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Abstract

This thesis addresses on-line and off-line tool management in a manufacturing
environment. The objective is to minimize the unit time production cost considering

tool replacement/adjustment cost and the economic quaiity loss.

A systematic approach is developed for on-line tool management when the prior
information on the tool wear trend is not accurate due to working condition changes.
Monitoring with the EWMA control chart can detect when the actual tool wear
process deviates from the expected tool wear function. A method is proposed to
identify new tool wear function under changed working conditions. Thiz method
integrates the least square estimation and the prior information available before a
new tool is used. With an updated tool wear function available, the optimal tool
replacement/adjustment decision can be made on-line to minimize the unit time
production cost. Therefore, the optimal decision of tool adjustment and replacement
time can be obtained specifically for every new tool, without extensive prior data

collection or controlled experiments.

Off-line decision making for tool replacement/adjustment is also studied. Un-
der identical working conditions, With known tool wear function, the optimal tool
replacement decision is developed. Under similar but varied working conditions, if
on-line tool wear monitoring is not applicable, a robust optimal tool replacement
time model is proposed for optimal decision making to reduce the average produc-
tion cost. Regarding in-process tool adjustment, the optimal decision of adjustment,
times are analyzed. While an analytical solution is impossible due to the complexity
of the optimization model, several heuristic tool adjustment options are discussed

and compared with the solutions from the numerical search method.
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Notation

ag initial tool setting at the beginning of each replacement (adjustment) cycle

a, initial tool setting offset; a, = ag — T

b; the parameters of R(?)

b the mean value of b; when b; is uncertain

J unit time production cost over replacement cycle

C, tool adjustment cost, including mainly production time loss cost which is
smaller than that in a tool replacement situation

C, replacement cost, including tool cost, set up cost and production time
loss cost

J number of adjustment and replacement times
(J — 1 adjustments and 1 replacement)

k cost caefficient in the symmetric Taguchi quality loss function

K weighting matrix, a diagonal matrix with elements of kis

k. coefficient of contral limits, a design variable of EWMA control chart

k; weighting factor for parameter b’s deviation from the prior value

K, weighting msirix on 6, in 6 solution

K, weighting matrix on 6, in 6 solution

L. economic quality loss at time t

Q tool replacement time without adjustment

R(1) average tool wear at time ¢, a n-th order polynomial model reflecting
a normal tool wear pattern

R(t) estimated R(t)

Rp(1) prior information of R(t)

t the working time of a new tool since installed

T ta:zet value for the part dimension

T, duration between consecutive tool adjustments; j =1,2,...J

U, the expected value of X; Uy = ag + R(t)

X, measurement of the part at time t, X, = Uy + €

Xn residual variable Xz, = X; — [—a; + Ry(t)]

o EWMA variable of Xg;

by
0 the parameter vector of R(t). When R(t) = b1t + byi® 4+ b3t®, 0 = | b
bs

0, the parameter vector of Rp(t)

0, the estimation of 8 by using the least square method

0 the estimation of # by using the proposed method

Ab, estimation error by using the least square method



the inaccuracy of the prior information

estimation error by using the proposed identification method
the mean value of a? for different processes when b; is uncertain
the variance of b; when b; is uncertain

the covariance of b; and b;.(i # j)

forgetting factor, a design variable of EWMA control chart
time state matrix consisting of sanpling times

the working time of a tool since its last adjustment

random variable with mean zero and standard variation o

Xe=T—-a,+Rt)+€=—ar+ R(t) + ¢



Chapter 1

Introduction

Facing increasing global competition, manufacturers are pursuing the most ef-
fective ways to improve product quality, as well as reduce production cost. Quality
related research work is appearing in the literature at a fast rate to address var-
ious quality topics in manufacturing. One of the most concerned issues is tool
management, since cutting tools play a major role in producing quality products
economically in a manufacturing establishment. For example, “tool wear” is in-
evitable in a machining process. The dimension of the final work piece depends on
the tool wear status. To ensure the workpiece quality, the tool has to be adjusted
or replaced at certain time intervals. However, the adjustment and replacement
costs have to be taken into consideration. The benefits resulting from better tool
management include improved product quality, reduced machine down time and
above all, lower production cost.

According to Taguchi, the economic quality loss L, due to the deviation of a

part’s dimension from its target value is a quadratic function:

kql(/\’t - T)2, X <T
qu(X! - T)z, Xt Z T,

(1.1)

where X, is the measurement of the part at time ¢, T is the target value for the part

1



dimension, ky and kg3 are cost coefficients determined from the requirements of the
customers [1, 2]. When k;; = kg3, the quality loss function is said to be symmetric.

As a major factor affecting product quality, tool wear is a complex phenomenon,
involving a variety of wear mechanism, such as diffusion, abrasion, fatigue, attrition
and plastic deformation. The dominant wear mechanism and the rate of wear are
subject to temperature, stress, and other factors. Since the underlying physics of
tool wear is very complicated, tool wear model R(t) is usually fitted from empirical
tool wear data. When the working condition remains the same during a tool life,
the tool wear amount usually follows a non-decreasing, non-linear trend, consisting
of three distinct periods: initial wear period, normal wear period, and accelerated
wear period [3]. The average tool wear can usually be expressed as an m-th order
polynomial tool wear function R(t). This tool wear function can he fitted from the
tool wear data obtained either from the controlled experiments or from historical
tool wear data. While on-line tool wear monitoring using sensors is not widely
available in industry, the finished part dimension measurement can be collected
easily in the process. The average tool wear trend R(t) can be reflected by the
finished part dimension changes.

As an integration of three technical papers, this thesis addresses on-line and off-
line tool management, including the optimal tool replacement/adjustment decision
making based on the non-linear tool wear function. The objective is to minimize
the unit time production cost considering tool replacement /adjustment cost and the
economic quality loss.

To make optimal decisions for tool adjustment and replacement, the tool wear
function R(t) plays an essential role. The parameters of H(#) will change when
working conditions change [3, 4, 5]. To apply an existing tool wear function, the
machining process must be under identical working conditions. In a practical sit-
uation, especially in a flexible manufacturing environment, working condition vari-

ations are very common. With application of group technology, each tool may be



responsible for certain operations in which simiiar workpiece material and machining
conditions are involved. However, tool property variations and working condition
changes still exist. For example, cutting speed and cutting depth could be varied;
workpiece material and geometry could be slightly different from batch to batch;
tools themselves, could have similar but different properties from one to another;
even the tool installations could be different from one operator to another. Under
these known or unknown working condition changes, tool wear curves could be dif-
ferent. even for a single tool [3, 6]. The parameters of R(t) are uncertain to some
degree. Due to working condition changes, the prior information on the tool wear
function R(t) obtained from experience may not be accurate for a new tool. The
optimal result obtained according to a specific R(¢) function can not guarantee the
real optimal solution under a changed working condition. However, it is either im-
possible or uneconomical to obtain the exact R(f) functions under every different
working condition.

In Chapter 2, a systematic approach is developed for on-line tool management
when the prior information about the tool wear trend is not accurate due to the
change of working conditions. On-line monitoring with the Exponential Weighted
Moving Average(EWMA) control chart can detect when the actual tool wear pro-
cess deviates from the expected tool wear function. A new identification method
is proposed to identify new tool wear function under the changed working condi-
tion. This proposed method integrates the lcast square estimation and the prior
information available before the new tool is used. In particular, the features of
this proposed method are analyzed compared to the least square estimation and
the prior information. With updated tool wear function available by applying this
method, the optimal tool replacement/adjustment decision can be made on-line to
minimize the unit time production cost. Therefore, the optimal decision of tool
adjustment and replacement time can be obtained specifically for every new tool,

without extensive prior data collection or ~ontrolled experiments.



Chapter 3 studies off-line decision making for tool replacement. Under identical
working conditions, with a known tool wear function, the optimal tool replacement
decision has been studied by Drezner and Wesolowsky [7], Jeang and Yang [8],
etc. Their research results are reviewed in Chapter 3. This chapter also analyzes
the research result claimed by Jean and Yang and shows that the tool wear model
R(t) by Jeang and Yang is too general to have a unigue optimal solution (a3, @*).
The sufficient and necessary conditions for the optimal tool replacement decision
is developed. On the other hand, under similar but varied working conditions, the
parameters of the tool wear function are uncertain. {f on-line tool wear function
identification is not available, a robust optimal tool replacement maodel is prevosed

for optimal off-line decision making to reduce the average production cost.

Chapter 4 discusses the off-line optimal decision making for the in-process tool
adjustment. In-process tool adjustment can reduce the dimension deviation of a
workpiece from the target value caused by tool wear. With in-process adjustment,
the tool could be replaced less frequently with improved workpiece quality. Usually,
in-process adjustment can be performed at much less cost than tool replacement.
Compared to performing tool replacement only, in-process tool adjustment could
save not only the tool cost but also the production down time for the tool installation
procedures. In this chapter, the optimal decision of adjustment times is analyzed
based on a known tool wear function R(t). An optimization model is developed.
While analytical solution is impossible due to the complexity of this model, several
heuristic tool adjustment options are discussed and compared with the solution by

the numerical search method.

Finally, Chapter 5 provides a summary of this thesis and the suggestions of

further research direction in the optimal tool management arca.
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Chapter 2

On-Line Tool Management With
Tool Wear Function Identification

2.1 Introduction

In a machining process, tool wear is a common phenomenon which affects the
final product quality. Tool wear results in part dimension deviations from its target
value. According to Taguchi quality loss function, the economic loss [, can be

expressed as:

Le = k(X, = T)? (2.1)

where X, is the measurcment of the part at time t, T is the target value for the
part dimension, and k is the cost coefficient determined by the requirements of
the customers [1]. A good tool management strategy including tool adjustment
and replacement is essential to product quality improvement and production cost
minimization.

In terms of tool replacement, some research results have reported to minimize

the expected unit time cost, based on the replacement cost and economic quality loss

0A version of this chapter will be submitted to the International Journal of Production Research
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[2, 3, 4). Further studies along this line will be presented in Chapter 3. However,
most of these studies on tool replacement are based on the assumption that the
average tool wear function versus time is known for a new tool. The validity of such
an assumption in industry is limited.

A tool wear process usually follows a non-decreasing, non-linear trend, consisting
of three distinct periods: initial wear period, normal wear period, and accelerated
wear period [5]. When the working condition remains the same during a tool life, the
average tool wear can usually be expressed as a polynomial function R(#). This tool
wear function can be fitted from the tonl wear data obtained from either controlled
experiment or historical data. While on-line tool wear monitoring using sensors may
be few available in industry, finished part dimension measurement can be collected
easily in a machining process. The average tool wear trend R(t) can be reflected by
the dimension change in the finished parts. The parameters of R(¢) will change when
working conditions change [5, 6, 7). The working conditions mentioned here include
tool material, cutting speed, temperature, workpiece material and geometry, coolant
condition, etc. To apply an existing tool wear function, the machining process must
be under identical working conditions. Since the working condition often changes
in a practical manufacturing environment, especially in an FMS environment [8, 6],
it is either impossible or uneconomical to obtain the exact R(¢) functions under
different working conditions.

Serval papers have addressed stochastic tool wear process adjustment without
the knowledge of tool wear function R(t). Quesenberry developed a two-part com-
pensator to minimize the expected mean squared error of the measurement from
the target value [9]. The method emphasizes the quality aspect and ignores the tool
adjustment cost and replacement cost. It also assumes that the tool wear process
follows a rough linear trend and the adjustments are done at the same time interval.
Galante and Lombardo studied tool replacement with adaptive control for a gener-

alized process using an unlimited number of tools [4]. The result would be useful



if the tool wear process is a an unpredictable stochastic process. However, when
working condition change is not dramatic, tool wear usually follows a predictable
non-decreasing trend [3, 5], especially in a mass production environment or in a
Flexible Manufacturing System (FMS) with application of group technology. Even
though change could happen in the process, the decision of next adjustment time is
still related to the previous adjustment time and the number of adjustments. The
algorithm provided by Galante and Lombardo will not give the real optimal on-line
tool adjustment/replacement strategy in a common tool wear process. Sanjanwala
et. al. [10] proposed a feedback system with an on-line pneumatic sensor and an
actuating mechanism to move the tool to compensate the tool wear. This method
requires extensive control system implementation and initial investment, which may

not be widely applicable in industry.

There are four typical situations w. en a new tool is to be used:

1. The exact tool wear function is available and the working condition for the
new tool is well under control. This situation is rare in practice and there arc
many research results available, including Chapter 3 and 4 in this thesis for

the optimal tool replacement/adjustment time determination.

2. The only information available is how the same type tool performed in sim-
ilar working conditions. The available tool wear function may not suit the

upcoming process very well.

3. The exact tool wear function for the upcoming process has been obtained.
However, there is a possibility that the working conditions for the process will

change unexpectedly.

4. There is no information related to the upcoming tool wear process at all.

This chapter discuss Situation 2 and 3 described above. A systematic approach



is proposed for the on-line tool management, including process monitoring, tool

wear function identification, and replacement/adjustment decision making.

To make an optimal tool placement/adjustment decision for a working tool,
we need to know or estimate the tool wear progress not only in the past, but
also in the future. The tool wear history can be obtained by measurement of the
finished parts. To predict tool wear in the future, an on-line tool wear function
identification method with the prior information is necessary. Whenever the tool
wear function has been updated, the new tool adjustment decision can be made
on-line to minimize unit production cost. Therefore, the best tool management
can always be achieved for every single tool, without extensive prior data collection
or controlled experiments. This is the goal of this chapter. Specifically, at first,
the tool wear process is monitored with the Exponential Weighted Moving Average
(EWMA) control chart. The control chart can tell whether the average tool wear
has deviated from the existing tool wear function, i.e., ont of control. Whenever
the process is out of control, an effective identification algorithm is used to update
the tool wear function. This algorithm is based on the prior information on this
function and the latest available tool wear measurement data. Then an updated
on-line adjustment strategy can be developed correspondingly.

In this chapter, the development of the identification algorithm is discussed with
details. It has to be quick to respond to process parameter changes and insensitive
to the process noise. Since the tool wear function during a tool life follows a non-
linear, non-decreasing trend which can be described as an m-th order polynomial

model R(t). In this chapter, we will use the 3rd order model.
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2.2 Tool Wear Process Monitoring with EWMA Control
Chart

The part dimension measurement data has a non-decreasing trend R(t) along
time. Before a new tool is used, assume we have the prior information available
for the wear of the new tool, i.e., R,(f). However, we do not know whether it will
represent the average tool wear for the coming process perfectly. That is why the
monitoring of tool wear process becomes necessary. During the tool wear process,
even though the new tool wear function has been updated by the on-line identifi-
cation algcrithm, we still need the on-line tool wear monitoring to detect whether

the actual tool wear process deviates again from what is expected.

Together with Shewart X-bar control chart, the EWMA chart is widely used in
statistic process control (SPC) to detect process mean shift from the original value.
Although the mean of a tool wear process data is not constant, a simple conversion

can make SPC control possible. We know that:
Xt = —a+ R() + &, (2.2)

To verify whether R,(t) is the mean function of tool wear data, we can examine the

residual variable:

Xpe=Xo — Ry(1) = R(t) — Ry(l) + € (2.3)

When the prior information is precise, i.e. R,(t) = R(t), the residual variable
Xnre &, with mean zero and stand deviation . Otherwise, the mean of residual

variable will shift form zero with the trend of R(f) — R,(t).

The EWMA chart can be used to monitor residual variables. Compared to the
Shewart X-bar chart, it performs better in detecting small process shifts [11]. It is
also easier to set up and operate than the cumulative-sum control chart [11]. Dis-

tinguishing with Shewart control chart, the EWMA is insensitive to the normality
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assumption. It is thercfore an ideal control chart for use with a small number of
observations [11], as in tool wear process.
To apply EWMA chart here, we calculate the EWMA variable z based on the

on-line measurement residuals:
zy = AXpt + 71 (2.4)

where 0 < A < 1 is a constant and the starting value zo = 0. The variance of z, is

o} = 0%32;[1 — (1 — A)*] [11]. The upper and lower control limits are:

IJCL{ = keaz,
UCL, = —keo.,

When R,(t) = R(t), the process is in control. If k. = 3, z will stay inside the
control limits with a probability of 97.3% under the normal distribution assumption.
When R,(t) # R(t), the process is out of control and z; will be out of control limits
after several observations.

Figures 2.1-2.3 show tool wear process monitoring by EWMA control chart
under different situations. We have assumed the prior information R,(¢) = 55¢ —
1212 + 3 on the upcoming process. The estimated average tool wear process is
depicted with symbol ‘o’s. The actual part dimension measurements are shown as
“*'g  These actual measurements are simulated with X; = R(t) + £, where random

variable ¢ has a variance of 2 = 16.

o Figure 2.1 shows the case when the prior information Rp(t) exactly represents
the tool wear process mean, i.e. R,(t) = R(t). The EWMA chart indicates
that the process is in control, because z; stays inside the control limits during

the whole process.

o Figure 2.2 shows the case when the prior information does not reflect the real
process mean when R(1) = 60t — 12¢? + t>. The EWMA chart indicates that

the process is out of control after the first few observation points.
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Figure 2.1:Process in control

e Figure 2.3 shows the case when the prior information fits the process very well
at the beginning. However, at time { = 4, due to working condition changes,
R(t) changes to R(t) = 601 — 12t% 4+ (. R,(1) is no longer precise when 1 > 4.
The EWMA chart indicates that process is out of control after several points

are observed after R(1) change.

The average run length (ARL) to detect an out of control state is a control chart
criterion. It reflects how many observations on average that the control chart will
need to detect the process shift. The ARL to detect a tool wear process depends not
only on values of A, ke, but also on ihe magnitude of mean shift R(1) — Ky(t). An
extensive study of optimal selection of A and k. has been reported {12, 13]. The best
A, k. combination to detect an out of control state as soon as possible is found in
these studies assuming that the magnitude of mean shift in the process is constant

after the shift happened. These results are not applicable here since (1) — R,(t)
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changes with time. Therefore, the selection of A and k. values for the tool wear
nrocess monitoring needs further study. We have used k. = 3,2 = 0.15 in this
chapter, since as a good rule of thumb, k. =3 and 0.05 < A < 0.25 generally work

very well in practice [11].

2.3 Tool Wear Function Identification With The Prior In-

formation

An identification algorithm is critical to ensure cifective on-line tool adjustment
decision making. Whenever tool wear process monitoring indicates that the process
is out of control, tool wear function identification becomes necessary to predict
sar trend. The new parameter 0 of tool wear function R(t) has to

new tool

be estimated based on the part measurements and prior information. Since tool
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adjustment /replacement decisions will be madc on-line based on 0, a wide variation
of 6 will result in a wide decision variation which may confuse the operator, while a
slow @ converge speed will not be able to provide correct adjustment/replacement
decision in time. The identification algorithm has to be insensitive to the process
noise, stable, and converging fast to the new parameters. Then the optimal decision

of the next tool adjustment or replacement time can be made in time and cffectively.

Based on the measured data, a curve fitting by the least square method can be
performed to identify the parameters of a changed process. This method is widely
used in the adaptive control of a dynamic process. However, it is not very cffective
for the tool wear process when noisc exists in the process, because the sampling
interval can’t be sufficiently small due to the fact that the finished part dimension
measurements can only be taken part by part. The number of data points X, is

limited. Since process noise exists, the least square method will result in a wide
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variation of 6 during the first several identification steps. It takes a long time for 6 to
reach a stable state, especially for b; and bs. For example, if the tool wear process can
be expressed as R(1) = bit + byt* + bst® with noise, where b, = 60,b; = —12,b3 = 1.
Based on the sampling data points, by using the least square method, the parameter
estimation # can be made at every sampling time interval. To evaluate the accuracy
of the identification result 8, the normalized parameter estimations are plotted in
Figure 2.4a, where i); /by, 512 /bs, and i)a/bg are shown as by solid line, dashed line, and
dotted line correspondingly. The closer the normalized value b;/bis to 1, the better
the estimated b;s. We can see that the estimated parameters change dramatically
except bl. They require long time to become stable. Obviously, the least square
method is not very effective for on-line identification of the tool wear process.

In this section, a new identification algorithm is developed which outperforms the
least square method considerably. The new algorithm is based on the combination
of the least square method and the prior information of the process. It assumes that
the prior information is close to the true tool wear function rather than dramatically
different. It aims at making the best estimation of the parameters of the tool wear
function R(t), in terms of minimizing not only the sum of the squared errors between
the part measurements and the estimations, but also the difference between the

estimated @ and prior information. The mathematical descriptions follow.

2.3.1 The model of tool wear function

The parameters of tool wear function R(t) are related to the working condition.
Assume that under working condition 1, the average tool wear is Ry(t) = bnt +
bp1t? + b t®, and under working condition 2, R(t) = bit + bat? + b3t If working

condition changes from 1 to 2 during the tool life at time ..., the actual tool wear
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amount trend will smoothly changes from Ry(¢) to Ra(?):

R(t) = { R,(1) when t < U,
R(t) - R(tmc) + Rp(tmc) when ¢ 2 te

_ { bpit + bpat? + byat® when ¢t < t,,,.
T ] B = o) + B2 = 12+ Bl = 1) + Rome when £ L
where Rym: = Rp(tmc)

We know the parameters of R,() from the prior information before applying a
new tool. The prior information is accurate only before time #,,.. When tn. =0,
the actual tool wear trend R,(t) = R(t) does not have any adjoint part with the
prior information R,(t). When t,,. > 0, the actual tool wear trend R,(!) starts to
deviate from the prior information at time #,,..

The EWMA control chart discussed in Section 2.2 can be used to detect when
the prior information is not accurate, i.e. .. Then the identification algorithm

will identify the parameters of the new trend, i.e. R(t).

2.3.2 Objective function for the identification algorithm
The finished part dimension measurement and estimation can be expressed as:

Xg = T—00+Ra(t)+€

X, = T—ao+1}.a(1)
= T—ap+ R(t) - f?.(tmc) + Rpme when ¢ 2> 1y,
Based on the on-line part dimension measurement and the prior information avail-

able, the proposed algorithm aims at minimizing the sum of two terms, OBJ; and

OBJg!

o OBJ,—the sum of square errors between the part measurement X, and esti-

mated value X;.
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e OBJ;—the square error between the prior information parameters 6, and 6.

At the current time fpm;, (when tn; > tnc), the objective function is:

OBJ = OBJy+OBJ, = S™ (Xu — Xu)? + 5L, ki(0, — 6)?
= 2;'-‘-imc{/\,ﬁ -

+¥2_, ki (b; — byi)?

Or, equivalently,

OBJ = OBJy + OBJy = (Y — ®)T(Y — ®8) + (6 — 6,)TK (6 — 6,)

Where,
Y =60 +¢
X‘mc - (T — Qo + R‘pmc) {mc
Y — .A’tmubl - (T — Qo + RPmC) , f = -€mc+1 ,
L Xt"ll - (T — ag + R‘P"nc) J L £mz |
ti — tome t? - ignc t? - t?nc ]
& = t; — toesr t? - t?nc+l t? - t?nc«l—l
BRI el - I -l SR
b by b1
0= b2 ’ é = 82 [} op - bpz ’
b3 83 bp3
kk 0 O
K=1]0 kg 0
0 0 ks

[T —ap+ Rpmc + bl(ti - t‘mc) + i)g(t? - ’1271C) + 1)3 f3 - t3 c)]}2

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)
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The best estimation of parameter vector 6 can be obtained by minimizing ob-
jective function (2.5). Note that when K = 0,(i.e. by = k; = k3 = 0), OBJ is

equivalent to the objective function of the least square method.

2.3.3 Analytical solution of the best estimation

Given objective function (2.5), the necessary condition of the optimal solution
is that the first derivative function equals to zero:

8(0BJ)

5 = [—0T(Y — ®0)]T — (Y — ®0)T® + [N (0 - 6,)]" + (6—0,)K"

= 2-oT(Y —®70)" +2[K(0-0,)]" =0
= —0TY +¢T®0+ KO- K6, =0
= 0=(8T®+ K) 1 (®TY + K6,). (2.11)

When ($7 &+ K) in Equation (2.11) is non-singular, the solution (2.11) is unique
[14].

Recall equation (2.8), ® is a matrix with dimension of (mi —mc+ 1) x 3, where
mi is the current time point and mc is the time point when the identification begins.
The number of rows of ® equals the number of data points used in the identification
calculation. Here we assume (mi — mec + 1) > 3. The special structure of ® matrix
makes it is full column ranked matrix, i.e., its rank is 2. To prove this, by arbitrarily

selecting 3 rows from ®, we have:

i t?l t?l

b3 = |t LG th (2.12)

The determinant of this matrix is:

det(®3) = tatiatia(liz — tin)(tia — ti)(tis — Li2) (2.13)
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Since liy # tia # tia and t > 0, det(®3) # 0. Therefore, ® has a column rank of 3

and ®7® is a full ranked 3 x 3 matrix. All elements in ®7® are positive.

‘onsidering that the weighting matrix K (2.10) is a full ranked diagonal matrix
with positive elements, it is reasonable that ®T P+ K is full ranked, i.e. non-singular.

The solution (2.11) is unique to minimize the objective function OBJ (2.5).

2.3.4 Selection of weighting factors in K

From equation(2.11), the best estimation of @ is dependent on the weighting
matrix K.

When K =0, = = (070)'¢7Y, (2.14)

which is the solution of the least square method.

When K — o0, = 0 =4,, (2.15)

which is the prior information.

The selection of the weighting values in K is very important to ensure the
effectiveness of this algorithm. The values of K can be selected according to different
criteria for different purposes. However, the basic requirement is to avoid either least
square estimation or the prior information to dominate the result.

In order to see the relationship between the two factors determining 6, namely,
the least square estimation, and the prior information, we rewrite equation (2.11)

as:

%)
I

(#7® + K)"'(®7Y + K6,)
= (7% + K) (7 ®)(07®) @Y + (87® + K) ' K0,
= K,0,+ K,0, (2.16)

where 8, is the least square solution as equation (2.14) and 8, is the prior informa-



tion. Their corresponding weighting matrix are:

(®7¢ + K) (9T 0) (2.17)
K, = (®To+ K)'K (2.18)

bl
g
fl

In order to avoid either 8, or 6, to dominate the §, K, and K, must be compa-
rable, i.e. K and ®7® must be cornparable. In this chapter, we choose k; values to

be the same as the eigenvalues of 7 ®:

kl = A(l), kg = 1\(2), kg = A(g),
= ||IK|: = |97l (2.19)

where A(2),7 = 1,2,3 are eigenvalues of matrix ®7T®. Under this condition, mathe-

matically,

e the 2-norms of both the weighting matrix K and the matrix ®7® are equal,
o the weighting matrix K is similar to the matrix ®7®, and

e the determinants of K and ®7® are equal.

Therefore, the prior information is comparable to the estimation by the least square

method.

2.3.5 Simulations

The advantages of this new identification algorithm can he demonstrated by the

following simulations.

With the prior information R, = 50t — 12t 4 {* available, four new tool wear

processes with noise (62 = 16) need to be identified:

1. From the beginning, b, is different from the prior information, where b, = 60.
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2. From time {,,. = 4, b, is different from the prior information, where b, = 60.

3. From the beginning, three parameters are all different from the prior informa-

tion, where b; = 60,b; = —14,b3 = 1.2.

4. From time t,,. = 4, three parameters are all different from the prior informa-

tiOIl, where bl = 60, bz = —]4,b3 = 1.2

The simulation results for the above four cases are shown in Figures 2.4-2.7
correspondingly. In these figures, the normalized parameter identified by the least
square are shown in (a). The results by the proposed method are shown in (b).
Compared to the least square method, we can see that proposed method greatly
reduces convergence time and parameter variations. For further illustration, the
predictions of future tool wear trend at every two sampling time intervals are also
calculated. The first five tool wear trends predicted based on the least square
estimation 0, are shown in (c). And the corresponding first five tool wear trends
estimated based on the proposed method estimation 6 are shown in (d). In (c) and
(d), symbol **’s stand for the actual tool wear process and symbol ‘o’s stand for the
prediction based on the prior information 8,, while other five lines stand for on-line

predictions based on the identified parameters. From the figures, we can see that:

e the prior information can not provide a good estimation for these four tool

wear processes.

e the least square method is extremely unreliable during the early several iden-
tification steps. The prediction of tool wear trend can be much worse than

the prior information. It is slow to obtain a good estimation.

e the proposed method provides much better estimation compared to the least
square method at the same sampling interval. It is much quicker to approach

to the good estimation. In the four simulation cases, the fourth prediction
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Comparison of the least square method and the proposed
method when b, deviates from the prior information from

t =4
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based on @ is much closer to the actual process than the fourth prediction
based on #,. It is also a much better prediction than that provided by the

prior information.

2.3.6 Investigations of the proposed method

The performance of the proposed method can be shown by the following inves-

tigations:

o The least square method is sensitive to noise during the carly several iden-
tification steps. It is already shown by the simulations (Figures 2.4 2.7).
Mathematically, the difference between the estimated parameter 0, and the
true value @ can be developed. From equation (2.11) with A = 0, we known

the least square estimation:
8, = blx=0 = (®T®)7'0TY (2.20)
Replace Y by equation (2.6), then:

6, =0+ (d7d)'"¢
= A0, =0-0=(dTd)'d"¢ (2.21)

We can see that the estimation errors of parameters are independent of pa-
rameters themselves and only relative to the process noise and sampling time.
To illustrate the features of the estimation errors, assume that samples are
taken every 0.25 time unit and £ are random noise with mean zero and vari-
ance 02 = 16. Figure 2.8(a) shows the estimaticn errors along time when
identification starts from time | and Figure 2.9(a) shows the estimation errors
along time with identification starts from time 5. Obviously, the errors are

significant during the early several identification steps and slowly approach

Zero.
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Comparison of estimation errors when identification start-

ing from! =1

the condition that the prior information is close to the parameters of the

actual process. Compared to the prior information, this method provides

better estimation by utilizing the newest information of process when working

condition changes.

Assuming that the inaccuracy of the prior information is Af, = 6, — 0, the

estimation error by the proposed method can be developed. In equation (2.11),

replacing 6, with 84 A6, and replacing Y with equation (2.6), we obtain that:

0= (70 + K)'KAG, +0 4 (P79 + K)7'T¢

=> NM=0-0=(®T® + K) ' (KAI, + ¢T¢)

(2.22)
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Given weighting matrix K. the estimation error is independent of the process
parameter but dependent on the accuracy of the prior information.

When the prior information is very close to the true process parameters, i.c.
A0, =~ 0, then

A=0-0= ("0 +K)'d"¢ (2.23)
Compared to Equation (2.21), we can sce that estimation errors are reduced
due to the effects of K. That is why the proposed method can improve the

performance of the traditional least square method.
On the other hand, if the process noise is not significant, i.e. £ = 0, then
AI=0—-0~ ("0 + K) 'K A0, (2.24)

Compared to the prior information error, the estimation is improved due to

the effects of 7.
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To illustrate Equation (2.22), with the prior information error A = 51 0.1)7
for three parameters, the estimation errors are shown in Figure 2.8(b) and
Figure 2.9(b) respectively, under the same sampling condition as Figure 2.8(a)
and Figure 2.9(a). By comparison, we can see that the estimation errors from
the proposed method are much smaller than that from least square method

during the early several identification steps.

Therefore, by taking advantage of the prior information which is usually avail-
able, the proposed method makes tool wear process identification feasible for

on-line decision making.

The proposed method takes both advantages of the least square estimation
and the prior information. The selection of K is important to the performance
of the proposed method, as revealed by Equation (2.22). In this chapter, we
chaose I elements equal to the eigenvalues of ®7®. It is a good option of the
tool wear process identification. Nevertheless, it is not the only option. The

fine tuning can be done for different requirements.

From the equations (2.16), (2.17), and (2.18), we can see that parameter
estimation 6 by the proposed method is a complicated combination of the least
square estimation 6, and the prior information 6,. The weighting matrix K
determines the combination pattern. Since the matrix K, in (2.17) and matrix
K, in (2.18) are not diagonal, we have selected to use their eigenvalues to
roughly evaluate the weighting on the corresponding parameters in 6, and 6,.
The results are shown in Figure 2.10, when we choose the elements of diagonal
matrix K to be equal to the eigenvalue of ®7® as discussed in Section 2.3.4.
Figure 2.10 shows that this selection put a heavy weighting on by estimated
by the least squar~ method, a heavy weighting on b3 in the prior information,

and average weighting on b; by the least square and the prior information.
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In a tool wear function, the highest order term usually reflects the acceler-
ated wear period rather than the beginning period. The parameter by usually
can’t be decided precisely by the data points in the beginning period with the
least square cstimation. With a heavy weighting on bs in the prior informa-
tion, the proposed method compensates this disadvantages of the least square
method, hence providing better prediction of tool wear trend for on-line tool

replacement/adjustment decision making.

A heuristic method can be inferred based on the above analysis: the on-line
identification can be done by a weighted sum of the least square estimation
and the prior information. However, the selection of the weighting greatly
depends on the experience. The complexity of calculation remains the same

as the proposed method.
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2.4 On-line Tool Replacement/Adjustment Decision Mak-

ing

With the known non-liner tool wear function, the optimal tool replacement and
adjustment time are studied by Jean and Yong [3], and discussed in the following two
chapters. These results can be used for on-line decision making with little revision.
Whenever the estimation of the tool wear function R(t) has been updated by the
identification algorithm, the decisions, including adjustment and replacement time,
will be updated correspondingly. The objective here is to minimize the expected
cost per unit of time during every single tool’s life. The objective function can be
expressed as:

Co+(J-1)Ca+ XTI L

21_1
subject to T; >0, ,]—12...,J

(2.25)

Minimize C

Where J is the total number of adjustments in a tool life. The J-th adjustment
is considered as replacement. Adjustment time 7Tjs are decision variables. L; is
quality loss in adjustment intervals. From the (j — 1)-th to the j-th adjustment,

the expected quality loss can be expressed as:
T, i-1
L= /0 lar + R(r + ZT) — R(Y Ti)Pdr. (2.26)
i=]

When J = 1, only replacement will be made on each tool.

Starting at the beginning, the optimal decision of Tj,5 = 1,2,... ,J can be
decided according to the prior information R,(t). Then updated decision can be
obtained for every updated f?(t). Whenever current time ¢ = Eﬁ=1T,, adjustment
or replacement takes place. When t > T,, (1 < s < J), s adjustment have been
already made and the decision variables reduce to Tuy1,...,Ty. Chapter 4 will
discuss this optimization problem. It can be solved either by numerical search or

by heuristic methods. A combination approach can also be taken to avoid a local
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minimum solution obtained by using the numerical search method only. That is to
use heuristic methods to provide the initial values for the numerical search. The

details are omitted here.

Figure 2.11 and Figure 2.12 show how the replacement (J = 1) decision is
made on-line, without the exact tool wear information before applying the new
tool. Figure 2.11 shows the situation when the prior information does not reflect
the actual tool wear process. Figure 2.12 shows the situation when the process starts
to deviate from the prior information from t,. = 2.5, due to unexpected working
condition change. In both figures, (a) shows the difference between the actual tool
wear and the prior information. (b) shows the on-line precess monitoring chart.
Whenever the process is out of control, the on-line process identification begins.
The normalized identification results are shown in (c). Then, the replacement time
decisions according to the identification results are shown in (d). We can see the
decision updating along the time. Finally, the decision converges to a fixed optimal
time before this time point. If current time exceeds this optimal time point, the
replacement time will be the current time, which means the replacement has to be

taken immediately.

In both cases, we assume that C, = $270,k = 0.006,a, = 0. According to the
prior information, the optimal replacement time will be 7" = 8. In the case shown
in Figure 2.11, replacing the tool at ¢ = 8 will result unit time cost of $160.2, while
the updated decision T' = 6.5 give an unit time cost of $145.8. In the case of Figure
2.12, replacing the tool at ¢ = 8 will result unit time cost of $133.5, while the

updated decision T' = 7.25 give an unit time cost of $124.8.

Obviously, we can achieve considerable cost savings by using the proposed ap-

proach for the on-line tool wear process management.
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Simulation of on-line tool replacement decision making
when b, deviates from the prior information from the be-
ginning

Figure 2.11:
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2.5 Conclusion

This chapter provides a systematic approach for on-line tool wear process man-
agement when the prior information about the tool wear trend is not accurate due
to working condition change. The objective is to minimize the unit time production
cost. On-line monitoring hy the EWMA control chart can detect when the actual
tool wear pracess deviates from the original value. The tool wear process identifi-
cation with the proposed method with prior information can identify new tool wear
function under the changed working condition. In particular, the performance of this
proposed method is investigated. The advantages include faster convergence and
insensitivity to the process noise. Within a few identification steps, the parameter
cstimation error of the proposed method is much less than that of the least square
method or the prior information. These features are very important to the on-line
decision making. Finally, on-line optimal tool replacement/adjustment decision can
be made based on the updated tool wear function. Therefore, the optimal deci-
sion of tool adjustment and replacement time can be obtained specifically for every
single tool, without the extensive prior data collection or controlled experiments.
Considerable cost saving can be achieved. The implementation of this approach
does not need the extensive hardware support except dimension measurement of

the finished part and a personal computer.
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Chapter 3

Off-line Tool Replacement

Decision Making

3.1 Introduction

This chapter studies off-line optimal replacement. decision making for the tool
wear process, where on-line monitoring and decision making are not applicable.
The objiective is to minimize the unit time production cost considering hoth tool

replacement cost and product quality loss.

Drezner and Wesolowsky [1] reported a procedure to determine the optimal
replacement time in a tool wear process. They assumed that the average tool wear
trend is linear, which greatly simplified the tool wear model. Jeang and Yang
[2] generalized the model by Drezner and Wesolowsky by assuming that tool wear
follows a general non-decreasing function R(t) rather than a lincar function. They
claimed that they had developed an optimal tool replacement strategy consisting of

an optimal initial tool setting aj and an optimal cycle time Q*, when the tool wear

OA version of this chapter was published in the Proceedings of the 2nd Industrial Engincering

Research Conference, May 26-27, 1993, pp 350-354.
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function R(t) is known.

Tool wear model R(1) is affected by tool properties, working conditions and
their interactions. As discussed in Chapter 1, in a practical situation, especially in
a flexible manufacturing environment, working condition changes are very common.
Due to these known or unknown working condition changes, tool wear curves will
be different even for the same type tool [3, 4]. Zhou et al. [5] put forward an
optimization model based on the tool life distribution and a time index to decide
the optimal tool replacement time when using a single tool to process different parts.
The limitations of their study are: i) All expected tool life under possible working
conditions are needed; ii) The quality loss existing along with tool wear has not been
considered. In a varied but stable production system like routine working situations
of an FMS, without on-line monitoring and identification of tool wear function, a
robust optimal replacement strategy is needed to deal with the uncertainty of the
tool wear function for an overall cost-effective tool management.

This chapter firstly analyzes the work by Jean and Yang, then shows that the
tool wear model R(1) by Jeang and Yang is too general to have a unique optimal
solution (Q®,ag). The necessary and sufficient conditions for the unique optimal
replacement time are developed. It is under the assumption that the tools are used
under the identical working conditions, and R(¢) can be obtained from a controlled
experiment. Furthermore, an optimization model is developed to obtain a robust

optimal tool replacement strategy when the tool wear function is uncertain.

3.2 Optimal Tool Replacement with Known Tool Wear
Function
A tool replacement decision discussed here includes the selection of an initial

tool setting ap and a tool replacement cycle time Q. Associated with each decision

is the corresponding economic quality loss during the replacement cycle and the
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corresponding tool replacement cost. According to Taguchi quality loss function,
the economic quality loss L, due to the deviation of a part's dimension from its
target value is:

L = kX, -~ T). (3.1)
With an initial setting ao and a replacement cycle time @, the expected loss aver a
cycle @ is:

Q .

L(Q, ag) =/0 k[o? + (a0 + R(1) — T)?]dt. (3.2)

The expected cost per unit of time is:

L(Qw aO) + ("1-

A decision (Q, ao) is optimal if it minimizes the unit time expected cost expressed

C(Q,a0) = (3.9)

in Equation (3.3).

The tool wear function R(t) can be obtained under controlled experiments. With
assumptions (1) the tool always works under identical machining conditions, (2)
there is no in-process adjustment, and (3) tool failure does not occur within the
planning horizon, a necessary condition for ag and Q* to he the optimal replacement

decision is developed by Jeang and Young [2]:

o
af = T - —O—g—(m{—t (3.4)
. 2
kfQ [R(l) - f_Q_Q’*‘—"’] di + C,
o (3.5)

k [R(Q') - fiz,-ﬂ]

Jeang and Yang believed that equations (3.4) and (3.5) were both sufficient and
necessary conditions for (Q*,aj) to be optimal and an optimal tool replacement
decision could be obtained by solving these equations. However, we have discovered
that without additional restrictions, even though R(?) is non-decreasing, these two

equations cannot guarantee the sufficiency for (Q*,aj) to be optimal. Equations
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(3.4) and (3.5) may have more than one solution. An example is shown in Figure
3.1. In Figure 3.1, although R(t) is non-decreasing, the expected unit time cost
curve has three stationary points whick all satisfy equations (3.4) and (3.5). One

of these three points is actually a maximum cost point.

Theorem 1 A solution (Q°.a}) obtained from equations (3.4) and (3.5) is a local
minimum if the following condition is salisfied:

dR d
QM g + B RO pory 5 0 (36)

Qt
Proof of Theorem 1:
Since (Q°,a) is a stationary point of the objective function C(Q,a0). it is a

local minimum point if the Hessian matrix at this point is positive definite. The

Hessian matrix of C(@Q.ao) at (Q~.ag) is

hll h12 g’z'c';' F’82FC
H= =| % e | (3.7)
hay  ha Fgacao %53'
Since 1(—%,%“—"—)- =0 at (Q".ay). we have:
é)L(anéao) _ L(Q,acg) +C,. (3.8)
b 9CQ.a) _ 8 (aC(Q,ao))
e aQr aQ oQ
_ i(l_BL(Q,ao) B L(Q,a0)+C,)
R \Q 9Q Q?
_ 82L(Q apg) 2 2 0L(Q,ap)
= o g ToH@wrals T o0
19%L 2
= GTHE s K Q) + ] = 5 1(Qua0) +C
_18%L(Q.a0)
T QI

= 2klao - T + R(Q)]"(Q) (3.9)
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Figure 3.1: A case showing two local minimum points, when A(t) =
13 —12.47t2 4+ 50t, k = 0.6, C, = 270
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hay, hiz, and hg; are as developed hy Jeang and Yang [2], namely,

hy = hip= gQE[ao -~ T + R(Q))}, (3.10)
hay = 2k. (3.11)
2 2
det(H) = hnha—hahiz = %—[ao - T+ R(Q)r(Q) — %[ao - T+ R(Q)}?
- =T+ RQINQ@R - (0~ T+ RQ) (3.12)

Since [ay — 7'+ R(Q*)] > 0 [2], for det(H) > 0 at (Q*,a), the following condition

must he satisfied:

9" R(t)dt
@r(@) > 0y~ T+ R@) = R@) - T ZUT. (3.13)
Therefore, Equation (3.6) must be satisfied for a solution of equations (3.4) and
(3.5), (Q*,ay), to be a local minimum. (QED)

If R(t) is convex, d—"%i)- li=qg @ — R(Q) > 0, and Equation (2.6) is automati-
cally satisfied. Then, equations (3.4) and (3.5) have a unique minimum solution.
However, a practical tool wear curve is usually not convex.

Another special case is to set ag at a fixed value. Under this condition, a unique
optimal tocl replacement decision @Q* can be obtained as stated in the following

theorem.

Theorem 2 If R(t) is increasing and ao is fized, the necessary and sufficient con-

dition for Q* to be a unique optimal solution of C(Q,ao) is:

m *112 1 @ 2
Kao =T+ RQ') = oz /0 k[ao — T + R(t)]%dt + C, (3.14)
Proof of Theorem 2:
From 5%5—1 = 0, Equation (3.14) can be obtained immediately, hence verifying

the necessity.
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The sufficiency for @* to be a minimum point is that %1?-1 >0 at @Q°.

?C(@) _ ddC(Q)
dQz ~ dQ dQ
d v
= dQ Qz/ [ac-T+ R t)]2 "‘[ao T+ R(I)]'2 él}
= 33 / [ao — T + R(1))*dt + —“[(10 — T+ R(O(Q)
2k 20,
—az-[ao T + R(f ]2 Q3
= 2k/ a0 — T + R(Pdt — 2klao — T + RIOP + “’EJ')
+Z?_[a0 - T+ R()r(Q
(3.15)
At @*, recall Equation (3.14), we know:
d*C 2k
_d_Q(z_QllQﬂ?’ = @‘:[“0 - T+ R(Q")r(Q7) (3.16)

Since R(t) is increasing, 7(Q*) > 0. We can show that [ao — T+ R(Q*)] must be
greater than 0 from the following. If [ao — T + R(Q*)] <0, [a0—"T + R(1)]* would
be decreasing during the interval 0 < ¢ < @, and:

I a0 — T + R(t))?dt

0~ [ao — T+ R(Q")}? (3.17)
kfo lao—T 5']2(1)]2(111 +C Hao — T+ RIQ")? (3.18)
(3.19)

Equation (3.18) would violate Equation (3.14). Since (3.14) must. be satisfied, we
must have [ag — T + R(Q*)] > 0. Then, from Equation (3.16), we know:
C(Q)
dQ?

Hence verifying the sufficiency for @* to be a minimum point.

le=@+>0 (3.20)

Furthermore, since Q* which satisfies Equation (3.14) is always minimal and the

objective function is differentiable for all @ > 0, it is impossible to have more than
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one local minimum points without a local maximum point. @* is unique. (QED)

8.3 Off-line Robust Optimal Tool Replacement with Un-

certain Tool Wear

Section 3.2 discussed the optimal replacement decision when tool wear function
R(t) is known. The results obtained are rather restrictive since they need the
assuimption that the tools are used under the identical working conditions. However,
in most practical situations, especially in a flexible manufacturing system, changes
of working conditions are inevitable. Some of these changes could be unknown. Due
to the changes in working conditions, the parameters of R(t) are uncertain to some
degree. An optimal decision based on a specific R(1) model may not be the real
optimal under the changing working conditions. In the working situations of an
FMS, a robust optimal replacement strategy is needed to deal with the uncertainty
of the tool wear curve for an overall cost-effective tool management, if on-line tool

wear function monitoring and identification are not available.

3.3.1 Tool Wear Function With Uncertainty

As shown in Figure 3.2, the typical tool wear process is random but with a non-
decreasing trend, consisting of three distinct periods: initial wear period, normal
wear period, and accelerated wear period. Without loss of generality, an m-th order
polynomial model R(?) can be used to represent the average tool wear during a

tool’s life:

R(t) = byt + byt* + -+ + but™ = - bit". (3.21)
i=1
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This R(t) can be fitted from past tool wear data. assuming that tool wear is zero
when the tool starts working. With n measurements of parts produced during a

tool life cycle, we have:

- - - - - r -
Xl - (T— ao) f‘ f? L t;" 1 bl £|

X, — (T - f, 2 .. 7 b, .

e B ] | Y L e
_Xn—(T—a()) ] _tn '31 Tt ';n ] Lbrn ] _En i

where X; is the measurement at time £;, 2 = 1,2,....n.

Or simply:
T=00+ ¢ (3.29)
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Figure 3.2:The simulated tool wear data in slightly different processes

By the least square method, the estimation of 6:

6=(¢7®)'oTY (3.24)
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Due to working condition changes, the estimated b;(z = 1,2,... ,m) could be
different. for different sets of measurements. b;'s are random variables which can
be related to each other to some degree. The detailed multivariate probability
distribution of b;’s may be quite complicated and very hard to know. However, ina
stable system where one type of tool is used under similar working conditions, the
mean value, standard deviation and covariance of b;’s can be obtained from N trials

of measurements and fitted curves:

T by
B; - N (3’25)
N ., — h)2
ot = _._____Z'=1(”1'\'; bi) (3.26)
o = Zi=lbu ]5')(”1" b) i i=12...mandi#j (327

where b;,; is the estimation of b; value from the I-th curve fitting.

Therefore, although the parameters of average tool wear function R(t) is uncer-

tain, their statistical characteristics can be obtained.

3.3.2 The Objective Function

Since R(1) is uncertain, optimal tool setting and replacement strategy according
to one specific R(1) may not be optimal for another production trial. If b (z =
1,2,...,m) changes stochastically due to working condition changes, optimal re-
placement points will change correspondingly. From a long run point of view, an
integrated objective function model should be developed. The expected unit time
cost must consider the uncertainty of R(t) so that a robust tool replacement strategy

can be developed.

According to Equation (3.3), under the identical working conditions, the ex-

pected unit cost is:



C(Q,a0) = L(anct‘)?) + C,
- SO k[o? + (ap + R(1) — T)3dt + C,
Q
= ko’ + % + = / (a0 + Z bit' — T)%dt (3.28)

One may simply use the mean value b; to replace b; in the original objective func-
tion C(Q,ao). C(Q, ao) |,,—5, can be minimized according to Section 3.2. However,
the expected value of C' when b;’s are uncertain is:

E(C) = F{k 2+-—+ / (a0+Zbi‘ - ‘dt}
= k"2+_C_+ / E[(ao—-l'+§:b, )%]dt
QR Q
Let ag — T = by, then:
El(ag— T+ Y bit')] = E[(Xbit')’]
i=1 =0
= EZ[Z b;ti] + Va,r[z biti]
=0 i=0

= (z B;t)? + Za?t” +23 Y ottt

1=0 1=0

1=0 j=i+1
note that o2 =0, 0p; =0,(7 = 1,2,...,m)

m m ”m

— _T+th)2+za2t2! 22 Z U,’jti+j
=1 j=i+1
(3.29)
Therefore,
Q mo_
E(C) = ket + 91 + £/ (ao + D bit' — T')%dt
Q 1= l
/ (z %425 32 oyttt
i=1 j=i+4]}

= C(Q,40) o5, +7 / (Eazt2’+22 3> outti)dl. (3.30)

i=1j=i+41

This is our new objective function.



49

3.3.3 Optimal Strategy

Based on the our new objective funciion (3.30), the optimal tool replacement

strategy can be developed.

Theorem 8 When b;,i = 1,2,...,m are uncertain, the necessary condition for

(Q*, ay) to be a local minimum 1is:

moo g2 i
Z2z+l(( +1)2 b +o)Q

=1

> Lt i G
2 — - ' B:b; 0" _ ¢ 3.91
* §i=§.xz+]+l((z+1)(]+1) ;i + 0i;)Q A ( )

LI YRS
af =T — 2_; Z’ITQ (3.32)

Proof of Theorem 3:

For (Q*,a3) to be an optimal solution of E[C], it is necessary that:

JE[C] 0
an -
Thatis ap = T — ; Ey 1 (3.33)
Substitute equation (3.33) into objective function, equation (3.30), then:

dE[C) d Cr k 2. 1 o1
) - L ket 2+~ o

aQ {U+Q+Q/o(§z'+1 )
+£/ Ea2t2'+2z Z it )dt}

Q i=1 j=i+41

= 5 2742 — —__b;b; i
Q2 sz {E[ + o7 +2;]§1[(2+1 ]+1)b ; + 03]t bt

Q{Em . ['_-’__15'2 + UZ]in + 22 Z;‘n:i-{-l[m
linebb; + 0;]Q*+7}
‘2

2]Q2t+1

Q {E2z+1(z+1)2’
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— 1+ ij e o
22 E bb i i+i+1
* i=ll—3+17+]+1[(l+1)(]+1) UJ]Q }

(3.34)
Let |Q.-Qo— 0, that is:
i .2 b2 + aQ]Q.2u+l
L E TG
LA 1+ ] 3] 14241 Cr
2 0;)Q"" =+ 3.35
i §i§1z+1+1[(z+1)(1+1) W@ =g @)
Qg = T - 12:__:1 mQ (336)
(QED)

Equation (3.31) is an (2m+1)-th order polynomial equation. It can he solved for
Q* by an analytical method to find all (2m + 1) roots and real roots. In Matlab [6],
the Equation (3.31) can be solved by the command ‘roots’. Then with known Q°,
the a} can be obtained from equation (3.32) directly. The global optimal solution
can be obtained by simply comparing objective function values corresponding to

real roots and selecting the minimum.

3.3.4 Discussion and Simulations

In this section, an robust optimal tool replacement strategy has been proposed
to deal with tool wear process under similar but uncertain working conditions, when
on-line tool wear monitoring and identification are not available. Instead of taking
the conventional approach that simply averages tool wear function parameters by
allocating all variations to a single noise term, we use a tool wear function with
the uncertain parameters to approximate working condition changes. It is closer to
the practical situation. The tool wear function is a mathematic model to describe
the tool wear progress in a single tool life. The tool wear amount in any period of

tool life depends on current working conditions, as well as existing tool wear status
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and history [4]. No matter what kind of function is used, the tool wear model is
directly related to the underlying wear progress mechanism. The parameters of the
tool wear function should be fitted by the tool wear data in a single tool life.

The parameters of the tool wear function will change when working conditions
change. A few research results reported that cutting forces and tool temperature
are the major reasons causing tool wear. For a type of cutting tool, the change
pattern of cutting forces and tool temperature during tool life could be different
from one tool to another due to slightly different installation, changed workpiece
geometry and material, different production batch size, or, varied cutting speed and
cutting depth, etc. Tool temperature is also dependent primarily on the length of
cutting cycles and the length of cooling intervals between cycles. Temperatures
are generally lower in interrupted cutting than in continuous cutting under the
same conditions [7]. Therefore, the parameters of fitted tool wear function will be
different from one tool to the other. There are random components associated with
each parameter. The statistical characteristics of the parameter changes can be
obtained from equations (3.25) through (3.27).

Compared to the conventional approach, the proposed approach can provided a
better optimization result. By this approach, the objective function (3.30) contains
terms related to o? and o0;, i,j = 1,2,3, which are caused by parameter varia-
tions. This term can be minimized by the optimization solution. However, with the
conventional approach, the tool wear variations caused by parameter changes are
allocated to the single, uncontrollable noise term o2 in the objective function (3.28).
The optimization solution can not be adjusted according to the effects of param-
eter noise while the proposed method does. Therefore, the optimization result by
the conventional method will be worse than the proposed method. The following
simulation will show the difference.

For simplicity, we use the 3-rd order polynomial model to fit the empirical tool

wear data here. Firstly, 20 sets random tool wear data are generated by using Matlab
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which are similar to the tool wear process tested by Shiraishi [8] and Ravindra et al.
[9]. These data can be generated by a polynomial function with random changed
coefficients plus a white noise term. Shown in Figure 3.2a, each trial of data has
a certain trend but with random components. They represent the tool wear data
during a tool life under similar but different working conditions. The fitted R(!)
curves for these processes are shown in Figure 3.3. The corresponding parameters
and residuals are shown in Table 3.1. For each process, The unit time production
cost curves are shown in Figure 3.4. In a practical situation, due to the changes
of working conditions, each curve has a probability to show up even though the
specific distribution is unknown. These curves show different minimum points. A

robust replacement strategy is to make the best trade-off between these points.
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60
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40

Tool Working Time (x30min)
Figure 3.3:The fitted tool wear curves

From the parameters of the 20 different curves, the covariance matrix of by, bz, by

can be obtained as Table 3.2:
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Table 8.1:The Parameters and Residuals of Fitted Tool Wear Curves

20 Curves by b, bs c
1 42.7190 | -10.1719 | 0.8326 | 23.6905
2 60.2522 | -14.2397 | 1.1302 | 13.1186
3 54.2524 | -14.5976 | 1.3191 | 13.6722
4 64.6501 | -13.9753 | 1.0149 | 11.3031
H 39.8398 | -8.84640 | 0.6826 | 16.1532
6 59.1858 | -13.4729 | 1.0313 | 6.87052
20 61.3036 | -14.9659 | 1.2134 | 12.5708
Means of 20 | 56.1338 | -13.0607 | 1.0319 | 11.7799
Conventional by b, by lod
o 56.1338 | -13.0607 | 1.0319 | 536.8806

Table 3.2:Covariance Matrix of b, : =1,2,3

o | i=1 | i=2 ] i=3
j=1 | 67.7973 | -14.691 | 0.9995
§=2 | -14.691 | 1.6849 | -0.455
i=3 | 0.9995 | -0.455 | 0.0503
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Figure 3.4:The unit time cost curves for each process

By using the proposed method, in Figure 3.5, the objective function is shown
as the curve marked with ‘*’. The minimum point * = 1.35 on this curve is the
optimal replacement point. Applying this replacement policy under 20 different tool
wear process will result in different unit costs with an average of $362.64.

By the conventional approach, these 20 trials of data are used to fit a single tool
wear curve marked with ‘o’ in Figure 3.3. Shown in Table 3.1, the parameters of
this curve are the same with the mean values of corresponding parameters of 20
different curves. According to this tool wear curve, in Figure 3.5, the unit time cost
function is shown as the curve marked with ‘o’. Simply minimizing it will give a
replacement point @, = 6.25. Applying this replacement policy under 20 different
tool wear process will result in different unit cost with an average of $423.55.

By Comparison, we can see that replacing tools at ()° results in a lower produc-

tion cost.
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Figure 8.5:The comparison of results by two different approaches
8.4 Conclusion

This chapter studied the optimal tool replacemert strategy, based on non-
decreasing tool wear functions fitted from empirical tool wear data. When the
tool is working under an identification working condition with a known tool wear
function, the optimal tool replacement strategy is analyzed to correct the result
obtained by Jeang and Young [2]. When the tool wear model is uncertain due to
working condition changes, and on-line tool wear identification is not applicable,
a new objective function model and a robust optimal replacement stravegy have
becn presented. Compared to the conventional approach which simply averages the
parameters of the tool wear function by allocating all parameter variations to a
single noise term, the proposed method provides better solution to minimize the
average unit production cost. The results developed in this chapter can be used in

the off-line decision making in the production planning stage.
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Chapter 4

Off-line Tool Adjustment

Decision Making

4.1 Introduction

This Chapter discusses off-line decision making for tool adjustment in manufac-
turing. In-process tool adjustment can reduce the dimension deviation of a work-
piece from the target value caused by tool wear. With in-process adjustment, the
tool could be replaced less frequently with the improved workpicce quality. Usually,
in-process adjustment can be performed at much less cost than tool replacement.
Compared to tool replacement, tool adjustment could save not only the tool cost
but also the production down time for the tool installation procedures. Therefore,
the ultimate benefit from a good tool adjustment strategy is the reduction of the

unit time cost including guality loss.

Considering both tool replacement cost and product quality loss, a few re-

searchers have reported optimal tool replacement strategies minimizing expected

OA version of this chapter was published in the Proceedings of the 3rd Industrial Engineering

Research Conference, May 18-19, 1994, pp7-12.
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unit time cost {1, 2, 3]. A complete review of these works was presented in Chapter
3. However, few papers addressed optimal tool adjustment in a tocl wear process.
Regarding quality control in a manufacturing process, most papers devote either
to the design of Statistical Process Control (SPC) charts or to the analysis of pro-
cess capability index, without considering the predictable tool wear pattern (4, 5].
Quesenberry [6] provides an SPC approach for quality improvement under linear
tool wear, which aims at minimizing the expected mean square error of the part
measurements from the target value. It does not consider either the unit production
cost or the process adjustment cost. Galante and Lombardo [2] reports a study of
tool replacement with adaptive control for a generalized process using an unlimited
number of tools. They assume that the process is a non-stationary non-periodic
stochastic process, without information regarding the marginal cost beforehand.
The result is applicable to optimal tool adjustment if the tool wear process is a
similar stochastic process. However, tool wear usually follows a predictable non-
decreasing trend [7, 3]. The algorithm provided by Galante and Lombardo will not
give a real optimal tool adjustment strategy in a tool wear process.

In this chapter, we will discuss the off-line decision making for tool adjustment
and replacement in a non-decreasing tool wear process. We will use a non-decreasing
function R(?) tc fit the empirical tool wear data and use Taguchi quadratic quality
loss function to estimate the economic loss caused by tool wear.

The economic quality loss L, due to the deviation of a part’s dimension from its

target value can be expressed as:
Ly = k(X; — T)? (4.1)

where X, is the measurement of the part at time ¢, T is the target value for the
part dimension, and k is cost coefficients determined by the requirements of the

customers [8).
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4.2 Formulation Of Optimal Tool Adjustment Model

A tool adjustment decision includes the selection of the number of adjust-
ment /replacement times J and the corresponding adjustment time intervals 1 () =
1,2,...,J). The J-th adjustment is considered to be the replacement of the tool.
In mass production, the tool wear information R(t) can be obtained cither from
controlled experiments or from past tool wear data. An optimal tool adjustment
scheme can be determined off-line in the production planning stage. The imple-
mentation of the optimal tool adjustment scheme in production does not require

additional on-line hardware.

In developing optimal tool adjustment model, we assume that (1) the tool always
works under identical machining conditions, (2) tool failure does not occur within
the planning horizon, and (3) the tool is always adjusted to the fixed initial setting
offset a,. Then, from the (j — 1)-th to the j-th adjustment, for a duration of 7}, the

expected quality loss can be expressed as:
T, -1 11
L =[) klag + Rt + 3 T0) — R( TPt (1.2)
i=1 .=l

The expected cost per unit of time during a single tool’s life is:

Cr+(J-1)Ca+ ) Lj
C = J
T;

j=1
C, +(J - 1)C,
+
:7'I=1 Tj
T S Rlac+ RO+ 2] 1) — ROZIZ T)Pd
=i T

(4.3)

This objective function is subject to constraints 7; >0 for j =1,2,..., J

With the decision variables J and T}’s, this is a sophisticated multivariable

optimization problem. It is impossible to solve it analytically. To simplify the
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decision process, we take the following two-stage optimization approach in this

chapter.

e Stage one: fix the J values at 1,2, ..., respectively and find the corresponding

optimal adjustment time intervals 7;’s under each J value.

e Stage two: choose the J value with the minimum unit cost.

Since stage two is easy to perform, we will concentrate on stage one in the following

sections.

4.3 Optimal Tool Adjustment Strategy With Fixed J

Even if J is fixed, the objective function (4.3) is still a multivariable function
which is hard to optimize. For example, with J = 3, the necessary conditions for

Tj’s to be an optimal solution should be:

8¢ _ Hat+RTi+T:+T) - RO+ D) -C _
T3 h+T2+Ts
= kla+RTi+T2+T3)— R+ T)’=C
(4.4)
oC  _ Ha+RTi+T) - R -C
ar, Ti+ T+ Ts
36 [P ka+ R+ To + ) — R + B)Pdt _
Tl + T2 + T3

= kla,+ R(Ty + T3) — R())* = C —

aC (T

= | “klar+ R(Ty + Tz + t) — R(Ty + T2)}°dt

BT;, o}
(4.5)
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aC K+ R -
on h+T:+T1s
2 [T kla, + R(Ty + 1) — R(T))dt
Tl + Tz + T:; -
2 [ klac+ R+ Ta + 1) — R(Ty 4+ Ty)Pdt

T+ T+ Ts

= kla,+RT+Ty) - R =C—

ac ,
a:n/ klag + ROTy + 1) — R(T)d1 —

ac
o7 " kg + BTy + Ta+ 1) = BTy + Tyt
1

(1.6)

One special case occurs when R(?) is linear. With a linecar tool wear trend, a

unique optimal solution can be obtained analytically. When R(1) is lincar,

J

}:T+r)- (- T = RO (4.7)

We can observe from equations (4.4), (4.3), and (4.6) that:
aC ko +T;)*~C _

oT; ~ Ti+ T+ Ts
= kla, + RTHP*=C, j=12,...,J (4.8)

Consider the second order derivatives at a stationary point:

8°C _ kot RGP —C | Wlact RI(T) + 52
or} (T + 15 + T5)? YT T
_ 2k[a, + R(T)Ir(T))
- "W+ T:+ T3
9°C  _  kla+ RTy)PP-C T,

oT;0T; - (Ty + 15+ T3)? v+ 712 + ls
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The Hessian matrix is;

ac ac azc
aTy 8oz ' anaTy
8%C 32C aic
H = 8T20T 37‘; a8TR87T;
82C aC a*c
aT ;8T aT;87T, -~ BTJ,
I 2k
r(T;
det(H) = %) S
=1 Zj:l T]

Therefore, the stationary point which satisfies the equation group (4.8) will be a
minimum point. The unique optimal solution Ty = T3 = ... = Ty = T* can be
found hy solving the equation group (4.8):

_ G+ (I -0Ca+d fy " kla, + R(t))%dt

e (4.9)

kla,+ R = C

Equation (4.9) provides an optimal tool adjustment strategy when the average
tool wear is linear. However, a tool wear process usually follows a non-decreasing,
non-linear trend, consisting of three distinct periods: initial wear period, normal
wear period, and accelerated wear period (Figure 4.1). Under such a condition, the
ariginal multivariable optimization problem can only be solved by numerical search
algorithms.

Numerical search is often used when a mathematical model is too complicated to
be solved analytically. However, a potential risk of using a numerical search method
is that the result obtained may be a local optimum rather than a global optimum.
A numerical algorithm is usually quite sensitive to the initial values and search step
length. The next section describes a few heuristics for solving the optimization

problem.
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Figure 4.1:Non-linear tool wear trend

4.4 Discussion Of A Few Heuristic Tool Adjustment Meth-

ods

Since the original multivariable optimization problem is hard to solve, one idea
is to simplify it to a single variable optimization problem with fixed J. We have

listed three heuristic methods below:

1. Scheduled equal time interval adjustment: That isto force Ty = T3 = ... = 1,
(Figure 4.2). This method is easy to manage in production. However, it may
not give good optimization results unless R() is linear. As shown in Figure
4.2, the adjustment policy resulted from this method is obviously unreasonable
since the tool wear amount during the second adjustment cycle is much smaller

than that during the first adjustment cycle.
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Figure 4.2:Scheduled equal time interval adjustment

2. Scheduled equal tool wear amount adjustment: The tool will be adjusted
whenever the average tool wear amount reaches a certain level (Figure 4.3).
That is to choose adjustment time interval T; according to T; = R™! (]—E(—Z.-',JE-‘—TQ)
With the consideration of adjustment cost and replacement cost, this method
also complies with the basic idea of SPC, which adjusts the process whenever

the deviations of the workpiece dimension exceeds a control chart limit.

3. Cumulative interval optimization method: This method considers one addi-
tional tool adjustment cycle at a time, starting with cycle 1. When adjustment
cycle j is considered (1 < j < J), the only decision variable is 7;. The so-
lutions 77 and L} (1 < i < j) obtained for previous adjustment cycles are

treated as constants. The objective function to be minimized is the unit time
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Figure 4.3:Scheduled equal tool wear amount adjustment

cost for the first j cycles, i.e.,

— Ez;ll(ca + L:.) + O, + IJj

C .
’ SIS T+ T

When adjustment cycle J is considered (j = J), one of the J C,’s in function
C; is replaced by C,. See Figure 4.4 for a set of results obtained with this
method. Solving the optimization problem for each adjustment cycle can be
done by applying the optimal tool replacement strategy developed in Chapter
3 with a little modification to include past information. This method can
be used for on-line decision making when the past adjustments have heen
performed and further tool wear information is uncertain. The details are

omitted here.

For comparison purposes, we use an optimization program ‘constr.m’ provided

in Matlab [9] to perform the numerical search for the original multivariable opti-
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Figure 4.4:Cumulative interval optimization adjustment

mization problem. The algorithm is based on a Sequential Quadratic Programming
(SQP) method. An estimation of the Hessian matrix of the Lagrangian function is
updated at each iteration by using a gradient based line search method. The ter-
mination tolerance for the objective value is 0.0001. Two simulated cases with the
specified tool wear functions are used to compare the results obtained from those

three heuristic methods and the numerical search method (Table 4.1 and Table 4.2).

From the tables we can observe the following:
e J = 1, which represents the case of replacement without adjustment, results
in high unit costs in both cases.

o When J increases beyond a certain level, the objective function value increases

along with J.
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e The numerical search method usually provides better results than the heuristic
methods. However, it can not guarantee the best results all the time. In Table
4.2, when J = 4, the numerical method provides an adjustment policy with
an objective function value 72.9, which is worse than 72.3967. obtained from
heuristic method 2. With the solution gencrated with heuristic method 2 as a
new starting point, the numerical search method finds a better solution with

an objective function value 70.9.

e Among the three heuristic methods, Method 2 provides an adjustment policy

with the lowest cost in most cases.

e In the case of Table 4.1, we should choose the strategy with J = 3, i.c,
adjusting the tool at time intervals 7 = 0.96 and 7, = 2.46 and replacing the
tool at the third time interval 75 = 7.26, with the minimum unit time cost of

79.1.

e In the case of Table 4.2, we should choose the strategy with J = 2, i.e.,
adjusting the tool at the first time interval 77 = 1.79 and replacing the tool at

the second time interval T3 = 7.47, with the minimum unit time cost of 57.6.

4.5 Conclusion

In-process adjustment of cutting tools is very important in manufacturing toward
producticn cost reduction and quality improvement. ror off-line decision making
in the production planning stage, when tool wear can be represented by a fitted
tool wear function, this chapter develops an optimal tool adjustment and replace-
ment model to minimize unit time production cost. The formulated multivariable
optimization problem can be solved by a numerical search method. However, a

numerical search is sensitive to the initial value and search step length. It may not
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provide the global optimal solution. Additionally, as J increases, the number of de-
cision variables increases, hence increasing the complexity of the search algorithm.
It is not a good method for industry use.

Several simplified single variable heuristic tool adjustment methods are presented
and compared with the numerical search method. Among these heuristic methods,
the scheduled equal tool wear amount adjustment method seems to provide the best
results. It is a single variable optimization problem which can be solved easily in
practice. With this method, a simple algorithm code can be incorporated into any

production management software in industry.



Table 4.1: The Comparison of Heuristic Method Solutions and Op-
timal Search Solution When R(1) = 50t — 124712 + *,. C, =
100, C, = 270, k = 0.06

J=1 T, T, | Ts | Ty ObJ
All Methaods || 2.3 227.7000
J=2 T\ T2 | Ts | Ty ObJ

Method 1 || 2.95 | 5.90 133.7459
Method 2 1.67 | 7.50 87.3723
Method 3 1.40 { 6.70 84.8000
Num. Search || 1.67 | 6.95 84.7000
J=3 T, T, | Ty | Ty OblJ
Method 1 2.33 | 4.66 | 7.00 107.1061
Method 2 0.80 | 2.73 { 7.20 80.0800
Method 3 1.40 | 6.50 | 7.9 89.1756
l Num. Search || 0.96 | 2.46 | 7.26 79.1000
J=4 T, T2 | T3 | T; ObJ
Method 1 1.90 | 3.80 | 5.70 | 7.60 | 103.1113
Method 2 0.78 [ 2.50 | 7.12 | 8.00 | 85.6232
Method 3 1.40 | 6.50 | 7.80 | 8.70 | 95.2337
Num. Search || 0.93 | 2.37 | 7.01 | 8.06 | 84.8000




Table 4.2: The Comparison of Heuristic Method Solutions and Opti-
mal Search Solution When R(t) = 20t — 5.4772t2 + 0.5t%, C, =
100, C, = 270, k = 0.06

J=1 Ty T, | Tz | T, OblJ
All Methods || 6.50 74.1500
J=2 Ty T, | Ts | T, ObJ]
Method 1 3.80 | 7.60 64.5000
Method 2 2.09 | 7.10 58.7683
Methaod 3 5.60 | 8.00 71.6633
Num. Search || 1.79 | 7.47 57.6000
J=3 T T, | Ts | T4 ObJ
Method 1 2.60 { 5.20 | 7.90 71.0700
Method 2 2.19 | 7.14 | 8.10 65.1371
Method 3 5.60 | 7.80 | 9.00 76.9600
Num. Search || 1.72 | 7.22 | 8.45 63.9000
J=4 Ty . | Ts | T, ObJ
Method 1 2.10 | 4.20 | 6.30 | 8.40 | 78.9625
Method 2 2.31 | 7.18 | 8.14 | 8.80 | 72.3967
Method 3 5.60 | 7.80 | 8.90 | 9.80 | 83.0370
Num. Search || 0.97 | 2.67 | 6.6 | 7.88 | 72.9000




(1

[2]

(3]

[4]

[5]

(6]

[7)

(8]

(9]
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Chapter 5

Conclusions

This thesis integrates several studies in the optimal tool management area, in-
cluding tool wear monitoring, tool wear function identification, on-line decision
making, and off-line decision making for tool replacement/adjustment in a machin-
ing process. The objective of these studies is to minimize the unit time production

cost considering both economic quality loss and replacement/adjustment cost.

A systematic approach is proposed for on-line tool wear process management
when the prior information about the tool wear trend is not accurate due to working
condition changes. In addition to on-line monitoring by using EWMA control chart,
a new identification method is proposed to identify the new tool wear function
parameters under the changed working condition. We have demonstrated that, this
method is insensitive to the process noise, and faster to converge than the least
square method. Secondly, the paramecter estimation error during the identification
beginning period by the proposed method is much less than that by the least square
method or by the prior information. These features are very important for effective
on-iine decision making. With updated tool wear function available, the optimal tool
replacement /adjustment decision can be made on-line, specifically for every single

toul, without extensive prior data collection or controlled experiments. Therefore,

73



considerable cost saving can be achieved. The implementation of this approach
does not need extensive hardware support except dimension measurements of the

finished parts and a personal computer.

Off-line tool replacement decision making is also studied in this thesis. When
the tool works under identical working conditions with a known tool wear function,
the optimal tool replacement strategy is developed. When the tool working under
varied but similar working conditions, and the on-line identification is not applica-
ble, a new objective function model and a robust optimal replacement strategy is
proposed. Compared to the conventional approach which simply averages the pa-
rameters of the tool wear function under different working conditions, the proposed
approach provides better tool replacement solution to minimize the average unit

time production cost.

Off-line decision making for in-process adjustment of a cutting tool is analyzed
in this thesis. The objective function is developed with a know tool wear function.
Since an analytical solution is impossible for this formulated multivariable opti-
mization problem, a pumerical search method can be used to secarch the optimal
solution. However, the numerical solution is sensitive to the initial value and the
search step length, and may not give the global optimal solution. Several simplified
single variable heuristic tool adjustment methods are presented and compared with
the numerical search method. Among these heuristic methods, the scheduled equal
tool wear amount adjustment method seems Lo provide the hest results. It is a single
variable optimization problem which cai be solved easily for industry application.
Furthermore, this heuristic method can also be used to provided the initial value

for the numerical search algorithm to obtain a better solution.

Along the line of this thesis, further studies can be done in the tool managemeant

area. A short list follows:

e How to design the best EWMA control chart specifically for on-line tool wear
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monitoring.

e For the implementation of the proposed tool wear function identification al-
gorithm, how to select the best weighting factors k;s according to different

confidence levels on the prior information.

o Investigation of better heuristic method for in-process tool adjustment decision

making.

This thesis studies tool management based on a non-linear tool wear function
ohtained from prior information, on-line identification, or controlled experiment.
The tool has to work under similar working conditions. Another research direction
is to incorporate the most critical working conditions into the tool wear function,
such as cutting speed, cutting force, tool temperature, etc., hence providing a more
clear relationship between the tool wear and those physical parameters. The tool
wear will then be more predictable even under different working conditions and the

optimal tool management can be achieved correspondingly.



