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Chapter 1: Introduction and Literature Review

Introduction

Time is of the essence in any emergency medical service (EMS) system. One 

manifestation of this is that almost all performance measures used for such 

systems have some aspect of time at their foundation. The response time (the 

time from when a call to 911 is placed until paramedics reach the scene) is one of 

the most critical of these performance measures. Response time is important 

because one would expect that the sooner an ambulance responds to an 

emergency call, the better the patient’s chances for survival and several studies 

have confirmed this (for example, Cretin and Willemain, 1979; Eisenberg, 

Bergner, and Hallstrom, 1979; and Stiell et al., 1999). Geography is also central 

to the modelling of EMS operations. Since the demand is spread out 

geographically in these systems, the ability to respond quickly to different 

locations is a necessity. The sequence of activities and corresponding time 

intervals for a typical EMS event are shown in Figure 1-1. Note that intervals 

prior to the receipt of the call are not shown, and many of the intervals shown can 

be divided further (see for example Spaite et al., 1993), however for the purposes 

of this dissertation, the intervals shown are sufficient. As indicated in the figure, 

the response time is made up of the travel (to scene) and pre-travel delay intervals. 

The rest of the components that make up the unit service time (the on scene, 

transport, and hospital intervals) can also affect the response time indirectly, 

through their impact on the availability of the unit. Since units can respond to 

new calls while enroute from a hospital to a station, the return interval is not 

included in the unit service time.
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Figure 1-1: Sequence of events and corresponding time intervals for a typical 
EMS response.

Planning for EMS organizations involves interrelated decisions at many levels, 

from strategic decisions related to the number and location of stations or to work 

rules and procedures, to tactical decisions such as staffing and scheduling 

(allocating paramedic crews and ambulances temporally and spatially), to 

operational decisions such as real-time repositioning and deployment of units.

The research in this dissertation focuses on models that can be used for tactical 

decisions, although some of the models can be used for certain types of strategic 

decisions or as building blocks for certain types of operational decisions. Note 

that planning activities for EMS, fire, and police systems have many things in 

common, and some (but not all) models developed for use in one of these areas 

can be, and have been, applied in all three sectors.

A particular experience in modelling the operations of an EMS system 

(Ingolfsson, Erkut, and Budge, 2003) provided the initial impetus for the work 

described in this dissertation. That project came about in response to a major 

operational change under consideration for the EMS system of the City of 

Edmonton. In a review of the city’s EMS services, a recommendation was made

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to move to a single start station in which all crews would begin and end their shift 

at a single location (KPMG and Fitch & Associates, 2000a and 2000b). We 

developed a simulation model to estimate the impact of such a change on the 

performance of the system. When considering alternative operational changes for 

improving the performance, we explored the literature on emergency response 

vehicle location/allocation models in an effort to narrow down the potential 

candidates to investigate further within the simulation model. In this 

investigation, however, none of the models found in the literature was deemed to 

be completely appropriate for these purposes. In particular, it became apparent 

that the available prescriptive (optimization) models were based on severely 

limiting assumptions about the behaviour of the system.

Although there is an extensive literature on models of emergency service 

operations, including many papers on optimal location of emergency response 

vehicles and an abundance of case studies, what seems to be lacking is a 

prescriptive model that is realistic enough to be used to describe the operations of 

such a system and yet tractable enough to be solved to optimality in a reasonable 

time. Early papers considered a demand “covered” if there was a vehicle 

positioned within a certain response time (or distance) standard. As the literature 

evolved, the focus changed to a more realistic notion of coverage that 

incorporated the possibility that the vehicle might not be available to respond to 

an incoming call, in addition to variability in the response time of an available 

unit. Stochastic performance measures such as the reliability of response within a 

certain standard time or the fraction of calls responded to within a certain standard 

time became prevalent. (In this dissertation, the term coverage will be used to 

refer to the fraction of demand that the system can respond to within a specified 

time.) In order to more accurately calculate such performance measures 

researchers began to use analytical models, notably the hypercube queueing 

model (Larson, 1974) and later approximations to this model (Larson, 1975, 

Jarvis, 1985, Burwell, Jarvis, and McKnew, 1993), in concert with prescriptive 

models.

3
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The focus of this dissertation is on uncertainty in response times and its role in the 

performance of an EMS system. The overall contribution is to further narrow the 

gap between the descriptive and prescriptive literature, bringing together analytic 

techniques and optimal location models in order to provide a tractable, yet 

practical foundation for operational decisions in EMS systems. Additional, more 

specific contributions include the extension of a method for modelling uncertainty 

in the availability of ambulances, the incorporation of a number of aspects of 

uncertainty in ambulance response time into an optimal location model, and a 

thorough empirical analysis of ambulance travel times. Although the research is 

developed specifically in relation to ambulance services, some of the models 

might be more generally applicable, for example, to fire or police services or to 

other organizations that involve spatial and temporal uncertainty in demand or 

that require rapid travel to service demand.

Literature Review

A surge of work in the area of emergency service operations in the late 1960’s 

through the mid 1970’s came about at the hands of two groups, the Rand Institute 

of New York and an interdisciplinary group of faculty and students involved in 

the Innovative Resource Planning in Urban Public Safety Systems (or IRP)

Project at MIT. Both of these groups performed research in each of the three 

main areas of emergency response, fire, police, and ambulance services. 

Summaries of portions of the research in these areas at the Rand Institute can be 

found in a number of sources including The New York City-Rand Institute 

(1972), Chaiken (1978), and Walker, Chaiken, and Ignall, (1979). Some of the 

research conducted at MIT for the IRP Project is detailed in Willemain and 

Larson (1977), and Larson and Odoni (1981). Additional references and 

discussion of research within both of these groups can be found in Larson (2002). 

Two of the major influences for the work in this dissertation came from these 

projects. The first is Larson’s hypercube queueing model initially developed to 

describe police operations and the second is the piecewise square root-linear

4
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travel time model of Kolesar, Walker, and Hausner (1975), developed to describe 

the relationship between travel time and distance for fire vehicles in New York 

City. Both of these models, as well as other literature that motivated the work 

here will be outlined in this section.

Given that much of the influential research in modelling ambulance operations 

was done 20 or 30 years ago, it may not seem to offer a rich context for novel 

research. However, as discussed in Henderson and Mason (2004), there are a 

number of reasons that this is not the case. The primary reason is technology (and 

the data that accompanies it): new technology has led to changes in how the 

system operates, and a wealth of data makes it possible to test model assumptions 

more thoroughly, and to use models that require more data as input.

The intent of this section is to provide a broad summary of the literature that is 

most relevant to the theme of this dissertation, uncertainty in (the response times 

of) EMS operations, and not to provide an in depth review of all of the literature 

related to such operations. More detailed exposition of the literature related to the 

three main topics of this dissertation is provided later, in the corresponding 

chapters. For more general or more comprehensive reviews of literature in EMS 

delivery see Brotcome, Laporte, and Semet, (2003), Swersey (1994), or ReVelle 

et al. (1977). The discussion here is organized along two main streams of 

literature; prescriptive models that for specific performance goals and operational 

restrictions, offer a solution in terms of a configuration of resources that satisfy 

the goals and restrictions, and descriptive models that for a given configuration of 

resources generate one or more measures of the system’s performance. The 

prescriptive studies use mathematical optimization models that typically make 

strong simplifying assumptions often leaving out probabilistic components of the 

problem in order to maintain tractability. Although every prescriptive model 

contains some form of descriptive model (this is necessary in order to evaluate 

different configurations to come up with a solution), we use the term descriptive 

model here to refer to those models that try to faithfully capture enough of the

5
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details of the operation of a system to enable reliable prediction of the impact of 

changes to system operation. The descriptive models, either analytic models or 

simulation models, can incorporate more realistic assumptions than the 

prescriptive models, but do not prescribe an optimal solution and can be 

computationally intensive. Some researchers have examined approaches that 

combine prescriptive and descriptive models (Batta, Dolan, and Krishnamurthy, 

1989; Berman and Krass, 2001) and the work presented here aims to further 

narrow the gap between these two streams of research.

The literature on prescriptive models for ambulance location/allocation has 

developed considerably over the past thirty years. Two early models, the location 

set covering model, (Toregas et al., 1971) and the maximal covering location 

model (Church and ReVelle, 1974), provide the foundation for most of the 

subsequent models in the literature. The first of these models aims to minimize 

the number of ambulances needed to cover all of the demand. The second model 

aims to maximize the total demand that is covered with a given number of 

ambulances. Note that for both of these models a demand point is considered 

covered if there is an ambulance located within a pre-specified time (or distance) 

standard. These first models were deterministic and left out probabilistic 

considerations such as ambulance availability, and response time variability. For 

example, these models assumed that if an ambulance is located at a station, then 

that ambulance is always available to respond to calls in the vicinity, and did not 

take into account the fact that sometimes the closest ambulance would already be 

on a call and that another (further) ambulance might need to respond to the 

incoming call.

A number o f models were developed to address this shortcoming. Some o f these 

models (Daskin and Stern, 1981; Hogan and ReVelle, 1986; Batta and Mannur, 

1990) are also deterministic, and provide extra or back-up coverage to deal with 

ambulance unavailability. Other models, such as the maximum expected covering 

location model (Daskin, 1983; Saydam and McKnew, 1985), are probabilistic in

6
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that they explicitly consider the probability of an ambulance being unavailable 

(i.e., on a call), henceforth referred to as the busy fraction, in their formulation. 

These models, however, assume that the busy fraction is constant, uniform across 

stations, independent of the availability of other ambulances, and exogenous to 

the model. More recent models attempt to relax some of these assumptions (and 

do so by combining a more accurate descriptive model with the prescriptive 

model). The maximum availability location problem (ReVelle and Hogan, 1988, 

1989) aims to maximize the population that has a server within a specified travel 

time standard with a given probability. This model builds on Daskin’s maximum 

expected covering location model and incorporates randomness in server 

availability using local estimates of the server busy fraction. In order to expand 

the dichotomous definition of coverage the authors introduce the concept of 

“reliability of coverage”. Use of this concept leads to relatively tractable models, 

but the models have the drawback that reliability of coverage may be an 

inadequate proxy for the operational goals that EMS systems typically use, such 

as maximizing expected coverage. Another drawback of this model is that the 

busy fractions are assumed to be the same within a region, but it is not obvious 

how to determine appropriate regions. Other approaches have been taken which 

not only explicitly consider the ambulance availability and include site-specific 

busy fractions, but that also have the busy fractions endogenous to the model so 

that they are dependent on the number of servers in use (Batta, Dolan, and 

Krishnamurthy, 1989; Goldberg et al., 1990b). The first of these approaches uses 

the hypercube queueing model to estimate the busy fractions, thus relaxing the 

assumption of independence, while the second uses a similar approach but does 

not relax the assumption of independence. The model by Goldberg et al. also 

incorporates uncertainty in travel times and seeks to maximize the expected 

number of calls reached within a given time standard, an objective that is more 

common in real EMS systems, based on our experience.
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The literature on descriptive models for emergency response operations can be 

separated into two main categories, analytical models and simulation models. 

These are each discussed in turn in the next two paragraphs.

There have been numerous analytic models designed to estimate some aspect of 

the performance of emergency service systems. The most comprehensive and 

influential model in this area is the hypercube queueing model (Larson, 1974), 

which models server cooperation and dependence between servers in spatial 

queueing systems. This model allows, under certain assumptions, the exact 

calculation of server utilization (i.e., server busy fractions) and dispatch 

probabilities, which are the basis for many of the performance measures important 

for an emergency response system, from coverage to average response time. The 

dispatch probabilities will be defined and discussed in greater detail in the next 

chapter. For now, it is important to impart that they provide information about the 

probability of a server responding to an incoming call and that they can capture 

the uncertainty in server availability as well as the dependence between servers. 

Larson (1975), Jarvis (1985), and Burwell, Jarvis, and McKnew (1993), calculate 

server specific busy fractions and dispatch probabilities using approximations to 

the hypercube model that assume that servers are sampled randomly without 

replacement. Although approximate, these analyses relax some of the 

assumptions in the original hypercube model. Other important developments in 

the area of analytic models include: the piecewise square root-linear travel time 

vs. distance relation (Kolesar, Walker, and Flausner, 1975) mentioned above, and 

additional methods for estimating vehicle utilization and dispatch probabilities 

(Birge and Pollock, 1989, and Goldberg and Szidarovszky, 1991a-d).

One o f the very first simulation models describing an ambulance system was for 

the Brooklyn area of New York (Savas, 1969). Since that time there have been 

abundant reports of simulation used in analyzing various operational decisions for 

EMS systems (e.g., Swoveland et al., 1973; Goldberg et al., 1990a, Henderson 

and Mason, 2000 and 2004; Erkut et al., 2001; and Ingolfsson, Erkut, and Budge,

8
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2003). Such models can be useful for studying specific aspects of emergency 

service systems that are not amenable to analysis with analytic models or optimal 

location models. Additionally, such models can be used to give a more detailed 

analysis of solutions suggested by these other models.

The next three chapters contain the main contributions of this dissertation. The 

chapters are written as separate pieces of work and although they share a common 

theme (modelling uncertainty in emergency service response time) and have many 

connections between them, they can be read independently of each other. These 

chapters are outlined in turn in the following paragraphs.

Chapter 2 concentrates on the dispatch probabilities of each vehicle in an 

emergency response system, which are important quantities required for 

calculating various performance measures. Estimating these dispatch 

probabilities is complicated by four important characteristics of emergency 

service systems. First, such systems involve spatially distributed queues in which 

different regions can have different levels of demand and consequently vehicle 

workload can vary between stations. Second, mainly in response to this first 

characteristic, some stations may have multiple vehicles. Third, an important 

component of the service time is the time that it takes the ambulance to travel to 

the location of the emergency, which introduces dependence of the service time 

on both the location of the server and that of the demand. Finally, since demand 

in this type of system is random (spatially and temporally) and urgent by nature, it 

is essential to have cooperation among servers. Previous approximation methods 

for calculating dispatch probabilities are extended to account simultaneously for 

the possibilities of workload variation by station, multiple vehicles per station, 

call and station dependent service times, and server cooperation among stations.

The ambulance location/allocation model in Chapter 3 builds on many of the 

models described above. It is similar to a set covering formulation in that the 

objective is to find the minimum number of ambulances (and to locate those

9
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ambulances) in order to provide a specified coverage. And similar to Daskin’s 

maximum expected covering model, rather than consider coverage as an all or 

none phenomenon, ambulance availability is incorporated into the measure of 

coverage. The specific problem addressed by the model is to determine the 

number of ambulances needed and where these ambulances should be located to 

provide a specified coverage (and given a particular response time standard). In 

addition to integrating uncertainty in the availability of the ambulances as well as 

uncertainty in the travel times of the ambulances, this model explicitly 

incorporates the delays prior to travel that affect the response time of the 

ambulance.

Chapter 4 provides an in depth examination of the travel to scene component of 

service. A major focus is the examination of the distribution (and in particular the 

variability) of actual travel times for ambulances. Additionally, consideration is 

given to how to incorporate that distribution into methods for estimating the travel 

time as a function of distance and possibly other factors.

The final chapter of the dissertation provides general conclusions and possible 

directions for further research.
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Chapter 2: Approximating Ambulance Dispatch 

Probabilities

Motivation and Introduction

When considering potential operational changes for an emergency service system, 

often the main consideration is what impact the change will have on the response 

times or the coverage provided by the system. As a result, it can be critical to 

provide an accurate estimate of the coverage for a given system design. Although 

discrete event simulation is a tool that can often be useful in this regard, there are 

situations that call for a quick analytic solution, for example when coverage 

estimation is embedded in an optimization routine. An essential input for 

calculating coverage and other performance measures of emergency service 

systems is the probability that an incoming call at a particular location is served 

by a particular server. Uncertainty in server availability will affect these 

“dispatch probabilities” and the goal of this chapter is to develop a tractable 

procedure for modelling this uncertainty and approximating these probabilities. 

When these probabilities are known, many systemwide performance measures can 

be easily calculated, by conditioning on the location of the call and the location of 

the server and using the law of total probability.

To put the approximation procedure in context, consider a municipality served by 

a fleet of s ambulances, and with calls for service arriving according to a Poisson 

process at rate X. Assume that the s vehicles are distributed among J  stations, 

with Sj vehicles at station j. Let random variable X f be the number of 

ambulances from station j  that are busy (not available to take calls). Knowledge 

of the stationary joint distribution for j AL j allows the calculation of many 

important performance measures. This joint distribution is partly characterized by
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the average busy fraction p . = E [X .]/ s . for each station. It also contains

information about the dependence between these random variables. In particular, 

used together with the dispatch policy for a given call location, this joint 

distribution will define the dispatch probabilities for each of the ambulances for 

that call location. Various procedures for estimating the average busy fractions, 

or the dispatch probabilities, that are related to the one here can be compared in 

terms of how they approximate this joint distribution. Such procedures generally 

make simplifying assumptions regarding one or more of the following four 

aspects of how the system operates:

1. Number of vehicles per station: It is common to assume only one vehicle 

per station, i.e., s . = 1 for all j. This is a restrictive assumption because

fixed costs of building a station or limitations on the number of available 

station sites may make it economical or necessary to have multiple vehicles 

at the same station.

2. Average workload: Some models assume that all vehicles have the same 

average utilization irrespective of the location of the vehicle’s home station. 

This can be unrealistic because spatial variation in demand and transport 

network characteristics will tend to create imbalances in workload.

3. Average service time: Some models assume that average service time (the 

time a vehicle is unavailable to respond to new calls while responding to a 

specific call) is independent of the location of the vehicle’s home station, 

independent of the location of the call, or both. The service time depends on 

the location of the call and that of the responding station due to the travel 

time between the two, but components other than the travel time might 

depend on the location of the call or responding station as well. For 

example certain call locations will tend to have lower transport times (if they 

are closer to hospitals than others) and some call locations will tend to have 

higher on scene times, (such as highrise apartments or office buildings).
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4. Server cooperation: At one extreme, one could assume that each station 

operates as an independent subsystem, i.e., as a queueing system with s .

parallel and identical servers and some arrival rate X .. At the other extreme,

one could assume that any call is equally likely to be responded to by any 

available vehicle, as in a queueing system with s servers and arrival rate X . 

These two extremes simplify modeling, but reality is somewhere in between.

All of these assumptions are violated to a significant degree in real systems. For 

example, in the City of Edmonton Emergency Medical Services (Edmonton EMS) 

system, some stations can have as many as three or even four vehicles assigned to 

them. A detailed simulation model of this system (Ingolfsson, Erkut, and Budge, 

2003) suggests that the frequency of “interdistrict dispatches” where the vehicle 

that responds to a call does so from a station other than the station closest to the 

call is about 20%, so servers from different stations do cooperate to a considerable 

degree. According to the model, the busy fraction varies from a low of just under 

17% to a high of almost 41% across stations. The average service time varies 

across stations from a low of just over 43 minutes to a high of over 48 minutes.

The main contribution of the model in this chapter is the extension to site-specific 

(as opposed to server-specific) busy fractions and dispatch probabilities, and to 

allow multiple vehicles at a station. These extensions are important for a number 

of reasons. First, as indicated above, multiple vehicles at a station are common in 

real systems due to system features such as variations in the density of demand for 

different areas of a city, high fixed costs of opening stations, economies of scale 

gained by co-located servers, and the limited numbers of suitable locations for 

stations. Next, it is important to consider variation in the vehicle availability 

(rather than use a system-wide busy fraction) in order to deal not only with the 

possibility of multiple vehicles per station but also with spatial variation in 

demand and service characteristics. Additionally, it is natural to consider site- 

specific (rather than server-specific) availability since these characteristics vary
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by location rather than by the server itself and doing so allows easy incorporation 

of the dispatch probabilities into optimal location models that are organized by 

station. Finally, in the systems that we have encountered, procedures and policies 

make site-specific dispatch probabilities more relevant than server-specific 

dispatch probabilities. For example, dispatch policies are in terms of stations 

rather than servers, and often servers are dynamically re-located in order to better 

cover demand during busy periods.

The model here addresses two limitations of existing models that do not account 

for the possibilities of workload variation by station, multiple vehicles per station, 

call and server dependent service times, and server cooperation between stations. 

First, existing models may be inaccurate in calculating the coverage achieved with 

a given number of ambulances and, conversely, may incorrectly prescribe the 

number of ambulances needed to meet a specified coverage objective. Second, 

for a given number of ambulances, existing models may prescribe a suboptimal 

distribution of ambulances to stations.

The remainder of the chapter is structured as follows. A brief review of the 

relevant literature is given next, followed by details of the approximation 

procedure and results of computational experiments. In a concluding section, 

directions for further research are discussed.

Literature Review

Two main streams of literature are relevant to the problem of considering server 

unavailability in emergency response systems. The first is that on the 

development of analytical models that allow for the calculation of measures 

related to server availability. The second is that related to location models for 

emergency service systems that incorporate such measures. Table 2-1 

summarizes the methods that will be discussed in this section in terms of the four 

assumptions outlined in the previous section. An attempt was made to list the
18
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models in order of increasing realism, although given the variety of assumptions, 

in some cases the order chosen was quite subjective.

Reference Number of 
vehicles 
per station

Average
workload

Average service 
time

Server
cooperation

Daskin
(MEXCLP,
1983)

Multiple Constant Constant None

ReVelle and 
Hogan (1988)

Single Allowed 
to vary

Constant None

Birge and 
Pollock (1989)

Single Allowed 
to vary

Dependent on 
server location 
and call location

None

Goldberg and 
Szidarovszky 
(1991b, c)

Single Allowed 
to vary

Dependent on 
server location 
and call location

None

Goldberg and 
Szidarovszky 
(1991d)

Multiple Allowed 
to vary

Dependent on 
server location 
and call location

None

Larson
(Approximate
Hypercube,
1975)

Single Allowed 
to vary

Constant Y es-
modelled
approximately

Larson (Exact
Hypercube,
1974)

Single* Allowed 
to vary

Dependent on 
server

Y es-
modelled
exactly

Jarvis (1985) Single Allowed 
to vary

Dependent on 
server location 
and call location

Y es-
modelled
approximately

Goldberg and 
Benitez (1990)

Single Allowed 
to vary

Dependent on 
server location 
and call location

Yes -
modelled
approximately

Burwell, Jarvis, 
and McKnew 
(1993)

Multiple Allowed 
to vary

Dependent on 
server location 
and call location

Yes
model led
approximately

Table 2-1: Summary of model assumptions of previous literature involving 
methods for estimating busy fractions. *Note that Larson’s exact 
hypercube model can be extended to consider multiple vehicles per 
base at the cost of an enlarged state space.
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A major development in the first area is the hypercube model (Larson, 1974), 

which models server cooperation and dependence between servers in spatial 

queueing systems. This model allows the exact calculation of server-specific 

busy fractions and dispatch probabilities and implicitly assumes that there is only 

one server per station. For an s server system, this model involves the solution of 

2s simultaneous equations, and as a consequence it is not practical for large 

systems. The assumption of a single server per station can be relaxed, at the cost 

of increasing the size of the state space, along with the number of equations to be

solved, to + l)- Larson (1975) and Jarvis (1985) calculate server-

specific busy fractions and dispatch probabilities with dependence using 

approximations to the hypercube model that assume that servers are sampled 

randomly without replacement from an M  / M  / s / <x> system (Larson, 1975) or an 

M  / M / s / s  system (Larson, 1975, and Jarvis, 1985). In addition to the 

improvement in tractability of these approximate models, Jarvis’ model allows 

one to consider service times that depend on the server and the customer so that 

variations in the portion of the service time that comprise the time for the vehicle 

to travel to the call location as well as in other components of the service time that 

could depend on the call location (for example the time spent on site or the 

transport time to a hospital) can be taken into account. Birge and Pollock (1989) 

formulate a method, similar to Larson’s approximate hypercube model, in which a 

system of non-linear equations is solved iteratively in order to approximate a 

much larger exact linear equation system. Their method is not restricted to binary 

server states and thus is suitable for application to police systems where the server 

may be in various states such as on patrol, busy serving an emergency call, or 

busy serving a routine call. When there is more than one server located at a 

particular station it would usually be desirable to distribute the station’s workload 

evenly between those servers and so these ambulances should be dispatched with 

equal probability to incoming calls. When two or more servers are equally 

preferred in the dispatch order for a particular demand location, it is referred to as 

a preference tie. Burwell, Jarvis, and McKnew, (1993) extend the hypercube
20
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approximations by providing ways to account for preference ties and co-located 

servers. They suggest a “modified internal stacking method”, that computes 

server-specific utilization and dispatch probabilities in the presence of arbitrary 

preference ties, making use of the correction factors developed by Larson (1975). 

Although there may be reasons for preference ties other than multiple vehicles at a 

station (such as two stations of equal distance from the demand location), these 

reasons do not seem all that common, and by focusing on multiple vehicles at a 

station rather than a general case of preference ties, a simpler procedure is 

obtained here. The main difference between the procedure described in this 

chapter and the modified internal stacking method proposed by Burwell, Jarvis, 

and McKnew, is that the dispatch probabilities (and vehicle utilizations) are 

calculated for each station, rather than for each server. While the modified 

internal stacking method uses the original correction factors developed by Larson, 

assuming sampling of vehicles, the procedure here is based on a new set of 

correction factors, for sampling of stations.

Goldberg et al. (1990) describe a method for calculating server-specific busy 

fractions in order to calculate expected coverage in the objective function of their 

optimization problem. A number of related papers present extensions to this 

model (including allowing co-located servers) (Goldberg and Paz, 1991, Goldberg 

and Szidarovszky 199 Id), and provide a focus on estimation of the server busy 

fractions (Goldberg and Szidarovszky, 1991a-d). Many of these works include an 

assumption of independence between servers and in one (Goldberg and 

Szidarovszky, 199Id), the authors suggest that a way to improve the accuracy of 

the estimated busy fractions would be to include correction factors similar to 

those of Jarvis, but state that these had not been developed for the extensions in 

that paper (multiple vehicles per station and multiple vehicles responding to a 

call). One paper (Goldberg and Benitez, 1990) presents a method (the 

Decomposition method) for approximately calculating server busy fractions that 

does not assume independence and compares the results to the results obtained
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using Jarvis’ approximate method and an approximation that assumes 

independence between servers. The results indicated that both the Decomposition 

method and Jarvis’ method performed better than the independence assumption 

method and that as the system utilization increased, the differences became more 

pronounced. They also found that the Decomposition method and Jarvis’ method 

performed equally well for low utilizations, but that Jarvis’ method performed 

better for higher utilizations. Some lessons from the papers of Goldberg and 

Szidarovszky (1991a-d) are relevant to the work presented in this chapter. The 

first is that for estimating the server utilization, a Seidel iterative process is found 

to converge at a faster rate than a Normal iterative process over a broad range of 

cases. The next is that, it is valuable to formulate the problem in such a way that 

the server busy fractions at each step of the iterative process will always stay in 

the range [0, 1]. Finally, they suggest a way to deal with incorporation of 

correction factors to correct for the assumption of independence, without affecting 

the convergence results. In particular, they were able to provide some theoretical 

guarantees for convergence, (i.e., a set of sufficient conditions that guarantee 

convergence) under the independence assumption, but could only extend these to 

the approximate hypercube procedure by assuming a single server at each station 

and that the correction factors were pre-specified constants, independent of the 

system utilization.

The second stream of literature, location models for emergency service systems 

that incorporate methods of modelling server unavailability, is relevant in 

particular in terms of motivating the work here. Taken together, these papers 

highlight the importance of modelling server unavailability and specifically, the 

need for models that take into account the aspects of emergency service systems 

considered in this chapter (demand variation by station, multiple servers per 

station, customer/server dependant service times, and server cooperation). An 

early major development in accounting for ambulance unavailability in location 

models was Daskin’s maximum expected covering location model (MEXCLP)
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(1983), which incorporates a system-wide busy fraction into the maximal 

covering location problem (MCLP) of Church and ReVelle (1974), in order to 

account for the possibility that an ambulance may not be available to respond to a 

call because it is busy. Batta, Dolan, and Krishnamurthy (1989) examine three 

assumptions of Daskin’s MEXCLP model: that the busy fraction is independent of 

other ambulances, that it is the same for all ambulances, and that it does not 

depend on the location of the particular ambulance. They state that the 

independence assumption is not valid in systems with server cooperation, or when 

the servers are located in dissimilar districts (in terms of the relative amount of 

demand or the distribution of demand) and conclude that the expected coverage 

predicted by Daskin’s model overestimates that calculated when considering 

server cooperation and allowing busy fractions to vary by server. Additional, 

more recent, discussions and investigations regarding solutions of the MEXCLP 

model are given by Aytug and Saydam (2002), and Chiyoshi, Galvao, and 

Morabito (2002). ReVelle and Hogan (1988, 1989) incorporate local estimates of 

ambulance unavailability (region-specific busy fractions). They develop a 

procedure to estimate these busy fractions and solve a coverage type optimization 

model iteratively, but find that this combined procedure does not converge and so 

instead reformulate the model in terms of “reliability” in order to obtain a stable 

solution to the problem. Unfortunately maximizing reliability is not equivalent to 

maximizing expected coverage in an EMS system and furthermore the 

determination of regions within which busy fractions should be the same is not 

natural or obvious. Finally, as indicated earlier, Goldberg et al. (1990) include 

server-specific busy fractions in calculating expected coverage in the objective 

function of their optimization problem.

The Approximation Procedure

Calls for service are assumed to arrive according to independent Poisson 

processes from a set of M  demand nodes, with arrival rate Xm from node m, and a
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total arrival rate of X = Xm . Vehicles are distributed among J  stations with

station j  having Sj vehicles and the total number of vehicles is 5 = S j . The

average service time for calls originating at node m served by an ambulance from 

station j  is xJm . This includes the average travel time between station j  and

node m , the average time spent in service on the scene, and the average time 

spent in service away from the scene (transport to a hospital and time spent at the 

hospital). A fixed dispatch policy is assumed, where the preference of station j  in 

the dispatch order for node m is given by ajm (for example ajm = 3 means that
r  j

station j  is the 3 most preferred for responding to a call from node m ).

The procedure presented here generalizes an approximation procedure for the 

hypercube queueing model developed by Larson (1975) and later modified by 

Jarvis (1985). As a starting point, we apply Little’s law to the s . servers at

station / .  The arrival rate to this station equals V M I ,  f .  , where f  is the 

probability that station j  responds to a random call from node m . If xjm is the 

average service time for a call from node m that station j  responds to, then the 

overall average service time for all calls that station j  responds to is

W X r = i ^ » <  • Little’s law then implies that the average number of

busy servers at station j , which can be expressed as sjpj , equals the total arrival

rate to the station multiplied by the overall average service time for calls that the 

station responds to. After rearrangement, this results in the following equation:

j M
P j  ~ 'y \ ̂ m f  j m  ̂  j m  (1)

S  j  m =1

The only unknown quantities on the right-hand-side of (1) are the dispatch 

probabilities f jm. If these probabilities could be approximated as a function of
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known quantities and the busy fractions p ., then we would have the ingredients

for an iterative procedure for estimating the busy fractions and dispatch 

probabilities.

To approximate the dispatch probabilities, Larson (1975) and Jarvis (1985) started 

with the “no cooperation” assumption. When s . = 1 for all j  (as both Larson and

assumption leads to approximating the dispatch probability, f Jm, with the product

of the probabilities that ambulances at all more preferred stations are busy, 

multiplied with the probability that station j  has a free ambulance, or:

Here p(/)m is the busy fraction for the 1th preferred station for node m . To

improve approximation (2), Larson and Jarvis multiplied the right-hand-side with 

a factor Q to approximately correct for the erroneous assumption of no 

cooperation:

where p is an estimate of the overall system utilization (we discuss how to 

estimate p in the next section). The correction factor involves occupancy 

probabilities for an M / M  / s i s  loss system, as explained later in this section. 

Denoting the steady state probability that the loss system has i customers by Pt , 

the correction factor in (3) can be expressed as

Jarvis assume) and station j  is the k [h preferred for node m (i.e., a . = k ), this

(2)

k - 1

(3)

(4)
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Combining equations (1), (3), and (4) leads to an iterative procedure for 

approximating the busy fractions and dispatch probabilities.

Larson (1975) gives a number of properties for this correction factor. To begin 

with, note that the correction factor can be interpreted as the relative amount by 

which (l -  p) overestimates or underestimates the conditional probability of the 

selected server being free, given that all previously selected servers are busy.

First, Q(s, p, 0) = 1, indicating that (l -  p) does not overestimate or underestimate 

the probability for the first selected server. Next, Q(s, p,l) < 1, indicating that 

(l - p )  overestimates the probability for the second selected server being free, 

given that the first selected server is busy. Finally, for p < 1 -  2 / N , Q(s, p, k ) is a 

unimodal (decreasing then increasing) function of k, and for p > 1 -  2 / iV,

Q(s, p, k ) is a monotonically decreasing function of k.

To allow for more than one ambulance at some stations, we generalize equations 

(3) and (4). The counterpart to equation (3) is

fjm * Q(S’ iS(k)} > P> k ) U  P &  (1 -  P/' ) , (5)
1=1

where s(/)m is the number of ambulances at the Ith preferred station for node m 

and we continue to assume that aJm = k . Note that in this equation, the correction 

factor depends not only on s, p , and k , but also on how the s ambulances are 

distributed between stations and on the node m . This is because the preference of 

an ambulance will depend not only on the number of more preferred stations, but 

also on the number of ambulances at those stations. If the problem is constrained 

to allow only one ambulance per station, then the ambulance preference is the 

same as the station preference, but when multiple units are allowed, this is no 

longer the case.
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We now derive an expression for the generalized correction factors 

Q(s,{s(k)},p,m,k) . Consider a fictional M / M  / s / s  system with arrival rate X,

average service time x (we discuss how to estimate x later), and let p = Xx/s .

To simplify notation, for the remainder of this section we suppress the 

dependence of various quantities on the node m . We establish a correspondence 

between the fictional system and the real system as follows. When a call arrives 

from node m , the dispatcher in the real system first checks whether any of the 

,sM) ambulances at the most preferred station for that node are available. If none

are available, the dispatcher checks whether any of the s(2) ambulances at the

second most preferred station are free, and so on, until a station is found with at 

least one free ambulance. The corresponding sequence of events in the fictional 

system is to first select ,s(]) servers at random and check whether at least one of

them is idle. If not, then select s(2) servers at random from the 5 -  .v(lj servers that

have not been checked already (i.e., sampling without replacement) and continue 

in this manner until a station with at least one free ambulance is found.

With this correspondence in mind, we define the following events for the fictional 

system:

S) : exactly i servers are busy
Bk : all servers at k th preferred station are busy
Fk : the k th preferred station has at least one lfee server

Additionally, we define Bl n = n  52n -- -n 5 „ .

Using the law of total probability, we can express the probability that the first free 

server is found at the k th preferred station as

2 7
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P r { V ,  ^  f k > = I  P rW ,-,'" '-F, IS, }P,
/ = 1

= i > { V J s .>PrW V . r i 'W

(6 )

/=1

Letting z(4_1} = .v(l| + s(2j + ... + s(k2) be the total number of ambulances at the k - 1

most preferred stations, we can express the probability that all of these 

ambulances are busy, given that a total of i servers are busy, as

Pr{^u _1|5 (} =
0

n
w=0

l - u
s - u

if k = 1 or z(k_X) > i

if k > 1 and z(Jfc_1} < i
(7)

The probability that the k th preferred station has at least one free ambulance, 

given that all ambulances at the k - 1 most preferred stations are busy and a total 

of i ambulances are busy is

Pr{Fk \BlJ[_l n S l} = l -?T{Bk \BlJ[_1n S l}

fl ifzw >i

i - n ' (z<t-ii+M) ifz ,„ < ;
(8)

u =0 s ~ (Z(k-i)+«)
' ( * )

Combining (6) -  (8) and substituting Pt = (ps)'P0/i\ results, after considerable but 

straightforward algebra, in

= £  M .  f [
l - u

-*(*-1) 

s - \

i\ ; =o s - u

•V i-i 1

j - nu= 0 s - ( z , k „+u)

= ' . Z
(P^)'

-1 .n —-nu=0 s - u  t=o s - u
l - U

(9)

Now it is necessary to relate Vr{Blk^  n  Fk) to the dispatch probabilities f jm of the 

real system. In the fictional system, the fraction of time each server is busy is
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Therefore, it makes sense to set

Pr{5u _ i n f 1} = e f e { S ( i ) } . P . m ^ ) ( p < l - i ’, ( l - ( p ( l - - P , ) r )  (10)

Solving for the correction factor and substituting (9), gives

n r:-nP. s (pJ)i\
l - U  p r l - u  

u=0 s - u  i i s - u
( 1 1 )

Figure 2-1 illustrates how Q(s,{s(k)},p,m,k)  varies with p and k and for different

scenarios {s(k)} . In the first scenario (panel 1), each of ten stations has one server.

In this case, (11) reduces to the correction factor formula (4) that Larson 

developed. The second scenario (panel 2) is identical to the first except that the 

fourth preferred station has two servers. The third scenario (panel 3) has two 

servers at the second preferred station, three servers at the fourth preferred station, 

and one server at the remaining stations. In panel 4, the correction factors for a 

number of different scenarios, or , are shown as identified in the legend, all

for p = 0.4. By comparing the graphs, one can see that increasing the number of 

servers at a particular station results in steeper functions beyond that station 

(towards the less preferred stations), and that the impact is much larger for the 

lower values of system utilization. It is also evident from the graph in panel 3 that 

as the number of servers increases, the linearly interpolated curves will not 

necessarily remain convex. Although the vertical axis is truncated (at a value of 4 

for the first 3 panels, and a value of 30 in the fourth panel), the values of Q can be 

much higher than this, especially at low utilizations and when there are multiple 

servers in the most preferred stations (at the lower values of k). For example, for 

the scenario shown in the third panel, with p = O.land k = 10 , Q is 1133. 

However, at such a low system utilization, the correction factor for k = 10 is not
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very relevant since the chance of finding all of the servers busy at the first 9 

preferred stations (in this case, 12 servers) is extremely unlikely. An additional 

insight from panel 4 is that the correction factors are the same for the same 

number of total more preferred servers at a given k, even if the {s{k)} vector up to

that k is not the same (e.g., scenarios {1,3,1,1,1,1,1,1,1,1} and {1,1,1,1,1,3,1,1,1,1}).

Panel Panel 2

/ /  /  /
' /  / V  X  ,«■>

1 2 3 4 5 6 7 8 9  10 k

Panel 3

p = 0.1

2.0

31 2 4 5 6 7 8 9 10 k

‘ 0.5

o.o-
1 2 3 4 5 6 7 8 9  10 k

Panel 4

—* — (3,3,3,3 ,3,3,3 ,3,3,3) 

~ ®  -(2,2,2,2,2,2,2,2,2,2)

3 4 52 6 7 8 9 10 k

Figure 2-1: Graphs of Q^s,{s(k)} . The first panel is for one server per

station, the second panel has an additional server at the fourth 
preferred station, and the third panel has an additional server at the 
second preferred station and two additional servers at the fourth 
preferred station. Panel 4 is for p = 0.4 and gives a number of 
different scenarios, or {s(k)}, as identified in the legend.
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Equations (1), (5), and (11) provide the building blocks that we use in our 

algorithm to estimate station-specific busy fractions and dispatch probabilities, as 

we describe next.

Algorithm

The input to the algorithm is the arrival rate Xm for every node, the number of 

servers sf at each station, the preference order for each node as specified by ajm, 

and the average service times xjm, for m = 1,2,..., M, j  = 1,2,..., J . Stations that 

have no ambulances are assumed to have been removed during preprocessing, so 

that Sj > 1 for all j.  First, calculate the following;

bkm = k'h preferred station for node m 
s(k)m -  number of vehicles at station bkm

Z ( k ) m  =  +  S (2)m +  • • • +  S ( k ) m

E k ) m ~

Next, set the iteration counter h to 1 and initialize the busy fractions and the 

system-wide average service time, by assuming that all calls are responded to by 

the most preferred station (superscripts are used as iteration counters):

P»=iyi x
v  J rn j m

m 'K n = j

i  M

%h = r S X x(i)»>
^  m =1

Each iteration consists of the following steps:

Step 1: Calculate p/! = Xxh / 5. Usep* and s to calculate P0 and Ps .

Step 2: Calculate Vth for all / ,  using (11) and the following:
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M  k - \  i,

K  = X X 'h . p‘ ,m , i ) n  p!-..'"'m=1 /-I
(1 2 )

Step 3: Calculate p^+1 for all j  using

(13)

Step 4: If ph*' - p f‘ <e for all j  then stop. Otherwise, set h = h + \ ,

Ps = max(o, 1 -  s / j  l(sph)), calcuiate f jm using (5), and calculate xh using

(14)

Then return to step 1.

Computational Results

Convergence

Two datasets were used to investigate the convergence of the algorithm. The first 

is from Greenville County, South Carolina (Burwell, 1986). This dataset consists 

of 5 stations and 99 demand nodes, and 3125 scenarios (all possible combinations 

of allocations of 0 to 4 ambulances per station among the five stations) were run. 

For each scenario, the number of servers per station was allowed to vary, but it 

was limited to at most 4 ambulances since we felt that more than 4 ambulances 

per station was not reasonable. The procedure converged in all 3,125 cases and 

generally it took only 4 or 5 iterations to do so. The maximum number of 

iterations was 13 over this test set and the average was 4.18. Even more
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impressive was the time to converge. For this dataset the longest time was 0.063 

seconds and the average time was about 0.036 seconds.

The second dataset, from Edmonton Alberta (Ingolfsson, Erkut, and Budge,

2003), consists of 10 stations, and 180 demand nodes and over 55,000 scenarios 

were run. The maximum number of ambulances for each station was constrained 

by the actual capacity for that station (reported by Edmonton EMS). Then, all of 

the possible combinations over this restricted range were run. For this larger 

problem, the algorithm took more iterations and longer overall time to converge. 

For three of the 55,404 total scenarios, the procedure did not converge within the 

maximum allowed number of iterations (1,000). For the remaining scenarios, the 

number of iterations ranged from 3 to 311, and averaged just under 11. The time 

was about an order of magnitude more compared to the smaller Greenville County 

results, but as indicated in Figure 2-2, it was almost always under half a second to 

converge in the cases considered.

25000 T

20000 ~ ------

o 15000co3  1
£ 10000 -  

LL.

5000 -

0 F— :: 4 : : ■' ..... .— ,  j------ ,
0.2 0.24 0.28 0.32 0.36 0.4 0.44 0.48 0.52 More

Tim e to converge (s)

Figure 2-2: Time to converge for 55,401 scenarios of Edmonton data.
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Figure 2-3 provides information about the correction factors for the subset of 

cases (648 in total) of the Edmonton dataset in which all stations had at least one 

ambulance (i.e., no empty stations). We tabulated the correction factors, Qm k, for

these scenarios based on the value of k, the preference of the station in the 

response list for the demand node, using small bin sizes at the low end of the scale 

and larger bin sizes for higher values of Qm k (and hence use a log scale for the x

axes in the figure). The graphs give, for each bin, the relative portion of the 

correction factors for various station preferences, k. As the graphs show, in 

general, the stations that are very high in the preference list have smaller 

correction factors (stations in the top three preference positions tend to have 

values less than 4), and the distribution shifts to the higher values of Q, for the 

stations lower in the prefenace ranking.

0.6

0.4
O’

0.2

0
101

1.2

> 1oc
“  0.8 o*

0.6 o 
>

0.4 o
*  0.2

0
101 100 100001000

Q v a lu e  (bin m id p o in t) Q value <bin midPoint>

Figure 2-3: Relative frequencies of correction factors by station preference (the
first through fourth preferred stations are shown on the left graph, and 
the sixth and eighth preferred stations are shown on the right graph) 
for 648 scenarios of the Edmonton dataset. Note that the x axes for 
both graphs use a log scale.

Once again we note that although the correction factors can be very large for the 

less preferred stations, these values are not really relevant under realistic system 

loads since the chance of needing to call on servers from those stations (for 

example all servers at the five most preferred stations are busy) is very small.
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Accuracy

The results of the procedure were compared to the results of a discrete event 

simulation model for a number of scenarios using the Edmonton dataset, in order 

to evaluate the accuracy of the estimation procedure. For the experimental 

design, three different numbers of bases/stations (4, 8, and 10), and four patterns 

of allocations to these stations (shown in Table 2-2) were considered and each of 

these scenarios was run for system loads (p = Xx/ s)  ranging from 0.1 to 0.9. The 

system load was varied by changing the total arrival rate of calls to the system. 

Note that the values of p are approximate since the average service time, x , will 

depend on the individual vehicle utilizations and so the average service time value 

was estimated (assuming an average system-wide utilization to calculate the 

dispatch probabilities). Additionally, the impact of temporal variation (in the 

demand process and vehicle allocations) on the utilization estimates was 

investigated.

1 2 3 4 5 6 7 8 9 10
4S-P1 1 1 1 1
4S-P2 1 1 2 2
4S-P3 1 2 2 3
4S-P4 2 2 2 2
8S-P1 1 1 1 1 1 1 1 1
8S-P2 1 1 1 1 2 2 2 2
8S-P3 1 1 2 2 2 2 3 3
8S-P4 2 2 2 2 2 2 2 2
10S-P1 1 1 1 1 1 1 1 1 1 1
10S-P2 1 1 1 1 1 1 2 2 2 2
10S-P3 1 1 2 2 2 2 2 2 3 3
10S-P4 2 2 2 2 2 2 2 2 2 2

Table 2-2: Scenarios included in experimental design. The labels in the leftmost 
column are used to indicate the number of stations, followed by a 
pattern number.
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For ease of reading, for the remainder of the section “average error” is used to 

mean the average (across stations) of the absolute errors and “average relative 

error” is used to mean the average (across stations) of the relative errors. Note 

also that “scenario” is used to refer to a particular number of stations and 

allocation pattern of ambulances to those stations.

A summary of the results for the 108 cases in the experimental design is given in 

Table 2-3.

p 48- 4S- 4S- 4S- 88- 8S- 8S- 8S- 10S- 10S- 10S- 10S-r
PI P2 P3 P4 PI P2 P3 P4 P1 P2 P3 P4

0.1 0.0005 0.002 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.2 0.001 0.002 0.003 0.002 0.002 0.002 0.002 0.003 0.001 0.003 0.004 0.004
0.3 0.003 0.003 0.002 0.003 0.003 0.003 0.004 0.005 0.002 0.004 0.006 0.005
0.4 0.002 0.004 0.006 0.006 0.002 0.003 0.007 0.006 0.005 0.006 0.007 0.006
0.5 0.002 0.004 0.006 0.004 0.003 0.004 0.006 0.007 0.006 0.010 0.011 0.014
0.6 0.003 0.004 0.006 0.003 0.003 0.005 0.005 0.006 0.006 0.009 0.014 0.018
0.7 0.003 0.004 0.006 0.003 0.003 0.004 0.005 0.004 0.006 0.007 0.011 0.013
0.8 0.003 0.004 0.005 0.003 0.003 0.005 0.005 0.004 0.004 0.005 0.008 0.009
0.9 0.002 0.004 0.005 0.002 0.002 0.004 0.004 0.003 0.004 0.005 0.007 0.007

p 48- 4S- 4S- 4S- 88- 8S- 8S- 8S- 10S- 10S- 10S- 10S-r PI P2 P3 P4 PI P2 P3 P4 P1 P2 P3 P4
0.1 0.6% 1.3% 0.8% 0.3% 0.7% 0.8% 1.2% 1.6% 1.0% 1.5% 0.8% 1.5%
0.2 0.9% 0.9% 1.5% 1.1% 0.7% 1.1% 1.4% 1.7% 0.8% 1.4% 1.7% 1.9%
0.3 1.2% 1.2% 0.8% 1.1% 0.9% 0.9% 1.7% 1.7% 0.9% 1.4% 2.0% 1.9%
0.4 0.6% 1.1% 1.5% 1.7% 0.6% 0.8% 1.8% 1.6% 1.5% 1.5% 1.8% 1.9%
0.5 0.5% 1.0% 1.2% 1.0% 0.7% 0.8% 1.2% 1.5% 1.3% 2.1% 2.4% 2.9%
0.6 0.5% 0.8% 1.2% 0.6% 0.5% 0.8% 0.8% 1.0% 1.1% 1.6% 2.4% 3.0%
0.7 0.5% 0.7% 1.0% 0.5% 0.4% 0.6% 0.8% 0.6% 0.9% 1.1% 1.6% 1.9%
0.8 0.5% 0.6% 0.7% 0.4% 0.4% 0.7% 0.7% 0.5% 0.7% 0.7% 1.1% 1.2%
0.9 0.4% 0.6% 0.8% 0.4% 0.3% 0.5% 0.5% 0.4% 0.6% 0.7% 0.9% 1.0%

Table 2-3: Average errors and average relative errors for 108 scenarios 
(Edmonton dataset).

As evident in the table, the procedure typically gives average relative errors below 

2%. The average errors and average relative errors tend to be highest for system 

loads in the middle of the range (and lower for very low or very high system
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loads). Additionally, as the total number of stations increases, both the average 

error and the average relative error tend to increase slightly. An interesting 

finding is that the errors did not simply increase with additional ambulances 

without regard to the allocation of those additional ambulances between the 

stations. In fact, although the errors were higher when comparing pattern 4 (two 

ambulances per station) to pattern 1 (one ambulance per station), the errors were 

highest for the cases where the number of ambulances per station varied (patterns 

2 and 3). This makes sense since the calculation of the correction factors for the 

approximation procedure uses an assumption that the workload and average 

service time are the same for servers at all stations, but servers further away from 

the center of the system will actually have higher average service times due to the 

travel component of the service time.

An example of the results, for a realistic scenario (with 14 ambulances allocated 

as in pattern 10S-P2, and system load of 0.3), is shown in the Table 2-4. The 

agreement between the simulated and approximated busy fractions is rather good, 

with most of the relative errors below 2%.

S ta tio n ,/ 1 2 3 4 5 6 7 8 9 10 A verage

S ervers, sj 1 2 1 1 1 1 2 2 1 2 1.4

E stim ated  p1,- 0.32 0.15 0.17 0.26 0.33 0.34 0.28 0.32 0.37 0.47 0.30

Sim ulation p j 0.33 0.16 0.17 0.26 0.33 0.35 0.28 0.32 0.37 0.46 0.30

A bsolu te  erro r 0.006 0.006 0.003 0.000 0.002 0.008 0.000 0.004 0.000 0.008 0.004
Relative erro r 1.9% 3.9% 1.9% 0.1% 0.8% 2.3% 0.2% 1.2% 0.1% 1.8% 1.4%

Table 2-4: Results for a particular scenario by station and averaged across
stations (including estimated and simulated utilizations along with 
absolute and relative errors).

It is valuable to expand the analyses beyond the original experimental design 

detailed above, in order to examine the impact of the inclusion of certain model 

elements on the accuracy of the utilization estimates. The first element that we
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focus on is the time varying nature of the demand. Repede and Bernardo (1994) 

found that modelling this element can have a large impact on the estimated 

performance of an EMS system. In an application to an EMS system in 

Louisville, Kentucky, they found that their time varying maximum expected 

covering location model, or TIMEXCLP, had an error 79% lower on average than 

the MEXCLP model (for 35 scenarios with a different number of servers and 

different numbers of time periods per day considered and with time variation) in 

comparison to results from a simulation model. Not only is it typical for the 

demand to vary by hour of the day or day of the week, but it is also possible to 

have a different number of units scheduled depending on these elements of time. 

First, we considered time variation in the demand only. Two of the 10 station 

scenarios (patterns 10S-P2 and 10S-P4) for system loads of 0.3 and 0.6 were run 

to examine this component. In the simulation model, a time varying arrival 

process was used with different rates for each hour of the day. Then time 

variation was included in the estimation procedure by calculating the busy 

fractions for each hour of the day (or for each three hour period) separately and 

averaging over these periods to get the final estimates. In general, the estimates 

for the model with time varying demand had average errors and average relative 

errors about twice as high compared to the same model with stationary demand.

A typical example of the absolute deviations between the simulation model and 

the estimation procedure is shown in Figure 2-4. In all cases dividing the day into 

three-hour periods worked nearly as well as dividing it into one-hour periods.
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Figure 2-4: Graph of absolute error by station for a particular scenario (10S-P2,
p=0.3, with time varying demand) for three different methods of 
estimating the busy fraction (without incorporating the time variation 
into the estimate, and incorporating it in 1-hour or 3-hour intervals). 
The table at the bottom shows the number of servers at each station 
and the proportion of demand for which that station is the closest 
station.

This procedure of dividing the day into smaller time periods can also be used in 

order to incorporate a time-varying vehicle allocation into the estimation 

procedure. Similar quality results were found (around 2% average relative error) 

when this was done for a 10 station scenario with time-varying demand and with 

the total number of ambulances varying from 14 to 18 depending on the time of 

day for both system loads tested (0.3 and 0.6).

Note that for all of the results given in this section, the procedure was modified 

slightly in order to make it comparable to the simulation model. In the simulation 

model used, an ambulance can not be considered available to respond to a call
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while returning to a station (even if it is the closest ambulance to an incoming 

call). Thus, the time to return to a station was included as service time in our 

estimation procedure and in the simulation model in order to compare the results. 

Comparisons were also made without this modification to the input to the 

estimation procedure and the errors were only slightly higher in most cases.

Impact on Performance Measures

Next, some specific cases are considered in order to examine the impact of the 

site-specific busy fractions and correction factors on the estimated performance of 

the system. First, consideration is given to the busy fractions themselves. Figure 

2-5 shows the solution (i.e., the estimated site-specific busy fractions) for a 

particular scenario of the Edmonton dataset. This scenario was based on the 

results of an optimization model incorporating the station-specific busy fractions 

using actual data from Edmonton. The horizontal axis shows the number of 

ambulances located at each station. Notice that the estimated busy fractions vary 

quite significantly by station, from a low of just over 20% to a high of nearly 

60%. If accurate estimates of the busy fractions are available one can use them to 

calculate measures of workload imbalance (for example the difference between 

the highest and lowest utilizations).

GO
G
N

1 12 1 1 1 1 2  2 

Number of vehicles at station 

Figure 2-5: Estimated station busy fractions for a particular scenario.
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Figure 2-6 shows the impact of modelling the server unavailability, and 

specifically includes the model with a constant system wide busy fraction as a 

comparison point. First of all, comparing the estimated coverage when the 

vehicles are assumed to always be available (i.e., using a system-wide busy 

fraction of zero) to that when assuming a constant system-wide busy fraction 

(using the average of the estimated site-specific busy fractions), the overall 

coverage of the system is seriously overestimated (a difference of over 6%).

Next, dispatch probabilities based on a system-wide busy fraction assumption in 

turn overestimate the coverage of the system compared to the more realistic 

dispatch probabilities calculated using site-specific busy fractions and correction 

factors for dependence. Although the difference may seem small at 1.9%, in 

previous work it was found that such a difference was actually very significant in 

that it would require fairly major changes (for example adding two ambulances 

around the clock) to the system in order to attain such a difference, when the 

system coverage is in the vicinity of 90%. Additionally, if the coverage of 

smaller regions of the city are considered, the differences can be much larger. 

Consider the two extreme cases; the regions around the stations with the highest 

and lowest estimated busy fractions respectively. In the first case, the ambulances 

are busier than average and so the coverage for this area is over-estimated (by 

about 5.4%) when assuming a constant system-wide busy fraction. In the latter 

case, the ambulances are less busy than average and so the coverage for this area 

is under-estimated (by almost 8%) when assuming a constant system-wide busy 

fraction. This is significant because system designers may be concerned with 

equity in coverage between different regions, not just the system-wide coverage.
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Figure 2-6: Comparison of estimated coverage for the same system using system- 
wide busy fraction versus site-specific busy fractions.

Other performance measures, such as average travel times, or frequency of 

interdistrict responses (calls responded to by an ambulance from locations other 

than the closest station) are easily calculated using the estimated dispatch 

probabilities but will not be considered in detail here.

Conclusions and Further Research

In this chapter a method for approximating station-specific vehicle utilization and 

dispatch probabilities for an emergency service system was detailed. Results 

indicate that the method is very fast, and fairly accurate for realistic scenarios, 

giving average relative errors of under 2% in most cases.

In the chapter that follows, this procedure is used in concert with an optimization 

algorithm. Of particular interest is the convergence of this combined procedure as 

well as the potential impact on the optimal solution. In this regard, it is beneficial 

that the procedure is so fast. It would be useful to extend the procedure to allow
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fractional values for the number of servers at each station. This would make it 

possible to embed the procedure directly into an optimization procedure that 

solves continuous relaxations. Unless the total number of vehicles to be allocated 

is held constant, this extension could be quite challenging. Other extensions 

could include allowing for a queue of waiting calls, allowing for more than two 

server states (such as idle, busy on a call, or busy on patrol for police systems), 

and considering situations in which multiple units may respond to a call for 

service. Some of these extensions have been developed for previous methods 

(Goldberg and Szidarovszky, 1991c, d; Birge and Pollock, 1989) and it may be 

possible to use approaches similar to the ones used by these authors to incorporate 

these extensions in our model, but we have yet to investigate this.
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Chapter 3: Optimal Ambulance Location With 

Random Delays and Travel Times

Introduction

The design of an emergency medical services (EMS) system in a municipality 

involves several interconnected strategic decisions, such as the number and 

locations of ambulance stations, the number and locations of the vehicles, the 

dispatch system followed, and the redeployment method used. In this chapter the 

focus is on the allocation of vehicles to a set of (existing or planned) ambulance 

stations with known locations. A main concern in an EMS system is the response 

time to calls. Perhaps the most obvious and significant component of response 

time is the travel time between the ambulance station and the demand location, 

and almost all of the existing operations research literature on ambulance location 

focuses on this component. However, since the response time is generally defined 

as the length of the time interval from when a call for ambulance service arrives 

until paramedics reach the scene, this time includes not only travel time but also 

delays prior to the trip. Such delays can include time spent on the phone 

obtaining the address and establishing the seriousness of the call, time spent 

deciding which ambulance to dispatch, time to contact the paramedic crew of that 

ambulance, and time for the paramedic crew to reach its ambulance and start it.

An overriding issue when designing an EMS system is the coverage provided, and 

a common performance target is to respond to (or cover) a fraction a  of all calls in 

8 minutes or less (for example 90% in 9 minutes). A simple numerical example is 

offered next to illustrate the relevant issues. Consider a small town with a single 

ambulance station, a response time standard of 9 minutes, and three demand 

locations D l, D2, and D3, that are expected to generate 100 calls each in a given 

future time period. Suppose that the travel times between the station and the three

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



demand locations have means of 5.5, 7.5, and 9.5 minutes, and that the standard 

deviations are equal to 40% of the means. Next, suppose that the pre-trip delay is 

independent of the travel time and has a mean of 2.5 minutes and a standard 

deviation of 1 minute. Further, assume that the total response time (composed of 

the pre-travel delay and the travel time) follows a lognormal distribution, with a 

mean and standard deviation that are determined as described below. For 

simplicity, in this introductory example it is assumed that an ambulance is always 

available when a call arrives. Table 3-1 lists six different ways in which the 

delays and travel times can be modeled and highlights the differences among 

these approaches by providing results (the probability of responding to a call for 

each demand location, as well as the total number of calls covered) for this 

example.

Probability of responding Expected 

to a call at a demand number

location within 9 minutes of calls

Model Travel time Delay time D1 D2 D3 coven

A Deterministic Not modeled 1 1 0 200.0

B Stochastic Not modeled 0.929 0.747 0.521 219.7

C Deterministic Deterministic 1 0 0 100.0

D Stochastic Deterministic 0.734 0.429 0.214 137.8

E Deterministic Stochastic 0.857 0.129 0 98.5

F Stochastic Stochastic 0.708 0.426 0.229 136.3

Table 3-1: Six ways to model pre-trip delays and travel times, with summary of 
probabilities of responding to calls from the three demand locations for 
each model used, and the resulting expected number of calls covered.

If the pre-trip delay is ignored and average travel times are used to determine 

coverage (Model A), then the first two demand locations are characterized as 

“covered,” the third one as “not covered,” and 200 calls are credited to the 

coverage offered by the station when computing the performance measure. 

Flowever, depending on whether and how each of the components is modelled,
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the expected number of calls covered for each demand node and for the system as 

a whole varies widely.

Several observations regarding the differences between the models are in order.

• Comparing models A and B (or C and D, or E and F), note that the error 

induced by using constant as opposed to probabilistic travel times at a given 

demand location can be made arbitrarily large by manipulating the distance 

and the demand. (Suppose all of the demand is an average distance of 9.01 

minutes away from the station. The deterministic model estimates zero 

coverage while the probabilistic model estimates over 50% coverage.) While 

negative and positive errors at individual demand locations may cancel each 

other to some extent when computing the total expected number of calls 

covered, the error in the system performance estimate can be quite significant 

(around 40% in this example when the pre-trip delays are included). We 

believe that the probabilistic model is a better representation of reality, and the 

use of deterministic travel times in ambulance location models introduces 

avoidable errors.

As one would expect, the exclusion of the delay term results in very 

significant errors. For example, the coverage drops by more than 30% from 

Model B to D, due to the inclusion of the (constant) delay term.

• In the presence of probabilistic travel times, errors induced by using a constant 

versus probabilistic delay time are not as large as those induced by leaving out 

delay times altogether. Comparing Models D and F, we observe that the 

constant delay model (Model D) overestimates the probability for D1 by 0.026 

and underestimates the probability for D3 by 0.015. Figure 3-1 displays the 

absolute error in the estimation of the probability (Model D probability minus 

Model F probability) as a function of mean travel time (in minutes) between 

the station and a demand point. While these errors seem small in magnitude, 

the relative errors can be quite significant. For example, for a travel distance 

of 11 minutes the absolute difference between the two probabilities is merely
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0.019, but this amounts to an error of more than 13.5%. Additionally, the 

error will depend on the relative amount of variability in the delays compared 

to the travel times and it will also depend on the expected travel time as 

indicated in the graph. These errors can influence decisions adversely when 

every percent counts in trying to reach, say, a 90% coverage target. For 

instance, in a recent project in Edmonton (Ingolfsson, Erkut, and Budge, 

2003), current coverage was 87% and most individual system design changes 

had impacts on the order of one percentage point or less. To be useful in such 

situations, prescriptive models must discriminate accurately between system 

designs with coverage differences of one percentage point or so.

0.04 r

0.03

0.02

0.01

0

- 0.01

- 0.02

-0.03

min.

Figure 3-1: Error induced by using constant delay times as opposed to the
probabilistic delay times as a function of travel time (in minutes).

In this chapter we develop Model F, which is free of the errors demonstrated in 

this example.

The motivation for this chapter originates from two real-world ambulance 

location projects completed recently -  the one mentioned above and another 

conducted in St. Albert, a town of 50,000, near Edmonton, Alberta. Data from the 

latter study is used in this section. Data from approximately 5,500 EMS calls
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serviced in over four years in St. Albert was analyzed. Figure 3-2 displays a 

histogram of the pre-trip delays. The delays ranged from 20 seconds to 20 

minutes, with an average of 175 seconds and a standard deviation of 96 seconds. 

Limiting the analysis to calls classified as “heart and respiratory” (i.e., high 

priority) yielded almost the same mean and standard deviation. The average delay 

of almost 3 minutes is a very substantial fraction of a 9-minute response time 

standard, and the variation in the delay is too large to ignore (the standard 

deviation is almost 50% of the mean).

ca lls

m

f
sec.

Figure 3-2: The histogram of pre-trip delays for 5,500 EMS calls serviced in St.
Albert.

Green and Kolesar (1989) report delays similar to the ones of concern here. They 

found unexpected “dispatch delays” when validating a queueing model of police 

patrol in New York City. They found that about 50% of calls experienced 

dispatch delays averaging about 4 minutes. Henderson and Mason (2004) had a 

similar experience. They report that “for many of the calls, a large amount of 

time is spent before an ambulance is dispatched to a call” and discuss the impact 

that this has on the ability to meet the coverage goals as well as the potential to 

achieve a considerable improvement in performance with only small decreases in 

these pre-trip delays.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The St. Albert data set contains multiple trips to several locations, which allows 

analysis of distributions of travel times. Figure 3-3 shows a histogram of travel 

times for 352 trips from a particular station to the same multiple-resident demand 

point. The trip travel times range from 55 seconds to 370 seconds, with an 

average of 143 seconds and a standard deviation of 52 seconds. Of these 352 

calls, 94 are classified as “heart and respiratory.” For these high-priority calls the 

average travel time is 126 seconds, suggesting perhaps slightly faster travel in 

case of high-priority calls. However, the standard deviation is still a very 

substantial 57 seconds. A total of nine locations with multiple trips were analyzed 

and the standard deviation was always found to be considerable (on average 40% 

of the mean). Reporting on a project for locating emergency vehicle bases in 

Tucson, Arizona, Goldberg et al. (1990a) also found substantial variation in 

empirical travel times for given base-demand zone pairs. In Chapter 4, the focus 

is on the travel time component and examples that show even greater variability in 

travel times are provided.

0(OOIOOU)OU)OU)OU)OU)OIOOU)OIOO
I f i N O O N n i O I S C O I D r N ^ I O N C O O r n t l S
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Figure 3-3: Distribution of travel times between a particular station and demand 
point pair for a total of 352 trips.

To summarize, in analyzing the response time data it is evident that delays can be 

significant and highly variable, and that travel times between a given pair of
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points are highly variable. Thus, a convolution of the delay and travel time 

distributions is needed to obtain an accurate response time distribution (assuming 

travel time and delay are statistically independent -  an assumption that is 

supported by the data used).

Explicit modelling of the uncertainty in travel times is an important feature of the 

model in this chapter. In addition, the model here is intended to overcome three 

limitations of existing models that ignore either delays or the randomness in 

delays. First, existing models may severely overestimate the coverage achieved 

with a given number of ambulances and, conversely, underestimate the number of 

ambulances needed to meet a specified coverage objective. Second, for a given 

number of ambulances, existing models may prescribe a suboptimal distribution 

of ambulances to stations. Third, existing models do not enable prediction of the 

consequences of reducing delays. This last point is important because delays can 

be far easier and less costly to reduce than travel times. It might be possible to 

reduce delays through simple process changes, such as dispatching an ambulance 

before the seriousness of the call has been established (thereby performing two 

activities in parallel rather than in series), or through the introduction of an 

intelligent dispatch system, whereas reducing travel times usually requires adding 

ambulances or stations. This model can help compare the costs and benefits of 

actions to reduce delays versus actions to reduce travel times. This is valuable for 

decision-makers who are interested in the least-costly way of reaching service 

standards. As far as the response time standard is concerned, 30 seconds saved 

are 30 seconds saved, regardless of which component of the response time these 

savings come from.

There is an extensive literature on optimal location of ambulances. Yet very few 

papers model the randomness in travel times, and we know of no papers that 

incorporate randomness in pre-trip delays in an optimization model. Both 

omissions are serious impediments to applying optimization models to ambulance
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location, and the model presented here is a first step in overcoming these 

shortcomings.

In the remainder of the chapter, the relevant literature is discussed, and then the 

problem data is described, followed by the problem formulation, some useful 

properties of the formulation, the results of computational experiments, and 

further research to extend and experiment with the model.

Literature Review
There is an extensive literature on locating emergency facilities. Willemain and 

Larson (1977), Swersey (1994), and Marianov and ReVelle (1995) provide 

reviews of this area. A recent review of the literature on facility location with 

stochastic demands by Berman and Krass (2001) is also very relevant. In this 

section, selected papers are surveyed with an emphasis on those that are most 

relevant to this research. Past models can be characterized as prescriptive or 

descriptive. Every mathematical model of EMS operations provides predictions 

of performance, as a function of decision variables such as the number of 

ambulances at each station, and every such mathematical model allows one to 

experiment with the decision variables to search for a better configuration. All 

models make simplifying assumptions, for various reasons. At one extreme are 

models that make strong simplifying assumptions in the interest of making it 

possible to find optimal or near-optimal configurations for large problem 

instances. At the other extreme are models whose focus is on accurately 

predicting the performance for a particular configuration. Even though some 

models fall in the middle between these two extremes, many models can be 

usefully classified as either prescriptive (where the focus is on making 

optimization possible) or descriptive (where the focus is on accurate prediction of 

performance measures). Descriptive models are typically either analytical 

queueing models or simulation models.
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Related to the discussion of prescriptive and descriptive models is problem size. 

For ambulance location models, the number of “demand nodes” and the number 

of stations are the primary determinants of problem size. Demand is typically 

aggregated into demand nodes, in part to provide a reasonable size problem. The 

number of demand nodes is influenced by the size of the geographic region, the 

population, and the method used to divide the region into demand nodes, i.e., the 

aggregation method. The number of stations is influenced by the size of the 

region, the size of the population, the level of funding, and by operating policies 

(for example, if it is possible to have ambulance waiting on street comers for the 

next call, then there would be more possible "stations"). Both the number of 

demand nodes and the number of stations will influence the time to evaluate a 

single solution, but only the number of stations (and not the number of demand 

nodes) will influence the size of the solution space for a prescriptive model. 

Moreover, the number of stations will impact the size of the problem for a 

prescriptive model in a combinatorial fashion. The number of demand nodes, can 

be expected to impact the solution time for a single solution in an approximately 

linear fashion. Since the number of demand nodes for a particular problem can be 

manipulated by using different aggregation levels (at the expense of introducing 

aggregation errors), and since the increases in computer performance over time 

can make it easier to deal with problems with increased numbers of demand 

nodes, the true test of a prescriptive model is the number of stations.

Most of the prescriptive models use an all-or-none notion of coverage, where a 

demand point is considered “covered” if the closest ambulance station is within 

some specified maximum distance. The objective of the set-covering location 

problem (SCLP), first formulated by Toregas et al. (1971), is to minimize the 

number of stations such that all demand points are covered. Although this is a 

binary problem, the linear programming relaxation (or the addition of a simple 

cutting plane) usually generates all-integer solutions. By changing the coverage 

distance, one can generate a number of solutions with varying number of 

facilities. While the SCLP has been used in several location studies, it has a
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number of shortcomings. For example, the requirement of covering every 

demand point is rather stringent and usually results in the location of an 

unreasonably high number of facilities. To address this problem, Church and 

ReVelle (1974) extended the SCLP by proposing the maximal covering location 

problem (MCLP) where the goal is to maximize the proportion of the demand 

covered with a fixed number of facilities. The linear programming relaxation of 

this binary problem is reported to result in all-integer solutions most of the time. 

One can solve MCLP parametrically in the number of facilities and obtain a cost- 

coverage tradeoff curve. Unlike SCLP, MCLP differentiates between demand 

points based on relative demand and it is able to trade off system coverage and 

resources. Hence, it is better suited for emergency service facility location than 

SCLP, and there are several reported applications. However, the classification of 

a demand point that is within a specified distance of a station as covered makes 

the implicit assumption that there is always a vehicle at the station to respond to a 

call. While most emergency response systems are designed for low utilization 

levels, in many cities ambulances are busy a significant portion of the time (for 

example, 30%). To account for the potential unavailability of ambulances,

Daskin (1983) extended MCLP by formulating the maximum expected covering 

location model (MEXCLP), which maximizes the expected value of population 

coverage for a fixed number of servers. MEXCLP uses a single, system-wide 

busy probability, and computes the probability of a subset of busy vehicles from a 

given station using the binomial distribution. While the model is an integer 

program with a nonlinear objective function, it can be linearized, and instances of 

realistic size can be solved with general-purpose integer programming solvers. 

Although there are many prescriptive ambulance location models in the literature, 

the three models discussed above can be considered the most influential ones on 

subsequent research, since most other models are extensions of these three. While 

many of these prescriptive models can be solved to optimality with reasonable 

effort, they suffer from simplifying assumptions. On the other hand, descriptive 

models provide more realism (but they do not prescribe a solution).
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The main descriptive model that is relevant to this work is the hypercube model 

developed by Larson (1974) and subsequent approximate versions of that model 

(Larson, 1975 and Jarvis, 1985). The hypercube model allows busy fractions to 

vary between ambulances, can accommodate ambulances responding to calls 

outside their assigned districts, and can account explicitly for queued calls. 

Applications and discussions of extensions to the hypercube model are discussed 

in Larson (1979), and Brandeau and Larson (1986). An extension to these 

models, described in the previous chapter, that allows multiple servers at a station, 

is used here. Discrete event simulation can be used when even greater realism is 

needed (e.g., Henderson and Mason, 2000 and 2004, and Ingolfsson, Erkut, and 

Budge, 2003).

Finally, some authors have combined descriptive models with optimization 

heuristics. Both Batta, Dolan, and Krishnamurthy, (1989) and Saydam and 

Aytug, (2003) combine the approximate hypercube model with optimization 

heuristics, the former using a single node substitution heuristic and the latter using 

a genetic algorithm.

In the work described in this chapter, the prescriptive modelling paradigm is 

extended, by incorporating randomness in response times without sacrificing the 

ability to use general-purpose solvers to find optimal solutions. In the context of 

Table 3-1, all of the prescriptive covering models discussed above use 

deterministic (average) travel times. While delays are usually not explicitly 

mentioned in papers dealing with prescriptive coverage models, it is easy to 

incorporate a constant (average) delay into all coverage models by simply 

subtracting the delay from the specified maximum response time. For example, 

Eaton et al. (1985) use MCLP with a 5-minute travel time, which may have been 

part of an 8-minute response time with an average delay of 3 minutes. Hence, 

depending on the coverage standard used, SCLP, MCLP, and MEXCLP fall in 

category A or C in Table 3-1.
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The assumption made by early covering models is that if (and only if) an 

ambulance is available within a specified maximum distance of a demand point, 

then the demand point is covered. A common performance measure for EMS 

systems is the coverage, or the fraction of calls responded to within a specified 

time standard. However, for a given ambulance location and a demand point, it is 

not possible to know with certainty whether the call will be responded to within 

the time standard -  it depends on the pre-trip delay and the travel time as well as 

the availability of the ambulance, none of which can be predicted with certainty. 

The model here does not rely solely on average travel times, and hence is not 

limited by the resulting strict classification of demand points as covered or not 

covered. It allows incorporation of randomness in pre-trip delays and travel 

times, and computes an expected coverage for each demand point, given the 

ambulance locations. Hence, model realism is increased by replacing the 0-1 

consequences, implied by solutions of early covering models for demand points 

by real numbers between 0 and 1, which are better estimates (than 0 or 1) of the 

fraction of calls emanating from different demand points that can be reached 

within the specified time standard.

In the remainder of this section, the focus is on ambulance location models that 

incorporate response time variability. As mentioned above, a constant pre-trip 

delay can be incorporated into all covering models. However, we know of no 

papers in the literature that incorporate random delays in a prescriptive model.

We are aware of three instances where travel time variability is included in 

covering models. Marianov and ReVelle (1996) assume travel time from station j  

to node / is normally distributed with known mean and variance. Then they 

define a node i to be covered by station j  if the average travel time plus K  standard 

deviations is less than a specified constant. While they acknowledge the 

variability in travel times, they do not use the distributions directly in the model. 

This model is more conservative (for K  > 0) than a covering model that uses the 

average travel times only. However, it is still a traditional covering model in the 

sense that a demand point is either covered or not. Perhaps the paper that is most
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relevant to the model in this chapter is Goldberg and Paz (1991), which is inspired 

by a case study reported in Goldberg et al. (1990a, b). They formulate an 

emergency facility location model that includes the probability Py that an 

ambulance at station j  can travel to a call from demand node i within a response 

time standard. This quantity is used to calculate expected coverage in the 

objective function of their optimization problem. Daskin (1987) models random 

travel times similarly, but the focus of his model is the integration of location and 

routing, taking into account that some calls may require two vehicles to respond. 

Daskin’s model does not account for ambulance unavailability and is quite large, 

even for small networks. Goldberg and his co-workers used an approximation 

related to the hypercube model to estimate the busy probabilities of the vehicles, 

and included an upper bound on the number of stations. They use regression to 

estimate average travel times as a function of distance along roads of various 

types, and compute the Py values using this mean and the standard deviation of the 

residuals, assuming normal distribution of path travel times. While the way that 

expected coverage is modeled in this chapter is similar to that of Goldberg and 

Paz (1991), there are several differences between their work and the work 

presented here. Perhaps the most significant modelling difference is the inclusion 

of pre-trip delays in the current model. Also, the calculation of the dispatch 

probabilities for the vehicles and the computation of coverage probabilities for 

demand points, are treated in different ways. Here, dispatch policies are 

considered as given, rather than included as decision variables. For all of these 

reasons, the current model is more compact and tractable and problems of realistic 

size can be solved optimally using off-the-shelf solvers, while Goldberg and Paz 

(1991) propose pairwise interchange heuristics for their model.
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Problem Data
The following data are assumed to be available:

• A set of J  station locations, indexed by j , and a set of M  demand nodes, 

indexed by m.

• A positive arrival rate Xm for each demand node m. The node arrival 

processes are assumed to be independent Poisson processes. The system
M

wide arrival rate is denoted with X = ^  Xm and the fraction of the total
m=I

demand coming from demand node m is denoted byhm = Xm/X.

• The distribution function Hjm (t) of the travel time T]m from station j  to 

node m.

• The distribution function F(t) for the delay.

• Parameters 8 and a  which specify the coverage objective that calls should 

be responded to in at most 8 time units with probability of at least a.

• The average on-scene time, and average time spent traveling to and 

remaining at a hospital, denoted E[Tonscene], and E[7jlospital], respectively.

• A dispatch order for each demand node m, i.e., a list of the J  stations in 

order of preference for dispatching to a call originating from node m. The 

notation k(j, m) is used for the preference position of station j  for a call 

from node m, for example k(3, 2) = 4 indicates that station 3 is the fourth 

preferred station for responding to calls from node 2.

• The “busy fraction” p . for ambulances at station j ,  i.e., the probability 

that an ambulance at station j  is not available to respond to calls. It is 

assumed that py e (0,1). Additionally, correction factors, Qjm, to account 

for the dependence between servers are assumed to be available for each 

station demand node pair. Details as to how these are calculated are 

provided in Chapter 2 of this dissertation. Together, the dispatch policy, 

the busy probabilities, and the correction factors are used to calculate 

dispatch probabilities.
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The last assumption, that the busy fractions and correction factors are exogenous 

input to the model, is obviously a limiting one. Discussion of how to overcome 

this assumption is provided later.

Suppose that an ambulance from station j  responds to a call from demand node m 

and that station j  is the ktb station in node m’s dispatch order. Let H(k)m{t) be the

travel time distribution function for this station-demand node pair. Note that to 

minimize confusion, brackets are used in the station index when referring to the 

preference of a station as opposed to the station number. For example H (k)m (t) is

equivalent to H jm(t) if station j  is the kth station in node n ts  dispatch order. With

the assumed data, the probability w(k)m that the call will be responded to in 5 time

units or less, can be calculated as follows:

k)m = ( 1)
u= 0

This calculation can be done for all node-station pairs, before solving the 

optimization problem posed in the next section. The optimization model requires 

no information about the probability distributions of travel times or delays other 

than the probabilities w(k)m.

The dispatch order for each node m is assumed to be such that:

W ( l ) m  ^ W ( 2 > ,  (2)

That is, the stations are arranged in descending order of the likelihood of 

responding to a call from node m in less than 5 time units. The formulation 

presented in the next section is valid without this assumption, but the concavity 

property discussed later requires it.
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Problem Formulation and Properties

Let Xj be the number of ambulances located at station j ,  and let x(k jm be the

number of ambulances at the &th preferred station for demand node m. The vector 

(x(i)m,x( 2 ) m is a permutation of x = (Xj,x2, . . . ,xd), for each m. Similarly,

let p(k)m be the busy probability for the kth most preferred station for demand node 

m. The optimization problem is:

(PI) minimize
= L

j =i
x i

subject "  (3)

tO m=1

Xj > 0, in t e g e r ,  fo r  (4)

j  = 1,2,...,/

where

cm(x) = Z / , m(x)w7m>f°r m = 1 , 2 ( 5 )
7=1

and

f J„M) = Qjn, ( l - p l )  n  P (o :’ for j  = = (6)

Problem (PI) minimizes the total number of ambulances s(x) subject to a 

coverage constraint (3). Constraint (3) expresses the system-wide coverage 

c(x) as a weighted combination of the coverages for each demand node, and the 

coverage cm (x) for demand node m is calculated in (5) by conditioning on which 

station sends an ambulance to respond to a call from node m. The calculation of 

the node m coverage requires the dispatch probability f jm (x) , the probability that

a call from node m is responded to by an ambulance from station j ,  its klb preferred
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station. This probability is calculated, as shown in (6), as the product of a 

correction factor, Qjm, and the probabilities that all ambulances at the k -  1 more

preferred stations are busy, and at least one ambulance at station j  is free. In 

equation (6), Qjm is a correction factor to approximately account for the

dependence between servers. Setting the correction factors to one is equivalent to 

assuming that the probability of an ambulance at a particular station being busy is 

statistically independent of the status of ambulances at all other stations.

Concavity Result

Proposition 1: If w(1)m > w{2)m > ... > w(J)m for m = 1,2,...,M , and Qjm and p. are

invariant with x (recall that these are assumed to be exogenous input to the 

model), then the system-wide coverage is a concave function of x.

M
Proof: Recall that the system-wide coverage c(x) = hmcm(x) is a convex

m=1

combination of the coverage cm(x) for each demand node m. To prove that c(x) 

is concave, it suffices to prove that the coverage cm (x) for a particular node m is 

concave, since the weights hm are positive. Therefore, it is assumed without loss

of generality that there is only one demand node and the demand node subscript m 

is dropped in the proof to simplify notation. Additionally, it is assumed that the 

stations are ordered by preference of this single demand node, so the bracket 

notation in the subscripts is also dropped here.

By assumption we have Awk = vv/f+l -  wk < 0 for all k. We can express the 

probability f k(~x) as:

f kO) = Qk (i - Ptk)n  Pi = Qk f n Pi' ~ f l Pi ]  = W  “  S k(x)
i=i V /=i 1=1
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where gk (x) = Qk j~[ p,1' a n d g 0(x) = l.  Consequently,
1=1

)w,4 X) = X  /* (XH  = X  8k-1 (XK  -  X  ̂  (x>
*=1 *=1 k =1

J  J  J

=X  ̂  (xM+i -  X  ̂  (xK =wi +X  8 k (x)
*= 0 k =1 <t=l

with the understanding that wJ+1 = 0.

The gradient of c ( x )  with respect to x has the following entries:

^  = (lnP jX ^ (x)Aw*
<W „ k=n

The Hessian matrix H is symmetric and has the following entries:

K  = Ki = = (In Pn )(ln p, )X  gk (x) Aw,
8xn8x, t /

Recalling that Qk > 0, p, e (0,1), and Aw, < 0, we see that dc / 8xn is non­

negative for all n, and 82c! 8xn8xl is non-positive for all n and /.

Consider the quadratic form y7 Hy where y is an arbitrary column vector with J  

elements. This quadratic form can be expressed as:

y7 Hy =X  X  y -y  A t  = X  y< K +2X  X  y>y,K,
n= 1 /=1 /=1 n= 1 /= «+ !

Substituting the expression for hnl we get:

y7 Hy = X  T/2 (ln Pi )2 X  8 k (x)Aw* + 2X  X  y»yi (ln p« )(ln p/ )X s k (x)Aw* (7)
/=1 k=l n=1 /= n + l k=l

By changing the order of summation, the double sum in (7) can be expressed as:
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X  y ] (ln p , f  X  gk (x)Aw* =X  & (x)Aw* X  (ln p/ )2 y>
1=1 k=I k=\  l=\

Similarly, the triple sum in (7) can expressed as:

j ./ j j j

E  E  ^ / ( lnp«xlnp/)E ^(x)Aw-t=X E  s k(*)&wk E  ^ ^ ( lnp«xinp/)
«=1 /=a?+1 k~l n=1 i= / i+ l  /= « + l

=E ^*w Aw*E  E  ^ ^ ( lnp«xinp/)
/= 2  /7=1 /= /?+ !

Substitution in (7) results in:

J  f  k k - 1 k  1

yrHy = E&(x)Â E ( lnP/)2x2 +2X X (lnP«XlnP/)y«y/ \
k = \  I /=1

J  f  k

=E^w Awi E(lnP/)y/
k =1 VM

Each term in the outer summation is non-positive (because ^ ( x )  > 0, Awk < 0, 

and the squared summation is non-negative) and therefore y7 Hy < 0 for ally. 

Consequently, H is negative semi-definite and c(x) is concave.

Q.E.D.

The objective function and constraints (4) in (PI) are linear. The constraint (3) is 

concave, and it defines a convex set in x. Consequently, the continuous relaxation 

of (PI) is a convex programming problem, and a local optimum is also global. 

Note that as a result of this proposition, the coverage cm(x) for each demand node 

m has the following properties:

• An increase in the number of ambulances at any station increases the 

coverage for each demand node.

• When the number of ambulances at a particular station is increased, the 

marginal increase in coverage decreases.
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Busy Fractions

The assumption that the busy fractions p . are exogenous input is not realistic, as

they will depend on the number and distribution of ambulances between stations. 

To overcome this limitation, we propose iterating between solving (PI) and 

estimating the busy fractions. If all ambulances are assumed to have the same 

busy fraction, then a relatively simple estimation procedure can be used (refer to 

Appendix 1 at the end of this dissertation for details). If all ambulances are not 

assumed to have the same busy fraction, then a more complicated estimation 

procedure is necessary. We have used the procedure detailed in the previous 

chapter, which is a generalization of the approximate hypercube model allowing 

for multiple vehicles at a station and estimates station-specific ambulance busy 

fractions.

The following iterative algorithm is proposed to overcome the assumption of the 

busy fractions being exogenous input.

Step 0: Set p7 to an initial estimate p"’ of the busy fraction. Set n <— 1 and 

choose a smoothing parameter y e (0,1).

Step 1: Solve (PI). Let the optimal objective function value be s*. Find the
j

solution x* that maximizes c(x) subject to < s" and (4). If the
7=1

convergence criterion is satisfied, stop.

Step 2: Estimate p°ut using equation (8). Set p™ <- yp°ut +(1 -y )p ” for all 

stations j  and n <— n +1. Go back to step 1.

The convergence criterion could be expressed in terms of the sequence of 

solutions {x*}, the estimated busy fractions {p"ut(x* )}, or both. This algorithm is

not guaranteed to converge to a unique solution. Indeed, we have observed 

convergence to a cycle of two or even three similar solutions. In such cases,
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planners could be presented with multiple good solutions, which could be 

compared in terms of the values that they give for other performance measures.

Goldberg et al. (1991) use a different approach, where they include the busy 

fractions as decision variables and include a constraint in the problem formulation 

that is similar to equation (12) in Appendix 1. An advantage of the approach in 

this chapter is that the continuous relaxation of (PI) is a convex optimization 

problem, as shown above. Goldberg et al. (1991) do not solve their formulation 

as a mathematical program, but use specialized heuristics.

Computational Experiments

The instances of (PI) solved in this section are based on data from Edmonton 

EMS and use correction factors equal to one and deterministic travel times in 

order to isolate the effect of randomness in delays. The dispatch orders have 

satisfied assumption (2). These instances have 10 stations and 180 demand nodes. 

These instances have been solved to optimality using Premium Solver (Frontline 

Systems, Inc), in at most a few minutes per instance with a standard branch-and- 

bound algorithm that calls a nonlinear programming algorithm to solve the 

continuous relaxations. We have experimented with minimizing the number of 

ambulances needed to provide a specified coverage (this is the formulation (PI)), 

as well as a formulation that maximizes the coverage subject to a given total 

number of ambulances.

To overcome the assumption of pj being given exogenously, the values of py are

iterated on using the procedure described above. Figure 3-4 shows an example of 

how p™ and p°ut evolved over three iterations for one problem instance based on

Edmonton data. In this instance, y was set to 0.9, and p j and p°ut converge in

about 3 iterations with an average after convergence of about 0.33. The total 

number of ambulances converged to 16. In a simulation model of the Edmonton
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EMS system reported on in Ingolfsson, Erkut, and Budge (2003), the busy 

fraction under current operations was estimated as 0.22. In the simulation, the 

number of ambulances in service varied between 14 and 20, depending on the 

time of day, and the coverage was about 89%. The lower average utilization from 

the simulation model can be explained at least in part by the larger number of 

ambulances than in the solution illustrated in Figure 3-4.

> v
CO
3GQ
no‘«M
CO

3o

0.6

0.4

0.2

}
Station 10

Stations 1, 
and 4-9

—  Stations 2 
and 3

2
Iteration

Figure 3-4: An example of iterating on the busy fractions p ., where the initial
input busy fraction was set to 0.3 for each station, and a smoothing 
constant of 0.9 was used.

The model has been used to empirically explore the impact of varying the 

parameters of the delay distribution. Figure 3-5 shows how the minimum total 

number of ambulances needed to provide the specified coverage changes when 

the mean and standard deviation of the delay distribution vary. Values that were 

0%, 50%, 100%, 125%, and 150% of the current value for the mean (2.6 minutes) 

and for the standard deviation (1.3 minutes) were tried, except for combinations 

of parameters that made it impossible to meet the coverage goal. The 

combination where both the mean and the standard deviation equal their current 

values is referred to as the base case.
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As Figure 3-5 shows, the total number of ambulances needed changes 

considerably when the parameters of the delay distribution are varied. The 

dramatic impact of ignoring the delay is illustrated by comparing a case when the 

delay is assumed to be zero to the base case. In the former case, only 11 

ambulances are needed, while in the base case, 16 are needed.

30
*  Zero Mean 

50% Lower Mean

(A0>ocra
"5n
E<
0)•Q
E
3

ao

Current Mean 

25% Higher Mean 

50% Higher Mean
20

10

Base case
0

Zero St. Dev. 50% Lower Current St. 25% Higher 50% Higher
St. Dev. Dev. St. Dev. St. Dev.

Standard Deviation of Delay

Figure 3-5: Sensitivity of the minimum total number of ambulances needed to 
provide the coverage goal to the mean and standard deviation of the 
delay distribution.

Comparison of the case where the delay is assumed deterministic and equal to the 

current mean with the base case results in a less dramatic difference, of course: 

the number of ambulances needed increases from 15 to 16. However, the impact 

of ignoring the variability in delays would be far greater if the mean delay were 

higher. For example, if the mean delay were to increase by 25% (from 2.6 

minutes to 3.25 minutes), while the standard deviation stayed the same, then 21 

ambulances would be needed to reach the coverage goal. In this case, if the delay 

variability were ignored (i.e., the standard deviation is assumed to be zero), then 

the model predicts that only 18 ambulances would be needed to reach the 

coverage goal. Hence, a model that incorporates delays but treats them as
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deterministic would underestimate the number of ambulances needed to provide 

the target coverage by (21-18)/21 = 14%.

Figure 3-6 gives the complementary perspective and provides additional insight 

into the impact of the delay standard deviation. It demonstrates how the system 

wide coverage varies when the parameters of the delay distribution are varied in 

the same way as for the results in Figure 3-5, with the total number of ambulances 

fixed at 16. From Figure 3-6, it is apparent that if the variability in the delay is 

not considered, then the estimated coverage is about 93%, compared to just over 

90% if the variability in the delay is incorporated. When the standard deviation of 

the delay is decreased 50% from the base case, the coverage increases from just 

over 90% to about 92%. When the standard deviation is increased 25% from the 

base case, the coverage drops to about 89%. The results are magnified as the 

average level of the delay increases. These results illustrate the importance of 

accounting for delays in order to obtain accurate estimates of the coverage and of 

the resources required to attain a specified coverage. They also illustrate the 

importance of controlling the call-taking and dispatching processes to ensure that 

delays do not increase (but preferably, decrease).
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Figure 3-6: Sensitivity of the system wide coverage to the mean and standard 
deviation of the delay distribution, when the total number of 
ambulances is fixed at 16.
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Discussion

This section outlines several possible avenues for further research involving 

exploration of the optimization model (PI), its properties, solution approaches, 

and insights from its application. First, three extensions of the model that are 

fairly straightforward are discussed, and then some avenues for further research 

are examined.

Model Extensions

One can add a constraint to (PI) to ensure that the probability that at least one 

ambulance is available is above some threshold P , as follows (assuming 

independence between ambulances, as in (6)):

7=1

The constraint can be linearized by isolating the product of the busy fractions on 

one side of the inequality and taking logarithms of both sides, resulting in:

^ l n ( p y)x7 > ln ( l - p )  (9)
7=1

Note that preliminary experiments using data from Edmonton indicated that the 

coverage constraint (3) was tighter than constraint (9) for values of P > 0.99.

In addition to the constraint (3) on the system-wide coverage, one could add 

constraints on the coverage for each demand node, of the form

cm(x)> a m , for m = l,2,...,M  (10)

where a m is the target coverage for demand node m. This constraint set could,

for example, be used to impose a common minimum coverage for all demand 

nodes or some subset of the demand nodes.
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One can also add variables and constraints to decide which stations to open and to 

limit the number of ambulances at each station. Specifically, let y  . be a binary

indicator variable for whether station j  is opened; let a, be the fixed cost of

opening station /; let d} be the variable cost of locating one ambulance at station

/; and let bj be the maximum number of ambulances at station /', if it is opened (if

there are no such limits, then one can set bj = B for some sufficiently large

number B). The extended problem formulation is:

(P2) '
minimize ^  (ayT7 + t(,xl)

7=1

subject (3), (4), (8), (9) 

to

for

7=1,2,..../

yj e (0,1}, for (11)

7=1,2, ...J

Note that the continuous relaxation of (P2) is a convex programming problem. 

However, (P2) is more difficult to solve than (PI) because it has more integer 

variables.

Further Research

Incorporation of random delays and travel times may influence not only the total 

number of ambulances needed to p r o v id e  a  given l e v e l  of s e r v ic e ,  but also h o w  

ambulances are distributed through the system. Experiments to generate insight 

into whether this happens and how are planned. In order to do further 

computational testing of the model, data from a city of similar size to Edmonton, 

but which is aggregated into many more (smaller) zones and has up to 40
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potential locations for ambulances will be used. We also hope to use the model to 

estimate the impact of various changes to the operation of an ambulance system. 

For example, it may be possible to reduce delays by performing activities in 

parallel rather than in series, but such a change may increase ambulance 

workload, if it results in more false alarms. Therefore, we would like to explore 

the trade-off between reducing delays and increasing busy fractions. Estimation 

of the travel time distribution functions Hjm (t) is likely to be challenging. The

chapter that follows focuses on models for estimating the travel time distribution.

Conclusions

An optimization model for allocating a minimum total number of ambulances to 

stations so as to satisfy a system-wide coverage constraint was presented. The 

model differs from previous related work in that the variation in pre-travel delay 

is considered (in addition to the variation in travel time) when calculating the 

fraction of demand that is covered within the time standard. Data from recent 

projects with the town of St. Albert and the City of Edmonton indicate that pre­

travel delays are important and highly variable (with a standard deviation of about 

40% of the mean). Computational experiments demonstrate that the inclusion of 

the variability of such delays has a substantial impact on the solution that the 

model prescribes. The formulation is sufficiently tractable that it can be solved to 

global optimality for cities with population around one million aggregated to 

around 180 demand nodes, and with as many as 10 stations with general-purpose 

solvers.
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Chapter 4: Empirical Analysis of Ambulance 

Travel Times

Introduction

An important component of virtually any model of emergency service operations, 

whether an analytic model, a simulation model, or an optimization model, is the 

travel time of the vehicles, especially of those vehicles enroute to a call. This is 

true because often the most critical performance measure for such a system is the 

time it takes to respond to an emergency, and the travel time of the vehicle to the 

scene of the emergency is typically a large portion of the response time. On the 

surface, the problem of estimating travel times may seem trivial, one might think 

it is simple -  just divide the travel distance by the speed. However, if we look 

beyond the surface, the problem is anything but trivial. First, what should be used 

for the travel distance? Given location information (possibly x and y coordinates, 

or latitude and longitude) for an origin (say an ambulance station) and a 

destination (say an emergency scene), a number of methods can be used to 

estimate the distance between the two. Second, what should be used for the travel 

speed? Perhaps an average historical speed between the two points, or maybe a 

weighted average of the speed limits on the roads between the two points would 

be useful. Should the speed be dependent on factors such as the time of day, day 

of week, month of year, weather, types of roads between the two points, or type of 

vehicle? Next, is it necessary to consider acceleration and deceleration and if so, 

at what level of detail? Finally, what about randomness in the travel times? Even 

for the same origin and destination, the travel time will have some variation due to 

different routes, different drivers, different traffic conditions, or as a result of the 

aggregation of points into zones, or other known and unknown factors. It quickly 

becomes apparent that the problem is much more complicated than it first appears.
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In this chapter, the problem of estimating travel times for emergency service 

operations is considered in detail. Various data from several sources are 

employed throughout the chapter. These datasets allow the specifics of travel 

time in ambulance operations to be examined and some of the assumptions and 

methods that have been used in the literature to estimate and model travel time 

distributions to be considered. The specific types of data used are quite unique 

and provide a rare opportunity for this type of research.

The remainder of this chapter is structured as follows. In the next section, a 

review of the literature on estimating travel times for emergency service vehicles 

is given. Following that is a discussion of the data: what it includes, how it is 

collected, and some of its limitations. Then the methodology used is outlined and 

the results of the analysis are reported. The chapter closes with conclusions and 

some comments on areas for further research.

Literature Review

A good overview of the problem and review of the early literature is given by 

Walker, Chaiken, and Ignall, (1979) in the context of fire department deployment. 

In this section, the concentration is on those papers that are most relevant to the 

research undertaken in this chapter. The focus is on models where the origin and 

destination are known, except for possible aggregation and measurement errors. 

For this reason coverage of models for estimating travel times in the case where 

there is complete uncertainty about locations is omitted, even though there are 

such models that have been developed with a focus specifically on emergency 

services (see for example Kolesar and Blum, 1973, Kolesar, 1975, Walker, 

Chaiken, and Ignall, 1979, and Larson and Odoni, 1981).
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The discussion here is organized into three subsections. The first of the 

subsections will focus on estimation of travel distances, the next on estimation of 

expected travel times, and the final on random variability in travel times.

Travel Distances

There are essentially two different approaches for estimating travel distances 

between a given origin and a given destination to be used within models for 

emergency service systems.

The first approach is to use a metric based on the coordinates (xj, y,) of the origin 

and the coordinates (xj, yj) of the destination to estimate the “point-to-point” 

distance cly. These metrics range from the Euclidean distance, to rectilinear 

distance, to more general distance functions as given below.

> rectilinear (right angle)

x - X j + y, -  y.

> Euclidean (straight line)

dIJ= ^ ( x i - x J)2+ ( y - y Jf

> modified Euclidean

d y = k \ j { x i - x J )2 + ( y i - y j )2

> general function

dv =k I \ p  I I pk - * ,  + \ y , - y , \

Love and Morris (1979) evaluated these (rectilinear, straight line, and more 

general) functions and provide some accuracy results. For the modified Euclidean 

equation they gave best-fit values from 1.16 to 1.28 for the constant k for five 

cities in their sample. Note that although the general functions can provide more

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



accurate results compared to the rectilinear or Euclidean functions (Love and 

Morris, 1979; Brimberg and Love, 1992), actual distance data are required in 

order to estimate the parameters for a particular region. The perhaps not so 

obvious catch, especially for travel within a city is that the “actual distance” may 

not be known (or even deterministic) since it will depend on the route taken. An 

extension to this method that involves the calculation of additional distance for 

barriers to rectilinear road travel is discussed in a paper applying the hypercube 

queueing model to deploy ambulances in Boston (Brandeau and Larson, 1986).

A second approach for estimating distances is to use a network model with 

distances for each link and calculate the shortest path between the origin and the 

destination. Unlike the first approach, generally in a network model the origin 

and destination are not specific points, but rather the points have been aggregated 

into zones. The network data are typically stored in a geographic information 

system (GIS) and such systems can potentially contain various levels of 

aggregation. However, even though it is possible to have a very low level of 

aggregation in the network distances, a higher level of aggregation may be 

necessary in order to work with a shortest path algorithm. The other major 

difference is that the actual road network is captured, so that travel distances will 

be based on actual road travel distances with the only errors being due to 

aggregation and uncertainty in route choice. Uster and Love (2003) suggest that 

distance-predicting functions (such as those given above) can be preferable to 

storing (and working with) large files of network distance data and provide a 

method for calculating confidence intervals for the predicted distances. In order 

to calculate confidence intervals they use a sample of origin-destination pairs with 

“actual” distances, and thus incorporate such sources of uncertainty as barriers to 

travel in the road network that are not accounted for in the distance estimates, 

measurement errors in the point coordinates and “inaccurate instrument 

calibrations”.
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Travel Times

The approaches for estimating travel times mirror those of estimating travel 

distances with a few extra complications.

The first approach considers point-to-point travel times and relates the point-to- 

point distance to the travel time. One method that falls under this first approach, 

as described in Walker, Chaiken, and Ignall, (1979) and attributed to Hausner, 

uses two different relationships depending on the length of the trip. For short trips 

time is assumed to increase with the square root of the distance, while for long 

trips it is assumed to increase linearly with distance.

The parameter values (a, b, c, and d) are estimated from data for a city or region, 

although Walker, Chaiken, and Ignall, (1979) claim that there is little variation in 

these numbers between cities.

Kolesar, Walker, and Hausner, (1975) provide a set of assumptions for a trip 

between some origin and destination, that imply this same functional form and 

give meaning to the parameters. The assumptions are that beginning at the origin, 

the unit accelerates at a constant rate, a, to a constant cruising velocity, vc, and 

then travels for some time at that velocity and finally decelerates (at the same 

constant rate, a) to stop at the destination. Note that dc is the distance required to 

achieve the cruising velocity and is a function of a and vc rather than an 

independent parameter. The derivation for this relation is given in Appendix 2 

(appendices are located at the end of this dissertation), and the details for the 

method that was proposed by Kolesar, Walker, and Hausner, to fit this function to 

experimental data are provided in Appendix 3.
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From this point forward, this relation will be referred to as the Kolesar-Walker- 

Hausner (or KWH) function. Figure 4-1 gives a pictorial view of the speed time 

profile that is assumed for a given trip between two points. Here, tc is the time 

required to achieve cruising velocity and T is the total length of the trip. In this 

picture, it is assumed that the trip is long enough for the vehicle to reach the 

cruising speed (i.e., T > 2 tc).

Figure 4 - 1 :  Speed time profile assumed for the KWH function.

In reality, an emergency service vehicle will not travel in exactly this way 

(constant velocity preceded by constant acceleration and followed by constant 

deceleration), rather the speed of the unit will vary in a much more complicated 

manner with possible stops at red lights and stop signs, possible slowdowns due to 

traffic or weather, and different speeds on different road types (residential roads 

versus main arteries). However, this model may still provide a good 

approximation to the travel time for the vehicle travelling between a given origin 

and destination. In a field experiment with fire response vehicles in New York 

City, Kolesar, Walker, and Hausner, (1975) found that the travel times for regions 

with shorter response distances tended to follow a square root relation and for 

regions with longer distances tended to follow a linear relationship. Further, they 

found that although there were statistically significant differences between the
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parameters for different companies within each of the two region types, the 

differences were not large and a good fit to the average travel times for all regions 

of the city was found using the combined relation above. Additionally, they 

reported that the hour of the day had little effect on the average travel velocities of 

the fire vehicles (rush hour speeds were about 20% lower than non-rush).

Carson and Batta (1990) state that not modelling the “elbow” relationship (which 

occurs at DtJ = 2 dc in the KWH function) between travel time and distance can 

result in serious errors in predictions of system performance. They found that the 

predicted savings of 30% in system-wide average response time for their proposed 

operational changes for a one ambulance system (on a university campus) was 

reduced to 6% in test runs and they attributed this to the fact that they assumed a 

constant average speed regardless of travel distance.

A related method that falls under the scope of this first approach involves using 

linear regression to describe the relation between the point-to-point distances and 

the travel times, in some cases incorporating additional factors, such as road 

types, seasonal or time of day variations, or type of trip, into the relationship. 

Without the additional factors the model is comparable to the previous models for 

longer distances. If D,^ is the distance along roads of type k and the A/’s are the 

additional factors considered then the model would be as follows.

The second approach involves using road network data and calculating fastest (as 

opposed to shortest) paths. The reasoning behind this approach (as compared to 

the network approach in the previous section) is that the paramedics, seeking to 

get to the site of the emergency as quickly as possible, might choose routes that 

are longer if they expect that the travel time will be shorter due to higher average 

speeds along those routes. Note, however, that it is possible that the actual route
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taken for a particular emergency is not the route that would be expected using 

either the shortest distance or fastest time network calculations. The regression 

approach mentioned above can also be used in concert with this method, and in 

this case generally incorporates travel distance on a number of road types as 

explanatory variables. For example, Erkut et al. (2001) apply an algorithm to 

compute fastest paths on a network in concert with a linear regression method 

incorporating 3 road types, time of day (rush vs. non-rush) and season (winter vs. 

summer) as determinants of travel speeds. Similarly, Goldberg et al. (1990) used 

a network model to calculate distances (along a planned route) between each 

station and demand node and used linear regression to determine the travel speeds 

on 4 different road types. An additional factor that could potentially have an 

impact on the route taken by an emergency service vehicle, the time of the day, is 

considered by Henderson and Mason (2000, 2004) using a network approach. 

They use time varying travel times and compute time dependent fastest paths 

(heuristically) for use in a simulation model.

Cook and Russell (1980) compare point-to-point travel time estimates for Tulsa, 

Oklahoma of three methods: an extension of the KWH function, linear regression 

(with distance only and with distance and weighted average speed limit between 

the points, as independent variables) and a software package that uses a network 

approach (with 448 population centroids). For the first two methods a rectangular 

distance metric was used. The authors found that the network approach was not 

as accurate as the other two methods (perhaps due to aggregation in the network 

data used), which were comparable to each other in accuracy. In addition, they 

found that adding the average speed limit between the two points as an 

independent variable in the linear regression method provided little additional 

explanatory power.
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Randomness in Travel Times

A number of researchers have considered randomness in travel times in various 

emergency service problem contexts, under differing assumptions and using 

different methods for modelling the randomness. For the problem of estimating 

the travel time given an origin and destination, the following are potential sources 

of variation;

1. Variation that can be explained using readily available data, for example 

time of day, day of week, and season.

2. Variation that could perhaps be explained, if more data were available, 

for example the precise location of the responding ambulance (whether 

at a station or other location, idle, or near a station, already moving), the 

precise location of the call, weather, traffic light locations and cycles, 

and so on.

3. Variation due to factors that are either difficult to obtain data on or 

unknown. Factors that are difficult to obtain data on but seem likely to 

impact travel time include route choice, driver behaviour, and 

unpredictable and extreme weather and traffic events.

The discussion of the literature in this section is organized around the primary 

purpose of the travel time variability in each paper. The assumptions made about 

the source of the variability and the approaches taken to model the variability are 

discussed.

Some of the research in this area is not directly focused on modelling the travel 

time distribution, but rather on how the incorporation of travel time variability can 

affect locational or other operational decisions. For example, Daskin (1987) uses 

a normal distribution to incorporate travel time variability in his multi-objective 

model for determining vehicle locations/allocations as well as the dispatch policy 

and routes that the vehicles should take. He assumes that travel times on “non-
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overlapping links” are independent, and that the variance of the travel time on 

each link is proportional to the mean travel time of the link (the proportionality 

constant is the same for all links). With regard to the assumption that the link 

travel times are normally distributed, he cites Daskin and Haghani, 1984 who 

compare this assumption to the more realistic (in the sense that negative travel 

times are not allowed and the distribution of travel times is not assumed to be 

symmetric about its mean), but also more computationally burdensome, Erlang 

distribution and find it is reasonable. Similarly, Mirchandani and Odoni (1979) 

consider the p-median problem with discrete random variable travel times and 

find that travel time variability can significantly affect the location decisions.

They use a network approach and emphasize that using expected values in place 

of the probability distributions for the link travel times in order to calculate fastest 

paths can lead to invalid results. Given that they are using a network approach, 

they consider variations (and especially predictable variations) in traffic to be the 

source of the randomness in travel times. They break the travel times down into 

individual link travel times allowing the travel time along each link to follow an 

arbitrary discrete distribution and they allow the distributions for two separate 

links to be dependent.

Other researchers have made specific assumptions about the source of the 

variability and direct attempts to develop models for the variability (i.e., for the 

probability distribution of the travel time) based on those assumptions. Aly and 

White (1978) develop a probabilistic formulation of the emergency service 

location problem under the assumption that the stochastic variation is due to 

randomness in the locations of incidents. They determine the probability 

distribution for the travel time between the facility locations and the random 

location of the incident under the assumptions of constant travel speed in a given 

area and potential incident locations being uniformly distributed over a 

rectangular area. This method could provide a useful way to deal with demand 

aggregation. Another paper that has a direct focus in this area uses the hypercube
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model (Larson, 1974) to estimate the travel time distribution in a particular region 

(Chelst and Jarvis 1979). In that paper the authors assume that the travel time 

between two nodes in a network is known and deterministic, and consider the 

randomness to arise from the variation in the location of the responding unit (due 

to a difference in the dispatch order for different locations within the region, or as 

a result of ambulance unavailability). They note that average travel times within a 

region are dependent on the deployment pattern within the region and measures 

that do not account for this will suffer in accuracy.

Finally, a number of authors have incorporated travel time variability into their 

models for particular case studies in order to provide more realistic estimates of 

system performance. Goldberg et al. (1990) develop a travel time model to 

estimate a distribution for the travel time between each base-zone pair using a 

network type approach. They use the (average) data from actual calls to fit a 

regression model (with “actual” distances on four road types as explanatory 

variables) to estimate the mean travel times, and then use the differences between 

these predicted averages and the actual call travel times to get a distribution of the 

deviation from the predicted travel time mean. This implicitly assumes that the 

travel time variance is constant and does not depend on the distance. In their 

model, they determined the “planned route” for each pair and then measured the 

distance. All vehicles were assumed to start from their home base and actual 

travel times were recorded to the nearest minute.

What seems to be lacking in the literature is an examination of the distribution 

(and in particular the variability) of actual travel times for emergency service 

vehicles and a study on how to incorporate that distribution into methods for 

estimating the travel time as a function o f distance. That is the focus o f  the 

remainder of this chapter.
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Data

Format of the Data

We have used data from three cities in the investigation of travel times and 

variability in travel times of emergency response vehicles. First, we have data 

from Edmonton EMS including one day’s worth of automatic vehicle locator 

(AYL) data, event (transaction) data for the same day, as well as event data for 

one year for a particular demand location. We also have event data (for three full 

years and portions of two additional years) from Calgary EMS and (for one month 

in 1999) from Montreal.

The AVL data include location information (latitude and longitude) for each on- 

duty ambulance in the city, along with vehicle status and event numbers. The 

information is collected every minute for stationary units and about every 150 

metres for vehicles in motion. These data allow an in depth look at the 

movements of the vehicles as they travel throughout the city responding to calls, 

transporting patients to hospitals, and returning to stations to await calls. To our 

knowledge no one has used AVL data to perform the types of analysis reported 

here.

The event data consist of timestamps generated by humans for the various epochs 

in the process of ambulance service for an emergency call, and also include 

location information (for the call, the ambulance at time of dispatch, and the 

hospital that the patient is transported to). The event data allow an investigation 

of the distribution of travel times between particular origin destination pairs as 

well as an examination of various methods of estimating travel times of 

emergency response vehicles.
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Data Issues

The data employed in this analysis include errors from a number of sources. The 

integrity of the event data depends on the ability of the paramedics, to first recall 

to indicate their status at the exact moments that there is a change in their status, 

and then to do so without error. Keeping in mind that a primary responsibility of 

the emergency service personnel is to respond as rapidly as possible to calls for 

service in order to reduce the suffering of persons in emergency situations, certain 

errors in the data are to be expected. In fact upon examination of the data it is 

clear that there are records where the data are not accurate due to disruptions in 

this process. For example, there are instances when the travel time to the scene is 

unexpectedly long (such as 30 minutes) and the time spent on scene with the 

patient is unexpectedly short (10 seconds). The obvious explanation is that the 

timestamp for the arrival of the ambulance at the scene was not recorded 

correctly; rather, the change in status (from “enroute” to “arrival at scene”) was 

not indicated until the next change of status (“departure from scene”) occurred. 

Clear errors such as this can be removed from the data, but there may be other 

errors that are not as easy to detect.

Although the AVL data do not suffer from this type of distortion (with the 

exception of the unit status indicator field), there can also be errors in the AVL 

data that could affect the results of the analysis. There are numerous potential 

sources for error in this type of data, from satellite clock errors, to signal delay 

errors as a result of the earth’s atmosphere, to “selective availability,” a term for 

the intentional degradation of the accuracy of the satellite signals for non-military 

users prior to May 2000. Detailed discussions of these and other sources of error 

and how to deal with them can be found in the guide of Geomatics Canada (1993) 

or the text by Strang and Borre (1997). For an example of how such errors can 

affect the AVL data, consider Figure 4-2 created from the Edmonton AVL data. 

The graphs show speed vs. time profiles for two particular (emergency) events.
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The black and dark grey lines on the graphs are the average speeds (in km/hr) of 

the ambulances, as calculated using right angle and straight line distance metrics, 

respectively, from the location and time information in the AVL data, while the 

light grey line is the speed (in km/hr) recorded in the AVL data. The points where 

the status of the responding unit changes appear along the x-axis. In the first 

graph there is a spike that indicates an obvious error in that the calculated speeds 

exceed 200 km/hr while the speed recorded by the AVL is a more credible 50 

km/hr. Although access was not obtained to information about how the speed is 

calculated in the AVL data, it is assumed that it is either an instantaneous speed 

calculated using a method that does not rely on the position information (such as 

the Doppler shift method mentioned in the text by Strang and Borre, 1997), or that 

a smoothing or filtering algorithm has been used to reduce the impact of errors in 

the position and time measurements. In either case, it appears to be a more 

reliable estimate of the vehicle speed (compared to the values obtained using the 

position and time information from the AVL data) and so any subsequent 

discussions involving speed in the AVL data will focus on the speed recorded by 

the AVL system. This graph also shows that the unit is classified as enroute to the 

call a substantial amount of time (a couple of minutes) before it actually starts 

moving. The second graph shows a number of spikes and discrepancies between 

the calculated speeds and the speeds recorded by the AVL as well as a 

considerable (about 12 minute) delay between the time the ambulance stops 

moving (when classified as transporting a patient) and the time the status changes 

to “transport arrived”. In this regard, it can be seen that the AVL data allow one 

to assess the accuracy of some of the timestamps in the corresponding event data.
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Figure 4 - 2 :  Speed time profiles of ambulances responding to events. The unit 
status appears along the x axis where DP stands for “dispatched”, 
EN for “enroute”, AR for “arrived on scene”, TR for “transporting 
patient to hospital”, TA for “transport arrived at hospital”, AV for 
“available” and MV for “moving (returning to a station)”.

In the next subsection the event data are examined closely to see what types of 

outliers and errors are observable and potential candidates for removal. Also, the 

type of scrutiny just discussed in this subsection and the type that will be
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discussed in the next subsection could be valuable for identifying potential 

modifications to the data collection process to reduce the number of errors. For 

example a simple modification would be to have two buttons in the ambulance: 

one for “catch-up” and one for “timestamp.” Then, if the paramedics forgot to 

press the “timestamp” button when arriving on the scene of a major accident, 

when they are ready to transport a patient, they could then press “catch-up” first 

(to indicate that they forgot to indicate when they arrived on scene) and 

“timestamp” second, to indicate that the “begin transport” timestamp is accurate. 

The paramedics themselves can probably think of other simple and useful 

modifications to the process.

Outlier Analysis

A number of steps were taken to attempt to ensure the integrity of the data before 

using it in the analysis. To this end a number of different options were considered 

and an overview of them is given next, followed by more discussion in the results 

section of the chapter. One concern was that data that were potentially 

meaningful not be removed simply because they looked like they did not fit with 

the rest of the data. In particular, because of the nature of the variable under 

consideration, it would not make sense to consider a very large (or even a very 

small) travel time an outlier on its own, without reference to some other indication 

of inaccuracy. One thing that could signal a potential large outlier in terms of 

travel time actually being the result of an error (that should be removed) is a 

corresponding small outlier in one of the other time components and vice versa.

So one of the methods used to clean the data was to remove records that had an 

“extreme outlier” of opposing magnitude in a field next to the travel time (either 

the pre-travel delay time or the on-scene time), or in any of the travel time interval 

or distance fields. Values greater than three times the interquartile range (the 

range of the middle half of the data) from the first or third quartiles (the 

boundaries for the interquartile range) were considered to indicate extreme
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outliers. Due to heavy skewness in many of the intervals in the datasets, none of 

the lowest values came up as outliers for any of the fields. As a result, a log 

transformation was applied to the time intervals closest to the travel time in order 

to provide more symmetric distributions and records that subsequently indicated 

significant outliers were removed. As a final method for identifying erroneous 

data, average speeds were calculated for each record using both Euclidean and 

rectilinear distance metrics from the locational information in the datasets, and 

those records with speeds below 10 km/hr at the low end and above 100 km/hr at 

the high end were removed.

Figure 4-3 shows box-plots to illustrate the distributions for the travel times (for 

the highest priority calls in the year 2003 of the Calgary data) with various 

records removed as outliers. Note that for this figure as well as for Figure 4-4, 

there was no filtering done on the travel distance, so the distributions include 

travel times aggregated over all distances. The first box plot is for the original 

data, with no records removed. The second has all records with missing values 

for any of the time interval fields removed. There were two reasons that it was 

deemed necessary to do this. First, missing values in the time intervals next to the 

travel time could indicate that that value was amalgamated with the travel time. 

Second, missing values for the stages following the travel time could indicate that 

travel to the scene was not completed, or that the patient was not transported to 

the hospital, which could in turn signify some difference in the type of call that 

could have had an impact on the response time. The last four box plots all 

represent different methods of removing potentially erroneous data from the 

second dataset. The third and fourth sets result from removing records that were 

outliers in the original distributions, and the log transformed distributions 

respectively, of the time interval fields closest to the travel time field. The fifth 

and sixth sets result from removing records that have speeds less than 10 km/hr or 

greater than 100 km/hr, based on Euclidean and rectilinear distance metrics 

respectively. As would be expected, since the distributions are so skewed and no
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outliers are removed at the low ends of the time intervals surrounding the travel 

time from set 2 to set 3, the mean of the travel time distribution will increase 

(removing outliers from the high ends of the surrounding time intervals will tend 

to remove the low “errors” from the travel time distribution, with no 

corresponding adjustment to the high end. The result is an even more skewed 

distribution as evidenced by the box plot for set 3. In contrast, the box plots for 

sets 4 through 6 show less skewness than set 2. This suggests that a better way to 

remove erroneous data would be to transform the data to a more symmetric 

distribution first (as in set 4) or to consider setting upper and lower limits on the 

average travel speed (sets 5 and 6). A final note on the results here is that 

depending on the method used to remove outliers, the mean (as well as the 

standard deviation which is not shown in the figure) can vary to a large degree, 

while the median and interquartile range are relatively stable.
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Figure 4 - 3 :  Box plots of the travel times for various datasets: “+” indicates the 
position of the mean, “ x” indicates the position of the minimum or 
maximum observation in the event that it is within three times the 
interquartile range, “o” indicates outliers beyond three times the 
interquartile range, and labels next to the “o’s” show the number of 
outliers beyond that range.
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With the exception of the outliers at the higher travel times and the positioning of 

the means, it may be difficult to see the overall skewed shape of the distributions 

from the box plots, so the probability density function (PDF) and cumulative 

distribution function (CDF) for dataset 6 are shown in Figure 4-4 along with the 

corresponding fitted lognormal distributions. The choice of the lognormal 

distribution will be discussed in a later section.
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Figure 4 - 4 :  Probability density and cumulative distribution functions for 
Dataset 6.

In examining the data it is clear that there are outliers that are obviously due to 

errors as well as some other outliers that are likely due to errors and that many of 

these could have an impact on estimation procedures. So in the analyses 

completed, this was kept in mind and an attempt was made to focus on estimators 

and estimation methods that would be more robust to such issues. Most of the 

subsequent analyses show results using the original (uncleaned) data but in some 

cases outliers were removed, typically using the method of dataset 4 discussed 

above (removing records with outliers in the log transformed fields next to the 

travel time). In cases where data have been removed, it is indicated in the text.
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Methodology

The research on travel times and travel time variability can be separated into two 

stages. The first stage consists of preliminary analysis of the data. The second 

stage involves a more in depth examination of various methods for estimating 

emergency vehicle expected travel times and modelling travel time variability.

The preliminary analysis phase of the research consists of a detailed examination 

of the data in order to gain insight into the individual facets of the ambulance 

movements in relation to a call for service. In particular, the travel time 

distribution for a particular station/demand location pair is examined to get a 

sense of the variability in the travel time that is not caused by variations in the 

location of the responding vehicle or the call. In addition, speed time profiles 

created using the AVL data are scrutinized to focus on the details of the 

ambulance travel.

In the second phase of the study the event data are used in order to compare 

different methods for estimating travel times of emergency vehicles. Much of the 

discussion here will focus on the KWH travel time function. Of particular interest 

is how to best make use of the function in conjunction with the many potential 

methods for estimating travel distance, and what other factors, if any, should be 

incorporated. In the original paper Kolesar, Walker, and Hausner, (1975) used a 

field experiment in New York City to calculate actual travel times and distances 

(by odometer reading) for a number of runs of fire companies (ranging from 12- 

150 for an individual company) in order to estimate the relationship. For this field 

experiment they found the following values for the parameters; acceleration cutoff 

distance, dc, of 0.44 miles (0.7 km), average cruising speed, vc, of 39.2 mi/hr (63.1 

km/hr), and acceleration, a, of 29 mi/hr/min (47 km/hr/min). In addition to 

focusing on estimating expected travel times, consideration will be given to 

modelling the variability in the travel time distribution.
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Results

Preliminary Analysis

We begin by exploring the data to see what types of patterns and relationships we 

can observe. Figure 4-5 shows speed vs. time profiles for three events, similar to 

those in an earlier section, but with a focus on the “travel to scene” component of 

the service. Despite the variability in the travel speed over the trip, the KWH 

travel time function would appear to provide a relatively good approximation to 

the behaviour of the ambulances responding to an emergency call. The 

parameters for the piecewise linear curve that was visually fit to the speed profiles 

are: cut-off distance of 2.2 km, cruising velocity of 63.0 km/hr, and acceleration 

of 30.0 km/hr/min. The velocity is quite close to the values reported for fire 

departments by Kolesar, Walker, and Hausner, (1975) and Larson and Odoni 

(1981), but the acceleration is lower and the cut-off distance is higher.
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Figure 4 - 5 :  Speed time profiles of the travel to scene component of ambulances 
responding to events. The unit status appears along the x-axis 
where DP stands for “dispatched”, EN for “enroute”, and AR for 
“arrived on scene”.

Next, factors that might have an impact on the travel time are investigated. An 

obvious candidate is the travel distance. The relationship between travel time and 

estimated travel distance will be discussed in more detail in the next section, and 

so only a brief mention will be made here. Figure 4-6 shows how the travel time 

varies by (rectilinear) distance for the city of Calgary using cleaned data (dataset 

4) and considering only the highest priority calls. The relationship does appear to 

follow the KWH piecewise square root-linear relationship. This will become
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clearer in the later section when more focus on the shorter distances is provided to 

show the “elbow” in the relationship. For now, it is sufficient to say that there is a 

positive relationship between travel time and distance, as would be expected.

Also, note from the figure that the variability in the travel time seems to increase 

slightly as the distance increases. This is discussed further in the following 

section.
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Figure 4 - 6 :  Box plots for the travel time as a function of distance (observations 
were grouped into 1 km distance bins) for cleaned data (set 4).

Additional factors that could impact the travel time, and that could be accounted 

for in a regression model to estimate the travel times, include the type or priority 

of the call, and seasonal effects such as time of day, day of week, month or 

season. Because of the strong relationship between travel time and estimated 

travel distance, it is important to take that into effect when looking at the 

relationship between travel time and other variables. One way to do this is to 

examine a specific pair of locations so that the distance will not be a major factor. 

Figure 4-7 shows the distribution of travel times for a particular demand location 

(uncleaned data). The average travel time for ambulances responding to calls at 

this location is just over five minutes with a standard deviation of almost three
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and a half minutes. However, as indicated in the histogram, the travel times are 

skewed to the right, with a few very long times. If we examine the cases with the 

highest travel times, it is apparent that they may be due to errors in the data. The 

seven records with the highest travel times have on-scene times that are 

unexpectedly short (five of them are under 3 minutes, which is in the bottom two 

percentile). Additionally, the record with the lowest travel time has an 

unexpectedly long on scene time (in the top two percentile). If we remove these 

records, the mean and standard deviation drop substantially (by just over 20 

seconds and about 70 seconds respectively). Although these records would be 

flagged as potential outliers if the data were transformed (using a log 

transformation) to provide a more symmetric distribution, they would not be 

indicated as outliers in the untransformed data because of the heavy skewness of 

the data. For this reason, as mentioned in a previous section, it makes sense to use 

more robust statistics (than the mean and standard deviation) to describe the 

distribution.
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Figure 4 - 7 :  Travel time distribution for a particular demand location.

Figure 4-8 shows the CDF and box plot summaries for vehicles dispatched from 

the closest station versus those dispatched from all other locations (including 

other stations, the road, and alternate locations such as hospitals). The distance
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between this demand location and the closest station is about 2.4 km. The median 

travel time for all responses and for those from the closest station only is almost 

four and a half minutes and just over four minutes respectively, while the middle 

half of the data has a range of about two and a half minutes and just under two 

minutes for these two cases. Note that this demand location was centrally located 

and in the middle of about three fairly close stations and thus the difference 

between all responses and “closest station only” responses is not as great as would 

be expected for more peripheral demand locations.
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Figure 4 - 8 :  Cumulative distribution functions and summary box plots for the 
travel times of responses to a particular demand location, from the 
closest station and from all other locations.

Next, the calls responded to by an ambulance from the closest station were 

grouped by priority and the corresponding plots are shown in Figure 4-9. Note 

that the group sizes are fairly small when the calls are divided in this way 

especially for the higher priority (Charlie and Delta) calls. Although the median 

travel time decreases as the priority increases as would be expected, the three 

outliers and increased variability indicated in the box plot for the most serious 

(Delta) calls warrant further investigation. In looking specifically at the three 

serious outliers, it is apparent that these responses all occurred during the rush 

hour times of the day.
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Figure 4 -9 :  Cumulative distribution functions and summary box plots for the
travel times to a particular demand location from the closest station 
grouped by priority. Priority increases from left to right in the second 
frame with Delta calls representing the most serious.

In order to examine the effect of rush hour traffic on the travel times, the calls for 

the same station demand node pair were grouped according to whether or not the 

response occurred during rush hour times (between 8:00 and 10:00am or between 

3:00 and 5:00pm). The results are shown in Figure 4-10. As indicated in these 

plots, the responses during rush hour times do tend to be longer and also show 

greater variability in the travel time. In summary, there are a number of factors 

that can contribute to the variability of the travel time data in addition to the 

distance to the closest station (such as the location of responding unit, the priority 

of the call, and the time of the day that the travel takes place).
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Figure 4 -1 0 : Cumulative distribution functions and summary box plots for the 
travel times of responses to a particular demand location, from the 
closest station grouped into rush hour and off rush hour responses.
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Next we examine some travel time distributions to see if they can be modelled 

using a particular theoretical distribution. A distribution that we are specifically 

interested in testing the travel times against is the lognormal distribution. This 

distribution is described as playing a fundamental role in the physical, biological 

and social sciences, in a paper by Limpert, Stahel, and Abbt, (2001). The authors 

discuss the link between the lognormal distribution and multiplicative variability 

and provide other insights into the role of the lognormal distribution. In terms of 

the variability in ambulance travels times, it would make sense for the lognormal 

distribution to provide a good model since the travel time is the average travel 

speed multiplied by the distance and many of the things that can have an impact 

on the travel times would do so by affecting the travel speed. Advantages of 

using the lognormal distribution are that it restricts travel times to be positive, the 

distribution can be skewed, and calculations are no more difficult than with a 

normal distribution.

Figure 4-11 shows the CDFs of the travel times for a particular demand location. 

This is the same demand location that we discussed in detail above, and the eight 

outliers correspond to those mentioned as having extreme values in the time spent 

on-scene (the records with the smallest and seven largest travel times). As can be 

seen in the CDFs, after removing the outliers, the empirical distribution seems to 

be quite close to the lognormal distribution. A Q-Q plot of the sample quantiles 

(for the logarithm of the travel times) vs. the normal quantiles for the full data and 

the data with the eight outliers removed is shown in Figure 4-12. A test for 

lognormality based on the correlations between these quantiles (Johnson and 

Wichem, 1982) indicates that after removal of the eight outliers, we do not reject 

the hypothesis of normality for the logarithms of the travel times (and hence for 

lognormality of the travel times) at a 1% level of significance.
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Figure 4 -1 1 : Empirical and theoretical cumulative distribution functions before 
and after the removal of outliers.
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Figure 4 -12: Q-Q plot of the log of the ordered travel times vs. the 
corresponding normal quantiles.

Another example that includes all of the responses to a particular area (as 

indicated by the intersection) provides similar results (see Figures 4-13, and 4-14). 

In this case, the data seem to be close to lognormally distributed with the 

exception of a small proportion of the data points with very small travel times. If 

the records with travel times lower than 20 seconds are removed, then the 

hypothesis test for lognormality o f  the travel times is not rejected (at a 5% level o f 

significance). Note that the median and interquartile range for this data are 168 s 

and 166 s respectively, and the travel times below 20 s represented about 3% of 

the sample.
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Figure 4 - 14: Q-Q plot of the log of the ordered travel times vs. the 
corresponding normal quantiles.

It is possible that the travel time distributions observed from the data are actually 

mixture distributions. Considering the Q-Q plots just discussed, the lines for the 

original datasets resemble some of the plots in a paper by Burmaster and 

Thompson (1999) that combine two lognormal distributions. In particular the line 

for the original data in Figure 4-13 looks like the results for a mixed distribution 

where the main distribution is a lognormal distribution with a small proportion
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(<5%) of observations from a different lognormal distribution with a lower mean 

and higher standard deviation. As mentioned for this data, there are a small 

number of very low travel times (less than 20 seconds) that do not seem to fit with 

the remainder of the distribution. Perhaps combinations of true travel time 

distributions and error distributions due to disruptions in the recording process are 

what led to the observed distribution.

Modelling Emergency Vehicle Travel Times

As discussed above, there is an obvious relationship between travel time and 

distance. The box plots shown in Figure 4-6 do not give a clear picture of some 

of the difficulties in estimating this relationship from actual data, so some 

example scatterplots are provided here to illustrate the issues. Outliers have 

already been discussed, but to give an idea of what the data actually look like, we 

show the same scatterplot twice with a wide scale on the axes and more narrowly 

focused into the relevant range of the data (Figures 4-15 and 4-16).
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Figure 4 -15: Scatterplot of travel time vs. distance for original (uncleaned) data.
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There are some obvious outliers in the first scatterplot, and outliers such as these 

can have a dramatic effect on an estimated regression line. Once the focus is on 

the relevant range a clear pattern is seen, but as indicated in the second scatterplot 

there is still a lot of variation and even more outliers that are likely the result of 

error. For example, there are a number of points along the x-axis at various 

distances that show close to zero travel time. This second scatterplot also shows 

the estimated relationship, using the method proposed by Kolesar, Walker, and 

Hausner, (1975) and outlined in Appendix 3.

I 0 0 0  ‘t ' =  5 .8 7 * D 5 for D < 10000m  ::
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Rectilinear d istance (m)

Figure 4 -16: Scatterplot of travel time vs. distance for original (uncleaned data), 
focusing on relevant range.

The unlikely parameters (shown in Figure 4-16), obtained using the uncleaned 

data highlight the dramatic impact that outliers can have on the estimated 

function. Results closer to those obtained in previous studies were obtained when 

the outliers were removed before estimating the travel time function. However, 

there are some other issues (discussed next) that suggest that a more robust 

method for estimating the function should be considered, so we will not present 

any further results with this method.
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An important note to make here is that the travel distance (the explanatory 

variable) is subject to error as is the dependent variable. This can complicate the 

estimation of the relationship between the two. Another difficulty is that the 

residuals from the regression analysis don’t appear to be normally distributed with 

constant variance about the estimated mean curve as shown in Figure 4-17.
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Figure 4 -17 :  Scatterplot of the residuals of the estimated KWH travel time 
function.

One method that may help to alleviate some of these problems is grouping the 

observations. Thus, the observations were grouped into distance bins of a half a 

kilometre in width and the relationship between the median distance and travel 

time for the groups was estimated (again using the method outlined in Appendix 

3). As shown in Figure 4-18 the medians follow a very predictable relationship.
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Figure 4 - 18: Scatterplot of the median travel times for each 500 m distance 

group and the estimated KWH travel time function.

The parameters (shown in Figure 4-18) for the function obtained using the method 

of grouping the data and estimating the median travel time are more realistic as 

compared to the results from the ordinary least squares regression given earlier (in 

Figure 4-16). As expected and as evidenced in the graph this method is more 

robust to outliers in the data. The parameters here can not be compared directly to 

those obtained in previous studies since they are for estimating the median (and 

not the mean) travel time.

Up to this point, the focus of this section has been on the relationship between the 

level of the travel time distribution and travel distance. Next, the relationship 

between the spread and the level of the data is considered as well as a possible 

relationship between the variability in the travel times and the distance variable. 

For example, is there more variability in the travel time for higher average travel 

times or for longer travel distances? A plot of the spread vs. the level of the 

dataset is shown in Figure 4-19. It is apparent that the variability of the travel 

times is not constant regardless of the level whether considering the standard 

deviation and the mean, or the interquartile range and the median. The 

implication is that the variation can not be estimated independently from the level.
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Figure 4 -19: Spread vs. level plot for the travel time divided into level bins 
based on estimated travel time.

However, as discussed above, the lognormal distribution seems to provide a good 

model for ambulance travel times, and a natural measure for the variability of a 

lognormal distribution is the multiplicative standard deviation (Limpert, Stahel, 

and Abbt, 2001), a *, which is related to the standard deviation of the 

corresponding normal distribution, a , by a* = ea . There is a simple relationship 

between the percentiles of a lognormal distribution and the percentiles of the 

corresponding normal distribution (Aitchison and Brown, 1957), which leads to a

natural robust estimate for a* . The estimator is (Q jQ 2) 1483, where Q and Q2

are the first quartile and the second quartile (or median) of the lognormal 

distribution. Using a grouping method to estimate the first quartiles of the travel 

time as a function of distance (similar to the method discussed above for 

estimating the median), it is apparent that the best relationship is not a piecewise 

square root linear relationship (as in the KWH function), but rather a simple 

power relationship. Figure 4-20 shows the first and second quartiles of the travel 

time for the groups, along with the relationships estimated between these and the 

rectilinear distance.
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Figure 4 - 2 0  Scatterplot of the first and second quartiles of the travel times for 
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rectilinear distance.

Using these estimated relationships, an estimate for the multiplicative standard 

deviation of the travel time distribution (depicted in Figure 4-21) was obtained.
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Figure 4 - 2 1  Estimated relationship of the multiplicative standard deviation of 
the travel times with the rectilinear distance.
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For example, the estimated relationship predicts that at a distance of 2 km, about 

68% of the travel times are between 2.4 minutes and 6.8 minutes, while for 5 km, 

about 68% of the travel times are between 4.5 minutes and 9.1 minutes. As is 

evident in the figure, the multiplicative standard deviation is relatively stable for 

most of the relevant range, with the exception of the very low travel distances.

Conclusions and Further Research

This chapter has given a broad overview of the problem of estimating travel times 

for use in models of emergency service operations. This research may also be 

more broadly applicable for any service organization where travel is an important 

factor in the provision of service, for example in pick-up and or delivery services, 

transporting services, or emergency repair services.

We have been very fortunate to have access to such a wealth of data including the 

event data that have been the foundation of most of the analysis in this chapter as 

well as the AVL data, which gave us a unique opportunity to obtain insight into 

the actual movements of ambulances as they responded to calls. The major theme 

from the data, and as a result a particular focus of this chapter, is the tremendous 

variation inherent in these travel times. Although some of the variation is likely 

due to errors in the data, there are significant patterns in the data that can be used 

to provide an estimate of the travel time distribution for a particular response to 

service.

There are many opportunities for future research in this area. The first is in the 

area of advancing the state of regression-type estimation models specific to this 

problem. As discussed there are a number o f complications in particular with the 

time-distance relationship, including data issues (multiple outliers often with 

significant leverage to affect the estimated relationship), non-linearity, non­

constant parameters, heterogeneity of variance, non-normal distributions (of
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residuals) and substantial variation, some of which may be explainable by other 

factors which could have an effect on the nature of the estimated relationship. 

Given the results that we have shown, a useful extension might be to further 

explore using the KWH function (or some other non-linear relationship) in 

concert with network distances on various road types (as opposed to using 

distance predicting functions) and incorporating additional explanatory variables. 

Another line of research that could have an impact in this area is investigation of 

more complex functions, with acceleration and deceleration combined with 

constant speed travel that would allow a (possibly random) number of such 

components of varying length. Next, in contrast to all other data sources that we 

know of, AVL data allow one to reconstruct actual routes, rather than just the 

locations of the origin and the destination. Thus, further research using AVL data 

could provide more insight into the travel of emergency service vehicles. 

Additionally, more study into the nature of the distribution of the travel times 

would be beneficial. Specifically, examination of mixed lognormal distributions 

could be a fruitful area for investigation. Finally, another important extension 

would be to do some sensitivity analysis to see what impact various assumptions 

about the travel time distribution would have on the estimated performance of the 

system. For example, how would the estimated coverage of a particular system 

configuration change under different assumptions about the form and parameters 

of the travel time distribution? Such sensitivity analysis could be helpful in 

determining which aspects of the distance -  travel time relationship could benefit 

most from greater accuracy.
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Chapter 5: Conclusions and Further Research

Summary

The topic of this dissertation is uncertainty in the response time of ambulances 

and the resulting impact on the performance of an EMS system. Three major 

factors influencing the uncertainty in the response time have been considered in 

detail with a chapter devoted to each one. The second chapter focuses on the 

effect that uncertainty in ambulance availability has on the response time and 

estimated coverage of the system. In that chapter, a procedure to estimate the 

ambulance utilization and dispatch probabilities is developed that relaxes certain 

operational assumptions made in previous methods. The focus of the third 

chapter is on the second component, pre-travel delay, and how it can impact the 

measured performance of the system. In that chapter, an optimal location model 

that incorporates all three of the components at the heart of this dissertation is 

detailed. Although all of the components are incorporated into the model 

formulation, the focus is on the pre-travel delay, and results for that component 

are provided. The fourth chapter focuses on the third component, the travel time 

to the scene of the emergency. The estimation of this component is complicated 

by its relationship with travel distance, which is itself a difficult factor to estimate. 

Each of these three factors brings its own challenges, and each impacts the 

uncertainty in the response time in a different way. Together the three can have a 

major impact on the estimated performance of an EMS system as well as on 

prescriptions for optimal system design.
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Conclusions

The principal finding is that the inclusion of uncertainty in response time can have 

a considerable impact on the estimated performance of an EMS system. In the 

second chapter, details were given to show that the coverage of the system as a 

whole, as well as of particular regions, can vary substantially depending on how 

uncertainty in ambulance availability is modeled. Chapter 3 gave similar results 

for the pre-travel delay component of the response time, and further indicated that 

modelling the uncertainty in this component can impact the solutions provided by 

a prescriptive model to locate ambulances. Finally, although the fourth chapter 

did not provide calculations of the impact of the uncertainty in travel time on the 

measured performance, this component enters into the location model of Chapter 

3 in the same way as the pre-travel delay component and can be expected to 

impact the estimated coverage in a similar fashion. Chapter 4 did indicate that 

there is a great degree of variability in travel times and that the distributions are 

positively skewed (lognormal distributions provided a good fit in most cases), 

which both would be expected to increase the impact on the estimated coverage in 

a realistic setting. Further, since estimates accurate to within a small degree of 

error can be necessary for planning decisions in such systems, it is desirable to use 

models that make as few simplifying assumptions as possible. Thus, the topics 

presented in this dissertation represent a step towards merging the descriptive and 

prescriptive literature on EMS operations.

Further Research

Research that can be undertaken to extend each of the three topics detailed in this 

dissertation is discussed in the corresponding chapters. In general, a fruitful area 

for future research would be to extend the methods in this dissertation, or to 

develop additional methods, that can enhance the realism of prescriptive models 

for EMS operations. For example, one criticism of such models is that they do
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not consider responses from locations other than a station or some other 

designated location (i.e., they don’t allow for responses from the road). Methods 

that estimate travel time could be extended to incorporate this type of response.

Another important operational characteristic of an EMS system that has been 

difficult to deal with, in terms of its impact on prescriptive models for tactical 

decisions, is ambulance redeployment. Although there have been a number of 

contributions in terms of dynamic redeployment at the operational level, (for 

example Gendreau, Laporte, and Semet, 2001; Kolesar and Walker, 1973), a need 

has been identified for methods that deal with redeployment in models at the 

tactical level. Redeployment is an operational issue, and research that deals with 

it as such is valuable. However, it is also important to consider redeployment at 

the tactical level since the redeployment policy used can have a large impact on 

the effectiveness of the system. If models used at the tactical level ignore the 

redeployment policy used, then they could lead to bad tactical decisions. The 

open research question is how to incorporate redeployment in models at the 

tactical level, in a way that is tractable and leads to improved tactical decisions.

Despite the fact that the focus in this dissertation has been on a particular measure 

of system performance, the system coverage, it is recognised that there are many 

other important measures of performance for EMS systems. Some of these, such 

as measures of workload imbalance, average travel time, and the probability that 

all servers are busy, have been discussed and are easy to incorporate into the 

models developed here. However, ideally, one would want to consider direct 

outcome measures, such as measures of survival and reductions in disability and 

suffering, when making operational decisions for EMS systems. While there has 

been a great deal o f  literature on the relationship between response time and 

survival in the case of victims of cardiac arrest (Cretin and Willemain, 1979; 

Eisenberg, Bergner, and Hallstrom, 1979; Stiell et al., 1999), there is less 

literature on the measures of disability in such cases, and little literature on these

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



relationships for other types of emergencies. This type of research can be quite 

challenging especially given the many potential, and often difficult to measure or 

estimate, intervening variables such as the time interval between when the 

symptoms begin, until the call is made to request an ambulance response. 

However, it has the potential to dramatically improve the worth of operational 

research methods for planning decisions in EMS systems.
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Appendices

Appendix 1: Estimating the Average Busy Fraction

The average fraction of time that an ambulance is busy (not available to respond 

to calls) is Xx/s,  i.e., the average server utilization for an ^-server queueing 

system, assuming that the number of calls “lost” due to queueing is negligible.

The average “service time”, x , (during which an ambulance is tied up with a call) 

can be broken down into the following components: average travel time to the 

call, average on-scene time, and average time spent traveling to and remaining at 

a hospital, denoted E[Ytocall], E[Tonscene], and E[Thospital], respectively.

Consequently, the average busy fraction can be expressed as

H W to  call] + E[ron scene] + E KosP.tai D / * ■ The arrival rate /I as well as two of the

three components of the average service time, the average on-scene time and the 

average time spent traveling to and being at a hospital, are exogenous input. The
M  J

average travel time to a call can be expressed as E[7tocall ] = 2 > „  I / , »  E[T,J-
171 = 1 y = l

This leads to the following formula for approximating p as a function of x:

X \ M J 1
p( v = —  z  A , z  / „  ( V  W ,.  ] + E K ,  ] + E [7 ;„ pi,„ ] (1 2 )

(»>=1 7=1 J

The derivation of this formula required some approximations. In particular, the 

time spent traveling back to a station from the hospital is excluded from the 

average service time since the ambulance is available to respond to incoming calls 

during this time. On the other hand, the expression for E[Tt0Call] assumes that all 

calls are responded to from an ambulance at a station.
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Appendix 2: Derivation for the KWH Function

In this appendix a derivation of the KWH travel time function is provided. Let D 

be the distance of the trip and let T be the travel time. Let tc be the time, and dc 

the distance, needed to reach the cruising speed, i.e., tc =vcl a.  Figure 4-22 

shows graphs of the acceleration, velocity, and distance as functions of time for 

the case where the trip is long enough that the cruising speed is reached, i.e., 

T>2t c.

acceleration

▲

t c

T- t c r

speed

>. time
T

distance

D
D- d ,

>. time
T - t

Figure 4 - 2 2  Pictures of the acceleration, velocity and distance as functions of 
time for the KWH travel time relation.
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Let v(t) be the speed at time t and d(l) the distance traveled by time t. From the 

graphs, we find that

"c ‘c

v(t) = at for t < tc => dc = d(tc ) -  jv(t)dt = a jtdt = \
o o

Also, we have

T tc T~tc T

D = jv(t)dt -  | v(t)dt + J  v{t)dt + J  v{t)dt

atc2 = \ a
2 a

o o
t - l

T~tr

= dc+vc J  dt + dc =2dc+vc( T - 2 t c) = vcT- v?
a

When the trip is so short that cruising speed is not reached, we have

\ T

D = | v(t)dt = |  v{t)dt + |  v(t)dt = 2 J  v(t)dt = 2a jd t  =
0 0 \ T  0 0

^ T  = 2 j D / a  

Combining these results, we get

aT2

T =
2 ylD/a  for D < 2 dc 

\ D / v + v j a  for D > 2dr
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Appendix 3: Method fo r  Fitting the KWH Function

In order to fit the piecewise square root-linear relationship to travel time and 

distance data, Kolesar, Walker, and Hausner, (1975) proposed a search method 

where one parameter is varied and the (least squares) best fit for the other 

parameter(s) are calculated based on that parameter. In their formulation, they 

performed a weighted least squares regression with the number of observations at 

each distance used as weights. Since the data that they used were based on field 

experiments and the distances were obtained from odometer readings measured to 

tenths of a mile, it was natural to use the weighted least squares formulation. 

However, for the purposes of the analyses in this chapter, since distances are 

calculated using distance metrics and the data are from very large databases, this 

method is not natural and so the formulation given below has been modified 

slightly from that given in the paper by Kolesar, Walker, and Hausner.

To simplify the notation, we will use the following for the travel time function.

Then for a set of observations, i= 1,2, ... W the least squares method involves 

finding the parameters a, b, c, and d, that minimize the sum of squared deviations 

between the actual travel times, T„ and those predicted based on the distance, Dh 

using this travel time function. For the piecewise function, two further constraints 

are that the functions meet and have the same slope at D, = d.
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minimize £ ( 7 ) -  / ( A ) ) 2
1=1

subject to

a + bd = c4d , b = c/^2\ fd^

The parameters a and c can be eliminated by solving for them in terms of b and d, 

and then the problem is as follows:

  2 N
minimize -2b^jdDt J + ^  (Tt - b d - b D ^ f  (1)

t=\ i= N (l+ 1

where the observations have been ordered in increasing value of Dt and Nj  is the 

largest value of i for which DI <d . Then, fixing d, the optimal value of b given 

d, b*(d), is found by setting the derivative with respect to b of (1) to zero.

£  Tt (d+D,)
(=1 i= N tl+ 1

,=1 i=Nd+1

Finally, d  can be varied, b*(d) calculated, and the objective function measured in 

order to obtain the optimal pair of parameters, b * and d*.
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