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Abstract

Survival prediction is becoming a crucial part of treatment planning for most

terminally ill patients. Many believe that genomic data will enable us to better

estimate survival of these patients, which will lead to better, more personalized

treatment options and patient care. As standard survival prediction models

cannot cope with the high-dimensionality of such gene expression data, many

projects use some dimensionality reduction techniques to overcome this hurdle.

We introduce a novel methodology, inspired by topic modeling from the natu-

ral language domain, to derive expressive features from the high dimensional

gene expression data. There, a document is represented as a mixture over a

relatively small number of topics, where each topic is a distribution over the

words; here, to accommodate the heterogeneity of a patient’s cancer, we rep-

resent each patient (document) as a mixture over “(cancer) strains” (topics),

where each strain is a mixture over gene expression values (words).

After using our novel discretized Latent Dirichlet Allocation (dLDA) pro-

cedure to learn these strains, we can then express each patient as a distri-

bution over a small number of strains, then use this distribution as input to

a learning algorithm. We then ran a recent survival prediction algorithm,

MTLR, on this representation of the cancer dataset. Here, we focus on the

METABRIC dataset, which describes each of n=1,981 breast cancer patients,

using k=49,576 gene expression values. Our results show that our approach

(dLDA followed by MTLR) provides survival estimates that are more accurate

than standard models, in terms of the standard Concordance Index, as well

as a relevant novel measure, D-calibration. We then validate this approach on

the n=1082 TCGA BRCA dataset, over k=20532 gene expression values.
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Holding onto anger is like drinking poison and expecting the other person to

Die.

– Gautama Buddha.
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Chapter 1

Introduction

WHO’s world report on cancers lists breast cancer as one of the common

cancers among women around the globe (Stewart et al., 2016) and one of the

leading cause of death by any cancer (Koboldt and Network, 2012). Many anal-

yses start with clinical features. Unfortunately, identifiers such as lymph node

status and histological grade, which are highly predictive of metastases, do

not appear to be sufficient to reliably categorize clinical outcome (Van’t Veer

et al., 2002), and in general, the outcomes can vary widely for patients with

similar diagnoses, who receive the same treatment regimen. This has led to

many efforts to improve the prognosis for breast cancer, based on genomics

data (e.g., gene expression (GE) or copy number variation (aberrations) CNV)

along with the clinical data (Margolin et al., 2013; Parker et al., 2009; Naderi

et al., 2007; Van’t Veer et al., 2002). This motivates efforts to find intrinsic

cancer subtypes, by identifying new gene signatures. Parker et al. (2009) iden-

tified five subtypes of breast cancer, based on a panel of 50 genes (PAM50):

luminal A, luminal B, HER2-enriched, basal-like, and normal-like. Later, Cur-

tis et al. (2012) examined ∼2000 patients from a wide study combining clinical

and genomic data, and identified around ten subtypes. Both of these studies

showed that their respective subtypes produce significantly different Kaplan-

Meier survival curves (Altman, 1990), suggesting such molecular variation does

influence the disease progression.

More recently, many survival prediction models have been applied to breast

cancer cohorts; some are based on standard statistical survival analysis tech-
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niques, and others based on classic regression algorithms – e.g., random sur-

vival forests (Ishwaran et al., 2008), censored SVM (Shivaswamy et al., 2008).

With the growing number of gene expression experiments being cataloged for

analysis, we need to develop survival prediction models that can utilize such

high dimensional data. Our work describes such a system that can learn effec-

tive survival prediction models from high dimensional gene expression data.

The 2012 DREAM Breast Cancer Prognosis Challenge (BCC) was designed

to focus the community’s efforts to improve breast cancer survival predic-

tion (Margolin et al., 2013). Its organizers made available clinical and genomic

data (GE & CNV) of ∼ 2000 patients from the Curtis et al. (2012) study. The

winning model (Cheng et al., 2013) performed statistically better than the

state-of-the-art benchmark models (Margolin et al., 2013).

Each submission to the BCC challenge identified each patient with a sin-

gle real value (called “risk”), which is predicting that patients with higher

risk should die earlier than those with lower risk. The entries were there-

fore evaluated based on the concordance measure: basically, the percentage of

these pairwise predictions, that were correct (Kalbfleisch and Prentice, 2011).

This is standard, in that most survival prediction tasks use the concordance

as the primary measure to assess the performance of the survival predictors:

e.g., Breast Cancer Dream Challenge (Margolin et al., 2013), Prostate Cancer

Dream Challenge (Abdallah et al., 2015). The concordance measure is appro-

priate if we need to order the survival times of the instances – e.g., if we have

one liver available for transplant and need to know which candidate patient

will die first, without a transplant; or when we want to know which machine

will fail first, to determine where to assign the single repair person.

However, such “risk scores” provide only a relative ordering of the instances

– i.e., it is a “discriminatory” score (Steyerberg et al., 2010). For many tasks,

however, it is more important to accurately predict a patient’s actual survival

times, or her chance of surviving at least 5 years, etc. In particular, (1) know-

ing the survival time for a specific breast cancer patient would help that patient

plan her future actions – e.g., hospice care versus making long-term plans –

and (2) similarly it could help the physicians compare treatment options for a
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patient. As we want models that can accurately estimate survival time, we

will augment the standard (if often inappropriate) concordance measure with

another “calibration” score: D-calibration; see Section 2.6.2.

This thesis proposes a novel topic modeling approach discretized Latent

Dirichlet Allocation (dLDA) that can derive highly predictive covariates from

the high-dimensional microarray (gene expression) data. This lets us map the

microarray description into a much lower dimensional description (here, from

∼50K features to 30 in this BCC dataset), which can then be given as input

to a recent non-parametric learning algorithm, multi-task logistic regression

(MTLR), which is capable of producing a model that can then predict an in-

dividual’s survival distribution (Yu et al., 2011). We show that this predictor

performs better than other standard survival analysis tools, in both discrimi-

nation (concordance) and calibration (D-calibration) evaluations.

Chapter 2 introduces and describes: the datasets used (both METABRIC

from BCC, and BRCA from TCGA), the methods used in building the survival

prediction models, various techniques for dimensional reduction, and the eval-

uation schemes. Then Chapter 3 presents our evaluation results, and finally

Chapter 4 presents our discussion, conclusions and future work. In addition we

have included three appendices with supplementary information: Appendix A

presents concepts from survival prediction, Appendix B includes extended ma-

terial on D-calibration and Appendix C provides a short tutorial on the LDA.
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Chapter 2

Methods

Section 2.1 introduces the survival prediction task, Section 2.2 describes the

datasets used in this study, Section 2.3 discusses the preprocessing stage, Sec-

tion 2.4 presents the dimensionality reduction techniques we employed, and

finally Sections 2.5 and 2.6 describe (resp.) the survival prediction algorithms

and the evaluation schemes used in our experiments. Figure 2.1 gives the flow

diagram of all the steps followed from the clinical and genomic data to survival

predictions and evaluation.
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2.1 Survival Prediction

Survival prediction is similar to regression as both involve learning a model

that regresses the covariates of an individual to produce an estimate of the

value of a dependent real-valued response variable – here, the variable is “time

to event” (where the standard event is “death”). But survival prediction differs

from the standard regression task as its response variable is not fully observed

in all training instances. In most real world cohorts, many of the instances are

“right censored”, in that we only see a lower bound of the response value. This

might happen if a subject was alive when the study ended, meaning we only

know that she lived at least 5 years, but do not know whether she actually

lived 5 years and a day, or 30 years. This also happens if a subject drops out

of a study, after say 2.3 years, and is then lost to follow-up; etc. Moreover, one

cannot simply ignore such instances as it is common for many (or often, most)

of the training instances to be right-censored; see Table 2.1. Such “partial

label information” is problematic for standard regression techniques, which

assume the label is completely specified for each training instance.

Fortunately, there are the survival prediction algorithms that can learn an

effective model, from a cohort that includes such censored data. Each such

dataset contains descriptions of a set of instances (e.g., patients), as well as

two “labels”: one is the time, corresponds to the time from diagnosis to a final

date (either death, or time of last follow-up) and the other is the status bit,

which indicates whether the patient was alive at the last followup.

2.2 Data

We apply our methods to two large breast cancer datasets: METABRIC (Cur-

tis et al., 2012) and BRCA (Koboldt and Network, 2012). We initially focus on

the METABRIC dataset, since it is one of the largest available survival stud-

ies that includes genomic information. In 2012, the Breast Cancer Prognostic

Challenge (BCC) organizers released the METABRIC (Molecular Taxonomy

of Breast Cancer International Consortium) dataset for training (Curtis et al.,
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Table 2.1: Characteristics of the METABRIC and BRCA Cohorts
METABRIC BRCA

# Patients 1,981 1,082
# Censored 1,358 (∼68.5%) 930 (∼86%)
# Uncensored 623 152
Time span days (Uncensored) 3 – 8,941 26 – 7,455
# Clinical covariates 19 21
# Gene expression probes 49,576 20,532
Gender Women (100%) Women (99%), Men (1%)

2012). While they subsequently released a second dataset (OSLO) for final

testing (Curtis et al., 2012), we focus on only the METABRIC dataset, for sev-

eral reasons: (1) METABRIC provided disease specific survival (DS), which

considers only breast cancer death (BC death), rather than other causes of

death also, non-BC deaths are considered censored here (Cheng et al., 2013).

By contrast, OSLO provides “overall survival” (OS), which does not distin-

guish BC-based deaths from others. As DS is clearly better for our purpose, it

is better to evaluate on the METABRIC dataset. (2a) OSLO and METABRIC

contained different sets of probes – and in particular, OSLO contains only

∼80% of the METABRIC probes. (2b) Similarly, the OSLO dataset is also

missing some of the clinical covariates that are present in the METABRIC

dataset – e.g., menopausal status, group, stage, lymph nodes removed, etc.;

see Table 1 from Margolin et al. (2013). This means a “METABRIC-OSLO

study” would need to exclude some METABRIC features, and exclude some

METABRIC probes.

We then wanted to use a second independent dataset, to verify the effec-

tiveness of our approach. Here, we considered the OSLO dataset, but decided

it had too few patients, and so instead used the BRCA dataset (Koboldt and

Network, 2012) from TCGA (The Cancer Genome Atlas), which contains a

sufficient number of patients. Table 2.1 lists some of the important charac-

teristics of both datasets including both clinical and genomic information.1 2

1 METABRIC also included copy number variations (CNV) information for the patients,
but as that did not improve performance in our preliminary analysis, we decided not to
include CNV data in any of our models.

2 We first removed two patients from the BRCA dataset because of patient ID mismatch
with clinical and gene expression data, and further removed thirteen patients with zero
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Note that METABRIC contains 49,576 probes compared to 20,532 in BRCA.

In METABRIC, each gene may correspond to multiple probes targeting dif-

ferent DNA segments of the gene, therefore we have a one-to-many relation

between the probes and the genes3. Throughout this study, we use will all the

probes as given, without collating them to a one-to-a-gene relation.

Training and Validation

We apply the same experimental procedure to both datasets (METABRIC and

BCRA): We partition each dataset into two sets with 80/20 split, with 80%

of the data is used for training and the rest 20% for testing. Both partitions

contains instances with comparable ranges of survival times and maintains

the censored vs uncensored ratio. We trained on the 80% set (1586 patients in

METABRIC and 865 in BRCA), then used the held-out validation set (of 395

patients in METABRIC and 217 patients in BRCA ) for final testing. When

necessary, we run internal cross-validation, within that training set, to find

good settings for parameters, etc.

2.3 Preprocessing Steps

This section describes the steps applied to the initial data to produce a nor-

malized dataset without any missing values, ready for the subsequent steps in

the pipeline – See Figure 2.1.

We used standard steps to preprocess the clinical covariates: (1) impute

missing real (resp., categorical) values for a feature with the mean (resp.,

mode) of the observed values for that feature; and (2) binarizing each cat-

egorical variable (aka “one-hot encoding”) – e.g., we encoded the 3-valued

TumorGrade using three bits: grade one is [1, 0, 0], grade two is [0, 1, 0], and

grade three is [0, 0, 1]. As we want to deal with the log of the initial gene

expression value, we first log2-transformed the data, if necessary. (Below we

use “gene expression” to refer to this transformed value.) We then discretized

censored survival time.
3METABRIC probes are designed using the RefSeq and UniGene databases.
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these Gene Expression Values: Many genes have fairly constant expression

values (typically near 0), which are therefore not very useful in learning topic

models as they convey very little information – similar to stop words in nat-

ural language (Blei et al., 2003). As a way to identify (and then ignore) such

genes, we first translate all expression values into their “common z-scores”.

That is, we first compute the (common) mean and standard deviation over

all the genes from the entire GE dataset: Letting êji be the expression value

of gene gi of patient j, we compute the common mean µ = 1
n

∑

i,j ê
j
i , where

n = 1,981×49,576 is the total number of entries (for METABRIC), and the

variance σ2 = 1
(n−1)

∑

i,j(ê
j
i − µ)2. We then apply the Z-score transformation

to each entry: zji =
(êji−µ)

σ
.4

We then eliminate gene gi if its standardized (Z-score) expression values for

all the patients falls within the range −1 to +1 (reflecting the first standard

deviation) – i.e., if zji ∈ (−1, +1) for all j. In METABRIC data, this filtering

procedure eliminates 27,131 of the original 49,576 probes, leaving only 22,445

probes – i.e., a ∼ 54.7% reduction in features. The filtering process is unsuper-

vised (i.e., does not involve any labels) and is motivated by the assumption

that any gene whose expressions does not change much across multiple pa-

tients, is unlikely to be directly related to the disease, while the genes that

contribute to a specific cancer strain typically have significant variations in

their expression levels across patients. While this filtering procedure is un-

supervised, we anticipate that it will retain the probes that have the most

prognostic ability. This can be confirmed by examining Table 1 from Cheng

et al. (2013), which lists the top 100 probes (i.e., with the highest concordance)

in the METABRIC data, when each probe’s expression value is used as a risk

score. We found that our filtering process retains all the 100 probes listed in

that table.

4 Two notes: First, this standardization is done prior to dividing the data into train and
validation sets. Second, using z-scores based only on a single gene would not be able to
identify which genes did not vary much, as (after this transform) all genes would vary the
same amount.
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2.4 Dimensionality Reduction Methods for Fea-

ture Derivation

In this section we discuss the feature derivation methods employed in this

study. Subsection 2.4.1 quickly describes a supervised dimensionality reduc-

tion procedure that extends the standard principal component analysis; then

Subsection 2.4.2 presents our proposed approach based on topic modeling.

2.4.1 Feature Derivation via Principle Component Anal-
ysis (PCA)

There have been many methods proposed for survival prediction using gene ex-

pression data, such as hierarchical clustering, univariate gene selection, super-

vised PCA, penalized Cox regression and tree-based ensemble methods (VanWierin-

gen et al., 2009). Some of these techniques first apply a procedure to reduce

the dimensionality of the data, based on feature selection, feature extraction

or a combination both, while others, such as random survival forests (Ishwaran

et al., 2008) and L1-penalized Cox (Goeman, 2010), include internal feature

selection. The supervised principal component analysis (SuperPC) (Bair and

Tibshirani, 2004) method first calculates the univariate Cox score statistic of

each individual gene against the survival time, then retains just the subset of

genes whose score exceeds a threshold, determined by internal cross-validation.

It then computes PCA on the dataset containing only those selected genes,

then projects each subject onto the first one (or two) components5.

The main disadvantage of the SuperPC algorithm is that the individual

genes selected from univariate selection might not perform the best in a mul-

tivariate (final) model, perhaps because many of these top-ranked genes may

be highly correlated with one another – i.e., it would be better having a more

“diverse” set of genes (Van Wieringen et al., 2009; Ding and Peng, 2005).

Instead, we propose an algorithm that initially applies PCA (on the stan-

dardized data zji , see Section 2.3) to transform the data from the raw fea-

ture space into a different space, and then selects the top components based

5SuperPC does not specify why it chose to use these numbers of components.
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on univariate Cox regression; we call this SuperPC+. Note this SuperPC+

is computationally efficient, as it is based on PCA, which is efficient: Even

though microarray data is high dimensional (p ≫ n , where p is the number

of genes and n is the number of instances), the rank of the GE matrix will be

(at most) min{p, n} = n. Therefore, PCA can be performed without many

computational restraints on the whole gene expression dataset, as PCA time

complexity is O(n3). After performing PCA on the GE dataset, we can then

identify the most important principal components by computing a Cox score

statistic for the univariate association between each principal component and

the survival time. In our experiments, we select the threshold τ for the p-value

of the Cox score by internal cross-validation (wrt concordance), and retained

all PCs having a p-value lower than τ – finding τ = 0.0005 for the METABRIC

dataset and τ = 0.05 for BRCA.

2.4.2 Feature Derivation for Survival Prediction using
discretized Latent Dirichlet Allocation (dLDA)

Latent Dirichlet Allocation (LDA) is a widely used generative model (Blei

et al., 2003), with many successful applications in natural language (NL) pro-

cessing. LDA views each document as a distribution over multiple topics

(document-topic distribution), where each topic is a distribution over a set

of words (topic-word distribution) – that is, LDA assumes that each word

in a document is generated by first sampling a topic from the document’s

document-topic distribution and then sampling a word from the selected topic’s

topic-word distribution. Given the set of topics, this means each document

can be viewed as its distribution over topics, which is very low dimensional.

The LDA learning process first identifies the latent topics – that is, the topic-

word distributions corresponding to each latent topic – based on the words

that frequently co-occur across multiple documents. This process depends on

the distributional form of the document-topics and topic-word distributions

– which here are typically Dirichlet. It also needs prior parameters for these

distributions (typically initialized with a uniform prior), and also the number

of latent topics, K. LDA then runs an unsupervised process (that does not
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depend on the labels of the documents), to find the inherent structure present

in the data – i.e., a model (topic-word distributions for each of the k top-

ics, and document-topic distributions for each document) that maximizes the

likelihood of the training data.

LDA and other topic modeling techniques, such as the probabilistic Latent

Semantic Analysis (pLSA), have been previously applied to microarray data

for the gene classification task (Bicego et al., 2012). Moreover, a probabilistic

graphical model, which was inspired by LDA, has been proposed specifically for

microarray data: Latent Process Decomposition (LPD) (Rogers et al., 2005)

has produced classification results comparable to the state-of-the-art. Bicego

et al. (2012) reports that the LPD approach for gene classification using gene

expression data to be very effective and also produces interpretable features

as well.

This motivated us to apply a topic modeling approach to gene expression

data, for the survival prediction task. While several projects used topic mod-

eling techniques to categorize genes, very few have applied this technology

to predict a patient’s survival times (using gene expression data). Dawson

and Kendziorski (2012) proposed a survival supervised LDA model, called

survLDA, as an extension of supervised LDA (McAuliffe and Blei, 2008).

survLDA uses a Cox model (Cox, 1972) to model the response variable (sur-

vival time) instead of the generalized linear model (McCullagh and Nelder,

1989) proposed by supervised LDA (McAuliffe and Blei, 2008). But Daw-

son and Kendziorski (2012) reported empirically that the topics learned from

survLDA and from the general (unsupervised) LDA model to be similar.

Our work presents an analogue to the NL topic modeling that can be

applied to our cohort of patients with the gene expression data, where a patient

in the cohort corresponds to a document and the probes in the expression

data correspond to the words that form the document. This task requires

some modifications to the standard LDA model to be able to deal with the

real-valued gene expression values: The standard NL topic models assume the

observations are frequencies of words, which are non-negative integers that

generally follow the Zipf distribution (Powers, 1998). By contrast, microarray
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gene expression values are arbitrary real values, believed to follow a skewed

Gaussian distribution (Wolfinger et al., 2001). Some suggest dealing with this

difference by shifting and scaling (Bicego et al., 2012). LPD takes the novel

approach of modeling the Gaussian distribution by estimating the mean and

the variance as an additional set of parameters for each probe (Rogers et al.,

2005).

We follow an alternative approach, of applying an appropriate preprocess-

ing to the gene expression, so the resulting values, basically, approximate a Zipf

distribution. This involves a simple discretization process of gene expression

values (described below), that adheres to the biological intuition behind the

microarray data; we refer to our model as dLDA and the discretized gene ex-

pression values as dGEVs. We present empirical evidence (in Section 3.1) that

our method performs better than the LPD technique for survival prediction.

As mentioned above, the LDA topic model decomposes each NL document

into a Dirichlet mixture over the latent topics. This allows us to represent

each document as this lower dimensional representation of the original text.

We present a similar model that can be applied to our cohort of patients, each

described using real-valued gene expression data: here, we represents each

patient [document] as a mixture over “(cancer) strains” [topics], where each

strain is a mixture over gene expression values [words]. In each strain, some

genes will have “extreme” values – either much higher (or much lower) expres-

sion levels compared to the other genes in the data. This partially matches

standard NL topic modeling, where some words have a high occurrence in a

particular topic, but differs in that for gene expression, both over-expression

and under-expression are rare and important. Moreover, since dLDA gives

a soft clustering, each patient can still be modeled as a mixture of multiple

cancer strains, showing promising compatibility to recent knowledge on cancer

subclones (Deshwar et al., 2015).

Here we propose our generative process for modeling the gene expression

values – or actually, the discretized gene expression values (dGEV). (The next

subsection explains how to transform the gene expression values into these

dGEV’s.) Figure 2.2 shows the generative process for generating the vector of
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Generate-Instance-dLDA(α, β, M)

% α ∈ ℜ>0

% β ∈ ℜK×N where K =#latent strains, N =#genes
% βij = probability of drawing gene j, from strain i.
% M is equivalent to word count of a document.
% Returns N-tuple of (discretized) gene expression values

1. Initialize dGEV := 0 (of dimension N)

2. Draw θ ∼ Dirichlet(αIK)

3. For n = 1..M

(a) Choose a strain zn ∼ Multinomial(θ)

(b) Choose a probe pn ∼ Multinomial(β[zn, :])

(c) Increment: dGEV[pn]++

4. Return dGEV

Figure 2.2: Algorithm for producing an instance, from a specified dLDA model

gene expression values corresponding to a patient following the LDA model,

given the distribution of strains (parameterized by α), the distributions over

gene expression values corresponding to each strain (parameterized by β), of

size M (corresponds to the number of words in a document).

Deriving discretized Gene Expression Values (dGEVs)

As described in Section 2.3, we first standardize all expression values in the

data {zji }, giving non-trivial values only to the probes that have high variance

across patients – i.e., we only consider probes with a non-trivial range. These

normalized gene expression values can be arbitrary real values; however, LDA

is designed to work with “counts” – that is, non-negative integers – and in

particular, with word counts in documents where, in any given document,

most words appear 0 times, then many fewer words appear once, then yet

fewer words appear twice, etc. We therefore need a method for taking the real

values zji , and converting them to non-negative integers.

We consider two ways to do this. First, Technique A “discretizes” each

non-trivial zji standardized gene expression value by binning them into equal

14



Learn-dLDA(α, K, GE)

% α ∈ ℜ>0

% K =#latent strains
% GE ∈ ℜM×N – Gene Expression, N =#genes, M =#patients
% Returns estimated β̂

1. % Initialize:

βi,j =
1
N
+ U [0,1]

N2 ∀i,j; β ∈ ℜK×N

2. % Discretize GE:

dGEVs = discretizeGE( GE )

3. % Blei et al. (2003):

β̂ = LDA( αIK , β, dGEVs )

4. Return β̂

Figure 2.3: Algorithm for learning a dLDA model

distance bins away from the first standard deviation. We bin all the non-trivial

standardized gene expression values of each gene ({z1i , . . . , z
j
i }, j–#patient)

separately into 20 bins. Positives and negatives are binned separately into bins

of size 10 each. The boundaries of the 10 equally spaced bins of the positives

are computed given the minimum and maximum of the set of positive stan-

dardized gene expression values (of the gene) {zi|z
j
i > 0}, similarly negatives

are also binned into 10 bins. In Figure 2.4(left), the x-axis corresponds to the

discretized values. Each zji that fall within the first standard deviation is dis-

cretized as zero, the ones that fall in the first bin away from the first standard

deviation are discretized as 1, and so on. However, this technique does not dis-

tinguish between overexpression and underexpression – i.e., both 1.2 and -1.7

are binned into the same value A(1.2) = A(−1.7) = 1; See Figure 2.4(left).

Alternatively the encoding Technique B, shown in Figure 2.4(right), distin-

guishes underexpression versus overexpression, by using two features (each a

non-negative integer); where one encodes the negatives and the other encodes

positives separately. Here, B(1.2) = [0, 1] and B(−1.7) = [1, 0].
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Note that both Techniques A and B match our requirements (non-negative

integers) and basic conventions (many more 0s than 1s, etc). As Technique A

uses just a single feature for each probe, while Technique B uses 2, clearly Tech-

nique B requires twice as many features. However, Technique B distinguishes

the types of extreme situations (up vs down regulation), but Technique A does

not.

To train a LDA model with the new discretized gene expression values,

we use the lda-c implementation. 6 As shown in Figure 2.3, the LDA model

requires two input parameters from the user (and the GE dataset): (1) the

Dirichlet prior for the patient-strains (document-topics) distribution α, (2) the

number of latent strains K. Based on our experiments, we set a symmet-

ric Dirichlet prior for the patient-strains distribution (α = 0.1, note α1K =

[0.1, . . . , 0.1] ∈ ℜK)7, and the strain-genes probabilities are initialized uni-

formly with some random values – have ∀i, j, β[i, j] = 1
N
+δ where δ ∼ U [0,1]

N2 .

The next section below describes how we determined the appropriate number

of latent strains K.

Determining the number of strains (K) for the LDA model

To find the appropriate number of strains (analogous to NL “topics”), we

ran internal cross-validations with a range of probable values for K with each

of the encoding schemes (A and B). Here, we searched over the range K ∈

{5, 10, 15, . . . , 150}. For each technique {A, B} and each of the 30 values ofK,

we first computed the dLDA models over the training set, and then used these

as covariates to learn a Cox model (Cox, 1972). We did this in-fold – using

4/5 of the training set to learn the dLDA strains and the Cox model, which we

evaluated by computing the concordance (based on this learned model) on the

remaining 1/5. Figure 2.5 shows the log-likelihood average over the 5 folds,

with different number of strains and both feature encoding techniques A and B

for METABRIC, and technique B for BRCA. We need to answer two questions

to determine the best model: (1) which is the best discretization technique,

6 Available from http://www.cs.columbia.edu/∼blei/lda-c/
7 We considered the base α0 ∈ {0.01, 0.1, 0.5, 1.0}, but found that the prior did not

make much difference, since we allowed the model to estimate the prior internally.
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Figure 2.5: Log-likelihood scores from the (internal) cross-validation with
multiple values for K (number of strains) in METABRIC and BRCA.
(top) METABRIC CV-likelihood of encoding Technique A; (middle) CV-
likelihood of encoding Technique B: (bottom) BRCA CV-likelihood of encod-
ing Technique B.
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and (2) what is the appropriate K for that technique. To answer the first

question, our strategy picked the encoding technique that gave the highest

cross-validation concordance from all the combinations (30 × 2). Secondly,

once decide on a encoding scheme, we identified the candidate set of K’s

whose cross-validation likelihood scores are within the first standard deviation

of the largest (cross-validation) likelihood. From the candidates, we select the

K that essentially gives the highest concordance – breaking ties by preferring

smaller values for K when performances are almost equal.

2.5 Survival Prediction Algorithms Used

In this section we briefly describe two survival prediction algorithms. Subsec-

tion 2.5.1 introduces the classic Cox model (Cox, 1972) and Subsection 2.5.2

details a novel survival prediction model called Multi-Task Logistic Regres-

sion (Yu et al., 2011).

2.5.1 Cox Proportional Hazard (PH) Model (Cox, 1972)

Cox regression model’s the hazard function over time for an individual de-

scribed by x the product of two components:

hβ( t | x ) = h0(t)× exp(xTβ) (2.1)

where the baseline hazard h0(t) is independent of the covariates x and the

covariates are (independently) multiplicatively related to the hazard. The

above formulation simplifies modeling of the hazard function by limiting the

contribution of the “time” variable t to the baseline hazard h0(·), which means

the hazard ratio (HR) between two patients

HR(x1, x2) =
h(t|x1)

h(t|x2)
=

exp(xT
1 β)

exp(xT
2 β)

= exp((x1 − x2)
Tβ)

does not depend on time and is linear (proportional) in the exponent. To es-

timate the coefficients of the model, Cox (1972) proposed a partial likelihood

technique that eliminates the need to estimate the baseline hazard. This pro-

cedure allows the Cox proportional hazards model to be semi-parametric by
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only using the survival times to rank the patients (Steck et al., 2008). We can

compute partial likelihood with all patients – both censored and uncensored:

Lc(β) =
N
∏

i=1

(

exp(xi
Tβ)

∑

k∈R(yi)
exp(xk

Tβ)

)δi

(2.2)

• R(rj) is the risk set at time yj, which are the indices of individuals who

are alive and not censored before time yj

• [xi, ri, δi] describes the ith subject, where

xi = vector of covariates

ri = response (survival or censor time)

δi = censor bit

• N – total number of patients in the cohort

• β – coefficients (to be learned)

Note that only the uncensored likelihoods contribute, since for censored

instances δi = 0. Therefore the censored observations are only utilized in

the denominator when summed over the instances in a risk set. In essence

the partial likelihood only uses the patient’s death times to rank them in

the ascending order to find the risk sets and does not use the exact times

explicitly (Steck et al., 2008). Hence, the coefficients estimated by maximizing

the partial likelihood depends only on the ordering of the patient’s death times

and the covariates, allowing for an implicit optimization for good concordance

of the risk score. An in-depth study on the Cox proportional hazard model has

revealed that the partial likelihood proposed by Cox (1972) is approximately

equivalent to optimizing concordance (Steck et al., 2008).

There are several extensions of the Cox proportional hazards model: some

extend the initial model estimating the baseline hazard and others are based

on the regularization methods imposed on the coefficients (β). Generally,

regularization based on LASSO, ridge penalty or the elastic-net regularization

(which allows both L1 and L2 penalties) are adopted to reduce overfitting.

In our work, we use the glmnet R package (Simon et al., 2011) with ridge
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penalty (by setting α = 0 in the glmnet function: from here onward referred

to as RCox). We selected ridge penalty based on the internal cross validation

concordance results where models with ridge penalty were better than those

having no regularization (LASSO, elastic-net).

2.5.2 Patient Specific Survival Prediction via MTLR
model

The Multi-Task Logistic Regression (MTLR) system (Yu et al., 2011) learns a

model (from survival data) that, given a description of a patient x, produces

a survival curve, which computes Pr(D ≥ t |x) vs t for t ≥ 0. This survival

curve is similar to a Kaplan–Meier curve, but incorporates all of the patient

specific features x. In more detail: MTLR first identifies m time points and

then learns an extension of a logistic regression function, parameterized by

[θi, bi], for each of the m time points (a different such function for each of the

times ti), where the random variable D is the time of death (here of the patient

described by x):

PrΘ(D ∈ [ti−1, ti) |x ) ∝ exp

(

m
∑

j=i

(θj
Tx + bj)

)

(2.3)

The MTLR model then combines these PMFs (probability mass functions)

into a CMF (cumulative mass function) in a way that guarantees the resulting

curve is monotonically decreasing for each patient x, from the probability value

of 1 at t0 = 0 – i.e., Prθ(D ≥ 0 |x ) = 1 – down to smaller values as the time

t increases. The MTLR algorithm learns different coefficients for each time

point – hence the parameters Θ = {[θi, bi]} is a matrix of size m × (r + 1), if

there are r features. This requires encoding a patient’s survival time d as a

binary vector (of classification labels) y(d) = [y1(d), y2(d), . . . , ym(d)], where

each yi(d) ∈ {0, 1} encodes that patient’s survival status at each time step ti:

yi(d) = 0 (no death yet) for all i with ti < d and yi(d) = 1 (death) for all

ti ≥ d.
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2.6 Evaluation Criteria

This section presents the evaluation criteria used to assess the various (learned)

survival models. Following Steyerberg et al. (2010), we provide a discrimina-

tory and a calibration measure.

2.6.1 Discriminatory: Concordance Index (CI)

This “CI” evaluation applies to any model that assigns a real number – a “risk

score” – to each instance f(·). It considers all pairs of “comparable” instances,

and determines which is predicted (by the model f(·)) to die first, and also who

actually died first. CI is the percentage (probability) of these pairs of instances

whose actual pair-wise survival ordering, matches the predicted ordering, wrt.

risk function f(·):

CI(f) =
1

|Ψ|

∑

(i,j)∈Ψ

I[ (f(xi) > f(xj)) ] (2.5)

where I[φ] is the indicator function, which is 1 if the proposition φ is true,

and 0 otherwise. A pair of patients is “comparable” if we can determine which

died first – i.e., if both are uncensored, or when one patient censored after the

observed death time of the other; this corresponds to the set Ψ. This CI(f)

score is a real value between 0 to 1, where 1 means all comparable pairs are

predicted correctly. CI can be viewed as a general form of the Mann–Whitne–

Wilcoxon statistic and is similar to area under the ROC (AUC) of classification

problems (Steck et al., 2008).

2.6.2 D-Calibration

Calibration measures the deviation between the observed and the predicted

events (death). While this is complicated for a risk score (like the basic Cox

function), it can be computed for a survival distribution, like MTLR. In gen-

eral, this involves computing the difference between the predicted versus ob-

served probabilities in various subgroups – eg, if the predicted probability of

surviving at least t =2576 days is 0.75 then we expect to observe around 75%

of the patients to be alive at this time t.
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Figure 2.7: Kaplan–Meier survival function from METABRIC (training) data.

We consider a novel version, called Distribution-calibration. To motivate

this, consider a standard Kaplan-Meier (KM) (Altman, 1990) Figure 2.7, which

computes the set of points (t, KM( t ) ) – i.e., it predicts that the KM( t )

fraction of patients will be alive at time t. Hence, the point (6184 days, 0.50)

means the median survival time of the cohort is 6184 days (See Figure 2.7 (solid

line)). We will use KM−1( p ) to be the time associated with the probability p

– technically, KM−1( p ) is the earliest time when the KM curve hit p; hence

KM−1( 0.5 ) = 6184 days. If this plot is D-calibrated, then around 50% of

the patients (from a hold-out set, not used to produce the KM curve) will be

alive at this median time. So letting di be the time when the ith patient died,

consider the n values of {KM( di ) }. Here, we expect KM( di ) > 0.5 for 1/2 of

the patients. Similarly, as the curve includes (2576 days, 0.75) and (8941 days,

0.25), then we expect 75% to be alive at 2576 days, and 25% at 8941 days.

(See Figure 2.7) Collectively, this means we expect 25% of the patients to die

between KM−1( 1 ) = 0 days and KM−1( 0.75 ) = 2576 days, and another

25% between KM−1( 0.25 ) and KM−1( 0.5 ), etc. These are the predictions;

we can also check, to see how many people actually died in each interval: in
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the first quartile (between 0 and 2576 days), in the second (between 2576 and

6184 days), in the third (between 6184 and 8941 days), and the fourth (after

8941 days). If the KM plot is “correct” – i.e., is D-calibrated – then we expect

1/4 of the patients will die in each of these 4 intervals. The argument above

means we expect 1/4 of the {KM( di ) } values to be in the interval [0, 0.25],

and another quarter to be in [0.25, 0.5], etc. Stated more precisely,

the values of {KM( di ) } are uniform. (2.6)

A single KM curve is designed to represent a cohort of many patients.

Our MTLR, however, computes a different survival curve for each patient –

call it Pri( · ) = PrΘ( · |xi ) (from Equation 2.3). But the same ideas still

apply: Each of these patients has a median predicted survival time – the

time Pr−1
i (0.5) where its Pri( · ) curve crosses 0.50. By the same argument

suggested above, we expect (for a good model Θ) that 1/2 of patients will

die before their respective median survival time – di ≤ Pr−1
i (0.5); that is,

|{i : Pri(di) ≤ 0.5}| ≈ n/2. Continuing the arguments from above, we

therefore expect the obvious analogue to Equation 2.6:

the values of {Pri( di )} are uniform. (2.7)

We can now test whether a plot is D-calibrated by using the Hosmer-

Lemeshow (HL) (Hosmer Jr et al., 2013) goodness-of-fit test, which compares

the difference between the predicted and observed events in the event sub-

groups:

HL(





[N1, P1, E1]
· · ·

[Ng, Pg, Eg]



) =
G
∑

g=1

(Eg − Pg)
2

Ngπg(1− πg)
(2.8)

where G is the number of subgroups (here 4), where the gth subgroup has Ng ∈

Z
+ events, with the empirical number of events Eg ∈ Z

+ (which here is N/g,

if there are N =
∑

g Ng total patients), the corresponding predicted number

of events Pg ∈ Z
≥0, and πg =

Ng

N
(which here is 1

G
) is the proportion of the gth

subgroup. Under the null hypothesis (Equation 2.7), this HL statistics follows

a Chi-Square distribution with G− 2 degrees of freedom. If the predicted and

empirical event rates are similar for the subgroups, the test statistic will fail to
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reject the null hypothesis, providing evidence that the model’s predictions are

well D-calibrated (i.e., we should have large p-values from the test statistic to

accept the Null hypothesis).

Notes: (1) This evaluation criterion only applies to models that produce

survival distributions, which means it directly applies to the MTLR models.

For the Cox and RCox models, we used the Kalbfleisch-Prentice baseline haz-

ard estimator (Kalbfleisch and Prentice, 2011) to produce personalized survival

curves. (2) Rather than use quantiles, we mapped the Pri( di ) probabilities

into 20 bins: [0, 0.05); [0.05, 0.1), . . . , [0.95, 1.0]. (3) This analysis deals only

with uncensored data; the Appendix B discusses how to extend this to deal

with the censored instances.
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Chapter 3

Evaluation

This chapter presents empirical results that show that our proposed dLDA

model works effectively, using multiple learning algorithms and evaluation cri-

teria. The earlier Figure 2.1 shows the steps involved in pre-processing, dimen-

sionality reduction, our feature derivation procedures, and the possible model

combinations (data and algorithm) that can be assessed. Section 2.3 describes

preprocessing steps that eliminate genes that do not vary significantly with

the standardization procedure and Section 2.4 describes two feature deriva-

tion methods: (1) SuperPC+ principle components and (2) the dLDA strains.

Section 2.4.1 shows how we select the principal components from the microar-

ray data to be used as covariates for the survival prediction task. We train

multiple Cox models with each individual principal component as a univariate

and select the components that exceeds the p-value threshold (τ) , which we

determine from internal cross-validation on the training data.

Finally this process selected 6 principle components (τ =5E-04) in METABRIC,

and 59 in BRCA (τ =5E-2). Similarly, to determine the optimal number of

strains for the dLDA model, we run internal cross-validation on the training

set with a range of potential values for the number of strains; see Section 2.4.2.

We selected the appropriate number of strains by picking the model that max-

imizes the concordance in the internal cross-validation. Based on our experi-

ments we found that the discretization technique B, along with K =30 strains,

produced the best dLDA algorithm for survival prediction in METABRIC; af-

ter deciding on technique B we followed the same approach on the BRCA
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dataset to determine the number of strains and found K =50 strains were

best.

Section 3.1 below presents our empirical results from three different learn-

ing algorithms along with our two feature derivation methods. We evaluate

these 3 × 2 learned models based on the two evaluation criteria: (1) Con-

cordance Index, and (2) D-calibration. Section 3.2 discusses the reproduced

results from the BCC Dream Challenge, Section 3.3 details the performance

of the LPD procedure for the survival prediction task and finally Section 3.4

reports the predictive performance of the PAM50 genes in survival prediction.

3.1 Experimental Results

In this section, we present our empirical results from our experiments with

various combinations of feature groups, learning models and evaluation crite-

ria. As shown in the Figure 2.1, we considered various different combinations

of features from the three main groups: (1) clinical features (includes PAM50

classification (Parker et al., 2009) in METABRIC), (2) SuperPC+ principle

components, and (3) the dLDA strains; we also considered three different

learning algorithms: (a) Cox, (b) RCox, and (c) MTLR. Our goal in these

experiments is to empirically evaluate the performance when genomic features

are added to the clinical features to the survival models. Given this goal, we

evaluate the performance using different (genomic) feature derivation methods

by comparing their performance to a baseline model that only uses the clini-

cal features with the Cox (1972) model. As we want this baseline to include

only clinical information without any genomic information, it does not include

the PAM50 intrinsic subtypes (Parker et al., 2009); we therefore remove these

features from the METABRIC clinical data. The other combinations include

these clinical features as well as various different genomic features; each is

trained using one of the three aforementioned survival prediction algorithms.
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Figure 3.1: Held-out test data (n=395) concordance and D-calibration plots from METABRIC.
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Table 3.1: Concordance and D-calibration results on the held-out test data (n=395) from multiple model combinations in
METABRIC.
ID Feature Groups Learning Algorithm Concordance D-calibration

Clinical PCA dLDA PAM50 Cox | RCox | MTLR (HL-Statistic p-value)
A (Baseline) + − − − Cox 0.6810 12.6765 0.8104
B + − − − RCox 0.6883 14.8143 0.6747
C + − − − MTLR 0.6820 11.2300 0.8843
D + + − − Cox 0.6961 8.1723 0.9760
E + + − − RCox 0.7048 6.4499 0.9940
F + + − − MTLR 0.6999 10.8421 0.9009
G + − + − Cox 0.7073 6.0066 0.9962
H + − + − RCox 0.7108 4.1344 0.9997
I + − + − MTLR 0.7139 8.2000 0.9755
J + + + − Cox 0.7074 11.2333 0.8842
K + + + − RCox 0.7145 3.4981 0.9999
L + + + − MTLR 0.7079 6.5158 0.9936
M + + + + Cox 0.7075 8.9496 0.9609
N + + + + RCox 0.7172 5.3902 0.9981
O + + + + MTLR 0.7202 7.3263 0.9871
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Table 3.2: Concordance and D-calibration results on the held-out test data (n=217) from multiple model combinations in
BRCA.

ID Feature Groups Learning Algorithm Concordance D-calibration
Clinical PCA dLDA Cox | RCox | MTLR (HL-Statistic p-value)

A (Baseline) + − − Cox 0.6782 52.5289 3.1e-05
B + − − RCox 0.6971 4.8816 0.9990
C + − − MTLR 0.7042 6.6300 0.9929
D + + − Cox 0.6422 63.7983 4.9e-07
E + + − RCox 0.7256 6.0013 0.9962
F + + − MTLR 0.7370 8.9895 0.9600
G + − + Cox 0.7381 48.9904 0.0001
H + − + RCox 0.6999 4.6031 0.9993
I + − + MTLR 0.7092 9.2421 0.9539
J + + + Cox 0.6700 25.2241 0.1189
K + + + RCox 0.7320 6.0813 0.9959
L + + + MTLR 0.7391 9.0211 0.9593
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Figure 3.2: Held-out test data (n=217) concordance and D-calibration plots from BRCA.
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As described in Section 2.3, missing values of 13 features in METABRIC

and 13 in BRCA are imputed using the mean (resp., mode) for numerical

(resp., nominal) features. We also binarize the nominal clinical features. As

an additional feature selection step, we remove the covariate “Site” from the

METABRIC clinical covariates, based on our experimental results (on the

training data) which shows that its inclusion leading to worse concordance.

We only experimented with a selected set of model combinations rather than

experimenting all possible model combinations, to answer our major queries.

They are (wrt CI unless specified):

(i) does adding genomic features improve survival prediction?

(ii) which is the best feature combination for superior survival prediction?

(iii) which is better representation of the genomic features: dLDA or Su-

perPC+?

(iv) how do the learning algorithms compare in D-calibration?

(v) are we deriving redundant genomic features?

We claim (based on Table 3.1): (i) Comparing the baseline (A) to the other

models, we immediately see that adding genomic features from gene expression

(using any of the dimensionality reduction technique) leads to better predic-

tive models, in both evaluation schemes (See Figure 3.1). (ii) We also see that

the best model in METABRIC is the one that includes all of the types of fea-

tures derived from the gene expression – here O. (See Figure 3.1 (left).) We

also performed student’s t-tests on random bootstrap samples from the test

data to validate the significance of our results. When we compare this best

model O against models E (best model using only PCA genomic features)

and I (best model using only dLDA genomic features), we find statistically

significant difference between them (respective pairwise p-value: 4.8e-16, 1e-

3), showing that model O is significantly better than its closest counterparts.

(iii) Table 3.1 shows that, if you only use a single genetic feature set, the
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dLDA (latent) strains perform better than the principle components; more-

over, a model using all the features performs yet better (See Figure 3.1 (left)).

(iv) Table 3.1 shows that all the models from the METABRIC data seem to

have good D-calibration (Figure 3.1 (right) show MTLR and RCox is p-values

well above 0.95). (v) Adding PAM50 subtypes as features to the baseline

model in METABRIC improves the held-out test concordance. Indeed, Ta-

ble 3.1 shows that our new genomic features have led to prognostic models

that are better than PAM50 subtypes, by both evaluation criteria. It also

shows that the performance of models that include PAM50 are marginally

better than similar models that do not, suggesting that the features added by

these different representations of microarray data are not redundant. More-

over, Figure 3.1, shows that in all feature groups, both RCox and MTLR

clearly outperform Cox in both evaluation criteria.

We then tested the first four claims on the BCRA dataset; see Table 3.2.

(As BRCA did not have PAM50 features, we could not test claim (v).) (i) As

before, we found that adding genetic information improves over the baseline

(See Figure 3.2 (left)). (ii) We again found that the best model (in terms

of Concordance) was the one that included all of the features; here L. When

we performed the same significance test, however, we found that model L

was not significantly better than the models E or G. (But more important,

it was not inferior i.e., this model L was a top performer.) (iii) Table 3.2

shows that (again) models trained with only the dLDA-features performed

better than PCA-features; but that including both features was yet better.

(iv) The D-calibration results in Table 3.2 show that the Cox model fails in all

combinations (See Figure 3.2 (right)). All Cox models score worse p-values,

significantly below 0.95, where both RCox and MTLR models score well above.

That result clearly suggests that, if we want models with both good discrimi-

nation and calibration, we should not rely solely on the Cox model rather we

should use either RCox (Simon et al., 2011) or MTLR (Yu et al., 2011). Also,

Figure 3.2 shows that RCox and MTLR outperforms Cox in almost all fea-

ture groups in both evaluation criteria (similar to METABRIC data). These

studies also support our claim that our model, learned by running MTLR on
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all genomic features, gives very good concordance scores – statistically better

than other options in one dataset and equally good in another dataset.

3.2 BCC Dream challenge (METABRIC)

The model that won this competition (Cheng et al., 2013) (i) leveraged prior

knowledge of cancer biology to form meta-genes and (ii) trained an ensem-

ble of multiple learners, fueled by the continuous insights from the challenge

competitors via open sharing of code and trained models. To compare our per-

formances with the BCC challenge winning team, we reproduced their model

based on the DreamBox7 package.We re-trained their learners on our train-

ing split of the METABRIC data and tested on the held-out validation set.

The resulting ensemble model achieved a concordance index of 0.7293 on the

test data. All models were trained and tested only using the disease-specific

censoring information. The performance from the winning team in our test

split can also be viewed as an optimistic score since they made design choices

for their models using the whole METABRIC cohort (all n=1981 instances)

which might lead to an over-fitted test performance on the METABRIC test

data. These results show that the performance (concordance) of our MTLR

model is comparable with the winning team’s performance, even though all of

our tuning was performed solely on the training (n=1586) data

Our results all deal with individual “base learners”, rather than ensembles.

An ensemble system combining our approach with the winning team’s model

might lead to better performance (i.e., yet higher concordance). We did not

pursue this as it was not necessarily our goal, which is: providing empirical

evidence that applying the topic modeling approach to microarray data, can

discover features with strong predictive power, without any prior knowledge

about the specific disease.

3.3 Latent Process Decomposition (LPD)

Rogers et al. (2005) introduced LPD as a topic model adaptation for microar-

ray data and Bicego et al. (2012) later claimed that it could to produce accu-
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Table 3.3: Concordance results on the METABRIC held-out test set, using
the LPD features

Models Concordance
Cox + LPD (10 topics) 0.6915
RCox + LPD (10 topics) 0.6977
MTLR + LPD (10 topics) 0.6995

rate results for gene classification. Table 3.3, however, shows that this complex

adaptation of the LDA model for microarray data does not perform well for

the survival prediction task. We ran the LPD model on a range of number of

latent processes to find the optimal number of processes for the METABRIC

data. Compared to LDA (Blei et al., 2003), LPD has large time and memory

requirements. Tables 3.1 and 3.3 clearly suggest that dLDA derives better fea-

tures from the gene expression data for the survival prediction task. Moreover

as our dLDA directly uses the LDA model, it can utilize all available off-the-

shelf implementations, across several technology platforms with efficient and

scalable implementation (Hoffman et al., 2010).

3.4 PAM50 Genes for Survival Prediction

PAM50 intrinsic subtypes (Parker et al., 2009) identifies five subtypes of breast

cancer. PAM50 genes and the associated centroids for clustering the patients

into these five subtypes are available publicly. Parker et al. (2009) claims

that these subtypes have very different prognostic outcomes – i.e., different

survival times based on the Kaplan-Meier analysis (Altman, 1990). Hence it’s

very natural to use the 88 probes corresponding these 50 genes as features to

make survival predictions.

We experimented this idea on the METABRIC dataset by using these 88

probes as features to build our models. We tried two different approaches:

(1) use the 88 probes expression values as features (PAM50-Model-1), and

(2) use the 88 probes as our new microarray data and train a topic model

from them (followed our earlier proposed methods to discretize and learn a

dLDA model: PAM50-Model-2). Both models performed worse than our ear-

lier proposed models; see Table 3.4 for their performances (with respect to
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Table 3.4: Concordance results on the METABRIC held-out test set, using
the PAM50 classification genes

Models Cox RCox MTLR
PAM50-Model-1 0.6920 0.7080 0.7071
PAM50-Model-2 (dLDA) 0.6939 0.7020 0.7052

concordance index) on the held out test data.
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Chapter 4

Conclusion

Here we present our final conclusions based on our findings and interesting

future research directions. Section 4.1 discusses our proposed survival predic-

tion framework and the interpretability of the dLDA features. Section 4.2 lists

our final conclusions and finally Section 4.3 presents suggested future research

avenues.

4.1 Discussion

Given the growing number of gene expression experiments being cataloged for

analysis to discover actionable knowledge, it would be very useful to develop

survival prediction models that can utilize such high dimensional data. There-

fore we have proposed a novel survival prediction methodology that can learn

predictive yet (potentially) interpretable features from the gene expression

data. We have limited this study to empirically evaluating whether the use of

learned strains can help lead to models that can effectively predict survival,

while acknowledging that the interpretation of these strains are high priority

future work.

Second, we note that the Cox model (Cox, 1972) has been dominant in both

survival analysis and prediction over the years, probably because this model

is known to achieve competitive (or better) performance compared to other

survival prediction models with respect to concordance. (See Section 2.5.1

for further discussion). However, while concordance is useful for determining

whether the model can rank the patients, this is not the only task; it is often
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useful to produce meaningful estimates of a patient’s survival distribution –

i.e., a Calibration (rather than Discriminative) task (Steyerberg et al., 2010).

We therefore endorse identifying and using the evaluation criteria, that is

appropriate for the task; here D-calibation is arguably more relevant than con-

cordance. We also note that models like Ridge-Cox and MTLR can perform

well in both concordance and a calibration measure such as D-calibration – see

the results in Tables 3.1 and 3.2. Note that the Ridge-Cox algorithm recently

won Prostate Cancer Dream Challenge 9.5 (Abdallah et al., 2015) (closely

followed by MTLR).

Our evaluations show that the MTLR survival prediction model achieves

comparatively (better in some cases) performance in both evaluation criteria

across both datasets. Moreover, MTLR does not produce only a risk score,

nor a single time point prediction, but rather a survival distribution, mapping

each time to a probability. MTLR model is a novel addition to the suite of

survival prediction techniques, that does not make the proportional hazards

assumption and deals with the censored instances appropriately by summing

over all possible future alternatives. More information can be found in Yu

et al. (2011) and an online server of the MTLR algorithm can be found at

http://pssp.srv.ualberta.ca.

4.2 Conclusion

Tables 3.1 and 3.2 collectively show that our proposed model, which uses

MTLR to learn a model involving various type of the derived genomic features

(dLDA strains and/or SuperPC+), performs best in concordance in two differ-

ent breast cancer datasets. This shows that adding genomic features improves

survival prediction and that including both dLDA and SuperPC+ genomic

features gives the most consistent improvements across independent datasets

– showing that the “framework” that produced the best model in METABRIC,

was also the best in BRCA.

This validation on the BRCA dataset shows the robustness of our proposed

prediction framework. Moreover the strains extracted by our dLDA procedure
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(inspired by topic modeling) can be interpreted as collections of overexpressed

or underexpressed gene sets; further analysis is needed to discover and validate

the biological insights from these strains.

Our analysis used multiple evaluation criteria, based on our view that the

survival models should not be only evaluated based on the concordance but

also in other measures (e.g., D-calibration), which elicit the significance of

accurate survival predictions (showing that the predominant Cox model is not

a silver bullet). As highlighted earlier, for this task, it is more relevant that

a model be D-calibrated, rather than have a high concordance index. Our

results show that our novel survival prediction model: MTLR coupled with

our derived genomic features (dLDA strains and superPC+ components), is

capable of better survival prediction compared to the standard survival models.

4.3 Future Work

We envision two major future directions of research from our current knowl-

edge of the problem and the outcome of our research: (1) interpret what each

strain from the dLDA represents, and (2) applying our dLDA adaptation to

multiple cohorts of different types cancers, and applying to a single cohort of

patients with different types of cancer.

(1) As discussed in Section 4.1, model interpretability is a possible advan-

tage of the dLDA model, as it could allow us to understand what each latent

strain represents. Moreover understanding (explaining) what each latent strain

represents is also an interesting endeavor. But we must acknowledge that this

is not straightforward as in the natural language domain. In natural language

documents, once we find the latent topics from the corpus, then we can find

the most frequent words representing each topic. Just by examining those

word clouds, a human who is fluent in that language can see the abstract con-

cept of a common theme across these words of each topic (e.g., words like ball,

score, strike would represent the concept of sports). But when we try to do a

similar analysis of most probable genes (probes) representing a latent strain,
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it is not trivial to find this common theme across the genes. Therefore to un-

derstand these strains we need to find (1) ontologies, (2) biological processes,

and (3) pathways, etc. that overlap with these groups of genes. We propose

enrichment analysis starting from the single genes to gene-sets enrichment. By

analyzing the enriched terms of each strain from several databases (KEGG,

BP, etc) an expert can identify whether there are any common themes within

the enriched terms of a strain. These types of enrichment analysis will give a

starting point to understand what each latent strain captures giving us neces-

sary information to direct further analysis.

(2) Secondly, while our evaluation shows that the dLDA adaptation works well

across these two breast cancer datasets it would be much more compelling if

we can show that our model performs well across multiple cancers. Indeed,

applying our model to multiple cohorts of different types cancers (e.g., lung

cancer, prostate cancer, etc.) might allow us to explore the generalization of

our framework. Similarly applying our model to a single cohort of different

cancer types might give us the opportunity to see what type of strains the

dLDA model learns. When we do a study with a single cohort of different

cancer types, it highly resembles the natural language corpus that contains

documents from multiple themes (e.g., sports, entertainment, politics, etc.).

So when we apply the dLDA model to a cohort of different types of can-

cers, we expect to see the model identifying the difference across cancer types

and mostly importantly to identify the similarities among cancers as well. So

further studies on different cancer types can pave the path to yield the full

potential of the dLDA adaptation framework.
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Appendix A

Survival Prediction

Survival prediction is similar to regression as both involve learning a model

that regresses the covariates of an individual to produce an estimate of the

value of a dependent real-valued response variable – here, the variable is “time

to event” (where the standard event is “death”). But survival prediction differs

from the standard regression task as its response variable is not fully observed

“censored” at most training instances. The following sections describes in

detail important facets of survival analysis. A.1 Initially we describe the nature

of the response variable, A.2 introduces the survival and the hazard function,

A.3 Kaplan-Meier, a survival function estimator, and finally A.4 prior related

work on high dimensional survival prediction.

A.1 Censored Data

In many real world cohorts, most of the instances are “right censored”, in that

we only observe a lower bound on the response value. This might happen if a

subject was alive when the study ended, meaning we only know that she lived

at least 5 years, but do not know whether she actually lived 5 years and a day,

or 30 years. This also happens if a subject drops out of a study or moves to

a different location, say after enrolling 2.3 years, and is then lost to follow-up;

etc. Even though right censoring is common in survival studies there are other

censoring types as well such as: left censoring (unknown start) and interval

censoring (both start and end not known). Figure A.1 shows different types of

censoring events. In general, when dealing with cohorts of censored instances,
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di = 0 if censored Ti > Ci and di = 1 if observed Ti < Ci.

A.2 Survival Function Vs Hazard Function

Survival function S(t) is the probability that a patient is alive beyond a given

time t; where S(t) = P (T > t). The survival function is essential to survival

analysis since it captures the probability of survival at every time step un-

til the event of interest. Survival functions always start with probability 1.0

(patient is alive) and drops as time progress. Another crucial function pre-

dominantly used in survival analysis is the hazard function h(t) which captures

the instantaneous hazard of a patient.

h(t) = lim
∆t→0

P (t ≤ T < t+∆t | T ≤ t)

∆t

Note that hazard function is not a probability rather the failure rate which can

take any positive value (0 to ∞). Based on the definitions of the survival and

the hazard function there is an interesting relationship between them (given

in Equations A.1) allowing us to compute one from the other.

S(t) = exp

[

−

∫ t

0

h(u)du

]

h(t) = −

[

dS(t)
dt

S(t)

]

(A.1)

A.3 Kaplan-Meier (KM) Estimator

Ŝ(t) =
∏

ti<t

Ni −Di

Ni

(A.2)

KM is a non-parametric estimator of the survival function, given by Equa-

tion A.2, where Ni is number of subjects “at risk” i.e., number of survivors

immediately before time ti when none of the patients are censored; but when

we have censored patients, Ni = (survived patients − censored patients),

where Di = number of patients who died at time ti.
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KM plot is an elegant non-parametric way to analyze survival data, which

is also widely used to compare several survival functions of different groups

of patients (e.g., control vs treatment). We can compute median (/mean)

of the estimated KM survival function as summary statistics to describe the

cohort of patients. Also, the median (/mean) survival days can be used as

the prediction from the KM estimator in survival prediction tasks. Note that

the mean of the estimated survival distribution is the area under the curve.

Log-Rank (Harrington and Fleming, 1982) test is a common hypothesis test

used to assess the similarity between two (or more) KM survival functions.

Achieving smaller p-values from the log-rank test gives significant evidence

to support the alternate hypothesis that the survival functions are different.

This test also allows us to validate the existence of different hazard rates in

the cohort.

A.4 Survival Prediction for High Dimensional

Data

One recent challenge in survival prediction is the high dimensionality of the

covariates (Van Wieringen et al., 2009; Margolin et al., 2013). Especially in

the medical domain, with the introduction of novel genomic advances, recent

survival studies include high dimensional data such as gene expression, copy

number variations, etc. Therefore survival prediction models are expected to

handle such high dimensional data. Here we discuss different approaches fol-

lowed in literature to over come the high dimensionality in survival prediction.

These proposed techniques follow two major themes: (1) a new dimensional-

ity reduction step before survival prediction, or (2) a new (regularized) model

capable of handling high dimensional data. Both approaches have been shown

to have empirical success depending on the dataset and the evaluation crite-

ria (Van Wieringen et al., 2009). We present here the proposed techniques

under each theme:

• Dimensionality Reduction
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– Clustering gene expression data:

This technique was proposed by Alizadeh et al. (2000) where the

gene expression data is initially clustered using hierarchical cluster-

ing and the cluster id’s are used as covariate in the Cox propor-

tional hazards model (Cox, 1972). There are several drawbacks in

this approach: (1) its not clear whether a single variable cluster

id could capture all the information relevant to survival prediction

from gene expression, and (2) deciding the number of clusters is

a common problem in clustering and often a very difficult one to

address (Van Wieringen et al., 2009)

Another hierarchical clustering approach called supervised harvest-

ing of expression trees (Alizadeh et al., 2000). Rather than using

the cluster id‘s they compute the average expression values of each

cluster. After the hierarchical clustering step, each of the cluster

averages are used as covariates to train a Cox proportional hazards

model (Cox, 1972) with forwards addition and backward deletion

to select the final set of clusters. This model is highly sensitive to

the clustering algorithm used in the initial step and it requires a

large number of samples to have higher performance (Van Wierin-

gen et al., 2009)

– Univariate gene selection:

Is a straightforward procedure, where each gene in the expression

data is ordered by the association between the gene’s expression

values and the survival times. Here each gene’s expression val-

ues are used as a univariate with the Cox model (Cox, 1972) and

the corresponding p-values of the Cox scores are used to rank the

genes (Van Wieringen et al., 2009). After computing the p-values

of each gene, we remove all the genes whose p-value is higher than

the threshold, being the set of genes with significant association

with the survival time (We use cross validation to set the thresh-

old). Finally these selected gene are used as covariates in the Cox
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proportional hazards model to predict risk scores. A major draw-

back of this technique is that the resulting set of genes might be

highly correlated with each other this might lead to poor predic-

tions (Van Wieringen et al., 2009).

– Supervised principle component (SuperPC) analysis :

SuperPC (Bair and Tibshirani, 2004) and it is very similar to the

unsupervised PCA, but differs by using only the genes selected from

univariate gene selection. Then the resulting principle components

are used as covariates in the Cox model (Cox, 1972). While Su-

perPC does not suggest how many principle components to use, in

the implementations generally the first two components are used (VanWierin-

gen et al., 2009).

• Regularized Survival Models

– L1-penalized Cox:

The penalized Cox model (Park and Hastie, 2007) uses an L1 penalty

with the Cox model (Cox, 1972). This L1 penalty on the coefficients

makes most of the coefficients to shrink to zero, therefore resulting

in an automatic feature selection (Van Wieringen et al., 2009). Park

and Hastie (2007) proposed an efficient algorithm to compute the

coefficients for high dimensional datasets compared to the previous

LASSO Cox model (Tibshirani et al., 1997). They use a hyper-

parameter λ to control the regularization factor, which starts from

λ = ∞ (where all coefficients are zero) and decrements stepwise in

each iteration allowing more and more coefficients to take non-zero

values. The algorithm stops when the set of non-zero coefficients

are stable (not changing) (Van Wieringen et al., 2009). The final

model will have fewer covariates contributing to the prediction with

non zero coefficients.

– Tree Ensembles & Random Forests:

While these techniques work with high dimensional data sets users
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often to apply an initial selection process to reduce the computa-

tional cost (Van Wieringen et al., 2009). Survival trees are grown

similar to decision tress, branching on each covariate and grow-

ing the tree no more splits based on “stopping criterion” (Hothorn

et al., 2006). Finally survival functions are estimated using the KM

estimator from all the instances of a leaf node, resulting in a KM

curve for every leaf node. After learning, a new instance is dropped

through the tree, and the prediction is based on the KM curve asso-

ciated with the leaf node it results (Often the mean or the median

of the KM curve is used as the predicted survival time).

A bagging (bootstrap aggregation) procedure is proposed for sur-

vival trees by Hothorn et al. (2006), which produces one survival

tree from each of the several bootstrap datasets. Afterwards, a

new instance is dropped through all the trees, reaching a set of leaf

nodes we then use all the instances from every leaf node to com-

pute a KM curve for the final prediction. Hothorn et al. (2006)

also proposed a random forest for survival prediction similar to tree

ensembles but varying in the branching mechanism. In addition to

the number of trees the random forest learner also uses a second pa-

rameter that specifies the number of candidate covariates sampled

for each split. Random forests are known to be sensitive to these

two parameters (Van Wieringen et al., 2009). Both tree ensembles

and random forests seem to have similar performances on multiple

survival datasets (Van Wieringen et al., 2009).
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Appendix B

D-calibration Computation for
Censored Instances

Section 2.6.2 describes D-calibration for uncensored patients. Based on the

Equation 2.8, when computing Pg’s, for uncensored patients, Pri(di) can be

computed using the individual’s survival curve and the (event) death time

di. The appropriate subgroup’s Pg will be incremented (by one) based on

the Pri(di) value e.g., if Pri(di) = 0.55 then the appropriate subgroup P11

(coressponds to (0.55, 0.60]) will be incremented; P11 = P11 +1. If the patient

is censored, we compute the Pi(di) similar to an uncensored patient, but we

increment all subgroups that are eligible to contain this patient, with a frac-

tional weight (instead of one). These are the subgroups where the lower event

probability threshold (ag of [ag, bg)) is less than Pri(di)) i.e., ∀g ag ≤ Pri(di).

Our proposed heuristic weight is computed as weight = 1

max

(

1,

⌈

Pri(di)∗G

⌉) .

This distributes the contribution by the censored patient among all subgroups

where the lower event probability threshold (ag) is less than Pri(di) of the

censored time, agreeing with the fact that the right censored time is a lower

bound for the survival time and the patient might have died at any time point

later.
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Appendix C

Tutorial on Latent Dirichlet
Allocation (LDA)

Many (natural language) topic models have been proposed over the years, in-

cluding; LDA (Blei et al., 2003), probabilistic Latent Semantic Allocation (Hof-

mann, 2001), Hierarchical Dirichlet Process (Teh et al., 2012), etc. Here we

present a short tutorial on LDA. LDA is a widely used (generative) topic model

proposed by Blei et al. (2003), which has been successfully applied to natural

language (NL) documents for multiple different tasks (Blei et al., 2003). The

LDA generative process assumes that each document corresponds to a distri-

bution over multiple topics (document-topics) and every topic is a distribution

over the vocabulary of words (topic-words). This allows us to represent a docu-

ment with thousands of words with a small (in the order of hundreds) number

of topics. LDA is an unsupervised technique that finds inherent structure

present in the data, based on latent structures (topics) that capture frequent

co–occurring words across multiple documents.

We use following notations throughout this tutorial to describe the LDA

model (adopted from Blei et al. (2003)):

• w is a word in a NL document. Superscripts wv where v ∈ 1, . . . , V

denote the index of the word in the vocabulary vector; i.e., wv = 1 if vth

word in the vocabulary is present and wu = 0 for all u ! = v

• w:= [w1, w2, . . . , wN ] represents a document including a sequence of N

words
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• D is a collection of M documents (corpus)

• k is fixed number of latent topics

• z:= k-dimensional vector denoting the topic assignment of a word

• β:= matrix of size k ∗ V

• βi,j:= P (wj = 1 | zi = 1 ) is the probability of word wj occurring under

topic i

• α:= k-dimensional vector of the Dirichlet parameters used to represent

document-topics distribution for the corpus

• θ:= k-dimensional Dirichlet random variable, representing the random

assignments of a document’s topic components

• ε is a parameter for the Poisson distribution corresponding to the number

of words in a document

LDA assumes every document in the corpus is generated by the following

generative process:

• Draw N ∼ Poisson(ε)

• Draw θ ∼ Dirichlet(α)

• For n = 1, . . . , N :

1. Draw a topic zn ∼ Multinomial(θ)

2. Draw a word wn ∼ Multinomial(β[zn, :])

From the generative process above we generate a document by first sam-

pling a topic from the document-topics distribution and then sampling a word

from the selected topic’s topic-words distribution; once we sampled a word

we can repeat this process for required number of words (N) to generate our

document.

LDA’s graphical model representation is given in Figure C.1. From the

Figure C.1 we can see that only the words of the documents are observed
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document is given in Equation C.1.

P ( θ, z,w |α, β ) = P ( θ |α )
N
∏

n=1

P ( zn | θ )P (wn | zn, β ) (C.1)

Based on the Figure C.1 of the LDA plate model, we can observe the inter-

dependencies between the random variables and derive the join probability

distribution of a single document. To compute the joint probability of the

corpus, we need to take product over the marginal probabilities of all the

documents. We can obtain the marginal distribution from Equation C.1 by

integrating out θ and summing over z. Equation C.2 gives the join probability

of the corpus D.

P (D |α, β ) =
M
∏

d=1

∫

P ( θd |α )

(

Nd
∏

n=1

∑

zdn

P ( zdn | θd )P (wdn | zdn, β )

)

dθd

(C.2)

Equation C.2 has parameters that operate at multiple levels. (1) α, β, are

corpus level parameters, which are initialized once for the whole corpus, (2) θ

is a document level random variable (sampled), assigned for each document,

and (3) zd,n is assigned for each word wd,n in a document d. From above

Equations C.2, and C.1, we understand the relationships between the ran-

dom variables in the joint probability distribution. But we need the posterior

distribution given α, β and the document. Equation C.3 gives the posterior

distribution over the latent variables θ, z.

P ( θ, z |w, α, β ) =
P ( θ, z,w |α, β )

P (w |α, β )
(C.3)

Equation C.3 is intractable for exact inference (Blei et al., 2003). There-

fore we use approximate inference algorithms such as Laplace approximation,

variational approximation, and Markov chain Monte Carlo (Blei et al., 2003).

When following the variational inference procedure we can approximate the

posterior distribution with a family of simpler distributions with more inde-

pendence assumptions. Once we define the variational parameters for the

approximate distribution we can then estimate these parameters by minimiz-
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ing the Kullback–Leibler divergence between the approximate distribution and

the posterior distribution for each document (Blei et al., 2003). Note that we

assumed that β (and α) is known when computing the variational parameters.

Therefore we can compute both the variational parameters and the final β us-

ing an expectation maximization procedure (Blei et al., 2003). Explanations

on the variational expectation maximization procedure and more information

on the variational inference procedure are given in Blei et al. (2003) for inter-

ested readers.
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