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Abstract

An analytical theory of photon propagation and detection for SPECT is presented. The
theory accurately accounts for most of the physical processes involved with photon
propagation and detection in SPECT. In particular, it accounts for photon propagation,
nonuniform attenuation (including photoelectric absorption and all orders of Compton and
Rayleigh scattering combinations and possibilities), the three dimensional depth-dependent
collimator resolution, and the intrinsic energy-dependent detection probability function of
the Anger camera (both the intrinsic energy-dependent detection efficiency anc the
intrinsic energy resolution of a Nal(Tl) scintillation crystal). The theory allows int.yrai
expressions for each scattering order of the photon detection kernel to be formulated
separately. The photon detection kernel is ceniral to iterative reconstruction algorithms

like the Maximum Likelihood Expectation Maximization (MLEM) algorithms.

Numerical integration code is developed in order to calculate the lowest three orders
of the kemnel for general nonuniform imaging situations. The results calculated from the
numerical code are compared with those obtained from experiment. The code is shown to
provide an accurate tool for modeling nonuniform experimental imaging situations for
both point and extended source distributions, provided a narrow energy window and a

lower energy photon source, like ™ Tc and 121, are used.

The connectivity problem of the kernel is quantitatively investigated, within the
context of source voxel — projection pixel connectivity. It is demonstrated that the main
factor determining the extent of the kernel connectivity is photon scattering, with 3D
depth-dependent collimator hole resolution being of secondary but still significant
importance. Understanding the connectivity of the kernel is necessary for both practical

and efficient implementation of it in iterative reconstruction algorithms.

Finally, using the results of the kernel connuctivity investigation, the kernel expressions
obtained are used to compute a reconstruction kernel for a simple, but real, imaging

situation. The calculated kernel is employed in an VILEM-type algorithm and the source



distribution is reconstructed from experimentally acquired projection data. The
reconstructed distributions obtained from the MLEM algorithm show improved resolution
within the transaxial slices as well as between the slices over the same obtained from the

traditional filtered backprojection method of reconstruction.
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R introduction

A. Nuclear Medicine Imaging and Development

Nu-lear medicine is a medical specialty that utilizes the properties of radioactive
elements to treat and diagnose a wide variety of human diseases and disorders. Diagnostic
nuclear medicine procedures generally begin with a patient receiving an intravenous
injection of a substance called a radiopharmaceutical. The radiopharmaceutical is usually a
complex chemical substance, such as a drug, which has been labeled with a radioactive
element, and is designed to possess specific physiologic and metabolic properties of
interest. The radiopharmaceutical distribute: tself within the patient according to these
properties, producing a three dimensional radioactive source distribution. The most useful
radioactive elements for designing diagnostic :»diopharmaceuticals decay by emitting
photons which subsequently escape the body of the patient with sufficient probability to
allow external detection. The detection of the emitted photons is accomplished by a
special radiation detector called an Anger .or scintillation camera. The Anger camera
records the emitted photons and produces an image which is a 2D projection of the 3D
radioactive source distribution onto the imaging plane of the camera. The Anger camera is
mounted on a rotating gantry to allow projections of the source distribution to be obtained
at any angle about the gantry’s axis of rotation. Of particular diagnostic value is an
imaging procedure called single photon emission computed tomography (SPECT), in
which a number of projections are acquired with the Anger camera at regular angular
intervals about the patient. Through a mathematical process called reconstruction, an
approximate 3D representation of the source distribution is obtained from the set of
projections collected at the various angles about the radioactive source distribution (i.e.

patient).

The clinical significance of the procedure is that the presence of radioactivity within a
certain region of the human body directly implies the presence of the radiopharmaceutical
within the same region. As such, the reconstructed source distribution can be equally well

regarded as the radiopharmaceutical distribution. Physiologically, the actual distribution of
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the radiopharmaceutical is ¢"1e to metabolization or trapping (microspheres in lung, colloid
in liver, for example) by the patient’s organs and tissues. Its presence or absence in various
organs and tissues provides physicians with unique information about their function. Such
procedures can be exploited in two ways to provide physicians with diagnostic
information:

1) If it is not known how a chemical substance will be metabolized by the patient, a
non-toxic volume of the substance can be labeled with a radioactive element and
the subsequent process of its metabolism can then be recorded using a radiation
detection device like the Anger camera, or

2) If it is known that a certain chemical substance distributes itself within certain
organs and tissues of a normal patient, the absence of the substance can signal
dysfunction of organs or tissues involved. By labeling the substance with a
radioactive element, a radiation detection device like the Anger camera can be used
to ascertain the presence or absence of the substance within a region of the patient
by determining the presence of radioactivity within the same region.

The ultimate goal of diagnostic nuclear medicine imaging procedures is to provide
physicians with quantitatively accurate information about the function of organs and
tissues. Therefore, nuclear medicine imaging is often referred to as functional imaging.
Other diagnostic imaging modalities, such as x-ray or magnetic resonance imaging,
provide physicians with information regarding the structure (or morphology) of organs

and tissues.

The history of events that have led to the knowledge and methods accumulated in
today’s nuclear medicine departments is exciting and rich in scientific genius. A complete
account of these events would span nearly 100 years of the most rapid increase in
scientific knowledge and is not possible here. The development of nuclear medicine and its
acceptance by the medical community was directly dependent upon many of the major
scientific discoveries of the 20th century, and their detailed historical accounts are given
elsewhere [1,2]. The first major breakthrough was the discovery of x-ray radiaticn by

Wilhelm K. Roentgen in late 1895 [3]. Roentgen observed that the internal structure of an
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object could be visualized by exposing the object to the radiation emitted by his evacuated
discharge tube and placing a photographic plate on the other side of the object. The
photographic emulsions were sensitized by the x-rays, and a “shadow image” of the
internal structure of the object was produced on the plate. He also observed that the
denser the medium that the x-rays must transverse, the less exposed was the photographic
plate. The medical implications of his discovery were immediate and gave birth to the field

of radiology.

The next milestone was the discovery of naturally occurring radioactivity by A. Henri
Becquerel in 1896 [4]. He noticed that uranium salts, known to become luminescent when
exposed to Roentgen’s tube, in their natural, unexcited state also gave off x-rays, and
therefore were naturally radioactive. Marie Sklodowska-Curie, a student of Becquerel,
began to study and measure this new phenomenon. Along with her hustand Pierre Curie,
she was able to show radioactivity in another element (thorium) using the piezoelectric
phenomenon (that Pierre had discovered) as a means of radiation measurement and
detection. However, it was Rutherford who first reported the radioactive properties of
thorium [5]. Unlike the x-ray radiation produced by a Roentgen discharge tube, the
radiation the Curies were observing was far more energetic and penetrating [6]. By 1898
Marie and Pierre Curie had isolated two more radioactive elements which were called
polonium and radium. Over the next decade many more naturally occurring radioactive
elements were discovered. An explanation of the cause and nature of radioactivity was

proposed by Rutherford (with Frederic Soddy) in 1902 [7].

George Hevesy is generally credited with being the first researcher to exploit the new
radioactive substances as radiotracers in biological systems in 1923 [8]. Using a natural
radioisotope of lead, he investigated the uptake of lead in various portions of a plant. He
used a gold leaf electroscope to quantify the accumulation of the lead in the plant. Further,
the gold leaf electroscope was sensitive enough that non-toxic levels of lead were
sufficient for his measurements, a property of great importance for radiotracers. Near the

end of the 1920's, Blumgart and coworkers [9] in Boston were injecting patients with a
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solution of radium C in one arm and measuring the time it took for the radium C to be
present in the other arm. In their early experiments a cloud chamber was used for radiation
detection, but later they began to use a prototype of the Geiger tube for this purpose. At
that time the only available radioactive elements were those that occurred naturally, and

except for radioiodine, these elements were of little or no physiological value.

In 1919 Rutherford demonstrated that the structure of matter could be altered by
bombardment with high energy alpha particles emitted from a radium source [:0]. It took
fifteen more years for the implications of this discovery to be realized by Irene Curie and
her husbar: Frederic Joliot. In 1934 they reported that transmutation of some light
elements could be irduced by bombarding a target of the stable element with radiation
[11]. Using a polonium source tv irradiate an aluminum foil, they observed that the
aluminum foil remained radioactive after the polonium source was removed. Further, the
radioactivity of the aluminum foil decayed exponentially “just as in naturally occurring
radioactive elements”. Subsequent chemical analysis revealed that a small fraction of the
aluminum atoms had been transmuted into radioactive phosphorus 30 by the irradiation. A
sinilar effect was observed when boron was irradiated by the polonium source, and in this
c:se chemical analysis revealed that the boron atoms had been transmuted into radioactive
nitrogen 13. Since neither of these radioactive elements had been observed to occur

naturally, they became known as artificially produced radionuclides.

Three years before the Curie — Joliot discovery, Emest Lawrence brought the first
cyclotron on line in 1931 and used it to accelerate alpha particles to a high enough velocity
to overcome the Coulomb barrier of the target nuclei, and thus interact with the nucleus
[12]. Lawrence subsequently discovered that his targets had also become radioactive after
bombardment with alpha particles. By 1934 the cyclotron became a useful tool for
producing artificial radioactive elements, using deuterons instead of alpha particles for

bombardment.
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The discovery of the neutron in 1932 by Chadwick [13] was of paramount importance
to radionuclide development. Enrico Fermi used neutrons to bombard stable targets and
artificially produce radioactive elements [14]. Unlike the charged particles being used in
Lawrence’s cyclotron (i.e. alpha +2 and deuteron +1) which needed to be accelerated to
overcome the Coulomb barrier before interacting, the neutron was uncharged. Using the
techniques of Fermi, Livingood and Seaborg produced the radioisotope 11 in 1938 [15].
This isotope was much better suited to clinical applications of iodine since it had an 8 day
half-life instead of the short 6.5 minute half-life of the naturally occurring radioisotope '**I.
Also in 1938, Seaborg and Emilo Segré co-discovered the all-important imaging
radionuclide of today’s nuclear medicine, technetium 99m (*™ Tc) [16], but it would take
twenty more years before it would become widely used. It took nearly ten years from the
discovery of the neutron before the nuclear reactor was available as a rich source of

neutrons. By 1942 the nuclear reactor at Oak Ridge was producing many radionuclides in

large quantities at a relatively low cost [i ].

Hospitals began using these new more physiologically significant radionuclides both
for treatment and diagnosis. Diagnostic procedures involved mapping, point by point, the
uptake of the radionuclide at points of interest using a shielded, colimated Geiger-type
counter | 18]. Collimation provided the Geiger counter with directionality by allowing, to a
crude first approximation, to only detect that activity along the line of sight of the
collimator. The most useful radionuclides for diagnostic purposes were those that emitted
photons (i.e. gamma rays), which subsequently escaped the patient’s body with sufficient
probability to be detected externally using the Geiger counter. At this time "' was the
most common radionuclide being utilized because of its physiological properties
associated with thyroid ailments. However, the Geiger counter was very inefficient at
detecting the emitted gamma rays, requiring millicuries of activity to be injected and
excessively long data acquisition times. Improved gamma ray detectors for clinical

purposes provided the next major advancement in nuclear medicine.
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By the late 1940’s, phioton interactions with matter were quite weli understood. Dense
matter, like lead and iodine, was very efficient at absorbing the photon energy, whereas
less dense matter, like the gas used as the sensitive medium of the Geiger tube, was
extremely inefficient at absorbing the photon energy. Radiation counters, such as the
Geiger counter, relied on the collection of the ion pairs that were produced when photons
interacted with the sensitive material of the detector. The best absorbers of photon energy
could not be incorporated as the sensitive medium of detectors that relied on collection of
ion pairs. An answer to this dilemma was provided by Kallmann in 1947 [19] and his basic
principles of photon ctection are still used today. Instead of relying on collection of ions,
his detector relied on the collection of light photons which were produced by the
absorption of photon energy in certain crystals of high density. The high density of the
crystals ensured that a large fraction of the incident photons would interact with the
crystal and deposit energy into it. The crystals of interest, which Rutherford and Becquerel
had used in their original investigations of radioactivity, were those that released a burst of
light (scintillations) aft r absorbing a photon’s energy, and were termed scintillating
crystals. This fact alone, although interesting, was quite useless for radiation counting
detectors since the individual scintillations needed to be counted using the human eye.
Kallmann had the genius to “coilect” the scintillation photons using another recent
invention, the photomultiplier tube (PMT) [20], which converted the scintillation photons
into a useable electrical pulse. Finally, like the collimated Geiger counter, Kallmann alsv
provided his detecter v.ith directionality using absorptive collimation and shielding. The
result was a muwi: more efficient detector for gamma radiation than the Geiger counter
tube and allowed administered activities to be reduced by approximately an order of

magpnitude (i.e. from millicuries to 100-200 microcuries).

The next obstacle to be removed was the time consuming, manual, point by point
measurement by a technician. This was first accomplished by Benedict Cassen in 1951,
who used a device similar to but more efficient than Kallmann's, and also provided
automated control between the detector and a recording device [21]. In the first

generation of the scanner the recording device was a simple mechanical pen and paper,
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similar to a graphic plotter of today. The paper was mechanically moved in unison with the
detector. When the detector would respond (i.e. detect photons) the pen contacted the
paper leaving a dot of ink. An image of the radionuclide distribution could be obtained
using a mechanical raster-type scanning of the detector over the object of interest. In the
second generation of the rectilinear scanner the pen and paper were replaced with a spark
recorder which burned holes in the paper when the detector responded. The major
drawback of this device was that only one point of interest (i e. small field of view) could

be counted at a time, and therefore image formation was a lengthy procedure.

Hal O. Anger invented a detector in 1958 that revolutionized diagnostic nuclear
medicine [22]. He envisioned the idea of collecting counts simultaneously over a large
field of view to produce an image which was, to a good approximation, a 2D projection of
the 3D radionuclide distribution. To accomplish this he empioyed a large crystal of
Nal(Tl) with seven PMT’s optically atta. i to the back and placed in a close packed
hexagonal arrangement. Spatial resolution was obtained through absorptive collimation
which allowed only photons with a certain direction of propagation to pass and interact
with the scintillation crystal. Those that did interact produced scintillations which were
seen by all the PMT’s. A series of resistive weighting circuits processed the separate
outputs of the PMT’s to determine the position of the interaction in the crystal. Also, the
energy transferred by the incident photon to the crystal could be obtained by summing the
outputs from all PMT’s. The spatial information was used to deflect the electron gun of a
cathode ray tube (CRT) to a certain position, and the electron beam was activated briefly
to produce a flash on the screen of the CRT if the energy of the photon was within a
predetermined range. The CRT allowed one to visualize the dynamic formation of the
image since there was a one-to-one mapping between the scintillation crystal area (i.e.
camera field of view) and the display screen. Another advantage of the Anger camera was
‘hat it was especially well suited for the detection of lower energy gamma rays emitted by

"Tc. By 1964 the Anger camera was commercially available and *mTc began to

uominate as the imaging radionuclide of cnuice.



1. Introduction 8

By the middle of the 1960’s projections of a 3D radioisotope distribution could be
easily obtained with an Anger-type camera. The projection of a 3D distribution onto a 2D
imaging plane made it difficult to delineate overlying and underlying activity since, due to
collimation, activities along a given line of sight of one of the detector elements were
superimposed (i.e. integrated). The camera head was mounted on a rotating gantry which
allowed projection data to be acquired at various angles about the patient. By acquiring
projections at different angular positions one could mentally envision, at least qualitatively,
the 3D nature of the distribution. David Kuhl first proposed a reconstruction technique
that allowed an estimate of the 3D distribution to be obtained from a set of projections
taken at regular angular intervals about the radionuclide distribution through a process
called backprojection [23,24]. An analytical formulation of the reconstruction problem
was given by Cormack in 1963 [25-27], which assumed the source distribution could be
-eiated to the acquired projection data through a mathematical transformation. For
historical reasons, Cormack’s apprc ~h has become known as the “Radon Transform
approach to image reconstruction i .i projections” [28]. Cormack’s technique also
required that a number of projections be taken about the object of interest (i.e. the 3D
radionuclide distribution) at regular angular intervals. The set of projections were then
used to reconstruct the 3D object using a technique that has subsequently been termed
filtered backprojection. It took Anger camera and computer technologies nearly two
decades to fulfill Cormack’s requirements for this imaging technique, and by the early

1980°s clinical tomographic systems were in place in many nuclear medicine departments.

The Anger camera continues to be improved but its basic components and image
formation principles have remained essentially unchanged [29-33]. The crystal size (e
field of view) and number of photomultiplier tubes coupled to the back of the crystal have
increased significantly over the years. In many cases, modern Anger cameras employ two
or more camera heads, allowing projection data at a number of angular positions to be
acquired simultaneously. Anger camera development has also benefited greatly from

advances in electronic and microprocessor technologies. Most modern cameras are to a
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large extent digital and microprocessors are used to acquire and correct for deficiencies

(such as nonuniformities and nonlinearities) of the Anger camera.

More than anything, however, the implementation of a digital computer with the
Anger camera was a most significant advance. First used simply as a means of storing
image data and providing various display options, computers now play a central role in
practically all nuclear medicine imaging and diagnostic procedures, allowing for complex
data analysis and sophisticated display options such as 3D surface rendering. Further,
computers were essential to the practical implementation of tomographic imaging
techniques, which have became known as single photon emission computed tomography
(SPECT). SPECT imaging techniques use the acquired projection data and a computer to
numerically reconstruct the radioactive source distribution using Cormack’s or other
reconstruction techniques. In the following section the basic qualitative principles of

SPECT imaging are discussed.

B. Nuclear Medicine Tomographic Imaging

In this section the qualitative aspects of nuclear medicine planar and SPECT imaging
are discussed. Much of the terminology (i.e. jargon) associated with nuclear medicine
imaging will also be defined. As already stated, the ultimate goal of SPECT imaging
procedures is to obtain, from the set of acquired projections, the radionuclide or source
distribution within the patient. Each image obtained with the Anger camera is a 2D planar
projection or view of the 3D source distribution onto the camera imaging plane at a given
angle. The projection image is discretized by dividing up the large field of view of the
Anger camera into a number of smaller imaging elements called pixels. The pixels are
square and arranged in a grid-like fashion on the camera (or projection) plane as shown in
Fig. I-1. The projection or image is described by the intensity values contained in each
pixel and can be represented by a 2D matrix of these values. Further, through the
processes of absorptive collimation and photon energy discrimination, the value at each
pixel is also proportional to the ray sum (or integral) of the activity along the line of sight
of the pixel and perpendicular to the imaging plane, as illustrated in Fig. I-2. It is for this
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reason that the image obtained from the Anger camera is often referred to as a 2D
projection of the 3D source distribution. Further, it is convenient to divide up the 3D
source distribution volume into many small, discrete cubic volume elements called voxels.
The source distribution is then described by a 3D matrix of values corresponding to the
values of the voxels. It is typical in nuclear medicine to divide the projections into 64 x 64
pixels with each pixel occupying an area of approximately (0.6cm)’, and the source
distribution into 64 x 64 x 64 voxels, each voxel occupying a volume of approximately

(0.6cm)’. The concept of pixels, projections, and voxels is illustrated in Fig. 1-2.

To reconstruct the source distribution it is necessary to obtain projection images at
many angles about the source distribution. Of particular interest are the slices of the
source distribution that lic perpendicular to the axis of rotation. These are termed
transaxial slices and provide a cross-sectional view (i.e. a slice) of the source distribution
as shown in Fig. I-3. Each transaxial slice lies within a transaxial plane. The voxel size can
be chosen such that the spacing of the transaxial planes corresponds to the pixel spacing of
the Anger camera as illustrated in Fig. I-2. Absorptive collimation and photon energy
discrimination allow only those photons which are emitted within a given transaxial slice
to contribute to the pixels contained within the corresponding transaxial plane’, as also
shown in Fig. I-2, and forming a pixel projection row. At each projection angle, each
projection row provides an unique set of line integrals of the radioactive source
distribution as shown in Fig. I-4. The reconstruction problem is reduced to obtaining a 2D
distribution from a number of 1D projections taken at various angles about the axis of
rotation. The full 3D distribution is then obtained, slice by slice, by reconstructing all
transaxial slices. This greatly simplifies the number of computations and the memory

requirements for reconstructing the 3D source distribution from the set of 2D projections.

* This is only true for ideal collimation and photon energy discrimination. A more complete description of

absorptive collimation is given in Chapter 2 and this statement will be shown to be the ideal case.
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The principles of traditional tomographic reconstruction methods are based on a
mathematical process called backprojection [23-27,32,34-37). The reconstruction process
may be described qualitatively to provide an intuitive understanding as to how and why the
process works. Shown in Fig. I-5a are three 1D projections of a 2D source distribution
consisting of two small square regions of activity. The projection data obtained at 6 =0
represents the superposition of activities along the line of sight of the projection pixel. The
projection data obtained at 6 = m/2 resolves the two separate regions of activity but tells
nothing about the depth at which the regions lie. By back-projecting the pixel values along
lines perpendicular to the projection axis (i.e. incrementing those voxels which lie along
this line of sight by the pixel value) the two regions of activity are somewhat resolved, as
shown in Fig. I-5b, but there is a disturbing streaking artifact produced by this process.
The streaking is present because each reconstruction voxel along a pixel’s line of sight is
incremented by the value recorded at the pixel. The two voxels which actually contained
activity are resolved somewhat because they receive contributions from all ;:vjection
angles and thus have larger values than the other non-zero voxels. The streaking artifact
can be minimized by backprojecting projection data from numerous (i.e. >>3) angles since
the intensity of voxels that actually contained activity will be proportional to the number of
projection angles used, whereas the intensity of the other voxels will be of the order of a
single projection pixel’s value, as shown in Fig I-5c. Figure I-5¢ illustrates another
problem that arises in backprojection reconstructions, namely how to distribute the pixel
value when its line of sight is not aligned with the reconstruction voxel grid. Some method
of interpolation must be used for these projection angles and this generally results in an
additional blurring artifact, as also seen in Fig. I-5c. The blutring artifact is often referred
to as a partial volume effect. The process illustrated i Fig. I-5b and I-5c is known as
direct backprojection as opposed to the filtered backprojection technique which removes
the streaking artifact to a large extent, but is still subject to the blurring artifact caused by
a discrete reconstruction grid. The filtered backprojection reconstruction technique is
based upon a mathematical transform of the source distribution called the Radon

transform and will be discussed in detail in Chapter 2.
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There are two main deficiencies in the model upon which the backprojection

reconstruction methods are based:

(i) The geometrical model of the collimation process is oversimplified. Namely,
due to the finite collimation angle a particular pixel records not only the activity
along its own line of sight but also activities which ideally belong to pixels
adjacent to it. In general this process can only be partially corrected for within
the framework of backprojection reconstruction methods.

(i) The physical model of photon propagation within the medium is over-
simplified. The photons emitted by the source may be absorbed by the medium
or undergo Compton scattering interactions within the medium. In ihe latter
case, photons emerge from the medium with direction of propagation and energy
different from those in which they were emitted. Modeling this process is the
main subject of this thesis.

These deficiencies will be discussed in detail in Chapter 11.

The above qualitative description of the reconstruction process in SPECT provides a
superficial, but intuitive, overview as to how reconstruction procedures work for an ideal
imaging situation and an ideal camera system. SPECT acquisitions and reconstructions are
common-place in today’s nuclear medicine departments and provide physicians with useful
and unique diagnostic information about the function of organs and tissues. However, due
to the physical processes associated with the propagation and detection of the emitted
photons, and due to the necessarily low administered activities coupled with finite
acquisition times, the images obtained from the Anger camera are excessively noisy (i.e.
count poor) and blurred. Transaxial slices reconstructed from the Anger camera projection
data are also noisy and blurred. As indicated above, the blurring is primarily because the
majority of reconstruction algorithms used are based upon geometrically and/or physically

over-simplified models of the imaging problem.

A model of the imaging problem constitutes a complete description of the relaticaship

between the radionuclide source distribution, the patient medium, and the projection data
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acquired by an Anger camera system. Reconstruction algorithms are strongly dependent
upon the model of the imaging problem. For example, in order for the popular Radon
transform approach to be applicable to the projection data acquired by the Anger camera,
an over-simplified model of the imaging problem must be assumed; specifically, the
processes involved with the propagation and detection of the emitted photons are ignored,
and the camera system is assumed to be a true line integrator. To improve the quantitative
accuracy of the reconstructed source distribution, either the projection data or the
reconstructed source distribution must be corrected or compensated, after the fact, for
processes not accounted for in the assumed simplified model of the imaging problem.
Since it is not always possible to quantitatively correct for the physical processes ignored
in the simplified model, SPECT imaging based upon the filtered backprojection algorithm
is often referred to as a qualitative imaging technique, rather than a quantitative imaging
technique. In other words, traditional SPECT imaging can ascertain the presence or
absence of radioactivity in a certain region quite faithfully but it generally can not
quantitatively determine the amount of radioactivity that is present within the region (i.e.
MBg/cm3).

From a theoretical physics perspective, the reconstruction problem in SPECT can be
divided into two distinct steps. First, a model of the imaging problem must be specified,
which requires solving the appropriate photon transport equations for a nonuniform
attenuating medium as well as accounting for the specifics of photon detection using an
Anger camera system. Second, using this model of the imaging problem, the source
disiribution must be obtained (i.e. reconstructed) from the projection data, which most
generally requires the inversion of a very large matrix equation relating the radioactive
source distribution to the Anger camera projection data. If the assumed model is
simplistic, a direct analytical solution to the reconstruction problem may be possible
without resorting to inverting the general matrix equation. The disadvantage of such a
model is that additional post-processing of the data is almost always required to obtain the
most qualitatively useful diagnostic information from SPECT imaging procedures, and in

some cases this is not possible.
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Traditionally SPECT reconstruction algorithms have been based upon over-simplified
models of the imaging problem. The bulk of the literature has focused on additional post-
processing techniques which attempt to correct either the projection data. or the
reconstructed source distribution, or both, for deficiencies introduced by the simplified
model. The reconstruction problem has been approached from this perspective because
reconstruction algorithms which attempted to accurately model the imaging situation
subsequently led to reconstructicn problems that were traditionally beyond the available
computing resources. Such approaches are acceptable from a practical perspective since
they have allowed diagnostically useful information to be obtained from acquired
projeciion data. From a physics perspective, however, to fully understand the imaging
problem and the image reconstruction problem in SPECT, an accurate physical theory is
necessary. Hopefully, such an understanding is a step towards making SPECT a

quantitatively accurate tool.

C. Overview of Thesis

This thesis presents a formalism which accurately and quantitatively describes the
relationship between the radioactive source distribution, the attenuating medium, and the
projection data recorded by an Anger camera system. The theory is derived,
experimentally validated, and applied to some problems associated with SPECT
reconstructions. The new approach differs from previous approaches in a number of ways,
but most significantly an attempt is made to theoretically model the imaging situation
accurately by exploiting available a priori information about it. The problem is
investigated using the methods of theoretical physics, and integral expressions for the
central quantity in this approach, called the photon detection kernel, are derived and

subsequently numerically implemented.

The thesis begins, in Chapter II, with a review of the physics related to photon
propagation and detection, specifically focusing on the nuclear medicine imaging situation.

A quantitative description of the most general imaging problem in SPECT is presented
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based upon the concept of the photon detection kernel. The general reconstruction
problem in SPECT is defined and the photon detection kernel is shown to play a
fundamental role in all reconstruction techniques. Derivation of the popular Radon
transform and its inverse solution are reviewed. Deficiencies of this approach and
commonly used correction and compensation techniques are also discussed. Finally,
iterative reconstruction techniques are discussed and the need for physicaily accurate

photon detection kernels is motivated.

in Chapter III an analytical theory of photon propagation and detection is presented
and integral expressions for the photon detection kernel are obtained. In Chapter IV, the
numerical implementation and the calculation of the integral expressions for the photon
detection kernel resulting from the theory are described. In Chapter V, theoretical results
are compared with experiments to validate the theory and the numerical code of Chapter
V. In Chapter VI the numerical challenges of implementing a physically accurate kernel in
an iterative reconstruction algorithm are investigated. The thesis concludes, in Chapter

VII, with a brief summary and a discussion of future work.
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Figure I-1: The right hand image demonstrates the discretization process of the
(continuous) image on the left into pixels. The white outline shown on the right
hand image is the true extent of the continuous distribution on the lefi.
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Figure I-2: This figure illustrates the typical imaging geometry for SPECT. The projection
plane rotates about the axis through the center of the discretized source
distribution. The line of sight for a pixel at the two projection angles is shown by
extending the pixel from the projection plane through the source distribution. Note
that the orientation of the coordinate system and camera axis of rotation was
chosen arbitrarily for this figure and the discussions related to it.
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Figure I-3: The concept of voxels and transaxial slices for describing the discretized
source ¢:stribution is shown. In this diagram, each transaxial plane is made up of
64 voxels (i.e. 8x8) and the 3D source disiribution is made up of 7 transaxial
slices and thus 448 voxels in total.
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Figure I-4: The 3D imaging problem in Fig. I-2 is reduced to a 2D problem by considering
a single transaxial slice of the 3D source distribution. A transaxial slice from
Fig. I-2 with two projection rows parallel to the transaxiai slice is shown on the
left, and the imaging geometry as it is to be interpreted in 2D is shown on the right.
In the idealized model the activity recorded at a given pixel is proportional to the
line integral of the radioactive source distribution taken along the line of sight of
the pixel as shown.
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Figure I-5: (a) Three 1D projections of a source distribution consisting of two square
regions of activity. (b) and (c) Schematic representation of the backprojection
process in SPECT for the three 1D projections from (a).
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In this Chapter the concept of the photon detection kernel will be introduced and the
need for more physically accurate models of the imaging problem in nuclear medicine will
be established. The photon-matter interactions of interest in nuclear medicine, as well as
the basic components of the Anger camera, are described. A mathematical definition of the
general imaging problem in nuclear medicine is presented and two popular solutions to the
reconstruction problem are discussed. Finally, the chapter concludes with justification of
the need for physically and quantitatively accurate models of the imaging problem for use

with iterative reconst: :svtion methods.

A. Physics of Photon Propagation

In nuclear medicine imaging the radioactive source is distributed within a complex
non-uniform medium containing components of tissue, bone, and lung, as well as others.
The emitted photons must traverse the medium to reach the detector and be recorded. It is
desirable to have the largest fraction possible of the emitted photons escape the patient’s
body without interactions. However, there is a significant probability that the emitted
photons will interact with the medium (i.e. the patient) before escaping. There are four
possible photon-matter interaction modes: (i) photoelectric absorption, (i1) Compton
scattering, (i) Rayleigh scattering, (iv) electron-positron pair production. For the photon
energy range of interest in nuclear medicine imaging (70-360 keV), pair production
interactions are not possible since a photon threshold energy of greater than 1 MeV is
required. Further, photoelectric absorption and Compton scattering interactions are
dominart with Rayleigh scattering interactions making only a small contribution for the
energy . - ¢ of interest. The combined effect of all possible interaction modes on the
photon fluence is referred to as attenuation, and the patient’s body is often called the

attenuating medium.

Compton Scattering
In Compton scattering a photon interacts with a free or very loosely bound electron of

the attenuating medium [38]. For all practical purposes, the process appears identical to
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the collision (i.e. scattering) of a particle of momentum Av /¢ (i.e. photon) with a particle
at rest (electron) with mass m,, as shown schematically in Fig. 1l-l1a. In fact the
kinematics of the scattering process are obtained from classical mechanics using
conservation of momentum and energy. There are two significant differences between
Compton scattering interactions and classical scattering processes. Firstly, in a Compton
scattering interaction the incident photon is destroyed (annihilated) and a new photon is
created with energy and direction of propagation satisfying the momentum and energy
conservation laws. The created photon is often referred to as the scattered photon since
classically it appears as if the incident photon was simply scattered by the electron,
transferring a fraction of its energy to the electron. Quantum mechanically, however, it is
forbidden for a photon to transfer a fractional amount of its energy. Secondly, the final
outcome of the scattering interaction is statistical and can not be predicted from the initial
conditions of the problem, as would be possible for a classical scattering process.
Fig. II-1a provides a schematic representation of the Compton scattering interaction and

defines the geometry and variables describing the scattering process.

The energy of the scattered photon, £’ = hv', is given by
E
(1~ cosB)

E(EQ)= arn)

1+

mc”
where E = hv is the incident photon energy and 8 is the angle of the scattered photon
with respect to the incident photon direction. In Fig. II-2, the ratio of the scattered to
incident photon energy is plotted as a function of the scattering angle for =140 keV.
The energy transferred to the electron, T, is given by
T=E-F', (Ii.2)
and can range from practically zero for grazing interactions (i.e. © =~ 0) to a maximum of

mx = ——-—‘21E. , (11.3)
mc” +2F

for backscattering interactions (i.e. 8 = n). The scattering angle of the electron, ¢, with

respect to the incident photon direction can be obtained from the relation



cot¢=(l+ Ezjtan-ez—, (I1.4)

mc

[4

herange O<$¢<mn/2.

ms (I1.1), (11.2), and (11.4) provide a complete solution to the kinematics of the
process but, as already mentioned, do not describe its dynamics, i.e. the
of a Compton scattering interaction to occur. The probability that a photon will
h a single electron of the medium and be Compton-scattered into a small solid
about the angle 6 with respect to the incident photon direction, as shown in
is given by the differential Klein-Nishina scattering cross-section [39] as

do R(EN(E E __ .

—(E,© =-°—(—) (—+-——s'n‘6), IL.5

0 E = B\ FTEY L3)
- E'(E.0) is defined by Eq. (IL1) and r, = (¢’ / dme,m,c*) =282 %10 em s

il electron radius. The angular dependence of the Klein-Nishina cross section is
E =140keV in Fig. 11-2. The probability that a photon will be scattered into
is given by the total Klein-Nishina cross-section [39-42), o(E), and can be

y integrating Eq. (I1.5) over all possible scattering angles, i.e.
dc ... ... frdo .
o(E) = j 222-(15,9)a{Q =2% jo E(E,O)smede . (IL6)

(11.5) and (I1.6) describe the probabilities for interacting with a single electron

lium. In a medium described by an electron density p,, the Compton scattering
. coefficient, p., is given by

Hes =P, (IL7)

iyleigh Scattering

gh scattering [43] is similar to Compton scattering except that photons interact
llection of electrons bound to atoms of the attenuating medium. The atomic
act as a whole (i.e. coherently) and the process is often referred to as coherent

In the Rayleigh scattering process the incident photon is annihilated and a new
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photon is created satisfying the energy and momentum conservation laws, similar to the
Compton scattering process. However, because of the much greater rest mass of the atom,
as compared to the rest mass of an electron, very little energy is transferred to the atom in
this process and the created (or scattered) photon has energy differing only negligibly from
that of the incident one. A closed-form analytical expression for the Rayleigh cross section
is not available and tables must be employed [41]. The differential angular dependence is
also not known theoretically and, in general, only incomplete experimental information is
available for the photon energies of interest. For this energy range (70-360 keV) and for
the media of interest, the Rayleigh scattering cross section is much smaller than the
Compton :cattering cross section [40-42]. Rayleigh scattering interactions begin to
dominate at very low photon energies (i.e. 1-10 keV) in high-Z materials (i.e. lead). The
Rayleigh scattering cross section is at most a few percent of the Compton scattering Cross
section for energies above 100 keV for media of interest in nuclear medicine imaging. In

general, the effects of Rayleigh scattering can be ignored for all practical purposes.

Photon Scattering Interactions

Compton and Rayleigh scattering interactions do not directly reduce the number of
emitted photons since for each photon destroyed a scattered photon is created. Scattering
interactions degrade the energy distribution and spread out the direction of propagation of
the original photon beam. Photons originally propagating towards the detector are
scattered away from it, or photons not originally directed towards the detector can be
scattered towards it. The overall effect of scattering interactions on the acquired
projection image is to spread the photons out over a larger area of the projection plane

and reduce the contrast between hot and cold regions of activity.

The effects of scattering interactions on the image formation process can be envisioned
intuitively. The presence of a radioactive source in an attenuating medium activates the
electrons and atoms in the medium to be a source of (scattered) photons via Compton and
Rayleigh scattering interactions, respectively. It will be shown quantitatively later, that the

efficiency of a given electron as sources of (scattered) photons is dependent upon many
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physical factors including the type of the medium and the distance from the primary
photon source. Further, each electron activates all other electrons since an emitted,
primary photon may initiate a sequence of multiple scattering events hefore escaping the
medium. In this picture, the electrons and the atoms, through the Compton and Rayleigh
scattering processes, can be envisioned as a (low level) background distribution of
radiation with continuously distributed photon energy always lower than the primary
photon energy. It is for this reason that scattered photons reduce the contrast between hot

and cold regions of the primary source distribution.

Photoelectric Absorption

In photoelectric absorption a photon interacts with an orbital electron and vanishes,
giving all of its energy to the electron. The electron is given kinetic energy equal to the
photon energy minus its atomic binding energy. The probability for a photoelectric
interaction to occur is given by the photoelectric interaction coefficient p,. and is
proportional to the fourth power of the atomic number of the medium and inversely
proportional to the third power of the photon energy, ie.

"

Hpp € % , (11.8)
for photon energies typical in nuclear medicine [40-42]. Thus photoelectric absorption
interactions are most probable for lower energy photons in media with high atomic
numbers. The photoelectric interaction coefficient is strongly dependent upon the electron
binding energies of the medium, increasing rapidly as the photon energy approaches the
electron binding energies of the medium and decreasing immediately below them. The
rapid drop-off below the electron binding energies is due to the fact that the incident
photon must have energy greater than the binding energy to undergo a photoelectric
absorption interaction with the electron. Photoelectric absorption interactions reduce the
number of photons incident on the camera face since they are destroyed in this interaction.
Sources deeper in the medium are affected to a greater extent and appear to be less active

than those located closer to the camera.
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Linear Attenuation Coefficient
The sum of the interaction coefficients for Compton scattering, photoelectric
absorption, and Rayleigh scattering is called the linear attenuation coefficient [40-42] and
is simply given as
W= Hes + Hpg + K (11.9)
The linear attenuation coefficient for a given medium describes the interaction probability
per unit length [40] in the medium. Thus, the probability that a photon traversing an
infinitesimal distance dx in the medium will interact along the way is
dP, =udx. (11.10)
The type of interaction that occurs depends on the relative probabilities for each mode of
interaction (i.e. Mo /W, Hpp/ M, €tc.). The linear attenuation coefficient depends both
upon the incident photon energy and the atomic properties of the medium. In practice, the
linear attenuation coefficient is obtained experimentally and as such describes the
probability of all possible photon interaction modes. A photon of energy E emitted at the
position r of the medium has a probability A(r’,r,E), referred to as the survival
probability, of arriving at the position r' of the medium without interacting. From
Eq. (11.10) one can show that this probability is given as
A(r',r,E) = exp[-p(E)|r' - r]], (11.11)
for a uniform medium in which the linear attenuation coefficient u(£) does not depend on

position. In a nonuniform medium the survival probability is given by
-t r-r .
A(r',r,E)zexp[-I d&p(l"f——;——é,E):l, (11.12)
Lo r'—r|

where p(r,E) is the spatially dependent linear attenuation coefficient. In any case n

depends on the energy of the photons.

B. Radioactive Sources
The activity of all radioactive sources is time dependent and is known to decrease
exponentially with time. The activity of a radioactive sample at a time ¢ is given by

a(y=a,e™, (11.13)
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where g, is the sample activity (disintegrations/second) at time =0, referred to as the
calibration activity, and A is the decay constant (inverse seconds). The decay constant A
describes the probability of a decay occurring per unit time per nucleus, and has a specific
value for each radionuclide. The expected number of decays observed for a time

independent source in the time interval T to 7+ AT is given by

(Ny=[ "' a,=a,AT, (11.14)

where N, is a random variable with mean (N,) and standard deviation (Np,). The

expected number of decays observed for an exponentially decaying source for the same
time period is given by

+AT

. (1_e-MT)

<NTD) _ LTMJ dt'd(t') - doLT dt’ e-M’ =a, e”)‘, s (II. 15)

where N,, is also a random variable with mean (N,,) and standard deviation (Npp) -

Therefore, the expected number of decays observed for both a constant and a decaying

source in a given time period are related through

(Np) _ (1—e™¥)
= . 1116
(N} &AAT aLie)

Further, the expectation value of any quantity dependent upon the time dependence of an
exponentially decaying source can be obtained assuming first a constant source activity
and then multiplying by the above factor. For example, if a radioactive source, with
activity a, at time 7 =0, is imaged by an Anger camera at time T for a period AT, and
the number of counts recorded at a given pixel is N, then the expected number of counts

that would be recorded at the same pixel for a time-independent source, N', is given by

, e TAAT
N =N (IL17)

In the theoretical modeling to follow, the time dependence of exponentially decaying
sources is ignored since the experimental data can always be corrected for this effect,

using Eq. (I1.17), before any comparison with the theoretically predicted values is made.
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C. Gamma Camera and Photon Detection Physics

The Anger Camera
In this section the components of the Anger camera are described. In particular the
detection process from the camera point of view is discussed for each component of the
Anger camera. Detailed discussion of the Anger camera components and operation can be
found elsewhere [22,29-32].

A schematic representation of the basic components of the Anger camera is shown in
Fig. II-3. In a typical detection event an emitted photon which escapes the attenuating
medium and is incident upon the collimator within its acceptance angle interacts with the
scintillation crystal. The photon deposits energy in the crystal through either a
photoelectric absorption or Compton scattering interaction. A certain fraction of the
energy deposited is converted into scintillation photons, i.e. into light. The array of
photomultiplier tubes (PMT’s) viewing the back face of the scintillation crystal collects
and converts the light photons into a usable electronic pulse. The positioning and energy
summation circuits collect signals from all PMT’s and determine the location of interaction
and the energy deposited, respectively If the energy deposited lies within a preset energy
range then the imaging element (i.e. pixel) corresponding to the interaction location is
incremented and the photon is said to be detected. The components of the Anger camera

are discussed in detail next.

Collimation
The collimator is a regular pattern of holes formed in a material (such as lead) which is
a good absorber of photons. It provides the gamma camera with spatial resolution by
allowinig only those photons whose direction of propagation is within a certain acceptance
angle with respect to the collimator normal to pass and interact with the sensitive material
of the camera (i.e. the scintillation crystal). Photons striking the collimator outside of its
acceptance angle may interact with the collimator via photoelectric absorption and

scattering interactions, with photoelectric absorption being most probable. For a lead
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collimator, the ratio of the probabilities for the interaction modes are |pg /e =10 for
150 keV photons and ;. / pes =3 for 300 keV photons. Photons which scatter within
the collimator medium or penetrate it (i.e. through the wall of adjacent collimator holes)
further degrade the spatial resolution of the collimator. For higher energy photons
(> 400 keV ), the principles of absorptive collimation that provide spatial resolution are no
longer as practical for two reasons: (i) Compton scattering interactions begin to dominate
over photoelectric absorption interactions, and (ii) photon penetration between adjacent
collimator holes becomes significant for practical hole spacing. The combined effect of

these two processes is often referred to as collimator scattering and penetration.

The process of absorptive collimation is illustrated both from the collimator hole
perspective and the source perspective in Figs. Il-4a and II-4b. The shape and pattern of
the holes determines the acceptance angle of the collimator as well as its spatial resolution
and efficiency. The spatial resolution of the collimator is inversely proportional to the
acceptance angle, whereas the efficiency of the collimator is directly proportional to the
acceptance angle. As such, there is always a trade-off between spatial resolution and
efficiency in designing collimators. The longer and thinner the holes, the smaller the
acceptance angle and thus the better the spatial resolution. However, the holes must be
separated by enough lead that penetration of the hole walls by the incident photons is
small. This fact limits the overall density of the holes, and therefore also the collimator

efficiency, independent of their size and shape.

The spatial resolution of the collimator can be characterized by the full width at half
maximum (FWHM) of the response of the collimator to a point source. The FWHM of the
collimator depends upon the source-to-camera distance, as shown in Fig. I1-4b, and this
dependence is often referred to as the depth-dependent collimator resolution. Absorptive
collimation further degrades the efficiency of the camera system since photons arriving
within the acceptance angle of the collimator may still not be counted if they strike the

collimator material instead of one of the holes.
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The concept of an ideal collimator will be used in later discussions. An ideal
collimator is one in which there is no trade-off between spatial resolution and efficiency.
Further the acceptance angle can be made so small that only those source points which lie
directly along the line of sight of the collimator contribute photons that will pass the
collimator without interaction. Such a collimator then acts like a line integrator of the

source activity along the line of sight of the collimator holes.

The above discussion and examples pertaining to absorptive collimation have assumed
that the holes have heen formed parallel to one another within the septa. Such collimators
are termed parallel hole collimators. Converging, fan beam, and cone beam collimators are
also used in nuclear medicine imaging. In a converging collimator the collimator holes all
point towards a single focal point in front of the camera. If an object is placed between the
camera face and the focal point of the collimator, the image will be magnified. Fan beam
and cone beam collimators are related to converging collimators and are used in SPECT.
A fan bean collimator provides converging collimation along one axis and parallel
collimation along the other, thus focusing on a line. A cone beam collimator converges
along both axes to focus on two orthogonal lines at different depths. It is important to
note that all these collimators only differ from one another in the shape and orientation of
the holes. Although the theory developed in this thesis has only been applied to parallel
hole collimation, it can easily be modified for fan or cone beam collimation. Detailed
descriptions of parallel, converging, fan and cone beam collimation can be found in Refs.
29, 32, 44, 45.

Energy & Intrinsic Spatial Resolution of the Anger Camera
Photons which pass the collimator may interact with the sensitive material of the
camera system - the Nal(Tl) scintillation crystal. For the energy range of interest in nuclear
medicine (i.e. 70-360 keV) the most probable interaction between the photons and the
crystal medium is photoelectric absorption (i.e. Hpp/Hcs =8 for Nal(Tl) at 140 keV).
This is because the scintillation crystal has a high atomic number (due to iodine) and is a

good absorber of photons. The photons which interact with the medium may transfer all
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their energy to an orbital electron through a photoelectric absorption interaction. The
electron’s kinetic energy (i.e. incident photon energy minus the electron binding energy) is
dissipated over a very short distance through atomic interactions with other electrons,
creating a cascade of secondary electrons in the medium. A significant fraction of the
secondary electrons are excited from the valence band either to the conduction band or to
the exciton band, creating free migrating holes and exciton pairs (electron-hole pairs),
respectively. The thallium impurity centers create localized energy levels within the
forbidden energy gap of pure Nal. A hole may migrate and may ionize the thallium
impurity center. A free electron may then subsequently recombine radiatively with such a
center and a photon is emitted with an energy equal to the electron’s transition energy. As
such, a fraction of the deposited energy in the crystal is converted into light photons, with
the cxpected number of light photons produced being proportional to the energy
deposited. Nal(Tl) is fairly efficient at converting the deposited energy into light photons,
with one light photon produced for every 25 eV of energy deposited (or = 5600 light
photons for 140 keV energy deposited) [40]. The crystal is practically transparent to the
light photons produced, which can be assumed to be emitted isotropically about the
photon interaction location due to the short range of the photo-electron in the crystal
medium. The back face of the scintillation crystal is viewed by an array of PMT’s which

collect and convert the light photons into an electronic signal.

Each PMT collects a certain fraction of the light photons depending on its distance
from the interaction location, with those closest to the interaction site collecting the
greatest fraction. The electronic pulse (or signal) produced by a given PMT is
proportional to the number of light photons that it collects. The output signal from each
PMT is split: one signal is sent to the energy summation circuits and the other is sent to
the positioning circuits to determine the interaction location. The energy summation
circuits sum the outputs from each PMT together to form a signal which is proportional to
the total number of light photons collected by the entire PMT array, and therefore also
proportional to the energy deposited in the crystal. This fact can be used to reject

interaction events for photons which do not lie within a preset energy range. The energy
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range for which detected photons are counted is often called the energy acceptance

window.

The conversion of the incident photon energy into light photons and the subsequent
process of converting the light photons into an electronic signal are both statistical
processes [32,40). Therefore, for a monuenergetic beam of photons incident upon the
scintillation crystal, the magnitudes of the PMTs’ output pulses are statistically distributed.
If the recorded energy spectrum for a monoenergetic source is plotted, a bell-shaped
distribution centered about the incident energy is obtained. This effect, referred to as the
intrinsic energy resolution of the Anger camera, is typically characterized by a FWHM
equal to 10-12% of the incident photon energy and is adequately modeled by a Gaussian
distribution [46-48]. Thus, the probability that a photon of energy E is recorded by the

detector in the energy range E' +dE’ is given by a Gaussian distribution

o
P(E.E")= dE' 1118
(£.£9 J2no(E) (1.18)

where c(E)=as/E +b with a and b determined experimentally for a given Anger

camera [48]. The FWHM and the o(E) of a camera can be related through

FWHM(E) = 6(E)8In2 . (11.19)
The probability that a photon of energy E is detected in a energy window W, to W, is
obtained by integrating Eq. (11.18) as
- F - ~E .
F(EW, W..)= I”’.... dE' P(E,E') = %—[erfe(—%ﬂ)) - erfc(%‘;(—;):ﬂ, (11.20)
where erfc(z) is the complementary error function [49]. The energy acceptance window
parameters (W, and W, ) are usually expressed as a fraction of the radionuclide

emission energy and are most often placed symmetrically about the radionuclide emission

energy. For example, a 20% symmetric energy window for *™Tc would have parameters

W, =126keV and W, =154keV . Energy response functions, given in Eq. (I1.20), are
shown in Fig. II-5 for 10%, 15%, 20%, 25%, and 30% symmetric energy windows for



are accepted. Fig. II-5 demonstrates that choosing an energy window which is
>w (i.e. less than 15%) causes the Anger camera to reject a large fraction of the
ergy photons but also a significant fraction of the primary photons, thus leading to
Il decrease in the camera’s efficiency. Therefore, the suggestion that photons
1 scattered in the patient’s body may be rejected to a large extent by narrowing

> energy acceptance window of the camera is impractical.

use of the finite thickness of the scintillation crystal not all incident photons will
a photoelectric interaction within it (i.e. they may penetrate the crystal or
1 scatter within the crystal). This fact determines the intrinsic energy-dependent
on efficiency, A (E), of the crystal and is described by
A(E)=1-¢g*n®1, (I1.21)
1,s(E) is the energy-dependent photoelectric interaction coefficient for the crystal
. d is the crystal thickness, and E is the incident photon energy. Therefore, the
ection probability distribution for the Anger camera is
PAEW, W)= FIEW, . W, )A(E). (I1.22)
ection probability distribution for photons in the energy range 100-140 keV is
in Fig. 11-6 for a 095cm (3/8 inch) Nal(Tl) crystal with an intrinsic energy
»n of 12% for a 20% symmetric energy window centered at 140 keV. It follows
e preceding discussion that the statistical fluctuations in the dewected photon
“are primarily due to the conversion of the deposited energy into light photons and

equent conversion of the light photons into an electrical pulse, which are jointly an

property of the scintillating material and the PMT’s, and are not easily improved
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The position of the interaction point is determined by the separate PMT signals using a
weighting matrix. Relative statistical fluctuations in the separate PMT signals are greater
than those in the sum of all PMT signals since summing averages out the fluctuations. The
weighting matrix is itherefore more sensitive to the individual fluctuations and, as such,
determination of the interaction point is also a statistical process. Thus if a highly
collimated beam of monoenergetic photons is incident on the crystal, with all photons
arriving from the same direction at the same location on the crystal face, the weighting
matrix will produce a 2D distribution of interaction locations centered about the actual
incident location. The width of this disi:*hution is called the intrinsic spatial resolution of
the camera system and is generally specified by a 2D FWHM which is typically 2-3mm. In
modern cameras the total spatial resolution is primarily due to the spatial resolution of the
collimator, and the intrinsic spatial resolution is only a minor effect which usually can be

ignored.

The production of light photons in the scintillation crystal is not instantaneous but
occurs over a finite time interval (= 500ns) due to the lifetimes of the excited electronic
states of atoms in the crystal induced by the energetic photo-electron [40]. Additionally,
there is a finite time interval required to collect and convert the light photons ito an
electric pulse. More time is required to determine the energy deposited and the location of
the interaction. The period of time required to complete the detection of a photon is
usually termed the camera processing time and is much greater than the lifetimes of the
excited states of the atoms in the crystal. These factors limit the maximum detection (or
count) rate of the Anger camera. If a second photon interacts with the crystal before
processing of a previous photon is completed, the two separate events will be
indistinguishable to the camera electronics. The effect is that the two separate interactions
appear as a single interaction with the light (i.e. energy) production being proportional to
the sum of the separate photon energies. The energy discrimination circuits will almost
certainly reject such an event involving two primary photons since the energy will be too
high. This pheromenon is known as pulse pile-up and can completely saturate the camera

electronics to the point that no photons will be detected even though they are most
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certainly arriving at a very high rate. Note, however, the energy discrimination circuits will
not reject events involving two scattered photons whose combined energy lies within the

energy acceptance window.

D. Image Formation Process in Nuclear Medicine

It has been shown that there are a significant number of physical and detection
processes associated with image formation in nuclear medicine. Analysis of a very
simplistic imaging situation will demonstrate the implications of the above described
processes for image formation. More detailed accounts can be found €'sewhere [34-37,50-
52]. The imaging situation to be considered here is that of 5 small point-like sources of
*mT¢, of equal activity, located within the central transaxial slice of a uniform water-filled
cylinder as shown schematically in Fig. II-7. It will be most instructive to focus attention
on the row of pixels within the central transaxial plane containing the point sources, shown
at the top of Fig. II-7. For an ideal imaging situation, i.e. ideal collimation and energy
discrimination and no attenuation, the distribution of counts recorded by this row would
be similar to the distr . (or profile) shown in Fig. II-8. For this ideal situation only
those pixels for whic. e ¢ :he point sources lies along their line of sight records a non-
zero value and, further, the value recorded is independent of the source depth. This is truly

an ideal imaging situation.

To demonstrate the effects of collimation, in Fig. 1I-9 the distribution obtained using a
realistic, low energy all purpose (LEAP) collimator for the imaging situation in Fig. II-7 is
shown. Still, no attenuation in the medium is present. The distribution obtained consists of
five Gaussian-like responses, with each FWHM being proportional to the source depth. It
is evident in Fig. II-9 that the FWHM is dependent upon the source depth and increases
with increasing depth as schematically illustrated in Fig. II-4. The spatial resolution of the
collimator is directly proportional to the FWHM of the distribution.

Including the effects of attenuation and buildup is done in two steps in order to

separate the effects solely due to scatter interactions from those due to all interaction
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modes. First, it is assumed that the Anger camera has perfect energy resolution and ouly
detects the primary photons. Photons which have undergone a scattering interaction are
not recorded since their energy is always less than the primary photon energy. Fig. 11-10
shows that the counts recorded decrease significantly for the deeper source locations. This
is because the probability that an emitted photon will undergo an interaction hefore
escaping the medium increases with increasing source depth. The distribution is replotted
using a logarithmic vertical scale in Fig. 1I-10, demonstrating the exponential dependence
in Eq. (I1.11).

To include all attenuation and buildup effects a more realistic model of the energy
resolution of the Anger camera must be employed. In Fig. II-11, the distribution obtained

tor a 095cm thick scintillation crystal with an intrinsic energy resolution of 12% and a

camera employing a 20% symmetric energy window is shown for the imaging situation in
Fig. II-7. It is now possible that scattered photons having energies below the lower
window limit (i.e. below 126 keV) will, nevertheless. be recorded because of the finite
energy resolution of the camera, discussed earlier (Eqs. (11.18) through (11.22)). Actually,
a significant fraction of all recorded photons are the scattered ones which arrive at the
collimator face from locations in the medium different than the positions of the five
primary sources. Consequently, further spatial broadening of the recorded signal is
expected. This is illustrated in Fig. II-11 in which the distribution is plotted on a
logarithmic vertical scale with the total distribution, the distribution due to primary (or
unscattered) photons, and the distribution due to scattered photons plotted separately. As
the source depth is increased, the total number of Jetected scattered photons begins to
exceed the total number of detected primary photons as the xight haud portion of the plot

in Fig. II-11 demonstrates.

In Fig. II-12 the experimental distribution obtained from an Anger camera for the
imaging situation in Fig. II-7 is shown. The obtained distribution is very similar to the
distribution shown in Fig. II-11, except the experimentally acquired distribution contains

statistical noise. The statistical noise is partly due to the electronics of the Anger camer:
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but to a much greater extent it is due to the Poisson nature of the radioactive decay
process [53]. If the sources were imaged until a very high count was recorded, the
experimental distribution shown in Fig II-12 would appear more like the expectation

distribution (i.e. infinite counts) shown in Fig. II-11.

Even for this most simplistic imaging situation the physical processes involved in
image formation produce noticeable effects. Obviously these processes and their effects
must be considered within the framework of a reconstruction procedure to obtain a
quantitatively accurate estimate of the source distribution. In the following sections two
reconstruction algorithms are considered, and the techniques used to account for the
physical processes described above are discussed. However, before considering specific
reconstruction algorithms, the general imaging problem must be specified. This is done

next and a quaiitity termed the photon detection kernel for SPECT imaging is introduced.
E. Source Reconstruction in SPECT

The Integral Kernel Equation
The relationship between the radioactive source distribution, the attenuating medium,
and the projection data recorded by an Anger camera is complicated due to the physical
processes affecting photon propagation and due to the specifics of detection detailed in the
previous sections. The imaging problem in SPECT (often referred to as the forward
projection problem or the image formation problem) can be most generally described by

an integral kemel equation [54] cf the form

P(R)= J drK(R,r)a(r), (11.23)
Source

where P(R,) is the number of photons detected by the imaging element (i.e. pixel or
collimator hole) identified by the discrete position vector R,, o(r) is the source

disiribution function (i.e. expected emissions per unit volume within the imaging time AT)

about the point r (c.f Eq. (I1.25)), and K(R,,r) is the photon detection kernel. The

kernel K(R,,r) is a dimensionless quantity which describes the probability that a photon
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emitted at the position r will trigger detection of a photon in the imaging element R,.
Ideally, the kernel should contain all of the physics of photon propagation and detection
related to the particular imaging situation, including nonuniform attenuation (i.e.
photoelectric absorption, Compton and Rayleigh scattering), coilimator depth-dependent
resolution, and the energy-dependent detection probability of the Anger camera. In this
way, the particular model of the imaging problem can be completely contained within the
formulation of the kernel, and the terms “kernel” and “model” can, therefore, be used

interchangeably.

It must be noted that a radioactive source always has at least one time-dependent
component, i.e. its exponential decay. Further, the source distribution may not be a static
distribution in the most general imaging situation. In this work, dynamic source
distributions are not considered, but the exponential decay of the source activity at each
point within a static distribution must be taken into account. To account for the

exponential decay of a static source Eq. (I1.23) must be written in a more general form as

T-AT 3 .
PR)=[ " dt [d’r K(R,,r)6(r.0)

Source
’ , (11.24)
= [drk®R0f T oer.n)

Source

where &(r,?) is the source efficiency distribution function (i.e. expected emission per unit

volume per unit time), T is the time lapsed between the source calibration and the start of
data acquisition, and A7 is the acquisition time. For a static source distribution with only
simple exponential decay time dependence, the time integration can be performed

analytically giving Eq. (I1.23) through the relation
o(r)= I:H;Tc's(r,t) = f:’udtdo(r)exp[—lt]

{l—explhkATqé ) ' (11.25)

Aexp[AT]
where G,(r) is the calibration activity of the source, always taken at time =0
S,(r)=6(r,t = 0). Througho... the remainder of this thesis the time dependence of the

source is suppressed since it will be implicitly assumed that the source distribution is static.
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The effects of time-dependent exponential decay of the source can always be accounted
for after the fact using the above correction procedure. As such, Eq. (11.23) provides a

sufficient description, for our purposes, of the most general imaging situation.

Reconstructions - The Inverse Problem

The ultimate goal in SPECT imaging is to obtain the source distribution from the
recorded projection data provided the imaging situation (i.e. the kernel) is known. This
procedure has been traditionally termed reconstruction and most generally requires
inverting the integral kernel equation (Eq. (11.23)) for the source distribution as a function
of the projection data. For typical imaging situations the kernel possesses neither point nor
translational symmetries, and therefore theoretical inversion techniques are of very little
use. In practice the source distribution is generally reconstructed numerically using a

computer.

As already discussed in Chapter 1, in actual applications continuous positions within
the source distribution must be quantized. Specifically, the source distribution is divided

into many small voxels V,, each of volume V', over which both the photon detection
kernel and the source distribution vary negligibly. Thus, labeling the source voxels with an
index j, replacing the (discrete) argument R, with an index i , and defining the discrete
source distribution, s,, and the discrete transition probability matrix (or simply, the

kernel), X, ,, as

5, = j’ d’ro(r), (11.26)

v,

1
K, = 7! FrK(R,r), (I1.27)

J

the integral relation Eq. (11.23) can be expressed in matrix form as

P=2K,s,. (11.28)
J

Equation (11.28) is more commonly used in SPECT than the integra! kernel equation,

Eq. (11.23), because of its discrete nature. In practice, for small enough voxels, the matrix
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clements K, can be identified with K(R,r=r)), and s, can be approximated by
V'S(r,), where r, is a represen:ative position within the j* voxel. It must be noted that

the indices i and j s'and for the complete set of discrete variables necessary for,
respectively, a unique determination of the pixel position for all configurations of the
gamma camera around the attenuating medium, and for the determination of positions of

all source voxels within the medium.

All reconstruction methods in SPECT attempt to solve the large set of linear equations

given by Eq. (I1.28) for s,, in which the measured projection data F, are presumably
known. Mathematically, a direct matrix inversion of Eq. (11.28), i.¢.

s, =2 K\ P, (11.29)

would neither be stable nor in general even be unique since the projection input data £,

and possibly also the matrix K, ,, contain statistical noise and, furthermore, the number of

projection pixels is generally different from the number of source voxels. Finally, direct

inversion of the kernel matrix is computationally impractical due to its enormous size

(typically 64° x 64°).

Theoretically, the reconstruction procedure in SPECT can be viewed as a two-step
process. First, the photon detection kernel for the imaging situation must be specified and

the kernel elements K, , must be calculated. Second, given the calculated kernel elements,

Eq. (11.23) or (11.28) must be inverted to obtain the source distribution from the measured
projection data. The complete physics of the imaging problem enters the procedure of
designing or calculating the kernel. Once the kernel is specified there exist several
techniques to invert Eq. (11.23) and (I1.28) for the source distribution. The choice of the
particular inversion technique used depends strongly upon the form of the kernel. To
demonstrate this fact, two traditional approaches to the reconstruction problem in SPECT

are considered next, beginning with the popular Radon transform approach.



I1. Background - Nuclear Medicine Physics 4]

F. The Radon Transform Approach

Traditionally, ihe photon detection kernel has been based upon a simplistic model of
photon propagation and detection, which will be called the Radon model or Radon kernel
in this work. Essentially, within the Radon model only those source paints which lie along
the iine of sight of a given collimator hole can contribute photons recorded by that

collimator hole. Therefore, for the collimator hole of radius R, centered around the
position R, as shown in Fig. II-13, the probability K(R,r,) that a photon from the
source point r, gets recorded by this collimator hole is unity if r, is within the cylindrical
volume of radius R, extending from the front face of the collimator into the source

distribution (shaded region in Fig. II-13) and is zero otherwi-e. Obviously, this model for

the kernel can only be valid if R, is much smaller than both the length of the collimating

cylinder and the distance from the collimator to the source because the fact that the
photon flux decreases with the distance from the source (i.e. that the photon beam
diverges) is ignored here. This is why this kernel is so successful in astronomy. It is
obvious that the Radon kernel is based on very simple geometrical considerations and does
not attempt to account for the physics of photon propagation through the medium nor for

the specifics of detection. The mathematical expression for the above kernel is
KR.r,)= [ du J‘R dpp f:"d¢ 5% (r, - (R+1)). (11.30)
Substituting Eq. (11.30) into Eq. (11.23) and performing the integration over dr, gives
a0 'R, n —
P(R)={_duf dppj0d¢ G(R+T). (IL31)

If the collimator hole radius R, is small then the source density distribution varies

negligibly over the cross section of cylindrical integration volume allowing the source term
to be taken outside the dp and d¢ integrations, giving

P(R)= R [ dsdo(R - siig), (11.32)
where # is a unit vector normal to the face of the collimator hole at R. W/ith no loss of

generality for the Radon kernel, as previously discussed, it is convenient for computational

purposes to consider the source distribution to be divided into thin transaxial slices (i.e.
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averaged over the range -, <z <z, +dz). In such a geometry, the line integrals in

Eq. (11.32) corresponding to a given transaxial slice can be rewritten in a simpler 2D form

as
P(1,2,8) = 7R’ [ [ dbxady 8(x cos0 + ysin® — 1)5(x. . 2)

y , (11.33)
= 1R [ ds S(x(1,9), y(1,5),2)

where the variables (x, ) and (¢,s) are related through

(z) ( cos® sin 6) (xj
=i . , (I1.34)
s —-sin® cos6/\y

and s, denotes the distance of the projection row from the 7 - axis, as depicted in

Fig. II-14. Note that since this kemnel does not depend upon the distance between the

source and collimator, s, can be taken to infinity when it is convenient for calculation

purposes.

Many reconstruction algorithms used in SPECT have been based upon the Radon
transform given by Eq. (11.33). As demonstrated by Eq. (11.33), the Radon transform is
simply a mathematical process by which a two-dimensional function is represented by a
complete set of line integrals taken at all possible angles about the 2D function and all
possible locations along the projection axis at each angle. The power of the Radon
transform is that the inverse Radon transform exists and can be obtained analytically using
the Fourier Slice Theorem [34-36], and is given by

S5(x.y.2)=[ 8| dolole™ [ di P('\z:8)e ™"

g , (11.35)
= jo ®F [l0|F[P(,20)]]

where ¢ = xcos@ + ysin®, w is the Fourier transform variable corresponding to ¢, and

F is the 1D Fourier transform operator with respect to ¢ and F' is its inverse. From a
practical perspective, a two-dimensional function can be obtained (i.e. reconstructed) from
a complete set of line integrals (i.e. all possible values of ¢ for all possible values of 6 } of

that function via the inverse Radon transform, i.e. Eq. (I1.35).
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The application of the Radon transform to SPECT reconstructions is that the
magnitude of the signal recorded at each pixel is, to a crude first approximation,
proportional to the ray sum (i.e. line integral for an ideal collimator) of the activity seen
along its line of sight (i.e. perpendicular to the imaging plane). Pixels forming a row within
the transaxial plane perpendicular to the axis of rotation of the camera see, in the Radon
model, only that activity which is containes within the same transaxial plane, i.e. the
activity within the volume occupied by the corresponding transaxial source slice (c.f.
Figs. I-2 through 1-4)). As such, each row of pixels provides a set of discrete values
corresponding to the Radon transform of the 2D source activity distribution within the
transaxial slice at a single angle (i.e. for several f -values but only one 6 -value). If such
sets of data are available for several angles © then they can be jointly used in the discrete
version of Eq.(I1.35) to reconstruct the source activity distribution within the
corresponding 2D transaxial slice (i.e. for fixed z) [35]. The full 3D activity distribution
can be obtained by reconstructing each 2D transaxial slice independently at various
positions z along the axis of rotation. Of course, in practical applications involving
projection data obtained from an Anger camera, Egs. (I1.33) and (I1.35) must be
discretized [34-36].

It is conventional to begin the discussion of SPECT reconstruction with the Radon
Transform rather than with the integral kernel equation. This is because the Radon
Transform has a very intuitive physical interpretation which mimics the detection process
for an idealized camera system and imaging situation - i.e. collimator holes act as true line
integrators of the source distribution along their line of sight and attenuation and buildup
are completely ignored. This is exactly what Eq. (I1.30) says mathematically and what
Figure II-13 depicts schematically. The Radon transform approach to reconstruction
follows, however, a proposition quite contrary to that which was outlined in the preceding
sections. There, it was stated that the first step should be to accurately model the imaging
situation to obtain a reliable kernel K. Obviously this is not the case for the Radon
transform approach. Instead, a very simple and idealized model for the kernel is assumed

which then allows Eq. (I1.23) to be inverted analytically. To work in practice, it is
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necessary to correct for physical processes not modeled within the Radon transform
approach, but which are obviously present in the recorded projection data (c.f Figs. 11-8
through II-12). In most cases, the correction methods used do not attempt to improve the
model, since then the Radon transform approach would no longer provide a viable
solution to the reconstruction problem. Instead, the methods used generally process the
acquired projection data to better approximate the Radon transform of the activity
distribution - i.e. to convert the data actually acquired to a form which approximates, as
accurately as possible, the projection data that would be recorded if the collimator acted
as a true line integrator and the effects of aﬁenuation were not present. Furthermore, other
correction methods are used to modify the reconstructed transaxial slices - incorporate

effects which can not be included in either the model or the projection data.

It has been known for many years that the Radon transform is a poor model of the
actual imaging problem since it does not account for the physical processes associated
with photon propagation, nor for the specifics of detection. Despite its deficiencies, it
continues to be a very popular model of the imaging problem in SPECT, and further,
practically all commercially available reconstruction software is based on it. This is
primarily because the Radon kernel allows for a rather simple analytic inversion of the
integral kernel equation. Another, more practical factor is that reconstruction methods
based on the Radon kernel are easily calculated on presently available computer hardware.
Since it is known that the projection data acquired with the Anger camera differ
significantly from what the assumed model predicts (i.e. the Radon model), numerous
correction methods have bee:s ionii continue to be) derived and applied to the projection
data or to the reconstructed zfck sia<a to force both data sets to conform to the assumed

model.

Correction and Compensation Methods for the Radon Transform
Typical nuclear medic.ne images obtained from an Anger camera are degraded to a
large extent by statistica noise, the poor spatial and energy resolution of the Anger

camera, and the effects of attenuation (i.e. both photoelectric absorption and Compton
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scattering and buildup); all of which are not directly considered within the Radon
approach. These processes constitute the majority, but not all, of the image degradation
effects encountered in SPECT imaging. Popular techniques used to correct, or to at least
compensate, for these processes, which are applicable to the Radon transform approach,

are discussed briefly in the following,

Image Processing - Filtering

A very popular extension to the Radon transform approach has been to compensz ¢
and/or correct for unwanted effects using image processing techniques such as
deconvolution and inverse Fourier filtering [34-37, 55-57]. The majority of these image
processing techniques are based on the image degradation model, and have been termed
image restoration techniques. In particular, the derivation of the Radon transform ignores
the fact that the projections obtained from the Anger camera are not truly line integrals of
the activity distribution, as required by the Radon transform. Ignoring the effects of
attenuation for the moment, the projection data obtained can be regarded as line integral
measurements of activity convolved with an instrument or blurring function. The
instrument function is assumed to partially account for the loss of spatial resolution due to
the effects of the depth-dependent collimator resolution. The projection data actually

acquired can be expressed as
P.(1,2,0) = B(1,2,0)*h(1,2), (11.36)
where P,(1,2;0) are true line integrals, F.(1,2;0) are the projection data actually obtained

from the Anger camera, h(t,z) is the known instrument function, and * is the 2D

convolution operator with respect to 7 and z, i.e.
P'(t,2;,0)= P(1,2,0)*h(1,2) = Idt'dz'P(t',z';e)h(t -t,z-2"). 11.37)

In Eq. (I1.37) it has been assumed that the instrument function h is a spatially invariant
function of both 7 and z, as required by the convolution theorem. In general the
instrument function must be measured experimentally [55,56,58]. Using Fourier transform
techniques, the true line integrals can be obtained from those measured by the Anger

camera by deconvolving the known instrument function from the measured data:
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o pt] F[Po(2,2:0)]
P(t,z2.8)=F L Fie, ] } (11.38)

where ¥ is the 2D Fourier transform operator with respect to the variables ¢ and =, F'
is its inverse, and F[h(t,z)] is called the modulation transfer function (MTF) of the
camera system [30,56,58]. The MTF characterizes the instrument response as a function
of the spatial frequency, and must tend to zero for increasing spatial frequencies, since no

instrument can accurately reproduce all spatial frequencies. This fact presents additional

problems with the deconvolution process given by Eq. (11.38).

Deconvo'ution and inverse filtering techniques can also be applied to the problem of
scatter correction [55-57,59-61]. These correction techniques assume that the acquired

projection data, P., is the sum of two components: one due to unscattered photons, P,
and another one due to scattered photons, F;, as

P.(1,2;8) = Ps(1,2:0) + Py(1,2;0). (11.39)
It is further assumed that P, can be modeled by the convolution of £, with a scatter

convolution kernel f; as

P.(1,2,0) = Ps(1, 2,00 f.(1,2) = Hdz'dt’PUS(t’,z’;G)fs(t —r'z-2"), (11.40)
allowing Eq. (11.39) to be rewritten as
Po(1,7:0) = Pys(t,2,8) + Pos(t,:0)% £.(1,2:8) = Pig(1, 2,00+ (8 2(1,2) + £,(1,2)), (1L41)

where 8 is the 2D Dirac delta function. Thus, the unscattered component is obtained

through inverse filtering as

8)=F" F{F.(1,2,6} 42

Of course, to use Eq. (I1.42) in practice the scatter convolution kernel must be expressible

as a spatially invariant function, as emphasized in Eq. (11.40).
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The scatter convolution kernel f, can be obtained experimentally by measuring a point
source both in the presence and absence of the attenuating medium [59]. The data sets
acquired must be separately corrected for the depth-dependent resolution due o
collimation before they can be used in Eq. (I1.42) to calculate the scatter convolution
kernel. The effects of both scattering and depth-dependent resolution can be combined by
acquiring data for a point source within a medium of interest and assuming a delta-like
response. The tlarring or instrument function that would be obtained would have a
component due to scattering and a component due o the depth-dependent resolution.
Such an instrument function could be used to partially deconvolve the effects of scatter

and depth-dependent resolution from measured data in one operation.

To be a practical correction method, the instrument function characterizing the Anger
camera and the scatter convolution kernel characterizing the medium must be spatially
invariant functions. However, in reality the instrument function of the Anger camera is not
spatially invariant, depending primarily upon the source to collimator distance. In general,
the scatter response function is also not spatially invariant, but depends strongly upon such
factors as the description of the attenuating medium and the source distributio:: itself [55-
65). Therefore, Eq. (11.38) and (I1.42) can only provide an approximate correction based
upon average instrument and/or scatter convolution functions. The main advantage of
such an approach is that the effects of depth-dependent collimator resolution (which is
spatially invariant for a fixed depth) can be partially corrected. Another advantag.. of
inverse filtering techniques is that the statistical noise contained in the projection data can
be reduced by combining . smoothing filter with the inverse MTF filter, producing a more
visually pleasing immge. The effects of scattered photons, however, are not capable of
being represented accurately by the image degradation model due to the strong spatial
dependence upun the medium description. Additiomal correction methods, which are
outlined belew, have been proposed to compensate or correct for the effects associated

with scatter and attenuation.
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Scatter Correction

Scatter correction techniques, applicable to the Radon transform approach, can be
categorized into two groups. The first group of techniques attempts to correct the
projection data by sub:i g (or removing) the scattered photons, thus making the
projection data better approximate that which would be expected if only primary photons
were detected. They are terme: scatter subtraction techniques. The second group of
techniques attempts to account for the scattered photons and return them to their original
source voxel, and when used with the Radon transform approach, these techniques are
based on the inverse filtering methods ~  >ed in the previous section. In this section the

discussion is limited to sca*‘er subtract, chniques.

Scatter subtraction techniques have been proposed by many authors [57,66-69]. The
acquired projection data, P.(7,z;0), is assumed to be a sum (i.e. Eq. (I1.39)) of two
contributions: one due to primary photons (i.e. unscattered photons), F(7,2.0), and
another one due to scattered photons, P(7,z;0). The basic difference between the various
techniques is the way in which the scaiter contribution is determined. For some
techniques, projection data for one or more non-standard energy windows are acquired to

determine the scatter contribution contained within a standard energy window through a

number of weighting parameters w, i.c.

P(1,:0)= Tw, P(1,2:0), (11.43)
k

where P,(¢,z;0) are the counts recorded within the ¢ wergy window identified by the index
k . The weights w, for each energy window are determined experime:.tally for a given
imaging situation and, therefore, may not be applicable to other more general imaging
situations. Other techniques have been proposed which use the data from various energy
windows P, in a more sophisticated way to estimate 7, but these still require a number
of parameters to be determined for each imagir.; situation. Further, acquiring projection

data in more than two energy windows simultaneously may require substantial

modificatic 1s to the existing imaging equipment.
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The main advantage of scatter subtraction techniques is that they generally require
little additional processing. The scatter-corrected projection data
P(1,2,8) = P-(1,2;,8) - P(1,2,0), (11.44)
can be further corrected using the previously discussed deconvolution techniques to
partially remove the effects of depth-dependent resolution. The main disadvantage of these
techniques is two-fold [56,57,64-69]. First, they are generally based upon empirical
models of the scattering process, requiring a number of parameters to be determined
experimentally for a particular imuging situation. These parameters are then applied to an
actual imaging situation which resembles the imaging situation which was used to obtain
them. The second disadvantage is that they generally involve the subtraction of a nroisy
scatter image, P, from noisy projection data, P, resulting in a projection image, F .,
that is inherently more noisy, in fact, than would be expected for the actual count level of

Ps.

Attenuation Correction
Attenuation is a major effect that must be compensated for to provide more
quantitatively accurate reconstructed images [32,34-37,50-52,56,70,71]. However,
correcting for attenuation most generally requires having a complete description of the

distribution of attenuation coefficients within the medium, i.e. p(r,E). The Radon
transform can be extended to include the effects of uniform attenuation, which leads to the
uniformly attenuated Radon transform, given by

P(t,20) = R [/ ds §(x,y,2)exp(-n Lix, y,6%, (11.45)

which should be used instead of Eq. (I1.33). Here, u is the uniform linear attenuation
coefficient for the medium, L(x, y,0) is the distance from tke source point (x,y) to the
edge of the attenuating medium along the line of sight of the pixel identified by #,z,and 6,
and the functions x=x(z,5s) and y= y(f,s) are given in Eq. (IL34). A detailed
description of the attenuating medium is not necessary since its properties are assumed

uniform, but the boundary of the medium must be known. It is generally accepted that an

analytical solution to the inverse attenuated Radon transform is not possible for imaging
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situations involving nonuniform or arbitrarily shaped uniform attenuating media [70].
However, Bellini [70] successfully formulated an analytical inverse solution to the
attenuated Radon transform, but it is only applicable to a uniform cylindrical attenuating

medium.

Since it is not possible to invert the attenuated Rador: transform analytically even for a
simple uniform medium, techniques have been proposed to correct or compensate for
attenuation either before, during, or after reconstruction. Techniques that attempt to
correct for attenuation during the reconstruction do so by solving the inverse attenuated
Radon transform. Preprocessing techniques attempt to correct the projection data whereas
post-processing techniques attempt to correct the reconstructed slices for the effects of
attenuation. One of the preprocessing approaches corrects the projection data by
averaging projection data recorded at opposite sides of the medium and then applying an
average attenuation correction factor proportional to the attenuation seen by the
projection pixel along its line of sight [56]. The Chang post-processing attenuation
correction is very often used to partially compensate for the effects of attenuation by
processing the reconstructed transaxial slices [56,71]. In this technique the activity value
at each reconstruction voxel is divided by an average attenuation factor. Tk.s factor
represents the attenuation suffered by photons emanating from a given reconstruction
voxel averaged over all projection angles. Although Chang’s technique is very simple to
implement, in practice it provides only an approximate correction and is unable to provide
an accurate correction even for uniformly attenuating media. In general, attenuation is
poorly handled within the Radon transform approach, and most methods developed so far
are only approximate even for uniformly attenuating media. More importantly, errors

introduced by such ad hoc approximation techniques are ditficult to estimate and control.

Summary
The Radon transform approach to image reconstruction from projections is intuitive
and provides adequate reconstructions for qualitative diagnostic purposes in many cases.

The greatest deficiency of the Radon approach is that instead of attempting to model the
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imaging situation more accurately, it leads to modifying the projection data to better suit
the idealized model. Many proposed correction methods provide gains for specific well-
defined imaging situations in which a point or line source is immersed in a uniform
medium with a high degree of symmetry, simply because these methods rely upon an
average, spatially invariant correction for which such imaging geometries are well suited.
However, these same methods fail when applied to a non-uniform source distribution or to
a non-uniform attenuating medium. A better approach to the reconstruction problem in
SPECT is to provide a more accurate model of the imaging situation. However, such
models do not allow for a simple analytic solution like the Radon approach, but must
generally be solved iteratively. In the next section such a method is discussed and the need

for a physically accurate modeling of the imaging situation is established.

G. Iterative Reconstruction Methods

The Radon transform approach to image reconstruction in SPECT is not capable of
efficient utilization of a great deal of valuable information about the imaging problem, like
attenuation, collimator response, camera energy response, etc. There exist, however,
reconstruction techniques capable of utilizing the vast majority of the available information
about the imaging situation. Thes= techniques provide a solution to the inverse problem
through numerical iteration, instead of doing it analytically. The distinct advantage to
these iterative techniques is that, at least in theory, no simplifying assumptions about the
imaging situation need to be made. An accurate model of the imaging problem can be
completely contained within the kernel matrix. One particular disadvantage of these
reconstruction methods is that the projection recorded by a row of pixels within a certain
transaxial plane depends on the source distribution in transaxial slices belungng to
adjacent transaxial planes. Therefore, slice by slice reconstruction methods can no longer
be used and one must truly consider the three dimensional nature of the reconstruction
problem at hand. This leads to a much more numerically demanding solution to the
reconstruction problem.

One of the iterative reconstruction techniques that has received considerable attention

over the last decade is the Maximum Likelihood - Expectation Maximization (MLEM)
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algorithm [72-75]. The MLEM algorithms maximize the “likeliness™ between the actually
measured projection data P and the estimated projections P*’ calculated from Eq. (11.28)

using the k™ estimate of the source distribution s."’

PP =% 5K, (11.46)
-

by minimizing statistical deviations between P*’ and F,. The source distribution estimate

is updated to s in the next iteration, as follows

st PK
sl = e 11.47
! sz'_j Z Pz(k) ( )

resulting in calculated projections P more closely resembling F, than does P*', thereby
reducing the deviations between the expected (i.e. calculated) and measured projections.

The initial estimate of the source distribution, s\’, is generally obtained by setting all

voxels to the same value unl.ss there is some a priori information available to make a

better initial estimate.

The updating procedure is continued iteratively until the differences between the
calculated and the actual projections are reduced to some pre-defined tolerance. Since the
deviations between the calculated and the actual projections are small, an assumption is

made that the differences between the final estimate of the source distribution s‘f‘"‘" and
the true source distribution s, will also be small. This, however, is not necessarily true if
the employed kernel K, , does not accurately model the actual imaging situation, as is the
case when K, does not adequately account for all essential physical processes involved in

photon propagation and detection. Given measured piojection data P, the iterative
statistical procedure will almost always lead, within the assumed tolerance bounds, to

some “best” final estimate of the source distribution s‘f‘"‘”, no matter how poorly the
kernel K, n.odels the actual imaging situation. Such an estimate s‘f““" can be very

different from the true source distribution s,, however, and will only be a reliable
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representation of s, if the kernel K, , used in the reconstruction, models the actual

imaging situation as accurately as possible.

It must be roted that, in general, the reconstruction problem in SPECT is severely
underdetermized. Further, the noisy projection data leads to a noisy reconstructed source
dist-ibution. It is well known that at high iterations the noise content of the reconstructed
d;stribution increases significantly with increasing iteration number, and that the algorithm
generally never converges to a stable solution - not even for algorithms employing exact
kernel data. Due to these issues, MLEM-based reconstructions depend heavily upon the
criteria used to stop the algorithm [76-79]. The stopping criteria cai significantly effect
the reconstructed distribution and therefore great care must be taken when determining a

stopping criteria for the algorithm.

H. Reconstruction Kernels
Observed .nds towards using more sophisticated reconstruction methods, such as
Maximum Likelihood, are justified since these methods inherently address the problem of

noisy projection data and may use kernels X, which accurately model the actual imaging

situation. Presently, there are two major chsiicles in effectively implementing these

powerful methods: i) kernels K, accurately . ;odeling actual imaging situations, and in

particular, accurately accounting for the effects of scatter, are not easily calculated or
measured for the general imaging situation, and ii) storage and computational problems

caused by the large size of K, must be dealt with.

Iterative reconstruction methods based upon the MLEM algorithm have been

proposed with X, , accounting for the depth-dependent collimator resolution and/or for

non-uniform attenuation [80-84). However, most methods used to date do not attempt to
account for the effects of scattering directly within the kernel matrix. Instead, a simplified
kernel is used in conjunction with additional signal processing (similar to the scatter

correction methods discussed with respect tc the Radon Transform approach), possibly at
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each iteration step, to compensate for the effects of scattering as well as other physical
processes not accounted for within the kernel matrix used. In other methods, attempts to
account for scattering directly within the kernel are made, but they are based upon
simplified models of the actual scattering process [85-87]. An accurate K, appropnate
for arbitrary imaging situations is ne:2-vary if the quantitative capabilities of the iterative
reconstruction algorithms are «» be fully realized, and more importantly for a complete
understanding of the problem. In general, however, the underlying and motivating

principle is that, the more accurately K, can be specified, the more stable, precise, and

unique will likely be the reconstruction of the 3D source distribution. To meet this demand

the effects of scattering must be accounted for directly within the kernel.

The second obstacle, the physical size of K, ,, can be somewhat eased by limiting the
extent of the kernel by judiciously not “connecting” every source voxel j to every
projection pixel i , or in other words, setting large biocks of this matrix equal to zero.
Currently, this “connectivity” between the source voxels and the projection pixels is most
often determined solely by the 3D depth-dependent resolution of the collimator. This
greatly reduces the connectivity between the source voxels and the projection pixels, and

thus it also reduces the size of X, , since the 3D collimator depth-dependent resolution

generally does not exceed a 2D FWHM radius of a few pixels. However, kernels which
account for scattered photons will require a much larger connectivity which cannot be
determined by simple geometrical considerations only, but instead, must be determined

from the properties of the attenuating medium.

1. Modeling Photon Detection Kernels

There exist several models proposed for the photon detection kernel applicable to
general imaging situations. In general, accounting for the effects of nonuniform
attenuation within the kernel is straightforward, provided a description of the attenuating
medium is available, since this only requires an evaluation of the integral in Eq. (11.12) for

the source and the collimator coordinates. Further, the depth-dependent collimator



1. Background - Nuclear Medicine Physics 55

resolution is a purely geometrical effect and is easily accounted for within the kernel [88].
The major difficulty has been to develop an accurate model of the scattering component of

the kernel and it still remains an area of intensive research [84-87,89-98].

There are two main difficulties in studying and modeling the scattering component of
the kernel. The first one is that experimentally, except for very simplistic unaging
situations, the unscattered and scattered components of the projection data cannot be
separated. Further, experimental investigations of scattering are time consuming and
cumbersome, simply because a large number of separate measurements are required to
obtain sufficient data needed to reasonably model scattering for a given atienuating
medium. The second difficulty is that, unlike attenuation and depth-dependent ccllimator
resolution, scattering requires explicitly solving the photon transport equations for the
attenuating medium, and the specifics of detection by the Anger camera must be taken into
account. As a result, this problem has generally been avoided due to presumed theoretical
difficulties [86,87,89,90,92,95,96].

Although direct theoretical formulation of the photon detection kernel applicable to
general imaging situations is not straightforward, all individual microscopic processes are
known. Most of them have been described previously in this chapter. It is possible to
numerically simulate an experiment using uniform random sampling of the inverse
cumulative probability distributions describing the possible photrn interactions [$3] and
accounting for the specifics of detection [50,85,100,101]. These methods are known as
Monte Carlo (MC) simulation techniques and they have drawn enormous attention from
the nuclear medicine research community. The MC simulation techniques allow the
degrading effects of depth-dependent collimator resolution, attenuation, and the detection
process to be studied in detail and in isolation from one another. In particular, the effects
of scattered photons can be investigated in detail. The only drawback of the MC
simulation method seems to be that a very large number of individual photon histories
raust be followed to obtain statistically useful results, which requires a large amount of

computational effort. Even with today’s powerful computing hardware Monte Carlo
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ae application of Monte Carlo simulation techniques to photon propagation and
n in nuclear medicine must be marked as a major landmark in nuclear medicine

L

rinciple, Monte Carlo simulation methods could be used to calculate the kernel
for practically any given imaging situation [100,101]. However, because MC
ons are computer intensive, such an approach is not practical using today’s
ing hardware. Instead, the Monte Carlo simulation methods have been exploited to
ne parameters for use in empirical models of the kernel, and in particular those of
tering component of the kernel {47,86,87,89-91,93,94]. The models obtained are
‘0 implement numerically and require significantly less computational effort than a
VIC simulation of the same problem. Further, these models allow for spatially
1ogeneous scattering and the parameters can be tailored to provide accurate
of the kernel for a given situation. These empirical models may hold the greaiest
» for the immediate future, or at least until computer resources are available to
czlculate the kernel using MC simulation or other methods. However, in most
sarameters specific to each imaging situation must be obtained to apply such an
al model. Thus, an accurate model of the photon detection kernel is required even
ves no other purpose than to aid in the determination of parameters for an empirical

The MC simulation method has been used extensively for this purpose to date.

m a physicist’s point of view, the Monte Carlo simulation technique is a useful,
ul, and practical technique for studying the imaging problem in nuclear medicine,
s somewhat short of a completely satisfactory solution to that problem. A Monte
iimulation technique, no matter how powerful and sophisticated, is not a physical
but is more akin to experiment. Simultaneously, it has been generally accepted that
ytic formulation of the photon propagation and detection problem is neither feasible

actical. The work presented ir: the following chapter begins by returning to the

| imaging problem, Eq. (11.23), and attacking the problem using the methods of
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theoretical physics. It will be shown that an analytical formulation, i.e. a theory, of the
photon propagation and detection problem in nuclear medicine imaging is both feasible
and practical. As an added bonus, this formulation provides well-defined integral
expressions for each scattering order of the photon detection kernel, implicitly accounting
for attenuation, both Compton and Rayleigh scattering, and for the specifics of the photon
detection process using a collimated Anger camera. Further, this theoretical formulation
embraces the majority of advantages of the Monte Carlo simulation techniques without

some of their inherent statistical drawbacks.
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Figure II-1: Schematic representations of (a) the Compton scattering interaction and (b)
the differential Klein-Nishina solid angle for scattering.
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Figure I1-2: Fraction of the incident photon energy given to the scattered photon (circles)
and the Klein-Nishina cross section (squares) versus scattering angle using
Egs. (I1.1) and (11.5), respectively, for photons with incident energy E =140 keV .

Here r, is the classical electron radius defined around Eq. (11.5)
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Figure 11-3: Scher~atic representation of the Anger camera and its components.
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Figure [I-4: The concept of absorptive collimation is shown (a) from the collimator

perspective and (b) from the source perspective.
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Figure I1-5: The probability for photons of energy E to trigger detection for 10%, 15%,
20%, 25%, and 30% symmetric energ~ windows centered at 140 keV as given by

Eq. (I1.20).
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- ==O—Energy Response Function Eq.(11.20)
0.60 + =0= Absorption Efficiency Eq.(IL.21)
| emtv=T_ tal Response Eq.(11.22)
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Figure [1-6: The total detection probability for photons of energy £ for an Anger camera
employing a 3/8” Nal crystal and a 20% symmetric energy window centered at
140 keV as given by Eq. (I1.22). Note that the total detection probability peaks at
a photon energy £ that is slightly less than 140 keV.
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Figure 1I-7: Cross section of the cylindrical water-filled phantom and the five point
sources.
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Figure II-8: Projection profile of a uniform phantem with five point sources shown in
Fig. II-7, assuming an ideal collimator, 1deal energy discrimination, and no
attenuation.
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Figure 1I-9: Projection profile of a uniform phantom with five point sources shown in
Fig. II-7, using a LEAP collimator and assuming ideal energy discrimination and
no attenuation.
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Figure 11-10: Projection profile of a uniform phantom with five point sources shown in
Fig. II-7, using a LEAP collimator. The projection profile data is plotted using
both a linear sczle (solid line) and a logarithmic scale (dotted line). The effects of
attenuation are shown for a camera with ideal energy resolution. Only primary
photons are detected.
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Figure II-11: Projection profile of a uniform phantom with five point sources shown in
Fig. 1I-7, using a LEAP collimator. The effects of attenuation are shown for a
camera with 12% energy resolution, 3/8” Nal crystal, and a 20% symmetric energy
window for ®™ Tc . Both scattered and unscattered photons are detected.
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Figure I1-12: Projection profile of a uniform phantom with five point sources shown in
Fig. 1I-7, obtained from experiment for a camera, using a LEAP collimator, with
12% energy resolution, 3/8” Nal crystal, and a 20% symmetric energy window for
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¢ = xcosO+ ysin®
s=-xsin6+ ycosH
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Figure 11-14: Geometry for Eq. (11.33) showing the relationship between the (x,y) and (4,5)
coordinate systems.




Ill. Theory of Photon Propagation and Detection in SPECT

A. Analytical Approach to Reconstruction Kernels

As discussed in Chapter 2, the photon detection kernel is a fundamental quantity
required for all reconstruction methods for SPECT imaging. In this Chapter a general
expression for the photon detection kernel will be derived. It is usefui as an introduction to
what follows to note that a photon emitted at the point r, may trigger a sequence of
scattering processes due to the attenuating medium, resulting in the creation of a photon
which is eventually detected at R, . It is intuitively obvious that the total photon detection
kernel, K(R,,r,) can be decomposed into a sum of contributions due to each order of

detected scattered photons [97,102], i.e.

KR,r)=Y K'"(R,.r,), (11L.1)
n=0
where X’(R,,r,) describes the probability that a photen ¢+ =" 2 ¥, will trigger a

sequence of n scattering processes before the photon detec: «* « R, i, «uated. Examples
of the three lowest order scattering processes (# = 0, 1, and 2) are illustrated in Fig. 111-1.
The general expression for K(R,,r,) must account, among other things, for the
specifics of the detection process. First of all, only photons striking the front face of the
detector which arrive within a certain acceptance angle of the coilimator are detected.
Secondly, photons with energies less than a threshold energy have a negligible probability
of being detected within the energy response window of the detector, thus limiting the
amount of the overall energy loss due to Compton scattering. The following assumptions

and simplifications are used in this approach.

1. Photons are treated as classical, distinguishable particles having well definea energy
(E = hv) and direction of propagation. Propagating through the attenuating medium, the
photon beam is attenuated due to photoelectric absorption, Compton scattering, and
Rayleigh scattering. In the latter two cases, the scattered photon has direction of

propagation different from that of the incident photon. Additionally, the Compton



I11. Theory of Photon Propagation and Detection in SPECT 69

scattered photons can have energy significantly different from that of the incident photon
(c.f Eq. (IL1)).

2 The linear attenuation coefficient and the electron density in the medium are specificd
by the functions p(r, £) and p,(r) respectively, which may be analytical or tabulated, but
are assumed to be known. We note here that the linear attenuation in the medium is due to
all photon loss processes present, i.e. it accounts not only for photon absorption, but also
for Rayleigh and Compton scattering in all possible orders. In principle, u(r,E) and
p,(r) may be determined experimentally and, therefore, these processes are accounted for
automatically once these functions are known. Measuring these functions experimentally is
still a non-triviai problem in SPECT, and is a subject of vigorous research.

3. The collimator is modeled as a two-dimensional array of non-overlapping empty

cylinders of radius R., length L_, and face center separation D,. The parameter R is

chosen such that the open area of the collimator face is the same as that provided by the
hexagonal or round holes of the actual collimator. The collimator septa are assurned to be
made of a material opaque to photons.

4. The energy-dependent detection probability of the Anger camera is assumed to be a
product of the energy response function and the absorption efficiency of the crystal as
discussed in Chapter 2, Eq. (11.22).

5. Scattering in the scintillation crystal and septal penetration (i.e partial non-opacity of
the material used for the collimator) are 1gnored.

6. The intrinsic resolution of the camera is ignored as it can always be apylied as a
correction 1o the detection of photons at the back face of the collimator holes and is not of

primary interest here.

Current Densities of the Primary and Scattered Photons

Consider the foliowing situation. At the pcint r, of the medium, there s a point-like
isotropic source of monochromatic radiation emitting phetons of energyy £, at a constant

rate a,. These photons will be referred to as primary or zeroth-order photons in what
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follows. They propagat: in the medium and at an arbitrary position r (i.e. Fig. 11l-1a) the

current density of the primary photons is

o a\ r-r,
Jko)(r; ro) = (Z;);) -‘—r—::(:-l? A(r, Fo» EU ) ) (1“2)

where A(r,r,,E,) accounts for the attenuation (both photoelectric absorption and

scattering interactions) and is given in Eq. (I1.11). The current density is directed radially
outward from the source and would decrease in inverse proportion to the square of the
distance from the sourcc were the attenuation absent in the medium. Both arguments, the

current position (r ) and the position from which the photons originate (r, ), are explicitly

. ++'en down as arguments of the current density.

The primary photon may either escape from the medium and be lost, or be accepted by
one of the collimator holes and be counted. It r.ny, alternatively, undergo a scattering
\nteraction at some position, say r,, in the =i In the latter case, a photon with
energy E, is created at r, and it propagates :- 2 direction deviating from the direction

from which the zeroth-order photon has arrived by a Compton or a Rayleigh scattering

angle 8, (i.e. Fig. 11I-1b). The energy E, of the outgoing photon, referred to as the first-

order photon from now on, depends on the primary photon energy, the scattering ang,c,

and the scattering mode, i.e. E, = E,(E,,8,) is given in Eq. (I. 1} for Compton scattering
mode, and E, = I, for Rayleigh scattering mode. The flux of primary photons at ihe
scattering position r, is just | j*”’(r,;r,)|, and the number of 4rst-order photons scattered

by an angle 0, is determined by the tota! scattering cross section,

do(E,.8,) (dc(Eo,Gl )) +(do(E0,9! )‘)
aQ \ do /. dQ

(111.3)

R
Therefore, the current density at r of the first-order photons created by scattering off an

electron at the location r, is
. r-r, . ‘
)= |—r——rl'—3| §r e ) BV (r e, ), (111 4a)
-l

where
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(dU(EO, /dc(Eo»el ))
dQ

8,)) ! .
0 }CA(r,r,,El)ﬂ\ RA(r,r,,L,-EO)}. (il1.4b)

B‘"(r,ro,r,)z{

Again, the current position (r ), the position of the source of primary photons (r,), and
the position at which they scatter (r,) are all explicitly listed as arguments of the first-
order photon current density. If it were not for the fact that the scattered photon energy
differs for the two scattering modes, the two cross sections could have been replaced by a
total scattering cross section. Instead, the two modes must be treated separately to ensure

the correct scattering energy is subsequently used for the linear attenuation function

A(r,r, E).

The above procedure can be continued. The first order photons can give rise to the
generation of second order photons due to a scattering interaction taking place at r,. This
is illustrated in Fig. IlI-1c. The current density at r of the second-order photons created

at a fixed position r, is

() = Sl [P, (n) B ) BY (o), (ILS8)
Ir - Ir, - 1|
where
" do(E,,0 do(E,,6,
B® :',r(,.rhrz)=(—‘—J;T'I—)JCA(E,"“EJ (—-'(-"1—6;))5-4(",’:,52)
+(—_—d0(E0,91 )) A(rz,r,,El) (——_‘do(El,QZ)) A(ra rZaE.‘! = EI)
\ dQ c dQ R
o) b B 0, (I1L5b)
00*1) - (olzo,z)
+| —————— A ny ,E -—E A Py ’E"
( daQ /4 ) dQ c (e £)
! do(E,,© (do(E, =E,,0,
+ ———JQ(-)—Q)RA(rzarnEl =Eo)!\ (EldQ ? “))RA(r’rzaEz =E,)

in which the integration is performed over all possible first-orcer Compton and Rayleigh

scattering positions (r, ), but the position of the second-order scattering (r,) is kept fixed.
Therefore, the current position (r ), the origin of primary photons (r,), and the position of

the second-order Compton scattering (r, ) are explicit arguments of the current density.
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The above procedure can be continued and integral expressions for the cuitent density
for any specific scattering order can be obtained. It is possible to write down a general

expression, valid for all orders, (ie. n arbitrary), but the result would net be very
transparent due to the B™ terms, and particularly the dependence of E, on the specific
scattering history. B'” describes ali the possible scattering histories for n™ order photons.
In general, Rayleigh scattering contributes very little to the overall current density of a

given order since its total cross section is only 2% of the total Compton cross section for

the energy range of interest (>100keV ). For a given order, the dominani contribution to
B™ will always come from the single term involving only Compton scattering
interactions. Terms describing histories involving a single Rayleigh scattering will, in
general, be only 2% of the term involving only Compton scattering. Histories involving

two or more Rayleigh scattering interactions are easily ignored since they are less than
0.04% of the term involving Compton scattering only. For example, the terms of B" in

Eq. (II1.4b) are of the order 1 and 0.02, respectively, and the terms of B'* in Eq. (I11.5b)
are of the order; 1, 0.02, 0.02, and 0.0004, respectively.

In cases in which it is permissible to ignore the contributions from Rayleigh scattering,
B reduces to a single term due solely to » sequential Compton scattering events, and a
general expression is easily formulated which is +alid for all orders of Compton scattering.
The following graphica! procedure allows one to obtain the current density imr,.r,)
at r of photons of #n™ order created as a result of a Compton scattering at a fixed
position r, of photons of (n- 1)* order. Start by drawing »n +2 points and label them
r,,r,r,,...r,. and r. Connect the pairs of points in the order in which they were labeled

by direcied straight lines (c.f Fig. IlI-1 for n=0, 1, and 2). Associate the factor

(4, / 4m) with the point r,. It accounis for the rate of emissior of primary photons from
this point. Associate with each object, consisting of a point r ., and a line enfering it, a

factor
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(111.6)

Alr,.,.r.E )(dc( ,‘,)\]
ir. - r,| dQ C,

to account for the propagation and the attenuation of Jj* -order photons of energy E,
generated at r, and for their subsequent Compton scattering at r,,, . Associate a factor
(r-r,)r-r,|> A(r,r,, E,) with the last line entering r to account for the propagation
and the attenuation of n" -order photons propagating from r, towards r. Finally,

integrate over all points at which scattering takes place, except at r,, multiplying first by

an appropriate electron density factor. The result is

1\ r-r,
4 |r - r|3 "

jmer,r) = e i (r,r,r,), d1L.7)

where

d"(r";r’r ) ao.[dsrlpe(r‘ Id rn lpe(rn I)A(r3 n> )
) I.i A(r,,l, r.E, )[dc( M)) : (111.8)
=0 _,.,1 - rjl dQ c

The factor 4,(r,;r,r,) may be interpreted as the emission rate of a fictitious source of

n" -order photons situated at r,, as perceived by the observer at r. Due to the

attenuation, this rate depends on the position r of the observation point. Egs. (II1.7) and
(111.8) yield, in particular, the lowest order current densities given in Eqs. (I11.2), (I11.4),

and (I11.5) for no Rayleigh scattering. The final attenuation factor A(r,r,,E,) cannot be
pulled outside any of the integrals in Eq. (IIL8) because the energy of higher order
photons depends through the Compton scattering angles on the positions of all lower
order scattering events:
E, = £y ;= 2 -
1+E,_(1-cos0 )/ inc l+Eo(j - Ziz,cosek)/mcc‘

, Jj=Llo.,n,  (1119)

where 6, (c.f Fig III-1) is the angle between (r,,, ~r,) and (r, - r,,) for k<n, 9, 1s
the angle between (r-r,) and (r,-r, ), and m.c* is the electron rest energy. Finally,

the Klein-Nishina scattering cross section Eq. (I1.5) is written here as
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do(E, 1»9k)=_’i( E; jJ(Ekl

E .. ]
_sin®0, |, 1L10
aQ 2\E_)\E TE., " (H1.10)

and 7, is the classical electron radius.

B. Modeling the Detection Process

Accurate modeling of the detection processcs is as important as correct modeling «
the propagation processes. The process of coilimation is the first step in the detection
process and is one of the degrading processes whichh must be considered. Collimation
provides the camera with spatial resoiution by allowing only those photons which arrived
at near normal incidence to the camera face to pass the collimator and interact with the

scintillation crystal.

One might wonder why, defining the current densities of various orders, the
calculation of the total current densities, i.e. integration over the position of the last

Compton scattering r,, has been carefully avoided. The reason is that it is not enough for
the n™ -order photon to arrive at the point r at the front of the detector window in order
to be detected, i.e.

I'(R,.x,)# [da iy - [d'r,p(r,) J(R,r,.1,) (LIL.11)
where the integration da is over the area of the front face of the collimator hole denoted
by R, . Rather, in order to be detected, a photon created at r, must, as seen in Fig. 111-2,

hit a point within that area of the front window of the collimator hole through which the

back face of this collimator hole is seen from r,. This area will be called the active area of
the collimator hole for the point r, and will be denoted by S(R,,r,) where R, is the
position of the center of a circular collimator hole of radius R, and identifies this
particular collimator hole. Therefore, the fux of n"™ -order photons passing through the
collimator hole R (i.e. the number of photons detected per second at the back face of the

collimator hole) is, for n = 0, equal to

I'(R,,r,)=\d’r,p,(r,) |da ng-j"(R;r,r,), (111.12)
! nFel\n R

S(R,.v,)
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in which i, is a normal to the collimator hole and the inner integral is a surface integral
over the active area of the collimator hole. Clearly, the order of the two integrals cannot
be reversed. Of course, for primary (zero order) photons only the integral of j*© over the
active area of the collimator hole is present. Dividing /™’(R,,r,) by the activity of the
primary photon source, the contribution to the total photon detection kernel due to the
n" -order photons is obtained as

K™R,r)=a,'I'""(R,x,). (I11.13)
The total photon detection kernel is equal to

K(R,,ro)=iK("’(R,,ro), (111.14)
as stated earlier. In practice the first three terms typically account for more than 97% of

the tote. signal for narrow energy windows normally used clinically [97,1 02].

Further approximations can be made to simplify the calculation of the integrals in

Eq. (1IL.12). If the typical distances of the points of the medium from the collimator hole
are several times larger than the radius of the hole R, then i (r;r,,r,) varies slowly

n

over the active area of the hole and can be taken outside the integral after its argument r

is replaced with some typical position within the active area, r.. The surface integral
yields just the (active) area S(R,,r,) which, being perpendicular to the unit vector fig, is

equal to

_ ( Ir-rf )
S(R,,r,,)—AQ(R,,r,,)\——————cos(e(rc_r"» , (I11.15)

where 6(r, —r,} is the angle between fip and r, -, and AQ(R,,r,) is the solid angle
originating at r, subtended by the active area S(R,r,) in Fig. III-2. Therefore,

n

Eq (1li.iZ) reads

n 1 a,(r,;R,r
I )(R,, )= 4—£Id3r,,p,(r,, )S(R,, l‘n)'——l-(i{TlTnFQl COS(Q(R, -r, ))

1 , (11L.16)

S

&

[d’rp (r,)AQ(R, 1), (1 R, 1,)
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for n>0. Of course, no integration is present for n = 0. Eqgs. (111.8) and (111.9) were

used to arrive at Eq. (II1.16) and, fur small collimator holes, the argument r, was replaced
by R,. The second line of Eq. (III.16) has a transparent interpretation. the rate of
detection of n* -o1der photons by the collimator hole at R, is the summary emission rate
of fictitious sources of these photons weighted by the solid angle into which the photons
must be emitted by the source in order to arrive at the back face of the collimator. It is,
however, the first line which is more useful in rumerical calculations because the
magnitude of the active area of the collimator can be easily calculated [88]. The

calculation of this area for parallel cylindrical collimator holes is presented in the next

chapter.

C. Modeling the Energy Response of the Detector

Finally, the energy response and the energy resolution of the detector must be
accounted for. Firstly, for a given energy window, photons with an energy smaller than a
certain value £__ have practically vanishing probability of being detected. Energy is
always lost in Compton scattering so the condition £, > E_ together with Eq. (111.9)

yields

3" cos, >n—mecz[ 1 _Lj. (I11.17)
E

= m Eo
The condition (II1.17) allows for an optimization of numerical integrations by substantially
narrowing down the integration regions in Eq. (II.8) for successive inner integrals.
Secondly, due to the finite energy resolution of the detector, a photon of energy £,
cannot be resolved from photons having energy distributed around E, within a standard
deviation o(E,). Consequently, an increasing fraction of photons of energy £, escape

detection as E, approaches either limit, W or W,

max ?

of the energy acceptance window

of the detector. Similarly, some photons with energies outside the energy acceptance

window limits (ie. <W,__  or >W_ ) will be detected because of the finite resolution.

These facts are illustrated in Figs. II-5 and II-6. Assuming a Gaussian form for the intrinsic
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energy resolution function of the detector [46-48], this effect is accounted for by

multiplying the integrand in Eq. (I11.8) by the factor of Eq. (11.20), i.e. by

i 1 E, W) L’WM—E"D
FE-W. W )=—| erfd ——a——mn | _ erfc| —me——n |} 11118
(Bt P W) 2(8 C( J2o(E)) V2o(E,) (HL18)

where erfc(z) is the error function [49] and o(£) = aJE +b, with a and b determined

experimentally [48]. Finally, only those photons which undergo a photoelectric interaction
within the crystal deposit enough energy to trigger detection, and the probability that a

photon of energy E, will undergo such an interaction is given by the absorption efficiency
function of Eq. (I1.21), i.e. by

A(E,) =1 - exp[~p,:(E )], (111.19)
where u,.(E) is the energy dependent photoelectric absorption interaction coefficient of

the scintillation crystal and d is the crystal thickness. The effects of the crystal energy
resolution and absorption efficiency and of energy windowing are included by

incorporating these two factors into 4, in the integrand of Eq (111.16):
d"(r"; r, r(J) = aOJ‘ d3rlpe(rl ) o jdsrn—lpe(rn—] )A(r’ rn’ En )

N ' . (II1.20;
XH{A(rJ"’rJ’EJ)(do(EJ’e"’))}F(E,,;W;,mrWmax)AE(E,,) ( J

)< |r‘,—r1|: 17 (9]

D. Integral Kernel Expressions
Using Eqs. (111.13), (I111.16), and (II1.20) the following integral expressions are obtained
for the three lowest Compton scattering contributions to the photon detection kernel
KR,r,),

KR, r)= —L—S-(—R—"—’—'l’:)A(R,,rO;EO)F(E‘,; W oW A(E), (111.21)
4 |R, -r,[ .

, 1 S(R,r) 1 (dc(E ,0 ))
KU) R, - d3 ! 1’ . 02 Y1
Ror) = [ e ) R 2o o

X A(E 0, E AR 1 B Y F(E W W, ) A (E,)

R (111.22)
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S(R,r)_ 1 1
IR, ~ 1" r, —rll Ir, - u!‘

do(E, .8,)) (do(E.8.) ) ] ‘

x( (dQ 1))0( (dQ -)(‘A(r‘,rU;LO)A(r:,r,;LI)A(R,,r:;f,:), (111.23)
x F(E;; W, YA (Ey)

2" " mun? max

KR = e [ )
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Figure IT1I-2: Schematic representation of parallel hole collimation.




IV. Kernel Calculation and Numerical Methods

The integral expressions for the photon detection kernel derived in the previous
chapter, i.e. Egs. (I1I1.21) - (1I1.23), cannot be evaluated analytically. However, the integral
expressions can be calculated efficiently using standard numerical integration techniques,
such as those discussed in Refs. 49 and 103. In this chapter, the author’s numerical
implementation and calculation of the integral expressions for the kernel are described for
a general non-uniform imaging situation. Although ihis implementation may not be
numerically the most efficient, it does allow for quite accurate calculation of the multi-
dimensional integrals contained in Eqs. (IIL.21) - (II1.23). Only the calculation of the
lowest three orders of the kernei will be considered, but extension of the procedures
described here to calculate higher order contributions should be straightforward. Further,

Rayleigh scattering is ignored in the present implementation.

The numerical calculation of Egs. (II1.21) - (II1.23) can be divided into two distinct
steps. First, the specifics of tbe imaging situation must be described through the medium
description and the specifications of the Anger camera. Second, the expression for the
kernels, Eqs. (111.21) - (I11.23), must be evaluated. This task requires numerical evaluation
of multi-dimensional integrals. Defining the imaging situation through a number of
functions and parameters is first considered from a computing perspective, and then the

algorithms used to evaluate the integral expressions are discussed.

A. Description of the Imaging Situation
A number of quantities must be specified that jointly describe the specifics of the imaging
situation. In particular, they pertain to the medium description, the collimator description,
and the Anger camera energy-dependent detection probability. Incorporating the
description of the imaging situation through these quantities is described in detail in the

following.
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Linear Attenuation Coefficient
The linear attenuation coefficient of the medium as a function of spatial coordinates must
be quantized In practice the analytical spatial dependence of the linear atterwuation
function is unknown and must be determined using experimental measurements which
sample spatial and energy properties of the medium. This can be done using either x-ray
computed tomography or transmission computed tomography [104,105]. X-ray computed
tomography has the advantage of providing very high spatial resolution information of the
linear attenuation coefficient distribution. The disadvantage of using x-ray CT data is two-
fold. First, a second imaging procedure is required - the x-ray CT scan. Second, the 3D
alignment of the transmission and emission data from the two modalities is not
straightforward and is still a subject of much research [104,105]. Transmission computed
tomography provides, generally, lower resolution information than X-ray CT but has the
distinct advantage that it can be performed simultaneously with the typical nuclear
medicine imaging SPECT acquisition procedure [106,107]. Much research effort is
focused on creating simultaneous transmission and emission imaging systems, where both
the transmission data (i.e. the linear attenuation coefficient distribution) and the emission
data (i.e. the projection of the radioactive source distribution) are collected simultaneously

using a multi-headed gamma camera [106,107].

The experimentally determined spatial dependence of the linear attenuation coefficient
distribution within the medium is not used directly in this implementation. Instead, the
available information is used to identifv various components of the medium and the
distribution of the components within the medium. Once the distribution has been
determined, either using X-ray CT or TCT, the various components, such as tissue, bone,
and lung can be identified based on their known linear attenuation coefficient values. The
original values in the linear attenuation coeflicient distribution can be replaced by integer
value indices which identify different components of the medium. A range of the
coefficient values will generally be mapped to a single component of the medium, i.e. to
one index value. The complete description of the linear attenuation coefficient distribution

is given by a 3D matrix whose integer index values identify the component of the medium
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present in cach voxel. The 3D matrix is accompanied by a set of 1D arrays (as many as the
number ¢ different components present) whose values are the actual linear attenuation
coefficient for a discrete set of energies for each compunent of the medium. With such an
approach, it is really immaterial what energy or technique is ..;ed to obtain the attenuation
information as long as the separate components of the medium are distinguishable and
identifiable. The energy dependence of the linear attenuation coefficient for each
component of the medium can be obtained from standard tables, such as Ref. 41, for
practically all the separate components of the medium, including water, tissue, bone, and

lung.

Electron Density
The spatial dependence of the electron density distribution must also be known, at least in
a discrete form. There is no direct physical relationship between the linear attenuation
coefficient and the electron density. However, desuiibing the linear attenuation distribution
of the medium as explained above, it is rather straightforward to assign an electron density
to each component of the medium. This is possible because in this implementation the
attenuation matrix identifies the distribution of components of the medium, each of them

having a known eiectron density.

B. Anger Camera Parameters

Collimation
In the present implementation it is assumed that the collimator is accurately modeled

by parallel cylindrical holes of radius R, and length L with center-to-center separation
D, . Different hole types and other types of collimation (i.e. cenverging, diverging) can be
obtained using similar considerations as thos~ presented here. The description of the
collimator simply determines the active area S(R,,r,) seen by a source at r, for the

collimator hole located at R, . This area can be easily calculated for parallel cylindrical

collimator holes, as well as for other collimator hole types [88]. In this section the active

area is calculated for an arbitrary r, .
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Let L. and R, respectively, be the length and radius of the collimator Lole centerea
around R, Placing the origin of the coordinate system at the point R, with the = -axis

perpendicular to the collimator face and directed toward the medium, the cylindrical

coordinates of the position r, are, as seen in Fig. IV-1, d, (the distance of the point r,
from the cyiindrical coordinate axis), z, (the distance along the line of sight of the
cylinder), and an azimuthal angle ¢, which is irrelevant in this analysis. The circular back

face of the collimator hole, back-projected onto the plane containing its front face by rays

converging at r, is a circle of radius

R = Znl av.i)

and the distance of its center away from the center of the front face of the collimator hole
1s
d’lLC

d= :
2, + L,

(1V.2)

The projected circle fits ersirely within the actual front opening of the detector (i.e.

R' < R)if (d, < R). so the active area of the detector is just S(R,r,)= 1t(R"‘)2 in

this case (Fig. iV-1a). If (JR - K’|<d <(R. +R’)) then both circles overlap partially

(Fig. IV-1b) and the » =iv=: rea of the collimator hole is equal to the overlap area,

{R:-R? +d3) " _,(Rf ~R +d?)
<< 1+R"cos| F—F—

S(R,r)=S{R,d 2z, & cos"k
" mon 2R d 2R'd )
c c (1V.3)

J@RRY - (R +R’ -d*)

which depends on r, through R, and d . No photon originating from r, can be detected
by the collimator if (d > K+ R!), i.e. when both circles do not overlap, as seen in
Fig. IV-1c. This completes the specification of the active area S(R,r,) needed in

Eqgs. (I11.21) - (II1.23).
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Energy Dependent Detection Probability
To calculate the energy-dependent detection probability requires specifying the
intrinsic energy resolution of the detector, the detector energy window, and the crystal
thickness. The intrinsic energy resolution is assumed to be modeled by a Gaussian
distribution, as ciscussed in Chapter 2, typically with a FWHM equal to 10-12% of the
primary emission energy, i.e. Eq. (I1.18). The crystal thickness and its energy-dependent

photoelectric interaction coefficient must also be known.

Once the above parameters are given, the intrinsic energy-dependent detection

probability for a given incident photon depends only on the photon energy, ie. E,,

through the functions *{E, W, .W_,) and A (E,) given by Egs. (11.20) and 11.21),

respectively. These functions can be caiculated ¢ the fly but it is more useful and
numerically more efficient to pre-calculate the product of F(E, ;W ¥ ne ) e (E£,) fora
number of discrete sampled energies and store the results 2s a 1D vector (i.e. lookup
array). The product of F(E,;W,...W..)A(E,) varies smoothly as a function of E,, as
shown in Fig. 11-6, and for a sufficiently large number of sampled energies simple linear
interpolation provides accurate values. An extension of this binning technique which
allows the calculation of the energy spectra to be performed simuitaneously with the

kernel calculations is discussed later.

C. Calculation of the Kernel Expressions

Once the imaging situation is defined as outlined above, the multi-dimensional
integrals must be calculated. Inspection of the integrands in Eqs. (I11.21) - (I11.23) shows
that they have quadratic singularities. The integrals exist, however, provided the other
functions are regular. Numerically, however, special care must be exercised to handle
these singularities because otherwise the numerical convergence of the integrals may be
very inefficient or even impossible to achieve. There is no difficulty from a numerical
perspective in evaluating any of the other functions which appear in the integrands. For the

purposes of the numerical integration, Eqs. (II1.21) - (II1.23) are rewritten



(R,.r,) = [d'r, 1 ,jd’r:——l—: KO(R,,1,,1.1,), (IV.5)
|I‘, -rol- lr: —r)!-

r.r ): pe(rl)S(Rx’rl)_(_‘_ig(E e )
VT am R, -nPAdQT

X A(rl ’rO;EO )A(R: ’rl ’El )F(El ;Wmm ’Wmu )AE(En)

(Iv.6)

zpc(rl)pe(r:)S(R,,r:)(_c{g (_d_o’_ . )
") 4t R -rf dQ(E”’e'))c %), . (V.7

x A, v ED) A, ED AR, ry B F(EG W, W) A(E)
resence of the singularities explicit in the integral Eqgs. (IV.4) and (IV.5).
K" and K in Eqs. (IV.6) and (IV.7) are never singular because the

%, is always located outside both the attenuating medium and the radiation

ical evaluation of the zeroth order kernel K‘(R ,r,) is straightforward

sunts to a simple evaluation of an algebraic expression Eq. (1I1.21) for a
urce and collimator coordinates. The numerical evaluation of the integrals in
d (IV.5) 1s discussed next.

drder Calculation

ation region for the first-order keinel is shown in Fig. IV-2. This cone-like
; defined by the collimator hole parameters R, and L . The most obvious
ntegration variables would be cylindrical variables with the collimator hole
the origin of the coordinate system. Although this choice of coordinate

:egration variable allows the integration volume to be easily specified, it is

handling the inverse square singularity numerically because the Jacobian (i.e.

does not tend to zero as the singularity is approached, i.e. r,—r,, in
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A better choice of integration variables for Eq. (1V.4) and for the integration volume
depicted in Fig. IV-2 is cbtained by placing the origin of the cylindrical integration
coordinate system at the singular point r,. This leads to a more complicated description of
+he boundaries of the integration region, but ensures that the Jacobian (i.e. dz'd'dp’p')
goes to zero as the singularity is approached since p' —>0 as , =1, i.e. the order of the
singularity is lowered. The integration over r, for this choice of integration variables can

be written as

3 3.0 R,s=Tos ¢ Drex ’ Prnax (¢7.77) N
[d'r = [ = jo g N N (1V.8)
Collimator Collimator
Cone Cone
where r, and r’ are related through
n=r,+r, av.)
and
' 0 ’ pO <Rc(zc)
pmm(¢ 4 ):: ' 2 2 Rl
—p, cos(d’ - b,) — YR (z,) - pp Sin’ (9 - dg) » Po 2R.(2,)
0. (0", 2')= —p, cos(d — o)+ R2(2,) ~ p2sin’ (@’ = §) » (IV.10)
and the integration limits for d¢’ are given by
[0, 2m] , Po <R.(z,
[¢mm.¢m]={ Po <R ), (IV.11)
(b, + 7~ AP, po++AD] , py2F(2,)
with
[A
A¢ = arcsin| jﬂ(-zc—)j , (IV.12)
\ Py
2z
R(z.)= RC(H L”j , (Iv.13)
and
z.=R,-r,,, (IV.14)

and are shown graphically in the panels of Fig. IV-3 for a fixed z’. The quantity p, is the

distance between the central axis of the collimator cone and the z’ -axis of the integration
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coordinates system (i.c. the primed coordinate system). This choice of integration
variables allows for the efficient calculation of the first order integral with a high degree of
accuracy, especially when integration over the singularity is required. When p, lies
outside the collimator cone, at a given depth, other integration choices will be equally
valid since the inverse square singularity is not approached. In fact a simple, non-adaptive

integration grid can provide acceptable results if p, 22R (z,).

Note that, although the above derivaticn was specifically presented f. : the first-order
kernel calculation, the same approach can be applied to the integration over the last
scattering site for all orders above and including the first order. This is because the last
scattering position must always lie, simultaneously, within the collimator cone extended

from R, and within the attenuating medium. Thus, the above method is used in the next

section for the integration over the position of second-order scattering in the expression

for the second-order contribution to the kernel Eq. (IV.5).

Second-Order Calculation

Calculation of the second-order kernel contribution, Eq. (IV.5), is more complicated
than the first-order contribution since there are two singularities and two scattering
position vectors to integrate over. A significant problem is that the first-order scattering
site may in theory occur anywhere within the attenuating medium and, thus the integration
region for r, is the complete volume of the attenuating medium. Further, the integration
over r, encounters a singularity as r, —r,. This singularity at r,=r, is handled by
choosing a spherical coordinate system centered at r, for the integration over r;, i.e.

J'd ’r, 1

= Ia’3r'7 = J‘:" dr’_[:"" o' j':n dd)’(r'2 sinO')r—llz-, (IV.15)

Iy = rf°
where

r, =r,+r’ . The singularity is obvicusly removed by the Jacobian r'* which vanishes for
r, — r,. The integration over r, is evoluated using the approach described in the previous

section with r, taking on the role of r, and r, taking on the role of r,. This approach
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takes care of the singularity at r,=r, as discussed in the previous section. The only
difficulty remaining is an adequate sample of the integration region over r,. This region
may be restricted somewhat by employing the fact that a photon can only lose s :nuch
energy before it has a negligible probability o neing detected by the camera system .2 t&

the finite energy window of the camera, c.f. Eqs. (11.22) and (IIL.17).

Energy Spectra Calculation
The energy dependence of the kernel . be calculated from the expressions in
Egs. . '121)-(111.23). Further, the ¢ s dependence or energy spectra can be
calculated in parallel (i.e. simultaneously) witii the spatial dependence of the kernel with
minimal additional computational effort. An arbitrary kernel element describes the

probability that a photon emitted from a source voxel will be detected at R, . Implicit in

the kernel definition is its dependence upon the energy window, and it describes the

probability for detection for a given window, i.e. for giver. ¥, and W, . To emphasize

max ’

this fact, an arbitrary kernel order can be rewnitten as
KR, W, W), (IV.16)
with the dependence upon the energy window parameters explicitly indicated. The energy

response function, F(E,W, W, ), which describes the probability that a photon of

min? max

energy E will trigger detection for an energy window from W, to W, is the only

max ?
function in the expression for K which depends upon the energy window parameters.
The kernel for an energy window from W, to W, can be decomposed into the sum of
kernels for a number of discrete, equally spaced, non-overlapping energy windows

contained within the range of W, to W, as

LR B 1279 min ? max

N
KO, v W, W)= KPR, r W W), (IvV.17)
=1

where W <W!' <W! <W!"'<W_ . Substituting Eq. (IV.17) into any of
Eqs. (II1.21) - (II1.23) demonstrates that the integrand for the kernel for each distinct
cnergy window does not change, but the weighting from the energy response function

does change. Thus the integration sampling is performed just as for a single energy
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window except that the integrand contribution from each sample to each energy window 1s
obtained through proper weighting by the energy response function at the inner-most step

To demonstrate how this is accomplished in practice, assume that F is a 2D matnix
representing the probability of detecting a photon of energy E, within the small energy

window W/ to W/, and that f, is the probability that a photon of £, will be detected

in any of the N energy windows covering the energy window range W, to ¥,

.
f=2F,. (IV. 18)
IET

Also, assume the integrand for the »" -order kernel can be written symbolically as

N
KPR, e W W)= Y wirr, . r ), E = E)Y F,
n.r. I, i (lVl())
= Zw(l‘l,l’” .y n)](rlyrﬂa [xY "v 1’ )fk

where the first sum is over all discrete integration sampling points, w ’s are the numerical
integration weights associated with each set of integration sampling coordinates
(r,,r,,...,xr,) for which the integrand is calculated, and [/ denotes a symbolic
representation of the integrands in Eqs. (IV.4) and (IV.5) without the energy response
function F(E, W, ,W..). The kernel for a single energy window can be similarly
expressed as

K(.")(R r Wnl1m’ max)_ ZW( r:" )1( r’* e n’[k :L‘n)[i’.l‘ (VI20)

N T



IV, Kernel Calculation and Numerical Methods 90

The following shows two code fragments which demonstrate how Egs. (TV.19) and

(IV.20) can be used to calculate the energy spectra in parallel with the kernel calculation:

Single energy window Simultaneous multiple energy window
(n) . (m) 7 ! -
KR, 1, Won Won) K"(R,,r W Wi 1=1,,N
Kn = 0.0; for (1=0; L<N; L++) Knll) = 0.0;
for (r1,r2,..., rm) { for (r1,r2,..., rm) {
temp = w(rl,r2,...,rn) *1(r1,r2,...,rn); temp = w(r1,r2,...,rn) * I(r1,r2,...,rn);
Ek = En(ri,r2,....,rN); Ek = En(r1,r2,....,rNn);
Kn += temp * f(Ek); for (1=0; l<N; L++) Kn[l] += temp * F(Ek,L);
} 3

The window widihs can be chosen arbitrarily small and therefore the energy dependence
can be obtained to practically any accuracy. It must be emphasized that the energy

spectrum obtained is only accurate within the photopeak range W, to W, . To obtain

energy spectra information outside the lower energy window limit, W, will generally

require calculating the contributions beyond 2™ -order.




Complete overlap
d<(R - R

Partial overlap

No overlap

IR~ R'|<d <(R. +R!) (R +R')<d

IV-1: Detection geometry for cylindrical hole collimator explaining symbols
introduced in the main text, and in particular Eqs. (IV.1) through (IV.3): (a)
complete back/front window overlap, (b) partial overlap, and (c) no overlap
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Figure IV-2: Schematic representation of the cone-like integratior volume for d,r, for

calculating K" (R.r.).
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Figure IV-3: Schematic representation of the integration coordinate system used by
Egs. (IV.8) through (IV.14) at a fixed depth from the collimator hole




V. Experimental Validation

The numerical code developed in the previous chapter to calculate the analytical
expressions for the kernel orders, Egs. (111.21) - (111.23), is experimentally validated in this
chapter. Experimental validatior. is a necessary and fundamental step that must be
performed before the numerical code can be used to calculate kernel elements for

reconstruction purposes. The numerical code allows the kernel elements, K, ,, to be
calculated for a given source voxel, j, and a given prejection pixel, denoted by 7, for a

properly defined imaging situation. To calculate the projection data for n™-order photons

due to an extended source distribution, descrivad by the matrix s,, Eq. (11.28) can be

used, i.e.

Pm=%K"s,, (V.1)
5,20

where P‘" is the number of n”-order photons detected at pixel i and K7’ is the n"-

order kernel matrix element relating P to the source distribution s,. Thus, for the
purpose of calculating projection data, only those kernel elements for which s, # 0 need
to be calculated, and these kernel elements can be calculated as required, i.e. on the fly, for
use in Eq. (V.1). Furthermore, for a point source, only one source voxel has a non-zero
value and therefore only one kernel element needs to be calculated for each pixel of the
projection. Experimentally, it is generally only possible to measure projection data due to

all scattering orders, P,
R=3P". (V.2)

However, for some very simple imaging situations it is possible to obtain both F, and P,

The value of P can be obtained by performing the experiment for the source

distribution in the absence of an attenuating medium. The results must subsequently be
corrected for the attenuation that would be present if the source was located within an

attenuating medium (see below).
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Two methods are used to compare the calculated prcjection data with the
experimentally acquired projection data in this investigation: (i) direct visual comparison
of projection profile plots, and (ii) comparison of projection scatter fraction values.
Projection profile plots are simply a plot of the values recorded by the pixels versus the
pixel location. The projection profile is usually plotted for the projection row bisecting the
center of the source distribution perpendicular to the axis of rotation (see Figs. 1-2
through I-4). The scatter fraction registered at all pixels within a projection due to photons
of a given order is a quantity that can also be used to compare the calculated and
experimentally acquired data. It is defined as

ZP(n)

SF" = e (V.3)

A

and can be easily calculated from the theory. The summation in Eq. (V.3) is over a//
collimator holes or imaging elements of the gamma camera projection. Of course, S/'"
cannot be measured experimentally, at least not directly, but one can estimate
experimentally the total scatter fraction using the method of Manglos et.al [108] by

measuring the projections for both an air filled and a water filled phantom and calculating

Z[R(waler) _ k])'(azr)]

SF(rolal) . ‘ V4
exp kZR(a'r) ( )

InEq. (V.4), P, and P, are the experimental counts acquired for the source in water
and in air, respectively (corrected for the difference of the acquisition times if necessary),
and k = exp(—p(E,)x) is the average attenuation which the primary photons would suffer

before reaching the camera if they were propagating in water for a distance x. Having
defined the quantities to be investigated, the experimental and numerical methods used are

discussed next.

A. Experimental Methods
In all experiments the basic phantom used to enclose the attenuating medium was a

hollow polystyrene cylinder with inner radius 11.2cm and inner length 22.0cin . The walls
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of the phantom were approximately 0.5cm thick and the base and lid were approximately
lem thick. The central axis of the cylinder coincided with the rotation axis of the camera,
whose radius of rotation was 132c¢m . The interior of the phantom was filled with water to

simulate a uniform attenuating medium and is referred to as the wuniform phantom
configuration. A non-uniform attenuating medium was obtained by inserting one or two
air-filled cylinders of radius 3.6cm and lengths equal to the complete interior length of the
phantom. The central axes of the air-filled inserts were parallel to the central axis of the
phantom and located at a radial distance of 48cm from it. With the air inserts in place the
phantom is referrsd to as the non-uniform phanton: configuration. For one set of
experiments it was necessary to leave the piiantom empty (i.e. air filled) and this phantom
is referred to as the air-filled phantom configuration. Cross sections of the uniform and
nonuniform phantoms used are shown in Figs. V-1 through V-4. Figure V-1 also defines
the coordinate system for the phantom ard the imaging geometry for the experiments. The
central axis of the phantom lies along the y-axis and the base of the phantom is centered at
the origin of the coordinate system. The imaging plane (i.e. the camera plane) lies in the

xy-plane and is located at a distance 132cm from the y-axis (i.e. the axis of rotation).

Three source distributions of *™Tc were investigated in conjunction with the above
described phantoms. All three source dis:ributions were centered at the midpoint of the

phantom along the axis of rotation, which coincided with the midpoint of the projection
plane. The first and the simplest was a point source whose volume (approx. 0lcm’) was
considerably smaller than tha: of a single source voxel (20.22 cm’). At calibration time the
point source contained an activity of 68 MBq, and it was imaged separately for a number

of locations within the air-filled, the uniform, and the non-uniform phantom

configurations. The second source was a short thin cylindrical source of radius 045cm
and length 48cm and contained an activity of 100MBq at calibration time. Finally, the
third source considered was an extended cylindrical source with radius 36cm and length

equal to the complete interior length of the phantom (192cm). The extended source had



V. Experimental Validation 97

an activity of 250MBq at calibration time. The point, short cylindrical, and extended
cylindrical source distributions were imaged at a number of locations within both the
uniform and non-uniform phantom configurations. The source locations for each source
and phantom configuration are shown in Figs. (V-1) through (V-4), which are cross-
sectional views of the phantom bisecting the center of the source distribution. The
numerals (1 through 36) used to identify the source and phantom configurations are
defined in Figs. (V-1) through (V-4) and listed in Table V-1.

A single headed GE400 SPECT gamma camera was used to acquire the projection
data for all experiments. The camera was operated with a 20% symmetric energy window
centered at 140 keV, and was assumed to have an intrinsic energy resolution well-
described by a Gaussian distribution with a FWHM of 012K, i.e. 12%. The gamma
camera employed a Nal crystal 0.95¢m (3/8 inches) thick. A low energy general purpose

(LEGP) collimator with hexagonal holes arranged in a close-packed hexagonal
arrangement was used for collimation. The projection data was acquired using a 128 x 128
pixel collection matrix with 16 bits per pixel. This collection matrix corresponds to a
physical pixel area of approximately 03cm xC..m. The acquired images were
subsequently compressed to 64 x 64 pixel images with a pixel area of approximately

0.6cm x 0.6cm for numerical and presentation purposes.

For each source and phantom configuration shown in Figs. (V-1) through (V-4) and
listed in Table V-1, projection data was acquired using the gamma camera. In order to
directly compare the experimental data with the calculated data, the experimental data was
corrected for the count loss due to the exponential decay of the source activity. For each
experimental situation, the projection data was multiplied by a constant, as discussed in

Chapter 2, given by Eq. (I1.16), i.e.

(1-e™T) -1
l:e”XAT} ’
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where 7 is the time interval between the calibration of the source and the start of the
acquisition of the projection data for each source and phantom configurat' - 1, and AT is
the data acquisition interval. This correction factor accounts both for the decay of the
source from calibration to the start of imaging as well as for the decay during the imaging.

Background measurements were also taken to ensure that it was negligible.

Finally, many quantities that appear in the theoretical expression for the PDK were
assumed to be ideal in the preceding formulation. In practice it is difficult, if not
impossible, to specify all of these quantities. For example, the assumption that the
collimator can be modeled by cylii' rical holes preserves the geometric response of the
collimator, but may reduce or increase the efficiency of the collimator. Likewise, any bias
in the well counter could result in a syst>matic error in the measured total activity, which
in turn would lead to an error in absolute quantification in the calculations. Such factors
can be incorporated into a single multiplicative calibration factor which is independent of
the attenuating medium and source listribution, but is dependent upon the experimental
equipment and radionuclide used. This factor can be determined, for example, by
measuring experimentally and calculating theoretically the total count recorded for a
simple source distribution in air. The totals obtained should only differ by a constant
overall multiplication factor. The factor, which calibrates the theoretical expressions with
the experiments, can be used for all other imaging situations involving the same
radioisotope and experimental equipment. It is stressed that this factor is not arbitrary, but
is due to limitations in applying the theoretical expressions to actual situations. Thus, the
experimentally measured data and calculated data are related as,

Calculated Value
Experimental Value’

Calibration Factor =

where the Calibration Factor is a constant for all the imaging situations considered in this

work.
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B. Numerical Methods

The numerical calculation of the projection data follows the outline given in Chapter
IV. The cross-section for the short and extended source distributions perpendicular to the
phantom’s central axis (i.e. the xz-plane) was specified on a 512 x 512 matrix which was
collapsed to 64 x 64 before numerical implementation. The description of the source
distribution parallel to the phantom’s central axis (i.e. along the y-axis) was obtained by
calculating the cross-section representations for 64 equally spaced locations along the axis.
The total description of the source distribution is given as a matrix with 64 x 64 x 64
elements whose values represent the average activity of the source distribution within each
of the voxels. For the point source distribution, however, a single matrix element in the
source distribution was non-zero and the rest of the elements were set to zero. The source
matrix element was chosen by determining the source voxel closest to the actual point
source placement within the phantom, and thus partial volume effects were not taken into

account. Therefore, there is a small (=1 pixel or 03cm ) inherent misalignment between

the experimental and calculated point source locations with respect to ihe discrete

placement of the pixels.

Similarly, the cross-section of the linear attenuation coefficients and the electron
density perpendicular to the phantom’s central axis were also specified on 512 x512
matrices which were subsequently collapsed to 64 x 64 matrices before implementation.
Again, 64 equally spaced samples of these distributions were taken along the direction
parallel to the axis. The total description of the linear attenuation coefficient and electron
density distributions were given as 64 x 64 x 64 matrices whose values represent the
average of these quantities over the small volume of a voxel. The simplicity of the
phantom configurations allowed the attenuation and electron density distributions to be
obtained analytically, without the need for and complications associated with either the CT
or TCT methods discussed in Chapter IV. The collimator’s hexagonal holes were modeled

by cylindrical holes with radius R =0128m, length L =4.0cm, and center to center

separation 0.3cm. The collimator parameter R, provided the same open area as the actual



V. Experimental Validation 100

hexagonal holes of the collimator. Finally, the energy response function was modeled with

FWHM = 2.35c at 140keV, where FWHM=16.8 keV (i.e. 12% of E,).

With the above data and parameters, Eqs. (111.21) - (I11.23) and Eq. (V.1) were used
to calculate, for each source-phantom configuration lisied in Table V-1 and shown in
Figs. V-1 through V-4, the projection data for the projection row lying in the plane
perpendicular to the rotation axis (i.e. in the xz-plane) of the camera and bisecting the
camera plane. This row, schematically represented by a broken line in Fig. V-1, will be
referred to as a central projection row and the central pixel of the camera is at its center.
Only the primary, first-order, and second-order scattered photons are accounted for in
these calculations under the assumption that, for a 20% symmetric energy window, the
contributions from higher order scattered photons are negligible [98,102). The terms total
calculated signal or total projection thus refer to the sum of the primary, first-order, and
second-order contributions. For the purpose of calculating scatter fractions (and
investigating the kcrnel connectivity in the next chapter) the complete 64 x 64 projection
for each scattering order was also calculated for experiments involving the point source.
Further, the energy spectrum for the entire 64 x 64 projection was calculated for the
experiments involving the point source using 64 discrete energy windows equally spaced

within the energy acceptance range W, =126keV and W, =154keV. No adjustable

parameters were used and the theoretical results presented in this paper represent values

obtained directly from these calculations.

C. Resuits

The projection profiles along the central projection row are plotted in Figs. V-5
through V-40 for each configuration shown in Figs. V-1 through V-4 and listed in
Table V-1. In Figs. V-5 through V-40, the open circles correspond to experimentally
acquired data. The vertical error bars associated with the experimental data denote the
68% confidence range for each experimental data value assuming they are drawn from a

Poisson distribution, i.e. the error bars represent a range equal to = one standard
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deviation. Also shown in Figs. V-5 through V-40 are the corresponding calculated profile
data for the three lowest Compton scattering orders as well as their sum total. The thin
line, squares, triangles, and the thick line correspond to the zeroth-order, first-order,
second-order, and the total calculated counts, respectively. The experimental values
plotted in Figs. V-5 through V-40 were obtained by averaging projection profiles from 3
and 10 projection rows adjacent to the central row for the thin source and for the
extended source, respectively. This averaging reduces the statistical ‘luctuations present in
the experimental profiles. No averaging was performed for the point source data. Since
the theory provides the expectation result and does not contain any statistical noise, there
is no need to average the theoretical results over the adjacent projection rows. Other than
averaging adjacent projection rows, no corrections were introduced so the values plotted

represent the absolute measured counts.

The energy spectra for each point source configuration listed in Table V-1 are plotted
in Figs. V-41 through V-46. In Figs. V-41 through V-46, the thin line, squares, triangles,
and the thick line correspond to the zeroth-order, first-order, second-order, and total
energy spectra respectively. Unfortunately, the expenmental energy spectra could not be
obtained from the camera in a way which would allow for direct comparison with the

calculated total spectra in Figs. V-41 through V-46.

The scatter fractions for each point source configuration listed in Table V-1 are
plotted in Figs. V-47 and V-48 for the uniform and nonuniform phantoms respectively.
The scatter fractions are plotted as a function of the source’s effective water depth in the
phantom, which are given for each source location in column five of Table V-1. The
experimental scatter fraction values were obtained using the method of Manglos described
around Egs. (V.3) and (V.4) and are shown as open circles in Figs. V-47 and V-48. The
vertical error bars associated with the experimental data represent the scatter fraction

range assuming a +03cm error in the value of x used to calculate the attenuation factor

k in Eq. (V.4). The calcuiated scatter fractions were obtained using Eq. (V.3) and are
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shown in the figures as squares, triangles, and solid line for the 1* order, 2™ order, and the

1"+2™ order scatter fraction, respectively.

Finally, in Table V-2 the results of the comparison are summarized by listing the

relative differences, defined as

ZP(loul)
AP=1-+——

Z P'(cxp) i

H

(V.5)

where the summation runs over the pixels of either: (i) the entire 2D projection plane (i.e.
all 64 x 64 pixels) for the point source configurations; or (ii) the central projection row
(i.e. 64 pixels) for the extended source distribution configurations (since this was the only
data calculated for these distributions). In Eq. (V.5), P“” and P’ are the counts
recorded at pixel i for the exy .rimental and calculated projection data, respectively. The
relative difference, AP, is useful for demonstrating that the calculated results require no
arbitrary, overall scaling factor for absolute, quantitative comparison with corresponding

experimental results.

D. Discussion of Results

In all cases (Figs. V-5 through V-40), the agreement between the calcuiated profiles
and those obtained from experiment is very good, both in shape and in magnitude. It is
worthwhile to note how closely the theoretical profiles follow the experimental ones along
sharp turns and edges (c.f Figs. V-16, V-17, V-19 through V-23, V-25, V-32 through
V-34, and V-40) which are due to sharp nonuniformities in the medium. The results for
the point source demonstrate that the calculated elements of the detection kernel
accurately render the detection probability at the pixels receiving counts due to the
emission from a point source. The results for the small and the large cylindrical sources
demonstrate that the theoretically predicted kernel also accurately describes the recorded

projection data for extended source distributions.
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Slight asymmetry of the recorded projections with respect the central pixel, seen in
some of Figs. V-5 through V-40, is most likely due to configuration errors made in
aligning the camera with respect to the phantom and source. When judging the agreement
between the theoretical and experimental results note that (i) no adjustable parameters
were used so the theoretical values plotted represent the absolute calculated projection
counts, and (ii) a logarithmic scale is used so the discrepancy between the simulated and
expetimental profiles, seen in the wings, is two to three orders of magnitude below the
signal ma mum. This small discrepancy may be attributed to a few causes: (i) detection of
lower energy photons may not be modeled perfectly by the idealized Gaussian energy
response function, (ii) collimator penetration and scattering are ignored, (iii) third- and
higher-order scattered photons are not accounted for even though they certainly make up
a larger (but still negligible) fraction of the signal in the wings than they do closer to the
center of the profile, and (iv) Rayleigh scattered photons which make up a small (up to
2%) contribu, ‘on to the experimental results are not accounted for in the calculations. The
observed discrepancy is largest when the source is closest to the collimator ard quite
shallow in the medium, suggesting that collimator penetration and scattering might be
more important in these situations than the higher order or Rayleigh scattering. Note,
however, that the statistics of the experimental data in the wings is rather poor
(particularly for a shallow source) due to the low absolute counts there. In fact, Table V-2
demcasirates that for all source configurations investigated the total predicted counts
obtained numerically differs by no more than +5% from the total experimental counts.
More importantly, the calculated results correctly model the experiments for non-uniform
phantoms (Figs. V-5 through V-40) and fully demonstrate the importance of scattered
photons in forming broad shoulders of the protiles and in determining the overall

dependence of the projections on the nature of the attenuating medium.

The assumption that Rayleigh, third-order, and higher-order scattered photons
contribute little to the total signal (except, possibly, in the wings) for narrow energy
windows appears to be well justified by the agreement between the experimental and the

theoretical data presented here In fact, even the second-order photons do not make much
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of a contribution to the total signal. For most practical situations, the sum of the primary
and the first-order photons accounts accurately for both the magnitude and the shape of
total projection signal, and the second-order contributions can probably be ignored, thus

easing the computational effort required.

Figures V-47 and V-48 further demonstrate good agreement between the calculated
and the experimental scatter fractions, providing a more global measure of the agreement

than the projection profiles. The differences between SF + SF® and SF.7 are well

within the typical experimental error of 15% reported by Manglos for this method. More
importantly, the scatter fractions presented demonstrate that for sources located deep
within an attenuating medium with respect to the camera plane, it is possible that the
counts recorded by all pixels due to scattered photons may exceed those due to primary

photons.

E. Calculation times

The amount of CPU time required to produce the profiles for a given imaging situation
is always an important consideration. The times required to calculate the entire 64 x 64
pixel projection for each point source and phantom configuration are given in Table V-3
and are reported for each order separately. We note that the second-order contribution
requires much more CPU time than the lower-order oues. This is due to an extra
integration (over all possible first-order scattering sites) present in the second-order

calculations.

F. Summary

In this chapter, calculated projection data for point and extended source distributions
in uniform and nonuniform media were compared against the projection data obtained
experimentally. Very good agreement was obtained in all cases investigated. The
distribution of counts for calc:slated projection profiles agrees we!'l with the same obtained
from the experimental data, boin in shape and in magnitude. The calculated and

experimental scatter fractions also show good agreement, and provide a more global
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measure of the agreement between the two data sets. The total predicted counts .or the
entie projection plane obtained numerically differ by at most 5% from the total counts
recorded experimentally for both the point and the extended source disiributions. Finally,
the importance of scattered photons in forming the projections was quantitatively

deinonstrated by the presented results.

Admittedly, however, there are some elements present in the photon detection
problem which we have not accounted for in our approach. In particular, we did not
attempt to correct the projections for the effects related to the intrinsic resolution of the
scintillation crystal nor for the attenuation within the septa of the collimator. Although the
discrepancies between our theoretical and experimental results might in part be attributed
to these processes, we t>ve deliberately decided against incorporating them in order to
demonstrate what our th v, based solely on first principles, is capable of doing. Any
phenomenological correct: ..s to it would inevitably weaken the argument that a proper
physical description of the photon propagation, absorption, and especially scattering
within the medium is the most important factor which must be accounted for. From this
perspective any further corrections, phenomenological or not, are of secondary
importance. We do not want to mix a purely first-principles, theoretical approach with ad
hoc phenomenological corrections often designed to partially compensate for many factors
already accounted for by this theory. In principle, the attenuation within the septa can be
attacked from first principles using methods which we have used in our work, but the
benefit of doing this would be negligible considering the price which would have to be
paid in terms of the complication of the theory and the additional computational effort. In
conclusion, the theory presented and its numerical implementation appear to be validated,
at least for the imaging geometries considered here. In the next chapter the validated code

is used to calculate the kernel elements for use with the MLEM reconstruction method.
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Table V-1. Source and phantom configuration specifics corresponding to Figs. V-5
through V-46. PD is the actual depth of the source in the phantom perpendicular
to the camera and EWT s the effective water depth seen by the source. For the
uniform phantom configurations PD is always equal to EWD. All values are given

in cm.

Point Source and Uniform Phantom Configurations - Figure V.1

Configuration X z PD EWD
§ 00 8.4 2.80 2.80
2 -8.4 0.0 7.41 7.41
3 0.0 -8.4 19.60 19.60
4 0.0 5.6 5.60 5.60
5 -5.6 0.0 9.70 9.70
6 0.0 -5.6 16.80 16 .80
7 0.0 2.8 8.40 840
& -2.8 0.0 10.84 10.84
9 0.0 -2.8 14.00 14.00
10 0.0 0.0 11.20 11.20

Point Source and Nonuniform Phantom Configurations - Figure V.2

Configuration X z PD EWD
11 0.0 8.4 2.80 2.80
12 -84 00 7.4 741
13 0.0 -84 19.60 19.60
14 0.0 5.6 5.60 5.60
15 -5.6 0.0 9.70 9.70
16 00 -56 16 80 16.80
17 0.0 2.8 8.40 8.40
18 -28 00 10.84 6.32
19 0.0 -2.8 14.00 14.00

20 0.0 0.0 11.20 11.20
21 0.0 0.0 11.20 4.00
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Short Cylindrical Source and Uniform Phantom Configurations - Figure V.3a

Configuration X z PD EWD
22 0.0 56 2.80 280
23 -5.6 0.0 10.84 741
24 0.0 -5.6 19.60 19.60
25 0.0 0.0 11.20 11.20
Short Cylindrical Source and Nonuniform Phantom Configurations- Figure V.3b
Configuration X z PD EWD
26 0.0 5.6 2.80 2.80
27 -5.6 0.0 10.84 7.41
28 0.0 -5.6 19 60 19.60
29 0.0 0.0 11.20 1120
30 0.0 0.0 11.20 4.00
Extended Cylindrical Source and Uniform Phantom Configurations - Figure V 4a
Configuration X z PD EWD
31 0.0 48 NA NA
32 -4.8 00 NA NA
33 0.0 16.0 NA NA
Extended Cylindrical Source and Nonuniform Phantom Configurations - Figure V.4b
Configuration X z PD EWD
34 0.0 48 NA NA
35 -4.8 00 NA NA
36 0.0 16.0 NA NA
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Table V-2: Relative differences (in %) between the experimental and calculated total
counts as defined in Eq. (V.5) for each source configuration investigated and listed
in Table V-1. The summations in Eq. (V.5) run over all 64 x64 pixels of the
projection for the point source configurations (i.e. 1-21), but only over the 64
pixels of the central projection row for extended source configurations (i.e. 22-36).

Point Source AP Extended Source AP
Configurations Configurations

1 -2.58% 22 -4.13%
2 4.79% 23 0.12%
3 -1.03% 24 3.55%
4 0.36% 25 0.47%
5 4.40% 26 -1.43%
6 -4 94% 27 4.70%
7 -2.60% 28 -0.42%
8 -0.43% 29 2.24%
9 0.55% 30 . __=5.09%%
10 0.64% 31 3.85%
11 -2.66% 32 -0.34%
12 3.70% 33 -3.51%
13 -1.28% 34 2.63%
14 0.49% 35 -1.61%
15 3.63% 36 -1.02%
16 0.61%

17 -2.85%

18 1.41%

19 -1.41%

20 -2.18%

21 -5.26%
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Figure V-1: Cross section of the point source configurations for the uniform phantom. The
geometry shown here is used throughout the remainder of the figures presented.
The indices (1-10) are used for reference to source configurations shown. Only
one source is present at any given time
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Figure V-2: Cross section of the point source configurations for the non-uniform phantom
and their corresponding configuration indices (11-21).
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Figure V-3: Cross section of short thin cylindrical source configurations for (a) uniform
phantom and (b) nonuniform phantom and their corresponding configuration
indices.




V. Experimental Validation

113

(a)

U
/ﬂ/’"\

/ : N
. ‘\\
N \
!

j

HHHHHHH L
TN

TN

, Ve A . "-\\

(b)

et

,...—\
//
/ °
N\ \ __'/ J

. ~ -
NS Ry

-\“__,,/""‘/

~—
-
Rl ~ ~
. .

el

/

,/ TG

e T

/

»

\ . \\
o

N
\\ ‘
\v

Figure V-4: Cross section of extended cylindrical source configurations for (a) uniform
phantom and (b) nonuniform phantom configurations, and their corresponding

configuration indices.
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Figure V-5: Projection profiles for the central row for the point source located at position
1 within the uniform phantom. Experimental results: open circles with vertical
error bars. Calculated results: thin line - 0®-order, open squares - 1*-order, open

~nd

triangles - 2™-order, and thick thin - total (the sum of the 0" through 2"-orders).
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Figure V-6: Same as Figure V-5 except for the point source located at position 2 within
the uniform phantom.
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| Figure V-7: Same as Figure V-5 except for the point source located at position 3 within

the uniform phantom.
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Figure V-8: Same as Figure V-5 except for the point source located at position 4 within

the uniform phantom.
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Figure V-9: Same as Figure V-5 except for the point source located at position 5 within

the uniform phantom.
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Figure V-10: Same as Figure V-5 except for the point source located at position 6 within

the uniform phantom.
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Figure V-11: Same as Figure V-5 except for the point source located at position 7 within |
the uniform phantom.
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Figure V-12. Same as Figure V-5 except for the point source located at position 8 within
the uniform phantom.
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Figure V-13: Same as Figure V-5 except for the point source located at position 9 within

the uniform phantom.

T

T

WL s s
O w»n O W
| S—

N
W
3
T

Log Absolute Counts
i
V)

0th Order

s ist Order

+ 2nd Order
= Total

o Ezxperimental

21

32
Pixel (=0.6cm)

Figure V-14: Same as Figure V-5 except for the point scurce located at position 10 within

the uniform phantom.
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Figure V-15: Same as Figure V-5 except for the point source located at position 11 within

the nonuniform phantom.

50
0th Order
45 1 s 1st Order
2nd Order
. 4.0 1 ~==Total
E 35 o Experimental
=3
U 30 T 1
&
E 25 B a s,
A
< 20 + . . .\n
é() 15 T -. o] Q
i . . ='n _ga.. '.Pg‘g.g
1'0 i?g . s -g §
[ ]
05 T : ‘ . §\.5.§§
. ““"‘““A.‘ -,
0.0 % Lt L 28000000
10 21 32 43 54
Pixel (=0.6¢cm)

Figure V-16: Same as Figure V-5 except for the point source located at position 12 within

the nonuniform phantom.
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Figure V-17: Same as Figure V-5 except for the point source located at position 13 within
the nonuniform phantom.
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Figure V-18: Same as Figure V-5 except for the point source located at position 14 within
the nonuniform phantom.
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Figure V-19: Sanie as Figure V-5 except for the point source located at position 15 within

the nonuniform phantom.
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Figure V-20: Same as Figure V-5 except for the point source located at position 16 within

the nonuniform phantom.
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Figure V-21: Same as Figure V-5 except for the point source located at position 17 within

the nonuniform phantom.
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Figure V-22: Same as Figure V-5 except for the point source located at position 18 within

the nonuniform phantom.
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Figure V-23: Same as Figure V-5 except for the point source located at position 19 within

the nonuniform phantom.
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Figure V-24: Same as Figure V-5 except for the point source located at position 20 within

the nonuniform phantom.
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Figure V-25: Same as Figure V-5 except for the point source located at position 21 within
the nonuniform phantom.
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Figure V-26: Same as Figure V-5 except for the short cylindrical source located at
position 22 within the uniform phantom.
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Figure V-27: Same as Figure V-5 except for the short cylindrical source located at
position 23 within the uniform phantom.
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Figure V-28: Same as Figure V-5 except for the short cylindrical source located at
position 24 within the uniform phantom.
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Figure V-29: Same as Figure V-5 except for the short cylindrical source located at
position 25 within the uniform phantom.
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Figure V-30: Same as Figure V-5 except for the short cylindrical source located at
position 26 within the nonuniform phantom.
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Figure V-31: Same as Figure V-5 except for the short cylindrical source located at
position 27 within the nonuniform phantom.
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Figure V-32: Same as Figure V-5 except for the short cylindrical source located at

position 28 within the nonuniform phantom.
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Figure V-33: Same as Figure V-5 except for the short cylindrical source located at
position 29 within the nonuniform phantom.
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Figure V-34: Same as Figure V-5 except for the short cylindrical source located at
position 30 within the nonuniform phantom.
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Figure V-35: Same as Figure V-5 except for the large cylindrical source located at

position 31 within the uniform phantom.
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Figure V-36: Same as Figure V-5 except for the large cylindrical source located at

position 32 within the uniform phantom.
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Figure V-37: Same as Figure V-5 except for the large cylindrical source located at
position 33 within the uniform phantom.
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Figure v-38: Same as Figure V-5 except for the large cylindrical source located at
position 34 within the nonuniform phantom.
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Figure V-39: Same as Figure V-5 except for the large cylindrical source located at
position 35 within the nonuniform phantom.

40 1 -
o Esxperimental
L 0th Order
3.5 ; s 1st Order
2nd Order
e Total

30 1

Log Absolute Counts
[\
(V]

o]
hd - + “¥ T o B

10 21 32
Pixel (=0.6cm)

Figure V-40: Same as Figure V-5 except for the large cylindrical source located at
position 36 within the nonuniform phantom.
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Figure V-41: Energy spectra for the point source located within the uniform phantom for
(a) position 1, (b) position 2, (c) position 3, and (d) position 4.
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Figure V-42: Same as Figure V-41 except for (a) position 5, (b) position 6, (c) position 7,

and (d) position 8.
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Figure V-43: Same as Figure V-41 except for (a) position 9 and (b) position 10
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Figure V-44: Energy spectra for the point source located within the nonuniform phantom
for (a) position 11, (b) position 12, (c) position 13, and (d) position 14.
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Figure V-45: Same as Figure V-44 except for (a) position 15, (b) position 16, (c) position

17, and (d) position 18.
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Figure V-46: Same as Figure V-44 except for (a) position 19, (b) position 20, and {c)

position 21.
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Figure V-47: Scatter fractions for the 10 point source positions within the uniform
phantom as a function of the depth of the source in water (see Table V.1).
Experimental results: open circles with vertical error bars corresponding to a +/-
3mm error in source placement. Calculated results: squares - 1"-order, triangles -
2" order, and solid line total scatter fraction.
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Figure V-48: Scatter fractions for the 11 point source positions within the nonuriform
phantom as a function of the depth of the source in water (see Table V.1).
Experimental results: open circles with vertical error bars corresponding to a +/-
3mm error in source placement. Calculated results: squares - 1*-order, triangles -
2".order, and solid line total scatter fraction.




VI. Investigation of Reconstruction Kernels

Having validated the numerical implementation of the theoretical expressions for the
kernel, they are now used in this chapter to investigate the application of tne theoretical
reconstruction kernel within an MLEM-type reconstruction algorithm. First, the question
of the size of the reconstruction kernel required is addressed by investigating the
connectivity between a given source voxel and the projection pixels receiving counts from
it. In the sezond part of this chapter, a complete reconstruction kernel is calculated and

applied to a simple, but realistic, imaging situation.

A. Kernel Connectivity

In traditional filtered backprojection reconstruction algorithms the full 3D
reconstruction problem is reduced to the reconstruction of a set of 2D source slices from
projections recorded by the projection row in the same transaxial picne. Basically, only the
information recorded by projection pixels geometrically connected (c f. Figs. 1-2 through
I-4 and I1-13) to source voxels is used. The assumption justifying such simplification is
that photons emitted from a given source voxel contribute significantly only to the signal
recorded by the pixels geometrically connected to it, assuming ideal collimation. A slice-
by-slice reconstruction is used because it is the most convenient approach for the camera
rotated around the medium. The main advantage of such an approach is its simplicity, as
was discussed in Chapter 2. The geometrically connected kemnel would be a good
approximation only if scattered photons could be ignored (or rejected by whatever means)

and if the 3D collim:tor zepth-dependent resolution could also be ignored.

Geometrical connectivity is, of course, the simplest approximation possible and
cai:ently, some iterative reconstruction algorithms attempt to do better by truncating the
connectivity betvi»en the source voxels and the projection pixels on the basis of a 3D

collimator deps*: dependent resolution. Therefore, in the kernel matrix K, , a given

source voxel j is linked not only to its geometrically connected pixel i (as in the

geometrically connected kernel) but also to the pixels in the neighborhood of the latter, as
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required by the collimator depth-dependent resolution (c.f Fig. II-4). This would be a
good approximation only if scattered photons were not detected. In the language of our
theory, the kernel resulting from this procedure is just the lowest (0™) order kernel given
in Eq. (111.21), which accounts for contributions due to the primary photorr -iy. In fact,
this term in our theory also accounts for 2 non-uniform attenuation of the primary
photons. A kernel which accounts for scattered photons requires greater connecuwvity, and
theoretical expressions obtained in Chapter III allow us to investigate this ¢ > zctivity

quantitatively.

Methods

The connectivity of the kernel may be established by considering a point-like (i.e.
single voxel) source at various positions of interest within the phantom and identifying
those pixels for which the recorded signal is larger than some predetermined value. In this
work we investigate the connectivity of point sources placed within the central transaxial
plane of the phantom, for which we have presented the experimental data in the preceding
chapter. The connectivity of the kernel's matrix elements linked to the source voxel is
investigated by calculating the neighborhood cumulative fraction. The quantity is defined
as the ratio of the signal due to a given scattering order recorded within the N -
pixel x N -pixel neighborhood around the pixel geometrically connected to the source

voxel to the cumulative signal due to the same order recorded by the entire camera plane

NN

2B
NCF™(N)=&——-. (VL1)

2B
In Eq. (VI.1) i’ denotes the pixel geometrically connected to the point source, the sum in
the numerator is over the N x N neighborhood centered on the pixel i’ where N must be
odd, and the sum in the denominator is over all pixels of the projection plane.
Experimentally, it is generally only possible to measure the total neighborhood cumulative

fraction from acquired projection data. It is given by
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NN
z P;(:‘p‘»
NCF*=P(N)=& (V12)

Z P\C(p)

The corresponding total theoreticai fraction is defined similarly using

P=YPY, (VL3)
k

where the sum is over all scattering orders accounted for in the theory. Note that

NCF(N)# Y  NCF*/(N). For these calculations a pixel size of (0.6cm )* was used (i.e.
k

64 x 64 pixel projections).

Results and Discussion

In Figs. VI-) through VI-6 the neighborhood cumulative fractions are plotted as a
function of the N x N pixel neighborhood of a pixel geometrically connected to the point
(i.e. single voxel) source placed in the central slice of the medium at positions (1 through
21 in Table V-1) fur which experimental data were collected and discussec in the
preceding chapter. For each N, the signal due to a given scattering order recorded in
N x N pixels centered about the geometrically connected pixel is summed, and divided by
the total signal due to the same order recorded by all 64 x 64 pixels in the camera plane,
as required by Eqs. (VI.1) and (V1.2).

One can introduce a measure of the connectivity extent of the kernel to be the
minimum neighborhood size N for which the neighborhood cumulative fraction
approaches 1 within a predetermined tolerance. The results in Figs. VI-1 through VI-6
demonstrate that N =3 (or, at most 5) would be a sufficient connectivity in the majority
of cases if only the primary photons were to be taken into account. This is the connectivity
extent for the kernel based solely on 3D depth-dependent collimator hole resolution.
However, long scatter tails are present in a kernel due to Compton scattering. Naturally,
for practical applications the connectivity extent of the kernel must be truncated, but such
a truncation cannot be solely based on the depth-dependent resolution. Rather, the scatter

tails seen in Figs. VI-1 through VI-6 must be the main factor determining it. Our results
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demonstrate that, in most cases, at least an N =21-27 connectivity extent might be
required to account for about 90% of the kernel. Actually, the connectivity extent depends
strongly upon the source depth and the detailed description of the medium. Considerations
similar to the ones presented here should be a starting point in constructing a kernel which
accounts for Compton scattering and which could be used in reliable iterative source

recons: . iction techniques.

Note that in Figs. VI-1 through VI-6, as the NCF goes from 50% to 100% of the
total collected count, the agreement between the theory and experiment (i.e. between
“Total” and “Experiment” data) deteriorates. The main reason for this is that it is
impossible for photons to be detected by pixels outside the “geometrical shadow” the
phantom casts onto the image plane of the camera. In experiments, however, some counts
are recorded by pixels within this region of the camera plane due to background noise and
collimator scattering and/or penetration. Corsidering that neither of these processes is
accounted for in the calculations, the agreement between the “total” and “Exp” data is
good, and therefore these results provide further validation of the nur...rical code used for

the calculations.

We close this section with a remark which has motivated us throughout the course of
this work. Compton scattering is often treated as an unavoidab:e yet annoyin,, process that
degrades an image, and attempts are generally made to remove it using, for example,
subtraction or £ enng techniques. The scatter information can be useful, however, if its
contributio~: to the image formation can be quantitatively understood and accurately
modeled within the reconstruction kernel Since projection images are often count-poor
and ruisy, the scatter information should not be rejected or ignored, but rather used to

augment the information provided by the unscattered photons.

B. Application of Theoretical Kernel to Reconstructions
Before concluding, some very recent reconstruction results are presented which were

obtained from the MLEM recons<tiuction algorithm using a kernel calculated from the
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integral expressions Eqs. (II.21) through (II1.23). The reconstruction algorithm was
developed and ‘mplemented by Dr. David Gilland of Duke University Medical Center. A
complete rec. .uction kernel was calculated using the numerical code developed and

discussed in this work.

The experimental imaging situation involved a uniform water filled cylindrical phantom

with two spheres of voluriz “ml and 214ml, respectively, with each sphere containing

a uniform distribution of Both spheres were centered in the phantom with the
central transaxi.: slice throug. the phantom also bisecting the spherical sources. Further,
the larger sphere was centered on the axis of rotation, whereas the smaller sphere was

located at about a distance of 3cm from it. Sixty projections were taken using a Trionix

Anger camera at regular angular intervals about the phantom. The camera operated with a
high resolution collimator and a 15% symmetric energy window. The intrinsic energy

resolution of the camera was assumed to be Gaussian with a FWHM equal to 14keV (i.e.

10% E, ). The camera operated in the 64 x 64 collection matrix mode which corresponds

to an approximate pixel area of (8.7cm)*. The camera’s radius of rotation was 132cm .

Using the above parameters, a kernel for the imaging situation was calculated. The
complete kernel was not calculated bzcause that is beyond the present computer resources
available. Instead, a more computationall ' feasible truncated kernel retaining the full 3D
connectivity between the source voxels and projection pixels was calculated. Firstly, only
the zeroth-order and first-order scattering contributions were calculated for this kernel
because, as shown in the preceding chapter, the small role played by the second-crder
contributions does not justify the extensive computing effort needed to calculate them.
The elements of the kernel for each calculated order were stored separately. Secondly,
only the kernel elements for which the source voxel lies within the central transaxial plane
were calculated. The kernel elements for source planes adjacent to the central plane were
assumed to have the same ker-icl elements but translated along the axis of rotation. This

assumption is justified sinc= the edge effects of the phantom only become important for
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planes close to the edges. Finally, due to the rotational symmetry about the central axis of
the phantom, the kernel elements need only be calculated for one projection angle. The
kernel elements for other projection angles can be obtained mathematically, by “rotating™

the known values due to the symmetry of the problem.

For each source voxel lying in the central plane, kernel elements were calculated for a
44 x 44 pixel area centere. on the projection plane. The geometrical shadow cast by the
phantom onto the projection plane was totally enclosed by this 44 x 44 pixel area. Further,
kernel elements were only calculated for the smallest square which completely enclosed
the central slice of the phantom, which was 44 x 44 voxels. The total size of the kernel
matnx was:

44 x 44 x 44 x 44 = 3, /48,096 kernel elements.

In Figs. VI-7 and VI-8, the kernel elements for 4 sample source voxel positions within the
central slice are displayed. The four sample source positions shown in Figs. VI-7 and VI-8
correspond to ccnfigurations 4, 5, 6, and 10 in Table V-1, respectively. The images
displayed in Figs. VI-7 and VI-8 are equivalent to the projection contributions that would
be observed for a unit point source at the specified locations for a projection area of
44 x 44 pixels centered on the central projection pixel. In fact, tie projection data
acquired experimentally for configurations 4, 5, 6 and 10 have excellent agreement with
those shown in Figs. VI-7 and VI-8.

The experimentally acquired projection data wer- used to reconstruct the source
distribution for 14 source slices centered on tlic spheres. First, the projection data was
reconstructed using the MLEM algorithm of Gilland employing the above-described
kernel. The projection data was reconstructed a second time using the traditional filtered
backprojection (FBP) method of reconstruction employing only simple ramp filter for the
same source slices. It must be stressed that no effort was used to optimize the
reconstruction methods, and that the results obtained are raw reconstructed images. The
reconstructed slices are shown for both reconstruction methods in Figs. VI-9 and VI-10,

and a profile along the line shown in Figs. VI-9 and VI-10 is plotted in Fig VI-11. The
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MLEM images were obtained after 25 iterations of the algorithm and no stopping critena
was used. It is fairly obvious that the two methods provide similar results, except the
MLEM images appear quite noisy. However, analysis of Fig. VI-11 shows that the
MLEM method has provided better spatial resolution within the reconstructed plane than
the FBP method, providing a little better separation between the two sources and better
contrast. A detailed comparison between the two methods of reconstruction is not
available at this time due to the computational effort required and more investigation is

obviously required before any statements about the quantitative performance can he made.

When viewing Figs. VI-9 and VI-10, one must keep in mind that this is an extremely
simple imaging situation and it should be expected that FBP should perform reasonably
well. A more interesting comparison would be provided by investigating a non-uniform
imaging situation in which it is known that the FBP method performs poorly. However
such an imaging situation does not possess any symmetries or transiational invariances like
those in the present case, and therefore such an investigation would require computing

resources beyond what is presently available.
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Figure V1-1: The neighborhood cumulative fraction for an N by N neighborhood centered
at the pixel geometrically connected to the point source for each position within
the uniform phantom for: (a) position 1, (b) position 2, (c) position 3, and (d)
position 4 as given in Table V.1.
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Figure

*. ]-4' The neighborhood cumulative fraction for an N by N neighborhood centered

at the pixel geometrically connected to the point source for each position within
the nonuniform phantom for: (a) position 11, (b) position 12, (c) position 13, and
(d) position 14 as given in Table V-1.
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Figure VI-5: Same as Fig. VI-4 except for (a) position 15, (b) position 16, (c) position 17,
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Figure VI-7: Plot of the kernel matrix elements for one projection angle for a point source
located as given in Table V-1 for (1* row) position 4, (2™ row) position 5, (3"
row) position 6, and (4" row) position 10. The images in each column correspond
to the 0%-, 1*-, and 0™+1*-order kernel elements from left to right for each source

position.
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Figure VI-8: Same as Fig. VI-7 except inverted gray scale.
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Figure VI-9: Reconstructed transaxial slices from (upper panel) MLEM and (lower panel)
filtered backprojection. A profile line has been superimposed on image 7, which is
_plotted in Fig. VI-11.
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Figure VI-10: Same as Fig. VI-9 except inverted gray scale.
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Vil. Conclusions

In this thesis an analytical theory describing photon propagation and detection for
SPECT has been presented. The theory accurately and analytically accounts for most of
the physical processes involved with photon propagation and detection for SPECT, and in
particular, nor:miform attenuation (including photoelectric absorption and all orders of
Compton and Rayleigh scattering combinations and possibilities), the three dimensional
depth-dependent collimator resolution, and the intrinsic energy-dependent detection
probability function of the Anger camera (i.e. intrinsic energy-dependent detection
efficiency and the intrinsic energy resolution of a Nal(Tl) scintillation crystal). The theory
presentedi is applicable to all photon emission problems involving energies below the pair
production threshold, and further, is applicable to all collimator types used in clinical
nuclear medicine. As such it provides a fundamental framework for solving photon
emission imaging problems. Finally, the theory developed provides a better, more intuitive

understanding of the complex image formation process in SPECT.

The theory allows well-defined closed-form integral expressions for each scattering
order of the photon detection kernel to be formulated separately. From a physics
perspective, the photon detection kernel provides a complete physical description of the
imaging problem and can be used to exploit the full potential of iterative reconstruction

techniques such as the MLEM algorithm.

Numerical integration code was developed to calculate the lowest three orders of the
kernel for general nonuniform imaging situations. The code developed is most suitable for
calculating kernels for narrow energy window imaging situations in which the energy
window parameters lie in the energy range 100 keV - 200 keV. This is because the
numerical integration code developed implements a simplified version of the theory
presented in Chapter 3. Firstly, collimator scatter and penetration have been ignored in the
code, and therefore it will not accurately model the imaging situations for which these

effects become more predominant, i.e. for photon energies above 300 keV. Secondly, the
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code does not account for contributions due to Rayleigh scattering, and therefore does not
accurately model the scatter contribution for energies below approximately 100 keV.
Finally, the code only accounts for contributions up to second-order, and therefore will
not account for the contributions due to the higher orders required for wide energy

windows (>30%).

Accounting for collimator scattering and penetration effectively requires incorporating
the collimator as part of the attenuation medium, and propagating the photons through the
collimator to the scintillation crystal. However, the collimator provides a particularly
difficult attenuating medium from a numerical perspective due to rapid and abrupt
variations in the medium between the holes and the septa. This problem will require

additional effort before a satisfactory solution can be obtained.

Extending the code to include Rayleigh scattering is straightforward and poses only a
limited numerical challenge. It was not modeled within the current code because it is not a
significant factor for the energy range considered (100keV-200keV). No extra
integrations are required to calculate the Rayleigh contribution for each kernel order, but
the integrand becomes significantly more complicated for higher order scattering

contributions.

The code will only accurately model the experimental imaging situation for narrow
energy windows (i.e. <25%) centered on the primary emission cnergy. To accurately
model situations in which a wide energy window or lower energy window (i.e. Compton
energy window) is used requires accounting for scattering events beyond the second-
order. This is because the higher orders contribute a significant fraction of counts to the
total for such windows. The direct numerical integration method used in development of
the code can be used to calculate these higher orders, but such a method would be time
consuming considering the increase in computing time required in going from zeroth-order

to first-order and first-order to second-order. A better choice of integration method for
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the higher order kernel calculation would be the Monte Carlo integration methods, and

work in this area has begun.

Results calculated from the numerical code were compared with experiment, and the
code was shown to accurately model the nonuniform experimental situation for both point
and extended source distributions, provided a narrow energy window is used. Firstly, the
calculated projections for point and extended sources in unifor:n and non-uniform
attenuating media were compared with the projections obtained experimentally for the
same imaging situation. Excellent agreement was obtained without any fitting parameters.
The importance of scattered photons in forming the projections was quantitatively
demonstrated. Secondly, the scatter fractions recorded for the entire 2D projection for
both the calculated and experimental data were shown to be in good agreement, and well
within the experimental error associated with the calculation of experimental scatter
fractions. In all cases i~ - - ated, the difference between results calculated from the

numerical code and the. .~ « ¢ - from experiment was less than +5% .

The connectivity . ..iwin of the kernel was quantitatively investigated, within the
context of source voxel— projection pixel connectivity. Such investigations should
eventually allow for the calculation of kernels required for reliable application of iterative
source reconstruction methods. It was demonstrated that the main factor determining the
extent of such connectivity is photon scattering, with 3D depth-dependent collimator hole

resolution being of secondary but still significant importance.

On a practical level, the analytical theory may be a starting point for developing the
approximation schemes allowing much more efficient calculation of :he photon detection
kernel than in this work. The analytical theory may be used to calculate the parameters
required for empirical scatter models of the kernel, in much the same way that Monte
Carlo simulations have been exploited for these purposes. The advantage of such an
approach is that a parameterized model of the scatter may eventually allow for the

complete calculation of a reconstruction kernel for use with iterative reconstruction
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methods such as the MLEM algorithm. The results calculated, being theoretical
predictions of experiments or simulated results, are free of statistical error and, more
importantly, can be obtained with readily available computer hardware. Another perhaps
less obvious advantage of the analytical theory is the fact that it allows one to concentrate
on a given region of the detector plane (i.e. a select subset of collimator holes such as a
profile), and to calculate the contribution to this part due to each order separately. This
opens the possibility of concentrating the numerical efforts on "difficult" regions of the
projection or source volume, such as quantifying the uptake in a restricted volume (i.e.

uptake in a localized tumor).

Having developed an accurate and efficient method of modeling the kernel, we hope
that the statistical reconstruction techniques such as maximum likelihood and expectation
maximization will perform better, allowing for accurate quantitative reconstruction of
radioactive regions from Anger camera projections. In this work results of such a
reconstruction were nresented and qualitatively compared with reconstructions obtained
using the popular Radon transform approach. It was observed that the MLEM
reconstructions appeared to demonstrate better spatial resolution in the reconstructed
transaxial planes as well as between the planes. More detailed analysis of vzsults from such
investigations is required before the true advantages of such a reconstruction procedure

can be evaluated fully.

In conclusion, the theory presented provides a transparent tool for visualizing physical
processes invo! red in photon propagation, attenuation and detection. It is also a robust
and practical tool for calculating photon detection kernels for arbitrary source -
attenuating medium configurations, provided the latter are known from some other
complementary measurements. We believe that the theory may and should become a
central tool for studying, in a unified fashion, the major image degradation effects
associated with SPECT, including photon absorption, Compton scattering, depth-
dependent collimator resolution, and intrinsic energy-dependent response of the detector.

This theory provides a well-defined framework for numerical evaluation of accurate
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kernels. However, before such kemels can be implemented in iterative reconstruction
methods, more work is required to reduce them to a manageable size. For practical

applications, further progress in computer algorithm coding and storage will also be

necessary.
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