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Abstract

Finding optimal steam injection policies in the context of Steam Assisted Gravity

Drainage (SAGD) represents a major challenge due to the complex dynamics of the

process. This complexity is reflected by: i) several concurrent sub-processes, e.g .

heat transfer, counter-current flow, imbibition, ii) potential reservoir heterogeneity,

and iii) the lagged nature of the process. As a result, conventional steam injection

strategies or policies in SAGD are typically not a result of a formal optimization

process but rather empirically found. Furthermore, available optimization methods

exhibit important drawbacks such as, requiring the full mathematical description of

the process (adjoint-optimization) or may not be suitable for long-term optimization

(Model Predictive Control).

In this work, we propose two (2) alternatives to solve the cited challenge. The

first alternative is the use of reinforcement learning (RL), in which no information of

the physical SAGD phenomena is needed and can potentially optimize for long-term

cumulative performance. In particular, we present the implementation of the two

(2) main RL approaches: action-value function and policy gradient, for one and mul-

tiwell applications, respectively. In both implementations, obtained optimal steam

injection policies exhibit a significant improvement both with respect to the initial

(random) policies and constant steam injection strategies. Furthermore, these opti-
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mal policies exhibit two distinctive regions: initially, an increase or slight increase

of steam injection rates (Region 1), and afterwards, a sharp decrease until reaching

the minimum value (Region 2). This shape suggests that for optimal SAGD opera-

tions: i) steam chamber expansion is key until the overburden is reached (Region 1),

afterwards, reservoir temperature should be kept high and ii) pressure plays a vital

role until the steam chamber reaches the overburden, afterwards temperature is the

driving mechanism of oil production.

Reinforcement learning although represents a promising solution to the SAGD

optimization challenge, it may require the continuous execution of a potentially com-

putationally expensive numerical reservoir simulation model. As a result, the second

alternative presented in this work is the use of dynamic surrogate modeling and op-

timization (DSMO) framework. In particular, we propose a methodology to build

surrogate models that can provide fast approximations of time-varying outputs (e.g .

daily oil production rates) of the SAGD process which could be used to solve the

cited optimization problem.

The proposed method represents an improvement of the conventional recursive

based prediction approach in which a one-step prediction model(s) is identified and

then used recursively to predict n-steps in the future. We propose the use of a second

model that can capture the variability of the residual exhibited by the first model,

and then act as a correction term. The underlying assumption, which is empirically

discussed, is that the residuals of the recursive approach are correlated with time

and thus can be generalized over the input space. The methodology consists of an

extension of the traditional surrogate model and optimization (SMO) framework that

considers non time-varying variables and consists of identifying surrogate models of
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any physical process using samples from high fidelity models.

We test the proposed approach on a multi well reservoir simulation model using

recurrent neural networks for both the one-step prediction model and the residual

or correction model. Results show that the proposed approach offers significantly

better prediction capabilities as compared to the conventional recursive approach.

In particular, the corrected model is able to capture output variability (R2) and

reduce error (Mean Absolute Percentage Error) consistently over several statistical

realizations of the selected samples. Furthermore, we can show these results are

similar when considering different limited and extended samples sizes, suggesting

the efficiency of the method.
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Chapter 1

Introduction

1.1 Background

A steam-assisted gravity drainage (SAGD) oil recovery process [10] consists of drilling

two horizontal wells, an upper steam injection well and a lower production well placed

a few meters vertically apart. Steam is then injected through the top well, it will

ascend throughout the reservoir due to density difference and heat is transferred to

the surrounding oil by conduction. The part of the reservoir impacted by the steam

is referred to as the steam chamber (Figure 1.1) and as the injection continues it will

expand vertically and horizontally. The heat transfer causes the viscosity of the oil

to be significantly reduced (by several orders of magnitude) the steam condensates,

and as a consequence, the condensate and mobilized oil will descend to the producer

well driven by gravity forces and eventually reaches the surface.

In this context, finding the steam injection rate at every time step or policy, that

maximizes cumulative performance (e.g . net present value) over the entire production

horizon represents a major challenge due to the complexity of the phenomena. This

complexity is expressed in part by the number of sub-processes that occur at the

same time, such as, heat transfer [22], [30], counter-current flow [17], [69], co-current

flow, water imbibition, emulsification [17] and steam fingering (Figure 1.2). All these
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Figure 1.1: Cross-section of the steam chamber developed in SAGD. Inset image
shows heat transfer between steam and bitumen at the interface

sub-processes depend directly on the operating conditions (e.g . steam injection rate)

and affect the performance of the process.

Figure 1.2: Exaggerated view of steam fingers during steam chamber expansion [36]

Another significant contribution to the complexity of the SAGD process is the

presence of reservoir heterogeneity [51], [52], [90]. Heterogeneity is manifested in

2



alternate pairs of sand and shale rock throughout the reservoir. These shale rocks

act as barriers that prevent fluid flow and result in non-uniform growth of the steam

chamber across the reservoir and may limit drainage path (Figure 1.3). Further-

more, shale rocks typically exhibit high water saturation, thus significant heat loss

is expected as the steam chamber comes into contact with the shale rock due to the

water’s high heat capacity.

Figure 1.3: Non-uniform growth of the steam chamber due to reservoir heterogeneity
[111]

Moreover, SAGD is a process that is significantly lagged, i.e. the effect of an

injection rate applied at time t may be significantly delayed. Additionally, in some

cases it may be better to sacrifice immediate production to maximize cumulative

performance. For instance, a common start-up SAGD strategy is pre heating [29],

[37], which consists of establishing thermal communication between the wells by

injecting steam through both wells (injector and producer) for several months. This

strategy has no immediate benefit but has been proven to significantly increase the

long-term efficiency of the SAGD process.

The problem of finding the optimal steam injection policy further escalates con-

sidering that most industrial-scale applications of SAGD consist of dozens of well

pair configurations operated simultaneously. In this configuration, there is typically
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a single steam source for all the well pairs, so the injection strategy is restricted by

its maximum steam generation capacity. So, the problem is now to find the optimal

steam injection policy for each well pair subject to the available steam generation,

this is referred to as the steam allocation problem [41], [66], [110].

In field applications, steam injection policies used in SAGD processes although

may fluctuate in time, are typically not the result of a formal optimization process. It

is rather an empirical process that combines factors such as, reservoir characteristics,

completions design for the wells, fluid dynamics within the wellbore, etc.

1.2 Problem Statement

Optimization problem In this work, we are interested in formulating the prob-

lem of finding optimal steam injection policies as an optimization. Mathematically

this can be expressed as:

For a given SAGD configuration with n injector and producer wells (pairs)

and a given production horizon with T time steps (e.g . daily), the ob-

jective is to find the steam injection policy that maximizes a particular

performance measure (e.g . net present value) while accounting for the

complex reservoir dynamics. Formally, the optimization problem can be

written as:

max
u∈Rn×T

J =
T
∑

t=1

Jt(xt, ut)

s.t. umin ≥ u ≥ umax

xt+1 = g(xt, ut)

(1.1)

where J is a scalar performance measure, ut ∈ R
n×1 is the steam injection
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rates for all n wells at time t, xt is the state matrix of the SAGD dynamic

system (e.g . pressure and saturation distribution) at time t, umin and

umax
1 are the upper and lower bounds of the steam injection rate, and g

is a function that represents the SAGD dynamic system

The optimization problem expressed by Equation 2.1 can be solved using two (2)

main approaches: static and static optimization. Static optimization makes refer-

ence to settings in which the design or control variables are time-independent. Thus,

each member of the vector u is treated as independent from each other and inde-

pendent in time. In this case, conventional gradient or non-gradient-based methods,

such as conjugated gradients, biologically inspired algorithms [6], [23], [31], [68], etc.

Although this approach is easy to implement, as the time step size decreases or the

production horizon T increases, the number of variables could make the problem

computationally prohibited.

The second approach considers Equation 2.1 as an optimal control or trajectory

optimization problem in which the time-dependency of the variables is considered.

This problem (Equation 2.1) has typically been solved using adjoint-based optimiza-

tion [48], model predictive control - MPC [85] and, more recently proposed, reinforce-

ment learning [38], [45], [58], [97]. In this context, Reinforcement learning (RL) has

the potential to overcome the shortcomings of the other optimal control strategies in

that, it doesn’t require a full mathematical description of the phenomena (adjoint-

optimization) and can potentially optimize for long-term cumulative performance or

reward (MPC).

In general, in RL, an agent is trained specifically to behave optimally to maximize

the cumulative performance of a given process with no previous knowledge of the

process [99]. The behavior of the agent is represented by actions taken (e.g . increase

1To clarify, the bold and non-italic representation of u express that contains all the steam
injection rates for each well at each time step.

5



steam injection rate) at every time step; as a result, these actions will impact the

process or environment and change its state and offer the agent a scalar reward (e.g.,

net present value). The ultimate goal of the agent is to maximize cumulative reward.

One important by-product of RL is that once found, the optimal policy may allow

us to have a better understanding of the phenomenon or ”how the world works”. So

for example, one of the most popular implementations (AlphaGo/AlphaGo Zero) of

RL is in playing the abstract-strategy game Go [94]. Alpha Go not only defeated the

world’s top players but its style of play has been characterized by odd-looking, since

-as opposed to what human players tend to do- sometimes it plays moves that lose

material because it is seeking to maximise its probabilities of winning rather than

maximise territorial gains [16]. Another emblematic example is the use of RL to

find out how birds find and navigate ascending thermal plumes in the atmosphere as

they search for prey or migrate [80]. Here by learning the optimal policy, the authors

were able to find what are the mechanosensory cues that help birds guide themselves

in this scenario. Other successful implementations of RL include, real-time traffic

signal control [1], optimizing energy conservation and comfort in buildings [20] and

autonomous helicopter flight [71] among others.

Dynamic surrogate-modeling optimization The RL framework descri-bed above

although represents a promising method could be computational prohibited [38]. In

this context, the use of a dynamic surrogate model that can provide fast approxima-

tions of the reward or objective function is an interesting alternative. Furthermore,

if this surrogate can also provide a reasonable prediction of time-varying key perfor-

mance variables, e.g., water rates, oil rates, it could potentially replace the numerical

reservoir simulator altogether. Once a validated surrogate model has been identified

it can be coupled with any optimization algorithm (e.g . genetic algorithms, RL) with

relative ease and low computational effort.
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A common approach for dynamic surrogate-modeling [7], [43], [54], [95], is to

use nonlinear models to make one-step forecasts considering the current state of the

process and current action control as inputs and the state at the following time step

as output. Afterward, the model is used recursively to make n-steps ahead forecast:

the predicted state at a time t, is used as input, to predict the state at t+1. However,

the main limitation of this approach is that prediction errors obtained after the initial

time steps are propagated throughout the entire prediction horizon. In other words,

the error is expected to grow as the number of forecast steps increases.

1.3 Research Objectives

This research aims at evaluating and proposing state-of-the-art machine learning-

based approaches to solve the optimal control problem expressed by Equation 2.1.

This goal can be expressed in the following specific research objectives:

1. Find optimal steam injection policies for different SAGD reservoir simulation

models (case studies) using reinforcement learning. Case studies differ in the

number of well pairs, considered and RL approach used, e.g . value function

and policy gradient. For each case, this work will include, definition of state

and action space, function approximation strategy and parameter tuning. Fur-

thermore, optimal policies will be analyzed in two aspects:

1.1 Optimization or learning process. In particular, we are interested in the

agent’s improvement after each iteration or episode (learning curve), op-

timal design variables

1.2 Qualitative analysis of the optimal steam injection policies to gain insight

into the SAGD process, e.g . what role does pressure play throughout the

production horizon? Is high pressure more important at the beginning?
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What role does temperature play? Is it important to keep a high temper-

ature throughout the production horizon or towards the end?

2. Evaluate a recursive prediction approach using one-step machine learning-based

forecast models for SAGD optimization. This implies the estimation of key

time-varying output, i.e. oil production rate, water production rate, net present

value, using a numerical simulation model of a multiwell SAGD process as case

study. This objective comprises the following four (4) stages: design of exper-

iments, numerical simulations of each sample, surrogate model identification

and validation and optimization. Furthermore, surrogate model identification

will require the definition of, an effective feature set, model architecture, train-

ing and validation methodology, and perform a statistical evaluation of the

results

3. Develop a dynamic surrogate model methodology to overcome the error propa-

gation limitation of the conventional recursive approach evaluated in Specific

Objective 2. This includes the four (4) stages stated above, plus an additional

stage that requires the definition of a secondary model to capture the dynamics

of the residuals exhibited by the recursive model. The methodology is tested

on a numerical simulation model of a multiwell SAGD process and a statistical

evaluation of the results is given

1.4 Key Contributions

The completion of the cited objectives will make the following contributions:

• Formulate the problem of finding the optimal steam injection policy for SAGD

process as an optimal control problem (General)
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• Implement and evaluate action value and policy gradient algorithms (SARSA

and REINFORCE, respectively) to solve the cited optimal control problem

(Specific Objective 1)

• Interpret obtained optimal steam injection policies on the basis of its physical

relevance in the context of the SAGD process, e.g . role of temperature and

pressure (Specific Objective 1)

• Develop an efficient and effective methodology for the construction of dy-

namic surrogate models for rapid evaluations of SAGD steam injection policies

(Specific Objective 2 and 3)

• Apply the developed methodology to case studies with varying number of well

pairs (Specific Objective 2 and 3)

1.5 Thesis Outline

The organization of this work is organized in seven (7) chapters that are briefly

described below:

Chapter 2: Literature review Describes the three (3) main methods for solving

the optimal control problem cited in Equation 2.1, namely, adjoint-based optimiza-

tion, MPC and RL. In particular, discusses the two main RL approaches (action-

value function and policy gradient) and reviews the work done in the application

of reinforcement learning strategies for the optimization of reservoir operations, e.g .

waterflooding, CO2 storage. Additionally, contains a detailed review of the dynamic

surrogate modeling techniques and offers the main previous studies of their applica-

tions for the optimization of subsurface operations
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Chapter 3: Action-value function RL for SAGD optimization Pre-sents

the implementation of the on-line on-policy action-value function algorithm SARSA

for the optimization of a one-well pair SAGD reservoir simulation model. The imple-

mentation considers a discrete action space, a continuous state space and Net Present

Value (NPV) is used as a reward/objective function. Additionally, the action-value

function is approximated using a stochastic gradient regression strategy, and the

state vector is featurized using radial basis kernels. Results are evaluated on the ba-

sis of improvement over iterations (or episodes) and on a justification of the optimal

policy from a physical point of view

Chapter 4: Policy gradient RL for SAGD optimization Contains the details

of the implementation well-known policy gradient algorithm REINFORCE for the

optimization of a multi-well pair SAGD reservoir simulation model. The implemen-

tation considers a discrete action space, a continuous state space and Net Present

Value (NPV) is used as a reward/objective function. Additionally, the policy is

parametrized by a deep neural network that offers for every state the probability of

taking a specific action. Results are compared to a constant injection approach and

evaluated on how the objective function is improved as the number of iterations is

increased, and a physical interpretation of the optimal policy is offered

Chapter 5: An evaluation of the recursive prediction approach for dy-

namic surrogate modeling and optimization Offers an evaluation of using

one-step forecast machine learning-based models in a recursive fashion to make n-step

prediction of time-varying outputs of a SAGD process. These models are identified

offline and then used as a substitute for the numerical reservoir simulation model,

considered computationally expensive, in the optimization process. The approach

is applied to a multi-well reservoir simulation model, and the performance of the
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approach is evaluated in terms of its effectivity

Chapter 6: A corrected recursive based dynamic surrogate model ap-

proach Proposes an effective surrogate-based approach in which, the prediction

at any given time consists of the addition of two components: a one-step forecast

nonlinear models used recursively to make n-steps ahead forecast plus a modeled

residual correction. The latter is rationalized under the assumption that the forecast

error given by the one-step forecast model is correlated with time due to the recursive

strategy used, as a consequence the residual can be modeled. Results are compared

to the conventional recursive-based approach on the basis of, the reduction of mean

errors and increase in R2.

Chapter 7: Conclusions and recommendations The main conclusions and

findings of the research are summarized in this chapter and potential future research

directions are discussed.
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Chapter 2

Literature Review

In this chapter, we briefly describe the key SAGD optimization performance measures

typically used in the field and the formal optimization problem is presented. Also we

present the static and dynamic approaches (Figure 2.1) for the optimization prob-

lem of interest. In particular, the main methods of each approach are discussed, i.e.,

gradient-based and heuristic methods in terms of static optimization, and adjoint-

method, model-predictive control (MPC) and reinforcement learning (RL) regarding

dynamic optimization. Moreover, the main applications of these methods for hy-

drocarbon recovery strategies are offered. Additionally, we present the conventional

surrogate base model optimization (SMO) methodology as a possible solution to the

cited approaches and their previous applications in oil recovery methods.

2.1 SAGD Performance Measures

There are two (2) performance measures that are typically considered in SAGD

optimization: achieving a uniform expansion of the steam chamber along the length

of the well pair (conformance) and maximizing net present value (NPV). The first

case is associated with real time operational performance and typically achieved by

controlling the subcool temperature: temperature difference between the saturation
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temperature and the bottom hole temperature of the produced water. In the second

case (NPV), performance is seen from a long-term perspective and the economical

aspect of the process is considered, i.e. operating costs, oil prices, water produced.

Regardless of the performance measures the key design variables of interest are:

injecting pressure or rate, and producing pressure at every time step.

Steam chamber conformance requires subcool control stragies to ensure a liquid

pool above the lower producer well, also known as a steam trap [24], [114]. Liquid

pool is defined as the condensed or mobilized fluid near the producer well that flow

down the edged of the steam chamber. On one hand, if the liquid pool is too

low (low subcool temperature, high production), steam is quickly condensed and

produced, thus decreasing the thermal efficiency of the process: heat is not heating

the surrounding oil [35]. On the other hand, if the liquid pool is too high (high

subcool temperature, low production) decreases oil production.

Although both subcool control and NPV optimization consists of selecting the

values of the operating conditions (e.g . steam injection rates, prouction pressure),

they work on different time scales. Subcool control is considered o a scale of days

to month and is typically achieved using control strategies such as, Proportional-

Derivative-Integral (PID) control, and Model Predictive Control (MPC). While NPV

optimization is considered a field development planning strategy, in a scale of years.

In this work, we are interested in NPV optimization and the problem formulation

is as follows:

For a given SAGD configuration with n injector and producer wells (pairs)

and a given production horizon with T time steps (e.g . daily), the ob-

jective is to find the steam injection policy that maximizes a particular

performance measure (e.g . net present value) while accounting for the

complex reservoir dynamics. Formally, the optimization problem can be

written as:
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max
u∈Rn×T

J =
T
∑

t=1

Jt(xt, ut)

s.t. umin ≥ u ≥ umax

xt+1 = g(xt, ut)

(2.1)

where J is a scalar performance measure, ut ∈ R
n×1 is the steam injection

rates for all n wells at time t, xt is the state matrix of the SAGD dynamic

system (e.g . pressure and saturation distribution) at time t, umin and

umax
1 are the upper and lower bounds of the steam injection rate, and g

is a function that represents the SAGD dynamic system

2.2 Static Optimization

This approach refers to the case where the design variable (i.e. steam injection rate)

at each time step (ut) is assumed as an independent variable. In this case, the

constraint function g that represents the SAGD dynamical system is assumed to be

a black box, i.e. the system is available for objective function evaluations but the

equations that describe the system are unknown. There are two main groups of

methods used for this approach, gradient-based and heuristics methods.

2.2.1 Gradient-based

These are represented by a family of algorithms in which some form of the gradient

of the objective function J is used to estimate a descent direction. The general

structure of these problems is that one starts at an initial point (uk), estimates a

descent (ascent) direction according to some fixed rule, and then takes a step (α) in

that direction [57]. Mathematically, this structure can be expressed as,

1To clarify, the bold and non-italic representation of u express that contains all the steam
injection rates for each well at each time step.
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Figure 2.1: Methods for static and dynamic optimization
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uk+1 = uk + αf(J(uk)) (2.2)

Descent direction

The main difference between the different gradient-based methods is how to estimate

the descent direction f(J(uk)). The simplest method is the Steepest Descent that

uses the negative of the gradient of J(uk), i.e.

uk+1 = uk − α∇J(uk) (2.3)

More sophisticated methods include Newton and Quasi-Newton, in which infor-

mation of the second derivative or Hessian is used to estimate a new descent direction.

For example, the Newton method uses the full Hessian, i.e.

uk+1 = uk − α[∇
2J(uk)]

−1∇J(uk) (2.4)

The Quasi-Newton methods use approximations of the Hessian, the most common

method is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm which uses the

procedure described in Algorithm 1.

Algorithm 1: BFGS

From initial guess u0 and B0 = I
1. Estimate the descent direction pk as Bkpk = −∇J(uk)
2. Obtain step size αk by argminα(uk + αkpk) - See following section
3. Set sk = αkpk

4. Estimate a new solution as, uk+1 = uk + sk
5. yk = ∇J(uk+1)−∇J(uk)
6. Update Bk+1 = Bk + [yky

T
k ] · [y

T
k sk]

−1 − [Bksks
T
kB

T
k ][s

T
kBksk]

−1

In all cases, the underlying assumption of any gradient-based optimization al-

gorithm is that the objective function is differentiable and convex. Typical im-
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plementations rely on the numerical approximations of the gradient, hessian or ap-

proximations thereof. These implementations include sklearn.optimize (Python) and

fminunc/fmincon (Matlab).

Step size - α

The process for determining the step size (α) or how much to move in the descent

direction is called line search. This represents a one-dimensional minimization (max-

imization) problem and can be expressed as,

h(α) = uk + αf(J(uk)) (2.5)

Here the goal is to find the optimal α that will minimize h. A common method

for line search is the cubic fit; here, three (3) points are initially selected using a fixed

heuristic and then used to fit a cubic function with a known minimum (Figure 2.2).

Afterward, the minimum replaces one of the previous three points and a new cubic

function is fit. This process is repeated until a predetermined stopping criterion is

met.

Other line search methods include the golden section, grid search, secant method,

etc. Additionally, in other settings, such as reinforcement learning and supervised

learning α is referred to as the learning rate.

2.2.2 Heuristics

These methods imply the use of rules or guidelines, typically nature inspired, to find

good solutions. Heuristics or non-gradient-based algorithms are an alternative in

cases where the objective function is not differentiable (e.g . discrete design variables)

or approximations of the gradient of the objective function are not feasible. As a

consequence, these strategies offer no sort of guarantee to find global or bounded
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Figure 2.2: Illustration of the line search process. The blue points represent the
initial set, the dashed blue line the cubic fit, and the red point the optimal of the
cubic function

optimal solutions [102]. Moreover, similarly to gradient-based methods discussed

above, the assumption is that the objective function is considered to be a black box.

In this section four (4) heuristics optimization methods will be discussed: two (2)

evolutionary-inspired methods: genetic algorithms and differential evolution, as well

as the particle swarm and simulated annealing methods.

Genetic algorithms

Genetic algorithms are non-gradient optimization algorithms in which initial solu-

tions are evolved to optimal solutions by biologically inspired operators, e.g . crossover,

mutation. Each solution is coded in binary format and referred to as genes.

In general, the algorithm consists of three (3) stages, initialization, creating a

next generation and termination. Initialization refers to starting with an initial

population or a predetermined number of candidate solutions, typically generated

randomly. Each of these candidate solutions is evaluated and the solutions are ranked
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according to their corresponding performance. The population is referred to as a

generation and as the iterative process continues new generations are generated with

higher performance.

In the second stage, the new generation is created in three (3) ways,

• Elitism. Best individuals are selected to continue on to the following generation

• Crossover. These individuals are a result of the combination of two (2) good

performing parents. The offspring will share characteristics of the parents and

will tend to have a better performance or NPV value.

• Mutation. Implements random changes to selected individuals

These two stages are repeated until a termination condition is achieved and the

algorithm is terminated (third stage). These conditions may include, evolving for

a pre-determined number of generations or iterations and the NPV values of the

best-performing individuals do not differ significantly from generation to generation.

Differential Evolution

Consists of creating generations or groups of samples and then iteratively selecting

new solutions that will exhibit a higher objective function value [96]. Unlike ge-

netic algorithms, each solution is represented by floating numbers. Initially, the first

generation is chosen randomly and then three (3) operators are sequentially applied:

1. Mutation. The weighted difference between two samples is added to a third

sample to produce a mutated sample

2. Crossover. The parameters of the mutated sample are then randomly mixed

with the parameters of another sample

3. Selection. The best samples are selected for the next generation
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This process continues until convergence has been reached, e.g . maximum number

of generations.

Particle Swarm

Inspired by swarm intelligence, mimics the behavior of groups of species such as

bird flocking, in attempts to find shelter or food. In the search, each individual will

attempt to balance their own knowledge (exploitation) and of the flock (exploration).

The method consists of Ap individuals or particles exploring the search space.

Each individual knows their own position and velocity and will adjust to a new

position based on, the best position visited by itself and the best position visited

by any other member of the flock. This update consists of the addition of three (3)

components:

• The previous velocity multiplied by an inertia weight that represents a trade-off

between exploration and exploitation

• A cognitive learning factor that denotes how much of the individual’s own

success will impact the new velocity

• A social learning factor that embodies the attraction toward the flock’s success

Simulated Annealing

Inspired by the annealing technique in metallurgy that consists of heating and con-

trolled cooling of a material to form a strong and required crystalline structure. This

will only be achieved by controlling the initial temperature and cooling schedule.

The basic algorithm starts with an initial state, which represents the initial guess

of the algorithm, and an initial temperature Tsa. At each iteration, a random neigh-

bor (u′) is generated, if the new neighbor improves the objective function, the cur-

rent state transitions into the new state. If not, the neighbor is selected with a
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given probability distribution that depends on the current temperature and the ob-

jective function deterioration (∆E). This probability is expressed by the Boltzman

distribution:

Pr(∆E, Tsa) = exp−
J(u′)−J(u)

Tsa (2.6)

When a new state is accepted or an equilibrium state is reached, the tempera-

ture Tsa is gradually decreased according to a predetermined schedule, e.g . linear,

geometric, logarithmic.

Heuristics optimization methods for the optimization of enhanced oil recovery

methods are implemented in the CMG reservoir simulation package as CMOST. In

particular, differential evolution and particle swarm are available.

2.3 Dynamic Optimization

Also referred to as optimal control or trajectory/path optimization, dynamic op-

timization deals with finding an optimal policy or control actions of a dynamical

system. Unlike the static optimization approach, the time component of the control

actions is accounted for.

2.3.1 Adjoint-based optimization

Even though also represents a gradient-based approach, adjoint- based optimization

is used when the system’s dynamic is described by a set of known partial differential

equations. In particular, it represents an efficient way to compute gradients [48] of the

objective function with respect to the control variables. These gradients are found by

applying the Karush-Kuhn-Tucker conditions to the Hamiltonian, i.e., an augmented

objective function represented by the pre-established performance measure (e.g . net
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present value) and the constrained imposed by the reservoir dynamics (e.g . mass-

conservation partial differential equations) using Lagrange multipliers.

Assuming no other constraints except for those imposed by the physical system

(g), the optimization problem given by Equation 2.1 can be formulated as:

max
u

J

s.t. g(ut, xt)− xt+1 = 0
(2.7)

where xt and ut represent the vector of state variables (e.g . pressure distribution)

and the control actions at time t. The constrained optimization problem can be

transformed into an unconstrained one using the Hamiltonian function as a new

augmented objective function, J̄ , i.e.

Ht(xt+1, xt, ut, λt+1) = Jt(xt, ut) + λTt+1gt(xt, ut) (2.8)

where λ represent the Lagrange multiplier(s). Applying the Karush-Kuhn-Tucker

conditions to Equation 2.8 gives rise to the state equation, adjoint system, and

stationary conditions that when solved the gradient of the objective function with

respect to u is found.

xt+1 =
∂Ht

∂λt+1

= gt(xt, ut), State Equation (2.9)

λt =
∂Ht

∂xt
=

(

∂gt

∂xt

)T

λt+1 +
∂Jt
∂ut

, Co-state Equation or Adjoint System (2.10)

0 =
∂Ht

∂ut
=

(

∂gt

∂ut

)T

λt+1 +
∂Ht

∂ut
, Stationary Condition (2.11)

The state equation (Equation 2.9) is the dynamic system’s equation which is

solved in a forward fashion, i.e. from xt, ut to xt+1. The co-state equation (Equation
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2.10) or adjoint system represents a different dynamic system which is solved in a

backward fashion, i.e. λt+1 is used to find λt. Finally, Equation 2.14 is used to obtain

the optimal values of u by knowing through ∂H
∂u

and any gradient-based optimization

method (See Section 2.2.1).

This approach has been implemented in the well-known reservoir simulation soft-

ware Eclipse 300 (Schlumberger) [86] as the keyword OPTIMIZE. As a by-product

of the adjoint-based method, the software also offers sensitivity calculations of the

objective function with respect to the control variables using the obtained gradients.

The main advantage of this approach is that its computational expense is inde-

pendent of the number of design variables (e.g . number of considered well pairs).

Thus, we can find successful implementations in a variety of oil recovery processes

to find the optimal policy of operating conditions (e.g . injection rates, production

pressure). These implementations include, CO2 water-alternating-gas injections [13],

polymer flooding [104], co-optimization of CO2 and oil recovery [47], waterflooding

[105] and well-placement scenarios [116]. However, the biggest drawback is that the

gradients of the dynamic system with respect to x and u, must be hard-coded and

are different depending on the enhanced oil recovery process.

2.3.2 Model-based predictive control (MPC)

Typically consists of a two-level control strategy [25], [39], [85], i.e. an upper level

or optimization level, which is responsible for finding the set-points: injection (e.g .

water, steam) and oil production rates that will maximize net present value of a

determined production horizon; and a lower level or MPC level, which includes the

MPC controller, that must find the operation conditions (e.g . bottom-hole pressures)

to reach the set-points given by the upper level. Figure 2.3 shows the block diagrams

corresponding to two different MPC implementations for the solution of the optimal

control problem.
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(a)

(b)

Figure 2.3: Block diagram of the MPC-based framework proposed by [85]-top and
[25]-bottom
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Note in Figure 2.3 that in the upper level, the choice of how to generate the set-

points can be quite different. So for example, in [25]-Figure 2.3b a full physics-based

reservoir simulation model along with an adjoint-based optimization framework (see

2.3.1) is used. Despite having the cited drawbacks, this guarantees a maximization

of cumulative net present value for the entire production horizon T . In contrast, in

[85]-Figure 2.3a linearized versions of the first principle analytical equations (Vogel

and Fetkovitch for well flow, and Havlena-Odeh for pressure) were used. Another

possibility is to use data-driven models identified online as new data is available.

The choice of model (e.g . first principle or data-driven) leads to a subtle difference

from the objective function in Equation 2.1, i.e.,

max
u

J =
Z
∑

z=1

Jt(xh,uh) (2.12)

where Z is not necessarily equal to T , depending on the capacity of the model

used to forecast in the future. Regardless of the model being used, the objective

function for the upper level is typically the same, i.e.

T
∑

t=1

{

n
∑

j=1

[Po · qo,j,t − Cwater · qw,j,t]−
ni
∑

j=1

[Csteam · qs,j,t]

1 + i
t

365

}

(2.13)

where, T is the full production horizon (e.g . 20 years), np is the number of

production wells, Po is the oil price [USD/STB], qo,j the oil production rate of the

j-th well [STB/day], Csteam the cost of steam generation [USD/STB], qs,j the steam

injection rate of the j-th well [STB/day], Cwater the cost of produced water handling

[USD/STB], qw,j the water production rate of the j-th well, ni the number of injection

wells, i is the annual discount factor [fraction] and t is the current time.

The lower level consists primarily of the MPC controller and the system or plant

(e.g . reservoir, wells, facilities). In general, the controller’s job is to find the steam
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injection rates to achieve the set-points - ˜ym (e.g . oil production rates) offered by

the upper level by interaction with the plant or system and solving the following

optimization problem,

min
ũk:k+N

k+N
∑

j=k

( ˜ymj − ˆymj)
TW1( ˜ymj − ˆymj) + (∆u)TW2(∆u) (2.14)

where, ˆym is the outputs offered by the plant, ∆u is the change in steam injection

rates and N is the moving optimization horizon, k is the current time step, and W1

and W2 are weighting matrices. The first part of the right hand side represents

the difference between the desired and the predicted output, while the second part

aims to penalize big changes in u. Although the mechanics of this lower level is very

similar, they can typically differ in terms of the choice of the data-driven model (e.g .

neural networks, system identification approaches) and the design variables.

Note how the time scale in the lower and upper level is not necessarily the same

(T ̸= Z ̸= N). In fact, the upper level is expected to have a longer horizon in order

to account for a more long-term optimization, this is known as the optimization

horizon. In contrast to the adjoint-based optimization, where the optimal control

problem is solved once over the entire production horizon (i.e. 20 years), MPC solves

the problem repeatedly as the optimization horizon is moving.

MPC has proven to be a very effective approach in that, it allows for real-time

optimization and doesn’t necessarily implies the use of a complex model for its upper

level. In this regard, we can find literature on different variants of MPC, such as,

linear [75] and nonlinear MPC [63], [75]. Additionally, effective implementations

in the field of oil recovery optimization include, enhancing fracture surface area in

naturally fractured reservoirs [93] and SAGD [107]. However, the drawback is that

the nature of model (used to find the set-point values), may be unfeasible for long-

term cumulative optimization of net present value.
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Figure 2.4: Agent-environment interactions in reinforcement learning [99]

2.3.3 Reinforcement learning (RL)

In RL, an agent is trained to find a policy that will maximize total future reward

only by continuous interactions with the environment. A policy π is defined as the

behaviour or action a of the agent at each state s of the environment. The policy

is pre-defined and is continuously improved during the training process. Mathemat-

ically a deterministic policy can be expressed as:

a = π(s) (2.15)

The agent is expected to find the optimal policy with no prior knowledge of the

dynamics of the environment. At each time step, the agent executes an action (e.g.,

increase steam injection rate), receives a reward (e.g., net present value), and receives

a representation of the new state (e.g., pressure distribution) of the environment (e.g.,

numerical reservoir simulation model) as can be seen in Figure 2.4. Note that this

represents a major difference from traditional machine learning approaches such as

supervised learning in which the training data set describes the correct action the

system should take for a given input; then, the agent must extrapolate or generalize

its response so that it acts correctly in situations not present in the training set.

In this context, a reward Rt represents a scalar feedback signal that indicates
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its performance at time step t. Some examples of reward include, for a fly stunt

manoeuvres in a helicopter a positive reward for following a desired trajectory and

negative for crashing, in a power station a positive reward for producing power

and negative for exceeding safety threshold. In RL we are interested in finding the

actions so that the sum of the discounted rewards it receives over a specific horizon

T (episodic applications) is maximized. This is also called the expected discounted

return and can be expressed as:

J = Gt = Rt+1 + γRt+2 + ... =
T
∑

k=1

γkRt+k+1 (2.16)

where, γ is a number between 0 and 1 and determines the present value of future

rewards, so for example, if γ = 0 the agent is only concerned with maximizing

immediate rewards (myopic). If γ approaches 1, more importance is given to future

rewards (far-sighted). In the context of the optimization problem, Gt is equivalent

to J (Equation 2.1).

The environment is formulated as a Markov decision process (MDP) in which

the defined state at a particular timest captures all relevant information from the

history. In other words, the current state captures all the information from the past

and is enough to transition to the next state as a result of a specific action. For

example, if we were interested in maximizing the energy output of a thermoelectric

power station, the state could be the pressure and temperature reading of the boiler

at a given time. In each state the action space A is represented by the set of actions

the agent can take. In the power station, actions could include, increase fuel and

air mass flow rate at the inlet of the combustion process. The transition from state

to state is given by the dynamic of the world (e.g., combustion dynamics in the

boiler of the power plant) which is assumed unknown and potentially stochastic.

Furthermore, the environment is considered a black box and no attempt is made to

find the model describing its dynamics.
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There are two main strategies in reinforcement learning, i) action-value and

ii) policy gradient methods. In the former, an action-value function is learned -

q̂π(s, a,w); this function offers the expected return starting from state s, taking ac-

tion a, and thereafter following policy π, implementations of this strategy include

Q-learning and SARSA. In this case, the policy is not explicitly given; the actions

are selected based on the estimation provided by the action-value function. So, for

example a greedy policy would be,

π(s|a) = argmax
a
q̂π(s, a,w) (2.17)

where w represents the weights that parametrize the approximate action value func-

tion q̂π. In the latter, a parametrized policy is learned - π(s|a, θ); the actions are

selected by simply evaluating π without necessarily using value function. Here, θ

are the parameters of learned policy and can correspond for example to the parame-

ters of a deep neural network. Policy gradient algorithms include, Monte Carlo and

Proximal Policy Optimization (PPO).

Both of these strategies have been previously used for the selection of injection

rates in various oil reservoir operations applications. In particular, for waterflooding,

Q-learning using a function approximation approach with deep neural networks -

DQN [58], a Proximal Policy Optimization implementation [64], and a basic form

of an averaging method as an update rule [45]. Additionally, for carbon storage,

DQN was used to maximize the amount of CO2 while minimizing potential risks

[97]. Also for waterflooding, a policy gradient approach was applied for the life-cycle

production optimization [117]. Other RL applications in the context of the oil and

gas industry are guided drilling control using SARSA and deep neural networks [55],

finding an optimal well placement and well type for subsequent wells using deep-

q-networks - DQN [21] and dynamic scheduling of maintenance tasks in refinery

production systems using SARSA [2]. Implementations of both the action-value and
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Figure 2.5: Illustration of the surrogate modeling and optimization framework

policy gradient approach for SAGD optimization can be found in Chapter 3 and 4,

respectively.

2.4 Surrogate Modeling

Except for MPC and adjoint-based optimization, in the rest of the discussed methods

multiple evaluations of the objective function are necessary to find optimal solutions.

A straightforward option is to directly use a high-fidelity reservoir simulation model,

however due to the complexity of the SAGD process (as explained Chapter 1) the

computational cost of each evaluation could prove to be prohibitive.

To alleviate this computational burden generating fast models that can be used

as reasonable proxy of the high-fidelity model [61], [79] is a common practice. To this

end, there are two basic approaches for this: i) simplified or approximated physics

[28], [106] and ii) data-driven or black-box models [49], [77], [78].

2.4.1 Physics-based approach

Consists of using analytical or simplified physics models that, although are based on

ideal assumptions that simplify the physical process but capture the main mecha-

nisms that drive the process. For SAGD, this could be done [106] using solutions

based on the Butler SAGD theory [9], [81] to make predictions of cumulative oil pro-
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duction, steam chamber, etc. Furthermore, the Butler SAGD model can be modified

to represent a solvent injection scheme for heavy oil recovery (VAPEX) [88], [89] to

predict total drainage rate and he advancement of solvent chamber.

2.4.2 Data-based approach

Also called black-box modeling, consists of using entirely input-output data obtained

from a high-fidelity model to identify a surrogate or proxy model.

Surrogate modeling and optimization (SMO)

In the typical SMO approach, the goal is identify a continuous function from a

limited amount of available data (samples or experiments). This data is usually

generated using a computationally expensive model that represents the objective

function and/or the constraints of the optimization problem. Here, input variables

are typically non-ordered, do not change over time and are, to some extent, unrelated

to one another. In particular, this approach [78] consists of four (4) main stages

(Figure 2.5):

1. Design of experiments. Generate m representative samples from the design

variable space

2. Evaluation of each sample using a high fidelity model. Consists of obtaining a

corresponding output value for each of the i-th samples from a computational

expensive model

3. Surrogate model identification and validation. Find a proper structure and the

corresponding parameters that can map the input (Stage 1) and output (Stage

2). Represents an inverse problem, given that multiple structures/parameters

may be consistent with the data (Figure 2.6) Validation refers to checking the
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Figure 2.6: Illustration of the inverse problem of surrogate model identification

generalization capacity of the surrogate, usually using data that was not used

in the identification process.

4. Optimization. Find the value of the input variables that can maximize the

output or a function that depends thereof

In the oil recovery setting, common applications of SMO include finding optimal

values of, well placement [67], [84], [98], water alternating gas (WAG) cycle ratio [4],

the concentration of alkaline, surfactant, and polymer (ASP) in injection [11], vertical

well spacing and steam injected enthalpy in SAGD operations [77], waterflooding

optimization [14], [15], [44], [73], [113], [115].

Time series modeling

This is a setting [8], [54], [103] in which historical time series data is available and

the goal is to predict n-steps in the future as illustrated in Figure 2.7. Moreover, to

predict future steps, autocorrelation [59] is expected, i.e. future values of x dependent

on past endogenous data (previous values of x) and can include exogenous data, e.g .

external actions. In general, the goal is to model the prediction of future steps as:
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Figure 2.7: Illustration of time series modeling and forecast from training or historical
data

zt = µ+ et +Ψ1at−1 +Ψat−2 + ... (2.18)

where, µ is the mean of the process, zt prediction interest, e are a sequence of

random variables that represent the white noise process and Ψ are the parameters of

the model. Equation 2.18 is called the linear filter model and represents the general

form of linear time series modeling. Special cases that also include exogenous input,

• Autoregressive (ARX) models

z̄t = et +

p
∑

i=1

τiz̄t−i +
b
∑

i=1

ϕiut−i (2.19)

where z̄t = zt − µ, τ and ϕ are the parameters of the model corresponding to

the autoregressive and exogenous output component, p and b represents the

order of the model for both components and u is the exogenous input (e.g .

steam injection rate)
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• Moving average (MAX) models

z̄t = et +

q
∑

i=1

dψiet−i +
b
∑

i=1

ϕiut−i (2.20)

where qd represents the order of the moving average component of the model

• Mixed autoregressive-moving average (ARMAX) models

z̄t = et +

p
∑

i=1

τiz̄t−i +

q
∑

i=1

dψiet−i +
b
∑

i=1

ϕiut−i (2.21)

Common implementations of time-series analysis in oil and gas include forecasts

of oil production in reservoirs [3], global analysis of future production levels in the

oil industry [5], forecast of natural gas price [65], oil and gas supply chain [87].

System Identification

In the setting of process control, surrogate models are used to identify input/output

relations of dynamical systems. Afterward, the surrogate is typically used for control

purposes. In this case, the common time-invariant system framework is used [56],

i.e.

zt = Gd(q, τ)ut +Hd(q, θ)at (2.22)

where z, u and e are the output, input and disturbances, respectively, Gd represents

the process model, Hd relates the output to disturbances, and β are the model

parameters.

Equation 2.22 represents the general structure of the same models described in

the previous section by Equations 2.19, 2.20 and 2.21 among others, i.e.
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• Autoregressive (ARX) models

Gd(q, β) =
B(q)

Ad(q)
, Hd(q, β) =

1

A(q)
(2.23)

by setting,

βp = [τ1, τ2, ..., τp ϕ1, ϕ2, ...ϕb] (2.24)

and using the operators,

Ad(q) = 1 + τ1q
−1 + ...+ τpq

−p (2.25)

and

B(q) = 1 + ϕ1q
−1 + ...+ ϕbq

−b (2.26)

By putting Equations 2.22, 2.28, 2.24, 2.25 and 2.26, we get exactly, Equation

2.19.

• Moving average (MAX) models

Gd(q, β) =
B(q)

1
, Hd(q, β) =

C(q)

1
(2.27)

• Mixed autoregressive-moving average (ARMAX) models

Gd(q, β) =
B(q)

Ad(q)
, Hd(q, β) =

C(q)

Ad(q)
(2.28)

System identification techniques haven been successfully applied to oil recovery

processes such as, SAGD [107], [112], waterflooding [46], [70], [115] and gas produc-

tion processes [42].
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Dynamic surrogate models

Alternatively, there have been some attempts to identify dynamic surrogate models,

which can provide fast approximations of time series outputs of interest as a result of

a time series input. For long-term prediction of time-series one of the most common

option [7], [43], [95] is to make recursive predictions using a one-step forecast model

of the process. This implies, using predicted values at time t, as inputs to predict

for time t + 1. This procedure, although intuitively, exhibits an error propagation

problem, in which, the prediction error at time t is propagated to the subsequent

prediction steps. In other words, the error is expected to grow as the number of fore-

cast steps increases. For oil recovery optimization, [32] implemented this approach

to find the optimal bottom hole pressure of producing wells at each time step that

maximizes net present value after 3600 days.

In the context of time series prediction two (2) strategies have been proposed

to mitigate the cited error propagation problem. The first one, known as using

Data as Demostrator – DaD [108] attempts to use residual data based on the errors

exhibited by the one-step forecast model (base model) and then retraining model.

Another option is to perturb the initial data set at each step of the forecasting

process to handle more properly the approximated values in the prediction process

– RECNOISY [101].

In this work, the conventional SMO framework is extended, and a Dynamic Sur-

rogate Modeling and Optimization (DSMO) approach is proposed. In particular,

Chapter 5 evaluates the recursive approach cited above and discusses its shortcom-

ings and Chapter 6 formally presents the DSMO approach; in particular, it presents

a solution to the time propagation problem.
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Chapter 3

Action-value function RL for
SAGD optimization1

3.1 Introduction

In this chapter, a tabula rasa approach is used to solve Equation 2.1, i.e. find the

optimal steam injection policy for a SAGD process considering a one well pair con-

figuration. This approach consists of using only interactions with the environment or

experience, without any supervision or use of human data. Additionally a secondary

objective is not only to find an optimal policy but also, to gain insight in the some of

the processes cited above. The on-line on-policy SARSA algorithm is used to iden-

tify the an approximation of the state-action value function. The environment is a

history-matched reservoir numerical simulation model built using data from a SAGD

reservoir located in northern Alberta, Canada, the reward function is cumulative net

present value considering a discrete action space and continuous state space.

The key findings of this work include:

• An optimal policy should aim to expand the steam chamber until it reaches the

overburden and keep a high reservoir temperature throughout the production

1A version of this chapter has been published in 2021 in the Journal of Petroleum Science and

Engineering, 206, 108735
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horizon

• Pressure plays a key role until the steam chamber reaches the overburden,

afterwards temperature is the driving mechanism of oil production

• Optimal policies seem to exhibit a general shape, characterized by three re-

gions: (1) reach a constant rate, (2) sharp increase and immediately an abrupt

decrease until it reaches a minimum value, (3) constant minimum value.

3.2 SARSA with function approximation

In this work a value-based strategy is used, where during the interaction process

between the agent and the environment, an action-value function is identified. This

function offers the expected return starting from state s, taking action a and then

following policy π,

qπ(s, a) = Eπ[Gt |St = s, At = a] (3.1)

Using the Bellman Expectation Equation this function can be composed into an

immediate reward plus the discounted value of the successor state, i.e.

qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1) |St = s, At = a] (3.2)

Equations (3.1) and (3.2) represent the general framework of RL where a stochas-

tic MDP is modeled; however in this work we are assuming a deterministic process.

The general idea is to find Qπ(S,A) which represents an approximation of qπ(s, a)

only by continuous interactions with the environment2.

This raises two (2) issues:

2Notation-wise, an upper-case letter representing a state or action indicates a specific state (or
action) while a lower-case letter corresponds to a generic state (or action)
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• The term qπ(St+1, At+1) found in Equation (3.1) represents the current esti-

mate of the state-action value function. This concept is known as Temporal

Difference (TD) learning.

• We must use some update rule for qπ(s, a). Every time the agent encounter

state s and takes action a, the value of qπ(s, a) must move towards the true

value.

A popular used update rule is SARSA, i.e.,

Q(St, At) = Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (3.3)

where α represents the learning rate. If t is the terminal state T then Q(St+1, At+1)

is zero. Equation 3.3 can be seen as an update to an estimated state-value function

that shifts its value at a state-pair (St, At) towards an update target for that state.

In this case, the term Rt+1 + γQ(St+1, At+1) represents the update target and the

complete term Rt+1 + γQ(St+1, At+1)−Q(St, At) is also known as the TD error.

SARSA is considered an on-policy method in which Q(S,A) is learned using

data generated following the current policy π. More specifically, notice in Equation

3.3 the update is done using Q(St+1, At+1) where, At+1 is chosen according to the

current policy π. Off-policy methods, such as Q-learning, Q(S,A) is learned using

data generated following different policies, a random policy for example. Addition-

ally, these algorithms rely only on interactions with the environment for the update

of the action-value function, i.e., no domain knowledge is needed. However, it is

important to have a domain knowledge for realistic parameter selection and result

interpretation.
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3.2.1 ϵ-greedy policy

Policy π is pre-defined and as the interaction process continues, it is improved. In

order to get a the real state-action value function qπ(s, a), the agent must have

the capacity to act as best as it knows (current approximation of qπ(s, a) and also

allow for exploration of new state-action pairs. This is known as the exploration-

exploitation trade off and the most commonly used strategy is for the agent to follow

a ϵ-greedy policy.

At every time step, a new action is chosen by following a policy improvement

mechanism, such as ϵ-greedy policy. In this policy, the agent will choose the optimal

action (one that will offer the most return), also known as greedy action with a

probability of 1 – ϵg, and a random action with a probability of ϵg. Mathematically

this can be expressed as,

π(a|s) =







ϵg
m
+ 1− ϵg argmax

a

qπ(s, a)

ϵg
m

for the rest of the possible actions

3.2.2 Function approximation

In cases where the number of state-action pairs is too big, the tabular setting (detailed

above) is not feasible, not just because of the memory needed for large table, but

the time and data needed to fill them accurately may be prohibitive. In these cases

almost every state-action pair visited will never have been seen before and most likely

will never be seen again in the future. Thus it is necessary to generalize between

states by parametrizing the value-function, i.e.,

q̂π(s, a,w) = qπ(s, a) (3.4)

Applying the concept of update target mentioned before, we can refer to this
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update as s, a 7→ u, where s, a is the state-action pair and u is the target that s, a’s

estimate value is shifted toward. In the case of SARSA (using TD), this will be:

St, At 7→ Rt+1 + γQπ(St+1, At+1) (3.5)

This input-output behavior can be modeled using machine learning methods

called supervised learning. In particular when the outputs are numbers this pro-

cess is referred to as function approximation. Although we could in theory use any

supervised learning strategy (e.g., neural networks, support vector machines), not all

of them are suited for use in reinforcement learning. The reasons are that in RL:

• data is temporally correlated

• is usually done in an online setting where the full dataset is not available from

the beginning

• when using TD, the target label change, for example, in Equation 3.5 because

the term γQπ(St+1, At+1) represents the current estimation, it will change over

time

To overcome these issues, methods based on stochastic gradient descend (SGD)

are used together with strategies such as, neural networks, coarse coding and poly-

nomials. In SGD, the weights are adjusted after each sample by a small amount in

the direction that would reduce the error on that sample. For more detail the reader

is recommended Chapter 9 in [99]. The final SARSA algorithm using function ap-

proximation is described below.

3.3 Case study

The elements of the reinforcement learning framework are summarized in Table 3.1

and detailed in this section.
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Algorithm 2: SARSA with function approximation

Initialize q̂π(s, a,w)
for each episode do

Initialize environment
Choose a from s using policy π derived from q̂π
for each time step do

Take action a and observe r and s′

Choose a′ from s′ using policy π derived from q̂π
Calculate r + γq̂π(s

′, a′,w)
Update w using step above as output and (s, a) as input
s = s′, a = a′

end

end

RL Element Description

Environment One well pair numerical reservoir simulation model

State St = [Npt ,Wit ,Wpt]

Actions
w.r.t. to steam injection rate in previous time step

1)increase/2)decrease by a constant value and 3) no change

Reward function Net present value

Transition between states System of partial differential equations (mass and energy balance)

Policy ϵg−greedy

Function approximation strategy Stochastic gradient regression

Implementation Python 3.6 and STARS-CMG 2018

Table 3.1: Summarized description of RL elements
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3.3.1 Environment

The environment is represented by a numerical reservoir simulation model (Fig-

ure 3.1) built using data from a SAGD reservoir located in northern Alberta, Canada.

The model was history-matched with 1355 days of steam injection/oil production

data which consists of three periods, steam circulated from tubing to annulus in

both injector and producer (165 days), injector and producer are shut (364 days) and

normal SAGD operations (826 days). After this the RL agent begins its interaction

with the environment for a production horizon of 250 days. For longer production

horizon, e.g., 5 years, the algorithm can also be applied to, with very little changes,

however, due to the computational expense, we have shown the proof of concept for

250 days. Longer production horizons and multi-pad reservoir scale optimization can

be considered as a next level of study. Note that the general reservoir simulation

framework fits very well with the MDP form described in the preceding section. In

the context of reservoir simulation we can say for example that the pressure and

saturation distribution of time t along with well constraints, is sufficient to describe

the pressure and saturation distribution for time t+ 1.

General reservoir and grid data, production parameters and other properties are

specified in Tables 3.2, 3.3, 3.4 and Figures 3.3 and 3.2. Specifically, the grid is com-

posed of 25×50×16 blocks in the x, y and z directions, respectively. Although the

considered course grid will have an impact in production performance, the optimiza-

tion procedure used in this work would not be affected. The reservoir has an initial

pressure of 650 kPa, an initial oil and water saturation of 0.8 and 0.2, respectively,

and an initial temperature of 16°C. In this work, only a unique set of porosity, per-

meability and relative permeability are considered, although it is possible to include

uncertainty as a part of the RL framework, that issue is left for consideration of

future work.

It is worth mentioning that even though, real production data for this reservoir,
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(a)

(b) (c)

Figure 3.1: Porosity field in a)3D view , b) IJ view, plane 9-top and 13-bottom, c)
IK view, plane 26 (case study)

only static data was used in this work due to the on-policy nature of SARSA. More

specifically, as was described in Section 3.2, SARSA updates it state-action value

function Q(S,A) using data generated following the current policy π, thus, using the

available production data would not be possible since this data was generated using

a different policy.

3.3.2 State

The state of the reservoir model must comply with the MDP assumption, i.e., it

must carry enough information to capture the history of the process or the previously

applied injection rates. In this work the state S is defined as:

St = [Npt ,Wit ,Wpt] (3.6)
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Table 3.2: Reservoir simulation model parameters (case study)

Reservoir data

Reservoir compressibility [kPa−1] 7.00× 10−6

Rock heat capacity [J/m3°C] 2 390 000
Rock thermal conductivity [J/mday°C] 6.6× 105

Reservoir initial temperature [◦C] 16
Reservoir initial pressure [kPa] 650

Initial water saturation 0.2
Initial oil saturation 0.8
Average porosity 0.38

Average horizontal permeability [mD] 3753
Average vertical permeability [mD] 2814

Production parameters Production pressure [kPa] 2667.3
Oil properties °API 7.62

Production horizon/episode length [d] 250

Table 3.3: Reservoir and grid data (case study)

x y z

Number of gridblocks 25 50 16
Gridblocks size [m] 25 2 1.5

Reservoir size 625 100 24

Table 3.4: Component definition (case study)

H2O (aqueous) Bitumen (oleic)

Molecular weight [kg/gmol] 18.02 534
Critical pressure [kPa] 21997 638.40

Critical temperature [◦C] 373.90 780.14
Mass density [kg/m3] 997 947.25

Liquid compressibility [kPa−1] 0 1.79× 10−6

Thermal expansion coefficient (1st coeff) [◦C−1] 0 4.51× 10−4
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Figure 3.2: Behaviour of viscosity with temperature (case study)

Figure 3.3: Relative permeability curves (case study)
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where, Npt, Wit and Wpt represent cumulative oil production, steam injection and

water production, respectively, all at time step t.

This definition relies on the using cumulative values that can implicitly capture

the dynamic change in the reservoir without explicitly using time as a variable;

furthermore it’s validity is proven by the positive results obtained as shown in Section

3.4. However, because we are using a numerical reservoir simulator we have access

to different variables, so other valid variables may include, pressure and saturation

profiles, steam injection rates at the previous time step, production rates, etc.

3.3.3 Actions

The well has three (3) possible actions : increase/decrease steam injection rate of the

previous time step by adding a constant value (∆) and no change. This action space

is designed to prevent the steam injection rates from on time step to another from

changing dramatically, thus complying with typical SAGD operations constraints.

In this work, two separate values of ∆ are studied, i.e., ∆ = 10 (Case 1) and ∆ = 5

(Case 2).

3.3.4 Reward function

The reward function corresponds to the classical net present value function for a

given time step t, i.e.,

Rt = NPVt =
Poqo − Csteamqs − Cwaterqw

1 + i
t−tref

365

(3.7)

where, Po is the oil price [USD/STB], qo the oil production rate [STB/day], Csteam the

cost of steam generation [USD/STB], qs the steam injection rate [STB/day], Cwater

the cost of produced water handling [USD/STB], qw the water production rate, i is
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the annual discount factor [fraction], t is the current time and tref is the reference

time to which NPV is discounted. The value of these economical parameters are

shown in Table 3.5. The NPV expression (Equation 3.7) corresponds to the reward

(Rt) that results of taking a specific action at a specific time step. In the long run,

we are interested in maximizing the sum of all NPV values calculated at each time

step as stated in Equation 2.1 as J and in Equation 2.16 as Gt.

Table 3.5: Economical parameters (case study)

Parameter Value

Po [USD/STB] 50
Csteam [USD/STB] 10
Cwater [USD/STB] 5

i [fraction] 0.1
tref [day] 0

3.3.5 Transition between states

The transition between states represents the dynamic of the world, i.e., for a given

state and action, the environment should offer a new state (St+1) and a reward

(Rt+1). In SAGD, the dynamic of world corresponds to the flow in porous media

phenomena described by a system of partial differential equations (PDEs). The

reader is reminded that the goal of RL is not to approximate this function, it is

rather considered a black box with which the agents only interacts by taking actions

at every time step, transitioning to a new state and receiving a reward.

In particular the set of PDE’s are a result of applying mass and energy balance of

each of the nc hydrocarbon components and water in each grid block [82]. This results

in a system of ngb(2nc + 4) equations with the same number of unknowns where ngb

represent the number of grid blocks. These variables correspond to the state variables

present in Equation 2.1 and are solved for each time step t in the well-knwon reservoir

simulation software CMG-STARS 2018 [19] using the Adaptive-Implicit Method. In
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this work no chemical reactions were used.

Additionally, two (2) boundary conditions are used, pressure is specified at the

producer well as bottom hole flowing pressure (Dirichlet condition) and no-flux zones

and steam injection rates in the injector well (Neumann condition). Regarding initial

conditions, the initial saturation field is determined from the depth of the water-

oil and gas-oil contacts; the initial pressure field is estimated from pressure at a

reference depth (datum), then the pressure in the rest of the grid is calculated using

the condition of hydro-static equilibrium.

3.3.6 Policy

An ϵ-greedy policy that decays with time given by,

ϵg = ϵg · ϵ
episode number
decay (3.8)

where ϵdecay is a decay function parameter set to 0.8.

3.3.7 Function approximation strategy

The function approximation strategy was a stochastic gradient regression in which a

linear model of the form f(x) = wT · x is fitted by minimizing a regularized training

error function. This function consists of a loss function that measures model fit and a

regularization term that penalizes model complexity. Mathematically, this function

in SGR is represented as,

E(w) =
1

n

n
∑

i=1

L(yi(w), ŷi(w)) + βReg(w) (3.9)

where L is a loss function, yi and ŷi are given by, Rt+1 + γq̂(St+1, At+1,wt) and
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q̂(St, At,wt), respectively. Reg is a regularization term and β > 0 is a non-negative

parameter. In this work β = 0.015. Additionally, the state vector (Equation 3.6)

was featurized using six (6) radial basis kernels of the following form,

f(St) = exp

(

−
∥St − c∥

2

2σ2

)

(3.10)

where c is the center state and σ the width of the function and is also expressed as,

γ = 1
2σ2 . The gamma value for each radial basis kernel is 0.25, 0.5, 1.0, 2.0, 5.0, and

10.0.

SGR represents a very convenient function approximation strategy for two main

reasons, i) although considered a linear model, because it is a linear combination

between the weights w and the input, it is possible to represent non-linear processes,

such as SAGD, ii) it offers the possibility to update the weights incrementally as new

data is generated (see Section 3.2.2).

3.3.8 Implementation details

The RL algorithm and its elements were implemented in Python 3.6, this includes,

the SARSA algorithm, the connection between the environment and SARSA, and

the function approximation strategy - SGR 3.3.7). In particular, scikit-learn libraries

were used for the SGR model [76] and the environment, represented by a numerical

reservoir simulation model was modeled using CMG-STARS 2018 [19].

3.3.9 Verification

To verify the results obtained by the REINFORCE algorithm, a static optimization

study is carried out using the well-known reservoir optimization software CMG-

CMOST [18]. Here, the steam injection rate at every time step for each well is
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assumed as an independent variable, for a total of 500 variables each with a range of

20− 500m3/d. In particular, the Particle Swarm Optimization algorithm is used.

Inspired by swarm intelligence, Particle Swarm Optimization (PSO) mimics the

behavior of groups of species such as bird flocking, in attempts to find shelter or

food. In the search, each individual will attempt to balance their own knowledge

(exploitation) and of the flock (exploration).

The method consists of P individuals or particles exploring the search space.

Each individual knows their own position and velocity and will adjust to a new

position based on, the best position visited by itself and the best position visited

by any other member of the flock. This update consists of the addition of three (3)

components:

• The previous velocity multiplied by an inertia weight that represents a trade-off

between exploration and exploitation

• A cognitive learning factor that denotes how much of the individual’s own

success will impact the new velocity

• A social learning factor that embodies the attraction toward the flock’s success

3.4 Optimization results

In this section, we will examine the results of the optimization or learning process.

In particular, we are interested in the learning curve exhibited by the agent, and the

optimal steam injection rate policy obtained for both cases.

Figure 3.4 shows the learning curve for both cases, where the dark lines represent

the moving average of 10 episodes and the light lines the cumulative net present

value for each episode after 250 days. Large variations in the NPV of initial episodes

can be observed which is due to poor approximations of action-value function by
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Figure 3.4: Learning curve for Case 1,2 and PSO (CMOST). Each (light-colored)
circle represents the cumulative net present value (return Gt) after a production

horizon of 250 days for each episode. The dark lines represent a 10-episode moving
average.
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SGR models and to the fact that the amount of exploration is high (ϵg is relatively

high, which is a inversely proportional to the number of episodes). As the number

of episodes increases, both of these factors are less of an issue, i.e., the SGR models

give better estimates and ϵg is reduced. In both cases we can also note that after an

important improvement of NPV, the agent starts oscillating around a specific value.

This phenomenon is know as chattering and has been previously reported to happen

using SARSA [33], [34]. Due to the randomness of key parameters (e.g., mainly ϵg

and to a lesser extent - Equation 3.8, c center state in the radial basis kernels -

Equation 3.10) it is possible to obtain different results in a different run, however,

here we can see a significant improvement of the cumulative net present value and

an arguably stable policy.

On one hand, Case 1 (∆ = 10m3/d) reached convergence after almost 40 episodes

at an NPV of approximately $ 2.7 × 106. On the other hand for Case 2 (∆ = 5m3/d),

even though it required 140 episodes to reach convergence, NPV was around $3.1

× 106. After this, in both cases, the agent oscillates around these values for the

rest of the 200 episodes. This difference represents an increment of almost 15% of

NPV for Case 2 when compared to Case 1, requiring roughly 3.5 times the number

of episodes. We can also report that for Case 2, the improvement is much slower but

less oscillating due to a smaller value of ∆, at the cost of needing a larger number of

episodes to reach convergence. These two cases are compared to a constant injection

base case of a rate of 195m3/d that exhibited an NPV of $2.54 × 106. Thus, Cases 1

and 2, represent an improvement over the base case of 6.3% and 22%, respectively.

Furthermore, Figure 3.7 shows the action taken by the agent at each time step during

the optimal steam injection policy for Case 1 and Case 2.

These results can also be compared to the results offered by the PSO algorithm

implemented in CMOST shown in Figure 3.4. Note how the cumulative NPV ob-

tained here was around $1.78 × 106; which represents a reduction of 35% and 42.5%
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of the results obtained in Case 1 and Case 2, respectively.

The difference between Case 1 and 2, and CMOST optimal in NPV can be ex-

plained in cumulative steam injection, and oil and water production (Figure 3.5).

Regarding Case 1 and 2, we can see that despite Case 2 having exhibited a higher

cumulative water production, it also produced more oil and injected less steam than

Case 1. In particular, Case 2 produced 2.405×104m3 vs 2.055×104m3 produced by

Case 1, a 17% increase. Regarding cumulative steam injection, Case 2 injected a

total of 2.87×104m3 and Case 1, 3.165×104m3, 10% less as compared to Case 1.

In terms of cumulative water production, Case 2 produced 3% more than Case 1,

5.08×104m3 vs 5.254×104m3. With respect to the CMOST optimal case, Case 1 and

2, show a similar amount of cumulative produced water, however, the CMOST case

exhibits a much higher amount of cumulative steam injection. Furthermore, a lower

cumulative produce oil of 1.98×104m3, which represents a reduction of around 18

percent as compared to Case 2.

Figure 3.6 shows the optimal steam injection curves for both cases (episode num-

ber 185 for Case 1 and 2) and the CMOST verification case. Regarding Case 1 and

2, despite the significant differences in the number of episodes necessary to achieve

convergence and net present value, the injection policy in both cases shows similar-

ities. We can distinguish three specific regions: [i] reach a constant rate, [ii] sharp

increase and immediately an abrupt decrease until it reaches a minimum value, [iii]

constant minimum value. However, we can also note differences in each region, so

for example, in region [i], Case 1 maintains a constant value of 250 m3/d (initial

rate) while Case 2, decreases to 160 m3/d and then maintains it constant. In region

[ii], Case 1 begins its sharp increase at day 58 and increases to a value of 350 m3/d,

in Case 2, the increase occurs later, at day 80, and then increases to a rate of 225

m3/d. Another difference is the time in which the profiles reached the minimum

value, for Case 1, this was at day 107, and for Case 2, this was later on, at day 139.
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Figure 3.5: Cumulative steam injection and, oil and water production for Case 1
(top) and Case 2 (middle) and CMOST optimal (bottom)
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Figure 3.6: Optimal steam injection policy for Case 1 and 2 and CMOST
verification case
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Figure 3.7: Actions taken at each time step by the optimal steam injection policy
for Case 1 and Case 2
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With respect to the CMOST verification case, we can see very different behavior

with respect to Case 1 and 2. There is no clear trend in terms of time, and the steam

injection rates vary significantly and drastically throughout the production period.

The training time for Case 1 and 2, was 72.83 and 72.05 hours, respectively, under

an Intel Core i7-6700 CPU @ 3.40GHz with 16.0 GB RAM and a 64-bit operating

system.

3.5 Physical interpretation of the optimal policy

So far, we have established two things using the cited case study, i.e, an (local)

optimum policy was found using RL for different values of ∆ - Case 1 and 2 - and,

these optimal polices are similar in its general shape, but different in the parameters

of this shape. These parameters are, the constant initial steam rate value, the time in

which the sharp increase starts, the value of the rate at which it increases to and the

time in which it reaches the minimum value. But, how can we justify these optimal

polices from a physical point of view? Why are these policies successful? and more

importantly, what can we learn from these policies? In this section, we will answer

the first two question and the third is discussed in the following section.

The main aspect that explains the success of the RL-obtained policies is that it

is able to achieve and maintain a high temperature even when the steam injection

rate is minimum. So for example we can see in Figure 3.8 how the average reservoir

temperature increased throughout the production horizon until it reached a stable

value of around 32°C (for Case 1) and 34°C (for Case 2). In Figures 3.9 and 3.10

we can also see how the steam chamber grew vertically for roughly the first half of

the production horizon in both cases until it reached the overburden. Afterward,

there was little change in the temperature within the steam chamber. The time

at which the steam chamber reaches the overburden seems to be correlated with

the time in which the average reservoir pressure reaches its maximum value. In
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Figure 3.8: Average reservoir temperature and pressure for optimal steam injection
policy in Case 1 (top) and Case 2 (middle) and CMOST optimal (bottom)
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Figure 3.8 the average reservoir pressure (in blue) increases steadily during the first

107 (for Case 1) and 139 (for Case 2) days and then reduced until the end of the

horizon. Interestingly enough, these days also match the time in which the steam

injection rate starts to reduce. Case 2 offers a very slight but interesting difference

with respect to Case 1 in terms of temperature. From Figure 3.8 we can see that

initially, the temperature exhibited by Case 1 was higher than for Case 2, however,

afterward, the trend was inverted despite Case 2 having a lower steam injection

rate. We can also note this in Figures 3.9 and 3.10 - middle right figures, notice the

higher temperature for Case 2. Unlike the behavior exhibited by the RL-obtained

policies, the CMOST-obtained policy shows a pressure-increasing tendency towards

the end of the production horizon. Similarly, the average reservoir temperature is

also increasing, reaching a value of 37 degrees C after 250 days, as opposed to Case

1 and 2, where as noted earlier there was a decrease in temperature until reaching a

final value of between 20 and 22 degrees C.

Additionally Figure 3.11 shows the steam injection pressure for optimal policy

obtained in Case 1 (left) and Case 2 (right). Note how Case 1 exhibits a higher steam

injection pressure due to the higher steam injection rates during the first 100 days,

as compared to Case 2. However, we can also note, that after these 100 days, the

rate of decrease of steam injection pressure is also greater for Case 1 (with respect

to Case 2), due to the more sudden drop of steam injection rates, from 350 m3/d to

40 m3/d.

These results suggest that this is caused by the differences in region 2 (sharp

increase and immediately an abrupt decrease until it reaches a minimum value) in

the policies. More specifically, Case 2, exhibited a later sharp increase than Case 1

and also the value of the rate at which it increases was much less. This apparent

minor difference explains the higher average reservoir temperature showed by Case

2 and ultimately its better performance over Case 1.
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Figure 3.9: 2D Temperature profile in the middle IK plane at time 0 (top-left), 50
(top-right), 100 (middle-left), 150 (middle-right), 200 (bottom-left) and 250

(bottom-right) days for Case 1
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Figure 3.10: 2D Temperature profile in the middle IK plane at time 0 (top-left), 50
(top-right), 100 (middle-left), 150 (middle-right), 200 (bottom-left) and 250

(bottom-right) days for Case 2
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Figure 3.11: Steam injection pressure for optimal steam injection policy in Case 1
(left) and Case 2 (right)

3.6 Summary

This chapter presents the first application of reinforcement learning (RL) approach

for the optimization of steam injection rates in a SAGD process. In particular, the

objective is to find the steam injection rates at every time step that will maximize

overall net present value at the end of the production horizon, also known as the

optimal policy.

For the cited case study, we can draw important lessons for SAGD operations,

i.e,

• An optimal policy should aim to expand the steam chamber until it reaches the

overburden and keep a high reservoir temperature throughout the production

horizon

• Pressure plays a key role until the steam chamber reaches the overburden,

afterwards temperature is the driving mechanism of oil production
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• Optimal policies seem to exhibit the same general shape, characterized by

three regions: (1) reach a constant rate, (2) sharp increase and immediately

an abrupt decrease until it reaches a minimum value, (3) constant minimum

value. However, the parameters of this shape may change. We have defined

these parameters as: the constant initial steam rate value, the time in which

the sharp increase starts, the value of the rate at which it increases to and the

time in which it reaches the minimum value.

• An initial constant steam injection rate (region 1) is required to increase the

average reservoir pressure and allow the steam chamber reach the overburden

• The sharp increase and abrupt decrease in steam injection rate (region 2) ap-

pears to have the effect of increasing average reservoir temperature

• In region 3, a minimum steam injection rate is required to maintain the average

reservoir temperature
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Chapter 4

Policy gradient RL for SAGD
optimization

4.1 Introduction

In this chapter, we present the results of implementation of a policy gradient ap-

proach to solve Equation 2.1 and find the optimal steam injection strategy of a

multi-well SAGD process (environment). The environment is a reservoir simulation

model inspired by a reservoir located in northern Alberta, Canada, the action space

is discrete and the policy π is parametrized with a deep neural network using the

TensorFlow libraries implemented in Python. Additionally, a physics-based interpre-

tation of the optimal policy is presented to contribute to the discussion of identifying

key characteristics of optimal policies for SAGD.

Key findings of this work include:

• Optimal steam injection policy 1) an increase or slight increase of steam injec-

tion rates, and 2) a sharp decrease until reaching the minimum value

• RL poses as an effective alternative considering that, the mathematical model

of the reservoir dynamics is not required, maximization is performed over the

entire production horizon
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4.2 Reinforcement learning and policy gradient

In policy gradient methods a parametrized policy is learned - π(s|a,θ) and the actions

are selected by evaluating π without necessarily using a value function. Here, we are

interested in maximizing some scalar performance measure J(θ) with respect to the

policy parameter θ. Consequently, we want to update the parameters θ following a

stochastic gradient ascent approach, i.e.

θt+1 = θt + α∇J(θt)
∧

(4.1)

where ∇J(θt)
∧

represents a sample of the gradient of the performance measure with

respect to its argument θt. This is only valid provided π(s|a,θ) is differentiable with

respect to its parameters. There are two main algorithms to solve this problem:

REINFORCE and actor-critic methods. In particular, there are two variants of

REINFORCE typically used: Monte Carlo and using a baseline. The Monte Carlo

variant is described below.

Monte Carlo Policy Gradient

Using the policy gradient theorem [100], we can say:

∇J(θ) = Eπ

[

Gt

∇π(At|St,θ)

π(At|St, θ)

]

(4.2)

where At and St represent the action and state at time t, respectively, Gt is the dis-

counted return, expressed in Equation 2.16. Keeping the literature convention in RL

[99] capital letters represent random variables (e.g . At) whereas their instantiations

(e.g . at) are denoted in lower case.

Using the sample given by Equation 4.2 we can re-write Equation 4.1 as,
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θt+1 = θt + α

[

Gt

∇π(At|St,θ)

π(At|St, θ)

]

(4.3)

This update gives rise to the REINFORCE algorithm [99]. The term inside the

bracket represents the update which is given by, the product of the return Gt by

the gradient of the probability of taking action At divided by the probability of

taking that action. This update will favor actions that yield the highest return

and encourage taking action that haven’t been selected frequently. Also note that

REINFORCE represents a Monte Carlo algorithm since it uses the complete return

Gt from time t until the end of the episode. The pseudocode corresponding to the

REINFORCE algorithm is given below.

Algorithm 3: REINFORCE: Monte-Carlo Policy-Gradient algorithm

Input: a differentiable policy parametrization π(a|s,θ)
Algorithm parameter: step size α > 0
Initialize policy parameters θ
for each episode do

Generate an episode S0, A0, R1, ..., ST−1, AT−1, RT following π(·| · θ)
for each time step do

G←−
∑T

k=t+1 γ
k−t−1Rk

θ ←− θ + αγtG∇ ln π(At|St,θ)
end

end

Notice the last line represents a compact version of Equation 4.3 as, ∇ ln x =

∇x/x.

Action selection

A typical parameterization in cases where the action space is discrete and not large

is to define a parameterized numerical preference for each state-action pair h(s, a,θ).

This parameterization is arbitrary, and for linear models this would be:
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h(s, a,θ) = θ
Tx(s, a) (4.4)

where θ are the policy parameters and x(s, a) is the state and action information.

For action selection, it is intuitive to have a mechanism that offers high probabilities

to the actions with the highest numerical preference. One such mechanism is to

select actions according to an exponential soft-max distribution,

π(a|s,θ) =
exph(s, a,θ)
∑

b exph(s, a,θ)
(4.5)

where the denominator represents the sum of probabilities for each action.

Advantages

There are three relevant advantages of policy gradient methods over action-value for

SAGD optimization, i.e.,

• Policy may be a simple function to approximate than action-value

• The choice of parametrization is a good way to include prior knowledge of the

learning system

• The approximate policy can approach a deterministic policy according to a

soft-max in action preferences

4.3 Case study

In this section, all of the elements of the RL framework (e.g . environment, actions,

state) are specified in the context of SAGD optimization.
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Figure 4.1: 3D grid and porosity field (case study)

4.3.1 Environment

The environment is represented by a three (3) well pairs numerical reservoir simula-

tion model (Figure 4.1) inspired by a reservoir located in northern Alberta, Canada.

General reservoir parameters (Table 4.1), grid data (Table 4.2), oil viscosity changes

with temperature (Figure 4.2), fluid model (4.3) and relative permeability curves

(Figure 4.3) are shown below. Specifically, the grid is composed of 26×93×16 blocks

in the x, y and z directions, respectively. The reservoir has an initial pressure of

1075 kPa, an initial oil and water saturation of 0.77 and 0.23, respectively. Addi-

tionally, production horizon considered in this case study is 250 days; however, the

optimization can be continued for the entire life cycle of the reservoir.

4.3.2 Actions

Two (2) well pairs are considered in this work and each injector well has three (3)

possible actions: increase or decrease the steam injection rate from the previous time

step by adding/subtracting a preestablished value (∆) and no change. However, we

assume that there is hydraulic communication between the well pairs, so the agent

has a total of nine (9) possible actions, corresponding to the combination of each
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Table 4.1: General reservoir simulation model parameters (case study)

Reservoir data

Reservoir compressibility [kPa−1] 7.00× 10−6

Rock heat capacity [J/m3°C] 2 390 000
Rock thermal conductivity [J/mday°C] 6.6× 105

Reservoir initial temperature [◦C] 16
Reservoir initial pressure [kPa] 1075

Initial water saturation 0.23
Initial oil saturation 0.77
Average porosity 0.36

Average horizontal permeability [mD]
Well 1 4000
Well 2 3000
Well 3 2000

Production parameters Production bottom-hole pressure [kPa] 600

Oil properties

°API 7.62
Thermal expansion [◦C−1] 4.51× 10−4

Density [kg/m3] 947.25
Compressibility [kPa−1] 1.79× 10−8

Production horizon/episode length [d] 250

Table 4.2: Grid data (case study)

Number of gridblocks
x 26
y 93
z 16

Average gridblock thickness 1.30

Pore volume [m3]
Total 1 463 279

Average per gridblock 37.82

70



Table 4.3: Component definition (case study)

H2O (aqueous) Bitumen (oleic)

Molecular weight [kg/gmol] 18.02 534
Critical pressure [kPa] 0 638.40

Critical temperature [◦C] 0 780.14
Mass density1 [-] 0 947.25

Liquid compressibility [kPa−1] 0 1.79× 10−6

Thermal expansion coefficient [◦C−1] 0 4.51× 10−4

Figure 4.2: Change of viscosity with temperature (case study)
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Figure 4.3: Relative permeability curves (case study)

possible action of each well pair. Therefore, for example, one of those nine actions

is to, increase the steam injection rate for well 1 and decrease it for well 2.

4.3.3 State

Defined as:

St = [Npt ,Wit , qw,1t−1 , qw,2t−1 ] (4.6)

where, Npt, Wit and Wpt represent cumulative oil production, steam injection and

water production, respectively, all at time step t, and qw1 and qw2 are the steam

injection rates of well 1 and 2.

4.3.4 Reward function

The reward function represent the economic benefits obtained by at time t as a result

of taking a specific action at time t− 1. This is defined as the net present value:
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Rt = NPVt =
Po

∑n

j=1 qo,j − Csteam

∑n

j=1 qs,j − Cwater

∑n

j=1 qw,j

1 + i
t−tref

365

(4.7)

where, Po is the oil price [USD/STB], qo,j the cumulative oil production obtained in

time step t for well pair j [STB], Csteam the cost of steam generation [USD/STB],

qs,j the the cumulative steam injection applied in time step t for well pair j [STB],

Cwater the cost of produced water handling [USD/STB], qw,j the water production

observed in time step t for well pair j, i is the annual discount factor [fraction], t

is the current time and tref is the reference time to which NPV is discounted. The

value of these economical parameters are shown in Table 4.4. The general objective

of this work is to maximize the sum of all NPV values calculated at each time step

as stated in Equation 2.1 as F and in Equation 2.16 as Gt.

Table 4.4: Economical parameters (case study)

Parameter Value

Po [USD/STB] 50
Csteam [USD/STB] 10
Cwater [USD/STB] 0

i [fraction] 0.1
tref [day] 0

4.3.5 Policy parametrization

A deep neural network (DNN) was used to parametrizeed the policy, i.e. π(s|a,θ)

where θ represents the weight vector used to make non-linear transformation among

the hidden layers. The DNN consists of three (3) hidden layers with 70 neurons per

layer; a RELU activation function in each of the hidden layers and softmax for the

last layer. Additionally, backpropagation with Adam optimization was used to find
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θ at the end of each episode. The implementation was done in Python using the

Tensorflow framework [60].

4.3.6 Transition between states

The transition between states represents the dynamic of the world, i.e. for a given

state and action, the environment should offer a new state (St+1) and a reward

(Rt+1). In SAGD, the dynamic of the world corresponds to the flow in porous media

phenomena described by a system of partial differential equations (PDEs), i.e., mass

conservation, and energy conservation. In this work, this is modeled using a three-

phase multi-component thermal, CMG-STARS and an Adapative-Implicit (AIM)

solution method. The reader is reminded that the goal of RL is not to approximate

this function, it is rather considered a black box with which the agent only interacts

by taking actions at every time step, transitioning to a new state, and receiving a

reward.

4.3.7 Verification

To verify the results obtained by the REINFORCE algorithm, a static optimization

study is carried out using the well-known reservoir optimization software CMG-

CMOST [18]. Here, the steam injection rate at every time step for each well is

assumed as an independent variable, for a total of 500 variables each with a range of

20− 500m3/d.

The biologically inspired algorithms Particle Swarm Optimization (PSO) is used

for this purpose. Inspired by swarm intelligence, PSO mimics the behavior of groups

of species such as bird flocking, in attempts to find shelter or food. In the search,

each individual will attempt to balance their own knowledge (exploitation) and of

the flock (exploration).

The method consists of P individuals or particles exploring the search space.
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Each individual knows their own position and velocity and will adjust to a new

position based on, the best position visited by itself and the best position visited

by any other member of the flock. This update consists of the addition of three (3)

components:

• The previous velocity multiplied by an inertia weight that represents a trade-off

between exploration and exploitation

• A cognitive learning factor that denotes how much of the individual’s own

success will impact the new velocity

• A social learning factor that embodies the attraction toward the flock’s success

4.4 Results and Discussion

In this section the results are presented and discussed in two parts: i) the optimiza-

tion process and the optimal steam injection policy obtained, and ii) the physical

interpretation of the optimal steam injection policy.

Optimization results

Figure 4.4 shows the learning curve exhibited by the policy gradient algorithm (red)

considering 10 different runs or seeds. Here, the red solid line represents the running

average of the mean of the 10 runs, and the light blue line is one (1) standard devia-

tion. Note the improvement of NPV as the agent gained more experience interacting

with the environment. In particular, the total NPV value per episode increased from

between 3 − 3.5 × 106$ to around 4.5 × 106$, an increase of between 128 to 150

percent. However, We can also note a significant variability throughout the number

of episodes.
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Figure 4.4: Learning curves. The RL-obtained (red) curve considers 10 seeds, the
dark red represents the running average of the mean of the 10 runs, and the light
blue lines is one (1) standard deviation. In the top figure, the blue curve represents

the performance of the PSO algorithm obtained in CMOST using the default
experiments generation configuration. In the bottom figure the PSO algorithm was

initiated using manually set samples offered by RL
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These results can be compared to the learning curve obtained using CMOST (as

described in Section 4.3.7) and PSO in the blue curve in Figure 4.4. We offer two

cases, the first one (Figure 4.4-top), the default experiments generation configuration

for PSO was set and we see that how after 250 episodes, PSO could only achieved

an NPV of around 2.75 × 106$. The second case, shown in Figure 4.4-bottom,

considers manually set initial samples for the PSO algorithm. In particular, the first

five samples given by the policy gradient algorithm were hard-coded in the PSO

initialization framework. Here we see that after 200 episodes, PSO achieved an NPV

value of around 3.75× 106$

From Figure 4.4 we have selected a typical high-performing episode as the optimal

case given by policy gradient, exhibiting an NPV value of ie 4.56 × 106$, which

represents an average value. This optimal steam injection policy is shown in Figure

4.5-top. Notice how, even though the curve for each well is different, the follow a

similar shape. More specifically, in both cases, we can observe two distinct regions:

1) an increase (Well 1) or slight increase (Well 2) of the steam injection rate, and 2)

a sharp decrease until reaching the minimum value of 20m3/d. The main difference

appears in region 1, for Well 1, we can observe a sustainable increase of the steam

injection rate until reaching a maximum value of 240m3/d, while for Well 2, there is

a slight increase to around 75m3/d and remains approximately constant for around

100 days. Despite this difference, in both wells, the steam injection rate suffers a

sharp decrease (Region 2) at the same point (tdrop), i.e., 100 days.

This important difference between the steam injection policy exhibited by well 1

and well 2 can be explained by the heterogeneity of the reservoir. As noted in Table

4.1, the average permeability of the reservoir simulation model for well 1 and 2 are

considerable different, 4000 and 3000 mD, respectively. As a consequence, less steam

injection is needed for the less permeable region of the reservoir.

Regarding the CMOST-obtained (4.5-bottom) optimal policy, using the manually
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set initial samples, we see a radically different behavior. This policy exhibits a very

erratic behavior with high changing rates for both wells between the set bounds for

steam injection rate values.

4.4.1 Physical interpretation of the optimal policy

Due to the clear tendency is shown in the RL-obtained optimal policy (as opposed to

the CMOST-obtained optimal policy) we can further analyze the daily NPV curve

(Figure 4.6) to can gain more insight on the value of tdrop. Initially, the reward

values follow a downhill trend, decreasing from an initial value of 52,534$ to 8.180$

precisely at tdrop =100 days. At this point, the amount of reward collected by the

agent increases sharply to a value of 36.483$, then begins a slow decrease and then at

around 200 days, a sudden decrease until reaching negative values of around -2.800$

for the rest of the episode.

Considering the economic parameters considered (Table 4.4), this behavior is due

to the oil production and steam injection rates shown in Figure 4.7-top. Note how,

for both wells, initially oil production rates are between 45 and 60m3/d; in the case

of Well 1 this carries on until day 150 and for Well 2 it remains until day 230. So

despite the steam injection rate dropping abruptly at tdrop =100 days, oil production

rates are only affected after at least 50 days for Well 1 and 130 days for Well 2. In

fact, in Well 2, we can note even a slight increase in its oil production rate right

after tdrop. Another interesting point is that even though the steam injection rate

values for Well 1 is considerably lower than Well 2, the oil production rates in both

cases, are within the same range. The CMOST-obtained optimal policy (Figure 4.7-

bottom) shows a different picture, here we see rates oscillating from 40 to 80m3/d

with no particular trend.

The average reservoir pressure and temperature data for the RL-obtained optimal

policy (Figure 4.8-top) suggests that the agent’s objective during Region 1, is to sus-

78



Figure 4.5: RL-obtained (top) and CMOST-obtained (bottom) optimal steam
injection policy for both well pairs
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Figure 4.6: Daily Net Present Value of the entire reservoir and steam injection
rates in the RL-obtained optimal case
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Figure 4.7: Oil production and steam injection rates of optimal case
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tain the reservoir pressure. Note how, the increasing steam injection rates observed

in Region 1, the agent manages to make the reservoir pressure reach a saddle point

at around 925 kPa at exactly tdrop. Afterwards, reservoir pressure drops continuously

until the end of the production horizon, but based on Figure 4.8-top, oil production

drops much later. Regarding average reservoir temperature, we can see that it suffers

no significant change throughout the episode; it remains in values of between 61 to

65 ◦C. We see a different picture when analyzing the CMOST-obtained optimal pol-

icy in (Figure 4.8-bottom). Notice how on one hand, the average reservoir pressure

increases significantly for the first 50 days of production reaching values of around

1350 kPa and then decreasing to around 1200 kPa. The average reservoir tempera-

ture on the other hand, increases steadily throughout the production horizon from

an initial value of 64 ◦C to 72 ◦C.

4.5 Summary

In this work, a policy gradient strategy was used to find the optimal steam injection

policy for a two-well SAGD process. In particular, this optimal steam injection

policy maximizes cumulative net present value at the end of the production horizon.

A reservoir simulation model inspired by a northern Alberta reservoir represents the

environment and deep neural networks were used to parametrized the policy. Results

suggest that:

• Optimal steam injection policy for both wells can be divided in two regions: 1)

an increase or slight increase of steam injection rates, and 2) a sharp decrease

until reaching the minimum value

• The objective of Region 1 seems to be to keep average reservoir pressure from

reducing drastically, in fact, the steam injection rates, manage to make the
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Figure 4.8: Average reservoir pressure and temperature under RL-obtained (top)
and CMOST-obtained (bottom) optimal steam injection policy
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pressure reach a saddle point, afterwards, reservoir pressure is reduced contin-

uously until the end of production horizon (Region 2)

• In Region 2, the goal appears to be collect high values of reward due to the

reduction in steam injection rates while oil production rates stay high

This work represents another step in the direction of a general SAGD multi-well

optimization framework that optimal includes steam-allocation, and to contribute to

the discussion of identifying key characteristics of optimal policies for SAGD. In this

context RL poses as an effective alternative considering that:

• The agent does not require the mathematical model of the reservoir dynamics

and thus, the reservoir simulation model is used as a black-box element used

to train the agent

• Maximization is performed over the cumulative reward function or net present

value. We are only interested in maximizing the net present value at the end

of the production horizon (e.g . 5 years)

• Using deep neural networks, any policy can be potentially effectively parametrized
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Chapter 5

An evaluation of the recursive
prediction approach for dynamic
surrogate modeling and
optimization1

5.1 Introduction

In this chapter, we evaluate the performance of the conventional recursive prediction

approach to predict key time-varying outputs in a SAGD oil recovery process and

its possible use for steam injection optimization. In particular, we study what are

the most important features necessary to predict key variables (e.g . oil production

rates, reward), the robustness of the model(s) with respect to perturbations of these

features, the effectivity of the approach or how well can it predict time-varying

outputs, the behavior of the residuals over time, and the impact of the design of

experiments over the predictive performance of the approach.

Key findings of this work include:

• The recursive approach is able to properly forecast reward (net present value)

1[40] A version of this chapter has been presented in the 2022 SPE Western Regional Meeting
in Bakersfield, California, USA
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very well when considering daily (Case 1) dynamics as opposed to when con-

sidering weekly time steps (Case 2)

• The reward model for Case 1, depends mostly on non-predicted or given values

(e.g . steam injection rates), while for Case 2, depends significantly on predicted

values (e.g . oil production rates for well 4 and 5)

5.2 Recursive prediction methodology

The objective of surrogate modeling is to identify a function ĝ that can properly

describe the environment’s dynamic (Equation 2.1) but with a significant reduction

in computational cost, i.e.

xt+1 = g(xt, ut) ≈ ĝ(xt, ut) (5.1)

where xt represents the state of the system at time t, e.g . oil/water production rate,

average pressure/temperature, oil saturation distribution, etc.

As shown in Figure 5.1, the recursive prediction approach consists of identifying

ĝ and then using the state predictions of t, as input for the prediction at t + 1.

Additionally, at each time step, a new input ut will be given by the steam injection

policy of interest, e.g . from the design of experiments, optimizer, or arbitrary policy.

In this work, M surrogate models are identified as represented by Equation 5.2.

Each of these M models will capture the dynamics of a part of state x as a function

of the complete state xt and the inputs ut, i.e.

xt+1,1 = ĝ1(xt, ut)

xt+1,2 = ĝ2(xt, ut)...

xt+1,M = ĝM(xt, ut)

(5.2)
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Figure 5.1: Recursive prediction approach

Thus, xt+1 will be formed by combining the output of all M models, i.e.

xt+1 =
[

xt+1,1, xt+1,1, . . . , xt+1,M

]

(5.3)

In this case, the recursive approach starts with a known initial state x1 and a time

series of steam injection rates u = [u1, u2, . . . , uT ]. Now x1 and u1 are used as input

for the M surrogate models and x2 is constructed as shown in Equation 5.3. Then,

x2 and u2 are used recursively to predict x3, and the process continues. Equation 5.1

attempts to satisfy the Markov property, i.e., the capacity to predict the future using

information from the previous time step. This is also called a memory-less property

and implies that the definition of state should be complete enough that the history

information of the process is unnecessary.

5.3 Surrogate Modeling and Optimization

This section describes the main four (4) steps followed in this work to identify the

surrogate models as expressed in Equation 5.1 and the prediction specifics.
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Figure 5.2: Sample of steam injection rates time series for each considered well

5.3.1 Design of Experiments

This step consists of generating the data used for surrogate model identification and

validation. In particular, involves selecting a pre-established number of samples,

each sample represents a steam injection rates time series for each considered well

(Figure 5.2). On one hand, the samples should provide a thorough representation

of the complete input space, in other words, it should exhibit low discrepancy. On

the other, the evaluation of each sample consists of executing a computationally

expensive reservoir simulation model; therefore, the number of samples should be as

low as possible.

Well-known design of experiments strategies include Latin Hypercube Sampling

[62], Hammersley Sequence Sampling [109], and Sobol Sequence Sampling [50]. These

strategies have been successfully applied for dynamic surrogate modeling for nonlin-

ear chemical processes [91] and waterflooding [72]. However, for each sample, the

input value at every time step is chosen independently from each other, as a con-

sequence the input time series could exhibit very high changes which could create

operational problems for SAGD processes.
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To overcome this issue, we propose the use of the RL concept of a discrete action.

At every time step, the system must choose an action, represented by an integer

number that can be mapped to a specific steam injection rate for each considered

well, e.g., Well 4, 5, and 6. At every time step, the steam injection rate at time t+1

for each well has three (3) possible actions: increase/decrease steam injection rate

at time t by adding/subtracting a constant value (∆) or no change. Additionally,

because these three possible actions are available for each of the three (3) well pair,

the action space consists of all the combinations of actions/well pairs, i.e. 33 = 27.

For example, one such combination could be: increase (Well 4), no change (Well 5)

and decrease (Well 6). So, by setting an initial steam injection rate we can calculate

the following steam injection rates by knowing the action number or combination.

In this work, the action time series is chosen randomly, i.e., at each time step, a

random integer number between 1 and 27 is chosen.

This action strategy has the following benefits:

• Reduces the action space to a single time series of a finite number of actions

at each time step

• Prevents drastic changes in the steam injection rates that could bring opera-

tional problems

• Does not assume the hydraulic independence of each well pair

5.3.2 Evaluation of each sample using a high fidelity model

Each of the samples generated in the DOE will represent a different numerical reser-

voir simulation model [19]. This model is represented by, a set of partial differential

equations generated from conservation principles (e.g . material balance equations-

one for each hydrocarbon component, energy balance equation), thermodynamic
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phase equilibrium conditions, and constraint equations (sum of saturations, oil-phase

mole fraction, and gas-phase mole fractions, must be 1).

Two (2) types of border conditions are used, i) Dirichlet condition, by specifying

bottom hole pressure specified in producing wells, and ii) Neumann condition, to

specify no-flux (mass and heat) boundaries (at the limits of the domain or reservoir)

and steam injection rates given by the DOE at a given temperature in the injecting

wells. With respect to initial conditions, initial water saturation is determined by

irreducible water saturation given by the relative permeability curves. Additionally,

water-oil and gas-oil contacts are considered well below and above the oil reservoir,

respectively. Initial pressure and temperature are estimated from the value of pres-

sure and temperature at a reference depth (datum); pressure is then calculated using

the condition of hydrostatic equilibrium and temperature is considered constant.

5.3.3 Surrogate model identification and validation

For each of the evaluated samples or stem injection policies, at every time step, the

necessary information to form x is found. For example, x could be represented by

oil production rate, reservoir average pressure, oil saturation distribution. Thus, ĝ is

identified to map xt, ut −→ xt+1 using a conventional supervised learning framework

(e.g . recurrent neural networks), and the prediction approach described in Section

5.2 is validated.

Two stages of validation are used, the first one corresponds to the quality of the

surrogate models with respect to the one-step dynamics, as shown in Equation 5.1.

The second is the performance of the surrogate models to predict the time series.

This consists of comparing the predicted and true time series output for each part of

xt of each validation sample. For optimization purposes, this output is represented

in Equation 2.1 as J .
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5.3.4 Optimization

Once one or a set of surrogate model(s) are identified, the execution time of the

optimization methods described above (e.g., RL, MPC, genetic algorithms) is no

longer an obstacle. This optimization problem can be formulated as,

For a given SAGD configuration with n injector and producer wells (pairs) and a

given production horizon with T time steps (e.g . daily), the objective is to find the

steam injection policy that maximizes a particular performance measure (e.g . net

present value) while accounting for the complex reservoir dynamics. Formally, the

optimization problem can be written as:

max
u∈Rn×T

J =
T
∑

t=1

Jt(xt, ut)

s.t. umin ≥ u ≥ umax

xt+1 = ĝ(xt, ut)

(5.4)

where J is a scalar performance measure, ut ∈ R
n×1 is the steam injection rates for

all n wells at time t, xt is the state of the SAGD dynamic system at time t, umin

and umax are the upper and lower bounds of the steam injection rate, and ĝ is the

surrogate model of the SAGD dynamic system. Typical J functions include steam-oil

ratio, oil recovery factor, and net present value.

5.4 Case Study

This section describes the numerical reservoir simulation model that describes the

SAGD dynamics based on first principles, surrogate modeling specifics, i.e., the defi-

nition of state - xt, type and architecture of surrogate, training specifics, and a brief

description of the optimization algorithm.
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Figure 5.3: 3D grid and porosity field with indication by a red arrow of the considered
wells (case study)

5.4.1 Reservoir simulation model

A synthetic reservoir simulation model was created using CMG-STARS 2018.10 and

based on publicly available data of heavy oil SAGD projects. In particular, average

porosity and permeability were taken from data from the Christina Lake Thermal

Project [12] in Canada, and thermal properties, fluid components, and rock-fluid

data were taken from heavy oil models used for CMG software [19] training purposes.

The model consists of nine well-pairs but only three (3) are considered for this work,

i.e., Wells 4, 5, and 6 indicated by a red arrow in Figure 5.3; the other wells are

shut during the surrogate modeling time considered. Additionally, shale bodies were

distributed using object modeling geostatistics to reflect typical rock heterogeneity

found in heavy oil reservoirs.

Average reservoir, thermal properties, grid data, and the fluid component defi-

nition can be found in Tables 5.1, 5.2 and 5.3. Specifically, the grid consists of 80
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Figure 5.4: Oil viscosity with respect to temperature (case study)

x 80 x 20 grid blocks in the i, j, k with grid size 800 m, 800 m, 50 m, respectively.

The model exhibits an initial oil and water saturation of 0.74 and 0.19, respectively,

and an initial pressure of 2011 kPa and a temperature of 48.8°C. Two (2) sets of

relative permeability curves are used, one for the shale bodies and one for the sand

or the rest of the reservoir. These curves are shown in Figure 5.5 and changes in oil

viscosity with respect to temperature are shown in Figure 5.4.

5.4.2 State definition and training details

The input or state xt consists of 19 elements shown in Table 5.4, this definition

is arbitrary but has to provide the model with Markov property. As referred in

Equation 5.1, xt and ut will allow the forecast of xt+1. To this end, five different

deep long-shot-term-memory neural networks (LSTM-NN) are used as is illustrated

in Figure 5.6. There is one individual LSTM-NN for the prediction of oil production

rates, water production rates, average pressure around wells, the average temperature
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Figure 5.5: Relative permeability curves for sand (upper) and shale (lower) – (case
study)
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Table 5.1: Reservoir simulation model parameters (case study)

Reservoir data

Reservoir compressibility [kPa−1] 1.00× 10−6

Rock heat capacity [J/m3°C] 2.3× 106

Rock thermal conductivity [J/mday°C] 2.7× 105

Reservoir initial temperature [◦C] 48.4
Reservoir initial pressure [kPa] 2011

Initial water saturation 0.19
Initial oil saturation 0.74
Average porosity 0.29

Average permeability [mD] 4275
Well spacing [m] 80

Production parameters Production pressure [kPa] 1000
Production horizon/episode length [d] 250

Table 5.2: Grid data (case study)

x y z

Number of gridblocks 80 80 20
Gridblocks size [m] 10 10 10

Reservoir size 800 800 50

H2O (aqueous) Heavy (oleic) CH4 (oleic)

Molecular weight [kg/g −mole] 0.018 0.6 0.016

Critical pressure [kPa] 21997 939.72 4600.15

Critical temperature [◦C] 374 793.73 −82.55

Mass density [kg/m3] 998 1012.8 351.68

Liquid compressibility [kPa−1] 0 2.307× 10−7 3.532× 10−6

Thermal expansion coefficient (1st coeff) [◦C−1] 0 2.217× 10−5 0.00149

Table 5.3: Component definition (case study)
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Figure 5.6: Illustration of the recursive prediction process using five (5) LSTM neural
networks (case study)

around wells, and reward. After each time step, the state is constructed based on the

prediction of each of these LSTM-NN on one hand, and on-time step counter, the

on-going calculations of the cumulative oil and water production and steam injection

and on the steam injection rates calculated by the mapping procedure detailed in

the previous section. This new state is fed to the same LSTM-NN and the process

moves to the following time step.

In this case reward (LSTM 5) is a variable that represents a scalar performance

measure exhibited by the reservoir after taking an action. Although it is not part

of the state it is used for optimization purposes as the objective function - J , i.e.,

maximizing cumulative reward. In this work, the reward is defined as net present

value (Equation 5.5) using the parameters shown in Table 5.5.

Jt =

Po

n
∑

j=1

qo, j − Cs

n
∑

j=1

qs, j − Cw

n
∑

j=1

qw, j

1 + i
t−tref

365

(5.5)

Two (2) different sizes of time steps are used to evaluate the accuracy of the
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Table 5.4: State definition (case study)

Time step Water production rate for W4
Cumulative oil production Water production rate for W5

Cumulative water production Water production rate for W6
Cumulative steam injection Average pressure around W4
Steam injection rate for W4 Average pressure around W5
Steam injection rate for W5 Average pressure around W6
Steam injection rate for W6 Average temperature around W4
Oil production rate for W4 Average temperature around W5
Oil production rate for W5 Average temperature around W6
Oil production rate for W6

Table 5.5: Economical parameters (case study)

Parameter Value

Po [USD/STB] 80
Csteam [USD/STB] 12
Cwater [USD/STB] 6

i [fraction] 0.1
tref [day] 0
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recursive prediction process: daily (Case 1) and weekly (Case 2) with a production

horizon of 250 days and 100 weeks, respectively. The objective is to study the

impact of the different time-scale on the capacity of the LSTM-NN to fully capture

the dynamic of the system. This is particularly important considering SAGD is a

time-lagged, slow, and non-linear phenomenon. Regarding the number of samples,

100 and 200 samples were used, for Case 1 and Case 2, respectively and in both

cases, an 80-20 training-validation split was used.

5.4.3 Surrogate modeling - LSTM

The formulation expressed in Equation 5.1 describes a time series prediction problem

that has been successfully modeled using Long-Short-Term Memory (LSTM) neural

networks. LSTM networks represent a special type of Recurrent Neural Networks

(RNN), ones that are specially designed to capture the dynamics of sequence data.

Furthermore, LSTM networks can mitigate the so-called vanishing gradient problem,

typical in conventional RNNs that prevent them from being able to capture long-

term dynamics. The mechanics of LSTM networks relies on the concept of a cell

state ct and three gates: forget, input, and output (Figure 5.7). The idea is that the

gates will remove or add information from the cell state. The first gate or the forget

gate controls the information from the cell state that will be removed or forgotten.

This gate receives h(t−1) or the previous hidden state and the input xt and applies

the sigmoid function, i.e.

ft = σ(Wf · [ht−1, [xt, ut]] + bf ) (5.6)

and the multiplication operator is applied to the cell state ct−1. Intuitively because

of the sigmoid function ft will be a vector of 0s and 1s, hence when a value is 0

means the information is forgotten.
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Figure 5.7: LSTM architecture. Figure credits: [74]

The second step is the input gate, here we will decide what new information

to add to the cell state. First, the input vector ht−1, xt is again passed through a

sigmoid function as described by Equation 5.6. Second, the input vector is passed

through a tanh function; the result will be a value between -1 and 1. These two

values will be multiplied and added to the cell state, i.e.

it = σ(Wi · [ht−1, [xt, ut]] + bi)

c̃t = tanh(Wc · [ht−1, [xt, ut]] + bc)
(5.7)

Intuitively after applying the sigmoid function, the information that will be added

to the cell state is selected. Because the result will be 0 and 1, the values correspond-

ing to 1 are values that will be updated. The second part will represent the scale as

to how much to update these values. At this point, the cell state is updated as,

ct = ft · ct−1 + it · c̃t (5.8)

Finally, the output gate decides the output; this will be a filtered version of the

cell state. The first part consists of again applying a sigmoid to the input vector,

here we will decide what information of the cell state will correspond to the output.

The second part entails applying a tanh function this time to the cell state and then
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multiplying both of these terms, i.e.

ot = σ(Wo · [ht−1, [xt, ut]] + bo)

ht = ot · tanh ct
(5.9)

For both Case 1 and Case 2, deep neural LSTM-NN with a variable number of

intertwined fully connected, and dropout layers are used. In Case 1, the number

of layers (fully connected/dropout) is 3 for all variables except reward, in which 8

layers were used. For Case 2, the number of layers (fully connected/dropout) is 7 for

all variables except oil rates, in which 2 layers were used. In all cases, the number of

neurons used in each layer was 50, the dropout rate was set at 0.2, the loss function

used was mean square error, and the Adam optimizer was used during the training

process. Implementation was done in Python 3.8 using TensorFlow [60] libraries.

5.4.4 Surrogate model validation

As mentioned in Section 5.3.3, two (2) stages of validation are carried out, the first

one corresponds to the quality of the surrogate models with respect to the one-step

dynamics, and the second is the performance of the recursive approach to predict

the time series of interest.

For the first stage, R2 is used, as defined by:

R2k(y, ŷ) = 1−

∑T

t=1 (yt − ŷt)
2

∑T

t=1 (yt − ȳt)
2

(5.10)

where yt represents the true values of the variable of interest (see Table 5.4) at time

t as obtained via the numerical reservoir simulation model (Section 5.3.2), ŷt is the

prediction made by the LSTM neural networks, ȳt the arithmetic average of the true

values, and T is the prediction horizon.

Additionally, feature importance and robustness test are performed on a selection
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of the identified one-step dynamics models. The feature importance test corresponds

to the methodology implemented in [76], in which initially a reference R2base is esti-

mated on the model using the test data. Afterward, each feature (Table 5.4) is ran-

domly shuffled to generate a corrupted version of the test data and a new R2corrupted

value is calculated. This procedure is repeated K times and the importance of each

feature j is then estimated as:

ij = R2base −
1

K

K
∑

k=1

R2corrupted,k,j (5.11)

The robustness test consists of corrupting each feature by adding a noise drawn

from a normal distribution of mean zero and varying sigmas. Sigmas are varied from

0 (uncorrupted case) to 0.8 in increments of 0.1, and for each sigma, a perturbed

value of R2 is calculated.

For the second stage, the true and predicted time series are also validated using

Equation 5.10 for five (5) different DOEs to test the effect of the randomness of the

design of experiments on the results. Additionally, the residuals with respect to time

step prediction are also evaluated. This residual is defined as,

Residual = |yi − ŷi| (5.12)

This error is calculated at each time step of the time series; thus, we will have a

time series of errors for each of the test data samples. Thus, the mean and variance

of the residuals are evaluated as a function of time.

5.4.5 Optimization - Genetic algorithms

Once one or a set of fast surrogate model(s) is identified, the execution time of the

optimization methods described above (e.g., RL, MPC, genetic algorithms) is no

longer an obstacle. In this work, we use genetic algorithms.
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Genetic algorithms represent a family of optimization strategies inspired by the

theory of natural evolution in which the reproduction of the fittest individuals will

produce even fitter offspring. In this sense, a steam injection time series (Figure 5.2)

is considered an individual; in particular as explained in the Design of Experiments

section, a sample is represented by a string of actions (integer numbers between 1

and 27). Each of the actions in the string is referred to as a Gene, and the string

of Genes are known as a Chromosome; typically, the genes are encoded in binary

values. In general, the algorithm can be separated into three (3) phases:

1. Initialization. Given an initial population consisting of a predetermined num-

ber of individuals, a fitness function is used to determine how fit each individual

is. In this case, the fitness function is represented by Equation 1 and represents

an evaluation of the identified surrogate model(s)

2. Creating the next generation.The individuals for the next generation are

created in three ways:

• Elitism. Individuals with the best fitness score are directly selected to

survive to the next generation

• Crossover. These individuals are the product of the reproduction between

two parents. They are a result of the combination of the parent’s genes

• Mutation. Created by generating random changes to selected individuals

3. Termination. As this process is repeated, new generations with potentially

better fit individuals are generated. Typical termination conditions include, a

pre-established number of generations (iterations) is reached, the fitness score

exhibited by the best individuals in one generation is not significantly different

with respect to the previous generation, etc.
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A Python-based implementation was used [83] using the following parameters:

Table 5.6: Genetic algorithm parameters (case study)

Parameter Value

Maximum number of iterations 100
Mutation probability 0.2

Elite ratio 0.03
Crossover probability 0.7

Parents portion 0.2
Crossover type Uniform

5.5 Results and discussion

In this section, we present the results and discussion of the surrogate validation as

described in Section 5.4.4 and optimization results.

5.5.1 First stage validation

Figure 5.8 shows the distribution of R2 values for the one-step prediction models

of reward, oil/water production rates, and average pressure/temperature for Case 1

and 2. Note how in both cases, all the prediction models are able to capture the

one-step dynamics very well; Figure 5.9 shows a representative example of this fit.

In particular, we see that the median of R2 ranges from 0.925 (reward model for

Case 2) to 0.99 (average temperature for Case 2).

Figures 5.10 and 5.11 exhibit the results of the feature importance and robustness

test carried out on the reward model and the oil prediction rate for well 5 for Case

1 and 2, respectively. For Case 1 (Figure 5.10) we can see that the most important

features for the reward model are in order of importance: steam injection well 2, oil

production well 2, steam injection well 1, steam injection well 3, cumulative steam

production, cumulative water production, and water production well 2. Additionally,
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Figure 5.8: R2 values for the one-step prediction of reward, oil, and water production
rates, and average pressure and temperature using test data for Case 1 (top) and
Case 2 (bottom)
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Figure 5.9: Example of fit of one-step models of a representative sample of the test
data for Case 1 (top) and Case 2 (bottom)105



we can note that the perturbation of these parameters all have a great impact on

the reward output. In particular, steam injection rate well 1 and 2 with the greatest

impact, while water injection rate well 2 and oil rate well 2 with the least impact.

The oil production rate model for well 5 exhibits a very different behavior as

can be seen by Figure 5.10. In this case, the previous value of oil production rate

for well 5, the cumulative water production, and cumulative oil explain most of the

variability of the output. However, variations or perturbations of oil production rate

for well 5 have a disproportionately bigger impact on the output than the rest of the

features.

These results suggest that the recursive prediction of reward will be much more

accurate for the reward model than the oil prediction rate model for well 5. On

one hand, the reward model depends much less on predicted features, these are, oil

production rate well 2 and to a lesser extent, on the cumulative water production and

water production rate for well 2. While the oil prediction model, depends heavily

on the previous values of oil production rates, moreover, the model can be greatly

influenced by variations of this feature.

Regarding Case 2 (Figure 5.11) the reward model relies mostly on oil produc-

tion well 5, steam injection well 5, steam injection well 4, steam injection well 6,

oil production well 4, cumulative oil production and cumulative steam injection.

Furthermore, variations of most of these features seem to significantly affect the pre-

diction capacities of the model. It is particularly important that unlike for Case 1,

the reward model seems to depend heavily on two predicted features: oil production

rates for well 4 and 5. This suggests that recursive prediction will be more difficult

for the reward model in Case 2 than for Case 1. Regarding the oil production rate

model for well 5, we see a similar result to the one seen in Case 1. In particular,

the most important feature is previous values of oil production rate for well 5, and

variations of this feature have a disproportionately large effect on the output.
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(a) Reward model (b) Reward model

(c) Oil production rate Well 5 model (d) Oil production rate Well 5 model

Figure 5.10: Feature importance and robustness test for the reward and oil produc-
tion rate well 5 models for Case 1
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(a) Reward model (b) Reward model

(c) Oil production rate Well 5 model (d) Oil production rate Well 5 model

Figure 5.11: Feature importance and robustness test for the reward and oil produc-
tion rate well 5 models for Case 2
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5.5.2 Second stage validation

The performance of the recursive prediction framework for reward and oil production

rates for wells 4, 5 and 6 is shown in Figure 5.12. Here, we can see the distribution

of R2 values obtained using the test data for Case 1 and 2; a sample of the R2 values

for the reward model in shown in Figure 5.13. We can see how reward prediction

for Case 1 is significantly superior to oil production rates. In particular, reward

prediction shows a median of R2 values of around 0.9, while oil production rates

exhibit medians of between 0.3 to -1.2. For Case 2, we see that all the studied

variables show very poor median R2 values: -0.88 for reward, -1.33 for oil rate well

4, -1.63 for oil rate well 5, -2.15 for oil rate well 6.

The evaluation of the residuals that result from the recursive prediction frame-

work is shown in Figure 5.14. Note how, the residuals for the reward model in Case

1 are lower than the rest of the variables in Case 1 and all of the considered variables

(reward and oil production rates) in Case 2. Moreover, the changes over time of

the residuals exhibited by the reward model in Case 1 are much lower than the rest.

This can also be confirmed by averaging these residuals, as shown in Figure 5.15. On

one hand, this Figure shows that the time average mean of residuals shown by the

reward model in Case 1 is around 0.07, lower than the rest of the models in Case 1.

On the other hand in Case 2, reward exhibits a time average of residuals of around

0.22, while average temperatures of well 4 and 5 have the lowest residual.

These can be further examined in Figure 5.16, where the residuals are shown over

time. We can confirm how the reward model for Case 1 shows very low residuals

over time, similar to perhaps to water production rate well 4 and well 5. For Case 2,

the lowest residuals are exhibited by average temperature for well 4 and 5 and water

production rate for wells 5 and 6.

Finally, the evaluation of the impact of the randomness of the DOE over the

solution is shown in Figure 5.17. In this Figure, we see the distribution of R2 values
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(a) Case Study 1 (b) Zoom view of the R2 distribution for
the reward model in Case 1

(c) Case Study 2

Figure 5.12: Distribution of R2 values for reward, oil rate - well 4, 5, 6 models using
the test data for Case 1 and 2
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(a) Case Study 1 (b) Case Study 2

Figure 5.13: Representative fit of the reward model for Case 1 and 2 with an indica-
tion of R2 value

(a) Case Study 1 (b) Case Study 2

Figure 5.14: Change of residuals over time for reward, oil rate - well 4, 5, 6 models
using the test data for Case 1 and 2
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(a) Case Study 1 (b) Case Study 2

Figure 5.15: Time average mean of residuals for all models using test data for Case
1 and 2

(a) Case Study 1 (b) Case Study 2

Figure 5.16: Mean of residuals over time for all models using test data for Case 1
and 2
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(a) Case Study 1 (b) Case Study 2

Figure 5.17: Distribution of R2 values exhibited by the reward model for five different
seeds over the test data for Case 1 and 2

exhibited by the reward model for five (5) different statistical realizations of the

designs of experiments. On one hand, we can confirm that the great results shown

in Case 1 by the reward model can be found consistently in the different seeds with

median R2 values ranging from 0.86 to 0.93. On the other hand, for Case 2, we see

that the median value of R2 has a high variability, taking -0.88, 0.14, 0.61, 0.14, and

0.56.

5.5.3 Optimization

Based on the performance exhibited by the reward model for Case 1, we can continue

to the optimization phase. To this end, Figure 5.18 shows the optimal steam injection

rates time series found; notice how in general steam injection rates reduce from

the initial state. The rates seem to take low values throughout the production

horizon oscillating between 20 and 60 m3/day. Additionally, Figure 5.19 shows the

comparison between the true and predicted value of reward in the optimal case. We

can see how the prediction is very close to the true value, exhibiting an R2 value of

0.94.
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Figure 5.18: Optimal steam injection rates

Figure 5.19: Comparison between true and predicted value of reward in the optimal
case
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5.6 Summary

This work presents a dynamic-surrogate modeling approach to the optimization of

steam injection rates for multi-well SAGD processes. The approach relies on the use

of Long-short term memory (LSTM) neural networks to capture one-step (daily –

Case 1 and weekly – Case 2) dynamics of the phenomena and then use these networks

in a recursive scheme to predict multiple steps in the future (time series). The

approach was tested using three SAGD well-pairs of a multi-well reservoir simulation

model, built using publicly available data that includes data from northern Alberta

SAGD operations. The performance of the approach was discussed in two stages: i)

the performance of the one-step LSTM models, which includes feature importance

and robustness test, and ii) the performance of the actual recursive approach in

terms of R2 and the evolution of the residuals as the prediction horizon increases.

Additionally, a genetic algorithm was used to optimize steam injection rates.

Results show that the recursive approach is able to properly forecast reward (net

present value) very well when considering daily (Case 1) dynamics as opposed to

when considering weekly time steps (Case 2). Results suggest that this is because

the reward model for Case 1, depends mostly on non-predicted or given values, such

as previous steam injection rates and cumulative steam injection. In Case 2, the

prediction of reward, depends significantly on predicted values, like, oil production

rates for well 4 and 5, and cumulative oil production. Regarding oil production pre-

diction, in both cases, these values depend greatly on previous values of themselves,

and moreover, small variations of these values have a significant impact on the pre-

diction values. As a consequence, it was found that the residuals of the recursive

prediction of reward for Case 1, don’t grow as much as the oil rates prediction.
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Chapter 6

A corrected recursive based
dynamic surrogate model and
optimization approach1

6.1 Introduction

In this chapter, we propose a new method for the prediction of time-varying outputs

of a dynamical system that can be used to solve the optimization problem expressed

in Equation 2.1. This method consists of modeling the residuals exhibited by the

conventional recursive-based prediction approach (Chapter 5) and then using this

value as a correction term. It relies on the assumption the residuals of the recursive

approach are correlated with time and thus can be generalized over the input space.

Results show that the corrected model significantly outperforms the conventional

recursive approach by, reducing error (MAPE) and increasing fit (R2). Further-

more the method shows promise as a general framework for effective and efficient

identification of dynamic surrogate models.

1A version of this chapter will be presented in the 2023 SPE Canadian Energy Technology
Conference and Exhibition to be held on March 14-16 in Calgary,Alberta, Canada
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6.2 Motivation

Conventional recursive base prediction consists of identifying one-step forecast model(s)

- ĝ(xt, ut) - of the dynamics of the system, i.e.

xt+1 = g(xt, ut) ≈ ĝ(xt, ut) + ϵ (6.1)

where xt and ut represent the state of the system and the control action at time t,

respectively, and ϵ is the prediction error.

Afterward, n-step prediction is achieved by using Equation 6.1 recursively. For

instance, at time t = 1, x1 and u1 are used as inputs, and x2 is calculated. Then,

with a new control action, u2 along with the predicted x2, x3 is calculated. This

process is repeated until reaching the desired step number (n).

By inspection of Equation 6.1 we can see that after every prediction step there is

an accumulation of the error term ϵ. As a consequence, as the number of time steps

increases, so will the prediction error; the errors are propagated. Furthermore, as

stated by [108], these errors may exhibit an exponential form as n increases.

6.3 Proposed Methodology

To overcome the situation described in Section 6.2 we propose the use of a correction

term that can predict the error term exhibited by the recursive approach (base case).

In other words, we assume that errors are a function of xt and ut. Thus, the goal is

to find a model ϵ such that,

ϵt = ϵ(xt, ut) (6.2)

Then Equation 6.1 can be modified as,

xt+1 = g(xt, ut) ≈ ĝ(xt, ut) + ϵ(xt, ut) (6.3)
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Figure 6.1: Illustration of the gradient boosting framework. Credits: [53]

We can draw two (2) parallelism from the proposed methodology: geostatistical

Kriging method and gradient boosting for supervised learning. On one hand, in

Kriging, the spatial prediction is decomposed into a trend or mean and a residual

term that is correlated with distance from the known values. In a similar fashion, in

this work we propose (Equation 6.3) to decouple the conventional recursive prediction

given by ĝ(xt, ut) and the error term ϵ(xt, ut). However, unlike Kriging, here, we

assume residuals are correlated with time from the known value or, in this case, the

initial value.

On the other hand, gradient boosting [26], [27] consists of sequentially identifying

an ensemble of weak learners where in each stage, each learner will compensate for

the weakness of existing learners (Figure 6.1). In this context, a weak learner is

defined as a model that is able to perform slightly better than random chance. So,

initially, the first learner f̂(x) is identified using the training data by minimizing a

predetermined loss function; f̂(x) will map x −→ y. Then, the residuals h can be

estimated as,

118



h1(x) = y − f̂(x) (6.4)

Then, a second model is identified using x as input and h as output; ĥ(x) will

map x −→ h1. Now, the prediction is corrected as,

ŷ = f̂(x) + h1(x) (6.5)

In general, for M weak learners, the prediction can be expressed as,

ŷM =
M
∑

m=1

hm(x) (6.6)

where hm is defined as the residuals resulting from the prediction made by the pre-

vious learner(s), i.e.

hm(x) = y − f̂(x) +
m−1
∑

i=1

hi(x) (6.7)

Using Equation 6.3 we can now describe the four (4) steps of the methodology, i.e.

design of experiments, evaluation of each sample, surrogate model (ĝ(xt, ut),ϵ(xt, ut))

identification and validation, and optimization.

6.3.1 Design of experiments (DOE) - input

Involves generating a sampling plan over the entire design variable space. In partic-

ular, implies selecting k steam injection policies for each of the m considered well

pairs. Where a steam injection policy is defined as the steam injection rate at every

time step for a particular well pair (Figure 5.2).
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The primary interest of any sampling plan is to minimize bias and reduce variance

[78]. Where bias measures the difference between the estimations of the surrogate

model and the true values, e.g . mean square error, and variance quantifies the sen-

sitivity of the surrogate model to a particular sample or data set. This arises to the

well-known bias-variance trade off, in which surrogate models that exhibit a low bias

to a particular data set will typically show a large variance.

Although increasing the number of samples or in this work, the number of steam

injection policies, will reduce both the bias and the variance, this will imply an in-

creasing model complexity. Furthermore, the number of samples is heavily constraint

by the computational expense required to evaluate each sample. Alternatively, DOEs

that can sample points uniformly have also been proven to reduce bias and variance.

In this context, uniformly can be defined by, for example, maximizing the minimum

distances between each sample in the set. To this end, practical implementations

include Latin Hypercube and optimal LHS, however, in most cases, these methods

are designed for time independent variables.

In the field of system identification, where variables are time dependent, common

DOE or input signals are Filtered Gaussian White Noise and Random Binary Sig-

nal. In this context, these signals, although typically constrained by minimum and

maximum values, could exhibit drastic behaviors that are unrealistic in the context

of SAGD operations.

In this work, we propose the generation of steam injection policies by having the

value at time t+1 dependent on the value at time t by three (3) possible actions. For

example, starting at a specific value of for example u0 = 200m3/d, then u1 is given

by one of three actions: either adding/subtracting a constant value or no change

with respect to u0. Furthermore each action is chosen randomly and both bias and

variance (as described above) are evaluated. This evaluation is made on the test set

that results by dividing the data in the conventional train-test split.
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6.3.2 Evaluation of each sample using high-fidelity model -
output

The samples generated by the DOE are used as input to a numerical reservoir simula-

tion model. This is a first principle model that consists of a set of partial differential

equations built from, material balance equations (one for each hydrocarbon compo-

nent), energy balance equation, thermodynamic phase equilibrium conditions, and

constraint equations (sum of saturations, oil-phase mole fraction and gas-phase mole

fractions must be 1).

Additionally, two (2) types of border conditions are used:

• Dirichlet condition. Bottom hole pressure specified in producing wells

• Neumann condition. Used to specify no-flux (mass and heat) boundaries (at

the limits of the domain or reservoir) and steam injection rates at a given

temperature in the injecting wells

Regarding initial conditions, initial saturation is determined by irreducible water

saturation given by the relative permeability curves. In this case, water-oil and gas-

oil contacts are considered well below and above the oil reservoir, respectively. Initial

pressure and temperature are estimated from the value of pressure and temperature

at a reference depth (datum); pressure is then calculated using the condition of

hydrostatic equilibrium and temperature is considered constant.

Each of the samples generated in the DOE will represent a different numerical

reservoir simulation model. Thus, the solution for each of these models will result in

two (2) time-varying outputs of interest for each considered well pair i.e. water (qw)

and oil (qo) production rates for each considered well pair.
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6.3.3 Surrogate model identification and validation

To predict oil qo and qw two functions - ĝ(xt, ut),ϵ(xt, ut) are identified for each con-

sidered well pair (a total of four models) following:

For qi in [qo, qw],

1. Define xt by including the p previous values of steam injection rates qs, qi and

the time step number

2. Identify a one-step forecast model ĝ(xt, ut)

2.1. Evaluate ĝ(xt, ut) using the test data

3. Calculate the residuals exhibited by ĝ(xt, ut) by using a conventional recursive

approach on the train data

4. Identify the correction model ϵ(xt, ut) using the residuals from Step 3

4.1. Evaluate ϵ(xt, ut) using the test data

5. Evaluate the bias of the model by using Equation 6.3 with the test data

To evaluate the variance or the effect of randomness over the DOE, these steps

are repeated for several different statistical realizations.

6.3.4 Optimization

The well-known Net Present Value (NPV) global economic objective function is used,

i.e.

J =
T
∑

t=1

Po

∑n

j=1 qo,j,t − Csteam

∑n

j=1 qs,j,t − Cwater

∑n

j=1 qw,j,t

1 + i
t−tref

365

(6.8)
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where, Po is the oil price [USD/STB], qo,j,t the cumulative oil production obtained

in time step t for well pair j [STB], Csteam the cost of steam generation [USD/STB],

qs,j,t the cumulative steam injection applied in time step t for well pair j [STB],

Cwater the cost of produced water handling [USD/STB], qw,j,t the water production

observed in time step t for well pair j, i is the annual discount factor [fraction], T is

total production horizon and tref is the reference time to which NPV is discounted.

Regarding the design variables, as described in Section 6.3.1, these are repre-

sented by one discrete number {0, 1, 2} per considered well pair, thus, any integer

optimization algorithm can be used. This representation is very useful for opti-

mization purposes, however the ut value used to identify the surrogate models is

represented by the real steam injection value.

6.4 Case studies

The described methodology is applied to three (3) case studies with a varying number

of considered well pairs, i.e. 1, 3, and 9. For the rest of this work these case studies

will be referred to as, CS1, CS3, and CS9. In this section, the parameters for these

case studies are described according to the steps described above.

6.4.1 Design of experiments - input (case studies)

For CS1, two (2) sample sizes are tested to evaluate variance (as defined in Section

6.3.1): 100 (reduce sample) and 500 (extended sample). For CS3 and CS9 only the

reduced sample will be considered.
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Figure 6.2: 3D grid and porosity field (case studies)

6.4.2 Evaluation of each sample using a high fidelity model
- output (case studies)

The numerical reservoir simulation model (high fidelity) used is the same one de-

scribed in Chapter 5. This model was built using publicly available data of heavy

oil SAGD projects CMG-STARS training examples. In particular, petrophysical

properties were derived from data from the Christina Lake Thermal Project [12] in

Canada and thermal properties, fluid components, and rock-fluid data were taken

from heavy oil models available in CMG-STARS [19]. The model consists of nine

well-pairs (Figure 6.2) which are opened according to the respective case study. For

instance, CS1 only well 5 (middle well) is open for injection and production, while

the rest of the wells are shut. For CS3, wells 4, 5, and 6 are used and for CS9 they

are all used.

Table 6.1 shows the general characteristics of the reservoir model. For the rest

of the parameters, such as, grid size, thermal properties, fluid component definition,

oil viscosity changes with respect to temperature, relative permeability curves, the

reader is referred to Chapter 5, Section 4.
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Table 6.1: Reservoir simulation model parameters (case studies)

Reservoir data

Reservoir compressibility [kPa−1] 1.00× 10−6

Rock heat capacity [J/m3°C] 2.3× 106

Rock thermal conductivity [J/mday°C] 2.7× 105

Reservoir initial temperature [◦C] 48.4
Reservoir initial pressure [kPa] 2011

Initial water saturation 0.19
Initial oil saturation 0.74
Average porosity 0.29

Average permeability [mD] 4275
Well spacing [m] 80

Production parameters Production pressure [kPa] 1000
Production horizon/episode length [d] 250

6.4.3 Surrogate model identification and validation (case stud-
ies)

Section 6.4.1 and 6.4.2 describe the procedure to generate the input and output data,

respectively. In particular, we define the input data xt as, the 40 previous values of

steam injection rates and oil/water production rates, and the current steam injection

rate value to be applied at time t. Thus, for both, ĝ(xt, ut) and ϵ(xt, ut) the input

vector will be of size 81, and the output vector of size 1. The following sections

describe the identification and validation strategies for all models.

Identification

For all case studies, Long-Term Short Memory (LSTM) were used to identify ĝ(xt, ut)

and ϵ(xt, ut). LSTM are non-linear neural networks particularly designed to capture

time series or sequenced data. In particular, the goal is to use previous information

(long/short term) to be able to make predictions for the near future. This is achieved

by introducing the concept of cell state and three(3) gates (Figure 6.3), these are:
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Figure 6.3: LSTM architecture. Figure credits: [74]

forget, input and output. In this sense, the LSTM is designed with a conveyor belt

dynamic, in that information is removed or added to the so-called cell state ct by the

gates. A high-level description of the gates follows as:

1. Forget gate. Here, the decision is made on what information is to be forgotten

or removed from the cell state. The input is the hidden state from the previous

ht−1 and the input data xt.

This implies the application of the sigmoid function:

ft = σ(Wf · [ht−1, [xt, ut]] + bf ) (6.9)

As a result of this operation, ft will represent a vector of 0s and 1s, i.e. infor-

mation that is forgotten and kept, respectively. Afterwards the multiplication

operator is applied to ft and ct−1.

2. Input gate. The next step to add new information to the cell state. This is

done by applying again the sigmoid (Equation 6.9) and tanh function to ft and

ct−1, i.e.
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it = σ(Wi · [ht−1, [xt, ut]] + bi)

c̃t = tanh(Wc · [ht−1, [xt, ut]] + bc)
(6.10)

Then, it and c̃t are multiplied and added to the current cell state (Equation

6.10), as,

ct = ft · ct−1 + it · c̃t (6.11)

The first part of Equation 6.11 results again in vectors of 0s and 1s, and the

second part represents the degree to which the information is kept is updated.

3. Output gate. This gate decides on the actual output values ht that will

consist of a filtered version of the current cell state. Mathematically,

ot = σ(Wo · [ht−1, [xt, ut]] + bo)

ht = ot · tanh ct
(6.12)

Notice in Equation 6.12 ht consists of two parts; the first corresponds to once

again a sigmoid function applied to the input. This is multiplied by the tanh

function applied to the current cell state. Intuitively, this means that the first

part decides which elements of the cell state will correspond to the output, and

the second part decides to what extent the current cell state is modified.

The LSTM architecture and the corresponding parameters used to model ĝ(xt, ut)

and ϵ(xt, ut) are shown in Table 6.2.

Validation

This can be separated in two stages, validation of the one-step forecast and residual

models, and validation of the long term prediction capacity of the framework. In the

first stage the training process of the LSTM models are tested using R2, i.e.
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Table 6.2: Parameters used to identify ĝ(xt, ut) and ϵ(xt, ut)

Parameter ĝ(xt, ut) ϵ(xt, ut)

Number of layers 2 4
Number of neurons per layer 80 280
Interleaved dropout layers rate 0.2

Optimizer Adam
Learning rate 1× 10−3 1× 10−4

Batch size 50 100
Train-test split ratio 80-20

R2k(y, ŷ) = 1−

∑T

t=1 (qk,t − q̂k,t)
2

∑T

t=1 (qk,t − q̄k,t)
2

(6.13)

where qk,t represents the true production rate values for either water or oil, k = {o, w}

at time t as obtained via the numerical reservoir simulation model (Section 6.4.2),

q̂k,t is the prediction made by the LSTM neural networks, q̄k,t the arithmetic average

of the true values, and T is the prediction horizon.

The second phase, is the evaluation of the n-step prediction capacity of the steps

described in Section 6.3.3. Here we use two performance measures, R2 and Mean Ab-

solute Percentage Error (MAPE). R2 is defined similarly as in Equation 6.13 except

that q̂k,t is the prediction values given by the corrected or base model methodology

described before. Additionally, MAPE is given by,

MAPEk(y, ŷ) =
1

T

T−1
∑

t=1

|qk,t − q̂k,t|

max(η, |qk,t|)
(6.14)

where qk,t represents a vector that contains the true production rate values for all

considered well pairs, either water or oil, k = {o, w} at time t as obtained via the

numerical reservoir simulation model, q̂k,t is the prediction values offered by the
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Table 6.3: Economical parameters (case studies)

Parameter Value

Po [USD/STB] 60
Csteam [USD/STB] 10
Cwater [USD/STB] 5

i [fraction] 0.1
tref [day] 0

corrected or base case methodology described above. Additionally, η, as described

in [76], is an arbitrary small and positive number to avoid undefined results when

qk,t is zero, and T is the number of samples.

6.4.4 Optimization (case studies)

In terms of the objective function described by Equation 6.8, the economical param-

eters are shown in Table 6.3. Furthermore, a Python based implementation [83] of a

genetic algorithm was used to solved the integer optimization problem described in

Section 6.3.4.

Genetic algorithms are non-gradient optimization algorithms in which initial

solutions are evolved to optimal solutions by biologically inspired operators, e.g .

crossover, mutation. In this context, solutions or individuals are steam injection

policies for all considered well pairs represented by integers or actions. In general

the algorithm consists of three (3) stages, initialization, creating a next generation

and termination.

Initialization refers to starting with an initial population or a predetermined num-

ber of candidate solutions, typically generated randomly. Each of these candidate

solutions are evaluated using the dynamic surrogate models and the solutions are

ranked according to their corresponding NPV value or performance. The population

is referred to as a generation and as the iterative process continues new generations
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are generated with higher performance.

In the second stage, the new generation is created in three (3) ways,

• Elitism. Best individuals are selected to continue on to the following generation

• Crossover. These individuals are a result of the combination of two (2) good

performing parents. The offspring will share characteristics of the parents and

will tend to have a better performance or NPV value.

• Mutation. Implements random changes to selected individuals

These two stages are repeated until a termination condition is achieved and the

algorithm is terminated (third stage). These conditions may include, evolving for

a pre-determined number of generations or iterations and the NPV values of the

best-performing individuals do not differ significantly from generation to generation.

6.5 Results and discussion

In this section, the results for all three (3) - CS1, CS3, CS9 - case studies are

presented on the basis of the validation phases described in Section 6.3.3. The

first phase corresponds to the evaluation of the one-step forecast capacity of the

models. Additionally, an assessment is made on how the residuals change as the

number of prediction steps n increases. The second phase consists of evaluating the

performance of the residual model ϵ(xt, ut) individually and when coupled with the

base case ĝ(xt, ut).

6.5.1 CS1 - One well

First phase

The performance of the one-step forecast models ĝ(xt, ut) for oil and gas are shown

in Figure 6.4. These models correspond to following Step 2 and 2.1 of the steps
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Figure 6.4: Distribution of R2 values exhibited by the oil (left) and water (right)
one-step forecast model using the test data of the limited sample size

described in Section ??. Here we see the distribution of the R2 values estimated

using the test data of the limited sample size. More specifically, each value in these

boxplot results in comparing the predicted scaled oil/water rate values and comparing

with the true values as obtained via numerical simulation (Figure 6.5). Note that

both models perform very well giving R2 values are well over 0.94 in all cases.

This one-step forecast model is now used recursively for n-step prediction (base

case), and the residuals exhibited are shown in Figure 6.6. Here we show the average

and one standard deviation of the residuals exhibited by ĝ(xt, ut) as the number of

prediction steps n increases for the test data using the limited sample size. We can

see how for oil prediction, residuals significantly increase as n increases, confirming

some level of correlation and thus justifying the use of the residual model described

in Section 6.3.3. However, for water prediction, the residuals are notably lower. For

example, water prediction residuals reach a maximum value of around 0.2 while oil

prediction residuals maximum value is more than 1.5; almost 7 times more.
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Figure 6.5: Prediction values of scaled production rates (oil and water) compared to
true values for one representative sample

Figure 6.6: Average and one standard deviation of the residuals for the oil (left) and
water (right) model as the number of prediction steps n increases for the test data
using the limited sample size
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Figure 6.7: Performance of the conventional recursive approach for oil and water
prediction using the test data

The results in Figure 6.6 are confirmed by looking at the performance of the

conventional recursive model in terms of R2 as shown in Figure 6.7. This figure

shows the distribution (without outliers) of R2 values for the prediction of oil and

water rates. Note how oil prediction R2 values are in general very low, with a very

high variability, from -7.6 to 0.81, and with a median of -0.21. Compared to water

prediction R2 values that range from 0.95 to 0.99, with a median of 0.98.

One possible explanation for such positive results for water prediction is the

correlation between steam injection policies and water production values. Figure 6.8

shows the distribution of the correlation coefficient between the steam injection rate

values (input) and oil/water production rate values (output) for all the samples in the

test data. We can see how water production rates are significantly more correlated

with the steam injection rates, as compared to oil production rates. In particular,

water production rates show a median correlation value of 0.76, while oil production

rates have a median correlation of -0.1.
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Figure 6.8: Correlation values between steam injection policies (input) and oil/water
production rates (output)

Furthermore, we can also note significant differences between the oil and water

models when performing a feature importance and robustness test on each of the

models. The feature importance test corresponds to the implementation available

in [76]; here, a base performance measure is estimated R2base using the test data.

Then, each feature is randomly shuffled to generate a corrupted version of the test

data, and a new R2corrupted value is calculated. This procedure is repeated K times

and the importance of each feature j is then estimated as:

ij = R2base −
1

K

K
∑

k=1

R2corrupted,k,j (6.15)

The robustness test consists of corrupting each feature by adding a noise drawn

from a normal distribution of mean zero and varying sigmas. Sigmas are varied from

0 (uncorrupted case) to 0.8 in increments of 0.1, and for each sigma, a perturbed

value of R2 is calculated.

The results of these tests are available in Figure 6.9, note how for the water rate
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prediction model (top part of the Figure) the features that have the most impact

on the output are, steam rate,t − 3, water rate,t − 3, water rate,t − 2 and steam

rate,t − 4. However, when perturbed, these features have very little impact on the

performance of the model where R2 is only deteriorated from 0.992 to 0.987. The

oil rate prediction model offers different results, on one hand, the most important

features correspond to oil rate,t, oil rate,t − 34, oil rate,t − 33, oil rate,t − 35, oil

rate,t − 32, oil rate,t − 31. Furthermore, these features cause a deterioration of the

R2 from 0.99 to 0.92. Note how, unlike the water rate prediction model, for the oil

rate prediction model the six (6) most important features correspond to predicted

values. In the water rate prediction model, these features are a mix of prediction

values (water rates) and given values (steam injection rates).

Considering these results, for the rest of the case studies (CS3 and CS9) the

residual model will only be applied to the prediction of oil production rates.

Second phase

We begin by evaluating the performance of the residual model ϵ(xt, ut) for oil pro-

duction rates. As shown in Figure 6.10, this model is able to capture very well the

variability of the residuals. In particular, R2 values are well over 0.89 in all cases,

with a median value of 0.99.

Coupling the residual model with the one-step forecast model now we can see the

performance of the proposed corrected methodology (corrected model) and compare

to the conventional recursive approach (base model). Specifically we evaluate the

bias (as described in Section 6.3.1) of the methodology on the training and test

data, as show in Figures 6.11 and 6.12. The figures show the distribution of R2

value exhibited by the base and corrected model using the limited sample size. For

example, each sample in the distributions corresponds to comparing the R2 between

the predicted time series and the true values; three (3) such comparisons are shown
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Figure 6.9: Results of the feature importance (left) and robustness (right) tests
performed on the water prediction (top) and oil prediction (bottom) rates models
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Figure 6.10: Distribution of R2 values exhibited by the corrected model using the
test data of the limited sample size

in Figure 6.14.

From Figures 6.11 and 6.12 we can see the significant improvement of R2 values

coupling the residual model to make predictions (corrected model) with respect to

the conventional recursive approach (base model). On one hand, considering the

training data, we see a near perfect prediction. On the other hand, test data also

shows very well performance, exhibiting a median of R2 of 0.82, as opposed to the

median value for the base case of -0.21. This improvement can also be seen by a

significant reduction of the residuals exhibited by the corrected model (Figure 6.13).

To test the variance of the proposed methodology, the procedure was repeated

for four (4) additional design of experiments (5 in total) considering a R2 and MAPE

as performance measures and a limited sample size. Figures 6.15 and 6.16 show the

distribution of the corresponding performance measure for five (5) different design

of experiments seeds. Note how in all cases, there is a significant increase (decrease)

in R2 (MAPE) values.
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Figure 6.11: Distribution of R2 values exhibited by the corrected and base model
using the train data of the limited sample size

Figure 6.12: Distribution of R2 values exhibited by the corrected and base model
using the test data with a limited sample size
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Figure 6.13: Mean residuals exhibited by the base and corrected model

Regarding R2 (Table 6.4), the base model shows median values of between -1.62

to 0.76, while the corrected models shows median R2 values of between 0.83 and 0.96.

Table 6.4 also shows the results considering an extended sample size (500), here we

see that the increase in sample size shows similar results. In this setting, the median

of R2 values for the base model take values between -0.72 and 0.85, while considering

the corrected models the range is between 0.85 and 0.99. In general, considering the

limited and extended sample size for this well, the global median of R2 for the base

model was between 0.62 and 0.64, and the corrected model significantly improved

these values to reach a typical R2 of 0.95.

Additionally, as noted in Figure 6.16, for each of the DOEs, the distribution of

MAPE values exhibited by the corrected models shows a significantly lower median

and standard deviation compared to the base model. In particular, the percentage

of this reduction is shown in Table 6.5, notice how for a limited sample size the

median is reduced by between 45.9% and 88.6%, while the standard deviation shows

reductions of between 38.3 and 83.1%. Using an extended sample size, the median of
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Figure 6.14: Performance of the base and corrected models of three (3) test samples
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Figure 6.15: Distribution of R2 values exhibited by the corrected and base model
considering five (5) design of experiments and using the test data with a limited
sample size

Figure 6.16: Distribution of MAPE values exhibited by the corrected and base model
considering five (5) design of experiments and using the test data with a limited
sample size
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Table 6.4: Median of the R2 distributions exhibited by the corrected and base model
considering five (5) design of experiments and using the test data with a limited
sample size

DOE Limited sample Extended sample

Base Corrected Base Corrected

1 -0.21 0.82 0.16 0.99
2 0.76 0.95 0.62 0.92
3 0.75 0.96 -0.72 0.85
4 0.64 0.94 0.78 0.98
5 -1.62 0.95 0.85 0.95

Global median 0.64 0.95 0.62 0.95

DOE Limited Sample Extended sample

Median Standard deviation Median Standard deviation

1 65.8 83.1 82.7 80.1

2 65.4 62.8 53.1 58.8

3 45.9 59.4 84.6 95.1

4 68.7 36.2 84.0 85.2

5 88.6 38.3 55.0 28.6

Global median 67.0 56.0 82.7 80.1

Table 6.5: Percentage of reduction of the corresponding statistic of the MAPE dis-
tributions comparing base and corrected model for CS1

the MAPE values is reduced by between 55.0% and 82.7% and the standard deviation

is reduced between 28.6% and 95.1%. In general, we can estimate a global median

of reduction of median and standard deviation 67.0% and 56.0%, respectively, for

the limited sample size, and 82.7% and 80.1% considering an extended sample size.

Given the similarity of results obtained with the limited and extended sample size,

for CS3 and CS9 only the limited sample size will be use.

Finally, optimization results for a random DOE and a limited sample size are

shown in Figure 6.17. Note that steam injection rate is reduced to minimum values

until around 100 time steps. Afterwards, it is increased until reaching initial values of
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Figure 6.17: Optimal steam injection policy for CS1

100 m3/day, and then immediately dropped to minimum values once again. Then,

we note a new increase to around 60 m3/day towards the end of the simulation

period.

6.5.2 CS3 - Three wells

Figure 6.18 shows the distribution of the global MAPE (Equation 6.14) values ex-

hibited by the corrected and base model considering five (5) design of experiments.

These results correspond to the test data set and a limited sample size, and a repre-

sentative sample is shown in Figure 6.19. From Figure 6.18 note how the corrected

model outperforms the base model by reducing both the median and standard devi-

ation of the MAPE distributions in all cases. In particular, this reduction is shown

in Table 6.6, ranging from a 11.6 % to 72.5% reduction for the median, and from

51.0% to 82.8% reduction for the standard deviation. In general, the global median

among the DOEs was estimated as 49% reduction of median and 71.2% for standard

deviation.

Individual well performance obtained by the base and corrected model is evalu-
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Figure 6.18: Distribution of MAPE values exhibited by the corrected and base model
considering five (5) design of experiments of three (3) wells and using the test data
with a limited sample size

Figure 6.19: Performance of the base and corrected models of a representative three
(3) well sample
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Table 6.6: Percentage of reduction of the corresponding statistic of the MAPE dis-
tributions comparing base and corrected model for three (3) wells

DOE Median Standard deviation

1 72.5 78.4
2 48.0 64.6
3 44.0 79.7
4 11.6 51.0
5 68.0 82.8

Global median 49.0 71.2

ated using R2 as shown in Table 6.7. In all DOEs the corrected model improves R2

significantly for all considered wells. In particular, global median values indicated

an increase in R2 value from 0.83 to 0.89 for well 4, 0.72 to 0.92 for well 5 and 0.47

to 0.44 for well 6.

Optimization for a random DOE are presented in Figure 6.20. In all three wells,

we can see that the optimal steam injection policy exhibits a sharp decrease of steam

injection rates at the beginning of the simulation period. For wells 4 and 5, steam

injection rate remains at values of around 40 to 60 m3/day for the most part of the

250 time step production horizon. In well 6, we see that steam injection rates peaks

again soon after the sharp decrease at time step 50, only to immediately decrease

again, and remain at low values for the rest of the horizon. In Well 5, we also note a

sharp increase after time step 200, reaching a value of 120 at the end of the simulation

period.

6.5.3 CS9 - Nine wells

Distribution of global MAPE values (Equation 6.14) are shown in Figure 6.21, and

Figure 6.22 displays a representative sample of one of the considered DOEs. Similarly

to CS1 and CS3, we can note how the distribution of MAPE values exhibited by the

corrected model shows a significant reduction of the median and standard deviation,
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Table 6.7: R2 values exhibited by base and corrected model for each considered well
(4,5 and 6) for five (5) DOEs

DOE Model
Well

4 5 6

1
Base 0.92 0.89 -1.64

Corrected 0.61 0.35 0.32

2
Base 0.61 0.35 0.32

Corrected 0.86 0.82 0.88

3
Base 0.83 0.86 0.47

Corrected 0.91 0.94 0.93

4
Base 0.85 0.72 0.69

Corrected 0.89 0.91 0.84

5
Base -0.02 -0.26 0.88

Corrected 0.82 0.92 0.93

Global median
Base 0.83 0.72 0.47

Corrected 0.89 0.92 0.88

Figure 6.20: Optimal steam injection policy for CS3
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Table 6.8: Percentage of reduction of the corresponding statistic of the MAPE dis-
tributions comparing base and corrected model for the nine (9) wells case

DOE Median Standard deviation

1 64.6 47.4
2 76.8 65.7
3 60.1 32.9
4 63.6 96.4
5 48.5 65.6

Global median 62.9 61.6

as compared to the base model. In particular, as shown in Table 6.8 this reduction

ranges from 48.5% to 76.8% for the median, and between 32.9% and 96.4% for the

standard deviation. With global median values of a reduction of 62.9% for the median

and 61.6% for the standard deviation.

In terms of individual values, Table 6.9 shows the R2 value exhibited by the base

and corrected model for each individual well, for five (5) DOEs. In general, we note

a significant increase of R2 for all wells, for all DOEs. This reduction is summarized

with a global median value that for the corrected model is over 0.85 for all wells,

except for well 1. However, this particular well exhibits a significant improvement

over the base model in which the global median value was of -0.55.

The optimal steam injection policies corresponding to the nine well pairs are

shown in Figure 6.23. We can see that for some wells, the steam injection rates

decrease at the beginning of the production horizon, e.g . wells 6, 7, and 9. While

for other wells, we see a sharp increase in the rates towards the end of the period

of interest, for instance, wells 1, 4, 5. In other wells, we see a sudden increase and

decrease in the rate somewhere in the middle of the production horizon, such as is

the case for wells 3 and 8.
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Figure 6.21: Distribution of MAPE values exhibited by the corrected and base model
considering five (5) design of experiments of nine (9) wells and using the test data
with a limited sample size

Figure 6.22: Performance of the base and corrected models of a representative nine
(9) well sample
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DOE Model
Well

1 2 3 4 5 6 7 8 9

1
Base -1.05 0.13 0.57 0.04 0.87 0.86 0.78 0.91 0.60

Corrected 0.64 0.74 0.85 0.80 0.97 0.96 0.87 0.95 0.87

2
Base -1.62 0.17 0.72 0.82 0.79 -1.32 -0.05 0.2 0.88

Corrected 0.48 0.78 0.82 0.93 0.94 0.89 0.86 0.90 0.90

3
Base -0.55 0.47 0.42 0.21 -0.54 0.61 0.70 0.91 0.65

Corrected 0.59 0.89 0.89 0.83 0.78 0.92 0.84 0.50 0.93

4
Base -0.48 0.43 -2.10 0.93 0.36 0.37 0.80 0.56 0.80

Corrected 0.44 0.94 0.78 0.93 0.88 0.83 0.95 0.95 0.88

5
Base 0.08 0.74 0.85 0.80 0.50 0.41 0.75 0.88 0.7

Corrected 0.50 0.89 0.87 0.92 0.91 0.89 0.94 0.97 0.97

Global
median

Base -0.55 0.43 0.57 0.80 0.50 0.41 0.75 0.88 0.70
Corrected 0.50 0.89 0.85 0.92 0.91 0.89 0.87 0.95 0.90

Table 6.9: R2 values exhibited by base and corrected model for each considered well
(1-9) for five (5) DOEs

Figure 6.23: Optimal steam injection policy for CS9
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6.6 Summary

This chapter proposes a new method for the effective and efficient n-step prediction of

time-varying variables of a dynamical system. The method consists of: i) identifying

a one-step forecast model of the process that can be used recursively for n-step

prediction (base model) and ii) modeling the residuals exhibited by the base model.

The residual model will act as a correction term of the base model, and the coupling

is referred to as the, corrected model.

The method was tested on three (3) variants of a multi-well pair numerical reser-

voir simulation model of SAGD operations, built with publicly available data from

heavy oil reservoirs, including information from northern Alberta SAGD operations

and CMG-STARS examples. The three (3) variants differed on the number of well

pairs considered: one (CS1), three (CS3), and nine (CS9) well pairs.

The methodology extends the conventional surrogate modeling and optimization

(SMO) steps: design of experiments, evaluation of each sample using a high-fidelity

model, surrogate model identification and validation, and optimization. However,

unlike the conventional SMO approach, the objective is to predict a time-varying

variable. So, for example, the design of experiments consists in generating a prede-

termined number of time-varying inputs and the evaluation step involves obtaining

the corresponding time-varying outputs.

The methodology was tested on the basis of its capacity to reproduce the true

data (numerical reservoir simulation model) - bias, and how the sensitivity of the

bias to a particular design of experiments - variance. The bias was evaluated using

R2 and Mean Absolute Percentage Errors (MAPE), and the variance using five (5)

independent designs of experiments (DOEs). Results show that,

• Considering a one well pair, the corrected model could offer a median R2 of

0.95 and compared to 0.64 for the base model, furthermore the reduction of
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mean and standard deviation of the distribution of MAPE was 67% and 56%

• For the three well pair case, the corrected model was able to show median R2

values of between 0.88 and 0.92 among wells, and a reduction of global MAPE

values distribution moments of 49% and 71.2% for the median and standard

deviation, respectively.

• Regarding the nine well pair case, the corrected model exhibited median R2 val-

ues of over 0.85 values for all wells, except for Well 1, which was 0.5. Moreover,

a reduction of global MAPE values distribution mean and standard deviation

of, 62.9% and 61.6%, respectively.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

In the context of Steam Assisted Gravity Drainage (SAGD) operations, finding the

steam injection rate at every time step or policy, that maximizes long-term cumula-

tive performance represents a major challenge due to complexity of the process. This

complexity is manifested in several ways, i) the number of concurrent sub-processes,

e.g . heat transfer, counter- current flow, co-current flow, ii) potential reservoir het-

erogeneity, and iii) the lagged nature of the process. In this work, this problem is

formulated as an optimal control problem and two (2) machine learning strategies

are proposed as possible solutions, i.e. reinforcement learning and, dynamic

surrogate modeling and optimization.

Reinforcement learning (RL) In this work, action-value (Chapter 3) and policy

gradient (Chapter 4) implementations of RL are presented for the optimization of

one well and multi-well SAGD operations, respectively. Furthermore, a qualitative

analysis the optimal steam injection polices to gain insight in the SAGD process is

given. In both implementations optimal steam injection policies were obtained, ex-

hibiting a significant improvement both with respect to the initial (random) policies
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and constant steam injection strategies.

For both case studies, optimal steam injection policy exhibit a similar shape; two

regions are observed: 1) an increase or slight increase of steam injection rates, and 2)

a sharp decrease until reaching the minimum value. A qualitative analysis of these

policies suggest that for optimal SAGD operations:

1. Steam chamber expansion is key the overburden is reached (Region 1), after-

wards, reservoir temperature should be kept high (Region 2)

2. Pressure plays a vital role until the steam chamber reaches the overburden,

afterwards temperature is the driving mechanism of oil production

Dynamic surrogate modeling and optimization (DSMO) Reinforcement

learning currently represents one of the most promising methods to solve optimal

control problems. However, one of the most important drawbacks when applied to

SAGD processes, is that it requires the continuous execution of a potentially com-

putationally expensive numerical reservoir simulation model. To overcome this, we

propose a novel method for the effective and efficient prediction of time-varying out-

puts of a dynamical system that can be used to solve the cited optimization problem.

This method represents an improvement of the conventional recursive based pre-

diction approach. In this approach, a one-step prediction model(s) is identified and

then used recursively to predict n-steps in the future. The proposed method con-

sists of identifying a second model that can capture the variability of the residual

exhibited by the first model, and then act as a correction term. It relies on the

assumption the residuals of the recursive approach are correlated with time and thus

can be generalized over the input space.

Results suggest that the proposed approach consistently outperforms the conven-

tional recursive approach in terms of bias and variance (effectiveness). In particular,

the proposed or corrected model, exhibits a significant reduction of the errors (bias)
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considering several statistical realizations (variance). Moreover, we show that perfor-

mance is not significantly affected by number of samples, thus proving the efficiency

of the method.

More specifically, the major contributions of this research can be summarized as

follows:

• Formulate the problem of finding the optimal steam injection policy for SAGD

process as an optimal control problem

• Implement and evaluate action value and policy gradient algorithms to solve

the cited optimal control problem

• Interpret obtained optimal steam injection policies on the basis of its physical

relevance in the context of the SAGD process, e.g . role of temperature and

pressure

• Develop a new methodology for the construction of dynamic surrogate models

for rapid evaluations of SAGD steam injection policies

• Apply the developed methodology to case studies with varying number of well

pairs

7.2 Recommendations

Regarding the solution of the SAGD optimization problem, proposed future work

includes:

• In a multiwell setting, consider a restriction on the maximum amount of avail-

able steam, i.e. steam allocation problem. In the RL approach, this can be

achieved by giving the agent and artificially low reward when it takes an action

that violates the constraints. In DSMO, a the problem becomes a constrained
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optimization problem that can be solved using conventional optimization meth-

ods. This problem has been traditionally solved using real-time SAGD opti-

mization as reported in [92]

• Account for geological uncertainty in a robust optimization approach, e.g . max-

imize mean and minimize standard deviation of the NPV distribution. Al-

though RL by design is able to handle uncertainty as referred in Equation

3.1, due to the computational expense of the reservoir simulation it might not

be feasible. However, including geological uncertainty parameters as input for

the dynamic surrogate model and then implementing robust optimization is a

viable option

• Obtain optimal steam injection policies for different economical parameters

(e.g . oil price) and provide insight in SAGD optimal operations in for example,

high and low oil price scenarios

In terms of the RL implementation possible recommendations are:

• Evaluate the use of other widely used RL algorithms, such as, Actor-Critic

Method (A2C, AC3), Deterministic policy gradient, and study results in terms

of, objective function optimal value, steam injection policies, number of it-

erations (or episodes) required, and in deterministic algorithms (e.g . policy

gradients) the robustness of the learning process

• Increase the number of actions per well could provide the agent more degrees

of freedom and could have an important impact on the final optimal policy

Regarding the DSMO approach some suggestions include:

• Extend the work developed in Chapter 5 and consider using a single Multiple

Input Multiple Output (MIMO) systems for the one-step forecast models to
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predict all the required outputs (e.g . oil production rates, average pressure)

for each well, and perhaps to predict all one-step ahead variables for all the

considered wells

• Study the effect of the number of previous steps information on the input of

the models

• Extend the framework described in Chapter 6 to predict the full 3D distribution

of pressure and saturations over time, as opposed to time series. This could be

achieved by adapting the conventional Gradient Boosting framework described

in Chapter 1 for dynamic surrogate modeling. In particular, using M weak

learners, where each learner will be modeled on the residuals exhibited by the

previous one. Additionally, leveraging convolutional neural networks for the

3D distributions for the M weak learners
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