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Abstract

The increased complexity of object-oriented models necessitates the enhancement of adaptiveness
and robustness of an object-oriented design towards changing requirements. The understanding
of what properties are critical for construction of an adaptive schema design becomes increasingly
important in software evolution. In this paper we present two groups of techniques for enhancing the
adaptiveness and the robustness of an object-oriented design in anticipation of future requirement
changes. The first group of techniques consists of a selection of adaptive schema style rules for
achieving validity, minimality, extensibility and normality of a schema design. We encourage to
use this set of rules as a means for validating quality of a schema, and for transforming an object-
oriented schema into a better style, in terms of adaptiveness and robustness of a schema design, rather
than as a user-oriented method solely for designing the schema. The second group of techniques
includes the use of propagation patterns and propagation pattern refinement. Propagation patterns
are employed as an interesting specification technique for modeling the behavioral requirements.
They encourage the reuse of operational specifications against the structural modification of an object-
oriented schema. Propagation pattern refinement is suited for the specification of reusable operational
modules. It promotes the reusability of propagation patterns towards the operational requirement
changes. The main innovations are in raising the level of abstraction for behavioral schema design,
and for making possible the derivation of operational semantics from structural specifications. We
argue that, by using these adaptive specification techniques, the workload required for reorganization
and reprogramming of the existing investment (object base and programs), after parts of the system
have been changed, can largely be avoided or minimized.

*This work was initiated when the author was with the department of Computer Science at University of Frankfurt.



1 Introduction

Object-oriented software systems, like all software systems, are not constructed in ”one-shot”, but rather
developed in an evolutionary way by prototyping models of the software systems and by restructuring
and reprogramming during their whole life cycles [BD91]. As the number of software applications in-
creases and the costs associated with maintaining and adapting them to changing requirements escalate,
the interest in software evolution grows. A recent study [?] found that 60 to 85 percent of the total cost
of software is due to maintenance. Moreover, only 20 percent of maintenance consists of fixing bugs,
so-called corrective maintenance. Another 20 percent goes to adaptive maintenance, which results from
changes in the software environment. The majority of maintenance efforts (about 60 percent) is invested
in so-called perfective maintenance, involving continued development and evolution of a software system
after it has become operational. Therefore, an evolution phase is becoming an important part of the life
cycle of a successful software product [?]. The following are two of the main issues in software evolution:

e How does one maintain a system’s structural and behavioral consistency after parts of the system
have been changed?

e Can one improve the design and implementation of a software system to gain better adaptiveness
and robustness in anticipation of future requirement changes?

In fact, these two issues also represent two closely related and complementary research directons in
object-oriented software evolution. One direction emphasizes on effective management of change impact
on both an object-oriented schema, the object base, and the corresponding software programs after parts
of the software system have been changed. The ultimate goal is to adapt and to propagate the changes
to the affected parts of the system to maintain the structural and behavioral consistency of the system.
The other direction is targeted at developing techniques for improving the adaptiveness and robustness
of the program design or the structural and behavioral sepcifications of the system. As [BH93] have
shown, program adaptation can be exceedingly hard for typed languages (such as C++) even for simple
schema changes. It is therefore important and benefical to devote some research effort on enhancing the
adaptiveness and robustness of a schema design or a program specification so as to avoid or to minimize
the workload for change propagation and program adaptation in the presence of schema updates, rather
than trying to fix things after changes occured.

The EVOLVE project mainly contributes to the second direction of research and development in the
context of object-oriented database specifications. We assume that both the schema and the database
programs in an object-oriented software system may be updated (or evolved) after the database is pop-
ulated with object instances and application programs have been implemented and tested. Therefore,
the impact of schema modifications implies not only the propagation of restructuring operations into
the database instances, but also the reprogramming of existing application programs (e.g., relevant
methods and queries). The main objective of the EVOLVE project is two-fold.

e First, we develop a selection of style rules for construction and evaluation of an adaptive schema,
aiming at improving the adaptiveness and robustness of an object-oriented schema design in
anticipation of future requirement changes.

e Second, we argue for avoiding or minimizing the amount of effort required for manually repro-
graming of existing method and query specifications due to schema evolution or requirement



modifications. We demonstrate how the reuse mechanisms can be exploited for enhancing the
adaptiveness of database programs in the presence of schema evolution.

Why an adaptive schema design becomes increasingly desirable?

An object-oriented schema is adaptive and robust if it correctly uses the object-oriented modeling
concepts, and can easily be adapted to changing requirements by encouraging as much information
localization and data abstraction as possible, so that the overall impact of a schema modification or a
database update can be minimized or reduced. For instance, a schema modification should be localized
at one place whenever possible. No update anomalies should be incurred due to a modification to the
database. Due to the increased complexity in both the schema design and the development of application
programs working with the schema, any change to the existing schema design may have effect on both
the database instances and the application programs. The cost for change propagation and program
adaptation can be exceedingly high, when the system is large in size and complex in organizational
or behavioral dimension. So far, most research in object-oriented design has mainly concentrated on
how to use object-oriented concepts in logical design and requirement modelling. There is, however,
surprisingly very little on evaluation of what constitutes a robust and adaptive schema in anticipation of
future requirement changes. Many desired properties of a schema design (such as validity, extensibility,
minimality, normality) (cf.[?]) are only vaguely understood in the context of object-oriented models.

With these objectives in mind, we develop a selection of design and evaluation rules for building an
adaptive schema in an object-oriented system. We encourage to use the set of style rules proposed
as a means for validating quality of a schema and for transforming an object-oriented schema into
a better style in terms of adaptiveness and robustness, rather than as a method solely for designing
the schema. One of our primary goals is to automate quality design and evaluation for building an
adaptive object-oriented schema, such that we may use this set of style rules not only to verify the
many desired properties of an object-oriented schema design, but, if the schema is found to be not
or less qualified, these style rules can also be used as baselines to transform the schema into a better
style and yet semantic-preserving alternative. The schema transformation algorithms should, on the
one hand, eliminate the undesired dependencies and minimizes the impact of schema modifications,
and, on the other hand, be able to preserve all the necessary dependencies and thus the database
integrity constraints required by applications during schema enhancement process and schema change
management.

Can reprogramming be avioded in the presence of schema evolution?

Reprogramming of object methods and database queries usually follows evolutionary changes of the
logical object structure (i.e., the database schema). For example, in most existing method definition or
query specification languages, each name used in methods or queries must be associated with a precise
path expression in order to traverse the nested structure of the objects. Whenever a schema modifica-
tion involves more than one existing class, the path expressions relevant to those classes are changed
in the modified schema. The methods and queries which use those “old” path expressions must be
updated accordingly to enable them to be valid in the modified schema. Operations for reprogramming
of methods and queries can be quite expensive, especially when the relevant application programs are
large and complex. Moreover, these operations conflict with the reuse of software components. In-
teresting to note is that, quite often, the reason for manually reprogramming of methods and queries
after schema modifications is simply to keep the path expressions required in method definitions or
query specifications consistent with the modified schema. In such cases, manually reprogramming of
existing methods or queries (due to schema modification) can certainly be avoided by using structural
derivation of operation propagation semantics, because the precise knowledge of path expressions is



actually derivable from the logical object structure of the corresponding schema. There are many other
cases where manually reprogramming of existing methods or queries (due to schema modification) can
also be avoided in a similar way, for example, when a schema modification changes the properties of
objects (e.g., a new property is added to an existing class). Unfortunately, very few object-oriented
systems (and none of the existing object-oriented DBMS products we know of) include support for
structuring and deriving operational semantics from structural specifications. We believe that adding
support for automatically or semi-automatically deriving the semantics of operation propagation over
the hierarchical structure of complex objects opens new possibilities for the reuse of operational spec-
ifications (such as methods or query programs) in object-oriented systems. Of course, when a schema
modification has substantially updated the logical object structure of a schema (in particular, when a
schema modification changes the minimal knowledge required for specifying a method or a query), the
reprogramming cannot be avoided completely [?].

In the EVOLVE project, we propose a seamless approach to the incremental design and reuse of object-
oriented methods and query specifications and show how the reuse mechanisms are exploited for improv-
ing the adaptiveness of software programs against schema modification in an object-oriented system. We
argue that, by using this approach, operational specifications become more robust and adaptive towards
schema modifications. The effort to manually reprogram methods and queries necessitated by schema
modifications can be avoided or minimized. The salient features of this approach are the use of propa-
gation patterns and a mechanism for propagation pattern refinement. Propagation patterns can be seen
as an interesting specification formalism for modeling operational requirements in any object-oriented
system. They encourage the reuse of operational specifications against the structural modification of an
object-oriented schema. Using propagation patterns provides method designers and query writers with
an opportunity to specify operations without detailed navigational information. Propagation pattern
refinement is suited for the specification of reusable operational modules. It promotes the reusability of
propagation patterns towards the operational requirement changes. We provide a number of examples
to illustrate the concepts of propagation patterns and propagation pattern refinement, and to show why
these concepts are important reuse mechanisms and how they are employed to avoid or to minimize the
effort required by manually reprogramming of methods and queries due to schema modifications.

The rest of the paper proceeds as follows. We first briefly present the EVOLVE reference object model
in Section 2. Then we introduce the set of style rules the EVOLVE tool provides for construction and
evaluation of an adaptive schema in an object-oriented software system in Section 3. Due to the space
limitation, in this paper we only report in detail the formal semantics of the style rules for correct use
of inheritance as a representative example, and discuss the rest of rules informally. In Section 4, we
present the concept of propagation patterns and their polymorphic character as well as the importance
of behavioral refinement of propagation patterns in improving adaptiveness of object-oriented behavioral
specifications. We provide an overview of the EVOLVE methodology and implementation framework
in Section 5. The paper end by a comparison of the EVOLVE development with the related work and
a summary in Section 6.

2 The Reference Object Model

We use the kernel of the Demeter data model [L.X93] as our reference object model because this allows
us to show how the reuse mechanisms such as propagation patterns and propagation pattern refinement
can directly be made available using an existing tool: the Demeter System/C++TM ([LRSS], [Lie94]).
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Figure 1: A class dictionary graph of schema Trip.

In the object reference model, we describe the structure of objects and classes in terms of a class dic-
tionary graph (or so called schema graph). Two kinds of classes are distinguished: alternation classes
and construction classes. Alternation classes are regarded as abstract classes. Construction classes are
instantiable classes. Two kinds of relationships are distinguished between classes: inheritance relation-
ships (called alternation or sepcialization edges) and object reference relationships (called construction
edges). We refer to the set of is-a relationships of a schema as the specialization (or is-a) hierarchy and
the set of object construction relationships as construction hierarchy. An object construction hierarchy
may consist of several disconnected subgraphs with possibly multiple construction edges, and construc-
tion loops or self construction loops. Information about what methods need to be attached to a class is
deliberately omitted from the class dictionary graph at this stage; it will be “injected” into a class via
propagation patterns at method propagation time. (See Section 4.1 for details.)

Definition 1 (class dictionary graph)

An object schema G is defined as a labelled, directed class dictionary graph or simply called schema
graph, denoted as G = (V, L, F) where V is a finite set of class vertices with a vertex Object as the
root class; L is a set of labels, each described by a character string; and FE = FAU FEC is a sel of edges
where E'A is a binary relation on V x V', representing is-a (specialization) edges; and EC' is a ternary
relation on V x V' X L, representing object construction edges.

We also denote a schema graph by G = (V, L, EA, EC) for presentation brevity. The root vertex
Object is a system-defined class which contains all the objects of the database, and has neither incoming
specialization edge nor incoming construction edge.

Example 1 Suppose we have a class Trip which is described by departure, arrival and location-list.
It has a construction edge labeled as booking to class Hotel too. We may further divide the class Trip
into two subclasses BusinessTrip and HolidayTrip. (See Figure 1.) The class dictionary graph of this
example can be described as follows:



V ={Trip, HolidayTrip, BusinessTrip, LocationList, Location, Hotel, Ident, Time}.

EA={(HolidayTrip,Trip), (BusinessTrip,Trip)}.

EC={(Trip,Location,location-1ist), (Trip,Time,departure),(Trip,Time,arrival),
(Trip,Hotel,booking) , (Location,Ident,city), (Hotel,Ident,address)}.

Definition 2 (specialization reachable: ==*)
Let G = (V,L,EA, EC) be a schema graph. A class u € V is specialization reachable from class v € V,
denoted by v =" u, iff one of the following conditions is satisfied:

(i) w=wo.
(ii) (v,u) € FA.
(i) JweV,w#u, w#v st v="w, w="1u.

Let us take a look at Figure 1. According to Definition 2(ii), class Trip is specialization reachable from
class HolidayTrip. Note that the following anti-symmetric restriction is placed on F'A: if Vu € V. Jv €
Vst (u,v) € EA, then (v,u) € FA. In fact, “=>" is the transitive closure of FA.

Definition 3 (construction reachable: —*)
Let G = (V,L,EA, EC) be a schema graph. A class vertex w € V is construction reachable from class
vertex v € V, denoted by v — u, iff one of the following conditions is verified:

(i) el st (v,u,l)e EC.
(i) weV,lel s.t. v="w and (w,u,l) € LC.
(i) JweV,w#u, w#v: v—""w, w—"u.

Consider Figure 1. By the condition (ii) and (iii) of this definition, class vertex Location is construction
reachable from class vertex HolidayTrip, because we have HolidayTrip—-"Trip and Trip——*Location.
This example demonstrates that, by applying both construction reachability and specialization reach-
ablity, we may directly obtain the inheritance property of the is-a class hierarchy (cf.[Car84]). More
specifically, when a class vertex w is specialization reachable from class vertex v, then for any other
vertex w € V., if w is construction reachable from u, we may prove that w is also construction reachable

from v (cf.[?]).

In order to obtain a good understanding of the contributions of the EVOLVE development, before
giving an overview of the EVOLVE framework, we first introduce and discuss the two main features of
the EVOLVE approiach: the development of a basic set of adaptive schema design rules and the two
reuse mechanisms for operational requirement sepcifications respectively. We will also demonstrate by
examples on why these mechanisms can be used as adaptive specification techniques for object-oriented
software evolution.

3 Adaptive Schema Design

3.1 A quick introduction to the basic set of style rules

In the EVOLVE project, we develop a selection of design and evaluation rules for building an adaptive
object-oriented schema. This set of style rules include not only those which we use to preserve validity



and minimality of an object-oriented schema, but also those which help us to promote extensibility,
reusability and adaptiveness of an object-oriented schema against future requirement changes.

The style rules for preserving the validity of an object-oriented schema guarantees that it should have
no-dangling class vertex, and satisfy the cycle-free specialization axiom and the unique con-
struction label axiom. These are actually the common baselines for correct use of the object-oriented
modeling concepts. Once a schema satisfies these three validity rules, we refer to the schema as a valid
normal form (valid-NF').

Axiom 1 (no dangling class vertex)

Let G = (V,L,EA,EC) be a schema graph. We say that the schema G has no dangling classes, if there
1s no class vertex in G, which has neither outgoing edges to other vertices nor incoming edges from
other vertices. Two cases need to be distinguished:

(i) VueV,IweV,v#ust (v,u)e LA
(ii) Yu € V,3v € (V — {Object}), v # u s.t. (v,u)¢ EAV (u,v)¢ FAV u € Parts(v)
Vv € Parts(u).

Axiom 2 (cycle-free specialization axiom)
Let G = (V,L,EA, EC) be a class dictionary graph. We say that G has no specialization cycle, if and
only if Yo e V, Au € V s.t. u £ v,u =" v, v =" u.

Axiom 3 (unique label axiom)

Let G = (V,L,FEA,EC) be a schema graph. We say that G follows the unique label aziom only if,
for any class vertex in G, all its construction edges (either inherited or locally defined) are distinctly
labelled. Ie., the following two conditions should be verified:

(i) Yo,u,we VY00 € Lt if (u,v,0), (u,w,l')e EC and (u,v,l)# (u,w,l'), then { # (.
(i) Vo,u,w,v’,w" € VNI € Lif v £ 0, v =" u, v =" u, (v,w,(),(v,w' ') EC, then
AL

Mechanisms for resolution of the violation to the axiom 3 include, for instance, the renaming mecha-
nism for Eiffel and the mechanisms proposed in literature for resolution of name conflicts of multiple
inheritance. This axiom has been widely used in many object-oriented models that support subtype

inheritance (cf. [BCGT87, 1L.X93]).

The style rules for good use of inheritance concept presents a design guideline to encourage abstraction
of common components among classes by promoting inheritance along specialization hierarchy, and
to advocate minimization of multiple inheritance used in a schema graph. Therefore, for any
schema, if it meets these two inheritance style rules, we consider it to be of inheritance normal form.

We also develop two style rules for preserving minimality of a schema specification. The first one
is called specialization minimality. When we say that a schema is semantically minimal or non-
redundant, if no concept can be deleted from the schema without losing information. Redundancy in
an object-oriented schema may occur for several reasons. One of the most common causes is due to the
fact that application requirements often have an inherent redundancy and this redundancy migrates
into the initial schema design. Redundancy can also be incurred when related concepts are expressed
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Figure 2: Hllustration of the specialization minimality axiom

in different schemas and these schemas need to be merged such as required in the heterogeneous and
distributed database environment [S1.90]. Furthmore, redundancy of an object-oriented schema is often
embedded in several ways within the schema. In the EVOLVE development, we focus on two aspects
of the schema redundancy: specialization redundancy and useless classes. Specialization redundancy
exists when a specialization edge between two class vertices has the same information content as a path
of the specialization edges between the two classes. We may describe a specialization path from vertex
u to vertex v by a list of vertices < w,wq, wa, ..., w,, v > (n > 1), satisfying that (u,wy), (w1, ws), ...,
(wy,v)€ EA. Thestyle rule for promoting the specialization minimality of a schema graph is to eliminate
all the redundant specialization edges implied in specialization abstraction (see Figure 2(a)(b)). It is
worth noting that, however, a schema with more than one specialization path between two classes does
not necessarily imply specialization redundancy (see the schema (c) in Figure 2).

The second style rule for minimality is called no-useless classes. For any class vertex v, if it has neither
incoming specialization edge, nor outgoing construction edges, then it is desirable and also reasonable
to consider vertex v as a useless class, because it contains no construction information at all. Most of
the useless class specifications initially come from application requirements, and mainly caused by the
difficulty in distinguishing between what should be modelled as classes and what are properties of a
class in the logical design. Whenever a schema graph preserves specialization minimality and has no
useless classes, we consider it satisfying the minimality normal form.

We have also defined the normality rule for eliminating the update anomalies implied in the initial
schema design, as well as the cycle-free dependency rule for minimizing the existence dependency loops
implied in the construction hierarchy of the initial schema design.

In the next subsection, we formally introduce the inheritance style rules and the concept of inheritance
normal form. The benefits of using such style rules are illustrated through examples.



3.2 Style rules for enhancing the extensibility of an object-oriented schema

Extensibility of a database schema is defined by the adaptiveness and the flexibility of the schema in
anticipation of future schema changes. The crucial factor for extensibility is to reduce the impact of a
schema modification (i)on the entire structural consistency of the existing schema (cf. [BKKKS87, Zic91],
(ii)on the organization of the databases (cf.[LH90]), and (iii)on the workload required for rewriting of
the existing application programs (cf. [SZ87]). The basic principle for achieving better extensibility in
an object-oriented database system is to advocate minimal coupling between abstractions (e.g., meth-
ods, procedures, and modules) and to provide a certain degree of information hiding and information
restriction in order to reduce the cost of software changes. In what follows, we concentrate on how to
make good use of inheritance feature along with specialization hierarchy.

3.2.1 Information Localization

The following axiom presents a design guideline to encourage abstraction of common components among
classes by promoting inheritance along specialization hierarchy.

Axiom 4 (information localization)
Let G = (V,L,EA,EC) be a schema graph. We say that G supports information localization if the
following condition is verified: Yu,v,w € V: if u # v, then Al € L s.t. (u,w,l),(v,w,l)€ EC.

In order to satisfy this axiom, an object-oriented schema should abstract all the common components
among the constructed class vertices by introducing inheritance through addition of specialization edges.
The advantage of encouraging information localization through abstraction of common parts is apparent.
Let’s look at the following example.

Example 2 Consider the two schema graphs given in Figure 3. In the schema graph (a), the two
class vertices u and v have a common class vertex w via the two construction edges with the same
label €. Obviously it violates Axiom 4. As a consequence, whenever a change occurs to either of these
construction edges or to the class w (for instance renaming of the label ¢ or of the class name w), both
class w and v will be affected accordingly. Furthermore, such a change may cause a need for modification
of the existing software programs (e.g., database queries) that are working with the class u and v.

In order to reduce the possible impact of a schema modification to the database and application programs
working with the schema (a), we need to promote information localization by abstracting the common
information among the class v and v. For example, we may introduce a new class vertex w’, connecting w’
to vertex w by building a construction edge with the same label ¢, and meanwhile add two specialization
edges from class v and v to the new class w’. Thus, the class w can still be construction reachable from
both class u and v with the same label { (see the schema graph (b) in Figure 3). The only difference
between these two schemas is that, in contrast to the schema (a), the class w in the schema (b) becomes
construction reachable from class u and v through a combination of specialization abstraction with
construction abstraction, rather than via direct construction edges. Clearly, the schema graph (b)
satisfies Axiom 4.

Now if we want a change, for instance, by renaming the label ¢ of the construction edge (w', w, (), we
only need to carry out the change at one place (i.e., in the class w’). Furthermore, such change has
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Figure 3: Examples for illustration of Axiom 4

no modification impact on any of the existing programs working with the classes u and v, because the
change can automatically be reflected to class u and v through inheritance implied by their specialization
edges to vertex w’. Besides, thank to the fact that the transformation of the schema graph (a) into the
schema graph (b) is actually object-preserving (cf.[Ber91]) all the programs previously working with
the schema(a) are still applicable to the optimized schema(b).

3.2.2 Minimization of Multiple Inheritance

We below present an axiom for minimizing the amount of multiple inheritance used in a schema graph.
The reason is simply because multiple inheritance causes extra maintenance overhead in comparison
with single inheritance. To achieve better extensibility and maintainability, a schema should minimize
multiple inheritance as much as possible. The concept of total generalization plays an important role
in obtaining this objective.

Definition 4 (total generalization)

Given a schema graph G = (V, L, EA, EC'), we say that a class vertex u is a total generalization
of class vertices vy, ..., v, € V (n > 1), if and only if, for (u,vi), ..., (u,v,)€ EA, the following two
conditions are verified:

(i) AweV:w#uv, ..., w#v,, (w,u)c LA;
(ii) content(u) = content(v;)U ...U content (v, ).

We define the set of outgoing specialization edges from class vertex u, denoted as OutF A(u), as follows:
for any class vertices u, vy, ..., v, € V, if the class vertex u is a total generalization of the classes vy, ..

vy, then OutEA(u) =4c5 {vi | vi € V,(v;,u) € EA}. Otherwise QutEA(u) =4.5 0.

*

Axiom 5 (multiple inheritance minimization)
A schema graph G = (V, L, FA, EC) is said to support multiple inheritance minimization, if the follow-
ing rules hold.

(i) Complete cover
Au,v €V s.it. OutEA(u) # 0, OutEA(v) # 0, and OutEA(v) C OutEA(u).

(ii) Partial cover
Au,v € V st OutEA(u) # 0, OutEA(v) # 0, and | OutEA(u) N OutEA(v) |> 1; where
| Out EA(uw) N OutEA(v) | denotes the total number of the elements in the set (OutEA(u)N
OutlZA(v)).



Figure 4: An example schema that violates Axiom 5

This Axiom suggests that an adaptive schema should always provide a support for minimization of
multiple inheritance. More specifically, the complete cover rule requires that whenever a schema graph
has a total generalization (say OutE A(v)) which is completely covered by another total generalization
(say OutEA(u)), ie., OutEA(v) C Out EA(u), it would be helpful to reorganise them, for example, by
adding a new specialization edge from u to v so that those specialization edges anchored at both u and
v can be replaced by only to be anchored at the class v. The partial cover rule of Axiom 5 amounts to
saying that if two classes have outgoing specialization egdes to more than one common class vertex, then
it is desirable to introduce a new class vertex to localize the common information in order to increase
adaptiveness of a schema graph against future schema changes.

Example 3 Consider the schema graph in Figure 4. Assume that class u is not specialization reachable
from class v and vice versa. The class w is a total generalization of ws, ws, wy, ws. The class v is a
total generalization of ws, w4, ws, ws. Thus we have Qut FA(u) = {wy, ws, ws, ws} and OutFA(v) =
{ws, wyq, ws, we}. OutEA(u) N OuwtEA(v) = {ws,wy, w5}, and | OutLA(u) N OutEA(v) |= 3 > 1.
Clearly, this schema graph violates the partial cover rule of Axiom 5. Problems may occur whenever we
require a change to the information that is common to classes ws, wy, ws, because such changes have
to be carried out by repeating the same modification to each of the aforementioned classes ws, wy, ws.
We may solve the problems as such by transforming the schema graph in Figure 4 into an equivalent
schema graph as shown in Figure 5.

This transformation can be fulfilled by introducing a new class vertex w and creating outgoing special-
ization edges from class w to class v and v, and meanwhile replacing those specialization edges from
class ws, wy, ws to both v and », by adding specialization edges from class ws, wy, ws to w. Clearly, the
optimized schema graph in Figure 5 satisfies Axiom 5. The benefit of such transformation is obvious.
For instance, concerning the schema in Figure 5, any change which is common to the class ws, wy,
ws, now only need to be performed at one place (i.e., in the newly added class w). The change will
automatically be reflected to the class ws, wy, w5 through specialization inheritance (cf. [Car84]).
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Figure 5: A modified schema graph that satisfies Axiom 5

Definition 5 (Inheritance Norm Form: I-NF)
Let G = (V,L,EA, EC) be any schema graph and I-NF' denote a collection of adaptive schema graphs

by making the best use of inheritance feature. A schema graph G belongs to I-NF, if and only if (i)G
belongs to V-NF and (ii)G satisfies Aziom 4 and Aziom 5.

3.3 Remarks

The basic set of the EVOLVE style rules forms a framework for axiomatic characterizations of object-
oriented schemas in terms of adaptiveness and robustness of an object-oriented design. This framework
consists of a selection of normal forms, i.e., valid NF, inheritance NF, minimal NF, normalized NF
and cycle-free dependency NF (D-NF). So far, we have informally overviewed the basic set of adaptive
schema style rules. We have also presented the formal development of the style rules for valid normal
form and for inheritance normal form. However, due to the space limitation, in the current presentation,
we omit the formal definition for the minimality normal form, the normalized normal form as well as
the cycle-free dependency normal form. Readers who are interested in may refer to the technical report
[?] for further details.

In the EVOLVE development, we regard the valid NF as the baseline for every object-oriented schema
design since it exhibits the basic assumption of object-oriented modeling. It is interesting to note that
a schema which belongs to, for example, inheritance-NF, may not be necessarily in the other normal
forms (e.g., minimal NF, normalized NF, or cycle-free dependency NF'). By using this framework,
many desired properties of a schema design, such as validity, extensibility, minimality, normality, etc.,
can be well understood under the context of object-oriented models. For example, a inheritance-NF
schema promotes maximum information localization so that the impact of schema changes can largely
be reduced, a minimality-NF schema encourages that every aspect of the requirements should only
appear once in the schema in order to enhance the maintainability of the schema, while a normalized-
NF schema avoids update anomalies and therefore when a change happens to the database, the cost for
database consistency maintenance is minimized. When a schema belongs to both inheritance-NF and



minimality-NF, it is certainly more adaptive and robust when changes occur to either specialization or
construction structure of the schema. We evaluate those schemas that satisfy all the normal forms to
be of the mostly higher quality in terms of adaptiveness and robustness of a schema in reacting to the
future requirement changes (both at the schema level and at the instance level).

4 Reuse Mechanisms for Adaptive Behavioral Specifications

4.1 Propagation Patterns

The concept of propagation patterns was originally introduced in the Demeter system”™ [LXSLII,
Lie94] in order to specify object-oriented programs at a higher level of abstraction. We believe that
propagation patterns are also useful conceptual programming technique for database applications, which
enables system designers and programmers to conceptualize application programs and system behavior
with minimal knowledge of the data structure. Put differently, propagation patterns can be seen as a
kind of behavioral abstraction of application programs, which defines patterns of operation propagation
by reasoning about the behavioral dependencies among cooperating objects. They have proved to be an
effective aid for building highly adaptive database programs (methods and queries) and for supporting
incremental schema evolution.

4.1.1 A Quick Look at the Syntax

The following information is necessary for the specification of a propagation pattern over a given class

dictionary graph, say G' = (V, L, EC, FA).

1. method interface
It is described by the method name, the output type (optional) and the set of parameters. The
syntax is as follows:
OPERATION w mn(p1, ..., Pn),
where u € V U {void} is either a class vertex in V or the keywork “void”, indicating an empty
result type, mn € L is the method name and pq,...,p, (n > 0), are a list of parameters of this
method.

2. propagation directives
Each propagation directive specifies a propagation path and is described by a set of source vertices,
a set of propagation constraints and a set of target vertices.

e a set of source vertices
specifies where the method propagation pattern starts. It is a mandatory information of a
propagation pattern. The syntax is
FROM wuq,ug, ..., U,
where uy, ug, ..., us (s > 1) are class vertices in the given class dictionary graph.

e propagation constraints
indicate the restrictions over the propagation pattern. They are described by a set of prop-
agation restriction or exclusion constraints. The former specifies which edges have to be
passed through along the road of the method propagation and is described by the following
syntax:



THROUGH €;,,¢€;,,..., €

-
The latter identifies which edges should be excluded from the specified method propagation
path. The syntax specification is given below.

BYPASSING €j,,€j,, s €,

Note that e;,€i,,...,e;, (p > 0) and €j,,¢€j,,...,€;, (¢ > 0) are edges in the given class
dictionary graph.

e a set of target vertices
specifies with which classes the propagation pattern terminates. It is also a mandatory
component of a propagation pattern specification. The following is the syntax description:
TO wy,wsa, ..., Wy,
where w1, ws, ...,w; (t > 1) are class vertices in the given class dictionary graph.

3. method annotations
A method annotation consists of a sequence of code fragments. Each code fragment is described
by a class vertex with the code enclosed within “@” symbols. Three types of method annotations
are currently provided: PREFIX (which specifies a prefix to the traversal code), SUFFIX (which
serves as a suffix to the traversal code) and PRIMARY (which replaces the traversal code). The
specification syntax of the method annotations are the following:

PREFIX uy; (@ f; @),..., uy (@ f, ©
SUFFIX v, (@ g1 ©),..., v, (@ g5 @)
PRIMARY w; (@ hy @),..., w; (@ h; @)

where u;, v;, w, € V are class vertices, f;, ¢;, hy are code fragments (e.g., C++ code fragments),
1<i<m,1<j<s 1<k<t.

4.1.2 Illustration By Examples

To illustrate the syntax and semantics of propagation patterns, we provide some representative examples
in this section and omit the formal definition and formal analysis of propagation patterns. Readers who
are interested in the formal treatment may refer to [?].

Example 4 Consider the class dictionary graph as shown in Figure 1. The Trip objects have parts
called departure and arrival which can be printed. A Trip object contains a list of Location objects,
each has an Ident object as a component, describing the city to be visited during the trip. Suppose
we want to have a method “print-itinerary” which prints only the departure time and the list of cities
to be visited, followed by the arrival time. All the Hotel objects of a trip should be excluded from
this printing task. We may define the method “print-itinerary” by writting a propagation pattern
(see Figure 6). The idea behind this propagation patterns is based on the fact that a number of
classes in the class dictionary of Figure 1 need to cooperate to accomplish the task “print-itinerary”,
but only a few information are necessary for specifying this task, since the rest can easily be derived
from the structural specifications of the schema. For instance, in Figure 6, we specify the interface
of the method to be propagated with the clause OPERATION void print-itinerary. The source of
this propagation pattern is given with the clause FROM Trip, specifying where the propagation pattern
starts. The target of this propagation pattern is provided with the clause TO Ident, indicating with
which class(es) the propagation pattern terminates. The clause BYPASSING *,booking,* identifies the
restriction (propagation constraints) over this propagation pattern in order to exclude all the hotel



OPERATION void print-itinerary()

FROM Trip

BYPASSING *,booking,*

TO Ident

PREFIX Trip (@ departure -> g_print() @)
SUFFIX Trip (@ arrival -> g_print() @)
PRIMARY Ident (@ this -> g_print() @).

Figure 6: An example propagation pattern print-itinerary.

information from this particular printing task. The clauses PREFIX Trip, SUFFIX Trip and PRIMARY
Ident, followed by the actual programming code (e.g., C++ code) surrounded by “(@” and “@)”,
specify the method body. We call the source clause, the target clause and the propagation constraint
clause together the propagation directive of pattern “print-itinerary”.

Remarks:

(i)Writing a propagation pattern does not require knowledge of the detailed data structure. One obvious
benefit of this feature is to allow reuse of propagation patterns for several similar data structures and
thus to increase the adaptiveness of an object-oriented schema design.

(ii)If the BYPASSING option is not included in the above propagation pattern, instead, only the clause
FROM Trip and clause TO Ident had been used, then the edge (Trip,booking,Hotel) would have par-
ticipated in the propagation too. It means that the propagation path implied by the given propagation
directive will include both the path from Trip through Location to Ident and the path from Trip
through Hotel to Ident. It means that the task “print-itinerary” will print both the departure time,
the list of locations to be visited, the hotel booked for the trip, and the arrival time.

(iii) Propagation patterns can automatically or semi-automatically be translated at method propagation
time into any object-oriented programming language code, for example C++4 code, and meanwhile the
corresponding code fragments will be inserted into the appropriate classes which participate in the
propagation pattern traversal.

To illustrate the remark (iii), let’s consider a simplied Trip schema given in Figure 7 for presentation
convenience. We may therefore model the operational requirement described in Example 4 by means
of the propagation pattern defined in Figure 8. In this example, the prefix annotation is used to print
the departure time before the Trip object is traversed; the suffix annotation prints the arrival time
after the Trip object has been traversed. The primary annotation replaces the default traversal code
when printing the current Ident object. When the above propagation pattern is injected into the class
structure given in Figure 7 at propagation time, program fragments will automatically be generated
according to the given method annotations. (See the C+4 codes attached to the classes in Figure 7,
which we obtained by running the EVOLVE-Demeter/C++ on the example.) Note that the class
LocationList in Figure 7 is introduced here merely as a list construct for showing how the code is
generated for implementing the requirement that a Trip consists of a list of Location objects. The
C++ method definitions attached to each class in Figure 7 is generated according to the propagation
pattern given in Figure 8. The completeness of these C4++ methods fully depends on the specification
details of the propagation patterns.



Figure 7: The Trip schema with generated C++ code attached to corresponding classes.

OPERATION void print-itinerary()

FROM Trip

TO Ident

PREFIX Trip (@ departure -> g_print() @)
SUFFIX Trip (@ arrival -> g_print() @)
PRIMARY Ident (@ this -> g_print() @);

Figure 8: The propagation pattern print-itinerary over the Trip schema in Figure ?7?.

Clearly, by using propagation patterns, any unnecessary information about the class structure need not
be hardwired into the specification. This allows the specification of a propagation pattern to be more
flexible towards schema modification. For example, suppose the schema shown in Figure 7 is extended
by adding a new class DayTrip such that a Trip object now contains a list of DayTrip objects and
each DayTrip object contains a list of Location objects which are printable through Ident objects (see
the schema presented in Figure 9). Although the propagation pattern in Figure 8 is defined over the
schema in Figure 7, the modification on the Trip schema requires no reprogramming of this method,
because all the key information (hooks) of “print-itinerary” (such as Trip,departure,arrival,Ident)
are included in the modified schema (See Figure 9). It means that this propagation pattern is also
applicable to the schema of Figure 9. We can actually reuse the propagation pattern defined in Figure 8
for the Trip schema in Figure 9 without changing the specification of the propagation pattern and thus
the code generated previously based on this propagation pattern.

To further demonstrate the robustness of database programs written in propagation patterns, let’s
use the conventional object-oriented database languages to express the operation “print-itinerary”,
and show how it reacts to the above schema modification. Using most of the existing object-oriented
languages, the method designers or query writers must query the objects of interest by their precise



Figure 9: A second Trip schema with generated C+4++ code.

path expressions. For example, the “print-itinerary” has to be expressed more or less as follows:

PRINT t.departure, t.locations.city, t.arrival
FROM t¢in Trip.

Whenever we modify the Trip schema shown in Figure 7, for example, by simply adding a new class
DayTrip as presented in Figure 9, then the above SQL-like operation expression is not anymore a valid
operation to the newly modified schema (Figure 9). We must rewrite the above operation expression
manually in order to replace the “old” path expression “t.locations.city” by “t.daytrips.locations.city”.
Imagine that if we have a number of application programs implemented over the “old” Trip schema
(see Figure 7), one single modification on this schema could cause possibly rewriting of all the existing
application programs which have been working with the schema. This is by no means a pain. However,
if, instead, we use propagation patterns to specify this “print-itinerary” operation (See Figure 8), the
modification as such will have no impact on the “existing (old)” database programs; because writing
the propagation pattern “print-itinerary” requires neither the detailed structure of Trip schema nor the
navigational information of how to traverse Ident from Trip. The propagation pattern “print-itinerary”
defined in Figure 8 may remain unchange and works as a valid method on the modified Trip schema.
The main idea behind propagation patterns is simply to delay the binding of the concrete propagation
paths used in each method or query specification from method (or query) writting time to operation
propagation time, prior to compile time.

In our view, propagation patterns, on the one hand, proposes a novel method specification technique for
promoting adaptive object-oriented schema design; and on the other hands, can be used as a database
programming language for enhancing robustness of database programs.



4.1.3 Polymorphic Character of Propagation Patterns

As stated earlier, by using propagation patterns to model the dynamic part of an object-oriented
database system, we may achieve a certain degree of adaptiveness and flexibility of the database spec-
ifications against future changes, especially with respect to several types of structural changes. For
example, the propagation pattern given in Figure 8 is defined over the class dictionary graph of Fig-
ure 7, but it can also be used as a propagation pattern for the class dictionary graph given in Figure 9,
because both class schemas include Trip objects, which have Ident objects as parts. More interestingly,
this propagation pattern is actually applicable to a family of Trip class structures, as long as the Trip
class has a departure and an arrival part, and a “path” to class Ident. In short, by using propagation
patterns, schema designers and programmers can focus on merely the most interesting components of
the class structure. No precise knowlegde about how the structural details are modeled in a particular
schema (class dictionary graph) is required. We call this particular feature the polymorphic character
of propagation patterns.

It is interesting to note that, for the same pattern print-itinerary, its propagation scope over the class
schema of Figure 7 is not the same as the one over the class schema of Figure 9. Thus, the binding of
this propagation pattern to the involved classes in the schema of Figure 7 is different from the one in
Figure 9.

Generally speaking, the polymorphism of propagation patterns belongs to the family of ad-hoc poly-
morphism [CW85]. We believe that the theory of polymorphism may provide a sound theoretical basis
for investigating the adaptiveness of object-oriented schema design and schema evolution in both the
structural and the dynamic aspect.

4.2 Behavioral Refinement of Propagation Patterns

Up to now, we have shown by examples that propagation patterns are a promising conceptual pro-
gramming technique for modeling and programming the dynamic behavior of object-oriented database
systems, because of their adaptiveness to the structural changes of a schema.

The adaptiveness of propagation patterns results from a number of interesting features.

o First of all, the specification of propagation patterns does not require hard-wiring them to a
particular class structure. This leaves room for deriving behavioral abstraction based on structure
abstraction and for incremental design of methods (e.g., propagation patterns).

¢ Secondly, propagation patterns are defined in terms of only a few, essential classes and relationship
specifications. They serve as hooks into the class structure [Lie94]. The rest of the knowledge
required for behavior implemention can actually be derived on the basis of these hooks and the
corresponding class schema.

¢ Thirdly, propagation patterns promote the well-known concept of late binding. Instead of bind-
ing methods to classes at program-writing time, propagation patterns encourage the binding of
methods to classes at propagation time, prior to compile time. Therefore, given a propagation
pattern defined over a class structure (say (), any change to the structure of G (which does not
affect the hooks of this propagation pattern) will have little impact on the specification of this
propagation pattern, even though its scope over the modified class schema could be changed ac-
cordingly. In other words, the given propagation pattern specification by itself can be reused in



a modified class schema, if no additional propagation constraints or method annotations are re-
quired. But the binding of the method interface and annotations to the relevant classes may need
to be re-adjusted implicitly at propagation time (through propagation pattern interpretation).

In contrast, when changes are required to the dynamic (behavioral) aspect of a schema and thus to some
existing propagation patterns, it becomes indispensible to redefine the affected propagation patterns or
to further extend some existing propagation patterns. It is definitely beneficial if some reuse mechanisms
are provided so that the adaptation of existing propagation patterns to the new requirement changes
do not have to start from scratch or be rewritten completely, even if the affected propagation patterns
are simple ones. Because once a propagation pattern is reused, both the programing codes generated
in terms of it and the existing binding of methods to classes at propagation time may inherently be
reused as well. Besides, by reusing the specification of propagation patterns, information involved is
maximumly localized such that any change to the existing specifications is carried out only at one
place. The effort to manually preserve the consistency of the specifications due to schema modification
is then minimized. We call the mechanism as such the behavioral refinement mechanism for propagation
patterns.

Example 5 Consider the Trip schema in Figure 9 and the propagation pattern for printing trip
itineraries in a travel agency defined in Figure 8. Suppose now we want to modify the Trip schema of
Figure 9 by adding a new property Date to class DayTrip. We also want to extend the task of printing
trip itineraries by adding a new operational requirement that, for each trip, the date for every travel
day must also be printed. Comparing with the “old” propagation pattern “print itinerary” defined in
Figure 8, this extended task (let us call it “print-detailed-itinerary”) obviously includes all the func-
tionalities of the “old” propagation pattern “print-itinerary” (see Figure 8) and also some additional
propagation constraints and method annotations. For instance, the following annotation needs to be
added for printing the date of each travel day within a trip:

WRAPPER DayTrip
PREFIX (@ date -> g-print() @)

Additionally, in the schema of Figure 7?7, there is more than one path from Trip to Ident: one through
the edge locations and the other through the edge date. We also need to add the following extra
propagation constraint into the propagation pattern defined in Figure 8:

THROUGH (DayTrip,locations,LocationList)
or
BYPASSING (DayTrip,date,Date).

There are two ways to accomplish this operational requirement change. One way is to redefine (rewrite)
the previous propagation pattern “print-itinerary” completely and then redo the binding (injection)
of methods to classes at propagation time. For example, we rewrite the propagation pattern “print-
itinerary” completely, even though most of the previous bindings will remain the same for this redefined
propagation pattern (such as the C4++ code for class Trip, DayTripList, LocationList, Location,
Ident will remain exactly the same). The other way is to employ some reuse mechanisms so that more
specialized propagation patterns can be defined in terms of existing ones. This means that only the
propagation constraint and the method annotation which are new need to be defined. The rest can
directly be reused from (or shared with) the existing pattern by means of the propagation refinement
mechanism. Furthermore, at the propagation time of the refined propagation pattern, only the new
method annotations need to be injected to the involved classes, since all previous bindings and code



OPERATION void print-detailed-itinerary()
BEHAVIORAL REFINEMENT OF Print-itinerary
ADD CONSTRAINT THROUGH (DayTrip,locations,LocationList)
ADD ANNOTATION
WRAPPER DayTrip
PREFIX (@ date -> g-print() @).

Figure 10: A refined propagation pattern of “print-itinerary”.

generated in terms of the “old” method annotations may be reused accordingly. For example, to
represent the updated printing task, we may reuse the propagation pattern defined in Figure 8, because
only one prefix annotation and one extra propagation constraint need to be added. Moreover, the
addition of date into the task of printing trip itineraries, in fact, only affect the “old” binding of the
method (“print-itinerary”) to the class vertex DayTrip and the code generated for this binding. The
rest remains exactly the same. Thus, by using the propagation refinement mechanism, we may specify
the desired requirement change as shown in Figure 10.

Generally speaking, the refinement of propagation patterns is a behavioral abstraction mechanism,
which allows us to define more specialized propagation patterns in terms of existing propagation pat-
terns by restricting propagation behavior to one or more specialized classes as arguments of the method,
by imposing extra propagation constraints, or by adding additional method annotations. The idea of
providing a support for the propagation pattern refinement is to enable more specialized propagation
patterns to be defined in terms of existing ones such that only the propagation constraint and the
method annotation which are new need to be defined. The rest can be directly reused from (or shared
with) the existing pattern by means of the propagation refinement mechanism. Furthermore, at prop-
agation time of the refined propagation pattern, only the new method annotations need to be injected
to the involved classes, since all previous bindings and code generated in terms of the “old” method
annotations may be reused accordingly. Due to the space limitation, we omit the formal definition of
propagation pattern refinement in this short paper. Readers may refer to [?] for more details.

In summary, the propagation pattern refinement mechanism helps to increase the flexibility and adap-
tiveness of propagation patterns against future operational requirement changes. It can also be useful
for promoting the concept of propagation pattern inheritance under a class dictionary graph. Another
interesting feature of propagation pattern refinement is presented by its transitivity. We have formally
proved that for any propagation pattern a, (3,7, if pattern « is a behavioral refinement of pattern 3
and pattern /3 is a behavioral refinement of pattern +, then pattern a is also a behavioral refinement of
pattern v (see [?]).

5 Overview of the EVOLVE project

5.1 The Framework

The framework of the EVOLVE development consists of two layers:



e The Design and Prototyping Layer.

e The C++ Code Generation Layer.

The Design and Prototyping Layer first translate the given requirement specifications (including both
structural and behavioral requirements), that are produced through requirement capturing and spec-
ification process, into the EVOLVE notation, i.e., modeling the structural specifications in terms of
the class dictionary graph notation (see Section 2), and representing the operational sepcifications in
terms of the propagation patterns (see Section 4). Since the EVOLVE development takes the Demeter
system/C+4+ as the experiment base, most of the EVOLVE notation are compatible with the Demeter
notation [Lie94]. After the syntax and semantic checking of the class dictionary specification and the
propagation pattern schema, The EVOLVE will analyze and measure the quality of a given schema
design by means of the set of adaptive schema style rules (see Section 3). Such an analysis is based on
enhancing the adaptiveness and robustness of the schema in anticipation of future requirement changes.
Based on the analysis results produced through the schema analysis and evaluation stage, the EVOLVE
will use its schema transformation algorithms to generate a better style schema for the initial require-
ment design and specifications. The modified schema presents relatively higher adaptiveness towards
future requirement changes. A list of benefits may also be provided, if requested, for demonstrating
why and in what aspects the modified schema is better in terms of adaptiveness and robustness of the
schema design.

In the current implementation scenario, the Code Generation layer partially uses the Demeter sys-
tem/C++ to assist in generation of the corresponding C++ class library and C++ method definitions
for a given class dictionary graph and the set of propagation patterns ranging over this class dictionary
graph. We are also interested in experiment of mapping the generated C4++ code to a C++ based
object schema for a commercial object-oriented DBMS (e.g., OpenDB, ObjectStroe, 02, etc.).

5.2 Outline of the Methodology

We describe the methodology of the EVOLVE development in Figure 11. It consists of four components:
the schema editor, the adaptive schema style analyzer, the schema optimizer and the code generator.

¢ The EVOLVE object-oriented schema editor is composed of two components: class dictionary
builder and behavioral specification editor. The former is designed to transform, for example, an
ER-like modeling sepcification into an object-oriented class dictionary graph. It is also possible to
model the structural/organizational requirements of a universe of discourse directly through the
EVOLVE graphic modeling tool. The latter intends to translate the given operational sepcifica-
tions into the EVOLVE method definitions in terms of propagation patterns and the refinement
mechanism of propagation patterns.

e The adaptive schema style checker is also called schema analyzer. It applies a set of the EVOLVE
adaptive schema style rules to the given class dictionary graph and results in a list of advice for
schema modification, a proposal for transforming the initial schema design into a better style
schema in terms of adaptiveness, and possibly a benefit report if requested.

e Upon the agreement with the schema designers, the adaptive schema optimizer will transform the
original schema design into an “optimal” schema (class dictionary graph) which presents better



Figure 11: The EVOLVE methodology and toolset

adaptiveness in anticipation of future requirement changes. A key feature of the schema opti-
mization methods is to preserve the information capacity of the original design. For example, the
EVOLVE supports two kinds of schema transformation: object-preserving and object-augmenting.
The object-preserving transformation guarantees that both the original and the optimized schema
define the same set of instantiable classes with the same set of (direct or inherited) properties.
While the object-augmenting transformation causes no information loss although it may change
the structure of some objects by addition of extra parts or additional classes. More importantly,
the distinction of object-preserving and object-augmenting transformations allows us to enhance
the reusability of the schema transformation primitives and to facilitate the correctness proof of
a given transformation.

The code generator is developed based on the Demeter System/C++. It consists of two main
components. One is to map the optimized class dictionary graph into C4++ class dictionary and
to generate header files to be associated with each class. The other is to translate the methods
written in propagation patterns into C+4 application specific method definitions. The Demeter‘s
automatic (or semi-automatic) generation of C++ application specific method definitions is, to
our knowledge, rather unique as opposed to several existing CASE tools that only generate C++
"static” code (class library and a set of standard member functions). We are currently also
interested in mapping the C++ result to a commercial (preferably C++ based) object-oriented
database schema.



6 Concluding Remarks

The increased complexity of object-oriented models necessitates the enhancement of adaptiveness and
robustness of an object-oriented design towards changing requirements. The understanding of what
properties are critical for construction of an adaptive schema design becomes increasingly important
in software evolution and evaluation. In this paper we have presented two groups of techniques for
improving the adaptiveness of an object-oriented design and specification:

e The first group of techniques consists of a selection of adaptive schema style rules, such as the
style rules for achieving validity, minimality, extensibility, normality of a schema design, and for
minimization of dependency loops. We encourage to use this set of style rules proposed as a means
for validating quality of a schema, and for transforming an object-oriented schema into a better
style in terms of adaptiveness and robustness of a schema design, rather than as a user-oriented
method solely for designing the schema. We believe that the set of style rules developed in the
EVOLVE project presents an interesting step towards overcoming the potential problems hidden
in many object-oriented schema designs.

Of course, the set of style rules we have introduced is not an exhaustive list. Many issues are
still pending better solutions. For instance, it is interesting to study the interactions, among the
given style rules and their reasoning capability. We would like to stress that our work on adaptive
schema style rules proposes a design framework but not a new model or system. It is targeted
towards advanced applications which require the support for more sophisticated object structures
and relationships than traditional database application domains. It is, of course, not expected
that the proposed set of style rules be incorporated in a given system in its entirty. Rather, the
designers may select a useful subset of the style rules, given a particular application domain and
data modeling requirement.

e The second group of techniques includes the use of propagation patterns and the mechanism for
propagation pattern refinement. The main benefits of using these two techniques are the following.

— The concept of propagation patterns presents a promising technique for enhancing the ro-
bustness of methods and query programs with respect to schema modifications. Using prop-
agation patterns provides method designers and query writers with an opportunity to specify
operations without requiring the precise knowledge of the detailed navigational information.
Compared with most of the existing object-oriented languages, using propagation patterns,
the effort required for manually reprogramming methods and queries due to schema modifi-
cations is largely avoided or minimized.

— The concept of propagation pattern refinement represents an important mechanism for the
abstraction and the reuse of propagation patterns. It promotes incremental design of methods
and is especially useful for dealing with a class of operational requirement changes. To our
knowledge, none of the existing object-oriented specification languages provides a similar
support for the incremental definition of methods.

In comparison with the contract model [HHG90], both propagation patterns and contracts en-
courage a separation of object behavior specification from object structure specification and both
present interesting techniques for operational specification. But there are also a number of dif-
ferences. First of all, propagation patterns provide better adaptiveness towards schema evolution
and change management, because by means of propagation patterns and the propagation pattern



refinement mechanism, the reprogramming of methods and queries due to schema modifications
can be avoided or minimized. Second, propagation patterns concentrate more on the specification
of and reasoning about operation propagations among a group of related classes; whereas contracts
emphasize more on the obligation specification of each participant class in accomplishing a task
defined by a group of cooperating classes. Thirdly, the conformance of contracts with classes is
required explicitly in the contract model, whereas the conformance of propagation patterns with
classes is derived implicitly at propagation time.

It is also interesting to compare the reuse mechanism of propagation patterns with the behavioral
abstraction mechanisms defined in the activity model [LM92]. Although there is a similarity be-
tween the concept of propagation pattern refinement and the concept of activity specialization,
the emphasis and functionality of the activity model is on the declarative specification and reason-
ing of communication behavior of objects. There is no consideration on specifying and reasoning
about operation propagations among cooperating classes.

The recent work presented in [HLM93] has formally studied a number of extension relations of
an object-oriented schema based on capturing a similarity at the class structuring level. Such
extension relations are useful means for quality control of schema transformations. [BH93] has
studied issues on how to preserve or transform propagation patterns under the extended class
structures. The work is mainly based on the extension relations identified in [HLM93]. Quite
differently, the EVOLVE development on the propagation patterns focuses more on how to reuse
the existing design and specification under the schema modifications and requirement changes,
and how the existing propagation patterns can be reused or extended incrementally to cover the
new requirements, especially when both structural and operational changes are required.

In short, the most interesting features of the EVOLVE development include:

e As an add-on CASE tool, it provides services for adaptive design and rapid prototyping of re-
quirement specifications and for building or managing a C++ repository in an adaptive manner.

e As a design methodology, it exhibits promising features of adaptive specification techniques for
object-oriented software evolution. On the side of structural specification, it provides a selection of
style rules as basic means for construction of adaptive object-oriented schema design. On the side
of behavioral specification, it promotes a novel conceptual programming technique — Propagation
Patterns, and extends it by introducing the behavioral refinement mechanism for propagation
patterns. These mechanisms are useful means for construction of adaptive schema design and for
support of the operational level of reuse.

¢ The EVOLVE development has a formal basis. Both adaptive schema style rules and the reuse
mechanisms for operational specifications by means of propagation patterns are formally developed
with well-defined semantics. This formal basis provides a sound framework for the EVOLVE
implementation and for further development of the ideas presented in this paper.
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