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ABSTRACT

In this thesis, one dimensional wave propagation in linear viscoelastic rods
and fluid filled viscoelastic tubes is studied. The wall displacement function for
a fuid flled viscoelastic tube is obtained as an inverse Laplace transform. This
differs from the expression obtained by Pipkin [19] for longitudinal displacement
in a viscoelastic rod by a term containing 7 which is related to the radial inertia
of the tube. A class of viscoelastic relaxation functions are considered in [19] for
which the wave generated by a step input at t =0 approaches a constant shape
at large distances. These shapes can be tabulated as probability distribution
functions. The classification depends on the behavior of the apparent viscosity
of the viscoelastic material. For fluid filled viscoelastic tubes, using the same
classification, we investigate the behavior of the wall displacement and the fluid
mean pressure analyticaliy and numerically for two types of initial inputs. The
step function input is used to compare and contrast the results with [19] and a
smooth input is used to compare the results with experiment. Depending on the
type of the viscoelasticity and on the radial inertia term 7, the result may be a

probability distribution function or may be oscillatory.
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Chapter 1. Introduction

The study of waves in fluid-filled flexible tubes appears to date from Euler
[1], who studied blood flow in arteries using a one-dimensional model. Since then,
depending on the wall properties, the fluid properties and the dominant effects
being considered, the basic concept has been extended and two main routes for
modeling the problem have emerged.

If large variation in cross sectional area occurs, as in studying collapsible
tubes, Euler’s one-dimensional model has been extended to a quasi-linear hyper-

bolic system, and the continuity and momentum equations are written as

%) 3}

5;(PA) + - (pAu) + ¥ =0 (1.1)
du 0 u* | Opr _

it aa) T o 7270 (1:2)

together with a relation of the form

pr = A(A4,z,1)

(1.3)
w=Q(A,z,t)

where A(z,t) is the cross-sectional area of the tube, p,u are the density and axial
velocity of the fluid respectively, and p, is the excess pressure in the flud mea-
sured from u suitable reference p;. @ and ¥ are correction terms introduced to
allow for leakage and frictional effects, t and z denote time and axial coordinates
respectively.

The constitutive equation for the wall is given by the first of equations (1.3).
For a review of the problems treated in this way, especially with a view to biological

applications, we refer to the articles by Skalak et al 21, [3], Fung {4], and the book
of Caro et al [5].



In particular, Lighthill [6] discusses the equations and their linearisation in

the form
82Pr 1 3(/)/4), azpr

92 Ao\ Op, 7T/ Ot 1.9)
RERPCANEIR 2 -
- Agp . 31?1- papr pr=0 ot ’
where Ag is the reference value of the cross-sectional area.
In the simplest case, assume the thickness of the wall is fixed. Along with
the changes in diameter, a circumferential stress or hoop stress exists. Under this

condition, we get the following expression

‘40 - hE (1 c )’ (1’5)

where R is the mean radius of the tube, k the wall thickness, E the Young’s
modulus of the wall material and o the Poisson’s ratio. We assume here that the
wall is made of isotropic material, the factor (1 — o2) being introduced due to the

assumption that the wall is longitudinally tethered. Equation (1.4) then becomes

&p, _ (1 1 )a2p,

oz —\a2 T &) e (1.6)

with ¢, the speed of the sound in the fluid, and

@=——aTE
2Rp(1 — o?)

Since ¢, = 1400m/s for water, while the pulse speeds to be considered below
have co = 10m/s, the compressibility effects may be neglected. Thus for many
cases a linear theory of the type discussed below is adequate. For recent advances
in considering nonlinear effects, we refer to 7], [8].

The second approach is to deal with the linearised equations. A good survey
is given by Rubinow and Keller [9], [10] for propagation of a simple harmonic wave,

and details for pulse propagation may be found in [11]. Certain effects, such as



shock wave propagation, can not be predicted by lire.s © wrory. Nevertheless, when
the main effect is that of dispersion, a linearisation may wel. !» =flective. [12] gives
a good example of a linear, one-dimensional model for impulse wave propagation
by taking account of the dispersion relation. The speed and amplitude of the wave
in a water filled latex tube, obtained experimentally by Greenwald and Newmann
[13] are adequately described by this simple viscoelastic inodel.

In the linear theory of fluid filled flexible tubes, it is clear that the viscoelas-
ticity of the wall plays an important part. The difficulty is in finding a suitable
relaxation function valid for different materials. Pipkin {14] has suggested a way
around this difficulty using an idea of Kolsky’s [15] who discovered the phenomenon
of a universal pulse shape in experiments on three polymers. Based on this idea,
in Chapter 2, we show that these kinds of materials have the properties of near
constant loss angle over a broad range of frequency and the initial precursor wave
is negligible compared with the main contribution of the wave form at large t.
We use both the Laplace and Fourier transforms. In Chapter 3, we introduce the
governing equations and the general solutions of the wave propagation in a fluid
filled viscoelastic tube. In Chapter 4, we consider in detail the results by Pipkin
[19] that the pulse propagation in a linear viscoelastic rod approaches a constant
shape, and the shape functions can be tabulated as stable probability distribution
functions. In Chapter 5, we concentrate on the asymptotic discussion of wave
propagation in a fluid filled viscoelastic tube by considering three relaxation func-
tions which are of the same classes as those considered in Chapter 4 so that the
results can be compared. Finally in Chapter 6, we explain the numerical methods
used and display the graphs of the mean pressure function for the various choices
of the coefficients. Furthermore, we show the relations between the displacement
and mean pressure functions, and illustrate that in the case of a fluid filled vis-

coelastic tube, which differs from a rod by the presence of a factor 7, the mean



pressure function may have oscillation, and therefore the displacement function

can not in general be tabulated as a probability distribution function.



Chapter 2. Viscoelasticity

Since we confine our attention to a one-dimensional model in which the stress
o(z,t) and the strain &(z,t) depend on a sing® material coodinate x and time t,

we assume a constitutive stress history of linear viscoelasticity

o(z,t) = / G(t — s)de(z, s), (2.1)

where the integral is a Stieltje’s integral, together with the other basic equations

0 _ 0%
dr = &2’
szg%, (22)
o
T

where « and v are displacement and velocity respectively, and G(t) represents the
particular material stress relaxation modulus with G(t) = 0 for t < 0. In general,
for a solid, G(¢) will have an instantaneous modulus Gy = G(t = 0%) and a relaxed
modulus G = G(t = o), and is 2 monotone decreasing function.

The above equations are in nondimensional form, and are obtained from the

dimensional ones by setting
(G. &) =(G, 9)/Gr,
(2, 2) =(=z, v)/L, (2.3)
t =tco/L,

where L is a reference length, 2 =G./p,Grisa suitable reference modulus and
p the density of the fluid. 'The hats are dropped in the final version.

We consider the initial and boundary value problem with

u(z,0) = v(z,0) =0, v(0,t)= f(%). (2.4)



There are advantages to botk the Fourier and Laplace transform approaches.

t
Assuming / G(t)dt < o0, t > 0, we begin with the Fourier transform
0

m -
o = / o(z,t)e ™ dt,
0

and set

and

G (w) = Goo + 1w /Oo[G(t) — Goole twHdt.
o

Then assuming quiescent condition for ¢ < 0, we have

&= G"(w)s,
€ = Uy,

v = w,
G = —wlil

So that
(z,w) = f(w)e"i“’/V G (W)
em k[ o

fw) = [ f($)e=Ht dt.

The deduction of equation (2.7) is as follows.

o(x,t) = eoG(t) + /! G(t — s) de(z,s)
o

= Goot(t) + £0[G(t) — Goo] + /t[G(u) — GooJe'(t — u) du.
0

(2.5)

(2.6)

(2.7)
(2.8)
(2.9)

(2.10)

(2.11)

(2.12)



So that

- - w . t
Gooé + e0(G — G) + / et dt/ [G(u) — Goole'(t — u) du
) 0

o0

Goof + €0(G — Goo) + / [G(u) — Goole™ ™™ du/ e'(p)e~ P dp
0 0

o3

= Goof + &[G — Goo] + / [G(u) — Geole™™"du
]

(e ]

[E(P)e-iwp‘?‘*'iw‘/; 5(P)e_i”pdp}
= G*(w)E.

The Laplace transform on the other hand leads to the results

()= [ ettt (2.13)
3(z, s) = F(s)e™ =%/ VoG, (2.14)
o(z, t) = -9—;— / F(s)est==2/ VoG g5, (2.15)
<7 JBr
Where
G(s) = /oo e”%tG(t)dt, R(s)>0, (2.16)
(1]

. oo
f(s) =/ e *tG(t) dt.
0
If we have & sinusoidal input e(t) = goe” %, t > 0, with amplitude ¢ and
radian frequency w, then
t
o(t) = G(t)e(0) + / G(t —s)e'(s)ds
0
t
= G(t)(t — G(t)e'(t — s)ds
Gte(t) + [ 16() = Gle'(t ) 11

t
= G(t)zoe™* + eqiwe™™" / [G(s) — G(t)]e™™* ds
0

— G*(w)ege™t = G*(w)e(t), as t— oo.



Assuming the integral (2.6, converges, the constant G*(w) is called the com-
plex or dynamic modulus. G*(w) can be computed in terms of the Laplace trans-
form and

G*(w) = lil})1+(r + iw)G(r + tw). (2.18)

We argue as follows: If r >0

— m -
(r + iw)C(r + iw) = (r + iw) / e~ (rH G 1) dt
0

=(r+ iw)/ e~ NG(1) — Gooldt + Goo-
0

Note that as r — 0%, we retrieve equation (2.18).

By (2.18), we can see that the results (2.12) and (2.15) agree if in {2.15) the
Bromwich contour can be moved to concide with the imaginary axis, so that the
Laplace and Fourier transforms are equivalent .

From the dynamic modulus, we introduce more concepts. Since G*{w) is a

complex number, we can write it as
G*(w) = G1(w) + iG2(w) = |G™(w)|e”). (2-19)

The quantity Gi(w) is known as the storage modulus, Go{w) as t::- loss
modulus, and 6(w) the loss angle. The tangent of loss angle tan §(w) is called the

loss tangent,

Go{w)

tan (w) = G (2.20)
From (2.6) and (2.19), we have
Cr(w) = Goo + 1 j{, T(G(t) - Goe]sinwt di, (2.21)
Gaw) = w /0 ZIG(t) — Goo] coswi dt. (2.22)
At zero frequency,
G1(0) = Goo, G2(0) = 0. (2.23)

8



To discuss the behaviors of different materials, we consider two typical ma-
terials as given in Lockett [17].

(1) PMMA: polymethyl methacrylate, representative of an amorphous poly-
mer of high molecular weight below its glass transition temperature reduced to a
reference temperature of —22°C.

(1) Hevea Rubber: representative of the rubbery behavior of a lightly

crosslinked amorphous polymer, which has a reference of 25°C.

Since the quantities vary rapidly, they are usually shown on a log / log scale

1 Ln_G(t) (==9)

" InGi(w) —)

e R e e,
q ‘_&i—— ——
\
7 N
g : . . . , -
~{0 -5 c 5

{1
1nt (sec)
Inw (H2)
Fig.[2-1]. Variation of stress-relaxation modulus G(t) (— —) and storage modulus
Gi(w) (—) for (I) PMMA and (II) Hevea. )

Fig.[2-1]
Fig.[2-1] shows values of stress-relaxation modulus G(t) (broken curves) and

storage modulus G1(w) (unbroken curves).

Similarly, we have Fig.[2.2] showing the variation of the loss tangent with

the frequency for the two typical materials.



Intan §(w) .

C
—‘
Iy
-2
~<c -5 Q 45 ;o —
Tnw (122)

Fig.[2-2]. Variation of loss tangent with frequency for (I) PMMA and (II) Hevea.

Fig[2-2]

It can be seen that the curve for PMMA shows little dependence on frequency

whereas that for the rubber varies by two orders of magnitude having a loss peak

at approximately 10° hz.

Typical examples of simple viscoelastic models are as follows:

1) Kelvin-Voigt:

G(t) = Goolr8(t) + H(2)],

B(s) = Goolr + =),
s (2.24)

G*(w) = Goo(l + twT),

tan 6(w) = wr.

2) Maxwell:

G(t) = Goe™ /™,

G(s)=G

G"(w) = Go
1

0
S

1 + inl

1

+1/7°

(2.25)

iw7'1

w?r2 wn
- G 1 1
0 (1 + w?r? +z1 +w27'12> ?

Go

tanf(w) = — = —

WwTy

wT

10



3) Standard Linear Solid:

G(t) = Goo + (Go — Goo)e™ ™,

Hs) = s s+1/n°
G*(w) = Goo + (Go — Gm)ﬁ%—tr—l- (2.26)
= Gop T + Gy + 00~ G iz
0 Gi1(w)

[2-3.1). [2-3.2).

Fig.[2-3]. [2-3.1]. Variation of storage modulus, [2-3.2]. Variation of loss tangent
with frequency for (1)Kelvin-Voigt, (2) Maxwell, (3) Standard linear
model. .

Fig.[2-3] show that these models can be used to approximate the behavior
of PMMA or rubber only on part of the interval of the frequency range, but not

over the whole range.

11



4) Power-law solid:
G(t)y=ct™?, 0<p<l,c> 0,
3G(s) = ésP, ¢é= c/(;oo u~Pe " du,
G™(w) = &(iw)”, (2.27)

G,(w) = ¢w? cos E;-,

-~

tané = tan il
2
It is evident that over a broader range PMMA or rubber shows little de-
pendence on frequency. It can be well approximated by a power-law solid, since

log /log value of G as a function of w is a constant,

dlnGl(w) _
dinw D (2.28)
and dintan é(w) —0,
dlnw

where  is positive, generally small compared to 1. The log/log plot of the varia-

tion of stress-relaxation modulus with time, the storage modulus and loss tangent
 1eGi(w) (—)
1aG(t) (- -)

> -

Inw Int (4] {2_4.2] o

{2-64.11

Fig.[2-4]. [2-4.1]. Constant slope of stress-relaxation modulus and storage mod-
ulus, [2-4.2]. Constant loss tangent of power-law solid.



Next, we concentrate on the gencralised solution corresponding to an input
u(0,t) = H(t), or v(0,t) = 6(t) so that we cousider (2.12) or (2.15) with f =1
Since our interest is in the behavior of v(r,t) for large ¢, the dominant part of
the signal comes from the saddle point of the integral (2.12) or (2.15), normally
in the neighbourhood of origin of w or s. If G*(w) or G(s) is analytic in this
neighbourhood, we can expand in power of w or s. But for power-law solid, as
well as a large number of real * 11 - -ials, this is not the case. According to Pipkin
[14], v(z,t) can be written in the form of the inverse Fourier transform

v(z,t) = —1—-5}2 /‘°° erp{iw(t — —f—) —wzr(w)} dw, (2.29)
T Jo c(w)
where for a small loss angle §(w).

c(w) = [G1(w)/p)'*,

. - » (2.30)
r(w) = ¢ (w) tan §b(w) ~c (w)pr/4.

It follows that if there is a stationary point at wo, it 1s determined as the

solution of the equation

d T
s [ - ) =0

Since we can prove that

We then can get that wp satisfies

clwo) = (1 5).
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Expanding the exponent of the integrand in equation (2.29) about wg, we

have

) T
w(t — =) —wzT
c

~ 1wt (1 —_ ;% - —(c Ywe)) (w —wo)) —wt(l — _)_1p4

) 1 pr
miwt (1 - ——=(1 = 2ln—) ) —wto=—
( T T2 " % )> (= p/2)A

wwit P P w .p7
ORI LIS WY S VR ) Py L ik
1”p/g( E—l+gln=—+i)
wtp/2 w T
=t (1 =Iln— —i3%). .31
T T i3) (2:31)

Noting that the integral (2.29) along the negative half of the axis is the
complex conjugate of that along the positive half, the imaginary parts of the two

integrals cancel each other. (2.29) can also be written as

v(z,t) = _l- /oo exp{—- iwtp/2 _(1 - In = — z——)} dw
wo

—p/2
zwtp/._ w .

— — =)} dw 2.32
ne / - 2 i) (2.32)
s=iw otp/?. 3

= ‘77rz . exp{ T p/2(1 In iwo)} ds.

This result is the asymptotic form generated by a relaxation function G(t) =

c¢t~P, 0 < p < 1. We can get the same result by inverting the Laplace transform
(2.14). Since sG(s) = és?,
v(z,t) = :)%r—z/ exp{st — 1?/_23 "”/2} ds, (2.33)
2 Br
with saddle point sg satisfying

sTPI? = 1 t Larz
0 1-p/2x

On expanding the integrand about so as p < 1,

()2 ~1-Zm 2, (2.34)

Sp 2 Sq
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and

stp/2
v(z,t) ~ ——-/ c\p{— p// (1-1In -——)} ds. (2.35)
‘)
(2.32) and (2.35) are identical if so = iwp. Furthermore, let = = _ffp_/%)_,
— p &
1- p/-?‘ 1 sin(z/z0)—z2 )
v(z,t) 73)t 3 /Brc dz. (2.36)

Although we have discussed the asymptotic form of the pulse for large t, we
have to know the effect of the precursor wave, i.e. the behavior of the pulse ahead
of the main contribution. We then consider its Laplace transform for large s.

First, we suppose that G(0%) £ 0. It will be shown later in Chapter 4 that
if G(0%) # 0, then sG(s) — G(07) as |s| — oo in the right half plane so that as
|s] — oo, B(x,s) — e"“/\/am, therefore

oz, t) ~ 6(t — —\/g_(—(T_Jr—)). (2.37)

The precursor wave travels out with velocity ¢2 = G(0%). Pipkin extends this

argument. Later result shows that sG(s) is analytic in the s plane cut along the

negative real axis so that as |s| — oo,
sG(s) = G(OT) +s7'G'(0F) +...,
Normally G'(0+) < 0 and we assume G'(0%)/G(0%) << 1. Then

o(z,s) ~ exp{—zs//G(0F)(1 - 3 G’(((()))) +...)}, s— oo, (2.38)

so that
_G'(0)
G(O)

The precursor wave is then exponentially damped as it travels out, so that

o(z,t) ~ e~ =7/2°6(t - %), > 0. (2.39)

the majority of the signal is in the part given by the saddle point. We then
can conclude that, although the form ct™?, p > 0 for G(t) is unbounded and

unrealistic at ¢ = 0, the actual precursor wave is of no great importance and the

asymptotic result for v(z,t) reflects accurately the contribution for a large class

of real materials.

15



Chapter 3. Governing Equations for Fluid Filled Viscoelastic Tubes

For an incompressible Newtonian fluid in a circular cylindrical tube of con-
stant wall thickness, with an axially symmetric motion, the linearised Navier

Stokes equations are

Jw 1 Opr w

=t (@ - 3) (31)
Ou 1 Op»-

5= poz T (3-2)
Sw w OJu

i S (33)

where r,r are radial and axial coordinates respectively, and ¢ denotes time, w
and w are the radial and axial velocities, p the fluid density and v its kinematic
viscosity, py denotes the excess pressure in the fluid measured relative to a fixed

reference pressure usually taken as the ambient pressure external to the tube. L

is the operator

0%¢ 10¢ 0*¢
L) =57 %75 ¥ B2’

The effects of the viscosity term have been considered by Sawatzky [16].
For the study of waves in an elastic thin-wall tube, shell theory based on the
Herrman-Mirsky formulation is adopted. Details may be found in [11]. The radial

displacement W of a tethered tube is given by the equation of motion

W E, o*wW W
Do+ W =P -t gz (34)
where
EhR? Eh h3 .
D=gmaoy By 1T 12 (3:5)

are refered as the flexural modulus, the compressive modulus and the rotatory
inertia of the tube wall respectively. Assuming the wall is isotropic, E and o denote

b Venma'e madnlns and Poisson’s ratio, v is the density of the tube material, h



the wall thickness, R the radius of the tube and P denotes transmural pressure.
Experience with calculations of the model indicates that the effect of the terms D

and I are small and may be neglected compared with the main disturbance. Then

(3-4) can be simplified as

E, W

We now cssume that this equation is also suitable for the viscoelastic case.

With this assumption, the viscoelastic analogue of eqation (3.6) is

4h 92w
3G+ W =P —yh—p5 (3.7)

where * denotes convolition, that is

G+W = /' G(t — s)dW(s), (3.8)

where the integral is a Stieltjes Integral.

In general, G(t) = 0, fort < 0, and is to be considered as a distribution or

generalised function, called the relaxation function.

The Euler equations for the incompressible Newtonian fluid are

o°U, _ Opr
oE = ar (3.9)
o*U, dpr
z-r - _= 10
P53 e (3.10)

where U, and U, are axial and radial fluid displacements.

The continuity equation is

19(rU,)  0OU;
— = (). 11
r Or + oz 0 (3.11)



Before solving the equations, we nondimensionalize them by setting

(W, z,7, Uz, tir) = (W,.’L‘,T, Uza Ur)/R,

(awlb) = (uaw)/COs (312)

(15,,.15) = (p,-,P)/pcg,

G =G/Gr,
a = h/R,

a1 (3.13)
n= 25 + 3

The reference speed cp is given by

2G,h 2G
pR p

c3 =

(3.14)

where G. is a suitable reference stress.

In all the following, we use nondimensionalized variables, but omit the hats

for convenience. Then the governing equations become

Gew=2--0H%7, (3.15)
?;gr. _ '301:’ (3.17)
U 190y % <o (3.18)

Transforming (3.16) and (3.17) by setting

aU, oU:

W= ——, U=

ot ’ ot ’



and taking the derivative w.r.t ¢t on both sides of (3.18), (3.16)—(3.18) can be

changed to
Ou _ Op-r
ot oz’ (3-19)
Jw Op-
= _ )
ot ar’ (3-20)
w 10w  OJu
P i (3.21)

Typical values for water in a rubber latex tube are ¢g = 860cm /s, R = 0.4~m,

h = 0.035cm, v/p = 1.1, then a = 0.0875, n = 0.173125.

In addition, boundary and initial conditions in linearized form must be spec-

ified:

w(l,:z:,t) = Q}z-a(_.:—’-zl’
pi(z,t) = pr(1,2,t), (3.22)

P = pi(z,t) — pe(Z,1),
where p;(z,t) is the excess internal fluid pressure at the wall and p.(x, t) the excess

external pressure.

Since our main interest is the comparison of the choice of the form of G(t)

and the effect of radial inertia, we further simplify the equations by taking

U=U,(z,1),

1
Pm = 2/ r'p(r', x, t)dr
1]

- %//r'pr(r',:c,t)dr' do.
A

‘We then have

_3_39_ __9pm
ot2 oz’
1 *U
190U _p_ 3.23
35.08 = L~ Pm (3.23)
19U
W=-3%"

19



If U is eliminated, we obtain

*w l@zpm
ot 2 922
19%p
= L im 3.24
P Pm S Oz2 N ( )
P 1.0*°W
G+ W =5 -(1-5 g

Finally, we can write an equation for W from (3.24)

L GW _op 1 0w
9x2 = 2 Ox? T~ 8’522 ot2
_1¢8*P  10'pm W
=3\ 522 T30z / " "8:2 ¢
18%pm W

=379z2  azZot
W oW
=iz Tzz o

so that the governing equations can be finally simplified as

ew oW W

G*5zz = a2~ "oazz o (3.25)
t
G+W = / Gt — s) dW(s), (3.26)
8%pm o*wW
—_— 2
o = 2 '. (3.27)

To these equations, we must add some suitable initial and boundary condi-
tions. We suppose for the moment that G(¢), ¢t 20 is given, W (z,t) is subject to

quiescent initial conditions and boundary condition

W(0,t) = ®(t). (3.28)

Although the dispersive nature of the wave is easier to identify using Fourier

Transforms, it is advantageous here to proceed with the Laplace Transform

G(s) = /:o e~?'G(t)dt, R(s)>0. (3.29)

20



Let
i OPW 92w
W= "+, W/ = — : .
32 322 L : Laplace Transform
By quiescent initial conditions
L(W) = s2TW,

L(nW'"y =W, (3.30)

L(G*W") =sGW,,,

and so equation (3.25) can be written as

sG W, = s2W — ns*W,,

that is
W s? 1
r— =W = 0. 3.31
i sG + ns? ( )
The solution is
W(z,s) = B(s)e™ % 4 4(s)e)7, (3.32)

where

32 1/2
Q == fa———a O-
() (sG+n32> >

Since W is bounded as z — 00, it can be shown that A(s) has to be zero, so

that
W(z,s) = B(s)e™ %)=, (3.33)
where
B(s) = W(0,s) = 3(s), &(s) = L{2(t)},

and we then have

ST
VsG +ns?

where Br denotes the standard Bromwich contour.

W(z,t) = -?-‘1;2- /;3 d(s)exp{st — } ds, (3.34)

21



It is now clear that equation (3.34) differs from the wave propagation in a
viscoelastic rod by the term containing the factor 7. One would then conjecture
that the techniques which have been proven useful for the discussion of wave
propagation in rods would be of value in discussing the present problem of wave

propagation in fluid filled tubes.

v}
(V)



Chapter 4. Reduction to Probability Distributions for Rod Problem

As we had mentioned in Chapter 3, wave propagation in a fluid filled vis-
coelastic tube is different from those in a viscoelastic rod by the factor n. For the
latter case, Pipkin [19] has shown that for all viscoelastic materials satisfying cer-
tain conditions, the waves approach a steady shape at sufficiently large distance,
and is a probability distribution. In this chapter, we will detail the proofs of the
properties.

From (3.33) in Chapter 3, we can see that the one-dimensional pulse propa-
gation problem in a viscoelastic material can be reduced to inverting the expression
of the form

Wi(z,s) = F(s)e )z (4.1)

where Q(s) = \/,———s———_., G(s) denotes the Laplace transform of a relaxation func-
sG(s)

tion G(t), and the basic problem has P(s) = %—

It turns out that under certain conditions on G(t), the signal generated by
the inversion of (4.1) is non-negative for all ¢, and 1s closely related to certain
stable probability distributions.

We start with some definitions and theorems which will be used later in the

chapter, and refer to Feller [20] for details of the proofs.

DEFINITION 1. A point function F(t) on [0,0) is a distribution function if
(1) F(t) is nondecreasing and right continuous,
(2) F(0) =0, F(o0) < +00.
F(t) is a probability distribution function on [0, 00), if it is a distribution
function and F(o0) = 1.

F(t) is defective, if F'(c0) < 1.



DEFINITION 2. A completely monotone function w(s) on (0, 00) is such that it

possesses derivatives w{™(s) of all orders and

(-1)"w!™(s) >0, s>0. (4.2)

THEOREM 1. A function w(s) on (0,03) is the Laplace transform of a probability
distribution F(t).

<= w(s) is completely monotone, and w(0) = 1.

THEOREM 2. w(s) is the Laplace transform of a measure F(t), (F(t) is not nec-
essarily finite,)
<= w(s) is completely monotone on (0, ).
Here the Laplace transform is defined as
+ 50
w(s) = jo e~ dF(t).
We call it Feller’s Laplace transform to distinguish it from the one we used

in the previous chapters.

THEOREM 3. If F(t) is a probability distribution, then it has the Lesbegue dis-

composition:

F(t) = pFi(t) + qF2(t) + rFa (1) (4.3)

where Fy(t) is singular distribution which can be considered as jumps in F(t),
and F, . is an absolutely continuous part. F(t) is a singular distribution of the

anomalous type which is not absolutely continuous.

THEOREM 4. If ¢ is completely monotone and ¥ a positive function with com-

pletely monotone derivative, then (1) is completely monotone.



THEOREM 5. If » and ¥ are completely monotone, so is their product ¢y.

To prove that (4.1) with &(s) = -i— is the Laplace transform of a probability
distribution function F(t), we have to prove that (4.1) is a completely monotone
function by Theorem 1. Since e™* is completely monotone function of u for u > 0,
by Theorem 4 & 5, we can concentrate on the proofs that Q(s) > 0, Q'(s) 1s

completely monotone for s > 0.

We begin by assnming that

G(t) = 100(t) + Gi(t), 710 >0, (4.4)

where G1(t) is completely monotone, and G denotes both tlim G(t)and tlim Gy (t),
— o0 —00
and G1(t) — G is normalized such that G1(0%) — G = 1.
Since G1(t) — Geo is completely monotone by Theorem 1, it is the Laplace

transform of a probability distribution function P(u). Then taking the following

integral as a Stieltje’s integral, we have

G1(t) = G + / e *tdP(p), 0<t < oo. (4.5)
0

Furthermore, by Theorem 3, (4.5) can be modified such that

G(t) = 706(t) + Goo + > are™ ! + j e~ p(u) du, (4.6)
k 0

where a; > 0 denote the jumps in P at points pi. We assume that the number of
components is finite, 0 < p3 < p2 < -+ - < pe < ..., and that F, does not occur

in the expression for G(t). Further p(r) is a non-negative integrable function

satisfying the conditions that
r
/ plp)dp < +00, z < 400, (4.7)
0
o
and / p—(’-i—)- du < 400, z= >0, (4.8)
P2 ©
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with the understanding that as r — 20 n (4.7), the integral may diverge, and

similarly for (4.8), as z — o+.

Equations (4.7) and (4.8) are necessary and sufficient conditions that
¢
G1(t) — Goo < +00, / (G1(t) — Goo)dt < +00, >0, (4.9)
0

(4.9) implies that both G(%) and fot G(#)dt exist for t > 0. It also allows us

to apply the Laplace transform to G(t) by noting that

G(s) =70 + G +5 = +/ P g, (4.10)
k 0

s Hi + 8 u+s

The last integral in (4.10) exists for s 2 So > 0, since

(=] A
/ P) g, = / P gy / ) 4,
o Ht+So 0 Ii + °o p+ So
1
< — P(n)d,u + / p(“)du < oo.
A H®

So 0

THEOREM 6. If/ p( ) dz: exists for some so > 0, then it is well defined and

analytic in the compIex s-plane cut along the negative real axis.

By Theorem 6, whlch is from Widder [22], we obtain the analytic contin-
uation properties of G(s) into the complex s-plane cut along the negative real
axis.

Let R(s) = sG(3), the following shows that R(s) is positive and R'(s) is

completely monotone for s real and positive. We have

G(t) = 106(t) + Goo + {G1(t) — G},

Gy =m0+ 22+ / e~ {G1(t) — Goo}dt >0, >0,
s Jo (4.12)

It then follows that




and

R'(s) = s(G(s)) + G(3)
=719 — / eTMtG(t)dt > 0, (4.13)
0
since
G'(t) <0, and tG'(t)—0, ast—D0. (4.14)

Equation (4.14) follows from the integrability of G(t) at zero. This also

implies the existence of the integral of tG'(t), such that
t
0< / H—=G'(¢))dt < +oo. (4.15)
0

n !
Now, it is obvious that R'(s) satisfies the condition that (—1)"g——%v—‘(i)—}- >
0, s > 0. So R(s) > 0, and R'(s) is completely monotone for s > 0. Then by

Theorem 4, we get that is completely monotone function for s > 0.

S

The result for R(s) can also be easily obtained directly from (4.10) for s > 0.

Note that the completely monotone property of G1(t) has not been used other than

in obtaining the representation (4.10).

Since —————— is completely monotone for s >> 0 by Theorem 2, there exists

sG(s)

a measure H(t), such that

\/-—sé__.—_(_s_) - /Ooo e=*tdH(t). (4.16)

However we have no knowledge of H(t) except that it is nondecreasing and

so can not repeat our argument above on .
sG(s)
To further investigate the possible properties of the inverse transform of

—-—1——, we introduce another theorem from Widder [22].
\/ sG(s)

27



THEOREM 7. If
(1). f(s) = fooo e tda(t), 3 < so,
(2) @ > 39 2 0, then

(a(tt) 4+ at™)

S t >0,

1 a+itR + -~
Jim o | S )——-db—ﬁ ig__), t =0,
0, t<O.

Returning to (4.16) and Theorem T, we get that

( H(t*)+ H(t™)

t>0,
1 a+tR 1 2
lim e*tds = ¢ H@OY) |, _
oo 271 a—iR S /sG(.s 5 0 T
. 0, t<0.

Clearly, G1(s) — 0, as |s| — oo in C, where C is the plane cut along the
negative real axis, so that G1(s) can be inverted, and the inversion contour can

be deformed into a loop integral around the branch cut.

1
Similarly, to prove the existence of the inverse integral of ———=, we have
\/ sG(s)
1
to give further discussion on ———=, as |s| — oo .
sG(s)
From (4.10),
o«
aks p(x)
G(s) = E S~ dy.
sG(s) = 108 + Goo + k+s+3/0 “+s,u

The effect of the leading term is obvious. If 7o # 0, then S SN 0,
sG(s)

as |s| — oo, and we proceed to the inversion. If 7o = O, the other leading terms

approach a constant as |s| — oo, and the behavior depends on the last term which

we call sGa(s).



Setting s = Re'?, if R(s) and 3J(s) denote the real and imaginary parts of

R(s), we have

(Ik(#ARCOSH‘*'R'z)
sG(s) = oRcos 6 + Goo +Z (ptx + Rcos8)? + R?sin® 6

n / p(;t)(,uRcos(9+R2)
(1 + Rcos6)? + R2?sin® 6

arurRsin#
Rsin 6
+i{roRsing + Z (ux + Rcos0)? + R? sin® 8

o p(;L),uRsan
—du},
+/0 (u+Rcos€)2+R25in29 2

so that 9(sG(s)) # 0, as 8 # 0, 7, —7 for all 0 < R < +oo0. This means that
s_CT(.s—)- has no zero in the s-plane except possibly along the negative real axis.

Suppose then 7¢ = 0, the sum >~ is bounded as B — oo, the discussion will
be focused on the integral part. We claim that there are two distinct cases:

(a). G(t) — +oo ast — 07, then f3 p(p)dp diverges to +oo as g — +00
from (4.6), and |sG(s)| — +o0, as |s| — +oo.

(b). G(t) — G(0%) < +oo ast — 0+, so that foﬂ p(p)dp converges to
{G(0*) =710 — Goo — z ar} as p — +oo. Then |sG(s)| is bounded as |s| — +oo.

k

Case (a).
This case will be divided into two parts again.

1). / p(p)dp diverges as u — oo, and R/ p(#)d” diverges as R — oo.
0

(i1). / p(p)dp diverges as p — oo, and R/ p—(-/—lldp converges as R — oo.

(a)-(i):
First look at the S-part of sGa(s) for 0 < ey <9< m—e- <.
: * pp(p)
¥ = Rsinf d
= /o (¢ + Rcos8)? + R?sin’ 6 H (4.17)
oo 2 .
: p Pl 4
> Rsin6
= e /R (¢ + Rcos8)? + R?sin’6 p dp-
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Let

2

2
o = H — yi!
v (1 + Rcos6)? + R2sin® 8 42 + 2uRcos 8 + R?’
Since © > R,
T 1 1
m N
T 1 1
f —<f<7T—-c_, > > =
or 5 = ST “9—14—%—2

So that

1 o0
3> —Rsiné’/ p—(l—l—)d/,t — 400, as R — oo,
4 R H
|sG(s)] — +o0, as R — +oo.
For —m < —% + e < 8 < ¢4 < 0, apply the above argument to ||, then

|| — 400, as R — +co. So |sR(s)| — +o0, as R — +oo.

For 8 = 0, = 0. To prove that |sG(s)| — +oo, as R — 400, we can turn
to the real part of the integral.

As 039<g——5, 0 <cosb <1,

R = /°° (uRcos6+ R plys)
p2 +2uRcosf+ R? p

2
_>_Rcos€/ # p(#)d
R

4.18
iR+ R p (4.18)

_>_}—Rcos()/ Bg#—)dp—»oo, as R — o0.
4 R K

|sG(s)] — o0, as R — oo.

Overall in (a)-(1), |sG(s)| — +o0, as R — +00, —7T + € <9<r7r—-¢c,e>0

(a)-(ii):

Look at the real part.

onNn




0 <cosf <1,

R R?
R> —_— I
> [ G

1 R
ZZ/ p(p)dp — +oo, as R — +oo.
0

If <8< 7m—eg, —1<cosf <0,

V]

2 — /R/‘“Se' R(R + pcos 8)

0 (i + Rcosf)? + R?sin
= R(R + pcos8)
R/|cos6| (1t + Rcos8)? + R? sin? 6
= Pos(R) + Neg(R).

Pos(R) and Neg(R) denote the integral in which R + yu cos § are positive and

5 gp(u)du

+

plu)du

negative.

Then

R 5
R(R + pucosé
Pos(R) = /0 ( & ::): Lp(p)dp

> 1 /’RR—pcosa

‘—2./0 R+H—

1 R
> -/ (1 —cose)p(p)dp
4 Jo

plp)dy

1 R
= -4-(1 -—coss)/ p(p)dp — o0, as R — +oo.
0

e R(u|cosb| — R)
Neg(R)| = dy.
Let
pu(pelcosbl — R) R
= > —
y(k) (Rcosf + p)* + R? sin? 8’ H= | cos 6]

then as g = , ets the maximum, and
enas K |cos§| —siné y(u) gets '

1 1
- < _—
2sin 8 2sine

Ymax =

31



So that

[o ]

INeg(%)l <R Ymax —
R/} cos 6|

< R/oo ! E-(—#—)—d,u

- R 2sine p

__R’R [T
2sin€ Jp u

du converges, as R — oo.

~. In case (a)-(ii), |sG(s)| — +o0, as R — +o0, 0 < §<m—¢, e>0.

In case (a) that G(¢) — +00, as R — +o00, we have proven that |sG(s)] —

+o00, as |s| — +oo, then

so that the inverse Laplace tr::.sform of —==== exists.

P ]

sG(s)

Case (b).
G(t) —» G(0Y) < +o0, as t— o+,

then
[7 i = G0) = Gun = 30 = Ga(0*),
k

As 0<6 <m~-g,

G = | [ Eeay
*| s
—_ d
S/o llH_s‘p(#) M
_/°° R
~Jo V(¢ + Rcos6)? + (Rsin8)?

Let
R2
y(k) = u?2 + R?2 + 2Rpucosé’

©=0,

then y(u) approaches the maximum as u = —Rcosé.

32

p(p)dp.

(4.19)

(4.20)



Since

u>0, R>0,
o, cosB L0, 239371'—5,

R? 1 1
and = — = < .
Ymax R2?sin?% 6 sin? @ ~ sin’¢

So that

: > 1 G2(0™%)
sGo(s)) < _ dyp = }

[sGa(s)] < /0 S‘insp(ﬂ) 7 g

We claim that

|sG2(s)| = G2(0F), as |s|— +o0 (4.21)

To get this result, we introduce a theorem from Boas [24].

THEOREM 8. Let f be analytic and bounded in the closed angle between the rays
argz = « and argz = f, |a — Bf < 2=, and suppose that f(z) = L asr — o0

along both rays. Then f(z) — L uniformly in the angle as |z| — oo.

(4.21) can be proven as follows.

(1). On 6 =0,

= R
Ga(s) = /0 e
R/n R oo R
F >0, G = / d /

©® R oo R
/ P Rp(#)d# < /R/n Wp(#)du

n o0
/ p(u)du — 0, as R— oo
n+1 R/n

R/n - p R/n R J R/n p
- < 0 < .
/0 n+1p(#)u_/o “+R#_A p(p)dp

p(p)dp.

i

R/n

R/n R
p(p)dp < lim A plp)dp.

R/n
< 1
[) p(p)dp < ngnoo/o T+ R
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Since this is true for any n > 0, then by picking n = VR, we get that

vR
1.

vR
plu)p = lim / p(u)dp = G2(0%),

oo

li = i = 0.
A R P(H)du Jim / mp(..u)du 0

So that

—_— b R
sGa(s) = /(; . Rp(,u)dy = G,(0%), as|s|— +oo.

(2). Onfd == —¢,

p(p)dp.

Ca(s) = /°° R? + pRe®®
@77 |, R?+ p? - 2Rucose

First consider

R2

yilp) = R? + u? —2Rpcose on [0, c0)-

y1(u) has one critical point which is the maximum point at g = Rcosg, and

Y1 max = 7.3 ¢
s -

sse n, such that R/n < Rcose,le.n > .
cos e

Then on [0, R/n), 11(0) < vi(p) < y1(R/n), since y1(p) is increasing, and
1 2ncose — 1

y1(0) =1, y1(R/n) = ) ‘.choss—l’Where ncose > 1, 0< — < 1.

n?
1
On [R/n,oo), y1(#) £ Y1 max < /35

sim- £
/ooo y1(w)p(p)dp = /0

oo 1 oo
im y1()p(p)dp < —— lim p(p)dp =0,
— JR/n sin® & R—o0 R/n

R/n oo
yi(p)p(p)de + / v (p)p(p)dp.
R/n

Since 0 < 1
R
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o

Jim yi1(p)p(p)dp = 0.
— JR/n
Besides
R/n R/n R/n
@ [ pdn s [ np0ds < nR/m) [ pud
0
. R/n R/n
Jim_,(0) / p(p)dp = lim / p(p)dp,
-0 0 R—oo Jq
R/n 1 R/n
Rh.f.nooyl(R/n)_/; p(p)dp = ng_r.noo [~ Tmemet /(; p(p)dpu,
R/n R/n
so  lim p(p)dp < lim / y1(p)p(p)dp
—oo Jp R—co 0
) 1 R/n
S Rl_l_r_noo __2ncose—1 A p('u)dl“'

n

. .. 1 .
Since this is true for any n greater than et choose n = VR, where R is
cos €

sufficiently large, then

. 1 vE . [VR N
. o [ st = jim [ i = Gal0).

oo VR oo
So /0 yi(p)p(p)dp = lim /0 yi(p)p(p)dp + lim /\/R_yl(l‘)P(l‘)dl‘
= G,(0%).

Consider
Ry

= b 0, b
y2(”) R2+p2—?.Rucoss On[ OO)

p—id

) has one critical point which is the maximum point at ¢ = R, and y2 max
1

2(1 — cose)’

Choose n > 1, such that

/Ooo y2(p)p(p)dp = /0

[o =]

1 o0
< ki < _——— 1 dp = 0.
then 0 < lim 2/ y2(p)p(p)dp < 51— cose) Jim_ R/np(#) p

Y2 (p

Rfn oo
yz(#)P(#)d#'*’/R/ ya2(p)p(p)du,
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>

lim ya2(u)p(p)dp = 0.
R— JR/n
R/n 1 R/n
[ vmpdn < o [ pdn

Since this is true for all n > 1, by choosing n = VR,

1

— vR
. vR _
Rl}—IB,o 1-— 2VRcose—1 _/0 P(/l)d[.l - 0’
R

R/n
Jim y2(p)p(p)dp = 0,
such that
oo
/ y2(p)p(p)dp = 0.
0
Since
STa) = [ iw) = valw) cose + iva(p) sinclp(i)dp
0

we get that

lim sG3(s) = [ yi ()p(p)di = Go(0F).

fsl—oo

Since sG(s) is uniformly boundedin L: 0 <@ <m—¢ and tends to G3(0%)

on # =0, m — ¢, we then can conclude by Theorem 8 that

5Ga(s) — Go(0%)
in complete angle L, as |s| — o0, so
sG(s) = G(0F) in L as |s| — oo. (4.22)

Similarly for sG(s)in L' : —n+e¢ <8 <0.
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We have known that

H(@H)+ H(t™)

t >0,
1 fetiRy 1 2
lim ;)——' —-—————-e""ds = H(0+) t =20 (423)
R—o0 27 Jo_ iR S /S—G(_S) D) 3 [
0 t <0,

From the estimates above on sG(s), it follows that the integral on the left
may be converted to a loop along therays § =7 —¢, —m +€ around the origin.

-7 . . . 1 1
Since sG(s) is analytic , and the integrand ——=——=
% \/sG(s)

cut plane, it follows that the resulting integral represents a continuous function

—->O,asR—400inthe

7hich may be differentiated with respect to ¢ as often as we please for t > 0, so
in (4.23), H(t) is a continuous non-decreasing function for t > 0, differentiable as

often as we please. Then (4.16) can be modified as

1

—_—— = H(0") + /w et J(t)dt (4.24)
v/ sG(3) 0

where J(t) > 0 and differentiable as often as we please for t > 0.

. . 1
Until now, we have proven the existence of the inverse integral of 7—__—,

sG(s)

1 est .
and we can say that — / ———ds exists for both cases.
271 Jo | [0

1
From (4.24) we can see that the value H(0%) depends on -\7—__—— as s —

3G(s)

+00, since H(0*) = lim !

o= [T
So, for the case 15 # 0, H(0") = 0.

For case (a) where fOR p(p)dp diverges as R — +o0, [o[G1(t) — Goo]dt —
+00, as t — +o00, and H(0%) = 0.
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For case (b) where ﬂ)R p(jt)dp converges as R — +o0, fot[Gl(t) — Gooldt

1 . . .
converges as t — o0, and H (0t) = f__——-.'l‘his also implies that J(t) involves
G(0T)

a 6 function at ¢t = 0.

We have known that sG(s) is analytic and non-zero in the cut plane, but
may have zeros on the cut. The conclusion is that these zero points must be
isolated. Because if not, the function 55(‘5_5 would be analytic in a neighbourhood
containing a portion of negative real axis, and hence analytic on that part of the
negative real axis. This is contradictory. So for sufficently large R, we can deform
the contour down to just above and below the negative real axis , like shown in

Figure [4-1}, and

1
— - is analytic in the cut plane C, so that
v/ sG(s)

1 a+sco e“

P

ds = 0. (4.25)

d°+—— £
272 Ja—ioo /sG(s) ABB'CDE'EF | [sG{(s)

\

A) O+R

. . 1
Fig.[4-1]. The contour of integration for the inverse Laplace transform of \/—%6
sG(s

Fig.[4-1]
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Case (I). H(0") = 0.

First, we claim that integral along the contours B'B and EE' is zero, since
1

————— is bounded along them, and that
v/ sG(s)

st £ —Rtcose
1 e 1 / e R
4]

0 — ————ds < —
el S = e R N e

Second, we claim that the integral along the contours F'E and BA are zero
1

too, since ———= — 0, as |s| — +oo.

sG(s)

dé — 0, as B — +oo.

Next, we claim that the integral along the small circle CD is zero. That is , no

S . . 1 ot
contribution from the loop around the origin. To prove that —— / - c ds —
27 Jep /S*G(s)
0 as |s| — 0, it is equivalent to prove that — 2 . 0as |s| — 0.
\/5G(s)

1 )
If this is true, then the inverse Laplace transform of —=—=—== will be con-
\/ sG(s)
centrated along the contour CB' and E'D, and
1 atico o 1 et

— R — S ds

st
- ds = —
27z a—ico /s'c’;_(;)‘ 2me CB'+E'D ’S-G—(_gj

To discuss the integral from the loop around the origin, we claim that

G)| _, yooas|s| = 0, —m+¢ < 6 < 7 —c, such that /== — 0 as
s G(3)
|s| — O.

First if—g— <6<

k]

N

=] 2
— (urcos8 +r*)u  plu)
R{sG > 4.1
{s (s)}_‘/(; 2 fourcos+ % dp by (4.18)

o0 2
> rcosb 3 H p(u)dp
. p2+4+2purcosf+r? p

o0 2
1z p(x)
> d
_rcosG/r Tt cosO ¥ @2 "
o0
_ r cosé p(/,l)d#.
2(1 + cosb) J,
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So that

G(s)| 1 - cos 8 > p(p)
\ s | 12 sGs)) 2 2r(1 + cos 9) dp.
If either dp diverges,

pl#)
(“ (4.26)

dp < +o0, asr — 0,

A
o 0 [THE

G(s) s
we get that p — 00, as r — 0, —72-<9<—2—.
Secondife << 7w —¢g, (or—mT+e<8< —£),
oo 2
= : H p(#) 4
I(sG > 6 by (4.17
(TN = roind [ G du by (417)
rsiné > p(p)
—_— —d
= 2(1 4+ cos8) 7 a
rsine > p(u)
> ——d
= 2(1+4cose) J, H H
so that o
G(s 1, ——
\ . )\ = ;7|SG(S)|
sin & = p(u)
> ' .
= 2r(1 + cose) dp — 00, asr—0
i.e. GS) — 00, asls]—+0,—7r+e_<_9_<_7r-—e.
Then
3
— — 0, as]|s|—0. 4.27
— s (8:27)

Therefore, no contribution exists from the loop around the origin.

In case (I) where H(0%) =0,

a+ioo
! ———1————6"ds (4.28)

J(t) = — b etgs = —
‘)7” a—ico /SG(b 271 CB'+E'D , /3—6@3
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Let s = —w+id,and FF > 0,0 < p < 1;— are the complex modulus and angle of
1. 17 1

——— it is easy to see that and
Y/ $G(s) JeotiGw 78 (o ~ i6G(—w — D)

are cornplex conjugate each other, then

J(t) = 2771 [ / F(_w +76)e—l?e—ul+x5ldw +/ F(-—w . Lo)ezve-wt—tétd‘d]

= -2%1’_1-./0 {—F(~w + i8)[cos(y — t) — isin(p — 6t)]
+ F(—w — i6)[cos(p — 6t) + isin(p — §6)|} et dw
1

== Jooo F(—w +18)sin(p — 8t)e”“'dw > 0, 1>0.
(4.29)
§ is very small such that the last integral is actually independent of 6, (Oth-
erwise, choose t, such that 6t = —_7;, Since 0 < ¢ < ?—;-, sin(p — 6t) < 0, the integral

is less than zero. This is contradicted with J(t) > 0. )
So J(t)= ;1;/000 F(—w)sinpe ™ dw >0, (4.30)
where0<<p<%, F > 0.
Therefore,-'J (t) is completely monotone function for ¢ > 0, and from (4.24),
J(t) is integrable at t = 0, so tJ'(¢) is integrable at t = 0.
Following the reasoning as for sG(s), we can get that ——%’—(—:j is such that
\/sG(s

S

\/ sG(s)

> 0,

and

F: , _ 1 s 1 '
(\/sG(s)) B \/sE(s—+ <\/s5<s‘))
- \/:E(_s_ —-s/ 1T (t)e*tdt s
N \/SG(S \/aG(s / T

- _/ e~ J(¢)dt > 0,
0
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and is completely monotone for s > 0.

sx
Then by Theorem 4, ¥(z,s) = e sG(s) is completely monotone for s > 0.
Further LN 0, as s — 0 along real axis, so ¥(z,0) = 1.
/sG{(s)
Case (II)

H(0%) = G(0F) # 0,

We have known that

1
VsG(s)

We claim that

— H(0Y) — 0, as|s| — oo, —rt+e< < mT-—Ee.

s{— —H(0")} >0, asls|—0, —-m+eSO<T—e
\/5G(8)

This is true since

——f———sH(0+)—+O—OG(0+)=O, as |s| -0, —-7+e<f<wm—e
v/ sG(s)
. 1 . . 1 +
By substitute —=——= everywhere in case (I) with ———= —H (07), we
sG(3) \/sG(3)
can get the same result.
By (4.24), J(t) is really
J(t) = H(OT)6(¢) + J(¢), (4.32)

J(t) is proceeded as case (I) and finished with the same conclusion as case (I). So

that
8 o«
=s{H(0")+ / J(t)e™*dt} > 0, s >0,
0

VsG(s)



(___S__) = H(0") — /oo tJ'(t)e *dt > 0,
sG(s) 0

and is completely monotone for s > 0.

. .
2 } is completely monotone for s > 0, and
sG(s)

Therefore ¥(z,s) = exp{—

¥Y(z,0) =1.

By Theorem 1, for both case (I) & (1I), U(z,s) is the Laplace transform of
a probability distribution F'(z,t), it is written as

\Il(x,s)=/ e ' dF(z,t) (4.33)
0
Then
F(z,t) = lim L e l\]Ll( sty t>0 (4.34
z,t) = lim —— s z,s)e’ ds, > 0, .34)

and F(z,0")= ‘ 1Iim ¥(z,s) =0.

(4.33) can also be written as

¥(z,s) = [)m e f(z,t)dt,

OF(z,t)

where f(z,t) = e is the probability density function.

Returning to the beginning of this chapter, we note that
— 1
W(z,s) = ~¥(z,s).
s

Under the condition that G(t) is completely monotone, W(z,s) is a com-
pletely monotone function of s for s > 0, and z > 0. (4.34) can be written as

a+1iR
F(z,t) = W(z,t) = lim 5— . e W(z,s)ds, z >0, t>0, (4.35)

which is the inverse Laplace transform defined in Chapter 2 & 3. We then can

conclude that the inverse Laplace transform of (4.1) exists, and can be interpreted

as a probability distribution function.
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Next we will discuss the asymptotic behavior of W(z,t) as t —» oo. This is

equivalent to the behavior of Wi(z,s) as s — 0t.

Before doing anything, we introduce some definitions and theorems guoted

from Feller [20].

DEFINITION 3. A positive function L(t) defined on (0, ) is slowly varying func-
tion at infinity if
L(ct)
L(t)

—1, forc>0C, t— +oo.

DEFINITION 4. A positive function U(t) defined on (0,00) is regularly varying

function with exponent p if

f(t) =tPL(t), —oo <p < +09,
with L(t) slowly varying.

oo
THEOREM 9. If -1 < a < o0, and §(s) = / e~ f(t)dt,
0
then

F(t) = t9L(t), t — 0o = Qs) ~ s""’“L(-i—)I‘(l +a), s — 0%

THEOREM 10. (Continuity Theorem). For n =1, 2, ..., let F, be a probability
distribution with transform n.

If F, — F where F is a possibly defective distribution with transform ¢,
then @a(s) — ¢(8), for s > 0.

Conversely, if the sequence pn(s) converges for each s > 0 to a limit ¢(s),
then ¢ is the transform of a possibly defective distribution F, and F, — F. The

limit is not defective iff

p(s) = 1, as s — 0.



Since

G(t) = 1o0(t) + Goo 1 {Gl(t) - Goo}v

where 6(%) is excluded from Gi(1),

G(s)=To + Goo + / e~ *{G,(t) — Goo}tdt.
)

3

We introduce the apparent viscosity n(t) as

20 = [ 1G(0) — Gao)dt (4.36)

We shall consider two main cases below depending on the behavior of n(t)-
Case (I)-

Suppose 7(t) diverges rapidly and for —1 <p <0,

Gi— Goo = tPL(t), t—> 00, (4.37)

so that G1(t) — Geo is regularly varying for —1 < p < O and slowly varying for

p =0, and
G(t) ~ 7o5(t) + Goo + tPL(t), t — o°. (4.38)
Then it follows from Theorem 9 that
sG(s) ~ 105 + Goo t+ s"”L(—l-)I‘(l +p), s— ot. (4.39)
s
‘We also note that
rl
n(t) ~ j (ut)? L(ut)t du
01 (4.40)
~ ——tPYIL(t), t— 0O,
1+p

and is regularly varying.

1 .
—— depends on whether G is zero or not, 0

sG(s)

The behavior of J(s) =

we further subdivide Case (D).
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Case (IA). Goo = 0

—— 1
sG(s) ~ sPL(=(1 +p), s — ot. (4.41)
S
and
F(s) ~ P2 L2 (2T (1 4 p), s — OF. (4.42)
3

sG{s) and J(s) are regularly-varying function for s — 07, —1 < p < 0, and
slowly varying function for p = 0.

Case (IB). Goo # 0

sG(s) ~ G [1 + E%’L--—p—)-s'"’L(é)] , s — 0%, (4.43)
J(s) ~ \/Cl?—' [1 - r—%—cz)-)-s"pL(%)] , fors—07. (4.44)

Case (II)

At this case, 7(t) satisfies that
n(t) < co, or at most n(t) ~ L(t), as t— oo. (4-45)

If G1(t) — Goo is of the form tPL(t),p £ —} as t — 00, n(t) will be of this
form. Included here are those cases for which G1(t) — G behaves exponentiaily
as t — oco. In a slight misuse of notation we will continue to refer to these cases
below as p < —1.

Since p < —1, Theorem 9 can not be used for G1(t) — G, but can be used
for n(¢) by (4.45), with o = 0. Then

— 1
7(s) ~ sT'L(=), s — 07, (4.46)
S

and G;(s) — Goo = 37(3), (4.47)
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(4.47) is proven as follows.

sn(s)=s /ooo o3t At{Gl(T) _ Gydrt
= /Ooo(/:,o et d(st))(G1(7) — Goo)dT

- /0°° e_sr{Gl(T) _ Goo}dr

= G](S) — Goo
So that

—_ 1
Gi(3) = Goo ~ L(Z), s — 0%, (4.48)
G(s)~to+ — + L(=), s—07, (4.49)

3 3
and
sG(s) ~ 108 + Go + sL(%), s — 0t (4.50)
~ 7195 + Goo + 377(}-), s —0t. (4.51)
s

Case (IIA). G =0

If n(-i—) — 1o , which is constant, as s — 0%, then
sG(s) ~ s(no + 7o),

(4.52)

T(s)~s V2o + 1) %, ass 0T

Otherwise,
— 1
SG(S) ~ Sn(_)v
s . (4.53)
T(s) ~ sTW2p=i2(2), ass— o+.
s

Case (IIB). Go #0

If n(%) — 10, as s — 0%, then

sG(G) ~ Gooll + T°G+ 04y,

1 1-2 + 7o (4.54)

T(s) ~ — ot
J(s) e Y s), ass—07.

47



Otherwise,

— - 1 1
sG(s) ~ G 1 + e sn(;)],

—~ 1 “ 1 (4.55)
J(S)N —\/_F—:[l_‘)G bT](;)], ass—>0+.

Until now we have got the asymptotic forms of J(s) for all the cases. There
are really no difference comparing with Pipkin’s [19] results, except with the uni-

form use of the parameter p.

We now turn to the asymptotic forms taken by the inverse of the expression
— 1
given in equation (4.1) for the basic problem where ®(s) = e We have
1 r+ioo

W(z,t) = =— le"e_’_j("’)r ds. (4.56)

21 r—ico S

We first follow the arguments used by Pipkin [19] to obtain the uniform
integral representation and then add some comments.

In case (IA) and (ITA) we have
J(s) = sP/ZL—‘f"-(i)r—l/'-’(1 +p), ~1<p<0, s—0F, (4.57)
s

where p = —1 is used as a short way of describing the cases in case (ITA). When

p = —1 we interpret

1
=172 2
2ty s py = LRSS (4.58)
S (7]0+7'0)—1/2

depending on the behavior of (1) as s — 0¥ described in case {(I1A).
Consider case (IA) when p = 0, and L(#) is constant, in fact it falls in
class (II), the case we have labelled p = —1. This is a consequence of the lack

of uniformity of t?» as p — 0, t — oo. Nevertheless it is of practical interest to
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consider the case p close to zero separately and label the special form we obtain

as the class p = 0 for later discussion.

So if we rewrite

1 = 1,
L—l/2(g)r-l/2(1+p)_—_— L(—-)P(l —g—), -1<p<0,

12,1 1/2 1 p (4.59)
17— / (;) or (770+T0)_ / =L(;)F(1——$), p=—1,
we have
T(s) ~ sP/ZE(%)r(l — g-), s— 0T, —1<p<O. (4.60)
S <
Following Pipkin {19}, we set
: 9=t (4.61)
§= , = , .
w(x) w(r)
where we choose w{z} such that
zL(w(z)) 1 _ o
S T T (4.6
] dz . .
then < =3 Equation (4.62) makes it true that w(z) — 00, as £ — oo. Then

Substituting (4.61) into ¢(z,s) = st — sJ(s)z and taking the limit as * — oo,

t — oo, with

remaining finite, we have

t
w(zx)
b(s) = st — s TPI2L( l_)ru - g)m

_ ag (1 = Byter Le@/2)z
=20 —T(1-73)z FOEICR

E (ool (4.63)
6 T(1 — Pysreea (2T
=6 —-T(1 2)/. o(z) P2
—f_T(_Py,1+p/2
= z0 — T'( _2)~ .
Equation (4.56) can then be written as
1 riso r 14072 d2
F*(8) = W(z,t) = 5— efzeT(=P/2): =. (4.64)
ZTe r—ioc zZ
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Clearly F*(0) is zero for 8 < 0 and corresponds to a probability distribution
function on (0, c0).

Next we show that the argument presented above is essentially the Continu-
ity Theorem for a sequence of probability distribution functions.

Defining the sequences {z,} and {w(zn)} satisfying that

omi@n) P lza)) = g ~1EP <O (4.65)
Then
w(zp) = {lglx,,i(w(xn))} w77 —~1<p<O. (4.66)

Since 1 + g > 0, and L(w(z,)) is slowly-varying, w(x,) approaches infinity
as z,, — 00, and (4.65) also infers that w(Ty) is an increasing function of z,, and

for fixed z,
i(w(a:,,)/z) — f,(w(z:,,)), T — OO. (4.67)
Since
Y(zx,s) = e—’j(")z,

we define a sequence

~—=T(5)e
®n(zn,2) = Yn(Ta, —w—('i—‘)') =e w(zn) w(zn) ", (4.68)
then .
14p/27(1 — p/2 ( =n )xn
B, (zn,2) =€ (1= P/ TN+l
- e—zl+”/2I‘(1 - p/'?.):z:,,w(:z:,,)_l—P/zf}(w(:cn)) (4.69)

= e'zl+p/2F(’“p/2) = &(z), zp— 0o.
Since ®(z) is completely monotone, and ®(0) = 1 , ®(z) is the Laplace
transform of a probability distributio. F “(8). Where
1 r+ioco

F*(8)= — e:oe—’lﬂ“r("’/ﬂéi, (4.70)

?.TTi r—ioco 4
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where

t

6=w(.1')’ r— oo, t— oo (4.71)

For each ®,(z,,z), Let § = z , for 6 > 0,

t
—, s = —/——
w(Za) w(zn)

1 T+IOO 9 d.’
* A = e
Fi(zn,0)= 53 B @n(mn,::)——:
TR (4.72)
1 r+4100 dS
= 5= eV, (zn,s) —.
ITL Jyr—ioo S

Since ¥(zy,s) is completely monotone for s > 0, its inverse Laplace trans-

form F*(6) is a probability distribution function. Then by Theorem 10,
Fi(zn,0) — F*(8), n— oo, zn — o0. (4.73)

Since F*(8) is a probability distribution function on (0, 00) in (4.70), the
contour may be deformed to the right for § < 0, so that F*(8) =0, for 6§ < 0.

We note that Theorem 10 requires F:(zn,0) to be a probability distribution
so that ®,(x,, z) must be completely monotone. Even if ®,.(z) is asymptotically
equivalent to the form given here for @5, z — 01, it may be that $,.(z) is not
completely monotone. In that case, as we shall see in Chapter 6 the theorem

does not necessarily hold and the resulting function F(8) may not be a probability

distribution function.

Next we consider case (IB) and (IIB) for ~1 < p < 0, and discuss Casep=20

later for the same reason as mentioned above. We have

J(s) = —\/_é_{l - P—(i)l—Gt”—)s-PL(%;)}, -1<p<0, s =07, (4.74)

where again if p < -1, L(AOT(1+p) = n(%), or no + 7o, and interpret p = —1.
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- . 1
Following Pipkin [19], we set L(é—) = L(%)/’ZGOO, Joo = N replace s by
-—z—, and choose w(z) such that
w(z)
joozw(z) 7P L(w(z)) — |71’—|’ as T — 00. (4.75)
Then
ZJooT 1 1—
- ~—== —=T(1+p)z "
U(z,s) = e—s5I(8)z |, ¢ wiz) Pl = &(z,z), T — o0, (4.76)
and
1 r4ioc ot dS
W(l‘,t) = ._?._ﬂ'_l oo e lI’(:l,‘,o)-—s—-
1 r+ioo ::t/u)(:c) dz
=t S © 2z 2)7 (4.77)
t—7 v
1 r+ioco zg——l?gz—) —1—-1‘(1 +p)zl_p dz
= — e w(@) lpl —, T — oo.
27 Jr—ioo z
If p=—-1,I'(1 + p) = 1, and then
r+i00 :————(t _('70;1) 2dz
- — w(a 24z
Wi(z,t) = el € et —, T oo.

In (4.77), sinceI'(1+p) > Ofor -1 < p < 0, the contour can not be deformed
to the right, so W(z,t) may not be zero for ¢ < 0. This makes sense when we go

to the probability distribution interpretation. We have

— (o ]
%e—"’(’)’ = / e ' F(zx,t)dt (4.78)
0

with F(z,t) a probability distribution function of ¢ on (0, 00).
Substituting (4.76) into the left hand side of (4.78) and replacing s by ;-(5:5,
we have

2joo 1 zt

, — == —T(14p):tTP o -
‘-‘-’(:B)e w(z) Pl =/ e w(z) F(z,t)dt, z — oo.
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Set

t — Jool
6 = ———.
w(x)
then
1 F(14p)si=? t — ool
— p)= o0 _—
lelpl = / e ""‘(I) F(I,t) dt
2 0 w(x)
= / e F(z,w(z)0 + Tjoo ) d (4.79)
=&
oo
= / - e F*(9)de,
—Zicg
w{x)
where F*(0) = F(z,w(z)8 + Tjo), —i{f) < 0 < oo, therefore F*(8) is a proba-
bility distribution function on (— Iz:), 00), which is the shift of F(z,t) to the left
u"
T]eo
b .
Y @)
As ¢ — o0, by (4.75),
T 1— -
~ I - — OO,

w(zx)

so that F*(6) is now defined on (—o0, o). As a result we would have to consider
a probability distribution on the whole real axis, and a corresponding continuity

theorem of the type discussed above. We do not do this but refer to [19] for further

discussion.

Case p = 0: Suppose we are in class (I) with p — 07. We drop the possibility
of the extra term 746(t) for the moment, the effect can be added in later.

We start with case (IA) where Go = 0. We have

1 rHico dz
W(a:, t) = 37—-(; eu(:)e_r\(_%)zl-i—p/? —:’ -—1 < p < 0, (4.79)
<~ r—ico 4
where _
cL(w{z)) 1

= , T — O0.
w(z)!+r/2  |p/2]

i
“w



Pipkin then argues as following:

Ifp— 07, then

P. 2
r(=3)~ s
2PI2 1+ %)lnz,

|p|

w(z) ~ 2z L{w(x))-

2

(4.80)

Substituting these quantities into (4.79) remembering p is small but nonzero,

we have

W(z,t)

where

It

z 2
r4ioc t —
1 e w(Z)ep
2m r—ioo
. t — 2 L(w(z))
1 r4+ico =
1 S (@)
2m r+icc
1 r+too o
e:9+zln Eialedl
27\"1: r—ioco z
F*(8),
t — zL(w)
= —.
w(z)

€

This last result is refered to as the case p = 0, G =0.

For case (IB) with G > 0, we have

W(z,t) =

where

Then as p — 07,

2P ~1-plinz,

T'(l1+p)~1,

w(z) ~ zlpljec L{w(2))-
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&

1 r+ioco :(.t____-_]iof-) l.

— e w(z) “.lpl

2m r—io0

Tjeklw(z) _ 1 o L, o
6(x)r P ipl’

P
z(1+§ In 2) éi

z

lnziz_

r(i+ p)z' 7P dz

(4.81)

(4.82)

(4.83)

(4.84)



So that (4.83) becomes

, t — joor, 1
1 r+ino :(—-—:(—-l—)—) E—)—I:(l—plnz) d=
I’V(.’B,t) = 2—7;; o € € ?
t — JooI 1
rico (22 4 ) .
— _‘)__1_ e u-'(.l’) |P| e:: In = o~ (485)
27 r—ico pus
1 rhico z0+=In = <
B 2_7”- r—100 ¢ ?
= F*(e)')
where
t — JooZX 1 t—joo:v(l——f,)
6 = — = ) 4.86
o)t () (4.80)
1 _ ¥ .
Since t is changing in the interval (0,o0), 6 is 1n (—L——L—)lw—x, o0). For further

w
discussion, see [19].

Until now we have finished the discussion of the asymptotic behavior of
W(z,t) as z — oo and t — oo for all the cases. The results show that for a
viscoelastic rod, under certain conditions, its displacement function W(z,t) ap-

proaches a steady shape F*(6), which is a probability distribution.
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Chapter 5. Transformed Solution and the Steepest Descents
for Tube Problem

In Chapter 3, we derived the general equation of wave propagation in fluid

filled viscoelastic tube, and found the wall displacement in the form

Wi(z,t) = 2;1, L P(s)exp{st — ——ﬁ————} ds (5.1)

VsG + ns?

where ®(s) is the Laplace transform of the input function. If G(t) is known exactly

for the wall material considered, then thecretically EC—). can be computed and the
integral in (5.1) can be evaluated numerically. In the general case, we do not know
the exact form of the function G(t). This prevents this path from being followed,
apart from the substantial amount of numerical computation involved.

For integrals of the type given in equation (5.1), we can find the dominant
part of their values from the neighborhood of a single point. The method we will
use is called the steepest descent method, and the point is called the saddle point

which is given by the solution of the equation

ST

d
E;{bt—'

-
il
o)

(5.2)

sG{s) + ns?

The solution depends on the properties of s_GT(-s—). In Chapter 4, we consider
certain classes of functions G(t". #:d the asymptotic forms of sG(s) for s close to
zero. They were divided into fou: ifferent cases:

(1) 7(2) = fi[G1(t)~Goo) dt diverges rapidly, sG(8) ~ T06+Goo+sPL(L)T(1-
pL0<p<l

(1A) If Goo = 0, sG(s) ~ sPL($)T(1 —p).

(IB) If Goo # 0, sG(s) ~ Geo + sPL(5)I(1 —p)-

(I1) n(t) < oo or slowly varying as t — 09, sG(s) ~ Geo + 8(To + 1M0), OF
Goo + s(To + 1(3))-
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(TIA) If G =0, sG(s) ~ s(To + o) or s(1o + L($)).

(IIB) As Goo # 0, sG(5) ~ Goo + 5(To + 10) oF Geo + s(70 + L(3))-

The solution to equation (5.2), if existing, is in general complex. Assuming
that s-G_(?) is analytic, with the exception of possible singularities, then if it is
regular near sg, which is the solution of equation (5.2), we may expand sG(s) ina
power series in the neighbourhood of sp. From the asymptotic point of view, for

t large, we would expect so to be close to the origin, so that locally an expansion

of the form
Case (1):

sG(s) =ag+ars +azs®+.... (5.3)

would be appropriate. This corresponds to the form of (II) we mentioned above.

On the other hand, if there is a singularity at the origin, we may write sG(s)

in the form

Case (2):

sG(s) = sP(ap +ays +azs*+...), 0<p<Ll (5.4)

This corresponds to the form (IA) which have a common form as sG(s) =
ésP, ¢ >0, 0 < p < 1. This corresponds to what Pipkin [14] called a power-law
solid with G(¢) =ct™?, 0 <p < 1.

Extending the second case to G(t) = Goo + ct™P, where Goo >0, 0 < p <
1, ¢ > 0, we get our third case

Case (3):

sG(s)=Goe + 87, 0<p < 1. (5.9)

This is just the cases (IB) for 0 < p < 1.



We begin with case (1) at ao # 0. that is regular in the neighbourhood of

the origin, and can be written as

sG(s) =1+ 75+ £s?, (5.6)
where sG(s) has been suitably normalized so that in nondimensional form the
leading coefficient is unity. This takes care of the Kelvin-Voigt model and the
Standard Linear model for suitable choices of r and €.

Then equation (5.2) becomes

d sr
—{st — =0, 0.7
‘5{ \/1+Ts+f732} (5.7)
where n=§+nmn,
. x 24713
.e. t— — = (. d.
e 2(1+ 78+ 115%)3/2 0 (5-8)
-
t , 1 + ’.3'5
t - = 5) = = .
hen - T'(s) (1+Ts+1'732)3/2' (5.9)
where d (5.19)

P(s) = —.
V1+ 1Ts+10s?
We assume 7, 7 positive, and r2/47 < 1, so that the appropriate saddle

points lie close to the origin.
Given r and 7, we can easily sketch the graph of ¥’(s), as in Fig.[5-1].

Next we find the point at which the second derivative of ¥(s) is zero. Then

1 ..
2ris? + (67 + 37‘2)5 +2r =0,

1 . 1
—(67 + 37’2) + \/(67') + 572)% — 167%7

iry

S =

RGA bt =/l

471
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89 =

Tte point with the maximum value of ¥'(s) is

.1 . 5
—(67+ 577) + (67 — gfz)
4717 (5.11)

S &~

At this point,

& +5g (5.12)

. mv

. 14 o
T (A Te+s2)32

t
Fig.[5-1]. The graph of P

Fig.[5-1]
Since both the first and the second derivatives of st — s¥(s) equal to zero as
—7/3# and t/= varies in the neighbourhood of 1 + 72/64}, we have a double

saddle point at s = —7 /31, which is also called the saddle point of order 2.
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By replacing sG{s) with its approximation 14 75 + £s? and expanding, we

can write (5.1) as the following asymptotic expression

= 1
W(z,t) = —1—— (s)erp{st — szl — (75 + is?)|} ds
271 Br 2
1 1 1 (5.13)
= 5 By o(s)exp{s(t —z)+ 53:7'32 + §Iﬁ83} ds.
From this expression, we can easily see that as t/z = 1 +72/67, So = —7/37

is a double saddle point.

Now changing variable to 5 = so + I, and expanding (5.13) at so

1 - 1 1 .
W(z,t) ~ a;r?@(so)e:rp{so(t —x)+ 5.7;7'5(2, + -‘;xr)sg}

3 ., 7
/ exp{(t — z + TS0 + ;7—:1:1755)1 + z—‘:il:"} dl
Br = =

- 1 1
~ ®(sg)exp{so(t — z)+ ~x7s% + —T7sy (5.14)
2> G D) 0
1 1
—-3—-—————A,~ ———-3——————-[1& —z +zTso + %xﬁsg]
()3 (i) =

where A, is the standard Airy function of the first kind. We can get this result by
choosir, a steepest descent path.

Alternatively, we can get a uniform approximation for W(z,t) by using the
theorem of Chester, Friedman and Ursell [21]. This result will be more general

than the preceeding one, which has some additional flexibility in the choice of 7.
Let

S

Wis.t/z) = st/r ~ , (5.15)
\/sG(s) + 7js?

and suppose W is analytic functionof sin a suitable domain containing the contour

Br and the points s = sz, where
sy F s—, Wss,t/z) =0,
: N (5.16)
W, (s4.t/z) # 0. We(s—.t/x) # 0.
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If these two points coalesce, a double saddle point is produced, such that

Wylsg t/r) =11, {s4.t/2) =0,

) (5.17)
I‘r35,(5+.f/l') ?é 0. S4 = S,
At the present case, these conditions clearly hold.
Following this theorem, we define s(w) by the equation
Wi(s, t/z) = —(*/3 —72w) + p=U(w,t/z) (5.18)
where v(¢/z) and p(t/z) are to be determined.
It can be turned out under certain conditions that
4 4 . , .
37 = Wise. t/r)— W(s_,t/z),
1. i (5-19)
p = 3{”'(54_.t/1') - “"(S._.,t/l)}.
Next, defining
ds
olw) = @(s(w)) 5 2
Golw) = B(s(«) 7 (5:20)
and setting
Go(w) = ap + ayw + (w? — v2)Ho(w). (5.21)
It turns out that
_ Go(v) + Go(—=7)
Qg = > N
ay = Go(7v) -; Go(—‘r). (5.22)
2y
H, = Gfo(uv')';_(L(;;- ayw .

Finally, the uniform expression of the integral W(z,t) can be written in

terms of the Airy function A; and its derivative A} as £ — 0,
W(z,t) ~ exp(pz){apr ™ Ai(n 4%+ a z~ 2P AP} (5.23)
This expansion is uniformly valid as s+ varying ir: a suitable domain.

61



Applying those results we got from Chester, Friedman and Ursell’s theorem

to our own case that

W(s,t/x) = st/r — > .
V14 7s + 1752

First, find s+ which satisfy (5.16). They are also the solutions of the equation

(5.9), which can be expanded as

t 1, . 3 3. =
i 5(2 4+ 1s)(1 — 575 :2-1752) ~ 0. (5.24)
By omitting the highest order item s°, (5.24) can be written as
3. .3 2,2 ot —
(51‘]4-27' )o +T.>+;‘—1—0.
Since T2/41 <K 1,
-T* 2 -6n(t/fz—1
oy~ T EVT = O fe=1) (5.25)
37
We can also approximate the transformation (5.18) by
). (5.26)

3
w = ——(-.577)1/3(5 + 37
We then find 2 and p by identifying the coefficents of equation (5.18) which

is
3

st 1 1 Y w 2 -
;——s(l-— 5TS §ns’)= ——3—+‘y"w+p. (5.27)
By putting (5.26) into (5.27), we can get
2
VSRS S
3. 1/3 67
(37=) (5.28)

r T2 1 T 3
pr= m et —2(1 + =)} — =he(as



which come from the equations

61 61’
r3 3.
I PR S VL S
as; - g g e
In addition —_ _
an = —( oo/ )22,
- - (5.29)
_ 2 2/3@(5-{-)—@(5—)
ay —-(—:) .
31 Sy — S
. o ‘ T, ' 2 1. T 3
RN W(I,t)~61P{—§5l1‘—'(-l(1+ _6—:‘1)] 31T (3—-) }
: 1 r?
{aor—‘“-ii(——3——“—[ —z(1+ =)
)/ on (5.30)
_,)/3 1] 1 T2
+arzr T -'1i("—3—‘—‘[t-‘1(1+é—.)])}-
(572)1/° 7

The connection to the expression {3.14) is now evident. Equation (5.30)

gives the general and uniform asymptotic expression.

There are occasions when the assumption of the analyticity of sG(s) about

the original may not hold. Pipkin [14] has suggested that the form
sG(s)=¢ésP. 0<p<1, (5.31)

which is our second case, may be more appropriate for a broad class of materials,
and we now investigate the asymptotic form arising fromn equation (5.31).
Returning to the expression given by equation (5.1), we now assume the

form of equation (5.31) for sG(s), and write

W(z,t) = —l— @(o)elp{p'(s z,t)}ds (5.32)

2m
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with
SI

E(s.r.t) = st — (5.33)

where
izz/\fé, p=n/é €>0,n>00<p<l

Using the steepest descents method, we have to find the saddle point which

satisfies

(1—£)s7

. t
l.e. — = ——T"5T355-
7 (Sp } ,752)3/2

(5.34)

The nonuniformity of the behavior of the right. hand side is easily seen by

graphing the function (5.34) in Fig.[5-2].

.t_-h
z 1s

Fig.[5-2]. The nonuniformity ‘bel’m.vior of é— = (S, :—z:'i{s 2;:,;2 .
(N p=10.05, (II) p=0.
Fig.[5-2)
Since p > 0, there is a simple saddle point in the real line, which occurs at
a positive value of s.

If p is small, then for s close to zero, the variation of the value of s with t/%

is very rapid, and for t/% close to 1, s is close to zero. For practical purposes, we
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can approximate the value of » by 1/n. n € I+, with n large, i.e. p = 1/n, and

set s = K?".

2n—1 =
then E(s.#.t) = K*"t — h _I , (5.35)
V14 glin—?
and the saddle points are given by
t 2n—1
7 2nk(1 + aLin-2)3/%0 (5.36)
Then the saddle point iy satisfies
. o 133
t = (2n _fﬁ_ _ (5.37)
Inky(l + K, 2)3/2
-y = . 1+ 2nflg" 2
Ry),z,t) = —1% n—1 .
E(s(Ryp).z,t) ol £ It KA T (5.38)
JOF . K3n-2
— =2t —(2n - 1)% i
£ ntly (2n 1)1:(1_*_,_1,4“_2)3/2, (5.39)
RE  (2n—1)ERIT3(1 4+ (6n — 27K (5.40)
aK? (1 + AR —2)5/2 : .

If n is large, then as /t varies in the neighbeourhood of 1, so does Ky, which

is the solution of equation(5.37). Assuming this to be the dominant saddle point,
we have

1
W(i,t) ~ '—",'/@(S(ko))C.TP{E(S(I‘:Q),i,t)
(5.41)
+ ‘—)-E"(o(fxo) T AWK - 1\0)2}771]\'2"_1 dK

with the integral taken along a suitable contour in the vicinity of Ko. Using the

standard steepest decent method, we have
W (&, t) ~ 2n3(s(Ko))ezp{ E(s(Ko), 2, 1)} 5 /e‘/”""‘"'o’-*"“"’*“ﬂ’K“-‘ dK

~ 2n®(s(Ko))exp{ E(s(Ip), Z,t )y AE™! 51—/ e—1/2E"(s(Ko) 2.ty gp
—&

Amt

4

2 ®(s(Ko))exp{ E(s(Io), &, 1)} 3" ™!
\/"wE”(o(Ixo) z,t)
I Ko 2@ (s(Io))ezp{ E(s(Ho), 2, )11 + AlgnT%)5/

f’n’("n - 1)1 +(6n — 7)771{4,1 2)

(5.42)

65



Clearly, if Ky > 1 or Ky < 1, this quantity is extremely small, and we need
only consider it in the neighbourhood of g = 1, that is for £/t near 1. To examine
the behavior, we plot the quantity in equation (5.42) as a function of Ko, dropping
the factor ®(s(h)) for the moment. The graphs of equation(5.42) for comparison
of different parameters are shown at the end of the chapter as Fig.[5-4.1].

The effect of the radial inertia term involving 7 can now be seen quite clearly.
If p is small, n large, then as Iy < 1, although the terms involving 7 are small,
they nevertheless have considerable effect on where the maximum value of W(z, t)
occurs. Fig.[5-4.1] shows that at the point with the maximum value of W(zZ,1),
R, < 1, then as n large, from (5.37) we get that £/t < 1, so that the wave 1s
slowed down from its purely elastic case with radial inertia n omitted. Here the
purely elastic case is defined as the case that G(t) = GoH(t), where Go = G+%,
and p = 0. Its maximum point happens at z/t=1.

On the other hand, if 4 = 0, we can follow Pipkin [14] to show that the
viscoelastic wave is faster than the purely elastic case. See Fig.[5-4.2).

Thus if = 0 in (5.36) and (5.42), with p = 1/n,

. In-—1ur 2-pzx -
I\o = o ? = ) ?1 (0.43)
11 2
2 2 2 .
W(3,1) ~ —m—e—= 2ezp{-2KP ). (5.44)
2rp(2 — p)E 2

Holding % fixed and allowing g to vary, we can find a point at which W(z,1)

approaches the maximum value, i.e.

4V
a,
Then p
. 24+p 1.5
= —)<—D
Ko (‘2~pp5:)



From (5.43)

. 2—-pT
I\()—’—‘ 21 ?,
so that for p very small,
. p
r_ 2 (2‘*'1’_1_)‘2—1)
t 2-p'2—ppt
p
1 _—
~(—)2
(pi‘)
p =
N(_l_ 5 (5.45)
p
2
{—)-ln(-)
~ €= p

p, 2
~14=In(-) > 1,
2 P

so that the wave is faster than the elastic case where #/t = 1.
We notice that the result we got in case (1) 1s about ag # 0. As gg = 0, but

a; # 0, sG(s) = s(a; +azs+...), we can approximate it by (5.42) withn =p = 1.

Consider now an example of the remaining case when sG(s) = Goo +¢sP, In
order to compare the effect of this relaxation function with the previous one, it is

advantageous to normalize it as

sG(8) =G +s?, 0<p<l. (5.46)
To investigate the asymptotic form of this case, we apply the steepest descent
method again. Here

ST

B VG + SP +7732’

E(s,z,t) = st (5-47)

1
OF . Goo+(1—3p)5p
—_—=t—-=z

S (Goo + 5P + 1s?)3/2’
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By setting %%j = 0, we get that

' 1 y
Goo + (1 = 5P)s?

A ~
- = = -~ 5.48
dE(s) _p(l + p)Goos? ! + p(1 — g)s"’"“ + 61(1 — g-)(l - %)S”“ + 6nG oo
ds 2 Goe + 5P + 1752)5/2
<0, for s>0, p>0andsmall (5-49)

such that the graph of E(s) is strictly decreasing. For very small p, with s ap-

proaches zero, t/Z approaches -é—r/—z

o0

Chpt 1 N SR |
o |-

T .
<3
o L
o~
o |
o
o e

Tr ¥ U 7 > S

0 1 2 3 4 5 6

- — 1 P
Goo + (1 2p)s Go = 0.05, p = 0.05, 7 =

t
Fig.{5-3]- The graph of i Coior + T
0.173125, £ = 6.
Fig.[5-3]

The graph of E (s) [ Figure 5-3 ] shows that the function is a strictly decreas-
ing function, without any inflection point. Then given t/Z, which is greater than
zero, and not greater than E:_‘lﬁ’ (5.48) has only one solution for s > 0, such that

(5.47) has only a simple single saddle point in the real positive line.

68



For small p, we approximate it by 1/n,. n € It, and set s = K*" again, s
approaching to zero corresponds to the case that I < 1, Il is in the neighbourhood
of K = 1.

Then (5.47) can be written as

LK?nz
\/C'Too 4+ K% +gkin ’

E(s(K), 1) = K"t -

the saddle point Iy satisfies that

1
t=i 5
G+ K2+ nId")C‘/? (5.50)

2N 811+2(1+2n,’7I\3n 2)

E(s(Ko),&:t) = =5 pranyi/z© (5.51)
Since
OF — OF Os _ _)nI\,z,l_la_E
OK ds O  ~ s’
OE van—2 OF 1w OE
557 = 2n(2n — 1)K ~? .+ (22— —— R

At the saddle point,

OFE

R

- - -2
K = Ky, s = Kg§",

E'"(s(Ky), £,t)
_0°FE
= Bz k=
8’E

(‘)nKZn—l)z 503 ls—-ao
dE(s)

= 4n 2K4n—2( la—so
‘K2"[‘7(n + 1)G + (2 — YKZ + 2n9(2n — 1)(3n — DK™ +12Gonn? Ky

(Goo + N2 + nKin)s/4

4n— 2]

(5.52)
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Using the steepest descent method to W(Z, t), with the integral taken along
a contour in a small neighbourhood of Ky, where E(s(Iy),%,t) is the maximum

on the contour, we get that

W(z,t) = -2—71—; 5 &(s)ezp{E(s)}ds, t— o0, T — 09,
= L [ B(s(Fo)ezp{ B(s(Ko), 2,1)
<7 JBr

+ %E”(S(I\'o),ft, (K — Ko)?}2nK? 1 dk

— 1.3 —"‘E”r2
~ K20 1P (s(Ko))exp{ E(s(Io), &,t)} —1—— e 2 dr
0 2

2nI{g"—1'¢—f(s(Ko))ea:p{E(S(I{O)‘j,t)}
V2mE"(s(Ky), £, 1)
1-p
250 2 B(so)exp{E(s0,&,t)}(Goo + 5§ + ns2)3/4

\/2782p(1 + P)G oo + P2 = P)sh + 20(2 = P)(3 = P)sF + 12Geonsy "]
(5.53)

"~

~

In the case that Geo = 0, equation (5.53) is coincident with equation (5.41),
the case that sG(s) = sP.

The graphs of equation (5.53) for the different choices of G and n with
small p are shown in Fig.[5-5].

The numerical solutions show us that

(1). At n = 0, the wave is faster than the case when n # 0.

(2). As G increases, the wave goes faster.
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Fig.[5-4]. Plots of equation (5.42), W (2, t) for the case sG(s) = és”. Fig.[5-4.1]
shows that the maximum point happens at Ko < 1, so that £/t < 1.
the wave is faster than the purely elastic case with #j omitted. Fig.[5-
4.2} shows that for 7 = 0, the viscoelastic wave (p > 0) is faster than

the pure elastic case (p = 0). n



p=01, Goo = 0.01, 7= 0.173125.

£=0

Fig.[5-5]. Plots of equation (5.53),

Fig.[5-5.2]
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pP= 0'1: Goo = 0-1, = 0.173125.

Z=0

W(Z,t) for the case 2G(8) = Goo 4 E57,G o0 >

0. Fig.[5-5.1] shows that wave is faster at n = O then at n > 0. Fig.[5-
5.2] shows that wave goes faster with the incresing of Goo-
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Chapter 6. Numerical Procedures and Conc!: =~ s

In Chapter 4 we summarised the results obtained by 1. (19] for wave
propagation in viscoelastic rods. For the class of relaxations treated there i1t was
shown that for the basic problem. that is for a step input at ¢ = 0, the resulting
wave forms are closely connected with stable probability distribution functions. In
Chapter 5 we considered the general asymptotic wave forms for wave propagation

in a fluid filled viscoelastic tube which differ from the previous situation, in their

simplest forms by the addition of a term 7 due to radial inertia of the tube wall.

That 1s

Sr

— sG(s)+ ns?

W(z,s)= ®(s)e , (6.1)

with n = 0 for the rod. Even though one would expect the asymptotic forms to
be the same, it is clear from the analysis in Chapter 5 that this is not always
so. Thus. in considering those cases where sG(s) has in analytic expansion about

s = 0, a case is typified by the Kelvin-Voigt relaxation function with

sG(s) =1+ s, (6.2)
it was shown that if
72
—_. 6.3}
n>» (6.3

then the asymptotic form of T (r.t) is in the form of Airy function, which is
. C = 1

oscillatory and so equation (6.1} with ®(s) = - can not represent the transform
S

of a probability distribution function, anlik: :Le case 7 = 0. As n decreases, this

conclusion <hanges. For example if

(6.4)



19 T
TV (r.s) = B(s)e™ 27, (6.5)
with

>

1+7s

Q(s) = (6.6)

Clearly, (s) > 0, Q'(s) is completely monotone for s > 0, so for each = > 0,
W(z,s) is completely monotone by Theorem 4, and hence by Theorem 1 is the
Laplace transform of a probability distribution function for ®(s) = %

For

2
-

n < T (6.7)

we have employcs' the numerical method described below to graph the behavior of
W(z,t) f>¢ a spe-ified pulse input. The graphs are shown in Fig.[6-4], for various
values of 7.

In the examples corresponding to Pipkin's other cases when , near s = 0,
sG(3) =Go +és?, 0<p<l, (6.8)

where Go, may be zero or a positive constant. It is not clear whether this case,
like the case n = 0, gives rise to probability distribution and density functions.

Whether or not this last case is so, it is of some importance to determine
how the various available parameters affect the propagation of pulses i viscoelastic
tubes. I it is true that most materials can be approximated by relaxation functions
of the classes considered above, then we can decide how pulses in a wide variety
of fluid filled viscoelastic tubes are affected by the tube wall viscoelasticity.

Next we consider a numerical method briefly.

We have the inverse Laplace transform of W(z,s) as

a41o0

‘V(r,t):%—i, | ' W(z,s)ds, (6.9)

-—
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which: may be written as

W(z,.t) = ——-/ (a + i)} cos ot — F{IV(a + iw)} sinwt] dw. (6.10)

where R and T are the real and imaginary parts respectively.

Following Crump [18]. we can write the serics approximation to (6.10} as

W(z,t)= e—;;t- [ Wi(zx,a)+ Z[R{U (a + ——-)} cos(ézr—t-)

k=1 (6.11)

—3{W(a + ——)} sin( E—“—t-)]]

where T is chosen so that 2T > t,ax, Where tnax is the largest t over a range of

t-value, and a is chosen to satisfy that

a=a— h—;—Tgi, (6.12)
where E' is the relative error of the computation, and a is a number to be chosen
slightly larger than max{®(p), p is a pole of W(zx,s)}.

To calculate (6.11) numerically, we use the Epsilon Algorithm (EPAL) [23]).
By this algorithm, the rate of convergence can be significantly improved. The
method of EPAL can be described as follows.

To numerically approximate the sum of series S | @n, We can use its first

2N +1 partial sums s = ZZ;I a,,m=1, 2, ..., 2N+1, and define a nonlinear

sequence as

_(m) ( 1 - ~ -
el =TT+ [ =T (6.13)
with e(m) 0 and egm) = s,». Then the sequence 5“), 6(31) eg”, . 6(21,2,+1 is a

successive approximation to the sum of the series.

An example of both experimental and numerical results for wave propagation
in fluid filled distensible tubes is given in [12]. We use the same boundary condition

and values here for comparison purposcs.

IE)



The boundary condition is given as

pPm(0,t) =

o —

[1+ cos ?"’-(t — )| H(2to — )H(2), (6.14)
0

with ty = 3ms, and p,, the mean pressurc. The relation between WV (z,s) and P,

is
TW(z,s) = B(s)e 27, (6.13)
2s2B(s)
5 =4 —Q(S)I‘ 4 1
P = Als)e ()= g5 (6.16)
and
_ 1 e"".’dto 7.‘-2
A(s) = pm(O. s) = >s =2 1 o282 (617)
= 0
Then
_ 1 — e~ 23t w2 ST
Pm(z,8) = (6.18)

— exp{— —F=———=1}
Do -2 1242 —_—
> ”n + S to SG(S) + T’Sz

Applying Crump’s series approximation and EPAL to equation (6.18), we

can get the numerical results of pm(z, t) for the different choices of sG(3).

First consider the case where

Q(s) = > ., (6.19)

where 7 = 9 * 10™5 sec, n = 0.173125. The mean pressure at = = 6, 11 cms aze

shown in Fig.[6-1] and [6-2], and these are in good agreement with [12].

The case n = 0 is shown in Fig.{6-3].

Next we consider the case where

Qs) = ———me—, O0<p<l (6.20
(") \/m 14 X )

For n = 0, we have case (IA) of Chapter 4, The graphs are shown in Fig.[6-5].
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For 1 # 0, Figs [6-6], [6-7] and [6-8] illustrate the graphs of pm for different
choices of the parameters of 7, p and ¢. \We can see that n decides the degree of
oscillation in the tail. p is related to both the amplitude and the tail of the wave.

The value of é affects the speed of the wave.

Next we consider

Q(s) = 2 .. Gep >0, 0<p<l (6.21)
G + sP +1s®

Fig.[6-9] is the graph for n = 0, which is case (IB) of Chapter 4. Fig.[6-10]
shows the effect of G on the speed of the propagating wave, while Fig.[6-11]

illustrates the effect of n on the oscillation of the tail.

Fig.[6-12] is the graphs of pn(2,t) for the three different cases at n = 0. It
is really Figs. [6-3], [6-5] & [6-9] in one axis of coordinates. The graphs display
the behavior of wave propagation n viscoelastic rods with a pulse input.

. . 1
It has been shown in Chapter 4 that for a viscoelastic rod, with ®(s) = 3

313

a+tR
W(z,t) = lim / i °G( Yest ds (6.22)
—oe —R

is a probxbility distribution function for these three cases. Therefcre

ST

a+iR [ .7
w(z,t) = é—)—w-—%t———) = Iim e V SG(S)e“‘

R—oo Jo-iR

(6.23)

is a probability density function.

The graphs in Fig.[6-12] are about p..(z,t) with

__ p—2sto 2 - ral )
(2, 8) = e e V sG(s) (6.24)
! 0




with an input given by the pulse function (6.14), rather than a step function. The
behavior of the various equations are connected through the ordinary convolution
theorem for Laplace transforms. Since p,,(0,t) 2 0, it follows that if w(z,t) is

given by equation (6.23) for any G(t) in the classes described, then

Pm(l',t) = pm(oat) * w(a:,t), (625)

where the * denotes convolution which is defined as

f*g=/0 f(t = T)g(r) dr.

and so pm(z,t) = 0if both pm(o,t) and w(z,t) are positive.

Suppose now we consider the perturbed equation with n # 0. If the behavior
of the ¥=r . 1is dominated by the values near s = 0, then 7 should have little effect.
ina npy vase continuity arguments should ensure that for n sufficiently small, there
Lo e tittle effect. The question is whether or not as n increases, the behavior
of pm(z,t) will change and no longer remain completely positive. Fig.[6-4], [6-
6] and [6-11] show that for the classes of relaxation functions described above,
that this is so. For n sufficiently small, pm(z,t) 2 0, but as 7 increases, the tail
oscillates. One may then conclude that the radial inertia term 7 does alter the
wave propagation properties for fluid filled tubes from those found for rods.

In certain cases above we have mai: jed to show analytically the occurrence
of oscillatory solutions as 1 increases. For the case described by equation (5.6) we
can consider the two extreme ce. 3s for step input. If £ =0, and =& +7n=20in
equation (5-1), then following Pipkin, W(z,t)is a probability distribution function
for each 0 < z, t < oo. If on the other hand, 7 =0, 71 =§ +7 # 0, we have the

standard Love approximation solution for wave propagation in a bar with

Wz t) ~ ( / " Ad(—q)dg + %) +0(2) (6.26)

T8



where

t — r
=t (6.27)
(5ei)t/?
see Miklowitz [25] for detail of the equations.

This solution displays oscillation about the elementary step solution.

In the other cases we have to rely on numerical results. There are similarities

in the various cases. Suppose we write
sG(s)+ st =a+bs? +cs®, 0<p<Ll, (6.28)

and consider equation (5.1) for a step input. Then, to illustrate the various cases
we can in turn set b = 1, ¢ = 0 to give Pipkin's case and then b =0, ¢ =1 to
give oscillatory case. a = 0, 1 depending on whether we consider G, = 0, or not
respectively. 0 < p < 1 and p = are considered as separate cases. The results
are shown in Fig.[6-13] to Fig.[6-21].

Figs.[6-20] and [6-21] attempt to describe the case p =1, a = 0 that sG(s) =
bs, b> 0. If c =0, we have

Wiz, t)= 1 esl—-;,li7b—l/2 Eli
’ 2mi Jp S
s (6.29)
= Erfc(

Wk

where Er fc denotes the complementary error function with

o0

2 2
(2) = —= —* du. .30
Erfe(z) 7=/ u (6.30)
Clearly W(z,t) increases monotonically to 1 as t — o0, but the increase

is extremely slow as can be seen from Fig.[6-20]. At the opposite extreme when

b= 0, c # 0, the exact solution is
Wiz, t) = Fit)e 7/ ¢ (6.31)

This last result indicates the infinite wave speed associated with the approx-
imating equation and emphasizes that the sigs=i -lecays exponentially with z so

that at large z the amplitide is negligible.
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