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Abstract

In machine learning, sparse neural networks provide higher computational effi-

ciency and in some cases, can perform just as well as fully-connected networks.

In the online and incremental reinforcement learning (RL) problem, Prediction

Adapted Networks (Martin and Modayil, 2021) is an algorithm that can adapt

the sparse connectivity of a shallow value network with random hidden-layer

weights. Martin and Modayil evaluated Prediction Adapted Networks (PANs)

in the RL prediction setting and showed promising results, suggesting that one

can use multiple online predictions of input signals to discover high-performing

NN sparse topologies with no a priori inductive biases. However, there remain

some open questions that one can ask about this algorithm. For instance,

do the statistical benefits of PANs carry over to reinforcement learning con-

trol in multiple environments? Do PANs provide performance gains when we

learn the sparse value network’s weights end-to-end in both the prediction and

control settings? How does predictive sparsity compare against sparse net-

work structures learned end-to-end? The contributions of this work are two

fold. First, we investigate the above questions and provide answers. Second,

we devise a methodology that encodes sparse value network structures as bi-

nary masks and systematically evaluate their performance. In one RL control

environment, we find that predictive sparsity performs on par with both a

fully-connected architecture and a sparse network induced by L1 regulariza-

tion. However, in another domain PANs does not generate a sparse structure

that can outperform even random sparsity. Surprisingly, in the same RL pre-
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diction environment that was used in the PANs original work, we found that

learning the hidden-layer weights does not lead to better performance, sug-

gesting there may be unidentified properties of environments for which PANs

is best suited.
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When you realize there is something you don’t understand, then you’re

generally on the right path to understanding all kinds of things.

– Jostein Gaarder, The Solitaire Mystery, 1990.
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Chapter 1

Introduction

Reinforcement learning (RL) is a computational approach to learning through

interaction to maximize the long term accumulation of a numerical reward sig-

nal (Sutton & Barto, 2018). In contrast to other machine learning approaches

that rely on static data-sets of inputs and outputs, in RL an agent makes

decisions in an unknown environment and learns through sequential trial and

error. At each time step, the agent takes an action, which causes the environ-

ment to transition from its current state to a new state, and the agent receives

a scalar reward.

The process of extracting and forming useful features of raw input data

is crucial to reinforcement learning. One reason why this is true is because

inputs such as images or sensor readings can be complex, high-dimensional

and of unknown structure. Extracting relevant features from observations can

make it easier for the RL agent to apply its knowledge from past experiences

to new, unseen situations; this is called generalization. For example, consider

the case of a self-driving car that has only ever driven in Edmonton. If the

car was shipped to Montreal, it ideally should still be able to drive reasonably

well without having to learn everything all over again. Although the streets in

Montreal are different to those in Edmonton, the basic features that an ideal

RL system extracts from its video feed should still be useful to driving: the

edges of the road, other vehicles, pedestrians, color of the traffic lights, etc.

A common approach in RL is to use neural network architectures (NNs) as

function approximation tools that can construct useful features of the observa-
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tions. NNs that connect all of the layer’s inputs to the layer’s output features

have higher representational capacity, but they can be computationally ex-

pensive. For this reason, networks with fewer connections are a reasonable

alternative (Hoefler et al., 2021). Such sparse NNs may also provide sta-

tistical benefits in addition to computational savings, especially in scenarios

where the RL agent receives noisy or irrelevant observations. In such settings,

a small number of select connections can filter signal from noise (Ahmad &

Scheinkman, 2019; Grooten et al., 2023).

Recently, Martin and Modayil (2021) presented Prediction Adapted Net-

works (PANs) — an approach that adapts NN sparsity automatically through

sequential interaction. The results suggest that in an environment with thou-

sands of noisy inputs, an RL system can use predictions of the observations to

form a sparse NN that approximates the cumulative reward with low average

error. Moreover, PANs generated sparsity from scratch without prior knowl-

edge of the input structure. Nonetheless, the resulting NN topology resembled

one based on spatial locality. This suggests that it is possible for PANs to

discover some useful structure of the input data.

Despite the initial success of Prediction Adapted Networks, there remain

some open questions that one can ask about this line of work. Notably, Martin

and Modayil’s experiments were applied to the RL prediction problem, where

the agent’s learning goal is to approximate the expected sum of future rewards

conditioned on a fixed behaviour. Would the performance gains they found

carry over to the RL control problem, where the agent learns its behaviour

through experience? Additionally, the PANs algorithm as originally presented

holds the hidden layer weights fixed at initial random values. How would per-

formance differ if these weights were learned end-to-end? The contributions

of this thesis are the answers to the following questions:

1. Do the statistical benefits of PANs carry over to RL control in multiple

environments?

2. Do PANs provide performance gains when the hidden layer weights are

learned end-to-end in both prediction and control?
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3. How do sparse structures imposed in PANs compare against a sparsity

that is learned end-to-end?

We believe that these research avenues will help us broaden our current un-

derstanding of PANs and its potential limitations.

This thesis is structured as follows: Chapter 2 provides the necessary back-

ground on the reinforcement learning problem setting: the concepts, terminol-

ogy and formalism. Chapter 3 provides a more narrow background material

on general value functions (GVFs) and Prediction Adapted Networks (PANs).

Chapter 4 describes the experiment methodology in the RL control task — the

environment, learning algorithm and evaluation metrics. Chapters 5, 6 and

7 show results that answer each of the above three questions in RL control,

respectively. Chapter 8 describes experiments that pertain to the RL predic-

tion problem, within the same environment used in the original PANs work.

Chapter 9 and 10 provide answers to 2 and 3, respectively, in the prediction

task. Finally, Chapter 11 summarizes the results, contributions and provides

future directions.
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Chapter 2

Background Material

2.1 Reinforcement Learning

In the Reinforcement Learning (RL) problem setting, an agent interacts with

the environment continually over discrete time steps. The agent-environment

interaction is formally described as a Markov Decision Process (MDP). An

MDP is defined as a tuple ⟨S,A, T ,R, γ⟩, where S is the set of all environment

states, A the set of actions that the agent can take, T the transition function

from one time-step to the next, R the set of rewards that the agent receives

and γ ∈ [0, 1) the discount factor; as the name implies, γ down-weights rewards

obtained further in the future. At each discrete time step t, the environment

(which includes the agent) is in some state St ∈ S. The agent takes action

At ∈ A which causes the environment to transition to state St+1 ∈ S. In this

new state, the agent receives a reward Rt+1 ∈ R.

This leads to a sequence of states, actions and rewards, known as a trajec-

tory of experience:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . .

We say that the environment state is Markovian if the likelihood of each value

of St and Rt only depends on the previous state St−1 and action At−1. That

is, the current state contains enough information to determine the probability

of the next state. Mathematically, the Markov property of the state can be

summarized as:

p(s′, r|s, a) = Pr{St+1 = s′, Rt+1 = r |St = s, At = a}
4



We say that the environment state has this property if and only if it is fully

observable. Of course, this property does not hold for all environments.

2.2 Value Functions, Returns and Policies

The agent’s goal is to accrue the most reward over long periods of time. In the

RL problem setting that we consider, rewards received closer to the current

time step are given a higher weight compared to those that will come many

time-steps later. Thus, formally the agent seeks to maximize the sum of dis-

counted future rewards. This is called the return at time t, and is denoted as

Gt:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γk Rt+k+1

The discount factor 0 ≤ γ < 1 gives more weighting to rewards closer in time,

making Gt a weighted average of future rewards. Typically, γ is considered

part of the problem setting, because 1 − γ can be viewed as the probability

of a trajectory of experience terminating at any given time-step — making

it part of the environment dynamics, rather than of the agent. Moreover, γ

also specifies the effective horizon of a trajectory of experience — meaning the

expected number of time steps that will follow t.

Both the environment dynamics and the agent’s behavior might contain

some amount of randomness affecting the return. The expectation of the return

starting at state st is an estimate for how good that state is to the agent. The

value function computes this expectation as a mapping from states in S to

scalars R.

On the other hand, a policy is a function that determines the actions that

the agent takes at any given time step, and is denoted as π, where π : S×A →

[0, 1]. That is, π outputs the probability that an action At ∈ A is taken at

state St. In the case of a deterministic policy, π will output either zero or one

for each state-action pair. We also point out that the sum of the policy over

all actions must sum to one: ∑
a∈A

π(s | a) = 1 (2.1)
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Formally, we denote the value function as vπ, since it outputs the expected

return that the agent would obtain under π. Putting it all together, we define

vπ : S → R:

vπ(s) = Eπ[Gt |St = s]

We can also define a value function of state-action pairs that estimates how

beneficial an action is at any given state. This is typically called the action-

value function, denoted by qπ : S ×A → R:

qπ(s, a) = Eπ[Gt |St = s, At = a]

An optimal policy is one that yields a higher expected return compared to

all other policies. For a given problem setting, there may be more than one

optimal policy. Formally, π∗ is optimal if

π∗ = argmax
π

vπ(s) for all s ∈ S. (2.2)

We can also define an optimal policy in terms of action-value functions:

π∗ = argmax
π

qπ(s, a) for all s ∈ S and all a ∈ A. (2.3)

Equation 2.3 states that π∗ maximizes the expected return if the agent takes

action a in state s and thereafter follows π∗.

2.3 RL Prediction vs. Control Problems

The RL problem setting can be broken down into two sub-problems: the

prediction problem and the control problem. These sub-problems rely on policy

evaluation and improvement, respectively.

In the prediction problem — also known as policy evaluation — the agent’s

goal is to make accurate estimates of the expected return given a policy that

selects actions, or given a stream of observed states and rewards. In other

words, the objective is to accurately learn the true value function from a

single stream of experience.

On the other hand, in the control problem the goal is to improve the agent’s

policy to maximize the return. Reaching the optimal policy often involves two
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steps: a policy improvement step, and a policy evaluation step. In other words,

the agent must predict the benefits of taking an action at the current state

before improving its behaviour strategy. Since the policy changes with each

new estimate of the return, the distribution of next states and rewards also

changes. Thus, the policy evaluation in RL control problem is fundamentally

non-stationary — the data distribution changes and is therefore not i.i.d.

There are two types of RL control methods: value-based vs. policy-gradient

control algorithms. The former case is typically used when the set of actions

A is discrete and relatively small. As the name implies, value-based control al-

gorithms derive the policy directly from an estimate of the state-action values.

For instance, this is the case of the Q-learning (Watkins, 1989) and Sarsa (Sut-

ton and Barto, 2018) algorithms, which will be described in section (2.6). On

the other hand, policy-gradient techniques represent a policy by parameteriz-

ing it with respect to some trainable weights, without resorting to state-action

values. In the RL control experiments described in this thesis, we only focus

on value-based policies.

One of the main challenges in RL is to balance exploration vs. exploitation;

that is, figuring out to what extent the agent should favor states and actions

that yield large reward, versus exploring new behaviours or unknown regions

of the state space. When it comes to value-based policies, a common strategy

used to address this dilemma is to let the policy select a random action some

small ϵ fraction of the time. Such policies are called ϵ-greedy policies, where

ϵ ∈ [0, 1] is the probability of selecting a random action and 1 − ϵ is the

probability of selecting an action that maximizes the agent’s current value

estimate. At each time step, an ϵ-greedy policy operates as follows:

At ←

{
argmaxa∈A qπ(St = s, At = a) with probability 1− ϵ

a random action with probability ϵ
(2.4)

We use an ϵ-greedy policy in the RL control experiments that are presented

in chapters 5, 6 and 7.
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2.4 Function Approximation in the RL Con-

text

In principle, the state space of the environment is much larger than the agent’s

computational capacity, and therefore the agent must learn to generalize across

similar states The agent cannot simply represent every single state in a giant

table, as it would run out of memory and it would be infeasible for continuous

state spaces.

This means that we might not be able to exactly compute the true value

function nor the true optimal policy over the state space, but we can still ap-

proximate these. How? We find a lower dimensional representation for these

functions. In other words, we map the value function to some space of param-

eters w that is smaller than the total number of states in the environment.

In the simplest case, suppose that we want to linearly approximate the value

function. Then, we would write:

vπ(s) ≈ v̂(s,w) = wTϕ(s), (2.5)

which means that v̂(s,w) is linear in the parameters w. Here, ϕ(s) is called

the state-representation or the agent-state, and it maps the environment states

to feature vectors. i.e., ϕ(s) : S → Rd, where d≪ |S|. Note that this mapping

may not be one-to-one: many states may correspond to the same feature

vector.

Moreover, the function ϕ can be a fixed representation — as in the case of

tile-coding (Sutton and Barto, 2018) — or a learned representation such as an

artificial neural network (NN) trained through back-propagation. Typically,

an agent-state ϕ that can generalize across S would extract the salient features

shared among many input states. For example, if the states are pixel images,

then some of the underlying features could be comprised of angles, shapes and

lines that make up the objects in the images.

Also, we should note that the feature vectors can be constructed from noisy or
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incomplete observations of the state, such as a robot’s sensor readings. Hence,

the agent-state can be thought of as the computational mechanism that allows

a learning agent to process raw sensory signals of the environment state.

In this thesis, we investigate the effects of different choices of NN architec-

tures that form representations of the agent’s observations.

2.5 Temporal Difference Learning

One way to estimate the value of a state directly from experience is to interact

with the environment over a fixed number of time steps, and then compute

and average the returns from each state. Monte-Carlo techniques precisely

adopt this approach (Sutton and Barto, 2018). One of their main drawbacks

is that we need to wait until the last time step to compute our estimates.

This means that experience needs to be divided into finite sequences called

episodes. In this sense, Monte-Carlo methods cannot be used to approximate

a value function in a purely online and incremental step-by-step way.

An alternative, temporal difference (TD) learning, is a commonly used

technique for computing the values from each state without having to wait until

the end of an episode. TD learning methods are amenable to the continuing

RL problem setting, where in principle, the agent-environment interaction

continues forever without interruption nor hard terminations. The general

TD update rule is given as:

δt = Ut − V (St)

V (St)← V (St) + αδt
(2.6)

where δt is called the TD-error, α is the step-size and Ut denotes the target of

our approximation — the new estimate of the value at state St. This leads to

the question: what exactly is Ut? In Monte-Carlo methods, the target is the

entire return Ut = Gt. On the other hand, TD methods typically define their

target Ut = Rt+1 + γV (St+1), i.e., they use the current estimate of the next

state’s value to estimate the return. In other words, they can make updates

to the value estimates immediately on each transition, and are therefore fully

9



online and incremental. Their update rule becomes:

δt = Rt+1 + γV (St+1)− V (St)

V (St)← V (St) + αδt
(2.7)

Alternatively, TD algorithms can wait on any number n of next state transi-

tions to update the value estimates, and are hence called n-step TD methods,

where Ut = Rt+1 + γRt+2 + . . .+ γn−1Rt+n + γnV (St+n). We can think of n as

a dial between one-step TD and Monte-Carlo algorithms.

All TD methods are characterized by bootstrapping — the process of using

estimates of next state transitions V (St+n) where n ∈ 1, 2, . . . to update current

ones. In simple terms, bootstrapping is making a guess from a guess. From

now on, we will refer to “one-step TD updates” as “TD updates” for the sake

of simplicity.

In the linear function approximation setting, where v̂(St,w) = wTϕ(St)

the TD update is written as:

δt = Rt+1 + γwT
t ϕ(St+1)−wT

t ϕ(St)

wt+1 ← wt + αδt∇v̂(St,wt)

= wt + αδtϕ(St)

(2.8)

where wt denotes the weight vector that parameterizes the approximate value

function v̂, α is the step-size and the state representation ϕ(St) is equal to the

gradient of the value at the current state v̂(St,wt).

2.5.1 Eligibility Traces and TD(λ)

What if we want a learning target equal to the average of n-step returns, yet we

want to make sample-to-sample updates in an online fashion? This is precisely

where the TD(λ) algorithm comes in. The TD(λ) update rule involves the

computation of eligibility traces. When our value function is represented as a

table, the eligibility trace is analogous to a form of memory of previous states.

More specifically, it quantifies the degree to which each past state is eligible

to undergo a learning change. The value estimate at the current state is given

the most credit for the current TD error. If a state was visited a long time
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ago, then the degree to which it is assigned credit for the current TD error is

smaller. The TD(λ) update rules for the tabular setting are given by:

δt =Rt+1 + γV (St+1)− V (St)

et(s) =

{
γλet−1(s) if s ∈ {S0, S1, . . . , St−1}
γλet−1(s) + 1 if s = St

V (s)←V (s) + αδtet(s) ∀s ∈ {S0, S1, . . . , St−1} ∪ {St}

(2.9)

where λ ∈ [0, 1] is called the trace parameter. When λ = 0, the algorithm

becomes the same as one-step TD, also known as TD(0). In the case of λ = 1,

the algorithms becomes equivalent to Monte Carlo methods. In this way, λ

can play a similar role to the trajectory length in n-step methods, except that

it makes online updates.

In the linear function approximation setting, the eligibility trace is a vector

that quantifies the eligibility of each component of the weight vector to be

affected by the current TD error:

δt = Rt+1 + γwT
t ϕ(St+1)−wT

t ϕ(St)

zt = γλzt−1 + ϕ(St)

wt+1 = wt + αδtzt

(2.10)

Here, z denotes the eligibility trace vector, and it is of the same dimension as

the weight vector w. If a feature in the vector ϕ(St) is large, then the weight

value that corresponds to it is more heavily affected by the current TD-error.

On the same token, weights that correspond to features that are small get

updated less. Notice that if ϕ(St) is a one-hot feature vector with the same

dimensionality as the state space, then the update equations (2.10) reduce to

those in (2.9). These update rules formalize the backward view of eligibility

traces. RL practitioners call it the backward view, because the TD-error at the

current state is propagated “backwards” in trajectory of states visited in the

past. Values at states visited recently get updated more, and those at states

visited a long time ago get updated only a tiny bit. Online TD(λ) allows the

agent to more rapidly update the value function at previous states, without

waiting to revisit them.
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2.5.2 Forward view of TD(λ)

Unfortunately, it is not always convenient to implement the backwards view

of eligibility traces, especially when the value function is parameterized by a

large NN. This is because the dimensionality of the eligibility trace vectors

must be the same as the number of parameters in the NN. To approximate on-

line TD(λ), we can resort to the forward view of eligibility traces. As opposed

to the backwards view, the forward view computes many n-step returns start-

ing at the current state and averages them. Each future return is weighted

by the parameter λ. Hence, n-step returns of short future trajectories are

weighted higher than those of longer trajectories. There are many versions of

the finalized average of λ-discounted n-step returns computed in the forward

view. We focus on the truncated λ return:

Gλ
t:h = (1− λ)

h−t−1∑
n=1

λn−1Gt:t+n + λh−t−1Gt:h (2.11)

Overall, both the backward and forward views have relatively the same

performance (Sutton and Barto, 2018), because they approximate the same

learning target.

2.6 Off-policy vs. On-policy Learning

We might want to predict the expected return under some target policy that

does not correspond to the agent’s behavior in the environment. In the case

where the value function’s target policy π is identical to the behaviour policy

b, we say that the learning task is on-policy, and otherwise it is off-policy. In

off-policy control, the actions that the agent takes have a different distribution

from the actions used to update the value function (Sutton and Barto, 2018).

One of the most popular off-policy control algorithms is Q-learning (Watkins,

1989), whose update rule is as follows:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a′∈A

Q(St+1, a
′)−Q(St, At)] (2.12)

where the current action At is sampled from the behaviour policy At ∼ b(a|s =

St), while the target policy π is the deterministic policy that maximizes the
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bootstrapped target. In this sense, Q-learning allows us to learn about an

optimal policy, while adopting a more exploratory policy. On the other hand,

if the action at the next time step At+1 was sampled from b(a|s), then this

would give rise to the Sarsa on-policy update rule (Rummery and Niranjan,

1994):

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (2.13)

2.6.1 QV (λ): an On-Policy Control Algorithm

As mentioned in section 2.6, there are two types of RL control methods: value-

based vs. policy-gradient methods. QV(λ) is a member of the family of value

function based control methods that include SARSA, Q-learning and Actor-

Critic (Sutton and Barto, 2018). QV(λ) keeps track of two value functions: a

state-value function v̂ (known as the V-function) that is estimated via TD(λ)

and an action value function q̂ (known as a Q-function, (Wiering, 2005)). The

state-value function estimates are used to update the action values at each

step, similar to Q-learning and SARSA. Unlike Q-learning however, QV(λ)

remains an on-policy RL algorithm. Furthermore, QV(λ) guarantees that if

we have a good enough approximation of the state value function, then the

action value estimates will also be accurate.

First, the state values are estimated with eligibility traces in one-step TD(λ)

as given in Equation (2.9). The estimates v̂(St) then become the bootstrapped

targets for the action values:

δqt = Rt+1 + γv̂(St+1)− q̂(St, At)

q̂(St, At)← q̂(St, At) + αδqt
(2.14)

In the linear function approximation case, QV(λ) updates two weight vectors,

one for the state-value function and the other for the action values. The

V-function’s weight vector wv is updated following the linear-TD(λ) update

equations (2.10).
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Then, the Q-function’s weights wa are updated as follows:

δt = Rt+1 + γwT
v,tϕ(St+1)−wT

a,tϕ(St, At)

wa,t+1 = wa,t + αδtϕ(St, At)
(2.15)

Note, in the case where the action set A is small and countable, we can define

a vector wa ∈ Rd for each action.
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Chapter 3

General Value Functions &
Prediction Adapted Networks

3.1 General Value Functions

Being able to compute multiple predictions in addition to the main value func-

tion can be useful to an RL agent — that is, it can help the agent approximate

the main value function or improve its policy. Hence, we call these additional

predictions auxiliary predictions. Since these extra predictions are not limited

to the main reward signal, they can capture a broader range of patterns in

the data and be more expressive. For example, if a system is learning to play

tetris, it could be useful to predict how often 2 × 2 squares appear in the

screen to stack the blocks appropriately and win the game. In this case, at

each time step, the signal would be 1 when a 2 × 2 square appeared and 0

otherwise. Or, it could be useful to estimate how fast the blocks are moving

down the screen — i.e., to predict how many time steps it takes for the blocks

to move from the top to the bottom of the frame. Moreover, it could be useful

for an autonomous driving robot to predict how long a yellow light lasts, or

how long it takes to reach a location given constant speed, or how long it will

take a pedestrian to cross the road. In RL, auxiliary predictions are formally

described as General Value Functions (GVFs) (Sutton & Barto, 2018).

As the name implies, GVFs are an extended version of the ordinary value

functions described so far. Whereas the value function outputs the expected

sum of discounted rewards, a GVF computes the expected future value of any
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signal — these could be sensory observations or any function of any signal in

the environment. These forecasts are often described in terms of a question and

an answer (Sutton et al., 2011). The question asks: “what is the expectation

of some signal of interest over a number of future time-steps, given some

behavior?” The question has three principal components: the signal (often

called the cumulant and is denoted by c), the expected temporal duration

of the forecast H, and a target policy π. Notice that the signal we care

about depends on the environment state, and thus it is a function of the

state: c(St) : S → R. The duration of the forecast is given by a continuation

function γ : S → [0, 1], a generalization of the discount factor introduced for

ordinary value functions. The continuation function specifies the probability

of an experience trajectory ending at any given state, and is an interpretation

that we can also give to the discount factor in conventional RL. At each state

st, the probability of the trajectory continuing onto the next time step is γ(st),

and the probability of termination is 1−γ(st). Thus, γ indicates the expected

time-span of the trajectory following each state, called the effective horizon,

denoted by H. Finally, π is the target policy under which we want to predict

signal c. Similarly to ordinary value functions, a GVF can be either on-policy

or off-policy. In this thesis, we will only consider GVFs that are on-policy.

Putting all these three components together, a GVF is defined as:

v̄π,γ,c(s)
.
= v̄(s; π, γ, c) = E[Ḡt |St = s, At ∼ π], where

Ḡt = c(St+1) + γ(St+2)c(St+2) + γ2(St+3)c(St+3) + . . .

=
∞∑
k=0

γk(St+k+1) c(St+k+1)

(3.1)

The “answer” to a GVF question is the mechanism used to approximate

the GVF given a trajectory of experience. This includes the type of function

approximation (tabular, linear, non-linear, etc), the learning algorithm itself,

the learned parameters and how we gathered the data.

When the GVF’s cumulant is a raw sensory signal, we call it a nexting

prediction, because the RL agent’s task is to predict the input signal that will

appear in the next time steps (Modayil et al., 2011). If the agent’s observations

are vectors, then the GVF’s cumulant might be the ith entry of the vector:
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c(ot) = ot[i]. In the case of nexting, the GVF formulation is simplified: the

temporal profile γ is typically a constant specified by the designer a priori,

thus working in the same way as an ordinary discount factor. In this case, the

GVF’s nexting return can be written as:

Ḡt = ot+1[i] + γot+2[i] + γ2ot+3[i] + . . . =
∞∑
k=0

γk ot+k+1[i] (3.2)

3.2 Prediction Adapted Networks

Now that we laid out the necessary reinforcement learning concepts and ter-

minology, we can describe how Prediction Adapted Networks (Martin and Mo-

dayil, 2021) operate in more detail.

In the original work, Prediction Adapted Networks (PANs) are only applied

to the RL prediction problem with partial observability and where no policy

is learned. In partially observable problem settings, the environment state is

not fully known to the agent. The observations are encoded as vectors ot ∈ Rd

and the sampled rewards rt are scalars. The value function is approximated

as a linear function v̂(ot) = wTϕ(ot), where the state representation — or

agent-state — denoted by ϕ is a sparse neural network with a single hidden

layer of fixed random weights. The output layer weights w are learned online

through TD(λ).

PANs uses nexting-style predictions to adapt the sparse connectivity of

the state representation network fully online. At each time step, the agent

receives ot, rt+1 and constructs m general value functions, whose cumulants

are the components of the observation vector ot: c(ot) = ot[i]. All auxiliary

predictions share the same constant discount factor γ ∈ [0, 1] and the same

policy as the main value function. We denote the ith GVF as v̄iπ,γ,c:

v̄iπ,γ,c(ot) = Eπ[Ḡ
i
t |Ot = ot],

where Ḡi
t is given by Equation (3.2). Each GVF is approximated by a linear

function of the observation with weights w̄i, also learned through TD(λ):

v̄iπ(ot) ≈ ˆ̄vi(ot) = w̄iTot (3.3)
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The GVF estimates are used to dictate the sparse hidden layer connections

of the network in the following way. First, inputs that are multiplied by

the top-k elements of w̄i are selected as part of a special subset called a

neighborhood. Thus, for m GVFs we have a total of m neighborhoods, each

containing k input components: Si = {ot,(1), . . . ,ot,(k)}. Each neighborhood is

then fed to a linear function of fixed random parameters, followed by a non-

linear activation to yield a feature vector. In the end, we obtain m vectors

of non-linear features that are concatenated as a single hidden-layer feature

vector, denoted as ϕ(ot). Since the GVF weights are being learned online

and incrementally, the hidden layer topology is adapted constantly until said

weights converge — hence the name prediction-adapted networks. Martin and

Modayil suggest that at convergence, inputs that belong to a neighborhood

are predictively related.

Nonlinear features from the i-th neighborhood are computed as a composi-

tion of three functions, yi
t ≡ f(AMiot + b). First is a neighborhood selection

matrix Mi ∈ {0, 1}k×d, then a linear projection A ∈ Rn×k and bias units

a ∈ Rn both shared between all the neighborhoods, and finally a non-linearity

f : Rn → Rn. The neighborhood selection matrix Mi is an orthogonal rank-

k matrix with one-hot columns—used to mask out an ordered selection of k

elements of the observation. When the matrix Mi is applied to an input vec-

tor ot, this process is equivalent to selecting k components of ot. The sparse

structure of Mi is determined by the top-k weights of w̄i. We denote the trans-

formation of the ith neighborhood under A and b as the pre-activation vector

zi ∈ Rn: zi = AMiot + b. Finally, the function f applies a fixed non-linearity

f : R→ R to each element of its n-dimensional input: f(z) = (f(z1), ..., f(zn)).

The full feature vector, xt, contains nonlinear features from m neighborhoods,

Miot, and the current observation, xt ≡ concatenate(ot,y
1
t , . . . ,y

m
t ). The m

neighborhoods encode the architecture’s graph topology.
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3.2.1 Conclusions drawn by the original PANs work and
Remaining Questions

This simple but powerful algorithm achieved similar performance gains com-

pared to sparse neural network architectures built with spatial inductive biases

in a stochastic domain with thousands of inputs. Moreover, the authors showed

that the predictive neighborhoods contained inputs that were spatially related.

Thus, one can conclude that in the chosen domain, the algorithm successfully

discovered spatial relationships in the data without any a priori knowledge of

the environment dynamics. The authors also demonstrated the computational

efficiency of PANs: since each neighborhood is computed in parallel, the total

amount of computation required is linear in the number of output features!

In the rest of this thesis, we investigate the following research questions:

1. Do the performance gains found in the RL prediction setting carry over

to RL control in multiple environments?

2. What would happen if we learn the neural network weight magnitudes

end-to-end?

3. What about comparing PANs to other kinds of sparse networks, such as

those whose connectivity is learned end-to-end?

Recent work by Modayil and Abbas takes ideas from PANs and applies them

to the control setting (Modayil & Abbas, 2023). Our approach and specific

research questions however, remain different from the ones they explored.

In the following chapters, we will lay out the methods and experiments

that address the above questions.
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Chapter 4

Experiment Methodology for
Control

In this section, we describe the experiments that investigate our three research

questions in RL control.

4.1 RL Control Environments

Our research questions are explored in two environments selected from the

MinAtar suite of five, namely Breakout and Space-Invaders (Young and Tian,

2019). In Breakout, each frame has four input channels corresponding to each

of the four objects in the environment: (1) the paddle which moves left or

right at the bottom of the frame, (2) the ball which bounces off the paddle,

(3) the trail which follows the ball’s trajectory one time step in the past and

(4) the brick wall. Each time a brick is destroyed, the agent gains a +1 reward;

otherwise, the reward is zero. The goal of the game is to move the paddle so

that the ball bounces off and knocks down as many bricks as possible. Figure

4.1 provides a visualization of the Breakout game.

On the other hand, Space-Invaders contains six input channels. Four of

these correspond to different objects: (1) the cannon representing the player,

(2) the aliens representing the enemy, (3) the “friendly bullet” shot by the

cannon and (4) enemy bullets shot by the aliens. The extra two channels

indicate whether the alien is moving left or right. The objective of the game is

for the player to fire bullets at the aliens while trying to avoid getting hit by
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Figure 4.1: Visualization of the Breakout environment showing the four ob-
jects: the paddle, ball, trail and brick wall (Young & Tian, 2019).

Figure 4.2: Visualization of the Space-Invaders environment showing four ob-
jects: the cannon, aliens, friendly bullet and enemy bullet (Young & Tian,
2019).

enemy bullets. The player gets a reward of +1 each time an alien is shot, and

that alien is also removed. We note that Space-Invaders has non-stationary

dynamics: the aliens move with an increased speed when few of them are left,

or after a wave of them is fully cleared and a new one appears. Figure 4.2

provides a visualization of the Space-Invaders game. We refer the reader to

the original MinAtar paper for more details about the inherent difficulty of

each game.

We chose these two games as they contain an underlying spatial structure;

that is, the interactions between objects in the game tend to be spatially local.

For instance, in Breakout the trail is always found one spatial unit diagonally
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behind the ball. Moreover, when the ball hits a brick on the wall, all adjacent

bricks will likely be taken down as well. In Space-Invaders, the aliens remain

stuck to one another and move left or right in a united front. Also, enemy

bullets move downwards from the aliens, while friendly bullets move upwards

from the cannon’s location.

4.2 Learning Algorithm

The algorithm we used to learn a policy is DQN (Mnih et al., 2015), also em-

ployed in the original MinAtar paper. We followed the same hyper-parameter

settings as done by the MinAtar authors, with the exception of the step-size,

which we swept over with a grid search. As opposed to the MinAtar paper

however, our Q-network has a single hidden layer instead of two. This allowed

us to remain closer to the original PANs work. Furthermore, this layer is not

convolutional; rather, we resort to a simple sparse linear layer, followed by a

ReLU activation function. The raw inputs are flattened into 1D vectors and

then fed to the the network. Finally, we trained our Q-network for 5 million

steps using the Adam optimizer.

4.3 Sparse Network Architectures

Recall that PANs adapts NN connectivity online and incrementally. In order

to test the benefits of PANs in RL control, we do not need to dynamically

adapt the Q-network connectivity while simultaneously learning the policy.

Rather, we can apply a static sparse structure to the Q-network hidden layer

and then directly test the benefits of each type of sparsity in generating a good

policy. Our methodology therefore required two learning phases. In the first

phase, we ran PANs until the GVF weights converged, generating predictive

masks. In the second phase, we impose the predictive masks onto the hidden

layer of the DQN architecture and start learning from scratch. These two

phases were done on each environment separately.

Phase One: In this phase, the learning algorithm that updates the value

function is QV(0) (i.e., λ = 0.0) following an ϵ-greedy policy with ϵ = 0.1.
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The V-function and Q-function are represented as linear functions with respect

to the feature vector ϕ(ot) generated by PANs online: v(ot;wv) = wT
v ϕ(ot)

and q(ot, At) = wT
a ϕ(ot, At). We ran QV(0) for 5 million steps and extracted

the predictive masks at the final time step. This phase was run over a single

random seed used to initialize the agent and environment. More specifically,

this amounts to initializing the GVF weights and hidden layer weights that

generate the feature vector ϕ. The same seed was used to sample random

actions from the ϵ-greedy policy and the environment’s initial state. Note, the

goal of the first phase is to solely generate the masks and is not concerned

with finding a near-optimal policy.

Phase Two: In the second phase, we ran DQN with sparse Q-networks whose

hidden-layer topology is specified by the masks found in the first phase. All

m neighborhood mask matrices were flattened and stacked into a larger mask

matrix M, which is imposed onto the Q-network’s hidden layer matrix by

element-wise multiplication. In our implementation, each column of the weight

matrix generates a single scalar feature. Thus, the ith neighborhood mask

corresponds to the ith column. We denote the hidden-layer weight matrix

as A ∈ Rn×d, where d is the number of inputs in the flattened observation

vector, and n the number of hidden layer features. The binary mask matrix is

denoted as M ∈ Rn×d and the resulting masked hidden-layer matrix becomes

A ⊙M. Each column of M encodes the binary mask vector for a specific

neighborhood. In the case where we have m neighborhoods and we want to

generate a single scalar feature per neighborhood, then n = m. In Breakout,

we generated 4 features per neighborhood, thus n = 4m. As in the original

PANs work, the number of neighborhoods is equivalent to the total number

of inputs, thus m = d = 400 in this domain and our hidden layer weight

matrix has 1600 output features. On the other hand, in Space-Invaders we

generated 3 features per neighborhood, hence n = 3m. Since m = d = 600

in this environment, we have 600 neighborhoods generating 1800 hidden layer

features. The number of hidden layer features were selected in a way that

would maintain the overall number of NN parameters more of less consistent

across these two environments.
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4.3.1 Baselines

In chapters 5 and 6, we compare predictive sparse structures to two other

sparse hidden layer structures: random neighborhoods and spatial neighbor-

hoods. For the random sparse baseline, we sample one set of random neigh-

borhoods from a uniform distribution, as a stand-in for any set of random

hidden-layer connections. In the spatially sparse architecture, the neighbor-

hoods are repeated across input channels, similar to kernels in a convolutional

layer, as shown in Figures 4.4 and 4.7 in Breakout and Space Invaders re-

spectively. One of the main differences between our predictive masks and a

convolutional layer is that the former are not based on spatial locality and

they do not slide across the height and width of each input channel. For the

sake of completion, we also compare against a dense architecture, a.k.a., a

fully connected neural network (FNN). Figures 4.3, 4.4 and 4.5 show examples

of hidden layer masks that we generated for each type of network sparsity

in Breakout. Similarly, Figures 4.6, 4.7 and 4.8 show hidden layer masks in

Space-Invaders.

In chapter 7, we compare the performance of predictive sparsity against a

sparse structure learned end-to-end through L1 regularization. Similar to how

we generated predictive sparsity, to run this experiment we follow two phases:

one to generate binary masks via L1 regularization and the second to evaluate

the performance of the static sparse structure in the RL control task.

In machine learning, L1 regularization is a commonly used technique in

which we add a term to the loss function and weight it by a regularization

coefficient β ∈ [0, 1):

L(X,y; θ) = l(fθ(X),y) + β
d∑

j=1

|θj| (4.1)

where X is the data matrix containing inputs, while y is a vector of targets.

Here, θ are the weights that parameterize the learned function f (Hastie et al.,

2009). When the coefficient β = 0, the loss function becomes the standard

training loss. As β approaches 1, the weights are pushed towards zero; in

practice, they might not actually reach zero, but they should come reasonably
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close. The approach we take is to zero out the final weights whose magnitudes

fall below average at the end of training; we describe this method in more

detail below.

In the first phase, to generate the binary mask we apply L1 regularization

to a DQN agent whose fully-connected architecture is learned end-to-end for

5 million steps. Then, at the end of learning we compute two averages over

five random seeds: (1) the average hidden layer weight magnitudes stored

as a matrix Aave of size n × d, where d is the number of inputs and n is

the number of hidden layer features, and (2) the average hidden layer weight

magnitude, which is a scalar: wave = average(Aave). Each random seed was

used to initialize the DQN weights, sample actions from the ϵ-greedy policy

and sample the environment’s initial state. Once we have Aave and wave, we

find the elements of Aave that are larger than wave and replace them with a

“1”. The rest are replaced with zeros. The resulting binary mask is given by:

M[i, j]←

{
1 if Aave[i, j] < wave

0 otherwise
(4.2)

The amount of sparsity is measured as the percentage of zeroes in M. We

sweep over the regularization coefficient until we approximately find the de-

sired amount of sparsity. Once we find the L1-induced masks with the desired

amount of sparsity, we re-initialize the agent and environment to start phase

two, where we impose the masks onto DQN’s hidden layer and start the ex-

periment.

One might ask, Why should the process in phase one lead to sparsity?

Why aren’t half the weights below the average regardless of the regularization

coefficient? First, notice that the L1-regularized loss in Equation (4.1) tries

to reduce both the training error and the sum of all weight magnitudes. Thus,

if a subset of weights plays very little contribution to reducing the training

error, then they will be more readily drawn towards zero compared to the

distinctly more useful ones. Therefore, as β grows from 0 to 1, we expect the

distribution of weight magnitudes to become skewed: a greater number of the

less-useful weights should fall below average. On the other hand, if all weights

are equally useful to minimize the training error, then we expect this approach
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to fail at generating sparsity, because around half of them would fall below

average regardless of the regularization coefficient.

4.4 Evaluation Metrics

We followed the same evaluation metrics as done by Young and Tian in the

MinAtar paper. Namely, we measured the average return incurred by each

DQN architecture over 30 independent trials. More specifically, a trial refers

to a random seed used to (1) initialize the DQN weights at the beginning of

learning, (2) sample random actions from an ϵ-greedy policy and (3) sample

the environment’s initial state. In Breakout this amounts to resetting the po-

sition of the ball at the start of the game whenever the brick wall is destroyed.

On the other hand, in Space Invaders, the environment is fully deterministic

and thus does not depend on a random seed.

Figure 4.3: One of the predictive neighborhoods in Breakout. The red “X”
shows the location of the cumulant that the respective GVF predicts. The
inputs in yellow are those that are “on” in the mask; they correspond to the
top-k weights of the GVF.
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Figure 4.4: One of the spatial neighborhoods in Breakout. The inputs that
are “on” are located closer to the red “X” in Euclidean distance, across input
channels.

Figure 4.5: One of the random neighborhoods in Breakout.
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Figure 4.6: One of the predictive masks in Space-Invaders. The red “X” shows
the location of the cumulant that the respective GVF predicts. The inputs
in yellow are those that are “on” in the mask; they correspond to the top-k
weights of the GVF.
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Figure 4.7: One of the spatially-biased masks in Space-Invaders. The inputs
that are “on” are located closer to the red “X” in Euclidean distance, across
input channels.

Figure 4.8: One of the random binary masks in Space-Invaders.
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Chapter 5

Fixed Hidden Layer Weights
and Fixed Sparsity

In this chapter, we investigate the first research question: Do the statistical

benefits of PANs carry over to RL control in multiple environments? To re-

main consistent with the original PANs work, we randomly initialize the DQN

hidden layer weights and hold them fixed.

5.1 Hypotheses

We hypothesize that predictive sparsity will perform better than random spar-

sity in both environments.We believe this to be the case, because predictive

neighborhoods capture information about the temporal structure of the ob-

servations: which subset of the inputs are important to predict future (dis-

counted) values of other inputs. Therefore, such temporal relationships could

be useful for temporal learning problems, such as predicting the sum of future

rewards, or making online estimates of an action-value function that can be

used to induce a policy, as in DQN.

Our second hypothesis is that out of the three sparse architectures, the

spatially-biased one will yield highest performance, since it is similar to the

sparse structure imposed by convolutional layers, which are widely used in

domains like MinAtar. Furthermore, as discussed in the previous chapter, the

MinAtar games appear to have a distinct spatial structure.
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Figure 5.1: Average return incurred on Breakout for DQN architectures whose
hidden layer is randomly initialized and frozen. The total number of parame-
ters in the Q-networks are listed in the legend.

5.2 Empirical Results in Breakout

Figure 5.1 shows the average return incurred by each DQN architecture over

30 trials. Our results suggest that the dense architecture achieves the highest

performance. We believe this is the case due to its larger representational

capacity. We also note that DQN architectures that achieved the second high-

est performance have a predictive or random hidden layer sparsity. Although,

these do not perform significantly different from the dense NN. Surprisingly,

a spatially-biased sparse hidden layer yields the lowest performance – it does

not yield anywhere near the performance of predictive nor randomly sparse

Q-networks.

These results refute both hypotheses: (1) predictive neighborhoods do not

beat random ones, and (2) spatial neighborhoods under-perform all other ar-

chitectures. The fact that the predictive sparse network performs on par with

the randomly-connected network suggests an answer to the motivating ques-

tion of this chapter: a predictive sparse NN with fixed hidden layer weights

does not provide statistical benefits in RL control in the Breakout environment;

it is just as useful to run DQN with randomly sparse connections.
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Figure 5.2: Average Return incurred on Space-Invaders, for DQN architectures
whose hidden layer is randomly initialized and frozen. The total number of
parameters in the Q-networks are listed in the legend.

5.3 Empirical Results in Space-Invaders

Figure 5.2 shows the average return incurred by each DQN architecture over 30

independent trials on Space-Invaders. As shown in the figure, the ordering of

the learning curves is almost the reverse compared to Breakout (not counting

the random policy). Our first hypothesis claim is refuted: on average, pre-

dictive sparsity under-performs random sparse connections, although without

statistical significance. Moreover, in this domain random sparsity is just as

useful as a dense architecture. Our second hypothesis is valid: spatially-biased

hidden-layer connections yield the highest average returns — even higher than

the dense NN which has 10 times the capacity. In sum, Figure 5.2 suggests

that the benefits of PANs do not carry over to the RL control setting in Space-

Invaders, at least not when the hidden layer weights are fixed to initial random

values.

In the following chapter, we take the experiments one step forward to

investigate the benefits of predictive sparsity when the systems are allowed to

learn their hidden layer weights end-to-end.
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Chapter 6

Learned Hidden Layer Weights
and Fixed Sparsity

In this chapter, we describe the experiments and results that investigate the

second research question: Do PANs provide performance gains when the hidden

layer weights are learned end-to-end for control? We randomly initialize the

DQN weights in the same way as in the previous chapter and allow the entire

NN to learn the weight magnitudes end-to-end via backpropagation.

6.1 Hypotheses

Although seemingly trivial, our hypothesis is that the average return of all

architectures will be at least as high as when the hidden layer weights are fixed.

Moreover, in Breakout we hypothesize that spatially-distributed hidden-layer

connections are perhaps only useful when the weights are learned end-to-end.

6.2 Empirical Results in Breakout

Figure 6.1 shows the average returns for all sparse network architectures, as

well as the dense NN on Breakout. While spatial sparsity remains the least

useful in this domain, we see a change from the learning curves in the pre-

vious chapter: now the average return of the predictive sparse network is

statistically higher than the randomly sparse network. Moreover, although

the average performance of the predictive sparse NN is lower than the dense

NN, these are not statistically distinguishable. Hence, there is no advantage

33



Figure 6.1: Average Return incurred on Breakout, for DQN architectures
whose hidden layer is learned end-to-end. Horizontal dashed lines indicate
the final performances when the hidden-layer weights are never learned, as
shown on chapter 6. The total number of NN parameters are listed in the
legend.

to using a dense architecture in this domain, since predictive sparsity performs

reasonably close to it. Overall, these observations suggest that PANs indeed

provide performance gains when the hidden layer weights are learned end-to-

end in RL control, as tested in Breakout. Further, this result gives evidence

that the utility of a sparse architecture is not just associated to its connections,

but also to the combination of connectivity and learned weight magnitudes.

6.3 Empirical Results in Space-Invaders

Figure 6.2 shows the average return for all network architectures trained on

Space-Invaders. We observe that spatial sparsity incurs the lowest average

return. Similar to the results we found in Chapter 5, predictive sparsity under-

performs both random sparsity and the dense NN, now with greater statistical

significance. This suggests that in Space-Invaders, PANs does not provide

performance gains when the hidden layer weights are either fixed or learned

end-to-end. We believe that the non-stationary dynamics of this environment

make it so that PANs struggles against its competitors.
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Figure 6.2: Average Return incurred on Space-Invaders, for DQN architectures
whose hidden layer is learned end-to-end. Horizontal dashed lines indicate the
final performances when the hidden-layer weights are never learned, as shown
on chapter 6. The total number of NN parameters are listed in the legend.

In both environments, even when the hidden-layer weights are learned, the

spatially-biased sparsity is not useful in RL control for these domains. Why,

then are convolutional networks — which are spatially biased — so ubiquitous

in MinAtar? Is it the fact that CNNs have weight sharing that makes their

spatially biased kernels so useful? Or, is it their prevalence when applying

them to larger environments such as the Arcade Learning Environment (ALE)

(Bellemare et al., 2012)? We leave these questions for future work.

So far, all the sparse hidden layer structures have been obtained by an

auxiliary learning mechanism (as in the case of PANs), or hand-coded like the

spatially-biased architecture. However, it remains to be seen whether algo-

rithms that generate NN sparsity end-to-end can lead to higher performance

gains. In the next chapter, we investigate how predictive sparsity compares

against sparse structures learned end-to-end.
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Chapter 7

Learned Hidden Layer Weights
and Learned Sparsity

In this chapter, we investigate the last research question: How does predictive

sparsity compare against sparse NN structures learned end-to-end for control?

In the supervised learning setting, previous work that generates NN spar-

sity end-to-end parameterizes binary masks with respect to the NN weights

(Liu et al., 2020). In the backward pass, the authors approximate the deriva-

tive of the non-differentiable step-function through a variant of the long-tailed

estimator (Xu & Cheung, 2019), yet they do not justify this choice analyti-

cally. On the other hand, in the RL control setting, pruning methods zero out

a fraction of NN weights periodically using designer-specified heuristics (Evci

et al., 2020; Grooten et al., 2023; Sokar et al., 2021); for example, pruning out

weights that have the smallest magnitudes. Although pruning techniques are

more popular than using trainable masks, they are not end-to-end in the sense

that the pruning function is not explicitly written in the training loss, and is

therefore not differentiated with respect to learnable parameters. In addition,

pruning often relies on a number of user-specified hyper-parameters, such as a

pruning schedule. A more simple and common approach in machine learning

is to apply L1 regularization to the training loss (Hastie et al., 2009). This is

the approach we take in this chapter.

We follow the procedure described in section 4.3.1 to generate a binary

mask with L1 regularization. Moreover, we sweep over values of the regu-

larizing coefficient to find an amount of sparsity that approximately matches
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Figure 7.1: Average hidden layer weight magnitude with respect to regular-
ization coefficient in Breakout. Averages were computed over 30 independent
trials. Error bars are shown as vertical line segments.

that of the predictive, random and spatial architectures for consistency. Re-

call from section 4.3.1 that we measure the amount of sparsity induced by

L1 regularization as the percentage of hidden layer weight magnitudes that

fall below average. Figures 7.1 and 7.2 show the average hidden layer weight

magnitudes and the percentage of weights that fall below average respectively,

in the Breakout environment. For the Space-Invaders environment, the corre-

sponding plots are shown in figures 7.3 and 7.4.

Note that since the amount of sparsity is dictated by the regularization co-

efficient, we did not get the exact same number of zeroes in the mask matrix

as the other architectures. However, we came reasonably close. For exam-

ple, in Breakout, a regularization coefficient of 2.5 × 10−5 resulted in 58, 352

hidden layer parameters for the L1-sparse architecture. Meanwhile the pre-

dictive, random and spatial architectures each have 57, 600 network weights

in their hidden layers. On the other hand, in Space-Invaders, a regularization

coefficient of 2× 10−5 resulted in a sparse network with 108, 158 hidden layer

parameters, while the other three sparse networks had only 97, 200 weights in

their hidden layers.

Since L1 regularization is applied to all weights in the network at once,

37



Figure 7.2: Average percentage of hidden layer weight magnitudes that fall
below the mean in Breakout. Averages were computed over 30 independent
trials. Error bars are shown as vertical line segments.

Figure 7.3: Average hidden layer weight magnitude with respect to regular-
ization coefficient in Space-Invaders. Averages were computed over 30 inde-
pendent trials. Error bars are shown as vertical line segments.
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Figure 7.4: Average percentage of hidden layer weight magnitudes that fall
below average in Space-Invaders. Averages were computed over 30 indepen-
dent trials. Error bars are shown as vertical line segments.

the distribution of zeroed-out weights is not uniform across all the column

vectors of the hidden layer matrix. In this sense, the hidden layer features

are not generated from a constant number of inputs – some features might be

made from all the elements in the observation vector, while others are made

from very few. Once we generate the binary masks through this approach, we

impose them onto DQN’s hidden layer and restart learning from scratch. We

perform two experiments: we compare the average return of the predictively-

sparse DQN agent to the L1-sparse agent in two scenarios: (1) when the hidden

layer weights are randomly initialized and held fixed, and (2) when the DQN

hidden layer weights are learned end-to-end.

7.1 Hypotheses

Due to the greater flexibility that L1 regularization has to mask out weights

in a non-uniform fashion throughout the hidden layer, we hypothesize that L1

sparsity will yield a higher performance than all the other sparse networks in

both environments.
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Figure 7.5: Average Return incurred on Breakout, for DQN architectures
whose hidden layer is fixed. The L1-sparse agent is shown in orange. The
total number of NN parameters are listed in the legend.

7.2 Empirical Results in Breakout

Figure 7.5 shows the average returns on Breakout for all sparse network archi-

tectures with fixed hidden layer weights, now including L1-induced sparsity.

Clearly, our hypothesis is refuted here, since L1 sparsity performs significantly

worse than random and predictive sparsities, yet better than the spatial ar-

chitecture on average.

We also investigate how the L1 sparse agent performs when the hidden

layer weights are learned, as shown in Figure 7.6. In this scenario, we find

that the L1 sparse agent performs better than random sparsity, yet there is no

significant difference compared to the predictive and fully-connected networks.

Overall, our results in Breakout suggest the following answer to the question

that prompted this chapter: predictive sparsity is more useful than a sparse

NN structure learned end to end via L1 regularization when the hidden layer

weights remain fixed. However, when the hidden layer weights are learned,

predictive sparsity does not provide significant performance gains compared

to the L1 sparse counterparts.
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Figure 7.6: Average Return incurred on Breakout, for DQN architectures
whose hidden layer is learned end-to-end. The L1-sparse agent is shown in
orange. Horizontal dashed lines indicate the final performances when the
hidden-layer weights are never learned. The total number of NN parame-
ters are listed in the legend.

7.3 Empirical Results in Space-Invaders

As for Space-Invaders, Figure 7.7 shows the average return for all five network

architectures when the hidden layer weights remain fixed at random initial val-

ues. In this domain, our hypothesis claim is refuted, as the L1-sparse network

with fixed weights yields a significantly lower average return compared to the

spatially-biased network.

On the other hand, our hypothesis proves to be valid when the hidden-layer

weights are learned. In this case, we see that L1-induced sparsity provides

larger performance gains compared to random, predictive and spatial sparsi-

ties. Why? Recall that in order to arrive at the L1-sparsity, we trained a

dense network with a regularized loss function. This means that the L1 sparse

structure is optimized for a NN that is learned end-to-end through backprop-

agation. For this reason, L1 sparsity indeed results in high performance when

the NN is trained — this is precisely what Figure 7.8 shows. In other words,

the learning task that generated the L1 sparsity is the same task to approxi-

mate the value function. On the other hand, Prediction Adapted Networks is
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Figure 7.7: Average Return on Space-Invaders, for DQN architectures whose
hidden layer is fixed. The total number of NN parameters are listed in the
legend.

Figure 7.8: Average Return on Space-Invaders, for DQN architectures whose
hidden layer is learned end-to-end. Horizontal dashed lines indicate the final
performances when the hidden-layer weights are never learned, as shown on
chapter 7. The total number of NN parameters are listed in the legend.
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an auxiliary learning mechanism that generates sparse connections in a way

that does not directly optimize DQN’s off-policy learning objective.

Lastly, we now address the motivating question of this chapter for the

Space-Invaders domain: in either the scenario where the hidden layer weights

are fixed or learned, our results suggest that predictive sparsity is significantly

less useful than a sparse structure learned end-to-end via L1 regularization.
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Chapter 8

Experiment Methodology in
Prediction

In this chapter, we describe the experiments that investigate our research

questions in the RL prediction problem setting. Recall that in the prediction

problem, the goal is to approximate the expected return, conditioned on a

policy. This is different from the control problem, where we want to learn a

policy. The prediction problem can be formulated in two ways. In the first

formulation, the agent is handed a fixed policy, and it executes that policy

in the environment. As the agent experiences observations and rewards, it

can then form an estimate of the expected return. Another way to formulate

the prediction problem is the setting where the agent passively experiences

observations and rewards as an incoming stream of data, with no actions

required and thus, no policy present. The latter is the scenario that we work

in.

8.1 Prediction Environment

Specifically, we stick to the same environment used in the original PANs work,

namely the Frog’s Eye environment (Martin and Modayil, 2021). This domain

mimics the visual field of a frog, with 4000 input sensors randomly scattered in

space. These sensors are encoded as a binary observation vector. When a fly

comes in close proximity to a sensor, the sensor turns on – its value turns from

zero to one; otherwise, the sensor remains off. The fly is drawn to the center of
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the visual field, towards a target region. Once the fly reaches this target, the

agent receives a reward of +1. Otherwise, the reward is zero. The observations

are corrupted with noise in the following manner: with a probability of 0.25,

we sample an input and flip its value from zero to one or vice-versa.

8.2 Learning Algorithm

In the original PANs work, the linear GVFs and the output layer of the value

network are learned through TD(λ). As mentioned in the Background chapter,

implementing TD(λ) to update the hidden layer weights requires much more

computational resources, since we need to store and update as many eligibility

traces as there are neurons in the value network. For this reason, we adopt the

forward view of eligibility traces and compute the truncated n-step λ return

as our learning target with n = 30. As done in the original PANs work, we set

λ = 0.8 and the discount factor γ = 0.99.

We initialize the value network randomly according to a standard normal

distribution and compare the performance when the hidden-layer weights are

held fixed vs. learned end-to-end. We use the stochastic gradient descent

optimizer and back-propagation to train the network.

8.3 Value Network Architecture

As done in the RL control chapters, we implement and train a shallow value

network with a single hidden layer. To generate the binary mask matrix, we

use the same two phase method described in the RL control methodology

chapter. In phase one, we ran PANs in the Frog’s Eye domain for 5 million

steps over a single random seed and extracted the top-k weights for all general

value functions. The indices of these top-k weights encode the binary columns

of the mask matrix.

We follow most of the same hyper-parameters used in the PANs paper

to define the value network: the number of neighborhoods m = 4000, the

number of neighbors k = 10 and the activation function is the ReLU. As for

the number of non-linear features per neighborhood, the authors set n = 100,
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but we cut this value to n = 10; this was done to maintain our value network

at a reasonable size within memory constraints. We made sure that with

a smaller number of non-linear features, we still achieved the same order of

learning curves shown by the authors. Overall, the hidden layer weight matrix

of our value network has dimensions 4000 × 40, 000 which total up to 16M

parameters. As opposed to the ensemble network used in the original PANs

work, we do not impose parameter sharing across neighborhood features. This

should not negatively affect results, because a higher diversity of weights in

the hidden layer only increases the value network’s representation capacity.

Furthermore, in the original PANs work, the hidden layer bias units are held

at −4, in order to allow the ReLU to filter out accidental firing of the sensors.

We also initialize the network’s hidden layer bias units to −4 for consistency.

8.4 Baselines

Similar to the RL control results, our main baselines are a value network ar-

chitecture with random connections and an architecture with spatially biased

connections. Both of these have the same number of neighbors per neigh-

borhood as the predictive architecture (i.e., the same number of “1”s in each

column of the binary mask matrix), and the same number of non-linear fea-

tures. Figures 8.1, 8.2 and 8.3 show examples of predictive, spatial and random

neighborhoods respectively. In chapter 10, we apply L1-regularization to the

training loss and sweep over the regularization coefficients to find an amount

of sparsity close to that of the other sparse architectures, namely 99.775%

sparsity. We follow the same procedure in the attempt to generate L1-induced

sparsity as described in chapter 4, under section 4.3.1.

8.5 Evaluation Metrics

For the prediction task, we measure performance in the same way as done by

Martin and Modayil: by computing the average square return error. First, the

square return errors are calculated for all time steps in the trajectory. Then,

we bin these errors over windows that span across 100, 000 time steps. Finally,

46



the binned quantities are averaged over 30 independent trials. Here, a trial

corresponds to a random seed used to initialize the value network’s weights.
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Figure 8.1: One of the predictive neighborhoods. The yellow “+” indicate the
sensor locations that make up the observation vector. The blue “+” indicate
the observation components that belong to the neighborhood. The violet “+”
shows the specific sensor that the GVF predicts (i.e., the cumulant of the
GVF). Finally, the red circle in the middle represents the target region.
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Figure 8.2: One of the spatial neighborhoods in the Frog’s Eye environment.
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Figure 8.3: One of the random neighborhoods in the Frog’s Eye environment.
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Chapter 9

Learned Hidden Layer Weights
and Fixed Sparsity in Prediction

In this chapter, we describe the experiments and results that investigate the

following question in the RL prediction problem: Do PANs provide perfor-

mance gains when the value network’s weights are learned end-to-end?

Recall that the original PANs work adapted NN connectivity, yet kept the

hidden layer weights fixed at random values. We compare the performance of

sparse value networks whose hidden-layer weights are fixed at initialization vs.

NNs whose weights are learned end-to-end from the start. As mentioned in

the methodology chapter, we ran n-step truncated TD(λ) on the Frog’s Eye

domain while sweeping over the step-size parameter. We kept all environment

and problem-specific hyper-parameters the same as in the original PANs paper.

9.1 Hypotheses

Our first hypothesis, which we believe to be trivial, is that a sparse value

network with learned hidden layer weights will perform at least as well as one

that keeps its hidden layer weights fixed at random values. We believe this to

be true because SGD optimization can only improve the NN’s representations.

Moreover, the original PANs paper showed that in the Frog’s Eye environment,

spatially biased sparse connections outperformed both random sparsity and

the linear architecture, while predictive sparsity came a close second. These

results guided our second hypothesis: out of the three sparse NN architectures
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(predictive, spatial and random), spatially biased and predictive sparsities with

learned hidden layer weights will outperform random sparsity. Furthermore,

we expect the predictive and spatially biased architectures to perform on par,

since their topological structures are similar.

9.2 Empirical Results in Frog’s Eye

Here, we show the performance of all value network architectures in the RL

prediction task in two scenarios: when the hidden layer weights are fixed vs.

learned. Figure 9.1 shows the average learning curves when the hidden layer

weights are learned end-to-end through gradient back-propagation. To our

surprise, learning the hidden layer weights does not result in performance gains

for any architecture. Perhaps the PANs authors did not bother to learn the

value network’s hidden layer weights end-to-end, because it would not impact

the final performance anyway.

We believe that these unusual results are due to a property of the problem

setting, which we call the many-features regime. To be in this regime means

that a lot of the random features in the NN are enough to approximate a

target function with low error. Therefore, as our results suggest, additional

gradient-descent steps do not help making more accurate predictions. Fur-

ther, this regime is a property of both the domain and the type of random

features used. The many-features regime is not a new concept in machine

learning (ML). Previous work in the supervised learning setting has analyti-

cally shown that a shallow NN with random hidden layer features and learned

outer layer weights can generate a classifier that is not much worse than one

where we optimally tune the non-linearities (Rahimi & Recht, 2008). The au-

thors also backed-up this finding empirically on three datasets. In an earlier

work, Rahimi and Recht also showed results suggesting that in some regression

and classification tasks, simple linear ML algorithms applied to random fea-

tures of the inputs can outperform certain kernel machines (Rahimi & Recht,

2007). Furthermore, in the online learning setting, Sutton and Whitehead sug-

gested that random linear projections can result in useful and complex features
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Figure 9.1: Average binned square return error incurred on the Frog’s Eye
domain, for value network architectures whose hidden layer is learned end-to-
end. Hidden layer bias units are initialized to -4. The dashed line show the
final performance for the same NNs with fixed hidden layer weights that were
never learned; this was added for comparison.

(Sutton & Whitehead, 1993).

In the following chapter, we aimed to investigate how predictive sparsity

compares agains sparsities learned end-to-end through L1 regularization.
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Chapter 10

Learning Sparsity in Prediction

In this chapter, we describe the empirical results that attempt to answer the

third and last research question stated in the introduction, in the RL prediction

problem: How does predictive sparsity compare against sparse NN structures

learned end-to-end? In order to generate a sparse architecture through gradi-

ent back-propagation, we employ L1 regularization; this was the same strategy

used in the RL control experiments of chapter 7.

To our surprise, L1 regularization did not behave as we expected in this

domain. First, we expected to see that as the regularization coefficient β

introduced in equation (4.1) increases, the average magnitude of the hidden

layer weight matrix should decrease. However, the results shown in Figure

10.1 suggest otherwise: the average hidden layer weight magnitude remains

roughly the same for values of β in [0.01, 0.99], then decreases steeply when β

grows to a value of 2. At first glance, the plateau that we observe for values of

β in the set {2.0, 10.0, 50.0} seem to make sense, because the L1 regularization

term dominates the loss function, reducing all the weights to near zero.

Second, we also expected that greater regularization coefficients would re-

sult in a larger proportion of hidden layer weights above average. We were

aiming to find a regularization coefficient that yields a sparsity level close to

that of the predictive, random and spatial architectures. Instead, results in

Figure 10.2 show that for values of β in the range [0.01, 0.99], the proportion

of hidden layer weights remains approximately the same, around 51.2%. As β

grows above 1.0, this percentage drops very close to 50%.
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Figure 10.1: Average hidden layer weight magnitude with respect to L1-
regularization coefficient in Frog’s Eye. Averages were computed over 30 in-
dependent trials. Error bars, displayed as vertical lines, are indistinguishable,
as they range in the order of 10−12 to 10−6.

Overall, these results suggest that, regardless of the regularization coeffi-

cient’s value, all the hidden layer weights are shrinking roughly equally. Hence,

the proportion of weights below or above the average remains roughly the same.

Thus, L1 regularization is not able to generate sparsity in this regime.
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Figure 10.2: Percentage of hidden layer weight magnitudes that fall below
average in Frog’s Eye. Averages were computed over 30 independent trials.
Error bars, displayed as vertical lines, are indistinguishable, as they range in
the order of 10−4 to 10−2.
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Chapter 11

Conclusion

In this thesis, we extended previous work that introduced Prediction-Adapted

Networks (PANs). We investigated three research questions:

1. Do the statistical benefits of PANs with fixed hidden layer weights carry

over to RL control in multiple environments?

2. Do we observe the same benefits when we learn the value network’s hidden

layer weights end-to-end?

3. How does predictive sparsity compare against sparse NN structures learned

end-to-end?

The first set of experiments show results in the RL control setting with the

DQN algorithm in two MinAtar environments: Breakout and Space-Invaders.

As summarized in chapters 5 and 6, empirical results in Breakout suggest

that a predictive sparse structure can be useful in the RL control setting

when hidden layer weights are learned. On the other hand, when the hidden

layer weights remain fixed to a random initialization, the predictive sparse

structure does not perform any better than a random sparse architecture, on

average. Furthermore, in this environment predictive sparsity can outperform

a sparse hidden layer structure learned end-to-end via L1 regularization when

the hidden layer weights remain fixed; once these weights are learned, both

architectures perform roughly on par. In Space-Invaders, predictive sparsity

incurred no significant performance gains compared to either a random sparse

architecture or an L1-sparse NN. This was observed in either scenario: when
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the hidden layer weights were fixed or learned. Overall, the performance gains

of PANs can carry over to the control setting in one of our domains but not

the other. As our results suggest, we see PANs greatest success against other

sparse architectures when the hidden layer weights are learned end-to-end

in Breakout. We believe that this environment might be better suited for

PANs, since it does not have any non-stationary dynamics, compared to Space-

Invaders.

The second set of experiments investigate the last two research questions

in the RL prediction setting in the Frog’s Eye environment. To our surprise,

our results suggest that there is no significant performance gains when the

hidden layer weights are either learned vs. fixed to initial random values.

We believe this is due to a property inherent to the domain: in the Frog’s

Eye environment, 40, 000 random hidden layer features are enough to make

good predictions of the return. Therefore, training the NN does not increase

representational capacity. Finally, results in chapter 10 suggest that L1 regu-

larization is not a viable method of generating sparsity in this domain.

In the RL control setting, some future work includes investigating whether

QV(λ) with a random behaviour policy yields different neighborhoods com-

pared to an ϵ-greedy policy. Perhaps our choice for a policy biased the GVFs

and thereby, the neighborhoods. After all, the distribution of observations

that emerge depends on the actions that the agent takes. In addition, another

avenue for future work is to compare predictive sparsity to more popular meth-

ods that sparsify a NN, such as Dynamic Sparse Training (DST) techniques

(Graesser et al., 2022; Grooten et al., 2023; Sokar et al., 2021). These methods

rely on pruning algorithms to remove or reset NN weights deemed less useful.

On the other hand, in the RL prediction problem, one direction for future

research is to investigate why L1 regularization does not increase the pro-

portion of hidden layer weight magnitudes below average in the Frog’s Eye

domain. Moreover, understanding the connection between the many features

regime (described in chapter 10) and why L1 regularization does not behave as

expected is another interesting avenue that would enhance our understanding

of this type of domain.
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