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Abstract

Heart disease is the second leading cause of death in Canada, where it affects the

lives of over two million people. One modality used to detect and diagnose heart

disease and other abnormalities is echocardiography or ultrasound imaging of the

heart. Ultrasound imaging, compared to other modalities has several advantages; it

is non-ionizing, portable, and cost-effective, and provides good spatial and temporal

resolution. It is crucial that the left ventricle must be analyzed in the case of cardiac

diseases. Metrics derived from analysis of the left ventricle provide an indication to the

clinician about the performance of the heart. However, the current clinical software

and methods available in the literature to analyze the left ventricle suffer from several

potential drawbacks. Geometrical assumptions may be made about the chamber, or

a large amount of manual interaction is required. In the case of supervised deep

learning neural networks, a training dataset may be required, which may be difficult

to obtain.

Therefore the goal of this thesis was to focus on the development of semi-automated

methods to delineate the endocardium of the left ventricle based on registration. The

methods developed do not require the use of training data, geometrical assumptions,

or prior knowledge about the image characteristics. The thesis focuses mainly on the

application to ultrasound sequences, with additional testing on MR sequences. In

particular, a semi-automated method has been developed with the use of a diffeomor-

phic registration algorithm to delineate the endocardial borders at end-diastole and

end-systole. This method was expanded to provide a segmentation over the full tem-

poral sequence of ultrasound images. Lastly, a 3D-to-3D diffeomorphic registration
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method was developed for segmentation, where the algorithm was able to capture the

full dynamics of the motion of the left ventricle over the cardiac cycle.

We have compared the proposed methods to other common registration packages

in terms of standard distance and clinical metrics. The results demonstrate the benefit

of using a diffeomorphic registration method for the segmentation of the left ventricle.
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Chapter 1

Introduction

1.1 Clinical overview and motivation

In this chapter, an overview is provided concerning the basic cardiac anatomy and

function. The basics of ultrasound (US) imaging are then touched upon, with a

focus on three-dimensional (3D) US imaging. This thesis then describes the use of

the US in evaluating and diagnosing cardiac function. Definitions of common clinical

metrics are provided, and an overview of software programs and methods employed for

diagnosis. The current challenges in cardiac image analysis are highlighted, and the

disadvantages of using 3DUS imaging, and issues in using clinical software packages.

1.1.1 Heart anatomy and function

Heart anatomy

The heart is the central part of the circulatory system and is a powerful muscle

designed to receive and pump blood throughout the body through various vessels.

The right side is responsible for receiving deoxygenated blood from the entire body,

and sending it to the lungs. The lungs oxygenate the blood and it returns to the

left side of the heart. The left portion of the heart is responsible for pumping the

oxygenated blood to the rest of the body [1].

The image in Figure 1.1 [2] displays the basic anatomy of the heart. Each side

of the heart consists of two chambers, the upper chambers known as the atria, and
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Figure 1.1: Basic anatomy of the heart [2].

the lower chambers, the ventricles. The deoxygenated blood is received from the

body through the inferior vena cava and the superior vena cava. Blood then flows

through the right atrium into the right ventricle which pumps blood to the lungs.

The lungs oxygenate the blood, and the oxygenated blood enters the heart through

the pulmonary veins, where it passes through the left atrium and mitral valve. The

left ventricle (LV) receives the oxygenated blood and pumps it through the aortic

valve and the aorta to the rest of the body [1].

The heart itself is comprised of three layers of tissue. The outermost layer is the epi-

cardium, the middle is the myocardium and the innermost layer is the endocardium.

The myocardium is the thickest muscular layer, responsible for pumping the blood.

Cardiac function and cycle

An electrocardiogram (ECG) is used to monitor and assess the heart’s electrical ac-

tivity over a specific amount of time. The use of the ECG offers a quick, non-invasive
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Figure 1.2: An example of an ECG wave [4].

method of determining the heart’s rhythm. It is especially useful in aiding in the

detection and diagnosis of a heart attack [3, 4]. The ECG can observe the small

changes in electrical activity.

1.1.2 Ultrasound imaging

Echocardiography or US imaging is a non-invasive modality often used for the assess-

ment of cardiac function. US imaging offers multiple advantages compared to other

available modalities. One of the significant advantages is that there is no use of ion-

izing radiation, a disadvantage of cardiac catheterization or computed tomography

(CT), which allows for repeated scans during a short time interval. Secondly, the US

machine is extremely portable, and can be used in any area of a hospital, and also

in outpatient and remote settings. Along with portability, echocardiography is also a

cost-effective modality [5].

US imaging of the heart consists of both two-dimensional (2D) imaging and 3D

imaging over time. There are several advantages of using the 3D modality compared

to the traditional 2D approach. One vital difference is that with 3D imaging, fore-

shortening does not occur, which is when the plane of the US probe does not pass

directly through the actual apex of the heart [6]. The presence of foreshortening

could cause an underestimation of the LV volume, as the distance from the perceived
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Figure 1.3: An example of foreshortening in the 4-chamber view that can occur with
use of a 2DUS probe [7]. The blue plane is capturing the true apex, while the yellow
plane is foreshortened.

apex to the base is smaller. Figure 1.3 displays an example of foreshortening in a

4-chamber view, where the blue plane is capturing the actual apex of the heart, and

the yellow plane is causing foreshortening.

Another significant advantage of employing 3DUS is that the modality does not

employ assumptions about the shape and geometry of the LV unlike with 2D imaging

[6, 8]. Many analysis methods that rely on 2DUS imaging require a geometrical model

for the LV, which may not be appropriate in representing the anatomy of all patients.

Regional wall motion analysis and inspecting the wall thickness are crucial parts

of diagnosing disease in a patient. It can provide insight into specific areas of the

heart that are functionally abnormally. With 2D imaging, the sonographer may have

to modify the orientation of the transducer to observe a particular segment of the

myocardium. The use of 3DUS allows for a much larger volume to be captured [8].

Apart from regional analysis, 3DUS enables the ability for valves to be analyzed and

characterized [8].
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There are a few disadvantages of using 3DUS compared to 2D. One is the slightly

lower temporal and spatial resolution [8–10]. Another disadvantage is the presence of

artifacts, which also occur in 2D conventional imaging [11]. These artifacts include

speckle noise, which is a type of noise due to the nature of US imaging. It is caused

by the fact that the echoes from the transmitted waveform interact with each other

[12]. Depending on the method used for capturing the ultrasound data, stitching

artifacts may also be present [9, 10]. Another disadvantage is the inability to capture

the entire cardiac structure in one imaging plane or volume. One way to remedy this

is to use a wide sector angle or to employ fusion techniques to combine information

from multiple US volumes [13].

The benefits and advantages of the use of 3DUS outweigh the few drawbacks for

performing LV global and regional analysis. 3DUS allows for the complete motion

analysis of the LV without using geometric assumptions concerning the shape. 3DUS

also ensures that the entire LV is captured without the possibility of foreshortening.

1.1.3 Evaluating cardiac function using ultrasound imaging

US imaging allows for the diagnosis and detection of cardiac-related diseases and

abnormalities. With specialized clinical software, a cardiologist can obtain specific

metrics derived from the volume sequence.

Clinical metrics

Several standard clinical metrics are employed for the diagnosis of various cardiac

diseases. The end-diastolic volume (EDV) is the volume of blood inside the LV when

it is the largest (at the end of the diastolic phase), and the end-systolic volume (ESV)

is the volume of the LV when it is contracted (at the end of the systolic phase). Two

metrics can be calculated from these values, the stroke volume (SV) and the ejection

fraction (EF).

At the end of the systolic phase of the cardiac cycle, the blood present has been
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ejected into the aorta from the LV. From there, the blood will leave the aorta to

supply the body with oxygenated blood. The SV is the difference between the EDV

and the ESV [14] as expressed by (1.1):

SV = EDV − ESV (1.1)

The cardiac output can be calculated by multiplying the SV with the heart rate,

where a low value indicating that the heart is failing to pump enough blood each time

it beats.

One method used to measure the efficiency of the heart at pumping blood is to

report the EF. The difference between the EDV and the ESV is first calculated and

then divided by the EDV by (1.2):

EF =
EDV − ESV

EDV
× 100% (1.2)

The result is reported as a percentage that indicates how much blood the LV pumps

out with each beat. A low EF would indicate that the heart is unable to pump out

enough blood, indicating a potential problem with the LV.

Measuring the volume of the LV for each frame in the cardiac cycle can also be

performed. The general shape of the volume curve in systole and diastole can aid the

clinician in identifying potential diseases. Figure 1.4 gives an example of a volume

curve obtained from a patient that was analyzed by a cardiologist using the TomTec

Arena software (TomTec Imaging Systems, Unterschleissheim, Germany).

Clinical software overview

Cardiologists and other clinicians use several clinical software packages to aid in the

diagnosis of the LV. I will focus on three algorithms from different software packages.

One performs an implementation of Simpson’s biplane method, a commonly used ap-

proach for obtaining a segmentation for the ED and ES phases. Another method uses

a traditional speckle-tracking approach to perform segmentation over the complete
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Figure 1.4: An example of a volume curve from the TomTec clinical software, obtained
using 3D speckle tracking over the cardiac cycle [15].

cardiac cycle. The last method utilizes a model of the heart along with artificial

intelligence to analyze the LV.

Simpson’s biplane method One standard clinical software is TomTec Arena

(TomTec Imaging Systems, Unterschleissheim, Germany), in which Simpson’s biplane

method is implemented as part of the AutoLV software. In the original Simpson’s bi-

plane algorithm, the user manually traces the endocardial borders in two orthogonal

slices. The two orthogonal slices can be obtained from 2D echocardiography or 2D

slices obtained from a 3D dataset. These orthogonal slices are the apical 2-chamber

the 4-chamber view. Once the borders are traced, ellipsoidal discs are automatically

created from the apex to the base, and the volume of each is computed and summed.

The AutoLV software automatically delineates the endocardial borders instead of re-

lying on manual segmentations as demonstrated in Figures 1.5 and 1.6. This process

is repeated for the ES volume, and the final measurements of this algorithm include

the EDV, ESV, and EF.

Speckle tracking method TomTec Arena also implements a method for obtaining

a delineation of the LV over the full cardiac cycle using speckle tracking, a method

that examines the tissue motion by analyzing speckle patterns. The individual steps
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Figure 1.5: Automated delineation of the LV with ellipsoidal discs generated between
the apex and base. These discs are summed to obtain the volume of the chamber
[15].

Figure 1.6: The ellipsoid discs created between the apex and the base of the LV [15].
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are displayed in Figure 1.7. The clinician first identifies the apex and the mitral valve,

and the LV is aligned vertically according to these two points. A rough estimation of

the endocardial borders is automatically produced for the ED and ES frames, where

the clinician has the opportunity to adjust them. Tracking (using a speckle tracking

method) is then initiated and revised if necessary. The final results include volumetric

measurements, regional analysis, and metrics concerning the strain [15].

(a) Initial manual alignment of the LV (b) Beutel (contour) revision

(c) Tracking revision (d) Final results produced

Figure 1.7: The process for semi-automated delineation of the LV endocardium across
the cardiac cycle using the TomTec Arena software [15].

Philips Dynamic HeartModel Philips has developed a set of algorithms based on

artificial intelligence [16], to perform a thorough cardiac assessment. The heart model

developed by Philips to inform the segmentation process on a new patient is displayed

in Figure 1.8. The model was trained and developed using 1,000 echocardiography

images from a dataset with a variety of factors including differences in image quality,

the shape of the heart, and the size. It can be seen that all chambers are analyzed
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Figure 1.8: Dynamic HeartModel developed by Philips [16].

within this model of the heart. The clinical workflow consists of a series of steps

to perform the full cardiac assessment, as demonstrated in Figure 1.9. Within a 3D

volume, a standard apical 2-chamber and 4-chamber view are automatically detected

to localize the heart. Chamber alignment is then performed on a finer scale to obtain

a more accurate orientation and position of the particular chamber’s model. On the

following finer scale, regional alignment is performed where the borders of the model

and adjusted to align closely with the underlying image.

Disadvantages of methods in current clinical software One drawback of

Simpson’s biplane method from TomTec Arena is the assumption that is made about

the shape of the LV. Ellipsoidal discs are created between the delineations of two

orthogonal contours. For patients with severe abnormalities or other cardiac-related

issues, the ellipsoidal discs may not capture the true geometry of the LV. Speckle

tracking faces several challenges [17], such as the need for a good acoustic window is

necessary, as well as datasets of high image quality. For artificial intelligence methods,

it is vital to employ the use of a dataset that is comprehensive and varied, in order

to adapt to a wide variety of patients. With the Dynamic HeartModel model-based

segmentation method, it may not adapt to a patient’s heart that contains substantial

structural differences. This may be an issue for patients that suffer from congenital
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Figure 1.9: Clinical workflow using Dynamic HeartModel from Philips [16].

heart diseases.

1.2 Thesis contributions

An overview is provided of the contributions in this thesis within the field of medical

image segmentation and registration for cardiac image analysis.

3D spatial segmentation in ultrasound volumes

This thesis proposes a 3D segmentation algorithm to be used for semi-automated

delineation of the endocardium of the left ventricle in ultrasound volumes. A 2D

diffeomorphic algorithm is used to perform spatial registration on a set of angular

slices that pass through the axis of the chamber. Providing an initial set of two

contours allows the algorithm to generate a dense set of contours that capture the

various patients’ cardiac anatomy.

3D temporal segmentation in ultrasound volumes

Further development to the 3D spatial segmentation algorithm was performed by

applying it to the left ventricle segmentation for the entire cardiac cycle. The delin-
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eation of the chamber over the complete cardiac cycle enables cardiologists and other

clinicians to perform a full diagnosis of a patient.

3D-to-3D diffeomorphic registration algorithm

I propose a 3D-to-3D diffeomorphic registration algorithm that can be used to capture

the actual cardiac motion across the complete cycle. Starting with a delineation of

the end-diastolic and end-systolic frames, the method can automatically generate

a segmentation of the rest of the frames in the cardiac cycle. The method allows

for setting constraints that control the amount of deformation, resulting in plausible

displacements for cardiac tissue.

1.3 Thesis overview

For the subsequent chapter, previous works in the literature are presented in ar-

eas of cardiac image registration, as well as segmentation for the end-diastolic and

end-systolic frames and over the complete cardiac cycle. The focus is on traditional

methods as well as newer machine learning (deep learning) approaches. Chapter 3

presents a 3D spatial segmentation algorithm that is used to segment the left ventricle

at end-diastole and end-systole. A 2D diffeomorphic registration algorithm is used

to perform semi-automated segmentation of the endocardium of the left ventricle. I

evaluate the approach on a public set of ultrasound scans at end-diastole and end-

systole against nine other segmentation methods. Chapter 4 presents a 3D temporal

segmentation algorithm that extends the previous formulation. The method was eval-

uated on patients from the local hospital against publicly available software packages

for registration. Chapter 5 presents a 3D-to-3D registration method that can capture

the true cardiac motion over a complete cycle. The proposed method is compared

against publicly available software packages for registration methods for both mag-

netic resonance imaging (MRI) and ultrasound sequences. In the last chapter, the

work performed for this thesis is summarized, and future work and limitations are
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discussed.
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Chapter 2

Background

2.1 Image registration overview and methods in lit-
erature

2.1.1 Basics of image registration

Image registration is the process of aligning two or more images or volumes to each

other, where it is used in a wide variety of medical imaging applications. For instance,

in radiotherapy applications, multi-modality registration is often used, where CT is

used as the primary modality to obtain the necessary information for dose calculation

and must be registered to an MRI scan which is used for the delineation of the

anatomical substructures [18]. In brain imaging, regions of interest (ROIs) are often

created by clinicians to delineate white and gray matter substructures. The process

can be time-consuming, and therefore atlases are created to represent the average

brain, which is then registered to the patient’s brain and the deformation fields applied

to the substructures to obtain the patient ROIs [19]. Image registration can also be

used in the temporal domain, where patients are registered to detect anatomical

differences and changes over time.

The examples provided demonstrate the usefulness of medical image registration

for a wide variety of problems. Image registration itself can be used to optimize for

several different types of transforms using a minimization process of a dissimilarity

metric between the two images or volumes. One type of transform that can be solved
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for is a rigid transform, consisting of scale and rotation parameters. This can be

extended to affine transforms, which can represent scale, rotation, similarity, shear,

and translation.

When capturing cardiac motion over the cycle, it is crucial to use a specific class

of transforms known as deformable transforms [20]. The heart is a highly dynamic

structure whose anatomy varies across patients and can suffer from significant struc-

tural changes. Therefore, it’s crucial to use deformable transforms, capturing the

non-linear changes in the images. Methods for cardiac image registration that use

deformable techniques are discussed in the following section.

There are several specific reasons as to why cardiac image registration is performed

[21]. One of the most important reasons is for image segmentation, where many of

the typically used cardiac indices require the delineation of the endocardium, my-

ocardium, or epicardium. This delineation process is time-consuming for clinicians

to perform. Therefore image registration is used to extract these segmentations in a

faster and more time-effective manner. Often image registration is performed to align

the volumes, and the deformation fields are applied to an initial set of contours from

a single frame.

During cardiac image acquisition, respiration causes the patient’s body to move.

Gating or synchronization to the heartbeat and/or respiration cycle is often used

to obtain a set of volumes. Unfortunately, misalignment of the volumes may still

occur. Motion artifacts may also occur because of unwanted patient movement. To

perform an accurate analysis of the patient over time, the volumes must be aligned

to a common reference frame. Therefore image registration is used to perform this

alignment.

Image fusion is the process of combining information from multiple scans to increase

the field of view (FOV) of the heart. This is often performed as the entire heart may

not visible within the obtained scan. To align the multiple volumes and observe the

relevant structures, image registration is often employed.
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2.1.2 Cardiac ultrasound image registration in literature

Several approaches have been developed for computing the deformation fields that

capture the motion of the LV in echocardiography sequences. A large portion of

these methods performs registration to capture 3D strain information, providing in-

sight into the regional myocardial function. Other approaches focus on applying the

deformation fields delineate the LV over time, where the segmentation can be used

to obtain volumetric information.

In the past, tagged MR sequences were used for strain analysis [22]. US is now

preferred as the spatio-temporal resolution is higher and the cost is lower. Therefore

3DUS has been adopted to perform strain analysis.

We divide the methods for US registration of the LV into three main areas [23].

The first is intensity-based, where methods such as elastic registration are discussed.

The second registration area includes regularization model-based methods, where

free-form deformation approaches and extensions are applied. Lastly, current deep

learning methods for capturing the LV motion are discussed.

Intensity-based methods

One of the early methods relies on intensity-based spatio-temporal registration using

an elastic approach to measure the strain [22]. In particular, a B-spline transformation

model is employed, and mutual information is used as the similarity metric. A multi-

resolution approach was used, along with regularization to enforce the smoothness of

the deformation field.

In another study, a non-rigid registration technique using the spherical coordinate

system was proposed [24]. The authors developed a new similarity metric based on a

derivation from the maximum likelihood formulation, where the new metric incorpo-

rates the actual physical properties of the US volume. The measure assumes that the

speckle noise is blurred and that the Rayleigh noise in the two images being registered

is correlated. Instead of using the US images that clinicians use for diagnosis, the
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data from the previous step of image formation, the envelope-detected image in the

spherical coordinate system was used. One advantage of using the envelope-detected

image is that there is less information loss which comes from converting the data to

Cartesian coordinates and avoiding interpolation.

Regularization model based methods

A registration technique using an anatomical free-form deformation model has been

developed [25]. One disadvantage of using the B-spline transformation model is that

the control points for the B-spline are defined in Cartesian space on a rectangular

grid [22]. This formulation may not be optimal as the spatial smoothness criteria

are not enforced in directions (e.g. radial) appropriate for cardiac images. Therefore

the proposed method incorporates the use of basis functions that are aligned in the

radial, longitudinal and circumferential directions with respect to the endocardium.

This formulation more closely follows the actual motion of the heart.

An extension was proposed in [26] based upon [25], which incorporates the use

of volume conservation in addition to the already established anatomical free-form

deformation model. The myocardium has been shown to be close to incompressible,

a property that can be exploited when modeling the deformation fields. One method

of enforcing volume preservation is to observe the Jacobian determinant, where com-

pression occurs if the determinant is less than 1, and expansion occurs if the value is

greater than 1. For the myocardium, the value of the Jacobian determinant should

be equal to 1 for volume preservation to hold.

A temporal diffeomorphic free-form deformation algorithm was proposed to assess

both the motion and strain of the LV [27]. B-spline kernels are employed in both

a spatial and temporal manner to represent the velocity in 3D+time data. The

objective function that is minimized is comprised of both an image similarity term

as well as a regularization term, where the sum of squared differences is used as the

image similarity. For the regularization, a term representing the constraint on the
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incompressibility of the myocardium is employed.

The diffeomorphic free-form deformation methods [27] was extended by [28]. A

new similarity metric that incorporates the underlying physics of the US volumes

was proposed. The similarity metric used previously in [27] was the sum of squared

differences, which was used to compare the first frame to the subsequent frames.

In the proposed method, this was then combined with another metric computed for

adjacent frames that are based on the property that speckle noise is correlated [29].

A temporal sparse free deformation method was proposed using concepts of com-

pressed sensing to employ the use of a sparse representation [30]. Sparsity is included

in the formulation of the deformation field as part of the L1 regularization process.

One current issue with using the classic free-form deformation method is that it may

be unable to capture deformations that occur locally that are discontinuous. This

is because of the control points and spacing used in the formulation, where a coarse

spacing likely cannot capture these particular deformations. However, using a finer

grid spacing increases the complexity of the optimization problem. Therefore, the

benefit of using a sparse representation is that local and global deformation can be

modeled without compromising on accuracy and robustness. This methodology was

extended to perform temporal sparse free-form deformations.

Another method for registration involves the use of a diffeomorphic motion es-

timation approach applied temporally [31]. The significant difference between this

method and others is that the velocity field is optimized instead of optimizing the

displacement field. A new similarity function was developed known as the intensity

consistency error, where multiple time points are used instead of only evaluating the

deformation field between a pair of frames. The pairwise frame comparison using

both adjacent frames and the reference to subsequent frames are combined. Since

multiple successive frames are used to estimate the velocity field, there is increased

smoothness in the temporal direction.
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Deep learning-based image registration methods

One method that is often used for motion estimation in an echocardiography sequence

is speckle tracking. Unfortunately, this method may result in poor tracking of the LV

because of image artifacts or issues inherent to US imaging. Therefore many methods

have been developed to overcome the issues of speckle tracking by the inclusion of

regularization. A method to perform jointly spatial and temporal regularization by

representing the motion field in terms of dictionaries was proposed [32]. In partic-

ular, sparse dictionaries were employed. This method was then extended by [23] to

use deep learning techniques for strain analysis. A feed-forward neural network was

used in order to perform regularization jointly in the spatial and temporal domain.

Specifically, a multi-layer perceptron was used to learn this particular regularization

function.

2.2 3D segmentation methods in literature

Several approaches exist in the literature for performing 3D segmentation of the LV

in 3D echocardiography volumes. These methods can be divided into three main

areas, the traditional methods, machine learning methods (non-deep learning-based)

and those based on deep learning.

2.2.1 Traditional methods

Graph cuts, level sets, and other variational methods

A semi-automated graph cuts-based method to perform the 3D segmentation of the

endocardium of the LV was proposed [33]. The first step is to convert the image

volume from the Euclidean space to the spherical-cylindrical space, by selecting the

base, the apex, and the hinge points of the mitral valve. This enforces the U-shaped

prior necessary for the segmentation. Next, the graph cuts algorithm is employed

to perform the endocardial wall segmentation, where a data term and a smoothness
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term are used. The goal of the data term is to ensure that the endocardial center line

previously defined by the user is on voxels that have a large gradient value (at the

apex and base). The smoothness term ensures the surface that is formed is smooth

and that there are no significant discontinuities. After graph cuts are employed, the

segmentation is converted back to the Euclidean space.

A graph cuts-based approach along with a radial symmetry transform was em-

ployed to delineate the LV [34]. The radial symmetry transform was first used to

transform the dataset into the cylindrical coordinate space. The method presented

is fully automatic and does not require any user input or initial models, such as in

the case of active shape models (ASM). The Fast radial symmetry transform is first

employed for the z slices for the apex and the base. The local maxima of the trans-

form is then determined for these two slices after removing maxima outliers, resulting

in a central axis for the ventricle. Each z plane or short axis slice is then converted

to the polar coordinates, where the final volume is in cylindrical coordinates. The

graph cuts algorithm is then used in the cylindrical coordinate system, and the final

segmentation result is converted to the Euclidean coordinate system for comparison

to the ground truth.

Random forest-based methods

A method using Hough-forests with the inclusion of appearance and shape informa-

tion was proposed for LV segmentation [35]. An advantage of using Hough-forests is

that, unlike statistical shape models (SSM), they do not require complex construction,

and initialization is also unnecessary. For preprocessing, the intensity histograms are

equalized, and two regions are defined: the foreground is set to be a band around

the ground truth, and the rest is considered to be the background. Random forests

are generally used for classification, while the Hough-forest uses a voting technique

to localize an instance of an object. Therefore, the use of segmentation and intensity

patches was included, enabling the Hough-forest to produce a segmentation contour.
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For training, each data point has associated features, as well as a segmentation patch

and an intensity patch, and a vector that gives information about the direction to-

wards the center of the LV. Each tree is then trained, which is split until leaf nodes

are created, and a termination criterion is fulfilled. For testing, the same features are

taken from the test volume and the forest is traversed until a leaf is reached.

Random forests have also been used employed to perform segmentation of the LV

[36]. Instead of using only two classes, the LV and the background, the proposed

method includes the myocardium and the mitral valve as additional classes. The

approach uses random forest classifiers with the auto context method [37]. The idea

of the auto context method is that first, a classifier can be learned on a set of training

image patches and their associated label maps. The class confidence maps produced

by the first classifier are used in conjunction with the original image patches to train

a secondary classifier. This is performed iteratively until it approaches the ground

truth.

Lastly, a semi-automated method based on structured random forests has been

developed for segmentation involving two steps [38]. The first step consists of gen-

erating possible boundary candidates to define the endocardial border of the LV. A

structured random forest (SRF) is used for each short-axis slice, where it detects po-

tential boundary candidates for the endocardium. The crucial difference between an

SRF and a random forest (RF) is that the SRF allows for a patch-by-patch approach

for prediction instead of pixel-by-pixel. Once the SRF is trained for each short-axis

slice for ED and ES, the second step involves the deformation of the surface model

deformation to a portion of the boundary candidates for each patient’s volumes.

Model based segmentation methods

The use of active appearance models (AAM) has been investigated for endocardial

segmentation [39]. AAMs often use principal component analysis (PCA) on training

data to generate an organ’s mean appearance and represent the shape and texture.
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They are particularly useful, especially for US data, as they can capture variations

that are often seen in the LV. AAMs often require a large amount of training data to

create the model, which may not be feasible. One method of addressing this is to use

a Jacobian-tuning method [40] which updates the Jacobian instead of keeping it fixed

throughout the iterations of forming the AAM. The approach of [39] was extended

in [41], where an AAM was also employed for segmentation. In another method,

separate models were created by the authors for the ED and ES frames, by using

a combination of the CETUS public dataset and a secondary dataset comprised of

previously acquired US volumes [41]. Experiments were performed to test the effect

of various initialization strategies by varying the center and the mean.

Shape models have been employed to detect both the endocardium and epicardium

boundaries [42]. A boundary fragments model (BFM) was used, which can represent

a particular object solely based on portions of the boundary. In contrast to other

methods, the purpose of the BFM is to model parts of the edges of the object, which

are then used for generating features for detection. The BFM finds the center and

the scale of the object of interest given a candidate edge map, performed by using a

boosted classifier.

A method known as the probabilistic data association filter was developed for

LV segmentation [43]. The user first provides an initialization of the LV in three

orthogonal planes, where a mesh is then formed using the technique of space carving.

Feature detection is then performed, where first an edge detector is employed. Patches

or middle-level features are then formed based on the initial detection. A model

estimation technique based on an extension of the PDAF is then used to divide the

points into whether or not they belong to the ventricle boundary.

A semi-automated method for delineation of the LV endocardial borders was de-

veloped [44]. A multi-scale quadrature filter is used to form a phase image of the US

volumes as a preprocessing step. This type of filter combines a ridge-picking filter

with an edge-picking filter, appropriate for highlighting the different areas of the LV
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(myocardium and blood pool). Applying this to US volumes results in the myocar-

dial region exhibiting a positive real value. In contrast, regions inside the blood pool

have negative real values, enhancing the ventricular borders. A model-based level set

method is then used to perform the endocardial segmentation. An SSM is used as

input for the level-set algorithm, where the user is required to initialize the model.

A method based on the use of a mesh model created using mean value coordinates

and then tracked using a Kalman filter was proposed [45]. A fully automated approach

was developed using this method. To create the reference mesh, the LV mesh of the

first subject at ED from the CETUS dataset was used. In order to perform the

deformation of the mesh, the mean value coordinates system is used. To perform

tracking, the state of the mesh is comprised of local and global parameters describing

the transformation. A Kalman filter is used to perform the prediction of the state of

the mesh.

Structured random forests along with an ASM have been used for endocardial seg-

mentation [46]. One common set of errors when using structured random forests is

that they may produce edge probability maps that are incorrect in some regions, such

as signal dropout areas. In those cases, a shape prior using ASM can help correct

implausible LV shapes. A structured random forest was trained on image patches

from the US volumes, and contextual information for the hand-crafted features. For

instance, features such as the gradient magnitude and the histogram of oriented gra-

dients were employed for multiple scales. Once the edge probability maps have been

formed, the ASM is employed for the segmentation.

Other methods have been developed for segmentation followed by tracking [47].

The first step involves the creation of an initial model of the chamber, in which the

method of [48] is used. Once the model is created, the ED frame is automatically

segmented using the B-spline explicit active surfaces (BEAS) method [49]. In this

method, the edge of the object is represented by a function, where a coordinate

of one point on the surface is described using the other coordinates. Additional
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hyperparameter terms are included in the formulation in order to address the fact

that the ground truth endocardial contours are not exactly at the interface of the

blood and the myocardium. For tracking of the LV throughout the cardiac cycle,

two steps are employed. First, an affine optical flow approach is used to generate

a rough estimate of the global deformation. For a more precise deformation, the

block-matching approach is used.

2.2.2 Atlas based segmentation methods

Atlas-based registration is a method that has been employed to perform the seg-

mentation of anatomical structures. It has been applied widely in the area of brain

imaging but has not been used as often in the area of cardiac imaging because of the

difficulty of performing non-rigid registration for echocardiography images [50].

A multi-atlas segmentation approach has been proposed [51]. The algorithm begins

by first preprocessing the volumes of the patients to reduce speckle noise, by using a

sparse representation of learned dictionary atoms. A novel shape representation was

developed by the authors and was extracted from patches of the echo data, where

the representation can provide information about the local shape information. These

representations are learned by mapping the manifold structure of these patches to a

low-dimensional space. An atlas is created from a set of training data, and labels are

propagated from a subset of these by using a combination of linear and deformable

registration.

Another multi-atlas segmentation approach was proposed by [52]. A method was

developed for the representation of the 3D boundary of the ventricle, termed the

probabilistic edge map (PEM). The PEM denotes the boundaries of the objects by

employing a structured decision forest (SDF) classifier. Global alignment is first per-

formed between the target and the atlas PEMs by use of a block matching algorithm.

The most similar atlases are then selected using an average local correlation coef-

ficient metric. Since the PEMs have been aligned using an affine transform, free
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form deformation is then used to perform the fine alignment. To perform the final

segmentation, the labels from the atlases are fused and transformed to the patient.

A second method for atlas-based approaches has been proposed [50]. Features such

as the image intensity, local phase, and local geometric information are extracted

from a compounded 3D echo volume. The technique of [53] is used to perform the

registration of the atlas to the patient, known as the locally affine registration method

(LARM). The process consists of three steps, (1) detection of the heart is performed

a rigid registration, (2) LARM is used for performing further initialization of the four

anatomical structures, the four chambers, (3) free form deformation is then applied

to perform a more precise registration.

2.2.3 Deep learning-based segmentation methods

Artificial intelligence methods have become popular within the last few years with

deep learning techniques and computing power. Several methods have been proposed

that use deep learning for echocardiography segmentation.

An approach termed anatomically constrained neural networks (ACNN) has been

developed for LV segmentation [54]. The approach includes the use of priors and

labels as input to the neural network, where it is helpful in cases where there may

be missing boundaries or the input volume data is not sufficient. In particular, a

convolutional autoencoder is employed to learn the variations in the shape of the LV.

Another approach uses deep learning along with a snake algorithm to perform

segmentation of the chamber [55]. Convolutional neural networks (CNNs) are first

employed to generate a region of interest. Using as input this ROI, a stacked au-

toencoder was trained to learn the initial shape of the LV. A gradient vector flow 3D

snake algorithm was then employed to perform the segmentation of the endocardium.

This method was used as a basis for [56], where the authors combined a fully CNN

with a deformable model. A coarse to fine framework is employed, where a coarse

segmentation is first performed with deep learning methods, and a fine segmentation
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is performed using the 3D snake approach. Instead of a stacked autoencoder method-

ology previously used in [55], a new method is proposed based on feature fusion with

the inclusion of residual connections.

VoxelAtlasGAN is another approach proposed [57], which tries to address the is-

sue of limited annotated datasets available for 3D echocardiography segmentation.

Therefore, the authors proposed an end-to-end deep learning framework incorporat-

ing an atlas to provide prior knowledge. The method uses conditional generative

adversarial networks (cGAN) in a voxel-to-voxel manner. The use of the discrimi-

nation loss (used traditionally by a GAN) is combined along with a new consistent

constraint. This consistent can provide consistency with regard to the segmentation

and the intensity volume. The previous approach has been modified and improved in

[58]. A new constraint is proposed called the couple adversarial consistency constraint

(Couple-GAN). The constraint for the volume consistency was refined by employing

a similarity measure that uses the phase. The authors also performed additional

experiments to further prove the robustness of the method.

2.3 3D+t segmentation methods in literature

Several methods are available in the literature that performs 3D delineation of the

LV for the entire cardiac cycle. These can be divided into two major areas, the

traditional methods and the machine learning methods. The traditional methods

are tracking methods, optical flow approaches, graph cuts, level set methods, model-

based segmentation methods, and statistical shape modeling. The machine learning

methods consist of deep learning approaches.

2.3.1 Traditional methods for image sequence segmentation

Tracking methods

One of the earlier approaches for tracking the LV border throughout a sequence of

volumes was proposed by [59]. A contour deformation model was used, where the
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inputs are a set of points from a template and a state vector, and the output is the

set of the transformed points. For the deformation parameters, translation, scaling,

rotation, and bending are employed. In order to initialize the tracking, a truncated

ellipsoid is used first as a template for the contours, as this model provides a reasonable

initialization of the chamber. In addition to the contour motion model, a kinematic

model that considers the previous two state estimates and an edge model is employed.

This method was extended in [60]. One issue with the previous method of [59]

was that the use of a truncated ellipsoid required the use of additional steps to form

a proper closed surface of the LV. The proposed method uses subdivision surfaces,

where meshes of a wider variety of topologies can be supported. In particular, Doo-

Sabin surfaces are employed [61]. The deformable subdivision model describes the

local deformations, which are then combined with a global transform, used to scale,

translate, and rotate the model. An extended Kalman filter is again used to perform

the tracking.

The method of [59] was also extended by [62]. One of the issues with the previous

approach [59] is that local and global deformations were not separated, and therefore

the authors proposed a method to separate these in [62]. The deformation, therefore,

consists of terms that describe both the global shape and the local changes in shape.

This method of modeling was then extended by [45], where an approach was developed

using a combination of mean value coordinates and a Kalman filter. The idea of

mean value coordinates is that a vertex can be expressed as a combination of the

neighboring vertices. The proposed method is fully automatic, where a mesh model

is created using the ED mesh from the first patient of the CETUS public dataset.

The number of vertices is reduced to increase the speed of the computations.

A method combining the use of a global tracker and local optical flow tracker to

track the chamber throughout the temporal sequence of volumes has been proposed

[63]. One advantage of using a combination of both global and local trackers is that,

for instance, in cases where the LV wall is not entirely visible, the global tracker can
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be relied upon more, but if the wall is visible, then the local tracker can be used more.

Within the tracking framework, previous knowledge of cardiac motion is provided by

the use of statistical modeling. This information was extracted from actual patient

data.

Other methods using optical flow have been developed, such as one termed localized

anatomically constrained affine optical flow (AAOF) [64]. Methods were incorporated

from [65], which uses global anatomical affine optical flow. The method of [65] is dif-

ferent from other optical flow methods in the fact that the estimation of the motion is

performed strictly within an anatomical ROI. This ROI can be provided by manually

delineating the ED frame. By constraining the optical flow to a region, the other

tissues of the heart do not cause interference. The AAOF model derived from the

global model is different because neighborhood regions are considered for each surface

point.

Tracking methods based on Kalman filters have been used for the segmentation of

the LV. In particular, one method first uses a graph cuts- based edge detection [66].

A model of the LV is manually formed and represented by a Doo-Sabin surface. One

difficulty in delineating the endocardium is due to the presence of trabeculations.

This anatomy can lead to characteristics of the edge that change over the cardiac

cycle. Therefore the authors developed a graph cuts-based edge detection approach

using a combination of max-flow min-cut and a step criteria edge detector. These

were incorporated into a Kalman filter-based tracking framework.

There have been several model-based segmentation approaches for 3D temporal

segmentation. One method employs ASMs in a real-time framework and an extended

Kalman filter to perform the tracking [67]. A set of manually traced LVs, 496 ventricles

from 31 patients, were used to train the ASM. An extended Kalman filter was then

used to perform the prediction and updating of the ASM and is based on the work of

[59]. This method incorporates a motion model where the state vector incorporates

the use of the last two states.
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Optical flow methods

A technique using a global affine optical flow method and block matching approach

has been proposed [47]. Automatic segmentation of the LV at ED is performed using

the authors’ previous method [48, 49] as a basis. An initial model of the chamber

at ED is produced using [48], and the segmentation is performed using the BEAS

approach from [49]. Two steps are used to perform the tracking. Anatomical affine

optical flow is first used to generate an estimation of the global deformation [65]. A

block-matching approach is then employed to generate a more precise deformation.

A recursive approach is employed to use patterns from images of previous frames to

improve the tracking. A similar approach has been used in [68], where only optical

flow is used for the tracking instead of the combination of optical flow and block

matching as in [47]. An energy term in which the affine motion estimated by the

Lucas-Kanade technique for global motion is penalized.

Model based segmentation methods

An approach using an AAM for segmentation and tracking was developed [69]. An

AAM model was constructed using a set of publicly available segmentations and

additional datasets from the author’s center. A single model is created from both of

the sets of segmentations from ED and ES. Tracking was then performed by employing

the initialization of the subsequent frame by using the AAM parameters for the

current frame.

Statistical shape modeling methods

In echocardiography data, there is a coherence between the spatial and temporal

aspects. Information about the dynamics of the heart can provide ways to inform

the detection of the endocardial border by use of constraints. A limitation of the

traditional methods of using statistical shape/appearance models is that it is diffi-

cult to form a comprehensive database from normal and abnormal patients. It is
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difficult to take into consideration all of the different anatomical variants. This can

be resolved by using online learning and using data coherence from the individual.

In one approach, a method was proposed for 2D+time segmentation using a sparse

representation-based technique [70]. A new approach [71] based on [70] was developed

that demonstrated the use of a 3D dynamical appearance model. This method uses

information such as local appearance (in a multiscale manner), intensity, and shape.

As frames are segmented sequentially, and the multiscale appearance dictionaries are

updated dynamically. A MAP framework incorporates the dynamical shape predic-

tion and intensity. This work is extended by [72] with in-depth details about the

implementation.

2.3.2 Machine learning methods

Deep learning methods

There have been relatively few methods using deep learning for 3D+t segmentation

of the LV in echocardiography volumes. One approach performs both segmentation

and tracking, where the displacement fields, as well as the segmentation masks, are

generated as output [73]. The first network, the motion network, is an unsupervised

framework similar to VoxelMorph [74], where the input is a stack of the source and

target frame, and the output is the displacement field between the two 3D input

volumes. The loss is computed as the mean square difference between the target

frame and the transformed source frame. The second network, the segmentation

network, is weakly supervised and similar to the 3DUNet implementation [75]. The

input is the 3D target frame and the output is the 3D segmentation. The networks

are combined by optimizing each separately first, and an incompressibility constraint

is used to generate anatomically plausible deformation fields.
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Chapter 3

3D Spatial Segmentation in US
Volumes

3.1 Overview

This chapter introduces a novel semi-automated approach to delineate the LV from

3DUS imaging. The proposed method relies on a diffeomorphic registration approach

and contour propagation to perform segmentation in 3D space. Figure 3.1 displays a

flowchart of the 3D semi-automated segmentation method. The user chooses an axis

of the LV, and angular slices are automatically created that pass through this axis.

The user then delineates the endocardium of the LV on two orthogonal slices. A 2D

diffeomorphic registration method is then used to create the contours for the other

angular slices automatically. A mesh is then formed from the contour points trans-

formed to the original 3D space. The spatial segmentation method was performed on

both ED and ES volumes from a set of patients from a publicly available database,

where ground truth delineations were created from expert cardiologists. The algo-

rithm was evaluated using a standard set of distance, overlap, and clinical metrics.

The proposed method was evaluated against four other semi-automated methods and

five fully automated methods as a form of comparison.
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Figure 3.1: Flowchart of the proposed approach for the 3D semi-automated segmen-
tation of the left ventricle at end-diastole and end-systole.
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3.2 Algorithm

3.2.1 Creation of angular slices

The user is first required to delineate the axis of the LV, defined between the center

of the mitral valve leaflets at the base and the apex of the chamber. Angular slices

are then automatically generated with respect to the user-defined axis. Figure 3.2

demonstrates an example of the user-defined axis for a patient at ED.

Figure 3.2: User-defined axis for the left ventricle at end-diastole.

A series of 3D geometrical transformations are used to create the set of angular

slices that pass through the user-defined axis. The final geometrical transformation

consists of the concatenation of the two transformation matrices. The first trans-

formation is responsible for aligning the axis with the u⃗ = [1, 0, 0]′ direction. We

can define p1 ∈ R3 and p2 ∈ R3 to represent the user-defined points at center of the

base and the center of the apex that represent the axis. The vector v⃗ = [vx, vy, vz]
′

represents the unit vector between the two user-defined points p1 and p2. The angle

ϕ can be defined to be between u⃗ and v⃗, and is equal to cos−1 vx. We also define

r⃗ to be u⃗ × v⃗ = [0,−vz, vy]′. The first transformation Tu responsible for aligning

the LV axis to u⃗ equal to the rotation of the vector r⃗ by angle ϕ and is represented

mathematically by:
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Tu =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tu11 Tu12 Tu13 0

Tu21 Tu22 Tu23 0

Tu31 Tu32 Tu33 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.1)

where

Tu11 = cosϕ

Tu12 = −vy sinϕ

Tu13 = −Tu31 = −vz sinϕ

Tu21 = vy sinϕ− vyvz(1− cosϕ)

Tu22 = cosϕ+ v2z(1− cosϕ)

Tu23 = Tu32 = −vyvz(1− cosϕ)

Tu33 = cosϕ+ v2y(1− cosϕ)

The second required transformation is responsible for the reslicing of the US vol-

ume. An equal angular spacing over 180 degrees was set to one degree. As the data

is repeated from 180 to 360 degrees, it is necessary to only use slices from 0 to 180

degrees. The transformation responsible for generating the 2D angular slices at the

chosen degree θs (∀ θs ∈ [0, 1, . . . , 179]) is equal to is defined by:

Tθs =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 cos θs − sin θs 0

0 sin θs cos θs 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (3.2)

The final geometrical transform TF is formed by concatenating the previously de-

fined transforms, the first consisting of aligning the LV axis to u⃗ and the second

transform that performs the angular reslicing. The origin of the reslicing operator as

a column vector is defined by Porg ∈ R3. The rotation matrix is:
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TF =

⎡⎢⎣ I3 −Porg

0 1

⎤⎥⎦× Tθs × Tu ×
⎡⎢⎣ I3 Porg

0 1

⎤⎥⎦ (3.3)

where I3 is the 3× 3 identity matrix.

3.2.2 Creation of initial manual contours

The 3D segmentation algorithm requires the initialization of two contours. These two

endocardial contours were drawn by an expert cardiologist using in-house annotation

software. The manual contours were delineated on the two orthogonal slices θ0 and

θ90. Figure 3.3 displays an example of the manual contours at ED annotated by the

clinician.

(a) Contour on the θ0 angular slice (b) Contour on the θ90 angular slice

Figure 3.3: A demonstration of the two initial contours delineated on orthogonal
planes by an expert clinician at the (a) θ0 and (b) θ90 angular slices

A method was developed to assist the expert in delineating the endocardial contours

by selecting the apex. The user can choose the apex from the 2D angular slice of their

choice, and using the geometrical transformations the 3D location is automatically

generated. The apex locations are then automatically visible throughout the sequence

of angular slices, which assists the clinician in delineating the endocardial contours.
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3.2.3 Automatic contour generation with diffeomorphic image
registration

Given the contours on angular slices θ0 and θ90, the method of [76] was used to gen-

erate the automated contours at degree θs (∀ θs ∈ [1, 2, . . . , 89, 91, . . . , 179]). The

method [76] computes the point-to-point correspondences between all frames in a

sequence, using a moving mesh approach as seen in Figure 3.4. The problem is de-

scribed as an optimization problem where the similarity measure between two frames

is defined by the squared L2 norm. The deformation field is optimized in terms of the

radial and rotation components, making it an ideal approach for analyzing cardiac

data. During the optimization process, these components are converted to traditional

grid displacements. The original method was developed for segmentation of the LV

in a temporal sequence of short-axis 2D images, given a manual contour at ED. The

method was adapted for US 3D spatial registration. The method of [76] is performed

across a sequence of temporal slices across a cardiac cycle, and therefore it was nec-

essary to create the angular slice at the θ180 contour. This θ180 contour is set to be y

flipped version of the angular slice at θ0.

Figure 3.5 displays an example of a sequence of angular slices generated automat-

ically. A subset of the slices is displayed from a total of 180 slices with an angular

spacing of one degree. It can be seen that the contours (red) that are automatically

generated closely follow the endocardium of the LV. The apex is displayed in green

as a reference. The deformation grid produced by the algorithm is overlaid in green.

The registration process creates a sequence of automated contours as 2D points.

To transform the 2D contour points to 3D, the inverse of the transformation matrix

TF in (3.3) is used. Figure 3.6 displays an example of the 3D contour points that

were transformed and are now in the same US space for a patient at ED:
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Figure 3.4: Flowchart of the 2D registration process.

3.2.4 Mesh generation

To compare the proposed segmentation method with the reference, a mesh was created

from the set of the 3D contour points. There are methods available in the literature

to form a mesh from a distinct set of 3D points. Algorithms include Delaunay trian-

gulation [77] and alpha shapes [78]. These methods were deemed unsuitable as some

portions of the mesh from the proposed method may be concave. A custom program

was written where triangle faces were created between each pair of contours.

The input data consists of 180 contours with the angular spacing set to one degree.

The method used to create the contours [76] automatically is a point-to-point corre-

spondence method, therefore across the angular slices the points correspond with each

other. The mesh faces are then created by using two adjacent points from contouri,

and a single corresponding point from the contouri+1 and vice versa.
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Frame 1 Frame 16 Frame 31 Frame 46

Frame 61 Frame 76 Frame 91 Frame 106

Frame 121 Frame 136 Frame 151 Frame 166

Figure 3.5: An example of a subset of the angular slices sequence every 15 degrees

3.3 Results

3.3.1 Dataset - CETUS

The dataset used to validate the proposed method consisted of 3D US data from 45

patients. This was comprised of a training set of 15 patients and two testing sets of

15 participants each. The testing datasets were made available for those approaches

that required separate training and testing sets, such as for machine learning or atlas-

based approaches. Since the proposed method does not rely on training data, the set

of 30 testing patients was used for analysis. Patient data were acquired from three

scanners from three hospitals: 1) GE Vivid E9 system with a 4V probe 2) Philips

iE33 system with an X5-1 probe, and 3) Siemens SC2000 with a 4Z1c probe. The

patients were divided into the following groups: 1) 15 healthy patients; 2) 15 patients

that previously had a myocardial infarction (MI) (a minimum of three months after
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Figure 3.6: Delineation of the endocardium of the left ventricle at end-diastole using
the proposed methodology.

Figure 3.7: A representation of the formation of the dense mesh, where i, i+ 1, i+ 2
represent three contours.
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the MI; 3) 15 patients that had dilated cardiomyopathy (DC). The information about

each patient was not provided to the user.

The ground truth segmentation of the LV at ED and ES were provided by three

expert cardiologists using the software package Speqle_3D (University of Leuven,

Belgium). To keep the segmentations consistent, the cardiologists developed a set of

rules to aim for consistency among the delineations. These included rules were derived

for the LV wall, the mitral valve plane, and the decision to include trabeculations

and papillary muscles, and the apex selection. Further information concerning the

process of the manual contour creation can be found [79]. References meshes for the

LV endocardium were formed once the expert cardiologists agreed upon each of the

contours.

An online evaluation platform was available to compare the meshes from the pro-

posed method to the reference meshes.1 The distance metrics calculated included the

following: mean absolute distance (dm), Hausdorff distance (dH), and the modified

Dice score were computed. The clinical metrics available for comparison were the

EDV, ESV, SV, and EF.

The proposed algorithm was compared against nine other methods that were eval-

uated using the same online platform [80]. The four semi-automated methods are

as follows: Authors from [33] developed an interactive method based on graph cuts

to perform endocardial segmentation. The user is required to select the apex, center

of the LV, and the base, where then the axis between the three is used to trans-

form the data to the spherical-cylindrical space. Graph cuts are then employed in

this spherical-cylindrical space. Another set of authors [38] used the ground truth

from the training data to strain a structured random forest. The 2D structured ran-

dom forests were used on each short-axis slice in the 3D echocardiography volumes,

creating boundary candidates that defined a surface model of the LV. This surface

model was then deformed to fit the testing volumes. Another approach [51] created a
1The online platform is available at https://miccai.creatis.insa-lyon.fr/miccai/community/1
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multi-atlas segmentation framework for endocardial border detection. Speckle noise

was first decreased to improve the registration results, and the shapes were extracted

from patches of the US images. Lastly, authors [44] used a model-based level set

method for delineation of the endocardium, which was enhanced by the use of a

multi-scale quadrature filter.

The five fully automated methods are as follows: Authors [47] developed a method

for tracking the chamber in 3D+time sequences of US images. Automatic segmen-

tation is performed at the ED frame, and tracking is performed using an optical

flow-based method. Another set of authors [36] applied successive random forest

classifiers. The authors included two additional classes apart from the LV and the

background, which were the myocardium and the mitral valve, thereby increasing

the contextual information for segmentation. Authors [35] used a cascade of Hough

forests (derived from random forests) to perform both object detection and segmen-

tation. Another set of authors [45] employed real-time tracking of the LV. A mesh

model is first created, and a combination of Kalman filtering and edge detection is

used for to track the mesh throughout the cardiac cycle. Lastly, [41] developed an

approach using AAMs, where separate AAMs were created for the ED and ES frames.

3.3.2 Quantitative distance metrics

Mean absolute distance

The mean absolute distance (dm) is computed by taking each point in the proposed

approach mesh S, and locating the closest the point in the ground truth reference

mesh R. The mean of these minimum distance values is then computed [81], where

the result is given in mm:

dm(S,R) =
1

Ns

∑︂
s∈S

min
r∈R

(dist(s, r)). (3.4)
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Hausdorff distance

The Hausdorff distance (dH) is calculated by finding a measure of the maximum

distance between the proposed mesh S and the ground truth reference mesh R [82].

The result is reported in mm. The dH is calculated by the following equation, where

the Euclidean distance used between the points:

dH(S,R) = max

{︃
sup
s∈S

inf
r∈R

d(s, r), sup
r∈R

inf
s∈S

d(s, r)

}︃
. (3.5)

Modified Dice score

The modified Dice metric is a measure of the amount of overlap between the volume

from the proposed approach V and the reference volume Vref . A value of 0 indicates

complete overlap and a value of 1 indicates no overlap between the two volumes [83].

Modified Dice = 1− 2(V ∩ Vref )
(V + Vref )

. (3.6)

Ejection fraction (EF)

One method used to measure the efficiency of the heart at pumping blood is to report

the EF. The difference between the EDV and the ESV is first calculated, and then

divided by the EDV. The result is reported as a percentage.

EF =
EDV − ESV

EDV
× 100%. (3.7)

3.3.3 Quantitative distance metrics results

Table 3.1 provides the comparison of the proposed method to four semi-automated

methods and five fully automated methods [80] for ED, and Table 3.2 provides the

comparison for ES. The inter-observer values among the expert cardiologists are pro-

vided in italics, while the results from the proposed method are given in bold. Stan-

dard deviation values are provided in parentheses, displayed for each metric and com-
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puted from the results based on the online evaluation platform. Underlined values

indicate the algorithm that gave the best performance for the particular algorithm.

The proposed method was evaluated over 30 patient datasets at ED yielded the mean

distance metrics as follows: (1) dm of 2.36 mm, (2) dH of 8.25 mm, and (3) modified

Dice score of 0.113, and for ES the method yielded the following metrics: (1) dm of

2.33 mm, (2) dH of 8.95 mm, and (3) modified Dice score of 0.143.

Table 3.1: Distance and overlap metrics for end-diastole: The mean absolute distance
dm, Hausdorff distance dH and modified Dice score D∗ values for quantitative evalua-
tion of the accuracy of segmentation results by semi and fully automated methods in
comparison to the ground truth segmentation by experts. The lower the value of dm,
dH or D∗ the better the performance of the approach. Inter-observer values indicate
differences within the ground truth segmentation by three different experts. Standard
deviation values are provided in parentheses.

End Diastole

dm dH D∗

Method mean (mm) mean (mm) mean

Inter-observer 1.39 (0.40) 4.70 (1.27) 0.069 (0.021)

Our method 2.36 (0.81) 8.25 (3.52) 0.113 (0.043)

Semi-automated

Bernier et al. [33] 2.37 (0.60) 9.41 (2.62) 0.118 (0.029)

Domingos et al. [38] 2.09 (0.68) 9.31 (3.89) 0.106 (0.038)

Oktay et al. [51] 2.18 (0.70) 7.55 (1.77) 0.106 (0.033)

Wang et al. [44] 2.54 (0.99) 9.04 (3.58) 0.125 (0.042)

Fully automated

Barbosa et al. [47] 2.26 (0.73) 8.10 (2.66) 0.106 (0.041)

Keraudren et al. [36] 2.44 (0.95) 9.98 (3.09) 0.130 (0.048)

Milletari et al. [35] 2.14 (0.68) 8.25 (3.87) 0.107 (0.031)

Smistad et al. [45] 2.62 (0.95) 8.26 (2.98) 0.115 (0.038)

van Stralen et al. [41] 2.44 (0.91) 8.45 (3.50) 0.121 (0.054)
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Table 3.2: Distance and overlap metrics for end-systole: The mean absolute distance
dm, Hausdorff distance dH and modified Dice score D∗ values for quantitative evalua-
tion of the accuracy of segmentation results by semi and fully automated methods in
comparison to the ground truth segmentation by experts. The lower the value of dm,
dH or D∗ the better the performance of the approach. Inter-observer values indicate
differences within the ground truth segmentation by three different experts. Standard
deviation values are provided in parentheses.

End Systole

dm dH D∗

Method mean (mm) mean (mm) mean

Inter-observer 1.34 (0.35) 4.70 (1.15) 0.080 (0.021)

Our method 2.33 (0.83) 8.95 (3.05) 0.143 (0.057)

Semi-automated

Bernier et al. [33] 2.64 (0.60) 9.34 (2.08) 0.163 (0.047)

Domingos et al. [38] 2.20 (0.72) 8.35 (2.67) 0.129 (0.050)

Oktay et al. [51] 2.47 (0.74) 8.57 (2.96) 0.151 (0.049)

Wang et al. [44] 2.68 (1.11) 9.14 (3.33) 0.159 (0.057)

Fully automated

Barbosa et al. [47] 2.43 (0.91) 8.13 (3.08) 0.144 (0.057)

Keraudren et al. [36] 2.54 (0.75) 9.15 (3.24) 0.158 (0.057)

Milletari et al. [35] 2.91 (1.01) 8.53 (2.30) 0.162 (0.062)

Smistad et al. [45] 2.92 (0.93) 8.99 (2.98) 0.156 (0.050)

van Stralen et al. [41] 2.79 (1.24) 8.65 (2.85) 0.165 (0.079)
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To perform a visual inspection of the 3D contour points, the difference between the

proposed method mesh and the ground truth can be viewed in terms of the dm. Figure

3.8 demonstrates an example of the dm. The colors represent the distance between

the ground truth and the proposed method, where blue represents high agreement

(low distance values) and red represents low agreement (high distance values). It can

be observed that there is high agreement and accurate delineation at the apex and

the endocardial walls.

(a) dm mesh at end diastole b) dm mesh at end systole

Figure 3.8: Example mean absolute distance dm meshes for a single patient at (a)
end diastole and (b) end systole. Red represents the larger distance from the ground
truth, and blue represents a small distance in mm.

3.3.4 Quantitative clinical metrics results

The online evaluation platform [80] for the CETUS challenge provided the computa-

tion of various clinical metrics. These included the EDV, ESV, and EF. Information

was also provided concerning the (1) modified correlation coefficient, equal to 1 minus

the correlation coefficient (2) the bias, equal to the mean of the differences between

the reference and proposed method values. The clinical metrics for ED, ES, and the

EF are given by the Tables 3.3, 3.4 and 3.5. Results from the proposed algorithm

are in bold, and italicized values are the inter-observer values among the cardiologists
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responsible for creating the ground truth contours. Standard deviation values are pro-

vided for each of the metrics and are given in parentheses; these values were calculated

outside of the provided platform. Values that are underlined are the metrics that in-

dicate the best performance and are provided separately for the semi-automated and

fully automated algorithms. Evaluating the proposed approach across the 30 patients

dataset yielded 0.83 mL for the bias of the EDV, 8.07 mL for the ESV, and -3.96%

for EF.

To ease the visualization of the difference between the proposed and reference

methods, Bland-Altman plots are employed. Figures 3.9 display Bland-Altman plots

for the differences between the EDV, ESV, and EF values. The reference line at 0 is

displayed in black, and the bias line is indicated in red. The lines showing the limits

of agreement are given in blue, and are calculated using the bias ± 1.96 multiplied

by the standard deviation.

3.4 Conclusion

A novel semi-automated algorithm for 3D segmentation of the LV has been developed

for use in echocardiography volumes. There are many advantages to the proposed

method. There is no dependency on a training dataset, which eases applying the

method on patients with abnormalities. There are also no geometrical priors used to

encode the shape of the chamber, and no assumptions concerning the intensity distri-

butions of the volumes. There is minimal user interaction involved, in which the user

selects an axis and delineates two manual contours. There are also multiple advan-

tages in employing the moving mesh correspondence method [76]. The diffeomorphic

method ensures that topology is preserved, resulting in realistic cardiac deformations.

Limits on the amount of deformation can be specified by the user, ensuring that grid

lines of the same family do not cross and that the deformations are reasonable.

Several limitations exist with the method developed. The quality of the images
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Table 3.3: Clinical metrics: Agreements between EDV values computed using au-
tomated methods and ground truth segmentation by experts. The inter-observer
variability values indicate the reproducibility of EDV calculated using manual seg-
mentation.

End Diastole

Method EDV corr* EDV bias (mL) EDV std (mL)

Inter-observer 0.015 -3.0 11.1

Our method 0.059 0.83 21.6

Semi-automated

Bernier et al. [33] 0.021 2.7 13.9

Domingos et al. [38] 0.083 8.7 25.0

Oktay et al. [51] 0.055 -6.0 20.8

Wang et al. [44] 0.073 2.0 23.8

Fully automated

Barbosa et al. [47] 0.035 -5.0 17.7

Keraudren et al. [36] 0.079 15.9 24.6

Milletari et al. [35] 0.047 5.1 19.0

Smistad et al. [45] 0.049 -10.1 19.4

van Stralen et al. [41] 0.034 -15.4 16.0
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Table 3.4: Clinical metrics: Agreements between ESV values computed using au-
tomated methods and ground truth segmentation by experts. The inter-observer
variability values indicate the reproducibility of ESV calculated using manual seg-
mentation.

End Systole

Method ESV corr* ESV bias (mL) ESV std (mL)

Inter-observer 0.0007 -1.9 6.5

Our method 0.047 8.07 17.3

Semi-automated

Bernier et al. [33] 0.032 2.2 13.7

Domingos et al. [38] 0.044 -5.2 15.9

Oktay et al. [51] 0.076 -0.4 20.6

Wang et al. [44] 0.044 -3.9 16.1

Fully automated

Barbosa et al. [47] 0.033 -6.8 13.9

Keraudren et al. [36] 0.048 -6.2 16.6

Milletari et al. [35] 0.040 -16.8 15.2

Smistad et al. [45] 0.036 -11.3 14.6

van Stralen et al. [41] 0.036 -13.2 14.4
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Table 3.5: Clinical metrics: Agreements between ejection fraction values computed
using automated methods and ground truth segmentation in terms of correlation
and Bland-Altman analysis. The inter-observer variability values indicate the repro-
ducibility of ejection fraction calculated using manual segmentation.

Ejection Fraction

Method EF corr* EF bias (%) EF std (%)

Inter-observer 0.048 -0.1 3.3

Our method 0.169 -3.96 6.85

Semi-automated

Bernier et al. [33] 0.189 0.1 7.8

Domingos et al. [38] 0.181 8.3 7.2

Oktay et al. [51] 0.220 -1.5 6.9

Wang et al. [44] 0.119 3.5 5.2

Fully automated

Barbosa et al. [47] 0.111 2.9 5.2

Keraudren et al. [36] 0.281 12.1 10.6

Milletari et al. [35] 0.255 15.2 7.6

Smistad et al. [45] 0.121 3.7 5.2

van Stralen et al. [41] 0.389 3.7 8.8
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can adversely affect the point correspondence mapping [76] that is used to generate

the set of dense contours automatically. If necessary, preprocessing can be applied

to the input volumes for denoising. A second limitation is the amount of manual

interaction, which is acceptable for a single volume if compared to clinical methods

such as Simpson’s biplane and the modified method of discs. Applying this method

to analyze a 3D volume over time for each frame would not be efficient because of

the amount of manual interaction.

In order to make an accurate and informed diagnosis of the patient, it is important

to have a segmentation of the left ventricle for each frame of the cardiac cycle. This

leads to the development of a 3D temporal segmentation approach, as an extension

of the spatial segmentation algorithm, where each frame is delineated in a semi-

automated manner. This algorithm will be discussed in the following chapter.
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(a) EDV

(b) ESV

(c) EF

Figure 3.9: Bland-Altman plots comparing the proposed method to the reference
segmentations for (A) End-diastolic volume (B) End-systolic volume (C) Ejection
fraction
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Chapter 4

3D Temporal Segmentation in US
Sequences

4.1 Overview

The last chapter proposed a method for 3D spatial segmentation of the LV for the ED

and ES volumes. However, clinicians often require metrics across the entire cardiac

cycle to better understand the function of the heart. The ability to assess the volume

and other metrics such as the strain and perform regional assessment is crucial for

the clinical analysis of a patient. Therefore, the 3D spatial segmentation method

was expanded to perform 3D+time segmentation across the cardiac cycle as seen in

Figure 4.1. The previous 3D spatial segmentation method was used for the ED and

ES volumes. A subset of these contours are obtained from the two volumes and are

propagated temporally, resulting in a 3D segmentation of each frame across the car-

diac cycle. The method was evaluated on 18 patients from the Mazankowski Alberta

Heart Institute and compared to delineations provided by an expert cardiologist. The

approach was compared to four other registration algorithms, where a set of distance,

overlap, and clinical metrics was computed. Four additional experiments were per-

formed to assess the robustness of the 3D spatial segmentation.

52



Figure 4.1: Flowchart of the 3D+time segmentation process.
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4.2 Dataset

Ultrasound temporal sequences were obtained from the Mazankowski Alberta Heart

Institute (Edmonton, Alberta, Canada) fromN = 18 adult patients that were scanned

to assess the function of the LV. The human research ethics committee at the Uni-

versity of Alberta approved the study. US scanning was performed on the patients

using a Philips iE33 machine (Philips Healthcare, Best, The Netherlands) using an

X5-1 transducer. To achieve a frame rate of higher than 20 volumes per second, a

3D sector angle of 70 × 80 degrees was used. The number of frames ranged from 17

to 39, with an average of 23.83 for a cardiac cycle. Adding the frames over the 18

patients yielded a total of 421. The dimensions of the volume were in the ranges of

160× 144× 208 to 256× 176× 208 voxels. The resolution of the voxels ranged from

0.608× 0.787× 0.533 mm to 0.994× 1.339× 0.874 mm.

An expert cardiologist provided the ground truth segmentation using the TomTec

Arena software (TomTec Imaging Systems, Unterschleissheim, Germany). The clin-

ical software uses a semi-automated approach to delineate the LV, where a speckle-

tracking method is employed. The ground truth consists of a mesh at each frame of

the cardiac cycle.

4.3 Algorithm

4.3.1 Temporal implementation of 3D segmentation

The first step for the temporal segmentation algorithm is to perform 3D spatial seg-

mentation for the ED and ES frames of the cardiac cycle. The method that was

previously described is used to perform the segmentation. As the method relies on

manual contours to be delineated, an approach was developed to extract these θ0 and

θ90 contours from the ground truth created by the cardiologist. The point in the mesh

with the smallest value in the z-axis was set to be the apex. The point in the center

of the mesh base was extracted and set to be the second point for the axis. The axis
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is then defined as the vector between the apex and the point at the center of the

base. Based on this axis, the appropriate contours were extracted from the reference

meshes.

Spatial registration was then performed for the ED and ES frames based on the

automatically extracted contours. A subset of the contours from the ED and ES

meshes are then extracted using a set angular spacing value. To obtain a segmentation

for each frame of the cardiac cycle, the moving mesh method [76] is applied to each

of these subsets of contours temporally. Using this method results in an anatomically

plausible mesh for each frame of the cardiac cycle, consisting of contours with an

angular spacing of θd degrees. Registration is performed in both the forward and

reverse directions and weighting applied to enforce smoothing and improve temporal

consistency of the contours.

4.4 Results for 3D spatial segmentation

4.4.1 Quantitative distance metrics for ED and ES

The 3D spatial segmentation was evaluated against the ground truth reference meshes

using three distance and overlap metrics, the mean absolute distance dm in mm, the

Hausdorff distance dH in mm, and the Dice score Dice. Results were averaged over

the 18 subjects for the ED and ES frames and standard deviation values are provided

in parentheses in Table 4.1. It can be observed that the metrics are more accurate

for the ED frame, indicating the intrinsic problems in delineating the endocardium

at ES.

4.4.2 Quantitative clinical metrics for ED and ES

Clinical measures were also calculated to compare the proposed method to the ground

truth segmentation. These metrics included the EDV, ESV and EF for all subjects.

Table 4.2 provides the mean difference and standard deviation for each of the mea-
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Table 4.1: Quantitative evaluation results for end diastole and end systole: The mean
absolute distance dm in mm, Hausdorff distance dH in mm, and the Dice score Dice
for evaluation of the proposed method and the ground truth segmentation for all
subjects. Standard deviation values are provided in parentheses.

End Diastole End Systole

dm dH Dice dm dH Dice

(mm) (mm) (mm) (mm)

0.90 (0.14) 4.24 (1.69) 0.95 (0.01) 0.97 (0.21) 4.50 (1.34) 0.91 (0.02)

sures. It can be seen that there is a slight underestimation of the volume at ED and

ES, resulting in a small overestimation of the EF.

Table 4.2: Clinical metrics for end diastole, end systole and ejection fraction: The
mean difference between the proposed method and ground truth segmentations. Stan-
dard deviation values are provided in parentheses.

EDV (mL) ESV (mL) EF (%)

4.85 (3.27) 2.11 (1.54) -0.27 (1.22)

Bland-Altman plots [84] can be used to visually display the agreement between

two sets of metrics and observe if bias exists between the measurements. Figure

4.2 displays the Bland-Altman plots for the EDV, ESV, and the EF, where each

point represents a subject. A dotted black line denotes the reference line, and the

bias is shown as a dotted red line. The bias represents the mean difference between

the proposed measure subtracted from the reference. The limits of agreement are

displayed as dotted blue lines, which are ± 1.96 * standard deviations away from the

bias.

4.5 Additional experiments

Four additional experiments were performed to test the robustness of the 3D spatial

segmentation algorithm, as it relies on user input. The four experiments are as

follows (1) Determine the effect of varying the angular spacing on the segmentation
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(a) EDV

(a) ESV

(a) EF

Figure 4.2: Bland-Altman plots for the (a) EDV (b) ESV and (c) EF. The zero
reference line is displayed in black, while the bias line is shown in red. The two blue
lines indicate the limits of agreement at two standard deviations away from the mean.
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(2) Observe the effect of the initial axis choice on the segmentation (3) Determine the

effect of the initial contours on the segmentation (4) Compare the proposed approach

to a geometrical model.

4.5.1 Varying angular spacing for 3D spatial segmentation

One crucial parameter that the user sets is the angular spacing θd, which sets the total

number of angular slices to be used for the 3D spatial segmentation for a single frame.

An angular spacing of 1 degree results in 180 angular slices used for the registration

process. Increasing this parameter decreases the number of angular slices, thereby

creating a coarser mesh for the LV. This in turn reduces the time that is needed for

the registration process.

An experiment was performed where for the ED and ES frames, the angular spacing

parameter θd was set to values of 1, 5, 10, and 15 degrees. Table 4.3 displays the

results for ED and Table displays the results for ES. Figure 4.3 displays the box plots

for the dm, dH and Dice for ED and ES at angular values of 1, 5, 10 and 15. It can be

observed qualitatively that the values do not vary significantly for all three evaluation

metrics for ED and ES.

The Kruskal-Wallis H test was then performed to determine if there is a statistical

difference between the metrics for each of the angular spacing values. Table 4.4 gives

results for the combinations of the six parameters (dm, dH and Dice scores for each

of the ED and ES volumes). The significance value was set to 0.01, and the table

indicates that none of the p values obtained are smaller than 0.01. This indicates

that there is no statistically significant difference between the distance and overlap

metrics for any of the angular spacing values.
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Table 4.3: Varying angular spacing: Comparing the end diastolic and end systolic
segmentations from the proposed method to the ground truth for angular spacing
values of 1, 5, 10, and 15 degrees. The following three distance and overlap metrics
are used: mean absolute distance (dm), Hausdorff distance (dH) and the Dice score
(Dice).

End Diastole End Systole

Angular spacing dm (mm) dH (mm) Dice dm (mm) dH (mm) Dice

1 0.892 4.399 0.946 0.953 4.447 0.916

5 0.880 4.434 0.947 0.959 4.446 0.916

10 0.874 4.521 0.948 0.956 4.492 0.917

15 0.887 4.504 0.948 0.962 4.562 0.917

Table 4.4: Kruskal-Wallis H significance tests were formed for the end diastolic and
end systolic volumes for the following three distance and overlap metrics: mean ab-
solute distance (dm, Hausdorff distance (dH) and the Dice score (Dice).

End-diastole End-systole

Test statistic p value Test statistic p value

dm 0.305 0.959 0.014 0.999

dH 0.029 0.999 0.019 0.999

Dice 0.678 0.878 0.014 0.999
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(a) End diastole

(b) End systole

Figure 4.3: Boxplots displaying the results of varying the angular spacing for 3D
spatial segmentation at (a) end diastole and (b) end systole for 1, 5, 10 and 15
degrees, for the following distance and overlap metrics: dm, dH and Dice.
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4.5.2 Effect of initial axis for 3D segmentation

Defining the initial axis of the LV is reliant on user interaction for the 3D spatial

segmentation algorithm. The process of defining the initial axis depends heavily on

the experience of the clinician, who has to take in the presence of noise or abnormali-

ties in the patient. Therefore a robustness test was performed to determine the effect

of delineating the axis. The axis was rotated about the x, y, and z axes positively

and negatively by π/32 radians for both the ED and ES phases. The six meshes

that resulted from this rotation for each patient were compared against the reference

meshes using the following metrics: dm, dH , Dice and volume in mL. Results are

displayed in Table 4.5. Figure 4.4 displays box plots for each of the metrics for the

six rotation values. It can be seen that the values are close to each other across the

rotation angles.

The Kruskal-Wallis H test was also performed to determine if significant differences

existed between any of the measures compared to the ground truth. Table 4.6 reports

the results of the Kruskal-Wallis test for the four metrics, for the original segmenta-

tion as well as the additional six tests. With a significance value of 0.01, it can be

observed that all of the measures had p values above this set alpha level. Therefore

it can be concluded that for these sets of tests the segmentation of the LV is robust

to the delineation of the axis.

4.5.3 Effect of initial contours

Two manual contours are required to be delineated by the user for the 3D spatial

segmentation. To test the robustness of the delineation, the contours were dilated

and eroded on a 2D slice by slice basis. The vectors between the center of the contour

and each point were calculated and were dilated or eroded by 1 mm in the vector

direction. Table 4.7 displays the results at ED and ES for the erosion and dilation
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Table 4.5: Effect of initial axis: Comparing the end diastolic and end systolic segmen-
tations from the proposed method to the ground truth for x-, x+, y-, y+, z-, and z+
rotations. The following three distance and overlap metrics are used: mean absolute
distance (dm), Hausdorff distance (dH) and the Dice score (Dice), along with the
volume in mL.

End Diastole End Systole

Rotation dm (mm) dH (mm) Dice Volume (mL) dm (mm) dH (mm) Dice Volume (mL)

x- 0.870 4.486 0.948 94.750 0.952 4.670 0.916 37.248

x+ 1.019 4.455 0.940 91.023 1.126 4.716 0.902 35.612

y- 0.924 4.347 0.945 93.945 1.029 4.552 0.912 36.443

y+ 1.219 5.419 0.923 89.456 1.144 5.065 0.893 36.121

z- 0.899 4.453 0.947 93.307 0.970 4.584 0.915 36.482

z+ 0.880 4.468 0.948 93.655 0.953 4.588 0.917 36.663

Table 4.6: Kruskal-Wallis H significance tests were performed for the axis delineation
test using the following four metrics: mean absolute distance (dm), Hausdorff distance
(dH) and the Dice score (Dice), and the volume in mL.

End diastole End systole

Test statistic p value Test statistic p value

dm 9.155 0.165 7.501 0.277

dH 1.623 0.951 0.287 0.999

Dice 4.988 0.545 5.262 0.511

volume 1.206 0.977 0.186 0.999
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(a) End diastole

(b) End systole

Figure 4.4: Boxplots displaying the rotations in x-, x+, y-, y+, z-, and z+ directions
for the following metrics: mean absolute distance (dm, Hausdorff distance (dH) and
the Dice score (Dice), along with the volume in mL for (a) End diastole and (b) End
systole
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of the contours. Figure 4.5 displays the boxplots. Kruskal-Wallis H tests were also

performed to determine the significance of the results according to the dm, dH , Dice,

and volume metrics. It can be observed from Table 4.8 that there is a significant

difference for the dm and Dice metrics, but not for the dH and the volume metrics.

Table 4.7: Effect of initial contour: Comparing the end diastolic and end systolic
segmentations from the proposed method to the ground truth for dilation and erosion
of the initial contour. The following three distance and overlap metrics are used: mean
absolute distance (dm), Hausdorff distance (dH) and the Dice score (Dice) along with
the volume in mL.

End Diastole End Systole

dm (mm) dH (mm) Dice Volume (mL) dm (mm) dH (mm) Dice Volume (mL)

Dilate 0.888 4.616 0.945 101.631 0.945 4.603 0.916 40.566

Erode 1.252 5.006 0.925 86.202 1.277 5.089 0.890 33.187

Table 4.8: Kruskal-Wallis H significance tests were performed for the initial contours
tests. Four metrics were used for the comparison, the mean absolute distance (dm),
Hausdorff distance (dH) and the Dice score (Dice), as well as the computation of the
volume in mL.

End diastole End systole

Test statistic p value Test statistic p value

dm 27.734 p<0.001 16.803 p<0.001

dH 5.679 0.058 1.467 0.48

Dice 27.179 p<0.001 13.276 p<0.001

volume 3.762 0.152 3.362 0.186

Figure 4.6 displays an example of the dilated and eroded contours for a patient.

The original contours are displayed in green, while the dilated contours are shown in

red, and the eroded contours in yellow. Examples are shown for the four cases of ED

at θ00 and θ90 degrees, and for ES at θ0 and θ90.
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(a) End diastole

(b) End systole

Figure 4.5: Boxplots displaying the operations dilate and erode for the following
metrics: mean absolute distance (dm, Hausdorff distance (dH) and the Dice score
(Dice), along with the volume in mL for (a) End diastole and (b) End systole
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(a) End diastole θ0 (b) End diastole θ90

(c) End systole θ0 (d) End systole θ90
Figure 4.6: Figures displaying the an example of the original contour in green, dilated
contour in red and eroded contour in yellow for four cases: (a) End diastole θ0 (b)
End diastole θ90 (c) End systole θ0 (d) End systole θ90
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4.5.4 Comparison to a geometrical model

There exist several segmentation methods that require an ellipsoid as a geometrical

prior for the shape of the LV. For example, authors in [47, 49, 60] use either a

truncated ellipsoid model to represent the LV, or a full ellipsoid that is scaled and

initialized manually within the cavity of the chamber. An experiment was designed

to determine if an ellipsoidal model could produce results close to the ground truth.

The following steps were taken to create the ellipsoidal model:

1. Set the z-axis direction of the ellipsoid to be the axis used for the 3D spatial

segmentation centered at the base point of the mesh

2. Set the x and y axes directions to the normals used for the θ0 and θ90 contours

and set the sizes to be the distance between the opposing sides of the θ0 and

θ90 contours

3. Use VTK to cut the ellipsoid at the maximum z value of the θ0 and θ90

4. Use VTK to convert the cut ellipsoid to a mesh

Table 4.9 displays the results at ED and ES comparing the ground truth to the fitting

of an ellipsoid. The four metrics used are the dm, dH , Dice score and the volume

in mL. Figure 4.7 displays the boxplots for these four measures. Kruskal-Wallis H

significance tests were performed for the ED and ES meshes as shown in Table 4.10.

The table shows that for all measures except for the volume there is a significant

difference between the ellipsoid model and the ground truth.

Figure 4.8 displays an example of the truncated ellipsoid that has been fit to the

two 0 degree and 90 degree contours.
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Table 4.9: Effect of fitting an ellipsoid: Comparing the end diastolic and end systolic
segmentations from the proposed method to the ground truth for angular spacing
values of 1, 5, 10, and 15 degrees. The following three distance and overlap metrics
are used: mean absolute distance (dm), Hausdorff distance (dH) and the Dice score
(Dice).

End Diastole End Systole

dm (mm) dH (mm) Dice volume in mL dm (mm) dH (mm) Dice volume in mL

2.019 7.148 0.862 96.406 2.244 8.586 0.788 48.227

Table 4.10: To determine if there were significant differences between the ellipsoid
model and the ground truth, Kruskal-Wallis H significance tests were performed for
the following metrics: mean absolute distance (dm, Hausdorff distance (dH) and the
Dice score (Dice), as well as the computation of the volume

End diastole End systole

Test statistic p value Test statistic p value

dm 26.27 p<0.001 25.947 p<0.001

dH 18.515 p<0.001 21.926 p<0.001

Dice 26.27 p<0.001 26.27 p<0.001

volume 0.256 0.613 5.334 0.021
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(a) End diastole

(b) End systole

Figure 4.7: Boxplots displaying the fit ellipsoid results for the following metrics: mean
absolute distance (dm, Hausdorff distance (dH) and the Dice score (Dice), along with
the volume in mL for (a) End diastole and (b) End systole
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Figure 4.8: Example of fitting a truncated ellipsoid to the 0 degree and 90 degree
contours.

4.6 Results for 3D+t temporal segmentation

4.6.1 Quantitative performance evaluation against other reg-
istration methods

The proposed algorithm for 3D+time segmentation was compared to four publicly

available registration algorithms, two variants of the Demons algorithm from Insight

Toolkit (ITK) [85], optical flow from the scikit-image package [86–89], and the optical

flow implementation from the OpenCV package [90, 91]. The ITK package includes

multiple implementations of the Demons algorithm, including the classical algorithm

and an alternative that includes fast symmetric forces. The Demons algorithms are a

set of methods that are based on optical flow [92, 93]. The main assumption is that the

intensity of the two images being compared is constant in optical flow. The velocity

can be considered to be the displacement between these two frames. When solving

for the displacement for each voxel, the flow might be unstable when the gradient is

small. Therefore the demons implementation allows the vector field to be more stable

and applies smoothing to the deformation field. To increase the similarity between
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the two images before registration, histogram matching was applied for both Demons

registration implementations. Fifty iterations were used for the classical approach,

and 200 iterations were used for the fast symmetric forces method. A Gaussian kernel

with a value of 5.0 was used as the standard deviation of both implements to smooth

the displacement field.

The optical flow registration algorithm from scikit-image [86–89] uses a total vari-

ation approach using the L1 norm. Unlike the traditional optical flow, this allows for

the preservation of discontinuities. An image pyramid approach is used in a coarse to

fine manner to account for large disparities between the images to be registered. The

optical method from the OpenCV implementation uses a method based on polynomial

expansion to compute the optical flow [90, 91]. Windows or neighborhoods surround-

ing each pixel are computed by using a quadratic polynomial. Using the polynomial

expansion transform allows for the optical flow displacements to be estimated by

observing how the polynomial transforms under translation.

Results of the proposed 3D+t segmentation method are displayed in Table 4.11

for the following distance metrics: the mean absolute distance dm in mm, Hausdorff

distance dH in mm, the Dice score Dice, and the correlation coefficient of the volumes

compared to the ground truth. It can be observed that compared to the four other

registration methods, the proposed method displays high performance, with a mean

dm of 1.01 mm, mean dH of 4.41 mm, and a mean Dice score of 0.93.

4.6.2 Visual inspection

One method to visually assess the accuracy of the proposed segmentation method is

to compare the ground truth mesh to the reference mesh. Figure 4.9 displays four of

these meshes, where the dm is used. The four meshes displayed are examples of the

(a) ED frame, (b) ES frame, (c) a frame in the systolic phase, and (d) a frame in

the diastolic phase. The ground truth mesh is displayed in gray, while the mesh from
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Table 4.11: The proposed 3D+t segmentation method was compared to four publicly
available registration methods in terms of the following distance, overlap and clinical
metrics: the mean absolute distance dm in mm, Hausdorff distance dH in mm, the
Dice score Dice, and the correlation coefficient of the volumes in mL compared to
the ground truth. The average time required for the registration between a pair of
frames is also provided. The metrics reported are averaged over all subjects over the
full cardiac cycle. The standard deviation values are provided in parentheses.

dm dH Dice Corrcoef time

(mm) (mm) (seconds)

Proposed method 1.01 (0.21) 4.41 (1.43) 0.93 (0.02) 0.993 0.124

ITK Demons 1.45 (0.49) 6.23 (1.48) 0.89 (0.04) 0.969 0.452

ITK Demons fsf 1.58 (0.53) 5.95 (1.70) 0.89 (0.03) 0.972 1.921

OpenCV optical flow 1.68 (0.52) 6.22 (1.48) 0.87 (0.04) 0.975 0.021

Scikit image optical flow 1.60 (0.52) 6.22 (1.48) 0.88 (0.03) 0.972 0.403

the proposed method is displayed using a heat map, where closer to blue indicates

a smaller distance between the ground truth and the proposed method, and closer

to red indicates a larger difference. For ease of comparison, the color bars are set to

the same range. It can be seen that there is a large degree of overlap in the meshes,

except perhaps towards the base where the difference is larger. This may be due to

the difficulty of performing registration closer to the mitral valves.

Volume curves can also be examined to observe the differences between the ground

truth obtained from TomTec Arena and the proposed method. Figure 4.10 shows two

example of volume curves, where the green line represents the ground truth and the

red line represents the volume from the proposed method. It can be seen that the

proposed method yields volume curves that are in high agreement with the ground

truth.

4.7 Conclusion

An algorithm for semi-automated segmentation of the LV in temporal US sequences

has been proposed. There are several advantages of the proposed method, namely
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(a) End diastolic mesh (b) End systolic mesh

(c) Mesh in systolic phase (d) Mesh in diastolic phase

Figure 4.9: Comparison of the ground truth mesh in gray and the proposed method
by use of the dm metric for four cases: (a) end diastole (b) end systole (c) in the
systolic phase (d) in the diastolic phase. The color bars indicate the distance from
the ground truth in mm, where blue indicates a small difference and red indicates a
larger difference.
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(a) Volume curve example (b) Volume curve example

Figure 4.10: Volume curve representation of two example patients. The green line
represents the ground truth obtained from the clinical software TomTec Arena and
the red line represents the volumes obtained from the proposed method. The volume
is provided in mL. Results demonstrate high agreement with the ground truth.

the use of the diffeomorphic registration approach [76] for performing the spatial

and temporal registration. The use of the diffeomorphic algorithm ensures that true

cardiac motion can be represented. Another advantage of the proposed method is

that a geometrical prior was not assumed for the shape of the LV, allowing for the

ability to capture motion from a wide variety of patients.

Several limitations exist with the proposed method, concerning the data, the semi-

automated nature of the algorithm, and the experiments conducted. The quality of

the US volumes may have an adverse effect on the diffeomorphic registration method

[76]. Preprocessing of the data, such as speckle noise removal may improve the accu-

racy of the registration. The proposed algorithm was evaluated on a relatively small

sample size of 18 patients, and all patients were scanned using the same US machine

with a frame rate greater than 17 frames per cardiac cycle. These may restrict the

use of the proposed algorithm to a larger patient population.

Limitations also exist because of the semi-automated nature of the algorithm.

First, the additional experiments testing robustness to the manual interaction, showed

that the proposed algorithm was not robust for the initial contour selection (using the
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mean absolute distance and Dice score). Future work would include an automated

method of selecting the contours. Secondly, the proposed method relies on the ground

truth to extract the four contours required for the ED and ES volumes. This bias

reduces the error when compared to the ground truth. Another potential drawback

of the algorithm is that the manual interaction is similar to other clinical programs

such as TomTec Arena. In the TomTec Arena software, the user is required to align

the LV and edit the 2, 3, and 4 chamber views for the ED and ES contours. This

is similar but slightly higher than the amount of user interaction for the proposed

method.

There are several limitations concerning the experiments performed for testing the

robustness of the 3D spatial registration algorithm. We were unable to compare our

method to Simpson’s biplane method, which also requires two orthogonal contours.

In Simpson’s biplane method, a series of discs are automatically created from the

apex to the base, where an ellipsoid is fit to each of the discs. The sum of the volume

of each of these discs is then computed. The actual algorithm from Philips QLab

Cardiac Analysis (Philips, Amsterdam, Netherlands) was unable to be compared to,

as the software is proprietary. Unfortunately, the software is unable to save out a

mesh representation of the LV across the cardiac cycle, which is a vital part of the

comparison of the proposed approach. One other limitation to consider is that the 3D

spatial registration may not capture significant changes in the structure and shape.

Using a small angular spacing value ensures that this rarely occurs.

A modified version of the 3D+time segmentation algorithm was developed for

the LV. A subset of the angular contours was propagated over time for temporal

registration in the proposed approach, relying on the ED and ES spatial segmentation.

In the slightly modified version, only the four θ0 and θ90 contours from the ED and

ES frames are propagated temporally, followed by individual 3D spatial segmentation

for each frame. Results using the modified method were: dm of 1.01 (0.22), dH of 4.59

(1.37) and a Dice score of 0.93 (0.02). These results were very close to the results
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from the proposed method.

The proposed algorithm uses 2D spatial and temporal registration in order to

capture the motion of the left ventricle over the cardiac cycle. The 2D contours that

arise from the registration are transformed to 3D, yielding a pseudo-3D registration

method. Instead, it may be beneficial to directly capture the 3D motion of the

chamber over time. This would also reduce the need for using only a subset of the

spatial contours that are propagated temporally. Instead, one could propagate an

entire 3D mesh over the full cardiac cycle. This algorithm for 3D-to-3D registration

will be discussed in the following chapter.
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Chapter 5

3D-to-3D Diffeomorphic Registration
Algorithm

5.1 Overview

The previous methods described are not able to consider the point-to-point correspon-

dence in the through-plane direction as they rely on 2D image registration. Therefore,

we propose a novel 3D-to-3D registration algorithm to assess the point-to-point corre-

spondence within the 3D spatial domain. We apply the proposed algorithm to perform

segmentation of the LV over a temporal sequence of 3D volumes. The proposed regis-

tration method is diffeomorphic and computes a voxel-to-voxel correspondence, where

the deformation field is parameterized by a radial component and three curl compo-

nents. The advantage of using this representation of the deformation field is that it

is appropriate for capturing cardiac deformation. The algorithm allows the user to

enforce diffeomorphic constraints to control the amount of allowable deformation.

Although the method is intended for the segmentation of the LV from US sequences,

an evaluation using MRI sequences is included to demonstrate its robustness. The

registration algorithm was tested on two datasets, 521 temporal frames from 20 pa-

tients from the Automated Cardiac Diagnosis Challenge (ACDC) MRI dataset and

213 frames from 10 patients scanned using US from the Mazankowski Alberta Heart

Institute. The method was compared against six registration methods, from the Dipy

package Symmetric Normalization algorithm, from ITK two versions of the demons
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algorithm (classical and fast symmetric forces), two versions of optical flow from Re-

alTiTracker, and the Elastix software package. The algorithm was able to achieve a

Dice score of 98.15 (0.90)% for the MRI dataset and 93.02 (2.32)% for the US dataset.

An experiment was also performed in order to test the effect of the diffeomorphic con-

straints. The high performance of the algorithm is demonstrated on the ability to

perform well on multiple imaging modalities and patients with various abnormalities.

5.2 Algorithm

5.2.1 Theoretical overview

Figure 5.1 displays an overview of the 3D-to-3D registration process.

Figure 5.1: Flowchart for the proposed 3D-to-3D diffeomorphic registration algorithm

The proposed diffeomorphic registration algorithm consists of three major com-
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ponents, 1) 3D moving mesh grid generation [94], 2) the similarity metric, and 3)

optimization procedure. The proposed method computes the voxel-to-voxel corre-

spondences for a temporal series of volumes, starting with nth image Tn to the Tn+1

image defined over Ω ⊂ R3. The goal of the registration problem is to perform opti-

mization over a similarity measure [95], where for the proposed method the measure

is defined as the squared L2 norm:

ϕ̂ = argmin
ϕ

Es(Tn, Tn+1, ϕ(ξ)), (5.1)

where ϕ : Ω → Ω represents the transformation function and ξ ∈ Ω represents the

voxel locations. As a unique solution does not exist for this problem and therefore

requires more constraints, as the goal is to find a permissable deformation field. The

deformation field is defined using a monitor function µ and the curl of end velocity

field γ. We define a continuous monitor function µ(ξ):

∫︂
µ = |Ω|. (5.2)

The goal of the registration process is to solve for a transformation ϕ : Ω → Ω

and ∂Ω → ∂Ω so that:

Jϕ = µ(ξ). (5.3)

where Jϕ is the Jacobian determinant of the transformation ϕ.

The following steps are then taken in order to compute the transformation ϕ:

A vector field ρ(ξ) is computed:

div ρ(ξ) = µ(ξ)− 1. (5.4)

A velocity vector field is then generated from ρ(ξ), where t is [0,1] and is artificially

introduced time:

ν(t) =
ρ(ξ)

t+ (1− t)µ(ξ)
. (5.5)
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To solve for the transformation ϕ, the following ordinary differential equation is

solved, where t is [0,1] and ψ(ξ,t=0) = ξ:

ψ(ξ, t)

dt
= νt(ψ(ξ, t)). (5.6)

Setting ϕ equal to ψ evaluated when t=1 results in ϕ(ξ) = ψ(ξ, t = 1)

The problem formulated above may have multiple solutions. Therefore, a con-

straint is added to the curl of the vector field ρ(ξ). Using a Dirichlet boundary con-

dition, an intermediate vector field ρ(ξ) can be solved for from the div-curl system.

This formulation ensures a unique solution.

⎧⎨⎩ ∇ · ρ(ξ) = µ(ξ)− 1

∇× ρ(ξ) = γ(ξ).
(5.7)

The registration problem can be parameterized in the following manner as a con-

strained optimization problem, where user inputs τub is the upper bound of the Jaco-

bian determinant of the transformation, and τlb is the lower bound:⎧⎨⎩
∫︂
µ(ξ)dξ = |Ω|

τub > µ(ξ) > τlb.

(5.8)

A diffeomorphism is ensured by the fact that τlb is set to be above zero. The

formulation is optimized using a step-then-correct algorithm.
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Algorithm 1 Step-then-correct optimization
Given two 3D volumes, comprised of the fixed volume Tn and the moving volume
Tn+1, the following steps are computed in order to calculate the deformation field ϕ:

Step 1: Compute the gradients of µ and γ, which are given by ∇µ(Tn,Tn+1,ϕ) and
∇γ(Tn,Tn+1,ϕ)
while δ > δth and i < max_iter do

Step 2: Update gradients:

µi+1 = µi + δ
∇µEs

max|∇µEs|
γi+1 = γi + δ

∇γEs

max|∇γEs|

Step 3: Impose constraints from (5.8) for each pixel location ξ ∈ Ω:
µi+1 ← max(µi+1(ξ), τlb)
µi+1 ← min(µi+1(ξ), τub)

µi+1(ξ) ←
|Ω|∑︁

ξ⊂Ω µi+1(ξ)

γi+1 ← max(γi+1(ξ), τlb)
γi+1 ← min(γi+1(ξ), τub)

γi+1(ξ) ←
|Ω|∑︁

ξ⊂Ω γi+1(ξ)

Step 4: Compute a vector field ρ(ξ) that satisfies (5.7) and compute the
deformation field ϕ.

Step 5: Compute the cost Es.
if current Es < previous Es then

i ← i+ 1
Start from Step 1 of recomputing the gradients

else
Decrease step size δ
Start from Step 2 of updating the gradients

end
end

5.2.2 Numerical implementation

Divergence-curl system

The deformation field can be represented by traditional grid displacements, or by an

indirect method using the divergence and curl representation of Helmholtz’s theorem

[96]. The divergence-curl (div-curl) system is used to transform the divergence and
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curl representation of the deformation field into a set of Poisson equations that are

solved using the Fast Fourier Transform (FFT) method. The div-curl system for the

3D case is given in Equation (5.9). The divergence operator can be interpreted as the

change in density of the media at each point [97]. The divergence of the deformation

field represents the radial motion while the curl operator represents the rotation of the

media around every point [98]. The 3D operator directly extends from the 2D curl,

where each rotational component about each of the three axes. Therefore the curl

operator represents the rotational motion of the deformation field. The set of four

equations in Equation (5.9) form a set of equations, where the deformation field is

given by ϕ. The radial component is given by f 1 and the three rotational components

are given by f 2, f 3 and f 4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

divϕ =
∂ϕx

∂x
+
∂ϕy

∂y
+
∂ϕz

∂z
= f 1

curlxϕ =
∂ϕz

∂y
− ∂ϕy

∂z
= f 2

curlyϕ =
∂ϕx

∂z
− ∂ϕz

∂x
= f 3

curlzϕ =
∂ϕy

∂x
− ∂ϕx

∂y
= f 4.

(5.9)

In order to solve for the (5.9), a set of Poisson equations can be formed, where then

numerical solvers can be applied to solve the set of equations. To form the equations,

first the derivative of each of the f 1, f 2, f 3, and f 4 terms is computed with respect

to x, y, and z. These equations are given in (5.10), (5.11), (5.12) and (5.13), where

f i
k =

df i

dk
, with i=1,2,. . . ,4 and k=x,y,z:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f 1
x =

∂f 1

∂x
=

∂

∂x
(
∂ϕx

∂x
+
∂ϕy

∂y
+
∂ϕz

∂z
) =

∂2ϕx

∂x2
+
∂2ϕy

∂x∂y
+
∂2ϕz

∂x∂z
,

f 1
y =

∂f 1

∂y
=

∂

∂y
(
∂ϕx

∂x
+
∂ϕy

∂y
+
∂ϕz

∂z
) =

∂2ϕx

∂x∂y
+
∂2ϕy

∂y2
+
∂2ϕz

∂y∂z

f 1
z =

∂f 1

∂z
, =

∂

∂z
(
∂ϕx

∂x
+
∂ϕy

∂y
+
∂ϕz

∂z
) =

∂2ϕx

∂x∂z
+
∂2ϕy

∂y∂z
+
∂2ϕz

∂z2
.

(5.10)
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f 2
x =

∂f 2

∂x
=

∂

∂x
(
∂ϕz

∂y
− ∂ϕy

∂z
) =

∂2ϕz

∂x∂y
− ∂2ϕy

∂x∂z
,

f 2
y =

∂f 2

∂y
=

∂

∂y
(
∂ϕz

∂y
− ∂ϕy

∂z
) =

∂2ϕz

∂y2
− ∂2ϕy

∂y∂z
,

f 2
z =

∂f 2

∂z
=

∂

∂z
(
∂ϕz

∂y
− ∂ϕy

∂z
) =

∂2ϕz

∂y∂z
− ∂2ϕy

∂z2
.

(5.11)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f 3
x =

∂f 3

∂x
=

∂

∂x
(
∂ϕx

∂z
− ∂ϕz

∂x
) =

∂2ϕx

∂x∂z
− ∂2ϕz

∂x2
,

f 3
y =

∂f 3

∂y
=

∂

∂y
(
∂ϕx

∂z
− ∂ϕz

∂x
) =

∂2ϕx

∂y∂z
− ∂2ϕz

∂x∂y
,

f 3
z =

∂f 3

∂z
=

∂

∂z
(
∂ϕx

∂z
− ∂ϕz

∂x
) =

∂2ϕx

∂z2
− ∂2ϕz

∂x∂z
.

(5.12)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f 4
x =

∂f 4

∂x
=

∂

∂x
(
∂ϕy

∂x
− ∂ϕx

∂y
) =

∂2ϕy

∂x2
− ∂2ϕx

∂x∂y
,

f 4
y =

∂f 4

∂y
=

∂

∂y
(
∂ϕy

∂x
− ∂ϕx

∂y
) =

∂2ϕy

∂x∂y
− ∂2ϕx

∂y2
,

f 4
z =

∂f 4

∂z
=

∂

∂z
(
∂ϕy

∂x
− ∂ϕx

∂y
) =

∂2ϕy

∂x∂z
− ∂2ϕx

∂y∂z
.

(5.13)

In order to form the set of Poisson equations given by ∆ϕx, ∆ϕy and ∆ϕy, the above

relevant terms from (5.10), (5.11), (5.12), (5.13) are combined. Equation (5.14) gives

the ∆ϕx value after combining the terms from (5.10), (5.11), (5.12), (5.13), which can

be applied to (5.15) and (5.16).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∆ϕx =

∂2ϕx

∂x2
+
∂2ϕx

∂y2
+
∂2ϕx

∂z2

= (f 1
x −

∂2ϕy

∂x∂y
− ∂2ϕz

∂x∂z
) + (

∂2ϕy

∂x∂y
− f 4

y ) + (f 3
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(5.14)
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(5.15)

83



⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
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(5.16)

The final set of Poisson equations are displayed in (5.17).

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∆ϕx = f 1

x + f 3
z − f 4

y = F 1,

∆ϕy = f 1
y + f 4

x − f 2
z = F 2,

∆ϕz = f 1
z + f 2

y − f 3
x = F 3.

(5.17)

Several algorithms can be used to solve the set of Poisson equations [99]. The direct

method of solving the Poisson equations involves first using the Dirichlet boundary

condition, with boundary values set to zero. The Poisson equation can then be repre-

sented using a discretized version based on the second-order central difference equa-

tion. Writing this in matrix forms yields multiplication by the Laplacian operator.

The matrix can be inverted to solve the Poisson equations and obtain exact values,

but the size of the Laplacian matrix increases as the image size increases. Therefore

instead of using a direct method to solve the Poisson equations, the method based on

the FFT was chosen for this implementation.

Registration process

The registration process is performed sequentially over the temporal frames. There-

fore, it may accumulate errors over time. A methodology was developed to reduce

these tracking errors. Registration is performed in the forward and reverse directions

and a weighting function is used to combine the sets of deformation fields. DM f
n,n+1

encodes the forward displacement fields and DM b
n,n+1 encodes the reverse displace-

ment fields. Both sets of displacement fields are between the n and n+1 th frames,

where N represents the total number of frames in the sequence.
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⎧⎨⎩w = (n− 1)/(N − 1)

DMn,n+1 = (1− w) ·DM f
n,n+1 + w ·DM b

n,n+1.
(5.18)

Computation of the deformed meshes

As stated previously, the ED and ES ground truth meshes are used as input to the

proposed algorithm to compute the mesh for each frame of the cardiac cycle. Figure

5.2 displays code snippets necessary to compute the contours for each frame of the

cardiac cycle. The function compute_auto_contours takes as input the forward

displacement fields DMf and the reverse displacement fields DMb, as well as the

number of frames num_frames, a list of the indices of the ED and ES contours

i_mc as well as a list of the input contours mc_list. The function compute_auto_-

contours calls get_point_correspondence which computes a weighted average of

the contours based on the displacement fields using (5.18).

5.3 Results

The proposed method for 3D-to-3D registration was evaluated on two datasets: (1)

MR scans from 20 patients from the Automated Cardiac Diagnosis Competition

(ACDC) dataset [100], and (2) US scans from 10 patients scanned at the Mazankowski

Alberta Heart Institute. The displacement fields were calculated for each frame in a

pairwise manner over the entire cardiac cycle. The deformation fields were applied

to the ED and ES reference mesh segmentations, in order to generate a segmentation

of the LV for each frame of the cardiac cycle. A bounding box was defined to reduce

the amount of time needed for the registration process and was set to be a margin

of 10 voxels in the x, y, and z-direction. The following parameters were used for the

diffeomorphic registration algorithm: (1) Maximum number of iterations was set to

20, (2) Values for the transformation Jacobian determinant τlb and τub were set to

0.25 and 6.0 respectively to allow for large deformations in the cardiac tissue, (3) The
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Figure 5.2: Code snippets to perform the computation of the contours using the
forward and reverse displacement fields as well as the ED and ES input contours.
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step size h for the Runge-Kutta method was set to 0.05 (20 steps), (4) The initial

value of the step size δ was set to 0.5 for the step-then-correct optimization method,

(5) the factor to reduce δ was set to 0.66, and (6) The minimum δ threshold δth was

set to 0.0001.

The proposed registration method was implemented using Python 3.6.2 with Py-

Torch version 1.7.1 using an NVIDIA Tesla P100 GPU. The Visualization Toolkit

(VTK) version 8.1.2 was employed to create the mesh representation of the LV. The

Paraview software program version 5.7.0 was used to display differences between the

ground truth mesh and the set of meshes from the registration methods.

5.3.1 Registration software packages

The proposed algorithm was compared to six other registration methods: Symmetric

Normalization (SyN) algorithm from the Dipy package [101], two versions of the

Demons algorithm from the ITK software package [85], two variants of RealTiTracker

[102, 103], and the Elastix software package [19, 104]. Note that the registration

packages were implemented using Python 3.6.2 on an NVIDIA Tesla C2075 graphics

card and MATLAB version 2020b (Mathworks, Natick, Massachusetts, USA).

The Symmetric Normalization (SyN) algorithm is implemented in the Dipy soft-

ware package [101]. The algorithm ensures a diffeomorphic transformation, which

is defined by the fact that the function and the inverse are both smooth. The SyN

algorithm extends a previous algorithm [105], in which a Lagrangian diffeomorphic

registration method was employed. Invertibility constraints are used within the op-

timization process, which ensures that symmetry between the two volumes is guar-

anteed. The sum of squared differences (SSD) is employed as the similarity metric

for the registration process. A multi-resolution method is employed using a Gaussian

pyramid with three levels. Each level uses 10, 10, and 5 iterations respectively.

Two versions of the Demons algorithm were used from ITK, the classical Demons

algorithm and a version that employs the use of fast symmetric forces [85]. To ensure
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that the volumes being registered are similar, histogram matching is first applied. For

the classical Demons algorithm, 50 iterations were used, and for the fast symmetric

forces algorithm, 200 iterations were used. A Gaussian kernel of a standard deviation

of 1.0 is used for both versions of the Demons algorithm to smooth the displacement

field.

The RealTiTracker software contains a set of registration algorithms that are based

on optical flow methods [106]. There are two main terms in the optical flow formu-

lation: one that makes sure that the motion between two frames is small while the

second term ensures that there is a small intensity difference between the two frames.

There are two forms for the second term, the conservation of intensity. In this term,

there are two methods in which the spatial and temporal derivatives can be used,

either the L1 norm for the L2L1 functional or the L2 norm for the L2L2 functional.

The weighting term alpha determines how sensitive to the gray level intensity the

motion should be. For the L2L1 functional this value is set to 0.4 and for the L2L2

functional this value is set to 0.1. These values were adapted from the example codes

provided in the RealTiTracker MATLAB package.

Elastix [19, 104] is a software package that consists of various transformation mod-

els, cost functions, and optimization methods. The B-spline transformation was used

for registration in a multi-resolution framework with five levels. Mattes mutual in-

formation [107] was used for the similarity metric and adaptive stochastic gradient

descent was used for the optimizer.

5.3.2 Datasets used

Automated Cardiac Diagnosis Challenge (ACDC) dataset

Two datasets were employed for the evaluation of the proposed 3D-to-3D registration

algorithm. The first dataset is the publicly available Automated Cardiac Diagno-

sis Challenge (ACDC) dataset. The dataset contains a set of 100 patients from the

University Hospital of Dijon, France, scanned using cine MR imaging [100]. Patients

88



were scanned using a 1.5T scanner (Siemens Arena, Siemens Medical Solutions, Ger-

many) and a 3T scanner (Siemens Trio Tim, Siemens Medical Solutions, Germany).

Short axis slices were obtained using a breath-hold acquisition with a slice thickness

between 5 to 8 mm. A subset of 20 patients from the 100 was chosen in order to

evaluate the proposed registration algorithm. The number of frames of the subset

of 20 patients ranged from 13 to 35 frames for the entire cardiac cycle. The total

number of frames was 521 over the 20 patients. The volumes of the patient datasets

used were in the ranges of 184× 216× 8 to 256× 256× 11 voxels. The corresponding

resolution ranged from 1.367× 1.367× 10.0 mm to 1.875× 1.875× 10.0 mm.

The ground truth was delineated for the ED and ES frames by one clinical expert.

The patient population comprised of normal subjects, those who suffered a previous

myocardial infarction, patients with various myopathies, and those with an abnormal

right ventricle. The ground truth is only provided for the ED and ES frames for the

ACDC dataset, but evaluation of the proposed method over the entire cardiac cycle

is necessary. An automated method was used to reduce the time needed for an expert

to annotate each short-axis slice for each patient and frame. The method of [76] was

used to obtain the ground truth contours for each short-axis slice temporal sequence.

The set of temporal contours were created using the already provided delineations for

the ED and ES frames. An expert radiologist reviewed and edited the final ground

truth contours when necessary.

Mazankowski Alberta Heart Institute dataset

Ten patients were scanned at the Mazankowski Alberta Heart Institute (Edmonton,

Alberta, Canada) to assess LV function. They were approved to be scanned by the

human research ethics committee at the University of Alberta. An expert sonographer

scanned the set of patients using an X5-1 transducer on a Philips iD33 ultrasound

machine (Philips Healthcare, Best, Netherlands). A 3D sector angle of 70×80 degrees

was used to achieve a volume rate greater than 20 volumes per second. The number
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of frames in the dataset from the set of patients ranged from 16 to 26 for a total of 213

frames. The size of the volumes ranged from 224×176×208 to 256×176×208 voxels.

The resolutions respectively were 0.617× 0.787× 0.533 mm to 0.810× 1.005× 0.681

mm.

An expert cardiologist provided the ground truth segmentation using the TomTec

Arena software (TomTec Imaging Systems, Unterschleissheim, Germany). The soft-

ware uses a semi-automated 3D speckle tracking approach in order to delineate the

LV over the cardiac cycle. The ground truth segmentation meshes and the volume of

the LV were provided through the software.

5.3.3 Metrics

Mean absolute distance

The mean absolute distance (dm) is computed by taking each point in the proposed

approach mesh S, and locating the closest the point in the ground truth reference

mesh R. The mean of these minimum distance values is then computed [81], where

the result is given in mm:

dm(S,R) =
1

Ns

∑︂
s∈S

min
r∈R

(dist(s, r)). (5.19)

Hausdorff distance

The Hausdorff distance (dH) is calculated by finding a measure of the maximum

distance between the proposed mesh S and the ground truth reference mesh R [82].

The result is reported in mm. The dH is calculated by the following equation, where

the distance used between the points is Euclidean:

HD(S,R) = max

{︃
sup
s∈S

inf
r∈R

d(s, r), sup
r∈R

inf
s∈S

d(s, r).

}︃
(5.20)
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Dice score

The Dice score is a measure of the amount of overlap between the volume from the

proposed approach V and the reference volume Vref . A value of 1 indicates complete

overlap between the two volumes and a value of 0 indicates no overlap.

Dice =
2(V ∩ Vref )
(V + Vref )

. (5.21)

Determinant of the Jacobian

The Jacobian of a displacement field provides information about the local transfor-

mation at each point. The determinant of the Jacobian indicates whether topology

is preserved for the local transformation. A value less than 0 indicates that topology

is not preserved and that mesh folding has occurred. This in turn signifies that the

deformation field is implausible as it should represent anatomically possible motion.

5.3.4 MRI results

Quantitative evaluation

Distance metrics and determinant of Jacobian analysis The proposed al-

gorithm was evaluated along with six other registration methods using the mean

absolute distance dm, Hausdorff distance dH , the Dice score Dice, and the percent-

age of voxels of the Jacobian determinant that are less than zero J<0%. Observing

the dm and the dH metrics, it can be seen that the proposed method performs bet-

ter than the other methods. The Elastix registration method has a slightly higher

performance than the proposed method in terms of the Dice score, with a value of

98.21% compared to the proposed method of 98.10%. Observing the J<0% value,

it can be seen that the proposed algorithm results in no voxels below zero, which

indicates that mesh folding does not occur. The Elastix registration algorithm has

a J<0% value of 0.184, indicating some mesh folding occurred. To determine if the

set of distance measures for each of the registration methods are sufficiently different
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from each other, Kruskal-Wallis H significance tests were performed. The statistical

tests were performed for each of the dm, dH and Dice metrics for each frame. With

a set alpha significance value of 0.05, it can be observed that the p values calculated

are less than 0.0001, which demonstrates that there are significant differences among

the set of registration methods. The average time to perform registration was also

recorded for each of the methods, where the proposed method yielded a value of 0.59

seconds. Note that the proposed algorithm was written in Python 3.6.2 with Py-

Torch version 1.7.1 using an NVIDIA Tesla P100 GPU, while the other registration

methods were run using Python 3.6.2 on an NVIDIA Tesla C2075 graphics card and

MATLAB 2020b (Mathworks, Natick, Massachusetts, USA). Table 5.1 displays the

distance metrics and other measures for the ACDC dataset.

Volume analysis One part of diagnosing a patient is the analysis of the volume

of the LV over the cardiac cycle. A Bland-Altman (BA) plot can be used to ana-

lyze the difference in the volumes between the ground truth segmentation and the

volumes generated from the proposed method, or other registration methods. The

plot produces a bias metric, which is the mean of the differences between the two

sets of volumes. The 95% limits of agreement (LOA) are also calculated, set to the

bias ±1.96×the standard deviation of the differences. Figure 5.3 displays the BA

plot for a comparison between the ground truth volumes and the volumes resulting

from the proposed methodology. The bias is indicated by a red line, and the LOA

by two yellow lines. The reference line is indicated in black. It can be seen that

there is a slight bias in estimating the volumes, where there is an underestimation

of the volumes compared to the ground truth. In general, there is a good amount of

clustering around the reference line.

The bias and LOA are also calculated for the other registration methods versus the

92



Table 5.1: Quantitative evaluation results for the MRI dataset: The proposed algo-
rithm was compared to the ground truth and six other registration algorithms, sym-
metric normalization from the Dipy package, two versions of the Demons algorithm
(classical and fast symmetric forces) from ITK, RealTiTracker (L2L1 and L2L2) and
Elastix. The following metrics are reported for each method: mean absolute distance
dm in mm, Hausdorff distance dH in mm, Dice score Dice, and the percentage of vox-
els of the Jacobian determinant that are less than zero J<0%. Results are evaluated
over 20 subjects using MRI temporal sequences from the ACDC dataset. Smaller val-
ues of dm, dH and larger values of Dice indicate more accurate segmentation results.
As the determinant of Jacobian value less than zero indicates mesh folding, a number
greater than zero for J<0% indicates mesh folding occurred. In order to determine if
a significant difference exists for the dm, dH and the Dice metrics among the set of
registration methods, Kruskal-Wallis H significance tests were performed. The aver-
age time to perform for a single 3D-3D frame is provided in seconds. The standard
deviation values for all of the metrics are given in parentheses. Values that are high-
lighted in bold indicate the metric that gave the highest performance compared to
the other algorithms.

dm dH Dice J<0 T ime

(mm) (mm) (%) (%) (seconds)

Proposed method 0.48 (0.23) 4.43 (1.87) 98.10 (0.90) 0 (0) 0.59 (0.13)

Dipy SyN 1.01 (0.56) 5.03 (1.98) 95.98 (2.19) 0 (0) 1.23 (0.25)

Demons 0.73 (0.31) 5.43 (2.03) 97.26 (1.26) 6.87× 10−4 (2.55× 10−3) 2.22 (0.57)

Demons fast symmetric forces 0.65 (0.32) 4.66 (1.87) 97.50 (1.22) 0 (0) 5.95 (2.56)

RealTiTracker (L2L1) 0.77 (0.37) 4.70 (1.91) 97.29 (1.36) 3.16× 10−5 (5.60× 10−4) 1.24 (0.36)

RealTiTracker (L2L2) 0.67 (0.35) 4.62 (1.90) 97.60 (1.27) 8.83× 10−3 (5.41× 10−2) 0.88 (0.31)

Elastix 0.50 (0.22) 4.66 (1.80) 98.21 (0.82) 0.184 (0.803) 8.12 (1.28)

Kruskal-Wallis H test p<0.0001 p<0.0001 p<0.0001

ground truth segmentations as displayed in Table 5.2. It can be observed that the

Demons and Elastix registration methods result in slightly lower bias values compared

to the proposed method. The positive number for all of the bias values indicates that

the registration methods slightly underestimate the ground truth volume.

Volume curves are another method used to aid in the diagnosis of the patient, which

provide the volume of the LV in mL for each frame of the cardiac cycle. Figure 5.4

displays an example of a set of volume curves from one patient, where the ground

truth is displayed in red-filled circles and the proposed method in neon green squares.

The six other registration methods are displayed on the volume curve in dotted lines.

It can be seen that especially in the diastolic portion of the cardiac cycle, the pro-
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Figure 5.3: The Bland-Altman plot for the ground truth volumes versus the volumes
resulting from the proposed method. The bias is indicated by a red line, and the
limits of agreement by two yellow lines. The reference line is indicated in black.

Table 5.2: Bland Altman bias and limits of agreement (LOA) values for each of the
registration methods compared to the ground truth volumes.

Registration method bias LOA1 LOA2

Proposed method 1.77 −8.06 11.60

Demons 0.35 −13.87 14.57

Demons fsf 2.09 −11.94 16.11

Dipy SyN 2.77 −24.88 30.42

RealTiTracker L2L2 6.95 −6.41 20.30

RealTiTracker L2L1 8.57 −4.95 22.09

Elastix 0.92 −10.29 12.12
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posed method closely follows the ground truth compared to the other methods which

perform poorly.

Figure 5.4: Example volume curves from one patient from the ACDC MRI dataset.
The ground truth is displayed in red filled circles, and the proposed method is dis-
played in neon green squares. The other registration methods are shown in dotted
lines without markers.

Visual inspection

Distance mesh visualization Visually assessing the mean absolute distance be-

tween a registration method and the ground truth is a convenient way to compare

across different registration methods. Figure 5.5 displays the difference between the

ground truth mesh and the proposed method compared to the six other registration

methods for a frame in the systolic phase, and Figure 5.6 displays the mesh difference

for a frame in the diastolic phase. Areas in red indicate a large difference between

the ground truth and the registration method (in mm). Areas highlighted in blue

indicate a small difference. In the figure, for ease of visualization, the ground truth
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meshes are displayed in gray. The first row displays examples of the meshes for a

frame in systole, while the second row displays meshes for a frame in diastole. It can

be observed for the proposed method that the mesh closely follows the ground truth.

(a) Proposed
method

(b) Dipy (c) Demons (d) Demons fast
symmetric forces

(e) RealTiTracker
- L2L2

(f) RealTiTracker
- L2L1

(g) Elastix (h) Colorbar

Figure 5.5: Difference in the mesh between the ground truth and the proposed method
in the ACDC dataset for a frame in the systolic phase: (a) Proposed method (b)
Dipy (c) Demons (d) Demons fast symmetric forces (e) RealTiTracker - L2L2 (f)
RealTiTracker - L2L1 (g) Elastix (h) Colorbar

Contour trajectory plot A trajectory plot can be used to visually assess the

complete set of contour points. Each point in the mesh is plotted over time and line

segments of the same color connect the points. To improve visualization for the user,

different colors are used to plot the series of points. Figure 5.7 displays the trajectory

plots from one example patient from the ACDC dataset. The ground truth trajectory

plot is displayed on the left, and the plot from the proposed method on the right.

Visually speaking, it can be observed that the trajectory plots from the proposed

method are in close agreement with the ground truth.
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(a) Proposed
method

(b) Dipy (c) Demons (d) Demons fast
symmetric forces

(e) RealTiTracker
- L2L2

(f) RealTiTracker
- L2L1

(g) Elastix (h) Colorbar

Figure 5.6: Difference in the mesh between the ground truth and the proposed method
in the ACDC dataset for a frame in the diastolic phase: (a) Proposed method (b)
Dipy (c) Demons (d) Demons fast symmetric forces (e) RealTiTracker - L2L2 (f)
RealTiTracker - L2L1 (g) Elastix (h) Colorbar

(a) Ground truth (b) Proposed approach

Figure 5.7: Example trajectory plots from a patient from the ACDC MRI dataset,
where the figure on the left displays the (a) ground truth and the figure on the right
displays the (b) proposed method.
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5.3.5 Ultrasound results

Quantitative evaluation

Distance metrics and determinant of Jacobian The proposed registration al-

gorithm was evaluated against the ground truth and compared to the other registra-

tion algorithms using the metrics dm, dH , Dice, and J<0% as shown in Table 5.3.

It can be seen that the proposed algorithm has a lower dm and higher Dice score

compared to the other registration methods, but a slightly higher dH value compared

to Elastix. The average time to perform the registration for a single 3D to 3D frame

is 2.69 seconds. Note that the proposed algorithm was written in Python 3.6.2 with

PyTorch version 1.7.1 using an NVIDIA Tesla P100 GPU, while the other registra-

tion methods were run using Python 3.6.2 on an NVIDIA Tesla C2075 graphics card.

Observing the value of J<0% equal to zero indicates there is no mesh folding for only

the proposed method and Elastix.

Volume analysis A Bland-Altman analysis was also performed for the US dataset

from the Mazankowski as seen in Figure 5.8. The red line indicates the bias, while

the two yellow lines indicate the limits of agreement. The black line is the 0 reference

line, indicating that the volumes from the two methods match. The bias is slightly

higher than the reference line, indicating a small underestimation of the volume of

the ventricle compared to the ground truth. The volumes for all patients are plotted

and seem well clustered around the reference line except for a few outliers.

The bias and limits of agreement are also given for the other registration methods in

Table 5.4. The proposed method yields the smallest bias value, indicating that the

volume prediction is closer to the ground truth compared to the other registration

approaches.
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Table 5.3: Quantitative evaluation results for the US dataset: The proposed algorithm
was compared to the ground truth and six other registration algorithms, symmetric
normalization from the Dipy package, two versions of the Demons algorithm (classical
and fast symmetric forces) from ITK, RealTiTracker (L2L1 and L2L2) and Elastix.
The following metrics are reported for each method: mean absolute distance dm in
mm, Hausdorff distance dH in mm, Dice score Dice, and the percentage of voxels of
the Jacobian determinant that are less than zero J<0%. Results are evaluated over
10 subjects using US temporal sequences from the Mazankowski Alberta Heart In-
stitute. Smaller values of dm, dH and larger values of Dice indicate more accurate
segmentation results. As a determinant of Jacobian value less than zero indicates
mesh folding, a number greater than zero for J<0% indicates mesh folding occurred.
In order to determine if a significant difference exists for the dm, dH and the Dice
metrics among the set of registration methods, Kruskal-Wallis H significance tests
were performed. The average time to perform for a single 3D-3D frame is provided
in seconds. The standard deviation values for all of the metrics are given in paren-
theses. Values that are highlighted in bold indicate the metric that gave the highest
performance compared to the other algorithms.

dm dH Dice J<0 T ime

(mm) (mm) (%) (%) (seconds)

Proposed method 1.07 (0.32) 5.26 (1.74) 92.90 (2.42) 0 (0) 2.69 (0.64)

Dipy SyN 2.42 (0.89) 7.84 (2.32) 82.30 (7.28) 2.85× 10−6 (4.16× 10−5) 28.04 (7.08)

Demons 1.13 (0.30) 5.92 (1.54) 91.29 (2.93) 0.276 (0.168) 7.55 (1.62)

Demons fast symmetric forces 1.14 (0.39) 4.59 (1.75) 91.31 (3.63) 4.32× 10−3 (1.16× 10−2) 15.24 (17.51)

RealTiTracker (L2L1) 1.16 (0.36) 5.58 (2.06) 92.41 (2.43) 3.51× 10−3 (9.53× 10−3) 2.54 (0.37)

RealTiTracker (L2L2) 1.16 (0.36) 5.97 (2.13) 92.34 (2.44) 0.028 (0.043) 2.41 (0.33)

Elastix 1.26 (0.51) 4.58 (1.46) 92.40 (2.44) 0 (0) 14.30 (2.08)

Kruskal-Wallis H test p<0.0001 p<0.0001 p<0.0001

Table 5.4: Bland Altman bias and limits of agreement (LOA) values for each of the
registration methods compared to the ground truth volumes.

Registration method bias LOA1 LOA2

Proposed method 0.73 −6.23 7.69

Demons 1.01 −8.29 10.32

Demons fsf 1.09 −10.09 12.28

Dipy SyN 2.62 −20.40 25.63

RealTiTracker L2L2 1.80 −4.74 8.34

RealTiTracker L2L1 2.04 −4.65 8.72

Elastix −1.56 −12.39 9.27
Examining the volume over the entire cycle can be used to observe the overall systolic

and diastolic function of the patient. Figure 5.9 displays an example of a set of volume
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Figure 5.8: The Bland-Altman plot for the ground truth volumes versus the volumes
resulting from the proposed method. The bias is indicated by a red line, and the
limits of agreement by two yellow lines. The reference line is indicated in black.
curves from one patient. The ground truth is displayed in red-filled circles and the

proposed algorithm in neon green squares. The improvement in using the proposed

method is readily apparent especially in the diastolic phase, where a number of the

other registration methods perform poorly.

Visual inspection

Distance mesh visualization The mean absolute distance can be visualized in

terms of a distance mesh. Figure 5.10 displays the difference between the ground

truth mesh and the proposed method and other algorithms for a frame in the systolic

phase, and Figure 5.11 displays the difference for a frame in the diastolic phase. Red

indicates that the distance between the ground truth and the registration algorithm

is large (in mm) while blue indicates that the distance is minimal. The ground truth

mesh in the figure is displayed in gray. The first row displays the differences for a
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Figure 5.9: Example volume curves from one patient from the Mazankowski ultra-
sound dataset. The ground truth is displayed in red filled circles, and the proposed
method is displayed in neon green squares. The other registration methods are shown
in dotted lines without markers.
frame within the systolic phase, while the second row displays the differences from a

frame within the diastolic phase. It can be observed that the mesh from the proposed

method closely follows the ground truth.

Contour trajectory plot Another way to visually assess the entire set of contour

points is to use a trajectory plot. All points in the mesh are plotted over time, and

line segments of the same color connect the points. The use of different colors is

included to improve visualization for the user. Figure 5.12 displays the trajectory

plots from one patient from the Mazankowski Alberta Heart Institute dataset. The

ground truth trajectory plot is displayed on the left, and the plot from the proposed

method on the right. Visually speaking, it can be observed that the trajectory plots

from the proposed method are in close agreement with the ground truth.
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(a) Proposed
method

(b) Dipy (c) Demons (d) Demons fast
symmetric forces

(e) RealTiTracker
- L2L2

(f) RealTiTracker
- L2L1

(g) Elastix (h) Colorbar

Figure 5.10: Difference in the mesh between the ground truth and the proposed
method in the Maz dataset for a frame in the systolic phase: (a) Proposed method
(b) Dipy (c) Demons (d) Demons fast symmetric forces (e) RealTiTracker - L2L2 (f)
RealTiTracker - L2L1 (g) Elastix (h) Colorbar
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(a) Proposed
method

(b) Dipy (c) Demons (d) Demons fast
symmetric forces

(e) RealTiTracker
- L2L2

(f) RealTiTracker
- L2L1

(g) Elastix (h) Colorbar

Figure 5.11: Difference in the mesh between the ground truth and the proposed
method in the Maz dataset for a frame in the diastolic phase: (a) Proposed method
(b) Dipy (c) Demons (d) Demons fast symmetric forces (e) RealTiTracker - L2L2 (f)
RealTiTracker - L2L1 (g) Elastix (h) Colorbar

(a) Ground truth (b) Proposed approach

Figure 5.12: Example trajectory plots from a patient from the Mazankowski US
dataset, where the figure on the left displays the (a) ground truth and the figure on
the right displays the (b) proposed method.
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5.4 Additional experiments

5.4.1 Diffeomorphic constraints experiment

An experiment was performed in order to evaluate the use of the diffeomorphic con-

straints on the ACDC MRI and Mazankowski US datasets. The proposed registration

method was run with and without the use of the diffeomorphic constraints. Table 5.5

displays the distance metrics as well as the percentage of voxels that have the de-

terminant of Jacobian less than zero, given by J<0%. It can be seen that for the

proposed method, the distance metrics yield minor differences, except for dH where

the difference is large for the US dataset. Using the diffeomorphic constraints yields

no mesh folding (indicated by the value of zero), while not including the constraints

results in a small percentage of mesh folding. This further validates the usefulness of

the diffeomorphic constraints to the registration algorithm.

Table 5.5: Diffeomorphic constraint experiment results: The diffeomorphic con-
straints were removed in order to understand the effect on the determinant of the
Jacobian metric. The percentage of voxels with a determinant of the Jacobian less
than zero is given by J<0%, indicating mesh folding. The mean absolute difference
dm in mm, Hausdorff distance dH in mm, Dice score Dice are also provided for com-
parison.

Dataset Constraint dm dH Dice J<0

(mm) (mm) (%) (%)

MRI include 0.48 (0.23) 4.43 (1.87) 98.10 (0.90) 0 (0)

MRI exclude 0.49 (0.23) 4.61 (2.13) 98.09 (0.91) 6.23× 10−3 (2.76× 10−2)

US include 1.07 (0.32) 5.26 (1.74) 92.90 (2.42) 0 (0)

US exclude 1.07 (0.32) 7.48 (5.86) 92.80 (2.45) 7.82× 10−3 (2.01× 10−2)

Figure 5.13 displays the determinant of the Jacobian with and without the diffeo-

morphic constraints for the two datasets. The first row displays figures from the

MRI dataset, while the second row displays figures from the US dataset. The first

column indicates the warped image, the middle column displays the determinant of

Jacobian with the diffeomorphic constraints, and the last column displays the deter-
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Warped image Det of J with DC Det of J with no DC

Warped image Det of J with DC Det of J with no DC
Figure 5.13: Examples from a patient from the MRI dataset (first row) and a patient
from the US data (second row). The first column shows the warped image, the second
column displays the determinant of the Jacobian map from using the diffeomorphic
constraints, and the third column displays the determinant of the Jacobian map
without using the constraints. The regions of interest inside the circle are indicated
by an arrow, where mesh folding has occurred for the case where no diffeomorphic
constraints are applied.
minant of the Jacobian with no diffeomorphic constraints. Black pixels indicate that

the determinant of the Jacobian is less than or equal to zero, displaying mesh folding.

Comparing the areas inside the circle (indicated by an arrow), it can be seen that

there are slight discontinuities in the images with no diffeomorphic constraints.
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5.5 Conclusion

A 3D-to-3D diffeomorphic registration algorithm for the application of segmentation

of the LV has been developed. The proposed algorithm was evaluated on a subset of

the publicly available ACDC Challenge dataset [100] as well as a set of US sequences

obtained from the Mazankowski Alberta Heart Institute. The proposed algorithm was

compared to six other registration methods, Symmetric Normalization diffeomorphic

registration from the Dipy package [101], two versions of the Demons algorithm (clas-

sical and fast symmetric forces) from ITK [85], two variants of RealTiTracker [102,

103], and the Elastix software package [19, 104].

The proposed algorithm is diffeomorphic, allowing it to capture the true defor-

mation of the cardiac tissue. Observing the percentage of voxels with a Jacobian

determinant less than zero, all of the other registration methods yielded mesh folding

for either the MRI dataset, US dataset, or both. The presence of mesh folding may

result in the inability of these methods to capture the true anatomical motion.

There are several advantages of using the proposed algorithm. A manually created

training set is not required, which may be difficult depending on patient abnormalities.

A geometric assumption is also not made concerning the shape of the LV, which

is important in the algorithm’s ability to capture the anatomical differences. The

algorithm has been evaluated on both MRI and US temporal sequences, as well as

a wide variety of patients, making it robust to the imaging modality and patient

diagnosis. The diffeomorphic algorithm is also unique because the deformation field

is represented using the radial and rotational components, appropriate for cardiac

analysis.

One limitation of the proposed method is the effect of the image quality on the

performance of the algorithm. Large abnormalities, artifacts, and other sources of

noise may affect the voxel-to-voxel correspondence mapping. Preprocessing could be

performed to remove some of the noise in the future. A second limitation concerns the
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methods used for obtaining the ground truth for both the ACDC and Mazankowski

datasets. For the ACDC dataset, the method of [76] was used to create the ground

truth for the frames in the cardiac cycle based on the ED and ES ground truth

contours. The process involved using the 2D registration method for each axial slice

across the temporal sequence. For the US dataset from the Mazankowski Alberta

Heart Institute, the cardiologist employed the use of TomTec Arena to generate the

ground truth. In the future, it would be useful to have the cardiologist manually

annotate each frame in the cardiac cycle without the use of external software. It

would also be useful in the future to have more than one expert annotate the ground

truth in order to perform intra-observer and inter-observer studies.

A diffeomorphic registration algorithm for 3D volumes has been proposed, with the

application of semi-automated segmentation of the LV. The method has been applied

and validated on MR and ultrasound temporal sequences of the heart. The proposed

method was compared to a set of registration software packages, in terms of the Dice

score the proposed method yielded a value of 98.10 (0.90)% and 92.90 (2.42)% for the

MRI and US datasets respectively.
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Chapter 6

Conclusions & Future Work

In this chapter, an overview of the work accomplished is provided. Limitations of

each of the achievements are outlined and discussed, and plans for improvements and

future work are detailed.

6.1 Overview

Cardiac-related diseases affect millions of people in Canada each year and are the

second leading cause of death in the country (2017) [0]. Early diagnosis and detection

of various cardiac diseases in a non-invasive manner would be beneficial to clinicians.

MRI is often considered the gold standard when it concerns the imaging of the heart.

Unfortunately, MRI suffers from several drawbacks including the high cost and the

fact that it is not portable. Echocardiography or ultrasound imaging has therefore

been used by clinicians to address the above issues.

Along with selecting the proper imaging modality for the patient, the analysis

methods used for diagnosis are of utmost importance. The left ventricle is often

analyzed in cardiac issues as it provides useful clinical indices for describing cardiac

function. For instance, the ejection fraction percentage, calculated from the volume of

the left ventricle when it is the largest and the smallest, indicates the heart’s efficiency

at pumping blood.

It is crucial for the method to rely on minimal user interaction, as it is time-
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consuming for clinicians to delineate anatomical structures of interest. It is also

important for the delineation method to be reproducible and not rely on geometrical

assumptions for shapes of the chambers.

In the proposed work, methods have been developed to address the shortcomings

listed above. In particular, approaches for semi-automated delineation have been

developed that have minimal user interaction, do not rely on geometrical priors, and

do not require the use of training data.

6.1.1 Accomplishments

3D spatial segmentation in US volumes

In Chapter 3 a method for semi-automated delineation of the left ventricle, with

minimal user interaction, has been developed. The user selects an axis between the

apex and the base, where angular slices are then generated. The user then delineates

the endocardium on two orthogonal slices, and a diffeomorphic registration algorithm

is then used to automatically propagate this contour for all slices. A mesh is formed

from these contours for both end-diastole and end-systole. The CETUS dataset [80]

was used to evaluate our algorithm against a set of ground truth meshes provided by

expert cardiologists. The method was compared to nine other semi-automated and

fully automated algorithms and performed on par with the other methods in terms

of standard distance and clinical metrics.

3D temporal segmentation in US sequences

In Chapter 4, an algorithm for semi-automated delineation of the left ventricle over the

cardiac cycle was developed. The work is extended from Chapter 3, where the method

is first used to obtain a segmentation at end-diastole and end-systole. Temporal

segmentation is then performed by propagating a coarse set of contours from end-

diastole and end-systole for the entire cardiac cycle. The method was validated on a

set of 18 subjects from the Mazankowski Alberta Heart Institute, where the ground
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truth was annotated by an expert cardiologist using the TomTec Arena software.

Compared to four other registration methods, the proposed method achieved high

performance in distance and clinical metrics.

3D-to-3D diffeomorphic registration algorithm

In Chapter 5, a 3D-to-3D diffeomorphic registration algorithm is proposed. Instead

of using traditional grid displacements to model the deformation field, the field is

represented by the divergence and curl operators. These representations of the radial

and rotational components make it appropriate to model the deformation of the

dynamic heart. The method is validated on two sets of data, a set of 20 subjects

from the ACDC MRI dataset, and a set of 10 subjects scanned using ultrasound from

the Mazankowski Alberta Heart Institute. The method is also compared to six other

registration algorithms, where the method achieved the highest performance in terms

of the mean absolute distance and the Hausdorff distance for the ACDC dataset, and

the mean absolute distance and Dice score for the ultrasound dataset. An experiment

was also performed to test the effect of the diffeomorphic constraints for the Jacobian

determinant.

6.2 Limitations and future work

This section lists some of the limitations of the proposed work, and ways to remedy

them and improve on the algorithms developed.

6.2.1 Manual interaction

One of the significant drawbacks of the proposed work is the amount of manual

interaction necessary. For the 3D spatial segmentation for a single time point, the

method requires the user to select two points to form an axis and to draw two contours

on orthogonal slices. For the temporal extension of the algorithm, the user must draw

an additional two contours for the end-systolic phase. In the future, machine learning
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methods or deep learning approaches could be applied to choose the appropriate axis

automatically and to delineate the contours necessary for the algorithm.

The 3D-to-3D registration algorithm relies on the delineation of the end-diastolic

mesh and the end-systolic mesh to obtain the meshes for the other frames in the

cardiac cycle. The use of both of the meshes improves the algorithm’s performance,

as with using only the end-diastolic mesh as input, it may be challenging to capture

the motion at end-systole. Unfortunately, the requirement of meshes at both frames of

the cardiac cycle is a large amount of manual input. For this, other machine learning

or deep learning methods would be appropriate to use.

6.2.2 Clinical measures

One of the primary motivations of the proposed work was to compute metrics that

would be helpful to clinicians for diagnosing a patient. The presented methods were

thoroughly compared to the ground truth using distance metrics, which included the

mean absolute distance, Hausdorff distance, and the Dice score. The end-diastolic

volume, end-systolic volume, ejection fraction, and volume of each frame over the

cardiac cycle were computed for the clinical measures. For several methods, Bland-

Altman plots were also generated in order to determine the bias in the volumetric

measurements compared to the ground truth.

Several global indices would be beneficial to calculate for clinicians. In particu-

lar, measurements including the global longitudinal strain and global circumferential

strain are helpful, as they can aid in assessing the systolic function of the heart [0].

Other measures like the twist and torsion would help inform the clinician about issues

such as diagnosing dilated cardiomyopathy [0]. In this condition, the twist mechanics

of the LV are affected because the chamber is larger, increasing the sphericity of the

chamber. The twist can also be affected because of cardiac interventions [0].

One of the significant advantages of performing 3D temporal segmentation of the

left ventricle is the ability to obtain global functional measures and perform regional
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motion analysis. Analysis of specific segments of the left ventricle in terms of strain is

crucial in detecting abnormalities. Therefore it would have been beneficial to calculate

longitudinal, circumferential, and radial strain measures, along with displacement and

volume measurements for each region.

6.2.3 Creation of the ground truth

One point to be discussed is the generation of the ground truth for each of the three

contributions. In Chapter 3, the CETUS dataset is used as the ground truth compari-

son for the end-diastolic and end-systolic frames. Three expert cardiologists developed

a set of rules in order to achieve a high consistency, including rules for the wall of the

LV, the mitral valve plane, and the inclusion of trabeculations and papillary muscles

[79, 80]. Segmentations were then performed separately by each of the cardiologists,

and the final reference mesh was agreed upon by the three cardiologists. Tables 3.1

and 3.2 display the inter-observer values among the three expert cardiologists, there-

fore creating a maximum accuracy possible for the proposed method and the other

nine methods.

In Chapters 4 and 5, a single expert cardiologist used the TomTec Arena software

to delineate the LV. The software relies on the user to align the LV along an axis, from

which an estimate of the endocardial borders of the LV are provided at end-diastole

and end-systole. The software then uses a speckle tracking approach to obtain the

contours for all frames of the cardiac cycle. This approach may be biased as our

proposed algorithm relies on clinical software for the ground truth. In the future, it

would be better to obtain manual segmentations directly from the expert cardiologist

without the use of additional tracking software.

The studies in Chapters 4 and 5 could be improved, as only a single expert cardi-

ologist provided the ground truth. It would be useful to perform inter-observer and

intra-observer studies by having both multiple observers over multiple time points to

obtain the segmentation. Performing this type of analysis would allow us to establish
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a baseline of the agreement between different raters. Algorithms such as STAPLE [0]

could be used for the computation of an estimate of the true segmentation.

6.2.4 Comparison to other registration methods

Chapters 4 and 5 compared the proposed method to four and six other registration

approaches, respectively. Parameters were chosen based on default values from ex-

ample codes and published papers. Issues with the parameters are apparent in the

volume curves for the ultrasound dataset, where the methods based on Dipy and the

Demons approaches are significantly off, and vary greatly from the ground truth. In

the future, it would be better to perform thorough experimentation and analysis of

the parameters for each registration method.

6.2.5 Improvements to the 3D-to-3D registration algorithm

There several improvements and additions to the 3D-to-3D diffeomorphic registration

algorithm that can be implemented. One area would be for the similarity metric,

where apart from the current similarity metric (sum of squared differences), others

such as mutual information or normalized cross-correlation could be implemented.

In multi-modality registration, having the option to use different similarity metrics

would be beneficial to the user.

One method that could be used to improve the performance of the registration

algorithm is to apply a multi-resolution approach. The benefit of an image pyramid

approach is that registration is applied to first obtain a coarse alignment, where the

deformation fields are successively improved at each level of the image pyramid.

Noise in ultrasound images is a large factor that plays into the analysis of the

data. The diffeomorphic registration algorithm may be affected by the image’s noise;

therefore, performing preprocessing and speckle reduction could prove helpful.

The proposed registration algorithm was applied in a sequence of images, where

pairwise registration was performed sequentially across the frames. This method
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of image registration is prone to error accumulation, and therefore both forward

and reverse registration was completed, and a weighting applied. Other sequence

registration methods can be explored that would reduce the error accumulation.

The proposed method for 3D-to-3D registration provides clinicians with a large

amount of possible extensions. The algorithm could be applied to other chambers of

the heart, where the dynamics are harder to model than that of the left ventricle.

It would also be beneficial to validate the algorithm on a larger, more varied set of

patients. This would include patients obtained from different ultrasound scanners

and different hospitals. It would also be interesting to test this algorithm on patients

that have significant abnormalities in the left ventricle, such as those with a previous

heart attack, cardiomyopathy, and various congenital diseases.
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