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Abstract

Future systems for planning and operating mesh-restorable networks will require an
efficient algorithm for spare capacity placement that assures restorability with a minimum of tota!
protection capacity. This thesis proves that the problem of optimal spare capacity placement
(SCP) in a mesh-restorable network is NP-hard. From there, this work considers two heuristic
strategies to solve the SCP problemin a near-optimal way within reasonable time constraints.

The Spare Link Placement Algorithm (SLPA) establishes an SCP by employing iterative
spare link addition. SLPA selscts each addition to produce the greatest incremental change in
network restorability. Here, it is proven, theoretically and experimentally, that SLPA is strictly
polynomial in time complexity. The Iterated Cutsets Heuristic (ICH) formulates SCP as a Linear
Programming (LP) problem subject to constraints based on a subset of cutset flows of the
network. Iteration and heuristic rules are used to develop the constraint set required by ICH for
an SCP solution. It is proven, theoretically and experimentally, that ICH has exponential worst-
case time complexity.

Experimental tests of SLPA and ICH are performed on 36 trial networks. The two
approachies are compared for use as near-optimal SCP tools in initial design and subsequent
maintenance of a continually growing network. Network providers can select a method for
survivable network design and management systems from this comparison data.
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1 Introduction

Over the past six years, advanced methods of carrier facility restoration have evolved into
a field of telecommunications research. According to [Grov89], resolving the restoration problem
means to “rapidly and accurately reroute carrier signals via diversely routed spare transmission
capacity in a network when a failure takes down both the working and spare links on a given
span.”

Emerging restoration methods based on Digital Crossconnect Systems (DCS) offer the
prospect of transport networks that are restorable in one or two seconds [Grov87, YaHa88,
Grov89, GrVe90, SaNig0). Restoration plans realized by these methods closely mimic a criterion
of k successively shortest link-disjoint replacement paths through the spare links on other spans
of the network. The so-called mesh restorable networks that resuit are extremely flexible in that
they inter-work with existing transmission systems, and permit integrated access to a single pool
of spare capacity for both provisioning and survivability purposes.

Mesh restorable networks can be highly efficient in terms of total capacity required for
restorability and can support any target level of restorability from 0% to 100%. Fully restorable
mesh networks can approach a limiting redundancy of 1/(davg - 1), where davg is the average
node degree of the network. Although mesh restoration methods have a comparatively low
redundancy requirement, only optimal assignment of spare capacity to the spans of the network
realizes the minimum redundancy network.

One goal of this thesis is to encapsulate the existing knowledge of Spare Capacity
Placement (SCP) as a companion study to restoration mechanisms. Without some form of SCP,
restoration will not be possible; and without an optimized form of SCP, the minimal capacity
requirements of “m:assh-lype" restoration cannot be realized.

Optimal SCP can be formulated as an integer program (IP) for max-flow (but not k-
shortest paths) re-routing characteristics. Although max-flow re-routing capacity will not
guarantee an equivalent capacity for k-shortest paths re-routing, it has been shown that the two
solutions are very similar [DuGr81]. This difference aside, the computational complexity of the
direct approach renders IP infeasible for use as an SCP algorithm. In fact, it will be proven that
optimal SCP is within the class of problems described as NP-hard and, as such, no polynomial
time algorithm exists which can guarantee an optimal placement. It is for this reason that this
work investigates approximate (heuristic) algorithms for SCP.

This thesis describes two heuristic algorithms for the task of SCP within a fixed topology
and working capacity placement. The techniques investigated were both introduced in previous
literature.

The Spare Link Placement Algorithm (SLPA) was developed at the Telecommunications
Research Laboratories (TRLabs) in Edmonton, Alberta, in 1990 [GrBi90,GrBi91]. Because SLPA
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was first introduced for operation on the specific network structures (120-node, 3.5-average node
degree) defined by the Telecom Canada long-haul network, some of the techniques are not
generally applicabie to all network topologies. Therefore, in this work the author considers
alternate implementations of SLPA. SLPA is a greedy algorithm which works in two phases, the
selective addition of spare capacity until the network is restorable (forward synthesis), and the
removal of excess spare capacity through redistribution (design tightening). During forward
synthesis, the algorithm successively seeks to add spare capacity to the network spans where the
largest increase in restorability is obtained. During the design tightening phase, SLPA accepts
any redistributions of spare capacity which result in a net decrease in required spare capacity,
while maintaining restorability at the desired level.

The lterative Cutsets Heuristic (ICH) is simitar to the heuristic proposed by NEC in 1990
[SaNi90]. ICH formulates SCP as a linear programming optimization problem. The min-cut max-
flow theorem [FoFu56) provides constraints on restorability of a span through minimum flow
cutsets of the network. The LP provides an SCP which satisfies these constraints while
minimizing total spare capacity. ICH reduces the computational burden by using only a subset of
the complete cutset constraints. It compensates for the missing constraints by iteratively adding
constraints for only those areas of the network where the previous solution does not realize the
desired restorability. This iterative process eventually converges on a feasible network design.
Although ICH guarantees that a generated faasible network design is optimal, the number of
steps which it requires to achieve this design is not guaranteed. Also, a certain amount of error is
inherent when using a commonly available and fast linear program (LP) -- instead of the more
appropriate IP -- and then forcing the returned link quantities to integral values. ICH embodies
modifications and additions to the implementation of [SaNi90] in order to realize additional
features, such as limiting the restoration path length (RPL) and introducing fiber capacity
modularity as part of the design process.

SLPA and ICH are compared for computational complexity, total capacity required,
restorability with a known restoration algorithm, and ease of implementaticn. In addition, a
technique is introduced for updating a network design when new facilities are implemented, which
respects the capacity already in place. Called joint provisioning and restorability, this is essentiei
for any capacity management algorithm operating in a continually evolving telecommunications
network.

11 Outiine

Chapter 2 presents the mesh carrier transport network and describes the requirements of
restoration.



Chapter 3 introduces the comparison measures used for this study, including time
complexity, storage complexity, restosability, total metwork capacity, ease of implementation,
accommodation of network growth, and over-restorability. The network models used in the
comparison also appear here.

Chapter 4 formally presents the spare capacity placement (SCP) problem. Chapter 4
also presents a direct, exact approach to SCP, called the Direct Cutsets Algorithm (DCA). This
algorithm is restrained from practical use for SCP by extremely high computation times.

Chapter § investigates the complexity of the SCP problem in genetal. After a brief
introduction to the required components of complexity theory, the chapter contains a proof that
the SCP problem is NP-hard. This is the primary impetus for using heuristics, rather than exact
algorithms, to solve the SCP problem. The Direct Cutsets Algorithm (DCA) for SCP is then
analyzed for its complexity, proving that the algorithm is NP-hard. The analysis of the direct
algorithm suggests possible methods of implementing a cutset-based heuristic.

Chapter 6 presents a cutset-based heuristic, called the Iterative Cutsets Heuristic (ICH).
The heuristic is described in terms of the components presented in chapters 3 and 5, then
analyzed theoretically. Experimental results are presented in the following categories: time
complexity, linear versus integer programming, restoration path lengths, restoration type and
restorability, and system modularity.

Chapter 7 presents the other heuristic, the Spare Link Placement Algorithm (SLPA).
SLPA is introduced in general terms, followed by a section which discusses implementation. The
third section discloses a specific implementation and a complexity analysis. The remainder of the
chapter presents experirmental results for time complexity, space complexity, restoration type and
restorability, and system modularity.

Chapter 8 compares the results presented in chapters 6 and 7 and also investigates
accommodation of network growth, ease of implementation and over-restorability. Chapter 8
concludes with a series of recommendations for selection of an SCP heuristic.

In Chapter 9, SLPA is used to demonstrate joint provisioning and restorability of a
network design as it evolves over time. Strategies of just-in-time capacity management and
preemptive capacity management are considered. Pre-emptive capacity management is
controlled by both future provisioning needs and future restorability requirements of the network.

The thesis is summarized in Chapter 10 with suggestions for future work.



2  Mesh Transport Networks

This chapter is dedicated to describing the attributes of mesh transport networks and the
properties of mesh restoration solutions, thus providing the requirements with which the SCP
algorithms must comply.

2.1 The Network

Carrier transport networks are composed of nodes and spans. Nodes are digital
crossconnect systems (DCS), which apply computer control to altering routes, terminating traffic,
and initiating traffic. Spans are the logical connections between nodes, the pipes through which
traffic can “flow.” They comprise multiple links, each link carrying a fixed number of multiplexed
voice or data circuits. The capacity of a link depends upon the technology used; for example, a
DS-3 link transports 672 voice-circuit equivalents. The links are of two types for restoration
purposes. Working links carry live traffic. Spare (redundant) links are available for future
provisioning and for restoration (rerouting of traffic) of failed working links. A path is a chain of
links through the network, and can be provisioned between any two nodes in the network, from
the pool of spare capacity, subject to the availability of spare links.

2.2 Restoration Re-configuration

To re-establish working paths after their failure, restoration is effected by substituting a
spare path (restoration path) for a portion of each failed path created by a span cut. Restoration
of an entire span failure requires a separate link-disjoint restoration path for each path disrupted
by the failure. A single spare link can be a component of only one restoration path.

This research assumes that only one span failure event occurs at a time. In practice,
occasional violation of this assumption may occur because of the time required to physically
repair a failed span. Only physical repair of the failed span retumns the restoration paths to the
pool of spare capacity, enabling use in another restoration event. A calculation can be performed
to approximate the probability of multiple span restoration events overlapping in time. Following
the work of {Grov89b] and [Krte88] on the Telecom Canada network, this calculation assumes a
cable failure rate of 2103 per km per annum and a manual repair time of 14 hours for a fiber
span. Hence, a span that is 300 km long will be down for 8.4 hours per year (300 km * 14 hrs *
2°10"3 km-1yrs-1). This corresponds to 0.096% of the time. For a network with 200 spans, each
with 8.4 hours per year of down-time, the probability of having two (or more) fallures at any given
time is (by realizing that this is a binomial dlstributic:n. [Proasg)):

P(#failures 2 2) = 1-P(0 failure) - P(1failure) =1- " C(200,k)- (0.00096)* - (1- 0.00096)*°-* = 16%
k=0

where C(i,j) is the number of combinations of i objects chosen j at a time.



Thus, the probability of multiple spans requiring simultaneous restoration is only 1.6%
even though at least one span will be failed 17% of the time. Of these events, few pairs of
failures will be geographically close enough to compete significantly for restoration capacity.

23 Restoration as a Routing Problem

The routing required for restoration has attributes that differ from other common routing
mechanisms such as packet routing or call routing. The discussion here will summarize some of
the related material presented in [Grov88).

Restoration paths are link-disjoint replacement paths substituted for segments of failed
paths. This mechanism assigns a distinct restoration path for each failed working path segment.
For example, Figure 2.1 presents the k successively shortest link-disjoint restoration pathssor a
span failure between nodes 1 and 5 through an example network. A transmission networkis
described as a multi-graph, because multiple links exist on a span and each link is treated as a
separate entity. The aspects of link-disjointness in a multi-graph are not characteristic of other
routing problems. Most other routing processes operate on simple graphs where only one link is
available on each span and routings are not mutually link-disjoint. Links may take the form of a
grouping of trunks, but the access is to the group instead of to the individual entity.

Figure 2.1 The 8 Successively Shortest Link-Disjoint Raste:zton Paths for Span Failure 1-5

The packet routing mechanism establishes & inuts o mach source-sink pair by
transmitting packets through intermediate nodes. Each #:xrie-sink pair stores the sequence of
nodes through which this route was established in a “roiti»y; table.” The routing table dictates the
route over which all subsequent packets for that source-sink pair will transit. Packet routing
associates only one “pipe” with each span and, therefore, a packet network is represented as a



“simple graph.” In packet routing, any number of source-sink pairs can share a span within their
routing table entries.

Similarly, a dynamic adaptive call routing mechanism routes an offered call attempt
through a sequence of trunk groups, from the source node to the sink node. This mechanism is
similar to packet routing in that it operates in a network represented by a simple graph. Each
trunk group is accessed as a single entity and, therefore, after a route is established, the
mechanism arbitrarily assigns a trunk from each trunk groupto carry the requested call.

Call routing and packet routing have other attributes that are different from the restoration
routing mechanism; however, for this thesis, the simple graph network representations leading to
non-link-cisjoint routing is the important distinction from the vestoration routing problem. The
restoration probiem requires identification of multiple link-disjoint paths. As a consequence, a
single route substitution restores networks that implement simple graph routing; but, in the carrier
transport network, only a distinct link-disjoint path substitution for each failed link provides
restoration.

24 Topology Design and Working Path Routing

Optimal network design for restorability requires three design phases: network topology,
working path routing (WPR), and spare capacity placement (SCP). Although optimal network
design can only truly rasult from simultaneous consideration of all three of these phases,
computability dictates the separation of these problems.

A network topology must have graph-connectivity greater than one in order for restoration
to be possible, otherwise a span exists whose removal disconnects the network and therefore
leaves no restoration route. Appendix A presents actual network topologies which are currently
deployed. These networks have average node degrees of three or more and provide enough
route diversity to support restoration by rerouting (except some of the outlying areas of the Indian
network). [MaWi91] addresses specific aspects of restorable network topology design such as
efficient placement of spans and nodes. Also, the use of matroids to ensure restoration
capabilities which are equivalent for max-fiow and k-shortest paths path selection is proposed as
a future investigation. Otherwise, this thesis does not consider network topology design further.

The second step in designing a carrier transport network is the routing of working paths.
The network requires a minimum total working capacity when all working paths are placed onvihe
shortest possible routes -- this is shortest path routing. However, in designing a network that
must be restorable, shortest path routing does not always. result in the minimum total (working +
spare) capacity. Thus, an optimal capacity design procedure requires the simultaneous allocation
of both working and spare capacity, which ensures that the working paths are routed over



relatively short routes as well as being easily restorable, and results in maximal sharing of the
network's redundant capacity.

The problem of optimum SCP within a network with fixed working capacity and topology
is difficult in itself. Simuitaneously attempting to optimally route the working capacity exacerbates
the problem. In fact, a feasible heuristic to solve WPR ard SCP, opiimally and simultaneously,
has not been proposed to date. To reduce the complexity of this dual-faceted problem, [GrBi90]
took a sequential approach which firsi routes the working paths, with knowledge of the
placements that cater to good later sharing of spare capacity for restorability. Spare capacity is
then optimally assigned based on these working path routings. In studies performed on the
Telecom Cenzda network, this method resulted in a decrease in total capacity of approximately
3% from the network designs with shortest path routing of working capacity. Such small
improvements do not justify the complexity added to the design procedure. This thesis does not
investigate the issue of optimal WPR beyoric the summary provided in the remainder of this
section.

The algorithm used in [GrBi90) to route working paths exploits the end-node limited
condition of mesh restorable networks (see Section 2.6). From a node-oriented perspective, the
minimum redundancy is achieved when the working capacity is uniformly distributed among the
spans incident to a node. A noda! balance algorithm evaluates potential routings of a working
path for their contribution to nodal balance in the network. It calculates this contribution as the
sum of the nodal imbalance metrics associated with each node along the path. At a single node,
the metric is the sum of working capacities on the spans being considered for the new path minus
twice the average capacity of all spans. Thus, a negative metric value is desirable because it
indicates an overall increase in nodal balance of working capacity. At each iteration, the working
path routing algorithm provisions the path with the smallest sum of nodal balance metrics. The
algorithm routes the shortest paths first, so more knowiadge of the network will be available when
routing the longer, more flexible paths.

[GrBi90] observed that minimum total capacity occurs with route lengths of 1.0 to 1.154
times longer than shortest paths routing. [GrBi90) repeated the whais network design (WPR and
SCP) for factors ranging from 1.0 to 1.3 to identify its optimal value for these networks.

The remainder of this section provides an example of how a longer working path route
can result in smaller total capacity. In the sub-network of Figure 2.1, some spare capacity has
already been provisioned for restoring spans not depicted in the figure. For simplicity of analysis,
there is no working capacity yet routed on any of the spans included in the sub-network;
therefore, the nodal balancing requirement cannot be readily observed in this network. The
network requires an additional working path between Noda A and Node C. Consider the routing
altematives A-B-C, A-E-C, and A-E-F-C. When provisioning these new working links, the network
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requires additional spare capacity to maintain restorability. The addition of a working link to

spans A-B, B-C, or E-C requires extra spare capacity for restoration; however, accepting the
longer route (A-E-F-C) avoids these trouble spans and no requirement for additional spare
capacity exists. Hence, in this case, choosing the longer route minimizes the total number of links
added.

2.5 Path or Span Restoration

Which sagment of a failed working path should be replaced with a restoration path
segment? The replaced segment must include the failed span; however, it can also include any
number of the other links of the original path, on either side of the failed span.

span without
spare capacity
span with
spare capacity

Require: One restorable working path between A&C.

Direct route (A-B-C): Must add 1 working and 1 spare link
on each of A-B and B-C. (Total of 4 links.)

Minimum capacity route (A-E-F-C): Must add 1 working link to each of spans
A-E , E-F, and F-C. (Total of 3 links.)

Figure 2.2 Reduction of Total Capacity by Longer Working Path Routing

Fast restoration algorithms developed to date have provided restoration paths between
the two nodes adjacent to the failed span. This is called span-restoration. it is the only
restoration that guarantees to replace the same logical failed segment for every failed path, and
therefore provides a reduction in restoration complexity by allowing a single source-sink pair
search for all restoration paths. For example, Figure 2.2 depicts a neétwork in which Span G-H
fails. Hera, solid lines indicate the failed working paths. Span-restoration is the only alternative
whereby paths between a single source-sink pair of nodes can restore all failed working paths
because paths A-G-H-C and E-F-G-H-I-J only share nodes G and H.

Path-restoration seeks to replaoe failed paths with entirely new paths from source to sink.
Path-restoration generally requires a different sourtie-sink restoration path for each falled working
path. Therefore, it requires multiple path searches to establish the restoration paths, and results
in & decrease in restoration speed. However, path-restoration can offer the most efficient use of



network capacity, because it is possible to avoid the area of the network where the failure
occurred and capacity is at a premium. In Figure 2.2, when path A-G-H-C fails, path-restoration
may route the path over A-B-C and free the links on the original foute for use as spare capagcity
for another failure. When restoring the same path with span-restoration, the shortest restoration
route is via nodes B and C, making the new path A-G-B-C-H-C. Thus, near the failed span where

spare capacity is most valuable, path-restoration has a lower capacity requirement than span-
restoration.

/ P ' \
/ \
/ | \
’ PN
® O—=0
/ 7
/ .
——= working path 7
segments \ / \ /! 7

before failure

— = unused span ® - _® -

Path Restoration: Reroute original path via an alternate route between end-
nodes of path (A-G-H-C path before failure can be rerouted A-B-C
after the failure, releasing the spare links on spans A-G and C-H).
Span Restoration: Reroute failed link of original path between end-nodes of

failure (A-G-H-C path before failure is rerouted to A-G-B-C-H-C
path after failure).

Figure 2.3 Path and Span Restoration

Of course, any intermediate node pair, between the end-nodes of the failed span and the
end-nodes of the path, can alternately be selected for anchoring restoration paths. in specific
situations, an intermediate selection could provide a balance between the benefits of span and
path restoration.

The remainder of this thesis assumes span-restoration for networks designed with the
SCP heuristics. There are two reasons for thié decision. Published testoration technituss that
claim restoration speeds under 2 seconds! use span-restoration. The extra complexity of path
restoration makes it less likely that a path restoration algorithm, if developed, would meet the
same real time objectives. And networks designed for span-restoration will contain enough

The call dropping threshold is commonly 2 seconds. Therefore, restoration which can be
completed within two saconds will avoid a loss of service.




capacity to perform path restoration, but the opposite statement is not necessarily true.
Therefore, assuming span-restoration will upper-bound redundancy requirements.

2.6 Mesh Versus Ring Restoration

The two SCP algorithms investigated here seek to design mesh-type restorable networks.
However, some researchers have investigated ring-type restorable networks [LaAb86, TsC090,
Wrob30, McGo88, CaMo89, WuHa89, FIOx89, Flan90]. The scope of the current research does
not allow for a full discussien of the benefits and liabilities of each restoration method, but this
section will present a theoretical comparison of redundant capacity requirements. This section
will introduce ring-type restoration, briefly describe the network design issues associated with
rings, then discuss their redundancy requirements. A theoretical discussion of redundant
capacity requirements for mesh restoration will follow. This section concludes by comparing the
redundant capacity requirements associated with ring and mesh restoration methods, thereby
further motivating the study of optimum mesh-restorable networks.

Ring-type restoration is characterized by restoration over a single predefined route. The
spans of the predefined restoration route, coupled with the failed span, comprise a restoration
ring. The most efficient type of restoration ring, the shared protection ring (SP-ring), facilitates
shared access to the spare-capacity of the ring for the restoration of ary span in the ring.

Figure 1.1 provides an example of a single SP-ring. Because all spans on the ring must be
restorable via the remainder of the ring, the capacity of the largest working span dictates the
spare capacity required on the other spans. The spare capacity required on any span is the
maximum of the working capacities on any other span in the ring.

In the network of Figure 2.4, the spare
capacity required on span A-B will be the
greater of the working capacities on spans A-C
and B-C. The spare cap@eity assigned to A-B
will be available for restoration of both of the
other two spans on the ring, but will not be
available to any other spans in the network Figure 24 ?,?gﬁ‘é'g.,'?:g"""mems
which are not included in this ring.

The optimal design of ring restorable networks must incorporate three aspects of network
design: grouping spans into restoration rings, routing the working paths, and placing the spare
capacity for restoration. The redundant capacity required for restoration is minimized with rings
which have balanced working capacity on all spans. Thus, routing working capacity and mapping
nodes and spans into rings must simultaneously seek to batance the working capacity of the
rings. Balanced working capacity allows the most efficient allocation of spare capacity among the
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spans of the ring. In a ring with identical working capacities on each span, the full spare capacity
of the ring is utilized in every restoration event. When the optimum ring definitions and working
capacity routes have been identified, the spare capacity requiraments will be defined as a
consequence. Thus, the problem of optimum network design must include more than just the
step of calculating spare capacity requirements; it must start with defining the network sub-rings
(number, size and location) and routing the working paths through the rings from source to
destination.

The most efficient ring requires as many spare links on each span as there are working
links. Therefore, the required spare capacity is 100% of the working capacity of the network:
Redundancy is 100%. Although this theoretical minimum redundancy is possible, other
restrictions on the design usually prevent it from obtaining this optimum redundancy. For
instance, in most ring designs, it is required that rings join to neighboring rings at more than one
node, which often resuits in a shared span. Each ring requires spare capacity on the common
span, resulting in reduced efficiency.

Ring designs restrict restoration to a single predefined route for each span failure. A
more efficient restoration method would impose no restriction on use of the network's spare
capacity; it would employ a network-wide sharing of spare capacity. Mesh restoration achieves
this.

Mesh-restorable network design requires that the network's spare capacity satisfies two
conditions to provide restoration for each span. There must be enough spare capacity on spans
adjacent to the failed span to support the required number of restoration paths between the two
nodes on both ends of the failure. There must also be spare capacity through the remainder of
the network for the immediately-adjacent links to be joined into complete restoration paths. if the
network design is constrained by the first condition, restoration is said to be “end-node limited.”
Otherwise, restoration is said to be “bodily limited.” it has been found in [GrBi90,GrBi91] that real
transport networks are primarily end-node limited. As a result, we can formulate a simplified
node-oriented approach to spare capacity requirements.

Consider one node with degree of d. All working capacity adjacent to this node is
restorable if the sum of the spare capacities on the other d-1 spans is at least as large as the
working capacity on any failled span. in a network with balanced working capacity and an end-
node limited condition, full restoration can be accomplished with a redundancy of 1/(d-1). For
example, at a node with only 2 spans, a redundancy of 100% is required to provide restoration.
However, at a node with 5 spans with equal working capacities on each, only 25 % redundancy is
required to provide full restoration. Thus, mesh restoration exploits the connectivity of the
network to reduce the required restoration capacity. Ring capacity requirements are the two-span
extreme of the mesh capacity requirements.
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The amount of redundant capacity required to achieve restoration represents a major
difference between mesh and ring design as illustrated by Figure 2.5. Using ring restoration, the
required spare capacity is established on a span-oriented basis, whereby each span must have
‘enough spare capacity to restore any other span in the ring. In mesh restoration, the spare
capacity can be set on a node-oriented basis. Surviving spans can team up to provide restoration
capability for the working capacity of a failed span.

sy>max(wa,w3,w4) $2+53+84 >= W1
So>max(wi,w3,w4) $1+53+54 >= W2
sg>max(wq,wa,wg4) $1+Sp+84>= W3
sg>max(wi,wo,w3) S1+S0+S3>= W4
(a) Ring Restoration (b) Mesh Restoration

Figure 2.5 Spare Capacity Requirements Depend Lipon Restoration Scheme

Figure 2.6 takes a node-oriented perspective to the spare capacity requirements for both
ring and mesh restoration designs having node degrees of 4. The ring-based network was
assumed to have an optimal design, with working capacity balanced between all spans of a ring.
Two rings touch at the node depicted. Each of the rings is balanced with each span having a
working capacity of 6 links, facilitating restoration with the other 6 links. The total redundancy
required meets the optimal limit of 100%. The working capacity of the mesh network is also
balanced between spans in order to optimize the design. Because all spans share equally in the
restoration effort, the spare capacity required on each span is 1/3 of the working capacity. The
mesh-restorable design uses the same 4 lightwave systems as the ring-restorable design, but
67% of the capacity carries working traffic and only 33% of the capacity is redundant. [GrBig0]
provides more examples of capacity comparisons between ring and mesh restoration for
particular structures present in the Telecom Canada network, which has been likened to a ladder
topology.
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(6) 6(6) 3  Am

(6) 6(6) (3) 3(3)
(a) Ring design: (b) Mesh design:
4 OC-12 Systems 4 OC-12 Systems
24 Working Links 36 Working Links
24 Spare Links 12 Spare Links
Redund. = 100% Redund. = 33%

Figure 2.6 Spare Capacity Requirements From a Node-Oriented Point of View

Mesh restoration requires less redundant capacity than ring restoration. Because this
thesis seeks to identify algorithms which minimize spare capacity, mesh restoration is desirable.
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3 Performance Criteria and Experiments

This chapter introduces the specific characteristics that are desirable in an SCP heuristic.
In subsequent chapters, the author evaluates ICH and SLPA on these characteristics. Section
3.7 presents the networks used to evaluate these characteristics through experiments.

3.1 Computational Complexity (Time and Space)

For each algorithm, time complexity will be characterized both theoretically and
experimentally. The theoretical analysis will investigate worst-case and average-case execution
times in terms of the following network size parameters: (a) number of nodes (N), (b) number of
spans (S), (c) average node degree (davg), and (d) restoration path limit (RPL).

The experimental execution time results are obtained from compiled ‘C' language source
code on the SUN SPARC 2™ RISC-based computing platform with execution speed of 28.5
MIPS. Diskless workstations were used with 16 Mb main memory and 48 Mb swap space. All
experiments use RPL=10, where required. The heuristic algorithms investigated here can be
compared experimentally because a single programmer implemented all of them. The major
contributors to the complexity of the heuristics are Dijkstra’s shortest path algorithm in SLPA,
which has been very carefully coded, and a Linear Program (LP) in ICH, which is solved with
commercially available software.

in the original implementation of the SLPA heuristic, [GrBi90] reduced execution time by
precompilation of the restoration routes into a path-table. For this implementation, both time and
space complexity analysis are required.

3.2 Restorability

Restorability of each span is the most important constraint imposed upon SCP
algorithms. A span-cut i between nodes (s,t) results in wj working paths being interrupted.
Restoration of this span is achieved by rarouting the interrupted links over k; link-disjoint
replacement path segments through the spare links on surviving spans. The span-cut is fully
restorable if the number of possible restoration paths, k;, is greater than w;. Span restorability is

defined as:
min(w,,k,)

Rs.l = W,

(3.1)

The restorability of a network as a whole is the ratio of the number of working finks in the
network that are restorable to the total worklng capacity (in links) of the network.

Z[min(w.,k,)] ZIRl.I W]
Ry = &l ==l 3.2)

w3l
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where S is the number of spans in the network.

Here, the network restorability target is 100%. This objective maximally stresses the SCP
algorithms. Moreover, the ability to achieve network designs that are 100% restorable is an
important feature of any heuristic which claims to design restorable networks. The heuristics will
also be evaluated for ability t6 accommodate restorability objectives that are less than 100%.

3.3 Total Network Capacity

A common format for expressing amount of spare capacity is redundancy of the network,
defined as follows:

i[sll

Red, =&

2w

i=1

where w; and s; are respectively the working and spare capacities of span i.

This research does not use this definition in its most general form because of the
significant discrepancies that different working capacity routings can introduce. As was discussed
I Section 2.4, working capacity can be routed in a manner that increases the sharing of spare
capacity and, therefore, decreases the requirement for spare capacity. Taking this method to the
extreme, it can increase working path lengths while decreasing the required number of spare links
to achieve restorability. Such designs will have a lower redundancy by formula (3.3), even though
the total capacity and the spare capacity have been increased. Thus, a measure of redundancy
more suitable to SCP comparison is normalized fo the amount of working capacity implied by a
shortest path routing. .

2[si]
Red, =5—*=L—— (3.4)
E[wl.shonest palh]

(3.3)

This normalized redundancy figure is required for comparing networks of varying sizes.
However, when comparisons are based on a common network, the issue of what value to use as
the denominator can be avoided entirely by adopting total network capacity as the figure of merit.
Therefore, this thesis uses total network capacity wherever possible for evaluating the optimality
of designs; or, total spare capacity when common working capacity placement between designs
exists.

3.4 Ease of Iimplementation

This thesis also compares heuristics for ease of implementation, a preferance given to
algorithims with concise specifications, measured by the amount of computer source code
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generated. With an easily specified heuristic, a third party can quickly and accurately produce
his/her own version.

3.5 Accommodation of Network Growth

An SCP heuristic should consistently produce a near-optimum network design, both in
terms of minimizing capacity and meeting restorability objectives. An additional requirement of
network evolution arises after initial design implementation, when the network capacity grows
beyond the original design: In the face of service growth, how can an SCP heuristic evolve a
previous network design to accommodate the new growth, while optimizing the design in the
process? This is an essential aspect of real world networks that grow continually and should
evolve gracefully rather than being periodically redesigned from the ground-up. Specifically,
during the evolution to a new restorable network state it is preferable if a minimum of spans are
affected. This research considers two approaches for updating an SCP solution as the underlying
“working” capacity of the network grows. These methods are called “incremental” and “ground-
up.”

in incremental growth accommodation, span capacities can only increase. Existing
capacity is never removed or relocated. This avoids the expense associated with removing or
relocating existing capacity. This form of growth acconimodation is easily implemented into any
SCP heuristic by solving a smaller SCP problem in a network of the same span topology but in
which wj > 0 only where non-restorable spans exist in the full network after growth. The spare
capacity already present in the network is unchanged during the evolution. The new spare
capacity requirements are obtained by adding the spare links to realize full restorability in the
subnetwork design to the previous spare capacities.

The ground-up growth accommodation strives to optimize the new'network design rather
than just the new layer of capacity. Therefore, this will result in a more efficient design in terms of
capacity, but will often remove or relocate capacity. For some heuristics there may not be a
method of performing ground-up growth 2ccommodation while still avoiding widespread
redistribution of capacity. In order for a heuristic to achieve an acceptable form of ground-up
growth accommodation, the location of capacity in the previous network design must carry some
weight during the evolution process.

3.6 Over-Restorability

A companion measure to restorability is the over-restorability of the network. Over-
restorability is a measure of the ability of the network design to maintain restorability while
provisioning additional working paths from the pool of spare links in the network.

in the SCP problem, spans that have higher working capacities drive the network design,
because they require larger restoration capabilitiss. Some spans may lie in the “shadows” of
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these design-driving spans and enjoy access to their large pool of spare capacity yet have a
smaller working capacity. This means that additional working capacity may be added to the
smaller spans without any requirement for additional restoration capacity. The total number of
restoration paths that exist in the network (reflecting the maximum number of working links that
could be restored if so provisioned) as a fraction of the working links present represents over-
restorability, or capability for increased working capacity without restorability loss.

Sk]

OR,=5—&t— (3.5)
Ig["‘ﬁ. shortest path]

where Wi shortest path is the number of working links on span j when all working paths are
shortest path routed, and kj is the number of restoration paths available for restoring a failure of
span j. When comparing networks with identical working capacities and topologies, the maximum
number of restoration paths available is an equivalent measure of over-restorability.

3.7 Experimental Network Models

Experimental network topologies were generated to exercise the heuristics over a range
of networks varying in number of nodes and average node degree. Testing the heuristics on
generated random networks allows more freedom to vary network size and degree systematically
than could be provided by known network topologies. However, the known network topologies of
Appendix A did provide important nétwork characteristics used in generating the random
networks. The algorithm used to generate the networks is called the network generation

algorithm (NGA). The following sections summarize the description of NGA from [DuGr91] for
those functions used here.

3.7.1 Network Topology Characteristics

The network generation algorithm can vary the characteristics of the average node
degree, the number of nodes in the network, and the maximum magnitude of spatial separation
between adjacent nodes. NGA also includes a technique for tailoring the distribution of the
individual node degrees to more closely approximate the characteristic. of a known network
topology, but this technique was not used here.

3.7.2 Generation of Test Networks

The user of NGA specifies the target number of nodes and spans in the topology to be
generated. The fi:st step performed by NGA Is randomly inserting nodes on a (GxG) grid, where
G Is calculated based on the target number of nodes in the network, as follows: G = (1.8 * N)0-5,

After NGA establishes the node positions, it adds spans to the network by the following
process: Randomly select a node. Define a point P that is 1.55 grid spaces away from the
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selected node at a random angle. ([DuGro1] seiected the vali:e if 55 io ensie i1e grid space
separation {either diagonal or width) for most adjacent nedes.) Add a span betieen the selected
node and the closest node to point P. This precedure ensures that adjacsrt natles are within 2
grid separations of each-other. Repeat this process of adding spans until re2ehiviy the target
average node degree. Thedesign process ends when NGA reaches the cliice: =, or if i
determines that no-more progress is possitle by attempting to add more spar. »ter crn.i ding
the span addition phase, NGA removes any nodes that have a degree of o1& - vm the g ok
design.
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3.7.3 The Networks

Table 3.1 contains a summary of network parameters for tha study networks used
throughout this thesis. The table contains the network sizes in terms of N and S (davg = 2.SMN).

Appendix B shows the corresponding network topologies.

Table 3.1 Study Network Parameters

Name N S Name N S
n20s30 20 30 n60s150 60 150
n20s40 20 40 n60s180 60 180
n20s50 20 50 n70s105 68 103
n20s60 20 60 n70s140 70 140
n30s45 30 45 n70s175 70 175
n30s60 30 60 n70s210 70 210
n30s75 30 75 ng0s120 81 122
n30s90 30 90 n80s160 80 160
n40s60 39 59 n80s200 80 200
n40s80 40 80 n80s240 80 240
n40s100 40 100 n90s135 90 137
n40s120 40 120 n90s180 90 180
n50s75 46 4 n90s225 90 225
n50s100 49 99 n90s270 90 272
n50s125 50 125 n100s150 93 143
n50s150 50 150 ni100s200 100 200
n60s980 58 88 ni00s250 100 250
n60s120 60 120 n100s300 100
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4  SCP Problem Formulation

The problem of optimum spare capacity placement (SCP) for a mesh transport network is
best described in terms of algorithmic graph theory concepts. This chapter introduces the
fundamental graph theory concepts and algorithms that are required in a formal specification of
the SCP problem. In Chapter 5, analysis of the complexity of the SCP problem uses these graph
theoretical concepts.

4.1 Introduction to Graph Theory

In this thesis the author refers to the components of the network in the terminology of the
telecommunications community. The primary differences in terminology between
telecommunications and traditional graph theory appear in Table 4.1. The next few paragraphs
describe a telecommunications network in graph theoretical terms, to facilitate comparisons to
graph theory literature.

Table 4.1 Terminology Comparison of Telecommunications and Graph Theory

Telecommunications . ...Graph Theory
Network ~ Multigraph
Node Vertex
Link Edge
Span Set of all edges with common vertices
Path Chain
Ring _ Cycle

A graph is a collection of vertices (nodes) and edges (links) which connect the verticss.
The edges may be assigned a direction of flow or they may be undirected. A multi-graph is a
graph with more than one edge between any pair of vertices. For the purposes of this research, a
telecommunications network is an undirected multi-graph in which each edge provides flow in
both directions; this symmetric digraph {transmission direction is important) has an edge (i,j) for
every edge (j,i). Hence, a telecommunications network is also balanced, meaning that each node
has an equal number of outgoingj directed edges as incoming directed edges.

Links are incident to a node when they terminate at it. Adjacent links are incident to a
common node. Similarly, adjacent nodes share a common incident link (span) and they are
called the end-nodes of the link (span).

The connectivity of a network is the minimum number of spans whose removal resuits in
a network with muitiple components (internally connected subgraphs). In this thesis, connectivity
is not the average number of spans incident on a node, 2s in some literature. Here, the number
of spans incident on a node is its degree, although in graph theory the degree of a node usually
refers to the number of edges incident on a node.



In the graph theoretical sense, network connectivity is an important part of network
design for restorability. In order for a network to be 100% restorable, its connectivity must be at

least 2. In a network with a connectivity of 1, there is a span whose removal disconnects the
network and makes the network unrestorable.

4.1.1 Cuts and Cutsets

A cut of a network is a partitioning of the set of nodes into two subsets. A cutset is the
group of spans that are incident to a node in each of the node sets of a cut. Also, the removal of
the spans of a cutset from the network must produce exactly two components.

4.1.2 Efficiency Analysis

The efficiency of an algorithm can be determined empirically or theoretically. The
empirical (or a posteriori) analysis involves implementing the algorithms and comparing results on
different problem instances. The theoretical (o7 a prior)) approach consists of mathematically
determining the quantity of resources (execution time, memory space, etc.) needed by each
algorithm, as a function of the size of the problem instances considered ([BrBrg8]). Both of these
efficiency measures will be used in this thesis.

A common way to express the "complexity" of an algorithm (the quantity of resources
required) is asymptotic notation. The analysis performed herein primarily uses “the order of*
category of asymptotic notation. This provides an upper bound, to within a multiplicative
constant, of the complexity of the algorithm. For a more specific statement of this notation,
consider an algorithm, B, which seeks 1o solve a problem instance of size n. Here, () is a
apecific mathematical function of n that is being used to bound the compiexity of the algorithm
(eg. (n)=n2).

Algorithm B is “the order of f(n)," or O(f(n)), if a positive real muttiple of f(n) exceeds the

amount of resources consumed by B, provided that n is sufficiently large (greater than

some threshold ng). [BrBras)
For example, if B is O(n2), then the number of operations (or storage requirements, etc.)
performed by B cannot exceed ¢ in any problem instance where n>ng, for some positive real
constant ¢. Thus, It also follows that if B is O(n2), B is also O(n3), but the latter statement is a
Jooser bound describing B.

This thesis does not use the other forms of asymptotic notation, such as specifying lower
bounds or the combination of iower and upper bounds.

4.1.21 Why Asymptotic Analysis?

Asymptotic analysis excludes the constant multiplier (c), not to imply that the constant is
unimportant but, rather, reflecting the knowiedge that the constant only affects the scale of the
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calculation time and does not affect the rate at which the calculation time increases with the size
of the problem. Faster computess and better software engineering (among other things) can
compensate for the constant mutiplier, but primarily the asymptotic complexity determines the
exist where the constant multiplier is large enough to restrict feasible use of a low complexity
algorithm (eg. polynomial LP implementations [Schr88]). Experimental measurements can
provide an estimate of the constant multiplier, thus also providing estimates of actual execution
time for all problem instances.

In this work, algorithms for SCP are carefully designed to minimize their asymptotic (time)
complexity, because telecommunications network sizes can be very large. Only after designing
the algorithm for low asymptotic complexity is an attempt made to minimize the constant
multiplier.

The primacy of asymptotic complexity overimplementation details (which alter only the
constant multiplier) is ¥lustrated by the following aiusing anecdote.

In an Indian folk tale called “The King's Chessboard,” the King forces a wise man to

accept a reward for services rendered. The wise man exposes the King’s lack of

background in mathematics by requesting an exponentially increasing amount of rice as
payment: one grain of rice on day one (the first square of his chessboard); two grains of
rice on day two (the second square of his chessboard); four grains of rice on day three

(the third square of his chessboard); and so on. Payment is complete after 64 days when

64 payments account for each square of the King's chessboard. Each day, the amount of

rice doubles and, therefore, the request is O(2") or exponential in amount of rice. The

King recognizes the developing pattern only on day 31 when 16 wagon-loads of rice are

paid. He summons the royal mathematicians, who calculate the total amount of rice

promised to be 549 755 830 887 tons (which we know Is 264-1 grains). [Birc42)

In the tale, the constant multiplier is a single grain of rice -- indeed, the smallest
imaginable fee from ine King's perspective. Now, the primacy of the asymptotic function can be
demonstrated by assuming that the King had promised a single molecule from a grain of rice on
the first day. If the constituent molecules of rice are larger than 2-64 times the size of a grain of
rice (which s the approximate size of a carbon atom), the same amount of rice would be owing
before the number of days reaches 128 (a mere doubling of problem size).

In computing problems, a single machine instruction on the computing platform avallable
is the smallest conceivable multiplier - the grain of rice. Therefore, using am-algorithm with an
exponential asymplotic execution time of O(2"), given even a single machine instruction that can
solve the entire problem executing at a speed of 1 ns, the total execution time “3r a 64-node
network is 284.1 ns o 585 years. Again, reducing the constant multiplier by a factor of 2-64 only
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allows solution of a 128-node network in the same 585 years. Clearly, an algorithm that is O(2")
cannot solve this problem for an arbitrary network size, independently of the constant multtiplier.

As is often true for important real-world problems, the direct approach to solving the SCP
problem will be shown in Chapter 5 to be exponential in nature and, thus, proposed exact
solutions make the same promise as the King. Armed with the King's knowledge, the author
seeks a heuristic algorithm that finds an approximate solution to the SCP problem in a time which
increases polynomially with network size.

This extreme example of exponential asymptotic complexity serves to point out the
usefulness of asymptotic analysis. However, it is generally accepted that only algorithms with
low-degree polynomial asymptotic execution times are feasible fo; use.

41.2.2 Parameters of Complexity

For the SCP problem, execution time is the primary complexity metric. Thus, the
analyses of algorithm “complexity” (the amount of rexcurces used by an algorithm) always
consider the number of operations required by the algorithm or the algorithm’s execution time.

Often, the execution time of repetitive tasks within an algorithm can be decreased by
preconditioning the task. In preconditioning, an initial computation is performed which reduces a
repetitive task’s execution time. Generally, the precon*ioning information requires extra s:nrage
space and, therefore, preconditioning effectively trades space requiremants for execution ¢:;seed.
In some algorithms that are implemented here, storage space requirements introduced by the
preconditioning impact the feasibility of the method. In these situations, complexity analyses
consider both space and time.

4.1.2.3 Average-case Analysis

In some cases, analysis of algorithm complexity using worst-case asymptotic complexity
is not indicative of expected complexity. For this reason, this thesis complements worst-case
complexity with experimental observations of exec::tion times for a wide range of input sizes.
These experimental results reveal the “average-case” behavior of the algorithm under test. Here,
E(f(n)) denotes the average-case complexity (derived from experimental observations) where f(n)

indicates the expected complexity (to within a multiplicative constant) as & function of the network
size.
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4.1.3 Quasi-Planarity
A planar network is one that can be

arranged on a plane surface such that no spans
cross and no two nodes have the same location
[Gibb8S5]. This is akin to the concept of a planar

circuit in electrical circuit theery. Generally, a

telecommunications transport network is nearly

planar, but exceptions similar to that depicted in

Figure 4.1 are reasonably common. Quasi- Figure 4.1 A Non-planar
planarity is a defining characteristic of the networks Telecommunications Network
considered here.

The concept of quasi-planarity is an important part of the analyses that follow. One
important task of this thesis is to define an SCP algorithm that can quickly (at least daily)
recompute the spare capacity requirements. Because there is no limit to the size of
telecommunications networks, complexity analysis is used to predict an algorithm's usefulness
over a broad range of network sizes. However, a common form of analysis of algorithms that
operate on graphs is to assume the worst case complexity, in which every node is or can be
logically adjacent to every other node. This form of analysis is not applicable to quasi-planar
networks, because nodes are generally only adjacent to those nearby in grid space. Thus, the
complexity analyses here make assumptions based on the quasi-planarity occasionally
épproximated as planarity of the networks implemented.

4.1.4 Locality Information
A span’s locality includes all spans and nodes that can topologically contribute to

restoration of that span under some routing criterion for restoration. The size of span localities is
dependent upon the allowed restoration path limit (RPL) and the network's topology. N'iand S';

denote the number of nodes and spans, respectively, in the locality of spani. Figure 4.2 depicts
the sets of nodes which are included in the locality for a particular span for various RPL values.
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Figure 4.2 The Node Sets in the Locality of Span 1-5 for Various RPL

Algorithms that operate on networks generally have complexity which depends upon N,
the number of nodes in the network. However, algorithms that have objectives based on
restorability (Rs), such as the SCP algorithms, may only need to operate on span localities to
determine Rs. Therefore, as the natwork outside the locality of span i grows in size, the
complexity for calculating Rg j need not change; it still depends only on N' and S'. When N is
much larger than N';, N'; is a constant as the network grows in size. Therefore, localities provide
a valuable constraint for reducing asymptotic complexity of SCP heuristics.

The concept and usefulness of localities is strengthened by near-planarity of the study
network and by restoration path length (RPL) limitations. Quasi-planarity restricts the node
degrees, d, observed in these networks, because nodes are only adjacent to relatively few
neighboring nodes and are not adjacent to nodes on the other side of the network. The
replacement paths used in network restoration are generally restricted in length by network
requirements, such as echo control. With RPL and d given, the maximum size of a span locality
can be expressed in terms of these parameters.

Some example networks are investigated, to gain an understanding of how RPL and d
affect the magnitudes of S’ and N'. In this analysis, it is assumed that quasi-planar (mesh
telecommunications) networks have artificially uniform node degrees.

Consider the structures of Figure 4.3. These are constant node degree networks.
Networks (a), (b), and (c) have node degrees of three, four and five respectively. The N’ values
within these networks can be upper-bounded as the number of nodes within RPL/2 hops (logical
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distance) because one of the end-nodes of:a failure will always be within that many hops of each
node in the locality. The size of the lacalilty can then be described geometrically as RPL
increases. For example, in the d=4 network:
1 hop allows addition to the locality of the 4 adjacent nodes to the starting node.
2 hops also allows the 4 type-A nodes which are two hops directly up,left,down and right;
and the 4 type-B nodes which are half way between the type-A nodes.
3 hops also allows the 4 type-A nodes three hops directly up,left,down and right; and the
8 type-B nodes which are 1/3 and 2/3 of the way between these new type-A nodes.
Continuing this process, it is noticed that the i-th hop adds 4-i nodes to the locality, except

for the zero-th hop which adds a single node.

RPL/2 RPL2
Therefore, N'=1+4- )i =——+RPL+1= 0(- ‘RPL2)
i=1
The degree 3 and 6 networks can be analyzed similarily to arrive at the N' values

displayed in Table 4.2. These results show that N’ is O(d-RPL2).

g R

(). dayg =3 (b). dayg=4 (©). dayg=6

Figure 4.3 Constant Degree Network Topologies

Table 4.2 N’ values in terms of RPL and d

avg
davg N'
3 N' = (3/8.RPL?) + (34.RPL) = O(3/8.RPL?)
4 N'=4/8.APL2 4 RPL + 1 = O(4/BRPLY)
6 N'= (6/8-RPL?) + (6/4-RPL) + 1 = O(8/8-APL)
d N'= O(d/8-RPL2) = O(d-RPL?)

A relationship for S' can be derived from the relationship for N'. S'is equal to d-N'/2, but
no larger than S. Therefore, S' is O(min(S,d2-RPL2/8)).

When d and RPL are small in relation to the network size, as the network grows the
asymptotic value of S' is O(d2.RPL2),
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In real networks the allowed values of d and RPL are limited (eg. d<5 and RPL<10
generally). Therefore, locality sizes have an upper bound and O(N') = O(dmax-RPLmax2) = O(1)
and O(S') = O(dmax®RPLmax?) = O(1). This fact will be used in the average-case analysis of
SCP heuristics.

4.1.5 Common Data Structures
Efficient implementation of algorithms requires appropriately chosen data structures.

This section introduces some of the data structures that are important to the efficient
implementation of SCP algorithms.

4.1.5.1 Adjacency Matrices and Lists

Adjacency matrices and lists store information about a network topology by defining
adjacent nodes. The SCP algorithms considered use both adjacency lists (adjL) and adjacency
matrices (adjM).

The adjacency list contains a list of all adjacent nodes for each node in the network.
Figure 4.4 illustrates a network topology and the corresponding adjacency list. The adjacency list
has the minimum storage requirements of any structure used to store network topologies:
Ng = N-d = O(N-d), where N is the number of nodes and d is the average node degree. An
algorithm that requires sequential identification of adjacent nodes ¢an efficiently retrieve
information from an adjacency list. Therefore, SCP algorithms use the adjacency list structure
when (a) they must access the nodes sequentially by geography, or (b) they must minimize
storage space.

s,
®) ) :gﬁ]l ~BD

adjL[D] -> AB,C

(a). Network topology (b). Adjacency List

Figure 4.4 A Network Topology and the Corresponding Adjacency List

An adjacency matrix is a Boolean rnatrix that has a TRUE value for each element (i,j) for
which Node i is adjacent to Node j. All other elements in the matrix are FALSE. For example,
Figure 4.5 illustrates a network topology and the corresponding adjacency matrix. The storage
requirement of the adjacency matrix is NxN bits of information, or O(N2), where N is the number
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of nodes in the network. Initializing a data structure of O(N2) size takes a number of operations
also of O(N2), because each element must be visited at least once. Therefore, this data structure
is not only iarger than the adjacency list, but it also requires more operations to initialize.

Adjacency matrices find their niche when an algorithm requires random information about
the existence of spans. This information is directly accessible in an adjacency matrix, whereas it
would require a brief search in an adjacency list. Thus, if the number of times that random
access to span existence information is required exceeds the added complexity of initializing the
adjacency matrix, the adjacency matrix is the data structure of choice.

A B CD
A|F|ITIFE]|T
BIT|F|T]|T
C|FI|TI|F]|T
DIT|T|T|F
(a). Network topology (b). Adjacency Matrix

Figure 4.5 A Network Topology and the Corresponding Adjacency Matrix

The algorithms in this thesis have complexities exceeding that of either adjacency
structure and, therefore, use whichever adjacency structure is most appropriate in each situation.
Therefore, when an implernentation can provide both adjacency structures without impacting
asymptotic complexity. When the algorithm requires information about all of a node’s immediate
neighbors, the information is directly available through the adjacency list (rather than undertaking
an O(N) search of the adjacency matrix). Conversely, when the algorithm requires random
information about the existence of a span, the information can be accessed in a single operation
from the adjacency matrix (rather than undertaking an O(d) search of the adjacency list).

in addition to providing adjacency information, the adjacency matrix can be easily
adapted to contain a mapping from node pairs to span numbers in order to index vectors of span
quantities. This function is effected by having the adjacency matrix elements hold span names
rather than just Boolean values. Thus, a valid span name suggests a TRUE adjacency condition
and also indicates the span name that joins those two nodes. A non-valid span name indicates a
FALSE adjacency condition. With such mapping of node pairs to spans numbers, span
information can then be contained in vectors of length S (the number of spans).
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4152 Binary Heaps

Wheh performing operations on network topologies, an algorithm must sometimes
maintain a list of nodes or spans in a dynamic priority list. For example, the Dijkstra shortest path
algorithm requires a list of nodes maintained so that the closest node to any node contained in a
set of selécted nodes is quickly accessible. A dynamic priority list enables: (a) the quick retrieval
of the highest priority element, (b) the addition of new elements and their priorities, and (c) the
alteration of elements’ priorities, as nacessary. For example, in Dijkstra's shortest path algorithm,
a simple list of nodes and their distances from the set of marked nodes is a dynamic priority list
when sorted by distance. However, adding an element into the correct position in a simple sorted
list requires O(n) operations, where n is the number of elements in the list. Binary heaps more
efficiently manipulate dynamic priority lists. This section introduces the binary heap structure,
describes its value to the SCP problers, and provides procedures that operate on the structure.

As depicted in Figure 4.6, the binary heap is a rooted tree-like structure. The root of the
tree is element a. An element of a binary tree can have up to two children. For example, element
b is a child of element a and a parent to its two children, elements d and e. The leaves of the tree
are those elements that do not have children of their own. The depth of an element is its number
of ancestors (parent, parent's parent, efc.). Thus, the root has a depth of 0, the root's children
have a depth of 1, and so on. The level of an element is the maximum depth of the tree minus
the depth of that element. Thus, elements with an equivalent number of ancestors share the
same level and depth. The root is the only element at the maximum level. In a heap, the leaves
are always arranged to be left justified on level 0 and on level 1 to the right of any element that
has children, as depicted in the figure.

depth level
0 a 2
7 N\
1 b c 1
/ \ /
2| d e f 0

Figure 4.6 A Tree Structure

Figure 4.7 depicts a heap structure stored in a sequential block of memory. This
structure does not require any explicit pointers to indicate which elements share a child-parent
relationship because of a systematic mapping of elements to memory locations: A node at
memory location i has children at memory iocations 2i and 2i+1. Additional elements are inserted
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at the first available memory location, which is always located at the end of the list. Thus, heaps
have the same storage requirements as a simple list.

a b c d e f o000

memory
location -1 2 3 4 5 6

Figure 4.7 Heap Representation of Tree in Figure 4.6

When operating in a dynamic priority list, the binary heap structure requires fewer
operations to maintain the list. Because the depth of the heap is O(logaN) = O(log(N)), the
number of steps required in sorting operations that maintain the priority element at the root of the
tree is also O(log(N)). Thus, using the binary heap instead of a sorted simple list reduces the
time complexity of maintaining a dynamic priority list.

The common operators for maintaining a binary heap are the percolate and sift-down
procedures of Figure 4.8. These procedures are as presented in [BrBr8g], with the exception that
our application gives priority to the minimum (rather than the maximum) valued element. For the
implementation of dynamic priority lists, the procedures require an additional array for maintaining
the location of each element within the binary heap and, thus, allowing fast access for making
changes to the priority of an element that is already in the list. The implementations of Figure 4.8
do not include this additional array.

During insertion of new elements, the percolate() procedure is used to maintain the order
of the elements of a heap. It takes an element at location i in the heap, h[1..n], and recursively
exchanges that element with its parent until it is larger than the parent. When adding a new
element to the heap, location i is location .

sift-down() is a necessary procedure for efficiently deleting an element. After removing
an element from a heap (usually the root or priority element), the élement at the end of the: heap
is moved to the newly created gap and then sifted down to a new, sorted, position. The sift-down
procedure is the opposite operation to the percolate procedure: an element is recursively
compared to its children and exchanged with the smaller of its children until it is smaller than both
children.
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procedure percolate(h{1..n),i) {

k<i;
repeat {
i<k
if > 1 AND h[j div 2] > h{k])
k <-jdiv 2;
temp <- hik];
hik] <- h{j};
h{j] <- temp;
} until (j =k);

procedure sift-down(h[1..n],i) {

K <-i;

repeat {
j<k
if (2j <= n AND h[2j) < hiK]) k <- 2j;
if (2j < n AND h[2j+1] < h{k]) k <- 2j+1;
temp <- hik];
h{K] <- h{j];
h{j) <- temp;

} untit (j = k);

Figure 4.8 The Binary Heap percolate() and sift-down() Procedures

Figure 4.9 presents the insert() and delete-min() procedures, which use the percolate()
and sift-down() procedures. insert() adds a new element to the heap and delete-min() removes

the root and sorts the heap.

procedure delete-min(h[1..n]) {
elem <- h1];
h{1] <- h[n};
sift-down(h[1..n-1},1);
retumn elem;

}

procedure insert(h[1..n},v) {
hln+1) <-v;
percolate(h[1..n+1],n+1);
return elem;

1

Figure 4.9 The Binary Heap delete-min() and insert() Procedures

4.1.6 Common Procedures

Procedures that perform operations on network topologies use the data structures
presented in the previous section. Here, several of the more important procedures of the SCP

algorithms are introduced.
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4.1.6.1 Depth First Search (DFS)

Many algorithms that operate on graphs require an efficient method for visiting each of
the network’s nodes. The Depth Firs: Search (DFS) serves this function.

A DFS is an algorithm that operates on a network and seeks to visit each node by
traversing via the spans. After the algorithm completes, the group of spans that were traversed
have the following characteristics: (a) they form a connected subnetwork, (b) there are no rings in
the subnetwork (the subnetwork is one-connected), and (c) each node is included in the
subnetwork. In mathematical terms, this subnetwork is a spanning tree: “spanning” refers to
including all nodes; and “tree” means that no rings (or cycles, in mathematical terms) exist in this
subnetwork.

The algorithm starts at an arbitrarily selected node and marks the node as visited. The
algorithm then visits a node adjacent to the starting node (if any exist) and labels the new node as
visited. The span between the starting node and the node visited next is part of the final spanning
tree. The algorithm attempts to traverse the spans of the last node visited to find nodes that have
not yet been visited. if it fails to find an unvisited node adjacent to the most recently visited node,
it “falls back” to the second most recently visited node to continue its search, and so on. When a
“fall back” results in the algorithm returning to the node at which it started, then either it has
visited all nodes (in the case of a connected network) or it has visited all nodes in the connected
subnetwork (in the case of a non-connected network). At this point, if any nodes have not been
visited, the algorithm arbitrarily continues its search at one of these nodes. TH® algorithm
proceeds until it has visited all nodes. The "depth first" part of the DFS algorithm's name refers to
its preference of adding new spans to the longest path of spans first.

SCP heuristics can use the DFS to determine if a restoration path of defined path length
limit exists for a specific span failure. The DFS is executed on a network composed of all the
network's nodes and only the network's spans that have remaining spare capacity. If a
restoration path exists, the DFS identifies a subnetwork containing both of the end-nodes of the
failed span. If a restoration path does not exist, the DFS identifies two different subnetworks,
each including one of the end-nodes of the failed span. It may also identify other subnetworks
that contain neither of thp end-nodes of the failed span. The benefit of the DFS in this situation is
that the set of spans traversing the boundary between subnetworks represents a cutset through
which restoration capacity is known to be unavailable. The ICH heuristic uses this important
method of identifying cutsets. '

Figure 4.10 contains the specific implementation of a DFS [Gibb85] used here.
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1 main () {

2 F <- NONE;
* mark all nodes unvisited */

3 for all (theNode in Nodes) {

4 DFiftheNode] <- FALSE;

5 }

6 while (DFifu] = FALSE fcr some u in Nodes) {

7 DFS(u);

8

9 output F;

10 }

1" procedure DFS (theNode) {

12 DFi[theNode] <- TRUE;

13 for all (theNode' in adjL(theNode)) {

14 if (DFI[theNode] = FALSE) {

15 F <- F + [SpanName[theNode][theNode']];

16 DFS(theNode');

17 }

18 }

19 }

Legend:
DFI[1..N): Boolean vector of visited nodes.
F: spanning tree of spans traversed.
Nodes: the set of all nodes.
theNode, theNode”:  specific nodes under consideration.

Figure 4.10 A Depth First Search

The complexity (in terms of the number of steps) of the DFS is O(max(S,N)), where S is
the number of spans and N is the number of nodes. This complexity is present in several parts of
the DFS algorithm. First, the DFS maintains the DF! array to ensure that each node is visited
once, requiring O(N) steps (line 4 is initialization, line 6 searches the array). Also, the output of
the algorithm is a spanning tree, which has O(N) spans. The algorithm performs the test at line
14 for each neighbor of each node, requiring 2S tests or O(S). Therefore, taking the maximum of
these complexities resuits in O(max(S,N)) steps, as stated.

4.1.6.2 A Fast Implementation of Dijkstra's Algorithm

Dijkstra's algorithm operates on a network to find the shortest path from a single node to
each other node in the network. Dijkstra's algorithm is used in this thesis to locate the shortest
restoration paths by the SLPA heuristic algorithm for SCP.

Dijkstra's algorithm is similar in function to the DFS described in the previous section.
Dijkstra's algorithm starts at a single node (the “source”), expands the subnetwork of visited
nodes by incorporating one additional unvistted node at each iteration, and ends after visiting
every node. The difference between Dijkstra’s algorithm and DFS is the method of choosing
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which node to incorporate at each iteration. Dijkstra's algorithm always adds the closest (either
logical or geographical, depending on algorithm’s use) unvisited node to the source. Thisis a
“preadth-first” search, as opposed to the depth-first method of DFS.

Dijkstra's algorithm can best be understood

with a brief example. In the network of Figure 4.11,
the algorithm starts with Node A, the “source” node.
The objective is to define the shortest path from the

source node to each other node in the network. This

example bases the path length on the physical lengths Figure 4.1 Shortest Path From A
of spans, which are displayed beside each span in the to Each Other Node

figure. Initially, only the source node is marked as

“isited™ A node set “U” stores all visited nodes, and therefore set U initially only contains the
source node. The next visited node is the closest adjacent node to the source node, which in this
case is Node B. Set U now contains two members (nodes A and B). The algorithm next
considers all nodes adjacent to a member of set U, namely nodes C, D and E. Node C s 6 units
away from the source, and Node D is 5 units away fram the source (2 units to Node B plus 3 units
from B to A). Therefore, the shorter distance is to Node D and the algorithm visits Node D next
and adds it to U. Finally, Node C, then Node E are similarly added to U. As was the case in
DFS, the spans traversed in visiting the nodes form a spanning tree. Figure 4.11 displays the
spanning tree produced in the example in bold lines. The spanning tree defines the shortest
routes from each nodse to the source node. To assist in identifying the shortest path between the
source and each other node in post processing, the algorithm stores the span over which each
node was first visited. The'predecessor node array (pred[1..N]) contains the traversed span
information as the adjacent node's name. For example, the eigorithm first visited Node D via
Node B that was the closest adjacent node (in U) and, therefore, the predecessor of Node D is
Node B (pred{D] = B). Then, the predecessor trail contains the shortest path from Node D to the
source node (Node A): predfpred[D]] = pred{B] = A.

SCP heuristics use Dijkstra’s algorithm iteratively to identify the k successively shortest
restoration paths for a span failure, as first introduced in [Grov89). This use of Dijkstra's algorithm
is accommodated by designating the end-nodes of the failed span as the source node and the
target node (random orientation). Dijkstra’s algorithm operates on a subnetwork including all the
network's nodes and the network's spare capacity. After executing Dijkstra's aigorithm, the trail of
predecessors leading from the target to the source identifies the minimum length route that
contains a spare path(s).



Figure 4.12 contains a general implementation of Dijkstra's algorithm. Althoughitis
based on [Gibb8S}, this implementation incorporates some of the designations used in the more
advaréed algorithm to be presented later in this section.

Procedure Dijkstra (source) {
1 forall (theNode in Nodes) {
2 minDist{theNode] <- INF;
}
3 forall (theNode in adjl[source]) {
4 minDist{theNode] <- dist[source,theNode};
5 predftheNode] <- source;
}
6 minDist{source] <- 0;
7 pred[source] <- source;
8 U <-[source];
9 while (U <> Nodes) {
10 find (any minNode in [Nodes\U]) such that for (all aNode in [Neeas\U)) {
1" minDistiminNode] <= minDistfaNode};
}
12 U <- U + [minNode];
13 for all (theNode in adjL[minNode)) {
14 extradist <- distfminNode,theNode];
15 if ((theNode not in U) AND
‘ (minDist[minNode] + extraDist < minDist[theNode))) {
16 minDisttheNode] <- minDist{minNode] + extraDist;
17 predftheNode] <- minNode;
}
}
}
)
Legend:
Nodes: the set of all nodes.
V3 the set of nodes which have been visited.
minDist{1..N]: the shortest known distance to each node from the source.
pred{1..N]: the next span in the predecessor trail back to the source.
distinode1][node2]: the length of the span between node1 and node2.
(setto 1 or 0 if logical distances are used).

Figure 412  AnIimplementation of Dijkstra’s Shortest Path Algorithm

The complexity of Dijkstra's algosithm depends upon the data structures. The loop
starting at line 9 iterates N times, where N is the number of nodes in the network. For each of
these N iterations, the search at line 10 exacutes once. If the sets U and Nodes are implemented
as simple lists, this inner loop also requires O(N) steps. The loop starting at line 13 only iterates
O(d) = O(N) times. Therefore, a traditional implementation of Dijkstra's algorithm exscutes in
0(N2) time. The implementation used in this thesis reduces this complexity by selecting more
appropriate data structures.
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[MaGr89] describes an enhanced Dijkstra implementation specifically optimized for
finding sets of k \estoration paths in quasi-planar networks. This algorithm, appearing in
Figure 4.13 stops executing as soon as the target node is visited. It also stores the unvisited
nodes in 2 binary heap and, therefore, can perform operations on sets of nodes in O(log(N)) steps
rather than O(N) steps as in a list implementation.

This improved implementation has an overall complexity (again in terms of the number of
operations) of O(N-log(N)) steps. As before, the loop starting at line 15 iterates O(N) times, but
now heap_deletemin() (line 16) uses a binary heap and can locate the closest node and update
the data structure in O(log(N)) steps. Thus, iterated by the loop of line 15, line 16 has O(N-log(N))
steps, as stated. Lines 23 and 24 will generally only be executed once for each node, as nodes
are first marked. Thus, the algorithm executes these lines a total of O(N) times, independently of
the surrounding loops. With an interal complexity of O(log(N)), the heap_decrease() procedure
of line 23 also consumes an amount of time in O(N-log(N)), leaving the complexity as originily
stated.

The metaDijkstra() algorithm executes Dijkstra k consecutive times to locate k-shortest
link disjoint restoration paths and therefore restore a failed span with k working links. Thus, using
the optimized dijkstra() of Figure 4.13 as a kernel, metaDijkstra() locates the k-shortest paths iri
O(k-N-log(N)) steps. The metaDijkstra() implementation used here (Figure 4.14) improves on this
complexity by accepting all paths that a route identified by dijkstra() can support. Also, when
working in a logical distance mode, diverse routes with equivalent length commonly exist. As a
side benefit, each dijkstra() call also retums information about some altemate routes that may
contain restoration capacity. metaDijkstra() explores these alterate routes, after accepting the
primary route, by picking up the predecessor trail at notlesiadjacent to the target, as follows: “any
(theNode in adjL{target]) such that (minDist{theNode] + dist{spanName[theNode][target]]) =
minDist[target).”

36



procedure dijkstra(NODE: source, target, minDist{1..N, pred[1..N}, SPAN: dist[1..S]) {
1 for all (theNode in Nodes) {

2 mark[theNode] <- FALSE:

3 pred[theNode] <- NONE:

4 mark[source] <- TRUE;
5 for all (theNode in [Nodes - source]) {
6 if (theNode = target OR (adjMfsource][theNode] = FALSE))
7 heap_insert(INFINITY, theNode);
8
9

else heap_insert(dist[spanName[source][theNode]].theNode);
minDisttheNode] <- INFINITY;

}
10 for all (theNode in adjL{source]) pred[theNode] <- source;
11 predtarget] <- NONE;
12 pred[source] <- source;
13 i<-0;

14 found <- FALSE;
15 while (found = FALSE AND i < N) {

16 minNode <- heap_deletemin(minNodeDist);
17 minDist{minNode] <- minNodeDist;
18 mark[minNode] <- TRUE;
19 if (minNode = target) found <- TRUE;
20 for all (theNode in adjL[minNode]) {
21 extraDist <- distfspanName[theNode][minNode]];
22 if (markitheNode] = FALSE AND
(minNodeDist + extraDist < heapDist{theNode])) {
23 heap_decrease(theNode, minNodeDist + extraDist);
24 pred[theNode] <- minNode;
}

}

25 i<i+1;
}
i}

Legend:

mark{1..NJ: Boolean vector of visited nodes.

heap_decrease & heap_deletemin: the decrease(} and deletemin()
procedures introduced in Section 4.1 5.2.

Figure 4.13 A Fast Implementation of Dijkstra’s Shortest Path Algorithm
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procedure metaDijkstra(NODES: source, target) {
for all (theSpan in Spans) {
spares[theSpan] <- conSpare[theSpan};
dist{theSpan] <- conDist{theSpan);
if (spares{theSpan) <= 0)
dist{theSpan) <- INFINITY;
}

numPaths <- 0;
stop <- FALSE;
while (stop = FALSE) {

dijkstra(source, target, minDist[1..N], pred[1..N], dist{1..S]);

if (minD(target] < INFINITY)
for all (theNode in AdjLitarget]) {
if (pred{theNode] I= NONE AND theNode I= source AND
minDist[theNode] = minDist[target] -
dist{spanName[theNode][target]]) {

j <- theNode;
maxDepth <- conspare[spanNameftarget][i]);
while (j = source AND maxDepth > 0) {
i <- spanName[pred][j}li;
if (maxDepth > conSpare]i])
maxDepth <- conSparel[i];
j <- pred[j};

numPaths <- numPaths + maxDepth;

if (maxDepth > 0) {

j <- target;

pred[target] <- theNode;

while (j I= source) {
i <- spanName[predfjllfil;
conspareli] -= maxDepth;
if (conSpare[i] <= 0)

distlindex] <- INFINITY;

j <- predi];

}
}
} else stop <- TRUE;
}

return (numPaths);

Figure 414  The metaDijkstra Procedure

38




4.2 Network Flows

When designing a mesh restorable network, spare paths over alternate routes protect
each span's working capacity. The number of spare paths required to protect a span is
equivalent to the number of working links on that span. This section explores the possible
methods that a flow-based restorability test may use to assess the number of alternate paths
available.

The number of paths that exist between a source node and a target node in a network is
a capacity flow. This “flow” is analogous to the amount of water that can flow through a system of
pipes from an intake (source) to an outlet (target). The minimum cross-sectional area of pipe
dictates the maximum amount of water that can flow through the system. Similarly, the “max-
flow” through a network is the maximum possible number of paths (cr capacity) available between
the source node and the target node. Thus, a “max-flow” calculation can be used to assess the
restorability of a network because it returns the greatest number of feasible restoration paths.

However, to realize the capacity that a max-
flow calculation identifies, the paths must be chosen
to ensure that no critical capacity is wasted. For
example, in the network of Figure 4.15, the
maximum flow between nodes 1 and 4 is 2 paths;
this maximum capacity is realized by selecting

Y D78 : Figure 4.15 Example Where k-shortest
paths 1-5-6-3-4 and 1-2-7-8-4. However, if a Paths Differs From Max-flow

restoration algorithm selects the shortest path (path
1-2-3-4), it wastes some capacity because no second path is available.

Max-flow capacity can only be achieved with particular path selections. The complexity
of a path selection technique that realizes max-flow capacity is at least as large as the complexity
of an algorithm which identifies the max-flow in a network. The lowest complexity max-flow
algorithm requires O(N3) steps [Gibb8S5]. (It does not benefit in the same way from data structure
selection as Dijkstra did when achieving a reduction of one of the N dependences to log(N).)
However, metaDijkstra (Section 4.1.6.2) finds the k-shortest link-disjoint paths in O(k-N-log(N))
steps. Therefore, because speed is of the essence, restoration algorithms for operating on mesh
restorable networks generally find the k-shortest restoration paths rather than the max-flow
restoration paths. A k-shortest path identification algorithm selects the shortest path first, then the
second shortest path that is link-disjoint from the first, and so on, until the k-shortest paths are
identified. The example of Figure 4.15 demonstrates that this k-shortest link-disjoint path
selection does not necessarily result in a max-flow. However, [DuGr89] showed that a k-ghrtest
paths flow is only a few percentages lower than max-flow in a large number of randomly
generated telecommunications networks. The benefits of metaDijkstra are therefore several in
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practice: the path set is identified, not just the feasible fiow quantity and the flow of the k-shortest
path set is very nearly equal to the ideal max-flow quantity. Max-flow however is O(n®) and
leaves the identification of the path-set that realizes that flow as a separate problem.

The remainder of this thesis therefore

uses k-shortest paths flow as the criterion of
restorability. However, this too is only an
approximation of the flow that a restoration
algorithm would obtain when operating on the real

network, because the “k-shortest link-disjoint path

flow” depends upon the order of path selection Figure 4.16 g:gjrgglpelxq%g:;l‘;gnest

when executing with logical link lengths. Upon Selection Order
Therefore, the only truly aceurate measure of restorability is an execution of the restoration
algorithm itself. For example, in the network of Figure 4.16, the k-shortest paths flow can be only
one if the algorithm selects path 1-2-3-4 first, or it can be two paths, if the algorithm selects path
1-5:3-4 first. Both first choices are equally valid because logical routing lengths are used. Within
this paper, results quantify the disparity in flow calculations that can result from different orders of
path selection within k-shortest path algorithms.

43 Formulation of the Optimal Spare Capacity Placement Problem
The main issue addressed by this thesis is the problem of spare capacity placement
(SCP) in a mesh restorable network so that two objectives are simultaneously achieved: (a) To
protect every span against failure with spare paths on alternate routes, where any restorability
level may be chosen, and (b) to minimize the total spare capacity.
The most general st:tement of the SCP problem is:
minimize Y s, (4.1)

=1

such that
R,=L,w;20,520Vie(0...S)

0sL<1
S is the number of spans in the network. s; and w; are the number of spare and working
links respectively on span i. L is'the desired restorability level input by the user.
in practice, the constraint R =L is more usefully written as a vector of congtraint

relationships pertaining to the restorability of each span individually:
k| 2L- L ]] Vie (0...8) (4°2)

ki is the number of restoration paths available for span i.
The min-cut max-flow theorem [FoFu56] states that the minimum of the flows through all
possible cutsets of the network separating nodes s and t is equivalent to the maximum flow

between s and t. “ihe significance of this theorem can be illustrated by retuming to the analogy of
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networks of water pipes introduced in the previous section. The network bottie-neck constrains
the maximum fiow of water between the intake (s) and the sink (t). Here, the bottle-neck is the
cross-section of the network containing the smaitest area of pipe. In a similar manner, the cutset
(or cross-section of spans) of the transport network which contains the least capacity determines
the maximum capacity flow possible between the nodes s and t.

The min-cut max-fiow theorem provides a

method for converting restoration requirements of
(3.2) into inequalities that an integer program (iP)
can then solve. For example, Figure 4.17 shows the
series of cutsets that constrain the flow between
nodes A and B, labeled as C4, C2, C3 and C4. An
inequality is formed for each cutset that guarantees
that the flow through the cut is at least as large as
the working capacity on span A-B. For exarnple, the inequality for cutset C1 of Span A-Bis as
follows: SAG + SAB <= WAB, Where s;j is the spare capacity on the span between nodes i and j,
and wag is the working capacity on span A-B.

Figure 4.17 Cutsets Which Guarantee
Restoration Flow for Span A-B

All the possible cutset constraints can be expressed as an IP, where the IP must
minimize the total spare capacity. The IP performs a gradient search over the linear constraints
to converge to an optimum solution. Specifically, the integer program is:

$
minimize ). s, {4.3)

=1
such that: Ces2w 'L (4.4)
where: s,w;20Vje (0...S) (4.5)

Equation is depicted in an expanded form in Figure 4.18. C is the NcxS cutset matrix of
the network, where N is the number of cutsets in the network, and S is the nurber of spans in
the network. Each row of C specifies one cutset, and the spans included in the cutset are
represented by 1's in the appropriate column. s is the length S vector of spare capacities to be
determined by the program. w is the length S vector of working capacities input as constraints to
the program. W' is a length N working capacity vector, where each element of w' is an element
of w. Each w;j appears in w’ as many times as there are cutsets for constraining the restoration
capacity of spani. w; appears as the j-th element of w' if the j-th row of C represents a cutset
constraint for ensuring restoration flow for w;.
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Figure 4.18 A Description of the Elements of Equation (4.4)

Called the direct cutsets algorithm (DCA), this method of SCP is easily implemented.
DCA can use a real-valued Linear Program (LP), which is less computationally intensive than an
IP [Schr86). LP's are solvable with commercially available software packages (Mathematica™ in
the current research). But, the number of cutsets required to fully specify the LP increases
exponentially with network size (Chabter 5). Therefore, while easily implemented, the large
number of constraints required to meaningfully formulate a real problem is itself a computational
problem that makes DCA infeasible for even moderately sized networks. The iterative cutsets
heuristic (ICH), described in Chapter 6, uses the cutset approach of DCA, but seeks to find a
solution with a subset of the full constraints through iteration.
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5 The Complexity of Spare Capacity Placement

This chapter provides a proof of the aforestated assertion that the SCP problem is NP-
hard -- a member of the class of “hard” problems.

Section 5.1 provides required background knowledge in complexity theory. The
discussion includes an introduction to the NP-complete and NP-hard classification of problems.
Following the theoretical proof of NP-hardness of SCP in Section 5.2, Section 5.3 documents
experimental isults which confirm SCP’s complexity. These experiments investigate the
complexity gzesent in the Direct Cutsets Algorithm of Chapter 4.

5.1 Introduction te Somplexity Theory

This introduction to complexity theory follows a similar presentation in [BrBr8s).

P is a class of decision problems that an algorithm can solve in polynomial time. For
brevity, here P also designates algorithms that can execute in time on the order of a polynomial
function of their input sizes. In algorithm design, a problem cannot be efficiently solved without an
algorithm in P.

Depending on the exponent of the polynomial which describes the algorithm complexity,
even algorithms in P can be inefficient (indeed, exponents greater than 3 are often considered
inefficient for many applications). However, algorithms not in P are definitely inefficient (for
example, exponential, power or factorial cost functions).

NP is the class of problems that a non-deterministic algorithm can solve in polynomial
time. A non-deterministic algorithm has two phases, the guessing phase and the testing phase.
In the guessing phase, the algorithm generates a solution to the problem. In the testing phase, it
tests this solution for correctness. Algorithms that solve problems in NP have testing phases ihat
operate in polynomial time and space. Thus, with a good initial guess, the algorithm generates a
solution in polynomial time. The NP class includes P problems, by definition.

[Cook71] identified a class of problems, within NP labeled NP-complete, that are all
equivalent and “hase”. Many problems which have been pondered for centuries, inciuding the
Chinese postman probiem, the traveling salesman problem, and the knapsack problem, are NP-
complete. With the magnitude of effort expended trying to discover efficient algorithms for these
and other NP-complete problems, it is reasonable to assume that efficient algorithms do not exist
to solve NP-complete problems. Therefore, it would be wasteful to spend time trying to discover
an efficient exact solution for optimum SCP if it is NP-hard (the set of problems at least as hard as
NP-complete problems).

A proof of equivalence between problems includes reducing one problem to the other
through operations in P and vice versa. This reduction includes three steps, as depicted in Figure
5.1. First, convert the input to Algorithm B (x) to provide input to Algorithm A through the function
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S(x). Then algorithm A operates on the data to fonm a solution, y. Finally, convert the output of
Algorithm A to the output expected by Algorithm B through the function T(y). in essence, this
process uses Algorithm A and the conversions produced by S(x) and T(y) in order to implement
Algorithm B.

input 1 S(x) =1 AlgorithmA B T(y) - output

Algorithm B

Figure 5.1  An Algorithm B can be Reduced to an Algorithm A by the Transformations Sand T

If both functions S(x) and T(y) execute in polynomial time Algorithm B is polynomially
reducible to Algorithm A, written as:
Algorithm B <=P Aigarithm A (5.1)
If a polynomial time algorithm for A is known, then (5.1) asserts that an algorithm for
problem B exists which is also in P. The next section will use this form of reduction to prove that
the SCP problem is hard by reducing a known hard problem to SCP.

52 Complexity Proof of Spare Capacity Placement

The existence of a Hamiltonian Cycle in a graph is one of the classic NP-complete
problems. If a polynomial time solution exists for SCP, then by the reduction which follows, a
polynomial time solution exists for Hamiltonian Cycle. Because no such solution is known for
Hamiltonian Cycle or any of the other related NP-complete problems, it is doubtful that a
polynomial time solution exists for SCP.

A Hamiltonian Cycle is a ring (cycle) which visits every node exactly once. In Figure
5.2(a), the network does not have a Hamiltonian Cycle, because the cycle must pass through
Node A more than once in visiting every other node. In Figure 5.2(b), the graph has a
Hamiltonian Cycle, traced in bold spans. Clearly, the sketches of Figure 5.2 imply a relationship
between restorability and the existence of a Hamiltonian Cycle, because the network which did
not contain a Hamiltonian Cycle also included a node which, if failed, would disconnect the
network.



(a) No Hamiltonian Cycle (b; A Hamiltonian Cycle
(in bold lines)

Figure 5.2 Hamiltonian Cycles

5.2.1 Reduction of a Hamiltonian Cycle to Spare Capacity Placement
in a Network With One Working Link on Each Span
in a network comprised of spans that each carry a single working link, optimum SCP will
place a single spare link on each span of a Hamiltonian Cycle and no spare links on i other
spans. A proof follows.
A network with a single working link on each span requires at least two adjacent spare
links per node. If only one spare link is adjacent to a node, a failure of the span containing the

spare link leaves no route to restore the failed working link. Such a situation is illustrated in the
network of Figure 5.3.

iw,1s
iw,1s W 1w
i1 w,1s i1w
(a) Restoration of (b) Restoration of
failed span possible failed span not
via bottom span possible

Figure 53 Demonstration of Requirement of 2 Spare Links per Node

If, however, the network contains a Hamiltonian Cycle, placement of one spare link on
each span of the cycle provides full restorability because the cycle connects each pair of nodes
via two span-disjoint spare paths. Therefors, an optimum SCP in a network that contains a
Hamiltonian Cycle has an average of no more than two adjacent spare links per node.

Because this network requires at least two adjacent spare links, and it also requires at

most two adjacent spare links, optimum SCP in this specific network requires exactly two
adjacent spare links per node.
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The only configuration using two adjacent

iw,1s

spare links per node which satisfies optimum SCP is a
Hamiltonian Cycle of spare links. In order for a span

failure containing a spare link to be restorable, there
1w,1s 1w,1s

must be an altemate path of spare links through the

network to provide restoration of #: failed working

link; see Figure 5.4. Thus, the spare link on the failed ‘w,1s

span, together with the spare links o ihe restoration %854 Formation of a Cycle

route, make a cycle or ring. Each of the spans which by a Restoration Route
has a spare link must be part of a restoration ring like
this one.

If more than one of these restoration ( ) ( )
rings appears in an optimum SCP, they cannot o 7 — spare link
contain a common node, because that would e Unrestorable
imply a node with greater than 2 adjacent  working link
spare links -- a contradiction. However, if the / - - other spans
restoration rings do not share a node, the ! with no spares
working circuits on spans connecting a node

on one restoration ring to a node on another Figure 5.5 An Unrestorable Span
restoration ring cannot be restored at all; see
Figure 5.5.

Therefore, if a Hamiltonian Cycle exists in the network with one working link per span, the
spans with spare capacily in an optimum SCP form a Hamiltonian Cycle.

The Hamiltonian Cycle existence prablem and all other NP-complete problems are
formulated as decision problems. The preceding reduction not only solved the NP-complete
Hamiltonian Cycle Existence problem, but also solved the even harder problem of identifying a
Hamiltonian Cycle. The special case SCP problem solved above (1 working link per span) can be
formulated as a decision problem for categorizing the topology: Can a single restoration ring be
placed so that all spans are protected?

5.2.2 Conversions of the Input and Output Data |

The first conversion, S(x), takes the network description, x, which was input to the
Hamiltonian Cycle problem and generates input data for the SCP problem. This conversion is
trivial because both Hamiltonian Cycle and SCP require a network description, x, as input. SCP
also requires a vector w of working capacities, in this case specifying one link per span. The
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creation of this vector is linear in S, the number of spans. The SCP algorithm can then be used to
place spare capacity for restoration of the input network.

The output from SCP can be converted to the solution of the Hamiltonian Cycle existence
problem -- the operation T(y) -- by summing the length S vector of spare capacities. If the total
number of spare links is equivalent to the number of nodes in the network, and the network is
100% restorable, then a Hamiltonian Cycle exists; otherwise it does not. This conversion is also
linear, O(S). Therefore, Hamiltonian Cycle <=P SCP.

5.2.3 Conclusion

Hamiltonian Cycle existence is polynomially reducible to optimum SCP, for the specific
class of networks with one working link per sp-n. If there was a polynomial-time algorithm to
solve optimum SCP, then there would be a corresponding polynomial-time algorithm to solve
Hamiltonian Cycle existenca. However, no algorithms with less than exponential complexity are
known for Hamiltonian Cycle and other NP-complete problems; therefore, the SCP problem is
considered NP-hard and an efficient algorithm for SCP is unlikely to exist. This justifies the

approach of finding a polynomial-time heuristic which solves the SCP problem in a nearly optimal
way.

53 Complexity of the Direct Approach to Optimum SCP

The direct cutsets algorittn (DCA), introduced in Chapter 3, is an algorithm for
calculating the optimum SCP. DCA is easy to implement; however, it has exponential complexity,
as would any algorithm which exactly solves optimum SCP. This section presents experimental
results which confirm that DCA cannot function in P. These experiments also provide insight for
implementation of the lterative Cutsets Heuristic (ICH), a DCA-style heuristic which operates with
a limited number of cutsets. As a prelude to introduction of ICH in Chapter 6, this section
discusses some of the issues involved in selecting a set of cutsets for LP constraints.

5.3.1 Number of Cutsets in Direct Cutsets Algorithm

The number of cutsets that exist in a network with N nodes grows exponentially with N.
In a fully connected network, the number of cutsets is N¢ = Nemax = 2N-1-1 = O(2N). A cutset can
be thought of as the set of spans through which a separation line is established between two
distinct sub-networks of nodes. Each node can be assigned to either sub-network, and each
assignment corresponds to a cutset in a fully connected network. The process of assigning
nodes to one sub-network or the other is analogous to a binary digit; 2N combinations exist for
assigning nodes between sub-networks. Two additional restrictions reduce these 2N
combinations to 2N-1-1 cutsets. First, half of the sub-networks are not distinct, each assignment
is repeated twice. Second, each sub-network must have at least one node, which eliminates a
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scenario in which all nodes are in the same set. Thus, the number of constraints required to fully
specify the problem is generally O(2N).

However, in quasi-planar networks Ng is less than Nemax because the average node
degree is lower and all cuts are riot cutsets. But, clearly even in quasi-planar networks, N¢
increases exponentially with network size. However, even if N¢ does increase polynomially with
network size in some restricted topologies, no method is known of identifying these cutsets in less
than O(2N) steps. The reason identification of cutsets is a hard problem is the topic of the next
section. Later in this chapter, results address the current question (numbers of cutsets) by
empirically illustrating that N dess indeed increase exponentially with network size.

5.3.2 Identifying Cutsets in Direct Cutsets Algorithm

The level of difficulty in identifying cutsets can be illustrated by considering the complexity
of the following direct algorithm:

1. Divide the nodes into two groups, network component 1 and network component 2.

2. Test for (graph) connectivity of each component. (Only spans connecting two nodes in

the same component can be used in the connectivity check.)

3. If both components are connected, this separation of nodes represents a cutset.

4, If either of the components is not connected, then this partitioning is not a cutset.

The algorithm for identifying the cutset constraints requires a connectivity check of each
of the 2N-1 divisions of nodes into groups and, therefore, is O(2N). This method is not in P.

Another common algorithm for
identifying cutsets starts from a spanning tree
[Gibb85]. The nodes can be divided into two
connected subnetworks by removing any
span in the spanning tree. All of these
divisions of nodes, from a single spanning
tree, define fundamentat cutsets for the Figure 5.6 ;ggn':%"g; r{,‘f:gg,megts
network, as depicted in Figure 5.6. All other Tree (in Bold)
cutsets can be identified by circular additions of the fundamental cutsets. Circular additions refer
the the addition of the sets of spans identifying cutsets where spans which appear even times do
not appear in the new set. This leads to the same number of connectivity checks as the previous
method: There are N-1 fundamental cutsets. An aigorithm considers all combinations of these
fundamental cutsets, resulting in O(2N) connectivity checks.

5.3.3 Methods of Generating Subsets of DCA Constraints
The number of cutsets which fully specify the DCA, O(2N), excesds feasible limits of
current computing platforms for even the smallest of the study networks. This section
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investigates methods for limiting the number of cutsets required for LP specitication, and
establishes a foundation for a cutset-based heuristic.

Two principles have been developed for producing a meaningful partial set of cutsets are
restricting the restoration path length (RPL) and generating only the “bottieneck” constraints.

Using span localities (Section 4.1.4), specifying all of the distinct cutsets within the locality
guarantees the restorability of a span in a DCA formulation. These cutsets are truncated versions
of the larger cutsets which would be generated for the DCA, forcing the provision of capacity for
restoration paths through a limited topological area of the network as demonstrated in Figure 5.7.
In this case, there are an exponential number of cutsets with respect to the size of the locality,
O(2N)), but not with respect to the overall network size. In a network with a maximum node
degree of d, using limited RPL, the number of cutsets which fully specify DCA is O(29-RPL?) -
O(1) (with respect to the network size, N). However, only limited values of d and RPL can be
considered in practice. This method is described as over-constrained because the result may not
be an optimal solution, due to imposed RPL limitations.

Figure 5.8 presents the increase in the number of truncated cutsets (Nyc) which resuits
from increasing the size of the locality, via the RPL limit. The investigation includes several
quasi-planar networks, generated by the methods described in Chapter 4. Each network had an
average node degree of 3.7. The analysis above predicts Nic = O(N-2Min(N'N)) and
Nic = O(N-2min(¢-RPLZN) Tharefore, for the constant d and N curves of Figure 5.8, Nic = O(1) if
d-RPL2>N, and Ny = O2RPL?) otherwise. To test this, Figure 5.8 plots Ny versus RPL2 (not
RPL). In the figure, Nic = E(1) for the N=9 network. Also, for large RPL values in the N=9
through 39 networks, the curves are leveling out to constant values (E(1)). However, in networks
larger than N=39, Ny Is at least E(2RPL) and in the N=04 node network, Nic=E(2RPL?).
Therefore, for the RPL limits considered, locality constraints can only restrict Nyc to less than
exponential values with respect to RPL in networks smaller than 50 nodes.

The data in Figute 5.8 appears in a different format in Figure 5.9. Here, N is the
independent variztle, and the effect of RPL is observed as the networks increase in size. With a
constant d and RPL, N = O(N) if d-RPL2<N and Nic = O(N-2N) otherwise. Exponential increase
in Ny is observed for RPL>6. In order to banefit from the E(N) increase of Nye in the networks up
to 100 nodes studied here, RPL misst be limited to 4 or 5. However, it has been experimentally
observed that the available LP cannot execute on more than 500 constraints in reasonable time
(one day). Thus, Figure 5.9 shows that feasible use of truncated cutsets for 100-node networks
requires restriction of the RPL to three. Therefore, this principle:alone cannot reduce the number
of cutsets to reasonable levels without over-constraining the restoration paths to an RPL of 3.
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The locality restriction reduces the number of spans in a cutset and the

total number of cutsets. For example, cutset Cy provides the constraint:
51.3+51.42Wy.5

This single constraint replaces all of the following constraints which were

required before limiting the restoration path length:

$1.3+51.4+50.12Wq.5

$1.3+51.4+80.1+50.3+50.22W1.5
51.3%51.4+50.1+50-3+52-3+52.6+52.2W1.5
§1.3+51.4+80.1+50.3+82.3+52.6+86.5+58.7+55.92W1.5
§1.3+51.4+50.1+50-3+52.3+52.6+5¢.5+5g.7+57.9+65.02Wy.5
$1-3+81.4+80.1+50.3+52.3+53.6+5¢4+5¢.7+56.8+52.82W1 .5
§1-351.4+50.1+50.3+52.3+83.6+56.4+84.7+58.7+55.02Wy 5
$1.381.4+80.1+80.3+52-3+53.6+56.4+66.7+65.7+567.9+55.62W1.5

Figure 5.7  Demonstration of Using Localities to Restrict the Number of Cutsets Constraints

The second method for limiting the number of cutsets (Ng) is to specify only the “bottle-
nedk” corsiraints for each node, as in Figure 5.10. This method is most useful in predominantly
erd-node limited networks (Chapter 2), where, if enough spare capacity is available near the end-
nodes cf a gpan for its restoration, the restoration paths will be able to leave the area of the failure
and succeed in restoration because enough spare capacity and nodal degree exist through the
rest 6 the network to connect the path segments near the end-nodes. This method does not
truncate the cutsets in any way, so over-congtraining does not occur. The parameter specified in
this method is the egress path length (EPL), which represents the length of path segment which
will allow restoration paths to escape the bottie-neck area. In general, as the average nodal
degree of a network increases, the required EPL. decreases. An EPL of 1 implies two cutsets
corresponding to the incident spans at each aend-node.



105
N
i} 9
104
o —eo— 18
2 —a— 31
S 402 —o— 39
o - 50
B —— 59
E .n2
3 1077 —— 69
N | —a— 78
1 —8— 94
10 Y . ' ' v
0 20 40 60 80 100 120
RPL*RPL
Figure 5.8  Number of Cutsets Generated When RPL Restriction is Used
105
RPL
. —_—— 2
10 A —— 3
3 £ v; —a— 4
[7]
of
3 103 — —0— 5
5 g 9 — 6
é ] " . —_—— 7
2 10 2-3 -k 8
—t— 9
101 — e ' . .
0 20 40 60 80 100
N

Figure 5.9 Complexity of the Number of Cutsets Generated With Respect to Network Size

51



(b) only the incident (c) the EPL=2 locality

(a) the EPL limited localities cutset provides a provides cutsets
constraint in the in the subnetwork
EPL=1 locality of Nodes 4,5,7&9
and their adjacent
spans

Figure 5.10  Egress Path Length Limited Cutsets

5.3.4 Application of Subsets of Constraints to a Heuristic Inplementation

The ICH heuristic (Chapter 6) uses both the EPL and RPL limited cutset principles. The
EPL limited constraints do not over-constrain the problem and, therefore, provide a useful initial
guess of the constraints which an iterative heuristic requires. Because of the functional limitation
of Ng < 500, an EPL=1 is probably required that reduces the subset to only the incident cutsets.
An iterative heuristic could increase EPL for spans which were not restorable after the initial
design stage.

A restoration algorithm may include an inherent restriction on RPL. In these cases, the
RPL limited cutsets impose only those desired restrictions on the solution. Thus, the RPL limited
cutsets do not impose an over-constraint on the problem, but rather provide a desired result that
restoration will be assured within the specified maximum path length objective. In this situation, a
heuristic can benefit from RPL limited cutsets. However, Nig < 500 restricts the use of the RPL
limited cutset principle alone to RPL<3.
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6 Ilterative Cutsets Heuristic

The lterative Cutsets Heuristic (KCH) is the first technique considered for near-optimal
solution of the SCP problem. ICH follows the methods reported in {SaNi90]. 1t applies the cutset
flow techniques of the Direct Cutsets Algorithm (DCA), but approximates some DCA functions in
order to avoid the high inherent complexity reported in Chapter 4 and adds an explicit RPL
limitation feature.

Chapter 5 showed that DCA requires an exponential number of cutsets as constraints to
produce a restorable network design. ICH reduces this complexity by using only a sixagically
selected subset of the cutsets required to fully constrain the IP and produce an optimum solution
The next section will describe how this subset of constraints is selected, initially, and after each
iteration that does not result in a restorable network design. This section also presents an
alternate implementation (ICH RPL) which uses locality information to further restrict
computational complexity while limiting observed restoration path lengths.

iCH also reduces the time complexity of DCA by using a Linear Program (LP) to solve for
a network design from the constraints, not IP. A proposed network design is obtained from the
real valued link quantities produced by the LP, by rounding up the quantities te integral values.
This operation compensates for not using an Integer Program (IP) as DCA requires. The IP will
produce a minimum design from the constraints, whereas the LP may not, depending upon how
many links it assigns non-integer values to. The fractional link difference is small overall in typical
networks however. Section 6.5 discusses the choice between IP and LP in more detail.

This chapter discusses the ICH implementation in detail, fully specifying the
enhancements over the work presented in [SaNi90]. ICH test results are analyzed in Sections 6.3
through 6.6 on the characteristics of time-complexity, LP versus IP, restoration type and

restorability. Presentation of observed execution time of ICH and network growth are deferred
until Chapter 8.

6.1 Introduction

ICH's objective function is the sum uf all spare capacity. It is minimized subject to a
system of constraints that satisfies restoration for working capacity by ensuring adequate
minimum cutset flows through the network spare capacity graph. ICH uses an LP to solve the
constraint system of (4.3) to {4.5). ICH avoids the exponential number of cutset constraints
required to guarantee a fully-restorable network design using a carefully selected subset of cutset
constraints. ICH develops this subset of constraints through iteration of the LP, and detection and
addition of missing constraints.

A final subset of the full LP constraints achieves a satistactory network design when the
initial set is carefully chosen. The author desires that initial cutsets must: (a) be identified in
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polynomial time (with respect to the size of the network), (b) be few in number, and (c) ensure the
required minimum restoration capacity for every span. Rules {a) and (b) serve to minimize ICH's
complexity. Rule (c) reduces the number of iterations required to find a fully-restorable network
design and, hence, also minimize the time complexity of ICH. Rule (c) allows only those
constraints that can potentially guide the LP to finding a feasible network design. Thus, in some
executions of ICH, it is expected that a fully-restorable network dsign is achieved in a single
iteration. The iteration process is only intended to modify the cia¢in® = the case where the first
iteration does not find a fully-restorable network design.

Based on the criteria just proposed, ICH uses the incident cutsets for every span as the
initial constraints. These cutsets can be identified directly from the adjacency list for each span,
requiring O(S) time complexity for building the first set of constraints. In a network which is
heavily end-node limited, the incident cutsets may provide enough guidance to the LP to lead to a
teasible network design in a single step. Therefore, for quasi-planar networks it is desirable to
use only the incident cutsets in the first step, because they balance rules (b) and (c) by providing
a set of constraints in which the cutsets are uniformly distributed throughout the network and are
small in number.

To illustrate, ICH will be used to design a near-optimal SCP in the network of Figure 6.1.
The constraints of the LP for the first ICH iteration (the incident cutsets) are included on the

figure.
7\ W=t Incident Cutset Constraints:
S2>=Wo $3+80 >= W1
$3+51 >=WQ §4>= W
wo=1 wg=0

S5+87 >= W2 $g+S5+58 >= W3

wg=1 S0 >=W2 So+S1 >=W3
Sg >=Wyg §7+82 >=Wg
$1>=Wy4 $g+Sg+53 >=Wp
S4 >=Wg S5+82 >= W7
S5+Sg+S3>=Wg  Sg>=W7y
Sg+S5+S3>=Wg S7>=Wg

Figure 6.1  The Incident Cutsets Provide the First Set of Constraints
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The LP retumns a vector of real-valued
span capacities which satisfy the constraints.
These capacities are rounded up to integer
values and, as in [SaNi90], each spare link is s2=3
tested for its contribution to restorability by
removing it and calculating Ry. Links which

Sp 7~ S1=2

S4=1

sg=0

are not required for maintaining the network
restorability are removed before the next ICH s7=1
iteration. Figure 6.2 displays the spaie
capacity placement returned in the first

sg=2

Total Sparing = 11 Linksl

iteration of this process. This placement Figure 62 The Spare Capacity Placement
satisfied all of the constraints, but some of the of First Step LP

spans are still not restorable. For example, Span 2 has available only two restoration paths, as
shown in Figure 6.3(a).

When the LP constrained by incident cutsets does not achieve a feasible network design,
subsequent steps add constraints for the spans which are not restorable in the first design. Any
number of methods could identify additional constraints for subsequent iterations. Figure 6.3
illustrates the method used here, with Span 5 as an example, but constraints are added for spans
0, 1, and 3 as well in this step. ICH identifies additional constraints as follows:

1. Remove the spare links associated with any restoration paths available to the span

which is not fully-restorable.

2. Operating on the network of spare capacity, identify the two connected sub-networks,

each containing one of the end-nodes of this span.

3. Operating on the full network again, extend the sub-networks identified in (2) to include

ali network nodes while maintaining two distinct sub-networks.

4. The spans which straddle the border between the two sub-networks identified in (3)

represent spans in a new cutset. Add this cutset to the LP constraint set.

Operation one can be performed with metaDijkstra (suggesting k-shortest paths
restoration characteristics, see Section 4.1.6.2) or with a maximum flow algorithm [Gibb85)
(suggesting max-flow restoration). The two methods had no discernible difference in
performance; therefore, ICH uses metaDijkstra due to a lower time complexity of O(W-N-log(N))
as compared to O(NS3) for max-flow. The ICH RPL implementation (Section 6.2) also only uses
metaDijkstra for operation one, because it seeks an SCP which is compatible with k-stortest path
restoration.
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For operations two and three, identification of a connected subnetwork can be obtained
with either DFS (see Section 4.1.6.1) or Dijkstra. ICH uses DFS because of its lower time
complexity.

1. Remove available restoration paths. 2. The DFS on spans with spare capacity
identifies two components.

O O

S6
w5

4. The additional cutset is comprised of spans
3. The DFS from each component extends A
components to include aI'lJ?wdes. straddling the boundary between components:
§ g+S7+83 >=Ws.

Figure 6.3 Demonstration of Adding a Cutset Constraint for Unrestorable Span 5

In operation three, the ICH algorithm seeks to extend one of the sub-networks to include
all of the remaining nodes; only when that fails is the other sub-network extended. This
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specification restricts the non-extended sub-network to a smaller geographical area in an attempt
to minimize the number of spans of the new cutset without an increase in time complexity of this
operation.

At each step, ICH uses the above four operations to add a single additional cutset for
each span which is not fully restorable in the network designed by the previous step. Before the
second LP execution on the example network, ICH therefore added the following four constraints:

sg+S7+S3 2Ws (as in Figure 6.3, operation 4), Sg+Sp 2W3, Sg+S3 2W, Sg 2W1

ICH executes the LP again, with so=1 ~ Ssi=
these additional constraints and the incident

cutset constraints, resulting in the SCP
shown in Figure 6.4. This SCP has the
same total capacity as the previous design,
but the LP has redistributed the spare
capacity to conform to the added constraints.
But, spans 0 and 7 still are not fully
restorable. So, ICH adds two extra
constraints and executes the LP again.

5o=3 §3=2 s4=1

s5=0 se=1

s7=1 sg=1

Total Sparing = 11 Links

Figure 6.4 The Spare Capacity Placement
Eventually, after a few steps, the of Second Step LP

network is fully restorable and the network so=1 7N\ St

has a minimum number of spare finks.
Section 6.4.2 provides data on the number
of steps observed before the network
design converges to full restorability. For
the example network, additional constraints
are added in four steps and the final

$2=3 s3=2 s4=1

s5=1 sg=1

§7=2 sg=2
network design has a total of three more

spare links than the first LP's SCP, as
shown ir: Figure 6.5.

Total Sparing = 14 Links

Figure 6.5 The Final Spare Capacity Placement

6.2 ICH With Restoration Path Limit (RPL)
An alternate implementation of ICH, called ICH RPL, includes a partial restriction (not in
[SaNi90]) on the Iéngth of the restoration paths which are allowed in the network design.
Although ICH guarantees that the required number of restoration paths exist, the
individual paths which achieve this flow are not limited in length. Therefore, the restoration
process may have to accept a restoration path of any length; otherwise, the network may not be
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restorable. This poses a problem when networks must have limited restoration path lengths, such
as those which do not have echo control equipment at all locations in the network. ICH RPL
attempts to address these concerns.

ICH RPL uses locality information to restrict network operations (see Section 4.1.4 and
Section 5.3.3). Specifically, the cutsets ICH uses as constraints for the LP are truncated to
include only local spans to the span being restored. Therefore, the spare capacity placement of
the LP provides the required flow through the locality, rather than through the entire network as in
ICH. However, the RPL limit used to define the locality does not directly restrict the observed
restoration path lengths within spans of the locality. This is because the ICH RPL capacity
placement is still fundamentally based only on flow-quantity and does not have any inherent
restriction on restoration path length, as a k-shortest paths capacity placement would. This is a
fundamental limitation on the ICH (and ICH RPL) method. However, ICH RPL achieves some
improvements over ICH in controlling the maximal restoration path required for full restorability
(see Section 6.6).

Allowing only localities containing the RPL+1 closest nodes to the failed span would
strictly limit the restoration path lengths, because any possible path through this area is a
maximum of RPL spans in length. But, the lack of route diversity that this produces over-
constrains the problem to the point that most of the restoration paths have lengths much smaller
than RPL. %:iszh over-constraining ultimately results in a design that is over-provisioned in spare
capacity.

As would be expected, ICH RPL network designs have somewhat more spare capacity
than the non-limited ICH; the degree of extra spare capacity depends on the RPL constraint. For
example, when ICH RPL was executed with RPL=10 for a subset of the study networks (davg =3
and 4, N <= 60), it placed1328 spare links (compared with 1275 spare links in the basic ICH
implementation), representing an increase of 4.2%.

Both ICH and ICH RPL will be investigated further in comparisons to follow. However, all
future references to ICH will concern the basic (non-path length limited) ICH implementation
unless specifically stated to be ICH RPL.

6.3 ICH With Transmission System Modularity

The ICH method can accommodate system modularities during the design phase, rather
than post processing the design to add system modularities as in [SaNi80). The algorithm, as
described above, is altered so that the LP constraints specify systems (modular bundies of links)
rather than individual link quantities. If the network contains various system module sizes, they
can be incorporated via multiplicative constants. For example, Figure 6.6 depicts the same
network as in figures 6.1 to 6.5, and the corresponding modularity-based constraint system. The
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form of the constraints that incorporate modularity appears to be more complex than those of
Figure 6.6, but only the s; are variables, as in the previous format. Therefore, the only changes to
the constraints are the multiplicative constants for the s; elements.

O

O Previous Constraint:
Sg+857+83>=Wg

Modular Constraint:

Sg, Wg, Mg (W7 % my) + mp*sy+

(W3 % m3) +Mg* 83+

(Ws % ms) +Mg*Sg >= Wg

Key: G spare links on Span i
wi:  working links on Span i
m;:  modularity of Span i
a%b: remainderofa/b

Figure 6.6 Incorporation of Modular Systems Into ICH Constraints

6.4 The Theoretical Complexity of ICH

6.4.1 Worst-Case Complexity

There are three primary factors in the execution time of ICH: (1) generation of additional
constraints at each step including testing for Rg j  1; (2) LP execution time; and, (3) iteration of
(1) and (2).

ICH identifies the initial set of cutset constraints (the incident cutsets) from the adjacency
lists of the end-nodes of each span. This requires O(S) time. For subsequent steps, ICH
performs three computations for each span: (1) k-shortest paths identification of restoration paths
to test restorability; (2) DFS identification of subnetworks of spare capacity from end-nodes; and,
(3) DFS extension of the 2 subnetworks from (2) to include all nodes.

Using the metaDijkstra shortest paths algorithm to test for Rg =1, the overall complexity
of stage one is O(W-N-log(N)), where W is the total number of working links in the network. The
DFS has a complexity of O(max(N,S)) [Gibb85] - less than metaDijkstra. Thus, the time
complexity of the overall process of identifying new cutsets at each step of the algorithm is
O(W-N-log(N)), and is dominated by finding those spans that are only partially restorable.

The most important contributor to ICH time complexity is the execution time of the LP .
This is dependent upon the number and size Gi the constraints. The LP constraint size is
measured as the total number of span terms in all cutsets used as constraints. The number of LP



constraints of the first step of ICH is O(S); each constraint contains no more than (dmax-1) spans.
At each subsequent step, ICH will add no more than S additional constraints (representing the
case where no span was restorable). The maximum number of spans in a cutset cannot exceed
S. Therefore, the total number of constraint elements in the i-th step of ICH is O(i-S) and the LP
constraint size is O(i-S2).

Here, the ICH heuristic uses a Simplex LP which has a good average execution time, but
a worst-casg execution time which is exponential in the size of the constraint set. Khachiyan
[Khac79} and Karmarkar [Karm84] (summarized in [Schr86]) have developed polynomial-time
implementations for LP, but these implementations are not yet competitive with Simplex because
of very high execution times (large constant multipliers) {Schrg6).

The LP will return a fully-restorable network design if the constraint set includes all
possible cutsets. However, it was shown in Section 5.3 that the number of cutsets in a network is
exponential in the number of nodes. An LP operating on any subset of this full constraint set may
result in a network design which is not fully-restorable. Therefore, [CH could, strictly, require
O(2N) iterations. This establishes the worst-case complexity of ICH as exponential.

6.4.2 Average-Case Complexity

Figure 6.7 displays LP execution time vs. LP constraint size for all fully restorable network
designs produced by ICH over the 36 trials networks of Section 3.7.3. The square of the
correlation coefficient between the quadratic curve fit and the data is 0.94. A cubic curve fit only
results in improvement in the correlation coefficient at the third decimal point. Therefore, the
average-case LP execution time is E(n2), where n is the LP constraint size. However, an
important qualification of this result is that only data from successful network designs are present
in the analysis. Two examples of unsuccessful LP executions were observed in our experiments:

N=50, dayg=4, 1151 elements, Texecution > 500 000 s (5.8 days)
N=30, davg=6, 2061 elements, Texecution > 750 000 s (8.7 days)

In these cases, the LP had to be aborted before obtaining a solution.

The LP constraint size of the first iteration of ICH is E(S-davg), representing the incident
cutsets. Of all ICH network designs, the initial LP constraint size rangss from 52% to 94% of the
constraint size of the (final) iteration that resulted in a fully restorable design, as seen in Table
6.1. Thus, the initial constraints provide more than half of the LP constraint requirement in all
instances. This average-case analysis shows an increase in constraint size from first iteration to
last of E(1) and, therefore, a final LP constraint size of E(S-davg).
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Table 6.1

Final Constraint Size as Compared to Initial Constraint Size

Initial / Final Constraint Size Ratio
davg Mean Min Max Variance | Number of Networks
3 0.698 0.556 0.782 0.0064 9
4 0.704 0.521 0.862 0.016 8
5 0.828 ! 0.660 0.935 0.015 5
6 0.804 .768 0.873 0.0022 4
120000 r—~ T a 7 T -
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Table 6.2 shows the number of iterations required by ICH to design a fully-restorable
network. The number of iterations decreases as the connectivity of the network increases,
reflecting the greater relative tendency for restoration to be end-node capacity limited in high

Number of Elements in LP Constraints
Figure 6.7 Time Complexity of the LP

connectivity networks (see Section 1.1), therefore well characterized by the initial set of
constraints (the incident cutsets).
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Table 6.2 Number of Iterations to Achieve Restorable Network Designs

Number of Iterations
|_davg Mean Min Max Variance | Number of Networks
3 6.0 5 9 2 9
4 5.25 3 7 1.64 8
5 3.4 2 5 1.3 5
6 3.5 2 5 1.67 4

From Table 6.2, the number of iterations required for ICH : achieve full, ~=storable
designs is E(1). The number of iterations is expected to be constant against nety  rk size,
because ,with the use of neighborhoods, the number of cutsets is O(2N') = O(24-RPL_ |nthe
scenarios investigated here, both RPL and d are constants and therefore E(1) is expected. The
actual number of iterations was far below the theoretical bound because restorability within the
networks studied is typically limited by end-node bottle-necks. Therefore, the incident cutsets
provided as initial constraints are over half of the constraints required in these networks. The
process of evaluating restorability and locating additional constraints at each iteration had a
negligible contribution to the observed execution times.

Therefore, the overall complexity of an average-case execution of ICH is E((S.davg)z).
The worst-case execution time of ICH is exponential.

These observed execution times for all fully restorable network designs are plotted
against the size of the network (number of nodes) in Figure 6.8. For the constant davg Curves,
E(S) = E(N) because S = davg'N/2. Therefore, the general result of quadratic complexity with
constant node degree can be observed in this figure. As already mentioned, ICH did not
complete some of the designs, such as N=50, davg=4. But, the designs which ICH did complete
display the expected quadratic execution time. Figure 6.9 provides better proof of this by dividing
the execution times for the davg=4 networks by the number of steps of ICH required in each case.
This does not account for the extra constraints which result from the extra steps; even o, a
quadratic curve fit is highly correlated (R2=0.89) to the data. The constant multiplier to
accompany the asymptotic notation can be determined from the equation for the networks in
which the quadratic term dominates (N>50) and ,therefore, the execution time is 4,04N2.(the
number of iterations).
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6.5 Linear Programming Versus Integer Programming

Strictly speaking, ICH only achieves an optimal network design if it solves the constraints
with an Integer Program (IP). However, because Linear Programming (LP) has a lower average-
case time complexity than IP (polynomial versus exponential), it is better able to provide the
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execution speed which SCP requires. This work uses a readily available Simplex LP
implemeritation which is a module of the Mathematica™ software package. The LP time
complexity is, strictly, exponential, but LP implementations are known which execute in
polynomial time [Khac78, Karm84, Schr8c). The proof of polynomially implementable LP's is
consistent with the observation of low time complexity for an average execution of the Simplex
LP. As for IP’s, [Schr86) shows that IP’s are NP-complete; therefore, no reasonable execution
time algorithm is available.

So, how much capacity is added by using LP instead of IP? This question is addressed
through experimentation,

An IP was not available for experimentation, but a lower bound on the capacity which
either an IP or an LP can place is defined by the real valued solutions provided by the LP. For
the 26 study networks in which ICH obtained fully restorable designs, ICH designs required an
average of 4.7% more spare capacity than this lower bound, with individual designs ranging from
0% to 13.3% more spare capacity than their lower bounds.

Figure 6.10 compares the spare capacity required by ICH to the real-valued lower bound
spare capacity for the degree 4 group of study networks. For these networks, the ICH design
averaged 4.4% more capacity than the lower bound, with a variance of 0.04%, and a range from
1.6% 10 6.6%.
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Figure 6.10  Spare Capacity Requirements for Degree 4 Networks



6.6 Restoration Type and Restorability

As with any cutset-based method, ICH seeks to design a network that will provide a max-
flow restoration capacity which is at least as large as the potential loss in working capacity for
each span. Therefore, ICH will provide a restorable network design only if the restoration
algorithm can find paths compatible with max-flow. However, known real-time restoration
algorithms more closely mimic a k-shortest paths solution [Grov89), as opposed to max-fiow.

ICH incorporates both a k-shortest paths routine for confirming and guiding restorability,
and an LP operating on flow constraints. This apparent conflict was introduced to increase the
probability that the final network design would be compatible with k-shortest paths restoration.
But as a result, the k-shortest paths phase, which tests for restorability between steps, will
occasionally reject a network design for which the required max-flow capacity already exists. This
rejection will cause an additional cutset (a redundant constraint) to be added to the constraint set
which was already satisfied by the previous design. Small changes in the LP's constraints have
been observed to drastically change the network design. Generally, a small change to a network
design which accommodates max-flow will allow accommodation of k-shortest paths and,
therefore, the next step of ICH may return with a network design which does accommodate k-
shortest paths flow.

The k-shortest paths phase noszs 0 21 ur to the reliability of ICH. Whenever two
steps of ICH produce the same netw 0.« - :z¢in, ¢ snown conflict exists between k-shortest paths
flow and max-flow; ICH will end with « ...+ design that cannot be fully restored by a k-shortest
paths restoration algorithm. Such occurrences are relatively rare, because k-shortest paths and
max-flow are equivalent to within a few percent over a wide range of quasi-planar networks
[DuGrg1].

However, when operating with an RPL, a methad has not yet been found to strictly
constrain a max-flow algorithm to only consider these length restricted paths. In the ICH RPL
implementation, localities provide some restriction to thié max-flow path lengths by constraining
the paths to routes within the locality. This is an important consideration here because the
ICH RPL method is striving to provide restoration path length fimited flow with an LP which
provides max-flow, only limited in RPL by locality information. Therefore, the difference between
max-flow with RPL and k-shortest paths with RPL is expected to be larger than the non-RPL
cases considered in [DuGr91] due to an inability to directly impose an RPL limit on the max-flow
calculations. Experimental investigation into the restoration path lengths required for restoration
in the ICH RPL designs follows.

Tests were performed in which the metaDijkstra k-shortest paths algorithm (see Section
4.1.6.2) attempted to restore the networks designed by ICH RPL. metaDijkstra is constrained to
an RPL which is specified by the network designer. For restoration, RPL is usually in the range of
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6 to 10. Results show that the networks designed by ICH RPL for an RPL of 10 spans are not
fully restorable by metaDijkstra with an RPL of 10 spans. Network restorability statistics for this
case appear in the first row of Table 6.3. When metaDijkstra used RPL=10, the networks were
an average of 94.5% restorable, with a variance of 0.36%. Indeed, the difference between max-
flow and k-shortest paths flow with RPL=10 restriction is 5.5%. Conversely, if ICH network
designs are restored by metaDijkstra (which still requires path lengths limited to 10), the resultant
restorability statistics are as in the fourth row of Table 6.3. Thus, using ICH RPL instead of ICH
improved restorability by k-shortest paths algorithms with RPL=10 from 91.7% to 94.5%.

The RPL limit can be more accurately achieved by designing the network with a tighter
specification on RPL than that which will be used by metaDijkstra to restore the network. The
effects of this method can be seen by re-examining the restorability of the networks designed by
ICH RPL (with RPL=10) when metaDiikstra is allowed RPL limits greater than 10. Statistics for
RPL values for metaDijkstra of 11 and 13 appear in Table 6.3 (rows 2 and 3 respectively). When
metaDijkstra is allowed an RPL of 13 and ICH RPL uses an RPL of 10, the networks are an
average of 99.2% restorable, with a variance of 0.019%. For comparison, the restorability of ICH
(no RPL limit) designs by metaDijkstra with these irreased RPL limits also appear in Table 6.3:
Even with an RPL of 13, m .aDijkstra can only provide 97.6% restorability in the ICH designed
network.

Table 6.3  Restorability of ICH Designed Networks by a k-shortest Paths Algorithm

| design type RPL Mean Variance Min Max Median
ICH RPL 10 94.5% 0.36% 82% 100% 97.0%
11 96.7 0.14 89 100 98.2
13 99.2 0.019 95.5 100 99.7
ICH 10 91.7 0.92 76.6 100 94.2
11 83.9 0.66 80.1 100 98.4
13 97.6 0.11 92.5 100 100

In conclusion, both ICH and ICH RPL provide max-flow type restoration paths and this
does not guarantee full restorability by a k-shortest paths restoration algorithm. Moreover, ICH
cannot provide restoration paths which are limited in length, although ICH RPL can approximate
this function.

6.7 ICH Summary

Two versions of ICH, (ICH and ICH RPL), were implemented and investigated. Full
restoration of the ICH network designs was not possible by a k-shortest paths restoration
algorithm, because cutset-based heuristics fundamentally provide max-flow restorability.



ICH RPL uses localities to limit the area of the network through which the restoration flow is
guaranteed and as a consequence provides higher restorability in networks where an RPL limit is
specified.

The average time-complexity of ICH is polynomial, but the worst-case time Complexity is
exponential because of the number of steps required to converge, and the use of a Simplex LP.

ICH can accommodate system modularity through multiplicative constants in the LP
constraints.

Chapter 8 investigates ICH further, comparing it to SLPA. Chapter 8 investigates the
additional topics of network growth, over-restorability of designs and ease of implementation.
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7  The Spare Link Placement Algorithm

The Spare Link Placement Algorithm (SLPA) [GrBi90,GrBi91] is the second method
considered for near-optimal SCP. SLPA is a heuristic which uses a synthesis-based approach to
designing the network. Rather than calculating a network design from constraints, as in the
cutset-based methods, the synthesis-based heuristics build a feasible solution to SCP through
successive design improvements. The starting point for the design, which is subsequently
improved, is specifically chosen for ease of generation and compatibility with the heuristic's
approach to network design.

The synthesis-based heuristics guarantee to generate a feasible design, for any network
topology, by making restorability (not capacity) the objective function and capacity the constraint
(not restorability). For example, in the SCP problem the primary characteristic of a feasible
network design is restorability. Like ICH, heuristics of the synthesis type do not guarantee a
strictly optimal solution in terms of spare capacity minimization, restorability requirements are
indeed achieved.

An alternate synthesis-type heuristic based on Simulated Annealing has been identified
and is proposed for future investigation.

Following an introduction to SLPA in Section 7.1, Section 7.2 addresses the important
implementation issues and alternatives. Section 7.3 presents a complexity analysis of SLPA with
respect to storage requirements and exscution time.

7.1 Introduction to SLPA

A network design by SLPA starts with minimal spare capacity corresponding to a
restorability far below the restorability objective. SLPA makes successive improvements to the
initial design by operating on the spare capacity through the addition, subtraction, or redistribution
of spare links. Thus, during the process of synthesizing a network design, SLPA produces a
series of intermediate network states which simultaneously approach (a) the restorability
objective, and (b) the redundant capacity required in an optimum SCP. The objectives and
operations of SLPA can be visualized on the Restorabiiity-Redundancy plane of Figure 7.1. The
initial network has both low restorability and low redundancy. It is not known a priori how much
capacity the final network design requires, but it must meet the restorability objective.
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Figure 7.1 The Restorability - Redundancy Plane

Each spare link addition performed by SLPA seeks to maximize restorability with a
minimum of additional redundant capacity. Thus, from the initial design point on the restorability-
redundancy plane, SLPA seeks a maximum slope ascent in restorability versus redundancy in
moving to the next intermediate design state.

SLPA is comprised of two phases executed in series: Forward Synthesis (FS) and
Design Tightening (DT).

Tha fire? phase of SI.PA, FS, performs only operations which add spare capacity to
increas mywradin - f¥1e objective of FS is to attain the network’s target restorability level with a
near-minknui of syl capacity. Because each operation increases network restorability, FS

achieves the target restorability level within W steps, where W is the number of working links in
the network.

The second phase of SLPA, DT, only reduces spare capacity. DT uses the operations of
redistribution and subtraction of spare links to attain its objective of minimizing spare capacity
while maintaining the neiwork restorability at the target level.

Each of FS and DT is a “greedy” algorithm in its own right because (a) each step of a
phase performs the same operation on the spare capacity (eg. adding links in FS or deleting links
in DT), (b) at each step, & span for the operation is selected based upon a maximum benefit to
the objective (a local optimum), and (c) the action performed at each step is not reversed at any
subsequent step in the phase.

FS and DT are discussed in more detail in the following subsections. An analysis of the
computational complexity of the phases is deferred until Section 7.3.
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711 Initialization

The input to SLPA is a network topology complete with working capacity placements (see
Section 2.4). SLPA evenly distributes a small amount of spare capacity throughout the network
before the FS phase begins (here, one spare link per span).

The initial spare capacity placement must possess very specific characteristics: Some
small amount of spare capacity (compared to the final spare capacity requirements) must be
evenly distributed throughout the network. Non-zero initial spare capacity bootstraps the
synthesis process, enabling an increase in restorability with a single additional spare link.
Without some initial spare links, at least two spare links would have to be added in order to form
the first restoration path and thereby increase restorability. The initial spare capacity must be
small compared to the finat capacity requirements in order to avoid adverse influence of the initial
capacity on the final network design. Evenly distributed initial spare capacity may avoid a bias
during span selection in the early steps of synthesis. Without even distribution of initial spare
capacity, FS would tend to add spare capacity to areas of the network where capacity was
already present, and neglect the areas with no spare capacity. SLPA meets these criteria by
assigning one spare link to each span in the initial SCP.

7.1.2 FS Phase
Figure 7.2 outlines the strategy of the FS Enter

phase. FS does nct (directly) try to minimize network
cost (total spare capacity), while satisfying restorability
as a constraint as ICH did. Rather, it maximizes the

restorability benefit for each unit cost (spare link)
added to the network. The basic idea is to iteratively
address the sub-problem: given one new spare link to

Add_path
“spend", where should it be placed to yield the greatest n
step increase in Rp? Exit

The FS phase proceeds as foliows: A spare Figure 7.2 Finite State Machine
link is temporarily added to some span, X. R, is then for FS Phase of SLPA

evaluated. The evaluation uses either a k-shortest link

disjoint paths algorithm, or the path-table method that follows, to re-evaluate Rg of all spans
individually. The extra spare is moved from span X to another span. Rj, is again evaluated. In
this way each span of the network is analyzed for the increase in overall network restorability that
results from additicn of one spare to that span, given the current network state. FS permanenty
adds a spare link to the span that contributed the greatest increase in R, This process makes
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intensive use of span restorability calculations. Fast calculation of Rg is therefore given
considerable attention in following sections.

FS repeats this single-link investment process, adding one spare link at a time, until there
is no span on which an extra link gives an increase in Rp. This can occur for two reasons: (a)
Restorability has reached the target level, or, (bj ¥S has reached a stalling point. If Rp, reaches
the target restorability level, the FS phase is complete. But if the restorability is below the design
target when no one link addition can increase Rp, FS has encountered a “stalling point”. This is a
situation where FS must simultaneously add more than one spare to increase Ry, and get the
synthesis going again. In this case, FS analyzes all possible additions of two links for the
greatest increase in restorability, and effects the pair of link placements which result in the largest
increase in Ry. The algorithm then returns to trying to add one spare at a time.

The recourse to two-link combinations is computationally much more expensive than the
= sie singlelink iteration, but relatively infrequently required. The higher order combinatorial
& a7 is appropriate to overcome stalling events, but not for the basic synthesis. Conceptually,
FS could include successive recourse to ever higher orders of combinatorial search, whenever
the previous level of search stalls. However, this is neither advantageous nor necessary for the
problem at hand. After exhausting double iink combinaticns, it is empirically more effective to
resort to direct addition of a complete (s,t) path segmeiit t increase restorability rather than
search triple, or quadruple, combinations of link additions.

To add a restoration path, FS locates a span that is currently not fully restorable. Then, it
explicitly adds one spare link to each span along the shortest restoration route for that span. FS
then returns to the one-link-at-a-tim# mode of synthesis. Links introduced by the process of
adding a restoration path are not individually optimal in the sense of greatest global increase in
restorability. However, the relative infrequency of this, and the effects of the design tightening
phase that follows, makes this unimportant in the final design. Experimental results that follow
confirm this,

After the FS phase, the network design has attained the resiorability objective; however,
as is the case with many greedy algorithms, it may have excess spare capacity compared to the
optimum design. At each step in FS, link addition decisions are based on an intermediate
network design state, without knowledge of the effect of link additions in later steps. Although all
link additions increase restorability by definition, the later link additions could also provide extra
protection to an already restorable span. Thus, any step could render a prior addition extrangous,
resulting in an excess of spare capacity in the final design. in the restorability-redundancy plane
shown in Figure 7.3, the position of the network design after FS is denoted by a star. The figure
also shows a typical trajectory through the plane from the initial design to the design after the FS
phase.
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Basic implementations for the FS component modules are shown in figures 7.4 to 7.6. In
all of the modules, the subroutine calc_rest() evaluates the proposed operation with a calculation
of Rp. Inthe add_1() and add_2() procedures, bestSpan(s) contains the span(s) which can
maximally increase restorability with the addition of a link.

add_1() {
bestRest <- calc_rest();
foundOne <- FALSE;
for each (theSpan in S) {
spare[theSpan] <- spareftheSpan] + 1;
currentRest <- calc_rest()
if (currentRest > bestRest) {
foundOne <- TRUE;
bestRest <- currentRest;
bestSpan <- theSpan

}
spare[theSpan] <- spare[theSpan] - 1;

}
if (foundOne) {
spare[bestSpan) <- spare[bestSpan] + 1;

retum foundOne;

}

Figure 7.4 An Algorithm for Adding One Sparn Link
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add_2() {
bestRest <- calc_rest();
foundTwo <- FALSE;
for each combination (theSpan1 in S AND theSpan2 in S) {
spareftheSpan1] <- spareftheSpan1] + 1;
spareftheSpan2] <- spareftheSpan2] + 1;
currentRest <- calc_resi()
if (currentRest > bestRest) {
foundTwo <- TRUE;
bestRest <- currentRest;
bestSpans[1} <- theSpant
bestSpans[2] <- theSpan2
}
spareftheSpan1] <- spare[theSpan1] - 1;
spare[theSpan2] <- spare[theSpan2] - 1;

}
if (foundTwo) {
spare[bestSpans[1]] <- sparebestSpans[1]] + 1;
spare[bestSpans[2]] <- spare[bestSpans[2]] + 1;
}

return foundTwo;

}

Figure 7.5 An Algorithm for Simultaneously Adding Two Spare Links

add_path() {
foundPath <- FALSE;
for each (theSpan in S} {
spanRest <- mataDijkstra(theSpan)
if (working[theSpan] > spanRest) {
shortestPath <- findPath(theSpan);
" executes dijkstra() and traces pred list */
foundPath <- TRUE;
}

}
if (foundPath) {
for each (theSpan in shortestPath) {
spare[theSpan] <- spare[theSpan} + 1;
}

return foundPath;

}

Figure 7.6 An Algorithm for Adding a Restoration Path
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713 DT Phase
Whereas the FS phase seeks a steepest
ascent in restorability against redundancy, the

Enter

Add0_sub1
the restorability-redundancy state space to whittle n N

away at the redundancy while clamping Ry, at the Addi1_sub2

final level achieved by FS. n
Add2_sub3

In practice, the FS phase brings the design
n

tightening phase changes the direction of travel in

to a relatively efficient state that meets the target

restorability. It serves as a good starting point for a Exit

final (limited) combinatorial search for opportunities Figwre 7.7 Finite State Machine
to “tighten” the solution, Figure 7.7 depicts the DT for DT Phase of SLPA
phase as a Finite state machine, First, add0_sub1(),

eliminates any spares which are wholly superfiuous, that is, spares which DT can simply remove
without any reduction in Ry,

When add0_sub1() can remove no link while maintaining restorabiity, the tightener
examines combinations of capacity-saving redistributions in the spare link assignments. DT uses
two levels of combinatorially complete searches for opportunities to add “n* spares while
removing “n+1" other spares are used. DT attempts redistribution with r: = 1 first (add1_sub2()),
and then n = 2 (add2_sub3()). During these searches, DT implements 2~y radistribution which
does not reduce Ry, before continuing the search. This immediate acceptance of tightening
opportunities reduces the number of times that DT executes these searches. Tightening is
complete when redistribution at n = 2 cannot remove any further redundancy without decreasing
restorability. There is no conceptual reason to stop at n = 2 redistribution, but we found by
experimentation that there was little or no improvement after n = 2.

The completion of the DT phase signals the completio: of SLPA. Figure 7.8 shows the
full synthesis process which results in a near optimal network design.
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The add2_sub3() state has been obsarved to find few improvements and, therefore, one
of the SLPA implementations to be considered does not include this state. This truncated
algorithm is called SLPA Short. The difference in spare capacity raquired between SLPA and
SLPA Short is quantified later in this chapter. These data provide a justification for not
implementing more complex (addn_subn+1) states in DT.

Figures 7.9 to 7.11 illustrate basic implementations of the modules used in DT. The
algorithms are purely combinatoric in nature, leading to O(S®) calls to the “calc_rest” procedure

for a single execution of the add2_sub3() state. Section 7.3 analyzes optimized versions of these
algorithms.

addo_sub1() {
rest <- calc_rest();
foundOne <- FALSE;
for each (theSpan in S) {
spare[theSpan] <- spare[theSpan] - 1;
currentRest <- calc_rest()
if (currentRest < rest) {
spare[theSpan] <- spare[theSpan) + 1;
} else {
foundOne <- TRUE;
}

return foundOne;

Figure 7.9 An Algorithm for Deleting One Spare Link
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addi_sub2() {
rest <- calc_rest();
foundSet <- FALSE;
for each (addSpan in S) {
for each combination (remSpan1 in S AND remSpan2 in S) {
sparefaddSpan] <- spare[addSpan] + 1;
spare[remSpan1] <- spare[remSpan1] - 1;
spare{remSpan2] <- sparefremSpan2] - 1;
currentRest <- calc_rest()
if (currentRest < rest) {
spare[addSpan] <- spare[addSpan} - 1;
spare[remSpan1] <- sparefremSpani] + 1;
spare{remSpan2] <- spare[remSpan2] + 1;
}else {
foundSet <- TRUE;

}

return foundSet;

Figure 7.10 An Algorithm for Adding One While Removing Two Spare Links

add2_sub3() {
rest <- calc_rest();
foundSet <- FALSE;
for each combination (addSpan1 in S AND addSpan2 in S) {
for each combination (remSpan1 in S AND remSpan2 in S AND
remSpan3 in S) {
sparefaddSpan1] <- spare[addSpani] + 1;
spare[addSpan2] <- spare[addSpan2) + 1;
spare[remSpan1] <- spare[remSpan1] - 1;
spare[remSpan2] <- spare[remSpan2] - 1;
spare{remSpan3] <- spare[remSpan3] - 1;
currentRest <- calc_rest()
if (currentRest < rest) {
spare[addSpan1] <- spare[addSpant] - 1;
spare[addSpan2] <- spareladdSpan2] - 1;
spare[fremSpan1] <- sparefremSpan1] + 1;
spare[remSpan2] <- spare[remSpan2] + 1;
spare[remSpan3] <- spare[remSpan3] + 1;
}else {
foundSet <- TRUE;

}

return foundSet;

Figure 7.11 An Algorithm for Adding Two While Removing Three Spare Links
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714 Variants in SLPA Implementation
Experiments show that in a typical 60-node, 120-span study network, 99% of SLPA
execution time is spent in the calculation of span restorabilities, Rs,i. Therefore, performance of
SLPA depends significantly on the method used for calculation of Rs,i. In addition, the last stage
of capacity redistribution in the DT phase (add2_sub3()) typically realizes the last few percent
increase in capacity efficiency but is relatively costly in execution time. For these reasons, three
variants of SLPA are characterized in this work. These are:
SLPA Dijkstra: This is SLPA with the optimized O(N-log(N)) adaptation of Dijkstra's
shortest path algorithm to find the k-shortest link-disjoint paths for evaluating Rg.
This version also uses capacity redistribution down to add2_sub3() in DT.
SLPA Short: This is identical to SLPA Dijkstra but without use of add2_sub3() module in
DT.
SiPA Path-table: This is SLPA usiny the path-table censtruct (described in Section 7.2)
to efficiently evaluate Rs ;. This version retains add2_sub3().

7.2 implementation of SLPA

The SLPA modules presented in Section 7.1 require O(S™) evaluation of Rp,, where n is
the number of spans included in an operation (eg. add2_sub3() has n=5). For an estimate of the
execution time of SLPA, consider the requirements of the basic implementation of add2_sub3().
Assume that a single machine instruction executes in a micro-second, and metaDijkstra performs
the Rgj calculations in the procedure “calc_rest().” The complexity of metaDijkstra is
O(WavgN-log(N)), where Wayg is the average number of working links on a span. metaDijkstra
must be repeated O(S) times to calculate Rg j for each span. Together with O(S5 ) calculations of
Rn in add2_sub3(), the total complexity of one call is 0(wavg-N.log(N)-Ss). There are an average
of 2.97 working links is per span in the 50 node, 100 span study network. In this form, a single
iteration of add2_sub3() would require 26.5 years if only one machine instruction performed all of
the required work. And this calculation would require 4000 years for the 100-node, 200-span
study network.

The SPLA implementation tested here employs numerous techniques that significantly
reduce execution times. These include the use of path-tables to reduce redundant operations in

searches and span localities to reduce both the combinations of links considered and the length
of the searches required.

7.2.1 Span Locality

As was the case with ICH, limiting restoration path lengths (RPL) reduces SLPA
complexity. In quasi-planar networks, an RPL specification limits the number of spans that can
participate in a given span restoration effort. This locality information (see Section 4.1.4) reduces
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the complexity of many aspects of SLPA. For example, calculations of Rs,j only include local
nodes.

Local spans are an integral part of many of the procedures of SLPA. SLPA initializes
data structures containing this information on start-up. The structures locSpan(1..S] and
locNodef1..S] correspond to the sets of local spans and nodes for each span, respectively.

When Span A is in Span B's locality, it necessarily implies that the converse is also true:
Span B is in Span A's locality. In Figure 7.12, a restoration path for Span A, through Span B,
forms a ring including both spans. Therefore, Span B has an equal length restoration path
through Span A, as Span A does through Span B. This characteristic makes it equally valid to
interpret locSpan(theSpan] in two ways (a) it includes the spans which can assist in restoring
theSpan, and (b) it inciudes ali spans to which a change in spare capacity on theSpan would alter
their restorability.

@ 4 link restoration route for Span A

@ ‘ @ 4 link restoration route for Span B

A

Figure 7.12  Elements of Span Localities

It RPL>=4, then B € locSpan[A]
and A e locSpan[B]

Given the dual use of locSpan, a span-specific RPL scheme [SaVe89] is not possible with
the implementation described in this document because the symmetry “A ¢ locSpan(B] if and only
if B e locSpan{A]” does not hold. However, an implementation which initializes a different set for
each of the two functions of locSpan would not increase the time complexity of the algorithm.

7.2.2 Effect of Span:Operations _

In order to evaluate the effect of link operations (addition or subtraction) on a single span,
SLPA must re-evaluate the restorability of all local spans to it. In more complex procedures like
add_2(), SLPA must evaluate the effacts of link operations on two different spans simultaneously.
In these cases, the union of the two span localities is the operation locality. However, additional
information can be used in some cases to reduce an operation locality to less than the union of
span localities. For example, when the add_1() procedure is known to have failed before
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executing the add_2() procedure, the two added links in add_2() must cooperate if they are to
increase restorability. Therefore, in the case of add_2() following an add_1() failure, the locality is
the intersection of the individual localities. Applicable localities will be described on a case-by-
case basis for the multiple span operations.

723 Restorability Calculations based on metaDijkstra()

Because metaDijkstra() retums the number of restorable working links for a given span, it
can be used as the core of an implementaticn of calc_rest(), in which here Ry, can be assessed
as the total number of restorable working links (the sum of the values returned by metaDijkstra()
for each span) without normalization to the number of working links in the network. SLPA
completes locality information in a preconditioning phase which further reduces the time

complexity of the basic implementation. The calc_rest() implementation which uses metaDijkstra
for Rs,i evaluation and locality information is called “dijk_calc_rest()".

7.23.1 Span Localities with metaDijkstra()

For the dijk_calc_rest() implementation of SLPA, the span localities used are approximate
sets only. The determination of locality first identifies the local nodes, then uses that information
to identify the local spans. A node, say Node 1, is tested for locality to a span, say Span B, by
triangulation from the two end-nodes of Span B with shortest path searches. If the searches
determine the length of the shortest route from Node 1 to each of the end-nodes of Span B to be
x and y spans respectively, then Node 1 is accepted as a local node for Span B if (x + y « RPL).
This determination may be erroneous if the simple test returns true, but there are no span-disjoint
routes for which the criterion is met, that is, the two “exploratory probes” took the same route over
some part of their paths. Figure 7.13 illustrates network topologies for which the test would return
both correct and incorrect assessments of a local node.

The locality information provided by this method will always include the true local spans
and nodes, but occasionally it may also include extra spans and nodes. This approximation does
not have an impact on the accuracy of the solution, but tends to increase the computation time.
Such inaccuracies only occur where the path diversity is low; therefore, they occur more
commonly in the low average node degree networks. Fortunately, execution speed is less of an
issue for lower degree networks.

Local span information can be ascertained from the local node information in that any
span which is adjacent to two local nodes is considered to be a local span. Therefore, the
localities may contain extra spans where extra nodes exist.
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(a). Correct Locality

For RPL = 4, every node is in locality of
Span A-B because from any node the
minimum distance to A plus the minimum
distance to B is less than 4 Spans.

(b). Erroneous Locality

For RPL = 4, Node C appears to be in the
locality of Span A-B because the
minimum distance from Node C to each of
nodes A and B is 2 spans (= RPL/2).
However, a length ' route does not exist.

Figure 7.13  Identification of Nodes in a Locality

7.23.2 The dijk_calc_rest() Procedure

Throughout SLPA execution, accurate values for span restorabilities (spanRest{1..S]) and
network restorability (networkRest) are maintained for the current network design. Therefore, for
each operation on the spare capacity made by SLPA, network restorability must be assessed by
recalculating restorability for spans that are local to the change. The SLPA module passes the
list of spans (recalcSpans) which require recalculation of restorability to dijk_calc_rest(). In order
to initialize the Rg j for this Ry update, SLPA must execute dijk_calc_rest() once at startup with
recalcSpans being the set of all spans.

The dijk_calc_rest() procedure is documented in Figure 7.14. The nodeAli] and nodeBli]
elements return the end-nodes of spani. The implementation of metaDijkstra() is as presented in
Section 4.1.6.2, with the addition of an early termination when the number of restoration paths
identified exz:eeds the number of working circuits to be protected.

The call to metaDijkstra has time complexity O(w;:N-log(N)) for calculating Rg ;.
Therefore, calculating Ry can require recalculation for every span and has time complexity
O(W-N-log(N)) in general.

In a specific calculation of Ry, where locality information is used, metaDijkstra only uses
local nodes (numbering N') in each Rg j calculation and only calculates Rg  for S¢ spans (the
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spans which may have been affected by (ie., are in the locality of) the last spare capacity
operation). Therefore, the time complexity of dijk_calc_rest() is O(wavg-N"log(N')-S).

dijk_calc_rest(recalcSpans, networkRest, spanRest)

for all (calcSpan in recalcSpans) {
networkRest <- networkRest - spanRest[calcSpan];
source <- nodeA[calcSpan];
target <- nodeB[calcSpan];
spanRest[calcSpan] <- metaDijkstra(source, target,
work[calcSpan]));
networkRest <- networkRest + spanRest{calcSpan]
}

return networkRest;

}

Figure 7.14 The Dijkstra-Based Restorability Calculation Procedure

724 Restorability Calculations based on a Path-Table

SLPA requires up to one million recalculations of network restorability for complete
~ synthesis of a 60-node 120-span network. Therefore, even though the dijk_calc_rest() procedure
has been implemented efficiently, SLPA would benefit from any further decrease in complexity.

When an algorithm executes a single procedure repeatedly, it is often feasible to
accelerate the algorithm with preprocessing operations of a higher complexity than a single
execution of the procedure itself. The amount of extra complexity which can be incorporated into
the preprocessing phase while still achieving overall savings depends upon the number of times
the important procedure must be executed. In the case of SLPA, the fundamental component is
the recomputation of Ry, for every alteration made to the network (calc_rest()). In fact, an
execution profile showed that SLPA spends 99.9% of its execution time in calc_rest().

Thus, considering a million calls to calc_rest() comprising 99.9% of SLPA’s execution
time, preconditioning can significantly benefit SLPA if it can achieve any reduction in the
execution time of calc_rest().

The path-table implementation improves the speed of calculating Rg,i by use of a pre-
processéd table of ali topologically possible restoration routes. The path-table is storage
intensive in that it contains each possible route of all potential span failures. The information is
sorted, compressed and saved in a data base. Restriction of the restoration path length (RPL) is
a necessary aspect of the path-table method in order to restrict the overall space complexity.

Whether or not a span restoration can use a particular route when the network is in a
particular state depends on the current spare capacity dimensioning of the spans of the route.
Entries in the path-table are potential routes that must be tested for capacity at look-up time. This
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rules out the possibility of O(1) look-ups, because each entry must be evaluated for its minimum
route capacity, rather than just indexed. However, the path-table keeps routes sorted by length
and statistical frequency of use, and it avoids repeated searches to rediscover routes.

7.2.4.1 The Structure of the Path-Table
Traversing the path-table in calculating Rsi is similar to the operation performed by a
Depth First Search (DFS, Section 4.1.6.1). But by using a path-table, many repetitive operations

can be eliminated because of the knowledge in the table, and through sorting and merging of the
full list of routes.

There is one path table for each span, spans —>»
enabling fast calculation of Rg j. Within each g Each row is a distinct
table, the first step in creating the path-table isto | & _ € restoration route
generate every topologically possible restoration HE < EZ?:;::;?"GSWS
route within the RPL specified. This is an '
exponential search; therefore, RPL must be limited -rrehs?ogr;?i%‘:\ or:)utes
to a reasonable value, based upon the average of length 6 spans
node degree of the network. The potential paths o '
are sorted by logical length (ie. number of spans). :

After this first step, the structure has the formin  Figure 7.15 A List of All Restoration Routes
. . . Available for Restoration of a
Figure 7.15. The first row in the structure Span After Sorting by Length.
represents the spans along one of the shortest
restoration routes. The last row in the list contains one of the longest restoration routes, which is
at most of length RPL. This step of sorting paths by logical length will effect a k-shortest paths
flow when calculating Rg,; by searching from the top of the table to the bottom. Thus, the path-
table combines the speed advantages of a depth first search and the path length characteristics

of an k-shortest path search.

next \
bestSpan=p»- .

Next, the most common span (ie.,
the most frequently appearing span
amongst the routes of a given length) Eliminated
(bestSpan) s identified, from all the spans | Elements
on all the routes of length n. The
bestSpan achieves its preferred status
because it is either a crucial span to the
restoration effort, or it is a geographically

well-situated span to assist in the Figure 7.16  Sorting and Reducing Within
a Common Route Length

subSet1

subSet2

restoration eifort. Because of its
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importance, the path-table is arranged so that besfSpan will only be checked once for available
spare capacity. For example, if bestSpan had a spare capacity of zero, it would be known with no
further tests that all potential paths of that subset yield no restoration paths in the current design
state. Therefore, the data structure for length n routes can be divided into three sections: (a)
bestSpan, (b) a st of route segments which constitute the remainder of the routes which contain
bestSpan (subSet1), and (c) the set of routes which did not contain bestSpan (subSet2). The
bestSpan section contains a single element and pointers to subSet1 and subSef2. Figure 7.16
dapicts this stage of processing.

Each of the two subsets created in step two (subSet1 and subSet2) can now isolate their
most prevalent réfiaining span. For example, the structure of Figure 7.17 results after performing
the first step of recursion (splitting subSet1 and subSet2). This process continues recursively
within subsets, until only the individual elements remain. It is these individual elements remainirig
after the recursive reduction of the data structure which form the path-table.

Key: > next pointer
<\ last pointer

¢ down pointer

identifiable element
or group of elements

Figure 7.17  Recursive Sorting and Merging Within a Common Route Length

7242 Evaluating Ry With the Path-Table

A procedure called span_rest_pt() performs the same function as metaDijkstra(), but it
deduces restorability by traversing the path-table. The path-table traversal within a common path
length is a similar operation to a DFS algorithm across the spans of the path-table. it seeks to
find a restoration path, by assessing the spare capacity on every span of the path, before
considering altemate path segments.

RPL is an inherent part of the path-table; therefore, the locality restrictions are not
addressed directly, as they are with the metaDijkstra-based implementation. Locality information



(locSpan and locNode lists) can be incorporated while the path-table is buil. Therefore, the
locality information will be strictly accurate in this implementation.

The search for restoration paths traverses the path-table from left to right across the
“next” pointers. The restoration chain contains the latest span traversed in each column of the
table to the left of the current column. The objective of traversal is to find a restoration chain that
contains all spans of an entire restoration route and in which each column is represented by a
span containing spare capacity; these spans embody an available restoration route. A span with
no spare capacity blocks traversal in that direction. For example, in the case of a blocked “next”
element, an alternate span for that column is pursued by moving through the “down” pointer. If no
“down” pointer exists at the blocked element, the current chain cannot be completed and alternate
segments of the chain must be sought.

The search uses “last” pointers when back-tracking to locate an alternate chain from
which the traversal can continue. Through back-tracking, previous columns of the chain (to the
left) are reassessed for alternate spans with which to continue the current restoration chain.
Back-tracking proceeds until a non-NULL “down” pointer is encountered, which indicates that the
forward traversal can continue from this element of the chain.

The search identifies a viable restoration route if the chain includes spans from each
column. This corresponds to the case in which the search reaches the rightmost column of the
table, as indicated by a “next” pointer equal to NULL. The minimum capacity on any span of the
restoration chain dictates the number of restoration paths available on the identified route. The
traversal algorithm removes the spare capacity consumed by accepting restoration paths before
continuing to search for further restoration paths.

The search for the next restaration path does not start from the head of the path-table,
nor does it necessarily start from the#ftmost column. Instead, the search continues from the
right-most column where the pre‘m restoration path was identified. The route acceptance can
exhaust one or more of the spans involved in the previous restotation chain and, if so, the
traversal algorithm uses back-tracking to find a feasible point to resume forward traversal. This
forward traversal continues from an element in the previous chain where all columns to the left of
the element contain spans with spare capacity. This form of back-tracking is facilitated through
the array “depth{column],” which holds the minimum spare capacity on any span of the chain to
the left of the current element. For example, upon removal of n restoration paths from the
restoration chain, each column’s depth value is decremented by n. The right-most column with a
positive depth value anchors the resumed search.

In the span_rest_pt() procedure in Figure 7.18, the variable “ptr’ is used to maintain the
current position of the search in the path-table. The name of the span contained in a table
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element is retrieved through the “span” pointer (ie. ptr->span). The variable "level* corresponds
to both the column number and the current number of elements in the chain.

7.24.3 Evaluating R, With the Path-Table

The major advantages of using the path-table rather than metaDijkstra are threefold.
First, the search finds all possible paths in a single traversal (iteration). Second, the search
examines the most common spans amongst all routes first, regardless of their geographial
location with respect to the end-nodes, thereby avoiding consideration of less frequently used
spans until the need arisgs. Third, the search traverses spans that are common to many routes
only once.

In other words, spans which appear most often in potential restoration routes are first in
the path-table. Thus, when the network is in a highly-restorable state a restorability calculation
typically only requires looking at the first few elements in the table. This is an especially important
observation and property because much execution time is spent in the terminal regime of
approach to minimum capacity at 100% restorability (in DT). When just two or three most-
frequently used spans have spare capacity, a plethora of alternative routes which contain this
span are enabled and full restorability can usually be verified without further search. This is a
useful property, because SLPA moves very quickly to network average restorability in excess of
80%. To calculate Rg j using the path-table, the traversal continues until either establishing Rs,i=
w; or exhausting the path-table.

The pt_calc_rest() procedure in Figure 7.19 assesses Rg,; by using span_rest_pt() as the
primary function call. Note the similarity to dijk_calc_rest().



span_rest_pt(calcSpan, work) {
for all (theSpan in Spans) spare[theSpan) <- conSpareftheSpan];
ptr <- pathTable[calcSpan];
level <- 0; spanRest <-0; '

while ((NOT ptr = NULL) AND (spanRest < work)) {
if (level = 0 OR (spare[ptr->span] < depth{level-1 )]
depthflevel] <- spare[ptr->span];
else  depthflevel] <- depthflevel-1};

if (NOT ptr->next = NULL) AND (NOT deoth[level] = 0)) {
[* advance to next column */
ptr <- ptr->next;
level <- level + 1;
} else if (NOT depthflevel] = 0) {
if (depthflevel] + spanRest > work)
depth[level] <- work - spanRest;
spanRest <- spanRest + depth[level];

acceptPaths(depth{levei], ptr, level);
backTrack(&ptr, level): /* subroutine modifies ptr */
} eise {

backTrack(&ptr, level): /* subroutine modifies ptr */

return spanRest;

aceeptPaths(npath, backptr. i) {
‘while (NOT backptr = NULL) {
depth(i] <- depthli} - npath;
spare[backptr->span] <-
spare[backptr->span] - npath;
i < i1
backptr <- backptr->last;
}/* end while ¥/
} I end acceptPaths*/
backTvack(ptr, depth) {
found <- FALSE;
while (NOT ptr = NULL AND found = FALSE) {
if ((NOT ptr->down = NULL) AND
((level=0) OR NOT (depth[level-1] = 0))) {
ptr <- ptr->down;
found <- TRUE;
}else {
ptr <- ptr->last;
depth <- depth - 1;

Figure 7.18 The Path-Table-Based Span Restorability Calculation Procedure



pt_calc_rest(recalcSpans, networkRest, spanRest) {
for all (calcSpan in recalcSpans) {
networkRest <- networkRest - spanRestfcalcSpan};
spanRest{calcSpan] <- span_rest_pt(calcSpan,
conWork{calcSpan]);
networkRest <- networkRest + spanRest{calcSpan]

}
retum networkRest;

}

Figure 7.19 The Path-Table-Based Network Restorability Calculation Procedure

7244 Computational Complexity Associated with the Path-Table

The complexity of path-table preparation is linear
in the number of spans in the network. For each span, a _.q>_
table is built which specifies all topologically possible
restoration routes for that span. To find all possible distinct /l\
restoration routes for a given span, an algorithm first %{)
selects one of the end-nodes of the span, and searches \I/
through the network until encountering the node at the
other end of the span. Consider the case where all nodes _C >_
in the network have the same degree, d. As depicted in
Figure 7.20, all (d-1) unfailed spans leaving a node are

Figure 7.20 Branching of
recorded as beginning possible restoration paths. At each Path Possibilities
successive step away from the starting node, the number
of possibilities increases exponentially by a factor of (d-1). This process is limited by the
restoration path limit, RPL, so that the maximum number of steps needed to create the path-table
is (d-1)RPL, Thius, the worst-case complexity of building the path-table is O(S-dRPL), linear in S.
The dependence on d andRPL is to some extent under the control of the network designer, as
these are engineering parameters. For networks with varying node degrees, the worst-case time
complexity of building the path-table is O(S-dmaxiF'L), where dmax is the maximum node degree
in the network. :

The path-table also requires O(S-RPL-dmaxPP'L) space, where each route requires RPL
bytes of storage. Therefore as the average degree of the nodes in the network increases, use of
the path-table method may be limited by the available memory.

The worst-case complexity of calculating Rg,j from the j-ath-table is a search of the entire
table. This is an O(S-dRPL) operation for Rg ; calculation, so it is O(S2-dRPL) for Ry, calculation.
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725 Implementation of the SLPA Modules Using Locality Information
The specific implementations of the procedures presented in Section 7.1 are presented
here. They are analyzed for two components of their time complexity: (a) the extent of search

(the number of alternatives considered in a single iteration), and (b) the number of spans
requiring calculation of Rg ; for each alternative considered (S).

7.2.5.1 Add One Spare Link

Figure 7.21 presents the most highly utilized spare link operation within SLPA, “add 1
spare link” (referred to as addj_1§).

The (change in) Ry, iscelcullated at line 7, once for each span in the network (S);
therefore, the extent of search is O{S). For each proposed span addition, the other spans
requiring calculation of Rg,j will be spans within the locality of theSpan (locSpan(theSpan}),

because an additional link on theSpan can affect the restorability of any span within its locality.
Therefore, S¢ = O(S').

add_1(networkRest, spanRest) {

1 bestRest <- networkRest;

2 foundOne <- FALSE;

3 for each (theSpan in S) {

4 spare[theSpan)] <- spare[theSpan] + 1;

5 tempNetworkRest <- networkRest;

6 tempSpanRest <- spanRest;

7 currentRest <- calc_rest(locSpan[theSpan], tempNetworkRest,
tempSpanRest)

8 if (currentRest > bestRest) {

9 foundOne <- TRUE;

10 bestRest <- curmentRest;

1 bestSpan <- theSpan

12 bestSpanRest <- tempSpanRest;

}
13 spareftheSpan] <- spareftheSpan) - 1;
}

14 if (foundOne) {

15 sparefbestSpan) <- spare[bestSpan] + 1;

16 spanRest <- bestSpanRest;

17 networkRest <- bestRest;

}
18 return foundOne;
} e

Figure 7.21 Add One Spare Link Module of SLPA with Locality Considerations



7.25.2 Add Two Spare Links Simultanecusly

“Add two spare links”, add_2(), is the second most commonly executed module in SLPA,
and is similar to the add_1() module analyzed in the previous subsection. Figure 7.22 presents
the implementation-specific add_2() procedure.

The complexity of the basic algorithm presented in Section 7.1.1 has been reduced here
by restricting the pairs of spans for consideration (the extent of search). Because add_1 () has
already failed when add_2() is called, only those additional spare links which can cooperate will
increase network restorability. Complementary (or cooperating) spans are those that are close
anough to each other to form parts of the same restoration path; therefore, complementary spans
wili be in each other's localities. (theSpan2 is a member of locSpan(theSpan1], and vice-versa.)
The add-2() procedure selects theSpan1 from all spans, and theSpan2 from only
locSpan(theSpan1]; therefore, the extent of search is O(S-S").

At line 10 (Figure 7.22), Ry, is calculated for each of the pairs to be considered. The set
of spans for which Rg j requires recomputation (numbering S¢) will be the union of the local spans
for each: of theSpan1 and theSpan2. The nurnber of elements in locSpanijtheSpant] plus
locSpanjtheSpan2] is S¢ = O(2-S) = O(S"). This specification of S is complicated and requires
an explanation: The set of spans which theSpan1 and theSpan2 can cooperate to restore is the
intersection of locSpan{theSpan1] and locSpan{theSpan2]. However, because path selection
order can impact restorability by k-shortest paths, the addition of a single link to theSpan1 can
also result in a decrease of restorability to any span in its locality (locSpan[theSpan1})). This
restorability decrease (even though spare capacity is increased) is the result of a “trap,” whereby
restorability is affected by the path selection order (see Figure 3.8) Therefore, restorability '
recomputation must consider all spans in the localities of either theSpant or theSpan2.

A similar analysis can be used for add_n() to show that the extent of search is
O(n-S-8'™1) and S is O(n-S'). Here, the linear part of the dependence on n can be removed by
calculating Ry, in stages as will be discussed in detalil in Section 7.2.5.4.



add_2(networkRest, spanRest) {
1 bestRest <- networkRest:
2 foundTwo <- FALSE;
3 for each (theSpan1 in S) {
4 for each (theSpan2 in locSpan[theSpan1)
5 such that (theSpan1 < theSpang)) {
6 spareftheSpan1] <- sparetheSpan1] + 1;
7 spareftheSpan2] <- spare[theSpan2] + 1;
8 tempNetworkPsst <- networkRest;
9 tempSpanRest .- spanRest;
10 currentRest <- calc_rest(locSpan[theSpan1] +
locSpan(theSpan2], tempNetworkRest, tempSpanRest)
11 if (currentRest > bestRest) {
12 foundTwo <- TRUE:
13 bestRest <- currentRest;
14 bestSpani <- theSpan1
15 bestSpan2 <- theSpan2
16 } bestSpanRest <- tempSpanRest:
17 spare[theSpan1] <- spare[theSpan1] - 1;
18 } spare{theSpan2] <- sparefthenan2] - 1;
}
19 if (foundTwo) {
20 spare[bestSpan1] <- spare[bestSpan1] + 1;
21 spare[bestSpan2] <- spare[bestSpan2] + 1;
22 spanRest <- bestSpanRest;
23 networkRest <- bestRest;
24 return foundTwo;
}

Figure 7.22 Add Two Spare Links Module of SLPA With Locality Considerations

7.2.5.3 Delete One Spare Link

The add0_sub1()module has equivalent complexity to add_1() for a single execution. In
the add0_sub1() modi#s; a single execution performs all possible single link deletions as they are
identified and is, therefore, executed a smali number of times. This module will not contribute to
the complexity of SLPA because of its relatively low complexity.

7.25.4 Add One Spare, While Deleting Two Spares
Figure 7.23 presents the module which “adds one while deleting two spare links".
Several aspects of this implementation lead to a reduced complexity from the basic

implementation: (a) It assumes that add0_sub1() has already failed to find any single links for
¢emaval; (b) It uses locality information wherever possible; And, (c) it calculates Rp in stages.

Again, as in add_2(), operation on any span in the network, whether an addition or deletion of



Spare capacity, can result in a decrease in restorability due to the dependence of k-shortest paths
flow on selection order.

For the following discussion, it is convenient to identify the concept of extended local
spans: The union of the localities of the spans in theSpan’s locality comprises the extended
locality. Spans in the extended locality are called the exter.ded local spans. A span which is in
the extengded locality of theSpan is contained in the set IocZSpan[theSpan] or, equivalently,
locSpanflaeSpan(theSpan]].

Thernumber of spans in chSpan[addSpan] is larger than the number of spans in
locSpan{a¥dSpan), but by how much? In a planar lattice network, if the locality is considered as
the spahs within a circle of a radius r, then, the extended locality will contain no more than the
number of spans within a circle of radius 2-r, because each span along the pasimeter of the
locality hac its own locality of radius r. Based upon the resultant increase in area from a doubling
of the radius, the total extended area is less than or equal to four times the area of the single
locality. Aithough this result is only strictly true for planar networks with constnt node degree, it
is a useful approximation for quasi-planar networks.

Hence: Oflloc2SpanfaddSpanl) = O(4-llocSpan([addSpan]l) = 0(4-S') = O(S).

The add1_sub2() procedure performs three link operations: (a) Add a link to addSpan,
(b) delete a link from subSpan1, and (c) delete a link from subSpan2. addSpan is selected first
from any span (O(S) choices). subSpan1 is then selected from the extended local spans of
addSpan (ie. subSpan1 e loc2Span[addSpan)). The propagating conditions which lead to the
use of the extended local spans in this situation are as follows: The link added to addSpan may
provide an altemate restoration path for any span within its local area (locSpan[addSpan]). The
set of spans which gained a restoration path from the addition to addSpan is called the gainSet,
where gainSet is a subset of locSpan[addSpan). Now consider a span within gainSet. This span
has an increased number of possible restoration paths; therefore, one of its restoration paths may
be surplus. Any surplus spans willibe contained within locSpan[gainSet] = locZSpan[addSp,an].

W!.en selecting subSpan2, it is recognized that two previous operations have been
performed on the network spares (subSpan1 and addSpan). Thus, a useful link for removal from
subSpan2 might be found on any span within the extended local area of addSpan (by the same
argument as for subSpan1), or in the local area of subSpan1. Therefore, the number of spans
from which subSpan2 can be selected is Iloczspan[addSpan]I+llocspan[subSpan1]I-
intersecnon(lloc?span[addSpan]l.lloespan[subSpam]I). The most common situation is when both
subSpan1 and subSpan2 are in the extended local area of addSpan, suggesting that the
additional spare link on addSpan created multiple surplus links. However, occasionally subSpan2
can be outside the extended local area of addSpan, because it was made surplus by the change
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on subSpan1. Again, this is a case in which a trap has appeared around which path selection
order impacts k-shortest path flow.

Therefore, the extent of search is
O(S-lloc2spanfaddSpan]-(lloc2spanfaddSpan]l+liocspanfsubSpant})) = 0(20-8-52) = 0(S-S2).

When recalculating the restorability of the network following ali three operations, note that
any one of the changes may affect the restorability of any span ifv$heir locality. Therefore, the
restorability of all spans in the uniun of the localities of addSpan, sub&pani and subSpan2 must
be included in S, for recalculation. However, these calculation sets can be reduced by

performing restorability calculation in stages. If add1_sub2() recalculates R, after adding a link to
addSpan, it can recalculate Ry, for subsequent operations on the nctwork sparing within the
localities of those subsequent changes. Thus, add1_sub2() will not reassess the spans in the
locality of addSpan but not in the locality'sf subSpan1 for the subtraction from subSpani. If
add1_sub2() recalculates Ry, after operations on addSpan and subSpant, it can assess all of the
subsequent possibilities for subSpan2 by recalculating Rs i only those spans in the locality of
subSpan2. Therefore, at line 23 in Figure 7.23 where the maximum extent of search leads to a
restorability calculation, S¢ will only include the local spans of subSpan2. Therefore, for the
add1_sub2() module, S, is effectively O(S").

This implementation also includes a prescreening stage: If subSpan1 and subSpan2 are
within the extended locality of addSpan, the restorability will usually only be intact if both
subSpan1 and subSpan2 are individually removable without having 2r impact on restorability.
This condition is encoded with the subtractSet set of spans. For this prescreening stage to miss
an opportunity is a rare occurrence, limited to the simultaneous existence of two conditions: (a)
Removing of subSpan1 does not maintain restorability; and (b) if subSpan2 and subSpan1 are
simultaneously removed, restorability is maintained. This slight discrepancy is allowed because
there is no error in the restorability calculations, only the failure to seize a rare ogportunity for
improvement. Moreover, this opportunity is somewhat of a wolf in sheep's clothing, in that a
tighter network design in a topology for which path selection order can impact restorability is not
desirable.

Note that the actual implementation of add1_sub2() which was tested in the current
research did not incorporate the possibility of a subSpan2 which is not from within
loc2SpanfaddSpan). Therefore, line 19 in this module was replaced with: “for all (subSpan2 in
[subtractSet}) {." This change speeds up the procedure, and the penalty in perfurmance is both
small and non-crucial, in the same sense as above: Opportunity is lost, but network feasibility is
not compromised.



procedure add1_sub2(networkRest, spanRest) {
1 success <- FALSE;
2 for all (addSpan in S) {
3 found <- FALSE;
4 sparefaddSpan] <- spare[addSpan] + 1;
5 subtractSet <- NULL;
6 tempNetworkRest <- networkRest;
7 tempSpanRest <- spanRest;
8 - addNetworkRest <- calc_rest(locSpansfaddSpan]),
tempNetworkRest,

tempSpanRest);
9 addSpanRest <- tempSpanRest;
10 for all (subSpan1 in loczspan[addSpan]){
11 spare[subSpan1} <- spare[subSpani]- 1;
12 tempNetworkRest <- addNetworkRest;
13 tempSpanRest <- addSpanRest;
14 sub1NetworkRest <- calc_rest(locSpan[subSpan1],

tempNetworkRest, tempSpanRest);
15 sub1SpanRest <- tempSpanRest;
16 if (sub1NetworkRest >= networkRest)
17 subtractSet <- subtractSet + subSpan1;
18 else continue; /* choose a new subSpant */
19 for all (subSpan2 in ([subtractSet] + locSpanfsubSpan1] -
intersection(IocZSpan[addSpan],IocSpan[subSpam]))) {

20 spare[subSpan2] <- spare[subSpan2]- 1;
21 tempNetworkRest <- sub1NetworkRest;
22 tempSpanRest <- sub1SpanRest;
23 calc_rest(locSpan[subSpan2], tempNetworkRest,

tempSpanRest);
24 if (tempNetworkRest >= networkRest) {
25 spanRest <- tempSpanRest;
26 networkRest <- tempNetworkRest;
27 found <- TRUE;
28 success <- TRUE;

}
29 if (found = TRUE) break; /* end inner for loop */
30 sparefsubSpan2] <- sparefsubSpan2] + 1;
31 if (found = TRUE) break; /* end outer for loop */
32 spare[subSpan1] <- spare[subSpani] + 1;
}
33 sparefaddSpan] <- spare[addSpan] - 1;
} .

34 if (success = TRUE) retum COMPLETE;
- 35 else return FAILED;
}

Figure 7.23 Add One and Hemove Two Spare Links SLPA Module With }.o’callty

Considerations
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7.25.5 Add Two Spare Links While Deleting Three Spare Links

The add2_sub3() procedure uses the same principles applied to add1_sub2(). Figure
7.24 presents an implementation of this procedure. The complexity analysis of this procedure
works from the knowledge obtained in the add1_sub2() analysis.

In add2_sub3() there is one more level of nesting for the second addition of a spare link,
plus one more level of nesting for the third removal of a spare link.

The second spare link is added to any network span (addSpan2) which shares an
extended local span with the addSpan1 (ie. intersection( IOCZSpan[addSpanﬂ,
loc2Span[addSpan2]) <> NULL). Because this is a large number of spans, it is possible (even in
large networks by today’s standards) that addSpan2 will be taken from all S spans. Returning to
the analogy of the previous section where the number of spans in an extended locality is
described by the area of a circle of radius 2-r, the number of spans that have extended localities
which intersectthe extended locality of addSpan1 will be within a circle of radius 4r. Thus, the
number of spans from which addSpan2 can be selected will be within four times the radius of a
circle which represents locSpan[theSpan). Thus, addSpan2 can be selected from
O(min(16-S',S)) spans.

The subtract spans can then be chosen as in the add1_sub2() discussion:

subSpan1 e loc2Span[addSpan1] U loc2Span[addSpan2];

subSpan2 e loc2Span[addSpani} U loc2SpanfaddSpan2] U locSpan[subSpan1]; and,

subSpan3 e loc2Span[addSpan1] U loc2SpanfaddSpan2] U locSpan[subSpani] U

locSpan[subSpan2].

Therefore, the extent of search for add2_sub3() is
0(S-(16-S):(2:4-S')-(2-4-5'+8')-(2.4-8'+2.8")) = O(S-11520-8'4) = O(S-8'4).

This analysis can be extended to the complexity of addn_subn+1. Each subsequent
addSpan must intersect the extended focality of one of the previous addSpan's. Each
subsequent subSpan must be from within the locality of an addSpan or a previous subSpan.
Therefore, the extent of search for addn_subn+1 is: O(S-S'(@n).(16(n-1)1)-((4-n+n)l) / ((4-n-1)1)).
This factorial increass in complexity does not allow indefinite increases in n. In the network sizes
considered here, any increagmiin n beyond 2 would likely result in checking all network spans and
therefore an extent of seasth ofO(S2n+1),

add2_sub3() is theimost expensive module of SLPA in terms of actual' computation time
and asymptotic complexity. in order to reduce the execution time (by reducing the constant factor
of 11520) so that an add2_sub3() module is feasible, it was not actualiy implerhented as
;jﬁe;s_ented here. Instead, addSpan2 was selected from 'within the locality of addspén1, which
represents the most probable case whereby the two spans can cdmplement each other inthe
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procedure add2_sub3(networkRest, spanRest) {
1 success <- FALSE;

2 for all (addSpan1 in S) {
for all (addSpan2 in S such that

intersection( loc2Span[addSpan1], loc2Span[addSpan2}) <> NULL) {

3 found <- FALSE;
4 spare[addSpani] <- spare[addSpani] + 1;
4 spare[addSpan2] <- spare[addSpan2] + 1;
5 tempNetworkRest <- networkRest;
6 tempSpanRest <- spanRest;
7 addNetworkRest <- calc_rest(locSpans[addSpan1] +
locSpansfaddSpan2], tempNetworkRest, tempSpanRest);
8 addSpanRest <- tempSpanRest;
9 subtractSet <- NULL;
10 for all (subSpan1 in loc2Span[addSpan1}+loc2SpanfaddSpan2]) {
1 spare[subSpani] <- spare[subSpani]- 1;
12 tempNetworkRest <- addNetworkRest;
13 tempSpanRest <- addSpanRest;
14 sub1NetworkRest <- calc_rest(locSpan[subSpan1],
tempNetworkRest, tempSpanRest);
15 subi1SpanRest <- tempSpanRest;
16 . if (sub1NetworkRest >= networkRest)
17 subtractSet <- subtractSet + subSpant;
18 else continue; /* choose a new subSpan1 */
subtractSet2 <- NULL;
19 for all (subSpan2 in ([subtractSet] + IocSpan[subSpam] -
intersection(loc2SpanfaddSpan1}+loc2Span[addSpan2],locSpanfsubSpani}))) {
20 spare[subSpanZ] <- spare[subSpan2] - 1;
| 21 tempNetworkRest <- subiNetworkRest;
22 tempSpanRest <- subiSpanRest;
23 sub2NetworkRest <- calc_rest(locSpan[subSpan2],
tempNetworkRest, ‘

tempSpanRest)
subZspanRest <- tempSpanRest;

if (sub2NetworkRest >= networkRest)
17 ' subtractSet2 <- subtractSet2 + subSpan2;
else continue; /* choose.a new subSpan2 */

Figure 7.24 (a) Add Two and Remove Three Spére Links SLPA Module (With Locality)
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19 for all (subSpan3 in ([subtractSet2] +
locSpan{subSpan2] -
intersaction(loc2Span[addSpan1)

+ loc2SpanfaddSpan2],

locSpan[subSpan2]))) {
20 sparefsubSpan3] <- sparef[subSpan3] - t;
21 tempNetworkRest <- sub2NetworkRest::
22 tempSpanRest <- sub2SpanRest;
28 calc_rest(locSpan[subSpan3},
tempNetworkRest, tempSpanRest);
24 if (tempNetworkRest >= networkRest) {
25 spanRest <- tempSpanRest;
26 networkRest <- tempNetworkRest;
27 found <- TRUE;
28 \ success <- TRUE;
29 if (found = TRUE) break; /* end inner for loop */
30 spare[subSpan3] <- spare[subSpan3] + 1;

}
if (found = TRUE) break; /* end middle for loop */
spare[subSpan2] <- spare[subSpan2] + 1;

}
31 if (found = TRUE) break; /* end outer for loop */
32 spare[subSpan1] <- spare[subSpan1] + 1;

33 spare[addsban] <- spare[addSpan) - 1;
}

34  if (success = TRUE) retum COMPLETE:
35 else return FAILED;

Figure 7.24 (b) Add Two and Remove Three Spare Links SLPA Module (With Locality)

same restoration path. This assumption is supported by the fact that the add1_sub2() module is
known to have failed before the execution of this module. Thus, the execution time results
presented here reflect an extent of search of O(S-S"-(2-8'):(3-S"):(4-8")) = O(S-§'4.41) = 0(S-S'4).
Thus, the extent of search for the case of addn_subn+1 when presented similarly to add2_sub3()
is O(S-8'(@N).(2.n)1).

As in add1_sub2(), the calculation of Ry, is performed in stages and, therefore, the
calculation at the deepest nesting will only require recalculation for the S’ spans in the locality of
subSpan3. Therefore, S¢ = O(S'). Also, forthe general case of addn_subn+1, S¢ = O(S).

73 Complexity Analysis of SLPA

An experiment described in the previous section identified the benefits of reducing the
- complexity of the restorability calculation; there, the most optimized form of dijk_calc_rest()
accounted for 99.9% of the execution time of SLPA. Hence, four factors contribute to the



complexity of SLPA: (1) the complexity of path-table preparation, (2) the total number of iterations
in FS and DS, (3) the extent of search at each iteration, and (4) the complexity of calcuating Rp.
The complexity of SLPA can then be expressed as the greater of the complexity of (1) and the
product of the complexities of (2) through (4).

Only the path-table implementation of SLPA uses the path-table; other versions all use
metaDijkstra for path-finding. The total number of (FS+DT) steps is approximately the same for all
versions of SLPA on a given network. The extent of search at each step is also the same for all
versions except for SLPA Short which omits add2_sub3(). The required time for calculating Rp,

differs markedly between metaDijkstra and path-table implementations.

7.3.1 Worst Case Analysis

In Section 7.2, the asymptotic complexity of the preconditioning stage was already
presented for the path-table implementation (O(S-dmaxfiFL)) and is negligible in the Dijkstra
implementation.

The s&cond factor in overall SLPA complexity is the number of steps in FS and DT

s
phases. The F% phase cannot require more than W = Z W, steps, because at least one
i=1

additional working link is restorable after each step. The DT phase also cannot require more than
W steps, because at most W spares (the upper-bound redundancy for mesh-restoration is 100%)
will have been added by FS, and DT will not remove them all. The worst case, then, for the
number of steps is O(W).

The worst case extent of search was shown in Section 7.2.5.5 to occur for the
addn_subn+1 module which has O(S-S'max2™"-(2:n)!). Here, S'max is the maximum number of
spans in a locality and therefore represents worst case complexities of the analyses in
Section 7.2. (In Section 4.1.4 it was shown that S'max = O(min(S,dmax2-RPL2/8)) spans or
N'max = O(min(S,dmax-RPL2))nodes.) Therefors, in networks where the values of d and RPL are
large compared to the network size, the extent of search in a given step becomes O(S(2+1)),
representing a full combinatorial search of the network for groups of spans to be operated upon.
(In this case, the implementations using localities (Section 7.2.5) reduce to the basic
implementations of Section 7.1.) For example, addz;subao operates on 5 spans, thus requiring
O(S-S'max?) alternatives to be exarfiined. The worst case complexity is dominated by the module
which operates on the largest numbér of spans-- either add1_sub2() in SLPA Short or
add2_sub3() otherwise. ' - .

For both the metaDijkstra and path-table implementations, calculating Ry, for a single
- span operation (alternative within'the search) requires calculating Rg,i for S¢ = O(S'may) spans.
The complexity of calculating Rg differs for the path-table and metaDijkstra implementations. For
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the path-table, the worst case complexity of calculating Rs,i involves a search of the entire table,
which is O(S-dmaxfiPL). For metaDijkstra, the worst case for calculating Rg,iis
O(Wi'N'max'109(N'max)) for one altemative. Therefore, the worst case complexity for calculation of
Rpis O(S-S'n?ax-dmaxﬂpl-) for SLPA Path-table and O(W"-N'max-1og(N'max)) and SLPA Dijkstra,
where W'= iZw, sW.

=1

The overall worst case complexity for SLPA using metaDijkstra, then, is
O(W-W’~S-S'max"'-N'max-log(N’max)), where S'max S S, N'max < N, and W' s W. The overall worst
case for the path-table implementation is O(W-S2.8'maxS-dmaxfiPL).

If d and RPL are considered as constants, N', and S’ are also constants. This is a
reasonable assumption in telecommunication transport networks of today where RPL is generally
less than 10 and d ranges from 2to 5. (S’ and N’ have been expressed in terms of d and RPL))
W' does not disappear though unless the number of working links per span is constant. This
reduces the worst case complexity to O(W-S2) for path-table and O(W?2.8) for metaDijkstra.

73.2 Experimental Resuits

The expected size of the path-table is E(S-RPL-dRPL), Therefore, with RPL fixed at 10,
the constant davg curves of Figure 7.25 are expected to be E(S) = E(N) (S=davg:N/2). The graph
shows nearly linear relationships for davg=3 and 4, but only one data point could be obtained at
davg=5. The strong dependence on davg and RPL may restrict use of the path-table variation of
SLPA to 2 < davg < 4 networks. In Figure 7.26, the size of the path-table is fitted with a quadratic
curve for the dayg=4 data. The curve fit is correlated with the data to R2 is 93%. Thus, for this
data it appears that E(S2) is more indicative.
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The worst-case analysis predicts that the total number of steps to complete a design is a
linear function of W. The graph in Figure 7.27 is a plot of the number of steps taken by SLPA
(FS+DT) for each run, plotted against the number of working links in the network. This graph
confirms that the number of steps is well approximated as E(W).
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Figure 7.27 Complexity of Average Total Number of Steps of SLPA Executions (davg=4)

The extent of search at each step can be examined via the data in Figure 7.28. This is a
plot of the number of calculations of Ry, (there will be one call per alterative within the search) as
a function of the number of spans in the network. The lower line, SLPA Shor, increases linearly
with S at a small slope; as predicted by the analysis, which says the dependency should be
E(S«(S')™1). Because S'is effectively a constant, we observe a complexity of E(S). The
difference between the upper line and the lower one is that the path table version is using
add2_sub3(). The higher variance of this line is reasonable since each point represents the
addition of only -3 calls to this very computationally expensive module and the only network
which required 3 calls to add2_sub3() was the 180 span network. Again, the the overall trend is
best characterized as E(S).

Figure 7.29 shows the cost of evaluating Ry, for one alternative as a function of the size of
the network. With the use of localities, worst-case analysis predicts metaDijkstra to be EW)
because the factor N'-log(N') is a constant; experirents confirm this. SLPA Path-table gets some
help from the use of localities, because only spans in the locality of a change need to be
recaiculated. However, the use of localities doas not impact the size of the path table- one
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search could take up to S steps. Thus, we expect a complexity of E(S). Although the slope of the
line is very shallow, Figure 2.29 confirms that E(S) time is required for path-table searches.
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Overall, this gives an average-case complexity of E(W2.S) for the metaDijkstra
implementation, and E(W-S2) for the path-table implementation.

Figures 7.30 to 7.32 present an overview of thesa results. In the network designs used
here, the working capacities are random, each with a uniform probability over the same range.
Thus, effectively, O(S) = O(W) for the data presented here. Also, for a constant davg, O(S)=O(N).
Therefore, the overall execution time curves, plotted against N, can be fitted with cubic curves to
confirm the E(W2.S) and E(W-S2) complexities. At the same time, these curves can provide the
overall constant multiplier for each method with davg=4. Thus, figures 7.30, 7.31, and 7.32 show
the execution time data collected for SLPA Path-table, SLPA Dijkstra, and SLPA Dijkstra Shost,
respectively. These times were recorded on a SUN SPARC 2™ RISC-based diskless
workstation with 16Mb main memory and 48 Mb swap space. The execution times observed in
SLPA Dijkstra were an order of magnitude higher than those of the other two SLPA variations.
However, all three variations of SLPA exhibit nearly cubic increases in execution time with
respect to network size. The correlation between cubic curve fits and the observed times were
R2 = 0.92, 0.99, and 0.96 for SLPA Path-table, SLPA Dijkstra, and SLPA Dijkstra Short,
respectively. From these cubic curve fits, the constant multipliers for large N values (ie., the
coefficient of the NS term) are 0.18, 3.58, and 0.08 for SLPA Path-table, SLPA Dijkstra, and SLPA
Short, respectively. Therefors, the lowest expected computation time for large networks will be
0.08:N3 seconds. However, the path-table implementation can achieve nearly the same time,
0.18:N3, while including the add2_sub3() process.
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74 Restoration Type and Restorabliity

Al of the implementations of SLPA operate strictly within k-shortest paths restoration
regimes, an important observation when it is assumed that fast restoration algorithms will
generally be of this nature as well.
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The discussion of Section 4.2 observed that the k-shortest paths fiow is dependent on the
order of path selection when faced with multiple paths of identical length. Therefore, even though
a k-shortest paths algorithm was used to design the network, it is not true that a different type of
k-shortest paths algorithm will necessarily be able to achieve full restoration. The SLPA method
of SCP can accommodate any restoration algorithm for which the path selection characteristics
are known. This is accomplished through using the restoration algorithm itself as the module
which assessas the restorability of a span (replacing metaDijkstra() or span_rest_pt()). But the
module used for assessing span restorability must execute very quickly in order for SLPA to
design a feasible network -- metaDijkstra() and span_rest_pt() are both optimized for fast
execution.

The path-table implementation (span_rest_pt()) allows no freedom within the order of
selection of equivalent length restoration paths, a rigidity which refiects the sorting required in the
preprocessing stage where the path-table is developed. The paths are selected such that the
most highly utilized spans can be assessed first; therefore, when choices exist between paths of
the same length, the preferred path is the one which contains the more commonly involved
spans. The path-table implementation cannot switch to a k-shortast physical restoration path
length selection criterion. Such a scheme would resuit in few paths of equivalent length, so path-
table reductions and sorting would not be possible -- the path-table would be no faster than a
Dijkstra implementation.

The Dijkstra implementation (metaDijkstra()) allows freedom in the path selection
criterion. Hers, three path selection schemes were implemented: logical path length (LOG),
physical path length (PHYS), and logical path length with arbitration of common lengths by
physical path length (LOG+PHYS). Note that LOG was the only scheme allowed in the path-table
implementation.

in metaDijkstra(), LOG performs the same function (for which it was selected in the path-
table implementation) of providing the best execution speed. This advaniage results from its
ability to select multiple restoration routes after a single call to dijkstra() (see Section 4.1 8.2). In
the PHYS scheme, no two routes will be of the same length because span lengths are real-
valued; therefore, each route must be identified separately through calis to dijkstra(). in the
LOG+PHYS scheme, the short-cut introduced into metaDijkstra which finds multiple routes of the
same logical length in one call to Dijkstra cannot be used. This short-cut does not find all routes
of the same logical fength, but only those which are span disjoint from each other. Therefors, this
short-cut may find multiple paths of the same logical length, while omitting another path of the
same logical length which has a lower physical length. Therefore, in the LOG+PHYS scheme,
only single routes can be accepted in each call which metadijkstra() makes to Dijkstra().
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Does any one of these path selection schemes provide a network design which is more
restorable by other schemes, thereby providing a betier design for restoration by an algorithm
with unknown or undefinable characteristics? This question is addressed by Table 7.1 for the
sctiemes identified above, with a known distributed parattel restoration algorithm (SHN -
[Grov87]). The maximum table entry of 17 corresponds to a network restorability of 98.8%,
suggesting that the mismatch between different restoration schemes is generally less than 2%.

Table 7.1 Number of Unrestorable Links (Out of 1443 possible) when a Network Design
Based on One k-Shortest Paths Restoration Scheme is Restored by Another

Design Scheme Restoratiors Scheme
Path-Table | LOG | PHYS| LOG+PHYS | SHN
Path-Table 0 6 1 5 5 5
_LOG 4 0 0 0 1
PHYS 7 19 0 5 2
LOG+PHYS 3 2 17 0 1

The values of 10 and 17 indicate a situation which should be avoided in network design:
matching the PHYS design tool with the LOG restoration method, or vice-versa. In general, if a
network is designed by a LOG design tool, then the shortest available physical path, which will be
found by a PHYS restoration method, may be longer than RPL even though a length RPL path is
avallable. The restoration method behaves as though it selects paths physically, but it only
selects paths within a specified logical length (RPL). if the restoration method does not concern
itself with logical lengths at all and seeks only paths which are physically short, this mismatch will
not be as extreme.

The LOG-based network design demonstrates the greatest compatibility with all forms of
restoration algorithms. It also supplies the largest number of links, which is probably the reason
for its advantage over LOG+PHYS. However, any method which selects paths primarily based
on logical length will facilitate high restorability by SHN and other k-shortest path restoration
algorithms.

These results suggest that before any network design is employed, it should be tested
using the actual restoration algorithm. Then minor modifications can be incorporated to
compensate for shortcomings in restorability of the design. The differences found above are,
however, wholly acceptable for planning studies where significant differences, 10% to 300%,
betwaen network restoration alternative technologies are being assessed.

75 Transmission System Capacity Modularity

Because system modularity is an integral part of the SLPA algorithm, SLPA provides the
same level of optimality for networks defined modularty as those to which links can be added one
atatime. In the foregoing discussion, all references to a single link operation (subtraction or
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addition) are replaced by system (module) operations. The SLPA has not been implemented to
accommodate variable modularities, but this would only require an extra test during the FS phase
to ensure that the smallest modules are added before considering larger modules.

76 Summary

SLPA was implemented in two main forms: SLPA Path-table and SLPA Dijkstra. An
alternate version, SLPA Short, is equivalent to SLPA Dijkstra, but it does not include the final
module in design tightening (add2_sub3()).

The complexity of the SLPA s in P with respect to network size. However, the path-table
implementation is exponential in RPL in both time and memory space.

SLPA provides for k-shortest paths restoration characteristics, the same type of
restoration capacity which is anticipated for fast restoration [Grov89)]. It can include system
modularity requirements during the synthesis of the network.

Chapter 8 compares SLPA to ICH, as introduced in Chapter 6, and describes SLPA's
characteristics of network growth, over-restorability and ease of implementation.
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8 Comparison of SCP Heuristics

This chapter presents a direct comparison of ICH, ICHRPL, SLPA Path-table, SLPA
Dijkstra and SLPA Dijkstra-short. Chapter 4 introduced the:bgisis of comparison. For many of the
areas of comparison, Chapters 6 and 7 discuss merits of specific heuristic algorithms. The final
section of this chapter presents recommendations for selection of SCP aigorithms.

8.1 Execution Time

Figure 8.1 presents charts of the fully restorable network designs obtained by ICH and
the three SLPA variations. All SCP experiments were executed on a SUN SPARC 2™ RISC-
based cemputing platform with execution speed of 28.5 MIPS, from compiled “C” language
source code. Diskless workstations were used with 16 Mb main memory and 48 Mb swap space.
One criterion for our study was to limit run-time to one day; however, the charts include data for
some runs up to four days in time where this was feasible. The white squares in Figure 8.1 are
execution cases, generally large (N-dayg), that did not complete before four days of execution. All
results are for RPL=10 which is a higher level than most practical networks require.

SLPA Dijkstra compieted designs for 15 of the networks of less than 50 nodes, or nodal
degree 3 within one day. The SLPA Short algorithm provided designs for 24 of the 36 network
trials within one day. The SLPA Path-table implementation executed the most quickly for all
networks at dayg=3. However, the space requirements increase with the average node degree
so rapidly that our computing platform could not provide the storage to keep the whole path-table
in memory for most highly connected networks. The largest observed path-table occupied 5.8
Mbytes, for the N=20, dayg=5 network.

With ICH, 16 of the network designs completed in less than one day. The networks on
which ICH exhibited very long:m times were not as systematically related to N and d as for SLPA.
For example, the relatively small N=50, davg=4 network did not complete in over four days,
whereas the N=60 trial network at the same d ran in under one day. This reflects the greater
dependence of ICH on individual network details, due to its LP-based formulation. This kind of
behavior is attributed to an LP data set for which the LP execution time exhibits its:@xponential
potential. Apparently, knowing the input network size is not enough to predict whether ICH will
succeed within a reasonable time-limit.
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Figure 8.1 Execution Times for Four SCP Heuristics for 36 Different Trial Designs

Figure 8.2 shows the execution times for the davg=4 columns of Figure 8.1. These
curves more clearly show trends in execution times as N increases. The SLPA execution times
increase gradually and smoothly, showing a strong correlation to network size. ICH execution time
increases and decreases significantly as the network size increases steadily. The 100 node
network took 55% less time to design than the 90 node network and the 50 node (davg=4)
network did not complete within the cutoff of 4 days of execution time.

In chapters 6 and 7, the data of Figure 8.2 were fitted with polynomial curves. The
execution times were found to be E(4.04-N2.(number of iterations)) for ICH, E(0.18-NS) for SLPA
Path-table, and E(0.08:N83) for SLPA Short. Although ICH has the lowest average-case time
complexity, some designs required exponential time to complete, such as the 50-node network
of Figure 8.2 that had not completed in over 500 000 seconds. The number of iterations of ICH
with dayg=4 was observed to be nearly constant at 5. Therefore, a cross-over point in network

size can be obtained where ICH is expected to execute more quickly than SLPA Path-table. This
isat:

5.4.04-N2 < 0.18-N3: N> 112,
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Therefore, for davg=4 networks with more than 112 nodes, ICH is expected to execute more
quickly than SLPA Path-table, on average.

However, the investigations in Chapter 6 showed that ICH has worst-case time complexity
of exponential order, because the number of iterations can approach the maximum number of
cutsets in the limit, and the execution time of the Simplex LP can be exponential. An LP can be
designed which has worst-case complexity in P with respect to the constraint set size, but such an
LP has not yet been discovered with average-case execution times which are feasible for use on
non-trivial problems [Schr86). Conversely_, the SLPA algorithm has worst-case time complexity
which is polynomial. Therefore, the SLPA method will more reliably provide network designs
even when N>112 and the average-case executions may favor ICH.

For the network sizes considered in Figure 8.2, based on eight davg=4 trials, SLPA Short
and SLPA Path-table designs executed in 29% of the time required for ICH designs on the same
networks. The largest difference occurs, for the 20 node network, where SLPA Path-table
executed in 14% of ICH's run time. Also, for the 70 node network, SLPA Path-table executed in
19% of ICH’s run time. The smallest difference occurs, for the 100 node network, where SLPA
Path-table executed in 88% of ICH’s run time. dayg=4 Is considered appropriate for this
comparison because most feal transport networks are expected to be-bounded reasonably tightly
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Figure 8.2 Comparison of Execution Times of ICH and Three SLPA Heusristics for Design of
davg=4 StUdy Networks
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8.2 Restorability

Ultimately, the network design must be compatible with the field-deployed restoration
algorithm that is used. Thus, a selected restoration algorithni best evaluates each heuristic for
restorability in operational use. The restoration algorithms which operate most efficiently on mesh
networks are better approximated by k-shortest paths flows than by max-flows (see Section 4.2).
This generalization implies that real-time restoration will probably select paths on a basis more
similar to k-shortest paths than to max-flow.

Here, experiments exploit the SHN™ protocol, which has a net result very similar to k-
shortest paths [Grov8g], to test the restorability of the designs generated. Table 8.1 summarizes
the resuilts of these experiments. The icons to the right of the tables in this chapter indicate the
set of network designs represented by the data. For Table 8.1, the data includes the degree 3
and 4 networks with nodes numbering 20, 30, 40, and 50. As expected, the k-shortest path
algorithms do not attain 100% restorability because of a dependence on path selection order, but
the number of unresforable working links is small in all cases. For SLPA Path-table, there are 5 of
1443 unrestorable working links in the 8 network designs. For SLPA Short, there is 1 of 1443
unrestorable working link. SLPA Short has higher restorability in general because network design
without the add2_sub3() SLPA module allows more spare capacity and, therefore, more potential
restoration routes. The ICH RPL network designs did not achieve the levels of restorability of the
SLPA designs. SHN operating on networks designed by ICH RPL left 52 working links
unrestorable out of 1443. The ICH RPL data demonstrates the observation of [Grovag) that SHN
can often out-perform k-shortest paths algorithms because of its highly parallel nature.

Table 8.1 Number of Unrestorable Links (of 1443 Possibie) When Network Designs are
Restored by k-Shortest Paths Schemes

) EREEN
Design Restoration Scheme N = : : : :
Heurisic | PathTable | 10 SHN™ ENNEEENEE
SLPA PT 0 6 5
SLPA Short | 4 0 1
ICHAPL | 80 g2 1 __ 52

Table 8.2 compares stafistics for the restorability of the network designs by SHN .
Although it sought 100% restorability, ICH RPL achieved only 86.9% restorability due to the fact
that SHN cannot fully exploit its inherent max-flow configuration. The SLPA network designs
were also less than 100% restorable by SHN, because of the differences between k-shortest
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paths selection orders; however, with SHN restoration, the SLPA Short implementation is 99.9%
restorable on average

Table 8.2 Restorability Statistics for Restoration by SHN

A l-=ll

. . . HEENENR

Dssggn Heuristic Mean Varjance Median EEEEENEER

SLPA PT 99.7% 0.11% 99.8% AENEEENNEEN
SLPA Short 89.9% 0.01% 100%
ICH RPL 96.6% 11.49% 97.7%

As discussed in Chapter 7, the SLPA algorithm can incorporate a final FS phase which
tests restorability using the field-deployed restoration aigorithm itself, and can therefore always
achieve strictly 100% restorability. No such capabilities have been discovered for the ICH method
yet.

8.3 Capacity Efficiency ,

The previous section showed that the various algorithms do not provide completely
equivalent levels of restorability because they have been designed to satisfy slightly different
restoration criteria. These inherent differences are also reflected in the capacity efficiency of the
designs. The ICH designs inherently imply max-flow restoration and, therefore, should require
s@imewhat less redundant capacity than the SLPA algorithms.

Figure 8.3 makes a comparison of the total redundant capacity contained in SLPA and
ICH RPL designs. The lower bound is based on the real valued outputs from the LP of the final
step of the ICH RPL design. This corresponds to hypothetical real-valued max-flow type of
restoration in a network of artificial real-valued span capacities. An actual capacity placement which
matches this bound while using integer capacities and k-shortest paths restoration will not exist in
general. The various heuristics provide designs which differ by only a few percent in terms of total
spare capacity above this bound.

ICH RPL network designs strictly require less capacity than SLPA because they
inherently assume max-flow restoration characteristics rather than k-shortest paths restoration (as
in SLPA). ICH RPL designs required 440 spare links to restore 823 working links in total over the
N=20 to 50, dayg=3 and 4 study networks. The SLPA Path-table designs required (in total) 24
more spare links (5%) than ICH RPL. The SLPA Short design uses 9 more spare links (2%) than
the corresponding SLPA Path-table design because of the absence of the “add2_sub3()"
module.
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Figure 8.3 Comparison of Total Spare Capacity Requirements of davg=4 Study
Networks Using ICH RPL and Two SLPA Heuristics for Design

Table 8.3 contains a statistical comparison of the redundancy requirements of the
networks generated by the various design heuristics. In these calculations, the redundancy of
each design was determined as the ratio between total spare capacity and total working capacity.
The statistics are based upon this normalized redundancy value in order to equally weight the
designs even though the network sizes are different. The average redundancy is approximately
5% less for the ICH RPL design compared to the SLPA Short design.

Table 8.3 Redundancy Statistics (2, Spare Capacity / ¥, Working Capacity)

_ Tl

Heuristic__1_Mean Redundancy | Variance HEEEN
ICHRPL _ 0.6845 0.0249 LIV
SLPA PT 0.7079 0.0270 TTITTTIT
SLPA Short 0.7216 0.0276_ r

[Lower Bound 0.6739 0.0264

8.4 Accommodation of Network Growth

Both ground-up and incremental growth accommodation were implemented and tested,
in ICH and SI.7A, for effectiveness in accommodating growth in the 50 node, degree 4 study
network. In each of 10 trials, one end-to-end working path was added to the network (shortest
path routed) between two nodes selected at random. The network’s SCP was then updated to
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re-establish full restorability. Of interest in these trials is the amount of network rearrangement
required by each method to regain a fully restorable state. Table 8.4 presents these results.

ICH and SLPA perform incremental growth accommodation by solving a smaller SCP
problem in a network of the same span topology but in which w; > 0 only where non-restorable
spans exist in the full network due to growth. The spare links to realize full restorability in the
subnetwork design are then added to the full network.

Use of ICH in the ground-up mode means ninning the whole SCP with the new network
input file comprised of the grown working span capacities to be protected by a new SCP solution.
For SLPA, ground-up design means (here) that FS and DT phases were tepeated using the prior
network state (after growth) as the new starting point. Because DT can remove and redistribute
capacity to an arbitrary degree while satisfying the restorability target, this is considered
functionally equivalent to a redesign in which SLPA was literally re-run from the one spare per
span starting point. However, this method provides the beneficial bias towards an SCP solution
which favors the capacity placements which already exist.

The SLPA ground-up redesign removed capacity from an average of 1.7% of the total
spans (1.7 spans) and added capacity to an average of 5.7 spans. SLPA incremental growth
accommodation increased capacity on 4.6 spans (decreasing none). In both approaches to
growth accommodation, SLPA execution times were of the same order as the original design
(approximately 2 hours for ground-up and 0.5 hours for incremental growth accommodation in this
network with RPL=10). This reflects dominance of the DT phase which both ground-up and
incremental modes of operation require.

Table 8.4 shows that ICH ground-up redesign resulted in changes to more spans than
SLPA. ICH ground-up accommodation removed capacity from an average of 11.9% of the 100
spans (11.9 spans) during each growth trial. It increased an additional 16.9 spans on average
during each trial. This is a considerable level of chum (28 changes on average to accommodate
survivability for one additional working path). This suggests that ICH may be too sensitive in
practice to totally re-run as a response to growth. With incremental growth accommodation, ICH
requires considerably fewer changes to the network, as seen in the fourth row of Table 8.4, Here,
incremental accommodation added capacity to 5.3 spans on average for the additional 3.8
working links in each growth trial. The execution time for ICH was between § and 24 seconds for
incremental growth accommodation, as opposed to 3 to 10 hours in ground-up network redesign,
reflecting the size of the smaller SCP problem incremental growth accommodation solves.
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Table 8.4

Growth Accommodation: Average Effects for One Random Path Addition
(N=50, davg=4 Study Network, 10 Path Addition Trials)

SCP spans with spans with working design update
Heuristic | reduced capacity | increased capacity | links added | execution time
ground-up |{ SLPA 1.7 5.7 3.6 2 hours
ICH 11.9 16.9 3.7 3-10 hours
incremental | SLPA - 4.6 3.6 0.5 hours
ICH - 5.3 3.8 5-24 seconds

in summary, both ICH and SLPA can accommodate network growth either by running
incrementally or in ground-up redesign. However, when the heuristics perform ground-up growth
accommodation, ICH designs require significantly more changes to the network than SLPA. The
fastest method is to use ICH in incremental mode, but SLPA (incremental) still produces fewer
changes to the network.

Over-Restorability

Over-restorability (5.3.6) side-effects for individual spans resutting from the synthesis of a
fully restorable overall network were not investigated in chapters 6 and 7 because target over-
restorability cannot be easily identified. Moreover, different implementations of a given algorithm
are expected to provide over-restorabilities ¢f the same magnitude. However, when the over-
restorability of a network design from iCH and a i:etwork design from SLPA are compared, it may
provide a measure of design margin beyond the simple restorability figure. Even when no
restorability difference exists between network designs, a higher over-restorability can result in a
lower requirement for the addition of spare capacity to accommodate network growth and less
sensitivity to errors in deployed network state vis-a-vis the ideal design architecture.

ICH RPL, SLPA Path-table and SLPA Short all have similar over-restorabilities, as shown
in Table 8.5. But, surprisingly, design methods which provide the most total capacity do not
necessarily provide the highest over-restorability. Thus, the measure of over-restorability may
provide more information than simply indicating which design has more spare «. 9acity. As
expected, the two SLPA designs show a trend towards more over-restorability with increased
capacity (over-restorability 129% to 132% with normalized redundancy 71% ta 72%). However,
ICH uses an entirely different method of positioning capacity which takes more of a global view:
The whole capacity set is placed at once. So, in the experiments performed, ICH appears to have
an Inherently higher bver-restomblllty for a given spare capacity (over-restorability 132% with
normalized redundancy 68%) than SLPA. Recall that the ICH design was only 96.6% resiorable
by SHN, so the aver-restorability factor presented in Table 8.5 is even higher when normalized to
the restorability obtained by the design. For over-restorability normalized to actual restorability, |
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the ICH design provides over-restorability of 139%, which is even higher than the SLF: Shont

over-restorability.

Table 8.5 Over-Restorability Statistics (AII Normalized to 1443 Restorable Wi # iy Linka)
: 5

Design Type AVe Variance | Minimum Maximum | M;g.!;rg‘

ICH RPL 132% 4.3% 1'01 % 156% 135%

SLPA Path-Table . 130 0.50 117 141 ‘ 131

SLPA Short 132 0.57 118 143 133

From the large number of alternative SCP’s which have similar total gpare capacity, the 1
network designs are observed to generally favor those piacements which provide very bunched
capacity positioning (many spans with zero spare links and =+ ¢nafs with large numbers of
spare links). On the other hand, SLPA generally distributes the spass capacity nearly-uniformly
amongst the spans. When this investigation started, the author assumed that the even
distribution of SLPA would provide a more highly over-restorable design than the bunched
- distribution of ICH. However, the experimental results show that this is not the case. By some
mechanism, which is probably related to the forming of restoration rings of relatively large spare
capacity, ICH designs are generally more over-restorable than SLPA designs. Itis also observed
that the variance of the ICH over-restorability is larger than SLPA's, suggesting that ICH does not
consistently achieve this improvement in over-restorability (compared to SLPA). If network
designers select the SLPA technique, it is possible to add over-restorability to the objective
function for the FS phase, which may allow a final design with higher over-restorability.

8.7 Ease of Implementation

In general, the SLPA methods were significantly more ditficult to implement than the ICH
methods. The primary reason is that ICH's most essential module, the LP, was available in
commercially distributed software package. The other ‘modules of ICH did not significantly impact
execution time, so they were implemented in a straight-forward manner. On the other hand, a
direct implementation o the modules of SLPA, such as those introduced in the first saction of
Chapter 7, had execution times which made designs on even the smallest of networks
excessively slow. Therefore, each additional execution speed enhancement feature increased
the implementation complexity. SLPA Dijkstra implements the path-finding through an easily
described (and therefore re-implemented) method which Incorpotates iteration, binary heaps and
localities into a Di]kstra shortest path search. However, the operations required to minimize the
number of exscutions of Dijkstra were both extensive and unique. In addition to these generic _
complications in the implementation of SLPA, the SLPA Path-table requlrad extensive operations
to initialize the path-table, thereby increasing the overall eqmple)dty even further.
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Table 8.6 presents data of the number of lines of C programming language source code
which the implementations presented use. The lines of code are categorized as: cautious
implementation and normal implementation. Lines of code generated normally were not essential
to the optimization of the performance parameters and were, therefore, implemented in a straight-
forward, modular manner. The lines of code which were classified as cautiously implemented
were generated on a line-by-line basis, with each step requiring a detailed analysis of the
complexity involved to maximize the performance of the algorithm. The SLPA Path-table
implementation is the most complex by these measures. The SLPA Dijkstra implementation
appears to be nearly as complex, but the Dijkstra search itself, which can be primarily acquired from
extemal sources, was categorized as cautious in this analysis. The ICH implementation did not
have any cautious implementation modules because of the domination of the LP execution time.
The amount of pseudo-code presented in chapters 6 and 7 reflects the number of lines of code
which Table 8.6 classifies as cautious.

Table 8.6 Lines of C Programming Language Source Code

|.Design Type Cautious Implementation Total
SLPA Path-Table 1545 3302
SLPA Dijkstra 1387 3215
ICHRPL 0 1717

If network designers choose ICH for network design, customized LP software inay

improve the design speed and other features. However, such enhancements would negatively
affect its ease of implementation.

8.8 Discussion and Recommendations

Because the literature on network restoration does not yet offer a generic list of criteria for
rating network designs, users of SCP algorithms may select a technique which best suits the
specific needs of their network.

Obtaining a restorable network design is paramount in SCP. Atthough capacity efficiency
is the impetus for the current research, it eanmt be favored over restorability. This does not mean
that the minimization of redundant capw% }a worthy objective, but rather that it should be
considered only after satisfying a restoralﬂg nqtﬁbrk design.

After securing a network design characterized by restorability and the efficient use of
spare capacity, consider the execution time of the algorithm. Execution time may limit the network
designer’s ability to play with altemative network architectures (span locations, DCS nodes, etc,)
before making a provisioning decision. Networks of the future will probably be very adaptable to
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the needs of customers, and the capacity requirements of the networks will have to be evolved to
a new state relatively quickly (probably daily in the near future).

Ease of implementation is the only remaining comparison category which will probably be
of interest to network designers curing selection of an algorithm. Until commercial software is
available for SCP, program development resources may dictate the algorithm selection.

The major shortcomings of the ICH approach to network design are in the categories that
the author ranks highest in importance. ICH occasionally cannot provide a network SCP solution
at all, due to unpredictable characteristics of the heuristic and the LP which solves the constraints.
Also, the ICH approach has a mismatch between path selection criteria (max-fiow) and restoration
path selection (k-shortest paths), which results in lower restorability. it also does not illuminate the
capacity-restorability trade-off (as SLPA does) which is knowledge of some value to network
planners. Based upon these shortcomings, the ICH heuristic is not recommended for general
use, although it may find its way into initial investigations because of its ease of implementation.

SLPA Path-table has large space requirements for nitworks with high node degrees (i.e.
greater than four); thus, it too is limited in its ability to provide a design in all situations. Moreover,
SLPA Path-table is limited to a single path selection order within the regime of k-shortest paths,
dictated by the sorting operations of the path-table. SLPA Path-table has the highest
implementation complexity of all of the heuristic algorithms considered here. Itis only
recommended for low average node degree networks with a large number of nodes, where the
execution time of the algorithm Is of greatest concem. However, it is easy to imagine that once a
route structure is defined for even a very large network, the corresponding path-table can be
computed once and distributed on optical disk (if need be) to planners performing detailed
capacity placement and growth accommodatior: calculations.

Overall, the most useful algorithm is SLPA Short. In the crucial area of restorability, this
aigorithm can alter the path selection order to more closely mimic that of the field deployed
restoration algorithm. In fact (as with any SLPA implementation) SLP/. Short can even execute (or
emulate) the exact restoration algorithm itself for a final check of the design (although execution
time does not warrant constant emulation of the restoration algorithm, especially when it isa
distributed aigorithm). ironically, the only category of comparison in which SLPA Short does not
compare favorably is with respect to capacity efficiency, the original impetus for this research.
Even here, however, SLPA Short provides network designs that average only 5.4% more
redundant capacity than the lowest redundancy design provided by ICH. Anything in this regime
is “near-optimal®.

When comparing ICH and SLPA there is an interesting reversal of optimization philosophy
that may offer some insight as to why SLPA Is well-suited o this problem: ICH s@8ks to minimize
total (integer) cost (sum of spare links) subject to an array of cutset-based constraints to satisfy
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restorability. SLPA reverses objective function and constraint: It seeks a steepest ascent in (real-
valued) restorability, subject to much more simple constraints on cost addition at each iteration.
This leads to an effective and relatively simple polynomial-time heuristic for a problem that is NP-
hard in its exact solution.
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9 Joint Provisioning and Restorability

9.1 Introduction

When evolving a network design to accommodate new working capacity provisioning,
restorability levels must be maintained and redundancy should be minimized. in addition, few
spans should be disrupted during the evolution - representing a low cost for installation of new
capacity and minimizing network “chum” which entails its own operational risk of errors.

In mesh restoration, the view can be taken that spare capacity for restoration and for
growth provisioning exists ima single pool. New working capacity is provisioned from the spare
capacity present in this pool. Therefore, each working path provisioned has the potential to
decrease restorability by converting a vital spare link fo working. The working path routing
algorithm in the joint provisioning and restorabiiity experiments (a) adds paths between random
nodes; {b) uses shortest path routing; (c) chooses the route which affects vestorability the least;
and, (d) adds spare capacity immediately to reestablish restorability in the su:ont that the new
provisioning event reduced network restorability.

Network designers generally provision working paths one path at a time, even though
they add capacity on:a modular system basis. In addition, network providers minimize costs by
deploying capacity for futute needs while upgrading to meet current needs. Therefore, nitworks
generally have redundant capacity beyond the capacity currently required for restoration. Thatis,
they are always “over-provisioned” to some extent with respect to the ideal minimum capacity
design. For example, [Luck92] asserts that in 1990 in AT&T's long-haul network, only 54.4% to
56.7% of the fiber deployed was activated. This extra capacity provides the network with super-
redundancy (SR), where SR is the amount of spare capacity available beyond that which is
required for restoraticer. In this study, super-redundancy will be calculated for each span i as:

§ -8
SRy =—— (0.1)
req,i

where s; and sraq,i are the spare capacity on span i and the required spare capacity for span i in
order for the network to be fully restorable.

Another format for expressing the “extra” spare capacity is through the Provisioning
Redundancy (PR) measure. In PR, the extra spare capacity on span i is normalized {o the
working capacity on span i (wj). In this way, PRg,j provides a measure of how much the network
can grow (via working capacity provisioning) without adding capacity, but provides no measurs of
the restorability of these newly provisioned paths.

PR,, = 8 = Sreq) - SRy Speqi ©.2)
W W

Spans which have large working capacities tend to drive the spare capacity requirements

of a network design. Therefore, the spans which have smaller working capacities can often
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Support larger restorable working capacities without a requirement for extra restoration capacity.
The total working capacity which could be restored by the spare capacity present if each span
had infinite working capacity is the over-restorability (OR) of the network. ORg i is quite different
from SRg,j and PRg j, because it is a measure of how much restoration benefit o span i that spare
Capacity on others spans provide, whereas, SR i and PRs ; measure the benefit to the other

spans of spare capacity on span i. ORg s expressed in terms of the number of restoration paths

available to span i, k;.

k
OHs,'=;'l (9.3)

9.2 Joint Provisioning and Restorability Strategies,

The provisioning of a working path simultaneously raduczs the available spare capacity
on the spans of the provision (because spare links were converted to working links) and
increases the number of required restoration paths for @ach of these spans (by one path). Thus,
each provisioning event can affect the restorability of any netwrk span.

In the experiments reported here, network restorability is always maintained at 100%.
Therefore, after the placement for each working path is deter.  °d, the restorability of the
network is re-established through an SCP algorithm (SLPA Short here). This process is depicted
in Figure 9.1. In the figure, the network restorability is always maintained at 100% and therefore
each working path addition may trigger addition of spare capacity in order to increase
restorability. When the update process places additional capacity into the network, three
Strategies are investigated here for determining the amount of spare capacity which should be
allocated. These are: (1) just-in-time, (2) pre-emptive based on PR, and (3) pre-emptive based
on PR and OR.

Just-in-time capacity allocation allows only minimum spare capacity additions
corresponding to the minimum capacity which re-establislies the network restorability level. Pre-
emptive capacity allocation adds spare capacity where it is required for re-sstablishing
restorability, but it also adds more spare capacity to those spans than what is immediately
necessary for restoration, The amount of excess spare capacity is based upon provisioning
redundancy, over-restorability or a combination. Although, addition of spare capacity in the
following experiments is triggered by a working path previsioning event which decreases the
network restorability, a implementation which would be more appropriate for a planning tool would
trigger capacity additions before a single provisioning event can reduce network restorability.
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At t1 and t3 more spare links were added to increase restorability than were
converted to working, resulting in a net increase in spare capacity.

At t4 less spare links were added to increase restorability than were
converted to working, resulting in a net decrease in spare capacity.

At 12 the working path addition did not impact restorability (spare capacity was
converted to working capacity)

Figure 9.1 Capacity Evolution With the Growth of a Network

9.3 Experiments

The joint provisioning and restorability tests here use SLPA Short for the SCP heuristic
with incremental migration and system modularities (fiber capacities) of 6. The random network
with 50 nodes and nodal degree 4 is the initial network for the experiments. Each experiment
accumulates five hundred working path provisioning events between randomly selected nodes.
The algorithm maintains 10 .o network restorability at all times, and capacity is only added to a
span where the addition is required to return to 100% restorability.

The just-in-time method for capacity management will use no expticit provisioning
redundancy (PR=0.0) or over-restorability (OR=1.5), however some provisioning redundancy will
be inherent in the addition of systems (rather than finks) when provisioning. Therefore, just-in-
time provisioning is accommodated by simply executing the SCP #igoitivm after each working
path provisioning event.

The pre-emptive with PR capacity management strategy uses a 50% provisioning
redundancy factor. Therefore, whenever the SCP algorithm determines that a span i requires an
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increased capacity in order to ve-establish 100% network restorability, the spare capacity on that
span (s;) is changed to:

Si = max(Sreq,i , 0.50-wj).

The pre-emptive with PR and OR capacity management strategy ensures that 150%
over-restorability capacity exists in addition to 50% provisioning capacity, whenever a capacity
update is triggered for a particular span. Therefore, in this strategy, the spare capacity on a span
being updated is:

si = max(1.50-sreq,i , 0.50-w).

9.4 Network Capacity Changes

The pre-emptive capacity management scheme decreases the number of working path
provisioning events which impact restorability. Also, when a working path provisioning event
does impact restorability, pre-emptive capacity management reduces the number of spans which
spare capacity must be added to in order to re-establish 100% restorability. Table 9.1 shows that
pre-emptive capacity management decreases this network “chum” by up to 36% (with PR and OR
strategies). The network churn is also decreased by 17% when only the PR strategy for pre-
emptive capacity management is used. Only with the PR+OR pre-emptive capacity management
strategy does the median working path provisioning event require no spare capacity allocation.

With the other capacity management strategies, a median of one span requires spare capacity
after each working path provisioning event.

Table 9.1 Number of Spans with Increased Capacity Per Provisioning Event
strategy PR OR | mean | variance ] minimum | maximum | median
just-in-time 0.0 1.0 | 0.95 1.2 0 4 1
super-redundancy 0.5 1.0 | 0.79 0.95 0 6 1
super-redundancyand | 0.5 15 | 061 0.76 0 5 0
over-restorability ..

With larger values for the PR and OR factors, the amount of network chum can be
reduced indefinitely. However, increasing the PR and OR factors generally translates to an
increase of network redundancy. Therefore, these parameters must be optimized based upon a
cost-benefit analysis of network “chum” and spare capacity requirements.

9.5 Redundancy Levels

Figure 8.2 compares the redundancy requirements of each capacity management
strategy. In the figure, redundancy levels are expressed as the total spare capacity in links of the
network because working capacities are identical between curves. PR-based pre-emptive
capacity management results in minimal increases of network redundancy over just-in-time
provisioning. However, PR+OR-based pre-emptive capacity management resuits in 11% more
redundant capacity by the 500-th migration than the other two capacity management methods.
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Spare capacity is more efficiently-positioned when SCP update capacities are based on
provisioning redundancy than over-restorability. Redundancy requirements of the network for
future provisioning can be estimated from the current working capacity distribution of the spans
because spans are utilized for working capacity based on geographical location when shortest
path routing is used. Therefore, spans will generally experience future working capacity growth
which is proportional to their current working capacity. On the other hand, redundancy
requirements of the network for restorability of future working links (over-restorability) cannot be
directly assessed in terms of current capacity levels. This is because the use of capacity for
restoration requires that directly adjacent spans also have capacity. Therefore, the process of
adding spare capacity may change the routes which are being favored for restoration over time.
Also, spans on which spare capacity was added based on increasing the network over-
restorability may not require very much spare capacity for working path provisioning purpcses
because spare capacity requirements of a span are not directly related to working capacity
requirements on that same span.

-
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Figure 9.2 Spare Capacity Requirements of a 50-node, davg=4 Network as
Working Capacity Requirements Grow

9.6 Summary of Joint Provisioning and Restorability

This section is a preliminary exploration into methods for managing joint provisioning and
restorability using an SCP tool to control restorability while meeting growth from the same pool of
spare capacity that restoration relies on, It allows pre-emptive capacity management of a single
pool of spare capacity which will be used in working path provisioning and restoration. The
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provisioning redundancy (PR) and over-restorability (OR) parameters are proposed for control of
the trade-off between excess network capacity and the rate at which capacity must be updated
(network churn).

PR-based pre-emptive capacity management provided 20% less chumn to the network
than just-in-time capacity managemet and requires negligible extra spare capacity (beyond that
of just-in-time). PR+OR-based capacity management requires 11% more spare capacity than the
other two methods, but achieves 56% less chum than just-in-tirie capacity management and 30%
less chum than PR-based pre-emptive capacity management.
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10 Summary

The SCP problem is NP-hard. This was proven by reducing Hamittonian Cycle existence
to a special case of SCP (were each span contains one working link). This justifies the pursuit of
SLPA and ICH as heuristics for finding approximate solutions to SCP in reasonable time. An
important attribute of an SCP heuristic is the size of network on which it can execute in
reasonable time and space.

SLPA Dijkstra has polynomial worst-case complexity with respect to the network size of
OW2.85.N-log(N)), where W,S, and N are the number of working links, number of spans and
number of nodes respectively. SLPA Short reduces this complexity to O(W2.S3.N-log(N)) by
omitting the most complex capacity retiistribution module (add2_sub3()). Both of these SLPA
variations obtain O(W2.S) when locality information is used in networks with constant nodal
degree (d) and restoration path length (RPL). SLPA Path-table has a worst-case time complexity
of O(W-S7-dmaxPL), which reduces to O(W-S2) with locality information and constant d and
RPL. The path-table also requires O(S-RPL-dmay"'L) space in the worst-case. This space
requirement increases linearly with network size when using a constant d and RPL. Thus, all
variations of the SLPA heuristic are strictly bounded by polynomial time complexity. The SLPA
heuristics were shown through experimentation to obtain average-case execution times of E(NS),
which also implies E(S3) and E(WS) in these particular experiments. SLPA Short reliably
provided the largest number of network designs (24 of 36 study networks) within a limit of 24
hours of SUN SPARC 2™ execution time. Al of these networks were designed with RPL = 10
which is considered to exceed RPL requirements in most real networks. At RPL = 6, run times
would be significantly less than one day (SLPA complexity is exponential in RPL for values of
RPL less than N, that is RPL values which cannot span the network).

An average-case execution of ICH has polynomial execution time also, E((S-davg)z). but
its worst-case time complexity is exponential, O(2N). Indeed, there were two (of 36) test cases in
which ICH obtained no result in over four days of execution. Otherwise, ICH completed 16 of 36
study network designs within the 24 hour limit.

SLPA network designs are at least 99.7% restorable by arbitrary order k-shortest paths
algorithms. The discrepancy arises when path selection order between identical length
restoration paths can impact restorability. Thus, only restoration algorithms which exactly match
the selection criterion used in network design are guaranteed to obtain full restoration. SLPA's
maximal compatibility with k-shortest path restoration is consistent with real-time distributed path
finding techniques to date such as {Grov87, YaHa88, Grov89, GrVeg0, SaNig0]. SLPA is
architecturally capabie of incorporating the actual field-deployed restoration algorithm itself as a
final design stage to ensure full restoration.
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iCH network designs are strictly restorable only by max-flow routing with no limit on
maximum path length. Thus, observed restorability of ICH designs by k-shortest paths algorithms
was 94%, or as much as 96.6% when using SHN™, a paralle! distributed restoration algorithm for
field use (as opposed to planning studies). Because ICH designs for maximum flow (rather than
k-shortest paths) and LP solutions are strict-sense optima! when obtained from an adequate
constraint set, ICH network designs require slightly less redundant capacity than SLPA designs.
On average, SL.FA placed 5% more capacity than ICH RPL. SLPA Short required a further 2% of
excess capacity, as the price for elimination of the most complex design tightening redistribution
stage of SLPA(add2_sub3()).

SLPA accommodated network growth with the least overall amount of network “chumn,”
accommodating an average of 3.6 additional working links with addition of capacity to 4.6 spans.
ICH placed an average of 5.3 additional links to provision an average of 3.8 fully restorable
working links.

Because SLPA is a new methad for which new problem specific optimization methods
were invented, the implemenitatior involved approximately 100% more lines of source code than
ICH. Half of the code for SLPA had to be optimized for execution speed and, therefore, it
required cautious implementation. This translates to much longer software development time.
ICH is an LP optimization problem which primarily relies on commercially available software for
the routines that are crucial to time-complexity,

Chapter 8 demonstrated joint provisioning and restorability using SLPA for SCP updates.
Just-in-time capacity management ensures a minimum of network capacity at all times, but in
tests it required capacity additions to 0.95 spans in each working path provisioning event. Pre-
emptive capacity management based on super-provisioning redundancy reduced these capacity
additions to 0.79 spans for each working path provisioned. Pre-emptive capacity management
achieves this 30% reduction in network “chum” with negligible extra capacity. In principle,
network designers can use the control mechanisms introduced here to achieve the minimum cost
for capacity management based upon a balance of the trade-off between network “churn® and
redundant capacity. More work is required on these concepts.

In closing, ICH and SLPA have differing merits. ICH is a classically-inspired formulation
of SCP as an LP optimization problem. In this regard it has the appealing prospect of strictly
optimal solutions (aside from final rounding effects) when provided with the full constraint set, On
the other hand, due to its reliance on LP, ICH can and does exhibit exponential execution times
unpredictably for some data sets. By comparison, SLPA is more specific to the particular
problem. 1t is based on a greedy synthesis principle that a near-optimal global design might result
from iterative placement of each additional spare link 8o as to maximize the (local) increase in
overall network restorability. When this principle is enhanced by subsequent design tightening,
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the algorithm has several practical properties: SLPA's worst-case complexity is polynomial-time.
Even with a worst-case RPL=10, SLPA completed execution for all test cases and showed run
times that increased smoothly and predictably with network size. SLPA's outputs were all within
93% of the theoretical bound for capacity efficiency at full restorability, while designing networks
specifically for accommodation of k-shortest path restoration.

10.1 Further Research

10.1.1  Max-flow Strictly Constrained by RPL

An aigorithm or heuristic which can evaluate max-flow which is constrained by an RPL
limit would complement the current research. [DuGr91] finds that k-shortest paths flow is typically
more than 88% of max-flow over a wide range of quasi-planar network models. However, in
restoration, it is desirable to limit the RPL. k-shortest paths algorithms accommodate RPL limits
inherently, cutting off available restoration when the k+1st path is longer than RPL links. There is
currently no equivalent method of limiting the path lengths in a max-flow design and, therefore,
the observed differénce between max-flow and k-shortest paths was 5.5% (Section 6.6) when
RPL limits were'included. This result includes locality restrictions which is the approximate
method used here to limit RPL in max-flow situations.

10.1.2  SCP Synthesis Algorithm With Simulated Annealing

Simulated annealing might provide an altemate synthesis tool for SCP in network design.
The following excempt from [AaKo89] describes simulated annealing.

*Annealing is the physical process of heating up a solid until it melts, followed by

cooling it down until it crystallizes into a state with a perfect lattice. During this

process, the free energy of the solid is minimized. Practice shows that the

cooling must be done carefully in order not to get trapped in locally optimal lattice

structures with crystal imperfections.

In combinatorial optimization, we can define a similar process. This process can

be formulated as the problem of finding - among a potentially very large number

of solutions - a solution with minimum cost. Now, by establishing a

correspondence between the cost function and the free energy; and between the

solutions and the physical states, we can introduce a solution method in the field

of combinatorial optimization based on a simulation of the physical annealing

process. The resulting method is called Simulated Annealing."

If there are networks where SLPA finds a local minimum SCP rather than the absolute
minimum SCP, Simulated Annealing might be able to avoid the local minimum. Thus, simulated
annealing might be used alone or as an addition to the SLPA program designed to avoid local

127



minima. The manner in which Simulated Annealing would be used with SLPA is to allow
redistributions of spare capacity which do not strictly adhere to the restorability and redundancy
objectives. Then, as the simulation continues, the cooling rate must be adjusted so that fewer
and fewer of these illegal operations are aliowed. Eventually, no illegal operations are allowed
and if the cooling is slow enough, an absolute minimum SCP will be found.

10.1.3  SLPA with Span Specific RPL

The implementation of SLPA presented here only allows & global RPL. In order to allow
span specific RPL's, the local node and local span lists must be separated into.two lists to reflect
the two roles of these lists in the current implementation: (a) Local spans to Span A are the
spans which can assist in restoring Span A. And, (b) local spans to Span A are the spans to

which a change in spare capacity on Span A can alter their restorability. Each use of locSpan
and locNode in the SLPA program must be checked for the orientation required.

10.14  Usable Algorithm for Polynomial Time-Complexity Linear Program

One of the major restrictions of the ICH method for SCP is the unpredictability of run-
times which result from the exponential (worst-case) time-complexity of Simplex LP's. The ICH
method would benefit greatly from a polynomial implementation of an LP which has assumed
reasonable average time-complexity.

10.1.5 Exact Locality Identification in Polynomial Time

The SLPA Path-table algorithm has correct span and node locality information. However,
Section 7.2.4.4 showed that this method of generating locality information has time complexity of
O(dRPL), The SLPA Dijkstra algorithm provided approximate span and node locality information
by triangulating the distance to each node from the two end-nodes of a span. |f the combined
distances from the end-nodes is less than RPL, the node is a local node. This method may
provide erroneous locality information when the triangulation does not use span disjoint routes for
the two end-nodes. This situation was shown in Figute 7.13.

The SLPA Dijkstra may be improved by an accurate locality identification technique. This
new technique should execute strictly in polynomial time.

10.1.6  Network Topology Design in Which k-shortest Path Flow Equals
Max-flow
Some network topologies, called matroids, have equivalent k-shortest paths fiow and
max-fiow. If these topologies can be applied to telecommunications networks, an SCP would be
guaranteed to be restorable by a k-shortest path algorithm when designed by ICH or SLPA.
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10.1.7  Fast Simulation of Known Restoration Algorithms for Use in SLPA
for Checking Restorability

Chapter 7 mentioned that SLPA can accommodate a final check on restorability which
executes the specific algorithm which will be used in the network. This algorithm can be
incorporated into a final FS phase, ensuring 100% restorability of the network. This approach
avoids the details of k-shortest path dependence on path selection order by making sure the
order is the same in network design and network restosation. In order to make this strategy
feasible, the restoration algorithm must execute quickly. Therefore, simulations of known
restoration algorithms must be generated which have high compatibility to the algorithm while
obtaining fast execution times. For instance, the SHN™emulation, which was used for
restorability evaluation in this thesis, incorporates asynchronous parallel-execution timing details.
These emulation details are necessary and valuable for protocol tests, but make incorporation
into SLPA unrealistic due to execution time restrictions when using a single processor machine.
However, parallel computers could conceivably execute the SHN in its truly paralle! orientation for
Ry, evaluation faster than conventional algorithms such as our metaDijkstra routine . Research
into the feasibility of parallelizing metaDijkstra would be required to decide if the SHN protocol
itself is a faster kernel for caic_rest() on a parallel machine than metaDijkstra is on a single
machine (or a parallel machine).
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Appendix B
Experimental Telecommunications
Network Topologies

Each of the figures in this appendix contains the four network topologies
of equivalent total number of nodes and varying average node degree in
the following format:

davg=3 dayg=4

davg=5 davg=6 |
The networks presented here are as generated by NGA before the
pruning of unrestorable spans and the corresponding nodes.
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Figure B.4 50-Node Networks
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Appendix C
ICH and SLPA Software User Documentation
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C.1 Description of the SLPA Tool

The spare link placement subsystem is a mechanized engineering tool kit for evaluating
various aspects of the restorability of a network. With this program, it is possible to measure
restorability and over-restorability, manipulate sparing and workirig; waaecity, evaiuate operation of
various portions of the SLPA algorithm in isolation, and even initizt¢ ar: automatic manipulation of
the network using the SLPA algorithm.

The automatic spare capacity placement aigorithm is novel in that it takes a classical
NP-hard problem and approaches it by a heuristic method. The tool minimizes capacity while
attempting to achieve the desired level of restorability. There is currently no way to specify
anything other than 100 % target restorability.

It is possible to run the program in a path table mode, a method which speeds execution
rate. See the description of the command line mode for further details.

This user manual provides a brief description of each of the user options available in the
SLP program, a description of the command line options, and briefly describes the basic input
and output files.

The executable version of the SLPA subsystem is started by typing sip at the UNIX
prompt. (Ensure that the search path includes the directory containing the executable !) SLP can
be started in 2 modes: Path Table and lterated Dijkstra

Upon startup, the user is asked for the maximum restoration path length (RPL) to be used
in the searches for restoration paths. This value, which is not range-checked, is a positive
integer. Generally, RPL is less than or equal to 10, and an RPL value greater than the number of
spans (S), is not valid. Next, the user is queried for the short-form network file. The actual
network topology files at TRLabs exist in 2 main formats. The first is 'long' form, in which the
node interconnect information and the relative node positioning information is provided. The
second, newer, one is the ‘short' form file, which does not contain the physical relative orientation
information of the nodes. SLP uses short form files. The path for the file must be specified. Note
that the program does not understand UNIX short-cut conventions in the path specification, and
thus tha explicit path or a relative path from the working directory must be specified.

C.1.1 Menu Options

Each of the options presented to the user upon starting SLP is described below.
Option 0: Edit Sparing Val

This option allows the user to incrementally modify the number of spare systems for a
particular span or all spans in a network. The user may enter the span number (0..(S-1) {where S
= number of spans}) or may enter -2 to globally modify all spans by the same incremental value.
If a single span is entered, the current link total is displayed followed by a prompt for the
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incremental change in systems. Any integer value may be entered, however, the program will not
allow the number of spare links to drop below 0. As a result, a simple way to zero the spare

capacity in the global spare link edit mode is to enter a very large negative integer for the
incremental number of systems.

Option 1; List Sparing Val
Invoking option 1 ganerates a table displaying the sparing values for each node in the
network under consideration. A sample cutput follows:

The spare values are:

(s 0= 2),(s 1= 4),(s 2= 4),(s 3= 5),(s 4= 1),

(s 5= 5),(s 6= 5),(s 7= 2),(s 8= 5), (s 9= 3),

(s 10= 4), (s 11= 1), (s 12= 1), (s 13= 3), (s 14= 2),
(s 15= 4), (s 16= 3), (s 17= 4), (s 18= 4), (s 19= 2),
(s 20= 5), (s 21= 3), (s 22= 5), (s 23= 5), (s 24= 5),
(s 25= 1), (s 26= 5), (s 27= 4), (s 28= 1), (5 29= 2),

In the format (s m= n ), m= span number and n= number of spare links.

Option 2: C { Restorabili
This option gives a summary of the span restorabilities, based on current network
parameters. Below is a sample of option 2 output:

The New Span Restorabilities are:

(s 0= 6(/ §)), (s 1= 5(/ 6)), (s 2= 3(/ 3)), (s 3= 2(/ 5)), (s 4= 3( 9)),

(s 5= 3(/10)), (s 6= 1(/ 3)),(s 7= 5(/ 7)), (s 8= 4/ 7)), (s 9= 4(/ 9)),
(s10=1(/ 1)), (s 11= 7(/ 9)), (s 12= 2(/ 2)), (s 13= 5(/ 8)), (s 14= 5(/ 5)),
(s 15= 4(/ 6)), (s 16= 5(/ 5)), (s 17= 4(/ 8)), (s 18= 4(/ 10)), (s 19= 5(/ 9)),
(s 20= 6(/ 7)), (s 21= 4(/ 10)), (s 22= 3(/ 9)), (s 23= 4(/ 10)), (s 24= 5(/ 8)),
(s 25= 4(/ 7)), (s 26= 3(/ 1Q)), (s 27= 3(/ 3)), (s 28= 8(/ 9)), (s 29= 6(/ 6)),

Restorability = 124 (/207)

Redundancy = 0.48309

In the format (s i=ki(/ wj)), i=span number, k; = number of restorable links, and w; =
number of working links.
Option 3: Evaluate add 1 fibrecap for each span

This option shows what would happen to the network under consideration if one spare
transmission system, also known as module ( a module being the number of links specified by the
modularity figure for the system) or fibrecap, is added to a single span in the network. The
results are shown as restorability in links on a per-span basis, since the single added spare
system is tried at every span in the network to show the differential benefit of each potential
placement. This option does not actually affect the network; it just provides a quick answer to a
'what if' question.

This option is intended primarily as an algorithm development aid.
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Option 4: Evaluate sub 1 fi [ I

This option shows what would happen to the network under consideration if one spare
system is subtracted from a single span in the network. The results are shown as restorability in
links on a per-span basis, since it is desired to show the relative effect of single spare system
removal from every possible span. This option does not actually affect the capacities; it just
provides a quick answer to a ‘what if' question.

This option is intended primarily as an algorithm development aid.

Qntion 5: Change fibrecap

Change fibrecap allows the user to globally change the modularity of the transmission
systems which comprise spans. This option does not perform a range check, so the user must be
careful to enter integer valuag graater than 0. It is not possible to change the modularity of the
network on a per-spas; basis. If the: modularity is changed, all span capacities will be increased
until an integral number of systems exist. Note that in this case, the added capacity is spare.
Changes to modularity cannot be undone, because if modularity is incremented or decremented
after such a change, the program is unable to determine what 'extra’ sparing capacity was
previously added to ‘top up' the working system. Thus it is generally not possible to ge! *ack to
the original sparing values, without re-reading the network file.

This option globally sets the sparing to 1 system if the modularity is 1. For modularity
value n (where n I= 1), si=fibrecap-(wj modulus n) for each span i.

This option allows the user to execute the synthesize portion of the spare link placement
algorithm. The user is prompted for n, the number of systems to add to spans. Note that there is
no range checking, and n=0 causes program abends. After determining the value of n, the user is
prompted for the range of examination. To determine the mode to use, the user must know
whether the add1..addn-1have been performed to completion (failure to do further modifications).
If they have not, then the full combinatorial search option ('0) must be:used to give accurate
results. This altemative can be very time-consuming as it is stiotly order of complexity S?
(where S= number of spans, and n= number of links to be added). if they have, the n-only option
(‘1) would be used, as it increases solution speed by using shortcuts, relying on the fact that prior
cases have failed.

This option is intended tc be an algorithm development tool only, in conjunction with
option 8, below.

Option 8: Tighten: Iterate on add n. sub n+1

Option 8 provides user access to the tightening phase of the spare link placement

algorithm. It is used in conjunction with option 7 in an algorithm development mode. The user
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performs one of the tightening phases specified in SLPA via this function. This process removes
‘fully spare' systems; partially populated systems are not affected. Aftera value is supplied for
'n’, the procedure proceeds to performing an addition of 'n’ systems, fcliowed by a subtraction of
'n+1' systems. This option does not perform range checking on the input provided to it. With this
option, as with option 7, the user must know whether the addo_sub1...add(n-1)_subn tightening
operations have been performed to completion (failure to do further modifications), to determine
which mode to use. If these tightening functions have not, the full combinatorial search option
must be used to give accurate results. If they have, the n-oniy dption would be used, as it
increases solution speed by eliminating evaluation of the candidates examined by the other
search cases.

Option 9: R . terat b1
This option attempts to remove single spare links that do not affect the restorability of the
network.

Option 10: Aut thesi  tight

This option executes the automated full implementation of the spare link placement
algorithm. The option executes until 100% or maximal non-100% restorability (in the case of a
non-fully restorable network) is reached. Feedback is continuously provided as to restorability
level and phase of execution. This is the option most likely to be used in a planning environment.
This algorithm may be invoked immediately upon entering the subsystem, or after the network
has been processed by other options. This option is usually executed after option 6.

Option 11 removes spare systems recursively until no spare capacity remains. Further,
the user is prompted for the type of erosion pattem desired, be it best case (least detriment to
restorability per step), worst case (most impact to restorability per step), or random.

Option 12: Reread initial network (same topology)

This option allows the user to return to the saved network configuration.
Option 13: Change initial network (same topology)

Option 13 is similar to option 12, except that it prompts the user to enter the name of the
network file to be retrieved. Note that a network with a different topology should not be read in at
this point; if a different topology is to be studied, the user must exit this subsystem (using option
33) and re-execute it.

Qption 14: Save current network

This option allows the user to save the network as it exists in the subsystem. The user is

prompted for a filename.
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Option 15: Ct tout fil

This option has not been coded. It is meant to enable the user to change the output file
in use.

Option 16: Add {0 best locati

This feature will determine the best span or spans to which spare systems shouid be
added. The user is prompted for the number of spare systems to add, and must also indicate
whether a search is to be performed using short cuts based on restoration path length, or a full
combinatorial search is to be performed.

With this option, as with option 7, to determine the mode to be used, the user must know
whether the add1..addn-1 have been performed to completion (failure to do further modifications).
If they have not, than the full combinatorial search option must be used to give accurate resuits.

It they have, the n-only option would be used, as it increases solution speed by using shortcuts,
relying on the fact that the previous cases have failed.

The option retums the network restorability if it is enhanced by this process; otherwise
nothing is returned.
Option 17: Evaluat restorability of

This optiz~ gllows the user to non-intrusively evaluate the current over-restorability of the
spans in the neti:ork. In this context, over-restorability is defined as the number of additional
working links which could be added to span i yet leave span i fully restorable. A sample output is
provided :

The Span Over Restorabilities are:

(s 0= 1),(s 1= 0),(s 2= 0), (s 3= 0), (s 4= 0),

(s 5= 0),(s 6= 0),(s 7= 0), (s 8= 0), (s 9= 0),

(s 10= 3), (s 11= 0), (s 12= 5), (s 13= 0), (s 14= 0),
(s 15= 0), (s 16= 0), (s 17= 0), (s 18= 0), (s 19= 0),
(s 20= 0), (s 21= 0), (s 22= 0), (s 23= 0), (s 24= 0),
(s 25= 0), (s 26= 0), (s 27= 1), (s 28= 0), (s 29= 0),

The Actual Restorability is = (124/207)

The Maximal Restorability is = 134

Inthe format (s i= OR;), i = span number, and OR;= over-restorability for span i. Note
that the actual restorability of the network is given as well as the network maximal restorability.
The maximal restorability is calculated by summing the individual span over-restorabilities and
adding the result to the current network restorability figure.

Qption 18: Edit working values

Option 18 allows the user to incrementally modify the number of working links per span
on a span by span basis, or globally (by entering -2 as the span number). For the former method,
the current integer value is presented before the user is prompted for the incremental value. No
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range checking is done on the incremental value entered. 1t is not possible to force the working
values to be negative.

Option 19: Print pathtabl
This option ‘prints* the path-table to a file called ‘pathtable.out’. This option only wdtks
when the program is in path-table mode.

Option 20: Add a path

Option 20 allows the user to add one restoration path (a path of spare links) to the
network. it echoes restorability if a path was added; otherwise, it retumns nothing.
Option 21; Dump Pathtable

This option may only be used when running in path table mode. The path table
information is dumped into a file in compressed format. The user is prompted for the output file

name. The file is subsequently loaded in a future slp invocation on the same network topology
with the command line option [-| path table].

Option 22: Menu

This option provides a list of the available menu options.

This option recursively grows a network by provisioning working links from the pool of
spare capacity, thus decreasing network restorability. The user is prompted for a destination file
name for the output data (grow.out is the default offered), as well as for the type of growth pattern
desired: best case (minimizing restorability impact), worst case (maximizing restorability impact),
or random. This option terminates execution when no spare capacity remains.

Option 25: Auto synthesize and tighten (fast)

This option functions similarly to option 10 (the automated complete implementation of
the algorithm), except that it eliminates the add2_sub3 phase, in order to increase execution
speed.

Option 26: Add a working path (eval)

Option 26 non-intrusively evaluates the effect on restorability of adding a working path to
the network. A working path is a one link wide set of contiguous, non-looping links between two
desired nodes. The user may supply the nodes between which the path is to be added, or the
system can randomly determine (based on a user-supplied random number seed) the source-sink
pair between which to add a path. The user may also supply the path information via a file. This
file format consists of a pair of space-delimited integers in the range of 0..N-1, where N = number
of nodes. This option does not work in path-table mode. The user is also prompted for the name
of a destination file (default is: ‘pairi.out). Feedback provided includes the nodes which have
been selected (in the random node addition case), as well as a listing of the best spans to use for
the shortest path route. If it is not possible to give a complete route, a minimum impact solution s
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suggested. Before implementation, the user is asked whether the change is to be accomplished
by redesigning the whole network (single sparing pool mode initiated), or as an additional
capacity change {dual sparing pool mode initiated). The user also has the option of scrubbing the
whole change at this point. Option 26 does not actually perform a change; it just suggests what
would happen if & change were done.

Option 27 adds a working path (using a single link between each of the nodes forming a
shortest path) to the network if sufficient sparing capacity is available for use as the working path.
Its operation is otherwise the same as option 26. This option does not work in path-table mode.

Option 28 adds a working path to the network, adding working capacity, in the form of
‘spared’ systems between nodes if no sparing is present. Its operation is otherwise the same as
option 26. This option does not work in path-table mode.

This option, used in conjunction with option 30, is used to set the network up with a single
sparing pool.

This option forces the network into a dual sparing pool mode. The resulting two sparing
pools consist of a ‘floor spare' and a ‘spare’ pool. The ‘fioorspare' poc! consists of all of the spare
capacity present in the original (single) sparing pool. The 'spare’ pool will contain all of the
incremental sparing added after this point. The purpose of this is to protect the previously existing
sparing capacity from the upcoming network modifications. When option 29 reforms a single
sparing pool, it simply sums the contents of both of these pcols. The same functionality is
accomplished ‘on the fiy' in options 26-28.

Option 31; Switch to over-restorability mode

This option, used in conjunction with option 32, changes the program operation from
restorability mode to ‘greater than 100 % target restorability' mode. This mode enables the user
to explore the effects of adding excess capacity to a network.

This option changes the operating mode from ‘greater than 100 % target restorability'
mode back to restorability mode. It is used in conjunction with option 31.
Option 33: Exit

Entering this option terminates execution of the program.
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C.1.2 Command Line Options
The various command line options available are summarized below:

sip [[-ifo] networkfilename repeatlimit)
[-f fibrecap]
(| pathtablefilenzme_in}
[-blc][f] resultsfiieaname [-0 outntwkfilename)
[-d pathtablefilename_out] [-s statsfilename]}
[-e resuitsfilename erosiontype randomseed)
[-g resultsfilename growthitype randomseed)

[t {type of calc_rest (O-dijkstra or 1-pathtable)})
][-m {0-logical,1-actual,2-logical+actual}]

(L] networkil timit]

Entering this line during slp invocation allows the user to specify the name of the network
file being used as well as the repeat !imit desired. If option ‘o' is entered following option ‘i', then
the network will not be built; rather the network (using path tabies) is only initialized. The
‘networkfilename'’ field is where the short form network file to be used is identified. The
'repeatlimit field is where the maximum restoration path length is specified.

[t fibrecap]

Entering -f' enables the user to specify the global transmission system module size
during invocation.
[-Lpathtablefilename-in)

The 'I' option enables the user to specify the path table name for path table mode
operation. This path-table must already exist from a previous sip run.
[:blc]lf] resultsfilename [-0 outntwidilename]

—[-d pathtablefilename-out] -5 statsfilename]]

The "-b' option is the build option. This option is entered when it is desired to do a fully
automated optimization of the spare capacity of the network. Entering "-b' is equivalent to
invoking options 6,10, and 14. The 'c' option, when specified, ensures that the program will not
start by setting the spare capacity to 1; rather, spare capacity present at program invocation time
will be used. The ' option, when used with '-b' and possibly 'c', invokes a spare capacity
placement algorithm equivalent to that used in option 25 (‘Auto synthesize and tighten (fast)).
The ‘resultsfilename’ field, which names the sink for the results information, must be specified if
option ‘b’ is used. It is optionally possible to specify the output network file name, using the -0
option. If it is not specified, the user will be queried for it . it is also possible to use the "-s' option
to specify the sink file for the statistics generated for the run.
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itsfti rosi

This option invokes the erosion mode (option 11). The user must specify a file for the
results, the erosion type ('0': best case,'1": worst case, ‘2': random ). Further, a random number
seed must be provided to determine the initial span impacted.

[-g resultsfilename growthtype randomseed]

This invokes option 23 upon program invocation. The results file must be spevified, as
must the growth type ('0': best case, '1": worst case, '2'; random ). A r.~iom number s#ed must
be provided to determine the starting node.

[t type of calc rest]

This option determines the type of restoration calculation to be performed. The user has
the option of Dijkstra or path table methods. The path table method is faster, but has higher
computer storage resource demands. lterated Dijkstra is the default.

When Dijkstra is selected for restorability calculations, this option allows the path
selection order to be logical (‘'0°), actual distance (‘1'), or a combination of the two ('2') which uses
logical length values until a choice is required between two equivalent logical length alternatives,
when the actual lengths are examined. Logical is the default selection type because it executes
fastest.

C.1.3 Input and Output Files
Figure C.1 presents the short network descriptor file format.

N
S
1 uq vy dy $1 w1

S i:s Vs ds sS ws

Figure C.1 The Short Network Descriptor File Format
In this file: N is the number of nodes. S is the number of spans. For span |, uj, vi, dj, si,
and wj are the source of span i, the sink of span i, the number of spare links on span | and the

number of working links on span i, respectively. For example, Figure C.2 shows the descriptor
file for the 20-Node, 30-Span (davg=3) study network used in this work.
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W N
(=N

1 0 31438
2 0 17 1 4 2
3 0 141 2 9
4 0 2 1 310
5 1 101 2 9
6 1 19 1 5 5
7 1 7131
8 2 61565
9 2 8117
10 3 12 1 4 10
1 3 6 1 3 4
12 3 14 1 1t 3
13 4 5 1 4 3
14 4 9 1 2 5§
15 5§ 9 1 4 6
16 7 10 1 4 3
17 8 10 1 3 7
18 8 13 1 2 2
19 9 18 1 5 10
20 9 12 1 2 8
21 10 13 1 5 9
2 11 15 1 3 5
23 11 14 1 2 7
24 11 16 1 1 1
25 12 15 1 5 10
26 13 15 1 1 8
27 13 17 1 3 10
28 15 19 1 3 10
29 16 177 1 1 8
12 4

Figure C.2 The Short Network Descriptor File for the N=20, davg=3 Study Network

Figure C.3 presents the short network descriptor file format.

Redn,1 Rn1  so1  s1,1 s21 .. $S,1

Redni Rni soi s11  s2i .. $S,i

Figure C.3 The Output File Format
Each time that the network spare capacity is changed, a line is printed to this file. Each
line lists the network conditions after the capacity change is implemented, including: the network

redundancy, the network restorability, and a vector of spare link quantities for the spans of the
network. For example, Figure C.4 contains the output file for the 20-Node, 30-Span (davg=3)
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study network used in this work. Initially, all spans have a single spare link except for span 5

which had a single link added in that first operation. The operations all add spare capacity (FS

phase of SLPA) until column two reaches 100%. As column one shows, the final 5 operations

reduce the redundancy of the network (DT phase of SLPA).
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The Output File for FS and DT with the N=20, davg=3 Study Network

Figure C.4
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C.2 Description of ICH Tool

No user interface has been written for the ICH method of SCP. In this work, ICH is
implemented as a UNIX script (batch) file. The script file uses compiled 'C' programs and
Mathematica™ to perform the functions which effect the ICH heuristic.

Any options which are investigated here, besiders those which can be accessed through
the command line, were implemented by editina the ich script file. Therefore, the script file is
provided below with comments describing each function call. The command line is as follows:

ich O input_network RPL number_of_iterations feedback_type

Where:

input_network is the short network descriptor file (as was input to SLPA);

RPL is the restoration path length limit, therefore ICH RPL is assumed unfess
RPL is set to N (the number of nodes);

number_of_iterations is the maximum number of iterations of the ICH program
attempted befcre 5+ heuristic is aborted; and,

feedback_type is the :: ;. - -ifi..<ithm which is used to assess restorability (input
“mf* for max-fiow: *a:...x. jion and "ks" for k-shortest path restoration).

The UNIX script file is pres:« .+ ¥igure C.5.

# ICH UNIX Script File

# inputs to the first call to this routine are

# "ich 0 ntwkfilename max_rest_path_len max_iterations feedback_type"

# and subsequently, the first two variables are iteration number and iteration number + 1
# NOTE: ICH must be executed from a machine which has Mathematica installed.

set fo_type = "mf*

if ($#argv >= 5 && $5 == "ks") then
set fb_type = “ks"

endif

alias ich 'csh -f ~/cutsets/ich’

alias cs '~/cutsets/css'

alias mi '~/cutsets/mis'

allas sstrip ‘~/cutsets/sstripds'

alias conv '~/spareplace/sparcsource/conv'
alias time ‘/usr/binftime'

@ num1 = $argv(1]

if ($num1 < 1) then
echo "starting iteration 1°
echo ‘date’ >starttime
cp "Sargvi2]" .
cp "$argvi2]" nett

Figure C.5(a) The ICH UNIX Script File
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endif

# Generate the set of incident cutsets for each span of the network.
cs -ns net1 -a 5 $argv[3] 0 > /dev/null

mv scutset.out scutset.out1

# Conveit the cutsets to constraints for input to the LP

mi > /dev/null << +

neti

scutset.out1

math.ini

# Execute the Linear Program

(time /usr/local/bin/math1.2 < math.in1 > m.out1) >& mtime.1
cp math.out math.out1

@ num4 = $argv[4]

# Recurse.
ich 1 2 $argv[3-$#argv] >>& batch.out
exit 2

# Exit if the maximum allowed number of iterations of ICH has been reached.
A num4 = $argvi4)
if (3num1 > $num4 - 1) then

endif

echo ‘date’ >aboittime
exit

echo "starting iteration $argv[2]"

# Strip all text from the LP output list of spare capacities
sstrip > /dev/null << +

+

math.out
spares$argv[1]

# Integrate new spare capacily values into the network descriptor file.
conv > /devinull << +

+

net$argv[1]

s
spares$argv[1]
net$argv(2)

q

# Exit if there is no change in the SCP between iterations of ICH
diff net$argv[1] net$argv[2] >! difffile

setd="

\Is -1 difffile”

if ($d[4] <= 1) then

endif
unsetd

echo “date’ >! nodifftime
exit

Figure C.5(b) The ICH UNIX Script File (continued)
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# Generate a new cutset (to be used as an LP constraint) for each unrestorable span
if ($fb_type == "mf") then
# replaced line << /usr/local/skiena/COMBINATORICA/Combinatorica.m
cat >! math2.in << +
<< /usr/local/Math2.0/Packages/DiscreteMath/Combinatorica.m
<< ~/math.lib/maxFlow.m
flows = totalFlow][ "$cwd/net$argv(2]"]

flows >> "$cwd/math.out"
Quit
+
(time /usr/local/bin/math1.2 < math2.in > /dev/null) >& “mtime.$argv{2]b"
cs -ns “net$argv(2]" -a 7 $argv{3] math.out > /dev/null
else
cs -ns "net$argv{2)" -a 6 $argv[3] > /dev/null
endif

# Exit if no new constraint was found (this suggests full restorability was obtained).
setd ="\Is -l scutset.out’
if ($d[4] <= 1) then
echo “date’ >endtime
exit
endif
unset d

# Add the new cutsets to the previous list of cutsets.
cat "scutset.out$argv[1]" scutset.out > “scutset.out$argv{2]"

# Convert the cutsets to constraint inequalities for use by the LP.
mi > /dev/null << +

net$argv(2]

scutset.out$argv(2]

math.in$argv[2]
+

# Execute the LP on the new constraint set.
(time /usr/flocal/bin/math1.2 < "math.in$argv[2}" > "m.out$argv(2]") >& “mtime.$argv(2]"
cp math.out *math.out$argvi2]"

@ num?2 = $argv[2]
@ num2++

# Recurse
ich $argv2] $num2 $argv[3-$#argv] >>& batch.out

Figure C.5(c) The ICH UNIX Script File (continued)
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