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Abstract 

 

Databases of high-resolution interpolated climate data are essential for climate change research, 

such as analyzing impacts of climate extreme events on biological systems and the development 

of climate change adaptation strategies for managed and natural ecosystems. To enable such 

efforts, this thesis contributes a comprehensive high-resolution database of historical and future 

climate data for Africa, including 30-year normal period estimates, decadal averages, annual, 

seasonal, and monthly data from 1901-2020, as well as CMIP6 multi-model climate projections 

for the 2020s, 2050s, and 2080s.  

The database contains 48 monthly variables (Tmin, Tmax, Tave, Prec), 16 seasonal 

variables, and 16 bioclimatic variables (such as degree days, drought indices, etc.) for 142 

historical time periods (years, decades, normals) and 168 future projections. A collaborator 

provided a user-friendly software solution (ClimateAF), with database and the software front-end 

freely available for download at http://tinyurl.com/ClimateAF, allowing non-technical users to 

interactively query a total of 24,800 climate grids generated in this study. 

These climate grids are queried with the delta (change factor) method, which is based on 

a high-quality baseline grid for the 1961-1990 normal period (2.5 arcminute resolution), while all 

other grids are derived by expressing historical and future data as a lower resolution anomaly 

layer (0.5 degree), minimizing data storage requirements. The ClimateAF software combines the 

layers and then further downscales to any desired resolution (up to 250m practically useful 

resolution in mountainous terrain) with empirical environmental lapse rates.  

The 1961-1990 baseline grid for Africa was developed using a combination of thin-plate 

spline interpolation of data from 4625 weather stations for Africa, and subsequent fine-tuning 

http://tinyurl.com/ClimateAF
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with neural networks that associate climate observed at weather stations with covariates 

reflecting topographic and geographic information (such as elevation, aspect, slope, distance to 

coast and lakes) in combination atmospheric data from the ERA5 general circulation model 

(monthly wind direction and strength). The resulting baseline grids accurately model climate 

phenomena such as precipitation induced by orographic lift on the windward side of mountains, 

rain shadows, and lake effects on temperature in their vicinity. 

Future climate projections were obtained from 13 Atmosphere-Ocean General 

Circulation Models (AOGCMs) of the sixth phase of the Coupled Model Intercomparison Project 

(CMIP6) for four emission scenarios (SSP 1-2.6, 2-4.5, 3-7.0 and 5-8.5) and three future time 

periods (2020s, 2050s and 2080s). To support users in the selection of a representative set of 

scenarios for different regions of Africa, I used the Katsavounidis-Kuo-Zhang (KKZ) algorithm 

which selects an optimally representative set of future projections for 11 regions of Africa, given 

a user-requested number or scenarios. 

 The database was validated using two approaches: To optimize thin-plate spline models 

and neural network fine tuning, I used a checkerboard validation approach, where the study area 

was divided into three degree grid cells. Half the cells (“black fields”) were used for model 

training and the other half (“white fields”) for validation, and vice versa. This approach controls 

spatial autocorrelations among nearby weather stations and thereby avoids overfitting. The final 

model was built using all data, and error statistics were assessed using the mean absolute error 

(MAE) in a non-independent test, including the additional accuracy improvements from 

ClimateAF’s downscaling algorithms.  
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1. Introduction 

With the increasing concern over climate change, interpolated climate data have become 

essential for assessing climate change impacts, monitoring natural and managed ecosystems, and 

designing conservation and adaptation strategies to minimize climate change impacts (Hewitt et 

al., 2020; Omukuti et al., 2023). Virtually every study in the field of climate change impacts and 

adaptation requires information on long-term climate conditions (30-year climate normals), 

records of past climate variability (monthly, seasonal, and annual historical data), as well as 

future projections from Atmosphere-Ocean General Circulation Models (AOGCM). Such data 

are now widely available at global scales, but they vary widely in quality among continents and 

regions depending on weather station coverage, as well as in the methodological approaches that 

were used to generate interpolated climate grids. 

Gridded climate products can be broadly classified into three categories based on 

methodologies used to generate them. The first approach is direct interpolation of ground-based 

weather station data using techniques such as kriging, inverse distance weighting and splines. 

Examples include widely used products such as WorldClim (Hijmans et al., 2005; Fick & 

Hijmans, 2017), Climatic Research Unit gridded Time Series (CRU-TS) grids (New et al., 1999; 

Harris et al., 2014). The second approach uses Atmosphere-Ocean General Circulation Models 

(AOGCM) run on historical weather station data, the same models that provide daily and hourly 

weather forecasts. Gridded historical climate data generated with this approach is referred to as a 

reanalysis product. Examples for widely used global reanalysis products are CHELSA 

(Climatologies at high resolution for the earth’s land surface areas) (Karger et al., 2017) and 

ERA5 (European Centre for Medium-Range Weather Forecasts Reanalysis v5) (Hersbach et al., 

2020). These datasets offer global coverage with spatial resolutions to as high as a kilometer and 

at daily temporal resolution (but not in combination). The third approach uses satellite-based 

remote sensing, calibrated with ground-based weather station data, to estimate precipitation and 

temperature. Examples include the global Climate Hazards Group InfraRed Precipitation with 

Station data (CHIRPS) (Funk et al., 2014; Funk et al., 2015) and the temperature counterpart, 

CHIRTS (Verdin et al., 2020). 
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For some regions of the world, there are also well-regarded expert products that utilize 

multiple approaches to optimize climate estimates. For example the European Climate 

Assessment and Dataset (ECA&D) for Europe and surrounding areas fits station data in a two 

stage process including a thin-plate splines (TPS) and bilinear interpolation of residuals treated 

under Gaussian Random Field model to produce the daily estimates (Cornes et al., 2018). The 

Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation of 

Water Resources (APHRODITE) dataset provides daily gridded data for Asia including the 

Himalayas, and the mountainous regions of the Middle East (Yatagai et al., 2010; Yatagai et al., 

2012). A particularly well-regarded regional product is the Parameter-elevation Relationships on 

Independent Slopes Model (PRISM) that utilizes topographic information to model small-scale 

weather patterns such as orographic lift and rain shadows for the United States (Daly et al., 

2008). For Africa, regional comprehensive climate databases are lacking, although some high 

quality products exist for specialized applications, including the Africa Rainfall Climatology for 

famine early warning systems (ARC2) (Novella & Thiaw, 2013), the University of Reading’s 

TAMSAT African Rainfall Climatology And Time series (TARCAT) (Maidment et al., 2014). 

Both ARC2 and TARCAT combine satellite imagery and interpolation of climate station data to 

obtain high quality precipitation grids.  

Both global and regional products make compromises in the extent of their spatial and 

temporal resolution, climate variable coverage, inclusion of future projections, and coverage of 

historical time periods for computational reasons and data management limitations. To address 

these limitations, Wang et al. (2016), Wang et al. (2012) and Marchi et al. (2020) developed 

software packages for North America and Europe that build on a high-quality, high-resolution 

1961-1990 climate baseline, developed by Daly et al. (2008) with the Parameter-elevation 

Relationships on Independent Slopes Model (PRISM). Climate grids for historical and future 

periods of comparable quality are then generated by the software using the delta (change factor) 

method by overlaying lower resolution (0.5 degree)anomaly layers, minimizing data storage 

requirements. As the last step, the software downscales from an internal 2.5 arcminute (approx. 4 

km) internal grid resolution to any user provided GPS coordinate or user-provided digital 

elevation model. The downscaling approach is driven by empirical environmental lapse rates that 

correlate local climate gradients with elevation gradients. 
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To develop an equivalent software package for Africa that allows easy access to a variety of 

climate grids, three components are needed: (1) historical climate data to develop past climate 

normal periods, decadal averages, annual, seasonal and monthly data from 1901 to present, (2) 

CMIP6 multi-model climate projections for 20-year and 30-year future periods, and (3) a high-

quality, high-resolution baseline grid for a reference normal period. Low resolution historical 

anomaly data is readily available globally from several sources, and I have selected the well 

regarded CRU-TS time series data for its available data coverage from 1901 to present. An 

advantage of this dataset is that it interpolates anomalies, and approximates the 1961-1990 

normal period for regions that lack weather station data, which are prevalent in some regions of 

Africa, especially in the early 19th century. Future climate projections generated by AOGCMs 

are also readily available as a consolidated product under the sixth phase of the Coupled Model 

Intercomparison Project (CMIP6) (PCMDI, 2022).  

However, a high-resolution, high-quality reference normal period is not available for 

Africa. PRISM baseline data is not available outside of North America and Europe, and the 

PRISM methodology is an expert system that is not openly accessible. A key objective of my 

thesis research is therefore to develop an alternative interpolation approach that is capable of 

modeling local weather patterns in complex topographic terrain, such as rain shadows, 

orographic lift, temperature inversions, topographic shadowing, or lake effects. A promising 

methodological approach to model complex local climate patterns that are non-linear and the 

result of multiple interacting topographic and atmospheric factors are artificial neural networks 

(Antonić et al., 2001; Rampal et al., 2022), which I will test for their utility to develop a 1961-

1990 climate normal reference grid for Africa.  

Another objective of this thesis project is to address a common issue faced by users in the 

selection of a representative set of future climate scenarios. The CMIP6 dataset includes over 

120 AOGCMs (Eyring et al., 2016; PCMDI, 2024) that are at varying quality for the different 

temporal extents including numerous scenarios of shared socio-economic pathways (SSPs) of 

future climate (Meinshausen et al., 2020). This results in a wide range of projections for every 

locality, making general recommendations for use of specific AOGCM projections difficult 

(Knutti et al., 2010). Conversely, averaging multiple models or selecting a single median model 

to represent probable future climatic conditions is also not recommended for lack of capturing 
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the uncertainty in current future projections (Endris et al., 2013; Whittleston et al., 2017). To 

address this problem, I build on work by Mahony et al. (2022), who pre-selected 13 CMIP6 

models for desirable attributes, including model complexity, resolution, variable coverage, bias 

correction and computational investments in multiple model runs. Starting with the 13 pre-

selected AOGCMs, I will then use the Katsavounidis-Kuo-Zhang (KKZ) algorithm, also 

following Mahony et al. (2022) to select future projections that maximize representation of 

uncertainty for a given number or scenarios for different regions in Africa. For example, the user 

can request three scenarios for sub-Saharan western Africa, and the algorithm will select three 

scenarios that best represent likely future climates, avoiding outliers and duplicate selection of 

similar scenarios. 

In summary, this thesis aims at developing a comprehensive, high-resolution database of 

historical climate and future projections for Africa. My specific objectives are to (1) develop a 

comprehensive monthly weather station database for Africa for interpolation and validation, (2) 

develop and validate interpolated climate grids for Africa using machine learning with neural 

networks, and (3) provide guidance for selecting multi-model ensemble subsets of CMIP6 

models for Africa’s IPCC regions. 
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2. Literature review 

2.1 Climate variables and summaries 

Climate data is primarily obtained from weather station records. Common weather variables 

recorded include daily minimum temperature, daily maximum temperature, precipitation, 

humidity, wind speed and direction, and atmospheric pressure, among other less frequently 

reported statistics, such as sunshine hours, snow depth, etc. Weather and climate conditions are 

then summarized as hourly, daily, monthly, seasonal, annual, decadal and 30-year averages, the 

latter being commonly referred to as climate normals for a specific period, such as a month, 

season or year. Climate normals, such as January temperature or summer precipitation, serve as 

an expectation of average weather conditions (Smith, 1975; Guttman, 1989). Conversely, the 

finest temporal resolution can be important to track the occurrence of extreme weather events 

(Hartmann et al., 2013). Additionally, some weather variables are best expressed with metrics 

representing their diurnal cycles for example wind speed or maximum and minimum daily 

temperature (Wilks, 2019).  

For short-term planning and decision-making, such as agricultural management or disaster 

preparedness, monthly or seasonal summaries may be more appropriate. Monthly variables also 

offer a concession between managing large amounts of daily data variables and apprehending 

seasonal climate variation (Castellanos‐Acuna & Hamann, 2020). Annual variables are important 

to track inter-annual variability and particularly useful in some models such as the hidden state 

Markov (HSM) model that can ascertain drought risk (Thyer & Kuczera, 2000). Additionally 

annual values can also be disaggregated to monthly (Mejia & Rousselle, 1976; Tarboton et al., 

1998) or even daily values (Wilks, 2019). On the other hand, long-term climate assessments and 

policy formulation require summaries at decadal or longer time periods scale to provide a more 

comprehensive understanding of climate patterns and variability (Arguez & Vose, 2011). 

Documenting weather summaries over a span of a thirty-year period (climate normal period), 

enables the computation of an average that infers the long-term climate expectation of a given 

region for that normal period (Guttman, 1989). These averages are usually not biased by random 

and cyclical anomalies and are useful for comparisons (Guttman, 1989) and predictions of 

climate change in environmental and other sectoral studies (Arguez & Vose, 2011). The 1961-



 

6 

 

1990 climate normal period has significant popularity because of its prominence in representing 

pre-industrial climate in various studies (Engelbrecht et al., 2015; Marchi et al., 2019). 

Future climate projections are usually done on near-term or long-term basis. Near-term 

projections focus on the period from the present to mid-century (2050) and use various 

summaries including annual, multi-year and decadal (typically 10 and 20 years). For example a 

10-year decadal prediction (2011-20) over North America was done by (Hoerling et al., 2011) 

and the assessment reports of IPCC, the fifth (AR5) and the sixth (AR6) use 20 year average 

2016-2035 (Kirtman et al., 2013) and 2021-2040 (Lee et al., 2021)  respectively. Near-term 

climate predictions are particularly important to decision makers in government and industry  

(Kirtman et al., 2013). Further into the future, summaries are typically over decades for instance 

the mid-term period in the AR6 uses the 20-year average (2041-2060) and the long-term period 

in AR5 and AR6 is 30-year average (2081-2100) (Collins et al., 2013; Lee et al., 2021). Near-

term projections diverge from longer term projections as they are less sensitive to differences 

between future emission scenarios and are instead more sensitive to short-lived climate forcing 

agents such as volcanic activities, substantial changes in solar irradiance, land use changes (Lee 

et al., 2006; RäIsäNen & Ruokolainen, 2006; Kirtman et al., 2013).  

In addition to the primary variables; monthly minimum temperature, monthly maximum 

temperature and precipitation, other variables sometimes referred to as bioclimatic variables can 

be derived from them to provide more ecologically meaningful representation of climate (Booth, 

1985; Deblauwe et al., 2016). These derived variables can either be directly calculated or 

computed by equations from daily or monthly data (Wang et al., 2012). Directly derived 

variables include mean annual temperature (MAT), mean coldest-month temperature (MCMT), 

mean warmest-month temperature (MWMT), continentality (difference between MWMT and 

MCMT), mean annual precipitation (MAP), annual heat-to-moisture index (AHM) and seasonal 

variables (Wang et al., 2006; Wang et al., 2012). Equation derived variables such as degree-days 

and frost-free days, precipitation as snowfall among others usually estimated from daily data 

have successfully been obtained from monthly data or using both (Wang et al., 2006; Schlenker 

et al., 2007). These derived variables have been used in genetic, species distribution and 

ecological modelling and studies in different parts of the world (Cortini et al., 2012; Bradley St. 

Clair et al., 2013; De La Torre et al., 2014; Mathur et al., 2023). In Atlantic Central Africa, 
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Deblauwe et al. (2016) studied the species-climate association of angiosperm plants using 

temperature and precipitation derived variables. Species distribution modelling especially in the 

advent of climate change has become common in Africa; for example, Ngarega et al. (2023) 

used temperature seasonality, maximum temperature of the warmest month and other variables 

to determine the potential distribution of Lippia javanica in tropical and sub-tropical Africa and, 

Ogougbé et al. (2022) used a number of bioclimatic variables to model the ecological niche 

of Harrisonia abyssinica in West Africa in future climates.  

2.2 Approaches to generate interpolated climate data and available products  

Weather stations records are not available for all geographical locations for various reasons 

including limited finance into weather and climate information and infrastructure (Georgeson et 

al., 2017), bias towards areas of high population, and often neglect areas such as mountains and 

deserts that pose additional logistical and accessibility challenges (New et al., 1999; Menne et 

al., 2012). To obtain complete spatial coverage, weather station data is interpolated (smoothed) 

using various techniques that use mathematical algorithms to estimate missing data from 

observed values and other variables. The accuracy of interpolated surfaces is reliant on the 

accuracy of input data, spatial variability and the algorithm used (Hartkamp et al., 1999). 

Interpolation techniques range from the simplistic methods such as use of nearest neighbors to 

more complex, deterministic methods such as inverse distance weighting (IDW) and Thiessen 

polygons, stochastic methods such as kriging, splines and machine learning methods such as 

random forest and neural networks (Hartkamp et al., 1999; Rigol et al., 2001).  

 Kriging is one of the common methods used in climatic interpolation. The kriging algorithms 

basically predict the value of a variable at an unobserved location by using weighted averages of 

observed values, based on the spatial autocorrelation modeled by a semivariogram. The 

algorithms rely on Gaussian processes that minimize variance (Matheron, 1963; Cressie, 1993). 

A popular variant of kriging is the ordinary kriging (OK) (Matheron, 1971) and was used in 

combination with  nearest neighbors to model monthly mean air temperature for Brazil (Alvares 

et al., 2013). However, Cressie (1993) cautioned that OK is highly influenced by large changes 

or outliers making it prone to anomalous overestimations. A variant to address this problem was 

robust kriging (Hawkins & Cressie, 1984) that uses neighboring values to determine how an 
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outlier may be down-weighted. Other variants include universal kriging (UK), median-polish 

kriging, simple kriging and kriging with external drift (Cressie, 1993; Hoaglin et al., 2000; 

Chiles & Delfiner, 2012). Wu and Li (2013) developed and used residual kriging to interpolate 

monthly average temperature in the United States. Sub-regional grids for West Africa were 

developed by (Bliefernicht et al., 2022) using station data from GHCN and Global Surface 

Summary of Day (GSOD) and interpolation by OK. Kriging was reported to be advantageous 

when interpolating with few known values because it assigns a variance to all known and 

missing values making the regression robust (Shrestha et al., 1999). However, this was found to 

be a potential limiting factor for kriging methods to perform low-bias interpolations (Nalder & 

Wein, 1998). 

IDW interpolates unknown values based on the inverse distance of their location to the point of 

nearby known values (Shepard, 1968). Attorre et al. (2007) reviewed the performance of 

detrended-IDW in interpolating climatic and bioclimatic variables where it outperformed UK 

and a neural network for one of 21 variables interpolated. In another study, the gradient-plus-

inverse distance squared (GIDS) technique, which combines multiple linear regression and 

distance-weighting outperformed several kriging methods in the interpolation in climate normals 

for monthly temperature and precipitation in western Canada (Nalder & Wein, 1998). Distance 

interpolation techniques are opted for over other methods because of the simplicity of their 

functions and in the earlier years for their low computational demands on computers (Attorre et 

al., 2007). 

Splines interpolate by fitting a smooth curve to a set of data points, allowing for the estimation of 

values at un-sampled locations (Wahba, 1979).  Variants include linear and cubic splines based 

on the polynomials utilized for interpolation (Elhakeem et al., 2022). A highly used variant in 

climate studies are the thin plate splines (TPS) that use non-polynomial functions allowing for 

more flexibility and higher levels of smoothness (Hutchinson & Gessler, 1994). TPS have been 

used to interpolate mean rainfall globally by (Hutchinson, 1995a), obtaining low estimation error 

percentages (3-7%). In addition to being computationally efficient, TPS have an efficient 

detection of erroneous data (location and elevation) as it indicates large outliers from the fitted 

spline surface  (Hutchinson, 1995a). Several studies have used TPS for interpolations including 

Jones et al. (1999) for surface air temperatures for global land areas using location and elevation 
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variables, Mbogga et al. (2010) for historic climate data for Alberta, Wang et al. (2012) for 

historic climate data for parts of western North America, van Niekerk and Joubert (2011) for 

western Cape Province in South Africa, among others. Some of these studies rely on the use of 

the convenient software ANUSPLIN (Australian National University Spline) that employs TPS 

for interpolation (Hutchinson & Xu, 2013). According to Hutchinson and Gessler (1994), one of 

the differences between splines and kriging is that splines are defined by minimizing the 

roughness of the interpolated surface, subject to having a prescribed residual from the data while 

kriged surfaces are defined by minimizing the variance of the error of estimation.  

Machine learning (ML) methods including probabilistic modelling, kernel methods and 

classification and regression trees (CARTS) also known as decision trees including 

RandomForests (RF) and gradient boosting machines (GBM) and neural networks (NN) are 

increasingly being used in interpolation. One of the prominent techniques is RF which 

interpolates by randomly selecting and aggregating several CARTS for which a random subset of 

features are selected at each decision node (Breiman, 2001). The final prediction is represented 

by the average of the prediction from the individual trees in the “forest” (Breiman, 2001). RF has 

several variants including random forest for spatial predictions (RFsp) (Hengl et al., 2018) and 

random forest spatial interpolation (RFSI) (Sekulić et al., 2020). The technique has been used in 

several studies including the downscaling of mean temperature in southern China (Pang et al., 

2017) and estimation of precipitation in Switzerland (Wolfensberger et al., 2021). In another 

study by Tan et al. (2021), they combined RF and IDW to generate climate surfaces of 

precipitation and temperature for China. The RF-IDW had similar accuracy as using RF alone 

for temperature but improved for the interpolation of precipitation. The advantages to RF is its 

excellence in managing large datasets and the inbuilt function to evaluate variable importance 

(Pang et al., 2017). Neural networks, a ML method have also been used and reviewed by several 

studies (Antonić et al., 2001; Attorre et al., 2007; Zhan et al., 2023) and are discussed in the next 

section of literature review.  

Other notable interpolation techniques include PRISM by Daly et al. (2008) from Oregon 

University. The method relies on regression-based modelling to interpolate climate variables in 

physio-graphically complex landscapes. PRISM has been used to develop high quality climate 

surfaces for the US and other parts of North America. It was noted by Hutchinson (1995a) that 
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PRISM does not yield a continuous surface as do the TPS, a gap filled by post hoc filtering and 

other adjustments in the PRISM. Bilinear interpolation which offers simplicity using linear 

regression was used by (Wang et al., 2016) for interpolation of climate surfaces in North 

America. Other studies incorporate other techniques to improve interpolation; for example, the 

Real-time hourly rapid update cycle (RUC) data used by (DeGaetano & Belcher, 2007). In a 

study by (Workneh et al., 2024), the use of orographic-based linear interpolation with elevation, 

slope and aspect variables outperformed IDW and kriging methods in the interpolation of 

precipitation in Ethiopia.    

Widely used gridded data such as WorldClim (Hijmans et al., 2005; Fick & Hijmans, 2017) and 

CRU-TS grids to represent historical time series (New et al., 1999; Harris et al., 2014) were 

developed with thin-plate spline methodologies with just three predictor variables (latitude, 

longitude, and elevation), because they are computationally efficient and well established. More 

advanced products couple AOGCM re-analysis and remote sensing techniques with interpolation 

to improve their products. For example CHELSA (Climatologies at high resolution for the 

earth’s land surface areas) use GCMs and B-splines (Karger et al., 2017) and ERA5 (ECMWF 

Reanalysis v5) employs four-dimensional data assimilation for optimal interpolation (Hersbach 

et al., 2020). Regional grids for Africa i.e. CHIRPS (Funk et al., 2015), CHIRTS (Verdin et al., 

2020), ARC2 (Novella & Thiaw, 2013) were developed with a combination of satellite imagery 

and interpolation, mainly with IDW. One common drawback of gridded climate databases is 

their substantial size, making the process of extracting pertinent data for specific sample points 

or local areas of interest both laborious and necessitating proficient skills in geographic 

information systems (GIS). Additionally, these databases encounter inherent limitations when 

characterizing sample points with imprecise spatial information, such as those reported to the 

nearest minute. This issue becomes especially pronounced in regions characterized by steep 

mountainous terrain, where even a medium-resolution grid cell may encompass climate 

variations spanning several hundred meters in elevation (Wang et al., 2016).  

The choice of method used for interpolation can be influenced by a number of reasons and trade-

offs among the model features. For example a technique may be chosen for its model 

performance (extent of fit),  model complexity (ease of interpretation and acquiring estimates), 

spatial dependence of data, level of influence of local features (Attorre et al., 2007), performance 
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under different spatial extents and data density (number of available weather stations) (Antonić 

et al., 2001), computational efficiency among others. The accuracy of interpolation estimates 

also rely on the type of climate variable estimated. Selection of techniques may also be limited 

by the availability of software and computational demands (Li & Heap, 2014). Interpolated 

surfaces have been improved over the years by incorporating other variables besides station 

location data values, such as elevation (Willmott & Matsuura, 1995; Boer et al., 2001), slope 

gradient, slope aspect, hill shade  (van Niekerk & Joubert, 2011) to improve accuracy of 

interpolated surfaces.  

2.3 Artificial neural networks for climate spatial interpolation  

Deep learning and neural networks, a subfield in ML is gaining prominence in spatial 

interpolation (Li & Heap, 2014) for its practically unlimited ability to model non-linear 

relationships and high-level interactions in huge, multi-dimensional predictor variable datasets. 

Deep learning (DL) specially utilizes successive layers to develop meaningful representations 

learned via artificial neural networks (ANNs), their conceptual model inspired by nervous 

activity in the human brain (McCulloch & Pitts, 1990). They consist of interconnected nodes, or 

artificial neurons, organized in layers: input layer, hidden layers (if any), and output layer. Each 

neuron receives input signals, processes them, and produces an output signal. The ANN is 

trained by exposure to known examples of inputs and outputs in this case, observed weather 

station data. The data may be reiterated over the model a number of times i.e. “training” and the 

ANN “learns” the useful patterns, representations and rules in the input data within a predefined 

space and guidance from a feedback signal (Chollet, 2022). Neural networks (NNs) can range 

from a straightforward linear stack of layers to a sophisticated multi-head network. With more 

hidden layers and complexity, an ANN becomes a deep neural network (DNN). DNNs typically 

have higher computational demands and equally higher excellence in learning intricate features 

and representations in raw data. Neural network also differ by layer type. For instance, vector 

data is usually treated under dense layers, while sequence data is usually processed under 

recurrent or convolutional layers, hence the names recurrent neural networks (RNN) or 

convolutional neural networks (CNN). Image data is further processed by more complex 2D 

CNNs (Chollet, 2022).  
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There are a number of features to ANNs in addition to the input, hidden and output layers. These 

are activation functions, weights, loss functions and optimizers and generally operate 

complementarily to enable the ANN to “learn”. Activation functions are employed in ANNs to 

determining how representations are transformed in a multi-dimensional space. They introduce 

non-linearity into the network, allowing it to learn complex patterns. Common examples include 

non-linear functions like rectified linear unit (ReLU), sigmoid, and softmax. Weights are 

numerical values that determine what signals are passed on by a neuron or a layer. Weights are 

adjusted based on the loss score, a value produced by the loss function (also known as an 

objective or cost function), which calculates the distance between the model's predictions and the 

actual targets. The learning process is focused on adjusting these weights to minimize the loss 

score. Common loss functions include mean squared error (MSE) and cross-entropy loss. These 

can also be accompanied by evaluation scores such as accuracy, mean absolute error (MAE), 

root mean squared error (RMSE) among others. To accomplish weight adjustments is the role of 

an optimizer which typically implements a gradient-based backpropagation algorithm on the loss 

function and weights. Various optimizers, such as RMSprop and Adam, employ specific variants 

of stochastic gradient descent (SGD). The operation of all these features is an iterative process 

that enables the network to refine its weights and improve its performance.  

Prior studies have used NNs in climate interpolation for example Antonić et al. (2001) used the 

methods for the spatio-temporal interpolation of temperature variables for the Republic of 

Croatia. Rigol et al. (2001) used trend and spatial association in interpolation with ANNs for 

Yorkshire, UK. Jiang (2009) successfully used ANN to estimate monthly mean daily global solar 

radiation of eight cities in China. In several other studies, NNs have been reviewed in 

comparison with other interpolation methods. For example Attorre et al. (2007) used multilayer 

NNs along with IDW and UK. While UK outperformed the NNs, some of differences were not 

substantial and additionally NNs exhibited the highest sensitivity to local effects (Attorre et al., 

2007). In the study by Snell et al. (2000), ANNs outperformed traditional methods in the 

interpolation of air surface temperature.  Pang et al. (2017) also performed a comparative study 

including ANNs; however, RF outperformed the rest. As in other interpolation methods, 

specialized variants are being developed for ANNs for example the generalized spatial 

autoregressive neural network for three-dimensional spatial interpolation (Zhan et al., 2023).   
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In the majority of the studies, ANNs exhibit the potential to perform just as well as or even better 

than other interpolation methods, especially considering their flexibility with working with non-

linear relationships, which is a caveat for the kriging methods (Rigol et al., 2001; Sekulić et al., 

2020). This makes them particularly well-suited for interpolating climate grids in regions with 

limited observational data (Maier & Dandy, 2000) and complex terrains (Rampal et al., 2022). 

While most traditional methods rely on geographical location and occasionally elevation as input 

variables, these few inputs could pose a performance problem for ANNs (Zeng et al., 2020). 

However, current improvements in covariate information development with remote sensing 

techniques eliminates this hurdle (Sekulić et al., 2020). Increasing input variables usually 

improves prediction results for ML methods (Hengl et al., 2015; Workneh et al., 2024). As one 

of the advantages RF over other interpolation methods, identification of variable importance 

(Pang et al., 2017; Zeng et al., 2020), has also been developed for NNs (Biecek, 2018; Mandler 

& Weigand, 2023). Additionally, recent advancement in hardware and software for artificial 

intelligence models can now also easily be harnessed for efficient computations with NNs 

(Chollet, 2022). 

2.4 Future climate, GCMs and ensemble selection  

Future climate is modeled against future physical and societal scenarios. These scenarios are 

currently studied and presented under the SSPs. SSPs are representations of how global society, 

demographics and economics might change over the next century. The five main SSPs are  

SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 with carbon dioxide 

(CO2) concentrations ranging from 393 ppm to1135 ppm emissions for the lowest (SSP1-1.9) 

and highest (SSP5-8.5) by 2100 respectively (Meinshausen et al., 2020). The SSPs also reflect 

policy and social economic changes with SSP1-1.9 representing scenarios where more 

sustainable and clean technologies are embraced, and SSP5-8.5 represents a scenario where there 

is an increase in fuel-based technologies (Meinshausen et al., 2020). Under high emission 

scenarios, Africa’s average surface temperatures are projected to increase by 4-6 °C in the 

subtropics and 3-5 °C in the tropics (Engelbrecht et al., 2015). 

Future climate is projected by AOGCMs that simulate the interactions between the atmosphere, 

oceans, land surface, and ice, incorporating physical principles to represent climate dynamics 
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comprehensively. By solving equations that govern fluid motion, heat transfer, and various earth 

system processes, AOGCMs can predict changes in temperature, precipitation, and other climatic 

variables under different greenhouse gas emission scenarios (WMO, 2022). The accuracy of 

these models is validated through their ability to reproduce past climate patterns observed from 

historical data (Randall et al., 2007). The majority of models are developed and reviewed within 

coupled inter-comparison model projects (CMIP) that started almost 30 years ago (PCMDI, 

2022). CMIPs serve to provide multi-model output in a standardized format, making it accessible 

for analysis by the broader climate research community and other users (Eyring et al., 2016). The 

current phase of the Coupled Model Intercomparison Project (CMIP6) has over 120 (AOGCMs) 

that have various representations of past, present and future climate change (Eyring et al., 2016; 

PCMDI, 2024). With the available models, SSPs and climate variables there are tens of 

thousands of possible model simulations of projected climate change (Eyring et al., 2016). The 

sixth Assessment Report (AR6) on Climate Change has already used over 50 GCMs and Earth 

System Models (ESMs) of CMIP6 to provide a broad context on climate change (IPCC, 2021; 

Masson-Delmotte et al., 2021).  

There is a consensus that a meticulous selection of AOGCMs is important for climate studies at 

regional scales (e.g., downscaling) as suitable for the end use (Barsugli et al., 2013; Karmalkar et 

al., 2019; Mahony et al., 2022). Additionally a selection from the wide range of data alleviates 

the user from massive computing and data storage costs (Karmalkar et al., 2019). However, it is 

crucial to select models that perform well and adequately represent uncertainty in future 

projections (Karmalkar et al., 2019). This is a contentious process because AOGCM credibility 

varies significantly depending on the metric used, the spatiotemporal scale, the season, and the 

region (Masson & Knutti, 2011). Further, selecting a handful of models can potentially under-

represent the uncertainty in future projections (Weigel et al., 2010). Therefore selecting a 

representative ensemble of models involves consideration of the appropriate number and 

candidates. According to Mote et al. (2016), a minimum of 8-10 models in an ensemble are 

suggested to achieve a robust estimate of the mean value of some global and regional quantities. 

Along with that, Mahony et al. (2022), state that even 3-8 models may be adequate for 

computationally intensive models provided that they have multiple simulations for the historical 

period to improve the representation of uncertainty, have low bias, and are of moderate to high 

spatial resolution.  
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Various methods have been developed for selecting models in climate model ensembles, each 

aiming to balance the need for comprehensive uncertainty representation with the constraints on 

the number of models. One common approach involves performance-based selection, where 

models are evaluated based on their ability to simulate historical climate conditions accurately. 

This is often done using metrics such as biases, mean squared errors (MSEs), and other statistical 

measures (Taylor, 2001; Gleckler et al., 2008; Minaei et al., 2022). Another widely used method 

is clustering, which groups models based on similarities in their output to ensure that the selected 

subset captures the diversity of the full ensemble. Techniques such as k-means clustering and 

hierarchical clustering are frequently employed for this purpose (Masson & Knutti, 2011; Houle 

et al., 2012; Mendlik & Gobiet, 2016; Wilcke & Bärring, 2016; Lee & Kim, 2017). Additionally, 

process-based evaluations focus on selecting models that correctly simulate key climate 

processes and large-scale circulation patterns, ensuring physical consistency across variables 

(Overland et al., 2014; McSweeney et al., 2015). Another innovative approach is the use of 

algorithms like the Katsavounidis-Kuo-Zhang (KKZ) algorithm (Katsavounidis et al., 1994) 

described by (Cannon, 2015) which selects models in a way that comprehensively covers the 

multivariate space of climate extremes indices, enhancing the representation of variability. The 

KKZ has been used for model selection  by (Mahony et al., 2022) for North America, (Seo et al., 

2019) for South Korea and (Sung et al., 2019) for North Korea.  
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3. Data and Methods 

3.1 Study Area  

Africa lies between latitude 37°N and 35°S and longitude 17°W and 51°E covering 

approximately 30 million square kilometers. For this study I used IPCC’s climate reference 

regions that are used in CMIP6 reporting (Iturbide et al., 2020). These delineations are 

approximately guided by the Köppen–Geiger climate classifications, which characterizes mean 

temperature and precipitation (Rubel & Kottek, 2010). However, the IPCC climate reference 

regions do not track these climate classifications directly, but rather provide coarse polygons 

intended for consistent summary and description of model results from CMIP6 (Iturbide et al., 

2020). This research covers 11 IPCC reference regions, including the Mediterranean (MED), 

Sahara (SAH), Western-Africa (WAF), Central-Africa (CAF), North-Eastern-Africa (NEAF), 

South-Eastern-Africa (SEAF), West-Southern-Africa (WSAF), East-Southern Africa (ESAF), 

Madagascar (MDG) and the Arabian-Peninsula (ARP) and West central Asia (WCA) (Fig. 1). 

These regions cover a wide range of climates, including tropical wet climate, tropical monsoon, 

tropical dry, semi-arid, desert, subtropical highland, temperate and Mediterranean climates. 

Africa’s climate variability is more influenced by precipitation than by temperature difference, 

the latter being usually consistently high all year round for majority of the continent (Hoerling et 

al., 2006; Nicholson, 2013). Africa’s climate is influenced by the position of its land mass 

crossed by the Equator almost halfway, by the Tropic of cancer in the north, and by the Tropic of 

Capricorn in the south. Areas between the Tropics experience intense solar heating that results in 

the high temperatures and precipitation associated with the inter-tropical convergence zone 

(ITCZ) or the tropical rain belt (Xie & Arkin, 1997; Nicholson, 2013). The ITCZ is characterized 

by circulations and convergence of warm and moist air masses that result in convectional 

rainfall. The ITCZ shifts towards the north in the boreal spring (March to June) and, southwards 

in the austral summer (September to December), influencing the number and the timing of rainy 

seasons in the different regions (Nicholson, 2013). Another climatic factor is the movement of 

global wind patterns such as the ocean currents, trade winds, westerlies and the monsoons. 

Ocean currents such as the Atlantic ocean’s Canary and Benguela currents in western Africa, and 

the Indian Ocean Agulhas currents in the East influence coastal temperatures, humidity and 
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precipitation patterns that affect regional climates (Hoerling et al., 2006). Topography, especially 

mountains, influence local climate by inducing precipitation through orographic lift causing 

higher rainfall in mountainous regions, as well as temperate and cold climate conditions, 

primarily in the Ethiopian highlands and rift valley ranges in SEAF and ESAF regions.  

 

Figure 1: Africa’s IPCC climate reference regions and Köppen-Geiger climate classification 

(Main Climates: A – equatorial, B – arid, C –warm temperate, D – snow, E – polar; 

Precipitation: W – desert, S – steppe, f – fully humid, s – summer dry, w – winter dry, m – 

monsoonal; Temperature: h – hot arid, k – cold arid, a – hot summer, b – warm summer, c – cool 

summer, d – extremely continental, F – polar frost, T – polar tundra  (open access data for this 

map was obtained from Kottek et al., 2006; Iturbide et al., 2020). 
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3.2 Weather station data compilation      

I compiled temperature weather station data from seven public databases (Table 1) that were 

merged and then cleared of duplicates, using similar quality control procedures as a previous 

compilation effort for weather station data for precipitation by Castellanos‐Acuna and Hamann 

(2020). I compiled data from the Climate Research Unit (CRU) at the University of East Anglia, 

the Food and Agricultural Organization of the United Nations (FAO) Agro-Met, the World 

Meteorological Organization (WMO), the Global Historical Climatology Network (GHCN) 

managed by the National Center for Environmental Information (NCEI), the National Oceanic & 

Atmospheric Administration (NOAA), and the European Climate Assessment (ECA) by the 

Royal Netherlands Meteorological Institute (KNMI). For precipitation weather stations, I utilized 

the global precipitation database by Castellanos‐Acuna and Hamann (2020). 

Table 1. Databases included in this study detailing their temporal extent, temporal resolution and 

the number of stations obtained for Africa. The number of stations in parentheses are the stations 

that were selected after quality control and duplicate removal. 

Database Temporal 

extent 

Temporal 

resolution 

Number of 

stations 

Reference 

Climate Research Unit Time Series 

(CRUTS), Version 3 

1849-2023 Monthly time 

series 

1522 (572) (Harris et al., 

2014) 

Global Historic Climate Network 

Monthly (GHCN-M) , Version 3 

1878-2017 Monthly time 

series 

864 (176) (Lawrimore et 

al., 2011) 

Global Historic Climate Network Daily 

(GHCN-D), Version 3 

1900-2021 Daily time series 878 (344) Menne et al. 

(2012) 

World-wide Agroclimatic Data of FAO 

(FAOCLIM), Version 2 

1902-1998 Monthly time 

series 

846 (96) (FAO, 2001) 

World Meteorological Organization 

(WMO)  

1961-1992 Monthly time 

series 

431 (256) (WMO, 1996) 

European Climate Assessment Dataset 

(ECA) 

1892-2018 Daily  & Monthly 

time series 

223 (13) (Tank et al., 

2002) 

National Oceanic & Atmospheric 

Administration (NOAA) 

1949-2015 Monthly time 

series 

131 (NOAA, 2018) 

Global monthly weather station for 

precipitation 

1901-2010 Monthly time 

series 

4510 (Castellanos‐

Acuna & 

Hamann, 2020) 

 

The consolidated database had a temporal coverage from the 1800s to 2023 with the most 

extensive coverage for 1961-1990 period. The dense spatial coverage during the 1961 to 1991 

time period makes this climate normal period the most suitable for the development of  baseline 

reference climate grids (New et al., 1999; Menne et al., 2012). Additionally, the 1961-1990 
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period precedes large anthropogenic climate change effects that started in the 1990s after a 

period of cooling induced by industrial sulfate emissions from the 1950s to 1980s, also referred 

to as global dimming due to post-war industrialization (Tett et al., 1999; Lawrimore et al., 2011).  

After a master database of station records was compiled from all seven databases, the data 

cleaning and quality control checks included a comparison of the recorded station elevation 

against the digital elevation model (DEM) at 1km resolution (Gesch et al., 1999). Missing values 

in the recorded station elevation usually denoted by -9999, -999, -99, 9999 were replaced by the 

DEM value. I also replaced records with a value of zero with DEM values, since records of zero 

were either used to indicate missing values or areas of zero elevation. The DEM value near the 

coast or other was likely more reliable than the recorded value of zero. In cases where the 

difference between recorded elevation and DEM elevation for the recorded location exceeded 

250 m, I carried out manual inspection on these stations for potential errors in location. 

Generally, stations with large elevation errors in mountainous regions were retained, and stations 

with large elevation errors in areas of flat topography were removed due to probable location 

errors. These checks were carried out due to the importance of the elevation in climate modeling 

and interpolation (DeGaetano & Belcher, 2007).     

Next, I ranked all stations based on the length of the station records and their overlap with the 

1961-1990 normal period. Tier 1 stations had at least 27 years of records (90% of a normal 

period) for the 1961-1990 period, tier 2 stations had at least 27 years of records for the 1951-

1990 period. Tier 3 stations also had at least 27 years records for the 1951-2000 period. Finally, 

tier 4 stations had at least 15 years of records at any time from 1901 to 2020. Missing values for 

the 1961-1990 period were then calculated using the anomaly (change factor) approach relative 

to CRU-TS time series data as in Castellanos‐Acuna and Hamann (2020), where the average 

difference between available station data and corresponding CRU-TS interpolated data was 

added to the CRU-TS estimates for years of missing station data. Similarly, if station records 

reported only average temperature, the average minimum and average maximum monthly 

temperatures were inferred from the interpolated diurnal range of CRU-TS time series data. 

Lastly the 1961-1990 normal estimate was obtained by averaging observed and estimated 

monthly climate values for this period.  
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Finally, duplicate stations in the combined databases were removed. First, I crosschecked station 

IDs from different databases using the enhanced master station history report (EMSHR) and its 

vector layer (Vose et al., 2011; ESRI, 2019). This identified duplicate stations even if they had 

different IDs as allocated by their parent databases. Duplicates at this stage were removed by 

retaining the station with the higher quality tier. In a second pass of duplicate removal by 

location, only the highest-tier station per rounded 0.1 decimal degree (approximately 10 km grid 

cell size) and within the same 250 m elevation interval was retained. This ensured removal of 

lower quality station data where better records were available in close vicinity. I assigned a 

unique locator ID to the remaining stations using the database name, its parent-database ID, 

station name and its latitude values.  
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Figure 2: Distribution of 4625 weather stations compiled for the database. Blue stations have 

records for only precipitation measurements and red stations have records for both precipitation 

and temperature measurements for the 1961-1990 period. 

 

After this quality control process, I retained 1588 stations with temperature records and 4510 

stations with precipitation records. Overall, there were 4625 stations in the database with the 

majority only having precipitation records and some having both temperature and precipitation 

records. Only few (less than 20) had only temperature records. This is because historically, many 

agricultural and hydrological studies have prioritized collection of precipitation data over 

temperature data. Rainfall information is crucial for understanding water resources, irrigation 
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needs, and flood risks, which has led to more widespread installation of rain gauges. The spatial 

distribution of stations varied by region with higher station density corresponding to areas of 

higher population such as South Africa, West Africa and parts of Eastern Africa (Fig.2). 

3.3 Thin-plate spline interpolation 

A first approximation of monthly climate grids was generated with thin-plate spline 

interpolation, performed using the fastTps() function of the fields package (Nychka et al., 2021) 

for the R programming environment (R). This method is computationally as well as memory 

intensive, and for efficiency, the interpolation was carried out on weather station data binned by 

three degree latitude and longitude grid cells and 250 m elevation classes (i.e. a 3D grid), with 

the predictor variables being the average latitude, longitude, and elevation per 3D grid cell. To 

further enhance computational efficiency of the interpolation, the aRange parameter was set to 

2,000 km. This parameter controls the range of influence for the thin-plate splines. A high 

aRange value, as used here, allows the model to capture broader spatial trends, while a lower 

value would make the model more sensitive to local variations, if supported by a corresponding 

high density of weather station data (which was not available due to prior binning). A parameter 

enabling the function to account for the spherical geometry of the Earth's surface was set to true, 

ensuring that distances and spatial relationships are correctly represented in the interpolation 

process. The R code for the TPS model used is provided in Appendix A. 

Although the thin-plate spline method would generally allow more variables (covariates) to be 

specified in the interpolation model, this approach is computationally too demanding because it 

would need be carried out on original weather station locations to capture interactions among 

multiple factors, simultaneously raising model complexity and the size of the dataset to be fitted. 

Instead I used artificial neural networks, which have practically no limitations regarding model 

complexity and database size, to fine tune the initial interpolated climate grids with the help of 

covariates reflecting topographic and geographic information (such as aspect, slope, distance to 

coast and lakes) in combination with monthly wind direction and strength obtained from general 

circulation models. 

3.4 Predictor variables (features) 
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Predictor variables, also referred to as features by the machine learning community, were 

generated with Spatial Analyst Tools in ArcGIS (ESRI, 2008) from a 2.5 arcminute resolution 

DEM (the target resolution of climate grids), which was generated from GTOPO30 data (USGS, 

1996; Gesch et al., 1999). As potentially useful covariates besides latitude, longitude and 

elevation, a north-south directional hill shade, a topographic position index (TPI), which is a 

numerical index that describes ridges (high values), valleys (low values) and flat areas 

(intermediate values) were calculated. A compound topographic index (CTI) is similar to TPI, 

but identifies valleys and ridges with a hydrological approach where areas of convergence 

receive high values. The predictor variables Elevation, CTI and TPI were first transformed to be 

approximately normally distributed (log transformation with an appropriate constant), while the 

north-south directional hill shade was subjected to a bi-directional log transformation, separately 

for negative north-facing values and positive south-facing values to mitigate long-tailed variable 

distributions. Subsequently all variable values were scaled from 0 to 1. This dual transformation 

procedure generally improves stability and equal sensitivity to putative predictor variables during 

neural network training. 

Further, topographic variables weighted by wind direction were generated in a two-step process, 

that calculated directional exposure of geographic features, which were then scaled by average 

monthly wind direction and strength for the 1961-1990 period obtained from the Modern-Era 

Retrospective analysis for Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 

2017).Westward and southward exposure of mountains was approximated with hill shades (45° 

angle with a 180 or 270° azimuth). Directional lake and coastal influences were generated with 

an equivalent “topography”, derived from a 2.5 arcminute grid representing lakes or oceans with 

a value of 1, versus land represented by a value of 0. The grid was repeatedly subjected to a 3×3 

low pass filter to the desired range of putative lake or ocean effects (approximately 10, 50, 100 

and 500 km). Directional information of distance to lake shores and coast lines were generated 

with hill shades as described for mountains above (180 & 270° azimuth). Both topographic and 

distance to waterbody hill-shades were subsequently scaled from +1 (e.g., maximum westward 

mountain exposure, or minimum westward distance to lake or coastline) to 0 (flat topography or 

beyond maximum distance to waterbody), to –1 (equivalent in opposite direction) and multiplied 

by MERRA-2 monthly wind direction and strength, also provided in north-south and east-west 

direction. To generate a single exposure layer from two directional layers, the geometric mean of 
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east-west and north-south directional effects (geometric mean required to avoid an over-estimate 

of where north-south and east-west exposures overlap) was used. The resulting grids (12 

exposure layers representing each month of the year) were then again re-scaled from 0 to 1 for 

machine learning. 

As an additional step, all covariates were treated to low-pass filters of 3x3, 5x5, 7x7, 9x9 and 

15x15 grid cells of the 2.5 arcminute target resolution. This is because topography and 

atmospheric circulations interact at different scales. For example, rain induced by orographic lift 

in mountainous regions takes place at the height of cloud layers and therefore does not closely 

track minor topographic variation at the ground level. Because the optimal scale is unknown, a 

range of scales for predictor variables that were evaluated through neural network importance 

values (based on their empirical usage in neural network weights) were generated. This first pass 

of neural network training was used guide the final selection of predictor variables that was used 

for all model runs for computational efficiency and simplicity in programming (Table 2).  

Table 2. Predictor variables (features) for training the neural network. The original target 

resolution was 2.5 arcminutes, and low-pass filters were applied to better predict larger scale 

climate patters driven by higher altitude air circulation patterns. 

Predictor variables for machine learning Low-pass filter versions 

Base variables    

 Thin-plate spline interpolation of climate variable    

 Latitude     

 Longitude     
Topographic variables    

 Elevation  3 7 15 

 Compound topographic index 5 9  

 Topographic position index 3 7  

 Hill shade south-north direction 7   
Monthly variables weighted by wind direction and strength 

 Windward slope exposure  5 9 15 

 Leeward slope exposure 5 9 15 

 Windward distance to coast (max 50km) 5   

 Windward distance to coast (max 500km) 15   

 Windward distance to lakes (max 10km) 5   
  Windward distance to lakes (max 100km) 15     
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In the study, neural network predictions were not sensitive to the exact selection of variables, but 

variable importance values nevertheless varied for different variables in different months. 

Variable importance values were generated by the DALEX package in R (Biecek, 2018). 

   

 

Figure 3: Example of predictor variables used in neural network fine-tuning of thin-plate spline 

interpolations. All putative predictor variables were subjected to transformations for normality if 

possible, and then scaled to values between 0 and 1 for use as covariates in neural network 

models. 
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Examples for predictor variables are shown in Fig. 3, with distance and exposure layers scaled 

by wind direction and strength. The rationale for these layers is that local climate patterns can be 

driven by the interaction of topography with atmospheric circulations. 

3.5 Fine tuning with neural networks 

Neural network methodology was applied to fine-tune a simplified (but computationally fast) 

thin-plate spine interpolation with a larger dataset of predictor variables (Table 2), including the 

original weather station location information as predictors, and the original climate records of 

stations as dependent variable. I used the Keras package for R (Allaire & Chollet, 2023) as a 

front end to define the neural network architecture, and the DALEX package (Biecek, 2018) to 

evaluate the importance of predictor variables in the neural network model. However, the 

computational work was programmed to be executed by Google’s Tensorflow machine learning 

platform on an Nvidia’s RTX A2000 graphics card. The network architecture is an 

approximately 3 million parameter model that can execute training and prediction of a single 

variable for a continent in about 15 minutes on any modern mid-level consumer graphics card. 

Note, that software compatibility is version-sensitive. As of 2024, a compatible software chain 

comprises Anaconda v.2022.10 with Python v.3.9.13, Tensorflow v.2.10.1, Nvidia’s cuDNN 

v.8.1.0 library, the  CUDAtoolkit v.11.2, in combination with R v4.4.x and Keras (for R) v2.13.  

The neural network architecture I used was a feed forward model that was empirically optimized 

by varying model parameters, and observing the resulting changes in the evolution of validation 

statistics throughout the training period, based on an initial 80:20% random training:validation 

split. Model parameters that were varied included the number of hidden processing layers in the 

neural network (1 to 10 processing layers were tested), the number neurons per layer (8, 16, 32 

… 4096 neurons per hidden layer), and increasing, decreasing or fixed numbers of neurons from 

first to last processing layer. As counter-measures to over-parameterization, I further tested the 

inclusion of dropout layers where a proportion of neurons are re-set to a zero-activation state in 

specific intervals during training, as well as kernel regularization, which imposes constraints on 

the maximum value of the network weights in a processing layer.  

As a general network architecture, that worked for all climate variables, I applied L2 kernel 

regularization to the first hidden layer comprising 2048 neurons, followed by a dropout layer 
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(rate = 20%) and seven subsequent processing layers, each half the size of the proceeding layer 

(1024, 512, … 16 neurons). L2 kernel regularization is generally presented as: 

𝐿𝑜𝑠𝑠 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑙𝑜𝑠𝑠 + 𝑟 ∑ 𝑤2 

where r is the regularization parameter and w is the weights of the layer. A number of standard 

hyper-parameter choices that generally work well for feed forward network architecture proved 

satisfactory for our models as well: the ReLU activation function, which introduces a non-

linearity into the model, a mini batch size of 32, which represents the number of stations 

processed at once before network weights are updated, a learning rate controlled by the Adam 

optimization function, and the mean squared error (MSE) as loss function. Mathematically, the 

ReLU function is defined as: 

f(x)=max(0,x) 

where x is the input to the function and f(𝑥) is the output of the function. This simple 

thresholding operation helps introduce non-linearity into the network, allowing it to learn 

complex patterns and relationships in the data. The Adam optimization function can be defined 

as: 

𝑤𝑡+1 =  𝑤𝑡 −  
𝑙

√𝑣𝑡 + 𝑐
�̂�𝑡 

where wt are the parameters at iteration t, l is the learning rate, c is a small constant added to the 

denominator for numerical stability, ˆ𝑚𝑡 and ˆvt are the bias-corrected estimates of the first mean 

and variance of the gradients respectively. The loss MSE which quantifies the difference 

between the predicted and the actual values in a dataset was defined by;  

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑜𝑖 −  𝑝𝑖)

2
𝑛

𝑖=1
 

where: n is the number of samples in the dataset, o𝑖 is the observed value of the 𝑖-th sample and p

i is the predicted value for the i-th sample. 
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While I tried to build a network architecture that yielded satisfactory results for all variables, the 

most sensitive hyper-parameter for our models were the number of epochs, which needed to be 

set individually for each climate variable to avoid over-parameterization (ranging from 75 to 500 

passes through the station data for training). The tendency to over-parameterize was evaluated 

with a random 80% training and 20% validation data split in a first pass (specified as a parameter 

in the neural network architecture in the Keras package). The model selected for final iterations 

was one that performed best and had eight processing layers, one dropout layer, and was trained 

using 150 epochs and batch size of 32 summarized in Table 3. The R code for the model 

architecture and generating importance variables is provided in Appendix B. 

 

     Table 3. The final neural network model structure and parameter settings 

Model structure   

Component Layers  Hyper-parameters 

Initial layer Dense (nodes = 2048) Activation = ReLU, 

kernel regularizer = L2 regularization 

Hidden layer 1 Drop-out (rate = 20%)  

Hidden layer 2 Dense (nodes = 1024) Activation = ReLU 

Hidden layer 3 Dense (nodes = 512) Activation = ReLU 

Hidden layer 4 Dense (nodes = 265) Activation = ReLU 

Hidden layer 5 Dense (nodes = 128) Activation = ReLU 

Hidden layer 6 Dense (nodes = 64) Activation = ReLU 

Hidden layer 7 Dense (nodes = 32) Activation = ReLU 

Hidden layer 8 Dense (nodes = 16) Activation = ReLU 

Output layer Dense (1)  

 

Model compilation   

Component Type  

Optimizer Adam  

Loss function MSE  

Learning rate Decaying rate (initial rate = 0.001) 

 

Training   

Component Size  

Epochs 150  

Batch size 32  

Validation split 0.2   (for model development, but removed for final model) 

 

3.6 Checkerboard validation  
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While the initial model was developed with an 80% training and 20% validation data split for 

convenience (specified as a parameter in the neural network architecture in the Keras package for 

the R programming environment), this type of validation is not completely independent due to 

spatial autocorrelations among nearby weather stations. In other words, the samples used to train 

the neural network were not completely independent. 

I therefore also confirmed the final network parameters using a cross-validation approach that 

better controls spatial autocorrelations, namely the “checkerboard” method used for the 

development of WorldClim (Fick & Hijmans, 2017). I used a 3° x 3° checkerboard grid to assign 

stations to cross-validation groups, delineated by their geographical coordinates falling within 

either a “black” or “white” tile. This ensured that testing data were generally distanced from 

training data (Fig. 4). Using stations from exclusively one group (say in white tiles) 

approximating to half the stations for each fold, I trained the ANN model. Subsequently, I 

validated the trained model on the withheld stations (in gray tiles) by using it predict the variable 

values. On the validation set, I calculated the mean absolute error (MAE), root mean square error 

(RMSE) and coefficient of determination (R2) between predicted estimates and observed values 

to evaluate the performance of the model (Li & Heap, 2008). The evaluation equations are; 

𝑀𝐴𝐸 =  
1

𝑛
∑ | 𝑝𝑖

𝑛

𝑖=1
−  𝑜𝑖  | 

𝑅𝑀𝑆𝐸 =  [ 
1

𝑛
∑ (𝑝𝑖 − 𝑜𝑖)

2]
𝑛

𝑖=1

1
2⁄

 

𝑅2 =  1 − 
∑ (𝑝𝑖 − 𝑜𝑖)

2𝑛
𝑖=1

∑ (𝑝𝑖 − �̅�)2𝑛
𝑖=1

 

where n is the number of samples in the dataset, o𝑖 is the observed value of the 𝑖-th sample, pi is 

the predicted value for the i-th sample, ō is the mean of the observed values. Final climate 

surfaces were generated using the model that had the lowest error values in the cross-validation. 
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Figure 4. 3° x 3° checkerboard grid over Africa for cross-validation groups. Black points are the 

weather station location falling in either the “white tile” for training or “black/gray tile” for 

testing. 

 

3.7 CMIP6 models cluster analysis and regional ordered subset selection 

Thirteen GCMs from CMIP6 were selected based on the six criteria used by Mahony et al. 

(2022). These filtering criteria for selecting models from the Earth System Grid Federation 

(ESGF) considered that models had values for both mean daily minimum temperature and mean 
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daily maximum temperature, a minimum of three historical runs, complete scenarios, models 

were not from the same institution, models were not closely related to one another, and models 

had no large biases (Table 4).  

Table 4. Models pre-selected by Mahony et al. (2022) in the 13-model ensemble with their 

institution and citation 

Model Institution Citation 

ACCESS-ESM15 Commonwealth Scientific and Industrial Research Organization 

(Australia) 

(Ziehn et al., 2020) 

BCC-CSM2  Beijing Climate Center (China) (Wu et al., 2019) 

CanESM5 Canadian Centre for Climate Modelling and Analysis (Canada) (Swart et al., 2019) 

CNRM-ESM2-1 CNRM (Centre National de Recherches Meteorologiques) and 

CERFACS (Centre Europeen de Recherche et de Formation 

Avancee en Calcul Scientifique) (France) 

 (Séférian et al., 2019) 

EC-Earth3 EC-Earth Consortium (European Community)  (Döscher et al., 2022) 

GFDL-ESM4 National Oceanic and Atmospheric Administration, Geophysical 

Fluid Dynamics Laboratory (USA) 

 (Dunne et al., 2020) 

GISS-E2.1 Goddard Institute for Space Studies (USA  (Kelley et al., 2020) 

INM-CM5.0 Institute for Numerical Mathematics (Russia)  (Volodin et al., 2017) 

IPSL-CM6A-LR Institut Pierre Simon Laplace (France)  (Boucher et al., 2020) 

MIROC6 JAMSTEC (Japan Agency for Marine-Earth Science and 

Technology), AORI (Atmosphere and Ocean Research Institute), 

NIES (National Institute for Environmental Studies), and R-CCS 

(RIKEN Center for Computational Science) (Japan) 

 (Tatebe et al., 2019) 

MPI-ESM1.2-HR Max Planck Institute for Meteorology (Germany)  (Müller et al., 2018) 

MRI-ESM2.0 Meteorological Research Institute (Japan)  (Yukimoto et al., 2019) 

UKESM1-0-LL Met Office Hadley Centre and Natural Environment Research 

Council (UK) 

 (Sellar et al., 2019) 

 

The average Equilibrium Climate Sensitivity (ECS) across the 13-model ensemble is 3.7°C, with 

a variability spanning from 1.9°C to 5.6°C. This aligns with the ECS values derived from the 

complete CMIP6 ensemble, which also stands at 3.7°C, with a range from 1.8°C to 5.6°C (Meehl 

et al., 2020). I aggregated the average model projections for MAT and MAP in the 13-model 

ensemble for the future periods 2040, 2070 and 2100 under the SSP1-2.6, SSP2-4.5, SSP3-7.0, 

and SSP5-8.5 for each of the 11 IPCC regions in Africa. Then, I performed a cluster analysis to 

assess and visualize the similarity among the models using six variables represented by their 

winter (DJF) and spring (MAM) averages for minimum monthly temperature, maximum 

monthly temperature, and precipitation. I selected the period of the 2050s (2041 – 2070) under 
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SSP2-4.5. I used Ward.D2 hierarchical clustering algorithm with a Euclidean distance of scaled 

values using the pvclust package in R (Suzuki et al., 2019) for this cluster analysis. 

For the ordered model ensemble subsets, models were further excluded based on four additional 

criteria by Mahony et al. (2022). These were that models were within the very likely equilibrium 

climate sensitivity (ECS) of 2 and 5°C, had sufficiently high model resolution, a higher number 

of simulation runs and less spatial anomalous exhibition in projections. On that account, 

CanESM5 was excluded, for its excessive climate sensitivity and very low horizontal resolution 

but UKESM1-0-LL was retained despite the high ECS for one set of the subsets to represent a 

high-impact, low-likelihood scenarios. BCC-CSM2-MR was excluded for only having a singular 

simulation for each scenario and low topographic resolution, IPSL-CM6A-LR for having 

isolated grid cells in predicted summer temperatures and INM-CM5.0 for its low climate 

sensitivity (ECS 1.9°C), having only one simulation for most scenarios and its reputation as an 

outlier among CMIP6 models due to its under-representation of the observed 1975–2014 global 

temperature trend (Liang et al., 2020).  

To the remaining models (8 and 9 if including UKESM1-0-LL), the KKZ (Katsavounidis et al., 

1994) algorithm was applied as described by Cannon (2015). The KKZ selected models in a 

deterministic manner choosing a set of models that best represent the spread of multivariate 

climate change projected by the ensemble. It ordered the models with the first model closest to 

the ensemble centroid and the second lying furthest away from the first. To select the third and 

all subsequent models, the algorithm calculates the Euclidean distance of the remaining models 

to the previously selected models and then assigns the minimum distance to the unselected 

models. The model selected for the next position was the model with the maximum distance. 
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4. Results 

4.1 Interpolated baseline grids  

Grids for 36 variables, i.e., monthly precipitation (Prec), monthly minimum temperature (Tmin) 

and monthly maximum temperature (Tmax) for the 12 months were generated for the 1961-1990 

normal period. The neural network fine-tuning was capable of capturing some complex local 

climate patterns that are not accounted for by standard interpolation methods. For example, for 

the gridded climate data for January precipitation (Prec01), the neural network was able to pick 

up rain shadows and precipitation due to orographic lift on the windward side of mountains in 

southeast Africa (Fig. 5). The inset shows that elevated terrains experience orographic rainfall, 

contributing to increased precipitation on the windward facing slopes (east in this case), while 

leeward facing slopes of the southern African mountain ranges were relatively drier due to rain 

shadows during the boreal winter where prevailing winds are easterly bringing moist air from the 

Indian ocean, contributing to high precipitation.  
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Figure 5: Example of an interpolated climate grid of January precipitation for 1961-1990. The 

inset highlights the influence of the micro-climatic patterns in the southeast African highlands 

and coast. The color of circles in the inset indicates the weather station values on the same scale. 

 

The difference layer, between a standard thin-plate spline interpolation, and the neural network 

adjusted climate estimates more generally shows the fine-tuning effects (Fig 6). In general, 

precipitation in mountainous areas is adjusted upwards with an emphasis on windward facing 

slopes, whereas regions on the leeward side of mountains are adjusted downward. The inset 
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highlights the adjustment in the southeastern highlands where the neural network adjustments are 

especially prevalent. 

 

Figure 6. Adjustment to the TPS interpolated climate grid for Prec01 for 1961-1990. The inset 

highlights adjustment to southeast African highlands. The color of circles in the inset indicates 

the weather station residuals (predicted minus observed) on the same scale. 

 

In another example for a temperature layer, minimum January temperature (Tmin01), the inset 

highlights neural network adjustment for a large lake in southeastern Africa. The Lakes 

Tanganyika and Malawi are warmer than surrounding areas depicting water’s ability to retain 



 

36 

 

and release heat more slowly than land surfaces. This also creates short-range lake effects so that 

surrounding areas are cooler than predicted by the thin-plate spline model. The lakes in eastern 

Africa such as Lake Malawi, Lake Tanganyika and, Lake Alberta lie within the western arm of 

the African rift valley. The elevation in these locations is about 500m lower than the surrounding 

areas and may influence the higher temperatures in the lakes (Figs 7 and 8). 

 

Figure 7. Example of an interpolated climate grid for January minimum monthly temperature for 

1961-1990. The inset highlights the influence of the micro-climatic patterns in the southeast 

African highlands. The color of circles in the inset indicates the weather station values on the 

same scale. 



 

37 

 

 

 

Figure 8. Interpolation adjustment by the ANN to the TPS interpolation for Tmin01. The inset is 

a close-up of the adjustment in the southeastern Africa around Lake Malawi. The color of circles 

in the inset indicates the weather station residuals (predicted minus observed) on the same scale. 

 

In general, neural network adjustments for temperature variables were minor, indicating that the 

thin-plate spline interpolations already yield accurate climate estimates. Neural network 

importance values for features were similar for the three variables; minimum and maximum 

temperature and precipitation, with high ranking covariates including Latitude, Longitude, 
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Elevation, and windward distance to coast at short and long ranges (coast01_lp15 and 

coastLR01_lp15). For the precipitation model, windward slope exposure (Exp01_05), CTI and 

hill shade were also were picked up as important covariates (Fig 9).   

 

Figure 9. Feature importance for neural network interpolation for the January monthly variables 

average minimum temperature (Tmin01), average minimum temperature (Tmax01) and 

precipitation (Prec01). The candidate covariates are provided at various resolutions with low-

pass filters (e.g., an “lp5” extension indicates a 5x5 grid cell average for 2.5 arcminute grid 

cells). 

  

4.2 Validation of climate estimates  

The accuracy of climate estimates, based on the independent “checkerboard” validation method 

that controls for spatial autocorrelations in weather station data varied across the variables 

(Tmin, Tmax and Prec) and months (Table 5). The mean absolute error values (MAE) in original 

units of temperature and preciptation ranged from 0.98 – 1.32 °C for Tmin and 0.96 – 1.28 °C 

for Tmax. For both variables, February (month 2) had the lowest MAE. June, July and August 

had the highest error for Tmin, Tmax. The MAE ranged from 17 to 19 mm for Prec. The JJA 
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months had the highest errors for Prec as well. The RMSE followed the same patterns as MAE 

but higher ranges reflected the presence of bias or outliers. As a third validation statistic, I 

calculated the variance explained (R-squared ) in weather station data, which evaluates statistical 

precision but ignores systematic bias. R-squared values ranged from 0.92 to 0.96 for Tmin and 

0.89 to 0.97 for Tmax. The values were lower for precipitation ranging from 0.73 to 0.86  

 

Table 5. Cross-validation statistics for the ANN model. MAE is absolute mean error, R-squared 

is the coefficient of determination and RMSE is the root mean squared error. Tmin indicates 

monthly minimum temperature, Tmax is monthly maximum temperature and Prec is monthly 

precipitation.  

  MAE   R-squared   RMSE 

Month 
Tmin 

(°C) 
Tmax 

(°C) 
Prec 

(mm)   Tmin  Tmax  Prec    
Tmin 

(°C) 
Tmax 

(°C) 
Prec 

(mm) 
Jan 1.06 0.98 16  0.96 0.97 0.86  1.42 1.36 30 
Feb 0.98 0.96 15  0.96 0.97 0.84  1.31 1.37 27 
Mar 1.08 1.07 17  0.95 0.96 0.80  1.40 1.49 31 
Apr 1.07 1.11 17  0.94 0.94 0.73  1.38 1.51 35 
May 1.14 1.21 15  0.95 0.93 0.74  1.46 1.62 34 
Jun 1.27 1.26 14  0.95 0.93 0.84  1.64 1.71 31 
Jul 1.24 1.28 18  0.95 0.93 0.78  1.61 1.77 47 

Aug 1.32 1.27 19  0.94 0.92 0.83  1.71 1.72 47 
Sep 1.20 1.18 15  0.92 0.89 0.87  1.55 1.60 33 
Oct 1.03 1.08 16  0.92 0.90 0.79  1.38 1.49 30 
Nov 1.17 1.00 16  0.92 0.94 0.77  1.52 1.39 30 
Dec 1.12 0.99 16   0.95 0.97 0.86   1.48 1.34 28 

 

Once the baseline climate grids are incorporated into the Climate AF software packages, 

additional improvements of climate estimates are generated by downscaling of the 2.5 arcminute 

baseline grids to any elevation value of interest, using empirical lapse-rate based elevation 

adjustment for each variable, elevation and location.  It should be noted that this additional 

evaluation was not an independent test because the test stations were used in model development 

for the interpolated surfaces. The MAE was used to quantify precision of estimates for the 

monthly temperature variables (Tmin, Tmax, Tave) and precipitation (Prec), seasonal average 

temperature (Taves) and seasonal precipitation (Precs) and, annual temperature (MAT) and 

annual precipitation (MAP) for the different IPCC climate regions of Africa (Table 6).  
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Table 6. Mean absolute error (MAE)  between observed and interpolated surfaces for monthly 

temperature variables (Tmin, Tmax, Tave) and precipitation ( Prec), seasonal average 

temperature (Taves) and seasonal precipitation (Precs) and, annual temperature (MAT) and 

annual precipitation (MAP) aggregated for the 11 IPCC climate regions for Africa: ARP: 

Arabian-Peninsula; CAF: Central-Africa; ESAF: East-Southern Africa; MDG: Madagascar 

MED: Mediterranean; NEAF: North-Eastern-Africa; SAH: Sahara; SEAF: South-Eastern-Africa; 

WAF: Western-Africa (WAF); WCA: West central Asia and; WSAF: West-Southern-Africa. AF 

represents the continental average for Africa. 

  Monthly   Seasonal    Annual 

Region 
Tmin 

(°C) 
Tmax 

(°C) 
Tave 

(°C) 
Prec 

(%) 
  

Tave 

(°C) 
Prec 

(%) 
  

Tave 

(°C) 
Prec 

(%) 

ARP 0.40 0.50 0.30 39  0.30 25  0.32 17 
CAF 0.30 0.30 0.30 9  0.27 7  0.24 4 

ESAF 0.30 0.40 0.20 13  0.20 9  0.18 6 

MDG 0.40 0.30 0.20 20  0.17 15  0.16 11 

MED 0.50 0.50 0.40 16  0.33 12  0.28 8 
NEAF 0.40 0.40 0.30 15  0.27 11  0.26 7 

SAH 0.50 0.50 0.40 33  0.32 21  0.30 9 

SEAF 0.30 0.30 0.20 12  0.23 10  0.22 6 

WAF 0.40 0.40 0.30 12  0.23 8  0.22 4 
WCA 0.40 0.40 0.30 22  0.30 18  0.25 11 
WSAF 0.30 0.40 0.30 18  0.27 14  0.28 8 
AF 0.38 0.40 0.29 19   0.26 14   0.25 8 

 

4.3 Selection of representative CMIP6 models  

To provide guidance for selecting multi-model ensemble subsets of CMIP6 models for Africa’s 

IPCC regions, I first calculated their different regional projections (Table 7).  The 13 model 

ensemble had an average continental increase (MAT) ranging from 1.3 °C in SSP1-2.6 in the 

2030s to 4.9 °C in SSP5-8.5 in 2080s. MAT increase was lowest in the 2030s and highest in the 

2080s. MAT increase was also smallest in SSP1-2.6 and highest in SSP5-8.5. Average 

continental MAP ranged between 4% and 17% with marginal variations within the periods and 

scenarios. Much of the variation in the ensemble means was between regions for instance ARP, 

MED, SAH and WCA constantly had higher MAT increase in all the scenarios than the 

continental average and other regions. ESAF, MDG, MED and WSAF were projected to have 

reduction in MAP in all future projections.  
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Table 7. 13-model ensemble projected means of mean annual temperature (MAT; °C) and mean annual 

precipitation (MAP; %) by the 11 IPCC regions (Figure 1) and AF (continental average) for the future 

scenarios; SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. See Table 6 for region abbreviations. 

Change in MAT (%) 

  ssp126   ssp245   ssp370   ssp585 

Region 2030s 2050s 2080s  2030s 2050s 2080s  2030s 2050s 2080s  2030s 2050s 2080s 

ARP 1.6 2.3 2.2  1.6 2.7 3.5  1.6 3.1 4.8  1.7 3.5 5.7 

CAF 1.1 1.6 1.7  1.1 2.0 2.7  1.1 2.4 3.9  1.1 2.5 4.4 

ESAF 1.2 1.7 1.8  1.2 2.2 2.9  1.2 2.6 4.1  1.3 2.8 4.8 

MDG 1.0 1.4 1.4  1.0 1.7 2.3  1.0 2.0 3.2  1.0 2.2 3.8 

MED 1.6 2.2 2.2  1.6 2.6 3.3  1.6 2.9 4.5  1.7 3.3 5.3 

NEAF 1.1 1.7 1.7  1.1 2.0 2.7  1.1 2.3 3.7  1.1 2.6 4.4 

SAH 1.6 2.2 2.2  1.7 2.7 3.5  1.7 3.2 4.9  1.7 3.5 5.7 

SEAF 1.1 1.6 1.6  1.1 2.0 2.6  1.1 2.3 3.6  1.1 2.5 4.2 

WAF 1.1 1.7 1.7  1.1 2.0 2.7  1.1 2.3 3.8  1.1 2.6 4.5 

WCA 1.8 2.5 2.5  1.8 2.9 3.8  1.8 3.3 5.1  1.9 3.8 6.1 

WSAF 1.3 1.8 1.9  1.3 2.3 3.1  1.3 2.7 4.4  1.3 3.0 5.1 

AF (Avg) 1.3 1.9 1.9  1.3 2.3 3.0  1.3 2.6 4.2  1.4 2.9 4.9 

                

Change in MAP (°C) 

  ssp126   ssp245   ssp370   ssp585 

Region 2030s 2050s 2080s  2030s 2050s 2080s  2030s 2050s 2080s  2030s 2050s 2080s 

ARP 26 34 25  26 34 43  25 43 64  30 50 73 

CAF 9 10 7  10 11 12  9 14 22  10 17 25 

ESAF -6 -8 -10  -6 -10 -12  -4 -11 -15  -4 -11 -17 

MDG -6 -8 -8  -5 -8 -10  -5 -9 -13  -6 -11 -14 

MED -4 -8 -10  -3 -12 -16  -5 -13 -22  -5 -15 -27 

NEAF 17 28 27  17 28 39  17 34 58  20 42 71 

SAH 22 20 14  24 20 22  23 30 36  24 31 35 

SEAF 5 7 6  5 8 11  5 10 18  5 12 21 

WAF 10 10 5  12 9 10  9 13 20  12 15 23 

WCA 8 10 4  8 7 9  7 11 19  9 13 20 

WSAF -6 -12 -13  -7 -13 -16  -5 -13 -21  -7 -16 -24 

AF (Avg) 7 8 4   7 7 8   7 10 15   8 12 17 

 

The cluster analysis and visual maps of the 13 models and ensemble mean indicated spatial 

similarity and difference of projected seasonal changes in minimum temperature (Tmin), 

maximum temperature (Tmax), and precipitation across the African continent for the winter 

(DJF) and spring (MAM) seasons during the period 2041-2070 (2050s) under the SSP2-4.5 

scenario (Fig 10). The temperature projections (Tmin and Tmax) indicated a consistent increase 

across the continent, with higher changes predominantly in northern and southern Africa during 
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winter, and pronounced increases in Tmax, along with substantial increases in Tmin, in central 

and eastern Africa during spring. The precipitation projections, which are log-scaled to highlight 

proportional changes, show regions with both positive and negative changes. In winter, notable 

decreases in precipitation are observed in parts of northern Africa, while central regions see 

increases. During spring, similar mixed patterns are observed, with significant increases in 

precipitation in some areas of central and eastern Africa. All models exhibited somewhat similar 

patterns for precipitation albeit different magnitudes. The largest disparities between models was 

observed in the temperature variables. CanESM5 and UKESM1-0-LL projected the highest 

magnitude of temperature increase across the continent in both seasons. On the other hand, MPI-

ESM1-2-HR, INM-CM5-0, MRI-ESM2-0 and MIROC6 projected declining temperature 

changes in both seasons especially in the central and southern parts of the continent.    

In eight selected models (nine, including high sensitivity UKESM1-0-LL), the KKZ algorithm 

systematically selected models recommended for each region and the continent (AF) based on 

capturing the range of multivariate climate changes projected by the ensemble Table 8. The 

KKZ subset selection was ordered starting with the model closest to the ensemble centroid and 

the second model furthest away from the first model selected. The third and all subsequent 

positions were selected based on their distances from the previous model. For example for the 

WSAF, the first model closest to the ensemble centroid is EC-Earth3, the second model in the 

subset is UKESM1-0-LL that lies farthest away from the first model and the third is MIROC6 

that has the maximum value of the assigned distances of the remaining models to the selected 

models and so on (Fig 11). All the regions had different orders of the ensemble subset members. 
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Figure 10: Models are structured by a cluster dendrogram showing spatial similarity in the 

projected seasonal changes for Tmin, Tmax and precipitation in winter (DJF) and spring (MAM) 

in the period 2041-2070 under (SSP2-4.5). The maps illustrate the visual changes across the 

African continent for this period. Precipitation is log-scaled to provide proportional magnitude of 

positive and negative changes 
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Table 8: Subsets of the projections with optimal representation variation in climate change projections for a 

given subset size according to, including additional selection criteria from Mahony et al. (2022). For example, a 

4-model ensemble for the ARP region would include CNRM-ESM2-1, UKESM1.0-LL, EC-Earth3 and, MPI-

ESM1.2-HR. Users may choose to exclude the extreme projections of UKES as well. See the Table 6 caption for 

region abbreviations. 

Subset 

size 
IPCC reference region  

ARP CAF ESAF MDG MED NEAF SAH SEAF WAF WCA WSAF AF 

Including UKESM1-0-LL  

1 CNRM GISS EC CNRM CNRM GISS CNRM CNRM CNRM CNRM EC CNRM 

2 UKES UKES UKES UKES UKES UKES UKES UKES MPI UKES UKES UKES 

3 EC MPI MPI MPI EC MIR MPI MPI UKES EC MIR MPI 

4 MPI EC MIR MIR MPI ACC EC MIR EC MPI CNRM GFDL 

5 MRI MIR CNRM GISS GISS GFDL MRI EC GFDL GFDL GISS ACC 

6 ACC ACC GISS ACC MRI MRI ACC GISS MIR MIR MRI EC 

7 GISS GFDL MRI MRI ACC EC GISS MRI GISS ACC GFDL MIR 

8 MIR CNRM ACC EC MIR MPI MIR GFDL ACC MRI MPI GISS 

9 GFDL MRI GFDL GFDL GFDL CNRM GFDL ACC MRI GISS ACC MRI 

Excluding UKESM1-0-LL  

1 GISS MRI GFDL MRI CNRM GISS CNRM GFDL GISS MRI GFDL GISS 

2 EC MPI CNRM ACC EC MIR MPI ACC MPI EC CNRM MPI 

3 MRI ACC MPI MIR MPI ACC EC MIR EC MPI MIR ACC 

4 MPI MIR MIR CNRM GISS GFDL MRI MPI ACC MIR GISS MIR 

5 ACC EC GISS GISS MRI MRI ACC EC MIR ACC EC MRI 

6 CNRM GFDL EC MPI ACC EC GISS MRI CNRM GFDL MPI EC 

7 GFDL CNRM ACC EC MIR MPI MIR CNRM GFDL CNRM MRI CNRM 

8 MIR GISS MRI GFDL GFDL CNRM GFDL GISS MRI GISS ACC GFDL 
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Figure 11: Illustration of the selection process by the KKZ algorithm for the region of west-

southern Africa (WSAF) as an example. The first model is selected based on the ensemble 

centroid in multivariate space, represented here as principal component scores of climate 

variables (a). The four quadrants (brown labels in panel a) represent primarily temperature 

gradients (PC1) and precipitation gradients (PC2), with the corresponding variable loadings of 

the PCA provided in Table 9.The panels (b) to (d) show the sequential selection of additional 

scenarios to optimally represent uncertainty with given a minimum number of scenarios, where 

the multivariate Mahalanobis distances are shown with red numbers.  
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Table 9: Variable loadings of the PCA plots in Figure 11. Seasonal variables are for winter (wt; 

DJF), spring (sp; MAM), summer (sm; JJA) and autumn (at; SON) for the minimum monthly 

temperature (Tmin), maximum monthly temperature (Tmax), average monthly temperature 

(Tave) and precipitation (prec). Monthly maximum and minimum temperature for January to 

December were also used for the ordination.  

Seasonal variables   
Maximum monthly 

temperature   
Minimum monthly 

temperature 
  PC1 PC2     PC1 PC2     PC1 PC2 
Tmin_wt 0.17 0.04  Tmax_1 0.16 0.12  Tmin_1 0.17 0.03 
Tmin_sp 0.17 -0.05  Tmax_2 0.16 0.23  Tmin_2 0.17 0.06 
Tmin_sm 0.15 -0.28  Tmax_3 0.16 0.20  Tmin_3 0.17 0.03 
Tmin_at 0.17 -0.14  Tmax_4 0.17 0.14  Tmin_4 0.16 -0.02 
Tmax_wt 0.17 0.19  Tmax_5 0.18 -0.01  Tmin_5 0.16 -0.17 
Tmax_sp 0.17 0.11  Tmax_6 0.17 -0.03  Tmin_6 0.14 -0.23 
Tmax_sm 0.17 -0.05  Tmax_7 0.17 -0.08  Tmin_7 0.14 -0.33 
Tmax_at 0.16 0.07  Tmax_8 0.16 -0.03  Tmin_8 0.15 -0.25 
Tave_wt 0.18 0.12  Tmax_9 0.16 0.08  Tmin_9 0.16 -0.18 
Tave_sp 0.18 0.05  Tmax_10 0.14 0.03  Tmin_10 0.17 -0.15 
Tave_sm 0.17 -0.15  Tmax_11 0.16 0.10  Tmin_11 0.16 -0.09 
Tave_at 0.17 -0.04  Tmax_12 0.16 0.21  Tmin_12 0.17 0.03 
Prec_wt -0.04 -0.30         
Prec_sp -0.13 -0.21         
Prec_sm -0.08 -0.29         
Prec_at 0.06 -0.23                 
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5. Discussion 

The results from neural network fine-tuning applied to thin-plate spline interpolation suggests 

that the approach can capture additional local climate patterns that may not be optimally 

represented by standard interpolation techniques alone (Fig. 12).  

(a) Neural network prediction (this study)             (b) Google Earth satellite image 

   

(c) WorldClim                                  (d) CHELSA - Downscaled AOGCM         

        

Figure 12: Comparison of interpolated climate grids for January precipitation, fine-tuned with 

neural networks from this study (a), with a Google Earth satellite image (b) and other popular 

and well-regarded data products: WorldClim (c), CHELSA (d). Weather station data is 

represented by open circles with fill values on the same scale as the climate interpolations. 
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In this example for January precipitation, the patterns of dense vegetation on windward (south 

east) facing slopes very closely track precipitation patterns (e.g., Fig 12 a versus 12 b). There is a 

distinct confinement of forests to areas where precipitation is predicted to be highest, just below 

the ridges, and a sharp onset of rain shadows (and lack of vegetation) beyond the ridge line on 

the leeward facing slope. Note that in January, southward facing slopes do not receive high 

precipitation, but they do in other months, accounting for small discrepancies between forest 

cover and high values of precipitation in this example.  

The widely-used WorldClim dataset (Fick & Hijmans, 2017) models climate variables as a 

function of latitude, longitude and elevation, which is certainly is a good approximation of 

precipitation patterns, but forces elevation gradients on variables that do not always reflect 

weather station records (Fig 12 c). The CHELSA v2.1 dataset (Karger et al., 2017), which 

downscales the re-analysis product ERA5 has improved representation of precipitation induced 

on windward facing slopes, but it does not quite capture the maximum orographic precipitation 

just below mountain ridges, and the rapid onset of rain shadows on the leeward slopes (Fig. 12 

d).  

Similarly, temperature variables are influenced by the vicinity of large water bodies, which 

interpolation methods cannot always predict correctly if there are not enough weather stations to 

allow modeling of the temperature gradient from near the shoreline to further inland. This is 

similar to findings by Attorre et al. (2007), who tested multiple interpolation methods including 

neural networks for a small region in Europe, and Alsafadi et al. (2023), who highlights the 

importance of using covariates to obtain more realistic representation of climate patterns in 

complex terrain.  

The relatively minor adjustments that the neural network generated for temperature variables 

suggest that thin-plate spline interpolation already provides a close approximation for these 

variables. However, the neural network's refinements still add value by making subtle 

improvements primarily based on distance to water bodies, especially oceans, as well as 

elevation and hill shades in north-south direction.  The effect of large water bodies on 

temperature and a buffering effect on the diurnal range of Tmin and Tmax, as observed in this 

study, are well known from other research as well (e.g., New et al., 1999). The high importance 
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of positional covariates such as latitude, longitude, and elevation indicates that the adjustments 

are not universally applied to the entire continent, but that the magnitude of the effects varies 

with location and elevation.  

The independent evaluation of the interpolated climate grids for the 1961-1990 normal period 

provide a realistic expectation of typical errors for monthly temperature variables (1 to 1.3°C) 

and monthly precipitation variables (approximately 15 mm on average), based on the mean 

absolute error (MAE) statistic (Table 5). The additional downscaling by the ClimateAF software 

through lapse-rate based elevation adjustments markedly enhances the accuracy of climate 

estimates as well, with remaining errors in temperature variables ranging from 0.2 to 0.5°C. 

Because these statistics are by necessity for a non-independent test, where all weather stations 

are used for the final grids to be incorporated into the ClimateAF software package, some of the 

improvements could be due to over-parameterization. However, we argue that this is unlikely to 

apply because of the following observations. The MAE statistics for precipitation in the 

independent checkerboard cross-validation approach (Table 5) do not change compared to the 

non-independent validation of the ClimateAF precipitation estimates (Table 6). This is a strong 

indication that the neural network tuned thin-plate spline interpolations are not an over-

parameterized model. Precipitation variables do not respond to physical lapse-rate based changes 

in elevation, thus there are no improvements (as in temperature variables), and the validation 

statistics remain identical even when all station data are used for both training and validation, 

which would not be expected if the model over-parameterizes. 

Another general observation on error statistics is that they diminish when averaged over longer 

time periods. Errors improve when comparing monthly, seasonal and annual variables (Table 6), 

which has also been observed by Mbogga et al. (2010) who noted that stochastic variation is 

evened out over longer time periods. Geographically, the precision of climate estimates varied 

significantly. Central and western Africa (CAF and WAF) showed the lowest percentage errors 

for seasonal precipitation, indicative of more stable and predictable climate patterns in these 

regions. Conversely, the Arabian Peninsula (ARP) and the Sahara (SAH) exhibited the highest 

errors, reflecting the inherent difficulty in modeling climates with extreme conditions and sparse 

data availability similar to findings by New et al. (1999), Fick and Hijmans (2017), Funk et al. 

(2015) and Novella and Thiaw (2013).  



 

50 

 

Accurate, high resolution estimation of climate variables in complex terrain has numerous 

applications in ecology, forestry, hydrology, agriculture and infrastructure studies. In North 

America and Europe, the ClimateNA and ClimateEU data packages and software front-end have 

been used for studies in the delineation of forest seed planning zones and assisted migration 

(Mekonnen et al., 2019; Sáenz-Romero et al., 2020; Wesselkamp et al., 2024), species 

distributions (Jarnevich et al., 2018; Illés & Móricz, 2022), climate adaptation (Lovell et al., 

2021), wildfires (Parks et al., 2018; Cansler et al., 2022; Parisien et al., 2023), ecosystem 

services (Schirpke & Ebner, 2022; Hu et al., 2023) among many other applications. Similarly the 

ambition of the ClimateAF database and software front end is to enable research of similar 

quality for the African continent. The neural network-tuned climate grids in the ClimateAF data 

package are qualitatively comparable to estimates from PRISM methodology (Daly 2008), which 

is also capable of modeling local weather patterns in complex terrain, but only available for 

North America and Europe (and incorporated in the ClimateEU and ClimateNA packages). 

Despite the ability of these software packages to estimate climate variables at any resolution, 

with meaningful accuracy improvements down to 250 m resolution in mountainous terrain, it is 

essential to recognize the general limitations of the data underlying the climate estimates 

provided by the software package. Although climate data can be produced at very fine 

resolutions, this data is ultimately based on interpolated information from standard weather 

stations that are typically located in open terrain (e.g. farms, fields, airports), and while the 

instruments are shaded, the stations are typically installed distant to positions that are 

topographically shaded or shaded by vegetation. As such all climate estimates represent those 

open field type conditions, even with adjustments made by neural networks based on topographic 

positions. The topographic position estimates are only modeled at the scale native to the model 

(2.5 arcminutes or approximately 4 km resolution). The only other useful information that the 

model predicts are temperature gradients along elevation gradients, up to a useful resolution of 

250 m in mountainous terrain (with a maximum of one decimal of numerical precision provided 

by the software).  

Therefore, it should be kept in mind that while the covariates used in the baseline grid layers 

improve local effects of large topographic features, the models do not account at all for micro 

site effects caused by vegetation, small water bodies, or other small-scale physiographic features. 
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As noted above, errors are also larger for estimates that are not averaged over longer periods. 

What was observed for monthly variables for the 1961-1990 period, that seasonal or annual 

summaries become more accurate, further extends to multi-year averages. Climate estimates for 

30-year normal periods are more precise than for decadal averages, individual historical years, or 

individual historical months, with the highest uncertainties associated with the latter. Further, 

regions in remote areas where the number of weather stations is limited such as the Sahara 

present larger errors and should be used cautiously. The same applies the further the predictions 

approach go back in time toward the beginning of the included time series data, 1901, where 

weather station coverage was sparse everywhere in Africa. The way that the data quality 

degrades in CRU-TS time series data is that in the absence of weather station records, the climate 

estimates gradually approach the 1961-1990 normals. This will become obvious to the user, 

when they plot time series data for a specific location. If no station data is available beyond a 

certain point back in time, the time series flat-lines for earlier years.  

For future projections, the 13 AOGCM model selected by Mahony et al. (2022) globally 

conserve the climate uncertainty of the larger group of CMIP6 models. The selected models had 

an average equilibrium climate sensitivity (ECS) of 3.7°C similar to the ECS of the larger 

CMIP6 group (Meehl et al., 2020). Ensemble means for projected MAT and MAP under the 

different SSPs and periods varied across all the regions. This highlights the need for region-

specific scenario selection (based on the provided Table 8) to capture the uncertainty inherent to 

future projections by general circulation models across the continent. If computational resources 

are limited, then users can still select a small number of projections (even two) to quantify 

uncertainties. One setback to using very small numbers of future projections is that it excludes 

high sensitivity models such as CanESM1 and UKESM1-0-LL, since they do not represent very 

likely outcomes. On the other hand, the use of high sensitivity models has been discouraged for 

the same reason: they may be outliers that do not represent likely future scenarios (for this 

purpose, representative scenarios can also be selected with outliers excluded (Table 8 second 

set). Lastly while the KKZ algorithm optimally captures the extent of climate variability for a 

given number of scenarios (Gudoshava et al., 2024), one note of caution is that strong auto-

correlation among a large set of variables may reduce the dimensionality of multivariate space in 

a way that weighs unique variables (that are not correlated to any other variables) 

disproportionally high when selecting representative scenarios (Seo et al., 2019). However, in 
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my analysis I used a balanced set of seasonal and monthly temperature and precipitation 

variables where this should not be a factor (also supported by relatively moderate and uniform 

variable loadings in Table 9). 

 

6. Conclusion 

In this study, I developed a high-resolution climate database for Africa, addressing the need for 

detailed and accessible climate data. To achieve this, I compiled a comprehensive monthly 

weather station database from seven global sources. I interpolated this weather station data to 

form climate surfaces using three-dimensional (latitude, longitude and elevation) thin-plate spine 

methodology for monthly precipitation and temperature variables for the 1961-1990 climate 

normal period at 2.5 arcminute resolution. I then fine-tuned the interpolation using neural 

networks and a number of covariates including topographic indices, windward distances to 

coasts and lakes at different resolutions to improve the representation of local climate patterns. 

These surfaces were cross-validated using the checkerboard method that reduces dependence of 

training and validation sets. The surfaces were integrated into ClimateAF software package 

(freely available at http://tinyurl.com/ClimateAF) to further downscaled climate surfaces using 

elevation adjustments to produce temperature estimates of higher accuracy and scale-free 

resolution (grids can be generated at any spatial scale by a user-provided digital elevation 

model). The surfaces were validated for Africa’s IPCC climate regions to assess region-specific 

accuracy of the layers. Finally I recommended a selection of CMIP6 models for each of the 

regions that best represents climate uncertainty while minimizing bias using the KKZ algorithm.  

The results demonstrated that the neural network fine-tuning approach is effective in capturing 

complex physiographical effects of local features and topography, providing more accurate 

climate surfaces compared to traditional methods. These are further downscaled in the 

ClimateAF software. In addition to these base layers, the software package provides over 24,000 

climate surfaces at different temporal scales for standard and bioclimatic variables from 1901-

2023, as well as CMIP6 future climate projections until 2100. The easy access of high resolution 

climate data through this software should make it a valuable resource for researchers in climate 

http://tinyurl.com/ClimateAF
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science, ecology, forestry and other fields as well as decision-makers to advance knowledge and 

climate adaptation efforts in Africa. 
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Appendix 

A. Initial thin-plate spline interpolation with binned weather station data 

 

### Training data with LAT LONG ELEV and climate VARiables 

dat1 = read.csv("weather_station_data.csv") 

head(dat1) 

nrow(dat1) 

 

 

### Aggregation by d degrees and m meter elevation bins 

d = 3 

m = 250 

dat1$LAT1 = round(dat1$LAT/d)*d 

dat1$LONG1 = round(dat1$LONG/d)*d 

dat1$ELEV1 = round(dat1$ELEV/m)*m 

data.frame(names(dat1)) 

dat2 = aggregate(dat1[,c("LONG","LAT","ELEV","VAR")],    

                 by=list(LAT1=dat1$LAT1, LONG1=dat1$LONG1,  

                 ELEV1=dat1$ELEV1), mean, na.rm=T) 

head(dat2) 

nrow(dat2) 

 

### Target grid in xyz triplet format with LAT LONG ELEV 

dat3 = read.csv("target_grid_as_xyz.csv") 

 

### Thin-plate spline interpolation 

library(fields) 

out1 = fastTps(dat2[,c("LONG","LAT","ELEV")], dat2$VAR,  

               lon.lat=T, aRange=2000) 

 

### TPS prediction on stations for neural network fine-tuning 

dat1$VAR_tps = round(predict(out1, dat1[,c("LONG","LAT","ELEV")]),1)  

head(dat1) 

 

### TPS prediction on target grid for visual checks  

dat3$VAR_tps = round(predict(out1, dat3[,c("LONG","LAT","ELEV")]),1)  

head(dat3) 

 

### Conversion to GIS-readable ascii grid 

library(remotes) 

install_github("cran/SDMTools") # requires RTools.exe install 

library(SDMTools) 

dataframe2asc(dat3[,c("LAT","LONG","VAR_tps")]) 
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B. Fine-tuning the thin-plate spline interpolations with a neural network 

 

### Requires separate installation of Anaconda with tenserflow-gpu. 

library (keras) 

use_condaenv('base', required=T) 

 

### Input data are vector of the dependent variable VAR (y_train) 

### and a matrix of scaled predictor variables (x_train), including 

### the main variables VAR_tps, LAT, LONG, ELEV and all covariates 

 

### Define neural network 

model = keras_model_sequential() %>% 

  layer_dense(units = 2048, activation = "relu", input_shape =                  

ncol(x_train), kernel_regularizer = regularizer_l2(0.01)) %>% 

  layer_dropout(rate = 0.2) %>% 

  layer_dense(units = 1024, activation = "relu") %>% 

  layer_dense(units = 512, activation = "relu") %>% 

  layer_dense(units = 256, activation = "relu") %>% 

  layer_dense(units = 128, activation = "relu") %>% 

  layer_dense(units = 64, activation = "relu") %>% 

  layer_dense(units = 32, activation = "relu") %>% 

  layer_dense(units = 16, activation = "relu") %>% 

  layer_dense(units = 1) 

 

### Compile neural network 

model %>% compile( 

  optimizer = 'adam', 

  loss = 'mean_squared_error', 

  metrics = c('mean_squared_error') 

  ) 

 

### Train the model 

history = model %>% fit(x_train, y_train,  

  epochs = 150,  

  batch_size = 32, 

# validation_split = 0.2, # only for development 

  verbose = 1) 

 

### Importance values 

library(DALEX) 

imp1 = variable_importance(explain(model, x_train, y_train)) 

plot(imp1) 

imp1 = data.frame(imp1) 

imp1 = aggregate(imp1[,3], by=list(variable=imp1$variable), mean) 

write.csv(imp1, 'Importance Values VAR.csv') 

 

### Predictions on target grid, which includes the same, identically 

### scaled predictor variables as in the x_train matrix 

pred1 = model %>% predict(target) 

   

 

 


