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Abstract 

The conventional form of heat conduction, Fourier’s law, has broad and successful 

applications in the thermal systems which have a large spatial dimension with the focus of 

its long time behavior. However, for problems involving high temperature gradient, 

materials with porosity or multiple phases, ultrafast heating and/or, micro/nano-scale heat 

conduction, the Fourier heat conduction is not accurate. This is due to the incorrect 

assumption of the infinite speed of heat propagation, which in turn, comes from the 

inability of Fourier heat conduction in considering the microstructural interactions and 

nonhomogeneity effect of the material 

      The field of Thermal Stresses lies at the crossroad of Stress Analysis, Theory of 

Elasticity, Thermoelasicity, Heat Conduction Theory, and advanced methods of Applied 

Mathematics. Each of these areas is covered to some extent and explained step by step in 

this thesis. The heat conduction theory employed here eliminates the paradox of an infinite 

velocity of heat propagation by employing a more general, functional relation between heat 

flow and temperature gradient than the existing theory. Also, as a first attempt, the 

combined application of the differential quadrature method (DQM) and the Newton 

Raphson method is used to solve the hyperbolic (non-Fourier) and dual-phase-lag (DPL) 

heat conduction equations to obtain temperature, displacements and nonlinear frequency 

in the functionally graded (FG) nanocomposite Timoshenko beam and cylinder of different 

sizes. The hyperbolic heat conduction is solved to obtain temperature in the spatial and 

temporal domains. Then by implementing the obtained temperature in thermoelastic 

equations, the displacements and stresses are obtained at each time step. Here, the time 

domain is divided into a few blocks. In each block, there are several time levels, and the 
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numerical results at these time levels are obtained simultaneously. Through this way, the 

numerical solution at the (n+1)th time level depends on the solutions at previous levels 

from the 1st to the nth levels. The results in the temporal domain are obtained using the 

Newton-Raphson method. 

      In general, the variation of temperature field within an elastic continuum results in 

thermal stresses. So, thermally induced vibration is investigated after obtaining the 

temperature distribution and thermal forces of carbon nanotube (CNT) reinforced 

nanocomposite beams and shells. The influence of temperature field in the governing 

equations of thermoelasticity is reflected through the constitutive law. The theory of linear 

thermoelasticity is based on linear addition of thermal strains to mechanical strains. All 

material properties such as heat capacity (Cp), thermal relaxation time (τ), density (ρ) and 

thermal conductivity (K) are considered as a function of both temperature and CNT volume 

fraction. While the equilibrium and compatibility equations of the nanocomposite remain 

the same as for elasticity problems, the main difference rests in the constitutive law where 

the effect of volume fraction and distribution of CNTs is reflected in the thermoelastic 

response of nanocomposite. 

It has been shown that in certain situations, non-Fourier heat conduction models 

such as the Cattaneo and Vernotte (CV) and DPL show interesting results like temperature 

overshoot phenomena observed in a slab subjected to sudden temperature rise on its 

boundaries. As the vast majority of devices with micro- and nano-scale dimensions emerge 

in various micromechanical and microelectronic systems, it seems crucial to accurately 

measure the imposed temperature. The overshooting phenomenon, which is investigated 

in this research may lead to permanent damages on the sensitive electrical devices if not 



  

iv 

 

handled properly. Accordingly, the effects of this phenomenon on the deformation, and 

vibrational behavior of the beams and shells are investigated to recognize the importance 

of using non-conventional heat conduction methods. We showed that non-Fourier heat 

conduction models would play important roles in the thermoelastic design of 

nanocomposite structures. 
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Chapter 1:  

Overall introduction 

1.1 Motivations and objectives 

It has been shown that when the thickness of a medium is whithin a certain range and  

temperature gradient is sufficiently high, non-Fourier heat conduction models such as the Cattaneo 

and Vernotte (CV) and dual-phase-lag (DPL) show interesting results like temperature overshoot 

phenomena or heat wave interference. Furthermore, thermal resonance may exist with an 

appropriate heat source or boundary condition in DPL or hyperbolic heat conduction in which 

thermal waves exist. The resonance will significantly enhance the heat transfer process in 

nanofluids and multi-phase media. This phenomenon could damage electronic or mechanical 

devices if it is not appropriately handled. 

Furthermore, Fourier and Laplace transforms can be used to solve the non-Fourier heat 

conduction problems, but for problems with complex geometries, integral transform based 

methods face some challenges in transform inversion. Also, the calculated temperatures by these 

transforms are inaccurate at early stages, as many previous studies shown [references]. These 

challenges motivated the author to use a different methodology to cope with these problems.  

      The main objectives of this research are: (1) developing a methodology to deal with non-

Fourier heat conductions problems; (2) investigating the heat conduction in small scale through 

nonlocal thermoelasticty; (3) presenting the unique effect of non-Fourier heat conduction on the 

thermomechanical behaviour of the material. 

To reach the research objectives as aforementioned, the differential quadrature method 

(DQM) to solve for the first time, the nonlinear DPL heat conduction equations while the materials 



 

2 

 

and properties are geometry- and temperature-dependent to obtain the temperature distribution.  

Then the obtained temperature is employed in the thermoelastic equations of a slab, a microbeam, 

and a shell to obtain displacements and frequency at each time step by direct iterative method.  

In this study, all material properties such as Young’s modulus (E), heat capacity (Cp), 

relaxation time (τ), density (ρ) and thermal conductivity (K) are considered as a function of 

temperature and CNT volume fraction. The effects of temperature change, thermal conductivity, 

CNTs volume fraction, length to span ratio, heat flux, and end support conditions on the linear and 

nonlinear vibration of beams or shells are discussed in detail.  

1.2 History 

Heat conduction is a traditional subject that dated back to the eighteen’s century, when 

Fourier’s conduction law was established. The heat conduction research based on Fourier’s 

conduction law usually focuses on how to transfer heat efficiently for heating or cooling objects. 

Heat propagation in solids, traditionally, has been interpreted as either a diffusion or a wave 

phenomenon. When there is no heat generation, the diffusion theory leads to a decayed temperature 

in time due to presence of the first order time-derivative in the diffusion equation. On the other 

hand, the thermal wave model engages the wave term in the energy equation which introduces a 

sharp wavefront in the history of thermal wave propagation. As a result, several physical 

phenomena will be revealed that cannot be reflected by diffusion [1].  

In the past three decades, with the development of short pulse laser technique and 

fabrication of nanomaterials, the validation of Fourier’s law has been challenged. In studies on 

ultrafast laser heating of materials from the 1980s, it is observed that the temperature response on 

laser heating exhibits the behavior of lagging, relaxation, or delay, which indicates the failure of 

Fourier’s law. On the other hand, in low-dimensional materials such as carbon nanotubes and 
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graphene, as well as nanosized semiconductors, the heat conduction shows a size-dependent 

behavior. 

1.3 Fourier heat conduction 

In one-dimensional, steady-state heat flow, thermal conductivity of a material is a 

parameter that relates the rate of heat conduction to the temperature gradient of the bulk material, 

and it assumes that heat flux and temperature gradient occur at the same time instant. This means 

that heat disturbances, with parabolic-type heat conduction equation, need to spread at an infinite 

speed [2] as shown in the following equation.  

           𝑞(𝑥, 𝑡) = −𝑘∇𝑇(𝑥, 𝑡) (1.1) 

where ∇𝑇(𝑥, 𝑡) is the temperature gradient, which is a vector function of the position vector x 

and the time variable t, 𝑞(𝑥, 𝑡) is the heat flux, and k is the thermal conductivity. Even though 

Fourier heat conduction has been used to solve most engineering problems at classical length and 

time scale successfully, it cannot model situations involving low temperatures near absolute zero, 

high-temperature gradient, and very high frequencies of heat flux [3,4].  

1.4 Hyperbolic (single-phase-lag) heat conduction 

The heat conduction theory presented here eliminates the paradox of an infinite velocity of 

propagation by employing a more general, functional relation between heat flow and temperature 

gradient than the existing Fourier’s theory. 

Besides, because the heat flux and the temperature gradient are simultaneous, one cannot 

differentiate between the cause and effect of heat flow which is critical for the transient behavior 

at an extremely short time, for example on the order of picoseconds to femtoseconds [5]. Also, in 

the absence of heat source, in the Fourier heat conduction, the temperature will reach its maximum 

or minimum value at the boundary of the medium at the first instant. However, for the heat 
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conduction models such as the hyperbolic, Cattaneo and Vernotte (CV) and dual-phase-lag (DPL) 

models, the temperature of some inner regions in the medium may exceed the temperature at the 

boundary which is called the overshooting phenomenon. Evidently, this phenomenon may lead to 

the damage of electronic or mechanical devices if it is not appropriately handled [6]. So, the 

hyperbolic heat conduction equation is introduced based on the Cattaneo and Vernotte for the heat 

flux to incorporate a relaxation mechanism in order to gradually adjust to a change in the 

temperature gradient [7,8]. This theory eliminates the paradox of an infinite velocity of heat 

propagation by employing a more general, functional relation between heat flow and temperature 

gradient than classical theory and can yield the hyperbolic diffusion equation within the continuum 

assumption. In the hyperbolic (single-phase-lag) model, 

          𝑞(𝑥, 𝑡 + 𝜏𝑞) = −𝑘∇𝑇(𝑥, 𝑡) (1.2) 

where 𝜏𝑞 is the time lag of the heat flux. The temperature gradient always precedes the heat flux 

vector. A new time integration scheme proposed by Fung [9] based on the differential quadrature 

method (DQM) to solve Eq (1.2) in a continuum can be used, as it was illustrated that the scheme 

is unconditionally stable. By using the same concept, Rahideh et al. [10] employed the layerwise-

incremental DQM to show the effect of heat wave speed on the thermal characteristics of a multi-

layered domain made of functionally graded materials.  

1.5 Dual-phase-lag heat conduction 

Multiphase systems are not following Fourier’s law as well, such as in nanofluids, porous 

media, and biomaterials [11,12]. To mitigate the deviations from Fourier’s law, Tzou [12] 

introduced dual-phase-lag (DPL) heat conduction as  

            𝑞(𝑥, 𝑡 + 𝜏𝑞) = −𝑘∇𝑇(𝑥, 𝑡 + 𝜏𝑇) (1.3) 

where 𝜏𝑇 is the time lag of the temperature gradient. This model can capture the effect of heat 
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conduction with high heat flux and short heating period. For example, Dai et al. [13] developed a 

new higher-order finite difference scheme for solving the DPL equation in nano heat conduction 

with the temperature jump boundary condition. Furthermore, if 
𝜏𝑞

𝜏𝑇
> 1, Eq. (1.3) is hyperbolic and 

thermal waves will be produced in the heat conduction process. If, otherwise, 
𝜏𝑞

𝜏𝑇
<= 1, this 

equation is parabolic and thermal waves do not exist [14]. 

1.6 Nonlocal Heat Conduction 

Many studies about CNTs and nanoscale structures were based on the classical continuum 

theory, which ignores the strong size effect [15]. To tackle this problem, nonlocal elasticity 

theories were introduced for the nanoscale structures to develop size-dependent material relations 

[16]. These approaches have shown superior performance in coping with this problem over any 

other approache. Furthermore, there have been lots of research on the heat conduction of 

nanostructures theoretically [17,18] and experimentally [19]. They showed that improvement of 

thermal contact to initially rough metal electrodes is attributed to the local melting of metal surface 

under laser heating. 

In the classical model, the temperature gradient causes heat flux at the same point. At the 

nanoscale, a sufficient number of collisions among energy carriers are required for heat transport 

to take place [20]. In general, quantifying the value of a physical property at one point through 

another physical property in a region near that point is considered as the nonlocal treatment in the 

continuum theory, which has been supported by experimental results [21]. 

Based on the investigations of Soboley [22] and Tzou [12], since heat flux at micro/nano 

scale is substantially nonlocal, classical models should be modified using nonlocal theory by 

introducing the characteristic length of the material. Prior research generally confirms that at the 
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nanoscale, heat transfer is quite different from that estimated by classical laws. To tackle this 

problem, Guyer and Krumhansl (GK) [23, 24] introduced a generalized model by considering the 

characteristic length of the material as follows: 

𝑞(𝑧, 𝑡 + 𝜏𝑞) = −𝑘∇𝑇(𝑧, 𝑡) + 𝑙
2∇2𝑞(𝑧, 𝑡)     (1.4) 

where 𝜏𝑞 and 𝑙 are the time lag of heat flux and internal characteristic length, respectively. To 

investigate the transient heat conduction from nano- to macro-scales, Wang et al. [25] considered 

the effects of both non-Fourier heat conduction and the nonlocality of the problem simultaneously. 

Xu [26] investigated the nanoscale heat conduction in silicon thin films by considering the 

temporally and spatially nonlocal effects. They showed thermal wave propagation in nanoscale 

materials. 

1.7 Thermally induced vibration 

The history of thermoelasticity and thermal stresses is much younger than the history of 

the theory of elasticity, albeit, from the literature review, it is noted that the temperature effect on 

the linear and nonlinear vibrations of microscale structures has been an object of many studies. 

However, thermally induced vibration of structures under transient heat conduction along with 

considering the size effect have not been studied yet. In this thesis, the thermally induced vibration 

behaviors of carbon nanotube (CNT) reinforced functionally graded (FG) microbeam have been 

studied based on the hyperbolic heat conduction. 

As a first step, non-Fourier heat conduction in the beam with temperature-dependent 

material properties is studied. Then a mathematical model is developed for considering the effect 

of transient heat conduction on the vibration analysis of nanocomposite beam using differential 

quadrature method (DQM). Nonlinear free vibration analysis of FG-CNT reinforced composite 

structures is studied based on the Timoshenko beam theory using Hamilton's principle, Mori-
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Tanaka (MT) model, and DQM, a simple and efficient numerical technique for solving partial 

differential equations [27-30]. 

This thesis is organized in a paper-based format. It includes eight chapters. All Chapters presented 

in this thesis except Chapters 1, 3, and 8 have been published or accepted by peer reviewed journals 

as follows: 

• Chapter 2 of this thesis has been published as Paper No. 1. In this chapter, DQM is used to 

discritize the governing equations of hyperbolic and dual-phased-lag heat conduction in a 

medium. Then a Newton-Raphson method is used to solve the problem. The effects of time 

lag on the temperature distribution and heat flux are illustrated.   

• Chapter 3 of this thesis has been published as Paper No. 2. In this chapter, the mechanical 

properties temperature distribution of a CNT reinforced composite are investigated 

• Chapter 4 of this thesis is under review as Paper No. 3. In this chapter, the effect of length 

scale on the thermoelastic behaviour of the nanocomposite material. We introduce nonlocal 

thermoelasticity and imply the effect of characteristic length on the temperature 

distribution. 

• Chapter 5 of this thesis has been published as Paper No. 4. Nonlinear frequency response 

of a sandwiched, nanocomposite beam is investigated in this chapter. 
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a microbeam is investigated based on non-Fourier heat conduction in this chapter. 
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thermomechanical behaviour of a nonocomposite cylindrical panel is investigated using 

non-Fourier heat conduction under a thermal shock on the boundary.  
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Chapter 2: 

Dual-phase-lag heat conduction in the composites by 

introducing a new application of DQM
1
 

The first application of the differential quadrature method (DQM) in solving the nonlinear 

dual-phase-lag (DPL) heat conduction equation is demonstrated here. To show the effect of DPL 

parameters, the temperature response of the medium obtained from Fourier’s low, hyperbolic heat 

conduction, and hyperbolic type DPL heat conduction model were compared. Furthermore, the 

transient temperature and heat flux distributions have been calculated for various types of dynamic 

thermal loading. We show whether thermal waves exist in hyperbolic type DPL heat conduction 

by considering the time lag parameter in the microstructural interactions of fast transient heat 

conduction. Also, overshooting which is one of the results of considering hyperbolic heat 

conduction is investigated here. The numerical solution at each time level depends on the solutions 

at its previous levels. This means the temperature and heat flux obtained at the n𝑡ℎ time step are 

the initial conditions for the (n+1)𝑡ℎ time step. After demonstrating the convergence and accuracy 

of the method, the effects of different parameters on the temperature and heat flux distribution of 

the medium are studied. 

  

 

 

1 A version of this chapter is published in the journal of Heat and Mass Transfer, 1-7, 2019,   
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2.1 Introduction 

In the conventional heat conduction theory, which is based on classical Fourier’s law, heat 

flux and temperature gradient generate at the same time instant. This means that heat disturbances, 

with parabolic-type heat conduction equation, need to spread at an infinite speed [2] as shown in 

Eq. (2.1).  

𝑞(𝑥, 𝑡) = −𝑘∇(𝑥, 𝑡)                   (2.1) 

where ∇(𝑥, 𝑡) is the temperature gradient which is a vector function of the position vector x and 

the time variable t, 𝑞(𝑥, 𝑡) is the heat flux, and k is the thermal conductivity. It puts up a good 

performance to construe most engineering problems at classical length and time scale, but cannot 

fully model situations involving very low temperatures near absolute zero, high temperature 

gradient, and very high frequencies of heat flux [31-33]. Moreover, because the heat flux and the 

temperature gradient are simultaneous, one can not differentiate between the cause and effect of 

heat flow which is critical for the transient behavior at extremely short time, for example on the 

order of picoseconds to femtoseconds [5]. Also, in the absence of heat source, in the Fourier heat 

conduction, the temperature will gain its maximum or minimum value at the boundary of the 

medium or at the initial instant. But for the heat conduction models such as the Cattaneo and 

Vernotte (C-V) and DPL models, the temperature of some inner regions in the medium may exceed 

the temperature at the boundary. This phenomenon is called overshooting. Evidently, this 

phenomenon may lead to the damage of electronic or mechanical devices if it is not handled 

properly [5, 34]. So, the hyperbolic heat conduction equation is introduced based on the Cattaneo 

and Vernotte model Eq. (2) for the heat flux incorporates a relaxation mechanism in order to 

gradually adjust to a change in the temperature gradient [7,8,35, 36]. This model has been a 

satisfactory extension of classical diffusion theory and can yield the hyperbolic diffusion equation 
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within the continuum assumption.  

𝑞(𝑥, 𝑡 + 𝜏𝑞) = −𝑘∇(𝑥, 𝑡)                    (2.2) 

where 𝜏𝑞 is the time lag of the heat flux. In fact, the temperature gradient always precedes the 

heat flux vector. Rahideh et al. [10] used the layerwise-incremental DQM to show the effect of 

heat wave speed on the thermal characteristics of a multi-layered domain made of functionally 

graded materials. The other example of the systems which do not obey Fouriers’s law are 

multiphase systems, such as nanofluids, porous media, and biomaterials [11, 37, 38]. To tackle the 

deviations from Fourier’s law, Tzou [1,2] introduced a two phase lags heat conduction, presenting 

the DPL model as  

𝑞(𝑥, 𝑡 + 𝜏𝑞) = −𝑘∇(𝑥, 𝑡 + 𝜏𝑇)          (2.3) 

where 𝜏𝑇 is the time lag of the temperature gradient. This model is able to capture the effect of 

heat conduction with high heat flux and short heating periods. Dai et al. [13] developed a higher-

order finite difference scheme for solving the DPL equation in nano heat conduction with the 

temperature jump boundary condition. Furthermore, if 
𝜏𝑞

𝜏𝑇
> 1, Eq. (2.3) presents a hyperbolic type 

heat conduction and thermal waves will be produced in the heat conduction process. If, otherwise, 

𝜏𝑞

𝜏𝑇
<= 1, this equation is parabolic and thermal waves do not exist [14, 39]. 

Wang and Zhou [40] established methods of measuring the time lags and obtained 

analytical solutions for the regular 1-D, 2-D and 3-D heat conduction domains under arbitrary 

initial and boundary conditions. A combination study of the non-Fourier heat conduction with 

thermalphonon theory has also been performed [41]. Also, Basirat et al. [42] obtained the phase 

lag values corresponding to the metal films. Values of these parameters are mainly determined 

experimentally [43, 44] and they are ranged from 0.01 to 32 s. The effect of laser, as a heat source, 
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on a thin film was studied by Noroozi et al. [45]. They have used the Adomian decomposition to 

solve the DPL equations, as an approximate-analytical method. Wang et al. [26] presented a 

peridynamic non-Fourier heat conduction model, in the framework of generalized state-based 

peridynamics by introducing the concept of dual phase lags into the peridynamic framework, to 

consider the non-Fourier and nonlocal effects simultaneously.  

In summary, the objective of this study is to introduce a new application of differential 

quadrature method [30, 46] to resolve DPL heat conduction in nanocomposites with considering 

the nonlinear terms of heat conduction. The proposed method marches in the time direction block 

by block. In each block, there are several time levels, and the numerical results at these time levels 

are obtained simultaneously. In this way, the numerical solution at the (n+1)th time level depends 

on the solutions at its previous levels from the 1st to the nth (n=1:Nt) levels. Both the spatial as 

well as the temporal domain is discretized using the DQM. To the authors’ best knowledge, this is 

the first research on the effects of dual phase lag model based on this method. Using the DQM 

allows us to choose a relatively coarse grid and obtain a reasonable solution. Also, it is much easier 

to implement rather than solving heat conduction equations in the Laplace domain or analytically. 

Moreover, the DQM requires no restriction on the boundary conditions or material properties, and 

is much easier to apply than other available methods on two or three-dimensional problems.  

2.2 DQ solution of governing equations 

The general differential quadratur (DQ) approach is used to solve the heat transfer 

equations. This approach was developed by Shu and co-researchers based on the differential 

quadrature (DQ) technique [30]. In GDQ method the 𝑛th order partial derivative of a continuous 

function 𝑓(𝑥, 𝑡)  with respect to 𝑥  at a given point 𝑥𝑖  can be approximated as a linear 

summation of weighted function values at all of the discrete points in the domain of 𝑥, i.e. 
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𝜕𝑓(𝑥,𝑡𝑗)

𝜕𝑥
|𝑥=𝑥𝑖 = ∑

𝑁
𝑘=1 𝐶𝑖𝑘𝑓(𝑥𝑖𝑘, 𝑡𝑗),

(𝑖 = 1,2, …𝑁𝑥, 𝑗 = 1,2, …𝑁𝑡)
    (2.4) 

𝜕𝑓(𝑥,𝑡𝑗)

𝜕𝑡
|𝑡=𝑡𝑖 = ∑

𝑁
𝑘=1 𝐷𝑗𝑘𝑓(𝑥𝑖𝑘, 𝑡𝑗),

(𝑖 = 1,2, …𝑁𝑥, 𝑗 = 1,2, …𝑁𝑡)
 (2.5) 

where 𝑁𝑥 and 𝑁𝑡 are the number of sampling points along 𝑥 and 𝑡 directions, respectively, 

also 𝐶𝑖𝑘 and 𝐷𝑗𝑘 are the 𝑥𝑖 and 𝑡𝑗 dependent weight coefficients. Details of this procedure can 

be found in the literature [47, 48]. In this work, the Chebyshev-Gauss-Lobatto quadrature points 

are used [30], 

𝑥𝑖 =
1

2
(1 − cos (

𝑖−1

𝑁−1
𝜋)) , 𝑖 = 1,2, …𝑁                                    (2.6) 

2.3 Problem description 

 The transient, hyperbolic heat conduction equation is expressed as follows [17]  

𝑞 + 𝜏𝑞
𝜕𝑞

𝜕𝑡
= −𝑘 (

𝜕𝑇

𝜕𝑥
+ 𝜏𝑇

𝜕2𝑇

𝜕𝑥𝜕𝑡
)            (2.7) 

where 𝜏𝑞  and 𝜏𝑇  were introduced to account for the effects of thermal inertia and 

microstructural interaction such as electron-phonon interaction or phonon scattering, respectively. 

Moreover, the energy equation can be written as [1], 

𝜌𝐶
𝜕𝑇

𝜕𝑡
+
𝜕𝑞

𝜕𝑥
= 𝑔(𝑥, 𝑡)                                                   (2.8) 

In the above equation, 𝑔(𝑥, 𝑡) is the heat source which is equal to zero. The DQM is used to 

discretize the spatial derivatives, and the incremental DQM is employed to discretize the temporal 

domain. Based on this approach, the total temporal domain is divided into a set of time intervals 

where the DQ rule is employed to discretize the temporal derivatives. The DQ method being 

applied to Eqs. (2.7) and (2.8), then the following equations at an arbitrary sampling point 𝑥𝑖 and 

𝑡𝑗 are then obtained: 



 

14 

 

𝑘𝑖𝑗(𝜏𝑇 ∑
𝑁𝑥
𝑚=1 𝐶𝑖𝑚

1 𝑇𝑚𝑗 ∑
𝑁𝑡
𝑛=1 𝐷𝑖𝑚

1 𝑇𝑖𝑛) + 𝑘𝑖𝑗(∑
𝑁𝑥
𝑚=1 𝐶𝑖𝑚

1 𝑇𝑚𝑗) +

𝜏𝑞(∑
𝑁𝑡
𝑛=1 𝐷𝑗𝑛

1 𝑞𝑖𝑛) + 𝑞𝑖𝑗 = 0
 (2.9) 

(∑
𝑁𝑥
𝑚=1 𝐶𝑖𝑚

1 𝑞𝑚𝑗) + 𝜌𝑖𝑗𝐶𝑖𝑗(∑
𝑁𝑡
𝑛=1 𝐷𝑗𝑛

1 𝑇𝑖𝑛) = 𝑔𝑖𝑗 (2.10) 

 

   

 Figure 2. 1 Implementation of DQ and Newton-Raphson method in the hyperbolic type DPL heat 

conduction equation  

  

Figure 2.1 shows how the hyperbolic type DPL heat conduction equations have been solved 

by using DQM. In order to solve these nonlinear equations, an iterative procedure is used. To do 

so, in the first step as shown in Fig 2.1, the nonlinear terms are neglected and the resulting problem 

is solved. In the second step, the obtained temperature is considered as a first guess of the nonlinear 
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term in Eq (2.9). Then, the problem is solved again to obtain the new temperature and heat flux. 

Step 2 is repeated until the discrepancy between the temperatures from the two consecutive 

iterations is within 0.1 ∗ 10−3. For this step, at the beginning we are in first time interval (𝑁𝑡=1), 

and we need to apply DQM in this time interval to obtain the temperature history by having the 

temperature at the end of each time interval. So, there should be 𝑁𝑡𝑠 sample points in each block 

to solve it through DQM. For convenience we considered 𝑁𝑡 = 𝑁𝑡𝑠. After we solved the problem 

in the first time interval, we can move to the next block (𝑁𝑡 + 1) and use the obtained temperature 

and heat flux as an initial condition for the next block. 

Let us consider the beam which is under a sudden temperature change on the lower surface. 

The boundary conditions of the problem can be expressed as [49,50]: 
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Figure 2. 2 Convergence study of the presented DQM (𝑡∗ = 0.2). 
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Figure 2. 3 Comparison between the two different solution method, 1: DQM (Present method) 2: Fourier 

transformation [51] 

 

𝑇(0, 𝑡) = (
100(

1

2
+
3

4
(
2𝑡

𝑡∗ − 1
) −

1

4
(
2𝑡

𝑡∗
− 1)

3

)    if 0 ≤ t ≤ t∗,

100,        if t ≥ t∗

𝑇(𝑥, 0) = 0,

𝑞(0, 𝑡) = 0,

𝑞(𝑥, 0) = 0,

 

(2.11) 

 

            

where 𝑡∗= 0.1 s in all calculations. 

2.4  Results and discussion 

2.4.1 Validation 

The convergence of the presented DQM is shown in Fig 2.2. The same values for the 

parameters as those in the work of [50] are considered here. A heating pulse is applied to the lower 

surface of a plate. The results for convergence behavior of the time history and spatial distribution 
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of the nondimensional temperature and heat flux are presented as well. It should be noted that 𝑁𝑡 ∗

𝑑𝑡 = constant. In fact, the whole process is investigated in the same duration of time for all the 

tests. It is shown that with increasing the number of sample points in both temporal and physical 

domains (𝑁𝑥 = 𝑁𝑡), followed by decreasing the time interval, converged results are obtained. 

However, this is not enough and the convergence of DQM should be further verified by comparing 

the results with another method. The present method is validated by comparing the results with 

those available in [51]. The results are presented for the hyperbolic heat conduction in a slab of 

nanoscale and compared with published results [51] as shown in Fig 2.3. In [51], the authors solved 

their problem in the Laplace domain and introduced 𝐾𝑛 to consider the effect of nonlocality. As 

one can see, good agreement is achieved between the current results and the results of [51]. 

2.4.2 Results 

Next, let us consider a heating pulse applied to the left boundary of a parallelly sided slab. 

The initial and boundary conditions are: 

𝑞(0, 𝑡) =

(

 100(−1 + (
2𝑡

𝑡∗
+ 1)

2
3
)     if 0 ≤ t ≤ t∗,                          

0        if t ≥ t∗,
𝑞(𝑥, 0) = 0,

𝑞(0, 𝑡) = 0,

𝑇(𝑥, 0) = 0.

                          (2.12) 
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Figure 2.4 Effects of the phase lags of heat flux and temperature gradient on temperature and heat flux 

distribution 

    

The distributions of the temperature and heat flux at t=0.007 are illustrated in Fig 2.4 . As 

is known, 𝜏𝑞 is the phase lag of the heat flux and 𝜏𝑇 is the phase lag of the temperature gradient. 

DPL theory states that the gradient of temperature at a point 𝑥 and time 𝑡 + 𝜏𝑇 corresponds to 

the heat flux vector at the same point and time 𝑡 + 𝜏𝑞. So, the bigger the phase lag 𝜏𝑇, the more 

difficult for temperature to catch up with the heat flux. As Fig 2.4 shows (while 𝜏𝑞=2.4), for higher 

𝜏𝑇 , the thermal wave initiation occurs sooner and also a longer time duration is needed for 

temperature to get steady.  
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Figure 2. 5 Time evolution of the temperature (oC) at different temperature gradient and heat flux time 

lags 

  

Figure 2.5 shows the temperature history at the second sample point (𝑁𝑥 = 2). Here, we 

consider 𝑑𝑡 =0.001 and 𝑁𝑥 = 𝑁𝑡 = 𝑁𝑡𝑠 = 13, so 𝑥 is equal to 
2

13
∗
−ℎ

2
 (ℎ=0.001 m) and there 

is a thermal shock at t = 0 and x = -h/2 like Eq. 2.11. For both DPL (when we have both time lags) 

and C-V (when we have one time lag (𝜏𝑇 )) models, the temperature propagates through the 

medium with a finite speed, so a finite time is required for the medium to adapt itself to the 

prescribed boundary conditions. It is an interesting point to note that increasing the time lag 𝜏𝑇 

while 𝜏𝑞  remaining constant rises the maximum transient temperature and the thermal wave 

speed. Also, Fig 2.5 shows that the thermal wave speed based on the DPL model is greater than 

that based on the C-V model due to the existence of time lag of temperature gradient, 𝜏𝑇. This 

figure shows that by using C-V or DPL heat conduction, the slab experiences a temperature beyond 

the imposed boundary conditions in the absence of heat generation. This phenomenon is called 
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overshooting and will be enhanced by increasing the time lag, 𝜏𝑇. Also, it should be noticed that 

for 𝜏𝑇 > 0.02 ∗ 𝜏𝑞 ,  the results become unrealistic to some extent as negative values of 

temperature occur. The existence of negative values of temperature can be explained briefly here. 

As discussed earlier, hyperbolic and DPL heat conduction models involve two coupled equations: 

1) heat conduction equation, 2) equation of energy conservation. It is the requirement of energy 

conservation that attributes to this incident. In the beginning, we have an abrupt temperature rise 

at the boundary, and the adjacent areas will need to provide the energy to support this change. The 

negative temperature regions are where energy loss occurs, while this lost energy was transferred 

to the adjacent areas to support the abrupt temperature rise. It should be noted that the negative 

heat flux in the beginning has not been observed in any experiment. It is possible to avoid getting 

the negative heat flux or temperature in the beginning by choosing a proper value of time delays 

or a right thickness of the specimen.  

   

Figure 2. 6 Time evolution of the heat flux at different temperature gradient and heat flux time lags 
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  The effects of the phase lag of temperature gradient, 𝜏𝑇, on the heat flux distributions, 

while 𝜏𝑞 = 2.4 s, in the thickness direction of the medium at 𝑡 = 0.003 s are presented in Fig 

2.6. The imposed thermal boundary condition on the one slap causes thermal wave initiation which 

travels toward the other side as a result of time delay. Also, as is shown in Fig 2.6, the DPL model 

would reduce to the C-V model when 𝜏𝑇=0 which means the temperature gradient is preceding 

the heat flux. 

 

 

Figure 2. 7 Effects of heat flux time lag in temperature history in case of DPL heat conduction 

 

 

Figure 2.7 illustrates the influence of 𝜏𝑞  on the time history of the temperature by 

exhibiting the results at point 𝑁𝑥 = 3. When 𝜏𝑇 is kept unchanged, varying the value of 𝜏𝑞 can 

result in different characteristics of temperature distribution. As one can observe, increasing the 

time lag of heat flux, 𝜏𝑞, lessens both the thermal wave speed and maximum transient temperature. 
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The lower speed of thermal waves leads to a later convergence of temperature. 

 

Figure 2. 8 Time evolution of the temperature at different points along the thickness of the beam in case 

of DPL heat conduction 

 

Figure 2.8 depicts the time history of temperature at four distinct points (x=0, x=0.05h, 

x=0.5h, and x=h) when 𝜏𝑇  and 𝜏𝑞  are constant. Clearly, thermal wave needs more time to 

navigate from x = 0 to x = 0.5ℎ, here this time is shown as 𝑡2. This is the time duration that an 

area in the middle of the medium (Nx = 7, Nx shows the number of nodes)  needs to 

completely get affected by the imposed thermal boundary condition. Based on this figure, one can 

reach the point that temperature distribution is the expression of energy allocation, which is the 

consequence of heat flux. In the area close to the imposed thermal boundary condition (Nx = 3, 

Nx shows the number of nodes), stabilization occurs sooner due to the earlier infection (𝑡1). And 
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for 𝑁𝑥 = 7, it takes more time for the temperature to get stabilized.  

2.5  Conclusion 

 Temperature and heat flux propagation in a medium is investigated by adopting the dual-

phase-lag heat conduction model. For the first time, differential quadrature approach is utilized to 

develop a solution. The method leads to the easier solution and is convenient to apply to different 

kind of boundary conditions ormaterial properties, and even two or three-dimensional problems. 

The convergence of the solution method is investigated by comparing the results with available 

analytical solutions. It is shown that the negative temperature regions are where energy loss occurs, 

while this lost energy has been transferred to the adjacent areas to support the abrupt temperature 

rise. Moreover, it is shown that both time lags, 𝜏𝑞 and 𝜏𝑡, play a vital role in the temperature and 

heat flux. An increase in the value of 𝜏𝑇, leads to faster wave motion, and as a result, a later 

convergence. On the contrary, increasing the value of 𝜏𝑞 leads to slower wave motion, a lower 

peak value of transient temperature and shorter time duration for temperature to become stable. In 

general, the transient effect of heat conduction is shown to decay quickly, and both the Fourier and 

non-Fourier models will coincide with each other after the initial, transient period. It should be 

mentioned that the temperature overshoot phenomenon highly depends on the specimen size. As 

the specimen size increases, the local time-rate of temperature change dramatically decreases, 

resulting in a rapid diminution of the overshooting phenomenon. On the other hand, as the physical 

scale of a solid shrinks, especially if it shrinks to micro-scale or to the order of the mean free path 

of the phonons, individual behaviour of energy carriers becomes pronounced, and other parameters 

such as characteristic length would play an important role in the thermoelastic response. The effect 

of adding another phase to the system such as CNTs and shrinkage of the scale of the device is 

investigated in the next chapters. 
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Chapter 3:  

Dual-phase-lag heat conduction in FG carbon nanotube 

reinforced polymer composites2 

The numerical simulation of non-Fourier, dual-phase-lag (DPL) heat conduction in carbon 

nanotube (CNT) reinforced composites has been performed by developing the differential 

quadrature method (DQM) application. Although using the non-Fourier heat conduction has 

become popular, most of the simulations are conducted over simple geometries due to numerical 

restrictions. DQM copes with this problem easily even with complicated boundary conditions. The 

proposed method discretizes the time domain in the form of blocks. Each block contains several 

time levels, and each block needs to solve separately by using the output of one block as an initial 

condition of the next block. The effect of volume fraction of CNT on the temperature and heat flux 

profile is investigated, and all parameters are considered temperature dependent. To show the 

influence of time lag parameters, the Fourier, hyperbolic heat conduction and DPL heat conduction 

models were compared. Furthermore, various types of dynamic thermal loading have been 

examined to obtain the transient temperature distributions. We show the presence of heat wave in 

DPL heat conduction by considering the time lag parameter in the microstructural interactions of 

fast transient heat conduction. It is found that considering the mechanical properties of the CNTs 

 

 

2 A version of this chapter is published in journal of Physica B: Condensed Matter 564, 147-156, 2019. 
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dependent to the temperature is crucial to obtain accurate results.  

 

3.1 Introduction 

 Polymers are widely used in industry because of their diverse functionality, lightweight, 

and excellent chemical stability. However, the low thermal conductivity is a major technological 

barrier in some applications such as heat exchangers and electronic packaging. Compositing is one 

of the best methods to modify the thermal conductivity of polymers by the incorporation of fillers 

with a high thermal conductivity such as carbon nanotubes (CNTs). Carbon nanotubes, with 

exceptional electronic and mechanical properties, was considered as a newly excellent candidate 

for reinforcement of composite materials [52-58]. Numerous studies have been made to 

analytically and experimentally determine the mechanical properties of CNT reinforced 

nanocomposites via molecular dynamics (MD) simulation [59,60], continuum mechanics [61,62] 

and multi-scale simulations [59,63].The macro-mechanical properties of nanocomposites are 

affected by the microstructure and volume fraction of CNTs. Several methods are used to evaluate 

the effective properties of nanocomposites, including those based on single inclusion theory [64], 

such as Mori-Tanaka method [65], the self-consistent scheme [66], and differential method [67], 

among others. The Mori-Tanaka (MT) model as one of the best known analytical approaches to 

determine the effective material constants of composite materials is implemented in this research. 

In one-dimensional steady-state heat flow, the material’s thermal conductivity is a 

parameter that relates the rate of heat conduction to the temperature gradient of the bulk material, 

and it assumes that heat flux and temperature gradient generate at the same time instant. This 

means that heat disturbances, with parabolic-type heat conduction equation, need to spread at an 

infinite speed [2] as shown in Eq. (3.1).  
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            𝑞(𝑥, 𝑡) = −𝑘∇𝑇(𝑥, 𝑡) (3.1) 

where ∇𝑇(𝑥, 𝑡) is the temperature gradient which is a vector function of the position vector x and 

the time variable t, 𝑞(𝑥, 𝑡) is the heat flux, and k is the thermal conductivity. It can be used to 

solve most engineering problems at classical length and time scale, but cannot entirely model 

situations involving shallow temperatures near absolute zero, high-temperature gradient, and very 

high frequencies of heat flux [3,4,31-33,68-71]. Besides, because the heat flux and the temperature 

gradient are simultaneous, one can not differentiate between the cause and effect of heat flow 

which is critical for the transient behavior at an extremely short time, for example on the order of 

picoseconds to femtoseconds [5]. Also, in the absence of heat source, in the Fourier heat 

conduction, the temperature will be reached its maximum or minimum value at the boundary of 

the medium at the first instant. However, for the heat conduction models such as the Cattaneo and 

Vernotte (CV) and DPL models, the temperature of some inner regions in the medium may exceed 

the temperature at the boundary which is called the overshooting phenomenon. Evidently, this 

phenomenon may lead to the damage of electronic or mechanical devices if it is not appropriately 

handled [7]. So, the hyperbolic heat conduction equation is introduced based on the Cattaneo and 

Vernotte model (Eq. (3.2)) for the heat flux incorporates a relaxation mechanism in order to 

gradually adjust to a change in the temperature gradient [9,32,33]. This model has been a 

satisfactory extension of classical diffusion theory and can yield the hyperbolic diffusion equation 

within the continuum assumption. 

           𝑞(𝑥, 𝑡 + 𝜏𝑞) = −𝑘∇𝑇(𝑥, 𝑡) (3.2) 

where 𝜏𝑞 is the time lag of the heat flux. The temperature gradient always precedes the heat flux 

vector. A new time integration scheme was proposed by Fung [9, 72] based on the DQM and it 

was illustrated that the scheme is unconditionally stable. The differential quadrature time 
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integration scheme proposed by Fung [9,72] was assessed in Liu and Wang [73]. By using the 

same concept, Rahideh et al. [10] used the layerwise-incremental DQM to show the effect of heat 

wave speed on the thermal characteristics of a multi-layered domain made of functionally graded 

materials. Furthermore, multiphase systems are not following Fourier’s law as well, such as in 

nanofluids, porous media, and biomaterials [11,37,38,74]. To tackle the deviations from Fourier’s 

law, Tzou [11,12] introduced two-phase lags heat conduction, presenting the DPL model as:  

          𝑞(𝑥, 𝑡 + 𝜏𝑞) = −𝑘∇𝑇(𝑥, 𝑡 + 𝜏𝑇) (3.3) 

where 𝜏𝑇 is the time lag of the temperature gradient. This model can capture the effect of heat 

conduction with high heat flux and short heating period. For example, Dai et al. [13] developed a 

new higher-order finite difference scheme for solving the DPL equation in nano heat conduction 

with the temperature jump boundary condition. Furthermore, if 
𝜏𝑞

𝜏𝑇
> 1, Eq. (3.3) is hyperbolic and 

thermal waves will be produced in the heat conduction process. If, otherwise, 
𝜏𝑞

𝜏𝑇
<= 1, this 

equation is parabolic and thermal waves does not exist [14,39]. 

Wang and Zhou [40] established methods of measuring the time lags and obtained an 

analytical solution for the regular 1-D, 2-D and 3-D heat conduction domains under arbitrary initial 

and boundary conditions. A combination study of non-Fourier heat conduction with thermal 

phonon theory has also been performed [41]. Also, Basirat et al. [42] have reported values for 

phase lags corresponding to some metal films. Values of these parameters are mainly determined 

experimentally [41,42] and they ranged from 0.01 to 32 s. The effect of laser, as a heat source, on 

a thin film was studied by Noroozi et al. [45]. They have used the approximate-analytical Adomian 

Decomposition Method to solve the DPL equations. Wang et al. [26] presented a peridynamic non-

Fourier heat conduction model, in the framework of generalized state-based peridynamics by 

introducing the concept of dual phase lags into the peridynamic framework, to consider the non-
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Fourier and nonlocal effects simultaneously. 

This study is a crucial research advancement in elucidating the processing-structure-

property relationships of thermally conductive polymer composites and nanocomposites. The DPL 

model is of great importance in describing the transient heat conduction. To the authors’ best 

knowledge, all published papers are suffering from the convenient way of implementing the 

boundary conditions or flexibility in using FGMs since using analytical, or semi-analytical 

solutions has lots of restrictions. In summary, the objective of this study is to introduce a new 

application of differential quadrature method [30,46] to resolve DPL heat conduction in 

nanocomposites with considering the nonlinear terms of heat conduction. This report is the first 

research on the effects of dual phase lag on nanocomposites via DQM. Using the DQM allows us 

to choose a relatively coarse grid and obtain a reasonable solution. Also, it is much easier to 

implement rather than solving heat conduction equations in the Laplace domain or other analytical 

methods. Finally, the DQM will give no restriction on the boundary conditions and material 

properties. 

3.2 Carbon nanotubes: Thermal conductivity (𝑲), relaxation time (𝝉) and heat 

capacity (𝑪) of CNTs 

Thermal conductivities of the random and aligned CNT reinforced composites are 

calculated as a function of the volume fraction of CNTs. Thermal conductivity is greatly improved 

as the volume fraction of CNTs increases in both random composites and aligned composites [75]. 

Second-order polynomial equations are used to obtain the thermal conductivity as follow: 

            𝐾𝑅 = 51.9𝑉𝑐𝑛
2 + 0.43𝑉𝑐𝑛 + 0.64 (3.4) 

     77.035.49.90 2 ++= cncnA VVK  (3.5) 

where 𝐾𝑅 and 𝐾𝐴 refer to the thermal conductivities of randomly distributed CNTs and aligned 
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CNTs. Clearly, for a specific volume fraction of CNTs, 𝐾𝐴 is higher than 𝐾𝑅, which leads to a 

faster motion of heatwaves in the media [76]. In order to approach reality, just the composite with 

a random distribution of CNTs is considered. 

 Table 3. 1 Time delays for SWCNT. 

CNT length         𝜏 (Time delay ns) 

5 𝜇𝑚 12.353 

10 𝜇𝑚 25.846 

15 𝜇𝑚 61.283 

20 𝜇𝑚 107.780 

  

Since the relaxation time of CNTs shown in table 3.1 is extremely smaller than the 

relaxation time of the matrix, we have used CNT with length of 5 𝜇𝑚 as an example. The length 

of CNTs does not play a key role in the heat conduction of nanocomposite based polymer since 

the relaxation time of the polymer is relatively high. The specific heat capacity (𝐶𝑝) of a CNT as 

a function of temperature is stated in [76]. They showed that increasing temperature would increase 

the specific heat capacity 𝐶𝑝 proportionally by approximately a constant amount as follows: 

      𝐶 = 𝑎𝑇 + 𝑏   (3.6) 

with 𝑎 = 2.5642 (
𝐽

𝑘𝑔∗𝐾
) and 𝑏 = −61.7294 (

𝐽

𝑘𝑔∗𝐾
). 

3.3 Composites reinforced with randomly oriented, straight CNTs 

   The effective properties of composites with randomly oriented non-clustered CNTs, such as 

shown in Fig 3.1, are studied in previously published papers of authors [77]. Following the 

standard Mori-Tanaka derivation, one can develop the expression for the effective composite 

stiffness, C.  
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1( ) ( )m r r m r m r rC C f C C A f I f A −= + − +  
(3.7) 

where fr and fm are the fiber and matrix volume fractions, respectively, Cm is the stiffness tensor 

of the matrix material, Cr is the stiffness tensor of the equivalent fiber, I is the fourth-order identity 

tensor and Ar is the dilute strain-concentration tensor of the rth phase [78] for the fiber which is 

given as:     

1 1[ ( ) ( )]r m r mA I S C C C− −= + −  
(3.8) 

The tensor S is Eshelby’s tensor, as given by Eshelby [64] and Mura [79]. The terms 

enclosed with angle brackets in Eq. (3.7) represent the average value of the term overall 

orientations defined by transformation from the local fiber coordinates 1 2 3( )o x x x−     to the 

global coordinates 1 2 3( )o x x x− (Fig 3.1) with axis x2 being the direction along the aligned 

nanotube. The elastic properties of the nanocomposite are determined from the average strain 

obtained in the representative volume element. The matrix is assumed to be elastic and isotropic, 

with Young’s modulus Em and Poisson’s ratio m . Each straight CNT is modeled as a long fiber 

with transversely isotropic elastic properties and has a stiffness matrix given by Eq. (3.7). 

Therefore, the composite is also transversely isotropic, with five independent elastic constants. 

The substitution of non-vanishing components of the Eshelby tensor S for a straight, long fiber 

along the x2-direction [78] in Eq. (3.8) gives the dilute mechanical strain concentration tensor. 

Then the substitution of Eq. (3.8) into Eq. (3.7) gives the tensor of effective elastic moduli of the 

composite reinforced by aligned, straight CNTs. In particular, the Hill’s elastic moduli are found 

as [78]. 

2

{ 2 (1 )[1 (1 2 )]}

2(1 )[ (1 2 ) 2 (1 2 )]

m m m r m r m

m m r m m r m m

E E f k f
k

E f f k

 

   

+ + + −
=

+ + − + − −  
(3.9) 
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2

{ [ 2 (1 )] 2 (1 )}

(1 )[ (1 2 ) 2 (1 2 )]

m m m m r m r r m

m m r m m r m m

E f E k f k
l

E f f k

  
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(3.10) 
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(3.11) 

[ 2 (1 )(1 )]

2(1 )[ (1 ) 2 (1 )]

m m m r m r

m m r m r m

E E f p f
p

E f f p



 

+ + +
=

+ + + +  

(3.12) 

2

[ 2 (1 )(3 4 )]

2(1 ){ [ 4 (1 ) 2 (3 4 )]}

m m m r m r m

m m m r m m r m m

E E f m f
m

E f f f m

 

   

+ + + −
=

+ + − + − −  

(3.13) 

 

where k, l, m, n and p are its plane-strain bulk modulus normal to the fiber direction, cross modulus, 

transverse shear modulus, axial modulus and axial shear modulus, respectively; kr, lr, mr, nr, and 

pr are the Hill’s elastic moduli for the reinforcing phase (CNTs); fr and fm are the volume fractions 

for carbon nanotube and matrix, related by 

1=+ mr ff  (3.14) 

As mentioned before, the CNTs are transversely isotropic and have a stiffness matrix given 

below (Hill’s elastic moduli) 
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(3.16) 

 

where EL, ET, EZ, GTZ, GZL, GLT, vLT, vLT , vLT, vLT , vLT , vLT are material properties of the reinforcing 

fiber.  

Now, the effective properties of composites with randomly oriented, non-clustered CNTs, 

such as in Fig 3.1, can be obtained. The resulting effective properties for the randomly oriented, 

CNT composite are isotropic, despite the CNTs having transversely isotropic effective properties. 

The orientation of a straight CNT is characterized by two Euler angles α and β, as shown in Fig 3. 

1. When CNTs are completely, randomly oriented in the matrix, the composite is then isotropic, 

and its bulk modulus k and shear modulus G are derived as [78] 
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The effective Young’s modulus E and Poisson’s ratio   of the composite are given by: 

GK
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 (3.24) 
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(3.25) 

 

   

Figure 3. 1 Representative volume element (RVE) with randomly oriented, straight CNTs 

  

In the present work, 𝑉𝑐𝑛 and 𝑉𝑚 are considered as the CNT and matrix volume fractions, 

respectively. We assume for the FG medium, the volume fraction of the CNTs is given by the 

power-law-type function: 
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𝑉𝑐𝑛(𝑧) = 𝑉𝑖 + (𝑉𝑜 − 𝑉𝑖) (
𝑧

ℎ
)
𝑞

 
                 (3.26) 

where 𝑞 is the volume fraction index, 0 ≤ 𝑞 ≤ ∞, ℎ is the thicknesses of the medium, and 𝑉𝑜 

and 𝑉𝑖 , which have values ranging from 0 to 1, denote the maximum and minimum volume 

fractions of CNTs that could exist in the thickness direction of the medium. 

 3.4 GDQ solution of governing equations 

 The generalized differential quadrature (GDQ) approach was developed by Shu and co-

researchers based on the differential quadrature technique [46]. In GDQ method the pth order 

partial derivative of a continuous function 𝑓(𝑥, 𝑡) with respect to 𝑥 at a given point 𝑥𝑖 can be 

approximated as a linear summation of weighted function values at all of the discrete points in the 

domain of 𝑥, i.e. 

𝜕𝑓𝑝(𝑥, 𝑡𝑗)

𝜕𝑥𝑝
|𝑥=𝑥𝑖 =∑

𝑁

𝑘=1

𝐶𝑖𝑘
𝑝 𝑓(𝑥𝑖𝑘, 𝑡𝑗),

(𝑖 = 1,2, …𝑁𝑥, 𝑗 = 1,2, …𝑁𝑡 , 𝑝 = 1,2, …𝑁𝑥 − 1)

      (3.27) 

𝜕𝑓𝑝(𝑥, 𝑡𝑗)

𝜕𝑡𝑝
|𝑡=𝑡𝑖 =∑

𝑁

𝑘=1

𝐷𝑗𝑘
𝑝 𝑓(𝑥𝑖𝑘, 𝑡𝑗),

(𝑖 = 1,2, …𝑁𝑥, 𝑗 = 1,2, …𝑁𝑡, 𝑝 = 1,2, …𝑁𝑥 − 1)

      (3.28) 

where 𝑁𝑥  and 𝑁𝑡  are the number of sampling points along 𝑥 and 𝑡 directions respectively, 

also 𝐶𝑖𝑘
𝑝

 and 𝐷𝑗𝑘
𝑝

 are the 𝑥𝑖 and 𝑡𝑗 dependent weight coefficients. Details of this procedure can 

be found in the literature [80,81]. In this work, the Chebyshev-Gauss-Lobatto quadrature points 

are used [30], 

 𝑥𝑖 =
1

2
(1 − cos (

𝑖−1

𝑁−1
𝜋)) , 𝑖 = 1,2, …𝑁                  (3.29) 
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3.5 Dual-phase-lag heat conduction 

 The hyperbolic constitutive relation governing the transient heat transfer is as follows 

𝑞 + 𝜏𝑞
𝜕𝑞𝑥
𝜕𝑡

= −𝑘 (
𝜕𝑇

𝜕𝑥
+ 𝜏𝑇

𝜕2𝑇

𝜕𝑥𝜕𝑡
) 

                 (3.30) 

where 𝜏𝑞 and 𝜏𝑇 are introduced to account for the effects of thermal inertia and microstructural 

interaction such as electron phonon interaction or phonon scattering, respectively. Moreover, the 

energy equation can be written as, 

            𝜌𝐶
𝜕𝑇

𝜕𝑡
+
𝜕𝑞

𝜕𝑥
= 𝑔(𝑥, 𝑡) 

(3.31) 

The DQM is used to discretize the spatial derivatives, and the incremental DQM is 

employed to discretize the temporal domain. Based on this approach, the total temporal domain is 

divided into a set of time intervals where the DQ rule is employed to discretize the temporal 

derivatives. The DQ method being applied to Eqs. (3.11,3.12), the following equations at an 

arbitrary sampling point 𝑥𝑖 and 𝑡𝑗 are then obtained: 

𝑘𝑖𝑗 (𝜏𝑖𝑗 ∑

𝑁𝑥

𝑚=1

𝐶𝑖𝑚
1 𝑇𝑚𝑗∑

𝑁𝑡

𝑛=1

𝐷𝑖𝑚
1 𝑇𝑖𝑛)+ 𝑘𝑖𝑗 (∑

𝑁𝑥

𝑚=1

𝐶𝑖𝑚
1 𝑇𝑚𝑗)+

𝜏𝑖𝑗 (∑

𝑁𝑡

𝑛=1

𝐷𝑗𝑛
1 𝑞𝑖𝑛)+ 𝑞𝑖𝑗 = 0

 

(3.32) 

(∑

𝑁𝑥

𝑚=1

𝐶𝑖𝑚
1 𝑞𝑚𝑗) + 𝜌𝑖𝑗𝐶𝑖𝑗 (∑

𝑁𝑡

𝑛=1

𝐷𝑗𝑛
1 𝑇𝑖𝑛) = 𝑔𝑖𝑗 (3.33) 

 

Here, the proposed method marches in the time direction block by block [42]. In each 

block, there are several sub-domains (𝑛 = 1:𝑁𝑡𝑠) as it is shown in Fig 3.2, and the numerical 

results at these time levels are obtained simultaneously. Through this way, the numerical solution 



 

37 

 

at the (n+1)th time level depends on the solutions at its previous levels since the output of each 

block is considered as an initial condition of the next block. 

 

 

  Figure 3. 2 Configuration of block-marching technique and mesh point distribution in each block 

  

Figure 3.2 shows how the DPL heat conduction equation has been solved by using DQM. 

To solve these nonlinear equations, an iterative procedure should be used. For this purpose, in the 

first step, the nonlinear terms are neglected, and the resulting problem is solved. In the second step, 

the obtained temperature should be considered as a first guess of the nonlinear term in Eq (3.13). 

Then, the problems are solved again to obtain the new temperature and heat flux. Step 2 is repeated 



 

38 

 

until the discrepancy between the temperature from the two consecutive iterations is within 0.1 ∗

10−3. In the third step, the temperature and the heat flux obtained in the second step are used as 

the initial condition for the next time interval. 

Let us consider a medium as shown in Fig 3.3 under a sudden temperature change on the 

left slab. The boundary conditions of the problem can be expressed as [49,50]. 

 

 Figure 3. 3 One-dimensional heat conduction through a slab 

 

𝑇(𝑥𝑖, 𝑡) = (
1

2
+
3

4
(
2𝑡

𝑡∗ − 1
) −

1

4
(
2𝑡

𝑡∗
− 1)

3

  if 0 ≤ t ≤ t∗

1    if  t ≥ t∗

𝑇(𝑥, 0) = 0

𝑞(0, 𝑡) = 0

𝑞(𝑥, 0) = 0

 (3.34) 

 

Next, let us consider heating pulse applied to the left boundary of a parallel sided slab. The 

initial and boundary conditions are 
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𝑞(𝑥𝑖, 𝑡) = (−1 + (
2𝑡

𝑡∗
+ 1)

2
3
  if 0 ≤ t ≤ t∗

0    if  t ≥ t∗

𝑞(𝑥, 0) = 0

𝑞(0, 𝑡) = 0

𝑇(𝑥, 0) = 0

 (3.35) 

These boundary conditions are taking the place of the first or last sampling point in the 

discretized form of the governing equation. For example, T(xi,t) shows the temperature at the first 

sampling point in the physical domain at any time. Thus, all Tij in which i is equal to 1 (T1j) should 

be replaced by T(xi,t) which is already given at the boundary.  

In all calculations, the following values are considered for heat conduction unless it is 

otherwise mentioned. 

For polymer: 𝜌𝑃 = 1188, 𝑡𝑞
𝑃 = 2.4, 𝐶𝑝

𝑝 = 550, 𝐾𝑃 = 0.243 

For CNT: 𝜌𝑐𝑛 = 1400, 𝑡𝑞
𝑐𝑛 = 12 ∗ 10−12, 𝐶𝑝

𝑐𝑛 = 2.5642𝑇 − 61.7294, 𝐾𝑐𝑛 = 51.9 ∗

𝑉𝑐𝑛 + 0.43 ∗ 𝑉𝑐𝑛 + 0.64 

Also, the value of temperature gradient time lag is considered as a ratio of heat conduction 

time lag like 𝑡𝑇
𝑐𝑛 = 0.02𝑡𝑞

𝑐𝑛 and 𝑡𝑇
𝑝 = 0.02𝑡𝑞

𝑝
 and the thickness of the medium is ℎ = 0.001𝑚. 

The effective thermal conductivity of nanocomposites is a function of the intrinsic thermal 

conductivity of the constituents, loading fraction, filler shape and size and filler dispersion. These 

parameters make it difficult to predict the thermal transport properties in the composites. Figure 

3.4 shows the dependency of the heat flux and temperature gradient time lags and also illustrates 

that the volume fraction of CNTs largely governs thermal conductivity. The variation of the 

volume fraction of CNTs is linear (p=1), and number of sample points in the thickness direction 

(Nx) is equal to 13. This means Nx=1 and Nx=13 are equivalent to x=0 and x=h, respectively. 

Increasing the volume fraction of the CNTs leads to a higher thermal conductivity of 
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nanocomposite because of a higher thermal conductivity of CNTs than polymers. So, increasing 

the volume fraction of CNTs in the thickness direction increases the thermal conductivity of 

nanocomposite as we navigate through the thickness. On the other hand, a relatively low time lag 

of CNTs in comparison to polymer reduces the time lag of the nanocomposite. The effects of these 

variations are shown in Fig. 3.6. 

 

  Figure 3. 4 Variation of the time lags and thermal conductivity through the thickness of the 

nanocomposite 

 

As we mentioned earlier, t∗ shows the time duration of the implementation of the thermal 

load. Thus, small values of t∗ indicate the presence of thermal load for a short period of time known 

as a thermal shock, and higher values of the t* indicate presence of the thermal load for a longer 
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duration of time. Fig. 3.5 shows the effects of increasing the time duration of the prescribed thermal 

load on the resultant temperature and heat flux in the media. By definition, as t∗ increases, the 

thermal shock will be phased out, and we have a smooth rise in temperature in the boundary. It is 

evident from this figure that for the mild increase of temperature in boundary (t*= 5s and 15s), the 

results are getting close to the Fourier heat conduction. Thus, in case of having thermal shock for 

long time duration (t∗=15s), the temperature may not exceed the temperature of boundary in the 

absence of heat generation, and there would be no sign of the thermal wave. Finally, the thermal 

shock with shortest time duration (t∗) has the highest peak of transient temperature and faster 

thermal wave motion which results in a long time to approach equilibrium. 

As we expected, heat transfer takes place in waveform with finite speed of propagation of 

heat signals. Figure 3.6 manifests that aggregation of more CNTs close to the affected boundary 

condition (𝑉𝑖) leads to faster thermal wave motion and higher peak of transient temperature. We 

considered 𝑑𝑡 =0.001 and 𝑁𝑥 = 𝑁𝑡 = 𝑁𝑡𝑠 = 13, here, 𝑁𝑥=3 so 𝑥=0.23h and there is a thermal 

shock at t=0 and 𝑥 = −
ℎ

2
 like Eq. 3.30. Based on Fig. 3.4, in the case of 𝑉𝑖

𝑐𝑛 = 0.07 and 𝑉𝑜
𝑐𝑛 =

0.01, thermal conductivity has the maximum value and time lags are minimum at the beginning. 

So, the imposed thermal shock has the maximum possible effect. On the contrary, when 𝑉𝑖
𝑐𝑛 =

0.01 and 𝑉𝑜
𝑐𝑛 = 0.07, the effects of thermal shock on the boundary are prohibited by the low 

thermal conductivity of nanocomposite in the area close to the boundary ( 𝑥 = −
ℎ

2
). 
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  Figure 3. 5 Transition from non-Fourier heat conduction to Fourier heat conduction by changing the 

time duration of thermal shock on boundary condition at x=0.23h 

  

Also, the plots for uniform distribution of CNT, 𝑉𝑖
𝑐𝑛 = 𝑉𝑜

𝑐𝑛 = 0.01 and FG type 𝑉𝑖
𝑐𝑛 =

0.01 and 𝑉𝑜
𝑐𝑛 = 0.07 almost coincides with each other which proves the dominance of thermal 
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conductivity in the area close to the boundary under thermal impulse. On the other hand, the 

content of CNTs, far away from the thermal shock does not play an important role. 

  
  Figure 3. 6 Temperature and heat flux history in different volume fraction of CNT at x=0.23h 
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Figure 3.7 depicts the time history of temperature at boundaries, and three distinct points 

within the medium while 𝜏𝑇  and 𝜏𝑞  are constant. It takes more time for the temperature to 

navigate through the thickness, for example, 𝑡∗ is the time that the outer boundary needs to be 

entirely influenced by the imposed boundary condition. Based on this figure, the temperature 

distribution indicates the energy allocation, which is the consequence of heat flux. In the area close 

to the imposed boundary condition (𝑁𝑥 = 2), stabilization occurs sooner due to the earlier thermal 

distribution. Moreover, for 𝑁𝑥 = 8, it takes more time for the temperature to get stable with the 

lower peak value. 

 
  Figure 3. 7 Temperature history at different locations of the thickness of the medium 

 

The distributions of temperature at t=0.045 are illustrated in Fig. 3.8. The DPL theory states 

that the gradient of temperature at a point 𝑥 in the material at time 𝑡 + 𝜏𝑇 corresponds to the 

heat flux vector at the same point and time 𝑡 + 𝜏𝑞. So, the bigger the phase lag 𝜏𝑇, the harder to 
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catch up with the heat flux. As Fig 3.8 shows, for higher 𝜏𝑇, the thermal wave initiation occurs 

sooner and a longer time duration is needed for temperature to get steady. On the other hand, the 

higher 𝜏𝑞 forces the pace of convergences in heat conduction based on the DPL model due to the 

later initiation of the thermal wave. 

Figure 3.9 shows the temperature history at the third sample point (𝑁𝑥 = 3). Here, we 

considered 𝑑𝑡 =0.001 and 𝑁𝑥 = 𝑁𝑡 = 𝑁𝑡𝑠 = 13, so 𝑥 = 0.24ℎ and there is a thermal shock at 

t=0 and x=-h/2 like Eq. 3.30. For both the DPL and C-V models, the temperature propagates 

through the medium with a finite speed, so a finite time is required for the medium to adapt itself 

to the prescribed boundary conditions. It is interesting that increasing the time lag 𝜏𝑇 while 𝜏𝑞 

is constant, raises the maximum transient temperature. This figure shows that by using the 

hyperbolic or DPL heat conduction, the slab will experience a temperature beyond the imposed 

boundary conditions in the absence of heat generation. This phenomenon is called overshooting, 

and it will be enhanced by increasing the time lag, 𝜏𝑇 . Finally, for higher 𝜏𝑇 , a longer time 

duration is needed for temperature to get steady. The DPL model would reduce to the C-V model 

when 𝜏𝑇=0 which means the temperature gradient is preceding the heat flux. 
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  Figure 3. 8 Time evolution of the heat flux at different points along the thickness of the medium 

 (𝑉𝑖 = 0.07, 𝑉𝑜 = 0.01) 
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 Figure 3. 9 Time evolution of the temperature at different points along the thickness of the medium at 

x=0.23h 
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3.6 Conclusion 

We have studied the behavior of the dual-phase-lag (DPL) heat transfer model inside 

functionally graded carbon nanotube reinforced composite structures. All material properties are 

considered temperature-dependent. The differential quadrature (DQ) approach is utilized to 

develop a new solution led to the more straightforward solution, convenient way to apply different 

boundary conditions or changing the material properties, also an even simple way of expanding 

the problem to the two or three-dimensional problems. It is proved that the presence of CNTs, 

close to the prescribed boundaries, acts as a trigger and increases the peak of transient temperature 

while increasing the CNT volume fraction away from the imposed boundary heat impulse does 

not play an important role on the temperature and heat flux profiles. Moreover, it is shown that 

both time lags, 𝜏𝑞 and 𝜏𝑡, play a vital role in the temperature and heat flux. The increase of 𝜏𝑇, 

leads to fast wave motion and as a result later convergence. On the contrary, increasing 𝜏𝑞 leads 

to a slow wave motion, low peak values of transient temperature and short time duration before 

stable state is reached. The wave-like motion establishes as a result of lattice vibration, unlike the 

collision of the free electrons which is diffusive. In the diffusive transport, the characteristic length 

is greater than the mean free path (average distance traveled by energy carriers); and the energy 

transport is a macroscopic process. On the other hand, when the mean free path is greater than the 

characteristic length, the energy transport is said to be microscopic and will be investigated in the 

next chapter. 
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Chapter 4:  

Nonlocal thermoelasticity: nonlocal heat conduction in 

nanostructures by new application of DQM3 

This paper explores how reinforcing the hyperbolic heat conduction by the nonlocality 

affects temperature distribution in nanostructures such as nanobeam and single-walled carbon 

nanotubes (SWCNTs). The work dissects the nonlocal heat conduction by advocating a thoroughly 

new application of the differential quadrature method (DQM). The nanobeam is modelled as a 

cylindrical shell like a single-walled carbon nanotube (SWCNT), and the boundaries on the inner 

and outer sides are considered under a temperature-jump at the nanoscale. The effects of several 

parameters on the temperature distribution through the thickness of the nanobeam are highlighted, 

including time-dependent boundary conditions, time lag, nonlocal parameter, length and radius of 

the hollow beam. 

4.1 Introduction 

Over the last decade, nanostructures have attracted much interest due to their astounding 

characteristics that influence electrical, physical, chemical, optoelectrical, and biological 

properties. Carbon nanotubes (CNTs), one of the most popular carbon-based devices, have been 

investigated thoroughly over the past several decades for their potential applications including 

 

 

3 A version of this chapter is submitted in journal of thermal stresses. 
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field-effect transistors (FETs), interconnects, electron field emitters, sensors, and energy storage 

and energy conversion devices [82-85]. Although the thermal conductivity of polymer matrix 

reinforced by CNTs improves when CNTs are randomly distributed, due to their large aspect ratio 

and the strong Van der Waals force between the CNTs and the medium, they tend to aggregate 

and form clusters in the nano-composite [86,87]. 

Many studies about CNTs and nanoscale structures were based on the classical continuum 

theory, which ignores the size effect. To tackle this problem, nonlocal elasticity theories were 

introduced for the nanoscale structures to develop size-dependent relations [88-91]. These 

approaches have shown superior performance in coping with this problem than any other 

approaches. Furthermore, there has been lots of research on the heat conduction of nanostructures 

theoretically [92,93] and experimentally [94,95]. 

In the classical model, the temperature gradient causes heat flux at the same point. At the 

nanoscale, a sufficient number of collisions among energy carriers are required for heat transport 

to take place [20,96]. In general, quantifying the value of a physical property at one point through 

another physical property in a region near that point is considered as the nonlocal effect in the 

continuum theory and has been observed experimentally [21]. 

Based on the investigations of Soboley [22] and Tzou [12], since the heat flux at 

micro/nano scale is substantially nonlocal, classical models should be modified by introducing the 

characteristic length of the material. Prior research generally confirms that at the nanoscale, heat 

transfer is quite different from that estimated by classical laws. To tackle this problem, Guyer and 

Krumhansl (GK) [24, 25] introduced a generalized model by considering the characteristic length 

of the material as follows: 

𝑞(𝑧, 𝑡 + 𝜏𝑞) = −𝑘∇𝑇(𝑧, 𝑡) + 𝑙
2∇2𝑞(𝑧, 𝑡)                                  (4.1) 
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where 𝜏𝑞 and 𝑙 are the time lag of heat flux and internal characteristic length, respectively. To 

investigate the transient heat conduction from nano- to macro-scales, Wang et al. [27] considered 

the effects of both non-Fourier heat conduction and the nonlocality of the problem simultaneously. 

Xu [27] investigated the nanoscale heat conduction in silicon thin films by considering the 

temporally and spatially nonlocal effects. They showed thermal wave propagation in nanoscale 

materials. 

Employing the DQM to solve the transient or time-dependent problems is a challenging 

problem in solid mechanics. There have been a few reports of implementing DQM to discretize 

the spatial domain and one of them employing finite difference, using the Runge Kutta or Newton-

Raphson method, to discretize the temporal domain [97, 98]. Instability is the most crucial 

drawback of this method [99]. There have been a few reports of discretization of the temporal 

domain using DQM and block marching [100,101,33-35]. Pourasghar and Chen [37,47] introduced 

a new application for differential quadrature method (DQM) to solve the hyperbolic and dual-

phase-lag heat conduction. They discretized the spatial and temporal domain by DQM. Finally, 

they implemented the Newton-Raphson method to obtain the temperature history along with 

temperature distribution through the thickness of the material. 

A novel contribution of this study is to propose a new approach to accommodate both the 

temperature nonlocality and phase lagging, by modifying the non-Fourier heat conduction 

introduced in [26], and solving the problem by DQM [30, 39]. Using the DQM allows us to convert 

the partial differential equations to the ordinary differential equations. It also allows us to 

discretized the equations in both temporal and spatial directions. Finally, by applying the Newthon-

Raphson method to the discretized equations, the temperature and heat flux history will be 

obtained. 
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4.2 Nonlocal heat conduction 

Cattaneo [7] and Vernotte [8] proposed the classical thermal wave model, in which the 

increase of the heat flux vector is considered due to the phonon collision in a duration of the 

relaxation time (𝜏𝑞): 

𝑞 + 𝜏𝑞
𝜕𝑞

𝜕𝑡
= −𝑘∇𝑇.                                                    (4.2) 

where q is heat flux vector, t is time, k is thermal conductivity, T is temperature,  is gradient 

operator. In nanostructures, the average distance travelled by energy careers such as electrons and 

phonons comes to reflect the size-effect. The following equation shows the participation of the 

energy careers into the heat conduction relation by 𝑙: 

[1 − (𝑙)2∇2]𝑞 = −𝑘
𝜕𝑇

𝜕𝑧
                                                 (4.3) 

where z is the thickness direction as shown in Fig 4.1 and 𝑙 is the mean free paths of phonons, 

which makes the temperature at one specific point a function of the temperature of all points in the 

body. As mentioned earlier, the modified form of the non-Fourier heat conduction is used [26]: 

[1 − 𝑙2∇2 + 𝜏𝑞
𝜕

𝜕𝑡
] 𝑞 = −𝑘

𝜕𝑇

𝜕𝑧
                                            (4.4) 

where 𝜏𝑞 reflects the effects of thermal inertia. 

4.3 Nonlocal heat conduction analysis of carbon nanotubes (CNTs) 

Fourier and non-Fourier heat conduction models, such as hyperbolic and dual-phase-

lagging heat conduction, do not accommodate the size effect, while the GK model reflects both 

the nonlocal and phase lagging effects [25,26, 102]: 

𝑞 + 𝜏𝑞
𝜕𝑞𝑧

𝜕𝑡
= −𝑘

𝜕𝑇

𝜕𝑧
+ 𝑙2 (

𝜕2𝑇

𝜕𝑧2
)                                           (4.5) 

Furthermore, from the first law of thermodynamics, the conservation of energy takes the 
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following form: 

𝐶𝑝
𝜕𝑇

𝜕𝑡
+
𝜕𝑞

𝜕𝑧
= 𝑔(𝑧, 𝑡)                                                   (4.6) 

with 𝐶𝑝 being the volumetric heat capacity, 𝐶𝑝 = 𝜌𝑐. 

Let us consider a SWCNT, as shown in Fig 4.1, which is subjected to a heat shock at the 

inner or outer surfaces. A SWCNT modelled as a Timoshenko nanobeam with radius 𝑟, length 𝐿, 

and effective tube thickness ℎ. 

   

  Figure 4. 1 Single wall carbon nanotube (SWCNT) modeled as a nonlocal Timoshenko nanobeam 

 

The temperature fields in the above equations can be obtained from nonlocal heat 

conduction and energy equation as follows: 

𝑞 + 𝜏𝑞
𝜕𝑞𝑧

𝜕𝑡
= −𝑘

𝜕𝑇

𝜕𝑧
+ 𝑙2

𝜕2𝑇

𝜕𝑧2
                                             (4.7) 

𝜌𝐶
𝜕𝑇

𝜕𝑡
+
𝜕𝑞

𝜕𝑧
= 𝑔(𝑧, 𝑡)                                                   (4.8) 

where 𝑔(𝑧, 𝑡) is the heat source, which is taken to be zero in this paper. 

For the thermal boundary conditions, it is assumed that the CNT is under a sudden 

temperature change on the outer surface (𝑟𝑜 = 𝑟 +
ℎ

2
) and all other boundaries are considered 

adiabatic. The initial and boundary conditions of the beam can be expressed as [49,50]: 
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𝑇(𝑧, 𝑡) = 𝛽(𝑡)

𝑇(𝑧, 0) = 0

𝑞(0, 𝑡) = 0

𝑞(𝑧, 0) = 0,

                                                    (4.9) 

in which 𝛽(𝑡) = {

1

2
+
3

4
(
2𝑡

𝑡∗−1
) −

1

4
(
2𝑡

𝑡∗
− 1)

3

𝑖𝑓0 ≤ 𝑡 ≤ 𝑡∗

1                            𝑖𝑓  𝑡 ≥ 𝑡∗

0                           𝑖𝑓  𝑡 ≤ 𝑡∗

  

is a third order polynomial approximating a sudden change in the temperature. For boundary 

condition type 1 (BCI), we consider 𝛽(𝑡) = 1 when 𝑡 ≥ 𝑡∗, and for boundary condition type 2 

(BCII), the value of 𝛽(𝑡) = 0 when 𝑡 ≤ 𝑡∗. 

4.4 Solution method 

Unlike other solution methods, DQM does the computation over the entire spatial-temporal 

domain (z-x plane) at one step. Therefore, to accommodate the whole boundary conditions 

accurately, the time step should be considered very small. Increasing the number of sampling grid 

points to capture the boundary conditions causes a few problems: (1) increasing the order of the 

system of equations; (2) increasing the running time to compute the state variables; (3) the 

considerable accumulation of numerical errors due to the weighting coefficient of sampling grid 

points. To eliminate these drawbacks while keeping high-level accuracy, Shu [46] proposed an 

efficient temporal discretization approach based on block-marching in time and DQ discretization 

in both the spatial and temporal directions, as shown in Fig 3.2 [50]. The same approach is used 

here to solve the nonlocal heat conduction in a nanostructure. More details of this procedure can 

be found in the literature [46,48,103]. The 𝑝𝑡ℎ order derivative of the continuous function f(z,t) 

in the spatial or temporal directions at an arbitrary sampling grid point 𝑧𝑖  can be written as 

follows: 
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𝜕𝑓𝑝(𝑧,𝑡)

𝜕𝑧𝑝
|𝑧=𝑧𝑖 = ∑

𝑁
𝑘=1 𝐶𝑖𝑘

𝑝
𝑓(𝑧𝑖𝑘, 𝑡𝑗),

(𝑖 = 1,2, …𝑁𝑧 , 𝑗 = 1,2, …𝑁𝑡, 𝑝 = 1,2, …𝑁𝑧 − 1)
     (4.10) 

𝜕𝑓𝑝(𝑧,𝑡)

𝜕𝑡𝑝
|𝑡=𝑡𝑖 = ∑

𝑁
𝑘=1 𝐷𝑗𝑘

𝑝 𝑓(𝑧𝑖𝑘, 𝑡𝑗),

(𝑖 = 1,2, …𝑁𝑧 , 𝑗 = 1,2, …𝑁𝑡, 𝑝 = 1,2, …𝑁𝑧 − 1),
 (4.11) 

where 𝑁𝑧 and 𝑁𝑡 are the number of sampling points along 𝑧 and 𝑡 directions, respectively. 

Also, 𝐶𝑖𝑘
𝑝

 and 𝐷𝑗𝑘
𝑝

 are the 𝑧𝑖 and 𝑡𝑗 dependent weight coefficients. 

By considering the test functions as the Lagrange interpolation polynomials, the weighting 

coefficients of the first- and second-order derivatives are available in [27], and they are defined, 

respectively, by 

     𝐶𝑖𝑘
1 =

𝑀(1)(𝑧𝑖)

(𝑧𝑖−𝑧𝑘)𝑀
(1)(𝑧𝑘)

,    𝑓𝑜𝑟    𝑖 ≠ 𝑘,    𝑖, 𝑘 = 1,2, … ,𝑁    (4.12)                

  𝐶𝑖𝑘
2 = 2𝐶𝑖𝑘

1 (𝐶𝑖𝑖
(1) −

1

𝑧𝑖 − 𝑧𝑘
) ,    𝑓𝑜𝑟    𝑘 ≠ 𝑖,    𝑖, 𝑗 = 1,2, … , 𝑁

  𝐶𝑖𝑖
2 = − ∑

𝑁

𝑘=1,𝑖≠𝑘

𝐶𝑖𝑘
2 ,

                                 (4.13)    

where 

             𝑀(1)(𝑧𝑖) = ∏
(𝑁)
𝑚=1,𝑚≠𝑗 (𝑧𝑗 − 𝑧𝑚)                                        (4.14) 

DQM is employed to discretize the temporal and spatial derivatives. The total temporal 

domain is divided into a set of time intervals and the obtained temperature at the end of each time 

interval is used as an initial condition for the next time interval. Thereby, in the beginning, 

temperature and heat flux at a given control volume, P, at time, t, are obtained from the boundary 

conditions and then the value at time interval, 𝑡 + Δ𝑡, is found, and will be considered as an initial 

condition for the next time step. So, all time intervals are connected, and the time history of 

temperature will be obtained. The DQM being applied to Eqs. (4.7, 4.8), the following equations 

at arbitrary sampling points 𝑧𝑖 and 𝑡𝑗 are then obtained: 
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𝑘𝑖𝑗 ∑
𝑁𝑥
𝑚=1 𝐶𝑖𝑚

𝑧1𝑇𝑚𝑗 − 𝑙
2∑𝑁𝑥𝑚=1 𝐶𝑖𝑚

𝑧2𝑇𝑚𝑗 + 𝜏𝑞 ∑
𝑁𝑡
𝑛=1 𝐷𝑗𝑛

1 𝑞𝑖𝑛 + 𝑞𝑖𝑗 = 0 (4.15) 

∑𝑁𝑥𝑚=1 𝐶𝑖𝑚
𝑧1𝑞𝑚𝑗 + 𝜌𝑖𝑗𝐶𝑖𝑗 ∑

𝑁𝑡
𝑛=1 𝐷𝑗𝑛

1 𝑇𝑖𝑛 = 𝑔𝑖𝑗 (4.16) 

The solutions of Eqs. (4.15) and (4.16) will be obtained by employing the Newton-Raphson 

method. 

 

4.5 Results and discussion 

4.5.1 Validation 

To predict the temperature distribution, the DQM has shown good agreement in all nodes 

with the analytical solution [51], as shown in Fig 2.3. The same values for the parameters are 

considered here as those in [51]. The results are presented for the hyperbolic heat conduction in a 

slab which is heated on both sides with zero initial conditions at the nanoscale. Reference [51] 

solved the hyperbolic heat conduction in the Laplace domain and used 𝐾𝑛 to consider the effect 

of nonlocality. 

4.5.2 Numerical results and discussion 

In the following calculations, the heat conduction related parameters take these values, 

unless otherwise mentioned. 

For nanobeam: 𝜌 = 1600
kg

m3
, 𝑡𝑜 = 12 ∗ 10

−7 s, 𝐶𝑝 = 630
J

K
, 𝐾 = 30, 𝑟𝑖 = 4 ∗

10−12 𝑚, 𝑟0 = 16 ∗ 10
−12 𝑚 𝑎𝑛𝑑 𝑙 = 2 ∗ 10−8 𝑚. Here ri and ro are the inner and outer radii of 

the hollow cylinder, 𝑟 =
𝑟𝑖+𝑟0

2
.  

Also, the number of sampling grid points for DQM is considered equal to 21, time 

increment (𝑑𝑡) is 1 fs and 𝑡∗ = 50 𝑓𝑠 unless otherwise mentioned. 

In Figs 4.2 and 4.3 are showing the temperature distribution from different angles and we 
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assumed that there is a thermal shock on both inner (𝑟𝑖) and outer (𝑟𝑜) surfaces of the cylinder. For 

the thermal shock, there is a 10 𝐶𝑜  increase in temperature in 50 𝑓𝑠 and then it stays still. The 

fast rise in temperature at the boundaries (𝑟𝑖 and 𝑟𝑜) happens as a result of prescribed boundary 

conditions. The increase in the temperature in the middle parts of the thickness is slower due to 

the time required for heat flux to entirely reach and cover this area. Also, thermal waves can be 

seen in Fig 4.2, and the amplitude of waves in the beginning are bigger and sharper wavefronts 

appear, but after a while the effect of thermal shock phases out and waves become smoother. (The 

amplitudes of wave at t = 250 fs are smaller than the amplitude of waves at t = 50 or 100 fs)  

 

  

  Figure 4. 2 Time history of the temperature distribution at different points through the thickness 
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  Figure 4. 3 Heat transfer simulation in Matlab (Heatmap)  

 

distribution. As shown in Fig. 4.4 (a), 𝑡∗ = 0 means temperature at the boundary is constant 

(T=10), and it gives the highest value of the temperature throughout the thickness of the nanobeam 

(Fig. 4.4 (b)). By increasing the value of 𝑡∗, and plotting the temperature pattern at 𝑡 = 20 𝑓𝑠, 

the lower temperature will be obtained, as shown in Fig. 4.4 (b). This means, for higher value of 

𝑡∗, there is a smoot raise in temperature instead of having a thermal shock, so the speed of heat 

propagation in the medium decreases. 
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Figure 4. 4 Temperature distribution through the thickness by changing the time duration of the thermal 

shock (𝑡∗) (a) Boundary conditions, (b) temperature distribution across the thickness of the carbon nano-

tube at t =20 fs. 

 

Temperature distributions through the thickness of the cylinder are presented in Fig. 4.5 at 

different characteristic lengths. In Fig. 4.5, presence of the internal characteristic length prevents 

the temperature from exceeding the boundary temperatures, which also known as overshooting 

and may damage electrical devices if it is not handled correctly. Furthermore, the small value of 

the nonlocal length keeps the nonlocal effect within a physical domain contiguous to the imposed 

thermal shock at the boundary. As the characteristic length becomes conspicuous at a large value 

of the nonlocal length, the nonlocal effect escalates from the border and propagates within the 

medium. 

 



 

60 

 

  

  Figure 4. 5 Effects of the characteristic length (𝑙) on the temperature distribution at t =20 fs. 

 

 Figure 4.6 depicts the temperature distribution at t=20 fs for different relaxation times. 

The increase in thermal relaxation time causes a decrease in thermal wave propagation speed and 

thereby decreases the change in temperature away from the imposed boundary. As shown in Fig. 

4.6, for the highest value of the relaxation time, 𝜏0 = 12 ∗ 10
−4 𝑠, a large proportion of the 

thickness has not experienced the thermal shock and the temperature has remained zero. On the 

other hand, for 𝜏0 = 12 ∗ 10
−7 𝑠, which is the lowest value of relaxation time, the whole thickness 

domain has been affected by the thermal shock at the boundary. This is due to the faster heat 

propagation at smaller time delays. When the time delay is larger, heat needs more time to travel 

the whole domain and therefore lags behind.   
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   Figure 4. 6 Effects of the relaxation time on the temperature distribution at t =20 fs. 

 

The temperature distribution through the thickness for the second type of boundary 

condition is presented in Fig. 4.7. Figures 4.7 and 4.8 show that the temperature in the area close 

to the inner (𝑟𝑖) and outer (𝑟𝑜) surfaces first increase very fast in the heating stage (0 < 𝑡 < 10𝑓𝑠). 

Then the heat source at the boundary disappears, and temperature becomes zero in these areas. 

Although we have removed the heat source from the boundary, the effects of thermal shock are 

still observed in the middle parts of the thickness. The heat transfer within the media can be seen 

in Fig. 4.8. It is illustrated that although the temperature at the boundary is set to zero after 50 𝑓𝑠, 

the heat transfer continues and tends to move toward the center of the media. 
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   Figure 4. 7 Temperature history of the temperature, BC: II  

 

 Figure 4.9 is a comparison between the effects of two different boundary conditions on 

the temperature distribution within the nano-cylinder. In the case of 𝜏0 = 0.8𝑓𝑠 and 1 𝑓𝑠 there 

has been some exciting result. We observed that for two different boundary conditions, the 

temperature of some regions in the middle of the thickness is the same. We can justify it by 

considering the fact that temperature in the area away from the imposed boundary, at initial stages, 

depends more on the characteristic length and relaxation time. Boundary conditions determine the 

limits of the temperature, and characteristic length and relaxation time define how fast the medium 

can reach these limits. So, it is possible to design a system in which heat propagates based on the 

needs. For example, we can control the maximum temperature and the time duration to stablish a 

certain temperature, and how to reach a certain temperature through different boundary conditions. 
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Figure 4. 8 Visualizing temperature with single heatmap, BC: II 

 

Figure 4.10 plots the variation of temperature distribution at t =20 fs through the thickness 

of the beam for different thickness ratios (
𝑟𝑜

𝑟𝑖
). It shows that the temperature gradually decreases 

with increasing thickness ratio. For the shortest value of the thickness ratio, the whole thickness 

has experienced a change in temperature, but for the bigger value of the thickness ratio, the 

temperature at the area around the center (𝑟 = 𝑟𝑖 +
𝑟𝑜

2
) remains the same. 
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Figure 4. 9 Transition from non-Fourier heat conduction to Fourier heat conduction at t =20 fs. 

   

 

 

Figure 4. 10 Effects of the thickness ratio on the temperature distribution 
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4.6 Conclusion 

A semi-analytical solution for the modified Guyer-Krumhansl equation is addressed for a 

nanobeam modelled as a cylindrical shell using the differential quadrature method. The differential 

quadrature approach is employed to develop a new solution method leading to a more 

straightforward solution, convenient to apply different boundary conditions or material properties, 

and even simple in two or three-dimensional problems. The linear effect of nonlocality was 

extended in space under the direct impact of thermal lagging in time. For the large values of 

relaxation time, the time delay effect is restricted to a physical domain close to the boundary. 

Decreasing the value of the time delay pushes the thermal waves forward. Furthermore, When the 

characteristic length is small, there is a sharp decline in temperature near the boundary, while the 

temperature in the center of the cylinder has no difference with that obtained from hyperbolic heat 

conduction. Accordingly, the same phenomenon happens for the heat flux. The small characteristic 

length confines the effects of the interactions between boundary and energy carriers within a 

physical domain near the boundary. The main contribution of this chapter was to prove to what 

extent heat transfer can differ at the nanoscale from that at the macroscale. The result of this chapter 

can be useful in designing the nanoscale devices such as nanocoolers which have an ever-

increasing application in quantum computers. 
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Chapter 5:  

Nonlinear vibration and modal analysis of FG nanocomposite 

sandwich beams reinforced by aggregated CNTs4 

In the present work, by considering the aggregation effect of single-walled carbon 

nanotubes (SWCNT), the nonlinear vibration of functionally graded (FG) nanocomposite 

sandwich Timoshenko beams resting on Pasternak foundation are presented. The material 

properties of the FG nanocomposite sandwich beam are estimated using the Eshelby–Mori–Tanaka 

approach and differential quadrature method (DQM) is used to obtain natural frequency. The 

nonlinear governing equations and boundary conditions are derived using the Hamilton principle 

and von Kármán geometric nonlinearity. The higher-order nonlinear governing equations and 

boundary conditions are calculated using the Hamilton principle. A direct iterative method is 

employed to determine the nonlinear frequencies and mode shapes of the beams. It is shown that 

the mechanical properties and therefore vibration of functionally graded carbon nanotube 

reinforced (FG-CNTR) sandwich beams are severely affected by CNTs aggregation. A detailed 

parametric study is carried out to investigate the influences of Winkler foundation modulus, shear 

elastic foundation modulus, length to span ratio, thicknesses of face sheets on the nonlinear 

vibration of the structure.  

5.1 Introduction 

Over the past few years, there has been an ever-increasing interest in CNTs due to their 

 

 

4 A version of this chapter is published in the journal of Polymer Engineering & Science 59 (7), 1362-1370, 2019. 
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outstanding and exceptional mechanical, electrical and thermal properties [104-107] have 

stimulated researchers to exploit them as a new generation of reinforcing agents for polymers. 

Numerous studies have been made to analytically and experimentally determine the mechanical 

properties of CNTR nanocomposites as molecular dynamics (MD) simulation [60,108,109], 

continuum mechanics [110,61,62] and multi-scale simulation [59,63] G.D. Seidel et al. [111] 

focused on the obtain effective elastic properties of composites consisting of aligned single or 

multi-walled carbon nanotubes embedded in a polymer matrix. They also investigated on the effect 

of an interphase layer between the nanotube and the polymer matrix as a result of functionalization. 

For the same reasons mentioned above, CNTs have received increased attention as reinforcements 

for polymer composites. 

One of the characteristic features of CNT morphology is the formation of aggregation in 

the matrix. The macromechanical properties of nanocomposites are affected by the microstructure 

and volume fraction of CNTs. Several methods are used to evaluate the effective properties of 

nanocomposites, including those based on single inclusion theory [112], such as Mori–Tanaka 

method [113], the self-consistent scheme [114], and differential method [115], among others.  

The Mori–Tanaka (MT) model is selected here to determine the effective material 

constants of the nanocomposite material accounting for the direction and aggregation of CNTs in 

the composites. Yang et al. [116] used the Mori-Tanaka approach to show the effect of CNT 

aggregation in the composite. They illustrated the degree of CNT aggregation dramatically 

influences the effective properties of the CNT/SMP composites. Barai [117] developed a two-scale 

micromechanical model to analyze the effect of CNT aggregation and interface condition on the 

plastic strength of CNT/matrix inclusions, and the small-scale addressed the property of the 

clustered inclusions.  
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The nonlinear and linear vibration of sandwich beams, plates and panels has been an object 

of many studies [118-125]. Nanocomposite FG sandwich structures are widely used in the field of 

transportation (helicopter blades, ship’s hull, etc.) for their low weight and high in-plane and 

flexural stiffness. So, with the wide application of FG sandwich structures, understanding their 

responses becomes an essential task. Though there are research works reported on general 

sandwich structures, studies related to nonlinear vibration of FG nanocomposite sandwich 

structures are few in numbers. 

Bending analysis of a sandwich beam with softcore and carbon nanotube reinforced 

composite face sheets in the literature is carried out by Jedari Salami [126] based on Extended 

High order Sandwich Panel Theory. In this theory, the face sheets follow the first order shear 

deformation theory. Xiang and Yang developed a two dimensional elasticity solution [127] to 

obtain the free and forced vibration characteristics of laminated FG Timoshenko beam of variable 

thickness, which consists of a homogeneous substrate and two inhomogeneous functionally graded 

layers, subjected to one-dimensional steady heat conduction in the thickness direction, employing 

the differential quadrature method. 

Ke et al. [128,129] analyzed the nonlinear free vibrations of FG-CNTR Timoshenko beams 

with symmetric and unsymmetrical distributions of CNTs along the thickness direction using Ritz 

method and direct iterative technique. Also, they investigated [129] on the nonlinear free vibration 

of the FGM microbeams based on the modified couple stress theory and Timoshenko beam theory. 

Mori-Tanaka homogenization technique is employed to model the through-the-thickness variation 

of the material properties in a simple power law function. They used the differential quadrature 

method to discretize the nonlinear governing equations which are then solved by a direct iterative 

algorithm to obtain the nonlinear vibration frequencies of the FGM microbeams. 
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This paper is motivated by the lack of studies in the technical literature concerning the 

influence of graded agglomerated CNTs on nonlinear free vibration analysis of functionally graded 

sandwich carbon nanotube reinforced (FGS-CNTR) beams on Pasternak foundation. A numerical 

method that makes use of the differential quadrature method together with an iterative algorithm 

is employed to determine the nonlinear vibration frequencies of the FG nanocomposite beams with 

different boundary conditions. The face sheets are reinforced by CNT volume fraction graded 

according to a power-law distribution. Various material profiles through the thickness of face 

sheets can be illustrated by using the power-law distribution. Nonlinear free vibration analysis of 

FGS-CNTRS beams is studied based on Timoshenko beam theory and through MT model and DQ 

method which is found to be a simple and efficient numerical technique for solving partial 

differential equations [80,103,130,131]. The effects of the degree of CNT aggregation, CNT 

volume fraction, Pasternak foundation, geometric parameters, etc, on the nonlinear vibration of 

the structure are presented in this paper.  

 5.2 Material properties of CNT reinforced composites 

5.2.1 Effect of CNT aggregation on the properties of the composite 

To better predict material properties of FG nanocomposite sandwich beams, the Mori-

Tanaka homogenization scheme is used in this study [77,132,133]. The CNTs were arranged 

within the matrix in such manner to introduce clustering. It has been observed that, due to large 

aspect ratio, the low bending rigidity of CNTs and van der Waals forces, CNTs tend to bundle or 

cluster together making it quite difficult to produce fully dispersed CNT reinforced composites. 

The effect of nanotube aggregation on the elastic properties of randomly oriented CNTRC is 

presented in this section. Two parameter micromechanics models are derived to determine the 

effect of nanotube aggregation on the elastic properties of randomly oriented CNTRC (Fig 5.1). It 
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is assumed that some CNTs are uniformly distributed throughout the matrix and that other CNTs 

appear in cluster form because of aggregation, as shown in Fig 5.1. The total volume of the CNTs 

in the representative volume element (RVE), denote by Vr, can be divided into the following two 

parts [112,113]: 

     
cluster m

r r rV V V= +                                                              

               

(5.1) 

 

   Figure 5. 1 RVE with Eshelby cluster model of aggregation of CNTs. 

 

where 
cluster
rV denote the volumes of CNTs inside a cluster, and 

m

rV is the volume of CNTs in the 

matrix and outside the clusters. The two parameters used to describe the aggregation are defined 

as: 

    
, 0 , 1

cluster
cluster r

r

V V

V V
   = =  

  
 

            

(5.2) 

where V is the volume of RVE, Vcluster volume of clusters in the RVE,   is the volume fraction 

of clusters concerning the total volume V of the RVE, η is the volume ratio of the CNTs inside the 

clusters over the entire CNTs inside the RVE. The effective bulk modulus K and the effective shear 

modulus G of the composite are derived from the Mori-Tanaka method as follows [77]:  
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The effective Young’s modulus E and Poisson’s ratio   of the composite can be 

calculated in terms of K and G by: 

      
GK

KG
E

+
=

3

9
 (5.8)                                                             

      

3 2

6 2

K G

K G


−
=

+  

                                                         

(5.9) 

Consider a functionally graded CNT reinforced beam resting on Pasternak foundations as 

shown in Fig 5.2.  In the present work, VCN and Vm are considered as the CNT and matrix volume 

fraction, respectively. We assume for FG beam, the volume fraction of the CNT is given by the 
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power-law-type function: 
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             (5.10)         

 

  Figure 5. 2 Geometry of FGS-CNTR beam 

  

where the volume fraction index q (0 )q  , h and hf  are the thicknesses of beam and the 

face sheets respectively and Vo and Vi, which have values that range from  0  to 1, denote the 

maximum and minimum volume fraction of CNT that could exist in the thickness direction. 

According to relation (10), the amount of CNT in the core of the structure is constant and equal to 

Vi. Various material profiles through the thickness of face sheets can be illustrated by using the 

power-law distribution.                            

The through-thickness variations of CNT volume fraction for some profiles are illustrated 

in Fig 5.3. In Fig 5.3 the classic CNT volume fraction profiles are presented. As we can see, a 

sandwich beam made up of three discrete layers with a homogeneous core.  
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   Figure 5. 3 Variation of the CNT volume fraction through the thickness of the beam (q is the volume 

fraction index)  

 

 5.3 Equations of motion 

Timoshenko beam theory is employed in this paper with the following displacement field 

to account for the effect of transverse shear strain which is essential in the deformation of 

composite structures 

),,(),,(),,,( 0 tzxztzxutzyxU +=  (5.11a) 

),,(),,,( 0 tzxwtzyxW =  (5.11b) 

in which 0u  and 0w  represent the components of displacement at z=0,  is the section normal 

vector rotations about the y-axes, and t is time.  

Consider the FGS-CNTR beam shown in Fig 5.2. The beam is assumed to be rested on the 

two-parameter elastic (Pasternak) foundation whose supporting action is described by 



 

74 

 

2

2w s

w
P K w K

x


= −


                                                             (5.12) 

where P  is the foundation reaction per unit area, w is the transverse deflection of the beam, and 

wK  sK   are Winkler and shearing layer elastic coefficients of the foundation. It is worth noting 

that the Pasternak elastic foundation model is an extension of the well-known Winkler model  

( 0=sK ). 

The normal linear strain x and shear strain xz  are associated with the displacements as: 
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Using the linear elastic constitutive law, the normal stress x  and shear stress xz  are 

given by 
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Employing Hamilton's principle, the equations of motion and the related boundary 

conditions can be derived. According to Hamilton's principle 

0

( ) 0

t

pT dt − + =                       (5.16) 

where  , T  and   denote the variational symbol, the kinetic energy of the beam and potential 

energy composed of strain energy the beam together with the elastic potential energy of the elastic 

foundation respectively. It is worth noting that p  is the work done by an external force that is 

zero for free vibration analysis. 
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By setting the coefficients of u , w  and   to zero leads to the equations of motion 

as  
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(5.17c) 

 

where the resultant normal force xN , bending moment xM , and transverse shear force xQ  are 

calculated from 
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In this study, the shear correction factor 
5

*
6

k =  is used, and the stiffness components A11, 

B11, D11, A55 of the beam are defined as: 
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Different boundary conditions of the beams such as hinged-hinged (H-H), clamped-hinged 

(C-H), clamped-clamped (C-C) and clamped-free (C-F) can be considered. These conditions are 
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described as: 

Clamped (C):   000 === wu
 

Hinged (H):     000 === xMwu
 

(5.20) 

Since we need to compare our results with the similar ones in the previous works, in the 

present study we used a beam with the hinged condition over simply supported beam. By using 

the following dimensionless quantities 
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in which 110A  and I10 are the values of 11A  and I1 of a homogeneous polymeric beam. , Eq. (5.21) 

can be transformed into the following dimensionless form: 
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The associated boundary conditions can also be written in a dimensionless form as: 

0=== wu    (5.23) 

for a clamped-clamped (C-C) boundary condition 
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for a hinged-hinged (H-H) boundary condition  

5.4 Solution method, DQM  

The differential quadrature method (DQM) [134,135] is used to solve Eq. (5.25) and the 

associated boundary conditions to determine the nonlinear frequencies of FGS-CNTR beam 

resting on Pasternak foundation. The fundamental idea of the DQ method is to approximate the 

derivative of a function at a sample point as a linear weighted sum of the function values at all of 

the sample points in the problem domain. Hence, the nth order of a continuous function ),( zxf  

concerning x at a given point x i  can be approximated as a linear sum of weighting values at all of 

the discrete points in the domain of x , i.e. 
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 (i=1,2,...N, n=1,2,...N-1)                                                           
                        (5.25) 

 

where N is the number of sampling points, and 
n

ijc  [134] is the x i dependent weight coefficients.  
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The cosine pattern is used to generate the DQ point system 
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Applying Eq. (5.25) to Eq. (5.22), one obtains a set of ordinary differential equations 
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The associated boundary conditions can be handled in the same way. For example, the 

dimensionless boundary condition of clamped-Hinged (C-H) Supported beams is 
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(5.28) 

After implementation of the boundary conditions, Eq. (5.27) can be written in matrix form 

as 
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(𝐾𝐿 +
1

2
𝐾𝑁𝐿1 +

1

3
𝐾𝑁𝐿2)𝑈𝑑 +𝑀�̈�𝑑 = 0 (5.29)                                  

where M is the mass matrix; KL is the linear stiffness matrix; KNL1 and KNL2 are nonlinear stiffness 

matrices that are linear and quadratic functions in Ud, respectively. 

Expanding the dynamic displacement vector Ud in the form of * i t

d dU U e =  where  

/L E =   represents the dimensionless frequency, Ω is the nonlinear vibration frequency of 

the FG nanocomposite sandwich beam, *

dU  is the vibration mode shape vector. Substituting Ud 

into Eq. (5.29) yields the nonlinear eigenvalue equations as follows 

* 2 *

1 2

1 1
0

2 3
L NL NL d dK K K U M U

 
+ + − = 

 
 (5.30) 

To solve the resulting system of nonlinear eigenvalue Eq. (5.30), an iterative procedure 

should be used. For this purpose, in the first step, the nonlinear terms due to the transverse 

displacement are neglected, and the resulting eigenvalue problem is solved in each case. In the 

second step, the eigenvector is appropriately scaled up such that the maximum transverse 

displacement is equal to the given vibration amplitude wmax. Then, the eigenvalue problems are 

solved again to obtain the new eigenvalues and eigenvectors. In the third step, the eigenvector is 

scaled up again and step 2 is repeated until the relative error between the eigenvalues obtained 

from two consecutive iterations is within 0.1%. 

5.5  Results and discussion 

5.5.1 Verification 

In the numerical results, nonlinear free vibration analysis of the FGS-CNTR Timoshenko 

beam with different boundary conditions is investigated. Here, we consider PMMA, referred to 

Polymethyl methacrylate, as the matrix (Em=2.5 GPa, ρ=1190 kg/m3) and (10, 10) SWCNT as the 
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reinforcement (see table 5.1): 

 Table 5. 1 Material properties of equivalent fiber [136] 

Mechanical properties CNT  

Longitudinal Young’s modulus 5.456  (TPa) 

Transverse Young’s modulus 1.010  (TPa) 

Longitudinal shear modulus 0.431  (TPa) 

Poisson’s ratio 0.175  (TPa) 

 

Before starting numerical studies, to establish the accuracy of the present formulation and 

the computer program developed by the author, results obtained from the present study are 

compared with the available results in the literature. The nonlinear fundamental frequencies of 

CNTR beam (η=L/h=1, h=0.1) is compared with data presented in Ref. [129]. Table 5.2 shows 

that the present results are in good agreement with the results of Wang et al. [129]. The parameter 

used in this example are 
3/1190,34.0,5.2 mKgGPaE mmm ===   for matrix, and the 

armchair (10,10) SWCNTs are used as the reinforcements with 

19.0,10,600 2211 === cntcntcnt GPaEGPaE   and 1400=cnt  𝐾𝑔/𝑚3. 
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 Table 5. 2 Comparison of dimensionless nonlinear frequency lnl  /  for UD-CNTRC beams (L/h=10) 

 

5.5.2 Discussion 

Before analyzing the vibration of FGS-CNTR beams, the effects of aggregation degree (µ 

and η) on the effective longitude Young’s modulus of FG-CNTRC beam needs to be investigated 

Fig 5.4. Using the relations presented in previous sections, it is possible to observe the variations 

of the effective material properties through the thickness of the FGS-CNTR beam for different 

aggregation parameters. For this goal, a particular case of the FGS-CNTR beam is considered in 

which hf=0.35, hc=0.3 and q=2. The variations of Young’s modulus of beams concerning the 

different aggregation parameters µ and η=0.75 are illustrated in Fig 5.4. As expected, at a constant 

value of z/h ratio, with the increase of parameter µ (µ<η), the effective Young's modulus increases. 

Fig 5.4 represents the fact that the highest values of Young’s modulus are attained for the 

aggregation state of η=µ=0.75 (fully dispersed), where the volume fraction of CNTs in the cluster 

 *

cntV  

Method 
l
 

Wmax
  

   

 0.1 0.2 0.3 0.4 0.5 

C-C 0.12 [128] 1.6678 1.0154 1.0605 1.1318 1.2251 1.3381 

  Present 1.6621 1.0142 1.0544 1.1143 1.1872 1.2748 

 0.28 [128] 2.3634 1.0176 1.0687 1.1490 1.2544 1.3829 

  Present 2.3420 1.0171 1.0646 1.1337 1.2157 1.3044 

H-H 0.12 [128] 1.2576 1.0278 1.1070 1.2278 1.3791 1.5522 

  Present 1.2551 1.0256 1.0952 1.1938 1.3083 1.4302 

 0.28 [128] 1.8297 1.0299 1.1151 1.2439 1.4046 1.5874 

 Present 1.8201 1.0299 1.1094 1.2065 1.3261 1.4525 
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and the matrix are equal. As it is observed, when µ is less than η (µ<η), the effective Young’s 

modulus increases with increasing the value of µ and has the maximum amount when the CNTs 

are uniformly dispersed in the composite, i.e., µ=η. So, it is undeniable that the aggregation 

parameters have significant effects on the material properties. Therefore, one can come to this 

conclusion that CNTs aggregation plays an essential role in vibrational characteristics of FGS-

CNTR beams.  

 

   Figure 5. 4 The variation of Young’s modulus and along the thickness of the FGS-CNTR beam with 

aggregation effect 

 

Now, vibration analysis of FGS-CNTR beams rested on Pasternak foundation is studied 

using the MT approach. The thickness of the sandwich beam is 1 and kept unchanged in all 

numerical examples, whereas the thickness of core layer and face sheets change corresponding to 

the core-to-face sheet thickness ratio hc/hf =2, 4, 8. Also, to be close to the reality, the amount of q 

in most cases considered 1 and 50 which shows the linear and uniform distribution of CNT in the 
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face sheets respectively (Fig 5.3). 

Tables 5.3-5.5 show effects of the elastic foundation coefficients and different values of 

core-to-face sheet thickness ratio (hc/hf =2, 4) on the dimensionless nonlinear and linear vibration 

of various types of CNTRC sandwich beams for different boundary conditions. By increasing q 

which leads to increasing the volume fraction of CNT on the face sheets, both linear and nonlinear 

frequencies of beam will increase. It can be seen that among the three boundary conditions 

considered, the clamped-clamped beam has the maximum values of linear and nonlinear 

frequencies. Also, it can be inferred that with increasing the hc/hf ratio, the frequency decreases. 

This justifies by the fact that reduces of the thickness of face sheets will result in decreases of CNT 

volume fraction value, so it becomes softer. It is also observed, the frequency (both linear and 

nonlinear) of the beams increases when resting on elastic foundations. It happens because the beam 

becomes stiffer with elastic foundations.  

Table 5. 3 Nonlinear frequency nl  for C-C CNTRC sandwich beams (L/h=10, q=1, Vi=0.05, Vo=0.1, 

η=0.4, µ=0.4) 

(kw, ks) hc/hf l  

q=1   

 l  

q=100   

wmax =0.1 0.3 0.5 wmax =0.1 0.3 0.5 

(0,0) 2 2.2869 2.2928 2.3396 2.4293 2.5346 2.5411 2.5919 2.6894 

 4 2.1863 2.1888 2.2457 2.3459 2.4139 2.4165 2.4756 2.5584 

(0.1,0) 2 2.3083 2.3109 2.3316 2.3728 2.5539 2.5603 2.6108 2.7076 

 4 2.2087 2.2112 2.2676 2.3668 2.4342 2.4368 2.4954 2.5989 

(0.1,0.2) 2 2.7680 2.7728 2.8107 2.8840 2.9758 2.9784 2.9986 3.1071 

 4 2.6856 2.6909 2.7326 2.8131 2.8737 2.8794 2.9243 3.0108 
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Table 5. 4 Nonlinear frequency nl  for H-H CNTRC sandwich beams (L/h=10, q=1, Vi=0.05, Vo=0.1, 

η=0.4, µ=0.4) 

(kw, ks) hc/hf l  

q=1   

 l  

q=100   

wmax =0.1 0.3 0.5 wmax =0.1 0.3 0.5 

(0,0) 2 1.0381 1.0497 1.1360 1.2934 1.1502 1.1641 1.2677 1.4424 

 4 0.9918 1.0044 1.0974 1.2532 1.0958 1.1105 1.2083 1.3746 

(0.1,0) 2 1.0845 1.0951 1.1798 1.3438 1.1921 1.2056 1.3059 1.4761 

 4 1.0404 1.0524 1.1414 1.2920 1.1399 1.1540 1.2484 1.4100 

(0.1,0.2) 2 1.7668 1.7744 1.8329 1.9396 1.8337 1.8425 1.9100 2.0324 

 4 1.7404 1.7486 1.8086 1.9059 1.8009 1.8079 1.8702 1.9856 

 

 Table 5. 5 Nonlinear frequency nl  for C-H CNTRC sandwich beams (L/h=10, q=1, Vi=0.05, Vo=0.1, 

η=0.4, µ=0.4) 

(kw, ks) hc/hf l  

q=1   

 l  

q=100   

wmax =0.1 0.3 0.5 wmax =0.1 0.3 0.5 

(0,0) 2 1.9060 1.9207 2.0300 2.2142 2.1110 2.1247 2.2209 2.4575 

 4 1.8218 1.8368 1.9475 2.1313 2.0106 2.0237 2.1354 2.3216 

(0.1,0) 2 1.9316 1.9462 2.0542 2.2363 2.1342 2.1499 2.2674 2.4661 

 4 1.8487 1.8634 1.9727 2.1544 2.0349 2.0497 2.1597 2.3458 

(0.1,0.2) 2 2.4611 2.4708 2.5454 2.6791 2.6235 2.6351 2.7233 2.8797 

 4 2.3963 2.4057 2.4780 2.6074 2.5431 2.5535 2.6329 2.7748 
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It is clear that when Vi=0 the amount of CNT volume fraction in the substrate is equal to 

zero, so we have sandwich beams with CNTRC face sheets with different CNT volume fractions 

VCN and when Vi≠0 the substrate is consist of CNT. As mentioned before, when q=0 the CNT has 

a uniform distribution of volume fraction through the thickness of the beam in case of Vi≠0 and 

CNT volume fraction is equal to zero in case of Vi=0. So, it becomes possible to compare the 

CNTR sandwich beam with a regular CNTR beam and beam without CNT. Fig 5.5 presents 

nonlinear fundamental mode shapes for CNTRC beams with various q at wmax=0.5. It is found that  
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    Figure 5. 5 Nonlinear mode shapes of CNTRC sandwich beams at wmax=0.5 and L/h=15 : (a) C–C, 

(b) H–H and (c) C–H  (Vi=0.05, Vo=0.1) 
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the nanotube volume fraction Vcnt has an insignificant effect on the nonlinear mode shape for all 

beams. The maximum amplitude occurs at the midpoint of the H–H and C–C beams but not for 

the C–H beam. 

The nonlinear fundamental mode shapes for the displacement W, are plotted in Fig 5.6 

with various elastic foundation parameter at wmax=0.5. Note that Vi=0 shows that there is no CNT 

in the substrate and q=1 corresponds to the linear distribution of CNT on the face sheets. The 

maximum displacement approaches the center of the beam as we increase the elastic foundation 

stiffness.  

 

 
 Figure 5. 6 Nonlinear mode shapes of CNTRC sandwich beams at L/h=15 for C–H boundary condition 
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  Figure 5. 7 Effect of core thickness on the nonlinear frequency ratio versus dimensionless amplitude 

curves of the CNTRC beams with q=1 Vi=0, Vo=0.05 and L/h=15 (a) C–C, (b) H–H 
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Figure 5.7 shows the effect of the different values of core-to-face sheet thickness ratio (hc/hf  

=2, 4, 8) on the dimensionless nonlinear and linear vibration of various types of CNTRC sandwich 

beams when Vi=0, Vo=0.05, q=1 and L/h=15. Results show that an increase in the hc/hf  

significantly reduces the linear frequency for both boundary conditions (C-C and H-H) but slightly 

decrease the nonlinear frequency ratio for H-H boundary conditions and it has an opposite trend 

for C-C boundary condition.   

In Fig 5.8, we find that fully dispersal of the randomly oriented CNTs (clustered, η=μ=0.4 

and η=μ=0.9) results in the highest linear fundamental frequency, while an aggregated state would 

have a lower frequency (η=0.4, μ=0.1 and η=0.9, μ=0.1). That is because aggregates have lower 

modulus than individual dispersed CNTs and thus reduced reinforcing efficiency. But for 

dimensionless nonlinear frequency ( lnl  / ), it is essential to consider both linear and nonlinear 

frequency. Fully dispersed CNT leads to both bigger linear and nonlinear frequencies but a lower 

nonlinear frequency ratio. 
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   Figure 5. 8 Effect of state of aggregation on the nonlinear frequency ratio versus dimensionless 

amplitude curves of the CNTRC beams with q=1  

 

5.6 Conclusion 

The nonlinear free vibration of FG-CNTR sandwich beams rested on Pasternak foundation 

is studied based on Timoshenko beam theory and by applying von Kármán geometric nonlinearity. 

The effective material properties of the nanocomposite beam are assumed to be graded in the 

thickness direction and estimated by the Mori–Tanaka approach. The GDQ method and a direct 

iterative approach is employed to obtain the nonlinear vibration frequencies and mode shapes of 

FG-CNTRC beams with different boundary conditions. Results present this fact that mechanical 

properties and therefore vibration of FG-CNTR sandwich beams are severely affected by CNTs 

aggregation. It can be concluded from Numeric results that CNT volume fraction, aggregation 
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state, core-to-face sheet thickness ratio (hc/hf) and end supporting conditions play an important 

role on the nonlinear frequencies and mode shapes. Also, it is seen that both Winkler and Pasternak 

elastic coefficients play effective roles in both frequency and mode shape.  
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Chapter 6:  

Effect of hyperbolic heat conduction on the linear and 

nonlinear vibration of CNT reinforced size-dependent 

functionally graded microbeams5 

As a first attempt, the combined application of the differential quadrature method (DQM) 

and the Newton Raphson method is used to solve the hyperbolic (non-Fourier) heat conduction 

equations to obtain temperature, displacements and nonlinear frequency in the functionally graded 

(FG) nanocomposite Timoshenko microbeam. To do so, we need to follow two steps: (1): solving 

the hyperbolic heat conduction to obtain the temperature in the spatial and temporal domains by 

using DQM and Newton Raphson method; (2): implementation of the obtained temperature in 

thermoelastic equations of microbeam to obtain displacements and frequency at each time step by 

direct iterative method. The material length scale parameter is introduced in the non-classical 

Timoshenko beam model, to interpret the size effect in microstructures. The material properties of 

the FG nanocomposite beam are estimated using the Eshelby–Mori–Tanaka approach and carbon 

nanotubes (CNTs) are randomly distributed within the composite. The nonlinear governing 

equations and boundary conditions are derived using the Hamilton principle and von Kármán 

geometric nonlinearity. A direct iterative method is employed to determine the nonlinear 

frequencies and mode shapes of the beams. All material properties such as Young modulus (E), 

 

 

5 A version of this chapter is published in International Journal of Engineering Science 137, 57-72, 2019. 
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heat capacity (Cp), relaxation time (τ), density (ρ) and thermal conductivity (K) are considered as 

a function of temperature and CNT volume fraction. The effects of temperature change, thermal 

conductivity, CNTs volume fraction, length to span ratio, heat wave speed, heat flux, and end 

support conditions on the nonlinear vibration of the beam are discussed in detail. Unlike all 

previous publications, the present results show that increasing thickness-to-length scale ratio (h/l) 

will increase the frequency. 

6.1 Introduction 

In recent years, CNTs have attracted more and more attention from researchers for their 

excellent mechanical properties. It is well known that the addition of CNTs in a matrix can improve 

the thermal and physical behaviors significantly. These outstanding properties of CNTs [53-

55,107] have stimulated researchers to exploit them as a new generation of reinforcing agents for 

polymers. Numerous studies have been made to analytically and experimentally determined the 

mechanical properties of CNT reinforce nanocomposites via molecular dynamics (MD) simulation 

[60,108,109], continuum mechanics [61,62,110] and multi-scale simulation [59,63]. Seidel et al. 

[111] focused on the obtain effective elastic properties of composites consisting of aligned single 

or multi-walled carbon nanotubes embedded in a polymer matrix. They also investigated the effect 

of an interphase layer between the nanotube and the polymer matrix as a result of functionalization. 

For the same reasons mentioned above, CNTs have received increased attention as reinforcements 

for polymer composites. 

Fourier heat conduction is not applicable to engineering problems with small spatial or 

temporal scale, as a result during the past few years, considerable attention has been paid to the 

non-Fourier heat conduction in problems with shallow temperatures, extremely short period, or 

very high heat flux; see, for example, [32,33]. Then a modified flux model for the heat transfer 
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processes with a finite speed thermal wave is suggested. The hyperbolic heat conduction equation 

based on the Cattaneo model for the heat flux incorporates a relaxation mechanism to adjust a 

change in the temperature gradient gradually. This model has been a satisfactory extension of 

classical diffusion theory and can yield the hyperbolic diffusion equation within the continuum 

assumption [137]. Rahideh et al. [10] used the layerwise-incremental differential quadrature 

method (LIDQM) to show the effect of heat wave speed on the thermal characteristics of a multi-

layered domain made of functionally graded materials. 

The macro-mechanical properties of nanocomposites are affected by the microstructure 

and volume fraction of CNTs. Several methods are used to evaluate the effective properties of 

nanocomposites [112-115]. 

The Mori–Tanaka (MT) model is one of the best known analytical approaches to determine 

the effective material constants of composite materials. Barai [117] developed a two-scale 

micromechanical model to analyze the effect of CNT aggregation and interface condition on the 

plastic strength of CNT/matrix inclusions, and the small-scale property of the clustered inclusions.  

From the literature review, it is noted that the thermal effect on nonlinear and linear 

vibrations of microscale structures has been an object of many studies. However, the vibration 

properties of CNT-reinforced functionally graded composite microbeams under transient heat 

conduction along with considering the size effect have not been studied yet. In the present work, 

we have presented the vibration behaviors of CNT-reinforced functionally graded microbeam 

under the action of hyperbolic heat conduction. 

Thai and Choi [138] presented size-dependent models for bending, buckling and vibration 

of FGM Kirchhoff and Mindlin plates using the modified couple stress theory. A two-dimensional 

elasticity approach was developed by Xiang and Yang [127], using the differential quadrature 
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method to obtain the free and forced vibration characteristics of laminated FG Timoshenko beam 

of variable thickness. The beam consists of a homogeneous substrate and two inhomogeneous 

functionally graded layers, subjected to one-dimensional steady heat conduction in the thickness 

direction. Ke et al. [128] analyzed the nonlinear vibrations of FG-CNTRC Timoshenko beams 

with symmetric and unsymmetrical distributions of CNTs along the thickness direction using Ritz 

method and direct iterative technique. Also, based on the modified couple stress theory, they [139] 

investigated the free vibration and buckling of microbeams with the effect of the temperature 

change and scale parameter. They showed that the thermal effect on the fundamental frequency is 

mild when the thickness of the microbeam has similar value to the material length scale parameter 

but becomes significant when the thickness of the microbeams becomes larger.  

This paper is focused on the effect of hyperbolic heat conduction on the linear and 

nonlinear free vibration of FG-CNT reinforced beams. As a first attempt, non-Fourier heat 

conduction in the cylindrical panel with temperature-dependent material properties is studied. 

Then a mathematical model is developed for considering the effect of transient heat conduction on 

the vibration analysis of nanocomposite beam using DQM. Nonlinear free vibration analysis of 

FG-CNT reinforce composite structures is studied based on Timoshenko beam theory using 

Hamilton's principle, MT model, and GDQ method which is found to be a simple and efficient 

numerical technique for solving partial differential equations [80,89,130,131]. The effects of CNTs 

volume fraction and distribution on the frequency and vibration responses of the beam will be 

studied as well as hyperbolic heat conduction. Unlike all previously published papers, the present 

results show that increasing the thickness (h) will increase the frequency while the length scale 

parameter is constant (l). This is true since thermal force is a function of thickness, and the 

temperature is dependent on the thickness. In the thermal boundary condition considered in this 
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paper, increasing h will result in increasing thermal force, which in turn, leads to increasing linear 

and nonlinear frequency. The thermal force should be obtained all over again as we change the 

thickness of the beam. 

 6.2 Hyperbolic (Non-Fourier) heat conduction 

The structure of the beam is shown in Fig 6.1. 

 

 Figure 6. 1 Geometry of the microbeam 

 

The hyperbolic constitutive relation governing the transient heat transfer is as follows. 

x

T
kq

t

q




−=+




  

(6.1) 

where is the relaxation time. The relaxation time depends on the mechanism of heat transport 

and represents the time lag needed to establish steady-state heat conduction in an element of 

volume when a temperature gradient is suddenly applied to that element. It is related to the thermal 

wave speed and thermal diffusivity as 
2C


 = . Moreover, the energy equation can be written as, 
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+




  

(6.2) 

The DQM is used to discretize the spatial derivatives. Also, the incremental DQM is 

employed to discretize the temporal domain. Based on this approach, the total temporal domain is 

divided into a set of time intervals where the DQ rule is employed to discretize the temporal 
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derivatives. At the end of each time interval, the temperature and heat flux is used as the initial 

condition for the next time interval. 

The DQ method being applied to Eqs. (6.1, 6.2), the following equations at an arbitrary 

sampling point iz and jt  are then obtained: 
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Finally one obtains a system of nonlinear algebraic equations in each time interval which 

is solved using the Newton–Raphson method, and the procedure is repeated for all time intervals. 

Consider the beam is under a sudden temperature change on the lower surface. From Fig 

6.1, the boundary conditions of the problem can be expressed as [49,50] 
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A heating pulse is applied to the inner surface of the plate in which t* is equal to 0.005 s 

unless otherwise mentioned. The main goal of this example is to predict the propagation of the 

thermal disturbance as it is shown in Fig 6.2. The convergence of the presented DQM is shown in 

this figure. The same value for the parameters as those in the work of Dorao [50] is considered 

here. The results for convergence behavior of the time history and spatial distribution of the 

nondimensional temperature and heat flux are presented here. It is clear that by increasing the 

number of sample points in both temporal and physical domains (N=Nz=Nt), followed by 
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decreasing the time interval, converged results are obtained. It should be noted that N*dt = 

constant. The whole process is investigated in the same amount of time for all the tests. 

 

 Figure 6. 2 Convergence study of the presented DQM ( 2.0* =t ).  

 

For further validation, the proposed method has been compared with the experimental 

results [139] as shown in Fig 6.3, with the parameters shown in Table 6.1. Fourier heat conduction 

cannot capture the time lag, so boundary conditions’ affect the whole media constantly. 

Consequently, there will be no jump in the temperature history. On the other hand, hyperbolic heat 

conduction and experimental results are almost the same which approves using the hyperbolic heat 
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conduction in CNT reinforced composites. 

 

 Table 6. 1 Material properties of the specimen [139]  

 Value Unit 

Thermal conductivity (K) 0.8±0.04 W/m.K 

Density (ρ) 1230±10 Kg/m3 

Specific heat (C) 4.66±0.20 kJ/kg.K 

Thermal diffusivity (α) 1.40*10-7±0.12*10-7 M2/s 

Time lag (τ) 15.24 S 

 

 Figure 6. 3 Comparison of solving techniques with results available in the literature [139] (Fourier, 

hyperbolic and experimental data). 
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In the next part, a heating pulse is `applied to the lower boundary of a parallel sided slab. 

The initial and boundary conditions are 
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(6.6) 

 

6.3 Thermal conductivity (K), relaxation time (τ) and heat capacity (Cp) of CNT 

Thermal conductivities of the random and aligned CNT reinforced composites are 

calculated as a function of the volume fraction of CNTs. Thermal conductivity is greatly improved 

as the volume fraction of CNTs increases in both random composites and aligned composites 

[140]. 

Second-order polynomial equations are used to obtain the thermal conductivity as follow: 

64.043.09.51 2 ++= cncnR VVK  (6.7) 

77.035.49.90 2 ++= cncnA VVK  (6.8) 

in which KR and KA referred to the thermal conductivities of randomly distributed CNT and aligned 

CNT. Clearly, for a specific volume fraction of CNTs, KA is bigger than KR, which leads to the 

faster motion of heat waves in the media [75]. To approach the reality, just the composite with a 

random distribution of CNTs is considered. 

Since the relaxation time of CNTs is hugely smaller than the relaxation time of the matrix, 

we can use case 1 as an example. The length of CNTs does not play an important role in heat 

conduction when the relaxation time of the matrix is relatively high.  
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The specific heat capacity (Cp) of a CNT as a function of temperature is stated in 

Hepplestone et al. [76]. They showed that increasing temperature would increase the specific heat 

capacity Cp by approximately a constant amount as follow: 

baTC p +=  (6.9) 

with a = 2.5642 (J/(kg*K )) and b = -61.7294 (J/(kg*K)).  

6.4 Composites reinforced with randomly oriented, straight CNTs 

The effective properties of composites with randomly oriented non-clustered CNTs, such 

as in Fig 6.4, are studied in this section. The resulting effective properties for the randomly oriented 

CNT composite are isotropic, despite the CNTs having transversely isotropic effective properties. 

Two Euler angles α and β characterizes the orientation of a straight CNT, as shown in Fig 6.3. 

When CNTs are entirely randomly oriented in the matrix, the composite is then isotropic, and its 

bulk modulus k and shear modulus G is derived as [77,78,133] 
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  Figure 6. 4 Representative volume element (RVE) with randomly oriented, straight CNTs 

 

The effective Young’s modulus E and Poisson’s ratio   of the composite, which are 

related to time, are given by: 
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Consider an FG-CNT reinforced beam as shown in Fig 6.1. In the present work, VCN and 

Vm are considered as the CNT and matrix volume fraction, respectively. We assume for the FG 

beam, the volume fraction of the CNT is given by the power-law-type function: 

q

ioiCN
h

z
VVVzV 








−+= )()(  

(6.17)                                                                              

where q is the volume fraction index (0 )q  , h is the thicknesses of the microbeam and Vo 
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and Vi, which have values ranging from 0 to 1, denote the maximum and minimum volume 

fractions of CNT that could exist in the thickness direction of the beam.  

 

6.5 Equations of motion 

Timoshenko beam theory is employed in this paper with the following displacement field 

to account for the effect of transverse shear strain which is important in the deformation of 

composite structures 

),,(),,(),,,( 0 tzxztzxutzyxU +=  (6.18a) 

),,(),,,( 0 tzxwtzyxW =  (6.18b) 

in which 0u  and 0w  represent the components of displacement at section z=0,  is the 

rotational angle of the normal vector of the section about the y-axes, and t is time.  

The nonlinear normal strain x and shear strain xz  are associated with the displacements 

as: 
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Using the linear thermal elastic constitutive law, the normal stress x  and shear stress xz  

are given by 
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Employing Hamilton's principle, the equations of motion and the related boundary 
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conditions can be derived. According to Hamilton's principle 
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where  , T  and   denote variational symbol, the kinetic energy of the beam and potential 

energy composed of strain energy of the beam and the elastic potential energy of the elastic 

foundation respectively. It is worth noting that p  is the work done by external forces that are 

taken to be zero for free vibration analysis. 

By setting the coefficients of u , w  and   to zero leads to the equations of motion 
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(6.23c) 

 

 

where the resultant normal force xN , bending moment xM , and transverse shear force xQ  are 

calculated from 
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In this study, the shear correction factor 
5

*
6

k =  is used, and the stiffness components A11, 

B11, D11, A55 of the beam are defined as: 
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The work done by the force due to the influence of temperature change is TAtNT −= 11)(   

Different boundary conditions of the beams such as hinged-hinged (H-H), clamped-hinged (C-H), 

clamped-clamped (C-C), and clamped-free (C-F), can be considered. These conditions are 

described as: 

Clamped (C):   000 === wu  

Hinged (H):     000 === xMwu  

(6.26) 

Since we need to compare our results with the similar ones in the previous works, in the 

present study we used a beam with the hinged condition rather than simply supported beams. By 

using the following dimensionless quantities 

,
x

L
 =

   

0 0( , )
( , W) ,

u w
U

h
=

       

( ) 5511 11 11
11 55 11 11 2

110 110 110 110

, , , , , , ,
AA B D

a a b d
A A A h A h

 
=  
   

 

( ) 












====

2

10

3

10

2

10

1

3210 ,,,,,/,/,
hI

I

hI

I

I

I
IIIhllhL  

(6.27) 

10

110

I

A

L

t
=  

110

11* )()(
A

A
tNN TT =  

 



 

106 

 

2

2

22

2

12

2

112

2

2

2

11

1





 


+




=




+
















+



 w
I

u
Ib

wwu
a                       (6.28a) 

2

2

112

2
*

2

2

2

2

11

2

2

2

22

2

22

11

2

2

55

*

)(

2

3
























=+




+
















+









+





















+
















+








+












+





w
IS

w
N

wwb

wuwwwuaw
ak

T

 (6.28b) 

2

2

32

2

2255

*

2

2

112

2

2

2

11

1















 


+




=+








+




−




+
















+




I

u
IS

w
akd

wwu
b  (6.28c) 

Where 











+




−=

3

3

4

4

55

2

1

1

4

0







w
a

l
S   and 












+




−=

2

2

3

3

55

2

2

1

4

0







w
a

l
S . 

The associated boundary conditions can also be written in a dimensionless form as follows: 

0=== wu  (6.29) 

for a clamped-clamped (C-C) boundary condition, 

and 
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for a hinged-hinged (H-H) boundary condition. 

 

 

6.6 GDQ method 

The differential quadrature (DQ) method [134,135] is used to solve Eq. (6.28) and the 

associated boundary conditions to determine the nonlinear frequencies of FGS-CNTR. The 

fundamental idea of the DQ method is to approximate the derivative of a function at a sample point 

as a linearly weighted sum of its values at all the sample points in the problem domain. Hence, the 

nth order derivative of a continuous function ),( zxf  with respect to x at a given point x i  can be 
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approximated as a linear sum of weighted values at all of the discrete points in the domain of x as 

follows: 
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where N is the number of sampling points, and 
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The cosine pattern is used to generate the DQ point system 
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The associated boundary conditions can be handled in the same way. For example, the 
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dimensionless boundary condition of clamped-Hinged (C-H) Supported beams is 
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    (6.33) 

After implementation of the boundary conditions, Eq. (6.32) can be written in matrix form 

as 

(𝐾𝐿 +
1

2
𝐾𝑁𝐿1 +

1

3
𝐾𝑁𝐿2)𝑈𝑑 +𝑀�̈�𝑑 = 0 (6.34)                                  

where M is the mass matrix; KL is the linear stiffness matrix; KNL1 and KNL2 are nonlinear stiffness 

matrices that are linear and quadratic functions of the displacement vector, Ud, respectively. 

Expanding the dynamic displacement vector Ud in the form of 
* i t

d dU U e =  where  

/L E =   represents the dimensionless frequency, Ω is the nonlinear vibration frequency 

of the FG nanocomposite microbeam, 
*

dU  is the vibration mode shape vector. Substituting Ud into 

Eq. (6.34) yields the nonlinear eigenvalue equations as follows 

* 2 *

1 2

1 1
0

2 3
L NL NL d dK K K U M U

 
+ + − = 

 
 (6.35) 

To solve the resulting system of nonlinear eigenvalue Eq. (6.35), an iterative procedure 

should be used. For this purpose, in the first step, the nonlinear terms due to the transverse 

displacement are neglected, and the resulting eigenvalue problem is solved in each case. In the 

second step, the eigenvector is appropriately scaled up such that the maximum transverse 

displacement is equal to the given vibration amplitude wmax. Then, the eigenvalue problems are 

solved again to obtain the new eigenvalues and eigenvectors. In the third step, the eigenvector is 

scaled up again and step 2 is repeated until the discrepancy between the eigenvalues obtained from 
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the two consecutive iterations is within 0.1%.       

6.7 Results and discussion 

6.7.1 Verification 

PMMA is selected as the material of the microbeam, with its properties well studied [140]: 

K = 0.197 W/(m K), c = 550 J/(kg K), ρ = 1188 ± 0.5 kg/m3, and α= 3.015 × 10-7 m2 /s and τ=2.4 

S. Also, αm=45(1+0.0005ΔT) 10-6/K and Em=(3.52–0.0034T) GPa. In such a way, αm=45.0×10-

6/K and Em=2.5 GPa at T=300 K . 

Before starting numerical studies, to establish the accuracy of the present formulation and 

the computer program developed, results obtained from the present study are compared with the 

available results in the literature. The accuracy of the MT model in estimating the effective 

mechanical properties of CNT reinforced composites has been shown in the previous paper [77]. 

For further verification of the solution, the dimensionless nonlinear fundamental frequencies of 

the CNTR beam (η=L/h=1, h=0.1) is compared with the data presented in Ref. [128]. Table 6.2 

shows that the present results are in good agreement with the results of Ke et al. [128]. The 

parameters used in this example are 𝐸𝑚 = 2.5𝐺𝑃𝑎, 𝜐𝑚 = 0.34, 𝜌𝑚 = 1190 𝐾𝑔/𝑚3  for the 

matrix, and the armchair (10,10) SWCNTs are used as the reinforcements with 

19.0,10,600 2211 === cntcntcnt GPaEGPaE  , and 𝜌𝑐𝑛𝑡 = 1400 𝐾𝑔/𝑚3. 

Furthermore, the numerical solutions of the temperature change T  on the free vibration 

of microbeams given by [139] are also provided in Table 6.3 for a direct comparison. In The 

parameters used in this example are ρ=1220 kg/m3, E=1.44 GPa, l=17.6 µm and α=54*10-6/oC. It 

should be noticed that they did not consider temperature variation through the thickness and just 

assumed some values for the temperature difference. Again, excellent agreement is achieved 

between the present results and semi-analytical solutions given by [139]. It should be noted that 
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they just considered the effect of the temperature difference on the linear vibration of the 

microbeam. 

    Now, the vibration analysis of FG-CNT reinforces microbeams is studied using the MT 

approach. The relevant parameters that have been used in the calculation are: Vi=0.01, Vo=0.05, 

q=1, h=30 µm and dt=0.0001. These parameters are kept unchanged unless it is mentioned. 

 

 Table 6. 2 Comparison of dimensionless nonlinear frequency 
lnl  /  for UD-CNTRC beams (L/h=10) 

 

 

 

 

 

 

 *

cntV  

     Method 
l

 

Wmax

  

   

 0.1 0.2 0.3 0.4 0.5 

C-C 0.12 [128] 1.6678 1.0154 1.0605 1.1318 1.2251 1.3381 

  Present 1.6621 1.0142 1.0544 1.1143 1.1872 1.2748 

 0.28 [128] 2.3634 1.0176 1.0687 1.1490 1.2544 1.3829 

  Present 2.3420 1.0171 1.0646 1.1337 1.2157 1.3044 

         

H-H 0.12 [128] 1.2576 1.0278 1.1070 1.2278 1.3791 1.5522 

  Present 1.2551 1.0256 1.0952 1.1938 1.3083 1.4302 

 0.28 [128] 1.8297 1.0299 1.1151 1.2439 1.4046 1.5874 

 Present 1.8201 1.0299 1.1094 1.2065 1.3261 1.4525 
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 Table 6. 3 Thermal effect on the dimensionless natural frequencies for the microbeams with L/h=10 and 

h/l=2 

Boundary conditions ΔT =0 ΔT=20 ΔT =40 ΔT =60 ΔT =80 ΔT =100 

H-H [139] 0.3478 0.3322 0.3159 0.2986 0.2804 0.2608 

Present method 0.3470 0.3318 0.3142 0.2979 0.2800 0.2603 

C-C [139] 0.7248 0.7160 0.7071 0.6981 0.6890 0.6798 

Present method 0.7242 0.7153 0.7060 0.6977 0.6883 0.6791 

 

       

Fig 6.5 shows the variation in temperature concerning time for four different points in the 

thickness direction of the microbeam when there is a thermal shock at t=0 and z=-h/2. Here, 

Nx=Nt=21 and dt=0.0001. So, this figure shows the results in 60000 time steps. We can see that 

thermal waves travel inside the domain as a result of the time delay and will reach its steady state 

finally which has not been shown in this figure due to the space limitation. 
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  Figure 6. 5 Time evolution of the temperature at different points along the thickness of the beam. 

 

The effects of material length scale parameter as a function of time on the nonlinear 

frequency and thermal force is depicted in Fig 6.6 when the CNT volume fraction is 0.01 in the 

lower surface and linearly increases to 0.05 at the outer surface. It can be seen that the nonlinear 

frequency will take the shape of thermal force, so an increase in thermal force which can be 

obtained by increasing the thickness of the beam, will increase the nonlinear frequency.  
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Figure 6. 6 Time evolution of nonlinear frequency and thermal force (
*

TN ) L/h=12 and BC=C-C, a: 

h/l=1.7  b: h/l=3.4 

 

The thermal effect on the dimensionless nonlinear natural frequencies of the FGM 

microbeams as a function of time corresponding to different CNT volume fractions is listed in 

Table 6.4. Also, it should be noticed that the time step is equal to 0.0001 S, so Ts=1000 shows 0.1 

seconds. It can be seen that for a given value of L/h=12, the linear and nonlinear frequencies 

increase with the increase of CNT volume fraction (from Vo=0.03 to Vo=0.05). This is intuitively 

correct since with increasing the volume fraction of CNT the microbeam becomes stiffer, so the 

resultant frequencies increase. The most important result is that unlike all previously published 

papers which have shown increasing the h/l will decrease frequency, we have reached such a 

conclusion that when the temperature is taken into account, the result would be different. This 

happens because when the thickness of the beam (h) increases, we need to solve the heat 

conduction equation all over again and the thermal force will completely change (Fig 6.5). Then 

we can solve the eigenvalue problem (vibration problem). As it is seen in this table, increasing the 

h/l ratio from 1.7 to 3.4 will increase both linear and nonlinear frequency which happens as a result 
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of the increase in thermal force (The result for the case that thermal force is constant is shown in 

Fig 6.9). When the time step equals to 1, it shows the results of the structure at its initial conditions 

with no thermal force. That is why increasing thermal conductivity does not affect frequencies. 

Furthermore, increasing the thermal conductivity at other time steps will increase both linear and 

nonlinear frequencies. This happens because the increase in thermal conductivity means faster 

movement of thermal wave and results in a more significant difference between two different 

points in the thickness direction at the same time, which in turn, leads to a higher thermal force.  

 

Table 6. 4 Dimensionless linear and nonlinear frequencies of FGM microbeams with various length scale 

parameters and CNT volume fraction at different time steps (L/h=12, BC=C-C, q=1) 

h/l K Vi Vo 
ωNL ωL 

Ts=1 Ts=1000 Ts=2000 Ts=1 Ts=1000 Ts=2000 

1.7 KFGM 0.01 0.03 0.9607 0.9634 0.9646 0.9137 0.9163 0.9174 

 2*KFGM 0.01 0.03 0.9607 0.9646 0.9656 0.9137 0.9175 0.9184 

 5*KFGM 0.01 0.03 0.9607 0.9659 0.9690 0.9137 0.9186 0.9217 

 KFGM 0.01 0.05 1.0843 1.0879 1.0895 1.0313 1.0347 1.0363 

 2*KFGM 0.01 0.05 1.0843 1.0896 1.0909 1.0313 1.0364 1.0377 

 5*KFGM 0.01 0.05 1.0843 1.0911 1.0953 1.0313 1.0378 1.0418 

3.4 KFGM 0.01 0.03 1.6387 1.6427 1.6432 1.5388 1.5425 1.5431 

 2*KFGM 0.01 0.03 1.6387 1.6431 1.6455 1.5388 1.5429 1.5452 

 5*KFGM 0.01 0.03 1.6387 1.6457 1.6475 1.5388 1.5454 1.5471 

 KFGM 0.01 0.05 1.8503 1.8557 1.8564 1.7378 1.7428 1.7435 

 2*KFGM 0.01 0.05 1.8503 1.8562 1.8594 1.7377 1.7433 1.7463 

 5*KFGM 0.01 0.05 1.8503 1.8598 1.8619 1.7378 1.7467 1.7487 
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Figure 6.7 shows the temperature distribution through the thickness after 0.05 second (500 

time steps) from the initial thermal distribution. The effect of the temperature (internal force) on 

the nonlinear frequency of microbeam has been shown in Figures 6.8 and 6.9. 

 
  Figure 6. 7 Temperature along the thickness of the microbeam after 0.05 Second (dt=0.0001, h=30 µm) 

 

 

Figure 6.8 shows the effects of the amplitude of displacement on the dimensionless, 

fundamental nonlinear frequency ωNL for the microbeam as a function of L/h with h/l=2. It is found 

that the frequencies for all boundary conditions of the microbeam decrease rapidly with increasing 

L/h, because a higher L/h indicates a lower stiffness of the microbeam. Also, it is observed that for 

a small amount of displacement (Wmax=0.1), the nonlinear frequency and linear frequency are 

almost the same. The effect of the amplitude of displacement on the nonlinear frequencies is 

considerable for the microbeam with a small slenderness ratio, while it is mild for the microbeam 

with a large slenderness ratio. In other words, the shorter the beam, the bigger the effects of 

amplitude curve. 
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 Figure 6. 8 Effects of amplitude curves Wmax on 

nonlinear frequency for the microbeam as a 

function of L/h with h/l=2: (a) S-S, (b) C-C and (C) 

C-S 

 Figure 6. 9 Effects of amplitude curves Wmax on 

nonlinear frequency for the microbeam as a function 

of h/l with L/h=12: (a) S-S, (b) C-C and (c) C-S 
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Figure 6.9 shows the effects of displacement amplitude on the dimensionless, fundamental 

nonlinear frequency ωNL for the microbeam as a function of h/l with L/h=12. It should be noted 

that since the length scale parameter (l) is used in the formula as l0=l/h, it is possible to consider 

either l or h as a variable. Because by changing h, different temperature distributions through the 

thickness will be obtained, and as a result, leading to different thermal forces, we have considered 

the length scale parameter (l) as a variable. In the calculation, it is also possible to consider h as a 

variable by assuming that changing h does not change the thermal force. For a given value of h/l, 

the fundamental frequency increases with the increase of displacement amplitude. It can be seen 

that the effects of displacement amplitude on ωNL are insignificant when the thickness of the 

microbeam is close to the material length scale parameter (h/l=1 or 2), but becomes significant 

when the thickness of the microbeams becomes larger (h/l). For a large value of h/l (h/l>5), the 

size effect on the fundamental frequency is not apparent.  

Plotted in Fig 6.10 is the variation of dimensionless, nonlinear natural frequencies of the 

clamped-clamped FG microbeam with time corresponding to various values of material property 

gradient index q under a heat pulse. Since this thermal shock will become equal to zero after 0.005 

seconds and not permanent, the thermal force will become zero after a few time steps. Thus, the 

resultant nonlinear frequency will become zero after a few time steps as well. Furthermore, it is 

observed that when q=0, which corresponds to a uniform distribution of CNT through the 

thickness (VCN=Vi=0.01) the microbeam has the lowest frequency and q=1000 corresponds to the 

maximum uniform CNT volume fraction (VCN=Vo=0.05), and the microbeam has the maximum 

nonlinear frequency. So, as we increase the CNT volume fraction by increasing q, the nonlinear 

frequency increases, and also thermal force increases. 
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  Figure 6. 10 Effect of temperature at different time steps on the non-dimensional nonlinear frequency 

for the microbeam h/l=1.7, L/h=12, BC=C-C 

 

6.8 Conclusion 

The linear and nonlinear free vibrations of the FG carbon nanotube reinforce microbeams 

have been investigated based on hyperbolic heat conduction using Timoshenko beam theory. The 

Mori-Tanaka homogenization technique has been employed to obtain the mechanical properties 

of the microbeam. Unlike the classical beam theory, the present non-classical beam model takes 

the internal material length scale parameters into consideration for the microstructural effect. The 

DQM has been used to discretize the spatial derivatives, then the obtained nonlinear system of 

ordinary differential equations is solved using the Newton-Raphson method in the temporal 

domain to obtain temperature distribution in the thickness direction. Then the derived temperature 

is used to get the thermal force.  



 

119 

 

It is found that 

• The effect of the length scale parameter is significant when the ratio of thickness to the 

length scale parameter (h/l) is large enough, and thermal force is constant. 

• By considering thermal force as a function of the thickness of the microbeam, it is proved 

that increasing the thickness to the length scale ratio will increase linear and nonlinear 

frequencies. 

• Nonlinear frequency varies in the same spectrum as the thermal force. 

• Both linear and nonlinear frequency will increase by increases of the volume fraction of 

CNTs. 

• For an initial heat pulse, the microbeam will approach steady state condition after a few 

seconds, and thermal force will diminish, and as a result, no change in frequency will be 

observed.  

• For a sudden rise in temperature, the microbeam will reach steady state condition after a 

more extended period, so the thermal force and vibration stand longer. 

• Increasing the thermal conductivity of the material increases the linear and nonlinear 

frequencies. 
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Chapter 7:  

Thermally induced vibration in nanocomposites cylindrical 

panel subjected to heat pulse6 

As a first attempt, the combined application of the differential quadrature method (DQM) 

and the Newton Raphson method is used to solve the non-Fourier heat conduction equations to 

obtain temperature, displacements, and stresses in a cylindrical panel made of functionally graded, 

carbon nanotubes (CNTs) reinforced composite. The heat conduction of a domain made of 

nanocomposites subjected to heat generation is simulated with a finite heat wave speed. 

Furthermore, based on the three-dimensional elasticity theory, the thermoelastic analysis of the 

nanocomposite cylindrical panel subjected to the transient heat conduction is presented. The 

dynamic Young’s modulus of Single-Walled Carbon Nanotubes (SWCNT) can be expressed as a 

function of loading rate and environmental temperature. All material properties such as heat 

capacity (Cp), thermal relaxation time (τ), density (ρ) and thermal conductivity (K) are considered 

as a function of both temperature and CNT volume fraction. The hyperbolic heat conduction is 

solved to obtain temperature in the spatial and temporal domains. Then by implementing the 

obtained temperature in thermoelastic equations of the cylindrical panel, the displacements and 

stresses will be obtained at each time step. The proposed method marches in the time direction 

 

 

6 A version of this chapter is published in International Journal of Solids and Structures 163, 117-129, 2019. 
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block by block. In each block, there are several time levels, and the numerical results at these time 

levels are obtained simultaneously. Through this way, the numerical solution at the (n+1)th time 

level depends on the solutions at its previous levels from the 1st to the nth levels. The final results 

in the temporal domain are obtained using the Newton-Raphson method. Accuracy of the present 

solution is confirmed by comparing with some available results in the literature. A detailed 

numerical study is conducted to examine the effects of heat wave speed and heat flux, CNT volume 

fraction and the geometrical parameters on the deflection of the cylindrical panel. 

7.1 Introduction 

The heat- and mass-transfer equations play an important role in various thermal and 

diffusion processes. In anisotropic media, the thermal diffusivity depends on the direction of heat 

conduction, while it may depend on coordinates or even on the temperature itself in an 

inhomogeneous medium [141]. Thus, in modelling many problems in engineering and science, 

one often faces with the nonlinear heat conduction problems [142]. Also, during the past few years, 

considerable attention has been concerned with using the non-Fourier heat conduction in problems 

with very low temperatures, extremely short period of time, or very high heat flux; see, for 

example, [32,143]. Then a modified flux model for the heat transfer processes with a finite speed 

wave is suggested. The hyperbolic heat conduction equation based on the Cattaneo model for the 

heat flux incorporates a relaxation mechanism in order to gradually adjust to a change in the 

temperature gradient. This model has been a satisfactory extension of classical diffusion theory 

and can yield the hyperbolic heat conduction equation within the continuum assumption [137]. 

Rahideh et al. [10] used the layerwise-incremental differential quadrature method (LIDQM) to 

show the effect of heat wave speed on the thermal characteristics of a multi-layered domain made 

of functionally graded materials. 
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CNTs are very attractive as fillers because they offer high strength, stiffness, and 

exceptional electrical and thermal conductivities of graphite. These significant specification of 

CNTs, stimulates researchers to investigate the behavior of CNT reinforced composite beam, plate 

and shell structures subjected to mechanical and or thermal load. The exceptional properties leads 

the CNT to be designed as significant reinforcement materials and to be the building blocks for a 

new generation of composite materials to satisfy the need for high performance composite 

structures [144-148]. Gou et al. [149] studied the interfacial bonding of single walled carbon 

nanotube (SWCNT) reinforced epoxy composites using molecular dynamics (MD) simulations 

and experimental method. The unusually high thermal conductivity of CNTs has motivated many 

researchers using them two the thermal properties of polymeric matrix materials. Therefore it has 

been extensively investigated experimentally, analytically and numerically. Theoretical prediction 

showed an extremely high thermal conductivity of an isolated Single Walled Carbon NanoTube 

(SWCNT) [150]. High thermal conductivity of the CNTs may provide the solution of thermal 

management for the advanced electronic devices with narrow line width. Liu and Wang [151] 

studied the nanoscale finite element simulations of the dynamic Young’s modulus of SWCNTs 

under different strain rates and environmental temperatures. They showed that the dynamic 

Young’s modulus of the SWCNTs increases with the increase of strain rate, and decreases 

dramatically with the increase of environment temperature. Hong and Tai [152] indicated the 

enhancement of thermal conductivities over ten times and near fifteen times higher than Poly 

methyl methacrylate (PMMA) for SWCNTs/PMMA and multi walled carbon nanotubes/PMMA 

composites, respectively. Han and Elliott [108] presented classical Molecular Dynamics (MD) 

simulations of model polymer/CNT composites constructed by embedding a single wall (10, 10) 

CNT into PMMA with different volume fractions.  

http://www.sciencedirect.com/science/article/pii/S0263822316316828#b0025
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Shells of various geometries and materials have been widely used in many fields of 

engineering, where they give rise to optimum conditions for dynamical behavior, strength and 

stability. Pressure vessels, cooling towers, water tanks, dams, turbine engine components and so 

forth, perform particular functions over different branches of structural engineering. The static and 

thermoelastic solutions of shells of various shapes have been obtained under different 

thermomechanical loading conditions by Pourasghar et al. [77,81,153]. Pourasghar and Chen [154] 

studied thermoelastic behavior of nanocomposite cylindrical panels reinforced by SWCNTs in 

different thermal environments. They used the extended rule of mixture to investigate the material 

properties of the shell. Moreover, Shen [155] indicated that the interfacial bonding strength can be 

improved through the use of a graded distribution of CNTs in the matrix and examined the 

postbuckling of FG nanocomposite cylindrical panels resting on elastic foundations in thermal 

environment. Finally, Alibeigloo [156] carried out thermoelastic analyses of cylindrical panel 

reinforced by SWCNTs. In his work, thermoelastic constants of carbon nanotubes (CNT) and 

polymer matrix are assumed to be temperature independent.  

Thermoelasticity is often used to refer to various phenomena associated with the interaction 

between deformation and heat exchange occurring in a medium. There are a number of researches 

related to the development of theories and computational approaches for analyzing thermoelastic 

behavior of cylindrical panels [157-160]. However, it is found that the studies on mechanical and 

thermoelastic behavior of nanocomposite structures under transient heat conduction are very rare 

and all of which have considered thermoelastic constants of carbon nanotube (CNT) temperature 

independent.  

Based on the above review, as a first attempt, non-Fourier heat conduction in a CNT 

reinforced composite cylindrical panel of temperature-dependent material properties is studied. 



 

124 

 

The objective of this study is to develop the mathematical models for considering the effect of 

temperature on the mechanical properties of CNT and static analysis of CNT reinforced cylindrical 

panel using the differential quadrature method (DQM). Parametric studies such as CNT volume 

fraction, temperature difference, elastic foundations, are investigated to illustrate their impact on 

the thermoelastic response of the cylindrical panel. 

 

7.2 Generalized differential quadrature solution of governing equations 

     The differential quadrature (DQ) approach is used to solve the governing equations of 

cylindrical panels and heat transfer in the present work. The generalized DQ approach was 

developed by Shu et al [49] based on the DQ technique. In GDQ method the nth order partial 

derivative of a continuous function ),( zxf  with respect to x at a given point x i  can be 

approximated as a linear summation of weighted function values at all of the discrete points in the 

domain of x, i.e. 

where Nx and Nt are the number of sampling points along x and t direction respectively, also 
p

ikc  

and 
p

jkD  are the ix and 
jt dependent weight coefficients. Details of this procedure can be found 

in the literature [77,153]. In this work, the Chebyshev–Gauss–Lobatto quadrature points are used 

[49], 
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7.3 Problem description 

7.3.1 Non-Fourier heat conduction 

The structure of the cylindrical panel is shown in Fig 7.1. The global coordinate system

,r  and z for the panel is cylindrical, and has its origin at the center of the curvature 






 +
=

2

oi rr
R  

 

 Figure 7. 1 Geometry of cylindrical panel. 

 

The hyperbolic constitutive relation governing the transient heat transfer is as follows 

x

T
kq

t

q




−=+




  

(7.4) 

where is the relaxation time. q is heat flux, k is thermal conductivity and T is temperature. t and 

x are the time and spatial coordinate which the thermal wave travels. The relaxation time depends 

on the mechanism of heat transport, and represents the time lag needed to establish steady-state 
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heat conduction in an element of volume when a temperature gradient is suddenly applied to that 

element. It is related to the thermal wave speed and thermal diffusivity as 
2C


 = . α is thermal 

diffusity and C is heat wave speed. Moreover, the energy equation can be written as, 

),( trg
r

q

t

T
Cp =




+




  

                            (7.5) 

where Cp is heat capacity. The DQM is used to discretize the spatial derivatives, and the 

incremental DQM is employed to discretize the temporal domain. Based on this approach, the total 

temporal domain is divided into a set of time intervals where the DQ rule is employed to discretize 

the temporal derivatives. At the end of each time interval, the temperature and heat flux are used 

as the initial condition for the next time interval. 

DQ method being applied to Eqs. (7.4,7.5), the following equations at an arbitrary sampling 

point ix and 
jt  are then obtained: 

0
1

1

1

1 =+

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mjimij qqDTCk
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tx

=







+








== 1

1

1

1 )(  
(7.7) 

Finally, one obtains a system of nonlinear algebraic equations in each time interval which 

is solved using the Newton–Raphson method and the procedure is repeated for all time intervals. 

Let’s consider the hollow cylinder under a sudden temperature change on the inner and 

outer surface. From Fig 7.1, the boundary conditions of the problem can be expressed as [49,50] 
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First, let’s consider heating pulse is applied to the inner surface of the plate. The main goal 

of this example is to predict the propagation of the thermal disturbance as shown in Fig 2.2. The 

convergence of the presented DQM is shown in this figure. The same parameters as those in the 

work of Dorao [50] are considered. Now, let’s consider heating pulse applied to the left boundary 

of a parallel sided slab, which can be taken as the extreme case when the radius of curvature of the 

panel tends to infinity. The initial and boundary conditions are 

















=

=

=




















++−

=

0)0,(

0),(

0)0,(

0

01
2

1
),(

*

*

3/2

*

rT

trq

rq

ttif

ttif
t

t

trq

o

i

 

   

(

(7.9) 

 

7.3.2 Thermal conductivity (K), relaxation time (τ) and heat capacity (Cp) of 

CNT 

Thermal conductivities of the random and aligned CNT reinforced composites are 

calculated as function of the volume fraction of CNT. Thermal conductivity is greatly improved 

as the volume fraction of CNTs increases in both random composites and aligned composites [75]. 

Second-order polynomial equations are used to obtain the thermal conductivity as follow: 

64.043.09.51 2 ++= cncnR VVK  (7.10) 
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77.035.49.90 2 ++= cncnA VVK  (7.11) 

where KR and KA refer to the thermal conductivities of randomly distributed CNT and aligned CNT 

in the composite. Clearly for specific volume fraction of CNT, KA is bigger than KR, which leads 

to faster motion of heat waves in the media [75]. To approach reality, only CNTs with random 

distributions are considered. Table 3.2 shows the time delay for SWCNTs. 

Since the thermal relaxation time of CNTs is remarkably smaller than that of the matrix, 

we have just used case 1 as an example. In fact, the length of CNTs does not play an important 

role in heat conduction when the relaxation time of the matrix is relatively high.  

The specific heat capacity (Cp) of a CNT as a function of temperature is stated in 

Hepplestone et al. [26]. They showed that the effect of increasing temperature is to increase the 

specific heat capacity Cp by approximately a constant amount as follow: 

baTC p +=   (7.12) 

with a = 2.5642 (J/(kg*K )) and b = -61.7294 (J/(kg*K)).  

7.3.3 CNT-reinforced composite 

First, the effective material properties of CNT reinforce cylindrical panels should be 

determined. The properties of CNTs depend on temperature and geometrical parameters, therefore, 

various values and diagrams of properties of CNTs were reported in the literatures. This indicates 

the complexity of CNTs behavior and, moreover, diversity of the methods and models adopted for 

their performance analyses. Here, the (3,3) SWCNTs are selected as reinforcements. The dynamic 

Young’s modulus of the SWCNTs can be expressed as a function of loading rate and 

environmental temperature as follows [151,154]: 

𝐸𝑐𝑛(𝑇, 𝜀̇) = (𝐸0 + 𝐴𝑇 + 𝐵𝑇
2 + 𝐶𝑇3)(1 + 𝜀̇10−6)𝐷                            (7.13)                           

where A, B, C and D are constants which are independent of loading rate and environmental 
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temperature, and 𝜀̇ is the strain rate. For the zigzag nanotubes (3,3), the constant coefficients are 

𝐸0 = 1.15, 𝐴 = −2.8 × 10
−4, 𝐵 = −3.98 × 10−8, 𝐶 = 3.74 × 10−11, 𝐷 = 0.27, 𝜀̇ = 100 . The 

mechanical properties of polymer nanotube composites in thermal environment are studied and 

discussed here.  For the implementation of CNT reinforce polymers in structural applications, 

accurate property-microstructure relations are required in the form of micromechanics models. 

Several good micromechanics models have been developed for the purpose of estimating the 

homogenized properties of CNT reinforced composite materials, for example, the Mori–Tanaka 

scheme [152] and the extended rule of mixture [81,153,154]. In this paper, the homogenized 

properties of the CNT reinforced composite materials are evaluated using the extended rule of 

mixture as follows, 

𝐸11(𝑇) = 𝜂1𝑉𝑐𝑛𝐸11
𝑐𝑛(𝑇, 𝜀̇) + 𝑉𝑚𝐸

𝑚 (7.14) 

𝜂2
𝐸𝑖𝑖(𝑇)

=
𝑉𝑐𝑛

𝐸𝑖𝑖
𝑐𝑛(𝑇, 𝜀̇)

+
𝑉𝑚
𝐸𝑚

(𝑖 = 2,3) (7.15) 

𝜂3
𝐺𝑖𝑗(𝑇)

=
𝑉𝑐𝑛

𝐺𝑖𝑗
𝑐𝑛(𝑇, 𝜀̇)

+
𝑉𝑚
𝐺𝑚

(𝑖𝑗 = 12,13𝑎𝑛𝑑23) (7.16) 

𝑣𝑖𝑗 = 𝑉𝑐𝑛𝑣
𝑐𝑛 + 𝑉𝑚𝑣

𝑚(𝑖𝑗 = 12,13𝑎𝑛𝑑23) (7.17) 

𝜌 = 𝑉𝑐𝑛𝜌
𝑐𝑛 + 𝑉𝑚𝜌

𝑚 (7.18) 

𝛼11(𝑇) =
𝑉𝑓𝐸11

𝑐𝑛(𝑇, 𝜀̇)𝛼11
𝑐𝑛 + 𝑉𝑚𝐸

𝑚𝛼11
𝑚

𝑉𝑓𝐸11
𝑐𝑛(𝑇, 𝜀̇) + 𝑉𝑚𝐸

𝑚
 

(7.19) 

𝛼𝑖𝑖(𝑇) = (1 + 𝜐
𝑐𝑛)𝑉𝑐𝑛𝛼𝑖𝑖

𝑐𝑛(𝑇) + (1 + 𝜐𝑚)𝑉𝑚𝛼11
𝑚 − 𝜐1𝑖𝛼11𝑖 = 2,3 (7.20) 

𝑘11 =
𝑘11
𝑐𝑛

1 +
2𝑎𝑘
𝑑
𝑘11
𝑐𝑛

𝑘11
𝑚

 
(7.21) 

𝑘𝑖𝑖 =
𝑘𝑖𝑖
𝑐𝑛

1 +
2𝑎𝑘
𝐿
𝑘𝑖𝑖
𝑐𝑛

𝑘𝑖𝑖
𝑚

       𝑖 = 2,3 
(7.22) 

where 
cn

iiE ,
cn

ij
G   , 

cnv  , 
cn , cn

ii  and 
cn

iik  are the elastic modulus, shear modulus, Poisson's 
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ratio, density, thermal expansion coefficient and thermal conductivity, respectively, of the carbon 

nanotube; and 
mE ,

mG
2(1 )

m
m

m

E
G

v

 
= 

 + 
,

mv ,corresponding properties for are  
m

iik  and m

ii , m  

the matrix; ( 1,2,3)j j =  are the CNT efficiency parameters. Also, d and L are the diameter and 

length of the nanotubes, respectively; and k k ma R k=  is a so-called Kapitza radius in which 

8 28*10k

K
R m

W

−=  [28]. It should be noted that the effective material properties of CNT 

reinforced cylindrical panels, such as Young’s modulus, shear modulus and thermal expansion 

coefficients, are functions of temperature and geometrical coordinate. In this paper, the SWCNT 

reinforcement is Uniformly Distributed (UD) in the thickness direction. It is assumed that the CNT 

reinforced cylindrical panel is made from a mixture of SWCNT and matrix which is assumed to 

be isotropic. For isotropic cylindrical panel, the variation of the carbon nanotube volume fraction 

is assumed as follows: 

𝑉𝑐𝑛 = 𝑉𝑐𝑛
∗       (7.23) 

where  

𝑅 = (
𝑟𝑖 + 𝑟𝑜
2

) 
  and  

𝑉𝑐𝑛
∗ =

𝜌𝑚

𝜌𝑚 + 𝜌𝑐𝑛(𝑤𝑐𝑛)−1 − 𝜌𝑐𝑛
 

(7.24) 

where cnV  and mV  are the CNT and matrix volume fractions related by 1cn mV V+ = . 

7.4 Thermoelastic solution of the cylindrical panel 

    The thermo-elastic constitutive relations of a typical CNT reinforce cylindrical panel can 

be found in the previous work of Pourasghar and Chen [154]: 

TC  −=                                  (7.25)    

where T is the change in temperature of a material particle from that in the stress-free reference 

configuration obtained in the previous parts (Non-Fourier and non-linear heat conduction). Also,  
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 In the absence of body forces, the governing equations are as follows: 

0zz rz rz

z r r r

  
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                                   (7.27) 

1
0r rzr r

z r r r

    



 − 
+ + + =

  
 

 

The following simply supported conditions are imposed at the edges of the cylindrical 

panel: 

0, 0 0, 0,r zu T at z L    = = = = = =                              
(7.28) 

Moreover, the boundary conditions at the concave and convex surfaces, ,i or r r= , 

respectively, can be described as follows:  

    𝜏𝑟𝑧 = 𝜏𝑟𝜃 = 𝜎𝑟 = 0, 𝑎𝑡   𝑟 = 𝑟𝑖                                  (7.29) 

     𝜏𝑟𝑧 = 𝜏𝑟𝜃 = 𝜎𝑟 = 0, 𝑎𝑡   𝑟 = 𝑟𝑂                                  (7.30) 

The boundary and initial conditions for temperature is like what we had for nonlinear and 
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non-Fourier heat conduction. We seek a semi-inverse solution for the displacement and heat 

conduction field by assuming that: 

( , , ) ( )sin( )sin( )r r m nu r z U r p z  =   

( , , ) ( ) cos( )sin( )m nu r z U r p z   =  (7.31) 

( , , ) ( )sin( )cos( )z z m nu r z U r p z  =   

m

m
 =


, 

n

n
p

L


=                            ( , 1, 2,...)m n =     

)sin()sin()(),,( zprTzrT nm =                                (7.32) 

                 

where "m" and "n" are circumferential and axial wave numbers. The simply supported opposite 

edges at 0,z L=  are identically satisfied by the assumed displacement field.  

    Upon substituting Eq.(7.31) and (7.32) into the governing Eq.(7.25), the coupled partial 

differential equations reduce to a set of coupled ordinary differential equations (ODE) as follows: 
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 (7.35) 

    Here, the transversely discretized governing differential equations and the related boundary 

conditions are transformed into algebraic equations via the DM. The DQM being applied to Eq. 

7.33, the following equation at an arbitrary sampling point r i  is then obtained: 
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(7.36) 

Similarly, the other equations of motion and boundary conditions can also be discretized, 

however, for brevity they are not presented here [154]. The critical point is that now it is possible 

to plug in the value of T (temperature) at each sample point obtained in the previous parts. After 

implementation of T in the discretized form of Eqs. (7.36), we have: 

RDUAUA dddbdb −=+                                     (7.37) 

where Adb and Adb are the stiffness matrices and RD is the constant value that will be obtained after 

implementation of temperature in the discretized equations. Also, as temperature at each time step 

is now obtained, we can have the displacements and stresses at each time step. In a similar manner, 

the discretized form of the boundary conditions becomes: 

RBUAUA dbdbbb −=+                             (7.38) 

where Abb and Abd are the stiffness matrices and RB is a constant value that will be obtained after 
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implementation of temperature in discretized form of boundary conditions. Using Eq. (7.38) to 

eliminate the boundary degrees of freedom b from Eq. (7.37), one obtains: 

( ) RBAARDUAAAA bbdbdbdbbdbdd

11 −− +−=−

 
                                (7.39) 

The above system of equations can be solved to find the displacement (U), and then stresses 

of the CNT reinforced orthotropic cylindrical panel. 

7.5 Results and discussion 

7.5.1 Validation and comparison studies 

The present method is validated in the previous publication of the author [154] by studying 

its convergence behavior and by comparing the results with those available in the literature. To 

validate the thermal analyses, the results are presented for an FG orthotropic cylindrical panel 

under uniform thermal load and compared with published results [161] as shown in Fig 7.2. The 

orthotropic panel consists of continuous tungsten reinforcement fibers in a copper matrix (W/Cu). 

Fig 7.2 shows the variation of the non-dimensional displacement in the radial and circumferential 

directions through the thickness 
r R

H


− 
= 

 
 at the middle length of the cylinder due to the 

uniform internal pressure and uniform thermal loading, respectively. It is noticed the present 

results agree well with the literature. 

Here, some new results on thermoelastic behavior of CNTR cylindrical panel with 

temperature-dependent material properties are presented. In particular, the results are presented 

for an FGM orthotropic cylindrical panel under thermal loading. The orthotropic panel consists of 

CNT reinforcement particles and PMMA as the matrix. The mechanical properties of the 

considered material are as follows: 

For PMMA: 
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K = 0.197 W/(m K), c = 550 J/(kg K), ρ = 1188 ± 0.5 kg/m3, and α= 3.015 × 10–7 m2 /s and τ=2.4 

S. Also, αm=45(1+0.0005ΔT) 10-6/K and Em=(3.52–0.0034T) GPa.  

The mechanical properties of CNT can be found in the previous sections. 

 

  Figure 7. 2 Comparison of the non-dimensional radial and circumferential displacement under uniform 

Thermal load [161] 
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7.5.2 CNT reinforced cylindrical panel  

In this section, the response of orthotropic cylindrical panels is characterized by graded 

CNT volume fractions under thermal loading. Temperature, displacements and stresses are as 

follows: 

111

,,
T

T
T

TET

U
U

mmm

===






 

where T1 = 1 K.  

The cylindrical panel has geometrical parameters as: L=10 m, ri=0.49, ro=0.51 and / 3 = .  

Figure 7.3 shows the variation of temperature concerning time for three different points in 

the radial direction of the cylindrical panel. As expected, the temperature will drastically decrease 

near the outer surface of the cylindrical panel. Because of the imposed boundary condition in the 

inner surface, a higher temperature will be experienced in that area, and because of the low thermal 

conductivity of the polymer, this heat cannot easily pass through the thickness. Heat waves will 

fade almost after 20 seconds corresponding to the beginning of the steady state.  
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  Figure 7. 3 Time evolution of the temperature (p=1) 

 

 

Figure 7.4a shows the solution of non-Fourier (hyperbolic) heat conduction at each time 

step. To accurately solve the governing equations, the physical and temporal domains are divided 

into 21 layers (Nx=Nt=21). The total temporal domain is divided into a set of time intervals, and 

in each of them, the DQ rule is employed to discretize the temporal derivatives. At the end of each 

time interval, the temperature and heat flux are used as the initial condition for the next time 

interval. The total number of subdomains of the temporal domain is equal to 21, and dt = 0.05 is 

the magnitude of each time interval in the subdomain. So, the magnitude of each time step (TS) in 

the temporal domain is equal to Dt=1 second. The temperature distributions through the thickness 

at time S= 1, 2, 10, 20 are depicted in Fig 7.4a. After the temperature is obtained at each time step, 

the displacements and stresses can be obtained by plugging in the temperature in thermoelastic 
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equations of the cylindrical panel. Figs. 7.4b-h show the nondimensional radial, circumferential 

 

   Figure 7. 4 Effect of temperature at different time steps on the non-dimensional displacements and 

stresses of cylindrical panels when ),( trq i  is imposed (p=1) 
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and axial displacements and stresses within the thickness of the cylindrical panel. After 20 seconds, 

heat conduction reaches its steady state, so the smooth variation of stresses will be obtained as 

shown in Figs. 7.4e-h.  

Figure. 7.5 shows the variation of temperature concerning time for three different points in 

the radial direction of the cylindrical panel. For η= -0.4 the temperature reaches its maximum after 

four seconds and stays almost constant as a result of the prescribed boundary conditions. Here, 

Nx=Nt=21 and dt=0.05. The final steady state for non-Fourier’s law is reached after t >18 for 

t*=0.2 instead of t > 8 as in the case of using the Fourier’s law (τ=0) when η= -0.4. We can see 

that thermal waves travel inside the domain until reaching the steady state. In case of the mild 

increase of temperature at the boundary which is associated with the increase in the time duration 

of applying it (t*), the results are getting close to the Fourier heat conduction since. In fact, the 

thermal shock will phase out, and Fourier heat conduction will take the place of non-Fourier heat 

conduction. Thus, the temperature would not exceed the temperature of the boundary in the 

absence of heat generation, and there would be no sign of the thermal wave. 

Also, this figure shows that by using the hyperbolic heat conduction, the media will 

experience a wave-like temperature history with amplitudes beyond the imposed temperature at 

the boundary in the absence of heat generation. This phenomenon is known as dynamic 

overshooting, which may lead to the damage of electronic or mechanical devices if it is not 

appropriately handled. 
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  Figure 7. 5 Time evolution of the temperature (p=1) 

 

Figure 7.6a shows the solution of non-Fourier (hyperbolic) heat conduction at each time 

step and the resultant displacements and stresses. Temperature distributions through the thickness 

after 1, 2, 10, 20 seconds are depicted in Fig 7.6a. Figs 7.6 (b-h) show the nondimensional radial, 

circumferential and axial displacements and stresses within the thickness of the cylindrical panel. 

Displacements and stresses have a bigger range of variation since the thermal shock is bigger when 

the boundary condition is directly imposed on the inner surface. Again, there is no change in the 

second half (0<η<0.5) of CNT reinforced cylindrical panel since the variation of temperature is 

almost zero for this part as shown in Fig 7.6. Also, the peaks of the non-dimensional stresses 

decrease and tend to zero at the stress-free, outer surface which explains the slow motion of 

transition from transient heat conduction to steady heat conduction. 
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 Figure 7. 6 Effect of temperature at different time steps on the non-dimensional displacements and 

stresses of cylindrical panels when ),( trT i  is imposed (p=1) 
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Normalized displacements and stress of the CNT reinforced cylindrical panel for θ=π/6, π 

and 2π are calculated and plotted in Fig 7.7, with each figure individually representing two 

different instants, S=2 and S=20. As aforementioned, after 20 seconds the structure reaches its 

steady state, so the variation of displacements and stresses will become smoother when S=20. 

It can be noticed that changing θ has a negligible impact on the stresses, but the influence 

on radial and circumferential displacements is considerable. Also, for the variation of stress curve 

near the inner surface, it can be seen that the stress at S=2 is much higher than that at S=20, as a 

result of the direct impact of imposed boundary condition as time elapses, the effect of thermal 

shock decreases and the stress approaches its steady-state value. By comparing Figs 7.6 and 7.7, 

the effect of CNT volume fraction is evident. When CNTs are distributed uniformly (Vi=Vo=0.3, 

Fig 7.7), the stress is higher than that when CNTs distributed linearly from the inner surface 

(Vi=0.01) to the outer surface (Vo=0.03, Fig 7.6). This is reasonable and intuitively correct since 

thermal conductivity increases as the volume fraction of CNTs increases, so the effect of thermal 

shock was felt more by the FG nanocomposite panel.  

Figure 7.8 shows the effects of different patterns of CNT distribution through the thickness, 

while p=0 means that Vcn=Vi=0, p=1 means the linear variation of CNT through the thickness 

from Vi=0 to Vo=0.03, and p=10 means we have the maximum volume fraction of CNT within 

the thickness. As it can be seen, this variation in CNT volume fraction does not affect the 

temperature distribution, but it manifests its effect in displacements and stresses. Since these 

effects are shown for the first second after the implication of the thermal shock, most of these 

effects are seen in the area close to the inner surface, and the outer surface stays intact. Also, as 

mentioned, the more CNT volume fraction, the stiffer the cylindrical panel becomes. The stiffer 

beam, in turn, leads to a smaller displacements and stresses like while p=10. 
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   Figure 7. 7 Effect of temperature at different time steps on the non-dimensional displacements and 

stresses of cylindrical panels when ),( trT i  is imposed (Vi=Vo=0.03) 
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Figure 7. 8 Effect of different pattern of CNT distribution at first second on the non-dimensional 

is imposed ),( trT iradial displacement and stresses of cylindrical panels when  
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7.6 Conclusions 

In this paper, the combined application of the DQM and the Newton Raphson method is 

used to solve the non-Fourier heat conduction equations to obtain temperature, displacements and 

stresses in the CNT reinforced, nanocomposite cylindrical panel. All material properties are 

considered temperature-dependent. The DQM is used to discretize the spatial derivatives as it 

employs quite a small number of grid points, then the obtained nonlinear system of ordinary 

differential equations is solved using the Newton-Raphson method in the temporal domain. The 

total temporal domain is divided into a set of the time intervals, and in each of them, the DQ rule 

is employed to discretize the temporal derivatives. After solving the hyperbolic heat conduction to 

obtain the temperature distribution and time history, the deformation and stress of the cylindrical 

panel have been obtained under different boundary and initial conditions. For non-Fourier heat 

conduction, the cylindrical panel will be under steady state condition after a few time steps, so no 

changes in displacements and stresses will be observed.  

Also, it is shown that higher CNT volume fraction will result in higher stress in the CNT 

reinforced nanocomposite cylindrical panel due to the higher thermal conductivity of CNTs. 

Finally, it is shown that changing θ has a negligible impact on the stresses, but the influence on 

radial and circumferential displacements is considerable. 

The main contribution of this chapter is presenting the unique thermomechanical behaviour 

of the cylindrical panel under thermal shock on the boundary. As shown a thermal shock can 

extremely change the stress distribution, and we may have stress concentration at some point in 

the cylindrical panel.  
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Chapter 8:  

Conclusions and future perspectives 

8.1 Conclusions 

The conventional form of heat conduction, namely the Fourier law, has broad and 

successful applications in the thermal systems which have a large spatial dimension with the focus 

of its long time behavior. However, as a result of the assumption of the infinite speed of heat 

propagation in the Fourier law, the predicted thermal response may slightly deviate from the actual 

situation involving high-temperature gradients, ultrafast heating and/or micro/nano-scale heat 

conduction.  

With respect to the fast growth of modern microfabrication technology, quite a number of 

tiny devices with micro- and nano-scale dimensions emerge in various micromechanical and 

microelectronic systems. The overshooting phenomenon, which is investigated in this research 

may lead to permanent damage in these highly sensitive electromechanical devices if it is not 

handled properly. In small scale, where the characteristic time is comparable or less than the mean 

free time of heat carriers, it is well known that the conventional Fourier law leads to the inaccurate 

results. Also, the initial first and second-order time derivatives of temperature field control the 

occurrence of the overshooting phenomenon and the second derivative of temperature should be 

higher than the first derivatives of temperature.  

The combined application of the DQM and the Newton Raphson method is used to solve 

the DPL, hyperbolic and Fourier heat conduction equations to obtain temperature, displacements 

and stresses in different kinds of nanocomposites. The DQM is used to discretize the spatial 
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derivatives as it employs quite a small number of grid points, then the obtained nonlinear system 

of ordinary differential equations is solved using the Newton-Raphson method in the temporal 

domain. The entire temporal domain is divided into a set of time intervals, and in each of them, 

the DQ rule is employed to discretize the temporal derivatives. After solving the DPL, hyperbolic, 

or Fourier heat conduction to obtain the temperature distribution and time history, the deformation 

and stress of the structures have been obtained under different boundary and initial conditions.  

In nanoscale, it is shown that when the values of relaxation time are large, the time delay 

effect is restricted to a physical domain close to the boundary. On the contrary, decreasing the 

value of the time delay pushes the thermal waves forward. Furthermore, when the characteristic 

length is small, there is a sharp decline in temperature near the boundary, while the temperature or 

heat flux in the center of the medium based on the Fourier heat conduction has no difference than 

that obtained from DPL or hyperbolic heat conduction. The small characteristic length confines 

the effects of the interactions between boundary and energy carriers within a physical domain near 

the boundary for nanoscale structures. 

One of the drawbacks of the presented method is the negative temperature which is 

experimentally impossible to occur. To justify this incident, there are two schools of thought, both 

of which based on extended irreversible thermodynamics and rational thermodynamics. They 

consider heat flux (q) as a parameter that varies with time, which makes it possible to have heat 

flux flowing from cold to hot without violating the second law of thermodynamics. This means in 

hyperbolic heat conduction both 
∂𝑇

∂𝑥
 and q can have the same sign. It should be mention that even 

when heat flows from the cold to hot, the entropy rate is positive. Thus, the hyperbolic equations 

used in this study are compatible with the second law of thermodynamics whether or not it is 

physically real. 
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8.2 Recommendations for future work 

The present research has made significant contributions to advanced heat conduction in 

applying state-of-the-art non-Fourier heat conduction models, and to applied mathematics in 

developing efficient tool for solving nonlinear, coupled sets of partial differential equations. 

However, these themes can be further enhanced and expanded. Following recommendations for 

conducting further research in these areas are suggested: 

• As continuum formulation can be applied only for certain regimes or scales, more 

fundamental approaches based on particle behavior in heat conduction are preferable 

in the micro- and nanoscale domains.  

• At the micro- and nanoscale of, the effect of appropriate spatial and time scales, in 

relation to the physical dimension of the domain, the speed at which the heat 

conduction occurs and the temperature ranges within which the heat conduction takes 

place need to be carefully considered. It is important to obtain the range at which 

each of these features lead to overshooting. 

• Considering the effects of hyperbolic heat conduction in porous materials would be 

of great importance as they usually show a relatively high time lag. 

• Since laser applies a high heat flux in a short period of time, the analysis of laser 

beam-induced heating is not possible using the classical Fourier law. An in-depth 

research in non-Fourier heat conduction models is needed here to prevent the damage 

to human tissue.  

• There are three required conditions for overshooting to happen: (1) initial high 

temperature gradient; (2) thickness of the medium should be in a specific range; (3) 
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the right value of time lags. So, to have an accurate understanding of heat wave 

propagation in different materials and prevent overshooting, it is important to obtain 

the time lags experimentally.  

• When there are different thermal shocks on the boundaries, there are more chance for 

heat waves to interfere. In this case, it is important to consider two-dimensional or 

three-dimensional problems in which the number of heat wave interferences 

increases and more likely overshooting phenomenon will occur.  
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