
Percussive Sound Generation with Virtual Listeners
and Modular Synthesizers

by

Amir Salimi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Amir Salimi, 2021

Abstract

This work focuses on the virtual generation of short percussive samples which

can be used by electronic music artists in their compositions. Although re-

cent advancements in digital synthesis, heuristic search, and neural networks

have been utilized for the generation of a variety of sounds, the lack of ac-

cess to large audio datasets, the problem of open set recognition, and high

computational costs persist as barriers towards the expansion of digital sound

libraries using these techniques. We present our approach towards the au-

tomatic generation of synthesizer programs which mimic one-shot percussive

sounds. This work documents the implementation of an automatic system

for generation of virtual percussive synthesizer programs using classical signal

processing and machine learning. This system relies on virtual ears to find

synthesizer programs which mimic percussive sounds, and to further catego-

rize these programs into a number of common drum types. We demonstrate

promising results in both detection and categorization of percussive sounds by

representation of digital audio through Fourier transformations and autoen-

coder embeddings. Manual listening tests of the generated sounds indicate

that the system can successfully generate drum synthesizers and categorize

drum sounds. To facilitate future research, we share our curated datasets of

free percussive sounds. These datasets can also be used for the replication of

our work.

ii

Preface

A summary of this thesis has been published in “Proceedings of the 2020 AI
Music Creativity Conference, 2020” under the title “Make your own audience:
virtual listeners can filter generated drum programs” [67]. The publication
includes adapted portions from all chapters of this thesis. Dr. Abram Hindle
has made contributions to the composition of the manuscript, assisted with
summarizing the work, and conducted manual hearing tests.

iii

Acknowledgements

I would like to thank Dr. Abram Hindle for his patience and curiosity. This
work could not have been completed without his guidance and support. I
would also like to thank the residents of the Software Engineering Research
Lab for their insights and company.

I am indebted and grateful to my partner Erin for her unwavering support
throughout the years. I would also like to thank my parents for their endless
sacrifices.

iv

Contents

1 Introduction 1
1.1 Our Goals . 1
1.2 Why Does the World Need More Drums? 1
1.3 What Do We Mean By Drums? 2
1.4 What Solution Do We Propose? 2
1.5 What Is Our Methodology? 3
1.6 Thesis Statement and Contributions 4

2 Background and Related Work 5
2.1 Digital Audio: Sound from Numbers 5

2.1.1 Sampling Rates and Quality of Digital Audio 6
2.1.2 Loudness, Amplitudes and Envelopes 7
2.1.3 Frequency, Pitch and Spectrograms 9

2.2 Digital Audio Synthesis . 10
2.2.1 Virtual Synthesizers 11

2.3 Neural Networks And Sound 13
2.3.1 Related Works . 14

3 Datasets 16
3.1 Why is Data Needed? . 16
3.2 Datasets . 16

3.2.1 FreeDB . 17
3.2.2 RadarDB . 17
3.2.3 MixedDB . 17
3.2.4 NoiseDB . 17
3.2.5 FreeRadarDB . 17

3.3 How The Datasets Will Be Used 18

4 Virtual Synthesizer 19
4.1 Why Do We Need a Virtual Synthesizer? 19
4.2 Why DSP over ANN Synthesizers? 19
4.3 Virtual Synthesizer Implementation 21

4.3.1 How Will The Synthesizer Be Used? 24

5 The Virtual Ear 26
5.1 Why Do We Need A Virtual Ear? 26
5.2 Implementation Steps . 26

5.2.1 Learning Caveats . 27
5.3 Representing Sound . 28

5.3.1 Fourier Transforms . 28
5.3.2 Embedded FFT Features 31
5.3.3 Architecture and Hyper-Parameter Optimization . . . 32
5.3.4 Visualizing The Encodings 36

v

5.3.5 What To Do With Extracted Features 41
5.4 Ear Decisions . 42

5.4.1 Two Phased Ears . 43
5.4.1.1 DVN Models 44
5.4.1.2 DVD Models 46

5.4.2 Mixed Ear Models . 48
5.4.2.1 Model Selection 49

5.5 How Will TPEs and MEMs Be Used? 51

6 Results 54
6.1 Putting The System Together 54
6.2 How and Why Surveys are Conducted 55
6.3 Survey of Two-Phased Ear Performance 56

6.3.1 Methodology and Dataset 56
6.3.2 Survey Application and Results 56
6.3.3 Takeaways Of The TPE Pipeline Survey 58

6.4 Survey of Mixed Ear Model Performance 58
6.4.1 Methodology and Dataset 58
6.4.2 Survey Application and Results 59
6.4.3 Takeaways Of The MEM Pipeline Survey 59

6.5 Survey Conclusion . 60

7 Drum-Kit Mutation 62
7.1 Suitability for Live Performance 62
7.2 Analyzing the Outputs . 64

7.2.1 Noticeable Limitations 65
7.3 Conclusion . 66

8 Conclusions, Validity, and Future Work 67
8.1 Conclusions . 67
8.2 Threats to Validity . 68

8.2.1 Construct Validity . 68
8.2.2 Internal Validity . 68
8.2.3 External Validity . 68

8.3 Future Work . 68

References 70

vi

List of Tables

2.1 Quick reference for related works 14

3.1 Overview of our curated datasets. 18

4.1 Synthesizer submodule parameters. Despite the simplicity of
the parameters and efforts at constraining the ranges, the com-
binations of parameters that can be randomly chosen for each
submodule is in the order of 1015 23

5.1 The Hyper-Paramter space in which the optimization was con-
ducted. 33

5.2 CNN model design with latent size of 8. 30 and 20 are the
assumed frequency bins and step size. Total number of param-
eters is 166,320. 35

5.3 Fully connected model with only 1 hidden dimension for encoder
and decoder. Design assumes latent size of 8. 30 and 20 are the
assumed frequency-bins and step-size values. Total number of
parameters is 156,512. 35

5.4 Fully connected model with 2 hidden dimensions for encoder
and decoder. Design assumes latent size of 8. 30 and 20 are the
assumed frequency-bins and step-size values. Total number of
parameters is 163,232. 36

5.5 Top performing hyper-parameter set 39
5.6 Sequential Layers for FC-DVN 45
5.7 Sequential Layers for CNNLSTM-DVN 45
5.8 Sequential Layers for FC-DVD 47
5.9 Sequential Layers for CNNLSTM-DVD 47
5.10 Sequential Layers for E+F-DVD 47
5.11 Models implemented for comparison using envelope and embed-

ded features. 49

6.1 Table of Fleiss’ kappa coefficients to measure the degree of
agreement between persons (HvH) and various TPEs: persons
with FC model (H+FC), persons with CNNLSTM model, per-
sons with all models (H+E/F), and between the 3 models.
“Drop Rule” column indicates if any samples were dropped.
We show the measurements after dropping samples if they are
deemed bad by either or both responders. We also show mea-
surements after dropping the “other” category along with sam-
ples deemed bad by either responder. 57

vii

6.2 Table of Fleiss’ kappa coefficient to measure the degree of agree-
ment between persons (HvH) and persons and MEM. We mea-
sure the agreeability scores after dropping bad samples if both
or either persons assigned the sample as such. We also mea-
sure agreeability when all samples deemed “Bad” or “other” by
either person are removed. 59

7.1 Parameters for each drum program. A period (“.”) indicates
no action . 64

7.2 Measuring the quality of generated drum tracks by calculating
the percentage of liked outputs for each listener. 65

viii

List of Figures

2.1 Inadequate sampling rates can make reconstruction ambiguous.
While reconstruction is possible in this case, consider the case
when multiple signals with varying frequencies are overlapped,
or the case when samples are further apart than 1 wave length. 8

4.1 An implementation which allows for easy parallelization when
needed. Virtual synthesizer rapidly generates random programs
and the corresponding sounds, while the virtual ear will listen
to the sounds and determine if they should be categorized as
drums and if so, which category of drum do they belong to. . 20

4.2 High level representation of a submodule. Each Synthesizer con-
tains 1 or more submodules. Synthesizer programs set the num-
ber of these submodules and their parameters. A list of notes
(Pitch) are sent to the oscillator (OSC), the resulting waveform
may or may not be passed through a clouding effect. Next, a
high-pass (HP) and a low-pass (LP) filter are applied. Finally,
the attack, delay, sustain, and release periods of the sound are
defined by the ADSR envelope. The full list of synthesizer block
parameters are shown in Table 4.1. 21

4.3 The output of the virtual synthesizer is the normalized addition
of the output of its submodules. A synthesizer can have any
number of submodules. 22

5.1 An illustration of the discrepancy between the sounds used to
train the classifiers and the type of sounds the classifier is ex-
pected to classify. N is the hypothetical set of sounds our syn-
thesizer is capable of making that could be used as percussion.
The inclusion of sounds in N may vary from person to person.
The positive samples, T +, represents the percussive sounds we
have in our datasets, a small portion of which may be misla-
beled. T − is a set of sounds produced by our synthesizer that
are used as negative examples; however, a small portion may be
similar to percussive sounds and can be thought of as mislabled
negatives. H is the set of sounds used for manual surveys (See
Chapter 6). 27

5.2 Graphed representation of features extracted for 3 different sam-
ples. Sample a is a recorded hat from our database. sample b is
an example of randomly generated noise with percussive quali-
ties that we found suitably similar to a snare sound. Sample c is
an example of a randomly generated noise where the spectrum
features are necessary for proper classification. 30

5.3 Overview of autoencoder training. Once an autoencoder is
trained, the decoder and loss function are not needed, and the
bottleneck layer values will be used as features. 32

ix

5.4 Smaller objective values imply better hyper-paramter sets. As
more trials are executed, how quickly does the best found ob-
jective value decrease? The goal here is to run trials that return
the smallest objective values possible. The effect of a switch to
random sampling and an increase of the pruning threshold can
be observed during trials 270 and 310. 37

5.5 Loss value per epoch for top 10 trials. Some of the initial 500
trials appear in this list, despite having half the number of
epochs. The learning curves tend to flatten quickly. Therefore,
20 epochs may be a reasonable number for measuring hyper-
parameter viability. 37

5.6 Sliced plot depicting the correlation between hyper-parameters
and loss values. The color-scale shows the number of times each
parameter has been used in a trial. Our sampling algorithm
aims to utilize spaces with higher potential more often. The
effect of higher resolution in the frequency and time dimensions
of the spectrogram are notable. 38

5.7 The parameters’ estimated importance in determining the out-
come of trials. Specifications of the spectrogram seem to af-
fect the outcome more so than the model’s configuration. We
attribute the contrast between the results here and those in
Figure 5.6 to the irregular rate of sampling from the hyper-
parameter space. 38

5.8 Projection of an embedding model’s low dimensional encoding
on to a 2D plane. D1 and D2 are the two dimensions output
by T-SNE. We implemented interactions for these graphs for
manual inspection of samples. 39

5.9 Our feature projections and interactive graphs can also be done
in 3D . 40

5.10 TPE’s receive a sound and make decisions sequentially. 43
5.11 MEMs use both FFT features and embedding features to make

both decisions simultaneously. 48
5.12 Boxplots visualizing the F-Score results for each cross-validation.

The individual scores, means, medians, standard-deviation and
outliers are depicted. The differences are noticeable, yet means
lie within the 88-92% range. Envelope features improve classi-
fication accuracy for all models. 50

5.13 F-Score results for each cross-validation. Models perform bet-
ter as there are less categorization groups. Envelope features
increase accuracy for all models. Random Forest and Extra
Trees remain the top two models. 51

5.14 F-Scores and confusion matrix of ExtraTrees model for both
DvDvN and DvN categorization. 52

6.1 Frequency of assigned labels by persons versus the true number
of labels (for TPEs) . 57

6.2 Frequency of assigned labels by persons versus the true number
of labels (for MEMs) . 59

x

7.1 Live drum programming framework. Given a pre-defined drum
program, the main process creates drum tracks using a drum-
kit. This drum-kit is continually modified by a generative sys-
tem running in a background process. In a live setting, the
drum track assembler can be triggered at set times depending
on the program, in offline generation, it can be triggered when-
ever there is a modification to the drum-kit. 63

xi

Chapter 1

Introduction

1.1 Our Goals

Digital recordings of novel, one-shot1 drum sounds are not easy or cheap to

find. New drum sounds can be obtained via live recordings, layering existing

drum sounds, and meticulous combining of sound engineering techniques. The

goal of this thesis is to program virtual synthesizers to generate sounds that

are suitable substitutes for conventional drum sounds. In addition, given that

the generated sound is percussive, it should be grouped with the drum sounds

that it resembles.

1.2 Why Does the World Need More Drums?

A common approach to the creation of drum tracks for digital music is to

combine short recordings of drums and other percussive elements in order

to create a virtual drum-kit. This approach frees artists from the need to

obtain and store real life instruments while enabling endless combinatorial

possibilities. However, by relying on recordings of “real life” drum sounds, we

are limited by what instruments exist in the real world and whether or not

we have access to clean, one-shot recordings. We believe that virtual sound

generation can alleviate these material limitations.

1A single hit on the drum that captures its capabilities. In this project, “one-shot” does
not refer to learning using 1 example.

1

1.3 What Do We Mean By Drums?

Percussive sounds such as kick drums and snare drums are often created by

striking percussive instruments in various ways [7]. These sounds are com-

monly used to create rhythm in musical compositions [53]. In this work, we

are not concerned with the nuances of drums versus percussive sounds, as a

result, we often use the terms “drum” and “percussion” interchangeably.

What we refer to in this work as “conventional” drum sounds are not

necessarily recordings of real instruments, but any sound that can effectively

take their place in a composition. For example, some of the most popular

drum-kits used by artists today are digital recordings of analogue synthesizers

such as the “Roland TR-808” drum machines [47, 31].

Any sound can be used as a one-shot recording of a drum so long as it

adheres to the characteristics of the drum type it’s imitating. For example,

since most physical drums (e.g., kicks, snares, hats) create sounds when struck,

imitations of these drums are loudest at their onset, followed by a quick and

linear drop in loudness; an exception to this general rule are shakers, which

are shaken rather than struck. Another important distinguishing characteristic

of drums is their timbre, or the frequencies they generate. For example, we

expect kick drums to be dominated by lower audible frequencies, hats and

shakers to occupy higher frequencies, and snares to occupy the mid-range

frequencies.

1.4 What Solution Do We Propose?

We want to virtually create novel drum sounds. We need a generative source

that produces audio based on some instructions. Additionally, we need a

method of evaluation to help us determine which sounds resemble drums and

are worth keeping. We also would like to know what instructions, or pro-

grams, caused our audio source to make the sounds we liked, so we can modify

and experiment with these programs. In short, our approach requires virtual

generation and evaluation of digital sounds.

2

1.5 What Is Our Methodology?

This is our plan for a generative system which can imitate sounds: a virtual

synthesizer continually receives random programs and creates the correspond-

ing sounds, while a virtual ear evaluates and assigns a score to each sound,

this score is then used for the separation of undesired outputs from desired

ones. This approach assumes that a fraction of the randomly generated sounds

can be substituted for percussion and that the virtual ear will assign higher

evaluation scores to this subset. While only random search was used in this

work, our implementation allows for the future integration of heuristic search

algorithms such that the parameters of the synthesizer can be selected based

on the previously observed evaluations. Considering these requirements, we

found the proper implementation of 2 major components to be crucial:

• Virtual Synthesizer : A flexible, deterministic, and tractable synthesizer

that can create audio.

• Virtual Ear : A classifier that returns an evaluation of an audio sample;

estimating an audio sample’s fulfillment of a musician’s requirements.

The virtual ear’s evaluation guides the generation process towards a

desired path, making it a crucial component of our pipeline.

We approached this implementation with modularity and parallelizability

in mind. This allows each component to be debugged, modified, and improved

without requiring modifications in other components while increasing scalabil-

ity and speed of experiments.

While the main focus of this project is the generation of novel percussive

sounds, our methodology indicates promising results in regard to the creation

of new presets for any virtual synth without a-priori knowledge of its parame-

ters. We also demonstrate the viability of virtual synthesizers based on Digital

Signal Processing (DSP) methods for fast, unsupervised creation of novel au-

dio.

3

1.6 Thesis Statement and Contributions

The focus of this work is the creation of new audio samples for use by music

producers. We propose a virtual approach to creation of digital drum-kits, by

random and rapid programming of virtual synthesizers and use of virtual lis-

teners for extraction and organization of synthesizer sounds resembling drums.

We seek to implement a system of virtual sound generation where the majority

of sounds generated can be used in digital music compositions as a replace-

ment for one-shot sounds of at least one type of percussive instrument.

The principal contributions of this dissertation are:

• We introduce a framework for rapid, high quality sound generation with

virtual synthesizers using simple digital signal processing techniques.

• For training of virtual listener models, we curated a dataset of free per-

cussive sounds which is made available to future researchers [66].

• We train several machine learning models that can distinguish drum

sounds from non-drum sounds and categorize the type of drum sounds.

We measure and verify the accuracy of these models using conventional

drum sounds.

• We combine our methods of synthesis and sound categorization to create

systems capable of automatic generation of drum sounds of various cat-

egories and create synthesizer programs which can be further modified

by sound engineers.

• We demonstrate the viability of our approach for the creation of digital

percussive sounds by conducting manual hearing tests. Based on our

blinded hearing tests, most of the outputs of our generative system of

sounds are suitable replacements for drums of various categories.

4

Chapter 2

Background and Related Work

This chapter aims to provide a background for the subsequent chapters by

providing a quick overview of four important topics:

(i) Digital sound, its features, and concepts that have been fundamental to

our work.

(ii) Common digital synthesis techniques.

(iii) The applications of artificial neural networks (ANNs) for feature extrac-

tion and sound production. Although similar results can be yielded from

either approach, we distinguish ANN based techniques from tradition

digital signal processing (DSP).

(iv) Related works and their relative similarities and distinctions.

2.1 Digital Audio: Sound from Numbers

Sound is the result of a series of physical events. Most of what we hear is the

product of physical disturbances, causing vibrations in our mutually shared,

immersive mediums. Sound waves are vibrations traveling through air as part

of an expanding, spherical wave front, exponentially losing intensity as they

travel away from the source [59].

5

A sound wave can be viewed as the result of a function which governs

amplitude through time, where time and amplitude exist in continuous di-

mensions. Waves can be approximated via a series of samples, associating

time steps to a discrete range of amplitude values. Given a wave generation

method, computers can make sound by sending a series of discrete values to

a digital to analogue converter (DAC), which in turn can create vibrations

within a speaker. Digital synthesis of audio is the process of creating these

discrete values.

2.1.1 Sampling Rates and Quality of Digital Audio

In 1963, Mathews wrote on the potential and utility of computers as digital in-

struments [46]. He presented a snapshot of digital audio technology of his time

and made predictions on what would be possible in the future [46]. Many of

the techniques described by Mathews have not only remained popular and rela-

tively unchanged, but also benefited from the increase of computational power

throughout the decades [42, 69]. For instance, Mathews described the “dis-

crete sampling continuous pressure waves” as a general method for computers

to capture and internally represent audio [46].

Sound can take on the physical characteristics of a waveform [59]. Imagine

that the curve shown in Figure 2.1 is representative of a sound wave we would

like to digitally capture. A microphone enables a computer equipped with an

analogue-to-digital converter chip (ADC) to record the vibrations caused by

sonic pressure waves at fixed intervals. This means that the original, analogue

waveform is now recorded as a discrete, digital signal. Each recorded sample

would represent the amplitude of the wave at a time-step. The more packets

of information we get, the better our digital recreation of the original sound.

In this context, sampling rate is an important feature of digital sound,

referring to the number of samples per second of audio, typically measured

in hertz (Hz). Sampling rate is not the only important factor when recording

audio as it is important to record with not just speed, but also precision.

Assuming perfect sensors, precision is the range of possible values we can

6

assign to each sample. It is determined by bit depth: the number of bits we

have to represent the values of each sample. Today, standard quality audio

often refers to sampling rates of 44.1 kHz and 48 kHz and bit depth of 16

(that is, 216 discrete values), while “high quality” audio indicates an increase

in bit rate or bit depth [63]. Although subject to diminishing returns, high

quality audio (e.g., 96 kHz/24-bit) may be preferable to most musicians and

audio-engineers. In a meta-analysis of digital sound perception, Reiss found

a small but statistically significant portion of people are able to discriminate

the effect of standard and high quality audio with no prior training, and a

dramatically higher detection rate after extensive training [63].

2.1.2 Loudness, Amplitudes and Envelopes

Loudness is a subjective description of a sound’s intensity or energy level. It

varies based on the complexity of sounds, the frequencies present, and hearing

ability of the listener [23, 45]. It can only be measured relatively, by estab-

lishing a benchmark sound and surveying populations on the relative intensi-

ties [45]. Since loudness and intensity of sound correlate with the amplitude

of digital waveforms (the values assigned to the samples), an imperfect but

convenient alternative method for inferring the loudness of digital sounds is to

compare relative amplitudes. A common function for inferring the loudness

of digital signals is to apply the Root Mean Square (RMS) function to its

samples [75].

Sounds typically vary in intensity as they unfold. This change in intensity is

often described by the envelope of the sound, particularly in shorter samples.

Envelopes can be mathematically described and used to shape signals. A

common approach in digital sound synthesis is to output all samples at a

consistent amplitude and apply an envelope later down the synthesis chain.

Digital and analog synthesizers often have built-in ADSR modules to shape

the volume of the output and other parameters. For digital sounds, Mitchell

describes the envelope as either of the borders (since samples typically take

the range of -1 to 1) that are created by graphing a signal and connecting

the local absolute peak values [48]. In electronic music production, envelope

7

Figure 2.1: Inadequate sampling rates can make reconstruction ambiguous.
While reconstruction is possible in this case, consider the case when multiple
signals with varying frequencies are overlapped, or the case when samples are
further apart than 1 wave length.

8

is often characterized using 4 features: Attack, Decay, Sustain, and Release

(ADSR). Attack describes how quickly the peak loudness is reached. Decay

for how quickly the sound drops to sustain level. Sustain is the duration of

sustaining intensity (for example, how long a finger is kept on a piano key).

Release describes the speed of fading to silence (how fast the sound decays once

the piano key is released). We will describe our method of approximating the

envelope of sounds in Section 5.3.1.

2.1.3 Frequency, Pitch and Spectrograms

Frequency is used to describe number of repetitions within a time-frame, or

how frequently a cycle is repeated. As discussed before, frequency of an audio

signal is often measured in unit of hertz. Most sounds, particularly those from

non-virtual sources, are a combination of multiple different pressure waves with

different frequencies and amplitudes. Pitch, is a perceptual property that is

tied to the frequencies present in a sound. How we perceive and describe the

pitch of a sound is heavily dependent on the characteristics—such as frequency,

amplitude, duration, etc. —of the waveforms it contains. Some sounds, such

as piano keys or pure tones have a discernible pitch. Others, such as “pink

noise” or the sound of rain, do not. Yet another factor to consider is the

hearing ability of the subject, which varies between people based on factors

such as age, environment, and musical training [63, 2, 54].

Spectrograms are graphs used to depict the duration and amplitude of fre-

quencies present in a sound. To create spectrograms, sound must be decom-

posed into a set of simpler functions. A common method for the breakdown

of complex, time-variant functions is the Fourier transformation and its many

variations [15]. One such method is the discrete Fourier transformation (DFT)

and the inverse DFT [15, 27, 52]. DFT and inverse DFT can convert digital

sound from its time domain representation (sequence of samples) to its fre-

quency domain representation (sets of frequency ranges and their amplitude)

and vice versa. We share some examples along with our methodology of cre-

ating spectrograms in Section 5.3.1.

9

2.2 Digital Audio Synthesis

The phenomena of sound at intensities we commonly encounter can be de-

scribed as the output of a linear system of functions [59]. A linear system is

a system where the transformation of combined inputs is equal to the sum of

the separately transformed inputs [41, 59]. In a linear system S with valid

inputs and outputs x and y, if we have:

S(x1)
generates
−−−−−→ y1 (2.1)

and

S(x2)
generates
−−−−−→ y2 (2.2)

The output of the system given both inputs is the sum of the individual

outputs, or:

S(x1 + x2)
generates
−−−−−→ y1 + y2 (2.3)

This concept has important implications digital audio creation and analysis.

Simple tones can be combined to create complex sounds, and complex sounds

can be broken down for easier analysis [41]. It also allows experiments with

simple sine waves to remain relevant in complex sound domains [59].

Various sound synthesis techniques have been developed by treating sound

as a sequence of values. Linear systems are commonly used in creation of mu-

sical tones, while non-linear systems are used for introduction of distortion and

noise where needed. In their taxonomy of digital synthesis techniques, Smith

defines four families of algorithms: algorithms that process and modulate ex-

isting sounds (e.g., granular synthesis, wavelets), spectral models that aim to

create a particular spectrum of sound (e.g., additive, subtractive), physical

models which emulate the physics of real instruments, and abstract models

(e.g., wave shaping, Karplus-Strong), often used for adding harmonics or dis-

tortion to simple sound signals [69].

10

Synthesizers are engines of synthesis that make use of one or more of these

techniques for sound generation. Selection of the appropriate synthesis method

depends not only on the expectations for the sound, but also the features of

the synthesizer itself. Whether in goal oriented tasks such as text-to-speech or

in creative endeavors such as ambient-noise generation, it is often desirable to

work with systems that are quick, adaptable and tractable. For example, one

might desire a text-to-speech system where slight changes to input parameters

can introduce slight changes to the speech patterns, utterances, voices, etc.

This ability to quickly modify and audition sounds becomes a necessity when

the synthesizer is being used as a creative instrument in of itself, rather than

an emulator for existing instruments and sounds.

Often used methods of digital sound generation are “additive” and “sub-

tractive” synthesis, umbrella terms for some of the most simple and common

methods of digital synthesis [49]. In additive synthesis, sounds are built as

a sum of signals, where signals are outputs of oscillators (periodic wave gen-

erators). In subtractive synthesis, segments of a complex signal are removed

until a desired sound is reached. A chain of one or more digital filters, which

can subtract or reduce frequency ranges, are often used in subtractive syn-

thesis. Digital low-pass filters lower the amplitude of signals with frequencies

higher than a given cutoff, while high-pass filters remove lower than threshold

frequencies. It is not uncommon for percussive sounds to have noisy, chaotic

high frequency content during their short attack period, followed by harmonic

low/medium frequencies [37].

2.2.1 Virtual Synthesizers

Nearly 5 decades ago, Mathews claimed that any sound can be recreated via

a computer by high frequency sampling of pressure waves [46]. He noted that

since “a very high sampling rate is required...if this process is to be useful mu-

sically, programs for generating samples from the parameters of notes must be

written” [46]. The methods of synthesis discussed in this chapter are a major

component of such programs, and modern computers are more than capable of

simultaneously running many instances of these algorithms. To further assist

11

with their musical utility, the majority of digital synthesis systems work in

tandem with notation protocols such as Musical Instrument Digital Interface

(MIDI), which can modulate the parameters of these synthesis methods by

modulating information pertaining to ADSR and other note characteristics,

often in real time [50].

The rise Digital Audio Workstations (DAWs) [39] and Virtual Studio Tech-

nology (VST) plug-ins [71] which provide cheaper and virtual alternatives to

recording studios and musical equipment have rapidly transformed the sonic

and material landscape of music production in the recent years. DAWs such as

FL-Studio1 and Ableton2 provide virtual alternatives to expensive hardware

typically found in recording studios. These DAWs typically come with a large

set of VSTs which can accurately imitate nearly all experimental and tradi-

tional physical instruments (e.g., moog synthesizers, pianos, choir voices) and

audio effects (e.g., reverb, chorus, delay). Furthermore, communities such as

KVRAudio3 provide an ever-growing list of free and commercial VST instru-

ment and effects which can be added to DAWs or run stand-alone.

Coupled with this rise in popularity is a vast array of commercial products

and services which cater to the needs of amateur and professional music pro-

ducers for unique sounds, often by provision of audio samples; one-shot drum

samples, long sustained notes (referred to as pads or textures), and loops (per-

cussive or melodic) are common deliverables. Two notable examples of com-

mercial services which provide audio recordings for electronic music artists

are loopmasters4 and splice.com5. While VST plug-ins can emulate analogue

synthesizers and effects, however, due to their (often) complex interface, some

producers may find VST plugins daunting to work with from scratch. In many

cases, VST plug-in vendors or unaffiliated enthusiasts sell additional presets

for these plugins, targeted towards producers who do not have the time or

interest in creating their own. The flexibility of the VST technology allows

1https://www.image-line.com/
2https://www.ableton.com/
3https://www.kvraudio.com/
4https://www.loopmasters.com/
5https://www.splice.com/

12

producers to modify these presets until their desired sound is reached.

2.3 Neural Networks And Sound

In Section 2.1, we defined digital synthesis as the “process of generating dis-

crete values which approximate sound waves”. Virtual generation of sounds

has motivated a wide variety of synthesis techniques which aim to create sig-

nals within a linear (or mostly linear) system. The recent exponential increase

in computing power has been coupled with a wide range of research in proba-

bilistic sound generation, mainly via generative neural networks.

Artificial Neural networks (ANNs) map inputs to outputs via a large net-

work of parameters and activation functions. Given the right network shape

and parameter weights, they can approximate a large set of functions [17, 13].

ANNs are often deployed when we do not have access to the system of func-

tions which guide a process, but a mapped set of inputs and the corresponding

outputs are available. Given this set, the parameters of a neural network can

be tuned for approximating the effect of the system on any valid input. The

architecture of the neural network (e.g., number of layers, connections, activa-

tion functions) is often selected via trial and error [10, 11, 6]. By definition,

these approximations will never be more accurate than the system that is being

approximated.

Since their emergence in the 1950’s, research on ANNs has gone through

several eras of stunted growth [8, 4]. In the last decade, the increase in the

affordability of high performance graphic cards has been coupled with a major

resurgence of interest for ANNs and the emergence of a number of domain

specific variations of the traditional ANN architectures (see Section 2.3.1).

Generative neural networks (GNNs) are utilized for the completion of se-

quences of values; often by taking an incomplete sequence as input and out-

putting the most likely value for the next step. The WaveNet architecture

introduced in 2016 is considered a seminal breakthrough in the usage ANNs

for sound synthesis [56] by surpassing state of the art speech synthesis tech-

niques, which create outputs with the the combination of previously recorded

13

work feature extraction synthesis specilization
Oord et al. [56] CNN CNN Speech

Yamamoto et a.l [72] GAN GAN Speech
Aouameur et al. [5] Autoencoder Decoding of Latent Layers Percussion
Ramires et al. [62] CNN FeedForward Network Percussion
Yee-King et al. [73] LSTM DSP Synth Pads

Table 2.1: Quick reference for related works

audio snippets [68]. When trained on a large corpus of audio samples, GNNs

such WaveNet can learn the “predictive distribution for each audio sample

conditioned on all previous ones” [56]. Once this distribution is learned, it

can be used to create sounds 1 sample at a time, a slow process, as Mathews

predicted [46].

2.3.1 Related Works

ANN or DSP approaches can be taken towards the implementation of a vir-

tual ear and a virtual synthesizer. The recent development of ANN frameworks

has led to works which have utilized ANNs for both components [56, 72, 62].

Also common are works which have leveraged a mixture of both approaches,

often by utilization of ANNs for the virtual ear and DSP methods for synthe-

sis [5, 73].

Many deep neural network models have been proposed and utilized for

the purpose of signal generation in recent years. WaveGans and WaveNet

have been subject to significant improvements and experiments since their

proposal [19, 72, 57]. Specifically for the generation of percussive sounds, a

recent work by Aaouameur et al. [5] utilizes variational AutoEncoders (VAE’s)

for generation of drum sound spectrograms, which are then converted to sound

using a Multi-head CNN model [5]. Another recent work by Ramires et al. [62]

also uses neural networks for this purpose, where a feedforward neural network

capable of creating sounds is guided by a small number of parameters which

represent the producer’s desired characteristics for a drum sound.

14

Automatic programming of virtual synthesizers has also been a topic of

interest. Genetic Algorithms have long been utilized for the generation of new

sounds with various sound-engines [35, 18, 32, 43]. More recent work by Yee-

King et al. [73] used Long Short-Term Memory (LSTM) models and genetic

algorithms to find the exact parameters used to create a group of sounds. The

sounds approximated were made by the same virtual synthesizer, not an exter-

nal source; making the eventual replication certain even with random search.

In addition, the work by Yee-King et al. [73] is generally more focused on

pads and textures rather than drums, and feature matching appears to not

be concerned with the envelope of the sounds but rather the frequency con-

tent within arbitrary time windows. Yet another recent work by Esling et al.

used a large dataset of over 10,000 presets for a commercial VST synthesizer

to learn a latent parameter space which can be sampled for creation of new

programs for audio synthesizers [21]. This bespoke latent space requires large

amounts of synthesizer programs for the initial training, and cannot be used

for other virtual synthesizers.

In the work presented here, we take a different approach to automatic program-

ming of synthesizers by aiming for rapid approximation of percussion sounds

with no previous knowledge about the sonic capabilities of our virtual synthe-

sizer and directly exploring the synthesizer’s parameter space rather than its

latent representation through a neural network. Unlike previous related works,

no prior examples of audio made by the synthesizer nor examples of manu-

ally generated programs are needed for our approach. Any synthesizer can

be integrated into our system so long as a) its parameters are known, b) the

system can randomly modify its parameters, and c) The system can render

and extract the sound output for virtual listening tests. These requirements

are not strict as VST synthesizers meet these expectations by design, giving

our project a large scope of applicability for future work.

15

Chapter 3

Datasets

3.1 Why is Data Needed?

This project requires a virtual synthesizer capable of producing sounds with

a variety of characteristics (as long as a fraction of these sounds can be suit-

able replacements for percussion). On the other-hand, the virtual ear has a

more concrete task: the separation of drum-like sounds from other synthesizer

sounds. Rather than manually defining the characteristics which distinguish

percussive sounds from all other types, we use supervised machine learning

to train the virtual ear by example. To this end, we gathered 3 databases of

percussive sounds, and use supervised machine learning methods to create our

virtual ear models. Chapter 5.1 will cover how these datasets are transformed

and used for training.

3.2 Datasets

We curated 3 different datasets of drums, as well as a dataset of randomly

generated synthesizer sounds. These drums are meant to represent conven-

tional drum sounds, which can be recordings of physical drums or designed

by sound engineers using analogue synthesizers such as the “Roland TR-808”.

The breakdown of samples in each dataset is given in Table 3.1. Below is a

summary of how each dataset was curated, and the steps to reproduce it, if

possible.

16

3.2.1 FreeDB

FreeDB is our curated dataset of free drum-kits extracted from the “Sam-

pleSwap” project1. The SampleSwap database contains a variety musical

and non-musical sounds. We manually selected the sub-directories from Sam-

pleSwap which contained drum sounds, and grouped drum sounds which did

not belong to “Kick”, “Snare”, “Clap”, “Hat” into the group “Other”. FreeDB

is copyright free and is available at: https://zenodo.org/record/3994999.

3.2.2 RadarDB

RadarDB is a set of drum sounds aggregated from royalty free sources such as

music radar2. We cannot directly share this dataset as it is not copyright free,

however, the script for its automated creation can be found under the “get-

ting data” directory of the project: https://github.com/imilas/Synths_

Stacks_Search. Be aware that nearly 50GBs of compressed audio files will

be downloaded, extracted, and filtered to create RadarDB.

3.2.3 MixedDB

MixedDB is a large set of 2 second or shorter drum samples aggregated from

personal libraries. We cannot share this dataset as it contains copyrighted

material.

3.2.4 NoiseDB

NoiseDB is our database of synthetic noise from 1, 3, and 5 stacked virtual

synthesizers (synthesizer stacks will be discussed in the upcoming Section 4.3).

2000 sounds of each stack size were selected for a total of 6000 sounds. This

dataset is used as a source of “negative examples”, i.e, sounds which we gen-

erally want to reject, unless they are very similar to drum sounds.

3.2.5 FreeRadarDB

A database put together by combination of radarDB, FreeDB and NoiseDB.

1https://sampleswap.org/
2https://www.musicradar.com/

17

DB Name Categories
FreeDB Kicks:533 - Snares:372 - Claps:230 - Hats:105 - Other:281

RadarDB
Kicks:1054 - Snares:842 - Claps:353

Toms:349 - Hats:1561 - Rims:131 - Shakers:121
MixedDB Kicks:648 - Snares:732 - Claps:179 - Hats:105 - Toms:416 - Others:281
NoiseDB 1 Stack:2000 - 3 Stacks:2000 - 5 Stacks:2000

FreeRadarDB kick:1334 - snare:1035 - clap:401 - hat:1275 - Synthetic:1000

Table 3.1: Overview of our curated datasets.

3.3 How The Datasets Will Be Used

The drum and non-drum data here can be used as examples to learn the char-

acteristics of drums and non-drums. In Section 5.1, we discuss how supervised

machine learning algorithms are trained to categorize drums from non-drums

using these datasets.

18

Chapter 4

Virtual Synthesizer

4.1 Why Do We Need a Virtual Synthesizer?

Earlier in Section 1.4, the solution we proposed towards the virtual creation

of novel drum sounds required the implementation of a virtual, programmable

sound synthesizer. We conceptualized a pipeline where a programmable virtual

synthesizer rapidly creates audio based on random parameters, and a virtual

ear accepts or rejects the sounds based on its training. This plan is visualized in

Figure 4.1. In this chapter, we describe the implementation of a programmable

synthesizer of sounds, its parameters, and the reasoning behind our engineering

choices. In the subsequent chapters, we discuss the implementation of the

virtual ear and the approach taken to combining and testing the two virtual

components.

4.2 Why DSP over ANN Synthesizers?

As discussed in Section 2.3.1, many of the state of the art works tackling the

problem of supervised audio generation utilize neural networks for synthesis

of audio. Here, rather than using neural networks for sound synthesis, we

generate programs for a virtual synthesizer which mainly utilizes additive and

subtractive techniques. Our decision is based on the following factors:

(i) Novelty and Creativity : The goal here is to work within the limitations of

any tractable sound source to create its approximations of a given sound

category. We seek to create novel sounds via artificial, exploratory cre-

19

Pipeline Design

a

Virtual synthesizer
creates a sound based

on a program

The virtual ear
classifies the sound
based on its training

Approved
sounds are
saved on disk
based on their
category.

Figure 4.1: An implementation which allows for easy parallelization when
needed. Virtual synthesizer rapidly generates random programs and the cor-
responding sounds, while the virtual ear will listen to the sounds and determine
if they should be categorized as drums and if so, which category of drum do
they belong to.

ativity. Boden defines this concept as an emergent property of generative

work within confined rule sets [12]. An example is the perpetual popu-

larity of 8-bit aesthetics in genres such as “chiptunes” [16].

(ii) Interpretability : Neural networks are often described as black boxes with

uninterpretable weights [8]. Their highly recursive structure makes mod-

ern explanation methods such as saliency maps unreliable [65].

(iii) Speed of Rendering : Neural network synthesis is costly. Sub 24 kHz

sample rates are common in most relevant works [72, 57, 5, 62]. This

is far below CD quality sampling rates [63]. At our fixed sampling rate

of 48 kHz, synthesizers with 8 submodules can create and save 1 second

sounds to hard-disk with an average rendering time of 50 milliseconds1.

(iv) Flexibility and Scaling : Probabilistic audio generation is often done se-

1Using a single process on a Macbook Air 2012 and Ubuntu 18.04

20

quentially. State of the art, parallel wave generation with GANs requires

a fixed amount of rendering time for each time-step [72]. With our vir-

tual synthesizer, the added footprint of increasing the length of rendered

sounds or higher sampling rates is relatively minuscule.

4.3 Virtual Synthesizer Implementation

To create sounds, we make use of digital synthesizers capable of rapidly receiv-

ing or creating programs, as well as rendering the corresponding sounds offline.

Classical DSP allows for quick, offline, and parallel generation of audio signals

without the usage of GPUs. Pippi2 and SciPy [36] libraries were extensively

used for their DSP functionalities.

Pitch OSC

Noise

Cloud

LP ADSRHP

Noise = True

Noise = False

Figure 4.2: High level representation of a submodule. Each Synthesizer con-
tains 1 or more submodules. Synthesizer programs set the number of these
submodules and their parameters. A list of notes (Pitch) are sent to the os-
cillator (OSC), the resulting waveform may or may not be passed through a
clouding effect. Next, a high-pass (HP) and a low-pass (LP) filter are applied.
Finally, the attack, delay, sustain, and release periods of the sound are defined
by the ADSR envelope. The full list of synthesizer block parameters are shown
in Table 4.1.

The virtual synthesizer contains a set of one or more submodules. Each

submodule is a self-contained noise making unit. Submodules have identical

structures, but widely different outputs can be achieved depending on the

values assigned to their parameters. The output of the virtual synthesizer

is the normalized addition of the output of its submodules. As shown in

Figure 4.3, each submodule creates a sound independently, and the results are

added and normalized to create the final output. The synthesizer can have any

2https://github.com/luvsound/pippi

21

Pitch OSC

Noise
Cloud

LP ADSRHP

Noise = True

Noise = False

Pitch OSC

Noise
Cloud

LP ADSRHP

Noise = True

Noise = False

Pitch OSC

Noise
Cloud

LP ADSRHP

Noise = True

Noise = False

signal

signal

signal

Stack
Size

 Synthesized

 Sound

Figure 4.3: The output of the virtual synthesizer is the normalized addition
of the output of its submodules. A synthesizer can have any number of sub-
modules.

22

Parameters Value Range notes and constraints

Attack 0-3 A-D-S-R values relative
Decay 0-3 relative to A-S-R
Sustain 0-3 relative to A-D-R
Release 0-3 relative to A-D-S

OSC type sine,square,saw tone type
IsNoise boolean whether touse OSC type to generate noise
Length 0-1 second -

StartTime 0-1 second Length+Start<1
Amplitude 0.1-1 1 = max amplitude

Pitches(notes) list of pitches range of C0(16.35hz) to B9
HP filter Cutoff 0-20000hz -
LP filter Cutoff 20000-HP never lower than HP cutoff
Filter Order 4,8,16 butterworth filter order

Table 4.1: Synthesizer submodule parameters. Despite the simplicity of the
parameters and efforts at constraining the ranges, the combinations of pa-
rameters that can be randomly chosen for each submodule is in the order of
1015

.

number of submodules. The parameters that dictate the output signal of each

submodule as well as the range of values each parameter can take are shown in

Table 4.1. We call the number of submodules in each virtual synthesizer the

stack size. We call the sets of parameter values that characterize a synthesizer’s

submodules a program (analogous to a preset for a VST).

Since we are interested in short, one-shot percussive sounds, each virtual

synthesizer program will generate a 1 second piece of audio. This 1 second

limit is over twice the length of the average one-shot drum sample in MixedDB

(around 0.4 seconds). Each submodule can make an audio signal with the

length of 0.1-1 second, and play it at any point within the 1 second rendering

time3.

In Section 2.1.2, we discussed ADSR envelopes, which are used in sound

synthesis for modulating the loudness of sounds overtime. Here, each sub-

module creates its signal at full amplitude before shaping it according to its

internal ADSR parameter. Prior to being applied to the signal, each of these

parameters is assigned an integer value in the range of 0-3, and normalized

3The entire sound must fit within the second, for example, a 0.3 second sound cannot
begin playing past 0.7 seconds into the rendering time frame

23

relative to the others such that

Anorm +Dnorm + Snorm +Rnorm = 1

Where each value vnorm in the {Anorm, Dnorm, Snorm, Rnorm} set is normalized

such that:

for each v ǫ {A,D,S,R}

vnorm =
v

A+D + S +R

The OSC type will determine the wave-shape of the signal. This parameter is

limited to three fundamental wave forms: sine waves, square waves and saw

waves. We also allow the creation of noise signals, which can imitate timbral

characteristics of higher pitched drum samples at a very low computation cost,

compared to the addition of thousands of sine waves at various frequencies. If

the “IsNoise” boolean is set to true, the OSC type parameter loses importance

as the wave type will be routed through a noise-cloud.

Each submodule is a monophonic synthesizer. That is, each submodule

can play one note (or frequency) at a time. However, quick changes in pitch

can occur in drum sound. To mimic such sounds, synthesizer submodules may

slide between 4 different pitches in the 1 second time frame. Each pitch value

is a note with a frequency and length value. Each submodule accepts a list

of 5 consecutive possible pitch values. The submodule will play each note

in the list consecutively after normalizing the length values. The pitch notes

are played in a portmanteau fashion such that there is no audible gap. This

normalization of length values is similar to that of the ADSR values.

4.3.1 How Will The Synthesizer Be Used?

We use this synthesizer as our source of noise generation. A stack number

can be picked randomly, and for each submodule in the stack, the parameter

space can be randomly sampled. This gives us a randomly generated program,

which is then given to the synthesizer for rendering. These randomly generated

sounds can then be listened to in order to find interesting sounds. The goal is

24

to automate the listening procedure for rapid generation of desirable sounds,

which are drums in the scope of this project. In the next Chapter, we will

discuss the virtual ear, which can automatically listen to the outputs of this

synthesizer and separate percussive sounds from non-percussive sounds.

25

Chapter 5

The Virtual Ear

5.1 Why Do We Need A Virtual Ear?

In the previous chapters, we conceptualized a system that can generate new

drum sounds using a virtual source of random sounds, and an automatic ear

that can pick out sounds which resemble drums. The virtual synthesizer was

introduced in the previous chapter. What is needed now is a tool that can

automatically separate the sounds resembling percussion from those which do

not. Here, what we refer to as an “ear” is any method of scoring and classifying

audio (e.g machine listening) [44, 64]. The ideal virtual ear will be capable of

receiving a piece of audio and scoring it based on how well it satisfies certain

criteria. In the scope of this project, the virtual ear must receive the random

sounds generated by the virtual synthesizer, and separate those resembling

drums from non-drums, and categorize the type of drums.

5.2 Implementation Steps

To create a virtual ear, we use machine learning algorithms. In order for these

algorithms to work as intended, they must be given examples of drum and

non-drum data. Here, the datasets of drum and non-drum sounds discussed

in Chapter 3 are utilized. In order to speed up training times, we do not train

our models on raw audio data, rather, we define two different transformation

functions which project audio data into smaller spaces. These transformation

functions can also be thought of as feature extraction steps. These functions

26

Data Overview

 All Possible
 Percussive Sounds

T
-

H

T
+

Training Sounds

Hearing Test

 Mislabled NegativesMislabled Positives

N

 Sounds we are looking for: H+

 The Virtual Synthesizer’s
 Outputs

Figure 5.1: An illustration of the discrepancy between the sounds used to train
the classifiers and the type of sounds the classifier is expected to classify. N is
the hypothetical set of sounds our synthesizer is capable of making that could
be used as percussion. The inclusion of sounds in N may vary from person to
person. The positive samples, T +, represents the percussive sounds we have in
our datasets, a small portion of which may be mislabeled. T − is a set of sounds
produced by our synthesizer that are used as negative examples; however, a
small portion may be similar to percussive sounds and can be thought of as
mislabled negatives. H is the set of sounds used for manual surveys (See
Chapter 6).

are discussed in Section 5.3. In Section 5.4, the implementation and measure-

ments of two different model types are discussed.

5.2.1 Learning Caveats

To train the models, percussive sounds are used as positive examples, while

synthesizer sounds are used as negatives. Figure 5.1 highlights critical prob-

lems with the learning approach. The change in learning domains—particularly

in the case of positive examples of percussive instruments—should not interfere

with transformation of knowledge from the training of the ear to the hearing

test.

Traditional classification tasks often assume that the data points used for

training the model and future unlabeled data will emerge from the same system

or processes [24, 51]. This assumption requires that sufficient positive exam-

ples of all possible classes exist and are trained on. Works which involve the

implementation of GANs have documented scenarios in which networks will

assign high categorization probabilities to nonsensical, out of context data

which should be rejected rather than categorized [24, 51, 28]. This issue is

27

reflective of the open set recognition (OSR) problem [24, 51], where learning

by examples can prove difficult when the category that is being learned is

infinitely large.

We consider drum sounds to be a closed set, since it is reasonable that

a sufficiently large sample pack can effectively describe conventional drum

categories, while effective representation of all possible non-drum sounds is

not attainable via examples alone. A hurdle towards the implementation of

a “drum from non-drum” recognizer is that the set of sounds that are not

drums do not share any characteristics beyond “not being a drum”, making

the learning process using negative examples difficult. To ensure the quality

of the results, particularly in the categorization of drums from non-drums,

manual hearing tests need to be conducted to measure the quality of the

results. The results of our blinded hearing tests are discussed in Chapter 6.1.

5.3 Representing Sound

We are looking to implement machine learning models capable of analyzing

sounds. Here we establish how digital sounds will be transformed into smaller

feature spaces before discussing the algorithms which learn from them. In this

project two different approaches towards this goal are taken:

1. By using features extracted from Fourier Transformations of sounds

2. By using features extracted from autoencoders which condense the Fourier

transformations.

These approaches will be discussed in detail within this section.

5.3.1 Fourier Transforms

In this work we rely on the application of the fast Fourier transform (FFT),

and by extension, short-time Fourier transforms (STFT) for feature extraction.

Various works have demonstrated effective reconstruction of signals given their

short-time Fourier transforms [52, 27]. If the STFT of a signal can be used

for its reconstruction, perhaps it can be utilized as a source of fundamental

28

features [38, 34]. Using FFT, a signal can be represented by a vector with each

index corresponding to a frequency-bin (a range of frequencies too close to be

distinguishable) and the value at each index corresponding to the combined-

magnitude of the frequencies within the bin. STFT can be employed when

temporal changes in frequency bins are of interest; this can be done by the

application of FFT1 to a sliding time-window on the signal to create a vector for

each time step. This matrix can effectively represent the frequencies present

in the signal at each time step, given the right window-length and hop-size

(how much the window is shifted at each time-step).

To extract the FFT feature sets from a signal, we defined the following

3 transformation functions. These functions are applied at training time to

transform raw digital signals into simpler formats, which may be easier to

learn from:

1. Envelope Transformation: The goal of this feature is to capture the

changes in loudness for the duration of the signal. Using STFT we

generate a matrix Mi×j with rows i and columns j corresponding to time

steps and frequency bins respectively, and with values vi×j indicating the

magnitude of the frequency bin j at each time-step i. Information about

the envelope of the signal can be extracted by summing the values of

M for each time-step (or row i), giving us a feature vector vi. For each

sound, this vector is normalized to the range of 0 to 1. The information

contained in this vector is similar to that of an RMS measurement.

2. Frequency Transformation: A static, normalized snap-shot of the fre-

quencies present within the audio. The calculation of this feature vector

is similar to the envelope, but the summation is done along the frequency

axis.

3. Spectrum Transformation: STFT with its values normalized from 0-1

per sample. Since this feature is a 2D matrix rather than a vector, it

captures more information about our signal. This spectrogram is “mel-

scaled”[70] to better represent human perception of audio frequencies.

1more accurately, discrete Fourier transforms

29

Visual Representation of Raw Features

0 10 20 30 40 50

Frequency Bin

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 M

ag
ni

tu
de

Frequency Features

0 2 4 6 8

Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 M

ag
ni

tu
de

Envelope Features

Time Step

M
ag

ni
tu

de
 o

f B
in

Spectrum Features

(a) Recorded hat sample

0 10 20 30 40 50

Frequency Bin

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 M

ag
ni

tu
de

Frequency Features

0 2 4 6 8

Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 M

ag
ni

tu
de

Envelope Features

Time Step
M

ag
ni

tu
de

 o
f B

in

Spectrum Features

(b) Randomly generated audio with percussive qualities, resembling a tight snare

0 10 20 30 40 50

Frequency Bin

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 M

ag
ni

tu
de

Frequency Features

0 2 4 6 8

Time Step

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 M

ag
ni

tu
de

Envelope Features

Time Step

M
ag

ni
tu

de
 o

f B
in

Spectrum Features

(c) A randomly generated noise with a percussive envelop but non-percussive fre-
quency features (modulated pitch)

Figure 5.2: Graphed representation of features extracted for 3 different sam-
ples. Sample a is a recorded hat from our database. sample b is an example
of randomly generated noise with percussive qualities that we found suitably
similar to a snare sound. Sample c is an example of a randomly generated
noise where the spectrum features are necessary for proper classification.

30

Once the transformation functions are applied to a signal, we have 3 feature

sets which can be learned from. The Frequency bin and envelope features are

1 dimensional arrays of values in the 0-1 range, and are given directly to the

learning models. The spectrum features are a 2 dimensional array of values in

the 0-1 range, which can be thought of as a greyscale image. Depending on the

the learning algorithm, the spectrum features may be flattened into a single

dimension (e.g fully connected neural net) or left unchanged (e.g convolutional

neural net).

In Section 5.3.2, we discuss how the spectrum features can be further en-

coded, or condensed, using autoencoder neural networks. The procedure of

learning from these feature sets is covered in Section 5.4. Section 5.4 discusses

the training procedure for models which directly use the FFT features de-

scribed above, and models which use encoded spectrum features are discussed

in Section 5.4.2.

5.3.2 Embedded FFT Features

The advantage of the spectrum features discussed earlier is that they contain

temporal information for the amplitude of each frequency bin. This means

that it contains both envelope and frequency features, along with other pos-

sibly useful information. This comes at the cost of requiring a much larger

representation space than either frequency or envelope features. To speed up

and simplify training, we want to further reduce the dimensionality of the

spectrum features, ideally without the loss of vital information needed for

classification. For this purpose, we utilized autoencoder networks, which are

an approach to dimensionality reduction using deep neural networks [30, 29].

Autoencoders are comprised of an encoder and a decoder. The encoder

has the task of meaningfully projecting the spectrum data of each sound onto

a small bottleneck layer, while the decoder aims to use this projection to

replicate the input data as closely as possible. Successful training will lead to

an encoder network capable of projecting audio data into a low dimensional

vectors that can be reconstructed faithfully. Here, the original data is the

spectrum features, and the encoding at the bottle neck layer is the simplified

31

AutoEncoding Spectrograms

Encoder Network

Decoder
Network

Bottle Neck Layer
(Encoded Features)

Recreated
Spectrogram

Original
Spectrogram

FFT
Transformation

Sound

AutoEncoding
Loss

(For Training)

Loss
Function

if training

Figure 5.3: Overview of autoencoder training. Once an autoencoder is trained,
the decoder and loss function are not needed, and the bottleneck layer values
will be used as features.

feature sets which we would like to use for training. With some luck, this

low dimensional vector will contain vital information which can be used for

training models much faster than using the original data, with little loss in

performance. The autoencoder training process is depicted in Figure 5.3.

5.3.3 Architecture and Hyper-Parameter Optimization

We make the assumption that if an autoencoder can accurately encode and

decode a spectrogram, then the values at the bottleneck layer form a viable al-

ternative to the spectrogram features, while being much smaller in size. Based

on this assumption, the optimization goal when training the autoencoder net-

works is to minimize the difference between the original and decoded spec-

trogram. The autoencoder designs used in this project were kept relatively

simple, all with approximately 150,000 parameters (although a significant re-

duction occurs when the decoders are discarded during feature extraction).

32

Hyper-Param. Description Values Distribution
Model Type Affects encoder’s first hid-

den layer
CNN,FC Categorical

Optimizer Updates network’s weights
based on loss

Adam,SGD Categorical

Hidden Layers Extra hidden layer for the
Encoder

True,False Categorical

Time Steps Temporal granularity of the
spectrogram. Affects FFT
windowing.

10,20 Categorical

Learning Rate Optimizer’s learning rate 1−4 ... 1−1 Uniform
Frequency Bins Number of spectrogram fre-

quency bins
10, 30,60 Categorical

Regularization L2 regularization parame-
ter. Penalizes large weights
to prevent overfitting

1−6 ... 1−1 Uniform

Latent Size Size of bottle neck layer or
number encoded features

8,16,64 Categorical

Dropout Rate Random zeroing of activa-
tions between layers to pre-
vent over-fitting

0,0.5,0.1 Categorical

Table 5.1: The Hyper-Paramter space in which the optimization was con-
ducted.

Important to mention is that reported loss values of the models do not nec-

essarily reflect whether the encoder will capture data that is useful for any

purpose other than being utilized by the decoder (such as classification and

categorization of drums).

These small networks train quickly without the need for much data. Here,

we did not give any examples of synthetic noise to the encoders, and only train

on our datasets of conventional drums. We hypothesize that if a synthetic

noise has drum-like characteristics, its compressed, latent representation given

by the encoder will be similar to the drum sounds in our databases and vice

versa. In Section 5.11, we use these latent expressions to train several machine

learning models.

Within the context of machine learning, a model’s hyper-parameters are

fixed parameters which are set before the training begins (e.g., number of

layers, size of layers, loss function) and are not learned during the minimiza-

33

tion procedure [9]. Also within this context, hyper-parameter optimization

is the task of searching for a set of hyper-parameters which would maxi-

mize the model’s performance, often done by a series of automatic test tri-

als [9, 11, 10]. As a wide variety of viable autoencoder architectures have

been proposed [5, 20, 25, 74, 61], we are faced with a number of choices for

autoencoder design. To assist with the construction of the model, a number

of possible choices for the architecture and the transformation function were

defined (see Table 5.1). These choices were then used in hyper-parameter

optimization to extract promising sets of values.

The list of possible choices for the hyper-parameters can be found in Ta-

ble 5.1. The batchsize B, was set to 64 for training and 4 for testing. We

included not only model parameters but also spectrogram transformation pa-

rameters within this search space, as GPU accelerated FFT calculations allows

ad hoc audio transformations to take place parallel to the training process. We

implemented 3 base models which are affected by these hyper-parameters. The

“Model Type” parameter dictates whether CNN or fully connected models are

selected. If a “fully connected” model is selected, the “hidden layers” param-

eter selects between the two implementations. The specifications for these

models can be found in Tables 5.3, 5.4 and 5.2.

Using the optuna optimization tools [1], we conducted 500 search trials,

where each trial consisted of up to 20 epochs of training using a fixed set

of hyper-parameters, and each epoch consisted of 1 training round using the

entire dataset. The trials’ success is measured in their final loss value, cal-

culated by applying the model to test data-set. Here, the test data-set is all

sounds from MixedDB. An additional 100 trials with 40 epochs of training

were conducted following the initial 500 to test the effect of longer epochs.

Each trial’s intermediate results (loss at every n epochs where 0 < n < 20)

were reported to a multi-armed bandit based pruner for early stoppage of

unpromising trials[40]. We employed a tree-structured parzen estimator for

better navigation of the search space [11, 1] but found short reversions to a

random sampling coupled with a decrease in the frequency of pruning helpful

in exiting local minima.

34

Layer-# Output
Shape

Param Num Details

Conv2d-1 [B, 8, 30, 20] 208 Encoder’s input
Num. Channels:8
kernel:5x5
stride:1
padding:2

ReLU-2 [B, 8, 30, 20] 0
MaxPool2d-3 [B, 8, 15, 10] 0 kernel:5x5

stride:2
Dropout-4 [B, 8, 15, 10] 0
Linear-5 [B, 8] 9,608 Encoder’s output
Linear-6 [B, 256] 2,304 Decoder’s Input
Dropout-7 [B, 256] 0
Linear-8 [B, 600] 154,200 Decoder’s output

Table 5.2: CNN model design with latent size of 8. 30 and 20 are the assumed
frequency bins and step size. Total number of parameters is 166,320.

Layer-# Output
Shape

Param Num Details

Linear-1 [B, 128] 76,928 Encoder’s input
Dropout-2 [B, 128] 0
Linear-3 [B, 8] 9,608 Encoder’s output
Linear-4 [B, 128] 2,304 Decoder’s Input
Dropout-5 [B, 128] 0
Linear-6 [B, 600] 77,400 Decoder’s output

Table 5.3: Fully connected model with only 1 hidden dimension for encoder
and decoder. Design assumes latent size of 8. 30 and 20 are the assumed
frequency-bins and step-size values. Total number of parameters is 156,512.

35

Layer-# Output
Shape

Param Num Details

Linear-1 [B, 128] 76,928 Encoder’s input
Dropout-2 [B, 128] 0
Linear-3 [B, 32] 4,128
Dropout-4 [B, 128] 0
Linear-5 [B, 8] 9,608 Encoder’s output
Linear-4 [B, 32] 2,304 Decoder’s Input
Dropout-5 [B, 32] 0
Linear-4 [B, 128] 2,304
Dropout-5 [B, 128] 0
Linear-6 [B, 600] 77,400 Decoder’s output

Table 5.4: Fully connected model with 2 hidden dimensions for encoder and
decoder. Design assumes latent size of 8. 30 and 20 are the assumed frequency-
bins and step-size values. Total number of parameters is 163,232.

We depict the correlation of parameter values with trial results in Fig-

ures 5.6. We extract a more concrete measurement of hyper-parameter influ-

ence using the fANOVA importance evaluator [33]. We limit this analysis to

500 trials with 20 epochs. The results of this estimation are depicted in Fig-

ure 5.7. Contrasting the results of the fANOVA evaluator with Figure 5.6,

we notice several issues. Notably, no importance is attributed to “Model

Type” and “Optimizer” parameters, despite a visible difference depicted in

the slice-graph (Figure 5.6). This may be due to the imbalanced sampling of

the hyper-parameter space, prompted by our greedy search in place of random

sampling. Another possible cause is the “averaging” of loss results regardless

of variance: For example, Figure 5.6 depicts CNN models as having the best

and worst results while FC models are reliably average; making the fANOVA’s

0 importance attribution logical, but not optimal when we are strictly looking

for the best models.

5.3.4 Visualizing The Encodings

To better understand the delineation potential of the encoded features, we

trained an autoencoder with our top performing hyper-parameter set, shown in

36

Tracing the Best Loss Values

0 100 200 300 400 500 600

0.001

0.01 Objective Value
Best Value

Trial #

Lo
ss

Figure 5.4: Smaller objective values imply better hyper-paramter sets. As
more trials are executed, how quickly does the best found objective value
decrease? The goal here is to run trials that return the smallest objective
values possible. The effect of a switch to random sampling and an increase of
the pruning threshold can be observed during trials 270 and 310.

Loss Value per Epoch for Top 10 Trials

0 5 10 15 20 25 30 35 40

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0.0022

0.0024

0.0026
0.0028
0.003

0.0032
0.0034 Trial #

Trial411

Trial436

Trial440

Trial466

Trial513

Trial524

Trial525

Trial539

Trial544

Trial545

Epoch

L
o

ss

Figure 5.5: Loss value per epoch for top 10 trials. Some of the initial 500 trials
appear in this list, despite having half the number of epochs. The learning
curves tend to flatten quickly. Therefore, 20 epochs may be a reasonable
number for measuring hyper-parameter viability.

37

Hyper-Parameters’ Loss Correlation

0 0.2 0.4

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

20 40 60 1 1.5 2 1μ 100μ0.01 0 20 40 60 0 0.05 0.1 FC CNN SGD Adam 10 15 20

100

200

300

400

500

of Trials

Dropout Freq. Bins Hidden L2 Regular. Latent Size Learn. Rate Model Type Optimizer Time Steps

Lo
ss

Figure 5.6: Sliced plot depicting the correlation between hyper-parameters
and loss values. The color-scale shows the number of times each parameter
has been used in a trial. Our sampling algorithm aims to utilize spaces with
higher potential more often. The effect of higher resolution in the frequency
and time dimensions of the spectrogram are notable.

Estimated Parameter Importance

0.00

0.00

0.00

0.01

0.02

0.04

0.20

0.23

0.50

0 0.1 0.2 0.3 0.4 0.5

Model Type

Optimizer

Hidden Layers

Latent Size

Dropout Rate

L2 Regularization

Frequency Bins

Time Steps

Learning Rate

Importance

H
yp

er
pa

ra
m

et
er

Figure 5.7: The parameters’ estimated importance in determining the outcome
of trials. Specifications of the spectrogram seem to affect the outcome more
so than the model’s configuration. We attribute the contrast between the
results here and those in Figure 5.6 to the irregular rate of sampling from the
hyper-parameter space.

38

Hyper-Param. Value
Model Type CNN
Optimizer Adam
Hidden Layers 1
Learning Rate 0.001145
Frequency Bins 30
Time Steps 20
Latent Size 64
Regularization 3.25−6

Dropout Rate 0.5

Table 5.5: Top performing hyper-parameter set

2 Dimensional Projection of Latent Variables

−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

Drum Types:
tom_high
tom_low
snare
hihat_closed
rim
clap
kick
hihat_open
tom_mid
synth_noise

D1

D
2

Figure 5.8: Projection of an embedding model’s low dimensional encoding on
to a 2D plane. D1 and D2 are the two dimensions output by T-SNE. We
implemented interactions for these graphs for manual inspection of samples.

39

3D t-SNE Projection

Drum Types:
tom_high
tom_low
snare
hihat_closed
rim
clap
kick
hihat_open
tom_mid
synth_noise

(a)

(b)

(c) (d)

Figure 5.9: Our feature projections and interactive graphs can also be done in
3D 40

Table 5.5. We used 80% of MixedDB to train the model for 200 epochs. Using

this model, we encoded the remaining 20% and approximately 1000 randomly

selected sounds from NoiseDB into 64 dimensions. These 64-dimensions were

then projected onto a 2 or 3-dimensional plane using t-SNE.

In Section 5.4, we will thoroughly discuss the expectations of an effective

virtual ear. In summary, if the embeddings are useful in helping the virtual

ear with separation of drums from not-drums as well as categorization of drum

types, we expect the projection of drum sounds to be clustered together, with

the majority of the synthetic noise sounds appearing away from these clus-

ters. Our projections confirm that this is the case. We are most interested in

synthetic noise sounds which appear within or near these clusters. Do these

synthetic noise sounds have drum like characteristics?

To test this, we implemented interactive graphs identical to those depicted

in Figure 5.8 and 5.9. These graphs allow for interactions such as playing the

samples (by hovering the cursor on-top) and movement of the scene camera

for a closer look at clusters. Manual inspections detailed in Chapter 6 reveal a

noticeable, positive correlation between distance and similarity of a synthetic

sound to a drum cluster. Divergences from the envelope features expected

from drums are a common point of failure. A noticeable case was a synthetic

noise resembling a kick drum played in reverse within the kick cluster. While

encouraging, we hypothesize that more specialized forms of encoding or ad-

dition of other features are needed for reducing the frequency of errors and

strengthening this correlation.

5.3.5 What To Do With Extracted Features

So far, we discussed two methods of feature extraction for audio. The FFT

features can represent various aspects of sound which may be helpful to a

virtual ear. Using autoencoders, FFT features can be further condensed into

small embedded spaces. These embedded spaces are harder to understand and

explain, but the 2-dimensional projections shown in Figure 5.8 indicate that

they contain vital information about the different drum and non-drum sound

41

types in our databases.

The features discussed here can be used to train classifiers which can sep-

arate desirable sounds from undesirable sounds. Section 5.4 covers the imple-

mentation of classifiers which directly use the FFT features and Section 5.4.2

covers the use of embeddings to train virtual ear models.

5.4 Ear Decisions

Having considered the caveats and requirements, once a sound is generated and

passed onto the ear, we expect the virtual ear to make decisions in response

to two important questions:

Decision.1 Could the sound be used as a drum?

Decision.2 If it does sound like a drum, what type of drum should it be?

Decision.1 requires knowledge of what drums do not sound like, or knowl-

edge of an infinitely large set, which cannot be fully represented via examples.

An important consideration is that the source of sounds used for training the

model (conventional drum sounds) will be fundamentally different from the

source of unlabeled sounds we wish to categorize (i.e., noise from a synthe-

sizer.) This issue is reflective of the OSR problem [24, 51]. Figure 5.1 highlights

a number of caveats with our training approach.

Assuming that the result of Decision.1 is positive, the sound is deemed

percussive and the virtual ear makes Decision.2 by finding the best drum

category for the sound. The number of categories available is dependent on

the database of drums used for training. Since drum categories are not open

sets (i.e., they can be described via examples), the OSR problem should not

play a role in the decision making process.

The goal is to create a pipeline of sound generation where the synthesizer

is used for the rapid generation of sounds and the virtual ear is used for

the acceptance of inputs which satisfy some fundamental characteristics of

percussive instruments. The representation of sounds is critical in allowing the

acceptance of novel sounds as part of the drum group despite their anomalies.

42

TPE Design

Sound

FFT
Transformations

Spectrogram

Envelope

Frequency

Decision 1

Drum = Pdrum

Not Drum = 1 - Pdrum

Decision 2

If Pdrum > Threshold

Drum Type 1 = P1

Drum Type 1 = P2

.

.

.
Drum Type n = Pn

Figure 5.10: TPE’s receive a sound and make decisions sequentially.

In Section 5.3, we discussed 2 different approaches to feature extraction. This

leads to two different implementations of a virtual ear: two phased ears (TPEs)

and mixed ear models (MEMs). TPEs are a combination different models for

each of Decision.1 and Decision.2. The features utilized by these models are

manually defined. MEMs use a highly compressed, automatically encoded

representation of sound to give simultaneous answers to both questions.

5.4.1 Two Phased Ears

Using the features and transformation described in the previous section as

input, we trained several neural network models with the pytorch library. The

tasks at hand with regards to Decision.1 is to separate drums from not-drums

(DrumVsNotDrum, or DVN). In Decision.2 the aim is to categorize the type

of drums and percussion (DrumVsDrum, or DVD).

Multiple neural network architectures using different subsets of the FFT

43

features to specialize in Decision.1 or Decision.2 are combined to make de-

cisions sequentially. For Decision.1, all drums in RadarDB and FreeDB and

6000 examples of virtual synthesizer noise are used. For Decision.2, we com-

bined the two databases and merge toms into kicks and rims/shakers into

“other”. To train the models, 80% of the sounds in the dataset were used,

and the remaining 20% of sounds were used for validation. The loss function

and optimizer are Categorical Cross-Entropy and Adam respectively. Training

continued until no reduction in loss and accuracy is observed for 10 epochs.

These accuracy numbers are weak as we did not account for category sizes or

cross validate. Further details about the design decisions, performance, and

the architectures for the DVN models can be found in Section 5.4.1.1. Like-

wise, the architectures for the DVD models can be found in Section 5.4.1.2.

5.4.1.1 DVN Models

In the TPE approach, DVN models are tasked with the separation of drums

from non-drums, or Decision.1. Here, we use 2 neural network architectures

to train for this task. These architectures are trained on the spectrogram

representations of each sound as described in Section 5.3.1, and aim to predict

whether a sound is percussive or not. For convenience, we also prefer models

which train quickly (under an hour) without parallelization2.

Since training is done only on small spectrogram features sets, there are

benefits and downsides in the utilization of different neural network layers.

CNN layers are capable of identifying patterns regardless of their location and

orientation within a 2D space [3]. However, here were working with spectro-

gram data, where the 2D position of each feature is critical to its meaning.

CNN layers also have the benefit of being less computationally expensive than

fully-connected layers [3]; but models which only utilize fully-connected layers

are a viable option here due to the small feature space. Considering these

possible benefits and costs as well as our preference for simplicity and quick

training, we train two different models for Decision.1 :

2Using NVIDIA GeForce GTX 1070

44

Layer-# Output Shape Details
Linear-1 [B, 600] Input Layer
PReLU [B, 600]
Linear-2 [B, 20]
PReLU [B, 20]
Linear-3 [B, 10]
Linear-3 [B, 4]
Softmax [B, size(DvN)] DvN Probabilities

Table 5.6: Sequential Layers for FC-DVN

Layer-# Output
Shape

Details

Conv2d-1 [B, 1, 30, 20] kernel:7x3
stride:1
padding:3x1

ReLU-2 [B, 1, 30, 20]
Dropout-4 [B, 1, 15, 10]
LSTMCell [B, 30] hidden size:800
Linear-1 [B, 2]
Softmax [B, 2] DVN probabilities

Table 5.7: Sequential Layers for CNNLSTM-DVN

1. FC-DVN: A fully connected network trained on spectrogram features

which reached 97% accuracy on the test data for Decision.1. Architec-

ture details are shown in Table 5.6.

2. CNNLSTM-DVN: A combination of CNN and LSTM models, where

the CNN model extracts higher level features that are fed temporally to

an LSTM cell. Here, LSTM layers are utilized in order to extract tem-

poral features from the CNN layers. This model is trained on spectrum

data and reaches 98% accuracy for Decision.1. Architecture details are

shown in Table 5.7.

45

5.4.1.2 DVD Models

As FC-DVN and CNNLSTM-DVN appeared effective forDecision.1, we trained

identical models for the categorization of drum sounds, or Decision.2. The

only modification being the change in the final output layers depending on the

number of drums being categorized. In addition, as we hypothesize that De-

cision.2 may be a relatively easier task (a large number of sounds are pruned

after Decision.1), we trained another fully connected model using only the

envelope and frequency features of each sound (i.e, a vector of size 60). These

models and their performances are as follows:

1. FC-DVD: Fully connected 3 layer neural net with 78% accuracy for

6-way drum categorization in Phase 2. Architecture details are shown in

Table 5.8.

2. CNNLSTM-DVD: A CNNmodel trained on Spectrum features. Reach-

ing 82% accuracy in a 6-way drum categorization in Phase 2. Architec-

ture details are shown in Table 5.9.

3. E+F-DVD: A fully connected model trained on a concatenation of en-

velope and frequency features. Reaching 80% accuracy for 6-way drum

categorization in Phase 2. Architecture details are shown in Table 5.10.

Based on the results on the testing data, these models show promise in sep-

aration of drums from non-drums and categorization of drums, however, we

cannot know their effectiveness as part of a generative system of drum sounds

until manual hearing tests are done. That is, while the ears may be effective

at rejecting non-percussive sounds, we cannot know what percentage of the

sounds accepted by these virtual ears resemble drums without manual hearing

tests. In Chapter 6, we discuss how the TPE models were used in tandem

with the virtual synthesizer along with the results of our hearing tests.

In the next section, we discuss the implementation of MEMs, a separate

class of virtual ears which make Decision.1 and Decision.2 simultaneously

without the need for two different models.

46

Layer-# Output Shape Details
Linear-1 [B, 600] Input Layer
PReLU [B, 600]
Linear-2 [B, 20]
PReLU [B, 20]
Linear-3 [B, 10]
Linear-3 [B, Drum Types]
Softmax [B, Drum Types] DvD Probabilities

Table 5.8: Sequential Layers for FC-DVD

Layer-# Output Shape Details
Conv2d-1 [B, 1, 30, 20] kernel:(7 , 3)

stride:(1 , 1)
padding:(3 , 1)

ReLU-2 [B, 1, 30, 20]
Dropout-4 [B, 1, 15, 10]
LSTMCell [B, 30] hidden size:800
Linear-1 [B, Drum Types]
Softmax [B, Drum Types)] DvD probabilities

Table 5.9: Sequential Layers for CNNLSTM-DVD

Layer-# Output Shape Details
Linear-1 [B, 60] 10 Envelope + 50 Encoded

Features
PReLU [B, 60]
Linear-2 [B, 30]
PReLU [B, 30]
Linear-3 [B, 10]
Linear-3 [B, 10]
Softmax [B, Drum Types] DvD Probabilities

Table 5.10: Sequential Layers for E+F-DVD

47

MEM Design

Sound Drum Type 1 = p
1

Drum Type 2 = p
2

.

.

.

Not a Drum = P
n+1

FFT
Transformations

Encoder
Spectrogram

Envelope
Frequency

MEM Model

Envelope
 Features

Spectrogram

Figure 5.11: MEMs use both FFT features and embedding features to make
both decisions simultaneously.

5.4.2 Mixed Ear Models

Unlike TPEs which make their decisions in two steps, mixed ear models

(MEMs) simultaneously categorize a new sound’s drum type or put it in the

“synthetic noise” category. We call this task drum vs drum vs not-drum, or

“DvDvN”.

Manual t-SNE inspections discussed in Section 5.3.4 highlighted a disregard

for envelope shapes as a major source of failure. Because of this, the feature

set used to train MEMs contains envelope and embedded features. The per-

formance of the models before and after the addition of envelope features (a

vector of size 10) to the feature space is shown in Figures 5.12 and 5.13.

The autoencoder model trained on MixedDB is used as an embedding fea-

ture extractor. RadarDB, FreeDB and NoiseDB are combined for training/test

data. To prevent class overlaps as much as possible, only claps, hats, kicks,

snares and synthetic noise groups are used for measuring model effectiveness.

Samples longer than 1 second are excluded in order to reduce potentially mis-

labeled data. This combined dataset was described in Section 3.2.5

48

Model name Modified Parameters† Used Weights? ‡

Support Vector Classifier (SVC) Gamma:0.001, C:100, kernel:rbf Yes
LinearSVC C:10 Yes
K Nearest Neighbors Number of Neighbors:31 No
Random Forest Classifier Number of Estimators:500 Yes
Extra Trees Classifier Number of Estimators:1100 Yes

Table 5.11: Models implemented for comparison using envelope and embedded features.
† Parameters not mentioned have neither been tuned nor changed from scikit-learn’s
default values (as of version 0.23)

‡ Class weights are used unless not applicable to classifier.

5.4.2.1 Model Selection

Using embeddings and envelope features to represent audio, five classification

models were trained for the task of categorizing the five different sound groups.

We did not use neural networks for classification as traditional classification

models have been shown to match, if not exceed deep-learning models with less

training time, given that the feature set is a simplified representation extracted

using neural networks [55].

We arbitrarily select 5 traditional classification models from the scikit-learn

library (version 23) [58]. The 5 classification models used and their hyperpa-

rameters are presented in Table 5.11, and any unmentioned hyperparameters

are set to the library’s defaults. To compare the models, we conducted a

10-fold cross validation and plot the F-scores in Figure 5.12. Each of the 10 F-

scores reported is the average F-score when classifying individual drum groups.

Class weights were used where possible to mitigate the effects of an imbalanced

dataset [60, 14]. When utilized, the weight for each class c is calculated as:

cweight = 1−
Number of samples in group c

Total number of samples

To see how these models perform on the binary DvN task (i.e Decision.1),

the performance of the models is measured in the same manner after all drums

are grouped together. The results of these tests are shown in Figures 5.12

and 5.13. Considering the performance of these models, we selected the extra-

trees model as the most promising for the MEM virtual ear. Extra-trees is an

49

Cross Validation F-Scores For All Sound Groups

ExtraTrees RandomForest KNeighbors LinearSVC SVC

0.88

0.89

0.9

0.91

0.92 Feature Type: Embedding Only Embedding+Envelope

Va
lid

at
io

n
F-

Sc
or

es

Figure 5.12: Boxplots visualizing the F-Score results for each cross-validation.
The individual scores, means, medians, standard-deviation and outliers are
depicted. The differences are noticeable, yet means lie within the 88-92%
range. Envelope features improve classification accuracy for all models.

ensemble-model which uses the results of multiple random forests trained on

different feature subsets [26, 58]. We used this extra-trees model as part of

our drum generation system, the implementation process for this system and

the results of our manual hearing tests are discussed in Chapter 6.

To create the confusion matrices and the F-Scores shown in Figure 5.14,

the extra-trees model was trained on 80% of the database, and tested with

the remaining 20%. Based on these reports, having multiple options for drum

categorization does not noticeably influence the models accuracy in Decision.1.

The DvDvN model’s slightly smaller false negative rate for synthetic noise (11

vs 13 false negatives) is countered by a slightly higher rate of categorizing

drums as synthetic noise (12 vs 9). Going forward, the DvDvN implementation

is used as it makes the DvN model redundant. The finalized MEM used in the

subsequent chapters is created by combining the autoencoder model with the

ExtraTrees DvDvN classifier.

50

Cross Validation F-Scores For Drum Vs Not-Drum

ExtraTrees RandomForest KNeighbors LinearSVC SVC
0.96

0.965

0.97

0.975

0.98

0.985

Feature Type: Embedding Only Embedding+Envelope

Va
lid

at
io

n
F-

Sc
or

es

Figure 5.13: F-Score results for each cross-validation. Models perform better
as there are less categorization groups. Envelope features increase accuracy
for all models. Random Forest and Extra Trees remain the top two models.

5.5 How Will TPEs and MEMs Be Used?

With the virtual synthesizer in place, we required a virtual ear: a tool capable

of automatic separation of drums from non-drums and categorization of drum

sounds. We took two different approaches to implementing such a tool, which

gave us two types of virtual ears: TPE Ears, which make the two decisions

sequentially, and MEM ears which makes these decisions simultaneously. The

distinguishing characteristic of TPEs and MEMs is the type of feature set that

they use for learning. TPEs use envelope and spectrogram features derived

using Fourier transformations, while MEMs use encoded spectrogram features,

which is a much smaller set of features, yet achieve similar classification per-

formance.

Based on results shown in this chapter, TPEs and MEMs appear to have

high categorization accuracy in our testing data. But without manual hearing

tests, we cannot know whether the synthesizer sounds that are deemed percus-

sive by the virtual ears resemble drum sounds or simply have characteristics

that the virtual ears were not familiar with, leading to mistakes. This is due to

51

Classification Report for DvDvN and DvN

pr
ec

isi
on

re
ca

ll f1

clap

hat

kick

snare

synth_noise

0.711 0.696 0.703

0.899 0.928 0.913

0.939 0.925 0.932

0.815 0.800 0.808

0.975 0.977 0.976

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

re
ca

ll f1

Drum

Not Drum

0.987 0.991 0.989

0.981 0.973 0.977

0.0

0.2

0.4

0.6

0.8

1.0

(a) Precision, recall, F1-Score, and number of supporting examples. The sounds in the “synth noise” category
are identical to the sounds in the “not drum” category.

cl
ap ha

t

ki
ck

sn
ar

e

sy
nt

h_
no

is
e

True Class

synth_noise

snare

kick

hat

clap

P
re

di
ct

ed
 C

la
ss

2 3 1 5 477

15 19 17 212 2

2 0 307 21 2

7 311 1 13 3

64 13 1 9 5

D
ru

m

N
ot

 D
ru

m

True Class

Not Drum

Drum

P
re

di
ct

ed
 C

la
ss

13 475

1015 9

(b) Confusion matrices

Figure 5.14: F-Scores and confusion matrix of ExtraTrees model for both
DvDvN and DvN categorization.

52

the infinite variety of sounds that are not percussive (i.e, the OSR problem),

which makes such training tasks difficult.

In the next chapter we first discuss how TPEs and MEMs are used to

implement generative systems capable of outputting percussive sounds and

how the outputs of these systems were manually tested in order to measure

their success in creation of drum sounds. We also discuss how this success

hinges on the virtual ear’s ability in separation drums from non-drums as well

as accurate categorization of drums.

53

Chapter 6

Results

The proposed system for virtual drum generation proposed in Section 1.6 re-

quired the implementation of a virtual synthesizer and a virtual ear. The im-

plementation and characteristics of these components were discussed in Chap-

ters 4 and 5.1 respectively. In this chapter, we discuss how the components are

used to create generative systems of drum sounds. The labeled sounds created

by the system are recorded on disk, allowing us to measure the success of this

system by blinded, manual categorization of the outputs and calculating the

level of agreement between categorical labels assigned by us and the labels

assigned by the various ear models.

6.1 Putting The System Together

The virtual synthesizer generates a second of audio based on randomly gen-

erated programs, and the virtual ear can analyze the generated sounds and

categorizes them as percussive or non-percussive. These two components work

together to execute the plan laid out for the final, generative system of drum

sounds, shown in Figure 4.1. A code example of how the system is put together

is shown in Listing 6.1.

This loop runs in a single CPU process, therefore generation can scale-

up easily. Here, sounds are rapidly generated and sent to the virtual ear,

which then separates drums from non-drums. The sounds labeled as drums

are further analyzed and assigned a drum type. Finally, the accepted sounds

are saved to hard-disk for use in compositions. In this chapter, we cover the

54

Listing 6.1: Example Program For The Generative System

import ear

import synthesizer

randomly programming the synthesizer 1000 times

while(i <1000):

i+=1

stacksize is randomly selected from a list

stack_size = random ([1,2 ,4])

make synthesizer , randomly program it, generate sound

sound = synthesizer.random_sound(stack = stack_size)

Check if ear determines sound to be percussive

is_drum = ear.is_drum(sound)

if is_drum:

give sound a drum category

drum_category = ear.drum_type(sound)

save sound to hard_disk

save_sound ("path/to/drum_category /",sound)

results of our blinded, manual hearing tests conducted on the sounds generated

by these two systems.

6.2 How and Why Surveys are Conducted

The main function of the manual hearing tests is to measure the precision of the

virtual ear when the model is performing open-set recognition, i.e, separating

drums sounds from none-drum sounds. If a small subset of synthetic noise

can stand in for percussive sounds, then the ideal synthetic ear will be able

to separate the desired sounds from noise with high recall and precision (see

Figure 5.1). Low recall will cause a slow-down of the pipeline, as a larger

number of random sounds need to be generated and evaluated. Low recall is

also likely to increase the loss of novel sounds. Low precision will make manual

clean-up of generated samples necessary and arduous.

To assess the performance of each pipeline, we randomly create drum pro-

grams and generate the corresponding audio signal. This sound is then fed

through the ear model to determine if the sound is percussive. If so, a cate-

gory is assigned to the sound. This sound and the corresponding synthesizer

program are saved to hard-disk. Here we assess the success rate of two differ-

ent pipelines by manual inspection and categorization of a randomly selected

55

subset of its results. We cross reference the manual categorizations with the

categories assigned by the virtual ear and seek to answer the following two

research questions for each system:

• RQ.1: Do we agree that the sounds are percussive?

• RQ.2: Do we agree with the drum category assigned to the percussive

sounds?

6.3 Survey of Two-Phased Ear Performance

6.3.1 Methodology and Dataset

To answer RQ.1 and RQ.2 for the TPE approach, we put a generative system

together using the TPEs discussed in Section 5.4, and ran the system until a

large number of samples in each category were found and saved to disk. Next,

we randomly picked around 50 samples in the following categories: “snare”,

“kick”, “hat”, “clap” and “other” (combination of rims, shakers and unusual

percussive sounds). This gave us a total of 257 samples. These samples were

determined to be percussive and then categorized by 3 different drum vs drum

models (FC, CNNLSTM, E+F). We ensured a balanced division between sam-

ples of stack size 1, 2 and 4 (each stack is responsible for a third of the samples

under each category).

6.3.2 Survey Application and Results

Amir Salimi and Abram Hindle categorized these samples without knowledge

of each other’s results, or drum categorizations assigned by the virtual ears.

It’s important to note that each responder had an additional category of “Bad”

for samples that they deemed not percussive. The “Bad” category indicates

that the sample should have not been accepted as percussive.

We assess the reliability of agreement between persons and categorization

models via the Fleiss’ kappa coefficient [22]. The value of 0 or less for this

coefficient indicates no agreement beyond random chance, and the value of 1

indicates perfect agreement. Our kappa measurements shown in Table 6.1 lie

56

Label Assignment Frequency For TPE Survey

������� ������� ������������

�����������

�

��

��

��
�
�
��
�
�
��
�
�

���

����

���

����

�����

�����

TPE (Average)

Figure 6.1: Frequency of assigned labels by persons versus the true number of
labels (for TPEs)

Drop Rule Size H+H H+FC H+CNN H+E/F 3 models

No Drops 257 0.37 0.35 0.36 0.36 0.28
Assigned “Bad” By Both 236 0.31 0.37 0.37 0.38 0.30
Assigned “Bad” By Either 180 0.47 0.50 0.48 0.48 0.34

Assigned “Bad” or “Other” By Either 154 0.47 0.59 0.54 0.50 0.35

Table 6.1: Table of Fleiss’ kappa coefficients to measure the degree of agree-
ment between persons (HvH) and various TPEs: persons with FC model
(H+FC), persons with CNNLSTM model, persons with all models (H+E/F),
and between the 3 models. “Drop Rule” column indicates if any samples
were dropped. We show the measurements after dropping samples if they are
deemed bad by either or both responders. We also show measurements af-
ter dropping the “other” category along with samples deemed bad by either
responder.

within the 0.35-0.45 range, indicating mild to moderate agreement between

persons and machines. We again measure this coefficient after dropping sam-

ples that were categorized as “Bad” by the authors, as samples that persons

deem to be “Bad” should not have been categorized by the models at all.

Dropping of samples that both authors deemed “Bad” causes an 8% reduction

of our data (21 samples) and a small increase in kappa score. Dropping sam-

ples deemed “Bad” by either reviewer resulted in a 30% reduction of samples

and relatively large increase in kappa scores.

57

6.3.3 Takeaways Of The TPE Pipeline Survey

Our main takeaways from the TPE survey are as follows:

• For RQ.1, the survey brings into question the reliability of our DVN

models, as 30% of the generated samples were deemed not percussive by

at least 1 reviewer and 8% by both reviewers.

• For RQ.2, the task of categorizing synthetic drums appears difficult.

Survey shows that even after removal of “Bad” samples, the scale of

agreement between just 2 persons (H+H) as well as between 2 persons

and any of the models (H+FC, H+CNN, H+E/F) is moderate at best;

while the same models can achieve over 98 percent accuracy when tested

on recorded drum samples. This may be a manifestation of the “open

set recognition” problem.

• While there is much room for improvement, our pipeline can generate

and categorize drums and percussive sounds with a promising degree of

success.

6.4 Survey of Mixed Ear Model Performance

6.4.1 Methodology and Dataset

To answer RQ.1 and RQ.2 for the MEM approach, we kept the other compo-

nents of the pipeline the same, while using the MEM as the virtual ear. With

TPEs, the “other” category is assigned when the sound is determined to be

percussive in the first phase, but the second phase determines that the sound

does not belong to any of the drum categories it is familiar with. MEMs either

assign the sound to a drum category or determine that it is not a drum, there-

fore the MEM survey differs from the TPE survey in that the pipeline only

creates the four drum categories, yet the “other” category can still be assigned

by survey responders. This means that two out of six possible categories are

only available to responders, which can cause an inherent bias towards worse

agreement scores compared to the last survey.

58

Drop Rule Size HvH H+MEM
No Drop 300 0.336 0.250

Assigned Bad By Both 249 0.200 0.260
Assigned Bad By Either 151 0.460 0.473

Assigned “Bad” or “Other” By Either 120 0.620 0.587

Table 6.2: Table of Fleiss’ kappa coefficient to measure the degree of agreement
between persons (HvH) and persons and MEM. We measure the agreeability
scores after dropping bad samples if both or either persons assigned the sample
as such. We also measure agreeability when all samples deemed “Bad” or
“other” by either person are removed.

Category Assignment Frequency For MEM Survey

������� ������� ������������

�����������

���

���

���

���

���

�
�
��
�
�
��
�
�

���

����

���

����

�����

�����

MEM

40

30

20

10

0

Figure 6.2: Frequency of assigned labels by persons versus the true number of
labels (for MEMs)

6.4.2 Survey Application and Results

As shown in Table 6.2, before dropping the “bad” outputs, there is mild to

moderate agreeability. By dropping “bad” samples (therefore accounting for

failures in Decision.1), a dramatic increase in agreeability score is seen in the

results. This highlights a the MEM’s weakness in the separation of drums

from non-drums.

6.4.3 Takeaways Of The MEM Pipeline Survey

Our main takeaways from the MEM survey are as follows:

• For RQ.1, 50% of sounds were deemed “bad” by at least one survey

59

taker, and 17% by both.

• For RQ.2, the improvement in kappa scores after reduction of “bad”

outputs show that similar to TPEs, mistakes in separation of drums in

non-drums is a major point of failure.

• Overall, these results show success in usage of spectrogram autoencoders

as feature extractors for sounds, however we suspect that open set recog-

nition is a major weakness.

6.5 Survey Conclusion

The results highlighted here are encouraging, as 50% or more of the outputs

from either pipeline is deemed percussive by both survey takers, and moderate

to high agreement between human and virtual listeners is observed for both

Decision.1 and Decision.2. A comparison of the survey results helps identify

common weaknesses and avenues for improvement in the future. By using

agreeability scores as the performance measure, we compare the two models

with regards to separation of drums from non-drums and categorization of

drum types:

• Decision 1: The sounds generated were deemed percussive by both

subjects in 70% of the cases with the TPE system, and 50% with the

MEM. This discrepancy is highlighted in the agreement scores as well;

The agreement scores in Tables 6.1 and 6.2 show the scores before and af-

ter failures in Decision.1 were removed according to various rules. Here,

we see a sharper increase in the agreeability scores for the MEM as more

failures in drum vs non-drum separation are removed. This further high-

lights that Decision.1 is a more pronounced weakness for the MEM.

• Decision 2: When all “bad” and “other” sounds are removed, the mod-

els can be fairly compared for their performance in Decision.2. Here, the

MEM matches the performance of FC, the best drum categorizing TPE.

This suggests that drum classification using spectrogram embeddings can

60

match or exceed the performance of models which learned from the en-

tire spectrogram. This is interesting as the autoencoder model used for

feature extraction was trained for encoding spectrograms into a small,

8-dimensional feature space and recreating the original using said fea-

tures, not feature extraction for drum classification. Yet this feature

space proves useful in drum-classification, although not in drum vs non-

drum classification.

Overall, the OSR problem (as described in Section 5.2.1) is a major weak-

ness in this project, particularly in the MEM approach. When removing all

failures in Decision.1, the agreeability scores of the MEM and the best TPE are

comparable and within a satisfactory ”moderate to strong agreement” kappa

range for Decision.2. However, despite these failures, the approach taken in

this work has enabled the generation of virtually synthesized drum sounds in

an unsupervised manner, achieving the original goal of the project outlined in

the thesis statement in Section 1.6.

61

Chapter 7

Drum-Kit Mutation

7.1 Suitability for Live Performance

We originally set out to generate new drum samples for the purpose of creating

new drum-kits which musicians could use to create drum tracks for their com-

positions. One use case for the drum generation approach pursued in this work

is to create and evolve drum-kits on the fly. In order to test the suitability

of the generative system for both drum-kit generation and live performances,

we designed a framework which utilizes the generative system to create a “live

performance” framework as outlined in Figure 7.1. This framework continually

evolves the sounds within a drum-pattern (or rhythm) by creating and mu-

tating a drum-kit using the outputs of the best TPE system. This framework

could be particularly useful in a setting where drum rhythms are repeated

for long durations. In order to test this approach, we created a basic music

notation program where each drum track is defined by the following attributes:

• Beats Per Minute (BPM): This defines the “speed” of the pattern.

• Number of Beats: How many beats are in the pattern.

• Drum Pattern: An action must be taken at each beat, either a drum is

played or no action is taken and nothing is played for that beat. The

drum pattern dictates what action is taken at each beat. This makes

the drum patterns monophonic (at most one sound can be played at a

time).

62

Drum Track Generation

Main Process

DRUM KIT (Shared Memory)
1 representative for each drum type

Sub-Process Running Perpetually

Drum Program
Example:

Beats Per Minute → 150

Number of Beats → 8

Pattern → kick-silence-snare-hat

Generative System

Updates a drum representative in the drum-kit when new drums are found

Drum Track Assembler
(Waits for Trigger)

Kick Snare Hat Shake Others...

Drum Track

Send to Speaker
and/or

Save to Disk

Trigger Track Generation
Based on Parameters

Figure 7.1: Live drum programming framework. Given a pre-defined drum
program, the main process creates drum tracks using a drum-kit. This drum-
kit is continually modified by a generative system running in a background
process. In a live setting, the drum track assembler can be triggered at set
times depending on the program, in offline generation, it can be triggered
whenever there is a modification to the drum-kit.

63

Program BPM Beats Action at Each Beat
Loop 1 180 8 Kick-Snare-Hat-Kick-Snare-Hat-Kick-Shake
Loop 2 125 16 Kick-.-Kick-.-Snare-.-Hat-Shake-Hat-Shake-Kick-.-Snare-.-.

Table 7.1: Parameters for each drum program. A period (“.”) indicates no
action

This experiment starts with a drum program and a drum-kit which contains

1 representative for the hat, kick, snare and shaker percussion categories. Next,

a process begins to perpetually listen for new outputs from the TPE system.

Each time a new drum sound is created, the process replaces a sound in the

drum-kit depending on the drum category; next, the drum track is regenerated

using the new drum-kit. With this approach, if the outputs are listened to

sequentially or in a live setting, the same rhythm is repeated, but the drums

within the rhythm mutate over time. To analyse this approach, we defined

two simple drum programs (shown in Table 7.1), and let the experiment run

until 1000 drum tracks are generated, that is, 1000 new drum sounds are found

and used for the creation of a drum track. The results for the rendition of the

programs are available for download on Zenodo1.

7.2 Analyzing the Outputs

We conduct a listening test in order to quantify the usefulness of this frame-

work. For this test, Amir Salimi and Abram Hindle listened to 100 drum

tracks for each drum program and recorded the number of drum tracks they

personally found appropriate for their live performance, that is, the rendered

track accurately represented the underlying drum program. The result of this

survey is shown in Table 7.2. Due to the subjective nature of this analysis,

readers are encouraged to download and analyze the results as well. We con-

sider the majority of the drum tracks output by this system to be successful

renditions. As discussed previously in Section 6.5, as many as 30% of the

drum sounds output by the TPE system did not resemble drums when played

in isolation. However, within a larger rhythmic pattern, the effect of these

1https://zenodo.org/record/5202776

64

Program Listener 1 Likes/100 Listener 2 Likes/100 Average Percentage
Loop 1 73/100 54/100 68%
Loop 1 55/100 55/100 55%

Table 7.2: Measuring the quality of generated drum tracks by calculating the
percentage of liked outputs for each listener.

failures is diminished and can at times introduce an interesting dimension to

the tracks. We also note that due the the source of drum sounds that are

learned from and imitated in this work, generation of drum tracks may be

more suitable for experimental music performances.

We monitored the drum discovery rate while rendering the drum programs,

and found that the relative ratio of drum to non-drum generations was ap-

proximately 1/100. This means that 100 sounds need to be created before 1

modification is made to the drum-kit. Using 1 CPU thread2, these 100 it-

erations take approximately 7 seconds. This discovery rate can be increased

or decreased in a number of ways. For example, by increasing the number of

discovery threads at the cost of heavier load to the CPU. It is also possible

to make trade-offs in precision and sensitivity, that is, accepting more sounds

that may not fit their role well within the composition and decreasing discov-

ery time, or rejecting more unsuitable sounds and increasing discovery time.

7.2.1 Noticeable Limitations

These drum tracks highlight other issues and limitations of this work. Other

than improving the virtual ears, some of the issues and possible solutions are

as follows:

• Discovery time: Stricter, more powerful drum versus non-drum classi-

fiers may reject nearly all synthesized outputs, making the creation of

new drum-kits time consuming if not impossible. This means that the

introduction of an algorithm which intelligently modifies parameters in

order to successfully make drums will be a necessary step in the future

2AMD Ryzen 7 2700X Eight-Core Processor

65

in order to create desired sounds more efficiently.

• Limited variety: The virtual synthesizer used in this work has a limited

set of parameters. This causes a lack of variety in the sounds output

by the system. Expansion of the virtual synthesizer parameters or an

interface which allows the use of VST synthesizers could help with this

problem.

7.3 Conclusion

The goal here was to create a tool which can create and mutate drums used

within drum-tracks for live performances. In an offline setting, this tool should

be able to quickly generate new drum-kits for musicians. To this end, we

implemented a simple framework which creates drum tracks given a drum

pattern.

This framework uses the generative system of drums described in the pre-

vious chapters to gradually replace the drum sounds within the drum pattern

(i.e., the underlying drum-kit). We analyzed the outputs of this framework

and believe that many of the outputs could be useful for musicians.

This experiment shows that the approach taken in this work towards a

generative system of drum sounds can have many creative applications. While

some of the weaknesses and failures of the classification models may be less

pronounced in a live performance, this experiment also highlights other possi-

ble avenues of improvement and expansion which we hope to address in future

works.

66

Chapter 8

Conclusions, Validity, and

Future Work

8.1 Conclusions

As proposed in our thesis statement in Section 1.6, the goal of this project

was to create an automatic system in which a virtual ear discovers new drum

sounds from randomly programmed virtual synthesizers. We built and tested

two generative systems for the creation of multiple types of drum sounds using

automatic programming of virtual synthesizers. We verified its results with

human listeners, and found that of the sounds generated were deemed percus-

sive by both subjects in 70% of the cases with the TPE system, and 50% with

the MEM. While many avenues of improvement are available, the implemen-

tation outlined here satisfies our stated goals. Our work enables not only the

creation of new libraries of percussion sounds, but new synthesizer programs

which can be modified and studied. Manual listening tests revealed much room

for improvement, particularly with accurate separation of percussive sounds

from the infinitely large set of non-percussive sounds. We demonstrated some

success in our utilization of latent representations of autoencoder networks

as exponentially smaller representations of audio spectrograms, yet these re-

sults did not yield any noticeable advantage over direct usage of non-encoded

features.

67

8.2 Threats to Validity

8.2.1 Construct Validity

We did not measure, nor can we guarantee, the novelty of the generated drum

sounds. Let’s consider a system which outputs the exact same percussive sound

in every iteration. This system would have achieved a perfect kappa coefficient

score with 0 percent non-percussive outputs, despite having no utility in music

production.

8.2.2 Internal Validity

The lack of consistency in training and accuracy measurements makes com-

parisons between TPEs and MEMs difficult, therefore we cannot confidently

say which model performed better overall. The models have been trained on

different subsets of the 3 different drum datasets, and cross validation was

utilized in measuring the MEMs but not the TPEs. The design of the virtual

synthesizer—its parameters and parameter values—is loosely based on com-

monly found parameters in VST synthesizers, therefore, we cannot guarantee

that these results will translate to other virtual synthesizers. We also did not

measure what percentage of the randomly generated sounds are percussive

before being filtered by the virtual ear.

8.2.3 External Validity

In addition, since both survey subjects have a preference for “experimental”

electronic music, which may influence their perception of what is and is not

an acceptable drum sound. Furthermore, both survey subjects played a role

in the implementation of the project, which may influence their leniency in

output sounds as percussive or non-percussive.

8.3 Future Work

Effective implementation of models that can learn with a small number of ex-

amples is a priority as it will allow for a larger variety of sounds to be generated,

68

and perhaps address the OSR problem. Program generation can be improved

by reinforcement learning or other heuristics, however, we need to ensure that

there is a stronger agreement between the synthetic ear’s scores and human

listeners. We will also explore more specialized autoencoder architectures and

training methods in order to improve feature extraction.

69

References

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and
Masanori Koyama. Optuna: A next-generation hyperparameter optimiza-
tion framework. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2623–2631,
2019.

[2] Claude Alain and Kelly L McDonald. Age-related differences in neuro-
magnetic brain activity underlying concurrent sound perception. Journal
of Neuroscience, 27(6):1308–1314, 2007.

[3] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding
of a convolutional neural network. In 2017 International Conference on
Engineering and Technology (ICET), pages 1–6. Ieee, 2017.

[4] James A Anderson, Edward Rosenfeld, and Andras Pellionisz. Neurocom-
puting, volume 2. MIT press, 1988.

[5] Cyran Aouameur, Philippe Esling, and Gaëtan Hadjeres. Neural drum
machine: An interactive system for real-time synthesis of drum sounds.
arXiv preprint arXiv:1907.02637, 2019.

[6] Jimmy Ba and Brendan Frey. Adaptive dropout for training deep neural
networks. In Advances in neural information processing systems, pages
3084–3092, 2013.

[7] Dan Barry, Derry Fitzgerald, Eugene Coyle, and Bob Lawlor. Drum
source separation using percussive feature detection and spectral modu-
lation. 2005.

[8] Imad A Basheer and Maha Hajmeer. Artificial neural networks: funda-
mentals, computing, design, and application. Journal of microbiological
methods, 43(1):3–31, 2000.

[9] Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural
computation, 12(8):1889–1900, 2000.

[10] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. Journal of machine learning research, 13(Feb):281–305,
2012.

[11] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Al-
gorithms for hyper-parameter optimization. In Advances in neural infor-
mation processing systems, pages 2546–2554, 2011.

70

[12] Margaret A Boden. Computer models of creativity. AI Magazine,
30(3):23–23, 2009.

[13] Pierre Cardaliaguet and Guillaume Euvrard. Approximation of a function
and its derivative with a neural network. Neural Networks, 5(2):207–220,
1992.

[14] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Special
issue on learning from imbalanced data sets. ACM SIGKDD explorations
newsletter, 6(1):1–6, 2004.

[15] William T Cochran, James W Cooley, David L Favin, Howard D Helms,
Reginald A Kaenel, William W Lang, George C Maling, David E Nelson,
Charles M Rader, and Peter D Welch. What is the fast fourier transform?
Proceedings of the IEEE, 55(10):1664–1674, 1967.

[16] Karen Collins. In the loop: Creativity and constraint in 8-bit video game
audio. Twentieth-century music, 4(2):209, 2007.

[17] George Cybenko. Approximation by superpositions of a sigmoidal func-
tion. Mathematics of control, signals and systems, 2(4):303–314, 1989.

[18] Palle Dahlstedt. Creating and exploring huge parameter spaces: Interac-
tive evolution as a tool for sound generation. In ICMC, 2001.

[19] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas
Eck, Karen Simonyan, and Mohammad Norouzi. Neural audio synthesis
of musical notes with wavenet autoencoders, 2017.

[20] Philippe Esling, Axel Chemla-Romeu-Santos, and Adrien Bitton. Gen-
erative timbre spaces with variational audio synthesis. In Proceedings of
the International Conference on Digital Audio Effects (DAFx), 2018.

[21] Philippe Esling, Naotake Masuda, Adrien Bardet, Romeo Despres, et al.
Universal audio synthesizer control with normalizing flows. arXiv preprint
arXiv:1907.00971, 2019.

[22] Joseph L Fleiss. Measuring nominal scale agreement among many raters.
Psychological bulletin, 76(5):378, 1971.

[23] Harvey Fletcher and Wilden A Munson. Loudness, its definition, mea-
surement and calculation. Bell System Technical Journal, 12(4):377–430,
1933.

[24] Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. Recent advances
in open set recognition: A survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2020.

[25] André Gensler, Janosch Henze, Bernhard Sick, and Nils Raabe. Deep
learning for solar power forecasting—an approach using autoencoder and
lstm neural networks. In 2016 IEEE international conference on systems,
man, and cybernetics (SMC), pages 002858–002865. IEEE, 2016.

[26] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized
trees. Machine learning, 63(1):3–42, 2006.

71

[27] Daniel Griffin and Jae Lim. Signal estimation from modified short-time
fourier transform. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 32(2):236–243, 1984.

[28] Mehadi Hassen and Philip K Chan. Learning a neural-network-based
representation for open set recognition. In Proceedings of the 2020 SIAM
International Conference on Data Mining, pages 154–162. SIAM, 2020.

[29] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimen-
sionality of data with neural networks. science, 313(5786):504–507, 2006.

[30] Geoffrey E Hinton and Richard S Zemel. Autoencoders, minimum descrip-
tion length and helmholtz free energy. In Advances in neural information
processing systems, pages 3–10, 1994.

[31] Frank Hoffmann. Drum machine. In Encyclopedia of Recorded Sound,
pages 678–678. Routledge, 2004.

[32] Andrew Horner, James Beauchamp, and Lippold Haken. Machine
Tongues XVI: Genetic algorithms and their application to FM match-
ing synthesis. Computer Music Journal, 17(4):17–29, 1993.

[33] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An efficient ap-
proach for assessing hyperparameter importance. In International confer-
ence on machine learning, pages 754–762, 2014.

[34] Muhammad Huzaifah. Comparison of time-frequency representations for
environmental sound classification using convolutional neural networks.
arXiv preprint arXiv:1706.07156, 2017.

[35] Colin G Johnson. Exploring the sound-space of synthesis algorithms using
interactive genetic algorithms. In Proceedings of the AISB’99 Symposium
on Musical Creativity, pages 20–27. Society for the Study of Artificial
Intelligence and Simulation of Behaviour, 1999.

[36] Eric Jones, Travis Oliphant, Pearu Peterson, et al. Scipy: Open source
scientific tools for python. 2001.

[37] Stephen Lakatos. A common perceptual space for harmonic and percus-
sive timbres. Perception & psychophysics, 62(7):1426–1439, 2000.

[38] Honglak Lee, Peter Pham, Yan Largman, and Andrew Y Ng. Unsuper-
vised feature learning for audio classification using convolutional deep
belief networks. In Advances in neural information processing systems,
pages 1096–1104, 2009.

[39] Colby N Leider. Digital audio workstation. McGraw-Hill, Inc., 2004.

[40] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. Hyperband: A novel bandit-based approach to hy-
perparameter optimization. The Journal of Machine Learning Research,
18(1):6765–6816, 2017.

[41] Richard G Lyons. Understanding digital signal processing, 3/E. Pearson
Education India, 2004.

72

[42] Chris A Mack. Fifty years of moore’s law. IEEE Transactions on semi-
conductor manufacturing, 24(2):202–207, 2011.

[43] Matthieu Macret, Philippe Pasquier, and Tamara Smyth. Automatic
calibration of modified fm synthesis to harmonic sounds using genetic
algorithms. In Proceedings of the 9th Sound and Music Computing Con-
ference, Copenhagen, Denmark, 2012.

[44] Robert G Malkin. Machine listening for context-aware computing. PHD
thesis, CMU, 2006.

[45] Max Mathews. Music, cognition, and computerized sound: An introduc-
tion to psychoacoustics. chapter 6: What is Loudness?, page 71. The MIT
press, 1999.

[46] Max V Mathews. The digital computer as a musical instrument. Science,
142(3592):553–557, 1963.

[47] David Mellor. Hands on: Roland tr808 drum machine (sos feb 1993).
Sound On Sound, (Feb 1993):42–46, 1993.

[48] Daniel Mitchell. Basicsynth. chapter 6: Envelope Generators. Lulu. com,
2009.

[49] Daniel Mitchell. Basicsynth. chapter 1: Synthesis Overview. Lulu. com,
2009.

[50] Robert A Moog. Midi: musical instrument digital interface. Journal of
the Audio Engineering Society, 34(5):394–404, 1986.

[51] Martin Mundt, Iuliia Pliushch, Sagnik Majumder, and Visvanathan
Ramesh. Open set recognition through deep neural network uncer-
tainty: Does out-of-distribution detection require generative classifiers?
In Proceedings of the IEEE International Conference on Computer Vi-
sion Workshops, pages 0–0, 2019.

[52] S Nawab, T Quatieri, and Jae Lim. Signal reconstruction from short-time
fourier transform magnitude. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 31(4):986–998, 1983.

[53] Rodney Needham. Percussion and transition. Man, 2(4):606–614, 1967.

[54] Dina L Newman, Laurel M Fisher, Jeffrey Ohmen, Robert Parody, Chin-
To Fong, Susan T Frisina, Frances Mapes, David A Eddins, D Robert
Frisina, Robert D Frisina, et al. Grm7 variants associated with age-
related hearing loss based on auditory perception. Hearing research,
294(1-2):125–132, 2012.

[55] Stephen Notley and Malik Magdon-Ismail. Examining the use of neural
networks for feature extraction: A comparative analysis using deep learn-
ing, support vector machines, and k-nearest neighbor classifiers. arXiv
preprint arXiv:1805.02294, 2018.

[56] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

73

[57] Aaron van den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol
Vinyals, Koray Kavukcuoglu, George van den Driessche, Edward Lock-
hart, Luis C Cobo, Florian Stimberg, et al. Parallel wavenet: Fast high-
fidelity speech synthesis. arXiv preprint arXiv:1711.10433, 2017.

[58] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in
python. the Journal of machine Learning research, 12:2825–2830, 2011.

[59] John Pierce. Music, cognition, and computerized sound: An introduction
to psychoacoustics. chapter 4: Sound Waves and Sine Waves, page 38.
The MIT press, 1999.

[60] Foster Provost. Machine learning from imbalanced data sets 101. In Pro-
ceedings of the AAAI’2000 workshop on imbalanced data sets, volume 68,
pages 1–3. AAAI Press, 2000.

[61] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew
Stevens, and Lawrence Carin. Variational autoencoder for deep learning of
images, labels and captions. In Advances in neural information processing
systems, pages 2352–2360, 2016.

[62] António Ramires, Pritish Chandna, Xavier Favory, Emilia Gómez, and
Xavier Serra. Neural percussive synthesis parameterised by high-level
timbral features. In ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 786–790.
IEEE, 2020.

[63] Joshua D Reiss. A meta-analysis of high resolution audio perceptual
evaluation. Journal of the Audio Engineering Society, 2016.

[64] Robert Rowe. Interactive music systems: machine listening and compos-
ing. MIT press, 1992.

[65] Cynthia Rudin. Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead. Nature Ma-
chine Intelligence, 1(5):206–215, 2019.

[66] Amir Salimi and Abram Hindle. Drum and percussion kits, 10.5281/zen-
odo.3994999, Aug 2020.

[67] Amir Salimi and Abram Hindle. Make your own audience: virtual listeners
can filter generated drum programs. In Proceedings of the 2020 AI Music
Creativity Conference, 2020, pages 1–8, 2020.

[68] Diemo Schwarz. Corpus-based concatenative synthesis. IEEE signal pro-
cessing magazine, 24(2):92–104, 2007.

[69] Julius O Smith. Viewpoints on the history of digital synthesis. In Pro-
ceedings of the International Computer Music Conference, pages 1–1. In-
ternational Computer Music Association, 1991.

[70] Stanley S Stevens and John Volkmann. The relation of pitch to frequency:
A revised scale. The American Journal of Psychology, 53(3):329–353,
1940.

74

[71] George Tanev and Adrijan Božinovski. Virtual studio technology inside
music production. In International Conference on ICT Innovations, pages
231–241. Springer, 2013.

[72] Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. Parallel wave-
gan: A fast waveform generation model based on generative adversar-
ial networks with multi-resolution spectrogram. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 6199–6203. IEEE, 2020.

[73] Matthew John Yee-King, Leon Fedden, and Mark d’Inverno. Automatic
programming of vst sound synthesizers using deep networks and other
techniques. IEEE Transactions on Emerging Topics in Computational
Intelligence, 2(2):150–159, 2018.

[74] Zixing Zhang, Fabien Ringeval, Jing Han, Jun Deng, Erik Marchi, and
Björn Schuller. Facing realism in spontaneous emotion recognition from
speech: Feature enhancement by autoencoder with lstm neural networks.
2016.

[75] Eberhard Zwicker. Procedure for calculating loudness of temporally vari-
able sounds. The Journal of the Acoustical Society of America, 62(3):675–
682, 1977.

75

	Introduction
	Our Goals
	Why Does the World Need More Drums?
	What Do We Mean By Drums?
	What Solution Do We Propose?
	What Is Our Methodology?
	Thesis Statement and Contributions

	Background and Related Work
	Digital Audio: Sound from Numbers
	Sampling Rates and Quality of Digital Audio
	Loudness, Amplitudes and Envelopes
	Frequency, Pitch and Spectrograms

	Digital Audio Synthesis
	Virtual Synthesizers

	Neural Networks And Sound
	Related Works

	Datasets
	Why is Data Needed?
	Datasets
	FreeDB
	RadarDB
	MixedDB
	NoiseDB
	FreeRadarDB

	How The Datasets Will Be Used

	Virtual Synthesizer
	Why Do We Need a Virtual Synthesizer?
	Why DSP over ANN Synthesizers?
	Virtual Synthesizer Implementation
	How Will The Synthesizer Be Used?

	The Virtual Ear
	Why Do We Need A Virtual Ear?
	Implementation Steps
	Learning Caveats

	Representing Sound
	Fourier Transforms
	Embedded FFT Features
	Architecture and Hyper-Parameter Optimization
	Visualizing The Encodings
	What To Do With Extracted Features

	Ear Decisions
	Two Phased Ears
	DVN Models
	DVD Models

	Mixed Ear Models
	Model Selection

	How Will TPEs and MEMs Be Used?

	Results
	Putting The System Together
	How and Why Surveys are Conducted
	Survey of Two-Phased Ear Performance
	Methodology and Dataset
	Survey Application and Results
	Takeaways Of The TPE Pipeline Survey

	Survey of Mixed Ear Model Performance
	Methodology and Dataset
	Survey Application and Results
	Takeaways Of The MEM Pipeline Survey

	Survey Conclusion

	Drum-Kit Mutation
	Suitability for Live Performance
	Analyzing the Outputs
	Noticeable Limitations

	Conclusion

	Conclusions, Validity, and Future Work
	Conclusions
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Future Work

	References

