, 1),

2

(
~
Ĝ0,2(z; z)

dx(z)

)(
Ĝ0,1(z)

dx(z)

)
− ~

d

dx(z)

Ĝ0,1(z)

dx(z)
− 2~P1(z) = 0, (5.51)

while for (g, n) = (0, 0),

Ĝ0,1(z)

dx(z)

Ĝ0,1(z)

dx(z)
− (4x(z)3 − g2x(z)− g3) = 0. (5.52)

Noting the following fact

P1(z) =
P1(z)

℘′(z)

(
Ĝ0,1(z)

dx(z)

)
, (5.53)

we see that the 2~P1(z) term in the (g, n) = (0, 1) equation fits nicely into the

final term of the 2g + n− 1 ≥ 1 set of equations.

Finally summing over g and n we obtain the result in the lemma.

We define the perturbative wave-function in the same fashion as the Airy

case except now we integrate from zero instead of infinity (since this is now
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the pole of x(z)):

ψ(z) = exp

{
1

~
∑

2g+n−1≥0

~2g+n−1

n!

∫ z

0

· · ·
∫ z

0

(
Wg,n(z1, · · · , zn)

− δg,0δn,2
dx(z1)dx(z2)

(x(z1)− x(z2))2

)}
.

(5.54)

with ψ1(z′; z) := ψ(z)ξ1(z′; z) as before.

Theorem 5.2.7.

[
~2 d2

dx2
− (4x(z)3 − g2(τ)x(z)− g3(τ))

−2~2P1(z)

℘′(z)

d

dx
− 2

∑
2g+n−1≥1

~2g+n

n!

∫ z

0

· · ·
∫ z

0

Bg,n+1(z)

]
ψ(z) = 0. (5.55)

Proof. Multiplying the result from Lemma 5.2.6 and using the general results

of both Proposition 3.4.12 and its corollary 3.4.13 leads directly to the result.

What this means is we no longer recover the differential operator expected

from the spectral curve as we did in the Airy case. Instead we get additional

corrections in ~ including an additional first derivative term. This proves that

the Weierstrass spectral curve does not satisfy the proposed connection. Fur-

thermore the fact that the corrections are not combinations of x̂ and ŷ means

that we could not construct this operator by taking advantage of the commu-

tativity in the classical equation. More precisely, this differential operator is

not a quantization of the spectral curve, since there is no way we could have

obtained it from a mapping of the characteristic polynomial.
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All of this points to the fact that clearly the perturbative formulation is

not what we should be using in this case but instead we need to appeal to

the non-perturbative formulation presented in [7], which was derived from the

general formulation in [5] (see also [22, 23]). However this non-perturbative

formulation has an extra “quantization condition” that must be satisfied. The

simplest way to satisfy this condition is to restrict the spectral curves to those

with g2(τ) = 0, i.e. curves of the form:

y2 = 4x3 − g3(τ). (5.56)

In [7] it was found that this non-perturbative formulation gives rise to a

quantum curve with corrections as well. However these corrections are func-

tions of x̂ and ŷ meaning it could be constructed by harnessing the ambiguity

in the classical quantum curve. This was verified up to order 5 in ~ with

symbolic software.

5.3 Additional Results

5.3.1 Identities for Elliptic Functions

Proposition 5.3.1. For 2g + n− 1 ≥ 1

Bg,n+1(z) = −
(
Wg,n+1(z0, z)

dz0

)
z0=0

+
n∑
i=1

dzi

(
P1(zi)

℘′(zi)

Wg,n(−zi, z \ {zi})
dx(zi)

)
.

(5.57)
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Proof. Starting with a rearranged topological recursion

Bg,n+1(z) = −Wg,n+1(−z0, z)

dz0

+
∑
Q/∈R

Res
z=Q

(P1(z − z0)− P1(α− z0))
R(2)Wg,n+1(z,−z; z)

2℘′(z)2dz
, (5.58)

and taking the limit as z0 approaches zero on both sides results in,

Bg,n+1(z) = −
(
Wg,n+1(−z0, z)

dz0

)
z0=0

+
∑
Q/∈R

Res
z=Q

(P1(z)− P1(α))
R(2)Wg,n+1(z,−z; z)

2℘′(z)2dz
. (5.59)

The only poles Q not in R are at the marked points z = ±zi, we can calculate

the contribution at each of these points. Beginning with the residue at z = zi

we obtain

dzi

(
P1(zi)− P1(α)

2℘′(zi)

Wg,n(−zi, z \ {zi})
dx(zi)

)
. (5.60)

While the matching contribution at z = −zi results in

dzi

(
P1(z) + P1(α)

2℘′(z)

Wg,n(−zi, z \ {zi})
dx(zi)

)
. (5.61)

Summing up all of the contributions leads directly to the proposed result.

If we write down the expression in the proposition for (g, n) = (1, 0) we

obtain the following,

B1,1 = −
(
W1,1(−z0, z)

dx(z0)

)
z0=0

. (5.62)
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Which when explicitly written states:

∮
A

P2(2z; τ)

2℘′(z; τ)2
dz =

G4(τ)(5G4(τ)−G2(τ)2)

30(20G4(τ)3 − 49G6(τ)2)
. (5.63)

We can provide an independent proof of this identity by calculating this cycle

integral directly. As it turns out this is non-trivial and is provided in appendix

C.

These identities could be interesting to study on their own and could po-

tentially be useful for evaluation. It is also possible that this result is related

to the work presented in [31]. In addition they also give rise to an equivalence

between two very different looking differential operators.

5.3.2 Alternate Quantum Curve

A further result was obtained in [7], where the perturbative wave-function was

constructed in a method adapted from [8]. This “alternate” quantum curve

has a form a priori much different from that in Theorem 5.2.7, and is given

by:

[
~2 d2

dx(z)2
− (4x(z)3 − g2(τ)x(z)− g3(τ))− 2~P1(z; τ)

+2
∑

2g−1+n≥1

~2g+n

n!

(
Ĝg,n+1(z′; z)

dz′

)
z′=0

]
ψ(z) = 0. (5.64)

Although they were constructed via two different methods we will see that as

a consequence of aforementioned elliptic identities, this equation and that in

Theorem 5.2.7 are indeed equivalent.

71



Proposition 5.3.2.

[
~2P1(z)

℘′(z)

d

dx
+

∑
2g+n−1≥1

~2g+n

n!

∫ z

0

· · ·
∫ z

0

Bg,n+1(z)

]
ψ(z)

=

[
~P1(z)−

∑
2g−1+n≥1

~2g+n

n!

(
Ĝg,n+1(z0; z)

dz0

)
z′=0

]
ψ(z). (5.65)

Proof. Integrating, Specializing, and summing the result in Proposition 5.3.1,

then multiplying the result by ψ(z):

[ ∑
2g+n−1≥1

~2g+n

n!

∫ z

0

· · ·
∫ z

0

Bg,n+1(z)

]
ψ(z)

=

[
−

∑
2g+n−1≥1

~2g+n

n!

(
Ĝg,n+1(z0; z)

dz0

)
z0=0

+
P1(z)

℘′(z)

∑
2g+n−1≥1

~2g+n

(n− 1)!

Ĝg,n(z; z)

dx(z)

]
ψ(z). (5.66)

Explicitly calculating the derivative of ψ(z)

~2 d

dx
ψ(z) =

[
~℘′(z)−

∑
2g+n−1≥1

~2g+n

(n− 1)!

Ĝg,n(z; z)

dx(z)

]
ψ(z), (5.67)

which when mulitplied by P1(z)
℘′(z)

results in

~2P1(z)

℘′(z)

d

dx
ψ(z) =

[
~P1(z)− P1(z)

℘′(z)

∑
2g+n−1≥1

~2g+n

(n− 1)!

Ĝg,n(z; z)

dx(z)

]
ψ(z).

(5.68)

Substituting this into (5.66) results in the proposed equality.
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Chapter 6

Conclusion

We have constructed the perturbative wave-function for both the Airy and

Weierstrass spectral curves.

The Airy case served to exemplify the connection between topological re-

cursion and the WKB expansion. This prompted the general conjecture of the

connection, which was proven for a large class of genus zero curves in [8]. The

question remained, does this connection (as conjectured) extend to spectral

curves of higher genus? This question motivated an analogous treatment of

the Weierstrass spectral curve (a spectral curve of genus one).

The Weierstrass case was presented in a similar fashion and as was ex-

pected, for reasons from matrix model theory, the quantum curve was not a

straightforward quantization of the spectral curve. Instead there were an in-

finite number of corrections in ~. These corrections were not functions of x̂,

which implied that the operator could not be constructed by taking advantage

of the commutativity/ambiguity of the classical equation.

The fact that the Weierstrass spectral curve does not satisfy the conjectured
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connection (as stated) implies that the perturbative wave-function is not the

right quantity to look at. Instead we need to look to the non-perturbative

formulation which is explored explicitly in [7].

Another consequence of the work presented in [7], is an alternate differential

operator that kills the perturbative wave-function. This alternate quantum

curve was constructed by adapting the methods in [8]. We showed that the

two quantum curves are indeed equivalent as a consequence of a nice side

result involving an infinite collection of identities relating elliptic functions

and quasi-modular forms.

There remain a number of interesting open questions:

1. As was mentioned in the introduction some spectral curves, when sub-

mitted to topological recursion, give rise to correlation functions that

correspond to enumerative invariants. So naturally we can ask, what

meaning can we attribute to the correlation functions for the Weierstrass

spectral curve?

2. Can we expand the non-perturbative treatment beyond the restricted

family in (5.56)? And if so...

3. ... is it possible via the non-perturbative formulation to construct a wave-

function that will in fact be killed by the straightforward quantization?

i.e. is it possible to construct ψ(z) from topological recursion such that:

[
~2 d2

dx2
− (4x3 − g2(τ)x− g3(τ))

]
ψ(z) = 0. (6.1)

4. What would extension to higher genus spectral curves result in? It would
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be interesting to see treatment of higher genus spectral curves, with both

the pertubative and non-perturbative constructions.

5. Are the infinite collection of identities for cycle integrals of elliptic func-

tions (from Proposition 5.3.1) interesting in the context of elliptic mod-

ular forms? As was mentioned this could be related to the expressions

in [31], it would be interesting to explore this possible connection.
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Appendix A

Identities involving Weierstrass
Elliptic Functions

For reference we include some well known identities involving the Weierstrass
elliptic functions.

A.1 Addition Forms

℘(z1 + z2; τ) =
1

4

(
℘′(z1; τ)− ℘′(z2; τ)

℘(z1; τ)− ℘(z2; τ)

)2

− ℘(z1; τ)− ℘(z2; τ) (A.1)

℘(z1 − z2; τ)− ℘(z1 + z2; τ) =
℘′(z1; τ)℘′(z2; τ)

(℘(z1; τ)− ℘(z2; τ))2
(A.2)

ζ(z1 + z2; τ) = ζ(z1; τ) + ζ(z2; τ) +
1

2

(
℘′(z1; τ)− ℘′(z2; τ)

℘(z1; τ)− ℘(z2; τ)

)
(A.3)

ζ(z1 − z2; τ) + ζ(z1 + z2; τ) = 2ζ(z1; τ) +
℘′(z1; τ)

℘(z1; τ)− ℘(z2; τ)
(A.4)

A.2 “Double Angle” Forms

℘(2z; τ) = −2℘(z; τ) +
1

4

(
℘′′(z; τ)

℘′(z; τ)

)2

(A.5)

ζ(2z; τ) = 2ζ(z; τ) +
1

2

℘′′(z; τ)

℘′(z; τ)
(A.6)
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A.3 Differential Equations

℘′(z; τ)2 = 4℘(z; τ)3 − g2(τ)℘(z; τ)− g3(τ) (A.7)

Taking derivatives of both sides of this equation with respect to z, leads
to a number of additional differential equations satisfied by the Weierstrass
elliptic functions:

℘′′(z; τ) = 6℘(z; τ)2 − 1

2
g2(τ) (A.8)

℘′′′(z; τ) = 12℘(z; τ)℘′(z; τ) (A.9)
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Appendix B

Power Series Expansion for Part
of Weierstrass Kernel

Proposition B.0.1.

1

℘′(z; τ)2
=

12

∆(τ)

(
3∑
i=1

(20G4(τ)− e2
i )(℘(z − wi)− ei)

)
. (B.1)

Proof. Suppressing the τ dependence for the time being, we begin with the
Weierstrass differential equation in its factored form

1

℘′(z)2
=

1

4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)
. (B.2)

Performing partial fractions decomposition on the right hand side of this ex-
pression yields

1

℘′(z)2
=

1

4

(
1

(e1 − e2)(e1 − e3)(℘(z)− e1)

+
1

(e2 − e1)(e2 − e3)(℘(z)− e2)

+
1

(e3 − e1)(e3 − e2)(℘(z)− e3)

)
. (B.3)

Utilizing the well known identity

℘(z − wj)− ej =
(ej − ei)(ej − ek)

℘(z)− ej
for {i, j, k} = {1, 2, 3} with i 6= j 6= k,

(B.4)
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and dividing both sides by (ej − ei)2(ej − ek)2, results in

℘(z − wj)− ej
(ej − ei)2(ej − ek)2

=
1

(ej − ei)(ej − ek)(℘(z)− ej)
for {i, j, k} = {1, 2, 3} with i 6= j 6= k.

(B.5)

Using the definition of ∆ = 16(e1 − e2)2(e2 − e3)2(e1 − e3)2 we can rewrite
the previous expression as:

16(ei − ek)2(℘(z − wj)− ej)
∆

=
1

(ej − ei)(ej − ek)(℘(z)− ej)
for{i, j, k} = {1, 2, 3} with i 6= j 6= k. (B.6)

We can simplify the previous expression further by making substitutions
according to the following identity:

(ei − ek)2 = 3(20G4 − e2
j)

for {i, j, k} = {1, 2, 3} with i 6= j 6= k.
(B.7)

Making said substitutions results in

48(20G4 − e2
j)(℘(z − wj)− ej)

∆
=

1

(ej − ei)(ej − ek)(℘(z)− ej)
for {i, j, k} = {1, 2, 3} with i 6= j 6= k. (B.8)

Finally substituting this expression into (B.3) leads to the proposition.

Corollary B.0.2. The power series of 1
℘′(z)2

around z = wi is given by:

1

℘′(z)2
=

12

∆(τ)

(
(20G4(τ)− e2

i )

(
1

(z − wi)2
− 4ei

)
+
∞∑
k=1

A2k(wi)(z − wi)2k

)
,

(B.9)
where

A2k(wi) = (20G4(τ)− e2
i )(2k + 1)G2k+2(τ)

+
(20G4(τ)− e2

j)

(2k)!
℘(2k)(wk)

+
(20G4(τ)− e2

k)

(2k)!
℘(2k)(wj). (B.10)
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Proof. All the terms follow directly from the various power series of ℘(z),
except for the constant term which is simple to calculate:

(20G4 − e2
j)(℘(wi − wj)− ej) + (20G4 − e2

k)(℘(wi − wk)− ek)− ei(20G4 − e2
i )

= (ej − ek)(e2
j − e2

k)− ei(20G4 − e2
i )

= (ej − ek)2(ej + ek)− ei(20G4 − e2
i )

= 3(20G4 − e2
i )(ej + ek)− ei(20G4 − e2

i )

= −3ei(20G4 − e2
i )− ei(20G4 − e2

i )

= −4ei(20G4 − e2
i )
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Appendix C

Direct Proof of First Elliptic
Identity

In this Appendix we provide an independent proof of the following identity,∮
A

P2(2z; τ)

℘′(z; τ)2
dz =

G4(τ)(5G4(τ)−G2(τ)2)

30(20G4(τ)3 − 49G6(τ)2)
. (C.1)

Let us evaluate the period integral on the LHS explicitly and show that it is
indeed equal to the quasi-modular form on the RHS. In this Appendix we will
suppress the τ -dependence for brevity.

First we expand the integrand with a “double angle” identity:

P2(2z) = G2 − 2℘(z) +
1

4

(
℘′′(z)

℘′(z)

)2

, (C.2)

hence our original integral splits into the following three integrals:∮
A

P2(2z)

℘′(z)2
dz = G2

∮
A

dz

℘′(z)2
− 2

∮
A

℘(z)

℘′(z)2
dz +

1

4

∮
A

℘′′(z)2

℘′(z)4
dz. (C.3)

Let us focus on the third constituent integral. Using integration by parts and
the fact that ℘′′′(z) = 12℘(z)℘′(z) we see that it simplifies into a more familiar
form:

1

4

∮
A

℘′′(z)2

℘′(z)4
dz =

1

4

{
− ℘′′(z)

3℘′(z)3

∣∣∣∣1
0

+ 4

∮
A

℘(z)

℘′(z)2

}
=

∮
A

℘(z)

℘′(z)2
. (C.4)

This means our original problem reduces to solving the following two integrals
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on the right hand side:∮
A

P2(2z)

℘′(z)2
dz = G2

∮
A

dz

℘′(z)2
−
∮
A

℘(z)

℘′(z)2
dz. (C.5)

To solve both we take advantage a very useful identity, which follows di-
rectly from the differential equation for the Weierstrass ℘-function (4.13) and
the fact that 2

3
(℘′′(z)− g2) = 4℘(z)2 − g2 :

1

℘′(z)2
=

1

g3

[
2

3

℘(z) (℘′′(z)− g2)

℘′(z)2
− 1

]
. (C.6)

As it turns out, using integration by parts we can express these two integrals
in terms of one another:∮

A

dz

℘′(z)2
=

1

g3

[
−1 +

2

3

∮
A

℘(z) (℘′′(z)− g2)

℘′(z)2

]
= − 1

3g3

[
1 + 2g2

∮
A

℘(z)

℘′(z)2
dz

] (C.7)

∮
A

℘(z)

℘′(z)2
dz =

1

g3

[
2

3

∮
A

℘(z)2 (℘′′(z)− g2)

℘′(z)2
−
∮
A

℘(z)dz

]
= − 1

3g3

[
G2 +

g2
2

6

∮
A

dz

℘′(z)2

] (C.8)

For the last equation, we used the fact that∮
A

℘(z)dz = −G2, (C.9)

since

0 =

∮
A

P2(z)dz =

∮
A

(℘(z) +G2)dz. (C.10)

Solving the system of equations (C.7) and (C.8) results in the following
explicit expressions (with ∆ = g3

2 − 27g2
3):∮

A

dz

℘′(z)2
=

18g3 − 12G2g2

2∆
, (C.11)

∮
A

℘(z)

℘′(z)2
dz =

18G2g3 − g2
2

2∆
. (C.12)
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As a result we see that the original integral (C.5) is given by:∮
A

P2(2z)

℘′(z)2
dz =

18G2g3 − 12G2
2g2

2∆
− 18G2g3 − g2

2

2∆
=
g2(g2 − 12G2

2)

2∆
. (C.13)

Making the substitutions g2 = 60G4 and g3 = 140G6 into this expression
we arrive at the final expected result:∮

A

P2(2z)

℘′(z)2
dz =

G4(5G4 −G2
2)

30(20G3
4 − 49G2

6)
. (C.14)
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