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Abstract 

This study presents a data-driven finite element-machine learning surrogate model for predicting 
the end-to-end full-field stress distribution and stress concentration around an arbitrary-shaped 
inclusion. This is important because the model's capacity to handle large datasets, consider 
variations in size and shape, and accurately replicate stress fields makes it a valuable tool for 
studying how inclusion characteristics affect material performance. An automatized dataset 
generation method using finite element simulation is proposed, validated, and used for attaining a 
dataset with one thousand inclusion shapes motivated by experimental observations and their 
corresponding spatially-varying stress distributions. A U-Net-based convolutional neural network 
(CNN) is trained using the dataset, and its performance is evaluated through quantitative and 
qualitative comparisons. The dataset, consisting of these stress data arrays, is directly fed into the 
CNN model for training and evaluation. This approach bypasses the need for converting the stress 
data into image format, allowing for a more direct and efficient input representation for the CNN. 
The model was evaluated through a series of sensitivity analyses, focusing on the impact of dataset 
size and model resolution on accuracy and performance. The results demonstrated that increasing 
the dataset size significantly improved the model's prediction accuracy, as indicated by the 
correlation values. Additionally, the investigation into the effect of model resolution revealed that 
higher resolutions led to better stress field predictions and reduced error. Overall, the surrogate 
model proved effective in accurately predicting the effective stress concentration in inclusions, 
showcasing its potential in practical applications requiring stress analysis such as structural 
engineering, material design, failure analysis, and multi-scale modeling. 
 
 

Keywords: Convolutional neural network, Finite element analysis, Deep learning, Stress 

concentration and distribution, Full-field stress prediction, Random inclusion 
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1. Introduction  

Inhomogeneous distribution of stress around discontinuity, holes, or defects [1], which can 

ultimately result in component failure, is commonly observed in engineering structures and 

experimental specimens [2], and over decades, the study of stress distribution in two-dimensional 

elastic media containing holes or defects has captivated researchers due to its practical applications 

and intricate mathematical aspects [3,4]. In engineering structures, holes are incorporated to 

provide maintenance access, functionality, thermal management, weight reduction, or fulfill 

specific service requirements [5–7]. In addition, with the rapid advancements in the field of 

additive manufacturing, engineering designs have become increasingly intricate, opening up 

possibilities for the incorporation of a wide range of holes or inclusions with precise control over 

placement, shape, and size, and this results in more intelligent designs to enhance functionality, 

improve performance, or achieve weight reduction objectives [8,9]. Meanwhile, the presence of 

these inclusions also introduces weaknesses in the structure, leading to stress concentration and 

potential structural failure [10]. Therefore, stress analysis is of utmost importance during the 

design process to ensure the safety and reliability of these structures.  

The significance of stress concentration analysis extends to many engineering disciplines such as 

automotive [11], aerospace [12], construction [13], biomechanics [14], etc. Significant effort has 

been made within the scope of manufacturing to identify the impact of pores or defects on the 

performance of printed parts [15]. Smith et al. [16] studied the effects of large lack of fusion defects 

in additively manufactured 304L stainless steel which proved to significantly reduce the tensile 

strength, ductility, and fatigue life of the material. Biswal et al. [17] reported that porosity 

decreases fatigue strength and presented a mechanistic approach to quantifying the influence of 

gas pore characteristics on fatigue strength in additively manufactured Ti-6Al-4V. Finite element 

(FE) analysis revealed stress concentration factors for different pore geometries, with subsurface 

pores near the free surface identified as the most critical. Nicoletto et al. [18] investigated the effect 

of pores introduced during the casting process on the fatigue performance of Al-Si alloys. They 

discussed that metallography alone does not provide accurate estimates of defect size, thus 

additional analysis techniques such as X-ray computed tomography (XCT) were employed to 

characterize the size and morphology of casting pores. Cao et al. [19] studied the stress 

concentration mechanism of pores, where larger pore radii result in higher stress values at the pore 
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perimeter. They showed that the presence of large-size or concentrated pore distributions reduces 

the strength of the metal due to increased stress concentrations. 

Due to the far-reaching implications across various engineering disciplines, considerable effort has 

been dedicated to analyzing stress concentration around defects and holes using a combination of 

analytical and computational approaches [20,21]. Sharma [22] utilized Muskhelishvili's complex 

variable method [23] to derive general solutions for stress distribution around polygonal holes in 

an infinite plate subjected to arbitrary biaxial in-plane loadings. The impact of hole geometry 

(limited only to polygonal cut-outs with 3-7 vertices) and loading patterns on stress concentration 

factors were examined, and comparisons with FE analysis demonstrated the validity of their 

approach. Rezaeepazhand and Jafari [24] studied stress distribution in plates with central cutouts. 

The analytical investigation emphasizes the load-bearing capacity and stress concentration effects 

of variously shaped cutouts in infinite plates under uniaxial tension. They demonstrated the 

accuracy of the analytical solution by comparing the results with FE methods, which highlighted 

the importance of parameters such as cutout shape, bluntness, and orientation in altering the stress 

concentration factor of perforated plates. Jafari and Ardalani [25] studied the stress distribution 

around holes in finite metallic plates under a plane stress state and uniaxial loading condition using 

the same theorem [23]. By validating with numerical simulations, they showed that analyzing 

stress distributions in finite plates using the theory of infinite plates can lead to significant errors. 

More recently, Zhu and Wu [26] presented a generalized procedure for obtaining analytical 

approximations of stress fields in planes containing multiple complex-shaped holes. They applied 

virtual tractions are the hole boundaries to obtain the final stress solution through the superposition 

of individual problems. The accuracy and precision of their proposed method were established 

with good agreement with FE results and high precision near hole corners. 

Existing research has extensively employed analytical and computational methods to predict the 

stress field surrounding discontinuities. However, it is evident that data-driven approaches and 

machine learning (ML) models hold significant potential in this area but have received 

comparatively less attention. Artificial intelligence, particularly ML, provides the ability to search 

for optimized solutions and validate anticipated results [27] by leveraging training and test data to 

generate results that closely align with ground truth [28]. Accordingly, deep learning neural 

network (DLNN) algorithms have found applications in various fields, including robotics [29], 

structural health monitoring [30], and material sciences [31]. Within this context, convolutional 

Page 3 of 35 AUTHOR SUBMITTED MANUSCRIPT - MLST-101380.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



4 
 

neural networks (CNNs) [32] have emerged as a groundbreaking approach in the field of deep 

learning and have proven transformative in numerous engineering domains [33,34]. With their 

ability to automatically learn and extract intricate features from images, CNNs have revolutionized 

tasks such as image recognition, object detection, and image classification [32].  

In recent years, researchers have employed CNNs to predict the mechanical response of materials 

[35–37].  Hoq et al. [38] predicted full-field stress responses in random heterogeneous materials 

using different data-driven methods, including classical ML techniques (artificial neural networks, 

random forest, and K-nearest neighbors), CNNs, and a modified conditional Generative 

Adversarial Network (cGAN) [39]. Their results show that the deep learning approaches 

(CNN/cGAN) provide highly accurate predictions with significantly reduced mean squared error 

and high correlation values compared to classical ML methods. Shargh et al. [40] developed a 

CNN network used for predicting the strength of nanoporous silicon nitride membranes based on 

their microstructures. Sepasdar et al. [41] used CNN for the development of an image-based deep 

learning framework for predicting the nonlinear stress distribution and failure pattern in 

microstructural representations of composite materials. Wang et al. [42] proposed a deep learning 

model utilizing a Temporal Independent Convolutional Neural Network (TI-CNN) and a 

Bidirectional Long Short-term Memory (Bi-LSTM) Network to accurately predict the sequence of 

maximum internal stress in brittle materials, aiming to improve fracture resistance and reliability. 

Their model achieved high accuracy with an average mean absolute percentage error of 2% relative 

to test data and a prediction time of approximately 20 seconds. Khorrami et al. [43] developed a 

U-Net-based CNN as a surrogate model to predict the von Mises stress field in elasto-viscoplastic 

grain microstructures under uniaxial extension. Their model provided an efficient tool for 

predicting stress fields in microstructures with varying morphologies and boundary conditions. U-

Net architectures have been demonstrated to be prominent encoding-decoding networks, for 

various mapping tasks. For instance, methodologies have been proposed to reconstruct intricate 

material maps and decode crystallographic orientations using ultrasonic data [44,45]. Further 

enhancements in the domain introduced tailored deep learning models, such as the Conditional U-

Net, to rapidly generate ultrasonic images and bridging physics [46]. Moreover, the integration of 

specialized geometric regularization techniques, like non-uniform rational B-splines (NURBS) 

with convolutional autoencoders, showcases the versatility of such architectures in predicting 
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scatterer geometries [47,48]. This paper seeks to build upon these foundational studies, diving 

deeper into the capabilities and applications of U-Net-like structures in the specified domain. 

The reviewed papers demonstrate the potential of ML in accurately predicting various field 

parameters. However, despite significant progress made in the analysis of defects and inclusions 

using analytical and computational approaches, further research is needed to explore the potential 

of ML in characterizing microstructural features, defects, and inclusions. In this paper, we propose 

a finite element-convolutional neural network (FE-CNN) surrogate model for predicting the end-

to-end full-field stress distribution and stress concentration around an arbitrary-shaped inclusion. 

We train a U-Net-based convolutional neural network model using the dataset generated by FE 

simulations and evaluate the performance of the model through quantitative and qualitative 

comparisons. In addition, we conduct a series of sensitivity analysis, focusing on the impact of 

dataset size and resolution of prediction capability of the presented FE-CNN surrogate model. The 

findings lead to significant implications for applications such as structural reliability prediction, 

failure prediction, design of structures, and multi-scale modeling approaches. Furthermore, this 

study bridges the gap between traditional computational methods and machine learning and 

provides a fast and reliable tool for studying microstructural features in bulk. Therefore, it finds 

relevance in emerging fields such as additive manufacturing and non-destructive testing, where 

the understanding of stress distributions plays a crucial role in ensuring material integrity and 

product quality. 

2. Methodology 
The methodology involved in this study consists of two main steps: dataset generation using FE 

simulations and the development, training, and evaluation of a deep-learning CNN surrogate 

model. In the first step, Abaqus/Standard FE software [49] is used to generate a dataset of finite 

plates with arbitrary polygonal inclusions subjected to uniaxial load. Multiple instances of these 

simulations are conducted to generate a diverse dataset that captures various configurations of 

polygonal inclusions. Following this, a data reconstruction process is performed to generate inputs 

suitable for training the ML model. Next, a deep learning CNN model is developed to analyze and 

predict the stress distribution using paired images of inclusion shapes and stress distribution around 

inclusions. Fig. 1 Shows the workflow of the presented method in comparison with a typical FE 

simulation of the same problem. The FE-CNN surrogate model, if provided with accurate training 
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data, provides fast and reliable predictions of this complex computational problem without the 

need to do complex and time-consuming FE simulations [50–52].  

 

Fig. 1. The workflow of the presented method (machine learning – finite element surrogate modeling) for the prediction of stress 

field and stress concentration on an arbitrary defect in comparison to a typical finite element solution of the same problem. The 

developed surrogate model of this study focuses on replacing the finite element modeling routines such as defining physics. 

2.1. FE simulation and dataset generation 

2.2.1. FE model development and validation 

FE models of a finite plate with a central inclusion were created using the Python scripting tool in 

Abaqus software [49], which enabled automation, parameter variation, and information extraction 

within the simulation framework without the need for performing repetitive tasks by the user. Here 

we focused on an isotropic plate containing an irregular inclusion and the simulations were 

conducted under the assumptions of a plane stress state and the absence of body forces. The choice 

of this geometry for the study is due to its fundamental significance in the literature, as it serves as 

a benchmark case [53]. In addition, the material behavior of the plate was assumed to be linear 

elastic. The plate geometry, material properties, and displacement-controlled boundary conditions 

were defined using the Python script, and STRI65 elements (6-node triangular thin shell, using 

five degrees of freedom per node) were selected to mesh the models. Prior to the generation of the 

dataset, the FE modeling approach was validated by comparing the stress concentration factor of 

a circular central hole with the analytical solution (see Equations (1) and (2) where d is the hole 

diameter, W is the width of the plate, and 𝐾𝐾𝑡𝑡 is the stress concentration factor) [53]. The analytical 
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solution provided a benchmark against which the FE model's results were compared and mesh size 

sensitivity analysis was performed. Fig. 2a shows the geometry and discretization of a model (d/W 

= 0.3) that was used for validation of the numerical approach, and Fig. 2b shows the comparison 

of the FE and analytical stress ratio of ten models with different hole diameter-to-width ratios that 

were considered for assessing the validity of the FE model. 

𝐾𝐾𝑡𝑡 = 3 − 3.14 �
𝑑𝑑
𝑊𝑊
� + 3.667 �

𝑑𝑑
𝑊𝑊
�
2

− 1.527 �
𝑑𝑑
𝑊𝑊
�
3

 (1) 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
𝜎𝜎∞

= 𝐾𝐾𝑡𝑡
1

1 − � 𝑑𝑑𝑊𝑊�
 (2) 

By comparing the predictions of the effective stress concentration (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 𝜎𝜎∞⁄ ) by the FE model 

with the analytical solution, the accuracy and reliability of the model were assessed. Moreover, a 

mesh sensitivity analysis was performed to investigate the influence of different mesh densities on 

the results [54]. The models were run with varying mesh sizes, and Fig. 2b shows the comparison 

of the FE simulations with different element sizes to plane width ratios (El/W) of 0.010, 0.015, 

and 0.020. The results showed that for small inclusion sizes, the element size can affect the accurate 

representation of effective stress concentration, therefore, El/W = 0.010 was chosen to ensure the 

accuracy of all the FE models. 

 

Fig. 2. (a): The geometry and discretization of the developed finite element model for validation purposes, and (b): Comparison 

of the FE results of models with different hole diameter to plate width ratios with the analytical solution [53], also providing 

mesh sensitivity analysis results for models with different element length to plate width ratios. 

 
 

Page 7 of 35 AUTHOR SUBMITTED MANUSCRIPT - MLST-101380.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



8 
 

2.2.2. Random polygon generator 

In the next step, we implemented a random polygon generator function using Python scripting tool 

in Abaqus to represent the arbitrary inclusion at the center of the plate following methods in 

[55,56]. The algorithm starts from a circle and samples points along its circumference, and to 

introduce randomness and irregularity, we apply angular perturbations (here named irregularity 

and is controlled with 𝛽𝛽1 between 0 and 1) at each step, resulting in unevenly spaced vertices. This 

randomness is further enhanced by allowing variations in the radial distances of the points from 

the circle's center (here named spikiness and is controlled with 𝛽𝛽2 between 0 and 1). Equation (3) 

can be used to formulate the process:  

𝜃𝜃𝑖𝑖 = 𝜃𝜃𝑖𝑖−1 +
1
𝑘𝑘
△ 𝜃𝜃𝑖𝑖 

Δ𝜃𝜃𝑖𝑖 = 𝑈𝑈 �
2𝜋𝜋
𝑛𝑛
− 𝛽𝛽1,

2𝜋𝜋
𝑛𝑛

+ 𝛽𝛽1� 

𝑟𝑟𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑁𝑁(𝑑𝑑
∗

2� ,𝛽𝛽2),0,𝑑𝑑
∗

2� ) 

(3) 

where n represents the number of vertices, 𝑘𝑘 = ∑△ 𝜃𝜃𝑖𝑖/𝜋𝜋, 𝜃𝜃𝑖𝑖 is the angle and 𝑟𝑟𝑖𝑖 is the radius 

between the center of the circle and the i-th point. The random perturbation of angular space 

between points is presented by Δ𝜃𝜃𝑖𝑖 which follows a uniform distribution that has an upper and 

lower limit of 2𝜋𝜋
𝑛𝑛
− 𝛽𝛽1, and 2𝜋𝜋

𝑛𝑛
+ 𝛽𝛽1, respectively. In addition, a Gaussian distribution is used for 𝑟𝑟𝑖𝑖 

with a mean diameter of 𝑑𝑑∗ and variance of 𝛽𝛽2 [57]. The size of the generated polygon can be 

controlled with 𝑑𝑑∗. By setting the irregularity and spikiness parameters to zero it is possible to 

generate regular polygons, while higher values produce increasingly irregular shapes resulting in 

the creation of polygons with varying angles and edge lengths. Some examples of the generated 

polygons with different numbers of vertices, sizes, irregularity, and spikiness are shown in Fig. 3. 
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Fig. 3. (a-h): Generated polygons with different number of vertices (n), sizes (𝑑𝑑
∗

𝑊𝑊
), irregularity (𝛽𝛽1) and spikiness (𝛽𝛽2) (the input 

parameters to generate each polygon is provided in the figure). 

2.2.3. Dataset generation 

The automatic modeling process in Abaqus, implemented using Python scripting, enabled the 

creation of the dataset consisting of pairs of plate geometries with random inclusion and their 

corresponding stress distributions. The process involves several steps to generate each data pair as 

depicted in Fig. 4. For each new model, first, the solver generates the plate geometry and material 

properties including elastic modulus and Poisson's ratio. Next, a random polygon is cut from the 

plate at the center that has a random number of vertices (between 3 to 20), size (0.05 < 𝑑𝑑∗ 𝑊𝑊⁄  < 

0.4), irregularity (0.0 < 𝛽𝛽1 < 0.5), and spikiness (0.0 < 𝛽𝛽2 < 0.5). Once the plate geometry and 

inclusion are defined, the script specifies the boundary conditions and proceeds to mesh the plate.  

Next, the job is submitted for analysis, and post-processing steps are then carried out to extract the 

stress data out of Abaqus output files and to perform data reconstruction to combine the inclusion 

characteristics and corresponding stress distribution into a pair within the dataset. This process is 

repeated for each data pair, resulting in a dataset consisting of one thousand pairs of inclusion 

geometry and their associated stress distributions. The input data (inclusion geometry) was in 

binary format where '1' represented material and '0' represented voids. As for the targets, they were 
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normalized to the range of 0 to 1, based on the minimum and maximum values of the entire target 

dataset. It the stress fields of the target dataset, the points inside the inclusion had a value of -1 

assigned to them. This made it easier for the model to detect the inclusion edge and identify the 

area inside the inclusion due to the distinct difference between actual dimensionless stress values 

and values assigned to the inclusion region.  

 

Fig. 4.  Schematic of parametric modeling process for generation of the dataset. 

The dataset, consisting of these stress data arrays, is directly fed into the CNN model for training 

and evaluation. This approach bypasses the need for converting the stress data into image format, 

allowing for a more direct and efficient input representation for the CNN. Fig. 5 summarizes the 

FE results of the effective stress concentration (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 𝜎𝜎∞⁄ ) for the whole dataset of inclusion with 

different sizes (𝑑𝑑∗ 𝑊𝑊⁄ ) compared to the analytical model of Equations (1) and (2). This figure 

reveals that the FE results exhibit a high degree of scattering, indicating variations in the stress 

concentration among different inclusion geometries. Moreover, it is observed that the stress 

concentration tends to increase with the size of the inclusion and, the presence of spikiness and 

irregularities in the inclusion shapes leads to significantly higher stress concentration values 

compared to the predictions of the analytical model. This suggests that the complex and irregular 
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features of the inclusion geometries have a pronounced impact on the stress concentration behavior 

and emphasizes the need for an accurate surrogate model for the prediction of the stress field and 

concentration of inclusions with varying geometrical irregularities. 

 

Fig. 5. Comparison of effective stress concentration of all the inclusions in the dataset from FE simulation and analytical model 

(black line) predictions of Equations (1) and (2). 

2.2. Deep convolutional neural network model 

The ML model of this study follows a U-Net CNN [58] structure that is a class of deep learning 

architectures specifically designed for image-to-image tasks and is commonly used in the field of 

image segmentation [59]. The U-Net architecture features a U-shaped network structure with a 

contracting path for capturing context and a symmetric expanding path for precise localization 

[58]. This architecture leverages skip connections to combine high-resolution features from the 

contracting path with upsampled features from the expanding path, enabling accurate pixel-level 

predictions [60]. U-Net CNN models have proven to be highly effective in a wide range of 

applications, including image analysis and medical diagnostics [59,61]. While they are often 

associated with medical imaging tasks, U-Net models can also be applied to field data for field 

prediction tasks. By leveraging the architecture's ability to capture both local and global context 

information, U-Net models can excel in predicting various field outputs based on training input 

data. The proposed model follows an encoding-decoding structure (see Fig. 6) that involves a 

change of the spatial dimension of the data that allows the network to capture and abstract high-

level features in the encoding phase and then reconstruct the output with increased spatial 

resolution in the decoding phase.  
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Fig. 6. Schematic of the CNN network with an encoder–decoder structure that is used in this study as the basis for the FE-CNN 

surrogate model. 

The U-Net model was implemented using TensorFlow [62]. Fig. 7 shows the detailed structure of 

the U-Net model that includes encoder, bottleneck layers, and decoders, and skip connections are 

made at various points between encode-decoder layers. Six blocks are defined in the encoder part, 

and each block performs a 2×2 max pooling operation with a stride of 2 for downsampling. 

Subsequently, in the bottleneck, two consecutive 3×3 2D convolutions are applied. Likewise, the 

decoder part consists of six repeating blocks with each block including a 3×3 2D convolution, 

followed by an activation function, and a transpose convolution operation for upsampling. The last 

decoder block features a convolution-tanh layer to map the 32-channel output of the decoder to a 

single-channel output. Commonly, U-Net architectures use 3-channel RGB images as input [63] 

while this model uses only one layer of stress data directly obtained from FE simulation. In 

addition, Fig. 7 shows that the network includes three skip layers, which allow the model to capture 

and utilize context information from earlier layers. The hyperparameters included the use of 

LeakyReLU activations functions with an alpha of 0.2. The model employed the Adam optimizer 

for training, with a learning rate of 0.001, beta_1 of 0.9, beta_2 of 0.999, and epsilon of 1e-07. For 

downsampling, MaxPooling2D with a stride of (2, 2) was used, while UpSampling2D layers are 

utilized for upsampling in the decoder. The convolutional layers initialized their weights with the 

default kernel initializer and the training utilized a batch size of 32. 
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Fig. 7. U-Net CNN network structure.  

The dataset was split into training and testing sets, with 900 samples in the training set and 100 

samples in the testing set. The model was trained for 200 epochs using the Adam optimizer [62] 

and the mean squared error loss function was used aiming to minimize the discrepancy between 

the predicted output and the ground truth values during the training process following Equation 

(4). 

MSE =
1
𝑛𝑛
�  
𝑛𝑛

𝑖𝑖=1

�𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�
2
 (4) 

where 𝑌𝑌𝑖𝑖 is ground truth values and 𝑌𝑌�𝑖𝑖 is the predicted value. After training the performance of the 

model was assessed through quantitative and qualitative comparisons. Quantitative assessments 

involve measuring various metrics such as mean squared error, accuracy, and correlation 

coefficient. Also, stress concentration factors were measured for ground truth and predicted stress 

fields and compared.  

3. Results 
This section presents the results of the model and discusses its accuracy and the corresponding 

hyperparameters, aiming to assess its performance. The focus lies on evaluating the accuracy of 

the predictions by quantitively and quantitatively comparing them to the ground truth values. 

Additionally, a discussion section is presented in section 4 that focuses on the effects of database 

size and resolutions on the model's performance aiming to gain a comprehensive understanding of 

the model's capabilities and limitations. As mentioned before, the model's resolution was set to 

256×256, and the dataset consisted of 900 samples for training and 100 samples for testing. The 
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input data for the model was normalized prior to being used as inputs. This normalization process 

improved the model's performance and convergence during training. However, when plotting the 

results, the normalized data was reversed or transformed back to its original scale allowing for a 

more intuitive understanding of the predictions and their relationship to the original input values.  

 

Fig. 8. Performance evaluation of the model for the training and test data, (a): Comparison between the predicted and ground 

truth value of effective stress concentration for training data, (b): Absolute and relative errors corresponding to Fig. 8a, (c): 

Comparison between the predicted and ground truth value of effective stress concentration for test data, (b): Absolute and relative 

errors corresponding to Fig. 8c. 

Fig. 8a and c show the comparison between the predicted and ground truth effective stress 

concentration (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 𝜎𝜎∞⁄ ) for the train and test datasets, respectively. The prediction time of the 

FE-CNN surrogate model for the entire test data consisting of 100 samples was 1.2 s indicating a 

higher level of efficiency in comparison to FE simulations. The calculated MSE and correlation 

for the effective stress concentrations of the training were 0.086 and 0.9740 for the test set was 

0.171 and 0.9527. The absolute and relative errors associated with the predicted and ground truth 

effective stress concentrations of Fig. 8a and c for train and test data are presented in Fig. 8b and 

d, respectively. In the error figures, the red lines represent the absolute errors, and the blue line 

represents the relative errors. The presence of low values for both the absolute and relative errors 
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indicates that the model's accuracy is significantly high, and it suggests that the model's predictions 

closely align with the ground truth values, also demonstrating its effectiveness in capturing and 

reproducing the patterns present in the data. The training history of the proposed U-Net model is 

depicted in Fig. 9. The performance of the model during the training process is evaluated in terms 

of mean squared error as the loss function. After 200 epochs of training, an MSE of 9.3×10-5 and 

5.4×10-5 was achieved for the test and training data as depicted in Fig. 9.  

 

Fig. 9. Training history of the proposed U-Net surrogate model. Results are shown for loss (mean squared error), the solid line 

represents the test data, and the dashed line represents the training data. 

A comparison between ground truth results from FE simulations and FE-CNN surrogate model 

predictions for four randomly selected inclusion geometries from test data is shown in Fig. 10. The 

geometry of these inclusions is shown in Fig. 10a in which the blue color represents the polygon-

shaped inclusion. Fig. 10b and c show the ground truth results and FE-CNN surrogate model 

predictions, respectively. The stress field contours of this study are normalized with respect to the 

remote stress value (𝜎𝜎∞) taken from an equivalently loaded defect-free medium, and this means 

that the maximum value in each contour represents the effective stress concentration due to the 

inclusion. In addition, the absolute error between these two stress fields is shown in Fig. 10d. This 

figure shows that the FE-CNN surrogate model is successful in reconstructing complex stress 

fields, accurately capturing the complex and irregular shapes of inclusions in all cases. The error 

contours show that in regions far away from the inclusion boundaries the error is close to zero and 

higher error values were observed at inclusion boundaries which correspond to the regions where 

stress concentration is presumed to happen, making such a problem more challenging. This is 

similar to the previous works in which microstructure features contributed to high error [64,65]. 
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Also, in [38] elevated error around similar locations was reported and discussed. It can also be 

observed that qualitatively, the FE-CNN surrogate model performed better in predicting the stress 

field of inclusion with fewer complexities (fewer vertices, and lower irregularity and spikiness). 

Fig. 11 shows a visual representation of the middle channel of the output feature map after each 

max pooling and downsampling layer of the U-Net model during the encoding and decoding 

process. The encoder-decoder module employed in the model plays a vital role in recovering 

multiscale features from the previous step [37]. As the image passes through the max pooling and 

downsampling layers, the resolution decreases while capturing important filters such as inclusion 

shape. This process aids in reducing computational complexity and extracting higher-level 

representations from the input image.  

 

Fig. 10. Four different inclusions were randomly selected from test data for evaluation of the FE-CNN surrogate model, (a): 

inclusion shape, (b): Ground truth results taken from FE simulation, (c): Predictions of the FE-CNN surrogate mode, and (d): 

Contour plots of absolute error between ground truth and prediction. 
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Fig. 11. Visualization of recovered output after max pooling and downsampling layers in the U-Net model. 

Another important aspect in the verification of deep learning models is the evaluation of activation 

sparsity [66,67] which is defined as the proportion of inactive or minimally active neurons within 

a layer of a neural network. Activation sparsity is used to quantify the percentage of neurons that 

have low or close to zero activation values compared to the total number of units in the layer, and 

higher activation sparsity indicates that a significant portion of the neurons within a layer is 

inactive or minimally contributing to the computation, leading to more efficient and compact 

representations of the input data also increases the efficiency and interpretability of the training 
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process [68]. Fig. 12a shows an analysis of activation sparsity for different layers as well as the 

average activation sparsity value in the model. The ununiform sparsity of the model's activations 

in different layers of the U-Net model is favorable, aligning with the suggestions in the literature 

[66]. Also, an average activation sparsity close to 50 % is suggested in the literature [66], and by 

comparison with Fig. 12a, our FE-CNN surrogate model showed acceptable results. Fig. 12b 

shows the number of trainable parameters associated with each layer of the U-Net model. Trainable 

parameters are the learnable weights and biases of the network that are adjusted during the training 

process [69] and provide an indication of the complexity and capacity of each layer of the network 

to capture the underlying patterns in the data. The model of this study was characterized by a total 

of 1335394 trainable parameters. Notably, these trainable parameters displayed a dense 

concentration in the regions surrounding the bottleneck due to the larger spatial dimensions of the 

convolutional layers in those regions, necessitating a higher number of parameters for intricate 

information processing allowing for a more effective feature extraction process.   

 

Fig. 12. (a): Layer-wise activation sparsity and average activation sparsity of the U-Net network, and (b): Trainable 

parameters for different layers of the U-Net network. 

4. Discussion 
In this section, we discuss the effect of dataset size and model resolution on the prediction 

capability and accuracy of the FE-CNN surrogate model. Accordingly, section 4.1 explores the 

impact of dataset size and section 4.2 focuses on the significance of model resolution in achieving 

high levels of prediction accuracy.  
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4.1. Effect of the dataset size  

Three different models (M-SD, M-MD, and M-LD) with varying training dataset sizes of 100, 500, 

and 900 inclusions were utilized to study the sensitivity of the surrogate model to the size of the 

dataset. While having varying train dataset sizes, these models have the same 100 data in the testing 

set and the same resolution. A detailed summary of these models is provided in Table 1 which 

includes resolution, dataset size, loss of model, correlation of effective stress concentration, and 

computational time. The correlation values for the M-LD model were 0.974 and 0.953 for the 

training and test data, respectively, which showed significant improvement in comparison to the 

0.938 and 0.859 from the M-SD model. A decrease in the dataset size resulted in a higher 

susceptibility of the loss test data to fluctuations, which was consistent with previous literature 

[70]. The test and train correlation results presented in Table 1 reveal a positive relationship 

between the train dataset size and the correlation, confirming the expected trend. The observed 

increase in correlation with larger dataset sizes highlights the significant impact of dataset size on 

the model's predictive performance [71]. The model was trained on a system equipped with dual 

Quadro RTX 5000 GPUs and 128 GB of RAM. Table 1 shows that the change of database size 

significantly influenced the computational time needed for training with a 655.5 % increase when 

the train database size changed from 100 to 900 data.  

Table 1. Summary of models used to analyze the sensitivity of the FE-CNN surrogate model to dataset size and resolution. 

Details include resolution, dataset size, loss of model, correlation of effective stress concentration, and computational time. 

U-Net 

model 
Resolution 

Dataset size Loss (MSE) [×10-4] Correlation Computational time 

(minutes) Train Test Train Test Train Test 

M-LD 256 × 256 900 100 0.54 0.93 0.974 0.953 3116.7 

M-MD 256 × 256 500 100 1.03 1.98 0.964 0.938 2182.3 

M-SD 256 × 256 100 100 1.48 2.91 0.938 0.859 423.7 

M-MR 128 × 128 900 100 0.80 1.29 0.961 0.945 869.9 

M-SR 64 × 64 900 100 1.29 2.67 0.940 0.826 217.8 

Fig. 13a-c presents the results of the analysis of the effective stress concentration predicted by M-

SD, M-MD, and M-LD models. These figures compare the predicted effective stress concentration 

with ground truth value from FE simulations for both train and test data, and points closer to the 

equality line (X = Y) in the graphs indicate a higher prediction accuracy. Similar to observation 

for correlations, increasing the dataset size has significantly improved the accuracy of the stress 
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concentration predictions for both test and training data. The larger dataset sizes have allowed the 

models to capture more diverse patterns in the stress field, resulting in a more precise estimation 

of the maximum stress at the inclusion boundaries. Particularly, significant improvement is evident 

for the stress concentration predictions for the same test data in models trained with the 100 and 

900 data points (see results of the test data in Fig. 13a and c). To provide a quantitative analysis, 

the absolute error histograms for the train and test data reported in Fig. 13a-c are presented in Fig. 

13d-f. The histograms reveal that as the dataset size increases, the absolute errors tend to decrease. 

Notably, the histograms reveal that as the dataset size increases, there are fewer cases in the test 

results with significantly high values of absolute error. This is shown in Fig. 13f for the M-LD 

model in which there were no instances with an error higher than two, indicating a high level of 

accuracy and precision in the model's predictions compared to the results of the M-SD and M-MD 

models. In addition, shifting to the left trend with an increase in database size can be observed in 

the histograms, and a significantly higher portion of cases (88 % of training data and 77 % of test 

data) show an error near zero in the model with the biggest database size indicating a higher 

accuracy compared to similar studies from the literature [35–37]. 
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Fig. 13. Comparison of the effective stress concentration ratio predicted by M-SD, M-MD, and M-LD models that have 100, 500, 

and 900 inclusions in the training set, (a-c): Predicted vs ground truth estimation of effective stress concentration for M-SD, M-

MD, and M-LD models, respectively, and (d-f): Absolute error histograms corresponding to Fig. 13a-c for the training and test 

data.  

The stress field prediction capability of modes with different database sizes (i.e., M-SD, M-MD, 

and M-LD) are compared in Fig. 14 for one of the inclusion shapes from test dataset (previously 

discussed in Fig. 10). Similar to Fig. 10, ground truth and prediction stress field, and contour plots 

of absolute error are presented in Fig. 14. As the dataset size increases, the predicted stress field 

aligns more closely with the ground truth, resulting in reduced field prediction error. It is worth 

mentioning that for the regions far away from the inclusion boundary, all three models provide 

acceptable field predictions with errors close to zero and elevated error regions happening at 

inclusion boundaries. Meanwhile, the increase in the database size has contributed majorly to the 

prediction of the stress values around the inclusion boundary with significantly lower error, 
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indicating that estimating the stress concentration factor may be the most challenging feature of 

this problem. 

 

Fig. 14. Ground truth and prediction stress field, and contour plots of absolute error for an inclusion from test dataset predicted 

by, (a): M-SD, (b): M-MD, and (c): M-LD. 

4.2. Effect of model resolution 

Three models were employed to assess the sensitivity to resolution, specifically using array sizes 

of 64×64 (M-SR), 128×128 (M-MR), and 256×256 (M-LD). These models had the same database 

size, and their detailed information can be found in Table 1. The results showed that increasing the 

resolution led to improved prediction accuracy, as indicated by the correlation values presented in 

Table 1. This agrees with similar models from the literature [72,73] in which higher resolution led 

to increased accuracy. Fig. 15 shows the training and testing loss of the three models trained with 

different resolutions. The curves indicate that the training process is consistent across all models, 

with higher test loss compared to train loss. Additionally, a discernible trend is observed between 

loss and resolution, suggesting a potential relationship between resolution and prediction accuracy. 
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Fig. 15. Training and test loss vs epoch for three different models with varying resolutions of 64×64 (M-SR), 128×128 (M-MR), 

and 256×256 (M-LD). that were used to study the sensitivity of the FE-CNN surrogate model to changes in resolution. 

Fig. 16 presents a comparative analysis of the effective stress concentration ratio predicted by the 

M-SR and M-MR models with resolutions of 64×64 and 128×128, respectively. In Fig. 16a and b 

the predicted vs ground truth estimations of the effective stress concentrations for the M-SR and 

M-MR models are shown. The corresponding absolute error histograms for the training and test 

data are depicted in Fig. 16c and d. It is noteworthy that the same figures for the model with a 

resolution of 256×256 (M-LD) were previously presented in Figs. 13c and f, providing a 

comprehensive assessment of the model's performance across different resolutions. It can be 

observed that increasing model resolution improved prediction accuracy, particularly for the test 

data where correlation increased from 0.8256 for the M-SR model to 0.9527 for the M-LD model.  

Page 23 of 35 AUTHOR SUBMITTED MANUSCRIPT - MLST-101380.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



24 
 

 

Fig. 16. Comparison of the train and test effective stress concentration ratio predicted by M-SR and M-MR models that have a 

resolution of 64×64 and 128×128, (a and b): Predicted vs ground truth estimation of effective stress concentration for M-SR and 

M-MR models, respectively, and (c and d): Absolute error histograms corresponding to Fig. 16a and c for the training and test 

data. The same figures for the model with a resolution of 256×256 (M-LD) are presented in Fig. 13c and f.  

Fig. 17 shows a detailed examination of the stress field in a zoomed region around the inclusion 

from test data to assess the impact of resolution on prediction accuracy (see Fig. A1 in Appendix 

A. 1 for full field estimations of stress field for several inclusions by models with different 

resolutions). It is evident that higher resolutions result in improved stress field predictions, as 

indicated by the closer resemblance between the predicted stress fields and the ground truth stress 

field in Fig. 17. Furthermore, the absolute error map reveals that higher resolutions exhibit lower 

error values and smaller erroneous regions round inclusion boundary, highlighting the enhanced 

accuracy achieved with increased resolution. 
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Fig. 17. Zoomed region of the stress field of inclusion from test data to investigate the effect of resolution on prediction accuracy. 

The rows of figures show the ground truth and prediction stress field, and absolute error contours, (a): Model with the resolution 

of 64×64 (M-SR), (b): Model with the resolution of 128×128 (M-MR), and (c): Model with the resolution of 256×256 (M-LD). 

A comparison between the ground truth stress ratios and the corresponding predicted stress ratios 

for all data points within the zoomed regions of Fig. 17 is presented in Fig. 18a-c for models with 

a resolution of 64×64 (M-SR), 128×128 (M-MR), and 256×256 (M-LD), respectively. This figure 

shows that the FE-CNN surrogate model can give accurate predictions of the stress ratio for most 

points surrounding inclusion across all different model resolutions. However, for the higher-

resolution models, there are fewer points with extremely high values of deviation, confirming the 

conclusions made in the description of Fig. 17 that higher resolutions lead to lower prediction 

error. 
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Fig. 18. Comparison of ground truth and predicted stress fields for all data points in the stress field analysis performed for 

inclusion of Fig. 17, (a): Model with the resolution of 64×64 (M-SR), (b): Model with the resolution of 128×128 (M-MR), and 

(c): Model with the resolution of 256×256 (M-LD). 

4.3. Effect of skip connections 

The integration of skip connections in U-Net architecture enhanced the model's ability to capture 

clear edges of the inclusion. By utilizing skip connections, we aimed to reduce noise and improve 

the model's capacity to effectively describe inclusion boundaries. Consequently, this made it easier 

for the model to avoid generating artifacts inside the inclusion region. To provide a more 

comprehensive understanding of the impact of skip connections on the results, an additional model 

(the same model as M-SR in Table 1 but without the use of skip connections) was trained and the 

corresponding comparison of the results for the model with skip connections and without the skip 

connections are presented in Fig. 19. This comparison clarifies the role of skip connections in 

achieving the improved edge detection and artifact reduction. Without the use of skip connections, 

the model struggles to provide accurate predictions. The errors are noticeably higher, and the 

predicted inclusion boundaries lack sharpness and clarity. In addition, a comparison of predicted 

effective stress concentration ratios for the entire dataset with ground truth data has been conducted 

in Fig. 20 for models with and without skip connections. This comparison also shows a significant 

reduction in accuracy when skip connections are omitted, further highlighting their importance in 

achieving accurate predictions. 
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Fig. 19. Stress field predictions and error contours from the model with and without skip connections for four random inclusions 

from the test data. 

 
Fig. 20. Comparison of the predicted effective stress concentration ratios with the ground truth for, (a): Model with skip 

connections, and (b): Model without skip connections. 

4.4. Limitations 

The FE-CNN surrogate model, despite its promising results and accuracy, has limitations, 

particularly in terms of extrapolation ability. When tested on data with different inclusion features 

than those used in training, the prediction accuracy of the model significantly decreased. Fig. 21 
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shows several examples of inclusions outside of the training dataset indicating reduced accuracy 

for predictions on unseen inputs.  For instance, Fig. 21a shows the stress field prediction of an 

inclusion from the test dataset that predicted the effective stress concentration with an error of 4.7 

%. Meanwhile, Fig. 21b-d show the predictions of out-of-center inclusions outside of the dataset 

that gave an estimation of effective stress concentration with errors of -33.1 %, -59.8 %, and -64.7 

%, respectively. While the FE-CNN was accurate in representing the geometry of the inclusion in 

the output field, a significantly reduced accuracy was observed for the inputs outside the training 

range of the model. In addition, when the model trained with one inclusion feature was applied to 

data with two inclusions (Fig. 21d), accuracy notably dropped with an error of -20.6 % in 

predicting the effective stress concentration. This limitation indicates that the model's 

generalization is confined to the specific examples and structures within the training set, limiting 

its efficacy for extrapolating to novel structures. Caution must be exercised when applying the 

model to scenarios beyond the scope of its training data, and further research is required to enhance 

its capability for diverse and more complex structural problems. 

 
Fig. 21. (a): Stress field prediction for inclusion from test dataset, (b-d) Stress field prediction for out-of-center inclusion inputs 

outside of the dataset, and (e) Stress field prediction for an outside of the dataset input with two inclusions. 
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5. Conclusions 
In this study, we presented a FE-CNN surrogate model for predicting the effective stress 

concentration around an arbitrary inclusion. The inclusion geometries, along with their 

corresponding stress distributions, were generated using Python scripting in Abaqus and were used 

to train a U-Net CNN model. The results of this study demonstrate the accuracy and effectiveness 

of the FE-CNN surrogate model in predicting the effective stress concentration and stress field 

around an arbitrary inclusion. The correlation values between the predicted and ground truth stress 

concentrations were also significant, indicating a strong alignment between the model's predictions 

and the actual values.  

Moreover, the model's efficiency was highlighted by its shorter prediction time compared to 

traditional FE simulations, making it a valuable tool for efficient stress analysis. The analysis of 

the model's performance with varying dataset sizes revealed the importance of dataset size in 

achieving higher accuracy. Increasing the dataset size led to improved predictions and lower errors, 

particularly for the test data. The investigation into the effect of model resolution highlighted its 

impact on prediction accuracy. Higher resolutions led to improved predictions and reduced errors, 

demonstrating the importance of capturing finer details and intricate features of the inclusion 

geometries. The analysis showed that increasing the model resolution enhanced the alignment 

between the predicted stress fields and the ground truth, providing more accurate estimations of 

stress concentration. 

Overall, this study holds significant value across various disciplines, particularly in structural 

reliability prediction, failure prediction, design of structures, and multiscale modeling. The FE-

CNN surrogate model offers a reliable and efficient approach for predicting stress concentration, 

enabling researchers to gain insights into the behavior of materials with complex and irregular 

inclusion geometries. Moreover, the advancement of additive manufacturing technology has 

brought irregular inclusion geometries to greater attention, as they pose unique challenges and 

opportunities for material structure-property relationship and analysis and the proposed 

methodology, at greater extent, would be useful for the fabrication of complex and customized 

components with irregular shapes and sizes. In addition, the model's ability to handle large 

datasets, account for variations in size and shape and accurately reproduce stress fields makes it a 

valuable tool for studying the effects of inclusion characteristics on material performance.  
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Appendix A. 

Fig. A1 presents a more thorough visualization of the effect of the model resolution of prediction 

of the stress field around four random inclusions from test data. 

 

Fig. A1. Ground truth and prediction stress field of four different inclusions from test data. Predictions are made with FE-CNN 

surrogate models with different resolutions.  
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