

BIBLIOTHÈQUE NATIONALE Ottawa

Permission is hereby granted to THE NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of the film.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

(Signed) Kyung-sun Bay

PERMANENT ADDRESS:

10924 - 40 Ave Edmonton Alberta

DATED Oct. 21, 1971

NL-91 (10-68)

THE UNIVERSITY OF ALBERTA

AN EMPIRICAL INVESTIGATION OF THE SAMPLING DISTRIBUTION OF THE RELIABILITY COEFFICIENT ESTIMATES BASED ON ALPHA AND KR20 VIA COMPUTER SIMULATION UNDER VARIOUS MODELS AND ASSUMPTIONS

by

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF EDUCATIONAL PSYCHOLOGY

EDMONTON, ALBERTA

FALL, 1971

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research for acceptance, a Thesis entitled "AN EMPIRICAL INVESTIGATION OF THE SAMPLING DISTRIBUTION OF THE RELIABILITY COEFFICIENT ESTIMATES BASED ON ALPHA AND KR20 VIA COMPUTER SIMULATION UNDER VARIOUS MODELS AND ASSUMPTIONS" submitted by KYUNG SUN BAY in partial fulfilment of the requirements for the degree of Doctor of Philosophy.

Supervisor

SMNX

OR Haling

magan.

ray

Date September 27, 1971.

ABSTRACT

1

The exact sampling distribution of reliability estimates of a composite test is known only for the case when the test scores of the parts can be expressed in a linear model and satisfy all the assumptions of the two way mixed model ANOVA with one observation per cell including normality of true and error scores. For more general cases, the sampling distributions have been in general unknown or ignored by the psychometricians.

This study examined the more liberal concepts of test theory and reliability in terms of the underlying models and assumptions, and investigated the sampling distribution of reliability estimates by performing a number of computer simulated sampling experiments under various models and distributional assumptions for true and error scores. The models employed were a mixed model ANOVA, essentially τ equivalent measurements, congeneric and multi-factor true score models for continuous cases, and the normal ogive model for binary item cases. For the distribution of true or latent and error scores, uniform, normal and exponential distributions were used.

The most general model was found to be a multi-factor true score model and all others could be shown to be special cases of this model. The most important factors influencing the sampling distribution are found to be uni-factorness and normality of true scores for continuous cases, and homogeneity of item difficulty parameters for binary cases. The distributions of error scores were found to be unimportant for both cases. To determine the robustness conditions of the traditional F-test, the empirical distributions obtained by the sampling experiments were compared with those theoretical distributions obtained under the ANOVA and normal theory model. A number of conditions for robustness are given.

A new formula for the standard error of reliability estimates is introduced by analytical means and the validity of the formula was examined through computer simulated experiments. The new formula was found to be superior to traditional formulas based on normal theory when the normality of true score is not valid. Though the formula is derived under the ANOVA model, it was also found to be better than the traditional formulas under more general models.

Implications of these findings to test theory and applications are discussed and some numerical examples are given to show how the findings and the computer programs developed might be applied in practical situations.

ACKNOWLEDGEMENTS

The author wishes to express his deep and sincere appreciation to Dr. S.M. Hunka, under whose advice and guidance this study has been completed. Thanks are also expressed to other committee members: Drs. T.O. Maguire, E.S. West, and A.R. Hakstian.

Appreciation is also due to Dr. D.P. Flathman, Mr. J. Hanson of the Alberta Human Resources Research Council, Mr. D. Precht and other colleagues of the Division of Educational Research Services of the University of Alberta for their assistance and encouragement.

The author wishes to acknowledge with gratitude the financial assistance received from the University of Alberta through the Division of Educational Research Services, Faculty of Education.

Thanks are also extended to the typist, Miss J. Talpash, for her willingness to comply with the complexities of notations and to meet the necessary deadlines.

111

TABLE OF CONTENTS

Page

ABSTRACT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ī
ACKNOWLEDGEMENTS .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	111
TABLE OF CONTENTS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	īv
LIST OF TABLES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vIII
LIST OF FIGURES .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	xii

CHAPTER

ONE	INTROD	UCTION	
	1.1.0	The General Problem	ļ
	1.2.0	Review of Related Studies	}
	1.2.1	Concepts of Reliability	}
	1.2.2	Sampling Theories of Reliability Estimates . 6	,
	1.2.3	Empirical Approaches)
	1.2.4	Summary	}
	1.3.0	Some Preliminary Specifications and Notations	2
	1.3.1	Specifications	
	1.3.2		•
	1.3.3		;
	1.3.4	Definitions	,
TWO	TEST M	ODELS FOR THE CONTINUOUS PART SCORE CASES	
	2.1	ANOVA Model)
	2.2	Essentially T Equivalent Measurements	

2.2	Essentially τ Equivalent Measurements							
	Model	31						
2.3	Congeneric True Score Model	34						
2.4	Multi-Factor True Score Model	35						
3.5	Summary	37						

i۷

Page

THREE	TEST M	DDEL FOR THE BINARY ITEM SCORE CASE	
	3.1	Normal Ogive Model	39
	3.2	Item Parameters	42
	3.3	Reliability of Binary Item Test	44
	3.4	KR20 Coefficient and Its Estimate	46
	3.5	Summary	48
FOUR	RATION	ALE FOR SIMULATION, COMPUTER PROGRAMS, AND	
	METHOD	S OF INVESTIGATION	
	4.1	Violation of ANOVA Model and Assumptions	49
	4.2	Robustness Under Violation of Assumptions .	51
	4.3	An Empirical Approach Toward the Problem	52
	4.4	The Concept of Simulation	53
	4.5	Computer Programs	55
	4.6	Parallel Forms Method for Test Parameters of Binary Item Test	58
	4.7	Procedures for Generating Random Numbers	60
	4.8	Methodological Limitations	65
	4.9	Accuracy of Calculation	68
	4.10	Summary	68
FIVE	RESULT	S FOR CONTINUOUS PART TEST SCORE CASES	
	5.1.0	Effects of Non-Normality Under the ANOVA Model	70
	5.1.1	Distribution Under ANOVA and Normal Distribution of True and Error Scores	70
	5.1.2	Known Effects of Non-Normality Under ANOVA	71
	5.1.3	Standard Error of Reliability Estimates Corrected for Non-Normality	72
	5.1.4	Results of Simulation Experiments Under ANOVA Model	76
	5.1.5	Conclusions on the Effects of Non-Normality Under ANOVA Model	82

۷

SIX

.

P	8	g	e

	5.2.0	Relaxation of the Homogeneity of Error Variance Constraint in the ANOVA Model	82
	5.2.1	The ETEM Model	83
	5.2.2	Effects of Non-Homogeneous Error Variances Assuming Normal Distribution	83
	5.2.3	Effects of Non-Normality on ETEM Model	89
	5.2.4	Conclusions for the Distributions Under ETEM Model	91
	5.3.0	Relaxation of the Homogeneity of True Score Variance Constraint in ANOVA or ETEM Models	95
	5.3.1	Reliability and the Alpha Coefficient	96
	5.3.2	•	97
	5.3.3	_	108
	5.3.4	Conclusions for the Effects of Non-ETEM Model	116
	5.4.0	Summary	117
SIX	RESUL	TS FOR BINARY ITEM SCORE CASES	
	6.1	Factors Related to Binary Item Test Scores Distribution	119
	6.2	The Effects of Non-Normal Error Distribution and Non-Homogeneous Item Difficulty Para-	122
	• -		122
	6.3	Effects of Non-Normal Latent Scores	131
	6.4	Effects of Non-Homogeneous Biserial Correlations	138
	6.5	Summary	143
SEVEN	SUMMA	RY, IMPLICATIONS, EXAMPLES OF APPLICATION,	
	AND R	ECOMMENDATIONS	
	7.1.0	Summary of Findings	145
	7.1.1	Test Models	145

vi

7.1.2	Sampling Distribution Under Various Models and Assumptions	146
7.1.3	Robustness of F-Test	148
7.2.0	Implications to Test Theory and Applications	148
7.3.0	Example 1: Application to Continuous Case	151
7.4.0	Example 2: Application to Binary Item Case	162
7.5.0	Recommendations	163
I	REFERENCES	168
	APPENDICES	
	A.1 Listing of Computer Programs	174
	A.2 Example Outputs · · · · · · · · · · · ·	222

vii

Page

LIST OF TABLES

TABLE

•

Page

1.1	Comparisons of the Definitions of Various Measures	19
2.1	Two Way Mixed Model ANOVA Table	26
4.1	Summary of the Assumptions Under Various Models	51
4.2	Summary of the Random Numbers	64
4.3	Descriptive Summary of Random Numbers Generated by Pseudo-Random Number Generating Subroutines, Sample Size = 6000 for Each Trial	66
5.1	Comparisons of Observed Means and Variances of MS's Under ANOVA Model and Various Combinations of True and Error Score Distributions With the Values Obtainable From Formula (5.6), $N = 2000$, $I = 30$, J = 8	78
5.2	Comparisons of Observed Means and Standard Errors of Reliability Estimates Under ANOVA Model and Combinations of True and Error Score Distributions With the Values Obtainable From Formulas (5.6), (5.1)-(b), and (5.10), N = 2000, I = 30, J = 8	79
5.3	Comparisons of Observed Lower and Upper 5% Critical Points Reliability Estimates Under the ANOVA Model Using Various Combinations of True and Error Score Distributions, and Real Type One Errors of F-Test When Nominal Value is 5% With the Values Obtainable Under the Normal Theory, N = 2000, I = 30, J = 8	81
5.4	Summary of Error Variances Used Under ETEM Model	85
5.5	Comparisons of Observed Means and Variances of MS's Under the ETEM Model and Normal Distributions With the Values Obtainable From Formula (5.6), N = 2000, I = 30, J = 8	86
5.6	Comparisons of Observed Means and Standard Errors of Reliability Estimates Under ETEM Model and Normal Distributions With the Values Obtainable From Formula (5.3), (5.10), N = 2000, I = 30, J = 8	88
5.7	Comparisons of Observed Lower and Upper 5% Critical Points and Real Type One Errors of F-Test When Nominal Value is Fixed at 5%, Under ETEM Model and Normal Distributions With the Values Obtainable Under ANOVA Model, N = 2000, I = 30, J = 8	90

Page

5.8	Comparisons of Observed Means and Variances of MS's Under ETEM Model With EV2 Error Variances Set and Various Combinators of True and Error Score Distribution With the Values Obtainable From Formula (5.6), N = 2000, I = 30, J = 8	92
5.9	Comparisons of Observed Means and Standard Errors of Reliability Estimates Under ETEM Model With EV2 Error Variances Set and Various Combinations of True and Error Score Distributions With the Values Obtainable From Formulas (5.3), (5.1), and (5.10), N = 2000, I = 30, J = 8	93
5.10	Comparisons of Observed Lower and Upper Critical Points of Reliability Estimates and Real Type One Error of F-Test When Nominal Value is 5%, Under ETEM Model With EV2 Error Variances Set and Various Com- binations of True and Error Score Distributions With the Values Obtainable Under the ANOVA Model and Normal Theory, N = 2000, I = 30, J = 8	94
5.11	Comparisons of Observed Means and Variances of MS's Under the Congeneric Model and Various Com- binations of True and Error Score Distributions With the Values Obtainable From Formula (5.6), N = 2000, I = 30, J = 8	100
5.12	Comparisons of Observed Means and Standard Errors of Reliability Estimates Under the Congeneric True Score Model With the Values Obtainable From Various Formulas, N = 2000, I = 30, J = 8	101
5.13	Comparisons of Observed Lower and Upper 5% Critical Points of Reliability Estimates Under the Congeneric True Score Model With the Value Obtainable Under the ANOVA and Normal Theory, and Real Type One Error of F-Test When the Nominal Value is 5%, N = 2000, I = 30, J = 8	104
5.14	Comparisons of Observed Means and Variances of MS's Under Congeneric True Scores, Non-Homogeneous Error Variances and the Normal Distributions With the Values Obtainable Under ANOVA Model, N = 2000, I = 30, J = 8	105
5.15	Comparisons of the Observed Means and Standard Error of Reliability Estimates Under Congeneric True Score, Non-Homogeneous Error Variances and Normal Distributions With the Values Obtainable From Formulas (5.1), (5.3), and (5.10), N = 2000, I = 30, J = 8	106

TABLE

ix

Page

5.16	Comparisons of Observed Lower and Upper 5% Critical Points Under Congeneric True Scores, Non-Homogeneous Error Score Variances, and Normal Distributions With the Values Obtainable Under the ANOVA and Normal Theory, and Real Type One Errors of F-Test When the Nominal Value is 5%, N = 2000, I = 30, J = 8	107
5.17	Comparisons of Observed Means and Variances of MS's Under the Multi-Factor True Score Model and Various Combinations of True and Error Score Distributions With the Values Obtainable Under ANOVA Model by Formula (5.6), $N = 2000$, $I = 30$, $J = 6$	111
5.18	Comparisons of Observed Means and Standard Errors of Reliability Estimates Under the Multi-Factor True Score Model and Various Combinations of True and Error Score Distributions With the Values Obtainable From Formula (5.3) , (5.1) - (b) , and (5.10), N = 2000, I = 30, J = 6	113
5.19	Comparisons of Observed Lower and Upper 5% Critical Points of Reliability Estimates and Real Type One Errors of F-Test When the Nominal Value is 5% Under the Multi-Factor True Score Model and Various Com- binations of True and Error Score Distributions With the Values Obtainable Under the ANOVA Model and Normal Theory, N = 2000, I = 30, J = 6	115
6.1	Item Difficulty Parameters	121
6.2	Item Biserial Correlations	122
6.3	Comparisons of Calculated Test Parameters Under the Normal Ogive Model With Empirical Values Based on the Parallel Forms Method, Normal Latent Scores, and Homogeneous Biserial Correlations, NI = 30030, J = 9	124
6.4	Comparisons of Observed Means and Standard Errors of Reliability Estimates Under Normal Latent Scores, Homogeneous Biserial Correlations With the Values Obtainable From ANOVA Model and Normal Theory, N = 1000, I = 30, J = 9	127
6.5	Comparisons of Observed Lower and Upper 5% Critical Points Under Normal Latent Scores and Homogeneous Biserial Correlations With the Values Obtainable From the ANOVA Model and Normal Theory, and Real Type One Error of F-Test When Nominal Value is Fixed to the 5% Level, N = 1000, i = 30, J = 9	129

TABLE

X

TABLE

Page

 6.7 Comparisons of Observed Means and Standard Errors of Reliability Estimates Under Normal Errors and Homogeneous Biserial Correlations With the Values Obtainable From ANOVA Model and Normal Theory, N = 1000, 1 = 30, J = 9	6.6	Comparisons of Calculated Test Parameters Under the Normal Ogive Model With Empirical Values Based on the Parallel Form Method, Normal Error Scores, Homogeneous Biserlal Correlations, NI = 30030, J = 9	133
 Critical Points Under Normal Error Scores and Homogeneous Biserial Correlations With the Values Obtainable From ANOVA Model and Normal Theory, and Real Type One Error of F-Test When Nominal Value is Fixed to the 5% Level, N = 1000, 1 = 30, J = 9	6.7	of Reliability Estimates Under Normal Errors and Homogeneous Biserial Correlations With the Values Obtainable From ANOVA Model and Normal Theory,	135
 the Normal Ogive Movel With Empirical Values Based on the Parallel Form Method, Normal Error Scores, Non-Homogeneous Biserial Correlations, NI = 30030, J = 9	6.8	Critical Points Under Normal Error Scores and Homogeneous Biserial Correlations With the Values Obtainable From ANOVA Model and Normal Theory, and Real Type One Error of F-Test When Nominal Value is Fixed to the 5% Level, N = 1000,	137
 of Reliability Estimates Under Normal Error Scores and Non-Homogeneous Biserial Correlations With the Values Obtainable From ANOVA Model and Normal Theory, N = 1000, I = 30, J = 9	6.9	the Normal Ogive Movel With Empirical Values Based on the Parallel Form Method, Normal Error Scores, Non-Homogeneous Biserial Correlations,	140
 Critical Points Under Normal Error Scores and Non-Homogeneous Biserial Correlations With the Values Obtainable From the ANOVA Model and Normal Theory, and Real Type One Error of F-Test When Nominal Value is Fixed to the 5% Level, N = 1000, I = 30, J = 9	6.10	of Reliability Estimates Under Normal Error Scores and Non-Homogeneous Biserial Correlations With the Values Obtainable From ANOVA Model and Normal	141
 7.1 Dispersion Matrix of Votaw's Essay Test Data 151 7.2 Lower and Upper 5% Critical Points of the Distribution of Reliability Estimates, Votaw-Jöreskog Data, Normal True and Error Score Distributions, Congeneric Model, ρ = 0.8313, Alpha = 0.8123, N = 2000	6.11	Critical Points Under Normal Error Scores and Non-Homogeneous Biserial Correlations With the Values Obtainable From the ANOVA Model and Normal Theory, and Real Type One Error of F-Test When Nominal Value is Fixed to the 5% Level,	142
 7.2 Lower and Upper 5% Critical Points of the Distribution of Reliability Estimates, Votaw-Jöreskog Data, Normal True and Error Score Distributions, Congeneric Model, ρ = 0.8313, Alpha = 0.8123, N = 2000	- •	• • • •	-
tion of Reliability Estimates, Votaw-Jöreskog Data, Normal True and Error Score Distributions, Con- generic Model, $\rho = 0.8313$, Alpha = 0.8123, N = 2000	•	-	121
7.3 Item Parameters of a Nine Item Test	Ţ. £	tion of Reliability Estimates, Votaw-Jöreskog Data, Normal True and Error Score Distributions, Con- generic Model, ρ = 0.8313, Alpha = 0.8123,	164
	7.2		-
	7.4	Test Parameters of a Nine Item Test	163

xI

LIST OF FIGURES

FIGURE

5.1	Distribution of Reliability Estimates, No. 5 of Table 5.12	103
5.2	Distribution of Reliability Estimates, No. 5 of Table 5.18	114
6.1	Distribution of Reliability Estimates, No. 5 of Table 6.4	130
7.1	Votaw-Jöreskog Data, N = 2000, I = 10, Normal	155
7.2	Votaw-Jöreskog Data, N = 2000, I = 15, Normal	156
7.3	Votaw-Jöreskog Data, N = 2000, I = 20, Normal	157
7.4	Votaw-Jöreskog Data, N = 2000, I = 25, Normal	158
7.5	Votaw-Jöreskog Data, N = 2000, I = 30, Normal	15 9
7.6	Votaw-Jöreskog Data, N = 2000, I = 35, Normal	160
7.7	Votaw-Jöreskog Data, N = 2000, I = 40, Normal	161
7.8	Load-Novick Data, N = 1000, I = 30, Normal	164

xII

Page

CHAPTER ONE

INTRODUCTION

1.1.0 The General Problem

The estimation and interpretation of reliability has been a central issue for psychometric theorists and test authors as well as the users of educational and psychological tests. The reliability coefficient of a test, a population parameter, is defined as the ratio of the true score variance due to individual differences of the subjects, to the total test score variance in a population for which the test is developed.

A number of formulas for measuring reliability have been derived by many theorists since the initial formulation by Spearman (1910) of his theory of true and error scores. Most of the formulas express reliability as a function of the moments of the part scores and the total test scores under assumptions of parallel or equivalent measurements among the part tests, or, as a correlation coefficient between the observed test scores and a second set of scores on a real or hypothetical variable. In most cases, the formulas involve only point estimation of the reliability, and have been obtained by substituting the sample moments of the part-scores and the total scores into formulas which are valid in the population. Statistical properties of such estimates are in general unknown or ignored.

Investigation of the distribution of reliability estimates requires a mathematical model and a number of assumptions. The validity of the estimates of reliability largely depends on the validity of the model and underlying assumptions. Even for rather rigorous models and assumptions the sampling distributions are unknown except in some special cases.

For a valid statistical inference about a population parameter the sampling distribution of the parameter estimate must be known, and the reliability cannot be an exception. For example, if a standardized test has been administered to a sample of subjects, it is sometimes necessary to compare the sample reliability estimate with the reliability claimed by the test authors, i.e., it is desirable to know whether the difference between the two values can be attributed to sampling fluctuations, or, whether there is a significant difference due to population difference. If a test is administered to two independent samples of subjects, a comparison of the two estimates of reliability may be necessary to determine the underlying cause of any observed difference.

The standard error of the reliability estimate is another useful measure of the precision of the estimates, but without any knowledge of the sampling distribution of the estimates, confidence intervals for the population reliability are impossible to calculate.

Most of the available formulas for reliability estimate depend on the estimation of variance components, using various, explicit or implicit, parallel or equivalent test form assumptions among the part test scores. Even though the estimates of the variance components thus obtained are usually unbiased, the estimates of the reliability are, in most cases, biased, and the statistical properties are unknown.

Since the early years of test theory, it has been

recognized by theorists and test users that the calculated reliability is, in fact, nothing more than an estimate of the true or population reliability, and therefore subject to sampling fluctuations. Even with this recognition, little work has been done to investigate the distribution of such estimates.

This study will investigate properties of the sampling distribution of reliability estimates based on Alpha or KR20 formulas using computer simulation techniques, and will employ various models and distributional assumptions for true or latent, and error scores described in the following two chapters.

1.2.0 Review of Related Studies

1.2.1 Concepts of Reliability

Even during the initial developments of test theory, psychologists showed interest in the formula for the standard error of reliability estimates as an indicator of the precision of such estimates. During this period most psychologists interpreted reliability as a correlation coefficient between classically defined parallel measures. Using this definition, attempts were made to apply the well known sampling distribution of correlation coefficient with the assumption of a bivariate normal distribution. However, unlike the usual inference about correlation coefficients, in most cases, the population reliability is considered to be close to unity rather than zero, and hence its distribution has extreme negative skewness making the usual normal approximation of little use (Jackson and Ferguson, 1941, p. 12).

When the split half method was introduced, the reliability

estimate was seen to depend on the way the test was split. As a result, the reliability estimate based on Alpha or KR20 was considered to be superior to the split half estimate since the former gave a unique estimate.

Cronbach (1951) has shown that Alpha or KR20 is an average of all possible split half reliabilities in the population. He thoroughly investigated the coefficient Alpha from the point of view of factorial structure. The Alpha coefficient was interpreted as the proportion of the test variance due to all common factors among the part scores, and as an index of consistency, an estimate of first factor concentration. He also showed that Alpha is a lower bound of the test reliability, but did not explicitly discuss the sampling aspect of the Alpha estimate.

The concept of test reliability has been under continuous change: the classical concept based on parallel tests has been modified and the assumptions relaxed. Burt (1955) and Tryon (1957) initiated a new concept of domain sampling, and the reliability as an index of generalizability has been advocated by Rajaratnam (1960), Cronbach, Rajaratnam and Gleser (1963), and Rajaratnam, Cronbach and Gleser (1965). Their conceptual framework relied heavily on ANOVA models, and initiated a process of liberalization of reliability theory from the rather restrictive classical orthodoxy of test parallelism. However their efforts concentrated on the problem of point estimation, and little attention was paid to sampling aspect of the estimates.

Lord and Novick (1968, p. 50) defined the concept of 'essentially τ equivalent measurements', and Novick and Lewis (1967)

have shown that the coefficient Alpha is identical to the reliability coefficient if and only if a test consists of essentially τ equivalent parts. If this condition is not satisfied Alpha is a lower bound for the reliability, confirming previous studies of Guttman (1945, 1953), Cronbach (1951), and others. To evoke the principle of essentially τ equivalent parts, it has been argued that only true score variances need be identical, i.e., homogeneity of true score variances, and not identical error score variances nor identical true scores among the part tests. The assumptions of classical parallel tests are, therefore, relaxed substantially. Jöreskog (1968, 1970, 1971) defines the concept of congeneric test scores which measure the same trait except for errors, relaxing the essentially τ equivalent measurement conditions further. Under this model any pair of such tests have linearly related true scores. The sampling distributions of the reliability estimates under these models are not yet generally known.

As an alternative to conventional uni-factor true score models, a multi-factor true score model has been advocated by LaForge (1965) using the multiple factor analysis model. An estimate of the squared multiple correlation of a part score with the scores of remaining parts, which is one estimate of the test communality in factor analysis, is proposed as an estimate of the reliability of the part score.

For certain kinds of tests, especially in the field of achievement tests, this approach seems more reasonable than the conventional uni-factor approach, but the old controversial problem of determining the number of factors in a factor analysis must still be resolved. However, the multi-factor model provides a general model

for computer simulation purpose, as will be seen in the next chapter, since the ANOVA and other models may be considered as special cases of the multi-factor model.

1.2.2 Sampling Theories of Reliability Estimates

Lord (1955) defined three kinds of sampling arising in test theory; sampling of subjects (Type 1), part tests or items (Type 2), and a simultaneous combination of the two (Type 12). Lord also discussed the sampling distribution of KR20 under Type 2 sampling without the presentation of the standard error of the KR20 estimates in terms of the population parameters.

A statistical sampling theory of the reliability estimates has been made possible through the application of ANOVA techniques to test theory. Hoyt (1941), Jackson and Ferguson (1941), Ebel (1951), Burt (1955), Cronbach, Rajaratnam and Gleser (1963), Feldt (1965, 1969), Maguire and Hazlett (1969) and many others investigated the reliability estimate under some form of ANOVA models. However, most of their discussion was limited to point estimation and little attention has been paid to the sampling fluctuation of the estimates or interval estimates.

Since the ANOVA models usually provide unbiased, consistent estimates of the variance components by some linear combination of various mean squares, the reliability estimates thus obtained are in general consistent estimators. But, in most cases, they are biased and do not have the desirable minimum variance property.

Although Jackson and Ferguson (1941, p. 40) related the F-statistic to the so called 'sensitivity of a test', or the square

root of the commonly referred signal-noise ratio, it was Ebel (1951) who first explicitly linked the sampling distribution of the reliability estimate itself to an F-statistic. He applied the concept of 'intra-class' correlation coefficient to a rating data set, and by employing the well known F-distribution, has shown a way to obtain confidence intervals of the population intra-class correlation which he interpreted as the reliability of a judge. However, the assumptions underlying the ANOVA model were not explicitly specified.

Kristof (1963) presented a rather complete sampling theory of reliability estimates within the context of the assumptions of classical reliability theory with the exception that the means of the part tests were allowed to be different, i.e., the part test scores are 'essentially' parallel measurements. Under Type 1 sampling and the assumption of a multi-normal distribution of the part test scores. a maximum likelihood estimator of the common correlation among the parts was obtained, i.e., the intra-class correlation coefficient. It was shown to be biased. A bias-free formula was introduced and the sampling distribution of the estimates based on this formula is shown to be related to the F-statistic. A method of statistical inference about the intra-class correlation, which was interpreted as the reliability of a part test, was suggested. Kristof's results are in close agreement with those obtainable under an ANOVA model. He has also showed that the estimate of the Alpha coefficient, in terms of second moment sample statistics, is the same as the maximum likelihood estimator of the reliability when a test has been divided into essentially parallel parts, with an assumption that the parts have a multi-normal distribution.

Kristof (1964) also investigated the distribution of reliability estimates for the first time without relying on the classical equal variance assumptions among the part test scores. A working formula for testing the significance of the difference between the two reliability estimates was derived under the assumption that each part has been administered to the same sample of subjects and that each part test could be split into parallel halves. He also investigated (1969, 1970) the sampling distribution of reliability estimates under the multi-normal assumptions when a test has been split into two parts not necessary parallel in the classical sense. A likelihood ratio test of the point hypothesis concerning the population value of Alpha was derived. This method was then used to yield confidence intervals for the parameter for any chosen level of confidence.

For the case where the parts of a test are simply binary items, the sampling distribution of KR20 estimates is more complicated than the case of continuous part scores. Most theorists have assumed an intermediate hypothetical variable between the item response and underlying true or latent trait score and linked the two variables with the help of the intermediate variable and a mathematical model. Lord (1952), and Lord and Novick (1968) used a normal ogive model, while Birnbaum (1967, 1968) proposed logistic, Poisson and other mathematical models. Although the latent trait approach provides means for investigation of the relationships among the item parameters and the test scores, nothing analytical has yet been done for the distributional theory of reliability estimates or its application even with the restrictive mathematical models and assumptions.

Aoyama (1957) has given explicit formulas, in terms of population parameters without any distributional assumptions, for the expected value and variance of KR20 estimates for Type 1 and Type 2 sampling situations. These results clearly indicate that the estimates are biased. However the formulas involve some approximations and calculation of higher order moments, and are too complex for any practical use.

Since the exact sampling distribution of KR20 estimates is not obtainable by analytical means, some researchers have attempted to approximate it by an ANOVA model. Feldt (1965) has investigated the applicability of the ANOVA model. He pointed out that imposition of a one-zero scoring scheme violates such assumptions of the ANOVA model as continuity of the scores, homogeneity of error variances and independence of true and error scores. He compared the results obtained under the ANOVA model with an empirical distribution based on real data reported by Baker (1962), and claimed the model robust when the assumptions are violated. Feldt referred to the model as a two way random effects model, but actually it was a mixed model as will be seen in the following chapter. Further applications were made of the method by deriving a scheme for testing the equality of two KR20 coefficients based on two independent samples using an approximate distribution of the product of two independent F-statistics (Feldt, 1969). Cleary and Linn (1968) adopted the same method as Feldt and gave an explicit formula for the standard error of KR20 estimates. However, their results are heavily dependent on normality assumptions which are not satisfied for KR20 cases.

Except for the case of approximation by employing unrealistic

assumptions of the ANOVA model for essentially parallel tests, most of the attempts to obtain the sampling distribution of KR20 estimates have either failed or resulted in unuseable formulas such as given by Aoyama (1957).

1.2.3 Empirical Approaches

The use of empirical approach to solve a statistical problem is as old as statistics itself. For example "Student" (1908) derived the analytic expression for the t-statistic and also established the validity of his argument by a sampling experiment. In education and psychology, a number of empirical investigations have been performed, with or without the help of a computer, to ascertain the robustness of the F-test when certain assumptions underlying an ANOVA model are not satisfied. Norton (1950), Boneau (1960), Hsu and Feldt (1969), and Bay (1970) are some examples of such investigations.

In reliability theory, Baker (1962) investigated a sampling distribution of KR20 estimates under Type I sampling constraints by actually performing experiments using real test results. Payne and Anderson (1968) tabulated the sampling distribution of KR20 estimates based on computer simulation. However, their experiments were limited to the cases of equal item difficulty parameters and inter-item correlations, i.e., phi coefficients.

Nitko and Feldt (1969) performed a computer simulation study of KR20 estimates and reported that, in contrast to general belief, the effect of item difficulty is minimal. Nitko (1968) employed the same method to investigate power functions for the test of significance of KR20 in one and two sample cases as proposed by

Feldt (1969). Weitzman (1967) reported the result of a simulation of test-retest reliability of a multi-choice test assuming a beta distribution of true scores. Shoemaker (1966) also used a computer simulation model to investigate the estimate of Cronbach's generalizability coefficient for unmatched data to clarify the extent to which stratification must be taken into account in the choice of the generalizability formula.

1.2.4 Summary

Recently, the concept of reliability has been modified and the restrictive classical assumptions of parallel tests relaxed substantially. However, the sampling distribution of reliability estimates based on Alpha or KR20 formulas are in general unknown except for the case when the unrealistic ANOVA model and underlying assumptions are used.

A number of fragmental attempts have been made recently to investigate the distribution by empirical methods, but there is no overall study into the statistical properties of the distribution under the more liberal concept of reliability either by analytical or empirical means.

The purpose of the present study is to investigate the statistical properties of the sampling distribution of reliability estimates when the classical parallel tests or more recent ANOVA models and the assumptions underlying these models are not all satisfied. More liberal concepts of reliability are to be examined in terms of models and assumptions underlying them, and sampling distributions under these models with various distributional assumptions

not necessary normal will be investigated by employing computer simulated statistical experiments. Comparisons are to be made of these results with those obtainable theoretically from the ANOVA model and normal theory to see the robustness of the theoretical distributions against the violation of assumptions.

1.3.0 Some Preliminary Specifications and Notations

1.3.1 Specifications

(a) With some exceptions, Greek letters will be used to denote population values, while the observations and sample quantities are denoted by Roman letters. To make notation simpler, no attempts are made to distinguish random variables from their observed values.

(b) Scalars will be denoted by capital and lower case letters, matrices will be denoted by underlined capital letters, and column vectors by underlined lower case letters. Row vectors will be indicated by transpose of column vectors, i.e., by priming them.

(c) An estimator of the population parameter and its value will be indicated by placing a caret or 'hat' over the parameter.

(d) The normal distribution with mean μ and variance σ^2 will be denoted by N(μ , σ^2). In general, a J-variate normal distribution having a mean vector $\underline{\mu}$ and a dispersion or variance-covariance matrix $\underline{\Sigma}$ will be denoted by N($\underline{\mu}$, $\underline{\Sigma}$). The chi-square statistic with n degrees of freedom and the F-statistic with n and m degrees of freedom are denoted by χ^2_n and $F_{n;m}$ respectively.

(e) The expectation, and dispersion operations for a vector random variable \underline{x} will be denoted by $E(\underline{x})$ and $D(\underline{x})$, namely,

$$E(\underline{x}) = \begin{bmatrix} E(x_1) \\ E(x_2) \\ . \\ . \\ . \\ E(x_j) \end{bmatrix}$$

,

where $E(x_i)$, $Var(x_i)$, and $Cov(x_i,x_j)$ denote the usual expectation of x_i , variance of x_i , and covariance between x_i and x_i respectively.

(f) The correlation coefficient between two random variables x and y is denoted by Cor (x,y), namely,

$$Cor(x,y) = \frac{Cov(x,y)}{[Var(x) Var(y)]^{\frac{1}{2}}}$$

(g) An identity matrix is denoted by $\underline{1}$, while a vector of length J whose elements are all 1's is denoted by $\underline{1}$.

(h) Dot subscripts are used to indicate sample means.

(g) Braces, { }, are used to indicate all elements in a set of variables.

1.3.2 Notations

The following is a brief glossary of important symbols used frequently.

- i indexing subscript for subjects in the sample, i = 1,2,...,1
- k indexing subscript for subjects in population, k = 1,2,...
- j indexing subscript for parts (items) of a test, j = 1,2,...,J
- I sample size, a fixed constant
- J number of parts (items) in the test, a fixed constant
- y_{ij} the observed score random variable of subject i on the jth part test; it stands for the corresponding response strength variable for the binary item test
- x_{ij} the observed score random variable of subject i on the jth item, takes on values one or zero
- τ_{ii} the true score of subject i on the jth part
- e₁₁ the error score random variable of y₁₁
- m the true score of subject i after adjustment is made for difference in difficulty levels among the J part tests
- a the effect or ability level of subject i in deviation form, $m_i \mu$
- B_j the fixed effect of jth part, or the threshold constant for jth item; indicates the difficulty level of jth part (item) u the expected value of m_i over the population
- σ_A^2 the variance of m_i over the population, assumed to be common to all J parts under ETEM assumption
- σ_{ej}^2 the variance of e_{ij} over the replications, assumed to be common to all subjects for all specific part j; defined in terms of response strength variables for the binary case

 σ_e^2 common value of σ_{ej}^2 among the J parts under the homogeneity of error variance assumption the unweighted sum of J part scores for subject i ٧ï the unweighted sum of J items for subject i × σ j σ y σ x the variance of the jth part (item) score the variance of y_i the variance of x_i the regression coefficient of y_{ij} on f_i under the uniλ_i factor true score model, or the standard deviation of the true score of the jth part; the biserial correlation between x_{ij} and f_i for the binary item case the tetrachoric correlation between items j and j' YIIT the inter item correlation coefficient between items j and j' P111 standardized error random variable, i.e., $e_{ij} = \sigma_{ej} \epsilon_{ij}$ ε_{ii} standardized true score random variable for continuous f₁ case i.e., $a_1 = \sigma_A f_1$; for the binary item case the latent or factor score the factor loading matrix of size J × r Δ the number of factors of the true score r P_i(f) item characteristic function of the jth item item difficulty of the jth item *****1 $\phi(z)$ the normal density function $\Phi(\mathbf{x})$ the cummulative normal distribution function the reliability coefficient of the jth part ٩j the reliability coefficient of the unweighted sum of ٥ J parts (items)

1.3.3 Vectors and Matrices

The following vectors and matrices are used frequently.

$$\mathbf{y}_{\mathbf{i}} = \begin{bmatrix} \mathbf{y}_{11} \\ \mathbf{y}_{12} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \mathbf{y}_{1J} \end{bmatrix}, \quad \underline{\mathbf{\varepsilon}}_{\mathbf{i}} = \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \varepsilon_{1J} \end{bmatrix}, \quad \underline{\lambda} = \begin{bmatrix} \lambda_{1} \\ \lambda_{2} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \lambda_{J} \end{bmatrix}$$

$$\underline{\mathbf{Y}} = \begin{bmatrix} \sigma_{\mathbf{e}1} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \sigma_{\mathbf{e}2} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \sigma_{\mathbf{e}3} & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \vdots & \vdots & \vdots & \vdots & \vdots & \mathbf{0} \\ \mathbf{0} & \vdots & \vdots & \vdots & \vdots & \mathbf{0} \end{bmatrix}$$

16.

,

where λ_{jm} is the factor loading or regression coefficient of y_{ij} on the mth true or factor score under a multi-factor model.

1.3.4 Definitions

The following is a short list of definitions for the most often used terms in this paper.

- ANOVA Model Unless specified otherwise, this term refers to a two way mixed model analysis of variance linear model with one observation per cell. The levels of the row factor stand for the subjects in the sample, and the effects are assumed to be random, while the levels of the column factor stand for part tests or items of a composite test, and the effects are assumed to be fixed.
- ParallelTwo measures are said to be classically or strictly
parallel if (a) the test score may be considered
consisting of two independent parts, true and error
scores, (b) true scores are identical, and (c) error
and total scores have idenical means and variances
for each of the two measures.
 - Essentially The same as parallel measures except that the true Parallel scores may differ by a constant. The true, error (ANOVA) and test scores have identical variances, but the means of the true scores may differ. Under the ANOVA model, the measurements are essentially parallel.

τ Equivalent The same as parallel measures except that the variances of the error scores may differ. The variances of test scores may differ, but the means must be equal.

EssentiallyThe same as τ equivalent measurements exceptτEquivalentτEquivalentthat the true scores may differ by a constant.(ETEM)The variances of true scores must be identical,
but means and variances of test scores may differ.

- CongenericThe same as essentially τ equivalent measurementsTrue Scoreexcept that the true score is required only to
measure a single trait. The true scores of two
measures are linearly related, but their means
and variances may differ.
- Multi-factorThe same as congeneric true score case except that(M.F.)the tests measure more than one trait, i.e., the
factorial structure of the true score could be
more than one factor.

The above definitions of different but related types of measurements are compared in Table 1.1.

T	A	B	L	E	1	1

Type of	True Scores			Error Scores		Test Scores	
Measures	Score	Mean ²	Var. ³	Mean	Var.	Mean	Var.
Parallel	14	I	I	0.0	t	1	I
Essentially Parallel (ANOVA)	D ⁵	D	1	0.0	I	D	I
τ Equivalent	1	I	ł	0.0	D	1	D
Essentially τ Equivalent (ETEM)	D	D	I	0.0	D	D	D
Congeneric	D	D	D	0.0	D	D	D
Multi-Factor (M.F.)	D	D	D	0.0	D	D	D

Comparisons of the Definitions of Various Measures

Note:

I True scores for the same subject.

²Means in the population.

 3 Variances in the population.

4 I: Identical among the measures.

 5 D: May differ among the measures.

CHAPTER TWO

TEST MODELS FOR THE CONTINUOUS PART SCORE CASES

Two distinct cases may be considered for a theory of reliability: the first is the case of continuous observed scores for the parts of a test, and the second is the case in which the scores of the parts are 'counter' or 'indicator' variables, i.e., a one is assigned for a correct response and zero for a wrong response. Due to the necessity of a different statistical treatment for each of the two cases, only the continuous case is duscussed in this chapter. The discussion is also limited to Type I sampling situations. The binary item situation will be discussed in the following chapter.

For the continuous score case, ANOVA type linear models are the most powerful and have a wide range of applicability. From among many possible models, the discussion is limited to a two way mixed model ANOVA with one observation per cell. Generalization to other more complex designs is a straight forward matter, however, complexity and difficulty of interpretation is a problem due to interaction effects.

2.1 ANOVA Model

A test consisting of J parts $(J \ge 2)$ is considered under the strict parallelism assumptions among the J part tests except that the means of the J parts may differ by a constant due to the difference in the difficulty levels of the parts. If the test is administered to a random sample of I subjects $(I \ge 2)$, the observed

score of the ith subject in the sample on the jth part, a random variable denoted by y_{ij} , may be written in a linear form in accordance with the classical theory of true and error scores, namely,

(2.1)
$$y_{ij} = \tau_{ij} + e_{ij}, \quad i = 1, 2, ..., l; \quad j = 1, 2, ..., J,$$

where τ_{ij} and e_{ij} denote the true score and error score respectively.

An infinite idealized population of subjects denoted by P, from which the sample of I subjects is supposedly drawn, is hypothesized and the findings on the sample are to be generalized to the population. Labelling the subjects in P as k (k = 1,2,...), the score y_{kj} may be conceptualized as the realization of a random process which may occur under repeated measurements on a single subject, labelled by k, on a fixed part test j with the assumption that the subject does not change or 'learn' over the repeated measurements, that is the replication is under experimentally independent conditions. Then the true score τ_{kj} may be considered the mean of y_{kj} over replications, or the expected value of y_{kj} over the distribution of y_{kj} for fixed k, or over the so-called 'propensity distribution' of y_{kj} (Lord and Novick, 1968, pp. 29-30). Mathematically

 τ_{kj} may be defined as the expectation of the random variable y_{kj} , for given k and j. The elements of y_{kj} have a joint distribution with respect to k in the population P and the number of replications.

By the assumption of parallelism, the true score τ_{kj} may be written,

(2.2)
$$\tau_{kj} = m(k) + \beta_j,$$
where β_j is a fixed constant specific to the jth part test representing the difficulty level of the part relative to the other parts, and m(k) is the adjusted true score for subject k indicating the real ability level of the subject, and assumed to be independent of j. Thus, m(k) may be considered a random variable with repsect to k distributed over the population P.

Since the $\{\beta_j\}$ indicate only the relative difficulty levels among the J parts, without loss of generality it may be assumed that,

(2.3)
$$\sum \beta_{j} = 0$$

The labels of the subjects in the sample may be given by $\{k_1, k_2, \ldots, k_i\}$, and $m_i = m(k_i)$ where m_i is the adjusted true score of the ith subject in the sample. If μ and σ_A^2 denote the mean and variance of the adjusted true score m(k), then they are the expected value and variance of the random variable m(k) calculated with respect to the distribution of k in the population. Since each of the I subjects may also be considered as a randomly selected subject drawn from I identical populations with mean μ and variance σ_A^2 , one subject chosen per population, each of the $\{m_i\}$ may also be considered as a random variable distributed independently and identically with expected value μ and variance σ_A^2 .

The variance of the error random variable e_{kj} , calculated with respect to the propensity distribution of y_{kj} , for fixed k and j, shall be denoted by $\sigma_{ej}^2(k)$. Although it is conceivable that the brighter subjects with higher m(k) might respond to the

test more consistently over replications, and have smaller variances, for the present discussion, it is assumed that $\sigma_{ej}^2(k)$ is the same for all subjects in the population and the common error variance is denoted by σ_{ej}^2 , which depends only on j. This assumption is rather restrictive, but it is necessary since only one set of part test scores is assumed to be available for each subject in the sample, and therefore $\sigma_{ej}^2(k)$ would not be an observable quantity without this assumption.

Furthermore, following the assumptions of classical parallelism (e.g., Gulliksen, 1950, pp. 14-25), under the ANOVA model, it shall also be assumed that the error scores $\{e_{kj}\}$ have expected value zero and equal variance, denoted by σ_e^2 , for all the J parts, i.e., homogeneity of error variance is also assumed among the part tests. In addition they are assumed to be independently and identically distributed, and independent of $\{m(k)\}$.

The effect of a subject labelled k in the population is defined as,

(2.4)
$$a(k) = m(k) - \mu_{1}$$

such that the effect of the ith subject in the sample, denoted by a_{1} , is

(2.5)
$$a_i = m_i - \mu$$
.

Applying (2.2) and (2.5), (2.1) becomes the basic model equation,

(2.6)
$$y_{ij} = \mu + a_i + \beta_j + e_{ij}$$

with the following assumptions,

(2.7)
(a)
$$\{a_i\}$$
 and $\{e_{ij}\}$ are independent random variables,
(b) $\sum \beta_j = 0$,
(c) $\{a_i\}$ are identically distributed with $E(a_i) = 0$,
and $Var(a_i) = \sigma_A^2$,
(d) $\{e_{ij}\}$ are identically distributed with $E(e_{ij}) = 0$,
and $Var(e_{ij}) = \sigma_e^2$

Thus the expected value and variance of an observation y_{ij} is,

(2.8)
$$E(y_{ij}) = \mu + \beta_j; \quad Var(y_{ij}) = \sigma_A^2 + \sigma_e^2.$$

If y_i denotes the unweighted sum of the J part scores for subject i, namely,

(2.9)
$$\gamma_{i} = \sum_{j} \gamma_{ij} = J\mu + Ja_{i} + \sum_{j} e_{ij},$$

then,

(2.10)
$$E(y_i) = Ju; \quad Var(y_i) = J^2 \sigma_A^2 + J \sigma_e^2.$$

The reliability of a test is defined to be the ratio of the variance due to individual difference or the 'effect' of subjects to the total test score variance (Lord and Novick, 1968, p. 61). For a part j,

(2.11)
$$\rho_j = \frac{Var(a_j)}{Var(y_{jj})} = \frac{\sigma_A^2}{\sigma_A^2 + \sigma_a^2} = \frac{\theta}{(1+\theta)}$$

where $\theta = \sigma_A^2/\sigma_e^2$ is the so-called signal-noise ratio or the square of sensitivity of a part test score (Jackson and Ferguson, 1941, p. 40).

For the total score,

(2.12)
$$\rho = \frac{\sigma_A^2}{\sigma_A^2 + \sigma_e^2/J} = \frac{J\theta}{1 + J\theta}$$

Because,

Cov
$$(y_{1j}, y_{1j}) = E\{[y_{1j} - E(y_{1j})][(y_{1j}, - E(y_{1j})]\}$$

= $E[(a_1 + e_{1j})(a_1 + e_{1j})]$
= σ_A^2 ,

and the correlation coefficient between part j and j' ($j \neq j'$) is

Cor
$$(y_{ij}, y_{ij}) = Cov (y_{ij}, y_{ij}) / [Var (y_{ij}) Var (y_{ij})]^{\frac{1}{2}}$$

= $\sigma_A^2 / (\sigma_A^2 + \sigma_e^2) = \rho_j$.

The common reliability among the J parts, ρ_{j} , is the so-called 'intra-class' correlation coefficient which is the ordinary correlation coefficient between the part scores y_{ij} and $y_{ij'}$ under the ANOVA assumptions above. Or alternatively, ρ_{j} is the square of the index of reliability, which is the correlation between y_{ij} and a_{j} , since,

Cov
$$(y_{ij}, a_i) = E[(a_i + e_{ij})(a_i)] = \sigma_A^2$$
,
Cor $(y_{ij}, a_i) = Cov (y_{ij}, a_i)/[Var (y_{ij}), Var (a_i)]^{\frac{1}{2}}$
 $= \sigma_A / (\sigma_A^2 + \sigma_e^2)^{\frac{1}{2}} = \rho_j^{\frac{1}{2}}$.

Under this model no assumption of random sampling of parts is required. The models used by Hoyt (1941), Ebel (1951), Winer (1962, p. 124), Lord (1964), Feldt (1965), and Maguire and Hazlett (1969) are essentially the same as this, although some treat the fixed effect $\{\beta_j\}$ as random effects assuming the existence of a population of part tests and random sampling of J parts from it. As has been shown, the assumption is not necessary.

By the usual mathematical presentation (e.g., Scheffé, 1959, p. 261) the unbiased estimator of σ_A^2 and σ_e^2 are given by,

$$\hat{\sigma}_{A}^{2} = (MS_{A} - MS_{e})/J; \quad \hat{\sigma}_{e}^{2} = MS_{e}$$

where MS_A and MS_e are mean squares for subject effects and errors respectively. They are obtainable from an ANOVA table given as the following:

TABLE 2.1

Source	S.S .	D.F.	M.S.	E(M.S.)
Subject	$s_{A} = J \sum_{i} (y_{i} - y_{i})^{2}$	1 - 1	MS _A =SS _A /(1-1)	$\sigma_e^2 + J\sigma_A^2$
Parts	$ss_{B} = i\sum_{j=1}^{2} (y_{j} - y_{j})^{2}$	J - 1	MS _B =SS _B /(J-1)	$\sigma_{e}^{2} + i(\sum_{\beta} \beta_{j}^{2})/(J-1)$
Errors	$ss_{E} = \sum_{i,j} \sum_{j} (y_{ij} - y_{ij} - y_{jj})$	v =	MS _e = SS _e /v	σ ² e
	+y) ²	(I-1) (J-1)		

Two Way Mixed Model ANOVA Table

substituting the unbiased estimator of variance components into (2.11) or (2.12),

$$\int (\mathbf{a}) \qquad \hat{\rho}_{j} = \frac{\hat{\sigma}_{A}^{2}}{\hat{\sigma}_{A}^{2} + \hat{\sigma}_{e}^{2}} = \frac{MS_{A} - MS_{e}}{HS_{A} + (J-T)MS_{e}} = \frac{F-1}{F+J-T}$$

(2.13)

(b)
$$\hat{\rho} = \frac{\hat{\sigma}_{A}^{2}}{\hat{\sigma}_{A}^{2} + \hat{\sigma}_{e}^{2}/J} = \frac{MS_{A} - MS_{e}}{MS_{A}} = 1 - 1/F$$
,

where F is the ratio of mean squares, namely $F = MS_A/MS_e$.

The derivations up to and including equation (2.13) are valid without any distributional assumptions on $\{a_i\}$ and $\{e_{ij}\}$. In order to obtain a sampling distribution of the estimate (2.13), distributional assumptions are necessary. The simplest normal assumptions are

(2.14)
$$\begin{cases} (a) & all \{a_i\} \text{ are distributed as } N(0,\sigma_A^2), \\ (b) & all \{e_{ij}\} \text{ are distributed as } N(0,\sigma_e^2). \end{cases}$$

With the above assumptions, model (2.6) is identical to the two way mixed model ANOVA with one observation per cell (Scheffé, 1959, p. 261). It can be shown that $SS_A/(J\sigma_A^2 + \sigma_e^2)$ and SS_e/σ_e^2 are distributed as chi-square with 1-1 and v degrees of freedom respectively, or

(2.15)
$$SS_{A} = (J\sigma_{A}^{2} + \sigma_{e}^{2}) \chi_{I-1}^{2}; SS_{e} = \sigma_{e}^{2} \chi_{v}^{2},$$

hence, F Is

(2.16)
$$F = MS_A/MS_e = \frac{SS_A/(1-1)}{SS_e/\nu} = \frac{(J\sigma_A^2 + \sigma_e^2)\chi_{1-1}^2/(1-1)}{\sigma_e^2 \chi_v/\nu} = (1+J\theta)F_{1-1;\nu}$$

Therefore, from (2.13) and (2.16), the following relationship between F-statistic and ρ and $\hat{\rho}$, or ρ_i and $\hat{\rho}_i$ can be made:

(2.17)
$$\begin{cases} (a) & F_{1-1;v} = \frac{1-\rho}{1-\hat{\rho}} \\ (b) & = \frac{[1+(J-1)\hat{\rho}_{1}][1-\rho_{1}]}{[1+(J-1)\rho_{1}][1-\hat{\rho}_{1}]} \end{cases}$$

Feldt (1965), Nitko and Feldt (1969), Nitko (1968), and Cleary and Linn (1968) derived the above formula, and even applied it to the sampling distribution of KR20 estimates. Kristof (1963) obtained the same results by means of maximum likelihood methods using a multinormal assumption. He obtained an estimate of intra-class correlation coefficient, which is equal to $\hat{\rho}_j$, and gave the estimate of the reliability of the total $\hat{\rho}$, called a step-up reliability, by using the general Spearman-Brown formula. However, this result is not new for mathematical statisticians. For example Scheffé gave similar results (1959, pp. 226-229).

Because (2.17) gives the relationship between the sample statistic $\hat{\rho}_{j}$, or $\hat{\rho}$ and the population parameter ρ_{j} or ρ_{j} in terms of the well-known F-statistic, the sampling distribution of reliability estimates can be determined; thus, it is possible to make inferences about the reliability, and to calculate confidence intervals. Within the essentially parallel assumptions, the sampling distribution of the reliability would not raise any questions provided the assumptions (2.7) and (2.14) are all met and the model as given by equation (2.6) is adequate.

As a special case of the model, let all of the fixed effects $\{\beta_i\}$ be equal to zero, then the model (2.6) reduces to

$$(2.18) \quad y_{ij} = \mu + a_i + e_{ij}, \quad i = 1, 2, \dots, l; \quad j = 1, 2, \dots, J.$$

This model is identical to the one way random effect model ANOVA (Scheffé, 1959, pp. 221-235), and it can be shown that all the formulas given above are valid with SS_e and v replaced by $(SS_B + SS_e)$ and I(J - 1), and MS_e modified accordingly. Model (2.18) is equivalent to the classical parallelism assumptions (e.g., Gulliksen, 1950, p. 11) except for the distributional assumptions which are not required under the classical test theory. Kristof's case 2 and Maguire and Hazlett's case C (1969) correspond to this model

Because the variance of random variables $\{a_i\}$ and $\{e_{ij}\}$ are equal to σ_A^2 and σ_e^2 respectively under the ANOVA model, they may be rewritten in terms of standard random variables $\{f_i\}$ and $\{e_{ii}\}$, namely,

$$\mathbf{e}_{i} = \sigma_{\mathbf{A}} f_{i}, \quad i = 1, 2, \dots, l, \text{ and}$$

 $\mathbf{e}_{i} = \sigma_{\mathbf{e}} c_{i}, \quad i = 1, 2, \dots, l; \quad j = 1, 2, \dots, J.$

Then the model equation (2.6) becomes

$$y_{ij} = u + \sigma_A f_i + \beta_j + \sigma_e c_{ij}, \quad i = 1, 2, ..., i; \quad j = 1, 2, ..., J$$

The above equations can be rewritten in a matrix equation

or, using the notations given in Section 1.3 of Chapter One,

(2.6')
$$\underline{y}_{i} = \underline{\mu} + \underline{\lambda} f_{i} + \underline{\Psi} \underline{\epsilon}_{i}, \quad i = 1, 2, ..., l$$

with the limitations $\lambda_1 = \lambda_2 = \dots = \lambda_J = \sigma_A$, and $\Psi_{11} = \Psi_{22} = \dots = \Psi_{JJ} = \sigma_e$. The assumptions of (2.7) may be rewritten as,

$$(2.7') \begin{cases} (a) & all \{f_i\} \text{ and } \{\varepsilon_{ij}\} \text{ are independent random variables,} \\ (b) & \sum u_j = u \text{ , where } u_j = u + \beta_j \text{ ,} \\ (c) & all \{f_i\} \text{ are identically distributed with } E(f_i) = 0, \\ \text{Var } (f_i) = 1, \text{ or } E(\underline{\lambda} f_i) = \underline{0}, D(\underline{\lambda} f_i) = \underline{\lambda} \underline{\lambda}', \\ (d) & all \{\underline{\varepsilon}_i\} \text{ are identically distributed with } E(\underline{\varepsilon}_i) = \underline{0}, \\ D(\underline{\varepsilon}_i) = \underline{1}, \text{ or } E(\underline{v} \underline{\varepsilon}_i) = \underline{0}, D(\underline{v} \underline{\varepsilon}_i) = \underline{v}^2. \end{cases}$$

The distributional assumption of (2.14) becomes

$$(2.14^{+}) \begin{cases} (a) & all \ \{f_{i}\} \text{ are } N(0,1), \text{ or all } \{\underline{\lambda} \ f_{i}\} \text{ are } N(\underline{0}, \ \underline{\lambda} \ \underline{\lambda}^{+}), \\ (b) & all \ \{\underline{c}_{i}\} \text{ are } N(\underline{0}, \ \underline{1}), \text{ or all } \{\underline{\Psi} \ \underline{c}_{i}\} \text{ are } N(\underline{0}, \ \underline{\Psi}^{2}). \end{cases}$$

,

2.2 Essentially & Equivalent Measurements Model

Under the ANOVA model, $\tau_{ij} = \mu + a_i + \beta_j$, hence with $j \neq j'$, $\tau_{ij} = \tau_{ij'} = \beta_j - \beta_{j'} = c$ where c is a constant which depends only on j and j'. Therefore, the part tests satisfy the conditons of the so-called essentially τ equivalent measurements (Lord and Novick, 1968, p. 50) which will be denoted as ETEM henceforth. Because the assumption of homogeneity of error variances is not required for the definition of ETEM, the error variance σ_{ej}^2 may depend on a specific j. Thus, assumption (d) of (2.7) may be modified to become,

(2.19) (d)
$$\{e_{ij}\}$$
 are distributed with $E(e_{ij}) = 0$; $Var(e_{ij}) = \sigma_{ej}^2$.

The variance of y_{ij} and the covariance between y_{ij} and $y_{ii'}$ are given by

(2.20)
$$\begin{cases} Var (y_{ij}) = E[y_{ij} - E(y_{ij})]^2 = \sigma_A^2 + \sigma_{ej}^2, \\ Cov (y_{ij}, y_{ij}) = E[(y_{ij} - E(y_{ij})][y_{ij}, -E(y_{ij})]] = \sigma_A^2. \end{cases}$$

Therefore, the reliability of jth part test is given by

(2.21)
$$\rho_{j} = \frac{\sigma_{A}^{2}}{\sigma_{A}^{2} + \sigma_{ej}^{2}}$$

i.e., it depends on j, and hence, in general, under the ETEM model, there is not a common correlation coefficient among the J parts. Therefore the reliability of a part cannot be interpreted as an

intra-class correlation coefficient. The correlation coefficient between j and j' depends on j and j', because,

$$\operatorname{Cor} (y_{ij}, y_{ij}) = \frac{\operatorname{Cov} (y_{ij}, y_{ij})}{\left[\operatorname{Var} (y_{ij})\operatorname{Var} (y_{ij})\right]^{\frac{1}{2}}} = \frac{\sigma_A^2}{\left[\left(\sigma_A^2 + \sigma_{ej}^2\right)\left(\sigma_A^2 + \sigma_{ej}^2\right)\right]^{\frac{1}{2}}}.$$

The reliability of the total test is given by,

(2.22)
$$\rho = \frac{\text{Var } (J a_i)}{\text{Var } (y_i)} = \frac{J^2 \sigma_A^2}{J^2 \sigma_A^2 + \sum \sigma_{ej}^2} = \frac{\sigma_A^2}{\sigma_A^2 + \sigma_{ej}^2/J}$$

where $\sigma_{e.}^2$ is average of σ_{ej}^2 , i.e., $\sigma_{e.}^2 = (\sum_{j} \sigma_{ej}^2)/J$. If σ_{j}^2 denotes the total variance of jth part test given by (2.20), the total test variance denoted by σ_{y}^2 is

$$\sigma_{y}^{2} = \text{Var} \left(\sum_{j} y_{ij} \right) = \sum_{j} \text{Var} \left(y_{ij} \right) + \sum_{j \neq j} \sum_{j \neq j} \text{Cov} \left(y_{ij}, y_{ij} \right)$$
$$= \sum_{j} \sigma_{j}^{2} + J \left(J - 1 \right) \sigma_{A}^{2} .$$

Substituting this into (2.22)

$$\rho = \frac{J^2 \sigma_A^2}{\sigma_y^2} = \frac{J}{J-T} \left[1 - \frac{\sum \sigma_j^2}{\sigma_y^2}\right]$$

which is the well-known formula for the Alpha coefficient.

Novick and Lewis (1967) have shown that Alpha is equal to reliability p if and only if the ETEM assumption is satisfied. Otherwise, Alpha is, in general, lower than the reliability, namely

,

The equality holds only if the ETEM assumption is true.

Alpha is usually estimated by

(2.24) Alpha =
$$\frac{J}{J-1} \left[1 - \frac{\sum s_j^2}{s_y^2}\right]$$
,

where s_j^2 and s_y^2 are the usual sample variance of part test and the total test respectively. Kristof (1970) investigated the sampling distribution of the Alpha estimate for the case of J = 2, and showed that the distribution can be reduced to a Student's t-statistic by the maximum likelihood method. The sampling distribution for the general case is not yet known.

Classically, Alpha as a reliability is derived (e.g., Gulliksen, 1950, p. 223) by considering two J-parts tests that are parallel part by part, and then introducing the assumption that the covariance of a part in one test with the parallel part of the second test is equal in the average to the covariance between any two of the J parts within a test. If y_{ij}^* denotes the score of the jth part of the second test the assumption is,

(2.25)
$$\sum_{j} Cov (y_{ij}, y_{ij}^{*}) = [\sum_{j \neq j^{+}} Cov (y_{ij}, y_{ij})]/(J-1)$$

Lord and Novick (1968, p. 92) have shown that the above assumption is satisfied if and only if the j parts are ETEM.

Under the ETEM assumption, the matrix model equation is the same as (2.6°) except that the diagonal elements of \underline{Y} may differ,

namely,

$$\underline{Y}_{i} = \underline{\mu} + \underline{\lambda} f_{i} + \underline{\Psi} \underline{\varepsilon}_{i} ,$$

$$\Psi_{11} = \sigma_{e1}, \quad \Psi_{22} = \sigma_{e2}, \dots, \Psi_{JJ} = \sigma_{eJ}$$

All the assumptions of (2.7°) and (2.14°) may be applied.

2.3 Congeneric True Score Model

Under the ETEM model, including the ANOVA model as a special case, the true score variance, σ_A^2 , is assumed to be common to all J part tests. However, for some tests, it might be more reasonable to expect that the true score variance would depend on j, i.e., some of the part tests might discriminate better and have greater true score variances. Under this situation, the classical parallelism or ETEM assumption is no longer valid. Nevertheless, the model given by equation (2.6') may still be used by removing the restriction of equal $\{\lambda_j\}$, namely the elements of the vector λ may differ. The constant λ_j may be interpreted as a regression coefficient of y_{ij} on the standard true score f_i , or standard deviation of the jth true score. In scalar form the equation is

(2.26)
$$y_{ij} = \mu + \lambda_j f_i + \beta_j + \sigma_{ej} \epsilon_{ij}$$

Under this model, the reliability is

(2.27)
$$\begin{cases} (a) \quad \rho_{j} = \frac{\operatorname{Var}(\lambda_{j}f_{i})}{\operatorname{Var}(\gamma_{ij})} = \frac{\lambda_{j}^{2}}{\lambda_{j}^{2} + \sigma_{ej}^{2}} \\ (b) \quad \rho_{j} = \frac{\operatorname{Var}(\underline{1}' \ \underline{\lambda} \ f_{i})}{\operatorname{Var}(\underline{1}' \ \underline{\chi}_{i})} = \frac{\underline{1}' \ \underline{\lambda} \ \underline{\lambda}' \ \underline{1}}{\underline{1}' (\underline{\lambda} \ \underline{\lambda}' + \underline{\psi}^{2}) \underline{1}} \end{cases}$$

where <u>1</u> is a $J \times 1$ vector whose elements are all 1's. Since the ETEM assumption is not satisfied, in general, Alpha $\leq \rho$.

No formula is yet available for the direct estimation of the reliability under this model, hence the estimate of Alpha is generally used as an estimate of the lower bound for the reliability. Cronbach, lkeda and Avner (1964) used a similar model in their effort to approximate the generalizability coefficient by an intra-class correlation coefficient. However their model, which involves sampling of part tests (Type 2 sampling), assumes a uniform distribution of λ^2 , unlike the present model where the $\{\lambda_j\}$ are assumed to be fixed constants. Jöreskog (1968, 1970) named this model as the congeneric test model.

2.4 Multi-Factor True Score Model

The three models reviewed in the previous sections implicitly assumed that the test measures only one ability or trait, represented by f_i , i.e., it is assumed that the factorial structure of the true score is a uni-factor model. However, for certain types of tests, the assumption is too restrictive, and a more general model which would accommodate more than one true score structure is desirable.

If $\underline{\lambda}$ and f_i are replaced by a $J \neq r$, $(1 \leq r \leq J)$ constant factor loading matrix $\underline{\Lambda}$ and a $r \neq 1$ standard random factor score vector $\underline{f_i}$ respectively, the model of equation (2.6'), becomes the well-known multi-factor model, (e.g., Browne, 1969; Jöreskog, 1970), namely,

(2.28)
$$\underline{y_i} = \underline{\mu} + \underline{\Lambda} \underline{f_i} + \underline{\Psi} \underline{\varepsilon_i} ,$$

with,

$$E(\underline{y}_i) = \underline{\mu}$$
; $D(\underline{y}_i) = \underline{\Lambda} \underline{\Lambda}' + \underline{\Psi}^2$.

Therefore, the reliability of the total test, ρ , is given by,

(2.29)
$$\rho = \frac{\operatorname{Ver}(\underline{1}' \underline{\Lambda} \underline{f}_{i})}{\operatorname{Ver}(\underline{1}' \underline{Y}_{i})} = \frac{\underline{1}' \underline{\Lambda} \underline{\Lambda}' \underline{1}}{\underline{1}' (\underline{\Lambda} \underline{\Lambda}' + \underline{\Psi}^{2}) \underline{1}}$$

if the estimate $\underline{\hat{\Lambda}}$ is available, an estimate of the reliability would be,

•

(2.30)
$$\hat{\rho} = \frac{1' \hat{A} \hat{A}' 1}{s_v^2}$$
.

The statistical properties of this statistic are unknown, and there is no agreed upon mean to obtain estimates of the factor loading matrix.

Under this model Alpha is in general the lower bound for the reliability as with the congeneric model. The equality is true if and only if the parts are ETEM, i.e., r = 1. For this case the factor loading matrix $\underline{\Lambda}$ becomes the vector $\underline{\lambda}$ with all elements equal, and

the standard deviations of the true scores are equal, as $\lambda_j = \sigma_A$ for all j = 1, 2, ..., J. If the error variances are all equal among the J part tests, the model becomes identical to the ANOVA model. Therefore the multi-factor model equation (2.28) includes the ANOVA, ETEM and the congeneric model as special cases.

Under this general model the assumptions are

$$(2.31) \begin{cases} (a) & all \{\underline{f}_i\} \text{ and } \{\underline{e}_i\} \text{ are independent random vector} \\ & variables, \end{cases}$$

$$(b) \quad \sum u_j = \mu \text{ , where } u_j = \mu + \beta_j \text{ ,} \\ (c) & all \{\underline{f}_i\} \text{ are identically distributed with } E(\underline{f}_i) = \underline{0} \text{ ,} \\ D(\underline{f}_i) = \underline{1}, \text{ or } E(\underline{\Lambda} \underline{f}_i) = \underline{0} \text{ and } D(\underline{\Lambda} \underline{f}_i) = \underline{\Lambda} \underline{\Lambda}^{'} \text{ ,} \end{cases}$$

$$(d) \quad all \{\underline{e}_i\} \text{ are identically distributed with } E(\underline{e}_i) = \underline{0} \text{ ,} \\ and \quad D(\underline{e}_i) = \underline{1}, \text{ or } E(\underline{\Psi} \underline{e}_i) = \underline{0}, \text{ and } D(\underline{\Psi} \underline{e}_i) = \underline{\Psi}^2 \text{ .} \end{cases}$$

The normality assumption becomes

$$(2.32) \begin{cases} (a) & all \ \{\underline{f}_{i}\} \text{ are distributed as } \mathbb{N}(\underline{0}, \underline{1}), \text{ or } \{\underline{\Lambda}, \underline{f}_{i}\} \\ & are \ \mathbb{N}(\underline{0}, \underline{\Lambda}, \underline{\Lambda}^{\dagger}), \\ (b) & all \ \{\underline{c}_{i}\} \text{ are distributed as } \mathbb{N}(\underline{0}, \underline{1}), \text{ or } \{\underline{\Psi}, \underline{c}_{i}\} \\ & are \ \mathbb{N}(\underline{0}, \underline{\Psi}^{2}). \end{cases}$$

2.5 Summary

Four basic models which might be used for simulation of test scores are examined in this chapter under the assumption that a test has been split into J parts whose scores are continuous random variables.

The most general model is found to be the multi-factor model. The other three models are special cases of this model with additional assumptions or restrictions on the parameters.

With uni-factor assumptions, i.e., r = 1, the congeneric model is the most general one, which includes the other two models as special cases. However, the Alpha coefficient is identical to the reliability of the total test score if and only if the ETEM assumption is satisfied. Hence under the multi-factor or congeneric model, in general, the Alpha coefficient is a lower bound for the reliability.

With the homogeneity of error variance assumption the ETEM model becomes identical to the ANOVA model, the most restrictive one, and the distribution of reliability estimate is related to an Fstatistic. Under more general models, the distribution is in general unknown.

If equal means are assumed among the J parts, the ANOVA model becomes identical with the classical parallelism model except for the distributional assumptions.

CHAPTER THREE

TEST MODEL FOR THE BINARY ITEM SCORE CASE

For a test consisting of J binary items as the parts of the test, the Kuder-Richardson formula 20(KR20) has been widely used as a special case of the Alpha coefficient with little investigation of its statistical properties. Feldt (1965), and Cleary and Linn (1968) treated the discrete case as a continuous part score case. However, the imposition of the zero-one scoring scheme violates not only the assumption of continuity of part scores, but also homogeneity of error variances and independence of true and error scores. The violation of the assumptions of the ANOVA model was fully discussed by Feldt (1965).

3.1 Normal Ogive Model

To investigate the statistical properties of test scores of binary item tests, a number of mathematical models have been proposed such as the normal ogive, logistic, and binomial models. The first two assume existence of a latent trait or factor score f, which can account for the subjects behavior or performance. The binomial model relies on the 'strong true score' theory (Lord, 1965; Birnbaum, 1968, pp. 508-529). In this model the conditional distribution of the test score for a given true score is assumed to be binomial.

In the following, the discussion is restricted to the statistical properties of reliability and KR20 under the normal ogive model. Extensions to other models may be done in a similar way. Although

the multi-factor model for the binary test is also possible, for the sake of simplicity, only the uni-factor case will be examined. Under this model, the random variable representing the latent trait or factor scores, f, is assumed to be independently distributed as N(0,1), for all subjects in the population P, as under the continuous part test score models. It is also assumed that the response of the ith subject, with latent trait $f = f_1$ to each of J items, is determined by a hypothetical intervening random variable y_{ii} which shall be called the 'response strength variable' according to Bock and Liberman (1970). Since only the relative strength of y_{11} is of interest, without loss of generality, it may be assumed that y_{11} is distributed with expected value zero and unit variance, i.e., it is a standard random variable. In addition y_{ii} is assumed to be subject to random error, and if the value of y_{ii} for the ith subject on the jth item exceeds a certain threshold constant specific to the item, denoted by β_i , the observed score of the subject, denoted by x_{ij} is equal to one, otherwise it is equal to zero. In this case the continuous response strength variable y may be written as a linear congeneric true score model noted in Section 2.3 of Chapter Two.

(3.1)
$$y_{ij} = \lambda_j f_i + \sigma_{ej} \epsilon_{ij}, \quad i = 1, 2, ..., l; \quad j = 1, 2, ..., J,$$

where λ_j is a constant regression coefficient specific to item j, σ_{ej} is the standard deviation of the error scores for jth item, while c_{ij} is a standard random variable for errors as before.

In vector notation,

$$(3.2) \qquad \underline{y_i} = \underline{\lambda} f_i + \underline{\Psi} \underline{c_i}$$

where $\underline{\lambda}$, $\underline{\Psi}$, and $\underline{\epsilon}_{i}$ are as defined for the congeneric model, except that the continuous part tests are replaced by dichotomous items. Also $D(\underline{\gamma}_{i}) = \underline{\lambda} \ \underline{\lambda}^{i} + \underline{\Psi}^{2}$ as before, and the diagonal elements of $D(\underline{\gamma}_{i})$ are the variances of γ_{ij} , and are assumed to be unity, i.e., $1 = \lambda_{j}^{2} + \sigma_{ej}^{2}$ for all j = 1, ..., J.

Thus model equation (3.1) may be rewritten,

(3.3)
$$y_{ij} = \lambda_j f_i + (1-\lambda_j^2)^{\frac{1}{2}} \epsilon_{ij}, \quad i = 1, 2, ..., l; \quad j = 1, 2, ..., J,$$

where the standard random variables $\{\epsilon_{ij}\}$ are assumed to be distributed independently as N(0,1).

The constant λ_j may also be interpreted as the index of reliability of the jth response strength variable, since

Cor
$$(y_{ij}, f_i) = Cov (y_{ij}, f_i)$$

= $E\{[\lambda_j f_i + (1 - \lambda_j^2)^{\frac{1}{2}} \epsilon_{ij}]f_i\}$
= λ_j .

By definition the correlation coefficient between y_{ij} and f_i is equal to the biserial correlation coefficient between x_{ij} and f_i , therefore, λ_j is actually the biserial correlation between the latent trait variable f and observable item score x_{ij} . Since the correlation between y_{ij} and the individual effect or the true score $\lambda_j f_i$ is λ_j , the square of λ_j may also be interpreted as the reliability of the jth response strength variable.

3.2 Item Parameters

The jth item characteristic function $P_j(f)$ is defined to be the expected value of x_{ij} given f for subject i, (e.g., Lord and Novick, 1968, p. 360), namely,

(3.4)
$$P_j(f) = E(x_{ij} | f = f_i) = Probability (x_{ij} = 1 | f = f_i)$$
.

Lord (1952, 1953), Lord and Novick (1968, pp. 358-394), Samejima (1969), Bock and Liberman (1970) and many others have investigated the item characteristic function under the normal ogive model.

The expected value and variance of response strength variable y_{ij} given a fixed subject with $f = f_i$, are given as,

(3.5)
$$E(y_{ij} | f = f_i) = \lambda_j f_i; \text{ Var } (y_{ij} | f = f_i) = 1 - \lambda_j^2.$$

The distribution of y_{ij} for fixed $f = f_i$ is normal with expected value $\lambda_j f_i$ and variance $1 - \lambda_j^2$, or $N[\lambda_j f_i, (1 - \lambda_j^2)]$. Thus the probability that subject i with the latent trait $f = f_i$ will respond correctly to item j, as indicated by observed value $x_{ij} = 1$, is

$$P_{j}(f) = Probability (x_{ij} = 1 | f = f_{i})$$

$$= \frac{1}{[2\pi(1 - \lambda_{j}^{2})]^{\frac{1}{2}}} \int_{B_{j}}^{B} Exp \frac{-(y_{ij} - \lambda_{j}f)^{2}}{2(1 - \lambda_{j}^{2})} dy_{ij}$$

Applying the transformation $z = (y_{ij} - \lambda_j f)/(1 - \lambda_j^2)^{\frac{1}{2}}$, $P_j(f)$ becomes

(3.6)
$$P_j(f) = \int_{g_j}^{\pi} \phi(z) dz = \phi(-g_j)$$
,

where $\phi(z)$ and $\phi(-g)$ are the respective standard normal density and distribution functions. The value $g_i(f)$ is given by,

(3.7)
$$g_j(f) = -(\lambda_j f - \beta_j)/(1 - \lambda_j^2)^{\frac{1}{2}}$$

Using generally accepted notation (e.g., Lord and Novick, 1968), $g_i(f)$ may be rewritten as,

.

(3.8)
$$g_j(f) = -a_j(f - b_j)$$

hence

$$a_j = \lambda_j / (1 - \lambda_j^2)^{\frac{1}{2}} ,$$

and

(3.9)
$$\begin{cases} b_{j} = \beta_{j}/\lambda_{j} \\ \beta_{j} = a_{j} b_{j}/(1 + a_{j}^{2})^{\frac{1}{2}} . \end{cases}$$

The item parameters a_j and b_j have been referred to as item 'discrimination power' and 'difficulty index' by Lord and Novick (1968. pp. 368-368).

The difficulty of item j is defined as expected value of x_{ij} , namely,

(3.10)
$$\pi_j = \text{Probability}(x_{ij} = 1) = E(x_{ij}) = \int_{-\infty}^{\infty} P_j(f) \phi(f) df$$

After some algebraic manipulation, it can be shown (Lord and Novick, 1968, p. 337) that, $\pi_j = \phi(-\beta_j)$.

Since $E(x_{ij}^2) = E(x_{ij})$, the variance of jth item is given by,

(3.11)
$$\sigma_j^2 = Var(x_{ij}) = E(x_{ij}^2) - [E(x_{ij})]^2 = \pi_j - \pi_j^2 = \pi_j(1 - \pi_j)$$

3.3 Reliability of Binary Item Test

Since direct decomposition of the response score x_{ij} into independent true and error scores is impossible for the binary item scores, there is no direct way of obtaining the variance ratio of true score variance to total test score variance which has been defined as the reliability of a test. Nevertheless the population reliability may be obtained by resorting to the correlation method, namely, by calculating the correlation coefficient between

$$x_i = \sum_j x_{ij}$$
 and $x_i^{\dagger} = \sum_j x_{ij}^{\dagger}$,

where x_{ij}^{\dagger} is the score of a hypothetical test item which is parallel in the classical sense to the jth item of the test.

Then,

(3.12)
$$\rho = \text{Cor} \left(\sum_{j} x_{ij}, \sum_{j} x_{ij}^{*} \right) = \frac{\text{Cov} \left(\sum_{j} x_{ij}, \sum_{j} x_{ij}^{*} \right)}{\left[\text{Var} \left(x_{i} \right) \text{Var} \left(x_{i}^{*} \right) \right]^{\frac{1}{2}}}$$
$$= \frac{\sum_{j} \sum_{j \neq j} \sigma_{j} \sigma_{j} + \rho_{jj \neq j}}{\sigma_{x}^{2}}$$

where ρ_{jjk} is the inter-item correlation between item j and j*, σ_j^2 is the variance of the jth item, and σ_x^2 is the variance of the

total test score x_i . The test variance σ_x^2 may be given in terms of inter-item correlation and item variance, namely,

(3.13) Var
$$(x_i) = Var \left(\sum_{j} x_{ij}\right) = \sum_{j} Var \left(x_{ij}\right) + \sum_{j \neq j} Cov \left(x_{ij}, x_{ij}\right)$$
$$= \sum_{j} \sigma_j^2 + \sum_{j \neq j} \sigma_j \sigma_j, \rho_{jj}.$$

To obtain ρ and σ_x^2 , the inter-item covariance $\sigma_j \sigma_{j}, \rho_{jj}$, must be evaluated in terms of the item parameters λ_j and λ_{ji} . Lord and Novick (1968, p. 379) showed that for any two items j and j', the tetrachoric correlation between x_{ij} and x_{iji} , denoted by Y_{jji} , can be expressed as the product of the two biserial correlations λ_j and λ_j , by performing integration of the tri-variable distribution x_{ij}, x_{iji} , and f, namely

$$(3.14) Y_{jj} = \lambda_j \lambda_j,$$

It can be shown (e.g., Kendall and Stuart, 1963, p. 161 and 1967, p. 306) that the inter-item covariance may be expressed as an infinite power series of γ_{jj} , using Tchebycheff-Hermite polynomials, denoted by $H_n(\beta)$ (Kendall and Stuart, 1963, p. 155). Then,

(3.15) Cov
$$(x_{ij}, x_{ij}) = \sigma_j \sigma_{j} \rho_{jj}$$

$$= [\phi(\beta_j)\phi(\beta_j)][\gamma_{jj} + 0.5 \beta_j \beta_j, \gamma_{jj}^2, ...]$$

$$= [\phi(\beta_j)\phi(\beta_j)] \sum_{n=1}^{\infty} [H_{n-1}(\beta_j) H_{n-1}(\beta_j)\gamma_{jj}^n]/nt$$

Therefore, the covariance may be calculated numerically.

By the results of equations (3.11), (3.13), (3.14), and (3.15), the reliability ρ , given by equation (3.12) may be evaluated numerically if the item parameters { β_j } and { λ_j } are specified.

3.4 KR20 Coefficient and Its Estimate

The Alpha coefficient for the binary item test, KR2O, is defined as,

(3.16) KR20 =
$$\frac{J}{J-1} \left[1 - \frac{\sum \sigma_j^2}{\sigma_x^2}\right] = \frac{J}{J-1} \left[1 - \frac{\sum \pi_j (1 - \pi_j)}{\sigma_x^2}\right]$$

which is equal to the reliability ρ if and only if the ETEM condition of (2.25) is satisfied. In general the condition is not satisfied, hence,

(3.17)
$$KR20 < \rho$$

Using the results of equations (3.10), (3.13), (3.15), and (3.16), KR20 may also be evaluated numerically if the item difficulty $\{\pi_j\}$ and biserial correlation $\{\lambda_j\}$ are specified, provided f_i and $\{\varepsilon_{ij}\}$ are distributed independently as N(0,1).

The ETEM condition of (2.25) for binary item cases in terms of the powe series of (3.15) may be written as,

$$\sum_{j} \left[\phi(\beta_{j})^{2} \left[\sum_{n=1}^{\infty} (H_{n-1}^{2}(\beta_{j})\lambda_{j}^{2n})/n1 \right] \right]$$

= $\left\{ \sum_{j\neq j} \left[\phi(\beta_{j})\phi(\beta_{j}) \right] \sum_{n=1}^{\infty} \left[(H_{n-1}^{2}(\beta_{j}) H_{n-1}^{2n}(\beta_{j}))\gamma_{jj}^{n} \right]/n1 \right\}/(J-1)$

which is true if $\beta_1 = \beta_2 = \dots = \beta_J$ and $\lambda_1 = \lambda_2 = \dots = \lambda_J$. This means that all the item parameters are equal.

An estimate of KR20 is obtained by substitutiing the sample estimates of $\{\pi_i\}$ and σ_x^2 , namely,

(3.18)
$$\widehat{KR20} = \frac{J}{J-1} \times \left[1 - \frac{\sum_{j=1}^{n} (1 - \hat{\pi}_{j})}{s_{x}^{2}}\right]$$

where $\hat{\pi}_j$ is the sample difficulty of the jth item, and s_x^2 is the sample variance of the test score x_i , given by,

(3.19)
$$\begin{cases} \hat{\pi}_{j} = (\sum_{i} x_{ij})/1, \\ s_{x}^{2} = [\sum_{i} (x_{i} - x_{i})^{2}]/1 \end{cases}$$

Unlike the case of reliability estimates under the ANOVA model, the exact sampling distribution of KR20 estimates given by (3.18) is unknown even with the restrictive mathematical models and assumptions. Aoyama's formulas (1957), provided an approximation for the expected value and the variance of KR20 estimates without any distributional assumptions. He gave approximate formulas for $E(\widehat{KR20})$ and Var ($\widehat{KR20}$) as,

(3.20)
$$E(\widehat{kR20}) = KR20 + O(1/J)$$

and

(3.21) Var
$$(\widehat{KR20}) \leq \frac{1}{|(J-1)|^2} (\frac{1}{|I-1|})^2 (\delta_2 + 15 + \frac{14}{J} + \frac{18}{J^2} x_m^2)$$

where O(1/J) is a term of the order of 1/J, δ_2 is the kurtosis of

the distribution of x_1 and x_m is the minimum score. Formula (3.20) indicates the estimate is biased, while (3.21) suggests a bound for the standard error of KR20 estimates, but is of little use since it involves the unknown parameter δ_2 , which would be very difficult if not impossible to evaluate.

3.5 Summary

To examine the feasibility of simulating binary item test scores, the well-known normal ogive model is reviewed in terms of two basic item parameters, namely the item difficulty $\{\pi_j\}$, and the biserial correlation between items and the latent trait or factor score f_i , i.e., $\{\lambda_i\}$.

With the help of the 'response strength variable', a model equation similar to (2.26) used in the previous chapter was introduced.

Item characteristic functions and item indices are also examined in terms of the two sets of parameters.

The population reliability and KR20 were found to be amenable to calculation through numerical means in terms of these parameters. The exact sampling distribution of KR20 estimates is in general unknown.

CHAPTER FOUR

RATIONALE FOR SIMULATION, COMPUTER PROGRAMS, AND METHOD OF INVESTIGATION

4.1 Violation of ANOVA Model and Assumptions

5

The review in the previous three chapters indicated that the exact sampling distribution of the reliability estimates is largely unknown except for the special case of the ANOVA model under rather restrictive assumptions. The distributional theory and inferences based on this model are valid, if and only if all of the underlying assumptions of (2.7¹) and (2.14¹) are valid. A workable formula for the standard error of the reliability estimates may be obtained under this model only by employing the well-known characteristic of an F-statistic (Cleary and Linn, 1968). However, if any one or more of the assumptions are not valid the true sample reliability distribution will not be the same as that given by (2.17).

If the ANOVA model equation (2.6') is taken as the basic model, the more general models and the normal ogive model for the binary item test may be considered as being assumption-violating cases of the basic model. It has been shown that the latter more general models are obtained by successively relaxing some of the assumptions of (2.7'), and the normal ogive model has been shown to be the congeneric model if the hypothetical 'response strength' variable is used in the model equation. Thus the problem of investigating the distribution of reliability estimates using models other than the ANOVA model

becomes the problem of investigating the effects of the violation of the assumptions of the ANOVA model upon the distribution of the reliability estimates.

It is also suspected that, under certain circumstances for real data, cases arise in which the distributional assumptions of (2.14⁺) are substantially violated, that is the distribution of the true scores and the error scores may be skewed, and/or platykurtic or leptokurtic (Lord, 1960, 1969).

However, regardless of which model the real data may satisfy, in practice the reliability estimates are usually obtained using the Alpha or KR20 formulas; hence the distributional theory of the estimates based on these formulas becomes a central concern for the test users as well as the theorist. Thus, it seems justifiable to investigate the distributional problem using models other than the ANOVA model, e.g., those in which a systematically distorted distribution arises for (2.17) by violating (2.7¹) and/or (2.14¹). The assumptions underlying such models are summarized in the following table.

TABLE 4.1

Assumptions	ANOVA	ETEM	CONG.	M.F.	N.O. ¹	
independence of true and error scores	yes	yes	yes	yes	yes	
uni-factor true scores	yes	yes	yes	no	yes	
ETEM assumptions	yes	yes	no	no	no	
homogeneity of error score variances	yes	no	no	no	no	
normality of true scores	yes	yes	yes	yes	yes	
normality of error scores	yes	yes	yes	yes	yes	

Summary of	the	Assumptions	Under	Vari	ous	Mode 1 s
------------	-----	-------------	-------	------	-----	----------

(Cong. - congeneric; M.F. - multi-factor; N.O. - normal ogive)

Applicable only to the response strength variable.

4.2 Robustness Under Violation of Assumptions

It has been known that, under certain conditions, the F-test of the one way fixed effects analysis of variance model is quite robust against the violation of the underlying assumptions. It may then be asked whether or not the same robustness exists for inferences about the reliability based on (2.17), which relies on an F-statistic. That is, can the findings for the one way fixed effects model ANOVA be generalized to the two way mixed effects model ANOVA case with one observation per cell. If the sampling distribution of the reliability estimates is stable with the violation of assumptions, statistical inference based on (2.17) would be very powerful. If the sampling distribution of the most often used Alpha or KR20 estimates are found to be quite robust against the violation of the assumption users may freely employ the Alpha and KR20 estimate formulas and perform statistical inferences based on (2.17) without investigating the adequacy of the models or the assumptions. If the distribution is robust only under certain conditions, the researcher should keep this in mind whenever making an inference about the reliability or interpreting an estimate based on (2.17). Therefore, the basic question to be answered is: under what conditions, if any, do the Alpha or KR20 estimates have a stable distribution against the violation of assumptions.

4.3 An Empirical Approach Toward the Problem

Since a mathematical answer to the above problem is not available at the moment, and it seems impossible to give one in the near future, one alternative approach to be considered is the performance of an actual experiment, i.e., an empirical examination of the sampling distribution under various models and assumptions that violate the ANOVA model and its assumptions. The empirical distribution of the Alpha and KR20 estimates can then be found and compared with the theoretical one under the ideal ANOVA model.

An experiment with real data is almost impossible since the population parameters are seldom known. Even if this were possible

the data would not fit the specific model and assumptions except for rather limited cases (e.g., Baker, 1962). One available method is to use computer simulated data, under various assumptions, to obtain empirical distributions of the Alpha and KR20 estimates and compare them with the distribution for the ideal ANOVA model.

The author has already investigated the feasibility of such computer simulation techniques in the study of the effects of the violation of assumptions on the F-test for linear models requiring statistical inferences, and has provided a comprehensive computer program for educational and psychological researchers (Bay, 1970).

The present study uses essentially the same techniques to investigate the sampling distribution of reliability estimates.

4.4 The Concept of Simulation

The term 'simulation' has been used rather uncritically in a wide range of scientific or economic fields, especially for the purpose of building models. Von Neuman and Ulam's work in the late 1940's, when they attempted to solve certain nuclear physics problems by a Monte Carlo analysis, may be considered the first modern use of the simulation techniques. A Monte Carlo analysis involves the solution of a problem, that is either too expensive for experimental solution or too complicated for analytical methods, by simulating a stochastic process that has probability distributions satisfying the mathematical or probabilistic relations underlying the problems.

With the development of high speed computers in the last two decades, not only physicists and other natural scientists, but also

economists, psychologists, and other social scientists can perform controlled laboratory-like experiments on a computer with much efficiency and economy.

Although there is no agreed upon definition of the term 'simulation', for the purpose of this paper it was considered sufficient to use the following definition given by Churchman (1963, p. 12).

'x simulates y' is true if and only if:

(a) x and y are formal systems,

(b) y is taken to be the real system,

(c) x is taken to be an approximation to the real system, and

(d) the rules of validity in x are non-error free.

In the context of this paper, y is a system which produces a number of real test score sets by performing actual random sampling of subjects and administering the test, thus giving a number of real estimates of reliability of the test. The number of estimates under the real situation is limited since the actual sampling of subjects and the administration of the test are involved. On the other hand, x is a system which produces a number of test score sets, via computer, under a model and a number of assumptions which will approximate the real system y. Since the number of test score sets obtainable under x is almost unlimited, the sampling distribution of the relaibility estimates is easily obtainable by calculating the frequency distribution of the estimates. Furthermore, since the test parameters and the distributions of true and error scores can be manipulated easily under computer simulation, almost any combination of models and assumptions can be investigated. The researcher can input the most appropriate model

and assumptions which will best approximate the real system y for a given test and population of subjects.

This approach toward statistical inference is somewhat different from the conventional procedure since the user can choose the model and assumptions of interest to him, while in the conventional case the model and assumptions are predetermined by the mathematical statisticians and the user can only choose whether or not to accept the conditions and the model, look for alternatives, or give up. In this sense computer simulation techniques permit the study of sampling distributions under almost unlimited combinations of models and assumptions. Thus, the user may obtain the sampling distribution of a statistic under his own model and assumptions in the experimental situation, make statistical inferences, and use the knowledge so gained in practice. Because of the fourth property of the simulation, the method may not provide exact answers, but it would provide approximate answers to distribution problems.

4.5 Computer Programs

Two computer programs named RELO1 and RELO2 have been developed in FORTRAN IV on the IBM 360/67 computer of the University of Alberta computer system for continuous part test and binary item test cases respectively. The programs are in sufficient general form so that they can be used for other problems related to sampling distribution of reliability estimates not considered part of the study. The programs automatically simulate the test score matrix $\underline{Y} = \{y_{ij}\}$ for the continuous case, or $\underline{X} = \{x_{ij}\}$ for the binary case based on input models, parameters, and specified distributions of true or latent scores and error scores. The programs have the following features:

(a) For the continuous case, the program RELOI uses the most general model, namely the multi-factor true score model given by (2.18), and accommodates all other less general models as special cases. Users are able to specify the sample size I, the number of parts J, and the parameter vector and matrices for the model, namely $\underline{\mu}$, $\underline{\Lambda}$, and $\underline{\Psi}$, i.e., mean vector, factor loading matrix, and error standard deviation matrix respectively. The program will evaluate population test parameters such as reliability, Alpha, mean, true and error variances.

(b) For the binary item case, the program REL02 uses the normal ogive model (3.1), under a uni-factor latent scores assumption, and allows the user to specify the sample size I, the number of items J, and the basic item parameters, namely the difficulty parameters $\{\pi_j\}$ and the biserial correlations $\{\lambda_j\}$. The program will evaluate the population test parameters such as p, KR20, and σ_x^2 based on the Tchebycheff-Hermite polynomials discussed in Chapter Three and other formulas under the normal ogive model. However, these calculations are valid only for the normal distributions of latent scores and errors. If the normality is violated, the parameters where the test parameters are independent of distributions of true and error scores. To evaluate test parameters for non-normal cases, an empirical method based on a parallel form method described in the following Section 4.6 is used.

(c) For both programs the user may decide shapes of the

distributions of true or latent scores $\{f_i\}$ and error scores $\{\varepsilon_{ij}\}$. The programs generate specific distributions by means of random number generating subroutines. The distributions of true or latent scores and error scores are specified by user supplied subroutines DIST and DISE respectively for non-normal cases. These two subroutines may call the uniform random number generating subroutine VECRAN described in the following Section 4.7. For the normal case, the program generates the distribution automatically by employing the Box-Muller method which is also described in the Section 4.7.

(d) The programs automatically perform N simulations, as specified by the user, and calculate a number of test statistics. The reliability coefficients are estimated for each simulated test score matrix based on the formula (2.13), regardless of the model and distributions used to generate the score matrix, since the formula is, as was noted before, the one most often used by the test theorists or users. Alternatively or concurrently, as an option, the user may adopt an unbiased estimation formula developed by Kristoff (1963) and discussed in the following chapter. The distributions of reliability thus estimated are then compared with those obtainable from (2.17), i.e., the ideal ANOVA model and normal theory. For non-normal binary item test cases, the reliability parameter obtained by the parallel form method is used for the value of ρ .

(e) The programs also summarize the empirical distributions of MS_A , MS_B , MS_e , and $\hat{\rho}$ by calculating their means and variances over N samples, and compares them with the theortical values of the expected mean and variance under the ANOVA model and normal theory
assumptions. For the binary item case, the variance parameter σ_A^2 and σ_e^2 in terms of the test score x_i are not defined or calculable directly. However, from the definition of reliability given by (2.12) and the variance given by (2.10), a generalization of the relationships between reliability and variances to binary item cases may be made such that the formulas in Chapter Two may be used without modification, namely,

(4.1)
$$\sigma_A^2 = \frac{\rho \sigma_X^2}{I^2}; \quad \sigma_e^2 = \frac{(1-\rho) \sigma_X^2}{J}, \text{ or }$$

(4.1')
$$\sigma_A^2 = \frac{\rho \sigma_X^{*2}}{\frac{1}{2}}, \quad \sigma_e^2 = \frac{(1-\rho^*)\sigma_X^{*2}}{\frac{1}{2}}$$

for non-normal cases, where the star (*) notation referes to parameters evaluated by the parallel form method.

(f) Comparisons between the empirical distributions of reliability estimates based on either or both (2.13) or Kristof's unbiased formula, with those theoretical ones based on (2.17) or modified form of it for the unbiased formula, can also be made as an option by plotting both distributional curves together in a graph.

Computer program listings together with example outputs of the programs are given in Appendix A.1 and A.2 respectively.

4.6 Parallel Forms Method for Test Parameters of Binary Item Test

For the continuous part test cases, test parameters such as σ_y^2 , p, and Alpha depend only on the input of part test parameters and are independent of the distributions of the true and error scores.

However, for the binary item test cases, the basic test parameters depend not only on item parameters such as difficulty or biserial correlations but, also on the distributions of latent scores and errors, since the normal ogive model connects the continuous response strength variable y_{ij} to the binary item score x_{ij} . Therefore the formulas for test parameters such as σ_x^2 , ρ , and KR20 given in Chapter Three are valid only for the case of normal distributions. In order to be able to investigate the sampling distributions of reliability estimates under non-normal cases, i.e., under the assumption violating cases of the normal ogive model, the test parameters must be known by means other than these formulas. Although for some simpler distributions such as the uniform distribution, evaluation of these parameters by analytical means might be possible, a general solution to cover all types of possible distributions is impossible, and alternative empirical methods are employed in the REL02 program.

Since the number (N) of test score matrices simulated is usually large, say at least 1000, the number of test scores (N × I) simulated in each experiment is a very large number compared with the sample size 1. On the other hand, the sample reliability and variance are consistent estimators of the corresponding population values. Therefore, if N × I test score sets are used at a time to estimate these parameters, the estimates will be close to the population values. However, to obtain a population reliability coefficient by this large sample method and the correlation formula give by (3.12), parallel form test scores must also be simulated which have identical f_i terms but different c_{ij} terms denoted by c_{ij}^* due to random

fluctuation of responses. Therefore, two sets of model equations may be considered for the response strength variables y_{ii}, namely,

(4.2)
$$\begin{cases} y_{ij} = \lambda_j f_i + (1 - \lambda_j^2)^{\frac{1}{2}} \epsilon_{ij}, \\ y_{ij}^* = \lambda_j f_i + (1 - \lambda_j^2)^{\frac{1}{2}} \epsilon_{ij}^*; \quad i = 1, \dots, NI; \quad j = 1, \dots, J. \end{cases}$$

Form these model equations, two sets of test scores $\{x_i\}$ and $\{x_i^n\}$ may be generated, and by calculating the correlation coefficient between these two sets of scores, the population reliability may be obtained regardless of which distribution is used for simulating the test scores. For ideal normal cases, the parameters obtained by this method should agree closely with the calculated values based on the formulas of Chapter Three, providing one way of checking the formulas in the chapter and the computing procedures adopted by REL02. The population parameters thus estimated will be denoted by the corresponding population parameter symbols with a star (*) sign to distinguish them from those obtained by analytical means. For example, the test mean and variance obtained by this method are given by,

$$\mu^{\pm} = (\sum_{i} x_{i})/NI$$
, and $\sigma_{x}^{\pm 2} = \{\sum_{i} (x_{i} - \mu^{\pm})^{2}\}/NI$

4.7 Procedures for Generating Random Numbers

The method of generating a set of independent random numbers with a specific distribution by a computer program is of extreme importance to the success of a stochastic simulation experiment. The

simplest and basic set of random numbers with a continuous probability density function is the one that is constant over the interval (0,1) and is zero otherwise. The density function defines what is known as a uniform or square distribution. The principal value of the uniform distribution for the simulation techniques lies in its simplicity and in the fact that it can be used to simulate random variables from almost any kind of probability, distribution since the inverse transformation of the cummulative distribution function of any random variables results in the uniform distribution between (0,1).

(4.3) The uniform density function on (0,1) is defined by f(z) = 1.0 0 < z < 1= 0.0 otherwise.

Due to its simple density function, it is very easy to evaluate moments for such a uniformly distributed random variable by using elementary calculus.

For this study, the method used for generating uniform random number is the same as that used by the IBM Scientific Subroutine Package RANDU (IBM, 1968). The subroutine named VECRAN can however generate a specified number of uniform random numbers at a time and provides the output in vector form, while only one number at a time is generated by RANDU.

The method employed is the so-called 'power residue method', (IBM, 1959) or 'multiplicative congruential method' (Nayler et al., 1968, p. 51-52). The method generates successive nonnegative integer random number which are less than 2^C for binary computers where c denotes the word size of the computer by means

of a congruence relation, namely,

(4.4)
$$n_{i+1} = a n_i \pmod{a o f 2^c}, i = 0, 1, ...$$

where n_0 is the so-called seed random number denoted by IX in the program. Meanings of 'power residue', 'congruential' or 'modulo' are given by Nayler et al., (1968, pp. 63-66), or can be found in any text-book of elementary number theory. The formula (4.4) is the so-called formula for generating power residuals, and results in $u = n_{i+1}/(2^{c}-1)$ being approximately a uniform random number in (0,1). For the IBM 360 series computers, c = 31, and VECRAN uses a = 65539, and $2^{-c} = 0.4656613 \times 10^{-9}$ which are the same as for RANDU. The user must specify $n_0 = 1X$ as an input parameter at the beginning of the program execution, and it must be an odd integer with nine digits or less. The last value of n_i generated may be used as an input seed random number IX for the next step generation.

The random numbers thus generated are often referred as pseudo-random numbers, and the method involves the generating procedure by 'indefinitely continued transformation of a group of arbitrarily chosen numbers' (Tocher, 1954, p. 41). The term has been defined by Lehmer (1951) as,

> ... a vague notion embodying the idea of a sequence in which each term is unpredictable to the uninitiated and whose digits pass a certain number of tests, traditional with statisticians and depending somewhat on the use to which the sequence is to be put.

Although there are some objections on the philosophical grounds that the sequence is generated by a deterministic rule of (4.4), use of such pseudo-random numbers can be defended by pragmatic reason that a sequence may be regarded random if it satisfies some predetermined statistical tests of randomness, and the uniform number generated by RANDU has been known to satisfy these requirements (IBM, 1968).

Based on the uniform random numbers thus generated by VECRAN, denoted by U1, five other kinds of random numbers are generated for this study. For the selection of these specific types of a random number the following factors were taken into account:

(a) Ease of generation and computer time required for computation.

(b) Ease of evaluating the moments of random numbers by calculus to ensure that the program generates random numbers with the required distribution.

(c) Some practical usefulness. For example, normal, uniform, and exponential distributions are included because the approximation of the normal distribution to real data is so often assumed, the uniform distribution is closely associated with ranked data, and the exponential distribution can arise with the truncated data of normal distribution due to a selection process.

The six kinds of random numbers, including Ul, are summarized in the following table.

Description	Notation	Transformation Formula
Uniform, (0,1)	U1	z = u ₁
Sum of 2 indep. Ul	U2	$z = \{(u_1 + u_2) - 1.0\} \times (6)^{\frac{1}{2}}$
Sum of 3 indep. Ul	U3	$z = \{(u_1 + u_2 + u_3) - 1.5\} \times 2$
Sum of 6 indep. Ul	U6	$z = \{(u_1 + u_2 + + u_6) - 3.0\} \times (2)^{\frac{1}{2}}$
Normal	NO	$z_1 = (-2 \text{ Ln } u_1)^{\frac{1}{2}} \cos (2\pi u_2)$
		$z_2 = (-2 \text{ Ln } u_1)^{\frac{1}{2}} \text{ Sin } (2\pi u_2)$
Exponential	EX	z = -Ln (u ₁) - 1.0

<u>Note</u>: u_1, \ldots, u_6 denote the uniform random numbers generated by VECRAN.

The method used for the generation of standard normal random variables is the same as given by Box and Muller (1959). Since the distribution is exact, it has an advantage over the so-called central limit approach which uses the sum of a number of independent uniform random variables. All random variables in this study were used in standard form, namely with an expected value of zero and unit variance, except U1 which was standardized by subtracting 0.5 and multiplying by the square root of 12.0. Therefore the random numbers thus generated can easily be used as $\{f_{ij}\}$ or $\{\epsilon_{ij}\}$ of the model equations (2.28), (3.3), and (4.2).

A number of preliminary sampling experiments were performed to ensure that this method generates the random numbers with desired distributions. To see whether the means, variances and other statistics for large samples closely approximated the population values of the distribution simulated by the random numbers, five samples of size 6000 each were generated for each distribution, and the obtained statistics were compared with the population values obtained from the knowledge of the probability density functions and the application of elementary calculus. The results are summarized in Table 4.3. With some exceptions for the calculated kurtosis of the distribution noted with (*) sign, the sample statistics approximate reasonably well the population values. The exceptional cases are probably due to the imperfections of the random number generating procedures and sensitivity of kurtosis to the shapes of the distribution. The calculated auto-correlations are almost zero indicating no serial correlations for adjacent random numbers in the sequences and the degree of independence of random numbers thus generated.

4.8 Methodological Limitations

Because the computer simulated experiments cannot be exhaustive and cover all possible combinations of models, parameter sets, and distributional assumptions, and due to the very nature of computer simulation techniques and limited funds available for the computing charges, the following methodological limitations are imposed on this study.

TABLE 4.3

Descriptive Summary of Random Numbers Generated by Pseudo-Random Number Generating Subroutines, Sample Size = 6000 for Each Trial

01s	Trial	Hean	Ver.	Skewness	Kurtosis	Aut	o-Correlation	15
						Lag 1	Lag 2	Lag 3
VI	1	0.50347	0.08417	-0.01615	-1.21110	0.00153	-0.00182	0.00152
U 1	2	0.50027	0.08500	-0.00620	-1.23131	0.00029	0.00054	-0.00206
U1	3	0.50080	0.08367	-0.02638	-1.20730	-0.00070	0.00045	-0.00049
VI	4	0.49840	0.08320	-0.01426	-1.19213	0.00036	0.00174	0.00073
UI	5	0.50682	0.08226	-0.02995	-1.18213	0.00118	0.00052	0.00005
10	Expected	0.50000	0.08333	0.00000	-1.20000	0.00000	0.00000	0.00000
UZ	!	0.03035	0.99873	-0.00577	-0.58865	0.02595	-0.22086	-0.00478
U2	2	0.01817	0.98648	-0.02644	-0.59803	0.01458	-0.00631	0.00929
U2	3	-0.00268	1.01429	0.00608	-0.63365	0.00781	0.02034	-0.00341
U2		0.01204	0.98045	-0.02414	-0.58109	-0.01133	0.01728	0.00093
U2	5	0.02277	1.01143	-0.00802	-0.65140	0.02078	0.02055	0.00163
V2	Expected	0.00000	1.00000	0.00000	-0.60000	0.00000	0.00000	0.00000
U3	!	0.02933	1.00741	0.00310	-0.42060	0.02305	-0.01435	0.01603
5	2	0.01852	0.95938	0.00809	-0.30457	0.01778	-0.01994	0.0027
13	3	-0.00475	1.00159	-0.01646	-0.37746	0.00498	0.01504	-0.00118
13		0.00062	0.99190	-0.02163	-0.37966	-0.00196	0.00308	-0.00630
V3	5	0.01843	1.02359	-0.01513	-0.40427	0.00996	0.00901	-0.00601
V3	Expected	0.00000	1.00000	0.00000	-0.40000	0.00000	0.00000	0.00000
U6	!	0.01903	0.98999	-0.01882	-0.23413	-0.01181	-0.01000	0.02742
U6	2	0.00843	0.97866	0.00333	-0.20790	-0.00566	-0.02743	0.02315
U6	3	-0.00411	1.00637	-0.00300	-0.22061	-0.01835	-0.01835	0.02315
U6		0.00294	0.99037	-0.01588	-0.24665	-0.00398	0.00064	-0.01555
u6	5	0.01480	1.03165	-0.00895	-0.16114	0.00049	0.01274	0.00500
U6	Expected	0.00000	1.00000	0.00000	-0.20000	0.00000	0.00000	0.00000
	!	0.00587	1.01532	-0.00714	0.11501+	0.01517	0.01176	-0.00349
	2	0.00214	0.99160	-0.05184	0.05017	-0.00904	0.02503	-0.01246
	3	-0.00856	0.99918	-0.00635	0.03248	0.02173	-0.02119	0.03329
	-	-0.00069	0.99955	0.02294	-0.04551	0.01060	-0.02274	-0.00699
	5	-0.01763	0.97289	0.01456	-0 05775	-0.01532	-0.00687	0.00793
•••	Expected	0.00000	1.00000	0.00000	C.00000	0.00000	0.00000	0.00000
u	!	-0.00475	1.01587	2.00600	5 70110	0.00894	-0.01838	0.01769
	2	0.00565	1.01611	1.93136	5.31563	0.00892	0.01781	-0.01341
0	2	0.00586	1.05517	2.19383	8 02954+	-0.00005	-0.00905	-0.01218
u		0.00066	1.01780	1.91303	4.91614+	0.00727	0.01803	-0.00044
u	5	-0.02518	0.96299	2.03853	6.10958	0.00473	-0.00114	0.00189
u	Expected	0.00000	1.00000	2.00000	6.00000	0.00000	0.00000	0.00000

Note: All random numbers are standardized by population mean and variance except Ul.

(a) The investigation is restricted to the sampling distributions of reliability estimates under Type I sampling situation only, namely only sampling of subjects is involved; the test is assumed to be given and all parameters for part-tests or items are assumed to be fixed constants. The distributions under the Type 2 or Type 12 sampling situation, such as the distributions of generalizability coefficient estimates, are not considered in this study, although this may be done very easily as an extension to this study.

(b) Because the computer time required for each experiment must be kept within reasonable limits, the sample size 1, the number of parts or items J, and the number of samples to be simulated must be kept within moderate bounds for this study. Therefore, although the programs are dimensioned such that they can accommodate up to N = 5000, I = 100, J = 30, investigations are limited to N = 2000or 1000, I = 30, J = 6, 8, or 9 to restrict each experiment within 5 to 7 minutes of C.P.U. time which costs approximately \$20-30 at the present charging rate of the University of Alberta.

(c) To conserve computer time for the overall study, the experiments have focused only on the following key problems:

- (i) The effect of non-normal true or latent scores and error scores distributions.
- (ii) The effects of non-homogeneous error variances,i.e., distributions under ETEM model.
- (iii) The effect of congeneric and multi-factor true score model.

 (iv) The effect of binary item scores, non-homogeneous difficulty parameters and biserial correlations, and non-normal distributions.

(d) The non-normal distributions used in this study are limited to a minimal number of well known distributions outlined in Section 4.7.

Because of these limitations, the findings of this study will be limited to some extent in their generalization to all 'real' situations.

4.9 Accuracy of Calculation

Like any other numerical analysis, the results reported in this study are subject to certain computational errors. The figures reported in this study retain, in most cases, three decimal places, but they may be inaccurate in the right most one significant digit due to the cummulative effects of errors when the sample size N is large. This is especially true for the case when the variance of a variable is small in comparison with the mean. However, it is expected that the errors are confined only within 3 to 4% level at maximum, and they would not affect the findings of this study.

4.10 Summary

In this chapter, the rationale for investigating the sampling distributions of reliability estimates as assumption violating cases of the well known ANOVA model and normal distributional theory, and using the computer simulation technique to investigate such

problems were discussed. The computer programs developed for this study were outlined, and the parallel form method, the random number generating procedures, and the methodological limitations due to the very nature of computer simulation techniques were also discussed.

CHAPTER FIVE

RESULTS FOR CONTINUOUS PART TEST SCORE CASES

This chapter presents the results of the computer simulated experiments for the continuous part test score cases. Section 5.1.0 deals with the effects of non-normality under the ANOVA model; and some analytical methods are also used to investigate the standard error of reliability estimates. The distributions of reliability estimates under the ETEM model are dealt with in Section 5.2.0, and in Section 5.3.0 for the congeneric and multi-factor true score cases, i.e., non-ETEM cases.

5.1.0 Effects of Non-Normality Under the ANOVA Model

5.1.1 Distribution Under ANOVA and Normal Distribution of True and Error Scores

It has been shown in Chapter Two that, under the ANOVA model and normal distribution, the reliability estimate given by (2.13)-(b) can be related to an F-statistic by the equation (2.17), and it can also be shown that (Kendall and Stuart, 1963, p. 393),

$$E(F_{m;n}) = \frac{n}{n-2}$$
, $Var(F_{m;n}) = \frac{2 n^2 (n+m-2)}{m(n-2)^2 (n-4)}$

Therefore, using the relation $1/F_{m;n} = F_{n;m}$, it is easy to show that,

(5.1)
$$\begin{cases} (a) \quad E(\beta) = 1 - (1-\rho) \quad E(F_{\nu; 1-1}) = 1 - (1-\rho) \quad \frac{1-1}{1-3} \\ (b) \quad Var \quad (\beta) = (1-\rho)^2 \quad \frac{2(1-1)(\nu+1-3)}{(J-1)(1-3)^2(1-5)} \end{cases}$$

Hence β is in general a blased, but consistent estimator and does not have the minimum variance property. Kristof (1963) modified formula (2.13) to obtain the unbiased estimator $\hat{\beta}$ and has shown that it has a smaller variance than β , namely

(5.2)
$$\begin{cases} (a) \quad \hat{\beta} = \frac{2}{1-1} + \frac{1-3}{1-1} \quad \beta = \frac{2}{1-1} + \frac{1-3}{1-1} (1 - MS_e/MS_A), \text{ or} \\ \\ (b) \quad F_{1-1;\nu} = \frac{(1-3)(1-\rho)}{(1-1)(1-\rho)}. \end{cases}$$

It can then be easily shown that

$$E(\hat{\beta}) = \rho;$$
 Var $(\hat{\beta}) = \left[\frac{1-3}{1-1}\right]^2$ Var $(\beta) = (1-\rho)^2 \frac{2(\nu+1-3)}{\nu(1-5)} \leq Var(\beta)$.

Therefore, if the equation (2.6) is the appropriate model for the data and the assumptions (2.7) and (2.14) are all satisfied, the results of equations (2.17), (5.1), or (5.2) can be used to make inferences about ρ and to calculate the standard error of estimation which is defined as the square root of the variance of β .

5.1.2 Known Effects of Non-Normality Under ANOVA

As it has been seen, the sampling theory and the formula for the standard error of estimation rely heavily on the normal distribution assumptions, despite the fact that real data seldom satisfy these assumptions, and at best may be expected to only approximately satisfy them. It does not logically follow, of course, that approximate satisfaction of the normal distribution assumptions by true and error scores will guarantee automatic approximation of the actual distribution of reliability estimates to the distribution given under normal theory. Scheffé (1959, p. 345) investigated the effect of nonnormality from an analytical point of view and concluded 'Non-normality has little effect on inferences about means but serious effects on inferences about variances of random effects whose kurtosis γ_2 differs from zero'. He also noted that 'The direction of the effect is such that for confidence coefficients $1-\alpha$ and significance level α the true α will be less than the nominal α if the $\gamma_{2,A} < 0$, and greater if $\gamma_{2,A} > 0$, and the magnitude of the effect increases with the magnitude of $\gamma_{2,A}$.' Although his argument is based on the inference of the so-called signal-noise ratio $\theta = \sigma_A^2/\sigma_e^2$, under the one way random effects model, it is suggestive for reliability theory, and provides a guideline for the investigation of the effects of nonnormality under the ANOVA model.

5.1.3 Standard Error of Reliability Estimates Corrected for Non-Normality

The standard error of reliability estimates is a useful measure of the precision of the estimates, although, as noted in Chapter One, without any knowledge of the shape of the sampling distributions of the estimates it has little inferential use. Since reliability has been historically identified as a correlation coefficient, the well-known standard error of correlation coefficient estimates has been frequently used (e.g., Jackson and Ferguson, 1941), namely.

(5.3) Var (
$$\beta$$
) = $\frac{(1-\rho^2)^2}{1}$

in which the assumption of bivariate normality is made (Kendall and Stuart, 1963, p. 236). However, this formula or those given by equations (5.1) and (5.2) would be misleading if normality cannot be

assumed. General distributional theory under non-normal true and error scores is not yet known, but the Var (β) or its square root, denoted by S.E. (β), may be evaluated approximately if the kurtosis of the true and error scores, denoted by γ_A and γ_e respectively, are known or can be estimated. In this case

(5.4)
$$\begin{cases} (a) \quad \gamma_{A} = [E(a_{i}^{4})/\sigma_{A}^{4}] - 3, \\ (b) \quad \gamma_{e} = [E(e_{ij}^{4})/\sigma_{e}^{4}] - 3. \end{cases}$$

Tukey (1956) obtained the variance of the variance estimates under various ANOVA models by employing 'polykays'. For the model considered in this paper, he has shown that

(5.5)
$$\begin{cases} (a) \quad \text{Var} \quad (\hat{\sigma}_{A}^{2}) = \frac{2}{1-1} \sigma_{\Lambda}^{4} + \frac{4}{J(1-1)} \sigma_{A}^{2} \sigma_{e}^{2} + \frac{2}{J(J-1)(1-1)} \sigma_{e}^{4} + \frac{\gamma_{A}}{1} \sigma_{A}^{4} \\ (b) \quad \text{Var} \quad (\hat{\sigma}_{e}^{2}) = \frac{2}{(1-1)(J-1)} \sigma_{e}^{4} + \frac{\gamma_{e}}{1J} \sigma_{e}^{4} \\ (c) \quad \text{Cov} \quad (\hat{\sigma}_{A}^{2}, \hat{\sigma}_{e}^{2}) = \frac{-2}{(1-1)(J-1)J} \sigma_{e}^{4} \\ \end{cases}$$

From (5.5) it is easy to obtain

(5.6)
$$\begin{cases} (a) \quad Var \quad (MS_{A}) = \left[\frac{2}{1-1} + \frac{1}{1} \left\{\rho^{2} Y_{A} + (1-\rho)^{2} Y_{e}/J\right\}\right] (J \quad \sigma_{A}^{2} + \sigma_{e}^{2})^{2} \\ (b) \quad Var \quad (MS_{e}) = \left[\frac{2}{(1-1)(J-1)} + \frac{Y_{e}}{1J}\right] \sigma_{e}^{4} \\ (c) \quad Cov \quad (MS_{A}, MS_{e}) = \frac{Y_{e}}{1J} \sigma_{e}^{4} . \end{cases}$$

It is noted that if the true and error scores are normal, i.e., the kurtosis is equal to zero, the results are the same as expected under normal theory obtainable from equation (2.15) and the resulting independence of MS_A and MS_e .

Letting $x_1 = MS_A$, and $x_2 = MS_e$, and $W(x_1, x_2)$ a function of x_1 and x_2 , an approximation formula (e.g., Scheffé, 1959, p. 230) may be applied to approximate Var (β) from (2.13)-(b) namely,

Var
$$[W(x_1, x_2)] \simeq W_1^2 Var(x_1) + 2W_1W_2 Cov(x_1, x_2) + W_2^2 Var(x_2)$$

where W_1 denotes $\partial W/\partial x_1$ evaluated at $x_1 = E(x_1) = J \sigma_A^2 + \sigma_e^2$, and $x_2 = E(x_2) = \sigma_e^2$. Then, Var (β) = Var ($1 - MS_e/MS_A$) = Var (x_2/x_1), i.e., $W(x_1, x_2) = x_2/x_1$, and $W_1 = -\sigma_e^2/(J \sigma_A^2 + \sigma_e^2)^2$, $W_2 = 1/(J\sigma_A^2 + \sigma_e^2)$, giving

(5.7) Var
$$(\beta) \simeq (1-\rho)^2 \left[\frac{2J}{(1-1)(J-1)} + \frac{\rho^2}{1} (\gamma_A + \gamma_e/J)\right]$$

Formula (5.7) does not agree exactly with formula (5.1)-(b) when the distributions are normal since an approximation has been employed. However, formula (5.7) is suggestive for correction terms to be added to formula (5.1)-(b) for non-normal distributions, i.e., Var (β) may be obtained by a new formula combining (5.1) and (5.7) as

(5.8) Var (b)
$$\simeq (1-\rho)^2 \left[\frac{2(1-1)(1J-J-2)}{(J-1)(1-3)^2(1-5)} + \frac{\rho^2}{1} (\gamma_A + \gamma_e/J) \right]$$

Since this formula involves two unestimable parameters γ_A and γ_e , further approximation is necessary to make it useful.

The kurtosis of the test scores $y_i = \sum_j y_{ij} = Ju + Ja_i + \sum_j e_{ij}$, denoted by y_y , is an estimable parameter, and may be evaluated by considering it as a linear combination of J+1 independent

random variables a_j and $\{e_{j}\}$ for j = 1, ..., J, and applying a formula given by Scheffé (1959, p. 332), namely,

(5.9)
$$Y_y = \rho^2 Y_A + (1-\rho)^2 Y_e/J$$

Then, $\gamma_y \simeq \rho^2 \gamma_A$ for $\rho \simeq 1$, or $\gamma_e \simeq 0$, or J fairly large. Therefore, it may be shown that,

(5.10) Var (
$$\beta$$
) $\simeq (1-p)^2 \left[\frac{2(1-1)(1J-J-2)}{(J-1)(1-3)^2(1-5)} + \frac{Y_y}{I} \right]$

This formula (5.10) is, to the author's knowledge, a new one for test theory, which only includes the known constants 1,J and the unknown but estimable parameters p and γ_y . As a result it can be used to obtain an estimate of the standard error of reliability estimates, namely,

(5.11) S.E.
$$(\beta) = [Var(\beta)]^{\frac{1}{2}} \simeq (1-\beta) \left[\frac{2(1-1)(1J-J-2)}{(J-1)(1-3)^2(1-5)} + \hat{\gamma}_y/1\right]^{\frac{1}{2}}$$

From the formula (5.8) it may be observed that the effects of non-normality on the standard error of reliability estimates depend on the following:

(a) The kurtosis of the true scores multiplied by the factor 1/1, and of the error scores multiplied by a factor of 1/1J. Therefore, the effect of non-normality would be dominated by the kurtosis of true scores which is closely approximated by the kurtosis of the test scores divided by the square of the reliability.

(b) The magnitude of ρ_1 namely, the larger the value of ρ_2 , the greater is the effect of non-normality.

The above observations suggest that the sampling distribution would be robust against the violation of normality assumptions if (a) the sample size 1 is large, (b) reliability is close to zero, or (c) J is fairly large and the true score kurtosis (or the test score kurtosis) is close to zero. The condition (a) is of little practical value since statistical inference problems usually arise for the small sample case, while (b) is also of little practical value since, in most cases, reliability theory deals with ρ close to unity rather than zero. The last condition indicates that the sampling distribution of reliability estimates would be robust against the violation of normality of errors for J fairly large, and is sensitive to the distribution of true scores.

5.1.4 Results of Simulation Experiments Under ANOVA Model

In order to investigate the effect of non-normality under the ANOVA model, a number of experiments were performed by RELO1 using the following distribution-parameters combinations with the constants N = 2000, I = 30, and J = 8.

(a) For the distribution of true scores, all of the six distributions discussed in Table 4.2 of Chapter Four, namely U1, U2, U3, U6, N0, and EX. were used.

(b) For the error scores distributions, the uniform, normal, and exponential distributions were used, i.e., Ul, NO, and EX respectively.

(c) Three levels of ρ were used by fixing $\sigma_e^2 = 4.0$, and using three levels of σ_A^2 , namely, 4.0, 1.0, and 0.36 to indicate high, middle and lower levels of reliability.

Altogether $6 \times 3 \times 3 = 54$ experiments were performed, each

requiring approximately six minutes of C.P.U. time. Since the parameters μ and $\{\beta_i\}$ do not affect the distributions, they are not reported.

In Table 5.1, the observed means and variances of MS_A and MS_{e} for N = 2000 samples are presented with the theoretical values based on formula (5.6). Because formula (5.6) does not involve any approximation, any disagreement between the observed and calculated values must be attributed to either sampling fluctuations due to the finiteness of N or deficiencies in random number generating methods. It is noted that a rather close agreement exists between the observed means of MS_A and MS_e given in columns (1) and (3) with their theoretical expected values given in column (7). Comparisons of the observed variances of the MS's given in columns (2) and (4) with the theoretical values based on (5.6) given in columns (5) and (6) suggest that the two agree reasonably well, although the agreement is not as close as that for the means and expected values, which probably reflects the imperfectness of the random number generating procedures and/or the sensitivity of the variance to the change in the shape of population distributions.

Column (1) of Table 5.2 contains the mean of $\hat{\rho}$ over the N samples. These values can be compared with the expected values under normal distribution theory given in column (6). It is observed that, for negative γ_A , the means are in general higher than $E(\hat{\rho})$ based on formula (5.1)-(a), thus causing some moderating in the tendency to underestimate the reliability under normal theory. If γ_A is positive, the mean of $\hat{\rho}$ is in general lower than $E(\hat{\rho})$ and exaggerates the tendency of underestimation. The effect of γ_e is

TABLE S.I

Comparisons of Observed Reans and Variances of MS's Under AMOVA Model and Various Combinations of True and troor Score Distributions With the Values Obtainable From Formula (5.6), N = 2000, 1 = 30, J = 8

			Observe	1 MS.	Observed	HS			Parameters
ER.	Dis. Tr.	Er.		~ 1	Hean	Var.	Var. by		and E(HS)
No.	17.	· • •	Mean	Var.			MSA	MS	
			(1)	(2)	())	<u> (4) </u>	(5)	(6)	
01	υì	U1	36.052	47.108	4.005	0.085	48.339	0.078	
02	ŬÎ.	NO	36.102	45.563	3.798	0.162	48.419	0.158	$a_{\rm A}^2 = 4.0$
03	UI I	£х	36.057	45.041	3.972	0.523	48.819	0.558	•
04			36.286			0.081	68.819	0.078	
04	U2 U2	U) NO	36.283	66.923 69.365	3.991 3.999	0.165	68.899	0.158	a ² = 4.0
06	U2	Ēx	35.765	68.116	4.008	0.572	69.299	0.558	•
1									
07	U3	U1	36.106	74.014	4 009	0.082	75.646	0.078	a = 0.8889
08	U] U]	NO EX	36.114 36.033	77.586 76.571	4.002 3.97₿	0.168	75.726 76.126	0.158 0.558	p = 0.0007
"	• • •		,0.0,,		<i>J</i> . <i>J</i> .	•. •	,	.,,,,	
10	U6	U1	35.856	81.605	3.991	0.081	82.473	0.078	
	U6	NO	36.107	84.019	4.006	0.171	82.553	0.158	E(MS _A) = 36.0
12	U 6	EX	36.016	82.009	3.992	0.559	82.953	0.558	
13	NO	UI	35.931	81.749	4.005	0.084	89.299	0.078	
14	NÖ	NO	36.016	85.815	3.998	0.162	89.379	0.158	E(MS_) = 4.0
15	NO	EX	36.130	90.371	3.971	0.523	89.779	0.558	
16	£x	UI	35.335	258.850	4.005	0.085	294.099	0.078	1
17	EX	NO	35.358	270.874	3.998	0.162	294.179	0.158	1
l ii	EX	EX	35.380	269.880	3.972	0.523	294.579	0.558	
			t			0.001			
19	U 1 U 1	U1 NO	11.924	7.389	3 994 3 992	0.084 0.168	7.291	0.078 0.158	$\sigma_{A}^{2} = 1.0$
21	U1	EX .	12.030	7.657	3.981	0.557	7.771	0.558	A - 1.0
	-	•							
22	U2	U1	12.011	8.902	3.999	0.082	8.571	0.078	a ² = 4.0
23	U2 U2	ND Ex	11.982	8.550	3.991	0.164 0.568	8.651	0.158 0.558	e • •.0
1	02	£A.	12.047	•.333	4.021	0.300	3.031	0.330	
25	U3	U1	11.928	9.132	3 996	0.084	8.998	0.078	
26	U)	NO	11.945	9.455	4.013	0.150	9.078	0.158	p = 0.6667
27	U 3	Ex	11.933	9.048	3.993	0.538	9.478	0.558	
28	U6	U I	12.051	9.794	4 000	0.084	9.424	0.078	
29	U6	ŇO	12 033	9.430	3 993	0.165	9 504	0.158	E(MS_) = 12.0
30	U6	EX	11.954	9.972	3 979	0.536	9.904	0.558	
31	110	Ul	12.050	9.556	3 994	0.064	9.851	0.078	
152	Ĩ	HO	12.029	9 492	3.992	0.168	9.931	0.158	E(MS_) = 4.0
155	NO	Ex	12.076	10.484	3.981	0.557	10.331	0.558	•
1	•			23.122	3.994	0.085	22 651	0.078	1
34	EX Ex	U1 800	12.005	22.484	3.37	0.168	22.73	0.158	
35	Ex.	ũ	11.913	23.485	3 941	0.557	23.131	0.558	
			+				+		<u>↑</u>
37 38 39	U1 U1	10	6 875	2.910	3 991	0.0 87 0.171	2.053	0.078 0.158	e ² _A = 0.36
	U I	NO Ex	6.64	3.180	3 997	0.526	3.333	0.558	· · · · · ·
	-			-			1		
40	U2	U1	6.908	3.026	3.997	0.084	3.019	0.078	· · · · ·
	U2	NO	6.805	3.162	3 967	0.160 0.536	3.099	0,158 0,558	
42	U2	E X		3 . 376		***	1. 777		
2	V 3	VI	6 939	3.394	3 980	0.087	3.074	0.078	
	V3	80	6.853	3.111	3 989	0.162	3.154	0.158	p = 0.4186
45	U 3	u	6.805	3.522	3 962	0.550	3.554	0.550	1
46	u6	U I	6.943	3.115	4 000	0.082	3.129	0.078	
47	46	ND .	6.997	3.240	3 945	0.158	3.209	0.158	$E(mS_A) = 6.00$
	U6	L I	6.816	3.476	3 994	0.519	3.609	0.558	-
19	-	U I	6.911	3.161	3 991	0.087	3.184	0.078	
1			6.003	3 362	4 006	0.171	3 264	0.158	((AS_) = 4.0
5		ü	6.858	3 629	3 997	0.526	5 144	0.558	•
	e-						4.843	0 078	1
2	и и	U 1	6.862	4 534	3 991	0.087 0.171	4.923	0.154	
12	ü	ū	6 854	4.995	3 997	0 526	5.323	0 558	1
		-					1		

(a)
$$\forall ar (ars_{A}) = [\frac{2}{1-1} + \frac{1}{1} (a^{2}r_{A} + (1-a)^{2} r_{B}/a)](ar_{A}^{2} + r_{B}^{2})^{2}$$

(b) $\forall ar (ars_{B}) = [\frac{2}{(1-1)(1-1)} + \frac{r_{B}}{12}]r_{B}^{4}$

(\$.6)

.

TABLE	5.2
-------	-----

Comparisons of Observed Reans and Standerd Errors of Reliability Estimates Under AMDYA Nodel and Variou: Combinations of True and Error Score Distributions With the Values Obtainuble From Formulas (5.3), (5.1)-(6), and (5.10), N = 2000, 1 = 30, J = 8

Ex. No.	Dis Tr.	Lr.	Observ Mean	red B S.E.	Calcula (5-3)	1ed S.E. ((5.1)-(b)	8) by (5.10)	Parameters and E(β) by (5.1)-(a)
			(1)	(2)	_())	(4)	(5)	(6)
			0.884	0.028	0 038	6.036	0.030	
01 02	UI UI	U1 100	0.884	0 028	0 038	(.036	0 030	σ <mark>2</mark> = 4.0
03	ui	a l	0.886	0.033	0 038	6 036	0.030	* A
04	U2	UI	C. 884	0.031	0 018	0.036	0.033	
65	U2	NO	0.833	0.032	0 038	-036	0.033	o ² = 4.0
0 6	U2	Ex	0.882	0.038	0 038	6.036	0.033	•
07	U 3	u 1	0.882	0.033	0 038	0.036	0.034	1
00	03	10	0 882	0.038	0 038	U.036	0.034	e = 0.8889
09	U3	Ex	0.883	0.038	0 038	0. 036	0.034	ļ
10	U6	U1	0.881	0.036	0 038	0.036	0.035	
11	106	NO	0.881	0.035	0.038	0.036	0.035	E(8) = 0.8807
12	U6	EX	0.882	0.040	0.038	0.026	0.035	
13	#0	UT	0.861	0.035	0 030	0.036	0.036	
14	NO	NO '	0.881	0.036	0.038	0.036 0.036	0.036 0.036	
15	NO				-		-	
16	EX.	U I NO	0.864	0.062	0.038	0. 036 0. 036	0.057 0.057	
17	EX EX	EX	0.865	0.064	0.038	0.036	0.057	
			0.646	0.090	0.101	0.108	0.098	t
19 20	01	U1 140	0.650	0.091	0.101	0.108	0.098	$a_{\rm A}^2 = 1.0$
21	UI	ũ	0.653	0.098	0.101	0.108	0.100	1 ^
22	112	UI	0.644	0.103	0,101	0.108	0.103	
23	1 112	NO	0.646	0.100	0.101	0.108	0.103	o ² = 4.0
24	112	EX	0.647	0.107	0 101	0.108	0.105	
25	103	U1	0.642	0.101	0 101	0.106	0.104	
26	03	NO	0.640	0.108	0.101	0.108	0.105	p = 0. 666 7
27	U3	Ex.	0.645	0.107	0.101	0.108	0.106	
20	106	U F	0.643	0.106	0.101	0.108	0.106	
23		NO	0.645	0.103	0.101	0.108	0.106	E(p) = 0.6420
30	U6	Ex	0.645	0.111	0.101	0.108		
31	HO	UI	0 644	0.106	0 101	0.108 0.108	0.108 0.108	
32	NO NO	100 E X	0.645	0.105	0,101	0.108	0.109	
		-			0 101	0.108	0,146	
34	1 EX EX	U1 160	0.615	0 154	0 101	0.108	0.147	
1 %	i îx	ũ	0.617	0.158	0 101	0.108	0.148	
<u> </u>	- 1 11	U1	0.300	0.175	0.151	0.188	0.180	
37	101		0.380	0.172	0.151	0.186	0.182	s ² _A = 0.36
5	UI	EX	0.384	0.179	0.151	0.188	0.189	
40	02	U1	0.380	0.181	0.151	0.188	0.183	1 2
41	U2	80	0.369	0.195	0 151	0.188	0.185	e <mark>2</mark> = 4.0
42	02	D	0.379	0.185	0.151	0.1 08	0.192	
43	03	U1	0.381	0.189	0 151	0.188	0.184	a = 0.4186
-	U3	NO	0.376	0,186	0.151	0.1 88 0.1 88	0.1 86 0.193	
45	V3	01	0.376					1
	146	UT	0.382	0,181	0.151	0.188	0.185 0.187	E(a) = 0.3755
47	U6	MD CX	0.381		0 151	0.180	0.194	
1		-			0 151	0.188	0,186	
1 22		U1 100	0.379		0 151	0.188	0.180	
51			0.379		0.151	0.188	0.195	
1 52			0 360	-	0 151	0.186	0.216	1
5			0 357		0 151	0.180	0.217	1
1 34			0.362		0 151	0.188	0.224	1

(5.1)
$$\begin{cases} (a) & E(a) = 1 - (1-a) \frac{1-1}{1-3} \\ (b) & Vor (a) = (1-a)^2 \frac{2(1-1)(a+1-3)}{(a+1)(1-3)^2(1-5)} \\ (5.3) & Vor (a) = \frac{(1-a^2)^2}{1} \end{cases}$$

(5.10) Vor (4) = $(1-\phi)^2 \frac{2(1-1)(1-2-2)}{(2-1)(1-2)^2(1-5)} + \frac{2}{7}$

almost negligible, as expected from the discussion of the standard errors in Section 5.1.3. Therefore, as far as point estimation is concerned, negative kurtosis would not cause any serious problems, but positive kurtosis may cause serious underestimation of reliability.

Table 5.2 also contains the standard errors of β in columns (3), (4), and (5) under various formulas as well as the observed results in column (2). The results clearly indicate the inappropriateness of the tranditional formula (5.3) or the more recent formula (5.1)-(b) when γ_A is non-zero, and demonstrates the effectiveness of formula (5.10). To see how closely the values based on these formulas approximate the observed values, the sum of squares of the deviation from the observed values are calculated with the results 0.0416, 0.0133, and 0.0013 for formulas (5.3), (5.1)-(b) and (5.10).

To examine the robustness of the F-test based on formula (2.17), under normal distribution theory, the shapes of the upper and lower 5% tail portions of the distributions of β were investigated. Columns (1) and (2) of Table 5.3 show approximate real Type one errors when nominal significance levels are fixed at 5% level for each tail. The results clearly indicate that real Type one errors are less than the nominal value If γ_A is negative, and the smaller is γ_A , the smaller is the resulting real Type one error. For positive γ_A , the real Type one errors are greater than the nominal value. These results are in close agreement with the Scheffé's conclusion referred to In Section 5.1.2. It is also noticed that the effect of non-zero γ_A is less for small ρ , i.e., the test is robust if ρ tends to zero as

TAULE 5.3

-					0: served		******	cal C.P.2	······································
En.	015.	•	Real SI	-					Parameters ³
No.	tr.	Er.	Lower	Upper	Lover	Upper	Lower	Upper	
			<u> </u>	(2)			(5)	(6)	(2)
01	Ut	UI	1.80	1.65	0.837	0.919	0.814	0.927	
02	UÌ	NO	1.80	1.80	0.838	0.920	0.814	0.927	$a_{\rm A}^2 = 4.0$
03	UI	Ex	2.25	5.05	0.829	0.927	0.814	0.927	
04	U2	UI	2.75	2.45	0.827	0.922	0.814	0.927	
05	U2	NO	3.05	3.45	0.627	0.924	0.814	0.927	$\sigma_{1}^{2} = 4.0$
06	U2	Ex	4.85	6.00	0.815	0.929	0.814	0.927	
07	V3	UI	3.30	3.05	0.823	0.923	0.814	0.927	
08	U 3	NO	4.15	4.40	0.821	0.926	0.814	0.927	p = 0.8887
09	U3	EX	5.00	7.25	0,813	0.930	0.814	0.927	
10	U 6	UI	4.30	3.60	0.816	0.924	0.814	0.927	
11	U6	NO	4.65	4.70	0.816	0.926	0.814	0.927	
12	U6	EX	5.60	7.20	0.812	0.930	0.814	0.927	
13	MO	UI	4.70	3.90	0.816	0.925	0.814	0.927	1
i4	NO	NO	4.25	4.85	0.819	0.926	0.814	0.927	
15	NO	EX	5.30	8.30	0.811	0.932	0.814	0.927	
16	EX	UI	17.40	10.50	0.747	0.940	0.814	0.927	
17	EX	NO	17.35	10.50	0.744	0.942	0.814	0.927	
ii.	Ex	EX	17.95	12.90	0.752	0.944	0.814	0.927	1
19	UI	UI	1 16	3.00	0.474	0.769	0.442	0.781	1
20	U1	NO	3.35	3.45	0.483	0.772	0.442	0.781	$v_{\rm A}^2 = 1.0$
21	UI	Ex	3.50	5.40	0.471	0.783	0.442	0.781	1 *
22				3.05	0.450	0 376	0.442	0.781	
23	U2 U2	U I NO	4.55	4.00	0.470	0.775 0.776	0.442	0.781	c ² = 4.0
24	02	Ex	4.65	6.20	0.448	0.788	0.442	0.781	•
			1 A.3.F		0.453		0.442	0.781	
25 26	U3 U3	U1 140	4.15	3.85	0.453	0.774 0.778	0.442	0.781	0.6667
27	U 3	EX	4.80	5.45	0.448	0.785	0.442	0.781	
				4.45	0.446		0.442	0.781	
28	U6 U6	U 1 NO	4.45	4.30	0.445	0.777 0.778	0.442	0.781	
30	UĞ	Ex	5.35	6.65	0.440	0.788	0.442	0.781	
				4.80	0.448	0. 780	0.442	0.381	
))]2	100 100	U1 140	4.55	5.05	0.449	0.7 82	0.442	0.781 0.781	
55	NO	ũ	5.95	7.25	0.427	0.792	0.442	0.781	
34	EX Ex	U1 MO	11.55	10.55 11.45	0.327	0.814 0.813	0.442	0.781 0.781	1
36	i.	ũ	12.00	12.10	0.321	0.822	0.442	0.781	
		Ų1	3.80	5.05	0.0%	0.619	0.027	0.618	
3/	υί VI	80	3.75	4.50	0.070	0.612	0.027	0.618	• <mark>2</mark> = 0.36
5	Ū1	Ũ.	4.65	4.75	0.040	0.616	0.027	0.618	1 -
40	U2	U1	4.65	5.25	0.034	0.622	0.027	0.618	1.
41	V2	80	5.50	4.65	0.070	0.615	0.027	0.618	e ² = 4.0
42	U2	£x.	5.10	5.35	0.025	0.623	0.027	0.618	
	¥3	UI	5.05	5 65	0.026	0.626	0.027	0.618	1
43	43	NO	5.05	4.55	0.026	0.615	0.027	0.618	p = 0.41 8 6
45	ŪĴ	t i	4.85	5 - 55	0.033	0.618	0.027	0.618	
	U G	Ul	4.30	4.85	0.053	0.615	0.027	0.618	
47		iii0	4.55	4.85	0 041	0.617	0.027	0.618	
-	u6	EX.	4.55	4.65	0.043	0.614	0.027	0.618	
-	HD)	U1	4.60	4.60	0.033	0.616	0.027	0.618	
9	80	iiii)	\$.10	4.55	0.023	0.615	0.027	0.618	1
51		u	4.70	4.85	0.029	0.618	0.027	0.618	1
52	a	UT	7.30	7.05	-0.026	0.637	0.027	0.618	
53	U .	-	8.25	7.10 8.65	-0.019	0.644	0.027	0.618 0.618	
54	a	(J	7-35						1
_									

Comparisons of Observed Lower and Urper St Critical Points of Reliability Estimates Under the ANOVA Musiel Using Various Communications of True and Error Score Distributions, and Real Type One Errors of F-Yest Whin Nominal Value is St With the Values Obtainable Under the Hormal Sheory, N = 2000, I = 30, J = 8

1 Observed lower and upper 52 critical points of #

 $^2T_{hear etical lower and upper SS critical points of <math display="inline">\beta$ with normal distribution of true and order scores

Burtonis of the random variables. 01, 02, 03, 06, 10, and 62 are given in Table 4.3.

anticipated by the earlier discussion of the standard errors of estimation in Section 5.1.3.

5.1.5 Conclusions on the Effects of Non-Normality Under ANOVA Model

From the above discussions the following conclusions are tentatively made:

(a) The effect of non-normality of the error score distribution is negligible for J fairly large, where J is the number of part-tests.

(b) Non-zero kurtosis of the true score distribution substantially effects the sampling distribution and standard error of reliability estimates.

(c) The F-test under normal theory is robust for near zero population reliability, or near zero true score kurtosis, if J is fairly large.

(d) Formula (5.10) is superior to the traditional formula (5.3)
 or (5.1)-(b) for the calculation of the standard error of reliability estimates.

(e) For the F-test, the real Type one error is lower than the nominal value for negative kurtosis, and higher for positive kurtosis of true scores. This true score kurtosis is closely approximated by test score kurtosis divided by the square of the reliability.

The above findings are restricted to the ANOVA model, and generalization to more liberal test score models requires further study.

5.2.0 <u>Relaxation of the Homogeneity of Error Variance Constraint in</u> the ANOVA Hodel

5.2.1 The ETEM Model

For the ANOVA model it was assumed that the variances of error scores {e_{ij}} were homogeneous, i.e., all the error variances $\{\sigma_{e_i}^2\}$ are equal to an unknown constant σ_e^2 by assumption (2.7)-(d). This assumption was made not because real data are expected to have homogeneous error variances, but to make the mathematical abstraction simpler. Therefore it is conceivable that the error variances may differ for each part test, i.e., for real data the variance of e, may depend on the part test j, as given by (2.19). Under this last assumption, the model becomes an essentially τ equivalent measurement (ETEM) which was discussed more fully in Chapter Two. Under this model, there is not a common intra-class correlation among the J part-scores to be interpreted as the reliability of a parttest under the ANOVA model. But the reliability is still equal to the Alpha coefficient. The only difference from the ANOVA model is the replacement of σ_e^2 in the reliability formula (2.12) by the mean of $\{\sigma_{ei}^2\}$, denoted by σ_{ei}^2 .

Because assumption (2.7)-(d) is violated, the distribution of reliability estimates given by (2.17) cannot be expected to hold for the ETEM models; at best it is hoped that the distribution is closely approximated or the distribution is robust against the violation of the assumption of homogeneity of error variances.

5.2.2 <u>Effects of Non-Homogeneous Error Variances Assuming Normal</u> <u>Distribution</u>

The general distributional theory of reliability estimates under the ETEM model with the normal assumption is not yet known except for the case of J = 2. Kristof (1970) has shown that, for J = 2, the statistic

(5.12)
$$t = \frac{\rho - \beta}{\beta (1 - \rho)^{\frac{1}{2}}} \frac{s_{12}}{(s_1^2 s_2^2 - s_{12}^2)^{\frac{1}{2}}} (1 - 2)^{\frac{1}{2}}$$

is distributed as Student's t-statistic with 1-2 degrees of freedom, where s_{1}^{2} , s_{2}^{2} , and $s_{12}^{}$ are the sample variances of two part-tests and the covariance between them respectively. Kristof derived this formula by the maximum likelihood method under bivariate normal assumptions for the alpha coefficient, but the formula can also be used interchangeably for the reliability coefficient under the ETEM model.

For the general case, J > 2, nothing is known yet, and at present the simulation method provides the only way to investigate the sampling distribution of reliability estimates. Because equation (2.17) does not involve the error variance parameter directly, it may be hoped that the distribution given by (2.17) is still valid or approximately true under the ETEM model if the normality assumptions are not violated. In other words, it is hoped that the distribution is robust against the violation of the homogeneity of error variances assumption to enable the test theorists to use the results obtained under the ANOVA model.

To separate the effect of non-normality from that of nonhomogeneous error variances, the ETEM model is first investigated using normal distributions of true and error scores. In order to make comparisons possible, the constants and parameters used for the cases of the ANOVA model are retained except for the values of the error

variances. With 3 levels of σ_A^2 , as under the ANOVA model, 6 different sets of non-homogeneous error variances are used for the simulation experiments. The sets of error variances are given in the following table including the homogeneous case (EV1) used under the ANOVA model as a special case.

TABLE 5.4

			Variance Mean (5, 2							
Nota- tion	j=1	j=2	j=3	j=4	j=5	j = 6	j=7	j=8	σ ² e.	(∑(σ <mark>e</mark> j - σ ²) ²)/J
EVI	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.0000	0.0000
EV2	1.46	2.56	3.24	4.00	4.00	4.84	5.76	6.15	4.0018	2.1887
EV 3	1.00	1.00	4.00	9.00	9.00	4.00	1.00	1.00	3.7500	10.6875
EV4	9.00	4.00	1.00	0.25	0.25	1.00	4.00	9.00	3.5625	11.8242
EV5	16.00	9.00	4.00	1.00	1.00	1.00	1.00	1.00	4.2500	26.6875
EV6	1.00	4.00	16.00	16.00	9.00	4.00	1.00	0.00	6.3750	37.7344
EV7	1.00	1.00	16.00	16.00	1.00	1.00	1.00	1.00	4.7500	42.1875

Summary of Error Variances used Under ETEM Model

The last two columns of Table 5.4 give $\sigma_{e.}^2$, which is equal to $E(MS_e)$, and the variance of $\{\sigma_{ej}^2\}$ within each set over J = 8. To make comparisons easy, these sets are ordered with increasing degree of non-homogeneity, measured by the variance within each set, which has a range of 0.0 to 42.1875.

Table 5.5 summarizes the mean and variance MS_A and MS_B , for N = 2000 samples in columns (1) to (4) inclusive, and compares the results with those obtainable from formula (5.6) with σ_B^2

TABLE 5.5

••

Ex.	Error	Observ	ved MS_	Observe	ed HS		Var. by	(5.6)	-
No.	Set	Mean	Var.	Hean	Var.	E (MS _A)	MS	MS	Parameters
		(1)	(2)	(3)	(4)	(5)	(6)		(8)
01	EV 1	36.016	85.815	3.998	0.162	36.000	89.379	0.158	,
02	EV2	36.041	85.556	4.000	0.184	36.002	89.388	0.158	$\sigma_A^2 = 4.0$
03	EV3	35.727	88.222	3.742	0.226	35.750	88.142	0.139	^ .
04	EV 4	35.879	98.868	3.543	0.242	35.562	87.220	0.125	
05	EV5	36.266	86.094	4.244	0.387	36.250	90.625	0.178	
06	EV6	38.049	101.514	6.378	0.742	38.375	101.561	0.400	
07	EV7	36.784	94.840	4.705	0.551	36.750	93.142	0.222	
80	EVI	12.029	9.492	3.992	0.168	12.000	9.931	0.158	,
09	EV2	12.034	9.581	3.995	0.189	12.002	9.934	0.158	$\sigma_{\rm A}^2 = 1.0$
10	EV 3	11.898	9.537	3.740	0.236	11.750	9.522	0.139	~
11	EV4	11.495	9.317	3.549	0.220	11.562	9.220	0.125	
12	EV5	12.278	10.465	4.236	0.407	12.250	10.349	0.178	
13	EV6	14.563	14.483	6.366	0.753	14.375	14.251	0.400	
14	EV7	12.838	11.499	4.780	0.603	12.750	11.211	0.222	
15	ενι	6.883	3.362	4.006	0.171	6.880	3.264	0.158	,
16	EV2	6.891	3.411	4.008	0.189	6.882	3.266	0.158	$\sigma_{\rm A}^2 = 0.36$
17	EV3	6.700	3.203	3.762	0.221	6.630	3.032	0.139	
18	EVÁ	6.430	2.779	3.559	0.230	6.442	2.862	0.125	
19	EV5	7.120	3.491	4.252	0.429	7.130	3.506	0.178	
20	EV6	9.341	6.174	6.403	0.704	9.255	5.907	0.400	
21	EV7	7.629	4.035	4.750	0.619	7.630	4.015	0.222	

Comparisons	of Observed Heans and Varlances of MS's Under the ETEM Model
and	Normal Distributions With the Values Obtainable From
	Formula (5.6), N = 2000, I = 30, J = 8

$$E(MS_{e}) = \sigma_{e}^{2} = 4.000 (EV1)
4.002 (EV2)
3.750 (EV3)
3.563 (EV4)
4.250 (EV5)
6.375 (EV6)
4.750 (EV7)$$

(5.6)
$$\begin{cases} (a) \quad v_{ar} (NS_{A}) = \left[\frac{2}{1-1} + \frac{1}{1} \left(\rho^{2} \gamma_{A} + (1-\rho)^{2} \gamma_{e} / J\right)\right] (J\sigma_{A}^{2} + \sigma_{e}^{2})^{2} \\ (b) \quad v_{ar} (NS_{e}) = \left[\frac{2}{(1-1)(J-1)} + \frac{\gamma_{e}}{1J}\right] \sigma_{e}^{4} \end{cases}$$

replaced by $\sigma_{e.}^2$, and $\gamma_A = \gamma_e = 0$ in columns (6) and (7). Close agreement between expected MS's and the mean of observed MS's is seen as was the case for the ANOVA model. More specifically, the expected and observed variance of MS_A, columns (2) and (6), agree closely, but the observed variance of MS_e, column (4), differs greatly from the theoretical value obtainable from (5.6) given in column (7). The greater the non-homogeneity of error variances, the greater the discrepancy noted, reaching in the extreme a factor of three for experiment 21. Therefore, it may be concluded that the formula (5.6) cannot be applied blindly in the case of the ETEM model, due to the possible effect of non-homogeneity of error variances.

Table 5.6 summarizes the observed mean and standard error for each experiment in columns (3) and (4) and compares it with the values obtainable from (5.1), (5.3), and (5.10) given in columns (2), (5), and (6). It is observed that a rather close agreement exists between the observed mean of $\hat{\rho}$ and $E(\hat{\rho})$ obtainable from (5.1)-(a) under the ANOVA model, i.e., columns (2) and (3), indicating robustness of the ETEM model as far as point estimation and biasedness are concerned. For the standard error of estimation, all two formulas predict the observed values reasonably well. Formula (5.10) seems better than (5.3), though the difference is not great. The calculated sum of squares of the deviation from the observed values are 0.00858 and 0.00097 for formulas (5.3) and (5.10) respectively, confirming the conclusion. All of these results suggest that the standard error of reliability estimate is robust against the violation of homogeneity of error variances.

TABLE 5.6

No.	Error Set	Rel.	E(8) by (5.1)-(a)	Observi Mean	edβ S.E.	S.E. by (5.3)	formulas (5.10)	Parameters
		(1)	(2)	(3)	(4)	(5)	(6)	(7)
01	EVI	0.889	0.881	0.881	0.036	0.038	0.036	2
02	EV2	0.889	0.881	0.881	0.036	0.038	0.036	$\sigma_A^2 = 4.0$
03	EV2	0.895	0.887	0.887	0.036	0.036	0.034	
04	EV4	0.899	0.892	0.893	0.035	0.035	0.032	
05	EV5	0.883	0.874	0.875	0.039	0.040	0.038	
06	EV6	0.834	0.822	0.820	0.058	0.056	0.054	1
07	EV7	0.871	0.861	0.863	0.044	0.044	0.042	1
		0.667	0.642	0.645	0.105	0.101	0.108	,
80	EV1	0.667	0.642	0.644	0.106	0.102	0.108	$\sigma_A^2 = 1.0$
09	EV2	0.681	0.657	0.664	0.099	0.098	0.103	
10	EV3		0.669	0.669	0.102	0.095	0.110	
11	EV4	0.692	0.627	0.631	0.114	0.105	0.112	
12	EVS	0.653	0.524	0.533	0.127	0.126	0.143	
13	EV6	0.557	0.600	0.603	0.119	0.111	0.121	
14	EV7	0.020	0.000					
		0.419	0.376	0.374	0.188	0.151	0.188	1 2
15	EV1	0.419	0.375	0.375	0.187	0.151	0.188	σ ² _A = 0.36
16	EV2	0.434	0.393	0.398	0.180	0.148	0.183	
17	EV3		0.406	0.410	0.173	0.146	0.179	
18	EV4	0.447	0.360	0.365	0.184	0.153	0.193	1
19	EVS	0.404	0.260	0.267	0.201	0.165	0.223	
20	EV6	0.311		0.338	0.197	0.157	0.201	
21	EV7	0.378	0.331	0.330	V.13/	1	•••••	

Comparisons of Observed Heans and Standard Errors of Reliability Estimates Under ETEM Hodel and Normal Distributions With the Values Obtainable From Formula (5.3), and (5.10), N = 2000, I = 30, J = 8

(5.1)-(a)
$$E(\beta) = 1 - (1-\rho) \frac{1-1}{1-3}$$

(5.3) Ver
$$(\beta) = \frac{(1-\rho^2)^2}{1}$$

(5.10)
$$\operatorname{Var}(\beta) \simeq (1-\rho)^2 \left[\frac{2(1-1)(1-J-2)}{(J-1)(1-3)^2(1-5)} + \frac{v_y}{T} \right].$$

Table 5.7 summarizes the lower and upper 5% portions of the observed distribution of $\hat{\rho}$ in columns (2) and (3) and compares them with the values obtainable under the ANOVA model and normal theory given in columns (4) and (5), namely from formula (2.17). The table also gives approximate real Type one error in columns (6) and (7) when the F-test of (2.17) is used for the ETEM model with normal distributions. The results clearly indicate the robustness of the F-test against the violation of homogeneity of error variance assumptions. Although there is a case (experiment 4) which gives as much as an 8% level of Type one error, there seems to be no systematic inflation or deflation of the nominal Type one error as a whole.

5.2.3 Effects of Non-Normality on ETEM Model

In the previous section, it was seen that the effect of nonhomogeneous error variances on sampling distribution of reliability estimates is minimal, and it was also seen in Section 5.1 that the sampling distribution is sensitive only to the violation of the assumption of the normality of true scores and is robust against distributional assumption of error scores. Therefore, it is logical to expect that the distribution is not robust against the distributional assumption of true scores, but the effect of non-normality of error scores must still be investigated under the ETEM model, since there is a possibility of interaction between the non-normal error score distribution and nonhomogeneous error variances.

To investigate this interaction effect, further experiments were carried out using the EV2 error variances set, chosen because its $\sigma_{e.}^2 = 4.0018$ is closest to $\sigma_{e.}^2 = 4.0$ used for the ANOVA model

TABLE 5.7

Parameters	g. (%)	Real Sig	ical C.P. ²	Theoret	d C.P. ¹	Observe		Error	
	Upper	Lower	Upper	Lower	Upper	Lower	Rel.	Set	No.
(8)	(7)	(6)	(5)	(4)	(3)	(2)			
,	4.85	4.25	0.927	0.814	0.926	0.819	0.889	EVI	01
$\sigma_A^2 = 4.0$	4.90	4.10	0.927	0.814	0.927	0.818	0.889	EV2	02
1 ^	6.05	5.55	0.931	0.824	0.932	0.821	0.895	EV3	53
	8.05	5.25	0.934	0.832	0.940	0.831	0.900	EV4	54
	6.00	5.20	0.923	0.804	0.925	0.802	0.883	EVS	05
	5.65	5.30	0.891	0.722	0.892	0.719	0.834	EV6	06
	7.15	4.65	0.915	0.784	0.920	0.787	0.871	EV7	07
,	5.05	4.55	0.781	0.442	0.782	0.449	0.667	EV 1	8
$\sigma_{\rm A}^2 = 1.0$	5.20	5.00	0.782	0.442	0.784	0.442	0.667	EV2	9
	5.45	3.85	0.791	0.466	0.793	0.479	0.681	EV3	iõ –
1	6.10	5.45	0.798	0.484	0.801	0.475	0.692	EVA	11
	6.25	5.20	0.772	0.419	0.778	0.414	0.653	EV S	12
	5.25	3.80	0.709	0.258	0.712	0.292	0.557	EV6	13
	5.40	4.50	0.755	0.376	0.756	0.385	0.628	EV7	14
	4.55	5.10	0.618	0.027	0.616	0.023	0.419	EVI	15
$\sigma_{\rm A}^2 = 0.36$	4.70	5.15	0.618	0.026	0.617	0.018	0.419	EV2	16
	5.45	4.80	0.629	0.053	0.633	0.057	0.434	EV3	17
	4.05	4.55	0.637	0.074	0.627	0.095	0.447	EVÁ	18
	4.45	4.25	0.609	0.002	0.604	0.020	0.404	EV5	19
	5.05	4.35	0.543	-0.153	0.549	-0.135	0.311	EV6	20
	4.10	4.60	0.591	-0.042	0.582	-0.031	0.378	EV7	21

Comparisons of Observed Lower and Upper 5% Critical Points and Real Type One Errors of F-Test When Nominal Value is Fixed at 5%, Under ETEM Model and Normal Distributions With the Values Obtainable Under ANOVA Model, N = 2000, I = 30, J = 8

¹Observed lower and upper 5% critical points of β .

 $^2\text{Theoretical lower and upper 5% critical points of <math display="inline">\beta$ under ANOVA model.

to make comparisons simpler, and three levels of σ_A^2 , for three types of true and error score distributions, namely uniform (U1), normal (NO), and exponential (EX). Altogether the results of 27 experiments are summarized by tabulating the MS's (Table 5.8), standard errors (Table 5.9), and lower and upper 5% critical points of the distribution of reliability estimates with approximate real Type one errors when the nominal values are fixed at 5% level (Table 5.10).

These 27 experiments may be compared with the results of the corresponding experiments under the ANOVA model, namely experiments 1-3, 13-21, 31-39, and 49-54 of Tables 5.1, 5.2, and 5.3. The expected values of MS's and variance of MS_A show close agreement with observed values, but formula (5.6) does consistently underestimate the variance of MS_e , though the difference is trivial. Table 5.9 suggests that formula (5.10) closely approximates the observed standard error as in the case of ANOVA model. Observation of Table 5.10 also suggests that the pattern of discrepancy of real Type one error from the nominal value of 5% is almost the same as for the case of the ANOVA model, thus indicating non-existence of interaction effects between the non-homogeneous variance and non-normality of error score distributions.

5.2.4 Conclusions for the Distributions Under ETEM Model

The effects of non-homogeneous error variances on the sampling distribution of reliability estimates was investigated by simulating 21 experiments using three levels of ρ and 7 sets of error variances whose variance ranged from 0.0 to 42.1876. The following conclusions are tentatively made.

TABLE 5.8

Comparisons of Observed Means and Variances of MS's Under ETEM Model with EV2 Error Variances Set and Various Combinations of True and Error Score Distributions with the Values Obtainable from Formula (5.6), N = 2000, I = 30, J = 8

-	Dis		Observed MSA		Observed MS		Var. by (5.6)		Parameters,	
No.	Tr.	Er.	Mean	Var.	Mean	Var.	MSA	MSe	Expected Values Under ANOVA	
			(1)	(2)	(3)	(4)	(5)	(6)	(7)	
01	U1	UI	36.063	46.826	4.005	0.094	48.348	0.078	$\sigma_A^2 = 4.0$	
02	U 1	NO	36.119	45.750	3.996	0.184	48.428	0.158		
03	ŬÎ.	EX	36.041	45.461	3.971	0.597	48.829	0.558	ρ = 0. 8888	
04	NO	UI	35.946	81.623	4.005	0.094	89.308	0.078	$E(MS_A) = 36.0$	
05	NO	NO	36.041	85.556	4.000	0.184	89.388	0.158		
06	NO	EX	36.112	90.902	3.971	0.597	89.789	0.558	$E(MS_) = 4.0018$	
07	EX	UI		259.119	4.005	0.094	294.108	0.078	e	
08	EX	NO	35.347		3.996	0.184	294.188	0.158		
09	EX	EX		269.587	3.971	0.597	294.589	0.558		
, *		•	1							
10	Ul	UI	111.913	7.355	3.999	0.092	7.294	0.078	$\sigma_{A}^{2} = 1.0$	
l ii	U1	NO	12.019	7.240	3.995	0.189		0.158	^	
112	U1	EX	12.036	7.769	3.985	0.632	7.774	0.558	$\rho = 0.6666$	
1 13	NO	U Î	12.049	9.579	3.999	0.092	9.854	0.078	$E(MS_A) = 12.0018$	
14	NO	NO	12.034	9.581	3.995	0.189	9.934	0.158	1 ^	
is	NO	EX	12.083	10.585	3.985	0.632	10.334	0.558		
16	EX	UI	12.012		3.999	0.093	22.654	0.078	$E(MS_{)} = 4.0018$	
1 17	EX	NO	11.901	22.794	3.995	0.189	22.734	0.158	E	
1 18	EX	EX	11.918		3.985	0.632	23.134	0.558		
1		•				•				
19	UI	Ul	6.877	2.916	3.990	0.097	2.854	0.078	$\sigma_{A}^{2} = 0.36$	
20	U1	NO	6.879		4.008	0.189	2.934	0.158	1 "	
21	U1	EX	6.886		4.002	0.607	3.335	0.558	$\rho = 0.4185$	
22	NO	υï	6.912		3.990	0.097	3.186	0.078		
23	NO	NO	6.891		4.008	0.189	3.266	0.158	$E(MS_A) = 6.8818$	
24	NO	EX	6.870		4.002	0.607	3.667	0.558		
25	EX	υÎ	6.870		3.990	0.097	4.845	0.078	E(MS_) = 4.0018	
26	EX	NO	6.87		4.008	0.189	-	0.158		
27	EX	EX	6.85		4.002	0.607		0.558		
1 * '						•				

(a) Var
$$(MS_A) = \left[\frac{2}{1-1} + \frac{1}{1}\left\{\rho^2_{Y_A} + (1-\rho)^2_{Y_e}/J\right\}\right] (J \sigma_A^2 + \sigma_e^2)^2$$

(b) Var $(MS_e) = \left[\frac{2}{(1-1)(J-1)} + \frac{Y_e}{1J}\right] \sigma_e^4$

.

•

TABLE 5.9

No.	Dis.		Observed \$		Calcu	lated from		
	Tr.	Er.	Mean	S.E.	(5.3)	(5.1)	(5.10)	Perameters
			(1)	(2)	(3)	(4)	(5)	(6) .
01	บา	U1	0.884	0.028	0.038	0.036	0.030	,
02	U1	NO	0.885	0.028	0.038	0.036	0.030	$\sigma_A^2 = 4.0$
03	U1	EX	0.886	0.033	0.038	0.036	0.030	
04	NO	U1	0.881	0.036	0.038	0.036	0.036	p = 0.8888
05	NO	NO CM	0.881	0.036	0.038	0.036	0.036	$E(\beta) = 0.8806$
06	NO	EX	0.882	0.041	0.038	0.036	0.036	
07	EX	U1	0.863	0.063	0.038	0.036	0.057	
80	EX	NO	0.864	0.062	0.038	0.036	0.057	
09	EX	EX	0.865	0.064	0.038	0.036	0.057	
10	UI	υl	0.646	0.091	0.101	0.108	0.098	
11	UI	NO	0.650	0.092	0.101	0.108	0.098	$\sigma_{A}^{2} = 1.0$
12	UI	EX	0.653	0.101	0.101	0.108	0.100	1 ^
13	NO	U1	0.644	0.105	0.101	0.108	0.108	o = 0.6666
14	NO	NO	0.648	0.114	0.101	0.108	0.109	$E(\beta) = 0.6419$
15	NO	EX	0.648	0.114	0.101	0.108	0.109	
16	EX	U1	0.615	0.154	0.101	0.108	0.146	
17	EX	NO	0.639	0.144	0.101	0.108	0.147	
18	EX	EX	0.617	0.158	0.101	0.108	0.148	
19	UI	υl	0.380	0.175	0.151	0.188	0.180	
20	U1	NO	0.381	0.170	0.151	0.188	0.182	$\sigma_A^2 = 0.36$
21	UI	EX	0.386	0.179	0.151	0.188	0.189	
22	NO	Ul	0.380	0.184	0.151	0.188	0.187	$\rho = 0.4185$
23	NO	NO	0.375	0.187	0.151	0.188	0.188	$E(\beta) = 0.3754$
24	NO	EX	0.380	0.187	0.151	0.188	0.195	
25	EX	UI	0.360	0.212	0.151	0.188	0.216	
26	EX	NO	0.358	0.218	0.151	0.188	0.217	1
27	EX	EX	0.362	0.218	0.151	0.188	0.224	

•

Comparisons of Observed Heans and Standard Errors of Reliability Estimates Under ETEM Model With EV2 Error Variances Set and Various Combinations of True and Error Score Distributions With the Values Obtainable From Formulas (5.3), (5.1), and (5.10), N = 2000, i = 30, J = 8

(5.1)
$$\begin{cases} (a) \quad E(\beta) = 1 - (1-\rho) \frac{1-1}{1-3} \\ (b) \quad Var \quad (\beta) = (1-\rho)^2 \frac{2(1-1)(\nu+1-3)}{(J-1)(1-3)^2(1-5)} \end{cases}$$

(5.3) Ver (b) =
$$\frac{(1-\rho^2)^2}{1}$$

.

•

(5.10) Ver (b)
$$\simeq (1-p)^2 \left[\frac{2(1-1)(1J-J-2)}{(J-1)(1-3)^2(1-5)} + \frac{\sqrt{y}}{1} \right]$$
score Distributions with the N = 2000, I = 30, J = 8
--

			Real SI	ig. 8	Observe	d C.P.	Theoretic	al C.P.*	Parameters
to.	Dis. Tr.	Er.	Lower	Upper	Lower	Upper	Lower	Upper	
			(1)	(2)	(3)	(4)	(5)	(6)	(7)
				1.45	0.838	0.920	0.814	0.927	
51	Uì	U1	1.50		0.839	0.921	0.814	0.927	$\sigma_{A}^{2} = 4.0$
02	UI	NO	1.80	1.85	0.826	0.928	0.814	0.927	1
03	U1	EX	3.25	5.85	0.817	0.925	0.814	0.927	ρ = 0.8888
04	NO	U1	4.60	3.95	0.817	0.927	0.814	0.927	
05	NO	NO	4.10	4.90	0.810	0.934	0.814	0.927	
06	NO	EX	5.40	8.65		0.940	0.814	0.927	
07	EX	Ul	16.75	10.90	0.746	0.940	0.814	0.927	
08	EX	NO	17.15	11.50	0.745	0.92/	0.814	0.927	
09	EX	EX	18.40	12.90	0.746	0.945	0.014		
							0.442	0.781	
10	U1	UI	3.20	3.15	0.478	0.768	0.442	0.781	$\sigma_{\rm A}^2 = 1.0$
ii	Ŭ1	NO	2.80	3.70	0.481	0.774	0.442	0.781	A
12	Ŭ1	EX	3.15	5.25	0.470	0.783		0.781	
13	NO	υÎ	4.70	5.05	0.445	0.781	0.442	0.781	ρ = 0.6666
14	NO	NO	5.00	5.20	0.442	0.784	0.442		
	NO	EX	5.90	7.35	0.422	0.794	0.442	0.781	
15 16	EX	ັ້ນໂ	11.65	9.90	0.337	0.813	0.442	0.781	
	-	NO	11.45	11.60	0.326	0.814	0.442	0.781	
17	EX EX	EX	12.85	11.95	0.323	0.823	0.442	0.781	
	-	•		6 75	0.050	0.616	0.026	0.618	2
19	UΊ	Ul	4.20	4.75	0.072	0.610		0.618	$\sigma_{A}^{2} = 0.36$
20	U 1	NÖ	3.25	4.20	0.049	0.621		0.618	
21	Ul	EX	4.45	5.10		0.620		0.618	
22	NO	U1	4.60	5.30	0.039	0.617		0.618	$\rho = 0.4185$
23	NO	NO	5.15	4.70	0.018			0.618	
24	NO	EX	4.80	5.25	0.033			0.618	
25	EX	U1	6.85	7.10	-0.090			0.618	
26	EX	NO	7.60		-0.051			0.618	
27	EX	EX	7.20	8.50	-0.037	0.618	0.020	v. v. v	

¹Observed lower and upper S% critical points.

.

.

²Theoretical lower and upper 5% critical points of β under ANOVA model with normal distribution of true and error scores.

(a) The variance of MS_e is sensitive to the violation of the homogeneity assumptions, and formula (5.6) should not be used to calculate this statistic.

(b) For the point estimation of reliability, the ANOVA model is quite robust against the violation of homogeneity of error variances provided that the distributions are normal.

(c) The standard error of estimation is quite robust against the violation of the homogeneity of error variances. The best formula is still (5.10).

(d) Formula (2.17) can be used freely without inflating or deflating Type one errors too much for the ETEM model provided that normality is not violated.

The effect of non-normal true or error score distributions under the ETEM model was investigated by performing 27 experiments with three levels of p, three types of true and error score distributions, and a set of non-homogeneous error variances. The following conclusions are tentatively made.

(e) Formula (5.6) consistently underestimates the variance of MS_ under the ETEM model.

(f) The interaction between the ETEM model and non-normal error score distribution seems negligible.

(g) The conclusions drawn in Section 5.1.0 may be generalized to the ETEM model with little modification.

5.3.0 <u>Relaxation of the Homogeneity of True Variance Constraint in</u> the ANOVA or ETEM Models

5.3.1 Reliability and the Alpha Coefficient

In Chapter Two, the ANOVA and ETEM models were expanded to include more general models such as the congeneric or multi-factor true score models through the use of the vector or matrix parameters $\underline{\lambda}$ and Λ in equation (2.6) to produce (2.28). Under these more general models, the ETEM assumptions are not satisfied in general, and the Alpha coefficient is lower than the reliability coefficient. Therefore, one might be interested in two related but different distributions, namely, the sampling distributions of the Alpha coefficient estimates and the reliability estimates. However, the Alpha coefficient has attracted test theorist's interest only because it is considered a practical, and easily computable substitute for the reliability coefficient. Thus, the distribution of the Alpha coefficient estimates is meaningful only in lieu of the distribution of reliability estimates. Furthermore, because no direct estimation formula for reliability is available under these more general models, without exception Alpha coefficient estimates have been accepted as reliability estimates regardless of the underlying models or assumptions.

Test theorists know that the population Alpha coefficient is in general lower than the reliability, but this fact has been frequently confused with underestimation due to biasedness of the estimation procedure. Two kinds of underestimation problems that exist in reliability theory must be distinguished: one is due to deviation from the ETEM assumption, which is not a statistical inference problem, and the other is due to the nature of the estimation formula which is biased.

The sampling distribution of the Alpha coefficient under the

non-ETEM model is the most overlooked aspect of reliability theory. No study has yet been reported on this subject to the author's knowledge. Due to the mathematical complexity involved in these models, it seems almost impossible to investigate the problem by analytical means. Therefore, the problem was investigated as assumption violating cases of the ANOVA model using computer simulation techniques. The major purpose is to find the effects of the violation of the ETEM assumptions, or homogeneity of true score variances and unifactorness of the true score dispersion matrix.

Because so many assumptions of ANOVA models are violated under these more general models, an exhaustive investigation of all the combinations of possible violation of assumptions is prohibitively expensive with the computer simulation method. The study in this section is limited to a few combinations. Therefore, the findings in this section have limited value for generalization.

5.3.2 Distributions Under the Congeneric Model

Under the congeneric true score model, each part-test measures the same trait except for the errors of measurement, i.e., the factorial structure of true scores is unifactor. Therefore all part-test scores have linearly related true scores. Test scores under the classically parallel, ANOVA (or essentially parallel), or ETEM models are all special cases of the congeneric model, as discussed more fully in Chapter Two. In these special cases any true score of a part-test must be essentially identical for a given subject, unlike the congeneric model.

Under the congeneric model, the variance, $\sigma_{Aj}^2 = \lambda_j^2$, of true score for part j depends on j, and there is not a common

variance parameter σ_A^2 which has played a key role in the ETEM or ANOVA models. To obtain the corresponding parameters for the congeneric model, a new parameter $\sigma_{A.}^2$ is defined denoting the average of the all elements of the dispersion matrix $\frac{\lambda}{\lambda} \frac{\lambda'}{\lambda}$, namely,

(5.13)
$$\sigma_{A.}^{2} = (\underline{1}, \underline{\lambda}, \underline{\lambda}, \underline{1})/J^{2} = (\sum_{j}, \lambda_{j}, \lambda_{j}, \lambda_{j})/J^{2}$$

As this parameter is an average of true score variance and covariances, the reliability coefficient is,

(5.14)
$$\rho = \frac{\underline{1}' \underline{\lambda} \underline{\lambda}' \underline{1}}{\underline{1}' (\underline{\lambda} \underline{\lambda}' + \underline{\Psi}^2) \underline{1}} = \frac{J^2 \sigma_{A.}^2}{J^2 \sigma_{A.}^2 + J \sigma_{e.}^2}$$

where $\sigma_{e.}^2$ is the average of error variances as defined by (2.22), namely the mean of $\{\sigma_{ej}^2\}$. Since the distribution (2.17) obtained under the ANOVA model and normal distribution theory does not directly involve the parameters σ_A^2 and σ_e^2 , but only directly involves the reliability ρ , it is desirable to know whether the distribution of reliability estimates based on formula (2.13)-(b) is robust against the violation of ETEM assumptions, i.e., whether the relation (2.17) still holds approximately for the congeneric cases.

Under the congeneric model, formula (2.13)-(b) gives the estimate of the Alpha coefficient, not the reliability, but it is hoped that, with moderate violation of ETEM assumptions, inferences based on the estimate of Alpha would not invalidate the inferences of reliability too much as in the case of the previous section.

To see the effects of non-homogeneous true score variances, sampling experiments were performed using the following three sets of λ 's representing three levels of reliability, namely,

$$\underline{\lambda}_{1} = \begin{bmatrix} 1.6\\ 1.8\\ 1.8\\ 2.0\\ 2.0\\ 2.2\\ 2.2\\ 2.2\\ 2.4 \end{bmatrix}, \qquad \underline{\lambda}_{2} = \begin{bmatrix} 0.8\\ 0.9\\ 0.9\\ 1.0\\ 1.0\\ 1.0\\ 1.1\\ 1.2 \end{bmatrix}, \qquad \underline{\lambda}_{3} = \begin{bmatrix} 0.72\\ 0.66\\ 0.66\\ 0.66\\ 0.60\\ 0.54\\ 0.54\\ 0.48 \end{bmatrix}$$

which gives three levels of σ_{A}^2 namely 4.0, 1.0, and 0.36 and three levels of ρ , i.e., 0.8889, 0.6667, and 0.4186 respectively. The $\underline{\lambda}$'s were chosen such that the values of σ_A^2 equal σ_A^2 used for the ANOVA and ETEM model experiments in Sections 5.1.0 and 5.2.0, in order to facilitate the comparisons. The error variances $\{\sigma_{ei}^2\}$ are fixed at 4.0 as the ANOVA model, and the same constants are used for N, I, and J, i.e., 2000.30, and 8 respectively. Employing three types of true and error score distributions, namely uniform (U1), normal (NO), and exponential (EX), altogether 27 experiments were performed by RELOI, and the results are summarized in Tables 5.11, 5.12, and 5.13. As in the previous sections, the distributions of MS's are examined first. From Table 5.11, it is noted that the effects of non-homogeneous true score variances are minimal, i.e., the results are almost identical with those under ANOVA model given in Table 5.1. Table 5.12 summarizes the means and standard errors of reliability estimates under this model and compares them with the values obtainable from formulas (5.3), (5.1)-(b). and (5.10). It is clearly noticed that formula (5.10) is still the best among the three. When the means of $\hat{\rho}$ in Table 5.12 are compared with the corresponding values of Table 5.2, it may be noticed that under the congeneric model the mean of $\hat{\rho}$ is lower than under the ANOVA model, as expected, since the formula used for the estimation, (2.13), is for the estimation of Alpha, and Alpha is lower than

Ex.	Dis.		Obser	ved HS	Observ	ed HS	Var. by	(5.6)	Parameters
No.	Tr.	Er.	Hean	Var.	Hean	Var.	HSA	MS	and E(MS)
_			(1)	(2)	(3)	(4)	(5)	(6)	(7)
01	U1	Ul	36.052	47.112	4.075	0.089	48.339	0.078	$\sigma_{\rm A}^2 = 4.0$
02	Ul	NO	36.102	45.563	4.068	0.168	48.419	0.158	A 110
03	Ul	EX	36.057	45.036	4.036	0.531	48.819	0.558	
04	NO	Ul	35.931	81.750	4.075	0.090	89.299	0.078	$\rho = 0.8889$
05	NO	NO	36.016	85.812	4.069	0.167	89.379	0.158	Alpha = 0.8870
06	NO	EX	36.130	90.374	4.040	0.525	89.779	0.558	$E(MS_{A}) = 36.0$
07 Ì	EX	U1	35.335	258.849	4.071	0.091	294.099	0.078	· · · ·
08	EX	NO	35.358	270.871	4.064	0.168	294.179	0.158	E(MS_) = 4.0
09	EX	EX	35.380	269.881	4.040	0.525	294.579	0.558	•
10	UI	UT	11.924	7.389	4.009	0.085	7.291	0.078	$\sigma_{\rm A}^2 = 1.0$
ii l	U1	NO	12.028	7.147	4.008	0.168	7.371	0.158	· A. · · ·
12	U1	EX	12.030	7.657	3.999	0.560	7.771	0.558	p = 0.6667
13	NO	ŪÎ	12.051	9.555	4.010	0.086	9.851	0.078	Alpha = 0.6652
14	NO	NO	12.029	9.492	4.009	0.169	9.931	0.158	E(MS_) = 12.0
15	NO	EX	12.076	10.484	3.999	0.560	10.331	0.558	A
16	EX	ŪÎ	12.005	23.121	4.012	0.086	22.651	0.078	E(MS_) = 4.0
17	EX	NO	11.883	22.484	4.010	0.170	22.731	0.158	•
18	EX	EX	11.913	23.485	3.998	0.558	23.131	0.558	
			6.875	2.910	3.997	0.088	2.853	0.078	$\sigma_{A}^{2} = 0.36$
19	U1	UI	6.869	2.886	4.012	0.171	2.933	0.158	A
20	UI	NO	6.868	3.180	4.003	0.526	3.333	0.558	0 = 0.4186
21	UI	EX		3.160		0.088	3.184	0.078	Alpha = 0.4177
22	NO	U1	6.911		3.997	0.173	3.264	0.158	E(MSA) = 6.880
23	NO	NO	6.883	3.363 3.629	4.003	0.526	3.664	0.558	A = 0.000
24	NO	EX	6.858		3.996	0.087	4.843	0.078	E(MS_) = 4.0
25	EX	U1	6.862	4.534		0.087	4.923	0.158	e (ma / = 4.0
26	EX	NO	6.865	4.627	4.012			0.558	
27	EX	EX	6.854	4.995	4.004	0.526	5.323	V. 330	1

Comparisons of Observed Means and Variances of MS's Under the Congeneric Model and Various Combinations of True and Error Score Distributions With the Values Obtainable From Formula (5.6), N = 2000, 1 = 30, J = 8

(5.6)
$$\begin{cases} (a) \quad \text{Var } (\text{HS}_{A}) = \left[\frac{2}{1-1} + \frac{1}{1} \left(\rho^{2} Y_{A} + (1-\rho)^{2} Y_{A}/J\right)\right] \left(J\sigma_{A}^{2} + \sigma_{e}^{2}\right)^{2} \\ (b) \quad \text{Var } (\text{HS}_{e}) = \left[\frac{2}{(1-1)(J-1)} + \frac{Y_{e}}{IJ}\right] \sigma_{e}^{4} \end{cases}$$

Exp.	Dis.		Observ	red B	\$.E. I	by formulas		Parameters and expected
No.	Tr.	Er.	Mean	\$.E.	(5.3)	(5.1)-(ь)	(5.10)	values under ANOVA
			(1)	(2)	(3)	(4)	(5)	(6)
01	UT	UI	0.882	0.028	0.038	0.036	0.030	$\sigma_A^2 = 4.0$
02	101	NO	0.883	0.028	0.038	0.036	0.030	^
03	U1	EX	0.884	0.033	0.038	0.036	0.030	ρ = 0.8889
04	NO	UI	0.879	0.036	0.038	0.036	0.036	Alpha = 0.8870
05	NO	NO	0.879	0.036	0.038	0.036	0.036	E(c) = 0.8807
06	NO	EX	0.880	0.040	0.038	0.036	0.036	
07	EX	U1	0.862	0.062	0.038	0.036	0.057	
68	EX	NO	0.862	0.061	0.038	0.036	0.057	
09	EX	EX	0.863	0.064	0.038	0.036	0.057	
10	1 11	UI	0.645	0.091	0.101	0.108	0.098	$\sigma_A^2 = 1.0$
11	lui	NO	0.649	0.091	0.101	0.108	0.098	
12	l ŭi –	EX	0.651	0.098	0.101	0.108	0.100	o = 0.6667
13	NO	U1	0.643	0.106	0.101	0.108	0.108	A1pha = 0.6652
14	NO	NO	0.643	0.105	0.101	0.108	0.108	
15	NO	EX	0.646	0.114	0.101	0.108	0.109	E(6) = 0.6420
ić –	EX	UÎ	0.613	0.155	0.101	0.108	0.146	
17	EX	NO	0.611	0.156	0.101	0.108	0.147	
18	EX	EX	0.615	0.157	0.101	0.108	0.148	
19	01	U1	0.379	0.175	0.151	0.188	0.180	$\sigma_{\rm A}^2 = 0.36$
20	ui	NO	0.379	0.172	0.151	0.188	0.182	A
21	U1	EX	0.383	0.179	0.151	0.188	0.189	0 = 0.4186
22	NO	ັ້ນໂ	0.378	0.186	0.151	0.188	0.186	Alpha = 0.4177
23	NO	NO	0.373	0.189	0.151	0.188	0.188	
24	NO	EX	0.378	0.186	0.151	0.188	0.195	E(a) = 0.3755
25	EX	ັ້ນາ	0.359	0.213	0.151	0.188	0.216	
26	EX	NO	0.356	0.219	0.151	0.188	0.217	
27	Ēx	EX	0.360	0.217	0.151	0.188	0.224	1

•

Comparisons of	Observed Means	and Standard	Errors of Rel	Iability Estimates
Under the	Congeneric True	e Score Model	With the Valu	es Obtainable
Fr	om Various Form	ulas, N = 200	0. 1 = 30.	J = 8

(5.1)
$$\begin{cases} (a) & E(\beta) = 1 - (1-\rho) \frac{1-1}{1-3} \\ (b) & Var(\beta) = (1-\rho)^2 \frac{2(1-1)(v+1-3)}{(J-1)(1-3)^2(1-5)} \end{cases}$$

(5.3) Ver
$$(\beta) = \frac{(1-\rho^2)^2}{i}$$

(5.10) Var (b)
$$\simeq (1-p)^2 \left[\frac{2(1-1)(1J-J-2)}{(J-1)(1-3)^2(1-5)} + \frac{Y_y}{1} \right]$$

reliability under the congeneric model. However, as can be seen in Figure 5.1, the shapes of the distributions are almost the same as expected from (2.17), namely under the ANOVA model and normal distribution theory. Therefore similar conclusions as cited in Section 5.1.5 may be obtained from the observation of Table 5.13, namely the real significance levels of the F-test, or the lower and upper 5% critial points of $\hat{\rho}$ are almost the same as the values under the ANOVA model.

To make the comparisons between the ANOVA model and the congeneric model, and to separate the effects of non-homogeneous true scores variances from the effects of non-homogeneous error variances, further experiments were performed under the same conditions as the ANOVA model cases except that the true score variances were allowed to differ. However, there is some possibility of the existence of interaction effects between the effects of violating the two homogeneity assumptions, although each case was found to be quite robust against the violations.

To investigate this problem, 15 additional experiments were performed employing three sets of λ 's as before and five sets of non-homogeneous error variances used in Section 5.2.0, namely EV3, EV4, EV5, EV6, and EV7. The results are summarized in Tables 5.14, 5.15, and 5.16. When the entries of these tables are compared with the corresponding values of Tables 5.5, 5.6, and 5.7, little difference is noted between the two sets of values suggesting non-existence of such interaction effects. For example, experiment 3 of Table 5.5 gives the observed variance of MS_A as 88.222, while the corresponding value under the congeneric model is given in experiment 1 of Table 5.14 as 89.270. Therefore, it may be concluded that, the effect of non-

Comparisons of Observed Lower and Upper 52 Critical Points of Reliability Estimates
Under the Congeneric True Score Model with the Values Obtainable Under the
ANOVA and Normal Theory, and Real Type One Error of F-Test When the
Numinal Value is 5%, N = 2000, I = 30, J = 8

Exp.	Dis.		True Si	g. (%)	Observ	ed C.P. ¹	Theoretic	cal C.P. ²	
No.	Tr.	Er.	Lower	Upper	Lower	Upper	Lower	Upper	Parameters
			(1)	(2)	(3)	(4)	(5)	(6)	(7)
01	UI	UI	1.90	1.35	0.834	0.917	0.814	0.927	$\sigma_{A}^{2} = 4.0$
02	Ul	NO	1.85	1.65	0.835	0.918	0.814	0.927	· · · · · · · · · · · · · · · · · · ·
03	UI	EX	2.75	4.05	0.826	0.925	0.814	0.927	o = 0.8889
04	NO	UT	5.15	2.90	0.813	0.924	0.814	0.927	Alpha = 0.887
05	NO	NO	4.60	3.95	0.816	0.925	0.814	0.927	
06	NO	EX	5.65	6.95	0.810	0.930	0.814	0.927	
07	EX	UI	17.95	9.64	0.745	0.938	0.814	0.927	
80	EX	NO	17.85	10.45	0.743	0.940	0.814	0.927	
09	EX	EX	18.35	11.70	0.750	0.942	0.814	0.927	
10	UI	UI	3.35	2.80	0.475	0.768	0.442	0.781	$\sigma_{A_1}^2 = 1.0$
ii -	Ŭ1	NO	3.05	3.35	0.482	0.771	0.442	0.781	A
12	υİ	EX	3.75	4.85	0.470	0.781	0.442	0.781	o = 0.6667
13	NO	UI	4.60	4.70	0.448	0.778	0.442	0.781	Alpha = 0.6652
14	NO	NO	4.60	4.80	0.447	0.780	0.442	0.781	
15	NO	EX	6.05	7.10	0.428	0.791	0.442	0.781	
16	EX	U1	11.70	10.45	0.325	0.812	0.442	0.781	
17	EX	NO	12.05	11.05	0.328	0.812	0.442	0.781	
18	EX	EX	12.80	11.85	0.319	0.820	0.442	0.781	
19	UI	Ul	3.85	4.85	0.058	0.618	0.027	0.618	$\sigma_{A_1}^2 = 0.36$
20	ŪÌ	NO	3.65	4.35	0.068	0.610	0.027	0.618	A 0.50
21	Ul	EX	4.65	4.60	0.040	0.614	0.027	0.618	a = 0.4186
22	NO	Ū	4.80	4.55	0.030	0.614	0.027	0.618	Alpha = 0.417
23	NO	NO	5.25	4.60	0.020	0.616	0.027	0.618	
24	NO	EX	5.00	4.65	0.027	0.617	0.027	0.618	
25	EX	UT	7.15	6.95	-0.027	0.635	0.027	0.618	
26	EX	NO	8.40	7.20	-0.048	0.645	0.027	0.618	
27	EX	EX	7.40	8.40	-0.052	0.648	0.027	0.618	

¹Observed lower and upper 5% critical points.

 $^{2}\ensuremath{\text{Theoretical}}$ lower and upper 5% critical points under ANOVA with normal distribution of true and error scores.

Exp.	Er.	Observe	d MSA	Observa	ed MS	E (HE)	Var. by		Parameters
No.	Туре	Mean	Var.	Hean	Var.	E (MSA)	MSA	MS	reremulers
		<u>_()</u>	(2)	(3)	(4)	(5)	(6)	(7)	(8)
01	EV3	36.101	89.270	3.832	0.224	35.750	88.142	0.139	$\sigma_{A_1}^2 = 4.0$
02	EV4	35.611	83.103	3.630	0.239	35.562	87.220	0.125	· A.
03	EV5	36.308	87.363	4.321	0.441	36.250	90.625	0.178	
04	EVG	38.742	103.316	6.472	0.708	38.375	101.561	0.400	
05	EV7	36.915	96.880	4.819	0.618	36.750	93.142	0.222	
06	EV 3	11.795	9.654	3.758	0.241	11.750	9.522	0.139	$\sigma_{\mathbf{A}}^2 = 1.0$
07	EV4	11.633	9.566	3.574	0.223	11.562	9.220	0.125	· A.
08	EVS	12.249	10.121	4.693	0.432	12.250	10.349	0.178	
09	EV6	14.477	15.206	6.376	0.702	14.375	14.251	0.400	1
10	EV7	12.740	11.321	4.775	0.609	12.750	11.211	0.222	
		6 700	3.203	3.768	0.221	6.630	3.032	0.139	$\sigma_{A}^2 = 0.36$
	EV3	6.700		3.564	0.232	6.442	2.862	0.125	A. = 0.50
12	EV4	6.430	2.779	4.258	0.430	7.130	3.506	0.178	1
13	EVS	7.120	3.491		-	9.255	5.907	0.400	
14	EV6	9.306	5.915	6.394	0.771		4.015	0.222	[
15	EV7	7.593	3.782	4.753	0.620	7.630	4.015	U. 222	

.

Comparisons of Observed Means and Variances of MS's Under Congeneric True Scores, Non-Momogeneous Error Variances and the Normal Distributions With the Values Obtainable Under ANOVA Model, N = 2000, 1 = 30, J = 8

TABLE 5.14

$$E(MS_e) = \sigma_e^2 = 3.750$$
 (EV3)
3.563 (EV4)
4.250 (EV5)
6.375 (EV6)
4.750 (EV7)

(5.6)
$$\begin{cases} (a) \quad \forall ar \ (MS_{A}) = \left[\frac{2}{1-1} + \frac{1}{T} \left[\rho^{2}\gamma_{A} + (1-\rho)^{2}\gamma_{e}/J\right]\right] (J\sigma_{A}^{2} + \sigma_{e}^{2})^{2} \\ \\ (b) \quad \forall ar \ (MS_{e}) = \left[\frac{2}{(1-1)(J-1)} + \frac{\gamma_{e}}{IJ}\right] \sigma_{e}^{4} \end{cases}$$

Exp.	Er.	Rel.	Alpha	E(B) by	Observ	ved ß	S.E.	by		
No.	Var.	net.	o pom	(5.1)-(a)	Mean	S.E.	(5.3)	(5.10)	Parameter	
			(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
01	EV3	0.895	0.893	0.887	0.886	0.036	0.036	0.034	o ² _{A.} = 4.0.	
02	EV4	0.900	0.898	0.892	0.891	0.034	0.035	0.032	A	
03	EV5	0.883	0.881	0.874	0.873	0.041	0.040	0.038		
04	EV6	0.834	0.832	0.822	0.821	0.055	0.056	0.054		
05	EV7	0.871	0.869	0.861	0.860	0.048	0.044	0.042		
		,.	0.009			0.040	0.044	0.042		
06	EV3	0.681	0.679	0.657	0.658	0.108	0.098	0.103	$\sigma_{A}^2 = 1.0$	
07	EV4	0.692	0.690	0.669	0.670	0.102	0.095	0.100	*A . = 1.0	
08	EVS	0.653	0.652	0.627	0.628	0.114	0.105	0.112		
09	EV6	0.557	0.555	0.524	0.528	0.140	0.126	0.143		
10	EV7	0.628	0.626	0.600	0.601	0.119	0.111	0.121		
						0,		0.121		
11	EV3	0.434	0.434	0.393	0.397	0.180	0.148	0.183	$\sigma_{A_{1}}^{2} = 0.36$	
12	EV4	0.447	0.446	0.406	0.409	0.173	0.146	0.179	A	
13	EVS	0.404	0.403	0.360	0.365	0.181	0.153	0.193		
14	EV6	0.311	0.311	0.260	0.268	0.207	0.165	0.223		
15	EV7	0.378	0.377	0.331	0.337	0.190	0.157	0.201		

Comparisons of the Observed Means and Standard Error of Reliability Estimates Under Congeneric True Score, Non-Homogeneous Error Variances and Normal Distributions With the Values Obtainable From Formulas (5.1), (5.3), and (5.10), N = 2000, I = 30, J = 8

(5.1)
$$\begin{cases} (a) \quad E(\beta) = 1 - (1-\rho) \frac{1-1}{1-3} \\ (b) \quad Var(\beta) = (1-\rho)^2 \frac{2(1-1)(\nu+1-3)}{(J-1)(1-3)^2(1-5)} \\ (a - 2)^2 \end{cases}$$

(5.3) Var (
$$\beta$$
) = $\frac{(1-\rho^2)^2}{1}$

(5.10) Ver (6)
$$\simeq (1-p)^2 \left[\frac{2(1-1)(1J-J-2)}{(J-1)(1-3)^2(1-5)} + \frac{Y_y}{1} \right]$$

Comparisons of Observed Lower and Upper 5% Critical Points Under Congeneric True Scores, Non-Homogeneous Error Score Variance, and Normal Distributions With the Values Obtainable Under the ANOVA and Normal Theory, and Real Type One Errors of F-Test When the Nominal Value is 5%, N = 2000, I = 30, J = 8

	Er.		E(B) by	Observ	ed C.P.	Theoretl	cal C.P. ²	Real	Sig. (%)	_
Exp. No.	Var.	Rel.	(5.1)-(ь)	Lower	Upper	Lower	Upper	Lower	Uppe r	Parameter
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	· (9)
01	EV3	0.895	0.887	0.821	0.930	0.824	0.931	5.90	4.50	$\sigma_{A.}^2 = 4.0$
02	EV 4	0.900	0.892	0.829	0.934	0.832	0.934	5.90	4.80	-A
03	EV5	0.883	0.874	0.795	0.924	0.804	0.923	6.50	5.60	
04	EV6	0.834	0.822	0.720	0.892	0.722	0.891	5.25	5.25	
05	EV7	0.871	0.861	0.774	0.917	0.784	0.915	6.50	6.20	
	-			0.448	0 701	0.466	0.791	5.80	5.10	$\sigma_{A.}^2 = 1.0$
06	EV 3	0.681	0.657		0.792	0.465	0.798	5.00	5.60	A
07	EV4	0.692	0.669	0.485	0.802				5.15	Į
08	EVS	0.653	0.627	0.417	0.773	0.419	0.772	5.15		
09	EV6	0.557	0.524	0.271	0.713	0.258	0.709	4.40	5.95	
10	EV7	0.628	0.600	0.377	0.757	0.376	0.755	4.90	5.20	ļ
11	EV3	0.434	0.393	0.059	0.631	0.053	0.629	4.80	5.35	$\sigma_{\rm A}^2 = 0.36$
12	EV4	0.447	0.406	0.096	0.627	0.074	0.637	4.70	3.90	A .
. –		0.404	0.360	0.022	0.602	0.002	0.609	4.10	4.05	
13	EVS				0.545	-0.153	0.548	4.30	4.70	
14	EV6	0.311	0.260	-0.130					4.15	1
15	EV7	0.378	0.331	-0.035	0.582	-0.042	0.591	4.75	4.13	

¹Observed lower and upper 5% critical points of \$.

²Theoretical lower and upper 5% critical points of β under ANOVA model.

107.

homogeneous true score variance, or violation of ETEM assumption will affect the sampling distribution of the reliability estimates given by (2.17) very little as long as the degree of non-homogeneity is within a moderate range as with the $\underline{\lambda}$'s used in these experiments.

5.3.3 Distributions Under the Multi-Factor Model

Classically, the assumption of a one-factor true score has been referred to as one which produces 'unit rank correlation matrix' (e.g., Kuder and Richardson, 1937), but as seen in Chapter Two, the unifactorness of true scores is inherent to the ANOVA linear model and its more general form such as the ETEM or congeneric models. Under these models, it is implicitly assumed that the test measures only one trait, and therefore, the true score can have only one factor structure. However, in real test score data, it is seldom possible to separate measurement of one trait from others. The psychological or achievement tests usually measure more than one trait at a time, and it is sometimes unrealistic to assume that only one factor exists and to regard all other factors as error. This fact has been well demonstrated by the rejection by many researchers of Spearman's so-called g-factor theory in modern factor analysis. Thus violation of unifactor true score assumption may not be considered simply as an exceptional case; this may be rather a common case for real data.

In Chapter Two, the multi-factor test model has been introduced as a generalization of the congeneric test model by expanding the linear model of ANOVA step by step to a factor analytic model. However, since most of the test theories are based on the unifactor true score assumption, no reliability theory has ever been developed under this

model. Therefore the multi-factor model has been referred to as an assumption violating case of the classical model rather than a separate model in its own right. Following this traditional line, in this study, the reliability distribution under the multi-factor model is treated as an assumption violating case of the ANOVA model as are other models examined in the previous sections.

Since the Alpha coefficient is a measure of the first factor concentration (Cronbach, 1951), the coefficient is expected to be much lower than the reliability coefficient if second or higher factor is not negligible. Therefore, it is hardly expected that the sampling distribution of Alpha coefficient, as a substitute for the reliability estimate, is robust against the violation of the unifactor assumption.

To support this conjecture, a number of sampling experiments were performed and the results are compared with those obtainable under ANOVA model. The parameters σ_A^2 and σ_e^2 are not defined under this model as with the congeneric model case, but the average of true and error score variance may be used to determine the effectiveness of the ANOVA model under the multi-factor model, namely.

(5.15)
$$\sigma_{A,}^{2} = (\underline{1}^{\prime} \underline{\Lambda} \underline{\Lambda}^{\prime} \underline{1})/J^{2} = (\sum_{j} \sum_{j'} \sum_{r} \lambda_{jr} \lambda_{j'r})/J^{2},$$

and σ_{e}^2 as in the previous section.

If these parameters are used in place of σ_A^2 and σ_e^2 , most of the formulas introduced in Section 5.1.0 can be used directly and the robustness of the ANOVA model under multi-factor true score cases can be examined empirically by the simulation techniques.

Using the following two $\underline{\Lambda}$ matrices, an error score standard deviation matrix $\underline{\Psi}$, and three types of true and error score distributions, altogether 18 experiments were performed under the multi-factor true score model with N = 2000, I = 30, J = 6,

$$\underline{\mathbf{\Lambda}}_{1} = \begin{bmatrix} 0.887 & 0.302 \\ 0.410 & 0.663 \\ 0.242 & 0.735 \\ 0.369 & 0.816 \\ 0.417 & 0.557 \\ 0.669 & 0.482 \end{bmatrix}, \quad \underline{\mathbf{\Lambda}}_{2} = \frac{1}{2} \underline{\mathbf{\Lambda}}_{1} = \begin{bmatrix} 0.4435 & 0.1510 \\ 0.2050 & 0.3315 \\ 0.1210 & 0.3675 \\ 0.1845 & 0.4080 \\ 0.2085 & 0.2785 \\ 0.3345 & 0.2410 \end{bmatrix}, \\ \underline{\mathbf{\Psi}} = \begin{bmatrix} 0.34942 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.62636 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.62636 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.63341 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.44495 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.71823 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.56579 \end{bmatrix}.$$

Table 5.17 compares the observed means and variances of the MS's under the multi-factor model with the values obtainable from formula (5.6) treating the model as an ANOVA model. It is noted that rather close agreement exists between the means of the observed MS_A and $E(MS_A)$ given in colums (1) and (7), but the agreement is rather poor between the means of observed MS_e and $E(MS_e)$ given in columns (3) and (7) indicating the effect of the violation of unifactor true score assumption. Even for the normal true and error score distributions, the difference between the two values are too big to be explained as sampling fluctuation. For example, experiment 5 gives the mean of MS_e as 0.413 while the theoretical value of $E(MS_e) = 0.3249$ if the ANOVA model and $\sigma_{e.}^2$ are used. This implies that the $E(MS_e)$ undervalues the real expected value of MS_e . When the variances of MS's, in colums (2) and (4), are compared with the values obtainable from formula (5.6)

Exp.	Dis		Observed MS_		Observ	red MSe	Var. b	(5.6)	Parameters
No.	Tr.	Er.	Mean	Var.	Mean	Var.	MSA	MS	and E(MS)
		~	(1)	(2)	(3)	(4)	(5)	(6)	(7)
01	UI	Ul	3.916	0.761	0.436	0.0017	0.542	0.0008	$\sigma_{A}^{2} = 0.6001$ $\sigma_{e}^{2} = 0.3249$
02	U1	NO	3.915	0.800	0.414	0.0026	0.544	0.0015	A. 0.0001
03	Ú1	EX	3.902	0.814	0.414	0.0067	0.548	0.0050	a ² = 0.3249
04	NO	UI	3.919	1.087	0.413	0.0019	1.062	0.0008	e.
05	NO	NO	3.919	1.066	0.413	0.0027	1.063	0.0015	$E(MS_A) = 3.923$
06	NO	EX	3.913	1.036	0.413	0.0066	1.066	0.0050	$ \mathbf{A}' = \mathbf{J} \cdot \mathbf{J} \mathbf{L} \mathbf{J}$
07	EX	U1	3.898	2.341	0.414	0.0027	3.655	0.0008	E(MS_) = 0.324
80	ĒX	NO	3.895	2.278	0.414	0.0036	3.656	0.0015	e
09	EX	EX	3.887	2.309	0.413	0.0073	3.659	0.0050	
10	UI	UI	1.233	0.086	0.345	0.0010	0.070	0.0008	2 - 0.1500
iī	Ŭ1	NO	1.220	0.089	0.346	0.0019	0.071	0.0015	A 0.1500
12	U)	EX	1.218	0.089	0.346	0.0058	0.075	0.0050	$\sigma_{A,}^2 = 0.1500$ $\sigma_{e,}^2 = 0.3249$
13	NO	บ้า	1.231	0.103	0.348	0.0010	0.103	0.0008	e. = 0.3249
i4 -	NO	NO	1.223	0.103	0.346	0.0019	0.103	0.0015	E/ME 1 - 1 225
15	NO	EX	1.225	0.109	0.348	0.0059	0.107		E(MSA) = 1.225
16	EX	ΰî	1.220	0.181	0.346	0.0011	0.265	0.0050 0.0008	E (MS) - 0 3240
17	EX	NO	1.716	0.174	0.347	0.0020	0.265	0.0005	E(MS) = 0.324
18	EX	EX	1.242	0.188	0.346	0.0063	0.269	0.0015	

Comparisons of Observed Means and Variances of	
True Score Model and Various Combinations	of True and Error Score
Distributions With the Values Obtainable	Under ANOVA Model by
Formula (5.6), N = 2000, I =	30. J -6

(5.6)
$$\begin{cases} (a) \quad \forall ar \quad (HS_{A}) = \left[\frac{2}{1-1} + \frac{1}{1} \left(\rho^{2}\gamma_{A} + (1-\rho)^{2} \gamma_{e}/J\right)\right] \left(J\sigma_{A}^{2} + \sigma_{e}^{2}\right)^{2} \\ (b) \quad \forall ar \quad (HS_{e}) = \left[\frac{2}{(1-1)(J-1)} + \frac{\gamma_{e}}{1J}\right] \sigma_{e}^{4} \end{cases}$$

given in columns (5) and (6), rather poor agreement is noticed, suggesting inapplicability of the formula.

Table 5.18 gives means and standard errors of reliability estimates and compares them with the values obtainable from formulas (5.3), (5.1)-(b), and (5.10). It is observed that, for all experiments, the mean of $\hat{\rho}$ is much lower then population Alpha or $E(\hat{\rho})$ under ANOVA and normal theory, indicating the effect of the multi-factor true score structure. This result is probably due to the fact that the Alpha coefficient measures mainly the variance due to the first factor, and thus underestimates the true score variance and overestimates the error score variance, and at the same time shifting the distribution of reliability estimates considerably to the left as shown in Figure 5.2. Although formula (5.10) seems still to be the best among the three, the fit is very poor suggesting inapplicability of most of the formulas derived under the ANOVA model and normal theory for multi-factor true score test.

Discrepancies between observed and theoretical distributions based on ANOVA model are clearly seen when the real significance level of F-test is compared with the nominal value of 5%, as summarized in Table 5.19. The real significance level for the lower tail range from 14.40% to 27.50% for Λ_1 and 5.80% to 12.30% for Λ_2 , clearly indicating the inapplicability of the conventional F-test to multifactor tests. For the upper tail, the true significance levels are in general lower than the nominal value, but the results are not predictable. For example, experiment 2 gives a value as low as 0.45%, while experiment 18 gives one as high as 8.10%. All of these results

. .

			Observ	ved þ	Calcula	ited S.E. by		Parameters and L(6),
Ex. No.	Dis. Tr.	Er.	Mean	S.E.	(5.3)	(5.1)-(b)	(5.10)	ANOVA and Normal
			(1)	(2)	(3)	(4)	(5)	(6)
,,	Uł	Ul	0.888	0.032	0.029	0.027	0.023	$\sigma_{\rm A}^2 = 0.6001$
2	UI	NO	0.888	0.033	0.029	0.027	0.023	A.
03	Ul	EX	0.887	0.039	0.029	0.027	0.023	$\sigma_{e.}^2 = 0.3249$
04	NO	U1	0.886	0.037	0.029	0.027	0.027	e
05	NO	NO	0.886	0.038	0.029	0.027	0.027	
06	NO	EX	0.887	0.038	0.029	0.027	0.027	$\rho = 0.9172$
07	EX	U1	0.879	0.042	0.029	0.027	0.044	A1pha = 0.8943
08	EX	NO	0.879	0.047	0.029	0.027	0.044	E(b) = 0.9111
09	EX	EX	0.880	0.049	0.029	0.027	0.044	
10	Ul	UT	0.702	0.085	0.084	0.088	0.078	$\sigma_{1}^{2} = 0.1500$
ii	Ul	NO	0.698	0.088	0.084	0.088	0.079	A
12	U1	EX	0.700	0.097	0.084	0.088	0.080	$\sigma_{2}^{2} = 0.3249$
13	NO	UÎ	0.695	0.093	0.084	0.088	0.088	•.
14	NO	NO	0.696	0.096	0.084	0.088	0.088	$\rho = 0.7348$
15	NO	EX	0.696	0.106	0.084	0.088	0.089	Alpha = 0.7164
16	EX	Ū1	0.682	0.115	0.084	0.088	0.124	$E(\beta) = 0.7151$
17	Ēx	NO	0.682	0.118	0.084	0.088	0.124	
18	Ēx	EX	0.691	0.120	0.084	0.088	0.124	1

Comparisons of Observed Means and Stand	ard Errors of Reliability Estimates
Under the Multi-Factor True Score Mo	del and Various Combinations of
True and Error Score Distributions	With the Values Obtainable From
Formulas (5.3), (5.1)-(b) and (5.1	0), N = 2000, I = 30, J = 6

(5.1)
$$\begin{cases} (a) \quad E(\phi) = 1 - (1-\phi) \frac{1-1}{1-3} \\ (b) \quad Var \quad (\phi) = (1-\phi)^2 \frac{2(1-1)(\psi+1-3)}{(J-1)(1-3)^2(1-5)} \end{cases}$$

(5.3) Var
$$(\beta) = \frac{(1-\rho^2)^2}{1}$$

(5.10) Var
$$(\beta) = (1-\rho)^2 \left\{ \frac{2(1-1)(1-J-2)}{(J-1)(1-3)^2(1-5)} + \frac{\Psi_{\Psi}}{T} \right\}$$

Comparisons of Observed Lower and Upper 5% Critical Points of Reliability Estimates and Real Type One Errors of F-Test When the Nominal Value is 5% Under the Multi-Factor True Score Model and Various Combinations of True and Error Score Distributions With the Values Obtainable Under the ANOVA Model and Normal Theory, N = 2000, I = 30, J = 6
--

Exp. No.	Dis. Tr.	Ēr.	Real Lower (1)	Sig. (%) Upper (2)	Obser Lower (3)	ved C.P. ¹ Upper (4)	Theore Lower (5)	tical C.P. ² Upper (6)	Parameters (7)
01 02 03 04 05 06 07 08 09	UI UI NO NO EX EX EX	U1 NO EX U1 NO EX U1 NO EX	15.35 14.40 19.50 19.80 18.90 20.90 27.50 26.45 26.80	0.50 0.45 1.45 0.40 0.55 1.45 1.25 1.55 2.40	0.813 0.828 0.817 0.820 0.815 0.819 0.814 0.797 0.786	0.929 0.930 0.934 0.931 0.932 0.936 0.939 0.936 0.939	0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860	0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946	$\sigma_{A.}^{2} = 0.6001$ $\sigma_{e.}^{2} = 0.3249$ $\rho = 0.9172$ Alpha = 0.8943
10 11 12 13 14 15 16 17 18	UI UI NO NO EX EX EX	U1 NO EX U1 NO EX U1 NO EX	5.80 6.85 7.95 7.55 8.20 8.45 12.06 12.30 11.56	2.25 2.20 4.05 2.40 2.95 4.70 5.00 4.85 8.10	0.541 0.530 0.522 0.524 0.508 0.500 0.475 0.450 0.466	0.813 0.815 0.825 0.814 0.814 0.826 0.828 0.828 0.828 0.828	0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552	0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828	$\sigma_{A_{.}}^{2} = 0.1500$ $\sigma_{a_{.}}^{2} = 0.3249$ $\rho = 0.7348$ Alpha = 0.7164

¹Observed lower and upper 5% critical points of β .

²Theoretical lower and upper 5% critical points of β under the ANOVA model with normal distribution of true and error scores.

strongly suggest that ANOVA model and normal theory are not robust against the violation of the assumption of unifactor true score.

5.3.4 Conclusions for the Effects of Non-ETEM Model

Based on the above discussions, the following conclusions are tentatively made.

(a) Formula (5.6) may be used for the congeneric test case if σ_A^2 and σ_e^2 are used in place of σ_A^2 and σ_e^2 of ANOVA model. However, this formula is valueless for the case of multi-factor true score model.

(b) The non-homogeneity of true score variance has little effect on the distribution, although the ETEM assumption is violated if the violation is moderate. The conclusions obtained in Section 5.1.5 may be generalized to the congeneric true score cases with moderate violation of ETEM assumption.

(c) The effects of violation of the unifactor true score assumption are the most critical. If this assumption is violated, the formulas derived under the ANOVA model cannot be applied directly even with a normal true score distribution.

(d) The F-test based on (2.17) may be used for the congeneric model if the true score distribution is approximately normal as in the ANOVA model case and the homogeneity of true score variance is satisfied approximately, but it would be misleading in multi-factor model cases. This is especially true for inferences based on lower portions or high reliability case. As previous sections showed, these effects diminish with the lower values of reliability.

Findings in this section are based on rather limited combinations of possible parameters and distributions of true and

error scores, and therefore, generalization must be made with care.

5.4.0 Summery

Sampling distributions of reliability estimates for the continuous part-test cases are investigated under the ANOVA, ETEM, and congeneric and multi-factor true score models with various combinations of true and error scores distributions by analytical and computer simulation methods. Tukey's results for the calculation of the variance of variance estimate under an ANOVA model were applied to test theory to obtain an approximate formula for standard error of reliability estimates when the distributions of true and error scores are not necessary normal.

To investigate sampling distributions of reliability estimates based on formula (2.13) under these models and distributional assumptions not necessarily normal, to see robustness of the ANOVA model and normal theory represented by the formula (2.17), and to evaluate the new formula for the standard error of reliability estimates, altogether 156 experiments were performed by RELO1, each requiring approximately 6 minutes of computer C.P.U. time. From the experiments, the following conclusions may be obtained.

(a) The equation (2.17) obtained under the ANOVA model and normal theory is quite robust against the violation of the following assumptions if the reliability estimate is based on (2.13), i.e., the estimation formula for Alpha coefficient:

- i) Normality of error score distributions.
- ii) Homogeneity of error score variances.
- iii) Homogeneity of true score variances, if violation is moderate.

But the ANOVA model and normal theory is not robust against violation of the following assumptions.

i) Unifactorness of true score dispersion matrix.

ii) Normality of true score distributions.

The effects of the violation of these last two assumptions will decrease as the values of reliability decrease.

(b) For the F-test based on the equation (2.17), the multifactor true score model increases Type one error for the lower tail and decreases it for the upper tail by shifting the distributions of reliability estimates leftward substantially, when second or higher factors of the true score dispersion matrix cannot be ignored.

(c) The effects of non-normal true score distributions depend on the magnitude of their kurtosis. For negative kurtosis, Type one errors for both tails are less than the nominal value, while for positive kurtosis, they are greater than the nominal value. The greater the absolute value of kurtosis, the greater is the discrepancy from the nominal value.

(d) If true scores are distributed as normal, the ANOVA, ETEM, and congeneric models give almost identical distributions of reliability estimates with moderate departures from homogeneity assumptions of error and/or true score variances.

(e) The new standard error formula (5.10) is superior to the traditional formulas (5.1) or (5.3), if the true scores are not distributed as normal.

CHAPTER SIX

RESULTS FOR BINARY ITEM TEST SCORE CASES

This chapter presents the results of computer simulated experiments for the binary item test score cases. Section 6.1 deals with the overall factors which might affect the distribution of reliability estimates. In Section 6.2, the effects of non-normal error distributions are investigated with normal latent score distributions and homogeneous biserial correlations. Section 6.3 deals with the cases of non-normal latent scores with homogeneous biserial correlations and normal error scores, while Section 6.4 deals with non-normal latent scores and non-homogeneous biserial correlations. For all cases, both homogeneous and non-homogeneous item difficulty parameters are employed to determine the effects of non-homogeneous difficulty parameters.

6.1 Factors Related to Binary Item Test Scores Distribution

As discussed in Chapter Three, for a composite test consisting of J binary items as its part-tests, direct decomposition of observed score x_{ij} , which takes the value unity for a correct response and zero otherwise, into two independent parts, namely true and error scores, is impossible. Thus the linear model equation (3.3) can only be applied to an intervening variable or 'response strength variable' y_{ij} which is a hypothetical continuous variable.

Under the normal ogive model, it was possible to evaluate test parameters such as the variance σ_x^2 , reliability p, and KR20 by means of numerical methods if the item parameters, such as difficulty

parameters $\{\pi_j\}$ and biserial correlations $\{\lambda_j\}$, are specified. Unfortunately, however, the computational formulas given in Chapter Three are valid if and only if the normal ogive model is valid, namely, if the $\{f_i\}$ and $\{\varepsilon_{ij}\}$ are independently and identically distributed as N(0,1) as discussed in Section 4.6 of Chapter Four. Thus the nonnormal distributions of these two types of random variables would affect not only the sampling distribution of reliability estimates, but also the population test parameters.

Furthermore, for the continuous part score case, the fixed constant for each part, β_i , indicates the relative difficulty level of each part-test, but these parameters do not enter any formula for reliability or any other test parameters, and are independent of the sampling distribution of reliability estimates. Therefore it was not necessary to consider the effects of $\{\beta_j\}$ on the distribution of reliability estimates. For the binary item case, however, the item difficulty parameters, the analogue of β_i for the continuous case, enter the formula (3.15) through threshold constants and consequently affect such test score parameters, as the mean, variance, reliability and KR20. Furthermore, as shown in Section 3.4 of Chapter Three, the ETEM assumption is satisfied if and only if the items are all homogeneous. namely they have equal difficulty and biserial correlation parameters. Therefore, if the difficulty parameters are not homogeneous, it is expected that the KR20 will be lower than the reliability and subsequently the sampling distribution of reliability estimates may differ from that of the homogeneous case, though there is some indication that the effects are not great (Nitko and Feldt, 1969).

As a result, for the binary item cases, the following factors must be taken into account for a study of sampling distributions of reliability estimates:

(a) The effect of non-normal distributions of $\{f_i\}$ and $\{\epsilon_{ij}\}$, i.e., the effect of the violation of the normal ogive model.

(b) Homogeneity of item difficulty parameters and biserial correlations, i.e., the effect of the violation of the ETEM assumption.

Obviously it is impossible to investigate the sampling distributions of reliability estimates under all possible combinations of the above factors and all possible sets of parameters by computer simulation techniques. In this chapter, to conserve the overall computer time, the experiments and investigations are limited to only three distributions for $\{f_i\}$ and $\{\varepsilon_{ij}\}$, namely uniform (U1), normal (N0), and exponential (EX); four sets of difficulty parameters, two of which are non-homogeneous, and six sets of biserial correlations, three sets of which are non-homogeneous. The parameter sets used for the experiments are given in Tables 6.1 and 6.2

TABLE 6.1

Item Difficulty Parameters

Nota-	Homoge-	Item Number									Mean Var.	
tion	neity	1	2	3	4	5	6	7	8	9		••••
D1	Homo.	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0
D2	Non-Homo.	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.5	0.0 66 7
D3	Homo.	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.0
D4	Non-Homo.	0.5	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.7	0.0167

TABLE 6	•	Z
---------	---	---

Nota-	Homoge-		ltem Number								T	
tion	neity	1	2	3	4	5	6	7	8	9	Mean	Var.
B 1	Homo.	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.0
B2	Non-Homo.	0.5	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.7	0.0167
B3	Homo.	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.0
в4	Non-Homo.	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.75	0.8	0.6	0.0167
85	Homo.						0.4				1	
B 6	Non-Homo.	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.6	0.4	0.0167

Item Biserial Correlations

With these distribution-parameter combinations, altogether 216 experiments $(3 \times 3 \times 4 \times 6)$ are possible. However, previous results indicated that the error distribution has little effect on the distribution of reliability estimates, and the same tendency may be expected for the binary item cases. Since this was the case, as will be seen in the following section, only the first step of the investigation will involve the case of non-normal error distributions. Thus the total number of experiments run were 96, resulting in a saving of computer time.

6.2 <u>The Effects of Non-Normal Error Distribution and Non-Homogeneous</u> <u>item Difficulty Parameters</u>

In order to separate possible effects of non-normal latent score distribution and non-homogeneous biserial correlations such as B2, B4, and B6, from those of non-homogeneous item difficulty parameters or non-normal errors, which are of major interest in this section, three homogeneous biserial correlation sets B1, B3, and B5, normal distribution of latent variables, four sets of difficulty parameters, three types of error distributions are used, i.e., altogether 36 $(3 \times 4 \times 3)$ experiments with N = 1000, I = 30 and J = 9 are performed.

Table 6.3 presents population parameters calculated from the formulas given in Chapter Three and the results obtained from the parallel form method, with sample size 30030. Comparisons of data in Table 6.3 indicate:

(a) Calculated test parameters based on formulas given in Chapter Three agree reasonably well with the results obtained by computer simulation, thus partially validating the computer simulation method. For example, experiment 2 was performed with normal error score distribution, and satisfies the normal ogive model. It gives the test score mean, variance, reliability, and KR20 as 4.491, 8.094, 0.813, and 0.812, while the theoretical values based on the normal ogive model are 4.5, 8.118, 0.813, and 0.813 respectively.

(b) For normal latent score distributions, the observed test score means given in column (5) seem to depend only on the average of the item difficulty parameters as expected, and are affected neither by non-homogeneous difficulty parameters nor non-normal error score distributions. For example, the values of experiments 1- 6 inclusive in column (5) are almost identical to theoretical value 4.5, although experiments 1, 3, 4, 6 have non-normal error score distributions, and experiments 4, 5, and 6 have non-homogeneous difficulty parameters.

(c) The non-homogeneous difficulty parameter sets, D2 and D4, (e.g., experiments 4, 5, 6, and 10, 11, 12) result in lower test score variance, reliability, and KR2D when compared with the same average level of difficulty, but homogeneous, namely D1, and D3

TABLE 6.3

• ·

.. •

Comparisons of Calculated Test Parameters Under the Normal Ogiva Model With Empirical Values Based on the Parallel Form Method, Normal Latent Scores, and Homogeneous Biserial Correlations, NI = 30030, J = 9

Exe .	Err.	Bis.	DIF.	l II	heoretical	(N.O.)		Observed by P.F.H.				
No.	Dis.		017.	Neen	Var.	Rel.	KR 20	Mean	Var.	Re1.	KR 20	
				())	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
01	UI	81	01	4.5	8.118	0.813	0.813	4.494	8.044	0.811	0.810	
02	NO	01	DI	4.5	8.118	0.813	0.813	4.491	8.094	0.813	0.810	
03	EX .	81	DI	4.5	8.118	0.813	0.813	4.484	8.103	0.812	0.812	
04	Ul	81	D2	4.5	4.979	0.769	0.752	4.496	4.941	0.768	0.015	
05	NO	81	D2	4.5	4.979	0.769	0.752	4.495	5.012	0.772	0.754	
06	EX	81	02	4.5	4.979	0.769	0.752	4.506	4.968	0.768	0.751	
07	U1	81	03	6.3	6.589	0.802	0.802	6.289	6.493	0.802	0.802	
08	NO	81	03	6.3	6.589	0.802	0.802	6.299	6.621	0.804	0.802	
09	EX	81	03	6.3	6.589	0.802	0.802	6.281	6.622	0.803	0.803	
10	U1	81	04	6.3	5.671	0.788	0.780	6.269	5.714	0.789	0.780	
11	NO	81	- D4	6.3	5.671	0.788	0.780	6.296	5.632	0.785	0.760	
12	EX	81	D4	6.3	5.671	0.788	0.780	6.283	5.689	0.787	0.780	
13	U1 1	83	01			•	-	-		V./0/	0./00	
13	NO			4.5	6.470	0.734	0.734	4.514	6.447	0.732	0.732	
15	Ex	83	D1	4.5	6.470	0.734	0.734	4.498	6.460	0.733	0.733	
16		83	01	4.5	6.470	0.734	0.734	4.494	6.487	0.735	0.735	
10	- · ·	83	D2	4.5	4.092	0.684	0.671	4.480	4.129	0.687	0.675	
	NO Ex	•3	D2	4.5	4.092	0.684	0.671	4.487	4.053	0.678	0.675	
· •		83	02	4.5	4.092	0.684	0.671	4.499	4.079	0.681	0.670	
19	<u>U1</u>	83	03	6.3	5.230	0.718	0.718	6.286	5.259	0.719	0.719	
20	NO	83	03	6.3	5.230	0.718	0.718	6.276	5.215	0.715	0.715	
21	EX	83	03	6.3	5.230	0.718	0.718	6.267	5.276	0.719	0.719	
22	<u>U1</u>	83	04	6.3	4.559	0.702	0.696	6.298	4.573	0.703	0.697	
23	NO	83	04	6.3	4.559	0.702	0.696	6.295	4.546	0.701	0.694	
24	EX	83	D4	6.3	4.559	0.702	0.696	6.283	4.557	0.700	0.694	
25	U1	85	01	4.5	4.091	0.506	0.506	4.483	4.063	0.502	0.502	
26	NO	85	01	4.5	4.091	0.506	0.506	4.498	4.104	0.502		
27	EX	85	01	4.5	4.091	0.506	0.506	4.500	4.141	0.513	0.508	
Ń	Ú1	85	02	4.5	2.735	0.452	0.446	4.497	2.696	0.442	0.514	
29	NO	85	D2	4.5	2.735	0.452	0.446	4.495	2.727	0.453		
jõ	EX	85	D2	4.5	2.735	0.452	0.446	4.490	2.776	0.453	0.450	
1	UI	85	03	6.3	3.317	0.484	0.484	6.304	3.347	0.490		
<u>j2</u>	NO	85	03	6.3	3.317	0.484	0.484	6.295	3.243	0.490	0.490	
1 3	EX	85	03	6.3	3.317	0.484	0.484	6.292	3.344	0.486		
jĂ 👘	U1	85	04	6.3	2.956	0.466	0.463	6.297	2.959	0.465	0.488	
İ 5	NO	85	04	6.3	2.956	0.466	0.463	6.292	2.555	Q.465	0.461	
Ň	CX	85	04	6.3	2.956	0.466	0.463	6.289	2.955			
-			· ·				J	0.403	4·377	0.467	0.462	

.

• •

.

•

•.

respectively (e.g., experiments 1, 2, 3, and 7, 8, 9). For nonhomogeneous difficulty, i.e., D2 and D4, the KR20 coefficients are lower than the reliability as expected since the ETEM assumption is not satisfied. For example, experiment 12, with non-homogeneous difficulty set of D4, gives reliability and KR20 as 0.787 and 0.780 respectively.

(d) For homogeneous item difficulty, the higher the item difficulty is above the ideal 0.5 level, the lower the test variance, reliability and KR20. The same trends are observed for difficulty lower than 0.5 level, though the results are not reported in this paper since almost exactly the same results as high difficulty cases are obtained for lower difficulty cases except for test means, i.e., the test parameters, except for the test means, are highest when the item difficulty parameters are all equal to 0.5 which is a well-known fact in test theory. For example, experiment 1 has homogeneous difficulty of 0.5 for all items and gives variance and reliability as 8.044 and 0.811 respectively, while experiment 7, which is comparable to experiment 1 except the higher difficulty of 0.7, gives 6.493, and 0.802 respectively. However, this conclusion would not apply in general to the non-homogeneous item difficulty cases, i.e., the non-homogeneous item difficulty effects interact with the effects of item difficulty level, and the results are not predictable, as it can be seen when the results of experiments 4, 5, and 6 are compared with those of experiments 10, 11, and 12.

(e) The non-normal distributions of error scores have very little effect on the test parameters. For example, experiment 12, which has an exponential error distribution, gives parameter values as 6.283, 5.689, 0.787, and 0.780 which can be compared reasonably well with

theoretical values given in columns (1)-(4) inclusive, namely 6.3, 5.671, 0.788, and 0.780 respectively. Alternatively, they can also be compared reasonably well with the corresponding values of experiment 11 which has a normal error distribution, namely 6.296, 5.632, 0.785, and 0.777.

Table 6.4 gives the means and standard error of reliability estimates over N = 1000 trials and compares them with theoretical values which can be obtained from continuous part scores under the ANOVA model and normal distributional theory, i.e., treating binary test scores ${x_{11}}$ as if they were continuous part scores as in the previous chapter. From the table, it is noted that the observed means of reliability estimates given in column (2), which is based on estimation formula (2.13), compares fairly well with the theoretical values given in column (4) based on (5.1)-(a), the largest difference being only 0.018 (experiment 32) which is probably too small to be meaningful in test theory. The standard error obtained from formula (5.3) or (5.1)-(b), given in columns (5) and (6), also predict the observed standard errors given in column (3) reasonably well, although formula (5.3) seems to consistently underestimate the standard errors for lower reliability cases, namely the case of biserial correlation set B5. In general, formula (5.1)-(b) seems quite satisfactory, the largest difference between the theoretical and observed values being only 0.0111 (experiment 28). The sum of squares from the observed standard errors are 0.00101 and 0.00956 for formulas (5.1)-(b) and (5.3) respectively, suggesting the superiority of formulas (5.1)-(b) to (5.3). No attempts are made to use formula (5.10) since neither kurtosis formulas of test

TABLE 6.4

Comparisons of Observed Means and Standard Errors of Reliability Estimates Under Normal Latent Scores, Homogeneous Biserial Correlations With
the Values Obtainable From ANOVA Model and Normal Theory, $N = 1000, i = 30, J = 9$

Lup.	Err. j	Bis.	Dif.	Rel.+	Observ	ed 8	E(B) by	Expected S.E. b		
No.	Dis.		UIT.		Mean	S.E.	(5.1)-(a)	(5.3)	(5.1)-(b)	
				(1)	(2)	(3)	(4)	(5)	(6)	
01	UT	81	D1	0.811	0.800	0.0591	0.797	0.0626	Q.0608	
02	NO	81	D1	0.813	0.802	0.0600	0.799	0.0618	0.0600	
03	EX	81	01	0.812	0.804	0.0561	0.799	0.0621	0.0602	
04	U1	81	D2	0.768	0.736	0.0714	0.751	0.0749	0.0745	
05	NO	81	02	0.769	0.742	0.0667	0.752	0.0745	0.0740	
06	EX	81	02	0.768	0.738	0.0685	0.751	0.0748	0.0744	
07	UT	81	03	0.802	0.787	0.0688	0.787	0.0653	0.0637	
08	NO	81	03	0.802	0.789	0.0708	0.788	0.0651	0.0635	
09	EX	81	03	0.803	0.789	0.0693	0.788	0.0649	0.0633	
10	U1	81	04	0.789	0.765	0.0737	0.773	0.0689	0.0677	
11	NO	81	04	0.788	0.760	0.0770	0.772	0.0693	0.0682	
12	EX	81	D4	0.787	0.764	0.0786	0.771	0.0695	0.0683	
13	U1	83	01	0.732	0.717	0.0821	0.712	0.0847	0.0859	
14	10	83	01	0.734	0.718	0.0826	0.714	0.0843	0.0855	
15	EX	83	01	0.735	0.722	0.0793	0.715	0.0840	0.0851	
16	U1	83	D2	0.687	0.656	0.0947	0.664	0.0964	0.1004	
17	HO I	•3	D2	0.684	0.646	0.1035	0.660	0.0972	0.1015	
18	EX	83	02	0.681	0.650	0.1024	0.657	0.0979	0.1024	
19	U1	83	03	0.719	0.701	0.0932	0.698	0.0881	0.0901	
20	10	83	03	0.718	0.694	0.0986	0.698	0.0883	0.0904	
21	EX	83	03	0.719	0.700	0.0917	0.699	0.0881	0.0901	
22	U1	•3	D4	0.703	0.676	0.0970	0.681	0.0923	0.0953	
23	10	•3	04	0.702	0.672	0.0995	0.680	0.0927	0.0957	
24	DX	83	04	0.700	0.673	0.0959	0.677	0.0932	0.0964	
25	U1	85	01	0.502	0.469	0.1585	0.465	0.1367	0.1600	
26	NO	85	01	0.506	0.474	0.1619	0.470	0.1358	0.1585	
27	EX [85	D1	0.513	0.482	0.1561	0.477	0.1345	0.1563	
28	U1	85	02	0.442	0.401	0.1682	0.400	0.1470	0.1793	
29	NO I	85	02	0.452	0.407	0.1807	0.411	0.1453	0.1759	
30	EX	85	D2	0.461	0.415	0.1733	0.421	0.1438	0.1731	
31	U1	85	03	0.490	0.452	0.1636	0.453	0.1387	0.1636	
32	HO	85	03	0.484	0.428	0.1739	0.446	0.1398	0.1656	
33	EX	85	03	0.486	0.452	0.1614	0.448	0.1394	0.1650	
34	U1	85	04	0.465	0.425	0.1719	0.425	0.1431	0.1718	
35	10	85	04	0.466	0.428	0.1776	0.427	0.1429	0.1713	
36	EX	85	- 04	0.467	0.425	0.1615	0.427	0.1428	0.1711	

^aTheoretical value if error scores are normal, otherwise the value was obtained by the parallel form method.

(5.1) (a)
$$E(g) = 1 - (1-g) \frac{1-1}{1-3}$$
 (b) $Var(g) = (1-g)^2 \frac{2(1-1)(v+1-3)}{(J-1)(1-3)^2(1-5)}$
(5.3) $Var(g) = \frac{(1-g^2)^2}{1}$

score for binary item test nor any numerical means to evaluate the parameter are available at present.

Table 6.5 indicates the shapes of the lower and upper portions of the distributions of reliability estimates by giving the lower and upper 5% critical points of the distributions in columns (2) and (3), and by comparing them with those results obtainable theoretically from (2.17), given in columns (4) and (5). The results, in general, suggest that the theoretical values are very close to the observed values except for the upper tail portions for some experiments with high or medium reliability, i.e., with B1 and B2, and non-homogeneous difficulty set D2, namely experiments 4, 5, 6, 16, 17, and 18. For those experiments, the distributions are systematically shifted toward lower reliability primarily due to the fact that KR20 is substantially lower than reliability, because of extreme non-homogeneity of item difficulty parameter set D2. This is illustrated in Figure 6.1. Consequently the real Type one errors of the F-test for upper tails are much smaller than the nominal 5% level, some dropping as low as 1.1% level [column (7) of experiment 4]. The effect of non-homogeneous item difficulty parameters on the real significance level diminishes as the variation of item difficulty parameters decrease, as shown by experiments 10, 11, 12, 22, 23, and 24. The effect of item difficulty also diminishes with lower reliability level, and no meaningful differences are observed for low reliability cases illustrated by experiments 25-36 inclusive.

From the above observations, the following conclusions are tentatively made.

TABLE 6.5

Comparisons of Observed Lower and Upper 5% Critical Points Under Normal Latent Scores and Homogeneous Biserial Correlations With the Values Obtainable From the ANOVA Model and Normal Theory, and Real Type Une Error of F-Test Wien Nominal Value is Fixed to the 5% Level, N = 1000, I = 30, J = 9

Exp.	Err.	Bis.	Dif.	Rel.	Observe Lower	d C.P. ² Upper	Theoret i Lower	ical C.P. ³ Upper	Real Sig. (0/0) Lower Upper		
No.	Dis.			(1)	(2)	(3)	(4)	(5)	(6)	(7)	
01	UI	BI	01	0.811	0.693	0.877	0.684	0.875	4.30	5.60	
02	NO	81	01	0.813	0.698	0.882	0.688	0.877	3.80	7.40	
03	EX	B 1	D1	0.812	0.697	0.878	0.687	0.876	3.90	5.70	
04	01	B 1	D2	0.768	0.604	0.828	0.612	0.847	5.60	1.10	
05	NO	81	D2	0.769	0.614	0.831	0.615	0.848	5.20	1.50	
06	EX	81	D2	0.768	0.605	0.825	0.613	0.847	5.70	1.60	
07	U1	81	D3	0.802	0.655	0.877	0.669	0.869	6.60	8.00	
80	NO	81	03	0.802	0.650	0.879	0.670	0.870	6.70	6.80	
09	ΕX	81	03	0.803	0.665	0.877	0.670	0.870	5.50	7.00	
10	υī	81	04	0.789	9.629	0.857	0.648	0.861	7.30	4.00	
11	NO	B1	D4	0.788	0.622	0.857	0.645	0.860	6.40	4.90	
12	EX	81	D4	0.787	0.623	0.858	0.644	0.860	6.70	4.60	
13	บา	B3	DI	0.732	0.560	0.830	0.553	0.823	4.70	6.60	
14	NO	B3	DI	0.734	0.572	0.828	0.555	0.824	3.90	5.60	
15	EX	83	DI	0.735	0.574	0.827	0.557	0.825	3.70	5.60	
16	UI	83	D2	0.687	0.487	0.783	0.478	0.794	4.30	3.40	
17	NO	83	D2	0.684	0.464	0.777	0.472	0.791	4.90	3.00	
18	EX	B3	D2	0.681	0.465	0.776	0.467	0.790	5.10	2.40	
19	U1	83	03	0.719	0.528	0.821	0.531	0.815	5.40	6.00	
20	NO	B3	03	0.718	0.505	0.825	0.530	0.814	6.20	7.90	
21	EX	83	D3	0.719	0.531	0.823	0.531	0.815	5.10	6.70	
22	Ul	83	D4	0.703	0.507	0.808	0.504	0.804	4.90	5.60	
23	NO	83	D4	0.702	0.484	0.797	0.502	0.803	6.40	4.20	
24	EX	83	D4	0.700	0.482	0.801	0.498	0.802	6.40	4.60	
25	Ul	85	10	0.502	0.194	0.684	0.168	0.671	3.70	6.30	
26	NO	85	DI	0.506	0.189	0.678	0.176	0.674	4.70	5.30	
27	EX	B5	DI	0.513	0.186	0.678	0.187	0.679	5.00	4.80	
28	Ul	85	D2	0.442	0.093	0.621	0.067	0.632	4.20	4.00	
29	NO	85	D2	0.452	0.056	0.637	0.085	0.639	5.60	4.60	
30	EX	85	D2	0.461	0.069	0.637	0.099	0.644	5.80	4.20	
31	UT	85	03	0.490	0.149	0.670	0.149	0.664	5.00	5.70	
32	NO	85	D3	0.484	0.106	0.663	0.138	0.660	5.20	6.70	
33	EX	85	03	0.486	0.140	0.661	0.142	0.661	5.10	5.00	
34	U1	85	DA	0.465	0.097	0.647	0.106	0.647	5.10	5.00	
35	NO	85	D4	0.466	0.104	0.648	0.109	0.648	5.50	4.80	
36	EX	85	D4	0.467	0.126	0.650	0.110	0.649	4.40	5.20	

¹Theoretical value if error scores are normal, otherwise the value was obtained by the parallel form method.

²Observed lower and upper St critical points of the distribution of β .

³Theoretical lower and upper 5% critical points of the distribution of β under ANOVA and normal theory.

(a) The effects of non-normal error distributions are small.

(b) Formula (5.1), both for the expected value and standard

error of $\hat{\rho}$, seems quite satisfactory for binary item cases although the assumption of continuity of observed scores is violated, provided that the latent scores are normally distributed, and the biserial correlations are homogeneous.

(c) The item difficulty parameters $\{\pi_j\}$ affect the distribution systematically, contrary to the previous findings reported by Nitko and Feldt (1969). In general, the heterogeneity of difficulty shifts the distributions to the left, and the more heterogeneous the difficulty parameters, the more distortion is observed, and it also appears to cause a large shift leftward for high reliability cases. If F-tests based on (2.17) are used with a fixed nominal significance level, the real Type one errors for the upper tail portion are affected by the item difficulty parameters.

(d) The distributions of the lower tail portion for high or middle range reliability, or both tails for low reliability are quite stable against the heterogeneity of item difficulty parameters.

6.3 Effects of Non-Normal Latent Scores

The normal ogive model for the binary item test scores assumes the existence of latent variables or scores $\{f_j\}$ distributed independently and identically as N(0,1). However, it is not conceivable that these assumptions are always satisfied. Therefore, the effects of nonnormal latent distributions are one of the important factors which must be examined rather closely. For the continuous part score cases, it is known that the non-normal true scores affect the distribution of reliability estimates significantly, and inflate or deflate the real

Type one errors for the F-test. Thus it must be determined whether the same is true for the binary item test cases when the latent scores are not normal. Because it is known, from the experiments of the previous section, that the effects of non-normal errors are small, and to save computer time, experiments were performed using only normal error scores.

Using two kinds of non-normal latent score distributions, namely uniform (U1) and exponential (EX), four types of item difficulty sets and three kinds of homogeneous biserial correlation sets were selected. A total of 24 ($2 \times 4 \times 3$) additional experiments were performed with N = 1000, I = 30, and J = 9. The results of these 24 experiments are summarized in Tables 6.6, 6.7, and 6.8, together with the results of 12 experiments of the previous section which uses normal latent and error scores, for the purposes of comparisons.

As in the previous section, the population parameters were first examined to determine the effects of non-normality of latent scores. From Table 6.6, it is clearly observed that the test means are almost identical for both methods, namely by theoretical calculations under the normal ogive model given in column (1) and by the parallel form method given in column (5), except for the exponential distributions which have non-zero skewness. Using the exponential distribution, the means are in general lower than the theoretical values suggesting the effects of skewness, since, unlike the variance, the means are in general more sensitive to non-zero skewness.

The effects of non-normal latent scores can be seen rather clearly when the observed variance, reliability and KR20, given in columns (6), (7), and (8), are examined. The values of variance,

Exp.	Tr.	Bis	Dif.			cal (N.O.)	06	served by	P.F.M.	
No.	Dis.			Mean (1)	Var. (2)	Rel. (3)	KR20 (4)	Hean (5)	Var. (6)	Rel. (7)	KR20 (8)
01	UI	81	D1	4.5	8.118	0.813					
02	NO	61	01	4.5	8.118	0.813	0.813	4.504	9.034	0.845	0.845
03	EX	81	01	4.5	8.118	0.813	0.813	4.491	8.094	0.813	0.812
04	υî	81	D2	4.5	4.979		0.813	4.156	6.997	0.766	0.765
05	NO	81	D2	4.5		0.769	0.752	4.488	5.342	0.788	0.772
06	εχ	61	D2		4.979	0.769	0.752	4.495	5.012	0.772	0.754
07	UI	61		4.5	4.979	0.769	0.752	4.348	4.247	0.720	0.702
08	NO	81	03	6.3	6.589	0.802	0.802	6.235	7.081	0.820	0.821
	-		03	6.3	6.589	0.802	0.802	6.299	6.621	0.804	0.804
09	EX	81	03	6.3	6.589	0.802	0.802	6.209	4.589	0.653	0.653
10	U1	81	04	6.3	5.671	0.788	0.780	6.266	5.987	0.803	0.795
11	NO	81	D4	6.3	5.671	0.788	0.780	6.296	5.632	0.785	0.777
12	EX	81	D4	6.3	5.671	0. 788	0.780	6.224	3.957	0.648	0.636
13	UI	B3	01	4.5	6.470	0.734	0.734	4.498	7.025	0.764	0.765
14	NO	83	D1	4.5	6.470	0.734	0.734	4.498	6.460	0.733	0.733
15	EX	83	DI	4.5	6.470	0.734	0.734	4.299	5.610	0.675	0.675
16	U1	B3	D2	4.5	4.092	0.684	0.671	4.477	4.298	0.701	0.690
17	NO	83	D2	4.5	4.092	0.684	0.671	4.487	4.053	0.678	0.666
18	EX	83	D2	4.5	4.092	0.684	0.671	4.406	3.653	0.638	0.626
19	U1	83	03	6.3	5.230	0.718	0.718	6.232	5.568	0.738	0.738
20	NO	83	03	6.3	5.230	0.718	0.718	6.276	5.215	0.715	0.715
21	EX	83	03	6.3	5.230	0.718	0.718	6.228	3.822	0.561	0.560
22	UI	83	D4	6.3	4.559	0.702	0.696	6.268	4.792	0.701	0.713
23	NO	83	D4	6.3	4.559	0.702	0.696	6.295	4.546	0.701	0.694
24	EX	83	04	6.3	4.559	0.702	0.696	6.250	3.337	0.559	0.551
25	U1	85	01	4.5	4.091	0.506	0.506	4.512	4,199	0.522	0.522
26	NO	85	DI	4.5	4.091	0.506	0.506	4.451	4.104	0.522	
27	EX	85	oi	4.5	4.091	0.506	0.506	4.451	3.834	0.464	0.508
28	U1	85	02	4.5	2.735	0.452	0.446	4.496	2.767	0.460	
29	NO	BS	D2	4.5	2.735	0.452	0.446	4.495	2.747		0.455
30	EX	BŚ	D2	4.5	2.735	0.452	0.446	4.458		0.453	0.450
31	- uî	85	03	6.3	3.317	0.484	0.484	6.279	2.613 3.384	0.422	0.418
32	NO	85	03	6.3	3.317	0.484	0.484			0.492	0.494
<i>3</i> 3	ĒX	•5	03	6.3	3.317	0.484	0.484	6.295	3.243	0.469	0.469
33 34	- UÎ	15	04	6.3				6.272	2.828	0.366	0.369
35	NO	•5	04		2.956	0.466	0.463	6.276	2.990	0.474	0.468
35 36	Ex	85	04	6.3	2.956	0.466	0.463	6.292	2.980	0.469	0.466
24		•>		6.3	2.956	0.466	0.463	6.279	2.552	0.363	0.359

.

Comparisons of Calculated Test Paramiters Under the Normal Ogive Model With Empirical Values Based on the Parallel Form Method, Normal Error Scores, Homogeneous Biserial Correlations, NI = 30030, J = 9

reliability and KR20 under uniform distributions are always higher than the corresponding values under normal distributions, while the values under exponential distributions are lower than the values under normal distributions. Thus the normal ogive model gives lower values for the uniform distribution cases than the real values and higher values for the exponential distribution. For example, with biserial correlation and difficulty parameters fixed to set Bl and D2, the theoretical values under the normal ogive model are 4.979, 0.769, and 0.752 for variance, reliability and KR20 respectively (experiment 5). The parallel form method under normal distribution gives 5.012, 0.772, and 0.754, closely approximating the theoretical values as expected. However, for uniform latent scores (experiment 4), the corresponding values are 5.342, 0.788, and 0.772, which are much higher than theoretical [given in columns (2), (3), and (4) of experiment 4] or observed values under normal distribution of latent scores [given in columns (6), (7), and (8) of experiment 5]. On the other hand, for exponential distributions (experiment 6), the observed values, i.e., 4.247, 0.720, and 0.702, are much less than the theoretical or observed values under normal distribution.

Therefore it may be concluded that the reliability parameters to be used for equation (2.17) must be ρ^* , the value obtained by the parallel form method, rather than ρ for non-normal latent score distribution cases, since these values are closer to the actual values than the theoretical values obtained under the normal distribution assumption of latent scores.

Table 6.7 presents the results for observed means and standard errors of reliability estimates using N = 1000, and compares them

Comparisons of Observed Heans and Standard Errors of Reliability Estimates Under Normal Errors and Homogeneous Biserial Correlations With the Values Obtainable From ANOVA Model and Normal Theory, N = 1000, I = 30, J = 9

Exp.	Tr.			Rel."	Observed \$	E(B) by	Expected S	i.E. by
No.	Dis.	Bis.	Dif.		Mean S.E.	(5.1)-(a)	(5.3)	(5.1)-(Ь)
				(1)	(2) (3)	(4)	(5)	(6)
01	υı	81	D1	0.845	0.838 0.0469	0.833	0.0522	0.0498
02	NO	81	DI	0.813	0.802 0.0600	0.799	0.0618	0.0600
03	EX	81	01	0.766	0.751 0.0783	0.748	0.0755	0.0752
04	Ul	81	D2	0.788	0,762 0.0584	0.772	0.0693	0.0682
05	NO	81	D2	0.769	0.742 0.0667	0.752	0.0745	0.0740
06	EX	81	D2	0.720	0.680 0.1024	0.699	0.0880	0.0900
07	UT	81	D3	0.820	0.811 0.0562	0.807	0.0597	0.0577
08	NO	81	03	0.702	0.789 0.0708	0.788	0.0651	0.0635
09	EX	B1	03	0.653	0.636 0.1010	0.627	0.1048	0.1115
10	Ul	81	D4	0.803	0.786 0.0553	0.789	0.0647	0.0631
11	NO	B1 -	D4	0.788	0.760 0.0770	0.772	0.0693	0.0682
12	EX	81	04	0.648	0.620 0.0983	0.622	0.1059	0.1129
13	UI	83	DI	0.764	0.754 0.0667	0.746	0.0761	0.0758
14	NO	83	D1	0.734	0.718 0.0826	0.714	0.0843	0.0855
15	EX	03	DI	0.675	0.654 0.1035	0.651	0.0993	0.1042
16	Ul	83	D2	0.701	0.675 0.0850	0.679	0.0928	0.0959
17	NO	83	D2	0.684	0.646 0.1035	0.660	0.0972	0.1015
18	EX	83	D2	0.638	0.598 0.1261	0.611	0.1082	0.1161
19	Ul	83	D3	0.738	0.723 0.0779	0.719	0.0831	0.0841
20	NO	83	D3	0.718	0.694 0.0986	0.698	0.0883	0.0904
21	EX	83	D3	0.561	0.537 0.1283	0.529	0.1250	0.1408
22	Ul	83	D4	0.719	0.697 0.0854	0.698	0.0882	0.0902
23	NO	83	D4	0.702	0.672 0.0995	0.680	0.0927	0.0957
24	EX	83	D4	0.559	0.528 0.1263	0.526	0.1256	0.1416
25	U1	85	01	0.522	0.494 0.1402	0.487	0.1327	0.1533
26	NO	85	DI	0.506	0.474 0.1619	0.470	0.1358	0.1585
27	EX	85	DI	0.464	0.429 0.1752	0.425	0.1432	0.1719
28	U1	85	D2	0.460	0.419 0.1669	0.420	0.1440	0.1735
29	NO	85	D2	0.452	0.407 0.1807	0.411	0.1453	0.1759
30	EX	85	02	0.422	0.374 0.1886	0.379	0.1501	0.1857
31	Ul	85	D3	0.492	0.461 0.1544	0.455	0.1383	0.1629
32	NO	85	D3	0.848	0.428 0.1739	0.446	0.1398	0.1656
33	EX	85	D3	0.366	0.330 0.1883	0.320	0.1581	0.2034
34	UI	85	D4	0.474	0.437 0.1481	0.435	0.1416	0.1689
35	NO	85	D4	0.466	0.428 0.1776	0.427	0.1429	0.1713
36	EX	05	DĄ	0.636	0.322 0.1904	0.315	0.1586	0.2046

⁴Theoretical value if true scores are normal, otherwise the value was obtained by the parallel method.

(5.1) (a)
$$E(\beta) = 1 - (1-\rho) \frac{1-1}{1-3}$$
 (b) $Var(\beta) = (1-\rho)^2 \frac{2(1-1)(\gamma+1-3)}{(1-1)(1-3)^2(1-5)}$

(5.3) Ver (
$$\beta$$
) = $\frac{(1-\rho^2)^2}{1}$

٠

with the calculated values based on formulas (5.1), and (5.3). It is noted that $E(\beta)$ of (5.1)-(a) given in column (4) predicts very well the observed means of reliability estimates given in column (2) regardless of the distributions of latent scores, the largest discrepancy being only 0.019 (experiment 6), suggesting robustness of the estimation formula (2.13) as far as point estimations are concerned. The observed standard error of estimation given in column (3) suggests that the uniform distributions of latent scores produces smaller standard errors while the exponential gives larger standard errors than under the normal distributions for high reliability cases. Formula (5.3) or (5.1)-(b) predicts the standard errors of reliability estimates reasonably well, though (5.1)-(b) seems better than (5.3).

Table 6.8 summarizes the shapes of the distributions of β at the tall portions by comparing lower and upper 5% critical points given in columns (2) and (3) with theoretical values given in columns (4) and (5). From the table, it may be concluded that the effects of item difficulty parameters as noted in the previous section can be generalized to non-normal latent score cases. On the other hand, from the observations of the real Type one errors, the effect of non-normal latent score distributions are not so obvious. The Type one errors are fluctuating substantially, but with no clear sign of systematic inflation or deflation of Type one errors due to non-normal distribution of latent scores, unlike the case of continuous part scores discussed in Chapter Five. This suggests robustness of the ANOVA model and normal distributional theory for the case of binary item tests.

From the above observations, the following conclusions were tentatively made.

Comparisons of Observed Lower and Upper 5% Critical Points Under Normal Error Scores and Homogeneous Biserial Correlations With the Values Obtainable From ANOVA Model and Normal Theory, and Real Type One Error of F-Test When Nominal Value is Fixed to the 5% Level, N = 1000, i = 30, J = 9

Exp. No.	Tr. Dis.	Bis.	Dif.	Rel. ¹	Observed Lower	SC.P. ² Upper	Theoreti Lower	cal C.P. ³ Upper	Real Sig. Lower	(0/0) Upper
				(1)	(2)	(3)	(4)	(5)	(6)	(7)
01	U1	81	01	0.845	0.749	0.901	0.741	0.898	3.80	6.30
02	NO	B1	D1	0.813	0.698	0.882	0.688	0.877	3.80	7.40
03	EX	81	D1	0.766	0.611	0.851	0.609	0.846	4.60	6.70
04	U1	B 1	D2	0.788	0.654	0.835	0.645	0.860	3.80	1.50
05	NO	81	D2	0.769	0.614	0.831	0.615	0.848	5.20	1.50
06	EX	B1	D2	0.720	0.500	0.805	0.532	0.815	7.50	3.20
07	Ul	B1	03	0.820	0.716	0.887	0.700	0.882	3.20	6.70
08	NO	81	D3	0.802	0.650	0.879	0.670	0.870	6.70	6.80
09	EX	B1	03	0.653	0.446	0.775	0.420	0.771	3.70	5.70
10	Ul	81	D4	0.803	0.682	0.863	0.672	0.870	4.00	2.90
11	NO	81	D4	0.788	0.622	0.857	0.645	0.860	6.40	4.90
12	EX	B1	D4	0.648	0.222	0.749	0.413	0.768	3.20	2.10
13	UI	83	D 1	0.764	0.631	0.844	0.605	0.844	3.00	5.10
14 -	NO	B3	DI	0.734	0.572	0.828	0.555	0.824	3.90	5.60
15	EX	83	01	0.675	0.450	0.790	0.458	0.786	5.40	5.50
16	UI	83	D2	0.701	0.528	0.786	0.501	0.803	3.60	1.90
17	NO	B3	D2	0.684	0.464	0.777	0.472	0.791	4.90	3.00
18	EX	83	D2	0.638	0.366	0.754	0.396	0.761	7.20	4.00
19	U1	83	D3	0.738	0.582	0.829	0.562	0.827	3.80	5.60
20	NO	83	D3	0.718	0.505	0.825	0.530	0.814	6.20	7.90
21	EX	83	D3	0.561	0.290	0.703	0.267	0.711	4.20	3.80
22	Ul	83	D4	0.719	0.530	0. 806	0.531	0.815	5.10	3.00
23	NO	83	D4	0.702	0.484	0. 79 7	0.502	0.803	6.40	4.20
24	EX	83	D4	0.559	0.305	0.697	0.263	0.709	2.90	3.60
25	Ul	85	Dì	0.522	0.243	0.683	0.203	0.685	3.60	4.70
26	NO	85	D1	0.506	0.189	0.678	0.176	0.674	4.70	5.30
27	EX	85	Dł	0.464	0.115	0.653	0.106	0.647	4.80	5.70
28	Ul	85	D2	0.460	0.105	0.641	0.098	0.644	4.70	4.80
29	NO	85	D2	0.452	0.056	0. 637	0.085	0.639	5.60	4.60
30	EX	85	D 2	0.422	0.021	0.616	C.034	0.619	5.50	4.70
31	UI	85	03	0.492	0.166	0. 66)	0.152	0.665	4.50	5.30
32	NO	85	D3	0.484	0.106	0.663	0.138	0.660	5.20	6.70
33	EX	85	03	0.366	-0.024	0.580	0.058	0.582	3.90	4.90
34	Ul	85	D4	0.474	0.179	0.643	0.121	0.653	3.00	4.00
35	NO	15	D4	0.466	0.104	0.648	0.109	0.648	5.50	4.80
36	EX	85	D4	0.363	-0.002	0.573	-0.064	0.580	3.20	4.00

¹Theoretical values if true scores are normal, otherwise the values obtained by the parallel form method.

²Observed lower and upper 5% critical points of the distribution of β .

³Theoretical lower and upper 5% critical points of the distribution of β under ANOVA and normal theory.

•

137.

··· ·

(a) The non-normal latent score distributions affect the test parameters such as variance, reliability and KR20, and with lesser degree the mean, if the distribution is skewed. The normal ogive model provides smaller values than the actual values of the variance, reliability and KR20 if the latent scores are distributed as uniform, and the opposite is true for exponential distribution.

(b) Formulas (5.1) and (5.3) are quite robust against the violation of assumptions of normality for the binary item score cases.

(c) The effects of item difficulty parameters are the same as observed in the previous section.

(d) The non-normal latent scores do not systematically inflate or deflate real Type one errors for the F-test. The F-test seems quite robust against the violation of distributional assumptions, if difficulty parameters are homogeneous.

6.4 Effects of Non-Homogeneous Biserial Correlations

For the previous two sections, the biserial correlations were limited to homogeneous cases, namely B1, B3, and B5. In this section, three non-homogeneous biserial correlation sets, B2, B4, and B6 are used to investigate the effects of such non-homogeneity. Since it is known that for the continuous part-test score cases the nonhomogeneity of true score variance, which corresponds to the square of biserial correlation for the binary item case under the congeneric true score model, does not affect the sampling distribution of the reliability estimates if the non-homogeneity is moderate, and it is of interest to know whether the same conclusion can be made for the binary item cases.

Employing three kinds of latent score distributions, Ul, NO, and EX, and four sets of difficulty parameters, as in the previous section, and three sets of non-homogeneous biserial correlation sets, altogether 36 $(3 \times 4 \times 3)$ additional experiments were performed with N = 1000, I = 30, and J = 9. The results are summarized in Tables 6.9, 6.10, and 6.11.

If the test parameters estimated by the parallel form method in Table 6.9 are compared with the corresponding entries of Table 6.6, the latter table using the same parameter distribution combinations as in this section except that the biserial correlations are not homogeneous, although the averages of the biserial correlations are the same, it is noted that the results of the two tables are almost identical. This suggests that the effects of non-homogeneous biserial correlations do violate the ETEM assumptions, and consequently lower the KR20 relative to the reliability.

Although the biserial correlations are not homogeneous, almost the same conclusions may be made for Tables 6.10 and 6.11 as for Tables 6.7 and 6.8 respectively;

 (a) the means and standard errors of reliability estimates are almost identical in the two sets of the experiments,

(b) the F-tests are quite robust against the violation of the ANOVA model and normal distribution theory for the binary item cases if difficulty parameters are homogeneous, and

(c) the item difficulty parameters affect the distribution considerably, if they are not homogeneous, thus inflating or deflating real Type one errors for the F-tests.

.

				1	Theoreti	cal (N.O	.)	0	bserved b	y P.F.M.	
Exp.	Tr.	Dis.	Dif.	Mean	Var.	Rel.	KR20	Hean	Var.	Rel.	KR20
No.	Dis.			(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
01	UI	82	01	4.5	8.160	0.820	0.815	4.520	9.131	0.853	0.848
02	NO	B2	D1	4.5	8.160	0.820	0.815	4.504	8.127	0.819	0.814
03	EX	82	DI	4.5	8.160	0.820	0.815	4.147	7.130	0.779	0.773
04	U1	82	D2	4.5	5.009	0.777	0.754	4.441	5.459	0.796	0.777
05	NO	B2	D2	4.5	5.009	0.777	0.754	4.507	4.984	0.776	0.754
06	EX	82	D2	4.5	5.009	0.777	0.754	4.443	3.924	0.696	0.674
07	UI	B2	D3	6.3	6.634	0.810	0.804	6.181	7.257	0.831	0.825
08	NO	B2	03	6.3	6.634	0.810	0.804	6.290	6.632	0.809	0.804
09	EX	82	03	6.3	6.634	0.810	0.804	6.211	4.723	0.672	0.667
10	UI	B2	D4	6.3	5.470	0.775	0.767	6.226	5.758	0.783	0.778
11	NO	B2	04	6.3	5.470	0.775	0.767	6.290	5.552	0.778	0.772
12	EX	62	D4	6.3	5.470	0.775	0.767	6.343	3.472	0.593	0.585
13	Ul	84	DI	4.5	6.474	0.739	0.734	4.503	7.109	0.775	0.769
14	NO	84	01	4.5	6.474	0.739	0.734	4.500	6.462	0.740	0.733
15	EX	84	DI	4.5	6.474	0.739	0.734	4.254	5.684	0.688	0.682
16	U1	84	D2	4.5	4.109	0.690	0.673	4.462	4.302	0.705	0.689
17	NO	84	02	4.5	4.109	0.690	0.673	4.495	4.099	0.691	0.674
18	EX	84	D2	4.5	4.109	0.690	0.673	4.446	3.342	0.579	0.584
19	U1	84	D3	6.3	5.241	0.725	0.719	6.226	5.600	0.746	0.740
20	NO	84	D3	6.3	5.241	0.725	0.719	6.310	5.244	0.725	0.720
21	EX	84	D3	6.3	5.241	0.725	0.719	6.221	3.854	0.570	0.564
22	Ul	84	D4	6.3	4.373	0.682	0.677	6.280	4.446	0.685	0.681
23	NO	84	D4	6.3	4.373	0.682	0.677	6.287	4.365	0.682	0.675
24	EX	84	D4	6.3	4.373	0.682	0.677	6.305	3.065	0.506	0.499
25	Ul	B6	DI	4.5	4.072	0.510	0.503	4.475	4.218	0.533	0.525
26	NO	86	01	4.5	4.072	0.510	0.503	4.503	4.108	0.513	0.50 9
27	EX	6	DI	4.5	4.072	0.510	0.503	4.417	3.769	0.461	0.454
28	Ul	6	D2	4.5	2.737	0.457	0.447	4.487	2.815	0.469	0.463
29	NO	B6	02	4.5	2.737	0.457	0.447	4.500	2.731	0.454	0.444
30	EX	86	D2	4.5	2.737	0.457	0.447	4.481	2.452	0.380	0.372
31	UI	86	D3	6.3	3.307	0.489	0.482	6.296	3.354	0.500	0.490
32	NO	6	D3	6.3	3.307	0.489	0.482	6.295	3.328	0.493	0.485
33	EX	86	D3	6.3	3.307	0.489	0.482	6.275	2.782	0.361	0.357
34	U1	86	D4	6.3	2.814	0.433	0.429	6.287	2.824	0.433	0.428
											0.424
36	EX	1 16	D4	6.3	2.514	0.433	0.429	6.303	2.338	0.296	0.292
35 36	NO EX	86 86	04 04	6.3 6.3	2.814 2.814	0.433 0.433	0.429 0.429	6.292 6.303	2.797 2.338	0.428 0.296	_

Comparisons of Calculated Test Parameters Under the Normal Ogive Model With Empirical Values Based on the Parallel Form Method, Normal Error Scores, Non-Homogeneous Biserial Correlations, Ni = 30030, J = 9

Comparisons of Observed Means and Standard Errors of Reliability Estimates Under Normal Error Scores and Non-Homogeneous Biserial Correlations With the Values Obtainable From ANOVA Model and Normal Theory, N = 1000, 1 = 30, J = 9

Exp.	Tr.	Bis.	Dif.	Rel.*	Observ	ed 🖉 🔰	E(\$) by		d S.E. by
No.	Dis.				Hean	S.E.	(5.1)-(a)	(5.3)	(5.1)-(b)
				(1)	(2)	(3)	(4)	(5)	(6)
01	U1	82	DI	0.853	0.842	0.0436	0.842	0.0499	0.0473
02	NO	82	D1	0.813	0. 805	0.0564	0.799	0.0618	0.0600
03	EX	B2	D1	0.779	0.760	0.0739	0.763	0.0716	0.0708
04	U1	82	D2	0.796	0.766	0.0596	0.781	0.0668	0.0653
05	NO	82	D2	0.769	0.740	0.0707	0.752	0.0745	0.0740
06	EX	82	D2	0.696	0.654	0.0986	0.674	0.0941	0. 0975
07	Ū1	B2	03	0.831	0.817	0.0505	0.819	0.0565	0.0542
08	NO	82	03	0.802	0.790	0.0676	0.788	0.0651	0.0635
09	EX	82	D3	0.672	0.650	0.0988	0.647	0.1002	0.1053
10	U1	82	D4	0.783	0.763	0.0681	0.767	0.0705	0.0695
11	NO	B2	D4	0.788	0.752	0.0859	0.772	0.0693	0.0682
12	EX	B2	D4	0.593	0.561	0.1191	0.563	0.1183	0.1306
13	U1	84	D1	0.775	0.759	0.0630	0.759	0.0728	0.0721
14	NO	84	DI	0.734	0.719	0.0839	0.714	0.0843	0.0855
15	EX	84	D1	0.688	0.659	0.1088	0.665	0.0962	0.1002
16	U1	84	D2	0.705	0.673	0.0841	0.684	0.0917	0.0945
17	NO	B4	D2	0.684	0.654	0.0998	0.660	0.0972	0.1015
18	EX	84	D2	0.597	0.555	0.1348	0.567	0.1174	0.1293
19	Ul	84	D3	0.746	0.723	0.0838	0.727	0.0810	
20	NO	84	D3	0.718	0.700	0.0951	0.698	0.0883	0.0904
21	EX	84	03	0.570	0.540	0.1278	0.539	0.1232	0.1379
22	U1	84	D4	0.685	0.662	0.0948	0.661	0.0970	0.1013
23	NO	84	04	0.702	0.647	0.1185	0.680	0.0927	0.0957
24	EX	84	D4	0.506	0.470	0.1474	0.469	0.1358	0.1586
25	UI	86	01	0.533	0.496	0.1448	0.498	0.1308	
26	NO	B 6	DI	0.506	0.476	0.1566	0.470	0.1358	
27	EX	86	D1	0.461	0.414	0.1791	0.421	0.1438	
28	Ū1	86	02	0.469	0.428	0.1578	0.430	0.1424	
29	ŇO	B6	D2	0.452	0.405	0.1729	0.411	0.1453	
30	EX	86	D2	0.380	0.329	0.1963	0.334	0.1563	
ĴĨ.	UI	B6	03	0.500	0.458	0.1585	0.463	0.1370	
32	NO	B 6	03	0.484	0.448	0.1638	0.446	0.1398	
33	EX	86	03	0.361	0.314	0.1962	0.313	0.1588	
34	UI	86	D4	0.433	0.388	0.1736	0.391	0.1484	
35	NO	86	04	0.466	0.378	0.1901	0.427	0.1429	
36	EX	86	DĄ	0.296	0.248	0.2106	0.244	0.1666	0.2259

Theoretical values if true scores are normal, otherwise the value was obtained by the parallel form method.

.

(5.1) (a)
$$E(\beta) = 1 - (1-\rho) \frac{1-1}{1-3}$$
 (b) $Var(\beta) = (1-\rho)^2 \frac{2(1-1)(\nu+1-3)}{(J-1)(1-3)^2(1-5)}$

(5.3) Vor (
$$\beta$$
) = $\frac{(1-\rho^2)^2}{1}$

•

Comparisons of Observed Lower and Upper 5% Critical Points Under Normal Error Scores and Non-Homogeneous Biserial Correlations With the Values Obtainable From the ANUVA Model and Normal Theory, and Real Type One Error of F-Test When Nominal Value is Fixed to the 5% Level, N = 1000, I = 30, J = 9

Exp.	Tr.			1	Observe	d C.P. ²	Theoret	ical C.P. ³	Real Sig	. (0/0)
No.	Dis.	Bis.	Dif.	Rel.'	Lower	Upper	Lower	Upper	Lower	Upper
				(1)	(2)	(3)	(4)	(5)	(6)	(7)
01	UT	B2	DI	0.853	0.765	0.902	0.754	0.903	3.40	4.60
02	NO	B2	01	0.813	0.704	0.877	0.688	0.877	4.60	4.00
03	EX	B2	D 1	0.779	0.629	0.856	0.632	0.855	5.20	5.40
04	01	82	D2	0.796	0.653	0.845	0.660	0.866	5.90	1.40
05	NO	B2	D2	0.769	0.598	0.828	0.615	0.848	7.10	0.80
06	EX	B2	D2	0.696	0.462	0.778	0.493	0.800	6.90	1.40
07	UT	B2	D3	0.831	0.733	0.884	0.718	0.889	3.20	3.70
80	NO	82	03	0.802	0.670	0.877	0.670	0.870	6.70	6.00
09	EX	B2	03	0.672	0.465	0.780	0.452	0.784	4.20	4.20
10	UI	82	D4	0.783	0.629	0.858	0.638	0.857	6.10	5.10
11	NO	B2	D4	0.788	0.592	0.856	0.645	0.860	7.70	5.90
12	EX	82	D4	0.593	0.345	0.722	0.321	0.732	4.00	3.30
13	U1	B4	01	0.775	0.648	0.845	0.625	0.852	3.10	3.40
14	NO	B 4	01	0.734	0.564	0.824	0.555	0.824	5.20	4.60
15	EX	B4	DI	0.688	0.470	0.801	0.479	0.794	5.40	6.10
16	U1	84	D2	0.705	0.513	0.783	0.508	0.806	4.80	2.30
17	NO	84	D2	0.684	0.482	0.777	0.472	0.791	5.20	2.10
18	EX	B 4	02	0.597	0.308	0.720	0.328	0.734	5.90	2.50
19	UI	84	03	0.746	0.597	0.831	0.576	0.832	5.50	4.50
20	NO	84	D3	0.718	0.526	0.820	0.530	0.814	6.20	5.20
21	EX	84	03	0.570	0.304	0.717	0.283	0.717	3.80	5.00
22	UI	84	D4	0.685	0.467	0.787	0.473	0.792	5.40	4.00
23	NO	84	D4	0.702	0.416	0.796	0.502	0.803	7.30	6.20
24	EX	84	04	0.506	0.193	0.667	0.175	0.674	4.30	4.00
25	UI	86	01	0.533	0.220	0.682	0.220	0.692	5.10	3.90
26	NO	B 6	D1	0.506	0.174	0.674	0.176	0.674	5.40	4.10
27	EX	86	D1	0.461	0.052	0.657	0.100	0.644	6.10	5.90
28	U1	86	D2	0.469	0.129	0.650	0.114	0.650	4.30	5.00
29	NO	86	D2	0.452	0.085	0.635	0.085	0.639	5.20	4.50
30	EX	B6	D2	0.380	-0.028	0.594	-0.036	0.591	4.60	5.10
31	UI	86	D3	0.500	0.165	0.657	0.165	0.670	5.00	4.30
32	NO	86	03	0.484	0.128	0.672	0.138	0.660	5.50	6.00
33	EX	86	03	0.361	-0.056	0.579	-0.068	0.578	4.40	5.10
34	UT	86	04	0.433	0.063	0.629	0.053	0.626	4.40	5.30
35	NO	86	D4	0.466	0.026	0.624	0.109	0.648	5.80	5.20
36	EX	86	D4	0.296	-0.146	0.525	-0.175	0.536	4.50	3.50

¹Theoretical values if true scores are normal, otherwise the values obtained by the parallel form method.

²Observed lower and upper 5% critical points of the distribution β .

 3 Theoretical lower and upper SE critical points of the distribution of β under ANOVA and normal theory.

From the above observations, the following conclusions are tentatively made.

(a) The non-homogeneous biserial correlation distorts the distribution slightly to the left for high reliability cases, but the differences are not substantial.

(b) The effects of non-homogeneous biserial correlations on expected values and standard errors of reliability estimates are minimal, and formulas (5.1) and (5.3) are quite satisfactory.

(c) The effects of non-homogeneous biserial correlations on test parameters are minimal.

(d) The F-tests are robust for binary item test cases if the difficulty parameters are homogeneous.

6.5 Summary

In order to investigate the effects of non-normal latent and error scores, non-homogeneous difficulty parameters and biserial correlations on the sampling distribution of reliability estimates based on formula (2.13), altogether 96 experiments were performed by REL02 using various combinations of distribution parameter sets with N = 1000, I = 30, and J = 9. The findings in this chapter may be summarized as the following:

(a) The effects of non-normal distribution of error scores $\{\varepsilon_{ij}\}$ in terms of response strength variables $\{y_{ij}\}$ are negligible, as was the case for the continuous part score cases in Chapter Five.

(b) The non-normal latent scores affect the population parameters such as variance, reliability and KR20. The normal ogive model underestimates these parameters for the uniform latent score distribution, and overestimates them for the exponential case.

(c) Formulas (5.1) and (5.3) are quite satisfactory for binary item cases; formula (5.1)-(b) seems superior to (5.3) for the calculation of the standard error of reliability estimates.

(d) The item difficulty parameters are the most important factor for the distribution of reliability estimates. They will affect the test score variance, reliability and KR20. The non-homogeneous difficulty sets give lower values for these parameters.

(e) The item difficulty parameters systematically affect the distribution of reliability estimates. The non-homogeneous difficulty sets shift the distribution leftward.

(f) The effect of non-homogeneous biserial correlations are negligible if the heterogeneity is moderate.

(g) The F-test based on (2.17) is robust if any one of the following conditions is satisfied.

i) Relibability is low, i.e., p is close to zero.

 ii) Only lower portions of the sampling distribution of reliability estimates are used for the inference, namely the null hypothesis is directional, being bounded only by the lower end.

iii) The difficulty parameters are almost homogenous.

(h) The difficulty parameter sets may deflate the real Type one errors if they are not homogeneous for inference which uses only upper tail of the sampling distribution.

CHAPTER SEVEN

SUMMARY, IMPLICATIONS, EXAMPLES OF APPLICATION, AND RECOMMENDATIONS

7.1.0 Summary of Findings

The purpose of this study was (a) to review the more liberal concepts of test reliability theory in terms of models and assumptions underlying them, (b) to examine the sampling distribution of reliability estimates based on Alpha or KR20 formulas using these models with various combinations of the distribution of true and error scores, and (c) to compare the empirical distributions thus obtained by computer simulation under these model-distribution combinations with those obtainable theoretically under a mixed model ANOVA and normal theory Using computer simulated hypothetical test score matrices, a number of statistical sampling experiments were performed to obtain empirical distributions, and some analytical means were also employed to obtain a new formula for the standard error of reliability estimates. Findings in this study are summarized in the following three sections.

7.1.1 Test Models

(a) The most general model for the continuous part test score is found to be the multi-factor true score model. The model includes other more restrictive models as special cases. By imposing a unifactor true score constraint, the model becomes a congeneric true score model. If homogeneity of true score variance is assumed, the congeneric model becomes essentially τ equivalent measurement. The latter model includes the ANOVA or essentially parallel measurement model as a special

case with the additional assumption of the homogeneity of error variances. The classical parallel test model is a special case of ANOVA model, namely the means of part test scores are all equal. The Alpha coefficient is equal to the reliability if, and only if the essentially τ equivalent measurements condition is satisfied, otherwise it is in general lower than the reliability. The sampling distribution of reliability estimates is known only for the case of the ANOVA model and normality assumptions of true and error scores.

(b) For the binary item test case, a similar model as the continuous case may be considered for the hypothetical 'response strength' variable. A mathematical model and distributional assumptions are required to associate the response strength variable to the observed item scores. Under the normal ogive model, the test parameters such as variance, reliability, and KR20 are amenable for calculation hy means of numerical methods if the item parameters, such as biserial correlation and difficulty parameters, are specified. The essentially τ equivalent measurement assumption is satisfied if and only if all biserial correlations and difficulty parameters are equal, i.e., all items are homogeneous; otherwise KR20 is lower than reliability. The sampling distribution of reliability estimates for binary item test is not yet known, except by approximation using the ANOVA model and normal theory.

7.1.2 Sampling Distribution Under Various Models and Assumptions

(a) Applying Tukey's result, a new formula for the standard error of reliability estimate was derived. The formula depends only on sample size, number of part tests, reliability, and the kurtosis

of the test scores, and is found to be superior to the traditional formula based on normal theory when the distribution of true score is not normal.

(b) The effects of non-normal error scores distributions are found to be negligible for not too small J, the number of part tests or items, for both the continuous and binary cases.

(c) For continuous test score cases, the effects of nonnormal distributions of true scores are found to be significant, i.e., the distribution of reliability is systematically distorted. If the essentially τ equivalent assumption is not satisfied, the distribution is systematically shifted leftward or to the lower direction of reliability. This effect is more clearly observed for the multi-factor true score model case indicating inappropriateness of the Alpha formula for the model. The effects of non-homogeneous error variance were found to be negligible.

(d) For the binary item case the effect of non-normal distributions of latent scores is not so obvious. The formula for the standard error derived under the ANOVA model and normal theory seems quite robust against violation of assumptions imposed by a binary scoring scheme. The test parameters depend on the shape of latent score distributions for fixed biserial correlation and difficulty parameters. If the essentially τ equivalent measurement assumption is not satisfied, i.e., biserial correlation and/or difficulty parameters are not all homogeneous, the distribution of reliability estimates is shifted leftward systematically. The effects of nonhomogeneous difficulty parameters seems more severe than that of nonhomogeneous biserial correlations.

7.1.3 Robustness of F-Test

The F-test based on ANOVA model and normal theory is robust against violation of the following assumptions:

(a) Normality of error scores for both continuous and binary cases.

(b) Homogeneity of error score variances for continuous cases.

(c) Homogeneity of biserial correlations for the binary case if the violation is not too extreme.

(d) Normality of latent score distributions for binary case.

The F-test may be misleading if the following conditions are not satisfied.

(a) Uni-factorness of true and latent score distributions.

(b) Normality of true scores for continuous case. Especially positive kurtosis of true scores results in severe distortions.

(c) Essentially τ equivalent assumptions (approximately at least).

(d) Homogeneity of item difficulty parameters (approximately at least).

Nevertheless, in all cases, the F-test is robust against any violation of assumptions if the population reliability is close to zero for both continuous and binary cases. If only the lower tail portion of the distribution is used for the binary item test, the significance test is also robust in most cases.

7.2.0 Implications to Test Theory and Applications

In this study, it has been demonstrated that the distribution of the reliability estimate depends significantly on the models employed, the underlying assumptions, and the parameters of part tests or items. Therefore the validity of any statistical inference about reliability largely depends on the validity of models and assumptions like any other statistical inference. Therefore it is essential, for statistical inference about reliability, to know the models appropriate for the test in use, and the population characteristics for the test must be known a priori. For a casual user of psychological and educational tests, this is an almost impossible task. Therefore, for test users and/or other researchers, the findings in this study may not be of any practical use without knowledge of the above information about the test except when robust conditions are present.

However, for a test author, or for a test reviewer, the task of gathering the necessary data may be accomplished as a by-product of the usual procedure for the test development, since an administration of the test to a comparatively large sample of subjects from the population for whom the test is developed is usually involved in order to standardize and to obtain test norms. The test statistics based on such large samples may be used to obtain such information.

Although there is no agreed upon statistical and psychometric methods to obtain such parameters, some efficient methods for the calculation of part test parameters have been developed recently by a number of psychometricians.

For example, Kristof (1969) considered the estimation of the true score variance σ_A^2 and error score variance $\{\sigma_{ej}^2\}$ under an essentially τ equivalent measurement assumption by employing maximum likelihood method. He derived the likelihood equations and found that these could be solved rapidly by a simple Newton-Raphson procedure.

For the binary item test cases, the item difficulty is easily

calculated, and the biserial correlation parameters may be obtained by factor analysis of the tetrachoric correlation matrix from the results of (3.14), if the latent score has a uni-factor structure.

Jöreskog (1971) has shown some examples of model identification techniques by employing maximum likelihood factor analysis on the disperson matrices of test scores obtained from large samples.

In regard to distributions, the distribution of error score is found to be not important, but the shape of the distribution of true scores can affect the reliability estimate significantly. Although the distribution of true scores is not observable directly, since only the kurtosis of true score will affect the distribution of reliability estimates, and it can be indirectly evaluated by the test score kurtosis divided by the square of reliability from the results of (5.9), the normality of true score may be investigated partly by examining the test score kurtosis if it is obtained from a large sample.

Therefore, a test author or reviewer would be doing a service to the users of a test, if he provided information about the model involved, and distributions and parameter values in the population for which the test is developed. If the test satisfies the ANOVA model and normal theory assumptions, or violates only those assumptions which are known to be unimportant, the author or reviewer may recommend the use of the F-test for the inference about reliability. In this case the author or reviewer needs to supply only the information about the population reliability. Otherwise, the author or reviewer should either provide all information necessary for simulation of such tests by the computer program developed in this study, or alternatively, provide a table of upper and lower critical points of the distribution of

reliability estimates as a function of sample size, and should probably also provide the values of the standard errors. Then the user could easily determine whether the observed reliability is significantly different or not from the population value at a specific significance level.

7.3.0 Example 1: Application to Continuous Case

Since it was not possible to find an appropriate example of a test and its manuals which provide the necessary information for the test models and the other information necessary for the application of computer simulation techniques, somewhat arbitrary example data were selected to show how the findings in this study and the computer programs developed might be applied in a practical situation.

Jöreskog (1971) analyzed a dispersion matrix based on four measures used by Votaw (1948) to establish methods of obtaining reader reliability in essay scoring for an English composition test, and identified the model as a congeneric true score model. The dispersion matrix was obtained from 126 subjects, and is given in Table 7.1.

TABLE 7.1

Dispersion Matrix of Votaw's Essay Test Data, I = 126

1	2	3	4	
25.0704	12.4363	11.7257	20.7510	
12.4363	28.2021	9.2281	11.9732	
11.7257	9.2281	22.7390	12.0692	
20.7510	11.9732	12.0692	21.8707	
	12.4363	12.4363 28.2021 11.7257 9.2281	12.4363 28.2021 9.2281 11.7257 9.2281 22.7390	12.4363 28.2021 9.2281 11.9732 11.7257 9.2281 22.7390 12.0692

He employed maximum likelihood factor analysis, and gave the estimate of the standard deviation of true score or factor loading as,

$$\lambda^{1} = [4.57 \ 2.68 \ 2.65 \ 4.53]$$

Therefore, if a test author published a test consisting of four part tests and obtained the same results as above based on a large sample, these values may be regarded as population parameter values if small discrepancies in covariance terms are ignored. Then the test score model would be as follows,

$$\underline{Y}_{1} = \begin{bmatrix} 4.57 \\ 2.68 \\ 2.65 \\ 4.53 \end{bmatrix} \begin{bmatrix} f_{1} \\ + \begin{bmatrix} 2.0459 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 4.5847 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 3.9644 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 1.1618 \end{bmatrix} \begin{bmatrix} \underline{c}_{1} \\ \underline{c}_{1} \end{bmatrix}$$

Then,

$$D(\underline{y}_{1}) = \underline{\lambda} = \underline{\lambda} \underline{\lambda}' + \underline{\Psi}^{2} = \begin{bmatrix} 25.0704 & 12.2476 & 12.1105 & 20.7021 \\ 12.2476 & 28.2021 & 7.1020 & 12.1404 \\ 12.1105 & 7.1020 & 22.7390 & 12.0045 \\ 20.7021 & 12.1404 & 12.0045 & 21.8707 \end{bmatrix}$$

and,

Alpha = 0.812329,
$$\rho = 0.831249$$
.

Since the assumption of the homogeneity of true score variances is violated, the essentially τ equivalent measurement assumption is not valid and hence the Alpha coefficient is lower than reliability as expected.

From the findings of this study, it is known that the effects of non-homogeneous true score variance is not too great with moderate differences among the elements of the factor loading vector $\frac{\lambda}{2}$, but

the differences for this data seem exceptionally large and also the difference between Alpha coefficient and the reliability is substantial. Therefore a systematic distortion of the distribution of reliability estimates toward lower reliability is expected. Seven computer simulation experiments were performed with the Jöreskog's model with N = 2000 and assumed normality of true and error scores. Both estimation formulas, namely the Alpha formula of (2.13) and Kristof's unbiased formula of (5.2)-(a) were used for estimation of sample reliability. Observed upper and lower 5% critical points together with standard errors are summarized in Table 7.2. The observed values are also compared with those obtainable under the ANOVA model and normal theory. The sample sizes I, the number of subjects, used for these experiments are 10, 15, 20, 25, 30, 35, and 40 respectively. Figures 7.1 - 7.7 compares empirical distribution with the theoretical distributions indicating the effect of the violation of the essentially τ equivalent measurement assumptions.

A table similar to Table 7.2 might accompany the test manuals or test review report so that test users may consult the table whenever they make inferences about the reliability. For example, if a teacher administered the test to a sample of 20 students and obtained $\beta = 0.892$, then by consulting this table she may conclude that the difference between the population value 0.812 and her sample value is not significant at 5% level of Type one error. Therefore, she may not claim that her sample is significantly different from the population for which the test is developed as far as the reliability is concerned. The author or researcher could develop a slightly different table if the population test score is not normal. For

2
~
щ
ş
2

Lower and Upper 5% Critical Points of the Distribution of Reliability Estimates Votaw-Jöreskog Data, Normal True and Error Score Distributions, Congeneric Model, p = 0.8313, Alpha = 0.8123, N = 2000

	-	Lower 5\$	Observed Upper 5 %	S.E.	Theoret Lower 5%	Theoretical Under ANOVA er 5% Upper 5%	ANOVA S.E.
	9	0.4501	0.9223	0.1671	0.7141	0.9250	0.1540
		0.5565	0.9048	0.1130	0.6186	0.9128	0.0998
		4619.0	0.8952	0.0881	0.6651	0.9048	0.0785
		0 65 BG	0.8917	0.0733	0.6920	0.8989	0.0665
	25	0.6872	0.8841	0.0624	0.7098	0.8944	0.0587
	2 4	0.0018	0.8808	0.0608	0.7226	0.8907	0.0531
	2	0.6952	0.8763	0.0571	0.7323	0.8877	0.0488
	1						
_		0 5723	0,9395	0.1301	0.6221	0.9417	0.1198
) v	0.6199	0.9184	0.0970	0.6731	0.9252	0.0856
	<u>`</u>	0.6595	0.9062	0.0790	0.7003	0.9148	0.0702
	Ň	0.6871	0.9007	0.0673	0.7176	0.9073	0.0610
	22	0.7088	0.8921	0.0582	0.7298	0.9017	0.0546
	. <u>v</u>	0 7090	0.8878	0.0572	0.7389	0.8972	0.0499
		0.7109	0.8826	0.0542	0.7460	0.8934	0.0463

I : sample size, i.e., number of subjects.

example, if ranked marks were assigned for each part test, the greater likelihood is that the true scores would be distributed uniformly rather than normally, and the shapes of reliability estimates would be much different.

7.4.0 Example 2: Application to Binary Item Case

A hypothetical binary item test consisting of 9 items is considered as an example. The values of item parameters are taken from Lord and Novick (1968, p. 379), and summarized in Table 7.3.

TABLE 7.3

Item Parameters of a Nine Item Test

ltems	1	2	3	4	5	6	7	8	9
Difficulty	0.096	0.199	0.338	0.434	0.471	0.574	0.676	0.801	0.822
Biserial Cor.	0.490	0.717	0.549	0.593	0.595	0.640	0.476	0.530	0.495

It may be noted that the item difficulty parameters are rather heterogeneous with a value as small as 0.096 to as high as 0.822. Therefor it is expected that the essentially τ equivalent measurement assumption is substantially violated. To investigate the sampling distribution of reliability estimates of a binary item test with these parameters under the normal ogive model, an experiment was performed with i = 30, and N = 1000.

The theoretical test parameters and those obtained by parallel form method are compared in Table 7.4.

TABLE 7.4

Test Parameters of a Nine Item Test

Hethods	Mean	Variance	Reliability	KR20
Theoretical	4.4710	4.0054	0.6632	0.6498
Parallel Form	4.4774	4.0023	0.6654	0.6526

Therefore a user of this test may compare her observed test mean, variance, and KR20 with the values given in this table, and can make some conclusions about her sample group.

The shape of the distribution of reliability estimate based on (2.13) is compared with the theoretical distribution under the ANOVA and normal theory model in Figure 7.8. The distribution shows a systematic shift leftward probably due to heterogeneous difficulty parameters. The lower and upper 5% critical points of this distribution are 0.4412 and 0.7793 respectively while the theoretical values are 0.4466 and 0.7656 respectively. Therefore, if a user of the test found a reliability estimate of 0.79 with I = 30, it may be concluded that the reliability is significantly higher than the population value at the 5% level of significance.

7.5.0 Recommendations

As noted in Section 4.8 of Chapter Four, in the discussion of the methodological limitation of this study, the computer simulation experiments cannot be exhaustive and cover all possible combinations of models, parameters, and distributional assumptions. Also due to the limitations imposed by limited funds available for the computing

charges, the scope and extent of experiments have been restricted to certain special cases which may not always be directly relevant to real data. Because of these facts, the findings of this study will be limited to some extent in their generalization and application. Therefore, the findings will, by circumstance, be exploratory and illustrative rather than comprehensive with the emphasis having been placed on methodology. Based on the findings and experience with the computer simulation techniques, the following recommendations are made:

(a) The computer simulation techniques can be used to solve many statistical and psychometric problems in test and measurement theory and application. Further use of this technique is recommended and research must be carried out to improve the methodology.

(b) Authors of published tests, or their reviewers, should attempt to specify the appropriate test model for a given test, and place such information in the test manuals. The manuals should also include the population dispersion or tetrachoric correlation matrix of true or latent scores or estimate of them as well as the parameter values such as error variances, difficulty and biserial correlations based on a large sample. The distributional characteristics of true or latent scores and error scores of the population for which the test is developed should also be included.

(c) Some of the findings in this study are based on only a few parameter sets and distributional assumptions. Therefore, the findings must be confirmed by replicated studies with a wider range of parameter sets and with distributions of different shapes of true or latent and error scores, and if applicable, using real test score data. More specifically, the following aspects require
further investigation:

- (i) The effect of non-homogeneous true score variance, i.e., the distribution of reliability estimates under the congeneric model for a wider range of λ_{1}^{1} s.
- (ii) The effects of non-homogeneous item difficulty parameters for the binary item test cases.

(d) In this study, the size of sample is artificially fixed at I = 30. An investigation must be made to examine the effects of sample size to see how fast the estimate converges to its expected value with increasing sample size.

(e) The investigation of this study was limited to Type 1
sampling situations only, but a similar method can be employed for Type
2 or Type 12 sampling situations possibly with a different type of
ANOVA model.

(f) The test score used in this study was a simple unweighted sum of J part test or item scores, although a weighted sum could have been easily employed. The effects of a weighted sum on the reliability estimate must be explored as an extension of this study.

(g) In this study, one of the basic assumptions of test theory was assumed to be always valid. The assumption was one of independence of error and true scores. In practice this may be violated and the effects of such violation on the distribution of the estimate of reliability must be investigated. Computer simulation would provide an ideal method for such an investigation.

(h) It is clear that Alpha coefficient as an estimate of reliability is inappropriate if the essentially τ equivalent

measurement assumption is violated too much. Therefore a new effort is necessary to find an appropriate means to estimate reliability under this condition, especially for the case of the multi-factor true score model.

(g) In this study, the investigations were limited to one sample and one reliability estimate cases, and comparisons of the estimate to the population value, but similar methods may be applied to investigate for the cases of more than one sample or reliability estimates either based on independent samples or repeated measures on the same sample to investigate the sampling distribution of the differences of the reliability estimates.

REFERENCES

- ANDERSON, T.W., <u>An Introduction to Multivariate Statistical Analysis</u>, New York: John Wiley and Sons, 1962.
- AOYAMA, Hirojiro, 'Sampling Fluctuations of the Test Reliability', Tokei-Suri Kenyojo, Tokyo Annals, Vol. 8, 1957, pp. 129-143.
- BAKER, F.B., <u>Empirical Determination of Sampling Distribution of Item</u> <u>Discrimination Indices and a Reliability Coefficient</u>, Madison: University of Wisconsin, 1962.
- BAY, K., <u>Application of Linear Model Simulator to Educational and</u> <u>Psychological Research, A Technical Note on a Computer</u> <u>Program</u>, Unpublished paper, Division of Educational Research Services, The University of Alberta, Edmonton, 1970.
- BIRNBAUM, A., <u>Statistical Theory for Logistic Mental Test Models with</u> <u>a Priori Distribution of Ability</u>, Research Builetin RB 67-12, Educational Testing Service, 1967.
- BIRNBAUM, A., 'Some Latent Trait Models and Their Use in Inferring an Examinee's Ability', Cited by F.M. Lord and M.R. Novick, <u>Statistical Theories of Mental Test Scores</u>, Massachusetts: Addison-Wesley, 1968, Part 5.
- BOCK, R.D., and M. Lieberman, 'Fitting a Response Model for n Dichotomously Scored Items', <u>Psychometrika</u>, Vol. 35, pp. 179-197, 1970.
- BONEAU, C.A., 'The Effects of Violation of Assumptions Underlying the t-test', Psychological Bulletin, Vol. 57, pp. 49-64, 1960.
- BOX, G.E.P., and M.E. Muller, 'A Note on the Generation of Random Normal Deviates', <u>Annals of Mathematical Statistics</u>, Vol. 29, pp. 610-611.
- BROWNE, M.W., 'Fitting the Factor Analysis Model', <u>Psychometrika</u>, Vol. 34, 1969, pp. 375-405.
- BURT, Cyril, 'Test Reliability Estimated by Analysis of Variance', <u>The British Journal of Statistical Psychology</u>, Vol. 8, pp. 103-118, 1955.
- CHURCHMAN, C.W., 'An Analysis of the Concept of Simulation', <u>Symposium</u> on <u>Simulation Models</u>, Edited by Austin C. Hoggatt and F.E. Balderson. Cincinnati: South-Western Co., p. 12, 1963.

- CLEARY, T.A., and R.L. Linn, <u>Variability of Kuder-Richardson Formula 20</u> <u>Reliability Estimates</u>, Research Bulletin RB 68-7, Educational Testing Service, 1968.
- CRONBACH, L.J., 'Coefficient Alpha and the Internal Structure of Tests', Psychometrika, Vol. 16, pp. 297-334, 1951.
- CRONBACH, L.J., H. Ikeda, and R.A. Avner, 'Intra-class Correlation as an Approximation to the Coefficient of Generalizability', Psychological Reports, Vol. 15, pp. 727-736, 1964.
- CRONBACH, L.J., and P.E. Meehl, 'Construct Validity in Psychological Tests', Psychological Bulletin, Vol. 52, pp. 281-301, 1955.
- CRONBACH, L.J., N. Rajaratnam, and G.C. Gleser, 'Theory of Generalizability: a Liberalization of Reliability Theory', <u>The British</u> <u>Journal of Statistical Psychology</u>, Vol. 16, pp. 137-163, 1963.
- CURETON, E.E., 'The Definition and Estimation of Test Reliability', <u>Educational and Psychological Measurement</u>, Vol. 18, pp. 715-738, 1958.
- EBEL, R.L., 'Estimation of the Reliability of Ratings', <u>Psychometrika</u>, Vol. 16, pp. 407-424, 1951.
- FELDT, L.S., 'The Approximate Sampling Distribution of Kuder-Richardson Reliability Coefficient Twenty', <u>Psychometrika</u>, Vol. 30, pp. 357-370, 1965.
- FELDT, L.S., 'A Test of the Hypothesis that Cronbach's Alpha or Kurder-Richardson's Coefficient Twenty is the Same for Two Tests', <u>Psychometrika</u>, Vol. 34, pp. 363-373, 1969.
- GLESER, G.C., L.J. Cronbach, and N. Rajaratnam, 'Generalizability of Scores Influenced by Multiple Sources of Variance', <u>Psychometrika</u>, Vol. 30, pp. 395-418, 1965.
- GULLIKSEN, H., Theory of Mental Tests, New York: John Wiley and Sons, 1950.
- GUTTMAN, L., 'A Basis for Analyzing Test-Retest Reliability', Psychometrika, Vol. 10, pp. 255-282, 1945.
- GUTTHAN, L., 'Reliability Formulas that do not Assume Experimental Independence', <u>Psychometrika</u>, Vol. 18, pp. 225-240, 1953.
- HOYT, C., 'Test Reliability Estimated by Analysis of Variance', <u>Psychometrika</u>, Vol. 6, pp. 153-160, 1941.
- HSU, Tse-Chi, and L. Feldt, 'The Effect of Limitations of the Number of Criterion Score Values on the Significance Level of the F-Test', <u>American Educational Research Journal</u>, Vol. 6, pp. 515-527, 1969.

- IBM, <u>Random Number Generating and Testing</u> (C20-8011), New York: Technical Publication Department, IBM, 1959.
- IBM, System/360 Scientific Subroutine Package (360A-CM-03X), Version <u>111, Application Descriptions</u>, 6th Ediction, New York: Technical Publication Department, IBM, 1968.
- JACKSON, R.W., and G.A. Ferguson, <u>Studies on the Reliability of Tests</u>, Bulletin No. 12 of the Department of Educational Research, University of Toronto, 1941.
- JORESKOG, K.G., 'Statistical Models for Congeneric Test Scores', <u>76th</u> A. P. A. Proceedings, pp. 213-214, 1968.
- JÖRESKOG, K.G., 'A General Method for Analysis of Covariance Structure', Biometrika, Vol. 57, pp. 239-251, 1970.
- JÖRESKOG, K.G., 'Statistical Analysis of Sets of Congeneric Tests', Psychometrika, Vol. 36, pp. 109-133, 1971.
- KEEPING, E.S., <u>Introduction to Statistical Inference</u>, Princeton: Van Nostrand, 1962.
- KENDALL, M.G., and A. Stuart, <u>The Advanced Theory of Statistics</u>, Vol. 1, (1963); Vol. 2, (1967); Vol. 3, (1966), London: Charles Griffin.
- KRISTOF, W., 'The Statistical Theory of Stepped-up Reliability Coefficient when a Test has been Divided into Several Equivalent Parts', <u>Psychometrika</u>, Vol. 28, pp. 221-238, 1963.
- KRISTOF, W., 'Statistical Inferences about the Error Variance', Psychometrika, Vol. 28, pp. 129-143, 1963.
- KRISTOF, W., 'Testing Differences Between Reliability Coefficients', <u>The British Journal of Statistical Psychology</u>, Vol. 17, pp. 105-111, 1964.
- KRISTOF, W., 'Estimation of True Score and Error Variance for Tests Under Various Equivalence Assumptions', <u>Psychometrika</u>, Vol. 34, pp. 489-507, 1969.
- KRISTOF, W., <u>Statistical Notes on Reliability Estimation</u>, Research Bulletin, RB-69-25, Educational Testing Service, 1969.
- KRISTOF, W., 'On the Sampling Theory of Reliability Estimation', <u>Journal of Mathematical Psychology</u>, Vol. 7, pp. 371-377, 1970.
- KUDER, G.F., and M.W. Richardson, 'The Theory of the Estimation of Test Reliability', <u>Psychometrika</u>, Vol. 2, pp. 151-160, 1937.

- LaFORGE, R., 'Components of Reliability', <u>Psychometrika</u>, Vol. 30, pp. 187-195, 1965.
- LEHMER, D.H., 'Mathematical Methods in Large-Scale Computing Units', <u>Annals Computer Laboratory Harvard University</u>, Vol. 16, pp. 141-146, 1951.
- LORD, F., <u>A Theory of Test Scores</u>, Psychometric Monographs, No. 7, 1952.
- LORD, F., 'Sampling Fluctuations Resulting from the Sampling of Test Items', <u>Psychometrika</u>, Vol. 20, pp. 1-22, 1955.
- LORD, F., 'An Empirical Study of the Normality and Independence of Errors of Measurement in Test Scores', <u>Psychometrika</u>, Vol. 25, pp. 91-104, 1960.
- LORD, F., 'Nominally and Rigorously Parallel Test Forms', <u>Psychometrika</u>, Vol. 29, pp. 335-345, 1964.
- LORD, F., 'A Strong True-Score Theory with Application', <u>Psychometrika</u>, Vol. 30, pp. 239-250, 1965.
- LORD, F., 'Estimating True-Score Distribution in Psychological Testing (An Empirical Bayes Estimation Problem)' <u>Psychometrika</u>, Vol. 34, pp. 259-299, 1969.
- LORD, F., 'Item Characteristic Curves Estimated Without Knowledge of Their Mathematical Form: A Confrontation of Birnbaum's Logistic Model', Psychometrika, Vol. 35, pp. 43-50, 1970.
- LORD, F., and M. Novick, <u>Statistical Theories of Mental Test Scores</u>, Reading, Massachusetts: Addison-Wesley, 1968.
- MAGUIRE, T., and C. Hazlett, 'Reliability for the Researcher', <u>Alberta</u> <u>Journal of Educational Research</u>, Vol. 15, pp. 117-126, 1969.
- MORRISON, D., <u>Multivariate Statistical Methods</u>, New York: McGraw-Hill, 1967.
- NAYLOR, T., J. Balinfty, D. Burdick, and K. Chu, <u>Computer Simulation</u> <u>Techniques</u>, New York: John Wiley and Sons, 1968.
- NITKO, A., <u>The Power Functions of Some Proposed Tests for the Signifi-</u> <u>cance of Coefficient Alpha in the One-Sample and Two-Sample</u> <u>Cases</u>, Ph.D. Thesis, University of Iowa, 1968.
- NITKO, A., and L. Feldt, 'A Note on the Effect of Item Difficulty Distributions on the Sampling Distribution of KR20', <u>American</u> <u>Educational Research Journal</u>, Vol. 6, pp. 433-437, 1969.

- NORTON, D., <u>An Empirical Investigation of Some Effects of Non-Normality</u> and <u>Hetrogeneity on the F-Distribution</u>, Ph.D. Thesis, State University of Iowa, 1952.
- NOVICK, M., 'The Axioms and Principal Results of Classical Test Theory', Journal of Mathematical Psychology, Vol. 3, pp. 1-18, 1966.
- NOVICK, M., and C. Lewis, 'Coefficient Alpha and the Reliability of Composite Measurements', <u>Psychometrika</u>, Vol. 32, pp. 1-13, 1967.
- OLKIN, I., and J. Pratt, 'Unbiased Estimation of Certain Correlation Coefficients', <u>Annals of Mathematical Statistics</u>, Vol. 29, pp. 201-211, 1958.
- PAYNE, W., and D. Anderson, 'Significance Levels for the Kuder-Richardson Twenty: An Automated Sampling Experiment Approach', Educational and Psychological Measurement, Vol. 28, pp. 23-39, 1968.
- RAJARATNAM, N., 'Reliability Formulas for Independent Decision Data When Reliability Data are Matched', <u>Psychometrika</u>, Vol. 25, pp. 261-270, 1960
- RAJARATNAM, N., L. Cronbach, and G. Gleser, 'Generalizability of Stratified-Parrallel Tests', <u>Psychometrika</u>, Vol. 30, pp. 39-56, 1965.
- RAO, C., <u>Linear Statistical Inference and Its Applications</u>, New York: John Wiley and Sons, 1965.
- ROZEBOOM, W.W., Foundations of the Theory of Prediction, Homewood, 11linois: Dorsey Press, 1966.
- SAMEJIMA, F., Estimation of Latent Ability Using a Response Pattern of Graded Scores, No. 17, Psychometrika Monograph Supplement, 1969.
- SCHEFFÉ, H., The Analysis of Variance, New York: John Wiley and Sons, 1959.
- SHOEMAKER, D., <u>An Empirical Study of Generalizability Coefficients</u> for Matched and Unmatched Data, Ph.D. Thesis, University of Houston, 1966.
- SPEANMAN, C., 'Correlation Calculated from Faulty Data', British Journal of Psychology, Vol. 3, pp. 271-295, 1910.
- SRIVASTAVA, A., and H. Webster, 'An Estimation of True Scores in the Case of Items Scored on a Continuous Scale', <u>Psychometrika</u>, Vol. 32, pp. 327-338, 1967.

- STUDENT, 'The Probable Error of Means', <u>Biometrika</u>, Vol. 6, pp. 1-25, 1908.
- TEICHROEW, D., 'History of Distribution Sampling Priori to the Era of the Computer and its Relevance to Simulation', Journal of American Statistical Association, Vol. 60, pp. 27-49, 1965.
- TOCHER, K.D., 'The Application of Automatic Computers to Sampling Experiments', Journal of the Royal Statistical Society, B16, pp. 39-61, 1954.
- TRYON, R., 'Reliability and Behavior Domain Validity: Reformulation and Historical Critique', <u>Psychological Bulletin</u>, Vol. 54, pp. 229-249, 1957.
- TUKEY, J.W., 'Variance of Variance Components: 1. Balanced Design', Annals of Mathematical Statistics, Vol. 27, pp. 722-736, 1956.
- VOTAW, D.F., Jr., 'Testing Compound Symmetry in a Normal Multi-Variate Distribution, <u>Annals of Mathematical Statistics</u>, Vol. 19, pp. 447-473, 1948.
- WEITZMAN, R., 'Monte Carlo Studies of a Single-Trial Estimation of the Test-Retest Reliability of a Multiple-Choice Test', Proceedings, 77th APA Convention, Part 1, pp. 121-122, 1969.
- WINER, B., <u>Statistical Principles in Experimental Design</u>, New York: McGraw-Hill, 1962.
- WOODBURY, M., 'The Stochastic Model of Mental Testing Theory and an Application', Psychometrika, Vol. 28, pp. 391-393, 1963.

APPENDIX A.1

LISTINGS OF COMPUTER PROGRAMS

RELOI	:	Simulation Program for Continuous
		Part Test Case
REL02	:	Simulation Program for Binary Item
		Test Case
RELOO	:	A Package of Sub-Programs Shared by
		RELO1 and RELO2

FORTRAN IV & COPPILER	MAIN	09-15-71	15:55.55	PAGE 0001
С				
C RELOI		OF EDUCATIONAL RE	SEARCH SERVICES	
C *****	UNIVER 511	Y OF ALBERTA		
C PURPOSE:	SIMULATES	CENTINUOUS PART-	••••••••••	
C		UE SCORE MODEL TO		
č	DISTRIBUT	ION OF RELIABILI	Y ESTIMATES	
C CARD INPUT	:			
C	1. TITLE(
C		TERS(1115,F5.5):		, IDIST , IDISE,
ç	I PUNCI NSAM	NO OF SAMPLES		
C C	MI	NO OF SUBJECTS		
č	LH.	NO OF PARTS		
č	NF	NO OF FACTORS	IN TRUE SCORE	
Č	1 X	ANY ODD INTEGER	R TO INITIATE RAI	NDOM NUMBER
C	IDIST	OPTION FOR THE	DISTRIBUTION OF	RANDOF
C		EFFECTS ITRUE	SCORE)	
C		O-NORMAL		
C C	I D I SE		SUBPROGRAM DIST DISTRIBUTION OF	58008
Č	10136	0-NORMAL	DISTRIBUTION OF	EMAUA
č			SUBPROGRAM DISE	
č	I PUNCI	• • • • • • • • • •	OUT FUT OF FRE	QUENCIES
Ċ		0-NO CARD OUTPI	JTS	
C		1-CARD CUTPUT		
C	IPLOT		rs	
c		O-NOT REQUIRED		
C C	MODE	1-REQUIRED	MATICN FORMULA	
C C	HUUE	O-ALPHA FORMUL		
č			ECTION (UNBLASED)	
č		2-8CTH OF ABOV	E	
. C	LB		NO OF CLASS INT	
. C			CALCULATION,24,3	6 OR 48,
C		ASSUMED 24	EVEL FOR EACH TA	
C C	S 1G	0.05	EVEL FUR EACH IA	
č	3. FMT		INPUT VECTORS A	ND MATRIX
č	4. FIX	A VECTOR OF HE	ANS FOR EACH PAR	T
Č	5. ERR	A VECTOR OF ST	ANDARD DEVIATION	OF ERROR
C		SCORES FOR EAC		
ç	6. FAC		NG MATRIX OF SIZ	E MJ NY NF
C	7. A BLA	NK CARD		
C REMARK : C	1	NTLY DIMENSIONED		
c c		PARAMETERS		
č	NS AM		5	000
· Č	MI			100
Ç	NJ			30
C	NF			10
C	LB 			48 0150.5XAM01.
C SUBPROGRAJ C		1 ANIV, BOX SN, CHIP ITTES, FST, WOUT, P	• • • • • •	
č		ARXX, VECRAN, VEOUT		
Ψ				-

1

,

١

.

FORTRAN IV G CCHPILER MAIN 09-19-71 13,33,33 0000 C (+SSPLIB) BDTR,CDTR,DLGAM,NDTR,RANK C PRCGRAMMER: K.BAV C NMAX=LAPGER OF NSAM AND MIOHJ C DIMENSION FAC(MJ=NF),ERR(MJ),VAR(NJ),DIS(MJ,MJ),FIX(MJ),BSUP(MJ), C 1855(PJ),Y(MIOHJ),BB(PJ),FMS(NSAM+3),FREQ(LB+3),TEMP(MIONF) C 1855(PJ),Y(MIOHJ),BB(PJ),FMS(NSAM+3),FREQ(LB+3),TEMP(MIONF) 0001 DIMENSICN TITLE(20),FMT(20),LABI 4),FAC(300),ERR(30),VAR(30), 1CIS(900),FIX(30),BSUM(30),BSS(30),Y(3000),BB(30),FMS(15000)
C PRCGRANHER: K.BAY C AMAX=LAP.GER OF NSAM AND M(+HJ C DIMENSION FAC(HJ+NF), ERR(HJ), VAR(HJ), DIS(HJ, HJ), FIX(HJ), BSUP(HJ), C 1BSS(HJ), Y(H(+HJ), BS(HJ), FMS(NSAM+3), FREQ(LB+3), TEMP(HI+NF) C 1BSS(HJ), Y(M(+HJ), BS(HJ), FMS(NSAM+3), FREQ(LB+3), TEMP(HI+NF) C 1BSS(HJ), Y(H(+HJ), BS(HJ), FMS(NSAM+3), FREQ(LB+3), FREQ(LB+3
C NMAX=LARGER OF NSAM and micmJ C DIMENSION FAC(MJ®NF), ERR(MJ), VAR(MJ), DIS(MJ, MJ), FIX(MJ), BSUP(MJ), C 1BSS(MJ), Y(MI@NJ), BB(MJ), FMS(NSAM #3), FREQ(LB#3), TEMP(MI@NF) C 1BSS(MJ), Y(MI@NJ), BB(MJ), FMS(NSAM #3), FREQ(LB#3), TEMP(MI@NF) DIMENSION TITLE(20), FMT(20), LAB(4), FAC(300), ERR(30), VAR(30), DIMENSION TITLE(20), FMT(20), BS(30), Y(3000), BB(30), FMS(15000)
C DIMENSION FAC(MJ+NF), ERR(MJ), VAR(NJ), DIS(MJ, MJ), FIX(MJ), DSOP(MJ) C 185S(MJ), Y(MI+NJ), BB(MJ), FMS(NSAM+3), FREQ(L8+3), TEMP(MI+NF) DIMENSION TITLE(20), FMT(20), LAB(4), FAC(300), ERR(30), VAR(30), DIMENSION TITLE(20), FMT(20), LAB(4), FAC(300), BB(30), FMS(15000)
C 1855(PJ),Y(MI@NJ),BB(PJ),FMS(NSAM#3),FREQ(L8#3),TEHP(WI@NP) DIMENSICH TITLE(20),FMT(20),LAB(4),FAC(300),ERR(30),VAR(30), DIMENSICH TITLE(20),FMT(20),LAB(4),FAC(300),BB(30),FMS(15000)
0001 DIMENSICH TITLE(20), FMT(20), LAB(4), FAC(300), ERR(30), FMS(1500)
1015(900), FIX(30), BSUN(30), BSS(30), VI 30001, BBC 501, PH3C 150007
2, FREQ(144), XBAR(6), XVAR(6), TEMP(1000)
0002 REAL+8 LAB
0002 REALTS LAD 0003 CATA LAB/'SUBJECT', 'PARTTEST', 'ERROR', 'REL COF'/
0004 100 FORMAT (20A4)
0005 101 FORMAT(1H1,2044)
0006 102 FORMAT (1115, F5.5) 0007 103 FORMAT (/,10X, 'NO OF SAMPLES SIMULATED', 15X, 14,/,10X, 'NO OF SUBJEC
ALLO OF FACTORS IN TRUE CORFELIAX. 11./. LUX. "STARTING INTERED AND
AN ANALONA AN TIA / YAY FORTION FOR LAKU DUTPUT ALTATILY/ FAYAT
A A A A A A A A A A A A A A A A A A A
512X, 11, /, 10X, "OPTICN FOR THE NO OF CLASS INTERVALS", 3X, 13, /, 10X,
AICICNIETCANCE IEVEL 19X1E5.31/J
104 FORMATINT 13, 57, 7F14, 6, 2X, 11, 2X, 2E14, 01
The second of the second five statistics for fixed erreus contracts and
1 BYDECTED VALUES UNDER MAPA MOUCL 1791AT THAT THE
2ECTED', 6X, '1', 5X, 'VARIANCF', 8X, 'EXPECTED')
2ECTED', 6X, ' ', 5X, 'VAFIANC'', 6X, 'CATEGARY OF CUTPUT', 2X, 'a', /, 1X, 23
1'a')) 0012 108 FORMAT(10X, "ERROR SCCRE DISTRIBUTIONS ARE NORMAL")
0012 108 FORMAT(10X, "ERROR SCERE DISTRIBUTIONS ARE NOT NORMAL") 0013 109 FORMAT(1CX, "ERROR SCERE DISTRIBUTIONS ARE NOT NORMAL")
THE REPORT OF A CONTRACT OF A
THE REPORT OF A TRUE COORE DISTRIBUTIONS ARE NET DURITIES
$\mathbf{T} = \mathbf{T} = $
0018 WRITE(6,101) TITLE 0019 READ(5,102) NSAM,MI,NJ,NF,IX,IDISE,IPUNCH,IPLOT,MODE,L8,SIG
$r_{\rm E}$ (s(c)), (F,0.0) S(G=0.05
0021 IF (LB.NE.24 .AND.LB.NE. 30.AND.LB.NE.497 LD-24
0022 IF(NF.LE.O) NF=1
0022 IF(NF.LE.0) NFAM, YI, MJ, NF, IX, IPUNCH, IPLOT, MODE, LB, SIG 0023 WRITE(6,103) NSAM, YI, MJ, NF, IX, IPUNCH, IPLOT, MODE, LB, SIG
0024 IF(IDIST.EQ.0) WRITF(6,110)
0025 IF(101ST.EC.1) WRITF(6,111) 0026 IF(1DISE.EC.0) WRITE(6,109)
ALL OCDATHL ME. EAT . FRR. VAR. DIS. REL. ALPMANITARITY AND THE INTERNAL
0030 EVANEVAN/FJ 0031 THETA-TVAR/EVAR
0032 DIV=1.0+"J*THETA
0033 CC 20 J=1, MJ
0034 BSUN(J)=0.0
0.15 20 855(J)=0.0
00 17 CALL EXAMPLIPI, PJ, NF, FAC, ERR, IUIST, IUISE, INTERNET
00 38 DO 50 NTFIAL=L,NSA 4 00 39 CALL DATA(MI,MJ,NF,FAC,ERR,IDIST,IDISE,IX,Y,FIX,TEMP)
0039 CALL DATAINI, HJ IW IT ACIENCI DISTILLION CALL DATAINI, HJ IW IT ACIENCI DISTILLION CALL

•

FORTRAN	1V C	COMPIL	ER PAIN)	09-15-71	15:55.55	PAGE 0003
0040			CALL ANOVIY.HI	, # J, FHSA, FH	SB, FMSE, 88)		
0041			FMS(NTRIAL)=FM				
0042			II=NTRIAL+NSAM	1			
00 4 3			FMS([[]=FMSB				
0044			II=II+NSAM				
0045			FMS([])=FMSE				
0046			CC 45 J=1,#J				
0047			OSUP(J)=ASUM(J				
0048			BSS(J)=BSS(J)(98(J)++2			
0049		50	CONTINUE				
0050			DO 54 J=1,#J F[X(J)=F1X(J)-	CHEAN			
0051		24	WRITE(6.107)	UNEAN			
0052		C			4.44HHEAN SO	UARES: COL-1 MSA	COL-2 MS8.CO
0053		· ·	NN=NSAM#3				
0054			XMAX=0.0				
0055			CO 56 1=1,NN				
0056		56	IF (FMS(1).GT.)	(MAX) XPAX=1	FMS(I)		
0057			NN=XMAX/10.0+1	1.0			
0058			XMAX=NN+10.0				
0059			TINT=XMAX/LR			-	
0060			CALL COUNTIFM	5, NSAM, 3,0.	O, TINT,LB, FRE	Q,XBAR,XVAR}	
0061			X#[N=0.0				
00 62			XMAX=TINT+LB				
0063			XBAR(4)=#J#TV	AR+EVAR			
0064			XXXX=0.0				
0065			DO 58 J=1,#J xxxx=xxxx+FIX				
0066		24	CFA+HI-1	() / • • 2			
0067 0068			CF8=#J-1				
0069			DFE=(MI-1)*(M	J-1)			
0070			XXXX=XXXX/DF8				
0071			XBAR(5)=EVAR+	XXXX+ME			
0072			XSAR(6)=EVAR				
0073			XVAR(4)=(2.0*				
0074			XVAR (5) = ((EVA			AR}/OFB	
0075			XV JR (6) = (2.0+	EVAR+EVAR)/	OFE		
0076						I MEAN SQUARES AN	U EXPECTED VA
			ILUES UNDER AN				
0077			CALL VARXX(NS brite(6.106)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	9331		
0078			D() 63 J=1,PJ				
0079			XX=0.0				
0041			DC 61 P=1.PJ				
00 82			01=-1.0/PJ				
00 63			IF(J.EQ.M) DI	=D1+1.0			
00 64			00 60 K=1,PJ				
00 85			02=-1.0/#J				
0086			IF(J.EQ.K) D2				
0087			MK=FJ+[N-[]+H				
88 00			3 XX=XX+D1+D2+0	12(MK)			
0089		61	CONTINUE				
0090			XX=XX/MI	1. BCHM4 13 4		. * *	
0091		•	NRITE(6,104)	11030-1111			
200			11-4344-6				

,

,REL,TEMP,SIG,
,REL,TEMP,SIG,

TOTAL MEMCAY REQUIREMENTS 015284 BYTES

.

FORTRAN		PILER	CATA	09-15-71	15:56.00	PAGE 0001
0001		SUBROUTINE	DATA (MI,	NJ,NF,FAC,ERA, IDIS	T, IDISE, IX, Y, FIX	, TEMP)
	C	PURPCSE	CREATE	S DATA MATRIX FOR	RELO1	
	Ċ	MI	SAMPLE			
	C	P J	NO OF			
	Ċ	NF		FACTORS IN TRUE SC		
	Č	FAC	INPUT	FACTOR LOADING MAT	RIX	
	C	ERR		VECTOR OF STANDARD		RROR S
	C	IDIST		FOR TRUE SCORE DI		
	Č	IOISE		I FOR ERROR SCORE D		
	C	IX		DD INTEGER RANDCH		
	Č	FIX		FIXED EFFECT VECTO	R	
	C	TEMP	WORKIN	IG MATRIX		
0002		DIMENSION	FAC(HJ,NF	;),ERR(MJ),Y(M1,MJ)	FIX(MJ), TEMP(M)	(
	C	1F(1015E.	EQ.O) CALL	SRAND(Y, (MI+MJ), I	XI	
0003		IF(ICISE.	EQ.0) CALI	L @CXSN(Y, (M [+MJ], I	X)	
0004		IF(IDISE.	EQ.1) CALI	L DISE(Y,ML,PJ,IX)		
0005		CO 20 I=1	, M E			
00 06		CO 20 J=1				
0007		20 Y(1, J) =F1	x(J)+Y([,.	J) +ERR(J)		
	C	1F(101ST.	EG.O) CALI	L SRANDITEMP. (MIONF	•) • [X]	
0008		IF(IDIST.	EQ.0) CAL	BOXSNITEMP, [MI+NF	·),[X]	
0009		IF(ID1ST.	EQ.1) CAL	L DISTITEMP, MI, NF, 1	(X)	
0010		CO 30 I=1	• MT			
0011		CO 25 K=1	, NF			
0012		CO 23 J=1	, P J			
0013		23 Y(1,J)=Y(I,J)+FACL	J,K)+TEMP(1,K)		
0014		25 CONTINUE				
0015		30 CONTINUE				
0016		RETURN				
0017		END				

•

•

.

•

•

TOTAL MENCRY REQUIREMENTS 00050E BYTES

. •

•

•

.

•

.

..

•

PAGE 0001	15:54.02	09-15-71	EXAMPL	CCHPILER	IV 6 C	FORTRAN
, TEM P, BB ,	ST, IDISE, IX, Y, FIX	NF . FAC . EPR . I DI				0001
				1FMS,RE		
		PLE OUTPUTS FOR		C PURPOSE		
			RGUMENTS THE SAM	C SUBPROGR		•
		ANOV, VEOUT, DES				0002
,1.00(HJ).	FIX(MJ),TEMP(MI,N			1FMS(PJ		~~~~
	.E RUNS', 3X, *a*, /,					0003
	6,2X, MSE=1,E14.					0004
	EL EST(ANOVA)='.F8					0000
	ATION COEFF=',F9.					0005
			TY COEFF=",F9.5,			
	,		AT (/ , 1 X , 'GHEAN='			0006
4. 5. 31.	TE UNDER ANOVA- ", F					0007
			MATE=* ,F8.5)			
NOVAS! . FR.!	ESTIMATES UNDER A	E UNBLASED REL				0008
			ESTIMATE= '.F8.5			
			E(6.100)			0009
	.IX.Y.FIX.TEMP)	ERR.IOIST.IDIS	CATALHI, MJ, NF, F	CALL		0010
			HXOUT (Y,HI,PJ.O			0011
		FMSB, FMSE, BB)	ANOVEY, HI, HJ, FH	CALL		0012
			PSA/FMSE	FF=F#S		0013
			.0-1.0/FF	AL=1.0		0014
		41-1.0)	[2.0+[H[-3.0)+AL	ALL=(2		0015
		FMSE, FF, AL, ALL	E(6,101) FMSA,FM	WRITE		0016
	FECTS VECTOR 1	SAMPLE FIXED EI	VEOUT(BB,MJ,28,	CALL		0017
			DISPLY, MI, MJ, FM			0018
	ECTOR)	SAMPLE MEANS V	VEOUT (88,MJ,20,			0019
				SUP=0.		0020
			0 J=1,µJ			0021
				20 SUP=SU		0022
			SUM/MJ			0023
			E(6,103) SUM			0024
	SPERSION MATRIX	· · · · · · ·				0025 0026
		~)	ROZOLF#S,#J,SAT A=HOM/SAT			0020
		-	E{6.102} SAT.HOP			0028
		PTIA .	1.LE.5) GO TO 90			0029
-1 -1	-5.0)+(HJ-1.0)+(H[0030
-3.01**21	· · · · · · · · · · · · · · · · · · ·		=VF+{1-REL}++2			0031
			=VF+(1-AL)++2	••••		00 32
			E(6.104) VARA.VA	••••••		0033
			MI-3.0)/(M[-1.0)			0034
				• • • • • •		0036
						0037
			• •	90 RETURI		00 38
				END		0039
			=VARA+C2+C2 =VARE+C2+C2 E16,105) VARA,VA	VARA=1 VARE=1 58175 90 RETURI		0035 0036 0037 0038

•

TOTAL MEPCRY REQUIREMENTS CODADA BYTES

.

.

•

FORTRAN I	v e co	PPILER	POPR	09-15-71	15:56.04	PAGE 000L
0001		SUBROUTINE		NF,FAC,ERR,VAR,DIS		
	C	PURPOSE		MS BASIC COMPUTATI	ONS FOR POPULATI	ON PARAMETERS
	Ċ	MJ		PART-TESTS		
	C	NF		FACTORS IN TRUE SC	ORE	
	C	FAC		LOADING MATRIX		
	C	ERR		STANDARD DEVIATION VECTOR FOR VARIAN		
	C	VAR		DISPERSION MATRIX		FCTOR
	C C	DIS Rel		POPULATION RELIAS		
	č	ALPHA		POPULATION RELIA		
	č	TVAR		TRUE SCORE VARIAN		E
	č	EVAR		ERROR SCORE VARIA		
	Ĉ	FMT		FOR INPUT VECTORS		
	C	FlX		MEAN VECTOR FOR F	ARTS	
	· C	GMEAN		GENERAL MEAN		
0002		DIMENSION	FAC(MJ,NF	-), ERR(MJ),VAR(MJ)	UISINJ9NJ)97NII/	(U) (FIX (MJ) (1.107.59.5./.
0003		100 FORMAT(7)	[X, PUPUL/	TICN PARAMETERS", A	VARIANCET 11X.E	14.6./.lx.*FRR
				10X,E14.6)		
00.04		INI FORMAT(/.	1X. TRUE	SCORE DISPERSION:	SATURATION COEFF	=',F9.5,5X,'HO
0004		1 POGENE ITY				
0005		102 FORMATCH	1.37(/,1X,'2',3X,'INPU	F POPULATION PAR	AMETERS 1,5X,
		1'2',/,1X,				
0006		103 FORMAT(/,	LX. GHEAN	-',E14.6)		
0007		104 FORMAT(2C				
0008		105 FORMAT(/,	/,1X,'FOR	AAT FOR THE CATA",	5X,20A4)	
0009				SCORE DISPERSIONE	SATURATION CUEPP	***********
		INDGENEITY		9.51		
0010		WRITE(6,1	02) 4) (FMT(1	1.1+1.201		
0011 0012				[],[=1,20]		
0013			T) (FIX(J			
0014			TILERR(J)			
0015		CO 10 1=1	,HJ			
0016		10 REAC(5,FM				
0017		CALL VEOU	T(FIX,MJ,	12,12HHEANS VECTOR		
0018		CALL VEOU	IT (ERR, MJ,	32, 32 HERROR STANDA	RD DEVIATIONS VE	
0019			IT (FAL + HJ+	NF,0,24,24HFACTOR	LUNDING HAINIA	•
0020		TVAR=0.0 Evar=0.0				
0021 0022		DO 15 J=1				
0023		VAR(J)=0.				
0024		CO 12 [=]	-			
0025		D15(1,J)	0.0			
0026		CO 11 K=1	L, NF			
0027				FAC(1,K) + FAC(J,K)		
0028		• • • • • • •	+DIS(I,J)			
0029		12 CONTINUE				
0030 .		IS EVAR-EVA		R{ J}+ERR{J}		
0031 0032			BIDIS, MJ, S			
0032		CALL MXO	LT (015.MJ	FJ,0,28,28HT PUE SC	ORE DISPERSION P	ATREX)
0034			ICI) SAT.H			
0035			/ (TVAR+EV/			

FORTRAN IV	C COPPILER	POPR	09-15-71	15:56.04	PAGE 0002
0036	DO 16	J=1, PJ			
0037	16 DI S(J	,J)=VAR(J)			
0038	C	enteinis.N.I.SA)	r+HOH1		
0039	CALL	HXOUT (DIS.HJ.H.	J, 0, 20, 20HD ISPERSIC	IN MATRIX }	
	HEITE	(6,106) SAT,HC	N		
0040		HOH/SAT			
0041		(6,100) REL,AL	PHA.TVAR.EVAR		
0042					
0043	GNEAN				
0044	00 20) J=1,#J			
0045	20 GMEAP	=GMEAN+FIX(J)			
0046		N=GMEAN/#J			
0047	CO 21	1 J=1+#J			
0048	21 FTX(-	J)=F1X(J)-GHEAN			
0049	WEIT	F(6.103) GMEAN		•	
0050	C & L 1	VENUTIETX.MJ.	6,16HFIXED EFFECTS		
00 51	CALL	VEOUT (VAR. MJ.2	0,20HVARIANCES OF	PARTS J	
		3 J=1,PJ			
00 52	22 6111	J)=F1X(J)+GMEAN			
0053	RETU		•		
0054					
0055	END				

.

•

· · ·

.

TCTAL NEWCRY REQUIREMENTS GOODDC BYTES

.

.

•

.

FORTRAN	IV	6	CCMPIL	ER	CIST	09-15-71	15:5	6.10	PAGE 0001
0001				SUBROUTINE	DISTITEM	P.MI.NF.[X)			
			C PU	RPCSE	CREATE	STANDARD RANDOM	TRUE SCORE	MATRIX	FOR RELOL
			C	TEMP		TRUE SCORE MATRI			
			C	MI	NO OF F	CHS OF TEMP			
•			Ċ	NÊ		COLS OF TEMP			
			Č	1 X	SEED O	DD INTEGER RANDON	NUMBER		
			C+++1	HIS EXAMPL		S EXPONENTIAL TRU			
0002				DIMENSION					
0003				CALL VECRA		-			
0004				CO 20 [=1,					
0005				00 10 J=1					
0006						P([.J))-1.0			
0007				CONTINUE					
0008				RETURN					
0009				END					

.

TOTAL MEMORY REQUIREMENTS 00025A BYTES

.

ł.

PORTRAN	1V G	COPPI	LER	DISE	09	-15-71		15:56.11	PAGE	0001
0001			SUBRCUTI	NE DISELY,	4X1, FJ, IX)					
••••		C P	URPOSE	CREAT	E STANDARD	R AN DOM	ERROR	MATRIX Y	FOR RELOI	
		Č	Y	OUTPU	T MATRIX					
		Č.	. M1	NO OF	RCWS OF Y					
		č	LN	NO OF	COLS OF Y					
		C	tx	SEED	ODD INTEGE	R RANDO	n NUMBE	R		
		Č****	THIS EXAP	PLE PRODUC	ES UNIFORM	ERROR	SCORES			
0002		•		N Y(MI,MJ)						
0003				RANLY, MI						
0004			SQR=SQR1							
0005			CO 20 J							
0006			CO 10 14							
0007		10	Y(1.J)=	Y(I, J)-0.9	51+5QR					
0008			CONTINU							
0009			RETURN	-						
0010			END							
~~10										
TOTAL	MENC	RY REG	ULREMENT	5 000244 B	TES					
15:56.11										

•

•

.

• •

• ·

. •

•

4

• •

•

1

•

.

. 184.

FORTRAN IV & COMPILER	PAIN	09-1 5- 71	15154.53	PAGE 0001
c				
Č RELOZ	CIVISION OF	F EDUCATIONAL R	ESEARCH SERVICES	
C		OF ALBERTA		
Č ++++			**************	
C PURPOSE	SIMULATE U	NIT-DICHOTOMOUS	(BINARY) ITEM TE	ST SCURES
C	BASED CN N	DRMAL OGIVE MUD	EL TO INVESTIGAT	E JAMPLINU
C		ON OF RELIABILI	IT COLLMANCO	
C CARD INPUT C	1. TITLE(2			
C	2. PARAMET	ERS(1015.F5.5):	NSAM, HI, MJ, IX, ID	IST, IDISE,
č		IPLOT, MOCE ,L8,S		
č	NSAH	NO OF SAMPLES	SIMULATED	
C	MI		IN THE SAMPLE	
C	MJ	NO OF ITEMS		
C	IX		R TO INITIATE RA	
c	IDIST	EFFECTS (TRUE	DISTRIBUTION OF	NARVUP
c		O-NORMAL	JUNCI	
C C			SUBPROGRAM DIST	,
C	IDI SE		DISTRIBUTION OF	
č	•••••	O-NORMAL		
C		1-SPECIFIED BY	SUBPROGRAM DISE	
C	I PUNCH		O OUT PUT OF FRE	QUENCIES
C		O-NO CARD OUT		
Ç		1-CARD OUTPUT		
C	IPLOT	OPTION FOR PLO		
C		1-REQUIRED	,	
C C	MODE	OPTION FOR ES	TEMATICH FORMULA	
č		O-ALPHA FORMU		
č		1-KRISTCF COR	RECTION (UNBLASED)	
č		2-BOTH OF ABO		
Ċ	LB	OPTION FOR TH	E NO OF CLASS IN	TERVALS FOR
C		FREQUENCY CAL	CULATION,24,36 OF Level for Each T	4 98;833MEU 29 A11 ACCINED
C	SIG		LEVEL FUR EACH IA	#1 C ##3 3 UNED
C	3. FMT	0.05 EDBNAT FOR TH	E INPUT VECTORS	
C C	4. DIF	A VECTOR OF 1	TEM DIFFICULTIES	
Č	5. 85	A VECTOP OF 8	ISERIAL CORRELAT	LONS
č	6. A BLAN			
C REPARK:				
C			TO ACCOMODATE U	P TO FOLLOWING
C		ARAMETERS		5000
ĉ	NS AM			100
Ċ	IN LN			30
ç	18			40
C C SUBPROGR	AMS: (FORTRAN)	ANOV. BOX SN . CHI	PRB, COUNT, DI SCRP	DISP, EXAMPL,
C	FISHER.FI	TTES.FST.ITENCO	, MXOUT, PARALL, PL	OT, POPR, PUNCH,
č	RELOIS.RO	ZB, SIGTES, VAP XX	,VECRAN,VEOUT,DA	TA, DIST, DISE
č	(+SSPL 18)	BOTR,CDTR,DLGA	M, NOTR, NOTRI, RAN	ĸ
C PROGRAMM				
C NMAX-L	ARGER OF NSAM A	ND MIOMJ		ASUMINJI.
C DIMENS	ION RSEAJI, ERRE		(HJ+HJ],DIF(HJ), FREQ(LR+3),TEMP(MI).RR(PJ).
C 1855(#J	111111-0J100(P			

.

.

.

•

.

FORTRAN IV	G COMPILER	PAIN	09-15-71	15:54.53	PAGE 0002
	c	(J+1)/2).XBAR	2+MJ), XVAR (MJ)		
0001	OT MENE	10N TITIE/201.	. FWT(20).(AR(4).85([30],ERR(30],	VAR(30),
0001	1016/ 0	101.01F(30).0	\SUM(30).BSS(30).Y	1 30001.881 30	116421 120001
	2.FRFQ(441.XBAR(60)	XVAR(30), TEMPI 100),RR(30),PP(3	0),R{465),
	2X1 300		-		
0002	REAL+0	-			
0003		AB/'SUBJECT',	ITEMS ', 'ERROR',	REL COF 1/	
0004	100 FORMAT				
0005	101 FORMAT			·	
00.06	102 FORMAT	(1015,F5.5)			
0007	103 FORMAT	(/,10X,'NO OF	SAMPLES SIMULATED	,15X, 14,/,10X,	A LOW ACTANTS
	1TS IN	EACH SAMPLE*,	LOX, 13, /, 10X, 'NO OF	[TEMS" + 28×+13+	/ 10x 1 3 MANTE
	2NG SEE	D RANDCH NUMB	ER', 5X,110,/,10X,"	UPIIUN FUR CARU	CTINATION FOR
	3[1,/,1	OX, CPTION FO	R PLOT', 26X, 11, /, 10	APTOPILUM FUR C	13./.10%
	4PULA",	12X, [1,/,10X,	OPTIION FOR CLASS	THICK WED. HERVI	
	5' S I G N I	FICANCE LEVEL	* ,19X,F7.3,/J	4 1	
0008	104 FORMAT	{2X, 13, 5X, 2E1	4.6,2X,*1*,2X,2E14. *LAST SEED RANDOM N	UMAFR 11=1.110	13
0009	105 FURMAT	(/, 1X, 1015001	PTIVE STATISTICS FO	R FIXED EFFECT	ESTIMATES AND
0010	106 FUKMAI	TED VALUES IN	DER N.F. MCDEL 1/1	1x. * PART* . 7X. **	IEAN', LOX, 'EXP
	2667601	AV. 111.64.14	ARTANCE	ED'I	
	107 608841	11H1.23(121)	/,1X,'@',2X,'SUMMAR	Y UF OUTPUT : 27	(,'a',/,1X,23(
0011	1+2+))				
0012	ION EDANAS	LIOX. FRROR S	CORE DISTRIBUTIONS	ARE NORMAL !)	
0012	IOO EOPMAI	TIAX. FRRDR S	CORE DISTRIBUTIONS	ARE NUT NURHAL	·)
0014	110 600 841	TINOX. TRUE SC	CRE DISTRIBUTIONS A	RE NURMAL"	
0015	111 FORMAT	TIOX, TRUE SC	ORE DISTRIBUTIONS	RE NOT NORMAL!)
0016	10 READ(5.100) TITLE			
0017	IF(T)	LE(1).EQ.TITI	.E(2)) GO TO 99		
0018	WRITE	(6,101) TITLE			
0019	REACU	5,1021 NSAM,M	I, MJ, IX, IDIST, IDISE	IPUNCH, IPLUI, H	JUCILOIJIU
00 20	IF(SI	GLL.LF.0.0) S	[G=U.U5		
0021	IFILB	.NE .24 .AND.LB	NF. 36. AND. L 8. NE. 401 11, MJ, 1X, 1PUNCH, 1PLC	1. WODE	
0022	WRITE	(6,103) "SAMA	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
0023		IST.EC.0) WRI IST.EC.1} WRI	TE (6, 11)		
0024		15E.EC.01 WRI	TE(6.108)		
0025	16/10	TEE EA IN HOL	TE (6.109)		
0026 0027	CALL	POPRIPJ-BS-01	F,R,REL,ALPHA,FMT,R	R, PP, ERR, TEMP, T	VAR,EVAR,DIS)
0028	IR=0.		• •		
0029		J=1, PJ			
0030		J)=0.C			
0031	XVAR	J)=0.0			
00 32	XEAR(J}=0.0			
0033	ز 4= ژ ژ	-			
0034		11)=0.0			
0035)=0.0			
0036) [=l,J			
0037	[R=]/				
0038	19 R(IR)				
0039	20 CONTI	VECRANIN, 100.	12)		
0040	CALL	FXANPLINIA	BS, ERR, TEMP, RR, Y, IX	, IDIST, IDISE, X	XBAR, BB, FHS,
0041		(,XVAR)			
0042		NTRIAL=1.NSA	LM .		
WVV					

FORTRAN	1V G	; com	PIL	ER	MAIN	09-15-71	15:54.53	PAGE COO3
0043			(CALL DATA	"1,"J,85,ERR,R	R, Y, X, TEMP, IX, I	OIST, IDISE, XBA	R,R,XVAR)
00 44			(CALL ANOVE	Y, MI, PJ, FMSA, F	MSB, FMSE, 88)		
0045			. 1	FASENTRIAL	}=FMSA			
0046				II=NTRIAL+				
0047				FMS(11)=FM	58			
0048				[[=]]+NSAM				
0049				FMS(11)=FM	-			
00 50				CO 45 J=1,				
0051					UM(J)+88(J)			
00 52 00 53				CONTINUE	(J)+88(J)++2			
0033		c				44,44HPEAN SQUA	RES: (01-1 MSA	.COL-2 #58.CO
0054		Ŭ				, NSAM, XVAR, TVAR		
0055				WRITE(6.10				
0056						EQ.01 GO TO 53		
00 57				TVAR=TVAR2				
0058				EVAR=EVAR2				
0059				REL=REL2				
00 60				00 51 J=1,	·			
0041				D[F(J)=XBA				
00 6 2				TVAR=TVAR/				
0063				EVAR=EVAR/				
0044				THETA=TVAR DIV=1.C+PJ				
0066				GMEAN=0.0	THETA			
0047				CO 54 J=1.	. P.J			
0068			54	GMEAN=DIF	-			
0049				GHEAN=GNEA	N/HJ			
0070				00 55 J=L	FJ			
0071			55	DIF(J)=DIF	(J)-GMEAN			
00 7 2				NN=NSAM+3				
0073				XMAX=0.0				
0074				00 56 I=1				
0075 · 0076			70		GT.XMAX) XMAX			
0070				NN=XPAX/10 XMAX=NN+10				
0078				TINT=XMAX	• •			
0079					-	.O. TINT .L B. FREQ	.XBAR.XVAR)	
00 80				XMIN=0.0				
0081				XMAX=TINT	PLB			
0082				X8AR (4)=P.	J+TVAR+EVAR			
0083				XXXX=0.0				
00 64				CO 58 J=1				
00 85			58	****	DIF(J)++Z			
0086				DFA=H1-1				
00 87 00 88				DF8=PJ-1 OFE=(#1-1				
0089				XXXX=XXXX				
0090					AR +XXXX+MI			
0091				X8 AR (6) = E				
0092					2.0+1MJ+TVAR+E		_	
0093					EVAR+2.0+H[+X		R)/DF8	
0094					2.0+EVAR+EVAR)			
00 95						.LAB(1),52,52H	REAN SQUARES AN	N EXPECTED VA
			1	ILUES UNDE	R ANOVA MODEL	J		

ı

TRAN IV	G COMPILER	MAIN	09-1 5-71	15154.53	PAGE 00
00 96	CALL	ARXX (NSAM, MJ.	SUM, 85 5)		
0097		(6,106)			
0098		J=1,#J			
0099	XX=0.				
0100		H=1,PJ			
	D1=-1				
0101		EQ. 4) 01=01+1-0	•		
01 02		K=1,#J	-		
0103	02=-1				
0104		EQ.K) D2=D2+1-	0		
0105		*(M-1)+K	-		
0106		+D1+D2+D15(MK)			
0107	61 CONTI				
0108					
0109		(A. 10A) 1.8508	(J),DIF(J),855(J),	XX	
01 10	•5 #KITE 11=NS				
0111) [=1,NSAM			
0112	11=11				
0113		+1 }=1.0-FMS(11)/	E MS/ /)		
0114		ALL PROPERTY AND AND A	C / MC AMA11. MSA H1		
0115	LALL		RELDISIFHS, NSAN, DF	A.DFE.FREQ.LS.R	EL, TEMP, SI
0116			M OT . A.I ARI		
	1 X T AK	NYAKI PUNCHIT	RELDISI FAS, NS AN, DF	A.DFE.FREQ.LS.R	EL, TEMP, SIG
0117	Th Chi	XVAR, IPUNCH, IF			
	LXBAR	XVAR, IPUNCH, IV			
0118		E(6,105) IX			
0119	GO T	0 10			
0120	99 STOP				
0121	END				

.

•

TOTAL MENCRY REQUIREMENTS 01744C BYTES

.

.

.

.

•

FORTRAN	[V G	COPPIL	ER	CATA		09-15-71	15:55.01	PAGE 0001
0001				NE DATA(M	1,MJ,BS	ERR,RR,Y,X,	TEMP, IX, ID IST.	ISISE, XBAR, R,
			LXVAR] URPOSE	CREA	TES DAT	A MATRIX FOR	RELOZ	
		c r	MI		LE SIZE			
•		č	LN.		F ITENS			
		č	85	INPL	T VECTO	R OF BISERI	AL CORRELATIONS	5
		č	ERR	À VE	CTOR OF	STANCARD DI	EVIATION OF ERI	RORS
		č	RR	A VI	CTOR OF	THRESHULD (CONSTANTS FOR	EACH ITEN
		č	Y		MATRIX			
		č	x	NORI	LING VEC	TOR		
		č	TEMP	A 100	DRKING V	ECTOR		
		č	1 X) RANDCH			
		č	10151	OPT	ION FOR	TRUE SCORE	DISTRIBUTION	
		č	IDISE	OPT	ICN FOR	ERROR SCORE	DISTRIBUTION	
		C	XBAR	SUM	OF SCOR	ES FOR EACH	ITEM	
		C	R	INT	ER ITEM	SUM OF PROD	UCTS	
		Č	XVAR	A V	ECTOR OF	PARALLEL I	TEN SUN OF PRO	DUCTS
		C	DIMENSIO]N R[MJ+[MJ+1)/2)	, XBAR(2+MJ)		TEMP(MIL. 8/11.
0002			CIPENSI	CN BS (MJ)	,ERR(MJ1	,RR(MJ),T(M	[+4])+X(4[+4])	, TEMP(M1), R(1),
			1 XBAR(1)	,XVAR(MJ)				
0003			MM=M[#M.					
0004			IFIIDIS	E) 10,10,	12			
0005		1 (CALL BO	XSN(Y,MM,	12)			
00 06	•			XSN(X,MM,	[X]			
0007			GO TO 1					
0008		12	2 CALL DI					
00.09				SE(X,MI,P				
0010			5 IFIIDIS					
0011		10	6 CALL BO					
0012			GO TO 1					
0013			8 CALL DI					
0014		L	9 CONTINU DC 70 I					
0015			00 70 1 00 20 J					
0016			CUT=RR (
0017) • TEMP([]				
0018				RR[J] + Y [
0019 0020			=(L,])Y	-				
0020			15(77.0	E.CUT) Y	([.J)=1.	0		
0022				PRIJJAXI				
0023			X(1.J)=		-			
0024			LFLYY.	SE.CUT) X	([,J)=1.	0		
0025		2	O CONTINU	_				
0026		-	DO 30					
0027			XB AR (J)) = X8 AR (J)	+Y(1,J)			
0028			.+LH=LL	J				
0029		1	O XBAR(J.	J}=X8AR(J]}*X{[*]))		
0030			1R=0					
00 31			DO 50 -	7=1.47				
0032			DO 40					
0033			[R=[R+			••		
00 34			60 R(IR)=	R[]R]+Y[]	,K] •Y[[, J] 		
00 35			SO XVARIJ		+*([+])	▼A[[#J}		
00 34		·	70 CONTIN					
00 3 7			RETURN					

٠

i.

í

(

ŧ

١

ŧ.

٠

L

•

189.

FORTRAN IV & COMPILER CATA 09-15-71 15:55.01 PAGE 0002 0038 END

.

.

.

.

TOTAL MEMCRY REQUIREMENTS 000730 BYTES

.

.

.

190.

0001 SUBBOUTINE EXAMPLENT.NJ.BS.ERR.TEMP.RR.Y.IX.IDIST.IDISE.X.XBAA.BB. IPMS.REL.P.R.YABI 0 0 SAMPLE SIZE 0 0 A.WECTOR OF OISERIAL CORRELATIONS FOR EACH ITEM 0 C FRM 0 DISS OPTION FOR TRUE SCORE 0 DISS OPTION FOR FRANCE SCORE 0 DISS MORRING VECTOR 0 R WORRING VECTOR 0 R WORRING VECTOR 0 R WORRING VECTOR 0 SEMPIORAM CALARKOLTJ.NCWOLTOJ.NCMI.NJ.YMI.NJ. 0 OMTANTINITIAL SCORE SUBMONTANTINITIAL 0 C REL 0 DIMARISI	FORTRAN IV	c co	MPILER	EXAMPL	09-15-71	15:55.03	PAGE 0001
C HI SAMPLE SIZE C BJ HI OF TERMS IN THE TEST C BS A VECTOR OF DISERIAL CORRELATIONS FOR EACH ITEM C ERR A VECTOR OF DISERIAL CORRELATIONS FOR EACH ITEM C ERR A VECTOR OF TANDARD DEVIATION OF ERRORS C TEMP A WORKING VECTOR C RR A VECTOR OF TAMESHOLD CONSTANTS FOR EACH ITEM C IX SEED RANDOM NUMBER C IDIST OPTION FOR TRAVE SCORE DISTRIBUTION C IDIST OPTION FOR TRAVE SCORE DISTRIBUTION C IDIST OPTION FOR TRAVE SCORE C WORKING VECTOR C X WORKING VECTOR C REL POPULATION RELIABILITY C REL POPULATION SCORE C DIMENSION SCORE(S), SCORE C DIMENSION SCORE(S), SCORE C DIMENSION SCORE(S), SCORE C DIMENSION SCORE(S), SCORE C DIMENSION SCORE(S), SCORE C DIMENSION SCORE(S), SCORE C DIMENSION SCORE(S), SCORE C DIMENSION SCORE(S), SCORE C DIMENSION SCORE(S), SCORE C DIMENSION SCORE (S), SCORE C DIMENSION SCORE (S), SCORE C), SCORE (S) 0005 102 FORMAT(/), IX, 'VARIANCE (S) SUBAINSTON (S) SCORE, SCORE), S, S, 'MONGATE', FO.S) 103 FORMAT(/), IX, 'VARIANCE (S) SUBAINATE UNDER ANDVA-*, FO.S, SX, 'MONGATI', FO.S) 0006 103 FORMAT(/), X, 'VARIANCE (S) CONTANTATIN) 0107 104 FORMAT(/), X, 'VARIANCE (S) CONTANTATIN) 0108 0109 0109 0109 0109 0109 0109 0109 0100 0100 C CALL DATA(M, M, M, S, FAR, M, Y, X, TEMP, IX, IDIST, IDISE, XBAR, R, XVAR) 0119 0120 013 014 015 015 015 015 015 015 016 016 017 018 017 018 018 019 018 019 019 019 019 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 0100 01000 0100 0100 0100 0100 0100 0100 0100 010	0001				II, MJ, BS, ERR, TEMP, R	R, Y, 1X, IDIST, IDI	SE, X, XBAR, 88,
C PJ NI OF ITEMS IN THE TEST C BS A VECTOR OF DISENTAL CORRELATIONS FOR EACH ITEM C ERR A VECTOR OF STANDARD DEVIATION OF ERRORS C TEMP A WORKING VECTOR C I R A VECTOR OF THRESHOLD CONSTANTS FOR EACH ITEM C I X SEED RANDOM NUMBER C I DIST OPTION FOR TARE SCORE DISTRIBUTION C I DIST OPTION FOR TRUE SCORE DISTRIBUTION C I DIST OPTION FOR TRUE SCORE DISTRIBUTION C I DIST OPTION FOR TRUE SCORE DISTRIBUTION C X VAR SUM OF ITEM SCORE C FMS WORKING VECTOR C FMS WORKING VECTOR C REL POPULATION RELIABLITY C REL POPULATION RELIABLITY C REL POPULATION AND Y-EDUT, DISP.ROZA C JUMENSION BAR(2*4), FRN(H), I/(1), AR(H), J, BAR(H), I DISENSION BAR(2*4), FRN(H), I/(1), AR(H), J, BAR(H), I DIMENSION BAR(2*4), FRN(H), I/(1), AR(H), J, BAR(H), I DIMENSION BAR(2*4), FRN(H), I/(1), AR(H), J, BAR(H), I DIMENSION BAR(2*4), FRN(H), I/(1), AR(H), J, FAZ, ST, *2*, /, IX, 20(*3*1)) 0002 DIMENSION BAR(2*4), FRN(H), I/(1), AR(H), J, BAR(H), I DIMENSION BAR(2*4), J, FRN(H), J, AR(H), AR(H), I DIMENSION BAR(2*4), J, FRN(H), J, AR(H), AR(H), J, AR(H), AR(H), J, AR(H), AR(H), J, AR(H),		C			SIZE		
C BS A VECTOR OF DISERIAL CORFLATIONS FOR EACH ITEM C ERR A VECTOR OF STANDADD DEVIATION OF ERRORS C TEMP A WORLING VECTOR C RR A VECTOR OF THRESHOLD CONSTANTS FOR EACH ITEM C V DATA MATRIX C IDIST OPTION FOR TRUE SCORE DISTRIBUTION C IDIST OPTION FOR TRUE SCORE DISTRIBUTION C IDIST OPTION FOR TRUE SCORE C WORLING VECTOR C XWAR SUM OF TIEM SCORE C 80 WORKING VECTOR C REL OPTION FOR TRUE SCORE C 80 WORKING VECTOR C REL OPTION FOR TRUE SCORE C 80 WORKING VECTOR C REL OPTULATION RELIABILITY C REL OPTONATION SAMA(244), TRUPIPIJ, ARCHUJ, VIRI, MUN, JBBINJJ, IFMSIPJ, MUNJ, X(MI, MUNJ, XARRI, MUNJ, XIA, X, MIN, X, XARRI, MUNJ, XIA, X, X, TI, X, X, MIN, X, XARRI, X, X, MIN, X, X, X, X, X, X, MIN, X,			-	NIJ OF	ITEMS IN THE TEST		
C ERR A VECTOR OF STANDARD DEVIATION OF ERRORS C TEMP A WORKING VECTOR C RR A VECTOR OF THRESHOLD CONSTANTS FOR EACH ITEM C IX SEED RANDEM NUMBER C IDIST OPTION FOR TRUE SCORE DISTRIBUTION C XVAR SUM OF ITEM SCORE C FMS WORKING VECTOR C REL OPPULATION RELIABLITY C SUBPROGRAM CATA,MEOUT,ANOV,VEOUT,DISP,ROZA C JUMENSION BS(M),REM(FIRMAN), 0002 OTMENSION BS(M),REM(FIRMAN) 0003 IOD FORMATI/LIN,20(12),FMN(H),FMI(H),JN,BE(H), 101 FORMATI/LIN,20(12),FMN(H),FMI(H),JN,BE(H), 102 FORMATI/LIN,20(12),FMN(H),FMS(H),FM,FM,J),BE(H), 103 IOD FORMATI/LIN,20(12),FMN(H),FMS(H),FM,FM,J),BE(H), 104(A52X, MRZOUT,65,2X,100BIASED REL ESTIGATION COFF+*,F9.5) 102 FORMATI/LIN,20(12),FMN(H),MSCH(H),MSCH(H),MS,MA(H), 0004 IOJ FORMATI/LIN,20(FAL,6),ZX,100BIASED REL ESTIGATION 104 FORMATI/LIN,20(FAL,6),SX,100BIASED REL ESTIGATION COFF+*,F9.5) 105 FORMATI/LIN,20(FAR,RR,YX, TEMP,IX,IDIST,IDISE,XBAA,R,XVAR) 0006 IOS FORMATI/LIN,10,12,120MATA MATRIX I 0010 CALL DATA(M,H,M),FMSA,FMSB,FMSE,8B) 103 FORMATI/LIN,10,12,120MATA MATRIX I 0012 CALL AXOVIY,MI,MJ,FMSA,FMSB,FMSE,8B) 0014 AL=10-1.0/FF 0015 AL=120(FF-1,F0.5) 0016 CALL DATA(M,H,MJ,FMSA,FMSB,FMSE,8B) 0011 CALL AXOVIY,MI,MJ,FMSA,FMSB,FMSE,8B) 0014 AL=10-1.0/FF 0015 AL=120(FF-1,F0.5) 0016 CALL DATA(M,H,MJ,FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL XOVIY,MI,MJ,FMSA,FMSB,FMSE,8B) 0014 AL=10-1.0/FF 0015 AL=120(FF-1,F0.5) 0026 SUM-0.0 0027 D0 20 J-1,FJ 0028 SUM-0.0 0039 SUM-0.0 004 SUM-0.0 004 SUM-0.0 004 SUM-0.0 005 CALL RC20(FMS,MJ,HJ,O,24,24) 005 CALL RC			85	A VEC	TOR OF DISERIAL COR	RELATIONS FOR EA	NCH ITEM
C FEMP A MORRING VECTOR C RR A VECTOR OF TRRESHOLD CONSTANTS FOR EACH ITEM C Y OATA MATRIX C IX SEED RANDCH NUMBER C IDIST OFTION FOR TRUE SCORE DISTRIBUTION C X WORKING VECTOR C X WORKING VECTOR C X WORKING VECTOR C REL MOPULATION RELIABLITY C REL MOPULATION RELIABLITY C REL MOULATION REL AND WAIN, AND, RELIABLITY C REL MOULATION, REL COMPANIES, AND REL STIMATES UNDER ANDVASIN, FB.5, 3X, 11075, 10005 105 FORMATION, REL MOULATION, REL MOULASED REL ESTIMATES UNDER ANDVASIN, FB.5, 3X, 11075, 1015E, XBAAR, R, XVAR) C CALL ANDUTY, MI, MI, FMS.6,		Ċ	ERR	A VEC	TOR OF STANDARD DEV	IATION OF ERRORS	6
C RR A VECTOR OF THRESHOLD CONSTANTS FOR EACH ITEM C V OATA MATRIX C IX SEED RANOCH NUMBER C IDISE UPTION FOR TRUE SCORE DISTRIBUTION C X WORKING VECTOR C XVAR SUM OF ITEM SCORE C BB MORKING VECTOR C REL POPULATION RELIABILITY C REL POPULATION RELIABILITY C R WORKING VECTOR C VANR SUM OF FRONDUCTS OF PARALLEL ITEMS C SUBPROGRAM CATA MXCUT, ANOV, VEOUT, OISP, ROZA C DIMENSION SS(H), FRANCUT, ANOV, VEOUT, OISP, ROZA, MANOVA, S, N, *A, *A, *I, *A, *A, *A, *A, *A, *A, *A, *A, *A, *A		C	TEMP				
C IX SEED RANDCH NUMBER C IDIST OPTION FOR TRUE SCORE DISTRIBUTION C XVAR SUM OF ITEM SCORE C XVAR SUM OF ITEM SCORE C 80 WORKING VECTOR C FMS WORKING VECTOR C FMS WORKING VECTOR C REL POPULATION RELIABILITY C RELACTORY REACTOR C DIMENSION SAR(2*U), RER(HJ).TEMP(HI,RE(HJ).Y(HI,MJ), BB(HJ). IFMSIFJ.HJJ.X(HI,MJ), XBAR(1), R(HJ).Y(HI,MJ), BB(HJ). IFMSIFJ.HJJ.X(HI,MJ), XBAR(1), R(HJ).Y(HI,MJ), BB(HJ). IFMSIFJ.HJJ.X(HI,MJ), RER(HJ).TEMP(HI,RA(HJ).Y(HI,MJ), BB(HJ). IFMSIFJ.HJJ.X(HI,MJ), RER(HJ).TEMP(HI,RA(HJ).Y(HI,MJ), BB(HJ). IFMSIFJ.HJZ.Y(HI,MJ), RER(HJ).TEMP(HI,RA(HJ).Y(HI,MJ), BB(HJ). IFMSIFJ.HJZ.Y(HI,MJ), RER(HJ).TEMP(HI,RA(HJ).Y(HI,MJ), BB(HJ). IFMSIFJ.HJZ.Y(HI,MJ), SAR(1), R(HJ).Y(HI,MJ), BB(HJ). IFMSIFJ.Y(HI,MJ), SAR(1), R(HJ).Y(HI,MJ), SAR(HJ). 0004 101 FORMAT(/,IX, 'MARANCE OF ALPHA ESTINATE UNDER ANOVA-',F8.5, 3X, 102 FORMAT(/,IX, 'VARIANCE OF ALPHA ESTINATE UNDER ANOVA-',F8.5, 3X, 103 FORMAT(/,IX, 'VARIANCE OF ALPHA ESTINATE UNDER ANOVA-',F8.5, 3X, 104 FORMAT(/,IX, 'VARIANCE OF ALPHA ESTINATE UNDER ANOVA-',F8.5, 3X, 105 FORMAT(/,IX, 'VARIANCE OF ALPHA ESTINATE UNDER ANOVA-',F8.5, 3X, 105 FORMAT(/,IX, 'VARIANCE OF ALPHA ESTINATE UNDER ANOVA-',F8.5, 3X, 105 FORMAT(/,IX, 'VARIANCE OF ALPHA ESTINATE UNDER ANOVA-',F8.5, 3X, 105 FORMAT(/,IX, 'VARIANCE OF ALPHA ESTINATE UNDER ANOVA-',F8.5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5		C	RR			INSTANTS FOR EACH	1 ITEN
C IDIST OPTION FOR TAUE SCORE DISTRIBUTION C IDISE OPTION FOR TRAVE SCORE DISTRIBUTION C X WORKING VECTOR C YAR SUM OF ITEM SCORE C 98 WORKING VECTOR C PMS WORKING MATRIX C REL POPULATION RELIABILITY C RL MORKING VECTOR C SUBPRGRAM CATA,MXCUT,ANOV,VEOUT,OISP,RALLEL ITEMS C SUBPRGRAM CATA,MXCUT,ANOV,VEOUT,OISP,RAZLEL ITEMS C DIMENSION SBARIGY=W1J,RENT/MOUTS OF PARALLEL ITEMS C DIMENSION SBARIGY=V1J,RENT/MOUTS OF PARALLEL ITEMS DOOS 100 FORMAT(/,1X, 'AMARCE O'S LINATEANDER EL ESTIMATES UNDER ANOVA=',F8.5,3X, 1'ESTIMATE-',F8.5) 0009 MITEGENEATION COEFFF-',F8.5) 0009 MITEGENEATION COEFFF-',F8.5) 0009 MITEGENEATION COEFFF-',F8.5) 0010 C CALL DATA(M1,MJ,O,12,12MOATA MARTIX) 0011 C CALL MADUT(M1,MJ,O,12,12MOATA MARTIX) 0012 C CALL DATA(M1,MJ,FMSA,FMSB,FMSE,FFS,AL,ALL 0013 FF=MSA/FMSE AL='(2.0+IF'-3,O)+AL)/(M1-1.0) 0014 C ALL VEOUTIOB,MJ,20,20MSAMPLE FIXED EFFECTS VECTOR 1 0015 ALL='(2.0+IF'-3,O)+AL)/(M1-1.0) 0016 C ALL VEOUTIOB,MJ,20,20MSAMPLE FIXED EFFECTS VECTOR 1 0017 C ALL VEOUTIOB,MJ,20,20MSAMPLE MEANS VECTOR 1 0018 C ALL VEOUTIOB,MJ,20,20MSAMPLE MEANS VECTOR 1 0019 C ALL VEOUTIOB,MJ,20,20MSAMPLE DISPERSION MATRIX) 0021 C DO J -1,PJ 0023 SUP-SUM/PJ 0024 MITEGE,CS) C DO DO 003 DO DO DO J		C	Y	-			
C IDISE OPTION FOR ERROR SCORE DISTRIBUTION C X WAR SUM OF ITEM SCORE C BB WORKING WEIGR C BB WORKING WEIGR C PHS WORKING MATRIX C REL PPPULATION RELIABILITY C R WORKING VECTOR C XVAR SUM OF PRODUCTS OF PARALLEL ITEMS C SUMPROGRAM CATA, MXCUT, ANOV, YEOUY, DISP, ROZB C DIMENSION SCHMIJ, ERR(HJ), TEMP(HJ, RR(HJ), Y(HI, HJ), BB(HJ), IFMSIPJ, HJ, X(HI, HJ), XBAR(I), R(HJ), Y(HI, HJ), BB(HJ), IFMSIPJ, HJ, X(HI, HJ), KAR(HJ), TEMP(HI), R(HJ), Y(HI, HJ), BB(HJ), IFMSIPJ, HJ, Y(HI, HJ, TEMP(HI), R(HJ), Y(HI, HJ), BB(HJ), IOOOS IOO FORMAT(I, IX, YARIANCE OF ALPHA ESTIMATE UNDER ANOVA-*, F8.5, 3X, 'HONGO IOS FORMAT(I, IX, 'YARIANCE OF ALPHA ESTIMATE UNDER ANOVA-*, F8.5, 3X, I SX, 'ESTIMATE*', F8.5 I SX, 'ESTIMATE*'		C	• · ·				
C XVAR SUM OF ITEM SCORE C XVAR SUM OF ITEM SCORE C BB WORKING VECTOR C FMS WORKING VECTOR C FMS WORKING VECTOR C REL POPULATION RELIABILITY C R WORKING VECTOR C SUBPROGRAM CATA, MXCUT, ANDY, VEOUT, OISP, ROZB C DIMENSION XBAR(2+MJ), R(MJ+(MJ+)/2) O002 DIMENSION SS(MJ), R(MJ+(MJ+), RR(MJ), Y(MI, MJ), BB(MJ), IFMSIPJ, HJ, X(MI, MJ), XBAR(1), R(MJ), YAR(MJ), Y(MI, MJ), BB(MJ), IFMSIPJ, HJ, X(MI, MJ), XBAR(1), R(MJ), YAR(MJ), Y(MI, MJ), BB(MJ), IFMSIPJ, HJ, X(MI, MJ), XBAR(1), R(MJ), YAR(MJ), YAR(MJ), 0004 IO1 FORMAT(/,1X, MSA=', E14, A, 2X, 'MSB=', E14, A, 2X, 'F=', IE14, 6, 2X, 'KR20'+(F8.5, 7X, 'UMBIASED REL ESTIMATES', F8.5, 3X, 'HOMOG IENEITY COEFF-', F9.5, SX, 'HOM/SAT=', F9.5) 0007 IO4 FORMAT(/,1X, 'YARIANCE OF ALPHA ESTIMATE UNDER ANOVA=', F8.5, 3X, ICSTIMATE=', F8.5) 0008 IO5 FORMAT(/,1X, 'YARIANCE OF ALPHA ESTIMATES UNDER ANOVA=', F8.5, 3X, ICSTIMATE=', F8.5) 0009 WRITE(6, IO0) 0010 CALL DATA(MI, MJ, FMSA; FMSB, FMSE, BB) 0010 CALL DATA(MI, MJ, FMSA; FMSB, FMSE, BB) 0011 CALL ANOV(Y, MI, MJ, FMSA; FMSB, FMSE, BB) 0012 CALL DATA(MI, MJ, FMSA; FMSB, FMSE, FF, AL, ALL 0013 FF=FMSA/FMSE 0014 AL=1.0-1.0/FF 0015 ALL=2.0+FM=3.0+ALJ/(HI=1.0) 016 KRITE(6, IO1) FMSA; FASB, FMSE, FF, AL, ALL 0017 CALL VEOUTIOB, MJ, 20, 20MSANPLE FIXED EFFECTS VECTOR J 0018 CALL VEOUTIOB, MJ, 20, 20MSANPLE FIXED EFFECTS VECTOR J 0019 CALL VEOUTIOB, MJ, 20, 20MSANPLE MEANS VECTOR J 0010 CO J J=1, FJ 0021 CALL VEOUTIOB, MJ, 20, 20MSANPLE MEANS VECTOR J 0023 SUM=00,0 0024 WRITE(6, IOJ) SUM 0025 CALL ACUUTY, MJ, M, J, O, 24, 24MSAMPLE OISPERSION MATRIX) 0026 CALL CCB(FMS, FJ, SAT, HOM) 0027 ALPMACHOP/SAT 0028 WRITE(6, IOJ) SUM 0029 WRITE(6, IOJ SON MATRIX) 0020 CALL RCCB(FMS, FJ, SAT, HOM) 0020 MATRIK		C					
C XYAR SUM OF ITEM SCORE C BB WORKING VECTOR C FMS WORKING MATRIX C REL POPULATION RELIABILITY C R WORKING VECTOR C XVAR SUM OF PRODUCTS OF PARALLEL ITEMS C SUBPROGRAM CATA, MXCUT, ANOV, VEOUT, OISP, ROZB C DIMENSION SCHUL, VARIANCE, SCHUL, RIJ, VENTHALE, STHATE UNST, ST, VEONDAG LENEITY CHEFF=', F9.5, 5X, 'HOM/SAT=', F9.5] 0005 105 FORMATI/, IX, 'VARIANCE OF ALPHA ESTIMATE UNDER ANOVA=', F8.5, 3X, L'ESTIMATE', F8.5] 0008 105 FORMATI/, IX, 'VARIANCE OF ALPHA ESTIMATE UNDER ANOVA=', F8.5, 3X, L'ESTIMATE', F8.5] 0010 CALL MACUT(Y, MI, MJ, SCH, RR, Y, X, TEMP, IX, IDIST, IDISE, XBAA, R, XVAR) 0011 C CALL MACUT(Y, MI, MJ, SCH, RR, Y, X, TEMP, IX, IDIST, IDISE, XBAA, R, XVAR) 0012 C ALL ANOUT(Y, MI, MJ, FNSA, FMSB, FMSE, F8B) 013 FFFEMS/FMSE 0014 AL=1.0-1.0/FF 0015 ALL=(2.0+IM-3, 0) = AL)/(M1-1.0) 0016 WRITE(6, 101) C ALL VEOUT(180, MJ, 20, 20MSAMPLE FIXED EFFECTS VECTOR) 0017 C ALL VEOUT(180, MJ, 20, 20MSAMPLE FIXED EFFECTS VECTOR) 0018 C ALL VEOUT(180, MJ, 20, 20MSAMPLE FIXED EFFECTS VECTOR) 0019 C ALL VEOUT(180, MJ, 20, 20MSAMPLE FIXED FFFECTS VECTOR) 0019 C ALL VEOUT(180, MJ, 20, 20MSAMPLE FIXED EFFECTS VECTOR) 0019 C ALL VEOUT(180, MJ, 20, 20MSAMPLE FIXED EFFECTS VECTOR) 0019 C ALL VEOUT(180, MJ, 20, 20MSAMPLE FIXED FFFECTS VECTOR) 0020 C ALL NEUTIBE, MJ, S0, 20, 20MSAMPLE OISPERSION MATRIX) 0021 C ALL ROUTIFRS, MJ, MJ, 0, 24, 24MSAMPLE OISPERSION MATRIX)						ISTRIBUTION	
C PAS WORKING VECTOR C PAS WORKING VECTOR C REL POPULATION RELIABILITY C REL POPULATION RELIABILITY C REL POPULATION RELIABILITY C R WORKING VECTOR C SUBPROGRAM CATA, MXCUT, ANOV, VEOUT, DISP, ROZB C DIMENSION SS(PJ), ERR(MJ), TEMP(MI), R(MI), MJ), BB(MJ), 1PMS(PJ,MJ), X(MI,MJ), XBAR(1), R(1), XVAR(MJ) 0003 100 FORMAT(/,1X,'G',YX,'G',YX,'EXAMPLE RUNS', 3X,'G',/,1X,20('G')) 1004 101 FORMAT(/,1X,'MSA*,EL4, A,2X,'MSB*,EL4, A,2X,'MSE*,EL4, A,2X,'YAAR, A,2X,AAR,			••				
C FMS WORKING MATRIX C REL POPULATION RELIABILITY C REL MORKING VECTOR C XVAR SUM OF PRODUCTS OF PARALLEL ITEMS C SUBPROGRAM CATA,MXCUT,ANOV,VCUUT,OISP,ROZB C DIMENSION BS(NI),RER(MU),ICTEMP(HI),RR(MJ),Y(MI,MJ),BB(NJ), IFMSIPJ,MJ),X(MI,MJ),XBAR(1),R(MJ+HI),XR(MJ) 0003 100 FORMAT(1,H,20(*2*1),/1X,*3*3X,*EXAMPLE RUNS*,3X,*2*(,/1X,20(*2*1)) 0004 101 FORMAT(1/1X,*KSA*,EL4.6,22,*MSE*,EL4.6,2X,*MSE*,EL4.6,2X,*F**, 1E14.6,2X,*KR20*,F8.5,2X,*UNBIASED REL EST(ANOVA)=*,F8.5] 0005 102 FORMAT(/,1X,*GMEAN*,EL4.6,1) 0066 103 FORMAT(/,1X,*GMEAN*,EL4.6,1) 0066 103 FORMAT(/,1X,*GMEAN*,EL4.6,1) 0066 103 FORMAT(/,1X,*GMEAN*,EL4.6,1) 0067 104 FORMAT(/,1X,*GMEAN*,EL4.6,1) 0068 105 FORMAT(/,1X,*GMEAN*,EL4.6,1) 0069 105 FORMAT(/,1X,*GMEAN*,EL4.6,1) 0069 106 FORMAT(/,1X,*GMEAN*,EL4.6,1) 0060 107 FORMAT(/,1X,*GMEAN*,EL4.6,1) 0060 108 FORMAT(/,1X,*GMEAN*,EL4.6,1) 0060 109 FORMAT(/,1X,*GMEAN*,EL4.6,1) 0060 100 CALL DATA(*M,MJ,GS,ERR,RR,Y,X,TEMP,1X,IDIST,IDISE,XBAR,R,XVAR) 0011 CALL MXOUT(Y,MI,MJ,GS,ERR,RR,Y,X,TEMP,1X,IDIST,IDISE,XBAR,R,XVAR) 0012 CALL MXOUT(Y,MI,MJ,GS,ERR,RR,Y,X,TEMP,1X,IDIST,IDISE,XBAR,R,XVAR) 0013 FF=FMSA/FMSE 0014 AL=1.0-1.0/FF 0015 ALL*(2.0.11F-3.0)*AL)/(MI-1.0) 0016 WRITE(6,101) FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL MXOUT(Y,MI,MJ,FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL VEOUT(16M,J,20,20HSAMPLE FIXED EFFECTS VECTOR) 0018 CALL VEOUT(16M,J,20,20HSAMPLE MEANS VECTOR) 0019 CALL VEOUT(16M,J,20,20HSAMPLE MEANS VECTOR) 0010 CALL VEOUT(16M,J,0,24,24HSAMPLE 0ISPERSION MATRIX) 0021 D0 20 J-1,FJ 0022 SUM=0.0 0023 SUM=0.0 0024 WRITE(6,103) SUM 0025 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE 0ISPERSION MATRIX) 0026 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE 0ISPERSION MATRIX) 0027 ALPH-HOP/SAT 0028 WRITE(6,103) SUM 0029 MITE(6,103) SUM 0020 MITE(6,103) SUM 0021 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE 0ISPERSION MATRIX) 0026 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE 0ISPERSION MATRIX) 0027 ALPHA-HOP/SAT 0028 WRITE(6,103) SUM							
C REL POPULATION RELIABLLITY C R WORKING VECTOR C XVAR SUM OF PRODUCTS OF PARALLEL ITEMS C SUBPRIGRAM CATA,MXCUT,ANOV,VEOUT,DISP,ROZB C DIMENSION BS(L2*J),R(MJ=KYALLEL ITEMS C DIMENSION BS(L2*J),R(MJ=KYALLEL ITEMS C DIMENSION BS(L2*J),R(MJ=KYALLEL ITEMS DIMENSION BS(L2*J),R(MJ=KYAR(L),R(MJ),Y(MI,MJ),BB(MJ), IFMSIPJ,MJ)X(MI,MJ),KMSR(L),R(I),XVAR(MJ) 0003 100 FORMAT(L,L,'N',MSA*,EXAR(L),R(I),XVAR(MJ) 1004 101 FORMAT(L,L,'N',MSA*,ELA.6,2X,'MSB*,ELA.6,2X,'MSE*,ELA.6,2X,'F=*, IE14.6,2X,'KR20=',F8.5,2X,'UNBIASED REL EST(ANDVA)=',F8.5] 0005 102 FORMAT(L,LX,'SAMPLE CISPERSION : SATURATION COEFF=',F9.5,3X,'HOMOG IENEITY COEFF=',F9.5,5X,'HOM/SAT*,F9.3] 0006 103 FORMAT(L,LX,'GMEAN=',EL4.6) 007 104 FORMAT(L,LX,'GMEAN=',EL4.6) 008 105 FORMAT(L,LX,'YARIANCE OF ALPHA ESTIMATE UNDER ANDVA=',F8.5, I,3X,'ESTIMATE=',F8.5] 008 105 FORMAT(L,LX,'YARIANCE OF ALPHA ESTIMATE UNDER ANDVA=',F8.5, I,3X,'ESTIMATE=',F8.5] 009 MRITE(6,100) 001 CALL DATA(M,H),FMSA,FRS,FRX,R,Y,X,TEMP,LX,IDIST,IDISE,XBAR,A,XVAR) 011 CALL MXDU(TY,MI,MJ,G,L2,12HDATA MATRIX) 012 CALL ANDV(Y,MI,MJ,FMSA,FMSB,FMSE,F8] 0014 AL=1.0-1.0/FF 0015 ALL=12.0.0/FF.AL,ALL 0017 CALL VEOUT(16,MJ,20,20HSAMPLE FIXED EFFECTS VECTOR) 018 CALL DISP(Y,MI,MJ,FMSA,FMSB,FMSE,F8] 0014 AL=1.0-1.0/FF 0015 CALL OFF,J 0016 MRITE(6,101) FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL VEOUT(16,MJ,20,20HSAMPLE FIXED EFFECTS VECTOR) 018 CALL DISP(Y,MI,MJ,FMSA,BMS,FMSE,FF,AL,ALL 0017 CALL VEOUT(16,MJ,20,20HSAMPLE FIXED EFFECTS VECTOR) 020 SUM=0.0 021 D0 20 J=1,FJ 022 SUM-SUM+08(J) 023 SUM-0.0 024 WRITE(6,103) SUM 025 CALL MXDUITINS,MJ,MJ,0,24,24MSAMPLE OISPERSION MATRIX) 026 CALL MXDUITINS,MJ,MJ,0,24,24MSAMPLE OISPERSION MATRIX) 027 ALPHA-HOM/SAT 028 WRITE(6,103) SUM 029 MITE(6,07) SAT,MOM 0207 ALPHA-HOM/SAT 0208 WRITE(6,07) SAT,MOM							
C R WORKING VECTOR C JVAR SUN OF PRODUCTS OF PARALLEL ITEMS C SUBPROGRAM CATA, MXCUT, ANOV, VEOUT, DISP, ROZB C DIMENSION BS(VI); ERR(MUI), TEMP(HI), RK(MJ), Y(MI, MJ), BB(MJ), IFMSINJ, MJ), X(MI, MJ), XBAR(LI, R(I), XVAR(MJ) 0003 100 FORMAT(/, IX, 'IG', JX, 'ISYAMPLE RUNS', 3X, '2', /, IX, 20('2')) 101 FORMAT(/, IX, 'IG', JX, 'ISYAMPLE CONST, 'SX, 'A', /, IX, 20('2')) 0004 101 FORMAT(/, IX, 'IG', JX, 'ISYAMPLE CONST, AND CONST, 'ISA', 'ISYAMPLE TRUNS', 3X, '2', /, IX, 20('2')) 102 FORMAT(/, IX, 'ISAPLE CISPRSION /SATU', 'EXAMPLE RUNS', 3X, '2', /, IX, 20('2')) 0005 102 FORMAT(/, IX, 'SAMPLE CISPRSION /SATU', 'F9.5) 0006 103 FORMAT(/, IX, 'YARIANCE OF ALPHA ESTIMATE UNDER ANDVA=', F8.5, 3X, 104 FORMAT(/, IX, 'VARIANCE OF ALPHA ESTIMATE UNDER ANDVA=', F8.5, 3X, 105 FORMAT(/, IX, 'VARIANCE OF ALPHA ESTIMATE UNDER ANDVA=', F8.5, 1, 3X, 'ESTIMATE=', F8.5) 0009 MRITE(6, 100) 0010 CALL DATA(MI, MJ, BS, ERR, RR, Y, X, TEMP, IX, IDIST, IDISE, XBAR, R, XVAR) 0011 CALL DATA(MI, MJ, FMSA, FMSB, FMSE, BB) 0012 CALL ANDV(Y, MI, MJ, C, 2, 2, 24MDATA MATRIX) 0013 ALE'(2, 0'M'I, MJ, FMSA, FMSB, FMSE, BB) 0014 AL='(2, 0'M'I, MJ, FMSA, FMSB, FMSE, BB) 0015 ALL'(2, 0'M'I, MJ, FMSA, FMSB, FMSE, FF, AL, ALL 0017 CALL DATA(MI, MJ, FMSA, FMSB, FMSE, FF, AL, ALL 0017 CALL DISP(Y, MI, MJ, FMSA, BS) 0018 CALL 0159(Y, MI, MJ, FMSA, BS) 0019 CALL 0159(Y, MI, MJ, FMSA, BS) 0019 CALL 0159(Y, MI, MJ, FMSA, BS) 0010 CALL 0159(Y, MI, MJ, FMSA, BS) 0011 CALL 0159(Y, MI, MJ, FMSA, BS) 0012 CALL 0159(Y, MI, MJ, FMSA, BS) 0013 SUM=0.0 0020 SUM=0.0 0021 D0 20 J-I, PJ 0023 SUM=0.0 0023 SUM=0.0 0024 CAL MXDUT(FMS, MJ, MJ, 0, 24, 24MSAMPLE OISPERSION MATRIX) 0025 CALL MXDUT(FMS, MJ, MJ, 0, 24, 24MSAMPLE OISPERSION MATRIX) 0026 CALL C20 FMS, MJ, MJ, 0, 24, 24MSAMPLE OISPERSION MATRIX) 0027 ALPHA-HOMY/SAT 0028 MRITE(6, 1021 SAT, HOM) 0029 MRITE(6, 1021 SAT, HOM 0029 MRITE(6, 1021 SAT, HOM 0020 MRITE(6, 1021 SAT, HOM 0021 MATRIX)							
C XVAR SUM OF PRODUCTS OF PARALLEL ITEMS C SUBPROGRAM CTATA,MXCVYEOUT,OISP.ROZO O DIMENSION XBAR(2+4J),R(MJ+(MJ+1)/2) O DIMENSION BS(HJ),ERR(MJ),TEMP(MI),RR(MJ),Y(MI,MJ),BB(MJ), IFMS(MJ,MJ),X(MI,MJ),KRAR(1),XVAR(MJ) O003 100 FORMAT(1H,120(*3'),Y,1X,*3",XV,*4MPLE RUMS',3X,*3",/1X,20(*3")) O004 101 FORMAT(/,1X,*GAPLE,C,X,*MSB*',E14.6,ZX,*MS-',E14.6,ZX,*F*', IE14.6,ZX,*KRZO=*,F8.5,ZX,*UNBIASED REL EST(ANUVA)=*,F8.5] O005 102 FORMAT(/,1X,*SAMPLE CISPERSION : SATURATION COEFF=*,F9.5,3X,*MOMOG IENEITY COEFF=*,F9.5,SX,*UNMSATE*,F9.5] O006 103 FORMAT(/,1X,*GMEAN=*,E14.6] O007 104 FORMAT(/,1X,*GMEAN=*,E14.6] O008 105 FORMAT(/,1X,*VARIANCE OF ALPHA ESTIMATE UNDER ANOVA=*,F8.5,3X, I*ESTIMATE*',F8.5] O008 105 FORMAT(/,1X,*VARIANCE OF ALPHA ESTIMATE UNDER ANOVA=*,F8.5,3X, I*ESTIMATE*',F8.5] O009 wRITE(6,100) O010 CALL DATA(MI,MJ,GS,ERR,RR,Y,X,TEMP.IX,IDIST,IDISE,XBAR,R,XVAR) O011 CALL MXOUT(Y,MI,MJ,G),IZ,IZMOATA MATRIX] O012 CALL ANOV(Y,MI,MJ,G),IZ,IZMOATA MATRIX] O013 AL=12.0(1MI-3.0)AALJ/(MI-1.0) MRITE(6,100) O014 AL=1.0-1.0/FF O015 ALL=(2.0(1MI-3.0)AALJ/(MI-1.0) O015 CALL VEOUT(68,MJ,28,28MSAMPLE FIXED EFFECTS VECTOR) O018 CALL VEOUT(68,MJ,28,28MSAMPLE FIXED EFFECTS VECTOR) O019 CALL VEOUT(68,MJ,20,20MSAMPLE MEANS VECTOR) O019 CALL VEOUT(68,MJ,20,20MSAMPLE MEANS VECTOR) O020 SUM=0.0 O021 C01 SUM=0.0 O022 20 SUM=SUMSB(J) O023 SUP-SUM/MJ O023 SUP-SUM/MJ O024 WRITE(6,103) SUM O025 CALL RCZ8(FMS,MJ,MJ,0,24,24MSAMPLE DISPERSION MATRIX) O026 CALL RCZ8(FMS,MJ,MJ,0,24,24MSAMPLE DISPERSION MATRIX) O027 ALPMA-MOP/SAT O028 WRITE(6,103) SUM O027 ALPMA-MOP/SAT O028 WRITE(6,103) SUM O029 WRITE(6,103) SUM O029 WRITE(6,103) SUM O020 WRITE(6,103) SUM O021 DO 20 J=1,PJ O022 WRITE(6,103) SUM O023 WRITE(6,103) SUM O024 WRITE(6,103) SUM O025 CALL RCZ8(FMS,MJ,MJ,0,24,24MSAMPLE DISPERSION MATRIX) O026 WRITE(6,103) SUM O027 ALPMA-MOP/SAT O028 WRITE(6,103) SUM		L L					
C SUBPROGRAM CATA, MXCUT, ANOV, VEOUT, OISP, ROZB C DIMENSION XBAR(204)J, R(MJ)(H)(1)/2) DIMENSION SG(MJ); RR(MJ), TEMP(MI), RR(MJ), V(MI, MJ), BB(MJ), 1FMS(MJ), MJ), X(MI, MJ), XBAR(1), R(1), XVAR(MJ) 0003 100 FORMAT(1, N, 'MSA*', E(14, A, 2X, 'MSB*', E(14, 6, 2X, 'MSE*', E(14, 6, 10)) 1026						LEL TTENS	
C DIMENSION XBAR(22MJ),R(MJ=(MJ=1/2) DIMENSION BS(MJ),ERR(MJ),TEMP(MI),R(MJ),Y(MI,MJ),BB(MJ), IFMS(FJ,MJ),X(MI,MJ),XBAR(L),K(L),XVAR(MJ) 0003 100 FORMAT(INI,20(*2*),/1X,*3*,*KAMPLE RUNS*,3X,*2*,/,LX,20(*2*)) 0004 101 FORMAT(/,1X,*MSA*,*EL4,6,2X,*MSB*,EL6,6,2X,*MSE*,EL6,6,2X,*F**, IE14.6,2X, *KR20**,F8.5,2X,*UNBIASED REL EST(ANUVA)**,F8.5] 0005 102 FORMAT(/,1X,*SAMPLE CISPFRSION : SATURATION COEFF**,F9.5,3X,*HOHOG IENEITY COEFF*,F9.5,5X,*HOM/SAT**,F9.5] 0006 103 FORMAT(/,1X,*GMEAN=*,EL4.6) 0007 104 FORMAT(/,1X,*GMEAN=*,EL4.6) 0008 105 FORMAT(/,1X,*GMEAN=*,EL4.6) 0008 105 FORMAT(/,1X,*GMEAN=*,EL4.6) 0008 105 FORMAT(/,1X,*GMEAN=*,EL4.6) 0008 105 FORMAT(/,1X,*GMEAN=*,EL4.6) 0009 WRITE(6,100) 0010 CALL DATA(MI,ML,*G,*G,*G,*G,*G,*G,*G,*G,*G,*G,*G,*G,*G,							
0002 DIMENSION BS(MJ),ERR(MJ),TEMP[MI),RR(MJ),R(MJ,MJ),BB(MJ), IFMS(FJ,MJ),X(MI,MJ),XBAR(L),RR(MJ),VVAR(MJ) 0003 100 FORMAT(M,AJ),XBAR(L),R(MJ),XVAR(MJ) 0004 101 FORMAT(M,AJ),XBAR(L),R(MJ),XVAR(MJ) 0004 101 FORMAT(M,AJ),XBAR(L),R(MJ),XVAR(MJ) 0005 100 FORMAT(M,AX,MSA*,EL4.6,2X,MBE*,EL4.6,2X,MSE*,EL4.6,2X,FF*, IE14.6,2X,*KR20*,FB.5,2X,*MBIASED REL EST(ANDVA)*,FB.5] 0005 102 FORMAT(M,IX,*SAMPLE CISPRSION : SATURATION COEFF**,F9.5,3X,*MOMOG IENETY COEFF**,F9.5,5X,*MOM/SAT*,F9.5] 0006 103 FORMAT(M,IX,*VARIANCE OF ALPHA ESTIMATE UNDER ANDVA**,F8.5,3X, I*EST(MATE**,F6.5) 0007 104 FORMAT(M,IX,*VARIANCE OF ALPHA ESTIMATE UNDER ANDVA**,F8.5,3X, I*EST(MATE**,F6.5) 0008 105 FORMAT(M,IX,*VARIANCE UMBIASED REL ESTIMATES UNDER ANDVA**,F8.5 I,3X,*EST(MATE**,F6.5) 0009 MRITE(6,100) 0010 CALL DATA(MI,MJ,FMSA,FMSB,FMSE,BB) 0011 CALL ANOUT(Y,MI,MJ,FMSA,FMSB,FMSE,BB) 0012 CALL ANOUT(Y,MI,MJ,FMSA,FMSB,FMSE,FF,AL,ALL 0013 FF=FMSA/FMSE 0014 AL=1.0-1.0/FF 0015 ALL*12.0+1M*AJ,FMSB,FMSE,FF,AL,ALL 0016 KITE(6,101) FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL VEOUT(BB,MJ,20,20,20MSAMPLE FIXED EFFECTS VECTOR)							
<pre>1FMS(PJ,HJ),X(M1,HJ),X0AR(11),R(1),XVAR(HJ) 0003 100 FORMAT(1H1,20(*3*),/,1X,'a',3X,'EXAMPLE RUNS',3X,*3*,/,1X,20(*3*)) 0004 101 FORMAT(/,1X,'MSA*,EL4.6,2X,'MSB*,EL4.6,2X,'MSE*,EL4.6,2X,'F**,</pre>	0002					(HJ),Y(MI,HJ),88	(MJ),
 100 FOGMAT[IH1,20('2'),7,1X,'3',3X,'EXAMPLE RUNS',3X,'3',7,1X,20('3')) 101 FORMAT(7,1X,'MSA-',E14.6,2X,'MSB-',E14.6,2X,'MSE-',E14.6,2X,'F=', 1E16.6,2X, 'MSD-',F8.5,2X,'UNBIASED REL EST(ANUVA)-',F8.5) 0005 102 FORMAT(7,1X,'SAMPLE CISPERSION : SATURATION COEFF=',F9.5,3X,'MOMOG 103 FORMAT(7,1X,'GMEAN=',E14.6) 0006 103 FORMAT(7,1X,'GMEAN=',E14.6) 0007 104 FORPAT(7,1X,'GMEAN=',E14.6) 0008 105 FORMAT(7,1X,'VARIANCE OF ALPHA ESTIMATE UNDER ANOVA=',F8.5,3X, 1'ESTIMATE-',F8.5) 0008 105 FORMAT(7,1X,'VARIANCE OF UNBIASED REL ESTIMATES UNDER ANOVA=',F8.5 1,3X,'ESTIMATE-',F8.5) 0009 0010 CALL MATCH',HJ,BS,ERR,RR,Y,X,TEMP,IX,IDIST,IDISE,XBAR,R,XVAR) 0011 CALL MATCH',HJ,HJ,BS,ERR,RR,Y,X,TEMP,IX,IDIST,IDISE,XBAR,R,XVAR) 0012 CALL MATCH',HI,HJ,FMSA,FMSB,FMSE,FB,AL,ALL 0013 FF=FMSA/FMSE 0014 AL=1.0-1.0/FF 0015 0016 ALI-1/2.0 (PI-3.0)*ALJ/(N1-1.0) 0018 CALL VEOUT(88,MJ,20,20HSAMPLE FIXED EFFECTS VECTOR) 0019 CALL VEOUT(88,MJ,20,20HSAMPLE MEANS VECTOR) 0020 0020 0020 0021 0020 0022 20 SUM-0.0 0021 0020 0021 0020 0021 0020 0021 0020 0022 0030 0023 0024 0024 0025 0024 0025 0026 0027 0028 0029 0020 0020 0020 0021 0023 0024 0025 0026 0027 0028 0027<!--</th--><th>0002</th><th></th><th>1FMS(PJ.MJ)</th><th>LH. 1 M J X . (</th><th><pre>}.xBAR(1),R(1),XVAP</pre></th><th>(MJ)</th><th></th>	0002		1FMS(PJ.MJ)	LH. 1 M J X . (<pre>}.xBAR(1),R(1),XVAP</pre>	(MJ)	
0004 101 FORMAT(/,1x, 'MSA=',E14.6,2x, 'MSB=',E14.6,2x, 'KE2*, 'E14.6,2x, 'KR2*',E14.6,2x, 'UNBIASED REL EST(ANUVA)=',F8.5) 0005 102 FORMAT(/,1x, 'SAPPLE CISPRSION : SATURATION COEFF=',F9.5) 0006 103 FORMAT(/,1x, 'GAEAN=',E14.6) 0007 104 FORMAT(/,1x, 'GAEAN=',E14.6) 0008 103 FORMAT(/,1x, 'GAEAN=',E14.6) 0007 104 FORMAT(/,1x, 'YARIANCE OF ALPHA ESTIMATE UNDER ANOVA=',F8.5,3x,	0003		100 FORMATILH	.20('a')	./.1X.'3'.3X.'EXAMI	PLE RUNS . 3X . 3	,/,lx,20('a'))
102 102 FORMAT(/,1X,'SAMPLE CISPFRSION : SATURATION COEFF=',F9.5,3X,'HOMOG LENEITY COEFF=',F9.5,5X, 'HOM/SAT=',F9.5) 0006 103 FORMAT(/,1X,'GMEAN=',E14.6) 0007 104 FORMAT(/,1X,'VARIANCE OF ALPHA ESTIMATE UNDER ANOVA=',F8.5,3X, L'ESTIMATE',F8.5) 0008 105 FORMAT(/,1X,'VARIANCE OF ALPHA ESTIMATE UNDER ANOVA=',F8.5,3X, L'ESTIMATE',F8.5) 0008 105 FORMAT(/,1X,'VARIANCE OF UNBIASED REL ESTIMATES UNDER ANOVA=',F8.5, 3X,'ESTIMATE=',F8.5) 0009 WRITE(6,100) 0010 0010 CALL DATA(MI,MJ,BS,ERR,RR,Y,X,TEMP,IX,IDIST,IDISE,XBAR,R,XVAR) 0011 CALL ANOV(Y,MI,MJ,G,J2,12MOATA MATRIX) 0012 CALL ANOV(Y,MI,MJ,G,J2,12MOATA MATRIX) 0013 FFFMSA,FMSE 0014 AL=1.0-1.0/FF 0015 ALL=12.0+IMI-3.0]*AL]/(MI-1.0) 0016 WRITE(6,101) FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL VEOUT(00,MJ,20,20HSAMPLE FIXED EFFECTS VECTOR) 0018 CALL VEOUT(00,MJ,20,20HSAMPLE FIXED EFFECTS VECTOR) 0019 CALL VEOUT(00,MJ,20,20HSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 D0 20 J=1,PJ 0022 20 SUM=SUM+80(J) 0023 SUM=SUM+80(J) <th>• • • •</th> <th></th> <th>101 FORMAT(/.)</th> <th>1 X. "M SA="</th> <th>,E14.6,2X, MSB=",E</th> <th>14.6,2X,"MSE=",E</th> <th>14.6,2X,"F=",</th>	• • • •		101 FORMAT(/.)	1 X. "M SA="	,E14.6,2X, MSB=",E	14.6,2X,"MSE=",E	14.6,2X,"F=",
0005 102 FORMAT(/,1x,'SAMPLE CISPERSION : SATURATION COEFF=',F9.5, 3X, "HOMOG LENEITY COEFF=',F9.5, 5X, 'HOM/SAT=',F9.5) 0006 103 FORMAT(/,1x,'GARAN=',E14.6) 0007 104 FORMAT(/,1x,'VARIANCE OF ALPHA ESTINATE UNDER ANOVA=',F8.5, 3X, L'ESTIMATE=',F8.5) 0008 105 FORMAT(/,1x,'VARIANCE OF ALPHA ESTINATE UNDER ANOVA=',F8.5, 3X, L'ESTIMATE=',F8.5) 0009 WRITE(6,100) 0010 CALL DATA(MI,MJ,6S,ERR,RR,V,X,TEMP,IX,IDIST,IDISE,XBAR,R,XVAR) 0011 CALL ANOUT(Y,MI,MJ,0,12,12MOATA MATRIX) 0012 CALL ANOUT(Y,MI,MJ,FMSA,FMSB,FMSE,BB) 0013 FF=FMSA/FMSE 0014 AL=1.0-1.0/FF 0015 ALL=(2,0)(MI-3.0)*AL)/(MI-1.0) 0016 WRITE(6,101) FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL VEQUIT(BB,MJ,28,2BMSAMPLE FIXED EFFECTS VECTOR) 0018 CALL VEQUIT(BB,MJ,20,20MSAMPLE MEANS VECTOR) 0019 CALL VEQUIT(BB,MJ,20,20MSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 D0 20 J=1,PJ 0022 SUM=SUM/PJ 0023 SUM=SUM/PJ 0024 WRITE(6,103) SUM 025 CALL MXOUT(FMS,MJ,MJ,0,24,24MSAMPLE DISPERSION MATRIX) 026 CALL RCOEFFS,MJ,SAT,HOM,ALPHA	••••		1F14.6.2X.	*KR20=*.	F8.5,2X, UNBIASED F	REL EST(ANOVA)="	"F8.5)
LENEITY COEFF=', F9.5, 5X, 'HOM/SAT=', F9.5) 0006 103 FORMAT(/,1X,'GMEAN=',E14.6) 0007 104 FORMAT(/,1X,'VARIANCE OF ALPHA ESTIMATE UNDER ANOVA=',F8.5, 3X, 1'ESTIMATE=',F8.5) 0008 105 FORMAT(/,1X,'VARIANCE OF UNBIASED REL ESTIMATES UNDER ANOVA=',F8.5 1,3X,'ESTIMATE=',F8.5) 0009 MRITE(6,100) 0010 CALL DATA(M,M,J,BS,EAR,RR,Y,X,TEMP,IX,IDIST,IDISE,XBAR,R,XVAR) 0011 CALL MXOUT(Y,MI,MJ,GS,EAR,RR,Y,X,TEMP,IX,IDIST,IDISE,XBAR,R,XVAR) 0012 CALL ANOUT(Y,MI,MJ,FNSA,FMSB,FMSE,BB) 0013 FF=FMSA/FMSE 0014 AL=1.0-1.0/FF 0015 ALL=(2.0+HF=3.0)+AL)/(H1=1.0) 0016 MRITE(6,CI) FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL VEOUT(88,MJ,28,28HSAMPLE FIXED EFFECTS VECTOR) 0018 CALL VEOUT(88,MJ,28,28HSAMPLE FIXED EFFECTS VECTOR) 0019 CALL VEOUT(88,MJ,20,20HSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 D0 20 J=1,FJ 0022 20 SUM=SUM/B3(J) 0023 SUM=SUM/B3(J) 0023 SUM=SUM/PJ 0024 MRITE(6,103) SUM 0025 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0026 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0027 ALPMA-HOM/SAT 0028 MRITE(6,102) SAT,HOMAL PHA	0005		102 FORMAT(/,	LX, SAMPL	E CISPERSION : SATI	JRATION COEFF=*,	F9.5,3X,'HOMOG
0007 104 FORPAT(/,1x,*VARIANCE OF ALPHA ESTIMATE UNDER ANOVA=*,F8.5,3x, 1*ESTIMATE=*,F8.5) 0008 105 FORMAT(/,1x,*VARIANCE OF ALPHA ESTIMATES UNDER ANOVA=*,F8.5, 1,3x,*ESTIMATE=*,F8.5) 0009 WRITE(6,100) 0010 CALL DATA(#),HJ,BS,ERR,RR,Y,X,TEMP,IX,IDIST,IDISE,XBAR,R,XVAR) 0011 CALL MXOUT(Y,HI,HJ,0,12,12HOATA MATRIX) 0012 CALL ANOV(Y,HI,HJ,FNSA,FMSB,FMSE,BB) 0013 FF=FMSA/FMSE 0014 AL=1.0-1.0/FF 0015 ALL=(2.0)(HI=3.0)*AL)/(HI=1.0) 0016 WRITE(6,1C1) FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL VEOUT(180,HJ,20,28HSAMPLE FIXED EFFECTS VECTOR) 0018 CALL VEOUT(180,HJ,20,20HSAMPLE FIXED EFFECTS VECTOR) 0019 CALL VEOUT(180,HJ,20,20HSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 D0 20 J=1,PJ 0022 20 SUM=SUM/PJ 0023 SUP-SUM/PJ 0024 WRITE(6,103) SUM 025 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 026 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 026 CALL MXOUT(FMS,MJ,MJ,0,024,24HSAMPLE DISPERSION MATRIX) 026 CALL MXOUT(FMS,MJ,MJ,0,024,24HSAMPLE DISPERSION MATRIX)							
1'ESTIMATE*',F8.5) 0008 105 FORMAT(/,1X,*VARIANCE GF UNBIASED REL ESTIMATES UNDER ANOVA*',F8.5 1,3X,*ESTIMATE*',F8.5) 0009 MRITE(6,100) 0010 CALL DATA(MI,MJ,BS,ERR,RR,Y,X,TEMP,IX,IDIST,IDISE,XBAR,R,XVAR) 0011 CALL MXOUT(Y,MI,MJ,0,12,12MOATA MATRIX) 0012 CALL MXOUT(Y,MI,MJ,FMSA,FMSB,FMSE,BB) 0013 FF=FMSA/FMSE 0014 AL=1.0-1.0/FF 0015 ALL=(2.0+(MI-3.0)*AL)/(MI-1.0) 0016 WRITE(6,101) FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL VEOUT(HB,MJ,EB,2BHSAMPLE FIXED EFFECTS VECTOR) 0018 CALL VEOUT(HB,MJ,20,20HSAMPLE FIXED EFFECTS VECTOR) 0019 CALL VEOUT(HB,MJ,20,20HSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 D0 20 1-1.PJ 0022 20 SUM=SUM/BB(J) 0023 SUP=SUM/PJ 0024 WRITE(6,103) SUM 0025 CALL ROUT(FMS, MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0026 CALL RC28(FMS,FJ,SAT,HOM) 0027 ALPHAHOM/SAT 0028 WRITE(6,102) SAT,HOM,ALPHA 0029 If(MI-LF,S) GO TO 90	00 06		103 FORMAT(/,	LX, GMEAN	=",E14.6)		
0008 105 FORMATI/,IX, VARIANCE GF UNBIASED REL ESTIMATES UNDER ANOVA=*,F0.5 1,3x, 'ESTIMATE=',F0.5) 1,3x, 'ESTIMATE=',F0.5) 0019 WRITE(6,100) 0010 CALL DATA(#I,MJ,05,ERR,RR,Y,X,TEMP,IX,IDIST,IDISE,XBAR,R,XVAR) 0011 CALL MXOUT(Y,MI,MJ,FMSA,FMSB,FMSE,BB) 0012 CALL ANOV(Y,MI,MJ,FMSA,FMSB,FMSE,BB) 0013 FF=FMSA/FMSE 0014 AL=(1.0-1.0/FF 0015 ALL=(2.0+(MI-3.0)+AL)/(M1-1.0) 0016 WRITE(6,101) FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL VEOUT(88,MJ,20,20HSAMPLE FIXED EFFECTS VECTOR) 0018 CALL VEOUT(88,MJ,20,20HSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 D0 20 J=1,PJ 0022 20 SUM=SUM/PJ 0023 SUP=SUM/PJ 0024 WRITE(6,103) SUM 0025 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0026 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE OISPERSION MATRIX) 0027 ALPHA=HOP/SAT 0028 WRITE(6,102) SAT.HOP,ALPHA	0007		104 FORPAT(/,	LX,'VARIA	NCE OF ALPHA ESTIN	ATE UNDER ANOVA=	*,F8.5,3X,
1,3X, 'ESTIMATE=',F8.5) 0009 MRITE(6,100) 0010 CALL DATA(MI,MJ,BS,ERR,RR,Y,X,TEMP,IX,IDIST,IDISE,XBAR,R,XVAR) 0011 CALL MXOUT(Y,MI,MJ,O,12,12HDATA MATRIX) 0012 CALL ANDV(Y,MI,MJ,FMSA,FMSB,FMSE,BB) 0013 FF=FMSA/FMSE 0014 AL=1.0-1.0/FF 0015 ALL=(2.0+IMI-3.0)+AL)/(MI-1.0) 0016 BRITE(6,1CI) FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL VEOUT(BB,MJ,28,28HSAMPLE FIXED EFFECTS VECTOR) 0018 CALL DISP(Y,MI,MJ,FMS,BB) 0019 CALL VEOUT(BB,MJ,20,20HSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 DD 20 J=1,PJ 0022 20 SUM=SUM+88(J) 0023 SUP=SUM+88(J) 0024 BRITE(6,103) SUM 0025 CALL RXOUT(FMS,MJ,HJ,0,24,24HSAMPLE DISPERSION MATRIX) 0026 CALL RXOUT(FMS,MJ,HJ,0,24,24HSAMPLE DISPERSION MATRIX) 0027 ALPMA=HOP/SAT 0028 WRITE(6,102) SAT,HOM) 0029 WRITE(6,102) SAT,HOM,ALPHA			1ºESTIMATE	=',F8.5)			
00009 WRITE(6,100) 0010 CALL DATA(MI,MJ,BS,ERR,RR,Y,X,TEMP,IX,IDIST,IDISE,XBAR,R,XVAR) 0011 CALL MXOUT(Y,MI,MJ,O,12,12HDATA MATRIX) 0012 CALL ANOUY(Y,MI,MJ,FMSA,FMSB,FMSE,BB) 0013 FF=FMSA/FMSE 0014 AL=1.0-1.0/FF 0015 ALL=(2.0+1MI-3.0)+AL)/(MI-1.0) 0016 WRITE(6,IC1) FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL VEOUT(BB,MJ,20,2BMSAMPLE FIXED EFFECTS VECTOR) 0018 CALL VEOUT(BB,MJ,20,2BMSAMPLE FIXED EFFECTS VECTOR) 0019 CALL VEOUT(BB,MJ,20,20HSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 D0 20 J=1,PJ 0022 20 SUM-SUM/PJ 0023 SUM=SUM/PJ 0024 WRITE(6,103) SUM 025 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 026 CALL RC28(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 027 ALPMA=HOM/SAT 028 WRITE(6,102) SAT,HOM,ALPHA 029 URITE(6,102) SAT,HOM,ALPHA	8000					L ESTIMATES UNDE	K ANUTA - 110+7
0010 CALL DATA(MI,MJ,BS,ERR,RR,Y,X,TEMP,IX,IDIST,IDISE,XBAR,R,XVAR) 0011 CALL MXOUT(Y,MI,MJ,G,12,12HOATA MATRIX) 0012 CALL AAOV(Y,MI,MJ,FMSA,FMSB,FMSE,BB) 0013 FF=FMSA/FMSE 0014 AL=(1.0-1.0/FF 0015 ALL=(2.0+(MI-3.0)+AL)/(MI-1.0) 0016 WRITE(6,1C1) FMSA,FMSE,FMSE,FF,AL,ALL 0017 CALL VEOUT(BB,MJ,28.2BHSAMPLE FIXED EFFECTS VECTOR) 0018 CALL VEOUT(BB,MJ,28.2BHSAMPLE FIXED EFFECTS VECTOR) 0019 CALL VEOUT(BB,MJ,20.20HSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 D0 20 J=1,PJ 0022 20 SUM=SUM/BB(J) 0023 SUP=SUM/PJ 0024 WRITE(6,103) SUM 0025 CALL MXOUT(FMS,MJ,MJ,0.24,24HSAMPLE DISPERSION MATRIX) 0026 CALL RC28(FMS,FJ,SAT,HOM) 0027 ALPHA=HOP/SAT 0028 WRITE(6,102) SAT,HOM,ALPHA 0029 IF(II-1.62) GO TO 90					•51		
0011 CALL MXOUT(Y,MI,MJ,0,12,12HOATA MATRIX) 0012 CALL ANDV(Y,MI,MJ,FMSA,FMSB,FMSE,BB) 0013 FF=FMSA/FMSE 0014 AL=1.0-1.0/FF 0015 ALL=(2.0+(H-3.0)+AL)/(M1-1.0) 0016 WRITE(6,ICI) FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL VEOUT(BB,MJ,28,28HSAMPLE FIXED EFFECTS VECTOR) 0018 CALL DISP(Y,MI,MJ,FMS,BB) 0019 CALL VEOUT(BB,MJ,20,20HSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 D0 20 J=1,PJ 0022 20 SUM=88(J) 0023 SUP-SUM/PJ 0024 WRITE(6,103) SUM 0025 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0026 CALL RC28(FMS,FJ,SAT,HOM) 0027 ALPMA-HOP/SAT 0028 WRITE(6,107) SAT,HOM,ALPHA 0029 IFE(MILLE,S) GO TO 90			WRITE(6,1			-	AR
0012 CALL ANDV(Y,MI,MJ,FMSA,FMSB,FMSE,BB) 0013 FF=FMSA/FMSE 0014 AL=1.0-1.0/FF 0015 ALL=(2.0+1/MI-3.0)+AL)/(MI-1.0) 0016 WRITE(6,101) FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL VEOUT(88,MJ,28,28HSAMPLE FIXED EFFECTS VECTOR) 0018 CALL VEOUT(88,MJ,28,28HSAMPLE FIXED EFFECTS VECTOR) 0019 CALL VEOUT(88,MJ,20,20HSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 D0 20 J=1,PJ 0022 20 SUM=88(J) 0023 SUP-SUM/PJ 0024 WRITE(6,103) SUM 0025 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0026 CALL RC28(FMS,FJ,SAT,HOM) 0027 ALPHA=HOP/SAT 0028 WRITE(6,1021) SAT,HOM,ALPHA 0029 IFFINILA(F,S) GO TO 90			CALL DATA	(FI,FJ,65	JERK, RK, T, A, TERF, L	N, 10137 + 1013 E + AB	
0013 FF=FMSA/FMSE 0014 AL=1.0-1.0/FF 0015 ALL=(2.0+(MI-3.0)+AL)/(MI-1.0) 0016 WRITE(6.101) FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL VEOUT(88,MJ,28,28MSAMPLE FIXED EFFECTS VECTOR) 0018 CALL DISP(Y,MI,MJ,FMS.8B) 0019 CALL VEOUT(88,MJ,20,20HSAMPLE MEANS VECTOR) 0019 CALL VEOUT(88,MJ,20,20HSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 D0 20 J=1,PJ 0022 20 SUM=SUM+88(J) 0023 SUP=SUM/PJ 0024 WRITE(6,103) SUM 025 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 026 CALL AC28(FMS,FJ,SAT,HOM) 0027 ALPMA-HOM/SAT 0028 WRITE(6,1021) SAT,HOM,ALPHA 0029 IFFINILA(F-S) GO TO 90						1. 7	
0014 AL=1.0-1.0/FF 0015 ALL=(2.0+(#I-3.0)+AL)/(HI-1.0) 0016 WRITE(6,101) FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL VEOUT(88,MJ,28,28HSAMPLE FIXED EFFECTS VECTOR) 0018 CALL DISP(Y,MI,MJ,FMS,88) 0019 CALL VEOUT(88,MJ,20,20HSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 D0 20 J=1,PJ 0022 20 SUM=SUM+88(J) 0023 SUP=SUM/PJ 0024 WRITE(6,103) SUM 0025 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0026 CALL AC28(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0027 ALPHA=HOM/SAT 0028 WRITE(6,107) SAT,HOM,ALPHA 0029 IFE(MILLE,5) GO TO 90			• · • • · • ·		FH3A;FH3B;FH3C;607		
0015 ALL=(2.0+(#I-3.0)+AL)/(MI-1.0) 0016 WRITE(6,101) FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL VEOUT(88,MJ,28,28HSAMPLE FIXED EFFECTS VECTOR) 0018 CALL DISP(V,MI,MJ,FMS,88) 0019 CALL VEOUT(88,MJ,20,20HSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 D0 20 J=1,PJ 0022 SUM=SUM+88(J) 0023 SUP=SUM/PJ 0024 WRITE(6,103) SUM 0025 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0026 CALL ACCES(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0027 ALPHA=HOM/SAT 0028 WRITE(6,102) SAT,HOM,ALPHA 0029 IFE(MLA(E,5)) GO TO 90							
0016 wRITE(6,101) FMSA,FMSB,FMSE,FF,AL,ALL 0017 CALL VEOUT(88,MJ,28,28HSAMPLE FIXED EFFECTS VECTOR) 0018 CALL DISP(V,MI,MJ,FMS,88) 0019 CALL VEOUT(88,MJ,20,20HSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 D0 20 J=1,PJ 0022 20 SUM=086(J) 0023 SUP=SUM/PJ 0024 wRITE(6,103) SUM 0025 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0026 CALL ACZ8(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0027 ALPHA=HOM/SAT 0028 WRITE(6,102) SAT,HOM,ALPHA 0029 IFFINIL(6,102) SAT,HOM,ALPHA					AL 1/(N1-1-0)		
0017 CALL VEOUT(88,MJ,28,28HSAMPLE FIXED EFFECTS VECTOR) 0018 CALL DISP(V,MI,MJ,FMS,88) 0019 CALL VEOUT(88,MJ,20,20HSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 D0 20 J=1,PJ 0022 20 SUM=0.0 0023 SUP=SUM/PJ 0024 WRITE(6,103) SUM 0025 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0026 CALL RC28(FMS,PJ,SAT,HOM) 0027 ALPHA=HOP/SAT 0028 WRITE(6,102) SAT,HOM,ALPHA 0029 IF(ML,16,5) GO TO 90						L	
0018 CALL DISP(Y,MI,MJ,FMS,BB) 0019 CALL VEOUT(BB,MJ,20,20HSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 D0 20 J=1,PJ 0022 20 SUM=SUM+BB(J) 0023 SUP=SUM/PJ 0024 WRITE(6,103) SUM 0025 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0026 CALL RC28(FMS,FJ,SAT,HOM) 0027 ALPHA=HOF/SAT 0028 WRITE(6,102) SAT,HOM,ALPHA 0029 IEFULALES,S GO TO 90			CALL VEOU	T(AB.MJ.	8.28HSAMPLE FIXED	EFFECTS VECTOR)	
0019 CALL VEOUT(BB,MJ,20,20HSAMPLE MEANS VECTOR) 0020 SUM=0.0 0021 D0 20 J=1,PJ 0022 20 SUM=SUM+BB(J) 0023 SUP=SUM/#J 0024 WETE(6,103) SUM 0025 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0026 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0026 CALL RC28(FMS,FJ,SAT,HOM) 0027 ALPHA=HOF/SAT 0028 URITE(6,102) SAT,HOM,ALPHA 0029 IFFINILLE-S) GO TO 90							
0020 SUM=0.0 0021 D0 20 J=1,PJ 0022 20 SUM=SUM+88(J) 0023 SUP=SUM/PJ 0024 WRITE(6,103) SUM 0025 CALL MX0UT(FMS,MJ,MJ,0,24,24MSAMPLE DISPERSION MATRIX) 0026 CALL MX0UT(FMS,FJ,SAT,HOM) 0027 ALPMA=HOM/SAT 0028 WRITE(6,102) SAT,HOM,ALPHA 0029 IFF(MILLE-5) GO TO 90						VECTOR)	
0021 D0 20 J=1,*J 0022 20 SUM=SUM+88(J) 0023 SUP=SUM/#J 0024 WRITE(6,103) SUM 0025 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0026 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0026 CALL RC28(FMS,MJ,SAT,HOM) 0027 ALPHA=HOM/SAT 0028 WRITE(6,107) SAT,HOM,ALPHA 0029 IF(MI,LE,5) GO TO 90							
0022 20 SUM=SUM+88(J) 0023 SUP=SUM/PJ 0024 WRITE(6,103) 0025 CALL 0026 CALL 0026 CALL 0027 ALPHA=HOP/SAT 0028 WRITE(6,107) SAT,HOP,ALPHA 0029 IE(H1,LE,S) 0020 IE(H1,LE,S) 0020 IE(H1,LE,S)				, Þ.J			
0023 SUP=SUM/PJ 0024 bRITE(6,103) SUM 0025 CALL MXOUT(FMS,MJ,MJ,0,24,24HSAMPLE DISPERSION MATRIX) 0026 CALL RC28(FMS,MJ,SAT,HOM) 0027 ALPMA=HOM/SAT 0028 WRITE(6,107) SAT,HOM,ALPHA 0029 IFF(MILLE-5) GO TO 90							
0024 WRITE(6,103) SUM 0025 CALL MXOUT(FMS, MJ, NJ, 0,24,24HSAMPLE DISPERSION MATRIX) 0026 CALL RC28(FMS, MJ, SAT, HOM) 0027 ALPHA-HOM/SAT 0028 WRITE(6,102) SAT, HOM, ALPHA 0029 IFTE(6,102) SAT, HOM, ALPHA							
0025 CALL MXOUT(FMS, MJ, MJ, 0, 24, 24MSAMPLE DISPERSION MATRIX) 0026 CALL RC28(FMS, MJ, SAT, HOM) 0027 ALPHA-HOM/SAT 0028 WRITE(6, 102) SAT, HOM, ALPHA 0029 IFF(ML, E, S) GO TO 90			WRITE(6.1	03) SUM	_		
0027 ALPHA=HO#/SAT 0028 WRITE(6,102) SAT,HO#,ALPHA 0029 IE(WILLE_5) GO TO 90						DISPERSION MATRI	X)
0028 WRITE(6,102) SAT,HOM,ALMA 0029 IE(WILLE,5) GO TO 90	0026				SAT HONE		
0020 (F(N1.LE.5) GO TO 90	0027						
0029 IF(M1.LE.5) GO TO 90 0030 VF+(2.0+(M1-1.0)+(MJ+M1-MJ-2.0))/((M1-5.0)+(MJ-1.0)+(M1-3.0)++2)	0028						
00 30 Ak = (5°0+(MI-1°0) = (M1-41-5°0)) / (M1-2°0) = (M			IFIMI.LE	5) GO TO	90		181-1.014421
	00 30		¥F = (Z = 0 = (ml-1.0)#	~J ~ ~ ~ ~ J ~ Z • U]] / [[M	1-2.01-183-1.014	

.

•

•

•

FORTRAN	IV E COPPILER	EXAMPL	69-15-71	15:55.03	PAGE 0002
0031		F+(1-REL)++2			
0032		F*(1-AL)++2			
0033		6,104) VARA, VAR	E		
0034	C2=(#1	-3.0)/(M[-1.0)			
0035	VARA=V	ARA+C2+C2			
0036		ARE+C2+C2			
00 37	WRITE	6,105) VARA, VAR	IE		
0038	90 RETURN	1			
0039	END				
			1		

•

.

•

.

•

.

.

ŧ

.

ŧ

.

192.

.

.

.

FORTRAN I	v c co#	PILER	IT ENCO	09-15-71	15:55.06	PAGE 0001
0001			E ITENCOLX.	Y,RXY,D1,D2,COV)		
0001	C	PURPOSE	CALCULA	TE INTER-ITEM COV	ARIANCE FOR RELO	Z BASED ON
	č		TCHEBYC	HEFF-HERMITE POLT	NOMIALS UNDER NO	RMAL OGIVE
	č	•	HODEL			
	č	x	THRESHO	LD CONST FOR FIRS	T ITEM	
	č	Ϋ́	THRESHO	LD CONST FOR SECO	ND ITEM	
	č	RXY	INTER I	TEN TETRACHORIC C	ORRELATION	•
	Ċ	01		DENSITY AT Z=X		
	Č	D2		DENSITY AT Z=Y		•
	С	COV		COVARIANCE		
	Ē	200 FORMAT(1)	(,13,E16.0)			
00 0 2		REAL+8 X1	,x2,Y1,Y2,F	RR, DDD, RN, U, V, X3,	Y3,002,F1	
0003		U=X				
0004		V=Y				
0005		X1=1.0				
0006		x2=x				
0007		¥1=1.0				
0008		¥2=¥				
0009		f1=2.0				
0010		RN=DLOG(F[]			
0011		RRR=RXY				
0012			U+V+RRR+RR	R]/Z.O		
0013		RRR=DLCG				
0014		DO 10 [=	3,20			
0015		FI=1				
0016			(FI-2.0)*X1			
0017		x1=x2				
0018		x2=x3				
0019			(F1-2.0)+¥1			
0020		¥1=¥2				
0021		¥2=¥3	OC LET Y			
0022		RN=RN+DL	3+(DEXP(FL4			
0023		002=x3+1	34 (DEAF (F L*			
0024		CCV=000+				
•	C C		200) 1,COV			
	C	LO CONTINUE				
0025		CCV=0004				
0026		RETURN	VV6			
0027		END				
00 28		ENU				
TOTAL	MENGRY	REQUIREMENTS	5 000386 8V1	res		

.

(

.

•

193.

FORTRAN LV C	; co	MPILER	PARALL	09-15-71	15:55.07	PAGE 0001
0001			INE PARALLIR.	XBAR,MI,MJ,NSAM,X TE TEST VARIANCE	VAR, FC, FERR, COR)	PARALLEL
	C	PURPOSE		TE TEST VARIANCE		
	C	•	METHOD	NTER ITEN SUM OF	PRODUCTS	
	C	R XBAR	INDUT I	UN OF ITEM SCORES		
	C C	A DAN	SAMPLE			
	č	۳. ۲.		TENS IN THE TEST		
	č	NSAM		INULATION RUNS		
	č	XVAR	SUM OF	PRODUCTS OF PARAL	LEL ITEMS	
	č	FC	OUTPUT	TRUE SCORE VARIAM	IC E	
	č	FERR	OUTPUT	ERROR SCORE VARIA	NCE	•
	č	COR	OUTPUT	RELIABILITY BETWE	EEN PARALLEL TEST	5
	Č	DIMENSI	ON R(MJ+(MJ+))/2),XBAR(2+MJ)		
0002		DIMENSI	ON R(1),XBAR	[1],XVAR(MJ)		
0003		100 FORMAT	1H1,60('2')/	1x, 'a', 2x, 'ESTIM	ATTUN OF POPOLATE	14X.F14.6./.
		1 BY PAR	ALLEL METHOD	,2X, '2', /, 1X,60(14.6, /, 1X, ' TRUE V		./.IX. FRROR
		21X, 'VAR	IANCE", 12X, E	+1X+ RELIABILITY	- 10X-E9-6-/-1X-*	KR20'.17X.
		3VARIANC	E',6X,E14.0,	/ . 1 X . " KEL INDILI''		
			1X, NO OF CA	252.41144141		
0004			5AM+13+M1			
0005		DF N= NN ! FC = 0 . 0	-1.0			
0006		FV=0.0				
0007		FD=0.0				
0008		1R=0				
0009 0010		00 15	J=1.#J			
0010		00 14				
0012		10-10+	1			
0013		R(1R)=	(R(]R)-(XBAR(K)=X8AR(J))/NNN)/	OF N	
0014		FV= FV+				
0015		14 CONTIN				
0016		FO=FD+				
0017		+64=66	J	BAR(J)+XBAR(JJ)/N		
0018				BAK(J) - XBAK(J)//		
0019			XVAR(J)			
0020		15 CONTIN				
0021			● (F V - F D) + F C ● (F V - F D) + F D			
0022		F V-2.00	J=(1.0-FD/FV))/(MJ-1.0)		
0023		FMEAN=				
0024 0025			J=l,PJ			
0026)=XBAR(J)/NN	4		
0027			FMEAN+XBAR(J			
0028		COR=FC				
0029		FERR=1	·V-FC			
0030		MRITE	16-1001 FHEAN	FV, FC, FERR, COR, F		
00 31		CALL	EOUT (XBAR, HJ	12.12HHEAN VECTO	5 7 764 / OVAPIANCE	•
5600		CALL	EQUT IXVAR, MJ	28,20HPARALLEL I	ICH CUTARIANCES	•
0033				,1.32,32HWITHIN T	531 VIJ7 (NJ104 MA	
00 34		RETUR	N			
00 35		ENO				
				T&C		
TOTAL M	ENCR	A NEGNIKENE	NTS CC0692 BY			

•

.

•

-

.

.

.

194.

.

FORTRAN IV & CO	PILER	POPR	09-15-71	15:55.08	PAGE DOOL
0001	SUBROUTINE 1 EVAR, DIS)	POPRINJ	BS, DIF, R, REL, ALPHA	, FMT, RR, PP, ERR, T	EMP, TV AR,
C	PURPCSE	PERFOR	MS BASIC COMPUTATIO	ONS FOR RELOZ PO	PULATION
. с		PARAME			
c	NJ	NO OF			
C C	85 01F		OR OF BISERIAL COR OR OF ITEM DIFFICU		
	R		ITEM CORRELATION M		
č	REL		TION RELIABILITY		
č	ALPHA	POPUL	TION ALPHA COEFFIC	IENT	
C	FMT		FOR INPUT VECTORS		
Ç	RR		TOR OF THRESHOLD CO		
c	PP		TOR OF ITEM DIFFICU		
C C	ERR TEMP		TOR OF STANDARD DEV LING VECTOR	TATION OF ERRORS	
C	TVAR		TION TRUE VARIANCE	UNDER N.O. MODE	L
Č			TION ERROR VARIANC		
č		OUTPU	I INTER ITEN DISPER	SION MATRIX	
0002	DIMENSION	BS(MJ),D	[F(MJ),R(MJ,MJ),FMT	(20), RR(MJ), PP(M	J),ERR(MJ),
	1TEMP(HJ),				
00 03			00 ',13,'TH ITEN D	IFFICULIT IS LES	S THAN U.U UK
0004	1 GREATER	1 MAN 1	DIF=",E14.5) Ation parameters un		HODEL 1)
0005			E14.6,3X,"VAR=",E14		
			,3X, 'REL=',F7.5,3X,		
00.06			PAPAMETERS		+, LOX, +DIFFIC
	LUL TY , 7X,	VARIANCE	,9x,"THRES CONS.",	6X, DISC. POWER	,6X,'01FF. IN
	20EX*)				
0007	104 FORMAT(1x		E14.6,3X)}		
0008	105 FORMAT(20				
0009 0010		5) (FMT(I	T FOR ITEM PARAMETE	2.134150M41	
0011			[],[=1,20]		
0012		T) (DIF(J			
0013	READIS, FH	T) (BS(J)	(LM, I=L,		
0014	00 10 J=1	•			
0015	00 10 1-1				
0016		(J)+85(1)			
0017 0018	10 R(J,[)=R(1,57 1,60 - 10 1 - 10 1	,0,44,44HINTER ITER	TETRACHORIC COL	RELATION MATE
	11x)				
0019	WR17E(6,1	.03)			
0020	00 25 J=1				
0021	81 S=85 (J 1	-			
0022	DIFF=DIF(• •			
0023		F • (1.0-DI			
Q024 0025	AA=BIS/EF	RT(1.0-81	2-0131		
0026			R, TEMP(J), IER)		
0027			(6,100) J,DIFF		
0028	RRR=-PRR				
9029		A+ERR(J))			
00 30	RR (J)=RR(
00 31			,D(FF,PP(J), AR(J),	NA ; 99	
90 32	00 31 J-1	\₽ ₽ ₩			

ı

i

(

FORTRAN LV & CORPE	LER POI	PR	09-15-71	15:55.06	PAGE	9009
0033	00 30 I=1,J					
0034	AXY=BS(1)+BS	[])				
00 35	CALL ITEMCON	PR([),RR(J),R	XY, TEMP([], TEMP(.),DIS(1,J))		
00 36	015(J,1)=015	([,])				
00 37 30	CONTINUE					
0038 31	CONTINUE					
0039	SUM=0.0					
0040	COV=0.0					
0041	\$\$\$=0.0					
0042	REL=0.0					
0043	00 33 J=1,#J					
0044	00 32 K=1,J					
0045 32	REL=REL+DIS(
0046	SUP=SUP+DIF(J)				
0047	TEMP(J)=DIS(
0048	COV=COV+TEMP	•••				
0049	015(J,J)=PP(
0050	SSS=SSS+PP(J)				
	CONTINUE					
0052	TVAR=2.0+1RE					
0053	REL=REL+2-CO	-				
0054	REL=REL/TVAR					
0055		.0-SSS/TVAR))	/(MJ-1.0)			
0056	SSS=TVAR+REL					
0057	EVAR=TVAR-SS	-				
0058	WRITE(6,101)					
0059			, EVAR , REL , ALPHA			
0060			IPARALLEL ITEM CO 1,28HINTER ITEM D			
0061			1,28MINIER IICH D	I SPEKSIUN HAIKIA		
0062	DO 51 J=1,PJ					
0063	PP(J)=SQRT(P	P(J))				
0064	00 50 K=1,J	.K)/(PP(J)+PP				
0065		• • • • • • • • • • •	~~~			
) R(K,J)=R{J,K continue					
			CHINTER ITEM COR	SELATION MATERY	,	
0068	RETURN	1-41-414143613	GREATER TIEN CON	ACCULUM UNININ	•	
0070	END					
0070	170					

TOTAL MENCRY REQUIREMENTS OCODAE BYTES

.

.

,

.

1

¢

1

i

ŧ

•

٠

t

.

.

•

.

196.

FORTRAN	[¥]	6 (CMPILER	OIST	09-15-71	15:55.13	PAGE 0001
0001			SUBROUTI	E DISTITEM	,MI.EX)		
			; PURPCSE	CREATE	STANDARD RANDOM TRUE	SCORE MATRIX	FOR RELOZ
			TEMP		TRUE SCORE VECTOR		
			I MI	SAMPLE	SIZE, LENGTH OF TEM		
			: IX		DO INTEGER RANDEN NUE		
			****THIS EXAM		S EXPONENTIAL TRUE OF		
0002				N TEMP(MI)			
0003			CALL VEC	RAKITEMP.MI.	. [X]		
0004			CO 10 I=				
0005			10 TEMP([)=		0.1-(()		
0006			RETURN				
0007			END				

.

.

•

TOTAL MEMCRY REQUIREMENTS 000104 BYTES

:

ŧ

ŧ.

.

1

•

.

.

.

.

197.

.

FORTRAN	IV & COMPILER	DISE	09-15-71	19:55.13	PAGE 0001
0001	SUBROU	TINE DISELY,	1[,#J,[X]		
	C PURPOSE	CREAT	STANDARD RANDOM ERRO	DR MATRIX Y FU	W KELOZ
	Č Y	OUTPUT	F MATRIX		
	č Ht	NO OF	ROWS OF Y		
•		NO OF	CCLS OF Y		
	Č MJ C 1X	SEED (DOD INTEGER RANDOM NU	MBER	
0002	DINENS	ION Y(MI,MJ)			
0003	CALL	ECRANIY, IMI+	(X].(L)		
0003	C SQR=SC	RT(12.0)			
0004	508=50	RT (12.0)			
		J=1,#J			
0005		1=1,#1			
0006)=(Y(I,J)-0.5	1050B		
0007	20 TUIS		ES UNIFORM ERROR SCOR	ES	
	20 CONT L				
0008					
0009	RETUR				
0010	END				
TOTAL	MENCRY REQUIREME	NTS 000264 BY	TES		

••

TOTAL MEMCRY REQUI 15:55.14 14.494 RC=0

÷

•

SUBROUTINE PACKAGE RELOO

PORTRAN IV	6 COPPIL	ER M	IOV	09-15-71	15:55.18	PAGE 000L
0001		SUBROUTINE A	NOV(Y, ML, PJ, F			
-	C PU	RPOSE	CALCULATE ME	AN SQUARES A	ND PART-TSEST	MEANS FOR RELOL
	C	¥	INPUT DATA M	ATRIX		
	C	MI	SAMPLE SIZE			
	с с с	NJ	NO OF PARTS			
	Ç	FMSA	MEAN SQUARES			
	C	FMSB	MEAN SQUARES		FECTS	
	Ċ	FNSE	MEAN SQUARES			
	C	88	OUTPUT ITEM			
2000			(MI,MJ),BB(MJ)			
0003		\$1=0.0				
2004		\$2=0.0				
0005		\$3=0.0				
0006		\$4=0.0				
0007		00 15 [=1,#	L			
0008		FMSA=0.0 CO 12 J=1.P.				
0009		FMSA=FMSA+Y	-			
0010 0011	12	S4=S4+FMSA	([]J]			
0012	16	52=52+FM5A+	A 7			
0013	17	FMS8=54/(M1	-			
0014		S2= S2/MJ				
0015		54=(54+54)/	(#10#4)			
0016		DO 30 J=1.P				
0017		FMSA=0.0	•			
0018		00 25 I=1.#	1			
0019		\$1=\$1+¥{1,J)++2			
0020	25	FHSA=FPSA+Y	(1,J)			
0021		88(J)=FHSA/	HI-FHSB			
0022		\$3=\$3+FMSA*	+2			
0023	30	CONTINUE				
0024		\$3=\$3/M1				
0025		FMSA=(52-54				
0026		F#SB=(53-54				
. 0027			-53+54)/((#[-)	1.0)+(MJ-1.0)))	
0028		RETURN				
0029		END				

TOTAL MEMORY REQUIREMENTS DOOACA BYTES

t

t

t

t

t

FORTRAN IV	G COMP	ILER	BOXSN	09-15	-71	15:55.19	PAGE 0001
0001		SUBROUTINE	BOXSN(Z,	(,[X)			
	C	PURPOSE	GENERA	TE STANCARD	RANDOM NOR	IAL VECTOR	
	C	Z	OUTPUT	VECTOR OF R	ANDON NUMBE	ERS	
	Ċ	N	LENGTH	OFZ			
	Č	1X	SEED O	DC INTEGER A	ANDON NUMB	ER	
	č	SUBPROGRAMS	VECRAN				
	Č	METHOD	BOX-MU	LLER, ANN. P	ATH. STAT.	1959	
	Č	DIMENSION	Z(2+NN)	NN=(N+1)/2			
0002	-	DIMENSION	2(1)				
0003		PAI=6.283	85307				
0004		NN=(N+1)/2	2				
0005		CALL VECR	N(Z, (NN+2),IX)			
0006		00 20 1=1	NN				
0007		XX=PA1+Z(0				
0008		11=1+NN					
0009		YY=SORT(-	2.0+ALOGIZ	(11)))			
0010		2(1)=YY+C	DS(XX)				
0011		Z(11)=YY+					
0012	2	O CONTINUE					
0013	-	RETURN					
0014		END					

•

•

•

TOTAL MENCRY REQUIREMENTS 00027E BYTES

.

٠

ŧ

.

.

.

· · · ·
DRTRAN IV G	; cor	PILER	CHIPRB	09-15-71	15:55.20	PAGE DOG
0001		FUNCTION C	HIPRB (CHI,	(OF)		
	С	PURPOSE	CALCULAT	E PROBABILITY OF	CHI-SQUARE VARI	ATE EXCEEDIN
	Č		INPUT VA	LUE		
	Č	CHI	INPUT VA	LUE		
•	č	NDF	DEGREES	OF FREEDOM		
	ē	PROGRAMMER	D. FLATH			
0002	•	EXTERNAL E				
003		REAL NORP				
0004		INTEGER F	-			
0005		LOGICAL BI	GX.EVEN			
0006				RF(0.7071068+X))		
0007		F=NOF	••••			
0008		X=CH1				
0009		CH1PR8=1.0	.			
0010) RETURN		
0011		A=0.5*X				
0012		BIGX=A.GT	-10-			
0013			F/2)-F).EQ.	0		
0014				NDNOT.BIGX)) Y=	EXP(-A)	
0015		IF(EVEN)				
0016				NORMAL (-SQRT (X))		
0017		CHIPRB=S				
0018		IF(F.LE.2) RETURN			
0019		X=0.5+(F-				
0020		IF(EVEN)				
0021			VEN) Z=0.5			
0022		•••••	IGX) GO TO	2		
0023		IF(EVEN)		-		
0024			VEN) E=0.57	23649		
0025		C=ALOG(A)				
0026	1		4 F			
0027	•	S=EXP(C+Z				
0028		2=2+1.0				
0029		IF(Z.LE.X	1 GO TO 1			
0030		CHIPRB=S				
00 31		RETURN				
00 32	2		E=1.0			
00 33	•			41896/SQRT(A)		
00 34		C=0.				
0035	3					
0036	-	C=C+E				
0037		2=2+1.0				
0038) GO TO 3			
0039		CHIPRS-C*				
0040		RETURN				
0241		END				
V776		2.10				

٠

·

•

•

•

1

ı.

•

.

ι

.

•

FORTRAN LY	COMPILER	COUNT	09-15-71	15:55.23	PAGE 0001
0001	SUBROUT	INE COUNTIX.	LX,NV,XMIN,TINT,L	B, FREQ, XBAR, XVAR)	
	C PURPOSE		ATE FREQUENCY DIS	tr ibut ions	
	C X		DATA MATRIX		
	C · LX		OBSERVATIONS		
	C NV		VARIABLES		
	C XMIN C TINT		MINIMUM VALUE ASS	UNED	
	C ` TINT		CLASS INTERVAL		
	C LB		NO OF CLASS INTER		
	C FREQ		FREQUENCY DISTRI	BUTIONS	
	C XBAR		MEAN VECTOR		
	C XVAR		VARIACE VECTOR		
0002			FREQ(LB,NV),XBAR(NV),XVAR(NV)	
0003	XMAX=XM	IN+TINT+LE			
0004			M=",El4.6,3X,"PIN	UNUM=*,E14.6,3X,*	LLAJJ INIEKVA
	1L=*,E14				
0005		,100) XMAX,)	(MIN, TINT		
0006	DO 15 J				
0007	CO 10 1	- • ··			
0008	10 FREQ(I)				
0009	XBAR(J)				
0010	15 XVAR(J)				
0011	DO 80 J				
0012	00 70 1				
0013		= X8 AR (J) + X (
0014		=XVAR(J)+X([,]]*X[[,]]		
0015	XXL=XM1				
0016	00 60 1				
0017	XXU=XXI	.+TINT	ND.X([,J].LT.XXJ)	CO TO 48	
0018					
0019	60 XXL=XXL	-			
0020	GO TO T				
0021		J)=FREQ(K,J	1+1-0		
0022	70 CONTINU				
0023	BO CONTIN				
0024	CALL V	ARXX(LX,NV,X	DARIATARI Mu a 34 3446866044	ENCY DISTRIBUTIONS	
		COUT LENEY, LO	,,,,		•
0025	RETURN				
0026	END				

.

TOTAL MEMORY REQUIREMENTS OCOSSA BYTES

.

4

.

·

•

203.

FORTRAN	IV & COMPILER	CISCRP	09-15-71	15:55.24	PAGE 0001
	<	BROUTINE DISCRPIN, X	BAR, XVAR, LAB, NUM	OL,TITLE)	
0001		OUTPUT D	ISCRIPTIVE TABLE		
	• • • • • •	N NO OF V	RIABLES		
	ç	XBAR MEAN VEC			
•	C				
	C				
	Ç		ARACTERS IN TITL	FINLLTIPLE OF 4)	
	с с с с		THE TABLE		
	C	TITLE TITLE OF RMAT(1HO,"DESCRIPT	THE TRUES		
0002	100 FO	RMAT(1H0, DESCRIPT	TALESTAL	TANCE	. 'OBSERVED',
0003	101 FO	RMAT (1HO , ZOX , THEAN		IS YOSCIED!)	• • • • • • •
	17X	, * EXPECTED * , 5X, * 1*	TA TUBSERVELT TOA		
0004	102 FO	RPAT(1X, A8, 1X, 2E1	9.0,2X," ", 3X, 2E L	7.0/ 6/30)	
0005		MENSION XBAR(N), XV	AR(N),LAB(N),111L		
0006		AL+8 LAB			
0007	N A	={NUPHCL+3}/4			
0008	W #	ITE(6,10C) (TITLE)	J),J=1,NN)		
0009		1TE(6,101)			
0010	00) 10 I=1,N			
0011		- 4 • M			
0012	W	LITE(6,102) LAB(1),	X8AR(1), X8AR(11),	XVAR(1),XVAR(11)	
0013	10 0	INTINUE			
0014		TURN			
		ND			
0015		···			

.

TOTAL MENGRY REQUIREMENTS OCO368 BYTES

.

.

1

.

ŧ.

t

ŧ

٨

ŧ

.

204.

FORTRAN EN	/ 6 COMP	ILER	CISP	09-1 5-71	15:55.26	PAGE 0001
0001		SUBROUT IN	E DISPLY, M	, MJ, S, XBAR)		
	С	PURPOSE	CALCUL	ATE SAMPLE DISPERS	ION MATRIX AND ME	AN VECTOR
		Y Y		DATA MATRIX		
	č	MI	NO OF	RCWS OF Y		
	с с с с с с	MJ	NO OF	CCLS OF Y		
	č	S		SAMPLE DISPERSION	I MATRIX	
	č	XBAR		MEAN VECTOR		
0002	•	DIMENSION	Y(ME,MJ),	S(MJ,MJ),XBAR(MJ)		
0003		CO 15 J=1				
0004		00 10 K=1	, , 			
0005	1	10 S(K,J)=0.	0			
0006	1	15 XBAR(J)=0	.0			
0007		00 30 1=1				
0008		00 25 J=1	l∎PJ *			
0009		CO 20 K=1	Ly J			
0010		20 \$(#,J)=5	K,J)+Y(I,K	(L,I)Y*(I,J)		
0011		25 XBAR(J)=)	(8 AR (J) + Y (I	• J)		
0012		30 CONTINUE				
0013		00 50 J=1	••			
0014		00 45 K=	L,J		//m/_1_0	
0015				R (K) + X8AR (J) } / HI }	//#[-1.0/	
0016		45 S(J+K)=S	(K.J)			
0017		50 CONTINUE				
0018		DO 60 J=				
0019		60 XBAR(J)=	XBAR(J)/MI			
0020		RETURN				
0021		END				

•

.

•

TOTAL MEMORY REQUIREMENTS OCO4FE BYTES

,

ŧ.

1

٠

.

.

t

1

•

205.

.

.

.

FORTRAN IV	G COMPILER	FISHER	09-15-71	19:55.28	PAGE 0001
0001	FUNCT	ION FISHER(OFM,C	FN,FR)		
	C PURPOSE	CALCULATE PRO	BABILITY LEVEL W	ITH GIVEN D.F. A	ND F-RATIO
	C DFI	I INPUT NU	MERATOR D.F.		
	C OFI	I INPUT DE	NOMINATOR D.F.		
	C FR	INPUT F-	RATIO		
00 02	100 FORMA' 1ALID'		IN FUNCTION FIS	HERIAN INPUT PAR	AMETER IS INV
0003	101 FORMA	[[lx, INPUT F-R/	TIO IS LESS THAN	0.0 F=*,E16.8)	
0004		(1X, 'NUMERATOR (,E16.8)	D.F. IS LESS THAT	N 1.0 CR GREATER	THAN 200,000
0005		(1x,'DENOMINAT(',E16.8)	R D.F.IS LESS TH	AN 1.0 OR GREATE	R THAN 200,00
00.06			PUT PROBABILITY		
0007	105 FORMA	T(1HO, ERROR IN	CALULATING GAMMA	FUNCTION")	
0008	A=OFP	/2.0			
0009	6=DF N	/2.0			
0010	FB=((DFM+FR)/DFN)/(1	.0+(DFM+FR}/DFN)		
0011		BDTR (FE,A,B,PRO)			
0012	• • • • • •	R.EQ2) WRITE((• • • • •		
0013	• • • • • •	.LT.0.0) WRITE((•		
0014			GT.200000) WRITE		
0015	• • • • • •		GT.200000) WRITE	(6,103) DFN	
0016		R.EQ.2) WRITE(6)			
0017	• • • • •		EQ.1) WRITE(6,105)	
0018		R=1.0-PR0			
0019	RETUR	N			
0020	END				

.

TOTAL MENCRY REQUIREMENTS 0004FO BYTES

•

•

.

4

r

ŧ

1

,

ŧ

•

.

.

.

206.

DRTRAN LV	G COM	PILER	FITTES	09-15-71	15:55.30	PAGE 000
0001		SUBROUTINE	FITTES(X, N	, NT)		
	C	PURPOSE	PERFORMS	CHI-SQUARE GODD	MESS OF FIT TEST	
	C	X	INPUT FR	EQUNCY MATRIX		
	C		COL-1 EX	PECTED FREQUENCE	ES	
	Ċ			SERVED FREQUENCI		
	C	N	NO OF CL	ASS INTERVALS OR	NO OF THE ROW O	FX
	C	NSAM	SAMPLE S	IZE		
	C	SUBPROGRAM	CHIPRB			
0002		CIMENSION				
00 0 3	1	00 FORMAT(/,1	X. CHI-SQ G	OODNESS OF FIT 1	'EST:', 3X, 'CHI=',	E14.6, 3X, 'NC
		1#',15,3X,'	PR08=',F\$.4	• b		
0004		CHI=0.0				
0005		NOF=0				
0006		XT=0.0				
0007		¥1=0.0				
0008		1=1				
0009		12 XX=0.0				
0010		¥¥=0.0				
0011		15 YY=YY+X([
0012		XX=XX+X(I				
0013			3.0) GO TO 1	L 🔴		
0014	_	1=1+1				
	C		GO TO 15			
0015		GO TO 15				
0016		16 NDF=NDF+1				
0017		• • • • • • •	{ x x - y y } + + 2} /	/ A A		
0018		XT=XT+XX				
0019		¥1=¥1+¥¥				
0020		XR=NT-XT				
0021		1=1+1				
00 22	-	YR=NT-YT		LE.N) GO TO 12		
	C		10.0) GO TO	_		
0023			0.0) GO TO			
0024				20		
0025		NDF=NOF-1				
0026		GO TO 25 20 CH[=CH1+1		/ 78		
0027		25 PRO-CHIPR				
0028			OC) CHI,NOF			
0029		RETURN				
0030		END				
0031		ENV				

t

207.

FORTRAN IV	C COMPIL	ER F	ST	09-15-71	15:55.31	PAGE 0001
0001		FUNCTION FS	T(DF1,0F2,	P, PRE }		
••••		PURPOSE	CALCULAT	E F STATISTICS W	HEN DEGREES UF	FREEDOM AND
	č			ITY ARE GIVEN		
•	Č	OF1		OF FREEDOM FOR NU		
	Ċ	OF 2	DEGREES	OF FREEDOM FOR DE	NOMINATOR	
	C	₽		ITY LEVEL		
	Č	PRE	PRECISIO	N LEVEL FOR OUTPU	T F RATIO	
	C	SUBPROGRAM	FISHER			
0002		IF (OF1.LE.	0.0.0R.DF2	LE.0.0.0R.P.LE.0	.0) GO TO 999	
0003	100	FORMAT (1HO	, DEGREES	OF FREEDOM OR PR	OBABILITY IS LE	SS OR EQUAL
	1	LTO ZERO RE	TURNS TO P	AIN WITH FST=0.0*)	
0004		x1=1.0				
0005		x2=0.0				
0006	10	F=(X1+X2)/2				
0007		FR=DF2+((1.				
0008		PRO=FISHER(OF1,0F2,Ff	L)		
0009		ER=P-PRO				
	C 101	FORMAT(1X,4				
	C	WRITE(6,101				
0010		IF(ABS(ER).		GO TO 99		
0011		IF (P.LT.PR				
0012		IF(P.GT.PRC	:) X2=F			
0013		GO TO 10				
0014	99	FST=FR				
0015		RETURN				
0016	999	WRITE(4,100))			
0017		FST=0.0				
0018		RETURN				
0019		END				

TOTAL MEMORY REQUIREMENTS 000330 BYTES

•

.

ŧ

,

Ç

1

.

1

(

(

١

•

.

208.

FORTRAN E	V G	COMPILER	MXOUT	09-15-71	15:55.35	PAGE 0001
0 001		SUBROUT C PURPOSE C A C N C M C M S C C	OUTPUT INPUT NO OF NO OF		_	
		C	2 DIA	GONAL	TLE(MULTIPLE OF 4)	
		C NUMH C TITL		OF THE VECTOR IN	A FORMAT	
0002			ON A(1),8(8			
0003		100 FORMAT				
0004			/,5X,8(5X,A	2,13,6X))		
0005				E15.6,7E16.6)		
0006)L/+C-+/			
0007			HOL+31/4			
0008				E(J),J=1,NN}		
0009		LINS=N	+2			
0010		J=1				
0011		LEND=N				
0012		NEND-8 10 LS1RT=	1			
0013 0014		20 CONTIN				
0015		JNT=J+L				
0016			.GT.#) JNT=#	1		
0017				JCUR), JCUR=J, JNT		
0018			LSTRT+LEND-1			
0019		00 80	L=LSTRT,LTEN	Ð		
0020		00 55	K=1,NEND			
0021		KK=K				
0022		JT=J+K				
0023			1) 41,42,45			
0024		41 IRX=N*				
0025		GO TO				
00 26			T)43,44,44 (JT#JT -JT}/ /			
00 2 7 00 2 8		GO TO				
0029			+(L+L-L)/2			
0030		GO TO				
00 31		45 [RX=0				
00 32		IF(L-J	T) 47,46,47			
0033		46 IRX=L				
00 34		47 [JNT=1	RX			
0035		B(K)=0				
0036			(T) 50,50,49			
0037		49 B(K)=/				
00 38		50 CONT []	-N) 55,60,60			
0039		55 CONTI				
0040				(JW), JW-1, KK)		
0042			1 85,85,80			
0043		BO CONTI				
0044			LSTRT+LEND			
0045		60 TO				
~~ · ·						

1

4

1

ı

1

٠

ŧ.

t

١

ŧ,

t

.

.

FORTRAN IV	G COMPILER	AXOUT	09-19-71	15:55.35	PAGE GOOD
0046 0047 0048	85 1F(JT-M 90 J=JT+1 60 To 1				
0047	95 RETURN END	U			

.

,

.

TOTAL MEMCRY REQUIREMENTS DO05AD BYTES

ı

.

.

.

٠

ŧ

.

.

.

•

.

210.

FORTRAN IV	6 CO	MPILER	PLOT	09-15-71	15:55.37	PAGE 0001
0001		SUBROUT	INE PLOTIX,	A, N, NSAM)		
	C	PUPPOSE	GIVES	PLGT FOR RELOL		
	C	X	I NPU 1	MATRIX OF RELAT	IVE FREQUENCIES(8)
	C	•	COL-1	EXPECTED		
	C			2 OBSERVED		
	C	. 🔺	-	NG VECTOR		
	C	N) TO 24,36 OR 48)	
	C	NSAP		E SIZE		
0002			DN X (N, 2),			
0003			G/*.*,***,	•		
0004		100 FURMAT(134(*\$*)	-	/,/,1X,'% PLOT U	FREQUENCY DISTRI	BUTION X ./, LX,
0005		101 FORMAT	4x, FREQUEN	KY (\$) ")		
0006	•	102 FORMAT	1X,F7.3,"-	*,24(* *,Al,*	• • • •	
0007				· · A1, · ·) }		
0008			3×, 'REL', 3>))	
0009			4×,12(F7.1)			
00 10					TED FREQ; (+) OBSE	RVED FREQ; (+)
			PPING POINT			
0011 0012				',36(' ',Al,' '	,,	
0013				' ',AL,' ')) (,' ',36(' '))		
0014			4X.13(F7.1)			
0015				',48(A1,' '))		
0016			9X.11.48(/			
0017				(,' ',48('- '))		
0018			4×.12(F7.1)			
0019		NNN=N-	• • • • • • •			
0020		WRITE(5,100)			
0021		CALL F	ITTESEX, N. N.	SAM)		
0022		hRITE(5,101)			
0023		XMAX=0				
0024		00 10				
0025		CO 10				
0026			•(X([,J)+10			
0027				}		
0028		LO CONTINU	JE X/10.0+1.0			
0029 0030		XU=NN¢			•	
0031			GT.100.0) X	ue1 00 . 0		
0032		DELT=X				
0033			DEL1/2.0			
0034		XU=XU+				
0035		DO 50	[=1,10			
00 36		XM=XU-	DELTH			
0037		00 40	J=1,5			
00 38		XL=XU-	DELT			
0039		DO 20 I	K=1,N			
0040		A(K)=5				
0041				DR. X(K,1).LT.XL) GO TO 12	
0042		A(K)=5				
0043			•	DR.X(K,2).LT.XL		
0044).EQ.SIG(1)	JVU TU 14		
0045 0046		A(K)=\$ G0 T0				
UU70		V U 10	ev.			

.

.

.

í

4

•

.

211.

FORTRAN LV	G COMPILER	PLOT	09-15-71	19:55.37	PAGE 0002
0047	14 A(K)=510	5(3)			
0048	20 CONTINU	E			
0049	XU=XL				
0050	[F(NNN)	25,30,35		•	
0051	25 IF(J.EQ	.1) WRITE(6,1	02) XM, (A(K),K=1,N)	
00 52			03) (A(K),K=1,N)		
0053	GO TO 4	0		•	
0054	30 IF(J.EQ	.1) WRITE(6,1	07) XM, (A(K),K=1,N)	
00 55	IF(J.GT	.1) WAITE(6,1	08) (A(K),K=1,N)		
0056	GO TO 4				
0057	35 IFIJ.EG	.1) WRITE(6,1	11) XM, (A(K),K=1,N	1)	
0058	1F(J.GT	.1) WRITE(6,1	12) (A(K),K=1,N)		
0059	40 CONTINU	E			
00 60	50 CONTINU	E			
0061	A(1)=-0	.2			
0062	DELT=0.	1			
0063	CO 51 I	=2,13			
0064	51 A(I)-A(1-1)+DELT			
0045	1F (NNN)	52,54,56			
00 66	52 WRITE(6				
0067	WRITE(6	,105)(A(I),I	=1,13)		
0068	GO TO 9	8			
0069	54 WRITE(d	,109}			
0070	WRITELG	,110) (A(I),	1-1,13}		
0071	GO TO 5				
0072	56 WRITE(6				
0073	WRITE(6	5,114)(A(1),1	=1,13)		
0074	58 CONTINU				
0075	WRITEL	106)			
0076	RETURN				
0077	END				

· .

•

TOTAL MENCRY REQUIREMENTS GOOB74 BYTES

· ·

•••

4

.

.

.

FORTRAN I	G COMPILER	PUNCH	09-15-71	15:55.42	PAGE 0001
0001	SUBPOUT		.L.8,NV)		
	C PURPCSE	GIVES CA	RD OUTPUT FOR RELO	1	
	C L8	NO OF RO	WS OF FREQ		
_	C NV	NO OF CO	LS OF FREQ		
000ż	DIMENSI	N FREQ(LB.NV)			
0003	100 FORMAT (2,3X,5F10.4)			
0004	00 20 1				
0005	20 WRITEL7	10() I, (FREQ	[.J).J=1.NV)		
0006	RETURN				
0007	END				

TOTAL MENCRY REQUIREMENTS 000200 BYTES

I.

ŧ

ŧ

ŧ

FORTRAN LV		RELDIS	09-15-71	15:55.42	PAGE 0001
0001	SUBRO	DUTINE RELDISIEN	5, NSAM, DFA, DFE, FR	EQ,L8,REL,TEMP,	SIG, XBAR, XVAR,
0001					
0002	CIME	LARGE PMPINEAM 3	,FREQ(LB, 2),TEMP	(130), XBAR(2),	XVAR(2)+LAB(7)
0002	C PURPOS		GATE SAMPLING DIS	TRIBUTION OF RE	LIABILIIY
	C	ESTIMAT			
		MS AN INPU	T MATRX		
	č	COL-1 R	ELIABILITY ESTIMA	TES	
	č	COL-2 R	ANK OF ABOVE		
		CAM SAMPLE	SIZE		
		FA DEGREES	OF FREEDOM OF NU	MERRATOR	
	• •	FE DEGREES	OF FREEDOM FOR	RRORS	
		ACA ERECUEN	CY TABLE		
	•	B NO OF C	LASS INTERVALS,	NO OF REWS OF FI	
		EL POPULAT	ION RELIABILITY		
	•		VECTOR		
		sig signifi	CANCE LEVEL FOR	EACH TAIL	
	č ž	BAR. XVAR WORKING	VECTORS		
		PUNCH OPTION	FOR CARD OUTPUT		
		PLOT OPTION	FOR PLOT		
		O OPTION	FOR ESTIMATION F	ORMULA	
	Č	0-8145	ED ALPHA FORMULA		
	C	1-KR[S]	OF CORRECTION, U	NBIASED	
		LAB LABELS			
0003		MAT (1H1.26('a').	/,1x,'@',2x,'RELI	ABILITY STUDY",	5X,' 3' ,/,lX,
0004					
	101 608	MAT (/. 1X. 'E XPEC T	ED FREQUENCY OF R	ELIABILITY ESTI	MATES BELOW -0.
0005					
0006			TION IS BASED ON	ALPHA FORMULATA	NOVA, BLASEUI
0000	103 508	MATE/.1X. "ESTIMA	TION IS BASED ON	KRISTOF CORRECT	ION (ANUVA; MARIA
0007	1 SEC	3+3			
0008		TE(6,100)			
0009	15(1C.EQ.01 GO TO 2	2		
0010		TE(6,103)			
		2.0/DFA			
0011		(DFA-2.0)/DFA			
0012		21 1=1,NSAM			
0013	21 544	(1,1)=C1+C2+FMS	1,1)		
0014		10 23			
0015		TE(6,102)			
0016		•0.0			
0017		-1.0			
0018		NTINUE			
0019		={1.0-REL]/1.2			
0020		FISHERICFA, DFE	FF)		
0021		=NSAN+ [1.0-PL]			
0022		1TE(6,101) FF			
0023		=-0.2			
0024	•••••	LT=1.2/LB			
0025		25 [=2,L8			
0026		#RR+DELT			
2027		=((].0-REL)+C2)/	(1.0-RR)		
00 28	**	=FISHER((FA, OFE,	FF)		
0029	PU	EQ((1-1),1)=NSAM	+ (PL-PU)		
00 30	P#	EAIII			
0031	25 PL				

· ·

•

· · ·

(

t

۲

ŧ

ŧ

ŧ

L

١

.

•

FORTRAN IV	6 COMPILER	RELDIS	09-1 5- 71	15:55.42	PAGE 0002
00 32	FREQIL	A, L) =NSAM+PL			
0033	CALL C	;CUNT(FMS(1,1),	ISAM, 1, -0.2, DELT, L	.8,FREQ(1,2),XBA	R,XVAR)
00 34	XOAR (2	2)=REL			
0035	1F(10.	,EQ.0) XBAR(2)=-	-2.0/(DFA-2.0)+(Df	*A+REL]/{OFA-2.0	13
0036	XVAR (2	})={{1.0-REL}+*	2)+2.0+(DFA++2)+((DFE+DFA-2.0)	
0037	XVAR (2	}={C2+C2+XVAR{	2])/(DFE+(DFA-4.0)	+{DFA-2.0}+2)	
0038	CALL C	DISCRP(1, XBAR, X	VAR, LAB(4), 24, 24H	RELIABILITY EST	IMATES)
0039	CALL P	XOUT (FREQ, LB, 2	0,28,28HC CHPARISC	DN OF RELIABILIT	Y)
0040	1F(1P)	JNCF.EQ.1) CALL	PUNCH(FREQ,LB,2)		
0041			, OFA, DFE, SIG, REL,		
0042	IF (IP)	DT.EQ.1) CALL	FLOT(FREQ,TEMP,LB	, NSAM)	
0043	RETUR	¥ .			
0044	END				

· .

.

•

•

•

•

ı.

1

.

C

(

t

1

۱

¢

L

t

1

TOTAL MENCRY REGUIREMENTS OCCODE BYTES

. 215.

FORTRAN	t۷	G	comp	LER	8028	09-15-71	15:55.46	PAGE 0001
0001				SUBROUT I N	E ROZE(DIS.	, MJ, SAT, HOM)		
			C P	URPOSE		TE SATURATION AND	HONOGENELTY COEP	FICIETS
			Ċ	OIS		DISPERSION MATRIX		
•			Č		SIZE OF			
			Č	SAT		SATURATION COEFFI	CIENT	
			č	HOM		HOMOGENEITY COEFF		
0002			-		DISINJ.#J		101611	
0003				TEPP=0.0		•		
0004				HOM=0.0				
0005				00 20 J=1				
0006				00 10 K=1				
0007			10					
00 08			20					
0009			E 4	SAT=TEMP/				
0010								
					-HCH)/(HOM	F(MJ-[.0]]		
0011				RETURN				
0012				END				

TOTAL MENCRY REQUIREMENTS 000208 BYTES

.

FORTRAN LV G	COPPI	ILER S	IGTES	09-15-71	15:55.47	PAGE 0001
0001	с I С.	SUBROUT INE PURPOSE	SIGTES(FMS, Obtain em Estimates	NSAM, DFA, DFE, SI(PRICAL CRITICAL	G,REL,10) POINTS OF RELIA	BILIRY
	C	FMS		LABILITY ESTIMA	TES	
	C C			K OF ABOVE		
	č	NSAM Ofa	SAMPLE SI			
	č	DFE		F FREEDOM OF NUI F FREEDOM FOR EI		
	č	SIG		NCE LEVEL FOR		
	č	10		R ESTIMATION FOR		
	Ċ			DEFF IC LENT		
	· C		1-KRISTOF	CORRECTION FOR	BIASEDNESS	
0002		DIMENSION F	MS(NSAM.2)			
0003	101	FORMAT(1X,*	ALPHA ESTIP	ATES', 3X, 'SIGLE	VEL (EACH)=",F5.3	,3X,"DFA=",
		1F6.0,3X,'DF 2F9.6)	E=",F8.0,16	X, LOWER BOUND=	•, F9. 6, 4X, • UPPER	BOUND=",
0004	102		NO OF CASES	LESS THAN LOWER	R B=",14,2X,F6.2	. 17 . CARATER
		1 THAN UPPER	I4,2X,1	F6.2, '\$',2X, 'LO	WER B(EST)=',F9.	6.3X. UPPER B
0005	101	1(EST)=",F9.	6)			
0005	103) PURMAT(1X, *	ADJUSTEC AL	PHA ESTIMATES",	3X, SIG LEVELIEA	CH)=',F5.3,
		2CUND=',F9.6	0.0,3X,'DFE	=',F8.0, 6X,'LO	ER BOUND=",F9.6	4X, UPPER BO
0006		C2=10FA-2.0				
0007		IF(ID.EQ.0)				
0008		FU-FSTIDFE,		0011		
0009		FL=FST(CFA,				
0010		FL=1.0/FL				
0011		8L=1.0-FU+(
0012		BU=1.0-FL+(
0013 0014		IF(10.EQ.0)	WRITE(6,10)	L) SIG, DFA, DFE,	BL , BU	
0015		IF(10.EQ.1)	WRITE(6,10)	3) SIG, DFA, DFE,	BL , BU	
0016		ML=0 PU=0				
0017		CO 10 [=1,N	SAM			
0018		1F(FMS(1,1)		4U+1		
0019	10	1F(FMS(1,1)	.LT.BL) HL=			
0020		EML=(ML+100				
0021		EMU=(MU+13C	· · · · · · •			
0022 0023		NL=NSAM+SIG				
0024		NU=NSAP+{1.	0-51G)+0 . 90 (901		
0025		NUU=NU+1				
0026		FNL=0.0				
0027		FNLL=0.0				
00 28		FNU-0.0				
0029		FNUU=0.0				
0030		DO 20 [=1,N				
0031		NID=FHS(1,2				
0032 0033		IF (NID.EC.N				
0034		IFINID.EC.N				
0035	20	IFINID.EC.N				
00 36		SU=(FNU+FNU				
0037		SL = (FNL + FNL				

•

• • • • •

.

FORTRAN LV & COMPILER	SIGTES	09-15-71	19:55.47	PAGE 0002
		ma. C.M.I. C.I C.I.		

٠

.

0038		HL PENL HUPEHUPSLISU
0039	RETURN	
0040	END	

· .

•

•

TGTAL MEMORY REQUIREMENTS 000838 BYTES

.

.

1

•

ſ

l

(

ŧ

ŧ

í

۱

(

۲

•

.

.

•

•

•

FOR TR AN	IV G C	DMPILER	VARXX	09-15-71	15:55.49	PAGE 0001
00 01		PURPOSE N NV XBAR XVAR	CALUCUL SAMPLE NO OF V INPUT S INPUT S	ARIABLES UM OF VARIABLES, RE UM OF SQUARES, REPL	PLACED BY MEANS	ES
0002 0003 0004 0005 0006 0007		CO 10 1-1	XVAR(J)-(XB	var (NV) ar (J) + x8ar (J)) /N) / (N-1.0)	

•

TOTAL MEMCRY REQUIREMENTS 000222 BYTES

• ,

•

ŧ

(

•

C

•

ł.

•

.

.

FORTRAN I	V G	COPPILER	VECRAN	09-15-71	15:55.50	PAGE GOO
0001		SUBRO	UTINE VECRANIZ.	1, [X]		
		C PURPOSE	COMPUTE	S N UNIFORM RANDOM	NUMBERS BETWEE	N O.O AND L
		Ċ.	USING S	SP RANDU METHDD		
		č 2	OUTPUT	RANDCH VECTOR		
		Č Ň	L ENGT H	DFZ		
		c 1x		D INTEGER RANDOM N	IUMBER	
		C Z C N C IX C SUBPROG				
0002			SION Z(N)			
0003			M=1,A			
0004			+45539			
0005			1 5,6,6			
0006			+2147483647+1			
0007		6 Y=[X				
0008		Y=Y+.	46566138-9			
0009		20 Z(M)=	Y			
0010		RETUR	IN .			
0011		END				
TOTAL I	MEMC	RY REQUIREME	NTS COOIFE BYT			

ć

۱

.

(

(

ſ

t

t

l

٩

ŧ

220.

FORTRAN IN	/ E COMP	ILER	VEOUT	09-15-7	L 15:55.50	PAGE 0001
0001		SUBROUTIN	E VEOUT (A.N	, NUMH, TITLE)		
	C	PURPOSE		UP A VECTOR		
	C	A	INPUT V	ECTOR		
	с с с	N	LENGTH	OF A		
	C	NUPH	NO OF C	HARACTERS IN	TITLE(MULTIPLE OF 4)	
	C	TITLE	TITLE O	F THE VECTOR		
0002		DIPENSION	A(N) .TITLE	(20)		
0003	10	O FORMAT(/,	1X.20A4)			
0004	10	1 FORPAT (1X	10(5×.12.6	X))		
0005		2 FORMAT(1)				
0006		NN= (NUMH+	31/4			
0007		WRITE(6.1	00) (TITLE(I).[=1.NN)		
0008		M=N				
0009		IF(N.GT.1	0) M=10			
0010		hRITE(6,1	01) ([.[=1.	P)		
0011		WRITE(6.1	02) (A(1),I	=1.4)		
0012		IFIN.LE.1	0) GO TO 30			
0013		WRITE(6,1	01) (1,1-11	, N)		
0014		WRITE(6,1	02) (A(I),I	=11,N)		
0015	1	O RETURN				
0016		END				
TOTAL M	ENCRY RE	QUIREMENTS	000354 BYTE	S		
15:55.52 1	7.473 80	t=0				

•

.

· .

•

•

× .

.

.

٠

ŧ

۱.

(

(

٠

ſ

1

t

ŧ

I.

r

•

APPENDLX A.2

EXAMPLE OUTPUTS

REL01	:	Votaw-Jöreskog	Example Data
RELO2	:	Load-Novick It	om Parameters

51210 1212 10

ſ

•

8 8-11-1 K The Scone Dispersion MATAL R- 1 0.2040-46 02 0.1224-04 02 0. R- 2 0.1220-46 02 0.7102404 01 0. R- 2 0.12210-46 02 0.7102404 01 0. R- 4 0.2010216 02 0.1214046 02 0. R- 4 0.2010216 02 0.1214046 02 0. R- 4 0.2010216 02 0.1214046 02 0. 5 Į 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.204346 01 0.4544 76 01 FACTOR LOADING MATRIX 6-1 0.457Cont 01 6-2 0.256C000 01 6-3 0.256C000 01 6-3 0.259C000 01 6-4 0.4530000 01 -

J

٠

01410-0 21912-0 0. 207021E 02 0.121404E 02 0.12044E 02 0.201209E 02 0.201209E 02 0.201204E 02 C- 4 0.207021E 02 0.121404E 02 0.121404E 02 0.2118707E 02 0.2118707E 02 0.2118707E 02 0.12110% 02 0.7102006 01 0.7022506 01 0.12004% 02 0.12004% 02 0.12110% 02 6.7102006 01 9.2273906 02 0.1200496 02 0.1200496 02 0. 8123 0. 61233 0. 20022% 65 0. 42271 46 82 C- 2 C- 2 C- 1224 NE 02 0-1 0.1224 NE 02 0-1 0.121404E 02 0-1 0.121404E 02 0-1 SATURAT JON COEFF- 0 R- 1 0.251764 02 R- 2 0.1224346 02 R- 3 0.1211036 02 R- 5 0.1211036 02 Part Score 015PFR 51014 Part Score 015PFR 51014 Part Score VALIANCE FILED EFFECTS FILED EFFECTS TININ . NOIS WAN

8 VARIANCES OF -

9.210716 3 **0.2273** 3 6.296716 62 6.20202E

ATA MIRIE

					0.94203E 00 -0.433714E 01 456- 0.944990E 01 F- 0.277721E 01 ALPHA- 0.63993 WIDIASED MEL ESTIMOVAI- 0.71994	
					ALMA- 0.43993	
6- 4 0.315044E 01	-0.3256366 01	0.1223136 01 0.5754646 01	0.247397E 01 0.104301E 01	-0.5857486 01 -0.1527826 01	-0.4337146 01 06 01 F= 0.2777216 01	
C-) 0.2403425 01	-0.6182656 01		0.1011	•••		•
- 2	10 3011146 0-	-0.011206 01	0.4402016 01	000		9
MIA MIRIE		0.0157436 00	0.7755636 01		0 -0.4133636 01 0.2740805 02 1	LE FINED EFFECTS VECT
THE STREET		11				j,

6.192426 01 -0.120056 01 -0.504806 00 -0.134916 00 Samue means vector

0.10016 01 -0.151546 01 -0.001716 00 -0.451626 00 64644- -0.3144046 00

0.340[194 01 0.1111094 02 0.144441 01 0.5216376 00 0.341076 01 0.5216376 00 0.341716 01 0.139987 01 0.48072 16 01 0.139987 02 0.48072 157114376- 0.1074 EST INATE- 0.04531 A MOVA- 0.01434 Ĵ R- 1 0.1740906 02 0.2093936 01 R- 2 0.2033316 01 0.1794016 02 R- 3 0.3901096 01 0.1794048 01 R- 4 0.111046 02 0.5216378 00 Sample DISPERSION 1 SATURATION COEFF-VARIANCE OF MOMIASED REL ESTIMATES UNDER VARIANCE OF UNDIASED REL ESTIMATES UNDER ~ -5 SAMPLE DISPERSION NATRIX

HON/SAT- 0.03992

225.

4

Seeffertiffitfitteres unmen ore

CLASS INTERVAL. C. M.SODM OL

DESCRIPTIVE STATISTICS POR NEAN SOUNDES AND EXPECTED VALUES UNDER ANDVA NODEL

÷.
Č X
875 9 1 1 9
EXPECTED 0.8715045 0 0.8715045 0 0.8272395 0 0.8272395 0 0.8241255 0 0.94147355 00 0.1141705 01 0.1141705 01 0.1141705 00
VANIANCE 00550760 0.04731603 0.121034603 0.121034603 0.121034603 0.121034603 0.121034603 0.121034603 0.121034603 0.144004601 0.1101306 0.110000000000000000000000000
IS CALLED AND AND AND AND AND AND AND AND AND AN
045 E VED 0. 95 T VED 0. 136 T 3161 0. 136 T 316 T 3161 0. 136 T 3161 0. 136 T 3161 0. 136 T 3160 T 316 T 3160 T 3160 T 3160 T 3160 T 3160 T 3160 T 3160 T 3
~~~~~
539 <b>5</b>
Exection 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 1036740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 103740 1037400 1037400 1037400 1037400 1037400 1037400 1037400 1037400 1037400 1037400 1037400 1037400 1037400 1037400 1037400 1037400 1037400 1037400 1037400 1037400 1037400 10374000 10374000 1037400000000000000000000000000000000000
6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
CONSERVED C.620000 C.620000 C.620000 C.610000 C.6110000 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.600 C.6
MERANE C. 1127046 C. 1127046 C. 1127046 C. 112046 C. 112046 STATISTICS STATISTICS C. 12046 MEAN MEAN MEAN MEAN MEAN C. 259946 C. 10 C. 20 C. 20
MSERVED 
mE.M.   ExpECTED   DOSERVED   EXPECTED   DOSERVED   EXPECTED   EXPECTED   DOSERVED   DO   hdo< th="">   DO   DO   <thdo< <="" th=""></thdo<></thdo<>

•

.

1-0.2- 0.4253966 01 CLASS INTERVAL- 0.290 TPUA FORMULALANDVA-BIASE LIABILITY ESTIMATES BELO NIMUMUN- -0.20000E 00 22111111212222222220 9 3 3 1117 STUE ESTIMATION 15

. .

. .

.

	612371136-01																																				
ESTIMATES	VAN IANCE Casenved 0.319032E-01 (																																				
	 8			-		-	51	•	-	21	•	1	23	12	13	5	31	10	5	56	35	2	33	: 3	3	33	3	23	33	8	3	60	3		66	53	
A RELIABILITY	EXPECTED . 783034E		0.0		0.100006	100000	0.100000		-	0.100006	-	0.500006	0. 300006		0. 300000	0. 800000	0. 3000000	0.900006			0.140000	0.100006	0.140000		0.230000€	0.240000	0.440000	0.00000		0.104000	0.147000€	0.1.2000E	0.157000	0-140006	0.210000		
165 P0	<b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b>			•	<b>a</b> a		0	•	• •		-			-	: :	1	2	22	នេ	5	55	;3	3	33	;3	33	13	3	23	20						88	5
DESCRIPTIVE STATISTICS FOR	0056AVED 0.7005836	- 0	 0.3442526	0.1304526	0.444235	0.001053E	0 70952E		0.6343411	0. 1041 206	0.1147346		0.1744205	0.1444736		0.3019976	0. 3491166	0.4090415	0.551000	0.4478076	G. 744000E	0.1077316	0.1286516	0.154486	0.2273906	0.2776576	C-220411E	0. 52114236	0. 6489126			0.1552246		0.2201036	0.2416706	0.2395211	0.181970
14102.00	9 1	COMMIN	• ••	-	•		•	•	• 9	23	~	2		•	-		2	2	21	:~				٢.	21	2	21	12	2	2				-	: 2		\$

.

•

3

.

ĪĪ LOUGH BOWND- 0.514130

8

228.



.

229.

. •

DESCRIPTIVE STATISTICS FOR RELIABILITY ESTIMATES

•

.

VARIANCE EXPECTED COSENVED 0.1933306-01 0.1434396-01																																										
8		1				-	3		5	5	3		10	;	5	5	3	5	3	3	5;	57	5	5 2	5 8	5	5		83		;3							_		53	3	}
EXPECTED 0.831249E			0.0	0.0	0.0					0.10000	0.100000	•••			0.20000E	0.200005	0.100006	0.100006	0.200006	0.100000	0. 500000		0.400000			0. 700000	0. 900000	0.130000E	0.1200005		0.300006	0.280000	0.450006	0. 5 JOU COE	0. 780006	0.130026	0.1370006	0.1750006	0.2110005			<u>}</u>
<b>1</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ABILITY					_		~ -																																	•	•
0.7	_								38	8		83																õ	3	0	33	; d 			0		0 		3		5 ( 	2 4
08564VE0	LON OF REL	-0.2327956	0.1340186	0.1710456	0.1403776	0.212+316	0.2379546			0. 180034	•	0.4882815	0.555744				0.111006	0.1257126	0.131360	0.177355	3169975.0	0.24704		0.3510246			0.7401026	0.4374141	0.114479	0-1-504		0. 1010525	C. 390042E			0. 6896525	0.118342E	0-13000	0.205527			0- 301084
ę	Į	_	-	-		•	•	<b>⊳</b> e	. •		-	~	-			::	. =		2	2	2	2	1	2		23		:3	1	2			1	-		2	9		7	;	;	;
J.	8	÷		ł	1	Ļ	1	•			-	ł	1											-	-				ł	ł	•			-	ł	÷	ł	ł	4	4	-	ł

UPPER BOOMD 0.01011 27. LONER BOUND- 0.422101 4.406 LONER BIESTI- 0.50432 8 į ATCH THEN 33 233 2 3 17135 2225 82 82

•

•



LORD AND MOVICE PARANETERS, N-1000, 1-15, J-9, LATENTINDI, ENDAIMOI

801	5	•	Ē	-	-	~	7	0.030
NO OF SAPPLES SIMULATED	NO OF SUBJECTS IN EACH SAMPLE	AG OF 176=5	STARTING SEEC RANCOM NUMBER	CPTICH FCH CARE CUTPUT	CPTICA FOR PLOT	CPTICH FOR ESTIMATION FORMULA	OPTITON FOR CLASS INTERVALS	SIGNIFICANCE LEVEL

TRUE SCORE DISTRIBUTIONS ARE NOR PAL GRADOR SCORE DISTRIBUTIONS ARE NOBRAL

# PORMAT FOR ITEN PARMETEPS (9P5.5)

INTER ITEN TETRACHORIC CORRELATION MATRIX

C- 8.2347900 0.2347900 0.23404700 0.3142900 0.3342800 0.23280900 0.2423900 0.2423900			
1			i
			KR20-0. 64964
			ž
22222222222222222222222222222222222222			ž
C-7 0.2332406 0.3412926 0.2812466 0.2822466 0.2822466 0.2265766 0.2265766			z
		<b></b>	REL-0.04324
888888888888888888888888888888888888888		DIFF. INDER 0.1179576 0 0.21179576 0 0.279705 0 0.279705 0 0.279705 0 0.279705 0 0.2235 0 0.154416 0 0.154416 0	1
C- 6 0.31360 0.45860 0.377520 0.377520 0.377520 0.374500 0.334700 0.334400 0.334400 0.334400 0.334600		DIFF. 100 0.1269301E 0.1269301E 0.279700E 0.279700E 0.279700E 0.2294251 -0.2394251 -0.2394251 -0.2394251 -0.2394251	
		<b>66666</b> 6666666666666666666666666666666	10
-666666666		0-000000	ERRDR VAR+ 0.134888E 01
888888888888888888888888888888888888888		**************************************	¥1.
2011 2011 2011 2011 2011 2011 2011 2011		DISC. POMER 0.1028956 0.1028956 0.4549166 0.4544016 0.7344016 0.7344016 0.4743276 0.97275 0.97275 0.97275 0.97275 0.97275 0.97275 0.97275 0.9725 0.9725 0.94406 0.94406 0.94406 0.94406 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.94006 0.9400000000000000000000000000000000000	•
C- 5 0.2915506 0.3200556 0.3520556 0.3520556 0.3900256 0.2832206 0.2832206			AA V
			N CN
888888888888888888888888888888888888888		. <b>5888</b> 58885	Ľ
		<b>1</b>	10
C- 4 0.290570E 0.429181E 0.351849E 0.351849E 0.375289E 0.375289E 0.314290E 0.314290E 0.314290E		THES CON 0.130486 0.414046 0.414086 0.414086 0.414086 0.12513 0.12533 0.12533 0.12533 0.12533 0.12533 0.12533 0.12533 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118515 0.118555 0.1185555 0.1185555 0.1185555 0.11855555 0.11855555 0.11855555 0.11855555 0.11855555 0.118555555 0.118555555 0.11855555 0.11855555 0.118555555 0.118555555 0.118555555 0.11855555555 0.1185555555 0.1185555555 0.118555555555555 0.11855555555555555555555555555555555555	55E
1.4444444			0.245455E 01
********		<b>~~</b> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 14
C- ) 200100 20100100 20100100100 20100100100100 20100100100100 201100000000		MIACC MIACC 223759 223759 223756 229156 229156 229156 229156 229156 22956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 23956 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 2395756 239576 239576 239576 239576 239576 239576 239576 239576 239576 239576 239576 239576 239576 239576 239576 239576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 230576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 200576 20	-
C- 3 0.20100 0.3014010 0.325557 0.3255577 0.3214056 0.3513565 0.2517550 0.2717550		V MI MCF 0.679396 0.1593996 0.234546 0.245246 0.2445246 0.2445246 0.1593996	2
			UNDEP NCAPAL OGIVE VAR- 0.400342E 01
		<b>58888888</b> 8	NCAPAL 061VE
2206 1156 2206 2156 2156		<b>&gt;</b>	18
C- 2 C. 35133 0f C. 35133 0f C. 3514 0f C. 3514 0f C. 3514 0f C. 3514 0f C. 3514 0f C. 3500 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 354 0f C. 356 0f C. 356 0f C. 356 0f C. 356 0f C. 356 0f C. 356 0f C. 356 0f C. 356 0f C. 356 0f C		BIFFICULT 0.1990505 0.1990505 0.3395005 0.3395005 0.3395005 0.335005 0.335005 0.375005 0.375005 0.41005 0.41005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.	20
			NAN U
8838883888	88888888		
	81313887		APE 10
C-1 C-351550 C-351550 C-351550 C-25050 C-25050 C-251550 C-251550 C-251550 C-251550 C-251500 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25550 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-25500 C-255000 C-255000 C-255000 C-255000 C-255000 C-255000 C-25	C- 3429900 C- 2429900 C- 242990190 C- 27117990 C- 27117990 0- 2442900 C- 25239000 C- 24239000 C- 24239000 C- 24239000		10
			11CH PARAPI 0.4471 00E
			2
********	********		N N N

.

PARALLEL ITEN COVARIANCES

INTER ITEN CISPERSICA PATRIX

•

.

• ئ	0.10521 76-01																		10-326-01	0.199266 00						0.127306 00	
ر. ۲	0.1319716-01	0.3199596-01	10-3641466.0	0-3210446.0	0.4075336-01	10-1/19099-0	0.2190245 00	0-246292-0	10-3008// 1.0									•	0-9472236-01	0.1712406 00	0.1523146 00	0.1720236 00	0.1744536 00			0.1177646 00	
	0-1900 -01	0.4854686-01	0. 50482 8E-01	0.59575 # -01	0.4070436-01	0.2445246 00	0.44041 7-01	0.3837256-01	0.2526246-01											0.136354 00			-				
•	C- 5 0 100226F-01	0.44471 [-0]	0-4116-01	0.5454546-01	0.2491596 00	0.4070936-01	0.4075336-01	0-348256E-01	0.227086E-01										5 - 5	0.134803E 00					0.1744536 00		
					0.54564500				0.2200456-01										• ئ	-			0.2205646 00	0.2430846 00	0.1720236 00	0.1711010 00	
	- 5	10-3608641.0		0-2237546 00	0.4810145-01	0.44501 1E-01	10-3929405*0												- J	0.1243116 00	Ξ.	_			-	0.1443136 00	
A181X	~ J	0.1997406-01	0.1993446 00	0.4345456-01	0-440144-01	0.4844716-01	0.4854485-01	0.319596-01	0-252 MIE-01	10-3492661-0										1326					0.17170 00		0.1234545 00
INTER ITEN CISPERSICA PATRIX		0. AA78396-01	0-1003466-01	0-174035-01	0.1985456-01	C. 198224F-01	0-1994035-01	0.1314716-01	C. 1092176-01	G. & & J376-02	• -	0.443376-02	C. 199269E-01	0.1019526-01	C.227C655-61	0.2526266-01	0.1040766 00	INTER ITEN COMBLATION MATRIX		6- 1 0 1000000 01	0.1448325 00	a.1283136 00	C.134271E 00	0.1348036 00		C. 094992E-01	0.6440246-01
1.12.		-								•		-	~	1	4 4 4 4		  •• 1 1	INTER			- •		-	1	• •	- •	•

234.

********

4

٠.

.

• •

	2					-	-			-		56	4 -																													Ģ	3	Ģ	ę	ē	
																																										j		0.4205726-01		ž	
•	0.10000		33		<b>1000001-0</b>	0.10000	0.100000	_		0.100000		5 8 8 8		5 8 8 9	53	\$																	Ī												120	511	
<del>ل</del>	1-0		5					0. 0	0.0			50	5	5	3	2																	UNDIASED REL ESTIANDVA1- 0.01047								•	<b>،</b>	; <	50	•	ò	
				-	_	_		-		-	-	-	<b>.</b>		. 64																		-			8		8	}					5	3	5	
						10 30		)E 01																									Ì		_	116		X							ļ	0-5714296-01	
~	•		100001-0	0.100006	0.100006	0.100006		0.100006		0.100006	ě č	0.100000	Š		0.100000	Ď																	STIA		•	0.311116									2	35	
J	,			0.10	0.10	0.10	0.0	0.10	0.0	0.10	<b>0.1</b> 0																						ت ي								1	5		<b>P</b> •	ļ	0.5	
				Ī	Ī	Ī		-	-	-				-																			ĩ			8 w		8									
		5				5			5					5		5																	1ASE			0.17716		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5				0.3809536-01			0.100000 00	
		5	0.100006		000	0 100005			000	0.10000E	0.100000			0.100006		¢.10000E																	5			0.1		4	5			•		2 C			
i		5	801	0	1000			• •	0.100006	100	100	001	100	100	•	8																	3	}		8		8	3			5			Ì	Ō	
•	<b>،</b> د	•	<b>.</b>	0.0	d	ie			; ;	ö	ö	ċ	ö	ö	ŏ	ġ																	785			ž											
	:	2	5				5			5	10	5	5	10	5																		KE 20- 0-78588	) 	•	0-17776E		-	3 <b>20000 1</b>				ę	ទុះ	គីទី	0.2571436 00	
	1	ÿ	ÿ																																								-0.1428576-01	436			
	r	ğ	0.10000E				0.100000			0.100000E	0.100000	0.100000	0.100006	0.100006	8	0.0																	10			0.111116 00			8			5	241	1250			
	კ		0-1					•••		3			6	9	3																							•	9.66667.0			J	ę	<b>.</b>	<b>.</b>	5 d	5
								_					_	•		_																	A 17018	5		2		i					=	2	22	82	
		10 3				i		10 1		10 31						10 30																		5		10			8				0.0444475-01	ĕ		0.200007500	
	•	0000								0000		Ś	0000			ğ																		Ľ		-			ğ			4	3	55	225		
	J	0_1 00 000E				•••	0.10000E		•••	0.100005	0.100006			0.100006		0.100006																	8	B		5 -0.22222E-01		•	0.40006			ს	9.0	0.1			5
						•			• •																											ġ											
				5			5				5 G			5 2		5																		****		-0.88886-01			8				10-3	ŏ		8	
	-		0.0	B			0.100006	ğ		2000		5	255		Š	.100000																	•			-1			0.53335			-	0. 4444 X	5230	0.266667	2	X+17 CB-0
	5	•		ğ	e,	0	100	80	•	0	56	3,		3	<u> </u>	8																	ł	ľ.					6-0			J		-	2.1		Ģ
		•	•	ċ	0.0	0.0	ö	ö	0.0		5 c	5 e	<b>5</b> (	5 e	Ď	jė																							8				9				
		2	5	2			20	10			5		1	53	5	10																		8 ¥		10-348			3136				ş		8		ī
																																				~ ~		-				_				0.1932306	
	•	1		800			.100006	100000			0.1000COF		_	0.1000C0E	C. 100000	-0 -100000																		0.0164		ġ						•	1			1	22
		<u>ן</u>		0.100006	0.0	0-0			0.0	0.0					3																				ic Tol	10-1			8		×		•	; ;	5		•
											~					-	,		_	-		-	-	-			-	-	<u> </u>	-		56		-95u	ATTEN SEFECTS VECTOR	~		_ •	0. 341611.0	8	AATRLE		9	83	:=	12	10
											5 ¥								0	•	0	•	•	•									, ;	5	1211			CICI	0.93							C	-C.142 1376-0
		-														2220		•	žoč	500	Ű Ű	C.100000	c.100000	9.100000		U U U U U U	ő S S	jo C O	Ŏ					111		Ĩ R	}	2	8	C.422222	En S I			0-1238575			57
Ĩ		J	0.0	0-0	0.0				•••••••••••••••••••••••••••••••••••••••		9.10	•••	0.0	0.0	0.0	6.0 0 1000005		J	0.100006	c.1c00305	c. 100cc0f	c.10	C. 10	0.10	0.0	C.10	0.100000	0.100000	0.10				;	0.4434416 00			1	PEANS VECTOR	×	•••	DISPERSION		5			) 4 ; ;	-C-1
DATA MITIE			0																						í F											1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		5	•• ******•	ł					<b>.</b> -		
A I			•	1	•			• •	•		-			2	-		5		-	~	-	•	-		1	1	•		=		-	23 1 2	- L	-754					•	ent an-				<u>.</u>			1
8			ė							ė	ė	é	ė	ė	ė	ė	i i		ć	é	é	Č	é	é	Ċ	ė	ė	é	•	•		•	Ľ	æ	•	~											

235.

٠

0.1128581-0 0.17128 00 0.202114-0 0.20218-0			
0°3726602°0 10-3010626°0 10-3020671°0 10-3050671°0		101/21- 0.72/101	
0.100006 00 0.5714296-01 0.5714296-01 0.4285726-01		_	
0. 10-11 (1000) 0. 129572 (-01 0. 429572 (-01		NONDGENEITY COEFF- 0.20960	EST  MATE= 0.01382
10-34240 10-3424240 10-3424240 10-3424240 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-344440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34440 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-34400 10-3440000000000000000000000000000000000			
10-3756000°0 10-375600°0 10-375600°0		sample dispersion i saturation coept- 0.30001	
C. 3009996-C1 0.2097196-01 C.2097196-01 C.9923076-02	C- f 0.052307f-01 C.300(5)7f-01 C.300(5)7f-01 C.300(5)7f-01 C.329120f-01 C.5271206f-01 C.5271206f-01 C.5271206f-01 C.5271206f-01	DISPERSICN 1 SA	VARIANCE OF ALPHA ESTIMATE UNDER
•			VALIAN

waiance of unglasse met estimates under anover 0.02511 Estimater 0.01015

4

٠ •

a contraction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	
BIBBBLARLARDALIARIALAR BIBBBLARLARDALIARIALAR BIBBBLARLAR BIBBLARLAR MAN VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE FINDE VARIANCE	

0.00077-01 0.10000 00 0.33546 00 0.43157E 00 0.44548 00 0.57502E 00 0.67234E 00 0.79547E 00 0.00014E 00 MEAN VECTOR

. •

.

PARALLEL ITEN CCVARIANCES

	0.99194 -01 0.282814 -01 0.282817 -01 0.282817 -01 0.295946 -01 0.27702 -01 0.27702 -01 0.27702 -01 0.27702 -01 0.27702 -01 0.27702 -01	
~ ئ	0.1224245-01 0.205435-01 0.3179965-01 0.4115405-01 0.47792045-01 0.2280295500 0.2770255-01 0.1422915-01	
•	0.184696-01 0.494866-01 0.42994766-01 0.5297166-01 0.29429166-01 0.2342866-01 0.234266-01 0.234266-01	
	0.491804E-01 0.491804E-01 0.491804E-01 0.5333374E-01 0.249754E-01 0.3047754E-01 0.3047754E-01 0.210272E-01	
	C- 40.00000000000000000000000000000000000	
	C- 3 0.17917-01 0.428278-01 0.428378-01 0.49387-01 0.49387-01 0.3822876-01 0.3822876-01 0.3822876-01	
MATRIX	C- 2 0.203739 -01 0.1202726 -01 0.447646 -01 0.447646 -01 0.449466 -01 0.449466 -01 0.3099926 -01 0.1334796 -01	
WITMIN TEST DISPERSION NATRIX	C- 1 C- 0001995 -01 C- 17921 75 -01 C- 19993 75 -01 C- 189 2505 -01 C- 122025 -01 C- 122025 -01 C- 122025 -02 C- 91 945 -02 C- 731 1266 -02	C- 7 C- 711126-02 C- 1017176-01 C- 1027126-01 C- 2291966-01 C- 2293166-01 C- 2293166-01 C- 10949516-01 C- 10949516-01 C- 10949516-01
<b>MIMIM</b>	-~~*******	-~~*******

•

•

••

### CLASS INTERVAL: 0.200336 00 n( munu-MAIINUM 0.10000E 02

# DESCRIPTIVE STATISTICS FOR HEAN SOUMLES AND EXPECTED VALUES UNDER ANOVA NODEL

.

VARIANCE EXPECTED DESERVED EXPECTED 0.193605F-01 0.280450E-01 0.6274 TRE-01 0.638955E-01 0.281996E-C3 0.406131E-03	Mit Expectito Maliante Expectito Maliante   Mit FEA Expectito Vaniante Expectito Expectito   Mit -C. Messoe C. Messoe O. 9951111-02 O. 5901146-02   I -C. Messoe Co. 9190050 O. 9971037-02 O. 5901146-02   I -C. Messoe O. 1010040-01 O. 100276-02 O. 1010040-01   I -O. 1300160 O. 1010040-01 O. 10101040-01 O. 10101400-02   I -O. 1300160 O. 1010040-01 O. 1010040-01 O. 10101400-02   I -O. 1300160 O. 1010040-01 O. 1010040-01 O. 1010040-01   I -O. 1300160 O. 1010040-01 O. 1010040-01 O. 10100400-01   I O. 1010040-01 O. 1010040-01 O. 10100400-01 O. 10100400-01   I O. 1010040-01 O. 1010040-01 O. 10100400-01 O. 10100400-01   I O. 1010040-01 O. 10100400-01 O. 10100400-01 O. 10100400-01   I O. 10100400-01 O. 10100400-01 O. 10100400-01 O. 10100400-01   I O. 10100400-01 O. 10100400
V M 0. 1936 AVEO 0. 1936 03 0. 4274 78 0. 24194	ESTIMATCS AND VANIANCE 0.951111 0.9710311 0.0110967 0.1010967 0.1024947 0.1024947 0.1024947 0.1024947
EXPECTED 6.4430796 00 0.1100016 01 0.150076 00	<b>F</b> 51A11571C5 FCA FIXEC <b>FF</b> FCT <b>F</b> FAA <b>F</b>
ME AN COST RYED 0.445152E 00 0.1188402 01 0.1188402 01	IN STATISTICS FOR FIRE FF HEAN -C. MP390E C0 -0.3994515 0 -0.394163E C0 -0.1949452 0 -0.198110 C0 -0.194934E 0 -0.1392035-61 -0.6294345-0 -0.294845-61 -0.6294345-0 0.30179457 00 0.1779365 0.3019487 00 0.1779365 0.303446 00 0.3054345 0
suaufCT 11tms France	

4

## Concerts and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

•

FSTIMATION IS BASED ON MINA POPARALAIMOVA, BLASEBI

ENDERED PAECUENCY OF RELIABILITY ESTIMATES DELCH -0.2" 0.5221018 01

ALTIMUP: 0.919994E CO PINUMU: -0.2000COE DO CLASS INTERVAL: 0.290000E-01

DESCAIPTIVE STATISTICS FOR RELIABILITY ESTIMATES

V.M.I.MCE EXPECTED 08588470 EXPECTED 0.319971E-01 0.349142E-01	
VAN LANCE CB SERVED 0. 319971E-01	
8	
ExPECTED 0.4029036	
4 8	
NEAN EXPECTED 00360VED EXPECTED 0.3999135 00 0.4027036 00	
5	
ALL COF	
-	

COMPARISON OF RELIABILITY

	100000			0.200000 02
- 1 - 1 - 19971E - 19990E - 19990E - 19992E - 112865	101101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10001 10001 10001 10001 10001 10001 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 100000 100000 100000 100000 1000000			0.341114 02
-~~***	2:22	********	1111111111111111111111 222222222222222	7

CASES LESS



.

241.

•

•

ESTIMATION IS BASED ON REISTOF COMPECTICATIONA.UNBLASED)

EMPECTED FAEQUENCY OF RELIABILITY ESTIMATES BELCH -0.2- 0.522167E 01

MAXIMUM. 0.9599946 00 MIMUMUM. -0.2000006 00 CLASS INFRAME. 0.2900006-01

DESCAIPTIVE STATISTICS FOR RELIABILITY ESTIMATES

M 1 AMC EXPECTED 10 19 E-01 0.256927E-01
V AR I ANCE DOSERVED 0. 2352 556-01
ExPECTED 0.0316031E 00
<b>N</b> <b>N</b> <b>N</b> <b>N</b> <b>N</b>
NEAN 08 SENVED 0.457105E 00
Ŋ
ALL CCP

CCHMMISCA OF RELIABILITY

100000	1000001 1000006 1000006 1000006 1000006	C.100000 01 C.100000 01 C.100000 02 C.100000 02 C.100000 02 C.100000 02	150000E 250000E 250000E 350000E 350000E 360000E 360000E	7900005 4400005 9400005 9900005 7200005
 C. 716455 00 C. 912C215 00 C. 4019845 01 C. 13162125 01 C. 13162125 01 C. 1319262 01	2002026 2441306 2441306 2441306 2441306 2441306 2441306 2441306	0.4799016 01 C.5767966 01 C.911146 01 C.9146926 01 C.9146926 01 C.91726 01	0.140995 02 (.1607187 02 (.264735 02 0.2641546 02 0.274615 02 0.3546715 02 0.424015 02 0.44405 020	
 ••2=22	******	111111 82821		11111111 121111111 121222233

÷ .

UPPER BOQUED 6.0362% 0.3000000 00 0.1200000 02 0.2000000 02 

•

٠

•

