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Wang, Z. and Goonewardene, L. A. 2004. The use of MIXED models in the analysis of animal experiments with repeated
measures data. Can. J. Anim. Sci. 84: 1–11. The analysis of data containing repeated observations measured on animals (exper-
imental unit) allocated to different treatments over time is a common design in animal science. Conventionally, repeated measures
data were either analyzed as a univariate (split-plot in time) or a multivariate ANOVA (analysis of contrasts), both being handled
by the General Linear Model procedure of SAS. In recent times, the mixed model has become more appealing for analyzing repeat-
ed data. The objective of this paper is to provide a background understanding of mixed model methodology in a repeated measures
analysis and to use balanced steer data from a growth study to illustrate the use of PROC MIXED in the SAS system using five
covariance structures. The split-plot in time approach assumes a constant variance and equal correlations (covariance) between
repeated measures or compound symmetry, regardless of their proximity in time, and often these assumptions are not true.
Recognizing this limitation, the analysis of contrasts was proposed. If there are missing measurements, or some of the data are
measured at different times, such data were excluded resulting in inadequate data for a meaningful analysis. The mixed model uses
the generalized least squares method, which is generally better than the ordinary least squares used by GLM, if the appropriate
covariance structure is adopted. The presence of unequally spaced and/or missing data does not pose a problem for the mixed
model. In the example analyzed, the first order ante dependence [ANTE(1)] covariance model had the lowest value for the Akaike
and Schwarz’s Bayesian information criteria fit statistics and is therefore the model that provided the best fit to our data. Hence,
F values, least square estimates and standard errors based on the ANTE (1) were considered the most appropriate from among the
five models demonstrated. It is recommended that the mixed model be used for the analysis of repeated measures designs in ani-
mal studies.

Key words: Repeated measures, General Linear Model, Mixed Model, split-plot, covariance structure

Wang, Z. et Goonewardene, L. A. 2004. Recours aux modèles mixtes pour l’analyse des expériences sur les animaux avec
mesures répétitives. Can. J. Anim. Sci. 84: 1–11. En zootechnie, on analyse couramment les données venant d’observations
répétées sur des animaux (l’unité expérimentale) répartis entre divers traitements dans le temps. Par convention, les données issues
de mesures répétitives sont prises soit comme variable unique (dispositif en tiroir dans le temps), soit comme variable multiple
avec analyse de la variance (des valeurs contrastantes), le modèle linéaire général du SAS acceptant les deux méthodes. Depuis
peu, on fait de plus en plus souvent appel au modèle mixte pour analyser les données répétitives. Le présent article donne des expli-
cations générales sur l’application de cette méthode à l’analyse des mesures répétitives et illustre la fonction PROC MIXED du
SAS au moyen d’un ensemble équilibré de données sur des bouvillons tiré d’une étude de croissance pour cinq structures de la
covariance. L’approche en tiroir dans le temps suppose une variance constante et des corrélations (covariances) identiques entre
les mesures répétitives ou une symétrie composée, peu importe la proximité des données dans le temps. Or, ces hypothèses tien-
nent rarement la route. Face à cette limite, on suggère plutôt l’analyse des valeurs contrastantes. Si certaines mesures manquent
ou si certaines mesures sont prises à des moments différents, on a tendance à les exclure, de sorte qu’une analyse valable devient
impossible. Le modèle mixte recourt à la méthode des moindres carrés généralisés qui est souvent préférable à celle des moindres
carrés ordinaires utilisée par le modèle linéaire général, quand on opte pour la bonne structure de la covariance. L’existence de
données à écarts inégaux ou l’absence de certaines données ne soulèvent aucune difficulté dans le modèle mixte. Dans notre exem-
ple, le modèle de covariance du premier degré avant dépendance [ANTE (1)] donne la valeur la plus faible pour les statistiques

Abbreviations: AIC, Akaike information criterion;
ANOVA, analysis of variance; ANTE(1), first order ante
dependence; AR(1), first order autoregressive; BIC, Bayesian
information criterion; BW, body weight; CS, compound sym-
metry; GG, Greenhouse Geiser; GLM, general linear model;
GLS, generalized least squares; FNWT, final body weight;
HF, Huynh-Feldt; INWT, initial body weight; MANOVA,
multivariate analysis of variance; OLS, ordinary least squares;
SAS, Statistical Analysis System; UN, unstructured

Starting with Vol. 84 (2004), the Canadian Journal of Animal
Science will not normally accept papers reporting the use of
the GLM procedure to analyze data-sets that include random
effects or repeated measurements on the same experimental
unit where the data show heterogeneous variances and/or
unequal within-subject time-dependent correlations. This
Editorial paper addresses the reasoning behind this desci-
sion. For further details see the Operations Manual (http://
pubs.nrc-cnrc.gc.ca/aic-journals/apssubmit.html).
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The repeated measures experiment is a common design in
animal science research (Goonewardene et al. 2000; ZoBell
et al. 2003), and the analysis refers to multiple measure-
ments made on the same experimental unit, observed either
over time or space. In repeated measures designs, the usual
practice is to apply treatments to experimental units in a
completely randomized design and measurements are made
sequentially over time. With this type of experimental
design, there are basically two fixed effects (treatment and
time) and two sources of random variation (between and
within animals). Some of the more common designs in ani-
mal sciences include repeated measurements of such things
as weight, gain, blood parameters, and products of metabo-
lism and digestibility of nutrients. Such measurements are
commonly taken on subjects which have been randomly
allocated to fixed treatment effects such as feeds, drugs, hor-
mones, etc., with pens or blocks considered as random
effects in the design (Silvia et al. 1995; Wells and Preston
1998; Goonewardene et al. 2000; Platter et al. 2003).
Sometimes a repeated measures analysis can be combined
with a Latin square design and analyzed as a split-plot with
multiple error terms (SAS/STAT 1990; Yandell 1997).

Often, measurements made on the same animal are more
likely to be correlated than two measurements taken on differ-
ent animals, and two measurements taken closer in time on the
same animal are likely to be more correlated than measure-
ments taken further apart in time. The basic objectives for
repeated measures data are to examine simple factor effects
(main effects) and the interaction effects between them. The
distinguishing characteristic of the repeated measurements
analysis model from other models is the assumption about the
error variance and covariance structure (Wolfinger 1996; Littell
et al. 1996; 1998; Templeman et al. 2002). With the repeated
model, the usual assumptions about error variances being inde-
pendent and homogeneous are no longer valid (Wolfinger
1996; Littell et al. 2000; SAS Institute, Inc. 2002). The analy-
sis of repeated measures data therefore requires an appropriate
accounting for correlations between the observations made on
the same subject and possible heterogeneous variances among
observations on the same subject over time. 

Objective and Focus
A scan of Volume 82 (2002) of the Canadian Journal of Animal
Science shows that repeated measures analyses have been used
in 25 papers. Many authors used the GLM procedure in SAS to
analyze their data although some used the MIXED model with
a repeated statement. While the GLM procedure may have
been appropriate to use then, the MIXED procedure of SAS is
a more robust and flexible procedure for the analysis of such
data (Cnaan et al. 1997; SAS Institute, Inc.1997; Littell et al.
1998; Templeman et al. 2002). However, it appears that unfa-

miliarity with mixed model methodology and PROC MIXED
limits its use. The objective of this paper is to provide a mini-
mal background understanding of the mixed model in repeated
measures analysis in animal science by using steer data from a
growth study, and to demonstrate the use of PROC MIXED of
the SAS system. The focus of this paper is on how to use PROC
MIXED to analyze balanced repeated measures data from the
user’s point of view. The use of PROC MIXED to analyze
unbalanced repeated measures data will be discussed in anoth-
er paper. Detailed theoretical treatments and descriptions about
mixed model methodology are provided by other authors
(Wolfinger 1996; Cnaan et al. 1997; SAS Institute, Inc.1997;
Littell et al. 2000). The general approach discussed in this paper
is divided into two parts; the first part attempts to estimate the
variance and covariance, the second part attempts to substitute
variance and covariance estimates into the mixed model and
use generalized least squares methodology to assess signifi-
cance for fixed effects.

Data for Illustration
Data from a steer growth trial published by Mir et al. (1998)
are used to demonstrate mixed model methodology and ana-
lyze repeated measures data. In this experiment, six diets
(1–6) were randomly assigned to 60 steers, with 10 steers
per diet, over 105 d. Body weights were measured every 21
d (3 wk) at 0 (INWT = 237 ± 17 kg), 21, 42, 63, 84 and 
105 d (end). These will be referred to as time 0, 1, 2, 3, 4,
and 5 throughout this paper. These data were analyzed by
using PROC MIXED with start body weight measured at 0-
d as a covariate, and the subsequent weights as repeated
measures in the analyses. Five commonly used covariance
models, SIMPLE, CS, AR(1), ANTE(1) and UN, were fitted
to the steer growth data. However, there are many covari-
ance structures that are available in the MIXED procedure,
and a list of the available covariance structures can be found
on the SAS online documentation for Version 8.1.

STATISTICAL METHODOLOGY
The approaches used in repeated measures analyses can be
categorized as conventional and modern. The conventional
approach uses PROC GLM in the SAS system and the
analyses are done using either a univariate analysis of vari-
ance (ANOVA) or a multivariate analysis of variance
(MANOVA), and are often referred as the split-plot in time
and the analysis of contrasts respectively (Littell et al. 1991;
Wolfinger 1992). The mixed model approach uses mixed
model methodology or PROC MIXED in the SAS system.
The advantages, limitations, strengths and weaknesses of
conventional analyses as well as the mixed model method
are summarized in Fig. 1. Some of these attributes will be
discussed further in subsequent sections.

ajustées aux critères d’information bayésiens d’Akaike et Schwarz. Il procure donc le meilleur ajustement. On estime que les
valeurs F, la valeur estimative des moindres carrés et l’erreur-type reposant sur le modèle ANTE (1) sont celles qui conviennent
le mieux parmi les cinq modèles examinés. Les auteurs préconisent le modèle mixte pour analyser les mesures répétitives dans les
études sur les animaux.

Mots clés: Mesures répétitives, modèle linéaire général, modèle mixte, dispositif en tiroir, structure de la covariance
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WANG AND GOONEWARDENE — MIXED MODELS FOR REPEATED DATA 3

Conventional Approaches

Univariate Analysis of Variance 
The univariate analysis of variance of the repeated measures
data can be performed using PROC GLM with the follow-
ing SAS code. Assume that the repeated data set was named
STEERS associated with the libname IN. The first 10 observa-
tions of STEERS are provided in Table 1. There are many
ways to bring data sets into the SAS system from other data-
base applications for statistical analysis and details can
either be found in the SAS online documentation or other
sources (Cody and Smith 1991; Littell et al. 1998). 

PROC GLM DATA=IN.STEERS;
CLASS DIET TIME ANIM;
MODEL FNWT=DIET ANIM(DIET) TIME DIET*TIME;
RANDOM ANIM(DIET)/TEST;
RUN;
QUIT;

This type of analysis has been used commonly in animal
research experiments for many years (Goonewardene 1990;
Milliken and Johnson 1992). The analysis basically treats the
repeated measures data as split-plot design, where the experi-
mental units regarding treatments are considered as the whole-
plot units, while the experimental units at a specific time are
considered as the sub-plot or split-plot units. It is worth noting
that the animal assigned to a diet is specified as a RANDOM
effect in the above code in order to carry out a correct F-test.
The /TEST option in the RANDOM statement performs
hypothesis tests for the effects specified in the model statement
with appropriate error terms as determined by the expected
mean squares. The statistical model used for this analysis is
defined in Eq. 1:

yijt = µ + αi + dj(i) + γt + (αγ)it + eijt (1)

where:
yijt is the live body weight measured at time t on the jth steer
assigned to the ith diet,
µ is the overall mean effect,
αi is the ith fixed diet effect,
dj(i) is the random effect of the jth steer within the ith diet,
dj(i) ~ NID(0, σd

2) (approximately normally independently
distributed with mean of 0 and variance of σd

2),
γ t is the fixed tth time effect when the measurement was taken,
(γα)it is the fixed interaction effect between diet and time, 
eijt is the random error associated with the jth steer assigned
to the ith diet at time t, eijt ~ NID(0, σe

2) (approximately nor-
mally independently distributed with mean of 0 and vari-
ance of σe

2).
Assuming dj(i) and eijt are independent.

E (yijt) = µ + αi + γt + (αγ)it

Fig. 1. A summary of the advantages and limitations of the conventional and mixed model approaches for the analysis of repeated data.

Table 1. The first 10 observations of the example data set STEERS

DIET ANIM TIME INWTz FNWTy

4 61 1 266 285
4 61 2 266 313
4 61 3 266 330
4 61 4 266 344
4 61 5 266 372
1 62 1 212 235
1 62 2 212 251
1 62 3 212 260
1 62 4 212 272
1 62 5 212 282
zInitial body weight at the beginning of the trial.
yFinal body weight at the end of the trial.
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4 CANADIAN JOURNAL OF ANIMAL SCIENCE

Var (yijt) = Var (dj(i) + eijt) = σ2
d + σ2

e Cov (yijt, yijk) = 
Cov (dj(i) + eijt, dj(i) + eijk) = σ2

d.....for..t ≠ k (2)

From Eq. 2 we know that measurements observed at each
time have a constant variance of (σd

2+σe
2), the covariance

between two observations made at different times on the
same subject is the same for all pairs of measurements σd

2

regardless of their proximity in time. These assumptions are
most likely not true in many animal experiments because
measurements made on the same animal are likely to be
more correlated than two measurements taken on different
animals. Furthermore, two measures taken closer in time on
the same animal are likely to be more correlated than mea-
sures taken far apart in time. However, when these assump-
tions hold, the univariate ANOVA method (split-plot in
time) is valid for analysis of repeated data. The PROC GLM
is a fixed effect procedure and it cannot directly accommo-
date the random animal effect in the model although a RAN-
DOM statement was used in the code to specify the animal
within a diet (Littell et al. 1998; Templeman et al. 2002).
This RANDOM statement was used to carry out a correct F-
test provided the model assumptions are met. If the model
assumptions are wrong, then the RANDOM statement pro-
vides no help for the F-test.

Multivariate Analysis of Variance
The multivariate analysis of variance is used where the assump-
tions imposed by the univariate ANOVA (measures at each
time have equal variances and the correlations between any two
measures are the same) do not hold. When this occurs, the
MANOVA with a repeated statement in PROC GLM can be
used. The analysis also allows a covariate (BW1) to be used in
the MODEL statement. The following SAS code performs the
multivariate analysis, assuming the data set was named MULT
associated with libname IN. The appropriate format for the data
is provided in Table 2. 

PROC GLM DATA=IN.MULT;
CLASS DIET;
MODEL BW2-BW6=DIET BW1/SS3;
REPEATED TIME/PRINTE SUMMARY;
RUN;
QUIT;

The common feature of using the repeated statement is that
it applies to differences between measures on the same sub-

ject. Therefore, the repeated statement in this MANOVA
allows one to examine trends over time and it can produce
many meaningful statistics that are essentially univariate
tests. The MANOVA analysis requires balanced data with
the same repeated time points for all subjects. If one repeat-
ed measure is missing from a subject, then all the data for
this subject will be eliminated from the analysis. For unbal-
anced data, this procedure may not be suitable to arrive at a
meaningful analysis. The MANOVA is a method that avoids
the covariance problems raised in repeated measures analy-
ses. However, the method cannot directly accommodate the
covariance structure as in the mixed model. In fact, it is
based on an unstructured within-subject covariance matrix
and therefore, it is not an optimal method (SAS Institute,
Inc. 2002).

Comparison of the ANOVA and MANOVA
Methods
The ANOVA method ignores the time-dependent correla-
tions in the repeated measures data. Therefore, risks exist in
using incorrect standard errors for the comparison of means
at different times (Littell et al. 1998; Templeman et al.
2002). The inappropriate choice of standard errors for mean
comparisons can result in an excessive Type I statistical
error. Type I error is the rejection of the null hypothesis
when it is true. Although the Greenhouse-Geiser (GG) and
Huynh-Feldt (HF) adjustments can be applied in an attempt
to account for within-subject time-dependent correlations by
adjusting the denominator degrees of freedom in the
MANOVA analysis, these corrections are often inadequate
(SAS Institute, Inc. 2002). The MANOVA method also
assumes an unstructured covariance matrix to overcome the
above-mentioned problems, which is far more general than
most repeated measures data require. Therefore, it wastes a
great amount of information inherent in repeated measures
data and results in a less powerful test (SAS Institute, Inc.
2002). More importantly, the MANOVA method cannot
handle missing measures on subjects.

Mixed Model Approach
The mixed model procedure (PROC MIXED) allows a
greater flexibility in modeling covariance structures for
repeated measures data, and adequately accounts for the
within-subject time-dependent correlations (Littell et al.
1998; Templeman et al. 2002). It also has better capabili-
ties to handle missing observations in repeated measures

Table 2. The first eight observations of the example data set MULT

ANIM DIET BW1z BW2z BW3z BW4z BW5z BW6z

62 1 212 235 251 260 272 282
63 1 227 247 272 286 293 311
65 1 255 277 290 307 317 339
69 2 231 243 256 277 291 302
74 2 221 242 248 266 278 294
86 2 259 277 295 314 325 360
71 3 257 282 318 342 360 384
75 3 239 264 276 291 300 319
zBW1–BW6 are the body weight measurements (kg) corresponding to day 0, day 21 … day 105.
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WANG AND GOONEWARDENE — MIXED MODELS FOR REPEATED DATA 5

data than the MANOVA. Therefore, the mixed model
approach is considered superior to the conventional
approaches. In addition, with an appropriate covariance
structure specified, the MIXED procedure uses GLS to
estimate and test the fixed effects in the model, which is
considered superior to the OLS method used by the GLM
procedure (SAS Institute, Inc. 1999). The GLS procedure
can account for all of the covariance parameters modeled
for the data whereas OLS cannot. Because of this, the
mixed model analysis is more precise and therefore rec-
ommended, although assessing an appropriate covariance
structure for the data is not easy. 

Statistical Model for the Example Data
The statistical model for the mixed model analysis in the
example data set can be defined as:

yijt = µ + αi + dj(i) + γt + (αγ)it (b + ϕj) xij + eijt (3)

where:
b is the common regression coefficient of initial weight of xij,
ϕi is the slope deviation of the ith diet from the common
slope b,
xij is the initial body weight measure of steer j on diet i at the
beginning of the study and the remaining terms are the same
as in Eq. 1.

E (yit) = µ + αi + γt + (αγ)it + (b + ϕj) xij (4)
Cov (yijt, yi′j′t′) = Vij 

where, Vij is a block diagonal covariance matrix for each
subject j with diet i. The Vij can take many different forms
depending on the nature of the repeated measure data.

Commonly Used Covariance Structures for the
Repeated Measures Model

Mixed Model Analysis with a SIMPLE Covariance
Structure
The SIMPLE covariance structure assumes that all observa-
tions are independent of each other and there is no correla-
tion (covariance) between any pair of observations, even
between the repeated measures on the same subject. The
SIMPLE structure has an equal variance σ2 on the main
diagonal and 0 elsewhere in the covariance matrix and is
expressed as:

(5)

This structure is considered simple because only a single
parameter estimate is required. This is the covariance struc-
ture assumed in the standard fixed model analysis of vari-
ance. However, the SIMPLE covariance structure is seldom
true with repeated measures data.

Mixed Model Analysis with CS Covariance
Structure
The compound symmetry refers to equal variances (σd

2+σe
2) on

the main diagonal and equal covariances (σd) on all off diago-
nals. This structure is the simplest correlated covariance struc-
ture for repeated measures data since it assumes a constant
correlation between observations regardless of the distance
between time points. This is essentially the same as the uni-
variate ANOVA (split-plot in time) analysis, which was used
for many years in the past. The CS structure requires two para-
meters, the between subject (σd

2) and the within-subject (σe
2)

variance estimates. The covariance matrix is expressed as:

(6)

The CS covariance structure is only appropriate when the so-
called Huynh-Feldt condition is met, that is equal correlation
between measures on the same subject (Huynh and Feldt 1970,
1976). However, the HF condition is also seldom true with
repeated measures because the time-dependent correlations
most likely exist with repeated measures data. If the HF condi-
tion is not met, other covariance structures should be pursued.

Mixed Model Analysis with AR(1) Covariance
Structure
The first-order autoregressive covariance structure assumes the
correlation between adjacent measures is ρ, regardless of the
order of the adjacent pairs such as 1st and 2nd, 2nd and 3rd, and
so on. It also assumes that the correlation for any pair of obser-
vations that are measured n units apart have a correlation of ρn.
The correlation between observations is a function of distance
in time. In addition, it assumes equal variances σ2 on the main
diagonal and the variance times the corresponding correlations
on the off diagonals of covariance matrix, and is expressed as:

(7)

In the AR(1) structure, since the correlations are increasing in
power as distances increase between pairs of observations, the
corresponding covariances decrease. The AR(1) structure
requires equally spaced times, and time must be ordered cor-
rectly and the structure needs only two parameter estimates. If
unequally spaced time points are present, one should consid-
er other covariance structures such as SP(POW).

Mixed Model Analysis with ANTE(1) Covariance
Structure
The first-order ante dependence covariance structure allows
unequal variances over time and unequal correlations and
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6 CANADIAN JOURNAL OF ANIMAL SCIENCE

covariance among different pairs of measurements. The mag-
nitude of the covariance depends on the values of both the cor-
relations and standard deviations associated with them. The
covariance matrix is expressed as:

(8)

This structure requires t + (t – 1) parameter estimates where
t is the number of times repeated. With this structure, time
periods must be ordered correctly but equal spacing between
times is not necessary.

Mixed Model Analysis with UN Structure
The unstructured covariance structure allows unequal vari-
ances over time and unequal covariances for each time com-
bination. This is the most complex structure and t(t – 1)/2
parameters need to be estimated where t is the same as
defined in Eq. 8, and expressed as:

(9)

This covariance structure is modeled by the MANOVA repeat-
ed measures analysis. Because of the complexity of the UN
structure, it is generally more difficult to fit. A smaller data set
with many repeated observations on one subject may fail to
converge. As the UN structure estimates many parameters
(over parameterization), it may waste a considerable amount of
information in the data and result in less powerful tests.

MODEL DEVELOPMENT
Littell et al. (2000) recommended the following steps for
selecting an appropriate covariance structure in the analysis
of repeated measures data using PROC MIXED:
(a) Model the mean structure (the model expectation) by
specifying the fixed effects in the model to fit the repeated
measures data. At this step, try to fit all possible fixed
effects in the mean model, test for the significance and then
reduce the model to obtain a desirable mean model using
PROC GLM.

(b) Specify a closer covariance structure for between and
within-subject effects. Usually, the covariance for the with-
in-subject measurements can be complex for repeated mea-
sures data, but generally assumes that the repeated measures
within subjects are correlated and between subjects are inde-
pendent. Therefore, most of the time, the within-subject
covariance is a block diagonal matrix with one block per
subject. Then specify an appropriate covariance structure in
each block. The guidelines on how to specify an appropriate

covariance structure are discussed in the next section. The
details of available covariance structures can be found in
SAS help Version 8 under PROC MIXED: REPEATED
Statement – TYPE = option.

(c) Use the covariance structure identified in step b and fit
the mean model using the MIXED procedure in SAS. This
accounts for the covariance in the data, which the preceding
GLM analysis in step a did not. In this step, one may be able
to further reduce the mean model to obtain a more parsimo-
nious model based on the tests for the fixed effects and the
model fit statistics information criteria. The model fit statis-
tics will be discussed subsequently.

(d) Based on the results obtained in step c, make statistical
inferences and draw conclusions about the analysis based on
the objectives of the study.

Specification of an Appropriate Covariance
Structure
A model with an appropriate covariance structure for the with-
in-subject correlation is essential to arrive at an accurate con-
clusion in a repeated measures analysis. Ignoring the important
within-subject correlation by using a model that is too simple
will increase the Type I error rate for fixed effect tests in the
analysis, while too complicated a model will lead to a sacrifice
in test power and the efficiency of tests for the fixed effects. It
has been shown that inference in the repeated measures analy-
sis can be severely compromised by a poor choice of covari-
ance models (Wolfinger 1996; Guerin et al. 2000). Although
the true covariance structure for a particular dataset is seldom
known, an approximately correct covariance model must be
specified in order to obtain a valid analysis. 

The first thing one should do is to exclude the covariance
structures that clearly make no sense to the data before starting
to select a covariance structure. In general, the SIMPLE covari-
ance structure may not be an appropriate choice for repeated
measures data; equal time spacing covariance structures, such
as AR(1), should not be considered for unequally time-spaced
data; homogeneous covariance structures, such as AR(1),
should be ruled out if the data show heterogeneous variances
over time. After ruling out some of covariance structures that
clearly make no sense to the data, these steps should be fol-
lowed to select an appropriate covariance structure for the data.

(a) Try to run the UN covariance structure first to examine
the pattern of the covariance matrix of the data. The pattern
often suggests a simpler covariance structure that may fit the
data better. The UN is the most complex structure and it
may fail to converge for smaller data sets with many repeat-
ed measures on a single subject. When the UN model fails
to converge, then analyze the data using the MANOVA pro-
cedure and then look at the correlation matrix provided by
the MANOVA analysis. The pattern of the correlation
matrix could provide a hint for a simpler more appropriate
covariance structure that fits the data.

(b) Based on the pattern obtained from the above analysis,
the biology of the study and experimental knowledge about
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your data, a few covariance structures that appear to be rea-
sonable for the data may be tried.

(c) Compare the model fitting statistics information from the
above runs of different models, and then select the model
that best fits the data. In general, a simpler covariance struc-
ture that best fits to the data should be chosen.

Model Comparison
A comparison of candidate models can be achieved by run-
ning the PROC MIXED procedure with various covariance
structures. The information criteria provided by PROC
MIXED can be used as a statistical tool to assist in model
selection. Three information criteria are provided in SAS
version 8.1 and they are the Akaike Information Criteria
(AIC), the finite-sample corrected Akaike Information
Criteria (AICC) and the Schwarz’s Bayesian Information
Criteria (BIC). The value of information criteria closest to
zero indicates a better model fit to the data (SAS Institute,
Inc. 1999). As its name implies, AICC is a finite-sample
corrected AIC for small samples, and it reduces the bias that
results from AIC. With large samples, the AICC converges
to the AIC. In general, AICC is preferred to AIC. The BIC
tends to choose a simpler model than AIC because it
increases the penalties, as the number of parameters
required in the model increases. As suggested above, when
the model becomes too simple, it tends to inflate the Type I
error rate. Therefore, when Type I error control is critical in
the study, AICC should be used. On the other hand, if a test
power is the major concern, then BIC may be preferable. In
general, for repeated measure analysis, among plausible
within-subject covariance models for a particular study, the
model that minimizes either AICC or BIC is preferable.
When AICC and BIC values are close, then the simpler
covariance model is generally preferred.

ANALYZING THE EXAMPLE DATA USING 
THE MIXED MODEL

The Data Profiles
The individual body weights were plotted against time, and
for clarity, data from only 17 of the steers are shown in Fig.
2. A close examination of Fig. 2 reveals (a) a fanning shape
over time, which provides evidence that variation in body
weight is increasing as weight increases. As such a constant
variance over time is no longer a valid assumption, and het-
erogeneous variance is the reality, (b) within the study peri-
od, as each steer’s growth profile approximates a linear
relationship over time, it indicates that a linear model is like-
ly to be appropriate, and (c) larger or smaller steers tend to
remain larger or smaller during the entire trial, and this indi-
cates a clear subject-to-subject variability in steer growth
over time. Also, measures on the same animal are likely to
be more closely correlated than measures taken from differ-
ent animals. Two measures taken on the same individual are
positively correlated because they possess common effects
from the same animal. Hence, a linear mixed model with an
appropriate covariance structure can be expected to accom-
modate these features exhibited by the data.

The diet means for body weight over the trial period are
shown in Fig 3. The diet means for body weights are simi-
lar at the start of the study, but the magnitude of differences
among the diets begins to differentiate over time. For exam-
ple, the magnitude of the difference between diets 1 and 3
is small at the beginning (day 0) but large at the end 
(day 105), whereas, between 1 and 4, the largest difference
appears at time 2 and the difference at time 5 and 6 is virtu-
ally absent. Figure 3 indicates that a general conclusion
about diet means cannot be made independent of time. In
order to make a comparison of the diets, appropriate esti-
mates of the differences between treatment means at differ-
ent times and of the differences between means for the same
treatment at different times would be interesting and should
therefore be considered.

Examination of the Covariance Structure
A preliminary analysis showed that the within diet, regression
of INWT on FNWT was not significant (P > 0.05), therefore a
common slope for diets was used in the subsequent analysis.
Table 3 was obtained by fitting Eq. 3 with a UN covariance
structure to the example data. The variances are on the diago-
nal, correlations and covariances between repeated measures
are shown above and below the diagonal, respectively (Table
3). It appears that the variances increase over time (heteroge-
neous) and the correlations within the same subject decrease
over time. It can also be seen that covariances or correlations
between adjacent measurements on the same steer are more
correlated at later time periods than at earlier times. For exam-
ple, the covariance and correlation between adjacent measure-
ments of time 4 and 5 are 162.87 and 0.92, respectively, which
are much larger than their corresponding covariance and corre-
lation between adjacent measurements of 30.02 and 0.58 at
times 1 and 2. Therefore, the conventional ANOVA method of
analysis for repeated data is not justified. Hence, a mixed linear
model with heterogeneous and correlated covariance structure
should be considered for these data.

Fitting Different Covariance Models
In order to illustrate the advantages of using mixed model
analysis over the conventional approaches, the same data set
was fitted to five different covariance structures [SIMPLE, CS,
AR(1), ANTE(1) and UN]. The SAS code given below is for
PROC MIXED with a simple covariance structure. The SIM-
PLE covariance structure is the default option for TYPE =
options in the MIXED procedure. Also, SIMPLE is the covari-
ance structure assumed in the standard fixed model ANOVA.
Other covariance models [CS, AR(1), ANTE(1) and UN] can
be invoked by simply replacing the SIMPLE in the ‘TYPE =’
options with CS, AR(1) ANTE(1), or UN covariance struc-
tures. To use the covariance structures available in the SAS sys-
tem other than those listed above, one just needs to replace the
SIMPLE in the ‘TYPE =’ option with your choice of 31 avail-
able covariance structures that can be found in the online doc-
umentation of SAS version 8.1.

/* MIXED MODEL APPROACH - ANALYSIS THE STEER
GROWTH DATA */
PROC MIXED DATA=IN STEERS COVTEST;
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CLASS ANIM DIET TIME;
MODEL FNWT = DIET | TIME INWT / DDFM=KR;
REPEATED TIME / SUBJECT=ANIM (DIET) TYPE = SIMPLE 
R RCORR;
RUN;
QUIT;

The fit statistics for the five models are presented in Table
4. The AICC and BIC values for the ANTE(1) covariance
model are both smaller than the corresponding AICC and
BIC for the rest of the covariance models. We can conclude
that the ANTE(1) covariance model provides the best fit to
the data among the five models selected and is therefore the
model of choice.

Test of the Fixed Effects for the Five-covariance
Models
One may choose to request tests for fixed effects and spe-
cific interactions. In this example, DIET, TIME and interac-

tion of DIET × TIME were requested. Table 5 presents the
value of F-tests of the fixed effects computed by the
MIXED procedure for the five-selected covariance models.
The values of the F-test are similar for the ANTE(1) and UN
models, which happen to fit the data better than SIMPLE,
CS and AR(1) (Table 4). On the other hand, the F values dif-
fer substantially for SIMPLE, CS and AR(1) models, which
did not provide a good fit to the data. The failure of SIMPLE
model to recognize between steer variations resulted in
excessively large F values for DIET and INWT, and these
are both animal effects. The CS model gives essentially the
same result that would be obtained with the univariate
ANOVA. This model produces excessively large F values

Table 3. The covariance and correlation matrixz obtained by fitting the
UN structure for the example data set STEERS

TIME 1 2 3 4 5

1 34.30 0.58 0.53 0.49 0.38
2 30.02 77.27 0.86 0.81 0.75
3 34.06 82.41 120.15 0.90 0.85
4 34.90 86.14 118.72 146.36 0.92
5 32.67 95.66 136.40 162.87 213.19
zVariances along the diagonal, covariances are in the lower triangle and
correlations are in the upper triangle.

Table 4. Model fit statisticsz with five different covariance structures
for the example data set STEERS

Covariance structuresy

Fit statisticsx SIMPLE CS AR(1) ANTE(1) UN

-2 Log likelihood 2103.7 1940.4 1852.6 1798.4 1791.0
AIC 2105.7 1944.4 1856.6 1816.4 1821.0
AICC 2105.7 1944.4 1856.6 1817.1 1822.9
BIC 2107.8 1948.6 1860.8 1835.2 1852.5
zA smaller model fit statistic value indicates a better fit to the data.
ySIMPLE = simple, CS = compound symmetry, AR(1) = first order autore-
gressive, ANTE(1) = ante dependence, UN = unstructured.
xAIC = Akaike information criterion, AICC = finite sample corrected
Akaike information criterion, BIC = Schwarz’s Bayesian information 
criterion.

Fig. 2. Tri-weekly body weight profiles of 17 steers during a 105-d growth study. (Only part of the data are shown.)

Fig. 3. Tri-weekly average body weight profiles of steers on six diets during a 105-d growth trial.
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for TIME and DIET by TIME interaction effects. This is a
common problem when applying the CS model to analyze
repeated measures data, as the HF condition is not met. The
F value for TIME that results from AR(1) model is large due
to the fact that AR(1) model failed to account for the corre-
lations between measures observed on the same animal fur-
ther apart in time and the heterogeneous variances over
time. The F values based on the ANTE(1) and UN models
are similar because both models are adequately modeling
the covariance of the data and therefore result in valid tests.
However, the ANTE(1) has the lowest AICC and BIC fit
statistics and hence is the model of choice from among the
five models tested.

Effect of Covariance Structures on Least Square
Means for Fixed Effects
Least square means can be obtained in the same way as in
the PROC GLM procedure by adding the following
LSMEANS statement in the PROC MIXED code as shown
previously. The /PDIFF in the LSMEANS statement
invokes SAS to provide the difference between all pairs of
means and the standard error of the difference. 

LSMEANS DIET DIET*TIME/PDIFF;

Table 6 provides least square mean estimates for the six
diets for the five covariance structures. Least square means
are similar for each diet regardless of the covariance struc-
ture, because the example data are balanced. With unbal-
anced data, the least square mean estimates would be
different (Cnaan et al. 1997). The standard errors of the least
square estimates differ for the different covariance models
because they are adjusted for the covariance parameters in
the mixed model (Littell et al. 1998). However, the least
square means are the same in GLM and MIXED as they are
both calculated in the same way. 

Effect of the Covariance Structures on Linear
Combinations of Fixed Effects
Let us now examine the different covariance structures on
comparisons for diet 1 and diet 3 at five different time peri-
ods as shown in Table 7. The values in Table 7 can be
obtained by adding the ESTIMATE statement with appro-
priate linear contrasts in the SAS code as follows:

ESTIMATE ‘D1-D3 at T1’ DIET 1 0 -1 0 0 0 DIET*TIME
1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0;
ESTIMATE ‘D1-D3 at T2’ DIET 1 0 -1 0 0 0 DIET*TIME
0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0;
ESTIMATE ‘D1-D3 at T3’ DIET 1 0 -1 0 0 0 DIET*TIME
0 0 1 0 0 0 0 0 0 0 0 0 -10 0;
ESTIMATE ‘D1-D3 at T4’ DIET 1 0 -1 0 0 0 DIET*TIME
0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0;
ESTIMATE ‘D1-D3 at T5’ DIET 1 0 -1 0 0 0 DIET*TIME
0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1;

The estimates of the difference between diet 1 and diet 3 are
similar across models, but the standard errors of the esti-
mates are similar and constant over time for SIMPLE, CS
and AR(1) models because these models assume a constant
variance over time as previously shown. On the other hand,
standard errors of the estimates with ANTE(1) and UN
models are similar within the same time period, and increase
over time. This is because both ANTE(1) and UN models
are able to recognize heterogeneous variation over time as
observed in these data. The results in Table 7 clearly indi-
cate that the inappropriate choice of the SIMPLE, CS and
AR(1) models resulted in a high risk for Type I statistical
error in the earlier time periods (1 and 2) and a high risk for
Type II error (failing to reject the null hypothesis when the
alternate hypothesis is true) in later time periods (4 and 5)
for the above estimates compared with ANTE(1) and UN
model. Therefore, ANTE(1) and UN models adequately
describe the example data while the Simple, CS and AR(1)
models do not.

Table 5. F test of fixed effects for five covariance structuresz for the example data set STEERS

Effect SIMPLE CS AR(1) ANTE(1) UN

DIET 43.9** 11.91** 11.2** 11.37** 11.34**
TIME 402.91** 1181.76** 604.96** 399.79** 417.98**
DIET*TIME 1.88 * 5.51** 3.25** 2.91** 3.22**
INWT 1174.12** 318.54** 317.97** 477.5** 444.54**
zSIMPLE = simple, CS = compound symmetry, AR(1) = first order autoregressive, ANTE(1) = ante dependence, UN = unstructured.
* F-test significant at the 0.05 level.
** F-test significant at the 0.01 level.

Table 6. Least square mean estimates (EST) and standard errors (SE) of six diets from five covariance modelsz for the example data set STEERS

SIMPLE CS AR(1) ANTE(1) UN

Diet EST SE EST SE EST SE EST SE EST SE

1 280.23 1.4706 280.23 2.8235 280.23 2.9076 280.23 2.9824 280.23 2.9792
2 287.23 1.4741 287.23 2.8302 287.26 2.9142 286.68 2.9853 286.73 2.9823
3 304.33 1.4733 304.33 2.8286 304.31 2.9126 304.81 2.9846 304.77 2.9816
4 279.88 1.4717 279.88 2.8255 279.89 2.9096 279.57 2.9833 279.6 2.9802
5 291.29 1.4706 291.29 2.8235 291.29 2.9076 291.31 2.9825 291.31 2.9792
6 298.09 1.4720 298.09 2.8261 298.08 2.9102 298.44 2.9836 298.41 2.9805
zSIMPLE = simple, CS = compound symmetry, AR(1) = first order autoregressive, ANTE(1) = ante dependence, UN = unstructured. All estimates (EST) are
significant at the 0.01 level.
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CONCLUSIONS
The univariate ANOVA method often does not handle the
time-dependent correlations adequately in repeated measures
data and may often result in a Type I statistical error, that is
rejection the null hypothesis when it is true. The MANOVA
method assumes an unstructured covariance matrix that is far
more general than required by most repeated measures data.
It also wastes large amounts of information thereby reducing
the power of the test, and cannot handle missing data effec-
tively. The mixed model allows a flexible approach to model
appropriate covariance structures that would adequately
account for within-subject correlations over time. The mixed
model uses a generalized least squares method to estimate and
test the fixed effects, which is generally superior to the ordi-
nary least squares used by GLM. Mixed model methodology
has the ability to handle missing data and unequal spacing,
and allows a covariate in the model. It is recommended that
the mixed model be used for the analysis of repeated mea-
sures designs in animal studies. This is demonstrated by our
example in which the ANTE(1) covariance structure fitted the
data best among the five models selected and provided the
most appropriate F tests for fixed effects, estimates of least
square means and standard errors.
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