
Homing Fidelity and Reproductive Rate for Migratory Populations

Qihua Huang1 and Mark A. Lewis2

Abstract: Short-term and long-term population growth rates can differ con-
siderably. While changes in growth rates can be driven by external factors,
we consider another source for changes in growth rate. That is, changes are
generated internally by gradual modification of population structure. Such a
modification of population structure may take many generations, particularly
when the populations are distributed spatially in heterogeneous environments.
Here the net reproductive rate R0 is not sufficient to characterize short-term
growth. Indeed, a population with net reproductive rate greater than one could
initially decline precipitously, or a population with net reproductive rate less
than one could initially grow substantially. Thus we augment the net reproduc-
tive rate with lower and upper bounds for the transient reproductive rate, Rl

and Ru. We apply these measures to the study of spatially structured salmon
populations and show the effect of variable homing fidelity on short-term and
long-term generational growth rates.
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1 Introduction

There is growing recognition that short-term population dynamics can differ considerably
from long-term asymptotic trajectories [7, 11, 17, 18, 38, 39]. Indeed, short-term declines
may precede long-term asymptotic growth and, conversely, short-term growth may transit
into long-term asymptotic declines [23, 30]. Such transient dynamics may simply reflect
changeable environmental conditions. However, they may also arise from an internal origin;
that is, gradual changes in the population structure.

What form do gradual changes in population structure take? When there are stages,
structured population theory [6, 8] tells us that the long-term asymptotic growth rate is
achieved only when the population structure has achieved a corresponding stable stage
distribution. This distribution may take many years to achieve, and when the distribution
in stages differs from this stable stage distribution, the growth rate also differs. There
may be more subtle changes in population structure at play if populations are distributed
spatially. For example, a population that initially finds itself in poor quality habitat could
decline and take many years before finding its way to high quality habitat where population
growth is possible. It is this second eventuality of spatial structure affecting growth rates
that we investigate in this paper.
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The issue of population growth is of general interest in theoretical and conservation
ecology. In many cases, population growth is calculated with matrix models. These are
discrete-time age- or stage- structured population models that use demographic rates to
project population dynamics [6]. The population dynamics of matrix models can be ana-
lyzed with either the long-term population growth rate λ1 or the net reproductive rate R0.
The population growth rate λ1 is given as the dominant eigenvalue of the projection ma-
trix, and the associated stable stage distribution is given by the corresponding nonnegative
right eigenvector. The net reproductive rate, R0, is interpreted as the number of offspring
produced by a typical individual over its lifetime [6]. It is the dominant eigenvalue of the
so-called next generation matrix, and the corresponding nonnegative right eigenvector rep-
resents the next generation stable stage distribution . Here λ1 = 1 if and only if R0 = 1.
The population grows when λ1 or R0 are greater than 1 and declines when λ1 or R0 are
less than 1.

It is worth mentioning that the traditional method of calculating R0 involves matrix
operations that can be computationally complicated, particularly as the number of com-
partments in the models increases. Fortunately, a novel method to calculate and analyze R0

directly from the life cycle graph of the matrix was developed in [5], and with this method,
it is straightforward to obtain an analytical formula for R0. This is true even for complex
life cycles, where the resulting expression can often be interpreted in terms of biologically
relevant fecundity pathways. An fully algebraic counterpart of the graph reduction method
was developed in [35], and various sets of sufficient and necessary conditions for R0 to be a
sum of contributions of fecundity pathways are given therein.

Most matrix population models do not consider spatial factors that affect population
dynamics, and they typically assume a closed population, without dispersal or migration.
This is unrealistic when individuals are found in subpopulations connected by dispersal or
migration. This is particularly relevant when demography varies spatially among different
habitats or subpopulations due to environmental heterogeneity. Hence it may be necessary
to classify individuals using geographical location as well as age or stage. Such spatial popu-
lation models describe a finite set of discrete local populations, coupled by the movement of
individuals. Such models are well documented in human demography where they are called
multiregional models [33, 34]. In this paper we refer to them as between-habitat patch mod-
els. A variety of scientific objectives motivate the development of these models, including
investigating advantages gained by dispersal, critical numbers of patches for survival, the
increase of species diversity in patchy environments, influence of dispersal upon evolutionary
stable strategies, and the stabilizing influence of dispersal [2, 9, 10, 14, 15, 20, 24, 27, 42].

Between-habitat patch models are particularly relevant to modeling migratory species.
Migratory species usually travel a long distance from one place to another for reproduction
or in search of new habitats. They may spend different life stages at different locations.
Thus migratory species need to be treated, not as single homogeneous population, but by
explicitly including heterogeneity and connectivity over space.

The goal of this study is to understand how the interplay between connectivity and
local population dynamics affects short-term and long-term growth rates for a migratory
population in a network of heterogeneous patches. Our focus is on migratory populations.
We use between-habitat patch models written in matrix form to describe the population
dynamics of migratory species where the life cycle of the subpopulations is described ex-
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plicitly in terms of stages, and the population connectivity is realized by the migrations
of individuals between breeding and non-breeding areas. Here the state variables are the
number of individuals in each relevant stage class at each location. The key issue addressed
by this study is how the strength of population connectivity, which is determined by homing
fidelity during migration, affects the persistence of migratory species.

As an example, we consider members of migratory Salmonidae family and examine
the effect of migration on population persistence. The homing fidelity during migration in
salmonids is variable [37]. Some migratory fish home with great fidelity while others show
a high rate of straying. This motivates us to consider the important question: how does the
degree of homing influence the population growth? We are interested in both long-term and
short-term growth rates. The long-term growth rate is measured by the net reproductive
rate R0. The analysis of the dependence R0 on the degree of homing fidelity indicates
that in the long run, the overall population has a high net reproductive rate when most
subpopulaitons show strong homing fidelity while a small fraction stray.

However, there is growing recognition that short-term, transient population dynamics
can differ in important ways from long-term dynamics. For the short-term dynamics, we are
interested in the growth rate over a single year or reproductive rate over a single generation.
To understand the range in one-year growth rates, we introduce two measures, λl and λu,
that yield the lowest and highest possible yearly growth rates, respectively. We also consider
dynamics over a single generation, a more relevant time scale for ecological considerations of
species at risk of extinction or posing an invasion threat. We introduce two new measures of
transient intergenerational growth, Rl and Ru, where Rl describes the lowest possible single
generation population growth rates resulting from the initial distribution with all individuals
in a poor quality patch, and Ru describes the highest single generation population growth
rates resulting from the initial distribution with all individuals in a good quality patch.

The effect of homing fidelity on population growth is subtle. Its effect should depend
upon whether individuals are initially in high quality or poor quality habitat. When indi-
viduals are in high quality habitat, homing fidelity will ensure that they remain in this good
habitat, and thus can help maintain strong population growth. When individuals are in
poor quality habitat, homing fidelity may prevent them from exploring and discovering the
good quality habitat, and can help maintain weak population growth. To help understand
these features mathematically, we investigate the influence of homing fidelity on R0, Rl and
Ru. The quantity Ru depends on the homing fidelity in a similar way to R0. That is, strong
homing fidelity can increase Ru, yielding the highest possible single generation population
growth rates as well as yielding a high net reproductive rate R0. However, The relationship
between Rl and the homing fidelity is opposite: homing fidelity can reduce Rl, reducing
the lowest single generation population growth rates. Thus, while homing fidelity may in-
crease the net reproductive rate, which is relevant to asymptotic time scales, it can reduce
the reproductive rate on short time scales, particularly when the population is distributed
spatially amongst good and poor quality patches in an unfavorable manner.

The rest of this introduction is organized as follows. First we briefly introduce matrix
models and show how to calculate R0 using a graph reduction method. Then we use a
simple dispersal model to show the difference between asymptotic dynamics and transient
dynamics in section 1.2. Finally we introduce the life cycle of salmonidae as a focal example
for demonstrating our approach.
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1.1 Calculation of the net reproductive rate

Matrix models are widely used for demographic analysis of stage-structured population
dynamics. A stage-structured matrix model is defined as

x(t+ 1) = Px(t), (1.1)

where x(t) = [x1(t), · · · , xn(t)]T is a vector of stages at time t and P is an n by n nonnega-
tive irreducible projection matrix describing transitions from one stage to another one [6].
Matrix models can also be represented as a life cycle graph where each node in the graph
corresponds to a stage and each arrow represents transitions from node to node (Figure 1).
The nonnegative matrix P is irreducible if its life cycle graph contains a path from every
node to every other node. Biologically, this means that each stage is connected to all other
ones, given enough time steps [3, 31].

P =





p11 p12

p21 0



 1 2p11

p21

p12

Figure 1: A simple projection matrix and its associated graph. There is a directed edge in
the graph for every nonzero entry pij in the matrix. For a transition, the edge is directed
from node j to node i.

One way to analyze the population dynamics of stage-structured matrix model is to
calculate the net reproductive rate, R0, the average number of offspring produced by an
individual over its lifetime [6]. In order to calculate R0, the projection matrix is decomposed
as P = T + F, where T = (τij) contains the survivorship transitions and F = (fij) the
fecundities. Each entry in T describes the probability of an individual in stage j surviving
to stage i in a single time step. This decomposition allows for the calculation of the net
reproductive rate, R0, defined mathematically as

R0 = ρ(F(I −T)−1), (1.2)

where I is the identity matrix and ρ(·) denotes the spectral radius of the matrix F(I−T)−1,
which is referred to as the next generation matrix [26]. It has been shown [8] that when
R0 > 1, the population grows, when R0 < 1, the extinction state is stable, and when R0 = 1,
the extinction state is neutrally stable.

The calculation of R0 using formula (1.2) is not always algebraically straightforward
when there are many stages. First the inverse of I − T must be computed and then the
eigenvalues of the next generation matrix must be calculated. However, a novel graph
reduction method [5] provides a simple approach (see Appendix I).

The graph reduction method not only provides a straightforward approach for calculat-
ing net reproductive rate directly from the life cycle graph, but also yields an expression of
R0 as sum of contributions from the different possible fecundity pathways which is, biolog-
ically, a sequence of steps in the life cycle that lead to the production of new individuals
[5]. An example of the graph reduction method applied to a simple stage-structured model
is shown in Figure II in Appendix III).
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1.2 A simple example: transient behavior vs asymptotic behavior

In this section, we use a simple migration model to show how short-term transient behavior
of matrix models can be significant. The analysis then motivates us to introduce two
measures that characterize the maximum and minimum transient growth rates.

We consider a population distributed in two discrete patches. We define x1(t) and x2(t)
to be the size of subpopulations in these two patches in year t. Their growth rates are p1
and p2, respectively. We assume that p1 > 1 > p2 so one patch is a source and the other a
sink. The migration rate of individuals from one patch to another is ε. We assume that ε
is the same for both patches. We refer to the quantity ε as connectivity and the quantity
1− ε as homing fidelity. The dynamics of this population is described by the model





x1(t+ 1)

x2(t+ 1)



 =





p1(1− ε) p2ε

p1ε p2(1− ε)









x1(t)

x2(t)



 . (1.3)

The growth rate of the overall population (denoted by λ1), given as the dominant eigenvalue
of the projection matrix (denoted by P) in the model (1.3), can be calculated as the larger
root of the quadratic equation:

λ2
1 − (p1 + p2)(1− ε)λ1 + p1p2(1− 2ε) = 0. (1.4)

Clearly, the growth rate of overall population, λ1, is a continuously differentiable function
with respect to the migration rate ε. When ε = 0, λ1 = max{p1, p2}, when ε = 1, λ1 =√
p1p2. When 0 < ε < 1, the dependence of λ1 on ε (left panel of Figure 2) indicates that

the population growth rate decreases as the migration rate increases.
The above eigenvalue analysis describes asymptotic growth rates and ignores short-

term transient behavior, because the asymptotic growth rate (λ1) is realized only when
the population has reached so-called stable structure (given by the right eigenvector of P
associated with λ1). Natural questions arise: what happens before the asymptotic dynamics
if the initial population distribution is not stable? how long it will take for the population
to reach its asymptotic behavior? To answer these questions, as examples, we consider the
solutions to the system (1.3) with initial distribution [x1(0), x2(0)] = [0, 1] and connectivity
either ε = 0.01 or ε = 0.3 (right panel of Figure 2).

The asymptotic dynamics (left panel of Figure 2) shows that λ1(0.01) > λ1(0.3) > 1,
which implies that the population will eventually grow exponentially for both values of ε,
and the population will grow faster when ε = 0.01 than it will when ε = 0.3. However,
as shown in the right panel of Figure 2, the population initially declines for both values of
ε, and the population level when ε = 0.3 is actually higher than that when ε = 0.01 for
many years. This is because the local dynamics of the subpopulation in poor quality patch
dominates the model dynamics for a long time, since the individuals are initially distributed
in the poor quality patch and the connectivity strength ε is small.

Figure 2 highlights two key points: 1) short-term dynamics of system may be very differ-
ent from long-term dynamics, and 2) transient behavior can be dramatic, long lasting and
counterintuitive. Therefore, the asymptotic growth rate λ1 does not represent population
dynamics in the short-term, and transient analysis of system is essential.

5



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.8

0.9

1

1.1

1.2

Connectivity, ε

G
ro

w
th

 r
a

te
s

λ
u
=p

1

λ
l
=p

2

λ
1
(ε)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time t

T
o

ta
l p

o
p

u
la

it
o

n
 s

iz
e,

 x
1(t

)+
x 2(t

)

ε=0.3

ε=0.01

Figure 2: (Left) The dependence of growth rate λ1 on migration rate ε. (Right) The
solutions of the model (1.3) with same initial distribution [x1(0), x2(0)] = [0, 1] but different
connectivity: either ε = 0.01 (solid line) or ε = 0.3 (dashes line).

Motivated by the above example, we are concerned about short-term growth rate of a
population whose dynamics are described by the model (1.1). In particular, we would like
to find bounds for population growth rate. To this end, we define

λl = min
x(0)≥0,||x(0)||1=1

||x(1)||1, (1.5)

as the minimum population growth in a single time step, where || · ||1 is the `1 norm. It is
straightforward to show that

λl = min
x≥0,||x||1=1

||Px||1 = min
1≤j≤n

n
∑

i=1

pij, (1.6)

the minimum sum of column vectors of projection matrix P. The proof is provided in the
Appendix II.

Similarly, we define
λu = max

x≥0,||x(0)||1=1
||x(1)||1, (1.7)

as the maximum population growth in a single time step. This is,

λu = max
x≥0,||x||1=1

||Px||1 = max
1≤j≤n

n
∑

i=1

pij, (1.8)

the maximum sum of column vectors of projection matrix P.
The quantities λl and λu bound the asymptotic growth rate λ1:

λl ≤ λ1 ≤ λu. (1.9)

[21].
Applying the formulas (1.6) and (1.8) to the model (1.3), we find that λl = min{p1, p2}

and λu = max{p1, p2}, so they are independent of migration rate ε. For this reason, the
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two solution curves for different ε values (right panel of Figure 2) have the same minimum
one-step growth rate from t = 0 to t = 1, which is achieved when [x1(0), x2(0)] = [0, 1].

Recently, Caswell and Neubert introduced a related set of indices into the ecological
literature [30] focusing on transient dynamics resulting from departure away a stable pop-
ulation structure, principal among these was “reactivity”. Caswell and Neubert defined
the reactivity [7] as the maximum rate of departure from equilibrium x̂ = 0 immediately
following a perturbation, i.e.,

ν ≡ log

(

max
||x(0)||2=1

||x(1)||2
)

, (1.10)

where || · ||2 is the `2 norm of vector. If ν > 0, the equilibrium point is said to be “reactive”.
Actually, reactivity also gives the maximum growth rate from t = 0 to t = 1 as measured
using the `2 norm.

Note that reactivity (1.10) uses `2 norm to describe the length of a vector in Euclidean
space, which is the norm most amenable to mathematical manipulation [30]. However, it
is not easy ascribe a biological meaning to the `2 norm. We employ `1 norm to measure
the length of a vector in the definition of λu, since `1 norm is the sum of a non-negative
vector with a clear interpretation as the total number of ‘individuals’ across all stage classes.
Also, we consider the geometric growth rate, instead of arithmetic growth rate given in the
definition of reactivity.

Two more new indices of transient dynamics that are related to next generation matrix
are introduced in Section 3.2. Such indices are applicable to a generation time scale. By
considering transient dynamics on a generational time scale, we gain two advantages: 1) a
generational time scale is likely most relevant to endangered species, and 2) analysis on a
generational time scale is much more amenable to algebraic calculations, because most next
generation matrices are highly degenerated with low rank.

1.3 Salmonidae

Salmonidae is a family of ray-finned fish, including salmon, trout, char, freshwater whitefish
and grayling. Salmonids are native to the northern hemisphere, but have been introduced
to many areas. There are currently 66 species recognized in this family, but the number of
the species is actually greater than this [43]. Salmonid species have experienced dramatic
declines in abundance during the past several decades as a result of human and natural
factors [28].

Member of the salmonidae family share a very similar life cycle, following a series of
stages as it develops from an egg to an adult fish. Most salmonid are migratory. Spawning
always takes place in fresh water. During spawning, eggs are deposited by the female in an
excavated nest on the substrate called a redd. Milt (sperm) is then deposited from the male
fish to fertilize eggs. The fertilized eggs remain buried in the gravel and rocks of the stream
bottom until about one month have passed. The fertilized eggs develop and hatch into alevin
in the late winter or spring. Once it has absorbed its yolk, the alevin becomes a fry. Young
fish are generally considered fry during their first year. Juvenile salmonids typically remain
in fresh water for 1-3 years before they are ready to migrate downstream to large rivers,
lakes or oceans where they will spend the next phase of its life. When the fish have finished
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growing and attain sexual maturity, most species have a remarkable homing ability, typically
returning to their natal streams to spawn even after having traveling hundreds of miles.
Member of the salmonidae family can be either semelparous or iteroparous. Semelparous
salmonids such as Pacific salmond die within a few days or weeks of spawning. Iteroparous
salmonids such as Atlantic salmon and bull trout (Salvelinus confluentus) spawn more than
once over their lifetimes.

We choose iteroparous salmonids as our study focus. In terms of the life history of
iteroparous salmonids, we construct a stage-structured matrix model for resident species
by dividing the population into four classes eggs: (E), fry (F ), juveniles (J) and adults
(A). Migratory salmonids spend different life stages at different locations. They make two
types of migration in terms of their life cycle. The juvenile outmigration is from upstream
freshwater rearing grounds to downstream large river or ocean; the adult upriver migration
is from the large river or ocean back to the spawning grounds. We then formulate a two-
patch stage-structured model for migratory species, one patch represents the spawning area
in upstream, and another patch represents the downstream habitat where the adults live.
The variables in the two-patch model are eggs (E1), fry (F1), and juveniles (J1) in patch
1 and juveniles (J2) and adults (A2) in patch 2. In this model, successful migration is an
important factor that affects the population persistence. The two-patch migration model
assumes that both upstream habitats and downstream habitats are spatially uniform, and
that the population therefore has 100% homing fidelity during migration. In reality, both
upstream and downstream may contain many isolated local habitat due to environmental
heterogeneity, this allows some individuals show a certain rate of straying during migration
as observed. Therefore, to study how the interplay between homing fidelity and local
population dynamics allows persistence in a network of heterogeneous patches, we extend
the two-patch model to a four-patch interacting model by dividing the upstream spawning
region into two patches and downstream into another two patches.

To address the question of homing influence on persistence, on the basis of four-patch
interacting model, we introduce a connectivity constant ε to measure the homing degree of
migratory fish, which also implies the strength of connectivity among subpopulations. We
investigated the dependence of the overall population persistence on the strength of connec-
tivity among subpopulations distributed at different locations and connected by migration.

This paper is organized as follows. In Section 2, we develop a two-patch model for
migratory salmonids and calculate R0 for this population. We then extend the two-patch
model to a four-patch interacting model. Based on the interacting model, we obtain a
R0 equation using the graph reduction method. We then study the effect of connectivity
strength on R0. In Section 3, we introduce new measures of transient population persistence,
Rl and Ru. We then investigate the dependence of Ru and Rl on connectivity strength.
Finally, a brief discussion section completes the paper.

2 R0 for migratory salmonids

Matrix models provide an intuitive modeling strategy where the life cycle of the organisms
can be described in terms of ages or stages. Salmonids may have either a resident or
migratory life history. Resident species complete their entire life cycle in the same stream.
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Based on the life cycle of salmonids, we construct a stage-structured matrix population
model for resident species, and calculate the net reproductive rate R0 for this population
(see Appendix III).

Most salmonids are migratory. Two types of migration behavior are related to the
migratory species: 1) Spawning migration takes place in breeding season. Adults move
upstream to the spawning area, after spawning they return to the downstream. 2) Juvenile
migration involves young fish. When young fish grows to juveniles, they leave the spawning
area to reach downstream habitats of their parents. In this section, we first develop a two-
patch model to describe the dynamics of migratory salmonids. The two-patch model is then
extended to a four-patch interacting model due to spatial heterogeneity.

2.1 Model for migratory salmonids

To describe the dynamics of migratory salmonids, we denote the upstream and the down-
stream by patches 1 and 2, respectively. We define the population vector Ni(t) = [Ei(t), Fi(t),
Ji(t), Ai(t)]

T to be the density of the population at the end of the breeding season in year
t at the patch i (i = 1, 2). We introduce notations, ma, mf and mj to represent the mi-
gration rates of adults, fry, and juveniles, respectively. More specifically, ma represents the
probability that adults living in the patch 2 in year t will appear at the patch 1 in year
t + 1 for reproduction, mf is the probability that fry which live in the patch 1 in year t
will appear at the patch 2 as juveniles in year t+ 1 due to growth and emigration, and mj

is the probability that juveniles located at patch 1 in year t will be found at the patch 2
in year t+ 1. We assume that all of spawning adults move back to patch 2 after breeding
season (A1 = 0) and that there are no eggs or fry in patch 2 (E2 = F2 = 0). The dynamics
of migratory population can then be described by the following matrix model:






















E1(t+ 1)

F1(t+ 1)

J1(t+ 1)

J2(t+ 1)

A2(t+ 1)























=























0 0 0 0 mab

pfe 0 0 0 0

0 (1−mf )pjf (1−mj)pjj 0 0

0 mfpjf mjpjj pjj 0

0 0 0 paj paa













































E1(t)

F1(t)

J1(t)

J2(t)

A2(t)























, (2.1)

where the meanings of notations b, pfe, pjf , pjj, paj, and paa are the same as those in the
model (A3) (Appendix III).

We calculate the net reproductive rate R0 for the migratory salmonids using the graph
reduction method. The calculation procedure is shown in Figure 3 (see Appendix IV for
Figure 3: B-D). From the equation of R0 (Figure 3: E), we see that the proportion of
individuals that start as eggs in upstream, eventually survive to become breeding adults
and migrate to downstream is given by

pfepajpjf
(1− paa)(1− pjj)

(

(1−mf )mjpjj
1− (1−mj)pjj

+mf

)

,

the expected number of eggs produced per breeding adult is b, and the proportion of breeding
adults that migrate from downstream to upstream during breeding season is ma. Multiply-
ing these quantities yields R0.
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2.2 Model for interacting migratory populations

It is widely believed that salmonids exist in environments composed of numerous ecological
‘islands’ scattered over many local patches [13, 41]. This motivates us to extend the two-
patch model to a multiple-patch model toward better understanding the dynamics of the
population which is subdivided or patchy. For convenience, we extend the two-patch model
to four-patch matrix model by dividing the upstream into two patches and downstream into
another two patches. As we will see in the Discussion section, the four-patch model can be
further extended to multiple-patch matrix model.

E1A F1 J1 J2 A2

pfe (1−mf )pjf mjpjj pajpfe

bmaR
−1
0

mfpjf

(1−mj)pjj pjj paa

E R0 =
bmapfepajpjf

(1− paa)(1 − pjj)

(

(1−mf )mjpjj
1− (1−mj)pjj

+mf

)

Figure 3: A The full transformed graph. E Resulting net reproductive rate.

2.2.1 Model formulation and R0

We assume that there are two small tributaries in upstream, denoted by patch 1 and patch
3, and two big streams in downstream, denoted by patch 2 and patch 4. Accordingly,
the population vector [Ei(t), Fi(t), Ji(t)]

T represents the density of the population in the
patch i (i = 1, 3) in year t, and the population vector [Jk(t), Ak(t)]

T is the density of the
population in the patch k (k = 2, 4) in year t. We use the similar notations as those
in models (A3) (Appendix III) and (2.1) but assume that the population migration and
survival rates depend on patches, hence mik

a represents the proportion that adults which
live in the patch k in year t will appear at the patch i in year t + 1, pkijf is the proportion
that fry which live in the patch i in year t will appear at the patch k in year t + 1 as
juveniles. Similar meanings for other notations. The four-patch interacting model is given
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by the following system of difference equations:

E1(t+ 1) = b1m
12
a A2(t) + b1m

14
a A4(t)

F1(t+ 1) = p1feE1(t)

J1(t+ 1) = (1−m21
f −m41

f )p1jfF1(t) + (1−m21
j −m41

j )p1jjJ1(t)

E3(t+ 1) = b3m
32
a A2(t) + b3m

34
a A4(t)

F3(t+ 1) = p3feE3(t)

J3(t+ 1) = (1−m23
f −m43

f )p3jfF3(t) + (1−m23
j −m43

j )p3jjJ3(t)

J2(t+ 1) = m21
f p21jfF1(t) +m21

j p21jjJ1(t) +m23
f p23jfF3(t) +m23

j p23jjJ3(t) + p2jjJ2(t)

A2(t+ 1) = p2ajJ2(t) + p2aaA2(t)

J4(t+ 1) = m41
f p41jfF1(t) +m41

j p41jjJ1(t) +m43
f p43jfF3(t) +m43

j p43jjJ3(t) + p4jjJ4(t)

A4(t+ 1) = p4ajJ4(t) + p4aaA4(t).

(2.2)

The procedure of calculating R0 using graph reduction method is presented in Figure 4
(see Appendix V for Figure 4: B-F).
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E1 F1 J1 E3 F3 J3 J2 A2 J4 A4

p1fe (1−m21
f −m41

f )p1jf p3fe (1−m23
f −m43

f )p3jf m23
j p23jj p2aj p4aj

m12
a b1R

−1
0

m32
a b3R

−1
0

m14
a b1R

−1
0

m34
a b3R

−1
0

m21
f p21jf

m41
f p41jf

m23
f p23jf

m43
f p43jfm21

j p21jj

m41
j p41jj

m43
j p43jj

(1−m21
j −m41

j )p1jj (1−m23
j −m43

j )p3jj p2jj p4jjp2aa p4aa

Figure 4: A The full transformed graph.
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Following the Figure 4: D (Appendix V), we set

g12 =
p2ajm

12
a b1p

1
fe

1− p2aa
, g21 =

m21
f p21jf

1 − p2jj
+

(1−m1
f )p

1
jfm

21
j p21jj

[1− (1−m1
j)p

1
jj](1 − p2jj)

,

g14 =
p4ajm

14
a b1p

1
fe

1− p4aa
, g41 =

m41
f p41jf

1 − p4jj
+

(1−m1
f )p

1
jfm

41
j p41jj

[1− (1−m1
j)p

1
jj](1 − p4jj)

,

g32 =
p2ajm

32
a b3p

3
fe

1− p2aa
, g23 =

m23
f p23jf

1 − p2jj
+

(1−m3
f )p

3
jfm

23
j p23jj

[1− (1−m3
j)p

3
jj](1 − p2jj)

,

g34 =
p4ajm

34
a b3p

3
fe

1− p4aa
, g43 =

m43
f p43jf

1 − p4jj
+

(1−m3
f )p

3
jfm

43
j p43jj

[1− (1−m3
j)p

3
jj](1 − p4jj)

,

(2.3)

where m1
f represents the proportion that fry living in the patch 1 in year t will appear in

the downstream as juveniles for further growth, that is, m1
f = m21

f +m41
f . Similar meaning

for the notations m1
j , m

3
f and m3

j . Then from the Figure 4: F (Appendix V), R0 can be
calculated as the larger root of the following quadratic:

R2
0 − (g21g12 + g41g14 + g23g32 + g43g34)R0

−g21g32g43g14 − g41g34g23g12 + g21g12g43g34 + g41g14g32g23 = 0.
(2.4)

It is easy to find that the discriminant of the quadratic (2.4) is positive, hence the
equation (2.4) has two real roots. If all spawners home with 100% fidelity when they
migrate, for instance, all spawners living in patch 2 always show fidelity to their natal
tributary stream, say patch 1, and all fry and juveniles living in patch 1 emigrate to the
patch 2, the habitat of their parents, and similar homing behavior for the subpopulation
living in patch 3 and patch 4, then the four-patch model reduces to two disjoint two-patch
models. Since there is no interaction between patch 1 and patch 4 or between patch 2 and
patch 3, letting g14 = g41 = g32 = g23 = 0 in (2.3), we obtain the net reproductive rates
R12

0 = g12g21 for the subpopulation living in patch 1 and patch 2, and R34
0 = g34g43 for the

subpopulation living in patch 3 and patch 4, which are consistent with the R0 expression
E in Figure 3, resulting from the two-patch model (2.1).

However, salmonids do not always exhibit strong homing fidelity: the homing ability
of salmonids appears to be variable and is perhaps an adaptive trait that is subject to
natural selection [29, 37]. The degree of homing may be related to stream size and stability
[29]. Since the connectivity strength is realized through migration rates, a diagram which
describes the interactions is presented in Figure 5.

From Figure 5, when 0 < ε � 1, most migrations take place between patch 1 and patch
2 and between patch 3 and patch 4, very few migrations take place between patch 1 and
patch 3 or between patch 2 and patch 4. For this case, we think of the migration routes
between patch 1 and patch 2 and between patch 3 and patch 4 as homing routes, and the
migration routes between patch 1 and patch 4 and between patch 3 and patch 2 as straying
routes. Thus, when ε is close to 1, the above-mentioned homing routes become straying
routes and straying routes become homing routes. When ε = 0 or ε = 1, only homing routes
exist. Finally, when ε = 1, there is no connection between patch 1 and patch 2 or between
patch 3 and patch 4. The relevant net reproductive rates for the two disjoint two-patch
models are R14

0 = g14g41 and R32
0 = g32g23.
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1 2

3 4

(m1
f +m1

j)(1 − ε)

m2
a(1− ε)

(m3
f +m3

j)(1 − ε)

m4
a(1− ε)

(m1
f +m1

j)ε

m4
aε

m2
aε

(m3
f +m3

j)ε

Figure 5: Connectivity strength ε is realized by migration rates. Here m2
a represents the

proportion that adults emigrate from the patch 2 to upstream for reproduction, that is,
m2

a = m12
a +m32

a , here m12
a = m2

a(1 − ε) and m32
a = m2

aε. Similar notations are applied to
other migration rates.

Clearly, if two patches (patch 1 and patch 3) in upstream are equal in their quality
and two patches (patch 2 and patch 4) in downstream are equal as well, then homing vs.
straying would make no difference, in this case, the degree of homing fidelity does not play a
role on the reproductive rate. In our study, we always assume that the patches are unequal
in their quality.

2.2.2 The effect of connectivity strength ε on R0

In what follows, we use theR0 equation (2.4) to investigate the effect of connectivity strength
on R0. Following Figure 5, we rewrite g12, g14, and g21 given in (2.3) as

g12 =
(1− ε)m2

ap
2
ajb1p

1
fe

1− p2aa
=: (1− ε)G12, g14 =

εm4
ap

4
ajb1p

1
fe

1− p4aa
=: εG14

g21 =
(1− ε)m1

fp
21
jf

1− p2jj
+

(1−m1
f )p

1
jf (1− ε)m1

jp
21
jj

([1− (1−m1
j)p

1
jj](1− p2jj)

:= (1− ε)G21,

Similarly, we can write

g41 = εG41, g32 = εG32, g23 = εG23,

g43 = (1− ε)G43, g34 = (1− ε)G34.

Thus, from the R0 equation (2.4), we have R0 as the larger root of the quadratic:

R2
0 − [A(1− ε)2 +Bε2]R0 − Cε2(1− ε)2 +Dε4 +E(1 − ε)4 = 0, (2.5)
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where
A = G21G12 +G43G34, B = G41G14 +G23G32,

C = G21G32G43G14 +G41G34G23G12, D = G41G14G23G32,

E = G21G12G43G34.

When ε = 0 or ε = 1, the system is reducible and is decoupled into two subsystems, each
of which has a different R0. R0 can no longer be defined for the overall system because it is
no longer irreducible. In particular, this happens when ε = 0 and R0 = G12G21 or G34G43,
and when ε = 1 and R0 = G14G41 or G32G23.

However, when 0 < ε < 1, the overall system has only one R0, and the equation (2.5)
implies that R0 is a continuously differentiable function in ε, hence the sensitivity of R0 to
ε can be calculated by differentiating the equation (2.5) with respect to ε to obtain ∂R0/∂ε.
An analytical calculation of ∂R0/∂ε when ε is close to 0 and 1 is provided in Appendix VI.

Mathematically, when ε is not close to 0 or 1, it is difficult to analyze the rate of change of
R0 with respect to ε from the equation (2.5). Next, We use two examples to understand how
the connectivity strength ε affects R0. We assume that in both upstream and downstream,
one patch has better living condition (population has higher vital rates) than another one.
The relation between R0 and ε is plotted in Figure 6.

As shown in Figure 6, when ε = 0 or ε = 1 (i.e., there is no migration through straying
routes), the subpopulation that migrate between two high quality patches has maximum
net reproductive rate, denoted by Rmax

0 , and the subpopulation that migrate between two
poor quality patches has minimum net reproductive rate, denoted by Rmin

0 . In particular,
the left panel of Figure 6 indicates that Rmax

0 = R34
0 , Rmin

0 = R12
0 , the right panel of Figure

6 shows that Rmax
0 = R14

0 , Rmin
0 = R32

0 . As shown by the dashed lines in the Figure 6, the
slopes of the curves are negative when ε is close to 0, the slopes of the curves are positive
when ε is close to 1 (see (A7-A10) in the Appendix VI for corresponding analytical results).
Moreover, the left panel indicates that R0 is less than but close to Rmax

0 when ε is close to
0, the right panel shows that R0 is less than but close to Rmax

0 when ε is close to 1. These
two examples imply that the overall population has a high net reproductive rate if most
migrations (homing routes) occur between high quality patches or between poor quality
patches, and very few migrations (straying routes) take place between high quality patches
and poor quality patches. Hence, the high quality patches can be considered as “sources”
and poor quality patches as “sinks.” R0 is largest when the sources are isolated from the
sinks.

To further understand the relation between R0 and connectivity strength ε, we assume
that every patch has high or poor quality randomly, more precisely, we assume that the
probability that each patch has high (poor) quality is 0.5 (0.5). We make Monte Carlo
simulations by running 2000 samples. The relation between the mean of the net reproductive
rates from 2000 samples and ε is plotted in Figure 7. Figure 7 indicates again that a high
R0 value occurs when most of the population homes with great fidelity while the remaining
ones stray.
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Figure 6: The relation between the R0 and the connectivity strength ε. (Left) Patch 3 is
better than patch 1, patch 4 is better than patch 2. b1 = 500,m2

a = 0.3,m1
f = 0.4,m1

j =

0.6, p1fe = 0.15, p1jf = 0.1, p1jj = 0.12, p2jj = 0.15, p2aj = 0.18, p2aa = 0.2, p21jf = 0.125, p21jj =

0.135, b3 = 750,m3
f = 0.6,m3

j = 0.9, p3fe = 0.23, p3jf = 0.15, p3jj = 0.18, p4jj = 0.195, p4aj =

0.234, p4aa = 0.26, p23jf = 0.15, p23jj = 0.18, p43jf = 0.17, p43jj = 0.19. (Right) Patch 1 is better

than patch 3, patch 4 is better than patch 2. b3 = 330, p3fe = 0.1,m3
f = 0.3,m3

j = 0.4, p3jf =

0.07, p3jj = 0.08, p23jf = 0.11, p23jj = 0.12, p43jf = 0.13, p43jj = 0.14. Other parameters are the
same as in the left figure.

3 The effect of homing fidelity on transient population per-

sistence

The study on the effect of homing fidelity on net reproductive rate R0 in previous section
concentrates on the asymptotic dynamics of the interacting model (2.2). The purpose of this
section is to investigate the impact of homing fidelity, determined by connectivity strength
ε, on transient growth rates based on the interacting model (2.2). By numerically solving
the interacting model (2.2), we first show that depending on different initial distributions
and connectivity strengthes, the population exhibits very different transient growth rates
that long-term results of R0 analysis can not reveal. This then motivate us to introduce
two new measures, Rl and Ru, to predict the lowest and highest generational growth rates,
respectively. Finally, we examine the effect of the migration behavior of subpopulations on
Rl and Ru.

3.1 Transient behavior of interacting model

We consider a population whose dynamics is presented by the matrix model (1.1). According
to equation (1.2), the net reproductive rate of the population, R0, is given as the dominant
eigenvalue of the next generation matrix F (I − T )−1. Hence, there exists a dominant
eigenvector ξ > 0 such that

F (I − T )−1ξ = R0ξ. (3.1)

Under the constant conditions, the next generation population will ultimately grow at
the rate R0 and has the so-called stable structure (i.e., the distribution of abundance across
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Figure 7: The relation between the mean of net reproductive rates of 2000 realizations and
the connectivity strength ε.

stage, patch proportional to the eigenvector ξ). This implies that our previous discussion
about the dependence of R0 on connectivity strength ε assumes a stable population struc-
ture. The question arises as to what to expect if the population structure is not stable? In
particular, we are interested in the following questions: 1) what is the short-term behavior
of the system if the distribution of abundance across patch is variable? 2) how does homing
fidelity affect short-term growth rate? To answer these questions, we solve the interacting
model (2.2) using the same parameters as those in the left panel of Figure 6. We compare
the model solutions by choosing same connectivity strength (ε = 0.01) but different initial
distributions (all individuals as eggs in the poor quality patch and all individuals as eggs
in the high quality patch) (left panel of Figure 8). We also compare the model solutions
by choosing same initial distribution (all individuals as eggs in the poor quality patch) but
different connectivity strengthes (ε = 0.01 and ε = 0.2) (right panel of Figure 8).

The left panel of Figure 8 indicates that depending on different initial population struc-
tures, the transient solutions of the model are very different, even though their asymptotic
behaviors are the same because of the same R0 value. In fact, no matter what the initial
distributions are, the population will eventually grow due to R0(0.01) > 1 (left panel of
Figure 6).

The dependence of R0 on ε (left panel of Figure 6) shows that R0(0.01) > R0(0.2) > 1,
hence in the long run, the population will eventually grow for both values of ε, and the next
generation population will grow faster when ε = 0.01 than it will when ε = 0.2. However,
as shown in the right panel of Figure 8, with the initial distribution of all individuals as
eggs in the poor quality patch (patch 1), the total population size decreases dramatically
for both values of ε, and it takes a long time to achieve exponential growth. The population
level when ε = 0.01 is lower than that when ε = 0.2 for a long time.
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Figure 8: (Left) Comparison of overall population size with same ε = 0.01, but differ-
ent initial population distribution: either x(0) = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T (solid line) or
x(0) = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]T (dashed line). (Right) Comparison of overall population
size ||x(t)||1 with same initial population distribution x(0) = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T , but
different connectivity strength ε: ε = 0.01 (solid line), ε = 0.2 (dashed line). The solid lines
in both panels show the same trajectory but over different time scales.

3.2 Transient measures of generational population growth: Rl and Ru

As we see from Figures 2 and 8, the transient behavior of system may last a long time
before the asymptotic behavior is achieved, thus the transient dynamics may be at least as
important as asymptotic dynamics. Most indices for quantifying transient behavior, such as
reactivity (1.10), λl (1.6) and λu (1.8) are too immediate to adequately describe transient
behavior of the system. To avoid the ‘instantaneous’ or ‘one time step’ weakness of such
indices, here we introduce two new measures, Rl and Ru, related to the next generation
matrix, to describe intergenerational transient behavior. Noticing that most next generation
matrices are degenerate, we define Rl and Ru based on the dominant submatrices of the
next generation matrices, rather than next generation matrices themselves.

For convenience, we denote the next generation matrix F(I−T)−1 byQ. In the fecundity
matrix F, the (i, j) entry represents the expected number of i-class offsprings produced by a
j-class individual per unit of time, in most matrix models, the number of offspring classes is
less than the number of total classes, therefore, most fertility matrices are singular including
zero rows. In those matrix models including only one newborn class, F has only one nonzero
row, say the first row, consequently only the first row of Q is nonzero. This means, in this
case, that Q has 0 as an n − 1 repeated eigenvalues, and one dominant eigenvalue (net
reproductive rate R0) is the first row, first column entry.

More generally, suppose that there are j > 1 newborn classes. Without loss of generality,
we list first j rows so that the last n − j rows of F consist of zeros. If we denote the ith
row of F by Fi and jth column of (I−T)−1 by τj, i.e.,
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F =

























F1

...

Fj

...

Fn

























, (I−T)−1 = (τ1, · · · , τn),

then

Q =































F1τ1 · · · F1τj F1τj+1 · · · F1τn
...

. . .
...

...
. . .

...

Fjτ1 · · · Fjτj Fjτj+1 · · · Fjτn

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0































.

Thus, the dominant eigenvalue of Q (net reproductive rate R0) is the dominant eigenvalue
of the submatrix from the upper left-hand corner, we denote it by Qs.

We define

Rl = the minimum sum of column vectors of the matrix Qs, (3.2)

and
Ru = the maximum sum of column vectors of the matrix Qs. (3.3)

Then we have
Rl ≤ R0 ≤ Ru. (3.4)

Note that if the fecundity matrix F has only one nonzero row, say the first row, then Qs

degenerates into a one by one matrix with element F1τ1, in this case, Rl = R0 = Ru = F1τ1.
Similarly as in the definition of λl (1.6) and λu (1.8), next we link the above definitions

of Rl (3.2) and Ru (3.3) to minimum value and maximum value of the set {||Qx||1 : x ≥
0, ||x||1 = 1}, respectively. For any x = [x1, · · · , xn]T , Qx = [y1, · · · , yj , 0, · · · , 0]T , where
yk = Fkτ1x1 + · · · + Fkτnxn, k = 1, · · · , j. Hence, as an operator, the range of the next
generation matrix Q, denoted by Ran(Q), is the set of n-dimensional vectors with the last
n− j elements zero. We observe that

Rl = min
x∈Rj ,x≥0,||x||1=1

||Qsx||1 = min
x∈Ran(Q),x≥0,||x||1=1

||Qx||1, (3.5)

the minimum generational growth rate when initial population distributions belong to
Ran(Q),

Ru = max
x∈Rj ,x≥0,||x||1=1

||Qsx||1 = max
x∈Ran(Q),x≥0,||x||1=1

||Qx||1, (3.6)
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the maximum generational growth rate when initial population distributions belong to
Ran(Q). Thus, Rl and Ru can be understood in terms of the worst or the best possible
initial conditions for intergenerational growth. In particular, Rl can be thought of as the
intergenerational growth rate under the worst possible initial conditions, and Ru can be
thought of as the intergenerational growth rate under the best possible initial conditions.

Unlike λl and λu applying the project matrix to arbitrary nonnegative vectors in R
n, Rl

and Ru apply the next generation matrix to arbitrary nonnegative vector in Ran(Q). More
strict discussion about this is provided in Appendix VII.

3.3 Application to interacting model

We now study the effect of homing fidelity on transient population growth rates measured
by Rl and Ru based on the interacting model (2.2). The fecundity matrix in model (2.2),
denoted by (fi,j), is a ten by ten matrix with only four nonzero elements: f1,8 = b1m

1,2
a ,

f1,10 = b1m
1,4
a ,f4,8 = b3m

3,2
a and f4,10 = b3m

3,4
a . Thus, the corresponding next generation

matrix, denoted by Q := (qij), is a ten by ten singular matrix with nonzero elements in the
first and fourth rows, and zero elements in other rows. The associated dominant submatrix
Qs is then given by

Qs =





q11 q14

q41 q44



 .

Therefore,
Rl = min{q11 + q41, q14 + q44}, (3.7)

and
Ru = max{q11 + q41, q14 + q44}. (3.8)

Furthermore, following the proof of (1.6) (Appendix II), we can regard Rl as the inter-
generational growth rate when all individuals as eggs initially distributed in the poor quality
patch (say patch 1), that is ||Qx||1 = Rl when x = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T . Similarly, the
generational growth rate is Ru if all individuals as eggs are initially distributed in the good
quality patch.

Following Figure 5, both Rl and Ru are functions in connectivity strength ε. As an
example, we use the same parameters as those in Figure 6 and choose ε ∈ [0, 1] to calculate
Rl(ε) and Ru(ε). The graph of functions R0(ε), Rl(ε), and Ru(ε) are compared in Figure
9. When ε = 0, the overall population is divided into two disjoint subpopulations (Figure
5), and the four patch model reduces to two-disjoint two-patch models. Noticing that
the fecundity matrix for each two-patch model has only one nonzero element, we have
R1,2

l = R1,2
0 = R1,2

u and R3,4
l = R3,4

0 = R3,4
u . Similarly, when ε = 1, R3,2

l = R3,2
0 = R3,2

u and

R1,4
l = R1,4

0 = R1,4
u .

When 0 < ε < 1, as shown in the Figure 9, the connectivity strength ε affects R0 and
Ru in similar way, but Rl in different way. To reduce the danger of population extinction
in a generation, evaluated by the lowest generation growth rate Rl, one needs to choose ε
which is not close 0 or 1 so as to maximize Rl(ε), even though R0 reaches low values when
ε is not close to 0 or 1. In other words, strong homing fidelity can increase the extinction
hazard of endangered migratory salmonids in a single generation, even while increasing R0

and Ru.
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Figure 9: Comparison of the graphs of functions R0(ε), Rl(ε), and Ru(ε). We use the same
parameters as those in Figure 6.

4 Discussion

Most models of population dynamics assume that species’ resource are homogeneous in
space [12]. This assumption is often made in order to simplify mathematical analysis. How-
ever, spatial heterogeneity is one of the most obvious features of the natural world and is a
key factor influencing population dynamics [22]. Populations experience spatial variation in
environmental factors (e.g.,temperature, precipitation, resource availability and predation
risk) which influence survivorship and and reproduction, individuals can modulate their
fitness (i.e., the net reproductive rate) by dispersing or migrating across space. Hence,
interactions between movement and spatial heterogeneities determine how quickly a popu-
lation grows or declines [36]. Understanding the interplay between connectivity (dispersal
and migration) and local population dynamics allows persistence in a network of heteroge-
neous space is a central issue in population biology and has received increasing attention
from theoretical, empirical and applied perspectives [2, 14, 15, 19, 20, 22, 24, 32, 36, 40, 42].

Research on the persistence of spatially structured populations has produced both the-
oretical and empirical evidence for a range of possible types of populations through various
types of interacting systems of subpopulations [16, 40]. Such population systems have gen-
erally been divided into discrete categories; for example, populations may be deemed to be
‘sources’ or ‘sinks’ [25]. As an important factor affecting population dynamics, demographic
connectivity (dispersal and migration) among subpopulation’s can contribute significantly
to population growth rates, and ultimately population persistence. Therefore, assessing the
effects of demographic connectivity on population persistence is crucial for understanding
population biology and evolution in natural systems.

The main question we address in this paper is how the migration of individuals between
spatially discrete habitats affects the long-run and short-run reproductive rates of migratory
populations. We choose salmonidae as our study focus. Based on the life cycle of salmonds,
we develop resident and migratory population models and extend the migratory population
model to an interacting model. Unlike most stage-structured interacting models where
population can complete its life cycle in each habitat, in the models for migratory salmonid,

21



each habitat only supports part of stages.
With the underlying assumption that external conditions remain stable for long enough

for the long-term dynamics to be reached, the results of asymptotic analysis about the the
dependence of R0 on connectivity strength ε provide useful insights into the dynamics of
interacting populations. In practice, when populations live in a stable or rather narrow range
of predictable environment, we are likely to be concerned with their asymptotic long-term
reproductive rate, measured by R0. However, when populations confront environmental
change and stochastic disturbance, their dynamics may never settle to behavior predicted
by model asymptotics. Instead, populations can show transient growth or decay. In this
case, R0 is unable to predict the short-term transient dynamics that can arise. If we consider
a endangered, threatened species, we should use Rl to assess the risk of extinction. If Rl < 1
and we introduce N0 individuals, then it is possible that after a single generation we will
have RlN0 individuals remaining. If this number falls below an extinction threshold, we
could have population extinction even if R0 > 1. On the other hand, Ru would be more
applicable when assessing the threat posed by invasive species. Therefore, the long-term
measure R0 and short-term measures Rl and Ru are complementary, giving a range of
valuable information for population conservation and management.

In the salmonidae example, we have studied the effect of migration behavior on the
reproductive rate based on a four-patch model, where two patches are located in upstream
and other two patches are located in downstream. However, in consideration of the fact
that more than two streams might be located in upstream or downstream, one may want
to construct a more complex multiple-patch model (Appendix VIII).

It is worth pointing out that, as with the four-patch model, multiple-patch model (A10)
assumes there is no population dispersing directly between upstream patches or directly
between downstream patches. Therefore, two upstream patches do not interact with each
other directly, but only indirectly through the migration which take place between down-
stream and upstream.

In the analysis, we use the same connectivity strength ε to evaluate the interactions
between different four patches (Figure 5). In reality, different connectivity strengthes may be
related to different migration paths. An investigation on the effect of different connectivity
strengths relevant to the different migration paths on R0 is challenging and is left for future
work.

We believe that the approach used in this paper is applicable in general to other mi-
gratory species. It is our hope that the conclusion about the effect of migration behaviors
on population persistence will provide an insight to further understand the dynamics of
migratory population. In addition, we hope to encourage the connection of data to these
models in order to further understand their potential as management tools for assessing
persistence of migratory populations under varying living conditions.
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Appendix

I. Graph reduction method
This method starts with the description of the projection matrix as a life cycle graph.

Once the life cycle graph has been specified, the calculation procedure is as follows. (1)
Identify survivorship and fecundity transitions. (2) Multiply all fecundity transitions in the
graph by R−1

0 . (3) Eliminate survivorship self-loops, using rule A in Figure I. (4) Reduce
the graph using the graph reduction rules defined in Figure I until only nodes with fecundity
self-loops are left. When a node is eliminated, all pathways that go through that node have
to be recalculated. (5) If only one node with a single self-loop is left, eliminate the final
node by setting the self-loop equal to 1 and solve this equation for R0.

1A 2 b
a

= 1 2
a/(1− b)

1B 2

a

b

= 1 2
a+ b

1C 2 3
a b = 1 3

ab

Figure I: Graph reduction rules. A self-loop elimination with b < 1. B Parallel path
elimation. C Node elimination. Rules A and B show elimination of paths, and rule C
shows the elimination of node 2. Graph reduction is done by repeatedly applying these
rules until only nodes are left.

II. Proof of (1.6)
To investigate the function Px, we let P = (pij)n×n and x = [x1, x2, · · · , xn]T . A simple

calculation gives

||Px||1 =
n
∑

i=1

pi1x1 +
n
∑

i=1

pi2x2 + · · · +
n
∑

i=1

pinxn, (A1)

Noticing that
n
∑

i=1

pij(j = 1, · · · , n) is the jth column sum of the matrix P, we consider the

smallest such column sum of P. Suppose that for some 1 ≤ k ≤ n,

n
∑

i=1

pik = min
1≤j≤n

n
∑

i=1

pij ,
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then the function ||Px||1 has minimum value

n
∑

i=1

pik when x is a unit vector with xk = 1

and xj = 0 (j 6= k). That is to say,

λl = min
1≤j≤n

n
∑

i=1

pij , (A2)

the minimum sum of column vectors of projection matrix P.

III. R0 for resident salmonids
In terms of the life cycle of resident species, we divide the population into four groups:

fertilized egg (E), fry (F ), juvenile (J), and adult (A). We take time unit to be one year.
The population vector is x(t) = [E(t), F (t), J(t), A(t)]T , which represents the population
density of each stage at the end of the breeding season in year t. We relate the population
density of each stage at time t+ 1 to time t by the matrix equation

x(t+ 1) = Px(t), (A3)

where the projection matrix P is

P =

















0 0 0 b

pfe 0 0 0

0 pjf pjj 0

0 0 paj paa

















.

Here, b is the average number of fertilized eggs produced per adult per year, pfe is the
proportion of eggs that hatch to fry stage each year, pjf is the proportion of fry that survive
to the juvenile stage each year, pjj is the proportion of juveniles that survive to remain as
a juvenile per year, paj is the proportion of juveniles that survive to become adults each
year, paa is the proportion of adults that survive each year. The vital rates of salmonids
living a variety of environment have been estimated by many researchers (e.g., [1, 4, 29]).

The matrix equation (A3) models the dynamics of resident salmonids population. The
net reproductive rate, R0, for this population can be calculated using the graph reduction
method, as mentioned in Appendix I. The graph reduction method is shown in Figure II.

From the equation of R0 (Figure II: D), we see that the proportion of individuals that
start as eggs and eventually mature and survive to become breeding adults is pfepjfpaj/[(1−
pjj)(1−paa)], and the expected number of eggs produced per breeding adult is b.Multiplying
these quantities yields R0.

IV. Figure 3: B-D
V. Figure 4: B-F
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EA F J A
pfe pjf paj

bR−1
0

pjj paa

EB F J A
pfe pjf/(1 − pjj) paj/(1 − paa)

bR−1
0

EC
bR−1

0 pfepjfpaj
(1− pjj)(1− paa)

D R0 =
bpfepjfpaj

(1− pjj)(1 − paa)

Figure II: A The full transformed graph. B Eliminating self-loops. C Eliminating nodes
F , J , and A. D Solving for R0.
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E1B F1 J1 J2 A2

pfe

(1−mf )pjf
1− (1−mj)pjj

mjpjj
1− pjj paj/(1− paa)pfe

bmaR
−1
0

mfpjf/(1− pjj)

E1C F1 J2 A2

pfe

(1−mf )pjfmjpjj
(1− (1−mj)pjj)(1 − pjj)

+
mfpjf
1− pjj paj/(1− paa)

bmaR
−1
0

E1D
bmaR

−1
0 pfepaj

1− paa

(

(1−mf )pjfmjpjj
(1− (1 −mj)pjj)(1− pjj)

+
mfpjf
1− pjj

)

Figure 3: B Eliminating self-loops. C Eliminating node J1. D Eliminating nodes F1, J2,
and A2.
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E1 F1 J1 E3 F3 J3 J2 A2 J4 A4

p1fe r1/(1 − s1) p3fe r3/(1 − s3) (m23
j p23jj )/(1 − p2jj) p2aj/(1 − p2aa)

p4aj
1− p4aa

m12
a b1R

−1
0

m32
a b3R

−1
0

m14
a b1R

−1
0

m34
a b3R

−1
0

m21
f p21jf/(1− p2jj)

m41
f p41jf/(1− p4jj)

m23
f p23jf/(1− p2jj)

m43
f p43jf/(1− p4jj)m21

j p21jj/(1− p2jj)

m41
j p41jj/(1− p4jj)

m43
j p43jj/(1− p4jj)

r1 = (1−m21
f −m41

f )p1jf , s1 = (1−m21
j −m41

j )p1jj, r3 = (1−m23
f −m43

f )p3jf , s3 = (1−m23
j −m43

j )p3jj

Figure 4: B Eliminating self-loops.
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F1 J1 F3 J3 J2 J4
r1/(1 − s1) r3/(1 − s3) m23

j p23jj/(1− p2jj)

p2ajm
12
a b1p

1
feR

−1
0 /(1 − p2aa)

p2ajm
32
a b3p

3
feR

−1
0 /(1 − p2aa)

p4ajm
14
a b1p

1
feR

−1
0 /(1 − p4aa)

p4ajm
34
a b3p

3
feR

−1
0 /(1 − p4aa)

m21
f p21jf/(1− p2jj)

m41
f p41jf/(1− p4jj)

m23
f p23jf/(1− p2jj)

m43
f p43jf/(1− p4jj)m21

j p21jj/(1− p2jj)

m41
j p41jj/(1− p4jj)

m23
j p23jj/(1− p2jj)

m43
j p43jj/(1− p4jj)

Figure 4: C Eliminating nodes E1, E3, A2 and A4.
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F1 F3 J2 J4

p2ajm
12
a b1p

1
feR

−1
0

1− p2aa

p2ajm
32
a b3p

3
feR

−1
0

1− p2aa

p4ajm
14
a b1p

1
feR

−1
0

1− p4aa

p4ajm
34
a b3p

3
feR
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f p21jf
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+

r1m
21
j p21jj

(1− s1)(1 − p2jj)

m41
f p41jf

1− p4jj
+

r1m
41
j p41jj

(1− s1)(1 − p4jj)

m23
f p23jf

1− p2jj
+

r3m
23
j p23jj

(1− s3)(1 − p2jj)

m43
f p43jf

1− p4jj
+

r3m
43
j p43jj

(1− s3)(1 − p4jj)

Figure 4: D Eliminating nodes J1 and J3.
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F1 F3(g21g12 + g41g14)R
−1
0 (g23g32 + g43g34)R

−1
0

(g21g32 + g41g34)R
−1
0

(g23g12 + g43g14)R
−1
0

Figure 4: E Eliminating nodes J2 and J4.

F1(g21g12 + g41g14)R
−1
0

(g21g32 + g41g34)R
−1
0

1− (g23g32 + g43g34)R
−1
0

· (g23g12 + g43g14)R
−1
0

Figure 4: F Eliminating nodes F3.

VI. An analytical calculation of ∂R/∂ε when ε is close to 0 and 1.
We differentiate the equation (2.5) with respect to ε to get

2R0
∂R0

∂ε
+ [2A(1 − ε)− 2Bε]R0 − [A(1 − ε)2 +Bε2]

∂R0

∂ε

− C(2ε− 6ε2 + 4ε3) + 4Dε3 − 4E(1 − ε)3 = 0.

Thus,

∂R0

∂ε
=

2AR0(ε− 1) + 2BR0ε+C(2ε− 6ε2 + 4ε3)− 4Dε3 + 4E(1− ε)3

2R0 −A(1− ε)2 −Bε2
. (A4)

Hence,

lim
ε→0+

∂R0

∂ε
=

−2AR0(0
+) + 4E

2R0(0+)−A
. (A5)

Noticing that R0(0
+) = max{G21G12, G43G34}, we find

lim
ε→0+

∂R0

∂ε
=

−2(G21G12 +G43G34)max{G21G12, G43G34}+ 4G21G12G43G34

2max{G21G12, G43G34} −G21G12 −G43G34

= −2max{G21G12, G43G34}.
(A6)

Since R0(1
−) = max{G23G32, G41G14}, similar computation yields

lim
ε→1−

∂R0

∂ε
= 2max{G23G32, G41G14}. (A7)

If 0 < ε � 1, the function R0(ε) can be approximated by a straight line

R0(ε) ≈ R0(0
+) +

(

lim
ε→0+

∂R0

∂ε

)

ε

= max{G21G12, G43G34} − 2max{G21G12, G43G34}ε,
(A8)
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with negative slope.
Similarly, if ε is less than and sufficiently close to 1, then we have

R0(ε) ≈ R0(1
−) +

(

lim
ε→1−

∂R0

∂ε

)

(ε− 1)

= −max{G23G32, G41G14}+ 2max{G23G32, G41G14}ε.
(A9)

with positive slope.

VII. Further discussion about Rl and Ru.
For the matrix Q, we define the range of Q as Ran(Q) = {Qx|x ∈ R

n}, and the null
space of Q as N(Q) = {x ∈ R

n|Qx = 0}. Then both Ran(Q) and N(Q) are subspaces of Rn,

and R
n = Ran(Q)

⊕

N(Q). Therefore, for any x ∈ R
n, there exists unique xRan ∈ Ran(Q)

and unique xN such that x = xRan + xN. Thus, for any x ∈ R
n, Qx = QxRan + QxN =

QxRan + 0. The projection of any x ∈ xN will give zero individual in the next generation,
which is not of biological interest. For this reason, we restrict x ∈ Ran(Q) when defining
Rl and Ru.

VIII. A multiple-patch model
If we assume that there are I small rivers in upstream and K big rivers in downstream,

it is not difficult to extend the four-patch model (2.2) to a multiple-patch model:

Ei(t+ 1) =

K
∑

k=1

bim
ik
a Ak(t)

Fi(t+ 1) = pifeEi(t)

Ji(t+ 1) =

(

1−
K
∑

k=1

mki
f

)

pijfFi(t) +

(

1−
K
∑

k=1

mki
j

)

pijjJi(t)

Jk(t+ 1) =
I
∑

i=1

(

mki
f pkijfFi(t) +mki

j pkijjJi(t)
)

Ak(t+ 1) = pkajJk(t) + pkaaAk(t),

(A10)

for i = 1, 2, · · · , I and k = 1, 2, · · · ,K.
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