
Monte Carlo Sampling for Regret Minimization in
Extensive Games

Marc Lanctot

variant that samples chance outcomes on each iteration [4]. They claim that the per-iteration cost
reduction far exceeds the additional number of iterations required, and all of their empirical studies
focus on this variant. The sampling variant and its derived bound are limited to poker-like games
where chance plays a prominent role in the size of the games. This limits the practicality of CFR
minimization outside of its initial application of poker or moderately sized games. An additional
disadvantage of CFR is that it requires the opponent’s policy to be known, which makes it unsuit-
able for online regret minimization in an extensive game. Online regret minimization in extensive
games is possible using online convex programming techniques, such as Lagrangian Hedging [5],
but these techniques can require costly optimization routines at every time step.

In this paper, we present a general framework for sampling in counterfactual regret minimization.
We define a family of Monte Carlo CFR minimizing algorithms (MCCFR), that differ in how they
sample the game tree on each iteration. Zinkevich’s vanilla CFR and a generalization of their chance-
sampled CFR are both members of this family. We then introduce two additional members of this
family: outcome-sampling, where only a single playing of the game is sampled on each iteration; and
external-sampling, which samples chance nodes and the opponent’s actions. We show that under a
reasonable sampling strategy, any member of this family minimizes overall regret, and so can be used
for equilibrium computation. Additionally, external-sampling is proven to require only a constant-
factor increase in iterations yet achieves an order reduction in the cost per iteration, thus resulting an
asymptotic improvement in equilibrium computation time. Furthermore, since outcome-sampling
does not need knowledge of the opponent’s strategy beyond samples of play from the strategy, we
describe how it can be used for online regret minimization. We then evaluate these algorithms
empirically by using them to compute approximate equilibria in a variety of games.

2 Background

An extensive game is a general model of sequential decision-making with imperfect information. As
with perfect information games (such as Chess or Checkers), extensive games consist primarily of a
game tree: each non-terminal node has an associated player (possibly chance) that makes the deci-
sion at that node, and each terminal node has associated utilities for the players. Additionally, game
states are partitioned into information sets where a player cannot distinguish between two states in
the same information set. The players, therefore, must choose actions with the same distribution at
each state in the same information set. We now define an extensive game formally, introducing the
notation we use throughout the paper.

Definition 1 [6, p. 200] a finite extensive game with imperfect information has the following com-
ponents:

• A finite set N of players. A finite set H of sequences, the possible histories of actions, such
that the empty sequence is in H and every prefix of a sequence in H is also in H . Define
h v h′ to mean h is a prefix of h′. Z ⊆ H are the terminal histories (those which are not
a prefix of any other sequences). A(h) = {a : ha ∈ H} are the actions available after a
non-terminal history, h ∈ H \ Z.

• A function P that assigns to each non-terminal history a member of N ∪ {c}. P is the
player function. P (h) is the player who takes an action after the history h. If P (h) = c
then chance determines the action taken after history h.

• For each player i ∈ N ∪ {c} a partition Ii of {h ∈ H : P (h) = i} with the property that
A(h) = A(h′) whenever h and h′ are in the same member of the partition. For Ii ∈ Ii
we denote by A(Ii) the set A(h) and by P (Ii) the player P (h) for any h ∈ Ii. Ii is the
information partition of player i; a set Ii ∈ Ii is an information set of player i.
• A function fc that associates with every information set I where P (I) = c a probability

measure fc(·|I) onA(h) (fc(a|I) is the probability that a occurs given some h ∈ I), where
each such probability measure is independent of every other such measure.1

1Traditionally, an information partition is not specified for chance. In fact, as long as the same chance
information set cannot be revisited, it has no strategic effect on the game itself. However, this extension allows
us to consider using the same sampled chance outcome for an entire set of histories, which is an important part
of Zinkevich and colleagues’ chance-sampling CFR variant.

2

• For each player i ∈ N a utility function ui from the terminal states Z to the reals R. If
N = {1, 2} and u1 = −u2, it is a zero-sum extensive game. Define ∆u,i = maxz ui(z)−
minz ui(z) to be the range of utilities to player i.

In this paper, we will only concern ourselves with two-player, zero-sum extensive games. Further-
more, we will assume perfect recall, a restriction on the information partitions such that a player
can always distinguish between game states where they previously took a different action or were
previously in a different information set.

2.1 Strategies and Equilibria

A strategy of player i, σi, in an extensive game is a function that assigns a distribution over A(Ii)
to each Ii ∈ Ii. We denote Σi as the set of all strategies for player i. A strategy profile, σ, consists
of a strategy for each player, σ1, . . . , σn. We let σ−i refer to the strategies in σ excluding σi.

Let πσ(h) be the probability of history h occurring if all players choose actions according to σ. We
can decompose πσ(h) = Πi∈N∪{c}π

σ
i (h) into each player’s contribution to this probability. Here,

πσi (h) is the contribution to this probability from player i when playing according to σ. Let πσ−i(h)
be the product of all players’ contribution (including chance) except that of player i. For I ⊆ H ,
define πσ(I) =

∑
h∈I π

σ(h), as the probability of reaching a particular information set given all
players play according to σ, with πσi (I) and πσ−i(I) defined similarly. Finally, let πσ(h, z) =
πσ(z)/πσ(h) if h v z, and zero otherwise. Let πσi (h, z) and πσ−i(h, z) be defined similarly. Using
this notation, we can define the expected payoff for player i as ui(σ) =

∑
h∈Z ui(h)πσ(h).

Given a strategy profile, σ, we define a player’s best response as a strategy that maximizes their
expected payoff assuming all other players play according to σ. The best-response value for player
i is the value of that strategy, bi(σ−i) = maxσ′i∈Σi

ui(σ′i, σ−i). An ε-Nash equilibrium is an
approximation of a Nash equilibrium; it is a strategy profile σ that satisfies

∀i ∈ N ui(σ) + ε ≥ max
σ′i∈Σi

ui(σ′i, σ−i) (1)

If ε = 0 then σ is a Nash Equilibrium: no player has any incentive to deviate as they are all playing
best responses. If a game is two-player and zero-sum, we can use exploitability as a metric for
determining how close σ is to an equilibrium, εσ = b1(σ2) + b2(σ1).

2.2 Counterfactual Regret Minimization

Regret is an online learning concept that has triggered a family of powerful learning algorithms. To
define this concept, first consider repeatedly playing an extensive game. Let σti be the strategy used
by player i on round t. The average overall regret of player i at time T is:

RTi =
1
T

max
σ∗i ∈Σi

T∑
t=1

(
ui(σ∗i , σ

t
−i)− ui(σt)

)
(2)

Moreover, define σ̄ti to be the average strategy for player i from time 1 to T . In particular, for each
information set I ∈ Ii, for each a ∈ A(I), define:

σ̄ti(a|I) =
∑T
t=1 π

σt

i (I)σt(a|I)∑T
t=1 π

σt

i (I)
. (3)

There is a well-known connection between regret, average strategies, and Nash equilibria.

Theorem 1 In a zero-sum game, if RTi∈{1,2} ≤ ε, then σ̄T is a 2ε equilibrium.

An algorithm for selecting σti for player i is regret minimizing if player i’s average overall regret
(regardless of the sequence σt−i) goes to zero as t goes to infinity. Regret minimizing algorithms in
self-play can be used as a technique for computing an approximate Nash equilibrium. Moreover, an
algorithm’s bounds on the average overall regret bounds the convergence rate of the approximation.

Zinkevich and colleagues [1] used the above approach in their counterfactual regret algorithm (CFR).
The basic idea of CFR is that overall regret can be bounded by the sum of positive per-information-
set immediate counterfactual regret. Let I be an information set of player i. Define σ(I→a) to be

3

a strategy profile identical to σ except that player i always chooses action a from information set
I . Let ZI be the subset of all terminal histories where a prefix of the history is in the set I; for
z ∈ ZI let z[I] be that prefix. Since we are restricting ourselves to perfect recall games z[I] is
unique. Define counterfactual value vi(σ, I) as,

vi(σ, I) =
∑
z∈ZI

πσ−i(z[I])πσ(z[I], z)ui(z). (4)

The immediate counterfactual regret is then RTi,imm(I) = maxa∈A(I)R
T
i,imm(I, a), where

RTi,imm(I, a) =
1
T

T∑
t=1

(
vi(σt(I→a), I)− vi(σt, I)

)
(5)

Let x+ = max(x, 0). The key insight of CFR is the following result.

Theorem 2 [1, Theorem 3] RTi ≤
∑
I∈Ii

RT,+i,imm(I)

Using regret-matching2 the positive per-information set immediate counterfactual regrets can be
driven to zero, thus driving average overall regret to zero. This results in an average overall regret
bound [1, Theorem 4]: RTi ≤ ∆u,i|Ii|

√
|Ai|/

√
T , where |Ai| = maxh:P (h)=i |A(h)|. We return to

this bound, tightening it further, in Section 4.

This result suggests an algorithm for computing equilibria via self-play, which we will refer to as
vanilla CFR. The idea is to traverse the game tree computing counterfactual values using Equation 4.
Given a strategy, these values define regret terms for each player for each of their information sets
using Equation 5. These regret values accumulate and determine the strategies at the next iteration
using the regret-matching formula. Since both players are regret minimizing, Theorem 1 applies
and so computing the strategy profile σ̄t gives us an approximate Nash Equilibrium. Since CFR
only needs to store values at each information set, its space requirement is O(|I|). However, as
previously mentioned vanilla CFR requires a complete traversal of the game tree on each iteration,
which prohibits its use in many large games. Zinkevich and colleagues [4] made steps to alleviate
this concern with a chance-sampled variant of CFR for poker-like games.

3 Monte Carlo CFR

The key to our approach is to avoid traversing the entire game tree on each iteration while still having
the immediate counterfactual regrets be unchanged in expectation. In general, we want to restrict
the terminal histories we consider on each iteration. Let Q = {Q1, . . . , Qr} be a set of subsets of
Z, such that their union spans the set Z. We will call one of these subsets a block. On each iteration
we will sample one of these blocks and only consider the terminal histories in that block. Let qj > 0
be the probability of considering block Qj for the current iteration (where

∑r
j=1 qj = 1).

Let q(z) =
∑
j:z∈Qj

qj , i.e., q(z) is the probability of considering terminal history z on the current
iteration. The sampled counterfactual value when updating block j is:

ṽi(σ, I|j) =
∑

z∈Qj∩ZI

1
q(z)

ui(z)πσ−i(z[I])πσ(z[I], z) (6)

Selecting a set Q along with the sampling probabilities defines a complete sample-based CFR algo-
rithm. Rather than doing full game tree traversals the algorithm samples one of these blocks, and
then examines only the terminal histories in that block.

Suppose we choose Q = {Z}, i.e., one block containing all terminal histories and q1 = 1. In
this case, sampled counterfactual value is equal to counterfactual value, and we have vanilla CFR.
Suppose instead we choose each block to include all terminal histories with the same sequence of
chance outcomes (where the probability of a chance outcome is independent of players’ actions as

2Regret-matching selects actions with probability proportional to their positive regret, i.e., σt
i(a|I) =

RT,+
i,imm(I, a)/

P
a′∈A(I)R

T,+
i,imm(I, a). Regret-matching satisfies Blackwell’s approachability criteria. [7, 8]

4

in poker-like games). Hence qj is the product of the probabilities in the sampled sequence of chance
outcomes (which cancels with these same probabilities in the definition of counterfactual value) and
we have Zinkevich and colleagues’ chance-sampled CFR.

Sampled counterfactual value was designed to match counterfactual value on expectation. We show
this here, and then use this fact to prove a probabilistic bound on the algorithm’s average overall
regret in the next section.

Lemma 1 Ej∼qj
[ṽi(σ, I|j)] = vi(σ, I)

Proof:

Ej∼qj
[ṽi(σ, I|j)] =

∑
j

qj ṽi(σ, I|j) =
∑
j

∑
z∈Qj∩ZI

qj
q(z)

πσ−i(z[I])πσ(z[I], z)ui(z) (7)

=
∑
z∈ZI

∑
j:z∈Qj

qj

q(z)
πσ−i(z[I])πσ(z[I], z)ui(z) (8)

=
∑
z∈ZI

πσ−i(z[I])πσ(z[I], z)ui(z) = vi(σ, I) (9)

Equation 8 follows from the fact that Q spans Z. Equation 9 follows from the definition of q(z).

This results in the following MCCFR algorithm. We sample a block and for each information
set that contains a prefix of a terminal history in the block we compute the sampled immediate
counterfactual regrets of each action, r̃(I, a) = ṽi(σt(I→a), I) − ṽi(σt, I). We accumulate these
regrets, and the player’s strategy on the next iteration applies the regret-matching algorithm to the
accumulated regrets. We now present two specific members of this family, giving details on how the
regrets can be updated efficiently.

Outcome-Sampling MCCFR. In outcome-sampling MCCFR we choose Q so that each block
contains a single terminal history, i.e., ∀Q ∈ Q, |Q| = 1. On each iteration we sample one terminal
history and only update each information set along that history. The sampling probabilities, qj must
specify a distribution over terminal histories. We will specify this distribution using a sampling
profile, σ′, so that q(z) = πσ

′
(z). Note that any choice of sampling policy will induce a particular

distribution over the block probabilities q(z). As long as σ′i(a|I) > ε, then there exists a δ > 0 such
that q(z) > δ, thus ensuring Equation 6 is well-defined.

The algorithm works by sampling z using policy σ′, storing πσ
′
(z). The single history is then

traversed forward (to compute each player’s probability of playing to reach each prefix of the history,
πσi (h)) and backward (to compute each player’s probability of playing the remaining actions of the
history, πσi (h, z)). During the backward traversal, the sampled counterfactual regrets at each visited
information set are computed (and added to the total regret).

r̃(I, a) =
{
wI ·

(
1− σ(a|z[I])

)
if (z[I]a) v z

−wI · σ(a|z[I]) otherwise , where wI =
ui(z)πσ−i(z)π

σ
i (z[I]a, z)

πσ′(z)
(10)

One advantage of outcome-sampling MCCFR is that if our terminal history is sampled according
to the opponent’s policy, so σ′−i = σ−i, then the update no longer requires explicit knowledge
of σ−i as it cancels with the σ′−i. So, wI becomes ui(z)πσi (z[I], z)/πσ

′

i (z). Therefore, we can
use outcome-sampling MCCFR for online regret minimization. We would have to choose our own
actions so that σ′i ≈ σti , but with some exploration to guarantee qj ≥ δ > 0. By balancing the regret
caused by exploration with the regret caused by a small δ (see Section 4 for how MCCFR’s bound
depends upon δ), we can bound the average overall regret as long as the number of playings T is
known in advance. This effectively mimics the approach taking by Exp3 for regret minimization in
normal-form games [9]. An alternative form for Equation 10 is recommended for implementation.
This and other implementation details can be found in the appendix.

External-Sampling MCCFR. In external-sampling MCCFR we sample only the actions of the
opponent and chance (those choices external to the player). We have a block Qτ ∈ Q for each

5

pure strategy of the opponent and chance, i.e.,, for each deterministic mapping τ from I ∈ Ic ∪
IN\{i} to A(I). The block probabilities are assigned based on the distributions fc and σ−i, so
qτ =

∏
I∈Ic

fc(τ(I)|I)
∏
I∈IN\{i}

σ−i(τ(I)|I). The block Qτ then contains all terminal histories
z consistent with τ , that is if ha is a prefix of z with h ∈ I for some I ∈ I−i then τ(I) = a. In
practice, we will not actually sample τ but rather sample the individual actions that make up τ only
as needed. The key insight is that these block probabilities result in q(z) = πσ−i(z). The algorithm
iterates over i ∈ N and for each doing a post-order depth-first traversal of the game tree, sampling
actions at each history h where P (h) 6= i (storing these choices so the same actions are sampled at
all h in the same information set). Due to perfect recall it can never visit more than one history from
the same information set during this traversal. For each such visited information set the sampled
counterfactual regrets are computed (and added to the total regrets).

r̃(I, a) = (1− σ(a|I))
∑

z∈Q∩ZI

ui(z)πσi (z[I]a, z) (11)

Note that the summation can be easily computed during the traversal by always maintaining a
weighted sum of the utilities of all terminal histories rooted at the current history.

4 Theoretical Analysis

We now present regret bounds for members of the MCCFR family, starting with an improved bound
for vanilla CFR that depends more explicitly on the exact structure of the extensive game. Let ~ai be
a subsequence of a history such that it contains only player i’s actions in that history, and let ~Ai be
the set of all such player i action subsequences. Let Ii(~ai) be the set of all information sets where
player i’s action sequence up to that information set is ~ai. Define the M -value for player i of the
game to be Mi =

∑
~ai∈ ~Ai

√
|Ii(~a)|. Note that

√
|Ii| ≤ Mi ≤ |Ii| with both sides of this bound

being realized by some game. We can strengthen vanilla CFR’s regret bound using this constant,
which also appears in the bounds for the MCCFR variants.

Theorem 3 When using vanilla CFR for player i, RTi ≤ ∆u,iMi

√
|Ai|/

√
T .

We now turn our attention to the MCCFR family of algorithms, for which we can provide probabilis-
tic regret bounds. We begin with the most exciting result: showing that external-sampling requires
only a constant factor more iterations than vanilla CFR (where the constant depends on the desired
confidence in the bound).

Theorem 4 For any p ∈ (0, 1], when using external-sampling MCCFR, with probability at least

1− p, average overall regret is bounded by, RTi ≤
(

1 +
√

2√
p

)
∆u,iMi

√
|Ai|/

√
T .

Although requiring the same order of iterations, note that external-sampling need only traverse a
fraction of the tree on each iteration. For balanced games where players make roughly equal numbers
of decisions, the iteration cost of external-sampling is O(

√
|H|), while vanilla CFR is O(|H|),

meaning external-sampling MCCFR requires asymptotically less time to compute an approximate
equilibrium than vanilla CFR (and consequently chance-sampling CFR, which is identical to vanilla
CFR in the absence of chance nodes).

Theorem 5 For any p ∈ (0, 1], when using outcome-sampling MCCFR where ∀z ∈ Z either
πσ−i(z) = 0 or q(z) ≥ δ > 0 at every timestep, with probability 1 − p, average overall regret

is bounded by RTi ≤
(

1 +
√

2√
p

) (
1
δ

)
∆u,iMi

√
|Ai|/

√
T

The proofs for the theorems in this section can be found in the appendix.

5 Experimental Results

We evaluate the performance of MCCFR compared to vanilla CFR on four different games. Goof-
spiel [10] is a bidding card game where players have a hand of cards numbered 1 to N , and take

6

Game |H| (106) |I| (103) l M1 M2 tvc tos tes

OCP 22.4 2 5 45 32 28s 46µs 99µs
Goof 98.3 3294 14 89884 89884 110s 150µs 150ms

LTTT 70.4 16039 18 1333630 1236660 38s 62µs 70ms
PAM 91.8 20 13 9541 2930 120s 85µs 28ms

Table 1: Game properties. The value of |H| is in millions and |I| in thousands, and l = maxh∈H |h|.
tvc, tos, and tes are the average wall-clock time per iteration4 for vanilla CFR, outcome-sampling
MCCFR, and external-sampling MCCFR.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1e+09 2e+09 3e+09 4e+09 5e+09

Nodes Touched

Goofspiel
CFR

CFR with pruning
MCCFR-outcome
MCCFR-external

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 2e+08 4e+08 6e+08

Nodes Touched

Latent Tic-Tac-Toe
CFR

CFR with pruning
MCCFR-outcome
MCCFR-external

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2e+08 4e+08 6e+08 8e+08 1e+09

Nodes Touched

One-Card Poker
CFR

CFR with pruning
MCCFR-outcome
MCCFR-external

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1e+08 2e+08 3e+08 4e+08 5e+08

Nodes Touched

Princess and Monster
CFR

CFR with pruning
MCCFR-outcome
MCCFR-external

Figure 1: Convergence rates of Vanilla CFR, outcome-sampled MCCFR, and external-sampled MC-
CFR for various games. The y axis in each graph represents the exploitability of the strategies for
the two players εσ (see Section 2.1).

turns secretly bidding on the top point-valued card in a point card stack using cards in their hands.
Our version is less informational: players only find out the result of each bid and not which cards
were used to bid, and the player with the highest total points wins. We use N = 7 in our exper-
iments. One-Card Poker [11] is a generalization of Kuhn Poker [12], we use a deck of size 500.
Princess and Monster [13, Research Problem 12.4.1] is a pursuit-evasion game on a graph, neither
player ever knowing the location of the other. In our experiments we use random starting positions,
a 4-connected 3 by 3 grid graph, and a horizon of 13 steps. The payoff to the evader is the number of
steps uncaptured. Latent Tic-Tac-Toe is a twist on the classic game where moves are not disclosed
until after the opponent’s next move, and lost if invalid at the time they are revealed. While all of
these games have imperfect information and roughly of similar size, they are a diverse set of games,
varying both in the degree (the ratio of the number of information sets to the number of histories)
and nature (whether due to chance or opponent actions) of imperfect information. The left columns
of Table 1 show various constants, including the number of histories, information sets, game length,
and M-values, for each of these domains.

We used outcome-sampling MCCFR, external-sampling MCCFR, and vanilla CFR to compute an
approximate equilibrium in each of the four games. For outcome-sampling MCCFR we used an
epsilon-greedy sampling profile σ′. At each information set, we sample an action uniformly ran-

4As measured on an 8-core Intel Xeon 2.5 GHz machine running Linux x86 64 kernel 2.6.27.

7

domly with probability ε and according to the player’s current strategy σt. Through experimentation
we found that ε = 0.6 worked well across all games; this is interesting because the regret bound
suggests δ should be as large as possible. This implies that putting some bias on the most likely
outcome to occur is helpful. With vanilla CFR we used to an implementational trick called pruning
to dramatically reduce the work done per iteration. When updating one player’s regrets, if the other
player has no probability of reaching the current history, the entire subtree at that history can be
pruned for the current iteration, with no effect on the resulting computation. We also used vanilla
CFR without pruning to see the effects of pruning in our domains.

Figure 1 shows the results of all four algorithms on all four domains, plotting approximation quality
as a function of the number of nodes of the game tree the algorithm touched while computing.
Nodes touched is an implementation-independent measure of computation; however, the results are
nearly identical if total wall-clock time is used instead. Since the algorithms take radically different
amounts of time per iteration, this comparison directly answers if the sampling variants’ lower cost
per iteration outweighs the required increase in the number of iterations. Furthermore, for any
fixed game (and degree of confidence that the bound holds), the algorithms’ average overall regret
is falling at the same rate, O(1/

√
T), meaning that only their short-term rather than asymptotic

performance will differ.

The graphs show that the MCCFR variants often dramatically outperform vanilla CFR. For example,
in Goofspiel, both MCCFR variants require only a few million nodes to reach εσ < 0.5 where CFR
takes 2.5 billion nodes, three orders of magnitude more. In fact, external-sampling, which has
the tightest theoretical computation-time bound, outperformed CFR and by considerable margins
(excepting LTTT) in all of the games. Note that pruning is key to vanilla CFR being at all practical
in these games. For example, in Latent Tic-Tac-Toe the first iteration of CFR touches 142 million
nodes, but later iterations touch as few as 5 million nodes. This is because pruning is not possible
in the first iteration. We believe this is due to dominated actions in the game. After one or two
traversals, the players identify and eliminate dominated actions from their policies, allowing these
subtrees to pruned. Finally, it is interesting to note that external-sampling was not uniformly the best
choice, with outcome-sampling performing better in Goofspiel. With outcome-sampling performing
worse than vanilla CFR in LTTT, this raises the question of what specific game properties might
favor one algorithm over another and whether it might be possible to incorporate additional game
specific constants into the bounds.

6 Conclusion

In this paper we defined a family of sample-based CFR algorithms for computing approximate equi-
libria in extensive games, subsuming all previous CFR variants. We also introduced two sampling
schemes: outcome-sampling, which samples only a single history for each iteration, and external-
sampling, which samples a deterministic strategy for the opponent and chance. In addition to pre-
senting a tighter bound for vanilla CFR, we presented regret bounds for both sampling variants,
which showed that external sampling with high probability gives an asymptotic computational time
improvement over vanilla CFR. We then showed empirically in very different domains that the re-
duction in iteration time outweighs the increase in required iterations leading to faster convergence.

There are three interesting directions for future work. First, we would like to examine how the
properties of the game effect the algorithms’ convergence. Such an analysis could offer further
algorithmic or theoretical improvements, as well as practical suggestions, such as how to choose
a sampling policy in outcome-sampled MCCFR. Second, using outcome-sampled MCCFR as a
general online regret minimizing technique in extensive games (when the opponents’ strategy is not
known or controlled) appears promising. It would be interesting to compare the approach, in terms
of bounds, computation, and practical convergence, to Gordon’s Lagrangian hedging [5]. Lastly,
it seems like this work could be naturally extended to cases where we don’t assume perfect recall.
Imperfect recall could be used as a mechanism for abstraction over actions, where information sets
are grouped by important partial sequences rather than their full sequences.

8

References

[1] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret mini-
mization in games with incomplete information. In Advances in Neural Information Processing
Systems 20 (NIPS), 2008.

[2] Andrew Gilpin, Samid Hoda, Javier Peña, and Tuomas Sandholm. Gradient-based algorithms
for finding Nash equilibria in extensive form games. In 3rd International Workshop on Internet
and Network Economics (WINE’07), 2007.

[3] D. Koller, N. Megiddo, and B. von Stengel. Fast algorithms for finding randomized strategies
in game trees. In Proceedings of the 26th ACM Symposium on Theory of Computing (STOC
’94), pages 750–759, 1994.

[4] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret min-
imization in game with incomplete information. Technical Report TR07-14, University of
Alberta, 2007. http://www.cs.ualberta.ca/research/techreports/2007/
TR07-14.php.

[5] Geoffrey J. Gordon. No-regret algorithms for online convex programs. In In Neural Informa-
tion Processing Systems 19, 2007.

[6] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. MIT Press, 1994.

[7] Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated equi-
librium. Econometrica, 68(5):1127–1150, September 2000.

[8] D. Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal of Math-
ematics, 6:1–8, 1956.

[9] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. Gambling in a rigged
casino: The adversarial multi-arm bandit problem. In 36th Annual Symposium on Foundations
of Computer Science, pages 322–331, 1995.

[10] S. M. Ross. Goofspiel — the game of pure strategy. Journal of Applied Probability, 8(3):621–
625, 1971.

[11] Geoffrey J. Gordon. No-regret algorithms for structured prediction problems. Technical Report
CMU-CALD-05-112, Carnegie Mellon University, 2005.

[12] H. W. Kuhn. Simplified two-person poker. Contributions to the Theory of Games, 1:97–103,
1950.

[13] Rufus Isaacs. Differential Games: A Mathematical Theory with Applications to Warfare and
Pursuit, Control and Optimization. John Wiley & Sons, 1965.

9

A Appendix

This appendix first presents a detailed description of the MCCFR algorithm. We then give proofs
to Theorems 3, 4, and 5. We begin with some preliminaries, then prove a general result about all
members of the MCCFR family of algorithms (Theorem 7 in Section A.5). We then use that result
to prove bounds for the MCCFR variants (Theorems 8 and 9 in Section A.6). We finally prove the
tightened bound for vanilla CFR (Theorem 10 in Section A.7).

A.1 MCCFR Algorithm

The MCCFR algorithm is presented in detail in Algorithm 1.

Algorithm 1 Monte Carlo CFR with optimistic averaging
Require: a sampling scheme S
Initialize information set markers: ∀I, cI ← 0
Initialize regret tables: ∀I, rI [a]← 0.
Initialize cumulative strategy tables: ∀I, sI [a]← 0.
Initialize initial profile: σ(I, a)← 1/|A(I)|
for t = {1, 2, 3, · · · } do

for i ∈ N do
Sample a block of terminal histories Q ∈ Q using S
for each prefix history z[I] of a terminal history z ∈ Q with P (z[I]) = i do

for a ∈ A(I) do
Let r̃ = r̃(I, a), the sampled counterfactual regret
rI [a]← rI [a] + r̃
sI [a]← sI [a] + (t− cI)πσi σi(I, a)

end for
cI ← t
σi ← RegretMatching(rI)

end for
end for

end for

In Algorithm 1, the average strategy is updated optimistically by weighting the update to the
average strategy equally for every iteration not seen since the last time the information set was
visited. Note: this can be corrected by maintaining weights at each parent information set which
get updated whenever they are visited, and pushing the values of the weights down as needed (lazy
updating). The average strategy can also be updated stochastically by weighting each update as
the inverse of the probability of reaching the information set. The average strategy, σ̄ is obtained
by normalizing the values of the cumulative strategy tables sI for each action at each information
set I . Although optimistic averaging is not technically a correct average it performs well empirically.

We’ve discussed two novel sampling schemes in this work: outcome-sampling and external sam-
pling.

A.1.1 Outcome Sampling

When using outcome-sampling, we can do the updates for each player simultaneously on a single
pass over the one sampled terminal history. When z[I]a is a prefix of z (action a was taken at I in
our sampled history) then

r̃(I, a) = ṽi(σt(I→a), I)− ṽi(σt, I) (12)

=
ui(z)πσ−i(z[I])πσ(z[I]a, z)

πσ′(z)
−
ui(z)πσ−i(z[I])πσ(z[I], z)

πσ′(z)
(13)

=
ui(z)πσ−i(z[I])

πσ′(z)
(πσ(z[I]a, z)− πσ(z[I], z)) (14)

= W · (πσ(z[I]a, z)− πσ(z[I], z)) (15)

10

where

W =
ui(z)πσ−i(z[I])

πσ′(z)
(16)

When z[I]a is not a prefix of z, then ṽi(σt(I→a), I) = 0, so

r̃(I, a) = 0− ṽi(σt, I) (17)
= −W · πσ(z[I], z) (18)

A.1.2 External Sampling

When using external sampling, we update for each player separately (one pass over the tree for each
player). When updating I belonging to player i, note that πσ−i(z[I], z) = πσ−i(z[I]a, z) since a is
taken by i, not the opponent. Also note that q(z) = πσ−i(z). We have the regret:

r̃(I, a) =
∑

z∈Q∩ZI

(
ṽi(σt(I→a), I)− ṽi(σt, I)

)
(19)

=
∑

z∈Q∩ZI

ui(z)πσ−i(z[I])
q(z)

(πσ(z[I]a, z)− πσ(z[I], z)) (20)

=
∑

z∈Q∩ZI

ui(z)πσ−i(z[I])πσ−i(z[I]a, z)
q(z)

(
πσ(z[I]a, z)− πσ(z[I], z)

πσ−i(z[I]a, z)

)
(21)

=
∑

z∈Q∩ZI

ui(z)πσ−i(z)
q(z)

(πσi (z[I]a, z)− πσi (z[I], z)) (22)

=
∑

z∈Q∩ZI

ui(z)πσi (z[I]a, z) (1− σ(a|I)) (23)

= (1− σ(a|I))
∑

z∈Q∩ZI

ui(z)πσi (z[I]a, z) (24)

=
σ(a|I)
σ(a|I)

(1− σ(a|I))
∑

z∈Q∩ZI

ui(z)πσi (z[I]a, z) (25)

=
(

1
σ(a|I)

− 1
) ∑
z∈Q∩ZI

ui(z)πσi (z[I], z) (26)

=
1

σ(a|I)

∑
z∈Q∩ZI

ui(z)πσi (z[I], z)−
∑

z∈Q∩ZI

ui(z)πσi (z[I], z) (27)

The sum is the expected utility to player i from z[I], assuming the opponent plays with the deter-
ministic mapping τ that was sampled from their mixed strategy. Here, the left-side term represents
the expected utility if player i chooses a at z[I] and then the players continue with their strategies
afterwards and the right-side term represents the expected utility if player i plays according to σ at
z[I]. In practice the left-side term is computed by a tree traversal for each action taken from z[I]
and then the right-side sum is computed as a weighted sum of these resulting expected utilities.

A.2 Preliminaries

There are several basic properties of random variables and real numbers that are necessary to prove
the main results.

Lemma 2 For any random variable X:

Pr[|X| ≥ k
√

E[X2]] ≤ 1
k2
. (28)

11

Proof: Markov’s Inequality states, if Y is always non-negative:

Pr[Y ≥ jE[Y]] ≤ 1
j
. (29)

By setting Y = X2:

Pr[X2 ≥ jE[X2]] ≤ 1
j

(30)

Pr[|X| ≥
√
jE[X2]] ≤ 1

j
. (31)

Replacing k =
√
j:

Pr[|X| ≥ k
√

E[X2]] ≤ 1
j2
. (32)

Lemma 3 If a1 . . . , an are non-negative real numbers in the interval [0, 1] where
∑n
i=1 ai = S,

then
∑n
i=1(ai)2 ≤ S.

Proof: Assume without loss of generality that n ≥ dSe..
Suppose that there are two elements ai,aj , where ai < 1 and aj < 1. If ai + aj ≤ 1, then:

(ai)2 + (aj)2 ≤ (ai)2 + 2aiaj + (aj)2 (33)

≤ (ai + aj)2. (34)

Thus, it is better to have (ai + aj , 0). If ai + aj > 1, then define A = ai + aj , and define
f(x) = (A− x)2 + x2. Setting the derivative to zero:

0 = f ′(x) (35)

f ′(x) = −2(A− x) + 2x (36)
2A = 4x (37)
A

2
= x (38)

Upon further observation, f ′′(x) = 4, implying that A
2 is a minimal point. Therefore, since the

critical points of f(x) are A
2 and the limits of the feasible region, namely A − 1, and 1, then the

limits of the feasible region must be the maximal points.

Therefore, for any two ai and aj , either:

1. One or the other is zero, or:

2. One is equal to the other.

Therefore, there can be no more than one i such that ai ∈ (0, 1), all others must be equal to zero
or one. Define i∗ = bSc. Without loss of generality, assume for all i ∈ {1 . . . i∗}, ai = 1,
ai∗+1 = S − bSc, and for all i ∈ {i∗ + 2 . . . n}, ai = 0. The result follows directly.

Lemma 4 If a1 . . . , an are non-negative real numbers where
∑n
i=1 ai = S, then

∑n
i=1

√
ai ≤√

Sn.

Proof: We prove this by induction on n. If n = 1, then the result is trivial. Otherwise, define
x =

∑n
i=1 ai, so that an + x = S, and therefore by induction

∑n
i=1

√
ai ≤

√
x(n− 1) +

√
S − x.

Define f(x) =
√
x(n− 1) +

√
S − x. To maximize f(x), we observe that 0 and S are critical

12

points, and we take the derivative and set it to zero:

f ′(x) = 0 (39)

f ′(x) =
0.5(n− 1)√
x(n− 1)

− 0.5√
S − x

(40)

0.5
√
n− 1√
x

=
0.5√
S − x

(41)

x

n− 1
= S − x (42)

x

(
1 +

1
n− 1

)
= S (43)

x

(
n− 1 + 1
n− 1

)
= S (44)

x =
S(n− 1)

n
(45)

Therefore, substituting the three critical points yields:

f(0) =
√
S (46)

f(S) =
√
S(n− 1) (47)

f

(
S(n− 1)

n

)
=

√
S(n− 1)(n− 1)

n
+

√
S − S(n− 1)

n
(48)

= (n− 1)

√
S

n
+

√
S

n
(49)

=
√
Sn (50)

The maximum of these is
√
Sn, establishing the inductive step.

Lemma 5 If b1 . . . , bn are non-negative real numbers where
∑n
i=1 b

2
i = S, then

∑n
i=1 bi ≤

√
Sn.

Proof: Let ai = b2i and apply Lemma 4.

Lemma 6 Given nonnegative reals ai,j in [0, 1], where
∑m
i=1

∑n
j=1 am,n = S, then:

m∑
i=1

√√√√ n∑
j=1

(am,n)2 ≤
√
mS. (51)

A.3 Blackwell’s Approachability Theorem

Consider the following more sophisticated bound for the regret matching procedure using Black-
well’s approachability.

Lemma 7 For all real a, define a+ = max(a, 0). For all a, b, it is the case that(
(a+ b)+

)2 ≤ (a+)2 + 2(a+)b+ b2 (52)

Proof: We prove this by enumerating the possibilities:

1. a ≤ 0. Then a+ = 0, so we have: (
(a+ b)+

)2 ≤ (b+)2 (53)

≤ b2, (54)

and:

(a+)2 + 2(a+)b+ b2 = b2. (55)

13

2. a ≥ 0,b ≥ −a. Then a = a+ and (a+ b)+ = (a+ b). So:(
(a+ b)+

)2 = (a+ b)2. (56)

Also:

(a+)2 + 2(a+)b+ b2 = a2 + 2ab+ b2 (57)

= (a+ b)2 (58)

3. a ≥ 0, b ≤ −a. Then a = a+, and (a+ b)+ = 0. So:(
(a+ b)+

)2 = 0. (59)

Also:

(a+)2 + 2(a+)b+ b2 = a2 + 2ab+ b2 (60)

= (a+ b)2 (61)
≥ 0 (62)

Define R+P
,T =

∑
a∈AR

+
T (a). Regret matching is a strategy σT+1 where:

σT+1(a) =


R+

T (a)

R+P
,T

if R+P
,T > 0

1
|A| otherwise

(63)

Lemma 8 If regret matching is used, then:∑
a∈A

R+
T (a)rT+1(a) ≤ 0 (64)

Proof: If R+P
,T ≤ 0, then for all a ∈ A, R+

T (a) = 0, and the result is trivial. Otherwise:∑
a∈A

R+
T (a)rT+1(a) =

∑
a∈A

R+
T (a)(uT+1(a)− uT+1(σt)) (65)

=

(∑
a∈A

R+
T (a)uT+1(a)

)
−

(
uT+1(σt)

∑
a∈A

R+
T (a)

)
(66)

=

(∑
a∈A

R+
T (a)uT+1(a)

)
−

(∑
a′∈A

σT+1(a′)uT+1(a′)

)
R+P

,T (67)

=

(∑
a∈A

R+
T (a)uT+1(a)

)
−

(∑
a′∈A

R+
T (a′)
R+P

,T

uT+1(a′)

)
R+P

,T (68)

=

(∑
a∈A

R+
T (a)uT+1(a)

)
−

(∑
a′∈A

R+
T (a′)uT+1(a′)

)
(69)

= 0 (70)

Theorem 6 Define ∆t to be maxa,a′∈A(ut(a)− ut(a′)). Then regret matching yields:

∑
a∈A

(R+
T (a))2 ≤ 1

T 2

T∑
t=1

|A|(∆t)2. (71)

14

Proof: We prove this by recursion on T . The base case (for T = 1) is obvious. Assuming this
holds for T − 1, we prove it holds for T . Since RT (a) = (T−1)

T RT−1(a) + 1
T rT (a), by Lemma 7:

(R+
T (a))2 ≤ (

(T − 1)R+
T−1(a)

T
)2 + 2

T − 1
T 2

R+
T−1(a)rT (a) + (

rT (a)
T

)2 (72)

Summing yields:∑
a∈A

(R+
T (a))2 ≤

∑
a∈A

((
T − 1
T

)2

(R+
T−1(a))2 + 2

T − 1
T 2

R+
T−1(a)rT (a) +

1
T 2

(rT (a))2

)
(73)

By Lemma 8,
∑
a∈AR

+
T−1(a)rT (a) = 0, so:

∑
a∈A

(R+
T (a))2 ≤

((
T − 1
T

)2 ∑
a∈A

(R+
T−1(a))2

)
+

(
1
T 2

∑
a∈A

(rT (a))2

)
(74)

By induction: ∑
a∈A

(R+
T−1(a))2 ≤ 1

(T − 1)2

T−1∑
t=1

|A|(∆t)2. (75)

Note that |rT (a)| ≤ ∆T . So:

∑
a∈A

(R+
T (a))2 ≤ 1

T 2

(
T−1∑
t=1

|A|(∆t)2

)
+ |A|(∆T)2. (76)

A.4 Deterministic Strategies

Before delving into the general proof, we need a few gory details involving deterministic strategies.

A deterministic strategy σi : Ii → A(i) maps each information set Ii ∈ Ii to an action a ∈ A(Ii).
Define Σ̂i to be the set of deterministic strategies for i, and Σ̂ =

∏
i∈N ′ Σ̂i, and Σ̂−i =

∏
j∈N ′\i Σ̂j .

Define I(h) to be the information set Ii ∈ IP (h) containing h. Given a deterministic strategy profile
σ, we can make it into a function from a history to the next action, defined as σ(h) = σP (h)(I(h)).
The terminal history h(σ) is the unique h ∈ Z such that, for all t ∈ {0 . . . |h|− 1}, σ(h(t)) = ht+1.
An information set I is reached with σ if for some h′ v h(σ), h′ ∈ I . In a game with perfect
recall, define h(σ, I) to be the unique h′ ∈ I where h′ v h(σ).

If no deterministic strategy σi of i allows I to be reached with (σ−i, σi), then I is unreachable with
σ−i.

In a game with perfect recall, given σ−i, each information set Ii ∈ Ii, given two deterministic
strategies σi and σ′i, if σi and σ′i both reach I , then h((σ−i, σi), I) = h((σ−i, σ′i), I). Therefore, if
I is reachable with σ−i we define h(σ−i, I) = h((σ−i, σi), I) for some σi such that I is reached
with (σ−i, σi). In general, for any set S ⊆ N ′, I is reachable with σS = {σ̂i}i∈S if there exists a
set σN ′\S = {σ̂i}i∈N ′\S such that I is reachable with (σS , σN ′\S).

Given a history h′ ∈ H , one can consider what would happen if σ was used to play h′ to termination.
In particular, define h(σ, h′) ∈ Z to be the unique history h ∈ Z such that h′ v h and for all
t ∈ {|h′| . . . |h| − 1}, σ(h(t)) = ht+1. Thus, for all h ∈ H , we can define ui(h′, σ) = ui(h(σ, h′)).

Given ~a, σi obliviously plays ~a if the strategy that plays the actions in ~a deterministically in se-
quence. In particular, for any information set Ii ∈ Ii, define c(Ii) = |Xi(h)|, the length of the
sequence of information sets and actions reached by this player before this information set, for any
h ∈ Ii (in a game with perfect recall, this is well-defined). Therefore, σi(Ii) = ~ac(Ii)+1, or is
arbitrary if c(Ii) + 1 is greater than the number of elements of ~a.

Lemma 9 For any deterministic profile σ−i, for any ~a, if Ii ∈ Ii(~a) is reachable with σ−i, then it
is reachable with (σ−i, σi), where σi obliviously plays ~a.

15

Proof: Since Ii is reachable with σ−i, then there exists some σi such that Ii is reachable with
(σ−i, σi). By definition, the history h(σ−i, σi) has a prefix h′ ∈ Ii. Define ~a(t) to be the first t
elements of ~a, and define σti to be the strategy that obliviously plays ~a(t), and arbitrary decisions
are equal to σi. We will prove by recursion on t that for all t ≤ ~a, h(σ−i, σti) = h(σ−i, σi). First
of all observe that σ0

i = σi, so the basis of the recursion holds. For the inductive step, we assume
that h(σ−i, σt−1

i) = h(σ−i, σi), and try to prove that h(σ−i, σti) = h(σ−i, σi). Since h′ ∈ Ii,
then X(h′) = ((I1, a1) . . . (Ik, ak)), and since Ii ∈ Ii(~a), then ~a = (a1, . . . , ak). Therefore,
define h′′ to be the prefix of h′ in It. Note that σt−1

i is in control for all I1 . . . It−1, and then σi
selects at in information set It. However, since σt would have also selected at by definition, then
h(σ−i, σti) = h(σ−i, σt−1

i) = h(σ−i, σi). Note that changing later actions of σi does not affect
whether or not h′ is played, so that any arbitrary deterministic strategy which is ~a oblivious will
work.

Lemma 10 For any deterministic profile σ−i, for any ~a, there is no more than one reachable Ii ∈
Ii(~a).

Proof: Consider two information sets I ′i, I
′′
i ∈ Ii(~a) where I ′i 6= I ′′i , and for the sake of contra-

diction, assume both are reachable with σ−i. Given a σi which is ~a-oblivious, then I ′i and I ′′i are
both reachable with (σ−i, σi). But there is only one history generated, h(σ−i, σi), and therefore
there must exist h′ ∈ I ′i and h′′ ∈ I ′′i , both prefixes of h(σ−i, σi). But that implies that h′ v h′′

or vice-versa, meaning that in a perfect recall game, the sequence of prior information sets and ac-
tions of either I ′i or I ′′i must include the other, an obvious contradiction to them both having action
sequences of equal size.

Lemma 11 For any strategy σj ∈ Σj , there exists a distribution ρ ∈ ∆(Σ̂j) such that for any
h ∈ H ,

Pr
σ̂j∈ρj

[∀(I, a) ∈ Xj(h), σ̂j(I) = a] = πσj (h). (77)

Proof: First, we define ρ(σ̂j) to be:

ρ(σ̂j) =
∏
I∈Ij

σj(I)(σ̂j(I)). (78)

In other words, the probability of playing σ̂j is the probability of playing like σ̂j everywhere. Sum-
ming over all actions outside of Xj(h) gives the lemma.

Lemma 12 Given a single player strategy σi ∈ Σi, and ρ generated as in Lemma 11, then:

Pr
σ̂i∈ρ

[Reachσ̂i
i (h)] = πσi

i (h). (79)

Lemma 13 Given a history h ∈ H , Reachσ̂i
i (h) if and only if for all (I, a) ∈ Xi(h), σ̂i(I) = a.

Proof: First, if for all (I, a) ∈ Xi(h), σ̂i(I) = a, then we can define σ̂j such that for all (I, a) ∈
Xj(h), σ̂j(I) = a, and for all I /∈ Xj(h), set σ̂j(I) to be arbitrary. Note that for all h′ v h,
there exists an (I, a) ∈ XP (h′)(h) where h′ ∈ I and h|h′|+1 = a. Therefore, for all h′ v h,
σ̂P (h′)(I) = h|h′|+1, implying that σ̂ reaches h.

If Reachσ̂i
i (h), then there exists a σ̂−i such that h v h(σ̂i, σ̂−i). Therefore, for all h′ v h,

ˆsigma(h′) = h|h′|+1, and σ̂P (h′)(I(h′)) = h|h′|+1. For all (I, a) ∈ Xi(h), I = I(h′′) and
a = h|h′′|+1 for some h′′ v h. Moreover, P (h′′) = i, implying that σ̂i(I(h′′)) = h|h′′|+1.

Corollary 1 Given any h ∈ H , given i ∈ N ′, there exists a σ̂i ∈ Σ̂i that reaches h.

Proof: For any history h, it is easy to construct a strategy which satisfies Lemma 13.

Lemma 14 Given a set of strategies σ̂S = {σ̂i}i∈S , if for all i ∈ S, Reachσ̂i
i (h), then Reachσ̂S

S (h).

16

Proof: By Corollary 1, for every i ∈ N ′\S, there exists a strategy σ̂i that reaches h. By Lemma 13,
for all i ∈ N ′, for all (I, a) ∈ Xi(h), σ̂i(I) = a. Moreover, this implies that these strategies
reconstruct h.

Lemma 15 For any strategy profile σ−i ∈ Σ−i, there exists a distribution ρ ∈ ∆(Σ̂−i) such that
for all I ∈ Ii, πσ−i

−i (I) =
∑
σ̂−i∈bΣ−i:Reach(σ̂−i,I)

ρ(σ̂−i).

Proof: For all j ∈ N ′\i, using Lemma 11, we generate a strategy ρj ∈ ∆(Σ̂j). Define ρ to be the
distribution over ∆(Σ̂−i) obtained by independently sampling each σ̂j by ρj ; formally,

ρ(σ̂−i) =
∏

j∈N ′\i

ρj(σ̂j). (80)

Consider a history h ∈ H . By Lemma 12, πσj

j (h) = Prσ̂j∈ρj
[Reachσ̂j

j (h)]. Since the strategies are
selected independently:

Pr
σ̂−i∈ρ

[∀j ∈ N ′\i,Reachσ̂j

j (h)] =
∏

j∈N ′\i

Pr
σ̂j∈ρj

[Reachσ̂j

j (h)] (81)

=
∏

j∈N ′\i

πσ̂j (h) (82)

= πσ̂−i(h) (83)
If we sum over all h ∈ I , we get the result.

Lemma 16 For any strategy profile σ−i, for any ~a:∑
I∈Ii(~a)

π
σ−i

−i (I) ≤ 1 (84)

Proof: This follows directly from Lemma 15 and Lemma 10.

A.5 General MCCFR Bound

We begin by proving a very general bound applicable to all algorithms in the MCCFR family. First,
define Bi = {Ii(~a) : ~a ∈ ~Ai}, so M =

∑
B∈Bi

√
|B|.

Theorem 7 For any p ∈ (0, 1], when using any algorithm in the MCCFR family such that for all
Q ∈ Q and B ∈ B, ∑

I∈B

 ∑
z∈Q∩ZI

πσ(z[I], z)πσ−i(z[I])
q(z)

2

≤ 1
δ2

(85)

where δ ≤ 1, then with with probability at least 1− p, average overall regret is bounded by,

RTi ≤
(

1 +
2
√
p

)(
1
δ

)
∆u,iMi

√
|Ai|√

T
. (86)

Proof: Define rti(I, a) to be the unsampled immediate counterfactual regret and r̃ti(I, a) to be the
sampled immediate counterfactual regret. Formally,

rti(I, a) =
(
vi(σt(I→a), I)− vi(σt, I)

)
(87)

r̃ti(I, a) =
(
ṽi(σt(I→a), I)− ṽi(σt, I)

)
(88)

RTi (I) =
1
T

max
a∈A(I)

T∑
t=1

rti(I, a) (89)

R̃Ti (I) =
1
T

max
a∈A(I)

T∑
t=1

r̃ti(I, a) (90)

17

Let Qt ∈ Q be the block sampled at time t. Note that we can bound the difference between two
sampled counterfactual values for information set I at time t by,(

ṽi(σt(I→a), I)− ṽi(σt, I)
)
≤ ∆t

u,i(I) ≡ ∆u,i

∑
z∈Qt∩ZI

πσ(z[I], z)πσ−i(z[I])
q(z)

(91)

so by our assumption, ∑
I∈B

∆t
u,i(I)2 ≤

∆2
u,i

δ2
(92)

So we can apply Theorem 6, to get,

R̃Ti (I) ≤

√
|A(I)|

∑T
t=1(∆t

u,i(I))2

T
(93)

Using Lemma 5,

∑
I∈B

R̃Ti (I) ≤

√
|B||A(B)|

∑
I∈B

∑T
t=1(∆t

u,i(I))2

T
(94)

≤

√
|B||A(B)|

∑T
t=1

∑
I∈B(∆t

u,i(I))2

T
(95)

≤

√
|B||A(B)|

∑T
t=1 ∆2

u,i/δ
2

T
(96)

≤
∆u,i

√
|B||A(B)|
δ
√
T

(97)

The average overall sampled regret then can be bounded by,

R̃Ti ≤
∑
B∈Bi

∑
I∈B

R̃Ti (I) (98)

≤
∑
B∈Bi

∆u,i

√
|B||A(B)|
δ
√
T

(99)

≤
∆u,i

√
|Ai|

∑
B∈Bi

√
|B|

δ
√
T

(100)

≤
∆u,iMi

√
|Ai|

δ
√
T

(101)

We now need to prove that R and R̃ are similar. This last portion is tricky. Since the algorithm
is randomized, we cannot guarantee that every information set is reached, let alone that it has con-
verged. Therefore, instead of proving a bound on the absolute difference of R and R̃, we focus on
proving a probabilistic connection.

In particular, we will bound the expected squared difference between
∑
I∈Ii

RTi (I) and∑
I∈Ii

R̃Ti (I) in order to prove that they are close, and then use Lemma 2 to bound the absolute
value. We begin by focusing on the similarity of the counterfactual regret (RTi (I) and R̃Ti (I))
in every node, by focusing on the similarity of the counterfactual regret of a particular action
at a particular time (rti(I, a) and r̃ti(I, a)). By the Lemma from the main paper, we know that
E[rti(I, a)− r̃ti(I, a)] = 0.

From Lemma 5 we have,

E

(∑
I∈Ii

(RTi (I)− R̃Ti (I))

)2
 ≤ |Ii|∑

I∈Ii

E
[
(RTi (I)− R̃Ti (I))2

]
(102)

18

So,

(RTi (I)− R̃Ti (I))2 =

(
1
T

max
a∈A(I)

T∑
t=1

rti(I, a)− 1
T

max
a∈A(I)

T∑
t=1

r̃ti(I, a)

)2

(103)

(RTi (I)− R̃Ti (I))2 ≤ 1
T 2

(
max
a∈A(I)

(
T∑
t=1

rti(I, a)−
T∑
t=1

r̃ti(I, a)

))2

(104)

(RTi (I)− R̃Ti (I))2 ≤ 1
T 2

(
max
a∈A(I)

(
T∑
t=1

∣∣rti(I, a)− r̃ti(I, a)
∣∣))2

(105)

Note that if f(x) is monotonically increasing on the non-negative numbers, then f(maxa |xa|) =
maxa f(|xa|).

(RTi (I)− R̃Ti (I))2 ≤ 1
T 2

max
a∈A(I)

(
T∑
t=1

rti(I, a)−
T∑
t=1

r̃ti(I, a)

)2

(106)

(RTi (I)− R̃Ti (I))2 ≤ 1
T 2

∑
a∈A(I)

(
T∑
t=1

rti(I, a)−
T∑
t=1

r̃ti(I, a)

)2

(107)

E[(RTi (I)− R̃Ti (I))2] ≤ 1
T 2

∑
a∈A(I)

T∑
t=1

E[
(
rti(I, a)− r̃ti(I, a)

)2] (108)

The final step is because if t 6= t′, then E[(rti(I, a)− r̃ti(I, a))(rt
′

i (I, a)− r̃t′i (I, a))] = 0, because if
t > t′, then after time t′, r̃t(I, a) is an unbiased estimator of rti(I, a) (and vice-versa). Substituting
back into Equation 102:

E

[
(
∑
I∈Ii

(RTi (I)− R̃Ti (I)))2

]
≤ |Ii|

T 2

∑
I∈Ii

∑
a∈A(I)

T∑
t=1

E
[(
rti(I, a)− r̃ti(I, a)

)2]
(109)

≤ |Ii|
T 2

T∑
t=1

∑
B∈Bi

∑
a∈A(B)

∑
I∈B

E
[(
rti(I, a)− r̃ti(I, a)

)2]
(110)

By Equation 87, |rti(I, a)| ≤ ∆u,iπ
σt

−i(I). From Equation 91, |r̃ti(I, a)| ≤ ∆t
u,i(I). Thus,

E
[
(rti(I, a)− r̃ti(I, a))2

]
≤ E

[
(rti(I, a))2 + (r̃ti(I, a))2

]
(111)

≤ ∆2
u,iπ

σt

−i(I)2 + ∆t
u,i(I)2 (112)

Note that for all B ∈ B, by Lemma 16:∑
I∈B

∆2
u,iπ

σt

−i(I)2 ≤
∑
I∈B

∆2
u,iπ

σt

−i(I) ≤ ∆2
u,i

∑
I∈B

πσ
t

−i(I) ≤ ∆2
u,i (113)

Along with Equation 92, and the fact that δ ≤ 1 this means,∑
I∈B

E
[
(rti(I, a)− r̃ti(I, a))2

]
≤ ∆2

u,i +
∆2
u,i

δ2
(114)

≤ 2
∆2
u,i

δ2
(115)

Returning to Equation 110,

E

(∑
I∈Ii

(RTi (I)− R̃Ti (I))

)2
 ≤ |Ii|

T 2

T∑
t=1

∑
B∈Bi

∑
a∈A(B)

2
∆2
u,i

δ2
(116)

≤
2|Ii|∆2

u,i

δ2T

∑
B∈Ii

|A(B)| (117)

19

Thus by Lemma 2, with probability at least 1− p,

RTi ≤
√

2|Ii||Bi||Ai|∆u,i

δ
√
pT

+
∆u,iM

√
|Ai|

δ
√
T

(118)

Since M ≥
√
|Ii||Bi|,

RTi ≤

(
1 +
√

2
√
p

)(
1
δ

)
∆u,iM

√
|Ai|√

T
(119)

A.6 Specific MCCFR Variants

We can now apply Theorem 7 to prove a regret bound for outcome-sampling and external-sampling.

A.6.1 Outcome-Sampling

Theorem 8 For any p ∈ (0, 1], when using outcome-sampling MCCFR where ∀z ∈ Z either
πσ−i(z) = 0 or q(z) ≥ δ > 0 at every timestep, with probability 1 − p, average overall regret
is bounded by

RTi ≤

(
1 +
√

2
√
p

)(
1
δ

)
∆u,iMi

√
|Ai|√

T
(120)

Proof: We simply need to show that,

∑
I∈B

 ∑
z∈Q∩ZI

πσ(z[I], z)πσ−i(z[I])
q(z)

2

≤ 1
δ2
. (121)

Note that for allQ ∈ Q, |Q| = 1. Also note that for anyB ∈ Bi there is at most one I ∈ B such that
Q ∩ ZI 6= ∅. This is because all the information sets in Q ∩ ZI all have player i’s action sequence
of a different length, while all information sets in B have player i’s action sequence being the same
length. Therefore, only a single term of the inner sum is ever non-zero.

Now by our assumption, for all I and z ∈ ZI where πσ−i(z) > 0,

πσ(z[I], z)πσ−i(z[I])
q(z)

≤ 1
δ

(122)

as all the terms of the numerator are less than 1. So the one non-zero term is bounded by 1/δ and so
the overall sum of squares must be bounded by 1/δ2.

A.6.2 External-Sampling

Theorem 9 For any p ∈ (0, 1], when using external-sampling MCCFR, with probability at least
1− p, average overall regret is bounded by

RTi ≤

(
1 +
√

2
√
p

)
∆u,iMi

√
|Ai|√

T
. (123)

Proof: We will simply show that,

∑
I∈B

 ∑
z∈Q∩ZI

πσ(z[I], z)πσ−i(z[I])
q(z)

2

≤ 1 (124)

Since q(z) = πσ−i(z), we need to show,

∑
I∈B

 ∑
z∈Q∩ZI

πσi (z[I], z)

2

≤ 1 (125)

20

Let σ̂t be a deterministic strategy profile sampled from σt where Q is the set of histories consistent
with σ̂t−i. So Q∩ZI 6= ∅ if and only if I is reachable with σ̂t−i. By Lemma 10, for all B ∈ Bi there
is only one I ∈ B that is reachable; name it I∗. Moreover, there is a unique history in I∗ that is a
prefix of all z ∈ Q ∩ ZI∗ ; name it h∗. So for all z ∈ Q ∩ ZI∗ , z[I∗] = h∗. This is because σ̂tt−i
uniquely specifies the actions for all but player i and B uniquely specifies the actions for player i
prior to reaching I∗.

Define ρ to be a strategy for all players (including chance) where ρj 6=i = σ̂j but ρi = σi. Consider
a z ∈ Q ∩ ZI . z must be reachable by σ̂−i, so πρ−i(z) = 1. So∑

z∈Q∩ZI∗

πσi (z[I∗], z) =
∑

z∈Q∩ZI∗

πρi (h∗, z) (126)

=
∑

z∈Q∩ZI∗

πρ(h∗, z) (127)

≤
∑
z∈ZI∗

πρ(h∗, z) ≤ 1 (128)

So, ∑
I∈B

 ∑
z∈Q∩ZI

πσi (z[I], z)

2

≤ 1 (129)

A.7 Vanilla CFR: A Tighter Bound

In the final proof we use some of the same ideas of the previous proofs to tighten the original bound
of vanilla CFR, so the bound depends on Mi rather than |Ii| as with the MCCFR variants.

Theorem 10 When using vanilla CFR for player i, RTi ≤ ∆u,iMi

√
|Ai|/

√
T .

Proof: Define ∆t
u,i(I) = σt−i(I)∆u,i(I). Using Theorem 6,

(RT,+i (I))2 ≤ |A(I)|
T 2

T∑
t=1

(∆t
u,i(I))2 (130)

RT,+i (I) ≤
√
|A(I)|∆u,i(I)

T

√√√√ T∑
t=1

(σt−i(I))2. (131)

By summing over all information sets of I , we get:

RT,+i ≤ 1
T

∑
I∈Ii

√
|A(I)|∆u,i(I)

√√√√ T∑
t=1

(σt−i(I))2 (132)

≤
√
|Ai|∆u,i

T

∑
I∈Ii

√√√√ T∑
t=1

(σt−i(I))2 (133)

≤
√
|Ai|∆u,i

T

∑
B∈Bi

∑
I∈B

√√√√ T∑
t=1

(σt−i(I))2. (134)

For each action sequence B ∈ Bi: ∑
I∈B

σt−i(I) ≤ 1 (135)

T∑
t=1

∑
I∈B

σt−i(I) ≤ T (136)

21

Therefore, by Lemma 6:

∑
I∈B

T∑
t=1

√
σt−i(I) ≤

√
|B|T (137)

Summing over all B ∈ Bi yields:

RT,+i ≤
√
|Ai|∆u,i

T

∑
B∈Bi

√
|B||T |. (138)

In practice, this makes the bound on vanilla counterfactual regret as tight as the sampling bounds.
The distinctive difference is the amount of computation required per iteration.

22

