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Abstract

The thesis addresses problems of supporting multiple views in a computer-aided soft-
ware engincering (CASE) metasystem called Metaview. Metaview is aimed to generate
automatically software development environments from specifications written in a meta
language called EDL/ECL (Environment Definition/Constraint Language). After an
environment definer describes his environment model and tool-specific information, a
database engine and a tool set are configured to the required environment. Since a
system developer may select from many software engineering methods to perform de-
velopment activities, an environment definer has to model these methods separately
in different specification environments. As a result, these environments work rather
independently, and, at present, only interact through specialized environment, transfor-
mation features. However, it is desirable to have integrated environments in which tools
share data and communicate in such a way that any changes made in specifications in

one environment can be seen immediately in another environment.

A view-based approach to tool integration is proposed in this thesis. It is intended
for horizontal tools to take advantage of abstraction, encapsulation and data shar-
ing provided by the multi-view mechanism. A specification environment is said to
have multiple views when it is defined as a collection of views that capture hoth the
structural definition and operational semantics of a software engincering method. 1Is-
sues addressed in this thesis include representation of views in a meta data model

and management of specification environments through views. The Entity-Attribute-



Relationship- Aggregate (EARA) data model of the Metaview system is adapted to de-
fine “views”. Data sharing is supported through view merging and automatic control
transfor is achioved using rule-based operation mappings. Tools within an environment
communicate with cach other through views, and are thus integrated in terms of their

data and control.

As future research arcas, the view-based horizontal integration developed in this the-
sis has to incorporate other types of integration that involves user interface presentation
and software processes. The vertical integration of tools that serve different life-cycle

phases also need to be supported.
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Notations

The following are the notational conventions used in this thesis.

e EDL/ECL keywords are denoted in CAPITAL letters.

e Built-in attribute names and data types are denoted in Sans Serif font. An excep-
tion is when an attribute name appears in a user-defined identifier ( ¢.g. name in
data_store.name). In this case, the typeuriter fout is used.

e Attribute values are denoted in the thesis text font, but enclosed in single quotes,
such as 'detects’.

o All user-defined type names, data objects, ete. are denoted in the typewriter
font.

e The italics font is used for emphasis, as well as function or set names that appear
in mathematic or logical expressions.

o { } denotes a list of one or more items.
e [] denotes an optional item.
e <> denotes a nonterminal symbol in a syntactic description.

e | indicates scparate choices.



Chapter 1

Introduction

Software development environments have evolved from traditional programming envi-
ronments to more sophisticated Integrated Project Support Environments (IPSE) and
Computer-Aided Software Engincering (CASE) environments. The IPSE technologies
are concerned with building generic environment infrastructure and platform services
to support large-scale software development efforts[BM92]. CASE technologies, on the
other hand, concentrate on automating software engineering methodologies to help de-
velop software on time and within budget{CNW89, BFW91]. By methodology, we mean
a systematic set of methods that are designed to support a set of related software devel-
opment activitics. For example, Structured Systems Analysis is a software engineering

methodology that includes a set of methods based on data flow diagrams, decision trees,

etc.

Integrated software development environments can be classified into three categories

based on the nature of the tools:
e environments that are loosely-integrated from tools of different natures and are
most often provided by different vendors.

e cnvironments that are composed of tools that are written in conformance with

certain predetermined conventions on data formats and control protocols.



e environments that consist of tools from the same vendor, which are writtey specif”

ically for a common environment.

Besides the previous three categories, there is another category representiné e
vironments that are based on a common model associated with a metasystep (als?
known as MctaCASE or CASE shells). Environments in this category contain u,.i“‘l‘b‘“l
tools generated by a metasystem from formal environment definitions. A moggsyster?
supports software development life-cycle activities by taking advantages of both the¢
software environment technologies and software engineering methodologies. e mai’
goal in using a metasystem is to generate automatically the major parts of oftwar®
engineering development environments, which support software engineering ,,;t“-llﬂ‘l‘
ologies. Environments are defined formally by using an environment definjijon lat”
guage (EDL). Relationships between the software objects within an enviroppent of
across several environments are further defined by using an environment constpaint lar”
guage (ECL). Metaview[STM92], an ongoing project at the Universities of Alhert® and
Saskatchewan, is one of major projects following this approach. Other oxa.x,,l,l(‘h‘ ar®
MetaPHOR[DD92, SLTM91] at the University of Jyviskyld, Finland and the gocrat

project in the Netherlands[VIIW91]. A brief overview of the Metaview architecqure and

o8

its data model wili be presented in Chapter 3. A major advantage of the ,,,(."quyst,(rl"
approach is that it offers a framework on which environments are generated i 8 uni”
form fashion and are potentially well-integrated. Such a framework has not hees fully
explored by current research efforts in an attempt to implement integrated CASE et
vironments. Environments in a metasystem usually work rather independently, and, ab
present, only interact through specialized mapping features such as those presey i th¢
Environment Transformation Language (ETL)[BST91]. Tools in various cnvi.-(,ul"ﬂll"ﬁ
rarely support integrated functionalities, such as sharing data and communje b ing in
such a way that any changes made in specifications in one environment can p¢ secf!

immediately in specifications in another environment.

The research work presented in this thesis, as a part of Metaview project, atwlnp"“"

to bridge the gap from independently-generated specification environments tg pightly”

2



integrated CASE environments. The main goal is to allow various environment models
to be represented formally in view specifications and thus facilitate the dynamic integra-
tion of both environment models and tool-specific mechanisms. Three major issues are
addressed in this thesis: the representation of views using the Metaview metamodel, the
integration of views through object merging and operation mapping, and the manage-
ment of specification environments through views. The Entity-Attribute-Relationship-
Aggregate (EARA) data model of the Metaview system is adapted to define “views”.
Each specification environment is associated with a collection of such views, which enable
tools defined for the environment to take advantage of the abstraction, encapsulation
and data sharing provided by the view mechanism. Environments communicate with
cach other through views, and are thus integrated in terms of their data and control
capabilities. T'he potential to support uniform user interface and dynamic process in-

teraction is briefly discussed, but is not a major focus of the thesis.

In the remainder of this chapter, Section 1.1 defines several terms that are used
extensively both in the thesis and the literature. These terms are specification envi-
ronment, tool, view, and horizontal integration. Section 1.2 identifies the objectives of
the thesis. The motivation for achieving these objectives is also provided. Section 1.3
presents an overview of the thesis. The scope of the thesis is then described, and the

expected contributions are summarized.

1.1 Basic Definitions

There are a number of key concepts that are used in this thesis. They include en-
vironment, tool, view and integration. Because these terms are also used frequently
by researchers in CASE environments, they have diverse meanings, depending on the
context in which they appear. For example, the Metaview “environment” used in this
thesis, to some extent, has a more specific meaning than people would normally use in
a more general context, such as integrated CASE environment, software development
environment, and so on. The term “tool” can be used to refer to CASE tools, vendor

tools, Metaview tools, etc. Also, the term “view” used in this thesis differs from that



normally used in the database literature. It is necessary to clarify these terms so that
their more specialized meanings are understood in our further discussion. Distinguishing
these terms will also help to describe the scope of the research work presented in this

thesis as compared to related work in the literature.

Many people in CASE communities use so-called integrated CASE environment to
mean an integrated sct of tools that support one or more processes in the software
development life cycle. In this thesis, an environment definition is a complete and con-
sistent set of specification object types that are defined using the Metaview meta model.
Environments generated from such definitions within the Metaview system are meant
to provide support for a particular method within a software engincering methodology.
Examples are a data flow diagram environment and structure chart environment. Since
the Metaview system is mainly focused on modeling software engineering methodologies
that support methods for requirement analysis, high-level design and other upperstream
activities, environments in Metaview system are often referred to as specification envi-

ronments. To be more specific, we have:

Definition 1.1: A Metaview specification environment consists of five clements: envi-
ronment definition, database engine routines, generic tool descriptions, tool functions,

and a common user interface.

Of these five elements, database engine routines and generic tool descriptions are
shared by various environments. The user interface is usually designed in accordance
with certain window standards, and therefore, also remains essentially the same for
different specification environments. Unique to cach environment are its definitions
written in EDL/ECL, and tool functions that manipulate object types given in the
definition. Once a definition for an environment is given, objects that are inherent to
the corresponding software engineering method are fixed. To achieve the flexibility of
multiple environment definitions for the same specification environment we will incur

many integration-related issues as will be discussed briefly in Section 1.3.

A tool is a major component of a Metaview specification environment and is defined

as follows:



Definition 1.2: A tool in Metaview is composed of two parts: generic descriptions that

are to be instantiated by the definition of a specification environment, and tool functions

that perform related operations.

In Metaview, there has been little emphasis on tools that are developed external to
Metaview, or the problem of incorporating such tools into a Metaview generated en-
vironment. The focus has been primarily on generic (or universal) tools that provide
operational mechanisms for a specification environment and complement other parts of
the environment, namely, the methodology modeling and database management. An ex-
ample of such a tool is Metaview’s Graphical Editor (MGED)[Fin93a] that provides the

graphical editing capability for any specification environment defined with the Metaview

metamodel.

In this thesis, a view is intended to capture both the structural definitions and
operational semantics of a specification environment. With multiple views, different
user perspectives are reflected by different views, and the associated operations that

access the data conceptualized by such views. A more formal definition of a view is as

follows:

Definition 1.3: A view in Metaview includes a partial or entire description of a speci-

fication environment, and a set of operations that manipulate such a description.

A view for a Metaview specification environment can be related to Mctaview tools
in the following manner. A view consists of two types of information: environment def-
initions and associated operations. A universal tool’s generic description caxn be instan-
tiated for definitions that represent various subschemas of the environment definitions.
Operations defined with respect to a view are mapped directly to functions provided by
Metaview tools. A view definition establishes an association between a subschema and

a set of operations that are applicable in the view.
Finally, the term horizontal integration is introduced:

Definition 1.4: The integration of tools serving similar purposes in the same phase of

software development is called horizontal integration.



The following example illustrates the need for horizontal integration. Suppose a re-
quirement analyst wants to elicit and analyze an clicut’s requirements specification for an
information system. There are a range of specification vehicles available for this purpose,
including function decomposition diagrams, data-{low diagrams, entity-relationship dia-
grams and action diagrams. Each of these diagrammatic methods represents a different
view of the software requirements. In order to support integrated efforts, these different

tools have to be well integrated horizontally.

In contrast to horizontal integration, vertical integration is aimed at integrating tools
that support different phases of the software development life-cycle. This issue is largely
ignored in this thesis because vertical integration normally involves transformations of
specifications developed using different environment definitions. The transformation
between environments is the topic in [BST91]. Integrating environments for method-
ologies that share less similarity, such as integrating specification environments for a
structured methodology with an object-oriented analysis or design methodology, is still

an unexplored area of research.

1.2 Motivations and Objectives

The motivation for the research work in this thesis has two aspects. First, the provi-
sion for multiple views for specification environments is currently lacking and must be
defined for the Metaview system. Such multi-view mechanisms allow users to examine
a software system from different perspectives and facilitate integrated software develop-
ment. Secondly, environments generated in Metaview system should work cooperatively
with regard to both data and function sharing. An example of such cooperation is that
changes to specification data in one view should be made available to other views for the
same environment, and thereby ensuring that the relevant information is kept consistent

across different views.

These two aspects are interrelated. Software systems may be viewed from different

perspectives. Typically, each software developer interacts with the CASE environment



via one or more tools that supports his/her role in system development. A developer
may want to examine different parts of the system, or the same part of the system
using different tools simultancously. Each tool presents a user with part of the software
system being developed. Therefore, integrating these tools will support multiple views of
a Metaview environment that is used to develop a software system. Chapter 2 will show
that the problem of achieving multiple views of a metasystem environment is essentially

the same as integrating CASE tools that are supported in the Metaview system.

In our search for a solution to integrating multiple views of a metasystem environ-

ments through tool integration, two important issues need to be addressed:

o Multiple Representations: An environment definer should be allowed to define a
software object type from multiple viewpoints that correspond to different user
roles. For example, a data_store type defined for the data flow diagram may
Lave two different sets of attributes associated with two different groups of people,

e.g. administrative people and requirements analysts.

e Dynamic Behaviors Modeling: Given that a specification database only provides
static aspects of software objects used to describe specification information, an
environment definer should be able to define the dynamic aspects of software ob-
jects. For example, an environment definer may define how and when to invoke
operations in one view automatically in response to changes made to data objects
in another view of a specification environment. A typical need for such opera-
tion mappings arises when consistency needs to be maintained among different

representations of the same data object.

In order to address these issues specifically, it is our objective to examine how a
metamodel can be used to model and define multi-view specification environments. Such
an environment includes not only the basic methodology modeling and tool-specific
information, but also the description of possible views that reflect both the multiple
representations of software object types and the dynamic behaviors associated with

such object types.

-~}



1.3 Thesis Overview

Since the primary goal of the thesis is to provide dynamic multi-view : ipport for an
integrated CASE environment using a metasystem approach, only those environments
that are generated more or less uniformly from declarative specifications in the Metaview
system are to be considered for multiple view support. The integration involved is of a

horizontal nature, rather than vertical.

Although there are at least three aspects associated with integrating Metaview envi-
ronments, i.e. methodology modeling, database support and user interface presentation,
this thesis will investigate mainly the problems of integrating different aspects of a spec-
ification environment represented as model views. Therefore, we primarily examine how
different views that are defined to form an environment impact on data sharing and op-
eration mappings. The specifcation database aspects of the integration are addressed
only in terms of the support needed for merging objects represented in different views.
How to manage the database eflectively to allow for efficient information retrieval and

to perform operations on selective objects are beyond the scope of the thesis.

Finally, user interface integration and software process integration are not addressed

in any detail and are also considered beyond the scope of the thesis.

The thesis is organized as follows. Chapter 2 claborates on the basic integration
requirements for an integrated CASE environment. A more precise definition of tool
integration is given. A data flow diagram environment with two views is presented as
an example to illustrate the difficulties of supporting multiple views with the current,
metasystem approach. By comparing the thesis work with the NIST/ECMA reference
model for tool integration[CN92], the problem of supporting multiple views in a meta-
system is related to that of the tool integration. Two major tool integration approaches

taken by current research efforts are then reviewed: data sharing and message passing,.

Chapter 3 includes a brief overview of the Metaview project. The emphasis is on the
meta data model and the ECL/EDL languages. The syntax of these two langunages are

illustrated through examples.



Chapter 4 describes the notion of a model view and how it is used to capture the
basic concepts of a software methodology. In order to provide multiple view support to
a specification environment, model views are further divided into primitive views and
composite views. An environment definer first identifies a set of primitive views that
contain basic EDL/ECL statements and defines the object types and possible decom-
position schemes that are imposed by a software methodology. The definer then merges
these primitive views to form composite views and defines view operations required
for consistency checking and control transfer between different parts of a specification
environment. By packaging composite views and other related views, the modeled spec-

ification environment is defined in terms of views.

Various views defined in Motaview are integrated in two aspects. Multiple repre-
sentations of data objects are achieved through static view merging, as discussed in
Chapter 4. In Chapter 5, the operational aspect of the views defined for a specification
environment are examined. Operations specified with regard to certain views have to
mapped to basic tool functions or operations defined in other views. The purpose of such
mappings is to assist in the automatic maintenance of the consistency of a specification
database and to provide a means of defining uscr-required operations. The mechanism
designed for operation mappings is based on Event-conteXt-Action (EXA) rules. The
definitions of the database state and consistency-preserving operation mapping are given

in order to provide the basic criteria for the operation mappings.

Based on the view mechanism established in Chapter 4 and 5, Chapter 6 examines
further two approaches of tool integration in current commercial systems: integrating
data through the usc of a common repository or encyclopedia, and integrating con-
trol through message passing or broadcasting. A view-based integration framework is
then proposed. In this framework, data integration and control integration are tightly-

coupled, and treated simultaneously.

The Metaview approach presents a promising framework/platform for tool integra-
tion for two reasons. First, each environment is formally defined with an environment

model and tool-specific information which are stored in a central environment library.



This allows integration to take place without eliciting further environment information
from tool writers that may be ambiguous or vague. Secondly, automatic generation of
the environment helps to insure a uniform user interface across tools. Taking advantage
of both the view mechanism and Metaview’s architecture, the view-based integration
framework makes data sharing possible by permitting tools for an environment to op-
erate on a shared database through a collection of views. Control integration between
different views of an environment is achieved using rule-based operation mappings that
are also defined on the views. Based on this framework, several enhancements to the
Metaview architecture are suggested to accommodate multiple views. Central to the
revised architecture is a view translator that acts as a general-purpose controller coor-

dinating various environment views.

-

Finally, Chapter 7 summarizes the research contributions, and discusses possible

future research topics.
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Chapter 2

Background

The requirement for significant improvements in productivity in the software system
development process has motivated substantial research interest in more sophisticated
software specification environments. To achieve this goal, tools that are developed for
a given software engineering methodology should be well integrated to support diverse

specification and design perspectives.

In this chapter, a two-view environment for structured analysis will be introduced.
"This environment will serve as an example to illustrate the difficulties in supporting mul-
tiple views with the current metasystem approach. These difficulties are then related to
problems that tool integration can solve. This explains why supporting multiple views in
the Metaview system is similar to achieving, in a broader sense, tool integration of CASE
specification environments. After reviewing some basic requirements for an integrated
CASE environment, a more precise definition of tool integration is given. The definition
is based on the integration reference model being developed by the National Institute of
Standards and Technology and European Computer Manufacturers Association[Nat91],
and the work of others on CASE tool integration[Was90, TN92, CN92]. How the the-
sis research relates to the NIST/ECMA framework is also described. The last part of
this chapter provides an overview of two important aspects of tool integration: data

integration and control integration. These aspects also form the basics for two major
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approaches taken by current rescarch efforts in integrating CASE environments. PCTE's
Object Management System (OMS) is used as an example to show how tools are inte-
grated by using an object-oriented database. HP SoftBeneh’s Broadeast Message Server
(BMS) is discussed to exhibit how tools can cooperate with cach other through message
passing. The chapter is concluded with a description of research work that combines

these two aspects in an object-oriented approach.

2.1 An Example Two-View Environment for Structured
Analysis

In this section, a specification environment for structured analysis with two views is in-
troduced briefly to illustrate the difficulties involved in support for maultiple views in the
current Metaview system. This example environment is referred to as DEFD/CED Envi-
ronment throughout the thesis. Its complete deseription is included in Appendix A, The
purpose is to further motivate and identify the thesis problems, and explain how issues
on supporting multiple views are related to integration of CASE tools. Thii example

will also be used in later chapters for discussions on view definitions and integration.

In our example, a data flow diagram (DFD) provides one of the two views for strue-
tured analysis. It is used by system analysts to represent system specifications by
depicting the flows of data in the system. [GS79] and [DeMT79] describe two common
styles of representing data flow diagrams. The DFD method used in the following ex-
ample is adapted from these two styles and is referred to as Vipa. Using Metaview’s
terminology?, this DFD view can be described by the following, specification schema:
Vdfd:

AgT= {top.level dfd, process.exploded}
ET = {process, data.store, dataflow, terminator}
RT = {sends, stores, changes, reads,
derived from, has.expansion, has_parent_boundary,

has_child_boundary, has_subparts}
RN = {source, data, destination, storename, process.name,

1The meanings of the set names used in the specification schema are explained in Chapter 3.
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derived_agg, source.agg, parent, child,
boundary, superpart, subpart}
AN = {identification, function.description, physical_loc,
ref_id, access.type, number.of_copy,
primary key, form, flow_type, frequency}

The second view is an extended DFD for developing real-time applications. There are
two commonly-used “extensions”, developed respectively by Ward and Mellor[ WM85)
and Hatley and Pirbhai{lIP87]. In the following example, the Hatley and Pirbhai method
is adopted and incorporated with the State Transition Diagram (STD). In Hatley and
Pirbhai method, control information is represented separately in a Control Flow Dia-
gram (CEFD). The CFD also contains basic concepts such as process, data_store and
terminator, but control flows are shown rather than data fiows. Another concept that is
not present in the DFD is the control specification, represented graphically as a vertical
bar in Hatley and Pirbhai’s original notation. A control specification describes how pro-
cesses are activated as a consequence of events. The STD is used to represent a control

specification. This view is referred to as Veza. A specification schema for this CFD view

is given as follows:

Vird:

AgT= {top.level, process.explosion, std.agg}

ET = {process, data_store, terminator, ctrl flow, ctrl_spec,
state, event, action}

RT = {in_out, access, has_std, has_sub.std, transition,
derived_from, has_expansion, has_parent_boundary,
has_child boundary, has_subparts}

RN = {input, process_name, output, cspec.name, cflow_name,
from_state_name, to_state_name, eventname, action.name,
std_name, sub.std_name, derived_agg, source.agg,
parent, child, boundary, superpart, subpart}

AN = {form, index, flow_type, state_type, event._type, access._type}

The two views given in this section scem to differ only in the data representations,

however, this only accounts for part of the differences. The operational part of the two
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views may also differ. For example, cach view may define its own set of operations
that perform view-specific functions in terms of object types defined in the view. The
constraints applied to the entities and relationships in the two views may differ as
well. This may result in counflicts when checking specification consistency with regard to
different views. More details will be given in Section 4.4 where complete definitions of
these two views are presented to illustrate how to form a composite view through view

merging.

2.2 Why Supporting Multiple Views Is Difficult?

Given the two views described in the last section, the current Metaview approach has two
difficulties in supporting both views in the same specification environment for structured

analysis.

The first difficulty is related to the static aspect of the environment definition. It is
obvious that two sets of representations cannot be present in the same environment
definition. For example, il a process object is defined as having three attributes:
identification, function description, and physical location, it cannot be de-
fined once again as having only intrinsic attributes. Also, if the form attribute in a data
store is defined of string type with limited length, it cannot be redefined to be of text
type with virtually unlimited length and have both definitions recognized. This also
makes information sharing impossible. For example, although the form attribute of a
data store object is defined differently in the two views, they probably would contain the
same information in a specification for a given object. If two views are supported by two
separate environment definitions, a redundant copy has to be maintained by the system.
One of the advantages provided by the multiple representations is that software objects
can be viewed from different perspectives and levels of details. This capability is often
provided by environments that support information hiding. Information hiding should
be of finer granularity than on a basis of either all or none. For example, a data_store
defined in V.4 provides an outline view of a data store object, whereas in Vg, a more

complete description of the data store is available.
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‘The second difficulty is that even if two separate environments are generated to
represent different user views, there is currently no dynamic connections between the
two. Any changes made to the description attribute of a process in Vgrq are not
automatically propagated to the description attribute of the process defined in Vya.
Operations that access the form attribute are not shared by the two environments,
because of the different data types used to define the attribute. In order to support
dynamic operation invocation and automatic operation mappings, the description of a

control transfer mechanism has to be built into the environment definitions.

‘Tool integration mainly involves two types of problems: data sharing and control
transfer among different tools. The difficulty associated with data sharing is that differ-
ent tools may have different representations for data, while control transfer is difficult
because an integrated environment has to decide what and when operations are needed

in one tool in response to operations in other tools.

The same difficulties have to be tackled in providing multiple views for the Metaview
system. First, a mecans of defining different representations that reflects different user’s
viewpoints must be provided. Object types defined in this way have to be merged within
the same specification environment so that data sharing is possible. The consistency
of the data objects has to be maintained, and operations specified with respect to one
user’s viewpoint must be mapped antomatically to operations that correspond to other

user’s viewpoints.

Since a user's viewpoint on software specifications are usually reflected through the
tools being used, different tools, when integrated, are said to represent multiple views.

This thesis investigates ways to successfully support these multiple views.

2.3 Basic Concepts of Tool integration

In providing full support for software development, an integrated CASE environment
must accommodate a range of applications and user roles. Being general-purposed

should not, however, limit the possibility of ultimately being application-specific or
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Figure 2.1: The NIST/ECMA Reference Model

user-oriented. Such adaptability should also easc the evolution process in which new
methods or tools can be dynamically incorporated. In order to describe the technical
aspects of integrated CASE environments, many notions of the NIST/ECMA reference
model[Nat91] are used in the following discussion. The NIST/ECMA reference model, as
shown in Figure 2.1, has been increasingly adopted as a basis for discussing integration

issues by the CASE community.

Tools in the NIST/ECMA reference model are divided into two categories. Vertical
tools ensures the completeness and consistency of information generated across various
life-cycle phases. [orizontal tools maintain the integrity of specification information

generated within each life-cycle phase when many modeling methods are used.

Services defined in the reference model enable four types of integration: data in-

tegration, control integration, presentation integration, and process integration. These
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four types of integrations, first proposed by Tony Wasserman[Was90] and elaborated in
[TN92) and [CN92] are generally accepted as a basic integration taxonomy. They are

briefly defined as follows:

e Data Integration: refers to the ability to share software development information
(specifications or design information, etc.). It is usually accomplished through

direct data transfer, intermediate file and/or shared data repository.

e Control Integration: refers to the ability to share functions and to activate other fa-
cilities automatically upon data changes, occurrence of events or user intervention.
The control integration mechanisms include explicit message passing, integration
management (i.e. control daemon), rule-based triggers and a broadcasting message

server.

o Presentation Inlegration: refers to the uniform appearance and behavior of the
environment user interface. This is often done by building an integrated CASE
environment on the basis of some commonly-used window standards, such as

OSFF/Motif and SUN/Open Look.

e Process Integration: refers to the ability to invoke the right facilities at the right
time by the right personnel in support for the software process that fits into an
organizational or project model. This integration is usually accomplished through

modeling life-cycle phases, planning project management and using metrics-based

quality control.

In the NIST/ECMA reference model, data integration is supported by the data-
integration and repository services. Control integration mechanisms include explicit
message passing, time- or event-activated triggers, and message servers. To achieve
control iutegration, tools must be able to notify each other of events, activate other

tools and share functions.

All these four types of integrations should be addressed when designing an ideal

integrated CASE environment because they are all interrelated. For example, control
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transfer is often caused by changes to the data, which may in turn affect the integrity of
the data across tools. Also, the tool invocation mechanism, which is a control integration
aspect, provides fundamental support for process integration. This interrelationship is
often overlooked by many researchers, and therefore, the integration strategics proposed
so far are often directed to only one of the issues. For example, the broadcasting mes-
sage service technology is only concerned with the problem of control integration while
ignoring data sharing issues, whereas an object management system is aimed at the
support for data integration and may ignore aspects of function sharing. As a result,
tools developed ignoring these important inter-relationships are doomed with respect
to good performance because they are unable to utilize fully the resources available or
underlying technologies related to data repositories, and software engincering method-
ologies. Some integration efforts based on an object-oriented paradigm are trying to
address both the data and control aspects of the integration at the same time, as will be
briefly discussed in Section 2.4.3. In this thesis, we will bring these two aspects together
in a metasystem approach that differs from a purely object-oriented one. The focus is

on the data and control integration.

It is assumed that the Metaview system is responsible for providing the metamodel,
query and data-interchange services. The research in this thesis will lead to a framework
for tool integration in the context of the Metaview system. This framework is based on a
multi-view mechanism and an event-driven operation mapping mechanism. Contrary to
conventional database views and program views, a view of a Metaview specification en-
vironment not only refers to the virtual description of a common specification database,
but also to the dynamic behaviors associated with a set of tool functions that manip-
ulate such descriptions. The purpose of operation mappings is to assist in automatic

maintenance of the consistency of a specification database and to provide a means of

defining user-required operations with regard to his/her specific views.

These two forms of integration are important in providing multiple view support
for horizontal tool integration in the Metaview systemn. In Metaview, support for ver-
tical tool integration is achieved using transformations specified in ETL (Environment

Transformation Language)[BST91, Lee92].
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2.4 Techniques of Tool Integration: An Overview

Tool integration has been an active research area during the past few years[Dow87,
Tho89b, Was90]. There are two reasons for this trend. First, the diverse nature of
the modern applications have been the major driving forces for many new development
methods. More powerful tools are required to support adequately these new meth-
ods. It has been clear, however, that no single tool can meet the expanding needs for
automated support in information-based applications dev-lopment. Secondly, recent ef-
forts by the CASE community have produced some CASE standards and frameworks
that further encourage the integration efforts. The examples are ECMA PCTE[Eur90},
ANSI’s Information Resource Dictionary Systems[ANS88], Electronic Industry Associ-
ation’s CASE Data Interchange Format[Ele90] and IRDS ATIS proposed by Atherton

‘echnology[CAS91)

In the next three subsections, previous work on data integration and control integra-
tion is reviewed. We believe these two forms of integrations are the two most important
aspects of tool integration and are our major concerns in this thesis. Issues related to
presentation and process integrations will be left largely as open problems for future
rescarch. Since our objective is to bring these two forms of integration together, some

combined efforts using object-oriented approaches are briefly reviewed.

2.4.1 Data Integration

Data integration is one of the two major approaches to achieving cooperation among
tools. In an integrated CASE environment, the data represent a description of the ap-
plication system under development, including project plans, requirement specifications,
design documents, program modules, test data and so on. The goal of the data integra-
tion is to maintain consistent information and make them accessible to various tools.
Thomas and Nejmeh[TN92] define five properties related to how well tools agree on the
way data are manipulated. These properties are interoperability, nonredundancy, data

cousistency, data exchange and synchronization, with the first three related to persistent
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data, and the latter two to nonpersistent data. Based on the granularity of the data to
be shared, data integration can be divided into two categories[IIK092]: coarse-grained
integration, as exemplified by shared files, and fine-grained integration, as exemplified

by textual lines or symbols describing software objects.

The traditional strategies for data integration are coarse-grained. When the data
formats used by two tools happen to be the same, they are transferred directly. The
UNIX pipe is an example of a mechanism that supports this kind of transfer. When the
formats differ, certain conversions are carried out before the files can be shared by the two
tools. Some intermediate data format is often present in this case. Examples are CASE
Data Interchange Format[Ele90] and AD/Cycle’s External Source Format (ESF)[MBYO].
File systems are not sufficient to enable multiple tools to work concurrently. Services
such as transaction management, concurrency control, version control, data integrity

and security should be also provided.

As the recent repository technologies became more sophisticated, many people used
a shared repository as the basis for the data integration. Notable examples are PCTE’s
Object Management System (OMS)[BMT8S8, Thos9a, TTBGI) and AD/Cycle’s Repos-
itory Manager[Sag90]. The rest of this subsection discusses PCTIE’s OMS as an example
to see how data integration is supported through a shared repository. The reason for
choosing PCTE’s OMS is that it is typical of data integration approaches and the one

that appears to be receiving the most interest amongst tool vendors.

PCTE is a specification for a set of building blocks from which tools can be built
to form environments. It specifies platform services and interfaces which enhance tool
integrations. In relation to data integration, it provides OM3 facilities for defining and

managing data stored and manipulated in an integrated CASE environment,

The OMS data model is based on a modified binary Entity-Relationship model.
Entities (or objects in the OMS) are typed with a name, a parent type, a set of attribute
types and two sets of link types, of which one serves as the link origin and another the
destination. A relationship between objects is established as a pair of mutually inverse

links.
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Object types form a hierarchy with a single predefined root type called Object and

a few predefined Object child types.

Object, attribute and link/relationship definitions are grouped into Schema Defini-
tion Sets (SDSs) which themselves belong to a predefined object type named sds. A
type definition may be distributed across multiple SDSs while on the other hand, the

conceptual model of the PCTE object base is captured by all the SDSs which may be
overlapping.

Given these basic features of the OMS, data integration takes place in the follow-
ing manner. Each tool (or PCTE process) has a working schema which is a dynamic
union of SDSs and defines a particular external view of the object base subset that is
interesting to the tool. It is “dynamic” because the composition of SDSs can be recon-
figured during tool execution. Tools access objects are based on a navigational model
defined in the tool’s working schema. The concurrency control and integrity checking
are supported through the distributed management of schema information and an OMS
activity mechanism. Each tool runs within the context of one of three levels of activity:

unprotected, protected and transactions.

More recent efforts in evolving PCTE have resulted in a more comprehensive interface
specification called PCTE+. The history of this version can be found in [BMT88]. The

extensions made in PCTE+ include:

e composite entities, a collection of objects are treated as a single object when being

manipulated.

o a sclf-referential model - the metabase, a part of the object base in which object,
link and attribute types defined for the OMS are represented as objects, allowing

uniform querying of both schema data and specification data.

e version support, the version management is supported using the idea of composite

entities.

e multiple inheritance for object types with naming conflicts resolved by SDS mech-
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anism’s scope rules.
e security, both discretionary and mandatory access controls are possible.

e a change notification mechanism working in a distributed environment.

These new features contribute to improvements in data integration. The composite
entities help model complex software development information more completely and
effectively, and version control and access control provide better information manage-
ment. One of the most difficult problems, schema evolution remains unsolved. Without
its solution, the flexibility in adding new tools into the integrated CASE environment

is not well supported.

2.4.2 Control Integration

An important requirement for effective control integration is the support for implicit
tool invocation, rather than forcing a user to invoke cach tool explicitly. Early imple-
mentations of control integration focused on coordinating teams through facilities like
electronic mail and configuration management. In the context of an integrated CASE
environment, control integration may take place between horizontal tools or vertical
tools. For example, the entity-relationship diagram tool may have to be invoked when a
requirements analyst makes some changes to the data-flow diagram. A transformation
controller may invoke a code generator when a system analyst changes requirement infor-
mation. Control integration should be concerned with providing facilities like function
sharing across tools, event notification and tool activation. When combined with soft-
ware process modeling, control integration can assist to achieve the process integration.
In [TN92], authors have identified two properties defined on the control relationship be-
tween two tools: provision and use, which represent two opposite directions of function

sharing.

There have been numerous mechanisms developed for control integration during the

past years. Most notable are those based on explicit message passing, active data,
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control daemons, and selective message broadcast. In the rest of this subsection, we
concentrate on the broadcast message service (BMS) technology which was first devel-
oped by Steve Reiss of Brown University in his FIELD project[Rei90]. This work was
later refined and used in HP SoftBench Environment[Cag90]. (SUN ToolTalk and DEC

FUSE environments also adopted the similar technology, but will not be covered here.)

Reiss’s main idca of .ntegration through message passing is that existing indepen-
dent tools can be made to communicate directly with each other if they are modified to
incorporate so-called message interfaces. These interfaces allow tools to register inter-
ested message patterns with a message server (Msg) and to send and receive messages
to and from the Msg. Tools interact by sending messages to Msg, which re-broadcasts

them selectively to those tools whose registered message patterns match the messages

being broadcasted.

There are several drawbacks related to Reiss’s approach. First, writing message
interfaces for tools to be integrated could be a painful experience, because one has
to find out what messages are or will be available and what information they convey.
Second, once a new tool is added, old tools have to be modified to take advantage of
the functions provided by the new tool. On the other hand, once a tool is removed
from the environment, other tools also need to be modified to take into account the fact
that a tool’s functions are no longer available. Third, FIELD does not provide a formal
management scheme for either the syntax or the semantics of various messages, let alone
a common semantic language to serve as the foundation for effective communication. As
a result, tools are very loosely integrated. Finally, multi-user interaction is not supported
in FIELD, which is part of the reason that it is only suitable for programming-in-the-

small, and not for programming-in-the-large or programming-in-the-many.

HP SoftBench tools communicate in a networked environment via a broadcast mes-
sage server (BMS), which is very similar to Reiss’s Ms» As Cagen claims in [Cag90], the
HP SoftBench integration architecture is designed  provide mechanisms that support
tool collaboration in a distributed computing environment. HP SoftBench has three pri-

mary components. The remote tool execution and data management facilities support
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collaboration of distributed team work. The OSF/Matif-based user interface manage-
ment facilities provide the basis for presentation integration. And the most important
facilities, the tool communication mechanisms, allow two-way, one-to-many or many-to-
one and event-driven control integration. The significant improvements included in HP
SoftBench over FIELD are:

e uniform message format
e event trigger and tool execution management

o HP Encapsulator

Messages in HP SoftBench are divided into two types, requests and notifications,
They all have uniform format, specifying various information, such as a tool proto-
col, specific operations required, the location of the data being operated on, and other

optional information needed for the operation.

All tools integrated in HP SoftBench environment announce the actions just taken
after each operation performed. This notification message is picked up by other inter-
ested tools to trigger the exccution of a set of operations that are cither predefined in
the tools or later defined by users. When a request message is reccived by the BMS,
ar< there are no running tools servicing this request, the 1P SoftBench tool manager
starts an appropriate tool to handle the need. This trigger/execution management
mechanisms allow automatic and implicit control transfer which is considered to be a

favorable feature required by control integration.

HP Encapsulator[Fro90] is a translator of commands, actions and presentation be-
tween existing tools and the rest of the HP SoftBench environment. It allows existing
tools to be encapsulated in a message-based application program interface (API) so that
tools can be linked to HIP SoftBench network-wide communication and triggering facili-
ties including the BMS, the event handler, the pattern matcher and the tool manager. It
also helps a user modify tool protocols and tailor the HP SoftBeunch environment to sup-

port particular software process needs. The Encapsulator description language is used
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to simplify the task of describing an encapsulation. This specification language captures
the two main components of the tool encapsulation: interfaces and actions. Interfaces
are tools’ connectors to the HP SoftBench window system and message system. Actions

are the steps to be taken when certain conditions are met on a tool’s interface.

There are some limitations imposed by the HP SoftBench environment.

o 1P Encapsulator’s customization flexibility is restricted to events or atomic oper-

ations whose behaviors can be intervened from command-line flags.

e Users have complete <ontrol over what tools or operations respond to what mes-
sages, subject only to the event granularity restrictions. This may not be desirable
from an organizational point of view. The tool protocols should be prioritized, giv-
ing some people like project managers more power over ordinary team members

in controlling the way tools interact with each other.

e Another drawback results from the separation of data integration from control
integration. Almost no data sharing is possible in HP SoftBench, which means
data manipulated by various tools are normally disjoint. As a result, multiple
methods aiming at the same software process, if supported, would be treated as

totally independent tools, which obviously is not desired.

e At the present time, HP SoftBench is basically an integrated programming envi-
ronment. Only a few lower CASE tools have been integrated, such as the program
editor, static analyzer, program debugger, program builder and mail. HP En-
capsulator promises the customization and extension capabilities of integrating
existing tools into HP SoftBench environment without even modifying the source
code. It is, however, really doubtful whether HP SoftBench will be effective in
integrating upper CASE tools or cross life-cycle tools, because these tools often
require sharing data and managing data relationuships. Further difficulties may
arise when trying to integrate presentation schemes of these upper CASE tools

because of their highly interactive, graphical user interfaces.
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2.4.3 Object-Oriented Integration, Combining Data and Control

Integrating both data and control simultaneously would presumably take the advantages
offered by both. This is indeed a more favorable trend for tool integration because it is

an important feature that should be present in an integrated CASE environment.

We briefly look at two examples representing these combining efforts: Object Man-
agement Group’s Common Object Request Broker Architecture and Specification (COR-
BAS)[COR91] and IBM’s Object-Oriented Tool Integration Services (OOTIS). The
question is how to combine data sharing with message servicing techniques to provide

both integrations.

The CORBAS[CORY1] defines a common architecture and specification to allow the
integration of a wide variety of object systems. Central to the CORBAS architecture is
an the concept of Object Request Broker (ORB). An ORB provides the mechanism by
which objects transparently make requests and receive responses. An ohject in CORBAS
is an identifiable, encapsulated entity that provides one or more services that can be
requested by a client. An interface of an object describes a set of possible operations
that a client may request of the object. Interfaces are specified in Interface Definition
Language (IDL). An object also has its implementation, which is a set ol methods that

are to be executed (or activated) in response to services requested.

It is an explicit goal of the Common ORB Architecture to allow interoperation he-
tween different object systems and ORBs. ORBs are structured in such a way that
it is responsible for all the mechanisms required to find the object implementation for
any request sent an object, to prepare the object implementation for the request, and
to communicate the data making up the request. The interface the client sees is com-
pletely independent of where the object is located, what programming, language it is

implemented in, or any other aspect which is not reflected in the ohject’s interface.

In order to make multiple object systems interoperable, IDL-defined object-oriented
invocation model is employed to allow requests to pass through ORBs, while preserving

the invocation semantics transparent to clients and implementations. There are three
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possible ways suggested in CORBAS to realize the interoperation of multiple ORBs: ref-
erence embedding, protocel translation, and alternate ORBs. With reference embedding,
an object in one ORI appears to be an object in the second ORB. An invocation on the
second ohject is actually performed on the implementation in the first ORB. Protocol
translation deals with the situation where muitiple ORBs differ in their implementation
details. Requests in one ORB is translated to requests in other ORBs. Finally, the al-
ternate ORB technique makes the same objects available to multiple ORBs. An object
implementation is bound to an object adapter which presents an identical interface to
cach ORB. Object references are generated in different ORBs. Multiple ORBs are sup-
ported in such a way that few changes are necessary to the object implementation code,

and object adapters serve as the interfaces to allow different ORBs to obtain equivalent

object references.

Some efforts have been made in IBM’s OOTIS (Object-Oriented Tool Integration
Services){IK092] with a fine-grained object-level support. In OOTIS, a software ar-
tifact is represented as a large network of interconnected fine-grained objects. Tools
for processing such objects are written in object-oriented style — each object belongs
to a class that defines not only its representation but also its operations. Messages
can be applied to an object through its interface. The code (or methods) to be exe-
cuted in response to a message is determined at run-time based on both the message
itself and the cluss to which the object belongs. A tool in this context is no longer
a single vhunk of code. It cousists of a collection of methods spread across a number
of classes. Cousequently, an environment is viewed as a collection of tools, each pro-
viding its particular collection of methods and classes. This extended object-oriented
approach integrates both data and control through a message dispatch mechanism which
automatically maps messages and event calls to appropriate objects. Since all data are
represented as objects and organized in an object-oriented database, its performance

relies heavily on the object-oriented database management system.

Strictly speaking, integration based on the object-oriented paradigm is still in its
early experimental stage. No successful systems have been reported so far. The reason

lies with the limitations of the object-oriented data model to model two important
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aspects of software engineering methodologies:

e Relationships modeling. This is difficult because both entities and relationships
must be modeled as encapsulated objects. In modeling software engineering envi-
ronments, it is important that an entity needs to “be aware of” the other entities
with which it is participating a relationship. This can be modeled rather awk-
wardly in an object-oriented system by traversing through an intermediate object

(relationship). This type of traversal requires a significant operation overhead.

e Cross-tool constraints. Again, due to the strict encapsulation, constraints that
define data consistency checking among different tools would impose a problem

that neither of the tools can claim the ownership of the constraints.

In part, because of these difficulties, the extended entity-relationship models have

become the dominate models used by the software methodology modeling community.



Chapter 3

Metaview, A System for
Generating Environments

The discussion in the previous chapter indicated that traditional integration approaches,
namely, repository-based data integration and message-broadcasting-based control in-
tegration, ultimately encounter difficulties when trying to support tool heterogeneity.
Our primary interest in this thesis is to investigate integrated environments that consist

of universal tools generated in the Metaview metasystem.

This chapter gives an overview of the Metaview system. The purpose is to estab-
lish the ground work for the discussion in the following chapters. Section 3.1 provides
an introduction to the Metaview system with emphasis on its three-level architecture.
Section 3.2 introduces the EARA metamodel that is used to represent CASE environ-
ments. Section 3.3 reviews two major aspects of the Metaview system, the Environment
Definition Language (EDL) and Environment Constraint Language (ECL). These two
languages are used for expressing the elements of the EARA data model so as to model
software engincering methodology embedded in a specification environment. These two
languages also serve as the basis of view definitions for a specification environment (i.e.,

a basis of the proposed language extensions used for defining views for a specification

environnent).



3.1 An Overview of Metaview

Figure 3.1 provides an architectural overview of the Metaview metasystem. It is simpli-
fied from its original version[STM92] in order to emphasize its three-level architecture.
The three levels, the meta, environment and user levels, are demarcated by horizon-
tal dash-lines. Shov u vertically are three major parts of the Metaview that provide
functional support for database facilities, environment definition and tool generation,

respectively.

At the meta level, the meta definer defines a metamodel for Metaview which is the
EARA modecl, an extension to Chen’s E-R model[Che76]. Also at this fevel, there are
two libraries of generic routines that should be categorized and collected. They are tool
related routines that are common to all environments, and database engine routines
that are used to manipulate the specification database. Generie tool routines include
those used for user interaction (textual or graphical editors), report generation and
query handling. Database engine routines, currently implemented in Prolog, consist of

database initialization and shutdown activities and specification update and query rules.

At the environment level, the environment definer describes an environment by using
Environment Definition Language (EDL). Constraints that govern the consistency and
completeness in specifications and environment definitions are identified and expressed
by using the Environment Constraint Language (ECL). Tool-specific descriptions of
the environment services that supplement the generic tool information are provided
for generating tools of the environment. After an environment definition is processed
by the EDL compiler, a set of environment tables (also Prolog facts) are collected in
the environment library. These are fed into database engine and tool generators to
configure the required environment. The database engine is configured by linking the
environment tables to the generic database engine routines through an environment-

independent universal interface called Project Dacmon.

At the user level, a system developer may select a particular development environ-

ment to perform requirements analysis, detailed design or other life-cycle activities, For
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example, he may create part of his requirements specification using a data-flow diagram
editor provided by a structured analysis environment. He may also examine the speci-
fications produced by querying the specification database or make modifications to the

specification.

Although the Metaview’s metamodel supports multiple specification environments,
its architecture has limited power in this regard. Environment definers are allowed to
define any number of specification environments. Currently, environments that are con-
figured according to such definitions would work independently without knowing of each
other’s existence. Vertical integration is supported using a specification transformation
approach[BST91]. Specifications produced in the source environment are transformed
to those in the target environment. The transformation process is formalized using
transformation rules expressed in the Environment Transformation Language (ETL).
However, horizontal integration facilities are not provided to help manage the different
views of these environments. As a result, Metaview environments are currently not well
integrated horizontally. The transformation between these environments, e.g. from state
transition diagram to structure chart[Lec92], is considered to be a vertical integration,

which is not discussed in this thesis.

A more complete description of the Metaview architecture can be found in [STM92].

3.2 EARA Model

In modeling a CASE environment, we first nced to identify what types of information
are to be modeled (i.e. what software objects can participate in a specification). This is
described by a specification schema. For example, the specification schema for the entity-
relationship model defines the notions of entity set, relationship set, and attributes, and

how these concepts are related.

To support a software engineering methodology, the EARA model is used to capture
the semantics inherent in hierarchies of complex objects. For this purpose, three kinds of

abstraction mechanisms are identified in the EARA model. The first is aggregalion which
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combines a finite set of entities and relationships to form a high level aggregate object
in support for information hiding and easier object reuse. Generalization establishes an
is-a relationship from a subtype to its supertype in support of object inheritance. The
third type of abstraction is classification which establishes an instance-of relationship

from instances to their common type in support of type instantiation.

The EARA (Entity-Attribute-Relationship-Aggregate) model was first proposed by
McAllister in his PhI) thesis[McA88] and was later refined in [STM92] and [Fin92]. It
supports aggregation through the aggregate type that represents a collection of entity
and relationship types. It supports generalization through its inheritance hierarchies.
The classification capability of the EARA model is simply veflected in EARA database

state which will be in Subsection 5.1.1.

To be more specific, the specification schema for the EARA model contains six sets

of descriptive clements and eight functions that define the interrelationships between

these sets.

AgT: afinite set of aggregale types

ST a finite set of entity types

RT:  afinite set of relationship types

AN: a finite set of attribute names

RN:  afinite set of role names

VT: afinite set of value types

cl: AgT — Powersety(ET U RT)
-component type function

ali: ET — AgT -aggregale identification function

aa: (AgT'U ET U RT) — Powerset(AN x VT)
-attribute association function

rm:  RT — Powerselz(RN x {single,list})
-role mapping function

rpt:  RT — Powersely( Powerseta( ET U AgT))
-relationship participant lypes function

ay: AgTl — AgT -aggregate generalization function
eq: ET — ET -entily generalization function
ry: RT — RT -relationship generalization function
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The Metaview system was originally intended to support carly CASE activities,
including those of Structured Systems Analysis and Design. Downstream activities such
as coding and testing are not well addressed in Metaview, or in metasystems in general
[DSTS6, SM88]. However, even defining specification environments requires extensive
familiarity with EDL/ECL and solid knowledge of the methodology to be modeled.
Typically, a system analyst would not modify the environments to suit his particular

needs unless he asks an environment definer to do this on his behalf.

3.3 Definitions of Specification Environments

There are two major aspects related to defining a specification environment using the
EARA metamodel. First, the Environment Definition Language (EDL) is derived from
the EARA metamodel to capture the basic concepts inherent to the specilication environ-
ment and the rclationships among these concepts. Secondly, Environment Constraints
Language (ECL) is used to define constraints formally to allow for automatic checking

of a specification’s consistency and completeness.

These two topics are discussed in this scction and the dataflow diagram (DFD)
environment is used as an example to illustrate the syntax of the two languages. A
more complete definition of the DFD environment can be found in [McARS, BST91].
We assume readers are familiar with Structured Systems Analysis methodology.  An
overview and evaluation of this methodology can also be found in those two papers.

Other books such as [GS79, DeM79, YCT78] may also serve this purpose.

3.3.1 Environment Definition Language

In defining an environment based on the EARA model, an environment definer usually

has to follow four . s:

e Model basic concepts underlying the software engineering methodology and rela-

tionships between them.
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e Model the hierarchical decomposition strategy imposed by the software engineering

methodology through the aggregation feature of the EARA model.

o Specify the constraints that govern the environment integrity by using ECL state-

ments.

o Determine what kind of graphical objects should be presented to the system devel-

opers/analysts, and map the EARA definition of the environment to its graphical

extension.

EDL in Mctaview is a declarative language for defining the basic types of database
objects associated with EARA databases. It is used primarily for first two steps. This
section gives an introduction to the EDL language through some examples. A full
definition of EDL syntax can be found in [McAS88]. The ECL is discussed in the next

subsection. For the graphical extension, readers may refer to [Sch90] for details.

From the EDL creator’s point of view, EDL is just a linguistic embellishment of the
EARA model. To illustrate the EDL syntax, a part of DFD environment is modeled as
follows:

INTITY_TYPE universal GENERIC
ATTRIBUTES (description: text);
ENTITY_TYPE data-object GENERIC IS_A universal
data_flow Is_A data object
stored.data [S_A data_object
process IS_A universal
interface Is_A universal;
ENTITY.TYPE data_s~ore Is_A universal
ATTRP W TES (form: string(1..30));
RELATIONSHIPTYPE se g
Rouks (source, data, destination)
PARTICIPANTS
(process, data_flow, process | interface)
(interface, data_flow, process)
ATTRIBUTES (frequency: time_per_unit);
VALUE_TYPE time_per_unit
Recorn



universal

g

process interface data_object data_store

data_flow stored_data

Figure 3.2: Inheritance Hierarchy for the Supertype universal

uantity: integer
unit: (second, minute, hour,
day, week, month, year);
END RECORD;
AGGREGATE.TYPE data_flow_aggregate
COMPONENTS (ALL)
BECOMES process
Wity CONNECTION(sends)
ATTRIBUTES (description: text);

The first two lines in the DFD environment definition defines a supertype called
universal, on which several subtypes are defined. This inheritance hierarchy is shown in

Figure 3.2.

ENTITY.TYPE statements define basic concepts of the DFD environment, and RE-
LATIONSHIP_TYPE statement defines a ternary relationship type named sends that has
three types of entities acting as source, data and destination respectively. The at-
tribute frequency is of a user-defined data type called time_per_unit which is defined
in the next VALUE_TYPE statement. Some other relationship types, such as access,
changes, and reads, can also be defined similarly, but are not shown above. The last

statement defines an aggregate type that may contain all entity or relationship types
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Class Constraint Information L
Number | Definer Constrained Descriptive Phrase
Metasystem Specification Generalized Specifi-
I Definer Database cation Constraints
Environment Specification Environment Specific
1l Definer Database Constraints
Analyst Specification Analyst-Supplied
I Database Constraints
Metasystem Environment Environment Gener-
v Definer Definition ation Constraints

Table 3.1; Four Classes of Constraints

as its component types, and an dataflow aggregate may be treated as a single process
entity if it appears in another aggregate. The hierarchical decomposition of a dataflow

diagram is modeled in more detail in [McA8S].

3.3.2 Environment Constraint Language

Constraints arise during the creation and use of a Metaview environment. They facilitate
the automatic checking of the consistency and completeness of a specification. The ECL
does not address the question of how to resolve constraint violation. It simply provides

a means for specifying the conditions that a specification must satisfy.

In the context of a metasystem, constraints can be defined by the metasystem definer,
the environment definer or a system analyst at all three different levels to constrain
different source of information. As a result, four classes of constraints are identified as

shown in Table 3.1. This table is copied from [MSTD&7] for completeness.

Environment generation constraints and generalized specification constraints are
embedded in the EARA model, and enforced in the implementation of the metasys-
tem software. ECL is directed to the specification of environment specific constraints.

Analyst-supplied constraints, which are defined as part of a particular specification and

37



applicable only in the context of that specification are ignored in the construction of

Metaview.

We do not intend to get into the details of the ECL notations. A complete descrip-
tion of ECL syntax and some examples can be found in [McAS8] and [MSTDR&7]. The

following example illustrates how constraints are defined on data_flow objects.

CONSTSTRAINT datamust_be_sent Is
--- Every data.flow entity must participate
--- in a sends relationship.
OBIECTS
df := (data_flow);
MusT_HAVE
(sends: df = *.data);
ENnb;

In summary, this chapter established a basis for multiple view support in specifi-
cation environments generated using Metaview. The Metaview architecture provides a
framework for building a horizontally integrated specification environment. The current

EDL/ECL will be extended to express views in the next chapter.
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Chapter 4

Definition of Views

In this chapter, the formal representation of multiple views within a specification en-
vironment will be examined based on Metaview’s EDL/ECL. For this purpose, it is
necessary to identify what views should be modeled and what information needs to be
captured in a view definition. The first section presents a two-level view hierarchy that
includes primitive views and composite views. Primitive views are designed to capture
conceptually the major parts of an environment. Primitive views are defined and dis-
cussed in Section 4.2 using an example from the DFD/CFD environment. How view
merging takes place on primitive views is then described in Section 4.3. The merging
process is illustrated using the DFD/CFD views of a structured analysis environment.
The view merging mechanism establishes a basis for the view-oriented tool integration

that is discussed in more detail in Chapter 6.

Primitive views are capable of providing encapsulation for most software engineering
methods. A composite view is the level of abstraction formed from merging different
primitive views to support an integrated specification environment. The formal repre-

sentation of composite views is describ~d in Section 4.4,

After the definition of a composite view for the two-view structured analysis envi-
ronment is given, view merging will be re-examined in Section 4.5, where a detailed

merging algorithm is presented.
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Finally in Section 4.6, we compare our view-oriented approach with other approaches,
namely, the traditional approach of relational views and more recent approaches of

object-oriented modeling.

Operation mappings are left to the next chapter where further discussion illustrates
how such mappings can help maintain the database consistency and completeness, as

well as automatic function invocation across composite views.

4.1 View Hierarchy

Support for multiple views is not a new idea. Some work in this area has been done in
developing programming environments. Examples are PECAN by Reiss[Rei®5), and a
structure-oriented environment developed at Carnegie-Mellon University[Gar87, GMS84,
CGGt85]. In these systems, multiple views are built for editing, compiling and executing
programs. For instance, a program may be presented to a programmer in its created
form or in a beautified form (e.g., source code is displayed after being processed by UNIX
cb command). When a program becomes large, an outline view is useful to show all
the functions that are included in the program, and help in understanding the program
more easily. As the program is compiled, systems also provide several other views, such
as a call graph that shows the relationships between the participating functions, and a

symbol table that gives the detailed characteristics of all declared variables.

For requirement analysis or design environments, researchers and developers have
concentrated on separate CASE touls that are written as software engineering method-
ology companions[VIT92]. The notion of multiple views does not as yet seem to be
clearly defined for CASE tools. At the beginning of the thesis, we defined a methodology
to be a systematic approach for software development. In other words, a methodology is
composed of a set of related methods that can be used to produce one or more deliver-
ables at software development life cycle. For example, the Structured System Analysis
methodology[GST79] consists of at least five methods: data flow diagrams (DFD), data
dictionary (DDic), structured English (SE), decision tables (DTab) and state transition
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diagrams (STD). Normally, some methods are complementary to one another as, for
example, the DTab method is to the DFD method. Others methods address similar
issues in different ways as DTab to STD, or DDic to DFD. Accordingly, multiple views
for a specification environment should represent the diverse aspects of the environment

and allow a particular subpart of the environment to be examined while ignoring other

subparts.

In Metaview, different methods are modeled by using a metamodel called the Entity-
Attribute-Relationship-Aggregate (EARA) model. A model view is intended to capture

the modeling process and the operational semantics of the object types available for

defining a specification environment.

Definition 4.1: A model view is a view that contains entity, relationship, and aggre-
gate types used to describe specification information and operations that manipulate

specification information associated with these object types.

This definition refines the definition given in Definition 1.3 in the context of the
EARA metamodel. The main focus of the thesis is to examine the model views and
their impact on the data and control integration. For this purpose, a two-level hierarchy

of model views that corresponds to different levels of semantic modeling is introduced

as depicted in Figure 4.1,

In this hierarchy. two kinds of views are identified:

«s—=  Environment Definition

<—=  Mcthods Modeling

Figure 4.1: Model View Hierarchy for Semantic Modeling
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e Primitive View (PV)

e Composite View (CV)

The key aspect of this hierarchy is that a specification environment can be described as
a complex model view that has both an interface and an implementation. The interface
specifies a protocol for the environment to communicate with other environments. The
information involved includes the description of object types and services that are ex-
ported and imported by the environment and events or messages that are defined in the
environment. The implementation part gives detailed definitions of the object types,

associated constraints, and the operations that manipulate these object types.

This two-level modeling process is reflected in the view hierarchy as two levels of
view definitions. A specification environment is represented by a composite view, which
contains a collection of primitive views and operations defined on them. Primitive
views encompass hasic EDL/ECL statements that define the concepts and relationships
needed for modeling a software engineering method, and the constraints that govern
the integrity of the specification information produced by using the modeled method.
Operations t this level are usually performed on the attributes assaciated with instances
of types defined by the EARA model.

An object type may be defined differently in different primitive views. Multiple
representations are therefore possible by merging all the lower level primitive views to
form a composite view. Through such merging, a composite view resolves the differences
between the multiple representations and thus supports sharing common information
and eliminating redundancy. Operations at the level of a composite view are usually
invoked implicitly and mainly for the purpose of consistency and completeness checking.
In essence, merging primitive views gives us a composite view; packaging a composite
wiow with other environment information (i.e. graphical descriptions) gives us a complete

environment definition.

In order to represeni{¥<7 views, the current syntax of the EDL/ECL is extended

to include the definitions .. primitive views. The next section examines this issue.
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4.2 Definition of Primitive Views

A primitive view is defined as a subschema of a specification schema. Each primitive
view defines and encapsulates a set of entity types, relationship types and aggregate

types, along with their associated constraints.

A primitive view may constitute a complete specification schema by itself. In this
case, all the object types and associated constraints are included in a single primitive
view. This is useful when an environment definer intends to use primitive views to model
different ways a specification environment is defined. The DFD/CFD environment used
to illustrate the definition of a composite view in Section 4.4 belongs to this category.
A primitive view may also be used to capture a particular aspect of a specification en-
vironment. In this case, an environment is usually modeled by several primitive views,
and the specification schema is composed of logical units formed by the union of all the
primitive views. Each such primitive view can support some aspect of a software engi-
neering method. As an example. consider the two decomposition approaches as shown
in Figure 4.2'. Either of these two styles might be used for a specification environment.
However, there are some differences. Demarco’s style[DeM79] of decomposition does not
include the sources or destinations for boundary data flows. Gane and Sarson’s style
[GS79] requires the full reproduction of the boundary process and terminator entities
associated with the components in an aggregate. In the current EDL implementation,
if both of these styles need to be supported, two separate environments have to be gen-
erated from two sets of independent environment definitions. With the view approach,
they can be modeled in two different primitive views and later merge them together into

a single composite view so that data sharing is possible.

Another example of how primitive views may be used is to collect all the generic
types to form a generic view. This primitive view may be used later in defining other

views (composite views) to allow the generic types to be inherited by other types.

'The diagram was taken and modified from a student software engineering course project
VOCOS([S191] at University of Alberta.
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Figure 4.2: Examples of Two Decomposition Approaches

The generic form of a primitive view is given as follows:

P_ViEW <view_name>

<EDL/ECL_statement>;

{<EDL/ECL._statement>;}

EnxD_VIEW

The following example illustrates the definition of an entity type data_store in two
different primitive views of the DFD/CFD environment described in Appendix A. The

first data_store view is defined as:
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P_VIEw data_store_view;
ENTITY.TYPE data_store IS.A universal
ATTRIBUTES (ref.id: identifier,
form: string(1..30),
access.type: (Read_Only, Read Write),
number._of copy: integer,
primary key: identifier);

CONSTRAINT storemust_store Is
--- Every data_store entity must be accompanied
--- by a list of the data it stores.
OBIJECTS
ds := (data.store);
MusT_HAVE
stores: (ds = *.store.name);

FND;

CONSTRAINT max_stores_with_data Is
--- Each stored_data entity may participate in
--- one and only one stores relationship.
OBIJECTS
st := (stores);
d := (store.data: * IN st.data);
MusT_HAVE
LACK.OF (stores: d IN *.data
and * /= st);
END;
END_VIEW

Here, universal is a generic type that has several intrinsic attributes such as the
description attribute. It is a ‘free’ type in a sense that it is not bound to type
definitions within the scope of the data.store_view; definition. The definition of
data_store.view; encompasses the definition of an entity type named data_store which
inherits all the attributes of the generic type universal and has several attributes of
its own: ref_id, form, access_type, number_of_copy, and primary key. Constraints
applied to this entity type dictate that a data store must store at least one type of data,

and each data that needs to be stored can be stored in exactly one data store. The
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“free’ types, such as universal and stores will be resolved when data_store_view, is

merged with other primitive views to form a composite view.

A second way of defining the entity type data_store is as follows:

P_VIEW data_store_view;
ENTITY-TYPE data_store Is_A universal
ATTRIBUTES (form: text,
access.type: (Read_Only, Read Write),
index: identifier);

CONSTRAINT form_is_mandatory Is
--- Every data_store cntity must be assigned a value
--- for the form attribute.
OBIECTS
ds := (data.store);
SATISFY
ds.form /="";
EnD;
END_VIEW data_store_view;

Notice that the two views overlap in non-trivial ways. While they share common
intrinsic attributes (name, creation_time, description, etc.) and an extrinsic attribute
access_type, the form attribute is different. In the first view, it has the string type (a
character string enclosed in single quotes with the length of minimum 1 up to 30). In the
second view, it has the text type which represents a list of character strings with no re-
striction on the length. The data store_view; also has attributes that are not present
in data_store_view,, i.e. ref_id and number_of_copy. The attribute primary key
in data_store.view; is the same as the index in data store.viewy, but they are
named differently. The constraints imposed on data.store instances are also differ-
ent. The first view disallows a non-empty data-store, but the second view permits it.
The data_store_view; can be seen as an outline view of the data_store.view; which

provides more details such as physical implementation aspects of a data store.

Nothing extraordinary has been proposed thus far. We have simply introduced a

way of grouping object types and their related constraints, and allowed such groupings
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to partition an environment definition into logical units. The novel aspects of the view-
based approach become apparent when these primitive views are merged to form a

composite view in support for information sharing and automatic control transfer.

4.3 View Merging

Central to the view-based integration is the merging of primitive views. The purpose of
merging is to allow for alternative representations of entities, relationships, or aggregates
that can be manipulated in a common specification database. In this section, we first
identify the common element: of two or more primitive views that should be merged.

We then examine how operations can be performed on the instances whose types have

more than one representation.

The merging process takes place at two levels: object type level and attribute level.
At the object type level, object types of the same name?, but defined in two or more
primitive views are merged to form a composite view. Conflicts in the definitions of the
object type must be resolved. At the attribute level, the attributes of an object type

that has multiple representations are coalesced to form a merged type.

For the merging purpose, we distinguish two ways, in which object types may be

defined in different primitive views:

o Synonym Types: If an object type defined in one primitive view is also defined in

another primitive view using either the identical name or a synonym, the object

type is called a synonym type.

o Homonym Types: If an object type defined in one primitive view also appears in
another primitive view with the same name, but the object types are considered

to be distinct, they are called homonym types.

Synonym types participate in the merging process when multiple primitive views

2 As illustrated in the next section, it is also possible to merge object types of different names through
synonym identification.
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are merged in order to provide information sharing and to eliminate data redundancy.
Homonym types must be excluded from merging although they share the same name.
Homonym types should be explicitly identified before primitive views are merged be-
cause the merging process is based on a name matching procedure through synonym

identification.

Consider the data_store example given in the last section, there are four ways in

which attributes may be defined for data_store entity type in different views.

o Identical Attributes: Attributes with the same names are defined to have the same
data types, as in the case of all the intrinsic attributes. When merged, only
one copy needs to be stored in a specification database. If values for a given
attribute differ in two primitive views, the inconsistency has to be resolved, unless
an environment definer permits such inconsistency explicitly. An example of the

identical extrinsic attribute is access_type.

o Unique Attributes: Attributes are defined only in one of the views, as exemplified
by attributes ref_id and number_of_copy in data_store.view;. In this case, no
conflicts need to be resolved and values can be stored in the database for each

such attribute.

o Synonym Atiributes: Attributes that are given different names but represent the
same information (synonyms), are treated as the first case. The attributes index

and primary key in the two views exemplify this case.

o Homonym Attributes: Attributes with the same names are defined to have diffc ~nt
data types (homonyms), as exemplified by the form attribute. They usually rep-
resent alternative ways the object types are defined. In order to provide multiple

views, these different definitic \s are retained in the specification database.

In summary, an object type defined in different views is represented by merging the
different definitions for the same attribute so that its instances have a set of instantiated

copies, each of which corresponds to a certain view definition. These instantiated copies
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Figure 4.3: Multiple Views of Data Objects

are referred to as view copies. Figure 4.3 illustrates the view copies for an instance of

the data_store type.

Constraints associated with the object types are merged by a simple union operation.
As a result, stronger conditions are usually imposed on data objects as constraints from
different views take effect collectively. At this stage, we assime any conflicts that may

arise as a result of such a union operation are resolved manually by an environment

definer.

If a specification database is constructed in such a way that multiple view copies are

available for retrieval and update of database objects, the consistency of the database
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objects must be maintained between different view copies, and operations on data ob-
jects must be specified in terms of the view copies to which they belong. For example,
if one wishes to change the value of the form attribute from ‘disk file’ to, say, ‘tutorial
file’, the system must be informed that this change operation is only applied to the first
view of the data_store instance. In general, an operation, when requested, must be
always accompanied by a view identifier so that the operation is performed correctly
through the view. Such a view-operation pair can prevent any ambiguity that may arise

during operation translations.

In Metaview, all database operations requested by a tool are performed by sending
messages to the database engine through a universal interface. To support views, the
format of the messages must include the view identifier. The difficulty in maintaining
the consistency of such multiple view copies is that operations specified in terms of
one view copy may have to be mapped to corresponding, but not necessarily identical,

operations on other view copies. Section 5.1.1 will elaborate this issue.

From an implementation point of view, it is not necessary to keep a copy for each of
these views in the specification database. Multiple views can be coalesced as shown in

Figure 4.4.

4.4 Composite Views

In order to define a shared representation of an object in different views, some way is
needed for an environment definer to describe a composite set of primitive views that
collectively support a certain software engineering method. Views that provide such

capabilities are called composite views.

A composite view description has three parts: the base views, the definition part
and the operation part. Base views include a list of primitive views or other composite
views that are used as a basis for building the composite view. The composite view being
defined inherits all the object types defined within those base views. The definition part

defines a set of merged views that are exported, along with the base views, as components
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Figure 4.4: Coalescing Multiple Views

in building the environment. The operation part defines operations that should be
performed to maintain the consistency of multiple view copies. In this subsection, the
focus is on the first two parts. The operation part is discussed in Chapter 5. We use the
structured analysis environment as an example to illustrate how a composite DFD/CFD
view encompasses the primitive views that model the DFD and CFD methods.

The generic form of a composite view description is given below:

C_VIEW <c_view_name>

DEFINITION:
[BASE_VIEW: <view_list>;]
MERGE <view_list> | <view_defn>;
[SyNoNYM {([<p-view_name>.]<identifier>, [<p_view_name>].<identifier>)}]
[HoMoNYM{([<p-view_name>.]<identifier>, <identifier>)}];

OPERATION:
{<event> — CONTEXT: <view_list>
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ACTION: <op-spec>;}
END_VIEW <c_view_name>

The BASe_VIEW clause allows other primitive views or composite views to partici-
pate in configuring a new composite view, which is important for environment evolution
and reuse of view descriptions that are currently available. Views included in this clause
are not involved in view merging, but are used to resolve the type names that are ei-
ther inherited or used by the types in the primitive views that are to be merged by
the MERGE clause. <view_list> is simply a list of primitive or composite view names,
while <view_defn:> can be any other prinitive or composite view descriptions. The
SYNONYM clause is useful when two object types or two attributes for the same object
type defined in two primitive views use different names but are actually meant to be the
same. The SYNONYM clause matches the type names or attribute names in a primitive
view with their counterparts in other primitive views that are merged. The <identifier>
in SYNONYM clause can be either a <type.name> or <type_name>.<attribute_name>.
<p.view_name> is required as a prefix to <identifier> only when a naming ambiguity
exists. The SYNONYM clauses satisfy the transitivity property. The HOMONYM clause is
used to distinguish homonym types so that they are excluded from the merging process.

The <identifier> in HoMONYM clause can be only a <type.name>.

Composite views have two advantages. First, a composite view provides the encap-
sulation mechanism so that environment can be built from component primitive views
whose details are hidden. Second, a composite view allows the operations associated
with primitive views to be defined. The dynamic aspects of a specification environment

is thereby captured at the environment definition time.

In the operation part, an event-driven context-based rule format is chosen for specify-
ing actions that map consistency-preserving operations from one set of views to another,
and also for defining user-defined environment-specific operations. A more detailed def-

inition of this rule format will be given in Section 5.1.3.

The two-view structured analysis environment given in Section 2.1 is now examined

to see how the DFD/CFD composite view is configured syntactically.
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First, three hase views are defined in Appendix B.1. The generic_view consists of
two abstract entity types: universal and data object. The value_type.view collects
two user-defined data types: time_per-unit and ref_type. These two views are not
included in the definition of the primitive views for the DFD or CFD method because

they can be re-used by other environment definitions.

The third base view dfd.decomposition view is defined separately for clarity. It is
assumed that two views for the structured analysis environment use the same decompo-

sition scheme for the process entity, although CFD has its own decomposition scheme

for the control specification.

The complete definitions of the two primitive views for the DFD and CFD methods
are given in Appendix B.2 and B.3. The two methods share some common object types,
such as process, data_store and terminator. Other object types reflect different
perspectives of viewing a system requirement specification. As a result, a merged view
is required. First, a control flow in CFD is treated as a special kind of data flow. It
is natural to merge the two so that possible redundancy is ¢‘iminated. Similarly, a
control specification (ctrl._spec) can be seen as a process entity that deals with only
control flows (ctrl_flow) rather than data flows. They may differ in their graphical

representations. However, that issue is out of the scope of this thesis.

Secondly, the State Transition Diagram (STD) is incorporated as a part of CFD
method. In STD, state and event are unique entity types that are not present in the
‘pure’ DFD method. An action object can be seen as a name of process entity. The

STD is defined as an aggregate that represents an expanded control specification.

Now that the primitive views needed to model the integrated DFD/CFD environ-
ment are identified, it is relatively easy to build the DFD/CFD composite view based on
the syntax introduced earlier in this section and the view merging semantics discussed

in the last section.
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C_VIEwW dfd/cfd.view

DEFINITION:

BASE.VIEW: dfd_decomposition_view,
generic_view,
value.type.view;

MERGE Vypd, Veyas

SYNONYM (ctrl.flow, data.flow)
(ctrl_spec, process)
(action, process)
(data_store.index, data.store.primary key);

OPERATION:
insert_data_flow.event(flow type) —
CONTEXT: Vgjq
ActioN: IF flow_type = ‘ctri_signal’ THEN
SEND insert_ctrl flow_event To V4,
Insert_Entity(self, data_flow),
self.flow_type := flow_type,
CHECK(datamust_be_sent);
insert_ctrl_flow_event (flow.name) —
CONTEXT: Veypq
ACTION: Insert_Entity(self, ctrl_flow),
SEND insert.data_flow_event(‘ctrlsignal’) To Vg,
CHEcCK(datamust.flow);

END_VIEW dfd/cfd. view

There are two things that require further explanation in this definition. First, the
definition of a composite view allows abstract types to be merged with types defined in
other primitive views, as in the case of the relationship type access, which is defined as
an 2bstract supertype in Vysq, but as an instantiable type in another primitive view Vezq.
‘The advantage is to allow for indirect instantiation of a supertype, which is normally

prevented in the EARA model of the Metaview system.

Secondly, we have also given two examples of operation specifications for complete-
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ness. Although the operational part of a composite view will not be discussed in detail
until the next chapter, it is necessary to examine the issue briefly. The above two oper-
ation rules specify the actions that should be taken when a data flow instance is being
created under either Vg or Vegy. The purpe:: of these two operations is to maintain
the consistency across different view copies. User-defined operations are also possible.
For example, in response to a user’s request to clear the entire data flow diagram, an

environment definer may wish to ¢cfine an operation expressed in the following rule:

clear.dfd-event() —
CoNvEXT: Vigpas Vesa
AcTion:  Delete_entity{ All),
Delete_Relationship(All),
Delete_Aggregate(All);

4.5 View Merging Revisited: the Algoritym

The problem of view merging is similar to that of schema integration in conceptual
database design[BLNS6], however, there is a major difference. In schema integration,
several local schemas are restructured and merged by determining the correspondences
among concepts and resolving possitite conflicts. An integrated global conceptual schema
is usually produced as an output. The view merging proposed in this thesis only deals
with the problem of how to generate a data object in a specification database based on
different definitions of the object type given in various environment description views
(primitive views). Figure 4.5 shows that the view merging process is carried out in the
oppesite direction as schema integration.

When a specification environment is defined through simple EDL statements, the
D1 compiler translates the environment definitions into PROLOG facts called environ-

moent tables that are manipulated by the database engine[Wil89] to store specification

information. Such a translation is a direct process because each object type is defined
culv onew,

T'here are two difliculties when multiple views are introduced in defining a speci-
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fication environment. First, the definition of an object type may be widely dispersed
across many primitive views. In order for a database engine to construct and maintain
instances of the object type, various definitions of a given object type have to be coa-
lesced into a merged type. This involves merging between multiple primitive views to
form a composite view. A composite view may also participate in such a merging process
through primitive views defined within its scope. Conflicts may arise when the merging
process attempts to resolve the differences between primitive views. For example, the
same relationship may have different participants in two primitive views, and the same
aggregate object may have diflerent components, ctc. Secondly, the Metaview system
has to maintain two kinds of associations: for each object type, a set of associated prim-
itive views that define it, and for each attribute, a subset of those prizeitive views in
which that attribute appears in the definition of an object type. Such associations are
needed so that operations specified with respect to views can be translated correctly
to operations on basic data objects of the merged type. Two tables are created to
record these two kinds of associaiions: TYPE and ATTR. TYPE contains lists of the form:
(T, V1,Va,...), where T is an object type, and the Vi are all the primitive views that

define T'. The table ATTR contains all the lists of the form (7, A, V|, V},...), where A is



an attribute name and the V; are the subset of V.

Functions/Procedures that are used to ¢ e the algorithms are given in Table 4.1.

It is assumed that these functions are pre-defined, and available for use.

‘The merging process is described in the following algorithm.

merge(Vy, Vo, ... V)

--- "T'his procedure returns a composite view represented as a set of merged data struc-
tures for cach object type and two lists, TYPE and ATTR, which describe the as-
sociations between object types, their attributes and their defining primitive views.

Vi: view_name; (i = l.n)
T object type;
TYPE, ATTR: list;

{
Fori=1Tomn
--- If V; is a composite view, the merge algorithm is applied recursively
to a list of primitive views that appear in the MERGE clause of V;
I¥ composed_of(V;) # null THEN
V; := merge(composed_of(V;));
IND_FFOR
collect view_de fn(Vy, Va,...Vy); --- construct the list TYP
name_matching(T); --- identify synonyms and homonyms,
the list TYPE is modified accordingly.

For cach 7' € Uiz, Vi
Case T
entity_type:
coalesce(T'); --- construct the list ATTR
relationship.type:
merge_relationship(T);
aggregate.tyne:
merge_aggregate(T);
Enn_Case
Enp_For

}
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Functions/Procedures

Description

composed_of(V)

defined(T,V)
synonym_of(T)

homonym_of(T)
homonym_in(T)

new_name()

append(l, V)

remove(l, TYPE | ATTR)
add(l, TYPE | ATTR)
delete(l,V)

get list(T)

indist(V,1)

length(l)

typeof(A, T, V)

participants(T, V)

combine_component _list(T)

resolve_con flicts(T')

returns a list of primitive views that are involved
in V’s MERGE clause. If V is a primitive view, the
function returns null.

returns true if object type 7' is defined in view V',
r=turns T's synonym given in the SYNONYM clause
of a composite view definition.

returns 7T's homonym given in the HOMONYM
clause of a composite view definition.

returns the view name in which 7" is identified to
be another object type’s homonym type.

returns a unique identifier.

appends V to the list 1.

removes list [ from cither TYPE or ATTR.

adds list ! to cither TYPE or AT"T'R.

deletes V from the list L.

returns the list (T, V;, Vo,...) in TYPL.

returns true if V is an clement of list /.

returns the number of elements in the list ¢
returns the type name of the attribute A of type
T in view V, returns null when A is not defined.
returns the list of participants of the relationship
type 7" defined in view V.

returns a list that contains all the component types
defined for the aggregate type 7" in different prim-
itive views.

if merging fails for a relationship type 7', manual
intervention is required.

Table 4.1: Functions/Procedures For Merging Process




We now claborate the functions that appeared in this algorithm:
(Collect View Definitions):

collect view de fn(Vy, Vo, ... Vy)
i: integer;
ltemp: list;

{

For each T’

--- For cach object type T, add a list (T, W, V2,...) to TYPE,

where V; are all the primitive views that define T.
liemp = (T'); --- initialize the list liemp
Fori=1Tomn
IF defined(T,V;) THEN
append(lyemp, Vi)

EnND_FFoR

add(liemp, TYPE);
Enp.For

}

(Establish Naming Correspondences):

name.matching(T)

--- In this function, synonyms and homonyms are identified and the list
TYPE built in collect_view_de fn() is modified accordingly.
T': object type;
lr, I, ltemp: list;
{
T = synonym.of(T');
Ir 7" # null THEN
--- Different identifiers are used to refer to the object types that are
niergeable. A unique identifier is given for them, and entries
in TYPL that involve T and T are deleted from TYPE, a new
entry that combines these two lists is added to TYPE.

lp = get_tist(T);

lyo = _{,‘(.‘!_ii'l(f]");

lLiewyp := (new_name()); --- mitialize the list lie;np with a unique name.
For cach V e lpr Ul
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--- append all the view names that either define 7" or 77 to the list liemp
Ir NoT inlist(V,liemp) THEN
append(ltemp» V)
Enp_For
add(liemp, TYPE);
remove(lr, TYPE);
remove(lr:, TYPE); --- I and I+ are replaced by the new list.

}

T' := homonym_of(T);
Ir T’ # null THEN
--- The same identifier is used to refer to two different object types,

the list in TYPE that involves T should be split into two lists.

I_temp = delete(getlist(T"), homonym_in(T));
remove(getlist(T), TYPE);
add(lyemp, TYPE);
add((T', homonym_in(T)), TYPE);
}

(Merge Entities ):

Objects of entity types arc merged by simply coalescing all the attributes defined in
different views. The coalesce(T) procedure is also used in merging relationship types
and aggregate types.

coalesce(I')

--- For each attribute A of 7', visit the definition of T" in cach of 1" contributing
primitive views. If A is defined in only one view or defined to have the same
data type in multiple views, a triple (T', A, V) is added to ATTR. If Ais defined
differently in multiple views, a list that contains these view names is added to ATTR.

i, J: integer;

A: attribute_.name;

dif f_defn: Boolean; --- true if an attribute has an alternative definition.

I, liemp: list;

{
It = get list(T};
IF length(ly) > 2 THEN
--- If true, T must be defined in multiple views.
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For cach AeT
liemp = (T, A); --- initialize the list that is to be added to ATTR
Fori=1Ton
Ir in list(Vi,lT) THEN
--- examine all the views that define the object type T.
{
dif f.defn = false;
Forj=1Toi-1
IF indist(V;, lr) AND type-of(A,T,V;) # type-of(A,T,V;) THEN
--- if attribute A is defined differently in view V; than in any of
the views that have already been appended to the list liemp,
then V; should also be appended to liemp.

dif f-defn = true;
BREAK;
i
I'Np_For
Ir (dif f.defn AND type_of{A,T,V;) # null) THEN
append(liemp: V2);
}

add(lyemp, TYPE); --- add the constructed list to ATTR.
EnND_For
ENp_For

}

(Merge Relationships):

merge.relationship(T)

i, Jy Py ¢, L1, l2: integer;
Ir: list;
P_Listy, P_Listy: list;
--- Participant lists. Suppose P_Listy = (P, P;,...) and
P_Listy = (P{, Pj,...)
{
lp = get lisi(T);
Ir length(ly) > 2 THEN
For cach i # j AND in list(V;,lr) AND inlist(V;, 1)
P_Listy = participants(T, V;);
P_Listy = participants(T, V;);
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I := length(P_Listy);
Iy := length( P_Listy);
Forp=1Tol
Forqg=1Tol,
Ir P, = P, OrR P, = synonym-of(Fy) Tuen

delete( P_Listy, Pp);
delete( P_Lists, Py);
}
Enxp_For
END_FoRr
Enp_For
IF length(P_List;) = 0 OR length(P_Listy) = 0 'THEN
--- one participant list is a sublist of another, and all participating
entities paired up are identical, or can be merged through
identifying synonyms.
coalesce(T);
ELsE
--- the two definitions of the relationship type T are not considered
to he mergeable, and an environment definer is called up to help
resolve the difference manually.
resolve.con flicts(T);

}

(Merge Aggregates):
merge.aggregate(T)
--- T is an aggregate type.
lp: list;
{
It = get list(T);
IF length(lT) > 2 THEN
coalesce(T');
combine_component list(T');
--- allow the merged aggregate type to contain all the component,
types defined in different views.

}

The table 4.2 shows part of the two lists produced when applying this algorithm

to the DFD/CFD environment. In this table, process_spec is the merged type for
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TYPE

ATTR

(process_spec, V4, Vosa)

(data_store, Vi, Vesa)

(data_ctrl_flow, Viyd, Vesa)
(terminator, Vysq)

(sends, Viq)

(stores, Vi)

(access, Vi, Vega)
(changes, Vy4)

(reads, Vdjd)

(event, V.sq)

(state, Vis4)

(process_spec, identification, Vyg)
(process_spec, function_description, Vasa)
(process_spec, physical.location, Vy4)
(data_store, ref_id, Vyq)

(data-store, form, V4, Vesa)

(qaata_store, access_type, Vara, Vesa)
(data_store, number_of_copy, Vyrq)
(data_store, primary key, Varq)

(data.ctrl flow, flow_type, Vyq)

(sends, frequency, Vyq)
(access, access_type, Vcsq)

(event, event_type, V.y4)
(state, state_type, V.r4)

Table 4.2: TYPE and ATTR for DFD/CFD Environment

be discussed in Chapter 5.

process, ctrl_spec and action, and data_ctrl_flow is the merged type for data._flow
and ctrl_flow. These two lists provide only the static aspect of the data representations.

The dynamic links between different object types that are defined in multiple views will

4.6 Comparison with Other Views

We compare our views with two related views that are common in database design:
relational views and object-oriented views. The discussion is based on the fact that the
multiple view support in our case is built on the given meta data model (EARA model),

which is already well defined. We do not claim our view mechanism is necessarily better
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than these two approaches in all aspects. The purpose is to point out the similarities

and differences between our approach and others.

4.6.1 Relational Views

Relational views are derived from relations (tuples composed of simple data types)
by using relational operators (projection, selection, join and Cartesian product). Our
views are constructed by merging object types that are possibly much more complex.
Relational views are basically passive views, while ours are more constructive in a sense
that we define primitive views first and the way they are merged guides the construction

of the databasec.

Relational views are usually virtual views. Materialized relaiional views are also
present in some relational databases. However, the purpose of materialization is mainly
for retrieval efficiency. With virtual relational views, operations performed on a re-
lational view must be translated into operations on the base relations on which the
views are defined. The update through views often causes the problem of semantic
ambiguity, which is impossible to be resolved properly without user’s intervention. For
example, when a request that asks for the deletion of a player trom a school football
team is raised from a football coach’s view, it could actually mean to simply change
the attribute “team-membership” from “yes” to “no” when translated to base rela-
tions containing the student’s personal +ista. However, if the student is removed from
the team because of death, his record should be erased. Semantic update ambiguity is
not present in our case, because our views arc the instantiation of merged object types
that represent the multi-faceted nature of the data objects. Operation translations are

deterministic and unambiguous.

Relational views do not include any operational functions of data management. The
database management system must take the responsibility of consistency checking and
other explicit management services. Our views encapsulate such operations such that

the database consistency can be preserved automatically.
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4.6.2 Object-Oriented Views

One major difference between views and the object-oriented paradigm lies with the
multiple representations for an object. At the first glance, mechanisms that support
multiple inheritance seem to be very similar to what is needed to support multiple
views, insofar as both allow for merging a collection of indeperidently defined types
into a new composite type. However, when an object inherits data types and functions
from several supertypes, all data types and functions are combined into a common pool.
Conllicts must be resolved before joining the pool. After conflicts are resolved, data
types arc still of a single representation, and only one set of functions are performed on
these data types. When an object is said to have multiple views, support for integrated,
but separately materialized view copies must be provided. Tlhe object appears to be
multi-faceted. Operations are performed with respect to one of these view copies, 7d
explicit mappings may de necessary to invoke operations on other view copies in or¢ ..

to maintain the consistency among them.

In the following discussion, we use the FUGUE object views [11Z88, I!ei90] as an
example in comparing our views with the object-oriented views. FUGUE is an object-
oriented model built on three fundamenta! concepts: objects, functions, and types. The
basic execution paradigm is function application. Objects are the things that functions
are applied to. They are the inputs and outputs of functions. Functions are applied to
objects to yicld their attributes or related objects, or to test constraints on the objects,
or to perform operaticns on objects. Associated with each function is a procedure that
when invoked with input arguments produces the associated output arguments. Objects
are organized into types by the functions that can be legally applied to them, i.e., the
functions that specify their structure, properties, and behavior. In FUGUE, a view is
a contezt in which functions are applied to objects. A view defines a set of objects and
binds each to a type that determines the functions that can be applied to them or that
yield ihem in that view. A view in FUGUE hides or exposes methods as well as data.

There are three ways of binding objects to specific types in a view:

e restrict the objects to a subset of instances of of the specified types,



e restrict the types to a subset of the possible types of the objects, and

e restrict the functions that can be applied to objects.

An object is allowed to be viewed differently when bound to different types. Multiple
views are therefore possible to have the same sct of objects that differ in the set of

functions.

Similar to our views, a function in the FUGUE model always accesses an object by
means of a particular view to avoid possible ambiguities. The differences betweer our

views and FUGUE views are mainly in the following three aspects:

o The ways that multiple views are achieved are different. In FUGUE, functions are
used to define how objects are bound to different types. In our views, multiple

views are defined statically when a specification environment is defined.

o The operation mapping mechanisms are different. In FUGUE, functions are bound
to types. Objects of a specific type have their own set of functions that are
only applicable to the instances of the type. In our views, mappings are defined
explicitly by the EXA rules. The EXA rules have been introduced briefly in this

chapter, and will be discussed in more detail in the next chapter.

o Views in FUGUE are closed. Each of the functions of types to which objects in a
view are bound yields objects that are also in the view and that are bound to types
in the view. Our views, however, do not impose the restriction on what objects
should be included in a view. Operations performed on objects in one view may

invoke other operations on objects that belong to different views.
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Chapter 5

Specification of View Operations

In the last chapter, we discussed merging of primitive views to form a composite view.
it is considered to be the static aspect of the view integration. In this chapter,
w  will discuss the dynamic part of the integration: the operation mappings. The
purpose of such mappings is to assist in automatic maintenance of the consistency of a
specification database. The mechanism designed for this goal is the EXA rules. After
a framework for formalizing operation specifications is given, the example Structure
Analysis Environment is re-examined to see how the DFD method can be integrated
dynamically with the CFD method. With the EXA rule mechanism, a specification
environment with multiple views is able to work in such a way that operations performed
with respect to one view are automatically mapped to appropriate operations on other

views. In this way, the control integration of a specification environment is achieved.

5.1 Operation Mappings

In Section 4.4, we discussed what should constitute a composite view. Little was said,
however, about the operations that are needed to maintain consistency between view
copies or to perform user-specified functions. Before we define this operational part of

the composite view, the following two questions should be answered:



e What constitutes a specificarion database state that supports multiple views?
e How is the consistency of a specification database maintained when operations are

performed on view copies?

Based on the answers to these two questions, the following question can then be
addressed:

o Iow is a consistency-preserving operation mapping over different view copies spec-
ified?

This section will provide answers to these three questions.

5.1.1 The Database State

A specification database in Mctaview is made up of three types of abjects!:

e instances of entity types,

e instances of relationship types, and

e instances of aggregate types.
Each of these three types of database cbjects contains intrinsic and possibly exteinsic
attribute values. A relationship object also has a list of participauts linked to each role
of the relationship. An aggregate object has a list of component objects that constitute
a relatively independent information module. The definition for the database state is

given as follows:

Definition 5.1: A multi-view specification database state is a snapshot of the database
at a particular point in time, characterized by the following hierarchy of values and
object instances:
a) values of simple data ty pes, such as integer, boolean, ctc.
b) instances of structured types, such as list, record, and text, which contain values
from a)

c) instances of attributes of object types, which contain instances fror b)

'Objects defined with the graphical extension of the EARA model are not included.
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d) view copies (instances of object types).
A database state is said to be consistent if the database satisfies all the constraints,
called semantic integrily constraints{OV91, page 158]. When data objects are replicated,
a database is in a mutually consistent state when all the copies of every dat. item have

identical values[OV91, page 258},

In aspecification database of the Metaview system, constraints are classified into four
categories as siown in Table 3.1. Except for the environment generation constraints,
which guide the implementation of the Metaview system itself, the other three types of
constraints affect the consistency of the Metaview specification database. A complete
list of constraints that must be satisfied by any database state can be fo-nd in [Fin92].
With the introduction of multiple views, the consictency between the view  opies of a
data object is particularly important when oj.crations are performe! on view copies.

The next subsection will discuss how such consistency is preserved.

5.1.2 Consistency-Preserving Operation Mappings

The ‘ast subsection gave a definition of the database consistency, but did not explain
how to achieve the consistency when cperations are performed on database objects
with multiple representations. In this subsection, the concept of conststency-preserving
aperation mapping is introduced. The intuition behind this concept is as follows. Assume
an operation Op) is exccuted in the context of a view Vj. The chalienge is to insure that
after the completion of Op; the database remains consistent with respec. to some other
view, say V2, on the database. To meet this challenge, it may be necessary to invoke
another operation, Opy, on Vo, If this is required, then & mapping can be established
such that M(Op) = Op; An operation in this context is possibly composed of a
sequence of basic database manipulation commands.

Definition 5.2: Suppose ¥y and V, are two view copies of the same data object of a
consistent database, and Op is an operation defined on V;. A mapping A is said to be
a consistency-preserving operation mapping if it maps Op to operation M(Op) on Va,

so that when botl operations Op(V7) and [M(Op)](V2) are performed. the state of the
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specification database remains consistent.

This definition is similar to that given in [Gar87]. The difference is that onr foous is
on the consistency-preserving nature of a mapping, rather than the mapping compati-

bility. Figure 5.1 illustrates this concept granhically.

‘The definition of specification database consistency was given in the last subsection.
If an operation results in an inconsistent database state, some other operatious hat are
predefined as its mapping should be performed in order to preserve the database con-
sistency. In order to sce whether such a mapping is a o sisteney-preserving operatien
mapping, type definitions that represent alternative view: of an objoct are first identi-
fied. This is done by matching type definitions with the same name in cach view copy.
For each matched type definition, attributes with the same name are examined, 17 vhey
have the same type, the mapping is considered to be cousistency-preserving Laly when
the same operations arc performed on the different view copies. If they have ifferent
types, the mapping should be established according to the constraints definnion. The

following example illustrates how to decide a consistency-preserving mar g

In the DFD/CFD environment defined earlier, the relationship type scores is defined
to have a list of data_flow objects occupying one of the two roles. Let's also assune
that in another view, it requires a set of data flow objects occupying the same role.
A list may contain duplicates, but a set cannct. A Delete operation n a set can be

mapped to a Delete_all_occurrence operation on a list. After bolh operations are
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performed, the consistency of ihe specification database is maintained. It would also
be possible for operation cn one view to be mapped onto ni! on the other, where nil

means no operation. For example, rearranging the order of the elements in a list has no

counterpart on a set.

5.1.5 EXA Rules

Consisten~y-preserving operation mappings are 1~ vesenicr! e actically using event-
triggered context-based action (EXA) rules pros . .” " (s subsection. Such EXA
rules can also be used io specify developer-required functions following the uniform
syntactic representaiion as illustraved at the end of Section 4.4. The i''ea of EXA rules
was inspired Ly th~ work of U. Dayal, et al. on the FCA rules introduced in their HiPAC
project[UDMSS, DFR8]. In their cace, ECA stands for Event, Conditinn, and Action. A
system motiitors events, when an event occurs, conditions are cvaluated, and actions are
taken if conditions are satisfie¢. ECA rules in HiPAC project provide timely i1¢sponse
for databare management fanctions such as integrity checking, access control, and view

management.

The EXA rules proposed in this subsection are different. Our EXA rules consist of
three parts: Event, conteXt, and Action. The purpc . .7 such EXA rules is to provide
a mechauism for coni:«! integraticn in a specification eavironment. The basic idea is as
foilows: events are - +itored by a multi-view specification environment. When such an

event occurs, actions are taken corresponding to the context in which the event occurs.

The event can be a system supported concept, such as: transaction commiit, a clock
tick, a request for a read/write operation on an object; or an external stimuli, such as a
mouse click or other user-specified requests. It is parameterized so that information is
passed with the event name to assist in decision-making or in carrying out the actions.
For the purpose of enviroument integration, we are mostly interested in a particular
type of events: the messages that are passed between varicus views of an environment.

The discussion below will focus on this type of event.



The context ... is a list of view names that heip o i ' atify where an event occars,
It is important because the same event may trigger difierent actions wlen it occurs

within differen: views.

The action part specifies the operational behaviors caused by an event in the specified
countext. When an EXA rule is fired, a system developer must be working under one of
the pre-defined views. This context determines which corresponding actions should be
taken. In formalizing operational behaviors required by a specification environment, we

propose the following four types of actions:

e constraint-checking
o conditional branching
e message-passing

e databasc manipulation

Examples of a paramecterized event were demonstrated in Seetion 4.4, In the fol-
lowing, it is assumed that all operations are associated with certain cvent names and
appropriate information . passed as event parameters. The four types of actions are
represente”t by the syntax described below:

Constraint-Checking Actions:
Cv ECK(<constraint_list>) [AuToMaTIC | ON_REQUEST]

Conditional-Bran-hing Actions:
Ir(<expression>) THEN <actions>
{ELSE <actions>},
<actions>: <expression>

Message-Passing Actions:
SEND <messages> TO <view.iist >

Database-Manipulation Actions:
<db_engine_routine_name>( <parameter_list>)

As already pointed out in Section 3.3.2, the generalized specification constraints and

environment generation constraints (Class I and IV in Table 3.1) are usually checked
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automatically when an environment is generated or when database engine routines are
exccuted. But how the environment specific constraints are checked may vary from
environment to environment. The constraint-checking actions, which take the form
of a function Cueck, tell the system when and what constraints should be checked.
This provides an environment definer with the full control oi how constraint checking
is invoked to ;- ntain the database consistency. The keyword AuToMATIC, which is
the default, indicates that the checking is perfr rmed automatically. System developers
are informed only when a violation is detected. The keyword ON_REQUEST indicates
that the checking is done only on developer’s explicit request when the developer is in

a process of developing software specifications in a specification envirecnment.

The conditicnal branching provides a programming language-like decision-making
«avahiiity. The syntax follows the IF-THEN-ELSE style. The <actions> following THEN
aud inoSE can be any of the four types cf actions. The <expression> is a logical expres-

sion cominonly seen in any progranuning lang i ges.

T'he message-passing artions are useful for mapping operati::ns on one view to oper-
ations on another. The message-passing approach is chosen as the vchicle for defining
operation mappings. This allows operations to be associated with views that carry
out the execution, not views that invoke them. The <messages> is a list of messages
separated by commas. And <view_list> is a list of views that receive the messages.
Messages passed between views are treated as triggering events. When such a message

is received within a composite view, its associated opcrations are performed.

The last type of actions are database manipulition actions. They are operations
performed by the database engine routines[Wil89]. We distinguish a database operation
from a request for accessing the datubase. The former is expressed in the action part of
an EXA rule, while the latter is considered to be a message which is sent to related views
through a message-passing action for the execution. There are five types of database
operations: insert, delete, change and retrieve, as well as database initialization and
close oporations, Enamples are insert_entity(rame. type). insert_relationship(name, type),

etc. Because database engine routines are not intended for the direct use even by an



_Name of Actions

Paru.:neters

insert_aggregate

insert_entity
insert_relationship
delete_aggregate
delete_entity
delete_relationship
change_aggregate_attribute
change_entity_attribute
change_relationship_attribute
retrieve_aggregates
retrieve_entities
retrieve_relationships
retrieve.aggregate_attribute
retrieve_entity_attribute
retrieve_relationship .attribute

aggregate_name, aggregate_type
entity_name, entity_type
relationship_name, relationzhip_type
aggregate_name

entity_name

relationship_name

aggregate_name, attribute_naine, attribute_value
entity_name, attribute_name, attribute_value
relationship_name. attribute_name, attribute_value
aggregate_type, condition

entity type, condition
relationship.lype, conidition
aggregate_name, attribute_name
entity_name, attribute_name
relationship_name, attribute_name

"able 5.1: Database Manipulaticrr "¢ ons

environment definer, we have adopted a simplified notation for database manipulation
actions. Table 5.1 gives a list of functions that can be used to specify database manip-
ulation actions. Note that we have extended the retrieve operation to allow selective
retrieval based on a given logical condition. Also, for convenience, we use assignmnent

statements to replace the change_attribute functions.

There are two reason: vhy the specification of operations is not relegated to primitive
views. First, an important goal was to keep the Metaview’s EARA model intact while
developing a mechanism to associate operational semantics with the meta model. The
primitive views encompass all the declarative semantics of the model through 1DL/ECL
statements, so it is not a good idea to insert the operation specifications at this level.
Secondly, the granularity of a primitive view is too fine for effective function sharing
among object types. A composite view is capable of providing both detail hiding and

polymorphisim whicl are required when specifying operations.
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As an cxample, a relationship type named access is examined.

{n Appendix B, the access relationship is defined differently in two primitive views,
Vira and Vegy. In Vigy, it is a generic type, and cannot be instantiated. Two relationship
types, changes and reads, are defined as its subtypes. In Vizq, it is an object type that
can be in-iantiated, and has an additional attribute access_type which takes a value of
cither ‘detects’ or ‘modifies’. In this case, these two subtypes are not needed. In keeping
both views, an operation mapping is needed to invoke corresponding operations in Vyrq

when the access_type is changed in Vg4 from ‘detects’ to ‘riodifies’ or vice versa. The

rule for this operation mapping is defined as follows:

iccess_type_event(new_access.type) —
wWTEXT: Vepy
LTION:  self.access_type := new.access.type,
IF (new.access_type = ‘detects’) THEN

{

changes_obj := retrieve_relationships(changes,
“*.p.-name = self.process_name AND

* .data = self.data”),
SEND (insert._reads_event(self.process_name, self.data),
delete_changes_event(changes_obj))
To Vg
Fise

{

reads_obj := retrieve_relation:hips(reads,
“*.p-name = self.process.name AND
*.data = self.data”),
SEND (insert_changes._event(self.process._name, self.data),
delete_reads_event(reads_obj))
To Vyras

In the rule, the first action statement replaces the access type of the access instance
with the new_access_type. After the access type is replaced, corresponding messages are

sent to Vypg, where subtypes changes and reads are defined, to create new instances
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of the relationship types changes and reads, while deleting the old ones. A system
variable self is used to identify the data object on which an op ~ation is periormed. In
this rule, it is assigned the instance name of the relationship type access, whose value
for the attribute access_type is changed. It is assumed that when a message is sent
from one view to another, the value of the variable self is propagated to the rules that
are invoked by the message sent. An exccution siadel that invokes appropriate rules
based on the occurrence of events (e.g., message sending) is not discussed in this thesis,

and remains a topic for future rescarch.

5.2 Defining EXA Rules: an Example

In the last sukscction, a fratnework of f . inalizing operation specifications was suggested.
This section examines some of the « et and their associated actions within two different
view contexts in the DED/CFDen.iir 1 -nt. A more complete set of EXA rules defined

for the DFD/CFD environment is provided in Appendix B.d.

5.2.1 Assumptions

The following assumptions are made when defining the EXA rules for the DFD/CED

Environment.

1. Only events that change the specification datahase states are considered. Other

events, such as system signals, are not discussed in this section.

2. Actious that map operations between distinct views are our major concern. Thus,
most of constraint-checking operations are omitted in the following operation spec-
ifications. But they can be easily added to the environment definition when the

environment is defined.

3. Operations on data objects with only a single representation are propagated 1o all

the view copics automatically. For example, when a terminator object is created

76



within Virq, another view, Veyq, should be informed of the creation of this object

immediately.

Change operatiows are only applicable to attribute values of an object type. When
the participant name lists of a relationship object, or the component name list of
an aggregate object are changed, they will be treated the same as deleting the old

relationship or aggregate object and inserting a new one.

The following operations are performed automatically by the Metaview database
engine as a result of the meta-level constraint checking. They need not to be

specified explicitly in EXA rules:

e Wlhen an entity object is deleted. all associated relationship objects in which
the entity object is a participant are also deleted.

e When an object is inserted into the database, its name is checked so that
no object that is of the same type belonging to the same aggregate has the
identical name. The attributes of the inserted object are also checked to see
if their va..es have appropriate types.

o When a relationship object is inserted to the database, its participating en-
tities are checked to see if they belong to the same aggregate object, and
do not replicate participants of another relationship object within the same
aggregate.

e When an aggregate object is inserted into the database, its component ob jects
are Jhiecked to see if they have the required types.

e When an attribute of an object is changed in the context of one view, and the
attribute has a single representation in several views, the change is propagated

L5 the other views automatically.
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5.2.2 Events in DFD/CFD Environment

Considering operations defined by the Metaview database engine?, the following cases

need to be taken into account for consistency-preserving mappings,

+» Insert a data object. If the object to be inserted is an instance of a merged type,
all the view copies will be created. Only those attributes appearing in the specified

view copy are assigned valucs.

o Delete a data object. All the view copies of this data object are deleted unless
some explicitly defined constraint dictates that only the related view copies be

deleted.

o Change an attribute value of a data object. The old attribuic value in the specified
view copy is replaced by the new one. .nd operations = performed on other view

copics to maintain the database const* v ev,

Retrieving data objects or attributes of « data object does not change a database
state. Therefore, the consistency is preserved and no operation mappings are necessary.
When such operations are performed, only relevant inforination under a particular view
is presented as the results of the retrieval. In this way, the information hiding sapability

for views is provided.

Table 5.2 lists the events that are applicable in the DFD/CEFD environment.

5.2.3 Operation Specifications in DFD/CFD Environment

This subsection provides three example rules defined for the DFD/CFD eavironment.
These rules correspond to the three types of events listed in the last subscction, i.c.
inserting a data vbje: i, deleting a data object, and changing an attribute of a data

object.

2More complete descriptions of the generic database operations can be found in [Wilsy].
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Context

Event_Name Parameters

insert data.store_event | form_value Vard, Vesd
ingert_data_flow_event flow_type Visa
insert_ctrl flow_event Vesd
insert_changes.event process._name, data.name Visd
insert_reads_event process_name, data_name Vasd
insert_access_event access._type Vesd
insert._sends_event data_sent, from, to, freq-value Visa
insert_in_out.event input_flow, process_cspec, output_flow Verd
insert_transition_event { from, event.name, actions, to Verd
delete._data_flow_event Vard
delete_ctrl_flow_event Vesd
delete_changes_event changes_object Vird
delete_reads_event reads_object Vasd
delete_access_event access_object Verd
delete_sends_event Vira
delete_in.out.event in_out.object i Vo,
delete.transition_event | transition_object \ Vega
change_form form_value Vagd, Vesd
change_access_type new_access_type Vesd
change_flow_type flow_type Vird

Table 5.2: Events in DFD/CFD Environment

Ezample I: The first rule states that when a data store object is inserted in the Vg
view, the system should send an event to Vi view so that another copy of the data

store is created in Visy with the form attribute set to text type.

insert_data_store_evernc{form_value) —
CONTEXT: Vg
AcTION: Insert_Cntity(self, data_store),
self.form := form_value,
SEND insert_data.store._event(string_to_text(form-value))

To Vepas

The corresponding rule in V.zy that is invoked bascd on the message passing action
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is:

insert.data_store.event(form.value) —
CONTEXT: Viya
ActioN: Insert_Entity(self, data_store),
self.form := form_value,
SEND insert._data_store.event(text_to_string(form.value))
To Vya;

There is one potential problem in implementing the operation mapping. When a
data store is created in one of the views, a message is sent to another view. This conld
form a cycle, in which events are sent back and forth between views. "The solution
is as follows: when a view receives a message, it first checks i7 it is the result of an
operation mapping (i.e., if the message is seut by ancther primitive view). In this case,
the associated message that is about to be sent is blocked. T the example above, a data
store is first created in Yyrq. When Vepy reccives insert_data_store.event from Vypa,

it will block the event of sending a message back to Vypqy.

Example 2: This rule deletes an in_out relationship object from Vigy. An in_out
relationship object involves an input control flow, an output control flow and a process
or control specification object. As a consequence of its delotion, there are two sends
relationship objects that have to deleted in the Vyyy view. This is illustrated in Figure 5.2.
The retrieval action statements specify which sends objects are to be deleted along with
the in_out relationship object. Operations triggered by the delete_sonds_event are

given in Appendix B.4.

delete.in_out_event(in_cut_object) —
CONTEXT: Vs
ACTION: 3ends_object.l := retrieve_relationships(sends,
“* data = in.out_object.input AND
* destination = in_out_object.process_name”),
SEND delete_sends_event(sends_object_1)
To Vg,
sends_object.2 := retrieve_relationships(sends,
“* data = in.out_object.output AND
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Pigure 5.2: Deletion of an in_out Relationship Object

*.source = in_out_object.process.name”),
SEND delete_sends_event(sends_object_2)
To Vyua,
Delete_Relationship(in_out_object, in_out);

Prampie 3. 'I'his rule specifies what operations are performed when the value of an
attribute is changed in a multi-view context. If a data flow object is a ‘sent’ or ‘stored’
ow, and is changed to a ‘ctrlsignal’, then a corresponding control flow object should
< created in Vg, When the data flow is changed to ‘sent’ or ‘stored’ from ‘ctrlsignal’,

Lexisting control flow object sheuid be deleted.

change_flow_type(flow.type) —
CONTEXT: Vyy
AcTION:  IF self.flow_type = ‘ctrl_signals’ AND flow_type /
TneN SEND deletectrl flow.event
To Ve,
Ir self.flow_type / = ‘ctrlsignals’ AND flow_type = ‘ctrl_signals’
THEN SEND insert_ctrl flow_event
To VCIJ,
self. flow_type := flow_type;

‘ctrl_signals’
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Chapter 6

Integratio: of Multi-View
Environmeants

In the previous two chapters, model views for a specification environment were devel-
oped. Such views capture both multiple representations and operaticnal semantics of
object types. This chapter examines the impacts that the multiple view mechanism has
on the integration of multiple tools in a specification environments. For this purpose,
two traditional integration paradigms are reviewed. One is based on a cominon repos-
itory and the other is based on message-passing. A view-based integralion paradigm
is then described. In the second part of this chapter, we examire how introducing the
multiple views affects the overall Metaview architecture. The enhanced requirements

for the Metaview database engine will be specifically addressed.

6.1 Comparison of Integration Paradigms

In Section 2.4, two examples were used to illustrate the basic techniques of tool integra-
tion: PCTE’s Object Management System and HP Softhench Eavironinent. These two
systems represent two major approaches of tool integration: sharing data in a common
specification datibase and sharing functions based on message passing. This section

summarizes these two approaches, and compares them with the view-based integration
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Figure 6.1: Data-based Integration Paradigm

paradigm. The view-based integration was first proposed by D. Garlan[Gark7]. In his
case, integrated tools are from a structure-oriented programming, environment{GMS4,
CGG*85]. We examine how this paradigm can be adopted for integrating tools in a

specification environment.,

6.1.1 Review of Two Traditional Integration Paradigms

Integration based on a common database is characterized as a concurrent model, as

shown in Figure 6.1.

Tools access a specification database of common structures. A system controller
mediates the interaction between the tools and the database. The main advantage is that
results of an operation performed in one tool are immediately available to other tools.
The specification database provides a means of data communications hetween tools.
However, tools are usually not invoked in an automatic fashion. The system controller

is normally a mere coordinating or synchronizing tool. The major disadvantages of this

33



approach are:

e Difficulty on environment evolution: It is hard to modify a tool, because the choice
of representations for one tool is restricted by the representations needed by all
other tools that access a common specification database. It ma. - o more difficult
to add new tools because the existing data representations may be inappropriate.
Modifying these data representations can have severe side-cffects on the existing
tools.

o Lack of abstraction: Al tools have access to all data representations in the
database. There are no abstract interfaces to encapsulate the details of the data
used by a given tool,

o Complexity of data management: Since a common database has to accommodate
varions tools which may access the database simultancously. Managing such a

common database can be a very complex task.

The second approach is based on message passing or broadcasting. As shown in
Figure 6.2, cach tool has its own database or private data representations and works
independently. Integration is accomplished by the message communications among the
tools. Since each tool chooses its own way of representing data that is appropriate for
its particular needs, it is relatively easy to create a new tool and incorporate it with
the existing ones. Modilications of the existing tools are also easier because of the tool

encapsulation. However, there are also some drawbacks with this paradigm:

o Lack of data sharing: Each tool maintains a private representation of the data.
It is almost impossible for tools to share the data of different representations. As
the result. data redundauncy is inevitable.

e Transformation expenses: Data transformation is another significant source of
expense with this form of integration. For example. a tool may have to copy the
outputs of another tool, parse them and convert them to its own representation
before it can actually use them.

o Message restrictions: Communication requires predefined message formats and

well-defined interfaces so that a tool can make use of functional resources of other
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tools. T'his may incur extra efforts in implementing such a message-based system.

e Unfriendly user interface: Fach tool may have its own way ol interacting with a

user. For example, each may use a different way of invoking its set of commands.

The two paradigms reviewed in this subsection only outlined two typical cases. Many
variations to them are possible. For example, a global message handler may be intro-
duced explicitly to the message-based paradigm. Communications among tools may
be restricted to one-to-onc and uni-directional, i.e. a tool passes data only to its suc-
cessor when it finishes its processing. In this way, tools are basically chained together

sequentially as exemplified by the UNIX pipe facility.

6.1.2 A View-Based Integration Paradigm

The view-based integration is aimed at realizing the advantages of the two traditional

approaches while avoiding their disadvantages. In this paradigin, tools operate on a



Figure 6.3: View-Based Data Integration

shared database through a collection of views. Each view either defines a virtual repre-
sentation of the objects contained in the database, or focuses on the different facets of
the objects resulted from view merging. Figure 6.3 illustrates that tools are integrated
in terms of data through sharing the common specification database. Since each data
ohject in the specification database is accessed through certain views, tools are allowed
to use the representations that are tailored to their particular needs. The specification

database is basically the synthesis of those views.

On the other hand, tools are also integrated in terms of control, because the operation
mappings defined on the views reflect the need for control transfers and consistency

maintenance between views. This is illustrated in Figure 6.4.

The advantages of the view-based integration paradigm are:

o Multiple representations: the same object types may be defined in different ways

across different views of a specification environment. The different representations
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Figure 6.4: View-Based Control Integration

are treated as separate facets of the object types. Since explicit operation map-
pings are defined at the view definition time to capture the semanties of the object
types, the problems of update ambiguity that are common in relational database

systems|[Ixel35)] are avoided.

o Abstraction and encapsulation: Views provide abstract interfaces. Related en-
vironment. concepts are usually grouped together to form a view, which can be
merged with other views. An environment definer docs not have to know the
details of the environment definitions of the existing views when creating new

ones.

¢ Evolution support: Adding a new tool to the existing system is largely a matter
of defining a set of new views. New environment may take advantage of the object

types defined in the existing views through view merging and operation mappings.

However, the encapsulation capability provided by the view mechanism is limited.

87



An environment definer still needs to know how object types are defined in existing
views in order to define the consistency-preserving operation mappings. Another major
disadvantage of the view-based integration paradigm is that the use of views may de-
grade the system efficiency. This is because views have imposed an additional level of
indirection for operations on database objects. Operations with respect to views have

to be translated to ones on database objects. There are also overheads associated with

the imaintenance of multiple views.

Finally, it should be noted that this section has mainly concentrated on the ab-
stract discussion of the view-based approach of integrating specification environments,

implementation-dependent. details remain largely unexplored.

6.2 The View-based Metaview Architecture

In accommodating multiple views, the Metaview architecture has to be augmented in
several ways. PFigure 6.5 highlights the proposed enhancement to the Metaview architec-
ture. Three major components are proposed in support for the view-based environment
integration. They are the environment editor, the rule library and the view translator.

In the discussion below, we adopt the terminologies given in [Fin93c].

At the meta level, the Metaview Software Library has to provide facilities needed to
accommodate the requirements of multiple views. At this level, there currently is no
view mechanism and the Metaview systemr simply provides a set of specification object
types that can be used to describe a “single-view” software specification environment.
The view mechanism we have proposed allows these object types to take different views
such that the same specification environment may be described from different perspec-
tives, and this in turn enables a software system being developed to be specified using
different software engineering methods. In the previous two chapters, we suggested some
extensions to the EDL/ECL languages for defining multiple views of a specification en-
vironment. Such extensions complicate the design of the EDL/ECL language compiler.

For example, when doing type checking, the EDL/ECL compiler now has to deal with
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the scoping problem that was not present in the original EDL/ECL implementations.

At the environment level, the Metaview system now has to deal with environments
defined in terms of multiple views. In order to assist an environment definer in defining
multi-view specification environments, the Metaview system should provide powerful
browsing capabilities that support the visualization, retrieval and editing of the hierar-
chical views. These capabilities should be present in the cnvironment editor, so that the
most up-to-date declarative and functional descriptions of the existing views of spec-

ification environments can be managed effectively and made available to environment

definer in an intelligent way.

In order for different views to work cooperatively, we have introduced the mecha-
nism of operation mappings based on EXA rules. There may also be some other rules
that are applicable to a specification environment, such as rules that define software
transformations and rules that spacify managerial decisions for software project man-
agement, ete. ‘To enable the collaborative management of these rules, there is a need to
soparate the rule definitions from the view definitions. In other words, a rule library is
needed to store information necessary to guide the control integration of a view-based
environment. Information stored in the rule library captures conceptually the dynamic

aspects of the augmented Metaview architecture.

The environment. library which stores the environment tables compiled from the
EDL/ECL definitions must also store the view definitions in assisting the translation of
view-based operations to operations on primitive data objects. This translation process
is performed by a new function module called the wiew translator. The view translator
is proposed as enhancement to the Metaview database engine. The next subsection will

examine its functionalities in more detail.

6.2.1 The View Translator

When implementing the view-based integration framework, the most important consid-

eration is how to manage various views including the EXA rules that are associated with
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these views. From a data integration perspective, tools access the shared specification
database through a set of model views. Information retrieval and update operations
that are specified with regard to relevant views must be traunslated into operations on
database objects or the attributes of database objects. From a control integration per-
spective, operations defined under one view are mapped to those defined under different
views. Event-triggering or message passing must be synchronized so that the speci-
fication database is maintained to be in & consistent state. The purpose ol the view
translator is to perform such a translation task and to coordinate the invocation of
operations as the results of consistency-preserving operation mappings. The detailed
design and implementation of such a view translator is beyond the seope ol this thesis.
This subscction will discuss briefly how it should be included as part of the Metaview

database engine.

In order to describe how such an view translator may facilitate the view translation
and event synchronization, it is necessary to review how a system analyst/developer
interacts with a specification database. Figure 6.6 shows a part of the Metaview system

architecture.

A specification environment is configured from environment tables produced by the
EDIL/ECL compiler of the Metaview system. A system developer’s requests Lo retrieve
or update a specification database are formatted according to the prescribed syntax rules
and sent to the project daemon scrver{Fin93b]. The project dacmon server isolates the
database engine from tools of a specification environment. 1t is langunage-independent
and works in a server mode. Results from the database operations are reported to the
client tool where the requests were originated. The database engine is configured by
transforming generic database engine routines into “dedicated™ programs that are spe-
cific to the defined specification environment. The configured database engine is able to
provide commands that manipulate the object types defined in the specification envi-
ronment and check the consistency of a specification database based on the constraints
associated with the object types. Since all the object types are currently represented
in a single view, database engine routines always perform operations on specification

database objects or their attributes directly.
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Figure 6.6: Software Specification Development

With the view mechanism added to the system, operations are specified with respect
to the context of views. When a request to access a specification database is sent to the
project dacmon server, the view name is also passed. Similarly, after the operations are
carricd out by the database engine routines, the results are sent back to the relevant
views. The database engine should be augmented by including the view translator as

follows:

First, the view translator maintains the twolists, TYPE and ATTR, generated from
the view merging process. When the project daemon server receives database access
requests, it invokes corresponding database engine routines on the correct view copies
of data objects based on the information provided by these two lists. Secondly, the view
translator maintains dynamically the EXA rules defined for the views of a specification
environment. When consistency-preserving operation mappings are needed for a view
operation, appropriate database engine routines are invoked such that automatic control

transfer is achieved.



Chapter 7

Conclusions and Future Work

This chapter summarizes the thesis work and highlights the contributions. Some to Hes
g

for future rescarch are also suggested.

7.1 Thesis Summary

In this thesis, we have investigated multiple view support for an integrated specilication

environment in the context of Metaview system.

Meyers and Reiss’s empirical study[MR92] indicates that multiple views increase a
programmer’s performance. Although their studies were focused on programming envi-
ronments such as FIELD[Rei90], the conclusion should be equally true for requirement
specification environments. Software requirement information is often developed from
different perspectives in a variety of requirement and design specification methods. This

makes multiple views especially important at the earlier stages of the software life cycle,

The thesis has focused on specification environments that are generated from for-
mal environment definitions in Metaview. In other words, the scope of the thesis is
restricted to issues related to integrating different viewpoints of a software engineering

methodology modeled with the EARA metamodel. Since multi-view support is aimed at
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providing data sharing and automatic control integration in a specification environment,

it is most applicable to the domain of tool integration in the following sense:

o The integration is horizontal, that is, the tools are dedicated to the same phase of

a software development life cycle.

o Issues of data and control integrations are addressed. Little emphasis is given to

presentation and process integrations.

e “Foreign” (i.c., non-Metaview) tools are not considered for integration.

The motivation for supporting multiple views in a specification environment and the
objectives of the thesis is identified in Chapter 1. The main advantage of multiple views
is 1o allow the sharing of information generated from different system perspectives. Dif-
ferent tools that reflect diverse perspectives are configured according to environment
definitions represented in different views. Ideally, when changes are made to specifica-
tions using one of the tools, operation mapping mechanisms are invoked automatically
te heep the specification information consistent for all views. Information redundancy
is eliminated as a result of centralized information management. To achieve these ob-
jectives within a reasonable scope and time frame, the thesis focused on how to use the
EARA metamodel to define multiple representations of software objects and to model

the dynamic behaviors of these multi-faceted software objects across a horizontally in-

tegrated environinent,

In Chapter 2, an example, DFD/CFD environment was introduced to illustrate the
difficulties in supporting multiple views. The NIST/ECMA reference model of tool
integration was then introduced, and the thesis work was restricted to a subset of the
spectrum of problems related to tool integration. Previous work on data integration and
control integration was reviewed. Previously, the main approach for data integration
was through the use of a shared information repository and control integration was most
often accomplished by using message passing or broadcasting facilities. Some efforts in

combining data and control integration based on the object-oriented paradigm were



also briefly reviewed. With a view-based arproach, these two aspects ol tool integration
A "

could both be addressed.

Chapter 3 provided a brief cverview of the Metaview metasysten. This established
a metasystem fonndation for multiple views throughout the thesis.  Central to the
Metaview architecture was the EARA metamodel. ‘Tlhe Environment Definition and
Constraint Languages were used to express the elements of the EARY metamodel and
constraints on their inter-relationships. Multiple views for a specification environment

were defined using a direct extension of these two languages.

Chapter 4 concentrated on the static aspeets ol a view definition. Two levels of views
were identified: primitive views and composite views. Different representations of ab ject
types were captured in separate primitive views, which were merged Lo form a compaosite
view. A primitive view was defined as a subschema of a specification schema, which
contained a sct of entity types, relationship types and aggregate types, along with their
associated attributes and constraints. A composite view provided the basis for shared
representations of object types in different primitive views and operational semantics of
such shared representations. Central to manipulating objects of multiple representations
in a common specification database was the idea of view mergirg. The merging took
place between object types of the same name or their synonyms to coalesce the attributes
of object types, to resolve definition conflicts, and to establish the associations between
object types and their primitive views. Detailed algorithms for this merging process were
provided in this chapter. The view approach developed in this chapter was compared

with database relational views and object-oriented views.

In Chapte- 5, the operation specification in a composite view was discussed. Siiee
the main purpose of view operations was Lo assist in automatic conisistency maintenance
of a the specification database when the specification was manipudated with respect to
views, the concepts of database state and consistens v-preserving operation mappings
were defined. Based on these two concepts, syntax for event-triggered, context-based
action (EXA) rules was proposed for specifying operation mappings between different

primitive views of a composite view. As an example, the EXA rule specification for the



DFD/CEFD environment was provided in this chapter.

Chapter 6 examined how to use the view mechanism developed in the previous two
chapters to achieve horizontal tool integration in a specification environment. After
reviewing more carefully two traditional integration paradigms based on a common
repository and message passing, a view-based integration paradigm was proposed. A
brief discussion of how the Metaview architecture can be modified to support multiple

views was also provided.

7.2 Contributions Of The Thesis

The major contributions of the thesis are as follows:

e A detailed examination of “multiple views” in the context of a specification en-
vironment was undertaken. To our knowledge, the concept of multiple views has
been explored previously in the contexi of programming environments. In this
thesis, multiple views of a specification environment reflected multiple represen-
tations of object types that were used to describe the specification requirements
of a software system, while at the same time, such specification information was

kept consistent as changes were made to one of these representations.

e The Environment Definition and Constraint Languages (EDL/ECL) were extended
to allow both primitive and composite views to be specified. These language ex-
tensions permit the expression of multiple views of a specification environment in
a formal model. Similar work appeared in Garlan’s PhD thesis[Gar87], in which
views in a structured programming environment were captured through formal
descriptions of entity types. However, our views also capture other information,
such as relationships between entity types, constraints and dynamic behaviors of

object types.

e The thesis proposed a new, horizontal view integration mechanism for multi-view

support in a specification environment. This contribution has the following two

96



aspects: statically, an algorithm was proposed which allows lower level primitive
views to be merged to form a composite view (i.e., shared representation for cach
object type defined in a specification environment). Dynamically, a consistency
preserving operation mapping mechanism was proposed based on XA rules, which

made it possible for automatic control transfers between views.

e The view mechanism developed in this thesis provides a basis for building a hor-
izontally integrated specification environment using Metaview. The integration
paradigm proposed in Chapter 6 dealt with both data integration and control
integration. This paradigm is consistent with the NIST/ECMA reference model
in the following sense: data integration is achieved sharing a common specifi-
cation database through a collection of views and control integration is realized
through operation mappings that transfer controls between views when messages
are passed as triggering events. Such a view-based integration paradigm allows
tools in a specification environment to use data representations that are tailored to
their particular needs. Based on this integration paradigm, architectural enhance-
ments to the Metaview system were developed. New requirements were proposed
for the database engine to translate view operations and to invoke EXA rules

associated these views.

7.3 Future Work

While we have, in the thesis, established the ground work for supporting muitiple views
in a metasystem like Metaview, more detailed design work is needed to elaborate on
the proposed architectural design. There are three important issues directly related to

extending the view mechanisms:

e Constraint Integration: At present when primitive views are merged, constraints
are simply merged by forming the union of the set of constraints. ‘T'wo problems
may arise: constraints defined in one view might be conflicting with constraints

defined in another and the redundancy may exist among two or more constraints,
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which may degrade the systems efficiency significantly. A possible solution for
detecting and resolving constraint conflicts is to look into theorem proving tech-
niques. Redundancy problem may not be as simple as recognizing equivalent

constraints. Constraints may be overlapping and this is a very difficult condition

to detect.

e Updating Operational Semantics: As a specification environment evolves, changes
to the definitions of object types may cause changes to their associated operational
semantics defined using EXA rules. With the current view mechanism, re-writing
of these rules is required. Some intelligent support should be present to handle

the update needs automatically.

o Database Management: With the introduction of multiple views, a specifica-
tion database stores multiple view copies for cach data object. This complicates
database management in two ways: First, in order for operations to be performed
correctly, cither distinct names should be given to different view copies or each
view copy should be associated with a view identifier. Secondly, the database
should be managed actively in a sense that operation mappings are invoked auto-

matically. How to design and implement such an invocation mechanism remains

to be explored.
Other topics that may be interesting for future research include:

o Presentation Integration: The thesis has focused on the mod: | views of a specifi-
cation environment. Presentation integration is not addressed. In the Metaview
system, a graphical extension to the EARA metamodel was developed[Sch90]. It
supports the definition of graphical representations for software objects defined
using the EARA metamodel. The correspondence between graphical objects and

multi-view database objects remains largely unexplored.

o Process Integration: The effects of multiple view support on software process as-
pects must be investigated. There are at least two issues that should be explored

in this regard. First, the software process modeling capabilities of Metaview must
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be examined more extensively. The Metaview approach was used to analyze and
describe an example process model called DesignNet[BST92]. llow to incorporate
multiple view support into a process model for integrated project management
is still unknown. Sccondly, integration of vertical tools needs to be addressed.
Vertical integration involves transformations of software products across develop-
ment life cycle. The Metaview approach was also adopted to define formally the
transformations from data flow diagrams to structured charts[BST9L]. The in-
troduction of multiple views complicates such a transformation process because
both source environment and target environment may be generated from multi-
view definitions and at least one of the benefits provided by the transformational

approach, traceability, is more difficult to realize.

Foreign Tools: In this thesis, we only considered tools that are built. within the
Metaview system. Tools in Metaview are configured from formal environment
definitions and generic tool routines. In order to integrate tools that are developed
independently of the Metaview system, there should be a way of describing what
and how the specification information is captured. Based on this knowledge, an

interface protocol should be defined for communicating with these foreign tools.
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Appendix A

Description of a Two-View
(DFD/CFD) Structured
Analysis Environment

Vira: The DFD represented in this view contains four basic concepts: process, data
store, data flow, and terminator. While they all have common intrinsic attributes such as
name, creation_time, description, etc., some additional attributes are described as follows:

e process: the process object in this view consists of three parts: identification,
function description and physical Incation. The identification is of the data type
identifier, it gives the identification refercnce of a process object. The function
description has the data type text, and describes the functions carried out hy
a process. The physical location may be a program or a function in which the
function of the process is implemented. This last attribute takes the identifier data

type.

e data.store: is a place where data is stored by processes. In this view, a data
store object is defined to have the following attributes: reference_identifier,
access._type, number_of_copy and primary key, and form that takes a string
type with the length of minimum 1 up to 30.

e data_flow: is an entity that uses a description attribute to describe the data being
sent. A attribute named flow_type is used to distinguish three types of data flows:
those sent between processes, or between a process and a. terminator; those bheing
stored away in a data_store and those sent as control signals. flow_type takes one
of the three values: “sent”, “stored” and “ctrl_signal”.
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e terminator: usually represents a source or destination of inputs to or outputs
from a transaction, e.g., customers, users. It also has the description attribute.

There are four relationship types associated with these concepts:

e sends: is a relationship that specifies the source, destination and the data being
sent. The source and destination can be either a process or a terminator, but a
terminator is not allowed to receive data when the source is also a terminator.
The data being sent is represented with a data_flow object.

s stores: describes what data are stored in a data store. So, it specifies a relation-
ship between a datastore and a list of stored.data.

e changes/reads: both represent relationships between a process and a list of
stored_data that the process is accessing.

In order to model the decomposition scheme, two aggregate concepts are needed:
top.level and process_explosion. There are also relationships that describe how a
process in a top_level diagram is decomposed into a set of objects in a process_explosion.
These re.itiorships include derived from, has_expansion, has_parent.boundary,
has_chilc Loundary, and has_subparts. The details of these modeling concepts and
relationships can be found in [McA8S8]. For the purpose of this thesis, they will be
collectively referred to as the DFD decomposition view.

Vegat There are five basic concepts modeled in the CFD represented in this view.
process, data.store, and terminator differ slightly from those defined in Vyg:

e process: the three attributes used to define a process object in the first view
are now clided. The intrinsic attribute description is used to capture all the
information needed to describe a process object.

e data_store: form attribute is still available, but takes the text data type instead
of the string type in the first view. An attribute named index is defined for the

same purpose as primary key in V.
e terminator: is defined the same as the terminator in the first view.

e ctrl_flow: differs from a data flow in that a control flow also distinguishes discrete
data from time-continuous data.

e ctrl.spec: specifies the processing of control flows in a real-time system. Since
it may be expanded into a STD, a ctrl_spec object itself is simply a connector
with basic intrinsic attributes.
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The DFD decomposition scheme still applies here. Relationship types associated
with these concepts include: has_std, in_out and access. has_std represents the
expansion from a ctrl.spec to its associated STD; in_out specifies coutrol flows that
input to and output from a process or a ctrl.spec; An access relationship object
is defined between a process object and a set of control flows with an attribute named
access_type. This attribute may take two values: “detects” and “modifies”.

In order to model the STD, the following concepts are needed:
e state: is an identifier for any observable mode of behavior. Three types of state
are identified: initial, final, and intermediate.

e event: is a control signal that causes a system to change state. There are three
types of event: initial, empty, and intermediate.

e action: indicates process activation that is taken as a consequence of a particular
event.

There is a relationship type named transition associated with these concepts. It
specifies the event/action sequence that causes one state to change to another. A state
can be further decomposed into a lower-level STD. For this purpose, an aggregate type
std_agg and an associated relationship has_sub_std arc needed.
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Appendix B

Definition of an Integrated
DFD/CFD Environment

This appendix gives a complete definition of the two-view DID specification environment
that has been used as the example throughout this thesis. Constraints associated with
object types defined in these views are not given in complete details. Readers may refer
to [McAR8S] for the complete definition.



B.1 The Base Views for Structured
ment

P_VIEW generic_view
ENTITY_TYPE universal GENERIC
ATTRIBUTES (description: text);
ENTITY_TYPE data_object GENERIC IS_A universal;
END_VIEW

P_VIEwW value_type.view
VALUE.TYPE time_per_unit
--- data type that is used to describe frequency
REcoORD
quantity: integer
unit: (second, minute, hour,
day, week, month, year),
END RECORD;
VALUE_TYPE ref_type

Analysis Environ-

--- data type that is used to describe the reference identification of an object.
--- Assumption is made to have a built-in type constructor concat,

--- and data types range and list.
concat(range(A..7), list([.]integer[.]));
END_VIEW
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P_Vikw dfd_decomposition view
AGGREGATE_TYPE top_level_dfd
CoMPONENTS (ALL But has_child_boundary,
has_subparts,
derived _from);
AGGREGATE.T'YPE process_exploded
COMPONENTS (ALL);
RELATIONSHIP.TYPE derived_from
RoLES (derived_agg, source_agg)
PARTICIPANTS
(process_exploded, process_exploded);
ReLamionsnip_TYPE has_expansion
RoLes (parent, child)
ParTICIPANTS
(process, process.exploded);
RELATIONSHIP.TYPE has_parent_boundary
RoLEks (parent, boundary: list)
PARTICIPANTS
(process, universal);
RenaTioNsnip.TypPE has_child_boundary
RoLEs (child, boundary: list)
PARTICIPANTS
(process_exploded, universal);
ReLATIONSHIP.TYPE has_subparts
RoLks (superpart, subpart: list)
PARTICIPANTS
(dataflow, dataflow)
(terminator, terminator)
(data.store, data.store);
FEND_ViEw

110



B.2 The DFD Primitive View

P_VIiEwW Vdjd
ENTITY_TYPE process Is_A universal;
ATTRIBUTES (identification: ref_type,
function._description: text,
physical.location: identifier);

ENTITY_-TYPE data_store IS_A universal
ATTRIBUTES (ref.id: identifier,
form: string(1..30), -
access_type: (Read_Only, Read Write),
number_of_copy: integer,
primary key: identifier);

ENTITY.TYPE data_flow Is_A data_object
ATTRIBUTES (flow.type: (sent, stored, ctrlsignal));

ENTITY_TYPE terminator IS_A universal;

RELATIONSHIP_TYPE sends
RoOLES (source, data, destination)
PARTICIPANTS
(process, data_flow, process | terminator)
(terminator, data_flow, process)
ATTRIBUTES (frequency: time_per_unit);

RELATIONSHIP_TYPE stores
ROLES (storename, data: list)
PARTICIPANTS
(data_store, data_flow)

RELATIONSHIP_TYPE access GENERIC;
RELATIONSHIP_.TYPE changes IS_A access
ROLES (p-name, data: list)

PARTICIPANTS
(process, data_flow)
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RELATIONSHIP_T'YPE reads IS_A access
RoLES (pname, data: list)
PARTICIPANTS

(process, data_flow)

CONSTRAINT datamust_be_sent [s
--- Every data_flow entity must participate
--- in a sends relationship.
OBJIECTS
df := (data_flow);
MusT_HaAVE
(sends: df = *.data);
ISND;

CONSTRAINT data must_be_stored [s
--- Every stored_data entity must participate
--- in a stores relationship.
OBiECcTS
ds := (data.flow: *.flow_type = 'stored’);
Must_HaVE
(stores: ds IN *.data);
END;

EnND_ViEwW

112



B.3 The CFD Primitive View

P_ViEw V. zq

ENTITY_TYPE process IS_A universal;
ENTITY.TYPE data_store IS_A universal
ATTRIBUTES (form: text,

access_type: (Read_Only, Read Write),
index: identifier);

ENTITY.TYPE terminator ISs_A universal;

ENTITY_.TYPE ctrl_flow Is_A data_object;

ENTITY_TYPE ctrl_spec IS.A universal;

ENTITY_TYPE state IS_A universal;

ATTRIBUTES (state_type: (initial, final, intermediate)),
ENTITY_TYPE event IS_A universal;

ATTRIBUTES (event_type: (initial, empty, intermediate)),
ENTITY_TYPE action IS_A universal;

AGGREGATE_TYPE std_agg
COMPONENTS (state, event, action, transition, has_sub_std);

RELATIONSIHIP_TYPE access
RoLEs (process.name, data: list)
PARTICIPANTS
(process, ctrl_flow)
ATTRIBUTES (access_type: (detects, modifies));
RELATIONSHIP_TYPE in_out
ROLES (input: list, processname, output: list}
PARTICIPANTS
(ctrl.flow, ctrl.spec, ctrl_flow)
(ctrl_flow, process, ctrl_flow);
RELATIONSHIP.TYPE has_std
ROLES (cspec.name, std.name)
PARTICIPANTS
(ctrl_spec, std_agg)
RELATIONSHIP_TYPE transition
RoOLES (from_statename, cflow.name, action_name, to_state_name)
PARTICIPANTS
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(state, event, action, state)
RELATIONSHIP.TYPE has_sub_std
RoLEs (statename, std_name)
PARTICIPANTS
(state, std_agg)

CONSTRAIN'T processmust_participate Is
--- livery process entity must participate
--- in in.out relationship.
OnIkcTs
p := (process);
MusTt_lAVE
(in_out: p = *.process.name);
END;

I'ND_VIEW
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B.4 The Composite View for the DFD/CFD Environ-
ment

C_ViEw dfd/cfd.view

DEFINITION:

BASE_VIEW: dfd_decomposition_view,
generic_view,
value.type_view;

MERGE Vg4, Vesds

SYNONYM (ctrl._flow, data_flow)
(ctrl_spec, process)
(action, process)
(data_store.index, data_store .primary key);

OPERATION:
insert_data_store.event(form_value) —
CONTEXT: Vypd
ACTION: insert_entity(self, data_store),
self.form := form.value,
SEND insert_data_store_event(stringto_text(form_value))
To chd;
insert_data_store_event(form_value) —
CONTEXT: V.54
ACTION: insert_entity(self, data_store),
self.form := form_value,
SEND insert_data_store_event(text.to_string(form_value))
To Vypa;
insert_data_flow_event(flow_type) —
CONTEXT: Vypq
AcTioN: IF (flow.type = ‘ctrlsignal’) THEN
SEND insert_ctrl_flow.event To V.4,
Insert_Entity(self, data_flow),
self.flow_type := flow_type,
Cneck(datamust.be_sent);
insert_ctrl_flow_event —
CONTEXT: Vzd
AcTION: Insert_Entity(self, ctrl_flow),
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SEND insert_data_flow_event(‘ctrlsignal’) To Vg,
CuECcK(datamust_flow);

insert_changes_event(process.name, data_name) —
CoNTEXT: Vya

ACTION:

Insert_Relationship(self, changes),
self.p_name := process_name,

self.data := data_name,

SEND insert_access_event(‘modifies’)
To chd;

insert_reads_event(processname, data_name) —
CONTEXT: Vyra

ACTION:

Insert_Relationship(self, reads),

self.p_name := process_name,

self.data := data name,

SEND insert.access.event(‘detects’)
To Veyy;

insert_access_event(access_type) —
CoNTEXT: Vga

ACTION:

Insert_Relationship(self, access),
self.access_type := access_type,
Ir (access_type = ‘detects’) THEN
SEND insert_reads_event(self.process_name, self.data)

To Vdfd
ELSE
SEND insert_changes._event(self.process.name, self.data)
To Vdjd;

insert_sends_event(data_sent, from, to, freq.value) —
CONTEXT: Vyu

ACTION:

Insert_Relationship(self, sends),

self.frequency := freq.-value,

self.data := data_sent,

self.source := from,

self.destination := to,

SEND insert_in_out_event(‘’, from, data_sent)
To chd

SEND insert_in_out_event(data_sent, to, ‘")
To Vepas

insert_in_out_event(in_flow, process_cspec, out_flow) —
CONTEXT: Vipq
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ACTION:

Ir (inflow = *’) THEN

{

sends_object.1 := retrieve_relationships( sends,

“* destination = process.cspec”),
Insert_Entity(sends_object_1.data, ctrl flow),
Insert_Relationship(self, in_out),
self.input := sends_object_1.data,
self.output := out_flow,
self.process_name := process._cspec,

Ir (outflow = ‘) THEN

{

h

sends.object_1 := retrieve_relationships(sends,

“¥ gource = process._cspec”),
Insert_Entity(sends_object_2.data, ctrl.flow),
Insert_Relationship(self, in_out),
self.input := in_flow,
self.output := sends.object_2.data,
self.process_name := process_cspec,

Insert_Relationship(self, in_out),

self.input := in_flow,

self.output := out_flow,

self.process_name := process._cspec,

SEND insert.sends_event(in_flow, ‘’, process_cspec, ‘’)
To Vdjd

SEND insert_sends_event(out_flow, process_cspec, ‘’, *‘’)
To Vdjd

insert_transition_event(from, event.name, actions, to) —
CONTEXT: V54

Insert_Relationship(self, transition),

self. from_state_name := from,

self.cflow_name := event._name,

self.action_name := actions,

self.to_statename := to,

SEND insert_reads_event(actions, event_name)

ACTION:
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To vdjtb
delete_data_flow_event —
CONTEXT: Vg
AcTioN: Delete_Entity(self, data_flow),
Ir self.flow_type = ‘ctrl_signal’ THEN
SEND delete.ctrl.flow_event To V,y4;
delete.ctrl._flow_event —
CONTEXT: Vcyu
AcTioN: Delete_Entity(self, ctrl flow),
SEND delete.data_flow.event TO Vyg;
delete_changes_event(changes_object) —
CONTEXT: Vya
AcTION: Delete_Relationship(changes_object, changes),
access_object := retrieve_relationships(access,
“* process.name = changes_object.p.name AND

* data = changes._object.data”);
SEND delete_access_event (access.object) To Visq4;
delete_reads.event(reads_object) —
CoNTEXT: Vypu
AcTioN: Delete_Relationship(reads_object, reads),
access_object := retrieve_relationships(access,
“* process name = reads_object.p.name AND
* data = reads_object.data”);
SEND delete.access_event(access_object) To V.q4;
delete_access_event(access object} —
CoNTEXT: Visa
AcTioN: Delete_Relationship(access_object, access),
IF (access_object.access_type = ‘detects’) THEN

reads_object := retrieve_relationships(reads,
“*¥ p name = access_object.processname AND

*.data = access.object.data”);
SEND delete_reads_event(reads_object) To Vg4,
ELse
changes.object := retrieve_relationships(changes,
“* pname = access_object.process.name AND

* data = access.object.data”);
SEND delete_changes_event(changes object) To Vyq;
delete_sends_event(sends_obj —
ConTEXT: Vg
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AcTioN: Delete_Relationship(sends_obj, sends),
SEND delete_in_out_event('', sends.obj.source, sends_obj.data)
To chd
SEND delete.in_out_event(sends_obj.data, sends.obj.destination,"’)
To vcfd;
delete_in_out_event (in_out_object) —
CONTEXT: Vi pq
ACTION: sends.object._1 := retrieve_relationships(sends,
“¥ data = in.out_object.input AND
* destination = in_out.object.process._name”),
SEND delete.sends_event(sends_object.1)
To Viya,
sends_object.2 := retrieve_relationships(sends,
“*¥ data = in_out_object.output AND
* source = in_out.object.processname”),
SEND delete_sends.event(sends_object.2)
To vd]da
Delete_Relationship(in_out_object, in_out);
delete_transition_event(transition.object) —
CONTEXT: V pu
ACTION: reads_object := retrieve_relationships(reads,
“* p name = transition_object.actionname AND
* data = transition.object.cflow.name”),
SEND delete_reads_event(reads_object) To Vi,
Delete_Relationship(transition_object, transition);
change_access_type_event(new.access_type) —
CONTEXT: Vesa
ACTION: self.access_type := new_access._type,
IF (new_access_type = ‘detects’) ‘THEN
{
changes_obj := retrieve_relationships(changes,
“x,pname = self.process_name AND
*.data = self.data”)
SEND (insert.reads_event(self.process name, self.data),
delete_changes_event(changes obj))
To Vi
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reads_obj := retrieve_relationships(reads,
“x,pname = self.process_name AND

*.data = self.data")
SEND (insert.changes_event(self.process.name, self.data),
delete.reads_event(reads_obj))
To Vysa;
}
change_form(form.value) —
CONTEXT: Vypu
AcTioN: self.form := form_value,
SEND change_form(string_to.text(form.value))
To chd;
change _form(form_value) —
CONTEXT: Veyu
ACTION: self.form := form.value,
SEND change_form(text_to_string(form_value))
To Vyas
change_flow_type(flow_type) —
CoNnTEXT: Vypq
AcTioN: IF (self.flow.type = ‘ctrl_signals’ AND
flow_type / = ‘ctrlsignals’)
THEN SEND delete_ctrl flow.event ToO V4,
Ir (self.flow_type / = ‘ctrl_signals’ AND
flow.type = ‘ctrl_signals’)
THEN SEND insert_ctrl flow_event To V44,
self.flow_type := flow_type;
END_VIEW dfd/cfd_view
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