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Abstract
Battery is a critical resource for smartphones. Soft-
ware developers as the builders and maintainers of
applications, are responsible for updating and de-
ploying energy efficient applications to end users.
Unfortunately, the impact of software change on
energy consumption is still unclear. Estimation
based on software metrics has proved difficult. As
energy consumption profiling requires special in-
frastructure, developers have difficulty assessing
the impact of their actions on energy consumption.
System calls are the interface between applications
and the OS kernel and provide insight into how
software utilizes hardware and software resources.
As profiling system calls requires no specialized in-
frastructure, unlike energy consumption, it is much
easier for the developers to track changes to system
calls. Thus we relate software change to energy
consumption by tracing the changes in an applica-
tion’s pattern of system call invocations. We find
that significant changes to system call profiles often
induce significant changes in energy consumption.

1 Introduction
Software tends to undergo constant development.
Even during maintenance periods, bug fixes and
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new features are committed to a project. Devel-
opers understand that with change comes risk, es-
pecially the risk of performance regressions. One
kind of performance that is difficult for developers
to measure or predict is software energy consump-
tion [1].

Due to this difficulty there has been much ef-
fort put into studying, explaining, and estimat-
ing software power use, especially on mobile plat-
forms. Researchers have tried to model energy
consumption on smartphones by creating energy
consumption models based on hardware compo-
nents [2], system run-time statistics [3], finite state
machines [4], and byte code instruction usage [5].
However, none of the studies listed above have in-
vestigated the impact of software change on appli-
cation energy consumption based on actual commit
histories of software projects. Hindle et. al. [6]
has made the first step toward revealing the re-
lationship between software change and energy
consumption. Much is to be learned by measur-
ing energy consumption of multiple software ver-
sions and describing potential correlations between
software metrics and energy consumption. Hin-
dle et. al. [1] also created a dedicated test bed
called Green Miner, and demonstrated that one re-
quires multiple test runs to reliably calculate the
energy consumption of an application on smart-
phones. This kind of testing methodology is use-
ful but it requires specialized equipment and large
amounts of time to obtain reliable data.

We want to help developers estimate if their
source code changes cause changes in their soft-



ware’s energy profile: the profile of energy con-
sumption during runtime. Thus we attempt to rely
on dynamic analysis of test cases to estimate power
use changes caused by software change. In other
words, we gather metrics while software is under-
going a use case test.

The dynamic analysis used for energy consump-
tion is tracing (recording) system calls during ap-
plication execution. Software running on modern
Operating Systems (OSes) uses system calls to in-
teract with the services provided by an OS’s ker-
nel. Examples of such services include: access to
hardware devices, network communication, com-
munication with other applications, requesting and
releasing system resources, and receiving notifica-
tions of system events. We use records of system
calls to model software energy consumption over
multiple versions of two applications. Our results
point towards a relationship between the change in
energy profile and change in the system call invo-
cation profile.

The benefit of estimating changes in power use
based on system call profiles is that system calls are
easy for developers to measure. A system call pro-
filer strace is available on Linux platforms, includ-
ing Android. Similar software is available on all
major OSes: Apple’s OSX provides dtrace and Mi-
crosoft provides NT Kernel Logger for Windows.
It is easy to run and profile an application with
strace. One can simply invoke strace and
their application from the command line: strace
-c yourapp. Using strace takes less labour
than developing a hardware test bed instrumented
with a power monitor and running tests multiple
times to get a statistically reliable estimate of power
use. Thus, if we can predict changes in power use
based on system call profiles then developers may
avoid the expensive hassle of measuring, remeasur-
ing, and estimating the energy consumption of their
applications directly. Developers can detect pos-
sible energy consumption regressions with simple
system call profiling of their application.

This study makes four important contributions:

• First, it demonstrates that system call profiles
can be used to model changes in energy con-
sumption profiles for Android applications.

strace, http://sourceforge.net/projects/
strace/

• Second, it lays out a dynamic analysis method
of relating software change to energy con-
sumption by tracing system calls.

• Third, an experiment is performed to contrast
the different energy consumption behaviours
in terms of multiple software versions and dif-
ferent test cases.

• Fourth, a simple rule of thumb is proposed,
tested and verified: a significant change in
system call counts often implies a significant
change in power use.

2 Background and Related
Work

This section reviews system calls and relevant
work. The related work is organized into three
categories consisting of attempts to build models
of energy consumption of software applications:
utilization-based power models, instruction-based
power models, and system-call-based power mod-
els. Furthermore, research about combining soft-
ware energy performance with mining software
repositories techniques is discussed. Energy refers
to the cost or ability to do work while power is the
rate of energy use. Power is measured in watts (W)
while joules (J) are the cumulative watt-seconds
measured to do work. If a process uses 4W of
power for 10 seconds it consumes 40J of energy.
Mean-watts are often used when tests are of the
same length of time. Mean-watts is the average
power used for any moment of a task. Mean-watts
multiplied by seconds produces the energy con-
sumed in unites of joules during a test.

2.1 System Calls
System calls form an API for user-space applica-
tions to access the services, abstractions and de-
vices that are managed by the kernel and the rest
of the OS. System calls are standard functions pro-
vided by the OS kernel to user processes.

Usually such system calls are provided for: com-
municating with the hardware (for example, ac-
cessing the hard disk), creating and executing new
processes, managing memory use, sending and
receiving data to and from other processes, and
receiving notifications for events [7]. Figure 1
presents the relationships among user applications,
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Figure 1: This diagram shows how applications, C
library functions, system calls, and the kernel inter-
act with each other.

C library functions, system calls and the OS ker-
nel [7]. System calls are typically called by a li-
brary, such as the C standard library, graphics li-
braries, network libraries, inter-process communi-
cation (IPC) libraries, and occasionally by the ap-
plication itself.

One can expect different versions of software to
invoke different system calls during their execution
if they differ from each other in terms of the ser-
vices they use and how they access these services.
As an essential interface sitting between the appli-
cation and the OS kernel that triggers hardware uti-
lization and other kernel services, we ask can sys-
tem calls provide a set of features for making pre-
dictions about software energy consumption?

2.2 Utilization-Based Power Models
Utilization-based power models model full system
energy consumption by profiling each individual
component’s energy consumption in two steps. The
first step is to collect utilization statistics and the
corresponding energy consumption when running
a list of applications under a sample of scenarios.
The second step is to apply regression analysis,
usually linear regression, to train a model for soft-
ware energy consumption based on utilization data.
This model is then used to predict energy consump-
tion.

Flinn et al. [8] model the energy consumption of
each component in a software system by design-
ing and implementing a tool called PowerScope.
By combining the current measurement and each
process in the system, PowerScope generates the
profile of power use of each component in an ap-
plication. PowerScope is mostly based on the CPU
profile and the power model is device specific.

Gurumurthi et al. [9] built a complete system
power simulator, which is called SoftWatt. It was
implemented on the SimOS infrastructure and is
able to model the CPU, memory, and disk use of the
targeted application. SoftWatt uses resource usage
statistics from SimOS to estimate power statistics.

Shye et al. [10] studied the energy consump-
tion behaviour in an Android smartphone, the HTC
Dream, with data from real user activity. The au-
thors deploy a logger application that is able to col-
lect system performance metrics and user activity
on an Android phone, and report it back to a cen-
tral server.

Carroll et al. [11] analyzed the energy consump-
tion of an Android smartphone, the Openmoko Neo
Freerunner. Six typical usage scenarios of a smart-
phone, audio playback, video playback, text mes-
saging, voice calls, emailing, and web browsing,
were tested on the smartphone to gather the dis-
tribution of energy consumption in each compo-
nent. Their analysis was very limited to the An-
droid smartphone they used.

Zhang et al. [2] generated two online power
models for Android smartphones, PowerTutor and
PowerBooter. PowerTutor is based on the combi-
nation of power models for components in Android
smartphones. The authors measured the energy
consumption of selected hardware components on
an Android smartphone and built linear regression
models for each of them. As the power mod-
els generated by PowerTutor vary significantly be-
tween different modules of Android smartphones,
they also proposed a general power model: Power-
Booter. PowerBooter is based on the discharge
curve of the lithium-ion battery in a specific An-
droid smartphone. PowerTutor has better accuracy
compared with PowerBooter, however they both
have shortcomings. PowerTutor is specific to An-
droid smartphone modules and PowerBooter needs
the discharge curve of the battery on each Android
smartphone.

Dong et al. [3] implemented a self-constructive
energy model for Linux-based mobile systems.
The energy model, called Sesame, generates en-
ergy models for mobile systems without exter-
nal power measurement. Sesame collects system
statistics and applies the Advanced Configuration
and Power Interface (ACPI) to gather the predictors
for the power model. Energy readings are collected
through the smart battery interface, and linear re-



gression power models are generated based on the
collected data.

Mittal et al. [12] proposed and implemented a
power model, WattsOn, for the mobile device em-
ulator on the Windows Phone platform. It builds
upon a set of power models that focus on individual
components, such as cellular network (3G), WiFi
network, display, and CPU. Application developers
are shown the energy consumption of each compo-
nent in order to make better decisions while imple-
menting an application. They also apply resource
scaling to generalize WattsOn for real phones to
overcome the measurement differences between
the emulator and phone.

As mentioned in Balasubramanian et al. [13]
and Pathak et al. [4], some of the components
(NIC, 3G, and SD Card) exhibit a tail energy phe-
nomenon. Tail energy usage occurs when com-
ponents stay in a high power state after the com-
pletion of an operation even though they are no
longer being used. Thus, utilization-based power
models are unable to model the tail energy phe-
nomenon. Compared with utilization-based power
models, our methodology is based on tracing sys-
tem calls, which is able to overcome the problem
posed by the tail energy phenomenon [4].

2.3 Instruction-Based Power Models
For applications running in a JVM, a list of re-
search papers have taken a different approach: uti-
lizing the Java bytecode instructions to build en-
ergy models for software systems.

Seo et al. [14, 15] have implemented an energy
consumption model for Java-based software sys-
tems running on distributed devices. This power
model consists of three components, computational
energy cost, communication energy cost, and in-
frastructure energy overhead. This energy con-
sumption model makes accurate estimates which
fall within 5% of the actual energy cost for an ap-
plication. However, the model is highly dependent
on the hardware and JVM.

Hao et al. [16] built an energy consumption
model, eCalc, for Android application CPU energy
consumption at two levels: the whole program and
the method. The approach in eCalc is similar to
Seo et al. [15].

An extension of eCalc implemented by Hao et
al. [5], called eLens, combined program analysis
with instruction-based power modelling. eLens is
able to estimate the energy consumption of hard-
ware components besides the CPU and has fine-
grained energy profiling on multiple levels. Li et.
al. [17] extended this work by profiling bytecode
instructions, and estimating the energy consump-
tion of each line of source code. Their profiler
application, vLens, is able to estimate energy con-
sumption with high accuracy.

Instruction-based power models are often de-
signed for software running in a JVM. Some of the
applications in this paper do not run in a JVM.

2.4 System-Call-Based Power Model
A system-call-based power model was proposed by
Pathak et al. [4]. They applied system call tracing
to model the energy consumption of applications
running on smartphones. First, they studied the
power behaviour of components in a smartphone
and showed that: 1) several components have tail
power states (a component stays in high power state
for a period of time after use); 2) system calls that
do not imply utilization can change power states;
and 3) several components do not have quantita-
tive utilization. They conclude that energy linear
models based on correlating utilization with energy
consumption are not accurate. Second, they built
energy models by tracing system calls using three
steps. The first step was to model the power states
and generate finite state machines (FSMs) of each
system call for each component in a smartphone.
The second step was to integrate all the FSMs of
system calls to model a FSM for each individual
component. In the final step the FSM model of the
smartphone was developed based on the FSMs in
second step. Finally, based on the FSM of a cer-
tain smartphone, they can identify the state that the
system is currently in and estimate the energy con-
sumption of an application. The authors have im-
plemented FSMs for several Windows and Android
smartphones. Their results show improved accu-
racy compared to an approach [10] based on linear
regression modelling. Pathak et al. [18] extended
their prior work and implemented a fine-grained
energy profiler for smartphone using FSMs. This
energy profiler, eprof, can work on both Android



and Windows Mobile phones to estimate the en-
ergy consumption of smartphone apps.

Similar to this system-call-based power model,
we also trace system calls and correlate them with
software energy consumption. However, this work
relies on the aggregate count of system call invoca-
tions and studies system call profiles across multi-
ple versions of existing products.

2.5 Mining Software Repositories
Mining software repositories (MSR) research seeks
to enable software engineers and researchers to
base their decisions on data mined from software
repositories such as version control systems, bug
trackers, and project documentation. MSR research
applies statistical analysis, data mining, machine
learning, and other automated techniques to extract
rich data from software repositories in order to dis-
cover interesting and actionable information about
software systems [19]. With the help of this histor-
ical information, knowledge can be acquired about
software development processes and characteris-
tics and used to inform decisions. MSR techniques
have been successfully applied to many areas such
as predicting software defects and validating the ef-
fectiveness of development behaviours. Only a few
papers have tried to leverage MSR techniques to
understand software energy performance.

Gupta et al. [20] studied the energy consumption
of a Windows phone. They combined power traces
and execution logs to build power models. Specif-
ically, a power trace is the measurement of power
use on a phone during a test session by a power
meter. The execution log is a sequence of active
executable files and shared libraries during a test
session. Using the combined data set, they created
linear regression models and predicted the energy
consumption of application running on a Windows
phone. They also applied techniques such as deci-
sion trees to detect energy patterns within the data
set.

Hindle [6] provided a detailed methodology,
called Green Mining, to collect energy consump-
tion data for applications over multiple versions
on Linux-based systems. Based on power mea-
surements and software metrics, the author stud-
ied the correlation between software change and
energy consumption over multiple application ver-
sions. Although the correlation between software

metrics and energy consumption is very low, Green
Mining points to a promising research direction:
combining power measurement with MSR tech-
niques.

Hindle et al. [1] also created a test bed called
Green Miner, which has a dedicated hardware in-
frastructure to measure the energy consumption
of Android applications across multiple versions.
They also demonstrated that multiple test runs are
required to reliably calculate the energy consump-
tion of an application on a smartphone. Green
Miner can measure up to 50 power readings every
second. A constant voltage of 4.1V is provided to
the phone which draws varying current according
to phone’s requirements. This test bed was used
for the case studies presented in this paper.

The case studies presented here are based on
the methodology of Green Mining, extending this
methodology to find the correlation between soft-
ware change and energy consumption via system
call tracing.

This paper applies the approach of Pathak et
al. [4, 18] and Hindle [6] to find the relationship
between system call traces and energy consump-
tion across multiple versions of applications. Here,
instead of using FSMs, the number of system call
invocations are used to build various types of mod-
els. Counting system call invocations is easier than
making FSMs.

3 Methodology
This section describes the procedure for creating
test scripts and collecting the energy and system
call statistics for multiple versions of two applica-
tions. Data was collected using the following pro-
cedure:

1. Select the application, and build multiple ver-
sions;

2. write the test script to drive the application;

3. configure the Green Miner; and

4. collect and analyze the results.

3.1 Selecting the Application and
Building Multiple Versions

Two open source applications with multiple ver-
sions were chosen for these tests: Calculator



and Firefox for Android. Both applications
are widely used, Calculator for calculations
and Firefox for browsing the web. 101
Calculator versions were retrieved from its
GitHub repository. These versions were commited
between January 1, 2013 and February 5, 2013.
Using the Android NDK tools 101 Calculator
APKs (Android Packages) were built. APKs are
like Java jar packages or Debian deb OS pack-
ages, except that APKs are used only in Android.

Similarly, Firefox application versions were
obtained by building the nightly commits in the
Firefox repository from March 7, 2011 to
November 17, 2011. 156 versions of Firefox
were built, each separated by one commit.

3.2 Devising the Test Sequence
The test scripts were created to simulate realistic
usage of the application by an average user. The
Calculator application is used for calculations
that a user might execute daily such as unit conver-
sions or tax calculations. The Calculator ap-
plication test does some simple conversion calcu-
lations such as converting miles to kilometres, gal-
lons to litres, calculating tax amounts and solving
an equation using the quadratic formula. This test
has a duration of 125 seconds.

The primary use of Firefox is to browse web
pages full of multimedia such as images. To sim-
ulate an average user reading a web page with
the Firefox application, the script opens the
Wikipedia page about American Idol, and emulates
reading action for 4 minutes. The script scrolls the
page by swiping the page down and clicks on the
screen at regular intervals of 10 seconds to prevent
the phone from sleeping. The webpage is stored on
a local server to be loaded by Firefox. This pre-
vents the webpage from changing and also prevents
varying server response times and network conges-
tion from affecting the data collected.

3.3 Configuring the Green Miner
The Green Miner test bed [1] was used for testing
the applications. Green Miner is a test bed consist-
ing of four Android clients. Each client consists
of a Galaxy Nexus phone controlled by a Rasp-
berry Pi that starts the tests, collects and uploads
the data onto a centralized server and an Arduino

for measuring energy consumption. In order to em-
ulate a user using the phones in the test bed, the
screen pixel positions of each of the touch events
is recorded. For example, to emulate a tap ac-
tion on the phone, the pixel position on the screen
for the tap is recorded. Similarly, for a swipe ac-
tion, the starting and ending pixels on the screen
are recorded. The emulator provides the option
to record the pixel positions at each tap or swipe
on the emulator screen. The Android emulator is
available with the standard Android Studio plat-
form.

Green Miner takes this sequence in the form of
a script that is used to replay the sequence of taps
and swipes on an actual phone. It runs the sequence
on the test bed phone by injecting touch events into
the phone’s software, from the script file. It cre-
ates touch events on the phone, swiping actions on
the phone screen and text entry on the phone’s on-
screen keypad. For system call tracing, strace
is employed, and cross-compiled for Android. The
strace -c option is used to obtain system call
counts.

3.4 Running the Tests
As there is a variation in power measurements due
to factors unrelated to the software being tested,
multiple tests for the same version need to be run.
In these experiments, 10 tests per version were run.
From these tests the mean energy consumption is
calculated for each version. Because strace adds
its own energy overhead during the tests, separate
test runs are required for collecting the system call
data. 10 runs per version are run with the strace
tool in the background to obtain the system call
profiles. There were a total of 2020 and 3120 test
runs for the Calculator and Firefox applica-
tions, respectively. A total time of 400 hours was
needed to run these tests.

4 Results and Analysis
In this section, the results from the experiments on
Calculator and Firefox are presented and
analyzed.



0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

se
nd

to

re
ad

re
cv

fr
om

ge
tti

m
eo

fd
ay

ep
ol

l_
w

ai
t

io
ct

l

op
en

cl
os

e

ge
tp

id

ca
ch

ef
lu

sh

w
rit

e

to
ta

l

cl
oc

k_
ge

tti
m

e

m
ad

vi
se

si
gp

ro
cm

as
k

m
m

ap
2

ls
ee

k

ge
tp

rio
rit

y

fu
te

x

ge
tu

id
32

m
pr

ot
ec

t

st
at

64

ge
tti

d

m
un

m
ap

w
rit

ev

pr
ea

d

System Calls

V
ar

ia
nc

e(
%

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

cl
os

e
ut

im
es

_l
ls

ee
k

fs
yn

c
pi

pe
si

ga
ct

io
n

ls
ta

t6
4

ge
tti

m
eo

fd
ay

ge
tu

id
32

op
en

un
lin

k
to

ta
l

fs
ta

t6
4

fu
te

x
cl

oc
k_

ge
tti

m
e

si
gp

ro
cm

as
k

m
pr

ot
ec

t
w

rit
e

ge
tp

id
ca

ch
ef

lu
sh

fc
nt

l6
4

ge
td

en
ts

64
ac

ce
ss

re
ad

st
at

64
ls

ee
k

so
ck

et
se

nd
m

sg
se

t_
tls

co
nn

ec
t

cl
on

e
io

ct
l

m
kd

ir
ge

tp
rio

rit
y

br
k

se
ts

oc
ko

pt
ge

ts
oc

ko
pt

se
nd

to
ep

ol
l_

w
ai

t
m

m
ap

2
ge

tti
d

m
ad

vi
se

re
cv

fr
om

m
un

m
ap

po
ll

ge
te

gi
d3

2
ge

te
ui

d3
2

ge
tg

id
32

w
rit

ev
re

cv
m

sg
ge

tp
ee

rn
am

e
na

no
sl

ee
p

ge
ts

oc
kn

am
e

System Calls

V
ar

ia
nc

e(
%

)

Figure 2: Variance as a percentage of mean value across 10 runs per system call per version for the
Calculator (left) and Firefox (right) applications. The X axis refers to the system calls, while the
Y axis refers to variance in percentage.

4.1 System Call Profile Stability
In our tests, the Calculator application in-
voked 46 different system calls and Firefox in-
voked 91 different system calls. The system calls
that had on an average less than 10 calls per ver-
sion were filtered out, leaving 25 system calls for
Calculator and 53 for Firefox. Though it is
generally expected that system call counts are sta-
ble across different runs, the number of system call
invocations showed some variation. Different sys-
tem calls have different variances. Figure 2 shows
the average of the variances of the 10 counts for
each version over all versions of Calculator
and Firefox, relative to the average of the means.

Calulator 14 of the 25 system calls had an av-
erage variance ≤ 3% between versions. How-
ever, three system calls, munmap, pread, and
writeev have average variances of 13%, 79%,
and 33%, respectively, across all versions. 4 sys-
tem calls had an average variance between 3% and
5%. Finally, 4 system calls had an average vari-
ance between 5% and 10%. The total system call
count, the sum total of all system calls, has a mean
variance of 2% across all versions.

Firefox 33 of the 52 system calls had a mean
variance between 5% and 10% and the remaining
19 had a mean variance ≥ 10% when variances
were averaged over all versions. The Firefox

application shows much higher variability than the
Calculator application.

4.2 Energy Consumption
The power distribution as shown in figure 3 and
figure 4 were obtained by running the tests on
Green Miner. In order to determine whether the
differences between any two versions were statis-
tically significant, pairwise Student’s t-tests were
performed for each pair of Calculator and
Firefox versions, as shown in figure 5.

Calculator Figure 3 depicts a sudden drop in en-
ergy consumption at versions 73, 74, 82, and 84.
Figure 5 shows that for versions after version 45,
many versions are statistically different than the
versions before version 45. The authors looked
within the code repository and determined that this
is because the screen display density was reduced
in version 45, leading to a slight difference in the
energy consumed. Versions 73, 74, 82 and 84 are
versions that failed during testing and form their
own cluster. These four versions are significantly
different from all the other versions in terms of en-
ergy consumption. The errors in these four versions
could have been the result of two large, incomplete
refactoring efforts, one which started at version 73
and another which started at version 82.
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Figure 3: Box plots of the mean watts used for each version of the Calculator application. Each of
the 101 versions was measured 10 times. The X axis represents the version numbers and the Y axis
represents the energy consumption.

Firefox Versions after version 56 are signifi-
cantly different from the versions before version 56
as shown in figure 5 and 4. Also, version 46 is sig-
nificantly different from versions 1 to 56 in terms
of power use. In version 56, a bug was fixed which
added .net at the end of the domain name when-
ever the active tab was switched before loading the
website by removing the buggy code. This con-
tributed to the reduced energy consumption in ver-
sions 56 onwards. Power use increases again after
version 70, when functionality to check for plugin
crashes was added. Versions 77 to 86 contained a
bug that was introduced during refactoring and was
finally fixed in version 87. Versions 98 to 100 con-
tained bugs that crashed Firefox completely.

4.3 Linear Regression
In order to test the relationship between energy
consumption and system call counts, two models
were used. First, a linear model was created us-
ing the ordinary least-squares error (OLS) regres-
sion method for individual system calls, relating
the mean energy consumption and mean system
call counts for that system call.

Calculator A large number of the 25 system calls
are highly correlated with each other: most sys-
tem calls have a high Spearman’s correlation co-
efficient (|ρ| ≥ 0.8) with at least one other system
call. Hence, for 25 system calls, models were con-

structed relating energy consumption to the number
of invocations of that system call. A linear model
of the form y = b1 · x+ b0 was created, where y is
the mean power use of a version, x is the mean sys-
tem call count for a particular system call for that
version, b0 is the intercept, and b1 is the slope coef-
ficient. 10 such models are depicted in table 1. Ta-
ble 1 also shows the mean number of invocations of
the system call across the versions as x̄, and mean
power contribution of the system call, b1 · x̄, as es-
timated from the linear models in the last column.

Selected system calls are shown in table 1 and
their descriptions in table 2. 12 out of 25 of the
system calls correlate with (Spearman’s |ρ| ≥ 0.3)
the energy consumption, while the other 12 have
|ρ| values between 0 and 0.3 with 1 being nega-
tively related to energy consumption. However, all
25 system calls have high R2 values. 20 of the 25
models had R2 ≥ 0.6. A model relating the mean
sum total of all system call counts to power was
also constructed, as shown in Table 1. Sum count
of all system calls correlates weakly (|ρ| = 0.37)
but its linear relationship has a higher R2 value of
0.74. Though the linear model coefficient b1 for
almost all the system calls is small, they are sta-
tistically significantly different from zero with p-
value (≤ 1×10−12). The coefficients are small be-
cause the number of call invocations are high and
the units used (mean watts) are large. As the linear
models have robust R2 values, they capture a rela-



tionship between the system call counts and energy
consumption of the Calculator application.

Firefox Only 10 out of 53 of the system calls are
mildly correlated (Spearman’s |ρ| ≥ 0.3) to energy
consumption, while 36 have |ρ| values between 0
and 0.3 and the remaining 7 are negatively corre-
lated. However, most of the linear models have low
R2 values, most of them with R2 less than 0.3. A
linear model based on the sum total of all system
calls has a correlation of 0.606 and R2 value of
0.31. The coefficient, b1 is statistically significant
with very small p-values(≤ 1×10−12).

10 selected linear models are shown in table 3
and the system calls used are described in table 4.
Table 3 also shows the mean number of invocations
of each system call across all versions as x̄ and the
mean power contribution of each system call esti-
mated by the linear models (b1 · x̄) in the last col-
umn.

4.4 Logistic Regression
Second, a logistic regression model was con-
structed by relating a significant change in power
(compared to a reference) to a significant change
in system call counts (compared to the same refer-
ence).

Developers are concerned about the effect that
their code changes have on their application’s en-
ergy consumption. Logistic regression models

were created to address the question, “can we pre-
dict whether our application’s energy consumption
changes or not by using changes in system call
counts?”

To use logistic regression a binary classification
is required. Thus each application version’s energy
consumption is characterized as high or low. High
energy consumption is defined as being more than
the mean, and low energy consumption is defined
as being less than the mean. Using the mean sys-
tem call counts from all versions as a reference, the
difference between the system call count for each
version and the reference is calculated. This dif-
ference is used as the independent variable in the
logistic regression.

Most system calls are highly correlated with
other system calls, thus a model with a reduced
number of system call counts as features can be
constructed. An iterative approach was used to
choose the appropriate independent variables (sys-
tem call counts) for the model. This approach is to
add system calls as independent variables one by
one. If all system calls in the model were signif-
icant the new system call was kept as an indepen-
dent variable. If not all system calls were signifi-
cant to the predictions of the model, the insignifi-
cant system calls were removed. The final model is
the one with the largest number of significant sys-
tem calls.
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Figure 4: Distributions of the mean watts consumed per version of Firefox application over 10 tests
for 156 versions. The X axis represents the version numbers and the Y axis is average power use.
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System Call Spearman’s ρ R2 Coefficient b1 x̄ b1 · x̄
mmap2 0.670 0.764 8.87×10−5 511.30 0.0453
open 0.651 0.819 5.03×10−4 115.73 0.0582
close 0.048 0.695 1.44×10−3 32.72 0.0470
epollwait 0.031 0.684 1.06×10−5 5113.56 0.0543
mprotect 0.613 0.756 5.83×10−6 8438.49 0.0491
recvfrom 0.060 0.698 7.64×10−6 7213.38 0.0550
writev 0.645 0.391 6.57×10−4 29.03 0.0190
cacheflush 0.498 0.745 1.27×10−5 3954.34 0.0500
ioctl 0.201 0.740 3.79×10−6 14885.60 0.0560
total calls 0.373 0.740 5.64×10−7 98155.94 0.0550

Table 1: Linear model summary for selected system calls for Calculator application

Calculator 257 models using 5 system calls were
found. No model was found where all 6 or more
system calls were still significant. In order to se-
lect the best model out of these models, mean accu-
racy under 10-fold cross validation was used. The
dataset is quite small and the variability in the cross
validation error is high. To counter this variability,
10-fold cross validations were run 100 times and
their accuracies were averaged. The model using
recvfrom, munmap, cacheflush, gettid,
and epoll wait had the highest average accu-
racy of 87.7%. The model with the lowest accuracy
using only significant system calls had an accuracy
of 75.6%. The top 3 most common system calls
in all 257 models were write, gettimeofday,
and getpid. Using the most accurate model, it

is possible to predict the direction of the change
in energy consumption relative to the reference en-
ergy consumption with very high accuracy.

Firefox 128 models containing 9 system calls
were obtained. No model had 10 or more sys-
tem calls that were statistically significant. Each
of the 9 features is the change in the sys-
tem call count of a version with respect to the
mean call count of that system call across all
versions. The highest average accuracy was
80.4% from the model with recvmsg, lseek,
read, gettimeofday, futex, epoll wait,
clock gettime, cacheflush and access
as features. The lowest accuracy was 68.07%. The
three most common system calls among the models
were ioctl, close and lseek.



System Call Description [21]
mmap2 map files or devices into memory

(called to allocate memory and load
libraries)

open open a file descriptor
close close a file descriptor

epollwait
Wait for events on the epoll file
descriptor

mprotect set protection on a region of memory
recvfrom receive messages from a socket
writev write data into multiple buffers

cacheflush
flush contents of instruction and/or
data cache

ioctl
performs device-specific I/O
operations

Table 2: Selected system calls with their descrip-
tions from the Calculator application test case.

4.5 Rule of Thumb
Developers should not be required to use expensive
and specialized power testing equipment in order
to make predictions about the changes in energy
usage caused by their changes to the application
source code. One of the goals of this paper is to
provide developers with a “rule of thumb” in or-
der to make this prediction quickly. To provide this
rule, the Student’s t-test was used to examine the
relationship between significant changes in system
call usage and significant changes in power con-
sumption.

In order to create a rule useful in real-world
development processes, only consecutive versions
were considered. 100 Student’s t-tests were per-
formed for Calculator and 155 Student’s t-
tests were performed for Firefox. Each test was
done for a consecutive pair of versions to determine
whether the version succeeding the change was sig-
nificantly different from its predecessor. For each
version, 10 power measurements were taken and
compared with the 10 power measurements for the
next version.

t-tests were also performed for each of the sys-
tem calls, using the 10 call invocation counts to
determine whether the usage of that system call
changed significantly between any two consecutive
versions. An α of 0.05 was chosen as a p-value
threshold for establishing whether consecutive ver-
sions are significantly different or not. Since con-
secutive versions are tested, the control group is

different for each t-test. Therefore, multiple test
correction is not required.

The purpose of this procedure is to determine
whether a significant change in system call use and
a significant change in energy profile usually occur
together. In order to establish the usefulness of the
rule of thumb, precision, recall and specificity were
calculated:

Precision =
SS

SS + SN

Recall =
SS

SS +NS

Specificity =
NN

NN + SN

SS is the number of times the power difference
as well as the system call count difference are sig-
nificantly different; NS is the number of times
the power is significantly different but the system
call profile is not ; SN is the number of times the
system call profile is significantly different but the
power is not; and NN is the number of times that
neither are significantly different.

All three statistics, precision, recall, and speci-
ficity, range from 0 to 1 with 0 being the worst
and 1 being the best possible value. High preci-
sion indicates that positive results from our rule of
thumb indicate a significant change in power con-
sumption. High recall indicates that there were few
significant power changes that the rule of thumb
missed. High specificity indicates that our rule of
thumb generates few false positives.

In other words, if a developer used our rule of
thumb to decide when to perform power tests, with
high precision, more of the time they spent doing
power testing would yield significant results. With
high recall, they would find more of the significant
results that could be found. With high specificity,
they would spend less time testing insignificant re-
sults. Table 5 summarizes these statistics for our
rule of thumb on selected system calls on both ap-
plications.

Calculator The highest recall of 0.909 was ob-
tained using the system call cacheflush while
the lowest was obtained by using sendto which
had a constant number of invocations, 182, in
all versions. The highest precision of 1 was ob-
tained using the system calls pread and stat64



System Call Spearman’s ρ R2 Coefficient b1 x̄ b1 · x̄
llseek 0.100 0.040 1.30×10−4 208.45 0.029
brk -0.170 0.001 -8.07×10−5 72.175 -0.005
mmap2 0.360 0.257 3.50×10−4 546.95 0.190
ioctl 0.407 0.534 1.77×10−4 1413.16 0.250
epollwait 0.088 0.274 3.41×10−5 6293.50 0.210
ftruncate 0.001 0.269 2.64×10−7 10.23 0.000
fsync 0.044 0.126 1.00×10−3 78.46 0.120
close -0.030 0.016 3.10×10−6 8117.55 0.020
fstat64 0.060 0.014 1.57×10−5 1517.78 0.023
dup2 0.235 0.008 1.40×10−3 11.43 0.002
write 0.199 0.072 5.63×10−6 7313.99 0.041

Table 3: Linear model summary for selected system calls for Firefox application

System Call Description [21]
llseek reposition read/write file offset
brk change data segment size

(used to allocate memory, for
example by malloc)

mmap2 map files or devices into memory
(used to load libraries and allocate
memory,
for example by malloc)

ftruncate truncate a file to a specified length

ioctl
performs device-specific I/O
operations

epollwait
Wait for events on the epoll file
descriptor

fsync
synchronize a file’s in-core state with
storage device

close close a file descriptor
fstat64 get file status
dup2 duplicate a file descriptor

Table 4: Selected system calls with their descrip-
tions from the Firefox application test case.

while the lowest was obtained by using sendto.
The highest specificity was obtained by using
cacheflush while the lowest specificity was ob-
tained by using sendto. For some system calls,
changes in system call usage predicted changes in
energy usage with high precision and recall while
having high specificity as shown in Table 5.

Firefox The highest recall, 0.6, is obtained using
the system calls lstat64, pipe, and utimes.
The lowest recall of 0.1 was obtained using seven
different system calls. The highest precision,

0.263, was obtained using ioctl while the lowest
was obtained using stat64. The highest speci-
ficity of 0.96 was obtained using ioctl, while us-
ing cacheflush had the lowest at 0.93. Values
for precision and recall are lower than those ob-
tained for the Calculator application, however
specificity is higher.

Sum of Calls in table 5 refers to sum total of
counts of all system calls, and can be used in a situ-
ation where the developer has no information about
what system call will be best to use.

Given our threshold of α = 0.05,
Calculator’s power use changed significantly
11 out of 100 times, or 11% and Firefox’s
power use changed significantly 10 out of 155
times, or 6.4%. Thus, by randomly guessing
version pairs we would get a precision of 0.11 for
Calculator and 0.06 for Firefox. Because
the number of commits that change energy con-
sumption significantly is low and energy testing
is expensive, we expect a much higher specificity
than recall. The unbiased coin flip detects on an
average of 50% of the significant change power
versions, giving a recall of 0.5. Random guess
gives equal number of false negatives and true
negatives, giving a specificity of 0.5 also. Regard-
less of data, while randomly guessing, recall and
specificity must sum to 1. An unbiased coin flip
usually performs worse than our rule of thumb
with a randomly selected system call. System calls
that are constant between versions perform worse
than a random guess. In practice, the random
guess should be biased to predict lesser number
of significant changes, thereby reducing recall and
increasing specificity to limit testing cost. Even



Calculator application
Precision Recall Specificity

sendto 0 0 0.89
stat64 1.00 0.55 0.98

cacheflush 0.34 0.91 0.98
Sum of calls 0.35 0.72 0.96

Coin flip 0.11 0.50 0.50
Firefox application

Precision Recall Specificity

fcntl64 0.04 0.10 0.94
ioctl 0.26 0.50 0.96
lstat64 0.08 0.60 0.95

Sum of calls 0.18 0.60 0.97
Coin flip 0.06 0.50 0.50

Table 5: Rule of Thumb — Precision, recall
and specificity for the rule of thumb, using best
and worst system calls for the Calculator and
Firefox applications.

sum of system calls outperforms the unbiased coin
flip on all three statistics. Even if a biased coin flip
were to be used, the rule of thumb using the sum
total would perform better.

These observations can be used as a rule of
the thumb by developers: If the system call
profile changes significantly from the previ-
ous version, it is probable that the applica-
tion’s power usage has changed as well.

5 Discussion
The results in the previous sections show that sys-
tem call counts are somewhat stable but still have
variance. This observation implies that repeated
measurements are required in order to address the
high variability of some of the system calls counts.
The linear models obtained show that many sys-
tem calls correlate with energy consumption. This
was demonstrated by high R2 values obtained with
the Calculator application models. However,
in the case of Firefox, the linear models do not
perform as well, having both lower correlations and
lower R2 values.

The logistic regression models successfully de-
termined if a change in the system call pro-
file would lead to a significant change in power

consumption with accuracies between 75.6% and
87.7% for the Calculator application and accu-
racies of 68.07% to 80.04% for Firefox. Our lo-
gistic model is able to predict whether power usage
will change significantly with high accuracy using
the changes in system call usage.

While it might be the case that an application
is using a lot of power doing CPU-only compu-
tations while not making system calls, this is rare
because usually CPU-heavy computations involve
memory management system calls such as sbrk.
Even in the case that they do not, this type of ap-
plication behavior will still be evident in the sys-
tem call profile. Waiting for system call completion
is usually the only way that an application can al-
low the CPU to idle. Thus, we expect system calls
like epollwait, which is specifically used to idle
the application, to have a positive correlation with
power use. This is because in order for the applica-
tion to sleep many times, it must wake up and per-
form computations many times. And in fact, this is
what was observed in Table 3.

I/O system calls can also be an indicator that an
app is using power-hungry peripherals. For exam-
ple, an app might use write to send data to a
remote computer over the network, activating the
phone’s WiFi transmitter, which requires power.
Thus, a network application like Firefox should
show a positive correlation between write calls
and power consumption, which is what was ob-
served.

Some system calls have a negative correlation
with power use. This correlation is most likely
caused by an application using alternate methods
which use less power to achieve the same result.
Consider the case of Firefox, which, like all
browsers, has a cache. If Firefox can retrieve
data from its cache it doesn’t need to use WiFi as
much, saving power.

The rule of thumb, “energy profile usually
changes significantly when the system call pro-
file changes significantly,” is supported by both
datasets, however it achieves higher precision, re-
call and specificity on Calculator than on
Firefox. The rule of thumb outperforms the ran-
dom guess, providing developers an insight to re-
view their last change with the application’s en-
ergy consumption perspective, resulting in large
time savings when instrumentation is not available
or not feasible.



Thus, developers who keep track of system call
profiles for their application can make an informed
decision on when more expensive power testing
may be useful. Profiling system calls is less re-
source intensive than setting up special hardware
test bed and using power instrumentation to profile
power consumption. The rule of thumb requires
only that developers track system call profiles,
which is very simple with the help of strace, a
free software instrument.

6 Threats to Validity
Internal validity is constrained by our choice of ap-
plications and their versions. Also, variation in
power from version to version is not very high
in the Calculator versions tested. Addition-
ally, the larger linear models can suffer from multi-
colinearity.

The external validity is constrained by the test
construction and application choice. It is possible
that our test has limited coverage of the applica-
tions’ features. However, time constraints limit the
number of features that can be tested 1010 or 1560
times per application. High coverage tests do not
guarantee a realistic test or effective usage, how-
ever, because high-coverage tests will often exer-
cise features that are rarely used in practice.

7 Conclusion
This study investigated the relationship between
system call invocations and energy consumption
across multiple versions of two Android applica-
tions, Calculator and Firefox. System calls
were found to suffer from limited variability. By
relying on averages, linear models of the relation-
ship between system calls and energy consumption
became possible. Most system calls are mildly cor-
related to energy consumption.

This work proposes a change model using logis-
tic regressions to predict if a new version has sig-
nificantly different energy consumption compared
to an older version based on the difference in sys-
tem call invocations. Our model achieves a maxi-
mum accuracy of 87.7% for the Calculator and
80.04% for Firefox.

The hypothesis that a significant change in
an application’s system call profile predicts a
change in the application’s energy consumption
profile, is supported by the results obtained. This
study demonstrates a relationship between en-
ergy consumption and system call profiles, provid-
ing a promising research direction, and a practi-
cal method for developers to estimate when run-
ning expensive energy measurement tests is worth-
while by making inexpensive measurements of
their change’s impact on system calls usage.

This work demonstrates that system call profiles
can be used to model changes in energy consump-
tion profiles for Android applications. These ob-
servations are easy to leverage by developers. De-
velopers concerned about their software’s energy
consumption can estimate the impact of a revision
by comparing system call counts between revisions
using simple tools like strace combined with
student’s t-test or a logistic regression built with
the power profiles of previous versions.

A simple tool could perform system call tracing
and the Student’s t-test. If power profiles from pre-
vious versions of the same software were available,
it could also use a model produced by logistic re-
gressions. Such a tool would be useful to determine
if a change might have introduced a bug which in-
creases power consumption, as occurred during the
development of Firefox. Such bugs could be in-
troduced during refactoring or the addition of new
features, and may not be detected by either user or
automated testing.
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