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ABSTRACT

Martin’s axiom, together with background information and several equiv-
alent forms, is presented. Then follows a survey of results of Martin’s axiom in

point-set topology, including results concerning the existence of S- and L-spaces.
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0. Introduction

In recent vears, a lot of the interesting work in set theory and topology has
been that involving independence proofs. It turns out. in fact. that certain
problems in general topology cannot be solved in ZFC, the usual axioms of
set theory including the axiom of choice. However, many independence proofs
involve forcing. which is a method used to develop models of sot throry with
certain additional properties. and usually involves elaborate and complicated
arguments. Martin's axiom then tecomes very useful to topologists, beeause it
enables them to examine and answer many topological problems without using
forcing, or at least keeping forcing arguments to a minimum.

The purpose of this thesis is to provide an introduction to Martin's ax.
tom and survey some of the problems in point-set topology that it solves. In
Chapter 1. we introduce the necessary notation, present some background in-
formation concerning partially ordered sets. Boolean algebras. and filters and
ultrafilters defined on them: then we present: Martin's axiom and derive sopge
of Ots equivalent forms. In Chapter 2. we present some results of Martin's ax
iom. and MAy,. a related statement, CONCCINING cOMPAct spaces, ¢ ¢ ¢ spices,
and normality. Finally. in Chapter 3. we provide a brief survey of § and L.
spaces and their existence under Mag,.

Since this thesis is concerned with Martin's axiom. results whiel, mvajve
forcing are not included. although su-h results may he stated without proof

whenever they apply to the discussion at hand.



1. Marf.in’s Axio:rﬁ

In this chapter, we will present some basic notions about partially ordered sets,
Boolean algebras, filters and ultrafilters in order to introduce Martin's axiom,
which is usually stated in terms of generic filters on paftia.lly ordered sets. Then
we shall consider Martin’s axiom as the collection of statements MA.,, for all
cardinals x < 2™ to show that MA, is equivalent to MA, restricted to partially
ordered sets of cardinality x, which is equivalent to a similar statement con-
cerning complete ultrafilters on Boolean algebras. Finally, we shall reformulate
Martin’s axiom in terms of point-set topology.

Before starting, we must first review some basic concepts and notation.
Throughout, familiarity is assumed with the ordinal numbers; a good develop-
ment can be found in [6]. In particular, each ordinal is the set of its prede-
cessors, so that « < 3 4= a € 3. A cardinal number is an initial ordinal.
t.e., A is a cardinal iff it is the smallest ordinal a such that there is a bijec-
tion from a onto A; for a given set A, |4| denotes the cardinality of 4. i.e..
the smallest ordinal a for which there is a bijection from a onto 4. A car-
dinal A is called regular iff A is the smallest limit ordinal a such that there
exists a sequence {73 | # < a} of ordinals 73 < A with sup;., 75 = A: since
SUPsca 79 = sup(Ugcq 73), this is equivalent to the statement that A is the
smallest limit ordinal a such that there is a collection of sets {4, | J < a}

with each |45 < A and |J;, A3] = A

(%]
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For a given set 4 and a cardinal A, let [4]* denote the collection of all
cardinality-A subsets of A, let [4]<* denote the collection of all subsets of 4
with cardinality less than A, and let [4]5* denote the collection of all subsets
of A with cardinality less than or equal to \.

ZFC denotes the usual formulation of axiomatic set theory, which includes
the axiom of choice (cf. [6]). There is no proof of the consistency of 2FC. so
whenever § is a statement, the phrase “§ is consistent™ is taken to mean “if
ZFC is consistent. then so is ZFC + S". This is known as relative consistency,
and is standard in independence proofs.

The definitions for such terms as Lindelof, separable, regular, completely
regular, T, for i = 1.... 4 and so on will follow the conventions set forth in
[13]. and will be re-stated as necessary.

Now let us proceed with developing the necessary tools to study Martn's

axiom.

1.1 Definition. Let (P.<) be a partially ordered set. Then D ¢ P ix n dense
subset of P iff whenever r € P, there exists d €D with d = 1.
Two elements 2,y € P are called compatible Y there exinta 2 ¢ P oayely

that : <z and 2 < y. @

1.2 Definition. Let B be a Boolean algebra, with the binary operationa g
~. the unary operation ~. and the universal bounds 1 and 0
For r.y € B let us write 7 - v as an abbreviation for 2 0 oy and let s

define r <y r-y=09g



.
It is trivial to show that with this definition of <, (B,<) is a partially

ordered set, and
TSy & roy=r & T+y=y.

(It is also easy to show that z-y is the greatest lower bound, or infimum,
of {z,y}, and z + y is the lowest upper bound, or supremum, of {z,y}).
Henceforth whenever a Boolean algebra is spoken of as a partially ordered

set, 1.2 is intended.

1.3 Definition. Let (P, <) be a partially ordered set. A subset F C P is called
a filter on P iff
i) F#0
i)ifz,yeP,and <y, then ye F
iii) if z,y € F, then there exists z € F such that = <zand : <y.
Furthermore, if D is a collection of subsets of P. a filter F on P is called

D-generic iff for each D€ D, DNF # 0.9

1.4 Definition. Let B be a Boolean algebra. A set F C B is called a flter

on B iff

i) 1€F,0¢F

n)ifryeB,z€Fand z<y, thenye F



iii) fz.y€e F,thenz.yc F.

The usual definition of a filter is that a Rlter F over a set S is a collectién
of subsets of § such that
i) SeF
i) if X,Y€F, then XNYeF
) f X.YCS, XeF,and X CV, then YeF.

In addition, a proper filter F satisfies O ¢ F. This is, in fact, a definition
for filter on the Boolean algebra of all subsets of a given set S; we can then
think of 1.4 as a generalization of the concept of a (proper) filter to all Boolean
algebras. Similarly, via 1.2, every Boolean algebra u a partially ordered set, so
1.3 is a generalization of the notion of filter to all partially ordered sets.

Given a filter F on a Boolean algebra B, we say F is an ultrafilter 1f F
is maximal, i.e. F is not strictly contained in another filter. Then using Zorn's
lemma, we can easily show that any subset of B having the finite intersection

property is contained in an ultrafilter on . We also have, for a filter F oon B,

F is an ultrafilter = VIye€D, 14 y€F e EForyeF
s Vre D, either 1 For - e F

The proof of this statement is identical to the proof of the amilar atate.

ment for a filter as a collection of subaets of a given art.

1.5 Definition. Let B be a Baolenn algeben. 13 1a calied o camplete Pocleas
algebra iff for any subset X ¢ 51, sp X oand inf X eunt g chat rase, we pefer

sep X oan VX and to anf X as 1y
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Let B be a complete Boolean algebra, ¥ a collection of sets, F' an ultra-

filter on B. F is called X-complete iff X C F and X € X implies [[ X € F. W

It is not difficult to show that the deMorgan laws and the distributive

laws hold for the above infinite sum and product:

a-Y {ulue¥}=Y"{a-uluex}
a+H{u|u€X} =H{a+u|u€X}
-Z{uluEX} =H{—u|u€X}
~[{uluexy=Y{-uluex)
1.6 Definition. Let B be a Boolean algebra. A subset W C B is called a
partition of B iff it is pairwise disjoint (i.e. for z,y € W, z # y, we have
z-y=0)and ;W = 1. B is said to satisfy the countable chain condition
(c.c.c.) iff every partition of B is at most countable.

A partially ordered set (P, <) is said to satisfy the countable chain condi-
tion iff every pairwise incompatible subset of P is at most couﬁtable. That is,
- if W C P is such that whenever r,y € W are distinct, there is no z € P with
z<rand z <y, then |W| < N,.

A linearly ordered set (L, <) is said to satisfy the countable chain condi-
tion iff every family of disjoint open intervals is at most countable, where an
open interval is a set of the form (a,b) = {z€ L|a<z <b}.

A topological space (X, ) is said to satisfy the countable chain condition

iff every family of disjoint open sets is at most countable.



T

(\Note that’ thé cieﬁnition of c.c.e. for a ﬁnéﬁrly ordered set is exactly that
for a topological sbace, where we give (L, <) the order topology. This is done
because it is not useful to apply the concept of c.c.c. on a partially ordered
set to a linearly ordered set, since the latter has no incompatible elements.

Now we are in a position to state Martin’s Axiom.

1.7 Martin’s Axiom (MA). If (P,<) is a c.c.c. partially ordered set and D
Is & collection of less than 2R°dense subsets of P, then there exists a D-generic

filter on P. g

We can also think of Martin's axiom as the statement that MA, holds

for every x < 2%°, where MA, is as follows, for every infinite cardinal &:

1.8 MA.. If (P,<) is a c.cc. partially ordered set and D is a collection of at

most k dense subsets of P, then there exists a D-generic filter on P. g
MAy, is provable in ZFC and the proof follows.

1.9 Theorem.® Let (P, <) be a partially ordered set, D a countable collection

* of dense subsets of P. Then there exists a D-generic filter on P.

Proof. Let D= {D,,D,,...}. Choose z, € P. For each integer n, choose z,
such that z, < .1:,,...“1_ and z, € D,. This is possible by the density in P of each
D,. Now conSiéer the set F = {z € P|3n < w such that z > zn}. Since
Tn € FN Dy, for each n, it is easy to see that F is a D-generic filter on P.§
Thus since MAy, holds in ZFC, Martin's axiom follows from the con-

tinuum hypothesis. However, Martin's axiom does not imply the continuum



'l;yp'o'fhési‘s,y‘as there exists @ ;ﬁodel of ZFC%!112 in which Mﬁrﬁﬁ’s ﬁxi‘oﬁyxb hélds
and 28 > N;.* Mofe recéﬁt work2 has shown that it is possiblg for Maftin’s
axiom to fail, so Martin’s axiom is independent of ZFC.

Note that in 1.9 we did not even assume that (P, <) was c.c.c.; 1.10 below
shows that we cannot extend 1.9 to uncountable ordinals, that is, if MA is the
statement identical to MA, but not requiring (P, L) to be c.c.c., then MAL is

- false in ZFC for & > N,.

1.10 Example. Let P be the set of all finite sequences of countable ordinals
(i.e. all functions mapping a finite subset of w of the form {0,1,....n} into
wy). For z,y € P, define z < y whenever z extends Yy, t.e. dom(y) C dom(z)
and z|dom(y) = y. Easily (P <) is a partially ordered set. Now for each
@ < wy, let Do = {z€ P|ae€ran(p)}. Each D, is dense in P, for given
z € P, say z = (ag,0a1,...,ap-;), define y € P by y = (ag,ay,...,an_1,a).
Then y€ Dy and y<z.

Now setting D = {Dq | @ < w, }, we have |D| = N,, and there cannot
be a D-generic ultrafilter F on P, for if there were, we would get a mapping
f=UF of a subset of w onto w, (given n € |J,¢rdom(z), pick y € F with
n € dom(y), set f(n) = y(n); this is well-defined by pairwise compatibility of

F, and onto w;, since F' meets each D,, for each a < w) -8

Now we will show that MA, implies k < 2%; to do this it is sufficient to

show that MA,x, is false, which the next example does.



1 11 Example. Deﬁne P to be the set of all finite sequences of 0's and 1's
(whence the set of all functions mapping an initial sequence of w into {0,1})
and define “z < y” to mean “z extends y", as in 1.10. Clearly |P| =N, so P

is c.c.c. For each g € {0,1}%, let
Dy ={z € P|z is not extended by g, i.e. gldom(z) # z}.

Clearly each D, is dense in P, for given z € P,say z = (ag,ay,...,an-1), set
y = (ag,a1,...,a,) where a, #9g(n). Then ye Dy and y < 2.

Now setting D= {D, | g € {0,1}¢}, we have D] = 2%, If there exists
a D-generic ﬁlte-r FonP, then‘ form JF as in 1.10. We have dom(|J F) C w;
if dom(|J F) # w, take any g € {0,1}¥ extending UF; otﬁerwise, set g ={JF.
Now pick z € D,NF. ThenzeF implies z is extended by U F, whence by
g9, and z € D, implies z is not extended by g, a contradiction. Thus there is

no D-generic filter on (P, <), whence MA,x, fails.@§

Now we reformulate Martin’s axiom in two ways, one of which is in terms

of Boolean algebras.

1.12 Theorem.® Let x be an infinite cardinal, Then the following are equiv-
alent:

(a) MA,

(b) If (P,<) is a c.c.c. partially ordered set with |P| < x and D is a collection

of at most k dense subsets of P, then there is a D-generic filter on P.
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(c) KBisa complete, c.c.c. Boolean algebra and X is a family of at most
x subsets of B, then there exists an X-complete ultrafilter on B.

Proof. (a) == (c): Assume MA,. Let B be a complete, c.c.c. Boolean algebra,

and let X' be a collection of at most x subsets of B. Let P = B \{0}. For

each X € X, define
Dx={uEPl(u$HX) or (for some z € X, u-z=0)}.

Each Dy is dense in P, since for p€ P, if p < [1X, then p€ Dy and ?<p

and if p £ [] X, then

0#p- (~I1%) =p: (Lt-s12€x))
=Y (p(-2)|ze X}
Since “3°" means “sup”, there exists z € X such that p-(—z) #0. Thenze X
and (p-(-2))-z=0,s0 p-(-z) € Dx, and p- (—z) < p.

Then by MA, there exists a filter F on P meeting each Dx. But then F
is also a filter on B, and it is contained in some ultrafilter /. Now whenever
X CU and X € &, we have Ju ¢ U N Dy. Sinceu €U and X CU,u-z#0
for all z € X, so u € Dy implies u < [] X, whence [1X € U. Therefore, U is

an A'-complete ultrafilter on B.

(c) => (b): (For this step, we need to use the following result concerning
complete Boolean algebras, the proof of which can be found in [6]: for every

partially ordered set (P, <) there is a complete Boolean algebra r.o. P (unique
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up to isou;orphisn;) and a xﬁapping e:P—r1.0.P\{0} (called the canonical
embedding of P in r.o. P, although it may not be one-to-one) such that (for
T,y € P):

1) if z <y, then e(z) < e(y)
ii) z and y are compatible iff e(z)-e(y) #0
iii) {e(p) |[pe P} is dense in r.o0. P.
Note: a subset D C B of a Boolean algebra B is said to be dense in B
iff for every non-zero b € B, there exists a non-zero d € D such that d < b,
whence, iff D\ {0} is dense in B \ {0} in the sense of partially ordered sets.)
Now we assume that (c) holds, and we let (P, <) be a partially ordered set
with [P < k. Let B=ro.P, and let e: P — B be the canonical embedding.
Suppose that D is a collection of at most & dense subsets of B; then we claim
there exists an ultrafilter U on B that meets al DeD. Let ¥ = {Xp|De
D}, where Xp = {-z |z € D). Then by (c), there exists an X-complete
ultrafilter U on B. Now suppose that for some D € D, DNU = 0. Then
- since U is an ultrafilter, Xp = {~-z|lz€D} U, and since U is X-complete,

[IXpeU. But

I-IXD=H{—$|$€D}

=-2{zlzeD)

=-) D
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So =3.D € U, whence =3 D # 0, so there exists a non-zero d € D with

d< -3, D. Then we have

0=d~ED=Z{d;zlzeD}

whence d - z =0 for all z € D. Letting z = d, we have d =0, a contradiction,
so our claim is proved.

Suppose now that D is a collection of dense sets in P, with |D| < «.
Consider the sets e[D] for D € D, and e[E, ] for z,y € P, where

E;y={reP|(r<zand r<y)or (r is incompatible with z)

or (r is incompatible with y) }.

It is clear that e[D] is dense in B for each D € D, and we show that each
e[E:,y] is dense in B. It suffices to show that E,, is dense in P. Let p € P.
If p is incompatible with z, then p € E; ;. If p is compatible with z, then there
exists r € P with r <z,r<p. Nowif ris incompatible with y, then r € E, ,
_ and r < p. If r is compatible with y, then there exists r' € P with r' <y and

r' <r <z, whence r' € E;y and ' < p. Now
{e[D]IDE€D}U{elE; ] |z,y€ P}
is a collection of dense subsets of P, with cardinality less than or equal to

DI+ |PxP|<k+r*=xk
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whence by our claim ab;)ve, there exists an ultrafilter F on B meeting each
¢[D] and each e[E, ,]. Then setting F' = {z € P|e(z)e F}, we have that F'
meets each D € D and each E;y, for z,ye€ P. Then F' is a filter, for

i) F' # 0 since F' meets e[D].
i) 2€ F' and 2 S y = e(z) < e(y) and e(z) € F
= e(y)eF
= yeF'.
) 2, ye F' = 3z ¢ F'nE,,
= <z z<yand z € F.

So F' is a D-generic filter on P.

(b) = (a): Let (P,<) be a c.c.c. partially crdered set, and assume that (b)
holds. Let D be a collection of dense subsets of P, with |D| < x. Now we use
D to construct a set Q C P with Q] € «.

For each D € D, (by Zorn's lemma) let Wp be a maximal pairwise in-
compatible subset of D. Note that by c.c.c., [Wp| < R for cach D € D. Now
let Qo =U{Wp|DeD} Given @n, for each z,y € Q, such that .y are

compatible, choose an element Tey € P withr, <1z, rey Sy Now let
@n+1 =Qn U { Try | 2.y € Qn and z,y are compatible }

and Q= D Qn.
n=1

We note @ has the properties

(a) QI < &
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(b) WD CQ for each De D
(c) if 2,y € Q are compatible, then there exists = €EQ withz2<z, 2<y
(whence z,y € Q are compatible in P iff they are compatible in Q).

We show {a) by induction; (b) and (¢) are clear.

1@l =1 {J Wbl < D] sup [Wp|
DeD Dep

<ID|- R

If |Qn| < x, then
|@n+1] S 1@nl+ [{rz,y | 2,y € Qn are compatible }|
< |@nl + 1@n)?
Sk+x=«
Then |Q] = [Unc, @nl S No -k < .

Now each Wp is a maximal incompatible subset of Q: ifqe€eQis in-
compatible with each w € Wp, then choose d € D with d < q, and d is also
incompatible with each w € Wp, whence we can extend Wp (in D) to Wpu{d},
a contradiction. Since each element ¢ € Q is compatible with some w € Wo,

each set
ED"é-f{ququwfor some w € Wp }

is dense in Q. Then (@, <) and the collection {Ep | D € D} satisfy the

hypothesis of (b), whence there exists a filter F on Q meeting each Ep, D € D.



Letting
F'-_,{xeP[znyorsomeyEF},

we easily have that F' is a filter on P, and furthermore F' is D-generic since
€ FNEp = z< w, some we€WpCD
= weF' nD.g
Now we conclude this chapter with a reformulation of Martin's axiom in

terms of point-set topology.

1.13 Theorem. Martin's axiom holds iff in every compact Hausdorff c.c.c.

space, the intersection of fewer than 2%° dense open sets is dense.

Proof. In fact we will prove that if « is a cardinal with Ng < x < 28 then
MA, holds iff in every compact Hausdorff c.c.c. space, the intersection of «

dense open sets is dense.

[=]: Let (X,r) be a compact Hausdorff c.c.c. space, and D a collection of
dense open subsets of X, with [D| = x. Let V C X be a nonempty open set;
we need to show that VN (ND) # 0.

Consider the set ¥ = (U e r\@ | U NV # 8}, e, the collection of all
nonempty open sets in X that meet V. Y is partially ordered by set inclusion,
and it is c.c.c.. since any pairwise incompatible subset of Y is clearly a pairwise
disjoint collection of open sets in .X, whence at most countable. Now for each

DeDlet Yp={UeY |ClxUcDNnV }. Then cach Y} is dense in (Y, <)
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ifUe Y. then UNV is opén and nonempty, whence U NV N D is as well,
by density and openness of D in X. Then since X is compact Hausdorff, it is
regular, so there exists an open set W C X with 0 #FWcWclUnvnbD.
Then we have W € ¥p and W C U, as desired. |

Now since MA, holds, there exists a filter F on (Y, <) meeting each ¥p.
Now @ € F and F satisfies the finite intersection property, so if we choose
Up € FNYp for each D € D, then { Clx(Up) | D€ D} is a collection of closed
sets with the finite intersection property, so since (X,7) is compact, we have
NTp #0.

But Npen Uo CNpep(DNV) =V N(ND), so VA(ND) # 0, as desired.

[<=]: Given an infinite cardinal & with k < 2% let (P, <) be a c.c.c. partially
ordered set with |P| < &, and let X be a family of dense subsets of (P, <)
with |¥| < k. Now we form r.o. P, and let e: P — r.0. P be the canonical
embedding. Since r.0. P is a Boolean algebra, we can form the Stone space
. 8(r.0.P) of r.o. P, i.e., the space of all ultrafilters on r.o. P topologized by

taking the sets
V(@) ={ueS(ro.P)|la€u} for each a € r.0. P

as a base. It is well-known, and not difficult to prove, that S(r.o.P) is a
compact Hausdorff space. We show now that it is c.c.c. First r.o. P is c.c.c.,

for if W is a partition of r.o. P, then for each w € IV. choose r, € P with
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e(zw) < w; then {2, | w € W} is pairwise disjoint in P, whence |{zy | w €
W} =|W| < Ny. Now given a collection of pairwise disjoint basic open sets in
8(r.0.P), say {¥(a) |a€ I} for some I C r.0. P, then I is pairwise disjoint in
r.o. P (otherwise for a,b € I with a-b # 0, there exists y €ro.P witha€u
and b € u, so thﬁt u € ¥(a) N ¥(b)). Using Zorn's lemma, we can extend [ to
a partition W of r.o0. P, so |I| < |W]| < X,.

Now for each X € X, let
Dx ={u€S(ro.P)|e(z) € u for some z € X }.

Quite clearly each Dyx is open in S(r.o. P). Given a basic open set ¥(a) for
some a € r.0. P, we can choose z € X with e(z) < a. Then any ultrafilter on
r.o. P containing e(z) must contain a, and any such ultrafilter is in Dy, whenee
0 # ¥(e(z)) C ¥(a)N Dy, so each Dy is dense in S(r.o. P).

Now consider the sets
Ery={z€P|(:<zand :<y)or (zis incompatible with r)
or (z is incompatible with y)} for r.ye P.

We showed in the proof of 1.10 that each E,, is dense in ro. P. Then if we

let
D,,' - {U € S(r.o. P ! c(z) = u for some : € E:.v }'

using the same argument as for Dy, each D, is open and dense in Str.o P)

Then {D, , ir.ye P} u{Dy| X ¢ X'} is a eollection of open dense sets in
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S(r.0. P) with cardinality at most
|PxPl+|¥ =k+K=x,

so, since the topological version of MA, holds, (N, ep Dsy) N (Nxex Ox)
is dense in S(r.0. P), whence nonempty. Then there exists an ultrafilter u on

r.0. P meeting each Dx and each D, ,. Setting
F={zePlez)el},

we have that F' meets each X € X and each E,,,. Clearly if z € F and y2z,
then y€ F. Now if z,y € F, then there exists z € FNE,,, whence : <z and
z < y (we can't have z incompatible with z or y, since e(z), e(y) and e(z) are
all in some ult;&ﬁlter and z and z are incompatible iff e(z)-e(z) =0). So F is
an X-generic ultrafilter on P, and we are done.|§

Note that in proving that the topological version of MA,. implies the set-
theoretic version, we only used the fact that the intersection of fewer than
2% open dense sets is monempty, not that it is dense; thus we have that for
o € & < 2%, MA, holds iff in every compact Hausdorff c.c.c. space, the
intersection of x open dense subsets is nonempty. Since the complement of
an open dense -t is nowhere dense, and the complement of the closure of a
nowhere dense set is open and dense, via deMorgan'’s laws we have that for
No € & < 2% MA, holds iff no compact Hausdorff c.c.c. space is the union of

x nowhere dense sets.



2. Martm s Axnom and Topology

In thxs chapter, we present some results of Martin's axiom ui point-set top;)l-
ogy; we will also consider Martin’s axiom together with the negation of the
continuum hypothesis, abbreviated MA+-CH. Actually, these particular results
will hold if we assume MAy,, which is strictly weaker than MA+-CH, since
Ry < 2% and MA imply MAy,, and it has been shown'? that there is a model of
set theory in which 2% > N;, MAy, holds, but MAy, fails. We shall show that
MAy, implies the following: any compact perfectly normal space is hereditarily
separable, any first-countable c.c.c. compact space is separable, any product of
c.c.c spaces is c.c.c. As well, we shall show that whenever « is an uncountable
regular cardinal, MA, implies that every «-Sorgenfrey line has a normal square,
but is contained in a x-Sorgenfrey line whose square is not collectionwise nor-.
mal. (Then in particular, MAy, implies that every R;-Sorgenfrey line has a
normal square and is contained in an Ri-Sorgenfrey line whose square is not
collectionwise normal).

For the next result, recall that a normal space is one in which pairs
of disjoint closed sets can be enclosed in disjoint open sets; a Ty space is a
T) normal space. By Urysohn’s lemma. X is normal iff whenever 4, I are
disjoint closed sets in X, there exists a continuous function [:X —T=[01]
with f(4) =0 and f(B)=1. A perfectly nor;nal space X is a T, space in
which whenever 4 and B are disjoint closed scts, thers exists a continyous

function f: X — I'with A = f~"(0). B = f-1(1). Equivalently. X' is perfectly

19
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n;)rinal iﬁ' X ish Ty and each closed set in X is o Gs set (;'.e. ‘the interséctioh
of a countable collection of open sets). Also, note that ﬁ closed subset ¥ of a
perfectl” normal space X is perfectly normal (closed disjoint 4, B C Y are closed
and disjoint in X; if f : X — I is a continuous function with 4 = £,
b= f=!(1), then consider the function f|Y'). Now we are ready for the next

theorem.

2.1 Theorem,!°

(a) If X is a perfectly normal compact space, then X is first countable and
c.c.c.

(b) i X is a compact Hausdorff c.c.c. space, and ) a regular cardinal with
No < A < 2%, then MA, implies that any family ¢ of open sets in X
with |G| = A has a cardinality-\ subfamily with nonempty intersection.

(c) MAy, implies that every compact perfectly ﬁonna.l space X is hereditarily

separable.

Proof. (a) First, suppose X is not c.c.c.; in particular, suppose {Uy |a < w, }is
a collection of pairwise disjoint, nonempty open sets (with Uy # Uy for a # ).
For each a < w, pick p, € U,. Let H = UQ—_TUQ\ Ua<w, Uai H is closed,
so (by perfect normality) it is a Gs set, so H = Mn<o Wn, where each W, is
open in X.

Clearly {pa }a<w, C X\H = Ur<u(-X\Wa,), so by a cardinality argument,
for some np < w, X\W,, contains an uncountable number of the Da's; t.e. there

exists ng < «w and an uncountable set M C w, with {Pa }aesr C X\ W,,. Now
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clearly {pa }aem is a net in the compact space .X; it therefore has a cluster

point z € X. But

z is a cluster point of {pg }aey => z € Clx ({ pa }aear) C U o

a<wi

Also z ¢ Ua<w1 Uq since if z € U, for some a < wi, then (since M C w; is
uncountable) there exists 4 € M, 8 > a; now there is no 3’ 2 3 with pgr € U,
(since Uy NUz = 0).

So we have z € m\ Uscir Ua = H =N, W, which is a con-
tradiction, for now each W, is a neighbourhood of disjoint from { p, }aeyr-

Now we show X is first-countable. Let z € X {z} is closed, whence G,
in X,s0 {z} =,, Gn where each G, is open. We can assume G,DG;D...
(if not, let Ga = G1NG2N...Gy). Let U; = G,. By regularity of X, given

Un, choose Upyy with z € Upyy C Un41 CU, NG,. Thus we have
UBwola DU D0;...0Un 2 Unps DUnsy...

'~ and {z} CMecuUn CNaeTn C Nn<o Gn = {2}, whence {r} = Mu<o Tn.
Now if we show that {U, }ncw is a local base at z, we are finished.

Let V be open with z € V. Now

X\VcX\{z)=xX\
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By compactness of X, there exists ny,...n; < w such that

k
N\veclJx\T)

=1

k
\.VNR».‘E V 2 ﬂﬁr:-= DTD Un

=1

where n = max{m,.,..ni }.

(b) By Zorn's lemma, let F be a maximal family of pairwise disjoint sets each
meeting less than A of the elements of G. By c.c.c., |F| £ Rg. For each F € F,
let Gr={GE€G|GNF #0}; now since |F| <Ny < A and lgp|'< A for each
F € F and A is regular, we have
H{GeG|GNF #0 for some FeF} < lfl-;g}})_l‘]pl
< |F]-A
<SNp-A=A,

Since |G| = A, there exists a nonempty G € ¢ with GNF = 0 for each F € F.
- Then G ¢ F, but G is open and disjoint from all F € F, so by the maximality
of F, G meets A elements of §. Also, GNF =0 for each F € F (otherwise
r € GNF implies F is a neighbourhood of a point of G, which implies FNG # §)
so by the same argument as that used for G, any nonempty open subset of G
meets A elements of G.

Clearly G is compact. Since G is open in .X, any set open in the relative
topology on G is open in X; therefore G is c.c.c. Now G is dense in G, both

in the topology of X and in the relative topology on G. Given any collection
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of nbnémpiy disjoixﬁ épéh sets in G, fo&n the infersection bf each with G;
the result is a pairwisg disjoint collection of nonempty open sets in G, so the
collection is at most countable. Thus G is compact, Hausdorff and c.c.c.

Since |G| = A, write § = {Gq | a < A} where the map a — G, is a
one-to-one map of A onto ¢. For each 8 < A let I?;) = Uka(,\ Ga, and let
Hsy = Hsn@G. Clearly each Hy is open in G; we claim it is dense as well. Let
W C G be nonempty and open in G; then W =W NG where W is open in X.
Consider W’ﬂG’; this is open in X and WNG C G, whence W D W NG meets
A elements of G. Therefore it must be the case that W n (Uscacar Ga) # 0. or
else W would meet at most each G, for a < B, which (since S+ 1 < A) is less
than A elements of G.

Now by MAx, Ngca Hs # 0. Let z € Ny y Ha C Ngcs Hs. Then z €
Us<a<a Ga for each 4 < A. By transfinite induction, we will find a strictly
increasing sequence {a, | ¥ < A} with ay < A and r € G,, for each v < A\;
having done so, we will have finished, since {Ga, | ¥ < A} is a cardinality-A
subset of ¢ with nonempty intersection.

1) Given ay with ay < A and z € Ga,, we have z € Ua, cacar Ga, so let

ay4+1 be the smallest ordinal a with a., < a and ¢ € G,.

i) Let v < A be a limit ordinal, and suppose we have as with r € G,,
and as < A for each'§ < v. Then A is regular and v < A, so letting

B=sup{as |6 <A}, wehave 3<\. If re G, let a, = 3; otherwise

2 € Usca<a Gay 50 let a, be the smallest ordinal a > 3 with z € G,



(c) Let X be compact and perfectly normal. Suppose there exists a non-
separable subset Y C X; then for any sequence of distinct points {z, | n <
w}, we have {Zy, fncw # Y. (Also, clearly z, & {Z; Ji<n for each n < w).
Given B < wy, the sequence {24 }acs is countable, so choose 3 with z5 €
Y\ {za Ja<a; by transfinite induction we have a sequence {Zq }a<w, With
T5 & m for each 8 < wy. Lef X = m; X is closed in X,
so it is compact and perfectly noi'mal, whence by (a), X is c.c.c. and first-
countable (and Hausdorfl as well). For each 8 < w,, let Gs =X\ m;
now {Gg | B < w1} is a strictly decreasing cardinality-R; collection of open
subsets of X. Since we are assuming MAy,, by (b) there is a cardinality-R,
subfamily with nonempty intersection, i.e. there exists a strictly increasing se-
quence { By }y<o, and z € X with z € Na<w, Gs,. But then since { G, Yacw, is
strictly decreasing, we also have z € Ns<w, G- We will show that this implies
z has no countable local base (which contradicts (a), so we will have finished).
Given an open neighbourhood U of z in X, since {z3}s<u, is dense in X,
there exists zo € U N {25 }g<ur, 50 U & Gas1, so U is a subset of at most
each Gg for f < @ +1, i.e. a countable number of elements of . Then via a
cardinality argument, there is no countable collection &/ of neighbourhoods of z
éuch that each Gy for A <w; is a superset of an element of {{.§§

Note that 2.1(a) is a theorem of ZFC.
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The é.fgﬁméqt used in 2.1(c) can be used to prc;ve aﬁéther result about
separability. For this, we need the concept of density of a topological space§
if (X,7) is a topological space, we define the density of X to be d(X) =
Ro -min{[U| |U C X and U = X). |

2.2 Theorem.” If MAx, holds, then every compact Hausdorff c.c.c. first-

countable space is separable.

Proof. Let X be a compact Hausdorff c.c.c. space; we must show d(.X) = N,,
or, equivalently, we must show that d(.X) =X, and d(X) > N, are impossible.

Suppose d(X) = R;. Then we have a dense subset {za | @ < w; }; without
loss of generality, we can assume z3 ¢ {Za Ya<a for each B < wy. (If this
déesn’t hold, then for each 8 < wy, |{2a }acsl < No < d(X), s0 {za Jucg # X.
whence {zq}acu; € {Za Ja<s ; let ag = min{y < wy | 24 ¢ {Za ta<a }-
Setting ys = z,, for each 8 < w;, we have a dense subset {vs taco, of X
with y, & {—y—g—}',_;_<;). Now the situation is exactly the same as it was in the
proof of 2.1(c); our sequence {z, Ya<w, With 25 & {4 Ja<a, which is dense in
a compact Hausdorff c.c.c. first-countable space, gives us a contradiction, via
MAy,, as in 2.1(c).

Now suppose d(.X) > R, (whence d(X) > Rg); we will find S C X such
that S is c.c.c. and d(S) = |§] = N,. (In fact, this is a special case of the

theorem” Y(X) = o and d(X) > a = 35 C X with e(S) € ¢(X) and
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|S] = d(Sj = a'*. whére for any topological space X, _i(«‘f) is the characfer
x(X) = ;“e“\)’ (nﬁn{l&( | | 4 a neighbourhood base at x})
of X and ¢(X) is the cellularity
e(X) =R -sup{|U| |U is a pairwise disjoint open collection in X}

of X. Replacing, respectively, all occurences of ¥, (sometimes w) and w; with
a and a* in the following argument provides a proof of the theorem.)

For each z € X, take a,b neighbourhood ba;se Ur at T, where U, = {U, p |
n<w}. For every z,y € X and n,m < w such that Uen NUyn # 0, pick

Zznym € Upn MUy m. Given arbitrary 4 C X, define
A={zznym|2y€4, nmewand U, ,NU, . #0}.

By finite induction, deﬁné A° = 4 and A" = (4""!)". Now define Cl(4) %
- Un<o A™ whenever |4] < ¥ we have |Cl(4)] < Ro. (|4°] < Ry; if [4A™] < N,
then ‘ v
[AT <A™ x 4™ + lw x w]
<R+ R =R,

Then [Cl(A)] = |Uncy, [4"] S lw] - suppac,, 4™ < Ro - Ro = Ro.)

Using t;ansﬁnite induction, for each a < w, define 4, C X with |4,] < R,
as follows: choose any nonempt} set 49 C X with lA;,l < Wo; given 3 <

wy, if we have 4o for each a < 8 with 44 C X and |4,] < Ro, then set
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Bp = ClUa<s .‘i,). Now |Bs| < No and d(X) > Ny, so pick z3 € X \ By; set
4s ={z3}UBgs. Clearly |45 < Ry, so we have Aq for each a < w.

Set § = Uacw, 4ai now [§] < lwil + supyeo, l.ial S NNy = Ny, so
clearly d(S) < N;; if we show d(S) # No then we have d(S) =[S =N,. If
R C § and |R| = Wy, then for each r € R, let ar = min{a < «, Ire da )
setting 3 = Sup,gpar, we have § < wy, so R C 45 C Bs+i. Then since
T9+1 € X\ B3 +1C X\ R, R is not dense in §; thus d(S) # 8. Also, fromv'
our construction, nonempty basic open sets in S are disjoint iff they can be
extended to disjoint basic open s;ets in X (otherwise for z,y € §, U N U,;‘" #
0 = z;niym € Usn NS)N(UymNS)) so S is cc.e. Thus S has the desired
properties.

Now we shall use § to derive & contradiction. Since S is c.c.c. and dense in
S, S is c.c.c. Also any dense subset of § is dense in §, so dkg) <d(S) =N,. We
showed above that whenever X is a compact Hausdorff c.c.c. space, d(.X) # N,;
since S is a compact Hausdorff c.c.c. space, d(S) # Ny, whence d(S) = Ro; Let
. RC S be dense in 5, with |R| £ Rg. Now for each r € R U,.NS # 8, so pick
Trm € Urn NS. Then setting V, = {zrn|n<w), we have Vel < Ro. Setting -
V= UrerVrr we have V] < R| - sup,ep IVi] < o« No = Ro: also V is dense.
in § A(since TE S implies each basic neighbourhood U, , NS meets V' at Zrw)
contradicting d(S) = N,.

Thus d(X) =R, and d(.X) > R, are both impossible. @
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[77]

The next result concerning products of c.c.c. spaces is not provable in
ZFC, as it has been shown!? that the existence of a Souslin line implies the

existence of a c.c.c space whose square is not c.c.c.
2.3 Theorem.®!® If MAy, holds, then every product of c.c.c. spaces is c.c.c.

Proof. We will prove this theorem in two steps:
(a) If X =[],c4 Xa is not c.c.c., then there exists a finite B C 4 such that
[laes Xa is not c.c.c. (This holds in ZFC).
(b) MAy, implies that if X, ¥ are c.c.c., then so is X x Y.

(The theorem then follows from (a) plus finite induction on (b)).

Proof of (a): Suppose ¢ is a pairwise disjoint collection of nonempty basic open
sets in the space X =[] .. Xq, with [§] = N;. Thenlet ¢ = {Gala<uw}
where @ = G, is a 1-1 map of w, onto §. Now for each a < wp, there
exists a finite set F, C 4 with G, = nBEFa wEl(Uqg), where Uaa is nonempty
and open in X4 and 7 is the projection map of X onto Xz3. Now we claim
that there exists an uncountable set D Cw; and a finite set B C 4 such that
FoNFg = B for all @, € D. Since the G,’s are pairwise disjoint, we have
FoaNFg # 0 for each a,8 < w) (and each F, N Fy is finite). (If FanF3 =0,
then for o € 4, choose z, such that z., € U,y for v € F,, ry € Usy for v € Fy,
and z, € X, for y € A\ (Fa UF;). Then ¢ % (z, | v€ 4) € G, NG4.) So,
for each nonempty J € Fp, let (via Zorn'’s lemma) F; be a maximal subset of

w; such that



i) 0e Fs
i) Va,BEF, FanNFy=J.
Now each F, meets Fy in some nonempty set J ¢ Fy, so wy = Usgscr, Fii

thus there must be some J C Fy such that ¥ is uncountable (otherwise

=1 FIlSHII0#TC R}l max |7
V£ JCF,
= (2Fol — 1) . N9 = Wg)
SO setting D=F;and B = J, we see that the claim holds.
Now for each a € D,

aa=[ﬂw;‘(vaa)]n[ N rr;‘(Uaa)]
a

3el8 €F.\B
SO set

Ga= [ 75" (Van).
J€B

Now for a,a’' € D,

Ganca,=éané,,n[ N x;‘(Ua,)}ﬂ[ N rr.:'(U,,.,)]
1E€EF,\B 1€F,\R

= [ﬂ ”;l(Ua“InU"")Jn[ n x;l((/-a’)] n [ ﬂ n:’(U,,..,)].

¥€8 YEFL\D YEF,\D
Since B, F, \ B and F, \ B are disjoint sets (because F, N F,. = B), if
GaNGy =0 then UyyNUpyy =@ for some v € B (otherwise for each + € A.
choose z, such that z, € Uy, NV, for v € B, 24 € Uy for v € (F,UFy)\ DB,

r, € X, for each v€A4 \ (F, U Fy), and we have r ' (r,)en € G,NG,).
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Thus {6, |a € D} is an uncountable pairwise disjoint collection of none!nj)ty

basic open sets in [],cp Xa, whence [] e Yo is not c.c.c.

Proof of (b): Let G be a pairwise disjoint collection of nonempty basic open
sets in X x Y. Suppose G is uncountable; we shall then derive a contradiction.
Write § = {Uxa xUyq | @ < w; }, where Uxq and Uy, are nonempty and open
in X and Y, respectively, and a — Uxq X Uyq is a 1-1 map of w; onto ¢ (if
6] > N, take § € ¢ with |G] = ¥;).

IfF ={Uxa | a <w}is countable, then for some a < w1, Fux, dof
{Uys | Uxa x Uys € @} is uncountable, otherwise ¢ = Uve,er{Uxa x Uys |
Uys € Fuy, } implies ¥y = |G| < |F]| - SUPgcuy [FUxal € Ro - Vg = Ng. Then

since Y is c.c.c., there exists distinct Uysa,Uyy € Fuy, with Uys N Uy, # 0:

choosing zx € Uxq, zy € UxsgNUx+, we have
z = (zx,2y) € (Uxa x Uyg) N (Uxa x Uy,),

a contradiction. Thus {Ux, | @ < w; } is uncountable.
Now recall that a set U is called regular-open iff U = Int(CI(U)); equiva-
lently, U is regular-open iff U = Int(Cl(V)) for some set V. Given a topological

space X, let R(X) be the set of all regular-open sets in X. It is known that
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if we deﬁnei
U.V=Unv

U+V=Itx(Clx(UuV))

=U =Intx(Clx(X\U))

then R(X) is a Boolean algebra (in fact it is complete with

Y A= Intx (Clx(|J A))

for each 4 C R(X)). Now for our space X. let Sy = § (R(X)), the Stone space
of R(X) (recall that W(U) = {p€ Sx | U € p} is open in Sy = S(R(X)) for
each U € R(X)). For each Uy,, let Uka = Intx Clx(Uxa); consider Y[F def
{YU%s) | @ < w1 }. We claim U[F*] is uncountable; in fact, the mapping

Xa = Y(U%,) is 1-1, since V(Uka) = W(U%s) implies that for u € Sx.

'Xa €u &= Utz €y, so by considering the principal ultrafilters

Uta € (U eRX) | UL, <U}

Usa €U eRX) | UL, <U)

we see that Uta SU%s < Uy, whence Uka =Uls Soif {Uy, |a <)
is uncountable, then ¥[F*] is as well; now since Sx is compact, Hausdorff and
c.c.c, by 2.1(b) there exists an uncountable subset of V[F*] with nonempty
intersection, so there exists an uncountable set D C w, with Naen VUL, #0.
Choose u € M,¢p ¥(U%,). Now Uta €uVa e D, sol'y N Uy #0 =

UxaNUxys #0 Va,3 e D.
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Now if Uya # Uys for all distinct a,8 € D, then {Uys |a €D} is
uncountable, whgnce (by c.c.c.) not pairwise disjoint, so there exists distinct
a,8 € D with Uyqa NUys # 0. On the other hand, if Uy, = Uys for some
distinct o, 8 € D, obviously UvaNUys # 0. Now by choosing zx € Uy, N vxa

and zy € Uyq NUyg, we have
L2 =(zx,2y) € (Uxa X Uyq) N (Uxs x Uyyg),

a contradiction.

The above argument assumes { Uke | @ < wy} is uncountable; if this is
not the case, then for some a < wj, the set D, = {4 < wi | Ugg =Ugxgy ) is
uncountable (since {Uxq | @ < w1} is). Now set D = D,, and use the same
argument as above. [

Note that whenever a product is c.c.c., each factor is c.c.c., because it is
the continuous image of a c.c.c. space (using the projection maps). Also note
that by 2.3 and the comment preceeding it, the statement “whenever X and ¥
- are c.c.c. topological spaces, so is X x Y” is independent of ZFC.

Martin’s axiom also has some consequences in terms of normality. Recall
that the Sorgenfrey line E is the real line, topologized by taking the intervals
[z,y), for 2 < y, as a local base at z. The Sorgenfrey line was originally
constructed to give an example of a paracompact (whence normal) space whose

square is not normal. It is very interesting, then, that Martin's axiom implies
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that any cardinality n (for g < 5k < ‘2"") subspace S of E (called a n-Sorg_enﬁey
line) has normal square.

2.4 Theorem.>!® x > Ry and MA, imply that the square of a k-Sorgenfrey

line § is normal.

Proof. Let H, K be disjoint closed subsets of S = §x§. For z = (21,23) € §?
and n < w define U,(z) = [z1,21+ 1) x [25, 72+ L); then {Upn(2)NS? | n < w}is
a local base at z. For the rest of this proof, let U denote Clg:(U) and let “opén

~ (respectively closed, compact) in R?” mean “open (respectively closed, compact)

in the usual tolopogy on R%.” Now clearly Uy(z) = [21, 21+ L] %[z, z2+1]; thus
Un+1(2) C Un(z) for each n < w, z € S?. Also note that if U C §? is open
(vespectively closed) in R3?, it is open (respectively closed) in the Sorgenfrey
topology on S°.

For each z € HUK, let

J ={{n<wlUngz)ﬂK=0} for z € H;
* {n<w|Un(z)NH=0) for z € K.

If z € H, then z ¢ K with K closed, so for some n < w, (Un(z)N S?) N
K=Uaz)N(S’NK) =Un(z)NK =0, 50 Upyy(z) N K = 0. Thus J. #0
for each z € H U K (the same argument holds for z € A). In fact, each
Je=w\{1,...,n} for some n < w.

Let P be the set of all functions f from a finite subset of HUR into w

such that z € (dom f) N H and y € (dom f) N K implies f(z) € Jy. f(y) € J,,

and Uy(z)(2)NUyy)(y) = §; by Hausdorffness of R? and the fact that Unsi1(2) C



U..(z) a,nd the usual topology on R2 is weal\er than the Sorgenfrey topology
on Rz, we can construct examples of such functions, so P # . Define f < ¢
whenever f extends g, i.e., whenever (dom f) o (domg) and f|(domg) = g.
Then (P, <) is partially ordered.

Foreach ze HUK,set X, ={feP|ze dom f}. Now we claim each
X: is dense in (P,<). Without loss of generality, assume z € H; then there

exists ng € w with Up (2)NK =0. Let (dom f)NK = {v1,.--yym}. Then

3ny such that U, (2) N Uy, (n1) =

3ny such that Un,(z) N Uy, (y2) = 8

3nm such that Up, () N Uy, ) (Ym) = 0.

Set n = max{no,...,nm}. Define ¢ € P with domg = (dom f) U {z} by
9(z) & n, gl(dom ) %' . Then g < f and g € X,, so X, is dense as claimed.
Also, [{X; |z € HUK}| = [HUK| < |S?| = x* = x. Thus if (P,<) is
c.c.c.,, then by MA, there exists a filter F on P meeting each X,. For each
X €E€HUK, let f, € FNX,. Then the collection {f, |z € HUK } is pairwise
compatible, so setting f(z) = f;(z) for each z € H U K, we have that fisa
function on all of H U K such that ¢ € H, y € K implies Uy, N Ugyy = 0.
Then U % §% 1, ¢ Usis)(z) and V % $20 U, Uyiy)() are disjoint open
sets with H C U7 and K C V; thus S? is normal.

It remains to show that (P, <) is c.c.c. Let @ C P be uncountable; we shall

show that Q has an uncountable subset pairwise compatible in P. By a series



éf co;ntxné #rgﬁinénts, there évzsts an uncountable subse£ Q' C @ and integers
k and ! such that the domain of each f € Q' has e‘cactly k elements f),..., /¢
in H and ! elements fi41,..., fi+; in K, and furthermore f(fi) = g(g;) for each
1€ {1l,....k+1} and f,g € Q'. Set n; = f(fi) for i =1,...,k +1 and any
feq@.
Now we claim that for each f € Q’, there exists open sets U, V in R?
with (dom f)NH Cc U, (domf)NK C V and whenever €U and y € V,
:‘=1 Uni( z)ﬂUff,:,H Uni(y) = 0. Then let ¥ be a countable base for the usual

topology of R?; for each U,V € U, set
Ryv={feQ'[(domf)NH CU, (domf)nK CV}

whenever for z € U and y € V, Uleﬂ Uﬁ_‘f’:+l Un(y) = 0, and set
Ruyv = @ otherwise. Now (assuming that the claim holds) each f € Q' is
contained in some Ry,y; as well, each ‘Ru,v is pairwise compatible in (P.<).
If each Ry v is at most countable, then ¥ = 1@ = Uy vewsy Ruv] < R, a
contradiction; then some Ru,v is uncountable, so it is an uncountable subset of
Q pairwise compatible in (P, <), as desired.

Now we must prove our claim. Let f € Q' and choose any i € {1,..., k}

and j € {k+1,...,k+1}. Now since Uni(£i) and Uy, (f,) are disjoint compact

sets in R2, the distance between them is positive, i.e. d ' d(Ua, (i) Un,(f,)) !
sup{ |z -y lzel.(f), ye Un,(f;)} >0 where |- is the usual norm in R2.

(This must hold, for if d = 0. then for each n < w, choovse r, € U, (f,) and
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' y,. € U.,,(f,) W1th llz,. y,.ll < 1/(2"). Now by compactness, choose convergent :
5“bsequences (znm)nl(w and (Y, )mecw of (Tn)ncw and (yn)n<w respectively,

say Tn,, = T € Um(fi) and Ynm —m VY E Un;(fj)' Now (zn, - Ynm) = 0 =

g=y = Up(fi)NUn;(f;)# 0, a contradiction.) Now set U = {z € R? I

lz = fil <d/2} and V = {z € R? | Iz - il <d/2}. Now for z € U and yev,

Uni(2) N Un;(y) = 0, otherwise z € Un,(z) N Uy, (y) implies z - z + f; € Un (7)),

-+ f;€ Unj (fj)v and

c=2+fi)=(z=z+fl=1fi-z+y-fil

Slfi‘zl'*‘ly fi
d d
<ztz=d

contradicting the definition of d. Thus for each i € {L,...,k} and j € {k+

l,...,k+1}, there exists open neighbourhoods V; and Vi in R? of f; and f,

respectively, such that z € V;, ye V; = Uni(2) N Uy, (y) = 0.
We will prove the claim by strengthening the above result. Let i €
{1,...,%k} be fixed; for each j € {k+1,...,k+1}, let Vi; and V; be open

neighbourhoods in R? of f; and fj, respectively, such that for z € Vij and

Y €V, Un(2) NUn;(y) = 0. Now set U; = ‘2!, Vi and V; = UiZee Vis

then 5: and f7. are open sets in R? with f; eU.-, (dom f) N K C f', and for

z € U; and y eV, Uni(z) N Un;(y) = 0 for each j € {k+1,...,k+1}. Now
construct U; and V; for eachi€ {1....,k}. Let U=Uf=laand V=[]f=llf

then U and V" are open in R? with (dom f)NH C U, (domf)NK C V, and



Tl = 0 for all 2 € 1, VEV,ie{l... .k} and]e (k41 k4],
so tile claim is préved.l
We can éhow that under MAy,, there is a x-Sorgenfrey line whose square
is not collectioﬁwise normal. First we show that E is hereditarily Lindelof;
the proof is identical to the proof that E is Lindeléf. Let X ¢ E, and let
U be an open cover of X in the relative toi)ology on X inherited from E.
For each z € X, choose U, € & with z € U,, and choose b, > z such that
[2,b:)NX CU. Let 4 = Uex(2,b:); now this a cover of 4 by sets open
in R, and R is second-countable, whence hereditarily Lindeléf. Therefore there
exists a countable subset { z; |i € w} of X such that 4 = Uieo(ivbe,). Now if
z,y € X'\ 4 are distinct, then (z,b:)N(y, by) = B, otherwise z € (v, by) = z €
A,ory€(z,b;) = y€ A Each interval (z,b;), where z € X\ A4, contains a
rational; therefore, X \ 4 is countable. Then {Uslz€ X\A) is a countahle
subcover of U for X \ A, and {Ug; |t € w} is a countable subcover of U for
AN X. The union of thése two collections is then a countable subcover of U
for (X\ 4)N(ANX) = X, 50 E is hereditarily Lindeldf s claimed. Now if E
is not hereditarily separable, then it is a ﬁrst-counta‘blé T, hereditarily Lindelof
non-hereditarily separable space; in chapter 3, we shall see that MAy, implies
that there is no such space. Thus (assuming MAw,) if ST CE then S x T
is separable; but E? js not hereditarily separable since {(z,-z) |z ¢ E} is an

uncountable discrete subspace.



Nﬁw recall that a topologxcal space X is called collectwnwue ﬁérmal iff
X isT a.nd for every discrete family {F; |ie I} of cloaed sets there exists a
discrete family { G |i € I'} of open sets with Fi€G; for eachi€l. A family
of sets is called discrete iff every point ¢ € X has a neighbourhood meeting at
most one member of the family.

Now if § is a x-Sorgenfrey line, then so is §' %< § U{-z|2z€ 8} The set
{{(z,=2)} | z € §'} is easily an uncountable discrete collection of closed sets in
S’ , there cannot be a discrete family of open sets § with each (¢, —z) contained
in some G € G, because such a family would be an uncountable pairwise disjoint
collection of open sets, contradicting separability of (8')%. Then (S")? is not
collectionwise normal. |

To summarize, then., if x> Ro, then MA, implies that the square of any
x-Sorgenfrey line is normal, and MAy, (which is weaker than MA,) implies
that any x-Sorgenfrey line is contained in one whose square is not collectionwise

normal.




3 Martin’s Axiom #nd S- #hd L-séaces.

In this chapter, we will present some results concerning the existence of S- and
L-spaces' under MA+-CH (actually under MAy,, as in chapter 2). Specifically,
we shall show that under MAy,, there are no strong S- or L-spaces, no compact
S- or L-spaces, and no first-countable L-spaces. We shall also show that it is
consistent with MAy, that no S-spaces exist. It is, however, consistent with
MAy, that first-countable S-spaces exist!, and that L-spaces exist'®; it is not
known whether it is consistent with ZFC that no L-spaces exist, or whether
there exists an S-space iff there exists an L—spacé.

Recall that a space is called separable iff it has a countahle dense sub-
set, and Lindeldf iff evéry open cover of the space hé.s a countable subcover;
a space is hereditarily separable (respectively hereditarily Lindelof) iff every
subspace is separable (respectively Lindeléf). Historically, the question has
arisen,“Are hereditarily separable and hereditarily Lindelsf different from ench
other?” There are we_ll-known examples'? in ZFC of spaces that nfc separ:\blé
but not Lindeléf and vice-versa, and in fact there js an example! of a Hausdorff
space that is hereditarily separable and not hereditarily Lindelof, and a Haus-
~dorft space that is hereditarily Lindelsf and not hereditarily separablet. Thus
the question is interesting only for T, spaces, and with this thought in mind,

we form the following definition.

3.1 Definition. An S-space is a topological space which is Ty, hereditanly

separable and not hcredit#rily Lindclof.
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- Au Lapace is a topologxcal sé@ce whxch is Ts, hefedifa;riiy Lindeléf aﬁd
not hereditm"ily sepéxable.l

"“he obvious question is, of course, do §- or L-spaces exist? In fact, there
have been constructions of such spaces using the negation of Souslin’s hypothesis
(i.e., the existence of a Souslin line), the continuum hypothesis, the combina-
torial principle ¢ (which is stronger than CH) and forcing methods, which, it
turns out, are ruled out by Martin’s axiom and/or MAy, (as are, obviously, the
methods using CH, the existence of a Souslin line, and Q). The question arises,
does Martin’s axiom or MAy, destroy S- and/or L-spaces? In this chapter, we
shall show that MAy, does destroy S- and L-spaces that have certain additional
properties, as mentioned above.

It should also be mentioned that an S-space is often defined as T3, hered-
itarily separable and not Lindelsf (similarly for Lfspa,ces). It is clear that this
type of S- (respectively L-) space exists iff an S- (respectively L-) space of the
type in 3.1 exists; however, 3.1 is more useful in some ways, e.g., with 3.1 it is
possible to discuss compact S-spaces. |

In order to discuss the existence of S- and L-spaces, we will need to derive
the canonical form for these spaces; in order to do this, we need the following

definition and theorem.

3.2 Definition. A topological space X is called right separated (in type ) iff
it can be well-ordered (in type ) so that every initial segment is open, i.e.,

X={z4s|a<x}and {z4]a<B}is open for each 8 < k. Similarly, X is
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é#iled left .sepam;ed (in iyi)e ;c) iff X can be well-ordered (in type &) so th#t
every initial segment is closed (equivalently, every final segment is open, i.e.,
X ={2zq |a <k} and each {2a |a < B} is closed, for 8 < & (equivalently,

each {a:ﬂaEﬂandaEx}:{x“aEx\ﬂ} is open, for A < .

3.3 Theorem.® A space is hereditarily separable (respectively hereditarily Lin-
deldf) iff it has no uncountable left separated (respectively right separated)

subspace.

Proof. [ =] 1 X = {24 |a<uw } is an uncountable right separated space
(with the given well-ordering of X), it is clear that the open cover {{z, |
a< f} | A < w;} has no countable subcover, since w; is not equal to the
union of a countable collection of countable ordinals; thus .X is not Lindelof. If
X={za|la<u} is left separated (with the given well-ordering of X), then
any dense subset of X must meet each {zq |a €w \ A} for A < wy, making it

uncountable; thus X is not separable.

[<]If X is not hereditarily Lindeldf, then there is a subspace ¥ of X for
which some open cover & has no countable subcover. By transfinite induction,
construct a sequence {U, | a < w; } of elements of U such that for each a < wy,
UaN(Y\Ugeq Us) # 0: given a <wy, {Us|f < a } does not cover Y, so let U,
be an element of & meeting ¥ \ Usca Us. Now setting Vv, = Usca Us for ench

@ < wi, we have that {V, | a < w, } is a strictly increasing sequence of open
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seﬁs, so éxckmg Ty e V.,+1 \Va for each a< @, w;/e have that {:1:.ar | a< w; } is
an uncountable right separated subspace of X.

If X is not hereditarily separable, then there is a subspace Y of X that
has no countable dense subset; as in the proof of 2.2, by transfinite induction
construct a sequence {7a | @ < wy} of points in ¥ such that z, ¢ Cly{zg |
B <a}. Then {zq|a <w;} is an uncountable left separated subspace of X. W

Now, from the definition of S- and L-spaces, and from 3.3, we have that
every S-space contains a right separated subspace of type w;, and every L-
space contains a left separated subspace of type w;. Furthermore, it is now
clear that a T3 right separated spa,cé of type w; is an S-space iff it is hered-
itarily sépamble iff it has no uncountable left separated subspace iff it has no
uncountable discrete subspace. The last “iff” holds by the following argument:
if X ={zq|a<w} is right separated, then a discrete subspace of X is left
separated in the induced order. On the other hand, if ¥ = {yg | B < w; } is
a left separated subspace of X, then each ys € {zq | @ < wy }, so for each
B < wy, there exists ag < wy with yg = 2,,. Now let zp = yo = Tqo- Given
{24 |7 < 6} for some 6 < wy, with each z, = Y8, = Tap,, let 25 = ys, = 2q, ,
where B, is the smallest ordinal such that z, < Y8, = ZTa,, for each v < 6.
Then {2z | § < w} is a svubspace of X left separated (in type w;) in the
well-ordering induced by ‘the well-ordering of X; therefore it is an uncountable
discrete subspace of X. Easily, a similar argument yields a dual statement for

L-spaces, so we have just proved the following:
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- 3.4 Theorem.® A T; right separated (respectively left sepa.mted) space of type
wy is an S-space (respectively L-space) iff it has no uncountable discrete sub-

spaces. |i§
Now we are ready to derive the canonical form of S- and L-spaces.

3.5 Theorem.? (Canonical Form)
(a) Every S-space has a zero-dimensional subspace which is right separated in
type wy, and hence also an S-space.
(b) Assume ~CH. Then every L-space has a zero-dimensional subspace which

is left separated in type wy, and hence also an L-space.

Proof. Siﬁce an L-space is regular and Lindeltif,‘ it is normal, whence completely
regular. Also an L-spabe has a left separated subspace {zq | a < w; }, so each
point z5 in this .subspé,ce has a neighbourhood (in the subspace) {z, | o €
wi \ B} of cardinality < Wy; assuming ~CH we vhave that every point has a
neighbourhood of cardinality less than 2%,

Now any S-space has a right separated subspace {z, | a < w, };»this
subspace is then locally countable, i.e. each point has a countable neighbour-
hood. Now any regular locally countable space X is regular: a regular count-
able space is Lindeldf, whence normal, whence completely regular. If F is a
closed set in X not containing z, then let U be a countable neighbourhood of
T missing F. Then by regularity, there exists an open neighbourhood V of 7
withz € V.CV cU, and since U is a gountablc regular space, it is completely

regular, so there exists a continuous function f:U — [0,1] with f(z) = 0,
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(U\V) =1. ’I‘hen extend f to X by deﬁmng f(X\U) = 1 then f(X\V) =1
as well Now for a € (0,1), f"’(a,l] (X\V) u (f“(a, 1N U) is open in X
and f-1[0,a) is open in U, whence in X; thus f:X — [0,1] is continious
and f(z) =0, f(F)=1,s0 X is completely regular as claimed. Then a right
separated subspace of an S-space is a completely regular space in which each
point has a neighbourhood of cardinality less than 2%,

Now we can prove (a) and (bj simultaneously by proving the following: a
completely regular space in which each point has a neighbourhood of cardinality
less than 2% is zero-dimensional. Let X be such a space, ¢ € X, and U an open
neighbourhood of ¢ with [U| < 2%, It suffices to show there exists a clopen
set containing z and conta.ined‘ in U (since obviously any neighbourhood of
contains such a neighbourhood U of ). Since X is completely regular, there
exists a continuous function f: X — [0,1] with f(z) =0, F(X\U)=1. Now
Ul < 2% =(0,1)], so there exists v € (0,1)\ f(X). Then f~1[0,r) = F7Ho,r)
is a clopen set containing z, and it is contained in U since f(X\U)=1 =
UDX\f'(1)> fo,r.m

We will always be able to apply (b), since we will work under the assump-
tion MAy,, which implies ~CH; however, Hajnal and Juhdsz® proved that CH
implies the existence - a zero-dimensional L-space. This fact together with 3.5

shows that we can always use the following result, independent of CH:
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3.6 Theorem.® (Canonical Form)
‘There is an S-space (respectively L-space) iff there is a zero-dimensional-

one right (respectively left) separated in type «1.8

But note, however, that there is not ezactly a duality here. Unless we
explicitly assume -CH, all we can say with certainty concerning L-spaces is
that each one contains one which is left separated in type w;, and there exists
a zero-dimensional one left separated in type wy; we do not know that every
L-space has a zero-dimensional subspace left separated in type w;.

In addition to the above tools, we will need to use Martin’s axiom in a
form which slightly easier to apply in order to discuss strong S- and L-spaces

and first-countable L-spaces. Thus the following definition and theorem.

3.7 Definition. Let (P,<) be a partialiy ordered set, () a subset of P. Then
@ is said to be centred in P (or in (P, <)) iff for any finite subset {q,,... +qn }
of @) there exists p € P with p<gqiforeachi=1,...,n; p is called a lower
bound for {q;,...,q,}. Q is called mazimally centred in P iff it is centred in

P and not strictly contained in any other centred subset of P.|g

The idea is that we want to prove an analog of 2.1(b) for partially ordered
sets; the way to do this is to construct an analog of a Stone space for partially
ordered sets. The construction S(r.0. P) does not work, because although p < ¢
implies ¥(e(p)) C ¥(e(q)), the converse (which, it turns out, we need to use) is
true iff (P, <) is separative (cf. [6]) where (P, <) is called separative iff whenever

p £ q, there exists an element r < p incompatible with q.



On the other hand trymg to work w:th the collectmn of all the ultmﬁlters B
on P doesn’t work elther ¥ we deﬁne an ultraﬁlter on P to be a filter on P! |
not strictly contauned in a.ny other filter on P, then it is not dlfﬁcult to show
that U C P is an ultrafilter iff U is maximally centred in itself, where we define
a set @ C P to be cenired in itself iff each finite subset of @ has lower bound
in @, and define Q to be mazimally centred in itself iff it is centred in itself
and not strictly contained in any other subset of @ centred in itself. It turns
out, however, that in developing the Stone topology on S(B), the set of all
ultrafilters on the Boolean algebra B, it is necessary to use the fact that any
subset of B with the finite intersection property is contained in an ultrafilter.
This prdperty does not hold for partially ordered sets, since a set maximally
centred in itself need not be maximally centred.

However, it is obvious that (via Zorn's lemma) any centred set is contained
in a maximally centred set, so we can attempt to construct S(P) by considering
maximally centred subsets of P. Also note that if U is such a set and P=9q

. for some q €U, then {p} U U is also centred, so peU.

3.8 Lemma. Let A be an uncountable regular cardinal, (P, <) a c.c.c. partially
ordered set. Then MA, implies that any cardinality-A subset Q C P has a

cardinality-\ subset Q' which is centred in P.

Proof. Let S(P) be the set of all maximally centred subsets of P. For each

PEP, let

U(p)={UeSP)|pelU}.



Now topologlzeS(P) by ngxngxt the topologyhavmg the collectlon {‘I’(p) |
PE P} as a suBBﬁsé. , Each U(p) is clopen, Qinc’e if U ¢ \Il(p), theﬁ PevU,
so {p}UU is not centred. Then for sorﬁe ﬁnite subset {py,..., p,,} ‘C U,
{P.P1,...,pn} has no lower bound, so (¥(p) N - ¥(pn)) NY(p) = 0 and
Ue¥(p)N...n¥(p,). Then S(P) is completely regular, and it is Hausdorff
since U # V implies that by maximality of U, there exists z € U \V; then ¥(z)
and S(P)\ ¥(z) are disjoint open sets containing U and V, respectively. Thus
S(P)is a Tychonoff space, i.e., a completely regular Ty space; now let g(P) be
the Stone-Cech compactification of S§(P). Recall that S(P) is dense in S(P)
and S(P) is compact and Haudsdorffl. Now {¥(p) | p € P} is a 7-basis for
the topology on S(P), i.e., any nonempty open set contains some ¥(p). This
is true because U € ¥(p;) N ... N Y(p,) = {p,...,pn} CU =5 there
exists p€ P with p<p;, fori =1,...,n = Y(p) C ¥(p)N...N U(py).
Then since P is c.c.c., s0 is S(P): if {V(p) | p€ A} is pairwise disjoint for
some A C P, then 4 is a pairwise incompatible subset of P, so [4| < No. Then
since S(P) is c.c.c. and dense in S(P), the latter iz c.c.c.: if U is a pairwise
disjoint collection of nonempty open sets in g(P), then {UNS(P)|UeU} is
a pairwise disjoint collection of nonempty open sets in S(P). o HUNSP) |
UeU} <Ro. As well, if U,V € U are distinct, so are UNS(P) and VNS(P);

thus (/| S HUNS(P)|U eU}| <N,



Now for each PE P let \I!(p) Ints( P) Cle( P)(\Il(p)) Smce \I!(p) is closed
in S(P), ¥(p) = Clzp (\Il(p)) NS(P). Then

()N S(P) = Int spy Olgim (¥()) N S(P)
C Cl:e'(p) (‘I’(P)) NS(P)
= U(p).

Also each U(p) is nonempty; if not, then S(P)\ Clg( P) U(p) is open and dense
in §(P), so S(P)Nn (§(P)\Cl§(,,) ¥(p)) is dense in S(P), so it is dense in S(P)
in its topology; this is a contradiction, since ¥(p) is a nonempty open set in
S(P) not meeting S(P) N (S(P)\ Clg , ¥(p))-

Now we have all the facts we need about S(P) to prove the lemma. Let
Q € [P)*; then I{CI'l(q) | g€ @} <A Since ¥ might not be 1-1, we cannot
with any certainty replace “<” with “=", but it is possible to get around this
obstacle. Define a relation ~ on @ by p~ ¢q &5 ES Y(p) = U(q). It is easy to
see that this is an equivalence relation, so it partitions Q into cosets.

Now if |Q/ ~ | = A, then easily [{¥(q) | g€ @} = ; thus {¥(q) | g € @}
is a cardinality-A collection of open sets in a compact, Hausdorff c.c.c. space,
so by 2.1(b), there exists a cardinality-A subset Q' C Q with N{¥(q) | ¢q €
Q'} # 8. Now Q' is centred: if {q1,-..,qn} C @', then there exists U €
S(P)n(N, a(q.-)) C Miz1 ¥(gi); thus each ¢; € U, s0 {qy,...,qn } has a lower
bound. Thus Q' is a cardinality-A subset of @ which is centred in (P, <).

On the other hand, @ is equal to the union of its cosets, so if |Q/ ~ | < A,

then there are less than A cosets, so by regularity of A, some coset Q' has
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éa;'dxﬁahty A Now \Il is constant on Q’ s0 Iet U € \Il(q)nS(P) c \Il(q) for any
ge Q. Then Q' CcUso Q' is a cardma.lxty-A subset of @ which is centred in
(P,<).m

The construction S(P) can also be used to show!? that the topological
version of MA, implies the partial order version, as §(r.0. P) was used in the
proof of 1.13. Note, however, that the construction §(r.0. P) does not appear to
be adequate to prove 3.8. If we had used the same argument with the construc-
tion S(r.0. P), we would have gotten to the point that @ has a cardinality-A
subset @' with N{W(e(p)) | g € @'} #0. Then there is an ultrafilter U con-
taining e[Q’] e {e(q) | ¢ € Q'}, so e[Q'] is pairwise compatible, whence Q'
is as well. Since U contains €[Q'], any finite subset {g1,...,qn )} C Q' satis-
fies []iL, e(¢i) # 0; by the density in r.o. P of e[P], there exists p € P with
e(p) < ITi, e(g;); then e(p) < e(gi) for i = 1,...,n, but we cannot conclude
that p < ¢;i for i = 1,...,n unless we know that e(p) < e(q) implies p < ¢,
which holds only for separative partial orders, as noted earlier. Thus the use
of S(r.0. P) will only prove a weaker version of 3.8, namely, 3.8 with “centred
in (P,<)" replaced by “pairwise compatible in P". However, in the ensuing
discussions it will be sufficient to use the following statement: if (P, <) is an
uncountable c.c.c. partially ordered set, then there exists an uncountable subset

G C P which is pairwise compatible in (P, <).



It is no comcxde:;t:é that 3 8 resembles 2. l(b), in fact 1t is not dlfﬁcult to
see that for any regula.r uncountable ca:dxnal A, the followxng two statements
are equwalent:

(a) if (P, <) is a c.c.c. partially ordered set, then any cardinality-A subset Q

of P has a cardinality-A subset @' which is centred in P,

(b) if X is a compact Hausdorff c.c.c. space, then any cardinality-\ family of
open sets in X has a cardinality-A subfamily with nonempty intersection.
‘The proof of (b) = (a) is the argument used in 3.8. For (a) = (b), let ¢ be
a cardinality-A family of open sets in a compact, Hausdorff c.c.c. space (X, 7);
then (r\0,C) is a c.c.c. partially ordered set. By regularity of X, for each
G € G let Ug be an open set with 0#Ug CUgCG,; let Gdef{UGIGEG}.
If |G] = A, then by (a) there exists ¢' € [G]* such that {Ug |G € G'} has the
finite intersection property. Note that ¢ = UUG cgbUs where Gy, e {G' €
¢ | Ug C G'}); thus if lal < A, then by regularity of A there exists some
Gus with cardinality A. In this case, take ¢' %' Gug; now in either case,
{Uc | G € ¢'} has the finite intersection property, so (by compactness of X)
P#N{Tc|IGeg'}cng.

Now we wish to discuss strong S- and L-spaces.

3.9 Definition. A topological space (X, ) is a strong S- (respectively L-) space

iff for each nonzero integer n, the product X™ is an S- (respectively L-) space.@

3.10 Theorem.> MAy, implies that there are no strong L-spaces.
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f’réoj Suépose there ex;sts a stfong L-ssace L; thé!i smce M\n, uﬁﬂﬁs HCI-i,
it has a subspace X={z4]|a<uw } which is zero-dlmensional and léft sepa-
~rated. Also X" is a subspace of L" for each n € w\ {0}, 5o X" is hereditarily
Lindeléf. Then for each a < wy, let Uy C {25 |B€Ew) a} be a clopen neigh-
bourhood of 5. Let P = {p€ [t)]<“ |a,8€p, a < = 23 ¢ Uy}, and
partially order P by defining p < 9 <= pOq. Clearly |[P|>2 N, s0if Pis
c.c.c, then MAy, implies there exists a cardinality-R; subset G C P which is
~centred in P. Now we have [UG| > Wy, since if [UG] < Ny then there exists
@ <wy such that p€ G = maxp < a; thus G is a collection of finite subsets
of the countable set a, but l{a]<¥| = N, contradicting the uncountability of G.
Thus ¥ & {zq | a € p for some pe G } is an uncountable subset of X. Now
if a,0,v € UG and a < B < v, clearly z, ¢ Ug, and by the fact that G is
pairwise compatible, z4 € Ug. Thus for each g €Y, UsnNY = {25}, sé’-,)ﬁ' is
an uncountable discrete subspace of X, contradicting hereditary Lindelofness of
X.

Now all we need show is that (P,<) is cec. Let {p, | a < w; } be
uncountable and pairwise incompatible. In 3.11, it will be shown that it can
be assumed without loss of generality that cach p, has the same cardinality n,
and max p, < minpg for a < A.

Let each p, = {Pa(1),...,pa(n) }, with Pa(l) < -+ < po(n). Let V, =

UL, U o)+ Then if a < B, p, and ps are incompatible, so there exists ¢ €



{L101m} with 23,0 € Ve Let Xa = (2pugaye-es2p000y) € X® an
We={xeX"|3ie{l,...,n} with z; €V} = U =72 (vp),
i=]
where 7; is the ith projection function on X", and ; is the ith component of
X. Thus each Wj is clopen in X",

If a £ 0, then by the previous paragraph, Xg € Wo; if § < a, then
clearly xg & Wa. Thus Wo N {xs | S <w;} ={xs |8 € w\a}, so each final
segment of {Xg | A < w; } is clopen, whence each initial segment is as well; thus
{x5 |8 <w;} is an uncountable right separated subspace of X ",.contra,d.icting
hereditary Lindelofness of X" and of AN |

Note that by using the dual of the above argument, i.e. obtaining a zero-
dimensional right separated S-space X = {®a | @ <wy} contained in a strong
S-space, choosing a clopen neighbourhood UsC{zs|B <a+1} of z,, setting
P={pelw]“lafep a<f = z,¢Us} withp<q && POy
we can show that MAy, also destroys strong S-spaces. (The only difference
between the two proofs would be that to destroy strong S-spaces, we do not
explicitly use ~CH to construct X). However, this dual argument is not really
necessary, since it is known that there exists a strong S-space iff there exists a
strong L-space®. Thus, in any case, MAy, implies that there no strong S- or
L-spaces. |

Now here is the lemma as promised in the proof of 3.10.
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‘3 li Leﬁ‘&m. Let 4 bé an uncé;ﬁtai)ie coIIect:on of ﬁmte subsets of wy. Thcn
there exxste an uncountable subcollection 4' C A, an mteger n, and a ﬁmte set
b C wy such that 4' can be written in the form A' = {a, |a < w; } where

i) Va < wy, lag] =n,

i) a < f => max(aq \ b) < min(ag \ b) and aqNag=h.

Proof. By a counting argument, for some integer n < w there must he an
infinite subcollection A; C A with |a| = n for each a € 4;. Now we proceed
by induction. If n. =1, then set A' = 4, and b=0. If we let q <cifac< g
where a = {a} and ¢ = {ﬂ }, then clearly we can well-order 4' such that the
ordering “<” is preserved. Thus 4' = {82 | @ < w;} where o < 4 implies
max(aq \ b) < min(ag \ b) and @, Nag =@ = b.
Now suppose that whenever 4, is an uncountable subcollection of (],
there exists an uncountable A' C 4 and finite b C w) such that for o < 4,
aq Nag = b and max(aq \ b) < min(ag\ b). Let 4, be an uncountable subset
of [w]". If, for some a < wy, the set A4, def {a€ Ay |a€a} is uncountable,
then by the inductive hypothesis above, there exists an uncountable set 4' C
{a\{a} |ace Ao} and a finite set b C w, with 4' = {ag | # < w} where
B <« implies agNa, = b and max(ag\b) < min(a,\b). Then set ¥ = by {a},
= {aU{a} | @ € A'}, and give A" the well-ordering that 4’ has. Now
B < v implies agNa, = ¥ and max(ay \ b') < min(a, \ ¥'). On the other hand,
if each 4, is countable, then we shall construct (by transfinite induction) a

sequence {a, | a < wy} C A; of pairwise disjoint sets where o < 3 implies



max éa < mm ap, haﬁng done so, we shall havé comi:letéd the i);'oof since this
sequence satisfies the properties of 4’ in the conclusxon of the lexnma, where
de( 0.

Suppose, for some § < w;, we have a sequence { a, | < B} of pairwise
disjoint elements of A; with maxa, < mina, for Y <o < f. Now if we
define a* = sup{€ | ¢ € a}, clearly a® < w;. Since each Ae={aec A €€
a} is countable, it is the case that Utear 4e .is countable; thus there exists
ag € 4 \ Useas A¢; now the sequence {a; | &€ < A} is pairwise disjoint, and
maxa, < mina, for ¥y < ¢ < f. Thus by transfinite induction, we have our
sequence { aq | d < w; }, as desired. W

In the proof of 3.10, we assumed that we had an uncountable pairwise
incompatible subset 4 C P; by 3.11 there exists 4' = {ay |la<w } C 4 and
a finite set b C w; such that a!, N ay = b and max(al, \ b) < min(aj \ b) for
a < B <w;. Now if for some a < w; the sets aq \ b and aj \ b are compatible,
then for any v,0 € (a, \ b) U (a5 \ 8), ¥ < o implies z, ¢ U,; however, since
b= ayNaj, the same statement holds for v, 0 € agNajy, which is a contradiction,
since ay,ay € A' C A and A is pairwise incompatible. Thus, if a, = a, \b
for each a < wy, then {a, |a < wy } is pair\\"ise incompatible and each a, has
the same (finite) cardinality. Thus we have that i'f (P, <) is as defined in $.10,

then there ezists an uncountable pairwise incompatible subset of P iff there ezists

one of the form {aq | @ < w1}, where each a, has the same cardinality and
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max a? < mm ag jér a< ﬂ < wy. (The same urgumént holds fof the partmlly
ordered set (P, <) mentloned in the remark after 3.10 as well).

The partially ordered set of 3.10 can also be used to show that MAy,
destroys first-countable L-spaces. Before we‘embark on the proof, let us first
recall that a point a is called a éondenaation point of a set A iff for every

neighbourhood U of a, U N 4 is uncountable.
3.12 Theorem.! MAy, implies that there are no first countable L-spaces.

Proof. Assume there exists a first-countable L-space; then there exists one which
is zero-dimensional and left separated in type wi. By identifying z, with a,
we can assume there exists a topology 7 on w; = {a | @ < wy} making it a
zero-dimensional first-countable L-space with each sct {BlBE€w\a} open.
As in the proof of 3.10, for each a < wi,let Uy C{B|f€w\a} bea

clopen neighbourhood of a. Let
P={pew]<¥| if a,f €p, a < B, then BgU,},

and partially order P by defining p < q whenever p D ¢.

We will show that (P, <) is c.c.c. Then MAy, implies that there exists
a cardinality-®; subset G of P which is centred in P, and as in the proof of
3.10, we have that ||JG| > R, so UG ={a|ae€p for some PEGY} is an
uncountable discrete subspace of (wy,7), a contradiction.

Now we show that (P, <) is c.c.c. Suppose { p, | a < w; } is an uncountable

subset of P; we shall show that it is not pairwise compatible. We can nssuime,
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by e of 811, that cach o s the same fite eardinality m, and maxp, <
minpg for la < g, Lef j),,, = {pa(1)y...,pa(n)} whére p.;(l) < o0 < po(n). Séé
Va = Uizs Upa (ins theﬁ each V, is clopen. Also, notice that with this notation,
if @ < f, then p, and pg are compatible iff for each i € {1,...,n}, pa(i) & V3,
te iff pa NV =90,

Now we claim that for aﬁy uncount‘able subset 4 of (wy,7), there exists.
an open set W such that whenever. A' C w; is uncountable, the sets {a €
A" | WNV, =0} and WN A are uncountable. If for each a € 4 there
exists an open neighbourhood 4, of a such that 4, N 4 is countable, then
{Aa|a€ A} is an open cover of 4 with no countablé subcover, contradicting
hereditary Lindel6fness of (w1,7). So there exists a® € 4 such that for any open
neighbourhood U of a*, [UNA4| =Xy, i.e. a* is a condensation point of 4. Now
A" Cw; is uncountable, so 4'N{a |a* < a < w1} = 4'\(a*+1) is uncountable,
since it is 4' minus an at most countable set. Thus {Vala®*<a<w and
a € A'} is a cardinality-®; family of closed sets which do not contain a*; since
. (w1,7) is first-countable, there exists a countable local base {W, | n < w}
at a*, and for each a € 4'N{a|a* < a < w }, there exists n < w with
a* € W, Cw;\V,. Thus for some fixed n < w, Wp Cw;\V, for an uncountable
collection of a’s in A'N{a|a’ < a < w, }. Thus if W &' Wy, then the set
{aed'"|WnV, =0} is uncountable, and W N 4 is as well, since a® is a

condensation point of 4; thus the claim is proved.



Now si;ce { p.,,(l) I a < wl} is uncountable, there ;zxisfs an ééen sl:t W;
such that tI;e sefs
A Y (a<u W NVa=0}
BiEWin{pa(t) |a <uw}
B {a|pa(1) € B}

= {alpa(l)er}

are uncountable. Since {p,(2) | € B; } and 4, are uncountable, there exists

an open set W, such that the sets

L {aed | WnV, =0)

By ¥ Win{pa(2) |a€ By}

B; ¥ {a | pa(2) € B} }

=8 N{a|p.(2) e W;}

are uncountable. Continuing, we obtain uncountable sets A D - D 4, and
B, D -+ D By, such that whenever | € {1,....,n}, a € Al.mxd A€ By, we
have ps(i) ¢ V, for i = 1,...,1. Then for a€e A,, € B, witha <4 (such

ordinals a, 3 exist since By is uncountable) PaNVy =0, whence p, and Pa are
compatible. i

In this proof, we used certain properties of L-spaces which make it difficult
to dualize the proof to show that MAy, destroys first-countable S-spaces; in fact,
it is known that MA+-CH+%there exists a first-countable S-space” is relatively

consistent with ZFC'; the proof involves forcing, and so it is not included here.
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’I’he next result is mterestxng in that 1t uses MAn, m m topologxcal forxn

rather tha.n the version mvolvmg c.c.c pa,tt ally ordered sets,
3.13 Theorem.’ MAy, implies there are no compact L-spaces.

- Proof. Suppose that there exists a compact L-space L. . Then L has a left
separated subspace {2, | o < w;}. Let X & Cli{za | @ < w; }; then X is
also a compact L-space. For each o < wy, let X, = Clx{zg | B < a}; let
- Ua = Intx(Xa). X cannot have an uncountable strictly increasing saquence
of open sets (equivalently, X cannot have an uncountable strictly decreasing
sequence of closed sets), or else there would exist an uncountable right separated
subspace of X, contradicting hereditary Lindelfness. Thus there exists a® < Wy
such that & 2 a* =» U, = U,e. Now X # U,e, otherwise {2, | a < a'}
would be dense in X, whence in {z4 | @ < w;}, which is impossible since
{za |a €w; \a®} is a nonempty open set missing {74 | @ < a*}. Setting
Y =X \Uy, we have Uy NY = @ for each a < w1; we shall show that for
each a € w; \ a*, X, NY is nowhere dense in Y. Since each Xo is closed
in X, all we need show is that for a € w; \ o*, ¥ \ X, is dense in Y, i.e.
any nonempty open (in the relative topology on ¥) set U C Y meets ¥ \ X,
Let U be such a set; then U = UNY for some set U open in X. Now

aZa' = Ua'=UqCXq == ‘Y\XQCX\UQ. =Yo Thus

U=UNnY=Un(X\Us)dTN(X\Xa)0.
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(If Un(X\X.,) = {, then U c Intx(Xa) U,, 80 U UnY UH(X\U.,-) = 0) :
Then Xc, n Y is nowhere dense inYy for a€w \a' as clmmed

Let € X = Clx{zq | @ < w; }; then for any oﬁen neighbourhood U ot" z,
let ay = min{a < wi | 2o € U'}. If there exists a' < w; such that for any open
neighbourhood V of 7. ay < o, then z € Clx{z5 | A < o'+1} = Xar41. If not,
i.e. for each @ < w, there exists an open neighbourhood U of z with ay > a,
then by transfinite induction we can construct a sequence {V, | @ < w;} of
open neighbourhoods of z such that {(U,Kﬁ Va)N{za la<w}|A<uw)}is
an uncountable strictly increasing sequence of open (in {z, | a < w;}) sets,
contradicting hereditary Lindelofness. Thus X = Uacw, Xai since { X, | a <
w; } is an increasing sequence of sets, it is also true that X = Uaeu‘\q. Xa)
whence ¥V =, ., \ao(Xa NY).

Now Y is a closed subset of X, so it is compact and Hausdorff. It is
also c.c.c., since if {V, |a<w;}isa pairwise disjoint collection of nonempty
open sets in Y, then { qu Vol B < w;} is an uncountable strictly increasing
sequence of open sets in Y. Thus Y is a compact T, c.c.c. space that is the
union of X; nowhere dense sets, contradicting MAy,. @

Attempts to use a similar argument to destroy compact S-spaces do not
appear to work. For example, if X is the compact closure of a right separated
space {z, | a < w; }, we can define X, and U, as in 3.13; since there cannot he
an uncountable strictly increasing sequence of closed sets, there exists a° < w,

such that X, = X,., whence U, = avy for a > a®. The problem, however, is



e

that sm;:e X is heredlta.nly seéamble, one of the sets {mp | ﬂ < a} is dense in
{:z., | a<w }, wluch is dense in X; thus, in iact X,,,. = X whence U,,. = X )
50 the subspace we want to consider, X \ U,e, is exnpty, and so of no use
to us. On the other hand, suppose we set X, = Clx{zs | ﬁ € wy \a} and
Ua = Intx(Xa). Now there can be no uncountable strictly decreasing sequence
of open sets, so there exists o* < wy such that for a > a*, Uy = Uye. If
we define Y = X \ U,., then we can show, using the same argument as in
-3.13, that X, NY is nowhere dense in ¥ for a € wy \ a*; the problem is that
Y # Uscun\ae(Xa NY): a* # 0 (otherwise X = X,+ is nowhere dense in
itself) so 20 € ¥ = X \ Uae but 2 # Uacuryar(Xa NY). In fact, this last
argument shows that we cannot “cut off” the space, i.e. we cannot consider
X Clx{zq |a €wy\a*} and try to show that ¥ = Ua(wl\a..(X., NY) for
some a** € w; \ a* where each X, is nowhere dense in Y, for ae wy \a*.
However, despite the apparent lack of symmetry, a similar statement to
3.13 does in fact hold for S-spaces. In order to prove this, we will need to use
the concept of a cofinally centred sequence, and we need a lemma about the

existence of such a sequence.

3.14 Definition. A collection of sets { B, | a < w, } is called cofinally centred
on a set A iff for each uncountable subset C C A, there is an a < w; such that
the collection {BoNC | B € wy \a} is centred with respect to €, i.e. for any

ﬁtlite Set bq C W \a,_ nﬂebq (Bﬂ n C) # @-.



The followmg gwes a cond;tmn under Wthh we can assume the ex;stence ,

of a coﬁnally centred sequence,

3.15 Lemm:a.“ For eacf: @ < w, let Uy be an at most countable set, let
U D {Us | a <w} be a collection closed under finite unions, with each
element of U being a countable set, and let P = {p €[] a8 € p,
a<f = a@ Uy}, ordered byp<q < pDq. Thenif (P,<) is not c.c.c.,
there exists an uncountable set A C wy and a collection {Bala<w}lcu

cofinally centred on A.

Proof. Let {ao | @ < wy} be an uncountable pairwise incompatible subset of
P; by 3.11 and the remarks after it, we may assume without loss of generality
that each a, has the same (finite) cardinality n and maxa, < minag for a < 4.
For each a < wy, let B, = Ugea, Usi by pairwise incompatibility, a, N Bs # 0
whenever a < 8. Thus {(a,,B,)|a < wy } is a sequence satisfying:

(1) aq € [w)]" for each a < wy;

(2) Ba € [w1]2¥° NY for each a < wy;

(3) a<f<w => maxa, < minag and a, N By # 0.

Now let k be the smallest integer such that there exists a scquence
{(aa,Ba) | a < w; } satisfying (1), (2) and (3), with n = & in (1). Let A =
{mina, | @ < w;}. We shall show that {BC_' | @ < wy} is cofinally centred
on A; assume it is not. Then there exists a set C C [A]“* such that for each
a<wy, {BgNC|B€w \a} is not centred, i.e. for each a < w; there exists

a finite set by C w; \ a with C N (Nges, Bs) = 0.



Let C = {Gq | a < wl} be the xvﬁc;ea‘.»s;ng é#;éh‘:@ of C, tc é <.

ﬁ = 6 < 6,3 Each 6o is the minimum of a unique ap; let ag = ag iff

69 =minag. Now a<f = §, < dg = minay = maxal < minaj. Also if
a;=a¢anda§=a¢,thena<ﬂ=>maxa¢<xninag=->1_Z<£. |

Now since {by | a < w;} is uncountable, for each a < w; there exists

Ba < wy with ¢ < 8, < min bs, where a; = a2; by setting l;; = by, we thus

have ¢ < minb, (where a; = a3}) for each o < w;. For each a < wy, let

=al\{éa}, B UﬂEb Bg. (Now B € [t1]S“e N Y for each o < wy). If

a < B, then since Cn(ﬂﬂg—; Bpg) = 0, there exists v € bg with 6, = min a; & By;

however if a, = a; and aj = ag then { < ¢ < minbg < v, so a¢NBy =alNB, #

® and é, =mina;¢a§ﬂBg 50
# @\ {6)) By =d, 0B,

Cagn (| By)
YEbs
=a,NB;

whence {(a,,B,) | @ < w;} is a sequence satisfying (1), (2) and (3) with
n=k~1in (1), contradicting the minimality of k.|

It is no coincidence that the partially ordered set mentioned in 3.15 is
similar to the one used in 3.12; in fact we use an argument similar to the one
in 3.12 to show that the statement “(P, <L) is c.c.c.” results in a contradiction,
and we use 3.15 to show that the statement “(P,<) is not c.c.c” also results in

a contradiction.
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3.16 Theorem.® MAy, implies that there are no compact S-spaces.

P;'aof. Assume ?hat there exists an S-space. Then (as in 3.13) thei’e exists oné
of the form X = Clx{z, | a < uy }, where {24 | @ < w; } is a zero-dimensionsal
right separated S-space. Now we can identify z, with a, and define 4 ¢ wy to
be open iff {2, |a € 4} is open in {za | @ <w; }; then if we call this topology
7, (w1, 7) is a zero-dimensional S-space with each a < w, open, and since (w;, 1)
is in fact homeomorphic to { z, | @ <w; }, we can write X = Clx(wy, 7).

Now we want to define the collectjon {Ua | @ < w1} dually to the def-
inition in 3.10 and 3.12, but with stronger conditions on each U,. For each
a<wy,let Y, = CL\'(Q; \a) let Y =ngey,Ya. Nowif FC X \Y is closed in
X, then FNX, = 0 for some a < wy; if F is closed in X, it is compact, so there
is some finite subcover of { X\ Y, |a <w} for F, say {X\Ya,,...,X\Ya, }.
But for a < 4, Y, DO Y5, 50 X \Y, Cc X\ Ys; thus F C X\ Y, whence
FNY, =0, where a % max{aj,...,an }. What we would like to do is choose,
for each a < wy, a clopen neighbourhood U, C a +1 in (w1, 7) of a such
that (Clx Ua)NY = §; then we can apply the previous condition to each set
Clx U,. With this thought in mind, for each o < wi, let Vo be an open set
in X with V,Nw; = a+1. Now a is a point in X not in the closed set
Y, so by regularity, there exists an open neighbourhood W, of a in X with
(Clx Wo)NY = 0. Then WonNV, is an open neighbourhood of « in (wi,7);
by zero dimensionality, let U, ¢ Wa NV, be a clopen neighbourhood of a in

(w1,7). Then (Clxy U,)NY = 8, as desired.
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Now as before, we let P= {p 6 [w1]<"’ l a,ﬂ Ep, a< B = a ¢ Up},
pamally ordered by deﬁmng pr<qiffpDyg If (P, <) is c.c.c., then bv MAy,
there exists an uncountable set G C P centred in P, whence (as in the proof
of 3.10 and 3.12) |G is an uncountable discrete subspace of (w1,7), whence of
X, contradicting hereditary separability.

On the other hand, if (P, <) is not c.c.c., we will derive a contradiction,
thus completing the proof. Suppose (P, <) is not c.c.c. Let & be the collection of
all finite unions of U,’s; then by 3.15 there exists a sequence { B |la<w;}CcU
cofinal on some uncountable set 4 C w;. Now there exists oy < wy such that
{BanNA | a€w\a} has thé finite intersection property; then so does
{Co |l a€w\a}, where C, def Clx B,. Also eagh B, is clopen in X,
CaNBy =wy, and C, C X \V.

Now let K, = ﬂﬂem\a Ca. Since K, C Kz for a < 3, and there cannot
be an uncountable strictiy increasing sequence of closed sets in a hereditarily
separable space, there exists a; < w; such that for a 2 az, Ko = K,,. Set
K = K,,; by the properties of {K, | a < w, }, Ko C K for each a < u.
Now each Cy misses Y, so each K, does as well, so K NY = 0; by the
property of closed sets in X that miss ¥, A n Yo, =0 for some a; <w;. Now
Yo Nwy =wy\ a3, s0Yy,Nd =4 \ a3 whence Y,, N 4 is an uncountable
subset of A4, so for some a4 < w;, {BanNYy,yNdlaew \ a4 } has the finite

intersection property; since B, C C, and YosNAC Yo, {CaNYa, | a € wy \ay }
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is a collection of closed subsets of X with the finite intersection property, so by
i:"ompactneés. of X,

0% (). (Con¥a)=Yun( (] Cu)
a€w;\ag a€wr\ay
=Yoo, NKa, CYa,NK =0,

an obvious contradiction. Jj

It should be mentioned here that 3.12 and 3.16 also imply that MAy,
destroys locally compact S- and L-spaces. Given a locally compact space X,
recall that the one-point compactification X* of X is formed by adjoining a
point p & X; then we take all sets of the form {p} U(X \ K) where X is
compact in X, to be a local base for neighbourhoods of z in X*. Then we
have that X* is compact Hausdorff, and X is dense in X*. If X is an L-space,
then since X is not hereditarily separable, X* is also not hereditarily separable.
IfY is a subspace of X*, then if PEY,Y is a subspace of X, whence Lindeléf.
IfpeY, then Y\ {p} is Lindelsf, so given an open cover ¢ of Y, select
one element U € & with p € U, and select a countab.le subcollection Y' ¢ Y
covering Y\ {p}; then Y'U{U } is a countable open subcover of U for Y. Thus
X* is hereditarily Lindelof. Since a similar argument holds for S-spaces, the
existence of a locally compact S- (respectively L-) space implies the existence
of a compact S- (respectively L-) space, contradicting MAy, .

Note that 3.12 and 3.16 show that under MAy,, any compact space is

hereditarily separable iff it is hereditarily Lindelsf. Thus, by 2.1(a), MAy, im-
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élxes that a.ny perfectly normal space is hered:tmly separable md he;'edxtt;nly
Lmdelof and 8o is not an S- or L-space, and in fact has no §- or L-subspaces.

The argument concerning cofinally centred sequences which was used in
3.16 can also be used to show that MAy, destroys all S-spaces, if we also
assume the validity of another set-theoretic hypothesis known as TOP. This
result will not hold without TOP, because forcing arguments have shown® that
the existence of S-spaces is consistent with MAy,; in fact, a forcing argument
has been used to show! the consistency of the existence of first-countable S-
spaces with MAy,, as mentioned in the remarks after 3.12.

Let us now familiarize ourselves with the principle TOP.

3.17 The Thinning-out Principle (TOP). If Z and B are uncountable sub-
sets of w) and {S, | @ € B} is a collection cofinally centred on Z, with
So C a for each a < wy, then there exists an uncountable set Y C Z such that

(¥ Na)\ S, is finite for each a € B. g

It has been shown, via a forcing construction®®, that MA+-CH+TOP is
relatively consistent with ZFC.

The key to using TOP to destroy S-spaces is that if (wy,7) is an S-space
and if each S, is closed in (w1,7), then each ¥ Na is closed in the relative
topology on Y, since TOP will imply that Y Na = FU Sa. where F is finite,
whence closed; thus (since ¥ C w; is uncountable) {Y Na|a <uw;} is (or at
least contains) an uncountable strictly increasing sequence of closed sets in Y,

contradicting hereditary separability.
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_ 3.18 Theorem.’ MAN‘+TbP x"hplie_s théi thefe are no s-spaces.

Proof ‘Suppose fhere gxists an S-space; then we can assu;ne that there exists
some topology 7 on w; such that each a < wy is open, and (w;,7) is a zero-
dimensional S-space. For each a < wy, let Uy C a+1 be a clopen neighbourhood
of a. Let P={pe Wl<“|a,8€p,a<f = q 4 O’p}, partially ordered
by defining p < ¢ whenever PDOg.

As in previous proofs, if (P, <) is c.c.c., then MAy, implies that there
is an uncountable subset G ¢ P centred in P, so that UG is an uncountable
discrete subspace of (w1,7), contradicting hereditary separability of (w1, 7).

Suppose then that (P, <) is not c.c.c. Let

U= {{JUalbe 0]}

a€h

Then by 3.15, there exists an uncountable set 4 C w; and a collection {8, |
@ < w1} C U cofinally centred on A. Now each B, is the union of a finite
number of U,’s, and each U, is countable, so supB8, < w;. Also each B, is
clopen.

Let ag = min{sup(B,) + 1 |a <w; ).

Given {a, | v < B} for some 8 < w,, U.,«, a. is countable, so for some
a<wy, {Bs N(A\Uycpaq) |6 €wy \ @} has the finite intersection property; in
particular, for 6 > a, supBs € 4 \ Uy<g @y Let ag = min({sup(By) +1|a €
w1} \ U, <5 @y). By transfinite induction, we have a sequence {ay |7 <w)

such that if Sy e B,, for each § < w,, then {Ss|B<uw}is cofinally centred



Bs

(

on .4 thh each Sp c 8. Then since each Sp is closed by TOP and the rernark

after 3 17 (wy,7) is not hetedxta,nly separable, a contradxctxon l
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