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Abstract

This thesis broadly investigates monopole-driven confinement transitions in parton gauge

theories of fractionalized phases of matter. Chapter 2 studies the Dirac spin liquid, a

2d fractionalized Mott insulator with gapless Dirac fermion excitations coupled to a com-

pact U(1) gauge field. We use semiclassical instanton methods not relying on conformal

symmetry to construct all monopole operators as ’t Hooft vertices – instanton-induced

interactions between fermions that have their origin in zero modes of the Euclidean Dirac

operator in an instanton background. These monopole operators serve as order parameters

for conventionally ordered states proximate to the Dirac spin liquid, as determined by their

quantum numbers under lattice symmetries, which we are able to capture on bipartite lat-

tices. Chapter 3 is a detailed technical description of instanton-induced interactions and

their symmetry-breaking effects in CQED3, motivated by a fermionic parton description

of hardcore bosons on a 2d lattice with U(1) symmetry. We show how the proliferation of

instantons carrying fermion zero modes can lead to spontaneous breakdown of this sym-

metry, leading to either a conventional superfluid or an exotic ‘paired superfluid’. Chapter

4 generalizes this study to Ising spins on a 2d lattice with Z2 symmetry, represented by

N Majorana partons. By varying the Chern number of the Majorana bandstructure, we

access chiral spin liquid, paramagnetic, and long-range ordered phases of the Ising spins. A

certain SO(N) Chern-Simons gauge theory with massless Majorana fermions is argued to

be the critical theory that interpolates between these different phases. Finally, Z2-charged

monopoles are shown to drive confinement in such a theory, leading to a magnetic phase

with spontaneous breakdown of the Ising Z2 symmetry.
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Chapter 1

Introduction

This thesis is broadly on theories of phase transitions between so-called fractionalized

phases and conventional symmetry-broken phases. To place such a study in context, we

begin with a review of the Landau-Ginzburg-Wilson theory of phase transitions and discuss

why this theory is not straightforwardly applicable to the transitions studied in this work.

1.1 Landau-Ginzburg-Wilson Theory

In 1937, L.D. Landau published two extraordinary papers [4] formulating a theory of con-

tinuous phase transitions, initiating a research program the results of which now form the

basis of our understanding of much of condensed matter and quantum field theory. Landau

noted that the majority of then known transitions, for example between solids of different

crystal structures or between a ferromagnet and paramagnet, involved the “sudden disap-

pearance or appearance of some elements of symmetry”.1 A quantitative description of this

phenomenon is afforded by the notion of a Landau order parameter ϕ(x), which is nonzero

on average in the symmetry-broken/ordered phase and zero in the symmetric/disordered

phase. It is clear that ϕ must transform nontrivially under the symmetry in question. In

the example of a uniaxial magnet, ϕ(x) is the local magnetic moment along the preferred

axis, and a nonzero average ⟨ϕ(x)⟩=m results in a magnetized state that spontaneously

1“The problem is not so much to see what nobody has yet seen, but to think what nobody has yet thought
concerning that which everybody sees”, Arthur Schopenhauer reflects in his Parerga und Paralipomena
(1851).
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breaks the Z2 symmetry ϕ→−ϕ present in the disordered phase – characterized by random

values of ϕ(x) across the system. An investigation of the phase diagram of a certain mate-

rial thus begins with the identification of an appropriate order parameter. The next task

is to obtain the free energy F (T,m) from which thermodynamical quantities of interest

can be calculated; for example, the specific heat or susceptibilities of various kinds and

associated critical exponents that characterize their singular behavior at the transition.

For concreteness, let us briefly sketch this program for the Ising model of a uniaxial

ferromagnet on a hypercubic lattice, described by the partition function

Z =
∑︂

{sx=±1}

e
∑︁

x,x′ Jx,x′sxsx′ . (1.1)

The discrete spins sx attain the binary values ±1 on any lattice site x, and the function

Jx,x′ = β
∑︁

µ̂ δx,x′+µ̂ is assumed to couple nearest neighbors, with β = T−1 as the inverse

temperature and µ̂ being vectors from a lattice site to all its nearest neighbors. Straightfor-

ward expansions of the partition function in the low and high temperature limits show that

there are two distinct phases in any dimension D>1. Näıvely, at low temperatures T→0,

the energy is minimized by the symmetry-breaking ferromagnetic state si=1 on all sites,

which forms the dominant contribution to the partition function. At high temperatures,

the energy becomes unimportant and all configurations contribute more or less equally to

the partition function suggesting a disordered phase. A more careful analysis accounts for

entropic effects of excitations in the low temperature phase, but supports the conclusion

that ordered and disordered phases exist in dimensions D>1.

Introducing a continuous field ϕx∈R, the partition function can be exactly rewritten as

Z ∝
∫︂
Dϕe

− 1
4

∑︁
x,x′ ϕxJ

−1
x,x′ϕx′

∑︂
{sx}

e
∑︁

x ϕxsx ,

=

∫︂
Dϕe

− 1
4

∑︁
x,x′ ϕxJ

−1
x,x′ϕx′+

∑︁
x ln 2 coshϕx . (1.2)

From the first line, we observe that the interaction between spins is encoded in the in-

teraction of a spin with a local field ϕx. The interpretation of the latter as the local

2



magnetization at x is enforced by the observation that the variational saddle point of ϕx

is at ⟨sx⟩. Therefore, ϕx is the Landau order parameter for the Ising model. Assuming ϕ

to be a uniform constant that minimizes the action is precisely the content of mean-field

theory. As the transition temperature is approached from above, we may assume that ϕx

is infinitesimally small and Taylor expand the potential derived above. Moreover, as the

ordered phase is characterized by a uniform magnetization, we may further posit that its

variation from site to site on the lattice is small near the transition, allowing us to replace

the lattice variable ϕx and its lattice derivatives with a smooth field ϕ(x). We thus arrive

at the Landau-Ginzburg action2 that governs the dynamics of the order parameter

S =

∫︂
dDx

[︄
1

2
(∂µϕ)

2 +
∞∑︂
n=2

g2n
(2n)!

ΛD−n(D−2)ϕ2n

]︄
(1.3)

where the “bare” coupling constants g2n are O(1) numbers that can be explicitly derived

from eq. (1.2), and the factors of Λ = a−1 are obtained on converting sums to integrals.

The continuum fields have been defined as ϕ(x)∼Λd/2−1ϕx. It is clear that our continuum

theory can only be valid on length scales larger than Λ−1, so the Fourier modes ϕ(k) have

nonzero support only for k∈(0,Λ).

The first task of identifying an order parameter and its dynamics now complete, the goal

is to now perform the path integral over ϕ and thus compute the free energy F =−T lnZ,

which encapsulates the thermodynamics of the transition. Let us briefly discuss how this

is traditionally done in the context of the Ising transition. Unfortunately, in the vast

majority of cases, the calculation of the free energy can only be done perturbatively in the

interactions g2n, the matter being all the more complicated by the presence of an infinite

number of them. This turns out to be a general feature; the Landau-Ginzburg action for

any order parameter in the representation of a symmetry group will involve all possible

2The lattice propagator has been replaced with the continuum propagator, which is an excellent ap-
proximation even for |x−x′|∼a the lattice spacing. The lattice propagator has the sole effect of regulating
the divergence in the coincidence limit x= x′, which can equivalently be done with a cutoff Λ∼ a−1 on
momenta. Strictly speaking, one must perform a gradient expansion of the lattice propagator, which leads
to derivative interactions of the form ϕ∇2nϕ. Such interactions are almost always irrelevant in a sense
to be described below. A general principle in writing the Landau-Ginzburg action is to allow all possible
interactions allowed by symmetry with a minimal number of derivatives.

3



terms allowed by symmetry. Still, we may hope that the leading perturbative corrections

near the transition (where ϕ is small) will come from monomials of small degree, for example

the ϕ4 term in the potential.3 For instance, we may perturbatively calculate the inverse of

the susceptibility

χ−1(k) = k2 + [g2Λ
2 − Σ(0)]− [Σ(k)− Σ(0)],

≡ k2 + µ− [Σ(k)− Σ(0)], (1.4)

where Σ(k) is the self-energy and µ the renormalized mass in the language of field theory.

The transition is defined by the divergence of the exact static susceptibility χ(k = 0),

that is µ = 0. A direct application of diagrammatic perturbation theory reveals that

corrections from interactions to the susceptibility are ordered in powers of g4(µΛ
−2)(D−4)/2.

Evidently for D > 4, the corrections are smaller than µ in the critical region µ → 0,

validating perturbation theory. However, for the interesting cases of dimensions D < 4,

the perturbative corrections overwhelm the mean-field result and it becomes necessary

to account for “all orders”, quashing any hope of a direct perturbative analysis of the

thermodynamics near the transition.4

The culprit behind the failure of direct perturbation theory in the critical region turns

out to be the low momentum fluctuations of the order parameter ϕ, which lead to infrared

divergences in various Feynman diagrams. The renormalization group (RG) was invented

in part to address this problem. While there were many contributors to the formalism,

the deepest insights inarguably came from K.G.Wilson [5, 6]. In its full generality, the

RG is a set of metaphysical ideas that have to be adapted to the problem in question. We

shall limit ourselves here to a brief qualitative discussion of its application in the theory

of the Ising transition being discussed. Since the invalidity of direct perturbation theory

is caused by k∼ 0 Fourier modes of the order parameter, the idea is to leave these alone

3This hope can be bolstered by an analysis of the superficial degree of divergence of various Feynman
diagrams.

4In the ’upper critical dimension’ D = 4, the perturbative corrections are logarithmic of the form
g4 ln

(︁
Λ2/µ

)︁
+O(g24),

4



and first account for the effects of large momentum modes. This is done by means of a

decomposition

ϕ(x) =

∫︂ sΛ

0

dDk

(2π)D
eikxϕ(k) +

∫︂ Λ

sΛ

dDk

(2π)D
eikxϕ(k),

≡ ϕ<(x) + ϕ>(x), (1.5)

where ϕ< and ϕ> are called slow and fast modes, respectively. Inserting this into the action

(1.3), the path integral over the fast modes ϕ>(x) can be computed in perturbation theory.

For inappropriate but historical reasons, this process of integrating out fast modes is called

a renormalization group transformation. All perturbative corrections coming from the fast

modes turn out to be finite, as they involve momentum integrals over a shell (sΛ,Λ) that

excludes a neighborhood of k=0. The result is a new effective action for the slow modes

that is exactly of the same form as the original action, but with renormalized couplings

g2n(sΛ). By making the momentum shell (sΛ,Λ) infinitesimally thin, a set of differential

“flow equations”

β2n =
dg2n
d ln s

, (1.6)

can be perturbatively derived to describe the “RG flow” of the couplings as modes in

momentum shells (sΛ,Λ) are iteratively integrated out. This suggests a hope that may

salvage our failed perturbative endeavor earlier – that is β2n > 0 so that the couplings

g2n(sΛ) decrease as s is decreased, so that the effective interaction that governs the k∼0

modes is weak enough to validate perturbation theory in the renormalized couplings in the

critical region. This turns out to not be true, but the line of thought nevertheless leads to

great progress and new ideas that form the foundations of modern field theory. It will also

give us the occasion to introduce language that is used throughout this thesis.

5



For the Ising transition, the first few terms in the first few beta functions are

β2 ≈ −2g2 −
KDg4
1 + g2

,

β4 ≈ (D − 4)g4 +
3KDg

2
4

(1 + g2)2
− KDg6

1 + g2
,

β6 ≈ (2D − 6)g6 +
15KDg4g6
(1 + g2)2

, (1.7)

where KD is the surface area of a unit sphere in D dimensions. Trivially, we first note

that turning off all couplings g2n = µ = 0 implies that all beta functions are zero. This

defines a fixed point of the RG flow, called the Gaussian or free fixed point. In mean-field

theory, this is the choice of couplings that corresponds to the critical point g2∝(T−Tc)=0.

Invariance of the couplings in a theory under RG flow implies scale invariance, for small

and large momentum modes all interact with the same numerical value of the couplings.5

As implied by β2 < 0, a nonzero g2 is amplified under RG flow in any dimension D, and

takes us away from the Gaussian fixed point. Depending on the initial sign of g2, we end up

in the paramagnetic or ferromagnetic phases of the Ising model. This means the Gaussian

fixed point is unstable to the mass term g2ϕ
2, which is said to be a relevant operator at this

fixed point. On the other hand, all the interaction couplings g4n flow to zero in D≥4, so

that the k∼0 modes of the order parameter roughly do not interact in those dimensions.

This means the operators g2nϕ
2n are irrelevant at the Gaussian fixed point. This causes

critical exponents to simply attain their mean-field values as obtained from the free part

of the Landau-Ginzburg action which defines the Gaussian fixed point.

Unfortunately, the flow equations in D< 4 instead show that small momentum modes

do interact strongly due to the relevancy of the coupling g4 at the Gaussian fixed point.

Since g4(sΛ) grows as s is lowered, our earlier hope of formulating a perturbation series in

this renormalized coupling seems to have been crushed. A simple but elegant solution to

this problem was provided by K.G.Wilson and M.E. Fisher in the charmingly titled paper

[7], “Critical Exponents in 3.99 Dimensions”, by formulating a perturbative expansion in

5For many fixed points, including the Wilson-Fisher and Gaussian, scale symmetry is actually extended
to conformal symmetry.

6



the quantity ϵ=4−D in addition to the interaction g4. The benefit of treating dimension

as a continuous variable is that in a neighborhood of ϵ= 0, the interactions are relevant

but still weak. In this limit, the flow equations can be explicitly solved to find that the

bare couplings at the transition flow to a new fixed point

(g∗2, g
∗
4, g

∗
6, ...) ∼ (−ϵ, ϵ, 0, ...) +O(ϵ2). (1.8)

This is the celebrated Wilson-Fisher fixed point that governs the Ising transition in 4−ϵ

dimensions.6 In the limit ϵ→ 0, it fuses with the Gaussian fixed point. Treating ϵ as

small, a perturbation series can be formulated in the couplings g∗2n to redo the previous

calculation of the susceptibility [8]. Perhaps surprisingly, the critical exponents calculated

as a series in ϵ turn out to be fairly accurate even if we set ϵ = 1 to obtain the integer

dimension D=3. Of course, the existence of the fixed point as we move away from D=4

can only be perturbatively established in this scheme. For interacting fixed points such as

the Wilson-Fisher that are a finite ‘distance’ away from the free fixed point, the strategy is

always to introduce a parameter into the theory that brings it close to the free fixed point,

making it perturbatively accessible. One is the ϵ-expansion discussed above. The other

is a 1/N -expansion. The basic idea of the latter, in the context of the Ising transition,

is to consider generally a vector order parameter ϕα, where α = 1, ..., N . In the limit

N →∞ and fixed dimension, one can show that the theory is again weakly coupled and

organize a perturbative expansion in powers of 1/N , hoping that accurate results for the

Ising transition will be obtained for N = 1. More detail can be found in the beautiful

monograph by A.M.Polyakov [9].

This concludes our brief tour of the theory of phase transitions in conventional phases

described by a local Landau order parameter. In this thesis, we will be concerned with

phase and transitions where this formalism is not at all straightforward to implement. To

6By linearizing the flow equations (1.7) at this point, one observes that there is only one relevant
operator at the Wilson-Fisher fixed point that is a linear combination of the mass (g2−g∗2)ϕ2 and inter-
action (g4−g∗4)ϕ4 operators. This combination tunes us away from criticality into the ferromagnetic or
paramagnetic phases.
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segue into this next topic, we end with a few additional observations from the discussion

above. The Gaussian and Wilson-Fisher fixed points discussed above are both unstable,

for there exist relevant operators that amplify under RG flow and take us away from the

fixed point. Such unstable fixed points generically describe phase transitions. The relevant

operators have the simple interpretation of various parameters (temperature, pressure,

external fields etc.) that one can tune to pass into proximate phases. The (ir)relevancy of

an operator at a fixed point can be deduced from its scaling dimension at that point, which

characterizes how operators respond to the scale transformations that form an emergent

symmetry at fixed points. Generally given a basis set of scaling operatorsOi that transform

homogeneously under scaling,

x→ λx, Oi(x)→ Oi(λx) = λ−∆iOi(x), (1.9)

where ∆i is the scaling dimension of Oi at the fixed point. This is similar to how ro-

tation invariance can be used to decompose a general operator into angular momentum

components. The scaling dimension fixes the correlator of Oi at the fixed point to be

⟨Oi(x)Oi(0)⟩ ∼
1

|x|2∆i
. (1.10)

Perturbing a fixed point action S∗ by a local operator Oi(x), and scaling coordinates as

above,

S∗ +

∫︂
dDxOi(x)→ S∗ +

∫︂
dDxλD−∆iOi(x). (1.11)

If ∆i>D, then evidently Oi(x) is irrelevant at the fixed point, being driven to zero under

RG flow. On the other hand, ∆i <D implies the operator is relevant at the fixed point,

and forms a perturbation that grows in importance at low momenta. A fixed point with

no relevant operators is said to be stable. These correspond to critical phases of matter.7

The Dirac spin liquid studied in chapter 2 is purported to be such a phase.

7Strictly speaking, fixed points can have either zero or infinite renormalized correlation length ξ, the
characteristic length scale of fluctuations of the order parameter. We neglect the ξ=0 case, for they imply
only on-site or “ultralocal” correlations; the connected correlation function vanishes. This does not mean
such phases are trivial, for they could be described by a nontrivial topological quantum field theory. The
chiral spin liquid studied in chapter 4 is one example of such a phase.
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1.2 Fractionalization and parton gauge theories

The early 1970s marked the dawn of the era of topology in condensed matter physics, with

the discovery of phases that could not be distinguished on the basis of broken symme-

try. The historical example is the superfluid transition in thin helium films. The Landau

theory, by means of the Mermin-Wagner theorem8, predicts that the superfluid order pa-

rameter cannot have a nonzero average in two dimensional systems. It was realized by

V. L.Berezinskii [10, 11], and independently by J.M.Kosterlitz, and D. J. Thouless [12]

that there nonetheless exists a transition in such films driven by proliferation of vortices,

which arise as topological defects. The two phases on either side of this BKT transition

can be distinguished by the behavior of the correlations ⟨φ(x)φ∗(0)⟩ of the superfluid order

parameter φ∈C, although ⟨φ⟩ itself is zero in both phases so the epithet ’order parameter’

is not to be taken seriously in the Landau sense. In the low temperature phase, the corre-

lation decays as a power law |x|−η with a temperature dependent exponent η(T ). In the

high temperature phase, there is exponential decay similar to other disordered phases in

the Landau framework. However, the formalism used to study the transition is not different

from the Landau-Ginzburg-Wilson theory discussed above. There still exists a Landau-

Ginzburg action for the order parameter φ (which never condenses in either phase). Upon

identifying vortex defects in the phase of φ as playing an important role, one can rewrite

the Landau-Ginzburg action in terms of ’vortex fields’ (called a duality in field theory) at

which point the theory outlined in the previous section can be straightforwardly applied.

It is with the experimental discovery of the integer and fractional quantum Hall effects

in the 1980s [13, 14] that our ability to devise such descriptions began to be truly tested.

Of these, the former belong to a now wide class of phases that can mostly be understood

in the framework of electronic band theory, with interactions playing little role.9 The frac-

8A no-go theorem on the possibility of spontaneous symmetry breaking in low dimensions. This was
first demonstrated for crystal structures by L.D. Landau, building on an argument of R. E. Peierls, already
in his seminal paper on phase transitions [4]. By the ‘Arnold principle’, it is therefore attributed now to
Hohenberg, Mermin, Wagner, Coleman, and Berezinskii.

9There is an ongoing attempt to bring these into an ‘extended’ Landau paradigm by describing topo-
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Figure 1.1: Néel state on a square lattice.

tional quantum Hall effect belongs to a class of phases that cannot be understood without

interactions, involving the phenomenon of fractionalization – the low energy excitations of

such phases are described by quantum numbers that are fractions of those of the elemen-

tary constituents (lattice bosons or fermions). The first example of such a phase, actually

predating the discovery of quantum Hall effects, is the “resonating valence bond” (RVB)

state proposed by P.W.Anderson in 1973 as a possible ground state of an antiferromag-

netic Mott insulator on the triangular lattice [16].10 A ‘metamodel’ for antiferromagnets

is the spin-1/2 Heisenberg model

H =
∑︂
i<j

JijSi · Sj, [Sαi , S
β
j ] = iδijϵ

αβγSγj , (1.12)

on a lattice of interest. If the spins are treated classically and Jij > 0 couples only near-

est neighbors, the obvious ground state for a square lattice is the Néel state depicted in

figure 1.1. This is a Landau symmetry-breaking phase with the staggered magnetization

(−1)ix+iym in some randomly chosen direction serving as a Landau order parameter. In

the quantum case, this is no longer the true ground state as it is not eigenstate of H. How-

logical phases as states with spontaneously broken ‘higher-form symmetries’ [15].
10The original proposal was for the spin-1/2 Heisenberg model with only nearest neighbor antiferro-

magnetic interactions. This model is now known to exhibit an ordered state in which the moments are
angled at 120◦ relative to each other. However, next nearest neighbor interactions can change this picture
considerably.
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ever, it turns out to remain an excellent approximation to the true ground state, which

simply has the average local magnetization reduced due to quantum fluctuations [17].

However, it is clear that the Néel state ceases to be the ground state even classically if

Jij also couples next nearest neighbors with comparable strength, leading to frustration of

magnetic order. It is in such a context that Anderson proposed the RVB state. Noting

that the energy of the exchange interaction Si ·Sj is minimized if the spins form a singlet

(|↑⟩i⊗|↓⟩j−|↓⟩i⊗|↑⟩j), the RVB state is a superposition of various such singlets. More

precisely, it is a linear superposition of dimer coverings D of the lattice, with each dimer

being a spin singlet:

|RVB⟩ =
∑︂
D

d(D) |D⟩ . (1.13)

Two example terms in the sum are depicted in figure 1.2. The coefficients d(D) can be

further written as a product over dimers (ij) of functions dij, which serve as variational

parameters. If these are functions only of the distance |xi−xj|, then it is clear that such

a state preserves all lattice symmetries in addition to full spin rotation symmetry (no

magnetization). However, the state as written also seems quite different to a trivially

disordered state such as a paramagnetic state found at infinite temperature. The key

difference turns out to be long-range entanglement of well-separated spins on the lattice;

the RVB state cannot be smoothly transformed, by tuning dij(D), to a product state like∏︁
i |Szi ⟩. This is the defining feature of a quantum spin liquid (QSL). It is clear that no

straightforward order parameter exists to describe such phases. We shall see later that

the low energy excitations above such states carry fractional quantum numbers. Similar

variational states, called Laughlin states, were proposed as descriptions of ground states

of FQH systems [18].

Early studies of fractionalized phases relied on such explicit variational constructions.

While these allow to build intuition and emphasizes the entanglement structure of such

states, it is not obvious what a “parent Hamiltonian” could be or what the low energy

excitations (quasiparticles) are. It is also not clear where such states fit within the broader
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Figure 1.2: Two dimer coverings that form components of the RVB state on a square
lattice.

phase diagram of antiferromagnetic materials, which certainly includes Landau-ordered

states such as the Néel state in figure 1.1. An appropriate theory of such phases must

then allow us to study transitions between a QSL and any proximate phases, similar to

the Landau-Ginzburg-Wilson theory. Parton methods achieve precisely this feat, rephras-

ing the description of fractionalized phases in a language amenable to the application of

Landau-Ginzburg-Wilson theory. The basic idea behind such methods is to represent a

local physical degree of freedom, for example a lattice spin or electron, as a bound state of

fictitious particles called partons. In fractionalized phases, it so happens that these partons

become unbound at low energies, carrying quantum numbers that are a fraction of that of

the physical composite. This is similar to the liberation of quarks in the Standard Model,

with one key difference. Quarks are bound into hadrons at energies much smaller than

ΛQCD∼ 250 MeV, and become asymptotically free at high energies. Precisely the reverse

occurs in fractionalized phases of condensed matter – partons become unbound and acquire

a physical reality only at low energies. This analogy hints that a parton description will

be a gauge theory. This is reviewed in detail for the various parton constructions used in

this thesis in the main chapters below, and only a brief sketch is provided here to convey

the essential ideas.

In the context of spin models, representing the local spin-1/2 basis as |Szi ⟩, one possible

12



parton construction begins by noting that

|Szi ⟩ ↦→ c†iσ |0⟩ (1.14)

is an isomorphism between span{|↑i⟩ , |↓i⟩} and span{c†i↑ |0⟩ , c
†
i↓ |0⟩}, the latter being a

subspace of the four dimensional Fock space of the fermionic partons ciσ. This physical

subspace is specified by the single-occupancy constraint

∑︂
σ

c†iσciσ = 1. (1.15)

The isomorphism (1.14) maps the spin-1/2 operator

Si ↦→
1

2
c†iασαβciβ, (1.16)

where repeated spin (Greek) indices are always summed over. Any spin-1/2 Hamiltonian

H{S} can thus be written as a parton Hamiltonian H{c} using such a representation of

the spin operators; for instance the Heisenberg model is

H =
∑︂
ij

Jij(c
†
iµσµνciν) · (c

†
jλσλρcjρ) (1.17)

The virtue of this representation is that it allows for a broader range of mean-field theories

than the original spin Hamiltonian. The latter generally leads only to magnetic states with

order parameter ⟨Si⟩ when subjected to a mean-field decoupling. The crux of the problem

is to then interpret the meaning of the parton mean-field states in terms of the original

spins; this is one of the main problems addressed in this thesis. For instance, one possible

mean-field decoupling of the quartic interaction in the above model leads to the mean-field

model

Hmf ≈
∑︂
ij

[tijc
†
iσcjσ + h.c.] +

∑︂
i

a0(i)[c
†
iσciσ−1], tij ≡

⟨︂
c†iσcjσ

⟩︂
, (1.18)

where a0(i) is a Lagrange multiplier field that imposes the half-filling constraint (1.15). The

mean-field tij above is one choice that preserves spin-rotation invariance, and motivated

by a desire to produce states akin to the RVB state. Of course, this choice is not unique
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by any means. There could also be pairing terms for the partons, which we have neglected

to include, or a more general hopping term that mixes the parton spins. As such, there

is clearly enormous freedom in the choice of mean-field ansatz in the parton framework,

made possible by various decouplings and patterns of tij. The correct choice for a given

spin model is undoubtedly decided by symmetry and energetic considerations, but it is

typically impractical to search for the lowest energy state among all possible mean-field

solutions. Instead, the utility of parton methods is mostly in the discovery of novel phases

that can plausibly occur in a given system of (in this case) spin-1/2 moments. In particular,

it allows us to combine fractionalization with band topology (as tij amounts to a choice of

parton bandstructure) to discover an entire host of unconventional phases. For instance,

by including pairing terms between the spinons, one can arrive at a Z2 gauge theory that

describes the RVB state of Anderson [19, 20]. Instead, choosing tij= t real on a honeycomb

lattice leads to relativistic spinons and the so-called Dirac spin liquid, which forms the

subject of chapter 2. Yet another is the Kitaev spin liquid discussed in chapter 4 that can

be obtained from a Majorana representation of spin-1/2. For each of these spin liquids,

there is an enormous experimental literature on candidate materials, synthetic designs,

and possible means of detection. As the field is still rapidly evolving, we preclude here a

discussion of the experimental status of the search for various QSLs and refer the reader

to the review [21]. However, we stress that the existence of such phases in theory has been

established beyond any shred of doubt, in large part due to exactly solvable models with

spin liquid ground states [22–24].

Returning to the development of the parton method, to check if the mean-field ansatz

(1.18) really does correspond to a plausible phase of spins, we must investigate its stability

under fluctuations of the mean-field tij, of which there are two kinds – amplitude and phase.

Amplitude fluctuations (of tij) are typically gapped [19, 20, 25] or correspond to higher

derivative terms in a continuum limit, thus irrelevant compared to phase fluctuations.
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Including the latter by replacing tij→ tije
iaij , the parton model can be written as

H =
∑︂
ij

[tije
iaijc†iσcjσ + h.c.] +

∑︂
i

a0(i)[c
†
iσciσ−1] +Hg, (1.19)

where Hg specifies the dynamics of aij that we shall shortly discuss. The matter part

above describes a gauge theory as foretold earlier, being invariant under the U(1) gauge

transformations,

ci → eiλici,

aij → aij + (λi − λj). (1.20)

Of course, this is a consequence of the ansatz chosen. If pairing terms are included in

Eqs. (1.18)-(1.19), then there may only be a Z2 gauge invariance. This gauge invariance

actually emerges from the parton decomposition (1.16) itself. Clearly, a U(1) transforma-

tion of the partons as just defined leaves the local spin operator invariant, and thus any

spin model will also be gauge invariant.11

The dynamics for aij specified by Hg in Eq. (1.19) must preserve gauge invariance, and

all the symmetries of the mean-field ansatz specified by the matter part. This includes

compactness aij ∼ aij+2π. These constraints uniquely determine the gauge dynamics to

be that of compact U(1) gauge theory:

Hg =
∑︂
ℓ

e2ℓ +K
∑︂
□

(1− cos f□), f□ =
∑︂
ℓ∈∂□

aℓ, (1.21)

where eℓ and f□ denote the electric field on edge ℓ and magnetic field on the face □. The

latter is the lattice curl of aℓ, i.e. the sum of aℓ over the set of boundary edges ∂□ of

the face □. As usual, the electric field is a time-derivative of aℓ and obeys the canonical

commutation relation [aℓ, eℓ′ ] = iδℓℓ′ . The presence of the electric field means the gauge

constraint is modified from the hard relation (1.15) enforcing half-filling, to the Gauss law

(div e)i =
∑︂
σ

c†iσciσ − 1. (1.22)

11In fact, as discussed later in chapter 2, the largest group of transformations on the partons that leaves
the spin invariant is actually SU(2). However, this gauge group will be broken down to a U(1) or Z2

subgroup by a specific choice of mean-field ansatz such as (1.19).
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On short distances comparable to the lattice constant, the electric field must be zero

and the hard half-filling constraint is recovered, so that only spins are visible. At long

distances, the partons ciσ can transition from being purely formal degrees of freedom to

physical quasiparticles. These renormalized low energy partons are called spinons in the

context of spin liquids.

1.3 Polyakov confinement

Most of the parton constructions in this thesis involve compact U(1) gauge theory directly

or indirectly, coupled to partons with various bandstructures. It is therefore expedient to

discuss at this point some general properties of the pure gauge theory, i.e. in the absence

of any matter, described by the Hamiltonian and Gauss law

Hg =
1

2

∑︂
ℓ

e2ℓ +K
∑︂
□

(1− cos f□), (div e)i = 0. (1.23)

Traditionally, K ∝ g−2 where g is the gauge coupling. Some aspects of this theory are

discussed in chapter 3. In this section, we shall demonstrate that test charges in this

theory are subject to a confining force that grows linearly with their separation, a result

established in a historic paper by A.M.Polyakov [26].

In the limit K→0, the ‘electric term’ (kinetic part) in (1.23) dominates and the eigen-

states are then those of eℓ, but subject to the Gauss constraint (dive)i=0 on every site i.

The compactness of aℓ and the canonical relation [aℓ, eℓ′ ]= iδℓℓ′ implies that the spectrum

of the operator eℓ is integral. Therefore, the operator (dive)i also has an integral spectrum

implying the quantization of charge in integral units. It is then easy to see that the ground

state has eℓ=0 on all links of the lattice, and that gauge invariant excited states are ori-

ented loops of links carrying an integer valued electric flux. Explicit formulae for excited

states and energies can be inductively found starting from the ground state. Let the latter

be denoted |0⟩. Excited states are obtained by increasing the electric field eℓ on the links of

a set of closed, oriented loops {C} by {n(C)}, where n(C)∈Z. The commutation relation
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[aℓ, eℓ′ ]= iδℓℓ′ allows us to construct an operator that does this. The excited states are then

|{Ci, ni}⟩=ein1

∮︁
C1

aℓ ...e
inN

∮︁
CN

aℓ |0⟩ , E(Ci, ni)=
∑︂
i

1

2
[ni]

2 P (Ci), (1.24)

where E(Ci, ni) is the energy of the state and P (Ci) is the perimeter of the loop Ci. Unlike

standard U(1) gauge theory with free gapless photons, the compact theory is gapped in

the electric limit K=0 due to the integral spectrum of the electric field.

Equation (1.24) provides the energy of excited states in the absence of gauge charges.

Let us now place two test charges, ±1 at sites i and j. The Gauss constraint is modified on

those sites to (dive)i=1 and (dive)j=−1. Then every gauge invariant state must contain

an electric field line that begins and ends on i and j respectively. In addition to this field

line, there can be closed loops at various places. The new ground state is the field line

with the shortest length, that is

|0ij⟩ = ei
∫︁ j
i aℓ |0⟩ , E0,ij=

1

2
|i− j|. (1.25)

There is an extensive cost in energy to separate opposite test charges, which are thus

linearly confined. The tension in the electric flux line confining the test charges is the

energy per unit length, 1/2. This linear confinement of test charges is quite different to

the standard Coulomb force in two dimensions, which logarithmically confines.

In the opposite limit K→∞, the magnetic term in Eq. (1.23) must be minimized. Since

the Hamiltonian in this limit is a sum over plaquettes of commuting terms, we can restrict

attention to a single plaquette. It is incorrect to conclude that there exist degenerate

vacua f□ = 2πn□, which we shall call n-vacua.12 The true dynamical variable in the

compact theory is exp(iaℓ), which implies the total flux is defined only modulo 2π. A

close analogy is offered by the problem of a quantum particle on a ring, immersed in a

gravitational potential (1−cos θ). The position θ of the particle is defined only modulo

2π, so the labels θn = 2nπ for the classical ground state are all identified as the same

physical point. However, there is a finite tunneling amplitude (due to the kinetic term) for

12The full ground state is then a product state over plaquettes: ⊗□ |n□⟩, which has total flux
∑︁

□ 2πn□.
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ei, ̂y

σīσī− ̂x

Figure 1.3: Construction of fields σī on vertices of the dual lattice (blue), defined by
σī− σī−x̂=ei,ŷ. The same is done for other links in a consistent way (right-left on the dual
link pierced by ei,µ̂), as denoted by the relative orientation of black and blue arrows.

the particle to wind around the ring an integer number of times. As we shall see shortly,

such tunneling events also occur in the compact U(1) gauge theory between the different

n-vacua.

We shall proceed with the analysis by first solving the Gauss constraint in order to

determine the physical states (on the square lattice for simplicity). It is easy to do this

in the continuum and then adapt the solution to the lattice. In the continuum, the Gauss

law div(e)=∂µeµ=0 can be solved by setting eµ=ϵµν∂νσ for some scalar field σ. To adapt

this to the lattice, let us consider the dual lattice as shown in figure 1.3 and place a scalar

field σī on its sites ī. Consistent with the relative orientations of blue and black arrows in

figure 1.3, we define

2πei,x̂ = −∆yσ(ī− ŷ),

2πei,ŷ = ∆xσ(ī− x̂),

2πei,−x̂ = ∆yσ(ī− x̂− ŷ),

2πei,−ŷ = −∆xσ(ī− x̂− ŷ), (1.26)

where ∆µ is the lattice derivative along the direction µ̂. It can be checked that the Gauss

constraint is automatically satisfied on expressing the electric field in terms of σī as above.
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The scalar σī is called the dual photon, and it is clear that its spectrum consists of integral

multiples of 2π. The terminology is because σ describes the single polarization state of the

photon in two spatial dimensions; as expected, the momentum kµ∼∆µσ of σ is transverse

to both electric and magnetic (out of plane) fields. It is also clear from the definitions

above that electric flux lines correspond to kinks/domain walls of σ. It is known that the

energy of a domain wall scales with its length in two dimensions13, which is the signature

of confinement in the dual language, which we shall now demonstrate explicitly.

We have already established that the K =0 limit of the theory is in a confined phase.

It remains to show that this is also true in the opposite limit K→∞. For this purpose,

we rewrite the Hamiltonian (1.23) in terms of σ. To express the magnetic term in the

new variable, note that (1.24) tells us that exp
(︁
in
∮︁
C
a
)︁
increases the electric field on the

links forming the oriented loop C by n. If C is chosen to be the anti-clockwise elementary

plaquette centered on the dual site ī (see figure 1.3), then this operator can be written in

terms of fī with action

e−infīei,ŷe
infī = ei,ŷ − n =

1

2π
(σī − σī−x̂)− n,

e−infīei,x̂e
infī = ei,x̂ + n =

1

2π
(σī−ŷ − σī) + n. (1.27)

This result shows that

einfīσīe
−infī = σī + 2πn, (1.28)

which identifies the momentum canonically conjugate to σ as

Πī ≡
fī
2π
,

[︁
σī,Πj̄

]︁
= iδī,j̄. (1.29)

In terms of these dual variables, the gauge theory Hamiltonian (1.23) is

H = K
∑︂
ī

(1− cos 2πΠī) +
1

2

∑︂
ī,µ

(∆µσī)
2. (1.30)

13An instant way to see this is to consider the energy of a domain wall in the ferromagnetic state of the
2d Ising model J

∑︁
⟨ij⟩ sisj .
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Compactness aℓ∼aℓ+2π translates to compactness Π ∼ Π+1 as evident from (1.29), which

again means that σ has a spectrum in 2πZ. The dual variables enable an easy analysis

of the magnetic limit K→∞. We cannot proceed with a Taylor expansion of cosΠ, for

this destroys the compactness Π∼Π+1, or equivalently the integrality of the spectrum of

σ. However, we can attempt to impose the latter energetically by adding a perturbation

cosσ. The result is the sine-Gordon theory

H ≈ K

2

∑︂
ī

Π2
ī +

1

2

∑︂
ī,µ

(∆µσī)
2 − λ

∑︂
ī

cosσī. (1.31)

The operator exp(iσ) generates translations in Π= f/2π by unity, so it inserts 2π flux

on a plaquette. The operator

Mn(ī) ≡ einσī , M†
n(ī)fīM(ī) = fī + 2πn, (1.32)

is thus called a monopole operator of charge n. Evidently, Mn connects the different n-

vacua discussed earlier in this section. The coupling λ is then interpreted as the transition

amplitude between |n⟩ and |n±1⟩.14 The importance of such tunneling events can be

studied in the framework of the RG. If the coupling λ is relevant, then instantons are

important and play an important role in determining the ground state by pinning σ∈2πZ.

This also pins the electric field eiµ∼ϵµν∆νσī to integral values, which leads to confinement

just as in the electric limit (K=0) due to an energy gap to create electric flux on a link.

On the other hand, if λ is irrelevant, then σ can fluctuate as it pleases, monopoles do not

form an important class of low energy excitations, and the electric flux on a link can be as

small as it likes. This obviously implies deconfinement, for test charges can be far separated

with little cost in energy. This RG analysis is easiest to carry out in the continuum theory

with a Euclidean Lagrangian

L =
1

2K
(∂µσ)

2 − λ cosσ. (1.33)

14In the framework of field theory, tunneling events between classical vacua correspond to instantons,
which are finite-action saddle points of the Euclidean action.
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This is a monopole perturbation of the Gaussian fixed point at which [σ]=0 and [K]=−1.

In the absence of the monopole perturbation, there is a shift symmetry,

U(1)top : σ → σ + c, (1.34)

corresponding to the conservation of magnetic flux. Monopole operators can be abstractly

defined as operators charged under this symmetry, a fact obvious from our explicit con-

struction of such operators above.

The (ir)relevancy of monopoles is determined by the scaling dimension of the monopole

operator exp(iσ) at the Gaussian fixed point, which can be inferred from the long distance

behavior of the correlator

⟨︁
eiσ(x)e−iσ(0)

⟩︁
0
= e⟨σ(0)

2⟩
0
−⟨σ(x)σ(0)⟩0 . (1.35)

The propagator is

⟨σ(x)σ(0)⟩0 = K

∫︂
d3k

(2π)3
eikx

k2
=

K

4π|x|
, (1.36)

which shows that ⟨σ(0)2⟩ is UV divergent. Regulating with a finite lattice spacing a,

⟨︁
eiσ(x)e−iσ(0)

⟩︁
0
= exp

(︃
K

4πa
− K

4π|x|

)︃
. (1.37)

The UV cutoff a can be absorbed into a definition of renormalized monopole operators

MR(x) =
√︁
ZMM(x) = eK/8πaeiσ(x), (1.38)

from which it follows that

⟨MR(x)MR(0)⟩0 = e−K/4π|x| −−−→
x→∞

1. (1.39)

The scaling dimension ofMR(x) at the Gaussian point is therefore 0< (D = 3), implying

that monopole operators are very relevant and pin σ to 2πZ in the infrared, causing

confinement.

These arguments indicate that compact U(1) gauge theory always confines in three

spacetime dimensions. This might seem sobering in that QSLs require a deconfinement of
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partons, the gauge charges in the theory. One obvious way to obtain QSLs is Higgs the

U(1) down to a Z2 gauge group, which does not feature monopoles. An alternative is to add

gapless matter. This is discussed in chapter 2 in the context of the Dirac spin liquid, which

is described by coupling the compact gauge theory above to Nf =4 flavors of relativistic

spinons (CQED3). It has been shown that in the limit of large Nf , monopole operators15

in CQED3 have scaling dimensions that scale linearly with Nf , rendering them irrelevant

for large Nf [27–29]. Since the theory confines for Nf=0 (pure gauge theory), there must

exist a critical Nc that separates confinement and deconfinement regimes. There is as yet

no consensus on what this critical Nc is, and estimates range from Nc ≤ 1.5 all the way

to Nc∼ 10. A useful table of different Nc obtained using various methods is provided in

Ref. [30]. In the following chapters, we shall see that monopole operators function in effect

as Landau order parameters for conventional phases proximate to a fractionalized phase.

1.4 Structure of this thesis

This thesis presents three case studies of phase transitions out of fractionalized states. The

structure is fully modular with few cross-references between chapters (at the cost of some

redundancy), which can therefore be read in any order.

Chapter 2 uses the parton representation of spin-1/2 discussed earlier in the introduction

to develop CQED3 as a theory of the Dirac spin liquid in spin-1/2 systems. Monopole

operators analogous to the those discussed for U(1) gauge theory in Sec. 1.3 are explicitly

constructed for CQED3 by means of an instanton gas calculation. By studying the response

of monopole operators to lattice symmetries, we argue that these function as Landau

order parameters of conventional phases proximate to the Dirac spin liquid in the parton

framework. The methods developed in this chapter allow the classification of all such

proximate phases on bipartite lattices.

15Monopole operators in CQED3 have a different structure to those of the pure gauge theory discussed in
this section. In particular, as shown in chapter 2, the flux operator exp(iσ) gets dressed by instanton-bound
fermion zero modes.
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Chapter 3, chronologically the first, is in effect a detailed description of instanton-

induced interactions between fermions and their symmetry-breaking effects. This is stud-

ied in a context where the fermions emerge from a parton gauge theory of a system of 2d

hardcore bosons with U(1) symmetry, which we show is spontaneously broken by instanton-

induced interactions. This chapter fills in many of the fine details and subtleties underlying

similar calculations appearing in other chapters, in addition to expounding on some intri-

cate features of the vacuum structure of compact U(1) gauge theory in three spacetime

dimensions.

Chapter 4 presents the theory of a continuous transition from a chiral spin liquid to a

phase with magnetic long range order in 2d Ising spin systems (i.e. with Z2 symmetry).

This is achieved by first representing an Ising spin by N Majorana partons. By varying

the total Chern number of the parton bandstructure, paramagnetic, long-range ordered,

and chiral spin liquid phases are accessed. The critical theory that governs the transitions

between these phases is constructed by utilizing recently discovered dualities between (2+

1)D quantum field theories, and turns out to be an SO(N) gauge theory with massless

Majorana fermions. Z2-charged monopoles in this theory are shown, when proliferated, to

lead to confinement of partons and long-range ordering of Ising spins.
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Chapter 2

Monopoles in Dirac spin liquids and
their symmetries

2.1 Introduction

A quantum spin liquid is a quintessential example of a fractionalized phase in strongly

correlated systems, whose low-energy description is best afforded by a deconfined gauge

theory [24]. The parton construction is a systematic approach to derive such a descrip-

tion [19, 20, 31]. In such an approach, the lattice spins are rewritten as a composite of

fermions or bosons (partons) glued together by an emergent gauge field. While these par-

tons remain confined in conventional phases, a quantum spin liquid is characterized by

their deconfinement at low energy.

Of the various spin liquids that have been proposed, the Dirac spin liquid (DSL) is of

special renown for its candidate role as a “parent state” for several competing orders in

two spatial dimensions (2d) on various lattice geometries [32–38]. As known and reviewed

below, a low-energy description of the DSL state is afforded by compact quantum electro-

dynamics in three spacetime dimensions (CQED3) with Nf = 4 flavors of massless Dirac

fermions. This theory is strongly coupled in the infrared and is expected to flow, at least

for sufficiently large Nf , to an interacting conformal field theory (CFT) with an emergent

SU(Nf ) flavor symmetry, at which one observes power-law correlations in order parameters

for several microscopic competing orders [32, 35, 39].
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In this story, the first question to be asked concerns the stability of the DSL. Are there

relevant operators in this CFT with the same microscopic lattice symmetries as the DSL?

Fermion bilinears are of course relevant, but always violate microscopic symmetries [32, 35–

37]. Of special concern are monopole operators in CQED3 [9, 26, 27, 40], which have their

origin in the compactness of the emergent gauge field that results from the parton con-

struction on the lattice. At least for sufficiently large Nf , all monopole operators are

irrelevant [27, 28, 39, 41] and CQED3 remains in a deconfined phase, thus guaranteeing

stability of the DSL. In contrast, the fate of the DSL for small Nf , including the value

of interest Nf =4, is murkier. The issue is the possible renewed relevancy of monopoles,

in which case one then has to determine if there are monopoles with the same symme-

tries as the microscopic realization of the DSL on a given lattice. Correctly determining

how monopole operators transform under lattice symmetries (i.e., their “quantum num-

bers”) has been the subject of a longstanding theoretical program [35–37, 42–45]. To be

specific, as monopole operators in CQED3 are dressed by fermion zero modes [1, 27, 46],

their transformation under lattice symmetries has two contributions: from the zero modes

themselves, and from a U(1)top phase shift of the bare monopole interpreted as a Berry

phase obtained on dragging the monopole through a Dirac sea. (Here U(1)top denotes

the U(1) topological symmetry of planar U(1) gauge theories, whose global charge is the

total magnetic flux.) The latter Berry phase has been difficult to compute, and a general

framework to do so has only recently emerged in two works by Song et al. [36, 37]. Their

conclusions indicate that, in realizations of the DSL on bipartite lattices, there always exist

monopoles that transform trivially under all lattice symmetries of the state. The relevancy

of such monopoles will then destabilize the DSL, and a transition into one of the proximate

competing orders is then expected.

The second part of the DSL story is then determining the various competing orders for

a given microscopic realization of a DSL [32, 35–37, 45, 47, 48]. The immediately available

“order parameters” in the continuum field theory are the gauge-invariant fermion bilinears
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ψ̄taψ, where ψ is a spinor in the fundamental representation of the SU(4) flavor symmetry

group and ta∈su(4). However, the spontaneous generation of an expectation value for such

a fermion bilinear is not enough to drive the DSL into the corresponding ordered phase, for

the fermions are still deconfined. To obtain phases with conventional long-range order, one

further requires a mechanism by which the gauge charges confine. This is assumed to be

due to monopole proliferation in the gauge theory, whose consideration we are again led to.

The state-operator correspondence allows one to classify all monopole operators by their

scaling dimension [27–29, 49–58]. Combined with the methods developed in Refs. [36, 37] to

compute the quantum numbers of the monopoles, one can determine the correct monopoles

to add to the Lagrangian. As argued in those references, the transition from the DSL into

a proximate conventionally ordered phase then consists of a two-step process in which a

fermion bilinear is first spontaneously generated, due for instance to a sufficiently strong

symmetry-allowed four-fermion interaction [59], followed by the proliferation of the relevant

monopoles to drive confinement. In certain cases, the fermion bilinear does not encode

all the broken symmetries of a given microscopic order, and monopole proliferation is

responsible for breaking the remaining symmetries.

To construct these monopole operators, Ref. [27] utilized the conformal invariance of

massless CQED3 at large Nf and defined monopole operators as states in the large-Nf

CFT in a background flux on S2×R. In this chapter, we use the definition of monopole

operators as instanton defects in the path integral [9, 26, 40, 60, 61] to explicitly recon-

struct these directly on R3 as terms in an effective Lagrangian, in the specific context

of a DSL. Moreover, our construction is not reliant on conformal symmetry. Indeed, we

specifically focus on the dynamics of confinement once a fermion mass ψ̄taψ is added to

the DSL Lagrangian. We find that such an “adjoint mass” results in the existence of

Euclidean zero modes (of the 3D massive Dirac operator) bound to instantons, distinct

from the zero-energy modes that appear in the massless limit. Resumming the instan-

ton gas results in the generation of an instanton-induced term in the effective Lagrangian
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dubbed the ’t Hooft vertex [1, 2, 62–65], which in this case turns out to be equivalent to

the zero mode-dressed monopole operator found in the CFT approach. For ordered phases

with (broken) symmetries fully captured by a fermion mass, we show that requiring the

associated ’t Hooft vertex to satisfy the same symmetries can be sufficient to compute

monopole quantum numbers under microscopic symmetries. As observed in Refs. [36, 37],

the DSL on square and honeycomb lattices possesses such proximate orders, in contrast to

non-bipartite lattices.

The rest of the chapter is structured as follows. After a review of the parton construction

of the DSL in Sec. 2.2, we organize the effects of monopoles in the path integral as an

instanton-gas sum in Sec. 2.3.1, where it is also shown that such instanton-bound zero

modes cause the path integral to vanish. The physical meaning of these Euclidean zero

modes, and their relation to zero-energy modes found in previous constructions in the

literature, are discussed in Sec. 2.3.2. Section 2.3.3 discusses the technical computation

of the ’t Hooft vertex by resumming the instanton gas. This ’t Hooft vertex is rewritten

by introducing “zero-mode operators” in Sec. 2.4, which reveals the relation to monopole

operators constructed in the CFT approach. After discussing the continuum symmetries

of the instanton-induced monopole operators, we comment in Sec. 2.5 on their quantum

numbers under lattice symmetries for bipartite lattices, and finally conclude in Sec. 2.6.

2.2 Review of Dirac spin liquids

For concreteness, we consider the spin-1/2 antiferromagnetic Heisenberg model,

H =
∑︂
ij

JijSi · Sj, (2.1)

on an arbitrary planar lattice, although one really has in mind an equivalence class of lattice

models differing by symmetry-allowed terms. To obtain spin-liquid states, one typically

begins with a parton representation [20],

Si =
1

2

∑︂
α,β=↑,↓

c†iασαβciβ, (2.2)
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where ciα are fermions of spin-1/2 and σ=(σx, σy, σz) is the Pauli vector. Since the local

spin-1/2 Hilbert space is only two-dimensional, the parton representation introduces a

gauge redundancy, and one must project out unphysical states using the single-occupancy

constraint: ∑︂
α

c†iαciα = 1. (2.3)

The gauge group can be seen to be SU(2), for a local SU(2) rotation of the Nambu spinor

(ci↑ c†i↓) leaves the spin operator (2.2) invariant.

The Heisenberg model then becomes a quartic interaction of fermions, which can be

exactly decoupled inside a path integral using Hubbard-Stratonovich (HS) fields, as a

prelude to mean-field theory. Motivated by a search for translationally and rotationally

invariant spin liquids1, the most general decoupling consistent with these requirements

results in a Lagrangian (assuming sums over repeated spin indices):

L =
∑︂
i

c†iα∂τciα −
∑︂
ij

Jij
4
(c†iαzijcjα+h.c.)−

∑︂
ij

Jij
4
(ϵαβc

†
iαwijc

†
jβ+h.c.)

+
∑︂
ij

Jij
4
(|zij|2 + |wij|2)− i

∑︂
i

a0(i, τ)(c
†
iαciα−1). (2.4)

Here a0(i, τ), with τ being Euclidean time, is a Lagrange multiplier field that imposes the

half-filling constraint on every site, and zij and wij are complex-valued HS link fields. The

saddles of zij and wij are respectively at c†iαcjα and ϵαβc
†
iαc

†
jβ, so a mean-field ansatz for

zij and wij is equivalent to condensing those fermion bilinears. Introducing the Nambu

variables,

ψi =

⎛⎝ci↑
c†i↓

⎞⎠ , Tij =

⎛⎝zij wij

w†
ij −z

†
ij

⎞⎠ , (2.5)

and Pauli matrices τ l, l=1, 2, 3 that act in this Nambu space, and relabeling a0→a30, the

Lagrangian can be rewritten as:

L =
∑︂
i

ψ†
i (∂τ − iaℓ0τ ℓ)ψi −

∑︂
ij

Jij
4
(ψ†

iTijψj + h.c.) +
∑︂
ij

Jij
8

trT †
ijTij, (2.6)

1While breaking spin-rotation symmetry does not preclude a spin-liquid ground state [66], the Dirac
spin liquid is a state that preserves this symmetry.
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where the half-filling constraint is redundantly imposed using two more Lagrange multi-

pliers, a10 and a20, to produce the temporal component a0 ≡ aℓ0τ ℓ of an su(2) gauge field.

Indeed, the Lagrangian is now invariant under an SU(2) gauge transformation:

a0(i)→ Ωi(a0 + i∂τ )Ω
†
i ,

Tij → ΩiTijΩ
†
j,

ψi → Ωiψi. (2.7)

The Lagrangian (2.6) is an exact representation of the spin-1/2 Heisenberg model on an

arbitrary lattice, and describes a lattice SU(2) gauge theory at infinite gauge coupling

(i.e., with no dynamics for the gauge fields), but with the group elements Uij on every

link being arbitrary complex matrices instead of SU(2) matrices. However, any complex

matrix admits a polar decomposition

T =
√
T †TU ≡ ρU, (2.8)

where U is unitary, and ρ is positive semi-definite and Hermitian.

At this point, one chooses a mean-field ansatz ⟨Tjk⟩ that renders the parton Hamiltonian

quadratic. As Tjk is gauge-covariant, this ansatz generically violates gauge invariance, and

the mean-field Hamiltonian Hmf will not commute with the constraint operators ψ†
i τ

ℓψi.

However, some measure of gauge invariance is restored by considering fluctuations in Tjk

about its mean-field value. Of these, there are “amplitude fluctuations” in ρ and “phase

fluctuations” in U , as evident from (2.8). Since ρ only modulates the magnitude of the

hopping, it is expected that the fluctuations of qualitative importance are those of the

“phase matrix” U . Since we are interested in the infrared fate of the system, these gauge

fluctuations will have dynamics due to a renormalization of the gauge coupling to finite

values under RG flow of (2.6). This means the hard gauge constraint (2.3) will be softened

in the infrared to

(∂Eℓ)i = ψ†
i τ

ℓψi, (2.9)
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where the left-hand side is t he lattice divergence of the electric field. It is understood that

the fermions on the right-hand side are now renormalized fermions, and thus need not obey

the hard constraint of the ultraviolet partons originally used in the parton construction.

The mean-field Hamiltonian is then understood as written in terms of these renormalized

partons, dubbed spinons.

Then writing Tij= T̄ ij exp(iaij) to allow for phase fluctuations, it is intuitive from (2.6)

that a generic mean-field value T̄ , which translates to condensing bilinears of type ciαc
†
jα

and ci↑cj↓, might Higgs the su(2) gauge bosons down to some subgroup. A criterion given

by Wen determines the infrared gauge group [19, 20, 67]. Considering all based loops

on the lattice, a collinear flux (in some direction in SU(2) space) of the mean-field T̄

through all such loops results in a Higgsing of SU(2)→ U(1), and generic non-collinear

fluxes will break it down to Z2, completely gapping out all gauge bosons. In contrast, a

trivial SU(2) flux (∝ I) ensures all the su(2) gauge bosons remain massless. We shall be

specifically interested in mean-field states that Higgs SU(2)→ U(1) on various lattices.

Examples include the staggered flux state on the square lattice [32], or the π flux state on

the kagome lattice [33–35]. The spinons (c↑, c↓) in these states have relativistic dispersions,

with generically two Dirac nodes (α=±) in the bandstructure. A linearized description at

these nodes with low-energy fermions ψασ, that also accounts for U(1) gauge fluctuations

with an emergent gauge field aµ, is then given by the continuum (Euclidean) Lagrangian:

L = ψ̄(/∂ − i/a)ψ +
1

4e2
f 2, (2.10)

where fµν=∂µaν−∂νaµ is the field strength tensor, ψ is a Dirac 2-spinor in the fundamental

representation of SU(4)2, the gamma matrices (γ1, γ2, γ3) = (γx, γy, γz) are chosen as the

three Pauli matrices, and the Dirac adjoint is ψ̄ = ψ†γ3. Since the gauge coupling e2

has dimensions of inverse length, the Lagrangian is expected to be strongly coupled in

the infrared, flowing to an interacting conformal fixed point which we shall call the DSL

fixed point. In the 1/Nf expansion, one can show that this fixed point becomes nearly

2i.e. there are Nf =4 flavors of relativistic 2-spinors forming a vector of SU(4).
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free, characterized by e2∗ ∝ N−1
f , so that in the limit Nf → ∞, gauge fluctuations are

suppressed and spinons are free [39, 68, 69]. While it is unclear if this fixed point persists

as Nf is lowered to the physically relevant value Nf =4, conformal invariance at large Nf

provides an accessible window to find relevant operators that can destabilize the DSL. Of

central importance are monopole operators arising from the compactness of a, which when

proliferated act to confine spinons into gauge-neutral spins [9, 26, 40], yielding conventional

phases of the parent spin system.

These monopole operators can be defined at the large-Nf DSL fixed point via the state-

operator correspondence in radial quantization, by considering free fermions on a sphere

containing a monopole (plus fluctuations controlled by the 1/Nf expansion) [27]. The

monopole with smallest scaling dimension corresponds to the ground state of the fermions.

In a 2π flux background created by a minimal monopole, there is one zero-energy mode per

flavor of relativistic fermion as required by the Atiyah–Singer index theorem. To obtain

a gauge-invariant state respecting the constraint (2.3), half of the four zero-energy modes

have to be filled. There are thus ( 4
2 ) = 6 monopole operators of minimal charge. If there is a

symmetry-allowed relevant monopole, then the DSL is an unstable critical point separating

ordered phases. If all monopoles are irrelevant, then there is no confinement and a stable

DSL is obtained. However, there could be other interactions that drive symmetry-breaking

by generating a fermion mass, allowing a previously disallowed monopole to then condense,

causing confinement. We will now proceed to explicitly construct these monopole operators

without relying on conformal invariance. As a byproduct of such a construction, we will

obtain the exact monopole that proliferates for a given pattern of symmetry breaking

described by the “adjoint masses”:

Ma = mψ̄taψ, ta ∈ {σi, µi, σiµj}, (2.11)

where σi, µi are Pauli matrices that act on spin and nodal indices respectively. The 15 mass

terms considered above are the most general (Hermitian and Lorentz-invariant) fermion

masses that do not radiatively generate a Chern-Simons term for the gauge field aµ. Indeed,
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along with the identity matrix, they form a basis for the space of all 4× 4 Hermitian

matrices. The identity itself, that is the fermion mass ψ̄ψ, generates a Chern-Simons

term for aµ and is not expected to lead to a symmetry-broken phase with confined gauge

charges. In the CFT picture, an adjoint mass spoils conformal invariance and splits the

degeneracy between the four zero-energy modes, causing one particular combination of

the six monopole operators to lower its scaling dimension compared to the rest [48]. Our

construction will directly yield this monopole, and by varying the adjoint mass yields all

linearly independent monopole operators.

2.3 The ’t Hooft vertex

The basic idea behind our construction is to (1) formulate the instanton problem in its orig-

inal Euclidean path-integral language, rather than the canonical-quantization formalism

of CFT, and (2) utilize semiclassical instanton calculus [61, 63–65] to resum a monopole-

instanton gas in the presence of massive fermions [1]. We show that the existence of

instanton-bound fermion zero modes (ZMs) of the Euclidean Dirac operator on R3 cause

transition amplitudes to vanish unless fermion insertions can “soak up” these ZMs in the

path-integral measure. This is in contrast to the case of massless Dirac fermions, for which

no normalizable Euclidean ZMs exist [70]. These insertions will then “dress” the bare

monopole operator that simply creates 2π flux in the gauge theory.

2.3.1 Euclidean fermion zero modes

To set up our semiclassical calculation, we decompose the emergent gauge field as:

a = A+ δa, (2.12)

where A is a monopole-instanton solving the Euclidean equations of motion, and δa de-

scribes smooth fluctuations (photons) around the instanton solution. Temporarily neglect-

ing the coupling of fermions to photons3, the partition function can be written as a sum

3This is justified in a large-Nf approximation, but one can improve the calculation by considering
fluctuations around the instanton just as in Ref. [28].
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over an instanton gas [1]:

Z=

∫︂
Dae−

e2

2

∫︁
d3x (∂µσ)2

∞∑︂
N=0

1

N !

N∏︂
k=1

(︄∫︂
d3zk

∑︂
qk∈Z

e−q
2
k/e

2ℓeiqkσ(zk)
∫︂
D(ψ̄, ψ)e−Sf [A(qk)]

)︄
,

(2.13)

where σ is the dual photon [9], N is the number of monopoles in the gas, qk their charges,

zk their locations (a collective coordinate), and q2k/e
2ℓ with short-distance cutoff ℓ (on the

order of the lattice constant) the action cost for a charge-qk monopole. Finally, Sf [A(qk)]

is the fermion action in a single-instanton background specified by (qk, zk). A dilute-gas

approximation has been made in the partition above, which allows one to partition an

N -instanton background as A =
∑︁N

k=1A(k), describing N well-separated boxes contain-

ing a single instanton each. Assuming a dilute gas of monopoles allows one to bring

the fermion path integral inside the product in (2.13), and consider fermions moving in

a single-instanton background instead of that of a correlated instanton liquid. This is

formally accomplished by decomposing ψ into fields localized in large boxes around each

instanton [64], with zero overlap between boxes. This is justified in hindsight by the ob-

servation that fermion ZMs are exponentially localized on the instantons.

A brief remark on the validity of the dilute gas approximation is in order. In the

pure gauge theory (without matter), monopoles interact via a Coulomb potential, which

is known not to form bound states in 3D. The diluteness of this Coulomb gas can be

argued using a standard Debye screening theory that assumes weak coupling e2ℓ≪ 1, as

in Polyakov’s original work [9, 40]. In the theory with fermion matter considered in this

work, we will see that there exist pair exchanges of fermions between monopoles. Such

pair exchanges are expected to correct the Coulomb potential between bare monopoles.

However, since the fermions considered are massive, we suspect that such a correction

is not enough to overwhelm the long-range Coulomb interaction and result in monopole

bound states that would invalidate a dilute gas approximation.

We will only be concerned with monopole operators of lowest charge q = ±1 since

these have the smallest scaling dimension, although the computation straightforwardly
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generalizes to higher charges in an obvious way. The fermion path integral in Eq. (2.13),

which we separately write as:

Zf [Aq] =
∫︂
D(ψ̄, ψ)e−

∫︁
ψ̄(/∂−i /Aq+mt

a)ψ, (2.14)

evaluates to zero for a gauge-field configuration Aq with nonzero monopole charge q. This

is because the Euclidean Dirac operator:

Dq = /∂ − iAq +mta, (2.15)

has nontrivial ZMs in an instanton background. Unlike zero-energy modes of the Hamil-

tonian [71] that are typically bound to solitons, these zero modes of D are bound to

instantons. The relation between energy ZMs and these Euclidean ZMs will be further

elucidated in Sec. 2.3.2.

Explicit solutions for these ZMs are obtained in Appendix 2.7. For a fixed mass mta∈

su(4) with m>0, the normalizable ZMs of D± in q=±1 backgrounds are (respectively):

u
(i)
+ (r, θ, φ)=

√
2m

r
e−mrY1/2

1,0,0(θ, φ) |i⟩a , i=2, 4; (2.16)

u
(i)
− (r, θ, φ)=

√
2m

r
e−mrY1/2

−1,0,0(θ, φ) |i⟩a , i=1, 3, (2.17)

and those of D†
± are respectively:

v
(i)
+ (r, θ, φ)=

√
2m

r
e−mrY1/2

1,0,0(θ, φ) |i⟩a , i=1, 3; (2.18)

v
(i)
− (r, θ, φ)=

√
2m

r
e−mrY1/2

−1,0,0(θ, φ) |i⟩a , i=2, 4, (2.19)

where the four eigenvectors of the su(4) mass are defined by:

ta |i⟩a=(−1)i |i⟩a , i = 1, 2, 3, 4, (2.20)

and Yj±1/2
q,j,M are monopole spinor harmonics as defined in Appendix 2.7. As discussed in the

subsequent section, gauge invariance mandates that only two of these ZMs can be filled

in any fixed instanton background. It will turn out to be sufficient to consider the ZMs
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u
(i)
+ and v

(i)
− of D+ and D†

− to obtain nearly all the results in this chapter. As shown in

Sec. 2.3.3, these lead to spontaneous fermion pair creation (in an instanton background)

and annihilation events (in an anti-instanton background).

The topological guarantee of these Euclidean ZMs is provided by their relation to energy

ZMs of a massless Dirac Hamiltonian in a static 2πq flux background, which are protected

by an Atiyah–Singer index theorem [46]. Indeed, the Euclidean ZMs above in the limit

m→0 (ignoring the normalization) have precisely the form of the energy ZMs observed in

radial quantization on S2×R, on recognizing the Weyl rescaling factor r−1=exp(−τ) [27].

A nonzero mass gaps out these energy ZMs, which reincarnate as normalizable (exponen-

tially localized) ZMs of the Euclidean Dirac operator D. As we show below, the physical

consequence of these Euclidean ZMs is that instanton events are correlated with fermion-

number violating processes.

2.3.2 Euclidean fermion zero modes in a Hamiltonian view

We first present an intuitive argument for the heretofore claimed fermion-number violating

processes caused by instantons. Instead of modeling the instanton as a point source of

flux spatially localized in 2d, we can distribute the 2πq flux uniformly across the area A

of a finite system. This is physically reasonable as a nonzero gauge coupling will supply

monopoles with momentum, effectively delocalizing them. What is important is that the

total flux through the system can only jump discretely through instanton events. Massive

Dirac fermions under this uniform magnetic field 2πq/A are then housed in relativistic

Landau levels (for each flavor),

En± = ±
√︁

2πn|q|A−1 +m2, n ≥ 1,

E0 = m sgn(q), (2.21)

where E0 is the “zero Landau level” obtained in the massless limit. The degeneracy of

the levels is |q|, so that for q=+1 there is precisely one “zero mode” per flavor of Dirac

fermion, in agreement with the Atiyah–Singer index theorem, giving a total of four modes
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for Nf=4.

Figure 2.1: Massive Dirac fermions in various flux backgrounds at half-filling. Clockwise
from top left: [(a) to (b)] Instanton f=0→2π accompanied by spinon pair creation in two
midgap modes. [(b) to (c)] Anti-instanton f = 2π → 0 accompanied by pair annihilation
of spinons in occupied midgap modes. [(c) to (d)] Anti-instanton f =0 →−2π with pair
creation of spinons in two midgap modes. [(d) to (a)] Instanton f=−2π →0 accompanied
by pair annihilation of spinons in the occupied midgap modes.

In preparation for an interpretation of instanton events, let us imagine adiabatically

dialing the flux from 0 to 2π. In the zero-flux limit, we simply have two bands formed by

gapping a Dirac cone [Fig. 2.1(a)]. The single-occupancy constraint (2.3) ordained by the

parton decomposition (2.2), which is equivalent to a Gauss’ law constraint, mandates a

half-filling of these bands (for each flavor of Dirac fermion). As a 2π flux is adiabatically

turned on, the En± levels evolve in perfect tandem out of the upper and lower bands, while

the “zero mode” captures the spectral asymmetry of the Hamiltonian. Depending on the

relative sign of m and q, it either descends from the upper band [sgn(mq)>0] or ascends

from the lower one [sgn(mq)<0]. Since we are working with su(4)-valued masses mta that

preserve time-reversal (TR) invariance, it follows that there are a total of 4 displaced energy
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“ZMs”, two with energy m and two with energy −m [Fig. 2.1(b)]. Gauge invariance (i.e.,

the single-occupancy constraint) again requires us to fill two of these modes. The ground

state is uniquely obtained by filling the two negative-energy modes. This is to be contrasted

with the massless limit, in which all four modes are degenerate at zero energy, and there

are six possible ways to fill two of them. Selecting a specific su(4)-mass mta gaps the four

degenerate ZMs in a TR-invariant manner, selecting precisely two of them to fill.

Therefore, when the flux tunnels from 0→ 2π by means of an instanton, two negative-

energy modes suddenly appear in the spectrum. If these remain unfilled4, the instanton

would have caused an unphysical transition from a gauge invariant state to a non-invariant

state violating the half-filling condition. The resolution is that an instanton event must be

accompanied by fermion pair creation in the two new unfilled levels. Proceeding then in

reverse from 2π→0 flux sectors by means of an “anti-instanton”, we immediately observe

that anti-instantons should cause fermion pair annihilation as the two “ZMs” disappear

into the lower bands [Fig. 2.1(c)].

These considerations lead to the conclusion that instantons cause fermion pair creation

and annihilation. However, such processes must be reflected in an appropriate effective

Lagrangian by means of “dressed” monopole operators of the form:

Mψ̄∆+ψ̄
⊺
+M†ψ⊺∆†

+ψ, (2.22)

whereM is a “bare” monopole operator that creates 2π flux, ⊺ denotes the transpose, and

∆+ is a vertex factor valued in su(4) that will select precisely two flavors from the four ψασ

to fill the two displaced energy ZMs just discussed. Determination of this vertex factor for

a specific su(4) mass is one of the central goals of this work, a task that shall be taken up

in the next section.

Finally, the above considerations can be equally applied to flux tunneling from 0 →

(−2π), which leads to the conclusion that anti-instantons can also create fermions [Fig. 2.1(d)].

4It is assumed that we are at sufficiently low temperature that the leading order contribution is the
filling of the two negative modes rather than the positive mid-gap modes that are also present. In any case,
we shall see in the next section that the selection of two modes automatically falls out of the calculation.
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This would yield a vertex contribution

M†ψ̄∆−ψ̄
⊺
+Mψ⊺∆†

−ψ. (2.23)

2.3.3 Resummation of the instanton gas

In this section, the intuitive picture sketched in the previous section will be formally laid

out in the path-integral framework, and the monopole operators (2.22-2.23) completely

determined by a resummation of the instanton gas in the partition function (2.13). To do

so in the presence of ZMs of the Euclidean Dirac operator, we shall use a slight variant of the

technique originally devised by ’t Hooft in his resolution of the U(1) problem in QCD4 [63–

65]. More technical details can be found in Ref. [1]; see also Ref. [62] for a symmetry-based

argument. An analogous calculation for SO(N) gauge theory with Majorana matter was

done in Ref. [2], which studied confinement transitions out of a chiral spin liquid. Readers

uninterested in the technical details of the calculation can safely proceed to the next section

with just the final result [Eq. (2.36)] in hand.

As observed in Sec. 2.3.1, the fermion path integral vanishes in a nontrivial instanton

background, implying that only the sector with zero instanton charge contributes to the

partition function itself in Eq. (2.13). However, sectors with nonzero charge will contribute

to correlation functions that can “soak up” the ZMs (to be explained below). From the

discussion in the previous section, we expect these to be correlators of the form ⟨ψψ⟩. This

is best seen with mode expansions of the spinons (ψ, ψ)̄ in eigenfunctions of the self-adjoint

operators (D†
+D+,D+D

†
+) for a q=+1 background:

ψ = u2+(x−z+)η2+u4+(x−z+)η4 +
∑︂′

i

wi(x−z+)ξi,

ψ̄ =
∑︂′

i

w̄i(x−z+)ξ̄i, (2.24)

where wi are nonzero modes (indicated by the primed sums) of D†
+D+, which occur in

pairs with w̄i of D+D
†
+, and {η, ξ, ξ̄} are Grassmann numbers to ensure the correct Fermi

statistics. The functions ui+(x− z+) are the ZMs of D†
+D+, localized on a charge +1
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instanton at z+, whose explicit expressions are given in Eq. (2.16). Only two ZMs have

been included as mandated by the gauge-invariance arguments in Sec. 2.3.2, and the ZMs

v
(i)
+ of D†

+ have not been “filled” by including them in the mode expansion of ψ̄. Strictly

speaking, we should sum over all possibilities by doing a separate calculation that only

includes the two ZMs of D†
+ and not those of D+. However, it will be easy to write down

the result of such a calculation after our considerations below.

The functional measure can now be defined as:

D(ψ̄, ψ) = dη2 dη4
∏︂′

i

dξ̄idξi, (2.25)

where the prime again denotes the exclusion of ZMs in the product. Since the ZMs {η2, η4}

do not appear in the Lagrangian ψ̄D+ψ, the Grassmann integrals over these cause the

partition function to vanish. However, pair correlators of the form ⟨ψψ⟩ involve enough

insertions to “soak up” the ZMs in the measure and produce a nonzero path integral. An

explicit calculation, using the mode expansions (2.24), shows that:

⟨︁
ψa(x)ψb(y)⊺

⟩︁
+
= −K+u

[a
2+(x− z+)u

b]
4+(y − z+)⊺, (2.26)

where a, b are SU(4) indices that have been here antisymmetrized (i.e., v[awb] ≡ vawb−

vbwa), and K+ is the fermion path integral over the nonzero modes (ξ, ξ̄) in the instanton

background. While this amplitude looks neither Lorentz nor gauge invariant at present, we

reassure the reader that these issues will be addressed towards the end of the calculation.

Since the fermion ZMs are exponentially bound to the instanton with a width m−1, this

result shows that anomalous correlations also decay exponentially away from the instanton

with a length scale m−1. This also reinforces the conclusion reached intuitively in the

previous section; the fermion vacuum in the presence of 2π flux has two additional fermions

compared to the one with zero flux. A transition between the two states is possible only

if these two extra fermions are annihilated, and this is precisely what the ψψ insertion

achieves.
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We now ask for an effective Lagrangian that reproduces such correlation functions, which

will amount to resumming or “integrating out” instantons. In the pure gauge theory, it

is well known that the result of such a resummation is a sine-Gordon term ∝ cos(σ) that

gaps out the dual photon σ in the infrared [9, 26, 40]. With fermionic matter, a 2π flux is

associated with two additional fermions, so we expect an effective Lagrangian to contain

a term of the form eiσψ̄∆+ψ̄
⊺
. To determine ∆+, let us perturb with a generic anti-

symmetrized source5 ψ(x)⊺J(x, y)ψ(y), with suppressed su(4) and Lorentz indices, and

perturbatively expand to O(J):

Zf [A+, J ] =

∫︂
D(ψ̄, ψ)e−

∫︁
ψ̄( /D++mta)ψ−

∫︁
ψ⊺Jψ

= K+

∫︂
d3x d3y u⊺2+(x− z+)J(x, y)u4+(y − z+) +O(J2), (2.27)

where the second line is obtained by using the mode expansions (2.24), and K+ is the

fermion integral over non-ZMs as in Eq. (2.26). Our arguments in this and previous

sections have indicated that such an amplitude can be reproduced by a path integral of

the form [1]:

I+[J ] =

∫︂
D(ψ̄, ψ) e−

∫︁
ψ̄(/∂+mta)ψ−

∫︁
ψ⊺Jψ

×
∫︂
d3x′ d3y′C+ ψ̄(x

′)ω+(x
′−z+)ζ+(y′−z+)⊺ψ̄(y′)⊺, (2.28)

where the vertex ∆+ has been written as a dyadic product ω+ζ
⊺
+ of vectors with possi-

ble spinor and su(4) indices. We will determine C+, ω+, ζ+ by demanding equality with

Eq. (2.27) to O(J). Note that the fermions are no longer in a flux background in I+[J ].

Expanding the above integral to O(J) and Wick contracting gives:

I+[J ] = C+

∫︂
d3(x, x′, y, y′)[Gf (x− x′)ζ+]⊺J(x, y)[Gf (y − y′)ω+], (2.29)

where Gf=
⟨︁
ψψ̄
⟩︁
0
is the free fermion propagator. Comparing with Eq. (2.27) and demand-

5One should strictly add ψ⊺Jψ + h.c., but the conjugate term cannot soak up the zero modes in the
path-integral measure in the q=+1 sector, so we drop it to reduce clutter.
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ing equality gives the vertex factors:

C+ = K+ = det′D+,

ζ+ = G−1
f u2+ ≈ −2

√
2πY1/2

1,0,0(θ, φ) |2⟩a ,

ω+ = G−1
f u4+ ≈ −2

√
2πY1/2

1,0,0(θ, φ) |4⟩a , (2.30)

where we have used explicit expressions for the free propagator (Appendix 2.8) and ZM

solutions [Eq. (2.16)], and the approximation holds at distances r≫m−1 (the width of the

instanton-bound ZM). One can now replace Zf [A+, J ] with I+[J ] in the instanton-gas sum

appearing in the partition function (2.13).

To obtain a path integral I−[J ]=Zf [A−, J ] in the anti-instanton sector, the calculation

above should be repeated with ZMs of D−D
†
− in the mode expansion of ψ̄. One can

write down the result based solely on reflection positivity (not reality) of the Euclidean

action [72, 73], but since this is somewhat subtle as we shall see later, it is more prudent

to just repeat the above calculation. The result is:

I−[J ] = C−

∫︂
d3(x, x′, y, y′)[G†

f (x− x
′)ζ−]

⊺J(x, y)[G†
f (y − y

′)ω−], (2.31)

with

C− = K− = det′D†
−,

ζ− = (−/∂ +mta)−1u2− ≈ −2
√
2πY1/2

−1,0,0(θ, φ) |2⟩a ,

ω− = (−/∂ +mta)−1u4− ≈ −2
√
2πY1/2

−1,0,0(θ, φ) |4⟩a . (2.32)

Substituting in I±[J ] for Zf [A±, J ] in the partition function (2.13), we obtain:

Z[J ] =

∫︂
DσD(ψ̄, ψ) e−S0−

∫︁
(ψ⊺Jψ+h.c.)

∞∑︂
N=0

1

N !

N∏︂
k=1

∫︂
d3zk

∫︂
d3x d3y

×
[︂
−K+e

iσ(zk)ψ̄(x)Y1/2
1,0,0(x−zk) |2⟩⟨4| Y

1/2
1,0,0(y−zk)⊺ψ̄

⊺
(y) + r.c.

]︂
, (2.33)

where “r.c.” denotes the reflection conjugate6, dimensionless constants have been lumped

6This is the analog of the hermitian conjugate in Euclidean signature, and is discussed in Sec. 2.4.1.
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into K, and the free action S0 is:

S0 =

∫︂
d3x

[︃
e2

2
(∂µσ)

2 + ψ̄(/∂ +mta)ψ

]︃
. (2.34)

As remarked below the mode expansions in Eq. (2.24), one must also sum over a transition

amplitude that involves the two ZMs of D†
+ but not those of D+. The calculations leading

to Eq. (2.33) clearly indicate that resumming instantons with these ZMs would lead to

further insertions of the kind:

−K−e
−iσ(zk)ψ̄(x)Y1/2

−1,0,0(x−zk) |1⟩⟨3| Y
1/2
−1,0,0(y−zk)⊺ψ̄

⊺
(y) + r.c., (2.35)

where the ZMs (2.17) and (2.18) have been used. As predicted at the end of Sec. 2.3.2,

this vertex corresponds to spinon-pair creation by anti-instantons. Including these terms in

Eq. (2.33), re-exponentiating the instanton-gas sum and then setting the source J to zero

results in an instanton-induced contribution to the effective action: the ’t Hooft vertex,

Sainst = K+

∫︂
d3z eiσ(z)

[︃∫︂
d3x ψ̄(x)Y1/2

1,0,0(x− z)
]︃
|2⟩⟨4|

[︃∫︂
d3y Y1/2

1,0,0(y − z)ψ̄(y)
]︃⊺

+K−

∫︂
d3z e−iσ(z)

[︃∫︂
d3xY1/2

−1,0,0(x− z)†ψ(x)
]︃⊺
|4⟩⟨2|

[︃∫︂
d3y Y1/2

−1,0,0(y − z)†ψ(y)
]︃

+K−

∫︂
d3z e−iσ(z)

[︃∫︂
d3x ψ̄(x)Y1/2

−1,0,0(x− z)
]︃
|1⟩⟨3|

[︃∫︂
d3y Y1/2

−1,0,0(y − z)ψ̄(y)
]︃⊺

+K+

∫︂
d3z eiσ(z)

[︃∫︂
d3xY1/2

1,0,0(x− z)†ψ(x)
]︃⊺
|3⟩⟨1|

[︃∫︂
d3y Y1/2

1,0,0(y − z)†ψ(y)
]︃
,

(2.36)

where the superscript a in Sainst serves to remind that this effective interaction is associated

with a given adjoint massmta, whose eigenvectors |i⟩ feature in the vertex. However, at this

point, we note that the role of the fermion mass is solely to regulate K±=(det′D†
±D±)

1/2

(our discussion below of reflection positivity will imply K+ =K− ≡K), and the derived

instanton-induced vertex is sensible in the massless limit, with the functional determinant

being regulated in some other way. The adjoint mass then serves a role similar to a

symmetry-breaking source for a specific ordered state in our calculation. When the massless

limit, which does not “commute” with the resummation of the instanton gas, is taken at
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the end, the adjoint mass leaves behind in its wake a monopole which in turn will drive a

confining transition into a proximate ordered state.

2.4 Monopole operators and their symmetries

We will now rewrite the ’t Hooft vertex (2.36) using “zero-mode operators” in a form that

makes explicit its relation to the CFT monopole operators constructed in Ref. [27]. To

this end, we define the mode operators:

c̄qjM(z) =

∫︂
d3x ψ̄(x)Yj+1/2

qjM (x− z),

cqjM(z) =

∫︂
d3xYj+1/2

qjM (x− z)†ψ(x),

c±1,0,0 ≡ d±, (2.37)

where flavor indices have been suppressed. These can be thought of as a spacetime analog

of a change of basis with coefficients ⟨jM |x⟩. In fact, this follows from a mode expansion of

the fermion fields in monopole harmonics (see Eq. (7.3) of Ref. [29]), and thereby identifies

cqjM as the R3 analog of the “zero-mode operators” of Refs. [27, 29], there defined in

radial quantization on S2×R. The ’t Hooft vertex (2.36) can be written in terms of these

operators as:

Sinst = K

∫︂
d3z
[︂
eiσ(z)d̄+(z) |2⟩⟨4| d̄+(z)⊺ + e−iσ(z)d−(z)

⊺ |4⟩⟨2| d−(z)

+ e−iσ(z)d̄−(z) |1⟩⟨3| d̄−(z)⊺ + eiσ(z)d+(z)
⊺ |3⟩⟨1| d+(z)

]︂
, (2.38)

which should be understood as the monopole operator spawned by a given adjoint mass

mta with eigenvectors as in Eq. (2.20). This form makes it manifestly clear that the su(4)

part of the vertices, |2⟩⟨4| and |1⟩⟨3|, must be antisymmetrized, in accordance with the

observation in Refs. [27, 29] that monopole operators of minimal charge transform in the

antisymmetric representation of the flavor group with Nf/2 indices. Before discussing

flavor symmetry in greater detail, we first derive how the ZM operators (2.37) transform

under spacetime symmetries, reflection positivity, and gauge transformations.
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2.4.1 Spacetime symmetries, reflection positivity, and gauge in-
variance

Lorentz invariance

Since the ZM operator d̄± defined in Eq. (2.37) creates a fermion in a j = 0 state, one

might intuitively expect it to be Lorentz invariant. To see that this bears out, consider a

Lorentz transformation Λ (rotation in Euclidean signature) with U(Λ) the corresponding

SU(2)rot action on spinors. Since the monopole spinor harmonics Y1/2
±1,0,0 have total angular

momentum j=0, they must satisfy the identity:7

Y1/2
±1,0,0(Λx) = U(Λ)Y1/2

±1,0,0(x), (2.39)

using which we see that:

Λ : d̄±(z)→
∫︂
d3x ψ̄(Λ−1x)U †(Λ)Y1/2

±1,0,0(x− z),

=

∫︂
d3x ψ̄(x)U †(Λ)Y1/2

±1,0,0

(︁
Λ(x− Λ−1z)

)︁
,

=

∫︂
d3x ψ̄(x)Y1/2

±1,0,0(x− Λ−1z),

= d̄±(Λ
−1z), (2.40)

as expected of a Lorentz scalar.

CRT

Here we consider how the ZM operators transform under the discrete symmetries of con-

tinuum Euclidean QED3: reflection R, charge conjugation C, and time reversal T . These

are to be distinguished from the microscopic symmetries of the projective symmetry group

(PSG) [20] for Dirac spin liquids on various lattices, to be discussed later in Sec. 2.5.

We define reflections Rµ to be in the µ-coordinate. Let us consider reflections R1 in

the x1 coordinate for concreteness. On spinors, this acts as ψ → γ1ψ and ψ̄ → ψ̄(−γ1)
7To explicitly verify this with the expressions for the harmonics in Appendix 2.7 requires some care, for

such expressions are derived by solving the Euclidean Dirac equation in a fixed gauge. The background
gauge field Aµdx

µ also transforms under rotations, and one must make a subsequent gauge transformation
to bring back YL

qjM to its original form, as discussed in Ref. [74].
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so that a flavor-singlet mass ψ̄ψ breaks reflection symmetry. Under R1, the unit vector

φ̂=−(sinφ)x̂+(cosφ)ŷ→−φ̂ so that the monopole background in the Wu-Yang gauge [74]

transforms as Aµ = (0, 0,Aφ) → (0, 0,−Aφ), which amounts to reversing the monopole

charge q→−q as expected of reflections. Explicitly, the monopole spinor harmonics obey:

Y1/2
±1,0,0(θ, π−φ)=(−γ1)Y1/2

∓1,0,0(θ, φ), (2.41)

under reflection R1 in the x1-coordinate, so that

R1 : d̄±(z)→
∫︂
d3x ψ̄(R1x)(−γ1)Y1/2

±1,0,0(x− z),

=

∫︂
d3x ψ̄(x)(−γ1)Y1/2

±1,0,0 (R1(x−R1z)) ,

=

∫︂
d3x ψ̄(x)(−γ1)2Y1/2

∓1,0,0(x−R1z),

= d̄∓(R1z). (2.42)

Charge conjugation is a unitary symmetry that acts to send:

ψ → −γ1ψ∗ = −γ1γ3ψ̄
⊺
= (iγ2)ψ̄

⊺
,

ψ̄ → ψ⊺(−γ1γ3) = ψ⊺(iγ2), (2.43)

which flips the sign of the Dirac current, but not the mass. Using:

(iγ2)Y1/2
±1,0,0(θ, φ) = ±Y

1/2
∓1,0,0(θ, φ)

∗, (2.44)

it is straightforward to verify that:

C : d̄±(z)→ ±d∓(z), d±(z)→ ∓d̄∓(z). (2.45)

In Euclidean signature, time reversal as a spacetime symmetry behaves identically to

reflections [75], and is specifically unitary. It can be defined as:

T : ψ(x)→ γ3ψ(R3x),

ψ̄(x)→ ψ̄(R3x)γ3, (2.46)
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where R3 is a reflection in the Euclidean time (x3) coordinate. One can alternatively define

a modified time-reversal operation CT that also involves charge conjugation. On the ZM

operators,

T : d̄±(z)→ d̄∓(R3z), (2.47)

using the fact that, under R3 reflections,

Y1/2,(N)
±1,0,0 (π − θ, φ) = γ3Y1/2,(S)

∓1,0,0 (θ, φ), (2.48)

as one can verify from explicit expressions for the monopole harmonics.

Reflection positivity

Reality of the real-time action (and thus unitarity of the corresponding quantum field the-

ory) is guaranteed by reflection positivity ϑ(S)=S of the Euclidean action [72, 73]. This is

a form of complex conjugation accompanied by a reversal of Euclidean time and an invo-

lution of the Grassmann algebra. With our choices of coordinates and Dirac matrices [1],

ϑ(λψ(x)) := λ∗ψ̄(R3x)γ3,

ϑ(λψ̄(x)) := λ∗γ3ψ(R3x), λ∈C,

ϑ(aµ(x)dx
µ) := aµ(R3x)d(R3x)

µ, (2.49)

and ϑ also reverses the order of Grassmann variables, e.g., ϑ(ψαψβψγ) = ϑ(ψγ)ϑ(ψβ)ϑ(ψα).

For instance, one can check that the usual Berry phase term
∫︁
ψ̄γ3∂τψ is reflection positive

using the definitions above. On the ZM operators d±, we observe that

ϑ(d̄±(z)) =

∫︂
d3xY1/2

∓1,0,0(x−R3z)
†ψ(x),

= d∓(R3z), (2.50)

where we have used the fact that reflections invert the monopole charge [see Eq. (2.48)].

Together with the transformation ϑ(σ(z)) = σ(R3z) for the dual photon [1], the transfor-

mation (2.50) ensures that the ’t Hooft vertex (2.38) is reflection positive, thereby implying
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the reality of the real-time action or hermiticity of the Hamiltonian. It is important to note

that reflection conjugation ϑ(dq) replaces the notion of hermitian conjugation in Euclidean

signature. In particular, we will define:

d†± := ϑ(d±) = d̄∓. (2.51)

Local gauge invariance

We will prove invariance of the ZM operators under gauge transformations with nonzero

support on a sphere of fixed radius in R3. By radial quantization, this suffices to prove

gauge invariance in general. The integrand of the expressions (2.37) should be viewed as

sections of a U(1) bundle over punctured R3. Charting a fixed sphere surrounding the

monopole with “northern” (N) and “southern” (S) gauges à la Wu-Yang [74], it is clear

that ψ should gauge transform identically to the spinor harmonics Y1/2
q00 :

ψ(N)(x) = e−iqφψ(S)(x),

Y1/2,(N)
q,0,0 (x) = e−iqφY1/2,(S)

q,0,0 (x), (2.52)

for φ the azimuthal coordinate on S2⊂R3. Since
∫︁
d3x=

∫︁
N∩S d

3x, because the N and S

poles are a set of measure zero in the integral, the mode operators transform as:

d̄q =

∫︂
N∩S

d3x ψ̄
(N)

(x)Y1/2,(N)
q,0,0 (x− z)

=

∫︂
N∩S

d3x ψ̄
(S)

(x)(e−iqφ)∗e−iqφY1/2,(S)
q,0,0 (x− z)

=

∫︂
N∩S

d3x ψ̄
(S)

(x)Y1/2,(S)
q,0,0 (x− z)

= d̄q. (2.53)

A similar calculation shows invariance of dq.

2.4.2 Flavor symmetry

The global form of the symmetry group of compact QED3 with Nf flavors has been nicely

summarized in Ref. [76]; let us review the necessary aspects here in our framework and
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notation, for general Nf . The Lagrangian ψ̄ /Dψ is invariant under U(Nf ) rotations of the

fermions, but the center U(1) is a gauge redundancy as it leaves spin operators invariant.

Moreover, it acts trivially on gauge-invariant fermion bilinears such as ψ̄taψ. One might

then conclude that the symmetry group of the DSL is PU(Nf )×U(1)M ∼=PSU(Nf )×U(1)M,

where PSU(Nf )∼=SU(Nf )/ZNf
and U(1)M is the topological “magnetic” symmetry cor-

responding to conservation of magnetic charge 1
2π

∫︁
f on any 2-cycle. However, monopole

operators do not transform well as a representation of this group. The monopoles of min-

imal charge are precisely the ’t Hooft vertices calculated previously, and are of the form

(for general Nf ):

eiσ∆a1···aNf/2
d†a1 · · · d

†
aNf/2

, (2.54)

with ∆ totally antisymmetric in its Nf/2 indices. Under the center of SU(Nf ) generated

by e2πi/Nf , the vertex transforms by an overall phase of (e2πi/Nf )Nf/2=−1. This is identical

to a π shift in U(1)M, which implies the symmetry group is really:

SU(Nf )×U(1)M
ZNf

, (2.55)

where the ZNf
in the quotient is generated by:

(e2πi/Nf ,−1) ∈ SU(Nf )× U(1)M. (2.56)

For Nf = 4, the isomorphism SU(4)/Z2
∼= SO(6) can be used to equivalently write the

symmetry group of the DSL as:

SO(6)×U(1)M
Z2

, (2.57)

as concluded by Ref. [37].

A basis for the vector space of q = ±1 monopole operators can then be constructed

from the six antisymmetric generators of su(4). Doing so, we obtain three spin-singlet,
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valley-triplet monopoles:

eiqσd̄q(−iσ2µ3)(d̄q)
⊺ ≡ V1q,

eiqσd̄q(σ2)(d̄q)
⊺ ≡ V2q,

eiqσd̄q(iσ2µ1)(d̄q)
⊺ ≡ V3q, (2.58)

and three spin-triplet, valley-singlet monopoles:

eiqσd̄q(−σ3µ2)(d̄q)
⊺ ≡ S1q,

eiqσd̄q(iµ2)(d̄q)
⊺ ≡ S2q,

eiqσd̄q(σ1µ2)(d̄q)
⊺ ≡ S3q. (2.59)

It is straightforward to verify that these have the same spin/valley structure as the monopole

operators defined in Refs. [36, 37], up to some signs chosen so that the six monopoles map

to the standard basis of C6, under the isomorphism from the
⋀︁2C4 irrep of SU(4) to the

vector irrep of SO(6). In addition, there are operators reflection conjugate to those defined

above:

V†
iq ≡ ϑ(Viq), S†

iq ≡ ϑ(Siq), (2.60)

which we can use to construct the six operators

Vi = Vi+ + V†
i−, Si = Si+ + S†

i−, (2.61)

For example,

V2 = eiσ(d̄+σ2d̄
⊺
+ + d ⊺

+σ2d+), (2.62)

is a monopole of definite magnetic charge (+1) that can create or annihilate pairs of spinons,

as illustrated earlier in Fig. 2.1.

By examining the instanton-induced ’t Hooft vertex (2.38), we observe that a choice of

su(4)-adjoint mass proliferates a linear combination of two of the six monopoles {Vi, Si}.

There are 15 such combinations, in correspondence with the 15 generators of su(4). As an
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Adjoint mass Monopole proliferated

M01 V3 + iV2 + r.c.

M02 V3 + iV1 + r.c.

M03 −V1 + iV2 + r.c.

Mi1 Si − iV1 + r.c.

Mi2 Si + iV2 + r.c.

Mi3 Si − iV3 + r.c.

Mi0 Sj + iSk + r.c.

Table 2.1: Monopoles proliferated by the 15 adjoint masses. “r.c.” denotes the reflection
conjugate. In the last row, (ijk) is an even permutation of (123).

example, the ’t Hooft vertex (2.38) for a spin-Hall mass M30= ψ̄σ3ψ can be written in the

above basis as

L30 = S1+ + iS2+ + S1− − iS2− + r.c.

= ReS1 + ImS2, (2.63)

defining ReSi≡Si+S†
i and ImSi≡ i(Si−S†

i ). Again, the adjoint §
†
i of a monopole operator

should really be viewed in Euclidean signature as the “reflection conjugate” ϑ(§i) defined

earlier in Sec. 2.4.1. In this way we can find the monopole operators spawned by all 15

adjoint masses, and we tabulate them in Table 2.1.

2.5 Monopole quantum numbers on bipartite lattices

It was observed in Refs. [36, 37] that there exist orders on bipartite lattices whose mi-

croscopic symmetries are completely captured by appropriate adjoint masses. Using such

orders, we can demand that the ’t Hooft vertex induced by the given adjoint mass—i.e.,

the monopole proliferated by such a mass (Table 2.1)—must not break additional symme-

tries, in order to fix its quantum numbers under certain lattice symmetries. As we show

below for the square lattice (Sec. 2.5.1) and the honeycomb lattice (Sec. 2.5.2), monopole
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quantum numbers on bipartite lattices are reproduced accurately by this method. We ex-

pect that this is true for any microscopic order that can be described in the continuum by

condensing a fermion bilinear. Conversely, there exist conventional orders whose broken

symmetries are not fully captured by condensing a fermion bilinear. Examples include

the q=0 noncollinear magnetic states on the kagome lattice [35, 77]. Such orders have a

C6-breaking spin-ordering pattern which is invisible to all 15 adjoint masses, but is cap-

tured by the spin-triplet monopoles that serve as the correct order parameter for such

states [36, 37]. (Precisely, it turns out that C6 embeds into a ZM
3 subgroup of U(1)M, as

suspected initially in Ref. [35].) On non-bipartite lattices, monopole proliferation breaks

additional symmetries beyond those broken by the adjoint mass [36], thus our method for

determining monopole quantum numbers does not apply to those cases.

2.5.1 Square lattice

On a square lattice, a DSL is obtained by coupling a staggered flux mean-field state to U(1)

gauge fluctuations [32]. We work with the gauge choice of Refs. [36, 37] (but a different

gamma matrix convention) which yields the following PSG action on the continuum Dirac

spinor ψ:

Tx : ψ → (−iσ2µ3)(iγ2)ψ̄
⊺
, ψ̄ → ψ⊺(iγ2)(iσ2µ3),

Ty : ψ → (−iσ2µ1)(iγ2)ψ̄
⊺
, ψ̄ → ψ⊺(iγ2)(iσ2µ1),

rx : ψ → (µ3γ1)ψ, ψ̄ → ψ̄(−γ1µ3),

C4s : ψ →
1√
2
σ2(iµ2−1)e−i

π
4
γ2(iγ2)ψ̄

⊺
, ψ̄ → ψ⊺e−i

π
4
γ2(iγ2)σ2(−iµ2−1)

1√
2
,

Θ: ψ → Kiµ2(iγ2)γ3ψ̄
⊺
, ψ̄ → ψ⊺(−iµ2)(iγ2)γ3K, (2.64)

for x and y translations (Tx, Ty), reflections in the x coordinate (rx), site-centered four-fold

rotations (C4s), and time reversal (Θ), respectively, and K denotes complex conjugation

only on spin/valley matrices.

The embedding of the PSG into flavor (Sec. 2.4.2) and spacetime (Sec. 2.4.1) symmetries

in the continuum completely fixes how the zero-mode part of the monopole operators
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Tx Ty rx C4s Θ

Mi0 − − − − −

M01 − + + M03 +

M03 + − − −M01 +

M02 + + + − −

Mi1 + − + −Mi3 +

Mi3 − + − Mi1 +

Mi2 − − + + −

Table 2.2: Transformation of the adjoint masses Mij = ψ̄σiµjψ under the symmetries of
the staggered-flux state on the square lattice.

transform. However, the lattice symmetries also embed into U(1)M, which acts on the

bare monopole exp(iσ), and this information is not present in the mean-field state from

which the above PSG is derived. The most general approach to calculating this action,

developed in Ref. [37], is to consider the Wannier limit, and the associated charge centers, of

the spinon insulator obtained on gapping the DSL with a given adjoint mass. In this limit,

the U(1)M phase rotations of the monopole under lattice symmetries are interpreted as

Aharonov-Bohm phases. For instance, a C4s action on a q=+1 monopole in an insulating

state with gauge charges Q at lattice sites will yield a phase exp(iQπ/2).

While no substitute for such rigorous microscopic arguments, we simply note here that

the existence of orders whose symmetries are fully encapsulated by a fermion bilinear

provides a simple means to compute some, if not all, of the monopole quantum numbers.

For example, on the square lattice, the symmetries of Néel and valence-bond-solid (VBS)

states are completely encapsulated in the adjoint masses Mi2 and M01/3, respectively (see

Table 2.2). Let us demand that the monopoles proliferated by those masses (Table 2.1)

also remain invariant under the latter’s symmetries. As the VBS mass M03 is Tx invariant,

we require that the monopole (−ReV1+ImV2) also be Tx invariant. Likewise, C4s is a

symmetry of the Néel mass Mi2 which proliferates the monopole ReSi+ImV2. This means
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we can demand that ImV2 = i(V2 − V†
2) be invariant under both Tx and C4s. However,

from Eq. (2.64) we see the corresponding PSG transformations involve charge conjugation

ψ→(iγ2)ψ̄
⊺
. Thus, the ZM operators d± will also undergo charge conjugation [Eq. (2.45)],

and from Eq. (2.58), V2 will be mapped to its reflection conjugate V†
2 . The only way for

ImV2 to remain invariant is thus to demand:

Tx(V2) = Tx(e
iσ)(d⊺−σ2d− + d̄−σ2d̄

⊺
−)

!
= −V†

2 ,

C4s(V2) = C4s(e
iσ)(−d⊺−σ2d− − d̄−σ2d̄

⊺
−)

!
= −V†

2 , (2.65)

which determines:

Tx(σ) = −σ + π, C4s(σ) = −σ. (2.66)

The quantum numbers of σ under other lattice symmetries can be similarly calculated, but

one can also exploit relational constraints among the generators of the PSG (see Supple-

mental Material of Ref. [36]). Using that TxTy and ΘTx are symmetries of the Néel order

Mi2 leads to:

Ty(σ) = Θ(σ) = −σ + π. (2.67)

Finally, we look at reflections rx on the square lattice. Its embedding into the continuum

symmetries involves the continuum reflection R1, which has an action R1 : d̄±→ d̄∓ on ZM

operators [Eq. (2.42)]. On the monopole V2, we find that:

rx(V2) = rx(e
iσ)(d̄−σ2d̄

⊺
− + d ⊺

−σ2d−) = eiθrV†
2 . (2.68)

As reflections are a symmetry of the Néel mass Mi2, we can demand invariance under rx

of the ImV2 monopole it proliferates. This sets θr=π in Eq. (2.68) and therefore

rx(σ) = −σ + π. (2.69)

The set of equations (2.66)-(2.69) completely determines the Berry phases of monopoles

under the lattice symmetries (2.64). The total action of these symmetries on monopole

operators has been summarized in Table 2.3. We note that our results are identical to the
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Tx Ty rx C4s Θ

V1 V†
1 −V†

1 −V†
1 −V†

3 V†
1

V2 −V†
2 −V†

2 −V†
2 −V†

2 −V†
2

V3 −V†
3 V†

3 V†
3 V†

1 V†
3

Si −S†
i −S†

i S†
i S†

i −S†
i

Table 2.3: Monopole quantum numbers on the square lattice.

first four rows of Table 1 of Ref. [36]. In particular, we also find that the monopole ImV2

is trivial under all lattice symmetries.

We caution that one cannot expect the ’t Hooft vertex to respect the symmetries of the

adjoint mass in general, as demonstrated by the results of Refs. [36, 37]. As an example,

consider the unconventional order:

Mi3 ∼
∑︂
r

(−1)rx(Sr × Sr+ŷ)i, (2.70)

where the right-hand side is a spin operator on the square lattice with the same microscopic

symmetries as the fermion bilinear on the left-hand side [32, 36]. This equation suggests

that Mi3 describes a spin-triplet VBS state invariant under Ty. However, the monopole

proliferated by Mi3 is Si−iV3. By condensing this as ⟨Si−iV3⟩=1−i, one observes that

there is Néel order along σi in addition to the order described by Mi3 (2.70). This follows

from the fact that ReSi and ReV3 have the symmetries of Néel order Mi2 and the triplet

VBS order (2.70), respectively. The additional broken symmetries of the Néel order are

not visible to the adjoint mass Mi3 but are captured by the associated ’t Hooft vertex,

which additionally breaks Ty and Θ symmetries. However, the above method offers a quick

way to compute quantum numbers when there exist orders with symmetries completely

encoded in a fermion bilinear, paradigmatic examples being Néel and VBS orders.
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2.5.2 Honeycomb lattice

On a honeycomb lattice, a parton mean-field Hamiltonian describing uniform nearest-

neighbor hopping has a relativistic dispersion with gapless Dirac nodes at K± =± 4π
3
√
3
ŷ.

As is well-known, this model has a particle-hole symmetry which acts trivially on the

physical spin operators, and when combined with U(1) gauge fluctuations yields an SU(2)

gauge theory (QCD3) at low energies [78]. However, the addition of longer-range hopping

breaks particle-hole symmetry and yields a DSL described by CQED3 in the infrared. Since

the particle-hole symmetric state is adiabatically connected to the DSL, we may calculate

monopole quantum numbers in the former for simplicity, and to make useful comparison

with the results of Refs. [36, 37]. Choosing a two-site (AB) unit cell on armchair graphene

with Bravais lattice vectors a1/2=(1/2,±
√
3/2), the PSG for the particle-hole symmetric

ansatz is:

T1/2 : ψ → e−i2πµ3/3ψ, ψ̄ → ψ̄ei2πµ3/3,

C6 : ψ → −iµ1e
−i2πµ3/3e−iπγ1/6ψ, ψ̄ → ψ̄(ieiπγ1/6ei2πµ3/3µ1),

rx : ψ → µ2γ3ψ, ψ̄ → ψ̄(−µ2γ3)

Θ: ψ → K(iσ2µ2γ3)ψ, ψ̄ → ψ̄(iσ2µ2γ3)K, (2.71)

for (respectively) translations T1/2 along a1/2, plaquette-centered six-fold rotations (C6),

reflections about the vertical axis through an AB unit cell (rx), and time reversal (Θ). K

acts to complex conjugate only within the spin-valley space (i.e., the matrices σi and µi).

Similar to the square lattice in Sec. 2.5.1, we first tabulate the transformation of the

15 adjoint masses Mij = ψ̄σiµjψ under the above PSG. From Table 2.4, it is clear that

Mi3 encapsulates all the symmetries of Néel order on the honeycomb lattice. We can

then expect the associated proliferated monopole Si−iV3 (see Table 2.1) to not break any

additional symmetries, and thus demand:

T1/2(V3) = T1/2(e
iσ)[d̄+(iσ2µ1)d̄+−d+(iσ2µ1)d+]

!
= V3, (2.72)
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T1/2 C6 rx Θ

Mi0 + + − +

M01 αM01+βM02 αM01+βM02 + +

M02 αM02−βM01 −αM02+βM01 − +

M03 + − + +

Mi1 αMi1+βMi2 αMi1+βMi2 + −

Mi2 αMi2−βMi1 −αMi2+βMi1 − −

Mi3 + − + −

Table 2.4: Transformation of the adjoint masses Mij = ψ̄σiµjψ under the PSG (2.71) on
the honeycomb lattice, with α=cos

(︁
2π
3

)︁
and β=sin

(︁
2π
3

)︁
.

noting that to the difference of Eq. (2.64), the PSG here does not involve charge conju-

gation. Equation (2.72) implies that lattice translations act trivially on the dual photon.

Turning to reflections, we similarly demand that rx(V3)=eiθrV†
3 be equal to V3, which leads

to the action rx(σ)=−σ with no Berry phase.

Figure 2.2: Kekulé-O (left) and Kekulé-Y (right) patterns on the honeycomb lattice.

Similarly, M01 and M02 account for all symmetries of the Kekulé-O and Kekulé-Y VBS

states, respectively (Fig. 2.2). We can use the time-reversal invariance of these orders to

demand invariance of the monopole ReV3 that both proliferate:

Θ(V3) = Θ(eiσ)[d̄−(iσ2µ1)d̄
⊺
−−d

⊺
−(iσ2µ1)d−] = eiθΘV†

3
!
= V†

3 , (2.73)

and so θΘ = 0. Finally, to compute quantum numbers under C6, we may use the C6Θ
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symmetry of the Néel mass Mi3 to demand invariance of ImV3:

(C6◦Θ)(i(V3 − V†
3)) = −iC6(V3 − V†

3),

= −ie−iθ6(V3 − V†
3),

!
= i(V3 − V†

3), (2.74)

which requires θ6=π. Collecting our results, the lattice symmetries act on the dual photon

as follows:

T1/2(σ) = σ,

rx(σ) = −σ,

Θ(σ) = −σ,

C6(σ) = σ + π, (2.75)

from which transformations of all six monopole operators can be determined. These results

are summarized in Table 2.5, and agree with the results in Table 1 of Ref. [36] for the

honeycomb lattice. The monopole ReV3 is trivial under all lattice symmetries and is thus

a symmetry-allowed perturbation to the DSL.

T1/2 rx C6 Θ

V1 αV1−βV2 V†
1 −αV1+βV2 V†

1

V2 αV2+βV1 −V†
2 αV2+βV1 V†

2

V3 V3 V†
3 V3 V†

3

Si Si −S†
i −S†

i −S†
i

Table 2.5: Monopole quantum numbers on the honeycomb lattice, with α= cos
(︁
2π
3

)︁
and

β=sin
(︁
2π
3

)︁
.

2.6 Conclusion

In summary, we have constructed monopole operators in the DSL directly on R3 with-

out assuming conformal invariance, and have computed their quantum numbers under
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lattice symmetries on the square and honeycomb (bipartite) lattices. The first task was

accomplished by first deforming the DSL with a choice of an su(4)-valued fermion mass.

This was shown to lead to ZMs of the Euclidean Dirac operator exponentially bound to

monopole-instantons. The interpretation of these ZMs in the Hamiltonian framework and

their relation to zero-energy modes was also discussed. We then showed that resumming

a semiclassical instanton gas in the presence of such ZMs leads to an instanton-induced

effective interaction, designated as the ’t Hooft vertex in analogy with a similar effect in

QCD4. By introducing ZM creation/annihilation operators, we then identified this vertex

as a linear combination of two of six possible monopole operators in the DSL, previously

constructed in radially-quantized conformal CQED3.

Our next result involved an analysis of the effects of lattice symmetries in specific micro-

scopic realizations of the DSL. By recognizing the existence of orders on bipartite lattices

with symmetries fully encapsulated in a specific fermion bilinear, we were able to compute

quantum numbers of all monopoles under symmetries of the DSL on square and honey-

comb lattices. Specifically, from a symmetry standpoint, Néel and VBS orders on these

lattices could be described in the continuum by either appropriate fermion bilinears or

monopole operators (although monopole proliferation is necessary to confine spinons). By

knowing the ’t Hooft vertex associated to a given bilinear, we could then demand that

the former not break additional symmetries of the DSL to fix the lattice symmetry ac-

tion on monopoles. Néel and VBS orders on the square and honeycomb lattices together

possess enough unbroken lattice symmetries to fully determine the transformations of all

monopole operators. In particular, our results for the “Berry phase” of monopoles, arising

from the embedding of the lattice symmetries into the magnetic symmetry U(1)M of the

dual photon, were shown to be consistent with the more general Wannier center calcula-

tions of Refs. [36, 37]. On both square and honeycomb lattices, we showed the existence

of a monopole transforming trivially under all lattice symmetries, and thus an allowed

perturbation to the DSL on these lattices likely to lead to its instability.
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2.7 Appendix: Zero modes of Dirac operators

Since an index theorem for Dirac operators with abelian gauge fields on odd-dimensional

noncompact manifolds has not been established, we resort to an explicit calculation of zero

modes.

A charge-q∈Z monopole-instanton can be described by a Wu-Yang connection,

Aq =

{︄
− q

2r sin θ
(cos θ − 1)φ̂, θ∈(0, π/2),

− q
2r sin θ

(cos θ + 1)φ̂, θ∈(π/2, π),
(2.76)

in spherical coordinates with an orthonormal frame (r̂, θ̂, ϕ̂).We will explicitly solve for the

zero modes of the Euclidean (non-self-adjoint) Dirac operator in an instanton background,

Daq = /∂ − i /Aq +mta, (2.77)

where ta∈su(4). Using the fact that (γ ·r̂)2≡γ2r =1, with γ=(γ1, γ2, γ3) the Pauli vector,

the Dirac operator can be rewritten as [1, 27]:

γ2r Daq = γr

(︃
∂r −

1

r
γ ·L− q

2r
γr

)︃
+mta, (2.78)

where:

L = r×(p−a)− q

2
r̂, (2.79)

is the conserved angular momentum in a monopole field. Defining the total angular mo-

mentum:

J = L+
1

2
γ, (2.80)

the Dirac operator takes the form:

Daq = γr

[︃
∂r −

1

r
(J2−L2− 3

4
)− q

2r
γr

]︃
+mta. (2.81)

To find the eigenfunctions, note that J2, Jz, t
a and Daq commute. This prompts an eigen-

function ansatz:

uqijM=R(r)Yj+1/2
qjM (θ, φ) |i⟩a+S(r)Y

j−1/2
qjM (θ, φ) |i⟩a , (2.82)
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where |i⟩a is one of the four eigenvectors of ta with eigenvalue (−1)i, and YLqjM are monopole

spinor harmonics defined in Appendix A of Ref. [1], and also in [27]. Their necessary

properties are summarized as follows:

J2YLqjM = j(j + 1)YLqjM ,

L2YLqjM = L(L+ 1)YLqjM ,

JzYLqjM =MYLqjM ,

γrYj±1/2
qjM = a±Yj+1/2

qjM + b±Yj−1/2
qjM , (2.83)

where:

j ∈
{︃
|q|
2
− 1

2
,
|q|
2
+
1

2
, . . .

}︃
, (j>0),

M ∈ {−j,−j + 1, . . . , j},

L ∈
{︃
j− 1

2
, j+

1

2

}︃
,

(︃
L≥ |q|

2

)︃
,

a+ = −b− =
q

2j + 1
, a− = b+ = −

√︁
(2j + 1)2 − q2

2j + 1
. (2.84)

The condition j>0 implies j=(|q|−1)/2 is excluded when q=0, and the condition L≥|q|

requires that L = j−1/2 be excluded when j = (|q|−1)/2. Therefore, for a fixed q, the

lowest angular momentum states with j = (|q|−1)/2 have S(r) = 0 in the ansatz (2.82).

As we shall now show, these states are zero modes. The zero mode equation for Daq then

separates to: (︃
∂rR +

1

r
R + sgn(q)mi

)︃
R(r) = 0, (2.85)

where mi = (−1)im corresponding to |i⟩a, the SU(4) part of the zero mode. Solving for

the radial function R(r), the zero modes can be written as:

uqi(q−1)/2,M = Rqi(r)Yqq,(q−1)/2,M(θ, φ) |i⟩a ,

=

√
2m

r
e− sgn(q)(−1)imrYqq,(q−1)/2,M |i⟩a . (2.86)

For a fixed monopole charge q and su(4) mass mta, it is clear that there are 2q× Nf

2
=
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qNf linearly independent normalizable zero modes.8 We have utilized the fact that for

j = (q−1)/2, the quantum number M ranges over the 2q values −j, . . . , j, and that a

given sign of q results in precisely two of the four eigenvectors |i = 1, 2, 3, 4⟩a contributing

normalizable ZMs.

It is also important to consider zero modes of the adjoint Dirac operator D†, for the

Dirac action can be rewritten after an integration by parts and throwing away boundary

terms as:

Sf =

∫︂
d3x ψ̄(/∂ − i/a+mta)ψ,

=

∫︂
d3x [(−/∂ + i/a+mta)ψ̄

†
]†ψ, (2.87)

where it is to be remembered that ψ̄ and ψ are independent variables in the Euclidean

path integral, unrelated by any notion of complex conjugation. Repeating the calculation

above leads to the zero modes:

vqi(q−1)/2,M = Rqi(r)Yqq,(q−1)/2,M(θ, φ) |i⟩a ,

=

√
2m

r
esgn(q)(−1)imrYqq,(q−1)/2,M |i⟩a , (2.88)

where again, for a given q, i must be chosen to ensure normalizability.

For reference, we give expressions for the monopole spinor harmonics, also given in

Appendix A of Ref. [1]:

Yj−1/2q,j,m (θ, φ) =
1√
2j

⎛⎝√︁j+mjYq,j−1
2
,m−1

2√
j−mYq,j−1

2
,m+1

2

⎞⎠ ,

Yj+1/2q,j,m (θ, φ) =
1√
2j+2

⎛⎝−√︁j−mj+1Yq,j+1
2
,m−1

2√
j+m+1Yq,j+1

2
,m+1

2

⎞⎠ . (2.89)

8It is assumed that Nf is even, so that there is no parity anomaly. In the case of Nf odd, the non-
anomalous theory has a half-integral Chern-Simons term that can be regarded as the result of integrating
out an extra Dirac fermion.
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The monopole harmonics YqLM are defined in terms of theWignerD-matricesDJ
MM ′(α, β, γ)

[74, 79]. In the northern chart on a sphere that surrounds the monopole-instanton,

Yq,L,M(θN , φ) =

√︃
2L+ 1

4π

[︁
DL
M,−q/2(φ, θ,−φ)

]︁∗
, (2.90)

where θN ∈ [0, π). The southern versions (which are valid on the south pole) can be ob-

tained via a gauge transformation on the overlapping region between northern and southern

charts:

Yq,L,M(θS, φ) = e−i2qφYq,L,M(θN , φ). (2.91)

From the above formula, the first two q=1 harmonics are given by

Y1, 1
2
, 1
2
(θN , φ) = −

1√
2π
eiφ sin

θ

2
,

Y1, 1
2
,− 1

2
(θN , φ) =

1√
2π

cos
θ

2
, (2.92)

in the northern chart. Their analogs on the southern chart are obtained from the gauge

transformation exp(−iφ).

For q=−1, the first two harmonics on the northern chart are

Y−1, 1
2
, 1
2
(θN , φ) =

1√
2π

cos
θ

2
,

Y−1, 1
2
,− 1

2
(θN , φ) =

1√
2π
e−iφ sin

θ

2
, (2.93)

with their versions in the southern chart now obtained from the gauge transformation

exp(iφ).
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2.8 Appendix: Real-space Dirac propagator

With the Lagrangian ψ̄(/∂+m)ψ where m is a signed quantity, the free Dirac propagator

on R3 is:

Gf (x) =

∫︂
d3k

(2π)3
eikx

i/k −m
k2 +m2

,

= (/∂ −m)

∫︂
d3k

(2π)3
eikx

k2 +m2
,

= (γr∂r −m)
e−|m|r

4πr
,

= −e
−|m|r(1 + |m|r)

4πr2
γr −

me−|m|r

4πr
. (2.94)
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Chapter 3

Parton theory of superfluidity in 2d
hardcore bosons

3.1 Introduction

The parton or projective construction is one of the most versatile and conceptually fruitful

approaches to a theoretical understanding of strongly correlated systems [20]. This ap-

proach is based on rewriting microscopic degrees of freedom in terms of fractionalized ones

that are charged under an emergent gauge field, and thus transform projectively under

microscopic symmetries. The emergent gauge structure strongly constrains the low-energy

physics, which is progressively revealed as high-energy degrees of freedom are integrated

out. A lattice gauge theory with dynamical gauge fields first emerges, and is then replaced

by a continuum gauge theory once lattice-scale fluctuations have been decimated. The

universal low-energy physics of the original quantum many-body system is then dictated

by the infrared fate of this continuum parton gauge theory.

Fractionalized phases of matter, such as spin liquids, fractionalized Fermi liquids, or

fractional quantum Hall states, correspond to deconfined phases of parton gauge theories.

Whether such phases exist at all for U(1) parton gauge theories in 2+1 dimensions—our

prime focus—is a nontrivial question, due to the strong infrared relevance of the gauge

coupling and the ensuing tendency to confinement. Nonperturbative confinement-inducing

effects in such gauge theories, notably monopole-instantons [9, 26, 40], can be suppressed
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by a variety of mechanisms, including large-flavor screening effects [39, 80], the Higgs mech-

anism [31], and Chern-Simons topological masses [81, 82]. If the suppression of monopole-

instantons does obtain, the appropriate fractionalized phase is adiabatically connected to

a weakly coupled phase of the parton gauge theory, despite being highly nonperturbative

from the point of view of the microscopic Hamiltonian.

While fractionalized phases are thus perturbatively accessible in the parton framework,

conventional broken-symmetry phases are more difficult to describe, as nonperturbative

confinement effects must then necessarily play a role. An ability to describe conventional

phases within the framework of parton gauge theory is however necessary for overall con-

sistency of the theory, as well as to understand the mechanism underlying confinement

transitions between a fractionalized phase and proximate conventional phases. This ques-

tion was studied carefully in recent work [36, 37] in the context of the Dirac spin liquid,

described at low energies by U(1) quantum electrodynamics (QED3) with four flavors of

two-component massless Dirac fermions [32, 68, 69, 83]. Extending earlier work by Alicea

and collaborators [42–45], Song et al. [36, 37] utilized the state-operator correspondence

of conformal field theory [27] to determine the quantum numbers of monopole operators

M for microscopic realizations of the Dirac spin liquid state on various lattices. The in-

sertion of a (single) monopole operator in the Hamiltonian formalism corresponds to an

instanton event in (2+1)D spacetime whereby a localized source of 2π magnetic flux is

suddenly added to the system [9, 26, 40]. In the Hamiltonian picture, a conventional phase

is argued to be accompanied by a monopole condensate ⟨M⟩ ≠ 0 which confines excita-

tions with nonzero gauge charge, gives a mass to the emergent photon, and breaks physical

symmetries ifM transforms nontrivially under the latter.

While these arguments are undoubtedly correct, there exist few explicit computations

of the nonperturbative dynamics that would substantiate these general symmetry consid-

erations. Song et al. assume a two-step scenario in which a gauge-invariant fermion mass

bilinear first acquires an expectation value, a process described by an effective theory of
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the QED3-Gross-Neveu-Yukawa type [38, 55, 84–93] in which compactness of the gauge

field is assumed to not play a role. After the fermionic matter is gapped out, instanton

proliferation is further assumed to proceed as in the pure compact gauge theory [9, 26, 40].

In the presence of fermionic matter, however, gauge instantons may be accompanied by

fermion zero modes (ZMs) [94], which can qualitatively affect the dynamics of instanton

proliferation. Such Euclidean ZMs are traditionally associated with massless fermions, and

are responsible for symmetry-breaking effects in the fermion sector. In (3+1)D Yang-Mills

theory with massless fermions in the fundamental representation, ’t Hooft showed [63–65]

that fermion ZMs on the Belavin-Polyakov-Schwartz-Tyupkin instanton [95] are responsible

for the explicit breaking of chiral symmetry in the fermion sector, in a manner consistent

with the Adler-Bell-Jackiw anomaly equation [96, 97]. Fermion ZMs on gauge instantons in

the (2+1)D Georgi-Glashow model [40] with massless fermions in the adjoint representation

were shown by Affleck, Harvey, and Witten [62] to possibly lead to spontaneous breaking of

the global U(1) fermion number conservation symmetry. In both cases, Euclidean fermion

ZMs generate, via resummation of the semiclassical instanton gas, an effective fermionic

interaction—the ’t Hooft vertex—that manifests the desired broken symmetry. The ex-

istence of fermion ZMs in the above theories is guaranteed by the Atiyah-Singer index

theorem in (3+1)D [98] and the Callias index theorem in (2+1)D [99, 100]. The latter in

particular crucially relies on the non-Abelian nature of the gauge field and the presence of

a scalar Higgs field in the adjoint representation which winds nontrivially at infinity in the

instanton solution [40].

The examples above involve non-Abelian gauge fields and do not directly apply to our

prime focus, but nonetheless suggest that fermion ZMs on gauge instantons may play an

important role in the description of conventional phases and their broken symmetries in

U(1) parton gauge theories. A natural starting point to investigate this question is compact

QED3 with massless Dirac fermions, relevant for the Dirac spin liquid. At late times and

long distances, the Polyakov lattice instanton can be modeled as a Dirac monopole in 3D
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Euclidean space. The corresponding Euclidean massless Dirac equation was studied by

Marston [70], but shown by explicit calculation to not exhibit any normalizable ZM bound

to the instanton. Further, there appears to exist no generalization of the Callias index

theorem to compact QED3 [101], despite the similar infrared fate of the (2+1)D Georgi-

Glashow model and compact QED3 without fermions [9, 26, 40]. In the absence of explicit

fermion ZM solutions or a general theorem guaranteeing their existence, their relevance to

the infrared dynamics of U(1) parton gauge theories is at best speculative.

We emphasize here that we are interested in fermion ZMs bound to instantons in non-

compact Euclidean spacetime R3, as opposed to ZMs of the Dirac Hamiltonian on a 2-sphere

S2 surrounding a monopole insertion in the state-operator correspondence of conformal

QED3 [27]. The existence of the latter ZMs is guaranteed by the Atiyah-Singer index

theorem applied to the massless Dirac operator on the compact space S2. As the Marston

calculation [70] indicates, however, the existence of Hamiltonian ZMs in the latter context

does not automatically imply the existence of Euclidean ZMs in noncompact spacetime.

In this chapter, we present a study of nonperturbative effects in a U(1) parton gauge the-

ory, in which we show by explicit calculation that Euclidean fermion ZMs bound to gauge

instantons exist and lead to symmetry-breaking effects. The gauge theory we consider

arises as the effective continuum description of interacting lattice bosons in the vicinity

of a multicritical point separating superfluid, Mott insulating, and fractional quantum

Hall ground states [102]. While the parton description is introduced as a means to ac-

cess the fractional quantum Hall state, in which a Chern-Simons term for the emergent

U(1) gauge field leads to deconfinement, our focus here is on the nonperturbative gauge

dynamics that obtains in the superfluid phase, which must result simultaneously in the

confinement of gauge-charged excitations and the spontaneous breakdown of the global

U(1) boson number conservation symmetry. Ref. [102] argues from general considerations

that the Affleck-Harvey-Witten mechanism [62] should be operative and yield the desired

physics, but does not provide an explicit derivation of the underlying instanton dynamics.
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Here we show by explicit calculation that, by contrast with massless QED3, QED3 with

massive Dirac fermions admits normalizable Euclidean ZM solutions in a U(1) instanton

background. Such solutions are exponentially localized to the center of the instanton with

a length scale inversely proportional to the fermion mass. Using semiclassical methods [63–

65], we then explicitly compute the ’t Hooft vertex induced by those ZMs and show that

it naturally leads to two possible superfluid phases: a conventional superfluid phase with

single-particle condensation [102], but also an exotic paired superfluid phase with a residual

Z2 symmetry.

The rest of the chapter is structured as follows. We briefly review Ref. [102]’s parton

description of the interacting boson problem in Sec. 3.2. In Sec. 3.3, we formulate the

imaginary-time partition function of the system in a way that makes the contribution

of Polyakov instantons manifest, and allows us to introduce θ parameters analogous to

those of 4D Yang-Mills theory [103, 104]. In Sec. 3.4, we show that massive fermions

support Euclidean zero modes localized on such instantons, and discuss their relationship to

Hamiltonian (quasi-)zero modes in canonical quantization. Sec. 3.5 details the calculation

of the ’t Hooft vertex and Sec. 3.6 explores its symmetry-breaking consequences. We

end the chapter with brief concluding remarks in Sec. 3.7; accessory technical results are

collated in Appendices 3.8 and 3.9.

3.2 Parton gauge theory

We begin by reviewing the parton gauge theory introduced in Ref. [102]. We consider a

system of charge +1 (in appropriate units) hard-core bosons on a 2d lattice described by

operators b(x) and b†(x). The hard-core condition imposes on these operators the algebra

[b(x), b†(x′)] = [1− 2b†(x)b(x)]δxx′ , (3.1)

[b(x), b(x′)] = [b†(x), b†(x′)] = 0. (3.2)
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The hard-core boson then admits a parton decomposition

b(x) = f1(x)f2(x), (3.3)

where f1(x) and f2(x) are fermion annihilation operators. We associate the physical bo-

son charge with f1 and couple this to a background gauge field Aµ when it is necessary

to keep track of the physical U(1) symmetry associated with conservation of the boson

number. The parton decomposition (3.3) also introduces a local SU(2) gauge redundancy

fi(x)→Wij(x)fj(x), under which the boson operators remain invariant. In the parton

approach [20], one first ignores this gauge structure and postulates a mean-field ansatz for

the partons. Gauge fluctuations above the mean-field fermion ground state are then rein-

troduced, which ensures the parton dynamics is projected onto the physical boson Hilbert

space. In what follows, we shall assume a mean-field ansatz for the partons that breaks

the SU(2) redundancy down to a U(1) subgroup, for example via a lattice analog of the

Higgs mechanism [31], which leaves a single gauge boson massless. Under the leftover U(1)

gauge redundancy, the partons f1 and f2 are assigned gauge charges ±1 respectively, so

that the boson operator remains gauge invariant.

We further consider a mean-field ansatz for the partons in which f1 and f2 form inde-

pendent Chern insulators with Chern numbers ±1, respectively, described for instance by

Haldane models [105] or their analog on the lattice of interest. In the vicinity of Chern-

number-changing transitions in the parton bandstructure, this theory is described in the

continuum limit by a 3D Euclidean Lagrangian,

L =
∑︂
α=±

[︁
ψ̄1α(/∂ − i /A+m)ψ1α + ψ̄2α(/∂ −m)ψ2α

]︁
, (3.4)

where Aµ is the background field that tracks the physical U(1) symmetry, and {ψ1±, ψ2±}

are two-component Dirac fermions obtained in a linearization of the partons {f1, f2} at the

two Dirac points K± that generically appear in the parton bandstructure 1. Importantly,

1In our convention, the 3D Euclidean Dirac matrices are just Pauli matrices with ẑ being the Eu-
clideanized time direction. Matter of general charge e gauge transforms as ψ→ ψeieλ(x), and the gauge
covariant derivative is (∂µ−ieaµ).
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the fermion masses for ψ1± and ψ2± are opposite in sign, since the Chern numbers are

opposite in sign for f1 and f2.

For the above mean-field parton ansatz to correspond in fact to a physical state of

bosons, we must reintroduce gauge fluctuations. To study the effect of those fluctuations,

the lattice fermions (i.e., the partons) are minimally coupled to an emergent U(1) gauge

field aµ. For example, the parton f1 of gauge charge +1 minimally couples to the gauge

field on link (x, i) as f †
1xtx,i exp(−iax,i)f1x+i, where tx,i is a hopping integral, x is a lattice

site, and i is a lattice vector. The invariance of such a term under 2nπ shifts of ax,i can

be viewed as a gauge redundancy or as a true local symmetry. These two perspectives will

be discussed in Sec. 3.3. In either case, at low energies, the renormalization group endows

the emergent field a with dynamics that preserves this periodicity, implying an effective

gauge field Hamiltonian of the form

Hg =
1

2

∑︂
l

e2l +K
∑︂
□

(1− cos f□), (3.5)

where el is the electric field on link l satisfying [al, el′ ] = iδll′ , and f□ is the flux (lattice curl)

of a through the plaquette □ (we shall henceforth assume a square lattice for simplicity).

The physical Hilbert space of the gauge theory (with fermions) is the gauge invariant

subspace specified by a Gauss constraint. Weak fluctuations of aµ correspond to the K≫1

limit, in which Hg is energetically appeased by f□ = 2πn□, where n□ ∈ Z is a plaquette-

dependent integer. Expanding about any one of these minima leads to the usual Maxwell

theory with a massless photon. However, it is well known that tunneling events f□ →

f□+2πQ, where Q∈Z, on a plaquette cannot be ignored, for these give the photon a mass

exponentially small in the gauge coupling K. These tunneling events, corresponding to

2πQ flux insertions on a plaquette, feature as instantons (Dirac monopoles of charge Q)

with finite action in the 3D Euclidean theory [9, 26, 40].

In a näıve continuum limit, the effective parton Lagrangian with gauge fluctuations is

L =
∑︂
α=±

[︁
ψ̄1α(/∂ − i /A− i/a+m)ψ1α + ψ̄2α(/∂ + i/a−m)ψ2α

]︁
+

1

4e2
f 2, (3.6)
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where e is the renormalized gauge coupling (some function of the lattice coupling K).

However, a finite UV regulator (lattice constant) and the fact that the lattice theory is

invariant under a→a+2nπ imply that the effects of instantons must be accounted for in

this continuum limit. This theory is termed compact QED3 (CQED3). We note however

that by contrast with the CQED3 theory of the Dirac spin liquid, which also has four

flavors of two-component Dirac fermions, the fermions in our case (i) are massive, and (ii)

do not all have the same sign of the gauge charge.

3.3 θ parameters and instantons

In this section, we use canonical quantization to derive a path integral representation of the

partition function of the pure gauge theory without matter, which makes the contribution

of instantons explicit and allows us to introduce θ parameters [106, 107] analogous to those

of 4D Yang-Mills theory [71, 104]. This sets the stage for our computation of the ’t Hooft

vertex using path integral methods in Sec. 3.5, after explicit fermion ZM solutions in the

background of a single instanton are obtained in Sec. 3.4.

We begin with the pure gauge theory, described by the Hamiltonian (3.5), which we shall

consider in the absence of background charges. This means that the Gauss constraint on

every site is (dive)x |Ψ⟩=0 on all physical states |Ψ⟩. As stated previously, the invariance

of Hg under 2πQ translations of the gauge flux on a plaquette can be viewed as either a

true local symmetry, or as a gauge redundancy due to rotor-valued link variables ax,i ∈

U(1)∼= R/2πZ. The former view will be called minimal compactness, and the latter forced

compactness. In what follows, we shall mostly be concerned with the “magnetic limit”

K≫1, in which gauge fluctuations are weak.
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3.3.1 Minimal compactness

In the minimal compactness picture, the gauge field ax,i∈R. A general state in the Hilbert

space is given by a wavefunctional

Ψ[ax,i] = ⟨{ax,i}|Ψ⟩ , (3.7)

where {ax,i} denotes the collection of a on all links, and |{ax,i}⟩ forms a basis. The electric

fields ex,i generate translations of these wavefunctionals. On a single link,

e−iαe |a⟩ = |a+ α⟩ , (3.8)

which means

e−iα
δ
δaΨ[a] = ⟨a| e−iαe |Ψ⟩

= ⟨a− α|Ψ⟩

= Ψ[a− α]. (3.9)

A gauge transformation exp[−iϕ(dive)x] on a site x is a translation that leaves all plaquette

fluxes f□ invariant. Since the magnetic term is a periodic function of f□, Hg is not only

invariant under these gauge transformations, but also under a discrete group of local flux

translations f□→ f□+2πQ, Q∈Z on a plaquette. This group is generated by monopole

operatorsMQ(x̄), where x̄ denotes a plaquette (or equivalently, a site on the dual lattice),

and

M†
Q(x̄)fx̄MQ(x̄) = fx̄ + 2πQ. (3.10)

This translation is also generated by electric fields, but one must use an infinite string

of fields [108], since only the flux in plaquette x̄ must be changed. One possibility is to

consider an infinite product of all horizontal links below x̄, and non-uniquely define

MQ(x̄) = ei2πQσx̄ , σx̄ ≡
0∑︂

p=−∞

ex+px̂2,x̂1 , (3.11)

where x̂1, x̂2 are unit vectors in the positive horizontal and vertical directions, respectively.
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The minimally compact theory has similarities with the Bloch problem of electrons in a

crystal lattice, in which a discrete translation by a lattice constant is a physical symmetry as

opposed to a gauge redundancy. In the Bloch problem, there occur instantons that tunnel

between the minima of the crystal potential, and the true ground state is a superposition

of all local minima. In minimally compact CQED3, the analogs are monopole-instantons

that tunnel between physically distinct minima fx̄=2nπ to f ′
x̄=2mπ on a given plaquette

x̄. Since [Hg,MQ(x̄)]=0 on every plaquette, the physical eigenstates of Hg fall in repre-

sentations of these symmetries. The irreducible representations of this Abelian group are

all one-dimensional, and are simply phase factors (Bloch theorem). The eigenstates of Hg

must thus obey,

∀x̄, MQ(x̄) |Ψn,θ⟩ = eiQθx̄ |Ψn,θ⟩ , θx̄∈ [0, 2π), (3.12)

where θx̄ is an analog of crystal momentum, and n is a collective index denoting all the

other quantum numbers necessary to specify the state. The corresponding eigenenergies

will be continuous functions of θx̄, as in conventional band theory.

For example, a single square plaquette in the “electric limit” K→0 (the analog of the

“empty lattice approximation” in the Bloch problem) is governed by the Hamiltonian

Hg ≈
1

2

∑︂
x,i

e2x,i. (3.13)

There is a single site x̄ on the dual lattice, and we thus drop the site index. Eigenstates of

Hg are eigenstates of all four electric fields bordering the plaquette, but subject to the Bloch

condition (3.12) and the Gauss constraint (dive)x |Ψ⟩=0. For this single-plaquette system,

Eq. (3.11) implies σx̄=ex,x̂1 and thusMQ(x̄)=exp(i2πQex,x̂1). The Bloch condition (3.12)

is then

ei2πQex,x̂1 |Ψn,θ⟩ = eiQθ |Ψn,θ⟩ . (3.14)

This implies physical eigenstates of ex,x̂1 (and of Hg in the limit K → 0) satisfying the

Bloch condition are restricted to those with eigenvalues

ex,x̂1 = n+
θ

2π
, n∈Z. (3.15)
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The electric fields on the other links can be found using the Gauss constraint. The phys-

ical states are loops of electric flux circling the plaquette, with an integer level spacing.

Substitution of these values into the Hamiltonian (3.13) gives the bandstructure

En(θ) = 2

(︃
n+

θ

2π

)︃2

. (3.16)

In the minimal compactness picture, {θx̄} are a set of quantum numbers specifying states

in the same Hilbert space.

Finally, we observe that [H,MQ(x̄)]= 0 for the full lattice Hamiltonian H with gauge

fields and fermions, since the gauged fermion hopping term discussed in Sec. 3.2 is invariant

under local shifts of the link field ax,i by arbitrary integer multiples of 2π, including those

produced by conjugation with the monopole operator (3.11). Thus the Bloch condition

(3.12) applies to eigenstates of H as well. As with the Bloch theorem in solid-state physics,

an eigenfunctional of H satisfying this Bloch condition can be written as the product of a

“plane wave” and a periodic function,

Ψn,θ[ax,i] = e
i
2π

∑︁
x̄ θx̄fx̄Φn,θ[ax,i], (3.17)

where Φn,θ is invariant under 2πQ flux translations on a plaquette, i.e.,MQ(x̄)Φ=Φ, and

we have suppressed the dependence of Φ on fermionic coordinates, which does not play

a role in this analysis. As in band theory, we can reduce the solution of the Schrödinger

equation over ax,i ∈R to that over a single “unit cell” ax,i ∈ [0, 2π) by either solving the

original equation over that domain with the twisted periodic boundary conditions (3.12),

or by deriving an equation for the periodic part Φ. Defining the unitary

Uθ = e
i
2π

∑︁
x̄ θx̄fx̄ , (3.18)

we see that Φn,θ obeys the modified Schrödinger equation HθΦn,θ=En(θ)Φn,θ, where

Hθ ≡ U †
θHUθ =

1

2

∑︂
x,i

[︃
ex,i+

1

2π
ϵij∆jθx̄−x̂j

]︃2
+K

∑︂
x̄

(1−cos fx̄). (3.19)
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Since θx̄ only enters Hθ through its spatial lattice derivative, a uniform parameter θx̄= θ

has no effect in the bulk [106, 107], but will affect energetics in a system with boundary as

the single square plaquette considered here.

The partition function for a fixed set {θx̄} is [109]

Zθ = tr e−βHθ =
∑︂

{Qx̄}∈Z

ei
∑︁

x̄Qx̄θx̄ZQ, (3.20)

where the second equality is a Fourier decomposition, since Zθ is periodic in all the θx̄.

The Fourier coefficients are given by

ZQ =

∫︂ 2π

0

D{θx̄} e−i
∑︁

x̄Qx̄θx̄Zθ, (3.21)

where we define D{θx̄} ≡
∏︁

x̄
dθx̄
2π

. These Fourier coefficients can be interpreted as a

partition function of the original Hamiltonian H with monopole insertions as follows. Let

M(Qx̄) be a product of monopole operators that inserts flux across the system in a manner

determined uniquely by the configuration function Qx̄. Using the completeness of flux (f̂)

eigenstates in the gauge-invariant subspace, we obtain:

tr e−βHM(Qx̄) =

∫︂
R
D{fȳ} ⟨{fȳ}| e−βHM(Qx̄) |{fȳ}⟩

=

∫︂
R
D{fȳ} ⟨{fȳ}| e−βH |{fȳ + 2πQȳ}⟩ , (3.22)

where D{fȳ} ≡
∏︁

ȳ
dfȳ
2π

. Inserting a complete set of eigenstates of H using

1 =

∫︂ 2π

0

D{θx̄}
∑︂
{nx̄}

|Ψn,θ⟩ ⟨Ψn,θ| , (3.23)

we find that

tr e−βHM(Qx̄) =

∫︂ 2π

0

D{θx̄}
∫︂
R
D{fȳ}

∑︂
{nx̄}

⟨{fȳ}| e−βH |Ψn,θ⟩ ⟨Ψn,θ|{fȳ + 2πQȳ}⟩

=

∫︂ 2π

0

D{θx̄}
∑︂
{nx̄}

e−βEn(θ)e−i
∑︁

x̄Qx̄θx̄

∫︂
R
D{fȳ}Ψ∗

n,θ[f ]Ψn,θ[f ]

=

∫︂ 2π

0

D{θx̄} e−i
∑︁

x̄Qx̄θx̄ tr e−βHθ

= ZQ. (3.24)
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In the second line, we have used the Bloch condition satisfied by the gauge-invariant wave-

functional Ψn,θ[f ] as seen in Eq. (3.17), and the third line follows from its normalization

to unity. Therefore, the partition function for a fixed set {θx̄} can be written as

Zθ =
∑︂

{Qx̄}∈Z

ei
∑︁

x̄Qx̄θx̄ tr e−βHM(Qx̄). (3.25)

Each term of this series can be written as a path integral in a fixed monopole configuration

background. The Q-dependent exponential prefactor can be absorbed into the trace by

explicitly including a θ-term i
∫︁
θ(x)⋆df(x) in the action, where f(x) is now the Euclidean

electromagnetic 2-form and ⋆ denotes the Hodge star.

3.3.2 Forced compactness

In the forced compactness picture, the gauge field ax,i ∈U(1)∼= R/2πZ is a rotor-valued

variable. The canonically conjugate electric fields then have a spectrum valued in Z. In

this perspective, the various minima fx̄=2nxπ for nx∈Z are identified as the same state,

and a flux translation fx̄→fx̄+2πQ becomes a gauge redundancy.

In this perspective, the problem is akin to that of a quantum particle on a ring, where

a translation by a length equal to the circumference is a gauge transformation. If the

ring is suspended in a gravitational potential, then the unique classical ground state that

minimizes the potential is at the bottom of the ring. However, in the quantum problem,

there are tunneling events (instantons) that correspond to the particle winding around the

ring an integer number of times, which involves overcoming a potential barrier.

The exact analog in CQED3 in the forced compactness picture are monopole-instantons

that cause fx̄→ fx̄+2πQ on a plaquette. The monopole operator defined by Eqs. (3.10)-

(3.11) is thus a gauge transformation (a “do-nothing” operator) that connects different

labels for the same physical state. These are called large gauge transformations, termi-

nology inspired by analogous concepts in 4D Yang-Mills theory [71, 104]. Large gauge

transformations are distinguished from the usual small ones in that the former crucially
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utilize the multi-valuedness of the gauge function.2 A small gauge transformation is one

of the form
∏︁

x exp[iϕx(dive)x], where {ϕx} are single-valued gauge functions, i.e., all of

them lie in a single branch of R/2πZ, for example [0, 2π). One example of a large gauge

transformation is
∏︁∞

p=0 exp[i0(dive)x+px̂1 ] which, since 0∼2π in R/2πZ, can be written as∏︁∞
p=0 exp(i2πex+px̂1,x̂2), which is the same operator as (3.11), but with a displaced Dirac

string.

Physical states are required to be invariant under all gauge transformations, small and

large. This imposes θx̄ = 0 for all plaquettes x̄ in the Bloch condition (3.12). For the

particle on a ring, a background flux can be threaded through the ring, which changes

the Hamiltonian and the Hilbert space of the problem, as we are dealing with a physically

different system. The background flux can be unitarily removed from the Hamiltonian, at

the expense of twisting the boundary conditions on wavefunctions, which in winding around

the ring, will then gain an Aharonov-Bohm phase. Similarly, in CQED3, one can introduce

a theta term, which changes the Hamiltonian from Eq. (3.5) to Eq. (3.19). There is a

macroscopic number of such possible theta terms, corresponding to a choice {θx̄}. Again,

one can remove the theta terms from the Hamiltonian, but at the expense of introducing

twisted boundary conditions under large gauge transformations, as in Eq. (3.12). The key

difference with the minimal compactness picture is that a given set {θx̄} labels the entire

Hilbert space of the theory, sometimes called a given theta universe. States with different

{θx̄} belong in different Hilbert spaces; conversely, states in the same Hilbert space have

the same {θx̄}.

The expression (3.25) for a partition function with fixed {θx̄} remains valid in the forced

compactness perspective. In fact, it is the full (i.e., unrestricted) partition function here

since the entire Hilbert space is characterised by the fixed set of parameters {θx̄}.
2Precisely, gauge functions defining small gauge transformations vanish at infinity.
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3.4 Zero modes of massive fermions in instanton back-

grounds

Having discussed instantons in the pure gauge theory, we now include fermions. As men-

tioned previously, the presence of fermionic ZMs in instanton backgrounds is typically as-

sociated with massless fermions in non-Abelian gauge fields [62–64, 99, 100]. Marston [70]

considered massless Dirac fermions in an Abelian instanton background in (2+1)D and

found no fermion ZMs bound to the instanton. Motivated by the U(1) parton gauge

theory (3.6), we consider here massive Dirac fermions in the same background and show

by explicit construction that fermion ZMs now exist. This result is in accordance with

the existence of zero-energy bound states for relativistic fermions in a (soliton) monopole

background in (3+1)D (see Ref. [110] and references therein). In the soliton version of the

problem, the fermion ZM is found by a self-adjoint extension of the Dirac Hamiltonian.

Such a technique is inapplicable for the instanton version of the problem as the Euclidean

Dirac operator D appearing in the action [see Eq. (3.26)] is not Hermitian, nor is there any

requirement for it to be. Rather, D must obey reflection positivity (see Appendix 3.9).

Therefore, the calculation of the ZM solution must be done anew in the context of the

instanton problem.

As Marston himself notes, the Callias index theorem for odd-dimensional noncompact

manifolds provides the number of fermion ZMs in the case of massless fermions in the

background of non-Abelian instantons [99, 100]. This index theorem crucially relies on (i)

the existence of a Higgs field, and (ii) on relating the index of the Dirac operator D to

(dim kerD†D−dimkerDD†), both of which fail to hold in the current setting of massive

fermions in Abelian instanton backgrounds. The reason for the failure of (ii) might seem

surprising, and is discussed in Appendix 3.9. Despite the absence of a rigorous index

theorem for the current problem, and as we discuss below, the ZMs we find by explicit

solution can be given a topological interpretation by analogy with Hamiltonian (quasi-)zero

modes associated with the Atiyah-Singer index theorem.
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3.4.1 Setting up in spherical coordinates

A 3D Dirac fermion ψ of charge e (with sign) and mass m, in an instanton background

a
(g)
µ of topological charge g, is specified by the Euclidean Lagrangian

L = ψ̄(/∂ − ie/a(g) +m)ψ ≡ ψ̄Dψ. (3.26)

The instanton is assumed to sit at the origin, with its Dirac-monopole vector potential

defined à la Wu and Yang [74]. Working in spherical coordinates (r, θ, φ), we have a
(g)
r =

a
(g)
θ =0 and

a(g)φ =

{︄
− g
r sin θ

(cos θ − 1), r ∈ RN ,

− g
r sin θ

(cos θ + 1), r ∈ RS,
(3.27)

where charts in the northern and southern hemispheres, RN and RS, are defined by RN :

θ∈ [0, π/2+δ) and RS : θ∈(π/2−δ, π], and a choice of δ∈ [0, π/2) defines the chart overlap

region RNS : θ∈(π/2−δ, π/2+δ). The Dirac matrices are Pauli matrices (σx, σy, σz), with

ẑ being the Euclideanized time direction. The ZM ψ0 of the Dirac operator D solves

−iDψ0 ≡ (−i/∂ − e/a(g) − im)ψ0 = 0. (3.28)

We will treat this formally as a quantum mechanics problem in three spatial dimensions,

regarding −i∂j as a canonical momentum operator pj. The ZM equation is then

(σjpj − eσja(g)j − im)ψ0 ≡ (σjπj − im)ψ0 = 0, (3.29)

where the mechanical momentum π=p−ea(g). Defining /π = σ · π, we use the fact that

(σ · r̂)2= σ2
r=1 to write

/π = (σ · r̂)(σ · r̂)(σ · π)

= (σ · r̂)[r̂ · π + iσ · (r̂× π)]. (3.30)

The canonical angular momentum that is conserved in a monopole field is (see Appendix 3.8)

L = r× π − egr̂, (3.31)
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where eg∈Z/2 by the Dirac quantization condition. This can be used to rewrite Eq. (3.30)

as

/π = (σ · r̂)
(︃
r̂ · π +

i

r
σ ·L+

ieg

r
σ · r̂

)︃
. (3.32)

Since L generates spatial rotations, which leave r= |r| invariant, [r,L]=0 and the place-

ment of r does not matter in the above equation. Using π=p−ea(g) and since r̂ · a(g)=0

for the Wu-Yang potential,

/π = (σ · r̂)
(︃
r̂ · p+

i

r
σ ·L+

ieg

r
σ · r̂

)︃
= −i(σ · r̂)

(︃
∂r −

1

r
σ ·L− eg

r
σ · r̂

)︃
. (3.33)

The Dirac operator is thus

D = i(σ ·r̂)
(︃
r̂·p+

i

r
σ ·L+

ieg

r
σ ·r̂
)︃
+m

= (σ ·r̂)
(︃
∂r −

1

r
σ ·L− eg

r
σ ·r̂
)︃
+m. (3.34)

3.4.2 Zero modes of the Dirac operator

Firstly, we note that [J ,D]=[J , i/π]=0, since /π=σ ·π is a dot product that remains invari-

ant under simultaneous rotations of σ and π generated by the total angular momentum

J = L+ 1
2
σ. As a set of commuting observables, we take

[J2,D] = [Jz,D] = 0. (3.35)

This means the angular part of eigenspinors of D are the monopole spinor harmonics

YLeg,j,mj
(θ, φ) (see Appendix 3.8), which informs the eigenspinor ansatz:

ψj,mj
=Aj,mj

(r)Yj+1/2eg,j,mj
(θ, φ)+Bj,mj

(r)Yj−1/2eg,j,mj
(θ, φ), (3.36)

for a given (eg, j,mj). It is necessary to superpose both values of the orbital angular

momentum, L± = j±1/2, that give rise to a given total j as L is not a good quantum

number.
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For a monopole of the lowest magnetic charge g= ±1/2e, the total angular momentum

can assume j=0, 1. We will focus on the lowest spherical wave j=0, for which the orbital

angular momentum L− = −1/2 is excluded. To reduce notational clutter, we suppress

(eg, j,mj) labels everywhere except on the monopole spinor harmonics, and write the ZM

ansatz as:

ψ0(r, θ, φ) = A±(r)Y1/2
±1/2,0,0(θ, φ). (3.37)

The zero index on ψ0 indicates that it is a ZM. The ± indices on the radial part A±(r)

denote the value of eg =±1/2. Finally, Y1/2
±1/2,0,0 stands for the (L= 1/2, eg =±1/2, j =

0,mj=0) monopole spinor harmonic. Since this ansatz is coincidentally also an eigenstate

of L2, we rewrite the Dirac operator in Eq. (3.34) as:

D = (σ · r̂)
[︃
∂r −

1

r

(︃
J2−L2− 3

4

)︃
− eg

r
σ · r̂

]︃
+m. (3.38)

The action of D on the ZM ansatz (3.37) is then (for eg=±1/2),

(σ · r̂)
[︃
Y1/2

±1/2,0,0∂rA± +
3

2r
A±Y1/2

±1/2,0,0

∓ 1

2r
A±(σ · r̂)Y1/2

±1/2,0,0

]︃
+mA±Y1/2

±1/2,0,0 = 0. (3.39)

Using Eq. (3.119) of Appendix 3.8 with eg=±1/2 yields:

(σ · r̂)Y1/2
±1/2,0,0 = ±Y

1/2
±1/2,0,0, (3.40)

and therefore:

∂rA±(r) +

(︃
1

r
±m

)︃
A± = 0, (3.41)

which have the obvious exponential solutions. Therefore, the ZMs for eg=±1/2 are

ψ+
0 (r, θ, φ) =

√
2m

r
e−mrY1/2

1/2,0,0(θ, φ),

ψ−
0 (r, θ, φ) =

√
−2m
r

emrY1/2
−1/2,0,0(θ, φ), (3.42)

which are normalizable for m> 0 and m< 0, respectively (recall that there sits an r2 in

the Jacobian for spherical integrations). The divergence at r=0 is superficial. The origin
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is excluded in the problem due to the instanton there, mathematically implemented by

working in spherical coordinates. Alternatively, we know that the instanton has a finite

core due to the underlying lattice, and so the derived form of the ZM is valid only at large

distances compared to the lattice constant. This has been discussed further in the soliton

version of the problem by Yamagishi [110].

3.4.3 Zero modes of the adjoint Dirac operator

Under an integration by parts, the Lagrangian changes from ψ̄Dψ to (D†ψ̄
†
)†ψ, so the ZMs

of the adjoint Dirac operator are also important. The adjoint Dirac operator is

D† = −/∂ + ie/a(g) +m, (3.43)

where the adjoint is defined with respect to the standard inner product on L2(R3). In fact,

the correct domains of D and D† are subsets of L2(R3), as discussed in Appendix 3.9. The

ZM equation for D† is

iD†ψ̃0 = (−i/∂ − e/a(g) + im)ψ̃0 = 0, (3.44)

which is the same as that of D, but with the sign of m reversed. This implies the ZMs of

D† for eg=±1/2 are

ψ̃
+

0 (r, θ, φ) =

√
−2m
r

emrY1/2
1/2,0,0(θ, φ),

ψ̃
−
0 (r, θ, φ) =

√
2m

r
e−mrY1/2

−1/2,0,0(θ, φ), (3.45)

which are normalizable for m<0 and m>0, respectively. We note that D and D† cannot

both possess normalizable ZMs simultaneously.

3.4.4 Hamiltonian picture and quasi-zero modes

Although the Callias index theorem does not directly apply to the problem considered here,

the topological nature of the fermion ZMs explicitly found in the previous subsections can

be understood by considering an approximate treatment of the same problem but in the

Hamiltonian picture, following the approach of Refs. [42–45]. In this approach, a single
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instanton is modeled as a static, infinitely thin 2π solenoidal flux to which the fermions

respond: ∇× a = 2πδ(r), where r=(x, y) now denotes the spatial coordinate. Consider

first fermions of gauge charge +1 and zero mass. As is well known, for each fermion flavor,

the corresponding 2d massless Dirac Hamiltonian possesses a single quasi-normalizable

“chiral” zero-energy eigenstate ψ0=(u, 0)T with u∼f(x+iy)/r, which can be understood

as a manifestation of the Atiyah-Singer index theorem [46].

In the presence of a nonzero mass m> 0, a “zero-mode” solution persists, again of the

form ψ0=(u, 0)T with u∼f(x+iy)/r, but its energy E is shifted from zero to E=m. For

fermions of gauge charge −1 and negative mass −m, there is also a single such quasi-zero

mode per fermion flavor, now with wavefunction ψ0 = (0, v)T and v ∼ g(x− iy)/r, but

again energy E=m. For a −2π flux background corresponding to an anti-instanton, the

situation is reversed: fermions of gauge charge +1 and mass m possess a quasi-zero mode

ψ0=(0, v)T with v∼g(x−iy)/r, and fermions of gauge charge −1 and mass −m possess a

quasi-zero mode ψ0=(u, 0)T with u∼f(x+iy)/r, both with energy E=−m.

The Hamiltonian quasi-zero modes discussed above are similar to those appearing in the

“zero” mode dressing of monopole operators at the quantum critical point between a Dirac

spin liquid and an antiferromagnet [55, 56, 111]. In the latter context, a spin-Hall mass

mσz appears spontaneously in the saddle-point free energy of the associated conformal field

theory quantized on a sphere surrounding a monopole insertion, following the approach

of Ref. [27] to calculate the scaling dimension of monopole operators at conformal fixed

points. This spin-Hall mass gives a mass of opposite sign to fermion flavors ψ↑ and ψ↓ of

opposite spin, but the gauge charge is the same for both flavors. In our case, the two parton

flavors ψ1 and ψ2 in Sec. 3.2 play the role of ψ↑ and ψ↓, and the “spin-Hall” mass comes

from the parton Chern numbers appropriate to a superfluid state [102]. Furthermore, the

gauge charge is opposite for both flavors on account of the parton decomposition (3.3).

Nonetheless, in both cases a single normalizable quasi-zero mode with energy ±m appears

for each Dirac fermion flavor, as expected from the Atiyah-Singer index theorem.
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Finally, the counting of instanton zero modes in Sec. 3.4.2 and 3.4.3 is consistent with

that of the Hamiltonian quasi-zero modes just discussed, if both D and D† are considered.

For an instanton (g > 0), and for fermions of positive gauge charge (eg = 1/2) and mass

m>0, the Euclidean Dirac operator D has a single normalizable zero mode ψ+
0 ∝e−mr/r,

where r now denotes Euclidean spacetime distance from the center of the instanton [see

Eq. (3.42)]. For fermions with negative gauge charge (eg = −1/2) and mass m < 0, D

likewise possesses a single normalizable zero mode, ψ−
0 ∝emr/r. The adjoint Dirac operator

D† has no zero modes in this case. For an anti-instanton (g<0), the situation is reversed,

as in the Hamiltonian picture: D† now has normalizable zero modes, but D has none. For

e> 0 and m>0, D† has a single zero mode ψ̃
−
0 ∝ e−mr/r; for e<0 and m<0, the D† zero

mode is ψ̃
+

0 ∝emr/r [Eq. (3.45)]. The fact that instantons (anti-instantons) are associated

with zero modes of D (D†) is further discussed in Sec. 3.5.2 and 3.5.3 and has important

consequences for instanton-induced symmetry breaking.

3.5 The ’t Hooft vertex

Using the explicit ZM solutions for massive 3D Dirac fermions found in Sec. 3.4, we now

show that Abelian instantons in CQED3 induce symmetry-breaking interactions for such

massive fermions. The calculation here is analogous to ’t Hooft’s groundbreaking solution

of the U(1) problem in 4D quantum chromodynamics [63, 64], which is well summarized

in a review article [65] by the same author. In short, fermion ZMs cause transition am-

plitudes with nonzero instanton charge Q ̸= 0 to vanish when evaluated between states

of equal fermion number. Instead, nonvanishing amplitudes occur between states of dif-

ferent fermion number: fermionic field insertions appearing in such amplitudes “soak up”

the fermion ZMs appearing in Grassmann integration. Resumming these insertions in the

Coulomb gas formalism produces a fermionic interaction term known as the ’t Hooft vertex,

whose symmetry is lower than that of the classical Lagrangian.
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3.5.1 Partitioning the partition function into instanton sectors

To make the calculations less tedious, we consider only two species of 3D Dirac fermions

ψ1, ψ2 with opposite gauge charges e1=−e2=e and zero net Chern number, so that their

masses satisfy m1 = −m2 = m. This corresponds to effectively ignoring the valley (±)

subindex in the original Lagrangian (3.6), which can be easily restored at the end of the

calculation (see Sec. 3.6). The Lagrangian of interest is then

L = ψ̄1(/∂ − i/a+m)ψ1 + ψ̄2(/∂ + i/a−m)ψ2 +
1

4e2
f 2
µν + iθ(x)ϵµνλ∂µfνλ, (3.46)

where an explicit θ term has been added to keep the discussion general (see Sec. 3.3).

The fermion part of the action will be denoted as SF [aµ] when there is need to refer to it

separately. The presence of a lattice regulator permits monopole-instantons in this theory

to have finite action. The qualitative effects of those instantons on fermions are what

we wish to understand. To formulate this problem in terms of a path integral, we use

Eq. (3.25) to write the partition function in a fixed θ universe as

Z =
∑︂
Q∈Z

∫︂
D(ψ̄α, ψα) [Daµ]Q e

−S, (3.47)

where [Daµ]Q indicates a restriction of the integration over aµ to configurations with total

instanton charge Q/2e. The sum over instanton configurations in Eq. (3.25) has been

replaced by a sum solely over total charge Q, with integrations over instanton collective

coordinates subsumed in the measure [Daµ]Q. We will “integrate out” the instantons in

the Q ̸= 0 sectors and write a theory of fermions. A direct coupling between photons—

quantum fluctuations of the gauge field about the classical instanton background—and

fermions remains in this final theory, but can be neglected in the computation of the

’t Hooft vertex, which is a semiclassical effect [63–65].

Insofar as the pure gauge theory is concerned, the effect of an instanton of charge Q/2e

is captured by an insertion

e−
π2

2e2
Q2

∫︂
d3x ei2πQσ(x), (3.48)
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in the path integral [9, 26, 40]. Here, π2Q2/2e2 is the action of a charge-Q/2e instanton,

σ(x) is a compact scalar called the dual photon—the continuum limit of the lattice variable

σx̄ in Eq. (3.11)—and the integration is over the instanton position x. Likewise, the factor

exp(i2πQσ) is just the spacetime representation of the monopole operatorMQ [27], whose

lattice form was given in Eq. (3.11). An attempt to dualize this theory in the same vein as

the classic Polyakov duality between the compact U(1) gauge theory and the sine-Gordon

theory [9, 26, 40] leads to the path integral

Z

∫︂
Dσ e−

e2

2

∫︁
d3x(∂µσ)2

∞∑︂
N=0

1

N !

N∏︂
k=1

∫︂
d3zk

×
∞∑︂

Qk=−∞

e−
π2

2e2
Q2

keiQk[2πσ(zk)+θ(zk)]

∫︂
D(ψ̄α, ψα)e

−SF [a
Qk
µ ]. (3.49)

There are a number of results used in writing Eq. (3.49), especially with fermions present.

The gauge field in each Q-sector in Eq. (3.47) has been formally decomposed as

aµ = aSWµ + aQµ , (3.50)

where aSWµ is the photon (analog of “spin wave” in the 2d XY/sine-Gordon duality [112])

part whose coupling to fermions is neglected at the semiclassical level, and aQµ describes

an instanton configuration of total charge Q/2e. The photon part has been dualized to

the Gaussian action for the compact scalar σ. In the above decomposition, the photon

part can be thought of as finite-action fluctuations (of arbitrary size) around the fixed

instanton solution. In addition, the sum over charges Q, and integration over positions

implicit in the measure [Daµ]Q in Eq. (3.47) have been rewritten as sums over the number

N of instantons, their charges Qk, and their locations zk.

An important assumption used here is the dilute gas approximation, which gains new

significance in the presence of fermions for the following reason. Consider, for instance,

N=2 with charges Q1/2e and Q2/2e. It has been assumed [63–65] that the gauge field for

such a configuration can be written as

aQ1+Q2
µ (x; z1, z2) ≈ aQ1

µ (x; z1) + aQ2
µ (x; z2), (3.51)
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with |z1−z2| ≫ 1. This might seem plausible given the assumption of a dilute instanton

gas, but the consequence is severe, for it implies that the Dirac action also separates,

SF [a
Q1+Q2
µ ] ≈ SF [a

Q1
µ ] + SF [a

Q2
µ ]. (3.52)

This allows the fermion path integral to be written inside the N and Q sums, as in

Eq. (3.49). If Q1 = −Q2 so that the total instanton charge is zero, one might expect

that there exist no normalizable fermion ZMs. However, the decomposition of the action

in the above form (which filters into a decomposition of the Dirac operator) clearly al-

lows ZMs. We shall nevertheless assume such a decomposition; the error in the resulting

partition function turns out be of O(λ2), where

λ = e−π
2/2e2 , (3.53)

is the action for an instanton of lowest charge, and we consider the semiclassical limit λ≪1.

Moreover, even if there are no strict (topologically protected) ZMs in this case, there will

likely be eigenmodes of the Dirac operator lying arbitrarily close to zero, with splitting pro-

portional to exp(−m|z1−z2|), since the ZM wave functions (3.42) for an isolated instanton

decay exponentially away from the center of the instanton.

In what follows, we shall only consider the effects of a dilute gas of instantons of elemen-

tary charge, thereby restricting the sum over Qk in Eq. (3.49) to ±1. The contributions of

instantons of higher topological charge are suppressed by increasing powers of λ.

3.5.2 Q=1 instanton sector

In the Q=1 sector, the fermion part of the partition function is

ZF [a
+
µ ] ≡

∫︂
D(ψ̄α, ψα)e

−SF [a+µ ], (3.54)

where a+µ describes a single charge 1/2e instanton located at z+. We will show that this

path integral is precisely zero. Before the zero is revealed, the fermion functional measure

needs definition. For technical reasons discussed in Appendix 3.9, the standard means of

87



definition using the eigenfunctions of D†D and DD† does not work, since these only span

subspaces of L2(R3) over which D†D and DD† are self-adjoint (not merely Hermitian), and

it so happens that the ZM lies outside these subspaces. Instead, we shall proceed along

physical lines; the effects of ZMs are what we are interested in. The results of Sec. 3.4

indicate that the Euclidean Dirac operators,

D1 ≡ γµ∂µ − iγµa+µ +m,

D2 ≡ γµ∂µ + iγµa+µ −m, (3.55)

each possess a normalizable ZM. We shall thus use a mode expansion of the Fermi fields

as

ψ1(x) = u0(x− z+)η0 +
∑︂′

i

ui(x− z+)ηi,

ψ2(x) = v0(x− z+)χ0 +
∑︂′

i

vi(x− z+)χi, (3.56)

where ηi, χi are single-component Grassmann variables. u0 and v0 are the respective ZMs

of D1 and D2, calculated in Sec. 3.4.2, and the primed sum denotes non-ZM contributions.

As discussed in Appendix 3.9, we can either assume that there exists some self-adjoint

operator whose domain includes the ZM, or we can use the eigenfunctions of a self-adjoint

D†
αDα (which excludes the ZM) to account for non-ZM contributions and add the ZM by

hand. Either way, the ZM contribution has to be accounted for on physical grounds.

Since D†
1 and D

†
2 are deprived of normalizable ZMs in the Q=+1 sector, we write mode

expansions of ψ̄1∈Dom(D†
1) and ψ̄2∈Dom(D†

2) as

ψ̄1(x) =
∑︂′

i

ūi(z+ − x)η̄i, ūi(z+ − x) ≡ ũ⊺i (x− z+),

ψ̄2(x) =
∑︂′

i

v̄i(z+ − x)χ̄i, v̄i(z+ − x) ≡ ṽ⊺i (x− z+), (3.57)

where the transpose acts on spin and spatial indices, no matter where the ⊺ is placed. The
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functional measure for fermions can now be defined as

D(ψ̄1,ψ1, ψ̄2, ψ2) = dη0 dχ0

∏︂′

i

dη̄i dηi dχ̄i dχi

= dη0 dχ0D
′(η̄, η)D′(χ̄, χ). (3.58)

Since the ZMs η0, χ0 do not appear in the action, the path integral for ZF [a
+
µ ] is killed by

the measure. Therefore, only the sector with zero instanton charge contributes to the full

partition function (Z) of the theory.

However, sectors with nonzero instanton charge will contribute to correlation functions

that can “soak up” the ZMs. For instance, (only) the Q = 1 sector contributes to the

correlation function

⟨ψ⊺
1(x1)ψ2(x2)⟩ ∝

∫︂
dη0 dχ0D

′(η̄, η, χ̄, χ)e−SF [a+µ ]
∑︂
i

u⊺i (x1−z+)ηi
∑︂
j

vj(x2−z+)χj

= −u⊺0(x1 − z+)v0(x2 − z+)
∫︂
D′(η̄, η, χ̄, χ)e−SF [a+µ ], (3.59)

where only the fermion part of the path integral has been written. This correlation function

is non-zero provided

|x1 − z+| ∼ |x2 − z+| ≲ 1/m, (3.60)

where m−1 is the width of the ZM bound to the instanton at z+.

A nonzero value for such an anomalous (Gor’kov) Green’s function is suggestive of

symmetry breaking. It is indeed a gauge-invariant object, since ψ1 and ψ2 couple to the

dynamical U(1) gauge field aµ with opposite charge, but transforms nontrivially under the

global U(1) symmetry associated with boson number conservation in the original micro-

scopic model (see Sec. 3.2). To investigate whether symmetry breaking indeed occurs, we

add a weak symmetry-breaking source J and consider the fermion part of the path integral

in Eq. (3.54),

ZF [a
+
µ , J ] =

∫︂
D(ψ̄α, ψα)e

−SF [a+µ ]−
∫︁
d3xd3y ψ⊺

1Jψ2 , (3.61)

where the source J(x, y) is generically nonlocal with some spinor structure. This is not

a valid term by itself, since it renders the Hamiltonian non-Hermitian (or the action non
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reflection positive). However, the Q=−1 sector will provide the needed conjugate term

(Sec. 3.5.3). In nonlocal expressions like the source term in (3.61), Wilson lines should be

inserted to maintain local gauge invariance. In accordance with our neglect of fermion-

photon interactions at this stage, and because the final form of the ’t Hooft vertex will be

a local interaction, we do not write down these Wilson lines explicitly. Working to linear

order in J , the action can be simplified using the mode expansions in Eqs. (3.56)-(3.57) as

SF [a
+
µ , J ] = SF [a

+
µ ] +

∫︂
d3(x, y)

∑︂
i,j

u⊺i (x− z+)J(x, y)vj(y − z+)ηiχj

= S ′
F [a

+
µ , J ] +

∫︂
d3(x, y)

[︃
(u⊺0Jv0)η0χ0+

∑︂′

j

(u⊺0Jvj)η0χj+
∑︂′

i

(u⊺i Jv0)ηiχ0

]︃
,

(3.62)

where d3(x, y) ≡ d3x d3y, and all the non-ZM contributions have been subsumed into

S ′
F [a

+
µ , J ]. Using the functional measure (3.58),

ZF [a
+
µ , J ] =

∫︂
dη0 dχ0D

′(η̄, η, χ̄, χ)e−S
′
F [a+µ ,J ]

[︃
1−
∫︂

d3(x, y)(u⊺0Jv0)η0χ0

]︃
×
[︃
1−
∑︂′

i

∫︂
d3(x, y)(u⊺0Jvi)η0χi

]︃
×
[︃
1−
∑︂′

i

∫︂
d3(x, y)(u⊺i Jv0)ηiχ0

]︃
, (3.63)

the square brackets coalesce into the expression

1−
∫︂

d3(x, y)

[︃
(u⊺0Jv0)η0χ0+

∑︂′

i

(u⊺0Jvi)η0χi+
∑︂′

i

(u⊺i Jv0)ηiχ0

]︃
+
∑︂′

i,j

∫︂
d3(x, y)d3(x′, y′)(u⊺0Jvj)(u

⊺
i Jv0)η0χjηiχ0. (3.64)

All the terms except the second vanish because of the functional measure (3.58); dχ0 kills

the third, dη0 the fourth, both kill the first, and dη̄i ̸=0 dχ̄i ̸=0 kills the last. Therefore, we

obtain a nonvanishing result:

ZF [a
+
µ , J ]=

∫︂
d3xd3y u⊺0(x−z+)J(x, y)v0(y−z+)K, (3.65)

where K denotes the contribution of nonzero modes. The order of integration, dη0 dχ0,

has yielded a minus sign. The factor K is independent of J when working to first order
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in the weak source J . Recalling that the ZM spinors u0, v0 have radial parts of the form

exp(−m|x−z+|), similar to the free-fermion propagator, we note that Eq. (3.65) resembles

the structure of the Feynman diagram in Fig. 3.1.

Figure 3.1: Fermion pair annihilation due to the source J(x, y) and instanton at z+.

As an ansatz for the result of integrating out instantons, we are thus motivated to

consider the path integral,

I[J ] =

∫︂
D(ψ̄α, ψα)e

−SF−
∫︁
d3xd3y ψ⊺

1 (x)J(x,y)ψ2(y)

∫︂
d3x1d

3x2A ψ̄2(x2)ω2ω
⊺
1ψ̄

⊺
1(x1), (3.66)

where SF (written without a source argument) is the free Dirac action in the absence of

instantons, A is some constant to be determined, and ω1,2 are spinors (possibly spacetime

dependent) to be determined. A ψ̄ in the insertion can pair up with a ψ in the source term

to give the free propagator that we desire. A, ω are malleable quantities that must be fixed

to obtain the exact result in Eq. (3.65). The specific form of the insertion is motivated

in hindsight by the calculation that follows. Taylor expanding the source exponential, we

obtain:

I[J ] =

∫︂
D(ψ̄α, ψα)e

−SF

[︃
1−
∫︂

d3(x, y)ψ⊺
1(x)J(x, y)ψ2(y)

]︃ ∫︂
d3(x1, x2)Aψ̄2(x2)ω2ω

⊺
1ψ̄

⊺
1(x1)

= −AI[0]
∫︂

d3(x, y, x1, x2)
⟨︂
ψα1 (x)J

αβ(x, y)ψβ2 (y)ψ̄
γ
2(x2)ω

γ
2ω

λ
1 ψ̄

λ
1(x1)

⟩︂
0
, (3.67)

defining ⟨︁
O(ψ̄α, ψα)

⟩︁
0
≡ 1

I[0]

∫︂
D(ψ̄α, ψα)e

−SFO(ψ̄α, ψα). (3.68)
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The normalization I[0] serves to restrict Wick contractions to connected diagrams, and

therefore

I[J ] = A

∫︂
d3(x, y, x1, x2)[G1(x− x1)ω1]

⊺J(x, y)[G2(y − x2)ω2], (3.69)

where

G(x− y) = −
⟨︁
ψ(x)ψ̄(y)

⟩︁
0
, (3.70)

is the free Dirac propagator in Euclidean signature.

Comparison of Eq. (3.69) with Eq. (3.65) tells us I[J ] = ZF [a
+
µ , J ] if we make the

identifications

A = K,∫︂
d3x1G1(x− x1)ω1 = −u0(x− z+),∫︂
d3x2G2(y − x2)ω2 = −v0(y − z+). (3.71)

The minus signs on the right-hand side are conventional, and I[J ]=ZF [a
+
µ , J ] even without

them. Clearly, the second and third equalities demand ωi=ωi(xi−z+). A shift of integration

variables xi→xi+z+ reveals that these are Fredholm integral equations of the first kind,

with solutions

ω1 = −G−1
1 u0 = (/∂ +m)u0,

ω2 = −G−1
2 v0 = (/∂ −m)v0. (3.72)

Substituting the results for A and ω into Eq. (3.66) gives

ZF [a
+
µ , J ]=

∫︂
D(ψ̄α, ψα)e

−SF−
∫︁
x,y ψ

⊺
1Jψ2

∫︂
x1,x2

ψ̄2(x2) [Kω2(x2−z+)ω⊺
1(x1−z+)] ψ̄

⊺
1(x1).

(3.73)

The single instanton of the Q=1 sector has been integrated out. This path integral still

evaluates to zero if the source J is switched off, since the free Dirac action SF conserves

fermion number. So far, all we have done is rewrite zero in different garb.
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3.5.3 Q=−1 anti-instanton sector

A similar analysis can be carried out for the Q=−1 sector, assuming a single charge −1/2e

instanton (anti-instanton) localized at z− and described by a background gauge field a−µ .

The final result can actually be written down by the requirement of reflection positivity

alone, but for the sake of completeness we explicitly rederive the result here.

The anti-instanton sectors gift the adjoint Dirac operators D†
α with ZMs, and thus

contribute to anomalous Green’s functions of the form
⟨︁
ψ̄2ψ̄1

⟩︁
. This means one has to add

a source term of the form ψ̄2J̃ ψ̄
⊺
1 and consider

ZF [a
−
µ , J ] =

∫︂
D(ψ̄α, ψα)e

−SF [a−µ ]−
∫︁
d3(x,y)ψ̄2J̃ψ̄

⊺
1 , (3.74)

where J̃ =σzJ
†σz with J being the source added in the discussion of the Q=1 instanton

sector. This is determined by the requirement of reflection positivity of the action with

the full source term (ψ⊺
1Jψ2+ψ2̄J̃ψ

⊺
1).

The mode expansions are now

ψ1(x) =
∑︂′

i

ui(x− z−)ηi,

ψ2(x) =
∑︂′

i

vi(x− z−)χi,

ψ̄1(x) = ū0(z− − x)η̄0 +
∑︂′

i

ūi(z− − x)η̄i,

ψ̄2(x) = v̄0(z− − x)χ̄0 +
∑︂′

i

v̄i(z− − x)χ̄i, (3.75)

where ūi= ũ
⊺
i and ũ0 is the ZM of D† calculated in Sec. 3.4.3. Inserting this into ZF [a

−
µ , J ]

gives the analog of Eq. (3.65) for an anti-instanton as

ZF [a
−
µ , J ] =−K

∫︂
d3xd3y v̄0(z−−x)J̃(x, y)ū⊺0(z−−y)

=−K
∫︂

d3xd3y ṽ⊺0(x−z−)J̃(x, y)ũ0(y−z−). (3.76)

The Feynman-diagram interpretation of Fig. 3.1 holds again but for fermion pair creation

due to an anti-instanton at spacetime coordinate z−. There is an extra minus sign here

93



compared to Eq. (3.65), due to the order of the measure dη0 dχ0. This is important

to obtain a reflection positive action at the end. The contribution from nonzero modes,

subsumed into K, is the same as the Q = +1 sector if the eigenfunctions of D†D and

DD† are used to account for the non-ZM contributions in mode expansions of fermion

fields. This is because the nonzero eigenmodes of both operators are paired with the same

eigenvalues. In any case, the precise numerical factor is unimportant here.

Similar to the analysis in the previous section, we consider with an insertion a path

integral

Ĩ[J ] =

∫︂
D(ψ̄α, ψα)e

−SF−
∫︁
d3(x,y)ψ̄2J̃ψ̄

⊺
1

∫︂
d3(x1, x2)Aψ

⊺
1(x1)ξ1ξ

⊺
2ψ2(x2), (3.77)

which can simplified as before to

Ĩ[J ] = −A
∫︂

d3(x, y, x1, x2)[ξ
⊺
2G2(x2 − x)]J̃(x, y)[G⊺

1(x1 − y)ξ1]. (3.78)

Demanding equality with Eq. (3.76) sets A=K and provides equations to solve for ξ1,2:∫︂
d3x1G

⊺
1(x1 − y)ξ1(x1 − z−) = ũ0(y − z−),∫︂

d3x1G
⊺
2(x2 − x)ξ2(x2 − z−) = ṽ0(x− z−). (3.79)

Again, these are Fredholm integral equations of the first kind, with solutions

ξ1 = −(−/∂ +m)ũ0,

ξ2 = −(−/∂ −m)ṽ0. (3.80)

The explicit forms of the ZMs, quoted here from Sec. 3.4, are

ũ0 =

√
2m

r
e−mrY1/2

−1/2,0,0(θ, φ) = v0,

ṽ0 =

√
2m

r
e−mrY1/2

1/2,0,0(θ, φ) = u0, (3.81)

where u0, v0 are the respective ZMs of D1,D2. The equations (3.80) for ξi thus become

ξ1 = (/∂ −m)v0 = ω2,

ξ2 = (/∂ +m)u0 = ω1, (3.82)
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where ωi were defined in Eq. (3.72). Therefore, the final result for the fermion path integral

in the Q=−1 sector is

ZF [a
−
µ , J ]=

∫︂
D(ψ̄α, ψα)e

−SF−
∫︁
x,y ψ̄2J̃ψ̄

⊺
1

∫︂
x1,x2

ψ⊺
1(x1) [Kω2(x1−z−)ω⊺

1(x2−z−)]ψ2(x2).

(3.83)

3.5.4 Resummation and a local Lagrangian

Inserting the results of Sec. 3.5.2 and 3.5.3 into the partition function (3.49) of the full

theory, where only Q = ±1 instantons are kept, we obtain:

Z[J ] =

∫︂
D(ψ̄α, ψα)Dσ e

−
∫︁
d3xL0−

∫︁
d3(x,y)(ψ⊺

1Jψ2+ψ̄2J̃ψ̄
⊺
1)

×
∞∑︂
N=0

(λK)N

N !

N∏︂
k=1

∫︂
d3zk

∫︂
d3xd3y

×
[︁
e−i[2πσ(zk)+θ(zk)]ψ⊺

1(x)ω2(x−zk)ω⊺
1(y−zk)ψ2(y)

+ei[2πσ(zk)+θ(zk)]ψ̄2(x)ω2(x−zk)ω⊺
1(y−zk)ψ̄

⊺
1(y)

]︁
, (3.84)

where

L0 = ψ̄1(/∂ − i/a+m)ψ1 + ψ̄2(/∂ + i/a−m)ψ2 +
e2

2
(∂σ)2, (3.85)

is the Lagrangian of Eq. (3.46) but absent instanton effects, with the Maxwell term du-

alized. We have also reinstated fermion-photon interactions to maintain explicit gauge

invariance. The k-product in Eq. (3.84) just gives the N th power of the insertion and,

summing over N , an exponential is born. Exponentiating and then setting the source

J=0 results in a nonlocal effective action

Seff =

∫︂
d3xL0 − λK

∫︂
d3zd3xd3y

×
[︂
e−i[2πσ(z)+θ(z)]ψ⊺

1(x)ω2(x−z)ω⊺
1(y−z)ψ2(y)

+ ei[2πσ(z)+θ(z)]ψ̄2(x)ω2(x−z)ω⊺
1(y−z)ψ̄

⊺
1(y)

]︂
. (3.86)

Can this action be approximated by a local one? Because the ZM wavefunctions decay

exponentially in spacetime, it is reasonable to expect so (recall Fig. 3.1 and the discussion
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surrounding it). A change of integration variables, x→ x+z and y→ y+z, allows the

rewriting of one of the terms in the ’t Hooft vertex (i.e., the instanton-induced action) as:

∆Seff ≡ −λK
∫︂

d3zd3xd3y e−i[2πσ(z)+iθ(z)]

× ψ⊺
1(x+ z)ω2(x)ω

⊺
1(y)ψ2(y + z). (3.87)

Since ω1 and ω2 are proportional to the radial part (e−mr/r) of the ZM, the dominant

contributions to the x and y integrals are from small neighborhoods of x= 0 and y = 0.

Taylor expanding the Fermi fields in powers of x and y to leading (zeroth) order gives

∆Seff ≈ −λK
∫︂

d3z e−i[2πσ(z)+θ(z)]

× ψ⊺
1(z)

(︃∫︂
d3xω2(x)

∫︂
d3y ω⊺

1(y)

)︃
ψ2(z). (3.88)

Using Eq. (3.72), and denoting v0(p)=
∫︁
d3x e−ipxv0(x),∫︂

d3xω2(x) =

∫︂
d3x(/∂ −m)v0(x)

= lim
p→0

(i/p−m)v0(p)

= −m
∫︂

d3x v0(x)

= −
√
2m3/2

∫︂ ∞

0

dr re−mr
∫︂

dΩY1/2
−1/2,0,0

=

√︃
2π

m
· 4−

√
2

3

⎛⎝ 1

−1

⎞⎠ , (3.89)

and similarly, ∫︂
d3xω⊺

1(x) =

∫︂
d3x(/∂ +m)u0(x)

=
√
2m3/2

∫︂ ∞

0

dr re−mr
∫︂

dΩ
(︂
Y1/2

1/2,0,0

)︂⊺
=

√︃
2π

m
· 4−

√
2

3

(︂
−1 −1

)︂
, (3.90)

we find that the quantity appearing in brackets between ψ⊺
1(z) and ψ2(z) in Eq. (3.88) is∫︂

d3xω2(x)

∫︂
d3y ω⊺

1(y) ∝ −
1

m
(σz + iσy), (3.91)
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where the proportionality constant is some number which shall be subsumed into K. This

implies the effective action is specified by the local Lagrangian

Leff = L0 +
Ke−π

2/4e2

m

[︂
e−2πi(σ+θ/2π)ψ⊺

1(σz+iσy)ψ2 + e2πi(σ+θ/2π)ψ̄2(σz+iσy)ψ̄
⊺
1

]︂
. (3.92)

Using the transformation Θ in Appendix 3.9, with additionally Θ(σ(x)) = σ(θx) for a

scalar field, one can check explicitly that the local ’t Hooft vertex thus derived is reflection

positive, and thus corresponds to an interaction that preserves unitarity of the underlying

real-time quantum field theory.

3.6 Partons and symmetry breaking

The original parton gauge theory had 2Nf=4 fermion flavors, described by the Lagrangian

(3.6). In the preceding Sec. 3.5, to simplify the calculation of the ’t Hooft vertex, we

retained only two fermion flavors while preserving the U(1) global and gauge symmetries.

It can be seen from the calculations in that section that instantons in CQED3 with 2Nf

flavors of fermions with the given mass and charge assignments will induce a ’t Hooft vertex

with 2Nf fermion operators. For example, in the case of the original Lagrangian (3.6) with

four fermion flavors {ψ1±, ψ2±}, since the mass and charge assignments are independent of

the valley (±) index, one considers the Euclidean Dirac operators:

D1 ≡ γµ∂µ − iγµaµ +m,

D2 ≡ γµ∂µ + iγµaµ −m. (3.93)

The presence of a valley index for the fermion fields simply doubles the number of fermion

ZMs in each instanton charge sector. For instance, in the Q=1 sector, there are four ZMs,

and the mode expansions of the four fermion fields now become:

ψ1±(x) = u0(x− z+)η0± +
∑︂′

i

ui(x− z+)ηi±,

ψ2±(x) = v0(x− z+)χ0± +
∑︂′

i

vi(x− z+)χi±. (3.94)
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This results in a path integral measure:

D(ψ̄1±,ψ1±, ψ̄2±,ψ2±) = dη+0 dη−0 dχ+
0 dχ−

0 D
′(η̄±, η±)D

′(χ̄±, χ±), (3.95)

where the primed measure includes contributions from nonzero modes in the expansion

(3.94). Therefore, to obtain a nonzero path integral, a four-fermion insertion of the form

ψ⊺
1+ψ2+ψ

⊺
1−ψ2− is required. Repeating the calculation of the ’t Hooft vertex in Sec. 3.5 with

a four-fermion source and insertion yields an instanton-induced term (the exponentiated

insertion) in the Lagrangian of the form:

e−2πiσe−iθψ⊺
1+γψ2+ψ

⊺
1−γψ2− +H.c., (3.96)

where γ≡σz+ iσy, and we have used ψ̄=ψ†σz to rewrite the second term as the Hermitian

conjugate of the first. Because ψ+ and ψ− create excitations with lattice momenta near

the Dirac points K+ and K−, respectively, the presence of an equal number of ψ+ and

ψ− fields in (3.96) guarantees the ’t Hooft vertex respects the microscopic translation

symmetry (since K+ +K−=0 modulo a reciprocal lattice vector).

In the absence of instantons, (noncompact) QED3 has a global topological U(1)top sym-

metry associated with the conservation of the topological current jtopµ = i
2π
ϵµνλ∂νaλ. In the

dual formulation, this symmetry is a shift symmetry of the dual photon σ→σ+α, manifest

in the Lagrangian (3.85). The parton theory with noncompact gauge fluctuations thus has

the global symmetry U(1) × U(1)top, where the first U(1) is the boson number conserva-

tion symmetry under which ψ1±→eiβψ1± and ψ2±→ψ2± [recall the choice of global charge

assignments in Eq. (3.6)]. The ’t Hooft vertex (3.96) shows that instantons have the effect

of explicitly breaking this U(1) × U(1)top symmetry to a diagonal U(1) subgroup under

which

ψ1±→eiβψ1±, ψ2±→ψ2±, σ→σ +
β

π
(mod 1). (3.97)

The latter transformation makes clear the fact that σ is a compact scalar field of compact-

ification radius 1. The diagonal U(1) symmetry (3.97) is to be understood as the correct
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incarnation of the unique microscopic U(1) boson number conservation symmetry in the

low-energy parton theory with compact gauge fluctuations, i.e., where Polyakov instantons

are accounted for.

Although instantons have been explicitly taken into account in the derivation of the four-

fermion ’t Hooft vertex (3.96), the resulting effective theory is still an interacting gauge

theory, and its infrared fate not altogether obvious. A natural route to confinement—

our primary focus—is the instanton proliferation scenario, whereby the coefficient of the

’t Hooft vertex (3.96) is assumed to run to strong coupling under renormalization group

flow. One then expects spontaneous breaking of the global U(1) symmetry (3.97), with σ

acquiring an expectation value [62, 101, 113]. The σ field itself is the Goldstone mode of

the broken continuous symmetry, and the microscopic hard-core boson system becomes su-

perfluid, as discussed in Ref. [102]. Additionally, (3.96) shows that a constant θ parameter

can be given a natural interpretation as a global shift in the phase of the condensate.

However, ⟨σ⟩ ̸=0 only implies that the U(1) symmetry is broken to a Z2 subgroup under

which ψ1±→−ψ1± (β=π), since the ’t Hooft vertex contains two ψ1 fields. In terms of the

original constituent bosons, this corresponds to a boson pair condensate ⟨b(x)b(x′)⟩ ≠ 0

without single-particle condensation, ⟨b(x)⟩=0, which preserves an Ising symmetry b(x)→

−b(x) (see, e.g., Refs. [114, 115]). In terms of the fermionic partons, the order parameter

⟨ψ⊺
1+γψ2+ψ

⊺
1−γψ2−⟩ ≠ 0 is analogous to that for charge-4e superconductivity [116], but

without concomitant Higgsing of the U(1) gauge symmetry since (3.96) is manifestly gauge

invariant (recall that ψ1 and ψ2 carry opposite gauge charge under the dynamical gauge

field).

The residual global Z2 symmetry in such a paired superfluid can be further broken [114,

115], yielding a conventional superfluid phase with single-particle condensate ⟨b(x)⟩ ̸=0. In

the current context, this occurs if a gauge-invariant fermion bilinear condenses, ⟨ψ1ψ2⟩ ̸=0.

The various possible spinor/valley index structures of such a bilinear (suppressed here)

allow in principle for both translationally invariant condensates and spatially modulated
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ones, i.e., supersolid phases.

3.7 Conclusion

In summary, we have presented a nonperturbative study of monopole-instanton effects

in a (2+1)D parton gauge theory featuring Dirac fermions coupled to a compact U(1)

gauge field—CQED3. This parton gauge theory is meant to encapsulate the universal low-

energy physics of hard-core lattice bosons in the vicinity of a multicritical point separating

fractionalized phases, such as boson fractional quantum Hall states, and conventional ones.

While the compactness of the gauge field becomes irrelevant in fractionalized phases, which

support deconfined excitations, we focused on developing an explicit understanding of the

instanton dynamics that leads to confinement in conventional phases. As our first main

result, we showed that in contrast to CQED3 with massless fermions—an effective gauge

theory describing the Dirac spin liquid—CQED3 with massive fermions supports Euclidean

fermion zero modes exponentially localized on instantons. The localization length of the

zero mode “wavefunction” is found to be inversely proportional to the fermion mass, which

in hindsight elucidates the absence, first observed by Marston, of normalizable zero modes

in massless CQED3. While we did not prove a rigorous index theorem guaranteeing the

topological stability of such Euclidean zero modes, they were found to be in one-to-one

correspondence with Hamiltonian quasi-zero modes occurring in the context of monopole

operator dressing in conformal field theories associated with spin ordering transitions out

of the Dirac spin liquid. In such theories, a nonzero fermion mass arises when the theory

is canonically quantized on the sphere, and the resulting Hamiltonian quasi-zero modes

can be understood as “massive deformations” of true zero modes protected by the Atiyah-

Singer index theorem.

As our second main result, we combined semiclassical methods with our zero mode

solutions to show by explicit derivation that instantons mediate an effective four-fermion

interaction in the gauge theory, known as the ’t Hooft vertex. This effective interaction
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explicitly breaks a spurious U(1)×U(1)top symmetry of the classical parton Lagrangian

to a diagonal U(1) subgroup, corresponding to the physical boson number conservation

symmetry of the microscopic model. Under the further assumption of confinement via

instanton proliferation, we found that the ’t Hooft vertex could naturally lead to two

distinct superfluid phases: an ordinary single-particle condensate, but also a boson pair

condensate without single-particle condensation, in which the global U(1) symmetry is

only broken to Z2.

Looking ahead, our approach based on semiclassical instanton techniques could be used

to complement the Hamiltonian monopole-operator dressing approach to confinement tran-

sitions out of the Dirac spin liquid [36, 37]. Song et al. rely solely on microscopic sym-

metries and write down deformations of the conformal QED3 Lagrangian consisting of

(dressed) monopole operator/fermion composites allowed by those symmetries. Alterna-

tively, ’t Hooft vertices containing similar physics could be explicitly derived as follows.

In the two-step route to confinement advocated by Song et al. and mentioned earlier,

a fermion mass bilinear acquires an expectation value before instanton proliferation pro-

ceeds. Applying the semiclassical methods employed here after the first step, Euclidean

zero modes for the resulting massive fermions could be searched for and used to derive

a ’t Hooft vertex that would encapsulate the range of symmetry-breaking phases made

possible by instanton proliferation. Finally, the proof of an index theorem for massive

Dirac fermions in 3D Abelian instanton backgrounds would be a desirable extension of the

results presented here.

3.8 Appendix: Monopole miscellanea

3.8.1 Monopole harmonics

This appendix collates some well-known results on the theory of Dirac monopoles and is

mostly self-contained. We first consider a spinless charge e in the field of a static point
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monopole at the origin,

B =
g

r2
r̂, (3.98)

described by a Wu-Yang vector potential A [see Eq. (3.27)]. Classically, the spherical

symmetry of the problem suggests conservation of angular momentum. The natural guess

l=r×(p−eA) = r×mv, by minimal coupling, does not work because

dl

dt
=

d

dt
(r×mv),

= r×mr̈,

= r× e(v ×B),

= r× eg

r3
(v × r), (3.99)

=
eg

mr3
l× r. (3.100)

This is generically non-zero, suggesting l is not conserved. Using a formula for the vector

triple product, Eq. (3.99) can be rewritten as [117]

dl

dt
= r× eg

r3
(ṙ× r),

=
eg

r3
[︁
r2ṙ− (r · ṙ)r

]︁
,

=
eg

r3

[︃
r2ṙ− 1

2

dr2

dt
r

]︃
,

= eg

[︃
1

r
r− 1

r2
|ṙ|r
]︃
,

=
d

dt

(︂
eg

r

r

)︂
. (3.101)

This implies a conserved angular momentum

L = r× (p− eA)− qr̂, q ≡ eg ∈ Z/2. (3.102)

One can explicitly prove (post-quantization) that

[Li, Lj] = iϵijkLk. (3.103)
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Since [r2,L]=0, these two operators can be simultaneously diagonalized and L can be

studied for fixed r. Also, since [Lz,L
2]=0 and [Li, Lj]= iϵijkLk, we have the familiar

L2Yq,L,M(θ, φ) = L(L+ 1)Yq,L,M(θ, φ),

LzYq,L,M(θ, φ) =MYq,L,M(θ, φ). (3.104)

The sections Yq,L,M are called monopole harmonics, and their exact form is gauge depen-

dent, which means northern and southern versions differ by a gauge transformation in

the Wu-Yang formulation. Only L,M are quantum numbers, while q is a parameter that

determines one complete set of harmonics. Just based on the su(2) algebra, allowed values

of L must be a subset of {0, 1/2, 1, ...}, while M ∈{−L,−L+1, ..., L}. However,

L2 = (l− qr̂)2

= l2 + q2 − q(l · r̂+ r̂ · l)

= l2 + q2. (3.105)

For fixed 2q∈Z, this gives a bound on the eigenvalues

L(L+ 1) ≥ q2. (3.106)

The solution of the inequality above is L≥|q|. To prove this, we may take q≥ 0 without

loss of generality as the inequality is independent of sgn q. Factorization and substitution

of q=n/2, where n∈N, gives(︄
L−−1+

√
1+n2

2

)︄(︄
L−−1−

√
1+n2

2

)︄
≥ 0. (3.107)

Both brackets must be of the same sign. Positivity of L implies

L ≥ −1 +
√
1 + n2

2
.

L≥n/2=q satisfies this inequality, since for n≥0,

−1 +
√
1 + n2

2
≤ −1 +

√
1 + n2 + 2n

2
=
n

2
,
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To see that this is the smallest satisfactory half-integral L, note that the next smallest

value of L does not satisfy:

n− 1

2
=
−1 +

√
n2

2
≤ −1 +

√
1 + n2

2
.

We thus have the result that L≥|q|.

Written in spherical coordinates, Eq. (3.102) reads

LN/S = −qr̂+ θ̂[i csc θ∂φ − q(cot θ ∓ csc θ)]− φ̂i∂θ. (3.108)

This implies

Lz = −i∂φ ∓ q, (3.109)

for the ẑ component, which has northern and southern eigenfunctions of the form exp[i(M±q)φ].

The requirement of a single-valued wavefunction then mandates (M±q)∈Z, which is sat-

isfied if M is (half-)integral whenever q is (half-)integral. Together with L ≥ |q|, this

determines the allowed values of (L,M) as

L ∈ {|q|, |q|+ 1, ...}, M ∈ {−L,−L+ 1, ..., L}. (3.110)

For completeness, we provide a general formula for the monopole harmonics Yq,L,M in

terms of the Wigner D-matrix. An elegant derivation can be found in Ref. [79]. In the

northern hemisphere,

Yq,L,M(θN , φ) =

√︃
2L+ 1

4π

[︁
DL
M,−q(φ, θ,−φ)

]︁∗
, (3.111)

where θN ∈ [0, π). The southern versions (valid on the south pole) are obtained by a gauge

transformation,

Yq,L,M(θS, φ) = e−i2qφYq,L,M(θN , φ). (3.112)

The Wigner D-matrix is defined in terms of Euler angles (α, β, γ) as

Dj
m′,m(α, β, γ) = ⟨jm

′| e−iαJze−iβJye−iγJz |jm⟩ ,

= e−im
′αdjm′m(β)e

−imγ. (3.113)
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Using the formula above, the first two q=1/2 harmonics are given by

Y 1
2
, 1
2
, 1
2
(θN , φ) = −

1√
2π
eiφ sin

θ

2
,

Y 1
2
, 1
2
,− 1

2
(θN , φ) =

1√
2π

cos
θ

2
, (3.114)

in the north. Their southern versions are given by a gauge transformation exp(−iφ).

For q=−1/2, the first two northern harmonics are

Y− 1
2
, 1
2
, 1
2
(θN , φ) =

1√
2π

cos
θ

2
,

Y− 1
2
, 1
2
,− 1

2
(θN , φ) =

1√
2π
e−iφ sin

θ

2
, (3.115)

with their southern versions now obtained by a gauge transformation exp(iφ).

3.8.2 Monopole spinor harmonics

We now consider a spin-1/2 particle of charge e in a monopole background. The total

angular momentum for a spin-1/2 is

J = L+
1

2
σ. (3.116)

The allowed eigenvalues of J2 and Jz, respectively denoted j(j+1) and mj, follow from

rules for addition of angular momenta:

j ∈ {L− 1/2, L+ 1/2} =
{︃
|q|− 1

2
, |q|+1

2
, ...

}︃
,

mj ∈ {−j,−j + 1, ..., j}. (3.117)

The same rules also provide the (angular) eigensections YLq,j,mj
, called monopole spinor

harmonics,

Yj−1/2q,j,mj
(θ, φ) =

1√
2j

⎛⎝√︁j+mjYq,j−1
2
,mj−1

2√︁
j−mjYq,j−1

2
,mj+

1
2

⎞⎠ ,

Yj+1/2q,j,mj
(θ, φ) =

1√
2j+2

⎛⎝−√︁j−mj+1Yq,j+1
2
,mj−1

2√︁
j+mj+1Yq,j+1

2
,mj+

1
2

⎞⎠ , (3.118)
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where Yq,L,M are the monopole harmonics defined in Sec. 3.8.2, and their coefficients are

Clebsch-Gordan. For a given q, these spinor harmonics are a complete, orthonormal set of

2-spinor eigensections of L2,σ2,J2, Jz.

For use in the main text, we also record here the action of σ · r̂ on YLq,j,mj
, which can

be explicitly evaluated using Eq. (3.118). Alternatively, since σ · r̂ commutes with J , the

most it can do is mix the L=j±1/2 states. A general formula is

(σ · r̂)Yj±1/2
q,j,mj

= a±Yj+1/2
q,j,mj

+ b±Yj−1/2
q,j,mj

. (3.119)

Substituting in Eq. (3.118) and using the known forms of the monopole harmonics provides

linear equations for the coefficients, which turn out to be [118]

a+ = −b− =
2q

2j + 1
,

a− = b+ = −
√︁

(2j + 1)2 − 4q2

2j + 1
. (3.120)

3.9 Appendix: Self-adjoint operators

This appendix elaborates on some technical aspects of the path integrals studied in Sec. 3.5.2-

3.5.3, particularly the difficulties involved in suitably defining the functional measure and

connections with index theorems. We shall first proceed along a standard route used in

the physics literature to define path integral measures. The path integral of interest is

ZF [a
+
µ ] ≡

∫︂
D(ψ̄, ψ)e−

∫︁
d3xψ̄Dψ, (3.121)

where a+µ describes a single charge 1/2e instanton located at z+. Although an even number

of fermion flavors are required for this theory to make physical sense, a single flavor is suf-

ficient to highlight some of the general mathematical difficulties that arise in this problem.

The (massive) Euclidean Dirac operator D is defined as

D ≡ γµ∂µ − iγµa+µ +m,

= (σ ·r̂)
[︃
∂r −

1

r

(︃
J2−L2− 3

4

)︃
− q

r
σ · r̂

]︃
+m. (3.122)
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The (näıvely taken) adjoint of the Dirac operator is

D† = −γµ∂µ + iγµa+µ +m

= −(σ ·r̂)
[︃
∂r −

1

r

(︃
J2−L2− 3

4

)︃
− q

r
σ · r̂

]︃
+m. (3.123)

The second lines of Eqs. (3.122)-(3.123) are the results of Sec. 3.4.2-3.4.3. These operators

are not Hermitian, but one can consider the Hermitian combinations D†D and DD† with

eigenvalue equations

D†Dui(x− z+) = aiui(x− z+),

DD†ũi(x− z+) = ãiũi(x− z+), (3.124)

for an instanton located at z+.

We have used the term “Hermitian operator” to refer to what is called a “symmetric

operator” in the mathematical literature on unbounded operators [119, 120]. Acting on a

Hilbert space, a densely defined Hermitian (or symmetric) operator Λ satisfies (u,Λv) =

(Λu, v), for any u, v∈Dom(Λ). To be self-adjoint, that is for Λ=Λ† to hold as an operator

equation, one also requires Dom(Λ)=Dom(Λ†), which does not follow from the Hermiticity

condition for unbounded operators (such as the Dirac operator under consideration), and

usually Dom(Λ) ⊂ Dom(Λ†). Only self-adjoint operators have the desirable properties

of possessing a complete set of eigenfunctions and real eigenvalues. However, this fact is

typically ignored, and one proceeds to use the eigenfunctions of D†D and DD† as a basis to

facilitate a mode expansion of the Fermi fields in the path integral, assuming such operators

are indeed self-adjoint. This is usually harmless, but not so in current circumstances as we

shall momentarily show. In any case, a loose mathematical justification of this ignorance

can be made by assuming that the Hermitian operators above possess a unique, or a family,

of self-adjoint extensions. An arbitrary choice in this family will have the required property

of possessing a complete basis of eigenfunctions to facilitate mode expansions.

However, a self-adjoint extension of a Hermitian operator Λ involves imposing boundary

conditions on its eigenfunctions which effectively shrink or enlarge Dom(Λ) and Dom(Λ†)
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until they are equal. The eigenfunctions of the self-adjoint extension will form a complete

basis only for the final domain Dom′(Λ). Assuming D†D or DD† have been made self-

adjoint, mode expansions of Fermi fields in terms of the eigenfunctions of these operators

effectively assume that the space of fields being integrated over in the path integral is

the same as Dom(D†D) or Dom(DD†). This typically does not warrant close analysis

since one hopes (usually correctly) that all important physical effects are accounted for

in this procedure. In the present case, as we show below, the ZM solution lies outside

these domains and is thus missed if the eigenfunctions of D†D or DD† are used for a mode

expansion or in the definition of the functional measure.

We start with the following paradox. The ZMs of D and D† were calculated in Sec. 3.4.2

and 3.4.3 respectively. For g=−1/2e, the operator D† has a normalizable ZM

ψ̃
−
0 (r, θ, φ) =

√
2m

r
e−mrY1/2

−1/2,0,0(θ, φ), (3.125)

which implies

(ψ̃
−
0 ,D†ψ̃

−
0 ) = 0. (3.126)

However, using Eq. (3.122), one finds explicitly that Dψ̃−
0 =2mψ̃

−
0 , which seems to imply

(Dψ̃−
0 , ψ̃

−
0 ) = 2m

⃦⃦⃦
ψ̃

−
0

⃦⃦⃦2
̸= 0. (3.127)

The implied consequence is that (ψ̃
−
0 ,D†ψ̃

−
0 ) ̸= (Dψ̃−

0 , ψ̃
−
0 ). Before a resolution of this is

pointed out, we note that Dψ̃−
0 =2mψ̃

−
0 implies then that D†Dψ̃−

0 =0 so that dimkerD†D−

dimkerDD†=0. It is the latter that is typically calculated as index(D) in typical proofs

of index theorems used in physics. This highlights the difficulty in producing an index

theorem for the current scenario, and also in defining the functional measure of the path

integral using eigenfunctions of D†D or DD†.

The resolution of the paradox lies in a careful examination of the domains of the op-

erators D† and D, which turn out to be subspaces of square integrable functions. In the

subspace of spinors ψ with fixed angular part Y1/2
1/2,0,0(θ, φ), and for eg = 1/2 (i.e., in the

108



Q=1 instanton sector discussed in Sec. 3.5.2), the action becomes:

S =

∫︂
d3x ψ̄(ipr +m)ψ, (3.128)

where one defines a “radial momentum operator” [121],

pr = −
i

2
(r̂ · ∇+∇ · r̂) = −i

(︃
∂r +

1

r

)︃
. (3.129)

The adjoint Dirac operator D† in Eq. (3.123) has been näıvely derived from the form of D

by essentially assuming pr is Hermitian on Dom(D). However, this Hermiticity condition

is violated on the ZM,

ψ0(r) ∝
1

r
e−mr, (3.130)

of the operator (ipr+m) appearing in the action (3.128), for (prψ0, ψ0) ̸=(ψ0, prψ0). This

is the reason for the paradoxical equations (3.126)-(3.127). However, to restrict the path

integral over ψ to a function space on which pr is Hermitian is to exclude ZMs and their

associated physics. To determine the space of fields (ψ and ψ̄) that one should integrate

over, we use the necessary condition that the Minkowski action must be real-valued.

The reality of the Minkowski action in a unitary quantum field theory translates to

Osterwalder-Schrader or reflection positivity of the corresponding Euclidean action, which

is invariance Θ(S) = S under a form of complex conjugation followed by Euclidean time

reversal [72]. This transformation acts on fermions as an involution of the Grassmann

algebra [73], which for our particular choice of Dirac matrices can be chosen as

Θ(ψα(x)) = σαβz ψ̄β(θx), (3.131)

Θ(ψ̄α(x)) = σαβz ψβ(θx), (3.132)

where θ flips the sign of the time (z) coordinate. Additionally, Θ complex conjugates c-

numbers and reverses the order of Grassmann variables, e.g., Θ(ψαψβψγ)=Θ(ψγ)Θ(ψβ)Θ(ψα).

Gauge fields transform as Θ(a0(x))=−a0(θx) and Θ(ai(x))=ai(θx) [122]. One can show

that under Θ, Eq. (3.128) transforms as:

Θ(S) = S +

∫︂
dΩ (−r2ψ̄ψ)

⃓⃓r=∞
r=0

, (3.133)
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where the boundary term follows from an integration by parts. However, for reflection

positivity to hold, the boundary term is required to vanish.

The upper limit of the boundary term vanishes if we require all fields to be square

integrable. Say ψ∼r−βχ as r→0, where χ is a Grassmann number without r dependence.

Then square integrability requires limr→0 r
3−2β to exist, which means β<3/2. Since square

integrable functions are therefore at most as singular as r−3/2+ϵ, where ϵ>0, the lower limit

of the boundary term is at most as singular as

lim
r→0

r2

r3/2−ϵ r3/2−δ
, (3.134)

where δ > 0. The existence of this limit requires δ+ϵ> 1. The choice ϵ= δ > 1/2 restricts

both field integrations (over ψ and ψ̄) to the subset of square integrable functions that are

less singular than 1/r at the origin. As discussed earlier, this excludes the ZM from both

path integrals, over ψ and ψ̄. To remedy this, we may set ϵ=0 and δ>1, so that functions

that behave as 1/r as r→0 (such as the ZM ψ0) are included in the path integration over

ψ, but not in that over ψ̄ to maintain reflection positivity of the Euclidean action. The

problem now reduces to finding self-adjoint operators with domains as these new subspaces

of L2(R3), so that the path integral measure can be adequately defined. We will simply

assume such operators, with eigenfunctions {ψi(r, θ, φ)} and {ψ̃i(r, θ, φ)}, exist and will

expand the Fermi fields as

ψ = ψ0(r, θ, φ)η0 +
∑︂′

i

ψi(r, θ, φ)ηi,

ψ̄ =
∑︂′

i

ψ̃i(r, θ, φ)η̄i, (3.135)

where the primed sum includes non-ZM contributions and η̄i, ηi are independent Grass-

mann variables.

For eg=−1/2, i.e., in the anti-instanton sector Q=−1, the situation is reversed. In a

subspace of spinors with fixed angular part Y1/2
−1/2,0,0(θ, φ), the action is

S =

∫︂
d3x ψ̄(−ipr +m)ψ. (3.136)
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The operator (−ipr +m) does not have normalizable ZMs. However, integrating by parts,

we obtain

S =

∫︂
d3x [(ipr +m)ψ̄]ψ +

∫︂
dΩ (−r2ψ̄ψ)

⃓⃓r=∞
r=0

, (3.137)

and the operator (ipr+m) does have the ZM (3.130). Contrary to the Q= 1 sector, we

now include functions with the limiting behavior of the ZM in the path integral over ψ̄,

but exclude them from that over ψ so that the boundary term in Eq. (3.137) vanishes and

reflection positivity is maintained. This implies mode expansions of the form

ψ =
∑︂′

i

ψ̃i(r, θ, φ)ηi,

ψ̄ = ψ̃0(r, θ, φ)η̄0 +
∑︂′

i

ψ̃i(r, θ, φ)η̄i. (3.138)
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Chapter 4

Magnet to chiral spin liquid in 2d
Ising spins

4.1 Introduction

Quantum phase transitions out of fractionalized spin-liquid states in two spatial dimen-

sions (2d) are an active area of research in the study of quantum matter [24, 123, 124].

From a theoretical standpoint, the universal properties of spin liquids are captured by

slave-particle gauge theories with bosonic or fermionic spinons [20]. In describing a tran-

sition from a spin liquid to a conventional ordered phase, two effects must be accounted

for: spontaneous symmetry breaking, and confinement of excitations with nonzero gauge

charge. In theories with bosonic spinons, such as Schwinger boson theories of Z2 spin liq-

uids [125], confinement concomitant with symmetry breaking results from the condensation

of bosonic visons and/or spinons which carry nontrivial quantum numbers under global

symmetries [126]. In descriptions of spin liquids with fermionic gauge theories, such as the

U(1) gauge theory of the Dirac spin liquid [32], condensation of a fermion bilinear leads to

symmetry breaking and opening of a fermion mass gap [36, 55, 77, 87, 90, 91, 127, 128].

The opening of this gap is followed by the proliferation of monopole-instantons, which

induces confinement [9, 26, 40]. In addition to those of fermion bilinears, the symmetry

quantum numbers of monopole operators are important to determine the precise patterns

of symmetry breaking [35–37, 45, 56].
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An emerging platform for the observation of spin liquids and their competition with

various ordered phases is spin-orbit coupled Mott insulators; such systems have been a

focus of quantum materials research in recent years [129, 130]. In those systems, strong

correlations promote the formation of local magnetic moments, while spin-orbit coupling

entangles spin and orbital degrees of freedom and introduces anisotropy in the magnetic

exchange interactions. The paradigmatic class of materials in this context is Kitaev mate-

rials [66, 131], described at low energies by effective spin-1/2 moments on the honeycomb

lattice and governed by a Kitaev-like Hamiltonian [23] in which SU(2) spin rotation symme-

try is broken to a discrete subgroup. Recently, the Kitaev material α-RuCl3 has attracted

much attention due to the observation of a magnetic-field-induced transition from a zigzag-

ordered state at low fields to a paramagnetic state at higher fields [132–138]. Remarkably,

the latter state appears to exhibit a quantized thermal Hall conductance κxy/T = 1/2 in

units of πk2B/6ℏ, suggestive of a gapped chiral spin liquid phase with intrinsic topological

order [137, 138]. In Ref. [139], a theory of the transition between the zigzag-ordered state

and the chiral spin liquid was developed, based on dualities of (2+1)D gauge theories with

U(N) gauge groups.

Motivated by these recent developments, we ask the general question whether, from an

effective field theory point of view, the phase diagram of spin systems with Ising spin-

flip symmetry can exhibit a continuous transition from Ising magnetic order to a gapped

chiral spin liquid. Given that the chiral spin liquid is a topological phase without a local

order parameter, while the Ising-ordered phase exhibits conventional symmetry breaking,

such a transition is necessarily an exotic non-Landau transition involving the fractionalized

degrees of freedom of the spin liquid, and possibly monopole-instanton configurations in

the associated emergent gauge field.

In this chapter, we use effective field theory methods to show that such an exotic tran-

sition is in general possible. Our approach is based on a parton decomposition of the Ising

spin operator, involving fractionalized Majorana fermion degrees of freedom coupled to an
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emergent non-Abelian SO(N) gauge field. Our study can be viewed as a generalization

of Ref. [102]—which studies transitions between Mott insulating, fractional quantum Hall,

and superfluid states of bosons with continuous U(1) symmetry—to systems of Ising spins

with a discrete Z2 symmetry. Chern-number changing transitions between different topo-

logically superconducting states of the Majorana partons correspond to different phases

of the Ising spin system. While various spin-liquid states can be accessed in this way,

including spin liquids with non-Abelian topological order, we focus on Abelian chiral spin

liquids with the topological order of the bosonic fractional quantum Hall (Laughlin) state.

In our construction, such a chiral spin liquid is naturally proximate to a trivial paramagnet

and to a magnetically ordered phase with broken Z2 symmetry. Using recently conjectured

dualities of SO(N) gauge theories in (2+1)D, we find that the critical theory for the or-

dering transition from the trivial paramagnet is, as expected, dual to the standard 3D

Ising Wilson-Fisher theory, while transitions involving the chiral spin liquid are described

by theories of massless Majorana fields coupled to an SO(N) gauge field with a Chern-

Simons term. In particular, we show that a direct transition from the chiral spin liquid

to the Ising-ordered phase is possible and can be protected by inversion symmetry on the

honeycomb lattice.

Finally, in analogy with our previous work on bosons with U(1) symmetry [1], we show

that the breaking of Z2 symmetry in the confined, ordered phase can be understood as

a nontrivial consequence of Euclidean Majorana zero modes (ZMs) bound to monopole-

instantons. By contrast with monopole-instantons in U(1) theories, the latter carry here

a Z2 topological charge under the ZM
2 magnetic symmetry of SO(N) gauge theory in

(2+1)D. Under the assumption that the infrared effects of such instantons is adequately

captured by a semiclassical instanton-gas treatment, the Euclidean ZMs lead to an effective

interaction among Majorana fermions that is analogous to the ’t Hooft vertex in quantum

chromodynamics [63–65]. This interaction intertwines the Ising Z2 symmetry with the ZM
2

magnetic symmetry. As a consequence of this intertwinement, the spontaneous breakdown
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of ZM
2 magnetic symmetry expected in a confined phase [140, 141] automatically results

in long-range Ising order for the underlying spin system.

The rest of the chapter is structured as follows. In Sec. 4.2, we review the parton

description of bosons with U(1) symmetry [1, 102], as a means to introduce the basic

ideas and methods that we will generalize to Ising spins with Z2 spin-flip symmetry. In

Sec. 4.3, we introduce our parton decomposition of Ising spins and discuss the various

phases that can be accessed within the parton mean-field framework: chiral spin liquids,

a trivial paramagnet, and an ordered phase with broken Z2 symmetry. Using SO(N)

dualities in (2+1)D, we discuss transitions between these phases. In Sec. 4.4, we turn

our focus to the broken phase. Although conventional from the microscopic standpoint,

its description within the parton framework necessitates accounting for nonperturbative

confinement effects. We discuss Z2 monopole-instantons in SO(N) gauge theory, show

that Euclidean fermion ZMs are bound to them, and resum the instanton gas to exhibit

the ’t Hooft vertex that properly accounts for the broken Z2 symmetry. We conclude in

Sec. 4.5 with a summary of our main results and suggestions for future research.

4.2 Warm-up: bosons with U(1) symmetry

We begin by briefly reviewing the problem of continuous quantum phase transitions in

systems of hardcore bosons with the global U(1) symmetry associated with particle-number

conservation. To aid the passage from U(1) bosons to Z2 spins, we re-interpret the results

of Ref. [102] in the context of dualities of (2+1)D quantum field theories with unitary

gauge groups [142–151]. We also point out the key role of monopole-instantons and the

Euclidean fermion ZMs bound to them in accounting for the physics of broken-symmetry

phases [1].
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4.2.1 Parton construction

We begin by considering a system of charge-1 hardcore bosons on a 2d lattice described

by operators b(r) (b†(r)) that annihilate (create) a boson on lattice site r. We then write

the boson operator as

b(r) = f1(r)f2(r), (4.1)

where f1(r) and f2(r) are fermionic annihilation operators. This parton decomposi-

tion [152, 153] introduces a local gauge redundancy. We consider parton mean-field ansätze

such that f1 forms a Chern insulator with Chern number 1 and f2 forms a Chern insulator

with Chern number C. In general, such ansätze have a U(1) gauge structure with emergent

gauge field aµ; we assume f1 (f2) carries gauge charge −1 (+1), and f2 carries the unit

global U(1) charge of the boson system.

Upon integrating out the massive partons f1 and f2, we obtain the low-energy effective

Lagrangian:

L =
1

4π
ada+

C

4π
(a+ A)d(a+ A), (4.2)

where adb ≡ ϵµνλaµ∂νbλ for any two gauge fields aµ and bµ, and we have added a background

gauge field Aµ which couples to the global U(1) symmetry. Performing the shift aµ →

aµ − C
C+1

Aµ to eliminate the cross terms, we obtain:

L =
C + 1

4π
ada+

1

4π

C

C + 1
AdA. (4.3)

For values of C other than C = −2,−1, 0, this describes an Abelian fractional quantum

Hall state with ground-state degeneracy |C + 1|g on a genus-g surface and quantized Hall

conductance σxy = C/(C + 1). For C = 0, the ground state is unique and the Hall

conductance vanishes: this is the Bose Mott insulator. For C = −2, the ground state

is again unique, but the Hall conductance is nonzero, σxy = 2: this is a bosonic integer

quantum Hall state [154–157]. For C = −1, the Chern-Simons term for aµ cancels and we
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must keep a Maxwell term. Integrating out aµ, we obtain in the low-energy limit,

Seff[Aµ] =
1

8π2

∫︂
d3q

(2π)3
Aµ(−q)

(︃
ηµν − qµqν

q2

)︃
Aν(q), (4.4)

where ηµν is the (2+1)D Minkowski metric. Equation (4.4) describes the (transverse)

Meissner response of a charged superfluid, thus the C = −1 phase is a superfluid of the b

bosons.

4.2.2 Phase transitions and U(1) dualities

At the parton mean-field level, transitions between the different bosonic phases mentioned

above are Chern-number-changing (topological) transitions in the f2 parton band structure.

For simplicity, we focus on transitions between the Mott insulator (C = 0), superfluid

(C = −1), and ν = 1/2 bosonic fractional quantum Hall state (C = 1) [158]. To derive

a critical theory for the transition, we can integrate out f1, which remains gapped across

the transition. This generates a U(1)1 Chern-Simons term in the effective theory. By

contrast, f2 becomes gapless at the transition and must be kept in the critical theory.

In the low-energy limit and near the transition, the f2 band structure will generically

consist of two Dirac points K+ and K−, such that f2(r) can be expanded near the Dirac

points: f2(r) ≈
∑︁

k=± e
iKk·rψ2k(r), where ψ2+, ψ2− are slow two-component Dirac fields

with mass m+,m− respectively. The low-energy effective theory interpolating between all

three phases is thus:

L =
1

4π
ada+

∑︂
k=±

ψ̄2k(i /D −mk)ψ2k, (4.5)

where /D = γµDµ with Dµ = ∂µ − i(aµ + Aµ) the gauge-covariant derivative, and γµ are

(2+1)D Dirac matrices.

The phases described in Sec. 4.2.1 are recovered when both Dirac fermions are massive

and can be integrated out (Fig. 4.1). Since a single massive two-component Dirac fermion

with mass m carries a partial Chern number of 1
2
sgnm [159–161], when both m± > 0,

we recover Eq. (4.2) with C = 1, i.e., the bosonic ν = 1/2 Laughlin state. When both
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m± < 0, we find the superfluid with C = −1. When the masses are of opposite sign, the

partial Chern numbers from the two Dirac fermions cancel out and we obtain the trivial

Mott insulator with C = 0.

MI FQH

SF MI

m+

m�

Figure 4.1: Phase diagram for bosons with U(1) symmetry as a function of the two tuning
parameters m+, m−. MI: trivial Mott insulator; SF: superfluid; FQH: ν = 1/2 bosonic
Laughlin state.

Transitions between the Mott insulator and superfluid and between the Mott insulator

and the bosonic Laughlin state can be accessed by tuning m− through zero at m+ < 0 and

m+ > 0, respectively. When m+ < 0, integrating out ψ2+ and setting m− = 0 gives

L =
1

8π
ada+ ψ̄2−i /Dψ2− −

1

4π
Ada− 1

8π
AdA, (4.6)

a single two-component Dirac fermion coupled to a U(1) Chern-Simons gauge field at level

1/2, which is conjectured [142, 146–148, 150, 151] to be dual in the infrared to the (2+1)D

Wilson-Fisher fixed point of a single complex scalar ϕ,

Ldual = |(∂µ − iAµ)ϕ|2 − λ|ϕ|4. (4.7)

We thus recover the known fact that the boson superfluid-Mott insulator transition is in

the 3D XY universality class (in the presence of particle-hole symmetry, which is assumed

here due to the relativistic Dirac dispersions). Furthermore, a fermion mass term for ψ2−

maps to a mass term for the scalar of the same sign1, such that m− > 0 corresponds to

1The reason the fermion and scalar masses are of the same sign is that we are in fact using a time-
reversed version of the duality in Ref. [146].
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the disordered (Mott insulating) phase of the scalar and m− < 0 to its broken symmetry

(superfluid) phase. As is clear from Eq. (4.7), the dual scalar field ϕ carries charge 1 under

the background gauge field Aµ and can thus be directly interpreted as the continuum limit

of the boson operator b near the superfluid-insulator transition.

When m+ > 0, integrating out ψ2+ and setting m− = 0 yields

L =
3

8π
ada+ ψ̄2−i /Dψ2− +

1

4π
Ada+

1

8π
AdA, (4.8)

a Dirac fermion coupled to U(1)3/2 Chern-Simons theory, which is dual to a single complex

scalar coupled to U(1)−2 Chern-Simons theory,

Ldual = |(∂µ − iãµ)ϕ|2 − λ|ϕ|4 −
2

4π
ãdã+

1

2π
Adã. (4.9)

The derivation of this duality is reviewed in Appendix 4.6. If we add a positive mass term

for the scalar (corresponding to m− > 0 for the fermion), the scalar can be integrated out

and upon shifting ã→ ã+ 1
2
A we obtain U(1) Chern-Simons terms of level −2 and 1/2 for

the ã and A gauge fields, respectively, in accordance with the ν = 1/2 bosonic Laughlin

state expected for m− > 0. Setting A = 0, approximate critical exponents for the Mott

insulator-bosonic Laughlin state transition can be obtained by studying Eq. (4.8) in the

1/Nf expansion where Nf denotes the number of Dirac fermion flavors [142, 162], or by

studying the dual theory (4.9) in a bosonic 1/Nb expansion [163].

Finally, exact microscopic symmetries may force m+ = m− and protect a topological

transition in which C changes by 2 (e.g., inversion symmetry in the Haldane model [105]).

In this case a direct transition from the superfluid to the bosonic Laughlin state is generi-

cally allowed, and the critical theory is (4.5) with m+ = m− = 0. Critical exponents can

be estimated using the large-Nf expansion mentioned above [142, 162].

4.2.3 Instantons, fermion zero modes, and superfluidity

So far, we have ignored the compactness of the emergent U(1) gauge field aµ. In the

superfluid phase, the low-energy effective action does not feature a Chern-Simons term,
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thus confinement effects due to the proliferation of monopole-instantons [9, 26, 40] are

expected to play a key role. In the presence of fermions, such instantons can additionally

lead to symmetry-breaking effects [62]. In an instanton background a
(g)
µ of topological

charge g, a (2+1)D Dirac fermion ψ of charge e and mass m possesses Euclidean ZMs

given by [1]:

ψ+
0 (r, θ, ϕ) =

√
2m

r
e−mrY1/2

1/2,0,0(θ, ϕ), (4.10)

ψ−
0 (r, θ, ϕ) =

√
−2m
r

emrY1/2
−1/2,0,0(θ, ϕ), (4.11)

for eg = +1/2 and eg = −1/2, respectively, according to the Dirac quantization condition.

Here Yj±1/2
eg,j,mj

(θ, ϕ) are monopole spinor harmonics with total angular momentum j and its

projection mj [74, 118], and (r, θ, ϕ) are spherical coordinates in 3D Euclidean spacetime.

In the semiclassical instanton gas approximation, those fermion ZMs induce an effective

four-fermion interaction, known as the ’t Hooft vertex [63–65]:

e−2πiσe−iϑψ⊺
1+γψ2+ψ

⊺
1−γψ2− +H.c., (4.12)

where ψ1± are the slow fields in the low-energy expansion f1(r) ≈
∑︁

k=± e
iKk·rψ1k(r), σ

is the dual photon, ϑ is a topological angle analogous to the theta angle of 4D Yang-Mills

theory, and γ is a certain 2 × 2 matrix in spinor space [1]. The operatorM(x) = e2πiσ(x)

is a monopole operator that inserts 2π flux at a given point x in spacetime.

The importance of this term is that it properly accounts for the unique U(1) global sym-

metry of the microscopic boson system. Absent instanton effects, the Lagrangian (4.5) has

a spurious U(1)×U(1)top symmetry, where the first factor corresponds to the conservation

of ψ2+ particle number, and the second factor represents the conservation of the topologi-

cal current jµtop = 1
2π
ϵµνλ∂νaλ =

1
(2π)2

∂µσ. The ’t Hooft vertex (4.12) intertwines these two

symmetries, reducing them to the diagonal U(1) subgroup under which a phase rotation

of ψ2± is compensated by a shift of σ. Assuming instanton proliferation in the confined

phase, σ acquires an expectation value, which breaks this U(1) symmetry spontaneously

and results in a superfluid phase.
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4.3 Ising spins

We now turn to our main focus, a system of quantum Ising spins τ z(r) = ±1 living on the

sites r of a 2d lattice. We assume the Hamiltonian of the system is invariant under the

global Z2 symmetry τ z(r)→ −τ z(r), for all r. We wish to describe ordered and disordered

phases of this quantum spin system, as well as transitions between them, using a parton

construction.

4.3.1 Parton construction

In analogy with (4.1), we introduce the parton decomposition

τ z(r) = iN/2χ1(r)χ2(r) · · ·χN(r), (4.13)

where N is even and χα(r), α = 1, . . . , N are Hermitian (Majorana) fermion operators

obeying the SO(N) Clifford algebra {χα(r), χβ(r′)} = 2δαβδrr′ . One easily checks that

(4.13) implies the expected properties τ z(r) = τ z(r)†, τ z(r)2 = 1, and that the τ z(r)

commute on different sites. This parton decomposition introduces a local SO(N) gauge

redundancy χ(r)→ R(r)χ(r) under which τ z(r) remains invariant, where R(r) ∈ SO(N)

and we group the Majorana operators into an SO(N) vector χ = (χ1, . . . , χN)⊺. The

charge under the global Ising symmetry can be assigned to any odd number of the N

Majorana modes; we choose to assign the global Z2 charge to χ1, i.e., χ transforms as

χ(r) → Wχ(r) where W = diag(−1, 1, . . . , 1). This action of the global symmetry does

not commute with SO(N) gauge transformations in the parton Hilbert space. Therefore,

unlike for the U(1) boson problem (Sec. 4.2), we cannot couple the parton system to a

background Z2 gauge field while maintaining SO(N) invariance at the Lagrangian level.

However, the global symmetry action is well defined on gauge-invariant operators and

gauge-invariant states. To the difference of other Majorana-based parton decompositions

of spin operators [164], explicit expressions for the operators τx(r) and τ y(r) in terms of the

Majorana fermions χα(r) are expected to be nonlocal and cannot be easily written down.
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Nonetheless, in Appendix 4.7, we show that the strong-coupling limit of an SO(N) lattice

gauge theory with Majorana matter naturally describes a quantum Ising spin system, thus

lending support to (4.13) as a valid parton representation.

We consider an SO(N)-invariant parton mean-field ansatz in which all N partons of the

multiplet form a class-D topological superconductor [165] with Chern number C. Consid-

ering fluctuations above the mean-field ground state, the partons couple to an emergent

SO(N) gauge field denoted by aµ. Integrating out the partons, we obtain the effective

Lagrangian

L = CSSO(N)C [a] + . . . , (4.14)

where CSSO(N)k [a] denotes a level-k non-Abelian SO(N) Chern-Simons term for the gauge

field a [166–168],

CSSO(N)k [a] =
k

2 · 4π
tr

(︃
a ∧ da+ 2

3
a ∧ a ∧ a

)︃
, (4.15)

with the trace in the vector representation of SO(N). The dots in (4.14) denote non-

topological gauge invariant terms such as the Yang-Mills action ∝ tr(f ∧ ∗f) where f =

da+ a ∧ a is the non-Abelian field-strength 2-form.

We now investigate the different phases of the original spin system that can be reached

by varying C. When C = 0, the Chern-Simons term is absent and the Yang-Mills term

dominates the action. At least when regularized on a lattice, as is the case here, pure

SO(N) gauge theory in 2 + 1 dimensions and without a Chern-Simons term is believed to

be confining at zero temperature [169, 170]. The confining theory is massive, thus C = 0

corresponds to a gapped phase of the original Ising spin system. When C = 1, the effective

Lagrangian contains an SO(N)1 Chern-Simons term,

L = CSSO(N)1 [a] + . . . (4.16)

This theory is also massive, but the Chern-Simons term leads to deconfinement at zero

temperature. Below the mass gap and in the long-wavelength limit, the system is de-

scribed by a pure topological SO(N)1 theory. Similarly to U(1)1 Chern-Simons theory,
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this is an invertible topological quantum field theory with a unique ground state on all

closed manifolds [146]. Note that SO(N)k Chern-Simons theory is a consistent theory of

microscopic bosons, even if k is odd, provided that only fermionic matter fields couple to

the SO(N) gauge field [167]; both conditions are satisfied here. Thus for C = 1 the original

Ising spin system forms a gapped paramagnet without topological order. For |C| > 1, one

obtains a deconfined phase described by SO(N)C Chern-Simons theory. Such theories are

not invertible, and thus the Ising spin system is in a phase with intrinsic topological order,

i.e., a gapped spin liquid.

Another way to see that the C = 1 phase corresponds to a gapped paramagnet without

topological order is by looking at the edge degrees of freedom. At the mean-field level,

the C = 1 phase features N free chiral Majorana modes on the boundary, which is a

noninteracting conformal field theory (CFT) with chiral so(N)1 current algebra and chiral

central charge c− = N/2 [171]. However, when projecting to the physical Hilbert space the

SO(N) symmetry is gauged, which gives a trivial coset CFT on the edge with vanishing

chiral central charge.

More generally, for C > 1 one obtains NC free chiral Majorana modes on the boundary

at the parton mean-field level, corresponding to a chiral so(NC)1 current algebra (we

assume C is positive without loss of generality, as a sign reversal of C simply corresponds

to a reversal of chirality). In Appendix 4.8, we show that this current algebra obeys the

following conformal embedding:

so(N)C ⊗ so(C)N ⊆ so(NC)1. (4.17)

Gauging the SO(N) symmetry leaves a chiral so(C)N current algebra [172], with chiral

central charge

c− =
NC(C − 1)

2(N + C − 2)
. (4.18)

Thus the C > 1 phases are chiral topological phases with protected edge modes described

by the chiral so(C)N Wess-Zumino-Witten (WZW) CFT. Since the microscopic system
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consists of interacting Ising spins, these are chiral spin-liquid phases with broken time-

reversal symmetry but unbroken Z2 spin-flip symmetry. For C = 2, the edge theory is a

so(2)N = u(1)N CFT with c− = 1. This is consistent with the fact that the bulk SO(N)2

Chern-Simons theory is equivalent to SO(2)N = U(1)N by level-rank duality [173]. Thus

the C = 2 phase is an Abelian topological phase, with the topological order of a ν = 1/N

bosonic fractional quantum Hall state [158, 174, 175]. Such a chiral spin liquid has anyonic

spinon excitations with statistical angle θ = π/N . Likewise, for C > 2 but N = 2,

the edge theory is a so(C)2 CFT which is equivalent to su(C)1 [168], with chiral central

charge c− = C − 1. This can be understood intuitively since N = 2 corresponds to two

Majorana fermions, which is equivalent to a single Dirac fermion. The mean-field state is

a Chern insulator of this Dirac fermion with Chern number C, and gauging the internal

SO(2) symmetry corresponds to gauging the U(1) symmetry of the Dirac fermion. For

N > 2 and C > 2, the bulk SO(N)C Chern-Simons theory is level-rank dual to SO(C)N ,

consistent with the so(C)N edge CFT. In the following, we will be interested exclusively

in the case N > 2, for reasons to be clarified shortly.

4.3.2 Phase transitions and SO(N) dualities

For simplicity, and to make an analogy with Sec. 4.2.2, we focus on transitions between

the three phases with C = 0, 1, 2. At the mean-field level, those are topological transitions

that proceed by linear (Majorana) crossings of the Bogoliubov-de Gennes bands of the

topological superconductor. We consider a parton bandstructure such that a low-lying

band with Chern number one remains filled across the transition, and there is a linear

crossing at zero energy of two other bands (for examples of multiband Majorana models

with topological transitions, see Refs. [176–178]). Since the total Chern number must be

integer, and a single massive two-component Majorana fermion carries a partial Chern

number of 1
2
sgnm, the low-energy bandstructure in the vicinity of the transitions can be

described by two slow, two-component Majorana fields ψ+, ψ− in the vector representation

of SO(N) with masses m+,m− respectively. In Appendix 4.9, we give an example of
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Majorana hopping model that produces such a low-energy bandstructure with tunable

masses m±. Considering gauge fluctuations, the theory interpolating between all three

phases is

L = CSSO(N)1 [a] +
1

4

∑︂
k=±

ψ⊺
kC(i /D −mk)ψk, (4.19)

where /D = γµ(∂µ−iaµ) is a gauge-covariant derivative involving the internal SO(N) gauge

field aµ, C is a charge-conjugation matrix, and the level-1 Chern-Simons term comes from

the response of the low-lying band. The phases described in Sec. 4.3.1 for C = 0, 1, 2 are

obtained whenm+ andm− are nonzero. Whenm± > 0, the two Majorana fermions ψ± can

be integrated out, yielding an SO(N)2 Chern-Simons term. As seen above, this is a chiral

spin liquid with the topological order of the ν = 1/N bosonic fractional quantum Hall

state. When both m± < 0, the Chern-Simons level vanishes and one obtains a pure Yang-

Mills theory which confines. As we discuss below, this is a phase with magnetic long-range

order. Finally, when the masses are of opposite sign, one has an SO(N)1 Chern-Simons

term which corresponds to a topologically trivial, gapped paramagnet. A schematic phase

diagram is given in Fig. 4.2.

The critical theories for the transitions in Fig. 4.2 can all be written in the following

general form:

LNf ,ν = CSSO(N)ν [a] +
1

4

Nf∑︂
j=1

ψ⊺
j Ci /Dψj, (4.20)

where ν is the Chern-Simons level and Nf is the number of Majorana fields that become

massless at the transition. We first consider transitions involving the chiral spin liquid.

The transition between the chiral spin liquid and the paramagnet is tuned by m+ (m−)

crossing zero at constant m− > 0 (m+ > 0); integrating out the massive fermion, we find

Eq. (4.20) with Nf = 1 and ν = 3/2. A direct transition from the chiral spin liquid to

the ordered phase is obtained by tuning the mass of both fermions through zero, and is

described by Eq. (4.20) with Nf = 2 and ν = 1. Such a transition can be protected by

microscopic symmetries enforcing m+ = m−; for example, this is achieved by requiring
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inversion symmetry in the honeycomb lattice model presented in Appendix 4.9. Assuming

both theories flow to a bona fide critical fixed point in the infrared, they correspond to

novel universality classes.

PM

PM

m+

m�

CSL

SSB

Figure 4.2: Phase diagram for Ising spins as a function of the two tuning parameters m+,
m−. PM: trivial paramagnet; SSB: ordered phase with Z2 spontaneous symmetry breaking;
CSL: chiral spin liquid.

We next argue that the confining phase at m± < 0 (i.e., C = 0) has a spontaneously

broken Z2 symmetry: that is, it possesses Ising-type magnetic long-range order. The

transition between the C = 1 (paramagnetic) and C = 0 phases is obtained by tuning

m+ (m−) through zero at constant m− < 0 (m+ < 0). It is thus described by L1,1/2 in

Eq. (4.20), i.e., a single flavor of Majorana fermions in the vector representation coupled

to an SO(N)1/2 theory. It was conjectured in Ref. [168] that an SO(k)
−M+

Nf
2

theory

coupled to Nf flavors of vector Majorana fermions is dual to an SO(M)k theory coupled

to Nf flavors of real scalars ϕ in the vector representation with (ϕ2)2 interactions, i.e.,

an SO(M)k theory coupled to the bosonic O(M) vector model at its Wilson-Fisher fixed

point. For Nf = M = 1, this stipulates that an SO(k)−1/2 theory coupled to a single

Majorana fermion is dual to a single real scalar ϕ at its Wilson-Fisher fixed point, since

SO(1) on the scalar side is trivial:

Majorana + SO(k)−1/2 ←→ real scalar, (4.21)

which can be viewed as a fermionization of the 3D Ising transition. Note that this duality

is conjectured to hold only for k > 2, which corresponds in our case to N > 2, i.e., a
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minimum of four partons in the decomposition (4.13). Equation (4.21) can also be viewed

as the Majorana counterpart of the U(1) boson-fermion duality [142, 146–148, 150, 151]

Dirac + U(1)−1/2 ←→ complex scalar, (4.22)

whose time-reversed version we have used in Eqs. (4.6-4.7), or as the “inverse” of the

Majorana bosonization duality [167, 168]

Majorana←→ O(M) scalar + SO(M)1, (4.23)

obtained by considering Nf = k = 1 (and M ≥ 3). Setting k = N and performing time

reversal to reverse the sign of the Chern-Simons level, Eq. (4.21) is precisely the critical

theory L1,1/2. Thus one obtains the dual critical theory

Ldual =
1

2
(∂µϕ)

2 − λ

4!
ϕ4. (4.24)

The dual Lagrangian (4.24) has a global Z2 symmetry ϕ→ −ϕ and two massive phases, the

unbroken phase ⟨ϕ⟩ = 0 and the phase ⟨ϕ⟩ ≠ 0 with spontaneously broken Z2 symmetry.

This transition can be tuned by adding a scalar mass term ∝ ϕ2. Since m− > 0 in the

original theory corresponds to a trivial paramagnet with no broken symmetries, this must

correspond to the unbroken phase in the dual theory, i.e., a positive scalar mass term.

Therefore, m− < 0 must correspond to a negative scalar mass term in the dual theory, i.e.,

the phase with spontaneously broken Z2 symmetry.

It remains to be shown that the Z2 symmetry under ϕ→ −ϕ of the dual theory (4.24)

is nothing but the original global Z2 symmetry of the spin system. As in Sec. 4.2.3, this is

properly achieved by the consideration of nonperturbative instanton effects, to which we

now turn.

4.4 Instantons, Majorana zero modes, and Ising sym-

metry

In this section, we wish to understand how the low-energy SO(N) gauge theory accounts

for the broken Ising symmetry in the phase with parton Chern number C = 0. In our
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description of the C = 1→ C = 0 transition in Sec. 4.3.2, the C = 0 Chern number of

the occupied bands resulted from the cancellation between a spectator C =1 band and a

nearly-critical C=−1 band (fermions ψ± with masses m± < 0). To understand the physics

deep in the C = 0 phase, it is simpler to work with a topologically equivalent theory, that

is, a single C=0 band producing two continuum Majorana fields Ψ+ and Ψ− with opposite

masses ±m (see again Appendix 4.9 for a lattice representative), specified by the Euclidean

Lagrangian

L =
1

4
Ψ⊺

+C(/∂ − i/a+m)Ψ+ +
1

4
Ψ⊺

−C(/∂ − i/a−m)Ψ− +
1

2g2
tr f 2, (4.25)

where we have explicitly included a Yang-Mills term, in the absence of a net Chern-Simons

level. As we discuss below, the breaking of Ising symmetry ultimately results from Eu-

clidean ZMs supported by those massive Majorana fields in the presence of instantons in

the SO(N) gauge field, which have heretofore been ignored.

The rest of this section is structured as follows. We first discuss the monopole operator

of SO(N) gauge theory in (2+1)D, which is charged under a topological (magnetic) ZM
2

symmetry and becomes a Z2 instanton in Euclidean spacetime (Sec. 4.4.1). Together

with the global Z2 symmetry action W on the Majorana partons χ (recall Sec. 4.3.1),

the Lagrangian (4.25) has a spurious global Z2 × ZM
2 symmetry absent instanton effects.

We show that in the presence of massive fermions coupled to the SO(N) gauge field, these

instantons are dressed by Euclidean Majorana ZMs bound to the instanton (Sec. 4.4.2). We

then show that semiclassical resummation of the Z2 instanton gas produces an interaction

term among the fermionic partons, the ’t Hooft vertex, that explicitly breaks this spurious

Z2 × ZM
2 symmetry down to its diagonal Z2 subgroup (Sec. 4.4.3). This intertwinement

ensures that if the ZM
2 magnetic symmetry is spontaneously broken, as is typical in a

confined phase [140, 141], the microscopic Ising symmetry τ z → −τ z is broken also. The

C = 0 confined phase is thus naturally identified as a broken-symmetry phase, in agreement

with the duality arguments of Sec. 4.3.2.

128



4.4.1 Z2 instantons in SO(N) gauge theory

In the absence of instantons, SO(N) gauge theory in (2+1)D with N > 2 possesses a

magnetic ZM
2 symmetry [140, 141, 168, 179–181], analogous to the topological U(1)top

symmetry of U(1) gauge theory in (2+1)D. Unlike the latter, ZM
2 lacks a conserved current,

being a discrete symmetry. The similarity between the two is that both result in the

existence of disorder operators that create topological excitations, in this case monopole-

instantons.

The operator charged under the ZM
2 symmetry is a local monopole operator M(x),

whose charge is defined by a nontrivial second Stiefel-Whitney class w2 ∈ H2(Σ,Z2) on a

closed surface Σ surrounding the operator insertion 2:∫︂
Σ

w2 ∈ Z2. (4.26)

A nontrivial Stiefel-Whitney class is an obstruction to lifting an SO(N) bundle to its

double cover, a Spin(N) bundle. For Σ a sphere, the Z2 monopole charge corresponds to

the nontrivial homotopy group π1(SO(N))∼=Z2, N > 2. It measures the winding number

of an SO(N) gauge transformation that relates the gauge fields aIµ and aIIµ on the overlap

of two coordinate charts I & II on Σ. As in the U(1) theory [9, 26, 40], the Z2 monopoles

are regarded here as instantons in 3D Euclidean spacetime.

An explicit semiclassical representative [185] is obtained by placing a Dirac monopole

in a specific SO(2) subgroup of SO(N), so that one may use the Wu-Yang connection

1-form [74]:

An =
n

2
(1− cos θ)tc dϕ , n∈Z, (4.27)

where n is the Dirac monopole charge, ϕ is the azimuthal coordinate on a sphere Σ sur-

rounding the monopole, and tc∈so(N) generates a subgroup SO(2)⊂SO(N). By means of

gauge rotations, any tc∈so(N) can be rotated to a Cartan generator, which shall be taken

as t(12), the generator of rotations in the (χ1, χ2) plane of the Majorana vector (χ1, ..., χN).

2For an introduction to Stiefel-Whitney classes in a condensed matter context, see, e.g., Refs. [182–184]
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Such a semiclassical characterization explicitly breaks the SO(N) gauge symmetry down to

an [O(2)×O(N−2)]/Z2 subgroup, where quotienting by Z2 restricts the determinant of the

overall transformation to be positive. Note that a suitable SO(N) gauge transformation

can invert the SO(2) monopole charge n; thus an n=2= 1+1 monopole is topologically

equivalent to an n = 0 = 1+(−1) monopole, and the unique Z2-nontrivial monopole is

given by n= 1 (or n=−1). Although it does not preserve full SO(N) gauge invariance,

this semiclassical description will allow us to perform an explicit instanton-gas calculation

analogous to that in Ref. [1] for U(1) gauge theory.

Incarnating the SO(N) monopole as a Dirac monopole in a specific SO(2) subgroup can

be regarded as a partial gauge choice. Formally notating this gauge condition as G(a)=0,

the Euclidean path integral for the theory can be expressed using the Faddeev-Popov (FP)

method as

Z =

∫︂
SO(N)

DR

∫︂
DaDΨ±∆G[a]δ[G(a

(R))]e−S[a,Ψ±], (4.28)

where a(R) is related to a by a gauge transformationR(x), and we denote DΨ± ≡ DΨ+DΨ−

for simplicity. The FP determinant ∆G[a] and the delta functional δ[G(a(R))] can be

written respectively as ghost and gauge-fixing terms in the Lagrangian. The essential idea

expressed by Eq. (4.28) is that one can perform a path integral calculation in a fixed gauge

(gauge slice), and then integrate the result over its gauge orbit (
∫︁

DR) to recover gauge

invariance. This will allow us to use a U(1) monopole operator that creates 2π flux in

the SO(2) subgroup, for which an explicit expression is known. In the following, we will

omit explicit integration over the gauge orbit but invoke heuristic arguments to (partially)

restore SO(N) gauge invariance at the end of the calculation, focusing on its physical

consequences.

As stated earlier, incarnating the SO(N) monopole as a Dirac monopole in an SO(2)

subgroup only partially fixes the gauge. The group S[O(2)×O(N−2)]≡ [O(2)×O(N−2)]/Z2

of global gauge rotations is a stabilizer for such a monopole configuration. Näıvely, the

existence of a nontrivial stabilizer leads to ghost ZMs, which are ZMs in the FP deter-
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minant ∆G[a] = |det δG/δω|, where ω ∈ so(N) generates the rotation R = exp(−ω), and

G(a) is the aforementioned gauge function partially determining the gauge. By employ-

ing the background-field gauge method [64], we show in Appendix 4.10 that such ZMs

can be removed from the FP determinant at the cost of introducing an overall factor of

vol(SO(N)/S[O(2)×O(N−2)])N in the N -instanton contribution to the partition function.

This is interpreted as the volume of the moduli space of “gauge collective coordinates”—

global gauge rotations that act to move the Dirac monopole to distinct SO(2) subgroups

of SO(N), thus yielding other viable instanton solutions [186]. Besides this, the ghost and

gauge-fixing terms will simply spectate in the instanton gas calculation to follow, and will

thus henceforth be suppressed to reduce clutter.

The coupling of fermions to finite-action fluctuations (“gluons”) around the instanton

solution An is ignored in the semiclassical approximation [63–65]. In our choice of gauge,

the contribution to the path integral from Z2 instantons can be separated and written

as [1]

Z =

∫︂
Da e

− 1
2g2

∫︁
d3x tr f2

∞∑︂
N=0

λN

N !

N∏︂
k=1

∫︂
d3zk

∑︂
nk=±1

M(12)
nk

(zk)

∫︂
DΨ±e

−SF [Ank
,Ψ±], (4.29)

where M(12)
n is a monopole operator that creates a Dirac monopole of charge n in the

SO(2) subgroup generated by t(12)∈so(N), and λ is the fugacity of an n = ±1 instanton.

In this fixed gauge, the monopole operator has an explicit representation exp
(︁
inγ(12)

)︁
in

terms of the dual photon γ(12) [9, 26, 27, 40]. Unlike in U(1) gauge theory, γ(12) is no longer

gauge invariant, as evident from the presence of the gauge-dependent susbcript that selects

an SO(2) subgroup in SO(N). The fermion action in the instanton background is

SF [An] =
1

4

∫︂
d3x [Ψ⊺

+C(/∂ − i /An +m)Ψ+ +Ψ⊺
−C(/∂ − i /An −m)Ψ−]. (4.30)

The inclusion of charge n=±1 monopoles in Eq. (4.29) deserves further explanation in

light of the Z2 nature of the topological charge of SO(N) monopoles. A simple explanation

is that in our fixed choice of gauge, these two charges are distinct configurations and must

both be accounted for. Alternatively, one can resort to a stability argument. In one
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higher spacetime dimension (4D), Z2 monopoles feature as solitons in the gauge theory. A

monopole of topological charge 0 or 1 can be “dynamically” represented as Dirac monopoles

of charges {0,±2,±4, ...} or {±1,±3, ...} respectively, in some SO(2)⊂SO(N). A stability

analysis [187, 188] indicates that the uniquely stable dynamical configurations in the two

topological classes are the charge 0 and ±1 Dirac monopoles. This result can be used to

determine the stable dynamical configuration of multimonopole solutions. At distances

large compared to their separation, two monopoles with Dirac charges +1 look like a single

monopole of Dirac charge 2, which is unstable to the charge 0 configuration. This implies

the instability of the 1 + 1 to the 1 − 1 configuration, which proceeds by the emission of

gluon radiation. While such a stability analysis has been applied to monopoles as soliton

excitations in 4D, we expect that a similar result holds for monopole-instantons, with

the charge 0 and ±1 configurations being the most probable instanton events. Since the

instanton gas calculation is performed with the Dirac charge instead of the topological

Z2 charge, one must account for both ±1 charges in the instanton sum (4.29), as both

are expected to be equally probable. Finally, we find that inclusion of both ±1 charges

is required to maintain reflection positivity of the instanton-induced ’t Hooft vertex, as

discussed in Sec. 4.4.3.

4.4.2 Euclidean Majorana zero modes

A natural question to ask now is if there are (Euclidean) Majorana ZMs, associated with

zero-eigenvalue modes of the Euclidean Dirac operators

D± ≡ /∂ − i /An ±m, (4.31)

appearing in the fermion action SF , for Dirac instantons of charges n=±1. In the absence

of a Callias index theorem for Dirac instantons in Abelian SO(2) ∼= U(1) gauge theory [70,

101], we resort to an explicit solution of the Dirac equation.

As stated previously, we assume a gauge in which the instanton incarnates as a Dirac
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monopole in the SO(2) subgroup generated by

t(12) =

⎛⎜⎜⎜⎝
0 −i 0

i 0 0

0 0 0

⎞⎟⎟⎟⎠ ∈ so(N), (4.32)

where the upper-left block corresponds to the (12) subspace, and 0 denotes a zero matrix

of the appropriate size, involving the remaining N−2 directions in color space. Writing

An = ant(12), and working in the Cartan (diagonal) basis of so(N), the Dirac operators

can be written as

D± = U

⎛⎜⎜⎜⎝
/∂−i/an±m 0 0

0 /∂+i/an±m 0

0 0 (/∂±m)1

⎞⎟⎟⎟⎠U †, (4.33)

where U is the unitary matrix that diagonalizes t(12). Borrowing results from Ref. [1], in an

n=1 instanton background, (/∂−i/a++m) and (/∂+i/a+−m) have the respective normalizable

ZMs:

ψ+
0 =

√
2m

r
e−mrY0

1/2,0,0(θ, ϕ),

ψ−
0 =

√
2m

r
e−mrY0

−1/2,0,0(θ, ϕ), (4.34)

where Yj±1/2
n/2,j,mj

(θ, ϕ) are monopole spinor harmonics. The rest of the operators on the

diagonal of Eq. (4.33) do not have any normalizable ZMs. Therefore, the normalizable

ZMs of D± in an n=1 instanton background are, respectively,

u0 = U(ψ+
0 , 0, ..., 0)

⊺ =
ψ+
0√
2
(−i, 1, 0, ..., 0)⊺,

v0 = eiαU(0, ψ−
0 , 0, ..., 0)

⊺ =
eiαψ−

0√
2

(i, 1, 0, ..., 0)⊺. (4.35)

Any phase multiplying a ZM still produces a normalized ZM, and this apparent freedom

has been encoded in an arbitrary relative phase eiα.
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Similarly, in an n=−1 instanton background, the operators D± have the ZMs

ũ0 = U(0, ψ+
0 , 0, ..., 0)

⊺ =
ψ+
0√
2
(i, 1, 0, ..., 0)⊺,

ṽ0 = e−iβU(ψ−
0 , 0, ..., 0)

⊺ =
e−iβψ−

0√
2

(−i, 1, 0, ..., 0)⊺. (4.36)

The Z2 topological equivalence of the n = ±1 field configurations under the full SO(N)

gauge structure will be discussed later, as well as constraints on the relative phases α and

β.

4.4.3 The ’t Hooft vertex and Ising symmetry

In this subsection, we show that the Euclidean Majorana ZMs found in the previous sub-

section induce symmetry-breaking interactions in the SO(N) gauge theory. (As mentioned

previously, Appendix 4.10 shows that FP ghosts do not give rise to physical ZMs bound

to instantons.) Specifically, these ZMs imply that instanton events are correlated with

creation (or annihilation) of Majorana fermions. Resumming the instanton gas results in

a new fermion interaction, called the ’t Hooft vertex, which reduces the symmetry of the

initial Lagrangian (4.25).

We now sketch a derivation of this ’t Hooft vertex; more details regarding the structure

of such a calculation can be found in Ref. [1]. In the background of an n= 1 instanton

fixed at location z+, the measure of the fermion part of the path integral (4.29) can be

defined by means of the mode expansions

Ψ+(x) = u0(x− z+)η0 +
∑︂′

i

ui(x− z+)ηi,

Ψ−(x) = v0(x− z+)χ0 +
∑︂′

i

vi(x− z+)χi, (4.37)

where ηi, χi are single-component Grassmann variables, u0 and v0 are the respective ZMs

of D+ and D− in an n = 1 instanton background, and the primed sums denote non-ZM

contributions. The functions that form the non-ZM contributions can be taken to be

eigenfunctions of a self-adjoint extension of the Hermitian operator D†
±D±, whose non-ZM

eigenfunctions occur in pairs that share the same eigenvalue [62, 189].
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Defining the fermion functional measure as

DΨ± = DΨ+DΨ− = dη0 dχ0

∏︂′

i

dηi dχi , (4.38)

we observe that the mode expansions (4.37) diagonalize the fermion action SF , but the

ZMs do not appear in the diagonalized action, by virtue of being annihilated by the Dirac

operators D±. This causes the integral over the ZMs (η0, χ0) to vanish, killing the path

integral. As in Ref. [1], instantons do not contribute to the partition function itself, but

to correlation functions that can “soak up” the ZMs, such as
⟨︂
Ψα

+Ψ
β
−

⟩︂
. Such correlation

functions generically violate the apparent Z2×ZM
2 symmetry of the naive continuum La-

grangian (4.25). To find the true effective theory, we add a weak symmetry-breaking source

to the action and re-evaluate the fermion part of the path integral to linear order in the

source J . Explicitly, using the mode expansions (4.37),

ZF [A+, J ] =

∫︂
DΨ±e

−SF [A+]−
∫︁
d3(x,y)Ψ⊺

+(x)J(x,y)Ψ−(y),

=

∫︂
d3(x, y)u⊺0(x−z+)J(x, y)v0(y−z+)K, (4.39)

where K denotes the path integral over non-ZMs, and d3(x, y)=d3xd3y. Strictly, nonlocal

expressions like the source term require an insertion of Wilson lines to maintain gauge

invariance, but we do not write these explicitly, as the final form of the ’t Hooft vertex will

turn out to be local. This is also consistent with our neglect of fermion-gluon interactions

at this stage.

Demanding an effective theory that reproduces this path integral amounts to “integrat-

ing out” the instantons in the full partition function (4.29). As an ansatz for the resulting

partition function, consider

I+[J ] =

∫︂
DΨ±e

−SF−
∫︁
d3(x,y)Ψ⊺

+(x)J(x,y)Ψ−(y)

∫︂
d3(x1, x2)ρΨ

⊺
−(x2)ω2ω

⊺
1Ψ+(x1), (4.40)

where ρ and ω1,2 are fixed by requiring equality with ZF [A+, J ] in Eq. (4.39). Note that
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the action SF written without source arguments is the free Majorana action. This leads to

ρ = K,

ω1 =
1

2
C(/∂ +m)u0,

ω2 =
1

2
C(/∂ −m)v0. (4.41)

The above calculations can be repeated for an n=−1 instanton background using the

mode expansions

Ψ+(x) = ũ0(x− z−)η0 +
∑︂′

i

ũi(x− z−)ηi,

Ψ−(x) = ṽ0(x− z−)χ0 +
∑︂′

i

ṽi(x− z−)χi, (4.42)

where ũ0 and ṽ0 are the respective ZMs of the Dirac operators D± in an n=−1 background,

discussed in Sec. 4.4.2. The fermion path integral ZF [A−, J ] can be shown to be equal to

I−[J ] =

∫︂
DΨ±e

−SF−
∫︁
d3(x,y)Ψ⊺

+(x)J(x,y)Ψ−(y)

∫︂
d3(x1, x2)KΨ⊺

−(x2)ω̃2ω̃
⊺
1Ψ+(x1), (4.43)

provided

ω̃1 =
1

2
C(/∂ +m)ũ0, ω̃2 =

1

2
C(/∂ −m)ṽ0. (4.44)

Substituting I±[J ] instead of ZF [A
±
µ , J ] in the full partition function (4.29) and resumming

the instanton gas leads to an instanton-induced action of the form

Sinst=−λK
∫︂
x,y,z

Ψ⊺
−(x)

[︁
eiγ(12)(z)ω2(x−z)ω⊺

1(y−z) + e−iγ(12)(z)ω̃2(x−z)ω̃⊺
1(y−z)

]︁
Ψ+(y).

(4.45)

As ω1,2 and ω̃1,2 are proportional to the radial part (e−mr/r) of the ZMs, the contribution

to the x and y integrals are mainly from small neighborhoods of x=z and y=z. A change

of integration variables x→x+z and y→ y+z, and subsequent Taylor expansions of the

fermion fields Ψ−(x+z) and Ψ+(y+z) to leading (zeroth) order in x and y, yield a local

action. Substituting the explicit forms of ω1,2 and ω̃1,2, this local action is

Sinst =
λK

m

∫︂
d3zΨ⊺

−(z)∆(z)Ψ+(z), (4.46)
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where the instanton-induced ’t Hooft vertex is defined as

∆(z) =
1

2
(−σz+iσy)

⎡⎢⎢⎢⎣eiγ(12)eiα
⎛⎜⎜⎜⎝

1 −i 0

i 1 0

0 0 0

⎞⎟⎟⎟⎠+ e−iγ(12)e−iβ

⎛⎜⎜⎜⎝
1 i 0

−i 1 0

0 0 0

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ , (4.47)

where the z dependence comes through the dual photon γ(12) = γ(12)(z).

We next address the issue of SO(N) gauge invariance, which the derived ’t Hooft vertex

currently lacks. Indeed, its matrix structure is invariant only under the [O(2)×O(N−2)]/Z2

subgroup, and involves gauge-dependent variables α, β, and γ(12). The key physical feature

that full SO(N) invariance brings, for N>2, is the gauge equivalence between instantons

and anti-instantons in any SO(2) subgroup, given the Z2 topological charge discussed in

Sec. 4.4.1. It is expected this feature will be restored upon performing the SO(N) Haar

integral in Eq. (4.28), but this is analytically intractable. A more physically transparent

way is to impose by hand the gauge equivalence between the ± monopole operators

eiγ(12) ∼ e−iγ(12) , (4.48)

where the ∼ implies the two operators can be made equal by an SO(N) gauge rotation.

Writing the SO(N)-invariant monopole operator as

M = eiγ, (4.49)

the constraint (4.48) requires that γ ∈ {0, π} mod 2π. Accordingly, the continuous U(1)

shift symmetry of the dual photon reduces to a discrete ZM
2 magnetic symmetry, under

which the monopole operator is charged:

ZM
2 : γ ↦→ γ + π

M ↦→ −M. (4.50)

This is the behavior expected of monopole operators in 3D SO(N>2) Yang-Mills theories,

which are charged under ZM
2 [140, 141, 168, 179–181].
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The ’t Hooft vertex can be further simplified by imposing reflection positivity of the

Euclidean action as well as an anti-unitary time-reversal symmetry. First, reflection posi-

tivity3 sets α=β in Eq. (4.47), partially constraining the phases of the ZM functions. This

simplifies the vertex to

∆(z) =M(z)(−σz+iσy)

⎛⎜⎜⎜⎝
cosα sinα 0

− sinα cosα 0

0 0 0

⎞⎟⎟⎟⎠ . (4.51)

From this form of the vertex, it is clear that α is analogous to the theta angle in compact

U(1) gauge theory in 3D [1], bar complications arising here from the lack of SO(N) gauge

invariance. To fix the value of α, we demand that the ’t Hooft vertex (4.51) satisfies the

same discrete spacetime symmetries as the rest of the action obtained from the Lagrangian

(4.25). As can be checked explicitly, the corresponding Hamiltonian possesses an anti-

unitary time-reversal symmetry T , which is defined by

T Ψ±T −1 = iσyΨ∓, T aiT −1 = ai. (4.52)

The nonstandard transformation of the vector potential ai comes from the fact that the

generators of so(N) are pure imaginary antisymmetric matrices [e.g., Eq. (4.32)] which pick

up an additional minus sign under complex conjugation. To determine the action of T on

M, we use a physical argument. T can at most reverse the direction of SO(2) flux created

by the monopole operator; but monopoles and anti-monopoles are gauge equivalent. Thus

we conclude thatM transforms trivially under T .

To study the effect of T on the ’t Hooft vertex, we first rewrite it using the Majorana

condition (4.148) as

Linst =
λK

2m
(Ψ†

−σx∆Ψ+ +Ψ†
+∆

†σxΨ−)

=
λK

2m
(Ψ†

−∆Ψ+ +Ψ†
+∆

†Ψ−). (4.53)

3In Euclidean signature, reality of the Minkowski action requires reflection-positivity of the Euclidean
one. However, as the instanton-induced term is free of time derivatives, it is also a term in the effective
Hamiltonian, which is required to be Hermitian, so it suffices to check Hermiticity.
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It is then readily observed that

T LinstT −1 = −λK
2m

(Ψ†
+σy∆

∗σyΨ− +Ψ†
−σy∆

⊺σyΨ+). (4.54)

Demanding T invariance then yields the condition

σy∆
⊺σy = ∆, (4.55)

which requires that the SO(N) matrix in (4.51) be antisymmetric. Thus we obtain

α ∈
{︃
π

2
,
3π

2

}︃
mod 2π, (4.56)

which can be interpreted as a Z2 theta angle. The two resulting ’t Hooft vertices only

differ by an overall sign that can be absorbed in the coupling constant. Choosing α=π/2,

the effective Lagrangian that accounts for instanton effects is

Leff =
1

4
Ψ⊺

+C(/∂ − i/a+m)Ψ+ +
1

4
Ψ⊺

−C(/∂ − i/a−m)Ψ−

+
iλK

m
MΨ⊺

−(−σz+iσy)t(12)Ψ+ +
1

2g2
tr f 2, (4.57)

where the coupling of fermions to a gluon field a has been restored.

Clearly, Leff is still only gauge invariant under [O(2)×O(N−2)]/Z2, the presence of t(12)

indicating memory of the specific SO(2) subgroup the instanton was placed in. Yet, Leff en-

capsulates all the correct physical symmetries expected of the gauge-invariant Lagrangian.

Without instanton corrections, the parton theory has the spurious global symmetry Z2×ZM
2 ,

where Z2 is the microscopic parton representation of the Ising symmetry, under which

Ψ± → WΨ±, W =diag(−1, 1, . . . , 1)N×N , (4.58)

as per our choice of global charge assignment in Sec. 4.3.1, and ZM
2 is the magnetic symme-

try (4.50). This enlarged symmetry is absent in the physical spin model. The low-energy

effective theory (4.57) indicates that instantons have the effect of explicitly breaking this

spurious Z2×ZM
2 symmetry to the diagonal subgroup, under which

Ψ± → WΨ±, M→−M. (4.59)
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Indeed, sinceW ⊺t(12)W =−t(12), the fermion bilinear in the ’t Hooft vertex acquires a minus

sign under the action of the first Z2 factor, which can be compensated by another minus

sign coming from the ZM
2 symmetry action on the monopole operatorM. This diagonal

symmetry is finally understood as the correct incarnation, in the low-energy parton theory,

of the microscopic Ising symmetry τ z → −τ z. Although it is not presently clear whether

nor how this may be derived analytically, we speculate that full averaging over the SO(N)

gauge orbit (
∫︁

DR) in the partition function (4.28,4.29) produces a fully SO(N)-invariant

’t Hooft vertex of the form

Leff
?∼Mϵα1···αN

Ψα1
− (−σz+iσy)Ψα2

+ · · · · · ·Ψ
αN−1

− (−σz+iσy)ΨαN
+ . (4.60)

Under the Z2 symmetry W , the fermionic “baryon” operator is multiplied by a factor

detW = −1 which is compensated by the transformation of the monopole operatorM un-

der the ZM
2 magnetic symmetry. Note that those transformation properties are now prop-

erly independent of the choice of global charge assignment to the fermionic partons, since

detW is invariant under gauge-equivalent redefinitions W → RWR⊺ with R ∈ SO(N).

In either its [O(2)×O(N−2)]/Z2 or SO(N) invariant incarnations, the ’t Hooft vertex

implies that a breakdown of magnetic symmetry, which is typically associated with con-

finement [140, 141], is concomitant with a breakdown of the Ising symmetry implemented

by W in the parton theory. We thus conclude that the C = 0 phase, which is described

by a confining pure Yang-Mills theory at low energies, is indeed a phase in which the

microscopic Ising symmetry is spontaneously broken.

4.5 Conclusion

In summary, we have employed slave-particle methods to discuss universal aspects of quan-

tum phase transitions between magnetically ordered, trivially paramagnetic, and gapped

topological phases of Ising spin systems. Our theory can be viewed as a generalization of

the work of Ref. [102] from hardcore bosons with U(1) symmetry to Ising spins with Z2 sym-

metry. Using a slave-particle decomposition of Ising spins in terms of fermionic Majorana
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partons with SO(N) gauge structure, we argued that placing the partons in topologically

superconducting mean-field states with Chern number C = 0, 1, 2 corresponds respectively

to magnetically ordered, trivially paramagnetic, and chiral spin liquid phases of the con-

stituent spins. Accounting for gauge fluctuations beyond mean-field, the corresponding

Chern-number changing transitions were described by theories of Majorana fields coupled

to SO(N) gauge fields with a Chern-Simons term. Using recently conjectured SO(N)

dualities with Majorana fermions, the critical theory for the ordering transition from the

trivial paramagnet was found to be dual to the usual Wilson-Fisher theory with a single

scalar field, as expected for a standard Ising transition. We found that a direct ordering

transition from the chiral spin liquid was also possible, and could be protected by lattice

symmetries such as inversion symmetry on the honeycomb lattice.

Finally, we turned our attention to the ordered phase itself, in order to identify the

symmetry-breaking mechanism from the point of view of the parton gauge theory. The

latter was characterized by a spurious apparent Z2 × ZM
2 symmetry, with the first Z2 fac-

tor a global symmetry action on the Majorana partons, and ZM
2 the magnetic symmetry

associated with SO(N) monopole operators. We then showed that the resolution of this

problem is to account for nonperturbative instanton effects. First, the massive Majorana

fields of the C = 0 phase support Euclidean ZMs bound to instantons. Second, resumming

the instanton gas using semiclassical methods produces an interaction vertex (’t Hooft ver-

tex) involving Majorana fields and monopole operators, that is only invariant under the

diagonal Z2 subgroup of Z2 × ZM
2 . Under the plausible assumption of spontaneously bro-

ken ZM
2 magnetic symmetry in the (confined) C = 0 phase, the ’t Hooft vertex naturally

led to simultaneous breaking of the global Ising symmetry in the parton sector. Thus, as

in our earlier work on U(1) bosons [1], we found that nonperturbative instanton effects

are instrumental in accounting for spontaneous symmetry breaking in the relevant parton

gauge theory. The precise pattern of symmetry breaking (e.g., ferromagnetism vs antifer-

romagnetism) in the physical spin system depends on the microscopic interpretation of the
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continuum Majorana spinors Ψ± in a specific lattice model.

We finally outline a few avenues for future research. First, it would be interesting to per-

form tests of the fermionization duality (4.21) using large-N methods, as done in Ref. [142]

for the fermionization (4.6) of the 3D XY transition, or in Refs. [190, 191] for non-Abelian

dualities with unitary gauge groups. In particular, the duality predicts that the scaling di-

mension of the Majorana mass operator [ψ⊺Cψ] = 3−ν−1, which is dual to the ϕ2 operator

on the scalar side and related to the correlation length exponent ν, should be independent

of the rank of the SO(N) gauge group. It would be interesting to test this prediction

by performing computations in the ’t Hooft limit with N → ∞ [192]. Second, while the

transition between magnetic order and trivial paramagnet is ultimately a standard Ising

transition, a direct transition between magnetic order and the ν = 1/N chiral spin liquid

is described by a theory of Nf = 2 massless Majorana fermions coupled to an SO(N)1

Chern-Simons term. This presumably defines a new universality class of Ising transitions

in 2+1 dimensions, and it would be interesting to compute critical exponents using either

large-Nf or large-N expansions. Third, to complement the semiclassical instanton gas cal-

culation we have presented here, it would be interesting to study the scaling dimensions of

Z2 monopole operators in critical SO(N) gauge theories with Majorana matter, using the

state-operator correspondence of conformal field theory [27]. The latter has been success-

fully used in U(1) gauge theories with massless Dirac matter [27, 28, 55–57]. Finally, from

a more microscopic standpoint, it would be desirable to construct variational many-body

wave functions based on the parton ansätze discussed here (i.e., N -flavor wave functions of

Majorana fermions projected to the SO(N) gauge-invariant sector) and use them to study

frustrated lattice models of interacting spins with Ising symmetry. Such models could

include antiferromagnetic quantum Ising models defined on geometrically frustrated lat-

tices like the kagome lattice, or on non-frustrated lattices but with competing anisotropic

interactions, as in the Kitaev model on the honeycomb lattice.
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4.6 Appendix: Dualities for bosons with U(1) symme-

try

For the reader’s convenience, we provide here a derivation of the dualities between the

fermionic critical theories (4.6), (4.8) and their respective bosonic duals (4.7), (4.9), re-

spectively, based on Ref. [147].

The starting point is the duality of relativistic flux attachment, whereby coupling a level-

1 Chern-Simons gauge field to a relativistic complex scalar attaches one flux quantum to

the latter and turns it into a Dirac fermion [193]. This can be expressed by the following

equivalence between the partition functions

Zψ[A]e
i
2
SCS[A] =

∫︂
DaZϕ[a]e

−iSCS[a]+iSBF[a,A], (4.61)

where we define the fermionic and bosonic partition functions

Zψ[A] =

∫︂
Dψ̄Dψ ei

∫︁
d3x ψ̄i(/∂−i /A)ψ, (4.62)

Zϕ[A] =

∫︂
Dϕ∗Dϕ ei

∫︁
d3x(|(∂µ−iAµ)ϕ|2−λ|ϕ|4), (4.63)

and the bosonic action is understood as being tuned to criticality. We define the Chern-

Simons and BF actions as

SCS[a] =
1

4π

∫︂
ada, (4.64)

SBF[a, b] = SBF[b, a] =
1

2π

∫︂
adb. (4.65)

Equation (4.61) for A = 0 is simply the relativistic version of the statement that attaching

a flux quantum to a boson turns it into a fermion. The BF term for nonzero A expresses

the fact that the conserved U(1) fermion current ψ̄γµψ corresponds to 1
2π
ϵµνλ∂νaλ in the

bosonic theory [194]. To understand the level 1/2 Chern-Simons term for A, consider

a massive deformation of the theory. If we add a mass term −r|ϕ|2 for the scalar with

r > 0, the scalar is gapped and can be integrated out. At low energies the factor Zϕ[a]

in Eq. (4.61) only contains irrelevant terms and reduces to a constant; integrating out a
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then produces a Chern-Simons term of level 1 for A. The fermionic theory should also be

gapped. Assuming a fermionic mass term ∝ −rψ̄ψ, if r > 0 integrating out the fermion

produces a Chern-Simons term at level 1/2 for A; an additional level-1/2 Chern-Simons

term must be added to the fermionic action for the two sides to match. For this assignment

to be consistent, the two sides should match also when r < 0. In this case, on the fermionic

side integrating out the fermion cancels out the Chern-Simons term and the Hall response

vanishes. On the bosonic side, the scalar condenses and a is Higgsed; the Chern-Simons

term for a becomes irrelevant and the Hall response also vanishes upon integration over a.

We now turn to deriving the duality between (4.6) and (4.7). The partition function

Z[A] for the fermionic theory (4.6) is given by

Z[A] =

∫︂
DaZψ[a+ A]e

i
2
SCS[a]− i

2
SBF[a,A]− i

2
SCS[A]. (4.66)

Shifting a→ a− A and using

SCS[a− A] = SCS[a]− SBF[a,A] + SCS[A], (4.67)

SBF[a− A,A] = SBF[a,A]− 2SCS[A], (4.68)

we obtain

Z[A] =

∫︂
DaZψ[a]e

i
2
SCS[a]−iSBF[a,A]+iSCS[A]. (4.69)

Apart from an additional Chern-Simons term, this can be interpreted as applying the S

operation of Witten’s SL(2,Z) action on (2+1)D CFTs with a global U(1) symmetry [195]

to the left-hand side of the flux-attachment duality (4.61). Using (4.61), Z[A] becomes

Z[A] =

∫︂
DaD ã Zϕ[ã]e

−iSCS[ã]+iSBF[ã,a]−iSBF[a,A]+iSCS[A]

=

∫︂
D ã Zϕ[ã]e

−iSCS[ã]+iSCS[A]

∫︂
Da e

i
2π

∫︁
ad(ã−A). (4.70)

Integrating over a enforces ã = A + dχ where χ is an arbitrary function. Exploiting the

gauge invariance of the bosonic partition function (4.63) and the Chern-Simons action
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(4.64), we find simply Z[A] = Zϕ[A], thus the gauged Wilson-Fisher theory (4.7) is dual

to the fermionic theory (4.6).

We now derive the duality between (4.8) and (4.9). The partition function corresponding

to (4.8) is

Z[A] =

∫︂
DaZψ[a+ A]e

3i
2
SCS[a]+

i
2
SBF[a,A]+

i
2
SCS[A]. (4.71)

Performing the shift a→ a− A as before, we obtain

Z[A] =

∫︂
DaZψ[a]e

3i
2
SCS[a]−iSBF[a,A]+iSCS[A]. (4.72)

This can be interpreted as applying the combined ST operation of Witten’s SL(2,Z) action

to (4.61), whereby one first shifts the Chern-Simons level of the background gauge field by

one before making it dynamical [195]. Using (4.61) once again, we have

Z[A] =

∫︂
DaD ã Zϕ[ã]e

−iSCS[ã]+iSCS[a]+iSBF[a,ã−A]+iSCS[A]

=

∫︂
D ã Zϕ[ã]e

−2iSCS[ã]+iSBF[ã,A], (4.73)

performing the path integral over a. Thus a single Dirac fermion coupled to U(1)3/2 Chern-

Simons theory [Eq. (4.8)] is dual to the gauged Wilson-Fisher fixed point coupled to U(1)−2

Chern-Simons theory [Eq. (4.9)].

4.7 Appendix: Majorana SO(N) lattice gauge theory

in the strong-coupling limit

In this Appendix, we show that in the limit of strong gauge coupling, a theory of N colors

of Majorana fermions (N even) coupled to an SO(N) lattice gauge field naturally reduces

to a theory of Ising spins corresponding to the gauge-invariant Majorana baryons (4.13).

4.7.1 Euclidean vs Hamiltonian approach

First, we relate the Euclidean and Hamiltonian descriptions of SO(N) lattice gauge theory

with Majorana fermions in the vector representation, following the approach of Refs. [196–
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198]. We begin with a Euclidean action in discrete 3D spacetime,

S = Sχ + SU , (4.74)

where

SU = −β
2

∑︂
□

trUUUU − βτ
2

∑︂
□τ

trUUUU + c.c., (4.75)

is the gauge-field action, and

Sχ =
it

4

∑︂
i,µ

χTi hi,i+µ̂Ui,i+µ̂χi+µ̂ +
tτ
4

∑︂
i

χTi Ui,i+τ̂χi+τ̂ , (4.76)

is the gauged Majorana action. Here i, j denote spacetime lattice sites, µ̂ = (x̂, ŷ) denotes

lattice vectors in the two space directions, and τ̂ denotes the lattice vector in the imaginary-

time direction. We write χi = (χ1
i , . . . , χ

N
i ) for the N -component vector of Majorana

fields on site i, Uij ∈ SO(N) for the link variable on nearest-neighbor spacetime link

ij, with Uji = U−1
ij , and □ and □τ for spacelike and timelike plaquettes, respectively.

The real antisymmetric matrix h describes Majorana hopping in the absence of gauge

fields [23], but we have factored out the hopping strength t. We consider spacetime-

anisotropic couplings in anticipation of taking the τ -continuum limit to relate the discrete-

time action formulation to the Hamiltonian formulation [199]. For the same reason, we

take the lattice constant in the spatial direction to be unity, and the lattice constant in

the temporal direction to be ϵ ≪ 1. The action is invariant under local SO(N) gauge

transformations,

χi → Riχi, Uij → RiUijR
−1
j , Ri ∈ SO(N). (4.77)

First, we use this gauge freedom to work in the temporal gauge: Ui,i+τ̂ = 1 on all

temporal links. The Majorana action becomes,

Sχ =
∑︂
τ

(︃
t

4

∑︂
r,µ

χTr (τ)Ur,r+µ̂(τ)χr+µ̂(τ) +
tτ
4

∑︂
r

χTr (τ)χr(τ + ϵ) + c.c.

)︃
≈ ϵ

∑︂
τ

(︃
t

4ϵ

∑︂
r,µ

χTr (τ)Ur,r+µ̂(τ)χr+µ̂(τ) +
tτ
4

∑︂
r

χTr (τ)∂τχr(τ) + c.c.

)︃
, (4.78)
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to leading order in ϵ, ignoring additive constants. Here we use i = (r, τ) to denote the

dependence on space r and time τ coordinates separately.

The gauge-field action is more subtle. The contribution from spatial plaquettes is obvi-

ous; we now focus on temporal plaquettes. In the temporal gauge, we have:

trUUUU
⃓⃓
□τ

= trUr,r+µ̂(τ)Ur+µ̂,r(τ + ϵ)

= trU−1
r,r+µ̂(τ + ϵ)Ur,r+µ̂(τ), (4.79)

using the cyclic property of the trace. To work towards the Hamiltonian formulation, we

seek an operator Ô such that

⟨Urr′(τ + ϵ)|e−ϵÔ|Urr′(τ)⟩ = eβτ Re tr g, (4.80)

where g = U−1
rr′ (τ + ϵ)Urr′(τ) ∈ SO(N), and the equality holds in the limit ϵ ≪ 1. We

focus on a given spatial link rr′. The state |Urr′⟩ is an eigenstate of the matrix-valued link

operator Û rr′ ,

Û rr′|Urr′⟩ = Urr′|Urr′⟩. (4.81)

We define an electric-field operator Ê
a

rr′ that is (almost) a canonical conjugate to Û rr′ ,

[Ê
a

rr′ , Û rr′ ] = −T aÛ rr′ , (4.82)

where a = 1, . . . , N(N − 1)/2 ranges over the generators T a of SO(N). (Note that on the

right-hand side of Eq. (4.82), there is matrix multiplication between the c-number matrix

T a and the matrix-valued operator Û rr′ , while for a given a, the operator Ê
a

rr′ is a scalar.)

The electric-field operators satisfy the so(N) Lie algebra,

[Ê
a

rr′ , Ê
b

rr′ ] = ifabcÊ
c

rr′ , (4.83)

where fabc are the so(N) structure constants. Now consider the operator

R̂rr′(g) = e−iω
aÊ

a
rr′ , (4.84)
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where the SO(N) matrix is parametrized as g = e−iω
aTa

. We have the property

R̂rr′(g)|Urr′⟩ = |gUrr′⟩. (4.85)

Indeed, using Eq. (4.82), we can show that R̂rr′(g)|Urr′⟩ is an eigenstate of Û rr′ with

eigenvalue gUrr′ :

Û rr′

(︂
R̂rr′(g)|Urr′⟩

)︂
=
(︂
Û rr′e

−iωaÊ
a
rr′ Û

−1

rr′

)︂
Û rr′|Urr′⟩

= e−iω
aÛrr′ Ê

a
rr′ Û

−1
rr′Urr′ |Urr′⟩

= e−iω
a(Ê

a
rr′+T

a)Urr′ |Urr′⟩

= e−iω
aÊ

a
rr′e−iω

aTa

Urr′ |Urr′⟩

= gUrr′
(︂
R̂rr′(g)|Urr′⟩

)︂
. (4.86)

In the fourth line, we use the fact that [Ê
a

rr′ , T
a] = 0 because T a is a c-number matrix

while Ê
a

rr′ is a scalar operator.

Using property (4.85), we claim that Eq. (4.80) is satisfied if

e−ϵÔ =

∫︂
dg eβτ Re tr gR̂rr′(g), (4.87)

where dg denotes the Haar measure on SO(N). Indeed, we then have

⟨Urr′(τ + ϵ)|e−ϵÔ|Urr′(τ)⟩

=

∫︂
dg eβτ Re tr g⟨Urr′(τ + ϵ)|R̂rr′(g)|Urr′(τ)⟩

=

∫︂
dg eβτ Re tr g⟨Urr′(τ + ϵ)|gUrr′(τ)⟩

=

∫︂
dg eβτ Re tr gδUrr′ (τ+ϵ),gUrr′ (τ)

= eβτ Re trUrr′ (τ+ϵ)U
−1
rr′ (τ)

= eβτ Re trU−1
rr′ (τ+ϵ)Urr′ (τ), (4.88)

where in the last line, we have used the fact that Re tr g = Re tr g†, and g−1 = g† for

g ∈ SO(N). Finally, we consider the SO(N) Haar integral in (4.87). Since g = e−iω
aTa

,

148



we have Re tr g = 1
2
tr
(︁
g + g†

)︁
= tr cosωaT a. The integral over g can be converted to an

integral over ω:

e−ϵÔ =

(︄∏︂
a

∫︂
dωa

)︄
J (ω)eβτ tr cosωaTa

e−iω
aÊ

a
rr′ , (4.89)

where J is the Jacobian of the transformation. We further write βτ = 1/(ϵJ) with fixed J ,

and consider the limit ϵ≪ 1. In that limit, we can use a saddle-point approximation: the

integral is dominated by Gaussian fluctuations around the maximum of tr cosωaT a, which

is at ωa = 0. Using

tr cosωaT a = tr

(︃
1− 1

2
ωaωbT aT b + . . .

)︃
= N − 1

4
ωaωa +O(ω4), (4.90)

assuming the SO(N) generators are normalized as trT aT b = 1
2
δab. We thus obtain

e−ϵÔ ∝ J (0)
∫︂
dω e−

βτ
4
ωaωa

e−iω
aÊ

a
rr′

∝ e−ϵJÊ
a
rr′ Ê

a
rr′ . (4.91)

Taking the logarithm on both sides and ignoring an irrelevant additive constant, we thus

conclude that the desired operator Ô is

Ô = J
∑︂
r,µ

Ê
a

r,r+µ̂Ê
a

r,r+µ̂, (4.92)

where we have generalized Eq. (4.87) to include a product over all spatial links, since all

spatial links decouple in the sum over temporal plaquettes. Finally, writing β = ϵK with

fixed K, t = ϵκ with fixed κ, and normalizing the action such that tτ = 1, we obtain

S ≈ ϵ
∑︂
τ

(︄
1

4

∑︂
r

χTr ∂τχr +H

)︄

≈
∫︂
dτ

(︄
1

4

∑︂
r

χTr ∂τχr +H

)︄
, (4.93)

where the Hamiltonian is, now dropping hats on operators,

H =
iκ

4

∑︂
r,µ

χTr hr,r+µ̂Ur,r+µ̂χr+µ̂ + J
∑︂
r,µ

trE2
r,r+µ̂

+K
∑︂
□

Re trUUUU, (4.94)
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where we have defined the matrix-valued electric-field operator Er,r+µ̂ ≡ Ea
r,r+µ̂T

a to arrive

at a basis-independent expression (and have absorbed a factor of 1
2
into J). Note that

the hopping matrix hrr′ = −hr′r = h∗rr′ has no dependence on color indices. To be more

precise, we have χTr hrr′Urr′χr′ ≡ χαr hrr′U
αβ
rr′χ

β
r′ , where α, β = 1, . . . , N are the color indices.

We can check that the constraints of Fermi statistics and Hermiticity of the Hamiltonian

both separately imply that Uβα
r′r = Uαβ

rr′ , i.e., that U
T
r′r = Urr′ , which is satisfied for SO(N)

gauge fields since UT
r′r = U−1

r′r = Urr′ . Thus lattice Majorana fermions can be consistently

coupled to lattice SO(N) gauge fields.

4.7.2 Strong-coupling limit

In the τ -continuum limit, we saw that the relationship between the couplings in the space-

time lattice action β, βτ and those in the Hamiltonian J,K is β = ϵK and βτ = 1/(ϵJ).

We now consider the “electric” limit in the Hamiltonian problem: J → ∞ and K → 0.

We see that in this limit, β, βτ → 0. Going back to the Euclidean lattice action, the pla-

quette term SU disappears in this limit, and the physics is purely governed by the gauged

Majorana action: S(J →∞, K → 0) ≈ Sχ, where

Sχ =
it

4

∑︂
i,µ

χTi hi,i+µ̂Ui,i+µ̂χi+µ̂ +
1

4

∑︂
i

χTi Ui,i+τ̂χi+τ̂ . (4.95)

In this limit, all links decouple, and the functional integral over the gauge field reduces to

a product of one-link Haar integrals over SO(N) [200, 201]:

Z =

∫︂
DχDU e−S

=

∫︂
Dχ

(︄∏︂
i,µ

∫︂
dU e−

it
4
χT
i hi,i+µ̂Uχi+µ̂

)︄(︄∏︂
i

∫︂
dU e−

1
4
χT
i Uχi+τ̂

)︄
. (4.96)

Consider first the spatial-link term. We perform a formal expansion in the hopping pa-

rameter:∫︂
dU e−

it
4
χT
i hi,i+µ̂Uχi+µ̂ =

∞∑︂
n=0

1

n!

(︃
−it
4
hi,i+µ̂

)︃n
χα1
i χ

β1
i+µ̂ . . . χ

αn
i χβni+µ̂

∫︂
dU Uα1β1 . . . Uαnβn .

(4.97)
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Polynomial integrals over compact Lie groups can in principle be computed exactly in the

framework of Weingarten calculus [202]. Here we will not attempt to do this, but only use

general properties of those integrals to illustrate the physics [203]. The necessary results

are given in Ref. [202] for the orthogonal group O(N). To compute integrals over SO(N),

we insert the factor (1 + detU)/2 in the integrand:∫︂
SO(N)

dU Uα1β1 . . . Uαnβn =

∫︂
O(N)

dU

(︃
1 + detU

2

)︃
Uα1β1 . . . Uαnβn

=
1

2

∫︂
O(N)

dU Uα1β1 . . . Uαnβn

+
1

2
ϵγ1...γN

∫︂
O(N)

dU U1,γ1 . . . UN,γNUα1β1 . . . Uαnβn . (4.98)

Consider the first term. For it to be nonzero, n must be even: n = 2k, and the sets

{α1, . . . , α2k} and {β1, . . . , β2k} must each contain k pairs of identical entries [202]. Con-

sider such pairs αi = αj = α and βi = βj = β; the corresponding Majorana term is

(χαi )
2(χβi+µ̂)

2 = const. Thus the first term in Eq. (4.98) can be ignored (the gauge-invariant

Majorana “mesons” are trivial). Turning to the second term, the pairing rule first requires

that the set {1, . . . , N, α1, . . . , αn} can be grouped into pairs. The smallest n for which this

occurs is n = N , which implies that {α1, . . . , αN} = {1, . . . , N} in some order. Likewise,

the set {γ1, . . . , γN , β1, . . . , βn} must obey the same pair constraint, which also implies that

{β1, . . . , βN} = {1, . . . , N} in some order since {γ1, . . . , γN} = {1, . . . , N} by virtue of the

epsilon tensor. But since both {α1, . . . , αN} and {β1, . . . , βN} must equal {1, . . . , N} in

some order, then

χα1
i χ

β1
i+µ̂ . . . χ

αn
i χβni+µ̂ ∝ (χ1

i . . . χ
N
i )(χ

1
i+µ̂ . . . χ

N
i+µ̂)ϵ

α1···αN ϵβ1···βN , (4.99)

since Majorana fields anticommute. Absorbing into a constant B the following integral,

B ∝ ϵγ1···γN ϵα1···αN ϵβ1···βN
∫︂
O(N)

dU U1,γ1 · · ·UN,γNUα1β1 · · ·UαNβN , (4.100)

we obtain: ∫︂
dU e−

it
4
χT
i hi,i+µ̂Uχi+µ̂ = 1 +

B(−t)NhNi,i+µ̂
4NN !

τ zi τ
z
i+µ̂ + . . .

≈ eJi,i+µ̂τ
z
i τ

z
i+µ̂+..., (4.101)
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where we have introduced the Ising baryon

τ zi = iN/2χ1
i . . . χ

N
i , (4.102)

with N even, and an effective nearest-neighbor exchange Ji,i+µ̂ = B(−t)NhNi,i+µ̂/(4NN !).

Likewise for the temporal link integral in Eq. (4.96), the formal expansion gives:∫︂
dU e−

1
4
χT
i Uχi+τ̂ = 1 +

BiN

4NN !
τ zi τ

z
i+τ̂ + . . .

≈ eKτ
z
i τ

z
i+τ̂+..., (4.103)

where K = B(−1)N/2/(4NN !) is the nearest-neighbor coupling in the temporal direction.

One thus obtains an effective spacetime lattice Ising action,

Seff[τ
z] = −

∑︂
i,µ

Ji,i+µ̂τ
z
i τ

z
i+µ̂ −K

∑︂
i

τ zi τ
z
i+τ̂ + . . . , (4.104)

which corresponds to an effective quantum Ising Hamiltonian in the τ -continuum limit [199],

Heff[τ̂
z, τ̂x] = −

∑︂
r,µ

J ′
r,r+µ̂τ̂

z
r τ̂

z
r+µ̂ −K ′

∑︂
r

τ̂xr + . . . , (4.105)

with a suitably defined exchange coupling J ′
r,r+µ̂ and transverse field K ′, neglecting higher-

order multi-spin interactions that correspond to neglected higher-order baryon processes

in the strong-coupling (hopping) expansion. Thus it is clear that, at least from a strong-

coupling perspective, the SO(N) Majorana gauge theory that results from the parton

decomposition (4.13) is a theory of interacting Ising spins.

4.8 Appendix: Conformal embeddings in so(n) WZW

models

In this Appendix, we explain the meaning of the conformal embedding [173]:

so(N)k ⊗ so(k)N ⊆ so(Nk)1, (4.106)

which is a generalization of the embedding so(k)k⊗so(k)k ⊆ so(k2)1 used in Refs. [204, 205].
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4.8.1 Free chiral Majorana fields

The starting point is the 2D CFT of Nk free chiral Majorana fermions χα(z), where

α=1, . . . , Nk. The (holomorphic) energy-momentum tensor for this free theory is [206]:

T (z) = −1

2

∑︂
α

χα∂χα, (4.107)

where ∂ ≡ ∂z. The chiral central charge c− for this theory is 1/2 per flavor of Majorana

fermion, i.e., c− = Nk/2. This theory is equivalent to the critical so(n) WZW model at

level 1, with n = Nk. To establish this, we define the so(n) currents:

ja(z) ≡ i

2
χT (z)T aχ(z), (4.108)

where a = 1, . . . , n(n− 1)/2 ranges over the real antisymmetric generators T a of the so(n)

Lie algebra. These currents satisfy a nontrivial algebra (current algebra) in the sense of

the operator product expansion (OPE). To compute the OPE for free fields, we simply

need to use Wick’s theorem. For now we are only interested in the singular part of the

OPE, which is given by the sum of all Wick contractions:

ja(z)jb(w) ∼ −1

4

∑︂
Wick

χα(z)T
a
αβχβ(z)χγ(w)T

b
γδχδ(w)

∼ −1

4
T aαβT

b
γδ

[︂
−⟨χα(z)χγ(w)⟩χβ(z)χδ(w)

− ⟨χβ(z)χδ(w)⟩χα(z)χγ(w)

+ ⟨χβ(z)χγ(w)⟩χα(z)χδ(w)

+ ⟨χα(z)χδ(w)⟩χβ(z)χγ(w)

− ⟨χα(z)χγ(w)⟩⟨χβ(z)χδ(w)⟩

+ ⟨χα(z)χδ(w)⟩⟨χβ(z)χγ(w)⟩
]︂
. (4.109)

Next, we use the free Majorana Green’s function:

⟨χα(z)χβ(w)⟩ =
δαβ
z − w

, (4.110)
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and, in the operator-valued terms, expand χα(z) = χα(w) + (z−w)∂χα(w) + . . .. Keeping

only terms singular as z → w, we obtain:

ja(z)jb(w) ∼ −1

4

(︃
2

z − w
χT [T a, T b]χ+

2

(z − w)2
trT aT b

)︃
, (4.111)

using χTT aT bχ = −χTT bT aχ, from Grassmann anticommutation and the antisymmetry

of the so(n) generators. We assume the (anti-Hermitian) generators obey the following

properties:

[T a, T b] = fabcT c, trT aT b = −2δab, (4.112)

where fabc are the structure constants of so(n). We then obtain:

ja(z)jb(w) ∼ δab

(z − w)2
+

ifabc

z − w
jc(w), (4.113)

which is the so(n)1 current algebra (Kac-Moody algebra) [206]. The energy-momentum

tensor can be expressed in terms of these currents using the Sugawara construction:

Tso(n)1(z) =
1

2(n− 1)

∑︂
a

: ja(z)ja(z) : , (4.114)

where the colons denote normal ordering, i.e., the product ja(z)jb(w) in the limit z → w

(that is, the OPE) but with all singular terms subtracted. To do this computation, we use

the identity in Eq. (15.204) of Ref. [206]:

∑︂
αβ

( : (χαχβ)(χαχβ) : − : (χαχβ)(χβχα) : ) = 4(n− 1)
∑︂
α

χα∂χα. (4.115)

We also choose a particular basis for the so(n) generators [206],

T
(r,s)
αβ = δrαδ

s
β − δrβδsα, (4.116)

which is properly normalized according to Eq. (4.112). Here the generators are labeled by

the n(n− 1)/2 pairs (r, s) with 1 ≤ r < s ≤ n. Using the identity

∑︂
(r,s)

T
(r,s)
αβ T

(r,s)
γδ = δαγδβδ − δβγδαδ, (4.117)
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and Eq. (4.115), we easily find that the Sugawara energy-momentum tensor (4.114) repro-

duces Eq. (4.107). The chiral central charge can also be checked. The Sugawara energy-

momentum tensor of the gk WZW CFT has the general form [206]

Tgk(z) =
1

2(k + g)

∑︂
a

: JaJa : , (4.118)

where k is the Kac-Moody level and g is the dual Coxeter number. The chiral central

charge is then

c−[gk] =
k dim g

k + g
, (4.119)

where dim g = δaa, i.e., the number of generators of the Lie algebra g. Here we have

dim so(n) = n(n− 1)/2, and k = 1. By comparing (4.118) and (4.114), we find g = n− 2,

and thus

c−[so(n)1] =
n(n− 1)/2

1 + n− 2
=
n

2
, (4.120)

as expected for n free Majorana fermions.

4.8.2 Conformal embedding

The conformal embedding (4.106) arises from a natural embedding of the Lie algebras

so(N) and so(k) into so(Nk). We first represent the indices for so(Nk) matrices as a

pair α = (α, α̃) where α = 1, . . . , N and α̃ = 1, . . . , k. We construct an embedding

so(N)→ so(Nk) as

Σa
αβ = (T a)αβδα̃β̃, (4.121)

i.e., Σa = T a ⊗ 1k, where T
a are so(N) generators and 1k the k × k identity matrix.

Likewise, we construct an embedding so(k)→ so(Nk) as

Σ̃
a

αβ = δαβ(T̃
a
)α̃β̃, (4.122)
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i.e., Σ̃
a
= 1N ⊗ T̃

a
, where T̃

a
are so(k) generators and 1N the N ×N identity matrix. We

then define so(N) and so(k) currents, respectively, as

Ja(z) ≡ i

2
χT (z)Σaχ(z), J̃

a
(z) ≡ i

2
χT (z)Σ̃

a
χ(z), (4.123)

analogously to Eq. (4.108). By computing the OPE, we now show these satisfy the so(N)k

and so(k)N current algebras, respectively. Using the explicit forms

Ja(z) =
i

2
χαα̃T

a
αβχβα̃, J̃

a
(z) =

i

2
χαα̃T̃

a

α̃β̃χαβ̃, (4.124)

and following the same steps as in Eqs. (4.109-4.113), we find:

Ja(z)J b(w) ∼ kδab

(z − w)2
+

ifabc

z − w
J c(w), (4.125)

J̃
a
(z)J̃

b
(w) ∼ Nδab

(z − w)2
+

ifabc

z − w
J̃
c
(w), (4.126)

which are indeed the so(N)k and so(k)N current algebras, respectively. By following similar

steps and using the fact that trT a = tr T̃
a
= 0, we can show that the mixed JaJ̃

b
OPE

has no singular terms. Thus the two current algebras decouple.

Finally, we show that the energy-momentum tensor (4.114) of the so(Nk)1 theory de-

composes into the sum of the energy-momentum tensors of the so(N)k and so(k)N theories:

Tso(Nk)1(z) = Tso(N)k(z) + Tso(k)N (z). (4.127)

To do this, we need the following formula [204, 205]:

: (χαχβ)(χαχβ) : = χα∂χα + χβ∂χβ, α ̸= β, (4.128)

without summation over α, β. We also use Eqs. (4.116) for T a, T̃
a
and (4.124) to write:

J (r,s) = i
k∑︂

α̃=1

χrα̃χsα̃, J̃
(r̃,s̃)

= i
N∑︂
α=1

χαr̃χαs̃, (4.129)
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with 1 ≤ r < s ≤ N and 1 ≤ r̃ < s̃ ≤ k. We have:∑︂
(r,s)

: J (r,s)J (r,s) : = −
∑︂
(r,s)

∑︂
α̃β̃

: (χrα̃χsα̃)(χrβ̃χsβ̃) :

= −
∑︂
r<s

⎛⎝∑︂
α̃

: (χrα̃χsα̃)(χrα̃χsα̃) : +
∑︂
α̃ ̸=β̃

: χrα̃χsα̃χrβ̃χsβ̃ :

⎞⎠
= −

∑︂
r<s

⎡⎣∑︂
α̃

(χrα̃∂χrα̃ + χsα̃∂χsα̃) + 2
∑︂
α̃<β̃

χrα̃χsα̃χrβ̃χsβ̃

⎤⎦
= −1

2

∑︂
α̃

[︄∑︂
rs

(χrα̃∂χrα̃ + χsα̃∂χsα̃)− 2
∑︂
r

χrα̃∂χrα̃

]︄
− 2

∑︂
r<s

∑︂
α̃<β̃

χrα̃χsα̃χrβ̃χsβ̃

= −(N − 1)
∑︂
rα̃

χrα̃∂χrα̃ − 2Oχχχχ, (4.130)

where we define the four-fermion operator

Oχχχχ ≡
∑︂
r<s

∑︂
α̃<β̃

χrα̃χsα̃χrβ̃χsβ̃. (4.131)

Note that this operator does not need further normal ordering since all fields in the product

are different. Similarly, we find:∑︂
(r̃,s̃)

: J (r̃,s̃)J (r̃,s̃) : = −(k − 1)
∑︂
αr̃

χαr̃∂χαr̃ − 2
∑︂
α<β

∑︂
r̃<s̃

χαr̃χαs̃χβr̃χβs̃. (4.132)

By performing the changes of dummy summation variables α, β → r, s and r̃, s̃→ α̃, β̃, we

find: ∑︂
(r̃,s̃)

: J (r̃,s̃)J (r̃,s̃) : = −(k − 1)
∑︂
rα̃

χrα̃∂χrα̃ − 2
∑︂
r<s

∑︂
α̃<β̃

χrα̃χrβ̃χsα̃χsβ̃

= −(k − 1)
∑︂
rα̃

χrα̃∂χrα̃ + 2
∑︂
r<s

∑︂
α̃<β̃

χrα̃χsα̃χrβ̃χsβ̃

= −(k − 1)
∑︂
rα̃

χrα̃∂χrα̃ + 2Oχχχχ. (4.133)

Based on Eq. (4.118) with g=n−2 for g=so(n), we expect the following Sugawara forms:

Tso(N)k(z) =
1

2(k +N − 2)

∑︂
(r,s)

: J (r,s)J (r,s) : , (4.134)

Tso(k)N (z) =
1

2(N + k − 2)

∑︂
(r̃,s̃)

: J (r̃,s̃)J (r̃,s̃) : . (4.135)

157



Using Eqs. (4.130) and (4.133), we thus find:

Tso(N)k(z) + Tso(k)N (z) = −
1

2

∑︂
rα̃

χrα̃∂χrα̃

= Tso(Nk)1(z), (4.136)

where we see that the four-fermion contributions ∝ Oχχχχ cancel. Note that the so(N)k

and so(k)N theories are interacting theories, since their energy-momentum tensors contain

four-fermion terms, but their sum is a free theory.

Using Eq. (4.119), we can also check that the chiral central charges add:

c−[so(N)k] =
kN(N − 1)

2(k +N − 2)
,

c−[so(k)N ] =
Nk(k − 1)

2(N + k − 2)
,

c−[so(N)k] + c−[so(k)N ] =
1

2
Nk = c−[so(Nk)1]. (4.137)

Finally, Ref. [172] shows that a theory of N flavors of Majorana fermions ψia with an

internally gauged SO(k) symmetry (a = 1, . . . , N , i = 1, . . . , k, thusNkMajorana fermions

in total) is equivalent to the so(N)k WZW model. This is consistent with projecting out

the so(k)N sector in the conformal embedding (4.106). The su(n) analog [173, 207] of

this embedding was used previously in a similar manner to understand the edge physics of

fractional quantum Hall states obtained from a parton construction [152].

4.9 Appendix: Kitaev-Kekulé model

In this Appendix, we give an example of noninteracting Majorana hopping model whose

low-energy bandstructure consists of two continuum Majorana fields Ψ+,Ψ− with tunable

masses m+,m− [176–178]. We begin with nearest-neighbor Majorana hopping on the hon-

eycomb lattice, which produces two massless Majorana fields at low energies [23]. We

then add two perturbations: a second-neighbor hopping term of strength κ, which gives a

Haldane-type mass [23, 105] of the same sign for both Majorana fields, and a Kekulé dis-

tortion term [208, 209] of strength λ, which gives masses of opposite sign for the Majorana
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fields. By tuning both κ and λ, the low-energy Majorana masses m± resulting from the

combined effect of both perturbations can be tuned independently.

The hopping model consists of two terms:

H = HKit +HKek, (4.138)

where

HKit =
i

4

∑︂
j,k

Ajkcjck, (4.139)

is the model specified by Eq. (48) of Ref. [23], with nearest-neighbor hopping amplitude

J and second-neighbor hopping amplitude κ for Majorana fermions cj on the honeycomb

lattice. This model gives a topological superconductor with Chern number equal to sgnκ.

The second term is a spatially non-uniform modulation of the nearest-neighbor hopping

amplitude:

HKek =
i

4

∑︂
j,k

tjkcjck, (4.140)

where tjk specifies the Kekulé distortion pattern:

tjk =

{︄
− t√

3
eiK+·δneiG·rj + c.c., if rk=rj+δn,

0, otherwise.
(4.141)

Here, δn are the 3 nearest-neighbor vectors on the honeycomb lattice, K± = (±4π/3, 0)

are the two gapless Dirac points obtained in the limit κ= t=0, and G=K+−K− is the

momentum connecting the two Dirac points. The complex parameter t is such that |t|

controls the strength of the distortion. This distortion triples the size of the unit cell of

the honeycomb lattice, and thus folds the Brillouin zone three times. The Dirac points are

mapped to the Γ point of the reduced Brillouin zone. Since there are six inequivalent sites

in the Kekulé-distorted lattice, there are six bands in the bandstructure. When κ and |t|

are small compared to J , the low-energy physics is dominated by two bands with avoided

crossings near the Γ point. The low-energy degrees of freedom are the spinors

η±(k)≡(cAK±+k cBK±+k)
⊺, η†±(k)=η

⊺
∓(−k), (4.142)
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where A and B superscripts indicate the two sublattices of the honeycomb lattice, and the

second equality above is a Majorana condition. Linearizing the low-energy bandstructure

near the Dirac (Γ) point, we obtain [176]:

H ≈ J
√
3

4

∫︂
d2k

(2π)2

[︃
η†+(k)

⎛⎝ 6κ/J −ky−ikx
−ky+ikx −6κ/J

⎞⎠ η+(k)

+ η†−(k)

⎛⎝ 6κ/J −ky−ikx
−ky+ikx −6κ/J

⎞⎠ η−(k)

+ η†+(k)

⎛⎝ 0 2it/J

−2it/J 0

⎞⎠ η−(k)

+ η†−(k)

⎛⎝ 0 2it∗/J

−2it∗/J 0

⎞⎠ η+(k)

]︃
. (4.143)

The Kekulé distortion couples the gapless excitations from the K± valleys. To diagonalize

the Hamiltonian, we define the new spinors

Ψ+(k) ≡
1√
2

(︁
−iσzη+(k) + σyη−(k)

)︁
,

Ψ−(k) ≡
1√
2

(︁
σzη+(k)− iσyη−(k)

)︁
,

Ψ†
±(k) = Ψ⊺

±(−k)σx. (4.144)

In this model, the ± indices in Ψ± are no longer valley indices. Indeed, it is obvious from

their definition that the Ψ± fermions mix the fermions η± from the valleys K±. Further-

more, we set the Kekulé coupling t = iλ, where λ ∈ R, thus removing the phase degree

of freedom in the distortion. This diagonalizes in flavor space the linearized Hamiltonian

(4.143), which is now written as

H=
J
√
3

4

∑︂
i=±

∫︂
d2k

(2π)2
Ψ†
i (k)(kyσx − kxσy +miσz)Ψi(k), (4.145)

where the low-energy Majorana masses

m± =
6κ± λ
J

, (4.146)
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can be tuned independently by the lattice couplings κ and λ. When m+ and m− are of

the same sign (i.e., when κ dominates), the system is a topological superconductor with

Chern number ±1; when m+ and m− are of opposite sign (i.e., when λ dominates), the

system is a trivial superconductor. Using the Euclidean gamma matrix representation

(γ0, γ1, γ2) = (σz, σx, σy), and rescaling the couplings to set the Majorana velocity to unity,

we obtain the Euclidean Lagrangian in position space,

L =
1

4

∑︂
i=±

Ψ⊺
i C(/∂ +mi)Ψi, (4.147)

whose gauged version appears in Eq. (4.19). Here, C=−iγ2 is a charge-conjugation matrix,

and the fermionic fields Ψ± obey the Majorana condition

Ψ̄± ≡ Ψ†
±γ0 = Ψ⊺

±C. (4.148)

For general nonzero κ and λ, the masses (4.146) break the microscopic time-reversal

(T ) and inversion (I) symmetries. These can be represented on the Majorana fields η± in

Eq. (4.142) as

T η±(k)T −1 = −iσzKη∓(−k),

Iη±(k)I−1 = iσyη∓(−k), (4.149)

where we denote complex conjugation by K. These nonstandard transformations deserve

further explanation. We recall that the Kitaev honeycomb model (4.139) is in fact a

Z2 gauge theory with static gauge fields ujk that modulate the nearest-neighbor hopping

amplitude J . The model (4.139) is obtained as the effective Hamiltonian in the ground-

state (zero-flux) sector in standard gauge ujk = 1, for all j ∈ A, k ∈ B. The standard

definitions of time-reversal (c
A/B
j →Kc

A/B
j ) and inversion (c

A/B
j →c

B/A
−j ) also flip the sign of

ujk, and thus do not preserve the standard gauge. However, the sign change of the latter

can be compensated by a Z2 gauge transformation on either the j or k sites. The definitions

(4.149) denote such composite transformations, and are thus projective representations of
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time reversal and inversion on the Majorana partons. These filter down to the modified

spinors Ψ±(k) in Eq. (4.144) as

T Ψ±(k)T −1 = iσyKΨ∓(−k),

IΨ±(k)I−1 = iσzΨ∓(−k). (4.150)

Using these transformations on the Lagrangian (4.147), one observes that the Kekulé dis-

tortion λ provides a T -invariant mass but breaks I, whereas the Haldane mass λ breaks

T , but preserves I. Imposing I, we obtain m+ = m− = 6κ/J , and tuning κ through zero

induces a direct continuous transition between the chiral spin liquid and the Ising-ordered

phase in Fig. 4.2.

4.10 Appendix: Instanton calculus in the background

field gauge

To perform the instanton gas calculation in this chapter, we use a representation of Z2

monopoles in SO(N) gauge theory as Dirac monopoles in an SO(2) subgroup. This repre-

sentation breaks the SO(N) invariance down to a S[O(2)×O(N−2)]≡ [O(2)×O(N−2)]/Z2

subgroup. This is interpreted as a partial choice of gauge, and näıvely leads to ZMs in

the Faddeev-Popov (FP) determinant. In this Appendix, we employ the background field

gauge to show that such ZMs can be removed [64, 210–212], at the cost of introducing

“gauge collective coordinates”, which rotate the Dirac monopole between distinct SO(2)

subgroups of SO(N).

We shall begin by formulating and gauge-fixing the N -instanton contribution to the

partition function. Formally decomposing the gauge field A into an instanton background

Ā and a fluctuation part a,

A = Ā+ a, (4.151)
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the associated field strength decomposes to4

F = F̄ + dĀa+ a ∧ a. (4.152)

Defining a gauge-invariant inner product on the space of so(N)-valued forms as

⟨α, β⟩ := 1

2g2

∫︂
tr(α ∧ ⋆β), (4.153)

the Yang-Mills action can be decomposed as SYM = S̄YM+Sa[Ā] where S̄YM =
⟨︁
F̄ , F̄

⟩︁
and

Sa[Ā] ≡ ⟨dĀa, dĀa⟩+ 2
⟨︁
F̄ , a ∧ a

⟩︁
+O(a3). (4.154)

Terms linear in a vanish as F̄ satisfies the equations of motion. The fermion action can be

similarly decomposed,

SF =
1

4
Ψ⊺C/aΨ+

1

4
Ψ⊺C(/∂ + /Ā+m)Ψ. (4.155)

A single fermion Ψ is considered here, but the derivation is straightforwardly generalized

to the case of multiple fermion flavors relevant for the main text.

The net action is invariant under the infinitesimal gauge transformation

Ā+ a→ Ā+ a+ dĀω + [a, ω],

Ψ→ e−ωΨ = Ψ− ωΨ. (4.156)

The fermions will just spectate in the following discussion, and so will not be discussed

further. Since Ā is a classical background field (not integrated over in the path integral),

a true gauge transformation must act only on the fluctuation a, so that

δωa = dĀω + [a, ω],

δωĀ = 0. (4.157)

However, it is useful to define a “pseudo” gauge transformation

δpseudoĀ = dĀω,

δpseudoa = [a, ω], (4.158)

4Given a gauge group G and a linear representation ρ :G→Aut(V ), the exterior derivative with respect
to a g-valued connection A is dA = d+ dρ(A)∧, where dρ is the induced representation of g on V .
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under which the action remains invariant. As far as the parent theory with A= Ā+a is

concerned, the pseudo and true gauge transformations are identical. We shall shortly see

that the background field method is a clever choice of gauge that retains invariance under

the pseudo gauge transformations (4.158) while gauge-fixing the fluctuation part of the

path integral

Z = e−S̄YM

∫︂
DΨDa e−Sa[Ā]−SF [Ā,a]. (4.159)

To gauge-fix this path integral, we select an so(N)-valued gauge function G(a) and employ

the FP method by inserting into Z the identity in the form ∆−1
FP∆FP, where the gauge-

invariant FP determinant is defined as the inverse of

∆−1
FP =

∫︂
Dω δ[G(a+ δωa)],

=

∫︂
DGδ[G(a+ δωa)]

⃓⃓⃓⃓
det

δG

δω

⃓⃓⃓⃓−1

,

=

⃓⃓⃓⃓
det

δG

δω

⃓⃓⃓⃓−1

G=0

. (4.160)

We will choose the background field gauge,

G(a) = D̄µaµ = ∂µaµ + [Āµ, aµ] = 0, (4.161)

where D̄µ is the gauge covariant derivative with respect to the instanton field Ā. The

reason for this choice is that the gauge function will eventually feature in a gauge-fixing

term trG2 in the Lagrangian, and it is easy to show that such a term is invariant under the

pseudo gauge transformation (4.158), but not under a true gauge transformation (4.157)

of the fluctuation field a. In this manner, the gauge invariance of the parent theory with

A= Ā+a is retained.

The FP determinant is easily evaluated to be

det
δG

δω
= det0D̄µDµ, (4.162)

where the subscript 0 indicates that the determinant is to be evaluated in the space of

so(N)-valued 0-forms ω(x), and the (bar-less) covariant derivative Dµ is with respect to
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the total field A= Ā+a, so that Dµω=∂µω+[Āµ+aµ, ω]. If Ā=0, then this reduces to the

familiar result for Lorenz gauge. A good gauge function must satisfy G(a+δωa) ̸=G(a) for

any ω ̸=0, so that the gauge slice G(a)=0 contains only inequivalent configurations of a. If

there exists an ω that violates this requirement, then this would result in a ZM contribution

to (4.162); these can be interpreted as would-be FP ghost ZMs [see Eq. (4.172)]. To see

this explicitly, note that the FP operator is

D̄µDµω = D̄
2
µω + [D̄µaµ, ω] + [aµ, D̄µω],

= D̄
2
µω + [G,ω] + [aµ, D̄µω]. (4.163)

If D̄µω = 0, then ω is a ZM of the FP operator evaluated on the gauge slice G(a) = 0

[see Eq. (4.160)]. Noting that D̄µω = 0 infinitesimally means e−ω(Ā + d)eω = Ā, we find

that ZMs exist if there is a nontrivial stabilizer (denoted H) of Ā in the group of gauge

transformations G.5 For instance, if Ā=0 then the stabilizer consists of all global gauge

transformations so thatH=SO(N), the gauge group. Here, Ā is the instanton embedded in

an SO(2) subgroup, which has a stabilizer subgroup of global rotations in S[O(2)×O(N−2)].

Due to the presence of ZMs in the FP determinant, one must split the domain of the

ω integral in Eq. (4.160) into a ZM space consisting of all ω∈ker0 D̄µ, and its orthogonal

complement ker0 D̄
⊥
µ , where the subscript 0 indicates that the domain of D̄µ is restricted

to 0-forms. Such a grading can be achieved by means of the inner product (4.153) defined

on this space. Then any gauge transformation can be decomposed as

ω = ϕ+ λ, ϕ∈ker0 D̄µ, λ∈ker0 D̄
⊥
µ . (4.164)

This also means that

∆−1
FP =

∫︂
Dω δ[G(a+ δωa)],

=

∫︂
ker0 D̄µ

Dϕ

∫︂
ker0 D̄

⊥
µ

Dλδ[G(a+ δλa)],

= vol(H)
⃓⃓
det′0 D̄µDµ

⃓⃓−1
, (4.165)

5If M is spacetime and G= SO(N) the gauge group, the group G :M →G of gauge transformations
acts as G :x ↦→exp(ω(x)).
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where the prime indicates that the determinant of D̄µDµ is evaluated in the space ker0 D̄
⊥
µ ,

with the ZMs removed. The gauge-fixed path integral is then,

Z =
e−S̄YM

vol(H)

∫︂
DaDΨ

∫︂
Dω δ[G(a+ δωa)]

⃓⃓
det′0 D̄µDµ

⃓⃓
e−Sa[Ā]−SF [Ā,a],

=

(︃∫︂
Dω

)︃
e−S̄YM

vol(H)

∫︂
DaDΨδ[G(a)]

⃓⃓
det′0 D̄µDµ

⃓⃓
e−Sa[Ā]−SF [Ā,a], (4.166)

where the second line is obtained on a gauge transformation by −ω, keeping all gauge

invariant quantities fixed. The integral over ω is an infinite constant that can be dropped

by defining a suitable normalization.

The fluctuation integral is subject to the gauge condition G(a)=D̄µaµ=0. Once again,

the inner product (4.153) can be used to split the space of so(N)-valued 1-forms into

ker1 D̄µ and its orthogonal complement ker1 D̄
⊥
µ , where the subscript 1 now indicates that

the domain of D̄µ is the space of 1-forms. Using the inner product (4.153), it is readily

seen (using integration by parts) that any nontrivial element of ker1 D̄
⊥
µ is of the form D̄µφ

for some 0-form φ∈ker0 D̄
⊥
µ . Then,

aµ = αµ + D̄µφ, αµ∈ker1 D̄µ, φ∈ker0 D̄
⊥
µ . (4.167)

A change of variables from a to α and φ in the path integral now has a nontrivial Jacobian,

found by examining the metric in this functional space,

∥aµ∥2 =
⟨︁
αµ + D̄µφ, αµ + D̄µφ

⟩︁
= ⟨
(︂
αµ φ

)︂⎛⎝1 0

0 −D̄2
µ

⎞⎠⎛⎝αµ
φ

⎞⎠⟩. (4.168)

The Jacobian is thus [det′0(−D̄
2
µ)]

1/2, where the operator acts on φ ∈ ker0 D̄
⊥
µ , so there

are no ZMs in this determinant. Since −D̄2
µ is a positive-definite operator on ker0 D̄

⊥
µ , its

square root is well defined, and an absolute value sign is redundant. The path integral

then simplifies to

Z =
e−S̄YM

vol(H)

∫︂
ker1 D̄µ

Dα

∫︂
ker0 D̄

⊥
µ

Dφ δ[D̄
2
µφ]

√︂
det′0(−D̄

2
µ)
⃓⃓
det′0D̄µDµ

⃓⃓ ∫︂
DΨe−Sα+D̄µφ[Ā]−SF [Ā,α+D̄µφ],

=
e−S̄YM

vol(H)

∫︂
ker1 D̄µ

Dα [det′0(−D̄
2
µ)]

−1/2
⃓⃓
det′0D̄µDµ

⃓⃓ ∫︂
DΨe−Sα[Ā]−SF [Ā,α], (4.169)
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where the second line is obtained by using δ[D̄
2
µφ] = [det0(−D̄

2
µ)]

−1δ[φ], and performing

the φ integral.

The path integral (4.169) has actually been derived for a general background Ā. We

will now specialize to the case of instantons in SO(N) gauge theory, and evaluate an N -

instanton contribution to the path integral, such as appears in Eq. (4.29). Each instanton

incarnates as a Dirac monopole in some SO(2) subgroup, and the background Ā is a simple

sum of the single instanton 1-form (4.27) in the dilute gas approximation. Within such

an approximation, the stabilizer for such an instanton configuration on a spacetime M is

simply HN , where the single instanton stabilizer is H :M → (H = S[O(2)×O(N−2)]).

Writing a general element of H as exp[−ϕa(x)ha], where a∈{1, ..., dimH},

vol(H) =
∫︂
ker0 D̄µ

Dϕ(x) =

∫︂
H

dimH∏︂
a=1

dϕa

√︄
volM

2g2
=

(︃
volM

2g2

)︃dimH/2

vol(H). (4.170)

The determinant [det′0(−D̄
2
µ)]

−1/2 appearing in the general path integral (4.169), deviates

from [det′0(−∂2µ)]−1/2 pertinent to a trivial background Ā = 0, only in small (disjoint)

neighborhoods of the N localized instantons. The N -instanton correction to the trivial

determinant can be defined via [det′0(−D̄
2
µ)]

−1/2 ≡ [det′0(−∂2µ)]−1/2KN [213]. Normalizing

the path integral against the trivial background Ā = 0, the N -instanton contribution to

the partition function is

ZN

Z0

=vol(G/H)N
(︃
volM

2g2

)︃N dim(G/H)
2

e−S̄YM

×
∫︂
ker1 D̄µ

Dα

∫︂
ker0 D̄

⊥
µ

D(η̄, η)

∫︂
DΨ

KN

K
e−Sα[Ā]−SF [Ā,α]−Sgh[Ā,α], (4.171)

where the action for the ghosts η, η̄ is

Sgh =

∫︂
dDx tr η̄D̄µDµη, (4.172)

and the normalization K is the transverse mode (α) and ghost path integrals evaluated in

the trivial background Ā=0.

As stated in the introduction to this Appendix, the coset space G/H=SO(N)/S[O(2)×

O(N−2)] has a collective coordinate interpretation. It is the space of global rotations that
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move an instanton between distinct SO(2) subgroups of SO(N). Furthermore, the fact

that the α integral is restricted to ker1 D̄µ means that such global rotations that change Ā

are excluded from that path integral. However, there are still ZMs corresponding to other

non-gauge collective coordinates, such as a translation of an instanton in spacetime. For the

monopole-instanton considered here, it is clear that there are no other collective coordinates

besides these. Explicitly separating out the collective coordinates {zi} corresponding to

the locations of the instantons (for which the Jacobian is a trivial constant that can be

absorbed into K), the final result is

ZN

Z0

= vol(G/H)N
(︃
volM

2g2

)︃N dim(G/H)
2

e−S̄YM

×
∫︂ (︄ N∏︂

i=1

dzi

)︄∫︂
ker1 D̄µ

D ′α

∫︂
ker0 D̄

⊥
µ

D(η̄, η)

∫︂
DΨ

KN

K
e−Sα[Ā]−SF [Ā,α]−Sgh[Ā,α], (4.173)

where the primed measure D ′α means that ZM solutions of α are excluded from the domain

of integration. More precisely, if the Gaussian part of the fluctuation action is Sα=⟨α,Ωα⟩,

then ZMs of the operator Ω are to be discarded in a mode expansion of α. Therefore, the

only ZMs still present in the path integral are those of fermions bound to the instantons,

which have physical consequences for symmetry breaking.
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Chapter 5

Conclusion

The perspective of this thesis has been that parton gauge theories provide unified frame-

works potentially capable of describing both Landau-ordered and fractionalized phases.

The three chapters above have been case studies in support of this view. In chapter 2,

conformal CQED3 with Nf=4 flavors of relativistic spinons was established as an example

of such a theory centered on the Dirac spin liquid, a critical phase of matter in 2d spin-1/2

systems that exhibits power law correlations for a wide array of fluctuating Landau orders.

To investigate the stability of such a critical state, and find proximate ordered states in

which spinons must be confined, we were led to the construction of monopole operators

in CQED3. In contrast to previous works on the subject that defined these operators by

conformal field theory methods, we used semiclassical instanton methods to directly con-

struct these operators on R3 without assuming conformal invariance. This was achieved

by first deforming the critical theory with a choice of spinon mass, which was shown to

lead to instanton-bound zero modes of the Euclidean Dirac operator. A resummation of

the instanton gas in the presence of these zero modes resulted in a ’t Hooft vertex (an

instanton-induced interaction) in the effective action, which we recognized as a monopole

operator previously constructed using conformal methods in the literature. By choosing

various spinon masses, we were able to obtain all independent monopole operators. More-

over, using the fact that the symmetries of Néel and VBS states on bipartite lattices could

be fully encoded in a fermion bilinear, we were able to infer the quantum numbers of all
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monopole operators under the symmetries of some lattice realization of the Dirac spin liq-

uid. On both square and honeycomb lattices, we confirmed the existence of a monopole

that transforms trivially under all lattice symmetries, thus likely to lead to an instability

of the Dirac spin liquid on those lattices.

In chapter 3, we emphasized how instantons could account for the spontaneous break-

down of internal symmetries in parton gauge theories. Our arguments were phrased in

the context of a parton gauge theory (CQED3) describing a multicritical point sepa-

rating fractional quantum Hall, superfluid, and Mott insulating phases in a system of

2d hardcore bosons with U(1)b symmetry. We showed how instantons break a spurious

U(1)top×U(1) symmetry of CQED3 to the diagonal subgroup, which we identified as the

U(1)b number conservation of physical bosons. On proliferating instantons, this symmetry

was then shown to be spontaneously broken, leading in principle to two possible superfluid

phases: a ‘paired superfluid’ with condensation of only charge-2 bosonic operators (SSB of

U(1)b→Z2), or a conventional superfluid with completely broken U(1)b. Some finer points

of the vacuum structure of compact U(1) gauge theories and their effects on instantons

were also discussed.

Chapter 4 demonstrated the general perspective of the previous chapter in a more so-

phisticated example of a non-Abelian parton gauge theory – SO(N) Chern-Simons gauge

theory with massless Majorana fermions. Such a gauge theory was shown to describe a

critical point separating magnetically ordered, trivially paramagnetic, and gapped chiral

spin liquid phases in an Ising spin system with Z2 symmetry. By representing an Ising

spin in terms of N Majorana partons on the lattice, we showed how these phases could

be accessed by varying the total Chern number of the parton bandstructure. By utilizing

recently conjectured dualities for SO(N) Chern-Simons-matter theories, the critical theory

for the Ising transition between the paramagnet and long-range ordered phase was found to

be dual to the usual Wilson-Fisher theory reviewed in the introductory chapter. A direct

continuous transition from the chiral spin liquid to the magnetic state was also found to be
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possible, protected by lattice symmetries such as inversion symmetry on the honeycomb

lattice. Finally, we investigated the dynamics of the spontaneous breakdown of the Ising

Z2 symmetry in the parton description. This was shown to be due to the proliferation of

Z2-charged monopoles which feature as instantons of the SO(N) gauge theory, which also

supply the confinement mechanism required to produce a conventionally ordered phase in

the parton framework.

In closing, we outline a few open problems that naturally follow from our work. As

remarked previously, existing constructions of monopole operators in CQED3 have focused

on exploiting the conformal invariance of the latter, which allows operators to be identified

with states in radial quantization. However, this approach is very specific to the Dirac

spin liquid featuring relativistic spinons. Part of the motivation for the instanton gas

construction in chapter 2 comes from the existence of spin liquids unprivileged with such

a powerful symmetry, for instance those defined by parton bandstructures that feature a

quadratic band-crossing point or a Fermi surface. Our work can be applied to such systems

to see if there is a story paralleling that of the Dirac spin liquid. At least in (3 + 1)D,

it is known that QED featuring nonrelativistic fermions can flow to a stable interacting

fixed point, the Luttinger-Abrikosov-Beneslavskii point [214–217]. It is not clear to the

author if such a fixed point exists in the (2+1)D version of the theory. If so, then could it

serve as a ‘parent state’ encoding several competing orders like the Dirac spin liquid? Are

these ordered states classified by monopole operators? These are questions that lie outside

the purview of the CFT methods used to study monopoles, but can be studied using the

instanton calculus presented in this work.

In our study of the Dirac spin liquid, the proximate conventional phases were identified

by the quantum numbers of monopole operators under lattice symmetries. To complete this

program, one must also ensure that the correct number of Goldstone modes appropriate

for a given symmetry breaking is reproduced correctly in the parton framework. This is

also left for future work.
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