
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

C o d e a n d D a t a O u t l in in g

by

Peng Zhao

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirements for the degree of D octor of Philosophy.

Department of Computing Science

Edmonton, Alberta

Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives C a n a d a

Published H eritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque e t
A rchives C an a d a

Direction du
Patrim oine d e i’edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

0-494-08765-X

Your file Votre reference
ISBN:
Our file Notre rerenence
ISBN:

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L’auteur a accorde une licence non. exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To Fang,

without a doubt

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

In this dissertation we investigate compiler techniques to address the perfor­

mance problems caused by heterogeneous execution frequency of code in the

same function and heterogeneous access pattern of fields in the same data

structure. These heterogeneous characteristics are bad for performance. On

one hand, it is frequent that instructions in the same function have very dif­

ferent execution frequencies. There is often infrequently referenced cold code,

such as exception handlers, intertwined in frequently invoked hot functions.

Cold code in hot functions not only degrades instruction cache efficiency but

also makes host functions too large to be inlined. On the other hand, pro­

grammers organize their data layout in a semantically meaningful way that

often does not match the runtime access pattern well. This data organization

causes inefficient data cache utilization.

We use compiler outlining techniques to address these performance prob­

lems that are difficult to handle by programmers. For programs with hetero­

geneous execution frequency, we use function outlining to split cold code out

of the host function. Function outlining makes the host function smaller and

more amenable for inlining optimization because the compiler is then able to

do partial inlining, i.e. inline only the hot parts of a callee. To address the

heterogeneous data pattern issue, we use data outlining or reshaping, which

splits large data structures into smaller ones, to improve the efficiency of data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cache.

We describe in detail the necessary analysis and transformations needed

to preserve correct program behavior in code and data outlining. In both

function outlining and data outlining, we conduct a study of possible strate­

gies. Our study shows that, although function outlining can be used to reduce

function sizes (by up to 97%) and partial inlining improves performance by up

to 5.75%, partial inlining has very limited effect on enabling more aggressive

inlining for SPEC2000 benchmarks. The major benefits of partial inlining are

actually the benefits of function outlining, which become more pronouncing

when inlining is enabled. We also found that data reshaping could improve

performance dramatically: one of the benchmarks studied achieves 2.1 times

speedup with proper reshaping strategy. Detailed analysis explains these per­

formance results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I want to heartedly thank everybody who generously offered me help during
my quest of Ph.D degree.

First of all, I am indebted to my advisor, Dr. Jose Nelson Amaral, for his
numerous valuable discussions and suggestions. It is he who introduced me
to the field of compiler research. I also appreciate his patience and support
throughout my entire project.

Thanks also go to the other members of my Ph.D. exam committee mem­
bers, Dr. Bruce Cockburn, Dr. David Padua, Dr. Jonathan Schaeffer, Dr.
Lorna Stewart, and Dr. Duane Szafron. I thank them for agreeing to serve in
my candidacy exam committee and for their time and energy spent on review­
ing my proposal and thesis. Especially, their discussions during my candidate
exam made me start to think about the possibility of data outlining, which is
the second part of this thesis.

I thank Sun C. Chan and Shin-ming Liu for their insightful discussions
on function outlining. I also thank Dr. Yaoqing Gao, Shimin Cui and Raul
Silvera for their discussions and cooperation on my data-outlining work at
IBM. I got much help from the mailing lists for Open64, ORC, Pfmon, and
Pro64 when I picked up my experimentation platforms. Here I specially thank
Kaiyu Chen, Buqi Cheng, Jim Dehnert, Stephane Eranian, Lixia Liu, Michael
Murphy, Chandrasekhar Murthy, Chengyong Wu, Shuxin Yang, Qingyu Zhao,
and Shukang Zhou. My project would have been much more difficult without
their kind help.

Last, but not least, this dissertation would not be possible without the
help from my family. I thank my parents, Weigui Zhao and Yueqing Zhao, for
their moral support throughout this five-year journey. My wife, Fang Liu, has
demonstrated her unconditional love by numerous encouragements when I felt
frustrated and by sacrificing the living standards that she has long deserved
to be with me.

Financial support for this dissertation was provided by the Natural Sciences
and Engineering Research Council (NSERC) of Canada. I also thank Intel
Corp. and IBM Corp. for the internship opportunities that allowed me to
expand my work on function outlining and data outlining, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table o f Contents

1 Introduction 1
1.1 Research G oal... 1
1.2 Contributions... 3
1.3 Dissertation O rganization .. 4

2 Background 6
2.1 Inter-Procedural Optimization (I P O) 6

2.1.1 Tractable IP O ... 9
2.2 Profiling-guided I P O ... 10
2.3 IPO Case S tudy .. 11

2.3.1 ORC without IPO ... 11
2.3.2 ORC with I P O ... 13

3 Inlining Tuning 16
3.1 Introduction.. 16
3.2 Overview of ORC In lin in g .. 18
3.3 Inlining T u n in g .. 21

3.3.1 Adaptive Inlining.. 21
3.3.2 Cycle D ensity .. 24

3.4 Results... 26
3.4.1 Experimental Environment... 26
3.4.2 Performance Analysis.. 27
3.4.3 Compilation Time and Executable Size Analysis 28
3.4.4 Motivation for Partial Inlining... 30

3.5 Related W o rk ... 31

4 Function Outlining 33
4.1 Introduction.. 33
4.2 B ackground.. 35

4.2.1 WHIRL Tree Introduction... 35
4.2.2 Region... 37

4.3 Function O utlin ing .. 38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.1 Reorganize a Switch S ta te m e n t.....................................
4.3.2 Handling Frequent Early Returns (E R)
4.3.3 Outlining Candidate Identification
4.3.4 Function Splitting and Patching.....................................
4.3.5 Performance Tuning ...

4.4 Results..
4.4.1 Experiment Configuration..
4.4.2 Function Outlining Performance.....................................
4.4.3 Outlining S ta tistics..
4.4.4 Partial In lin in g ...
4.4.5 Aggressive Partial In lin ing ..

4.5 Related W o rk ..
4.5.1 Function Splitting..
4.5.2 Region Formation Algorithm...
4.5.3 Preservation of Semantics in Splitting............................
4.5.4 Code Layout ..

5 Data Outlining or Reshaping
5.1 Introduction...
5.2 Data Reshaping...

5.2.1 Overview ..
5.2.2 Data Shape A nalysis...
5.2.3 Structure Partition Plan and Array Reshaping............
5.2.4 Array R eshap ing ..

5.3 Experimental S tudy...
5.3.1 Experimental P la tfo rm ..
5.3.2 Run Time Im provem ent...
5.3.3 Micro-architecture Performance S t u d y

5.4 Related W o rk ..
5.4.1 Data Layout Optim ization..
5.4.2 Loop Restructuring..
5.4.3 Data Prefetching..

6 Conclusions and Future Work
6.1 Conclusions...
6.2 Future W o rk ..

6.2.1 Further Inlining...
6.2.2 Extension of Forma Data Outlining Framework.............
6.2.3 Automatic Heuristics Tuning...

Bibliography

39
45
45
48
55
56
56
56
57
59
60
60
61
62
63
63

64
64
66
66
67
70
73
76
77
78
81
85
85
86
86

88
88
89
89
89
90

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 Impact of cycle.density on executable size and compilation time 29

4.1 Variable patching r u l e ... 53
4.2 Semantics of RetumFlag on the return of the new P U 54
4.3 Strategy com binations.. 57
4.4 Statistics of outlining... 58

5.1 Address-arithmetic-based reshaping.. 74
5.2 Pointer-based reshaping .. 74
5.3 Characteristics of the experimental platforms, memory and page

sizes given in bytes (*: DCache+ICache, *: off-die).................. 77
5.4 Compiler versions in the performance study 78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(N
01

(M
(M

<M

List of Figures

.1 The procedure barrier against compiler optimization 7

.2 Inter-procedural constant propagation on variable a 7

.3 Inter-procedural constant propagation enables function special­
ization and dead store elimination ... 8

.4 ORC compilation without IP O ... 12

.5 IPO-involved ORC com pilation .. 14

3.1 Temperature distribution of bzip2 .. 20
3.2 Frequency accumulation of gcc (the top 2,750 of all 19,000 call

sites are plotted) ... 21
3.3 Temperature distribution of g c c .. 23
3.4 Frequency accumulation of bzip2 (the top 38 of all 239 call sites

are p lo tte d) ... 24
3.5 Cycle density vs. temperature (b z ip 2) 25
3.6 Adaptive inlining in ORC ... 26
3.7 Overall performance comparison ... 27
3.8 Final performance comparison .. 28
3.9 Call sites b reakdow n.. 30

4.1 Example source code & WHIRL t r e e 36
4.2 Annotated control flow graph of function regmatch in perlbmk 39
4.3 Partitioning regmatch in perlbm k... 40
4.4 Case c lu s te rin g .. 42
4.5 Partition benefit analysis.. 43
4.6 Partitioning a switch with hot default c a s e s 44
4.7 Partition and split switch ... 44
4.8 Handling early exits.. 46
4.9 Outlining transform ation.. 49
4.10 Function foo before function sp litting 50
4.11 The original foo function after function splitting 51
4.12 The new fooNEWl function after function sp littin g 51
4.13 Different outlining strategies (shaded code is c o ld) 55
4.14 Performance of Function O u tlin in g .. 57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.15 Performance of Partial Inlining .. 59
4.16 Effects on Stalls and Instructions... 60

5.1 The Forma data reshaping framework...................................... 66
5.2 Field-sensitive Steensgaard alias an a ly sis 67
5.3 Reshaping planning (affinity-based).. 71
5.4 Different reshaping planning s tra te g ie s 71
5.5 Run times on a G 5 ... 78
5.6 Run times on a P O W E R 4 ... 79
5.7 Run times on a PO W E R S ... 79
5.8 Run times on an Itanium I I .. 79
5.9 Retired instructions on Itanium -II... 81
5.10 Data cache (levels 1 and 2) efficiency...................................... 82
5.11 Data cache (level 3) and TLB efficiency................................... 83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Research Goal
Over the past four decades, we have been witnessing the ever-increasing speed
of modern microprocessors due to advances in semiconductor fabrication and
architectural innovation. On the other hand, people are working hard to im­
prove programmer productivity by adopting software engineering techniques
that emphasize modularity, code reuse, and maintainability. There is a gap
between performance engineering and software engineering. Software produc­
tivity is often emphasized and the programs produced with advanced software
engineering techniques are often suboptimal in performance because they can­
not fully utilize the resources or architectural features of the underlying hard­
wares. This gap is still widening. A good compiler should bridge this gap by
transforming high-level applications into hardware-friendly binaries.

In this dissertation, we deal with two specific problems arising from the
semantic gap between software engineering and performance engineering. The
first problem stems from the heterogeneous frequency1 of code in a single
function. When writing a program, programmers tend to place semantically-
related code together in a function, even though the execution frequencies of
these codes might differ significantly. A good example is error and exception
handling code. As a consequence, there are often many cold (i.e. infrequently-
executed) code segments in a hot function. Putting code segments with het­
erogeneous execution frequencies together deteriorates instruction cache effi­

:In this thesis, we call the number of occurences of executing a piece of code the execution
frequency of the code. Similarly, the number of tim es a piece of data is accessed is its access
frequency. Heterogeneous frequency is a conceptual term. When two frequencies are very
different (e.g. 0 versus 100000), we say they are heterogeneous.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ciency, interferes with a compiler’s goal of focusing its resources and time on
frequently-executed code, and, more importantly, makes host functions too
large to be inlined.

The second problem studied in this thesis is the performance penalty due
to a semantics-oriented data layout. In high-level programming languages,
programmers use aggregate data structures, such as s tru c ts and c lasses,
to organize their data. All the features of a given object are put together in
the same aggregate data structure, without consideration of runtime access
patterns. This data layout also prevents better performance for several rea­
sons. First, the frequency of access to fields in the same data type may vary
significantly with hot fields accessed very frequently and cold fields seldom
referenced. Placing fields with very different access frequencies together in
memory hurts performance because the cold fields pollute the data cache and
waste memory bandwidth. Second, the runtime data access pattern might not
be consistent with the access frequency distribution. In other words, hot fields
are not necessarily accessed together. This means that the temporal locality
of certain hot fields is degraded by other hot fields.

During preliminary investigation toward this thesis, we spotted the above-
mentioned problems in some popular benchmarks. This motivated us to in­
vestigate the performance potential of compiler techniques to address these
problems. Since the performance setback of heterogeneous characteristics in
both instruction and data were unclear at the start of our study, we decided
to study both.

Generally, the unifying technique of this thesis, outlining, consists of re­
moving a cold part from a hot host function or data structure. To handle
the cold code segments in a hot function, we use function outlining to split
them out of their host functions and generate new functions to hold these split
code segments. The original code segments in the host functions are replaced
by function calls to the new functions. Function outlining separates hot code
from cold code and makes the original hot function smaller and therefore more
amenable to inlining optimization. Because only the hot portions in a func­
tion are inlined after function outlining, we call it partial inlining. To make
the data layout more friendly to the underlying hardware, we split an object
into two or more smaller objects. Each smaller object holds fields that have
high access affinity. Accordingly, we split arrays that contain aggregate data
structures into multiple smaller arrays. The result of the data outlining is a
data layout that has a smaller memory footprint, has better locality and is
more amenable to hardware data prefetching.

Important research questions include:

• Would function outlining followed by partial inlining jdeld performance
improvements in industry-standard benchmarks? To achieve partial in­
lining, we need region identification algorithms to find the cold code
segments in a hot function. Sometimes the cold code in a function is not

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

well organized. Therefore, we need some transformations to reorganize
the codes so that they are easier to split. Regions that are split out of
the host function might cause extra runtime function calls. We could
suffer serious performance degradation if hot codes axe split out of a
host function. To gain performance by partial inlining, the performance
degradation of function outlining itself must be kept strictly under con­
trol. Hence, function outlining must achieve a balance between reduced
host function sizes and potential increase in runtime function calls. Fi­
nally, to make function outlining safe, we also need to preserve correct
program behavior when splitting code out of a function.

• Can data outlining be made safe to be integrated into a production-
level compiler? The transformed program must retain its original se­
mantics. Because of the prevailing usage of pointers and type casting in
the C /C + + programming languages, transforming data accesses is not a
trivial task. If two data accesses are aliased with each other, transforming
one of them means that we must also update the other one. Also, data
outlining should be avoided if a memory location is referenced through
multiple views; it is dangerous to do transformation without a consistent
starting point. If the safety problem is solved, does data outlining results
in performance improvements?

1.2 Contributions
The primary contributions in this dissertation include:

• By carefully tuning the inlining framework in the Open Research Com­
piler (ORC), we found that large function bodies axe among the major
impediments to beneficial inlining. This suggests an opportunity for
function outlining and partial inlining.

• In our function outlining work, we propose a region formation algorithm
based on an abstract syntax tree. Our region formation algorithm ef­
ficiently exploits high-level control flow structures, and their associated
feedback information, to identify candidate regions for outlining. We
formulate the Optimal Outlining Problem and argue that it is NP-haxd.
Then we devise an effective heuristic to analyze the benefits of outlining
a region. This heuristic decision weighs the benefit of reducing the host
function size against the execution frequency of the extra function calls
introduced. We describe how to patch the control flow and the data flow
to preserve the program semantics in outlining. Because outlining is an
early code transformation, it may negatively impact existing downstream
optimizations. Our experiments show that complex alias relationships

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

created by outlining parameters have a major impact on downstream
optimizations and may result in the introduction of substantial memory
spills. To handle this problem, we propose a novel technique, called alias
agent, to disambiguate parameters created to pass references to outlined
functions. Finally, we study two orthogonal function splitting strategies:
(1) collective versus independent splitting; and (2) splitting with versus
without alias agent. This study shows that selecting the correct strat­
egy is crucial. Independent splitting with alias agent reduces function
sizes significantly while minimizing the performance penalty of outlining.
Based on our function outlining work, we report the performance results
of partial inlining.

• We build Forma, a practical data outlining (or data reshaping) frame­
work that can be used to automatically analyze and transform C /C++
programs. Forma consists of a data shape analysis, including both alias
analysis and data type analysis, structure partition planing and array
reshaping transformations. Forma has been integrated into the IBM
XL C /C ++ V7.0 compiler. We also conduct an empirical study of
two orthogonal reshaping decisions: frequency-based object partition x
affinity-based object partition x maximum object partition; and address-
arithmetic-based x pointer-based array splitting. Some important, but
subtle, insights on data reshaping are exposed by a thorough analy­
sis and empirical study. We found that data reshaping could improve
performance significantly. Experimental results also suggest that the
combination of address-arithmetic-based array splitting and the seem­
ingly naive maximal object splitting achieves the best or close-to-best
performance on the studied benchmarks.

1.3 Dissertation Organization
Both function outlining and data outlining are inter-procedural optimiza­
tions that require runtime profiling information to estimate optimization ben­
efits. Therefore, as a background introduction, Chapter 2 describes important
concepts that are directly relevant to this thesis. We first introduce inter­
procedural optimization (IPO) and profiling-guided optimization. Then we
use the Open Research Compiler (ORC) as an example to demonstrate how a
compiler’s behavior changes when IPO is involved. Chapter 3 investigates the
inlining trade-offs and identifies the partial inlining opportunities in the SPEC
INT2000 benchmarks. Chapter 4 proposes function outlining and discusses its
design and implementation. We also report our results of partial inlining in
Chapter 4. Chapter 5 handles the data layout problem and presents Forma, a
data outlining framework that is safe and automatic. We conclude this disser-

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tation in Chapter 6 by summarizing our contributions and by presenting some
extension opportunities.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

This section introduces the background for this dissertation. The research in
this dissertation consists of two inter-procedural optimizations (IPO): function
outlining and data outlining. Both of them require inter-procedural analysis
(IPA) and runtime feedback information. Therefore, in this section we dis­
cuss inter-procedural optimizations and profiling-guided compiler optimiza­
tions. We use the Open Research Compiler (ORC) [1], one of our research
platforms, as an example to demonstrate how a compiler’s behavior changes
when IPO is involved.

2.1 Inter-Procedural Optimization (IPO)
The placement of related program segments into separate procedures hides
useful information, limits the scope of compiler analysis, and prevents the ag­
gressive application of compiler optimizations. Classic optimizations, such as
common sub-expression elimination, constant propagation, alias analysis, code
scheduling, and register allocation, cannot be easily applied across procedure
boundaries. In an intra-procedure compilation framework, the boundaries of
procedures are barriers that prevent compiler optimization. In the example
shown in Figure 2.1, assume that there is only one place in the entire program
that calls bar. A compiler that has no cross-boundary information about
m ain and bar has to conservatively assume that the values of the parameters
passed to bar are only known at runtime.

However the second parameter to the invocation of bar, variable a in m ain
is a constant that can be propagated from m a in to bar, as shown in Figure 2.2

After the constant propagation, the second parameter to bar is not needed
anymore and can be eliminated. Also, the definition of variable a in main is

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

void

mainQ

{ int

int a, i, sum; barfint Li.)

sum = 0; {

int j, result=0;

for(i=0; i<1000000; i+ +) { for(j=0; j<Li; j+ +)

sum + = /1000: result + = H al *j;

} return result;

printf(“%d\n:’, sum); }

}

Figure 2.1: The procedure barrier against compiler optimization

void

mainQ

{ int

int a, i, sum; bar(int Li, int La)

sum = 0; {

P II O int j, result=0;

for(i=0; i<1000000; i+ +) { for0= 0; j<Li; j+ +)

sum + = l i l l l i l / 1 0 0 ; result + = ^ *j;

} return result;

printf(“% d\n”, sum); }

}

Figure 2.2: Inter-procedural constant propagation on variable a

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

no longer used, and therefore can be eliminated by dead code elimination.
These transformations produce the code shown in Figure 2.3. To find these
optimization opportunities, a compiler must analyze the data and control flow
both in the caller and in the callee.

void

main()

{ int

int a, i, sum; bar’(int Li)

sum = 0; {

int j, result=0;

for(i=0; i<1000000; i+ +) { for(j=0; j<Li; j+ +)

sum + = I j i l l l l t /100; result + = *j;

} return result;

printf(“%d\n”, sum); }

}

Figure 2.3: Inter-procedural constant propagation enables function specializa­

tion and dead store ehmination

Inter-Procedural Optimization (IPO), also called cross-module optimiza­
tion or whole-program optimization, improves the performance of programs by
exploring optimization opportunities across procedure boundaries. By tak­
ing advantage of these opportunities, IPO eliminates the performance penalty
associated with small program units, and thus enables programmers to take
advantage of software modularity. IPO has been implemented in most modern
industry-strength compilers and has proved to be a very effective optimization
technique. For instance, in the HP-UX 10.20 compiler, Ayers et al. demon­
strated a performance improvement of 32% for the SPECint95 benchmark on
a PA8000-based workstation [7]. Later, they reported that IPO can speed up
independent software vendor’s applications, with as many as 5 million lines of
source code, by as much as 71% [8].

To be employed in commercial compilers, IPO must be carefully designed.
First of all, IPO requires that the compiler be able to analyze and optimize
code throughout the application. Usually compilers have access to the whole
program only during the linking phase, when all the relocatable object files are

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

read and linked together to create an executable file. Thus, inter-procedural
optimizations are often implemented in the linker [65, 66]. We call these inter­
procedural optimizations link-phase IPOs or low-level IPOs. The input to
low-level IPOs consists of relocatable instructions. Implementing IPO in the
link phase has two major advantages. First, link-phase IPO has access to the
whole application because static library code is available in the link-phase but
is not easily available in earlier phases. The second advantage is that link-
phase optimizations have access to low-level information. Examples of low-
level information includes register usage, register availability, function layout,
and procedure sizes. Some low-level IPOs, such as inter-procedural register
allocation and code placement, can only be performed in the link phase.

However, important IPOs cannot be applied in the link phase because bi­
nary instructions in object files have lost required high-level information. A
good example is type and aggregate data construct information that is essen­
tial for the efficiency of inter-procedural alias analysis. Another important
drawback of low-level IPO is that the link phase takes place at the very end
of the compilation process, which means that some optimization opportuni­
ties originated by IPO have little chance to be explored. Therefore it is also
desirable that some inter-procedural optimizations be performed on higher
level language representations of the program. We call these inter-procedural
optimizations high-level IPOs.

A high-level IPO method consists of introducing a fake linker early in the
compilation. This fake fink phase reads and analyzes all the available source
code. However, instead of relocatable binaries, the input and output of the fake
linker are both high-level intermediate representations. Hence, after the fake
high-level IPO, other classic optimization techniques can be applied efficiently
on the high-level intermediate representation.

Many modern compilers, including the MIPSPro compiler [48], the Open
Research Compiler, the HP-UX compiler [8], and the IBM XL compiler [24],
implement high-level IPO with a fake finking phase.

2 .1 .1 T ractable IP O

An obstacle to IPO is that, when applied to large applications, it might result
in excessive compilation time and excessive memory space requirements for
the compiler. Earlier IPO experiences suggest that a naive IPO design cannot
be used for large applications. For example, the IPO-enabled compiler in HP-
UX9.0 requires, on average, 1.7KB of memory for each fine of source code [8],
which makes even the compilation of some moderate-sized benchmarks very
memory-demanding and time-consuming. The problem is even worse for com­
mercial software with millions of fines of source code. There are several ways
to address the IPO scalability issue. First, the data structures in the compiler
must be carefully designed. Complex data management techniques might be

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

employed to schedule the loading of information into memory when it is needed
and swapping it out to external storage or discard it according to its expected
future use. Second, IPO can be selectively applied to the most important units
of the program. The 80-20 rule predicts that usually only a very small portion
(20%) of the code consumes most of the execution time (80%) [15]. Thus the
compiler should focus its optimization efforts on the most executed program
units, which consist of only a small portion of the whole application. The se­
lection of the optimization target can be guided by programmer intervention
or by profiling information.

2.2 Profiling-guided IPO
Whole program analysis and optimization is often impractical because of its
excessive time and memory requirements. Given the large variance in the
potential benefit of analyzing and optimizing each call site, IPO must optimize
call sites selectively. IPO may increase the size of some procedures through
inlining or code duplication and cause longer compilation times. In some cases,
IPO may even produce slower programs because of unexpected adverse effects
in instruction caches and register usage. Thus, compilers must select call sites
that are amenable to inter-procedural optimization. This selection is often
informed by profiling information.

Profiling-guided compilation requires more than one compilation and ex­
ecution of the application before the final executable code is generated. The
simplest profiling-guided compilation requires three steps: two rounds of com­
pilation and one round of execution taking place between the compilations.
First, the compiler inserts counters to collect run-time statistics. These coun­
ters may be inserted either in the original source code or in an intermediate
representation of the program. Runtime statistics collected include call site
frequencies, the frequency in which each branch is taken or not taken, the
number of iterations executed by each loop, and so on. We call this phase the
in s tru m en ta tio n phase. The second phase is the in stru m en ted execu­
tio n of the instrumented program with a training data input. The counters
inserted in the code collect runtime statistics and save these statistics in a
formatted file that can be interpreted by a later compilation. Finally, the run­
time statistics gathered during the instrumented execution are used to guide
the second compilation. The action of associating the source code, or the in­
termediate representation, with its respective frequency information is called
annotation .

Feedback information is beneficial for optimization when the training data
set is representative of typical input data sets. However, profiling-guided com­
pilation comes at a cost. The need for preliminary compilation and for a
training execution is inconvenient and time-consuming. Often, the instru-

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mented program needs much more time to compile and to execute. Experi­
ments show that instrumented programs slow down by 30-1,000% when com­
pared with their non-instrumented versions [5, 14, 17, 20, 34]. Thus, efficient
profiling has concerned several researchers [6, 11, 13]. An alternative to in­
strumentation and feedback information is to use an estimation of the exe­
cution frequency distribution in an application through static program analy­
sis [12, 19, 29, 40, 90, 97].

Another drawback of profiling-based optimization is that its effectiveness
depends on the training input set. The training input must be representative
of the actual input at runtime to generate appropriate feedback information.
However, research shows that the representativeness is not a big problem in
real profiling-based optimizations [32, 90]. Our work is based on profiling
information.

2.3 IPO Case Study
In this dissertation, function outlining is conducted using the Open Research
Compiler (ORC) and data outlining is conducted using the Toronto Portable
Optimizer (TPO). Both compilers handle IPO in a similar fashion. We will use
ORC as an example to show how IPO-involved compilation is different from
compilation without IPO. ORC is an open-source compiler that is adapted
from the SGI MIPSPro compiler. ORC generates executables for Itanium
Processor Family (IPF) processors. ORC inherits from the MIPSPro compiler
a mature compilation infrastructure, a rich optimization set including IPO,
and complete program analysis support. This excellent pedigree makes ORC
a very good platform for experimenting with novel research ideas.

2.3 .1 O R C w ith o u t IP O

When IPO is not invoked, ORC works like a traditional compiler as shown
in Figure 2.4. ORC transforms source code into executable in two phases.
The first phase, shown inside the dotted ellipse in Figure 2.4, is the modular
compilation of each source code file to generate a corresponding object code
files. The second phase is the linking of the object files into the final executable.

During the first phase, each source code file is first translated by the
compiler fro n t-en d (FE) into its intermediate representation called WHIRL
(Winning Hierarchical Intermediate Representation Language). The WHIRL
object file is then transformed by the compiler m idd le-end (ME) and back-
end{BE) into a relocatable object file. The WHIRL transformation iterates
on all the program units (PUs) in a source code file.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fork&exec
d ata flow
loop on files ?.driver

d ata to linker =

linkerME/BEFE

Whirl
object
files

Source
code
files

Object
files

Executable

Per-file transformation

Figure 2.4: ORC compilation without IPO

WHIRL Transformation Levels

The compiler gradually translates the source code from high-level language
constructs to low-level machine instructions. As more and more optimiza­
tion techniques are added into ORC, the robustness and maintainability of
the compiler itself becomes an important concern. To address this issue, the
WHIRL transformation is further divided into several phases, resulting in sev­
eral WHIRL levels. The higher the WHIRL level, the closer the WHIRL rep­
resentation is to the original source code. When the program is transformed
from the very high-level WHIRL to the very low-level WHIRL, the hierarchical
constructs from the high-level programming language are gradually lowered to
flat instruction-like constructs.

Optimizations have to be orchestrated carefully so that they take place at
the proper WHIRL levels. There might be several reasons for some optimiza­
tions to occur at higher levels of WHIRL representation. First, at the higher
levels, the compiler can access more accurate information, such as control flow
constructs and complex data types, from the original program. For example,
some programming language operations are represented by a single high-level
WHIRL statement. Thus, it is easy to find redundant operations by testing if
the operator and the operands are the same or not. However, once these high-
level constructs are lowered to several low-level WHIRL statements, it is more
difficult to detect the redundant operations. Moreover, high-level transforma-

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tions are more efficient and easier to implement because a high-level WHIRL
representation typically contains fewer, but more expressive, statements.

On the other hand, some optimizations can only take place on a low-
level intermediate representation. For example, register allocation has to be
conducted at the end of the compilation because only at that time can the
compiler access all the variables, including the original variables in the program
and the temporary variables generated by earlier compiler transformations.

Some optimizations, such as dead store elimination and copy propagation,
need to be repeated several times throughout the compilation. One reason
is that the opportunities for these optimizations appear after other transfor­
mations are performed. Moreover, these optimizations, in turn, might enable
further optimizations. Another important reason to perform some optimiza­
tions multiple times is that, when applied early, they help make the WHIRL
representation more concise and more tractable for downstream transforma­
tions.

Middle-end and Back-end Optimizations

A large repertoire of code optimizations takes place along with WHIRL trans­
formations. Some of these optimizations are machine-independent while others
are very sensitive to the low-level micro-architectural organization. Machine-
independent optimizations usually take place before machine-dependent ones.
Thus WHIRL transformations are also divided into two phases. The ear­
lier phase is formed by the machine-independent middle-end optimizations.
Middle-end optimizations include the incremental lowering of the interme­
diate representation of the program, the high-level loop optimizations, and
other traditional optimizations. The later phase performs the back-end op­
timizations, which are machine-dependent. Back-end optimizations include
register allocation, code scheduling, etc.

2.3 .2 O R C w ith IPO

ORC implements a complete IPO facility. Figure 2.5 shows the compilation
process in ORC when IPO is invoked. IPO creates opportunities for other
middle-end and back-end code optimizations. Therefore IPO must be per­
formed before such optimizations.

Source-code files are fed into the front-end for the generation of intermedi­
ate representation in the form of WHIRL-object files. Then Inter-Procedural
Lowering (IPL)1 reads the WHIRL object files and the feedback information,
analyzes them one-by-one, and writes the frequencies, estimated size, and es­
timated number of cycles executed in each procedure into the original WHIRL

1IPL is a preparation phase for IPO. Probably ORC uses this term for historical reasons.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

driver

IPOIPLFE

Whirl
object
files

Source
code
files

A nnoted
whirl
object
files

Per-file transform ation

fork& exec
d a ta flow
loop on files ?.

driver

d a ta to linker =

linkerME/BE

W hirl
Object
files

O bject
files

Executable

Per-file transform ation

Figure 2.5: IPO-involved ORC compilation

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

objects into files. IPO takes these annotated intermediate representations as
input to inlining and other inter-procedural optimizations. After IPO, the
procedures are fed to the traditional optimizer to generate relocatable objects.
Finally, the linker is invoked to generate the executable.

From Figure 2.5, we can see that, compared with the front-end, with the
back-end, and with the IPL, the operation of IPO is more similar to a linker.
The IPO reads all the available WHIRL object files and analyzes them to­
gether. This is necessary to enable the compiler to access the whole applica­
tion instead of a single procedure or source file. By analyzing the information
about all the source files, the compiler can perform inlining across the bound­
aries of different source files. This wider scope for optimization is important
for performance because closely-related callers and callees do not always reside
in the same source file.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Inlining Tuning

3.1 Introduction
Function inlining is a very important optimization technique that replaces a
function call with the body of the function [7, 22, 25, 26, 27, 30, 47, 59, 87].
One advantage of inlining is that it eliminates the overhead resulting from a
function call. The savings are especially pronounced for applications where
only a few call sites are responsible for the bulk of the run-time function invo­
cations; inlining those call sites significantly reduces the function invocation
overhead. For example, mcf (one of the SPEC2000 benchmarks) contains 34
call sites. Among these call sites, there are 5 that are executed more than 10
million times and 4 call sites that axe executed more than 1 million times in a
standard SPEC2000 training execution. These 9 call sites account for 99.85%
of all the function invocations in mcf. Our experiments show that inlining the
15 most frequent call sites can reduce the running time of mcf by more than
9%.

Inlining also expands the context of static analysis. This wider-scoped
analysis creates opportunities for other optimizations. Because the body of
the callee is now available at the call site, conservative assumptions that the
compiler would previously make about the call site are no longer required.

Another advantage of inlining is the improvement of cache efficiency. From
the point of view of the data cache (D-cache), after inlining there is no need
to create parameters to pass the caller’s variables that axe referenced by the
callee. Thus, a variable that previously had separate representations in the
caller and in the callee can now be reduced to a single memory location or even
promoted to a register. This storage consolidation reduces the data access
footprint of the application and improves the use of the memory hierarchy. A

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

similar advantage also exists for the instruction cache (I-cache). After inlining,
closely related segments of code are placed together, reducing the chances of
instruction cache conflicts [72].

However, inlining can have negative effects. One problem with inlining
is the growth of the code, also known as code bloat. Because a procedure
may be called from multiple call sites, it is often not possible to eliminate a
procedure after inlining a single call site. Thus, the final executable file must
contain several copies of the procedure: the original one and the inlined copies.
With the growth of functions because of inlining, the compilation time and the
compiler memory space requirement may become intolerable because some of
the algorithms used for static analysis have super-linear complexity.

Besides of the compilation time and memory resource cost, inlining might
also have the adverse effect of increasing the execution time of the application.
After inlining, the register pressure may become a limitation because the caller
now contains more code, more variables, and more intermediate values. This
additional storage requirement may not fit in the register set available in the
machine. Thus, if the register allocator cannot do a good job, inlining may
increase the number of register spills resulting in a larger number of load and
store instructions executed at runtime.

The above discussion of the benefits and drawbacks of inlining leads to an
intuitive criterion to decide which call sites are good candidates for profitable
inlining. The value of the benefits of inlining, such as eliminating function-call
overhead, enabling more optimization opportunities, and improving cache effi­
ciency, depend on the execution frequency of the call site. The more frequently
a call site is invoked, the more promising is the inlining of the site. If the call
site is invoked only a couple of hundred times in a long execution, inlining it
is unlikely to produce any improvement.

On the other hand, the negative effects of inlining relate to the size of the
caller and the size of the callee. Larger functions tend to have worse cache
behavior and higher register pressure. Inlining large callees results in more
serious code bloat, and, probably, performance degradation due to additional
memory spills.1

Thus, we have two basic guidelines for inlining. First, the call site must
be very frequent, and, second, neither the callee nor the caller should be too
large. Most of the papers that address inlining take these two factors into
consideration in their inlining analysis.

In this chapter we describe our experience in tuning the inlining heuris­
tics for the Open Research Compiler (ORC). The main contributions of this
chapter are:

JA memory spill occurs when the register allocation algorithm is not able to fit all live

values into registers. In this case, some values must be written temporarily (spilled) to

memory.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• We propose adaptive inlining to enable aggressive inlining for small
benchmarks. Usually, small benchmarks are amenable to aggressive in-
lining as shown in Section 3.4. Adaptive inlining becomes conservative
for large benchmarks such as gcc because the negative effects of aggres­
sive inlining are often more pronounced in such benchmarks.

• We introduce the concept of cydeAensity to control code bloat and
compilation-time increase.

• Our detailed experimental results show the potential of inlining. We
investigate the impediments to beneficial inlining and motivate function
outlining and partial inlining.

The rest of this chapter is organized as follows: Section 3.2 describes the
existing inlining analysis in ORC and its limitations. Section 3.3 describes
our enhancements to the inlining analysis (adaptive inlining and cydeAensity
heuristics) and Section 3.4 studies performance, finds the impediments for in-
lining frequent call sites, and motivates function outlining and partial inlining.
Section 3.5 reviews related work. The findings presented in this chapter were
published in [99].

To control the negative effects of inlining, we should inline selectively. How do
we determine whether a call site is suitable for inlining? The performance effect
of inlining an edge of the call graph depends on two factors: the execution fre­
quency of the site and the size of the callee. The problem of selecting the most
beneficial call sites while satisfying the code bloat constraints can be mapped
to the knapsack problem, which has been shown to be NP-complete [37, 79].
Thus, heuristics are often used to estimate the gains and the costs of each po­
tential inlining- ORC uses profiling information to calculate the temperature
of a call site to approximate the potential benefit of inlining an edge Ei(jp, q)
that represents a call site in a function p that calls a function q?

3.2 Overview of ORC Inlining

temper atureEifaq) =
cydejratioEi(p,q)

sizejratiOq
(3.1)

where:

cycle-count,
cy clejr dtioE- (p,)̂ Total jcydejxnm t

(3.2)

2Because function p may call q at different call sites, the pair (p. q) does not define an
unique cedi site. Thus, we add the subscript i to uniquely identify the i th call site from p to
?•

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sxzeq ,n ns
sizejratiOp = —---- :--------- :---:— (3.3)Total japphcationsize

where freqÊ p q) is the frequency of the edge Ei(p, q): freqq is the overall execu­
tion frequency of function q in the training execution; TotaLapplicationsize
is the estimated size of the application which is the sum of the estimated sizes
of all its functions; sizeq is the estimated size of the function q.

Total-cyclejcaunt is the estimated total execution time of the application:

Total .cycle.count = cycle .county (3.4)
k G P U se t

where PUset is the set of all program units {i.e. functions) in the program,
cycle.countk is the estimated number of cycles spent on function k.

cycle-countk = ^ freqi (3.5)
i G stm tsk

where stmtsk is the set of all statements of function k, freqi is the frequency
of execution of statement i in the training run.

The overall frequency of execution of the callee q is computed by:

freqq = freqEi{k,q) (3.6)
k G ca lle rsq

where callersq is the set of all functions that contain a call to q.
Essentially, cyclejratio is the contribution of a call graph edge to the ex­

ecution time of the whole application. A function’s cycle count is the exe­
cution time spent in that function, including all its invocations. (*
cycle-countg) is the number of cycles contributed by the callee q invoked by
the edge Ei(p,q). Thus, cyclejratio s^ q) is the contribution of the cycles re­
sulting from the call site Ei(p,q) to the application’s total cycle count. The
larger the cydejratioE^q) is, the more important the call graph edge.

The estimated size of the function q, sizeq, is computed by:

sizeq = 5 * BB-countq + STM T-countq + CALL.countq (3.7)

where BB-countq is the number of basic blocks3 in function q and reflects
the complexity of the control flow in the PU, STM T-countq is the number of
statements in q, excluding labels, parameters, and pragmas. CALL.countq is
the number of call sites in q.

The sizejratioq is the callee q''s contribution to the whole application’s
size.

3A basic block is a straight-line piece of code which contains neither branch instructions
nor branch targets in the middle.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, the TotaLapplicationsize is given by:

TotaLapplicationsize = sizek (3.8)
k € P Uset

The intuition for the temperature heuristic is that edges with high tem­
perature are call-sites that are invoked frequently and whose callee is small
compared to the entire application. With careful selection of a threshold on
temperature, ORC can find cycle-heavy calling edges whose callee is small
compared to the whole application.

Figure 3.1 shows the distribution of the temperature for the bzip2 bench­
mark.4 The horizontal axis shows the calling frequency and the vertical axis
the temperature. Each dot in the graph represents an edge in the call graph.
The temperature varies in a wide range: from 0 to 3000. The calling frequency
is shown in reverse order, the most frequently called edges appear on the left
side of the graph and the least-frequently-called edges are toward the right
side. From left to right, the temperature decreases as the frequency of the call
sites also decreases. It is reasonable that the temperature does not go straight
down because besides the call-site frequency, the temperature heuristic also
takes the callee’s size into consideration. Procedure size negatively influences
the temperature. Thus, frequently invoked call sites might be “cold” simply
because they are too large.

Temperature distribution of bzip2
10000

1000

100£3

£

1000 100
Frequency of call sites

le+06 100000 10000

Figure 3.1: Temperature distribution of bzip2

In the original ORC inlining heuristic, a call site is rejected for inlining
if its temperature is less than a specified threshold. However, this temper­
ature heuristic may lead to the inlining of edges with high temperature but
very low frequency. For instance, we highlighted two clusters of edges in the

4To make it easy to read, the two axes of the graphs are drawn using a log scale. Thus
some call sites whose frequencies or temperatures are 0 axe not shown in the graph. The
same situation exists in Figure 3.3.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gcc frequency accumulation

9

0.6

0.4

U.
0.2

25001500 2000500 1000
Cull sites ordered by frequency from high to low

Figure 3.2: Frequency accumulation of gcc (the top 2,750 of all 19,000 call

sites are plotted)

temperaturexfrequency graph for bzip2 in Figure 3.1. The cluster on the
right side of the graph has higher temperature but much lower frequency than
the cluster on the left side of the graph. Inlining infrequently invoked call sites
should always be avoided because it does not help performance. To improve
this heuristic, we created a new mechanism to cooperate with the temperature
heuristic to prevent the inlining of hot but infrequently invoked call sites. We
describe our solution in Section 3.3.

3.3 Inlining Tuning
We improve the inlining heuristics of ORC in two ways. First, adaptive in-
lining is employed to make the inlining heuristics more flexible. Second, a
new cydeAensity heuristic is introduced to restrict the inlining of hot but
infrequent procedures.

3 .3 .1 A d a p tiv e In lin ing

The original inlining heuristic in ORC used a fixed-temperature threshold
(120) for inlining decisions. This threshold was chosen as a trade-off among
compilation time, executable size, and performance results for different bench­
marks. However, a fixed threshold turns out to be inflexible for applications
with very different characteristics. For example, a high threshold {e.g. 120) is
reasonable for large benchmarks because they are more vulnerable to the neg­
ative effects of code size increase resulting from inlining. However, the same

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

threshold might not be good for small applications such as mcf. bzip2 , and
gzip. We will use gcc, which is a typical large application, and bzip2 , which
is a representative small application, to illustrate this problem.

Figure 3.2 shows the frequency accumulation for the gcc benchmark and
Figure 3.3 shows its temperature distribution. In Figure 3.2. the X-axis rep­
resents the call sites sorted by invocation frequency from high to low. The
ith point numbered from left to right in the figure represents the accumulated
percentage of the i most frequent call sites.

gcc has a complex function call hierarchy and the function invocations axe
distributed amongst a large number of call sites: there are more than 19,000
call sites in gcc. In the standard SPEC2000 training execution of gcc, there
are more than 42,000,000 function invocations, and the most frequent call site
is called no more than 800,000 times. Figure 3.2 shows that the top 10%
(about 2,000) most frequently invoked call sites account for more than 95% of
all the function calls. Inlining these 2,000 call sites would result in unbearable
compilation cost and substantial code bloat.

In Figure 3.3, according to the frequency of execution, we should inline the
call sites on the left hand side of the graph and we should avoid inlining the
call sites on the right-hand side. Notice that several call sites on the right-hand
side are hot, and thus are inlined by the original heuristics of ORC.

For large applications, the improvement from inlining is usually very lim­
ited (as we will see in the Section 3.4). On one hand, it is impossible to
eliminate most of the function overheads without wholesale inlining. On the
other hand, if we use the same temperature threshold as for small benchmarks,
we might end up with the problem of over-inlining, i.e. too many procedures
are inlined and the negative effects of inlining are more pronounced than the
positive ones. For example, if the temperature threshold is set to 1, there will
be more than 1,700 call sites inlined in gcc. Such aggressive inlining makes
the compilation time much longer without performance improvement as our
experiments show.

The high temperature threshold (120) in the original ORC was chosen to
avoid over-inlining in large applications. However, this conservative strategy
impedes aggressive inlining for small benchmarks where code bloat is not as
prominent. For instance, Figure 3.1 and Figure 3.4 show the temperature
distribution and frequency accumulation of the bzip2 benchmark. There are
only 239 call sites and about 3,900 lines of C code in bzip2 . This implies that
the program is quite small when compared with more than 19,000 call sites
and 190,000 lines of C code in the gcc benchmark. Moreover, in bzip2 the top
ten most frequently invoked call sites, which comprise about 4.2% of the total
number of call sites, accounts for nearly 97% of all the function calls shown in
Figure 3.4.

As we will see in the Section 3.4, aggressive inlining is good for small
benchmarks such as bzip2 . Inlining the 10 most frequently invoked call sites

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100000

Tomporaturv ditffibytion ol goc

10000 .♦ ,

01 ' I' 1 ■ 1 ...I. . — — ■)
1**C# T00000 10000 T000 100 TO T 0 1

Freguoney ol uO mIm

Figure 3.3: Temperature distribution of gcc

in bzip2 eliminates almost all its runtime function calls.
However, the inflexible temperature threshold often prevents the inlining of

the most frequent call sites because their temperatures are lower than the fixed
threshold (120). Thus, it is desirable that the temperature threshold for small
benchmarks be lowered because many of the call sites that have performance
potential do not reach the conservative temperature threshold used to prevent
code bloat in large applications.

The contradiction between the threshold distributions of large benchmarks
and small ones naturally motivates adaptive inlining: we use a high tempera­
ture threshold for large applications because they tend to have many hot call
sites; and we enable more aggressive inlining for small applications by lowering
the temperature threshold for them.

Adapting the inlining temperature threshold according to application size
is pretty simple in ORC. Because the estimated size of each procedure in
ORC is available in the IPO phase, their sum is the estimated size of the
application.5 We classify applications into three categories: large applications,
medium applications and small applications. In the compilation, we utilize
proper temperature threshold according to the estimated application size. If
an application is a large application, its temperature threshold is 120. If
it is a medium application, its temperature threshold is 50. Otherwise, the
temperature threshold is lowered to 1. The threshold values were obtained
by a detailed empirical study of the SPEC2000 benchmarks. This division
of applications into three categories produces better results than any single
threshold applied to all benchmarks.

5We ignore library functions and dynamic shared-objects because we cannot acquire this
information at compilation time.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bzip2 frequency accum ulation

> 0 o o ^ ; o' O' O'GOG
r ■
frOO-OO-4

■
>-o-<

0

0

►

0 5 10 15 20 25 30 35
Call sites ordered by frequency from high to low

Figure 3.4: Frequency accumulation of bzip2 (the top 38 of all 239 call sites

are plotted)

3 .3 .2 C ycle D en sity

The intuition behind the definition of temperature is that hot procedures
should be frequently invoked and not too large. However, as we have seen
in Figure 3.3 and Figure 3.1, some of the procedures with high temperature
are not actually hot, i.e. some infrequently invoked call sites also have high
temperatures. These call sites axe represented by the points in the top-right
part of the graphs and correspond to functions that are not called frequently,
but contain high-trip count loops that contribute to their high cyclejratio,
which results in a high temperature (see Equation 3.2). We call the functions
that are called infrequently but have high temperatures heavy functions.

Inlining heavy functions results in little performance improvement. First,
very few runtime function calls are eliminated. Second, the path from the
caller to a heavy function is not a hot path at all, and thus will not benefit
from post-inlining optimization. Third, inlining heavy functions might prevent
frequent edges from being inlined if the code growth budget is spent. To handle
this problem, we introduce cydeAensity to filter out heavy functions.

cydeAensityq = ^ cZe-cw n^ (3 .9)
9 frequencyg

where cycle-COuntq is the number of cycles spent on procedure q and frequencyg
is the number of times that the procedure q is invoked.

When a call site fulfills the temperature threshold, the cydeAensity of the
callee is computed. If the callee has a large cycle count but small frequency,
i.e. its cydeAensity is high, it must contain loops with a high trip count.
These heavy procedures are not inlined. cydeAensity has little impact on
the performance because it only filters out infrequent call sites. However,

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

using cycle-density as a filter can significantly reduce the compilation time
and executable sizes, which is important in some application contexts, such as
embedded computing.

lc+07

le+06

100000

-§ 10000

1000*2
8 10°
o

J 10
1

0.1
le+06 100000 10000 1000 100 10 1 0.

Frequency of call siics

Figure 3.5: Cycle density vs. temperature (bzip2)

Figure 3.5 compares the temperature against the cycle-density for each call
site in bz ip 2 . For call sites that are actually hot, the temperature is indeed
high while the cycle-density is low (for bzip2 they are always less than 0.5).
These call sites are the ones that will benefit from inlining.

Infrequently-invoked call sites fall into two categories according to their
temperatures. Infrequently-invoked call sites with low temperature are elimi­
nated by the temperature threshold. Infrequently-invoked call sites with high
temperature always have very high cycle-density. Thus we can prevent the in-
lining of these sites by choosing a proper
cycle-density threshold. In our timing, we use a fixed cycle-density threshold
of 10 that works well for the SPEC2000 benchmarks as we will see in the next
section.

We implemented this enhanced inlining decision criteria and contributed
it to the ORC-2.0 release. Figure 3.6 shows the C-style pseudo code for the
improved inlining analysis in the ORC. Notice that a procedure that has a
single call site in the entire application will always be inlined. The reasoning
is that the inlining of that single call site will render the callee dead, and will
allow the elimination of the callee. Therefore this inlining will save function
invocations without causing code growth.

25

temperature VS. c>clc_dcnsity
............. ,. . . .

temperature ^
densitv +

+ +
+ +

+
+

❖
o
§ + f

o
o

o <>

'++ + +
...............................

•+ ■*$*+ j ++ + | + ++• ++ ++#i ■ + + I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iNLININGANALYSIS(CaZZSife)

j j i f this is the only call to the callee. O RC inlines it anyway

i f (CalledOnlyOnce(callee))

return TRUE

/ / M EDIAN.THRESH OLD and LARGE.THRESHOLD are pre-selected thresholds

j J to classify the application as large, small or medium. Accordingly, a proper

/ / threshold is selected.

temperature.threshold <— 120

i f (estimated-size < LARGE.THRESHOLD)

temperature-threshold <— 50

i f (estimated-size < MEDIAN-THRESHOLD)

temperature-threshold <— 1

/ / temperature(X) computes the temperature of a call site X. The temperature is

I I compared against TEM PERATURE.THRESHOLD to decide whether a call

I I site is hot.

i f (temperature(CallSite) > TEMPERATURE.THRESHOLD

an d cycle.density(CallSite) < CYCLE-DENSITY-THRESHOLD)

return TRUE

return FALSE

Figure 3.6: Adaptive inlining in ORC

3.4 Results

3.4 .1 E xp erim en ta l E nvironm ent

We investigate the effects of adaptive inlining and of the introduction of the
cycle.density heuristic on performance, compilation time, and the final ex­
ecutable size of SPEC INT2000 benchmarks. We use a cross-compilation
method: we run ORC on an IA32 machine (an SMP machine with 2 Pentium-
Ill 600MHz processors and 512MB memory) to generate an IA64 executable
which is run on an Itanium machine (733MHz Itanium-I processor, 1GB mem­
ory). Thus our performance comparison is conducted on the IA64 systems and

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

our compilation time comparison is conducted on the IA32 system.

3.4 .2 P erform ance A n alysis

Inlining speedup (compared with no inlining)

■5

-1 0

Benchmarks

r i O O T20 • adaptive
T70 --G-- TIO • * • adaptivc+density

Figure 3.7: Overall performance comparison

Figure 3.7 shows the performance improvement when different inlining
strategies are used. T120 represents a fixed temperature threshold of 120,
T1 is a fixed temperature threshold of 1, similarly for the other T labels.
In adaptive the temperature threshold varies according to the adaptation
heuristic described in Section 3.2. In the adaptive+density compiler both
the adaptation and the cycle-density heuristics are used.

Except for perlbmk, in all benchmarks the adaptation heuristic results in
positive speedup for inlining. These results suggest that our adaptive temper­
ature threshold is properly selected. In some cases the difference between a
fixed threshold and the threshold chosen with adaptation is very significant
(see bzip2 and two I f). Note also that the addition of cycle-density to adap­
tation does not produce much effect on performance. This result is explained
by the fact that cycle-density only prevents heavy and infrequently invoked
functions from inlining.

We arranged the benchmarks in Figure 3.7 according to their sizes with
the smaller benchmarks on the left and the larger ones on the right. Compar­
atively, in general, inlining yields better speedups for small benchmarks than
for large benchmarks. This observation can be made by examining the maxi­
mum performance improvement from all the strategies. Excluding tw olf and
vortex, the maximum performance improvement decreases from left to right
(from small benchmark to large benchmarks). This trend suggests a loose cor­
relation between the application size and potential performance improvements
that can be obtained from inlining.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

_ 4
5

0

Figure 3.8: Final performance comparison

Figure 3.8 compares the performance improvements of different strategies
more explicitly. We first calculate the performance speedup for each bench­
mark. The baseline is the performance of the 11 benchmarks compiled without
inlining. Each bar in Figure 3.8 represents the arithmetic average performance
speedup for the 11 benchmarks studied. Finally, the two rightmost bars are
for adaptive inlining without and with cycle-density heuristics. The adaptive
inlining strategy speeds up the benchmarks by 5.28%, while the best aver­
age performance gain of all other strategies is 4.45% when the temperature
threshold is 50. Notice also that the performance influence of cycle-density
heuristics is negligible.

3 .4 .3 C om p ila tion T im e and E x ecu ta b le S ize A nalysis

In this section, we study the effect of the cycle-density heuristics on the com­
pilation time and on the executable size. Because cycle-density filters proce­
dures that have high temperatures but are infrequently invoked call sites, we
expected that their use should reduce both the compilation time and the final
executable size.

Table 3.1 shows some statistics collected from different optimization con­
figurations. In the table, “N” means no inlining is used, “A” means adaptive
inlining is used and “A-D” means using adaptive inlining plus cycle-density.
The table first shows the executable size, measured in bytes, and the com­
pilation time, measured in seconds, for all benchmarks when no inlining is
performed. Then for the compiler with adaptive inlining and the compiler
with adaptive inlining plus cycle-density, the table displays the percentage
increase in the executable size and compilation time. The table also shows,
under the “calls” columns, the number of call sites that were inlined in each

28

Final Performance Comparison
t 1 i i i i t r

T120 T100 T70 T50 T20 TIO Tl adap adap+density
Strategy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Executable Size Compilation Time

Program N

(Bytes)

A A-D N

(Secs)

A

%inc

A-D

%inc% inc call % inc calls

bzip2 116295 54.1 89 26.9 88 70.3-56 117.8 71.3

gcc 4397983 4.4 919 4.4 919 4194.54 6.0 4.0

crafty 6358-55 20.1 204 20.1 204 440.687 30.9 30.9

gap 1977644 9.7 345 7.3 343 1409.18 9.1 2.7

gzip 147417 67.6 62 28.0 54 109.457 93.8 41.2

mcf 48241 -0.5 19 -6.3 17 41.832 9.3 8.5

parser 340223 18.1 239 16.4 224 274.868 17.1 12.9

perlbmk 2163047 7.5 419 7.5 419 1518.37 10.6 8.9

twolf 823832 10.6 147 10.6 147 646.769 19.8 20.5

vortex 1170014 31.4 210 31.1 208 1162.27 33.0 36.5

vpr 532912 17.5 141 16.4 139 293.683 30.2 26.2

average 21.9 14.8 34.3 24.0

Table 3.1: Impact of cycle-density on executable size and compilation time

case.
The cycle-density heuristic significantly reduces the code bloat and com­

pilation time problem. On average, adaptive inlining increases the code size
by 21.9% and the compilation time by 34.3%. When cycle-density is used to
screen out heavy procedures, these numbers reduce to 14.8% and 24%, respec­
tively. It is also interesting to compare the actual number of inlined call sites:
the cycle-density heuristic only eliminates a few call sites. Except for gzip and
parser, cycle-density prevents the inlining of no more than 2 call sites in each
benchmark. Table 3.1 also shows some curious results. Although cycle-density
prevents the inlining of a single call site for bz ip 2 , the code growth reduces
from 54.1% to 26.9%. A close examination of bzip2 reveals that the proce­
dure doReversibleTransformation calls sortlt infrequently (only 22 times in

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the standard training run). However ORC performs a bottom-up inlining, in
which the edges in the bottom of the call graph are analyzed and inlined first.
In the bzip2 case, sortlt absorbs many functions and becomes very large and
heavy before it is analyzed as the callee. When ORC analyzes the sites that
call sortlt, the estimated cycle number spent in sortlt is huge, which con­
tributes to its high temperature. However, sortlt is called infrequently and
its inlining does not produce measurable performance benefits, cycle-density
filters these heavy functions successfully.

Finally, cycle-density only eliminates a few call sites because it is not
applied to callees that are only called at one call site in the entire application
(see Figure 3.6).

3 .4 .4 M otiva tion for P artia l In lin in g

Call sites breakdown

tnlined
Recursive
Large
NotHot

met bzip2 gzip parser vpr crafty twolf vortex gap perlbmk gcc
Benchmarks

Figure 3.9: Call sites breakdown

Figure 3.9 shows how many dynamic function calls can be eliminated using
our adaptive inlining technique. We divided the function calls into five different
categories:

Inlined Call sites that can be inlined with our adaptive inlining technique.
These call sites have high temperature and low cycle-density.

N otH ot Call sites that are not frequently invoked. It brings no benefit to
inline these call sites.

Recursive ORC does not inline call sites that are in a cycle in the call graph.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Large Call sites that have high temperature but cannot be inlined because
either the callee, the caller or its combination is too large, gcc, perlbmk,
c ra fty and gap have some large call sites.

O ther Call sites that cannot be inlined due to other reasons. For example, the
actual parameters to the call sites do not match the formal parameters
of the callee. As Figure 3.9 shows, these call sites are very rare.

With our enhanced inlining framework, we were able to eliminate most of
the dynamic function calls for small benchmarks such as mcf, bzip2 , and gzip.
However, we only eliminated about 30% dynamic function invocations for gcc
and 57% for perlbmk. Examining the graph in Figure 3.9, to obtain further
benefits from inlining we need to address inlining in these large benchmarks.
The categories that are the most promising are the recursive function calls and
call sites with large callers or callees.

Figure 3.9 shows that for some large benchmarks (parser, perlbmk, and
gcc) a significant portion of the function invocations that are not inlined are
recursive functions.

Among the two problems, we axe particularly interested in using the idea
of code splitting to reduce the sizes of the frequently invoked large functions,
which is discussed in Chapter 4.

3.5 Related Work
In this chapter we presented improvements to the inlining heuristics in the
Open Research Compiler (ORC). Several researchers have investigated inlin­
ing. However, very few of them produced a detailed empirical study using an
industry-strength compiler infrastructure based on industry-standard bench­
marks such as the one that we present in this thesis.

Ayers et al. [7] and Chang et al. [22, 47] studied aggressive inlining and
cloning. Their inlining facility is very much like that in ORC: the inlining
happens on high-level intermediate representation, using feedback information
and cross-module analysis. Both of them use a budget to control code bloat:
inlining a call site consumes code-growth budget. Ayers et al. use an estimated
100% compilation-time increase as their budget for inlining. ORC uses an
estimated 100% code-size increase for the inlining budget. In our experiments,
inlining in ORC never uses up this budget.

Without feedback information, Allen and Johnson perform inlining at the
source code level [4]. Besides reporting impressive speedup (12% on average),
they also show that inlining might exert negative impact on performance.

Several researchers have tried to enable aggressive inlining in the context
of object-oriented programming. A single call site may have multiple potential
callees. For instance, the C and C ++ programming languages allow calling

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

functions through pointers. Polymorphism in 0 0 programming languages
is often realized via indirect function calls, also called virtual-method invo­
cation. For indirect function calls, it may be impossible to infer the callee
before runtime. Thus, inlining cannot be applied straightforwardly to dy­
namic function calls. A series of special inlining approaches were developed
to improve the performance of applications that employ indirect function calls
intensively [9, 18, 28, 30, 41].

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Function Outlining

4.1 Introduction
Algorithms used in optimizing compilers are often applied to the scope of a
function. Many of these algorithms have super-linear time and spatial com­
plexity on their inputs. Thus compiling a program with large functions de­
mands large memory storage and is time-consuming. Large functions also
impose limitations on other optimizations such as function inlining as dis­
cussed in Chapter 3. The inlining heuristics used in most compilers avoid
inlining call sites that target large callees because inlining large callees causes
the code-bloat problem [25, 26, 27, 99]. For example, large functions axe the
most prominent cause that prevent the Open Research Compiler (ORC) from
eliminating frequently called sites. In Chapter 3, we have shown that, even
after tuning, ORC only eliminates about 30% of the runtime function invo­
cations for gcc and 57% for perlbmk. Moreover, more than 50% of the hot
call sites are not inlined because the callee is too large. Large functions also
undermine inter-procedural code layout algorithms. For instance, Pettis and
Hansen’s “closest is best” code layout algorithm tries to place a caller function
next to its most-frequently-invoked callee [72], The intuition is that proximity
between a call site and its callee enhances performance. However, if the caller
itself is very large, its most frequent callee may still be placed far away from
the call site, defeating the code placement heuristic.

Fortunately, not every statement in a frequently called large function is
equally important or executed as often as its host function. There are many
examples of large but infrequently executed code in hot functions [64, 65]. For
instance, only 8.1% of the code in the BSD version of the TCP network proto­
col implementation is frequently executed [65]. Another good example is the

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

function regmatch in perlbmk in the SPEC2000 benchmark suite. Regmatch
contains a switch statement with about 800 lines of C code to handle 57 string
matching scenarios. Although these 800 lines of code are evenly distributed
through the 57 cases, only 12 cases occur frequently. Splitting cold code out of
hot functions, i. e. outlining, is a natural solution to overcome the negative im­
pact of mixing codes with heterogeneous execution frequency. The advantages
of outlining cold regions of a hot function are at least three-fold:

Enabling Inlining. When a large cold region is outlined from a hot function,
the hot function might become small enough to enable its inlining.

Im proving Cache Efficiency. Without outlining, the aggregation effect of
large cache lines reduces spatial locality. Cold statements may be loaded
into the cache when hot statements are loaded. Segregating hot and cold
regions into separate functions enables better code placement to improve
the cache utilization.

Im proving Instruction Fetch B andw idth. Modern superscalar and VLIW
architectures demand high instruction bandwidth of the memory hier­
archy. A sufficient number of useful instructions must be fetched into
the cache for full utilization of the functional units in the processors.
For instance, Mosberger et al. found that limited instruction bandwidth
results in almost 70% of CPU cycles idle in some architectures [64]. Sep­
arating the hot code from the cold code also improves the utilization of
instruction-fetch bandwidth.

A negative performance impact of outlining is that extra function calls are
introduced to transfer control between the outlined region and the other parts
of the program unit. An efficient implementation of outlining should minimize
this performance penalty. This chapter describes the following contributions:

• An abstract syntax tree (ABS)-based region formation that efficiently
exploits high-level control flow structures and their associated feedback
information to differentiate regions with heterogeneous frequencies.

• A proof that the Optimal Outlining Problem (OOP) is NP-hard.

• An effective heuristic to analyze the benefit of outlining a region. This
heuristic decision weighs the benefit of reducing the host function size
against the frequency of the extra function calls introduced. We also
describe how to patch the control flow and data flow to preserve program
semantics in outlining.

• Because outlining is an early code transformation, it may negatively
impact existing downstream optimizations. Our experiments show that
more complex alias relationships created by these parameters have a ma­
jor impact on downstream optimizations and result in the introduction

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of substantial memory spills. We propose a novel technique, alias agent
to disambiguate parameters created to pass to outlined functions from
their counterparts in the host function.

• A study of two orthogonal function splitting strategies: (1) collective
vs. independent splitting; and (2) splitting with vs. without alias agent.
This study shows that selecting the correct strategy is crucial. Indepen­
dent splitting with alias agent reduces function sizes significantly while
minimizing the performance penalty of outlining.

Section 4.2 introduces the intermediate representation where outlining is
implemented and the concept of region. Section 4.3 describes the design
and implementation of outlining. Section 4.4 compares the different outlin­
ing strategies and reports the performance of partial inlining. Finally, we
discuss related work in Section 4.5.

4.2 Background
An important motivation for function outlining is to enable more aggressive
inlining, which is a major component of inter-procedural optimization (IPO) in
the Open Research Compiler (ORC). ORC performs IPO very early to enable
aggressive function-level compilation. It is thus natural to also implement
outlining early in this compiler. The outlining analysis and transformation
described in this thesis is a transformation of the WHIRL abstract syntax tree
of the function affected.

4 .2 .1 W H IR L Tree In trod u ction

ORC’s intermediate representation has five levels, from very-high WHIRL to
very-low WHIRL [80]. At the higher levels the WHIRL representation of a
function is close to the original source code. We implemented outlining on
very-high WHIRL where high-level hierarchical control flow constructs — such
as if, loop and switch — have not been transformed to flat constructs — such
as conditional branches and gotos. Thus outlining can take advantage of these
hierarchical constructs and their associated frequency information to identify
the cold code segments in a single pass through the WHIRL tree.

A contrived function, HotPU shown in Figure 4.1, illustrates the WHIRL
tree representation. Statements are annotated with their execution frequency
obtained from runtime profiling. Assume that HotPU is frequently invoked.
The shaded code segments or nodes are the cold parts of HotPU.

In very-high WHIRL, three control flow constructs may lead to infrequently
executed code in a hot function:

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

H o tPU / /1 0 0 0

1. sw itch (key)

2. case 1: ... break; / / 500

4. case 3: ... break; / / 500

7. en d sw itch

8. i f (i > 100) / / 1, ifl

Sksissi

13. e ls e / / 999

14. i f (i = = 101) / / 0, if2

16. e ls e / / 999

17. i -

15. return 2; / /9 9 9 , frequent ER

19. e n d if

20.

22. e n d if

23.

FUNC_Region 1000

{̂ ~switch~̂))
 0 0

fprintfg) Cprintf3')

regionl region3
500 C C G 1

C C S (printfT)
500 t CG3

0 C GG4 region2 region4 regionsCG: case goto
DG: default goto
Ad: default action

An: action for if case

(iretum 4) C i -)C return 2)

Figure 4.1: Example source code & WHIRL tree

i f sta tem en t. An i/node in a WHIRL tree has two children: a then block
and an else block. The feedback information contains the execution

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

frequency of each branch. For example, in Figure 4.1 both if statements
have skewed execution frequency.

sw itch s ta tem en t. In Figure 4.1, each CG node corresponds to an enumer­
ated case in a switch statement. If the switch expression (or key) equals
to n, the CGn node is executed and the program jumps to the An node
that contains the action code for case n. If the switch expression is not
equal to any of the enumerated cases, the program jumps to the Ad
node that contains the default action through the DG node. Feedback
information associated with a switch statement indicates the execution
frequency of each case. Studies have shown that many switch statements
have skewed execution frequency distribution [100]. In Figure 4.1, only
two of the cases in the switch statement are hot.

E arly re tu rn . Early return occurs when the return statement or an exit func­
tion call appears early in a function. Each return statement is annotated
with its execution frequency. Usually a hot early return implies that the
rest of the function is cold. In Figure 4.1, there axe three early returns
at lines 12, 15 and 18 that correspond to nodes returnO, returnl and
return2 in the WHIRL tree. However, only return2 at line 18 is hot.

Analyzing high-level control flow constructs and their corresponding frequency
annotation makes spotting the cold code in a hot function straightforward.

4 .2 .2 R eg io n

In this thesis, a region is a sequence of code in the program that is guarded
by a high-level control-fiow construct such as if and loop statements (see
Figure 4.1). For instance, for an if-then-else statement, the code executed
under the then branch consists of a region and the code executed under the
else branch forms another region. Likewise, the loop body of a while statement
is a region.

To handle early returns in the WHIRL representation, we must define the
notions of nearest common ancestor of two nodes, and of anode’s position in an
ancestor node. A region is represented in WHIRL by a subtree with a BLOCK
node as the root. This node has an arbitrary number of children representing
the content of the region. The order of a child c in a region R , order (c, R), is
the one from the source code. In Figure 4.1, order(while, regionl) = 1 and
order(retumO, regionl) = 2. A WHIRL node w has a parent, parent (w), and
a set of ancestors, ancestors(w). In Figure 4.1, parent(while) = regionl and
ancestors (while) = {regionl, ifl, FUNC -Region}. If s € R, R must be an

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ancestor of s. The position of s in R , Pos(s. R), is given by:

{order(s, R) i f parent(s) = R

order{sA, R) i f (sa € ancestors(s)) A (parent(sA) = R)

Thus, if an ancestor of s is a child of R. the position of s in R is the order of
that ancestor. In Figure 4.1, we have Pos(retum2, region5) = order(retum2,
regionS) = 2 and Pos(retum2, region3) = order (if2, regionS) = i .

Given a node 2 in a WHIRL tree W, the level of 2 in W, Lev el (2 , W), is
the number of edges that have to be traversed from the root of W to reach 2.
The root of W is at level 0.

Given a WHIRL tree W and two nodes y € W and 2 6 W. the nearest
com m on ancestor of y and 2 , NCA(y. z) is a WHIRL tree node s £ W such
that all the following conditions are true:

1. s £ ancestors(y) A s 6 ancestors(z)

2. jB t E W, (t ^ s') A (t G ancestors(y)) A (t G ancestors(z))A

(.Level(t, W) > Level(s, W))

An early return statement short-circuits the rest of the current function.
However, the short-circuited code might reside in different levels and different
regions in the WHIRL tree. For example, retum2 leads to three unexecuted
print statement: printfl in region3; printf2 and printf3 in FUNC-Region. The
code short-circuited by an early return er in region R, SC(er, R) is defined
by:

SC(er, i?) = | s j (a = N C A (er,s)) A (^Pos(s,A) > Pos(er,A))}

In the example, SC(retum2, region3) includes printfl and SC(retum2 ,
FUNC-Region) includes printf2 and printf3.

4.3 Function Outlining
There are three phases in function outlining optimization: region reorganiza­
tion transforms the WHIRL tree so that the cold code is in separated regions
from hot code; candidate identification identifies regions for which outlining is
beneficial; function splitting generates a new function from a candidate region
and replaces the region with a call to the new function.

In biased i f statements, the hot code and the cold code axe well structured
in two separate sub-regions. However, for switch statements and early returns,

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hot and cold codes axe mixed with each other. A depth-first pass on the
WHIRL tree reorganizes codes with heterogeneous execution frequency due
to switch statements and early returns into different regions for convenient
splitting.

4 .3 .1 R eorganize a Switch S ta tem en t

In most modern programming languages multi-way branch semantics are ex­
pressed by switch statements. These statements are frequently used in the im­
plementation of script interpreters, compilers, and virtual machines because
these applications often use the value of a key to select one among a large
collection of possible actions.

A switch statement contains a key expression, a set of (case value, case ac­
tion code) pairs and a default action code. The execution of a switch statement
has two distinct phases: case selection and case action [78]. Case selection de­
cides which case should be executed based on the value of the key (or switch
expression). If the key is equal to one of the enumerated case values, the con­
trol flow is directed to the corresponding action code. Otherwise, the default
action code is executed. In this case, we say that the key falls in the default
category or that it is a default case.

884 lines C code
E N T R Y ^freq * !.14266* 10*8

switch (OP(sc&d))

££j& cuses (35 cases never touched)
total freq: 1805920 (1.6*)12cuses*< •

Total freq: 1.12438* 10*8 (984*)

Figure 4.2: Annotated control flow graph of function regmatch in perlbmk

To write robust application programs, one must handle many boundary
cases, even the ones that seldom occur during program execution. As a con­
sequence, the execution frequency of action cases is often skewed with a small
fraction of cases dominating the execution of a switch. For instance, Figure 4.2
shows the breakdown of the cases in a switch, S , in the function regmatch of
the SPEC2000’s perlbmk program. This function matches regular expressions
with strings in a file. S requires about 884 lines of C code evenly distributed
through 57 cases. But only 12 cases are hot. This is because some expres-

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 884 line* C code
E N T R p frcqsl • 14:«>• 10*8

PLUSBOL SOL STAR'EXA(

EXIT

Figure 4.3: Partitioning regmatch in perlbmk

sion matchings, such as exact matching (EXACT) and matching zero, one, or
more times (STAR and PLUS), occur often. However, exotic matchings, such as
matching a string from n to m times and matching a string backward, seldom
occur at runtime.

Cold cases introduce several problems: (1) they increase the size of the
function that hosts the switch, which prevents inlining: (2) the code for cold-
case actions, which is intertwined with the hot case actions, pollutes the in­
struction cache; (3) cold cases may slow case selection by increasing the depth
of the comparison tree or cause inefficient usage of memory by the slots for
cold cases in the jump-table. Separating the cold cases and their actions from
the hot cases ameliorates all these problems.

Switch partitioning first partitions a large switch S into two: a hot switch
Sh containing the hot case selections and the hot action code, and a cold
switch Sc with the remainder cases and code of S. After this reorganization,
a new, simple, and fast, tree-based splitting technique can split Sc out of
the host function. The combination of switch reorganization and splitting ele­
gantly solves the problems caused by cold cases: (a) the host function becomes
smaller and is more amenable to inlining: (b) the hot cases are placed together
without pollution from cold cases at runtime; and (c) the execution path for
the selection of hot cases becomes shorter.

Figure 4.3 shows the partition of S into Sh and Sc in regmatch. The cold
cases are clustered into Sc and placed into the default action of Sh- After the
reorganization, Sc forms a natural cold region and can be easily split out of
the host function. Not all large switches can be partitioned in the way shown
in Figure 4.3, see Section 4.3.1.3 for details.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.1.1 P repass for Switch R eorganization

In preparation for switch reorganization, a prepass summarizes the feedback
information, and clusters cases based on control flow information.
(i) Sum m arize th e switch.

The total frequency of a switch S is:

S .n u m + l

S.totaLfreq = ^ S.Freq[i] (4.1)
i=l

where S.num is the number of enumerated cases in S and S.Freq[S.num + 1]
is the frequency of the default case of S.
(ii) C luster cases according to control flow inform ation.

If there is no transfer of control between different cases in S, identifying
hot cases and cold cases is the result of a simple analysis of the feedback
information. However, inter-case control flow is often found in application
programs. For instance, a common programming trick is to let control fall
through from case i to case i+ 1. Moreover, an action may end with an explicit
goto that transfers control to an arbitrary label in the program.1 Therefore, the
feedback information alone is not sufficient to identify hot actions. Consider
a program where the hot action of a case A falls through to the action of
another case B. The action of case B is also hot, even though its frequency
in the feedback information may be low. In this circumstance, A and B must
be an atomic unit for the splitting analysis.

A goto transfers control from a source location to a destination location.
Given a switch S, we say that a goto g is in 5, g € S, if both the source and
destination locations are within S. If g G S , we refer to a g.source.case and to
a g.destinatiorucase. The algorithm P re p a s s , shown in Figure 4.4, computes
case groups based on control flow. First, each case is assigned to a distinct
group ranging from 1 to S.num + l (steps 2-3). Two situations are of interest:
fall-through between adjacent cases (steps 4-7) and gotos that are in S and
whose source and destination cases are distinct (steps 8-10).

M e r g e G r o u p s , called by P re p a s s , merges two case groups into one.
Whenever two groups are merged, their members are assigned the same new
merged-groupdd (step 5). M e r g e G r o u p s also calculates the execution fre­
quency of the merged group, which is the sum of the invocation frequency of
its member cases (step 6).

4.3.1 .2 Switch P a rtitio n in g Benefit E stim ation

After the prepass phase, the compiler analyzes the summarized information
to decide whether a switch should be split. If the decision is yes, the compiler

lrThis situation appears frequently in heavily hand-optimized applications such as
perlbmk.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P r e p a s s (S)

1. m er ged .gr oup.id <— S.num + 2;

2. foreach i from 1 to S.num + 1;

3. case[i\.group <— i;

4. foreach i from 1 to S.num

5. if (case[z] falls through to case[i + 1])

6. th e n M e r g e G r 0 U P S (S ,i, i 4-1 , m erged.group.id):

7. m er ged.gr oup.id *— m erg ed .g roup.id 4- 1;

8. foreach g S S such that g.source.case r- g .d estin a tio n x a se

9. MERGEGR0UPS(5, g.source.case, g .d e s tin a tio n x a se , m erged .group.id);

10. m erged .group.id <— m erged .group.id + 1;

M e r g e G r o u p s (S. i, j , new .id)

1. S.F req[new .id] <— 0;

2. groupS <— case[i].group\

3. g ro u p .j <— case\j).group:

4. foreach k such that case\k].group = grou p .i o r case[k\.group = grou p.j

5. case[k].group <— new.id:

6. S.F req[new .id\ «— S.F req[new .id\ + 5.Freg[A:];

Figure 4.4: Case clustering

also find the cases that should be split out of the original switch. The input for
this analysis is the switch S annotated with the groups formed by the prepass
phase.

P a r t i t i o n A n a l y s i s , shown in Figure 4.5, sorts the case groups according
to their frequencies from high to low. Then the algorithm scans the case groups
and accumulates their execution frequency. When the accumulated frequency
reaches FreqSThreshold (99% in our work), the scanning stops. The decision
to split the cold cases is based on the size of the cold cases. If ColdSize is
larger than a set threshold (40 in our work), the switch is reorganized into a
hot switch and a cold switch as illustrated in Figure 4.3, and the cold switch
can be split out of the host function now.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PartitionA nalysis(S)

1. AccuFreq <— 0;

2. HotSize — 0;

3. HotGroups ■*— 0:

4. foreach non-empty group i from the most frequent to the least frequent

5. AccuFreq — AccuFreq + S.Freg[i];

6. HotSize — HotSize + S. Size [i];

7. i < { m S S ^ i r r e qjrh T esh old)

8. th e n HotGroups *— HotGroups (J i:

9. e lse break: / / terminate the loop

10. ColdSize <— S.total s i z e — HotSize;

11. i f (ColdSize > S ize-Threshold)

12. th e n C oldSw itch <— P a r t it io n S w itc h C a s e S tm t(S , HotGroups);

Figure 4.5: Partition benefit analysis

4.3.1.3 P artition ing Switches W ith H ot D efault

Not all large switches can be reorganized in the way shown in Figure 4.3. When
the default case is seldom executed, as is the case in Figure 4.3, the original
default is simply placed into the cold switch. However if the original default
case is frequently executed, moving it into the cold switch is troublesome for
two reasons: (1) a hot case is still mixed with the cold cases; and (2) if splitting
is applied, many additional function calls will occur at runtime. Therefore
two classes of switches must be treated separately: hot-default and cold-default
switches. For hot-default switches the reorganization shown in Figure 4.6 works
well. The main difference with the reorganization illustrated by the example
in Figures 4.2 and 4.3 is that now the default action remains in the hot switch.
Also the case selection of cold cases is kept intact. The actions of cold cases are
replaced with gotos that transfer control to the new cold switch. The original
cold actions are moved into the cold switch. After this transformation, if the
switch expression contains a cold value, its case selection requires: (1) the
original case selection; (2) a function call; and (3) a second case selection in
the cold switch. If the cold cases are indeed cold, this additional function call
will happen infrequently and thus have a negligible cost.

P a r t i t i o n S w i t c h C a s e S t m t , shown in Figure 4.7, partitions a switch
into two and then splits the new cold switch into a new, independent region.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ENTRY

switch (key)

Cow l ■ DEFAULT

n u l l ;

-EXIT

Figure 4.6: Partitioning a switch with hot default cases

P a r t it io n S w it c h C a se S t m t (S)

1. i f (Cd is h o t)

2. C oldSw itch <— C r e a t e S w i t c h (S .C oldC ases, NULL);

3. N ew R egion <— B u i ld R e g io n (ColdSwitch);

4. fo r e a c h (C i, A i) in S .C oldC ases

5. GotOi <- N e w G o t o {N ewRegion);

6. R e p la c e ^ * , GotOi):

7. e l s e

8. O rig D efa u lt *— (Cd, Ad);

9. N ew C oldC ases <— S .C oldC ases — O rigD efau lt;

10. C oldSw itch <— C R E A T £S\vncn(N ew C oldC ases, O rig D efa u lt);

11. N ew R egion <- B u ild R e g io n (C oldSw itch);

12. fo r e a c h (C i , Ai) in S .C oldC ases

13. D e l e t e (Ci, Af);

14. REPLACE(j4d, N ewRegion);

15. R e pairF e e d b a c k In fo r m a t io n (S);

16. r e tu r n C oldSwitch;

Figure 4.7: Partition and split switch

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The algorithm actions are different for cold and hot default situations. In the
algorithm. Ci represents case i and C'd is the default case; Ai is the action
code for case i and Ad is the default action code. C r e a t e S w it c h generates
a new switch, ColdSwitch, containing the cases listed on C r e a t e S w it c h ’s
first parameter and the default case that appears in C r e a t e Sw i t c h ’s second
parameter. When the default case is hot (steps 1-6), the default action of the
cold switch is empty. R e p l a c e replaces the actions of the cold cases in the
original switch with got os to the newly generated region.

When the default case is cold (steps 8-14), the cold switch is created
with the cold cases, including the cold default. This cold switch is split into
NewRegion. Then the cold cases and their action codes are deleted from the
original switch. The default action of the original default case is replaced with
NewRegion.

4 .3 .2 H an d lin g F requent E arly R etu rn s (E R)

The algorithm H a n d l e E R , shown in Figure 4.8, handles early returns. H a n -
d l e E R is called when an early return statement Ser is encountered during
the depth-first traversal of the WHIRL tree. ReturnFreq accumulates the
execution frequency of early returns (step 1). Its value is reset to zero before
the scan of a function starts, and is preserved between calls to H a n d l e E R .
Unless resides in a loop body, when the ratio between the accumulated
frequency and the frequency of the host function reaches the ERThreshold,
the code after S.er is cold. If SeT is inside a loop body Sioop, it is possible that
the code in SC (Ser, Sioop) is still hot and we avoid outlining it. We use an
upward traversal from the early return S ^ to find its uppermost loop ancestor
Sioop (step 6-9). If there is no loop ancestor, Sioop is set to be Ser itself. The
cold code resulted from frequent early return is SC(Sioop, FUNC-BODY).
The cold code might spread into different levels of the WHIRL tree (e.g. the
three p rin tf statements in our example). To preserve program correctness,
code from different levels cannot simply be put together in a single region.
Instead, an upward traversal from S& (step 11-15) extracts the cold code of
every region that it encounters into a new region (step 14).

4 .3 .3 O u tlin in g C an d id ate Id en tifica tion

After region reorganization, every cold code snippet is placed in an indepen­
dent region and annotated with (frequency, size). The size of a region is
the number of WHIRL nodes in that region. Next the compiler identifies cold
regions that are suitable for outlining.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

H a n d l e E R (Ser)

I. R eturnF req — R etu rn F req + G etF req(S er)

2- { c J Z H Z : ? , «) < E R T h r M d)

3. retu rn

4. Sloop * Ser

5. C u rren tP aren t <— G etP a ren t(S eT)

6. w h ile (C u rren tP a ren t jtz R O O T) / / R O O T is the root of the WHIRL tree.

7. i f (C u rren tP a ren t is a loop construct)

S. Sioop — C u rren tP a ren t

9. C u rren tP a ren t *— G etP a ren t{C u rren tP a ren t)

10. C urren tN ode <— Sioop

II. w h ile (C u rren tN ode r R O O T)

12. C u rren tP a ren t ■*— G etP aren t(C u rren tN ode)

13. i f (C u rren tP a ren t is a region)

14. ca ll E X T R A C T C O L D C O D E lN T O R E G IO N (S C {C u rren tN ode, C u rren tP a ren t))

15. C u rren tN ode <— C u rren tP a ren t

Figure 4.8: Handling early exits

4.3.3.1 Hazardous program units for outlining

Some program units are not outlined to prevent performance degradation or
to preserve program correctness. Besides trivial functions that are rarely exe­
cuted, the following are not outlined.
Small regions. Outlining replaces a region in a host function, fh o s t, with a
function call to a new function, f out. Code patches are often required, before
and after the call to / out, to preserve correctness. If a region is too small,
these patches might be larger than the outlined region. This kind of outlining
is strictly avoided because it fails to reduce the size of the original program
unit.
Regions with escaped alloca-allocated memory. Alloca allocates memory
space in the stack frame of a function. This memory is automatically freed
when the function returns. When a function uses alloca to allocate memory in
a region and references the allocated memory outside of the region, the region
should not be outlined. This is because f out would allocate a memory block

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with alloca ancl pass this block to fh o st- It would be difficult to maintain the
original semantics of the program because the memory allocated in f out would
be automatically freed at its exit and would be no longer valid in fh ost-

4.3.3.2 Optimal Outlining Problem is NP-hard

Cold regions are not always beneficial for outlining. The major benefit of out­
lining is the size reduction of the host function that enables more aggressive
inlining and improves code layout. Splitting a segment of code out of a func­
tion has several costs. First, necessary code patches may eliminate the size
reduction benefit. Second, because the original cold region in fh0St is replaced
by a function call to f out, there is a performance penalty to execute the cold
region. It is a hazard to outline hot code because it will result in many run­
time function calls. Therefore, an Optimal Outlining Problem (OOP) can be
formulated as a constrained optimization problem: fh0St is formed by a set of
regions. Assume precise frequency F{ and size Si information for each region
R i in fhost, and a given budget of extra runtime calls K, find a set of regions
that, when outlined, minimizes the size of fh0St without exceeding K. The
0-1 knapsack problem [37] can be reduced to OOP. Consider N items (Vi,Wi)
where each item has value Vi > 0 and weight Wi > 0. The 0-1 knapsack prob­
lem is the problem of finding a vector with N binary elements ck that satisfy
the following condition:

N N

M axim ize(2 > x vf)) such_that x wf) ^ K and di G {0,1} (4.2)
i=l i=l

Given a knapsack with capacity K and N items in the 0-1 knapsack problem,
we construct a corresponding OOP instance as follows. Each item (vt, wf) rep­
resents a region with size Vi and outlining cost W{. Let K be the extra runtime
call budget. The conversion complexity is linear on the number of items N.
Therefore, the 0-1 knapsack problem can be reduced to OOP in linear time.
The 0-1 knapsack problem is a well-known NP-hard problem, therefore OOP
is also NP-hard. Thus, a reasonable heuristic to find approximate solutions to
OOP is necessary.

4.3.3.3 Engineering Approach to Selective Outlining

Given a region Ri in & function f host with frequency F{ and size Si, we define
the frequency ratio of Ri and the size ratio of Ri as:

5 .
sizejratio(Ri) = ——77— r (4.3)

szze(fhost)

freqjratio(Ri) = - --------------— r (4.4)
frequency [fhost)

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We adopt a popular knapsack problem greedy algorithm to estimate the
benefits of splitting a region Ri out of fh ost [62]. The greedy algorithm has
tight time and space bounds and has been proved to be effective in many cases.
The idea is to calculate the profit density for each region. In this framework
the profit density of a region is called benefit:

b e n e f i tm = (4 .5)
J v 1 freq-ratio{Ri) v '

The regions are then sorted in decreasing order of their benefit value. Regions
are selected for outlining, equivalent to placing items into a knapsack, until
the constraint in equation 4.2 is violated, i.e. the knapsack cannot hold any­
more items.

Essentially, sizejratio{Ri) and freqjratio(Ri) estimate the contribution of
Ri to the total size and execution frequency of fh o s t- Therefore, this heuristics
favors large cold regions. Intuitively, larger regions that are not executed
frequently should produce the most benefit from outlining and incur the least
runtime penalty.

To avoid a situation in which the patch code is larger than the outlined
region, there is a threshold for the size of a region R to be outlined:

sizeR > SizeThreshold (4.6)

4 .3 .4 F un ction S p littin g and P a tch in g

In this discussion of outlining we adopt the following terminology: fhost {host
function) is the original program unit in which a region is selected for outlining;
R o u t {outlined region) is the region within fh o s t that is selected for outlining and
R ieftover {leftover region) is f host excluding R out (Figure 4.9.a); fca ller {outsider
caller) is a function that calls fhost', fo u t {outlined function) is the new function
that is generated by the outlining process to contain R out and fleftover {leftover
function) is the original program unit after R out is split out of fh o s t- After
outlining (Figure 4.9.b), f out becomes the callee of / ’leftover and f h0st is replaced
by fleftover in the call chain, fleftover inherits all the original resources of fh o s t,

including the function name, patched WHIRL tree and symbol table.
The outlining transformation consists of three major phases. Summarizing

collects information that is needed by function splitting. Callee generation
generates the f out program unit for the outlined region R out- Caller patching
eliminates the split code and inserts compensation code in fhost to conserve
the correct semantics. Function foo in Figure 4.10 will be used as an example
of an fhost program unit to demonstrate the outlining process.

Assume that the identification algorithm determines that the shadowed
code in Figure 4.10 is a region to be split {i.e. Rout)-

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ou tsid er
ca lle r

call
retu rn

le fto v e r
reg io n

o utlined
reg ion

g o to

h o st fu n c tio n = ou tlin ed reg io n + lefto v er reg ion

(a) Before outlining

outsider
caller

\ return?call

leftover
function call

outlined
functionpatch

goto?

1. The leftover function replaces the host function.
2. The outlined function becomes the callee of the

leftover function.

(b) After outlining

Figure 4.9: Outlining transformation

4.3.4.1 Sum m arizing

The summary information of a region is used in the outlining transforma­
tion. This step traverses the WHIRL representation of the region and collects
information including:

i. V ariable access inform ation. There are two kinds of variable accesses:
use and definition. A variable’s use reads the value of the variable and
a variable’s definition writes a new value to the variable. For example,
in the statement a = x + y, variables x and y are used and variable
a is defined. The variable access information is used to determine the
variables that must be passed to the new program unit.
There is no need to collect access information for global variables because
they can be seen by all the functions, including the newly generated
program unit.
The right column of Figure 4.10 lists the variables accessed by foo. The
first parameter to the print f function call is a global symbol representing
a constant string and is accessible by all the functions, it does not need
to be passed as a parameter to f out. Note that the variable j is never
accessed outside of Rout. Thus, j can be converted to a local variable in
f out to avoid the overhead of passing it as parameter.

ii. Local label inform ation. We collect all the labels that appear in R out-
This is because labels are also symbols in a function. After the outlining
transformation, the labels in fhost are converted to labels in f out. In
Figure 4.10, there is one local label LI in R out-

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 int foo(int p)
2 { Summary of the region:
3 int i, j ;
4 Accessed variables:
5 i = 100; DEF: { i (linel4) }
6 if(p > 1) USE: { p (Iine8, Iinel3) }
7 { GLOBAL: {“Never here: j=%d”}
8 j = p; LOCAL: { j }
9 goto LI;
10 printf("Never here; j=%d\n",j); GOTOs:11 return i;
12 LI: OUTWARD: { (L2 (linelS, Iinel7)}
13 if(p == 3){ LOCAL: {LI (line9)}
14 i = 200;
15 goto L2; RETURNs:
16 } { i (Iinell)}17 goto L2;
18 } LABELs:

{ LI (Iinel2)}19 L2:
20 printf("i = %d\n",i);
21 return i;
22}

Figure 4.10: Function foo before function splitting

iii. Goto and re turn inform ation. We divide goto statements in R out into
two categories: outward got os and intra-regional gotos. Outward gotos
are the goto statements that jump to a label in Rieftover- A goto statement
in R out that jumps to a label also in R out is an intra-regional goto.
It is easy to tell whether a goto statement is outward or intra-regional
by checking whether the destination of the goto falls in the local label
list.
Return statement information is used to insert compensation code in
f host and f out so that when return is executed, f out returns to fca iier , i-O-

the caller of the fh o s t-

Figure 4.10 shows the gotos, returns and labels found in the R out region of
foo.

4.3.4.2 O utline th e region

This step involves generating f out based on R out. Figure 4.11 shows fleftover
and Figure 4.12 shows the new function f out ifooN E W 1. Function splitting
needs to perform the following tasks:

i. C onstruction of f out and its sym bol table. The compiler needs to build
a valid WHIRL tree and its symbol table for f out. The compiler first

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 int foo(int p)
2 {
3 int i / j ;4 int ReturnFlag, ReturaValue;
5 i = 100;
6 if (p > 1)
7 {
8 fooNEWl(&ReturnFlag, &ReturnValue, &i, p) ;
9
10 if (ReturnFlag != 0) {
11 if (ReturnFlag == 1)
12 return (RetumValue) ;
13 else
14 COMPGOTO(ReturnFlag-2,{L2});
15 }
16 }
17 L2 :
18 printf("i = %d\n",i);
19 return i;
20 }

Figure 4.11: The original foo function after function splitting

1 void
2 fooNEWl (int *ReturnFlag, int *ReturnValue, int *iNEW, int pNEW)
3 {
4 int j;
5 *ReturnFlag = 0 ;
6 j = pNEW;
7 goto L1NEW;
8 printf("Never here; j = %d\n", j) ;
9 *ReturnValue = *iNEW; // r e t u r n I ;
10 *ReturnFlag = 1
11 return;
12 L1NEW:
13 i f (pNEW == 3){
14 *iNEW = 200; // i = 2 0 0 ;
15 *ReturnFlag = (0 + 2); // g o t o L2
16 return;
17 }
18 *ReturnFlag = (0 + 2); // goto L2
19 return;
20 }
21 }

Figure 4.12: The new fooNEWl function after function splitting

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

builds an empty WHIRL tree and then clones the WHIRL tree of R oul

into the empty WHIRL tree. This newly generated WHIRL tree is not
valid because both fh o s t and f out need to be repaired to interact properly.
Also, the symbol table for f out is initialized.

ii. Patching variable accesses. Because R out is only a part of the original
program unit, all the variables accessed in R out are within the scope of
fh o s t■ Thus, when R out is transformed into f out, the scope of the variable
accesses must be modified to access the correct memory location.

In very high WHIRL representation, variable accesses fall into four cat­
egories:

• Load (LOAD) a variable
• Store (STORE) a variable
• Load address (LDA) of a variable (i.e. address taking)

• Indirect load and store (ILOAD and ISTORE)

In the WHIRL representation, ILOAD and ISTORE never directly access
a variable in the program. Instead, their operand is a LOAD statement
or another ILOAD statement. Therefore, we only need to take care of
LOAD, STORE and LDA cases.

If a local variable v is accessed in both R out and R ie jtover, we need to
pass v as a parameter to f out. In Figure 4.10, we only need to pass the
variables in the D E F and U S E groups. A variable can be passed by its
value or by its address, depending on whether it is defined in Rout- If
the variable is defined in R o u t, we place it in the D E F group and pass
its address to f out- Otherwise it is in the U S E group and its value is
passed.
Because the original WHIRL tree accesses the variables directly, some
variable access nodes in the WHIRL tree of R out must be patched ac­
cording to the parameter passing scheme used for f ou t. Table 4.1 lists
the data access patching rules. In this table, a is the variable in fh o s t, A
is the parameter to f out , represents an invalid situation that should
not appear in a correct transformation. The binding column specifies
how the variable a should be binded to the formal parameter A. In the
three rightmost colums of the table, the first row is the original variable
access statement in f out- The second and the third rows list the transfor­
mation needed when a variable is passed by its value and by its address,
respectively.

iii. Building local labels and local goto sta tem ents The compiler converts
the labels in R out to local labels in f ou l. Essentially, it generates a new

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

passing method binding LOAD a STORE a LDA a

USE by value (i.e. a) A = a LOAD A - -

DEF by address (i.e. k a) A = k a ILOAD A ISTORE A LOAD A

Table 4.1: Variable patching rule

label in the local symbol table of f out for each label in Rout and mod­
ifies every intra-regional goto statement to jump to the respective new
label. In Figure 4.12, the original label LI in foo is changed to a local
label LI NEW in function fooN EW l, and the original intra-regional
goto statement is modified to point to label L lN E W (Line 7 and 12 in
Figure 4.12).

iv. H andling function exit. Function f wt returns to f leftover in one of three
ways:2

1. The control naturally falls through the new function and returns
to Rieftover■ This kind of returning implies that the next operation
executed upon the return is the WHIRL node next to R out in the
WHIRL tree of f host.

2. A return statement is executed. Originally, the return statement re­
turns from fh0st to its caller fcaiier- After the outlining, f out becomes
the callee of fleftover- Therefore, we need to develop a mechanism
that returns from fout to f caller -

3. An outward goto statement is executed. An outward goto means
that the control needs to be directed from f out to the specified label
iu fle fto ver-

We implement the transfers of control by creating two new variables
in the original program unit: ReturnFlag and RetumValue (Line 4 in
Figure 4.11). The addresses of these symbols are both passed to f out as
parameters. The integer variable ReturnFlag is set by f out as a flag to
specify the action that should be taken by fleftover upon the return of
f o u t-

Table 4.2 shows fleftover's action according to ReturnFlag on f out s return.
When ReturnFlag is 0, the next instruction to R out is executed. When
ReturnFlag equals 1, the fleftover returns to its caller immediately, i.e.
fout returns to its caller’s caller.

2A program unit can also return by the exitQ function call, but it will exit the application
and we do not need to worry about it.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ReturnFlag Action

0 fall through

1 return RetumValue

> 2 computed goto (ReturnFlag-2, JUMPTABLE)

Table 4.2: Semantics of ReturnFlag on the return of the new PU

In / leftover, we build one jump table for each region to be split. The jump
table of a region R out contains the destination labels of all its outward
gotos. When ReturnFlag is greater than 1 on f out s return, (RetumFlag-
2) is an index to R outs jump table Thus we can use a computed goto
statement to direct the control to the proper label.
For example, the region in function foo contains only two outward gotos
and both of them point to label L2. Thus, the jump table contains only
one element L2. In the new function (Line 15 and 18 in Figure 4.12),
the original goto L2 is replaced with a statement that stores (0 + 2) into
the ReturnFlag (0 is the index to the jump table and 2 is a constant that
skips over the other two return methods). In the original program unit,
we get the proper jump table index (0) by (ReturnFlag-2). Thus, the
control is directed to the first label in the jump table: L2 (Line 13 and
14 in Figure 4.11).
The second new symbol RetumValue is used to handle regions with a
return statement. RetumValue is a variable of the return type of the
original program unit. When f out needs to return a value, the new
function does not return the value directly to fleftover- Instead, it saves
the return value in RetumValue and set the ReturnFlag to 1. When
ReturnFlag is 1 on / out’s return, / leftover should directly return the value
stored in variable RetumValue to fcaiier (Line 12 in Figure 4.11).

v. P u t fout into th e com piler control. The compiler compiles a single pro­
gram unit at a time. After outlining, f out has to be placed in the back­
ground so that the compiler can proceed with the compilation of fleftover-
ORC maintains a list of program units to be compiled. Thus, a control
block of f 0ut, including its WHIRL tree and symbol table information,
is inserted into this list.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.5 Performance Tuning
Proper thresholds for outlining benefit and cold region size are important.
After experimentation with a large set of thresholds the values of 1000 for the
benefit threshold and 10 for the cold region sizes were selected. This section
describes some important performance tuning, based on different strategies,
for the outlining optimization.
Independen t outlining vs. Collective outlining. Regions to be out­
lined may be scattered throughout fh o s t- Two possible outlining strategies are
independent outlining and collective outlining. In independent outlining, each
cold region is split into a separate function as shown in Figure 4.13(a). In
collective outlining a single f out function contains all outlined regions (Figure
4.13(b)). In this case the Flag parameter is used to dispatch control to the
correct region whenever f out is invoked. Each outlined region in f leftover is re­
placed with an assignment to Flag, a call site to f out and control-flow-patching
code after the call site. A drawback of collective outlining is a more complex
CFG in f leftover which may be difficult for downstream compiler analysis.

B

(a) Independent (b) Collective (c) Alias Agent

Figure 4.13: Different outlining strategies (shaded code is cold)

Alias A gent When the address of a variable x is passed as a parameter to f out,
imprecise alias analysis will conservatively assume that x can now be aliased to
any other variable that f out has access to. This conservative assumption may
prevent downstream optimizations and result in a serious performance penalty.
For instance, variables that were kept exclusively in registers might be spilled
after outlining is implemented because of imprecise alias information. This
situation occurs often in ORC 2.1 and constitutes a performance hazard. Our
solution is to introduce an alias agent technique to eliminate this serious side-
effect. Each variable v whose address is passed to f out has a corresponding
alias agent v'. An alias agent is a new local variable introduced in fh o s t- Just
before the invocation of f out, the value of v is copied into v '. Then the address

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of v' is passed to f out. Upon return from f out, the value of v' is copied into
v as shown in Figure 4.13(c). Both copies occur in the same cold basic block
that contains an invocation to f out. Without alias agents, we found that
ORC often places memory spills in hot paths, e.g. into block A instead of B
in Figure 4.13(c), degrading runtime performance significantly.

4.4 Results
An experimental investigation on SPEC2000int benchmarks reveals that:

• Outlining reduces the size of hot functions by up to 97% and incurs less
than 0 .21% increase in runtime function calls.

• Alias agent combined with independent splitting is the best outlining
strategy. The alias agent is crucial to avoid performance degradation
caused by memory spills in hot paths.

• Function outlining has less effect on enabling aggressive inlining than
previously expected. Performance improvement from function outlining
alone ranges from -0.62% to 4.1%. When partial inlining is enabled,
performance increases range from -0.85% to 5.75%.

4 .4 .1 E xperim ent C onfiguration

Experimental results were obtained on an HP ZX6000 workstation with a
1.3GHz Itanium-2 processor, 1 GB of main memory, 32KB of LI cache, 256KB
of L2 Cache, and 1.5MB of on-die L3 cache. The operating system was Red
Hat Linux 7.2 with a 2.4.18 kernel. This experimental study is based on
SPEC2000 integer benchmarks.3 All the profiling information is obtained by
using standard SPEC2000 training data set and the reported runtime data is
from the standard reference data set. Time was measured by the Linux time
command and micro-architectural benchmarking is obtained with pfmon. All
reported run-times were the average of 5 consecutive identical runs.

4 .4 .2 Function O u tlin ing P erform ance

Figure 4.14 shows the performance changes caused by the four strategies de­
scribed in Table 4.3. Combining alias agent with independent splitting, A-I,
usually out-performs the other strategies. Noticeable performance improve­
ments are observed on gap(l.l%, gcc(1.2%), perlbmk(4.1%). When alias

3We don’t include eon because our compiler cannot compile it sucessfully.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Short Explanation
A-I Alias agent and independent splitting.
N-I No alias agent and independent splitting.
A-C Alias agent and collective splitting.
N-C No alias agent and collective splitting.

Table 4.3: Strategy combinations

agent is not used (N-I and N-C) significant performance degradation occurs.
Inspection of binaries indicates that the imprecision of the ORC 2.1 alias anal­
ysis results in many additional memory spills in hot paths. Collective splitting
(N-C and A-C) also degrade performance because of the adverse effects of
sharing patch code.

vpO'*
O(0CO
2 -5Oc
©oc
CO -10E

Figure 4.14: Performance of Function Outlining

4 .4 .3 O u tlin in g S ta tistic s

Table 4.4 presents some stiac statistics for A-I. The first row shows that func­
tion outlining occurs in many places in gap, gcc, perlbmk and vortex. Small
benchmarks such as bzip2 , gzip and mcf, have much less regions split. I f
statements are the major source of cold regions in hot functions. The Func­
tion Size Reduction row shows that outlining reduces function sizes drastically
(up to 97%). When the patching code is larger than the split code, outlin­
ing enlarges functions. The number of parameters needed for the outlined
functions ranges from 2 to 19.

We also found that function outlining increased the number of runtime
function calls by at most 0.21%. This indicates that (1) the heuristics success­
fully avoid outlining hot regions and (2) the SPEC2000int training data set is
representitive of the reference data set.

57

BHD

bjipS era tty gap gee $2 ip mcf peraorparibmk twolf vonex vpr

Benchmarks (Baseline: 03)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Benchmarks

CNPh
•H
N

,Q cr
af

ty

8*bO gc
c

g
z

ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex

vp
r

Number of Regions Split 5 59 192 388 1 3 36 415 4 410 61
Control if 5 54 186 354 1 3 36 374 3 398 61

Flow switch 0 5 0 1 2 0 0 0 33 0 7 0

Construct early return 0 0 6 2 2 0 0 0 8 1 5 0

Function min (%) -14 1 -63 -37 35 7 -5 -23 3 -35 26
Size max(%) 17 1 97 84 35 15 26 89 23 71 55

Reduction avge(%) 1.5 9.8 19.7 15.6 34.5 1 1 . 0 16.1 2 1 . 6 9.6 18.2 7.0
Number of mm 2 2 2 2 2 3 2 2 3 2 2

Parameters max 2 6 8 19 2 5 6 16 5 18 9
Passed average 2 . 0 4.8 5.5 8.5 2 . 0 4.3 3.7 9.8 3.8 7.3 4.1

Table 4.4: Statistics of outlining

4.4.4 Partial Inlining
A-I is also the best strategy for partial inlining. Figure 4.15 shows the perfor­
mance improvements due to A-I partial inlining.4 perlbmk and gap improved
by 5.75% and 3.90% because of partial inlining. vpr and parser have minor
performance degradation (0.86% and 0.51%).

Q_

cm fty gap p a r» r parttxr* tw

Benchmarks (Baseline: 03 + IP 0)

Figure 4.15: Performance of Partial Inlining

Surprisingly, very few additional call sites are inlined due to function out­
lining. The only benchmarks that have extra call sites inlined are: gap (10),
gzip (5), p a rser (3), and perlbmk (5). These call sites contribute a very small
percentage of the runtime function calls (less than 0.6%).

There are two major reasons that impede more aggressive inlining in the
SPEC2000 integer benchmaks. More aggressive inlining is prevented by hot
functions that cannot be inlined because they are too large even after outlining.
To make matters worse, because few of them are leaf functions in the call
graph, they often absorb other functions during function inlining and become
even larger. Moreover, benchmarks that tend to benefit from partial inlining
are often large benchmarks, such as perlbmk and gap, where runtime function
calls are distributed among many call sites and there are no dominating call
sites. Thus, a small increase in the number of inlined sites is unlikely to yield
significant changes in performance.

Thus, where is the the performance improvement of partial inlining coming
from? First, function outlining segregates regions with heterogeneous execu­
tion frequency into separate functions and improves code placement and cache
efficiency. Second, our outlining includes better switch optimization and ex­
plicit memory spills in the cold paths (i.e. alias agent), which might help the
compiler to do a better job in other optimizations, such as code scheduling and
register allocation. Figure 4.16 shows the changes in the number of proces­
sor stalls and retired instructions when partial inlining is enabled. There is a

4Results for partial inlining for gcc and v o r te x are ommited in this version of the paper
because of an under-investigation bug in the compiler.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tt<p2 crafty gap gztp me* p a rse r pert&mfc twoll vpr

Benchmarks (Baseline: 03+IP0)

Figure 4.16: Effects on Stalls and Instructions

positive correlation between the number of retired instructions and/or proces­
sor stalls and improvements from partial inlining. For example, the processor
stalls and retired instructions in perlbmk are reduced by about 5.9% and
9.3%, respectively. In other benchmarks, process stalls are significantly re­
duced in c rafty , gap, and tw olf. Also, bzip2 also show reduction in retired
instructions (around 2%).

4.4 .5 A ggressive P artia l In lin in g

Are the current inlining heuristics aggressive enough to take advantage of
function outlining? We designed experiments where the compiler is forced to
inline the outlined versions of hot functions without considering the function
size constraints. The result is significant performance degradation, ranging
from -1.3% to 9.6%. This result is disappointing but not surprising. As we
mentioned in Chapter 3, the inlining heuristics in ORC are already aggressive
and were carefully tuned. At the start of our outlining project, we knew
that, excluding the large hot functions, the inlining heuristics had been so
aggressive that a little more inlining would result in performance degradation.
The experimentation with aggressive partial inlining shows that this sensitivity
still holds for functions whose sizes were reduced by outlining.

4.5 Related Work
There is previous work related to several aspects of the design and implemen­
tation of the outlining presented in this thesis.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.1 Function Splitting
Several researchers have studied function splitting [21, 64, 65, 72, 88, 91, 92,
93]. In their well-known code positioning paper, Pettis and Hansen split a
function and put the hot and cold code far apart in the address space [72].
They don’t generate new functions for the split code. Control transfer between
hot and cold code is by explicit jump instructions. When the two parts are
located too far away from each other, code stubs are needed for relaying jumps.
Their motivation is to reduce the size of the primary function, which contains
the hot code, to allow important related code to co-exist in the instruction
cache or to be placed in the same memory page. Their function splitting is
only intended for code placement, therefore it is implemented at the link phase.
Their control flow patching method breaks the address integrity of a function
and is difficult to implement and maintain in high-level optimizations.

Castelluccia et al. and Mosberger et al. use outlining to increase the code
density of network protocol code [21, 64]. However, they only handle if state­
ments. Our experimental work shows that switch statements and early re­
turns are also important causes for unbalanced execution frequency in stan­
dard benchmarks. Thus our outlining framework includes outlining of these
constructs.

Muth et al. proposed the implementation of partial inlining in a link-time
optimizer called ALTO [65]. They generate a new program unit to hold all the
split code. Once control is transfered to the program unit containing the cold
code, it cannot return to the unit containing the hot code. As a consequence,
the cold program unit has to clone any portion of the hot code that is reachable
from the cold region, making the code bloat problem worse. While we share
Muth’s motivation, we think that their outlining and partial inlining occur too
late in the compilation process to allow other optimizations to benefit from
partial inlining. Very few optimizations occur after linking. In contrast, our
outlining occurs in the very beginning of the backend. Early outlining enables
aggressive inlining and potentially benefits all the later optimizations.

Way et al. experimented with partial inlining in early phases of a compiler
backend [91, 92, 93]. Their inlining is an enabling technique to build inter­
procedural regions and reduce optimization costs. They made very limited
exploration on partial inlining in [93] and achieved less than 1% performance
improvement. The shortcoming of their work is that their function splitting
is conservative because they only consider outlining when inlining a callee.
Comparatively, our outlining is aggressive because, no matter a function will
be inlined or not, it is always outlined whenever we think the cold regions
in a hot function is large enough. We have shown that partial inlining is
not effective on enabling more aggressive inlining and the major performance
improvement is from the second-tier benefits of function outlining. Better
performance improvement reported in this work indicates that our aggressive
outlining is better than Way’s approach in terms of exploiting the the second-

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tier benefits of function outlining.
Suganuma et al. propose partial inlining for a Java just-in-time compiler.

Their work takes advantage of the on-stack-replacement technique [42] sup­
ported by their Java virtual machine and therefore they do not need to use
parameter-passing for control flow patching during outlining, as we did in our
work. Whaley et al. also differentiate cold and hot regions in dynamic com­
pilation frameworks: they selectively compile hot code and leave cold code
unchanged [94]. This technique reduces the compilation time. Because com­
pilation time is counted in the runtime performance in dynamic compilation
systems, partial compilation of a function alone yields impressive performance
improvement. However, compilation time is irrelevant to runtime performance
in static compilers. Moreover, transition from compiled hot code to interpreted
cold code is only feasible in dynamic compilation systems.

4 .5 .2 R eg io n F orm ation A lgorith m

Hank’s intra-procedural region formation method [38] is a generalization of
the IMPACT compiler runtime feedback-based trace selection algorithm [70].
Hank analyzes the CFG of a function to identify a hot region that includes
the entry and exit of the function. Using the most frequent basic block as
a seed for the hot region, Hank’s algorithm first traverses upward and down­
ward in the CFG to find a most desirable path as the seed path. During this
seed path generation process, Hank determines the desirability according to
the frequency relevance of the successor or predecessor basic blocks. Once the
seed path is selected, the algorithm tries to use similar frequency heuristics to
include more relevant basic blocks to generate the hot region. Hank’s region
formation occurs after aggressive inlining. Very large functions generated by
aggressive inlining may significantly increase compilation time. Hank’s mo­
tivation is to repartition a large function into small regions to control the
compilation time while exposing important optimization opportunities. Way
et al. later contended that aggressive inlining itself might be expensive. In­
stead they propose an extension to Hank’s algorithm that integrates inlining
with inter-procedural region formation [91, 92].

The CFG-based region formation of Suganuma et al. tries to identify cold
regions in a hot function [88]. They first select some seed basic blocks as rare
or non-rare according to some pre-defined heuristic. Then this information
is propagated along backward data flow until it converges. Then the CFG is
traversed again to decide the regions and the transitions between them.

All these region formation methods, including ours, try to separate code
segments with heterogeneous execution frequency. We take advantage of frequency-
annotated high-level intermediate representation to implement our region for­
mation. Our transformation is closer to the source code and done without
CFG formation. We claim that our implementation is more straightforward
and easier to debug. When CFG is used to form regions high-level control flow

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information is lost. For instance, the absence of this information might lead
to collective outlining, which we found to be not efficient in Section 4.4.

4 .5 .3 P reserva tion o f S em antics in S p littin g

Komondoor et al. use function splitting to abstract repetitive code segments
to a new function so that the program becomes easier to understand and
maintain [57, 58]. We have a different goal: to separate the cold code from a
hot function. However, their semantics-preserving methods handle problems
that are similar to the ones that we met in our study: some statements, known
as exiting jumps in their work, such as returns in the outlined region and got os
from the outlined region to the leftover region should simply not be included
in the outlined function. Their splitting candidates are limited to single-entry
regions while our splitting framework can handle side-entries to a region. Thus
our control flow patching work can be seen as a superset of their techniques.

4 .5 .4 C od e L ayout

Besides reducing function size thus enabling more aggressive inlining, func­
tion outlining has another important advantage: it improves code layout. Our
study reveals that better code layout is actually the major benefit of function
outlining. There has been a lot of code layout work in the literature. Some
of these studyies only conduct code layout at a function granularity [35, 39].
Other research works do basic block layout [72]. Some of these works tried to
separate cold code segments from the hot ones in the same function [72]. But
they did this in an architecture-specific way (see section 4.5.1). On the con­
trary, our function outlining is architecture-neutral and can be implemented
in early phases in a compiler.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

D ata Outlining or Reshaping

5.1 Introduction
Fast advances in semiconductor fabrication, architectural innovation and ex­
ploitation of instruction-level parallelism (ILP) ensures that the performance
potential of modern processors continues to increase at a substantial speed.
However, the performance of a computer system is not solely determined by
the processor. To maintain a high utilization of its functional units, a fast
processor must be efficiently fed with instructions and data by a memory sub­
system. Unfortunately, the speed of memory continues to lag behind that of
processors. In recent decades, the clock rate of processors has approximately
doubled every three years while the DRAM access speed only increased about
50% [60].

The solution to overcoming this increasingly insurmountable memory wall
is to improve caching systems. Because of fabrication constraints, power con­
sumption, and economics, the cache size is often very limited when compared
with main memory. Hence, efficient utilization of cache is crucial for perfor­
mance. However, because cache is transparent to application programmers,
programs are often written without taking cache efficiency into account. The
typical programmer designs data structures in a semantic-oriented fashion.
Such structures are usually easy to read and understand, but often lead to
suboptimal performance at run time. A compiler can analyze the memory
reference pattern of a program and devise a new layout that increases the
locality of references and thus improves the efficiency of the memory system.
Similar to traditional code transformations, these data transformations must
be transparent to the programmer, performed automatically, and safe.

This chapter describes Forma,1 a framework that improves the data cache
efficiency of arrays of aggregate data structures. An extension of this frame­
work to handle linked data structures (LDS) is discussed in Section 6.2.2. Ag­
gregate data types, such as s tru c ts and c lasses, are used to model objects in
imperative programming languages. When the object modeled has many fea­

1 Form,a is a Latin, and Portuguese, word for “shape”.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tures, the aggregate data type becomes very large. Arrays that contain large
delta structures with many fields occur frequently in contemporary programs.
Because programmers often arrange the fields in a data type in a way that is
semantically meaningful, there is a tension between software engineering and
performance engineering that presents itself in two ways. First, the frequency
of access to fields in the same data type may vary significantly, with hot fields
accessed very frequently and cold fields seldom referenced. Placing fields with
very different access frequencies together in memory hurts performance be­
cause the cold fields pollute the data cache and waste memory bandwidth.
Second, the runtime data access pattern might not be consistent with the
access frequency distribution. In other words, hot fields are not necessarily
accessed together. The gap between software engineering and performance
engineering can be bridged by reshaping the data at compile time. The com­
piler can split a large data structure into two or more smaller ones that better
capture data locality. Correspondingly, an array of large data structures can
be partitioned into two or more arrays of smaller data structures. For iter­
ations that only manipulate certain fields of the array, data reshaping can
significantly improve data locality and reduce the memory footprint, resulting
in better data cache efficiency.

The main contributions of this chapter are:

• Forma, a practical data reshaping framework that can be used to au­
tomatically analyze and transform real C /C ++ programs. Forma con­
sists of a data shape analysis, including both alias analysis and data
type analysis, structure partition planning and array reshaping transfor­
mation. Forma has been integrated into the IBM® XL C /C ++ V7.0
compiler.

• A set of safety-checking rules to ensure that the compiler’s data reshaping
plan is safe in programs that are written in type-unsafe languages such
as C and C++.

• An empirical study of two orthogonal reshaping decisions: frequency-
based object partition x affinity-based object partition x maximum ob­
ject partition; and address-arithmetic-based x pointer-based array split­
ting. Some important but subtle insights on data reshaping are exposed
by a thorough analysis and empirical study.

The rest of the chapter is organized as follows. Section 5.2 introduces
Forma and two design dimensions of data reshaping. Then the performance of
the different data reshaping approaches is studied in Section 5.3. Section 5.4
discusses related work on data cache optimization.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Data Reshaping
5.2 .1 O verview

Previous research work on field placement and data structure splitting ap­
pears in [36, 71, 73, 101]. However, some of these studies use error-prone
human inspection of C applications to make sure that the transformations are
safe [36, 101]. Applying a type-safe-oriented optimization to a type-unsafe lan­
guage without a proper safety assurance mechanism is unacceptable in produc­
tion compilers. Rabbah et al. use field-insensitive Steensgaard style analysis to
find the alias sets that need to be updated upon data splitting [71, 73]. How­
ever, alias analysis alone cannot guarantee the transformation safety. Also, as
our work illustrates, field-sensitivity in alias analysis is crucial to uncovering
important array reshaping opportunities in many integer benchmarks.

function by function

W hole-Program
Reshaping Planner

Data Shape Analyser
including alias analyser &

data type analyser

Data Reshaper

function by function

Figure 5.1: The Forma data reshaping framework

This chapter describes Forma, a complete framework that performs auto­
m a tic and sa fe data reshaping on type-unsafe programming languages such
as C /C ++. In contrast with existing work, Forma is fully automatic, safety-
guaranteed, and more aggressive on alias analysis in terms of field sensitivity
than previous work. Forma was designed and implemented in the IBM®XL
C /C + + V7.0 compiler suite.

As illustrated in Figure 5.1, Forma consists of three components: a data
shape analyzer, a structure partition planner, and a whole-program data re­
shaper. Forma requires two passes through the entire program: a data shape
analysis pass and a data reshaping pass. The data shape analysis pass includes
alias analysis and data type analysis. In this pass, a storage shape graph [33]
is constructed to model the aliasing relationships in the program. Forma also
examines whether the data types2 of the members in an alias set are consis­

2In this research, we use data type, data shape and data view interchangeably.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tent throughout the entire program. If array reshaping is deemed safe and
beneficial, at the end of the first pass Forma creates a partition plan for the
composite data structure. Then the data reshaping pass adjusts the memory
accesses according to this plan.

5 .2 .2 D a ta S h ap e A n a lysis

An inter-procedural data shape analysis generates information about alias re­
lationships and data shape consistency. Alias information provides a con­
servative approximation of sets of data objects that potentially reside in the
same memory location. Data shape includes structural shape and array shape.
Structural shape describes the field-level view of a singular data object, i.e. the
number of byte-level fields, the offset and size of each byte-level field. Array
shape is the view of an array. It consists of the number of dimensions and the
stride for each dimension of the array. If the view of an array throughout the
program is not consistent, the compiler must be conservative and give up data
reshaping optimization on the array.

Inter-procedural Alias Analysis

In a program written in a pointer-rich language, such as C and C++, reshaping
a data object might impact the whole program because of aliasing relation­
ships. Therefore, a compiler needs to modify all the affected references when
it reshapes a data object. Forma focuses on reshaping arrays. If an array is
to be reshaped, all the references to the array area need to be modified ac­
cordingly. This comprehensive transformation requires Forma to conduct an
inter-procedural alias analysis to collect all the pointers pointing to the array
area.

char *pc; in t i , j ;
s tru c t A {char * f l ; s truct A *f2;> * p l , *p2;
i = j = 10;
p i = malloc (1000 * s iz e o f (A));
p2 = & (p l [j]) ;
p l [j] . f l = pc;
p l [i - l] . f 2 = & (p l [i]) ;
/ / pc = (char*) p i;

malloc

&(pl (j])"
pl[i-l].f2
& (pl[i])-

Figure 5.2: Field-sensitive Steensgaard alias analysis

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inter-procedural alias analysis techniques differ in flow sensitivity, context
sensitivity, field sensitivity, and so on. A good survey of these techniques can
be found in [77]. Forma implements a Steensgaard style alias analysis [83] that
has the following characteristics:

• It is flow-insensitive. It conservatively assumes that all the statements
in a procedure will be executed in arbitrary order. Thus the control flow
information is irrelevant.

• It is context-insensitive. It does not differentiate the alias relationship
created in different calling contexts.

• It is unification-based. Whenever a pointer assignment is met in the
analysis, the alias sets represented by the right-hand side pointer and
by the left-hand side pointer are merged. The points-to sets of these
pointers are also merged. This assumption eliminates the iteration over
the control flow graph (CFG) that is required by inclusion-based alias
analysis. Therefore, the analysis can be completed with a single pass
through the entire program.

Steensgaard’s alias analysis was selected for Forma for two reasons. First, it
is much simpler and faster than other alias analysis [43]. Second, the precision
of alias relationships provided by Steensgaard’s alias analysis is sufficient for
data reshaping. To reshape an array, it is sufficient to know all the data
accesses to the array. There is no need to know precise abasing relationships
such as whether two pointers actually point to exactly the same element of
the array. The extra precision provided by flow-sensitivity, context-sensitivity,
and directionality in a more complex and more expensive alias analysis would
be redundant.

Field-sensitivity is important for data reshaping because large data struc­
tures, which are amenable to data reshaping, often contain pointers pointing
to different data types. A field-sensitive alias analysis is necessary to distin­
guish the alias relationships among different fields or between a field and its
host object. The host object is the object that contains the field. For instance,
Figure 5.2 depicts a code segment and the corresponding storage shape graph
generated by a field-sensitive Steensgaard alias analyzer. The pointer manipu­
lation in the example is pretty common in practice. The bold arrow represents
the allocation site in the program. Thin arrows represent the points-to rela­
tionships among expressions. In the example, the points-to set is divided into
two categories according to the fields. That is, field f 1 and field f 2 should
never reference the same address. The field-sensitivity is crucial for this code
segment. In a field-insensitive analysis, access to any field is regarded as an
access to the entire host object. Therefore, pc and p i [j] .f 1 would be in the
same alias set as p i. Forma would conclude that the p i ’s alias set could be
either an A-typed pointer or a char pointer. Then Forma would have to give

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

up the data reshaping of p i ’s alias set because the data types of the members
in the alias set would be regarded as inconsistent. In Forma, field-sensitivity
is achieved by a technique similar to those in [82, 98].

Reshaping Safety

C /C ++ are weakly type-checked programming languages. This means that
even extensive type checking in a compiler front-end cannot detect all unsafe
operations. Some of the type loopholes were intentionally included in these lan­
guages to enable performance-efficient and code-convenient implementations
of system software. For example, let’s examine the commented statement in
Figure 5.2. The address of the allocated memory block is cast to type char and
assigned to pointer pc. This casting is very common in the implementation of
low-level communication libraries: a buffer is filled with an array of high-level
data objects and then streamlined and sent to the lower transferring layers.
Reshaping on data that has incompatible types is dangerous and is strictly
avoided in our work.

In Forma two intrinsic data types are compatible if their sizes are identical.
This is a more relaxed definition when compared with that from [51]. Two
aggregated data structures are compatible if (1) they have the same number
of byte-level fields,3 (2) corresponding fields have the same offset and size,
and (3) their addresses are either identical or don’t overlap with each other.
Two arrays have compatible types if (1) their element types are compatible,
(2) they have the same dimensions, and (3) the element sizes of corresponding
dimensions are also identical. Two pointers are of compatible types if and only
if the data they point to have compatible types.

Forma conducts type-compatibility checks to avoid dangerous data reshap­
ing. Forma does not attempt to improve the type-safety of a program. The
data reshaping transformation must be carefully implemented to avoid intro­
ducing new, potentially unsafe, runtime type errors to the program. Safety is
achieved by integrating a type compatibility analysis with the inter-procedural
alias analysis: the types of the members in an alias set must be compatible
throughout the application. The inter-procedural alias analysis keeps track of
the types of each alias set. Once a type incompatibility is found, the alias set
is abandoned for reshaping analysis.

The compatibility rule is necessary to ensure the safety of the transforma­
tion. It requires that all the access patterns in an alias set be verifiably consis­
tent. For example, if a pointer is passed to system libraries and the compiler
cannot examine the access pattern in the libraries, the alias set represented by
the pointer must be abandoned. Fortunately, a large set of programs satisfy
these seemingly restrictive conditions [23, 67].

Section 5.2.4, introduces two array splitting strategies. One of these strate­
gies, address-axithmetic-based splitting, requires an extra restriction to ensure

3We assume the bit fields are converted to byte-level fields.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

its safety.

5.2 .3 S tructu re P a rtitio n P la n and A rray R eshap ing

If an array is deemed safe for reshaping, Forma makes a partition plan for
the aggregated data structure of the elements of the array. The shape of the
original array will change to satisfy the data structure partition. Then Forma
transforms all the accesses to the array to make them compatible with the new
array shape and the new aggregated data structures.

This section describes three structure partition planners. Two approaches
to reshape an array according to the structure partition plan are discussed in
Section 5.2.4. Section 5.3 presents a detailed empirical performance study of
reshaping and splitting.

Structure Partition Planner

A structure partition plan determines how the fields in the original data struc­
ture should be reorganized into new data structures. For example, consider the
four-field data structure, Oorig, in Figure 5.3. The fields of Oorig are numbered
from FO to F3. Each rectangle represents a field, and rectangles with the same
filling pattern are fields that are always accessed together. In this example,
field FO and field F3 have high access affinity, while field F2 is always accessed
alone. Assume that field F l is very cold and the other fields are hot. In Fig­
ure 5.3. the fields in Oorig are reordered and split into three smaller structures:
Obase, 0 Sat! and Osat2 - Each new structure has its own size and offset in the
reorganized data structure. Obase is the base structure or base object and starts
from offset 0. The other new data structures, Osatl and Osai2, are the satellite
structures and are placed immediately after Obase-

Array reshaping is based on a data structure partition plan. After array
reshaping, different partitions of the same object might be placed far apart
from each other. Figure 5.4(a) shows an array, Aorig, of four elements of type
O^ig■ Figures 5.4(b), 5.4(c), and 5.4(d) show the effects of different structure
partition plans on Aorig- In these figures, each rectangle is a field of Oorig and
F i j represents the j th field in the ith element of the original array. From the
array point of view, the original array Aorig is split into one base array Abase,
which holds the base objects, and one or more satellite arrays. For instance,
each element might be split into three new objects according to the partition
plan shown in Figure 5.3. Correspondingly, Aorig might be split into three
arrays, as shown in Figure 5.4(b). The first two rows in Figure 5.4(b) are
the new base array Af,ase and the other two rows are the new satellite arrays.
How the satellite fields are accessed depends on the array-splitting approach,
as described in Section 5.2.4. To correctly reference satellite fields that are
placed in satellite objects, extra address calculations are needed. Therefore, if
hot fields are split into satellite objects, there might be a substantial increase

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the number of instructions executed to compute the address of hot satellite
fields.

Forma implements the following three data structure partition strategies.

Oorig

Affinity-based Reshaping Plan

Figure 5.3: Reshaping planning (affinity-based)

A lO l P*38 F 01 llfro3jii§
A l l] fell F I 1 vfem
A [21 fe°jS F 21 Pbll
A [3] mEM F 31 ifeis

(a) Original Array

W™M.
WEM,

fell
mB.m

m™m
(fell

WEM
WEM,

F 0 2 J - r 1- -i_r i . F i 2 J L r L F 3 2 - h - t

F01 F l l F21 F 31

(b) Affinity-based Splitting.

(d) Maximal Splittinj(c) Frequency-based Splitting.

Figure 5.4: Different reshaping planning strategies

Affinity-Based P lan n er (ABP). Some of the hot fields in a data structure
have higher access affinity than others, i.e., they tend to be referenced to­
gether. Therefore, a natural solution is to split a data structure according to
access affinity: the fields in a data structure are clustered by reference affin­
ity and each group of fields is split into an independent data structure. In
Figure 5.3, the original data structure is split into three new structures. The

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

first structure contains fields FO and F3. The second and third structures hold
fields F2 and Fl, respectively. Guided by the reshaping plan, a four-element
array is split into three smaller arrays (Figure 5.4(b)).

ABP captures the runtime reference locality more closely than the other
two planners discussed in this chapter. Frequently, however, it is not easy to
find clear-cut affinity relationships like the ones in Figure 5.3. For example,
a field A might have high reference affinity with two other fields B and C
in different iterations, but B and C might never be accessed together. In
such cases, it is difficult to find an optimal partition that respects competing
affinities. The second drawback of affinity-based splitting is that hot fields
without reference affinity may be placed into separate data structures and
arrays. Placing hot fields in satellite arrays results in substantial address
computation overhead.
Frequency-Based P lanner (FBP) or hot-cold planner uses runtime feed­
back information to partition a data structure into two. The first array con­
tains hot fields and the second array contains cold elements. For instance, the
first data structure in Figure 5.4(c) contains fields FO, F2 and F3. The second
data structure contains field Fl. A frequency-based planner only needs to
calculate addresses of satellite fields that are infrequently accessed. Therefore,
FBP does not require the execution of many additional instructions. How­
ever, it neither captures the reference affinity as well as ABP does nor reduces
the memory footprint as aggressively as MSP, described below, does. More­
over, FBP might waste memory bandwidth and pollute the data cache. For
instance, in the example of Figure 5.4(c), when the program iterates through
the fields F l, the fields FO and F3 are uselessly fetched into cache.

Currently Forma uses 95% as a frequency-based planner threshold. That
is, it retains the most frequently referenced fields that account for 95% of the
accesses to the data structure in the base object. All other fields are treated
as cold and are split to a satellite object.
M axim al Splitting P lanner (MSP) splits each field of a data structure into
a separate new data structure, as shown in Figure 5.4(d). After splitting, each
data structure field is stored in an independent array. An obvious advantage
of MSP is that it does not require profiling information. MSP ignores the
reference affinity among the fields in the same data structure and seems to be
too simple to be good for performance. Surprisingly, as shown in Section 5.3,
MSP achieves the best or close-to-best runtime performance among the differ­
ent reshaping planners studied in this chapter. This is because MSP has three
important but subtle advantages.

First, MSP always achieves the smallest memory footprint for stride-1 it­
erations on the array. This is because each field has its own array and no
irrelevant data is fetched into cache. In contrast, neither ABP nor FBP can
guarantee that the partition respects access affinities for all traversals of the
arrays. Therefore, even when Forma attempts to take into account affinity or

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

frequency information, there may be traversals that fetch irrelevant fields into
the cache. In modern processors, where the latency to bring data from mem­
ory is high, the smaller memory footprint generated by MSP can be a decisive
advantage. For instance, it can significantly reduce misses in the lower levels
of the memory hierarchy as well as in the translation look-aside buffer (TLB).

Second, MSP is especially suitable for processors that feature a hardware
prefetching mechanism, such as the IBM POWER4™ processor [46]. A stream
is a sequence of memory loads that access two or more contiguous data cache
lines in either ascending or descending order. The processor monitors cache
misses closely. Once misses on two consecutive cache lines are detected, a di­
rected stream prefetching is triggered, and data from the memory area in
the directed stream is fetched into higher levels of the memory hierarchy.
The combination of hardware stream prefetching with high cache associativity
allows independent streams that are accessed together to be simultaneously
prefetched into different cache areas. This simultaneous prefetching tends to
compensate for the loss of field affinity in MSP. Because the stride on each split
array is smaller than those in arrays organized according to affinity, stream
prefetching should -work more efficiently. Therefore, there is no need to worry
about the field affinity because the prefetching mechanism covers multiple
streams consisting of fields with affinity. Fortunately, each processor supports
eight independent streams, which seems to be sufficient for most applications.
In the entire SPEC2000 benchmaxk suite, we haven’t encountered any im­
portant array traversal that accesses more than eight fields. Moreover, even
when there axe more than eight streams in a loop, the XL compiler is able to
distribute them into several smaller loops through loop fission [96].

Third, because maximal reshaping converts each field into a single object,
the host object of a field contains only the field itself. Therefore, the address
of the host object and the address of the field are the same and there is no
need to compute the field offset. As a consequence, the address calculation for
satellite fields is simpler when maximal reshaping is used.

MSP sacrifices field affinity to take advantage of field locality and reduce
memory footprint. Loss of field affinity is compensated for by hardware stream
prefetching and by higher associativity in modem cache systems.

A drawback of MSP is similar to the drawback of the affinity-based planner:
all the fields, except the field in Obase, need to be accessed indirectly. Thus, if
the field in Obase does not dominate the access frequency of the data structure,
many additional instructions are executed to calculate the address of satellite
objects.

5 .2 .4 A rray R esh ap ing

The last phase of array reshaping transforms the program according to the
reshaping plan. To apply array reshaping to an alias set, the allocation site and
all related data accesses through pointers in the alias set should be transformed

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to reflect the change of the data view.
The design of Forma considered two transformation approaches: address-

arithmetic-based splitting and pointer-based splitting. In address-arithmetic-
based splitting, no extra fields are introduced during the transformation, and
the address of a satellite field is calculated from its corresponding base ob­
ject. Examples include the transformations shown in Figure 5.4(b), 5.4(c).
and 5.4(d). In pointer-based splitting, extra field pointers are introduced in
the base object to link each satellite object to its base object. Soon after
the array is allocated, these extra field pointers are initialized to point to the
corresponding satellite objects. Therefore, accesses to the satellite fields are
transformed to accesses through the extra pointer dereferences.

Rule Original After address-arithmetic-based
transformation

1 (Oorig *) p (Obase *) P *
2 &CA [k]) & (A base [k])

3 &(p -> b asefie ld) &(p’ -> b a se f ie ld ')
4 & (A [k].basefield) &(A.{,ase[k] .b a se f ie ld ’)
5 &(p -> s a tf ie ld) index = Cp’-A(,ase)/LEN(Oi)ase)

&(ASati [index] . s a t f i e ld ’)
6 &(A[k]•sa tf ie ld) & (A sati M .s a t f i e ld ’)
7 allocation site:

A=new(N*E)
A6ase=new(N*E)
fo r i G [1, SatNum]

Asati = A baSe+ Offset;*N

Table 5.1: Address-arithmetic-based reshaping

Rule Original After pointer-based
transformation

1 (Oorig *) p (O b a se *) P ’
2 &(A[k]) A b a se M)
3 &(p -> b asefie ld) &(p’ -> b a se f ie ld ’)
4 &(A[k] .b asefie ld) A b a se [k] -b a se f ie ld ’)
5 &(p -> s a tf ie ld) &(p’ -> pointer* -> s a t f i e ld ’)
6 &(A[k] .s a t f ie ld) &(A b a se [k] .po in t er* —> s a t f i e ld ’)
7 allocation site:

A=new(N*E)
Abase=new (N*NewE)
fo r i 6 [1, SatNum]

fo r j € [0, N-l]
A b a se [j3 .po in terj = &(Asatj [j])

Table 5.2: Pointer-based reshaping

Tables 5.1 and 5.2 compares the differences between address-arithmetic-
based reshaping and pointer-based reshaping. In the table, p is a pointer to

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an element in the array; A is the array’s base address; b a se fie ld and s a t f ie ld
represent fields falling in Obase and Osat in the plan, respectively. SatNum is the
number of satellite arrays. N is the number of elements in the array. E is the
size of each element in the original array and NewE is the size of the original
element plus the sizes of the pointer fields introduced in a base object. The
primed versions (such as p ’ and s a t f i e ld 1) represent their counterparts after
reshaping. Tables 5.1 and 5.2 presents seven rules to transform references into
reshaped objects and arrays.

• The 1st and 2nd rules say that, after reshaping, the role of the original
object is taken by the base object. A pointer p that pointed to O ^g
before reshaping is replaced by a pointer p ’ to Obase after reshaping. All
the element-wise pointer manipulations are transformed to manipulate
the base object. For example, p++means p = p + sizeo f (O^g) in the
original program. It should be transformed to p ’ = p ’ + sizeof (Ota£e)
after array reshaping.

• The transformation for the base fields (rules 3 and 4) is straightforward:
their addresses are acquired by applying their new offsets in Obase to the
pointer to Obase-

• The address calculation for satellite fields (rules 5 and 6) differs between
the two approaches. In the pointer-based approach, the satellite fields
are accessed via newly introduced pointer fields for the corresponding
satellite object. In the address-arithmetic-based approach, the index of
a satellite object equals where LEN is the size, in bytes, of
Obase- This index is then used to access the corresponding element in
the satellite array.

• The allocation site also has to be handled differently for the two ap­
proaches (rule 7). For address-arithmetic-based reshaping, one base
pointer for each satellite array is introduced, and these base pointers
are initialized after the array is allocated. In the pointer-based strategy,
the program enumerates each element in the base array and initializes
the pointer fields for the satellite objects.

Besides the type compatibility safety check, address-arithmetic-based split­
ting has another restriction to avoid unsafe transformations: single-instantiation
Single-instantiation restriction says that the entire alias set is instantiated by
a single allocation site in the program and that the allocation site is executed
no more than once at run time. This extra restriction makes sure that the
base address of the array is a constant at run time.

Both address-arithmetic-based and pointer-based reshaping have their ad­
vantages and disadvantages. Pointer-based reshaping requires fewer address
calculations and does not have the single-instantiation restriction. But it has

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two serious drawbacks. First, it requires extra pointer fields in each base ob­
ject. When the reshaping plan splits O ^g into several new data structures,
many extra fields are required. This additional data may offset the array re­
shaping effort. If the plan is frequency-based splitting, only one extra pointer
field is needed. Second, each access to satellite fields requires one extra pointer
dereference, which is often very expensive in today’s register-centered proces­
sors.

In contrast, address-arithmetic-based reshaping only requires extra address
calculations when the satellite fields are accessed via an element-wise pointer
(rule 5). Therefore, if individual fields are accessed often, many additional
address calculations would occur. However, this problem can be mitigated by
traditional optimizations such as constant propagation, common subexpression
elimination, and promotion of loop invariant expressions. For example, the
address of AsaU is computed by the expression Asatt + *

LEN(Osail). At compile time, once reshaping is completed, K = | is
constant. Consider the following extreme case that highlights the optimization
potential for address-arithmetic-based reshaping: under maximal reshaping it
is likely that LEN(Osatj) equals LEN(0&ase) because both the Obase and Osati
contain a single field, and thus K = 1. In this case, &(p -> s a tf ie ld) ,
that equals p + OFFSET(satfield), is transformed to Asat. + (p' - Abase) =
p' + (Asati - Abase). The expression (Asat, - Abase) only needs to be computed
once at the allocation site. In this extreme, but not infrequent, case the same
number of operations are needed before and after reshaping!

Additionally, in address-arithmetic-based reshaping, the array size is ex­
actly the same as the one before the transformation. Maintaining the same
memory requirement makes the transformation safer than the pointer-based
reshaping. The extra memory necessary for pointer fields may cause the pro­
gram to fail when there is not enough free memory.

Although the address-arithmetic-based reshaping strategy requires single
instantiation, this restriction is not a serious problem for array-centered appli­
cations. It may become a problem in applications that use finked data struc­
tures (LDS). Section 6 .2.2 discusses analysis and transformations that will be
required to deal with the multiple-instantiation problem in applications that
use LDS extensively.

With all these factors taken into account, Forma favors the use of the
address-arithmetic-based reshaping strategy.

5.3 Experimental Study
This section presents a performance study of array reshaping. The results of
this investigation may be summarized as follows:

• Data reshaping improves data-intensive programs dramatically. This

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

study found impressive performance gains — up to 2.1 times speedup —
on three benchmarks. The seemingly naive maximal reshaping achieves
best or close-to-best performance improvement on the studied bench­
marks.

• Data reshaping degrades the perim eter benchmark. A micro-architectural
performance study reveals that in this benchmark additional instructions
required for address calculation offset the small improvement on cache
efficiency achieved by array reshaping.

• Maximal reshaping is best suited for programs with stride-1 iterations in
architectures with hardware stream prefetching such as the IBM POWER™
family.

5.3 .1 E xp erim en ta l P la tfo rm

Forma is implemented in the IBM XL C/C-H- V7.0 compiler. Thanks to
the modular structure of Forma, it is easy to switch on different reshaping
strategies and examine their effects. Table 5.3 shows the characteristics of the
machines used in this performance study.

Three of these machines use processors from the IBM POWER family.
The compiler is a development version of the IBM XL C /C++ that includes
Forma. To investigate the portability of the results obtained with Forma in
the XL compilers, the benchmarks were modified, by hand, and run on an
Intel® Itanium-II machine. This hand modification consisted of inspecting
the reshaping plans created by Forma and mimicking them in the bench­
mark’s source codes. These benchmarks were then compiled with the Open
Research Compiler 2.1 at the 03 optimization level with inter-procedural op­
timization. Although not applicable to a large number of benchmarks, this
effort produced data that should convince developers of other compilers to
consider when implementing array reshaping.

CPU GHz LID, L2D, L3D, Mem OS Page
Size

G5™ 2.0 32K, 512K, 0 , 1G Darwin® 7.5 4KB
P0WER4™ 1.1 32K, 1.44MT, 32M T* , 32G A IX ^ 5.2 4KB
P0WER5™ 1.65 32K, 1.92Mb 36MtT , 16G ADC® 5.3 4KB
Itanium-II™ 1.3 16K, 256K T, 1.5MT , 1G Linux® 2.4.18 16KB

Table 5.3: Characteristics of the experimental platforms, memory and page
sizes given in bytes (L DCache+ICache, b off-die)

There is a limited number of benchmarks that are affected by array reshap­
ing in the standard benchmark suites. This study uses two benchmarks from
the SPEC2K suite: a r t and mcf. Standard training data is used for profiling

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Label P a rtitio n P lanner Reshaping M ethod
baseline
affinity
freq-a
freq-p
max

affinity-based planner
frequency-based planner
frequency-based planner

maximal planner

address-arithmetic-based reshaping
address-arithmetic-based reshaping

pointer-based reshaping
address-arithmetic-based reshaping

Table 5.4: Compiler versions in the performance study

and the standard reference data for final runtime benchmarking. The memory
footprints in the final run are 4.7MB for a r t and 190 MB for mcf. The other
two benchmarks in this study, tsp and perim eter, are from the array version
of OLDEN 1.3 benchmark suite. The profiling inputs used are 10D for tsp and
10 for perim eter. The inputs for the final runtime measurement are 4 x 106
for tsp and 11 for perim eter. The memory footprints for these final runs are
225MB and 256 MB, respectively.

Forma implements three partition planners and two reshaping methods.
Table 5.4 lists the versions of the compiler that are included in this perfor­
mance study along with the label identifying each version in all the graphs.
Pointer-based reshaping requires many extra pointer fields in Obase when O^g
is broken into many satellite objects. These additional pointers seriously offset
the benefit of reshaping. Therefore, pointer-based reshaping is not included in
the performance study of affinity-based splitting and maximal splitting.

C3 S 40

IX
©
E i t Ji

M B baseline
B M affinity
■ ■ f r e q - a
f^THreo-p
1 Imax

Bl

T
mcf tsp

Benchmarks
perimeter

I
r- 100

B M baseline
^ M affinity
M treo -a G3freq-p
I Imax

mcf tsp
Benchmarks

Figure 5.5: Run times on a G5

5.3 .2 R u n T im e Im provem ent

Figures 5.5-5.8 presents the runtime variations among the array reshaping
versions implemented in Forma on four hardware platforms. For each ma­
chine, the right graph presents the actual run times, and the left graph is the
normalized runtime percent variation. The baseline compiler is a development

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

co

TJ

a>
cn
bo

8tf
C+

•

B
CDCfl
Ot)
£»P
t—ic+
£»

£
B

Runtime Reduction (%) (or Itanlum2

0 0 0 0 8 8 0 8 8

Runtimes (or Itanium2 (seconds)

8 § § 8 i §

us

Figure
5.7:

Run
tim

es
on

a
PO

W
ER

5

.1
tsp

perimeter
ait

mcf
tsp

perimeter
Benchm

arks
B

enchm
arks

Runtime Reduction (%) (or POWERS Runtime Reduction (%) (or POWER4

Runtimes (or POWERS (seconds)
O O P

•^ 1

* V r A ' 4 { Kt» • ? \ ■? >.ir»' r » . |

op"

a>
CR
a>

5=0
c
w
e+
B
CDCO
OC3

* 0
O

M
&

Runtimes for POWER4 (seconds)
M t k n a Q N A o i
O O O O O O O O

180
i

version of the industry-strong XL optimizing compiler running at optimization
level 05 without any data reshaping optimization. For the Itanium, the base­
line is the Open Research Compiler (ORC) 2.1 at 03 optimization level with
inter-procedural optimizations enabled. Array reshaping results in impressive
performance improvement for a r t , mcf, and tsp .

On the G5 system, the maximal split version of a r t runs more than twice as
fast as the baseline. In comparison, affinity-based reshaping improves a r t by
about 17% and freq-a improves it by about 8.4%. The improvement by freq-p
is negligible mainly because a r t has only one cold field, and the introduced
pointer field completely nullifies the benefit of splitting this cold field. For
mcf, affinity-based reshaping and maximal reshaping result in a performance
improvement of about 28%. Both versions of frequency-based reshaping im­
prove mcf by about 16%. Maximal reshaping and affinity-based reshaping
improve tsp by 6.7% and 6%, respectively. For frequency-based reshaping,
the improvements for tsp range from 5.6% for freq-a to 1.3% for freq-p. The
only benchmark where data reshaping results in performance degradation is
perim eter .4 All the iterative behavior of perim eter results from recursive
function calls as it does not contain any loops. Many common optimizations
that reduce the cost of array reshaping, such as inlining and loop-invariant
expression promotion, are difficult to apply to recursive code. Inlining is im­
portant because it enables further local optimizations. It is also difficult to lift
common subexpressions from iterative code when the iterations are the prod­
uct of recursion. A micro-benchmarking study, presented in Section 5.3.3,
found that reshaping in perim eter significantly increased the number of in­
structions executed and had little effect on cache efficiency. Therefore, it is not
surprising that data reshaping degrades the performance of perim eter. Future
work will improve the reshaping heuristics to make them more conservative
for reclusive code.

The performance of array reshaping on P0WER4 is similar to that on G5.
The superior memory hierarchy on the P0WER4 reduces the impact of the
poor memory reference in the baseline on the run time of the benchmarks.
Therefore, though still impressive, the performance improvement is less sig­
nificant than that on the G5. The effect of a richer memory hierarchy on the
baseline is even more pronounced on the P0WER5. As shown in Figure 5.6,
freq-a performs better than affinity-based reshaping on tsp . This result is
the opposite of the findings in Zhong’s work [101], where FBP almost always
degrades performance for POWER4. Zhong et al. split fields that account for
50% of the total accesses into the base object. This threshold should be higher.
Forma uses 95%. Compared with ABP and MSP, the only advantage of FBP

4In p er im eter, the major data structure of interest is quacLstruct. There are no in­
frequently accessed fields in quad_struct. Therefore the two versions of frequency-based
reshaping choose not to do any reshaping. W hile this information could be added to the
affinity-based reshaper heuristic, it m ay be desirable to keep the maximal reshaper indepen­
dent of feedback information.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is that it incurs negligible extra address calculations. A threshold of 50% in
FBP generates many extra address calculations and thus eliminates its only
advantage. Therefore, it is not surprising that the frequency-based reshaping
is much worse than the affinity-based reshaping in [101].

The Itanium-II’s architecture is very different from the architecture of the
processors in the POWER family. The performance results reflect these differ­
ences. The performance improvement for a r t — 20% for maximal reshaping
— is less impressive than that on the POWER family processors. This is
because a r t often iterates on an array with stride 1, which best suits the
hardware stream prefetching in the POWER processors. The most significant
improvement in Itanium-II is a 45% reduction in run time for the maximal
reshaping of mcf. Array reshaping in tsp results in a more significant perfor­
mance improvement in Itanium-II, from 12.4% to 22.6%, than in the POWER
processors. The degradation of perim eter in Itanium-II indicates that the
ORC 2.1 optimizations are also limited by the problems caused by recursion.

In summary, for the benchmarks studied in this section, the seemingly naive
maximal reshaping performs best or close-to-best in all the studied strategies.

5 .3 .3 M icro-arch itectu re P erform ance S tu d y

This section presents measurements obtained with the pfmon performance
monitoring tool on the Itanium-II workstation. These measurements further
the understanding of the performance impact of data reshaping. This micro­
architecture performance study examined the number of retired instructions,
the miss rates at different cache levels, the TLB miss rates, and so on. This
section presents only the measurements that showed a correlation with array
reshaping.

30

a>
IS 20 so
o
o
= 10
t o _c

1 5

Figure 5.9: Retired instructions on Itanium-II

The number of instructions retired by each version of array reshaping in the
Itanium-II workstation, shown as a percentage variation over the baseline in
Figure 5.9, provides important insights on the effects of array reshaping at the

81

■ affinity
■ freq-a

J E 3 freq-p
CZ3 nrax

l _ . 0 l _

mcf tsp
Benchmarks

perimeter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

micro-architectural level. Frequency-based reshaping has negligible instruction
increases and results in fewer instructions retired in tsp. These measurements
indicate that the profiling input data is indeed representative and this allows
the compiler to precisely identify cold fields. Affinity-based reshaping and
maximal reshaping may significantly increase the number of retired instruc­
tions. The most significant results of this metric are the significant increase
in the number of instructions executed for perim eter and the difference in
the number of instructions executed for affinity-based and maximal reshaping.
A comparison of this data with the execution times in Figure 5.8 reveals a
positive correlation with the execution time of the benchmarks.

met tsp
Benchmarks

■H baseline
affinity
freq-a

C l freq-p
I I max

t i in

(a) LID Cache Miss Rate on Itanium-II.

50

45

^40
•sP
S'*£*35<3= 30tn<n
2 2 5
©o20cs

s«

5

0

baselme

d freq-p
I I max

IE
met tsp

Benchmarks
perimeter

(b) L2D Cache Miss Rate.

Figure 5.10: Data cache (levels 1 and 2) efficiency

Figure 5.10(a) shows the first-level data cache miss rates. Maximal reshap­
ing produces significantly fewer misses in a rt: the level 1 data cache (LID)
miss rate is reduced by 12.8% compared with baseline. For mcf, frequency-

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

90

_ 80

70
(8

2 50

Oo

■ I baseline
■■ affinity
IB freq-a
□□ freq-p
CU max

mcf tsp
Benchmarks

perimeter

(a) L3D Cache Miss Rate on Itanium-II.

baseline
■■ affinity
H) freq-a
Cm freq-p
I I max

mcf tsp
Benchm arks

perimeter

(b) TLB Miss Rate on Itanium-II.

Figure 5.11: Data cache (level 3) and TLB efficiency

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

based and affinity-based reshaping reduce the LID cache miss rate by 21.6%
and 15.6%. The effect of maximal reshaping on level 1 data cache in mcf is
quite small. For tsp and perim eter, maximal reshaping and affinity-based
reshaping achieve similar improvement over baseline.

Figure 5.10(b) shows the second-level data cache miss rates. Different
reshaping strategies make little difference on the L2D miss rate for tsp and
perim eter. For a r t and mcf, the situation is similar to that in the LID
cache miss rate: maximal reshaping performs best on a r t and frequency-based
reshaping is most effective on mcf. But the difference of effectiveness on mcf
is not as significant as in LID.

The L3D cache miss rates is shown in Figure 5.11(a). There is no signifi­
cant effect on the L3D miss rate of different reshaping strategies for a r t , tsp
and perim eter. The important data in this graph is the significant reduction,
56.3%, in the L3D miss rate of mcf produced by maximal reshaping. With
more than 40% access misses on both first- and second level-data cache, at least
16% of mcf’s data accesses turn to the third-level data cache. Therefore, the
improvement on the L3D cache miss rate avoids a substantial number of mem­
ory references (about 6% of the total memory accesses). This improvement
is important because the cost of physical memory accesses in this Itanium-II
system is about 103.1 nanoseconds, which amounts to about 143 cycles.5

TLB efficiency is another important performance factor for benchmarks
with large memory footprints. The Itanium-II has two levels of data TLBs
(DTLB). To translate a virtual address into a physical address, the proces­
sor first looks up the first-level DTLB (L1DTLB). If L1DTLB does not hold
the mapping, a four-cycle latency second-level DTLB (L2DTLB) access is re­
quired. If L2DTLB also fails, a TLB miss occurs. Itanium-II has a hardware
virtual hash page table (VHPT) walker that reduces the overhead of TLB
misses [49]. If the translation is not found in the VHPT, the execution traps
to the operating system and a software handler is invoked to handle the TLB
miss. Software handlers are extremely expensive because they execute hun­
dreds of instructions. Of the four benchmarks studied, mcf is the only one that
has a relatively high TLB miss rate. However, only about 0.5% mcf’s TLB
misses result in software handler traps. All the other TLB misses are handled
successfully by hardware VHPT walkers. The Itanium-II workstation used in
this study has an average TLB miss latency of about 50 cycles.6 Figure 5.11(b)
shows the variations in TLB misses for all benchmarks and reshapers studied.
Maximal reshaping reduces the TLB miss rate of mcf by 2.3%. This is because
maximal reshaping always has the smallest memory footprint. The reduced
TLB miss rate combined with the reduced DL3 miss rate (see Figure 5.11(a))
explain the impressive runtime improvement of maximal reshaping for mcf in
the Itanium-II workstation (see Figure 5.8).

5This estim ate for the physical memory access latency was obtained with Lmbench 3.0.
6We used a program at http://www.gelato.unsw.edu.au/IA64wiki/PageFaultTim ing to

measure TLB miss latency.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.gelato.unsw.edu.au/IA64wiki/PageFaultTiming

5.4 Related Work
Because data cache efficiency is a major performance bottleneck in modern
computer systems, extensive research effort has been dedicated to improving
data cache utilization. Extant research falls into three categories: data layout
optimization, data prefetching, and loop restructuring. This section presents
a sample of relevant work in this area.

5 .4 .1 D a ta L ayout O p tim ization

The goal of data layout optimizations is to reduce data cache misses by im­
proving data locality or by reducing cache conflicts.

Structure Splitting or Reshaping

Extensive research effort has been dedicated to the study of field placement and
data splitting. Using the accumulated frequencies of the member fields, Franz
et al. split an aggregate data type into a hot structure and a cold one [36].
Zhong et al. presents K-distance analysis to group fields in a structure accord­
ing to their access affinity [101]. Both Franz and Zhong orient their techniques
for type-safe programming languages. However, their performance studies use
error-prone human-inspected C applications. Applying a type-safe oriented
optimization to a type-unsafe language without proper alias analysis is dan­
gerous in production compilers.

Rabbah et al. split a structure completely and group the respective fields
of various data objects together [71, 73], which is essentially the maximal split­
ting in this work. In their work, objects may be organized in an array, or may
be linked through pointers in the original program. Their research has two
shortcomings. First, they use imprecise field-insensitive alias analysis. With
this conservative alias information, either important optimization opportu­
nities will be missed or runtime checks must be inserted into the executable,
potentially offsetting the data reshaping benefit. Moreover, their analysis does
not include safety analysis.

Array Padding and Array Permutation

Inter-array padding adjusts array-based addresses by inserting memory space
between arrays while intra-array padding modifies array dimensions by insert­
ing spaces between array elements [74, 50]. The motivation for array padding is
to change the array layout so that array elements that are accessed at the same
time are not mapped into the same cache address. Array padding is very useful
for applications such as dense numerical linear algebra, finite-difference and
partial differential equation solvers, and image processing. Array padding and
array reshaping work with different data granularities. While array padding
treats objects (such as structs and classes) as atomic, array reshaping works

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at the field level. Array reshaping is only good for arrays of large aggregate
data elements. Moreover, the two techniques have different benefit models: ar­
ray padding reduces cache conflict misses between frequently referenced data
objects while array reshaping tries to avoid bringing useless data into cache.

Strip-mining and array permutation are used to reorganize data in multi­
processor systems to make each individual processor’s data share contigu­
ous [52].

5 .4 .2 Loop R estru ctu rin g

Loop restructuring has been used to improve cache efficiency for a long time.
Loop fusion might improve cache efficiency if both fused loops have access
to the same data elements [55, 63, 81, 96]. Loop fission, also called loop
distribution, splits a loop into two or more smaller loops, each of which accesses
independent arrays [96]. Loop interchange, also known as loop permutation,
reorders the iterations over a multi-dimensional array so that the access pattern
is more amenable to data layout [3, 96]. Loop tiling, also referred to as loop
blocking, improves cache efficiency by dividing the iteration space of a loop
into tiles that have better spatial and temporal locality [45, 75, 95, 96]. Loop
tiling can only be applied to perfectly nested loops. Some imperfectly nested
loops can be converted to perfectly nested ones so that tiling can be applied.
Kodukula et al. proposes a “data-centric” approach, called data shackling or
data blocking, to localize data accesses [56]. Intuitively, the compiler divides
an array into a sequence of smaller blocks, as in loop tiling, and schedules,
or shackles, the statements that operate on each block close together. At
run time, once the data block is fetched into memory hierarchy, the shackled
statements are all executed.

All these loop restructuring techniques are compile-time optimizations.
These techniques require that access patterns be known to the compiler. How­
ever, in some applications the access patterns are hard to predict at compile
time. To deal with these situations, researchers have proposed runtime data
layout or control flow transformations [31, 86]. However, these approaches
have two drawbacks. First, they often ignore practical problems, such as alias
analysis for safety, that are indispensable in a production compiler. Second,
the optimization targets are often very specific, and reducing the overhead for
general runtime transformation is still an open question.

5 .4 .3 D a ta P refetch in g

Data Prefetching can be seen as an orthogonal optimization to data reshaping.
Even though they share the goal of alleviating the memory bottleneck problem
by reducing memory latency, data prefetching and data reshaping approach
the problem from different angles. Data prefetching is a technique to tolerate
memory latency by loading data into the cache when the data is expected to

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be used soon. Data prefetching does not reduce cache misses; rather it reduces
the cache miss penalty. Data prefetching tries to handle a cache miss earlier
by overlapping the data fetching with other computations so that the data is
already in cache when it is needed. Comparatively, data reshaping reduces
memory latency by improving data locality and improving cache hit rates.

Data prefetching has been studied extensively. A good survey can be found
in [89]. Data prefetching can be either hardware based, software based [53,
61, 85] or a joint effort of hardware and compiler support [2, 76].

The drawback of data prefetching is that it may increase substantially the
number of memory accesses and the demand for memory bandwidth. This
problem becomes dominant in systems where interconnections to a memory
subsystem are shared by several processors. Prom this perspective, data re­
shaping is superior to data prefetching because it attacks the problem at its
cause, by reducing misses, instead of at its observed effect, i.e. by tolerating
misses.

Badawy et al. found that software data prefetching outperforms loop re­
structuring when there is enough memory bandwidth available [10]. In the
same work, they also found that naively integrating software prefetching with
loop restructuring does not yield additional performance improvements.

Sometimes the effects of data prefetching and reshaping might overlap.
With careful data layout or reshaping, the effect of data prefetching might be­
come smaller because the reshaped data has better locality and is likely to be in
cache already when it is referenced, thus eliminating the need for prefetching.
If the cache miss pattern can be predicted well by the data prefetching mech­
anism, data reshaping is not necessary unless memory bandwidth becomes a
problem. However, data prefetching and reshaping axe not necessarily mu­
tually exclusive. Data reshaping might also facilitate data prefetching. The
cooperation between maximal splitting and hardware stream prefetching in
PowerPC® processors is a good example.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions and Future Work

6.1 Conclusions
The research in this thesis is motivated by the observation of heterogeneous
reference frequency to instructions and data in many programs. Data and
instructions that are not referenced together frequently are nonetheless placed
together because programmers tend to write programs that are semantically
meaningful. For instructions, codes from the same function do not necessar­
ily have similar runtime frequency. But they may still be placed in the same
function because they are closely related to each other. On the other hand,
fields in the same data structure are also different in terms of runtime access
frequency and pattern. We apply the idea of code and data splitting to reor­
ganize instructions and data. Then we investigate the performance impacts
of these splitting techniques. Two important conclusions are drawn in this
dissertation.

First, we successfully achieved our goal of function outlining. With ap­
propriate outlining strategies (independent outlining and using alias agent),
function outlining reduces the sizes of large functions significantly without
performance degradation. However, the main function outlining’s client op­
timization, partial inlining, does not improve performance. The reasons are
two-fold. First, the important large functions in the benchmarks studied are
so large that they are still too large to be inlined even after they are signifi­
cantly reduced by function outlining. Second, in applications where inlining
was thwarted, usually there are no call sites dominating runtime invocation.
Instead, runtime invocation tends to spread in a large range of call sites. The
absence of a small set of dominating call sites makes a limited number of par­
tial inlining fail to improve performance. Also, when inlining is conducted
too aggressively, its negative impact becomes dominant and we observed large
performance degradation.

On the other hand, we observed exciting performance gains through data
outlining. Certain benchmarks in SPEC2000 benchmark suite run 2.1 times
faster after data outlining. We also investigated different outlining strategies

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and found that maximal splitting combined with address-arithmetic-based out­
lining achieves the best or close-to-best performance.

6.2 Future Work

6.2 .1 F urther In lin ing

We identified the two major factors that prevent beneficial inlining in Chap­
ter 3: large function bodies and recursive function calls. We showed that
although the problem of a large function body can be ameliorated, it is dif­
ficult to be solved by function outlining. It has been shown that only tail
recursion can be eliminated by compiler transformation [54]. For other gen­
eral recursive function calls, it is possible to use recursive function unrolling
to reduce runtime function calls. However, because the benchmarks with re­
cursive function calls have large function bodies and no dominating call sites,
we believe that the performance impact on SPEC2000 benchmarks will be still
very limited.

6.2 .2 E x ten sio n o f F orm a D a ta O utlin ing Fram ew ork.

Forma is a practical array reshaping framework that guarantees safe automatic
array reorganization. The experimental evaluation of Forma studied the effects
of design decisions on two dimensions: the reshaping planner and the reshaping
method.

Forma has limitations. Although it catches important cases in standard
benchmarks and produces impressive performance improvements, the single
instantiation rule for array reshaping is restrictive. Because of this restriction,
currently Forma only handles dynamically allocated arrays. However, many
programs operate on linked data structures that are typically not allocated
monolithically into a dynamic array. The next step on the development of
Forma is to handle these cases. The challenge to handle individually allocated
objects is the difficulty of analyzing all the dynamically allocated objects in­
volved in a linked data structure at compile time. Therefore, Forma will need
to insert a sophisticated memory pool management mechanism into the pro­
gram and integrate this mechanism into the programs’ memory management.
Recently, there has been some work in this direction [16, 71, 73]. Adding
this feature will increase the number of opportunities for reshaping covered by
Forma.

A common shortcoming of existing automatic data layout optimization
techniques is that they only capture very simple access patterns or use im­
precise approximations. To accommodate more complex data access pat­
terns, researchers in the area of cache-conscious algorithms have manually
re-engineered applications [44, 68, 69]. Re-crafting an algorithm can produce
impressive performance improvements but its high cost makes it prohibitive

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for a large number of applications. It will be interesting to compare the perfor­
mance potential of existing automatic reshaping strategies with complex man­
ual transformations. If these manual transformations are general and much
more superior, we should investigate more sophisticated program analysis tech­
niques that are necessary to automate this process. These techniques include
phase recognition, access pattern (or shape) analysis, and so on. As the impact
of memory accesses on performance grows, automatic data reorganization will
be justified in spite of its complexity.

6 .2 .3 A u to m a tic H eu ristics T uning

We manually tuned all the heuristics used in this thesis. Manual tuning not
only consume significant time and energy, but also makes it difficult to tell if
the heuristics settings exploit the full potential of the. optimization techniques
studied. This is especially true for function outlining and partial inlining. We
used several heristics to control the aggressiveness of function outlining and
each heuritic has a very large range of possible values. Consequently, we have
a large space to explore to find the best parameters for the heuristics.

Related works have shown that it is feasible to use machine learning tech­
niques to automatically tune heuristics [84]. We believe that similar techniques
would better explore the large space of heuristic setting combinations.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] http://ipf-orc.sourceforge.net/.

[2] H. Al-Sukhni, I. Bratt, and D. A. Connors. Compiler-directed content-
aware prefetching for dynamic data structures. In 12th Interna­
tional Conference on Parallel Architectures and Compilation Techniques
(PACT% pages 91-100, 2003.

[3] J. R. Allen and K. Kennedy. Automatic loop interchange. In SIGPLAN
Symposium on Compiler Construction, pages 233-246, 1984.

[4] R. Allen and S. Johnson. Compiling C for vectorization, paxallelization,
and inline expansion. In Programming Language Design and Implemen­
tation (PLDI), pages 241-249, 1988.

[5] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance
counters with flow and context sensitive profiling. In Programming Lan­
guage Design and Implementation (PLDI), pages 85-96, 1997.

[6] M. Arnold and B. G. Ryder. A framework for reducing the cost of in­
strumented code. In Programming Language Design and Implementation
(PLDI), pages 168-179, 2001.

[7] A. Ayers, R. Gottlieb, and R. Schooler. Aggressive inlining. In Program­
ming Language Design and Implementation (PLDI), pages 134-145, May
1997.

[8] A. Ayers, S. D. Jong, J. Peyton, and R. Schooler. Scalable cross-module
optimization. In Programming Language Design and Implementation
(PLDI), pages 301-312, May 1998.

[9] D. F. Bacon and P. F. Sweeney. Fast static analysis of C+-1- virtual
function calls. In Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), pages 324-341, 1996.

[10] A.-H. Badawy, A. Aggarwal, D. Yeung, and C.-W. Tseng. Evaluating
the impact of memory system performance on software prefetching and
locality optimizations. In 2001 International Conference on Supercom­
puting (ICS’01), pages 486-500, 2001.

[11] T. Ball. Efficiently counting program events with support for on-fine
queries. ACM Transactions on Programming Languages and Systems,
16(5):1399-1410, September 1994.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ipf-orc.sourceforge.net/

[12] T. Ball and J. R. Larus. Branch prediction for free. In Programming
Language Design and Implementation (PLDI), pages 300-313, 1993.

[13] T. Ball and J. R. Larus. Optimally profiling and tracing programs. ACM
Transactions on Programming Languages and Systems. 16(4): 1319-1360.
July 1994.

[14] T. Ball and J. R. Larus. Efficient path profiling. In International Sym­
posium on Microarchitecture (Micro29), pages 46-57, Dec 1996.

[15] T. Ball and J. R. Larus. Using paths to measure, explain, and enhance
program behavior. IEEE Computer, 33:57-65, July 2000.

[16] C. Lattner and V. Adve. Automatic pool allocation for disjoint data
structures. In Proc. ACM SIGPLAN Workshop on Memory System Per­
formance, pages 13-24, Berlin, Germany, June 2002.

[17] B. Calder, P. Feller, and A. Eustace. Value profiling and optimization. In
Journal of Instruction Level Parallelism, volume 1, pages 22-58, March
1999.

[18] B. Calder and D. Grunwald. Reducing indirect function call overhead
in C ++ programs. In Principles of Programming Languages (POPL),
pages 397-408, 1994.

[19] B. Calder, D. Grunwald, D. C. Lindsay, J. Martin, M. Mozer, and B. G.
Zorn. Corpus-based static branch prediction. In Programming Language
Design and Implementation (PLDI), pages 79-92, 1995.

[20] B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious data
placement. In Eighth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-VIII),
pages 139-149, 1998.

[21] C. Castelluccia, W. Dabbous, and S. O’Malley. Generating efficient pro­
tocol code from an abstract specification. In Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica­
tions, pages 60-72, 1996.

[22] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. W. Hwu. Profile-
guided automatic inline expansion for C programs. Software - Practice
and Experience, 22(5):349-369, 1992.

[23] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer. Ccured
in the real world. In Programming Language Design and Implementation
(PLDI), pages 232-244, June 2003.

[24] IBM Corp. C for A IX Compiler Reference. IBM Corp, International
Technical Support Organization, 2002.

[25] J. W. Davidson and A. M. Holler. A model of subprogram infilling.
Technical report, Technical Report TR-89-04, Department of Computer
Science, University of Virginia, July 1989.

[26] J. W. Davidson and A. M. Holler. A study of a C function inliner.
Software - Practice and Experience (SPE), 18(8):775-790, 1989.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[27] J. W. Davidson and A. M. Holler. Subprogram inlining: A study of
its effects on program execution time. IEEE Transactions on Software
Engineering (TSE), 1S(2):S9—102, 1992.

[28] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In European Conference
on Object-Oriented Programming (ECOOP), pages 77-101, August 1995.

[29] B. L. Deitrich, B. C. Cheng, and W. W. Hwu. Improving static branch
prediction in a compiler. In Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 214-221, 1998.

[30] D. Detlefs and 0 . Agesen. Inlining of virtual methods. In 13th European
Conference on Object-Oriented Programming (ECOOP), pages 258-278,
June 1999.

[31] C. Ding and K. Kennedy. Improving cache performance in dynamic
applications through data and computation reorganization at run time.
In Programming Language Design and Implementation (PLDI), pages
229-241, 1999.

[32] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere. Quantifying the
impact of input data sets on program behavior and its applications. The
Journal of Instruction-Level Parallelism, 5, Feb 2003.

[33] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interpro­
cedural points-to analysis in the presence of function pointers. In Pro­
gramming Language Design and Implementation (PLDI), pages 242-256,
1994.

[34] P. Feller. Value profiling for instructions and memory locations. Tech­
nical report, UC San Diego, U. S. A., April 1998.

[35] D. Ferrari. Improving locality by critical working sets. Communications
of the ACM, 17:614-620, Nov 1974.

[36] M. Franz and T. Kistler. Splitting data objects to increase cache utiliza­
tion. Technical Report ICS-TR-98-34, Department of Information and
Computer Science, University of California, Irvine, Oct 1998.

[37] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[38] R. E. Hank, W. W. Hwu, and B. R. Rau. Region-based compilation: An
introduction and motivation. In 28th Annual ACM/IEEE International
Symposium on Microarchitecture, pages 158-168, Dec 1995.

[39] D. J. Hartfield and J. Gerald. Program restructuring for virtual memory.
IBM Systems Journal, 2:169-192, 1971.

[40] A. Hashemi, D. Kaeli, and B. Calder. Procedure mapping using static
call graph estimation. In Workshop on Interaction between Compiler
and Computer Architecture, Feb 1997.

[41] K. Hazelwood and D. Grove. Adaptive online context-sensitive inlin­
ing. In International Symposium on Code Generation and Optimization,
pages 253-264, March 2003.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[42] U. Holzle. Adaptive optimization for Self: Reconciling high performance
with exploratory programming. PhD thesis. Stanford University, 1994.

[43] M. Hind and A. Pioli. Which pointer analysis should I use? In Inter­
national Symposium on Software Testing and Analysis, pages 113-123,
2000 .

[44] R. C. Holte, T. Mkadmi, R. M. Zimmer, and A. J. MacDonald. Speeding
up problem solving by abstraction: A graph oriented approach. Artificial
Intelligence, 85(1—2):321—361, 1996.

[45] C. Hsu and U. Kremer. A stable and efficient loop tiling algorithm.
Technical report, Technical Report DCS-TR407, Department of Com­
puter Science, Rutgers University, 1999.

[46] http:/ / www.redbooks.ibm. com/. The Power4®Processor Introduction
and. Tuning Guide. IBM Corp, International Technical Support Organi­
zation, 2001.

[47] W. W. Hwu and P. P. Chang. Inline function expansion for compiling
realistic c programs. In Programming Language Design and Implemen­
tation (PLDI), pages 246-257, 1989.

[48] Silicon Graphics Inc. Guide to SGI® Compilers and Compiling Tools.
Silicon Graphics Inc, 2002.

[49] Intel. Intel®Itanium®Architecture Software Developer’s Manual. Intel
Corp, 2002.

[50] K. Ishizaka, M. Obata, and H. Kasahara. Cache optimization for coarse
grain task parallel processing using inter-axray padding. In Workshop on
Languages and Compilers for Parallel Computing (LCPC'), pages 64-76,
Oct 2003.

[51] ISO/IEC. International Standard ISO/IEC 9899, Programming Lan­
guages - C. 1st Edition. 1990.

[52] S. P. Amarasinghe J. M. Anderson and M. S. Lam. Data and computa­
tion transformations for multiprocessors. In Principles of Programming
Languages (POPL), pages 166-178, July 1995.

[53] M. Karlsson, F. Dahlgren, and P. Stenstrom. A prefetching technique for
irregular accesses to linked data structures. In 6th International Sympo­
sium on High-Performance Computer Architecture, pages 206-217, 2000.

[54] O. Kaser, C. R. Ramakrishnan, and S. Pawagi. On the conversion of
indirect to direct recursion. ACM Letters on Programming Languages
and Systems, 2(1-4):151-164, March-December 1993.

[55] K. Kennedy. Fast greedy weighted fusion. In 14th International Confer­
ence on Supercomputing, pages 131-140, 2000.

[56] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level block­
ing. In Programming Language Design and Implementation (PLDI).
pages 346-357, May 1997.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.redbooks.ibm

[57] R. Komondoor and S. Horwitz. Semantics-preserving procedure extrac­
tion. In Principles of Programming Languages (POPL), pages 155-169,
Boston, MA, Jan 2000.

[58] R. Komondoor and S. Horwitz. Effective, automatic procedure ex­
traction. In 11th International Workshop on Program Comprehension
(IWPC), pages 33-43, Portland, OR, May 2003.

[59] R. Leupers and P. Marwedel. Function inlining under code size con­
straints for embedded processors. In International Conference on
Computer-Aided, Design (ICCAD), pages 253-256, Nov 1999.

[60] C. K. Luk. Optimizing the cache performance of non-numeric appli­
cations. PhD thesis, University of Toronto, Department of Computer
Science, February 2000.

[61] C.-K. Luk and T. C. Mowry. Compiler-based prefetching for recursive
data structures. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages
222-233, October 1996.

[62] S. Martello and P. Toth. Knapsack problems: algorithms and computer
implementations. Wiley, New York, 1990.

[63] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with
loop transformations. ACM Transactions on Programming Languages
and Systems, 18(4):424-453, July 1996.

[64] D. Mosberger, L. Peterson, and S. O’Malley. Protocol latency: MIPS and
reality. Technical report, TR-95-02, Department of Computer Science,
University of Arizona, 1995.

[65] R. Muth and S. Debray. Partial inlining. Technical report, Department
of Computer Science, University of Arizona, 1997.

[66] R. Muth, S. Debray, S. Watterson, and K. D. Bosschere. alto : A link­
time optimizer for the Compaq Alpha. Software Practice and Experience.
31:67-101, Jan 2001.

[67] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe
retrofitting of legacy code. In Principles of Programming Languages
(POPL), pages 128-139, Jan 2002.

[68] R. Niewiadomski, J. N. Amaral, and R. Holte. Crafting data structures:
A study of reference locality in refinement-based path finding. In Inter­
national Conference on High Performance Computing, pages 438-448,
December 2003.

[69] R. Niewiadomski, J. N. Amaral, and R. C. Holte. A performance study
of data layout techniques for improving data locality in refinement-based
pathfinding. The ACM Journal of Experimental Algorithmics, 9 (1-2): 17-
36, 2004.

[70] P. P. Chang and W. W. Hwu. Trace selection for compiling large c
application programs to microcode. In 21st International Workshop on
Microprogramming and Microarchitecture, pages 188-198, Nov 1988.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[71] S. Palem, R. Rabbah, P. Korkmaz V. J. Mooney, and K. Puttaswamy.
Design space optimization of embedded memory systems via data remap­
ping. In 2002 Joint Conference on Languages, Compilers, and Tools
for Embedded Systems & Software and Compilers for Embedded Systems
(LCTES '02-SCOPES'02), pages 28-37, Berlin, Germany, June 2000.

[72] K. Pettis and R. C. Hansen. Profile guided code positioning. In Pro­
gramming Language Design and Implementation (PLDI), pages 16-27.
1990.

[73] R. Rabbah and S. Palem. Data remapping for design space optimization
of embedded memorv systems. ACM Transactions Embedded Computing
System, 2(2):186-218, 2003.

[74] G. Rivera and C.-W. Tseng. Data transformations for eliminating con­
flict misses. In Programming Language Design and Implementation
(PLDI), pages 38-49, 1998.

[75] G. Rivera and C.-W. Tseng. A comparison of compiler tiling algorithms.
In 8th International Conference on Compiler Construction. pages 168—
182, 1999.

[76] A. Roth, A. Moshovos, and G. S. Sohi. Dependence-based prefetching for
linked data structures. ACM SIGPLAN Notices, 33(11):115—126, 1998.

[77] B. G. Ryder. Dimensions of precision in reference analysis of object-
oriented programming languages. In International Conference on Com­
piler Construction, pages 168-179, 2003.

[78] A. Sale. The implementation of case statements in pascal. Software -
Practice and Experience, ll(9):929-942, September 1981.

[79] R. W. Scheifler. An analysis of inline substitution for a structured pro­
gramming language. Communications of the ACM, 20(9):647-654, Jan
1977.

[80] SGI. Whirl intermediate language specification, 2000.

[81] S. Singhai and K. S. McKinley. A parameterized loop fusion algorithm
for improving parallelism and cache locality. The Computer Journal,
40(6):340-355, 1997.

[82] B. Steensgaaxd. Points-to analysis by type inference of programs with
structures and unions. In 6th International Conference on Compiler
Construction, pages 136-150, 1996.

[83] B. Steensgaard. Points-to analysis in almost linear time. In Principles
of Programming Languages (POPL), pages 32-41, 1996.

[84] M. Stephenson, S. Amarasinghe, M. Martin, and U. O’Reilly. Meta­
optimization: Improving compiler heuristics with machine learning. In
Programming Language Design and Implementation (PLDI), pages 77-
90, 2003.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[85] A. Stoutchinin, J. N. Amaral. G. R. Gao. J. Dehnert, S. Jain, and
A. Douillet. Speculative prefetching of induction pointers. In Interna­
tional Conference on Compiler Construction 2001, pages 289-303, 2001.

[86] M. M. Strout, L. Carter, and J. Ferrante. Compile-time composition
of run-time data and iteration reorderings. In Programming Language
Design and Implementation (PLDI), pages 91-102, June 2003.

[87] T. Suganuma, T. Yasue, and T. Nakatani. An empirical study of method
inlining for a Java just-in-time compiler. In 2nd Java Virtual Machine
Research and Technology Symposium (JVM ’02). pages 91-104, Aug
2002 .

[88] T. Suganuma, T. Yasue, and T. Nakatani. A region-based compilation
technique for a java just-in-time compiler. In Programming Language
Design and Implementation (PLDI), pages 312-323, 2003.

[89] S. P. VanderWiel and D. J. Lilja. Data prefetch mechanisms. ACM
Computing Surveys, 32(2): 174-199, 2000.

[90] D. W. Wall. Predicting program behavior using real or estimated pro­
files. In Programming Language Design and Implementation (PLDI),
volume 26, pages 59-70, June 1991.

[91] T. Way. Procedure restructuring for ambitious optimization. PhD thesis,
University of Delaware, May 2002.

[92] T. Way, B. Breech, and L. L. Pollock. Region formation analysis with
demand-driven inlining for region-based optimization. In Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 24-
36, 2000.

[93] T. Way and L. L. Pollock. A region-based partial inlining algorithm for
an ilp optimizing compiler. In The 2002 International Conference on
Parallel and Distributed Processing Techniques and Applications, pages
552-556, 2002.

[94] J. Whaley. Partial method compilation using dynamic profile informa­
tion. In ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 166-179, 2001.

[95] M. Wolfe. Iteration space tiling for memory hierarchies. In Third SIAM
Conference on Parallel Processing for Scientific Computing, pages 357-
361, 1987.

[96] M. Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley Publishing Company, 1996.

[97] Y. Wu and J. R. Larus. Static branch frequency and program profile
analysis. Technical Report CS-TR-1994-1248, 1994.

[98] S. H. Yong, S. Horwitz, and T. Reps. Pointer analysis for programs with
structures and casting. In Programming Language Design and Imple­
mentation (PLDI), pages 91-103, 1999.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[99] P. Zhao and J. N. Amaral. To inline or not to inline, enhanced inlin­
ing decisions. In Workshop on Languages and Compilers for Parallel
Computing (LCPC), pages 40-5-419, Oct 2003.

[100] P. Zhao and J. N. Amaral. Feedback-directed switch-case statement
optimization. Technical Report TR04-26, Department of Computing
Sciences, University of Alberta, Edmonton, Canada, 2004.

[101] Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Array regrouping and
structure splitting using whole-program reference affinity. In Program­
ming Language Design and Implementation (PLDI), pages 255-266,
June 2004.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Index

affinity-based plan (ABP), 71
alias agent, 55
alias analysis, 67
annotation, 10

back-end (BE), 13

candidate region identification, 45
code bloat, 17
collective outlining, 55

data shape analysis, 67
data TLB (DTLB), 84

early return, 37

Forma, 66
frequency-based plan (FBP), 72
front-end (FE), 11
function outlining, 38

candidate region identification,
45

function splitting, 48
region reorganization, 38

function splitting, 48

independent outlining, 55
instruction-level parallelism, 64
instrumentation

instrumentation, 10
instrumented execution, 10

inter-procedural analysis (IPA), 6
inter-procedural optimization (IPO),

6
intra-regional goto, 50
IPL, 13
Itanium Processor Family (IPF), 11

nearest common ancestor (NCA), 38

Open Research Compiler (ORC), 11
outlined function, f out, 48
outlined region, R out, 48
outlining

collective outlining, 55
independent outlining, 55

outsider caller, fcaiier, 48
outward goto, 50
over-inlining, 22

partial inlining, 2
program unit (PU), 11

region, 37
region reorganization, 38
reshaping safety, 69

Steensgaard’s alias analysis, 68
structure partition plan, 70

affinity-based plan (ABP), 71
frequency-based plan (FBP), 72
maximal splitting plan (MSP),

72
switch partition, 39

temperature, 18
Toronto Portable Optimizer (TPO),

11
translation look-aside buffer (TLB),

73
type compatibility, 69

WHIRL, 11, 35

L1DTLB, 84
L2DTLB, 84
leftover function, 48
leftover region, Rie/tover, 48
lowering, lowered, 12

maximal splitting plan (MSP), 72
middle-end (ME), 13

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

