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ABSTRACT

The exact sampling distribution of reliability estimates of
a composite test is known only for the case when the test scores of
the parts can be expressed in a linear model and satisfy all the assump-
tions of the two way mixed mode! ANOVA with one observation per cell
including normality of true and error scores. For more general cases,
the sampling distributions have been in general unknown or ignored by
the psychometricians.

This study examined the more liberal concepts of test theory
and reliability in terms of the underlying models and assumptions, and
investigated the sampling distribution of reliability estimates by
performing a number of computer simulated sampling experiments under
various models and distributional assumptions for true and error scores.
The models employed were a mixed model ANOVA, essentially 1 equiva-
lent measurements, congeneric and multi-factor true score models for
continuous cases, and the normal ogive model for binary item cases.
For the distribution of true or latent and error scores, uniform,
normal and exponential distributions were used.

The most general mode! was found to be a multi-factor true
score mode)! and all others could be shown to be special cases of this
model. The most important factors influencing the sampling distribu-
tion are found to be uni-factorness and normality of true scores for
continuous cases, and homogeneity of item difficulty parameters for
binary cases. The distributions of error scores were found to be

unimportant for both cases.



ii

To determine the robustness conditions of the traditional
F-test, the empirical distributions obtained by the sampling experi-
ments were compared with those theoretical distributions obtained under
the ANOVA and normal theory model. A number of conditions for robust-
ness are given.

A new formula for the standard error of reliability estimates
is introduced by analytica)l means and the validity of the formula was
examined through computer simulated experiments. The new formula was
found to be superior to traditional formulas based on normal theory
when the normality of true score is not valid. Though the formula is
derived under the ANOVA model, it was also found to be better than the
traditional formulas under more general models.

Implications of these findings to test theory and applications
are discussed and some numerical examples are given to show how the
findings and the computer programs developed might be applied in

practical situations.
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CHAPTER ONE

INTRODUCT ION

1.1.0 The General Problem

The estimation and interpretation of reliability has been a
central issue for psychometric theorists and test authors as well as
the users of educational and psychological tests. The reliability
coefficient of a test, a population parameter, is defined as the ratio
of the true score variance due to individual differences of the subjects,
to the total test score variance in a population for which the test is
developed.

A number of formulas for measuring reliability have been
derived by many theorists since the initial formulation by Spearman
(1910) of his theory of true and error scores. Most of the formulas
express rellability as a function of the momenzs of the part scores
and the total test scores under assumptions of parallel or equivalent
measurements among the part tests, or, as a correlation coefficient
between the observed test scores and a second set of scores on a real
or hypothetical variable. In most cases, the formulas involve only
point estimation of the reliability, and have been obtained by sub-
stituting the sample moments of the part-scores and the total scores
into formulas which are valid in the population. Statistical
properties of such estimates are in general unknown or ignored.

Investigation of the distribution of reliability estimates
requires a mathematical mode! and a number of assumptions. The

validity of the estimates of reliability largely depends on the validity



of the model and underlying assumptions. Even for rather rigorous
models and assumptions the sampling distributions are unknown except
in some special cases.

For a valid statistical inference about a population parémeter
the sampling distribution of the parameter estimate must be known, and
the reliability cannot be an exception. For example, if a standardized
test has been administered to a sample of subjects, it is sometimes
necessary to compare the sample reliability estimate with the reliability
claimed by the test authors, i.e., it is desirable to know whether the
difference between the two values can be attributed to sampling fluctu-
ations, or, whether there is a significant difference due to population
difference. |If a test is administered to two independent samples of
subjects, a comparison of the two estimates of reliability may be
necessary to determine the underlying cause of any observed difference.

The standard error of the reliability estimate is another
useful measure of the precision of the estimates, but without any
knowledge of the sampling distribution of the estimates, confidence
intervals for the population reliability are impossible to calculate.

Most of the available formulas for reliabllity estimate
depend on the estimation of variance components, using various,
explicit or implicit, parallel or equivalent test form assumptions
among the part test scores. Even though the estimates of the variance
components thus obtained are usually unbiased, the estimates of the
reliability are, in most cases, biased, and the statistical properties
are unknown.

Since the esarly years of test theory, it has been



recognized by theorists and test users that the calculated reliability
is, in fact, nothing more than an estimate of the true or population
reliability, and therefore subject to sampling fluctuations. Even
with this recognition, little work has been done to investigate the
distribution of such estimates.

This study will investigate properties of the sampling
distribution of reliability estimates based on Alpha or KR20 formulas
using computer simulation techniques, and will employ various models
and distributional assumptions for true or latent, and error scores

described in the following two chapters.

1.2.0 Review of Related Studies

1.2.1 Concepts of Reliability

Even during the initial developments of test theory, psychol-
ogists showed interest in the formula for the standard error of reli-
ability estimates as an indicator of the precision of such estimates.
During this period most psychologists interpreted rellabllity as
a correlation coefficient between classically defined parallel measures.
Using this definition, attempts were made to apply the well known
sampling distribution of correlation coefficient with the assumption
of a bivariate normal distribution. However, unlike the usual inference
about correlation coefficients, in most cases, the population relia-
bility is considered to be close to unity rather than zero, and hence
its distribution has extreme negative skewness making the usual
normal approximation of little use (Jackson and Ferguson, 1941, p. 12).

When the split half method was introduced, the reliability



estimate was seen to depend on the way the test was split. As a result,
the reliability estimate based on Alpha or KR20 was considered to be
superior to the split half estimate since the former gave a unique
estimate.

Cronbach (1951) has shown that Alpha or KR20 is an average
of all possible split half reliabilities in the population. He
thoroughly investigated the coefficient Alpha from the point of view
of factorial structure. The Alpha coefficient was interpreted as the
proportion of the test variance due to all common factors among the
part scores, and as an index of consistency, an estimate of first
factor concentration. He also showed that Alpha is a lower bound of
the test reliability, but did not explicitly discuss the sampling
aspect of the Alpha estimate.

The concept of test reliability has been under continuous
change: the classical concept based on parallel tests has been
modified and the assumptions relaxed. Burt (1955) and Tryon (1957)
initiated a new concept of domain sampling, and the reliability as
an index of generalizability has been advocated by Rajaratnam (1960),
Cronbach, Rajaratnam and Gleser (1963), and Rajaratnam, Cronbach and
Gleser (1965). Their conceptual framework relied heavily on ANOVA
models, and initiated a process of liberalization of reliability
theory from the rather restrictive classical orthodoxy of test
parallelism. However their efforts concentrated on the problem of
point estimation, and little attention was paid to sampling aspect
of the estimates.

Lord and Novick (1968, p. 50) defined the concept of

‘essentially 1 equivalent measurements’', and Novick and Lewis (1967)



have shown that the coefficient Alpha is identical to the reliability
coefficient if andonly if a test consists of essentially 1 equiva-
lent parts. |f this condition is not satisfied Alpha is a lower bound
for the reliability, confirming previous studies of Guttman (1945, 1953),
Cronbach (1951), and others. To evoke the principle of essentially 1
equivalent parts, it has been argued that only true score variances need
be identical, i.e., homogeneity of true score variances, and not identical
error score variances nor identical true scores among the part tests.

The assumptions of classical parallel tests are, therefore, relaxed
substantially. Jdreskog (1968, 1970, 1971) defines the concept of
congeneric test scores which measure the same trait except for errors,
relaxing the essentially 1t equivalent measurement conditions further.
Under this model any pair of such tests have linearly related true
scores. The sampling distributions of the reliability estimates under
these models are not yet generally known.

As an alternative to conventional uni-factor true score
models, a multi-factor true score model has been advocated by Laforge
(1965) using the multiple factor analysis model. An estimate of the
squared multiple correlation of a part score with the scores of
remaining parts, which is one estimate of the test communality in
factor analysis, is proposed as an estimate of the reliability of the
part score.

for certain kinds of tests, especially in the field of
achievement tests, this approach seems more reasonable than the
conventional uni-factor approach, but the old controversial problem
of determining the number of factors in a factor analysis must still

be resolved. However, the multi-factor model provides a general model



for computer simulation purpose, as will be seen in the next chapter,
since the ANOVA and other models may be considered as special cases

of the multi-factor model.

1.2.2 Sampling Theories of Reliability Estimates

Lord (1955) defined three kinds of sampling arising in test
theory; sampling of subjects (Type 1), part tests or items (Type 2),
and a simultaneous combination of the two (Type 12). Lord also
discussed the sampling distribution of KR20 under Type 2 sampling
without the presentation of the standard error of the KR20 estimates
in terms of the population parameters.

A statistical sampling theory of the reliability estimates
has been made possible through the application of ANOVA techniques to
test theory. Hoyt (1941), Jackson and Ferguson (1941), Ebe! (1951),
Burt (1955), Cronbach, Rajaratnam and Gleser (1963), Feldt (1965, 1969),
Maguire and Hazlett (1969) and many others investigated the reliability
estimate under some form of ANOVA models. However, most of their
discussion was limited to point estimation and little attention has
been paid to the sampling fluctuation of the estimates or interval
estimates.

Since the ANOVA models usually provide unbiased, consistent
estimates of the variance components by some linear combination of
various mean squares, the reliability estimates thus obtained are in
general consistent estimators. But, in most cases, they are biased
and do not have the desirable minimum variance property.

Although Jackson and Ferguson (1941, p. 40) related the

F-statistic to the so called 'sensitivity of a test', or the square



root of the commonly referred signal-noise ratio, it was Ebel (1951)
who first explicitly linked the sampling distribution of the reli-
ability estimate itself to an F-statistic. He applied the concept of
‘intra-class' correlation coefficient to a rating data set, and by
employing the well known F-distribution, has shown a way to obtain
confidence intervals of the population intra-class correlation which
he interpreted as the reliability of a judge. However, the assumptions
underlying the ANOVA model were not explicitly specified.

Kristof (1963) presented a rather complete sampling theory
of reliability estimates within the context of the assumptions of
classical reliability theory with the exception that the means of the
part tests were allowed to be different, i.e., the part test scores
are 'essentially' parallel measurements. Under Type | sampling and
the assumption of a multi-normal distribution of the part test scores,
a maximum likelihood estimator of the common correlation among the
parts was obtained, i.e., the intra-class correlation coefficient. It
was shown to be biased. A bias-free formula was introduced and the
sampling distribution of the estimates based on this formula is shown
to be related to the F-statistic. A method of statistical inference
about the intra-class correlation, which was interpreted as the
reliability of a part test, was suggested. Kristof's results are in
close agreement with those obtainable under an ANOVA model. He has
also showed that the estimate of the Alpha coefficient, in terms of
second moment sample statistics, is the same as the maximum |ikelihood
estimator of the reliability when a test has been divided into
essentially parallel parts, with an assumption that the parts have 2

multi-normal distribution.



Kristof (1964) also investigated the distribution of
reliability estimates for the first time without relying on the
classical equal variance assumptions among the part test scores. A
working formula for testing the significance of the difference between
the two reliability estimates was derived under the assumption that
each part has been administered to the same sample of subjects and
that each part test could be split into parallel halves. He also
investigated (1969, 1970) the sampling distribution of reliability
estimates under the multi-normal assumptions when a test has been
split into two parts not necessary parallel in the classical sense.

A likelihood ratio test of the point hypothesis concerning the popu-
lation value of Alpha was derived. This method was then used to yield
confidence intervals for the parameter for any chosen level of
confidence.

For the case where the parts of a test are simply binary
items, the sampling distribution of KR20 estimates is more complicated
than the case of continuous part scores. Most theorists have assumed
an intermediate hypothetical variable between the item response and
underlying true or latent trait score and linked the two variables with
the help of the intermediate variable and a mathematical model. Lord
(1952), and Lord and Novick (1968) used a normal ogive model, while
Birnbaum (1967, 1968) proposed logistic, Poisson and other mathematical
models. Although the latent trait approach provides means for investi-
gation of the relationships among the item parameters and the test
scores, nothing analytical has yet been done for the distributional
theory of reliability estimates or its application even with the

restrictive mathematical models and assumptions.



Aoyama (1957) has given explicit formulas, in terms of
population parameters without any distributional assumptions, for the
expected value and variance of KR20 estimates for Type | and Type 2
sampling situations. These results clearly indicate that the estimates
are biased. However the formulas involve some approximations and cal-
culation of higher order moments, and are too complex for any practical
use.

Since the exact sampling distribution of KR20 estimates is
not obtaingble by analytical means, some researchers have attempted to
approximate it by an ANOVA model. Feldt (1965) has investigated the
applicability of the ANOVA model. He pointed out that imposition of
a one-zero scoring scheme violates such assumptions of the ANOVA model
as continuity of the scores, homogeneity of error variances and
independence of true and error scores. He compared the results obtained
under the ANOVA model with an empirical distribution based on real data
reported by Baker (1962), and claimed the model robust when the
assumptions are violated. Feldt referred to the model as a two way
random effects model, but actually it was a mixed mode! as will be
seen in the following chapter. Further applications were made of the
method by deriving a scheme for testing the equality of two KR20
coefficients based on two independent samples us'ng an approximate
distribution of the product of two independent F-statistics (Feldt,
1969). Cleary and Linn (1968) adopted the same method as Feldt and
gave an explicit formula for the standard error of KR20 estimates.
However, their results are heavily dependent on normality assumptions
which are not satisfied for KR20 cases.

Except for the case of approximation by employing unrealistic
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assumptions of the ANOVA model for essentially parallel tests, most of
the attempts to obtain the sampling distribution of KR20 estimates

have either failed or resulted in unuseable formulas such as given by

Aoyama (1957).

1.2.3 Empirical Approaches

The use of empirical approach to solve a statistical problem
is as old as statistics itself. For example "Student' (1908) derived
the analytic expression for the t-statistic and also established the
validity of his argument by a sampling experiment. In education and
psychology, a number of empirical investigations have been performed,
with or without the help of a computer, to ascertain the robustness of
the F-test when certain assumptions underlying an ANOVA model are not
satisfied. Norton (1950), Boneau (1960), Hsu and Feldt (1969), and Bay
(1970) are some examples of such investigations.

In reliability theory, Baker (1962) investigated a sampling
distribution of KR20 estimates under Type | sampling constraints by
actually performing experiments using real test results. Payne and
Anderson (1968) tabulated the sampling distribution of KR20 estimates
based on computer simulation. However, their experiments were |imited
to the cases of equal item difficulty parameters and inter-item
correlations, i.e., phi coefficients.

Nitko and Feldt (1969) performed a computer simulation
study of KR20 estimates and reported that, in contrast to general
belief, the effect of item difficulty is minimal. Nitko (1968)
emp loyed the same method to investigate power functions for the test

of significance of KR20 in one and two sample cases as proposed by



Feldt (1969). Weitzman (1967) reported the result of a simulation
of test-retest reliability of a multi-choice test assuming a beta
distribution of true scores. Shoemaker (1966) also used a computer
simulation model to investigate the estimate of Cronbach's gener-
alizability coefficient for unmatched data to clarify the extent to
which stratification must be taken into account in the choice of the

generalizability formula.

1.2.4 Summary

Recently, the concept of reliability has been modified and
the restrictive classical assumptions of parallel tests relaxed
substantially. However, the sampling distribution of reliability
estimates based on Alpha or KR20 formulas are in general unknown
except for the case when the unrealistic ANOVA model and underlying
assumptions are used.

A number of fragmental attempts have been made recently to
investigate the distribution by empirical methods, but there is no
overall study into the statistical properties of the distribution under
the more liberal concept of reliabllity either by analytical or
empirical means.

The purpose of the present study is to investigate the
statistical properties of the sampling distribution of reliability
estimates when the classical parallel tests or more recent ANOVA
models and the assumptions underlying these models are not all
satisfied. More liberal concepts of reliability are to be examined
in terms of models and assumptions underlying them, and sampling

distributions under these models with various distributional assumptions
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not necessary normal will be investigated by employing computer
simulated statistical experiments. Comparisons are to be made of
these results with those obtainable theoretically from the ANOVA mode |

and normal theory to see the robustness of the theoretical distributions

against the violation of assumptions.

1.3.0 Some Preliminary Specifications and Notations

1.3.1 Specifications

(a) With some exceptions, Greek letters will be used to
denote population values, while the observations and sample quantities
are denoted by Roman letters. To make notation simpler, no attempts
are made to distinguish random variables from their observed values.

(b) Scalars will be denoted by capital and lower case
letters, matrices will be denoted by underlined capital letters, and
column vectors by underlined lower case letters. Row vectors will be
indicated by transpose of column vectors, i.e., by priming them.

(c) An estimator of the population parameter and its value
will be indicated by placing a caret or 'hat' over the parameter.

(d) The normal distribution with mean u and variance
02 will be denoted by N(u, oz). In general, a J-variate normal
distribution having a mean vector and a dispersion or variance-
covariance matrix I will be denoted by N(gJ E). The chi-square
statistic with n degrees of freedom and the F-statistic with n
and m degrees of freedom are denoted by x: and Fn;m respectively.

(e) The expectation, and dispersion operations for a
vector random variable x will be denoted by E(x) and 0(x),

namely,
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-E(x|)-
E(xz)

E(ﬁ) - : ’

E(xJ)
Var (x|) Cov (x',xz) . . Cov (x'.xJ)-
Cov (xz.x|) Var (xz) Cov (xz.x3) . Cov (xz,xJ)

0(x) = Cov (x3.x|) Cov (!3"‘2) ) .

LFov (xJ.xl) . . . Var (xJ) |
where E(x'). Var (x‘). and Cov (x'.xj) denote the usual expec-
tation of X variance of Xis and covariance between X and
“j respectively.

(f) The correlation coefficient between two random variables

x and y Is denoted by Cor (x,y), namely,

Cor (x,y) = Cov (x,y) L
[var (x) var (y)])

(9) An identity matrix is denoted by |, while a vector
of length J whose elements are all I's is denoted by .

(h) Dot subscripts are used to indicate sample msans.

(9) Braces, { )}, are used to indicate all elements in »

set of variables.



1.3.2 Notations

The following is a brief glossary of important symbols used

frequently.

k

>N

Oj

indexing subscript for subjects in the sample, i =1,2,...,1
indexing subscript for subjects in population, k = 1,2,...
indexing subscript for parts (items) of a test, j = 1,2,...,J
sample size, a fixed constant

number of parts (items) in the test, a fixed constant

the observed score random variable of subject | on the jth
part test; it stands for the corresponding response strength
variable for the binary item test

the observed score random variable of subject | on the jth
item, takes on values one or zero

the true score of subject | on the jth part

the error score random variable of Ylj

the true score of subject i after adjustment is made for
difference in difficulty levels among the J part tests

the effect or ability level of subject | in deviation
form, m -y

the fixed effect of jth part, or the threshold constant for
jth item; indicates the difficulty level of jth part (item)
the expected value of m, over the population

the variance of m, over the population, assumed to be
common to all J parts under ETEM assumption

the variance of ‘lj over the replications, assumed to be
common to all subjects for all specific part j; defined In

terms of response strength variables for the binary case



o: common value of °:j among the J parts under the
homogeneity of error variance assumption

Y the urweighted sum of J part scores for subject |

x; the unweighted sum of J items for subject |

o§ the variance of the jth part (item) score

03 the variance of \

o: the variance of x;

Aj the regression coefficient of yij on f' under the uni-
factor true score model, or the standard deviation of the
true score of the jth part; the biserial correlation between
‘lj and fl for the binary item case
ij’ the tetrachoric correlation between items j and j'
p]]' the Inter item correlation coefficient between items j and j'
‘Ij standardized error random variable, i.e., e'j = oejelj
f' standardized true score random variable for continuous

case i.e., a, = °Afi; for the binary item case the

latent or factor score

1>

the factor loading matrix of size J »x r
r the number of factors of the true score

Pj(f) item characteristic function of the jth item

lj item difficulty of the jth item

¢(z) the normal density function

o(x) the cummulative normal distribution function

°] the reliability coefficient of the jth part

0 the reliability coefficient of the unweighted sum of

J parts (items)



Ya the kurtosis of true score a, or fI

Ye the kurtosis of error score e or

iJ

vy the kurtosis of test score 2

t'j

1.3.3 Vectors and Matrices

The following vectors and metrices are used frequently.

p— - e o -
i e ] M
Yi2 €2 A2
!l' - M R £‘ - * . L-
Y14 €14 | A
- -
g1 0 0 . . 0
0 a.2 0 . . 0
0 0 a.’ . . 0
r- :
o . . . [ ] G.J
- -t
o -
n M2 : . Mie
22 ‘22 . . \ar
A3 M2 Ay
A- :




where 2\
jm

on the mth
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is the factor loading or regression coefficient of yU

true or factor score under a multi-factor model.

1.3.4 Definitions

The following is a short list of definitions for the most

of ten used terms in this paper.

ANOVA Model

Parallel

Essentially
Parallel

(ANOVA)

Unless specified otherwise, this term refers to a
two way mixed model analysis of variance linear model
with one observation per cell. The levels of the
row factor stand for the subjects in the sample, and
the effects are assumed to be random, while the
levels of the column factor stand for part tests or

items of a composite test, and the effects are

assumed to be fixed.

Two measures are said to be classically or strictly
parallel if (a) the test score may be considered
consisting of two independent parts, true and error
scores, (b) true scores are identical, and (c) error
and total scores have idenical means and variances

for each of the two measures.

The same as parallel measures except that the true
scores may differ by a constant. The true, error

and test scores have identical variances, but the
means of the true scores may differ. Under the ANOVA

mode!, the measurements are essentially parallel.



vt Equivalent

Essentially

1t Equivalent

(ETEM)

Congeneric

True Score

Multi-factor

(n.f.)

The same as parallel measures except that the
variances of the error scores may differ. The
variances of test scores may differ, but the

means must be equal.

The same as 1 equivalent measurements except
that the true scores may differ by a constant.
The variances of true scores must be identical,

but means and variances of test scores may differ.

The same as essentially 1 equivalent measurements
except that the true score is required only to
measure a single trait. The true scores of two
measures are linearly related, but their means

and variances may differ.

The same as congeneric true score case except that
the tests measure more than one trait, i.e., the
factorial structure of the true score could be

more than one factor.

The above definitions of different but related types of

msasurements are compared Iin Table 1.1.



TABLE 1.1
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Comparisons of the Definitions of Various Measures

Type of True Scores Error Scores Test Scores
Measures

Mean Var. Mean Var.
Parallel 0.0 | | [
Essentially
Parallel (ANOVA) 0.0 1 0 '
v Equivalent 0.0 D | 0
Essentially =
Equivalent (ETEM) 0.0 0 0 D
Congeneric 0.0 D D ]
Multi-Factor
(M.F.) 0.0 D 0 0

Note:

True scores for the same subject.

2

Means in the population.

3Variances in the population.

kl:

identical among the measures.

so: May differ among the msasures.
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CHAPTER TWO

TEST MODELS FOR THE CONTINUOUS PART SCORE CASES

Two distinct cases may be considered for a theory of relia-
bility: the first is the case of continuous observed scores for the
parts of a test, and the second is the case in which the scores of the
parts are 'counter' or 'indicator' variables, i.e., a one is assigned
for a correct response and zero for a wrong response. Due to the neces-
sity of a different statistical treatment for each of the two cases,
only the continuous case is duscussed in this chapter. The discussion
is also limited to Type | sampling situations. The binary item
situation wil) be discussed in the following chapter.

For the continuous score case, ANOVA type linear models
are the most powerful and have a wide range of applicability. From
among many possible models, the discussion is limited to a two way
mixed mode]l ANOVA with one observation per cell. Generalization to
other more complex designs is a straight forward matter, however,
complexity and difficulty of interpretation is a problem due to inter-

action effects.

2.1 ANOVA Model

A test consisting of J parts (J > 2) is considered under
the strict parallelism assumptions among the J part tests except that
the means of the J parts may differ by a constant due to the
difference in the difficulty levels of the parts. |f the test is

sdministered to a random sample of | subjects (I > 2), the cbserved
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score of the ith subject in the sample on the jth part, a random
variable denoted by yij' may be written in a linear form in accordance

with the classical theory of true and error scores, namely,

(2.1) y.. =T, + e

i i i i=1,2,...,0; j=1,2,...,J,

where Tij and eij denote the true score and error score respectively.
An infinite idealized population of subjects denoted by P,
from which the sample of | subjects is supposedly drawn, is hypo-
thesized and the findings on the sample are to be generalized to the
population. Labelling the subjects in P as k (k=1,2,...), the
score ykj may be conceptualized as the realization of a random
process which may occur under repeated measurements on a single
subject, labelled by k, on a fixed part test J with the assumption
that the subject does not change or ‘learn' over the repeated measure-
ments, that is the replication is under experimentally independent
conditions. Then the true score tkj may be considered the mean of
ij over replications, or the expected value of ykj over the
distribution of ykj for fixed k, or over the so-called ‘propensity
distribution’ of Yij (Lord and Novick, 1968, pp. 29-30). Mathematically
ij may be defined as the expectation of the random variable ij'
for given k and j. The elements of ykj have a joint distribu-
tion with respect to k in the population P and the number of
replications.
8y the assumption of parallelism, the true score 'kj may

be written,

(2.2) \ T w(k) + aj .
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where Bj is a fixed constant specific to the jth part test represent-
ing the difficulty level of the part relative to the other parts, and
m(k) is the adjusted true score for subject k indicating the real
ability level of the subject, and assumed to be independent of j.
Thus, m(k) may be considered a random variable with repsect to k
distributed over the population P.

Since the (Sj) indicate only the relative difficulty

levels among the J parts, without loss of generality it may be

assumed that,

(2.3) Zsj = 0.

The labels of the subjects in the sample may be given by
(kl.kz,...,k.). and m = m(k') where m, is the adjusted true
score of the ith subject in the sample. If u and o: denote the
mean and variance of the adjusted true score m(k), then they are
the expected value and variance of the random variable m(k) cal-
culated with respect to the distribution of k in the population.
Since each of the | subjects may also be considered as a randomly
selected subject drawn from | Identical populations with mean
and variance a:, one subject chosen per population, each of the
("l) may also be considered as a random variable distributed indepen-
dently and identically with expected value . and variance c:.

The variance of the error random variable ekj' calculated
with respect to the propensity distribution of ykj' for fixed k

and j, shall be denoted by o:j(k). Although it is conceivable

that the brighter subjects with higher m(k) might respond to the
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test more consistently over replications, and have smaller variances,
for the present discussion, it is assumed that o:J(k) is the same for
all subjects in the population and the common error variance is denoted
by °:j' which depends only on j. This assumption is rather restric-
tive, but it is necessary since only one set of part test scores is
assumed to be available for each subject in the sample, and therefore
o:j(k) would not be an observable quantity without this assumption.

Furthermore, following the assumptions of classical paral-
lelism (e.g., Gulliksen, 1950, pp. 14-25), under the ANOVA model, it
shall also be assumed that the error scores (ekj} have expected
value zero and equal variance, denoted by a:, for all the J parts,
i.e., homogeneity of error variance is also assumed among the part tests.
In addition they are assumed to be independently and identically
distributed, and independent of {m(k)}.

The effect of a subject labelled k in the population is

defined as,
(2.4) alk) = mlk) - v,

such that the effect of the Ith subject in the sample, denoted by

8. is

(2.5) a = m -

Applying (2.2) and (2.5), (2.1) becomes the basic model equation,
(2.6) y'j-p+a|oajoc”.

with the following assumptions,
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'(a) {ai) and {elj) sre independent random variables,

() I B; = 0,
(c) (a‘} are identically distributed with E(o‘) =0,
(2.7) and Var (li) - oi

(d) {elj} are identically distributed with E(e'J) -0,

2
e

k and Var (elj) =g

Thus the expected value and variance of an observation y‘j

(2.8) E(ylj) -y + BJ; Var (Ylj) - o: + ai .

If 2 denotes the unweighted sum of the J part scores

for subject i, namely,

(2.9) v, * IJ Yy = vt de ¢ IJ ¢
then,
(2.10) E(y|) = Jy ; Var (y') - 42 o: +J o:

The reliabllity of a test is defined to be the ratio of the
variance due to individual difference or the ‘effect' of subjects to

the total test score variance (Lord and Novick, 1968, p. 61). For a

part j,
Var (a‘) o: o
(2.11) oy " V:?'T;?;T - ':,-:-:!- * ey
A ]
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where 9 = o:/o: is the so-called signal-noise ratio or the square of
sensitivity of a part test score (Jackson and Ferguson, 1941, p. 4o).

For the total score,
(2.12) o = - 30

Because,

= E((a, + °ij)('i + e‘j.)l
= OA .

and the correlation coefficient between part ] and J' (J#J') s

Cor (yij'ylj') = Cov (yij.ylj.)/(Var (ylj) Var (yij.)lk

2 2 2
= oA/(oA * °e) =0y -

The cosmon reliability among the J parts, pj’ is the so-called
‘intra-class' correlation coefficient which is the ordinary correlation
coefficient between the part scores Yy, and Yij under the ANOVA
assumptions above. Or alternatively, °j is the square of the index

of reliability, which is the correlation between ylj and °, since,

Cov (y,j.0)) = ELla; + &) (a))) = or »

Cor (ylj'.i) = Cov (yij.a')/[Var (y‘j).Var (.')15

Y

2 2,
R NACHR o.)' oh
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Under this model no assumption of random sampling of parts

The models used by Hoyt (1941), Ebel (1951), Winer

(1962, p. 124), Lord (1964), Feldt (1965), and Maguire and Hazlett

(1969) are essentially the same as this, although some treat the fixed

effect

of part tests and random sampling of J parts from it.

{Bj) as random effects assuming the existence of a population

shown, the assumption is not necessary.

p. 261) the unbiased estimator of

As has been

By the usual mathematical presentation (e.g., Scheffé, 1959,

FL
A

c: and

(HSA - HSe)/J;

o: are given by,

o2 = Ms ,
e e

where HSA and HS° are mean squares for subject effects and errors

respectively.

They are obtainable from an ANOVA table given as the

following:
TABLE 2.1
Two Way Mixed Model ANOVA Table
Source $.S. D.F. M.S. E(M.S.)
2 2 2
Subject | sS, = Jf(y, -y ) - MS, =55,/ (1-1) | o) + Jo,
Parts | S5, = |{(y.j-y_.)2 J - MSy=5Sy/ (4-1) aiol(fﬂj)/(.l-l)
2
Errors $Sg = IIIJ(VIJ-Y‘--y.j ve MS, = SS /v | o,

*y-l

Therefore If the relliability o

J

or p Is estimated by
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substituting the unbiased estimator of variance components into (2.11)

or (2.12),
~2
. (a) . °A ) HSA HSe i} F -
Py =TT -2 + (J-TJH +J -
oA#oe A e
{
(2.13) 5
i oy MS, - MS
L ®)

e
p = - = =1 - 1/F,
°Z + o:/J HSa

where F is the ratio of mean squares, namely F = HSA/HSe .

The derlvations up to and including equation (2.13) are
valid without any distributional assumptions on (‘l} and {elj)'
In order to obtain a sampling distribution of the estimate (2.13),

distributional assumptions are necessary. The simplest normal assump-

tions are

(a) all {a;) are distributed as N(O.a:) .
(2.14)

()  all e ;) are distributed as N(O.o:) .

With the above assumptions, model (2.6) is identical to the
two way mixed mode! ANOVA with one observation per cell (Scheffé, 1959,
)

2 2
p. 261). It can be shown that SSA/(J°A + o, and SSe/ae are

distributed as chi-square with I-1 and v degrees of freedom respec-

tively, or

2 2 2 2 2
(2.18) $S, ° (JoA * c‘) LPIRY SS. =0, X,

hence, F s
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ss,/(1-1) (o2 + o212 /(1-1)
Fa= "SA/NSe = —va = 3 = (1+JO)F
e O xv/v

(2.16)

Therefore, from (2.13) and (2.16), the following relationship between

-~

F-statistic and p and 6. or pj and oj can be made:

(2.17)
[v+ (U-1) 0,101 - p,]

®) " T

J

Feldt (1965), Nitko and Feldt (1969), Nitko (1968), and
Cleary and Linn (1968) derived the above formula, and even applied it
to the sampling distribution of KR20 estimates. Kristof (1963) obtained
the same results by means of maximum 1ikelihood methods using a multi-
normal assumption. He obtained an estimate of intra-class correlation
coefficient, which is equal to 5j' and gave the estimate of the
reliability of the total o, called a step-up reliability, by using
the general Spearman-Brown formula. However, this result is not new
for mathematical statisticians. For example Scheffé gave similar
results (1959, pp. 226-229).

Because (2.17) glves the relationship between the sample
statistic éj' or o and the population parameter pj or p in
terms of the well-known F-statistic, the sampling distribution of
reliability estimates can be determined; thus, it is possible to make
inferences about the reliability, and to calculate confidence intervals.
Within the essentially parallel assumptions, the sampling distribu-

tion of the reliability would not raise any questions provided the

{=l;v °
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assumptions (2.7) and (2.14) are al) met and the model as given by
equation (2.6) is adequate.
As a special case of the model, let all of the fixed effects

(Bj) be equal to zero, then the model (2.6) reduces to
(2.18) Yijmutap e, it=1,2,...,1; j=1,2,...,J .

This model is identical to the one way random effect model ANOVA
(Scheffé, 1959, pp. 221-235), and it can be shown that all the formulas
given above are valid with $S, and v replaced by (SSB + SSe) and
1(J - 1), and MS, modified accordingly. Model (2.18) is equivalent
to the classical parallelism assumptions (e.g., Gulliksen, 1950, p. 1)
except for the distributional assumptions which are not required under
the classical test theory. Kristof's case 2 and Maguire and Hazlett's
case C (1969) correspond to this model

Because the variance of random variables (a‘} and {e'j}

2

are equal to 9 and c: respectively under the ANOVA model, they

may be rewritten in terms of standard random variables {f‘] and

(cij)' namely,
a, =0, f'. i=1,2,...,10, and

.lj = o.clj, is1,2,...,0; J=1,2,...,J.

Then the mode! equation (2.6) becomes
ylj -y ¢ oAf‘ + ‘J + c‘c'j. il=s1,2,...,0; J=1,2,...,J.

The above equations can be rewritten in a matrix equation
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_y“_ —\HB‘T r-a‘J . [fi] -ae o o . . 0 ] -c“-
Yi2 u+82 %a 0 Oe 0 0 €2
® + * | . . | . ’
0 . .
Yy u+6J o 0 O . . O €
. J L 4 L 2 o 4 L

or, using the notations given in Section 1.3 of Chapter One,

(2.6') Y mutrf +¥e, i=1,2,...,0,

with the limitations A -xz- ...-AJ-aA , and

Y)p =Yt =¥y "0, . The assumptions of (2.7) may be

rewritten as,

(a) al} {f,} and {clj} are independent random variables,

(b) Zuj-u,where uj'u‘*BJ.

(2.7') (c) ol {f‘) are ldentically distributed with E(f‘) s 0,

Var (f‘) =1, or E() fi) =0, 0(a fi) =2,

(d) al {g;) are identically distributed with E(g‘) =0,

D(e;) =1, or E(re) =0, 0(15_‘)-72.

The distributional assumption of (2.14) becomes

(a) 2l {f} are N(0,1), or al)l (A f ) are N(O, ) )'),
(2.14')

(b) all (g} are N(O, 1), or all (¥ ;) are N(O, 12).
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2.2 Essentially 1 ggyiJilent Me.surements Model

Under the ANOVA model, 1ij = |+ 3, + Bj » hence with

js$j', t1,.-1.., =8, -B., =c where c is a constant which
ij iJ J J

depends only on j and j'. Therefore, the part tests satisfy the

conditons of the so-called essentially Tt equivalent measurements

(Lord and Novick, 1968, p. 50) which will be denoted as ETEM hence-

forth. Because the assumption of homogeneity of error variances is not

required for the definition of ETEM, the error variance °:j may depend

on a specific j. Thus, assumption (d) of (2.7) may be modified to

become,

(2.19) (d) (eij) are distributed with E(elj) = 0; Var (eij) = o:J.

The variance of y'j and the covariance between ylj and

ylj' are given by

2 2

Var (Ylj) - E[y|J-E(y|J)]2 -0, ¢ Ogj *

(2.20)

Cov (yij'yij‘) - E((YIJ-E(YIJ)][Yijl.c(y'jl)]) L 0: .
Therefore, the rellabllity of jth part test is given by

o2
(] - A
j 2, 2 °
o% * T

(2.21)

l.e., it depends on ], and hence, in general, under the ETEM model,
there is not a common correlation coefficient among the J parts.

Therefore the reliability of a part cannot be interpreted as an
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intra-class correlation coefficient. The correlation coefficient between

j and j' depends on j and j', because,

Cor ) Cov ryjmj! ":
OF \Y;.sY;:4/ = - 2 :
N War Gy, Warly; ;017 oy + 02)) (o} + o5 )]

The reliability of the total test is given by,

( | var (V a') J2 o: o:
2022 p - - - ’
Var (y,) 2 2 _ ¢ 2 2 2
Yy J % + Zo‘j oA + a‘{J

2 2 2 2
where o  |s average of Ogj le., o, = (i oej)/J .

I f o} denotes the total varlance of jth part test given

by (2.20), the total test variance denoted by o: is

a: = Var () | ylj) - zj Var (Ylj) + § Cov (Vlj'ylj')

)
Jh
) o} + J0-1) o:

Substituting this into (2.22)

J2 °2 i 02
A J
e — = Frl —O!‘“
Y Y

which is the well-known formula for the Alpha coefficient.
Novick and Lewis (1967) have shown that Alpha is equal to
reliability o if and only if the ETEM assumption is satisfied.

Otherwise, Alpha is, in general, lower than the reliability, namely
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(2.23) Alpha < »p .

The equality holds only [f the ETEM assumption is true.

Alpha is usually estimated by

2
(2.24) Alpha = 3%7 h - z—;l ),
S
y

where sJ and s: are the usual sample variance of part test and the
total test respectively. Kristof (1970) investigated the sampling
distribution of the Alpha estimate for the case of J = 2, and showed
that the distribution can be reduced to a Student's t-statistic by

the maximum likelihood method. The sampling distribution for the
general case is not yet known.

Classically, Alpha as a reliability is derived (e.g.,
Gulliksen, 1950, p. 223) by considering two J-parts tests that are
parallel part by part, and then introducing the assumption that the
covariance of a part in one test with the parallel part of the second
test is equal In the average to the covariance between any two of the

*x
J parts within a test. If yIj denotes the score of the jth part

of the second test the assumption is,

2.28) ] Cov ly,.y ) = (L]
| TRATI ¥

Cov (y, ,y;,,))/703-1) .
N ijrr]

Lord and Novick (1968, p. 92) have shown that the above assumption is
satisfied if and only if the | parts are ETEM.
Under the ETEM assumption, the matrix mode! equation is the

same as (2.6') except that the diagonal elements of Y may differ,
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namely,

y,~pedrf +re,

Y "% Y2"°

e2’ ”"'JJ-OGJ .
All the assumptions of (2.7') and (2.14') may be applied.

2.3 Congeneric True Score Model

Under the ETEM model, including the ANOVA model as a special
case, the true score variance, a:, is assumed to be common to all
J part tests. However, for some tests, it might be more reasonable
to expect that the true score variance would depend on j, i.e.,
some of the part tests might discriminate better and have greater
true score variances. Under this situation, the classical parallelism
or ETEM assumption is no longer valid. Nevertheless, the model given
by equation (2.6') may stil) be used by removing the restriction of
equal {xj}. namely the elements of the vector ) may differ. The
constant xj may be interpreted as a regression coefficient of yij

on the standard true score f'. or standard deviation of the jth

true score. In scalar form the equation is
(2.26) yij-u*xjfi*ej’acj &y -

Under thls model, the reliability is
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2
G) . = Var (xjfi) i Aj
J v.f‘xy'j) l2 + 0
(2.27) b
®) Ver (L' A fF) 1l
b - (] ’
e " Var (T y;) 112! *12)1

where 1| Is a J x 1 vector whose elements are all 1's. Since the
ETEM assumption is not satisfied, in general, Alpha < p.

No formula is yet avallable for the direct estimation of the
reliability under this model, hence the estimate of Alpha is generally
used as an estimate of the lower bound for the reliability. Cronbach,
Ikeda and Avner (1964) used a similar model in their effort to
approximate the generalizability coefficient by an intra-class

correlation coefficient. However their model, which involves sampling
2

of part tests (Type 2 sampling), assumes a uniform distribution of )
unlike the present mode! where the {xj} are assumed to be fixed

constants. J8reskog (1968, 1970) named this mode! as the congeneric
test model.

2.4 Multi-Factor True Score Model

The three models reviewed in the previous sections implicitly
assumed that the test mesasures only one ability or trait, represented
by f‘, i.e., it is assumed that the factorial structure of the true
score is @ uni-factor model. However, for certain types of tests, the
assumption is too restrictive, and a more general model which would

accommodate more than one true score structure is desirable.
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If 2 and f,  are replaced by a J - r, (1 <r < J) con-

stant factor loading matrix A and a r x | standard random factor
score vector f_' respectively, the model of equation (2.6'), becomes
the well-known multi-factor model, (e.g., Browne, 1969; Jbreskog, 1970),

namely,

(2.28) Y, "u+A

vy

Livrsy

with,

E(y,) = u; D(y_‘)-AA'+12.

Therefore, the reliabllity of the total test, o, Is given by,

Ver (1' A f,)
(2-29) p = Vor (ll 14)

1

1'AA
(anr

L.

if the estimate i is available, an estimate of the reliability

would be,
AN Y ANT
(2.30) P& =
s
Y

The statistical properties of this statistic are unknown, and there
is no agreed upon mean to obtain estimates of the factor loading
matrix.

Under this mode! Alpha is in general the lower bound for the
reliability as with the congeneric model. The equality is true if
and only if the parts are ETEM, i.e., r = 1. For this case the factor

loading matrix A becomes the vector ) with all elements equal, and
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the standard deviations of thc true scores are equal, as Aj =9, for
all j=1,2,...,J. |If the error variances are all equal among the
J part tests, the model becomes identical to the ANOVA model. There-
fore the multi-factor model equation (2.28) includes the ANOVA, ETEM

and the congeneric model as special cases.

Under this general model the assumptions are

(a) all {f.} and {g;} are independent random vector

variables,

(b) ENJ'U ’ where uj-u+8j ’
(2.31) ¢
(c) all {L‘} are identically distributed with E(.f_‘) =0,

D(F) = 1, or E(MF) =0 and DAE) =AM,

(d) all (gi) are identically distributed with E(ii) =0,

L and O(c_‘)'l_. or E(!gi)'g. and D(Y_g_‘)-!_z

The normality assumption becomes

' (a) all {1‘} are distributed as N(0, |), or (AL‘}
N(O, A A') ,
(2.32) ¢ are =22
(b) all (5‘} are distributed as N(0O, |), or (l_c_‘)
are N, ¥9) .
2.5 Summary

Four baslic models which might be used for simulation of test
scores are examined in this chapter under the assumption that a test

has been split into J parts whose scores are continuous random variables.
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The most general model is found to be the multi-factor model. The other
three models are spacial cases of this model with additional assumptions
or restrictions on the parameters.

With uni-factor assumptions, i.e., r = 1, the congeneric
mode) is the most general one, which includes the other two models as
special cases. However, the Alpha coefficient is identical to the
reliability of the total test score if and only if the ETEM assumption
is satisfied. Hence under the multi-factor or congeneric model, in
general, the Alpha coefficient is a lower bound for the reliability.

With the homogeneity of error variance assumption the ETEM
mode! becomes identical to the ANOVA model, the most restrictive one,
and the distribution of reliability estimate is related to an F-
statistic. Under more general models, the distribution is in general
unknown.

If equal means are assumed among the J parts, the ANOVA
mode| becomes identical with the classical parallelism model except

for the distributional assumptions.
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CHAPTER THREE

TEST MODEL FOR THE BINARY ITEM SCORE CASE

For a test consisting of J binary items as the parts of
the test, the Kuder-Richardson formula 20(KR20) has been widely
used as a special case of the Alpha coefficient with little investi-
gation of its statistical properties. Feldt (1965), and Cleary and
Linn (1968) treated the discrete case as 3 continuous part score case.
However, the imposition of the zero-one scoring scheme violates not
only the assumption of continuity of part scores, but also homogeneity
of error variances and independence of true and error scores. The

violation of the assumptions of the ANOVA mode! was fully discussed by

Feldt (1965).

3.1 Normal Ogive Model

To investigate the statistical properties of test scores
of binary item tests, a number of mathematical models have been
proposed such as the normal ogive, logistic, and binomial models. The
first two assume existence of a latent trait or factor score f, which
can account for the subjects behavior or performance. The binomial
mode! relies on the 'strong true score' theory (Lord, 1965; Birnbaum,
1968, pp. 508-529). In this mode! the conditional distribution of the
test score for a given true score is assumed to be binomial.

In the following, the discussion is restricted to the

statistical properties of reliability and KR20 under the normal ogive

mode!. Extensions to other mode|s may be done in a similar way. Al though
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the multi-factor model for the binary test is also possible, for the
sake of simplicity, only the uni-factor case will be examined. Under
this model, the random variable representing the latent trait or factor
scores, f, is assumed to be independently distributed as N(0,1),

for all subjects in the population P, as under the continuous part
test score models. It is also assumed that the response of the ith
subject, with latent trait f = fi to each of J items, is determined
by a hypothetical intervening random variable Yij which shall be
called the 'response strength variable' according to Bock and Liberman
(1970). Since only the relative strength of Yij is of interest,

without loss of generality, it may be assumed that is distributed

Y,j
with expected value zero and unlt variance, i.e., it is a standard
random variable. |In addition yij is assumed to be subject to random
error, and if the value of Yij for the ith subject on the jth item
exceeds a certain threshold constant specific to the item, denoted

by Bj' the observed score of the subject, denoted by xlj is equal
to one, otherwise it is equal to zero. In this case the continuous

response strength variable Yij may be written as a linear congeneric

true score model noted in Section 2.3 of Chapter Two.

(3.1) Yij = Xjf‘ + oej € i=1,2,...,0; je=1,2,...,J,

where AJ is a constant regression coefficient specific to item j,
O¢j is the standard deviation of the error scores for jth item, while
i is a standard random variable for errors as before.

In vector notation,

(3.2) =X f.+ Y

& o



b,
where )\, Y, and g, are as defined for the congeneric model, except
that the continuous part tests are replaced by dichotomous items. Also
D(y;) = 22"+ !? as before, and the diagonal elements of D(y,) are
the variances of Yij' and are assumed to be unity, i.e., I = Az 2

it e
for all j = 1, ..., J.

Thus mode! equation (3.1) may be rewritten,

(3.3) Yij " A f, o+ (l-)«z)15 € i=1,2,...,0;

ji ] ij’ J=1,2,...,J,

where the standard random variables (clj) are assumed to be
distributed independently as N(0,1).

The constant Aj may also be interpreted as the index of

reliability of the jth response strength variable, since

Cor (Ylj'fl) = Cov (y‘j,f')

- €D+ ()% ¢ 10

-xj.

By definition the correlation coefficient between yij and fl is
equal to the biserial correlation coefficient between “lj and fl'
therefore, XJ is actually the biserial correlation between the
latent trait variable f and observable item score 'ij' Since the
correlation between ylj and the individual effect or the true score
xjf' is xj. the square of AJ may also be interpreted as the

reliability of the jth response strength variable.
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3.2 |tem Parameters

The jth Item characteristic function Pj(f) is defined to
be the expected value of x'J given f for subject I, (e.g.,

Lord and Novick, 1968, p. 360), namely,

(3.4) Pj(f) - e(xij | f = f;) = Probability (x'J =1|f= f) -

Lord (1952, 1953), Lord and Novick (1968, pp. 358-394),
Samejima (1969), Bock and Liberman (1970) and many others have investi-
gated the item characteristic function under the normal ogive model.

The expected value and variance of response strength variable

Yij given a fixed subject with f = fi' are given as,

2
(3.5) e(yIJ If=f)= xjf,. Var (yij | f=f)=1- Aj -
The distribution of Yij for fixed f = f‘ is normal with expected
value xjf; and variance 1 - x?, or N[xjfi, G - x?)]. Thus the
probability that subject | with the latent trait f = fi will
respond correctly to item j, as indicated by observed value

x'j s ), is

?j(f) = Probability (x‘j =1 [f=f)

\ f. : -(yli,‘ xjf)z )
- X
(2e0 -1 s, * 20 - ) Y1)

Applying the transformation 2z = (ylj - Xjf)/(l - l:)k . 'j(f)

becomes

(3.6) Pj(f) = [ oelz)dz = o(-gj) .
9
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where ¢(z) and ¢(-g) are the respective standard normal density
and distribution functions. The value gj(f) is given by,

«-(0F - -k
(3.7) gj(f) (Ajf Bj)/(l xj) .

Using generally accepted notation (e.g., Lord and Novick,

1968) , gj(f) may be rewritten as,
(3.8) gj(f) - -aj(f - bj) '
hence
- - Ak
a, AJ/(I xj) ,

and

bj - Bj/xj
(3.9)

] 2)%
8 a; bj/(l + aJ) .

The item parameters aj and bj have been referred to as

Item 'discrimination power' and ‘difflculty index' by Lord and Novick
(1968. pp. 368-368).

The difficulty of item J is defined as expected value of

‘lj' namely,

(3.10) %, = Probability (x

j P.(F) o(f)af .

The 1) = E(x'j) - ]-. j

After some algebraic menipulation, it can be shown (Lord and Novick,

1968, p. 337) that, i 0(-81).



bb.

Since E(xfj) - E(xij), the variance of jth item is given

by,

2 2 2 2
(3.11) oj = Var (x‘j) = E(xij) - [E(xlj)] - " wj(l - nj) .

3.3 Rellability of Binary Item Test

Since direct decomposition of the response score xlj into
independent true and error scores is impossible for the binary item
scores, there is no direct way of obtaining the variance ratio of true
score variance to total test score variance which has been defined as
the reliability of a test. Nevertheless the population reliability
may be obtained by resorting to the correlation method, namely, by

calculating the correlation coefficient between

* *
x, = ] x and x, = J x..,
i ij i i]
J J
*
where x'j is the score of a hypothetical test item which is parallel
in the classical sense to the jth item of the test.

Then,

Cov (} x,., ] x: )
RN

(3.12) o = Cor SENE
oo Cor Ch my by T g (x,) var (xI¥

XJ Ij* 95 %j* Ojje
- r .

o
x

where Pjje is the inter-item correlation between item j and j*,

oJ is the variance of the jth item, and c: is the variance of the
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total test score ;- The test variance o: may be given in terms
of inter-item correlation and item variance, namely,

(3.13) Var (x,) = var (] x,.) =7 var (x,,) + 11 cov (x,,,x..,)
i U j i ij*oi)

J#j!

2
Loyl ojopiey

2

To obtain p and O

the inter-item covariance oj oj, pjj' must

be evaluated in terms of the item parameters Aj and A Lord and

"
Novick (1968, p. 379) showed that for any two items j and j', the
tetrachoric correlation between xij and xij" denoted by ij"
can be expressed as the product of the two biserial correlations A,

and Aj' by performing integration of the tri-variable distribution

x‘J. xij" and f, namely
(3.14)

It can be shown (e.g., Kendall and Stuart, 1963, p. 161 and 1967, p. 306)
that the inter-item covariance may be expressed as an infinite power
series of yjj' using Tchebycheff-Hermite polynomials, denoted by

un(e) (kendal) and Stuart, 1963, p. 155). Then,

(3.15) cCov ("lj"lj') =905 05

2
- lo(sJ)o(aj.)llyjj. +0.5 sjsj. i ...)

b n
= [o(8))e(s),)] nz' (nn_,(aj) Hn-'(sj.)vjj.]/nl .

Therefore, the covaeriance may be calculated numerically.
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By the results of equations (3.11), (3.13), (3.14), and
(3.15), the reliability p, given by equation (3.12) may be evaluated

numerically if the item parameters (8.} and (A,} are specified.

J J

3.4 KR20 Coefficlent and Its Estimate

The Alpha coefficient for the binary item test, KR20, is

defined as,

2

(v - )

(3.16)  KR20 = - (1 - Z-;l] -0 - L > )
Ox qx

which is equal to the reliability o if and only if the ETEM

condition of (2.25) is satisfied. In general the condition is not

satisfied, hence,
(3.17) KR20 < o

Using the results of equations (3.10), (3.13), (3.15), and
(3.16), KR20 may also be evaluated numerically if the item difficulty
(wj) and biserial correlation {XJ} are specified, provided fi
and (clj) are distributed independently as N(0,1).

The ETEM condition of (2.25) for binary item cases in terms

of the powe series of (3.15) may be written as,

v 2 2n
) (M- (802} ") /nl]

(o8 )2 [

S n
. (M. *(8,)0(8;,) '2' Moy (8)) o (8], Mt (1)
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which is true if 81 = 82 = ... = BJ and x' = xz = ... = xJ .

This means that all the item parameters are equal.

An estimate of KR20 is obtained by substitutiing the sample

estimates of {(n,} and oz

j x namely,
N J Z (- %)
(3.18) KR20 = T - 1,
S
x

where ij is the sample difficulty of the jth item, and s: is the

sample variance of the test score JY given by,

I ()j' x M
(3.19)

2 . [{' (x, - x24I .

x

Unlike the case of reliability estimates under the ANOVA
mode !, the exact sampling distribution of KR20 estimates given by (3.18)
is unknown even with the restrictive mathematical models and assumptions.
Aoyama's formulas (1957), provided an approximation for the expected
value and the variance of KR20 estimates without any distributional

assumptions. He gave approximate formulas for €(KR20) and

Var (ﬁi?b) as,

(3.20) :(@) = KR20 + 0(1/7J) ,

and

(3.21)  var (KAD) :W (1p? (s, + 15+ 8o :1‘-::) :

where 0(1/J) is a term of the order of 1/J, s, is the kurtosis of
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the distribution of x, and x  Is the minimum score. Formula (3.20)
indicates the estimate is biased, while (3.21) suggests a bound for

the standard error of KR20 estimates, but is of little use since it
involves the unknown parameter 62, which would be very difficult if

not impossible to evaluate.

3.5 Summary

To examine the feasibility of simulating binary item test
scores, the well-known normal ogive model is reviewed in terms of two
basic item parameters, namely the item difficulty {wj}. and the
biserial correlation between items and the latent trait or factor
score f., i.e., {Aj).

With the help of the 'response strength variable', a model
equation similar to (2.26) used in the previous chapter was Introduced.

Item characteristic functions and item indices are also
examined in terms of the two sets of parameters.

The population rellability and KR20 were found to be amenable

to calculation through numerical means in terms of these parameters.

The exact sampling distribution of KR20 estimates is in general unknown.
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CHAPTER FOUR

RATIONALE FOR SIMULATION, COMPUTER PROGRAMS, AND

METHOD OF INVESTIGATION

b.) Violation of ANOVA Model and Assumptions

The review in the previous three chapters indicated that the
exact sampling distribution of the reliability estimates is largely
unknown except for the special case of the ANOVA model under rather
restrictive assumptions. The distributional thoery and inferences
based on this mode! are valid, if and only if all of the underlying
assumptions of (2.7') and (2.14') are valid. A workable formula for
the standard error of the reliability estimates may be obtained under
this mode) only by employing the well-known characteristic of an
F-statistic (Cleary and Linn, 1968). However, if any one or more of
the assumptions are not valid the true sample reliability distribu-
tion will not be the same as that given by (2.17).

If the ANOVA mode! equation (2.6') is taken as the basic
mode) , the more general models and the normal ogive model for the
binary item test may be considered as being assumption-violating cases
of the basic model. It has been shown that the latter more general
models are obtained by successively relaxing some of the assumptions
of (2.7'), and the normal ogive mode! has been shown to be the con-
generic model if the hypothetical 'response strength' variable is used
in the model equation. Thus the problem of investigating the distribu-

tion of reliability estimates using models other than the ANOVA mode!



becomes the problem of investigating the effects of the violation of
the assumptions of the ANOVA model upon the distribution of the
reliability estimates.

It is also suspected that, under certain clircumstances for
real data, cases arise in which the distributional assumptions of
(2.14') are substantially violated, that is the distribution of the
true scores and the error scores may be skewed, and/or platykurtic
or leptokurtic (Lord, 1960, 1969).

However, regardless of which model the real data may
satisfy, in practice the reliability estimates are usually obtained
using the Alpha or KR20 formulas; hence the distributional theory
of the estimates based on these formulas becomes a central concern
for the test users as well as the theorist. Thus, it seems
justifiable to investigate the distributional problem using mode s
other than the ANOVA mode!, e.g., those in which a systematically
distorted distribution arises for (2.17) by violating (2.7') and/or
(2.14'). The assumptions underlying such models are summarized in

the following table.



TABLE 4.1

Summary of the Assumptions Under Various Models

S1.

Assumptions

ANOVA ETEM CONG. M.F. N.O.
independence of yes yes yes yes yes
true and error
scores
uni-factor yes yes yes no yes
true scores
ETEM assumptions yes yes no no no
homogeneity of yes no no no no
error score
variances
normality of yes yes yes yes yes
true scores
normality of yes yes yes yes yes

error scores

(Cong. - congeneric;

M.F. - multi-factor;

N.O. - normal ogive)

Applicable only to the response strength variable.

§.2 Robustness Under Violation of Assumptions

It has been known that, under certain conditions, the

F-test of the one way fixed effects analysis of variance model is

quite robust against the violation of the underlying assumptions.

It may then be asked whether or not the same robustness exists for

inferences about the reliability based on (2.17), which relies on

an F-statistic.

That is, can the findings for the one way fixed
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effects model ANOVA be generalized to the two way mixed effects model
ANOVA case with one observation per cell. |If the sampling distribution
of the reliability estimates is stable with the violation of assumptions,
statistical inference based on (2.17) would be very powerful. (f the
sampling distribution of the most often used Alpha or KR20 estimates
are found to be quite robust against the violation of the assumption
users may freely employ the Alpha and KR20 estimate formulas and
perform statistical inferences based on (2.17) without investigating
the adequacy of the models or the assumptions. If the distribution is
robust only under certain conditions, the researcher should keep this
in mind whenever making an inference about the reliability or inter-
preting an estimate based on (2.17). Therefore, the basic question to
be answered is: under what conditions, if any, do the Alpha or KR20
estimates have a stable distribution against the violation of

assumptions.

4.3 An Empirical Approach Toward the Problem

Since a mathematical answer to the above problem is not
available at the moment, and it seems impossible to give one in the
near future, one alternative approach to be considered is the per-
formance of an actual experiment, i.e., an empirical examination of
the sampling distribution under various models and assumptions that
violate the ANOVA model and its assumptions. The empirical distriby-
tion of the Alpha and KR20 estimates can then be found and compared
with the theoretical one under the ideal ANOVA mode).

An experiment with real data is almost impossible since the

population parameters are seldom known. Even if this were possible
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the data would not fit the specific model and assumptions except for
rather limited cases (e.g., Baker, 1962). One available method is to
use computer simulated data, under various assumptions, to obtain
empirical distributions of the Alpha and KR20 estimates and compare
them with the distribution for the ideal ANOVA model.

The author has already investigated the feasibility of such
computer simulation techniques in the study of the effects of the
violation of assumptions on the F-test for linear models requiring
statistical inferences, and has provided a comprehensive computer
program for educational and psychological researchers (Bay, 1970).

The present study uses essentially the same techniques to

investigate the sampling distribution of reliability estimates.

L.4 The Concept of Simulation

The term ‘simulation' has been used rather uncritically in
a wide range of scientific or economic fields, especially for the
purpose of building models. Von Neuman and Ulam's work in the late
1940's, when they attempted to solve certain nuclear physics problems
by a Monte Carlo analysis, may be considered the first modern use of
the simulation techniques. A Monte Carlo analysis involves the solu-
tion of a problem, that is either too expensive for experimental
solution or too complicated for analytical methods, by simulating a
stochastic process that has probability distributions satisfying the
mathematical or probabilistic relations underlying the problems.

With the development of high speed computers in the last

two decades, not only physicists and otner natural scientists, but also
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economists, psychologists, and other social scientists can perform
controlled laboratory-1ike experiments on a computer with much
efficiency and economy.

Although there is no agreed upon definition of the term
'simulation', for the purpose of this paper it was considered sufficient
to use the following definition given by Churchman (1963, p. 12).

'x simulates y' is true if and only if:

(a) x and y are formal systems,

(b) y is taken to be the real system,

(c) x is taken to be an approximation to the real system, and

(d) the rules of validity in x are non-error free.

In the context of this paper, y is a system which produces
8 number of real test score sets by performing actual random sampling
of subjects and administering the test, thus giving a number of real
estimates of reliability of the test. The number of estimates under
the rea! situation is limited since the actual sampling of subjects
and the administration of the test are involved. On the other hand,
x is a system which produces a number of test score sets, via computer,
under a model and a number of assumptions which will approximate the
real system y. Since the number of test score sets obtainable under
x is almost unlimited, the sampling distribution of the relaibility
estimates is easily obtainable by calculating the frequency distribu-
tion of the estimates. Furthermore, since the test parameters and the
distributions of true and error scores can be manipulated easily under
computer simulation, almost any combination of models and assumptions

can be investigated. The researcher can input the most appropriate model
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and assumptions which will best approximate the real system y for a
given test and population of subjects.

This approach toward statistical inference is somewhat different
from the conventional procedure since the user can choose the model and
assumptions of interest to him, while in the conventional case the mode |
and assumptions are predetermined by the mathematical statisticians and
the user can only choose whether or not to accept the conditions and
the model, look for alternatives, or give up. In this sense computer
simulation techniques permit the study of sampling distributions under
almost unlimited combinations of models and assumptions. Thus, the
user may obtain the sampling distribution of a statistic under his own
mode! and assumptions in the experimental situation, make statistical
inferences, and use the knowledge so gained in practice. Because of
the fourth property of the simulation, the method may not provide

exact answers, but it would provide approximate answers to distribution

problems.

4.5 Computer Programs

Two computer programs named RELOI and RELO2 have been
developed in FORTRAN IV on the IBM 360/67 computer of the University
of Alberta computer system for continuous part test and binary item
test cases respectively. The programs are in sufficient general form
s0 that they can be used for other problems related to sampling
distribution of reliability estimates not considered part of the study.
The programs automatically simulate the test score matrix Y = (yij)
for the continuous case, or X = {“lj) for the binary case based on

input models, parameters, and specified distributions of true or latent
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scores and error scores. The programs have the following features:

(a) For the continuous case, the program RELO] uses the
most general model, namely the multi-factor true score model given by
(2.18), and accommodates all other less general models as special
cases. Users are able to specify the sample size i, the number of
parts J, and the parameter vector and matrices for the model, namely
u, A, and ¥, i.e., mean vector, factor loading matrix, and error
standard deviation matrix respectively. The program will evaluate
population test parameters such as reliability, Alpha, mean, true
and error variances.

(b) For the binary Item case, the program RELOZ uses the
normal ogive model (3.1), under a uni-factor latent scores assumption,
and allows the user to specify the sample size |, the number of items
J, and the basic item parameters, namely the difficulty parameters
(nj) and the biserial correlations (xj}. The program will evaluate
the population test parameters such as o, KR20, and o: based on
the Tchebycheff-Hermite polynomials discussed in Chapter Three and
other formulas under the normal ogive model. However, these cal-
culations are valid only for the normal distributions of latent
scores and errors. |f the normality is violated, the parameters
calculated are no longer valid, unlike the case of continuous parts
where the test parameters are independent of distributions of true
and error scores. To evaluate test parameters for non-normal cases,
an empirical method based on a parallel form method deccribed in the
following Section h.6 is used.

(c) For both programs the user may decide shapes of the
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distributions of true or latent scores {f‘} and error scores {eij}.
The programs generate specific distributions by means of random number
generating subroutines. The distributions of true or latent scores
and error scores are specified by user supplied subroutines DIST and
DISE respectively for non-normal cases. These two subrout ines may call
the uniform random number generating subrout ine VECRAN described in the
following Section 4.7. For the normal case, the program generates the
distribution automatically by employing the Box-Muller method which is
also described in the Section L.7.

(d) The programs automatically perform N simulations, as
specified by the user, and calculate a number of test statistics. The
reliability coefficients are estimated for each simulated test score
matrix based on the formula (2.13), regardless of the mode! and
distributions used to generate the score matrix, since the formula is,
as was noted before, the one most often used by the test theorists or
users. Alternatively or concurrently, as an option, the user may
adopt an unbiased estimation formula developed by Kristoff (1963) and
discussed in the following chapter. The distributions of reliability
thus estimated are then compared with those obtainable from (2.17),
i.e., the ideal ANOVA mode! and normal theory. For non-normal binary
item test cases, the reliability parameter obtained by the parallel
form method is used for the value of o.

(e) The programs also summarize the empirical distributions
of HSA. MS'. HS‘, and p by calculating their means and varliances
over N samples, and compares them with the theortical values of the

expected mean and variance under the ANOVA mode! and normal theory
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assumptions. For the binary item case, the variance parameter o:
and c: in terms of the test score x, are not defined or calculable
directly. However, from the definition of reliability given by (2.12)
and the variance given by (2.10), a generalization of the relationships

between reliability and variances to binary item cases may be made such

that the formulas in Chapter Two may be used without modification,

namely,
2
(4.1) 2 . T, 2 1) o
. OA '—JT H Oe 'ﬁ— ’ or
* A2 _ k%2
(‘. ||) 02 - o °x 02 - (l P )ox
‘ A Ji ’ e J ’

for non-normal cases, where the star (*) notation referes to para-
meters evaluated by the parallel form method.

(f) Comparisons between the empirical distributions of
reliability estimates based on either or both (2.13) or Kristof's
unbiased formula, with those theoretical ones based on (2.17) or
modified form of it for the unbiased formula, can also be made as an
option by plotting both distributional curves together in a graph.

Computer program listings together with example outputs

of the programs are given in Appendix A.l and A.2 respectively.

4.6 Parallel Forms Method for Test Parameters of Binary Item Test

For the continuous part test cases, test parameters such as

o:. o, and Alpha depend only on the input of part test parameters

and are independent of the distributions of the true and error scores.
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However, for the binary item test cases, the basic test parameters
depend not only on item parameters such as difficulty or biserial
correlations but, also on the distributions of latent scores and
errors, since the normal ogive mode|l connects the continuous response
strength variable yij to the binary item score “ij' Therefore
the formulas for test parameters such as a:, p, and KR20 given
in Chapter Three are valid only for the case of normal distributions.
In order to be able to investigate the sampling distributions of
reliability estimates under non-normal cases, i.e., under the assumption
violating cases of the normal ogive model, the test parameters must be
known by means other than these formulas. Although for some simpler
distributions such as the uniform distribution, evaluation of these
parameters by analytical means might be possible, a general solution
to cover all types of possible distributions is impossible, and
alternative empirical methods are employed in the RELO2 program.

Since the number (N) of test score matrices simulated is
usually large, say at least 1000, the number of test scores (N x I)
simulated in each experiment is a very large number compared with the
sample size |. On the other hand, the sample reliability and variance
are consistent estimators of the corresponding population values. There-
fore, if N x | test score sets are used at a time to estimate these
parameters, the estimates will be close to the population values. How-
ever, to obtain a population reliability coefficient by this large
sample method and the correlation formula give by (3.12), parallel
form test scores must also be simulated which have identical f

i
*
terms but different Cij terms denoted by c‘j due to random
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fluctuation of responses. Thecrefore, two sets of model equations may
be considered for the response strength variables Ylj' namely,

2)5

Yij = xjf‘ + (1 - xj

€55
(4.2)

y?j =2+ 0 x?)” c‘:j; Pm b, N e b,

Form these model equations, two sets of test scores ("l} and {x.,}
may be generated, and by calculating the correlation coefficient
between these two sets of scores, the population reliability may be
obtained regardless of which distribution is used for simulating the
test scores. For ideal normal cases, the parameters obtained by this
method should agree closely with the calculated values based on the
formulas of Chapter Three, providing one way of checking the formulas
in the chapter and the computing procedures adopted by RELO2. The
population paramecers thus estimated will be denoted by the correspond-
ing population parameter symbols with a star (*) sign to distingulsh
them from those obtained by analytical means. Ffor example, the test

mean and variance obtained by this method are given by,
* %2 * 2
v o= ):l x, /N, and o = (Zl(ul R RILT

§.7 Procedures for Generating Random Numbers

The method of generating a set of independent random numbers
with & specific distribution by a computer program is of extreme

importance to the success of a stochastic simulation experiment. The
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simplest and basic set of random numbers with a continuous probability
density function is the one that is constant over the interval (0,1)
and is zero otherwise. The density function defines what is known as
a uniform or square distribution. The principal value of the uniform
distribution for the simulation techniques lies in its simplicity and
in the fact that it can be used to simulate random variables from
almost any kind of probability, distribution since the inverse trans-
formation of the cummulative distribution function of any random

variables results in the uniform distribution between (0,1).
The uniform density function on (0,1) is defined by

(4.3) f(z) = 1.0 0<zc<l

= 0.0 otherwise.

Due to its simple density function, it is very easy to
evaluate moments for such a uniformly distributed random variable
by using elementary calculus.

For this study, the method used for generating uniform
random number is the same as that used by the IBM Scientific Sub-
routine Package RANDU (1BM, 1968). The subroutine named VECRAN
can however generate a specified number of uniform random numbers
at a time and provides the output in vector form, while only one
number at a time is generated by RANDU.

The method employed is the so-called 'power residue
method', (18, 1959) or ‘multiplicative congruential method' (Nayler
et al., 1968, p. 51-52). The method generates successive non-
negative integer random number which are less than 2% for binary

computers where ¢ denotes the word size of the computer by means
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of a congruence relation, namely,

(4.4) Ny =20, (modulo of 2%), i =0,1,...

where "o is the so-called seed random number denoted by IX in the

program. Meanings of 'power residue', 'congruential' or 'modulo' are
given by Nayler et al., (1968, pp. 63-66), or can be found in any text-
book of elementary number theory. The formula (4.4) is the so-called
formula for generating power residuals, and results in u = "l+|/(2c")
being approximately a uniform random number in (0,1). For the

IBM 360 series computers, c = 31, and VECRAN uses a = 65539,

and 2°C = 0.4656613 x 10™2 which are the same as for RANDU. The
user myst specify ng = IX as an input parameter at the beginning of
the program execution, and it must be an odd integer with nine digits
or less. The last value of " generated may be used as an input

seed random number IX for the next step generation.

The random numbers thus generated are often referred as
pseudo-random numbers, and the method involves the generating procedure
by 'indefinitely continued transformation of a group of arbitrarily
chosen numbers' (Tocher, 1954, p. 41). The term has been defined by

Lehmer (1951) as,

. @& vaque notion embodying the idea of a sequence in
which each term is unpredictable to the uninitiated and
whose digits pass a certain number of tests, traditional

with statisticians and depending somewhat on the use to
which the sequence is to be put.

Although there are some objections on the philosophical grounds that
the sequence is generated by a deterministic rule of (4.4), use of
such pseudo-random numbers can be defended by pragmatic reason that

a sequence may be regarded random if it satisfies some predetermined
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statistical tests of randomness, and the uniform number generated by
RANDU has been known to satisfy these requirements (1BM, 1968).

Based on the uniform random numbers thus generated by
VECRAN, denoted by Ul, five other kinds of random numbers are
generated for this study. For the selection of these specific types
of a random number the following factors were taken into account:

(a) Ease of generation and computer time required for
computation.

(b) Ease of evaluating the moments of random numbers by
calculus to ensure that the program generates random numberswith the
required distribution.

(c) Some practical usefulness. For example, normal,
uniform, and exponential distributions are included because the
approximation of the normal distribution to real data is so often
assumed, the uniform distribution is closely associated with ranked
data, and the exponential distribution can arise with the truncated

data of normal distribution due to a selection process.

The six kinds of random numbers, including Ul, are

summar ized in the following table.
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TABLE 4.2

Summary of the Random Numbers

Description Notation Transformation Formula
Uniform, (0,1) Ul z=u

Sum of 2 indep. UI u2 z = {(u*u,) - 1.0} x (6)"

Sum of 3 indep. Ul u3 zZ = {(u|+u2+u3) - 1.5} x 2

Sum of 6 indep. Ul ué z = {(ul+u2+...+u6) - 3.0} x (2)Li
Normal NO z, = (-2 Ln ul)g Cos (2ﬂu2)

z, = (-2 Ln u‘)% Sin (Zwuz)

Exponential EX z = -Ln (ul) - 1.0

Note: Upseoealg denote the uniform random numbers generated by

VECRAN.

The method used for the generation of standard normal random
variables is the same as given by Box and Muller (1959). Since the
distribution is exact, it has an advantage over the so-called central
limit approach which uses the sum of a number of independent uniform
random variables. All random variables in this study were used in
standard form, namely with an expected value of zero and unit variance,
except Ul which was standardized by subtracting 0.5 and multiplying
by the square root of 12.0. Therefore the random numbers thus
generated can easily be used as {f‘) or {‘ij} of the model equations

(2.28), (3.3), and (4.2).



65.

A number of preliminary sampling experiments were performed
to ensure that this method generates the random numbers with desired
distributions. To see whether the means, variances and other statistics
for large samples closely approximated the population values of the
distribution simulated by the random numbers, five samples of size
6000 each were generated for each distribution, and the obtained
statistics were compared with the population values obtained from the
knowledge of the probability density functions and the application
of elementary calculus. The results are summarized in Table 4.3,
With some exceptions for the calculated kurtosis of the distribution
noted with (*) sign, the sample statistics approximate reasonably
well the population values. The exceptional cases are probably due
to the imperfections of the random number generating procedures and
sensitivity of kurtosis to the shapes of the distribution. The
calculated auto-correlations are almost zero indicating no serial
correlations for agjacent random numbers in the sequences and the

degree of independence of random numbers thus generated.

4.8 Methodological Limitations

Because the computer simulated experiments cannot be
exhaustive and cover all possible combinations of models, parameter
sets, and distributional assumptions, and due to the very nature
of computer simulation techniques and !imited funds available for
the computing charges, the following methodological limitations are

imposed on this study.



TARE 4.3

Bescriptive Summery of Random Numbers Generated by Pseudo-Random Musber
Generating Subroutines, Semple Size « 6000 for Cach Trial

bis Teial Nean Ver. Shawness Xurtosls Auto-Correlations
Lag ) Lag 2 Lag }

['1] ] 0.50347 0.08417 -0.0161§ -1.2mo 0.0015)3 -0.00182 0.00152
']} 2 0.50027 0.08500 -0.00620 -1 0.00029 0.00054 -0.00206
1] )} 0.50080 0.08)67 -0.02638 -1.20730 -0.00070 0.00048 -0.00049
"M & 0.498%0 0.08320 -0.01426 -1.19213 0.00036 0.0017% 0.00073
"] [ 0.50682 0.08226 -0.02995 -1.182)3 0.00118 0.00052 0.00005
VUl | Expected 0.50000 0.08333 0.00000 -1.20000 0.00000 0.00000 0.00000
v2 | 0.03035 0.99873 -0.00577 -0.58865 0.0259% -0.22086 -0.00478
] H 0.01817 0.98648 -0.026404 -0.59803 0.01458 -0.006)1 0.00929
v2 3 -0.00268 1.01429 0.00608 -0.63365 0.0078! 0.02034 -0.00341
v2 & 0.01204 0.98045 -0.02414 -0.58109 -0.011)) 0.01728 0.00093
7] [ 0.02277 1.01143 -0.00802 -0.651%0 0.02078 0.02055 0.0016)
VU2 | Expected 0.00000 1.00000 0.00000 -0.60000 0.00000 0.00000 0.00000
'} ] ' 0.029)3 1.00741 0.00310 -0.52060 0.02308 -0.01438 0.0160)
"} ] 2 0.01852 0.959)8 0.00809% -0.30457 0.01778 -0.0199% 0.00278
vl 3 -0.00475§ 1.00159 -0.01646 -0.37746 0.00498 0.01504 -0.00118
v3 [ 0.00062 0.99190 -0.0216) -0.37966 -0.0019% 0.00300 -0.00630
'} ] H 0.0184) 1.02359 -0.0151) -0.40427 0.009% 0.00%0) -0.00601
V3 | Expected 0.00000 1.00000 0.00000 -0.40000 0.00000 0.00000 0.00000
vé | 0.0190) 0.90999 -0.01082 -0.23013 -0.0118) -0.01000 0.02742
vé 2 0.00843 0.97866 0.00)}) -0.207%0 -0.00566 -0.02743 0.0231%
vé 3 -0.00411 1.00637 -0.00300 -0.2206) -0.0183$ -0.018)$ 0.02318
vé 0 0.0029% 0.9%037 -0.01588 -0.20665 -0.00)%8 0.00064 -0.015%%
vé S 0.01480 1.03168 -0.0089% -0. 16014 0.00049 0.01274 0.00500
Ub | Expected 0.00000 1.00000 0.00000 -0.20000 0.00000 0.00000 0.00000
[ ] ' 0.00587 1.01832 -0.00714 0.11501e 0.0151? 0.01176 -0.00349
w0 ? 0.0021% 0.99160 -0.05134 0.05017 -0.00904 0.0250) -0.01266
[} ] -0.00856 0.9998 -0.0063% 0.03268 0.0217) -0.02119 0.03)29
] ) -0.00069 0.9995% 0.0229% | -0.04s8%) 0.01060 -0.0227% -0.00699
) [ -0.01763 0.97209 0.01456 | -0 08778 -0.01832 -0.00687 0.0079}
0 | tspected 0.00000 1. 00000 0.00000 ¢ .00000 0.00000 0.00000 0.00000
(4] J -0.00478 1.01587 1.00600 $ 70110 0.0089% -0.01038 0.01769
(4] H 0.0056$ 1.01611 1.93136 $.3156) 0.00892 0.04178) -0.01341
@ ) 0.00586 1.08517 2.1938) 8 02954 -0.00005 -0.00%0% -0.01218
(7] 8 0.00066 1.01780 1.91303 8.91614e 0.00727 0.0180) -0.00044
[+ ] -0.02518 0.96299 2.038%) 6.109%8 0.0047) -0.001 14 0.00199
3 | Cagectod 0.00000 1.00000 2.00000 6 .00000 0.00000 0.00000 0.00000
Wote: Al) ronden numbers ore stonderdized by populetion asen ond var!ence oncept UI.

66.
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(a) The investigation is restricted to the sampling distribu-
tions of reliability estimates under Type | sampling situation only,
namely only sampling of subjects iS involved; the test is assumed to
be given and all parameters for part-tests or items are assumed to be
fixed constants. The distributions under the Type 2 or Type 12 sampl-
ing situation, such as the distributions of generalizability coefficient
estimates, are not considered in this study, although this may be done
very easily as an extension to this study.

(b) Because the computer time required for each experiment
must be kept within reasonable limits, the sample size |, the number
of parts or items J, and the number of samples to be simulated must be
kept within moderate bounds for this study. Therefore, although the
programs are dimensioned such that they can accommodate up to
N = 5000, | =100, J =30, investigations are limited to N = 2000
or 1000, | =30, J=6,8, or 9 to restrict each experiment within
S5 to 7 minutes of C.P.U. time which costs approximately $20-30 at the
present charging rate of the University of Alberta.

(c) To conserve computer time for the overall study, the
exper iments have focused only on the following key problems:

(1) The effect of non-normal true or latent scores
and error scores distributions.
(i1) The effects of non-homogeneous error variances,
i.e., distributions under ETEM model.
(1i1) The effect of congeneric and multi-factor true

score model.
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(iv) The effect of binary item scores, non-homogeneous
difficulty parameters and biserial correlations,

and non-normal distributions.

(d) The non-normal distributions used in this study are
limited to a minimal number of well known distributions outlined in
Section 4.7.

Because of these limitations, the findings of this study

will be limited to some extent in their generalization to all ‘'real’

situations.

4.9 Accuracy of Calculation

Like any other numerical analysis, the results reported in
this study are subject to certain computational errors. The figures
reported in this study retain, in most cases, three decimal places,
but they may be inaccurate in the right most one significant digit
due to the cummulative effects of errors when the sample size N is
large. This is especially true for the case when the variance of a
variable is small in comparison with the mean. However, it is expected
that the errors are confined only within 3 to 4% level at maximum,

and they would not affect the findings of this study.

&.10 Summary

In this chapter, the rationale for investigating the sampl-
ing distributions of reliability estimates as assumption violating
cases of the well known ANOVA mode! and normal distributional theory,

and using the computer simulation technique to investigate such
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problems were discussed. The computer programs developed for this
study were outlined, and the parallel form method, the random number
generating procedures, and the methodological limitations due to the

very nature of computer simulation techniques were also discussed.
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CHAPTER FIVE

RESULTS FOR CONTINUOUS PART TEST SCORE CASES

This chapter presents the results of the computer simulated
experiments for the continuous part test score cases. Section 5.1.0
deals with the effects of non-normality under the ANOVA model; and some
analytical methods are also used to investigate the standard error of
reliability estimates. The distributions of reliability estimates under the
ETEM model are dealt with in Section 5.2.0, and in Section 5.3.0 for the

congeneric and multi-factor true score cases, i.e., non-ETEM cases.

5.1.0 Effects of Non-Normality Under the ANOVA Model

5.1.1 Distribution Under ANOVA and Normal Distribution of True and
Error Scores

It has been shown in Chapter Two that, under the ANOVA model
and normal distribution, the reliability estimate given by (2.13)-(b)
can be related to an F-statlstic by the equation (2.17), and it can

also be shown that (Kendall and Stuart, 1963, p. 393),

2
E(f.)-L v.,(;m).z_L_(MZ)_

on m(n-2)2(n-h)

Therefore, using the relation 1/F - F

m:n n:mt 1t |3 easy to show that,
’ ’

(a) E(8) = 1 - (1-p) E(F ) =1 - (1-p) :_.;.

v =1

(5.1)

(b) var (8) = (1-9)z 2("')(Vf;'3)
(J=1) (1-3)%(1-5)
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Hence ¢ is in general a blased, but consistent estimator and
does not have the minimum variance property. Kristof (1963) modified
formula (2.13) to obtain the unbiased estimator é and has shown that
it has a smaller variance than # , namely

(a) 8 = T%T + %5% ) T%T + %E% O - HSe/HSA) , or
(5.2)

(1-3) (1-
R P (D

It can then be easily shown that

EG) = oi  Var (8) = =217 var (0) = (1-0)? 2] < var () .

Therefore, if the equation (2.6) is the appropriate mode! for
the data and the assumptions (2.7) and (2.14) are all satisfied, the
results of equations (2.17), (5.1), or (5.2) can be used to make
inferences about p and to calculate the standard errur of estimation

which is defined as the square root of the variance of §.

§.1.2 Known Effects of Non-Normality Under ANOVA

As it has been seen, the sampling theory and the formula for
the standard error of estimation rely heavlly on the normal distribution
assumptions, despite the fact that real data seldom satisfy these
assumptions, and at best may be expected to only approximately satisfy
them. It does not logically follow, of course, that approximate
satisfaction of the normal distribution assumptions by true and error
scores will guarantee automstic approximation of the actual distribution

of reliability estimates to the distribution given under normal theory.



Scheffé (1959, p. 345) investigated the effect of non-
normality from an analytical point of view and concluded 'Non-normality
has little effect on inferences about means but serious effects on

inferences about variances of random effects whose kurtosis differs

2
from zero'. He also noted that 'The direction of the effect is such

that for confidence coefficients 1l-a and significance level a the

true a will be less than the nominal a if the YZ,A < 0, and greater
if YZ,A > 0, and the magnitude of the effect increases with the
magnitude of YZ,A" Although his argument is based on the inference
of the so-called signal-noise ratio 0 = o:/o:. under the one way
random effects model, it is suggestive for reliability theory, and

provides a guideline for the investigation of the effects of non-

normality under the ANOVA model.

5.1.3 Standard Error of Reliability Estimates Corrected for Non-Normality

The standard error of reliability estimates is a useful measure
of the precision of the estimates, although, as noted in Chapter One,
without any knowledge of the shape of the sampling distributions of the
estimates it has little inferential use. Since reliability has been
historically identified as a correlation coefficient, the well-known
standard error of correlation coefficient estimates has been frequently

used (e.g., Jackson and Ferguson, 1941), namely,

2,2
(5.3) Var () = m

in which the assumption of bivariate normality is made (Kendall and
Stuart, 1963, p. 236). However, this formula or those given by

equations (5.1) and (5.2) would be misleading if normality cannot be
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assumed. General distributional theory under non-normal true and error
scores is not yet known, but the Var (8) or its square root, denoted
by S.E. (6), may be evaluated approximately if the kurtosis of the

true and error scores,denoted by Ya and Ye respectively, are known

or can be estimated. In this case

(a) v, = [Ea})/o]) - 3,
(5.4)
| ®) v = [E(e];)/0]) - 3.

Tukey (1956) obtained the variance of the variance estimates
under various ANOVA models by employing 'polykays'. For the model

considered in this paper, he has shown that
[ .2 2_ 4 b 2 2 2 b YA &
(a) var (oA) =TT % * JOIT %k % * + o,

(5.5) { ) var (32) = -(,—,,3“—,-,-0: oSl

~2 -2 -2 4
L {(c) Cov (OA' oe) - moe

From (5.5) it is easy to obtain

,

(a) Ver (NSA) - [T%T" -:--{p2 AT (l-p)2 v‘/J)](J o: + a:)2

5.6) | (6) var 5) = [ty + &) 0"
' e (-1 {J-1) | e

Y

| (©) cov (us,. ms) - = a: .

It is noted that if the true and error scores are normsl,

i.e., the kurtosis is equal to zero, the results are the same as expected
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under normal theory obtainable from equation (2.15) and the resulting

independence of HSA and HSe.

Letting x, = MS,, and x, = HSe, and U(x‘,xz) a function
of x| and Xy, an approximation formula (e.g., Scheffé, 1959, p. 230)

may be applied to approximate Var (s) from (2.13)-(b) namely,

Var [w(xl,xz)] :.V% Var (xl) + 2w|w2 Cov (x‘,xz) + Hz

2 Var (xz) .

where W; denotes W/ ax, evaluated at x| = E(x‘) =) o: + a: , and
x, = E(xz) = ci . Then, Var (g) = var (1 - HSe/HSA) = Var (lex‘),

2 2 2,2 2 2
i.e., w(xl,xz) - x, /%, and W, = oe/(J % #oe) . M, - I/(JoA + oe)
giving

2
(5.7) var (8) :_(l-o)2 [11:1%%3:77 + ET (vy + v /9]

Formula (5.7) does not agree exactly with formula (5.1)-(b) when
the distributions are normal since an approximation has been employed.
However, formula (5.7) is suggestive for correction terms to be added
to formula (5.1)-(b) for non-normal distributions, i.e., Var (8) may

be obtained by a new formula combining (5.1) and (5.7) as

(5.8) var (5) = (1-p)? (2UZLUI4-2) L, (vy + ¥ /D) .
-0 0-3201-5)

Since this formula involves two unestimable parameters YA and 1..

further approximation is necessary to make it useful.
The kurtosis of the test scores y, © 1 Y- Ju+da ¢
I T denoted by A is an estimable parameter, and may be

cvoluotcd by considering it as a linear combination of J¢! independent
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random variables a, and {eij} for j=1,...,J, and applying a

formula given by Scheffé (1959, p. 332), namely,
2 2
(5.9) Y, TP vt (1-0)" v /4

Then, yy :.pz YA for o~ 1, or Yo ~0, or J fairly large.

Therefore, it may be shown that,

(5.10)  var (8) ~ (1-p)2 (2= 1)(u J-2)
(9-1) (1-3)2(1-5)

This formula (5.10) is, to the author's knowledge, a new one for test
theory, which only includes the known constants |,J and the unknown
but estimable parameters p and Yy‘ As a result it can be used to

obtain an estimate of the standard error of reliability estimates,

namely,

(5.11) s.{(\a) = [Va/r‘mlk (1-8) ( ZL')(” J-2) Y /l]}’
-na-n2a-s) Y

From the formula (5.8) It may be observed that the effects
of non-normality on the standard error of reliability estimates depend
on the following:

(a) The kurtosis of the true scores multiplied by the factor
1/1, and of the error scores multiplied by a factor of 1/741.
Therefore, the effect of non-normality would be dominated by the
kurtosis of true scores which is closely approximated by the kurtosis
of the test scores divided by the square of the reliability.

(b) The magnitude of o, namely, the larger the value of o,

the greater is the effect of non-normality.



76.

The above observations suggest that the sampling distribution
would be robust against the violation of normality assumptions if (a)
the sample size | is large, (b) reliability is close to zero, or
(c) J is fairly large and the true score kurtosis (or the test score
kurtosis) is close to zero. The condition (a) is of little practical
value since statistical inference problems usually arise for the small
sample case, while (b) is also of little practical value since, in most
cases, reliability theory deals with p close to unity rather than
zero. The last condition indicates that the sampling distribution of
reliability estimates would be robust against the violation of normality
of errors for J fairly large, and is sensitive to the distribution

of true scores.

§.1.4 Results of Simulation Experiments Under ANOVA Model

In order to investigate the effect of non-normality under
the ANOVA model, a number of experiments were performed by RELOI using
the following distribution-parameters combinations with the constants
N = 2000, | = 30, and J = 8.

(a) For the distribution of true scores, all of the six distri-
butions discussed in Table 4.2 of Chapter Four, namely Ul, U2, U3,
U6, NO, and EX. were used.

(b) For the error scores distributions, the uniform, normal, and
exponential distributions were used, i.e., Ul, NO, and EX respectively.

(c) Three levels of p were used by fixing a: = 4.0, and using
three levels of a:, namely, 4.0, 1.0, and 0.36 to indicate high,

middle and lower levels of reliability.

Altogether 6 = 3 = 3 = 54 experiments were performed, each
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requiring approximately six minutes of C.P.U. time. Since the parameters

u and {Bj) do not affect the distributions, they are not reported.

in Table 5.1, the observed means and variances of HSA and
HSe for N = 2000 samples are presented with the theoretical values
based on formula (5.6). Because formula (5.6) does not involve any
approximation, any disagreement between the observed and calculated
values must be attributed to either sampling fluctuations due to the
finiteness of N or deficiencies in random number generating methods.
It is noted that a rather close agreement exists between the observed
means of MS, and HSe given in columns (1) and (3) with their
theoretical expected values given in column (7). Comparisons of the
observed variances of the MS's given in columns (2) and (4) with
the theoretical values based on (5.6) given in columns (5) and (6)
suggest that the two agree reasonably well, although the agreement is
not as close as that for the means and expected values, which probably
reflects the imperfectness of the random number generating procedures
and/or the sensitivity of the variance to the change in the shape of

population distributions.

Column (1) of Table 5.2 contains the mean of o over the
N samples. These values can be compared with the expected values
under normal distribution theory given in column (6). It is observed
that, for negative Y,, the means are in general higher than E(o)
based on formula (5.1)-(a), thus causing some moderating in the
tendency to underestimate the reliability under normal thoery. | f
vy s positive, the mean of o is in general lower than E(o) and

exaggerates the tendency of underestimation. The effect of Yo is



TABLE §.1

Comparisons of Observed Reans and Yarianc-s of MS‘'s Unjer ANOVA Mode! ond
Yarious Comblinations of 1+ e and Lrror Score Blstributions
With the Values Obtainable Trom Foimula (5.6),
Ne200, |3, Jeo8

. Ois. Observed n$‘ Observed NS. vor. oy (5.6) Paromaters
Wo. Te. €r. Nean Vor. Meun var. HS‘ IS' ord €(n3)
(1) (2) ) (4) (5) (6) )

o1 ul Ul 36.052 47.108 4.00% 0.08% 40833 0.078 2
02 1] nNO 36.102 A5 563 3 999 0.162 48,419 0.158 0" A0
03 v tx 16.057 45,041 3.972 0.52) 48.819 0.558
0d v2 ["}] 36.286 66.923 3.99) 0.08) 68.819 0.078 2
05 u2 [ ] 36.28) 69.365 3999 0.16% 68.89% 0.158 s = 4.0
o6 v2 €x 35.765  68.116 4.008 0.972 69.299  0.558 .
07 w3 vl 36.106 74.014 4009 o0.082 75.686  0.078
o8 v [ 36116 77.586 4.002 0.168 75.726  0.158 o = 0.8809
0o v £x 36.033 7€.51 3.978 0.517 76.126  0.558
10 ué u? 35.856  81.60% 3.99 0.08! 82.473 o0.078
" ué L] 36.107 84 019 4.006 0.1 82.55)3 0.158 t(ns‘) - 3%.0
12 ué ex 36.006  82.009 3.992 0.559 82.953  0.558
13 ] ul 35.9)1 81.789 4.005 0.084 89.29 0.078
W w (] 36.016  85.815 .99 0.162 89.379 0.158 tms ) = 4.0
15 W £ 36.130  90.37) 3.9 0.523 89.779  0.558
16 B vl 35.335  258.850 4,005 0.08% 294.099 0.078
7 (4] L4 35.358  270.874 3.996¢ 0.162 294.179  0.158
s @ (4 35.380 269.880 3.972 0.523 294.579  0.558
19 vt vl 11.924 7.389 3 994 0.084 7.29 0.078 2
0 W w0 12.028 7.147 3 92 0.168 7. 0.158 o = 1.0
2 "l [ 43 12.030 7.65? 3.981 0.557 .m 0.5%8
2 u2 "} 12.01 8.%02 3.999 0.082 8.5n 0.070 2
3w ] 11.902 8.5%0 3 991 0.164 8.65! 0.158 DK
n w o 12.087 8.953 4021 0.568 9.050  0.558 ¢
% W u 11.920 9.132 3 9% 0.084 0.9% o.078
¥ W (] 11,945 9.458 s 013 0.150 9.078 0.158 s = 0.6667
1) v) (4] 11.93) 9.048 3.9 0.538 9.478 0.5
b1 ] vé Vi 12.081 9.79% 4 000 0.084 9 020 0.078
29 vé [ ] 12 0)) 9.4 3 99 0.16% 9 504 0.158 tins,) = 12.0
0 vé (3] 10954 .M 3979 0.5% 9.904  0.558
1) "0 vt 12.050 9.556 3 0.084 9.85) 0.078
n w (] 12.029 9.492 3.9 0.168 9.91 0.158 €ns ) = 4.0
” (] (3 12.076 10.484 3 9 0.557 10.331 0.558
[T 1 ] vl 12.008 2).122 3.9%  0.088 22 651 0.070
» (13 0 11.883 22 084 3 m 0.164 2. 0.158

[ 4] 3] 11913 P 3 0.357 FIWEL] 0.558
) ! Vi 6 878 2.910 1M 0.08? 2053 o.078 2
)‘ vl w0 6.069 2.086 A 006 0.1 2933 0.5 e, = 0.3
¥ W & 6.068 y.180 ) 997 0.52 3.33) 0.5%8
0 v? "1} 6.908 3.02¢ 3.9 0.084 3.0 0.0 2
“ v? [} 6.008 3. 162 3 W 0.160 3.09 0.158 L) (W]
[}} v? 4] 600 3.0 4,002 0.5% .49 0.558
A v} [']] (3]} ] 3.)9% 3 %0 0.087 3.074 0.070

'} 0 6.05) 3 X ) 0.162 3154 o0.158 oo 00106
L) v) (2] 6.00% ). 3 o2 0.550 3.5%4 0.958
[ " ) vl [ )] 3.1 V000 o0.082 3.129 o.0on
Y v [ ] 6.90) ). 200 1988 o.138 5.209 0.158 tms,) = 6.08
N w (8 (W11} 3.02¢ 38 0.5 3609 0.5%0
"W = vi 6.9 3.181 K1 0.08) 1.'00 o008
% =W = ¢ 00y 3 2 A006 0.1 120 0.1%8 thrs,) « 4.0
$ [ ] (3] 6 058 ) 6 1R 0.52¢6 ) 6 0.558
2 U v 6. 062 (31 3 M o.o8? A.88) o028
[3] (3] L 6.008 (N ¥} s 006 o 4923 0.158
] (4] (¢ 6 0% 9 ’y»m o 526 $)11) 0 558

0 ver my) oty e iy, o et v ste] o D2

35.6)

B ver ) o fyyrmyyd I
. 1D 10D 77’ %
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ARt 5.2

Cimperisons of Observed Aeans oni Stand -rd Errors of Rellanitity Estimates
Under ANOVA Mocte| and Variou: Comdi: atlomns of True and trror Score
Diste idbutlons With the Yalues Obtainuble From formutas (5.3),
($.1)-(»), ond (S.10), W - 2000, 130, JeoO8

€a. | Dis Observed 8 Calculated S.E. (8) by Paraveters ond
N, | Tr. tr. nean $.€. (5.3)  1s.1)-(p)  (5.10) €) by (5.1)-(a)
) {2) ) (&) (5) )
(1] vl vl 0.884 0.028 0038 ¢ 03 0.030 2
02 vl 0 06885 0020 0038 (036 0 030 o, = 4.0
03 [ w € 0.086 0.033 0038 ¢ 036 0.030
ok V2 vl c.084 0.0 0038 r 03 0.033 2
08 | v2 (] 083 0.032 0 038 .06 0.033 o, = 4.0
o6 | v2 1] 0.882 0.0)8 0038 .03 0.03)
07 | v v 0.082 0.03) 6038 0.036 0.034
o | v w0 o 882 0.038 00) 0.036 0.034 o = 0.0889
09 | v (3 0.883 0.038 0038 0.03 0.034
10 | v vl 0.88) 0.036 0038 0.03 0.03$
1] vé ] 0.08¢! 0.03% 0.038 0.036 0.03% €(s) = 0.8007
12 | v 1} 0.882 o00% | 0038 0.026 0.0)5
1) ] vt 0.881 0.03S 0030 0©.036 0.036
1N w0 ] 0.88) 0.036 0.038 0.036 0.036
15 0 o 0.082 0.000 0038 0©.036 0.036
13 tx vl 0.864  0.062 0038 0.03 0.0%7
)] 3] [ ] 0.864 0.06) 0.038 0.036 0.057
11 (1] (3] 0.865 0.064 | 0.038 0.03 0.057
19 |ul vl 0.68 0.0%0 0.100 ©0.108 0.098 2
0 | wn »0 0.650 0.09! 0.10) o©0.108 0.098 oy = 1.0
2 (1] (3] 0.65) 0.098 0.101 o0.108 0.100
2 |2 ]} 0.6404 0.103 0.101 0.108 0.103 2
3y |v2 [ ] 0.6 0.100 0.10) o©.108 0.103 o, = V.0
1) v2 1] 0.687 0.107 0101 o.108 0.10%
2% v) v 0.642 0.100 o101 o0.108 0.104
% |v L] 06s0 0.108 | 0.000 o0.108 0.105 o = 0.6667
771w « 0.688 0107 o010t 0.108 0.106
20 | v vl 0.683 0.106 0.101 o0.108 0.106
9 | w0 0.0 0.10) o to) o.108 0.106 (8) = 0.6820
% vé [ 1] 0.648 0.1 0.101  0.108 0.108
Nn [ ] u! 060 0.106 0100 o.108 0.108
3 w0 w0 0.645  0.10% o101 o0.108 0.108
3] [ ] [4] 0.647 0.114 0.101 0.108 0.109
n " v 0.618 0 154 0101 o.108 0.18
3 & w0 0.612 0 1% o tor c.108 0.147
» m (3] 0.617 ‘_o_!sl 0101 o0.108 0.188
N | vl 0.380 0.17% | 0151 ©.188 0.180 2
"] w0 0.380 o0.'12 0.151 0.188 0.182 o ©0.%
» ']} 4] 0.304 0.179 0.151 0.188 0.109
8 |v2 ] 0380 0.0 o 15t 0.188 0.103 2
Y] '} w0 0.369 0.195 | 0151 ©0.188 0.188 DR N
a2 e (4] 0.379 0.188 0151 0.108 0.192
Ay | W) 1] 0.3% 0.109 | 0151 o©.188 0.184
[T} ) 0 0.376 0.186 | 0151 o©.188 0.106 s = 0.0106
N |V o 0.376 0.189 [ 0.15) 0. 108 0.19)
o v vt 0.382 0.8 0.15) 0.188 0.108
M | [ ] 0.38! 0.104 0151 0188 0.107 €t(s) = 0.375%
N v [¢] 0.3 0.1 0151 ©0.100 0.19%
¥ | vl 0.379 0.188 0151 0.188 0.106
% |wo 0 03 008 0151 0.108 °.180
s [ ] (4] 0.379 0.108 | 0131 ©.188 0.19%
2 s '] 0 360 0.21) 0181 ©.108 0.216
83 | » 0357 0219 0151 0108 0.217
[ " (3 0.362 0.2 o151 0188 0.22%

@ W) et - () Py
(s.1) {

®)  ver (g) o (1-5)? 20-1)(p1-3) _

Q-1 (1-3)%1-3)

63  ver ) o L;EL'
(5.10)  ver ¥) - u-n’...l&l).ﬂf.ﬂl . :{.)
U037 te-$)

79.
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almost negligible, as expected from the discussion of the standard
errors in Section 5.1.3. Therefore, as far as point estimation is
concerned, negative kurtosis would not cauce any serious problems,

but positive kurtosis may cause serious underestimation of reliability.

Table 5.2 also contains the standard errors of § in columns
(3), (4), and (5) under various formulas as well as the observed results
in column (2). The results clearly indicate the inappropriateness of
the tranditional formula (5.3) or the more recent formula (5.1)-(b) when
YA is non-zero, and demonstrates the effectiveness of formula (5.10).
To see how closely the values based on these formulas approximate the
observed values, the sum of squares of the deviation from the observed
values are calculated with the results 0.0416, 0.0133, and 0.0013
for formulas (5.3), (5.1)-(b) and (5.10) respectively, with the

minimum deviations for formula (5.10).

To examine the robustness of the F-test based on formula
(2.17), under normal distribution theory, the shapes of the upper
and lower S% tail portions of the distributions of § were investigated.
Columns (1) and (2) of Table 5.3 show approximate real Type one errors
when nominal significance levels are fixed at 5% level for each tail.
The results clearly indicate that real Type one errors are less than
the nominal value [f YA is negative, and the smaller is Ypr the

smaller is the resulting real Type one error. For positive the

VA'
real Type one errors are greater than the nomina! value. These results
are in close agreement with the Scheffé's conclusion referred to In

Section 5.1.2. It is also noticed that the effect of non-zero YA is

less for small o , i.e., the test is robust if o tends to zero as



TAuLE 8.3

Compar lsons of Observed Lower and U-per ST Critical Polnts of Rellabllity [ctimates Under
the ANOVA Mute! U.ing Various (o instio s of True and Lrror Score Distridutions, and
Ree) Type One Ereors of F-"est Wh. n Nomlial Value Is S8 With the Values

Obtalnable Undcr the %wraal iheory, W e 2000, |1 =30, Jeo@
ta.  Ols. Reat Slg. (3 0: served C,P.r Theoretical t.',! 3
. Tr. €r. Lower Upper Lo.er Upper Lower Upper Parameters
) (2) (1) ) {s5) (6) ()

01 ut u 1.80 1.68 0.0y 0.919 0.814 0.927 2
02 vl n0 1.80 1.80 0.538 0.920 0.814 0.927 o, = 40
0y vl € 2.28 5.0% 0.829 0.927 0.814 0.927
oh w2 vl 2.15 2.48 0.827 0.922 0.814 0.927 2
05 w2 %0 3.0 3 4s 0.627 0.924 0.814 0.927 o, = 4.0
o6 vz (1] N 13 6.00 0.M15 0.929 0.814 0.927
07 v vl 3.0 3.08 0.823 0.92) 0.804 0.927
o8 U [ [T 400 0.821 0.926 0.814 0.927 » = 0.0809
9 v € 5.00 7.28 0.413 0.930 0.814 0.927
10 ub vl 4.30 3.60 0.816 0.924 0.014 0.927
" vé L L 11 h70 0.816 0.92¢ 0.814 0.927
12 v 3} 5.60 7.20 0.812 0.930 0.814 0.927
13 W vl 70 3.9 0.816 0.925 0.014 0.927
N w0 [ 429 4.85 0.619 0.926 0.814 0.927
15w (34 5.30 8.30 0.811 0.932 0.814 0.927
1 o vl 17.40 10.50 0.747 0.9%0 0.014 0.927
124 (11 [ ] 17.35 n.as 0.744 0.942 0.014 0.927
s £ 17.9% 12.90 0.7%2 0.944 0.004 0.927
9 ("] u! 3.3 3.00 0.474 0.769 0.442 0.78) 2
0 w n 3.00 3.48 0.483 0.772 0.442 0.781 e =10
n v €@ 3.50 5.8 0.4 0.783 0.442 0.701
n w vl (W13 3.08 0.450 0.77% 0.842 0.781
1) '} L] 3.9 4.00 0.470 0.776 0.482 0.781 RN
E LI} 3] 465 6.20 0.448 0.788 0.842 0.701
23 v3 vl [ Y11 3.88 0.45) 0.774 0 .62 0.781
) V3 w0 $.0% oS 0.4a1 0.778 0.4b2 0.718) » = 0.6667
27 W 1] [ ] 5.48 0.448 0.78% 0.482 0.78
28 vé 1] [ 13 [ W 1 0.00 0.777 0.02 0.78
9 W »0 (Y [ 4.30 0.0 0.778 0.482 0.70
30 W “ 5.3 6.68 0.4:0 0.788 0.842 0.18
»n »0 vl LYY a0 0.448 0.7%0 0.442 0.781
32 W w0 658 5.08 0.449 0.782 0.482 0.78)
3 w o 5.9 7.28 0.427 0.792 0.442 0.7
W o vt 11.8¢ 10.5% 0.327 0.014 0.402 0.701
38 (3] ] 11.9% 11.4§ 0.33) 0.0} 0.482 0.701
36 4] (] 12.80 12.10 0.321 0.922 0.42 0.78)

] "1} 3.80 $.08 0.0% 0.619 0.027 0.618
N oW ow .78 .50 0.00  0.612 0.027 0.618 oo
3y v @« (W1 (Y9} 0.080 0.616 0.02?7 0.610

v2 vl (W13 $.29 0.03% 0.622 0.027 0.610
: ] w0 $.50 a6 0.070 0.61% 0.027 0.618 .: .0
[T} (¢4 5.10 $.38 0.025 0.62) 0.027 0.618

v vt $.08 (X33 0.026 0.626 0.027 0.618
:2 0: w $.08 [ 1 0.026 0.61% 0.02? 0.618 » = 0.0106
Ay V) (] W3 $.8% 0.0} 0.618 0.027 0.618
o w vl 8,30 (W 13 0.0%) 061§ 0.027 0.610
8w w0 (X3 N3 0 0Al 0.417 0.027 0.618
N w [ (X (W) 0.04) 0.634 0.027 0.618
¥ w vt (WY 8. 60 0.033 0.616 0.027 0.610
 w w0 $.10 [ 1 0.02) 0 618 0.027 o.618
50 o (%) (Y 13 .01y 0.618 0.02; 0.610
2 o vt 7.3 7.08 -0.02¢ 0.63? 0.0 0.618
$ O L) 8.2 7.10 -0.0%9 0.644 0.027 0.618
1 2] a (4] 7.8 8.63 -0 0¥ 0.64% 0.027 0.618

-

'Mouoi lower ond woper 3% critical polnts of §

'M.|I(.I lumme ond wopper S8 critical points of § «ith aormgl distritution of trus ond

W rer scoved

"-'lulo of 1he ronden vorishies U, 82, V), v, WD, aad {3 or¢ glven I Tadle 4.)
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anticipated by the earlier discussion of the standard errors of estimation

in Section §.1.3.

5.1.5 Conclusions on the Effects of Non-Normality Under ANOVA Model

From the above discussions the following conclusions are
tentatively made:

(a) The effect of non-normality of the error score distribution
is negligible for J fairly large, where J is the number of part-tests.

(b) Non-zero kurtosis of the true score distribution substantially
effects the sampling distribution and standard error of reliability
estimates.

(c) The F-test under normal theory is robust for near zero
population reliability, or near zero true score kurtosis, if J s
fairly large.

(d) Formula (5.10) is superior to the traditional formula (5.3)
or (5.1)-(b) for the calculation of the standard error of reliability
estimates.

(e) For the F-test, the real Type one error Is lower than the
nominal value for negative kurtosis, and higher for positive kurtosis
of true scores. This true score kurtosis is closely approximated by

test score kurtosis divided by the square of the reliability.

The above findings are restricted to the ANOVA mode |, and

generalization to more liberal test score models requires further

study.

§.2.0 Relaxation of the !ggggcnolty of Error Variance Constraint in
the ANOVA Mode!
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5.2.1 The ETEM Mode!

For the ANOVA model it was assumed that the
variances of error scores (eij} were homogeneous, |.e., all the error
variances (O:j} are equal to an unknown constant c: by assumption
(2.7)-(d). This assumption was made not because real data are expected
to have homogeneous error variances, but to make the mathematical
abstraction simpler. Therefore it is conceivable that the error
variances may differ for each part test, i.e., for real data the
variance of eij may depend on the part test j, as given by (2.19).
Under this last assumption, the model becomes an essentially 1
equivalent measurement (ETEM) which was discussed more fully in Chapter
Two. Under this model, there is not a common intra-class correlation
among the J part-scores to be interpreted as the reliability of a part-
test under the ANOVA model. But the reliability is still equal to the
Alpha coefficient. The only difference from the ANOVA model is the
replacement of o: in the reliability formula (2.12) by the mean of

2 2
(oej}’ denoted by o .

Because assumption (2.7)-(d) is violated, the distribution
of reliability estimates given by (2.17) cannot be expected to hold
for the ETEM models; at best it is hoped that the distribution is
closely approximated or the distribution is robust against the

violation of the assumption of homogeneity of error variances.

5.2.2 Effects of Non-Homogeneous Error Variances Assuming Normal

The general distributional theory of reliability estimstes

under the ETEM mode! with the normal assumption is not yet known except



84.

for the case of J = 2. Kristof (1970) has shown that, for J = 2,

the statistic

s
- 12 i
(5.12) t = —-L-e (1-2)
81-p)7 (s2 62 - 52 )%
is distributed as Student's t-statistic with 1-2 degrees of freedom,

where s%, s%, and S|2 are the sample variances of two part-tests

and the covariance between them respectively; Kristof derived this
formula by the maximum likelihood method under bivariate normal

assumptions for the alpha coefficient, but the formula can also be
used interchangeably for the reliability coefficient under the ETEM

model .

For the general case, J > 2, nothing is known yet, and

at present the simulation method provides the only way to investigate
the sampling distribution of reliability estimates. Because equation
(2.17) does not involve the error variance parameter directly, it may
be hoped that the distribution given by (2.17) is still valid or
approximately true under the ETEM model if the normality assumptions
are not violated. In other words, it is hoped that the distribution
is robust against the violation of the homogeneity of error variances
assumption to enable the test theorists to use the results obtained

under the ANOVA model.

To separate the effect of non-normality from that of non-
homogeneous error variances, the ETEM model is first investigated using
normal distributions of true and error scores. In order to make
compar isons possible, the constants and parameters used for the cases

of the ANOVA mode! are retained except for the values of the error



variances.

sets of non-homogeneous error variances are used for the simulation

experiments.

table including the homogeneous case

as a special case.

With 3 levels of

8s.

o:, as under the ANOVA model, 6 different

The sets of error variances are given in the following

(EV1) used under the ANOVA model

TABLE 5.4
Summary of Error Variances used Under ETEM Mode)
Error Variances (oz.) Variance
el Mean (2(02 -
Nota- . 2 ej
tion i=l j=2 =3 j=hJ=5  j=6 je=7 =8 %e. a: )2)/J
EVI b.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 | &.0000 0.0000
Ev2 1.6 2.56 3.24 4,00 4.00 4.84 5.76 6.15 | 4.0018 2.1887
EV3 1.00 1.00 4.00 9.00 9.00 4.00 1.00 1.00 ] 3.7500 10.6875
EVh 9.00 4.00 1.00 0.25 0.25 1.00 4.00 9.00 | 3.5625 11.8242
Evs 16.00 9.00 4.00 1.00 1.00 1.00 1.00 1.00 | 4.2500 26.6875
Evé 1.00 4.00 16.00 16.00 9.00 4.00 1.00 0.00 6.3750 37.734k
EV? 1.00 1.00 16.00 16.00 1.00 1.00 1.00 1.00 | 4.7500 42.1875
The last two columns of Table 5.4 give o: , which is equal
to e(nse), and the variance of (oz } within each set over J = B.

ej

To make comparisons easy, these sets are ordered with increasing degree

of non-homogeneity, measured by the variance within each set, which has

a range of 0.0 to 42.1875.

HS. .

compares the results with those obtainable from formula (5.6) with %

Table 5.5 summarizes the mean and variance "SA

for

and

N =« 2000 samples in columns (1) to (&) inclusive, and

2




TABLE 5.5

Comparisons of Observed Means and Varlances of MS's Under the ETEM Mode!
and Norme! Distributions With the Values Obtainable From

Formula (5.6), N = 2000, |1 =30, Je=38
ex.| Ercor Observed nsA Observed HS. EnS.) Var. by (5.6) R
No.| Set Mean  Ver. Mean Vor. A ns, ns, sramaters
() (2) (3) (&) (s) (6) (2) (8)
o1 | &vi 36.016 85.815 | 3.998 0.162 36.000 89.379 0.158 2
02 | €v2 36.0h)  85.556 | 4.000 0.184 36.002 89.388 0.158 o, = 4.0
03 | EV3 35.727 88.222 | 3.742 0.226 35.750 88.142 0.139 .
oh | Evé 35.879 98.868 | 3.5M3 0.242 35.562 87.220 0.125
05 | €vs 36.266 86.094 | &.244 0.387 36.250 90.625 0.178
06 | EV6 38.049 101.514 | 6.378 0.742 38.37% 101.561 0.400
07 | tv? 36.784 94.840 | 4.705 0.551 36.750 93.142 0.222
08 | evt 12.029  9.492 | 3.992 0.168 12.000 9.931 0.158 2
09 | Ev2 12.034  9.581 | 3.995 0.189 12.002 9.934 0.158 oy = 1.0
10 | EV) 11.898  9.537 | 3.740 0.236 11.750 9.522 0.1)9
11 | Evh 11.495  9.317 | 3.549 0.220 11.862 9.220 0.125
12 | EVS 12.278 10.465 | 4.236 0.407 12.25%0 10.349 0.178
13 | EV6 14.563 14,483 | 6.366 0.753 14.375 14.251  0.400
W | evy 12.838 11.499 | 4.780 0.603 12.750 1.211  0.222
15 | en) 6.883 3.362 | 4.006 0. 6.880 3.264 0.158 2
16 | Ev2 6.891 3.411 | 4.008 0.189 6.882 3.266 0.158 gy = 0.36
17 | &3 6.700 3.203 | 3.762 0.221 6.630 3.032 0.139
18 | Evh 6.830 2.779 | 3.559 0.230 6.442 2.862 0.125
19 | €evs 7.120 3.491 | 4.252 0.429 7.130 3.506 0.178
20 | EV6 9.3 6.176 | 6.403 0.704 9.25% §.907 0.400
21 | ev? 7.629  &.035 | 4.750 0.619 7.630 4,015 0.222
!ens.) - 0: = 4.000 (Evi)
’ 4.002 (EV2)
3.750 (ev3)
3.563 (Evd)
4.250 (evS)
6.375 (Evé)
6750 (Ev7)
(@) vor is) = I3y o }tody, o (1-0)? v uN o] ¢ o)

o |

or 08 = TG T %
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replaced by ai., and vy, =y, =0 in colums (6) and (7). Close
agreement between expected MS's and the mean of observed MS's is seen
as was the case for the ANOVA model. More specifically, the expected

and observed variance of HSA. columns (2) and (6), agree closely, but
the observed variance of HSe. column (4), differs greatly from the
theoretical value obtainable from (5.6) given in column (7). The greater
the non-homogeneity of error variances, the greater the discrepancy noted,
reaching in the extreme a factor of three for experiment 21, There-
fore, it may be concluded that the formula (5.6) cannot be applied

blindly in the case of the ETEM model, due to the possible effect of

non-homogeneity of error variances.

Table 5.6 summarizes the observed mean and standard error for
each experiment in columns (3) and (4) and compares it with the values
obtainable from (5.1), (5.3), and (5.10) given in columns (2), (5), and
(6). 1t is observed that a rather close agreement exists between the
observed mean of o and E(p) obtainable from (5.1)-(a) under the
ANOVA model, i.e., columns (2) and (3), indicating robustness of the
ETEM mode! as far as point estimation and biasedness are concerned.

For the standard error of estimation, all two formulas predict the
observed values reasonably well. Formula (5.10) seems better than
(5.3), though the difference is not great. The calculated sum of
squares of the deviation from the observed values are 0.00858 and
0.00097 for formulas (5.3) and (5.10) respectively, confirming the
conclusion. All of these results suggest that the standard error of

reliability estimate is robust against the violation of homogeneity

of error variances.



Compar I sons

TASLE 5.6

With the Values Obtainable

of Observed Means and Standard Errors of Reliability Estimetes
Under ETEM Mode! and Normal Distributions

From Formula (5.3), and (5.10), N = 2000, 1 =30, J=8
Error E(8) by Observed 6 S.E. by formulas
wo.| set Rel. (5.1)-(a) Mean S.E. (s.3) (5.10) Parameters
(1) (2) (3) (4) (5) (6) (7)
ol Evl 0.889 0.881 0.881 0.036 0.038 0.036 2
02 Ev2 0.889 0.881 0.88) 0.036 0.038 0.036 o - 4.0
03 (15 ] 0.895 0.887 0.887 0.036 0.036 0.034
oh | Evh 0.899 0.892 0.893 0.035 0.035 0.032
05 | EVS 0.883 0.874 0.875 0.039 0.040 0.038
0é Evé 0.834 0.822 0.820 0.058 0.056 0.05h
07 | EV? 0.87) 0.861 0.863 0.0kk 0.0uL4 0.042
o8 Evl 0.667 0.6A2 0.6AS 0.105% 0.101 0.108 2
09 Ev2 0.667 0.642 0.6h4 0.106 0.102 0.108 9" 1.0
10 | EV) 0.68) 0.657 0.664 0.099 0.098 0.103
1] EVh 0.692 0.669 0.669 0.102 0.095 0.110
12 EvS 0.653 0.627 0.631 0.1k 0.10% 0.112
13 | Evé 0.557 0.52k 0.533 0.127 0.126 0.143
11} Ev? 0.628 0.600 0.603 0.119 0./ 1) 0.121
15 | €V 0.419 0.376 0.374 0.188 0.151 0.188 2
16 | EV2 0.419 0.375 0.375 0.187 0.151 0.188 %" 0.36
17 | €V} 0.h34 0.393 0.398 0.180 0.148 0.18)
18 | Eva 0.hi7 0.406 0.410 0.173 0.146 0.179
19 | EVS 0.404 0.360 0.365 0.184 0.153 0.193
20 | €vé 0.311 0.260 0.267 0.201 0.165 0.223
2 | &V 0.378 0.33 0.338 0.197 0.157 0.201
5.00-(a)  E8) =1 - (1-0) T}
1-o2)?
(s.3) Vor () = 1—%—’—
- ede Y

(.10) vor (8) = (1-p)7 (202D, 1)

(9-1) (1-3)°(1-5)
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Table 5.7 summarizes the lower and upper 5% portions of the
observed distribution of 5 in columns (2) and (3) and compares them
with the values obtainable under the ANOVA model and normal theory given
in columns (4) and (5), namely from formula (2.17). The table also
gives approximate real Type one error in columns (6) and (7) when the
F-test of (2.17) is used for the ETEM mode! with normal distributions.
The results clearly indicate the robustness of the F-test against the
violation of homogeneity of error variance assumptions. Although there
is a case (experiment 4) which gives as much as an 8% level of Type
one error, there seems to be no systematic inflation or deflation of

the nominal! Type one error as a whole.

5.2.3 Effects of Non-Normality on ETEM Model

In the previous section, it was seen that the effect of non-
homogeneous error variances on sampling distribution of reliability
estimates is minimal, and it was also seen in Section 5.1 that the sampl-
ing distribution is sensitive only to the violation of the assumption
of the normality of true scores and is robust against distributional
assumption of error scores. Therefore, it is logical to expect that
the distribution is not robust against the distributional assumption
of true scores, but the effect of non-normality of error scores must
still be investigated under the ETEM model, since there is a possibility
of interaction between the non-normal error score distribution and non-

homogeneous error variances.

To investigate this interaction effect, further experiments

were carried out using the EV2 error variances set, chosen because

its a: = 4.0018 is closest to c: = 4.0 used for the ANOVA model



TABLE 5.7

Comparisons of Observed Lower and Upper 5% Critical Points and Res! Type One
Errors of F-Test When Nominal Value is Fixed at 5%, Under ETEM Mode! and
Norma! Distributions With the Values Obtainable Under ANOVA Model,

Ne2000, |30, J=28
Error Observed C.;TT Theoretical C.P.2 Rea) Sig. (%) Paremsters
No.| Set Rel. | Lower Upper Lower Upper Lower Upper
() (2) _ (3) (&) (5) (6) (2) (8)
o1 | EVI 0.889 | 0.819 0.926 0.814 0.927 4.25 4.85 2
02 | Ev2 0.889 | 92.818 0.927 0.814 0.927 .10 h.90 o " 4.0
0) | EV3 0.895 | 0.82) 0.932 0.824 0.931 5.55 6.05
ob | Evh 0.900 1 0.831 0.940 0.832 0.934 5.25 8.05
05 | EVS 0.883 | 0.802 0.925 0.804 0.923 §.20 6.00
0b | EV6 0.834 | 0.719 0.892 0.722 0.891 5.30 5.65
07 | EV? 0.871 | 0.787 0.920 0.784 0.915 §.65 7.1%
08 | EVI 0.667 | 0.449 0.782 0.442 0.781 &.55 5.05 2
09 | EV2 0.667 | 0.&k2 0.784 0.442 0.782 5.00 5.20 o0 1.0
10 | EV3 0.681 | 0.479 0.793 0.466 0.791 3.85 5.48
11 ]| Evh 0.692 | 0.475 0.801 0.484 0.798 5.45 6.10
12 | EVS 0.653 | 0.h14 0.778 0.419 0.772 5.20 6.25
13 | evé 0.557 | 0.292 0.712 0.258 0.709 3.80 5.25
1 | Ev? 0.628 ] 0.385  0.756 0.376  0.755 4.50 5.40
15 | eVl 0.419 | 0.023 0.616 0.027 0.618 5.10 4.55 2
16 | EV2 0.419 | 0.018 0.617 0.026 0.618 5.18 h.70 %" 0.36
17 | &V3 0.434 | 0.057 0.633 0.053 0.629 4.80 5.48
18 | Evh 0.447 | 0.095 0.627 0.074 0.637 A.5S 4.05
19 | €vS 0.404 | 0.020 0.604 0.002 0.609 4.28 §.45
20 | EV6 0.311 |-0.135 0.549 -0.153 0.58) 4.35 5.05
21 jev? 0.378 | -0.031 0.582 -0.042 0.59) §.60 b.10

'OOtcrvod lower and upper 53 critical points of §.

zThoontlu! lower and upper 53 critical points of § under ANOVA model.



9.

to make comparisons simpler, and three levels of o:. for three types

of true and error score distributions, namely uniform (Ul), normal (NO),
and exponential (EX). Altogether the results of 27 experiments are
summarized by tabulating the MS's (Table 5.8), standard errors (Table 5.9),
and lower and upper 5% critical points of the distribution of reliability
estimates with approximate real Type one errors when the nominal values

are fixed at 5% level (Table 5.10).

These 27 experiments may be compared with the results of the
corresponding experiments under the ANOVA mode!, namely experiments 1-3,
13-21, 31-39, and 49-54 of Tables 5.1, 5.2, and 5.3. The expected
values of MS's and variance of HSA show close agreement with observed
values, but formula (5.6) does consistently underestimate the variance
of HSe, though the difference is trivial. Table 5.9 suggests that
formula (5.10) closely approximates the observed standard error as in
the case of ANOVA model. Observation of Table 5.10 also suggests that
the pattern of discrepancy of real Type one error from the nominal
value of 5% is almost the same as for the case of the ANOVA model, thus
indicating non-existence of interaction effects between the non-

homogeneous variance and non-normality of error score distributions.

5.2.4 Conclusions for the Distributions Under ETEM Model

The effects of non-homogeneous error variances on the
sampling distribution of reliability estimates was investigated by
simulating 21 experiments using three levels of p and 7 sets of
error variances whose varlance ranged from 0.0 to 42.1876. The

following conclusions are tentatively made.
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TABLE 5.8

Comparisons of Observed Means and Variances of MS's Under ETEM
Mode) with EV2 Error Variances Set and Various Combinations
of True and Error Score Distributions with the Values
Obtainable from Formula (5.6),

N=2000, | =30, J=28

Dis Observed MS, Observed HS‘ Var. by (5.6) | Parameters,
No. Tr. Er. | Mean Var. Mean Var. MSA NSe S::::":”:n“"
(1) (2) (3) (%) (5) (6) (2)
o) ul Ul |36.063 46.826 | 4.005 0.094 | 48.348 0.078 of-h.o
02 Ul NO |36.119 45.750 | 3.996 0.184 | 48.428 0.158
03 Ul EX |36.041 45.46) | 3.971 0.597 | 48.829 0.558 |0 = 0.8888
ob NO Ul [35.946 81.623 | 4.005 0.094 | 89.308 0.078 | E(Ms,) = 36.0
05 NO NO |36.041 85.556 | 4.000 0.184 | 89.388 0.158
06 NO EX |36.112 90.902 | 3.971 0.597 | 89.789 0.558 :(nse) = 4.0018
07 EXx Ul |35.328 259.119 | 4.005 0.094 | 294.108 0.078
08 EX NO |35.347 269.983 | 3.996 0.184 |294.188 0.158
09 Ex €Ex |35.378 269.587 | 3.971 0.597 | 294.589 0.558
1o vl ul |11.913 7.355 | 3.999 0.092| 7.294 0.078]03 = 1.0
1 ul No J12.019 7.240 | 3.995 0.189 7.37% 0.158
12 ut ex |12.036 7.769 | 3.985 0.632 7.774% 0.558 | p = 0.6666
13 N Ul |12.049 9.579 | 3.999 0.092 9.854 0.078 | E(ns,) = 12.0018
ih NO NO |12.034 9.581 | 3.995 0.189 9.934 0.158
1S NO Ex |12.083 10.585 | 3.985 0.632 | 10.334 0.558
16 Ex Ul |12.012 22.965 | 3.999 0.093 | 22.654 0.078 :(nsc) = 4.0018
17 €x N |11.901 22.794 | 3.995 0.189 | 22.734 0.158
18 Ex Ex |[11.918 23.848 | 3.985 0.632 | 23.134 0.558
19 Ul Ul 6.877 2.916 | 3.990 0.097 2.854 0.078 c: = 0.36
20 Ul MO 6.879 2.891 | 4.008 0.189 2.934 0.158
21 Ul Ex 6.886 3.264 | 4.002 0.607 3.335 0.558 | p = 0.4185
22 N0 V) 6.912 3.18% | 3.990 0.097 3.186 0.078
23 N0 NO 6.891 3.41) | 4.008 0.189 3.266 0.158 :(nsk) = 6.8818
26 NO EX 6.870 3.718 | 4.002 0.607 3.667 0.558
25 EX Ul 6.870 &4.620 | 3.990 0.097 h.845 0.078 :(ns.) « 4.0018
26 Ex NO 6.873 4.662 | 4.008 0.189 4.925 0.158
27 Ex Ex 6.868 5.080 | 4.002 0.607 5.325 0.558

(a) var (NSA) - (T%T 0'+ (ozvA . (l-o)zv‘/J)l(J o: . a:)2
(5.6) Y \
(b) ver (NS.) - 'Tl—.n-zﬁ'_-n' 4 -.%l 0.



TABLE 5.9

Comparisons of Observed Means and Staondard Errors of Peliability Estimates
Under ETEM Model With EV2 Error Variances Set and Various Combinations
of True and Error Score Distributions With the Values Obtainable From

9.

formulas (5.3), (5.1), and (5.10), N = 2000, 1| = 30, J = 8

Dis. Observed 8 Calculated from formulas

No. Tr. Er. Mean S.E. (5.3) (5.1) (5.10) Parameters
(1) (2) (3) (4) (5) (6)
ot vl vl 0.884 0.028 0.038 0.036 0.030 2
02 vl NO 0.885 0.028 0.038 0.036 0.030 o, = 4.0
03 | ui €x 0.886 0.033 0.038 0.036 0.030
oh NO ul 0.88) 0.036 0.038 0.036 0.036 o = 0.8888
05 NO N% 0.881 0.036 0.038 0.036 0.036 E(g) = 0.8806
06 NO EX 0.882 0.04! 0.038 0.036 0.03C
07 £ ')} 0.863 0.063 0.038 0.036 0.057
08 (34 NO 0.864 0.062 0.038 0.036 0.057
09 | Ex (3 0.865 0.064 0.038 0.036 0.057
10 | w u! 0.646 0.09) 0.10) 0.108 0.038 2
" vl NO 0.650 0.092 0.10) 0.108 0.098 oy = 1.0
12 vt €x 0.653 0.101 0.101 0.108 0.100
§) NO vl 0.64k 0.10% 0.101 0.108 0.108 o = 0.6666
& | N NO 0.648 0.114 0.101 0.108 0.109 E(8) = 0.6419
15 | NO (3 0.648 0.1)4 0.10t 0.108 0.109
16 €x v) 0.615 0.15h4 0.101 0.108 0.146
17 £x NO 0.639 0.1hk 0.101 0.108 0.147
18 EX EX 0.617 0.158 0.101 0.108 0.148
19 [ W u 0.380 0.175 0.151 0.188 0.180 2
20 | w NO 0.381 0.170 0.151 0.188 0.182 o, = 0.36
2) vl (3 0.386 0.179 0.151 0.188 0.189
22 NO Ul 0.380 0.184 0.151 0.188 0.187 o = 0.4185
23 | N NO 0.375 0.187 0.151 0.188 0.188 E(8) = 0.3754
24 NO EX 0.380 0.187 0.151 0.188 0.195
25 (34 vl 0.360 0.212 0.15) 0.188 0.216
26 (3] NO 0.358 0.218 0.151 0.188 0.217
27 (3] £x 0.362 0.218 0.151 0.188 0.224
1-1
(a) E(8) =1 - (1-p) 5]
(s.1)
®)  ver (8) = (1-0)? M‘.i;ﬂ_
(3-1)(1-3)%(1-5)
(5.3 Vor (8) = —T"L
. . . Y

(5.100  vor (8) = (1-p)? (RUNLUIID) .,

(-1 0-3%1-8)



TABLE 5.10

Comparisons of Observed Lower and Upper Critical Points of Re
and Real Type One Errors of F-Test When Nominal Value Is 5%, Und

ligblility Estimates
er ETEM Mode)

with EV2 Error Variances Set and Various Combinations of True and Error
Score Distributions With the Values Obtainable

Under the ANOVA Model

94.

and Normal Theory, N = 2000, 1 = 30, J=8
Dis. Rea! Sig. Observed C.P.‘ Theoretical C.P.I
No. Tr. Er. Lower Upper Lower Upper Lower Upper Parameters
(1) (2) (3) (h) (s) (6) (V)]

ol ul ul 1.50 1.48 0.838 0.920 0.814 0.927 2
02 ul NO ).80 1.85 0.839 0.921 0.814 0.927 % " A0
03 ul EX 3.2% 5.85 0.826 0.928 0.814 0.927
oh NO Ul 4.60 3.95 0.817 0.925 0.814 0.927 o = 0.8888
05 NO NO .10 4.90 0.8'8 0.927 0.814 0.927
0é NO EX 5.40 8.65 0.810 0.934 0.814 0.927
07 EX ul 16.75 10.90 0.746 0.940 0.014 0.927
08 EX NO 17.1% 11.50 0.745 0.927 0.814 0.927
09 EX 23 18.40 12.90 0.746 0.945 0.814 0.927
10 ul ul 3.20 3.15 0.478 0.768 0.442 0.781 2
" ul NO 2.80 3.70 0.48)  0.774 0.h42 0.781 o, " 1.0
12 vl Ex 3.15 5.25 0.470 0.783 0.hk2 0.78)
13 NO ut 4.70 5.05 0.445 0.78) 0.4k2 0.781
15 NO NO 5.00 5.20 0.hh2 0.784 0.h42 0.781 o = 0.6666
15 NO (31 5.90 7.3% 0.422 0.79% | 0.hk2 0.78)
113 44 vl 11.65 9.90 0.337 0.813 0.442 0.781
17 (3 NO 11.48 11.60 0.326 0.814 0.442 0.78)
18 EX EX 12.85 11.95 0.323 0.823 0.442 0.78)
9 ul Ul 4.20 .75 0.050 0.616 0.026 0.618 2
20 ut NO 3.2% 4.20 0.072 0.610 0.026 0.618 9" 0.36
2 ut 23 40§ 5.10 0.0h9 0.62) 0.026 0.618
22 NO ul 4.60 5.30 0.039 0.620 0.026 0.618
2) NO NO 5.1% h.70 0.018 0.617 0.026 0.6\8 o= 0.M85
26 NO EX 4.80 5.2 0.033 0.620 0.026 0.618
25 ex ul 6.85 7.10 -0.090 0.63h 0.026 0.618
26 €x N 7.60 7.10 -0.051 0.647 0.026 0.618
27 24 EX 7.20 8.50 -0.037 0.618 0.026 0.618

Vovserved lower and upper 53 critical points.

2Th.orotlc.l lower and upper 5% critical polints of §
distribution of true and error scores.

under ANOVA model with normal
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(a) The variance of MS, is sensitive to the violation of the
homogeneity assumptions, and formula (5.6) should not be used to
calculate this statistic.

(b) For the point estimation of reliability, the ANOVA model is
quite robust against the violation of homogeneity of error variances
provided that the distributions are normal.

(c) The standard error of estimation is quite robust against the
violation of the homogeneity of error variances. The best formula is
still (5.10).

(d) Formula (2.17) can be used freely without inflating or
deflating Type one errors too much for the ETEM model provided that

normality is not violated.

The effect of non-normal true or error score distributions
under the ETEM model was investigated by performing 27 experiments with
three levels of o, three types of true and error score distributions,
and 2 set of non-homogeneous error variances, The following
conclusions are tentatively made.

(e) Formula (5.6) consistently underestimates the variance of
HS. under the ETEM model.

(f) The interaction between the ETEM model and non-normal error
score distribution seems negligible.

(9) The conclusions drawn in Section 5.1.0 may be generalized to

the ETEM mode! with little modification.

5.3.0 Relaxation of the Homogeneity of True Variance Constraint in
the ANOVA or ETEM Models
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5.3.1 Reliability and the Alpha Coefficient

In Chapter Two, the ANOVA and ETEM models were expanded to
include more general models such as the congeneric or multi-factor true
score models through the use of the vector or matrix parameters A and
A in equation (2.6') to produce (2.28). Under these more general models,
the ETEM assumptions are not satisfied in general,.and the Alpha
coefficient is lower than the reliability coefficient. Therefore, one
might be interested in two related but different distributions, namely,
the sampling distributions of the Alpha coefficient estimates and the
reliability estimates. However, the Alpha coefficient has attracted
test theorist's interest only because it is considered a practical,
and easily computable substitute for the reliability coefficient. Thus,
the distribution of the Alpha coefficient estimates is meaningful only
in lieu of the distribution of reliability estimates. Furthermore,
because no direct estimation formula for reliability is available under
these more general models, without exception Alpha coefficient estimates
have been accepted as reliability estimates regardless of the underlying

models or assumptions.

Test theorists know that the population Alpha coefficient

is in general lower than the reliability, but this fact has been

frequently confused with underestimation due to biasedness of the estimation
procedure. Two kinds of underestimation problems that exist in reliability
theory must be distinguished: one is due to deviation from the ETEM
assumption, which is not a statistical inference problem, and the other

is due to the nature of the estimation formula which is biased.

The sampling distribution of the Alpha coefficient under the
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non-ETEM mode! is the most overlooked aspect of reliability theory.
No study has yet been reported on this subject to the author's know-
ledge. Due to the mathematical complexity involved in these models,
it seems almost impossible to investigate the problem by analytical
means. Therefore, the problem was investigated as assumption violat-
ing cases of the ANOVA model using computer simulation techniques.
The major purpose is to find the effects of the violation of the ETEM
assumptions, or homogeneity of true score variances and unifactorness
of the true score dispersion matrix.

Because so many assumptions of ANOVA models are violated
under these more general models, an exhaustive investigation of all
the combinations of possible violation of assumptions is prohibitively
expensive with the computer simulation method. The study in this
section is limited to a few combinations. Therefore, the findings in

this section have limited value for generalization.

§.3.2 Distributions Under the Congeneric Model

Under the congeneric true score model, each part-test measures
the same trait except for the errors of measurement, i.e., the factorial
structure of true scores is unifactor. Therefore all part-test scores
have linearly related true scores. Test scores under the classically
parallel, ANOVA (or essentially parallel), or ETEM models are all
special cases of the congeneric model, as discussed more fully in
Chapter Two. In these special cases any true score of a part-test must
be essentially identical for a given subject, unlike the congeneric model.

Under the congeneric model, the variance, o2 = Az

. , of
Aj J

true score for part j depends on j, and there is not a common
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variance parameter 0: which has played a key role in the ETEM or
ANOVA models. To obtain the corresponding parameters for the congeneric
model, a new parameter oi is defined denoting the average of the all
elements of the dispersion matrix X 1A', namely,

(5.13) op, = W ax Dt e (1T a0z
) I

As this parameter is an average of true score variance and covariances,

the reliability coefficient is,

Pl 72 o
(5.14) o = = - T
1}(5,5f + ¥ J Op. * Jo
where o: is the average of error variances as defined by (2.22),

namely the mean of {°:j} . Since the distribution (2.17) obtained

under the ANOVA mode! and normal distribution theory does not directly
involve the parameters o: and c:. but only directly involves the
reliability o, it is desirable to know whether the distribution

of reliability estimates based on formula (2.13)-(b) is robust against
the violation of ETEM assumptions, i.e., whether the relation (2.17)

still holds approximately for the congeneric cases.

Under the congeneric model, formula (2.13)-(b) gives the
estimate of the Alpha coefficient, not the reliability, but it is
hoped that, with moderate violation of ETEM assumptions, inferences
based on the estimate of Alpha would not invalidate the inferences

of reliability too much as in the case of the previous section.

To see the effects of non-homogeneous true score variances,
sampling experiments were performed using the following three sets of

A's representing three levels of reliability, namely,
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1.6] [0.8] 0.72
1.8 0.9 0.66
1.8 0.9 0.26
2.0 1.0 0.60
A= 2.0] L=liol* 237 ]o.60| °
2.2 1 0.54
2.2 1.0 0.54
| 2.4 1.2 [ 0.48

which gives three levels of o:. namely 4.0, 1.0, and 0.36 and three
levels of p, i.e., 0.8889, 0.6667, and 0.4186 respectively. The 1's
were chosen such that the values of o:' equal oi used for the ANOVA
and ETEM mode! experiments in Sections 5.1.0 and 5.2.0, in order to
facilitate the comparisons. The error variances {oij) are fixed at
L.0 as the ANOVA model, and the same constants are used for N, |, and
J, i.e., 2000,30, and 8 respectively. Employing three types of true
and error score distributions, namely uniform (Ul), normal (NO), and
exponential (EX), altogether 27 experiments were performed by RELOI,

and the results are summarized in Tables 5.11, 5.12, and 5.13. As

in the previous sections, the distributions of MS's are examined
first. From Table S5.11, it is noted that the effects of non-homogeneous
true score variances are minimal, i.e., the results are almost identical
with those under ANOVA model given in Table 5.1. Table 5.12 summarizes
the means and standard errors of reliability estimates under this model
and compares them with the values obtainable from formulas (5.3), (5.1)-(b),
and (5.10). It is clearly noticed that formula (5.10) is still the best
among the three. When the means of o in Table 5.12 are compared

with the corresponding values of Table 5.2, it may be noticed that

under the congeneric model the mean of p is lower than under the
ANOVA model, as expected, since the formula used for the estimation,

(2.13), is for the estimation of Alpha, and Alpha is lower than
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Compar isons of Observed Means and Variances of MS's Under the Congeneric Mode!
ond Verious Combinations of True and Error Score Distributions With the

Values Obtainable From Formula (5.6), N = 2000, 1 =30, J=8
ex.] o1s. Observed WS, Observed NS. Var. by (5.6) Parameters
Mo.| Tr. Er. Mean Var. Mean Var. NSA NS. and E(MS)
() (2) (3) () (s) (6) (1)
ol w Ul 36.052 47.112 4.075 0.089 | 48.339 0.078 2 4o
02| vt w 36.102 45.563 | 4.068 0.168 | 48.419  0.158 . = "
03| w 3 36.057 45.036 | 4.036 0.53) 48.819  0.558
oh]| w0 W 35.931 81.750 | 4.075 0.090 | 89.299  0.078 o = 0.8889
0s | m NO 36.016 85.812 4.069 0.167 89.379 0.158 Alpha = 0.8870
06| N0 EX 36.130 90.374 | h.0%0 0.525 | 89.779  0.558 E(ns,) = 36.0
07 | &x Ul 35.335 258.849 4,071  0.09) | 294.099 0.078
08| ExX NO 35.358 270.871 4.06h 0.168 | 294.179  0.158 E(MS ) = b0
09| Ex  Ex 35.380 269.881 4.0k0 0.525 | 294.579  0.558 ¢
10| w Ul 11.926  7.389 | 4.009 0.085 7.291 0.078 a: 1.0
TR NO 12.028  7.147 | &.008 0.168 7.3 0.158 :
12w X 12.030  7.657 | 3.999 0.560 7.1 0.558 o » 0.6667
131 8 vl 12.051 9.555 4,010 0.086 9.85) 0.078 Alphs = 0.6652
1h| w0 N 12.029 9.492 | 4.009 0.169 9.931 0.158 E(ns,) = 12.0
15| w0  Ex 12.076 10.484 | 3.999 0.560 10.331 0.558
16 ex w 12.005 23.121 4.012 0.086 | 22.651 0.078 E(Ms ) = 4.0
17 ex  wo 11.883 22.08% | &4.010 o0.170 | 22.73) 0.158 ¢
18] ex  ex 11.913  23.485 | 3.998 0.558 | 23.131  0.558
wlw w 6.875 2.910 | 3.997 o0.088 | 2.853 0.078 o =0.36
20 | v NO 6.869 2.886 | &4.012 0.171 2.933 0.158 :
nlwn €x 6.868 3.180 | 4.003 0.526 3.333  0.558 o = 0.4186
22 | w0 ul 6.911 3.16) 3.997 0.088 3.184 0.078 Alpha = 0.4177
23| M 6.883 3.363 | »012 o0.173 3.264  0.158 E(ns,) = 6.880
28 | w0 Ex 6.858 3.629 | 4.003 0.526 3.664  0.558
25| &x wl 6.862  4.536 | 3.996 0.087 4.843 0.078 E(ns ) = 4.0
26| e&x wO 6.865 h.627 | 8012 0.173 4.923  0.158 ¢
27| ex  Ex 6.85h  4.995 | Ah.006 0.526 5.32)  0.558
(0)  var (s,) = (72 o } to¥y, + (1-0)% v /3)1Way + 0}
(s.6)
) ms,) = Ly * 1) o
b Var . - 3= 7] o.
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101.

Comparisons of Observed Means and Standard Errors of Reliability Estimates
Under the Congeneric True Scorc Model With the Values Obtainable

From Various Formulas, N = 2000, | = 30, J =8
Exp. | Ois. Observed § S.E. by formulas Parameters and expected
Mo. |Tr. €r. | mean  s.E. (5.3) (5.1)-(b)  (5.10) |Values under ANOVA
(1) (2) 3) (4) () (6)
o |u w 0.882 0.028 | 0.038  0.036 0.030 of = 4.0
02 ut NO 0.883 0.078 0.038 0.036 0.030
o3 |w Ex 0.884 0.033 0.038 0.036 0.030 o = 0.8889
ok NO Ul 0.879 0.036 0.038 0.036 0.036 Alpha = 0.8870
05 NO NO 0.879 0.036 0.038 0.036 0.036 E(c) = 0.8807
06 NO EX 0.880 0.040 0.038 0.036 0.036
07 EX ul 0.862 0.062 0.038 0.036 0.057
08 (3 NO 0.862 0.06! 0.038 0.036 0.057
09 £x £x 0.863 0.064 0.038 0.036 0.057
w jur ow 0.685 0.09) 0.10) 0.108 0.098 od=t.0
n Ul NO 0.649 0.091 0.101 0.108 0.098
12 |ul EX 0.651 0.098 0.101 0.108 0.100 o = 0.6667
13 N Ul 0.643 0.106 0.101 0.108 0.108 Alpha = 0.6652
& | NO NO 0.643 0.105 0.101 0.108 0.108
15 NO EX 0.646 0.114 0.101 0.108 0.109 E(s) = 0.6420
16 | €Ex u 0.613 0.155 0.101 0.108 0.146
17 13 NO 0.611 0.156 0.10! 0.108 0.147
18 (3] (1] 0.615 0.157 0.101 0.108 0.148
19 |wn Ul 0.379 0.175 0.15) 0.188 0.180 o: - 0.36
20 |wn NO 0.379 0.172 0.151 0.188 0.182
2) vl £x 0.383 0.179 0.151 0.188 0.189 p = 0.4186
22 NO ']} 0.378 0.186 0.15) 0.188 0.186 Alpha = 0.4177
23 |~ NO 0.373 0.189 0.151 0.188 0.188
24 NO (3 0.378 0.186 0.15) 0.188 0.195 E(s) = 0.3755
25 (3] ut 0.359 0.213 0.151 0.188 0.216
26 € NO 0.356 0.219 0.151 0.188 0.217
3] (3] (3] 0.360 0.217 0.15) 0.188 0.224
() €)= 1 - (1-p) ==L
-3
wn
() Var (8) = (1-p)? Mlnpd)
(3-1)0-3)°01-5)
(1-p)2
(s.3) Var (8) = -—-%—l-
- ole v,
(5.10)  var (8) ~ O-0)? MLJ’J—Q— . '+l

(-1 (1-3)°(1-8)
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reliability under the congeneric model. However, as can be seen in

Figure 5.1, the shapes of the distributions are almost the same as
expected from (2.17), namely under the ANOVA model and normal distribution
theory. Therefore similar conclusions as cited in Section 5.1.5 may

be obtained from the observation of Table 5.13, namely the real signif-
icance levels of the F-test, or the lower and upper 5% critial points

of p are almost the same as the values under the ANOVA model.

To make the comparisons between the ANOVA model and the
congeneric model, and to separate the effects of non-homogeneous true
scores variances from the effects of non-homogeneous error variances,
further experiments were performed under the same conditions as the
ANOVA mode! cases except that the true score variances were allowed to
differ. However, there is some possibility of the existence of inter-
action effects between the effects of violating the two homogeneity
assumptions, although each case was found to be quite robust against

the violations.

To investigate this problem, 15 additional experiments were
performed employing three sets of \A's as before and five sets of
non-homogeneous error variances used in Section 5.2.0, namely EV3,
Evh, EVS, EV6, and EV]. The results are summarized in Tables 5.14,
5.15, and 5.16. When the entries of these tables are compared with the
corresponding values of Tables 5.5, 5.6, and 5.7, little difference
is noted between the two sets of values suggesting non-existence of
such interaction effects. For example, experiment 3 of Table 5.5 gives
the observed variance of MS, as 88.222, while the corresponding
value under the congeneric model is given in experiment | of Table 5.14

as 89.270. Therefore, it may be concluded that, the effect of non-
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TABLL §.13

Comparisons of Observed Lower and Upper 57 Critical Puints of Reliability Estimatess
Under the Conqgencric Teue Score Model with the Values Obtainable Under the
ANOVA and Hurmal Theory, and Real Type One: Error of F-Test When the

Nominal Value is 5%, N = 2000, | = 30, J = 8

i True Sig. (%) Observed €.P.! | Theoretical c.p.2

xp. Dis. P

No. Tr. Er. Lower Upper Lower  Upper Lower Upper srameters
() (2) (3) (&) (s) (6) m

o0 vl ul 1.90 1.35 0.83% 0.917 | 0.814  0.927 o: - 4.0

02 Ul N 1.85 1.65 0.835 0.918 | 0.814 0.927 '

03 vl EX 2.75 4.05 0.826 0.925 0.814 0.927 o = 0.8889

oA N0 Ul 5.15 2.90 0.813 0.924 | 0.814 0.927 Alpha = 0.887

05 N0 NO 4.60 3.95 0.816 0.925 | 0.814 0.927

06 N0 EX 5.65 6.95 0.810 0.930 | 0.814 0.927

07 e ut | 17.95 9.64 0.745 0.938 | 0.814 0.927

08 €x N0 | 17.85 10.45 0.743 0.940 | 0.814 0.927

09 Ex Ex | 18.35 11.70 0.750 0.942 | 0.814 0.927

U 3.35 2.80 0.475 ©0.768 | 0.4k2 0.78) o: - 1.0

noooul N 3.05 3.35 0.482 0.771 | 0.&k2 0.781 .

12 Ul Ex 3.75 .85 0.470 0.78) | o0.4k2 0.781 p = 0.6667

13 N Ul 4.60 4.70 0.448 0.778 | o0.4k2 0.781 Alpha = 0.6652

T .60 s.80 0.447 0.780 | o0.442 0.78)

1S N0 EX 6.05 7.10 0.428 0.79) | o0.4k2 0.781

6 Ex ul | 11.70 10.45 0.325 0.812 | o0.%k2 0.78

17 € N | 12.05 11.05 0.328 0.812 | 0.4k2 0.78)

18 EX EX 12.80 11.85 0.319 0.820 0.442 0.781

19 Ul W 3.85 4.85 | 0.058 0.618 | 0.027  0.618 o: . 0.36

20 Ul N 3.65 4.35 0.068 0.610 | 0.027 0.618 .

21 Ut EX 4.65 4.60 0.0k0 0.614 0.027 0.618 o = 0.4186

2 N Ul 4.80 655 0.030 0.614 | 0.027 0.618 Alpha = 0.4177

23 N0 N 5.25 .60 0.020 0.616 | 0.027 0.618

28 N0 EX 5.00 465 0.027 0.617 | o.027 0.618

2% EX Ul 7.5 6.95 | -0.027 0.635 | 0.027 0.618

26 & 0w 8.40 7.20 | -0.068 0.645 | 0.027 0.618

27 & Ex 7.40 8.40 | -0.052 0.648 | o0.027 0.618

'Oburved lower and upper 5% critical points.

thoonllul lower and upper 5% critical points under ANOVA with normal distribution
of true and error scores.
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Comparisons of Ob.erved Means and Varliances of MS's Under Congencric True Scores,
Non-Momugencous Error Variances and the Normal Distributions With the Values

108.

Obtainable Under ANOVA Mudel, N = 2000, | = 30, J = 8
Observed MS Observed MS Var. by (5.6)
Exp. Er. A e
No. | Type | Mean Var. Hean Var. ‘("SA) HSA NS. Param:ters
4 (2) (3) (&) (s) (6) (7) 18)
o! Ev3 36.100 89.270 | 3.832 0.224 35.750 88.142 0.139 o: - k.0
02 Evs 35.611 83.103 | 3.630 0.239 35.562 87.220 0.125 *
03 | EvS 36.308 87.363 | h.32} 0. k41 36.250 90.625 0.178
0h | EVE 38.742 103.316 | 6.472 0.708 38.375 101.561 0.400
05 Ev? 36.915 96.880 | 4.819 0.618 36.750 93.142 0.222
06 | EV) 11.795 9.654 ] 3.758 0.2M 11.750 9.522 0.139 c: = 1.0
07 | Evd 11.633 9.566 | 3.574 0.223 11.562 9.220 0.12% :
o8 EVS 12.249 10.121 | 4.693 0.432 12.250 10.349 0.178
09 | Ev6 14.477 15.206 | 6.376 0.702 14.375 14,251 0.400
10 | Ev7 12.740 11.32V | 4.778 0.609 12.750 1.2 0.222
11 (15 ] 6.700 3.203 | 3.768 0.221 6.630 3.032 0.1)9 o: = 0.36
12 Evh 6.430 2.779 | 3.564 0.232 6.442 2.862 0.128 ‘
13 | EvS 7.120 3.49) | 4,258 0.430 7.130 3.506 0.178
14 | EV6 9.306 5.915 | 6.394 0.771 9.255 £.907 0.400
15 Ev? 7.593 3.782 1 4.753 0.620 7.630 h.015 0.222
Ems) = o) = 3.750 (Ev3)
: 3.563 (Evd)
4.250 (EVS)
6.375 (ev6)
4.750 (Ev?)
(a) var (s,) = ‘T%T . {- (ozvA . (l-o)zv.lJ)l(Joz . 0:)1

o |

2 Yo, &
(d) Vver (IS.) - lm . U] %



TABLE 5.15

Comparisons of the Observed Mcans and Standurd Error of Rellability Estimates
Under Congeneric True Score, Non-Homogencuus Error Variances and Normal
Distributions With the Values Obtainable From Formulas (5.1), (5.3),

106.

and (5.10), N = 2000, | =30, J=8
Exp. | Er. E(s) by Observed § S.E. by
No. | var.| M€V | AlPha "y ta) | Mean  S.E. (5.3)  (s.10) | Parameter
(1) (2) (3) (4) (5) (6) (1) (8)
ot Ev3 0.895 0.893 0.887 0.886 0.036 0.036 0.034 o: - N.Q
02 Evd 0.900 0.898 0.892 0.891 0.034 0.035 0.032 '
03 EvS 0.883 0.881 0.874 0.873 0.0k 0.040 0.038
(11 Evé 0.834 0.832 0.822 0.821 0.055 0.056 0.054
05 Ev? 0.87) 0.869 0.861 0.860 0.048 0.04k4 0.042
06 EvV3 0.681 0.679 0.657 0.658 0.108 0.098 0.103 o: = 1.0
07 EVk 0.692 0.690 0.669 0.670 0.102 0.095 0.100 *
08 VS | 0.653 | 0.652 0.627 0.628 0.114 0.10% 0.112
09 | evé | 0.557 | 0.555 | o0.524 0.528 0.140 | 0.126  0.143
10 EV?7 0.628 0.626 0.600 0.601 0.119 0.1 0.121
" ev3 | 0.434 | 0.438 | 0.393 0.397 0.180 | 0.148 0.183 | o «o0.36
12 Evh 0.447 0.446 0. 406 0.409 0.173 0.146 0.179
13 EVS 0.404 0.403 0.360 0.36% 0.18) 0.153 0.193
| eve | 0.3 | 0.3n | o0.260 0.268 0.207 | 0.165 0.223
15 Ev? 0.378 | 0.377 0.3 0.337 0.190 0.157 0.201

(o) E(®) =1 - (1) F
(s.1) {
®)  var (8) = (1-p)2 2L (ve1-3)

-1 (-1 1-5)

1-o)2

(s.3) Var (8) S—-q—)—
(5.10)  ver (8) = (1-p)? I;ZSJ"I(IJ-J-II . Zf)

J-1)(1-3)¢(1-5)



TABLE 5.16

Comparisons of Observed Lower and Upper 5% Critical Points Under Congeneric True
Scores, Non-Homogeneous Error Scorc Variance, and Normal Distributions With

the Values Obtainable Under the ANOVA and Norma! Theory, and Rea! Type

One Errors of F-Test When the Nominal Value is 5%,

107.

New2000, |=30 J=8
T 3

Observed C.P. | Theoretical C.P. Real Sig. (%)
Exp.| Er. E(s) by
No. | var. Rel. (5.1)-(b) Lowcr  Upper | Lower  Upper Lowar Upper | Torameter

() (2) (3) (4) () (6) (2) (8) - (9)

o | ev3 | 0.895 | o0.887 0.821 0.930 | 0.82k  0.931 5.90 450 | oA = 4.0
02 | evh | 0.900 | 0.892 0.829 0.93% | 0.832 0.93k | 5.90 4.80 .
03 | evs | 0.883 | o0.874 0.795 ©0.92h | 0.804 0.923 | 6.50 .60
ob | eve | 0.834 | o0.822 0.720 0.892 | 0.722  0.89 5.25  5.25
o5 | ev? | 0.8 0.86) 0.774 0.917 | 0.78« o0.915 | 6.50 6.20
06 | EV3 | 0.681 0.657 0.448 0.792 | 0.466  0.79 5.80 5.10 [0 = 1.0
07 | evh | 0.692 | o0.669 0.485 0.802 | 0.484 0.798 | S.00 5.60
o8 | evs | 0.653 | o.627 0.417  0.773 | o.t19  0.772 5.15 5.1
09 | evé | 0.557 | o.s524 0.271 0.713 | o0.258 0.709 | h.40  5.95
0 | ev? | 0.628 | o0.600 0.377 0.757 | 0.376 ©0.755 | 4.90 5.20
| vy | o.u38 | 0.393 0.059 0.631 | 0.053 0.629 | .80 5.35 | o2 = 0.36
12 | evh | o.uk7 | o.%08 0.09% 0627 | 0.0 0.637 | &.70 3.90
13 | evs | o.40h | 0.360 0.022 0.602 | 0.002 0.609 | 4.10 .05
w | eve | 0.31 0.260 -0.130 0.5k | -0.153 0.548 | 4.30  &.70
s | vz | 0.378 | o0.3n -0.035 0.582 | -0.0h2  0.59 875 AS

'Oburvod lower and upper 5% critical points of §.

z?hoonnul lowsr and upper 53 critica) points of § under ANOVA model.
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homogeneous true score variance, or violation of ETEM assumption will
affect the sampling distribution of the reliability estimates given by
(2.17) very little as long as the degree of non-homogeneity is within

a moderate range as with the A's wused in these experiments.

5.3.3 Distributions Under the Multi-Factor Model

Classically, the assumption of a one-factor true score has
been referred to as one which produces 'unit rank correlation matrix'
(e.g., Kuder and Richardson, 1937), but as seen in Chapter Two, the
unifactorness of true scores is inherent to the ANOVA |linear model and
its more general form such as the ETEM or congeneric models. Under
these models, it is implicitly assumed that the test measures only one
trait, and therefore, the true score can have only one factor structure.
However, in real test score data, it is seldom possible to separate
measurement of one trait from others. The psychological or achievement
tests usually measure more than one trait at a time, and it is sometimes
unrealistic to assume that only one factor exists and to regard all
other factors as error. This fact has been well demonstrated by the
rejection by many researchers of Spearman's so-called g-factor theory
in modern factor analysis. Thus violation of unifactor true score
assumption may not be considered simply as an exceptional case; this

mdy be rather a common case for real data.

In Chapter Two, the multi-factor test mode! has been introduced
as a generalization of the congeneric test model by expanding the
linear mode! of ANOVA step by step to a factor analytic model. However,
since most of the test theories are based on the unifactor true score

assumption, no reliability theory has ever been developed under this
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model. Therefore the multi-factor mode! has been referred to as an
assumption violating case of the classical model rather than a separate
model in its own right. Following this traditional line, in this study,
the reliability distribution under the multi-factor model is treated

as an assumption violating case of the ANOVA model as are other models

examined in the previous sections.

Since the Alpha coefficient is a measure of the first factor
concentration (Cronbach, 1951), the coefficient is expected to be much
lower than the reliability coefficient if second or higher factor is
not negligible. Therefore, it is hardly expected that the sampling
distribution of Alpha coefficient, as a substitute for the reliability

estimate, is robust against the violation of the unifactor assumption.

To support this conjecture, a number of sampling experiments
were performed and the results are compared with those obtainable under
ANOVA model. The parameters oi and o: are not defined under this
mode! as with the congeneric model case, but the average of true and
error score variance may be used to determine the effectiveness of the

ANOVA mode| under the multi-factor model, namely,

2 ] ] 2 2
(5.15) op, = (AN DT - (] {.2 A At
I
and o:. as in the previous section.

If these parameters are used in place of 02 and o2

A e’ mos t
of the formulas introduced in Section 5.1.0 can be used directly and
the robustness of the ANOVA model under multi-factor true score cases

can be examined empirically by the simulation techniques.
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Using the following two A matrices, an error score standard
deviation matrix ¥,, and three types of true and error score distributions,
altogether 18 experiments were performed under the multi-factor true

score model with N = 2000, | = 30, J = 6,

] - R
0.887  0.302 0.4435  0.1510
0.410  0.663 0.2050 0.3315
A - |0.202 0.735 A =Ll o|01210 0.3675
=17 lo.369 0816 22773 7 |0.1845 0.4080
0.417  0.557 0.2085 0.2785
0.663  0.482 0.3345  0.2410
0.34942 0.0 0.0 0.0 0.0 0.0
0.0 0.62636 0.0 0.0 0.0 0.0
¢ = |00 0.0 0.63341 0.0 0.0 0.0
= 0.0 0.0 0.0 0.44495 0.0 0.0
0.0 0.0 0.0 0.0 0.71823 0.0
| 0.0 0.0 0.0 0.0 0.0 0.56579

Table 5.17 compares the observed means and variances of the MS's under
the multi-factor model with the values obtainable from formula (5.6)
treating the model as an ANOVA model. It is noted that rather close
agreement exists between the means of the observed HSA and E(HSA)
given in colums (1) and (7), but the agreement is rather poor between
the means of observed HSe and E(HSe) given in columns (3) and (7)
indicating the effect of the violation of unifactor true score assumption.
Even for the normal true and error score distributions, the difference
between the two values are too big to be explained as sampling fluctu-
ation. For example, experiment 5 gives the mean of HSe as 0.413
while the theoretical value of E(HSe) = 0.3249 if the ANOVA model
and gi_ are used. This implies that the E(HSe) undervalues the

real expected value of nse. When the variances of MS's, in colums (2)

and (4), are compared with the values obtainable from formula (5.6)



TABLE 5.17

Comparison: of Observed Means and Varlances of MS's Under the Multi-Factor
True Score Model and Variou. Combinations of True and Error Score
Distributions With the Values Obtainable Under ANOVA Model by
Formula (5.6), N = 2000, | = 30, J =6

Exp. Ois Obscrved WS, Obsarved NSe Var. by (5.6) Parameters
No. Tr. €r. Mean Var. Mcan Var. HSA NSe and E(nS)
(1) _(2) (3) (&) (5) (6) (2)
o) vl ul 3.916  0.761 0.436 0.0017 | 0.542 0.0008 o: = 0.6001
02 vl NO 3.915  0.800 0.414  0.0026 | 0.54k 0.0015 2
03 vl EX 3.902  0.814 0.414  0.0067 | 0.548 0.0050 of = 0.3249
oh N0 Ul 3.919  1.087 0.413 0.0019 | 1.062 0.0008 e.
05 N0 MO 3.919  1.066 0.413  0.0027 | 1.063 0.0015 E(ns,) = 3.9235
06 N0 EX 3.913  1.036 0.413  0.0066 | 1.066 0.0050
07 &x Ul 3.898 2.34) 0.414 0.0027 | 3.655 0.0008 E(MS ) = 0.3249
08 EX N 3.895  2.278 0.414  0.0036 | 3.656 0.0015 ¢
09 EX  EX 3.887  2.309 0.413 0.0073 | 3.659 0.0050
10 ul vl 1.233  0.086 0.345 0.0010 | 0.070 0.0008 o: « 0.1500
nour N 1.220  0.089 0.346 0.0019 | 0.071 0.0015 2
12 v X 1.218  0.089 0.34 0.0058 | 0.075 0.0050 o’ = 0.3249
13 N Ul 1.23)  0.103 0.348 0.0010 | 0.103 0.0008 ..
h N M 1.223  0.103 0.346 0.0019 | 0.103 0.001§ E(ns,) = 1.225
15 N0 EX 1.2256  0.109 0.348 0.0059 | 0.107 0.0050
16 & vl 1.220 0.181 0.346 0.0011 | 0.265 0.0008 E(MS ) = 0.3249
17 EX N 1.216  0.174 0.34%7 0.0020 | 0.266 0.0015 ¢
18 X X 1.242 0.188 0.346 0.0063 | 0.269 0.0050

(o) var 1s,) = [ e § o7y, ¢ (-0 v /)1 000} ¢ oF)?

(5.6)

Y
(d) var (NS.) - (-“T‘Tzu—.n-o 1%] n:
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given in columns (5) and (6), rather poor agreement is noticed, suggest-

ing inapplicability of the formula.

Table 5.18 gives means and standard errors of reliability
estimates and compares them with the values obtainable from formulas
(5.3), (5.1)-(b), and (5.10). It is observed that, for all experiments,
the mean of 5 is much lower then population Alpha or E(p) under
ANOVA and normal theory, indicating the effect of the multi-factor
true score structure. This result is probably due to the fact that
the Alpha coefficient measures mainly the variance due to the first
factor, and thus underestimates the true score variance and over-
estimates the error score variance, and at the same time shifting the
distribution of reliability estimates considerably to the left as shown
in Figure 5.2. Although formula (5.10) seems still to be the best
among the three, the fit is very poor suggesting inapplicability of
most of the formulas derived under the ANOVA model and normal theory

for multi~-factor true score test.

Discrepancies between observed and theoretical distributions
based on ANOVA model are clearly seen when the real significance level
of F-test is compared with the nominal value of 5%, as summarized in
Table 5.19. The real significance level for the lower tail range from
1h.40% to 27.50% for A, and 5.80% to 12.30% for ﬁq' clearly
indicating the inapplicability of the conventional F-test to multi-
factor tests. For the upper tail, the true significance levels are
in general lower than the nominal value, but the results are not

predictable. For example, experiment 2 gives a value as low as 0.453,

while experiment 18 gives one as high as 8.10%. All of these results



TASLE 5.18

Compar isons of Observed Means and Standard Errors of Rellability Estimates
Under the Multi-Factor Truc Scorce Model and Various Combinetions of
True and Error Score Distributions With the Values Obtainable From

113.

fFormulas (5.3), (5.1)-(b) and (5.10), N = 2000, | = 30, J = ¢

Observed § Calculated S.[. by Parameters and L({),
:;' 2:" & Mean  S.E. (5.3) (5.1)-(b)  (5.10) | ANOVA and Normal

) (2) (3) (§) (5) (6)
o0l wwl 0.888 0.032 | 0.029  0.027 0.023 o = 0.600)
02| ur w 0.888 0.033 0.029 0.027 0.023 .
o3| v & 0.887 0.039 0.029 0.027 0.023 o, = 0.3249
oh| N0 W 0.886 0.037 0.029 0.027 0.027 :
os | N N 0.886 0.038 0.029 0.027 0.027
06 | w0  Ex 0.887 0.038 0.029 0.027 0.027 o= 0.9172
07 €X T]] 0.879 o.ok2 0.029 0.027 0.0k Alpha = 0.8943
08 | €x NO 0.879 0.0% 0.029 0.027 0.04k €(s) = 0.911)
09 | ex ex 0.880 ©0.049 0.029 0.027 0.004
wlw w 0.702 0.085 | 0.08%  0.088 0.078 o2 = 0.1500
ni v wo 0.698 ©0.088 0.084 0.088 0.079 y
12 | v ex 0.700 0.097 0.084 0.088 0.080 ol = 0.3249
13 ] o w 0.695 0.09) 0.084 0.088 0.088 ¢
Wl o w 0.696 0.096 0.084 0.088 0.088 p = 0.7348
15| w x 0.696 0.106 0.084 0.088 0.089 Alpha = 0.7164
16 (3 7] 0.682 0.115 0.084 0.088 0.124 E(s) - 0.715)
17 ] ex ™ 0.682 0.118 0.084 0.088 0.124
18 | ex  Ex 0.691 0.120 0.084 0.088 0.124

-1
[ E6) =10
(5.1) l
() var (8) = (1-p)? ALZLLL1od)
(9-1)(1-3)°(1-5)

(-p)?

(5.3)  var () « L2 )
- el Y

(5100 var (5) = (10p)? (RLWIUIID) 4

Q-1 0-370-5)
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Comparisons of Observed Lower and Upper 5% Critical Poin
and Real Type One Errors of F-Test When the Nominal
Multi-Factor True Score Model and Various Combinati
Score Distributions With the Values Obtainable U

TABLE 5.19

ts of Reliability Estimates
Value is 5% Under the

ons of Truc and Error
nder the ANOVA Mode |
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and Normel Theory, N = 2000, | = 30, J=¢
T p)
txp. | ois. Real Sig. (2)| Obscrved C.P.'| Theoretical C.P. Parameters
No. Tr. Er. Lower  Upper Lower  Upper Lower Upper
) G) (W) (5)__ (6) n
of | ul w | 1535 050 |0.813 0.929 |0.860 o0.946 a: = 0.6001
02 | Ut wNo 14,40 0.45 0.828 0.930 | 0.860 0.946 2
03 | ul  Ex 19.50 1.4 0.817 0.93% |0.860 0.946 o, = 0.3249
oh | N0 ) 19.80 0.40 0.820 0.931 0.860 0.946 €.
05 | N0 NO 18.90 0.55 0.815 0.932 0.860 0.946 p=0.9172
06 N0  EX 20.90 1.ks 0.819 0.936 0.860 0.946 Alpha = 0.8943
07 X Ul 27.50 1.2 0.814 0.939 |0.860 0.946
08 | ex wno 26.45 ).55 0.797 0.936 [0.860 0.946
09 | Ex Ex 26.80 2.40 0.786 0.939 |0.860 0.946
o |lw u 5.80 2.25 |o0.541 0.813 |o0.552 o0.828 c: « 0.1500
] vl NO 6.85 2.20 0.530 0.815 |o0.552 0.828 2
12 v ex 7.95 &4.05 0.522 0.825 |o0.552 0.828 . = 0.3249
13 | m wn 7.55  2.40 0.524 0.814 |0.552 0.828 e
s | N NO 8.20 2.95 0.508 0.814 |o0.552 0.828 o = 0.7348
15 | N Ex 8.45 &.70 0.500 0.826 |o0.552 0.828 Alpha = 0.7164
16 EX vl 12.06 S.00 0.475 0.828 0.552 0.828
7 EX KO 12.30 &.8% 0.450 0.828 0.552 0.828
18 EX  EX 11.56 8.10 0.466 0.845 Jo0.552 0.828

'Observed lower and upper S% critica) points of

2‘l"ncuthul lower and upper S% cri

distridution of true and error scores.

8.

tical points of 5 under the ANOVA mode! with normal
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strongly suggest that ANOVA model and normal theory are not robust

against the violation of the assumption of unifactor true score.

5.3.4 Conclusions for the Effects of Non-ETEM Mode

Based on the above discussions, the following conclusions are

tentatively made.
(a) Formula (5.6) may be used for the congeneric test case If

2 2 2

% and ce are used in place of oi and 9, of ANOVA model. How-

ever, this formula is valueless for the case of multi-factor true score
mode | .

(b) The non-homogeneity of true score variance has little effect
on the distribution, although the ETEM assumption is violated if the
violation is moderate. The conclusions obtained in Section 5.1.5 may
be generalized to the congeneric true score cases with moderate violation
of ETEM assumption.

(c) The effects of violation of the unifactor true score assumption
are the most critical. |f this assumption is violated, the formulas
derived under the ANOVA mode! cannot be applied directly even with 2
normal true score distribution.

(d) The F-test based on (2.17) may be used for the congeneric
mode! if the true score distribution is aspproximately normal as in
the ANOVA mode! case and the homogeneity of true score variance is
satisfied approximately, but it would be misleading in multi-factor
mode! cases. This is especially true for inferences based on lower
portions or high reliability case. As previous sections showed, these

effects diminish with the lower values of reliability.

Findings in this section are based on rather limited

combinations of possible parameters and distributions of true and
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error scores, and therefore, generalization must be made with care.

5.4.0 Summary

Sampling distributions of reliability estimates for the
continuous part-test cases are investigated under the ANOVA, ETEM, and
congeneric and multi-factor true score models with various combinations
of true and error scores distributions by analytical and computer
simulation methods. Tukey's results for the calculation of the
variance of variance estimate under an ANOVA mode! were applied to
test theory to obtain an approximate formula for standard error of
reliability estimates when the distributions of true and error scores

are not necessary normal.

To investigate sampling distributions of reliability estimates
based on formula (2.13) under these models and distributional assumptions
not necessarily normal, to see robustness of the ANOVA mode!l and normal
theory represented by the formula (2.17), and to evaluate the new
formula for the standard error of reliability estimates, altogether 156
experiments were performed by RELOI, each requiring approximately 6
minutes of computer C.P.U. time. From the experiments, the following
conclusions may be obtained.

(a) The equation (2.17) obtained under the ANOVA mode! and
normal theory is quite rcbust against the violation of the following
assumptions if the reliability estimate is based on (2.13), i.e., the
estimation formula for Alpha coefficient:

i) Normality of error score distributions.
ii) Homogeneity of error score variances.

i11) Homogeneity of true score variances, if violation is
moderate.



But the ANOVA mode! and normal theory is not robust against violation

of the following assumptions.

i) Unifactorness of true score dispersion metrix.
ii) Normality of true score distributions.

The effects of the violation of these last two assumptions will
decrease as the values of reliability decrease-

(b) For the F-test based on the equation (2.17), the multi-
factor true score model increases Type one error for the lower tail
and decreases it for the upper tail by shifting the distributions of
reliability estimates leftward substantially, when second or higher
factors of the true score dispersion matrix cannot be ignored.

(c) The effects of non-normal true score distributions depend
on the magnitude of their kurtosis. For negative kurtosis, Type one
errors for both tails are less than the nominal value, while for
positive kurtosis, they are greater than the nominal value. The
greater the absolute value of kurtosis, the greater is the discrepancy
from the nominal value.

(d) 1f true scores are distributed as normal, the ANOVA, ETEM,
and congeneric models give almost identical distributions of reliability
estimates with moderate departures from homogeneity assumptions of
error and/or true score variances.

(e) The new standard error formula (5.10) is superior to the

traditional formulas (5.1) or (5.3), if the true scores are not

distributed as normal.
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CHAPTER SIX

RESULTS FOR BINARY ITEM TEST SCORE CASES

This chapter presents the results of computer simulated
experiments for the binary item test score cases. Section 6.| deals
with the overall factors which might affect the distribution of reli-
ability estimates. In Section 6.2, the effects of non-normal error
distributions are investigated with normal latent score distributions
and homogeneous biserial correlations. Section 6.3 deals with the
cases of non-normal lateit scores with homogeneous biserial correlations
and normal error scores, while Section 6.4 deals with non-normal latent
scores and non-homogeneous biserial correlations. For all cases, both
homogeneous and non-homogeneous item difficulty parameters are employed

to determine the effects of non-homogeneous difficulty parameters.

6.1 Factors Related to Binary Item Test Scores Distribution

As discussed in Chapter Three, for a composite test con-
sisting of J binary items as its part-tests, direct decomposition
of observed score ‘lj' which takes the value unity for a correct
response and zero otherwise, into two independent parts, namely true
and error scores, Is impossible. Thus the linear model equation (3.3)
can only be applied to an intervening variable or 'response strength
variable' ylj which is a hypothetical continuous variable.

Under the normal ogive model, it was possible to evaluate

test parameters such as the variance o:. reliability o, and KR20

by means of numerical methods if the item parameters, such as difficulty
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parameters (wj) and biserial correlations {Aj}, are specified.
Unfortunately, however, the computational formulas given in Chapter
Three are valid if and only if the normal ogive model is valid, namely,
if the {fi} and {eij} are independently and identically distributed
as N(0,)) as discussed in Section 4.6 of Chapter Four. Thus the non-
normal distributions of these two types of random variables would

affect not only the sampling distribution of reliability estimates, but

also the population test parameters.

Furthermore, for the continuous part score case, the fixed
constant for each part, Bj’ indicates the relative difficulty level
of each part-test, but these parameters do not enter any formula for
reliability or any other test parameters, and are independent of the
sampling distribution of reliability estimates. Therefore it was not
necessary to consider the effects of {Bj} on the distribution of
reliability estimates. For the binary item case, however, the item
difficulty parameters, the analogue of Bj for the continuous case,
enter the formula (3.15) through threshold constants and consequently
affect such test score parameters, as the mean, variance, reliability
and KR20. Furthermore, as shown in Section 3.4 of Chapter Three, the
ETEM assumption is satisfied if and only if the items are all homogeneous,
namely they have equal difficulty and biserial correlation parameters.
Therefore, if the difficulty parameters are not homogeneous, it is
expected that the KR20 will be lower than the reliability and
subsequently the sampling distribution of reliability estimates may
differ from that of the homogeneous case, though there is some indication

that the effects are not great (Nitko and Feldt, 1969).
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As a result, for the binary item cases, the following factors
must be taken into account for a study of sampling distributions of

reliability estimates:

i
l.e., the effect of the violation of the normal ogive model.

(a) The effect of non-normal distributions of {f,} and (clj).

(b) Homogenelity of item difficulty parameters and biserial

correlations, i.e., the effect of the violation of the ETEM assumption.

Obviously it is impossible to investigate the sampling distri-
butions of reliability estimates under all possible combinations of the
above factors and all possible sets of parameters by computer simulation
techniques. In this chapter, to conserve the overall computsr time,
the experiments and investigations are limited to only three distribu-
tions for (fl} and (cij}. namely uniform (U1), normal (NO), and
exponential (EX); four sets of difficulty parameters, two of which are
non-homogeneous, and six sets of biserial correlations, three sets of
which are non-homogeneous. The parameter sets used for the experiments

are given in Tables 6.1 and 6.2

TABLE 6.1

Item Difficulty Paramsters

Nota- | Homoge- Item Number Mean Var.
tion | neity | 2 3 § 5 6 7 8 9

ol Homo . 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5{0.5 0.0

02 Non-Homo.| 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9/ 0.5 0.0667
03 Homo . 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7}10.7 0.0

ok Non-Homo.| 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9| 0.7 0.0167
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TABLE 6.2

item Biserial Correlations

Nota- | Homoge- Item Number

tion | neity ' 2 3 4 s 6 7 8 g |Meanvar.
)] Homo. 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.710.7 o0.0

B2 Non-Homo.| 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9|0.7 0.0167
83 Homo . 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6|0.6 0.0
84 Non-Homo.| 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.750.8{0.6 0.0167
es Homo . 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 o.4)0.4 0.0

86 Non-Homo.| 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.4 0.0167

With these distribution-parameter combinations, altogether
216 experiments (3 x 3 x 4 x 6) are possible. However, previous results
indicated that the error distribution has little effect on the distri-
bution of reliability estimates, and the same tendency may be expected
for the binary item cases. Since this was the case, as will be seen
in the following section, only the first step of the investigation will
involve the case of non-normsl error distributions. Thus the total number

of experiments run were 96, resulting in a saving of computer time.

6.2 The Effects of Non-Normal Error Distribution and Non- eneous
item Difficulty Parameters

In order to separate possible effects of non-normal latent
score distribution and non-homogeneous biserial correlations such as
82, 84, and B6, from those of non-homogenéous item difficulty parameters
or non-normal errors, which are of major interest in this section, three
homogeneous biserial correlation sets B!, B3, and B5, normal distribution

of latent variables, four sets of difficulty paramsters, three types
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of error distributions are used, i.e., altogether 36 (3xhx3) experiments

with N = 1000, | = 30 and J = 9 are performed.

Table 6.3 presents population parameters calculated from the
formulas given in Chapter Three and the results obtained from the
parallel form method, with sample size 30030. Comparisons of data
in Table 6.3 indicate:

(a) Calculated test parameters based on formulas given in Chapter
Three agree reasonably well with the results obtained by computer
simulation, thus partially validating the computer simulation method.
For example, experiment 2 was performed with normal error score
distribution, and satisfies the normal ogive model. It gives the
test score mean, variance, reliability, and KR20 as 4.491, 8.094, 0.813,
and 0.812, while the theoretical values based on the normal ogive model
are 4.5, 8.118, 0.813, and 0.813 respectively.

(b) For normal latent score distributions, the observed test
score means given in column (5) seem to depend only on the average of
the item difficulty parameters as expected, and are affected neither
by non-homogeneous difficulty paramsters nor non-normal error score
distributions. For example, the values of experiments 1- 6 inclusive
in column (5) are almost identical to theoretical value 4.5, although
experiments |, 3, &, 6 have non-normal error score distributions,
and experiments &, 5, and 6 have non-homogeneous difficulty para-
meters.

(c) The non-homogeneous difficulty parameter sets, 02 and Db,
(e.g., experiments &, S, 6, and 10, 11, 12) result In lower test
score variance, reliability, and KR20 when compared with the same

sverage level of difficulty, but homogeneous, namely DI, and D3



TABLE 6.3

Comparisons of Celculated Test Parsmsters Under the Norme! Ogiva Mode!
Vith Empirical Values Sased on the Parallel Form Method, Norme!
Latent Scores, and Momogeneous Siserial Correlations,

Nl = 30030, J =9
Theoretical (N.0.) Observed by P.7.K. ‘
::° Sl M V) an ver.  Rel. kA0 | Meen Ver. Rel.  KR20
) (2) (3) (4) (s) (6) (2) (8)
o vl YR A5 0.8 0.813 0.813 | 4.9 “B.006 o0.811 o0.810
02 ™ " 0 05  8.118  0.813 0.813 | 4491 B8.0% 0.813 0.8)2
0 & s o oS 8.118 0813 0.813 | A.M8 8.103 0.812 0.813
oh u 8 D2 8.5  A.979  0.769 0.752 | 4.496 4.941 0.768 o0.750
05 m 8 02 0.5  M979 0.769 0.752 | 4.M95 S5.012 0.772 0.754
o = B 02 A5 0979 0.769 0.752 | 4.506 4.9%68 0.768 o0.751
07 Ul 8l 03 6.3 6.589 0.802 0.802 6.289 6.493 0.802 0.802
o8 m 03 6.3 6509 0.802 0.802 | 6.299 6.621 0.806 0. 804
0 &x 8 03 6.3 6.509 0802 0.802 | 6.280 6.622 0.803 0.803
0 v  ob 6.3 5671 0.788 o0.780 | 6.269 s.714 0.789 o0.780
T 5 ob 6.3 S5.670 0.788 0.780 | 6.296 5.632 0.785 0.777
12 e sl b 6.3 5.671 0.788 0.780 | 6.283 5.689 0.787 0.780
13 vl 5 o oS 6470 0.734  0.730 | A.514 6.7 0.732 0.732
T 5 ol NS  6.470 0.734  0.730 | A.498 6.0 0.733 0.733
1S o s ol A5 6470 0.73%  0.73% | 4.89% 6.487 0.735 0.735
T3] 3 o2 A.S 8092 0.684 0.67) | 4.880 4.129 0.687 0.675
17 ®0 3 02 0.5  4.092 0.688 0.67) | A.887 4.053 0.678 0.675
1] &x (1] 02 8S 4.0%2 0.684 0.671 h.499 4.079 0.681 0.670
9 vl B 0 6.3 523 0.718 0.718 | 6.286 5.259 0.719 o0.719
20 w 3 o3 6.3 5.2 0.718 0.718 | 6.276 5.215 o0.715 0.715
P 3 o3 6.3 5230 0.718 0.718 | 6.267 $5.276 0.719 0.719
2 63 0ob 6.3 0559 0.702 0.696 | 6.298 4.573 0.703 0.697
3 W 3 ob 6.3 0559 0.702 0.69% | 6.295 4.5 0.701 0.694
N o 83 Db 6.3 04559 0.702 0.69% | 6.283 A.557 0.700 0.69%
3w s ol A5 M09 0.506 0.506 | 4.483 4.063 0.502 0.502
2% w s 0l 0.5  4.091 0.506 0.506 | A.498 4.100 0.509 0.508
7 o 5 ol 0.5 4090  0.506 0.506 | 4.500 A&.1A1  0.513 0.§14
¥ w s 02 NS 2,735 0.852 0.0 | 4497 2.69% o0.M42 0.437
2% 0 s D2 A5 2,735 0.452 0.6k | 4.095 2.727 o0.453 o0.450
30 S o2 AS  2.735 0.452 0.0 | A.430 2.776 0.M6) 0.45S
n S 03 6.3 3317 0.A8h  0.48% | 6.306 3.307 0.490 0.490
32 W s o3 6.3 3317 0.888 0.08% | 6.295 3.203 0.869 0.489
» & s 03 6.3 3.317 0.88% 0.48% | 6.292 3.384 0.486 0 488
wou S ob 6.3 2.95% 0.866 0.43 | 6.297 2.959 Q.45 0. 46!
35 5 o 6.3 2.95% 0.6 0.863 | 6.292 2.980 0.9 0. 466
% o 5 ob 6.3 2.95% 0.866 0.3 | 6.209 2.955 0.467 0.%62

124,
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respectively (e.g., experiments 1, 2, 3, and 7, 8, 9). For non-
homogeneous difficulty, i.e., D2 and D4, the KR20 coefficients are
lower than the reliability as expected since the ETEM assumption is
not satisfied. For example, experiment 12, with non-homogeneous
difficulty set of DU, gives reliability and KR20 as 0.787 and 0.780
respectively.

(d) For homogeneous item difficulty, the higher the item difficulty
is above the ideal 0.5 level, the lower the test variance, reliability
and KR20. The same trends are observed for difficulty lower than 0.5
level, though the results are not reported in this paper since almost
exactly the same results as high difficulty cases are obtained for
lower difficulty cases except for test means, i.e., the test parameters,
except for the test means, are highest when the item difficulty para-
meters are all equal to 0.5 which is a well-known fact in test theory.
For example, experiment 1 has homogeneous difficulty of 0.5 for all
items and gives variance and reliability as 8.044 and 0.811 respectively,
while experiment 7, which is comparable to experiment | except the
higher difficulty of 0.7, gives 6.493, and 0.802 respectively. However,
this conclusion would not apply in general to the non-homogeneous item
difficulty cases, i.e., the non-homogeneous item difficulty effects
interact with the effects of item difficulty level, and the results are
not predictable, as it can be seen when the results of experiments &,

S, and 6 are compared with those of experiments 10, 11, and 12.

(e) The non-normal distributions of error scores have very little
effect on the test parameters. For example, experiment 12, which has
an exponential error distribution, gives parameter values as 6.283,

5.689, 0.787, and 0.780 which can be compared reasonably well with
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theoretical values given in columns (1)-(4) inclusive, namely 6.3,
5.671, 0.788, and 0.780 respectively. Alternatively, they can also
be compared reasonably well with the corresponding values of experiment

11 which has a normal error distribution, namely 6.296, 5.632, 0.785,
and 0.777.

Table 6.4 gives the means and standard error of reliabllity
estimates over N = 1000 trials and compares them with theoretical values
which can be obtained from continuous part scores under the ANOVA model
and normal distributional theory, i.e., treating binary test scores
(le} as if they were continuous part scores as in the previous
chapter. From the table, it is noted that the observed means of
reliability estimates given in column (2), which is based on estimation
formula (2.13), compares fairly well with the theoretical values given
in column (k) based on (5.1)-(a), the largest difference being only
0.018 (experiment 32) which is probably too small to be meaningful in
test theory. The standard error obtained from formula (5.3) or (5.1)-(b),
given in columns (5) and (6), also predict the observed standard errors
given in column (3) reasonably well, although formula (5.3) seems to
consistently underestimate the standard errors for lower reliability
cases, namely the case of biserial correlation set BS. In general,
formula (5.1)-(b) seems quite satisfactory, the largest difference
between the theoretical and observed values being only 0.0111 (experi-
ment 28). The sum of squares from the observed standard errors are
0.00101 and 0.00956 for formulas (5.1)-(b) and (5.3) respectively,
suggesting the superiority of formulas (5.1)-(b) to (5.3). No attempts

are made to use formula (5.10) since neither kurtosis formulas of test
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TABLE 6.4

Comparisons of Observed Means and Standard Errors of Reliability Estimetes
Under Norme! Latent Scores, Homogeneous Biserial Correletions With
the Values Obtainable From ANOVA Mode! and Normal Theory,

N e 1000, | = 30, Je 9

[Oep. Crr. s oIt Ral.® ~UObserved t(3) by Expected S.T¥. by
Wo. Dis. o : Mean S.E. (5.1)-(a) (5.3) (5.1)-(p)
(1) (2) (3) (4) (5) 6)
o) ] 'Y ] 0.81 0.800 0.059 0.797 0.0626 Q.0608
02 W 'Y ] 0.813 0.802  0.0600 0.799 0.0618 0.0600
03 €x ] o) 0.812 0.804  0.056) 0.799 0.0621 0.0602
oh W '] 02 0.768 0.736  0.0714 0.751 0.0749 0.074$
05 N '] 02 0.769 0.742  0.0667 0.752 0.0745 0.0740
0b (44 '] 02 0.768 0.738  0.0685 0.751 0.0748 0.0744
07 (1]] [ )] 03 0.802 0.787 0.0688 0.787 0.0653 0.0637
o8 wo '] 03 0.802 0.789  0.0708 0.788 0.0651 0.0635
09 & 8 03 0.803 0.709  0.0693 0.788 0.0649 0.0633
o []] 0b 0.789 0.765 0.0737 0.773 0.0689 0.0677
" "o 'Y (1Y 0.768 0.760 0.0770 0.772 0.0693 0.0682
12 (4] []] ob 0.787 0.764 0.0786 0.7 0.0695 0.0683
13w (3] o! 0.732 0.717  o.0821 0.712 0.0847 0.0859
s [ 3] (] 0.734 0.718  0.0826 0.714 0.0843 0.0855
15 (3 " ol 0.735 0.722 0.0793 0.715 0.0840 0.0851
6 w 3] 02 0.687 0.656  0.0947 0.664 0.0964 0.1004
17 w (3] 02 0.68A 0.646 0.1035 0.660 0.0972 0.101§
18 ex (3] 02 0.68) 0.650  0.102% 0.657 0.0979 ©0.1024
19w (3] 03 0.719 0.701 0.0932 0.698 0.0881 0.0901
20 ™ (3] 03 0.718 0.69%  0.0986 0.698 0.0883 0.0904
21 €x (3] 03 0.719 0.700 0.0917 0.699 0.0881 0.090!
2 w (3] 0b 0.703 0.676  0.0970 0.681 0.0923 0.0953
3 W " 0b 0.702 0.672 0.0995 0.680 0.0927 0.0957
24 (24 (3] (1 0.700 0.673  0.0959 0.677 0.0932 0.0964
% w [ 1 ot 0.502 0.469 0.1585 0.465 0.1367 0.1600
6 wo (13 ol 0.506 0.474  0.1619 0.470 0.1358 0.1585
3] ex (13 ol 0.513 0.482 0.1561 0.477 0.1345 0.1563
% w [T 02 0.042 0.401 0.1682 0.400 0.1470 0.1793
9 w 1 02 0.452 0.407 0.1807 0.411 0.1453  0.1759
30 & [ 02 0.46) 0.815 0.1733 0.42! 0.1438 0.173)
3 vl [T 03 0.490 0.452 0.1636 0.45) 0.1387 0.1636
32 W (14 03 0.484 0.028 0.1739 0.406 0.1398 0.1656
3 (4] s 03 0.486 0.452  0.1614 0.408 0.13% 0.1650
36 (7] [13 04 0.465 0.425 0.1719 0.425 0.1831 0.1718
3 w (13 oA 0.466 0.028 0.177 0.427 0.1429 0.171)
¥ & (13 (1 0.467 0.425  0.1615 0.427 0.1428 0.171)

'moontlcd velue If error scores sre norms), otherwise the value wes cbtained by the parallel
form mathod.

(s.1) (a) E(8) =1 - (1-p) {;} ®) Vor (o) = (1-)? :l"'H"‘-n

J=1) (1-3)(1-8)
1oay?
(s.3) Vor () = 1—1—)—
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score for binary item test nor any numerical means to evaluate the

parameter are available at present.

Table 6.5 indicates the shapes of the lower and upper portions
of the distributions of reliability estimates by giving the lower and
upper 5% critical points of the distributions in columns (2) and (3),
and by comparing them with those results obtainable theoretically from
(2.17), given in columns (4) and (5). The results, in general, suggest
that the theoretical values are very close to the observed values
except for the upper tail portions for some experiments with high or
medium reliability, i.e., with Bl and B2, and non-homogeneous difficulty
set D2, namely experiments 4, 5§, 6, 16, 17, and 18. For those
experiments, the distributions are systematically shifted toward lower
reliability primarily due to the fact that KR20 is substantially lower
than reliability, because of extreme non-homogeneity of item difficulty
parameter set D2. This is illustrated in Figure 6.1. Consequently the
real Type one errors of the F-test for upper tails are much smaller
than the nominal 5% level, some dropping as low as 1.1% level [column (7)
of experiment 4]. The effect of non-homogeneous item difficulty
parameters on the real significance level diminishes as the variation
of item difficulty parameters decrease, as shown by experiments 10,

11, 12, 22, 23, and 24. The effect of item difficulty also diminishes
with lower reliability level, and no meaningful differences are observed

for low reliability cases illustrated by experiments 25-36 inclusive.

From the above observations, the following conclusions are

tentatively made.



TABLE 6.5

Comparisons of Observed Lower and Upper 5% Critical Points Under Normal
Latent Scores and Homogeneous Biserial Correlations With the Values
Obtainable From the ANOVA Model and Normal Theory, and Real

Type Une Error of F-Test Wi.en Hominal Value is Fixed to

129.

the 5% Level, N = 1000, | =30, J =9
Rei.' | ob 2 i 3 i
Exp. Err. A . scrved C.P. Theoretical C.P. Rea) Sig. (0/0)
No. Dis Bis Dif Lower Upper Lower Upper Lower Upper
(1) (2) (3) (4) (5) (6) )
01l vl Bl ot 0.811 ] 0.693 0.877 0.684 0.87% &.30 5.60
02 NO 1Y 0! 0.813 | 0.698 0.882 0.688 0.877 3.80 7.40
03 £X 81 Dt 0.812 | 0.697 0.878 0.687 0.876 3.90 5.70
Ok vl 8) 02 0.768 | 0.604 0.828 0.612 0.847 5.60 1.10
05 NO 8l 02 0.769 | 0.614 0.83) 0.615 0.848 5.20 1.50
06 (33 8! 02 0.768 | 0.605 0.825 0.613 0.847 5.70 1.60
07 vl 8l D3 0.802 | 0.655 0.877 0.669 0.869 6.60 8.00
08 NO Bl 03 0.802 | 0.650 0.879 0.670 0.870 6.70 6.80
09 £X 8! 03 0.803 | 0.665 0.877 0.670 0.870 5.50 7.00
10 vl 8) D4 0.789 | 9.629 0.857 0.648 0.861 7.30 4.00
1 NO Bl D4 0.788 | 0.622 0.857 0.645 0.860 6.40 4.90
12 (3 8l Ok 0.787 | 0.623 0.858 0.6uL4 0.860 6.70 4.60
13 vl 83 )] 0.732 | 0.560 0.830 0.553 0.823 k.70 6.60
14 NO B3 1] 0.734 | 0.572 0.828 0.555 0.824 3.90 5.60
15 (31 83 Dl 0.735 | 0.574 0.827 0.557 0.82% 3.70 5.60
16 1] 83 02 0.687 | 0.487 0.783 0.478 0.794 4.30 3.40
17 NO 83 02 0.684 | 0.464 0.777 0.472 0.79) L.90 3.00
18 £x 83 02 0.681 | 0.465 0.776 0.467 0.790 5.10 2.40
19 Ul 83 03 0.719 | 0.528 0.821 0.53) 0.815 5.40 6.00
20 NO 83 03 0.718 1 0.505 0.825 0.530 0.814 6.20 7.90
21 EX 83 D3 0.719 | 0.531 0.823 0.531 0.815% 5.10 6.70
22 ut 83 ob 0.703 | 0.507 0.808 0.50k4 0.804 4.9 5.60
23 NO 83 D 0.702 | 0.484 0.797 0.502 0.803 6.40 4.20
24 £X (3] ok 0.700 | 0.482 0.801 0.498 0.802 6.40 4.60
25 vl 85 (1] 0.502 | 0.194 0.684 0.168 0.67) 3.70 6.30
26 NO 85 (] 0.506 | 0.189 0.678 0.176 0.674 4.70 5.30
27 EX 85 0] 0.513 | 0.186 0.678 0.187 0.679 5.00 4.80
28 vl 85 02 0.442 | 0.093 0.621 0.067 0.632 4.20 4.00
29 NO 85 D2 0.452 | 0.056 0.637 0.08% 0.639 5.60 4.60
30 £X 85 D2 0.461 | 0.069 0.637 0.099 0.644 5.80 4.20
3 Ut 85 03 0.490 | 0.149 0.670 0.149 0.664 5.00 5.70
32 NO 8S D3 0.484 | 0.106 0.663 0.138 0.660 5§.20 6.70
33 £x 85 03 0.486 | 0.140 0.661 0.142 0.66) 5.10 5.00
34 vl [ 13 04 0.465 | 0.097 0.647 0.106 0.647 5.10 5.00
35 NO 8S D& 0.466 | 0.104 0.648 0.109 0.648 5.50 4.80
36 Ex [ 19 D& 0.47 | 0.126 0.650 0.110 0.649 &, 40 5.20

|
paralie!l fore method.

zt)bumed lower and upper SY critical points of the distribution of §.

Theoretical value if error scores are normel, otherwise the value was obtained by the

’!mntlul lowsr and upper SX critical points of the distribution of § under ANOVA

and normy) theory.
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(a) The effects of non-normal error distributions are small.

(b) Formula (5.1), both for the expected value and standard
error of p, seems quite satisfactory for binary item cases although the
assumption of continuity of observed scores is violated, provided that
the latent scores are normally distributed, and the biserial correlations

are homogeneous.

(c) The item difficulty parameters {nj} affect the distribution
systematically, contrary to the previous findings reported by Nitko and
Feldt (1969). In general, the heterogeneity of difficulty shifts the
distributions to the left, and the more heterogeneous the difficulty
parameters, the more distortion is observed, and it also appears to
cause a large shift leftward for high reliability cases. If F-tests
based on (2.17) are used with a fixed nominal significance level, the
real Type one errors for the upper tail portion are affected by the item
difficulty parameters.

(d) The distributions of the lower tail portion for high or middle

range reliability, or both tails for low reliability are quite stable

against the heterogeneity of item difficulty parameters.

6.3 Effects of Non-Normal Latent Scores

The normal ogive model for the binary item test scores assumes
the existence of latent variables or scores (f‘) distributed indepen-
dently and identically as N(0,1). However, it is not conceivable that
these assumptions are always satisfied. Therefore, the effects of non-
normal latent distributions are one of the important factors which must
be examined rather closely. For the continuous part score cases, it
is known that the non-normal true scores affect the distribution of

reliability estimates significantly, and inflate or deflate the real
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Type one errors for the F-test. Thus it must be determined whether the
same is true for the binary item test cases when the latent scores are
not normal. Because it is known, from the experiments of the previous
section, that the effects of non-normal errors are small, and to save

computer time, experiments were performed using only normal error scores.

Using two kinds of non-normal latent score distributions,
namely uniform (Ul) and exponential (EX), four types of item difficulty
sets and three kinds of homogeneous biserial correlation sets were
selected. A total of 24 (2 x 4 x 3) additional experiments were
performed with N = 1000, | = 30, and J = 9. The results of these
24 experiments are summarized in Tables 6.6, 6.7, and 6.8, together
with the results of 12 experiments of the previous section which uses

normal latent and error scores, for the purposes of comparisons.

As in the previous section, the population parameters were
first examined to determine the effects of non-normality of latent scores.
From Table 6.6, it is clearly observed that the test means are almost
identical for both methods, namely by theoretical calculations under
the normal ogive model given in column (1) and by the parallel form
method given in column (5), except for the exponential distributions
which have non-zero skewness. Using the exponential distribution,
the means are in general lower than the theoretical values suggesting
the effects of skewness, since, unlike the variance, the means are in

general more sensitive to non-zero skewness.

The effects of non-normal latent scores can be seen rather
clearly when the observed variance, reliability and KR20, given in

columns (6), (7), and (8), are examined. The values of variance,



TABLE 6.6

Comparisuns of Calcu'ated Test Param-ters Under the Kormal Ogive Model With
Empirical Values Based on the Parallel fForm Method, Nurmal Error Scores,
NI = 30030,

Homogencous Biserial Correlations,

Js=9
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Theoretical (N.0.)

Observed by P.F .M.

::" ;:; Bis  Dif.l an  Var. Rel. KR20 | Mean Var. Rel. KR20
: ) ) (2) ) (4) (s) (6) (7) (8)
(] vl 8! (1] 4.5 8.118 0.813 0.813 4.504 9.034 0.845 0.845
02 NO 8) 0l 4.5 8.118 0.813 0.813 4491 8.094 0.813 0.812
03 (3 8l 01 4.5 8.118 0.813 0.813 4.156 6.997 0.766 0.765
ok ul Y] D2 4.5 4.979 0.769 0.752 4. 488 5.342 0.788 Q.772
05 NO 8l D2 4.5 4.979 0.769 0.752 4. 495 5.012 0.772 0.754
06 £X ] D2 L5 4.979 0.769 0.752 4,348 4.247 0.720 0.702
07 Ul 8! 03 6.3 6.589 0.802 0.802 6.235 7.081 0.820 0.821
08 NO 8l 03 6.3 6.589 0.802 0.802 6.299 6.62) 0.804 0.804
09 EX 81 03 6.3 6.589 0.802 0.802 6.209 b.589 0.653 0.653
10 ul 8! ok 6.3 5.671 0.788 0.780 6.266 5.987 0.803 0.79%
n NO 81 D4 6.3 5.671 0.788 0.780 6.296 5.632 0.785 0.777
12 (34 8l D4 6.3 5.671 0.788 0.780 6.224 3.957 0.648 0.636
13 Ul 83 0l 4.5 6.470 0.734 0.734 4. 498 7.025 0.764 0.765
14 NO 03 0} 4.5 6.470 0.734 0.734 4. 498 6.460 0.733 0.733
1 (34 83 ()] 4.5 6.470 0.734 0.734 4.299 5.610 0.675 0.675
16 ('} 83 D2 4.5 4.092 0.684 0.67 hA77 4.298 0.70!1 0.690
17 NO 83 02 8.5 4.092 0.684 0.671 4.487 4.053 0.678 0.666
18 EX 83 02 (W3 4.092 0.684 0.6 §. 406 3.653 0.638 0.626
19 (']} 83 03 6.3 5.230 0.718 0.718 6.232 5.568 0.738 0.738
20 NO 83 03 6.3 5.230 0.718 0.718 6.276 5.215 0.71% 0.715
21 (3 8) 03 6.3 5.230 0.718 0.718 6.228 3.822 0.561 0.560
22 1] 03 D& 6.3 4.559 0.702 0.696 6.268 4,792 0.701 0.713
23 NO 83 D4 6.3 4.559 0.702 0.696 6.295 b.546 0.70! 0.694
26 EX 83 04 6.3 4.559 0.702 0.696 6.250 3.397 0.559 0.551
25 1] 8s 01 N3 4.091 0.506 0.506 &.512 4.199 0.522 0.522
26 NO 8s 0l [ 4.09) 0.506 0.506 &. 451 &, 104 0.509 0.508
27 (3 85 ot 45 4.091 0.506 0.506 4451 3.834 0.464 0.465
28 1] 85 02 A5 2.73% 0.452 0.4k6 &.496 2.767 0.460 0.455
29 NO 85 02 L3 2.735 0.452 0.hié6 4.495 2.747 0.45)3 0.450
30 (31 8s 02 4.5 2.735 0.452 0.4ké &.458 2.61) 0.422 0.418
3 vl 8s 03 6.3 3.317 0.484 0.484 6.279 3.384 0.492 0.494
32 NO (1 03 6.3 3.317 0.484 0.484 6.295 3.283 0.469 0.469
33 (31 (13 03 6.3 3.7 0.484 0.484 6.272 2.828 0.366 0.369
34 (1}] [ 1) o0& 6.3 2.956 0.466 0.463 6.276 2.990 0.474 0.468
35 (] (T3 [ 6.3 2.9%6 0.466 0.463 6.292 2.980 0.469 0.466
3% (34 (13 ] 6.3 2.9%6 0.466 0.463 6.279 2.552 0.363 0.359
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reliability and KR20 under uniform distributions are always higher than
the corresponding values under normal distributions, while the values
under exponential distributions are lower than the values under normal
distributions. Thus the normal ogive model gives lower values for the
uniform distribution cases than the real values and higher values for
the exponential distribution. For example, with biserial correlation
and difficulty parameters fixed to set Bl and 02, the theoretical values
under the normal ogive model are 4.979, 0.769, and 2.752 for variance,
reliability and KR20 respectively (experiment 5). The parallel form
method under normal distribution gives 5.012, 0.772, and 0.754, closely
approximating the theoretical values as expected. However, for uniform
latent scores (experiment 4), the corresponding values are 5.342,
0.788, and 0.772, which are much higher than theoretical [given (n
columns (2), (3), and (4) of experiment 4] or observed values under
normal distribution of latent scores [given (n columns (6), (7), and

(8) of experiment 5]. On the other hand, for exponential distributions
(experiment 6), the observed values, i.e., 4,247, 0.720, and 0.702,

are much less than the theoretical or observed values under normal

distribution.

Therefore it may be concluded that the reliability para-
meters to be used for equation (2.17) must be p*, the value obtained
by the parallel! form method, rather than o for non-normal latent score
distribution cases, since these values are closer to the actual values
than the theoretical values obtained under the norms! distribution

assumption of latent scores.

Table 6.7 presents the results for observed msans and stand-

ard errors of reliability estimates using N = 1000, and compares theam
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TABLE 6.7

Comparisons of Observed Means and Standard Errors of Reliability Estimates
Under Normal Errors and Homcgeneous Biserial Correlations With the
Values Obtainable From ANOVA Mode! and Normal Theory, - :
Ne1000, | =30, Je=9

Exp. Tr. Rel. Observed § e(s) by Expected S.E. b
Mo. Dis.] Bis. Dif. Mean S.E. (5.1)-(a) (5.3) (S.l‘-(b)
(1) (2) (3) (&) (5) (6)

o) 1] (] 0! 0.845 | 0.838 0.0469 0.833 0.0522 0.0498
02 NO 8l 0! 0.813 | 0.802 0.0600 0.799 0.0618 0.0600
03 £X 81 (1] 0.766 | 0.751 0.0783 0.748 0.0755 0.0752

(1] 1] 8) D2 0.788 | 0,762 0.0584 0.772 0.0693 0.0682

05 NO [ 1] D2 0.769 | 0.742 0.0667 0.752 0.074S 0.0740
06 (34 [ ]] D2 0.720 | 0.680 0.1024 0.699 0.0880 0.0900
07 (1)) 8! D3 0.820 | 0.811 0.0562 0.807 0.0597 0.0577

o8 NO 8l 03 0.702 | 0.789 0.0708 0.788 0.0651 0.0635

09 EX L] 03 0.653 | 0.636 0.1010 0.627 0.1048 0.1115

10 ul 8l Db 0.803 | 0.786 0.0553 0.789 0.0647 0.0631

" NO 81 Ok 0.788 | 0.760 0.0770 0.772 0.0693 0.0682

12 €x (Y} ok 0.648 | 0.620 0.0983 0.622 0.10%9 0.1129

13 vl 83 o) 0.76h | 0.754 0.0667 0.746 0.076) 0.0758
14 NO 83 []] 0.734 | 0.718 0.0826 0.714 0.084) 0.0855

15 (3] 0) D) 0.675 | 0.654 0.1035 0.651 0.0993 0.1042

16 vt (3 02 0.70t | 0.675 0.0850 0.679 0.0928 0.0959

1} NO (3] 02 0.684 | 0.646 0.1035 0.660 0.0972 0.1015

18 (3 83 02 0.638 | 0.598 0.1261 0.611 0.1082 0.1161

19 ul 8) 03 0.738 | 0.723 0.0779 0.719 0.0831 0.084)

20 NO (%] 03 0.718 | 0.69% 0.0986 0.698 0.0883 0.0904

3] €x (3] 03 0.56) | 0.537 0.128) 0.529 0.1250 0.1408

22 vl 83 DA 0.719 | 0.697 0.0854 0.698 0.0882 0.0902

23 NO (] 0k 0.702 | 0.672 0.099% 0.680 0.0927 0.0957

24 (3] (3] 04 0.559 | 0.528 0.126)3 0.526 0.1256 0.1416

25 T]] 85 (]] 0.522 | 0.49% 0.1402 0.487 0.1327 0.1533

26 NO (13 (1] 0.506 | 0.47%4 0.1619 0.470 0.1358 0.1585

27 (3] (13 01 0.464 | 0.429 0.1752 0.425 0.1432 0.1719

28 vl 85 02 0.460 | 0.419 0.1669 0.420 0. 1440 0.1735

29 NO 8s 02 0.452 | 0.407 0.1807 0.4 0.1453 0.1759

30 £x [ 1 02 0.422 | 0.374 0.1886 32.319 0.150! 0.1857

3 ul 85 03 0.492 | 0.461 0.154k 0.455 0.1383 0.1629

32 NO (13 03 0.848 | 0.428 0.1739 0.446 0.1398 0.1656

3 €x (13 03 0.366 | 0.330 0.188) 0.320 0.158) 0.2034

3 vl [ 1 oA 0.074 | 0.437 0.148) 0.43% 0.1416 0.1689

35 N0 [ 1] [ 1) 0.466 | 0.428 0.1776 0.427 0.1429 0.1713

3% £x (13 oA 0.636 | 0.322 0.1904 0.31% 0.1586 0.2046

.Mntlul value |If true scores are normal, otherwise the value wes obtained by the
pera!lle! method.

(5.0 (o) €)= 1 - (10) g ®) ver (8) « (1-p)7 (—’-“—'L‘%J’—

=1)(1-3)°(1-5)
(1-s1)?
(s.3) Vor (8) = —"—L
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with the calculated values based on formulas (5.1), and (5.3). It
is noted that E(8) of (5.1)-(a) given in column (4) predicts very
well the observed means of reliability estimates given in column (2)
regardless of the distributions of latent scores, the largest dis-
crepancy being only 0.019 (experiment 6), suggesting robustness of
the estimation formula (2.13) as far as point estimations are concerned.
The observed standard error of estimation given in column (3) suggests
that the uniform distributions of latent scores produces smaller
standard errors while the exponential gives larger standard errors
than under the normal distributions for high reliability cases.
Formula (5.3) or (5.1)-(b) predicts the standard errors of reliability
estimates reasonably well, though (5.1)-(b) seems better than (5.3).
Table 6.8 summarizes the shapes of the distributions of §#
at the tall portions by comparing lower and uppcar 5% critical points
given in columns (2) and (3) with theoretical values given in columns
(4) and (5). From the table, it may be concluded that the effects of
item difficulty parameters as noted in the previous section can be
generalized to non-normal latent score cases. On the other hand, from
the observations of the real Type one errors, the effect of non-normal
latent score distributions are not so obvious. The Type one errors are
fluctuating substantially, but with no clear sign of systematic inflation
or deflation of Type one errors due to non-normal distribution of latent
scores, unlike the case of continuous part scores discussed in Chapter
Five. This suggests robustness of the ANOVA mode! and normal distribu-
tional theory for the case of binary item tests.
From the above observations, the following conclusions were

tentatively made.



Compar isons of Observed Lower and Upper 5% Critical Points Under Normal

TABLE 6.8

Error Scores and Homogeneous Biserial Correlations With the Values
Obtainable From ANOVA Model and Normal Theory, and Rea) Type

One Error of F-Test When Nominal Value is Fixed to the

137.

5% Level, N« 1000, | =30, J=9
Exp. Tr Bis. DIf lel.‘ Observed c.p.? Theoretical C.P.3 Real Sig. (0/0)
uo.. ol;. ' ' Lower Upper Lower Upper Lower Upper
(1) (2) 3) | () (5) (6) (1)
0l vl ] 0l 0.845 | 0.749 0.90) 0.74) 0.898 3.80 6.30
02 NO B! Dt 0.813 0.698 0.882 0.688 0.877 3.80 7.40
03 €x [ ]] ()] 0.766 0.611 0.89) 0.609 0.846 4.60 6.70
ok Ul Bl 02 0.788 0.654 0.835 0.645 0.860 3.80 1.50
0S NO 81 D2 0.763 | 0.614 0.831 0.6i5 0.848 5.20 1.50
06 34 8 02 0.720 0.500 0.805 0.532 0.815 7.50 3.20
07 (1}] [ ] 03 0.820| 0.7216 0.887 0.700 0.882 3.20 6.70
08 NO 81 03 0.802 0.650 0.879 0.670 0.870 6.70 6.80
09 Ex 81 03 0.653 | 0.446 0.775 0.420 o.M 3.70 5.70
10 Ul ] /L] 0.803 | 0.682 0.863 0.672 0.870 .00 2.90
" NO ] o4 0.788 | 0.622 0.857 0.64S 0.860 6.40 4.90
12 EX ] L] 0.6M8 | 0.222 0.749 0.41) 0.768 3.20 2.10
13 /1] 83 2] 0.76A 0.631 0.844 0.605 0.844 3.00 5.10
1} NO B3 D1 0.734 | 0.572 0.828 0.555 0.824 3.90 5.60
15 Ex 83 0l 0.675 | 0.450 0.790 0.458 0.786 5. 40 5.50
16 Ul 83 D2 0.701 | 0.528 0.786 0.501 0.803 3.60 1.90
17 NO 83 D2 0.684 0.464 0.7277 0.472 0.791 4.90 3.00
18 EX 83 02 0.638 0.366 0.754 0.396 0.761 7.20 .00
19 ul 83 03 0.738 | 0.s82 0.829 0.562 0.827 3.80 5.60
20 NO 83 D3 0.718 | 0.505 0.825 0.530 0.814 6.20 7.90
21 (34 83 D3 0.561 | 0.290 0.703 0.267 0.711 4.20 3.80
22 ul 83 i1} 0.719 ] 0.530 0.806 0.531 0.815 5.10 3.00
23 NO 83 DA 0.702 | 0.484 0.797 0.502 0.803 6.40 4.20
24 EX 83 (L1 0.559 | 0.305 0.697 0.263 0.709 2.90 3.60
25 ul 8s Dt 0.522 | 0.243 0.683 0.203 0.685 3.60 k.70
26 NO 1 1 D1 0.506 | 0.189 0.678 0.176 0.674 A.70 5.30
27 EX 85 [} 0.464 0.11§ 0.653 0.106 0.647 4.80 5.70
28 ut [ 13 02 0.460 | 0.105 0.64) 0.098 0.644 L[] §.80
29 [ ] [ 1] D2 0.452 0.056 0.637 0.085 0.639 5.60 h.60
30 34 [ 13 02 0.422 | 0.020 0.616 C.034 0.619 5.50 h.70
3! (11} | 19 03 0.492 | 0.166 0.669 0.152 0.665 s.50 5.30
32 NO | 1 03 0.484 | 0.106 0.663 0.138 0.660 5.20 6.70
33 EX (1 03 0.366 | -0.024 0.580 0.058 0.582 3.90 4.90
34 Ul [ 1 (1} 0.474 | 0.179 0.643 0.121 0.653 3.00 4.00
3 NO [ 13 1] 0.466 0.104 0.648 0.109 0.648 5.50 &.80
36 EX 11 Dh 0.363 | -0.002 0.573 | -0.06h 0.580 3.20 h.00

'1hoov¢|lcol vealues If true scores are norme!, otherwise the values obtained by the

parallel form method.

’oo..:-.a Jowar and upper 5% critical points of the distribution of §.

’Yhooﬂoticol lower and upper 58 critical points of the distribution of § under ANOVA

ond norasl theory.
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(a) The non-normal latent score distributions affect the test
parameters such as variance, reliability and KR20, and with lesser
degree the mean, if the distribution is skewed. The normal ogive
model provides smaller values than the actual values of the variance,
reliability and KR20 if the latent scores are distributed as uniform,
and the opposite is true for exponential distribution.

(b) Formulas (5.1) and (5.3) are quite robust against the
violation of assumptions of normality for the binary item score
cases.

(c) The effects of item difficulty parameters are the same as
observed in the previous section.

(d) The non-normal latent scores do not systematically inflate
or deflate real Type one errors for the F-test. The F-test seems
quite robust against the violation of distributional assumptions, if

difficulty parameters are homogeneous.

6.4 Effects of Non-Homogeneous Biserial Correlations

For the previous two sections, the biserial correlations
were limited to homogeneous cases, namely B1, B3, and B5. 1In this
section, three non-homogeneous biserial correlation sets, B2, B4, and
86 are used to investigate the effects of such non-homogeneity. Since
it Is known that for the continuous part-test score cases the non-
homogene ity of true score variance, which corresponds to the square of
biserial correlation for the binary item case under the congeneric
true score model, does not affect the sampling distribution of the
reliability estimates if the non-homogeneity is moderate, and it is
of interest to know whether the same conclusion can be made for the

binary item cases.
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Employing three kinds of latent score distributions, Ul,
NO, and EX, and four sets of difficulty parameters, as in the
previous section, and three sets of non-homogeneous biserial correlation
sets, altogether 36 (3 x4 x 3) additional experiments were performed
with N = 1000, | = 30, and J = 9. The results are summarized in

Tables 6.9, 6.10, and 6.11.

If the test parameters estimated by the parallel form method
in Table 6.9 are compared with the corresponding entries of Table 6.6,
the latter table using the same parameter distribution combinations as
in this section except that the biserial correlations are not homog-
eneous, although the averages of the biserial correlations are the same,
it is noted that the results of the two tables are almost identical.
This suggests that the effects of non-homogeneous biserial correlations
are small, even though the non-homogeneous biserial correlations do
violate the ETEM assumptions, and consequently lower the KR20 relative
to the reliability.

Although the biserial correlations are not homogeneous,
almost the same conclusions may he made for Tables 6.10 and 6.11 as for
Tables 6.7 and 6.8 respectively;

(s) the means and standard errors of reliability estimates are
almost identical In the two sets of the experiments,

(b) the F-tests are quite robust against the violation of the
ANOVA mode! and normal distribution theory for the binary item cases
if difficulty parameters are homogeneous, and

(c) the item difficulty parameters affect the distribution
considerably, if they are not homogeneous, thus inflating or deflating

real Type one errors for the F-tests.



TABLE 6.9

Comparisons of Calculated Test Parameters Under the Normal Ogive Mode! With
Empirical Values Based on the Parallel Form Method, Normal Error Scores,

Non-Homogencous Biserial Correlations,

NI = 30030, J =9
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Theoretical (N.0.) Observed by P.F.M.
Exp. Tr. 8 Dif Mean Ver. Rel. KR20 Mean Var. Rel. KR20
No. Dis s :
: KU) (2) 3) (&) (5) (6) () (8)

ol (1]] 82 01 4.5 8.160 0.820 0.815 4.520 9.131 0.853 0.848
02 NO B2 01 4.5 8.160 0.820 0.815 4.504 8.127 0.819 0.814
03 EX 82 2] h.s 8.160 0.820 0.815 k. 1h7 7.130 0.779 0.773
(1] vl 82 02 4.5 5.009 0.777 0.754 LR 1] 5.459 0.796 0.777
0s NO 82 D2 h.5 5.009 0.777 0.754 4.507 4.984 0.776 0.754
06 (4 82 D2 h.5 5.009 0.777 0.75k L. 443 3.924 0.696 0.674
0?7 ul 82 03 6.3 6.634 0.810 0.804 6.181 7.257 0.831 0.82%
08 NO 82 03 6.3 6.634 0.810 0.804 6.290 6.632 0.809 0.804
09 (2 82 03 6.3 6.634 0.810 0.804 6.211 h.723 0.672 0.667
10 ul 82 b 6.3 5.470 0.775 0.767 6.226 5.758 0.783 0.778
" NO B2 ok 6.3 5.470 0.775 0.767 6.290 5.552 0.778 0.772
12 EX 82 04 6.3 5.470 0.775 0.767 6.343 3.472 0.593 0.585
13 ul (1} DI k.S 6.474 0.739 0.734 4.503 7.109 0.775% 0.769
1] NO Bh 0! 4.5 6.474 0.739 0.734 4.500 6.462 0.740 0.733
15 Ex [ 1] D1 h.5 6.474 0.739 0.734 4.254 5.684 0.688 0.682
16 13} 8h D2 4.5 §.109 0.690 0.673 & 462 4.302 0.705 0.689
17 NO [ 1] 02 A.§ 4.109 0.690 0.673 &.495 4,099 0.69!) 0.674
18 (4 (1] 02 4.5 4.109 0.690 0.673 &, 4ké 3.342 0.579 0.584
19 Ul 1} D3 6.3 5.2k 0.725 0.719 6.226 5.600 0.746 0.740
20 N0 (1 03 6.3 5.2h1 0.72% 0.719 6.310 5.244 0.72% 0.720
2 X (1} 03 6.3 5.261 0.725 0.719 6.22) 3.854 0.570 0.564
22 vl (1] 04 6.3 4.373 0.682 0.677 6.280 L. 446 0.685 0.681
23 NO Bh DA 6.3 LIS V5] 0.682 0.677 6.287 4.365 0.682 0.675
24 £x (1} (1) 6.3 373 0.682 0.677 6.305 3.065 0.506 0.499
25 (N} [T (/] A5 4.072 0.510 0.503 h.478 4.218 0.533 0.525
26 L] 86 0! hS 4.072 0.510 0.503 4.503 4108 0.513 0.509
27 Ex 86 01 hS 4.072 0.510 0.503 h.817 3.769 0.461 0.454
28 Ul 86 D2 LS 2.737 0.457 0.447 4,487 2.815 0. 469 0.463
29 NO 86 02 L3 2.737 0.457 0.447 4.500 2.1 0.454 0. b4bd
30 £x 86 D2 h.5 2.737 0.457 0.447 4. 481 2.452 0.380 0.372
3 11] 86 03 6.3 3.307 0.489 0.482 6.296 3.354 0.500 0.490
32 NO 86 03 6.3 3.307 0.489 0.482 6.29% 3.328 0.493 0.48%
33 £x 06 D3 6.3 3.307 0.489 0.482 6.275 2.782 0.36) 0.357
34 ul % [ 1] 6.3 2.814 0.433 0.429 6.287 2.824 0.433 0.428
38 L] [ 19 1] 6.3 2.814 0.433 0.429 6.292 2.797 0.428 0.424
3 X [ 19 1] 6.3 2.814 0.433 0.429 6.303 2.338 0.296 0.292




TABLE 6.10

Comparisons of Observed Means and Standard Errors of Rellability Estimates
Under Normal Error Scores and Non-Homogeneous Biserial Correlations
With the Values Obtainable From ANOVA Model and Normal
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Theory, N = 1000, 1 =30, J=9
xp. Tr. Bis. DOif. Rel . * Observed f £(8) by txpected S.E. by
No. Dis. Mean S.E. (5.1)-(a) (5.3) (5.1)-(b)
(1) (2) (3) (&) (s) (6)
o! 1] 82 01 0.853 0.842 0.0436 0.842 0.0499 0.0473
02 NO 82 D1 0.813 0.805 0.0564 0.799 0.0618 0.0600
0) (34 82 ] 0.779 0.760 0.0739 0.763 0.0716 0.0708
0b ] 82 02 0.796 0.766 0.0596 0.78) 0.0668 0.0653
05 NO 82 02 0.769 0.740 0.0707 0.752 0.0745 0.0740
06 €X 82 D2 0.696 0.654 0.0986 0.674 0.0941 0.0975
07 vl 82 03 0.831 0.817 0.0505 0.819 0.0565 0.0542
08 NO B2 03 0.802 0.790 0.0676 0.788 0.0651 0.0635
09 EX 82 03 0.672 0.650 0.0988 0.647 0.1002 0.105)
10 (')} 82 ok 0.783 0.763 0.0681 0.767 0.0705 0.0695
" NO 82 ok 0.788 0.752 0.0859 0.772 0.0693 0.0682
12 Ex 82 D4 0.593 0.561 0.1191 0.563 0.1183 0.1306
13 Ul 84 (1] 0.775 0.759 0.0630 0.759 0.0728 0.072)
14 NO 8k (Y] 0.734 0.719 0.0839 0.71h 0.0843 0.0855
15 (3 (1] 0! 0.688 0.659 0.1088 0.665 0.0962 0.1002
16 vl (1 D2 0.705 0.673 0.0841 0.684 0.0917 0.0945
17 NO Bk 02 0.684 0.654 0.0998 0.660 0.0972 0.1015
18 (34 84 02 0.597 0.555 0.1348 0.567 0.1174  0.1293
19 ul (1] 03 0.746 0.723 0.0838 0.727 0.0810 0.0816
20 NO Bk 03 0.718 0.700 0.0951 0.698 0.0883 0.0904
2 EX (1} 03 0.570 0.540 0.1278 0.539 0.1232 0.1379
22 ul 8h o4 0.685 0.662 0.0948 0.661 0.0970 0.1013
23 NO (1) 0k 0.702 0.647 0.1185 0.680 0.0927 0.0957
24 (34 8k 04 0.506 0.470 0.1474 0.469 0.1358 0.1586
25 Ul 86 0l 0.533 0.496 0.1448 0.498 0.1308 0.1500
26 NO 86 0! 0.506 0.476 0.1566 0.470 0.1358 0.158%
7 £x 86 ]} 0.461 0.41b 0.1791 0.h21 0.1438 0.1731
28 1] 86 02 0.469 0.428 0.1578 0.430 0.1424  0.1704
29 NO 86 D2 0.452 0.405 0.1729 0.4t 0.1453  0.1759
30 £X (13 02 0.3680 0.329 0.1963 0.334 0.1563 0.1991
N 1] 86 03 0.500 0.458 0.158¢ 0.463 0.1370 0.1605
3 ] 86 03 0.484 0.448 0.1638 0.hi6 0.1398 0.1656
3] (33 86 03 0.361 0.314 0.1962 0.313 0.1588 0.20%2
3 vl 86 (Y 0.433 0.388 0.1736 0.391 0.1484 0.1821
35 ("] (13 (1] 0.466 0.378 0.1901 0.427 0.1429 0.1713
3% 34 (13 oA 0.296 0.248 0.2106 0.244 0.1666 0.2259

[
Theoretical values if true scores are normel, otherwise the value

fora method.

s.1) (o) €(8) =1 - (1-p) %;;

2,2
(s.3) Vor (8) » !Lﬁ—)-

() var (8) = (1-p)

2 2(1-1)(ve1-3)

G-00-30-5)

was obtained by the parelle!
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TABLE 6.1

Comparisons of Observed Lower and Upper ST Critical Points Under Normal Error
Scores and Non-Homogeneous Biscrial Correlations With the Values
Obtainable From the ANUVA Mode! and Normal Theory, and Real
Type One Error of F-Test When Nominal Value is Fixed
to the 5% Level, N = 1000, | » 30, J =9

Exp. Tr. 1| Observed c.p.? Theoretical €.P.3| Real Sig. (0/0)
No. Dis. Bis. Dif. Rel. Lower Upper Lower Upper Lower Upper
() (2) (3) (4) (s) (6) (2)
0! vt 82 ot 0.853| 0.765 0.902 0.754 0.903 3.40 4.60
02 NO B2 0} 0.813]| o0.704 0.877 0.688 0.877 h.60 4.00
03 EX 82 D! 0.779{ 0.629 0.856 0.632 0.855 5.20 5.40
0 Ul 82 02 0.796| 0.653 0.845 0.660 0.866 5.90 1.40
05 NO 82 D2 0.763]| 0.598 0.828 0.615 0.848 7.10 0.80
0é (31 82 D2 0.696] 0.u62 0.778 0.493 0.800 6.90 1.40
07 ut 82 03 0.831} 0.733 0.884 0.718 0.889 3.20 3.70
08 NO 82 03 0.802} 0.670 0.877 0.670 0.870 6.70 6.00
09 EX 82 03 0.672| 0.465 0.780 0.452 0.784 4.20 L.20
10 vl 82 D4 0.783| 0.629 0.858 0.638 0.857 6.10 5.10
n NO 82 Ok 0.788| 0.592 0.856 0.645 0.860 7.70 5.90
12 (3 82 0k 0.593| 0.345 0.722 0.32) 0.732 4.00 3.30
13 Ul B ot 0.775| 0.648 0.845 0.625 0.852 3.10 3.40
14 NO B4 [L}] 0.734] 0.564 0.824 0.555 0.824 5.20 h.60
15 €x Bl D) 0.688| 0.470 0.801 0.479 0.794 5.40 6.10
16 vl 84 D2 0.705] 0.513 0.783 0.508 0.806 4.80 2.30
17 NO 84 02 ©0.684| 0.482 0.777 0.472 0.791 5.20 2.10
18 EX [} 02 0.597} 0.308 0.720 0.328 0.734 $.90 2.50
19 vl (1) 03 0.746} 0.597 0.831 0.576 0.832 5.50 4.50
20 NO 84 03 0.718} o0.526 0.820 0.530 0.814 6.20 5.20
21 (31 84 03 0.570| o0.304 0.717 0.283 0.717 3.80 5.00
22 )] Bh 04 0.685| 0.467 0.787 0.473 0.792 5.40 4,00
23 N0 8k (1) 0.702] 0.416 0.796 0.502 0.803 7.30 6.20
24 €x 84 (1) 0.506| 0.193 0.667 0.175 0.674 430 4.00
25 vl 86 01 0.533| 0.220 0.682 0.220 0.692 5.10 3.90
26 NO 86 01 0.506[ 0.174 0.674 0.176 0.674 $.40 .10
27 (3] 86 0! 0.461 | 0.052 0.657 0.100 0.6kk 6.10 5.90
28 vl 86 02 0.49| 0.129 0.650 0.114 0.650 4.30 5.00
29 NO 86 D2 0.452 0.08% 0.635 0.085 0.639 5.20 4.50
30 Ex 86 02 0.380| -0.028 0.594 | -0.036 0.59! h.60 5.10
3) vl 86 03 0.500| 0.16% 0.657 0.165 0.670 5.00 4.30
32 N0 86 03 0.484| 0.128 0.622 0.138 0.660 5.50 6.00
3 € [ 13 03 0.361] -0.056 0.579 | -0.068 0.578 8,40 5.10
) ut 86 04 0.433| 0.063 0.629 0.05) 0.626 (WY 5.30
35 ] 86 04 0.466 | 0.026 0.624 0.109 0.648 5.80 5.20
3 Ex 86 (1} 0.296 | -0.146 0.525 | -0.17% 0.536 4.50 3.50

'Yhoou(lcol values if true scores are nurmal, otherwise the values obteined by the
paralle! form method.

lonorvod lower and upper 5% criticel points of the distribution 5.

’Thoouﬂul lower and upper S8 critical points of the distridbution of 8 under ANOVA
ond normal theory.
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From the above observations, the following conclusions are
tentatively made.

(a) The non-homogeneous biserial correlation distorts the
distribution slightly to the left for high reliability cases, but the
differences are not substantial.

(b) The effects of non-homogeneous biserial correlations on
expected values and standard errors of reliability estimates are
minimal, and formulas (5.1) and (5.3) are quite satisfactory.

(c) The effects of non-homogeneous biserial correlations on
test parameters are minimal.

(d) The F-tests are robust for binary item test cases [f the

difficulty parameters are homogeneous.

6.5 Summary

In order to investigate the effects of non-normal latent and
error scores, non-homogeneous difficulty parameters and biserial cor-
relations on the sampling distribution of reliability estimates based
on formula (2.13), altogether 96 experiments were performed by RELO2
using various combinations of distribution parameter sets with N = 1000,
| =30, and J = 9. The findings in this chapter may be summarized as
the following:

(a) The effects of non-normal distribution of error scores {‘[j}
in terms of response strength variables (y'J) are negligible, as was
the case for the continuous part score cases in Chapter Five.

(b) The non-normal latent scores affect the population para-
meters such as variance, reliability and KR20. The normal ogive
mode|! underestimates these parameters for the uniform latent score

distribution, and overestimates them for the exponential case.
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(c) Formulas (5.1) and (5.3) are quite satisfactory for binary
item cases; formula (5.1)-(b) seems superior to (5.3) for the calculation
of the standard error of reliability estimates.

(d) The item difficulty parameters are the most important factor
for the distribution of reliability estimates. They will affect the
test score variance, reliability and KR20. The non-homogeneous difficulty
sets give lower values for these parameters.

(e) The item difficulty parameters systematically affect the
distribution of reliability estimates. The non-homogeneous difficulty
sets shift the distribution leftward.

(f) The effect of non-homogeneous biserial correlations are
negligible if the heterogeneity is moderate.

(g) The F-test based on (2.17) is robust if any one of the

following conditions ls satisfied.

i) Relibability is low, i.e., p is close to zero.

ii) Only lower portions of the sampling distribution of
reliability estimates are used for the inference, namely
the null hypothesis is directional, being bounded only
by the lower end.

1il) The difficulty parameters are almost homogenous.

(h) The difficulty parameter sets may deflate the real Type one
errors if they are not homogeneous for inference which uses only upper

tall of the sampling distribution.



145,

CHAPTER SEVEN

SUMMARY, IMPLICATIONS, EXAMPLES OF APPLICATION,

AND RECOMMENDAT IONS

7.1.0 Summary of Findings

The purpose of this study was (a) to review the more liberal
concepts of test reliability theory in terms of models and assumptions
underlying them, (b) to examine the sampling distribution of reliabil-
ity estimates based on Alpha or KR20 formulas using these models with
various combinations of the distribution of true and error scores, and
(c) to compare the empirical distributions thus obtained by computer
simulation under these model-distribution combinations with those
obtainable theoretically under a mixed model ANOVA and normal theory
Using computer simulated hypothetical test score matrices, a number of
statistical sampling experiments were performed to obtain empirical
distributions, and some analytical means were also employed to obtain
a new formula for the standard error of reliability estimates. Find-

ings In this study are summarized in the following three sections.

7.1.1 Test Models

(a) The most general mode! for the continuous part test score
is found to be the multi-factor true score model. The model includes
other more restrictive models as special cases. By imposing a uni-
factor true score constraint, the mode! becomes » congeneric true score
mode!. |f homogeneity of true score variance is assumed, the congeneric
mode! becomss essentially 1 equivalent measurement. The latter mode|

includes the ANOVA or essentially paralle!l measurement mode! as a special
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case with the additional assumption of the homogeneity of error
variances. The classical parallel test mode) is a special case of

ANOVA model, namely the means of part test scores are all equal. The
Alpha coefficient s equal to the reliability if, and only if the
essentially 1 equivalent measurements condition is satisfled, other-
wise it is in general lower than the reliability. The sampling distribu-
tion of reliability estimates is known only for the case of the ANOVA
model and normality assumptions of true and error scores.

(b) For the binary item test case, a similar model as the
continuous case may be considered for the hypothetical 'response
strength' variable. A mathematical model and distributional assumptions
are required to associate the response strength variable to the observed
item scores. Under the normal ogive model, the test parameters such
as variance, reliability, and KR20 are amenable for calculation by
means of numerical methods if the item parameters, such as biserial
correlation and difficulty parameters, are specified. The essentially
T equivalent measurement assumption is satisfied if and only if all
biserial correlations and difficulty parameters are equal, i.e., all
items are homogeneous; otherwise KR20 is lower than reliability. The
sampling distribution of reliability estimates for binary item test is

not yet known, except by approximation using the ANOVA model and normal

theory.

7.1.2 Sampling Distribution Under Various Models and Assumptions

(a) Applying Tukey's result, a new formula for the standard
error of reliability estimate was derived. The formula depends only

on sample size, number of part tests, reliability, and the kurtosis
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of the test scores, and is found to be superior to the traditional
formula based on normal theory when the distribution of true score is
not normal.

(b) The effects of non-normal error scores distributions are
found to be negligible for not too small J, the number of part tests
or items, for both the continuous and binary cases.

(c) For continuous test score cases, the effects of non-
normal distributions of true scores are found to be significant, i.e.,
the distribution of reliability is systematically distorted. |f the
essentially 1 equivalent assumption is not satisfied, the distribution
is systematically shifted leftward or to the lower direction of
reliability. This effect is moreclearly observed for the multi-factor
true score mode! case indicating inappropriateness of the Alpha formula
for the model. The effects of non-homogeneous error variance were found
to be negligible.

(d) For the binary item case the effect of non-normal dis-
tributions of latent scores is not so obvious. The formula for the
standard error derived under the ANOVA mode! and normal theory seems
quite robust against violation of assumptions imposed by a binary
scoring scheme. The test parameters depend on the shape of latent
score distributions for fixed biserial correlation and difficulty
parameters. |f the essentially 1 equivalent measurement assumption
is not satisfied, i.e., biserial correlation and/or difficulty
parameters are not all homogeneous, the distribution of reliability
estimates is shifted leftward systematically. The effects of non-
homogeneous difficulty parameters seems more severe than that of non-

homogensous biserial correlations.
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7.1.3 Robustness of F-Test

The F-test based on ANOVA mode! and normal theory is robust
against violation of the following assumptions:
(a) Normality of error scores for both continuous and binary
cases.
(b) Homogeneity of error score variances for continuous cases.
(c) Homogeneity of biserial correlations for the binary case if

the violation is not too extreme.

(d) Normality of latent score distributions for binary case.

The F-test may be misleading if the following conditions are

not satisfied.
(a) Uni-factorness of true and latent score distributions.
(b) Normality of true scores for continuous case. Especially
positive kurtosis of true scores results in severe distortions.
(c) Essentially Tt equivalent assumptions (approximately at

least).

(d) Homogeneity of item difficulty parameters (approximately at

least).

Nevertheless, in all cases, the F-test is robust against any
violation of assumptions If the population reliability is close to zero
for both continuous and binary cases. |f only the lower tail portion
of the distribution is used for the binary item test, the significance

test is also robust in most cases.

7.2.0 Implications to Test Theory and Applicatlons

In this study, it has been demonstrated that the distribution

of the reliability estimste depends significantly on the models employed,
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the underlying assumptions, and the parameters of part tests or items.
Therefore the validity of any statistical inference about reliability
largely depends on the validity of models and assumptions like any other
statistical inference. Therefore it is essential, for statistical
inference about reliability, to know the models appropriate for the
test in use, and the population characteristics for the test must be
known a priori. For a casual user of psychological and educational
tests, this is an almost impossible task. Therefore, for test users
and/or other researchers, the findings in this study may not be of any
practical use without knowledge of the above information about the test
except when robust conditions are present.

However, for a test author, or for a test reviewer, the task
of gathering the necessary data may be accomplished as a by-product of
the usual procedure for the test development, since an administration
of the test to a comparatively large sample of subjects from the
population for whom the test is developed is usually involved in order
to standardize and to obtain test norms. The test statistics based on
such large samples may be used to obtain such information.

Although there is no agreed upon statistical and psychometric
methods to obtain such parameters, some efficient methods for the
calculation of part test parameters have been developed recently by a
number of psychometricians.

For example, Kristof (1969) considered the estimation of the
true score variance o: and error score variance (o:j) under an
essentially 1 equivalent measurement assumption by employing maximum
like)ihood method. He derived the likelihood equations and found that
these could be solved rapidly by a simple Newton-Raphson procedure.

For the binary item test cases, the item difficulty is easily
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calculated, and the biserial correlation parameters may be obtained
by factor analysis of the tetrachoric correlation matrix from the

results of (3.14), if the latent score has a uni-factor structure.

J8reskog (1971) has shown some examples of model identifica-
tion techniques by employing maximum likelihood factor analysis on the
disperson matrices of test scores obtained from large samples.

In regard to distributiors, the distribution of error score
is found to be not important, but the shape of the distribution of true
scores can affect the reliability estimate significantly. Although
the distribution of true scores is not observable directly, since only
the kurtosis of true score will affect the distribution of reliability
estimates, and it can be indirectly evaluated by the test score
kurtosis divided by the square of reliability from the results of (5.9),
the normality of true score may be investigated partly by examining the
test score kurtosis if it is obtained from a large sample.

Therefore, a test author or reviewer would be doing a service
to the users of a test, if he provided information about the model
involved, and distributions and parameter values in the population for
which the test is developed. If the test satisfies the ANOVA model and
normal theory assumptions, or violates only those assumptions which are
known to be unimportant, the author or reviewer may recommend the
use of the F-test for the inference about reliability. |In this case
the author or reviewer needs to supply only the information about the
population reliability. Otherwise, the author or reviewer should either
provide all information necessary for simulation of such tests by the
computer program developed in this study, or alternatively, provide a

table of upper and lower critical points of the distribution of
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reliability estimates as a function of sample size, and should probably
also provide the values of the standard errors. Then the user could
easily determine whether the observed reliability is significantly

different or not from the population value at a specific significance

level.

7.3.0 Example 1: Application to Continuous Case

Since it was not possible to find an appropriate example of
a test and its manuals which provide the necessary information for the
test models and the other information necessary for the application of
computer simulation techniques, somewhat arbitrary example data were
selected to show how the findings in this study and the computer
programs developed might be applied in a practical situation.

J8reskog (1971) analyzed a dispersion matrix based on four
measures used by Votaw (1948) to establish methods of obtaining reader
reliability in essay scoring for an English composition test, and
identified the model as a congeneric true score model. The dispersion

matrix was obtained from 126 subjects, and is given in Table 7.1.

TABLE 7.1

Dispersion Matrix of Votaw's Essay Test Data,

| = 126
Measure 1 2 3 L)
| 25.070h 12.4363 11.7287 20.7510
2 12.4363 28.2021 9.2281 11.9732
3 11.7257 9.2281 22.7390 12.0692
) 20.7510 11.9732 12.0692 21.8707
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He employed maximum likelihood factor analysis, and gave the

estimate of the standard deviation of true score or factor loading as,
A' = [4.57 2.68 2.65 4.53) .

Therefore, if a test author published a test consisting of
four part tests and obtained the same results as above based on a large
sample, these values may be regarded as population parameter values if
Then the test

small discrepancies in covariance terms are ignored.

score model would be as follows,

4.57 [fl] 2.0459 0.0000 0.0000 0.0000 [g‘]

_l2.68 , | 0.0000 4.5847 0.0000 0.0000

&} 2.65 0.0000 0.0000 3.9644 0.0000

4.53 0.0000 0.0000 0.0000 1.1618

Then,

zs.ozou l:.2h76 12.1105 zo.7gz|
2 12.2476 28.2021 7.1020 12.140k
Oly,) =L =AA"+¥ = | 1971105 7.1020 22.7390 12.0045
20.7021 12.1h04 12.0045 21.8707

and,

Alpha = 0.812329, o = 0.831249.

Since the assumption of the homogeneity of true score
variances Is violated, the essentially 1 equivalent measurement
assumption is not valid and hence the Alpha coefficient is lower than
rellability as expected.

From the findings of this study, it is known that the effects

of non-hamogeneous true score variance is not too great with moderate

differences among the elements of the factor loading vector 1A , but
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the differences for this data seem exceptionally large and also the
difference between Alpha coefficient and the reliability is substantial.
Therefore a systematic distortion of the distribution of reliability
estimates toward lower reliability is expected. Seven computer
simulation experiments were performed with the Jdreskog's model with

N = 2000 and assumed normality of true and error scores. Both estimation
formulas, namely the Alpha formula of (2.13) and Kristof's unbiased
formula of (5.2)-(a) were used for estimation of sample reliability.
Observed upper and lower 5% critical points together with standard
errors are summarized in Table 7.2. The observed values are also
compared with those obtainable under the ANOVA model and normal theory.
The sample sizes |, the number of subjects, used for these experiments
are 10, 15, 20, 25, 30, 35, and 40 respectively. Figures 7.1 - 7.7
compares empirical distribution with the theoretical distributions
indicating the effect of the violation of the essentially = equiv-
alent measurement assumptions.

A table similar to Table 7.2 might accompany the test

manuals or test review report so that test users may consult the

table whenever they make inferences about the reliability. For

example, if = teacher administered the test to a sample of 20 students
and obtained § = 0.892, then by consulting this table she may conclude
that the difference between the population value 0.812 and her sample
value is not significant at 5% level of Type one error. Therefore,

she may not claim that her sample is significantly different from the
population for which the test is developed as far as the reliability

is concerned. The author or researcher could develop a slightly

different table |f the population test score is not normal. For
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example, if ranked marks were assigned for each part test, the greater
likelihood Is that the true scores would be distributed uniformly

rather than normally, and the shapes of reliability estimates would be

much different.

7.4.0 Example 2: Application to Binary Item Case

A hypothetical binary item test consisting of 9 items is
considered as an example. The values of item parameters are taken

from Lord and Novick (1968, p. 379), and summarized in Table 7.3.

TABLE 7.3

|tem Parameters of a Nine Item Test

| tems | 2 3 b 5 6 7 8 9
Difficulty 0.096 0.199 0.338 0.434 0.471 0.574 0.676 0.801 0.822

Biserial 0.490 0.717 0.549 0.593 0.595 0.640 0.476 0.530 0.495
Cor.

It may be noted that the item difficulty parameters are rather
heterogeneous with a value as small as 0.096 to as high as 0.822. There-
for it Is expected that the essentially < equivalent measurement
assumption is substantially violated. To Investigate the sampling
distribution of rellability estimates of a binary item test with these
parameters under the normsl ogive model, an experiment was performed
with | = 30, and N = 1000.

The theoretical test paramsters and those obtained by

paralle! form method are compared in Table 7.4,
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TABLE 7.4

Test Parameters of a Nine Item Test

Methods Mean Variance Reliability KR20
Theoretical 4.470 4.0054 0.6632 0.6498
Parallel Form 4. 4774 4.0023 0.6654 0.6526

Therefore a user of this test may compare her observed test
mean, variance, and KR20 with the values given in this table, and can
make some conclusions about her sample group.

The shape of the distribution of reliability estimate based
on (2.13) is compared with the theoretical distribution under the
ANOVA and normal theory model in Figure 7.8. The distribution shows
a systematic shift leftward probably due to heterogeneous difficulty
parameters. The lower and upper 5% critical points of this distribu-
tion are 0.4412 and 0.7793 respectively while the theoretical values
are 0.4466 and 0.7656 respectively. Therefore, if a user of the test
found a reliability estimate of 0.79 with | = 30, it may be concluded
that the reliability is significantly higher than the population value

at the 53 level of significance.

7.5.0 Recommendations

As noted in Section 4.8 of Chapter Four, in the discussion
of the methodological limitation of this study, the computer simulation
experiments cannot be exhaustive and cover all possible combinations
of models, parameters, and distributional assumptions. Also due to

the limitations imposed by limited funds available for the comput ing
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charges, the scope and extent of experiments have been restricted to
certain special cases which may not always be directly relevant to

real data. Because of these facts, the findings of this study will

be limited to some extent in their generalization and application.
Therefore, the findings will, by circumstance, be exploratory and
illustrative rather than comprehensive with the emphasis having been
placed on methodology. Based on the findings and experience with the
computer simulation techniques, the following recommendations are made:

(a) The computer simulation techniques can be used to solve
many statistical and psychometric problems in test and measurement
theory and application. Further use of this technique is recommended
and research must be carried out to improve the methodology.

(b) Authors of published tests, or their reviewers, should
attempt to specify the appropriate test model for a given test, and
place such information in the test manuals. The manuals should also
include the population dispersion or tetrachoric correlation matrix
of true or latent scores or estimate of them as well as the parameter
values such as error variances, difficulty and biserial correlations
based on a large sample. The distributional characteristics of true
or latent scores and error scores of the population for which the test
is developed should also be included.

(c) Some of the findings in this study are based on only
a few parameter sets and distributional assumptions. Therefore, the
findings must be confirmed by replicated studies with
a wider range of parameter sets and with distributions of different
shapes of true or latent and error scores, and if applicable, using

real test score data. More specifically, the following aspects require
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further investigation:

(1) The effect of non-homogeneous true score variance, i.e

the distribution of reliability estimates under the congeneric
model for a wider range of 1's.
(i1) The effects of non-homogeneous item difficulty parameters

for the binary item test cases.

(d) In this study, the size of sample is artificially fixed
at | = 30. An investigation must be made to examine the effects of
sample size to see how fast the estimate converges to its expected value
with increasing sample size.

(e) The investigation of this study was limited to Type 1
sampling situations only, but a similar method can be employed for Type
2 or Type 12 sampling situations possibly with a different type of
ANOVA model .

(f) The test score used in this study was a simple unweighted
sum of J part test or item scores, although a weighted sum could have
been easily employed. The effects of a weighted sum on the reliability
estimate must be explored as an extension of this study.

(9) In this study, one of the basic assumptions of test
theory was assumed to be always valid. The assumption was one of
independence of error and true scores. In practice this may be
violated and the effects of such violation on the distribution of the
estimate of reliability must be investigated. Computer simulation would
provide an ideal method for such an investigation.

(h) 1t is clear that Alpha coefficient as an estimate of

reliability is inappropriate if the essentially t equivalent
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measurement assumption is violated too much. Therefore a new effort

is necessary to find an appropriate means to estimate reliability under
this condition, especially for the case of the multi-factor true score
mode | .

(g) In this study, the investigations were limited to one
sample and one reliability estimate cases, and comparisons of the
estimate to the population value, but similar methods may be applied
to investigate for the cases of more than one sample or reliability
estimates either based on independent samples or repeated measures on
the same sample to investigate the sampling distribution of the

differences of the reliability estimates.
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APPENDIX A.)

LISTINGS OF COMPUTER PROGRAMS

RELOY : Simulation Program for Continuous
Part Test Case

RELO2 : Simulation Program for Binary (tem
Test Case

RELOO : A Package of Sub-Programs Shared by
RELO! and RELO2
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MALN 09-1%-171 19:99.99 PAGE 0001

DIVISICN OF EOUCATIONAL RESFARCH SERVICES
UNIVERSITY OF ALBERTA

0000800038888 0008008000000¢00000800000800008000888000800000000000

PURPOSE:

CARD INPUTS

SUBPROGRANS S

SIMULATES CCONTINUOUS PART-TEST SCORES BASFD ON NWLTI-
FACTOR TRUE SCORE MOOEL TO INVESTIGATE SANPLING
OISTRIBUTION OF RELIABILITY ESTIMATES

1o TITLE(20A4)

2. PARAMETERSILILIS)FS.5) SNSAMyMI MIoNF,IX,IDIST,IDISE,
IPUNCH, IPLOT,MOCE4LB,SIG
NSAM NQO OF SAMPLES SIMULATED

L)} ND OF SUBJECTS IN THE SAMPLE

LY} NO OF PARTS

NF ND CF FACTORS IN TRUE SCORE

Ix ANY 000 INTEGFR TO INITIAVE RANDOM NUMBER

1D1SY NPTION FOR THE DISTRIBUTION OF RANDOM
EFFECTS (TRUE SCORE)
O-NORMAL
1-SPECIFIED BY SUBPROGRAM DIST
101 SE OPTION FOR THE DISTRIBUTION OF ERROR
0-NORMAL
1-SPECIFIED BY SUBPROGRAM DISE
IPUNCH NPTINN FOR CARD QUT FUT OF FREQUENCIES
0-NO CARD OUTPUTS
1-CARND CUTPUT REQUIRED
1PLaY C2TION FOR PLOTS
0-NOT RFQUIRED
1-REQUIRED
MOOE NOPTION FOR ESTIMATICN FORMULA
O-ALPHA FORMULA(BIASED)
1-KRISTCF CORRECTVION{UNBIASEOD)
2-8CTH OF ABOVE

L8 OPYION FOR THE NO OF CLASS INTERVALS FOR
THE FREQUENCY CALCULATION,24,36 OR 48,
ASSUMED 24
sSIG SIGNIFICANCE LEVEL FCR EACH TAIL,ASSUMNED
0.05
3. FNY FORMAT FOR THE INPUT VFCTNRS AND MATRIX
4. FIX A VECTOR OF NMFANS FOR EACH PART
S. ERR A VECTOR OF STANDARD DEVIATION OF ERROR
SCORES FOR EACH PART-TEST
6. FAC A FACTOR LOADING MATRIX OF SIZE MJ AY NF

Te A BLANK CARD

1.CURRENTLY DIMENSIONED TO ACCOMODATE UP TO FOLLOWING
SIZE PARAMETERS

NS AM 5000
1] 100
" 30
NF 10
L8 (1]

(FORTRAN) ANV ,80XSNCHIPRB,COUNT,DI SCRP ,01SP, EXANPL ,
FISHER FITVES ,FST, UOUT,PLOT ,POPR,PUNCH,RELDIS, ROLS,
SIGTES,VARXYX,VECRAN, VEOUY, DATA,0IST,0DISE
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o001

0002
0003
0004
0005
0006
0907

0008
0009
0010

0011

0012
0013
0014
0015
00 lé
ooL?
ools
0019
n020
0021
0022
0023
0024
0023
0026
2027
0028
0029
0030
0031
0032
0033
00 34
001%
093
00137
0038
00139

(4
(4
(4
C
c

(eSSPLIB) BOTR,COTR,DLGAM,NDTR , RANK

PRCGRAMMER: Ko.BAY

AMAXsLAPGER OF NSAM AND MieMy

OIMENSION FAC"J‘N"'El“‘ﬁJ)oVAR("J,nDlS("J.PJ)o'l!l"J'.ﬂsU'lﬂJ'o
IGSS"J)'V(”l‘ﬂJ’vﬂD'PJ)QFHS(NSAH‘3).FREQ(LB‘;).TEN’I“I‘NF)

DIMEASICN TITLE(20),FMT(20),LABL 4),FAC( 300),ERR( 30),VAR( 30),
1CISt 900),FEX( 30),ASUM({ 30),BSSt 30),Y( 3000),88( 30),FHS{ 15000)
2,FREQI144) ,XBAR( 61, XVAR( 6),TEMP(1000)

REAL®S LAB

CATA LABI'SUBJEC"o"AlYYES"o'ERROR'.'REL COF*/

100 FORMAT(20A4)

101 FORMAT (1K1 ,20A4)

102 FORPAT{11(5,F5.5)

103 FNRMAT(/,10X,°NO OF SAMPLES STMULATED® (15X, [4,/,10X,°NO OF SUBJEC
1TS IN EACH SAMPLE® 411X,12,/,10X, *NO OF PART-TESTS® 24X 1247 ,10X,
2°NO CF FACTORS IN TRUE SCORE®y 16X 11,/7510X, *STARTING INTEGER RANOO
IM NUMRER®, 2X,81047/,10X,*0OPTION FOR CARD NOUTPUT® 419X ,11,/,10X,
4°0PTION FOR PLOT*,26X,11,/7,10X,°0PTION FOR ESTIMATION FORMULA®,
S12X,11,7,10X,°0PTICN FOR THE NC OF CLASS INTERVALS®43X,13,/7,10X,
6'STGNIFICANCE LEVEL® ,19X,FS5.3,/)

106 FO“"A'(Z‘.l3.5X.ZFl#.b.Z‘q"'y?loZElﬁob'

105 FORMAT(/,1X,9008880sLAST SFED RANDOM NUMBER [X=°,110)

106 FORMAT(/,1 X, *DISCRIPTIVE STATISTICS FOR FIXED EFFECY ESTIMATES AND
1 EXPECTED VALUES UNDER M.F., "ODEL'./.ll"PARY'.7X.'ﬂEAN‘.ICIo'El'
IEC‘ED'.GI.'|'.5!.'VAFIANCF"BK.'EKFEC'ED')

107 FORMAT(L1HL 230 93% 04/ 1X°2°,2X,* SUMMARY OF CUTPUT® 2X,%3%,/71X¢23¢
1'a*))

108 FORMAT (10X, *ERROR SCCRE DISTRIRUTIONS ARE NCRMAL®)

109 FORMAT(1CX,*ERROR SCCRE DISTRIAUTIONS ARE NOT NORMAL'®)

110 FORMAT (10X, °* TRUE SCORE NDISTRIBUT IONS ARE NORMAL® )

111 FORMAT{1CX,* TRUE SCORE DISTRIBUTTIONS ARE NCT NORMAL®)

10 REAC(5,100) TITLE
IF(TITLE(1).EQ.TITLE(2}) GO TO 99
WRITF(6,101) TITLE
READ(S5,102) NSAH.H(.FJ.NF.IK'ICISY.IDlSE.lPUNCN.lPLO'.“ODEol'vSIG
{FISIGLL.LE.O.0) S1G=0.0%
IF(LB.NE.ZQ.AND.LD.Nt.JQ-ANO.LB-NEoﬁﬂi LB=24
IFINF.LE.O) NF=]
WRITE(6,103) NSAM, Ml JMJoNF oI X, IPUNCH, IPLOTY .-UDG|L°'S|5
T1FUIDIST.EQ.0) WRITF(6,110)
IFLIOIST.ECal) WRITF(G,111)
IF(IDISE.EC.0) WRITE (6,109)
TFCIDISELEQ.L) MRITFLG,199)
CALL P(’.(FJ.NF'FlC.ER!.VAI.0|$olfl.AL'”‘.‘VARQ(VAR.‘"‘.Fll.ﬁ"““’
IVARaTVAR/(PJONY)
EVARSEVAQ/P)
THETASTVAR/EVAR
DIVs1l.0e¥JOTHETA
€C 20 J=1,P)
ssuUNtiJ)=n.0

20 98S1J1+0.0
CALL VECHAN(Y,300,1IX)
CALL Ell"L(’l.’Jo"‘0“‘05..0l0|5'olols‘ol’o'o'l‘o"“'..‘o'l‘nlfl’
00 SO NTFIAL=1,NSAY
caLL OAYliﬂlq.JoNf.flC'Ellqlols’.l°|5!o|lo'|Fll|‘!.”
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0040 CALL ANOVIY M, PJI,FNSA,FNSB, FMSE,088)
0041 FRSINTRIAL)=FMSA
0042 I1sATRIALSASAMN
0063 FMSITII)=FNSB
0044 fislIoNSAM
0045 FNS{TT)=FNSE
0046 CC 45 J=1,P)

0047 BSUM(J) =ASUMIJ) +BBLJ)

0048 45 8SS(J)=BSS(J)eBB(I)ee2

0049 50 CONTINUE

0050 00 54 Jsl, M)

0051 84 FIX{J)=FIX(J)-GMEAN

0032 WRITE(6,1CT)
CALL MXOUT (FMS  NSAM, 3,0,44,66HMEAN SQUARESS COL-1 MSA,COL-2 N$8,CO

0053 NN=NSAMS)

0054 ANAX=0,0

0053 €O 56 I=1,NN

0056 56 IF(FMS(1).GT.XMAX) XMAXsFMS(T)

0087 NN=XMAX/10.0¢1.0

0058 XMAX=NN$10.0

00%9 TINTasXMAX/LA

0060 CALL CCUNT(FMS,NSAM;3,0.0, TINT,LB,FREQ,XBAR,,XVAR)

0061 AP IN=0.0

0062 AMAX=TINTOLS

0063 ABAR(L)sPJSTVARGEVAR

0064 XXXX=0.0

0063 00 58 J=1,PrJ

0066 8 AXXXaXXXXeFIX(J)o82

0067 CFAsMI-1

0068 OFBs=pry-1

0069 OFEs(MI-1)®(M3-1)

0070 AXXX=XXXX/0F8

oon XBAR(S)aEVAROXXXXSM]

o0or2 XSAR(6)=EVAR

0973 AVAR(&6)=(2.08(NJSTVARGEVAR)®®2)/0DFA

0076 AVAR(S)=s((EVAR®2.,00M]eXXXX  )@2,0CEVAR)/OF8

0079 AVIR(6)= (2 ,NOEVARSEVAR) /OF E

0o0te CALL DISCRP(3,XBAR ,XVAR,LAB(1),52,52H NEAN SQUARES ANO EXPECTED VA
LLUES UNDER ANOVA MODEL )

00177 CALL VARXX(NSAM,M) ,8SUN,BSS)

ao7te WRITE(O,100)

0079 00 63 Jel, P

N.O AX=0,0

0061 00 61 Psl,P)

0002 Ols=1,0/r)

0083 1F(J.EQ.N) DL=Dl*1,.0

[T 00 60 Ks),PJ

0003 02=-1.0/m)

0086 1F(3.EQ.K) D2202¢1.0

0087 NEspyo (M- )oK

0088 60 XxexXeN1ON20N[SIMNK)

0099 61 CCNTINUF

0090 AXeXX/M]

0091 63 MAITE(S,104) J0SUNIIDN,FIXII),D8S1I) xR

0092 [sNSANS2
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0093 NC 70 (s1,ASAN

0094 Ilsllel

0095 70 FNS{1)=L O-FNSLTILI/FNS(I)

0096 CALL RANK{FMS{L) ,FMS(NSAMO1) NSAN)

0097 IF (MODE.NE.1) CALL RELOTSIFMS,NSAM,DFADFE ,FREQ:LOREL,TENP,$10,
1XBAR, XVAR, [PUNCH, IPLOT,0,LAB)

0098 IF(NODE. NE.O) CALL RELOISFMS,NSAM,OFAoDFE FREQ, LB RELoTENP ,S1G,
LXBAR ) XVAR, [PUNCH,1PLOT,1,LAB)

009 WRITE(6,109) IX

0100 G0 70 10

n101 99 sSTOP

0102 END

TOTAL MWEMCRY REQUIREMENTS 015284 BYTES
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PAGE 0001

FORTRAN [V C CONPILER CATA 09-1%-71 19:%6.00
0001 SUBROUTINE DATA(ME JMIoNFoFAC,ERR, IDIST, IDISELIXy VoFIX, TENP)
c PURPCSE CREATES DATA MATRIX FOR RELOL
(4 ni SANPLE SIZE
c rJ NO OF PARTS
c NF NO OF FACTORS IN TRUE SCORE
c FAC INPUT FACTOR LNADING MATRIX
c ERR INPUT VECTOR OF STANDARD DEVIATION FOR ERRORS
c 10187V OPTION FOR TRUE SCORE DISTRIBUTION
C I0ISE OPTION FOR ERROR SCORE OISTRIBUTION
c Ix SEED 00D INTEGER RANDCM NUMBER
(4 FixX INPUT FIXED EFFECT VECTOR
c TENP WORKING MATRIX
0002 DIMENSION FACIMJIGNF) sERRIMI) ¥V (MT,MI),FIXINI) o TENP(ME,NF)
c IF(IDISE.EQ.0) CALL SRAND(Y,(MIsMJ),IX)
0003 [F(ICISE.EQ.0) CALL ECXSNIY, (MIsMI),IX)
0004 IFCIDISE.EQ.L) CALL OISE(Y MiyPJI,IX)
000% CO 20 I=1,M1
0006 00 20 J=1,FrJ
0007 20 YU1,J)sFIX(J)eY(1,JIOERR(Y)
c 1F(I0IST.EC.0) CALL SRAND(TEMP o (MIONF), IX)
0008 TFLIDIST.EQ.O) CALL BOXSNITEMP,(MISNF),IX)
0009 IF(IDISTL.EQ.1) CALL DISTITENP, M ,NF,IX)
0010 00 30 =1,Ml
ooll CO 25 K=l ,NF
0012 €O 23 Js=1,PJ
0013 23 Y(1,0)aY(1,J)eFACIIsKISTEMP{T,K)
0014 25 CCNTINUE
0019 30 CONTINUE
0016 RETURN
0017 END

TOTAL MENCAY REQUIREMENTS 000SOE BYTES
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0001

0003
0004

00093

0006
0007

0009
0010
ootl
o012
0013
0014
0013
0016
0017
oole
0019
0020
0021
0022
0023
0024
0029
0026
0027
0020
0029
0030
0031
0032
0033
0034
0033
0036
0037
00138
0039

[aXa X o)

SUBROUTIAE EXAMPLINI (NI NF FAC,EPR,IOIST,JODISE, IX, Y FIX,TENP,B0,
LFMS,REL)

PURPCSE GIVES EXAMPLE OUTPUTS FOR RELOL
ARGUMENTS THE SAME AS THE MAINLINE PROGRAM RELOL
SUBPROGRAM DATA, MXOUT ,ANCV,VEOUT ,01$P,R0Z8

DIMENSION FACIMIZNF) JERRIMID Y (MI MID FIXIMI),TEMPIMI NF),BB(N)),
LFNS(PI, M)
100 FORMAT{LIMHL,200°@°) o/ 91X o%@° 43X *EXAMPLE RUNS®,3X,°3°,/,1X,20(%3%))
1Ol FORMAT(/o1X)*MSAS? (EL4.6,2Xy "MSRa? ;EL4.6,2X, MSE=? (EL&.6,2X, 'Far,
LELA.692X " ALPHA®® ,FB.5,2X,*UNBIASED REL EST(ANOVA)=®,FB8.9)
102 FORMAT(/,1X,*SAMPLE DISPERSION : SATURATION COEFFs®,F9,.5,3X, ' HONOG
LENEITY COEFF=* ,F9.5,5X, *HON/SAT=*,F9,.3)
103 FORPAT(/ 41X, 'GMEANS® ,EL4,.6)
104 FORMAT(/,1X,*VARIANCE OF ALPHA ESTIMATE UNDER ANOVA=',F8.95, 3X,
L'ESTIMATE=® ,F8,.95)
105 FORMAT(/ 41X, *VARIANCE OF UNBIASED REL ESTIMATES UNDER ANOVA=',F8.5
Lo3Xy *ESTIMATE="? ,F8.9)
WRITE(6,100)
CALL CATAIMI MJoNF FAC,ERR,IDIST,IDISE,IX,V,FIX,TENP)
CALL MXOUT(Y Ml 47J,0,12,12H0ATA MATRIX )
CALL ANOVIY, M1 MJ,FHSA,FMSB,FMSE,088)
FFaFPSA/FNSE
AL=1,0-1.0/FF
ALL=(2,0¢(MI-3.0)8AL)/(™1-1,0)
WRITE(6,101) FMSA,FMSB, FMSE,)FF AL, ALL
CALL VEOUT (BB ,MJ,208,28HSAMPLE FIXED EFFECTS VECTOR )
CALL OISPLY, M],M),FMS,088)
CALL VEOUT(8B,MJ,20,20HSAMNPLE MEANS VECTOR )
SuUP=0,0
CO 20 J=1,rJ
20 SUP=SUMeRB(Y)
SUPsSUP/P)
WRITE(6,103) SUM
CALL MXOUT(FMS M) oMJ,0,24, 20HSAMPLE DISPERS ION MATREX)
CALL ROZBIFMS, ¥ ) SAT H(ONM)
ALPHASHOM/SAT
WRITE(6,102) SAT ,HON, ALPHA
IF(M].LE.S) GO TO 90
VFs(2.,08(N1=1,0)0(P)ON]-MJ=2,0))/(INI~-5,0)0(NJ-]1.0)0(N{-3,0)002)
VARAsVFO (| -REL)®®2
VAREsvFe {]-AL)®®2
MRITE(G6,104) VARA,VARE
C2e(n1-3.0)/(Nl~-1,0)
VARA=VARA®C2eC2
VAREs=VARE®(C20C2
WRITEIG,109) VARA,VARE
90 RETURN
END

TOTAL NEPCRY REQUIREMENTS CO0AO4 BYTES
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oool

0002
0003

0003

0006
0007
0008
0009

0010
0011
0012
0013
00164

_ 001S
0016
0017
0018
0019
0020
0021
0022
0023
0024
0023
0026
0027
0028
0029

0030 .

0031
0032
0033
003
0033

(e XaXaXaXalaXaXaXaXakaNalakal

SUBROUTINE POPR(MJ ¢NF oFAC s ERR VAR DI SoREL, ALPHA, TVAR, EVAR ,FNT,FIX,
1GMEAN)

PURPCSE PERFNAMS BASIC COMPUTATIONS FOR POPULATION "ARAMETERS
’ "J NO OF PART-TESTS

NE NO OF FACTORS IN TRUE SCORE

FAC FACTOR LOADING MATRIX

ERR ERROR STANDARD DEVIATION VECTOR

VAR OUTPUT VECTOR FOR VARTANCES OF PARTS

oIs OUTPUT OISPERSION MATRIX OF PART-SCORE VECTOR

REL OUTPUT POPULATION RELIABILITY

MLPHA OUTPUT POPULATION RELIABILITY

TVAR OUTPUT TRUE SCORE VARIANCE OF TEST SCORE

EVAR OUTFUT ERRNR SCORE VARIANCE OF TEST SCORE

Fnt FORMAT FOR INPUT VECTORS AND MATRIX

FIx OUTPUT MEAN VECTOR FOR PARTS

GMEAN OUTPUT GENERAL MEAN

DIMENSTON FACIMJI,NF) JERRIMI) (VAR (MJ)oDISINI yNJ), FNT(20),FIX(MI)
100 FORMAT(/,1%X,*POPULATICN PARAMETERS ® o /s 1X o *RELIABILITY?® (19X, F9.%4/,

LIXo*ALPHA® ;25X 4F9.5, /41X, * TRUE SCORE VARTANCE® s11XoE14.6,7¢ 1 Xy *ERR

20R SCORE VARIANCE® ,10X,EL14.6)
101 FORMAT(/,1X,*TRUE SCORE DISPERSION: SATURATION COEFF=* ,F9,.5,5X,°H0

LMOGENELITY (NEFF=?,F9.5)
102 FORMAT(LHL ¢37(%2%) o/ e1X¢°3°% 93X, INPUT POPULATION PARAMETERS *,5X,

1°@%,/,1X,37(%@*))
103 FORMAT(/ L Xs*GMEAN=® ,E14,.6)
104 FORMAT(2CA4)
105 FORMAT(/,/,1X,*FORMAT FOR THE CATA®,5X,20A4)
106 FORMAT(/,1X,*PART SCORE DISPERSICN: SATURATION COEFFs=?,F9.5,9%, 'MD

LMOGENELTY COEF=*,F9,5)

WRITE(6,102)

READ(S,104) (FMT{1),1=1,20)

WRITE(6,105) (FMT(1),I=1,20)

REAC(S,FNT) (FIX(J),JisLl,M))

READ(S FMT)(ERRIJ) yJ=1 1))

CO 10 I=1,My
10 REAC(S,FMT)(FAC(1,J) J=1,NF)

CALL VEOUT(FIX,mPJ,12,12HMEANS VECTOR)

CALL VEOUT (ERR,MJ,32,32HERROR STANDARD DEVIATIONS VECTOR)

CALL MXOUT(FAC MJoNF ,0924,20HFACTOR LOADING MATRIX )

TVAR=0,0

EVAR=0.,0

00 1S J=1,FJ

VAR({J)=0.0

CO 12 I=1,0)

01S(1,J)+0.0

€O 11 K= |, ,NF
11 OISET,J)sDISUI,JIoFACIIKIOFACIIIK)

TVARSTVARCDIS(I,J)
12 CONTINUE

VAR(J)I=0I1S(JoJ)eERR{IICERR(S)
1S EVARSEVARCERR( JICERRTI)

CALL RNZAIDIS ,MJ),SAT ,HCN)

CALL MXOULT(NIS,MI,4PJ,0,28,20HTRUE SCORE DISPERSION MATRIX)

MRITE(6,1CLl) SAT,HCH

REL=TVAR/ ({ TVARCEVAR)
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0036 00 16 J=1,PJ

0037 16 0150J,J)=VARLI)

0038 CALL ROZB(DIS,MJySAT,HON)

003 CALL MXOUT (D1S,MJ,NJ 00,20, 20HD ISPERSION MATRIX ’
0040 WRITE(6,106) SAT,HCH

0041 ALPHASHON/ SAT

0042 WRITE(6,100) REL,ALPHA,TVAR, EVAR

0043 GMEAN=0.0

0044 00 20 J=i,MJ

0045 20 GMEANSGMEANFIX(J)

0046 GMEAN=GMEAN/PJ

0047 co 21 J=1,M

0048 21 FIX(J)=FIX(J)-GNEAN

0049 WRITE(6,103) GMEAN

00%0 CALL VEOUT(FIX,MJ, 16, 16HFIXED EFFECTS )
0031 CALL VEOUT(VAR,MJ,20,20HVARIANCES OF PARTS )
0052 00 23 J=1,FJ

00%3 23 FIX(J)sFIX(I)eGNEAN

00%4 RETURN

00%9% END

TCTAL MEMCRY REQUIRENENTS 00080C eYTvEs
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FORTRAN IV G CCAPILER o187y 09-13%-7 193%6.10 PAGE 0001
0001 SUBROUTINE OISTI(TENP ,M] NF,IX)
c PURPCSE CREATE STANNARD RANOCOM TRUE SCORE MATRIX FOR RELOL
(4 TENP OUTPUT TRUE SCORE NMATRIX
c L] NO OF RCWS OF TEMP
’ 4 NF NO OF COLS OF TEmMP
c > SEED ODD INTEGER RANDOMN NUMBER
CoosoTHIS EXAMPLE PRONUCES EXPONENTIAL TRUE SCORES
0002 DIMENSION TEMP(N], NF)
0003 CALL VECRANITENP,(MISNF),IX)
0004 €O 20 I=1,M1
0003 00 10 J=1,NF
0006 10 TEMP(L 4J)=-ALOGITENP(1,J))~1.0
0007 20 CONT INUE
0008 RETURN
0009 END

TOTAL MENCRY REQUIREMENTS 00025A BVTES
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PORTRAN 1V G COPPILER oise 09-19-71 193%6.11 PAGE 0001
0001 SUBRCUTINE DISEIV, NI PJ,IX)

c PURPOSE CREATE STANDARD RANCOM ERROR MATRIX Y FOR RELOL

(4 Y OUTPUT NATRIX

4 . L) NO OF RCwS OF Y

c nJ NO OF COLS OFf ¥V

c X SEED 000 INTEGER RANDOM NUMBER

CeoosTHIS EXAMPLE PRODUCES UNIFORM ERROR SCORES

0002
0003
0004
0003
0006
0007
0008
0009
o010

OIMENSICN YNNI, M) .
CALL VECRANIY,(MIsNJ), IX)
SQR=SQRT(12.0)
Ca 20 J=1,PFJ
00 10 1=1,r1
10 YilsJ)=u(Y({1,J)=0.510SQR
"20 CONTINVE
RETURN
END

TOTAL MEMCRY REQUIREMENTS 0002564 BYTES
15s56.11 10.9 RC=0
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c
C
c
c
c
c
c
c
c
c
c
c
C
C
c
c
c
C
c
c
C
C
c
c
C
c
c
C
C
C
C
C
[
C
C
C
C
(<
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
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PALN 09-13%-N 193%54.93 PAGE 0001

CIVISION OF EDUCAT IONAL RESEARCH SERVICES
UNIVERSITY OF ALBERTA

“...‘..“.........‘.........‘.‘...‘.‘.‘..“.....“......‘......

PURPOSE

CARD (INPUT:

REPARNKS

SUBPROGRANS :

PROGRAMMER 3

SIMULATE UNIT-DICHOTOMOUS(BINARY) ITEM TEST SCORES
BASED CN NORMAL OGIVE MODEL TO INVESTIGATE SAMPLING
OISTRIBUTION OF RELIABILITY ESTIMATES

1. TITLE(20A4)

2. PARAMETERS(LOIS FS.5)INSAM MI,MJ, IX,IDIST,IDISE,
TPUNCH, IPLOT,MOCE 4L BySIG
NSANM NO OF SAMPLES SIMULATED

Ml NO OF SUBJECTS IN THE SAMPLE
n NO OF ITENMS
13 ANY 0DD INTEGER TO INITIATE RANODOM NUMBER

10187 OPTION FOR THE DISTRIBUTION OF RANDQPM
EFFECTS (TRUE SCORE)
0-NNRMAL
1-SPECIFIED BY SUBPROGRAM OIST

101 S€ OPTION FOR THE DISTRIBUTION OF ERROR
0-NORMAL
1-SPECIFIED BY SUBPROGRAM DISE

IPUNCH OPTION FOR CARD OUT PUT OF FREQUENCIES
0-NO CARD OUTPUTS
1-CARD OUTPUT REQUIRED

1eLOY OPTION FOR PLOTS
0-NOT REQUIRED
1-PEQUIRED

MODE OPTION FOR ESTIMATICN FORMULA
O-ALPHA FORMULA(BIASED)
1-KRISTCF CORRECT ION{UNBI ASED)
2-B0TH CF ABOVE

Le OPTION FOR THE NO OF CLASS INTERVALS FOR
FREGQUENCY CALCULATION,24,36 OR 48,ASSMED 24
£ [ SIGNIFICANCE LEVEL FOR EACH TAIL,ASSUNED
0.0%
3. FNTY FNORMAT FOR THE INPUT VECTORS
4. OIF A VECTOR OF ITEM OIFFICWTIES
S. 6% A VECTOP OF BISERIAL CORRELATIONS

6. A BLANK CARD

1.CURRENTLY DIMENSIONED TO ACCOMODATE UP TO FOLLOWING
SIZE PARAME TERS

NS M 5000
L] 100
nJ 30
Le 40

(FORTRAN) ANUV.OOISN.CMIPQO.COUNI.OISCI'.OI&P.EIAN't.
F|SNEI.Fll!fsnFSt.IIENCO.HIOUI.DA!ALL.'&OY.PO’R.PUNC".
RELOISRNZB,SIGTES VAR ll.VEClAN.VGOUV.DATA.OIS!.OIS(
tessSPLIB) BOTR,COTR,DLGAM,NOTR ; NDTRT (R ANK

K «BAY

NNAXSLARCER OF NSAN AND M[eny
DIMEASTON ASIMJIDERR (M), VARI4J) NISINJONI) DIFINI),BSUNINID,
lISSIﬂJIonNl‘IJio.l(FJI.'HS|NSAH‘)’.FQGO‘L"”Q'EN'INI|.llC'Jl.
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FORTRAN IV G COMPILER PALN 09-15%5-71 15:94.9) PAGE 0002
c RIPIS(MIS1)/2) s XBAR(2MJ) , XVAR(NJ)

0001 OIMENSIGN TITLE(20),FPT(20),LABL 4),8S( 30),ERR( 30),VAR( 30),
101S( 900),01F¢{ 30) ,8SUM( 30),BSS( 30),Y( 3000),B8( 30),FNSL 150000
2,FREQ(144) yXBAR(60) o XVAR{30),TEMP( 100),RR({ 30),PP( 30),R(463),
ax( 3000}

0002 REAL®O LAB

0003 DATA LAB/°SUBJECT®,* ITEMS ', *ERROR®, "REL COF*/

0004 100 FORMAT (20A4)

00095 101 FORMAT (1M1 ,20A4)

0006 102 FORMAT(101%5,F5.5) ’

0007 103 FORMAT(/ ,10X,*NQ OF SAMPLES SIPULATED®,15X, 16,7 4,10%X,*NO OF SUBJEC
1TS IN EACH SAMPLE® ,LOX,13,/7,10X, 'NO OF ITEMS® ,28X,1347,10X, *STARTI
2NG SEED RANDCM NUMBER®, SXo110,/+10X,°OPTION FOR CARD OUTPUT®, 19X,
311,7,10X,*CPTICN FOR PLOT® 426X 11,7,10X,*OPTION FOR ESTIMATICN FOR
PULA® 312X, 119/7+10X,*CPTIION FOR CLASS INTERVALS® 12X,13,/7,10X%,
59SIGNIFICANCE LEVEL® 419X ,F5.3,/)

0008 104 FORMAT{2X, 13,5X,2E14.6,2X,*1°*92X2E14.6)

0009 105 FORMAT(/,1X,?0esse8e1  AST SFED RANDOM NUMBER IXs*,110)

onio 106 FORMAT(/,1X,*DISCRIPTIVE STATISTICS FNOR FIXED EFFECT ESTIMATES AND
1 EXPECTED VALUES UNDER M.F. "mfl."/'lX"P‘RT'.’X"”EAN'.101.'51'
2ECTED® 96X "1 45X VARIANCE ¢, 8X, *EXPECTED")

0011 107 FORMAT(1HL 4230°3%) 4/ ,1X,°3% 42X ¢* SUMMARY QF CUTPUT® 42X ,°3° /7 01X, 23
1'3%))

0012 108 FORMAT{10X,'ERROR SCORE OISTRIBUTIONS ARE NORMAL *)

0013 109 FORMAT (10X, ERROR SCORE OISTRIBUTIONS ARE NOT NORMAL')

0014 110 FORMAT(10X,*TRUE SCORE DISTRIBUTIONS ARE NORMAL®)

0oo1l% 111 FORMAT(10X,% TRUE SCORE DISTRIBUTIONS ARE NOT NORMAL )

0016 10 READ(S5,100) VITLE

0017 IF(TITLEC(L).EQ.TITLE(2)) GO TO 99

o018 WRITE(6,101) TVITLE

0019 REANIS,102) NSAN.N!o"JollnlDlSYolOlSEol’UNCNoIFLO'.NOOﬁ.L.oSlG

0020 IF(SIGLL.LF.0.0) SIG=0.05

0021 IF(LBONE .24 . AND.LB.NFo 36 .AND.LB. NE.40) LB=24

0022 WRITE(6,103) NSAM, M 'NJ.llqlPUKH.l’LO"mOEﬂ..'SIG

0023 1FLIDIST.EC.O) WRITE(6,110)

0024 IFCIDIST.EC.1) WRITE(6,111)

0023 IFLICISEL.EC.O) WRITE(6,108)

0026 IFIIDISE.EQ.1) WRITE(6,109)

0027 CALL '0'!(PJ'BSoDlFoRoRELohlPNAoFN'.lR.PP.EII.YENP.'VAR.EVI!.OISI

0028 IR=0.0

0029 CO 20 J=i,PJ

0030 8SUM{J)=0.C

0031 XVAR(J)=0,0

0032 XeAR({J)=0.0

0033 Ji=P ey

0034 X8AR(JJ)=0.0

0033 8$S(J)=0.0

0036 on 19 I=1,J

0037 IRsfRe

0038 19 R{IR)=C.O

0039 20 CONTINUE

0040 CALL VECRAANLY,100,1X)

006l CALL ElA'Pt‘HI.lJ.OS.Ell.'!.'..ﬂo'ollo|°l5'olOlS!olol“ﬂo..o'ﬂS.
LREL R, XVAR)

0042 00 50 NTRIAM =1 ,NSAN
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FORTRAN [V G COMPILER MAIN 09-19%MN 15:54.93 PAGE €003
0043 CALL DATALIPI MJoBS sERR RR, Y, X TEMP, IX, IOISTIDOISE, XBARR, XVAR)
00 44 CALL ANOVIY M1 o PI,FNSA,FNSO,FNSE,88)
0045 ENSINTRIAL )=FNSA
0046 TI=NTRIALONSAN
0047 FMS( 11 )=FNSE
0040 {leljeASAN
0049 FNS(11)=FNSE
0050 €O 45 J=1, M)
0031 ESUPLJ)=BSUMN(J)*BB(J)
0052 4% 8SS(J)=B8SS(J)+8B(J)0ee2
00953 S0 CONTINUE
CALL MXOUT(FMS NSAM,;3,0,44,44HYEAN SQUARES: COL-1 MSA,COL-2 »S8,C0
0054 CALL PARALLIR XBAR,MI MJ,NSAMy XVAR ,TVAR2 ,EVARZ,REL2)
0093 WRITE(6,107)
00%6 IF(IDIST.EC.O.AND, ISISEL.EQ.0) GO TO 953
0057 TVAR=TVAR2
0038 EVAR=EVAR2
00%9 REL=REL2
0060 00 351 J=1,rJ
0061 S1 CIF(J)=XBAR())
0062 53 TVAR=TVAR/ (NJEN))
0063 EVAR=EVAR/N)
0064 THETASTVAR/EVAR
0063 OIV=] . 0¢PIOTHETA
0066 GMEAN=0,0
0067 CO %4 J=1,M)
0068 84 GMEAN=DIF( J)*GMEAN
0069 GMEAN=GMFAN/N)
00170 00 55 J=l,P)
0071 85 DIF(J)=DIF(J)-GMNEAN
0072 NNsNSAM®3
0013 XMAX=0,0
0074 00 56 I=1,MAN
0078 S6 IF(FNS{1).CT.XMAX) XMAX=FMS(I)
0037 XMAX=NN® 10,0
0078 TINT=XMAX/LS
0079 CALL CCUNT(FMS,NSAM¢3,0,0,TINT L8, FREQ,XBAR,XVAR)
0080 XM IN=0,0
ool XMAX=T[ATOLS
0082 XBAR (4 ) =P JOTVARCEVAR
008) AXXX=0,0
0004 00 58 J=l,»J)
00089 88 XXXX=sXXXNODIF{J)002
0006 OFAsNl-1)
0087 OFB=sPJ)-1
00088 OFEs(Nl-1)o(NJ-1)
0009 XXXXeXXXX/0OF8
0090 XBAR(S)=EVAROXXXXOM]
009 X0AR(6) =EVAR
0092 XVAR(&4)=(2.00(MJSTVARGEVAR)OS2)/0DFA
0093 XVAR(S)s ((EVARG2 ,00M[OXXXX )02 ,0%EVAR) /OFB
00% XVAR(6)=(2.N*EVARCEVAR) /DFE
0093 CALL CISCARPII, XBAR,XVAR,LABLL) 52,921 NEAN SQUARES AND EXPECTEN VA

LLUES UNOER ANOVA MODEL )



19394,.9) PAGE 0000

oPREQy LBREL,TENP,$1G,

FORTRAN IV G CONPILER nATN 09-1%-T71

0096 CALL VARXX(NSAN,NJ,8SUN,088S)

0097 WRITE(6,106)

0098 CO 63 J=1,P)

0099 AX=0.0

0100 00 61 N=l,P)

o101 Ol==1,0/0J

0102 f1F1J.EQ. %) D1=0101.0

o103 00 60 Ks=1,0J)

0104 02+-1.0/0J

0109 1F(J.EQ.K) D2=D2¢1.0

0106 NKep I (M-1) oK

0107 60 XXeXXeo010D2001S(MK)

0108 61 CONTINUE

0109 XX=XX/M1

o110 63 WRITE(164104) JeBSUNI I OIF (D)o 8SSLJ) RN

o111 1isNSANS2

o112 €O 70 1=1,NSAN

o113 (iellel

oL14 70 FNS(1)=1.0-FNSITI)/FNS(E)

o119 CALL RANK(FMS (1), FMS (NSANCL) NSAN)

olle IF(MODE.NE.1) CALL RELOISIFNS, NS AN, OFA ,OFE
L1XRAR ; XVAR , IPUNCH, IPLOT,0,LAB)

oL1? IF{MODE.NE,O) CALL I!LDIS('IS.N&A’OO’I.O’Io'ﬂ!@vk.olflot!“'oSlGo
L1XBAR, XVAR, [PUNCH, 1PLOT,1.LAS)

oLl MRITE(6,105) IX

olle G0 70 10

0120 99 stor

o121 END

TOTAL MENCRY REQUIREMENTS O17A4C BVTES
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FORTRAN [V G COPPILER CATA 09-1%-71 19:55.01 PAGE 0001
0001 SUBROUTINE OATA(MI .NJ.'S'EQR.RR.V.l."fﬂ'.|x.|°ls".|5|st.lll..l.
LXVAR)
C PURPOSE CREATES DATA NMATRIX FOR RELO2
c nt SAMPLE SIZE
c nJ NO OF [TENS
Cc 8s INPUT VECTOR OF BISERTAL CORRELAVIONS
C ERR A VECTOR OF STANPARD DEVIATION OF ERRORS
(< RR A VECTOR OF THRESHULD CONSTANTS FOR EACH ITEN
Cc v DATA MATRIX
c X WORKING VECTOR
c TENP A WORKING VECTOR
Cc 84 SEED RANDCM NUMBER
Cc 10187 OPTION FOR TRUE SCORE DISTRIBUTION
[ 4 I01ISE OPTICN FOR ERROR SCORE OISTRIBUTION
c XBAR SUM OF SCNRES FOR EACH ITEM
c R INTER [ TEM SUM OF PRODUCTYS
c XVAR A VECTOR OF PARALLEL ITEM SUM CF PRODUCTS
c OIMENS ION RIMJS(MI*1)/2),XBAR( 20M))
0002 CIMENSICN DS("J'-ERR(”JMRR(MhV"ﬂo“J'oX'll."-"o'C“'|“|.v"l'o
LXBAR(L ), XVAR(MI)
0003 [LEL L] N
0004 TFILIOISEY 10,10,412
000% .10 CALL BOXSNIY MM,1X)
0006 CALL BOXSNIX, MM, IX)
0007 GO 70 15
0008 12 CALL DISE(Y, NI ,PI,IX)
0009 CALL CISE(X Ml PI,IX)
0010 1S IF(IDIST) 16,16,18
0011 16 CALL BOXSNITEMP ,MI,IX)
0012 GO 70 19
0013 18 CALL DISTITEMP,MI,IX)
0014 19 CONTINUE
00193 00 70 I=1,M1
0016 00 20 J=1,PJ
o017 CUT=RR{J)
oole TR=BS(JISTEMPLL)
0019 YY=TReERR( J)OVIT,J)
0020 Yil,J)=0.0
0021 1FLYY.GF.CUT) YilyJ)=1.0
0022 YYsTReEPR(JIOX(1oJ)
0023 X(1,J)=0.0
0024 IFIYY.GE.CUT) X(lyJ)=1.0
0029 20 CONTINUE
0026 00 30 J=1,P)
0027 XRAR(J)I=XBAR(JIVOY(T,J)
0028 Jdshyey
0029 30 XBAR(JJI=XBAR(JJIIOR(1,4J)
0030 iR=0
0031 00 %0 J=l,N)
0032 00 40 K=1l,J
0033 IRe(Re]
00 % 40 R{IRISRIIR)OVEI K)OVIE,oJd)
00133 80 XVAR(J)sXVAR(J) OV (T, I)0RN(T,J)
0036 70 CONTINUE
001Y? RETURN



PORTRAN IV C COMPILER CATA 09-15-Nn 19193,01 PAGE 0002
0038 (L]

TOTAL MENCRY REQUIREMENTS 000730 BYTES



191.

FORTRAN IV C COMPILER EXANPL 09-1%-1 15:5%.03 PAGE 0001

0001

0002

0003
0004

0003

0006
0007

0008

0009
0010
ooll
0012
oo1il
0014
0015
o016
0017
0018
0019
0020
0021
0022
0023
0024
022%
0026
0027
0028
0029
00)0

P X232 3o alaXaXalaXa oo alal .l

SUBROUTINE EXAMPLINE ¢MJoBS ,ERR,TENP,RR, Y, IX, IDIST, IDISE, Xy XBAR, 88,
LFMS ,REL Ry XVAR)

L]} SAMPLE SIZE
L L] Ni) OF ITEMS IN THE TEST
8s A VECTOR OF BISERIAL CORRELATIONS FOR EACH ITEM
ERR A VECTOR OF STANDARD DEVIATYION OF ERRORS
TEnP A WORKING VECTOR
fR A VECTOR OF THRESHOLD CCNSTANTS FOR EACH ITEM
\ ] OATA MATRIX
Ix SEED RANDCM NUMBER
101ST OPTION FOR TRUE SCORE DISTRIARUTION
101SE OPTION FOR ERROR SCORE OISTRISBUTION
X WORRING VECTOR
XVAR SUM OF ITEM SCORE
(1} WORKING VECTOR
Fns WORKING MATRIX
REL POPULATION RELIABILITY
R WORKING VECTOR
XVAR SUM OF PRONUCTS OF PARALLEL LTEMS
SUBRPROGRAM CATA,MXCUT, ANOV,VEQOUT,015P,ROLB

DIMENSION XBAR(20MJ) (R(MIS(MJe1)/2)

DIMENSION BS(MJI) JERR(MI)TEMP(MI ) oRRIMI) JYINI,MI),BB(NI),

LEMS (P MI) X (MToMI)y XBARILDIGRUL) o XVARIMI)
100 FORMAT (1M1 ,200°3%),/1X,%3°,3X,*EXAMPLE RUNS® ¢ 3X,°3%,/,1X,20(%3*})
101 FORMAT (/7,1 %, *MSA=® ELe.hs2X, *MSB=? (EL6o6,2Xs*MSE=® \E16,6,2X,"Fut,

1E14.6,2X, *KR20=',FB8.5,2X, '"UNBIASED REL ESTC(ANOVA)=*,FB8,.5)
102 FORMAT(/,1X,*SAMPLE CISPFRSION : SATURATION COEFFs=?,F9.5,3X, ' HONIG

LENEITY COEFF=® ,F9,5, 5%, *HOM/SAT=*,F9,3)
103 FORMAT(/ ,LX,*GMEAN=® ,EL14.6)
104 FORPAT(/,1X,*VARIANCE OF ALPHA ESTINATE UNDER ANOVA=',F8.53,3X,

LYESTIMATE=",FB8.5)
105 FORMAT(/,1X,*VARTANCE F UNBIASED REL ESTIMATES UNDER ANOVA=*,F8,%

l"lo'ES' IMATE=? .F.-s’

WRITE(6,100)

CALL DATA(NMI , M) 8S ERR,RR,Y X TEMP,IX, IOIST,IDISE,XBAR Ry XVAR)

CALL MXOUT(Y M1, MJ,0,12,12HOATA MATRIX )

CALL ANOVIY, M1 MJ,FMSA,FMSB,FMSE,B8)

FFesFMSA/FNSE

AL=s).0-1.0/FF

ALL={2.00(M[~3.00)0AL)/(NI-1,0)

BRITE(O,1C1) FMSA,FMSB,FUSE,FF AL, ALL

CALL VEOUT(AB,M),26,28HSAMPLE FIXED EFFECTS VECTOR )

CALL DISPIY, M1, MJ,FNS,088)

CALL VFOUT(BB8,MJs20,20HSANPLE MEANS VECTOR )

SUM=0,.0

00 20 J=1,PJ)
20 SUM=SUMeBB(J)

SUP=SUN/PJ

WRITELG6,103) SUM

CALL MXOUTIFNS,MJ,MJ,0,24920HSANPLE OI SPERSION MATRIX)

CALL RCIB(FMS, ¥ ),SAT ,HOM)

ALPHASHON/SAT

MRITE(6,102) SAT,HOM,ALPHA

IF(n].LE.5) GO YO 90

VFe(2.00(N1-1,000(NJONI-NJ=2,00)7((N1=-5,0)0(NJ-1.0)0(NI-3.001002)



FORTRAN IV € COPPILER EXANPL c9-15-71 19899.0)
0031 VARA=VF® (| -REL ) *82

0032 VAREsVFe(1-AL)*92

0033 WRITE(6,104) VARA,VARE

0034 C25(N1-3,00/(N1-1.0)

0039 VARAeVARA®(C25C2

0036 VARESVARESC2eC2

0037 WRITE(6,105) VARA,VARE

0036 90 RETURN

0039 END

TOTAL MENCRY REQUIREMENTS 000A3S BYTES

PAGE 0002

.« ae
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FORTRAN IV G COMPILER ITENCO 09%-15-71 1519%.00 PAGE 0001

0001 SUBROUTINE 1TEMCOL X, YRXY,D1,02,COV)
C PURPOSE CALCULATE INTER-ITEM COVARIANCE FOR RELO2 BASED ON
c . TCHEBYCHEFF~HERMITE POL INOMIALS UNDER NORMAL OGIVE
C MOOEL
(4 X THRESHOLD CONST FOR FIRST [TEM
(28 Y THRESHOLD CONST FOR SECONO ITEM
(4 RXY INTER [TEM TETRACHORIC CORRELATION
c o1 NORMAL OENSLITY AT I=X
c 02 NORMAL OENSITY AT =Y
C cov OUTPUT COVAREANCE
C 200 FORMAT(1X, 13,E16.0)

0002 REALSE X1,X29Y1,Y2,RRR,D004RNsUsVeX3,Y3,0024F1

0003 UsX

0004 V=Y

0003 Xi=1.0

0006 X2eX

0007 Yl=1.0

0008 Y2sY

0009 F1=2.0

0010 RN=OLOG(FI)

ooll RRR=RXY

0012 DOD=RRR+ {USVSRRRORRR)/2.0

ool3 RRR=DLCG(RAR)

0014 00 10 1=3,20

0013 Fi=l

00te X3sysx2-(Fl-2.0)0X1

ooL? Al=X2

0018 X2=Xx3

o019 Y3eveY2-(F1-2.0)0V1

0020 YisYy2

oo21 v2=v3

0022 RN=RN+OLOG(F1)

0023 DD2=X30Y30(NEXPIF [SRAR-AN) }

0024 000=C00+0N2

. C CCv=000¢01602
. c WRITE(6,200) [,COV

0023 10 CONTINUE

0026 CCv=000¢D1¢02

0027 RETURN

0028 END

TOTAL MEMGRY REQUIRENENTS 000386 SYTES
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PAGE 0001

FORTRAN [V C COMPILER PARALL 09-1%1N 1919%.07
0001 SUBROUTINE PARALLIR, XBAR,MT,MJ yNSAN, XVAR,FC,FERR,COR)
C PURPOSE CALCULATE TEST VARIANCE AND COVARIANCE BY PARALLEL
c METHOO
C R INPUT INTER ITEM SUM OF PRODUCTS
(4 XBAR INPUT SUM OF [TEM SCORES
C ni SAMPLE SIZE
[ rd NO OF [TEMS IN THE TEST
(4 hSAN NO OF STMULATION RUNS
(< XVAR SUM OF PRODUCTS OF PARALLEL ITENS
c FC OUTPUT TRUE SCORE VARIANCE
c FERR OUTPUT ERROR SCORE VARIANCE
(4 con OUTPUT RELIABILITY BETWEEN PARALLEL TESTS
(4

0002
0003

0004
0009
0006
0007
0008
0009
0010
ool1
0012
o013
0014
0013
0016
0017
ools
0019
0020
0021
0022
0023
0024
0023
0026
0027
0028
0029
0030
0031
0032
0033
0034
0033

100

14

1%

20

OIMENSION R(MJIS(MIeL)/2) o XBAR(2¢MI)
DIMENSION R{1),XBAR(L), XVARINJ)
FORMAT (1ML ,60(°3°) /41X, 3% ,2X, "ESTIMATION OF POPULAT ION

PAR AMETERS

1 BY PARALLEL HEYNOD'.2!.'3';/.1!.60('3').I.ll.’HEAN"IOX.EIQ.O.I.

21X, *VARTANCE® y12X,E1 4.6,/ 1Xs* TRUE VAR [ANCE®

o TX EL4 .69 /741X, *ERROR

BVAIIANCE'.6!.616.6}/'IX;‘RELIABILIYV'.linF’.bololl.'Kl20°|l7l.

4F9.6,/,1%X, *NO OF CASES®,11X,18)

ANA= (NSAMeLIOMN]

DFN=NNN-1.0

FC=0.0

FVs=0,0

f0=0.0

IR=0

00 15 J=1,FJ

00 14 K=1,J

IR=lRel
REIRI=(R(IRI~(XBAR (K )OXBAR (J) ) /NNN) /OFN
FVsFVeR{IR)

CONT INVE

FO=FD*R{TR)

Ji=Pie)
KVIR(J)-(XVA!(JD-‘X"l'J"lOAﬂlJJ’Iﬂ“ﬂl’/D'ﬂ
FCsFCoXVAR(Y)

CONT INUE

FC=2.0¢(FV-FO)*FC

FV=2,0%(FV-FD)*FD
F20=(PJe(1.0-FD/FV))/INJ=1.0)

FMEAN=0.0

DO 20 J=1,FJ

XBAR(J)=XBAR(J)/NNN

FREANSFMEANSXBARLJ)

COR=FC/FY

FERRsSFV-FC

MRITE(6,100) FMEAN,FV,FC,FERR, COR, F20, NNN
CALL VEOUT(XBAR,MJ,12,12HMEAN VECTOR )
CALL VEQUT (XVAR, M) ,28,28HP ARALLEL ITEN COVARJANCES )
CALL MXOUT(RoMJIoRJ,1032,32MMITHIN TEST OISPERSION MATRIX
RETURN

({1

TOTAL MEMCRY REQUIRERENTS CCO692 OYTES
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FORTRAN IV G COMPILER POPR 019171 1915%.08 PAGE 0001

0001 SUI!OUY;N! POPRINJI s8S,DIF RREL) ALPHA,FHT, R, PP, ERR, TENP, TV AR,
1EVAR,DIS)

c PURPCSE PERFORMS BASIC COMPUTATIONS FOR RELO2 POPULATICN
(4 PARAMET ERS

C nJ NO OF [TENS

c 8s A VECTOR OF BISER IAL CORRELATIONS

C OIF - A VECTOR OF ITEM OIFFICULTY

C R INTER 1TEM CORRELATION MATRIX

c REL POPULAT ION RELIABILITY

(4 ALPHA POPULAT ION ALPHA COEFFICIENT

c Eny FORMAY FOR INPUT VECTORS

c KRR A VECTOR OF THRESHNLD CONSTANTS FOR EACH ITEN
c L4 A VECTOR OF ITEM CIFFICULTY ,REPLACED BY S.D.
C ERR A VECTOR OF STANOARD DEVIATION OF ERRORS

4 TENP A WORKING VECTOR

C TVAR POPULATION TRUE VARIANCE UNODER N.O. MODEL

(4 EVAR POPULAT ION ERROR VARIANCE UNDER N.O.

C 01s OUTPUT INTER JTEM DISPERSION MATRIX

0002 DIMENS ION BS{MJ),DIF (NJ),RIMI,MJ) ,FMT (200, RRIMI) PP MI)ERR(MI)D,
LTENP(NJ) 4OISINMJ,PI)

0003 100 FORMAT(/,/,1X,°33333 °,13,°TH ITEN DIFFICULTY IS LESS THAN 0.0 OR
1 GREATER THAN 1.0 DIFs?,E14,.5)

0004 101 FORMAT(/,1X,'POPULAT [ON PARAMETERS UNNDER NORMAL OGIVE MOOEL *)

0003 102 FORPAT(LX, *MEAN=® ,EL4,6,3X,*VAR®? ,£14,.6,3X,*TRUE VAR=’,E14.643X,
1°ERROR VAR=* ,EL14.6,43X, REL=?4F7.5,3X,°KR20="4F7.5)

0006 103 FORMAT(/ 1 X, *ITEM PARAMETERS ®,/,1X,* I[TEM®,2X,°81S COR’,10X, *OIFFIC
LULTY®, TX, *VARTANCE® 49X, * THRES CONS,.® 06X ,°01SC. POWER® 16X,*OIFF, IN
20EXx*)

0007 104 FORMAT(L1X,13,1Xs6(EL14.6,3X))

0008 105 FORMAT (20A4)

0009 106 FORMAT(/,1X,*FORMAT FOR ITEM PARAMETERS®,5X,20A4)

0010 REAC(S,105) (FMT([),[=1,20)

001l MRITE(6,106) (FMT(I),[=1,20)

0012 READ(S FMT) (DIF(I)yJd=1l,M))

ool3 READIS FMT) (BS(J)ed=loMJ)

0016 00 10 J=1,PJ

0013 00 10 I=1,.,J

0016 Ril,J)=BS(J)®BS{])

0017 10 R{Jy1)=R(1,J)

ools CALL MXOUT(R ,MJ,MJ,0,46 44NINTER [TEN TETRACHORIC CORRELATION MATR
11X )

0019 WRITE(6,103)

0020 00 25 J=1,rJ

o021 eis=8sSiJ)

0022 DIFF=sO1F(J)

0023 PP(J)=DIFFe{]1.0-0IFF)

Q024 ERR(J)=SORT(1.0-B1SeB1S)

0023 AA=BIS/ERR(Y)

0026 CALL NDTRI(DIFF RRR, TENP(J), IER)

0027 IFCIER,NE.0) WRITE(6,100) J,DIFF

0028 BRA=-PRA

0029 BB=RAR/(AACERR(J)})

0030 RR{J)=RRR

0031 29 WRITE(6,106) J,01S,0IFF,PPIJ),RR(J) AAN,00

0032 00 31 J=1,PJ



196.

PORIRAN LV G CORPILER POPR 09-15-N1 19:93,.00 PAGE 0002
0033 00 30 I=1,J

0034 RXY=BSLI)0BS(J)

0033 CALL ITEMCOIRRITIDI ARR(JI) qRXY, TENP (T ) TEWP (J),D18( 1,J))
0036 OIS{Je1)=DIS(1,J)

00137 30 CONTINUE

0038 31 CONTINUE

0039 SUN=0,.0

0040 C0v=0.0

0041 $8$=0,0

0042 REL=0.0

0043 00 33 J=1,M)

Q046 00 32 K=1,J

0045 32 RELSRELSDISIK,J)

0046 SUP=SUPeDLF(YS)

0067 TENP(J)=01S(J,d)

0048 COVeCOVeTENP(J)

0049 CIS(J,yJ)=PP(J)

0030 $SS=SSSePP ()

0031 33 CONTINUE

0092 TVAR=2,0¢( REL~-COV) +SSS

0053 REL=REL®*2-COYV

00%4 REL=REL/ TVAR

00%3 ALPHA= (B8 (] ,0-SSS/TVAR) )/ (NJ~1.0)

0056 SSSeTVAROREL

0037 EVAR=TVAR-SSS

00358 WRITE(6,101)

00%9 WRITE(6,102) SUM,TVAR,SSS,EVARREL yALPHA

0060 CALL VEOUT(TEMP ,MJ,208,20HPARALLEL ITEM COVARIANCES )
0061 CALL MXOUT(DIS MJoPMI90920,20HINTER [TEM DI SPERSION NATRIX)
0062 D0 S1 J=1,r)

0063 PP(JI=SQRTIPPII))

0064 00 50 K=],J

0063 RIJyKI=DISLIK)/ZIPPIIIOPPIK))

0066 80 RiK,J)=R(J,K)

0067 51 CONTINUE

0068 CALL MXOUT(R NI MJ,0,32,32HINTER ITEN CORRELATION MATRIX )
0069 RETURN

0070 END

TOTAL MEMCRY REQUIRENMENTS OOCODAE SYTES
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FORTRAN [V G COMNPILER o1sy 09-15-71 19:93%.13 PAGE 0001
o001 SUBROUTINE DISTI(TENP ,mL,IX)
c PURPCSE CREATE STANDARD RANOOM TRUE SCORE MATRIX FOR RELO2
c TENP OUTPUT TRUF SCORE VECTOR
c L1 SAMPLE SIZE. LENGTH OF TEMNP
c x SEED ODD INTEGER RANDCM NUNMBER
CooooTHIS EXAMPLE PRODUCES EXPONENTIAL TRUE OR LATENT SCORES
0002 OIMENSICK TEMP(NMI)
0003 CALL VECRAN(TEMP, NI, IX)
0004 CO 10 I=1,M]
0005 10 TENP(I)=-ALCGITENP(T1))-1.0
0006 RETURN
0007 END

TOTAL MEMCRY REQUIRENMENTS 000104 BYTES



198.

FORTRAN [V C CONPILER ot1se 09-15%-TM 19195.1)3 PAGE 0001
0001 SUBROUTINE DISE(Y, ML sRJ,IX)
C PURPOSE CREATE STANDARD RAMOOM ERROR MATRIX ¥ FOR RELO2
(4 v OUTPUT MATRIX
c " NO OF ROWS OF Y
¢ L NO OF CCLS OF ¥
c X SEED 00D INTEGER RANDOM NUMBER
0002 OIMENSION YINI,NJ)
0003 CALL VECRANIY,(MI®NJ),IX)
c $SQR=SQRT(12.0)
0004 $QRsSQRT (12.0)
0003 00 20 J=1,PrJ
0006 00 10 I=1,MI
0007 10 YUloJ)=(Y((,J)-0.5)0SQR
Ceo06THIS EXAMPLE PRODUCES UNIFORM ERROR SCORES
0000 20 CONT INUE
0009 RETURN
o010 END

TOTAL MEMCRY REQUIREMENTS 000264 BYTES
15195,14 14,494 RC=0



SUBROUTINE PACKAGE RELOO

199.
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PORTRAN IV G COPPILER ANOV 09-19-71 1919%.18 PAGE 0001

0001 SUBROUTINE ANOVIY Ml o#J,FMSA,FNS B, FNSE,B8)
(4 PURPOSE CALCULATE MEAN SQUARES AND PART-TSEST MEANS FOR RELOL
c 4 INPUT DATA MATRIX
(4 i SAMPLE SIIE
(4 nJ NO OF PARTS
4 FHSA MEAN SQUARES FOR SUBJECT EFFECTS
(4 FNnSe MEAN SQUARES FOR ITEM EFFECTS
c FNSE MEAN SQUARES FOR ERRORS
c 88 OUTPUT ITEN MEAN VECTOR

0002 DINENSION Y(MI,MJ),BB(NJ)

0003 $120.0

2004 $2=0.0

0009 $3=0.0

0006 $4=0.0

0007 00 15 [=1,M1

0008 FNSA=0.0

0009 €0 12 J=1,M™)

0010 12 FNSA=FNSAeY(l,J)

ool S4=S4eFNSA

0012 15 S2=S2¢4FNSA®e2

0013 FNSB=S4/ INTONY)

0014 $2=8S2/0J

00193 Sen(S4eS4)/INIoNy)

0016 00 30 J=1,PrJ

0017 FNSA=0.0

o018 00 23 =1,m1

0019 S1=Slev(l,J)082

0020 25 FNSAsFPSAeY(1,J)

o021 BB J)=FMSA/MI-FNSB

0022 S3=S3eFNSASE2

0023 30 CONTINUE

0024 $3=53/m1

0023 FMSA=(S2-5S4)/(MI~-1.0)

0026 FNSB=(S3-S4)/(MJ-1.0)

0027 FRSEs(S1-52-5S3¢S4)/((N1~-1.000(NJ-1.0))

0026 RE TURN

0029 END

TOTAL WMENCRY REQUIREMENTS 0004CA BYTES




FORTRAN 1V G CONPILER 80xsSN 09-13%-T1 19395.19
o001 SUBROUTINE BOXSN(Z N,iX)
PURPOSE GENERATE STANCARD RANOCH NORMAL VECTOR
4 MUTPUT VECTOR OF RANODOMN NUMBERS
N LENGTH OF 2
X SEED OOC INTEGER RANDCOM NUMBER

0014

acOOOnnd

SUBPROGRANMS VECRAN
METHOD BOX=MULLER, ANN. MATH. STAT. 19359

20

OINENSION Z(28NN) NN=(Nel)/2
OIMENSICN 2(1)
PAI=6,28110%307
NNs(Ne*1)/2

CALL VECRANIZ,{(NN®2),IX)
00 20 1=1,hN

AX=PALISZ(1)

flsloNN
YYsSQRT(~-2.00AL0GI2II1)))
201 )sYYeCOS(XX)

LU )mYYOSINIXX)

CONT INUE

RETURN

END

TOTAL MEMCRY REQUIREMENTS 00027E€ BYTES

PAGE 000L



202.

FORTRAN IV G COMPILER CHIPRD 09-15-T1 19153, 20 PAGE 0001
oool FUNCTION CHIPRBICHI,NDF)
(4 PURPOSE CALCULATE PROBABILITY OF CHI-SCUARE VARIATE EXCEEDING
C INPUT VALUE
C CHI INPUT VALUE
C NOF DEGREES OF FREEDOM
C PROGRAMMER Do FLATHMAN
0002 EXTERNAL ERF,SQRT
0003 REAL NORPAL
0004 INTEGER F
0003 LOGICAL MIGX,EVEN
0006 NORMAL (X)=0.5¢(1.0¢ERF(0.T0710680X))
([ J ) F=NOF
0008 X=CHI
0009 CHIPRB=1.0
0010 IF(X.LE.O..OR.F.LT.1 ) RETURN
oo1ll AsQ,.5%)
0012 81GX=A.GT,10.
0013 - EVEN={2¢(F/2)-F).EQ.O
0014 IFIEVEN.OR.(F.GT.2.AND. .NOT.B1GX)) Y=EXP(-A)
0015 IFLEVEN) S=v
o016 IF({ .NOT.EVEN) S=2,0®AORMAL (~SQRT (X))
0017 CHIPRB=S
oole IF(F.LE.2) RETURN
0019 X=s0,%5¢(F-1.0)
0020 IFIEVEN) 1=1.0
o021 IF(.NOT.EVEN) 2=0.9
0022 IF{.NOT.81IGX) GO 7O 2
0023 IFLEVEN) E=0.
0024 IF(.NOT.EVEN) E=0.5723649
0023 C=ALOG(A)
0026 EsALCG(Z)¢E
0027 SsEXP(Cel-A-E) oS
0020 l=lel.0
0029 IF(2.LE.X) GO TO L
0030 CHIPRB=S
0031 RETURN
0032 IF(EVEN) E=1.0
0033 IF( .NOT.EVEN) E=0,5641896/30RT(A)
0036 Ce=0.
0033 EsEoa/l
0036 CsCe+E
0037 isl¢1.0
0038 IFt2.LE.X) GO YO 3
0039 CHIPRB=COY S
0040 RETURN
0941 ENOD

TOTAL MEACRY REQUIRENENTS 00035E€ BYTES



PORTRAN [V C COMPILER

ooo!

0002
0003
0004

0003
0006
0007
00068
0009
0010
00l1l
0012
0013
0014
0013
0016
o017
0018
0019
0020
002}
0022
0023
0024

0023
0026

(2 X XalaXaXaXaXaX o X o)

10
15

60

(1]
70
80

COUNT 09-195-71 1919%.23

SUBROUTINE COUNTIX ,LX,NV,XMIN, TINT L8, FREQ, XBAR, XVAR}
PURPOSE
X

Lx
NY
XMIN
TINT
Le
FREQ
XBAR
XVAR
DIMENSION X(L

CALCULATE FREQUENCY DISTR IBUT IONS
INPUT DATA MATRIX

N0 OF OBSERVATIONS

NO OF VARIABLES

INPUT MINIMUM VALUE ASSUMED

INPUT CLASS INTERVAL

INPUT NO OF CLASS INTERVALS
OUTPUT FREQUENCY DISTRIBUTIONS
OUTPUT MEAN VECTOR

OUTPUT VARIACE VECTOR

XoNV) oFREQILB (NV) ¢ XBAR(NV) s XVAR(NV)

XMAX=XMINOTINTOLE
100 FORMAT (7,1 Xe " MAXTMUME® (EL4.693X, ' MINUMUNS® (E14.6,3X, *CLASS INTERVA

ILs*,E14,08)
MRITE(6,100)
00 15 J=l,nV
€O 10 I=1,L8
FREQ(1,J)=0.0
XBAR{J)=0.0
XVAR({J)=0.0
DC 80 J=1l,NV
00 70 I=1,LX
XBAR(J)=XBAR(
XVAR{J)=XVAR(
XXL=XMIN

00 60 K=1,L8
XXUsXXLeTINT
IFIXt14J).CE.
XXL=XXU

60 YO 70
FREQIK yJ)=FRE
CONT INUE
CONTINUE

CALL VARXXILX

CALL MXOUT (FREQ,LB,NV,0¢ 244 26HFREQUENCY DISTRISUTIONS )

RETURN
END

XMAXo XMIN, TINT

Jrext(i,J)
Jiex(1oJd)oX(l,d)

XXLANDX(14J) LT XXU) GO TO 68

Q(KeJ)e*l.0

s NV, XBAR, XVAR)

TOTAL MEMCRY REQUIREMENTS 00055A BYTES

203.
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FORTRAN [V G COMPILER CIsCRP 0%-15-71 1915%.26 PAGE 0001
0001 SUBROUTINE DISCRP(N, XSAR,XVAR,LAB, NUMHOL T ITLED
C  PURPOSE OUTPUT DISCRIPTIVE TABLE
c " ND OF VARIABLES
. (4 ABAR MEAN VECTORS
c XVAR VARIANCES
3 LA LABELS
c NUNHOL NO OF CHARACTERS IN TITLE(MALTIPLE OF &)
c TITLE TITLE OF THE TABLE
0002 100 FORMAT(1HO,*DESCRIPTIVE STATISTICS FOR *,20A4)
0003 101 FORMAT (1H0,20X o "MEAN® ,15X s | ® 910X, *VARTANCE ¢4/ o1 X0 11Xo ‘OBSERVED®y
17X, EXPECTED® s 5Xs® 17 45X *OBSERVED® ,8X, *EXPECTED® )
0004 102 FORPAT(1X, A8, L1X,2E14.6,2X¢° 1 +3Xy2€14.6)
0003 DIMENSTON XBARIN) ¢ XVAR(N) ,LABIN) ,TITLE(20)
0006 REALSS LAS
0007 ANe (NUPHCL+3)/4
0008 WRITE(6,10C) (TITLE(J) ¢J=1 NN}
0009 WRITE(6,101)
0010 00 10 I=l,N
ooll IisleN
0012 WRITE(6,102) LABIE), XBARIT D, XBARLIT) o XVARE 1), XVAR(ILD
0013 10 CCNTVINUE
0014 RE TURN
0013 €ND

TOTAL WEMCRY REQUIREMENTS 0CO368 BYTES



205.

PORTRAN IV C COWPILER cise 09-15%N 191399.26 PAGE 0001
0001 SUBROUT INE DISPLY, NI RIS XBAR)

¢ PURPOSE CALCULATE SAMPLE CISPERSION MATRIX AND MEAN VECTOR

c 4 INPUT DATA MATRIX

c "l NO OF RCWS OF Y

(+ nJ NOD OF CCLS OF V¥

(- S OUTPUT SAMPLE DISPERSION MATRIX

c XBAR SAMPLE MEAN VECTOR

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0013
0016
0017
0018
o019
0020
o021

10
13

20
23
30

43
S0

60

OIMENSION YIMI, M) oSINI NI} XBARINI)
CO 13 J=i, 0

00 10 K=1,PJ

Si{K,J)=0.0

XBAR(J)=0.0

00 30 1=1,01

00 25 J=l,PJ

€O 20 K=1,J

SR, J) =Sk IIeV T KISYLToJ)
XBAR(J)=XBAR( IOV L,y J)

CONT INUE

00 %0 J=1,VJ

00 4% K=1,J

SIKeJ)={S(KeJ)=IXBAR (K)SXBAR(ID) /NIN/INLI=-1.0)
S(JeK)=S(K,yJ)

CONT INVE

00 60 J=1,MJ

XBAR{J)=XBAR(J) /NI

RETURN

END

TOTAL MEMCRY REQUIREMENTS OCO4FE BYTES



206.

FORTRAN [V G COMPILER FISHER 09-13%-71 19:39%.28 PAGE 0001

0001

0003
0004

0007
0008
0009
0010
0011l
0012
0013
0014
00l
0016
0017
0018
0019
0020

(4
c
c
c

FUNCTION F ISHER(DFN,DFN,FR)
PURPOSE  CALCULATE PROBABILITY LEVEL WITH GIVEN O.F. AND F-RATIO

OFN INPUT NUMERATOR D.F.
OFN INPUT DENNMINATOR D.F.
FR INPUT F-RATIO

$00 FORMAT(/,/,1HO,°ERROR IN FUNCTION FISHERIAN INPUT PARANETER 1S INV
1ALIDY)
101 FORMAT(LX,*INPUT F=RATIO IS LESS THAN 0.0 F=*,E16.8)
102 FORMAT{1X, *"NUMERATOR D.F, IS LESS THAN 1,0 CR GREATER THAN 200,000
1 DF1=*,E16.8)
103 FORMAT (1 X, 'OENOMINATCR D.F.IS LESS THAN 1.0 OR GREATER THAN 200,00
1 OF2=°,€16,.8)
104 FORMAT (110, *ERROR QUTPUT PROBABILITY (S INVALID OUE TO COMPUTATION
1AL DIFFICULTY /,1X, *PROBABILITY IS SET AS TO -1,.0E75?)
105 FORMAT(1HO,"ERROR IN CALULATING GAMMA FUNCTION®)
AsQOFP/2.0
8=DFN/2.0
FB=( (OFMeFR)/DFN)/ (1 .04 (OFNeFR ) /DFN)
CALL BDTR(FB,A,B8,PRO,D, 1ER)
IF(IER,EQ.-2) WRITE(6,100)
IF(FR.LT.0.0) WRITE(S,101) FR
IF(DFA.LT.1.0.0R.DFN.GT.200000) WRITE(G6,102) DFN
IF(DFN.LY.1.0.0R.DOFN.GT,.200000) WRITE(6,103) DFN
IFUIER.EQ.2) WRITE(6,104)
JFCIER.EQ.~1 .OR.IER.EQ.1) WRITE(6,103)
FISHER=]1,0-PRO
RETURN
ENO

TOTAL MEMCRY REQUIREMENTS 0004F0 BYTES
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PORTRAN [V G COMPILER FITTES 0197 19:19%.30 PAGE 0001

0001 SUBROUTINE FITTESIXyNyNT)
[ 4 PURPOSE PERFORMS CHI-SQUARE GOODOMESS OF FIV TEST
[4 X INPUT FREQUNCY MATR IX
c COL-1 EXPECTED FREQUENCIES
c COL-2 OBSERVED FREQUENCIES
(4 N NO OF CLASS INTERVALS OR NO OF THE ROW OF X
(4 NSAN SAMPLE SIZE
c SUBPROGRAN CHIPRS

0002 CIMENSION X(N,2)

0003 100 FORMAT(/ o1 X,°CHI-SQ GOODNESS OF FIT TESTI®,3X,*CHIn®,EL4,6, IX, "NOF

1, 15,3X,°PROB=",F 8. 4)

0004 CHI=0,.0

0009 NOF=0

0006 %T=0.0

0007 ¥1=0.0

0008 is]

0009 12 XX=0,0

0010 Y¥=0,0

ooll 1% YYsYYeX{(,2)

0012 XxmxXXeX{T1,1)

0013 1F(XX.GE.5.0) GO TO 16

0016 I=fe}
[ 4 IFLI.LE.N) GO TO 13

0013 GO T0 13

ools 16 KOF=NOFel

0017 CHISCHI+((XX-YY)882) /XX

0018 XT=XToXR

0019 YiavTevY

0020 XR=NT-XT

0021 I=fe}

0022 YRsNT=-YT
Cc IF(XR.GE.10.0.AND. 1.LE.N) GO TO 12

0023 IF(XR.GE.10.0) GO YO 12

0024 IF(XR.GY.0.0) GO YO 20

0029 ANOF=sNOF~1

0026 GO0 10 295

0027 20 CHIsCHIe((XR~YR)®92) /%R

0028 25 PRO=CHIPRB(CHI NDF)

0029 MRITE(6,10C) CHI,NDF,PRO

0030 RETURN

0031 END

TOTAL NENCRY REQUIRENENTS 0003CC BVYTES




208.
FORTRAN IV G CONPILER 214 09-1%M 1939%.31 PAGE 0001
o001 FUNCTION FST(DF1,0F2,P,PRE)
C PURPOSE CALCULATE F STATISTICS WHEN DEGREES UF FREEDOM AND
. c PROBABILITY ARE GIVEN
c OF1 DEGREES OF FREEOON FOR NUMERATOR
OF2 OEGREES OF FREEDOM FOR DENOMINATOR
Cc L4 PROBABILITY LEVEL
(4 PRE PRECISION LEVEL FOR OUTPUT F RATIO
c SUBPRNGRAM  FISHER
0002 IF (DF1.LE.0.,0.0OR.OF2.LE.0.0.0R.P.LE.O0.O0) GO TO 999
0003 100 FORNAT (1MO,°*OEGREES OF FREEDOM OR PROBABILITY (S LESS OR EQUAL
1TO 2ERO RETURNS TO MAIN WITH FST=0.0°)
0004 X1=1.0
0003 X2=0.0
0006 10 F=(X1eX21/2.0
0007 FR=DF2¢( (1.0-F)/(DFL9F))
0008 PRO=F [SHER(OF1,0F2,FR)
0009 ER=P-PRO
C 101 FORMAT(1X,4F12.6)
(A WRITE(6,101) F,oFR,PRC,ER
00to IF(ABSIER) .LE.PRE) GO 10 99
0011 IF (P.LY.PRO) XisF
0012 IF(P.GT.PRC) X2=F
0013 GO 70 10
00ls 99 FST=FR
0013 RETURN
0016 999 WRITE(S,100)
o017 F$7=0.0
0018 RETURN
o019 END

TOTAL NEMCRY REQUIRENENTS 000330 OVTES



FORTRAN [V C CONPILER nxourv 09-19-71 19:99.3%
0001 SUBROUTINE MXOUT (A NoMyMS o NUMMCL (TITLE)
C PURPOSE OUTPUTS A MATRIX
(4 A INPUT MATRIX
c . N NO OF ROWS IN A
(4 ] NO OF COLS IN A
c ns OPTION FOR STORAGE MODE
(4 0 GENERAL
[4 1 SYMETRIC
[ 4 2 DIAGONAL
(4 NUMHOL NO OF CHARACTERS OF TITLE(MULTIPLE OF &)
Cc TITLE TITLE OF THE VECTOR IN A FORMAT
0002 OIMEASION A{1),8(8),TITLE(20)
0003 100 FORMAT (1H0,20A4)
0004 101 FORMAT(/,5X,8(3X,A2,13,6X))
0009 102 FORMAT (1 X, 'R=*,13,EL15.6,TELO.6)
0006 CATA COL/*C-%/
0007 AN=({NUNMOL +3)/4
0008 WRITE(6,100) (TITLE(J) oJ=1,NN)
0009 LINS=N2
0010 Jel
0011 LEND=N
0012 NEND=8
0013 10 LSIRT=]
001ls 20 CONTINUE
0019 JNT=sJeNEND-]
0016 IFIINT.GT. M) INT=N
0017 MRITE(6,101) ({COL,JCURD yJCUR®J 4 INT)
0018 LYENND=LSTRTLEND-]
0019 00 80 L=LSTRT,LTEND
0020 00 55 K=l ,NEND
0021 KKK
0022 JIsJoeK-1
0023 TFIMS=1) 41,42,4%
0024 41 IRX=NS(JT-1)oL
002% GO TO 47
0026 42 TF(L=JT)43,44,44
0027 43 IRX=Le(JTOYT-4T)/2
0028 GO TO &7
0029 44 IRXsJTo(LOL~-L)/2
0030 GO T0O o7
0031 4% IRX=0
0032 TFIL=JT) 47,406,407
0033 46 IRXsL
0034 AT 1JINT=IRX
00)3% 8(K)=0.0
0036 IF(IJNT) 50,50,49
0037 49 B(K)I=A(IJINT)
0038 %0 CONT INUE
0039 IFLJT=-M) 59,060,060
0040 5% CONTINUE
0041 ' 60 MRITE(6,102) Lo (81N, M=) kK)
0042 IFin-L) 0%5,0%,00
0043 00 CONTINUE
006 LSTAT=LSTRTSLEND
00493 G0 Y0 20

209.

PAGE 0001



FORTRAN

0046
0047
0048
0049
0030

Iv ¢ COmpILER nrout 09%-15-7 19:93.39

63 IF(JT-N) 9C,93,93
90 J=JTe}

GO0 70 10
95 RETURN

END

TOTAL NENCRY REQUIREMENTS 0005A0 SYTES

210.
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FORTRAN IV € COMPILER PLOY 09-15-7N1 15:93.37 PAGE 0001

0002
0003
0004

0003
0006
0007
0008
0009
0010

o011l
0012
0013
0016
0013
oole
0017
ootls
0019
0020
o021
0022
0023
0024
0023
0026
0027
0020
0029

0031
0032
0033
003
0033
0036
0037
0038
0039
0040

0041

0042
0043
0044
0043
0046

X XaXaXa¥aY ol

SUBROUTINE PLOT (X Ao NyNSAN)
PURPOSE GIVES PLCY FOR RELOL
X INPUT MATRIX OF RELATIVE FREQUENCIES(E)
COL-1 EXPECTED
COL-2 OBSERVED

A WORKING VECTOR
N NO OF CLASSES(LINITED TO 24,36 OR 48)
NSAM SAMPLE SIZE

OIMEASION X(Ny2)oA(N),SIG(4)
CATA SIG/%.%, 000,000 ,0 oy
100 FORMAT (1M1 ,36(°%8°),/,1X,°S PLOT OF FREQUENCY DISTRIBUTION B°,/,1X,
134(°%*))
101 FORMAT (4 X, * FREQUCNCY(S)*)
102 FORMAT(LIX,F7.3,°~)%,24(" *eAl,* N
103 FORMAT(OX,*]°,24(° 9,A1,° )}
104 FORMAT (X, *REL®s3X,% | ,26(°____1°))
105 FORMAT (X, 12(FT.1,3X),FT.1)
106 FORMAT(/,1Xo*NOTE2® ,3X,°(.) EXPECTED FREQ: (®) OBSERVED FREQ: ()
LOVERLAPP ING POINT?)
107 FORPAT(IX,FT.3,%=]%,36(" *,AL,* *))
108 FORPAT(IX,*|?,36(° *,AL,* *))
109 FORMAT{3IX, *REL*y3A,°|*,36(°==]"*))
110 FORPAT(4X,13(FT7.1,2X))
111 FORMATILX,FT.3,%=]¢,48(A1,* *))
112 FORMAT(9X,*]*,48(AL,* *))
113 FORMAT(3X, *REL®,3X,°|*,48(*=]"))
116 FORMAT(4X,12(FT.1y1X)oF7.1)
NNA=N-36
WRITE(6,100)
CALL FITTESIX,N,NSAN)
WRITE(6,101)
XMAX=0.0
00 10 I=1,N
€0 10 J=1,2
XLy d)=(X(1,J)¢100.0)/NSAM
TFIX(T,J).GT . XMAX) XMAX=X(,J}

10 CONTINUE
NNsXMAX/ 10.001-0
AUSNN®10.0
IFIXU.GT.100.0) XU=100.0
DELT=XU/%0.0
DELTK=NELT/2.0
XUs XUSCELTH
00 50 I=1,10
XM= XU-DELTH
00 40 J=1,9
AL=XU-0ELY
00 20 K=],N
AlK)I=SIGI4)

IEIXTE Ky1)GELXUOR X Kol)oLT.XL) GO TO 12
AlK)=SIG(])

12 IFIX( X92) GE.XUOR.X( Ky2).LTY.XL) GO TO 20
IF(A(R).€Q.S1GLL)IGO TO 16
AlK)=S$1GI2)

G0 70 20



FORTRAN IV C COMPILER mor 09-13-71 19155.37
0047 16 ALK)=S1G(3)

0048 20 CONTINUE

0049 XUsXL

0030 1F (NNN) ~25,30,33 _

0051 25 1F(J.EQ.1) WRITE(S,102) XM (ALK) (Kol ,N)
0052 1F(J.GTo1) WRITE(6,103) (A(K),KuloN)
0053 GO T0 40

0054 30 IF(J.EQ.1) WRITE(6,107) XM,(ALK) K=l oN)
0039 1F(J.GT.1) WAITE(6,108) (A(K),K=1,N)
0036 GO 10 40

0057 35 IF(J.EC.1) WRITE(6,111) XMy (ALK oKel,N)
0038 1F(J.GT.1) WRITE(6,112) (ALK} Ks1,N)
0039 40 CONTINUE

0060 S0 CONT INUE

0061 Al1)=-0.2

0062 OELT=0.1

0063 co 51 (=2,13

0064 81 A(1)eA(1-1)4DELT

0063 IF(NNND 52,34,36

0066 52 WRITE(6,104)

0067 WRITE(6,105) (AL1)y121,13)

0068 GO 10 S8

0069 54 WRITE(6,109)

0070 WRITE(6,110) (ACI),1=1,13)

0071 GO 10 58

0072 56 WRITE(6,113)

0073 WRITE(6,114)(ACT)y1o1,413)

0074 58 CONTINUE

007 WRITE(4,106)

0076 RETURN

0077 END

TOTAL NEMCRY REQUIREMENTS 000874 BYTES

212.



FORTRAN [V G CCHPILER PUNCH 09-1%-7 193995.42

0001 SUBROUTIRE PUNCHIFREC,LB NV}
C PURPCSE GIVES CARD OUTPUT FOR RELOL
C Le NO OF ROWS OF FREQ

. c Ny NO OF CCLS OF FREQ

0002 OINENSION FREQILB,NV)

0003 100 FORNMAT (12,3X,3F10.4)

0004 00 20 1=1,L8

0003 20 WRITE(7,10C) [,(FREQ(I,J),J=1,NV)

0006 RETURN

00C? ENOD

TOTAL MEMCRY REQUIRENMENTS 000200 BYTES

213.
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FORTRAN IV G COPPILER

0001
0002

c
(3
c
(4
(4
c
c
(4
c
c
c
c
c
c
(4
c
(1
4
c
c

214,

RELOIS 09%-15-71 19155.42 PAGE 0001

SUBROUTIANE RELDISi'ﬂS.NSlloOFA.DFEcFlEOoLIoRGt.YEHP.SIGQIOAI'RVAlo
LIPUNCH, IPLOT,1D,LAB)

CIMENSTCA FMSINSAM,2),FREQILS,2),TENPI 1300, XBAR( 20, XVAR( 2) +LABIS)

PURPOSE

FNS

NSAN
OFA
OFE
FREQ
L

REL
TEMP

£ 3 ()
XBAR, XVAR
TPUNCH
trLoY
10

LAS
REAL®S LAB

INVESTIGATE SAMPLING OISTRIBUTION OFf RELIABILLITY
ESTIMATES

AN INPUT MATRX

COL=1 RELIABILITY ESTIMATES

COL-2 RANK OF ABOVE

SAMPLE SILE

DEGREES OF FREEDOM OF NUMERRATOR

DEGREES OF FREEDOM FOR ERRORS

FREQUENCY TABLE

NO OF CLASS INTERVALS, NO OF RCWS OF FREQ
POPUL AT ION RELIABILITY

WORKING VECTOR

SIGNIFICANCE LEVEL FOR EACH TAIL

WORKING VECTORS

OPTION FOR CARD OUTPUT

OPTION FOR PLQOT

OPTION FOR ESTIMATION FORMULA

0-8IASED ALPHA FORMULA

1-KRISTOF CORRECTION, UNBIASED

LABELS

100 FOINA?(IMI.!O!'3".I.lX.'O'.Zl.'lELIADILlYV STUDY® 45X * D%/ 91Xy

12613°))

101 FORMAT(/,1%,*EXPECTED FREQUENCY OF RELIABILITY ESTIMATES BELOW -0.

12=1,E14.6)

102 FORMAT(/,1 %, *ESTIMATION 1S BASED ON ALPHA FORMULA(ANOVA,BIASEDI®)
103 FORMAT(/,1X, *ESTIMATION IS BASED ON KRISTOF CORRECTIONIANOVA,INBIA

1SEC)*)
WRITE(6,100)

IF(1C.EQ.0) GO TO 22

WRITE(6,10)
Cl=2,0/0FA

C2=(DFA-2.0)/0FA
CO 21 1=1,NSANM
21 FuS(1,1)2CLeC20FNS(I,1)

GO 70 23

22 WRITE(6,102)
Cl1=0.0
c2=1.0

23 CONTINUVE

FFs(1.0~-REL)/L.2
PLeF ISHER(CFA,OFE, FF)
FFanNSANS(1.0-PL)

WRITE(6,101)
fR=~-0,.2
DELT=1.2/L8
00 295 (=2,\8
RReRASDELT

FF

FFe{(1.0-RELISC2)/(1.0=RR)
PUsF ISHER(| (FA,OFE, FF)
FREQI(1-1) ¢1 ) =NSANS(PL-PU)

2% PLsPV



218.

FORTRAN IV C COMPILER RELOIS 09-15-7 19:19%.42 PAGE 0002
0032 FREQILA, L) =NSANSPL

0033 CALL CCUNTIFMS(L,o1)oNSAN,L,=0.2+DELT, LB, FREQIL,2)¢XBAR,XVAR)
0034 XO0AR(2)=REL

0033 IF(10.6Q.0) XBAR(2)==2,0/(DFA-2,.0)¢(OFASREL}/(OFA-2.0)

0036 XVAR(2)=((1.0~REL)#02)02,00(0F A062)¢{OFEDFA-2.0)

0037 XVAR(2)={C20C20XVAR(2) )/ (DFES(OF A~4.0)¢(DF A-2.0)%¢2)

0038 CALL DISCRP(1,XBARXVAR,LAB(&) 249241 RELIABILITY ESTINATES )
0039 CALL MXOUT(FREQLB,2+0,28, 28HCCHMPARISON OF RELIABILITY )
0040 IF(IPUNCF.EQ.1) CALL PUNCHIFREQ.LB,2)

0041 CALL SIGTESIFMS NSAM,0FA,DFE,S 1G/REL,10)

0042 IF(IPLOT.EQ.L) CALL FLOTUFREQ,TEMP LB, NSAN)

0043 RE TURN

0044 END

TOTAL WENCRY REQUIREMENTS 0CCE98 BYTES



216.

FORTRAN (Vv C CONPILER RO 09-1%-71 1933%.46 PAGE 0001
0001 SUBROUT INE ROZB(DIS, NJy SAT,HON)
C PuRPOSE CALCULATE SATURATION AND MOMOGENMELITY COEFFICIETS
. ¢ ots INPUT OISPERSION MATRIX
(4 "J SIZE OF 01
(4 SAT OUTPUT SATURATION COEFFICIENT
c HON OUTPUT HMOMOGENEITY COEFFICIENT
0002 OINENSION DIS(NI,0Y)
0003 TEVP=0.0
0004 HQON=0.0
0009 00 20 Je=1,PJ
0006 00 10 K=1,My
0007 10 TEMP=TENPeDIS(K,J)
0000 20 HCP=HOPIDIS(J0J)
0009 SAT=TENP/(HOMENJ)
0010 HOP=(TEMP-HON) / (HONS® (NI-1.0))
ool RETURN
0012 END

TOTAL NENCRY REQUIREMENTS 000208 BYTES



O-ALPHA COEFF ICIENT

217.

PAGE 0001

FORTRAN [V G COPPILER siGres 09-15-T1 1933%5.47
0001 SUBROUT INE SIGTES(FNS,NSAN,DFA ,OFE S 1GoREL ,10D)

C PURPOSE OBTAIN EMPRICAL CRITICAL POINTS OF RELIABILIRY

C. ESTINATES

c FNS AN INPUT MATRX

(1 COL-1 RELIABILITY ESTINATES

c COL-2 RANK OF ABOVE

c NSAM SAMPLE SIlE

(< OFA DEGREES OF FREEOOM OF NUMERRATOR

C OFE OEGREES OF FREEOOM FOR ERRORS

(4 SIG SIGNIFICANCE LEVEL FOR EACH TAIL

c 10 OPTION FOR ESTIMATION FORMULA

c

€

0004

0005

0006
0007
0000
0009
0010
0oll
oot2
0013
0014
0013
0016
0017
0018
0019
0020
0021
0022
0023
0024
00293
0026
0027
0028
0029
0030
0031
0032
0033
0034
0033
00%
0037

1-KRISTOF CORRECT {ON FOR BIASEONESS
DIMENSION FMSINSAM,2)

101 FORMAT(1X, *ALPHA ESTIPATES ¢ 3X,*SIGLEVEL{EACH) =® F5,3,3X, "DFAa’,
1F6.0,3X¢ *DFE=* yF8.0, 16X, *LOWER BOUND=*,F9,6,4X,* UPPER BOUNO=*,

2F9,.6)

102 FORMAT(LX,*NO OF CASES LESS THAN LOWER B=®,14,2X,F6.2,°'S ; GREATER
1 THAN UPPER B=* 14 ,2X9F6.2,°3* 12X, *LOVER BIEST )= ,F9.56,3X, ' UPPER B

1LEST)=*,F9,6)

103 FORMAT(1X, *ADJUSTEC ALPHA ESTIMATES® ,3X,°SIC LEVEL(EACH)=*,FS,3,
13X¢*OFA="*,F6.043X, 'OFEa® ;FB8.0, 6X,*LONER BOUND=® ,F9.6,4X, 'UPPER B0

20

2CUND=*,F9,6)
C2=(0FA-2.0)/0FA

IF(I0.EQ.0) C2#1.0
FU=FSTY(OFE,NFA,S1G,0.,0001)
FL=FST(CFA,DFE,S1G,0.0001)
FL=1.0/FL
BL=].0-FUs{1.0-REL)®C2
BU=1.0-FL®*(1.0-REL)®C2
IFLID.EQ.O0) WRITE(6,101) S1G,0FA ,OFE, 0L, 00
IF(I0.EQ.1) WRITE(6,103) SIG,DFA,DFE,BL,8V
nL=0

U0

CN 10 I=1,NSAM
IF(FMS(1,1).G7.8U) MU=MUe]
IFIFMSIT1).LT.BL) Mi=MLe)
EML=(ML®100.0) /NSAM
ENU={My®19C,0) /NSAM
AL=NSANSSIG+1.%50001

NU=NSAP® (]1.0-S1G)e+0, %0001

A LeNL-L

NUU=NUe L

FNL=0,0

FNLL=0.0

FNU=0.0

'NW-0.0

00 20 [=]1,NSANM
NID=FMS(1,2)+0.500001
IF(NID.EC.NL) FNLsFNS(T,1)
IFININ.EC.ALL) FNLL=FNS(T,1)
IFINIOD.EC.NUU) FNUU=FNS([,1)
IF(NID.EC.MU) FNUSFNSIT,1)
SU=(FhUeFNUU) /2.0
SUs{FNLOFNLL)Z2.0



FORTRAN [V € COMPILER steres 09-1%-T
0038 MRITECS, 102) ML (EML, MU, EMU,SL, SV
0039 RETURN

0040 END

TCTAL MEMORY REQUIREMENTS 000838 BYTES

1919%5.47

PAGE 0002



FORTRAN (V G CONPILER VARX X 09-13-71 1915%.49 PAGE 000L
oool SUBROUTINE VARXX(N(NV,XBAR, XVAR)
C PURPOSE CALUCULATE MEANS AND VARIANCE VECTORS
c N SANPLE SIZE
C NY NO OF VARTABLES
(4 XBAR INPUT SUM OF VARIABLES, REPLACZD BY MEANS
c XVAR INPUT SUM OF SQUARES, REPLACED BY VARIANCES
0002 OIMENSICN XBAR(NV) s XVAR(NY)
0003 CO 10 Je=l,hV
0004 XVAR (J)= (XVAR(J)=( XBARLII®XBAR(I D) /ND/(N-1.0)
0003 10 XBAR(JI)I=XBAR(II/N
0006 RETURN
0007 END

TOTAL MEMCAY REQUIREMENTS 000222 OYTES



220.

PORTRAN IV G COPPILER VECRAN 09-15-71 19:9%.9%0 PAGE 0001
0001 SUBROUTINE VECRANI Z,N,IX)
(4 PURPOSE COMPUTES N UNIFORM RANDOM NUMBERS BETWEEN 0.0 AND 1.0
c . USING SSP RANDU METHOO
(4 4 OUTPUT RANDCHM VECTOR
c N LENGTH OF 2
c 1§ SEED OND INTEGER RANDON NUNSER
(4 SUBPROGRANM NONE
0002 DIMENSION 2(N)
0003 00 20 Msl,h
0004 IXs1X®65539
0003 IFLIX) 5,606
0006 S [XsIXe21474083647¢)
0007 6 VYsiX
0008 YsY9,4656613E~9
0009 20 ZiN)=Y
0010 RETURN
0011l END

TOTAL MEMCRY REQUIREMENTS O0O0IFE BYTES



221,

FORTRAN TV C COMPILER veouy 09%-13%-71 19:5%.%0 PAGE 0001

0001 SUBROUTINE VEOUT (A, NyNUMH, TITLE)
c PURPQOSE PRINTS UP A VECTOR
(4 A INPUT VECTOR
c N LENGTH OF A
(4 NUMH NG OF CHARACTERS IN TITLE(MULTIPLE OF &)
[4 TITLE TITLE OF THE VECTOR

0002 OIPENSTION A(N) ,TITLE(20)

0003 100 FORMAT(/,1X,20A4)

0004 101 FORPAT(1X,10(5X,12,6X))

0009 102 FORMAT(1X,10E13.5)

0006 NN=(NUMH*3) /4

0007 WRITE(6,100) (TITLE(TI),(=]1,NN)

0008 N=N

0009 IFIN.GT.10) N=10

0010 WRITE(6,101) (L,l=1,yM)

0011 MRITE(6,102) (ALL),I=1,M)

0012 IF(N.LE.10) GO TO 30

0013 WRITE(6,101) (lol=lleN)

0014 WRITE(6,102) (ALI),I=11,N)

0013% 30 RETURN

0016 END

TOTAL NEMCRY REQUIREMENTS 000354 BYTES
191395.52 17,673 RC=0



222.

APPENDILX A.2

EXAMPLE OUTPUTS

RELOI : Votaw-JUreskog Example Data

RELO2 : Load-Novick |tem Parameters
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