
University of Alberta

Improving Dynamic Project Control in Tunnel Construction

by

Hua Xie

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Construction Engineering and Management

Department of Civil and Environmental Engineering

©Hua Xie

Fall 2011
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever without the author's prior written permission.

ABSTRACT

Project risks and uncertainties cause unpredictable project performance. This

research intended to demonstrate that project control can be improved with the

proceeding of a project, by exploiting new, available project information, and

reducing uncertainties. The purpose of this study was to investigate effective tools

and methods for dynamic project control.

The main research work refers to the creation of a project monitoring system,

tunnel construction simulation, adaptive modeling, project forecasting and

planning, and cost contingency forecasting. A project monitoring system was

developed to capture progress data. It also provides project progress data for

updating a tunnel construction simulation model, which is built on the High Level

Architecture. A Bayesian updating simulation component was developed to

automatically integrate progress inputs to update key simulation model inputs.

Thus, the simulation model is able to revise the inputs in light of the actual

progress, to reflect the latest performance, and to ensure the validity of model

inputs. The simulation results are then used to forecast future performance, and

plan future work. Systematic project schedules and plans were provided,

identifying the production, labour hours, equipment hours, and time to completion,

as well as the resource and constraints of each main task. Additionally, this

research introduced and applied Value at Risk to forecast project contingency, by

utilizing actual daily cost as inputs. The forecasted cost contingency, together

with labour hours and equipment hours from the simulation model, provides the

basis for project budget planning and allocation.

The web-based project progress monitoring system can reduce the time and effort

needed for project control. The simulation model provides dynamic project

planning and helps the project management team to gain insight into ongoing

projects. The cost contingency forecast method provides opportunities to update

contingencies, and allocate appropriate contingencies at project milestones, which

allows companies to improve capital fund utilization. This research lays a solid

foundation for future endeavours in how to make use of newly available project

information to improve project control and planning as the project progresses.

ACKNOWLEDGEMENT

First of all, I sincerely thank Dr. Simaan M. AbouRizk, my supervisor and mentor.

I am extremely grateful for his vision, support, encouragement, and guidance for

years during my study. His sound knowledge, creative ideas, and academic rigor

have led my way to the successful completion of my PhD program, as well as

urged me to surpass myself.

I extend my gratitude to Dr. Yasser Mohamed and Dr. Ming Lu for their advice,

recommendations, and insightful discussions with me. I am grateful to all

members at the Hole School of Construction Engineering at University of Alberta

for their invaluable support. I would especially like to thank the programmers who

worked with me and contributed to the development of COSYE and the tunnel

federation.

Special thanks to the engineers from the Design and Construction Section of

Drainage Services at City of Edmonton, and S.M.A. Consulting Ltd. Their

continuous support and assistance helped me in collecting and sharing project data,

analyzing the construction process, and gaining insight into their operations,

which provided a great opportunity to obtain experience and knowledge in tunnel

construction.

I would like to express my sincere gratitude to my Mom and Dad. Their sustained

patience, encouragement, and support have continuously cultivated my passion

and endeavours in pursuing my dreams, including this degree.

Thank you to all the people who helped me through the doctoral program. The

study and experience at University of Alberta has not only taught me knowledge

and skills, but also fostered my tenacity, rigor, and enthusiasm about work and

life.

I would like to end this acknowledgement with the lyrics from one of my favorite

songs, You Learn, by Alanis Morissette. I believe these lyrics truly illustrate the

study and life of my PhD program, and I would like to share them with the ones

whom I love and who love me:

“You live, you learn

You love, you learn

You cry, you learn

You lose, you learn

You bleed, you learn

You scream, you learn…

You grieve, you learn

You choke, you learn

You laugh, you learn

You choose, you learn

You pray, you learn

You ask, you learn

You live, you learn…”

TABLE OF CONTENTS

Chapter 1 Introduction ··· 1

1.1 Introduction ·· 1

1.2 Background ·· 4

1.3 Tunnel construction process ··· 9

1.4 Research scope ··· 10

1.5 Research objective ··· 12

1.6 Research methodology ··· 14

1.7 Thesis organization ·· 16

Chapter 2 Literature review ··· 19

2.1 Discrete event simulation in construction ··· 19

2.2 HLA-based simulation ··· 23

2.3 Model input management ··· 25

2.4 Project control systems ··· 27

2.5 Construction planning and scheduling ·· 29

2.6 Cost contingency ·· 32

Chapter 3 Conceptual model for an integrated tunnel simulation system ············ 36

3.1 Introduction ·· 36

3.2 An integrated tunnel simulation system ··· 38

3.2.1 System overview ·· 38

3.2.2 Progress monitoring module ·· 41

3.2.3 Bayesian updating module ··· 42

3.2.4 Construction simulation module ·· 43

3.2.5 Scheduling and Planning module ··· 44

3.2.6 Cost contingency updating ··· 44

3.3 Summary ·· 46

Chapter 4 Implementation of the integrated tunnel simulation system ················ 48

4.1 Introduction ·· 48

4.2 The development of tunnelling simulation system ····································· 50

4.3 Tunnel federation ··· 60

4.3.1 Overview ··· 60

4.3.2 FOM ·· 66

4.3.3 Tunnel construction simulation modeling ·· 68

4.4 Application to a real tunnel construction project ·· 74

4.4.1 Project introduction ·· 74

4.4.2 The collaborative environment for construction projects ····················· 75

4.4.3 Modeling ·· 79

4.4.4 Planning ··· 80

4.5 Discussion ·· 85

4.5.1 Improvement in tunnel modeling ··· 85

4.5.2 Look-ahead planning·· 87

4.5.3 Limitation ·· 89

4.6 Summary ·· 90

Chapter 5 Enhancing quality of TBM penetration rate forecast using actual project

information: Bayesian updating ·· 92

5.1 Introduction ·· 92

5.2 Bayesian Inference ··· 93

5.2.1 Bayes’ theorem ·· 93

5.2.2 Conjugate distributions ·· 95

5.2.2.1 Conjugate prior – Normal distribution ··· 97

5.2.2.2 Conjugate prior – Gamma distribution ··· 97

5.3 Bayesian updating federate ·· 98

5.4 TBM penetration rate updating and analysis ·· 101

5.5 Discussion ·· 105

5.6 Summary ·· 106

Chapter 6 Web-based data collection for automating simulation model inputs

updating ··· 107

6.1 Introduction ·· 107

6.2 Conceptual design ·· 108

6.3 Progress monitoring system ··· 110

6.4 Project introduction ·· 112

6.5 Process of progress monitoring and data collection ·································· 112

6.6 Data collection and analysis ··· 114

6.7 Conclusion ··· 118

Chapter 7 Enhancing quality of cost contingency forecast using VaR method ·· 120

7.1 Introduction ·· 120

7.2 Background ·· 121

7.2.1 Value at Risk definition ··· 121

7.2.2 VaR properties ··· 124

7.2.3 VaR inputs and outputs ·· 126

7.3 VaR modeling and contingency updating ··· 129

7.4 Case study ·· 133

7.4.1 Project introduction ·· 133

7.4.2 Data collection ··· 135

7.4.3 Data analysis ·· 136

7.4.4 Model inputs ·· 138

7.4.5 VaR calculation ·· 142

7.4.6 Results analysis ·· 143

7.4.7 Model validation ·· 146

7.5 Discussion ·· 152

7.6 Applications ··· 154

7.7 Conclusion ··· 156

Chapter 8 Conclusion ·· 157

8.1 Research Summary ··· 157

8.2 Research Contributions ·· 160

8.3 Industrial Contributions ·· 163

8.4 Recommendations for future research ·· 164

Appendix A. Tunnel federation code ·· 167

a. Shaft Federate ··· 167

b. Tunnel Federate I ·· 191

c. Tunnel Federate II ··· 208

d. Dirt Removal Federate ·· 241

e. Scenario Setup Federate ·· 261

Appendix B. Look-ahead schedule/plan in Last Planner® System ··············· 331

References ··· 333

LIST OF TABLES

Table 4-1 Tunnel construction simulation module and its description…….....…65

Table 5-1 Statistical analysis of TBM penetration rate………………….....…..104

Table 7-1 Examples of excerpted cost records used in the research………..….135

Table 7-2 An example of daily cost and production information………..…….137

Table 7-3 Cost contingency usig annual or semi-annual data…………….……145

Table 7-4 Contingency (૙.ૢ૞,૚૛ૢ܀܉܄) from July 31, 2009 to August 8,

2009…...……..146

Table 7-5 Cost contingency using annual or semi-annual data……………..….151

LIST OF FIGURES

Figure 1-1 Project management process groups (Revised from Project

Management Institute 2008)……………………………………………………..5

Figure 2-1 Elements comparison between DES and LPS…………………….….32

Figure 3-1 A conceptual model for schedule and cost planning…………………40

Figure 4-1 Tunnel simulation model………………………………………….….50

Figure 4-2 Process of tunnelling simulation system development………………51

Figure 4-3 Model analysis of tunnel construction……………………………….53

Figure 4-4 Tunnelling federation scheme………………………………………..54

Figure 4-5 A typical tunnel product model………………………………………56

Figure 4-6 Typical factors in tunnel construction environment………………….58

Figure 4-7 Typical resources in tunnelling construction……………………...…59

Figure 4-8 Tunnel federation architecture……………………………………….61

Figure 4-9 The flowchart of TBM tunnel construction (revised from AbouRizk

 (2010)………………………………………………………………………..62

Figure 4-10 The object classes in the FOM in the tunnel federation…………….67

Figure 4-11 The interface of the shaft federate………………………………….69

Figure 4-12 The interface of the tunnel federate………………………...………70

Figure 4-13 The interface of the dirt removal federate. …………………………71

Figure 4-14 The interface of the breakdown federate…………………………....72

Figure 4-15 The interface of the reporting federate…………………………..….73

Figure 4-16 A typical network of information sharing in a construction

 project………………………………………………………………………..75

Figure 4-17 Current information flow for project control in City of

 Edmonton…………………………………………………………….…..….77

Figure 4-18 Improved information flow for project control using the simulation

 system……………………………………………………………………..…78

Figure 4-19 Project milestone plan from simulation system…………………….81

Figure 4-20 An example of a six-week look-ahead schedule from simulation

 system………………………………………………………………………..82

Figure 4-21 An example of weekly work plan from simulation system…..…..…83

Figure 5-1 Bayesian updating federate…………………………………………..99

Figure 5-2 Simulation model input analysis……………………………………103

Figure 6-1 Conceptual design of distributed tunnel construction monitoring and

 simulation…………………………………………………………………...109

Figure 6-2 Process of data flow………………………………………………...113

Figure 6-3 The web-based client for progress monitoring……………...……...115

Figure 6-4 The desktop client for progress monitoring………………………...116

Figure 6-5 Weekly progress report in progress monitoring system....................117

Figure 6-6 Examples of graphic analysis in progress monitoring……………...118

Figure 7-1 VaR modeling process…………………………………………..….130

Figure 7-2 Cost related analysis of NEST……………………………………...140

Figure 7-3 Daily cost and daily potential profit/loss of NEST…………………141

Figure 7-4 Actual contingency and forecasted contingency of Case 1 (input size:

 129; forecast period: 129)………………………..…………………....147

Figure 7-5 Actual contingency and forecasted contingency of Case 2 (input size:

 129; forecast period: 262)……………………………………148

Figure 7-6 Actual contingency and forecasted contingency of Case 3 (input size:

 262; forecast period: 129)….…………………………………………….....149

1

CHAPTER 1 INTRODUCTION

1.1 Introduction

Although the purpose of project control is to ensure that a project remains on

track, on time, and within budget (Project Management Institute 2004), in reality,

the practice is far from perfect, in the construction domain. A US Government

Accountability Office study reported that half of the federal highway and bridge

projects that it examined had cost overruns of more than 25% (Government

Accountability Office 2003). An average of 28% cost overrun was observed by

Flyvbjerg et al. (2002), based on the statistical study of 258 transportation

infrastructure projects worth US$90 billion in total. Edwards (2009) summarized

many federal projects with cost overruns, such as the Virginia Springfield

interchange which cost US$676 million, but was estimated at a cost of US$241

million in 1994 (Shear 2002), and the Boston Big Dig highway project, which

cost US$14.6 billion, and was estimated at a cost of US$2.6 billion in 1985

(Lewis and Murphy 2003). The Ministry of Statistics and Programme

Implementation in India also showed that the percentage of projects with schedule

delay fluctuated between 62% and 31.72% yearly from 1991 to 2010 (Narayan

2011).

2

Lack of timely and effective communication, lack of integration, uncertainty, a

changing environment, and increasing project complexity all lead to project

change (Naoum 1994). Various project participants work together and generate

diverse information, which makes the data collection and transfer process

complex. For example, a tunnel construction site involves numerous participants

including labourers for construction work, suppliers who provide materials such

as concrete liners, technicians who check and/or repair the tunnel boring machine

(TBM), surveyors who make sure the tunnel alignment is correct, and so on.

Different project participants have different concerns about the project and

generate diverse types of data. All kinds of information must be collected and

considered as part of the decision making process in project control.

Confliction will be reduced if problems can be identified as early as possible and

proactive actions can be made (Kartam 1996). Project management teams should

be able to react to changes effectively for the success of the project (Ibbs et al.

2001). The project management team needs to obtain site information in a timely

manner to identify problems and create fast resolutions for project control.

Information delivery and processing in the construction field is traditionally

paper-based; even foremen collect daily progress reports in a written log. It

normally takes days to transfer these reports to project managers and other project

stakeholders. Effective project control requires the project management team to

3

take corrective actions when variance from the plan is identified in actual

performance.

Advances in computer techniques bring new opportunities for improving project

management and control. Currently, companies rely heavily on computer software

in project management and control. According to a Construction Financial

Management Association (CFMA) survey of a selected list of contractors of

CFMA members (approximately 4,000), from 1998 to 2002, 80% of the

respondents utilized project management and control software in their daily

business management, on average. 59% of the market share of management

software is held by MS Project, SureTrak, and Primavera Project Planner.

However, many companies prefer to develop their own customized control

systems to match their own project properties, management requirements, and

company culture.

This research integrates High Level Architecture (HLA)-based discrete event

simulation (DES), automated data collection, automated simulation model input

updating, Bayesian updating technique, the theory of Last Planner System, and

Value at Risk, to achieve dynamic and collaborative project control in a

distributed tunnel simulation model. It also utilizes the tunnel simulation model in

4

integrating data collection of project progress data, analyzing progress data and

their impact on future performance, and producing updated project cost and

schedule plans based on actual progress data. It aims at improving schedule and

cost controls for a project management team, providing insight into ongoing

projects and helping the project management team make faster and better

decisions.

1.2 Background

The project monitoring and control process includes all activities to track, review,

and regulate the progress and performance of the project, identify necessary

changes to the project plan, and initiate corrective actions, according to the

Project Management Institute (2008). Hinze (1998) proposed that project control

consists of two basic components: monitoring and control, where monitoring

means collecting information from a project and discovering what is actually

occurring, and control includes responding to the collected information. Mantel et

al. (2010) also defined monitoring as “the collection, recording, and reporting of

project information that is of importance to the project manager and other relevant

stakeholders,” and stated that control refers to using “the monitored data and

information to bring actual performance into agreement with the plan.”

5

Project monitoring and control interact with other processes throughout the course

of a project, as shown in Figure 1-1 (Project Management Institute 2008). The

project monitoring and control group, along with the initiating process group,

planning process group, executing process group, and closing process group,

constitutes the overall project management process (groups) (Project Management

Institute 2008). The planning process provides the project monitoring and control

process with project baseline plans and project documents; as the project

progresses, the project baseline plans and project documents will be updated.

Project management involves continually planning the work, measuring the

progress, identifying gaps between the actual progress and the plan, taking

corrective action to bring the project back on track if required, and replanning

when needed (Mantel et al. 2010). Mantel et al. (2010) proposed the “plan-

monitor-control cycle,” which carries on until project completion.

Figure 1-1 Project management process groups (Revised from Project

Management Institute 2008)

Enter Phase/
Start project

Initiating
Processes

Closing
Processes

Monitoring &
Control Processes

Planning
Processes

Executing
Processes

Exit Phase/
End project

6

Although there are different definitions of project control, in this research it refers

to the interactive process of planning, monitoring, and regulating projects during

project execution. This research will apply different tools and methods to improve

project control directly or indirectly, in data collection, project monitoring,

assisting decision-making for corrective actions, and in dynamic planning.

The earned value method (EVM) and the Last Planner® System (LPS) are

recognized as two prevalent theory systems of project control by Kim and Ballard

(2010), who presented a comparison of these two methods. EVM has been widely

applied as an integrated project control tool (Fleming and Koppelmam 2000).

EVM integrates project scope, cost, and schedule measures to measure project

performance and progress, and can be applied to all projects in any industry

(Project Management Institute 2008). More details about EVM were presented by

Fleming and Kofflema (2010), and Marshall (2007). A recent example of

applying EVM in project control was presented by Hanna (2011), but it does not

support reasoning to explain either unacceptable performance or suggest

corrective action. Nassar (2005) also criticized EVM-based forecasting for

assuming that future performance will be a linear continuation of the past, which

means that project uncertainty and changes are not dynamically incorporated.

7

LPS serves as a production planning and control tool by improving work flow

reliability (Ballard 2000). A recent example of applying LPS in project control

was presented by Nieto-Morote and Ruz-Vila (2011). One of the key issues for

implementing LPS is to produce reliable work plans (Ballard 1994; 2000; Ballard

and Howell 1998; 2003). Mitropoulos and Nichita (2010) also concluded that

reliable work assignment was critical in LPS-based production control, according

to lessons learned from a residential development project. LPS focuses on

schedule and production planning, but does not support project cost control.

Considering the benefits and defects of EVM and LPS, project control can be

improved through integrated project cost and schedule control, reliable

performance forecasting and future planning, and assisting decision-making in

taking corrective action. Some companies use both LPS and EVM for project

control. Kim and Ballard (2010) analyzed the implementation of LPS in 22

projects, and found that 7 out of 22 projects used the EVM along with LPS.

Database applications have been widely developed and used as project control

systems. Some of these platforms have been used in conjunction with knowledge-

8

based expert systems (Diekmann and Al-Tabtabai 1992), while some researchers

(Chan and Leung 2004; Chou and Chong 2008; Li et al. 2006; Moselhi et al. 2004)

have applied web-based systems for convenient data collection and data sharing

over the Internet. Automated data collection (Ghanem and Abdelrazig 2006;

Navon 2005) is another trend for improving project control. Database applications

are capable of dealing with large amounts of data, and are powerful tools for data

analysis (as seen in these examples). However, these systems do not account for

uncertainties, project logic, and resource constraints, all of which can help give

insight into the project and improve the project control system.

Advances in computer techniques, such as distributed simulation and modeling,

provide new opportunities for dynamic and collaborative project control.

Computer simulation is able to incorporate construction project logic, work

sequence, resource constraints, and to produce project cost and schedule.

Computer simulation techniques can help project practitioners gain insight into

the underlying project, and possibly contribute to reduced project costs, improved

project quality, and shortened duration (Abourizk 2010). A successful example of

applying simulation for planning tunnel construction projects was presented by

Al-Bataineh (2008). Database applications can also provide powerful data

analysis function and generate various analytical reports.

9

1.3 Tunnel construction process

A tunnel project starts with the selection of the site location. During this stage, a

project team takes into account a number of factors, including availability of

water supplies, electricity, easy access points, and space to store material on site.

Then, a construction crew will excavate a working shaft, a tail tunnel, and the

undercut, in sequence. After these are completed, the construction crew can start

excavating the tunnel.

A tunnel can be excavated by TBM, or by a crew using tools like jackhammers,

i.e. hand tunneling. While excavating a tunnel, a train consisting of a few muck

carts is employed to remove dirt from the tunnel face to the bottom of the working

shaft. Then, a crane is used to lift muck carts one at a time and dump dirt above

ground. Sometimes, the construction crew will install a switch to accommodate

two trains in a tunnel, so as to accelerate the tunneling operation; this process will

be referred to here as “full-capacity tunnelling.” One train travels to the TBM and

unloads the material car, which usually represents concrete liners or rib and

lagging. Then, the TBM starts to excavate. When the train is full, it starts

traveling toward the working shaft at the same time as the TBM starts installing

the material to support the tunnel. Once the full train reaches the working shaft,

the other train (if empty) starts travelling towards the TBM. When that train

reaches the TBM, it begins excavating the next section, if the TBM has completed

10

material installation; if not, the train waits. When the train reaches the working

shaft, the crew checks whether the previous train has finished unloading. If it has,

the train can start unloading the dirt and loading material; if not, the second train

should wait until the previous train finishes.

This operation repeats until the TBM reaches the end of the tunnel. During that

time, a removal shaft is constructed in the same way as the working shaft. A

removal shaft is used to remove TBM from tunnel at the end of a project. The

construction process described above is modeled in the tunnel federation.

1.4 Research scope

This research tries to improve project control for tunnel construction, in both cost

and schedule, through computer simulation, tunnel progress monitoring and

analysis, automated model inputs updating, etc.. Computer simulation is a

fundamental tool in this research. This research applies HLA in developing the

tunnel simulation model, and investigates the integration of different simulation

modules, varying from data collection, data analysis, discrete event simulation,

and reporting.

11

The timely collection of and integration of progress data into a simulation model

provides the source data for continuously updating simulation model inputs as a

project proceeds. Short-term and long-term work plans are automatically

produced from a reporting module in the simulation model. The plans show the

expected activities and their progress, resource constraints, as well as labour hours

and equipment hours. Thus, both schedule and cost estimates are produced from

simulation.

The project cost produced from the simulation model is measured in labour hours

and equipment hours, and is considered the base project cost. Project cost

contingency is the reserved money to cover unforeseen risks, in addition to base

project cost. This research also investigated new methods for forecasting project

cost contingency in dealing with uncertainties and risks through project execution.

The forecasted contingency, along with the forecasted direct cost from the

simulation model, provides the basis for planning and allocating the project

budget.

12

This research demonstrates how to improve dynamic project control through

project execution. It developed a HLA-based discrete event simulation model to

simulate tunnel construction process; developed a web-based database application

to facilitate data collection; applied statistical method to update the DES model

input, and continuously produce tunnel construction plans; and applied a method

to forecast project cost and contingency. This research enables the tunnel

simulation model to dynamically evolve with components developed for different

participants, yet is combined in a structured manner. A new quantitative method

for updating cost contingency was presented and demonstrated through a case

study of tunnel construction.

1.5 Research objective

The primary goal of this research was to facilitate dynamic project control and

planning through project execution. The research work covers monitoring,

analyzing, and modeling tunnel construction process and planning production, and

cost for tunnel construction projects. To achieve this goal, the following sub-

objectives were defined:

13

1) Design and develop a discrete event simulation model of tunnel

construction by accounting for resource constraints, material

procurement and supply, and project logic, as well as identifying the

activities and project logic influencing productivity for tunnel

construction;

2) Integrate various simulation components into one simulation model

that is expandable, enables collaborative work among model

developers, facilitates the automation of integrating progress data into

simulation inputs, and improves planning;

3) Explore the use of Bayesian updating technique to enhance the forecast

of TBM penetration rate and TBM breakdown;

4) Enhance the quality of cost contingency forecast using VaR method;

5) Automate data acquisition by collecting project progress data from

scattered construction sites;

6) Integrate the project progress into a simulation model;

7) Utilize both historical data and as-built project progress data in

predicting and planning project production and cost for ongoing

projects;

14

8) Produce and update project milestone plans, look-ahead schedules and

weekly work plans which summarize project status, outline ongoing

activities, and identify resource requirements for each activity through

project execution;

9) And finally, plan and update cost contingency by periods through

project execution.

1.6 Research methodology

In order to accomplish the above-mentioned objectives, the following approach

was taken:

1) Establish a good understanding of construction process, construction

methods, and project logic by consulting project managers and field

engineers, reading technical documents, and visiting construction sites at

the City of Edmonton Asset Management and Public Works Department.

2) Employ CoSyE, an environment implementing the High Level

Architecture for simulation model development, to design and develop a

discrete event simulation model of tunnel construction. The following

steps were identified and followed:

15

a. Analyze and abstract the product (a tunnel) into components,

including shafts, tunnel sections, undercut, flow control system,

and others;

b. Identify resource constraints during tunnel construction;

c. Analyze model inputs and outputs to design model components;

d. Figure out the function of each simulation component, and specify

the information exchange between them;

e. Develop and realize the function by programming in C# under

CoSyE.

3) Develop a web-based database application to capture, analyze, store, and

review project progress data, and automate the process of integrating

project progress data into a simulation model.

4) Apply Bayesian inference to incorporate as-built project progress data and

historical data to update key resource productivity and failure rate, which

can then be utilized in a simulation model.

16

5) Utilize simulation results to produce and maintain project plans and

schedules, in accordance with the LPS, through the whole course of

project execution.

6) Exploit Value at Risk to integrate actual project cost to forecast and update

project cost contingency by periods.

1.7 Thesis organization

This thesis consists of eight chapters, as detailed below.

Chapter 2 summarizes the literature review of existing research related to the

research area of this thesis. The research area contains discrete event simulation,

HLA-based simulation, simulation model input management, project control

systems, construction planning and scheduling, and cost contingency. This

chapter also identifies and analyzes challenges in these research areas and leads to

the research of this thesis.

17

Chapter 3, Conceptual Model for an Integrated Tunnel Simulation System, tries to

present the overall research of this thesis in a systematic way. It describes the

conceptual model of the overall research, the methodology, and the relationship

among different modules.

Chapter 4 introduces the implementation of the integrated tunnel simulation

system. It discusses the development process, the main components of the

simulation system, the improvements of the simulation model compared to

previous research, and the application of this simulation system to an actual

ongoing project.

Chapter 5 introduces how to apply Bayesian updating to enhance the quality of

TBM penetration rate forecast using actual project information. The theory of

Bayesian inference and conjugate distributions, and the Bayesian updating

federate that implements the Bayesian inference are introduced.

Chapter 6 introduces a web-based project monitoring system and how it provides

progress data into a simulation model.

18

Chapter 7 describes the proposed quantitative method to forecast project cost

contingency. The approach, modeling steps, applicability, advantages and

disadvantages of the proposed method are discussed in detail, and the model

validation is demonstrated in a tunnel construction project using actual cost

records.

Chapter 8 concludes the thesis with a summary along with a description of the

contributions and recommendations for future improvement of this research.

19

CHAPTER 2 LITERATURE REVIEW

2.1 Discrete event simulation in construction

Discrete event simulation has been successfully applied to modeling construction

operations as an effective tool to assist decision-making in a wide range of

operations in construction (Abourizk 2010), since the first construction simulation

tool, CYCLONE, introduced by Halpin (1977). Many other simulation tools were

later developed to model various construction operations, such as

STROBOSCOPE (Martinez and Ioannou 1994), Simphony (AbouRizk and Hajjar

1998), and so on.

These tools allow users to model various construction processes with different

resource combinations and resource constraints. Example applications using these

systems in tunnel construction involve predicting tunnel advance rate in soft rock

with CYCLONE (Touran and Toshiyuki 1987), forecasting soil types and soil

families along a tunnel path with Simphony (Ruwanpura Arachchige 2001), and

planning tunnel construction by modeling different construction scenarios with

Simphony.NET 3.5 (Al-Bataineh 2008). However, the applicability and efficiency

of these models are constrained to tackling projects which are well-defined and do

20

not occur in a collaborative environment (AbouRizk et al. 2009). These

construction simulation tools only allow the development and run of a simulation

model on a standalone computer in a specific environment such as Simphony;

model developers must collect and set up all model inputs.

A literature review shows several simulation models in tunnel construction that

have been developed using these construction DES tools. As tunnel construction

operations are normally linear and repetitive, they are especially suitable for DES.

Touran (1987) applied CYCLONE to predict the advance rate of a small diameter

tunnel in soft rock. Ruwanpura (2001) developed a special purpose simulation

(SPS) template for tunnel construction operations, which proposed and

implemented a new analytical model to predict the soil types and soil families

along the tunnel path. Integrated simulation methods were then implemented in

the SPS template to determine tunnel productivity. Chung, Mohamed, and

Abourizk (2006) applied Bayesian updating methods into a tunnel simulation

model and then developed and implemented a simulation-based productivity

model for utility tunnel construction operations in order to identify the effects of

uncertain factors, improve the prediction of tunnel boring machine penetration

rates, and predict productivity under various project circumstances and soil

conditions. A general purpose simulation was developed using Simphony for

modeling space, logistics, and resource dynamics with genetic algorithms for

optimizing the layout based on various constraints and rules (Zhou et al. 2009;

21

Zhou et al. 2008). Marzouk et al. (2010) applied simulation for planning

microtunnels projects and estimating project time and cost for construction. In

tunnel construction application, these simulation models have mainly been

employed to improve prediction of the productivity or advancement rate in real

world situations.

Tunnel simulation models also help engineers make better decisions in project

planning. Likhitruangsilp and Ioannou (2003) presented a stochastic methodology,

based on DES, to evaluate tunneling performance. Al-Bataineh (2008) employed

the concept of scenario-based project planning, following an approach

recommended by FIATECH for construction project planning, and incorporated

various project information including cost, schedule, productivity, weather effects,

material supply, and dirt handling. He developed a method for establishing

communication between different simulation templates or simulation elements,

deploying these within a simulation-based tool for tunnel construction

implemented in Simphony.NET. In addition, Al-Bataineh (2008) proposed a

multi-user framework for tunnel construction simulation.

22

However, most of these simulation models have tried to improve project

performance before actual site construction commences. Long-term decision-

making support from simulation models is seldom discussed in the literature.

As pointed out by Moon and Phatak (2005), simulation models are usually applied

before the initial plans or designs of a project are finalized, and these models are

not designed for repetitive usage, because gathering and extracting pertinent

information for simulation models is time-consuming and laborious (Bengtsson et

al. 2009; Boulonne et al. 2010; Moon and Phatak 2005). Still, the data collection

process is the most crucial stage through model development (Robertson and

Perera 2002). Boulonne et al. (2010) stated that on average, 31% of total project

time is used in input data management for projects using DES to analyze and

improve material flow in production. Therefore, improved input data collection

and analysis can reduce model development cycle time, and can allow simulation

models to provide long-term reliable support. The progress monitoring system in

this research is developed for this purpose. It tries to automate the process of

feeding project progress data into a simulation model.

23

2.2 HLA-based simulation

Another challenge in construction operation simulation is to feed distributed

information to a local simulation model. These well-known construction

simulation tools only allow a simulator to develop models on a local computer.

This also means that a model developer must collect and set up all model inputs

and run the simulation model in a specific environment. When input data is

scattered across different sources and locations, data collection become laborious.

HLA is a standard approach for developing integrated simulation systems by

constructing simulations composed of different individual simulation components.

The Defense Modeling and Simulation Office (DMSO) of the United States

Department of Defense (DoD) first developed HLA for defense-related simulation

(Defense and Simulation 1996).

HLA was adopted as an open standard (IEEE Standard 1516) in 2000 by the

Institute of Electrical and Electronic Engineers (IEEE), and more details are

presented by IEEE Computer Society (2010). It is now increasingly being applied

in simulation fields such as training, traffic control, construction planning and

control, extending its original military applications. It provides an efficient and

24

cost-effective tool for analyzing the targeted system in various ways. HLA is

widely used for training, entertainment, virtual shopping malls, and testing or

evaluating hardware (Li 2003; Lu 2006; Park 2005).

An HLA-based simulation system is referred to as a federation, and each

simulation component is called a federate. A typical federate can be a simulation

component, a surrogate for a human user, interfaces to a human user, or a

database application that stores information for other federates. In this research,

the tunnel construction simulation system is referred to as a tunnel federation.

All federates communicate with each other through the Run Time Infrastructure

(RTI) during simulation. The data exchanges between federates are defined in the

federation object model (FOM). The FOM specifies the name and attribute(s) of

each object class and each interaction class. Federates interact with the RTI

according to FOM specification. Each federate can be developed and run at

physically distributed places.

25

The concept of HLA was utilized and implemented in a construction simulation

system, the Construction Synthetic Environment (CoSyE) (Abourizk 2006). The

CoSyE simulation environment is a .NET implementation of the HLA (High

Level Architecture) standard (Kuhl et al. 2000). It provides an environment to

develop a variety of DES models for construction operations.

CoSyE is used for developing distributed simulation models and supporting

multiple users in a collaborative environment. The CoSyE architecture contains

three core components: 1) a Runtime Infrastructure (RTI) Server; 2) an Object

Model Template (OMT) editor, the system framework; and 3) modeling federates.

The modeling federates can be integral parts developed using CoSyE or external

simulation components with specific functionalities. An example application was

demonstrated by AbouRizk et al. (2009) and Zhang et al. (2011). CoSyE was used

in developing the simulation system in this research.

2.3 Model input management

Effective input management for simulation models has been recognized to be

important in repetitive usage of models (Bengtsson et al. 2009; Moon and Phatak

2005; Skoogh et al. 2010). The input data management process covers from the

raw data collection from different sources to data process and entering inputs into

the DES model (Boulonne et al. 2010). Skoogh, Michaloski, and Bengtsson

26

(2010) stated that DES is usually applied for special purpose studies, instead of

helping daily business for production engineers, despite its power as a tool for

efficiency improvements in production.

According to the literature review, model input management and timely updating

in the manufacturing industry were discussed in the last few years. Bengtsson et al.

(2009) proposed a methodology for Input Data Management (IDM) in discrete

event simulation projects which covers the process of identifying and collecting

data, and using an IDM software to extract and process the data. Boulonne et al.

(2010) proposed a simulation data architecture to facilitate data sharing between

data sources and DES models. They developed a data processing tool, a database,

and an interface to provide reusable resource event data for sustainable resource

information in DES models. Skoogh, Michaloski, and Bengtsson (2010) presented

an approach for automated raw data collection and processing for simulation

information, to improve the reuse of DES models by reducing the time-

consumption for input data management.

Unlike the manufacturing industry, the construction profession usually has to deal

with scattered construction sites and labor-intensive projects. Every project has its

own properties and uncertainties. Human judgments are always required in

27

determining overall project progress. Automated construction data collection is on

the stage of seeking good applications. It is difficult to find a standard way of

collecting project progress. Database applications are commonly used as tools for

project monitoring and control by construction companies. This study focuses on

integrating progress data into a simulation model, and automated data collection is

not a part of the study.

2.4 Project control systems

Database applications are widely developed and used as project control systems,

since they are capable of dealing with large amounts of data, and are powerful

tools for data analysis. Many companies developed their own customized control

systems used for assisting project management and control. Web-based database

applications provide convenient data collection and data sharing over the Internet

(examples in the construction domain can be found in Chan and Leung 2004;

Chou and Chong 2008; Li et al. 2006; Moselhi et al. 2004). Other notable

examples of project management and control system include automating material

procurement (Chan and Sin 2009), tracking and monitoring scheduling

information (Jia et al. 2008), measuring work progress through image processing

techniques (Memon et al. 2005; Zhang et al. 2009), forecasting project

performance (Al-Tabtabai et al. 1997; Hwang and Liu 2005), and automated data

collection (Ghanem and Abdelrazig 2006; Navon 2005). However, these systems

28

and tools only focus on specific aspects for improving project control, and lack

the ability to present project logic, optimize resource usage, dynamically reflect

project changes, and forecast future performance.

Many change management systems have been developed in the construction

domain (examples can be found in Charoenngam et al. 2003; Ibbs et al. 2001;

Zhao et al. 2010). These studies focus on the systematic management of changes,

the document management of change orders, or the prediction of future changes.

How the changes will affect an ongoing project in terms of project plans is seldom

addressed. Lee et al. (2006) applied system dynamics to analyze the errors and

changes of a project, estimated the impact of them in terms of project duration and

project schedule, and supported schedule updates during project execution. Rather

than analyzing changes, however, this research tries to use adaptive simulation

modeling, which make use of project progress data and automatically updates the

simulation model to provide dynamic and systematic planning by considering

project logic, resource constraints, machine failures, and other uncertainties.

29

2.5 Construction planning and scheduling

The project planning process interacts with the project control process during

project execution (Project Management Institute 2008). The planning process

provides project monitoring and the control process with baseline plans, which

need to be continuously updated when circumstances change. Many researchers

have investigated and demonstrated that overall project performance can be

improved through improving planning reliability during the process of project

execution (Alarcon and Calderon 2003; Gonzalez et al. 2010; Gonzalez et al.

2008).

A three-level system for construction planning was introduced by Ballard and

Howell (1998), consisting of initial planning, look-ahead planning, and

commitment planning. The initial planning produces a master schedule of a

project, and is considered the highest level of planning among all three levels. The

master schedule shows project milestones and is used as the map of project

objectives, which other plans should aim to meet eventually. The look-ahead

planning details the master plan, which focuses on some specific work items

defined in the master plan, and produces a look-ahead schedule. One purpose of

the schedule is to initiate a “make ready process,” which leads to commitment

planning. Commitment planning produces a near-term work plan.

30

Look-ahead planning is equivalent to phase scheduling presented by Ballard and

Howell (2003), which produces a plan for completing a phase of a product which

is ready to be expanded into a lower level plan. The “phase” was defined as a

level of the work breakdown structure of a product to be built (Ballard and

Howell 2003). The look-ahead schedule will indicate the resources and constraints

of activities in the short term. The commitment planning is usually interpreted as

a weekly work plan in real project applications. The weekly work plan specifies

workable assignments for related responsible parties in a project, defined as

physical, specific work by Ballard (1994). The weekly work plan should consider

resources and constraints of every assignment to ensure the plan’s reliability and

executability. This is achieved through a conversation among responsible parties.

The weekly work plan also represents a commitment from responsible parties,

once it is confirmed by them.

The concept of project planning is adopted by Last Planner® System (LPS),

which has been used in many construction companies for improving project

control, and consequently improving productivity. LPS also assumes the

philosophy that productivity can be improved by better planning, according to

Ballard (1994) and Ballard and Howell (2003). Many researchers have reported

productivity increase after implementing LPS. For example, Ballard (2000)

31

observed a 10% to 40% increase. More details of look-ahead schedule/plan in

LPS are presented in Appendix A.

Previous research (Ballard 1994; 2000; Ballard and Howell 1998; 2003) identified

one or more of the following critical issues for assuring the quality of a weekly

work plan for LPS: the definition of assignments, the construction logic or work

sequence of the assignments, the right amount of assignments, and the soundness

or operability of the assignments.

This research attempts to address these challenges in developing short-term plans

and schedules and to show that discrete event simulation can serve as a powerful

tool for reliable planning. The author identified an interesting relationship

between the modeling elements in DES and the planning elements for weekly

work plan used in LPS, as shown in Figure 2-1. DES models construction

operations as a chronological sequence of events (Pidd 1998). An assignment in

LPS can be represented as a well-defined event in DES, and consequently be

modeled as a unit in a DES model. The work sequence of the assignments in LPS

can be interpreted as the chronological sequence of events in DES, the soundness

of the assignments for LPS can be investigated by modeling resources and

constraints in DES, and the right amount of assignments is then just the output

32

from the simulation. DES therefore provides a platform for producing reliable

plans based on LPS, and the prevailing construction simulation tools, such as

Simphony.NET, are capable of such modeling.

Figure 2-1 Elements comparison between DES and LPS

2.6 Cost contingency

“Project contingency” refers to extra funds, budget, or time needed in addition to

a project estimate. It is used to cover unforeseen changes during project execution,

and shows the stakeholders’ risk tolerances. Contingency is defined as “the

33

amount of funds, budget, or time needed above the estimate to reduce the risk of

overruns of project objectives to a level acceptable to the organization” (Project

Management Institute 2004). It can be set as a percentage of a project estimate, as

a fixed amount, in terms of cost and schedule, or as developed by quantitative risk

analysis. Typical tools for risk assessment and contingency estimation include a

contingency percentage, risk register, possibility and impact matrix, contingency

identified, and three-point and range estimates (Molenaar and Wilson 2009). This

research focuses on quantitative cost contingency analysis.

Cost contingency is traditionally estimated as a percentage of the estimated

project cost. This method has been criticized as arbitrary (Thompson et al. 1992;

Lhee et al. 2009; Cioffi and Khamooshi 2009) and probabilistic models have been

introduced to determine an appropriate percentage for cost contingency (Rothwell

2005; Touran 2003). Some research analyzed the contingency of all main

activities of a project to better estimate contingency for the overall project

(Barraza and Bueno 2007; Günhan and Arditi 2007). However, these models are

difficult to validate and in several cases validation was not provided (Rothwell

2005; Touran 2003; Barraza and Bueno 2007; Günhan and Arditi 2007).

34

More recent studies focused on applying different quantitative methods to

determine an appropriate contingency before a project starts (Lhee et al. 2009;

Cioffi and Khamooshi 2009; Mak and Picken 2000; Sonmez et al. 2007;

Mohamed et al. 2009). They first identified the uncertainty factors (Lhee et al.

2009; Mohamed et al. 2009) or risks (Cioffi and Khamooshi 2009; Mak and

Picken 2000; Sonmez et al. 2007) affecting the project, and then developed

models taking all factors and/or risks into account to forecast project

contingencies. Two studies presented by Molenaar (2005) and Olumide et al.

(2010) introduced methods for updating cost contingency through the project

design process; both were demonstrated through highway projects. However, all

these models rely on original cost estimation, expert judgement, or both for risk

analysis. So the validity of these models depends on the accuracy of estimates and

unbiased opinions from experts. Tremendous effort is required to collect pertinent

and correct information for model inputs, and when the risk environment changes,

the process must be restarted to obtain correct information.

Contingencies should be tailored to the risks of the project (Project Management

Institute 2004), but updating project contingencies during the project execution

process has been only rarely addressed in the literature (Barraza and Bueno 2007).

Barraza and Bueno (2007) pointed out the importance of controlling the cost

contingency throughout the execution process, but did not refer to how to update

that contingency as a project progressed and more information became available

35

to the project. When a project begins to progress and achieves some milestones,

the project risks and uncertainties can be identified in more detail. It would

therefore be beneficial to update contingencies by periods, rather than deciding on

contingencies before a project actually starts and keeping them until project

completion.

Cost contingency is determined through cost, and the cost required to accomplish

a project includes the cost contingency estimation (Project Management Institute

2004). It is reasonable to expect that the cost contingency of a construction

project is put aside as part of the project estimate done before the construction

starts. However, if the cost contingency could be appropriately allocated as a

project progresses according to a project timeline or a company fiscal timeline,

less contingency would be required at the beginning of a project. A large project

can last for years, and requires cost contingency measured in millions. Holding

the entire project contingency in reserve from the beginning of the project could

possibly limit the number and size of projects which a company could invest in

and undertake. This puts a constraint on company investment and growth. If a

company runs multiple projects simultaneously for years, allocating cost

contingencies for each time period, e.g., annually, according to the project tasks

and progress, can improve resource utilization and sharing among different

projects, and provide a chance to increase investment capacity.

36

CHAPTER 3 CONCEPTUAL MODEL FOR AN

INTEGRATED TUNNEL SIMULATION SYSTEM

3.1 Introduction

Uncertainties and risks are common issues in construction projects which lead to

cost overrun and schedule delay. Flyvbjerg et al. (2002) analyzed the cost of 258

transportation infrastructure projects worth US$90 billion, and summarized an

average of 28% cost overrun. Virginia Springfield interchange was initiated at a

cost of US$241 million in 1994, but ended up at US$676 million by the time it

was completed (Shear 2002). Denver International Airport was planned to cost

US$1.7 billion in 1989, but resulted in US$4.6 billion in 1995 (Altshuler and

Luberoff 2003). The analysis of the Ministry of Statistics and Programme

Implementation in India analyzed cost overrun and schedule delay from 1991 to

2010, and identified that yearly cost overruns are between 62% and 12%, and

from 62% to 31.72% of all studied projects are behind schedule every year

(Narayan 2011). Project control is an essential part of project management which

ensures a project remains on track, on time, and within budget (Project

Management Institute 2004). Effective project control requires monitoring and

evaluating actual project progress, comparing it with the project plan, identifying

differences between actual and planned progress, and taking corrective actions if

37

necessary. Collaborative work among various project participants is necessary

during these processes, including creating a base plan before a project starts,

collecting progress data and analyzing progress, and updating the plan according

to project changes and uncertainties.

Construction simulation helps give insight into projects and provides an

opportunity to improve project control. It can contribute to reduced project costs,

improved project quality, and shortened duration (Abourizk 2010). Nevertheless,

special challenges arise when applying simulation to improve project control in

the construction profession for the long term. First, construction projects typically

involve scattered construction sites and intensive labour work. Subjective

judgments are sometimes necessary when determining the overall project progress;

it is difficult to collect pertinent and correct information. Second, the lack of tools

and methods for timely communication and interaction between model developers

and field engineers limits the application of simulation in the project planning

phase. Third, the difficulty of acquiring expertise in simulation tools hinders

construction practitioners in developing simulation models. Fourth, a simulation

model should be adaptively updated to quickly take the uncertainties, as-built

performance, and changes into account, because project circumstances change as

a project progresses and the uncertainties change correspondingly, which are very

important factors when updating a project plan.

38

This research proposes an integrated simulation-based system for dynamic and

collaborative project control, addressing the issues mentioned above. The

proposed system provides a convenient way to effectively collect project

productivity data and monitor project progress from construction sites; models

project logic, work sequence, resource constraints and uncertainty of construction

process in a simulation model; integrates latest project performance to the

simulation model through project execution; and produces reliable up-to-date

project plans and schedules. This leads to long-term support for dynamic project

control through project execution. The proposed system is further demonstrated

using a tunnel construction project.

3.2 An integrated tunnel simulation system

3.2.1 System overview

This research proposes and develops an integrated system which demonstrates

how project control can be enhanced through a dynamic approach to planning that

makes use of simulation modeling, Bayesian inference, and automated data

collection. It was possible to achieve this goal by utilizing an HLA-based

modeling strategy for the project execution. The result is a collaborative approach

39

to project control. The system first collects project as-built progress data through a

web-based database application, then incorporates the latest project data with

historical data, and analyzes project performance to update model inputs.

Consequently, the future performance can be effectively forecasted through a

discrete event simulation model. The system continuously collects progress data,

updates the simulation model, models uncertainty and resource constraints, and

achieves reliable project schedules and plans.

The main conceptual modules and their corresponding relationships are described

in Figure 3-1. The project monitoring module is used for collecting and analyzing

as-built project information. It is developed as a database application and can

reduce the time and effort in using the system for dynamic project control during

construction. The information collected will be analyzed by the Bayesian updating

module, which is based on the Bayesian updating technique. The Bayesian

updating module then incorporates as-built progress data, and adaptively updates

the simulation model inputs. The simulation module then uses the updated inputs

to simulate the construction process and produce updated and realistic results. The

last module produces different project plans based on the simulation results. The

process allows the simulation system to take new available information into

account and to ensure the validity of model inputs. All system modules can be

geographically scattered.

40

Figure 3-1 A conceptual model for schedule and cost planning

41

In all, the system attempts to improve project monitoring and control performance

by collecting and analyzing project progress, adaptively modeling the

construction process, and producing project plans and schedules. The system was

developed to assist project management and control using computer techniques

and systematic reliable planning. However, a successful implementation of this

system depends on different project participants working collaboratively for data

collection, simulation analysis, and future planning, etc.

3.2.2 Progress monitoring module

The progress monitoring module was developed as a Client-Server database

application for project data collection and progress monitoring. Project progress

data is collected through the application and stored using Microsoft SQL Server

2008. This progress data can be reviewed and updated at any time. This module

also produces daily reports, weekly reports, and monthly reports for progress

review and analysis. Thus, the module can be used as a standalone database

application for project progress collection, monitoring, and analysis.

42

Two types of clients are available, a web-based client and a desktop client. The

web-based client allows users to enter project information through personal digital

assistants (PDA) such as the BlackBerry® or iPhone®. The web-based client

provides users the flexibility to enter data whenever new information is available.

This is useful when projects are located in distributed areas and information is

gathered from different places. The web client is designed mainly for data entry

and review. The desktop client provides a better view of all project information,

as well as search functions and filters for data analysis. The desktop solution is

designed for project managers who require the ability to review and analyze data,

while the web solution is for inspectors who are concerned with capturing data in

a convenient way. Details of this database application, such as its reporting

function, were presented by Xie et al. (2011).

3.2.3 Bayesian updating module

The Bayesian updating module applies Bayesian techniques to update inputs in

the simulation module based on the progress data collected in the progress

monitoring module. A model that quickly adapts project parameters to the arrival

of new information can increase model validity (Ourdev et al. 2008). The level of

overall uncertainty decreases as a project progresses, because the amount of

known project information increases and the remaining project tasks decrease. A

simulation model which can continuously and promptly incorporate project

43

information is essential in providing long-term support for project control through

the project execution phase. As the project continues to change and more

information becomes available, model input parameters should be revised and

updated according to recent project performance, so as to guarantee the validity of

model inputs, and then provide long-term support through project execution (Xie

et al. 2011).

3.2.4 Construction simulation module

The construction simulation module is responsible for modeling the construction

process, which is TBM tunnel construction in this research. A typical TBM tunnel

project consists of constructing shafts and tunnel sections. A working shaft is

constructed first, and is used for removing dirt spoil from the tunnel during

construction. After finishing the working shaft, an undercut is constructed to

connect the working shaft and the main tunnel and to provide enough room for the

tunnel crew to work and for TBM installation and dirt removal. The TBM

continues to excavate and install segment liners for support. The excavated dirt is

transported by a train consisting of a series of muck cars and a material cart. The

train travels back and forth between the tunnel face and undercut, where each

muck cart is lifted by a crane to the ground level to dump dirt, and the material

cart is loaded with segments. The TBM starts excavation again when a train

arrives back at the tunnel face. The process repeats until project completion.

44

3.2.5 Scheduling and Planning module

The scheduling and planning module was developed as a reporting federate in

CoSyE, which interacts with the other simulation components as needed to

identify the start time and finish time of each activity and then summarize and

present information in different schedules and plans. In order to organize and

present the data collected from simulation in a meaningful way, the data are first

serialized into XML (Extensible Markup Language) format. The XML document

is then transformed into browser-renderable HTML (HyperText Markup

Language) via XSLT (Extensible Stylesheet Language Transformations)

documents, which contain various report formats. The advantage of this method is

that the data are separated from the user interface, therefore making their

presentation flexible. In addition, XML and XSLT are supported by almost any

system with a web browser.

3.2.6 Cost contingency updating

This research tried to forecast project cost contingency, in addition to the direct

cost predicted through simulation and presented in the plans and schedules

produced in the previous module. This research analyzed planned project cost and

45

actual project cost, and applied Value at Risk (VaR) to establish and update

project contingencies. Actual project cost is usually recorded and stored in a

financial management system of a company, and used as basis for payroll. Value

at Risk provides a probabilistic forecasting of downside risks, and is widely used

in financial risk management.

This research makes use of newly available information as the project progresses

and provides a chance to allocate appropriate contingencies at different project

phases. Different from most other methods that require expert opinions in

identifying factors and/or risks, assuming possibility of the factors and/or risks,

and estimating their magnitude, this method directly analyzes project cost and

earning in dollar values. These cost and earning are considered as the results or

reflections of risks through project execution. Compared to other contingency

models, this method attempts to minimize arbitrary judgements and proposes a

quantitative and uncomplicated model. The method can be widely applied to

various construction projects to forecast and update contingencies at project

milestones. In addition, the quantitative measure can be simply implemented

through a spread sheet, and is simple enough to be understandable and practical

for project performance control.

46

3.3 Summary

Project risks and uncertainties cause unpredictable project performance and

project changes. This research hypothesized that as a project proceeds, more

information becomes available, uncertainty is decreased, the future performance

can be better predicted, and future work plan can be improved. This research tried

to capture new available project information and integrate it into a simulation

model to produce reliable schedules and plans. The system proposed in this

research demonstrated that reliable plans and schedules can be achieved through a

simulation model which properly models key machine productivity, its failure rate,

the right sequence of work, the right amount of work, and the resource availability

of work.

The research tried to demonstrate how project control can be enhanced by using

an integrated system which covers data collection, adaptive modeling, discrete

event simulation and schedule and plan generation throughout project execution.

A web-based project monitoring system was first developed for data collection for

projects from scattered locations and information sharing. Bayes’ theorem was

applied to automatically update inputs for a simulation model. This simulation

system then modeled the construction process and the scheduling and planning

module continuously produced up-to-date project schedules and plans. The

schedules and plans produced can be used as an unbiased and sound basis for

47

planning in LPS, because the as-built project data was continuously utilized and

integrated in the simulation model for these schedules and plans.

48

CHAPTER 4 IMPLEMENTATION OF THE

INTEGRATED TUNNEL SIMULATION SYSTEM

4.1 Introduction

The tunnel simulation is developed using the COSYE platform (Abourizk 2006).

It is called a tunnel federation, as any simulation system developed based on HLA

is referred to as a federation. Each simulation component is referred to as a

federate. This chapter discusses all federates that are developed using COSYE in

this simulation system. The development of tunnelling simulation system is also

described in this Chapter.

This tunnel federation simulates the overall construction process of a utility tunnel.

In this study, the process covers the construction of a working shaft, the main

utility tunnel, a removal shaft, some access shafts, and an undercut if needed. The

main components of the tunnel federation are given in Figure 4-1.

49

The federation includes model input analysis, construction process simulation,

scheduling and visualization, and other support federate groups. Input analysis

processes raw data that was collected from the job site and stored in a database. It

provides inputs for construction process federates, which simulate the actual

construction process. Visualization federates display the simulation process in

different formats. The details of the visualization federates were presented by

Yang et al. (2010). The support federates try to represent and model aspects of the

construction environment that could affect tunnel construction production. For

example, the procurement of liners for tunneling is modeled by the procurement

federate, and the dispatching and supplying of liners to a specific jobsite is

modeled in the supplier federate. The calendar federate models workdays,

holidays, shift configuration, and so on. The scenario setup allows a user to

configure different construction scenarios, such as number of shafts or tunnel

length. The breakdown federate models machine breakdowns.

4

T

st

4.2 The de

The process o

tages, as sho

Fig

evelopmen

of tunnelling

own in Figu

gure 4-1 Tun

nt of tunne

g simulation

ure 4-2. To p

50

nnel simula

elling simu

system deve

prepare a si

ation model

ulation sys

elopment can

imulation m

stem

n be divided

model of a tu

d into four

unnel, this

51

research first abstracted the product (a tunnel) into components. The product

information relevant to a tunnel includes shafts, tunnel sections, undercut, flow

control system, and others. In addition, a thorough understanding of interests from

different project participants, various resources required during tunnel

construction, and limitations or effects from the surrounding environment all

contribute to a reasonable and practical simulation system. Once the preferred

observation is achieved, it is time to simultaneously analyze I/O (input/output)

and design hierarchical models, which combine tunnelling construction processes,

resources, and various related information. The next step is to figure out the

function and the information preservation of each simulation module, and the

information exchange between them. Good hierarchical simulation models

facilitate interoperation among models and improve computational efficiency.

After running a simulation model, specific outputs are produced, such as the

productivity of processes, the cost of tunnel segments, the utilization of resources,

and bottlenecks in the project.

Figure 4-2 Process of tunnelling simulation system development

Observation

• Site visits
• User

interests
• Product/

resource/
environment
model

Behavior

• I/O behavior

Structure

• I/O function
• Dataflow
• State

transition
• Coupled

components

Development

• Coding
• Verification

52

This research employed hierarchical modeling concepts to facilitate interactions at

different levels and by different participants. The principles of hierarchical

modeling concepts proposed by Ziegler (1976) were utilized in this research.

Ziegler’s concepts heavily depend on constructing models using several levels of

abstraction. Abstraction in this sense refers to applying a method to a model to

reduce its complexity while maintaining its validity in the context of the

simulation exercise. As the model is abstracted to a higher level, it is reduced

(coupled with other models), thus becoming less complex. The essential steps

include partitioning of the models and then coupling (or grouping and simplifying)

them in a process of reduction, creating higher-level models (Zeigler et al. 2000).

The proposed simulation system will maintain the lower-level models with

appropriate flexible configurations for operational use at the lowest level of the

project hierarchy, while abstracting those models at higher levels for managerial

purposes. A modeling analysis for tunnel construction is shown in Figure 4-3.

53

Figure 4-3 Model analysis of tunnel construction

S
ys

tem
 (F

ed
e

ra
tio

n
)

B
rea

kd
o

w
n

U
s

e
r le

ve
l

Site eingineer Reports $ suggestion

DecisionMaterial
Supplier

Daily progress Scenario Tryout
Reports & animation

S
ys

te
m

 b
eh

av
io

r
a

n
aly

sis

Viewer
visualization

Animation

Cost

Schedule

Project control

Tunnel

Shaft

Mucking Geotech

Statistics Site layout:

Federation
special models

Generic
models

support models

Shift &
calendar

Fake
Supplier

Site data:
Crew size
Shift length
Breakdown
Survey data
Photo
Order track
Material depository
status

Weather

OutputsInput Modeling

Productivity
validating

Report
Photo

Order track
Material depository

status

Reports & animation

Consultant:

Scenario data:
Breakdown para.
PM setting
Mucking: #
Capacity
Shaft: #
Tunnel: #
Const. Method

Management
Team

P

(F

co

fo

A

st

m

reliminary r

Figure 4-4);

onstruction p

ollowing sec

A product mo

tructure. Tun

manholes, an

research anal

 for tunnel

processes, co

ctions explor

Figur

odel is typic

nnel produc

d so on. The

lysis indicate

constructio

onstruction

re different c

re 4-4 Tunn

cally a mode

cts contain t

e configurati

54

ed four centr

on, these are

environment

components

elling feder

el that expre

tunnels and

ion of tunne

tral pillars in

e: tunnel pr

nt, and resour

that will be

ration schem

esses a kind

working sh

els and shaft

n simulation

roduct mod

rce managem

used in this

me

d of product

hafts, remov

ts are also in

modeling

el, tunnel

ment. The

research.

as a data

val shafts,

ncluded in

55

the tunel product models. This research attempted to develop a tunnel product

model that covers all tunnel components related to tunnel design, construction,

and maintenance, and implement it in the integrated simulation. A typical tunnel

product model is shown in Figure 4-5.

56

Figure 4-5 A typical tunnel product model

57

The resources used in tunnelling construction have substantial impact on

tunnelling productivity. This research also analyzed the geotechnical or

environmental conditions surrounding a tunnel site (construction environment —

see Figure 4-6). A resource here refers to any physical or virtual entity of limited

availability, or anything used to help tunnelling construction (see Figure 4-7). For

example, the TBM used to construct a tunnel, conveyers removing dirt from

around the TBM, and the crane lifting dirt from a shaft to the surface are different

types of resources for construction.

58

Figure 4-6 Typical factors in tunnel construction environment

59

Figure 4-7 Typical resources in tunnelling construction

60

4.3 Tunnel federation

4.3.1 Overview

The federates in the tunnel federation can also be grouped into three categories

according to their functions. The developed tunnel federation and its component

federates are described in Figure 4-8. All federates in blue background in Figure

4-8 are directly related to this research.

The first category simulates the tunnel project construction process which

includes constructing the tunnel and the shaft, and the related dirt removal process.

This tunnel construction is modeled using discrete event simulation technique,

and is considered as the core component in the federation. The modeled activities

that are related in TBM tunneling are described in Figure 4-9.

61

Figure 4-8 Tunnel federation architecture

62

Figure 4-9 The flowchart of TBM tunnel construction (revised from AbouRizk

(2010))

63

The simulation category simulates the tunnel construction process according to

tunnel object property and its construction process. In order to simulate various

utility tunnels, a universal utility tunnel object and its specifications are analyzed,

and the simulation federates take into account the whole tunnel construction

process, various resources used during construction, and different information

from tunnel project stakeholders.

Federates under the special purpose category are designed for some specific

functions. For example, the calendar and shift federate models the shift

specification and controls shift on and off status. If there is no shift control in the

federation, then the tunnel construction simulation federates just ignore shift

status and construction duration will be measured in logical work hours only,

instead of dates. Federates in this group are designed to add additional functions

to the federation which could still work without special purpose federates.

The presentation category provides two types of reporting from simulation,

including tunnel construction animation, and the planning federate for future

tunnel construction. The planning federate is based on LPS.

64

The function of each federate is described in Table 4-1. Among these federates,

the shaft federate, tunnel federate, and dirt removal federate actually model the

construction process using DES. The scenario setup federate defines the tunnel

model specification for the other federates. This was implemented to increase

usability by allowing users to specify model configurations and/or model inputs in

one federate, so model developers do not need to change every element for model

configuration. Additionally, the breakdown federate models machine breakdowns

— the time to breakdown and time to repair of machine are analyzed and modeled.

Some other supportive federates, such as the Calendar federate, were developed as

a part of the tunnel simulation federation by the research group at the University

of Alberta.

65

 Table 4-1 Tunnel construction simulation module and its description

Federate Function and Description

Shaft Shaft construction process, including preparation, excavation, and lining

Tunnel

Simulate the advance process of TBM tunneling including excavation, lining and
resetting;
Simulate operational activities such as extend track, survey
Simulate constructing undercut and tail tunnel
Simulate tunnel start up operations including installing track/switcher, TBM, gantry
and conveyer

Dirt
Removal

Simulate dirt removal process in TBM tunneling
Simulate crane operations of loading materials for both lining and unloading dirt
from the bottom of a shaft to the ground

Scenario
Setup

Define tunnel product model specification
Define various resource specifications
Specify initial status of the project

Breakdown
Calculate the time to breakdown, time to repair of machines
Manage breakdowns by communicating with other federates through RTI

66

4.3.2 FOM

Federation object model (FOM) is used to describe the kinds of data, and their

relationship, and these federates will be exchanged among federates in a

federation execution. The FOM specifies the name and attribute(s) of each object

class and each interaction class. Federates interact with the RTI according to FOM

specification. Figure 4-10 shows most of the object classes in the FOM developed

for this tunnel federation.

Figure 4-10 The obbject classes

67

s in the FOMM in the tun

nnel federattion

68

4.3.3 Tunnel construction simulation modeling

The tunnel construction process is modeled using DES, and implemented using

CoSyE. CoSyE supports flexible development using multiple programming

languages, such as C#, C++, Visual Basic etc., in MS Visual Studio. C# was

chosen for developing a shaft federate, a tunnel federate, a dirt removal federate,

and a scenario setup federate which together constitute this construction

simulation module for tunneling. The interface of the shaft federate and tunnel

federate, dirt removal federate, and breakdown federate are presented in the

following Figures, and their codes are presented in the Appendix.

Figure 44-11 The int

69

terface of thhe shaft fedeerate

Figure 4--12 The inte

70

erface of thee tunnel fedderate

FFigure 4-13 The interfa

71

ace of the di

irt removal federate

T

to

m

pr

ah

lo

pr

The interface

o select any

module produ

roject sched

head schedu

ook-ahead p

roject miles

Figure 4-14

 of the repor

work date

uces three ty

dules and pla

ule, and a w

planning, and

tone plan pr

4 The interfa

rting federat

and view th

ypes of plans

ans, includin

weekly work

d commitme

rovides an o

72

face of the b

te is shown i

he look-ahea

s and schedu

ng a project

plan, which

ent planning

overview of

breakdown f

in Figure 4-

ad plans bas

ules at differe

milestone p

h correspond

g, as mentio

f forecasted

federate

15. Users ar

sed on that

ent levels of

plan, a six-w

d to initial

oned previo

project perf

re allowed

day. This

f detail for

week look-

planning,

usly. The

formance.

T

si

st

The six-week

ix weeks or

tudy.

k look-ahead

a week into

Figure 4-1

d schedule an

the future. D

5 The inter

73

nd weekly w

Details and e

face of the r

work plan sh

examples are

reporting fe

how the work

e provided in

ederate

k plan for

n the case

74

The six-week look-ahead schedule and weekly work plan can present the schedule

or plan of any future (six) week(s). The users just need to select the date of when

the project schedules and plans should display. These plans and schedules are

continuously updated throughout the construction process, based on results from

simulation which model uncertainties and resource utilizations, and are kept up-

to-date since the simulation model incorporates the latest project performance.

4.4 Application to a real tunnel construction project

4.4.1 Project introduction

An ongoing project, the North Edmonton Sanitary Trunk (NEST), taking place in

Edmonton, Alberta, Canada, is selected for this case study. NEST represents a

typical utility tunnel project, 3707 meters in length and 2.344 meters in diameter.

The project began in December 2007 using a tunnel boring machine (TBM). The

tunneling operations have been monitored every day and all data related to

production progress, as well as all interruptions, have been well documented since

construction began. Tunnel construction operations are characterized by their

complexity and diversity, and are also usually linear and repetitive, so they have

been selected for simulation modeling in this research.

75

4.4.2 The collaborative environment for construction projects

A construction project usually involves various project participants and diverse

information in a distributed work environment, which makes data collection and

sharing complex. A tunnel construction site involves numerous participants.

Typical project participants in tunnel construction include labourers for

construction work, suppliers who provide materials such as concrete liners,

technicians who check and/or repair the tunnel boring machine (TBM), surveyors

who make sure the tunnel alignment is correct, and so on. Different project

participants have different concerns about a project and generate diverse types of

data. Figure 4-16 shows a typical network of information sharing in a construction

project. Successful project control depends on collaborative work from all project

participants.

Figure 4-16 A typical information sharing network in a construction project

76

Project progress monitoring and control rely heavily on personal observation

(visits) and analysis of a site, according to the tunnel construction practices of the

City of Edmonton. Progress monitoring includes progress measurement, data

collection, data analysis, reporting, etc. Various progress data must be collected,

measured, and considered to support the decision making in project control. The

data are usually distributed at locations such as construction sites and offices.

Although collected information could be transferred using computers and the

Internet/intranet, the data collection for project monitoring in the construction

domain still heavily relies on personal site visiting, because the project progress

should be assessed by human judgment.

Data collection is sometimes undertaken simultaneously by different project

participants for different purposes; for example, in the case study project, two

similar processes of site data collection were identified. The information flow

generated by a consulting party includes weekly site visits for progress monitoring

and monthly reporting for progress summary and analysis. It provides project

managers with a summary of all previous project performance. Meanwhile, the

City has an in-house crew to monitor different project job sites and prepare daily

progress reports describing the performance of a single workday for each job site,

as shown in Figure 4-17. Huge time and effort overlap and waste have been

identified in collecting and transferring site information to the head office for

77

project managers. Moreover, a lengthy delay in report updating is another issue

that hinders high-level managers in identifying problems.

Figure 4-17 Current information flow for project control in City of

Edmonton

The improved information flow between project stakeholders is depicted in Figure

4-18. It also demonstrates how this simulation system can be used in real

construction projects to enhance project control for various project stakeholders

during the construction process. The cylinder represents the progress monitoring

and control module, and the tunnel federation contains the other modules as

described in previous sections, including the Bayesian updating module, the

78

construction simulation module, and the scheduling and planning module. First,

the progress monitoring and control module allows different project stakeholders

to access progress information, and provides automated information collection

and sharing to improve project management. It supports the involvement of

various project participants for data collection, storing, analysis and review; for

example, inspectors for as-built data of project progress data, designers for tunnel

specifications, suppliers for material delivery information, and project managers

for varied information. Then, collected progress data is analyzed for updating

simulation model inputs, which continuously tune the simulation model to

produce better simulation along with project progress and changes. The

simulation model then produces look-ahead work plans. The overall process

enables the tunnel federation to produce more accurate project plans using the

latest progress data.

Figure 4-18 Improved information flow using the simulation system

79

4.4.3 Modeling

The tunnel construction process in the case study project was modeled using

discrete event simulation, according to the construction process and project logic,

which was analyzed by consulting project managers and field engineers, reading

technical documents, and visiting construction sites. The simulation model

accounted for resource constraints, material procurement and supply, and project

logic.

The Bayesian inference was then applied to update key parameters for the

simulation model. TBM penetration and machine breakdown were chosen as key

model inputs for updating in this case study. According to Xie et al. (2011), a

Gamma distribution showed improved goodness of fitness over a Normal

distribution for the TBM penetration rate. Thus, a Gamma distribution was chosen

as a conjugate prior in TBM penetration rate updating. Gamma/Exponential

distributions have been applied for modeling equipment failure rates in many

studies (NIST/SEMATECH 2003; Shafaghi 2008; Zubair et al. 2011). An

Exponential distribution is a special type of Gamma distribution with a shape

parameter of 1. Both Exponential distributions and Gamma distributions are

considered members of the exponential family in statistics.

80

TBM breakdown data were categorized into major breakdowns and minor

breakdowns. Major breakdowns were usually due to bad geotechnical conditions.

For example, hard rock in soil can break the rotating head and it takes more than a

day to fix. Minor breakdowns were usually less than a standard shift length, which

is 8 hours. Bayesian inference was applied for both major and minor breakdowns.

4.4.4 Planning

Three different plans and schedules are produced using updated model inputs and

as-built project data. The project milestone plan shows the time and crew hours

required per major project task, and reflects the master schedule, as shown in

Figure 4-19. The six-week look-ahead schedule, as shown in Figure 4-20

summarizes the main activities which will carry on within the next six weeks,

with their corresponding resources and constraints of all ongoing tasks. This

schedule provides the trend of an ongoing project and can help highlight the

underlying project logic. The weekly work plan specifies a week’s project

activities and their progress, which may be quantified according to the simulation.

An example is presented in Figure 4-21, showing the planned progress of main

tunnel construction in the NEST project.

Figgure 4-19 Prroject milest

81

tone plan frrom simulattion system

Figure 4-20 An exampple of a six-wee

82

ek look-ahead schedule from ssimulation system

FFigure 4-21 Ann example of we

83

eekly work plann from simulattion system

84

The labour hours are also presented in the weekly work plan and the milestone

plan. Although in many other construction projects, everyday shift lengths or

work hours are fixed, a tunnel construction site usually has variable daily work

hours due to the unique property of tunneling. If the construction crew is in the

process of excavating or lining a tunnel when specified work hours are reached,

the crew will continue work until the lining is finished. A tunnel should be

properly supported by the end of a shift before all crew finish work and leave the

construction site, unless another crew will immediately continue work on it.

Therefore, a tunneling construction crew often works longer than the specified

work hours. The every day labour hours are shown in the weekly work plan, and

the total labour hours are summarized in the milestone plan, and classified into

regular time and overtime.

The key resources and constraints of each activity are predefined in the system.

The author consulted project managers from the City of Edmonton and identified

a list of resources and constraints related to each activity. If an activity will be

performed, then the corresponding resources and constraints are selected in the

six-week look-ahead schedule. These predefined relationships served as a

knowledge base for scheduling and planning and could be updated throughout

project execution. In addition, both the six-week look-ahead schedule and the

weekly work plan specify the responsible party of each task, which is called the

last planner, according to LPS.

85

The produced six-week look-ahead schedule and weekly work plan can be used

by companies which are using LPS for project control. Usually, LPS plans are

produced through conversations among last planners and project managers who

reach a consensus on future project progress. The tasks and their corresponding

progress in the six-week look-ahead schedule and the weekly work plan can be

interpreted as commitments. However, these conversations require substantial

time and effort for communication to gain consensus. They may need further

confirmation from last planners and project managers, because the actual

production and project performance are affected by many factors, such as the

workload of each last planner in the real world. But these schedules and plans can

be used as proposed base plans for achieving the success identified in the

conversations, and helping project managers to understand and guide the overall

project.

4.5 Discussion

4.5.1 Improvement in tunnel modeling

This HLA-based tunnel simulation system enables modeling in a collaborative

environment. It allows building of the simulation model from simulation

86

components, integrating data collection, input updating, simulation modeling and

planning. Most current construction simulation tools only allow the development

and run of a simulation model on a standalone computer in a specific environment.

This means that a model developer must collect data from various sources and set

up all model inputs, and special expertise and collaborative work among different

project participants is required to setup and run a model.

This simulation system demonstrated how to integrate construction information

collection, data analysis and updating, discrete event simulation modeling, and

planning in a collaborative way. It also improves the interoperability and

reusability of simulation modeling, as well as dynamic and collaborative project

control.

This model also showed improvement in modeling shift length in a more

reasonable way. Shift length is usually predefined (e.g. 8 hours) in a simulation

model. The actual shift length in a tunnel construction site is usually not exactly 8

hours. For example, if the current task is lining using TBM, at the end of a shift,

the crew should finish lining before they leave a tunnel site for safety purposes,

because the tunnel could collapse wihtout proper support. However, this logic is

usually ignored in previous tunnel simulation models, but is now taken into

87

account. The developed simulation model terminates a shift after an event is

completed. If the task at the end of a base shift length is excavating, resetting, or

lining, this simulation model will continue running until the completion of lining

task. Previous simulation models allow one event to span two shifts to make the

shift length match predefined base shift length, which should not be.

This simulation model models machine breakdown in a more reasonable way

compared to previous simulation models. Breakdown is usually modeled as an

event in discrete simulation model, and is scheduled to happen as a queued event.

In other words, it can only happen between two activities. This simulation model

allows breakdown to happen at any designated time, by preempting the machine,

and pausing the event. In addition, this research applied Bayesian updating

technique to update the mean time between failure and mean time to repair for

TBM.

4.5.2 Look-ahead planning

A look-ahead planning (LAP) meeting is used to establish look-ahead plans

(Macomber, 2004). Project performers attend this meeting to prepare requests for

the work to be performed in the coming weeks. The performers look for the

88

conditions of the coming work and identify the constraints for making the work

executable.

LAP meetings achieve the following objectives (Macomber, 2004): establish a

look-ahead plan, identify the work constraints, secure the promises for addressing

the constraints, and launch the coming work tasks to the performers.

This research produced the base plan for look-ahead planning through a

simulation model. In order to establish reasonable plans, the simulation model

took the resource requirement and construction logic constraints into account.

Although the produced plan can not secure the promises from various project

performers, this method definitely saves time and effort for the work performers

to establish the basis for reliable look-ahead planning.

The project plans are established in a systematic way through simulation

modeling. This is considered an improvement compared with other simulation

models, which only provide information of a summary of time and cost to

completion. It helps systematic and dynamic planning by presenting a milestone

report, a six-week look-ahead schedule, and a weekly work plan. These plans

89

provide model details of the ongoing project, and help users gain insights into the

project.

4.5.3 Limitation

One limitation of this research is that it focused on tunnel construction, and is

limited to TBM tunneling. There are many different tunnel construction methods,

such as sequential excavation, that could be investigated and modeled. The

current simulation model is not capable of simulating various tunneling methods

and provides more flexibility and capability in what-if scenario analysis.

This simulation system supports limited decision variables for scenario analysis,

including shift length, tunnel length, the number of muck carts, and the capacity

of each cart. This system could be further developed to allow more decision

variables for assisting a project management team in decision-making.

As the simulation system is hard coded, users have to change the code to try

different scenarios. A well-designed interface could make it user friendly to

support decision-making, and could easily incorporate the expertise and ideas

90

from project management professionals, who do not usually have a background in

computer programming.

For further improvement of this approach, the author recommends integrating

automated data collection technology, such as RFID, to measure and collect

project progress data, and investigating new techniques in updating model inputs

other than Bayesian inference, such as time series, for better input updating.

4.6 Summary

The developed system utilized HLA to facilitate collaborative project control

among project participants with different project interests and project roles,

including construction teams, project managers, inspectors, etc. It can be used for

what-if scenario analysis and assisting decision-making. The system can provide

different plans and schedules according to different model setups and model

parameters such as the number of muck cars, the capacity of each muck car, and

crane productivity. These plans and schedules, which not only present project

schedules and costs, but also identify the resource constraints, can be compared

and analyzed to contribute to further decision-making among project stakeholders.

The proposed system has been demonstrated and implemented for a tunnel

construction project in the case study of this paper. However, the methodology

91

and the system architecture are generic and can be applied in many different

projects regardless of project type.

92

CHAPTER 5 ENHANCING QUALITY OF TBM

PENETRATION RATE FORECAST USING ACTUAL

PROJECT INFORMATION: BAYESIAN UPDATING

5.1 Introduction

Maintaining valid model inputs is a challenge for long-term use of simulation

models. When developing a discrete simulation model for a project which has not

started, model inputs are usually assumed. The assumptions are based upon

historical data from similar projects and similar activities, and from experts’

judgments. As projects progress and project circumstances change, simulation

model inputs need to be updated to reflect these changes, so as to maintain model

validity.

The Bayesian approach provides a method for updating model parameters by

combining both historical data and new available information. Bayes’ inference

can be interpreted as ݎ݋݅ݎ݁ݐݏ݋݌ ∝ ݀݋݋݄݈݈݅݁݇݅ ൈ ,ݎ݋݅ݎ݌ where posterior,

likelihood, and prior can be interpreted as the posterior distribution, likelihood

distribution, and prior distribution of any model inputs in this research. As stated

93

earlier, before a project starts, assumptions of model inputs are made based on

expert judgment and/or historical data from similar projects. The initial

assumption of duration is assumed to be continuous and is represented by a

probability density function (PDF) in the simulation model. These initial PDFs are

the prior distribution. As a project progresses and the actual project performance

is observed, and the project uncertainty reduced, the original assumption should

be revised according to the observed data. The new available information is the

likelihood distribution, and the revised PDF is the posterior distribution. This

study uses the penetration rate of the TBM as an example to illustrate how

progress data is utilized and model input is calculated in simulation.

5.2 Bayesian Inference

5.2.1 Bayes’ theorem

The Bayesian approach is built upon a statistical proposition, Bayes’ theorem, as

described in Formula (5-1):

 ܲሺܤ|ܣሻ ൌ
ܲሺܣ|ܤሻ ܲሺܣሻ

ܲሺܤሻ
 (5-1)

94

Where, ܲሺܣሻ and ܲሺܤሻ are the marginal probability densities of event ܣ and B,

ܲሺܤ|ܣሻ and ܲሺܣ|ܤሻ are the conditional densities, if A and B stand for a pair of

random variables: of ݔ and ݕ, respectively. The Formula (5-1) is written as

ሻݕ|ݔሺ݌ ൌ
ሻݔሺ݌ሻݔ|ݕሺ݌

ሻݕሺ݌
 (5-2)

Where ݌ሺݔሻ and ݌ሺݕሻ are the marginal probability densities of ݔ and ݌ ;ݕሺݕ|ݔሻ

and ݌ሺݔ|ݕሻ are the conditional densities. The denominator, ݌ሺݕሻ, in (5-2), the

marginal distribution of ݕ, is considered as a normalization constant. It does not

depend on ߠ, and is a constant with fixed y. In the application of Bayes’ theorem,

sometimes ݕ represents the observed data and is denoted by	ݕ௢௕௦, while ݔ means

the parameters of the model, and is denoted by ߠ. Thus, a new form of the Bayes’

theorem is presented as follows:

௢௕௦ሻݕ|ߠሺߨ ∝ ሻ (5-3)ߠሺߨሻߠ|௢௕௦ݕሺ݌

Equation (5-3) is also called unnormalized posterior density. When ݌ሺݕ௢௕௦|ߠሻ is

considered as a function of ߠ, it is called the likelihood function, and we write

݈ሺݕ|ߠ௢௕௦ሻ ൌ ሻ. Then we haveߠ|௢௕௦ݕሺ݌

௢௕௦ሻݕ|ߠሺߨ ∝ ݈ሺݕ|ߠ௢௕௦ሻߨሺߠሻ (5-4)

This equation is interpreted as ݎ݋݅ݎ݁ݐݏ݋݌ ∝ ݀݋݋݄݈݈݅݁݇݅ ൈ ሻ is calledߠሺߨ .ݎ݋݅ݎ݌

prior distribution because it is a priori belief about the values of ߠ . The

uncertainty of the unknown parameters ߠ is captured by the observations, ݕ௢௕௦.

Here Bayes’ theorem provides a way to incorporate the observed information and

95

update the parameter uncertainty. ߨሺݕ|ߠ௢௕௦ሻ is then called posterior distribution,

representing the updated uncertainty of prior distribution.

The marginal distribution of random variable ݕ is written as

ሻݕሺߨ ൌ න݌ሺߠ|ݕሻߨሺߠሻ (5-5) ߠ݀

Which is called the prior predictive distribution of ܻ, because it represents the

current predictions of the value of ܻ, incorporating both the uncertainty about the

value of ߠ and the conditional uncertainty about ݕ when ߠ is known. If ܻ is a

time-ordered random variable, the observations up to time t is expressed as

ݐݕ
ݏܾ݋ ൌ ሺݕ଴, ,ଵݕ ,ଶݕ … , :൅1 can be predicted as followsݐݕ ௧ሻ, and the observationݕ

௧ݕ|௧ାଵݕሺߨ
௢௕௦ሻ ൌ න݌ሺݕ௧ାଵหݕ௧

௢௕௦, ௧ݕ|ߠሺߨሻߠ
௢௕௦ሻ݀(5-6) ߠ

௧ݕ|௧ାଵݕ൫ߨ
௢௕௦൯ is called the posterior predictive distribution and is usually used for

prediction.

5.2.2 Conjugate distributions

Difficulties arise when implementing Bayesian approach. Multidimensional

integration is involved in finding the normalizing constant for Equation 5-3 and

96

the predictive distribution in Equation 5-6. The key problem lies in finding

analytical solutions for the integral.

Two solutions have been sought for the integration problems. Before the

pervasiveness of cheap and powerful computers, the research focus was finding

pairs of conjugate distributions. When the prior distribution type is the same as

posterior distribution type, the prior and posterior are called conjugate

distributions. Conjugate distributions provide convenience in calculating the

tractable analytical solutions to the integral. The other approach is sampling-based

estimation. A sufficient number of samples from a density can approximate the

mathematical form of that density through curve estimation methods. For example,

a variety of Markov Chain Monte Carlo (MCMC) simulation has been widely

used in sampling from posterior densities to seek approximate solutions for

Bayesian inference. Conjugate distributions are applied in this research. The

following introduces two pairs of conjugate distributions implemented in the

research.

97

5.2.2.1 Conjugate prior – Normal distribution

Normal distribution is the conjugate prior of a normal likelihood distribution. The

posterior is normally distributed. The parameters of posterior, ߨሺߠห݉′, ݒ ′ሻ, can be

obtained by

ە
۔

′݉ۓ ൌ
ଶ݉ߪ ൅ ݔ̅݊ݒ
ଶߪ ൅ ݊ݒ

ݒ ′ ൌ
ଶߪݒ

ଶߪ ൅ ݊ݒ

 (5-7)

Where,

݉′, ݉		 - the mean of posterior and prior Normal distribution respectively;

 ;the mean of observed data - ݔ̅

ݒ ′, ;the standard deviation of posterior and prior distribution respectively - ݒ

 .the standard deviation of observed data – ߪ

5.2.2.2 Conjugate prior – Gamma distribution

Gamma distribution is the conjugate prior of an exponential likelihood

distribution. The posterior obeys Gamma distribution. The parameters of posterior,

ߙหߠሺߨ ′, ሻ, can be obtained by′ߚ

98

 ቐ
ߙ ′ ൌ ߙ ൅ ݊

′ߚ ൌ
ߚ

1 ൅ ∑ߚ ௜௡ݔ
௜ୀଵ

 (5-8)

Where,

ߙ ′, 		ߙ - the shape parameters of posterior and prior Gamma distribution

respectively;

,′ߚ ;the scale parameters of posterior and prior Gamma distribution respectively - ߚ

݊ - the number of observed data or sample size;

 .௜ - the value of the ith of observed dataݔ

5.3 Bayesian updating federate

The Bayesian updating module is a self-contained simulator, called the Bayesian

updating federate, which interacts with the other simulation components as

needed. It was developed in CoSyE, as shown in Figure 5-1. It combines both

historical data and new available information for simulation model inputs. The

observed data increases when construction continues, so the likelihood data size

also grows. The posterior is updated consecutively according to newly collected

data until project completion, in order to reflect the latest changes in project

ci

fr

m

co

m

ircumstance

rom the pro

model, work

ontinuously

model validity

s. The Bay

gress monit

king in co

and promp

y.

Figu

yesian updat

toring modu

njunction w

ptly update

ure 5-1 Baye

99

ting federat

ule and autom

with the p

inputs in th

esian updati

te incorpora

matically up

progress mo

he simulatio

ing federate

ates new in

pdates the s

onitoring m

on module

e

formation

simulation

module to

to ensure

100

This federate provides two pairs of conjugate distributions when updating model

inputs. When the prior distribution type is the same as the posterior distribution

type, the prior and posterior are called conjugate distributions. More details of

conjugate distributions and their calculations are presented later in this Chapter. In

the first conjugate distribution, prior, likelihood, and posterior are assumed to be

normally distributed. This method was implemented by Chung et al. (2006) to

predict tunnel boring machine penetration rates and project productivity. Chung et

al. (2006) showed that the prediction approaches actual performance as the project

progresses and more actual performance data is used. The second method assumes

a Gamma distribution for prior and posterior and an exponential distribution for

likelihood.

The goodness of fitness of both prior and likelihood are provided based on

Kolmogorov-Smirnov (K-S) test, as shown in Figure 5-1. When applying Gamma

distribution as prior, the K-S test statistic is 0.0501. When applying Exponential

distribution as likelihood, the K-S test statistic is 0.0352. They are less than the

critical value, and shown in green background in the Figure. Thus, they passed the

K-S test. When applying Normal distribution as prior, the K-S test statistic is

0.1329. When applying Normal distribution as likelihood, the K-S test statistic is

0.1260. They are less than the critical value, and shown in red background in the

Figure. Thus, they failed the K-S test. Therefore, Gamma distribution represents

the data set of TBM penetration rate better when compared to Normal distribution.

101

5.4 TBM penetration rate updating and analysis

This Bayesian updating federate is used for updating inputs for simulation models.

Simulation model inputs are based on historical data and site observations. TBM

is the key resource in TBM tunneling. Its production efficiency is defined by

penetration rate, representing the excavating distance per unit time. Ourdev,

Abourizk, and Al-Bataineh (2007) proposed a way of inferring TBM penetration

rate based on tunnel progress data. This study followed their method, and it is

reviewed here briefly.

TBM penetration rate is calculated as the daily production divided by the TBM’s

corresponding production time. The production time equals the total time needed

to complete 1 meter of tunnel, minus supporting time. The supporting time

includes the time of crew mobilization, breaks, dirt removal, lining, resetting,

material loading, and dirt dumping. More details can be found in Ourdev,

Abourizk, and Al-Bataineh (2007).

This section uses the same project as described in section 4.4 (NEST) for input

analysis and updating. After all data is processed, the list of penetration rates is

the basis of model inputs. The histogram of the data set is first analyzed, and then

102

the data is fitted to statistical distributions. The best fit distribution will be

selected and used as input for the simulation model. One penetration rate data

point can be obtained from the progress of a shift. Figure 5-2a shows the analysis

of 150 data points. Four distributions are fitted to the data. The Beta distribution

and Gamma distribution are almost overlapped; they show a better match to the

histogram and are recommended in this study to use as model input. An

exponential distribution fitting is also good, but the Normal distribution should

not be used.

Model inputs should be continuously updated as more data becomes available.

Figure 5-2b shows the input analysis of all 366 data points in this case study

project. Beta and Gamma distributions still fit the histogram best. Table 5-1

shows a basic statistical analysis of 150 data points and 366 data points and the

results of fitting to Beta and Gamma distributions. The mean penetration rate

increased from 0.035 meter per minute to 0.042 meter per minute, which means

the TBM production increased 20% from the first 150 data points gathered. The

parameters of fitted distribution also changed substantially. However, the standard

error of estimated parameters converged as data points increased. For example, in

Beta distribution fitting, the a parameter changed from 1.051 to 1.312, but the

estimation error reduced from 0.139 to 0.100. This demonstrates the value of

updating model inputs to maintain valid model inputs, which allows the

simulation model to provide reliable long-term support.

a - Input analysis of 150 d

Fi

data points

igure 5-2 Simul

103

lation model in

b - Input analys

nput analysis

sis of 366 data pooints

104

Table 5-1 Statistical analysis of TBM penetration rate

Distributi
on Type

Data
Points

Mean Variance
Parameter

a
Std. Error

of a
Parameter b

Std. Error
of b

Gamma
150 0.035 0.001 1.080 0.111 0.032 0.004

366 0.042 0.001 1.354 0.090 0.031 0.002

Beta
150 0.035 0.001 1.051 0.139 29.360 4.559

366 0.042 0.001 1.312 0.100 30.298 2.920

105

5.5 Discussion

Bayesian technique has been applied and developed as a component using

COSYE, which is reusable for other HLA-based simulation models. It enables

model inputs to be updated dynamically, as more data becomes available. This

adaptive modeling approach can improve the reliability of simulation model

inputs long-term. The concept of automatically updating simulation model inputs

based on the latest project data is not applied in previous construction simulation.

Simulation model inputs are usually predefined according to historical data.

Previous study shows that only a pilot study of using the conjugate distributions

based on Normal distribution was introduced in construction.

This research applied conjugate distributions which uses Gamma distribution as

prior. The goodness of fitness has been improved, as discussed in the previous

section. As Gamma distribution has a minimum bound, it can guarantee that any

sampled data in the simulation is not negative. Negative samples are always a

problem when we apply Normal distribution as prior, as in previous studies.

106

One limitation of this research is that it only applied conjugate distribution in

model inputs updating. Although Gamma distribution improved the goodness of

fitness of the data sample compared to Normal distribution, the distribution of the

sample data could change over time. The function of this input updating module

could be enhanced by integrating different distributions. Additionally, this method

does not consider the seasonal effect of the data. Applying time series modeling

could better forecast model inputs by incorporating the seasonal effects of data,

which inherits from construction activities.

5.6 Summary

This chapter describes a Bayesian updating federate that implemented the theory

of Bayesian inference. It can automatically update the TBM penetration rate

according to the latest collected project data. The purpose is to enhance the

quality of simulation model inputs. In this study, the input is TBM penetration

rate. The idea of updating simulation model inputs using Bayesian updating

technique can be explored in other simulation models.

107

CHAPTER 6 WEB-BASED DATA COLLECTION FOR

AUTOMATING SIMULATION MODEL INPUTS

UPDATING

6.1 Introduction

Computer simulation has been widely applied in modeling construction operations

to gain insight into project performance. It helps improve project performance,

which can result in reduced project cost, improved project quality, and shortened

duration (Abourizk 2010). Simulation models are able to provide long-term

performance analysis for planning and design, but they are rarely used after the

project planning and design stage (Moon and Phatak 2005). One main constraint

is the time and effort needed to gather and extract pertinent information for

simulation models (Bengtsson et al. 2009; Moon and Phatak 2005; Skoogh et al.

2010). This, to some extent, constrains traditional simulation models from

repetitive and long-term usage (Moon and Phatak 2005). The lack of tools and

methods for timely communication and interaction between model developers and

field engineers is also a limiting factor for simulation models to provide long-term

continuous support through project execution.

108

This research presents a progress monitoring system which was developed to

capture progress data, and provide project progress input into a simulation model.

The progress monitoring system is a database application for collecting progress

data from a tunnel construction site. It feeds the progress data into a tunnel

simulation model. The system provides a convenient way to capture site data.

This provides a chance to quickly update simulation model inputs by extracting

pertinent information according to the latest data. Then the simulation model is

able to provide long-term support through overall project execution. In addition to

supporting the simulation model, the monitoring system can be used alone for

progress analysis. This is discussed in detail in this research. In all, this research

demonstrates automatically integrating progress data into a simulation model, and

presents a case study for a tunnel construction project.

6.2 Conceptual design

A progress monitoring system is proposed to provide the latest progress data for

tunnel federation. The information flow process is described in Figure 6-1. Site

engineers can enter data into the progress monitoring system through a personal

digital assistant (PDA) or a computer. These data are saved in a database server.

T

m

F

The tunnel si

model inputs.

Figure 6-1 C

imulation sy

.

Conceptual

ystem can th

design of d

and

109

hen retrieve

istributed t

d simulation

the data and

unnel const

n

d process it

truction mo

to update

onitoring

110

6.3 Progress monitoring system

The progress monitoring system is designed to collect and analyze project

progress data, and to provide the basis of simulation model inputs. The progress

monitoring system is built using the DADE (DRAXware Application

Development Engine) framework, a database application development platform

which is written in Delphi. It provides two types of database solutions. A web-

based solution is developed for users to enter data through a browser. It can be

used with both PDAs and computers. A desktop solution also provides data

analysis and reporting function to help users understand the ongoing projects.

The web-based client allows users to enter project information through various

personal digital assistants (PDAs) such as the Blackberry™ or iPhone™, as long

as the Internet is available. This client provides the flexibility to enter data

whenever new information is available and captured. It is useful when

construction job sites are scattered and information is distributed. The web client

focuses on functions of data entry and review.

The desktop client collects the same information as in the web client, but gives a

better view of all project information, and allows searching and filtering for data

111

analysis. It should fit project managers’ requirements for reviewing and analyzing

data, and help them to better understand the project progress.

The desktop client provides rich data analysis and report generation in addition to

data entry and review as in the web solution. Three types of reports are provided

based on daily production, weekly production, and monthly production. The

monthly report summarizes the progress of every month for each project. It shows

the remaining length of a project, the average production per shift, and the

estimated shifts to completion based on the productivity of the current month. In

addition, average crew size, average shift length, and total interruption duration of

a month are included in the report. Similar to the monthly report, the weekly

report and daily report are based on weekly project progress and daily progress,

respectively. Graphical analysis is also provided in the progress monitoring

system. It provides a better understanding of production changes and production

trends. More details such as the interfaces of the system are presented in the case

study.

112

6.4 Project introduction

This research is based on the practice of tunnel construction in the City of

Edmonton, Alberta by the Design and Construction Section of Drainage Services

of the City’s own workforce (D&C). This case study project is called the North

Edmonton Sanitary Trunk (NEST) NL 2,3, and is located in Edmonton, Alberta,

Canada. NEST was selected to represent a typical utility tunnel project; it is 3707

meters in length, and 2.344 meters in diameter. The project started in December

2007 using a tunnel boring machine (TBM). The tunneling operations have been

monitored, and data about the production progress as well as all interruptions have

been recorded since construction began.

6.5 Process of progress monitoring and data collection

The process monitoring and information is discussed in this section. The

information transfer flow in D&C, without using a progress monitoring system, is

shown in Figure 6-2a. In this situation, it takes an unacceptably long time to

transfer site information to a project manager who is working in the head office,

and project managers have limited access to detailed project schedules. It is

difficult to track the progression of contract commitments as they occur on a

project, which leads to delayed response to cost and scheduling problems and a

reactive project management environment. The proposed information flow using

113

the monitoring system is described in Figure 6-2b. The site engineers can record

construction information and send it to a database. As a result, the simulation

model is able to retrieve the latest progress data. In addition, the project managers

and analysts are able to access the latest project progress.

a - The process of traditional information flow

b - The process of proposed information flow

Figure 6-2 Process of data flow

114

6.6 Data collection and analysis

Both the web-client and the desktop client support progress monitoring and data

entry. The data entry interface of the web client is shown in Figure 6-3. Progress

data of a tunnel project can be entered here, including shift duration, shift number,

number of foremen, number of operators, number of laborers, production, TBM

working hours, and so on. The web client focuses on convenient and practical

daily usage; it allows inspectors, foremen, and site engineers to simply capture

data in a convenient way.

Fiigure 6-3 Thhe web-base

115

ed client forr progress m

monitoring

Figure 66-4 The deskto

116

p client for proogress monitoriring

T

in

pr

Figure

The desktop

nterface for d

resented in F

e 6-5 Weekly

client provi

data entry is

Figure 6-7. F

y progress r

ides more fu

s shown in F

Figure 6-8a

117

report in pr

unctions of

Figure 6-6. A

shows the m

rogress mon

data analysi

An example

monthly pro

nitoring syst

is and repor

of a weekly

duction from

tem

rting. The

y report is

m 2008 to

20

F

a

6

T

da

pr

009 in a bar

igure 6-8b s

- Monthly p

Figur

6.7 Conclu

The main pur

ata into a

resented a

graph forma

hows the pro

production

re 6-6 Exam

usion

rpose of the

distributed

progress mo

at. An avera

oduction of 2

bar graph

mples of grap

study is to d

tunnel con

onitoring sy

118

age productio

2009 in a pie

b - Mo

phic analysi

demonstrate

nstruction si

ystem for m

on line is ad

e chart.

onthly produ

is in progres

e the integrat

imulation m

monitoring a

dded for trend

uction pie c

ss monitorin

tion of prog

model. This

and analyzin

d analysis.

chart

ng

gress input

research

ng tunnel

119

progress. Information from scattered construction sites is captured and recorded in

the database through the system. The web client allows a user to capture data

using PDAs such as the iPhone™. The reporting and analysis function from the

desktop client is also presented in this paper. The progress monitoring system

works in conjunction with an HLA-based tunnel construction simulation,

contributing to a tunnel simulation model with the latest available progress data.

Thus, the tunnel simulation model is able to provide long-term reliable decision

support. The data collection system has been applied to a tunnel construction

project to illustrate how the data monitoring system can ease the time and effort

needed in capturing scattered data and retrieving model inputs.

120

CHAPTER 7 ENHANCING QUALITY OF COST

CONTINGENCY FORECAST USING VAR METHOD

7.1 Introduction

Cost overrun is a significant challenge in construction projects. A statistical study

on a sample of 258 transportation infrastructure projects worth US$90 billion

shows that the actual costs are on average 28% higher than estimated for all types

of projects, 34% higher for all fix-link projects (tunnels and bridges), 45% higher

for all rail projects and 20% higher for all road projects (Flyvbjerg et al. 2002).

Construction megaprojects show spectacular examples of cost overrun. For

example, the Sydney Opera House cost 15 times its budget (Flyvbjerg et al. 2002).

Flybjerg (2007) noted that Boston's "Big Dig" central artery/tunnel construction

project was 275% ($11 billion) over budget, and the Channel Tunnel between the

UK and France had an 80% construction cost overrun.

This research proposes a simple but practical method based on Value at Risk

(VaR) to determine and update project contingencies during project execution. As

suggested by Park et al. (2005), a good forecasting technique accounts for both a

historical performance and competent judgments based on construction

121

experience and knowledge. The VaR technique allows project managers to

incorporate their experience by specifying an appropriate period of historical data

and a period of future performance in the analysis.

The method is demonstrated through a case study of a tunnel construction project

using as-built data of daily progress and actual daily cost from accounting records

of the project; it is also applicable to projects where the progress is measured on

other timescales, such as weekly or monthly. Predictions are generated, updated,

and reissued at project milestones, according to the actual performance of a

project when new information is available.

7.2 Background

7.2.1 Value at Risk definition

Value at Risk (VaR) is a statistical measure of the maximum loss that can be

expected to occur with a given probability, over a specified period of time, under

normal conditions. Probability is specified in terms of the confidence level c. For

example, a bi-weekly VaR of $7,000 at a 90% confidence level means that in any

two-week period there is a 10% (100%–90%) chance that the losses will equal or

122

exceed $7,000. Alternatively, we could say that we should expect in a two-week

period to have one workday (1/10th chance) on which the losses will be at least

$7,000. VaR has been widely used since the mid-1990s (Damodaran 2008), and a

detailed introduction can be found in Jorion (1997).

This research implements an analytical or variance/covariance method of VaR.

The method assumes that the historical data are a sample from a probability

distribution such as a Normal distribution. The confidence interval of 80%, 90%,

and 98% in a Normal distribution refers to the areas of	േ1.2816ߪ, േ1.6449ߪ and

±2.3263σ under the distribution curve. Because VaR is concerned with negative

risk or loss, not with positive risk or gain, we ignore the positive side. Thus,

േ1.2816ߪ, േ1.6449ߪ, and ±2.3263σ correspond to the confidence levels of 90%,

95%, and 99%, respectively, in VaR. This interpretation directly leads to the

definition of the parametric value at risk:

 ܸܴܽ௖ ൌ ܼ௖(7-1) ߪ

Where,

ܸܴܽ௖ denotes the value at risk at confidence level of c;

c denotes the confidence level, such as 95%, ܿ ∈ ሺ0,1ሻ;

123

ܼ௖denotes the critical value corresponding to confidence level c, the inverse of the

standard normal cumulative distribution with cumulative probability of 1-c, i.e.

ܼ଴.ଽହ ൌ 	െ1.645;

 ;denotes the volatility as a percentage of the whole asset value ,ߪ

ܹdenotes the value of the whole asset;

 .denotes the volatility of the whole asset in dollar value ߪ

This yields the dollar loss in the value of an asset that would be exceeded only 1-c

percent of the time. The result from Equation (7-1) is also called relative ܸܴܽ,

because it describes the value below the expected return. Another definition of

ܸܴܽ is absolute ܸܴܽ, which is calculated by deducting the expected return from

relative ܸܴܽ, as in Equation (7-2).

 ܸܴܽ௖ᇱ ൌ ܼ௖ߪ െ (7-2) ߤ

Where ߤ is the expected return.

124

The results calculated using Equation (7-1) represent the value at risk for a time

horizon of the next period, usually daily. The assumption of the Normal

distribution also provides a formula for easy conversion between ܸܴܽ of different

time horizons, shown in Equation (7-3).

 ܸܴܽ௖,் ൌ ܸܴܽ௖,ଵ ∗ √ܶ (7-3)

Where,

ܸܴܽ௖,ଵ denotes the value at risk for time horizon of next 1 period, equivalent to

ܸܴܽ௖ in Equation (7-1);

 ܶ denotes the number of time periods;

 ܸܴܽ௖,் denotes the value at risk for time horizon of next T period.

7.2.2 VaR properties

VaR accounts for loss probability, time horizon, and historical performance, and

is widely used in financial risk management. A risk manager can use it to define

risk threshold for risk control and risk management purposes. This research

applied VaR to predict the probabilistic potential loss and update the project

contingencies. Both project cost and project progress were analyzed for

assessment and prediction. According to the Project Management Institute (2004),

predictions are typically generated, updated, and reissued based on the past

125

performance of a project and any new information available when a project is

executed and progresses. VaR also provides a chance to make use of newly

available data as a project progresses and update forecasts based on that data.

There are three factors used in calculating VaR: the prediction period, the

confidence level c, and the observation period or the size of the sample. The

prediction period is referred to as the “time horizon” in financial risk management.

In this research it reflects the time frame for the projection of performance and the

desired control period for project managers. A time horizon may range from a

single workday to a successive period of ten workdays, all the way up to one

calendar year. The preferred time horizon often depends on the type of project and

the management style. The confidence level c is the probability that the actual

value will reach or exceed the predicted maximum loss. It represents

organizations’ tolerance level for risks. For example, in finance, the Banker Trust

uses a 99% confidence level, J.P. Morgan uses 95%, and Citibank uses 95.4%

(Dupačová et al. 2002). The third parameter for calculating VaR is the

observation period. In this research it is the data sample size. Understanding

project performance and its possible changes is a prerequisite for deciding sample

size and projecting performance. Because the VaR model assumes a Normal

distribution of the sample, the sample size must be large enough to satisfy this

assumption, depending on the variability of the data and the desired margin of

error.

126

All these three factors affect the accuracy of VaR, which provides a chance for the

incorporation of project managers’ experience, knowledge, and management style.

Performance information which is too old may not have much correlation with

current performance; defining an appropriate period of past performance as a

sample for VaR relies on the experience and judgment of project managers

according to the project type and its properties. Too small a sample may not be

representative, but too large a sample may include irrelevant information and

decrease accuracy. In our case study, for example, as the project progresses, data

for the period of 100 workdays immediately before the prediction date is used as

input, and the data older than that is ignored. The user can easily change this to

any other time period, according to project type and properties. Our process

implements the principle that the latest performance has a higher impact on future

performance than out-dated performance.

7.2.3 VaR inputs and outputs

Project profit/loss is different from cash flow and cost. These concepts are

sometimes not clearly defined in project management. Project cost refers to

various costs needed to complete a project. In finance, cash flow shows the money

flowing into a business from sales, interest payments received, and any borrowing,

127

and the amount of money flowing out of a business for wages, rent, interest owing,

paying back loans, buying raw materials and so on. If the cash flowing into a

business does not meet the cash flowing out, then a company could be forced out

of business because it is not able to serve its debts. Cash flow is greatly affected

by payment type and payment time delay. In engineering, revenue is usually

received with a time lag after certain progress goals are achieved and approved,

but potential earning and cost occur incrementally every day. Daily profit is

therefore estimated based on project progress.

Project daily profits/losses are analyzed and used as inputs in VaR models in this

research. The project daily profits/losses are calculated from project daily

progress and cost. For example, consider a small manufacturing factory. The

factory sells products at $100 each with a marginal profit rate of 20%, and is able

to manufacture 40 to 50 products every day using a machine. If the key machine

breaks down, and the factory cannot manufacture any product, there is still some

overhead and other indirect costs like machine repair. The cost contingency is

used to cover these overhead and indirect costs. If the breakdown happened after

10 products were made, the potential loss of that day will be the actual cost minus

the income made from the 10 products. In this situation, what is the contingency

used? Note that the cost contingency is defined as the cost that is used to cover

unforeseen work due to risks, in addition to estimated project cost. Therefore, the

profit should be excluded. If the cost of that day is -3000 (i.e., 3000 expense),

128

then the contingency is -2,200 (-3000 – (-100 · 10 · (1 – 20%)) = -2,200). This

daily amount is used as input in the VaR model, and called “project daily

profit/loss” in this research. It is defined as the estimated potential earning of

daily work performed (excluding estimated profit) minus actual daily cost of work

performed. This is a potential profit/loss (loss when negative), since the profit is

not actually achieved until payment occurs. Even though the contingency should

be negative to indicate a cost overrun, there is sometimes no contingency used, so

the “contingency” turns out to be a positive number. Both positive and negative

numbers are used as input in our calculation.

A previous study forecasted cost contingency as both a dollar value and a

percentage of the cost estimate using an artificial neural network (ANN) (Lhee et

al. 2009). The ANN model was trained, tested, and validated using real data from

495 projects and showed that the contingency amount forecast had a higher

correlation, fewer errors, and better results than a percentage forecast (Lhee et al.

2009). Therefore, in this research, the VaR model forecasts the contingency

amount.

The results of VaR models are directly considered as cost contingencies.

According to the VaR definition, it forecasts the maximum loss at a probability

129

level over a period. The loss occurs due to various risks and needs to be covered

by the cost contingency. This research analyzes project daily loss, considered as

the impacts of unforeseen risks, instead of risks themselves, then forecasts the

likely loss for future and the contingency required. The contingencies are

presented for a coming period, such as half a year or a year, depending on project

duration and the company plan.

7.3 VaR modeling and contingency updating

VaR modeling and contingency updating consist of a circular calculation,

implemented in this research via a simple spreadsheet. The process is presented in

Figure 7-1. All tasks with a filled background are parts of VaR modeling, and the

other tasks are supportive. The tasks in the dashed rectangular box should be

repeated at the end of every observation period to forecast contingency. The

following will explain the process of calculating contingency step by step:

130

Figure 7-1 VaR modeling process

131

Gather project information and define VaR parameters. At the beginning of a

project, project estimate, budget, and estimated profit should be gathered and are

used as basis in calculating volatility and contingency. Meanwhile, contingency

prediction period, confidence level, and observation period are decided, according

to project properties, uncertainty levels, and so on.

Once a project commences, as-built project data should be continuously gathered,

including both project progress and actual expenses. Companies usually have their

own systems to record cost for financial management purposes. These records

provide the fundamental basis for VaR analysis.

When completing an observation period, we analyze the data and reorganize it in

daily, weekly, monthly, or other timescales in project profit/loss analysis. Project

daily potential profit/loss is calculated by deducting actual daily cost of work

performed from the estimated earning of daily work performed (excluding

estimated profit), and is used as VaR model input. Actual cost analysis includes,

but is not limited to, removing “dummy” entries in bookkeeping, summing up

expenses, and apportioning occasional large expenses to appropriate period. In

order to calculate estimated earning of work performed, the work performed is

first quantified by measuring project progress. Then the estimated earning of work

132

performed can be obtained from actual progress and project estimate. The project

progress, actual cost and estimated cost can be measured in a consistent timescale,

such as daily, weekly, or monthly. Examples of data analysis can be found in the

case study.

Then we can calculate volatility. The volatility, σ is first calculated using

Equation (7-4), if we use daily data from the past k workdays as inputs:

ߪ ൌ ඩ
1

݇ െ 1
෍ሺݐ݂݅݋ݎ݌௜ െ 		ሻଶߤ
ିଵ

௜ୀି௞

మ

 (7-4)

where ݐ݂݅݋ݎ݌௜ means the project daily profit/loss for day i, ranging from -k to -1,

and µ denotes the average of ݐ݂݅݋ݎ݌௜ during observation period in dollar value.

For example, ିݐ݂݅݋ݎ݌ଵ଴ represents the daily profit/loss made at the 10th day prior

to today. The input size can be easily changed according to project properties and

how much information is available.

Value at Risk is calculated based on Equation (7-1) and (7-3). Then we can

calculate VaR using Equation (7-1), and then convert it to different time period

using Equation (7-3). Using this conversion, we can forecast the contingency for a

long period. An example of using daily cost is demonstrated in the case study of

133

this paper. The forecasted contingency can be evaluated by comparison with the

actual contingency spent. More details about contingency analysis and evaluation

are presented in the sections of VaR calculation, results analysis, and model

validation under case study.

7.4 Case study

7.4.1 Project introduction

The chosen project is a section of a utility tunnel construction project, the North

Edmonton Sanitary Tunnel, called NEST NL 2,3. It is being built in Edmonton,

Alberta, Canada, using a tunnel boring machine (TBM). The project involves

excavation of 3.675km of sanitary sewer tunnels, starting in December 2007. The

production data for the test case is the information collected continuously from

the operation site of the NEST NL 2,3 tunnel project on a daily basis. Other

information like shift length, crew size, and temperature, is also recorded in detail

on a daily basis. The information constantly monitored from the daily operations

provides the basis for the estimation of short term delay in the research.

134

As VaR reflects the maximum loss, the case study focuses on applying VaR to

analyze the potential profit/loss for NEST NL 2,3, based on the contractor’s

historical project performance. A contractor usually conducts a project according

to their bidding documents. The bid price is usually the dollar value that the

contractor will ultimately receive from project sponsor(s) for a project if the

project is accomplished as in their agreements. The payment from a client (i.e.,

the revenue for a contractor) is provided according to progress. In other words, the

quantified work done represents contractor revenue or contractor earnings. For

example, in a construction project of a sanitary tunnel, the length completed per

day represents a dollar value that is achieved and earned on that day.

In the research, the analysis accounts for various expenses both directly and

indirectly related to NEST as project cost on a daily basis. The bid price defines

the baseline of payment that the contractor will get from the client. The unit price

of NEST, estimated as cost per meter in the bid, is used for calculating revenue.

Thus, the revenue for one day here is quantified as unit price times meters

accomplished on that day. The following illustrates how we analyze the data and

estimate future loss as a cost contingency.

135

7.4.2 Data collection

NEST started construction on December 3, 2007. We collected both cost and

productivity data from the first day of construction until January 2010; 547 work

days in total. The first step was to gather the data necessary for the statistical

analysis and development of a VaR model. The cost data are all from SAP

enterprise software currently used by the City of Edmonton. Every cost item

occurring on a construction site is recorded in SAP, with details of date, activity

name, activity duration, cost rate, conducted employee name and so on. We

collected more than 40,000 records from the contractor dated December 3, 2007

to January 2010. The contractor recorded an average of 70 cost items each work

day. Examples of excerpted cost records used in the research are shown in Table

7-1 and include material cost data (purchase orders), labour cost (per worker per

day, along with their work duration, cost code, etc.), equipment cost (purchase,

rental, maintenance, fuel consumption, etc.), engineering cost (workshops and

consulting) and general overhead cost. Other information, including project

estimate information and production information (between 3 to 8 meters per shift),

is collected as well. The total cost per meter was estimated at $3,104, which

includes crew, equipment, material, subcontractor, and other costs.

Table 7-1 Examples of excerpted cost records used in the research

Object Cost Element Cost Element Name Cost Document Date

130659 655110 Engineering Fees 537.08 03/03/2008

130659 663910 Project Officer 195.3 03/03/2008

136

133415 420230 Hired Equipment 960 03/03/2008

133415 420230 Hired Equipment 247.5 03/03/2008

133415 663176 Welder I 46.42 03/03/2008

133415 663176 Welder I 92.84 03/03/2008

133415 663182 Welder Foreman 53.01 03/03/2008

133415 663182 Welder Foreman 73.12 03/03/2008

133415 663198 Equip Operator III 285.92 03/03/2008

133415 663199 Equip Operator III OT 73.94 03/03/2008

133415 663200 Equip Operator IV 303.28 03/03/2008

133415 663200 Equip Operator IV 78.45 03/03/2008

133415 663248 Tunnel Labourer I 267.12 03/03/2008

133415 663248 Tunnel Labourer I 69.09 03/03/2008

133415 663248 Tunnel Labourer I -267.12 03/03/2008

133415 663248 Tunnel Labourer I 267.12 03/03/2008

7.4.3 Data analysis

The data was then cleaned and reorganized on a daily basis; accounting, used in

this case project, records the actual cash flow, not the incremental daily costs. For

example, materials are paid for in a lump sum, but consumed over a period of

months. All records are thus aggregated based on the date, and represented as the

cost of every day. The summed-up cost along with productivity on a daily basis is

illustrated in an example shown in Table 7-2. In addition, large occasional

purchases, such as equipment purchased on 16/01/2008 at a cost of $75,185

(Table 7-2); “dummy” entries, which are used for error correction in bookkeeping;

and some incidental weekend work-related costs were identified and apportioned

equally to every workday, in order to reflect the real daily cost. Cost items

excluded from daily cost which need apportioning include concrete segment cost,

137

engineering consulting, construction consulting, power charges, general-purpose

vehicle leases, internal order overhead, general contract work, equipment

purchase, power charges, and all other costs that occurs at any non-workday. In

our case study project, these costs were summed every three months, and the total

was equally distributed to every workday of those three months. For example,

these expenses during June 1 2008 to 31 August 2008 sum up to $277,431, and

there are 70 workdays during this period. The average per workday becomes

$3,963. All these cost items were first deducted from their original bookkeeping

dates, and then the average cost, $3,963 is added to every workday cost after

deduction. Thus, the total cost is consistent with the original bookkeeping. In

order to maintain some level of uncertainty in the research, occasional

expenditures like small tool purchases were kept as is to absorb and reflect project

risks.

Table 7-2 An example of daily cost and production information

Date Production Daily revenue Actual cost

11/1/2008 0 $ - $ 5,620

14/01/2008 0 $ - $ 5,685

15/01/2008 0 $ - $ 7,966

16/01/2008 0 $ - $ 75,185

17/01/2008 1 $ 3,104 $ 6,307

18/01/2008 2 $ 6,209 $ 6,108

19/01/2008 0 $ - $ 5,601

138

7.4.4 Model inputs

To analyze project daily potential profit/loss, the estimated earning of daily work

performed (excluding estimated profit) is first calculated. It is equal to the tunnel

daily progress (measured in meters per day) multiplied by the estimated tunnel

unit cost (in dollars per meter). Tunnel project progress is recorded by foremen

from the tunnel site on a daily basis, and reflects the value of accomplished work

immediately after it is produced. Both project cost and earnings are measured in

dollars and used as input in contingency updating.

Actual cost takes into account both direct and indirect costs related to the project,

such as crew cost, equipment cost, material cost, and indirect cost. The project

potential earning means the equivalent dollar value of the progress made in a

period, even though the amount of money has not been paid. For example, in our

case study, the progress is measured as daily excavated meters of the tunnel,

multiplied by a unit cost as estimated before actual construction.

Figures 7-2 and 7-3 show the daily cost, cumulative cost, cash flow and daily

potential profit/loss of our case study, the NEST tunnel. The daily potential profit

and daily cost in Figure 7-2 are almost overlapped with the x-axis, because they

139

are marginal compared to cumulative cost and cash flow. Figure 7-3 only depicts

daily potential profit/loss and daily cost for a closer view.

140

Figure 7-2 Cost related analysis of NEST

‐10000

‐8000

‐6000

‐4000

‐2000

0

2000

4000

D
o
lla
rs
 in

 T
h
o
u
sa
n
d
s

Cumulative cost Actual daily cost Cash flow Daily potential profit

141

 Figure 7-3 Daily cost and daily potential profit/loss of NEST

‐60

‐40

‐20

0

20

40

60
D
o
lla
rs
 in

 T
h
o
u
sa
n
d
s

Actual daily cost Daily potential profit

142

The cumulative cost increases linearly over the long term, while cash flow

gradually increases. Although both cumulative cost and cash flow show NEST

performs very well with steady cost and profit, they do not provide details of near

future performance to help project managers with short term resource planning

and contingency preparation. Again, this research focuses on the potential

profit/loss on a daily basis, so as to indicate project performance in a timely

manner.

7.4.5 VaR calculation

This section contains a demonstration of how relative VaR was calculated in this

case project. For example, suppose we estimate VaR on September 9, 2008 using

200 inputs, which means an observation period of 200 workdays. The profit/loss

of the last 200 work days before September 9, 2008, which covers work days

from December 6, 2007 to September 8, 2008 according to site records, are used

as input data. The volatility is calculated as the standard deviation of these input

data using Equation (7-4), which is 13,460 during this observation period. The

VaR of September 9, 2008, with c of 0.95 (if c is set to 0.95, then ܼ଴.ଽହ is -1.645)

is calculated as follows:

ܸܴܽ௖,ଵ ൌ ܼ௖ߪ ൌ 	െ1.645 ∗ 13,460 ൌ െ22,140

143

The relative VaR of next 200 days is calculated as

ܸܴܽ௖,் ൌ ܸܴܽ௖,ଵ ∗ √ܶ ൌ െ22,140 ∗	√200 ൌ 	െ313,101	

The “last 200 work days” is a moving frame of reference, so if the estimate is

made one day later, on September 10, 2008, data from December 7, 2007 to

September 9, 2008 are used as samples.

7.4.6 Results analysis

Cost contingency can be updated using different sample sizes of historical data at

different confidence levels. If we consider every 100 workdays as a project

milestone, we can update VaR at each milestone. All or a partial set of the

historical data can be used to forecast. For example, if we are at day 301, and 300

data samples of past performance have been collected, then we can use all 300

samples as inputs, or only the last 100 data samples. The key is to use historical

data related to current and future performance. If there is a reason to believe that

future performance will be more similar to the performance of the past 100

workdays, rather than all 300 workdays, then only the last 100 data samples will

be used.

144

This research used the data from the first half year to forecast the next half year

and the next year, for illustration. As tunnel productivity is greatly affected by

weather in cold weather areas like Edmonton (Shahin 2007), it is reasonable to

believe that productivity has seasonality. A random choice of input size, e.g., 100

or 200, might disturb the seasonality pattern. Thus, annual or semi-annual data

was selected as input in forecasting. The project started on December 3, 2007, so

we update contingency for a year or half a year later, using all data records

through that year or half a year. The first half a year has records of 129 days, and

the first year has records of 262 days, including all usual workdays and some

overtime during weekends. We can update project contingency at any time

necessary. It is not restricted to a specified period after the project starts. The

input size can also be easily changed, as long as the selected period is considered

to appropriately image the forecasted period.

The results are shown in Table 7-3 with a confidence level of 0.95, as selected in

the paper; that is, those levels of contingency would be exceeded only 5% of the

time. If updating the contingency for 100 consecutive workdays, we can get a set

of 100 forecasted data points and a set of 100 actual samples. Here we have 547

total data samples, and try three different combinations of input data and forecast

period.

145

Table 7-3 Cost contingency using annual or semi-annual data

Estimate made
by date

Input size

Estimate Period

Next half a
year

Next
year

Next 1.5 years

6/3/2008
129
(half a year)

-214,478 -305,660 -368,596

12/3/2008
262
(one year)

-209,024 -297,888 -359,223

Case 1: Use 129 data samples to forecast the next 129 workdays, so there are 289

forecasted data points (547-129-129=289) which can be verified;

Case 2: use 129 data samples to forecast the next 262 workdays, so there are 156

forecasted data points (547-129-262 =156) which can be verified;

Case 3: use 262 data samples to forecast the next 129 workdays, so there are 156

forecasted data points (547-262-129=156) which can be verified.

In Case 1, we got 289 forecasted data points with corresponding sample data for

comparison. Table 7-4 shows the actual and the forecasted contingencies (α =

0.95) from July 31, 2009 to August 8, 2009 for a period of 129 workdays. In

Table 4-4 the forecasted contingencies are all lower than the actual; this is to be

expected, because the actual contingency will not exceed the forecast at 95%

probability. Similar results were obtained for Cases 2 and 3.

146

Table 7-4 Contingency (܀܉܄૙.ૢ૞,૚૛ૢ) from July 31, 2009 to August 8, 2009

Forecast Date
Actual contingency of next
129 workdays

Forecasted
contingency

7/31/2009 66,782 -146,372

8/4/2009 60,898 -147,057

8/5/2009 70,306 -146,663

8/6/2009 74,071 -146,592

8/7/2009 78,858 -146,601

8/8/2009 92,435 -146,635

7.4.7 Model validation

Both Q-Q plots and cumulative distribution functions of actual and forecasted

contingencies were used to compare the actual contingency used for the project

with the forecasted contingencies (Figures 7-4, 7-5, and 7-6). In a Q-Q plot, the

line of x=y is used as reference line. The other line, usually curved, shows a

comparison of the forecasted and the actual. If the curved line is below the

reference line, the forecast is lower than the actual, and vice versa. All plots show

a good visual fit between actual and forecast. The best matching case is the 1st,

forecasting for 129 data points using 129 data samples. The 3rd case, forecasting

the same period as the 1st case but using more input data, does not show closer

matching or better forecasts.

147

Figure 7-4 Actual contingency and forecasted contingency of Case 1 (input size: 129; forecast period: 129)

(400)

(200)

0

200

400

(400) (200) 0 200 400

Th
o
u
sa
n
d
s

Thousands

Q‐Q plot

X=Y Actual

0%

20%

40%

60%

80%

100%

(400) (200) 0 200 400

P
ro
b
ab

ili
ty

Thousands

CDF

Actual Forecasted

148

Figure 7-5 Actual contingency and forecasted contingency of Case 2 (input size: 129; forecast period: 262)

(400)

(200)

0

200

400

(400) (200) 0 200 400

Th
o
u
sa
n
d
s

Thousands

Q‐Q plot

X=Y Actual

0%

20%

40%

60%

80%

100%

(400) (200) 0 200 400

P
rb
ab

ili
ty

Thousands

CDF

Actual Forecasted

149

Figure 7-6 Actual contingency and forecasted contingency of Case 3 (input size: 262; forecast period: 129)

(300)

(200)

(100)

0

100

200

300

(400) (200) 0 200 400

Th
o
u
sa
n
d
s

Thousands

Q‐Q plot

X=Y Actual

0%

20%

40%

60%

80%

100%

(400) (200) 0 200 400

P
ro
b
ab

ili
ty

Thousands

CDF

Actual Forecasted

150

The forecasts are compared with actual contingencies using percentiles, as shown

in Table 7-5. In both Case 1 and Case 3, the forecasts are very close to the actual

contingencies: the actual 95th percentile contingencies were 4% more than the

forecasted, which is equivalent to 0.3% of the average actual cost of the prediction

period (half a year). In Case 2, the forecast is 16% less than the actual, equivalent

to 1% of the actual cost of the average actual cost of the prediction period (a year).

As stated by Flyvbjerg et al., the actual costs of tunnel and bridge projects are on

average 34% higher than estimates, according to a statistical study on a sample of

258 transportation infrastructure projects worth US$90 billion (2002). Compared

with cost overrun percentages in other tunnel projects, the contingency differences

in all three cases are very minor.

151

Table 7-5 Cost contingency using annual or semi-annual data

Case
95 percentile
of all actual
contingency

Average of forecast
at 95% confidence
level

Amount
Diff.

Diff. / Actual
contingency

Average cost of
forecast
duration

Actual
contingency /
cost

Diff. /
Actual
cost

Case 1 -188,582 -181,912 -6,670 4% -2,201,152 8.6% 0.3%

Case 2 -269,666 -312,882 43,216 -16% -4,290,747 6.3% -1.0%

Case 3 -194,193 -185,456 -8,737 4% -2,060,101 9.4% 0.4%

152

7.5 Discussion

The VaR method provides a quantitative and efficient way to forecast and update

necessary contingency. It analyzes a project’s daily cost and daily earnings,

instead of analyzing risks and their magnitudes. Risk leads to cost overruns,

which is why projects need cost contingency. Although risk analysis helps us to

understand various potential risks and their impacts before their occurrences, it is

a challenge to properly identify and quantify them. If two related risks occur

simultaneously, the impact magnitude is likely to be higher than the simple

aggregate of their impacts when occurring individually. The impact due to

multiple risks could weaken the validity of early risk analysis. However, this does

not cause a problem in our model, because the model inputs rely on actual cost

every day, the change of which provides a good gauge of risk effect.

The accuracy of the model presented in this research is not dependent on the

original cost estimates or expert judgements, as in other contingency models

(Lhee et al. 2009; Cioffi and Khamooshi 2009; Mak and Picken 2000; Sonmez et

al. 2007; Mohamed et al. 2009). In the case study, the project estimate was made

in 2006, and is used as a parameter in contingency calculation. Even though the

estimate was made several years before the project construction, it does not affect

the validity of the VaR method. If the actual cost turns out to be higher than the

estimate, the project contingency will be correspondingly higher.

153

The method also provides a way of updating contingency by periods.

Traditionally, cost contingency is estimated and included as a part of project cost

estimation before the project commences. This research proposes to set it by

periods, such as yearly periods, and update it at the end of each period, according

to project properties and management style. This is an aid for updating the annual

budget plan and resource utilization, especially for large companies that always

have multiple projects on hand. Periodically updated cost contingencies also

provide a chance to include the latest information and remove out-dated

information. As demonstrated in our case study, we can update contingency

forecasts for every year or half a year. In addition, the total project contingency

can also be forecasted using this method by assuming project completion date, if

needed.

One shortcoming of VaR is that a long period of historical data is required. When

lacking data at the beginning of a project, we have to use historical data from

other similar projects in modeling. The model reliability is constrained by the

quality of historical data and the relevance of the data with the current project.

Another common criticism of VaR is related to the unverified assumption that

everything follows a multivariate Normal distribution. One caveat found by the

154

author is that data collection, filtering, and analysis are very time-consuming

when applying this method, particularly the determination of daily costs.

7.6 Applications

This section discusses the opportunities and challenges in applying the method to

other projects. Firstly, the method remains applicable at different levels of control.

This research applied the VaR method for project-level contingency forecasting

for project control purposes. The method is shown to be practical and useful for

high level budgeting and contingency planning, but could also be extended into

lower levels, such as for different tasks, and into higher levels of a whole

company or portfolio.

This method would be effective for projects of varying contract types, as it is used

for contractors to calculate cost contingency. Contracts of varying types define the

method and the amount of payment to contractors differently. Contract type

affects cash flow, but not the actual cost and potential project earning, which are

the inputs of VaR models. Therefore, this method is potentially applicable to all

kinds of projects, regardless of contract type. It may seem that contractors are

more concerned about contingency for lump sum projects, because they take full

155

risks in cost, and are less concerned for “cost plus” projects. However,

contingency focuses on the cost due to downside risks, not profit, and contractors

must always have enough funding, including contingency, to maintain cash flow

regardless of contract type.

The author recommends a possible application of this method in highway

engineering, because highway agencies have a particular interest in cost overrun

and contingency (Molenaar et al. 2009). Olumide et al. (2010) state that most state

highway agencies (SHAs) applied one or more of the following three methods to

decide contingency: 1) a predetermined contingency percentage for all projects; 2)

a unique decision by individual estimators or project managers; or 3) a formal

risk-analysis based method. For example, the Washington State Department of

Transportation (WSDOT) developed and applied Cost Estimating Validation

Process (CEVP) (Molenaar 2005). This VaR method as introduced in this

research could potentially provide a new qualitative method for forecasting

highway contingency and warrants further study.

Future advancements of the method could include automating data processing and

improving model validity. This model could be implemented as a part of a project

control system or ERP software, in order to simplify the process of data collection

156

and processing. Also, as the project potential earning/loss may not be always

normally distributed, the ability to dynamically change the distribution type for

forecasting could also be useful for future research. Finally, this method can also

be combined with simulation, which forecasts project duration and could be used

to inform contingency calculation.

7.7 Conclusion

This research proposed a qualitative method based on VaR to forecast and update

project contingencies at a given confidence level throughout project execution.

The method minimizes human bias in risk assessment which is a common issue in

most other contingency methods. The model can be continuously updated to

generate new forecasts based on newly available information from daily activities.

The method has been illustrated in a tunnel construction project based on actual

cost records and productivity. The case study verification shows that the

forecasted contingencies are very close to the actual, and that the forecast

accuracy decreases when the prediction period increases. This method provides a

chance to set and allocate appropriate contingencies on certain timelines, which

improves budget planning and resource utilization for major companies and

agencies which run multiple projects lasting for years. In addition, the paper also

discussed the advantages, disadvantages, applicability, and future improvements

of the VaR method.

157

CHAPTER 8 CONCLUSION

8.1 Research Summary

This research tries to improve project control as more project information is

received as a project proceeds, because uncertainty and risk can be identified and

decreased upon more available information, and the prediction for future

performance and future work plan can be improved.

This research investigated effective tools and methods for dynamic and

collaborative project control during project execution. The main research work

refers to a project monitoring system for data collection and analysis, and

information sharing, tunnel construction simulation, adaptive modeling, project

forecasting and planning, and cost contingency forecasting and planning.

This research has addressed the following issues:

158

1) How to effectively collect pertinent productivity data and monitor project

progress from various construction sites in light of the state of the art;

2) How to develop a simulation model for a construction project, which

accounts for project logic, work sequence, resource constraints and

uncertainty;

3) How to maintain valid model inputs to reflect the latest performance of the

project through project execution and to provide long-term support;

4) How to feed actual productivity data into a simulation model and integrate

them to update the model; and

5) How to dynamically forecast and make reasonable and reliable up-to-date

project plans in terms of schedule/production and cost, especially cost

contingency.

This research began with a web-based project monitoring system to support

project progress data collection. It also analyzes project progress data by

providing three different project progress reports, including daily report, weekly

report, and monthly report. The collected progress data is integrated into a

simulation model through a Bayesian updating simulation component by

159

automatically updating model inputs according to project progress information

collected from the project monitoring system. The simulation model was

developed based on HLA, which is considered state of the art in discrete event

simulation. Finally, the simulation model provides the time, labour hours, and

equipment hours for completing the project. The labour hours and equipment

hours serve as the basis of cost forecasting and budget allocation.

Budget allocation includes cost contingency to cover cost overrun due to risks and

uncertainties. This research also introduced a quantitative method based on Value

at Risk, and investigated its applicability in a tunnel construction project. The

forecasts compare favourably with actual contingencies. The forecasted cost

contingency using VaR, together with labour hours and equipment hours from the

simulation model, provides the essence for project budget planning and allocation.

The overall goal of this research was to improve dynamic and collaborative

project control. It investigated and developed project monitoring system,

construction simulation model, and innovative methods for dynamic project

planning, referring to production, cost, resource, and cost contingency. This

research is demonstrated through a tunnel construction project, but the

160

methodology implemented for improving project control is generic for all

construction projects.

8.2 Research Contributions

The key contribution of this research is the successful integration of discrete event

simulation, automated data collection, automated simulation model input updating,

and the theory of Last Planner System, to achieve dynamic and collaborative

project control. The discrete event simulation was developed based on High level

Architecture, which represents the state of the art in construction simulation. The

HLA-based simulation model enabled the integration of different techniques, as

well as collaboration among project stakeholders.

Another contribution is timely, automated model input updating. The simulation

model inputs can be automatically updated, according to actual daily project

progress data collection. A Bayesian updating technique implemented in the

simulation model and a web-based database application are developed to support

the data collection and analysis on a daily basis.

161

This research further assisted dynamic and systematic planning. It produced

project plans and/or schedules at different detail levels, from an overview of the

entire project in a milestone plan, to daily activities and their resource and

constraint requirements in a weekly work plan; duration varied from time to

project completion, to weekly time constraints. As the HLA-based simulation

model takes the construction sequence logic, resource requirement, and latest

project progress data into account, it is able to support dynamic construction

planning.

This research also proposed a qualitative method for forecasting and updating

project contingencies throughout project execution. The method does not rely on

human judgments for risk assessment, and utilized actual project cost to forecast

contingency. It avoids a common weakness, human bias in risk analysis, which

plagues most other contingency forecasting methods.

Additionally, during the work of this research, the following papers have been

prepared for sharing the knowledge and experience with other researchers and

practitioners in construction management:

162

1) Integrated project progress data into a simulation model has been

documented in a paper titled “Integrating real time project progress input

into a construction simulation model,” which is accepted in the

proceedings of the Winter Simulation Conference in December, 2011.

2) An an integrated system approach was proposed and an HLA-based

simulation model for dynamic project control through systematic and

reliable planning was developed. Additionally, key inputs in the

simulation model were continuously updated using Bayesian inference to

assure valid modeling, and project plans at three different levels of detail

were maintained in accordance with the theory of LPS. This research also

investigated the applicability of using HLA concepts in simulation in

achieving dynamic project control. All these have been documented in a

paper titled, “A simulation-based integrated system for collaborative and

dynamic project control,” which is in final preparation for submission for

publication in the Journal of Construction Engineering and Management,

ASCE.

3) A quantitative method for updating and planning cost contingency using

actual project cost through project execution was introduced and

successfully tested and verified into a tunnel construction project. This has

been documented in a paper titled, “A quantitative method for updating

cost contingency throughout project execution,” which is accepted in the

Journal of Construction Engineering and Management, ASCE.

163

8.3 Industrial Contributions

The developed web-based project monitoring system can help to reduce the cost

and time of data collection and improve the quality of data for modeling. It also

facilitated data sharing and transfer between different project participants. The

web-based solution enables data capture using PDAs such as the iPhone™, which

eases the time and effort for collecting information from scattered construction

sites. The project monitoring system also provides three types of project reports to

provide insight analysis.

The simulation system can provide long-term support for the project management

team during project execution because the simulation model is validated through

continuous incorporation of actual project performance and updating model inputs.

The integrated simulation system provides a powerful tool for planning project

production and cost, and analyzing resource requirements in both long term and

short term. The developed simulation system can also be used to try what-if

scenario analysis, and investigate the effectiveness of corrective actions, which

consequently help decision making in project control.

164

The cost contingency forecasting method can be used to set and allocate project

budget along with project timelines, instead of holding all cost contingency at the

beginning of a project. This is beneficial for major companies which run multiple

projects lasting for years, allowing them to set appropriate contingencies on

certain timelines and to improve resource utilization. All these tools and methods

provide the potentials to improve the efficiency and accuracy of project control.

8.4 Recommendations for future research

The presented research can be extended and integrated with other research areas.

The following are some of these areas:

1) Automated data collection. New technology in automated data collection,

such as RFID, has been introduced to the construction industry to

automate project progress data collection. It could reduce time and cost in

data collection, reduce data entry errors, and improve data quality.

2) Investigating new techniques in updating model inputs. There are

techniques, other than Bayesian inference as implemented in this research,

such as time series, that could provide better forecasting.

165

3) Integrating VaR into the simulation system. VaR modeling method can be

developed as a component in the HLA-based simulation system, which

can be easily reused and applied for other construction projects.

4) Integrating project monitoring system with a company’s financial

management system, or other ERP systems. Cost and production data

provide the basis for project control. This cost data is usually well

documented in the company’s financial management system, because the

company has to rigorously record all indirect and direct actual cost for

accounting purposes. One direct benefit for this research is reduced time

and effort needed for implementing VaR method. The author of this

research had to manually collect cost data and production data from

different sources when applying VaR into a construction project, since

both actual progress and actual cost are used for model inputs.

5) Investigating the relationship between crew size and productivity. A

typical tunnel crew usually includes a foreman, a TBM operator, and a few

other labourers. The actual daily productivity is influenced by the crew

work attendance. This research assumed a standard crew and did not

account the impact from attendance rate. It is recommended to explore this

area using advanced computer techniques.

6) Exploiting the simulation system for assisting project management team in

decision-making. An interface that allows a user to interact and intervene

166

in the simulation system and to try different decision variables is

recommended. A well-designed interface can incorporate the expertise and

judgment from project management professionals, thus improving the

flexibility of the modeling system.

7) Enhance the simulation model for more tunnel construction methods. The

proposed simulation model was based on the tunneling methods employed

by the City of Edmonton, such as TBM tunneling. Modeling more

tunneling methods will extend the function of the simulation system. It

also allows users to experiment with different construction strategies and

improve project efficiency.

167

Appendix A. Tunnel federation code

a. Shaft Federate

using System;
using System.Collections.Generic;
using System.Drawing;
using System.Windows.Forms;
using Cosye.Framework;
using Cosye.Hla.Rti;
using Simphony.Mathematics;
using Simphony.Simulation;
using Cosye.Tunneling.TunnelFederate;

namespace Cosye.Tunneling.Shaft2
{
 public partial class ShaftFederateControl : FederateControl
 {
 #region Private Fields

 private BasicDiscreteEventEngine MyEngine = new
BasicDiscreteEventEngine();
 private ShaftInfo[] shaftInfos;
 private Size shaftInfoSize = new Size(290, 233);
 private Padding shaftInfoMargin = new Padding(3);
 private EventHandler shaftInfoCloseEvent;

 private Action<Shaft> pilingEvent;
 private Action<RectangularShaft> installWalerEvent;
 private Action<Shaft> excavateOneShaftSectionEvent;
 private Action<Shaft> ScheduleNextSectionOrShaftCompletionEvent;
 private Action<Shaft> finishPilingEvent;

 private Entity shiftControlEntity = new Entity();
 private DateTime startDateTime = DateTime.Today;
 private Action<Entity> ShiftOnEvent;
 private Action<Entity> ShiftOffEvent;
 private ShiftAwareEntities allEntities = new ShiftAwareEntities();
 private ShiftAwareEntities suspendedEntities = new ShiftAwareEntities();
 private Shift theShift;
 #endregion

 #region Constructor

168

 public ShaftFederateControl()
 {
 InitializeComponent();

 // Set up ShaftFederateControl to make future ShaftInfos based on the
ShaftInfo set up in the designer
 this.shaftInfoSize = this.shaftInfoTemplate.Size;
 this.shaftInfoMargin = this.shaftInfoTemplate.Margin;
 this.shaftInfoCloseEvent = shaftInfo_Close;

 // Note: for consistency, the EventHandlers of shaftInfoTemplate should
not be set to anything in the designer.
 this.shaftInfoTemplate.Close += this.shaftInfoCloseEvent;

 // Set up UI to be non-interactive until the simulation is running.
 this.shaftInfoTemplate.ShowRemoveButton = false;
 this.shaftInfoTemplate.Enabled = false;
 this.addButton.Enabled = false;

 // Initialize events
 this.pilingEvent = new Action<Shaft>(Piling);
 this.installWalerEvent = new Action<RectangularShaft>(InstallWaler);
 this.excavateOneShaftSectionEvent = new
Action<Shaft>(ExcavateOneShaftSection);
 this.ScheduleNextSectionOrShaftCompletionEvent = new
Action<Shaft>(ScheduleNextSectionOrShaftCompletion);

 this.finishPilingEvent = new Action<Shaft>(FinishPiling);
 this.ShiftOffEvent = new Action<Entity>(ShiftOffEventHandler);
 this.ShiftOnEvent = new Action<Entity>(ShiftOnEventHandler);

 this.MyEngine.InitializeEngine();
 }
 #endregion

 #region Private Methods

 #region Interface Methods

 #region private int GetNonNullShaftInfosCount()
 /// <summary>
 /// Gets the number of non-null shaftInfos in this.shaftInfos, assuming that
they are all at the beginning of the array.
 /// </summary>
 /// <returns>The number of non-null shaftInfos in this.shaftInfos</returns>
 private int GetNonNullShaftInfosCount()

169

 {
 int i = 0;
 while (i < this.shaftInfos.Length && this.shaftInfos[i] != null)
 i++;
 return i;
 }
 #endregion

 #region private void AddShaftInfo()
 /// <summary>
 /// Adds a new ShaftInfo to the user interface. This function should not be
called if the number of
 /// displayed ShaftInfos is already equal to the number of shafts in the
simulation.
 /// </summary>
 private void AddShaftInfo()
 {
 int newIndex = GetNonNullShaftInfosCount();

 // setup the new ShaftInfo to match the one that was set up in the designer.
 this.shaftInfos[newIndex] = new ShaftInfo();
 this.shaftInfos[newIndex].Size = this.shaftInfoSize;
 this.shaftInfos[newIndex].Close += this.shaftInfoCloseEvent;
 this.shaftInfos[newIndex].CalendarFactory = this.calendarFactory;
 this.shaftInfos[newIndex].CircularShaftFactory =
this.circularShaftFactory;
 this.shaftInfos[newIndex].RectangularShaftFactory =
this.rectangularShaftFactory;
 this.Controls.Add(this.shaftInfos[newIndex]);

 this.shaftInfos[0].ShowRemoveButton = true;
 if (newIndex >= this.shaftInfos.Length - 1)
 this.addButton.Visible = false;

 DoLayout();
 }
 #endregion

 #region private void RemoveShaftInfo(ShaftInfo)
 /// <summary>
 /// Removes a ShaftInfo from the user interface and from this.shaftInfos
 /// </summary>
 /// <param name="toRemove"></param>
 private void RemoveShaftInfo(ShaftInfo toRemove)
 {
 // remove from the UI

170

 this.Controls.Remove(toRemove);

 // remove from the array
 for (int i = 0; i < this.shaftInfos.Length; i++)
 {
 if (this.shaftInfos[i] == toRemove)
 {
 this.shaftInfos[i].Dispose();
 this.shaftInfos[i] = null;
 break;
 }
 }

 // ensure that all displayed ShaftInfos are at the beginning of the array
 TidyArray(this.shaftInfos);

 // if a ShaftInfo was removed, it must be possible to add it back in, so...
 this.addButton.Visible = true;

 // if there is only one shaft left, don't let the user remove it too
 if (GetNonNullShaftInfosCount() == 1)
 this.shaftInfos[0].ShowRemoveButton = false;

 DoLayout();
 }
 #endregion

 #region private void DoLayout()
 /// <summary>
 /// Lays out this form's controls left to right, top to bottom.
 /// The controls must be in order in this.shaftInfo, and this.shaftInfo must
match the shaftInfos on this form.
 /// </summary>
 private void DoLayout()
 {
 // get shaftInfo total dimensions
 int totalWidth = this.shaftInfoSize.Width + this.shaftInfoMargin.Left +
this.shaftInfoMargin.Right;
 int totalHeight = this.shaftInfoSize.Height + this.shaftInfoMargin.Top +
this.shaftInfoMargin.Bottom;

 // layout ShaftInfos
 Point location = new Point(0, 0);
 for (int i = 0; i < this.shaftInfos.Length; i++)
 {
 if (this.shaftInfos[i] != null)

171

 {
 location = new Point(((i*totalWidth) % Math.Max(1, this.Width)) +
this.shaftInfoMargin.Left, (i / Math.Max(1, (this.Width / Math.Max(1,
Math.Min(this.Width, totalWidth)))) * totalHeight) + this.shaftInfoMargin.Top);
 this.shaftInfos[i].Location = location;
 }
 }

 // place button
 if (location.X + this.shaftInfoSize.Width + this.shaftInfoMargin.Right +
this.addButton.Margin.Left + this.addButton.Width +
this.addButton.Margin.Right > this.Width)
 {
 // place button on next row
 this.addButton.Location = new Point(this.addButton.Margin.Left,
location.Y + this.shaftInfoSize.Height + this.addButton.Margin.Top);
 }
 else
 {
 // place button at the end of this row
 this.addButton.Location = new Point(location.X +
this.shaftInfoSize.Width + this.shaftInfoMargin.Right +
this.addButton.Margin.Left, location.Y - this.shaftInfoMargin.Top +
this.addButton.Margin.Top);
 }
 }
 #endregion

 #region private void TidyArray(object[] array)
 /// <summary>
 /// moves all non-null entries in an array to the beginning of the array without
changing their order.
 /// </summary>
 /// <param name="array">The array to tidy.</param>
 private void TidyArray(object[] array)
 {
 int arrayLength = array.Length;
 bool passWithNoSwaps = false;

 for (int i = 0; i < (arrayLength - 1); i++)
 {
 passWithNoSwaps = true;
 for (int j = 0; j < (arrayLength - 1 - i); j++)
 {
 if ((array[j] == null) && (array[j + 1] != null))
 {

172

 array[j] = array[j + 1];
 array[j + 1] = null;
 passWithNoSwaps = false;
 }
 }

 if (passWithNoSwaps) // array is already tidy
 return;
 }
 }
 #endregion

 #region private void OnResize(object, EventArgs)
 private void OnResize(object sender, EventArgs e)
 {
 DoLayout();
 }
 #endregion

 #endregion

 #region Calculator Methods
 // These methods just calculate stuff, they shouldn't update any simulation
instance attributes

 #region private double TotalPilingTime(Shaft)
 /// <summary>
 /// Calculates the total time to drive all the piles for a shaft.
 /// </summary>
 /// <param name="shaft">The shaft to calculate the total piling time
for.</param>
 /// <returns>The total piling time for the shaft, in seconds.</returns>
 private double TotalPilingTime(Shaft shaft)
 {
 int pileQuantity = shaft.PileQuantity;

 if (pileQuantity < 0)
 {
 // PileQuantity values less than 0 indicate that the quantity should be
calculated from the dimensions.
 // The calculations are done here:
 if (shaft.Shape == ShaftShape.Rectangular)
 {
 RectangularShaft rectShaft = (RectangularShaft)shaft;
 if (rectShaft.PileWidth != 0)

173

 pileQuantity = 4 * (Convert.ToInt32((rectShaft.ExcavationLength
+ rectShaft.ExcavationWidth) / (1.7 * shaft.PileWidth)) - 1);
 }
 else
 {
 CircularShaft circShaft = (CircularShaft)shaft;
 if (circShaft.PileWidth != 0)
 pileQuantity = Convert.ToInt32(Math.PI *
circShaft.ExcavationDiameter * 0.3048 / circShaft.PileWidth);
 }
 }

 double totalTime = 0;
 for (int i = 0; i < pileQuantity; i++)
 totalTime += shaft.OnePileDrivingDuration.Sample();

 return totalTime;
 }
 #endregion

 #region private double GetSectionExcavationTime(ShaftSection,
ExcavationMethod)
 /// <summary>
 /// Calculates the excavation time for the part of a shaft section done with a
particular method (hand or machine).
 /// </summary>
 /// <param name="section">The shaft section to get the partial excavation
time of</param>
 /// <param name="method">The excavation method of the part of the shaft
section to get the excavation time of</param>
 /// <returns>The time, in seconds, to excavate the part of a shaft section that
is done with the given excavation method.</returns>
 private double GetSectionExcavationTime(ShaftSection section,
ExcavationMethod method)
 {
 // get the dirt volume
 double dirtVolume = GetSectionExcavatedDirtVolume(section, method);
 // use this function's overload to get the time.
 return GetSectionExcavationTime(section, method, dirtVolume);
 }
 #endregion

 #region private double GetSectionExcavationTime(double,
ExcavationMethod)
 /// <summary>

174

 /// Calculates the excavation time for a volume of dirt excavated with a
particular method (hand or machine).
 /// </summary>
 /// <param name="excavatedDirtVolume">The volume of dirt excavated
with the given method.</param>
 /// <param name="method">The excavation method used to excavate the
dirt</param>
 /// <returns>The time, in seconds, to excavate the given volume of dirt with
the given excavation method.</returns>
 private double GetSectionExcavationTime(ShaftSection section,
ExcavationMethod method, double excavatedDirtVolume)
 {
 if (method == ExcavationMethod.Machine)
 return excavatedDirtVolume /
section.MachineExcavationRate.Sample();
 else
 return excavatedDirtVolume /
section.HandExcavationRate.Sample();
 }
 #endregion

 #region private double GetSectionExcavatedDirtVolume(ShaftSection,
ExcavationMethod)
 /// <summary>
 /// Calculates the volume of dirt excavated from the part of a shaft section
 /// that is excavated with a particular method (hand or machine).
 /// </summary>
 /// <param name="section">The shaft section to get the partial excavated dirt
volume of</param>
 /// <param name="method">The excavation method of the part of the shaft
section to get the excavated dirt volume of</param>
 /// <returns>The volume of dirt, in cubic meters, excavated from the part of
the shaft section that is done with the given excavation method.</returns>
 private double GetSectionExcavatedDirtVolume(ShaftSection section,
ExcavationMethod method)
 {
 // get the shaft cross-sectional area
 return section.GetVolume(method) * section.SoilSwellFactor;
 }
 #endregion

 #region private double InstallWalerTime(RectangularShaft)
 /// <summary>
 /// Calculates the time to install a waler in a rectangular shaft.
 /// </summary>

175

 /// <param name="theShaft">The shaft to calculate the waler installation
time for.</param>
 /// <returns>The installation time of the waler, in seconds</returns>
 private double InstallWalerTime(RectangularShaft theShaft)
 {
 //return 5 * (theShaft.ExcavationWidth + theShaft.ExcavationLength) /
15.5 * 60 * 60;
 return 18000.0 * (theShaft.ExcavationWidth + theShaft.ExcavationLength)
/ 15.5;
 }
 #endregion

 #region calculateDateTime(double)
 private DateTime calculateDateTime(double logicTime)
 {
 return this.startDateTime.AddSeconds(logicTime);
 }
 #endregion
 #endregion

 #region Simulation Methods
 // These methods update simulation instance attributes

 #region StartSimulation(Shaft)
 /// <summary>
 /// Begins the simulation of an unstarted shaft.
 /// </summary>
 /// <param name="shaft">The shaft to begin simulating.</param>
 private void StartSimulation(Shaft shaft)
 {
 switch (shaft.State)
 {
 case ShaftState.Unstarted:
 // shaft hasn't started yet,
 // set excavated dirt volume to 0 and
 // schedule the first part of the shaft construction process: piling

shaft.AttributeOwnershipAcquisition(shaftAttributes.ExcavatedDirtVolume,
shaftAttributes.State);

 shaft.UpdateAttributeValues(shaftAttributes.ExcavatedDirtVolume, 0);
 if (shaft.StartTime > this.fedAmb.CurrentTime +
this.fedAmb.Lookahead)
 shaft.UpdateAttributeValues(shaft.StartTime, shaftAttributes.State,
ShaftState.Piling);
 else

176

 shaft.UpdateAttributeValues(shaftAttributes.State,
ShaftState.Piling);

shaft.UnconditionalAttributeOwnershipDivestiture(shaftAttributes.ExcavatedDirt
Volume, shaftAttributes.State);

 this.MyEngine.ScheduleEvent(shaft, this.pilingEvent, shaft.StartTime
- this.MyEngine.TimeNow);
 break;
 }
 }
 #endregion

 //#region ScheduleNextSectionOrShaftCompletion(Shaft, double)
 ///// <summary>
 ///// Takes a shaft that will complete its current section at a given time,
 ///// and schedules the completion of the current section, and either the
 ///// completion of the shaft or the start of the next section.
 ///// </summary>
 ///// <param name="shaft">The shaft whose current section will be
completed at the end of the duration.</param>
 ///// <param name="duration">The duration after which the current shaft
section will be complete, measured from this.eventEngine.TimeNow</param>
 //private void ScheduleNextSectionOrShaftCompletion(Shaft shaft, double
duration)
 //{
 // // get the current section from the correct ShaftSectionFactory
 // ShaftSection currentSection = shaft.GetCurrentSection();

 // // let the federation know when the current section will be finished
 //
currentSection.AttributeOwnershipAcquisition(shaftSectionAttributes.State,
shaftSectionAttributes.FinishTime);
 // List<ObjectAttributeValuePair<ShaftSection>> sectionFinishUpdates =
new List<ObjectAttributeValuePair<ShaftSection>>(2);
 // sectionFinishUpdates.Add(shaftSectionAttributes.State,
ShaftSectionState.Finished);
 // sectionFinishUpdates.Add(shaftSectionAttributes.FinishTime,
this.MyEngine.TimeNow + duration);
 // currentSection.UpdateAttributeValues(this.MyEngine.TimeNow +
duration, sectionFinishUpdates);
 //
currentSection.UnconditionalAttributeOwnershipDivestiture(shaftSectionAttribut
es.State, shaftSectionAttributes.FinishTime);

 // // if this is not the last section

177

 // if (currentSection.NextSection != ObjectInstanceHandle.Empty)
 // {
 // // let the federation know when the shaft's current section will change
 // // to the next section
 // shaft.AttributeOwnershipAcquisition(shaftAttributes.CurrentSection);
 // shaft.UpdateAttributeValues(this.MyEngine.TimeNow + duration,
shaftAttributes.CurrentSection, currentSection.NextSection);
 //
shaft.UnconditionalAttributeOwnershipDivestiture(shaftAttributes.CurrentSection
);

 // // get a reference to the next section fromth e correct factory
 // ShaftSection nextSection = currentSection.GetNextSection();

 // // let the federation know when the next section will be started
 //
nextSection.AttributeOwnershipAcquisition(shaftSectionAttributes.State,
shaftSectionAttributes.StartTime);
 // nextSection.UpdateAttributeValues(shaftSectionAttributes.StartTime,
this.MyEngine.TimeNow + duration);
 // ShaftSectionState nextSectionState;
 // if (GetSectionExcavationTime(nextSection,
ExcavationMethod.Machine) > 0)
 // nextSectionState = ShaftSectionState.MachineExcavation;
 // else
 // nextSectionState = ShaftSectionState.HandExcavation;
 // nextSection.UpdateAttributeValues(this.MyEngine.TimeNow +
duration, shaftSectionAttributes.State, nextSectionState);
 //
nextSection.UnconditionalAttributeOwnershipDivestiture(shaftSectionAttributes.
State, shaftSectionAttributes.StartTime);

 // // schedule the excavation event for the next section
 // this.MyEngine.ScheduleEvent(shaft,
this.excavateOneShaftSectionEvent, duration);
 // }
 // else // this is the last section of the shaft
 // {
 // // let the federation know when the shaft will be complete
 // shaft.AttributeOwnershipAcquisition(shaftAttributes.FinishTime,
shaftAttributes.CurrentSection, shaftAttributes.State);
 // shaft.UpdateAttributeValues(shaftAttributes.FinishTime,
this.MyEngine.TimeNow + duration);
 // List<ObjectAttributeValuePair<Shaft>> shaftCompletionUpdates =
new List<ObjectAttributeValuePair<Shaft>>(2);

178

 // shaftCompletionUpdates.Add(shaftAttributes.CurrentSection,
ObjectInstanceHandle.Empty);
 // shaftCompletionUpdates.Add(shaftAttributes.State,
ShaftState.Finished);
 // shaft.UpdateAttributeValues(this.MyEngine.TimeNow + duration,
shaftCompletionUpdates);
 //
shaft.UnconditionalAttributeOwnershipDivestiture(shaftAttributes.FinishTime,
shaftAttributes.CurrentSection, shaftAttributes.State);
 // }
 //}
 //#endregion

 #endregion

 #endregion

 #region Events

 #region Simulation Events

 #region private void Piling(Shaft, EventArgs)
 /// <summary>
 /// Simulates the piling event, scheduling the start of excavation after piling is
finished.
 /// </summary>
 /// <param name="shaft">An unstarted shaft to begin piling at
this.eventEngine.TimeNow</param>
 /// <param name="e"></param>
 private void Piling(Shaft shaft)
 {
 // calculate total piling time. This is also the start time of the first shaft
section,
 // relative to this.eventEngine.TimeNow, of course.
 double duration = TotalPilingTime(shaft);
 this.MyEngine.ScheduleEvent(shaft, this.finishPilingEvent,
Math.Max(duration - fedAmb.Lookahead, 0.0));
 //// let the federation know when the current shaft will finish piling and
start it's first section
 //shaft.AttributeOwnershipAcquisition(shaftAttributes.PilingFinishTime,
shaftAttributes.State);
 //shaft.UpdateAttributeValues(shaftAttributes.PilingFinishTime,
this.MyEngine.TimeNow + duration);
 //shaft.UpdateAttributeValues(this.MyEngine.TimeNow + duration,
shaftAttributes.State, ShaftState.Excavating);

179

//shaft.UnconditionalAttributeOwnershipDivestiture(shaftAttributes.PilingFinishT
ime, shaftAttributes.State);
 //if (shaft.CurrentSection == ObjectInstanceHandle.Empty)
 //{
 // shaft.AttributeOwnershipAcquisition(shaftAttributes.CurrentSection);
 // shaft.UpdateAttributeValues(this.MyEngine.TimeNow + duration,
shaftAttributes.CurrentSection, shaft.FirstSection);
 //
shaft.UnconditionalAttributeOwnershipDivestiture(shaftAttributes.CurrentSection
);
 //}

 //ShaftSection firstSection = shaft.GetFirstSection();
 //// let the federation know when the first section excavation will start.
 //firstSection.AttributeOwnershipAcquisition(shaftSectionAttributes.State,
shaftSectionAttributes.StartTime);
 //firstSection.UpdateAttributeValues(shaftSectionAttributes.StartTime,
this.MyEngine.TimeNow + duration);
 //double machineExcavationDuration =
GetSectionExcavationTime(firstSection, ExcavationMethod.Machine);
 //if (machineExcavationDuration > 0)
 // firstSection.UpdateAttributeValues(this.MyEngine.TimeNow +
duration, shaftSectionAttributes.State, ShaftSectionState.MachineExcavation);
 //else
 // firstSection.UpdateAttributeValues(this.MyEngine.TimeNow +
duration, shaftSectionAttributes.State, ShaftSectionState.HandExcavation);

//firstSection.UnconditionalAttributeOwnershipDivestiture(shaftSectionAttributes
.State, shaftSectionAttributes.StartTime);

 //// schedule the next event: excavation of the first section
 //this.MyEngine.ScheduleEvent(shaft, this.excavateOneShaftSectionEvent,
duration);
 }
 #endregion

 #region private void FinishPiling(Shaft, EventArgs)
 /// <summary>
 /// Finalize piling event, update attributes, and scheduling the start of
excavation after piling is finished.
 /// </summary>
 /// <param name="shaft">An unstarted shaft to begin piling at
this.eventEngine.TimeNow</param>
 /// <param name="e"></param>
 private void FinishPiling(Shaft shaft)

180

 {
 double duration = fedAmb.Lookahead;
 // let the federation know when the current shaft will finish piling and start
it's first section
 shaft.AttributeOwnershipAcquisition(shaftAttributes.PilingFinishTime,
shaftAttributes.State);
 shaft.UpdateAttributeValues(shaftAttributes.PilingFinishTime,
this.MyEngine.TimeNow + duration);
 shaft.UpdateAttributeValues(this.MyEngine.TimeNow + duration,
shaftAttributes.State, ShaftState.Excavating);

shaft.UnconditionalAttributeOwnershipDivestiture(shaftAttributes.PilingFinishTi
me, shaftAttributes.State);
 if (shaft.CurrentSection == ObjectInstanceHandle.Empty)
 {
 shaft.AttributeOwnershipAcquisition(shaftAttributes.CurrentSection);
 shaft.UpdateAttributeValues(this.MyEngine.TimeNow + duration,
shaftAttributes.CurrentSection, shaft.FirstSection);

shaft.UnconditionalAttributeOwnershipDivestiture(shaftAttributes.CurrentSection
);
 }

 ShaftSection firstSection = shaft.GetFirstSection();
 // let the federation know when the first section excavation will start.
 firstSection.AttributeOwnershipAcquisition(shaftSectionAttributes.State,
shaftSectionAttributes.StartTime);
 firstSection.UpdateAttributeValues(shaftSectionAttributes.StartTime,
this.MyEngine.TimeNow + duration);

 double machineExcavationDuration =
GetSectionExcavationTime(firstSection, ExcavationMethod.Machine);
 if (machineExcavationDuration > 0)
 firstSection.UpdateAttributeValues(this.MyEngine.TimeNow +
duration, shaftSectionAttributes.State, ShaftSectionState.MachineExcavation);
 else
 firstSection.UpdateAttributeValues(this.MyEngine.TimeNow +
duration, shaftSectionAttributes.State, ShaftSectionState.HandExcavation);

firstSection.UnconditionalAttributeOwnershipDivestiture(shaftSectionAttributes.
State, shaftSectionAttributes.StartTime);

 // schedule the next event: excavation of the first section
 this.MyEngine.ScheduleEvent(shaft, this.excavateOneShaftSectionEvent,
duration);
 }

181

 #endregion

 #region private void ExcavateOneShaftSection(Shaft, EventArgs)
 /// <summary>
 /// Simulates the complete excavation process of the current section of a shaft,
 /// including machine and hand excavaation, and schedules the appropriate
next event
 /// when excavation is complete.
 /// </summary>
 /// <param name="shaft">The shaft to simulate the current section
excavation of</param>
 private void ExcavateOneShaftSection(Shaft shaft)
 {
 // ensure that the shaft has a "current section" before excavating
 if (shaft.CurrentSection == ObjectInstanceHandle.Empty)
 {
 shaft.AttributeOwnershipAcquisition(shaftAttributes.CurrentSection);
 shaft.UpdateAttributeValues(shaftAttributes.CurrentSection,
shaft.FirstSection);

shaft.UnconditionalAttributeOwnershipDivestiture(shaftAttributes.CurrentSection
);
 }

 ShaftSection section = shaft.GetCurrentSection();
 // calculate all of the excavation dirt volumes and durations
 double machineExcavatedDirtVolume =
GetSectionExcavatedDirtVolume(section, ExcavationMethod.Machine);
 double machineExcavationDuration =
GetSectionExcavationTime(section, ExcavationMethod.Machine,
machineExcavatedDirtVolume);
 double handExcavatedDirtVolume =
GetSectionExcavatedDirtVolume(section, ExcavationMethod.Hand);
 double handExcavationDuration = GetSectionExcavationTime(section,
ExcavationMethod.Hand, handExcavatedDirtVolume);
 double currentExcavatedDirtVolume = shaft.ExcavatedDirtVolume;

 // update shaft excavated dirt volume and depth after the durations

shaft.AttributeOwnershipAcquisition(shaftAttributes.ExcavatedDirtVolume,
shaftAttributes.CurrentDepth);
 List<ObjectAttributeValuePair<Shaft>> excavationUpdates = new
List<ObjectAttributeValuePair<Shaft>>(3);
 excavationUpdates.Add(shaftAttributes.ExcavatedDirtVolume,
currentExcavatedDirtVolume + machineExcavatedDirtVolume);

182

 if (this.MyEngine.TimeNow + machineExcavationDuration >
this.fedAmb.CurrentTime + this.fedAmb.Lookahead)
 {
 shaft.UpdateAttributeValues(this.MyEngine.TimeNow +
machineExcavationDuration, excavationUpdates);
 excavationUpdates.Clear();
 }
 excavationUpdates.Add(shaftAttributes.ExcavatedDirtVolume,
currentExcavatedDirtVolume + machineExcavatedDirtVolume +
handExcavatedDirtVolume);
 excavationUpdates.Add(shaftAttributes.CurrentDepth,
shaft.CurrentDepth + section.Depth);
 shaft.UpdateAttributeValues(this.MyEngine.TimeNow +
machineExcavationDuration + handExcavationDuration, excavationUpdates);

shaft.UnconditionalAttributeOwnershipDivestiture(shaftAttributes.ExcavatedDirt
Volume, shaftAttributes.CurrentDepth);

 // update scenario material cost
 Scenario scenario = shaft.GetScenario();

 scenario.AttributeOwnershipAcquisition(scenarioAttributes.MaterialCost);
 scenario.UpdateAttributeValues(this.MyEngine.TimeNow +
machineExcavationDuration + handExcavationDuration,
scenarioAttributes.MaterialCost, scenario.MaterialCost +
section.MaterialCostPerMeter * section.Depth);

 scenario.UnconditionalAttributeOwnershipDivestiture(scenarioAttributes.Mat
erialCost);

 // update section values
 if (handExcavatedDirtVolume > 0 && this.MyEngine.TimeNow +
machineExcavationDuration > this.fedAmb.CurrentTime +
this.fedAmb.Lookahead)
 {
 // if the lookahead allows us to set the ShaftSectionState to
HandExcavation when
 // the machine excavation is finished, do so.

 section.AttributeOwnershipAcquisition(shaftSectionAttributes.State);
 section.UpdateAttributeValues(this.MyEngine.TimeNow +
machineExcavationDuration, shaftSectionAttributes.State,
ShaftSectionState.HandExcavation);

 section.UnconditionalAttributeOwnershipDivestiture(shaftSectionAttributes.S
tate);

183

 }
 if (shaft.Shape == ShaftShape.Rectangular && section.NextSection !=
ObjectInstanceHandle.Empty)
 {
 // if the shaft is rectangular, install a waler at the end of excavating
each section except the last one

 section.AttributeOwnershipAcquisition(shaftSectionAttributes.State);
 section.UpdateAttributeValues(this.MyEngine.TimeNow +
machineExcavationDuration + handExcavationDuration,
shaftSectionAttributes.State, ShaftSectionState.InstallingWaler);

 section.UnconditionalAttributeOwnershipDivestiture(shaftSectionAttributes.S
tate);

 this.MyEngine.ScheduleEvent((RectangularShaft)shaft,
this.installWalerEvent, machineExcavationDuration + handExcavationDuration);
 }
 else // the shaft is non-rectangular, or it is finished.
 {
 //ScheduleNextSectionOrShaftCompletion(shaft,
machineExcavationDuration + handExcavationDuration);
 this.MyEngine.ScheduleEvent(shaft,
ScheduleNextSectionOrShaftCompletionEvent, machineExcavationDuration +
handExcavationDuration);
 }
 }
 #endregion

 #region private void InstallWaler(RectangularShaft, EventArgs)
 /// <summary>
 /// Simulates the installation of a waler in a rectangular shaft,
 /// schedules the appropriate next event after the waler is installed.
 /// </summary>
 /// <param name="shaft">The rectangular shaft to install a waler in.</param>
 /// <param name="e"></param>
 private void InstallWaler(RectangularShaft shaft)
 {
 // Get the duration of the "install waler" process.
 double duration = InstallWalerTime(shaft);

 // schedule the correct next event
 this.MyEngine.ScheduleEvent(shaft,
ScheduleNextSectionOrShaftCompletionEvent, duration);
 }
 #endregion

184

 #region private void ScheduleNextSectionOrShaftCompletion(Shaft)
 /// <summary>
 /// Takes a shaft that will complete its current section at a given time,
 /// and schedules the completion of the current section, and either the
 /// completion of the shaft or the start of the next section.
 /// </summary>
 /// <param name="shaft">The shaft whose current section will be completed
at the end of the duration.</param>
 /// <param name="duration">The duration after which the current shaft
section will be complete, measured from this.eventEngine.TimeNow</param>
 private void ScheduleNextSectionOrShaftCompletion(Shaft shaft)
 {
 // get the current section from the correct ShaftSectionFactory
 ShaftSection currentSection = shaft.GetCurrentSection();

 // let the federation know when the current section will be finished

currentSection.AttributeOwnershipAcquisition(shaftSectionAttributes.State,
shaftSectionAttributes.FinishTime);
 List<ObjectAttributeValuePair<ShaftSection>> sectionFinishUpdates =
new List<ObjectAttributeValuePair<ShaftSection>>(2);
 sectionFinishUpdates.Add(shaftSectionAttributes.State,
ShaftSectionState.Finished);
 sectionFinishUpdates.Add(shaftSectionAttributes.FinishTime,
this.MyEngine.TimeNow + this.fedAmb.Lookahead);
 currentSection.UpdateAttributeValues(this.MyEngine.TimeNow +
this.fedAmb.Lookahead, sectionFinishUpdates);

currentSection.UnconditionalAttributeOwnershipDivestiture(shaftSectionAttribut
es.State, shaftSectionAttributes.FinishTime);

 // if this is not the last section
 if (currentSection.NextSection != ObjectInstanceHandle.Empty)
 {
 // let the federation know when the shaft's current section will change
 // to the next section
 shaft.AttributeOwnershipAcquisition(shaftAttributes.CurrentSection);
 shaft.UpdateAttributeValues(this.MyEngine.TimeNow +
this.fedAmb.Lookahead, shaftAttributes.CurrentSection,
currentSection.NextSection);

shaft.UnconditionalAttributeOwnershipDivestiture(shaftAttributes.CurrentSection
);

 // get a reference to the next section fromth e correct factory

185

 ShaftSection nextSection = currentSection.GetNextSection();

 // let the federation know when the next section will be started

nextSection.AttributeOwnershipAcquisition(shaftSectionAttributes.State,
shaftSectionAttributes.StartTime);
 nextSection.UpdateAttributeValues(shaftSectionAttributes.StartTime,
this.MyEngine.TimeNow + this.fedAmb.Lookahead);
 ShaftSectionState nextSectionState;
 if (GetSectionExcavationTime(nextSection,
ExcavationMethod.Machine) > 0)
 nextSectionState = ShaftSectionState.MachineExcavation;
 else
 nextSectionState = ShaftSectionState.HandExcavation;
 nextSection.UpdateAttributeValues(this.MyEngine.TimeNow +
this.fedAmb.Lookahead, shaftSectionAttributes.State, nextSectionState);

nextSection.UnconditionalAttributeOwnershipDivestiture(shaftSectionAttributes.
State, shaftSectionAttributes.StartTime);

 // schedule the excavation event for the next section
 this.MyEngine.ScheduleEvent(shaft,
this.excavateOneShaftSectionEvent, 0);
 }
 else // this is the last section of the shaft
 {
 // let the federation know when the shaft will be complete
 shaft.AttributeOwnershipAcquisition(shaftAttributes.FinishTime,
shaftAttributes.CurrentSection, shaftAttributes.State);
 shaft.UpdateAttributeValues(shaftAttributes.FinishTime,
this.MyEngine.TimeNow + this.fedAmb.Lookahead);
 List<ObjectAttributeValuePair<Shaft>> shaftCompletionUpdates =
new List<ObjectAttributeValuePair<Shaft>>(2);
 shaftCompletionUpdates.Add(shaftAttributes.CurrentSection,
ObjectInstanceHandle.Empty);
 shaftCompletionUpdates.Add(shaftAttributes.State,
ShaftState.Finished);
 shaft.UpdateAttributeValues(this.MyEngine.TimeNow +
this.fedAmb.Lookahead, shaftCompletionUpdates);

shaft.UnconditionalAttributeOwnershipDivestiture(shaftAttributes.FinishTime,
shaftAttributes.CurrentSection, shaftAttributes.State);
 }
 }
 #endregion

186

 # region ShiftOnEventHandler
 /// <summary>
 /// try to resume all suspended entities when shift changes to ON
 /// </summary>
 /// <param name="entity"></param>
 private void ShiftOnEventHandler(Entity entity)
 {
 this.suspendedEntities.ResumeEntities(MyEngine);
 this.suspendedEntities.UnionWith(this.allEntities);
 }
 #endregion

 # region ShiftOffEventHandler
 /// <summary>
 /// try to suspend all scheduled entities when shift changes to OFF
 /// </summary>
 /// <param name="entity"></param>
 private void ShiftOffEventHandler(Entity entity)
 {
 this.suspendedEntities.SuspendEntitiesIfNeed(MyEngine);
 }
 #endregion

 #endregion

 #region Private Designer Events

 #region private void fedAmb_BeginExecution(object, EventArgs)
 /// <summary>
 /// Starts this.eventEngine, sets up the one displayed ShaftInfo control,
 /// and begins the simulation of all shafts.
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void fedAmb_BeginExecution(object sender, EventArgs e)
 {
 // start the local event engine
 this.MyEngine.InitializeScenario();

 // get the total number of shafts so that we know what size to use for the
relevant arrays.
 int shaftCount = this.circularShaftFactory.Count +
this.rectangularShaftFactory.Count;

 if (shaftCount > 0)
 {

187

 // loop through all of the shafts and start simulating them.
 // Also add their names to this.shaftInfoItems, to be displayed in the
ShaftInfo combo-boxes
 foreach (CircularShaft shaft in this.circularShaftFactory)
 StartSimulation(shaft);
 foreach (RectangularShaft shaft in this.rectangularShaftFactory)
 StartSimulation(shaft);

 // set up the only displayed ShaftInfo to display the first shaft
 this.shaftInfos = new ShaftInfo[shaftCount];
 this.shaftInfoTemplate.Enabled = true;
 this.shaftInfos[0] = this.shaftInfoTemplate;

 this.addButton.Enabled = true;
 if (shaftCount == 1)
 this.addButton.Visible = false;

 this.Resize += new System.EventHandler(OnResize);
 }
 else
 {
 // there are no shafts to simulate,
 // change the user interface to reflect this.
 this.shaftInfoTemplate.Visible = false;
 this.addButton.Visible = false;
 Label noShafts = new Label();
 noShafts.AutoSize = true;
 noShafts.Text = "There are no shafts to simulate.";
 noShafts.Location = new Point(3, 3);
 this.Controls.Add(noShafts);
 }
 }
 #endregion

 #region private void fedAmb_TimeAdvanceGrant(object,
TimeAdvanceGrantEventArgs)
 private void fedAmb_TimeAdvanceGrant(object sender,
TimeAdvanceGrantEventArgs e)
 {
 //Process any internal events that should occur at the current time.
 this.MyEngine.Simulate(e.theTime);

 //Advance time to the time of the next internal event or attribute update
 rtiAmb.NextMessageRequest(Math.Min(this.MyEngine.TimeNext,
this.fedAmb.NextLocalAttributeUpdateTime));
 }

188

 #endregion

 #region private void fedAmb_EndExecution(object, EventArgs)
 private void fedAmb_EndExecution(object sender, EventArgs e)
 {
 this.MyEngine.FinalizeScenario();
 }
 #endregion

 #region private void shaftInfo_Close(object, EventArgs)
 private void shaftInfo_Close(object sender, EventArgs e)
 {
 RemoveShaftInfo((ShaftInfo)sender);
 }
 #endregion

 #region private void addButton_Click(object, EventArgs)
 private void addButton_Click(object sender, EventArgs e)
 {
 AddShaftInfo();
 }
 #endregion

 #region rectangularShaftFactory_DiscoverObjectInstance(object,
DiscoverObjectInstanceEventArgs)
 private void rectangularShaftFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 this.allEntities.Add(this.rectangularShaftFactory[e.theObject]);
 }
 #endregion

 #region circularShaftFactory_DiscoverObjectInstance(object,
DiscoverObjectInstanceEventArgs)
 private void circularShaftFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 this.allEntities.Add(this.circularShaftFactory[e.theObject]);
 }
 #endregion

 private void myShiftFactory_ReflectAttributeValues(object sender,
ReflectAttributeValuesEventArgs e)
 {
 var shift = myShiftFactory[e.theObject];
 if (e.theValues.Contains(shiftAttributes.IsWorking.GetAttributeHandle()))

189

 {
 if (e.theTime > 0)
 {
 double timeOfUpdate = Math.Max(e.theTime,
this.rtiAmb.QueryLogicalTime() + fedAmb.Lookahead);
 if (shift.IsWorking)
 {
 MyEngine.ScheduleEvent(this.shiftControlEntity, ShiftOnEvent,
e.theTime - MyEngine.TimeNow);
 }
 else
 {
 MyEngine.ScheduleEvent(this.shiftControlEntity, ShiftOffEvent,
e.theTime - MyEngine.TimeNow);
 }
 }
 }
 }

 private void myShiftFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 this.theShift = this.myShiftFactory[e.theObject];
 }

 #endregion

 #endregion
 }
}

190

191

b. Tunnel Federate I

using System;
using System.Collections.Generic;
using System.Drawing;
using System.Windows.Forms;
using Cosye.Framework;
using Cosye.Hla.Rti;
using Simphony.Mathematics;
using Simphony.Simulation;
using Cosye.Tunneling.TunnelFederate;

namespace Cosye.Tunneling.Tunnel2
{
 public partial class TunnelFederateControl : FederateControl
 {
 private readonly BasicDiscreteEventEngine eventEngine = new
BasicDiscreteEventEngine();

 private Action<TailTunnel> constructTailTunnelEvent;
 private Action<Undercut> installTbmEvent;
 private Action<TailTunnel> installSwitchEvent;
 private Action<Entity> checkCompletionEvent;

 private Entity shiftControlEntity = new Entity();
 private DateTime startDateTime = DateTime.Today;
 private Action<Entity> ShiftOnEvent;
 private Action<Entity> ShiftOffEvent;
 private ShiftAwareEntities allEntities = new ShiftAwareEntities();
 private ShiftAwareEntities suspendedEntities = new ShiftAwareEntities();
 private Shift theShift;
 private Calendar theCalendar;
 private Entity checkComletionEntity = new Entity();
 private Action<Undercut> finishInstallTbmEvent;
 private Action<TailTunnel> finishInstallSwitchEvent;

 public TunnelFederateControl()
 {
 InitializeComponent();
 this.eventEngine.InitializeEngine();
 this.tunnelInfoHost.EventEngine = this.eventEngine;

 this.constructTailTunnelEvent = new
Action<TailTunnel>(ConstructTailTunnel);

192

 this.installTbmEvent = new Action<Undercut>(InstallTbm);
 this.installSwitchEvent = new Action<TailTunnel>(InstallSwitch);
 this.checkCompletionEvent = new Action<Entity>(CheckCompletion);

 this.ShiftOffEvent = new Action<Entity>(ShiftOffEventHandler);
 this.ShiftOnEvent = new Action<Entity>(ShiftOnEventHandler);
 this.finishInstallTbmEvent = new Action<Undercut>(FinishInstallTbm);
 this.finishInstallSwitchEvent = new
Action<TailTunnel>(FinishInstallSwitch);
 }

 private void fedAmb_TimeAdvanceGrant(object sender,
TimeAdvanceGrantEventArgs e)
 {
 this.eventEngine.Simulate(e.theTime);

 rtiAmb.NextMessageRequest(Math.Min(this.eventEngine.TimeNext,
this.fedAmb.NextLocalAttributeUpdateTime));
 }

 private void shaftFactory_ReflectAttributeValues(object sender,
ReflectAttributeValuesEventArgs e)
 {
 if (e.theValues.Contains(shaftAttributes.State.GetAttributeHandle()))
 {
 Shaft shaft = this.shaftFactory[e.theObject];
 if (shaft.State == ShaftState.Finished)
 {
 foreach (TailTunnel tailTunnel in this.tailTunnelFactory)
 if (tailTunnel.WorkingShaft == e.theObject)
 StartSimulation(tailTunnel, e.theTime);

 foreach (Undercut undercut in this.undercutFactory)
 if (undercut.WorkingShaft == e.theObject)
 StartSimulation(undercut, e.theTime);
 }
 }
 }

 private void fedAmb_BeginExecution(object sender, EventArgs e)
 {
 this.eventEngine.InitializeScenario();
 this.tunnelInfoHost.BeginExecution();
 if (this.tunnelFactory.Count == 0)
 this.rtiAmb.ReadyToTerminate();

193

 this.allEntities.Add(this.checkComletionEntity);
 }

 private void tunnelFactory_ReflectAttributeValues(object sender,
ReflectAttributeValuesEventArgs e)
 {

 }

 private void fedAmb_EndExecution(object sender, EventArgs e)
 {
 this.eventEngine.FinalizeScenario();
 }

 #region Private TailTunnel & Undercut Methods

 #region GetExcavationTime(TailTunnelSection)
 /// <summary>
 /// Gets the time taken to excavate a tail tunnel section.
 /// </summary>
 /// <param name="section">The tail tunnel section to get the excavation
time of.</param>
 /// <returns>The excavation time of the tail tunnel section, in standard
units (seconds).</returns>
 private double GetExcavationTime(TailTunnelSection section)
 {
 double undercutVolume = GetExcavatedDirtVolume(section);
 return undercutVolume / section.Productivity.Sample();
 }
 #endregion

 #region GetExcavationTime(TailTunnelSection, double)
 /// <summary>
 /// Gets the time taken to excavate a tail tunnel section, based on the final
excavated dirt volume.
 /// </summary>
 /// <param name="section">The tail tunnel section to get the excavation
time of.</param>
 /// <param name="excavatedDirtVolume">The final volume of dirt
excavated from the tail tunnel section.</param>
 /// <returns>The excavation time of the tail tunnel section, in standard
units (seconds).</returns>
 private double GetExcavationTime(TailTunnelSection section, double
excavatedDirtVolume)
 {
 return excavatedDirtVolume / section.Productivity.Sample();

194

 }
 #endregion

 #region GetExcavatedDirtVolume(TailTunnelSection)
 /// <summary>
 /// Gets the final volume of dirt excavated from a tail tunnel section.
 /// </summary>
 /// <param name="section">The tail tunnel section to get the final
excavated dirt volume of.</param>
 /// <returns>The final volume of dirt excavated from the tail tunnel
section.</returns>
 private double GetExcavatedDirtVolume(TailTunnelSection section)
 {
 return section.Length * section.GetTailTunnel().ExcavationArea *
section.SoilSwellFactor;
 }
 #endregion

 #region GetExcavatedDirtVolume(TailTunnel)
 /// <summary>
 /// Gets the final volume of dirt excavated from a tail tunnel.
 /// </summary>
 /// <param name="tailTunnel">The tail tunnel to get the final excavated
dirt volume of.</param>
 /// <returns>The final volume of dirt excavated from the tail
tunnel.</returns>
 private double GetExcavatedDirtVolume(TailTunnel tailTunnel)
 {
 TailTunnelSection section = tailTunnel.GetFirstSection();
 double volume = 0.0;
 while (section != null)
 {
 volume += GetExcavatedDirtVolume(section);
 section = section.GetNextSection();
 }
 return volume;
 }
 #endregion

 #region UpdateTailTunnel<T>(TailTunnelUpdateEntity<T>)
 private void UpdateTailTunnel<T>(TailTunnelUpdateEntity<T> entity)
 {
 entity.ObjectInstance.AttributeOwnershipAcquisition(entity.Attribute);
 entity.ObjectInstance.UpdateAttributeValues(entity.Time,
entity.Attribute, entity.Value);

195

 entity.ObjectInstance.UnconditionalAttributeOwnershipDivestiture(entity.Attr
ibute);
 }
 #endregion

 #region
UpdateTailTunnelSection<T>(TailTunnelSectionUpdateEntity<T>)
 private void
UpdateTailTunnelSection<T>(TailTunnelSectionUpdateEntity<T> entity)
 {
 entity.ObjectInstance.AttributeOwnershipAcquisition(entity.Attribute);
 entity.ObjectInstance.UpdateAttributeValues(entity.Time,
entity.Attribute, entity.Value);

 entity.ObjectInstance.UnconditionalAttributeOwnershipDivestiture(entity.Attr
ibute);
 }
 #endregion

 #region UpdateUndercut<T>(UndercutUpdateEntity<T>)
 private void UpdateUndercut<T>(UndercutUpdateEntity<T> entity)
 {
 entity.ObjectInstance.AttributeOwnershipAcquisition(entity.Attribute);
 entity.ObjectInstance.UpdateAttributeValues(entity.Time,
entity.Attribute, entity.Value);

 entity.ObjectInstance.UnconditionalAttributeOwnershipDivestiture(entity.Attr
ibute);
 }
 #endregion

 #region StartSimulation(TailTunnel, double)
 /// <summary>
 /// Starts simulation of a tail tunnel.
 /// </summary>
 /// <param name="tailTunnel">The tail tunnel to start simulating</param>
 /// <param name="time">The logical time at which to start the next step in
the simulation</param>
 private void StartSimulation(TailTunnel tailTunnel, double theTime)
 {

 tailTunnel.AttributeOwnershipAcquisition(tailTunnelAttributes.StartTime);
 tailTunnel.UpdateAttributeValues(tailTunnelAttributes.StartTime,
theTime);

196

 tailTunnel.UnconditionalAttributeOwnershipDivestiture(tailTunnelAttributes.
StartTime);

 TailTunnelSection firstSection = tailTunnel.GetFirstSection();

 firstSection.AttributeOwnershipAcquisition(tailTunnelSectionAttributes.Start
Time);

 firstSection.UpdateAttributeValues(tailTunnelSectionAttributes.StartTime,
theTime);

 firstSection.UnconditionalAttributeOwnershipDivestiture(tailTunnelSectionAt
tributes.StartTime);

 if (tailTunnel.ExcavationArea > 0.0)
 {
 // set CurrentSection to FirstSection
 this.eventEngine.ScheduleEvent(new
TailTunnelUpdateEntity<ObjectInstanceHandle>(tailTunnel,
tailTunnelAttributes.CurrentSection, tailTunnel.FirstSection,
Math.Ceiling(theTime + 1.0)),
 new
Action<TailTunnelUpdateEntity<ObjectInstanceHandle>>(UpdateTailTunnel<O
bjectInstanceHandle>), 0);

 // set section state to Excavating
 this.eventEngine.ScheduleEvent(new
TailTunnelSectionUpdateEntity<TailTunnelSectionState>(firstSection,
tailTunnelSectionAttributes.State, TailTunnelSectionState.Excavating,
Math.Ceiling(theTime + 1.0)),
 new
Action<TailTunnelSectionUpdateEntity<TailTunnelSectionState>>(UpdateTailT
unnelSection<TailTunnelSectionState>), 0);

 this.eventEngine.ScheduleEvent(tailTunnel,
this.constructTailTunnelEvent, theTime - this.eventEngine.TimeNow);
 }
 else // the tail tunnel doesn't exist in the real world, it just exists here to
host a switch
 {

 tailTunnel.AttributeOwnershipAcquisition(tailTunnelAttributes.FinishTime);
 tailTunnel.UpdateAttributeValues(tailTunnelAttributes.FinishTime,
theTime);

197

 tailTunnel.UnconditionalAttributeOwnershipDivestiture(tailTunnelAttributes.
FinishTime);

 firstSection.AttributeOwnershipAcquisition(tailTunnelSectionAttributes.Finis
hTime);

 firstSection.UpdateAttributeValues(tailTunnelSectionAttributes.FinishTime,
theTime);

 firstSection.UnconditionalAttributeOwnershipDivestiture(tailTunnelSectionAt
tributes.FinishTime);

 // set section state to Finished
 this.eventEngine.ScheduleEvent(new
TailTunnelSectionUpdateEntity<TailTunnelSectionState>(firstSection,
tailTunnelSectionAttributes.State, TailTunnelSectionState.Finished,
Math.Ceiling(theTime + 1.0)),
 new
Action<TailTunnelSectionUpdateEntity<TailTunnelSectionState>>(UpdateTailT
unnelSection<TailTunnelSectionState>), 0);
 }
 }
 #endregion

 #region StartSimulation(Undercut, double)
 /// <summary>
 /// Starts simulation of a undercut.
 /// </summary>
 /// <param name="tailTunnel">The undercut to start simulating</param>
 /// <param name="time">The logical time at which to start the next step in
the simulation</param>
 private void StartSimulation(Undercut undercut, double time)
 {

 undercut.AttributeOwnershipAcquisition(undercutAttributes.StartTime);
 undercut.UpdateAttributeValues(undercutAttributes.StartTime, time);

 undercut.UnconditionalAttributeOwnershipDivestiture(undercutAttributes.Sta
rtTime);

 TailTunnelSection firstSection = undercut.GetFirstSection();

 firstSection.AttributeOwnershipAcquisition(tailTunnelSectionAttributes.Start
Time);

198

 firstSection.UpdateAttributeValues(tailTunnelSectionAttributes.StartTime,
time);

 firstSection.UnconditionalAttributeOwnershipDivestiture(tailTunnelSectionAt
tributes.StartTime);

 if (undercut.ExcavationArea > 0.0)
 {
 // set CurrentSection to FirstSection
 this.eventEngine.ScheduleEvent(new
UndercutUpdateEntity<ObjectInstanceHandle>(undercut,
undercutAttributes.CurrentSection, undercut.FirstSection, Math.Ceiling(time +
1.0)),
 new
Action<UndercutUpdateEntity<ObjectInstanceHandle>>(UpdateUndercut<Objec
tInstanceHandle>), 0);

 // set section state to Excavating
 this.eventEngine.ScheduleEvent(new
TailTunnelSectionUpdateEntity<TailTunnelSectionState>(firstSection,
tailTunnelSectionAttributes.State, TailTunnelSectionState.Excavating,
Math.Ceiling(time + 1.0)),
 new
Action<TailTunnelSectionUpdateEntity<TailTunnelSectionState>>(UpdateTailT
unnelSection<TailTunnelSectionState>), 0);

 this.eventEngine.ScheduleEvent(undercut,
this.constructTailTunnelEvent, time - this.eventEngine.TimeNow);
 }
 else // the tail tunnel doesn't exist in the real world, it just exists here to
host a switch
 {

 undercut.AttributeOwnershipAcquisition(undercutAttributes.FinishTime);
 undercut.UpdateAttributeValues(undercutAttributes.FinishTime,
time);

 undercut.UnconditionalAttributeOwnershipDivestiture(undercutAttributes.Fin
ishTime);

 firstSection.AttributeOwnershipAcquisition(tailTunnelSectionAttributes.Finis
hTime);

199

 firstSection.UpdateAttributeValues(tailTunnelSectionAttributes.FinishTime,
time);

 firstSection.UnconditionalAttributeOwnershipDivestiture(tailTunnelSectionAt
tributes.FinishTime);

 // set section state to Finished
 this.eventEngine.ScheduleEvent(new
TailTunnelSectionUpdateEntity<TailTunnelSectionState>(firstSection,
tailTunnelSectionAttributes.State, TailTunnelSectionState.Finished,
Math.Ceiling(time + 1.0)),
 new
Action<TailTunnelSectionUpdateEntity<TailTunnelSectionState>>(UpdateTailT
unnelSection<TailTunnelSectionState>), 0);

 // set CurrentInstallationProcess to UndercutInstallation.Tbm
 this.eventEngine.ScheduleEvent(new
UndercutUpdateEntity<UndercutInstallation>(undercut,
undercutAttributes.CurrentInstallationProcess, UndercutInstallation.Tbm,
Math.Ceiling(time + 1.0)),
 new
Action<UndercutUpdateEntity<UndercutInstallation>>(UpdateUndercut<Underc
utInstallation>), 0);

 this.eventEngine.ScheduleEvent(undercut, this.installTbmEvent,
time - this.eventEngine.TimeNow);
 }
 }
 #endregion

 #region undercutFactory_ReflectAttributeValues(object,
ReflectAttributeValuesEventArgs)
 private void undercutFactory_ReflectAttributeValues(object sender,
ReflectAttributeValuesEventArgs e)
 {
 if
(e.theValues.Contains(undercutAttributes.CurrentInstallationProcess.GetAttribute
Handle()))
 {
 Undercut undercut = this.undercutFactory[e.theObject];
 if (undercut.CurrentInstallationProcess ==
UndercutInstallation.Switch)
 {
 this.eventEngine.ScheduleEvent(undercut,
this.installSwitchEvent, e.theTime - this.eventEngine.TimeNow);

200

 if (undercut.TailTunnel != ObjectInstanceHandle.Empty)

 this.eventEngine.ScheduleEvent(undercut.GetTailTunnel(),
this.installSwitchEvent, e.theTime - this.eventEngine.TimeNow);
 }
 }
 }
 #endregion

 #region Tail Tunnel Simulation Events

 #region ConstructTailTunnel(TailTunnel)
 private void ConstructTailTunnel(TailTunnel tailTunnel)
 {
 double tailTunnelExcavatedDirtVolume =
GetExcavatedDirtVolume(tailTunnel);
 double duration = GetExcavationTime(tailTunnel.GetFirstSection(),
tailTunnelExcavatedDirtVolume);

 tailTunnel.AttributeOwnershipAcquisition(tailTunnelAttributes.FinishTime,
tailTunnelAttributes.ExcavatedDirtVolume);
 List<ObjectAttributeValuePair<TailTunnel>> taiTunnelFinishUpdates
= new List<ObjectAttributeValuePair<TailTunnel>>(3);
 taiTunnelFinishUpdates.Add(tailTunnelAttributes.FinishTime,
this.eventEngine.TimeNow + duration);

 taiTunnelFinishUpdates.Add(tailTunnelAttributes.ExcavatedDirtVolume,
tailTunnelExcavatedDirtVolume);
 tailTunnel.UpdateAttributeValues(this.eventEngine.TimeNow +
duration, taiTunnelFinishUpdates);

 tailTunnel.UnconditionalAttributeOwnershipDivestiture(tailTunnelAttributes.
FinishTime, tailTunnelAttributes.ExcavatedDirtVolume);

 Scenario scenario = tailTunnel.GetWorkingShaft().GetScenario();

 scenario.AttributeOwnershipAcquisition(scenarioAttributes.MaterialCost);
 scenario.UpdateAttributeValues(this.eventEngine.TimeNow +
duration, scenarioAttributes.MaterialCost, scenario.MaterialCost +
tailTunnel.GetFirstSection().MaterialCostPerMeter *
tailTunnel.GetCompleteLength());
 scenario.UnconditionalAttributeOwnershipDivestiture();

 if (tailTunnel.GetType() == typeof(Undercut))
 {

201

 Undercut undercut = (Undercut)tailTunnel;

 undercut.AttributeOwnershipAcquisition(undercutAttributes.CurrentInstallati
onProcess);
 undercut.UpdateAttributeValues(this.eventEngine.TimeNow +
duration, undercutAttributes.CurrentInstallationProcess,
UndercutInstallation.Tbm);

 undercut.UnconditionalAttributeOwnershipDivestiture(undercutAttributes.Cur
rentInstallationProcess);

 this.eventEngine.ScheduleEvent(undercut, this.installTbmEvent,
duration);
 }
 else
 {
 this.eventEngine.ScheduleEvent(this.checkComletionEntity,
this.checkCompletionEvent, duration);
 }
 }
 #endregion

 #region InstallTbm(Undercut)
 private void InstallTbm(Undercut undercut)
 {
 ErrorLog.AddError(" START install TBM.@ " +
this.theCalendar.calculateCurrentDateTime(fedAmb.CurrentTime));
 double duration =
Math.Max((undercut.GetTunnel().GetTbm().InstallationDuration.Sample() -
this.fedAmb.Lookahead), this.fedAmb.Lookahead);
 this.eventEngine.ScheduleEvent(undercut, this.finishInstallTbmEvent,
duration);
 }
 #endregion

 #region FinishInstallTbm(Undercut)
 private void FinishInstallTbm(Undercut undercut)
 {
 double duration = this.fedAmb.Lookahead;

undercut.AttributeOwnershipAcquisition(undercutAttributes.CurrentInstallationPr
ocess);
 undercut.UpdateAttributeValues(this.eventEngine.TimeNow + duration,
undercutAttributes.CurrentInstallationProcess, UndercutInstallation.None);

202

undercut.UnconditionalAttributeOwnershipDivestiture(undercutAttributes.Curren
tInstallationProcess);

 this.eventEngine.ScheduleEvent(this.checkComletionEntity,
this.checkCompletionEvent, duration);
 ErrorLog.AddError(" finish install tbm.@ " +
this.theCalendar.calculateCurrentDateTime(fedAmb.CurrentTime));

 // Send an interaction declaring the completion of TBM installation.
 this.tbmInstalledTerminal.TailTunnel =
undercut.GetObjectInstanceHandle();

this.tbmInstalledTerminal.SendInteraction(this.rtiAmb.QueryLogicalTime() +
this.fedAmb.Lookahead);
 }
 #endregion

 #region InstallSwitch(TailTunnel)
 private void InstallSwitch(TailTunnel tailTunnel)
 {
 ErrorLog.AddError(" START install switch.@ " +
this.theCalendar.calculateCurrentDateTime(fedAmb.CurrentTime));
 double duration = tailTunnel.SwitchInstallationDuration.Sample() -
this.fedAmb.Lookahead;
 duration = Math.Max(duration, this.fedAmb.Lookahead);

 this.eventEngine.ScheduleEvent(tailTunnel, this.finishInstallSwitchEvent,
duration);
 }
 #endregion

 #region FinishInstallSwitch(TailTunnel)
 private void FinishInstallSwitch(TailTunnel tailTunnel)
 {
 double duration = this.fedAmb.Lookahead;

tailTunnel.AttributeOwnershipAcquisition(tailTunnelAttributes.HasSwitch);
 tailTunnel.UpdateAttributeValues(this.eventEngine.TimeNow + duration,
tailTunnelAttributes.HasSwitch, true);

tailTunnel.UnconditionalAttributeOwnershipDivestiture(tailTunnelAttributes.Has
Switch);

 if (tailTunnel.GetType() == typeof(Undercut))

203

 {
 Undercut undercut = (Undercut)tailTunnel;

undercut.AttributeOwnershipAcquisition(undercutAttributes.CurrentInstallationPr
ocess);
 undercut.UpdateAttributeValues(this.eventEngine.TimeNow + duration,
undercutAttributes.CurrentInstallationProcess, UndercutInstallation.None);

undercut.UnconditionalAttributeOwnershipDivestiture(undercutAttributes.Curren
tInstallationProcess);

 // Send an interaction declaring the completion of switch installation.
 this.switchInstalledTerminal.Undercut =
undercut.GetObjectInstanceHandle();

this.switchInstalledTerminal.SendInteraction(this.rtiAmb.QueryLogicalTime() +
duration);
 }

 this.eventEngine.ScheduleEvent(this.checkComletionEntity,
this.checkCompletionEvent, duration);
 ErrorLog.AddError(" finish install switch.@ " +
this.theCalendar.calculateCurrentDateTime(fedAmb.CurrentTime));
 }
 #endregion

 #region CheckCompletion(Entity)
 /// <summary>
 /// Checks the completion of the simulation with regard to this federate,
 /// and calls rtiAmb.ReadyToTerminate() iff complete.
 /// </summary>
 /// <param name="entity">An irrelevant entity</param>
 private void CheckCompletion(Entity entity)
 {
 foreach (Undercut undercut in this.undercutFactory)
 {
 // if the undercut is not complete, return
 if (undercut.GetState() != TunnelSectionState.Complete)
 return;

 // if the undercut should eventually have a switch and does not,
return
 if
(!double.IsNaN(undercut.GetTunnel().SwitchInstallationChainage)

 && !double.IsInfinity(undercut.GetTunnel().SwitchInstallationChainage)

204

 && !(undercut.GetTunnel().SwitchInstallationChainage >
undercut.GetTunnel().GetFinishedLength())
 && !undercut.HasSwitch)
 return;
 }
 foreach (TailTunnel tailTunnel in this.tailTunnelFactory)
 {
 // if the undercut is not complete, return
 if (tailTunnel.GetState() != TunnelSectionState.Complete)
 return;

 // if the undercut should eventually have a switch and does not,
return
 if
(!double.IsNaN(tailTunnel.GetTunnel().SwitchInstallationChainage)

 && !double.IsInfinity(tailTunnel.GetTunnel().SwitchInstallationChainage)
 && !(tailTunnel.GetTunnel().SwitchInstallationChainage >
tailTunnel.GetTunnel().GetFinishedLength())
 && !tailTunnel.HasSwitch)
 return;
 }
 this.rtiAmb.ReadyToTerminate();
 }
 #endregion

 # region ShiftOnEventHandler
 /// <summary>
 /// try to resume all suspended entities when shift changes to ON
 /// </summary>
 /// <param name="entity"></param>
 private void ShiftOnEventHandler(Entity entity)
 {
 this.suspendedEntities.ResumeEntities(eventEngine);
 this.suspendedEntities.UnionWith(this.allEntities);
 }
 #endregion

 # region ShiftOffEventHandler
 /// <summary>
 /// try to suspend all scheduled entities when shift changes to OFF
 /// </summary>
 /// <param name="entity"></param>
 private void ShiftOffEventHandler(Entity entity)
 {
 this.suspendedEntities.SuspendEntitiesIfNeed(eventEngine);

205

 }
 #endregion

 #endregion

 #endregion

 #region Private Nested Classes

 #region TailTunnelSectionUpdateEntity<T>
 private class TailTunnelSectionUpdateEntity<T> : Entity
 {
 public TailTunnelSection ObjectInstance { get; private set; }
 public ObjectAttribute<TailTunnelSection, T> Attribute { get; private
set; }
 public T Value { get; private set; }
 public double Time { get; private set; }

 public TailTunnelSectionUpdateEntity(TailTunnelSection section,
ObjectAttribute<TailTunnelSection, T> attribute, T value, double time)
 {
 this.ObjectInstance = section;
 this.Attribute = attribute;
 this.Value = value;
 this.Time = time;
 }
 }
 #endregion

 #region TailTunnelUpdateEntity<T>
 private class TailTunnelUpdateEntity<T> : Entity
 {
 public TailTunnel ObjectInstance { get; private set; }
 public ObjectAttribute<TailTunnel, T> Attribute { get; private set; }
 public T Value { get; private set; }
 public double Time {get; private set;}

 public TailTunnelUpdateEntity(TailTunnel tailTunnel,
ObjectAttribute<TailTunnel, T> attribute, T value, double time)
 {
 this.ObjectInstance = tailTunnel;
 this.Attribute = attribute;
 this.Value = value;
 this.Time = time;
 }
 }

206

 #endregion

 #region UndercutUpdateEntity<T>
 private class UndercutUpdateEntity<T> : Entity
 {
 public Undercut ObjectInstance { get; private set; }
 public ObjectAttribute<Undercut, T> Attribute { get; private set; }
 public T Value { get; private set; }
 public double Time {get; private set;}

 public UndercutUpdateEntity(Undercut undercut,
ObjectAttribute<Undercut, T> attribute, T value, double time)
 {
 this.ObjectInstance = undercut;
 this.Attribute = attribute;
 this.Value = value;
 this.Time = time;
 }
 }
 #endregion

 private void undercutFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 this.allEntities.Add(undercutFactory[e.theObject]);
 }

 #endregion

 private void myShiftFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 this.theShift = myShiftFactory[e.theObject];
 }

 private void myShiftFactory_ReflectAttributeValues(object sender,
ReflectAttributeValuesEventArgs e)
 {
 var shift = myShiftFactory[e.theObject];
 if (e.theValues.Contains(shiftAttributes.IsWorking.GetAttributeHandle()))
 {
 if (e.theTime > 0)
 {
 double timeOfUpdate = Math.Max(e.theTime,
this.rtiAmb.QueryLogicalTime() + fedAmb.Lookahead);
 if (shift.IsWorking)

207

 {
 eventEngine.ScheduleEvent(this.shiftControlEntity, ShiftOnEvent,
e.theTime - eventEngine.TimeNow);
 }
 else
 {
 eventEngine.ScheduleEvent(this.shiftControlEntity, ShiftOffEvent,
e.theTime - eventEngine.TimeNow);
 }
 }
 }
 }

 private void tailTunnelFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 this.allEntities.Add(tailTunnelFactory[e.theObject]);
 }

 private void calendarFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 this.theCalendar = calendarFactory[e.theObject];
 }
 }
}

208

c. Tunnel Federate II

using System;
using System.Collections;
using System.Collections.Generic;

using Cosye.Framework;
using Cosye.Hla.Rti;
using Simphony;
using Simphony.Mathematics;
using Simphony.Simulation;

namespace Cosye.Tunneling.TunnelFederate
{

 public partial class TunnelFederate : FederateControl
 {
 #region Private Readonly Fields

 private readonly List<string> theShaftAttributes = new List<string>();
 private readonly List<string> theUndercutAttributes = new List<string>();

 private readonly List<string> theTunnelAttributes = new List<string>();
 private readonly List<string> theGeotechnicalSectionAttributes = new
List<string>();

 private readonly List<string> theTrainAttributes1 = new List<string>();
 private readonly List<string> theTbmAttributes = new List<string>();

 private readonly Dictionary<ObjectInstanceHandle, Resource> myTBMs =
new Dictionary<ObjectInstanceHandle, Resource>();
 private readonly Dictionary<ObjectInstanceHandle, WaitingFile>
myTbmFiles = new Dictionary<ObjectInstanceHandle, WaitingFile>();
 private readonly Dictionary<ObjectInstanceHandle, bool>
delayedRequestTbm = new Dictionary<ObjectInstanceHandle, bool>();

 // this Dictionary is used where Tbm.WorkState used to be used,
 // because the WorkState updates have to be timed in order for the GUI to
work,
 // but just changing the update causes the code to break.
 private readonly Dictionary<Tbm, TbmWorkState> WorkState = new
Dictionary<Tbm, TbmWorkState>();

 # endregion

209

 #region Private Fields

 private Entity breakdownEntity = new Entity();
 private Entity shiftControlEntity = new Entity();
 private Calendar theCalendar;
 private DateTime startDateTime = DateTime.Today;
 private Action<Entity> ShiftOnEvent;
 private Action<Entity> ShiftOffEvent;
 private Action<Tunnel> FinalizeOneMeterEvent;
 private ShiftAwareEntities allEntities = new ShiftAwareEntities();
 private ShiftAwareEntities suspendedEntities = new ShiftAwareEntities();
 private Shift theShift;
 private Tunnel nestTunnel;
 private bool firstShiftControl=true;
 private double lastChainage = 0;

 private Action<BreakdownEntity> BreakdownEvent;
 private Action<BreakdownEntity> RepairEvent;
 private Action<Entity> EmptyActionEvent;
 private Action<Tunnel> ProcessWaitingTrainEvent;
 private ConcreteLinerInventory myConcrete;

 private BasicDiscreteEventEngine MyEngine = new
BasicDiscreteEventEngine();

 private Action<Tunnel> StartOneGeotechnicalSectionEvent;
 private Action<Tunnel> ExcavatingEvent;
 private Action<Tunnel> ResettingEvent;
 private Action<Tunnel> LiningEvent;

 private Action<Tunnel> ExtendUtilityEvent;
 private Action<Tunnel> ExtendGantryConveyerEvent;
 private Action<Tunnel> ExtendTrackEvent;
 private Action<Tunnel> SurveyEvent;

 private Action<Train> ReleaseTbmEvent;
 private Action<Train> TbmCapturedEvent;
 private Action<Train> RequestTbmEvent;

 #endregion

 public TunnelFederate()
 {
 InitializeComponent();

 theShaftAttributes.Add(shaftAttributes.State);

210

 theShaftAttributes.Add(shaftAttributes.Name);

 theUndercutAttributes.Add(undercutAttributes.StartTime);
 theUndercutAttributes.Add(undercutAttributes.FinishTime);
 theUndercutAttributes.Add(undercutAttributes.ExcavatedDirtVolume);

 theTunnelAttributes.Add(tunnelAttributes.ExcavationArea);
 theTunnelAttributes.Add(tunnelAttributes.FinishTime);
 theTunnelAttributes.Add(tunnelAttributes.ExcavatedDirtVolume);

 theTunnelAttributes.Add(tunnelAttributes.CurrentGeotechnicalSection);
 theTunnelAttributes.Add(tunnelAttributes.CurrentChainage);
 theTunnelAttributes.Add(tunnelAttributes.State);
 theTunnelAttributes.Add(tunnelAttributes.StartTime);
 theTunnelAttributes.Add(tunnelAttributes.CrewActivity);

 theGeotechnicalSectionAttributes.Add(geotechnicalSectionAttributes.LinerTy
pe);

 theGeotechnicalSectionAttributes.Add(geotechnicalSectionAttributes.StartTi
me);

 theGeotechnicalSectionAttributes.Add(geotechnicalSectionAttributes.FinishTi
me);

 theGeotechnicalSectionAttributes.Add(geotechnicalSectionAttributes.State);

 theTrainAttributes1.Add(trainAttributes.CurrentDirtVolume);
 theTrainAttributes1.Add(trainAttributes.CartsCounter);
 theTrainAttributes1.Add(trainAttributes.EnergyConsumption);
 theTrainAttributes1.Add(trainAttributes.Position);
 theTrainAttributes1.Add(trainAttributes.WorkState);

 theTbmAttributes.Add(tbmAttributes.ResourceState);
 theTbmAttributes.Add(tbmAttributes.EmissionFactor);
 theTbmAttributes.Add(tbmAttributes.EnergyConsumption);
 theTbmAttributes.Add(tbmAttributes.WorkState);
 theTbmAttributes.Add(tbmAttributes.LiningDuration);
 theTbmAttributes.Add(tbmAttributes.PenetrationRate);
 theTbmAttributes.Add(tbmAttributes.WorkHours);
 theTbmAttributes.Add(tbmAttributes.ResettingDuration);
 // theTbmAttributes.Add(tbmAttributes.CostPerHour);
 theTbmAttributes.Add(tbmAttributes.WorkHours);

 // Initialize events.

211

 BreakdownEvent = new
Action<BreakdownEntity>(BreakdownEventHandler);
 RepairEvent = new Action<BreakdownEntity>(RepairEventHandler);
 EmptyActionEvent = new Action<Entity>(EmptyAction);
 ShiftOffEvent = new Action<Entity>(ShiftOffEventHandler);
 ShiftOnEvent = new Action<Entity>(ShiftOnEventHandler);
 ProcessWaitingTrainEvent = new
Action<Tunnel>(ProcessWaitingTrain);
 FinalizeOneMeterEvent = new Action<Tunnel>(FinalizeOneMeter);

 ExcavatingEvent = new Action<Tunnel>(Excavating);
 ResettingEvent = new Action<Tunnel>(Resetting);
 LiningEvent = new Action<Tunnel>(Lining);

 StartOneGeotechnicalSectionEvent = new
Action<Tunnel>(StartOneGeotechnicalSection);

 ExtendUtilityEvent = new Action<Tunnel>(ExtendUtility);
 ExtendGantryConveyerEvent = new
Action<Tunnel>(ExtendGantryConveyer);
 ExtendTrackEvent = new Action<Tunnel>(ExtendTrack);
 SurveyEvent = new Action<Tunnel>(Survey);

 RequestTbmEvent = new Action<Train>(RequestTbm);
 TbmCapturedEvent = new Action<Train>(TbmCaptured);
 ReleaseTbmEvent = new Action<Train>(ReleaseTbm);

 MyEngine.InitializeEngine();
 this.tunnelInfoHost.EventEngine = this.MyEngine;
 }

 #region Private Methods

 private Train getTheTrainAtTunnelFace(Tunnel theTunnel)
 {
 Train currentTrain = null;
 foreach (Train theTrain in MyTrainFactory)
 {
 if (theTrain.Tunnel == theTunnel.GetObjectInstanceHandle() &&
theTrain.Position == TrainLocation.TunnelFace)
 {
 currentTrain = theTrain;
 }
 }
 return currentTrain;
 }

212

 private Train getTheTrainOwningTbm(Tunnel theTunnel)
 {
 Train currentTrain = null;
 var resource = myTBMs[theTunnel.GetObjectInstanceHandle()];
 foreach (Train theTrain in MyTrainFactory)
 {
 if (resource.ServersOwnedByEntity(theTrain) > 0)
 {
 currentTrain = theTrain;
 }
 }
 return currentTrain;
 }

 #region calculateDateTime(double)
 private DateTime calculateDateTime(double logicTime)
 {
 if (logicTime > 0 && !double.IsInfinity(logicTime))
 return this.theCalendar.StartDateTime.AddSeconds(logicTime);
 else return DateTime.MaxValue;
 }
 #endregion

 private void CheckUtility(Tunnel theTunnel, double duration)
 {
 ErrorLog.AddError("CheckUtility entered @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 Tbm theTbm = theTunnel.GetTbm();
 WorkState[theTbm] = TbmWorkState.Waiting;
 theTbm.UpdateAttributeValues(MyEngine.TimeNow + duration,
tbmAttributes.WorkState, TbmWorkState.Waiting);

 if (theTunnel.ExtendUtilityInterval == 0)
 CheckGantry(theTunnel, duration);
 else
 {
 double Check = theTunnel.CurrentChainage %
theTunnel.ExtendUtilityInterval;
 if (Check == 0)
 {
 ErrorLog.AddError("CheckUtility conditions passed, scheduled @ "
+ this.calculateDateTime(MyEngine.TimeNow + duration).ToString());
 MyEngine.ScheduleEvent(theTunnel, ExtendUtilityEvent, duration);
 theTunnel.UpdateAttributeValues(MyEngine.TimeNow + duration,
tunnelAttributes.CrewActivity, TunnelCrewActivity.ExtendingUtility);

213

 }
 else CheckGantry(theTunnel, duration);
 }
 }

 private void CheckGantry(Tunnel theTunnel, double duration)
 {
 ErrorLog.AddError("CheckGantry entered @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 double Check = 1;
 if (theTunnel.CurrentChainage <= theTunnel.GetTbm().GantryLength)
 {
 Check = theTunnel.CurrentChainage %
theTunnel.GetTbm().GantrySectionLength;
 }
 else if (theTunnel.CurrentChainage == theTunnel.GetTbm().GantryLength
+ theTunnel.GetTbm().GantrySectionLength)
 { Check = 0; }

 if (Check == 0)
 {
 ErrorLog.AddError("CheckGantry conditions passed, scheduled @ " +
this.calculateDateTime(MyEngine.TimeNow + duration).ToString());
 MyEngine.ScheduleEvent(theTunnel, ExtendGantryConveyerEvent,
duration);
 theTunnel.UpdateAttributeValues(MyEngine.TimeNow + duration,
tunnelAttributes.CrewActivity, TunnelCrewActivity.ExtendingGantryConveyor);
 }
 else CheckTrack(theTunnel, duration);
 }

 private void CheckTrack(Tunnel theTunnel, double duration)
 {
 ErrorLog.AddError("CheckTrack entered");
 double Check = theTunnel.CurrentChainage %
theTunnel.ExtendTrackInterval;
 if (Check == 0)
 {
 ErrorLog.AddError("CheckTrack conditions passed, scheduled @ " +
this.calculateDateTime(MyEngine.TimeNow + duration).ToString());
 theTunnel.UpdateAttributeValues(MyEngine.TimeNow +
duration,tunnelAttributes.CrewActivity, TunnelCrewActivity.ExtendingTrack);
 MyEngine.ScheduleEvent(theTunnel, ExtendTrackEvent, duration);
 }
 else CheckSurvey(theTunnel, duration);
 }

214

 private void CheckSurvey(Tunnel theTunnel, double duration)
 {
 ErrorLog.AddError("CheckSurvey entered");
 double Check = theTunnel.CurrentChainage % theTunnel.SurveyInterval;
 if (Check == 0)
 {
 ErrorLog.AddError("CheckSurvey conditions passed, schedule @ " +
this.calculateDateTime(MyEngine.TimeNow + duration).ToString());
 theTunnel.UpdateAttributeValues(MyEngine.TimeNow + duration,
tunnelAttributes.CrewActivity, TunnelCrewActivity.Survey);
 MyEngine.ScheduleEvent(theTunnel, SurveyEvent, duration);
 }
 else
 {
 ErrorLog.AddError("***++++++Schedule FinalizeOneMeterEvent @ "
 + this.calculateDateTime(Math.Max(0, duration -
fedAmb.Lookahead)).ToString());
 this.MyEngine.ScheduleEvent(theTunnel, FinalizeOneMeterEvent,
Math.Max(0, duration - fedAmb.Lookahead));
 }
 }

 private void CheckShift(Tunnel theTunnel, double duration)
 {
 if (!this.theShift.IsWorking)
 {
 ErrorLog.AddError("CheckShift entered and shift is NOT working @ "
+ calculateDateTime(rtiAmb.QueryLogicalTime()).ToString());
 TimeSpan time =
this.theCalendar.StartDateTime.AddSeconds(this.rtiAmb.QueryLogicalTime()).Ti
meOfDay;
 TimeSpan target = TimeSpan.FromSeconds(this.theShift.StartTime) +
TimeSpan.FromSeconds(this.theShift.Duration);
 double timeOfUpdate = duration + this.rtiAmb.QueryLogicalTime();
 if (time >= target) // if this is not the end of a shift
 {
 foreach (Tbm theTbm in MyTbmFactory)
 {
 theTbm.UpdateAttributeValues(timeOfUpdate,
tbmAttributes.ResourceState, ResourceState.Idle);
 }
 ErrorLog.AddError("+++ TunnelFederate.Shift Off Event when
finalizing a meter @ " +
 this.calculateDateTime(timeOfUpdate).ToString() + " Resource
Idle @ " + this.MyEngine.TimeNow.ToString());

215

 ErrorLog.shiftReport("+++ TunnelFederate.ShiftOffEvent when
finalizing a meter @ " +
 this.calculateDateTime(timeOfUpdate).ToString() + " Resource
Idle @ " + this.MyEngine.TimeNow.ToString());

 MyEngine.ScheduleEvent(this.shiftControlEntity, ShiftOffEvent,
duration);

 // Send an interaction for finalizing a tunnel meter.
 if (time >= target) // if this is not the end of a shift
 {
 ErrorLog.AddError("send an interaction of finishing lining a meter
= " + this.calculateDateTime(timeOfUpdate).ToString());
 ErrorLog.shiftReport("send an interaction of finishing lining a
meter = " + this.calculateDateTime(timeOfUpdate).ToString());
 this.ShiftOffTerminal.Tunnel =
theTunnel.GetObjectInstanceHandle();
 this.ShiftOffTerminal.SharpOff = true;
 this.ShiftOffTerminal.SendInteraction(timeOfUpdate);
 }
 }
 }
 }

 private double EnergyRateOfTbm(Tunnel theTunnel, TbmWorkState
currentTbmWorkState)
 {
 double Rate = 0;
 // TBM RM100SE series 19200 which is used for NEST tunnel
 //- Excavating : energy (KWh) = excavating time (seconds)/3600 * 335
(KW) * 0.8
 //- Lining : energy (KWh) = lining time (seconds)/3600 * 100 (KW)
 //- Resetting : energy (KWh) = lining time (seconds)/3600 * 100 (KW)
 //- Idling : energy (KWh) = idling time (seconds)/3600 * 10 (KW)
 GeotechnicalSection theSection =
MyGeotechnicalSectionFactory[theTunnel.CurrentGeotechnicalSection];

 if (currentTbmWorkState == TbmWorkState.Excavating)
 {
 //Electricity consumption rate of TBM excavation :
 //13,800/3600 * (-1.0816 * pr (m/h) +12.06) * operation time (second)
 double pr = theSection.NextAdvanceRate.Sample() * 3600; // what's the
unit of theSection.nextAdvanceRate? it's shown around 0.6 anytime. is it correct
value?
 Rate = 13800 / 1000 * (-1.0816 * pr + 12.06) / 3600; // (KW)

216

 }
 else if (currentTbmWorkState == TbmWorkState.Lining)
 {
 //Rate = 100 * 0.6; //(KW)
 }

 return Rate;
 }

 // Not used EnergyConsumptionRateOfTrain
 private double EnergyConsumptionRateOfTrain(Train theTrain)
 {

 double Rate = 0;
 // average dirt density = 120 lb/cubic feet = 1.922 (t/cubic meter)
 // the weight of one locomotive = 5897 kilograms = 5.897 t; the weight of
one empty muck car = 1 t
 // 1 m = 3.28 feet
 // assume 1t for the liner weight.
 Rate = 1.704 * (1 / theTrain.MuckCartCount + 5.897 + 1 *
theTrain.MuckCartCount) * 3.28 / 100 / 1000; // KWh /m

 return Rate;
 }

 #endregion

 #region Private Events
 private void StartOneGeotechnicalSection(Tunnel theTunnel)
 {
 ErrorLog.AddError("StartOneGeotechnicalSection event entered @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 Tbm theTbm = theTunnel.GetTbm();
 var prevSection = theTunnel.GetCurrentGeotechnicalSection();
 // if this is the last section, then return:
 if ((prevSection != null) && (prevSection.GetSectionNumber() ==
theTunnel.GetGeotechnicalSectionCount()))
 {
 System.Windows.Forms.MessageBox.Show("Project Completed.");
 ErrorLog.AddError("StartOneGeotechnicalSection event first condition
entered. @ " + this.calculateDateTime(fedAmb.CurrentTime).ToString());
 rtiAmb.ReadyToTerminate();
 return;
 }

 // Check if this is the 1st section:

217

 if (prevSection == null) // theTunnel.State ==
TunnelState.WaitForInstallingTBM)
 {
 ErrorLog.AddError("StartOneGeotechnicalSection event third condition
entered. @ " + this.calculateDateTime(fedAmb.CurrentTime).ToString());
 theTunnel.StartTime = MyEngine.TimeNow;
 theTunnel.State = TunnelState.Startup;
 theTunnel.CurrentGeotechnicalSection =
theTunnel.FirstGeotechnicalSection;
 ErrorLog.AddError("set tunnel to startup @ " + (fedAmb.CurrentTime /
60).ToString("000.0"));

 WorkState[theTbm] = TbmWorkState.Waiting;
 theTbm.UpdateAttributeValues(MyEngine.TimeNow +
fedAmb.Lookahead, tbmAttributes.WorkState, TbmWorkState.Waiting);
 }
 else // ELSE: set the next section to start
 {
 ErrorLog.AddError("StartOneGeotechnicalSection event fourth
condition entered. @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());

 if (theTunnel.State == TunnelState.WaitForInstallingSwitch)
 {
 // If switch has been installed:
 ErrorLog.AddError("StartOneGeotechnicalSection event fifth
condition entered. @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 theTunnel.State = TunnelState.MultipleTrainConstructing;

 WorkState[theTbm] = TbmWorkState.Waiting;
 theTbm.UpdateAttributeValues(MyEngine.TimeNow +
fedAmb.Lookahead, tbmAttributes.WorkState, TbmWorkState.Waiting);
 }
 else if ((theTunnel.State == TunnelState.Startup || theTunnel.State ==
TunnelState.SingleTrainConstructing))
 {
 // ELSE: when 1st section is finished, but switch is NOT installed:
 ErrorLog.AddError("StartOneGeotechnicalSection event sixth
condition entered. @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());

 Undercut theUndercut = theTunnel.GetUndercut();

218

theUndercut.AttributeOwnershipAcquisition(undercutAttributes.CurrentInstallatio
nProcess);
 theUndercut.CurrentInstallationProcess =
UndercutInstallation.Switch;
 theUndercut.UpdateAttributeValues(MyEngine.TimeNow +
fedAmb.Lookahead);

theUndercut.UnconditionalAttributeOwnershipDivestiture(undercutAttributes.Cur
rentInstallationProcess);

 theTunnel.UpdateAttributeValues(MyEngine.TimeNow +
fedAmb.Lookahead,tunnelAttributes.State, TunnelState.WaitForInstallingSwitch);

 return; // must exit this function, to NOT start the next section
 }
 theTunnel.CurrentGeotechnicalSection =
theTunnel.GetCurrentGeotechnicalSection().NextSection;
 }

 // initialize a new section.
 GeotechnicalSection theNewSection =
theTunnel.GetCurrentGeotechnicalSection();
 theNewSection.State = TunnelSectionState.Constructing;
 theNewSection.StartTime = MyEngine.TimeNow;

 // check if a RequestTbm event has been delayed, then resume it.
 Train theTrain = getTheTrainAtTunnelFace(theTunnel);
 if ((theTrain != null) &&
delayedRequestTbm[theTrain.GetObjectInstanceHandle()] == true)
 {
 MyEngine.ScheduleEvent(theTrain, RequestTbmEvent, 0);
 ErrorLog.AddError("++++ RESUME delayed RequestTbm by Train:
RequestTbmEvent_ from StartOneGeotechnicalSection");
 delayedRequestTbm[theTrain.GetObjectInstanceHandle()] = false;
 }

 theTbm.UpdateAttributeValues(MyEngine.TimeNow +
fedAmb.Lookahead, tbmAttributes.ResourceState, ResourceState.Busy);
 theTunnel.UpdateAttributeValues(MyEngine.TimeNow +
fedAmb.Lookahead); //theTunnelAttributes,
 theNewSection.UpdateAttributeValues(MyEngine.TimeNow +
fedAmb.Lookahead); //theTunnelSectionAttributes,
 //System.Diagnostics.Debug.WriteLine("should processWaitTrain.");
 }

219

 private void RequestTbm(Train theTrain)
 {
 ErrorLog.AddError("Tunnel.RequestTbm event entered BY Train" +
theTrain.ID.ToString() + " @ " + fedAmb.CurrentTime.ToString() + " @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 var resource = myTBMs[theTrain.Tunnel];
 var myFile = myTbmFiles[theTrain.Tunnel];
 Tunnel theTunnel = theTrain.GetTunnel();

 if (!theTrain.IsScheduled)
 {
 this.MyEngine.RequestResource(theTrain, resource, 1,
TbmCapturedEvent, myFile);
 }
 else
 {
 ErrorLog.AddError("*************error message: Try to CAPTURE
TBM using a train scheduled before: SKIPPED THIS TIME ************");
 }
 ErrorLog.TraceResource("TBM REQUESTED BY theTrain ;
theTrain.IsScheduled : " + theTrain.IsScheduled + " @" +
this.rtiAmb.QueryLogicalTime());
 ErrorLog.TraceResource("tbm.Available = " +
resource.Available.ToString());
 ErrorLog.TraceResource("resource.InUse = " +
resource.InUse.ToString());
 ErrorLog.TraceResource("resource.ServersPreempted= " +
resource.ServersPreempted.ToString());
 ErrorLog.TraceResource("----------------");
 }

 private void TbmCaptured(Train theTrain)
 {
 ErrorLog.AddError("TUnnel.TbmCaptured event entered @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());

 Tunnel theTunnel = this.MyTunnelFactory[theTrain.Tunnel];

 ErrorLog.TraceResource("TbmCaptured event: TBM CAPTURED BY
Train");
 var resource = myTBMs[theTrain.Tunnel];
 ErrorLog.TraceResource("tbm.Available = " +
resource.Available.ToString());
 ErrorLog.TraceResource("resource.ServersPreempted= " +
resource.ServersPreempted.ToString());
 ErrorLog.TraceResource("-------------------------------");

220

 Tbm theTbm = theTunnel.GetTbm();
 WorkState[theTbm] = TbmWorkState.Excavating;
 theTbm.UpdateAttributeValues(this.fedAmb.CurrentTime +
fedAmb.Lookahead, tbmAttributes.WorkState, TbmWorkState.Excavating);

 theTrain.WorkState = TrainWorkState.Loading;
 theTunnel.CrewActivity = TunnelCrewActivity.TbmOperation;

 if (theTbm.EquipmentState == EquipmentState.Functional)
 {
 ErrorLog.AddError("TbmCaptured event condition passed @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 MyEngine.ScheduleEvent(theTunnel, ExcavatingEvent, 0);
 // update the current chainage of tunnel.
 if (theTrain.CartsCounter == 0 | theTunnel.CurrentChainage >
theTbm.GantryLength)
 theTunnel.CurrentChainage += 1;
 }
 else System.Diagnostics.Debug.WriteLine("TBM captured but not
Functional.");

 theTrain.UpdateAttributeValues(this.fedAmb.CurrentTime +
fedAmb.Lookahead);
 theTunnel.UpdateAttributeValues(this.fedAmb.CurrentTime +
fedAmb.Lookahead);
 }

 private void Excavating(Tunnel theTunnel)
 {
 ErrorLog.AddError("Excavating event entered. @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString()
 + " Chainage = " + theTunnel.CurrentChainage.ToString()+ "-------------
---------------");
 Train theTrain = getTheTrainAtTunnelFace(theTunnel);
 if (theTrain == null)
 {
 ErrorLog.AddError("null currentTrain in excavating event.");
 System.Diagnostics.Debug.WriteLine("Null getCurrentTrain in
Excavating event");
 return;
 }

 GeotechnicalSection theGeotechnicalSection =
MyGeotechnicalSectionFactory[theTunnel.CurrentGeotechnicalSection];
 double duration;

221

 //dirt amount should be constrained by cart capacity and Tbm stroke length.
 double dirtAmount = Math.Min((theTrain.CapacityPerCart *
theTrain.MuckCartCount),
 (theTunnel.ExcavationArea * 1 *
theGeotechnicalSection.SoilSwellFactor));
 Tbm theTbm = theTunnel.GetTbm();
 List<ObjectAttributeValuePair<Tbm>> tbmUpdates = new
List<ObjectAttributeValuePair<Tbm>>(2);

 // if the gantry is not build successfully, then there is only one cart used for
removing dirt
 if (theTunnel.CurrentChainage <= theTbm.GantryLength)
 {
 theTrain.CartsCounter += 1;

 double count = Math.Ceiling(dirtAmount / theTrain.CapacityPerCart);
 duration = 1 / theGeotechnicalSection.NextAdvanceRate.Sample() /
count; // the unit of nextAdvanceRate is m/second

 if (count > theTrain.CartsCounter) // if this is NOT the last cart to load,
then ...
 {
 ErrorLog.AddError("Excavating event second condition entered. @ "
+ this.calculateDateTime(fedAmb.CurrentTime).ToString());
 theTunnel.ExcavatedDirtVolume += theTrain.CapacityPerCart;

 WorkState[theTbm] = TbmWorkState.Waiting;
 tbmUpdates.Add(tbmAttributes.WorkState, TbmWorkState.Waiting);
 theTunnel.UpdateAttributeValues(MyEngine.TimeNow + duration,
tunnelAttributes.CrewActivity, TunnelCrewActivity.WaitingTrain);
 }
 else // if this is the last cart to load, then ...
 {
 ErrorLog.AddError("Excavating event third condition entered. @ "
 + this.calculateDateTime(fedAmb.CurrentTime).ToString());

 // always fill a full cart during gantry installation phase;
 theTunnel.ExcavatedDirtVolume += theTrain.CapacityPerCart;
 theTrain.CurrentDirtVolume = theTrain.CapacityPerCart;
 theTrain.CartsCounter = 0;
 WorkState[theTbm] = TbmWorkState.Resetting;
 tbmUpdates.Add(tbmAttributes.WorkState,
TbmWorkState.Resetting);

 MyEngine.ScheduleEvent(theTunnel, ResettingEvent, duration);

222

 //Added by Ramzi Labban to send update on qty_on_hand to
procurement
 //** Begin **

myConcrete.AttributeOwnershipAcquisition(concreteAttributes.Quantity);
 myConcrete.Quantity--;
 myConcrete.UpdateAttributeValues(MyEngine.TimeNow +
fedAmb.Lookahead);

myConcrete.UnconditionalAttributeOwnershipDivestiture(concreteAttributes.Qua
ntity);
 //** End**
 }
 }
 else // if the gantry has been built successfully, then a train contains many
carts in removing dirt.
 {
 ErrorLog.AddError("Excavating event fourth condition entered. @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 duration = 1 / theGeotechnicalSection.NextAdvanceRate.Sample(); //
the unit of nextAdvanceRate is m/s
 theTunnel.ExcavatedDirtVolume += dirtAmount;

 this.MyEngine.ScheduleEvent(theTunnel, ResettingEvent, duration);

 WorkState[theTbm] = TbmWorkState.Resetting;
 tbmUpdates.Add(tbmAttributes.WorkState, TbmWorkState.Resetting);
 theTrain.CurrentDirtVolume = dirtAmount;

 //Added by Ramzi Labban to send update on qty_on_hand to
procurement
 //** Begin **

myConcrete.AttributeOwnershipAcquisition(concreteAttributes.Quantity);
 myConcrete.Quantity--;
 myConcrete.UpdateAttributeValues(MyEngine.TimeNow + 61);

myConcrete.UnconditionalAttributeOwnershipDivestiture(concreteAttributes.Qua
ntity);
 //** End**
 }

 //always release tbm when finish loading
 ErrorLog.AddError(" schedule ReleaseTbmEvent from excavating event");
 MyEngine.ScheduleEvent(theTrain, ReleaseTbmEvent, duration);

223

 if (duration < fedAmb.Lookahead) duration = fedAmb.Lookahead;

 theTrain.UpdateAttributeValues(MyEngine.TimeNow + duration);
 theTunnel.UpdateAttributeValues(MyEngine.TimeNow + duration);
 theGeotechnicalSection.UpdateAttributeValues("SectionState",
MyEngine.TimeNow + duration);

 theTbm.EnergyConsumption += EnergyRateOfTbm(theTunnel,
TbmWorkState.Excavating) * duration;//KWh
 theTbm.UpdateAttributeValues(MyEngine.TimeNow + duration,
tbmUpdates);
 }

 private void Resetting(Tunnel theTunnel)
 {
 ErrorLog.AddError("Resetting event entered @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 double duration = theTunnel.GetTbm().ResettingDuration.Sample();
 if (duration < fedAmb.Lookahead)
 duration = fedAmb.Lookahead;

 this.MyEngine.ScheduleEvent(theTunnel, LiningEvent, duration); //
preemption takes care of breakdown

 Tbm theTbm = theTunnel.GetTbm();
 theTbm.EnergyConsumption += EnergyRateOfTbm(theTunnel,
TbmWorkState.Resetting) * duration / 3600;
 WorkState[theTbm] = TbmWorkState.Lining;
 List<ObjectAttributeValuePair<Tbm>> tbmUpdates = new
List<ObjectAttributeValuePair<Tbm>>(2);
 tbmUpdates.Add(tbmAttributes.EnergyConsumption,
theTbm.EnergyConsumption);
 tbmUpdates.Add(tbmAttributes.WorkState, TbmWorkState.Lining);
 theTbm.UpdateAttributeValues(MyEngine.TimeNow + duration,
tbmUpdates);
 theTunnel.UpdateAttributeValues(MyEngine.TimeNow + duration);
 }

 private void Lining(Tunnel theTunnel)
 {
 ErrorLog.AddError("Lining event entered. @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());

 double duration =
Math.Max(theTunnel.GetTbm().LiningDuration.Sample(), fedAmb.Lookahead);

224

 Tbm theTbm = theTunnel.GetTbm();
 theTbm.EnergyConsumption += EnergyRateOfTbm(theTunnel,
TbmWorkState.Lining) * duration;
 theTbm.UpdateAttributeValues(MyEngine.TimeNow + duration,
tbmAttributes.EnergyConsumption, theTbm.EnergyConsumption);

 CheckUtility(theTunnel, duration);
 CheckShift(theTunnel, duration);
 }

 private void ExtendUtility(Tunnel theTunnel)
 {
 ErrorLog.AddError("ExtendUtility event entered @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 double duration = theTunnel.ExtendUtilityDuration.Sample();

 CheckGantry(theTunnel, duration);

 Tbm theTbm = theTunnel.GetTbm();
 theTbm.EnergyConsumption += EnergyRateOfTbm(theTunnel,
TbmWorkState.Waiting) * duration;
 theTbm.UpdateAttributeValues(MyEngine.TimeNow +
fedAmb.Lookahead, tbmAttributes.EnergyConsumption,
theTbm.EnergyConsumption);
 }

 private void ExtendGantryConveyer(Tunnel theTunnel)
 {
 ErrorLog.AddError("ExtendGantryConveyer event entered @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 double duration = 0;
 if (theTunnel.GetTbm().GantryLength >= theTunnel.CurrentChainage)
 {
 duration = theTunnel.GetTbm().GantryInstallationDuration.Sample();
 }
 else if ((theTunnel.CurrentChainage - theTunnel.GetTbm().GantryLength)
== theTunnel.GetTbm().GantrySectionLength)
 {
 duration = theTunnel.GetTbm().ConveyorInstallationDuration.Sample();
 theTunnel.State = TunnelState.SingleTrainConstructing;
 }

 Tbm theTbm = theTunnel.GetTbm();
 theTbm.EnergyConsumption += EnergyRateOfTbm(theTunnel,
TbmWorkState.Waiting) * duration;

225

 theTbm.UpdateAttributeValues(MyEngine.TimeNow + duration,
tbmAttributes.EnergyConsumption, theTbm.EnergyConsumption);

 CheckTrack(theTunnel, duration);
 theTunnel.UpdateAttributeValues(MyEngine.TimeNow + duration);
 }

 private void ExtendTrack(Tunnel theTunnel)
 {
 ErrorLog.AddError("ExtendTrack event entered @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 double duration = theTunnel.ExtendTrackDuration.Sample();

 Tbm theTbm = theTunnel.GetTbm();
 theTbm.EnergyConsumption += EnergyRateOfTbm(theTunnel,
TbmWorkState.Waiting) * duration;
 theTbm.UpdateAttributeValues(MyEngine.TimeNow + duration,
tbmAttributes.EnergyConsumption, theTbm.EnergyConsumption);

 CheckSurvey(theTunnel, duration);
 }

 private void Survey(Tunnel theTunnel)
 {
 ErrorLog.AddError("Survey event entered @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 double duration = theTunnel.SurveyDuration.Sample();

 Tbm theTbm = theTunnel.GetTbm();
 theTbm.EnergyConsumption += EnergyRateOfTbm(theTunnel,
TbmWorkState.Waiting) * duration;
 theTbm.UpdateAttributeValues(MyEngine.TimeNow + duration,
tbmAttributes.EnergyConsumption, theTbm.EnergyConsumption);

 ErrorLog.AddError("***++++++Schedule FinalizeOneMeterEvent @ " +
this.calculateDateTime(Math.Max(0, duration - fedAmb.Lookahead)).ToString());
 this.MyEngine.ScheduleEvent(theTunnel, FinalizeOneMeterEvent,
Math.Max(0, duration - fedAmb.Lookahead));
 }

 private void FinalizeOneMeter(Tunnel theTunnel)
 {
 ErrorLog.AddError("Tunnel FinalizeOneMeter entered @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 double duration = fedAmb.Lookahead;
 double timeOfUpdate = MyEngine.TimeNow + duration;

226

 theTunnel.UpdateAttributeValues(timeOfUpdate,
tunnelAttributes.CrewActivity, TunnelCrewActivity.WaitingTrain);
 ErrorLog.AddError(" change theTunnel.CrewActivity = " +
theTunnel.CrewActivity.ToString()
 + " @ " + this.calculateDateTime(timeOfUpdate).ToString());

 GeotechnicalSection theGeotechnicalSection =
theTunnel.GetCurrentGeotechnicalSection();
 double Check = theGeotechnicalSection.GetEndChainage() -
theTunnel.CurrentChainage;

 if ((Check <= 0.0) && (Check > -1.0)) // if this is the end of a section,
then...
 {
 ErrorLog.AddError("CheckSection first condition block entered.");
 theGeotechnicalSection.State = TunnelSectionState.Complete;
 theGeotechnicalSection.FinishTime = timeOfUpdate;
 theGeotechnicalSection.UpdateAttributeValues(timeOfUpdate);

 if (theGeotechnicalSection.GetSectionNumber() ==
theTunnel.GetGeotechnicalSectionCount())
 {
 theTunnel.UpdateAttributeValues(timeOfUpdate,
tunnelAttributes.State, TunnelState.Finished);
 theTunnel.UpdateAttributeValues(timeOfUpdate,
tunnelAttributes.FinishTime, theGeotechnicalSection.FinishTime);
 }
 ErrorLog.AddError("StartOneGeotechnicalSectionEvent scheduled after
one section completed. It is scheduled to occur @ "
 + timeOfUpdate.ToString() + " @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 MyEngine.ScheduleEvent(theTunnel,
StartOneGeotechnicalSectionEvent, duration);
 theTunnel.GetTbm().UpdateAttributeValues(timeOfUpdate,
tbmAttributes.ResourceState, ResourceState.Idle);
 }
 else //ELSE: this is not the end of a section:
 {
 ErrorLog.AddError("CheckSection second condition block entered:
Schedule ProcessWaitingTrain Event @ " +
calculateDateTime(MyEngine.TimeNow + duration));
 MyEngine.ScheduleEvent(theTunnel, ProcessWaitingTrainEvent,
duration);
 }
 }

227

 private void ReleaseTbm(Train theTrain)
 {
 ErrorLog.AddError("ReleaseTbm event entered @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 ErrorLog.TraceResource("ReleaseTbm Event: RELEASE TBM BY
train");

 var resource = myTBMs[theTrain.Tunnel];
 this.MyEngine.ReleaseResource(theTrain, resource, 1);

 // the train should get track first, then start hauling.
 theTrain.WorkState = TrainWorkState.HaulingToUndercut;
 theTrain.Position = TrainLocation.Tunnel;
 theTrain.UpdateAttributeValues(MyEngine.TimeNow +
fedAmb.Lookahead);

theTrain.UnconditionalAttributeOwnershipDivestiture(theTrainAttributes1.ToArr
ay());

 ErrorLog.TraceResource("resource.InUse = " +
resource.InUse.ToString());
 ErrorLog.TraceResource("resource.ServersPreempted= " +
resource.ServersPreempted.ToString());

ErrorLog.TraceResource("+++++++++++++++++++++++++++++++++++++");
 }

 private void BreakdownEventHandler(BreakdownEntity entity)
 {
 Tunnel tunnel = entity.Tunnel;
 Resource resource = this.myTBMs[tunnel.GetObjectInstanceHandle()];
 WaitingFile file = this.myTbmFiles[tunnel.GetObjectInstanceHandle()];
 Train theTrain = getTheTrainOwningTbm(tunnel);
 this.lastChainage = nestTunnel.CurrentChainage;

 if (!this.theShift.IsWorking)
 ErrorLog.shiftReport("=BD event entered when shift is not working===
@ " + this.calculateDateTime(fedAmb.CurrentTime).ToString());
 ErrorLog.AddError("======================Breakdown=====
event entered @ " + this.calculateDateTime(fedAmb.CurrentTime).ToString());
 ErrorLog.TraceResource("BreakdownEventHandler event: PREEMPT
TBM by breakdownEntity @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString() + " Logical time = " +
calculateDateTime(MyEngine.TimeNow).ToString());
 if (theTrain != null)

228

 {
 ErrorLog.TraceResource(" this.theTrain" + theTrain.ID +
".IsSuspended = " + theTrain.IsSuspended.ToString() + "****************");
 ErrorLog.TraceResource(" this.theTrain" + theTrain.ID +
".IsScheduled = " + theTrain.IsScheduled.ToString());
 }
 ErrorLog.TraceResource("----------------");

 // preempt resource with a priority greater than 1
 this.MyEngine.PreemptResource(this.breakdownEntity, resource,
EmptyActionEvent, file, 2.0);

 if (theTrain != null)
 {
 ErrorLog.TraceResource(" this.theTrain" + theTrain.ID +
".IsSuspended = " + theTrain.IsSuspended.ToString() + "****************");
 ErrorLog.TraceResource(" this.theTrain" + theTrain.ID +
".IsScheduled = " + theTrain.IsScheduled.ToString());
 }
 else
 {
 ErrorLog.TraceResource(" theTrain is NULL.");
 ErrorLog.TraceResource("
resource.ServersOwnedByEntity(breakdownEntity) = "
 + resource.ServersOwnedByEntity(breakdownEntity).ToString());

 }
 ErrorLog.TraceResource("resource.ServersPreempted= " +
resource.ServersPreempted.ToString());
 ErrorLog.TraceResource("-------------------------------");
 // TODO: see how preemption affects timing
 }

 private void RepairEventHandler(BreakdownEntity entity)
 {
 Resource resource =
this.myTBMs[entity.Tunnel.GetObjectInstanceHandle()];
 Train theTrain = getTheTrainOwningTbm(entity.Tunnel);

 if (!this.theShift.IsWorking)
 ErrorLog.shiftReport("======RepairEventHandler entered when shift
is not working======== " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());

 ErrorLog.AddError("=================RepairEventHandler event
entered @ " + this.calculateDateTime(fedAmb.CurrentTime).ToString());

229

 if (nestTunnel.CurrentChainage > this.lastChainage)
 ErrorLog.AddError("*************error message: activities going on
during TBM breakdown+++");

 ErrorLog.TraceResource("RepairEventHandler event entered @
currentTime = " + this.calculateDateTime(fedAmb.CurrentTime).ToString() +
"Logical time = " + calculateDateTime(MyEngine.TimeNow).ToString());
 if (theTrain != null)
 {
 ErrorLog.TraceResource(" this.theTrain.IsSuspended = " +
theTrain.IsSuspended.ToString() + "****************");
 ErrorLog.TraceResource(" this.theTrain.IsScheduled = " +
theTrain.IsScheduled.ToString());
 }
 ErrorLog.TraceResource("----------------");

 this.MyEngine.ReleaseResource(this.breakdownEntity, resource, 1);
 if (theTrain != null)
 {
 ErrorLog.TraceResource(" this.theTrain.IsSuspended = " +
theTrain.IsSuspended.ToString() + "****************");
 ErrorLog.TraceResource(" this.theTrain.IsScheduled = " +
theTrain.IsScheduled.ToString());
 }
 ErrorLog.TraceResource("RepairEventHandler: RELEASE TBM from
preemption by BreakdownEntity ");
 ErrorLog.TraceResource("resource.ServersPreempted = " +
resource.ServersPreempted.ToString());

ErrorLog.TraceResource("+++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++");
 }

 private void EmptyAction(Entity entity)
 {
 ErrorLog.AddError("EmptyAction event entered");
 }

 private void ShiftOnEventHandler(Entity entity)
 {
 ErrorLog.TraceResource("Shift ON Event - release all suspended entities -
@ " + this.calculateDateTime(fedAmb.CurrentTime).ToString());
 ErrorLog.AddError("---" +
this.calculateDateTime(fedAmb.CurrentTime).ToString());

230

 ErrorLog.AddError("enter TUnnel . Shift ON Event - release all
suspended entities ");
 ErrorLog.AddError("Tunnel.suspendedEntities.Count = " +
suspendedEntities.ToList().Count.ToString());
 //***********************
 // this part should be removed when multi-suspension working.
 if(this.suspendedEntities.ToList().Count == this.allEntities.ToList().Count)
 {
 ErrorLog.AddError("*************error message: Try to RESUME
entities consecutively twice. RESUME SKIPPED THIS TIME ************");
 }
 else
 {
 //***********END************
 ErrorLog.AddError(" +++++++++ Tunnel.ResumeEntities.Count = " +
suspendedEntities.ToList().Count.ToString());
 this.suspendedEntities.ResumeEntities(MyEngine);
 this.suspendedEntities.UnionWith(this.allEntities);
 }
 }

 private void ShiftOffEventHandler(Entity entity)
 {
 ErrorLog.TraceResource("---Shift OFF event @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 ErrorLog.shiftReport("---Enter Shift OFF event @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 ErrorLog.AddError("-- @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 ErrorLog.AddError("---Enter TUnnel Shift OFF event");

 //***********************
 // this part should be removed when multi-suspension working.
 ErrorLog.AddError("Tunnel.suspendedEntities.Count (before suspend)= "
+ suspendedEntities.ToList().Count.ToString());
 if (this.suspendedEntities.ToList().Count < this.allEntities.ToList().Count
&& !firstShiftControl)
 {
 ErrorLog.AddError("*************error message: Try to suspend
entities consecutively twice.SUSPENSION SKIPPED THIS TIME
Tunnel************");
 //System.Windows.Forms.MessageBox.Show("Error: Attempted to
suspend entity twice.");
 }
 else
 {

231

 //***********END************
 this.suspendedEntities.SuspendEntitiesIfNeed(MyEngine);
 }
 if (firstShiftControl)
 {
 firstShiftControl = false;
 this.suspendedEntities.UnionWith(this.allEntities);
 this.suspendedEntities.SuspendEntitiesIfNeed(MyEngine);
 ErrorLog.AddError("Tunnel.Enter first shift off");
 }
 ErrorLog.AddError("Tunnel.suspendedEntities.Count(after) = " +
suspendedEntities.ToList().Count.ToString());
 }

 private void ProcessWaitingTrain(Tunnel theTunnel)
 {
 ErrorLog.AddError("Enter ProcessWaitingTrain event @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());

 // check if a RequestTbm event has been delayed, then resume it.
 // only when this is not the end of one section; otherwise should wait
startSectionEvent finish.
 Train theTrain = getTheTrainAtTunnelFace(theTunnel);
 if ((theTrain != null) &&
delayedRequestTbm[theTrain.GetObjectInstanceHandle()] == true)
 // no matter the TBM functional or not, always send the request.
Breakdown should be able to take care of it
 {
 MyEngine.ScheduleEvent(theTrain, RequestTbmEvent, 0);
 ErrorLog.AddError(" ++++ RESUME delayed RequestTbm by Train:
RequestTbmEvent_from ProcessWaitingTrain");
 delayedRequestTbm[theTrain.GetObjectInstanceHandle()] = false;
 }
 else ErrorLog.AddError(" No train is waiting for TBM @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 }

 # endregion

 # region fedAmb Time Advance

 private void fedAmb_TimeAdvanceGrant(object sender,
TimeAdvanceGrantEventArgs e)
 {
 ErrorLog.AddError("TunnelFederate TAG to " + e.theTime.ToString() + "
@ " + this.calculateDateTime(e.theTime).ToString());

232

 //Process any internal events that should occur at the current time.
 MyEngine.Simulate(e.theTime);

 ErrorLog.AddError("TunnelFederate NMR to " +
MyEngine.TimeNext.ToString() + " @ " +
this.calculateDateTime(MyEngine.TimeNext).ToString());
 //Advance time to the time of the next internal event.
 rtiAmb.NextMessageRequest(MyEngine.TimeNext);

 //ErrorLog.shiftReport("TUnnel.theShift.IsWorking = " +
this.theShift.IsWorking.ToString() + " @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 }

 private void fedAmb_BeginExecution(object sender, EventArgs e)
 {
 MyEngine.InitializeScenario();
 this.tunnelInfoHost.BeginExecution();

 foreach (Tunnel theTunnel in MyTunnelFactory)
 {

theTunnel.AttributeOwnershipAcquisition(theTunnelAttributes.ToArray());
 // DirtAmountPerMeter = Math.PI *theTunnel.Diameter *
theTunnel.Diameter / 4; //Vary from diff. tunnels.

 //AdvanceRateUpdateMethods selcted =
(AdvanceRateUpdateMethods)cbbMethod.SelectedItem;
 //theTunnel.AdvanceRateUpdateMethod = selcted;
 }

 foreach (GeotechnicalSection theGeotechnicalSection in
MyGeotechnicalSectionFactory)
 {

theGeotechnicalSection.AttributeOwnershipAcquisition(theGeotechnicalSectionA
ttributes.ToArray());
 }

 foreach (Tbm theTbm in MyTbmFactory)
 {
 theTbm.AttributeOwnershipAcquisition(theTbmAttributes.ToArray());
 }
 }

 private void fedAmb_EndExecution(object sender, EventArgs e)

233

 {
 MyEngine.FinalizeScenario();
 }

 # endregion

 # region object management
 private void MyTunnelFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 var theTunnel = MyTunnelFactory[e.theObject];

 // add a new train and its waiting file for each Tunnel
 var Resource = new Resource("Train", 1); // be changable.
 var myResourceFile = new WaitingFile("Train waiting file");

 MyEngine.Resources.Add(Resource);
 MyEngine.WaitingFiles.Add(myResourceFile);
 Resource.WaitingFiles.Add(myResourceFile);
 myTBMs.Add(e.theObject, Resource);
 myTbmFiles.Add(e.theObject, myResourceFile);

 this.allEntities.Add(theTunnel);
 this.allEntities.Add(this.breakdownEntity);
 }

 private void MyTrainFactory_ReflectAttributeValues(object sender,
ReflectAttributeValuesEventArgs e)
 {
 if (e.theValues.Contains(trainAttributes.WorkState.GetAttributeHandle()))
 {
 Train theTrain = MyTrainFactory[e.theObject];
 Tunnel t1 = theTrain.GetTunnel();
 ErrorLog.AddError("TunnelFederate Train" + theTrain.ID +
".WorkState reflect: "
 + theTrain.WorkState.ToString()+ " @ " +
this.calculateDateTime(e.theTime).ToString());
 //THREE conditions are required to schedule capture TBM:
 //1) a train arrived tunnel face;
 //2) all activities around tunnel face have finished, including lining,
extendTrack, Survey and so on.
 //3) it has to be later than StartOneGeotechnicalSectionEvent
 // STILL, some train got missed fro mthe first two condition:
 // a) when train arrived, the tunnel has not finished all acitivities such as
survey;
 // b) when check section, the train has not arrived tunnel face yet.

234

 Tunnel theTunnel = MyTunnelFactory[theTrain.Tunnel];
 if (theTrain.WorkState == TrainWorkState.WaitTbm)
 {
 GeotechnicalSection theSection =
MyGeotechnicalSectionFactory[theTunnel.CurrentGeotechnicalSection];
 if
(!theTrain.IsAttributeOwnedByFederate(trainAttributes.WorkState.GetAttributeH
andle()))

theTrain.AttributeOwnershipAcquisition(theTrainAttributes1.ToArray());

 if ((theTunnel.CrewActivity == TunnelCrewActivity.WaitingTrain)
&&
 (theSection.State == TunnelSectionState.Constructing))
 {
 MyEngine.ScheduleEvent(theTrain, RequestTbmEvent, e.theTime
- MyEngine.TimeNow);
 ErrorLog.AddError(" +++++ RequestTbm when a Train arrived
tunnle face.@ " + this.calculateDateTime(e.theTime).ToString());
 }
 else
 {
 delayedRequestTbm[theTrain.GetObjectInstanceHandle()] = true;
 ErrorLog.AddError("++++ --------SET delayedRequestTbm _
RequestTbmEvent, when Train ARRIVED tunnel face: @ " +
this.calculateDateTime(e.theTime).ToString());
 }
 ErrorLog.AddError("++++ theTunnel.CrewActivity = " +
theTunnel.CrewActivity.ToString()
 + " @ " + this.calculateDateTime(e.theTime).ToString());
 ErrorLog.AddError("++++ theSection.State == " +
theSection.State.ToString());
 }
 }
 }

 private void MyTbmFactory_ReflectAttributeValues(object sender,
ReflectAttributeValuesEventArgs e)
 {
 Tbm theTbm = MyTbmFactory[e.theObject];
 Tunnel theTunnel = this.MyTunnelFactory[theTbm.Tunnel];

 if
(e.theValues.Contains(tbmAttributes.EquipmentState.GetAttributeHandle())
&& !double.IsNaN(e.theTime))
 {

235

 ErrorLog.AddError("TunnelFederate Tbm.EquipmentState reflect: " +
theTbm.EquipmentState.ToString()
 + " @ " + calculateDateTime(e.theTime).ToString());
 if (theTbm.EquipmentState == EquipmentState.Down)
 {
 this.MyEngine.ScheduleEvent(new BreakdownEntity(theTunnel),
BreakdownEvent, e.theTime - MyEngine.TimeNow);
 }
 else if (theTbm.EquipmentState == EquipmentState.Functional)
 {
 double duration = Math.Max(0, (e.theTime - fireTbmRepairDuration
- MyEngine.TimeNow));
 //make sure that (e.theTime - fireTbmRepairDuration -
MyEngine.TimeNow)>=0
 this.MyEngine.ScheduleEvent(new BreakdownEntity(theTunnel),
RepairEvent, e.theTime - MyEngine.TimeNow);
 }
 }
 }

 private void MyWorkingShaftFactory_ReflectAttributeValues(object sender,
ReflectAttributeValuesEventArgs e)
 {
 // if a working shaft is finished, let the corresponding tunnel start working.
 if (e.theValues.Contains(shaftAttributes.State.GetAttributeHandle()))
 {
 Shaft theShaft = MyWorkingShaftFactory[e.theObject];
 if (theShaft.State == ShaftState.Finished)
 {
 foreach (Tunnel theTunnel in MyTunnelFactory)
 {
 if (theShaft == theTunnel.GetWorkingShaft())
 {
 if (theTunnel.GetUndercut() == null)
 {
 ErrorLog.AddError("StartOneGeotechnicalSectionEvent
scheduled in ShaftFactory reflect. @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 MyEngine.ScheduleEvent(theTunnel,
StartOneGeotechnicalSectionEvent, e.theTime - MyEngine.TimeNow);
 }
 else ErrorLog.AddError("StartOneGeotechnicalSectionEvent
until tbm installed.");
 }
 }
 }

236

 }
 }

 private void MyTunnelFactory_ReflectAttributeValues(object sender,
ReflectAttributeValuesEventArgs e)
 {
 Tunnel theTunnel = MyTunnelFactory[e.theObject];
 if (e.theValues.Contains(tunnelAttributes.Name.GetAttributeHandle())
 && theTunnel.Name == "NEST")
 {
 this.nestTunnel = theTunnel;
 }
 }

 private void MyTrainFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 delayedRequestTbm.Add(e.theObject, false);
 this.allEntities.Add(MyTrainFactory[e.theObject]);
 }

 private void myShiftFactory_ReflectAttributeValues(object sender,
ReflectAttributeValuesEventArgs e)
 {
 if (e.theTime > 0 &&
e.theValues.Contains(shiftAttributes.IsWorking.GetAttributeHandle()))
 {
 if (this.nestTunnel.State != TunnelState.Unstarted &&
this.nestTunnel.State != TunnelState.Finished)
 {
 var shift = myShiftFactory[e.theObject];
 double timeOfUpdate = Math.Max(e.theTime,
this.rtiAmb.QueryLogicalTime() + fedAmb.Lookahead);
 if (shift.IsWorking)
 {
 foreach (Tbm theTbm in MyTbmFactory)
 {
 theTbm.UpdateAttributeValues(timeOfUpdate,
tbmAttributes.ResourceState, ResourceState.Busy);
 }
 ErrorLog.shiftReport("---
--");
 ErrorLog.shiftReport("+++ TunnelFederate.ShiftOnEvent @ " +
this.calculateDateTime(e.theTime).ToString() + " ResourceState.Busy");
 ErrorLog.AddError("+++ TunnelFederate.Shift On Event @ " +
this.calculateDateTime(e.theTime).ToString() + " ResourceState.Busy");

237

 MyEngine.ScheduleEvent(this.shiftControlEntity, ShiftOnEvent,
e.theTime - MyEngine.TimeNow);
 }
 else
 {
 ErrorLog.AddError("++++++++++++++++++ From Tunnel:
nestTunnel.CrewActivity = " + nestTunnel.CrewActivity.ToString()
 + " @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 TimeSpan time =
this.theCalendar.StartDateTime.AddSeconds(e.theTime).TimeOfDay;
 TimeSpan target = TimeSpan.FromSeconds(this.theShift.StartTime)
+ TimeSpan.FromSeconds(this.theShift.Duration);
 Train theTrain = nestTunnel.getFirstTrain();
 if (time < target || (time == target &&
this.nestTunnel.CrewActivity != TunnelCrewActivity.TbmOperation &&
theTrain.CartsCounter == 0))
 // if this is not the end of a shift or all activities around the tunnel
face has been finished.
 {
 foreach (Tbm theTbm in MyTbmFactory)
 {
 theTbm.UpdateAttributeValues(timeOfUpdate,
tbmAttributes.ResourceState, ResourceState.Idle);
 }
 ErrorLog.shiftReport("++++++ TunnelFederate.Shedule
ShiftOff @ " + this.calculateDateTime(e.theTime).ToString() + "
ResourceState.Idle");

 MyEngine.ScheduleEvent(this.shiftControlEntity, ShiftOffEvent,
e.theTime - MyEngine.TimeNow);

 // Send a message of a shift off.
 if (time == target) // if this is not the end of a shift
 {
 ErrorLog.AddError("+++++++++++send an interaction of
finishing lining a meter = " + this.calculateDateTime(e.theTime).ToString());
 ErrorLog.shiftReport("send an interaction of finishing lining a
meter = " + this.calculateDateTime(e.theTime).ToString());

 double time1 = e.theTime - MyEngine.TimeNow;
 double time2 = e.theTime - rtiAmb.QueryLogicalTime();
 double time3 = e.theTime - fedAmb.CurrentTime;

 this.ShiftOffTerminal.SharpOff = true;

238

 this.ShiftOffTerminal.Tunnel =
nestTunnel.GetObjectInstanceHandle();
 this.ShiftOffTerminal.SendInteraction(Math.Max(e.theTime,
rtiAmb.QueryLogicalTime() + fedAmb.Lookahead));
 }
 }
 else
 {
 ErrorLog.AddError("Tunnel Shift OFF Event not scheduled @ "
+ this.calculateDateTime(e.theTime).ToString());
 }
 }
 }
 }
 }

 private void calendarFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 this.theCalendar = calendarFactory[e.theObject];
 }

 private void myShiftFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 this.theShift = myShiftFactory[e.theObject];
 }

 private void tbmInstalledTerminal_ReceiveInteraction(object sender,
ReceiveInteractionEventArgs e)
 {
 var theParameter = this.rtiAmb.GetParameterHandle(e.theInteraction,
"TailTunnel");
 if (e.theValues.Contains(theParameter))
 {
 var tailTunnel =
(TailTunnel)this.undercutFactory[(ObjectInstanceHandle)e.theValues[theParamet
er]];
 var tunnel = tailTunnel.GetTunnel();

 // Schedule the start of the first geotechnical section of the associated
tunnel.
 ErrorLog.AddError("StartOneGeotechnicalSectionEvent scheduled
when TBM installed. @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());

239

 MyEngine.ScheduleEvent(tunnel, StartOneGeotechnicalSectionEvent,
e.theTime - MyEngine.TimeNow);
 }
 }

 private void switchInstalledTerminal_ReceiveInteraction(object sender,
ReceiveInteractionEventArgs e)
 {
 var theParameter = this.rtiAmb.GetParameterHandle(e.theInteraction,
"Undercut");
 if (e.theValues.Contains(theParameter))
 {
 var tailTunnel =
(TailTunnel)this.undercutFactory[(ObjectInstanceHandle)e.theValues[theParamet
er]];

 // Schedule the start of the next geotechnical section of the associated
tunnel.
 ErrorLog.AddError("StartOneGeotechnicalSectionEvent scheduled
when switch installed." +
 " @ " + this.calculateDateTime(fedAmb.CurrentTime).ToString());
 MyEngine.ScheduleEvent(tailTunnel.GetTunnel(),
StartOneGeotechnicalSectionEvent, e.theTime - MyEngine.TimeNow);
 }
 }

 private void myConcreteFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 myConcrete = myConcreteFactory[e.theObject];
 }

 # endregion

 private double fireTbmRepairDuration
 {
 get { return this.fedAmb.Lookahead + 1.0; }
 }

 #region Private Nested Classes

 #region BreakdownEntity
 private class BreakdownEntity : Entity
 {
 public Tunnel Tunnel { get; set; }

240

 public BreakdownEntity(Tunnel tunnel)
 {
 this.Tunnel = tunnel;
 }
 }
 #endregion

 #endregion

 }
}

241

d. Dirt Removal Federate

using System;
using System.Collections.Generic;
using System.Diagnostics;
using Cosye.Framework;
using Cosye.Hla.Rti;
using Cosye.Tunneling.TunnelFederate;
using Simphony.Mathematics;
using Simphony.Simulation;

namespace Cosye.Tunneling.DirtRemoval
{
 public partial class DirtRemoval : FederateControl
 {
 #region Private Readonly Fields
 private readonly List<string> theTrainAttributes2 = new List<string>();
 private readonly List<string> theTrainAttributes1 = new List<string>();
 private readonly List<string> CraneEngeryAttributes = new List<string>();

 private readonly double hourToSeconds = 1D * 60D * 60D; // convert a hour
to seconds.

 private readonly Dictionary<Tunnel, TunnelState> LastTunnelState = new
Dictionary<Tunnel, TunnelState>();
 # endregion

 #region Private Fields

 private BasicDiscreteEventEngine MyEngine = new
BasicDiscreteEventEngine();
 private readonly Dictionary<ObjectInstanceHandle, Resource> myCranes =
new Dictionary<ObjectInstanceHandle, Resource>();
 private readonly Dictionary<ObjectInstanceHandle, WaitingFile>
waitingMyCranes = new Dictionary<ObjectInstanceHandle, WaitingFile>();
 private readonly Dictionary<ObjectInstanceHandle, Resource> myTracks =
new Dictionary<ObjectInstanceHandle, Resource>();
 private readonly Dictionary<ObjectInstanceHandle, WaitingFile>
waitingMyTracks = new Dictionary<ObjectInstanceHandle, WaitingFile>();

 private Action<Train> RequestTrackEvent;
 private Action<Train> TrackCapturedEvent;
 private Action<Train> ReturningToTunnelFaceEvent;
 private Action<Train> ArrivedTunnelFaceEvent;

242

 private Action<Train> HaulingToUndercutEvent;
 private Action<Train> RequestCraneEvent;
 private Action<Train> CraneCapturedEvent;
 private Action<Train> DumpingEvent;
 private Action<Train> ReleaseCraneEvent;
 private Action<GeotechnicalSection> ReleaseTrackEvent;

 private Weather MyWeather;
 private Entity shiftControlEntity = new Entity();
 private Calendar theCalendar;
 private Shift theShift;
 private Action<Entity> ShiftOnEvent;
 private Action<Entity> ShiftOffEvent;
 private Action<Entity> EmptyActionEvent;
 private ShiftAwareEntities allEntities = new ShiftAwareEntities();
 private ShiftAwareEntities suspendedEntities = new ShiftAwareEntities();
 private Tunnel nestTunnel;
 private bool firstShiftControl=true;
 #endregion

 #region Public Constructors

 #region DirtRemoval()
 public DirtRemoval()
 {
 InitializeComponent();

 theTrainAttributes2.Add(trainAttributes.CurrentDirtVolume);
 theTrainAttributes2.Add(trainAttributes.CartsCounter);
 theTrainAttributes2.Add(trainAttributes.Position);
 //theTrainAttributes2.Add(trainAttributes.MuckCartCount);
 theTrainAttributes2.Add(trainAttributes.CapturedTrack);
 //theTrainAttributes2.Add(trainAttributes.EmptySpeed);
 theTrainAttributes2.Add(trainAttributes.EnergyConsumption);
 //theTrainAttributes2.Add(trainAttributes.CostPerHour);
 //theTrainAttributes2.Add(trainAttributes.LoadedSpeed);
 theTrainAttributes2.Add(trainAttributes.WorkHours);
 theTrainAttributes2.Add(trainAttributes.ResourceState);
 theTrainAttributes2.Add(trainAttributes.WorkState);

 theTrainAttributes1.Add(trainAttributes.CurrentDirtVolume);
 theTrainAttributes1.Add(trainAttributes.CartsCounter);
 theTrainAttributes1.Add(trainAttributes.EnergyConsumption);
 theTrainAttributes1.Add(trainAttributes.Position);
 theTrainAttributes1.Add(trainAttributes.WorkState);

243

 CraneEngeryAttributes.Add(craneAttributes.EmissionFactor);
 CraneEngeryAttributes.Add(craneAttributes.EnergyConsumption);
 CraneEngeryAttributes.Add(craneAttributes.WorkHours);

 // Initialize events.
 RequestTrackEvent = new Action<Train>(RequestTrack);
 TrackCapturedEvent = new Action<Train>(TrackCaptured);
 ReturningToTunnelFaceEvent = new
Action<Train>(ReturningToTunnelFace);
 ArrivedTunnelFaceEvent = new Action<Train>(ArrivedTunnelFace);
 HaulingToUndercutEvent = new Action<Train>(HaulingToUndercut);
 RequestCraneEvent = new Action<Train>(CaptureCrane);
 CraneCapturedEvent = new Action<Train>(CraneCaptured);
 DumpingEvent = new Action<Train>(DumpingAndLoading);
 ReleaseCraneEvent = new Action<Train>(ReleaseCrane);
 ReleaseTrackEvent = new
Action<GeotechnicalSection>(ReleaseTrack);

 ShiftOffEvent = new Action<Entity>(ShiftOffEventHandler);
 ShiftOnEvent = new Action<Entity>(ShiftOnEventHandler);
 EmptyActionEvent = new Action<Entity>(EmptyAction);

 MyEngine.InitializeEngine();
 }
 #endregion

 #endregion

 #region Private Methods
 #region calculateDateTime(double)
 private DateTime calculateDateTime(double logicTime)
 {
 if (logicTime > 0 && !double.IsInfinity(logicTime))
 return this.theCalendar.StartDateTime.AddSeconds(logicTime);
 else return DateTime.MinValue;
 }
 #endregion

 #region EnergyConsumptionRateOfTrain(Train)
 private double EnergyConsumptionRateOfTrain(Train theTrain)
 {
 double Rate = 0;

 //Train : 1.704 * weight of soil (t) * the traveling distance(ft)/100
 // 1.704 * soil weight(t)*D(m)* 3.28 (ft/m) /100

244

 if (theTrain.WorkState == TrainWorkState.HaulingToUndercut) //
hauling means moving from tunnel face to undercut.
 {
 // average dirt density = 120 lb/cubic feet = 1.922 (t/cubic meter)
 // the weight of one locomotive = 5897 kilograms = 5.897 t; the
weight of one empty muck car = 1 t
 // 1 m = 3.28 feet
 Rate = 1.704 * (theTrain.CurrentDirtVolume * 1.922 + 5.897 +
theTrain.MuckCartCount) * 3.28 / 100 / 1000; // KWh /m
 }
 if (theTrain.WorkState == TrainWorkState.ReturningToTbm)
 {
 Tunnel theTunnel = this.MyTunnelFactory[theTrain.Tunnel];
 double linerWeight = (theTunnel.CurrentChainage <
theTunnel.GetTbm().GantryLength ? 1 / theTrain.MuckCartCount : 1) * 4.8; // the
weight of one liner (four segments) : 4.8 t
 Rate = 1.704 * (linerWeight + 5.897 + theTrain.MuckCartCount) *
3.28 / 100 / 1000; // KWh /m
 }
 //// 200 KWh per hour for working (hauling and returning), 20 KWh
per hour for Idling
 //if (theTrain.WorkState == Tr);ainWorkState.Hauling)
 //{
 // Rate = 200 / 3600D;
 //}
 //else if (theTrain.WorkState == TrainWorkState.ReturningToTbm)
 //{
 // Rate = 200D / 3600D;
 //}
 //else
 //{
 // Rate = 20D / 3600D;
 //}
 return Rate;
 }
 #endregion

 #region InitializeInterface(Train)
 private void InitializeInterface(Train theTrain)
 {
 // Initialize the interface.
 Tunnel theTunnel = this.MyTunnelFactory[theTrain.Tunnel];
 txtTunnelName.Text = theTunnel.Name.ToString();
 txtTrainID.Text = theTrain.ID.ToString();

 txtTrainStatus.Text = theTrain.WorkState.ToString();

245

 // "Unstarted";

 this.Refresh();
 }
 #endregion

 #region UpdateMyInterface(Train)
 private void UpdateMyInterface(Train theTrain)
 {
 // Update Interface.
 txtTrainID.Text = theTrain.ID.ToString();
 txtTrainLocation.Text = theTrain.Position.ToString();
 txtDirtAmount.Text = theTrain.CurrentDirtVolume.ToString("0.00");
 txtLogicalTime.Text = (MyEngine.TimeNow /
hourToSeconds).ToString("0.00");
 txtTrainStatus.Text = theTrain.WorkState.ToString();

 //double pro = Math.Round(100 * theTrain.CurrentLoad /
theTrain.CapacityPerCart / theTrain.NumberOfMuckCars);
 //LoadingProgressBar.Value = System.Convert.ToInt16(pro);
 //txtWindSpeed.Text = MyWeather.SpeedOfMaxGust.ToString();

 this.Refresh();
 //this.txtDirtAmount.TextChanged += new
System.EventHandler(this.txtDirtAmount_TextChanged);
 }
 #endregion

 #region getFirstTrain(Tunnel)
 private Train getFirstTrain(Tunnel theTunnel)
 {
 Train currentTrain = null;
 foreach (Train theTrain in MyTrainFactory)
 {
 if (theTrain.Tunnel == theTunnel.GetObjectInstanceHandle())
 {
 if (currentTrain == null) currentTrain = theTrain;
 else if (currentTrain.ID > theTrain.ID)
 {
 currentTrain = theTrain;
 }
 }
 }
 return currentTrain;
 }
 #endregion

246

 #region getSecondTrain(Tunnel)
 private Train getSecondTrain(Tunnel theTunnel)
 {
 Train currentTrain = null;
 foreach (Train theTrain in MyTrainFactory)
 {
 if (theTrain.Tunnel == theTunnel.GetObjectInstanceHandle())
 {
 if (currentTrain == null) currentTrain = theTrain;
 else if (currentTrain.ID < theTrain.ID)
 {
 currentTrain = theTrain;
 }
 }
 }
 return currentTrain;
 }
 #endregion

 #region LoadingDuration(Train)
 private double LoadingDuration(Train theTrain)
 {
 double duration = theTrain.MaterialLoadingDuration.Sample();

 if (MyWeather.SpeedOfMaxGust > 35)
 {
 duration += duration * (MyWeather.SpeedOfMaxGust / 120);
 }
 if (MyWeather.MinTemp < -25)
 {
 duration = duration * (-MyWeather.MinTemp / 25);
 }
 return duration;
 }
 #endregion

 #region UnloadingDuration(Train)
 private double UnloadingDuration(Train theTrain)
 {
 double duration = theTrain.MuckCartDumpDuration.Sample();

 if (MyWeather.SpeedOfMaxGust > 35)
 {
 duration += duration * (MyWeather.SpeedOfMaxGust / 120);
 }

247

 if (MyWeather.MinTemp < -25)
 {
 duration = duration * (-MyWeather.MinTemp / 25);
 }
 return duration;
 }
 #endregion

 #region ERofCrane(Crane)
 private double ERofCrane(Crane theCrane)
 {
 double Rate = 16.82 / 3600; // operation time is in second.
 //Energy consumption = operation time (hr) * 16.82 (Kg/hr)

 return Rate;
 }
 #endregion

 #endregion

 #region Private Events

 #region CaptureTrack(Train)
 private void RequestTrack(Train theTrain)
 {
 ErrorLog.AddError("DirtRemoval.CaptureTrack event entered: Train"
+ theTrain.ID
 + " @ " + this.calculateDateTime(fedAmb.CurrentTime).ToString());
 var theTunnel = this.MyTunnelFactory[theTrain.Tunnel];
 var resource = myTracks[theTunnel.GetObjectInstanceHandle()];
 var file = waitingMyTracks[theTunnel.GetObjectInstanceHandle()];
 this.MyEngine.RequestResource(theTrain, resource, 1,
TrackCapturedEvent, file);
 UpdateMyInterface(theTrain);
 }
 #endregion

 #region TrackCaptured(Train)
 private void TrackCaptured(Train theTrain)
 {
 ErrorLog.AddError("DirtRemoval.TrackCaptured event entered: Train" +
theTrain.ID
 + " @ " + this.calculateDateTime(fedAmb.CurrentTime).ToString());
 MyEngine.ScheduleEvent(theTrain, ReturningToTunnelFaceEvent, 0);
 theTrain.WorkState = TrainWorkState.ReturningToTbm;
 theTrain.Position = TrainLocation.Tunnel;

248

 theTrain.CapturedTrack = true; // showing the train captured a
track
 theTrain.UpdateAttributeValues(MyEngine.TimeNow +
fedAmb.Lookahead);
 UpdateMyInterface(theTrain);
 }
 #endregion

 #region ReturningToTunnelFace(Train)
 private void ReturningToTunnelFace(Train theTrain)
 {
 ErrorLog.AddError("DirtRemoval.ReturningToTunnelFace event entered:
Train" + theTrain.ID + " @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 Tunnel theTunnel = this.MyTunnelFactory[theTrain.Tunnel];
 double duration = Math.Max(Math.Log10(theTunnel.CurrentChainage) *
60D, fedAmb.Lookahead); //theTunnel.CurrentChainage / theTrain.EmptySpeed ;
 MyEngine.ScheduleEvent(theTrain, ArrivedTunnelFaceEvent, duration -
fedAmb.Lookahead);
 }
 #endregion

 #region ArrivedTunnelFace(Train)
 private void ArrivedTunnelFace(Train theTrain)
 {
 ErrorLog.AddError("DirtRemoval.ArrivedTunnelFace event entered:
Train" + theTrain.ID + " @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 Tunnel theTunnel = this.MyTunnelFactory[theTrain.Tunnel];
 double duration = fedAmb.Lookahead;
 theTrain.EnergyConsumption += theTunnel.CurrentChainage *
EnergyConsumptionRateOfTrain(theTrain); // CurrentChainage means the
traveling distance of the train? the usnit of CurrentChainage is "m"?

 theTrain.Position = TrainLocation.TunnelFace;
 theTrain.WorkState = TrainWorkState.WaitTbm;

 theTrain.UpdateAttributeValues(MyEngine.TimeNow + duration);
 UpdateMyInterface(theTrain);

 theTrain.UnconditionalAttributeOwnershipDivestiture(theTrainAttributes1.To
Array());
 }
 #endregion

 #region HaulingToUndercut(Train)

249

 private void HaulingToUndercut(Train theTrain)
 {
 ErrorLog.AddError("DirtRemoval.HaulingToUndercut event entered:
Train " + theTrain.ID
 + " @ " + this.calculateDateTime(fedAmb.CurrentTime).ToString());
 Tunnel theTunnel = this.MyTunnelFactory[theTrain.Tunnel];
 double duration = Math.Max(Math.Log10(theTunnel.CurrentChainage)
* 60D, fedAmb.Lookahead); //theTunnel.CurrentChainage
/theTrain.LoadedSpeed ;
 theTrain.EnergyConsumption += theTunnel.CurrentChainage *
EnergyConsumptionRateOfTrain(theTrain);

 if (duration < fedAmb.Lookahead) duration = fedAmb.Lookahead;

 theTrain.AttributeOwnershipAcquisition(theTrainAttributes1.ToArray());
 theTrain.Position = TrainLocation.Undercut;
 theTrain.WorkState = TrainWorkState.WaitCrane;

 GeotechnicalSection theSection =
MyGeotechnicalSectionFactory[theTunnel.CurrentGeotechnicalSection];
 this.MyEngine.ScheduleEvent(theSection, ReleaseTrackEvent,
duration);

 theTrain.UpdateAttributeValues(MyEngine.TimeNow + duration);
 UpdateMyInterface(theTrain);

 MyEngine.ScheduleEvent(theTrain, RequestCraneEvent, duration);
 }
 #endregion

 #region CaptureCrane(Train)
 private void CaptureCrane(Train theTrain)
 {
 ErrorLog.AddError("DirtRemoval.CaptureCrane event entered: Train "
+ theTrain.ID
 + " @ " + this.calculateDateTime(fedAmb.CurrentTime).ToString());
 var theTunnel = this.MyTunnelFactory[theTrain.Tunnel];
 var theWorkingShaft = theTrain.GetWorkingShaft();
 //var myResource = myTracks[theTunnel.GetObjectInstanceHandle()];
 //theTrain.ReleaseResource(myResource, 1);

 var resource =
myCranes[theWorkingShaft.GetObjectInstanceHandle()];
 var myFile =
waitingMyCranes[theWorkingShaft.GetObjectInstanceHandle()];

250

 this.MyEngine.RequestResource(theTrain, resource, 1,
CraneCapturedEvent, myFile);
 }
 #endregion

 #region CraneCaptured(Train)
 private void CraneCaptured(Train theTrain)
 {
 ErrorLog.AddError("DirtRemoval.CraneCaptured event entered: Train
" + theTrain.ID
 + " @ " + this.calculateDateTime(fedAmb.CurrentTime).ToString());
 Tunnel theTunnel = this.MyTunnelFactory[theTrain.Tunnel];
 //theTrain.CurrentLoad = 0;
 theTrain.WorkState = TrainWorkState.Dumping;

 theTrain.UpdateAttributeValues(MyEngine.TimeNow +
fedAmb.Lookahead);
 UpdateMyInterface(theTrain);
 MyEngine.ScheduleEvent(theTrain, DumpingEvent, 0);
 }
 #endregion

 #region DumpingAndLoading(Train)
 private void DumpingAndLoading(Train theTrain)
 {
 ErrorLog.AddError("DirtRemoval.DumpingAndLoading event entered:
Train " + theTrain.ID
 + " @ " + this.calculateDateTime(fedAmb.CurrentTime).ToString());
 Tunnel theTunnel = this.MyTunnelFactory[theTrain.Tunnel];
 double duration = LoadingDuration(theTrain);
 if (theTunnel.State == TunnelState.Startup)
 {
 duration += UnloadingDuration(theTrain);
 }
 else
 {
 for (int count = 1; count < theTrain.MuckCartCount; count++)
 {
 duration += UnloadingDuration(theTrain);
 }
 }
 theTrain.EnergyConsumption +=
EnergyConsumptionRateOfTrain(theTrain) * duration;

 Crane theCrane = theTrain.GetCranes()[0];
 theCrane.EnergyConsumption += ERofCrane(theCrane) * duration;

251

 theCrane.UpdateAttributeValues(MyEngine.TimeNow + duration);

 theTrain.CurrentDirtVolume = 0;
 theTrain.WorkState = TrainWorkState.WaitTunnelTrack;
 theTrain.UpdateAttributeValues(MyEngine.TimeNow + duration);
 UpdateMyInterface(theTrain);
 MyEngine.ScheduleEvent(theTrain, ReleaseCraneEvent, duration);
 }
 #endregion

 #region ReleaseCrane(Train)
 private void ReleaseCrane(Train theTrain)
 {
 ErrorLog.AddError("DirtRemoval.ReleaseCrane event entered: Train_ " +
theTrain.ID
 + " @ " + this.calculateDateTime(fedAmb.CurrentTime).ToString());
 var theWorkingShaft = theTrain.GetWorkingShaft();

 var crane = myCranes[theWorkingShaft.GetObjectInstanceHandle()];
 if (crane.Available == 0) this.MyEngine.ReleaseResource(theTrain,
crane, 1);

 //GeotechnicalSection theSection =
theTunnel.GetCurrentGeotechnicalSection();
 //if (theSection.State != TunnelSectionState.Complete)
 var theTunnel = this.MyTunnelFactory[theTrain.Tunnel];
 if (theTunnel.State != TunnelState.Finished)
 {
 ErrorLog.AddError("CaptureTrackEvent scheduled in
DirtRemoval.ReleaseCrane");
 MyEngine.ScheduleEvent(theTrain, RequestTrackEvent, 0);
 }
 }
 #endregion

 #region ReleaseTrack(GeotechnicalSection)
 private void ReleaseTrack(GeotechnicalSection theSection)
 {
 ErrorLog.AddError("DirtRemoval.ReleaseTrack event entered" + " @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());
 var theTunnel = MyTunnelFactory[theSection.Tunnel];
 var resource = myTracks[theTunnel.GetObjectInstanceHandle()];

 foreach (Train theTrain in this.MyTrainFactory)
 {
 if (theTrain.Tunnel == theTunnel.GetObjectInstanceHandle())

252

 {
 if (resource.ServersOwnedByEntity(theTrain) >= 1)
 {
 ErrorLog.AddError("DirtRemoval.ReleaseTrack
event conditions passed for Train" + theTrain.ID);
 this.MyEngine.ReleaseResource(theTrain, resource,
1);
 theTrain.CapturedTrack = false; // showing the train will not keep a
track
 theTrain.UpdateAttributeValues(fedAmb.CurrentTime +
fedAmb.Lookahead);
 break;
 }
 }
 }
 }
 #endregion

 # region ShiftOnEventHandler
 /// <summary>
 /// try to resume all suspended entities when shift changes to ON
 /// </summary>
 /// <param name="entity"></param>
 private void ShiftOnEventHandler(Entity entity)
 {
 ErrorLog.AddError("---");
 ErrorLog.AddError("++ enter DirtRemoval.Shift ON Event - release all
suspended entities - @ " + calculateDateTime(MyEngine.TimeNow).ToString());
 //this.suspendedEntities.ResumeEntities(MyEngine);
 //this.suspendedEntities.UnionWith(this.allEntities);

 //***********************
 // this part should be removed when multi-suspension working.
 if (this.suspendedEntities.ToList().Count ==
this.allEntities.ToList().Count)
 ErrorLog.AddError("*************error message: Try to RESUME
entities consecutively twice. SKIPPED this time. DirtRemoval************");
 else
 {
 //***********END************
 ErrorLog.AddError(" +++++++++ DirtRemoval.ResumeEntities.Count
= " + suspendedEntities.ToList().Count.ToString());
 this.suspendedEntities.ResumeEntities(MyEngine);
 this.suspendedEntities.UnionWith(this.allEntities);
 }
 }

253

 #endregion

 # region ShiftOffEventHandler
 /// <summary>
 /// try to suspend all scheduled entities when shift changes to OFF
 /// </summary>
 /// <param name="entity"></param>
 private void ShiftOffEventHandler(Entity entity)
 {
 ErrorLog.AddError("---");
 ErrorLog.AddError("---++ Enter DirtRemoval.Shift OFF event @ " +
calculateDateTime(MyEngine.TimeNow).ToString());
 //this.suspendedEntities.SuspendEntitiesIfNeed(MyEngine);
 //ErrorLog.AddError("DirtRemoval.suspendedEntities.Count = " +
suspendedEntities.ToList().Count.ToString());

 //***********************
 // this part should be removed when multi-suspension working.
 ErrorLog.AddError("DirtRemoval.suspendedEntities.Count (before
suspend)= " + suspendedEntities.ToList().Count.ToString());
 if (this.suspendedEntities.ToList().Count < this.allEntities.ToList().Count
&& !firstShiftControl)
 {
 ErrorLog.AddError("*************error message: Try to SUSPEND
entities consecutively twice. SKIPPED this time. DirtRemoval************");
 //System.Windows.Forms.MessageBox.Show("Error: Attempted to
suspend entity twice.");
 }
 else
 {
 //***********END************
 this.suspendedEntities.SuspendEntitiesIfNeed(MyEngine);
 }
 if (firstShiftControl)
 {
 firstShiftControl = false;
 this.suspendedEntities.UnionWith(this.allEntities);
 this.suspendedEntities.SuspendEntitiesIfNeed(MyEngine);
 ErrorLog.AddError("DirtRemoval.Enter first shift off");
 }
 ErrorLog.AddError("DirtRemoval.suspendedEntities.Count(after) = " +
suspendedEntities.ToList().Count.ToString());
 }
 #endregion

 private void EmptyAction(Entity entity)

254

 {
 ErrorLog.AddError("DirtRemoval _ EmptyAction event entered _ track
captured by shifteEntity @ "
 + this.calculateDateTime(MyEngine.TimeNow));

 }
 #endregion

 # region Private Object Management

 #region MyShaftGeneralFactory_DiscoverObjectInstance(object,
DiscoverObjectInstanceEventArgs)
 private void MyShaftGeneralFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 // add a new crane and its waiting file for each working shaft
 var theShaft = MyShaftFactory[e.theObject];
 //if (theShaft.Type == ShaftType.WorkingShaft)
 //{
 var myCrane = new Resource("Crane", 1); // be changable.
 var myCraneFile = new WaitingFile("Crane File");
 MyEngine.Resources.Add(myCrane);
 MyEngine.WaitingFiles.Add(myCraneFile);
 myCrane.WaitingFiles.Add(myCraneFile);
 myCranes.Add(e.theObject, myCrane);
 waitingMyCranes.Add(e.theObject, myCraneFile);
 //}

 }
 #endregion

 #region MyTunnelFactory_DiscoverObjectInstance(object,
DiscoverObjectInstanceEventArgs)
 private void MyTunnelFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 // add a track as a resource and its waiting file for each Tunnel
 var myTrack = new Resource("Track", 1); // be changable.
 var myTrackFile = new WaitingFile("Track File");
 MyEngine.Resources.Add(myTrack);
 MyEngine.WaitingFiles.Add(myTrackFile);
 myTrack.WaitingFiles.Add(myTrackFile);
 myTracks.Add(e.theObject, myTrack);
 waitingMyTracks.Add(e.theObject, myTrackFile);
 }
 #endregion

255

 #region MyTunnelFactory_ReflectAttributeValues(object,
ReflectAttributeValuesEventArgs)
 private void MyTunnelFactory_ReflectAttributeValues(object sender,
ReflectAttributeValuesEventArgs e)
 {
 Tunnel theTunnel = MyTunnelFactory[e.theObject];
 if (e.theValues.Contains(tunnelAttributes.Name.GetAttributeHandle())
 && theTunnel.Name == "NEST")
 {
 this.nestTunnel = theTunnel;
 }

 if (e.theValues.Contains(tunnelAttributes.State.GetAttributeHandle()))
 {
 ErrorLog.AddError("DirtRmoval Tunnel.State reflect: " +
theTunnel.State.ToString()
 + " @ " + this.calculateDateTime(fedAmb.CurrentTime).ToString());
 if (!LastTunnelState.ContainsKey(theTunnel))
 LastTunnelState.Add(theTunnel, TunnelState.Unstarted);
 if (LastTunnelState[theTunnel] != theTunnel.State)
 {
 ErrorLog.AddError("DirtRmoval Tunnel.State reflect
conditions passed");
 LastTunnelState[theTunnel] = theTunnel.State;
 Train theTrain = null;
 if (theTunnel.State ==
TunnelState.MultipleTrainConstructing)
 {
 theTrain = getSecondTrain(theTunnel);
 }
 else if (theTunnel.State == TunnelState.Startup)
 {
 theTrain = getFirstTrain(theTunnel);
 InitializeInterface(theTrain);
 }

 // initialize the first train event at correct time for both trains.
 if (theTrain != null)
 {
 // let a train start working at an appropriate time.
 theTrain.CurrentDirtVolume = 0;
 theTrain.WorkState =
TrainWorkState.WaitTunnelTrack;
 // do not consider train breakdown, so do not use
euipmentState.

256

 if (theTunnel.State != TunnelState.Finished)
 {
 ErrorLog.AddError("DirtRemoval.RequestTrackEvent
scheduled in DirtRemoval Tunnel.State reflect");
 MyEngine.ScheduleEvent(theTrain,
RequestTrackEvent, e.theTime - MyEngine.TimeNow);
 }
 theTrain.UpdateAttributeValues(e.theTime +
fedAmb.Lookahead);
 }
 }
 }
 if
(e.theValues.Contains(tunnelAttributes.CrewActivity.GetAttributeHandle()))
 {
 ErrorLog.AddError("DirtRemoval Tunnel.CrewActivity reflect: "
 + theTunnel.CrewActivity + " @ " + calculateDateTime(e.theTime));
 }
 }
 #endregion

 #region tbmFactory_ReflectAttributeValues(object,
ReflectAttributeValuesEventArgs)
 private void tbmFactory_ReflectAttributeValues(object sender,
ReflectAttributeValuesEventArgs e)
 {
 if
(e.theValues.Contains(tbmAttributes.WorkState.GetAttributeHandle()))
 {
 Tbm theTbm = this.tbmFactory[e.theObject];
 ErrorLog.AddError("DirtRemoval Tbm.WorkState reflect: " +
theTbm.WorkState.ToString()
 + " @ "+ calculateDateTime(e.theTime).ToString());
 }
 }
 #endregion

 #region MyTrainFactory_ReflectAttributeValues(object,
ReflectAttributeValuesEventArgs)
 private void MyTrainFactory_ReflectAttributeValues(object sender,
ReflectAttributeValuesEventArgs e)
 {
 // hauling train, if it is loaded.
 if
(e.theValues.Contains(trainAttributes.WorkState.GetAttributeHandle()))
 {

257

 Train theTrain = MyTrainFactory[e.theObject];
 ErrorLog.AddError("DirtRemoval Train" + theTrain.ID + " WorkState
reflect: "
 + theTrain.WorkState.ToString() + " @ " +
calculateDateTime(e.theTime).ToString());
 if (theTrain.WorkState == TrainWorkState.HaulingToUndercut)
 {
 MyEngine.ScheduleEvent(theTrain,
HaulingToUndercutEvent, e.theTime - MyEngine.TimeNow);
 }
 }
 }
 #endregion

 #region MyWeatherFactory_DiscoverObjectInstance(object,
DiscoverObjectInstanceEventArgs)
 private void MyWeatherFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 MyWeather = MyWeatherFactory[e.theObject];
 }
 #endregion

 #endregion

 # region Time Management

 #region fedAmb_TimeAdvanceGrant(object,
TimeAdvanceGrantEventArgs)
 private void fedAmb_TimeAdvanceGrant(object sender,
TimeAdvanceGrantEventArgs e)
 {
 ErrorLog.AddError("DirtRemoval TAG to " + e.theTime.ToString() + " @
" + this.calculateDateTime(e.theTime).ToString());
 //Process any internal events that should occur at the current time.
 MyEngine.Simulate(e.theTime);

 ErrorLog.AddError("DirtRemoval NMR to " +
MyEngine.TimeNext.ToString() + " @ " +
this.calculateDateTime(MyEngine.TimeNext).ToString());
 //Advance time to the time of the next internal event.
 rtiAmb.NextMessageRequest(MyEngine.TimeNext);
 }
 #endregion

 #region fedAmb_BeginExecution(object, EventArgs)

258

 private void fedAmb_BeginExecution(object sender, EventArgs e)
 {
 MyEngine.InitializeScenario();

 foreach (Train theTrain in MyTrainFactory)
 {

 theTrain.AttributeOwnershipAcquisition(theTrainAttributes2.ToArray());
 //MyEngine.ScheduleEvent(theTrain, CaptureTrackEvent, 0);
 }

 foreach (Crane theCrane in MyCraneFactory)
 {

 theCrane.AttributeOwnershipAcquisition(CraneEngeryAttributes.ToArray());
 }
 }
 #endregion

 #region fedAmb_EndExecution(object, EventArgs)
 private void fedAmb_EndExecution(object sender, EventArgs e)
 {
 MyEngine.FinalizeScenario();
 }
 #endregion

 private void calendarFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 this.theCalendar = calendarFactory[e.theObject];
 }

 #endregion

 private void MyGeotechnicalSectionFactory_DiscoverObjectInstance(object
sender, DiscoverObjectInstanceEventArgs e)
 {
 this.allEntities.Add(MyGeotechnicalSectionFactory[e.theObject]);
 }

 private void MyTrainFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 this.allEntities.Add(MyTrainFactory[e.theObject]);
 }

259

 private void shiftFactory_DiscoverObjectInstance(object sender,
DiscoverObjectInstanceEventArgs e)
 {
 this.theShift = myShiftFactory[e.theObject];
 }

 private void shiftFactory_ReflectAttributeValues(object sender,
ReflectAttributeValuesEventArgs e)
 {
 var shift = myShiftFactory[e.theObject];
 if (e.theValues.Contains(shiftAttributes.IsWorking.GetAttributeHandle()))
 {
 if (this.nestTunnel != null && this.nestTunnel.State !=
TunnelState.Unstarted && this.nestTunnel.State != TunnelState.Finished)
 {
 double timeOfUpdate = Math.Max(e.theTime,
this.rtiAmb.QueryLogicalTime() + fedAmb.Lookahead);
 if (shift.IsWorking)
 {
 MyEngine.ScheduleEvent(this.shiftControlEntity, ShiftOnEvent,
e.theTime - MyEngine.TimeNow);
 }
 else
 {
 ErrorLog.AddError("++++++++++++++++++ From DirtRemoval:
nestTunnel.CrewActivity = " + nestTunnel.CrewActivity.ToString()
 + " @ " +
this.calculateDateTime(fedAmb.CurrentTime).ToString());

 TimeSpan time =
this.theCalendar.StartDateTime.AddSeconds(this.rtiAmb.QueryLogicalTime()).Ti
meOfDay;
 TimeSpan target = TimeSpan.FromSeconds(this.theShift.StartTime)
+ TimeSpan.FromSeconds(this.theShift.Duration);
 Train theTrain = nestTunnel.getFirstTrain();
 if (time < target)
 {
 MyEngine.ScheduleEvent(this.shiftControlEntity, ShiftOffEvent,
e.theTime - MyEngine.TimeNow);
 }
 }
 }
 }
 }

260

 private void ShiftOffTerminal_ReceiveInteraction(object sender,
ReceiveInteractionEventArgs e)
 {
 var Parameter1 = this.rtiAmb.GetParameterHandle(e.theInteraction,
"Tunnel");
 var parameter2 = this.rtiAmb.GetParameterHandle(e.theInteraction,
"SharpOff");

 if (e.theValues.Contains(parameter2))
 {
 MyEngine.ScheduleEvent(this.shiftControlEntity, ShiftOffEvent,
e.theTime - MyEngine.TimeNow);
 }
 }
 }
}

261

e. Scenario Setup Federate

namespace Cosye.Tunneling.ScenarioSetup
{
 using System;
 using System.Collections.Generic;
 using System.Data;
 using System.Data.SqlClient;
 using System.Diagnostics;
 using System.IO;
 using System.Linq;
 using System.Runtime.Serialization.Formatters.Binary;
 using System.Windows.Forms;
 using System.Windows.Forms.DataVisualization.Charting;
 using Cosye.Framework;
 using Cosye.Hla.Rti;
 using Cosye.Tunneling;
 using Simphony;
 using Simphony.ComponentModel;
 using Simphony.Mathematics;
 using Simphony.Simulation;
 using Simphony.Windows.Forms;
 using Calendar = Cosye.Tunneling.Calendar;

 public partial class ScenarioSetup : FederateControl
 {
 #region Private Readonly Fields

 private readonly List<string> theShaftAttributes = new List<string>();
 private readonly List<string> theShaftSectionAttributes = new
List<string>();
 private readonly List<string> theUndercutAttributes = new List<string>();
 private readonly List<string> theTailTunnelSectionAttributes = new
List<string>();

 private readonly List<string> theTunnelAttributes = new List<string>();
 private readonly List<string> theGeotechnicalSectionAttributes = new
List<string>();
 private readonly List<string> theGeometrySectionAttributes = new
List<string>();

 private readonly List<string> theTrainAttributes = new List<string>();
 private readonly List<string> theCraneAttributes = new List<string>();

 private readonly List<string> theTbmAttributes = new List<string>();

262

 private readonly List<string> theScenarioAttributes = new List<string>();
 private readonly List<string> theProjectAttributes = new List<string>();

 private double[] GAMEgeotechnicalSections;
 private double[] GAMEgeometrySections;

 private readonly double[] NESTGeotechnicalSections = new double[]
{ 50.0, 159D, 150D, 250D, 1050D, 1200D, 350D, 538D };
 private readonly double[] NESTGeometrySections = new double[]
{ 310.36, 115.1, 525.86, 961D, 640D, 1144.97 };

 private readonly double[] ShaftSectionLength = new double[] { 13.54 };

 private List<RectangularShaftSection> shaftSections;

 // General Setting of a Scenario.
 const int TotalRectWorkingShaft = 1;
 const int TotalTunnel = 1;
 const int TotalShaftSection = 1;
 const int TotalTbm = 1; // shound not be more than max (totaltunnel,
totalshaft)
 const int TotalTrain = 2;
 const int TotalMuckCars = 6;
 const double ShaftSectionDepth = 1;

 // Keep track of the waiting times of the TBM and the trains.
 private readonly Dictionary<ObjectInstanceHandle, TimeKeeper>
trainDownTimes;
 private readonly Dictionary<ObjectInstanceHandle, TimeKeeper>
tbmDownTimes;

 // Chart Collectors
 private readonly Simphony.Modeling.Chart<DateTime> tbmRateCollector;
 private readonly Simphony.Modeling.Chart<DateTime>
tbmCumRateCollector;
 private readonly Simphony.Modeling.Chart<DateTime>
workingShaftProgressCollector;
 private readonly Simphony.Modeling.Chart<DateTime>
workingShaftCostCollector;
 private readonly Simphony.Modeling.Chart<DateTime>
tunnelProgressCollector;
 private readonly Simphony.Modeling.Chart<DateTime>
tunnelCostCollector;

 #endregion

263

 #region Private Fields
 private RectangularShaft theShaft;
 private ConcreteLinerInventory myConcrete;
 private Tunnel theTunnel;
 private int trainBreakdownCount;
 private List<double> tbmBreakdownsTimes;
 private List<double> tbmRepairTimes;
 private DateTime periodStartDate;
 private DateTime periodEndDate;
 private DateTime scenarioStartDate;
 private double previousChainage;
 private double previousShaftCost;
 private double previousShaftIncome;
 private double previousShaftProgress;
 private double previousTunnelCost;
 private double previousTunnelIncome;
 private double previousTunnelProgress;
 private bool isStarted;
 private bool isGame;
 #endregion

 #region Private Readonly Distributions

 #region Breakdown and Repair
 private readonly Distribution DisBreakdown = new Triangular(2000D *
60D * 60D, 3000D * 60D * 60D, 2200D * 60D * 60D);
 private readonly Distribution DisRepair = new Triangular(5D * 60D *
60D, 20D * 60D * 60D, 15D * 60D * 60D);
 #endregion

 #region Shaft
 private readonly Distribution onePileDrivingTime = new Triangular(3D *
60D * 60D, 4.5 * 60D * 60D, 4 * 60D * 60D);
 private readonly Distribution shaftMachineExcavationRate = new
Triangular(50D / 3600D, 80D / 3600D, 70D / 3600D);
 private readonly Distribution shaftHandExcavationRate = new
Triangular(2.0 / 3600.0, 4.0 / 3600.0, 3.0 / 3600.0);
 #endregion

 #region Tunnel
 // time to line one ring -> Tbm.LiningTime
 private readonly Distribution DisLining = new Beta(15, 25, 2 * 60.0, 5 *
60.0);
 // time to reset one liner length -> Tbm.ResettingTime

264

 private readonly Distribution DisResetting = new Uniform(2 * 60D, 4 *
60D);
 // time to extend the utility(ies) -> Tunnel.ExtendUtilityTime
 private readonly Distribution DisExtendUtility = new Triangular(10D *
60D, 20D * 60D, 15D * 60D);
 // time to extend the train track -> Tunnel.ExtendTrackTime
 private readonly Distribution DisExtendTrack = new Triangular(0.5D *
60D * 60D, 2D * 60D * 60D, 1D * 60D * 60D);
 // time to survey the tunnel -> GeometrySection.SurveyTime
 private readonly Distribution DisSurvey = new Triangular(1.5D * 60D *
60D, 2D * 60D * 60D, 1.8D * 60D * 60D);
 // time to extend gantry -> Tbm.GantryTime (might also want to make
ConveyorTime into a Distribution)
 private readonly Distribution DisExtendGantry = new Triangular(2.5D *
60D * 60D, 4D * 60D * 60D, 3.5D * 60D * 60D);
 // time to install the TBM -> Tbm.InstallationTime
 private readonly Distribution tbmInstallTime = new Triangular(22D *
3600D, 30D * 3600D, 26D * 3600D);
 // time to install the switch -> TailTunnel.SwitchInstallationTime
 private readonly Distribution switchInstallTime = new Triangular(52D *
3600D, 60D * 3600D, 56D * 3600D);
 // time to load one train material cart
 private readonly Distribution DisLoading = new Beta(2, 2, 3 * 60, 7 * 60);
 // time to dump one train muck cart
 private readonly Distribution DisDumping = new Beta(2, 2, 3 * 60, 7 * 60);
 #endregion

 #endregion

 #region Public Constructors

 #region ScenarioSetup()
 public ScenarioSetup()
 {
 InitializeComponent();

 theShaftAttributes.Add(shaftAttributes.State);
 theShaftAttributes.Add(shaftAttributes.CurrentDepth);
 theShaftAttributes.Add(shaftAttributes.StartTime);
 theShaftAttributes.Add(shaftAttributes.FinishTime);
 theShaftAttributes.Add(shaftAttributes.CurrentSection);
 theShaftAttributes.Add(shaftAttributes.ExcavatedDirtVolume);
 theShaftAttributes.Add(shaftAttributes.PileQuantity);
 theShaftAttributes.Add(shaftAttributes.PilingFinishTime);
 theShaftAttributes.Add(shaftAttributes.ConstructionSite);

265

 theShaftSectionAttributes.Add(shaftSectionAttributes.StartTime);
 theShaftSectionAttributes.Add(shaftSectionAttributes.FinishTime);
 theShaftSectionAttributes.Add(shaftSectionAttributes.State);

 theUndercutAttributes.Add(undercutAttributes.CurrentInstallationProcess);
 theUndercutAttributes.Add(undercutAttributes.CurrentSection);
 theUndercutAttributes.Add(undercutAttributes.ExcavatedDirtVolume);
 theUndercutAttributes.Add(undercutAttributes.FinishTime);
 theUndercutAttributes.Add(undercutAttributes.HasSwitch);
 theUndercutAttributes.Add(undercutAttributes.StartTime);

 theTailTunnelSectionAttributes.Add(tailTunnelSectionAttributes.FinishTime);

 theTailTunnelSectionAttributes.Add(tailTunnelSectionAttributes.LiningProdu
ctivity);

 theTailTunnelSectionAttributes.Add(tailTunnelSectionAttributes.Productivity
);

 theTailTunnelSectionAttributes.Add(tailTunnelSectionAttributes.StartTime);

 theTailTunnelSectionAttributes.Add(tailTunnelSectionAttributes.State);

 theTunnelAttributes.Add(tunnelAttributes.CrewActivity);
 theTunnelAttributes.Add(tunnelAttributes.CurrentChainage);

 theTunnelAttributes.Add(tunnelAttributes.CurrentGeotechnicalSection);
 theTunnelAttributes.Add(tunnelAttributes.ExcavatedDirtVolume);
 theTunnelAttributes.Add(tunnelAttributes.ExcavationArea);
 theTunnelAttributes.Add(tunnelAttributes.FinishTime);
 theTunnelAttributes.Add(tunnelAttributes.LastSurveyChainage);
 theTunnelAttributes.Add(tunnelAttributes.Scenario);
 theTunnelAttributes.Add(tunnelAttributes.StartTime);
 theTunnelAttributes.Add(tunnelAttributes.State);
 theTunnelAttributes.Add(tunnelAttributes.UnlinedLength);

 theGeotechnicalSectionAttributes.Add(geotechnicalSectionAttributes.FinishTi
me);

 theGeotechnicalSectionAttributes.Add(geotechnicalSectionAttributes.LinerTy
pe);

266

 theGeotechnicalSectionAttributes.Add(geotechnicalSectionAttributes.StartTi
me);

 theGeotechnicalSectionAttributes.Add(geotechnicalSectionAttributes.State);

 //theGeotechnicalSectionAttributes.Add(geotechnicalSectionAttributes.NextA
dvanceRate);

 theGeometrySectionAttributes.Add(geometrySectionAttributes.FinishTime);

 theGeometrySectionAttributes.Add(geometrySectionAttributes.StartTime);

 theGeometrySectionAttributes.Add(geometrySectionAttributes.NextSection);

 theGeometrySectionAttributes.Add(geometrySectionAttributes.PreviousSecti
on);

 theGeometrySectionAttributes.Add(geometrySectionAttributes.Tunnel);

 theGeometrySectionAttributes.Add(geometrySectionAttributes.SurveyDuratio
n);

 theGeometrySectionAttributes.Add(geometrySectionAttributes.SurveyInterval
);

 theTrainAttributes.Add(trainAttributes.CapturedTrack);
 theTrainAttributes.Add(trainAttributes.CartsCounter);
 theTrainAttributes.Add(trainAttributes.CostPerHour);
 theTrainAttributes.Add(trainAttributes.CurrentDirtVolume);
 theTrainAttributes.Add(trainAttributes.EmissionFactor);
 theTrainAttributes.Add(trainAttributes.EmptySpeed);
 theTrainAttributes.Add(trainAttributes.EnergyConsumption);
 theTrainAttributes.Add(trainAttributes.EquipmentState);
 theTrainAttributes.Add(trainAttributes.LoadedSpeed);
 theTrainAttributes.Add(trainAttributes.MuckCartCount);
 theTrainAttributes.Add(trainAttributes.Position);
 theTrainAttributes.Add(trainAttributes.ResourceState);
 theTrainAttributes.Add(trainAttributes.TimeBetweenFailure);
 theTrainAttributes.Add(trainAttributes.TimeToRepair);
 theTrainAttributes.Add(trainAttributes.WorkHours);
 theTrainAttributes.Add(trainAttributes.WorkState);

 theCraneAttributes.Add(craneAttributes.EmissionFactor);
 theCraneAttributes.Add(craneAttributes.EnergyConsumption);

267

 theCraneAttributes.Add(craneAttributes.EquipmentState);
 theCraneAttributes.Add(craneAttributes.CostPerHour);
 theCraneAttributes.Add(craneAttributes.TimeBetweenFailure);
 theCraneAttributes.Add(craneAttributes.TimeToRepair);
 theCraneAttributes.Add(craneAttributes.WorkHours);

 theTbmAttributes.Add(tbmAttributes.EmissionFactor);
 theTbmAttributes.Add(tbmAttributes.EnergyConsumption);
 theTbmAttributes.Add(tbmAttributes.EquipmentState);
 theTbmAttributes.Add(tbmAttributes.CostPerHour);
 theTbmAttributes.Add(tbmAttributes.LiningDuration);
 theTbmAttributes.Add(tbmAttributes.PenetrationRate);
 theTbmAttributes.Add(tbmAttributes.ResettingDuration);
 theTbmAttributes.Add(tbmAttributes.ResourceState);
 theTbmAttributes.Add(tbmAttributes.WorkHours);
 theTbmAttributes.Add(tbmAttributes.WorkState);

 theScenarioAttributes.Add(scenarioAttributes.CrewCost);
 theScenarioAttributes.Add(scenarioAttributes.EquipmentCost);
 theScenarioAttributes.Add(scenarioAttributes.FinishTime);
 theScenarioAttributes.Add(scenarioAttributes.IndirectCostPerHour);
 theScenarioAttributes.Add(scenarioAttributes.MaterialCost);
 theScenarioAttributes.Add(scenarioAttributes.Name);
 theScenarioAttributes.Add(scenarioAttributes.Project);
 theScenarioAttributes.Add(scenarioAttributes.StartTime);

 theProjectAttributes.Add(projectAttributes.Name);

 this.shaftSections = new List<RectangularShaftSection>();

 this.trainDownTimes = new Dictionary<ObjectInstanceHandle,
TimeKeeper>();
 this.tbmDownTimes = new Dictionary<ObjectInstanceHandle,
TimeKeeper>();
 this.tbmBreakdownsTimes = new List<double>();
 this.tbmRepairTimes = new List<double>();

 // Initialize the Collectors.
 this.tbmRateCollector = new
Simphony.Modeling.Chart<DateTime>("");
 this.tbmRateCollector.Series.Add(new
Simphony.Modeling.Series<DateTime>());

 this.tbmCumRateCollector = new
Simphony.Modeling.Chart<DateTime>("");

268

 this.tbmCumRateCollector.Series.Add(new
Simphony.Modeling.Series<DateTime>());

 this.workingShaftProgressCollector = new
Simphony.Modeling.Chart<DateTime>("");
 this.workingShaftProgressCollector.Series.Add(new
Simphony.Modeling.Series<DateTime>());
 this.workingShaftProgressCollector.Series.Add(new
Simphony.Modeling.Series<DateTime>());

 this.tunnelProgressCollector = new
Simphony.Modeling.Chart<DateTime>("");
 this.tunnelProgressCollector.Series.Add(new
Simphony.Modeling.Series<DateTime>());
 this.tunnelProgressCollector.Series.Add(new
Simphony.Modeling.Series<DateTime>());

 this.workingShaftCostCollector = new
Simphony.Modeling.Chart<DateTime>("");
 this.workingShaftCostCollector.Series.Add(new
Simphony.Modeling.Series<DateTime>());
 this.workingShaftCostCollector.Series.Add(new
Simphony.Modeling.Series<DateTime>());

 this.tunnelCostCollector = new
Simphony.Modeling.Chart<DateTime>("");
 this.tunnelCostCollector.Series.Add(new
Simphony.Modeling.Series<DateTime>());
 this.tunnelCostCollector.Series.Add(new
Simphony.Modeling.Series<DateTime>());

 // Assume this is NOT in game mode and not started.
 this.isGame = false;
 this.isStarted = false;

 this.scenarioStartDate = default(DateTime);
 this.CurrentZeroBasedPeriod = 0;

 // Set properties of TunnelPeriodControl.
 this.tunnelPeriodControl.ScenarioSetup = this;

 // Initialize the TrainsOnline stack. Maximum of 1 and minimum of 2
trains.
 this.TrainsOnline = new Stack<Train>(2);

 // Initialize and populate the Game Tunnel sections.

269

 this.GAMEgeotechnicalSections = new double[]
{ this.NESTGeotechnicalSections[0],
ScenarioSetup.QueryDatabaseDouble(@"SELECT Length FROM Tunnel
WHERE Name = 'Gaming 2'") - this.NESTGeotechnicalSections[0] };
 this.GAMEgeometrySections = new double[]
{ ScenarioSetup.QueryDatabaseDouble(@"SELECT Length FROM Tunnel
WHERE Name = 'Gaming 2'") };

 #region Test Code: Schedule Generation
 // Test Code: Creates a schedule plan and adds it into the schedules
 //List<int> periodList = new List<int>();
 //List<double> progressList = new List<double>();
 //List<DateTime> dateList = new List<DateTime>();
 //for (int i = 1; i <= 3; i++)
 //{
 // periodList.Add(i);
 // progressList.Add(i * 5);
 // dateList.Add(new DateTime(DateTime.Now.Year,
DateTime.Now.Month, DateTime.Now.Day, 0, 0, 0).AddDays(i * 5));
 //}
 //for (int i = 4; i <= 30; i++)
 //{
 // periodList.Add(i);
 // progressList.Add((i - 3) * 100);
 // dateList.Add(new DateTime(DateTime.Now.Year,
DateTime.Now.Month, DateTime.Now.Day, 0, 0, 0).AddDays(i * 5));
 //}
 //for (int i = 0; i < 3; i++)
 //{
 // if (i == 0)
 // {
 // this.workingShaftScheduleControl.DataTable.Rows[0][0] =
periodList[i];
 // this.workingShaftScheduleControl.DataTable.Rows[0][1] =
progressList[i];
 // this.workingShaftScheduleControl.DataTable.Rows[0][2] =
dateList[i];
 // }
 // else
 // {
 // DataRow row =
this.workingShaftScheduleControl.DataTable.NewRow();
 // row[0] = periodList[i];
 // row[1] = progressList[i];
 // row[2] = dateList[i];
 // row[3] = progressList[i] * 100;

270

 // this.workingShaftScheduleControl.DataTable.Rows.Add(row);
 // }
 //}
 //for (int i = 3; i < 30; i++)
 //{
 // if (i == 3)
 // {
 // this.tunnelScheduleControl.DataTable.Rows[0][0] =
periodList[i];
 // this.tunnelScheduleControl.DataTable.Rows[0][1] =
progressList[i];
 // this.tunnelScheduleControl.DataTable.Rows[0][2] = dateList[i];
 // }
 // else
 // {
 // DataRow row =
this.tunnelScheduleControl.DataTable.NewRow();
 // row[0] = periodList[i];
 // row[1] = progressList[i];
 // row[2] = dateList[i];
 // row[3] = progressList[i] * 100;
 // this.tunnelScheduleControl.DataTable.Rows.Add(row);
 // }
 //}
 // End Test Code
 #endregion
 }
 #endregion

 #endregion

 #region Internal Properties

 #region WorkingShaftBudget
 internal double WorkingShaftBudget
 {
 get
 {
 return this.workingShaftScheduleControl.WorkingShaftCost;
 }
 }
 #endregion

 #region TunnelBudget
 internal double TunnelBudget
 {

271

 get
 {
 return this.tunnelScheduleControl.TunnelCost;
 }
 }
 #endregion

 #region ProjectDuration
 internal TimeSpan ProjectDuration
 {
 get
 {
 double hours = ScenarioSetup.QueryDatabaseDouble(@"SELECT
TotalProjectDuration FROM TunnelDurations WHERE TunnelID = 'f4ac327a-
4a80-456b-8d6d-8bbd84276422'");
 return new TimeSpan((int)Math.Round(hours), 0, 0);
 }
 }
 #endregion

 #endregion

 #region Private Properties

 #region CurrentDateTime
 private DateTime CurrentDateTime
 {
 get
 {
 try
 {
 foreach (Calendar calendar in this.calendarFactory)
 {
 return calendar.CurrentDateTime;
 }
 throw new Exception("CalendarFactory has no calendars!");
 }
 catch (Exception)
 {
 return DateTime.Now;
 }
 }
 }
 #endregion

 #region StartDateTime

272

 private DateTime StartDateTime
 {
 get
 {
 try
 {
 foreach (Calendar calendar in this.calendarFactory)
 {
 return calendar.StartDateTime;
 }
 throw new Exception("CalendarFactory has no calendars!");
 }
 catch (Exception)
 {
 return DateTime.Now;
 }
 }
 }
 #endregion

 #region NextDay
 private DateTime NextDay
 {
 get;
 set;
 }
 #endregion

 #region CurrentZeroBasedPeriod
 private int CurrentZeroBasedPeriod
 {
 get;
 set;
 }
 #endregion

 #region PeriodShaftCost
 private double PeriodShaftCost
 {
 get
 {
 return this.TotalShaftCost - this.previousShaftCost;
 }
 }
 #endregion

273

 #region PeriodShaftIncome
 private double PeriodShaftIncome
 {
 get
 {
 return this.TotalShaftIncome - this.previousShaftIncome;
 }
 }
 #endregion

 #region TotalShaftCost
 private double TotalShaftCost
 {
 get;
 set;
 }
 #endregion

 #region TotalShaftIncome
 private double TotalShaftIncome
 {
 get;
 set;
 }
 #endregion

 #region PeriodTunnelCost
 private double PeriodTunnelCost
 {
 get
 {
 return this.TotalTunnelCost - this.previousTunnelCost;
 }
 }
 #endregion

 #region PeriodTunnelIncome
 private double PeriodTunnelIncome
 {
 get
 {
 return this.TotalTunnelIncome - this.previousTunnelIncome;
 }
 }
 #endregion

274

 #region TotalTunnelCost
 private double TotalTunnelCost
 {
 get;
 set;
 }
 #endregion

 #region TotalTunnelIncome
 private double TotalTunnelIncome
 {
 get;
 set;
 }
 #endregion

 #region TrainsOnline
 private Stack<Train> TrainsOnline
 {
 get;
 set;
 }
 #endregion

 #endregion

 #region Private Federation Management Handlers

 #region fedAmb_FederationJoined
 private void fedAmb_FederationJoined(object sender, EventArgs e)
 {
 // Check whether the user wants to play the tunneling game, or simply
run a simulation.
 DialogResult result = MessageBox.Show("Would you like to run this
simulation in Game Mode?", "Game Mode", MessageBoxButtons.YesNo,
MessageBoxIcon.Question);
 if (result == DialogResult.No)
 {
 this.isGame = false;
 this.DisableGaming();
 return;
 }
 else
 {
 this.isGame = true;
 }

275

 }
 #endregion

 #region fedAmb_MakeInitialDeclarations
 private void fedAmb_MakeInitialDeclarations(object sender, EventArgs e)
 {
 if (this.isGame)
 {

 this.rtiAmb.PublishObjectClassAttributes(this.rtiAmb.GetObjectClassHandle(
"HLAobjectRoot.ConstructionActivity.TunnelSection.GeotechnicalSection"),
new AttributeHandleSet
{ this.geotechnicalSectionAttributes.NextAdvanceRate.GetAttributeHandle() });
 }
 }
 #endregion

 #endregion

 #region Private Object Management Handlers

 #region MyShaftGeneralFactory_RegisterInitialInstances
 private void MyShaftGeneralFactory_RegisterInitialInstances(object
sender, EventArgs e)
 {
 if (!this.isGame)
 {
 // Register the appropriate number of shafts.
 while (MyShaftGeneralFactory.Count < TotalRectWorkingShaft)
 {
 theShaft =
MyShaftGeneralFactory.RegisterObjectInstance();
 var prevSection = default(ShaftSection);

 // Register the appropriate number of shaft sections.
 for (int count = 1; count <= TotalShaftSection; ++count)
 {
 var shaftCurrentSection =
MyShaftSectionFactory.RegisterObjectInstance();
 //var theShaftSection =
MyShaftSectionFactory.RegisterObjectInstance();
 shaftCurrentSection.NextSection =
ObjectInstanceHandle.Empty;
 shaftCurrentSection.PreviousSection =
ObjectInstanceHandle.Empty;

276

 shaftCurrentSection.Shaft =
theShaft.GetObjectInstanceHandle();

 if (prevSection != null)
 {
 prevSection.NextSection =
shaftCurrentSection.GetObjectInstanceHandle();
 shaftCurrentSection.PreviousSection =
prevSection.GetObjectInstanceHandle();
 }
 else
 {
 theShaft.FirstSection =
shaftCurrentSection.GetObjectInstanceHandle();
 }
 prevSection = shaftCurrentSection;
 }
 }
 }
 else
 {
 theShaft = MyShaftGeneralFactory.RegisterObjectInstance();

 double depth = ScenarioSetup.QueryDatabaseDouble(@"SELECT
Depth FROM Tunnel WHERE Name = 'Gaming 2'");
 int sectionCount = (int)Math.Floor(depth / ShaftSectionDepth);

 for (int i = 0; i < sectionCount; i++)
 {

 this.shaftSections.Add(this.MyShaftSectionFactory.RegisterObjectInstance());
 }
 }
 }
 #endregion

 #region MyShaftGeneralFactory_InitializeInitialInstances
 private void MyShaftGeneralFactory_InitializeInitialInstances(object
sender, EventArgs e)
 {
 if (!this.isGame)
 {
 int Id = TotalRectWorkingShaft;

 // need to initial every shaft in the factory .For Each theShaft In
MyShaftGeneralFactory;

277

 foreach (RectangularShaft theShaft in MyShaftGeneralFactory)
 {
 theShaft.State = ShaftState.Unstarted;
 theShaft.Name = ("WorkingShaft" + Id.ToString());
 theShaft.CurrentDepth = 0D; // will be allowed to change
to any. How?????
 theShaft.CurrentSection = ObjectInstanceHandle.Empty;
 theShaft.HasSafetyWall = true;
 theShaft.Shape = ShaftShape.Rectangular;
 theShaft.PileQuantity = -1;
 theShaft.PileWidth = 1;
 theShaft.Purpose = ShaftPurpose.WorkingShaft;
 theShaft.ExcavationLength = 30.29;
 theShaft.ExcavationWidth = 6.35;
 theShaft.Tag = Id--;
 theShaft.FinishTime = Double.PositiveInfinity;
 theShaft.StartTime = 0;
 theShaft.ExcavatedDirtVolume = 0;
 theShaft.PilingFinishTime = Double.PositiveInfinity;
 theShaft.OnePileDrivingDuration =
this.onePileDrivingTime;

 foreach (ConstructionSite site in
this.MyConstructionSiteFactory)
 theShaft.ConstructionSite =
site.GetObjectInstanceHandle();

 foreach (RectangularShaftSection theSection in
MyShaftSectionFactory)
 {
 if (theSection.Shaft ==
theShaft.GetObjectInstanceHandle())
 {
 theSection.LinerType = LinerType.SheetPile;
 // theShaftSection.ShaftSectionID = 1;
 theSection.State =
ShaftSectionState.Unstarted; //ShaftSectionState.Unstarted;
 theSection.SoilSwellFactor = 1.35;
 theSection.MaterialCostPerMeter = 1575.0;
 theSection.MachineExcavationLength =
29.0;
 theSection.MachineExcavationWidth = 6.0;
 theSection.Depth = 13.54D;

 theSection.MachineExcavationRate =
this.shaftMachineExcavationRate;

278

 theSection.HandExcavationRate =
this.shaftHandExcavationRate;

 theSection.UpdateAttributeValues();

 theSection.UnconditionalAttributeOwnershipDivestiture(theShaftSectionAttri
butes.ToArray());
 }
 }

 theShaft.UpdateAttributeValues();

 theShaft.UnconditionalAttributeOwnershipDivestiture(theShaftAttributes.ToA
rray());
 }
 }
 else
 {
 int Id = TotalRectWorkingShaft;

 // need to initial every shaft in the factory .For Each theShaft In
MyShaftGeneralFactory;
 foreach (RectangularShaft theShaft in MyShaftGeneralFactory)
 {
 theShaft.State = ShaftState.Unstarted;
 theShaft.Name = ("WorkingShaft" + Id.ToString());
 theShaft.CurrentDepth = 0D; // will be allowed to change
to any. How?????
 theShaft.CurrentSection = ObjectInstanceHandle.Empty;
 theShaft.FirstSection =
this.shaftSections[0].GetObjectInstanceHandle();
 theShaft.HasSafetyWall = true;
 theShaft.Shape = ShaftShape.Rectangular;
 theShaft.PileQuantity = -1;
 theShaft.PileWidth = 1;
 theShaft.Purpose = ShaftPurpose.WorkingShaft;
 theShaft.ExcavationLength = 30.29;
 theShaft.ExcavationWidth = 6.35;
 theShaft.Tag = Id--;
 theShaft.FinishTime = Double.PositiveInfinity;
 theShaft.StartTime = 0;
 theShaft.ExcavatedDirtVolume = 0;
 theShaft.PilingFinishTime = Double.PositiveInfinity;
 theShaft.OnePileDrivingDuration = new Constant(0);

279

 foreach (ConstructionSite site in
this.MyConstructionSiteFactory)
 theShaft.ConstructionSite =
site.GetObjectInstanceHandle();

 for (int i = 0; i < this.shaftSections.Count; i++)
 {
 this.shaftSections[i].Shaft =
this.theShaft.GetObjectInstanceHandle();
 this.shaftSections[i].LinerType =
LinerType.SheetPile;
 this.shaftSections[i].State =
ShaftSectionState.Unstarted; //ShaftSectionState.Unstarted;
 this.shaftSections[i].SoilSwellFactor = 1.35;
 this.shaftSections[i].MaterialCostPerMeter = 1575.0;
 this.shaftSections[i].MachineExcavationLength =
29.0;
 this.shaftSections[i].MachineExcavationWidth = 6.0;

 if (i == this.shaftSections.Count - 1)
 {
 double depth =
ScenarioSetup.QueryDatabaseDouble(@"SELECT Depth FROM Tunnel
WHERE Name = 'Gaming 2'");
 this.shaftSections[i].Depth =
ShaftSectionDepth + (depth - Math.Round(depth, 1));
 }
 else
 {
 this.shaftSections[i].Depth =
ShaftSectionDepth;
 }

 if (i > 0)
 {
 this.shaftSections[i].PreviousSection =
this.shaftSections[i - 1].GetObjectInstanceHandle();
 }
 else
 {
 this.shaftSections[i].PreviousSection =
ObjectInstanceHandle.Empty;
 }

 if (i < this.shaftSections.Count - 1)
 {

280

 this.shaftSections[i].NextSection =
this.shaftSections[i + 1].GetObjectInstanceHandle();
 }
 else
 {
 this.shaftSections[i].NextSection =
ObjectInstanceHandle.Empty;
 }

 this.shaftSections[i].MachineExcavationRate =
this.shaftMachineExcavationRate;
 this.shaftSections[i].HandExcavationRate =
this.shaftHandExcavationRate;

 this.shaftSections[i].UpdateAttributeValues();

 this.shaftSections[i].UnconditionalAttributeOwnershipDivestiture(theShaftSec
tionAttributes.ToArray());
 }

 theShaft.UpdateAttributeValues();

 theShaft.UnconditionalAttributeOwnershipDivestiture(theShaftAttributes.ToA
rray());
 }
 }
 }
 #endregion

 #region MyTunnelFactory_RegisterInitialInstances
 private void MyTunnelFactory_RegisterInitialInstances(object sender,
EventArgs e)
 {
 // Register the appropriate number of tunnels.
 while (MyTunnelFactory.Count < TotalTunnel)
 {
 this.theTunnel = MyTunnelFactory.RegisterObjectInstance();
 var prevSection = default(GeotechnicalSection);

 if (!this.isGame)
 {
 // Register the appropriate number of geotechnical sections
for the tunnel.
 for (int sectionNumber = 1; sectionNumber <=
NESTGeotechnicalSections.Length; ++sectionNumber)
 {

281

 var currentSection =
geotechnicalSectionFactory.RegisterObjectInstance();
 currentSection.NextSection =
ObjectInstanceHandle.Empty;
 currentSection.PreviousSection =
ObjectInstanceHandle.Empty;
 currentSection.Length =
NESTGeotechnicalSections[sectionNumber - 1];
 currentSection.Tunnel =
theTunnel.GetObjectInstanceHandle();
 if (prevSection != null)
 {
 prevSection.NextSection =
currentSection.GetObjectInstanceHandle();
 currentSection.PreviousSection =
prevSection.GetObjectInstanceHandle();
 }
 else
 {
 theTunnel.FirstGeotechnicalSection =
currentSection.GetObjectInstanceHandle();
 }
 prevSection = currentSection;
 }

 // Register the appropriate number of geometry sections for
the tunnel.
 var prevGeometrySection = default(GeometrySection);
 for (int sectionNumber = 1; sectionNumber <=
this.NESTGeometrySections.Length; ++sectionNumber)
 {
 var currentSection =
MyGeometrySectionFactory.RegisterObjectInstance();
 currentSection.NextSection =
ObjectInstanceHandle.Empty;
 currentSection.PreviousSection =
ObjectInstanceHandle.Empty;
 currentSection.Tunnel =
theTunnel.GetObjectInstanceHandle();
 if (prevGeometrySection != null)
 {
 prevGeometrySection.NextSection =
currentSection.GetObjectInstanceHandle();
 currentSection.PreviousSection =
prevGeometrySection.GetObjectInstanceHandle();
 }

282

 else
 {
 theTunnel.FirstGeometrySection =
currentSection.GetObjectInstanceHandle();
 }
 prevGeometrySection = currentSection;
 }
 }
 else
 {
 // Register the appropriate number of geotechnical sections
for the tunnel.
 for (int sectionNumber = 1; sectionNumber <=
this.GAMEgeotechnicalSections.Length; ++sectionNumber)
 {
 var currentSection =
geotechnicalSectionFactory.RegisterObjectInstance();
 currentSection.NextSection =
ObjectInstanceHandle.Empty;
 currentSection.PreviousSection =
ObjectInstanceHandle.Empty;
 currentSection.Length =
GAMEgeotechnicalSections[sectionNumber - 1];
 currentSection.Tunnel =
theTunnel.GetObjectInstanceHandle();
 if (prevSection != null)
 {
 prevSection.NextSection =
currentSection.GetObjectInstanceHandle();
 currentSection.PreviousSection =
prevSection.GetObjectInstanceHandle();
 }
 else
 {
 theTunnel.FirstGeotechnicalSection =
currentSection.GetObjectInstanceHandle();
 }
 prevSection = currentSection;
 }

 // Register the appropriate number of geometry sections for
the tunnel.
 var prevGeometrySection = default(GeometrySection);
 for (int sectionNumber = 1; sectionNumber <=
this.GAMEgeometrySections.Length; ++sectionNumber)
 {

283

 var currentSection =
MyGeometrySectionFactory.RegisterObjectInstance();
 currentSection.NextSection =
ObjectInstanceHandle.Empty;
 currentSection.PreviousSection =
ObjectInstanceHandle.Empty;
 currentSection.Tunnel =
theTunnel.GetObjectInstanceHandle();
 if (prevGeometrySection != null)
 {
 prevGeometrySection.NextSection =
currentSection.GetObjectInstanceHandle();
 currentSection.PreviousSection =
prevGeometrySection.GetObjectInstanceHandle();
 }
 else
 {
 theTunnel.FirstGeometrySection =
currentSection.GetObjectInstanceHandle();
 }
 prevGeometrySection = currentSection;
 }
 }
 }
 }
 #endregion

 #region MyTunnelFactory_InitializeInitialInstances
 private void MyTunnelFactory_InitializeInitialInstances(object sender,
EventArgs e)
 {
 foreach (Tunnel theTunnel in MyTunnelFactory)
 {
 if (this.isGame)
 {
 theTunnel.Diameter =
ScenarioSetup.QueryDatabaseDouble(@"SELECT ExcavatedDiameter FROM
Tunnel WHERE Name = 'Gaming 2'");
 theTunnel.Depth =
ScenarioSetup.QueryDatabaseDouble(@"SELECT Depth FROM Tunnel
WHERE Name = 'Gaming 2'");
 }
 else
 {
 theTunnel.Diameter = 2.344;
 theTunnel.Depth = 13.54;

284

 }

 //theTunnel.ConveyorExtraTime = 3.5D * 60D * 60D;
 theTunnel.CrewActivity = TunnelCrewActivity.WaitingTrain;
 theTunnel.CurrentChainage = 0;
 theTunnel.CurrentGeotechnicalSection =
ObjectInstanceHandle.Empty;
 theTunnel.ExcavatedDirtVolume = 0;
 theTunnel.ExcavationArea = Math.PI * theTunnel.Diameter *
theTunnel.Diameter / 4D;
 theTunnel.ExtendTrackInterval = 5D;
 theTunnel.ExtendTrackDuration = this.DisExtendTrack;
 theTunnel.ExtendUtilityInterval = 3D;
 theTunnel.ExtendUtilityDuration = this.DisExtendUtility;
 theTunnel.FinishTime = Double.PositiveInfinity;
 theTunnel.LastSurveyChainage = 0.0;
 theTunnel.Name = "NEST";
 foreach (Scenario scenario in this.MyScenarioFactory)
 theTunnel.Scenario = scenario.GetObjectInstanceHandle();
 theTunnel.Shape = TunnelShape.Circular;
 theTunnel.StartTime = Double.PositiveInfinity;
 theTunnel.State = TunnelState.Unstarted;
 theTunnel.SurveyInterval = 10; //every 10 meters, survey once.
 theTunnel.SurveyDuration = this.DisSurvey;
 theTunnel.SwitchInstallationChainage =
NESTGeotechnicalSections[0];
 theTunnel.UnlinedLength = 0.0;

 foreach (Undercut undercut in this.MyUndercutFactory)
 theTunnel.Undercut = undercut.GetObjectInstanceHandle();

 foreach (GeometrySection theSection in
this.MyGeometrySectionFactory)
 {
 if (theSection.Tunnel ==
theTunnel.GetObjectInstanceHandle())
 {
 theSection.FinishTime = Double.PositiveInfinity;
 theSection.StartTime = Double.PositiveInfinity;

 theSection.UpdateAttributeValues();

 theSection.UnconditionalAttributeOwnershipDivestiture(this.theGeometrySec
tionAttributes.ToArray());
 }
 }

285

 foreach (GeotechnicalSection theSection in
geotechnicalSectionFactory)
 {
 if (theSection.Tunnel ==
theTunnel.GetObjectInstanceHandle())
 {
 theSection.State = TunnelSectionState.Unstarted;
 theSection.SoilSwellFactor = 1.3;
 theSection.MaterialCostPerMeter = 1575.0;
 theSection.ExcavationMethod =
TunnelExcavationMethod.TbmTunnel;

 //if (this.isGame)
 //{
 // var theValues = new
AttributeHandleValueMap();
 //
theValues.Add(this.geotechnicalSectionAttributes.NextAdvanceRate.GetAttribute
Handle(), 0.5);
 //
this.rtiAmb.UpdateAttributeValues(theSection.GetObjectInstanceHandle(),
theValues, null, this.rtiAmb.QueryLogicalTime() + this.fedAmb.Lookahead);
 //}

 theSection.UpdateAttributeValues();

 theSection.UnconditionalAttributeOwnershipDivestiture(theGeotechnicalSecti
onAttributes.ToArray());
 }
 }
 theTunnel.UpdateAttributeValues();

 theTunnel.UnconditionalAttributeOwnershipDivestiture(theTunnelAttributes.
ToArray());
 }
 }
 #endregion

 #region MyUnderCutFactory_RegisterInitialInstances
 private void MyUnderCutFactory_RegisterInitialInstances(object sender,
EventArgs e)
 {
 this.MyUndercutFactory.RegisterObjectInstance();
 }
 #endregion

286

 #region MyUnderCutFactory_InitializeInitialInstances
 private void MyUnderCutFactory_InitializeInitialInstances(object sender,
EventArgs e)
 {
 foreach (Undercut theUndercut in MyUndercutFactory)
 {
 theUndercut.CurrentInstallationProcess =
UndercutInstallation.None;
 theUndercut.CurrentSection = ObjectInstanceHandle.Empty;
 theUndercut.ExcavatedDirtVolume = 0.0;
 theUndercut.ExcavationArea = 0.0;
 theUndercut.FinishTime = double.PositiveInfinity;
 foreach (TailTunnelSection section in
this.tailTunnelSectionFactory)
 theUndercut.FirstSection =
section.GetObjectInstanceHandle();
 theUndercut.HasSwitch = false;
 theUndercut.Height = 0.0;
 theUndercut.LiningLength = 0.0;
 theUndercut.StartTime = double.PositiveInfinity;
 theUndercut.SwitchInstallationDuration = this.switchInstallTime;
 theUndercut.TailTunnel = ObjectInstanceHandle.Empty;
 theUndercut.WorkingShaft = theShaft.GetObjectInstanceHandle();

 theUndercut.UpdateAttributeValues();

 theUndercut.UnconditionalAttributeOwnershipDivestiture(theUndercutAttribu
tes.ToArray());
 }
 }
 #endregion

 #region MyTbmFactory_RegisterInitialInstances
 private void MyTbmFactory_RegisterInitialInstances(object sender,
EventArgs e)
 {
 //Register the appropriate number of Tbm.
 for (int count = 1; count <= TotalTbm; ++count)
 {
 Tbm theTbm = MyTbmFactory.RegisterObjectInstance();

 theTbm.UnconditionalAttributeOwnershipDivestiture(tbmAttributes.TimeBet
weenFailure);

287

 theTbm.UnconditionalAttributeOwnershipDivestiture(tbmAttributes.TimeTo
Repair);

 theTbm.UnconditionalAttributeOwnershipDivestiture(tbmAttributes.TimeBet
weenMajorFailure);

 theTbm.UnconditionalAttributeOwnershipDivestiture(tbmAttributes.TimeTo
MajorRepair);

 this.tbmDownTimes.Add(theTbm.GetObjectInstanceHandle(), new
TimeKeeper());
 }
 }
 #endregion

 #region MyTbmFactory_InitializeInitialInstances
 private void MyTbmFactory_InitializeInitialInstances(object sender,
EventArgs e)
 {
 foreach (Tbm theTbm in MyTbmFactory)
 {
 theTbm.AverageWaitTime = 0;
 theTbm.Diameter = 2.344;
 theTbm.EquipmentState = EquipmentState.Functional;
 theTbm.EquipmentType = EquipmentType.TBM;
 theTbm.CostPerHour = 60.0 * 60.0; //and other advance rate /
MTBF/ MTTR
 theTbm.LiningDuration = this.DisLining;
 theTbm.GantrySectionLength = 4.0;
 theTbm.GantryLength = 36.0;
 theTbm.GantryInstallationDuration = this.DisExtendGantry;
 theTbm.PenetrationRate = 1.0 / 60.0 / 60.0;
 theTbm.WorkHours = 6;
 theTbm.ResourceState = ResourceState.Idle;
 theTbm.ID = 1;
 theTbm.InstallationDuration = this.tbmInstallTime;
 theTbm.ResettingDuration = this.DisResetting;
 theTbm.ConveyorLength = 36;
 theTbm.ConveyorInstallationDuration = new Constant(4 * 60 *
60);
 theTbm.Tunnel = theTunnel.GetObjectInstanceHandle();
 theTbm.WorkState = TbmWorkState.Waiting;
 theTbm.ResourceState = ResourceState.Idle;

 theTbm.EmissionFactor = 0;

288

 theTbm.EnergyConsumption = 0;
 theTbm.EnergyType = EquipmentEnergyType.Electrical;

 foreach (Scenario scenario in this.MyScenarioFactory)
 theTbm.Scenario = scenario.GetObjectInstanceHandle();

 theTbm.UpdateAttributeValues();

 theTbm.UnconditionalAttributeOwnershipDivestiture(theTbmAttributes.ToAr
ray());

 Debug.WriteLine("ScenarioSetup is Federate " +
this.fedAmb.FederateHandle);
 }
 }
 #endregion

 #region MyTrainFactory_RegisterInitialInstances
 private void MyTrainFactory_RegisterInitialInstances(object sender,
EventArgs e)
 {
 //Register the appropriate number of Train.
 for (int count = 1; count <= TotalTrain; ++count)
 {
 Train theTrain = MyTrainFactory.RegisterObjectInstance();

 this.trainDownTimes.Add(theTrain.GetObjectInstanceHandle(),
new TimeKeeper());
 }
 }
 #endregion

 #region MyTrainFactory_InitializeInitialInstances
 private void MyTrainFactory_InitializeInitialInstances(object sender,
EventArgs e)
 {
 int count = 1;
 foreach (Train theTrain in MyTrainFactory)
 {
 theTrain.AverageWaitTime = 0;
 theTrain.CapacityPerCart = 2; // 2 m3.
 theTrain.CapturedTrack = false;
 theTrain.CartsCounter = 0;
 theTrain.CostPerHour = 65.0;
 theTrain.CurrentDirtVolume = 0;
 theTrain.EmptySpeed = 1.5 * 1000D / 3600D;

289

 theTrain.EquipmentState = EquipmentState.Functional;
 theTrain.Liner = ObjectInstanceHandle.Empty;
 theTrain.LoadedSpeed = 1 * 1000D / 3600D;
 theTrain.MaterialCartCount = 1;
 theTrain.MaterialLoadingDuration = this.DisLoading;
 theTrain.MuckCartCount = TotalMuckCars;
 theTrain.MuckCartDumpDuration = this.DisDumping;
 theTrain.Position = TrainLocation.Undercut;
 theTrain.ResourceState = ResourceState.Busy;

 theTrain.TimeBetweenFailure = this.DisBreakdown;
 theTrain.TimeToRepair = this.DisRepair;
 theTrain.Tunnel = this.theTunnel.GetObjectInstanceHandle();
 theTrain.WorkState = TrainWorkState.UnStarted;

 theTrain.ID = count;
 count += 1;

 // for emission:
 theTrain.EmissionFactor = 0;
 theTrain.EnergyConsumption = 0;
 theTrain.EnergyType = EquipmentEnergyType.Electrical;
 theTrain.EquipmentType = EquipmentType.Train;
 // end of emission.

 foreach (Scenario scenario in this.MyScenarioFactory)
 theTrain.Scenario = scenario.GetObjectInstanceHandle();

 theTrain.UpdateAttributeValues();

 theTrain.UnconditionalAttributeOwnershipDivestiture(theTrainAttributes.To
Array());
 }
 }
 #endregion

 #region myConcreteFactory_RegisterInitialInstances
 private void myConcreteFactory_RegisterInitialInstances(object sender,
EventArgs e)
 {
 myConcrete = myConcreteFactory.RegisterObjectInstance();
 }
 #endregion

 #region myConcreteFactory_InitializeInitialInstances

290

 private void myConcreteFactory_InitializeInitialInstances(object sender,
EventArgs e)
 {
 foreach (ConstructionSite site in this.MyConstructionSiteFactory)
 myConcrete.ConstructionSite = site.GetObjectInstanceHandle();
 myConcrete.DeliveryUsabilityProportion = new Uniform(0.9, 1.0);
 myConcrete.SectionsPerCircle = 4;
 myConcrete.OrderThreshold = 50;
 myConcrete.OrderQuantity = 100;
 myConcrete.Quantity = 100;
 myConcrete.LinerLength = 1.0;
 myConcrete.UpdateAttributeValues();

 myConcrete.UnconditionalAttributeOwnershipDivestiture(concreteAttributes.
DeliveryUsabilityProportion, concreteAttributes.SectionsPerCircle,
concreteAttributes.LinerLength, concreteAttributes.Quantity,
concreteAttributes.OrderThreshold, concreteAttributes.OrderQuantity);
 }
 #endregion

 #region MyCraneFactory_InitializeInitialInstances_1
 private void MyCraneFactory_InitializeInitialInstances_1(object sender,
EventArgs e)
 {
 foreach (Crane theCrane in MyCraneFactory)
 {
 theCrane.EquipmentState = EquipmentState.Functional;
 theCrane.WorkHours = 0;
 theCrane.CostPerHour = 223.0; // 30 in the Simphony model.
 theCrane.Load = ObjectInstanceHandle.Empty;
 theCrane.ResourceState = ResourceState.Busy;

 theCrane.TimeBetweenFailure = this.DisBreakdown;
 theCrane.TimeToRepair = this.DisRepair;

 // for emission:
 theCrane.EmissionFactor = 0;
 theCrane.EnergyConsumption = 0;
 theCrane.EnergyType = EquipmentEnergyType.Gas;
 theCrane.EquipmentType = EquipmentType.Crane;
 // end of emission.

 foreach (Scenario scenario in this.MyScenarioFactory)
 theCrane.Scenario = scenario.GetObjectInstanceHandle();
 foreach (ConstructionSite site in this.MyConstructionSiteFactory)

291

 theCrane.ConstructionSite =
site.GetObjectInstanceHandle();

 theCrane.UpdateAttributeValues();

 theCrane.UnconditionalAttributeOwnershipDivestiture(theCraneAttributes.To
Array());
 }
 }
 #endregion

 #region MyCraneFactory_RegisterInitialInstances_1
 private void MyCraneFactory_RegisterInitialInstances_1(object sender,
EventArgs e)
 {
 //Register the appropriate number of Train.
 for (int count = 0; count < TotalRectWorkingShaft; ++count)
 {
 Crane theCrane = MyCraneFactory.RegisterObjectInstance();
 }
 }
 #endregion

 #region MyScenarioFactory_RegisterInitialInstances
 private void MyScenarioFactory_RegisterInitialInstances(object sender,
EventArgs e)
 {
 this.MyScenarioFactory.RegisterObjectInstance();
 }
 #endregion

 #region MyScenarioFactory_InitializeInitialInstances
 private void MyScenarioFactory_InitializeInitialInstances(object sender,
EventArgs e)
 {
 foreach (Scenario scenario in this.MyScenarioFactory)
 {
 scenario.CrewCost = 0;
 scenario.EquipmentCost = 0;
 scenario.FinishTime = double.PositiveInfinity;
 scenario.IndirectCostPerHour = 240;
 scenario.MaterialCost = 0;
 scenario.Name = "NEST scenario 1";
 foreach (Project project in this.MyProjectFactory)
 {
 scenario.Project = project.GetObjectInstanceHandle();

292

 }
 scenario.StartTime = 0;
 scenario.UpdateAttributeValues();

 scenario.UnconditionalAttributeOwnershipDivestiture(theScenarioAttributes.
ToArray());
 }
 }
 #endregion

 #region MyProjectFactory_RegisterInitialInstances
 private void MyProjectFactory_RegisterInitialInstances(object sender,
EventArgs e)
 {
 this.MyProjectFactory.RegisterObjectInstance();
 }
 #endregion

 #region MyProjectFactory_InitializeInitialInstances
 private void MyProjectFactory_InitializeInitialInstances(object sender,
EventArgs e)
 {
 foreach (Project project in this.MyProjectFactory)
 {
 project.Name = "NEST";
 project.UpdateAttributeValues();

 project.UnconditionalAttributeOwnershipDivestiture(theProjectAttributes.To
Array());
 }
 }
 #endregion

 #region MyConstructionSiteFactory_RegisterInitialInstances
 private void MyConstructionSiteFactory_RegisterInitialInstances(object
sender, EventArgs e)
 {
 this.MyConstructionSiteFactory.RegisterObjectInstance();
 }
 #endregion

 #region MyConstructionSiteFactory_InitializeInitialInstances
 private void MyConstructionSiteFactory_InitializeInitialInstances(object
sender, EventArgs e)
 {
 foreach (ConstructionSite site in this.MyConstructionSiteFactory)

293

 {
 site.DirtVolume = 0.0;
 site.MaximumDirtVolume = double.PositiveInfinity;
 site.Name = "NEST";
 foreach (Scenario scenario in this.MyScenarioFactory)
 site.Scenario = scenario.GetObjectInstanceHandle();

 site.UpdateAttributeValues();

 site.UnconditionalAttributeOwnershipDivestiture(constructionSiteAttributes.
DirtVolume);
 }
 }
 #endregion

 #region tailTunnelSectionFactory_RegisterInitialInstances
 private void tailTunnelSectionFactory_RegisterInitialInstances(object
sender, EventArgs e)
 {
 this.tailTunnelSectionFactory.RegisterObjectInstance();
 }
 #endregion

 #region tailTunnelSectionFactory_InitializeInitialInstances
 private void tailTunnelSectionFactory_InitializeInitialInstances(object
sender, EventArgs e)
 {
 foreach (TailTunnelSection section in this.tailTunnelSectionFactory)
 {
 section.FinishTime = double.PositiveInfinity;
 section.Length = theShaft.ExcavationLength;
 section.LiningProductivity = new Constant(double.MaxValue);
 section.MaterialCostPerMeter = 0.0; //1575.0;
 section.NextSection = ObjectInstanceHandle.Empty;
 section.PreviousSection = ObjectInstanceHandle.Empty;
 section.Productivity = new Triangular(3D / 3600D, 5D / 3600D,
4.5D / 3600D);
 section.RibSpacing = theShaft.ExcavationLength;
 section.SoilSwellFactor = 1.35;
 section.StartTime = double.PositiveInfinity;
 section.State = TailTunnelSectionState.Unstarted;
 foreach (Undercut undercut in this.MyUndercutFactory)
 section.TailTunnel = undercut.GetObjectInstanceHandle();
 section.UpdateAttributeValues();

294

 section.UnconditionalAttributeOwnershipDivestiture(this.theTailTunnelSectio
nAttributes.ToArray());
 }
 }
 #endregion

 #region crewFactory_RegisterInitialInstances
 private void crewFactory_RegisterInitialInstances(object sender,
EventArgs e)
 {
 this.crewFactory.RegisterObjectInstance();
 }
 #endregion

 #region crewFactory_InitializeInitialInstances
 private void crewFactory_InitializeInitialInstances(object sender,
EventArgs e)
 {
 int i = 0;
 foreach (Crew crew in this.crewFactory)
 {
 crew.CostPerHour = 1;
 crew.ID = i++;
 crew.Location = new Vector3D(0, 0, 0);
 crew.NumberOfWorkers = 5;
 crew.ResourceState = ResourceState.Idle;
 crew.Scenario = this.theShaft.GetObjectInstanceHandle();

 crew.Type = "a crew";
 }
 }
 #endregion

 #endregion

 #region Private Time Management Handlers

 #region fedAmb_TimeAdvanceGrant(object,
TimeAdvanceGrantEventArgs)
 private void fedAmb_TimeAdvanceGrant(object sender,
TimeAdvanceGrantEventArgs e)
 {
 if (!this.isGame)
 {
 this.rtiAmb.NextMessageRequest(double.MaxValue);

295

 return;
 }

 if (!isStarted)
 {
 // Initialize ScheduleControl.

 this.workingShaftScheduleControl.Initialize(this.CurrentDateTime);
 this.tunnelScheduleControl.Initialize(this.CurrentDateTime);

 this.retrievalShaftScheduleControl.Initialize(this.CurrentDateTime);
 this.populateScheduleButton_Click(null, null);

 // Read from database for starting scenario information.
 this.UpdateInitialProjectInfo();
 this.projectInfoControl.UpdateProjectInfo();
 this.tunnelPeriodControl.UpdateProjectInfo();
 }

 this.periodEndDate = this.CurrentDateTime;

 // Show the appropriate UI based on what is currently under
construction.
 if (this.theShaft.State != ShaftState.Finished)
 {
 this.selectCurrentActivityBox.SelectedIndex = 0;
 this.workingShaftPeriodControl.Enable();
 this.tunnelPeriodControl.Disable();
 this.retrievalShaftPeriodControl.Disable();

 this.CurrentZeroBasedPeriod =
this.FindNextPeriodTableIndex(this.CurrentDateTime,
this.workingShaftScheduleControl);
 this.periodNumberValueLabel.Text =
(this.workingShaftScheduleControl.GetPeriod(this.CurrentZeroBasedPeriod) -
1).ToString();

 this.UpdateShaftPeriodUI();
 }
 else
 {
 this.selectCurrentActivityBox.SelectedIndex = 1;
 this.workingShaftPeriodControl.Disable();
 this.tunnelPeriodControl.Enable();
 this.retrievalShaftPeriodControl.Disable();

296

 this.CurrentZeroBasedPeriod =
this.FindNextPeriodTableIndex(this.CurrentDateTime,
this.tunnelScheduleControl);
 this.periodNumberValueLabel.Text =
(this.tunnelScheduleControl.GetPeriod(this.CurrentZeroBasedPeriod) -
1).ToString();

 this.UpdateTunnelPeriodUI();
 }

 this.UpdateProjectUI();

 // Enable the user to advance next.
 this.advanceButton.Enabled = true;

 // Send interaction informing the other federates the period is at its end.
 this.periodEndedTerminal.CurrentChainage =
this.theTunnel.CurrentChainage;
 this.periodEndedTerminal.FinishDate = this.CurrentDateTime;
 this.periodEndedTerminal.PeriodNumber =
this.CurrentZeroBasedPeriod + 1;

 this.periodEndedTerminal.SendInteraction(this.rtiAmb.QueryLogicalTime() +
60);
 }
 #endregion

 #endregion

 #region Private Form Event Handlers

 #region advanceButton_Click(object, EventArgs)
 private void advanceButton_Click(object sender, EventArgs e)
 {
 // Check schedule settings before starting game.
 if (!isStarted)
 {
 // Check integrities of the schedules.
 if
(!ScheduleControl.CheckDataTableIntegrity(this.workingShaftScheduleControl.D
ataTable)
|| !ScheduleControl.CheckDataTableIntegrity(this.tunnelScheduleControl.DataTa
ble) || !this.CheckLogicalTimeFlow())
 {
 return;
 }

297

 // If the tables' integrity is OK, then copy the predictions to chart
collectors.

 this.PopulateCollector(this.workingShaftScheduleControl.DataTable,
this.workingShaftProgressCollector, 1, 0);
 this.PopulateCollector(this.tunnelScheduleControl.DataTable,
this.tunnelProgressCollector, 1, 0);

 this.PopulateCollector(this.workingShaftScheduleControl.DataTable,
this.workingShaftCostCollector, 3, 0);
 this.PopulateCollector(this.tunnelScheduleControl.DataTable,
this.tunnelCostCollector, 3, 0);

 // Disable user input for schedules.
 this.workingShaftScheduleControl.DisableInput();
 this.tunnelScheduleControl.DisableInput();

 // Synchronize the equipment selection comboboxes in other
controls to their counterparts here.
 this.tunnelPeriodControl.TrainIDBoxSelectedIndex =
this.trainIDBox.SelectedIndex;
 this.tunnelPeriodControl.MuckCarIDBoxSelectedIndex =
this.muckCarIDBox.SelectedIndex;

 // Update initial project attributes.
 this.UpdateInitialPeriod();
 }

 // Clear TBM's breakdown records.
 this.tbmBreakdownsTimes = new List<double>();
 this.tbmRepairTimes = new List<double>();

 // Set the parameters depending on what is currently under
construction.
 double nextPeriodLength = -1;
 if (this.theShaft.State != ShaftState.Finished)
 {
 nextPeriodLength = this.SetNexShaftPeriod();
 }
 else
 {
 nextPeriodLength = this.SetNextTunnelPeriod();
 }

 // Check if the ending date for next period is valid.

298

 if (nextPeriodLength <= 0)
 {
 MessageBox.Show("Please ensure the ending time for next period
is later than the staring time.");
 return;
 }

 // Set the scenario start time if it has not yet been set.
 if (this.scenarioStartDate == default(DateTime))
 {
 this.scenarioStartDate = this.StartDateTime;
 }

 // Advance!
 double timeNow = this.rtiAmb.QueryLogicalTime();
 this.rtiAmb.TimeAdvanceRequest(timeNow + nextPeriodLength);

 this.advanceButton.Enabled = false;
 this.isStarted = true;
 }
 #endregion

 #region ScenarioSetup_Load(object, EventArgs)
 private void ScenarioSetup_Load(object sender, EventArgs e)
 {
 this.selectActivityBox.SelectedIndex = 0;
 this.workingShaftScheduleGroup.Dock = DockStyle.Fill;
 this.tunnelScheduleGroup.Dock = DockStyle.Fill;
 this.retrievalShaftScheduleGroup.Dock = DockStyle.Fill;

 this.selectCurrentActivityBox.SelectedIndex = 0;
 this.workingShaftPeriodGroup.Dock = DockStyle.Fill;
 this.tunnelPeriodGroup.Dock = DockStyle.Fill;
 this.retrievalShaftPeriodGroup.Dock = DockStyle.Fill;
 }
 #endregion

 #region selectActivityBox_SelectedIndexChanged(object , EventArgs)
 private void selectActivityBox_SelectedIndexChanged(object sender,
EventArgs e)
 {
 switch (this.selectActivityBox.SelectedItem.ToString())
 {
 case "Working Shaft":
 this.workingShaftScheduleGroup.Visible = true;
 this.tunnelScheduleGroup.Visible = false;

299

 this.retrievalShaftScheduleGroup.Visible = false;
 break;
 case "Tunnel":
 this.workingShaftScheduleGroup.Visible = false;
 this.tunnelScheduleGroup.Visible = true;
 this.retrievalShaftScheduleGroup.Visible = false;
 break;
 case "Retrieval Shaft":
 this.workingShaftScheduleGroup.Visible = false;
 this.tunnelScheduleGroup.Visible = false;
 this.retrievalShaftScheduleGroup.Visible = true;
 break;
 default:
 throw new
InvalidOperationException("this.selectActivityBox: Selection not possible!");
 }
 }
 #endregion

 #region selectCurrentActivityBox_SelectedIndexChanged(object,
EventArgs)
 private void selectCurrentActivityBox_SelectedIndexChanged(object
sender, EventArgs e)
 {
 switch (this.selectCurrentActivityBox.SelectedItem.ToString())
 {
 case "Working Shaft":
 this.workingShaftPeriodGroup.Visible = true;
 this.tunnelPeriodGroup.Visible = false;
 this.retrievalShaftPeriodGroup.Visible = false;
 break;
 case "Tunnel":
 this.workingShaftPeriodGroup.Visible = false;
 this.tunnelPeriodGroup.Visible = true;
 this.retrievalShaftPeriodGroup.Visible = false;
 break;
 case "Retrieval Shaft":
 this.workingShaftPeriodGroup.Visible = false;
 this.tunnelPeriodGroup.Visible = false;
 this.retrievalShaftPeriodGroup.Visible = true;
 break;
 default:
 throw new
InvalidOperationException("this.selectActivityBox: Selection not possible!");
 }
 }

300

 #endregion

 #region populateScheduleButton_Click(object , EventArgs)
 private void populateScheduleButton_Click(object sender, EventArgs e)
 {

 this.workingShaftScheduleControl.PopulateFromDatabase(ConstructionActivi
ty.WorkingShaft, 0, DateTime.Now.Date, 0);

 this.tunnelScheduleControl.PopulateFromDatabase(ConstructionActivity.Tun
nel, this.workingShaftScheduleControl.Periods,
this.workingShaftScheduleControl.FinishDate, 0);

 this.retrievalShaftScheduleControl.PopulateFromDatabase(ConstructionActivi
ty.RetrievalShaft, this.tunnelScheduleControl.Periods,
this.tunnelScheduleControl.FinishDate - new TimeSpan(2, 0, 0, 0), 0);
 }
 #endregion

 #endregion

 #region Private Message Handlers

 #region MyTrainFactory_ReflectAttributeValues(object,
ReflectAttributeValuesEventArgs)
 private void MyTrainFactory_ReflectAttributeValues(object sender,
ReflectAttributeValuesEventArgs e)
 {
 foreach (ObjectInstanceHandle train in this.trainDownTimes.Keys)
 {
 if (e.theObject == train &&
e.theValues.Contains(this.trainAttributes.WorkState.GetAttributeHandle()))
 {
 var trainState =
(TrainWorkState)e.theValues[this.trainAttributes.WorkState.GetAttributeHandle(
)];
 if (trainState == TrainWorkState.WaitCrane || trainState ==
TrainWorkState.WaitTbm || trainState == TrainWorkState.WaitTunnelTrack
&& !this.trainDownTimes[train].IsWaiting)
 {
 this.trainDownTimes[train].Wait(e.theTime);
 }
 else if (trainState != TrainWorkState.WaitCrane &&
trainState != TrainWorkState.WaitTunnelTrack && trainState !=
TrainWorkState.WaitTbm && this.trainDownTimes[train].IsWaiting)
 {

301

 this.trainDownTimes[train].Resume(e.theTime);
 }
 }
 }

 if
(e.theValues.Contains(this.trainAttributes.EquipmentState.GetAttributeHandle()))
 {
 var equipmentState =
(EquipmentState)e.theValues[this.trainAttributes.EquipmentState.GetAttributeHa
ndle()];
 if (equipmentState == EquipmentState.Down)
 {
 this.trainBreakdownCount++;
 }
 }
 }
 #endregion

 #region MyTbmFactory_ReflectAttributeValues(object,
ReflectAttributeValuesEventArgs)
 private void MyTbmFactory_ReflectAttributeValues(object sender,
ReflectAttributeValuesEventArgs e)
 {
 foreach (ObjectInstanceHandle tbm in this.tbmDownTimes.Keys)
 {
 // Check if TbmWorkState is changed.
 if (e.theObject == tbm &&
e.theValues.Contains(this.tbmAttributes.WorkState.GetAttributeHandle()))
 {
 var tbmState =
(TbmWorkState)e.theValues[this.tbmAttributes.WorkState.GetAttributeHandle()];
 if (tbmState == TbmWorkState.Waiting
&& !this.tbmDownTimes[tbm].IsWaiting)
 {
 this.tbmDownTimes[tbm].Wait(e.theTime);
 }
 else if (tbmState != TbmWorkState.Waiting &&
this.tbmDownTimes[tbm].IsWaiting)
 {
 this.tbmDownTimes[tbm].Resume(e.theTime);
 }
 }

 // Record when TBM is down and functional.

302

 if
(e.theValues.Contains(this.tbmAttributes.EquipmentState.GetAttributeHandle()))
 {
 var equipmentState =
(EquipmentState)e.theValues[this.tbmAttributes.EquipmentState.GetAttributeHan
dle()];
 if (equipmentState == EquipmentState.Down)
 {
 this.tbmBreakdownsTimes.Add(e.theTime);
 }
 else
 {
 this.tbmRepairTimes.Add(e.theTime);
 }
 }
 }
 }
 #endregion

 #region MyTunnelFactory_ReflectAttributeValues(object,
ReflectAttributeValuesEventArgs)
 private void MyTunnelFactory_ReflectAttributeValues(object sender,
ReflectAttributeValuesEventArgs e)
 {
 if
(e.theValues.Contains(this.tunnelAttributes.CurrentChainage.GetAttributeHandle(
)) && !double.IsNaN(e.theTime))
 {
 DateTime currentDate =
DateTime.FromOADate(this.scenarioStartDate.ToOADate() + (e.theTime /
86400));
 DateTime shaftFinishDate =
DateTime.FromOADate(this.scenarioStartDate.ToOADate() +
(this.theShaft.FinishTime / 86400));
 double currentChainage =
(double)e.theValues[this.tunnelAttributes.CurrentChainage.GetAttributeHandle()];

 if (this.NextDay < currentDate)
 {
 this.NextDay = currentDate;
 }

 // If the reflect message time is after tunnel started, calculate the
TBM rate.
 if (currentDate.Subtract(this.NextDay).TotalHours >= 0)
 {

303

 // Rate is calculated on a daily basis.
 double rate = currentChainage - this.previousChainage;
 this.tbmRateCollector.Series[0].Collect(currentDate, rate);

 // Update the track-keeping variables.
 this.previousChainage = currentChainage;
 this.NextDay = this.NextDay.Add(new TimeSpan(1, 0, 0,
0));
 }

 // Record the current chainage.
 this.tunnelProgressCollector.Series[1].Collect(currentDate,
currentChainage);
 }
 }
 #endregion

 #region MyShaftGeneralFactory_ReflectAttributeValues(object,
ReflectAttributeValuesEventArgs)
 private void MyShaftGeneralFactory_ReflectAttributeValues(object
sender, ReflectAttributeValuesEventArgs e)
 {
 if
(e.theValues.Contains(this.shaftAttributes.CurrentDepth.GetAttributeHandle())
&& !double.IsNaN(e.theTime))
 {
 DateTime currentDate =
DateTime.FromOADate(this.scenarioStartDate.ToOADate() + (e.theTime /
86400));
 double currentDepth =
(double)e.theValues[this.shaftAttributes.CurrentDepth.GetAttributeHandle()];

 // Record the current depth.
 this.workingShaftProgressCollector.Series[1].Collect(currentDate,
currentDepth);
 }
 }
 #endregion

 #endregion

 #region Private Shaft-Specific Methods

 #region UpdateShaftPeriodUI()
 private void UpdateShaftPeriodUI()
 {

304

 this.workingShaftPeriodControl.CurrentTime = this.CurrentDateTime;
 this.workingShaftPeriodControl.ScheduleControl =
this.workingShaftScheduleControl;
 this.workingShaftPeriodControl.CurrentZeroBasedPeriod =
this.CurrentZeroBasedPeriod;

 // Update the period dates.
 if (this.isStarted)
 {
 this.workingShaftPeriodControl.PeriodStartDate =
this.periodStartDate;
 this.workingShaftPeriodControl.PeriodEndDate =
this.periodEndDate;
 }
 else
 {
 this.workingShaftPeriodControl.PeriodStartDate = DateTime.Now;
 this.workingShaftPeriodControl.PeriodEndDate = DateTime.Now;
 }

 // Update the current depth.
 this.workingShaftPeriodControl.CurrentDepth =
this.theShaft.CurrentDepth;

 // Update the excavated dirt volume.
 this.workingShaftPeriodControl.ExcavatedDirtVolume =
this.theShaft.ExcavatedDirtVolume;

 // Update the working shaft progress.
 this.workingShaftPeriodControl.ShaftProgress =
Math.Round(theShaft.CurrentDepth / theShaft.GetFinishedDepth(), 4);

 // Calculate operating cost.
 if (!this.theShaft.FinishTime.IsFinite())
 {
 this.TotalShaftCost +=
this.GetShaftPeriodCost(this.periodStartDate, this.periodEndDate);
 }
 else
 {
 this.TotalShaftCost +=
this.GetShaftPeriodCost(this.periodStartDate,
this.StartDateTime.AddSeconds(this.theShaft.FinishTime));
 }

 // Update the period cost and ncome.

305

 this.TotalShaftIncome =
this.workingShaftPeriodControl.ShaftProgress * this.WorkingShaftBudget;
 this.workingShaftPeriodControl.PeriodExpenditure =
this.PeriodShaftCost;
 this.workingShaftPeriodControl.PeriodIncome =
this.PeriodShaftIncome;

 // Calculate overruns
 //this.workingShaftPeriodControl.CostOverrun =
this.GetCostOverrun(this.previousShaftCost, this.TotalShaftCost,
this.previousShaftProgress, this.theShaft.CurrentDepth,
this.workingShaftScheduleControl);
 this.workingShaftPeriodControl.CostOverrun =
this.GetCostOverrun(this.previousShaftCost, this.TotalShaftCost,
this.periodStartDate, this.CurrentDateTime, this.workingShaftScheduleControl);
 this.workingShaftPeriodControl.TimeOverrun =
this.GetTimeOverrun(this.previousShaftProgress, this.theShaft.CurrentDepth,
this.periodStartDate, this.periodEndDate, this.workingShaftScheduleControl);
 this.workingShaftPeriodControl.CostPerformanceIndexShaft =
this.GetCostPerformanceIndex(this.theShaft.CurrentDepth,
this.theShaft.GetFinishedDepth(), this.WorkingShaftBudget, this.TotalShaftCost);
 this.workingShaftPeriodControl.SchedulePerformanceIndexShaft =
this.GetSchedulePerformanceIndex(this.CurrentDateTime,
this.theShaft.CurrentDepth, this.theShaft.GetFinishedDepth(),
this.WorkingShaftBudget, this.workingShaftScheduleControl);

 // Collect the period cost.

 this.workingShaftCostCollector.Series[1].Collect(this.CurrentDateTime, new
double[] { this.TotalShaftCost });

 // Set the previous period cost and income to now, after collecting.
 this.previousShaftCost = this.TotalShaftCost;
 this.previousShaftIncome = this.TotalShaftIncome;
 this.previousShaftProgress = this.theShaft.CurrentDepth;

 // Update the user control.
 this.workingShaftPeriodControl.UpdateUI();
 }
 #endregion

 #region GetShaftPeriodCost(DateTime, DateTime)
 private double GetShaftPeriodCost(DateTime periodStartDate, DateTime
periodEndDate)
 {
 if (!isStarted)

306

 {
 return 0;
 }

 var hours = periodEndDate.Subtract(periodStartDate).TotalHours;
 double cost = 0;
 foreach (Crane crane in this.MyCraneFactory)
 {
 cost += crane.CostPerHour * hours;
 }
 return cost;
 }
 #endregion

 #region SetNexShaftPeriod()
 private double SetNexShaftPeriod()
 {
 // Calculate difference between start and finish time of the next period.
 this.periodStartDate = this.periodEndDate;
 TimeSpan diff =
this.workingShaftPeriodControl.NextPeriodEndDate.Subtract(this.periodStartDat
e);
 return (double)diff.TotalSeconds;
 }
 #endregion

 #region ValidateShaftInput()
 private bool ValidateShaftInput()
 {
 return false;
 }
 #endregion

 #endregion

 #region Private Tunnel-Specific Methods

 #region UpdateTunnelPeriodUI()
 private void UpdateTunnelPeriodUI()
 {
 this.tunnelPeriodControl.CurrentTime = this.CurrentDateTime;
 this.tunnelPeriodControl.ScheduleControl =
this.tunnelScheduleControl;
 this.tunnelPeriodControl.CurrentZeroBasedPeriod =
this.CurrentZeroBasedPeriod;

307

 // Set the time which the period started and finished.
 this.tunnelPeriodControl.PeriodStartDate = this.periodStartDate;
 this.tunnelPeriodControl.PeriodEndDate = this.periodEndDate;

 // Calculate total cost of the period.
 DateTime shaftFinishDate =
DateTime.FromOADate(this.scenarioStartDate.ToOADate() +
(this.theShaft.FinishTime / 86400));
 if (this.periodStartDate.Subtract(shaftFinishDate).TotalDays < 0)
 {
 // If the current period starts before tunneling actually starts, add
the cost of working shaft to this period's cost.
 this.TotalShaftCost +=
this.GetShaftPeriodCost(this.periodStartDate, shaftFinishDate);
 this.TotalTunnelCost +=
this.GetTunnelPeriodCost(shaftFinishDate, periodEndDate);
 this.tunnelPeriodControl.PeriodExpenditure = TotalTunnelCost -
this.previousTunnelCost;

 this.UpdateShaftPeriodUI();
 }
 else
 {
 this.TotalTunnelCost +=
this.GetTunnelPeriodCost(this.periodStartDate, this.periodEndDate);
 this.tunnelPeriodControl.PeriodExpenditure = TotalTunnelCost -
this.previousTunnelCost;
 }

 // Collect the period cost.
 this.tunnelCostCollector.Series[1].Collect(this.CurrentDateTime, new
double[] { this.TotalTunnelCost });

 // Display the total excavated dirt volume and chainage & overall
progress.
 this.tunnelPeriodControl.ExcavatedDirtVolume =
Math.Round(this.theTunnel.ExcavatedDirtVolume, 4);
 this.tunnelPeriodControl.CurrentChainage =
Math.Round(this.theTunnel.CurrentChainage, 4);
 this.tunnelPeriodControl.TunnelProgress =
Math.Round(this.theTunnel.CurrentChainage / this.theTunnel.GetFinishedLength()
* 100, 4);
 this.TotalTunnelIncome = (this.tunnelPeriodControl.TunnelProgress *
this.TunnelBudget) + this.WorkingShaftBudget;
 this.tunnelPeriodControl.PeriodIncome = this.TotalTunnelIncome -
this.previousTunnelIncome;

308

 this.tunnelPeriodControl.CostOverrun =
this.GetCostOverrun(this.previousTunnelCost, this.TotalTunnelCost,
this.periodStartDate, this.CurrentDateTime, this.tunnelScheduleControl);
 this.tunnelPeriodControl.TimeOverrun =
this.GetTimeOverrun(this.previousTunnelProgress,
this.theTunnel.CurrentChainage, this.periodStartDate, this.periodEndDate,
this.tunnelScheduleControl);
 this.tunnelPeriodControl.CostPerformanceIndexTunnel =
this.GetCostPerformanceIndex(this.theTunnel.CurrentChainage,
this.theTunnel.GetFinishedLength(), this.TunnelBudget, this.TotalTunnelCost);
 this.tunnelPeriodControl.SchedulePerformanceIndexTunnel =
this.GetSchedulePerformanceIndex(this.CurrentDateTime,
this.theTunnel.CurrentChainage, this.theTunnel.GetFinishedLength(),
this.TunnelBudget, this.tunnelScheduleControl);
 this.tunnelPeriodControl.TbmBreakdownCount =
this.tbmBreakdownsTimes.Count;
 this.tunnelPeriodControl.MeanTbmRepairTime = 0;
 for (int i = 0; i < this.tbmRepairTimes.Count; i++)
 {
 if (i < this.tbmBreakdownsTimes.Count)
 {
 this.tunnelPeriodControl.MeanTbmRepairTime +=
this.tbmRepairTimes[i] - this.tbmBreakdownsTimes[i];
 }
 }

 this.tunnelPeriodControl.MeanTbmRepairTime =
Math.Round(this.tunnelPeriodControl.MeanTbmRepairTime /
this.tbmRepairTimes.Count / 3600);

 // Set the previous period cost and income to now, after collecting.
 this.previousTunnelCost = this.TotalTunnelCost;
 this.previousTunnelIncome = this.TotalTunnelIncome;
 this.previousTunnelProgress = this.theTunnel.CurrentChainage;

 // Calculate the average waiting time of the trains (hours per day).
 double totalDownTime = 0;
 foreach (Train train in this.MyTrainFactory)
 {
 // Updates theAverageWaitTime attribute of the current train.
 double hoursPerDay =
this.trainDownTimes[train.GetObjectInstanceHandle()].GetTotalDownTime() /
(3600 * this.periodEndDate.Subtract(this.periodStartDate).TotalDays);
 train.AverageWaitTime = hoursPerDay;
 train.UpdateAttributeValues(this.rtiAmb.QueryLogicalTime() +
this.fedAmb.Lookahead);

309

 totalDownTime +=
this.trainDownTimes[train.GetObjectInstanceHandle()].GetTotalDownTime();
 this.trainDownTimes[train.GetObjectInstanceHandle()].Reset();
 }
 this.tunnelPeriodControl.MeanTrainWaitTime =
Math.Round(totalDownTime / (this.trainDownTimes.Count * 3600 *
this.periodEndDate.Subtract(this.periodStartDate).TotalDays), 4);

 // Calculate the average waiting time of the tbms (hours per day).
 totalDownTime = 0;
 foreach (Tbm tbm in this.MyTbmFactory)
 {
 // Updates theAverageWaitTime attribute of the current tbm.
 double hoursPerDay =
this.tbmDownTimes[tbm.GetObjectInstanceHandle()].GetTotalDownTime() /
(3600 * this.periodEndDate.Subtract(this.periodStartDate).TotalDays);
 tbm.AverageWaitTime = hoursPerDay;
 tbm.UpdateAttributeValues(this.rtiAmb.QueryLogicalTime() +
this.fedAmb.Lookahead);

 totalDownTime +=
this.tbmDownTimes[tbm.GetObjectInstanceHandle()].GetTotalDownTime();
 this.tbmDownTimes[tbm.GetObjectInstanceHandle()].Reset();
 }
 this.tunnelPeriodControl.MeanTbmWaitTime =
Math.Round(totalDownTime / (this.tbmDownTimes.Count * 3600 *
this.periodEndDate.Subtract(this.periodStartDate).TotalDays), 4);

 // Calculate the total number of train breakdowns this period.
 this.tunnelPeriodControl.TrainBreakdownCount =
this.trainBreakdownCount;
 this.trainBreakdownCount = 0;

 // Update the periodical TBM rate chart.
 this.PopulateChart(this.tbmRateCollector,
this.tunnelPeriodControl.TbmRateChart, true);
 this.PopulateChart(this.tbmRateCollector,
this.tunnelPeriodControl.TbmCumRateChart, false);

 // Update the user control.
 this.tunnelPeriodControl.UpdateUI();
 }
 #endregion

 #region GetTunnelPeriodCost(DateTime, DateTime)

310

 private double GetTunnelPeriodCost(DateTime periodStartDate,
DateTime periodEndDate)
 {
 var hours = periodEndDate.Subtract(periodStartDate).TotalHours;
 double cost = 0;
 foreach (Tbm tbm in this.MyTbmFactory)
 {
 cost += tbm.CostPerHour * hours;
 }
 foreach (Crane crane in this.MyCraneFactory)
 {
 cost += crane.CostPerHour * hours;
 }
 foreach (Train train in this.MyTrainFactory)
 {
 cost += train.CostPerHour * hours;
 }
 return cost;
 }
 #endregion

 #region SetNextTunnelPeriod()
 private double SetNextTunnelPeriod()
 {
 // Update advance rate.
 this.UpdateAdvanceRate();

 // Update train attributes.
 foreach (Train train in this.MyTrainFactory)
 {
 this.tunnelPeriodControl.UpdateTrainAttributes(train,
string.Empty);
 }

 // Update muck car attributes.
 foreach (Train train in this.MyTrainFactory)
 {
 this.tunnelPeriodControl.UpdateMuckCartAttributes(train,
string.Empty);
 }

 // Clear the periodical TBM rate
 this.tbmRateCollector.Series.RemoveAt(0);
 this.tbmRateCollector.Series.Add(new
Simphony.Modeling.Series<DateTime>());

311

 // Calculate difference between start and finish time of the next period.
 this.periodStartDate = this.periodEndDate;
 TimeSpan diff =
this.tunnelPeriodControl.NextPeriodEndDate.Subtract(this.periodStartDate);
 return (double)diff.TotalSeconds;
 }
 #endregion

 #region ValidateTunnelInput()
 private bool ValidateTunnelInput()
 {

 return false;
 }
 #endregion

 #endregion

 #region Private Methods

 #region UpdateAdvanceRate()
 private void UpdateAdvanceRate()
 {
 // Get the distribution from database.
 double penetrationRateLow =
ScenarioSetup.QueryDatabaseDouble(@"SELECT LowPenetrationRate FROM
TBMs WHERE TBMNO = '" + this.tbmIDBox.SelectedValue + @"'");
 double penetrationRateHigh =
ScenarioSetup.QueryDatabaseDouble(@"SELECT HighPenetrationRate FROM
TBMs WHERE TBMNO = '" + this.tbmIDBox.SelectedValue + @"'");
 double penetrationRateMode =
ScenarioSetup.QueryDatabaseDouble(@"SELECT ModePenetrationRate FROM
TBMs WHERE TBMNO = '" + this.tbmIDBox.SelectedValue + @"'");
 var distribution = new Triangular(penetrationRateLow,
penetrationRateHigh, penetrationRateMode);

 // Transform the distribution by the crew size factor.
 distribution.Transform(this.tunnelPeriodControl.CrewSizeFactor);

 // Update each section with distribution.
 foreach (GeotechnicalSection section in
this.geotechnicalSectionFactory)
 {
 var rate = ScenarioSetup.Serialize(distribution);
 var theValues = new AttributeHandleValueMap();

312

 theValues.Add(this.geotechnicalSectionAttributes.NextAdvanceRate.GetAttri
buteHandle(), rate);

 this.rtiAmb.UpdateAttributeValues(section.GetObjectInstanceHandle(),
theValues, null, this.rtiAmb.QueryLogicalTime() + this.fedAmb.Lookahead);
 }
 }
 #endregion

 #region UpdateTbmAttributes(Tbm)
 private void UpdateTbmAttributes(Tbm tbm)
 {
 if (!tbm.IsAttributeOwnedByFederate("Diameter"))
 {
 tbm.AttributeOwnershipAcquisition("Diameter");
 }
 if (!tbm.IsAttributeOwnedByFederate("CostPerHour"))
 {
 tbm.AttributeOwnershipAcquisition("CostPerHour");
 }
 if (!tbm.IsAttributeOwnedByFederate("TimeBetweenFailure"))
 {
 tbm.AttributeOwnershipAcquisition("TimeBetweenFailure");
 }
 if (!tbm.IsAttributeOwnedByFederate("TimeToRepair"))
 {
 tbm.AttributeOwnershipAcquisition("TimeToRepair");
 }
 if (!tbm.IsAttributeOwnedByFederate("TimeBetweenMajorFailure"))
 {
 tbm.AttributeOwnershipAcquisition("TimeBetweenMajorFailure");
 }
 if (!tbm.IsAttributeOwnedByFederate("TimeToMajorRepair"))
 {
 tbm.AttributeOwnershipAcquisition("TimeToMajorRepair");
 }

 tbm.Diameter = ScenarioSetup.QueryDatabaseDouble(@"SELECT
Diameter FROM TBMs WHERE TBMNO = '" + this.tbmIDBox.SelectedValue +
@"'");
 tbm.CostPerHour =
ScenarioSetup.QueryDatabaseDouble(@"SELECT Cost * 3600 FROM TBMs
WHERE TBMNO = '" + this.tbmIDBox.SelectedValue + @"'");
 tbm.TimeBetweenFailure =
ScenarioSetup.CalculateMeanTimeBetweenFailures(ScenarioSetup.QueryDatabas

313

eDouble(@"SELECT Reliability FROM TBMs WHERE TBMNO = '" +
this.tbmIDBox.SelectedValue + @"'"));
 tbm.TimeToRepair =
ScenarioSetup.CalculateMeanTimeToRepair(ScenarioSetup.QueryDatabaseDoubl
e(@"SELECT Reliability FROM TBMs WHERE TBMNO = '" +
this.tbmIDBox.SelectedValue + @"'"));
 //tbm.TimeBetweenFailure = new Constant(50);
 //tbm.TimeToRepair = new Constant(10);
 tbm.TimeBetweenMajorFailure =
tbm.TimeBetweenFailure.Transform(3);
 tbm.TimeToMajorRepair = tbm.TimeToRepair.Transform(2);

 tbm.UpdateAttributeValues(this.rtiAmb.QueryLogicalTime() +
this.fedAmb.Lookahead);
 }
 #endregion

 #region UpdateCraneAttributes(Crane)
 private void UpdateCraneAttributes(Crane crane)
 {
 if (!crane.IsAttributeOwnedByFederate("CostPerHour"))
 {
 crane.AttributeOwnershipAcquisition("CostPerHour");
 }
 if (!crane.IsAttributeOwnedByFederate("TimeBetweenFailure"))
 {
 crane.AttributeOwnershipAcquisition("TimeBetweenFailure");
 }
 if (!crane.IsAttributeOwnedByFederate("TimeToRepair"))
 {
 crane.AttributeOwnershipAcquisition("TimeToRepair");
 }

 crane.CostPerHour =
ScenarioSetup.QueryDatabaseDouble(@"SELECT Cost * 3600 FROM Cranes
WHERE CraneNO = '" + this.craneIDBox.SelectedValue + @"'");
 crane.TimeBetweenFailure =
ScenarioSetup.CalculateMeanTimeBetweenFailures(ScenarioSetup.QueryDatabas
eDouble(@"SELECT Reliability FROM Cranes WHERE CraneNO = '" +
this.craneIDBox.SelectedValue + @"'"));
 crane.TimeToRepair =
ScenarioSetup.CalculateMeanTimeToRepair(ScenarioSetup.QueryDatabaseDoubl
e(@"SELECT Reliability FROM Cranes WHERE CraneNO = '" +
this.craneIDBox.SelectedValue + @"'"));

314

 crane.UpdateAttributeValues(this.rtiAmb.QueryLogicalTime() +
this.fedAmb.Lookahead);
 }
 #endregion

 #region UpdateInitialPeriod()
 private void UpdateInitialPeriod()
 {
 // Update train attributes.
 foreach (Train train in this.MyTrainFactory)
 {
 this.tunnelPeriodControl.UpdateTrainAttributes(train,
this.trainIDBox.SelectedValue.ToString());
 }

 // Update TBM attributes.
 foreach (Tbm tbm in this.MyTbmFactory)
 {
 this.UpdateTbmAttributes(tbm);
 }

 // Update Crane Attributes.
 foreach (Crane crane in this.MyCraneFactory)
 {
 this.UpdateCraneAttributes(crane);
 }

 // Update tunnel advance rate.
 this.UpdateAdvanceRate();
 }
 #endregion

 #region UpdateProjectUI()
 private void UpdateProjectUI()
 {
 // Update total project cost up until now.
 this.projectSummaryControl.TotalExpenditure = this.TotalTunnelCost
+ this.TotalShaftCost;
 this.projectSummaryControl.TotalIncome = this.TotalTunnelIncome +
this.TotalShaftIncome;
 this.projectSummaryControl.RemainingBudget = this.TunnelBudget +
this.WorkingShaftBudget - (this.TotalTunnelCost + this.TotalShaftCost);
 this.projectSummaryControl.TotalElapsedTime =
this.CurrentDateTime - this.StartDateTime;
 this.projectSummaryControl.RemainingTime = this.ProjectDuration -
(this.CurrentDateTime - this.StartDateTime);

315

 //this.projectSummaryControl.CumulativeCostOverrunShaft =
this.GetCostOverrun(0, this.TotalShaftCost, 0, this.theShaft.CurrentDepth,
this.workingShaftScheduleControl);
 this.projectSummaryControl.CumulativeCostOverrunShaft =
this.GetCostOverrun(0, this.TotalShaftCost,
this.StartDateTime.AddSeconds(this.theShaft.StartTime), this.CurrentDateTime,
this.workingShaftScheduleControl);

 if (this.theShaft.StartTime.IsFinite())
 {
 if (this.theShaft.FinishTime.IsFinite())
 {
 this.projectSummaryControl.CumulativeTimeOverrunShaft
= this.GetTimeOverrun(0, this.theShaft.CurrentDepth, this.StartDateTime,
this.StartDateTime.AddSeconds(this.theShaft.FinishTime),
this.workingShaftScheduleControl);
 }
 else
 {
 this.projectSummaryControl.CumulativeTimeOverrunShaft
= this.GetTimeOverrun(0, this.theShaft.CurrentDepth, this.StartDateTime,
this.CurrentDateTime, this.workingShaftScheduleControl);
 }
 }

 if (this.theTunnel.StartTime.IsFinite())
 {
 //this.projectSummaryControl.CumulativeCostOverrunTunnel =
this.GetCostOverrun(0, this.TotalTunnelCost, 0, this.theTunnel.CurrentChainage,
this.tunnelScheduleControl);
 this.projectSummaryControl.CumulativeCostOverrunTunnel =
this.GetCostOverrun(0, this.TotalTunnelCost,
this.StartDateTime.AddSeconds(this.theTunnel.StartTime), this.CurrentDateTime,
this.tunnelScheduleControl);
 this.projectSummaryControl.CumulativeTimeOverrunTunnel =
this.GetTimeOverrun(0, this.theTunnel.CurrentChainage,
this.StartDateTime.AddSeconds(this.theTunnel.StartTime), this.CurrentDateTime,
this.tunnelScheduleControl);
 }

 // Update Cost/Schdedule Performance Indices.
 this.projectSummaryControl.CostPerformanceIndexShaft =
this.GetCostPerformanceIndex(this.theShaft.CurrentDepth,
this.theShaft.GetFinishedDepth(), this.WorkingShaftBudget, this.TotalShaftCost);

316

 this.projectSummaryControl.CostPerformanceIndexTunnel =
this.GetCostPerformanceIndex(this.theTunnel.CurrentChainage,
this.theTunnel.GetFinishedLength(), this.TunnelBudget, this.TotalTunnelCost);
 this.projectSummaryControl.SchedulePerformanceIndexShaft =
this.GetSchedulePerformanceIndex(this.CurrentDateTime,
this.theShaft.CurrentDepth, this.theShaft.GetFinishedDepth(),
this.WorkingShaftBudget, this.workingShaftScheduleControl);
 this.projectSummaryControl.SchedulePerformanceIndexTunnel =
this.GetSchedulePerformanceIndex(this.CurrentDateTime,
this.theTunnel.CurrentChainage, this.theTunnel.GetFinishedLength(),
this.TunnelBudget, this.tunnelScheduleControl);

 // Update the progress charts.
 this.PopulateChart(this.workingShaftProgressCollector,
this.projectSummaryControl.WorkingShaftProgressChart, true);
 this.PopulateChart(this.tunnelProgressCollector,
this.projectSummaryControl.TunnelProgressChart, true);
 this.PopulateChart(this.workingShaftCostCollector,
this.projectSummaryControl.WorkingShaftCostChart, true);
 this.PopulateChart(this.tunnelCostCollector,
this.projectSummaryControl.TunnelCostChart, true);

 // Update the project summary UI.
 this.projectSummaryControl.UpdateUI();
 }
 #endregion

 #region UpdateInitialProjectInfo()
 private void UpdateInitialProjectInfo()
 {
 ScenarioSetup.PopulateComboBox(this.tbmIDBox, "TBMs",
"TBMNO", "WHERE Diameter = " + this.theTunnel.Diameter);
 ScenarioSetup.PopulateComboBox(this.trainIDBox, "Trains",
"TrainNO", "");
 ScenarioSetup.PopulateComboBox(this.muckCarIDBox, "MuckCarts",
"MuckCartNO", "");
 ScenarioSetup.PopulateComboBox(this.craneIDBox, "Cranes",
"CraneNO", "");
 ScenarioSetup.PopulateComboBox(this.excavatorIDBox, "Excavators",
"ExcavatorNO", "");
 }
 #endregion

 #endregion

 #region Private Utility Methods

317

 #region FindNextPeriodTableIndex()
 private int FindNextPeriodTableIndex(DateTime currentTime,
ScheduleControl control)
 {
 // Skip through all the periods whose scheduled dates the currentTime
has already passed.
 for (int i = 0; i < control.DataTable.Rows.Count; i++)
 {
 var test = control.GetDate(i);
 if (control.GetDate(i) > currentTime)
 {
 return i;
 }
 }
 return this.CurrentZeroBasedPeriod + 1;
 }
 #endregion

 #region PopulateChart(Simphony.Modeling.Chart<DateTime>, Chart,
bool)
 private void PopulateChart(Simphony.Modeling.Chart<DateTime>
dataChart, Chart chart, bool clearPrevious)
 {
 for (int i = 0; i < dataChart.Series.Count; i++)
 {
 IEnumerable<DateTime> x;
 IEnumerable<double>[] y;

 try
 {
 x = dataChart.Series[i].GetXValues();
 y = dataChart.Series[i].GetYValues();
 }
 catch (InvalidOperationException)
 {
 return;
 }

 if (clearPrevious)
 {
 chart.Series[i].Points.Clear();
 chart.Series[i].Points.DataBindXY(x, y);
 }
 else
 {

318

 for (int j = 0; j < x.Count(); j++)
 {
 var xArray = x.ToArray();
 var yArray = y.ToArray().ElementAt(0).ToArray();
 chart.Series[i].Points.AddXY(xArray[j], yArray[j]);
 }
 }
 }
 }
 #endregion

 #region PopulateCollector(DataTable, Chart, int)
 private void PopulateCollector(DataTable dataTable,
Simphony.Modeling.Chart<DateTime> collector, int tableYColumnIndex, int
collectorSeriesIndex)
 {
 List<DateTime> timeValues = new List<DateTime>();
 List<double> progressValues = new List<double>();

 foreach (DataRow row in dataTable.Rows)
 {
 timeValues.Add((DateTime)row[dataTable.Columns[2]]);

 progressValues.Add((double)row[dataTable.Columns[tableYColumnIndex]]);
 }

 //collector.Series.RemoveAt(0);
 //collector.Series.Add(new Simphony.Modeling.Series<DateTime>());

 for (int i = 0; i < timeValues.Count; i++)
 {
 collector.Series[collectorSeriesIndex].Collect(timeValues[i], new
double[] { progressValues[i] });
 }
 }
 #endregion

 #region CheckLogicalTimeFlow()
 private bool CheckLogicalTimeFlow()
 {
 // Ensure Tunnel and Retrieval Shaft constructions do not start until
Working Shaft is finished.
 DateTime workingShaftEndDate =
this.workingShaftScheduleControl.GetDate(this.workingShaftScheduleControl.D
ataTable.Rows.Count - 1);
 DateTime tunnelStartDate = this.tunnelScheduleControl.GetDate(0);

319

 if (tunnelStartDate.Subtract(workingShaftEndDate).TotalDays < 0)
 {
 MessageBox.Show("Tunnel and Retrieval Shaft construction
should not start until Working Shaft is finished.", "Schedule Timing Error");
 return false;
 }

 // Ensure the period numbers follow the above rule as well.
 int workingShaftEndPeriod =
this.workingShaftScheduleControl.GetPeriod(this.workingShaftScheduleControl.
DataTable.Rows.Count - 1);
 int tunnelStartPeriod = this.tunnelScheduleControl.GetPeriod(0);
 if (tunnelStartPeriod != workingShaftEndPeriod + 1)
 {
 MessageBox.Show("Tunnel and Retrieval Shaft construction
should not start until Working Shaft is finished.", "Schedule Timing Error");
 return false;
 }

 return true;
 }
 #endregion

 #region DisableGaming()
 private void DisableGaming()
 {
 this.ScenarioSetting.TabPages.RemoveAt(0);
 this.ScenarioSetting.TabPages.RemoveAt(0);
 this.ScenarioSetting.TabPages.RemoveAt(0);
 this.ScenarioSetting.TabPages.RemoveAt(0);
 }
 #endregion

 #region GetCostOverrun(double, double, double, double, ScheduleControl)
 [Obsolete]
 private double GetCostOverrun(double startCost, double currentCost,
double startProgress, double currentProgress, ScheduleControl control)
 {
 var currentPlannedCost = control.GetCost(currentProgress, 0);
 var startPlannedCost = control.GetCost(startProgress, 0);
 double plannedCost = currentPlannedCost - startPlannedCost;

 return ((currentCost - startCost) - plannedCost) / plannedCost * 100;
 }
 #endregion

320

 #region GetCostOverrun(double, double, DateTime, DateTime,
ScheduleControl)
 private double GetCostOverrun(double startCost, double currentCost,
DateTime startDate, DateTime currentDate, ScheduleControl control)
 {
 var currentPlannedCost = control.GetCost(currentDate, 0);
 var startPlannedCost = control.GetCost(startDate, 0);
 double plannedCost = currentPlannedCost - startPlannedCost;

 return ((currentCost - startCost) - plannedCost) / plannedCost * 100;
 }
 #endregion

 #region GetTimeOverrun(double, double, DateTime, DateTime,
ScheduleControl)
 //private double GetTimeOverrun(double startProgress, double
currentProgress, DateTime startDate, DateTime currentDate, ScheduleControl
control)
 //{
 // DateTime plannedFinishDate = control.GetDate(currentProgress);

 // var firstTime = startProgress;
 // var secondTime = currentProgress;

 // var firstValue = (startDate - this.StartDateTime).TotalDays;
 // var secondValue = (plannedFinishDate -
this.StartDateTime).TotalDays;

 // var t = (currentDate - this.StartDateTime).TotalDays;
 // double plannedLength = ScenarioSetup.LinearInterpolation(firstTime,
firstValue, secondTime, secondValue, t);
 // double actualLength = (currentDate - startDate).TotalDays;

 // return (actualLength - plannedLength) / plannedLength * 100;
 //}

 //private double GetTimeOverrun(double startProgress, double
currentProgress, DateTime startDate, DateTime currentDate, ScheduleControl
control)
 //{
 // var actualDuration = (currentDate - startDate).TotalDays;

 // var plannedStartDate = control.GetDate(startProgress);
 // var plannedCurrentDate = control.GetDate(currentProgress);
 // var plannedDuration = (plannedCurrentDate -
plannedStartDate).TotalDays;

321

 // return (actualDuration - plannedDuration) / plannedDuration * 100;
 //}

 private double GetTimeOverrun(double startProgress, double
currentProgress, DateTime startDate, DateTime currentDate, ScheduleControl
control)
 {
 var actualDuration = (currentDate - startDate).TotalDays;

 var plannedStartDate = control.GetInterpolatedDate(startProgress);
 var plannedCurrentDate =
control.GetInterpolatedDate(currentProgress);
 var plannedDuration = (plannedCurrentDate -
plannedStartDate).TotalDays;

 return (actualDuration - plannedDuration) / plannedDuration * 100;
 }
 #endregion

 #region GetCostOverrun(double, DateTime, ScheduleControl)
 //[Obsolete]
 //private double GetCostOverrun(double actual, DateTime date,
ScheduleControl control)
 //{
 // if (control.FindRowIndex(date) == -1)
 // {
 // return -1;
 // }

 // int secondIndex = control.FindRowIndex(date);
 // int firstIndex = Math.Max(0, secondIndex - 1);

 // double firstTime = (control.GetDate(firstIndex, DateTime.MaxValue)
- this.StartDateTime).TotalDays;
 // double secondTime = (control.GetDate(secondIndex,
DateTime.MaxValue) - this.StartDateTime).TotalDays;

 // double firstValue = control.GetCost(firstIndex, 0);
 // double secondValue = control.GetCost(secondIndex, 0);

 // double timeNow = (date - this.StartDateTime).TotalDays;

 // double planned = LinearInterpolation(firstTime, firstValue,
secondTime, secondValue, timeNow);

322

 // return (actual - planned) / planned * 100;
 //}
 #endregion

 #region GetCostPerformanceIndex(double, double, double, double)
 private double GetCostPerformanceIndex(double currentProgress, double
totalProgress, double totalBudget, double totalCost)
 {
 double earnings = totalBudget * (currentProgress / totalProgress);
 return earnings / totalCost;
 }
 #endregion

 #region GetSchedulePerformanceIndex(double, double, double, double)
 private double GetSchedulePerformanceIndex(DateTime currentDate,
double currentProgress, double totalProgress, double totalBudget,
ScheduleControl control)
 {
 double actualEarnings = totalBudget * (currentProgress /
totalProgress);
 double plannedProgress =
control.GetInterpolatedProgress(currentDate);
 double plannedEarnings = totalBudget * (plannedProgress /
totalProgress);

 return actualEarnings / plannedEarnings;
 }
 #endregion

 #endregion

 #region Public Static Utility Methods

 #region LinearInterpolation(double, double, double, double, double)
 public static double LinearInterpolation(double time1, double value1,
double time2, double value2, double t)
 {
 double value = value1 + (value2 - value1) * (t - time1) / (time2 -
time1);
 return value;
 }
 #endregion

 #region CalculateMeanTimeBetweenFailures(double)
 public static Distribution CalculateMeanTimeBetweenFailures(double
reliability)

323

 {
 reliability.ExceptionIfOutOfRange(0, 100, "reliability");

 double low = -1;
 double medium = -1;
 double high = -1;

 if (reliability >= 0 && reliability < 50)
 {
 low = 450;
 medium = 600;
 high = 750;
 }
 else if (reliability >= 50 && reliability < 60)
 {
 low = 850;
 medium = 1000;
 high = 1150;
 }
 else if (reliability >= 60 && reliability < 70)
 {
 low = 1000;
 medium = 1150;
 high = 1300;
 }
 else if (reliability >= 70 && reliability < 80)
 {
 low = 2000;
 medium = 2200;
 high = 3000;
 }
 else if (reliability >= 80 && reliability < 90)
 {
 low = 2600;
 medium = 2750;
 high = 3100;
 }
 else if (reliability >= 90 && reliability < 1000)
 {
 low = 3300;
 medium = 3650;
 high = 4050;
 }
 else
 {
 throw new ArgumentOutOfRangeException("reliability");

324

 }

 return new Triangular(low, high, medium);
 //return new Triangular(low, high, medium).Transform(3600);
 }
 #endregion

 #region CalculateMeanTimeToRepair(double)
 public static Distribution CalculateMeanTimeToRepair(double reliability)
 {
 reliability.ExceptionIfOutOfRange(0, 100, "reliability");

 double low = -1;
 double medium = -1;
 double high = -1;

 if (reliability >= 0 && reliability < 50)
 {
 low = 14;
 medium = 19.5;
 high = 26.5;
 }
 else if (reliability >= 50 && reliability < 60)
 {
 low = 13;
 medium = 18;
 high = 24;
 }
 else if (reliability >= 60 && reliability < 70)
 {
 low = 9;
 medium = 12;
 high = 20;
 }
 else if (reliability >= 70 && reliability < 80)
 {
 low = 5;
 medium = 15;
 high = 20;
 }
 else if (reliability >= 80 && reliability < 90)
 {
 low = 3;
 medium = 9;
 high = 16;
 }

325

 else if (reliability >= 90 && reliability < 1000)
 {
 low = 1;
 medium = 5;
 high = 9;
 }
 else
 {
 throw new ArgumentOutOfRangeException("reliability");
 }

 return new Triangular(low, high, medium);
 //return new Triangular(low, high, medium).Transform(3600);
 }
 #endregion

 #region FindEarlierDate(DateTime, DateTime)
 public static DateTime FindEarlierDate(DateTime date1, DateTime date2)
 {
 if (date1 <= date2)
 {
 return date1;
 }
 else
 {
 return date2;
 }
 }
 #endregion

 #region FormatTimeSpan(TimeSpan)
 public static string FormatTimeSpan(TimeSpan span)
 {
 double days = span.TotalSeconds / (3600 * 24);
 double weeks = Math.Floor(days / 7);
 days = days % 7;

 return weeks + " weeks, " + Math.Round(days) + " days"; ;
 }
 #endregion

 #region PopulateComboBox(ComboBox, string, string, string)
 public static void PopulateComboBox(ComboBox comboBox, string
tableName, string columnName, string additional)
 {
 tableName.ExceptionIfNullOrEmpty("tableName");

326

 columnName.ExceptionIfNullOrEmpty("columnName");

 try
 {
 // Open an SQL connection.
 SqlConnection connection = new SqlConnection(@"Data
Source=SQL\SQL2008;Initial Catalog=Tunneling;Integrated Security=True");
 connection.Open();
 SqlDataAdapter dataAdapter = new SqlDataAdapter(@"select " +
@columnName + @" from " + @tableName + " " + @additional, connection);

 // Fill the data table.
 DataTable table = new DataTable();
 dataAdapter.Fill(table);

 // Populate the data grid view.
 BindingSource bindingSource = new BindingSource();
 bindingSource.DataSource = table;
 comboBox.DataSource = bindingSource;
 comboBox.DisplayMember = columnName;
 comboBox.ValueMember = columnName;

 // Optional: set default selected index to 0.
 comboBox.SelectedIndex = 0;

 // Close the SQL connection.
 connection.Close();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }
 #endregion

 #region PopulateLabel(Label, string)
 public static void PopulateLabel(Label label, string query)
 {
 query.ExceptionIfNullOrEmpty("query");

 try
 {
 // Open an SQL connection.
 SqlConnection connection = new SqlConnection(@"Data
Source=SQL\SQL2008;Initial Catalog=Tunneling;Integrated Security=True");
 connection.Open();

327

 SqlDataAdapter dataAdapter = new SqlDataAdapter(query,
connection);

 // Fill the data table.
 DataTable table = new DataTable();
 dataAdapter.Fill(table);

 // Populate the data grid view.
 BindingSource bindingSource = new BindingSource();
 bindingSource.DataSource = table;

 label.Text = (table.Rows[0][0]).ToString();

 // Close the SQL connection.
 connection.Close();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }
 #endregion

 #region PopulateDataGridView(DataGridView, string)
 public static void PopulateDataGridView(DataGridView dataGridView,
string query)
 {
 query.ExceptionIfNullOrEmpty("query");

 try
 {
 // Open an SQL connection.
 SqlConnection connection = new SqlConnection(@"Data
Source=SQL\SQL2008;Initial Catalog=Tunneling;Integrated Security=True");
 connection.Open();
 SqlDataAdapter dataAdapter = new SqlDataAdapter(query,
connection);

 // Fill the data table.
 DataTable table = new DataTable();
 dataAdapter.Fill(table);

 // Populate the data grid view.
 BindingSource bindingSource = new BindingSource();
 bindingSource.DataSource = table;
 dataGridView.DataSource = bindingSource;

328

 // Close the SQL connection.
 connection.Close();

 // Optional: Format the grid headers with units.
 foreach (DataGridViewColumn column in dataGridView.Columns)
 {
 switch (column.HeaderText)
 {
 case ("Cost"):
 column.HeaderText = column.HeaderText +
" ($/hr)";
 break;
 case ("Reliability"):
 column.HeaderText = column.HeaderText +
" (%)";
 break;
 case ("BucketSize"):
 column.HeaderText = column.HeaderText +
" (m³)";
 break;
 case ("PenetrationRate"):
 column.HeaderText = column.HeaderText +
" (Low, High, Mode); (m/hr)";
 break;
 case ("ProductionRate"):
 column.HeaderText = column.HeaderText +
" (m³/hr)";
 break;
 case ("Capacity"):
 column.HeaderText = column.HeaderText +
" (m³)";
 break;
 case ("Diameter"):
 column.HeaderText = column.HeaderText +
" (m)";
 break;
 case ("StrokeLength"):
 column.HeaderText = column.HeaderText +
" (m)";
 break;
 case ("GantryLength"):
 column.HeaderText = column.HeaderText +
" (m)";
 break;
 case ("SpeedEmpty"):

329

 column.HeaderText = column.HeaderText +
" (m/s)";
 break;
 case ("SpeedLoaded"):
 column.HeaderText = column.HeaderText +
" (m/s)";
 break;
 }
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }
 #endregion

 #region QueryDatabaseDouble(string)
 public static double QueryDatabaseDouble(string query)
 {
 // Return the object.
 return Convert.ToDo
uble(ScenarioSetup.QueryDatabaseObject(query));
 }
 #endregion

 #region QueryDatabaseInt(string)
 public static int QueryDatabaseInt(string query)
 {
 // Return the object.
 return Convert.ToInt32(ScenarioSetup.QueryDatabaseObject(query));
 }
 #endregion

 #region QueryDatabaseObject(string query)
 public static object QueryDatabaseObject(string query)
 {
 query.ExceptionIfNullOrEmpty("tableName");

 try
 {
 // Open an SQL connection.
 SqlConnection connection = new SqlConnection(@"Data
Source=SQL\SQL2008;Initial Catalog=Tunneling;Integrated Security=True");
 connection.Open();

330

 SqlDataAdapter dataAdapter = new SqlDataAdapter(query,
connection);

 // Fill the data table.
 DataTable table = new DataTable();
 dataAdapter.Fill(table);

 // Close the SQL connection.
 connection.Close();

 // Return the object.
 return table.Rows[0][0];
 }
 catch (Exception ex)
 {
 MessageBox.Show("ScenarioSetup.QueryDatabase:" + ex);
 return null;
 }
 }
 #endregion

 #region Serialize()
 /// <summary>
 /// Serializes the given object so it may be reflectable in another federate
using Cosye.Framework.
 /// </summary>
 /// <param name="theValue">The object to be serialized.</param>
 /// <returns>The byte array containing the serialized object.</returns>
 public static byte[] Serialize(object theValue)
 {
 BinaryFormatter formatter = new BinaryFormatter();
 MemoryStream stream = new MemoryStream();
 formatter.Serialize(stream, theValue);
 return stream.ToArray();
 }
 #endregion

 #endregion
 }
}

331

Appendix B. Look-ahead schedule/plan in Last Planner® System

The Last Planner® System (LPS) was developed by the staff of the Lean

Construction Institute in the United States. The Last Planner™ was first explicitly

defined in publication by Ballard (1994). The LPS was proposed as a control

system by Ballard (2000). The implementation of LPS has been increased

remarkably after the introduction by Ballard and Howell (Ballard and Howell

1998; 2003).

LPS focuses on planning reliability through project execution. LPS requires

reliable plans made by last planners who can collaboratively work together and

promise the completion according to these plans. Traditional planning process,

which is based on the WBS (work breakdown structure) of a final product and

produces a schedule indicating what “should” be done, was criticized for ignoring

work logic of producing the product (Ballard and Howell 2003). On the contrary,

LPS takes resources and constraints into account in planning, which reflects what

“can” be done. What “should” be done is covered in a master schedule. When

adding what “can” be done into what “should” be done, a detailed near-term plan

of what “will” be done can be established (Ballard 2000). Consequently, the plan

is achieved because of high reliability, and turns out to be what was “done.”

332

LPS emphasizes making reasonable and achievable plans continuously, so as to

ensure that the overall project goal is achieved, step-by-step. LPS tries to improve

predictability of project workflow through collaborative production planning and

collaborative program coordination, utilizing and activating the network of

commitments. A project becomes more predictable through execution, as

described in reliable plans. These plans are made through a series of planning

conversations of the key project performers – the last planners, (such as the

foremen on site, supplier team leaders), and project managers (Mossman 2008).

The main conversation which assures the successful implementation of LPS

embraces identifying work needed to achieve milestones, making that work ready,

assuring a responsible individual has promised to complete it, and evaluating and

learning from experience and practice.

Additionally, when applying LPS to a real project, the planning reliability is

measured using percent plan complete (PPC). The collected project progress can

be measured against the weekly plans, and then PPC is calculated, which can help

reasoning failures and low production. This is not a part of the function provided

in this research, and is not discussed. If the scheduled work is not completed as

planned, the corresponding last planner(s) will take the responsibility according to

the reports.

333

References

Abourizk, S. (2006). "Collaborative Simulation Framework for Multi-user

Decision Support in Construction."

Abourizk, S. (2010). "Role of simulation in construction engineering and

management." Journal of Construction Engineering and Management,

136(10), 1140-1153.

AbouRizk, S. M., Hague, S., Al-Bataineh, M., and Fernando, S. (2009).

"Collaborative tunneling simulation using synthetic environments." Proc.,

2009 Construction Research Congress - Building a Sustainable Future,

April 5, 2009 - April 7, 2009, American Society of Civil Engineers, 1223-

1232.

AbouRizk, S. M., and Hajjar, D. (1998). "A framework for applying simulation in

construction." Canadian Journal of Civil Engineering, 25(3), 604-617.

Al-Bataineh, M. (2008). "Scenario-based planning for tunnelling construction."

Ph.D. Ph.D. thesis, University of Alberta, Edmonton, ALberta, Canada.

Al-Tabtabai, H., Kartam, N., Flood, I., and Alex, A. P. (1997). "Construction

project control using artificial neural networks." Artificial Intelligence for

Engineering Design, Analysis and Manufacturing: AIEDAM, 11(1), 45-57.

Alarcon, L. F., and Calderon, R. "Implementing Lean Production Strategies in

Construction Companies." Proc., Construction Research Congress, Winds

334

of Change: Integration and Innovation in Construction, Proceedings of

the Congress, March 19, 2003 - March 21, American Society of Civil

Engineers, 313-320.

Altshuler, A. A., and Luberoff, D. E. (2003). Mega-Projects: The Changing

Politics of Urban Public Investment, Brookings Institution Press

Ballard, G. "The Last Planner." Proc., Northern California Construction Institute

Spring Conference, Lean Construction Institute.

Ballard, G. (2000). "The Last Planner System of Production Control." DOCTOR

OF PHILOSOPHY, University of Birmingham.

Ballard, G., and Howell, G. (1998). "Shielding Production: Essential Step in

Production Control." Journal of Construction Engineering and

Management, 124(1), 11-17.

Ballard, G., and Howell, G. "An Update on Last Planner." Proc., Proceedings of

the 11th Annual Meeting of the International Group for Lean Construction,

Lean Construction Institute.

Bengtsson, N., Shao, G., Johansson, B., Lee, Y. T., Leong, S., Skoogh, A., and

McLean, C. "Input Data Management Methodology for Discrete Event

Simulation." Proc., 2009 Winter Simulation Conference, IEEE, 1335-1344.

Boulonne, A., Johansson, B., Skoogh, A., and Aufenanger, M. "Simulation data

architecture for sustainable development." Proc., 2010 43rd Winter

335

Simulation Conference, WSC'10, December 5, 2010 - December 8, 2010,

Institute of Electrical and Electronics Engineers Inc., 3435-3446.

Chan, C. T. W., and Sin, H. C. "A web-based self-tuning control system to

automate materials procurement in large construction projects." Proc.,

ICCAS-SICE 2009 - ICROS-SICE International Joint Conference 2009,

August 18, 2009 - August 21, Society of Instrument and Control Engineers

(SICE), 2068-2073.

Chan, S.-L., and Leung, N.-N. (2004). "Prototype web-based construction project

management system." Journal of Construction Engineering and

Management, 130(6), 935-943.

Charoenngam, C., Coquinco, S. T., and Hadikusumo, B. H. W. (2003). "Web-

based application for managing change orders in construction projects."

Construction Innovation (Sage Publications, Ltd.), 3(4), 197-215.

Chou, J.-S., and Chong, W. K. "A web-based framework of project performance

and control system." Proc., 2008 IEEE International Conference on

Robotics, Automation and Mechatronics, RAM 2008, September 21,2008 -

September 24, Inst. of Elec. and Elec. Eng. Computer Society, 803-807.

Chung, T. H., Mohamed, Y., and Abourizk, S. (2006). "Bayesian updating

application into simulation in the North Edmonton Sanitary Trunk tunnel

project." Journal of Construction Engineering and Management, 132(8),

882-894.

336

Defense, M., and Simulation, O. (1996). "HLA Time Management Design

Document." <http://www.cc.gatech.edu/computing/pads/PAPERS/HLA-TM-

1.0.pdf>. (March 30, 2011, 2010).

Diekmann, J. E., and Al-Tabtabai, H. (1992). "Knowledge-based approach to

construction project control." International Journal of Project

Management, 10(1), 23-30.

Edwards, C. (2009). "Government Cost Overruns." Cato Institute.

Fleming, Q. W., and Koffleman, J. M. (2010). Earned Value Project Management,

Project Management Institute.

Flyvbjerg, B. (2007). "Policy and planning for large-infrastructure projects:

Problems, causes, cures." Environment and Planning B: Planning and

Design, 34(GEOBASE), 578-597.

Flyvbjerg, B., Holm, M. S., and Buhl, S. (2002). "Underestimating costs in Public

Works Projects: Error or Lie?" Journal of the American Planning

Association, 68(GEOBASE), 279-296.

Ghanem, A. G., and Abdelrazig, Y. A. "A framework for real-time construction

project progress tracking." Proc., Earth and Space 2006 - 10th Biennial

International Conference on Engineering, Construction, and Operations

in Challenging Environments, March 5, 2006 - March 8, American

Society of Civil Engineers, 112.

337

Gonzalez, V., Alarcon, L. F., Maturana, S., Mundaca, F., and Bustamante, J.

(2010). "Improving planning reliability and project performance using the

reliable commitment model." Journal of Construction Engineering and

Management, 136(10), 1129-1139.

Gonzalez, V., Alarcon, L. F., and Mundaca, F. (2008). "Investigating the

relationship between planning reliability and project performance."

Production Planning and Control, 19(5), 461-474.

Government Accountability Office (2003). "Federal Aid Highways: Cost and

Oversight of Major Highway and Bridge Projects: Issues and Options."

GAO-03-764T.

Halpin, D. W. (1977). "CYCLONE - method for modeling job site processes."

American Society of Civil Engineers, Journal of the Construction Division,

103(3), 489-499.

Hanna, A. S. (2011). "Using the Earned Value Management System to Improve

Electrical Project Control." Journal of Construction Engineering and

Management, 1(1), 307.

Hinze, J. (1998). Construction planning and scheduling, Prentice Hall, Upper

Saddle River, NJ.

Hwang, S., and Liu, L. Y. "Proactive project control using productivity data and

time series analysis." Proc., 2005 ASCE International Conference on

338

Computing in Civil Engineering, July 12,2005 - July 15, American Society

of Civil Engineers, 1925-1935.

Ibbs, C. W., Wong, C. K., and Kwak, Y. H. (2001). "Project Change Management

System." Journal of Management in Engineering, 17(3), 159-165.

IEEE Computer Society (2010). "IEEE Standard for Modeling and Simulation

(M&S) High Level Architecture (HLA)-- Framework and Rules."

IEEE Std 1516-2010 (Revision of IEEE Std 1516-2000), 1-38.

Jia, G., Xue, X., Cao, L., and Chen, J. "Integrated schedule information model for

airport construction projects." Proc., International Conference on

Information Management, Innovation Management and Industrial

Engineering, ICIII 2008, December 19, 2008 - December 21, Inst. of Elec.

and Elec. Eng. Computer Society, 71-77.

Kartam, N. A. (1996). "Making Effective Use of Construction Lessons Learned in

Project Life Cycle." Journal of Construction Engineering and

Management, 122(1), 14-21.

Kim, Y.-W., and Ballard, G. (2010). "Management thinking in the earned value

method system and the last planner system." Journal of Management in

Engineering, 26(4), 223-228.

Kuhl, F., Dahmann, J., and Weatherly, R. (2000). Creating computer simulation

systems : an introduction to the high level architecture, Prentice Hall PTR,

Upper Saddle River, NJ.

339

Lee, S., Pena-Mora, F., and Park, M. (2006). "Web-Enabled System Dynamics

Model for Error and Change Management on Concurrent Design and

Construction Projects." Journal of Computing in Civil Engineering, 20(4),

290-300.

Lewis, R., and Murphy, S. (2003). ""Easy Pass" series of reports." The Boston

Globe.

Li, J., Moselhi, O., and Alkass, S. (2006). "Internet-based database management

system for project control." Engineering, Construction and Architectural

Management, 13(3), 242-253.

Li, L. (2003). "DSP hardware surrogate for the HLA." M.A.Sc., Carleton

University (Canada), Canada.

Likhitruangsilp, V., and Ioannou, P. G. "Stochastic Evaluation of Tunneling

Performance Using Discrete-Event Simulation." ASCE, 109.

Lu, K. (2006). "Data distribution management schemes for HLA-compliant

distributed simulation systems." M.C.S., University of Ottawa, Edmonton,

Alberta, Canada.

Macomber, H. (2004). “Look-ahead planning.” Reforming project management,

<http://www. reformingprojectmanagement.com/2004/12/16/436/> (April,

2012).

340

Mantel, S. J., Meredith, J. R., Shafer, S. M., and Sutton, M. M. (2010).

Construction planning and scheduling, John Wiley & Sons, Upper Saddle

River, NJ.

Marshall, R. (2007). "The contribution of earned value management to project

success on contracted efforts: A quantitative statistics approach within the

population of experienced practitioners." Journal of Contract Management,

Summer, 21-33.

Martinez, J. C., and Ioannou, P. G. "General purpose simulation with

Stroboscope." Proc., Proceedings of Winter Simulation Conference, 11-14

Dec. 1994, IEEE, 1159-1166.

Marzouk, M., Abdallah, M., and El-Said, M. (2010). "Modeling Microtunneling

Projects using Computer Simulation." Journal of Construction

Engineering and Management, 136(6), 670-682.

Memon, Z. A., Abd.Majid, M. Z., and Mustaffar, M. "An automatic project

progress monintoring model by integrating auto CAD and digital photos."

Proc., 2005 ASCE International Conference on Computing in Civil

Engineering, July 12, 2005 - July 15, American Society of Civil Engineers,

1605-1617.

Mitropoulos, P., and Nichita, T. (2010). "Critical Concerns of Production Control

System on Projects with Labor Constraints: Lessons from a Residential

Case Study." Journal of Management in Engineering, 26(3), 153-159.

341

Molenaar, K., Anderson, S., and Schexnayder, C. (2009). "Risk Analysis Tools

and Management Practices to Control Transportation Project Costs."

Transportation Research Board, Washington, D.C.

Molenaar, K. R. (2005). "Programmatic cost risk analysis for highway

megaprojects." Journal of Construction Engineering and Management,

131(Compendex), 343-353.

Moon, Y. B., and Phatak, D. (2005). "Enhancing ERP system's functionality with

discrete event simulation." Industrial Management and Data Systems,

105(9), 1206-1224.

Moselhi, O., Li, J., and Alkass, S. (2004). "Web-based integrated project control

system." Construction Management and Economics, 22(1), 35-46.

Mossman, A. (2008). "Last Planner 5 crucial conversations for reliable flow and

project delivery."

Naoum, S. G. (1994). "Critical Analysis of Time and Cost of Management and

Traditional Contracts." Journal of Construction Engineering and

Management, 120(4), 687-705.

Narayan, S. J. L. (2011). "Time & Cost Overruns in Implementation of

Infrastructure Projects, Problems and Remedies."

<http://www.nbmcw.com/articles/project-management-arbitration/20898-time-a-

cost-overruns-in-implementation-of-infrastructure-projects.html>. (August 15,

2011).

342

Nassar, N. K. (2005). "An integrated framework for evaluation, forecasting and

optimization of performance of construction projects." Ph.D., University

of Alberta (Canada), Canada.

Navon, R. (2005). "Automated project performance control of construction

projects." Automation in Construction, 14(4), 467-476.

Nieto-Morote, A., and Ruz-Vila, F. (2011). "Last Planner Control System Applied

to a Chemical Plant Construction." Journal of Construction Engineering

and Management, 1(1), 298.

NIST/SEMATECH (2003). e-Handbook of Statistical Methods, Boca Raton, Flor.

Olumide, A. O., Anderson, S. D., and Molenaar, K. R. (2010). "Sliding-scale

contingency for project development process." Transportation Research

Record(Compendex), 21-27.

Ourdev, I., Abourizk, S., and Al-Bataineh, M. "Simulation and uncertainty

modeling of project schedules estimates." Proc., 2007 Winter Simulation

Conference, 9-12 Dec. 2007, IEEE, 2128-2133.

Ourdev, I., Xie, H., and AbouRizk, S. (2008). "An Intelligent Agent Approach to

Adaptive Project Management." Tsinghua Science and Technology,

13(Journal Article), 121-125.

Park, J. (2005). "A framework to model complex systems via distributed

simulation: A case study of the virtual test bed simulation system using the

343

high level architecture." Ph.D., University of Central Florida, Florida,

United States.

Pidd, M. (1998). Computer simulation in management science, John Wiley &

Sons, Inc.

Project Management Institute (2004). A guide to the project management body of

knowledge (PMBOK guide), Project Management Institute, Inc., Newtown

Square, Pa.

Project Management Institute (2008). A guide to the project management body of

knowledge (PMBOK Guide), Project Management Institute, Inc.,

Newtown Square, Pa.

Robertson, N., and Perera, T. (2002). "Automated data collection for simulation?"

Simulation Practice and Theory, 9(Copyright 2002, IEE), 349-364.

Ruwanpura Arachchige, J. Y. (2001). "Special purpose simulation for tunnel

construction operations." Ph.D., University of Alberta, Edmonton, Alberta,

Canada.

Shafaghi, A. (2008). "Equipment failure rate updating-Bayesian estimation."

Journal of Hazardous Materials, 159(1), 87-91.

Shear, M. (2002). "Springfield Interchange Project Is Defended." Washington

Post.

344

Skoogh, A., Michaloski, J., and Bengtsson, N. "Towards continuously updated

simulation models: combining automated raw data collection and

automated data processing." Proc., 2010 Winter Simulation Conference

(WSC 2010), 5-8 Dec. 2010, IEEE, 1678-1689.

Touran, A., and Toshiyuki, A. (1987). "Simulation of tunneling operations."

Journal of Construction Engineering and Management, 113(4), 554-568.

Xie, H., AbouRizk, S. M., and Fernando, S. "Integrating Realtime Project

Progress Input Into A Construction Simulation Model." Proc., 2011

Winter Simulation Conference, WSC 2011, December 11,2008 - December

14, Institute of Electrical and Electronics Engineers Inc.

Yang, Z., Moghani, E., AbouRizk, S. M., and Fernando, S. "3D CAD modeling

and visualization of the tunnel construction process in a distributed

simulation environment." Proc., 2010 Winter Simulation Conference

(WSC 2010), 5-8 Dec. 2010, IEEE, 3189-3200.

Zeigler, B. P. (1976). Theory of modeling and simulation, Wiley Interscience.

Zeigler, B. P., Praehofer, H., and Kim, T. G. (2000). Theory of modeling and

simulation, Academic press New York.

Zhang, X., Bakis, N., Lukins, T. C., Ibrahim, Y. M., Wu, S., Kagioglou, M.,

Aouad, G., Kaka, A. P., and Trucco, E. (2009). "Automating progress

measurement of construction projects." Automation in Construction, 18(3),

294-301.

345

Zhang, Y., AbouRizk, S. M., Xie, H., and Moghani, E. (2011). "Design and

Implementation of Loose-Coupling Visualization Components in a

Distributed Construction Simulation Environment with High Level

Architecture (HLA)." Journal of Computing in Civil Engineering, 1(1), 88.

Zhao, Z. Y., Lv, Q. L., Zuo, J., and Zillante, G. (2010). "Prediction System for

Change Management in Construction Project." Journal of Construction

Engineering and Management, 136(6), 659-669.

Zhou, F., AbouRizk, S. M., and Al-Battaineh, H. (2009). "Optimisation of

construction site layout using a hybrid simulation-based system."

Simulation Modelling Practice and Theory, 17(2), 348-363.

Zhou, F., AbouRizk, S. M., and Fernando, S. "A simulation template for modeling

tunnel shaft construction." Proc., 2008 Winter Simulation Conference,

WSC 2008, December 07,2008 - December 10, Institute of Electrical and

Electronics Engineers Inc, 2455-2461.

Zubair, M., Zhang, Z., and Ud-Din, K. S. "Reliability data update method with

gamma distribution."

