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ABSTRACT

This thesis is concerned with the industrtal application of long
range adaptive predictive controllers. [t focuses on the
multi-step adaptive predictive controller (MAPC) developed by
Sripada, (1988) and Foley, (1988). MAPC uses a modified Kalman
filter predictor in the feedback path to deal with nolse and to
predict future values of the process output, and therefore, was
expected to perform well in the industrial application. The
theory behind MAPC is briefly summarized and the implementation of

the controller is discussed in some detail.

The results of 3 MAPC implementations are then presented. The
continuous stirred tank heater (CSTH) was used for the first
experiments. This provided a controlled environment which to
evaluate the performance characteristics of the MAPC algor!ithm.
Esso Chemical’s higher olefins plant in Sarnia provided the
industrial testing environment. The MAPC algorithm was
successfully used to control the reactor bed outlet temperature

and to control the hydrofiner total outlet poisons.

On-line estimation was performed using both step and PRBS tests.
Early results confirmed that it was essential to use a A/T(z ')
filter in order to remove unwanted high frequency components which
cause model parameter bias. In the industrial experiments,
off-line analysis of step and PRBS test proved to be useful in
establishing initial parameter estimates and appropriate tuning

parameter values for the RLS estimator. The trace of the



estimation covariance matrix, tr{P}, was used to ensure that the
model parameter responses were smooth. The CSTH results showed
that fast parameter movements caused non-linear output responses.
This was attributed to the coupling between the estimator and the
time-varying Kalman filter predictor. The tr{P} effectively
decoupled the ™MAPC Kalman filter predictor from the control
algorithm. Finally, the use of a deadzecne on the prediction error
as an estimator ons/off criterion was not very effective. An

incorrect deadzone lead to oscillatory parameter responses.

The MAPC algorithm performed well during experimentation. It was
easily tuned by fixing the prediction and control horizons, and
ad justing the control weighting and the ratio of noise
covarlances. CSTH results showed the controller to be very
robust during large time delay swings for both servo and
regulatory modes, even when the estimator was turned off. The
industrial experiments focused on the regulatory performance of
the MAPC algorithm. Good regulatory response under a variety of
unmodelled disturbances was demonstrated. Process operator
response to the technology was enthusliastic. Little additional
training was required due to the fact that the operator interface
was made consistent with all existing control applications at the

plant.

The overall conclusion was, that adaptive controllers such as MAPC
can perform well in selected industrial applications, but that

there are still problems that require further research.
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1.0 INTRODUCTION

Long range adaptive predictive control strategies have recently
been demonstrated to be very robust in the presence of changing
process and disturbance dynamics (Clarke, Mohtadi and Tuffs, 1987),
(McIntosh, 1988), (Foley, 1988). Industrial chemical processes are
known to exhibit such time-varying dynamics and thus provide a
rich environment for the implementation and evaluation of such

control strategies.

This thesis focused on implemention and evaluation of Multi-Step
Adaptive Predictive Control (Sripada,1988) 1in an industrial
environment. The environment was provided by Esso Chemical Canada
in Sarnia at their higher olefins plant. The thesis has been
written in a manner which provides an individual with a complete
picture of both the relevant MAPC theory and the experiments that
were performed to understand the behaviour of the controller in

both academic and industrial settings.

Chapter 2 provides a brief summary of the theory and developren®
of the RLS estimator and MAPC controller. Detailed deriva’tor -

and discussions may be found in Sripada, (1988) and Foley, (198#:.

Chapter 3 describes some of the practical considerations and
analysis techniques that may be used to better understand the
dynamic data assoclated with a chemical process. It also presents

the general framework of the Honeywell distributed control



network, which is in place at the higher oletins unit, and the

MAPC software development.

Chapter 4 presents and discusses the results obtained from the
university and industrial experiments. The experiment on the
continuous stirred tank heater provided initial training .and
guidance on the use of the MAPC. This knowledge was then used as
a starting point for the industrial experiments. The polychamber

reactc temperature cortrol and hydrofiner total outlet poisons

control were selected for the industrial experiments.

Finally, Chapter S discusses the conclusions, contributions and

recommended future work to improve the MAPC centrcller.



2.0 THEORETICAL DEVELOPMENT OF THE MULTI-STEP ADAPTIVE
PREGICTIVE CONTROLLER

2.1 THE PLANT MODEL

The dynamics of a chemical process may be described by either a
transfer function or state-space model. The following section
presents both representations for a plant that may be
characterized as having 1linear, stochastic, non-stationary

behavior about some operating point.
2.1.1 Transfer Function Mcdels

The dynamics of a stochastic, non-stationary continuous time plant
may, In the most general case, be described by the following
discrete time model, provided that the plant input and output have
been sampled at a rate that includes all desired frequency
components. This is normally done by sampling at a rate of é to
}5 the dominant time constant of the continucus time plant. The
dominant time constant of the plant may be defined at the
frequency which the plant’s magnitude repsonse dcmonstrates a -3
decibel roll-off. This is also called the crossover frequency.
The discrete plant transfer function describes a plant which is
non-stationary. A stationary random process may be defined as a
process whose statistical properties are invariant to a shift in
the tiwne origin. Namely, the mean and the variance are
independent of time and the autocorrelation function is only a

function of the time difference (Oppenheim and Shaefer, 1975),



(Bendat and Piersol, 1971). A non-stationary process would thus
violate this invariance to time. Equation 2.1.1 describes the
input to the distrbance transfer function, Gdiz-l). as a discrete
white noise process. Passing €£(k), a white noise process through

a filter 1/A effectively produces a non-stationary random «':tput.

yk) = 276 (z7) ulk-1) + G,(z") £0k) (2.1.1)
A

where Gp(z'l) = Process Transfer Function
Gd(z—I) = Disturbance Transfer Functlion
2! Backward Shift Operator
A Integrating Operator 1-z '
d Process Time Delay (Integer)
y (k) Process Qutput
u(k) Process Input
£(k) Zero-mean Gaussian Noise

Any plant may be described by a transfer function which represents
the dynamics between 1its input and output and a complimentary
transfer function which describes the measurement and process
noise. The general model may be presented in the following form,

whi-® has been referred to in the literature as the Box and



L Geh Gz
Ay(k) =z L -, dulk-1) o+ —— * &k)
Gz ) Gd(z )
P (2.1.2)
where
Mzl = g ;. gn ;2 . N gn _-n
P P P P
1 2 n
(2.1.3)
GC(zh) = 1 0+ g2 z2b . + g - z™"
P P, P
(2.1.4)
G:(z-l) = 1+ g: zb o+ + g: z "
1 n (2.1.5)
Gg(z-l) = 1+ gg z' o+ + 82 z "
1 n (2.1.6)

where Gz(z'l), Gz(z_l) and G:(z-l) are monic polynomials in the
backward shift operator. It should be understood that the Box and
Jenkins model completely separates the plant and disturbance
dynamics, unlike the models which are normally referred to in the
literature as the CARIMA ( Controlled Auto-Regressive Integrated
Moving Average ) or ARIMA ( Auto-Regressive Integrated Moving

Average w/ Auxiliary Noise Input ) models.

For purposes of on-line recursive estimation and adaptive control,



the structure of the ARIMA model is as follows :

AzN)y(k) = 27%B(z ) -uk-1) + c(z M) -E(k) (2.1.7)
&
where
-1 -1 -2 -n
Alz ") = 1+ az +agz + + az (2.1.8:
n
-1 -1 -2 -n
B(z ') = b+bz +bz + + bz (2.1.9)
1 2 n
ctz’l) = 1+ clz' +c 2% + + cnz'n (2.1.10)

This ARIMA model incorporates both the plant and disturbance
dynamics into the AR ( Auto-Regressive ) and MA ( Moving-Average )
components of the plant model. If the Box and Jenkins model is
re-written as In equation (2.1. 1) then it is apparent that the
A(z’Y), B(z'!) and c(z7) polynomials are a function of both the

plant and disturbance dynamics.

62 (2162 (z™ ) - Ay (k) 27462z Y 6"zt ) - Aulk-1)
P d p d

+

G (27 -Gy (z g k) (2.1.11)
f Equation (2.1.11) is compared with the ARIMA model, It can be
seen that the A(z™') polynomial 1s a function of both the AR
components of the plant and the disturbance dynamics. Similarly,
the B(z-l) polynomial is affected by the AR component of the
disturbance dynamics. This correlation of plant with disturbance
dynamics will become much more important later on, when a good
model of the plant dynamics must be estimated. It will be
essentlal that during estimation periods that the AR component of

the disturbance dynamics is significantly less in magnitude than



the AR component of the plant dynamics.

2.1.2 State~Space Models

An equivalent discrete time representation of a linear
time-invariant plant is the state-space representation. A plant
may be described in many different canonical forms ( Kailath, 1980)
and thus there exists no single unique representation. The

canonical form chosen 1s an observable form as used by

Walgama, 1986 and may be written for SISO systems as :

®(k+1) = &-x(k) + A-ulk) + T-uwlk) (2.1.12)
y (k) = B-x(k) + v(k) {2.1.13)
where
¢>=(1 00 -- D O 0] A= [0 ] r=1_{1]
10 - ~a 0 -+ 0 | b 0
1 X n n
7 00 -1 -a, b1 0
0 1 0 0
c 1 . 0 0
-O o e 0 .o 1 0 ] -0 ] _O_
(2.1.14)
8=1[0 0 1] (2.1.15)
T
x(k) = [xp(k) x, (k) <o x (k) x (k) ceeox  (K) ]
(2.1.16)
¢ = state transition matrix
A = input transition vector
8 = output transit’'on vector



Here w(k) and v(k) represent uncorrelated, Gaussian distributed
noise sequences with a mean of zero, and covarlances
R"=E[wr(k)-w(k)] and RV=E[vT(k)-v(k)]. This model is basically a
direct realization of the ARIMA transfer function model with the
exception that the noise dynamics have been separated into two
uncorrelated components of a given standard deviation. The
non-stationary component of the noise is r-presented in the state
space model by the augmentation of the state transition matrix

with a pure integrator as in equation (2.1.14).

Comparing the state-space and ARIMA models further, it is easily
noticed that the state transition matrix contains the AR component
of the process. Similarly, the input transition vector describes
the MA component. Since the state transition matrix contains no
additional nolse parameters, the state space model lumps the AR
process and disturbance dynamics together as does the ARIMA model.
This fact will have a significant impact on the model parameters
during on-line estimation when a disturbance with AR dynamics is

present.

o



2.2 PLANT IDENTIFICATION

The dynamics of most chemical processes that have been sampled at
a rate which allows identification of the desired process
bandwidth may be characterized by the following nth order

discrete time ARIMA model :

Az yk) = z 9Bz -uk-1) + Cz'')-€kk)  (2.2.1)
A
where
Azl = 1+azl+ a 2724+ .o+ az? (2.2.2)
1 2 n
Bz!) = b+bz'+ bz?+ «vv + bzZ" (2.2.3)
1 2 3 n
ctz') = 1+czt+ ¢ 2%+ oo o+ c2z® (2.2.4)
1 2 n
= 1-2"

true process time delay € Integer

Here d is the true process time delay and an integral multiple of
the sampling time Ts. Similarly, the A operator is used to define

the non-stationary behavior of the process, as a random walk.

With time invariant processes, the parameters of the ARIMA model
may be estimated off-line by a batch least sqguares or maximum
likelihood technique. However, plants which exhibit time varying
dynamics and/or non-linearities which are non-repeatable will
require the model parameters to be estimated by some on-line
technique. This will have to be done either in the open or closed
loop depending on the safe operating limits of the process. From
the literature it is obvious that there are a large number of

techniques to perform this oi-line estimation, but the most



commonly used technique is recursive least squares estimation. The
following sections describe the basic RLS algorithm and the
modifications that are required in order for it to provide stable
and accurate estimates of the plant parameters In an industrial
environment, 1i.e. an environment which 1is continucusly being

corrupted by both MA and AR type disturbances.

2.2.1 Basic Least Squares Algorithm

If, for the moment, the structured MA dynamics of the noise are
neglected, the ARIMA plant model of Equation (2.2.1) may be

re-written in the following convenient vector form :

_ Bz’
Ay(k) = — * Bu(k-a-1) + £(k) (2.2.5)
Az ")
Ay(k) =  ¢0)T- Blk-1) + £(k) (2.2.6)
where
¢(k) = [ By(k-1) --- Ay(k-n) Au(k-d-1) --- Au(k-d-n) ]
(2.2.7)
~ - R ~ - T
o(k-1) = [ a a b b ] (2.2.8)
1 n , 1 n

Since the ultimate interest here 1s in adaptive control, the plant

10



parameters must be estimated by some on-line technique. In the
literature, the most common technique is one which minimizes a
quadratic cost function. The elements of the algorithm which must

be updated at each sample interval may be summarized as :

A) gain calculation

L(k-1) = P“‘;”"”(k) (2.2.9)
1 + ¢ (k)-P(k-1)-¢(k)
B) parameter update :
6(k) = 6(k-1) + L(k-1) + [ Ay(k) - ¢ (k)-8(k-1) ]
(2.2.10)
C) covariance update :
T
1 + ¢ (k)-P(k-1)-¢(k)
where P(0) = a-I a >0 (2.2.11)

Although this algorithm will work for a certain class of systems,
it has many shortcomings and must be modified in order for it to
function in an environment where the excitation may be small for

extended periods of time.

A common first problem of the basic least squares algorithm is
that after the initlal process excitation and identification, the
covariance matrix, P(k) will decay to =zero in an exponential
fashion. This decaying of the auto and cross correlation terms in
the matrix to zero, causes the corresponding Kalman estimator galn
vector to become increasingly small, and thus the estimator will

not be able to track changing plant dynamics. At this point the

11



estimator 1is said to have gone to "sleep" anrd no level of
regressor excitation will cure the problem. In process control
computers, this covariance decay may also lead to numerical
problems and may cause the P(k) matrix to loose its positive

definite nature.

A common solution to the covariance decay 1s to Iintroduce a

forgetting factor into the quadratic cost functlon :

N
J = ZZ: ANk [ Ay (k) - ¢T(k)-6(k-1) ] (2.2.12)
k=1

For this cost function the updates now become,

gain calculation

L(k-1) = P(k-1) ¢(k) (2.2.13)

A+ ¢ (k)-P(k-1)-¢(k)

covariance update

P(k-1) _  P(k-1)-¢(k)-¢" (k)-P(k-1)
A A+ ¢ (K)-P(k-1)-¢(k)
where A= (0, 1]

P(k) =

(2.2.14)

A forgetting factor of A=l 1is typically chosen such that the
estimator can track the changing dynamics of the plant at an
appropriate speed. Selecting A=l causes slow parameter tracking,
and would thus be used when the plant dynamics change gradually
over an extended period of time. Equivalently, selecting A«l
causes fast parameter tracking. A may also be thought of as the

estimator filter constant. It must be noted that 1if the



signal/noise is small, selecting a A that is relatively small will
cause radical fluctu~tions in the estimated parameters, as the
estimator attempts to fit the resulting fluctuations caused by the
nolse. Although the forgetting factor solves the problem of
covariance decay, it presents another problem when the regressor
excitactlon is low, ¢(k)=0. The covariance update with ¢(k)=z0
becomes P{k)=P(k-1)/A. With A<1, the covariance matrix, P(k) will
grow exponentially large. This is typlcally known as covarlance
"windup" or "blow up". This "windup" condition must be controlled
because once the regressor is excited, the parameters will also
burst as now the estimator gain vector has also grown
exponentially large. Naturally, there are numerical constraints
on the size of the values that a digital computer may handle, and

thus it is important to prevent this phenomena from occurring.

There have been several solutions proposed to Iimproving the
robustness of the Basic Recursive Least Squares algorithm . A
number of these solutions have been summarized and discussed
(Ljung and Soderstrom,1983). Many of these ideas (Shah, 1986),
(Sripada, 1988) have been incorporated in their version of Improved
Least Squares (ILS) which addresses many of the robuzliiess
problems of the basic algorithm. The following section summarizes
the improvements that were made to the RLS algorithm and used in

this work.

13



2.2.2 Recursive Least Squares Estimation For
An Industrial Enviroment

There are three main concerris in developing a recursive estimator
for an industrial environment. First, the estimator must be
numerically stable in order for it to operate over eutended
periods of time without having to be restarted or re-initi. ! ized,
Second, it must provide the "tuning knobs" which are bot:,
reasonable and easily comprehensible such that the estimator can
be easily maintained with a minimal amount of engineering effort.
Thirdly, the estimator must provide monitoring information which
allows the user to evaluate the performance of the algorithm. The
following sections describe the 1items which are required to

implement such an estimator.

Data Scaling

In general, the regressor vector, ¢(k) contains both input and
output terms when estimating an ARIMA type model. With the ARIMA

structure the regressor vector is written as :

¢(k) = [ By(k-1) --- Ay(k-n) ABulk-d-1) --- Au(k-d-n) ]

Sripada, (1988) has suggested that this regressor should be

normalized in the following manner :

Ayn(k) Ay(k) / 7 (2.2.15)

¢n(k) ¢pk) /7 m (2.2.16)

where 7 = max( 1, || ¢(k) || )

14



Although it may seem logical to scale the regressor to a value
less than or equal to one, numerical problems may result if the
dynamic ranges of the input and ouvtput are not identical. For
example, if typically Ay(k)ElOzand Au(k)=10"" then normalizing the
regressor using equation (2.2.16) will vyield O0.1sAy=1 and
10"%<Au=10">. Possible overflow problems have been eliminated by
scaling the data to less than one, however, the

truncation/round-off problems may cause difficulties due to the

lack of significant digit representation in the input.

Most arithmetic computations are performed in computers which
either have f{loating point hardware or software emulation of
floating point operations coded in firmware. A floating point
number may be represented in binary as 2°-M, where c 1is the
characteristic and M is the mantissa. During an
addition/subtraction the floating point hardware must equalize the
characteristic of the two numbers. It does this by increasing the
characteristic of the smaller number by shifting the binary point
to the left and padding with zeros. Depending on the size of the
mantissa, M, this may create some real numer'ca. problems during
the addition of two numbers if one of the numbers; is relatively

small.

Thus a solution to this problem is to scale the regressor

components separately based on whether they are inputs or outputs.

15



The regressor elements may be scaled as follows :

n = max( 1, || ¢ (k) |]) (2.2.17)
y y
n, = max( 1, || ¢, (k) 1) (2.2.18)
Ayn(k) = QAy(k) 7/ ny
du (k) = du(k) /n
where ¢(k) = [ ¢ (k) ¢ (k) ]
y u
¢, (k) = [ By(k-1) By(k-2) --- Ay(k-n) ]
¢ (k) = [ Bu(k-d-1) Au(k-d-2) --- Bdu(k-d-n) ]

This normalization scheme will ensure that bnth the ¢y(k) and
¢u(k) values are contained in the same order of magnitude which
will prevent the floating point hardware from having to equalize
the characteristics, thus possibly removing valuable dynamic
information by shifting it out of the mantiss:. It should also
be noted that utilizing values less than one also prevents the

occurrence of overflow/underflow.

Data Filtering

The complete ARIMA model from Section 2.1 was written as :

Az ) yk) = 2Bz ulk-1) + C(z71)-£(k)
A
(2.2.19)
This ARIMA model describes a linear, non-stationary process where

the noise dynamics are parameterized by the ctz’™h) polynomial. 1If

the noise, €£€(k), were measurable, then the cz™h) polynomial could

lo



be estimated by appending the £ik), £(k-1) ... terms to the

regressor vector as follows :

¢(k) = [ dy(k-1) -+ Ay(k-n) Au(k-d-1) --- Au(k-d-n)
£(k-1) --- £(k-n) ]
(2.2.20)

However, since £(k) is not measurable, a pseudo, linear regression
(Goodwin and Sin, 1984) algorithm may be used where the (k) terms
are replaced by an approximation to these noise components. The
approximations are found by using the old parameter vector and the

newly updated regressor vector :

~

E) = ay(k) - ay(k) = By(k) - ¢7(k-1)-8(k-1)

(2.2.21)
This form of parameter estimation 1is commonly referred to as
Extended Least Squares (ELS), and in practice is very difficult to
perform due to the slow convergence of the ciz’h) polynomial
parameters. In order to improve the estimation Tuffs and
Clarke, (1985) have proposed the T(z™!) filter in order to reduce

or eliminate the effects of the structured noise component.

With the T(z ') filter the ARIMA model may be re-written as :

Az D) ayk) _ 27 BT -auk-1) + ClzTh) (k)
T(z™") T(z") T(z™")

where (2.2.22)

T(z™") 1o+ t oz + e+t

17



1/T(zY) is essentially a low pass or MA fllter, responsible for
removing the structured high frequency noise components in the
plant input/output. When implemented as in equation (2.2.23), {t
adds no bias or DC gain to the I/0 components, but rather shapes
their frequency/phase characteristics. It should be noted that
the use of a 1/T(z—l) filter does not remove the low frequency
noise that may be present. This low frequency nolse typically
takes a form of slow moving AR type disturbances due to the
addition or removal of loads to the system. If the disturbances
are steps in the output, the A operator will account for thelr
effects. The A operator differences the input and output data and
is one way of providing stationary data for the estimator.
Stationary process data is required if a stable process model ls

to be estimated.

Typically, for a first order system, the 1/T(z™") filter 1s chosen
as 0.2/(1-0.8-27%). Looking at tinn denominator, the filter pole
location suggests that a good choice for the bandwidth of the
filter is the bandwidth of the plant itself, where the bandwidth
is defined as the -3dB roll-off frequency. If a first order
system is sampled at a rate of érp the discrete time pole locatlion

will be approximately 0.8.
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Bierman's UD-Factorization

The gain and covariance update for waighted least squares was

given as :

gain calculation

P(k-1)-¢(k)
A+ ¢ (K)-P(k-1)-¢(k)

L(k) =

covariance update

P(k-1) _  P(k-1)-¢(k)-¢" (k) -P(k-1)
A A+ ¢" (k) P(k-1)-¢(k)

P(k) =

In modern computers where register lengths may be 256 bits, the
above computations may be implemented directly without much
concern for numerical problems and instabilities. However, the
majority of existing chemical process control computers are
limited to 24-32 bit word lengths, and thus it 1is quite
conceivable that numerical problems may occur with the covarlance
update when more than 2 or 3 parameters are being estimated.
Since it is critical to maintain the positive definite property of
the covariance matrix, several factorization algorithms (i.e.
Cholesky, Bierman’s UD-factorization ) are avallable which will

ensure that this property is maintained.

In Bilerman's UD-factorization algorithm(Bierman, 1977) the

covariance matrix P(k) is replaced by U(k)-D(k) U7 (k)

19



where,

U(k) = 1 u < u

m-1,m (2.2.24)

D(k) = d 1

(2.2.25)

U(k) is an upper triangulur matrix with 1's along the dlagonal and
D(k) is a diagonal matrix of dimension m=n_+ n (na = number of
A(z™') parameters, n_ = number of B(z') parameters ). The
complete computation algorithm may be found 1in Ljung and

Soderstroém, (1984).

Although the UD-factorization adds an additional burden on the
computer, the fact that it contributes significantly to the

robustness of the parameter estimator far outwelghs the burder.
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Constant Trace, Variable Forgetting Factor

As was mentioned earlier, the covariance matrix can either decay
to zero { A=1 ), or "wind-up" during periods of low regressor
excitation ( A<1 ). To eliminate these phenomena from occurring
(Sripada and Fisher,1387) have proposed a varlable forgetting
factor which maintains the tr{ P(-) } constant at a user-specifled

value. The variable forgetting factor may be written as :

172

gk) - | (k) - 4 || P(k-1) ¢(k) ||?

1
A(k) 1 - 5

tr{ P(k-1) }

where g(k) = 1 + ¢ (k)-P(k-1)-¢(k) (2.2.26)

The tr{ P(-) } is chosen by the user such that the model
parameters will adequately track the changing plant parameters.
The higher the tr{ P(-) }, the larger will be the resultant
Kalman gain vector elements. In fact, since the parameter update

equation is written as,

8(k)

8(k-1) + L(K)-{ ay (k) - oT(k)-8(k-1) ] (2.2.27)

A6(k) = L(k-1)-£(k) (2.2.28)

the Kalman gains directly determine the incremental adjustment
that is made to the individual parameters. It can be seen that if
the model error £(k) has a large varlance, then the parameters may

fluctuate excessively and thus model based control may not be



practical. Also, this is where data filtering becomes exiremely
important, since high frequency noise in the plant output may
cause the model paiameters to fluctuate wildly. To eliminate the
effects of high frequency noise, digital data filtering may be

used in the form of the A/T(z ) filter, as was already discussed.
Thus the choice of the tr{ P(-) } is important to achlieving and
maintaining a good set of model parameters. In order to do this,

the variance of the plant dynamics and nolse must be understood.

ON/OFF Criterion

During periods of low excitation, or periods where the plant
dynamics are not changing, it is desirable to turn the estimator
of f. This is done to prevent low frequency or auto-regressive
type disturbances from corrupting the model parameters, which
under these conditions will tend to drift. This drifting may
cause the plant model to become unstable, and thus adequate,
stable prediction is not possible when the model is to be used for
control purposes. In order to prevent this from occurring the
estimator is turned off when || Ayr(k) - ¢T(k)-9(k) e 4. the
absolute value of the model prediction error, 1ls less than some
user specified deadzone. The literature provides alternatives to
the use of the deadzone. Sripada, (1988) has used ||P(k-1)-¢(k)||
and Cond{P(k)} as indicators of persistent exclitatlen. As with
the deadzone on the prediction error, user-specified limits can be

set around the indicators of persistent exclitatlon. The RLS
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2.3 MODIFIED KALMAN FILTER PREDICTOR

Since the introduction of the Kalman Filter (Kalman and Bucy,
1961), the filter has found many applications in a wide spectrum
of industries ranging from aerospace to the bicchemizal industry.
In this section the Kalman filter is presented as an optimal,

single-step predictor.

Consider a linear state space model of a plant,

x(k+1) = &-x(k) + A-u(k) + -w(k) (2.3.1}
y(k) = ©-x(k) + v(k) (2.3.2)
¢ = 1 O 0 0 0 0 0
y 1 0 -a 0 0 0
1 n
?2 Tan-l
0 1 -a 0 O
n 1
1 0 0 0
1
0 0o o0 1 0 |
(ned+ 1) x(nedsl)
A = 0 r = 1
b
n
0
n-1 .
i 0
1
0
-O - - 0-
(n+d+1)x1 (n+d+1)xl
@ = | oo - 0 1]

1x(n+d+1)



where w(k) is the process noise with covariance Rw and v(k) is the
measurement or output noise with covariance Rv. If the dynamics

of the proce¢ss are non-stationary then it is desirable to augment

the state transition matrix with an additional noise or

integrating state. The use of this augmented state space model 1in
the Kalman Filter update equations is referred to by Walgama,

(1986) as the modified Kalman filter predictor.

The on-line computation and updating of the Kalman filter may be

performed by the two-step method as proposed by (Astrém, 1970),

A) gain calculatilon

M(k)-0' (k) (2.3.3)
O(k)-M(k)-0" (k) + R,

L(k) =

B) measurement update

i) posteriori state update
x(k) = x(k) + L(K)-[y(k) -e@-x(k)] (2.3.4)
i1) posteriori covariance update

P(k) = M(k) - L(k}-6(k)-¥(k) (2.3.5)

C) time update

i) priori state update
x(k+1) = &-x(k) + A-u(k) (2.3.6)
ii) priori covariance update

M(k+1) = &-P(k)-®° + F-RH-FT (2.3.7)

Although these equations may be implemented directly on a digital
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computer, it 1s usually much more beneficial to use .
factorization ( Cholesky, Bierman's UD ) on the covariance matr.x.
By using a factorization, the matrix elements being updated are
standard deviations rather that auto/cruss covariances. Thi«
normally 1implies that the relative wvalue of the covariance
elements will be closer to 1 and thus less prone to numerical
round-of f or truncation errors. The algorithm also ensures that
the covariance matrix maintains its positive, definite property

which is essential to having stable control action.

A very powerful technique for analyzing and obtaining an
equivalent transfer function form of the Modified Kalman Filter
Predictor (MKFP) is the innovations analysis. Both Walgama, (1986)
and Foley, (1988) used it extensively to lllustrate the equivalence
of the Smith predictor (Smith, 1959) and the MKFP. Foley, (198%)
also went further and illustrated the steady state equivalence of
the diophantine identity to the MKFP using this same technique.
The diophantine identity has been used extensively in both
generalized minimum variance (Clarke and Gawthrop, 1979} and

generalized predictive control (Clarke, Mohtadi and Tuffs, 1987).

If the innovations analysis is performed as by Foley, (1988) Lhe

modified Kalman filter predictor may be summarized by the

o
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following equations and block diagram given in Figure 2.3.1 :

yledfk) = y (k) + G (kz )1yl -y (k)1 (2.3.8)
where

-a  B(z™H
z 3

y (k) = - u(k-1) (2.3.9)
m -1
Alz )
-1
y ) = B2 1) - ulk-1) (2.3.10)
P Az )
o Ks(z-l)
G.(z') = ——o (2.3.11)
C(z™ )
K (z7Y)y = 21 Kl(z'l)-A - Ln-A(z_l)-A + D(z°Y ]
(2.3.12)
ctzly = [ Az o+ Kz(z“) ) + z'd-Kl(z-l) 1.4 +
z % pz™h
(2.3.13)
K(z') = L « L 27t 4+ .o+ L.z (2.3.14)
n n-1 1
K (z7') = + T I T EEEE T At
2 n+d-1 n+d-2 n+1
(2.3.15)
D(z™') = L Ly 2! + v + g.27™] (2.3.16)
[2] n 1

From equation (2.3.8) and the block diagram realization, it can be
seen that the Smith predictor and the modified Kalman filter
predictor are equivalent, with the one exception being that the
MKFP uses a non-linear, time-varying, optimal disturbance filter,

1

GF(z' ), in order to shape the residuals formed between the model

and the current output measurement. GF(iq) consists of both a
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Figure 2.3.1 Block Diagram of Kalman Fiiter Predictor
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numerator and denominator polynomial. The denominator, C(z'l) is
an optimal low pass filter whose bandwidth may be manipulated by
altering the ratio of the process and measurement noise
covarlances, Rw/Rv. This low-pass fillter 1s analogous to the
Tc(z_l) filter which has been used to improve the overall
robustness of GPC. Mohtadi, (1987) and MclIntosh, (1988) both
discuss the implementation and selection of such a filter.
Similarly, the numerator of the disturbance filter may be thought
of as a single series forecast of the residual. Man, (1984)

discussed the use of such a forecaster to improve the overall

robustness of IMC.
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2.4 THE MULTI-STEP PREDICTIVE ALGORITHM

In Section 2.3 the single step modified Kalman flilter predictor
was developed. It was shown to provide a single step prediction
of the output, which when modified with the integrating state,
guarantees asymptotically zero prediction offset in the presence

of non-stationary disturbances.

In 1986, Clarke and Mohtadl developed the Generalized Predictive
Control algorithm (GPC) which was shown to provide very good,
robust control in presence of model plant mismatch (McIntosh,
1988). The GPC algorithm makes use of the CARIMA model and uses
the diophantine identity to provide the series or horizon of
future output predictions which are later used in a complimentary

control law.

In 1987, Sripada, Foley and Fisher have simlilarly developed the
Multi-Step Adaptive Predictive Controller (MAPC). This controller
relies on a state space model augmented with an additlonal noise
state as in Walgama’s, (1986) MKFP, and the future state and
output predictions are provided by using the two-step Kalman

filter equations given in Section 2.3.
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2.4.1 The Basic Algorithm

The multi-step predictive algcrithm may be developed by extending
the results of Section 2.3 in the following manner. First, the

two-step Kalman filter state update equations may be summarized as

x(k+1) = &-x(k) + A-u(k) + L(k+1)-£(k) (2.4.1)

where £(k) = y(k+1) - ©-¢-x(k) - 8-@-u(k) (2.4.2)

By recursive substitution of equation (2.4.1) the following

expression may be written for the future state vector predictions,

k+)
x(kej|k) = &) -x(k|k-1) =+ Z«p“”“"-/\-u(l—l)

1=k

k+]

+ Z ol L(k+1)-€£(1)

1=k+1

(2.4.3)

The future state predictions require knowledge of the current and

future plant inputs u(k-1), u(k) ... u(k+j-1), as well as the
future noise terms &£(k+1), €(k+2) ... &(k+j). Once the Kalman
gains Lp, L1"" Lmd have converged to their steady stcte

values, the noise term €£(k) will be a white noise sequence with
a mean of zero. Since the noise sequence has a mean of zero, the

future noise terms are assumed to be zero and the future state



tJ

predictions may now be written as in equation (2.4.4) :

k+j
x(k+jlk) = olex(k|k-1) + }E: &7 A u(1-1)

1=k

(2.4.4)

Similarly, the future output predictions may be written as :

k+}
Sl = e-edxklk-D) +)  ed* A1)

1=k

(2.4.5)
At this time it 1is appropriate to introduce the minimum and
maximum prediction horizons, N1 and Na' With these two horizons
defined, equation (2.4.5) may be rewritten in the following

vector-matrix form:

Cyless|i), JelN Y ) = { @-0)x(klk-1), JeIN N} } +

A’ -{ u(k+j-1), J€[N1'N2] }

where (2.4.6)
N -1 N1-2
A = e ' A e A -+ B 0 O 0
N -2 N1-3
e ' A el A - A O 0
0
N2-1 N2-2 Nz—Nl-l
@ 2 A e A - 6o A e eA |
(Nyx Nz)
(2.4.7)

The A’ matrix consists of the plant impulse co-efficlients and is



of dimension N x N N =N_-N +1. Typically, N_ is
y y 2 1 1

chosen to be d+1 where d is the integral piant time d=lay not

including the zero-order hold. Choosing NISd causes the first d

rows of the A’ matrix to be zero since the corresponding impulse

co-efficients will also be zero.

Although this form of the future predictions may be implemented in
an appropriate control law, it becomes more convenient to rewrite
the future output predictions in terms of incremental control
actions or inputs so that knowledge of the absolute steady state
future plant input is not required. Thus, the vector-matrix
equation may be written such that incremental control actlons are
used in the prediction equation, and the only absolute plant input
required is the current input sample u(k-1). This may be done by
recursively substituting u(k-1) = u(k) - Au(k) into equation
(2.4.6). When this is done the new vector-matrix form will assume

the following form:
Cykesli), JeIN N1} = (8@ x(k|k-1), JeIN N1} +

i
) g r,y | BOCD BN
=1

A{ Odu(k+i-1), ie[l.Nu] } (2.4.8)



with A =A'S,S=[1 0 v 0]
1 1 0--- 0

0

1 1

1 1 1

11 1

(N_xN ) (2.4.9)
2 u

Looking at equation (2.4.8), a new horizon was introduced, namely
Nu which is defined as the control horizon. Bevond this control
horizon, all incremental control actions are assumed to be zero,
and thus, it is only necessary to compute the current control
increment Au(k) and the future increments Au(k+1), ... Au(k+Nu~1)
where NUZI, el. Also, it should be noticed that the A matrix 1is a
matrix which contains the step response co-efflclents, as opposed
to the A’ matrix which contained the 1impulse response

co-efficients.

The multi-step predictive algorithm will now be rewritten in a
more simplified form which will be useful in the next section when

the control law is defined.



~ .
Defining, Y(k), Y (k), and Aul(k) as,

YO = { ylkess|k), JelN N1} (2.4.10)
v (k) = {80’ x(k]k-1), JeIN N1 }+
i
{ (5 oy Joteots seim, }
i1
(2.4.11)
puk) = { dulksi-1), iel1,N 1} (2.4.12)
equation (2.4.8) may be written as,
Y(k) = ¥ (k) + A-du(k). (2.4.13)

Equation (2.4.13) can be described as being the addition of two
components. The first component, Y'(k). contains information
regarding the effects of past plant inputs. The second component,
A-Au(k), summarizes the effects of future incremental 1nput

values.

This section bas described the manner in which the state updates
may be used in order to provide a horlzon or trajectory of future
predicted outputs. The parameters of the model may be fixed or
adapted. The important tuning parameters of the predictor are N1'
N2 and Nu. The minimum costing horizon, N1 is typically chosen
to be d+1$N15N2 so that the step/impulse co-efficient matrix lis
non-singular. The maximum costing horizon, N2 is typically chosen
to encompass the dynamic response of the plant up to some steady

state value.

35



2.4.2 Feedforward Variables

When a plant has measurable inputs that affect the output, but are
not being used to maripulate the output, it is still possible to
use them in order to improve the overall prediction. The state
space model with a measurable disturbance variable may be written

as

x{k+1) = d:x(k) + A-u(k) + wik) (2.4.18)
y(k) = 8-x(k) + v(k) (2.4.15)
where
o= [ 1 O 0 0 0l A=fo0 0 ]
71 1 —an bn,l bn,z i
3’2 _an-i n-1,1 .n4-1.2
7n 0 1 -al 0 1,1 1,2
1
|0 0 0 10 | 0 0 ]
e= [ © 01 ]
) T
x(k) = [ xp(k) xl(k) . e xn(k) xn’§k) e xn’gk) ]
T
u(k) = [ul(k) u_ (k-q-d) ] qzd, q. del

Here ul(k) is the manipulated variable normally used to control
the output, and uz(k) is a measurable disturbance or feedforward
input which may have either a MA or ARIMA structure. As was
discussed in Sectlion 2.1, if the disturbance is of a MA structure

then the parameters associated with the 1nput transition



matrix/vector are sufficient to describe its dynamics. However,
if the disturt nce has an AR, or ARMA structure, then the order of
the state ©+ "~ion matrix will have to be increased in order to
accommodate .ie additional A(z ')} parameters. The A(z™Y)
parameters will now be a convolution of the AR dynamics of all
plant inputs that have been modelled. For example, if the plant
dynamics are first order, and similarly, the measurable
disturbance dynamics are first order, then the number of
parameters required for the state transition matrix is 2, and they

involve the convolution of both plant dynamics.

Another important factor is that the time delay assoclated with
the measurable disturbance must be equal to, or larger than the
time delay involved with the manipulated input. This is necessary

for causality to apply.

An additional system input may be easily incorporated into the

overall prediction by modifying equation (2.4.5)

K+
y(k+j[k) = @-¢)-x(k|k-1) + 8-¢""47"hA by (1-1)
1=k
K+
+ 8:¢"" 17" A u_(1-g-d-1)
1=k
(2.4.16)
where q = integral time delay of uz(k)

From this equation the final multi-step prediction algorithm is

derived in a similar fashion as before with the exception that all
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future increments of the measurable disturbance input are assumed

to be zero,

that

Therefore the final

is Auz(k)

Auz(k+1)

Au_(k+N ~1)= 0.
2 u

prediction equation may be summarized as

follows :
{y(eed|k), JelN N1} = (8¢ x(k|k-1), JelN N, }
i
1, _
. { [ z S ]ul(k 1), te(N N ) }
3=1
1
2 -
+ [ a“"l”" ]uz(k 1), 1elN NI }
1=1
+ A-{ Bu(k+i-1), tel1,N ]} (2.4.17)
where
[ N -1 N -2 ]
an = @ ' A 8 ' A BA O O 0
N -2 N1—3
@ ' A @ ' A BA O 0
1 1 1
0
N -1 N2-2 N —Nl-‘l
b 2 A et A 8o en,
(N x N )
2
, i N -1 N -2 ]
A = 8 ' A, 90 A er, 0 0 0
N1—2 N1-3
g6 ' A, B A, 8, 0 0
0
N -1 N2-2 NZ-Nl-l
@ % A 8% ° A e e
L 2 2 2

(N x N_)
y 2

Ly



2.4.3 Innovations Amaly .is of MAPC

As was done with the MKFP, an innc-ations analysis may also be
performed on the multi-step prediction algorithm to yield an
equivalent transfer function form. This analysis was performed by
Foley, (1988) in order to show the equivalence of GPC (Clarke,
Mohtadi and Tuffs,1987) and MAPC (Sripada,1988). The basic

results of the analysis are summarized in the equations below.

R B(z ')
y(k+jlk) = - u(k+j-1)
Alz )
K (z'h) B(z )
* _i;l:T__- [ y(k) - 274 - ulk-1) ]
Clz ) A(z )
(2.4.18)
where
kK (z9= 227k 2 - Kk (ZhHalztha + pzh]
4, ) 1 3,
(2.4.19)
cz’l) = AlzH(1 +K (z7'a + 2%k (z7Ha + D271
(2. 4.20)
K; (z'h) = koo * kd+2 2zl o+ .+ x it
' ) (2.4.21)
k = 0o''L

The block diagram representation of the above equatlons in
Figure 2.4.1, illustrates clearly that the multi-step predictor
structure is essentially a bank of parallel Smith predictors, with
a time-varying, optimai disturbance filter. It 1is this

disturbance filter, K‘ y that provides offset free future output
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prediction in the presence of load disturbances and model-plant
mismatch (MPM). The minimum requirement is that this fllter 1is

-1

G (2 ')=1, which is what the Smith predictor uses. In the case of

F
MAFC, GF(z_l) is a combination of both a low-pass flilter,

-1

1/C(z"'), and a single series forecaster K4J(z ). The low-pass

filter is responsible for removing high frequency measurement and
MPM noise, and can be tuned by manipulating the ratio of the
covariance noises, RH/RV, as was done with the MKFP. Decreasiag
the ratio, decreases the bandwidth of the filter and thus provides
heavy low-pass filtering. Similarly, the single serles forecaster
provides future estimates of the filtered residual. It sioald be
noted that when no MPM exists, the servo and regulatory responses
may be tuned independent of each other. However, when MPM does

exist, RH/Rv must be carefully selected such that the effects of

MFM are minimized.
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2.5 THE MULTI-STEP CONTROL LAW

In Section 2.4, the multi-step prediction equation was de.c. = A
so that for a horizon or trajectory of future outputs could be
generated. With such an optimal prediction of the future outputs

available, it is now possible to develop a complimentary optimal

control law. In the literature, this has been done b several
authors (Cutler and Ramaker, 1980), (Clarke, Mohtadi  and
Tuffs, 1986), (Sripada, 1988). Although in each case, Lhe

prediction of the future outputs is obtained differently, the c.me
control law mav be used. The control law as implemented in the
multi-step adaptive predictive controller minimizes the following

quadratic cost function :

NZ Nu
3 = Z( v, ) = ylesfi) 12+ ZA-Auz(k‘fj-l)
J=N1 J=1

(2.5.1)

The quadratic cost function, equation (2.5.1) may aiso be
rewritten in the following convenient vector form as was the

prediction equation in Section 2.4 :

_ v T v T
J =1 Ysp(k) Y(k) 11 Ysp(k) Y(k) ] + Adu (k)Au(k)
(2.5.2)
where

T

Y (k) = [ysp(k+N1) ysp(k+N1+1) ysp(k+N2) ]
~ -~ - ~ T

Y(k) = [ ylk+N [K) y(k+N +1]k) ... y(k+N_ |k )]

T
fu(k) = [ du(k) Au(k+1) ... Bulk+N -1) ]



~ -
Also from Section 2.4, Y(k) = Y (k) + A:-Au(k). Substituting this

expression into equation (2.5.2) leads to :

Jo= LY k) - Y (k) - AsUCk) 1T [ ¥_ (k) - Y (k) - AAU(K) ]

AAu’ (k) Au(k)

+

(2.5.3)

Expanding equation (2.5.3) and taking 6A3{k = 0, we obtain the

expression for the incremental control vector :

Aulk) = { ATA + a1 ) VAT v k) - Y (k) } (2.5.4)

When the incremental control vector 1is obtained, the control
action is applied in a receding horizon fashion, and thus only the
first element, Au{(k), in the control vector is implemented at time

k.

In order to solve for the control vector, the ATA+AI matrix must
be inverted. This matrix is a positive definite, symmetric matrix
of dimension Nux Nu. Clearly, when Nu = 1, the matrix inversion
is trivial. Also, when the multi-step predictive control is
non-adaptive, the inversion can be performed off-line as is done
with Dynamic Matrix Control (DMC). When Nu>1, the inversion must
be performed on-line using some robust numerical tool. For an

excellent summary of these techniques refer to Mohtadi, (1986).
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2.5.1 LU Decomposition

In this implementation of MAPC, the technique used to solve tor
the incremental control vector was LU decomposition (Burden et
al, 1981) together with forward and backward substitution. The
ATA+AI matrix is decomposed into the following upper and lower

triangular matrices :

T T *
(A'A+ Al JAu = A'e where e = Ysp(k) - Y (k)
LU-Au = ATe (2.5.5)
L = 1 0 0 U= 1 u u
1,1 1,2 LN
1 1 0 1
2,1 2,2
0 uN ~1,N
u u
1 0 1
N L1 N,N
L u u u i L

In the actusd) computer implementation the LU matrices may occupy
the same NuxNu storage matrix, since the 0’s are irrelevant and
the 1's along the main U diagonal may be implied in the algorithm.
This allows memor / storage savings of Ni. The basic algorithm
then solves for the Au vector by successive backward and forward
substitution.

2.5.2 Stlection of Tuning Values for MAPC

From the development of MAPC, it is obvious that there are several

parameters which may be specified by the user. The proper

14



selectisan of these parameters will determine the closed loop servo
and regulatory responses. The following secticn provides some

insight into the use of these tuning parameters.

Minim and Maximum Prediction Horizons

The minimum and maximum prediction horizons, N1 and Nz’ may be
chosen in a variety of ways. N1 is typlcally chosen to be one
unit greater than the integral discrete time delay of the plant.
Remembering that the A matrix consists of elements which are step
response coefflcients of the plant, if N1 is chosen to be 1, then
the matrix will contain 0’s in the first d rows. Choosing N12d+1
eliminates these redundant zeros in the A matrix, thus reducing

the number of matrix computations.

The maximum prediction horizon, N2 may also be chosen in several
ways. The selection of N2 kas been shown to reduce the GPC
algorithm to a number of known controller types. %ith GPC, the
selection of N2=10 is a default mode, and hz:z been shown to be a
good cholce leading to an adaptive ccntroller which is fairly
robust in light of changing plant dynamics and dead time (Clarke,
Mohtadl and Tuffs, 1986), (McIntosh,1988). To provide some further
insight into its selection, N2 is typically chosen as Td+rr/TS or
rdﬂb"Ts where Ty tr. 'rs are continuous time parameters which
characterize the plant dead time, rise-time and settling time.

Rise-time is used when the open loop plant response is damped, and

similarly the settling time 1s used for under-damped plants. For



plants which have non-minimum phase dynamics, N2 should be chosen
large enough to provide the controller with the correct
information with respect to the correct sign of the steady state

gain.

The Control Horizon

In developing the multi-step prediction algorithm, Nu was
introduced to specify the number of finlte future control
increments. Beyond this horizon, the control increments were
assumed to be zero, or equivalently the control weighting on the
input was infinite. Nu is typically chosen to be 1, but may be
chosen > 1 if it is desired to have sironger control actlon. Nu
may be thought of as the number of <ontrol increments desired to
achleve the final target or setpoint. Increasing Nu allows the
controller to take large. initlal actions, because the later
control moves made possible by the increased Nu value can correct
for over reactions. With Nuri and NZEIO the controller has only 1
degree of fieedom to achieve the desired steady state, and thus,
this control increment will be small leading to a falrly slow and

slugglish control.

Control Weighting

Once the prediction and control horizens are selected, further
tuning may be accomplished by adjusting A, the control weighting.

McIntosh, (1988) showed that as A-»w, the closed loop poles approach
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the open loop poles and an additional pole at z=1. Since 0=A=o,
it is not immediately apparent how A can be chosen. However, it
may be observed that ( ATA + AI ) constitutes the matrix which
must be inverted to solve for the incremental control vector.
Choosing Al = Arel[B(l)]2 has been shown by McIntosh, (1988) to
maintain a constant output performance, in the presence of
changing plant dynamics. B(1) is the steady state gain of the
B(z™') polynomial and Arel is a constant which is chosen by the
user. A good initial choice for Arel was shown by Mclntosh, (1988)

to be :

A = (2.5.6)

If m=0 there would be no control weighting and so a deadbeat
control response would result. Increasing the value of 'm"

progressively decreases, or dampens the size of the incremental

control actions.

Ratio of Process/Measurement Covariances

The fipal "tuning knob" for MAPC is the ratio of the process and
measurement nolise covariances, RH/RV. This tuning knob naturally
arises from the use of the Kalman filter, and was shown to affect
the bandwidth of the disturbance filter in the MKFP. Increasing
this ratio, increases the bandwidth of the filter, thus allowing
higher frequency components to be compensated for by the

controller. Walgama, (1986) also showed that the MKFP can be
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interpreted as a series of proportional-derivative controlle:s,
and hence R"/Rv may be thought of as a tuning knob which adjusts

the amount of predictive action taken on the residual.

MAPC falls into the same category as GPC in terms of being u
controller with "two degrees of freedom". That 1s, for the
limiting case when no model-plant mismatch is present, the servo
and regulatory responses may be tuned separately. Rw/Rv allows
the regulatory response to be tuned independently from the servo
response. When MPM is present, the ratio RH/Rv is tuned to

provide the best compromise between nolse filtering and

disturbance dynamics. When measurement noise 1Is high it i
desirable to select a conservative or low value for RH/RW Not
doing so may cause oscillatory, unstable control. When low

frequency disturbance dynamics dominate the process output, it ig
then desirable to select a higher value for RH/RV. The predictive
nature of the MKFP will enable strong compensation of unmeasurable:

disturbance dynamics.
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3.0 ADAPTIVE CONTROLLER IMPLEMENTATION

Since the introduction of the self tuning regulator (Astrom,1970)
people have been attempting to "black box" adaptive or self-tuning
control so that it would be available to the average technician
for day to day use. Current examples of such products with this
objective are the Turnbull Control System TCS-63S5 and the Foxboro
EXACT, both of which have been received extensive use in industry.
However, in recent years it has become increasingly apparent that
adaptive control is not something that should be "black boxed",
but rather understood. It is only through better comprehension of
its capabilities and limitations that a successful application can
be implemented 1in an Industrial environment. Goodwin and
Salgada, (1988) speak of intelligent contrel, where the concepts
and methods of adaptation and robustness are fused to form a
controller which 1is capable of performing in a non-ideal

environment.

The following sections describe some of the key elements in
implementing and maintaining an adaptive controller. The first
section deals with the open and/or closed loop testing of the
plant and provides information regarding the approach and
execution of these tests. Section 3.2 discusses the valuable
information that can be gained from off-line analysis and model
identification using the plant test data. Initial parameter
selection, model order, parameter bounds, and residual dynamics

all play an important role in providing the control engineer with
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the information necessary to design and maintain the on-.:
recursive estimator. Section 3.3 summarizes the need for 1.

analog and digital data filtering, and provides some rules of
thumb to select filter constants. Finally, Section 3.4 reviews
the manner in which the adaptive control software for this
industrial application was written. It also discusses the common
items found in most advanced process control machines., such as
anti-windup status, manual, automatic and computer modes, out put

and setpoint clamping, etc.



3.1 CONSIDERATIONS IN PARAMETER ESTIMATION

There is little doubt that the single most critical component of
adaptive control is the parameter estimator. Incorrect or poor
model parameters will lead to a controller which is extremely
sluggish, oscillatory, or simply unstable. This will, in turn,
lead operating staff to turn the controller off and run the
process manually, or worse yet, place the previous, ill-tuned PID

controller on.

To prevent such embarrassment, there are certain steps that can be
taken tc ensure that the parameter estimation is both valid and a
good reflection of the current plant dynamics. Naturally, the
first step is to conceptually understand the process by observing
the day to day operation. Once a working knowledge of the process
is obtained, some additional a priori information must be gathered
to aid the control engineer in making suitable cholces for items
such as the magnitude of test signals, model order, etc. The
second step is to then apply the test signzl to the process and
perturb it sufficiently to obtain the necessary dynamic
information about the process. The following sectlons eiaborate

on the above.
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3.1.1 A priori Information

The first step in any parameter estimation procedure is to galin as
much a priori information as possible about the physical processes
that comprise the complete plant. Once a good understanding ls
established, the process loop whicr Js being considered for
adaptive control should be analyzed both at the Input and the
output for the statistical mean and variance. The sample mean and

variance can be easily computed as follows:

Sample Mean

) y N2
m = _— E xl (3.1.1)
N
1=0

Sample Variance

1

1 -
o = —— Z (% - m )2 (3.1.2)
X N-l X

=0

where X, = u, or y, and N = sample length

For most typical chemical processes, the sample length N may be
chosen from 1-5 days. With today's process control computers,
this data is readily accessible through the historical data base.
If the process is currently operated without automatic feedback
control , good information regarding the output mean and variance
can be obtained. If the input is not manipulated, then knowledge
may only be galned about the nolse dynamics that influence the

output. Thus collecting data during this period would allow an

[a}

to
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estimate of the process noise variance, 03. to be determined. On
the other hand, if the input is manipulated then some information

regarding the overall process dynamics may be determined.

For closed loop systems, the mean and variance will provide
information with respect to the operating point, as well as the
relative magnitudes of the input and output during this period.
The variance of the input oi and the output ai will eventually
determine the magnitude of the test signal that will be applied to
the setpoint or input of the process to perform the recursive

estimation.

If the input/output data is now segmented into several windows of
equal length and the sample mean and variance are computed for
these individual windows, information regarding the statlonarity
of the process can be determined. If the sample mean and variance
are not the same among the individual windows of data then the
process is non-stationary and the data will have to be differenced
during the parameter estimation. It should be noted that the
ARIMA model which is the basis of the recursive least squares
algorithm, assumes that the noise dynamics are step type random
walk disturbances, and thus uses the A operator to difference the
regressor vector. The use of the A operator on the regressor
vector Induces stationarity into the process model, and thus
removes the mean or bias from the regressor vector (Box and

Jenkins, 1976).



The next step is to perform an open loop step in order to obtain

an initial estimate of the following continuous time parameters :

T, C process dead-time
T = process time constant
P
K = process gain
P

It is important to perform the step test above and below the
desired operating point to determine whether the system Is
asymmetric. For example, exothermic chemical processes may
require only a small adjustment in the input to Inltiate the
reaction, implying rp may t2 zmall and Kp large. However to reduce
the reaction rate, a very large adjustment in the input may be

required leading to a large t and small Kp.
P

The magnitude of the step input must also be selected with
caution. A value too small may be masked by the nolse dynamics of
the process. Similarly, a value too large may lead to
identification of process dynamics which are governed by the
effect of plant recycles, or up-stream processes. Typically, plant
recycles or interacting processes are responsible for under-damped
dynamics in processes where the input has been moved quickly over

a large magnitude.

In any event the size of the input should be perturbed by an

amount p-*v ¢2y (i.e. p>1 ) where "p" 1s a user chosen factor
u,

based on the considerations discussed above.



3.1.2 PRBS Generation and Plant Testing

The application of pseudo random binary sequences (PRBS) to open
and closed loop plants has become a popular technique for
providing the process excitation required for good parameter
identification (Bendat and Piersol, 1971), (Davies, 1970},
(Nikiforuk and Gupta, 1969}. This section outlines two basic

considerations

1. The manner in which to generate these PRBS signals.

2. The different ways to apply these sequences for good
plant identification.

Generation of PRBS Signals

An ideal PRBS signal would be a random noise sequence with a
Gaussian distribution and a mean of zero. Such a white noise
sequence 1is capable of exciting all frequency components of a
plant, which is necessary if the identified parameters are to be a

good, stable representation of the plant parameters.

PRBS signals are not totally random, but have some repeatabillty
to them, and so the term "pseudo random" is used to describe them.
They also tend to excite only over a finite frequency bandwidth.
A technique which is used to generate them involves the use of a
binary linear-shift feedback register as shown in Figure 3.1.1.
By taking the contents of the last two registers, performing an

exclusive-or operation and feeding the result back to the first
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element, a pseudo random binary sequence may be generated. This
sequence is repeated every 211 +:.mes, where 7m is the number of
binary memory elements comprising :i.¢ shift-register (Nikiferuk
and Gupta, 1969), (Davies,1970), (Brown,1983). For example, if a
register size of 9 elements is selected, then a sequence which 1is

repeatable every S11 times is generated.

Another distinguishing feature of the PRBS signals 1is the
switching interval, TS", which defines the period of time between
each decision to change the PRBS signal level and is typlcally
chosen to be ;rpsTswsr , where rp is the dominant time constant of
the process. The decision is made by the pseudo random binary
number generator. If the number is a 1, then the signal level is

switched, and if the number is 0O, then the current level is

maintained until a period of TsH has elapsed. Selecting a large

switching interval, TSH, will produce a PRBS sequence which
provides good low frequency excitation. A switching interval,
T , which is small relative to the process time constant will

swW

provide good high frequency excitation. It is very important that
the finite bandwidth of the PRBS signal be matched to the

Important dynamics of the process.

The final feature of PRBS signals is the selection of a mean level
and magnitude of the signal. The mean level is the difference
between the maximum and minimum values between which the PRBS 1is
switched. The magnitude is often selected as a multiplicative

factor of the standard deviation of the input or output noise

57



dynamics. This was shown to be m-%v o or m-*v o where m \is
u y

chosen as a compromise between the allowable process upset and

high signal to noise (S/N) ratio. For purposes of deflinition, S/N

ratio may be defined as follows :

y(k) = Go(z-l)-u(k-l) + Ho(z“)-s(k) (3.1.3)
E{ [G (z7Y)-uk) 1%} o2

S/N = —— — = — (3.1.4)
EC LH (271)-6k) 1%} o

The true <«rocess is defined 1in equation (3.1.3) as a
superpositi -« of the plant and the noise dynamics. It has been
assumed tha- Go(z_l) and Ho(z_l) are linear transfer functions in
the backward ifference operator z-{ Thus the signal-to-noise
ratio is obviously governed by the size of the input. Increasing

the magnitude of the PRBS input leads to a higher S/N ratlo.

Figures 3.1.2 to 3.1.5 show the time and spectral density plots of
two PRBS sequences which were generated by using a llinear-shift
feedback register of length m=9. The sequence will naturally
repeat itself every 29—1 = 511 iteratlions. PRBS signal 1 was
generated with a Tsu=1 minute and represents one complete cycle of
random steps as governed by the size of the linear-shift feedback
register. On the other hand, PRBS signal 2 was generated with a
TSH=5 minutes and thus does not represent a complete cycle of the

PRBS generator.
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Figure 3.1.4 Spectral Density Plot of PRBS Sequence with Tsw=1 min.
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The accompanying plots show the power spectral density
characteristics of the two signals. The estimate of the power
spectral density was accomplished by computing the periodogram as
described in Oppenheim and Schaefer, (1975). This includes taking
the discrete Fourier transform of the time signal and then
muitiplying the resulting Fourler transform by 1its complex
conjugate. Figure 3.1.4 illustrates the spectral density plot of
PRBS signal 1. The spectral density is evenly distributed across
the entire discrete frequency spectrum from O to 0.5 min_l. The
peaks in the spectrum represent the dominant harmonics of the PRBS
and are evenly spaced due to the exact completion of 1 cycle of

the PRBS generator.

In contrast to this, PRBS signal 2 where the Tsu was S minutes,
concentrates the signal power in the lower frequencies for a
sequence of the same length (note the logarithmic magnitude scale
in Figure 3.1.4 and 3.1.5). This second sequence has not exactly
repeated itself yet due to the switching time of S minutes. From
the spectral density plots it can be seen that vary.ng the
switching interval will shape the {requency content of the PRBS
signal. Prior to plant testing it is essential to understand the
desired PRBS frequency content so as to excite the desired

bandwidth of the system (Bendat and Pierscl, 1971).
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3.1.3 Plant Identification

Process excitation and icdentification may be performed in elther
the open or closed loop. Although open loop ldentification 1Is
preferred, closed loop identification has become quite popular in
the petrochemical industry. Closed loop tests allow the process
to remain within reasonable limits in the presence of
non-stationary noise dynamics which, in the open loop would cause

a process upset or incident.

Figure 3.1.6 illustrates the manner in which open and closed loop
identification may be performed. In an industrial environment
this will normally involve injecting a PRBS signal directly to a
valve, or to a setpoint of a control/;~: which willl be the
secondary controller ¢! a cascaded adaptive control strategy. A
typical example of the latter may be drawn from distillation
control, where an overhead composition controller 1s cascaded to
reset the setpoint of a secondary ccntroller such as a reflux flow
controller. In this case, the reflux flow controller setpoint
would have a PRBS signal applied to provide a compositlon/reflux

mnodel,

Scme guidelines for open/closed loop identification center around
the stability and frequency bandwidth of the process. The

guidelines are summarized below :

1. Ensure that the process in the open loop is statlcnary.



Figure 3.1.6 Open and Closed Loop Identification Configurations
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Tnis invclves maintaining a steady and consistent plant
upstream of the process. Downstream processes may have
to be ccnsidered if the plant contalns any recycles.
Also, the process should be at the desired operating
peint, so that an accurate model 1is identiflied for the

region of interest.

Next, the PRBS signal may be applied elther directly to
the valve, or to the setpoint of a secondary controller.
In this case the secondary controller must be tuned
tightly, so that the dynamics of this loop do not
infiuence the identification of the model of Interest

This is generally not a problem 1in the chemical
industry, since the dynamics of the primary loop are

generally longer than those of the secondary.

In the closed loop, the PRBS signal may be applled to
the setpoint of the primary controller. Since the
dynamics of the controller affect the correlation of the
iv.put witn the output noise, 1t Is necessary that the
primary controller is tuned falirly tight. A slugglsh
controller will not introduce the needed "kicks" to the
process that are necessary for good high frequency

excitation.

The recommended procedure is to estimate in the open
loop. This means opening the primary loop and exciilng
the setpoint of the secondary loop or the control valve
directly. This prevents the :;:lant input from belng
correlated with the plant output nelse which s

necessary for good, unbiased parameter estimation.

Choose the magnitude of the PRBS signal to be consistent
with the computations of input/output variance that were
obtained as part of the a priori knowledge and the plant

operating limits. For open loop ldentification, it may

[



not be obvious from the a priori knowledge what a good
magnitude for the PRBS signal should be. This is not a
concern, since the PRBS signal magnitude may be adjusted
on-line to vield the desired excltatlion. For closed
loop estimation, the choice of PRBS magnitude 1is simple
since the engineer may choose a magnitude which 1s
directly related to the variance of the process output,

and thus no knowledge regarding the input ls necessary.

The switching time, Tsw, must be selected to Dbest
reflect the bandwidth of interest. Selecting a Tsw of
1/2 the dominant time constant has been suggested by

(MacGregor, 1987). Other references for the use of PRBS

tests may be £ ‘- Bendat and Piersol, (1971) and
Jenkins and Wz Chdaon This allows the PRBS signal
to focus the excit-tior ::: the lower frequencies, where
process movement will occur. It has been suggested by

several authors (Sripada, 1988), (Mclntosh,1988) that in
the petrochemical industry, good low frequency models
are necessary for long range predicticns. An
alternative to the selecticn of switching time 1s to
filter the PRBS sequence or the input/output data as
suggested by (Mohtadi, 1988). The use of T(z™') filters

is dlscussed in Section 3.3.

The final guideline is on seleciing the amount of time
that s required to perform the identification. This
again is very much dependent on the process time
constant and time delay, Tp and T, In the
petrochemical industry these parameters may range from
a couple of minutes to several hours. A good
identification period will collect enough data to
adequately characterize the plant in the desired

bandwidth.



3.2 OFF-LINE ANALYSIS AND MODEL IDENTIFICATION

Although adaptive control 1is concerned with the simultancous
identification of plant parameters and the use of these estimated
parameters in a complimentary control cost tunction, there ls
still considerable knowledge to be gained from off-line analysis.
This off-line analysis has become increasingly easlier to do with
the introduction of *he personal computer as well as some

excellent scientific software packages such as MATLAB-336

(Mathworks Inc.,1984) . IDSA (MacGregor and Taylor, 1987).

Additionally, the use of a Fast Fourier Transform (FFT) algorithm
permits the engincer to galn valuable Information about the
process. Performing c¢ff-line analysis and simulation will allow
the control engineer to gain an intimate understanding of the
following items, which are needed for robust, adaptive control

1) Model structure selection,

2} Estimator tuning, and
3) Model residual analysis.

3.2.1 Model structure selection

Processes may have an infinite number of frequency modes, however,
most successful appllcations of model based control have lnvolved
model ordeis of 1 or 2. In selecting the model structure, the

following parameters are determined by non-parametric or

(RN 8



parametric techniques :

1. Process Gain., K

2. Process time coistant, rp

3. Process time delay, T,

4. Order of A(z™') polynomial, SA
S.  Cwd=r -f B(z™') polynomial, &B

In the past, ncn-parametric techniques have provided a relatively
good estimate of the above parameters. A simple step test may be
used to identify the first 3 parame’ers as shown in ".:..r< 3.2.1,
The order of the A and B polynomials may be then selec' -d based on

the following criteria :

Process Characteristic Polynomial Order
Overdamped Response 3A =1
(Minimum Phase) 8B =1
“verdamped Response 8A = 1
(Non-Minimum Phase] 8B = 2
Underdamped Response SA = 2

8B =1o0r 2

The step test normally yields enough information atout the process
such that a good on-line recursive parameter estimation may be
performed when the PRBS signal is used. However, once the PRBS
test is completed and the model identified on-line, the u-y data
may be collected and further analyzed to better understand the

process order and dynamics. The following two tcols allow for a
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mcre accurate estimate of the process parameters mentioned above:

1. Cross-correlation analyslis of u-y data.

2. Smoothed spectral estimates of u-y data.

The first analysis that may be performed on the input/output data
collected from the PRBS test is a cross-correlation analysis,
which will yield a more exact estimate of the discrete process
time delay, d=rp/Ts, (MacGregor, 1987). Naturally the resolution of
the aiscrete process time delay will be dependent on the sampling
period with which the u-y data was collected. The smaller the
sampling period the better the resolution. An estimate of the
cross-correlation sequence may be obtained by the following

computation :

N-m-1

c m) = -L Z[uu)-;]-[ymm)-ﬁxy] (3.2.1)
N u

uy

where

N- N-
m:..l_.Zu(i) =LZ(1)
N o N

The means, m and &y are subtracted from the u-y data over the
data set of N, In order to induce stationarity to the data. This
is a requirement if the estimate of the cross-correlation is to be
unbiased. Foley (1988) has shown that the alternative to
subtracting the mean is to simply difference the data using the A
operator. The discrete time delay may be obtained by plotting the

¢ (m) sequence, and identifying the location of the largest

uy
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single peak. This peak may be referenced to the discrete time
scale to identify the discrete process time delay + 1 lag for the

discretization delay.

Figure 3.2.2 1illustrates an open loop PRBS test which was

simulated using the following first order + time delay model

-258 .
Y(s) = 10-e - U(s) .3.2.2)

30s +1
The sample time used to collect the data was 5 minutes, which
leads to a discrete time delay of d=S. Adding the delay
assoclated with discretization of 1 unit, the peak may be found at

the sixth lag in the plot of the cross-correlation sequence.

This analysis works best for data which has been collected from an
open loop PRBS test. However, 1if a closed loop PRBS test |is
performed and the signal i5 injected at the setpoint, the dynamics
of the controller influence the analysis, and thus the discrete
delays assoclated with the controller must be known so that they

may be subtracted to yleld the estimate of the discrete process

delay.

The second tool or analysis that may be used to identify the
process order and characteristics is the use of smoothed power
spectral estimates (Blackman and Tukey,1958), (Jenkins and
Watts, 1968), (Bendat and Plersol, 1971), (Oppenheim and

Schafer, 1975}, (Bendat, 1980).



Figure 3.2.2 Time Delay Analysis Using Cross~Ceorrelations
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Although spectral analysis has been used extensively in the
communications industry, the petrochemical industry has yet to
explore its benefits. The last section used the periodogram as an
estimate of the spectral density (Oppenheim and Schafer, 1975) to
analyze the frequency components of the two PRBS signals. Using
the periodogram to analyze a time series may yleld a spectral
estimate that has a high variance irrespective of the number of
discrete data points that are used (Jenkins and Watts, 1968). A
common technique to reduce the variance of the spectal estimate is
to smooth the discrete data by windowing 1it. Oppenheim and
Schafer, (1975) describe tie use of the Welch or Bartlett method
for obtalning a smoothed spectral estimate. The discrete estimate

of the spectral denslity is given by,

4
B 2T, = L > IR Ly k-0, 1, ... M-l
x X M H M
K
1=1
(3.2.3)
where
K-1 2
J;"(Eiﬂ k) = 1 l E:: % (n) w(n)-e }2Mkn/H
MU
n=0
for i=1,2, ... , K

H-1
and U = —l—-E:: w2 (n)
M
n=0

To obtain the smoothed spectral estimate, the data set of length N
is divided into K segments of length M. Each segment 1is then
windowed by using any of the several data windowing techniques

such as the Bartlett, Hanning, Hamming techniques {(Oppenheim and



Schafer, 1975), (Jenkins and Watts, 1968), (Blackman and
Tukey, 1958). Windowing of the data is necessary in order to
reduce the variance of the power spectral estimate. Reducing the
variance of the spectral estimate will allow better analysis of
the plant's frequency repsonse. An unfortunate result of
smoothing is that the bkias between the estimate and the true
spectral density lincreases. Depending on the window used (i.e.
Bartlett, Hanning, Yamming, Blackman, etc) the variance and bias

of the -pectral estimate will vary.

The variance and bias of the spectral estimate for a specific
window will also vary as K, the number of segments is varied for
a fixed data size, N. As the segments are increased, the blas
decreases, and there is an increass in the variance of the
spectral estimate. This may also be regarded as a loss of
resolution of the spectral estimate when the variance Iincreases.
Naturally, the opposite is true as the number of segments are
decreased. Ultimately a decision must be made about how much
smoothing is desired to obtain a spectral estimate that achieves a

compromise between the variance and blas.

Once the K segments have been windowed the Fourier transform of
each segment may be taken to form the corresponding perlodogram.
Then the K periodograms may be summed up and divided by KMU to
form the smoothed spectral estimate of the individual signal.
2n
“

To obtain the cross-spectral estimate, Buy —k

" ), the Fourier
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transforms of each individual windowed signal segment are

multiplied and accumulated as shown below :

B (2%, = L Z XM ETH TRy (32
uy M y N u M

where Xy(w) = Fourler Transform of y(n)wi{n)

and X:(w) = Complex Conjugate Fourier Transform of u(n)w(n)

In process control, transfer functions may be represented in the
frequency domain by the use of Bode diagrams. With the power
spectral estimates, it is now possible to obtain an estimate of
the magnitude and phase diagrams for the system being tested. The
Bode magnitude plot may be formed by normalizing the
cross-spectral density with the spectral estimate of the input,
and the phase estimate may be obtalned from the angle formed
between the real and imaginary components of the cross-spectral

estimate.
This may be performed as shown below :
Estimate of Process Magnitude Repsonse :
T (%) = B2 Ly /8° ) k=0, 1, ..., M1
y M .| XX .|

x Xy
(3.2.5)

Estimate of Process Phase Response :

(3.2.6)



It becomes quite evident by examining the power spectrum of the
process signals, the importance of exciting the proper frequency
modes, so that a good estimate is obtained. Once the estimates of
the magnitude and phase response are obtained, certain important
features about the process can be determined, that otherwise could

not be obtained if the signals were examined in the time domain.

First of all, the magnitude response will revea. the steady state
gain of the process, Kp and the dominant time constant, tp. Kp
may be found by looking at the magnitude response of the lowest
frequency mode that was excited. Similarly, rp is found by
locating the corner frequency. The corner frequency is defined as
the point where the steady state gain decreases by 3dB. This
represents the half power pcint of the process. Also the order of
the process dynamics may be obtained by examining the rate at
which the slope of the magnitude response decreases after the
corner frequency. Typically, processes with nth order dynamics
will decrease at a rate of -n-20dB/decade. The decrease is due to
the number of poles in the left half plane. Similarly, a zero In
the left half plane will cause an increase in slope by an amount
of 20dB/decade. If the poles and zeros are located in the right

half, or unstable plane, then they have the opposite affect on the

magnitude response piot.

To confirm the order of the numerator and denominator of a
continuous time process, the phase response plot is used. As was

true of the magnitude response, stable poles and zeros cause the

]

[9s]



clope of the phase response to decrease and increase by an amount
of 90°/decade. Unstable poles and zeros cause the opposite

effect. For further detalls see Dorf, (1980).
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3.2.2 Estimator Tuning

One of the prime advantages of off-line estimation 1s that the
plant u-y data which is obtained from a PRBS test may be used
repeatedly witn different estimator simulations. By performing
off-line simulations with plant test data the control engineer can
experiment with the estimator "tuning knobs" to achleve a desired

response in the model parameters.

Section 2.2 describes the recursive least squares estimatlion
algorithm as was used in the industrial implementation of MAPC.
The main “tuning knobs" of the estimator are the tr{ P(:) } and
the deadzone Ad on the model prediction error. An additional
tuning knob for the industrial implementation of the estimator was
the A-T '(z™') filtering of the regressor vector. The cholce of

filtering co-efficients will be further discussed in Section 3.3.

The tr{ P(-) } directly affects the magnitude of the estlmator
gain vector L(k). Increasing the tr{ P(-) } causes the gain
vector to increase and thus stronger and faster action is taken to
decrease the size of the model residuals. Similarly, the opposite
is t-ue when the tr{ P(-) } is decreased. Although the tr{ P(-) }
may be adjusted by viewing the trajectorles of the parameters, a
betier indicator of the tuning is the respcnse of the varlable
forgetting factor, A(k). Since A(k) is a function of both the
covariance matrix P(+) and the regressor vector ¢(k), its

trajectory may be examined during off-line simulations to
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determine a good value for tr{ P{-) } that will not exceed a lower
l1imit on the forgetting factor A(k). For instance, if plant
parameter varliations are slow, then A should be near unity for
information to be discounted slowly. Thls is typically the case
with most chemical processes. If plant parameter variations are
fast then A must be smaller so that information 1s discounted much
faster. Clarke and Gawthrop, (1975) speak about the "asymptotic

sample length" o« of the estimator which is given by

To understand what o« represents, the cost function for the least

squares estimator may be examined

o0
J = ZA‘-ez(k—i) = Zaz"-ez(k—i) (3.2.9)
est

1=0

where BZ = A

Now using Parseval’s theorem to describe the estimator cost
function as a representation of the power spectral density,
{Mohtadi, 1988)

U]
X“(w)exe(w)-dw (3.2.10)

C

o

Q

~

[}
ol
S -
[« b

where Xw(w) is the power spectrum of the exponential window and

similarly, Xe(w) is the power spectrum of the model predlction



error, and ® is the convolution operator. The window size is then
determined by «a, the asymptotic sample length. If the results of
finite sample lengths are extended to infinite sample lengths,
then as the window size decreases, A->0 and similarly as A»1 the
window size increases to encompass all the data. In both cases,
the shape of the exponential window also changes, since a varlable
forgetting factor factor is used. This window shape and size is
governed by the amount of excitation that is present in the
system. Sripada, (1988) showed that a measure of excitation may be

computed as

v o= || P(k-1)-¢(k) || (3.2.11)

The second tuning knob that 1is required in an industrial
environment is the specification of an estimator on-off criterion
such as a deadzone, Ad, onn the prediction error. If the

prediction error is given by,

£(k) = by (k) - ¢"(k)-6(k-1) (3.2.12)

where |é(k)|<Ad, then the estimator is turned off. This is done
so that during steady state operation of the process, any natura!
or common varlation does not cause parameter blas. Since the
estimated process 1Is forced to be stationary by band-pass
filtering of the regressor vector, the model prediction error will
also be void of any random step type disturbances in the process
output. Thus, the expected mean and variation of the model

prediction error should be a white noise process with a mean of



zero, and a varlance of 02 ofice the parameters have converged.
This variance can be easily computed and thus allows an initial

estimate of the deadzone to be
A =3¢l (3.2.13)

The deadzone has been chosen to be three standard deviaticns of
the model prediction error. If the model prediction error
increases beyond the deadzone, then the estimated model is no
longer valid and the estimator will be turned oh to estimate an
improved model. This +very much depends on the current plant
wonditions. If the estimator has turned Iitself on during a
process upset or large disturbance, then the previously estimated
model may be corrupted ard the resultant control may be elther

extremely sluggish or unstable.
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3.2.3 Analysis of Model Prediction Error

Once the parameters have converged, the model predliction errors or
residuals should ideally be a noise sequence with a Gaussian
distribution and a mean of zero. This implies that there exists
no correlation among the sequence and the nolise spectrum is flat
over the entire discrete frequency range. Although this s
desirable, in practice it is rarely attzined and thus analysls of
the model prediction errors will further reveal any unmodelled
dynamics that are present. Box and Jenkins, (1976) as well as
MacGregor, (1987) give a detailed method for analyzing the

residua’s using auto-correlation and partlial-correlation analysis.

Using both these analysi: techniques allows the structure of the
residuals to be identified. More specifically, the residuals may
be characterized as having Auto-Regressive (AR), Moving-Average
(MA) or ARMA dynamics. Once the residuals are characterized, a
suitable discrete transfer function model of the residuals may be
estimated by some off-line batch least squares or maximum
likelihood technique. Provided that the residual dynamics do not
change, it is then possible to use this residual transfer functlon

model to filter the regressor vector.

If the correlation analysis is extended to the frequency domaln,
an estimate of the power spectrum may be obtained to reveal

dominant frequency components in the model residual sequence.



3.3 ANALOG AND DIGITAL DATA FILTERING

The need for analog and digital pre-filtering of the u-y data
prior to estimation has become increasingly more important for
robust implemertations of adaptive control. Tuffs and
Clarke, (1985), Mohtadi, (1988), MclIntosh, (1988) all speak about
using a band pass pre-filter prior to estimation to remove any
high and low frequency disturbance components in the u-y data.
The followlng sectlons describe the use of analog and diglital
filters for estimation and control. Analog filters are typically
used prior to signal sampling to remove frequency components which
are higher than the sample frequency. Digital filters are later
used to condition the data for the recursive least squares

estimation algorithm.

3.3.1 Analog Anti-Aliasing Filters

In chemlical process control, most signals that are monitored are
continuous 1in nature. Temperatures, pressures, levels are
typically monitored by measuring devices which provide a
continuous signal. This continuous signal will have dynamics that
are assocliated with the process itself as well as the measuring
instrument. The measuring Instrument dynamics are normally fast
relative to the process dynamics. These signals are transmitted
to the digital control system, where they are sampled at a fixed

frequency f{



A continuous time signal of finite energy and infinite duration
may be represented as x(t). If x(t) is now sampled with a perlod
of Ts, then the corresponding discrete time signal may be
represented as x(nTs) or simply x(n). To determine the effect of
over-sampling or under-sampling x(t), the continuous and discrete
time Fourier and inverse Fourier transforms may be examined. This
type of analysis is described in almost every book on the topic of

signal processing and may be found in Haykin, (1978) and Uppenheim

and Schafer, (1975).

if X(ejw) is the discrete Fourler transform of x(n), and X‘(eﬂh
is the continuous Fourier transform of x(t), where Q=w/Ts, then

the two Fourier transforms are related as follows

®
X(e¥) = J_ZX(J_&*_+J-2"_’) (3.3.1)
T T T
8 r=-m 8 8
or
©
X(eJQTB) = —1— Z Xc( JQ + J QI‘) (3.3.2)
Ts r=-m Ts

If the signal x(t) 1s band-limited, and has a corner frequency of

QO/Z, then for purposes of demonstration let the Fourler transform

’

o

(%)



of the continuous time signal look as shown below :

XC(JQ)

N
/] \ o
—Qo Qo

2 2

If the signal x(t) 1s sampled at a rate faster than the Nyquist

rate, that lis

s ° (3.3.3)

then the corresponding discrete Fourler transform of x(t) will

look as follows ;

X(e!?)
17T
1 i \\\ 1 {
-3n -n | [ = 3n w
-Q_Ts fEs
2 2
As can be seen from the diagram, when the sampling

frequency is greater than the corner frequency, the periodic
repetitions of the continuous time transform do not overlap. In

fact they are separated by 2-(n-QTs/2).
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When

n Qo
—_ = (3.3.4)
T 2
s
the repet: 3 of Lhe continuous time transform do overlap as
shown br
x(e?®)
1/T
b s
\T_T /\_ //\f//\f/
..’. l ".. .:"l ".. '...l .‘.. : l
-3n |-n T | an w
—le 923
2 2

In the above diagram the high frequencies are belng over-lapped
into the lower frequencies. This 1Is commonly referred to as
"aliasing”, and will cause the signal to be distorted »oth 1in
magnitude and in phase. In fact, the original signal cannot be

restored.

A simple and common solution to this problem 1is to use an
"anti-aliasing" filter prior to sampling the continucus tlme
signal. The filter is a low pass type, with the corner frequency
being the highest desirable frequency in the discrete time signal.
Similarly, the sample frequency will be chosen to be twice the
corner frequency of the "anti-allasing" filter. This will prevent
frequencies which are higher than <he sample frequency from

over-lapping 1Iinto the lower frequencles and causing ‘the

el



undesirable distortion in frequency magnitude and phase.

An analog “anti-aliasing” 1low pass filter may be easlly
constructed with a simple RC network and ar amplifier as shown in
Figure 3.3.1. The resultant transfer function for a p-crder

cascade arrangement of individual filters is

vV (s) -R 1
L2 = (3.3.5)
Vx(S) R sCR1 + 1

For control purposes 13 first or second order filter is sufficlent.
A second order, low pass filter with the RC network cdemonstrated
will provide a final output signal which is similar in phase to
the input signal. If a first order filter is uszed, then the

signal will be -180° out of phase due to the sign change.

Wittenmark, (1988) discusses the possible Iinteraction of the
"anti-aliasing"” filter with the estimation and control algorithms.
If the sampling frequency is not 20-100 times larger than the
desired closed loop system bandwidth, then interactions between
the antl-aliasing filter and the process must be considered and
accounted for when the order of the model polynomials is chosen.
For instance, if the physical process is first order, and the
anti-ati .3’ng filter is second order, the order of the overall

dynumi~e 4 third order.

In modern day distributed control systems, this problem has been
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solved by over-sampling the continuous time signal. For example,
in the Honeywell distributed control system, the process variable
is pre-filtered by a 1SL order filter with a -3dB corner frequency
of 1Hz. It is then sampled at a frequency of 3Hz. Supervisory
contrcl is then verformed by the PMX-45000 mini-computer once
every 1-6 minutes depending on the process time constant. This
suggests that if the process time constant is 60 minutes and the
desired closed loop time constant is to be 12 minutes, then
sampling the process variable at 1/3 seconds, suggests that the
sampling frequency is 360 times the bandwidth of the closed loop.
Thus the antli-aliasing filter will have 1little influence on the

overall closed locp system response under these circumstances.
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3.3.2 Digital Data Filtering

With the plant u-y data discretized, there exists the potential
for pre-conditioning the data prior to estimation and centrol. It
has been suggested by many authors that filtering the data is
necessary in order to achieve robust adaptive control.
Tuffs, (1984}, Clarke and Mohtadi, (1986) and McIntosh, (1988) have
shown that the use of the A/T(z ') filter effectively reduces the
effect of 1low frequency process load disturbances and high
frequency measurement and unmodeled dynamics nolse on the u-y
data. From Section 2.2 the A/T(z™') filter was integrated with

the ARIMA model as follows,

Az M) ay(k) = B(z'H)-Aulk-d-1) + C(z™!) €(k)
T(z™Y) T(z™!) T(z™h) (3.3.6)

Thus if T(z'!) = C(z™}) then the process output and input were
effectively free of any high and low frequency disturbances. It
must be noted that the removal of low frequency disturbances Iis
performed by the A operator. The assumption that has been made
about the auto-regressive portion of the noise dynamics is that
the noise occurs as random step type disturbances inr the output.
Similarly the 1/T(z™) polynomial filters the moving-average or
high frequency noise dynamics. Mohtadl, (1988) has shown that the
proper, theoretical cholice for the order of the T(z™') filter is
3A+1. MclIntosh, (1988) suggests that this order need not be largnr

than 2 in most applications.
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Although the filter order may be selected quite easily, the roots
of the 1/T(z‘1) are somewhat more complicated to select. It has
been shown by Mohtadi, (1988) and MclIntosh,(1988) that good

estimation occurs when the filter has the following coefficients,

1. 02 (.37

) 1 - 0.82"

T(z

For most chemical processes which demonstrate overdamped 1% or
2™ order dynamics, this filter selection 1s adequate. It must be
noted that if an overdamped process is sampled at étp, then the
corresponding discrete time pole location will be approximately
equal tu .8, This suggests that if u-y filtering'is performed to
accentuate the frequency content around the dominant time constant

of the process that a good model may be estimated in that region.

However, the use of filtering without some knowledge of the
process dynamics may lead to the estimation of a model which does
not accurately describe the dynamics of the actual process. If an
1/T(z™') filter designed for overdamped systems is used for
systems with underdamped behavior, then the filter will mask the
true dynamics of the process. Thus if a second order process with
underdamped behavior is to be filtered, the filter will have to
have complex poles in order for the process dynamics to be
estimated with a minimal amount of model-plant mismatch.
Alternatively, the 1/T(z“1) filter will have to be designed with a
discrete pole location which is approximately 1 decade greater

than the corner {.,equency of the 2"order process. It becomes



evident that the selection of this filter may not be as straight
forwa.d as many authors have suggested. This reinforces the need
for off-line analysis of any PRBS data that is available. Section
3.2 described the use of smoothed pc.ser spectral estimates which
allow the contr~l engineer to determine the order and physical

characteristics of the process.

So far, much has been said about filtering the high frequency
components contained in the u-y data, and it has been assumed that
the low frequency disturbances can be filtered by using the A
operator, which effectively results in differencing the u-y data.
This data differencing induces stationarity to the regressor
vector which is needed if the process mean and variance change
with time. Once the data is differenced, it still may contain
some low frequency disturbance components and, 1if possible, it
would be advantageous to the estimation algorithm if these
components could be removed without influencing the low frequency

process components.

If the process is represented in the following form :

y() = G (z7)-ulk-d-1) + H (z™')-£(k) (3.3.8)
s
where
Gh(z™h) WYz )
Gz = 2 and Ho(z_x) = -2
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then a filter would have to be designed to eliminate the effect of
the nolse transfer functior, Ho(zd). This could be done if the
8/T(z"') was modified to include a numerator component F(z™).

The resulting filter would be

A-F(z™h) - Al Lt o+ ...+ tn) (1+f 270 + ...+ f z f
T(z'h) t J
-1 S
(1+f + ... +f ) (1+t z + ...+ t z )
1 n n
£ t
(3.3.9)

It should be noted that when

'z

-1
T(z ") A'HO(Z )

then all disturbances will be removed from the process, and the
model parameters will be a good representation of the true process
dynamics. Sripada, (1988) has proposed an elaborate scheme for
estimating the F(z ') and T(z ') polynomials using a recursive
least squares technique. These polynomials would be estimated
during periods of 1low excitation or active low frequency
disturbances by holding the process model parameters constant.
Foley, (1988) discussed the difficulty with thlis technique being
two-fold. First, the variation in the model prediction error,
é(k). cannot always be attributable to high and/or low frequency
disturbances. In fact, the variation may actually be due =o
changing plant parameters, which would show up in the filter

dynamics rather than the process model parameters, defeating the



purpose of adaptive control. The second difficulty is with trying
to estimate a stable, parametric noise model. In most instances,
parameters assoclated with estimating the nolse converge very
slowly and there is no guarantee that the noise model will be
stable. Some form of spectral factorizatlon must be done in order
to maintain the noise model poles within the unit circle. This
lzads to an ever increasing magnitude of complexity which 1is
aifficult to perform in real-time, not to mention maintain in the

long term.

An alternative to on-line estimation of the u-y data filters is by
using time series analysis (Box and Jenkins,1976). By usling the
data acquired during the PRBS test, a process and noise model may
be obtained using an analysis program such as the IDSA package
(MacGregor and Taylor, 1987). By estimating a sulitable process
model and then examining the auto-correlation sequence of the
model prediction errors, a suitable structure for the nolse model
may be selected. Once this is done, the process and noise models
are simultaneously identified to yleld the final overall model.
This time serles analyslis produces two results. First, it
provides an excellent initial and default process model parameter
set, and second, it provides a stable noise model which when
inverted can be used as the A-F(z ')/T(z™') u-y data fllter for
further on-line recursive estimates of the process model

parameters.
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3.4 COMPUTER SYSTEM AND ADAPTIVE CONTROL SOFTWARE

With the implementation of any control algorithm in an industrial
environment, it is generally good engineering practice to be
familiar with the overall control systenm. Modern day, digital
control systems in even the smallest plants may at first appear
overwhelmingly complex and sophisticated. It is only through =a
good understanding of both the control system hardware and
software that a successful control application can be commissioned

and maintained for an indefinite period.

This section deals with the description of the control system
hardware and softwars that was specific tc the application of the
multi-step adaptive predictive controller at the Essc Chemical
Higher Olefins plant in Sarnia, Ontario. It briefly outlines the
hardware associated with the Honeywell TDC-2000/PMX-45000
distributed control system and describes the manner in which the
MAPC software was written and implemented. The final section
deals with some of the practical issues surrounding the
implementation of the software in order to maintain a consistent

“look, touch and feel" for the conscle operators.

94



3.4.1 Control System Architecture

The complete control system architecture may be described as 1in
Figure 3.4.1. The lowest layer c¢f the system encompasses ail the
field instrumentation and final control elements. Instrumentation
is responsible for measuring temperatures, pressures, differential
pressures, levels, etc. Similarly, analyzers are used to measure
boiling points and carbon number distributlons. All these
instruments are terminated in the TDC-2000 hardware which consists
of Honeywell Basic Controller Files (CB-Files}, Low Energy Process
Interface Units (LEPIU), High Level Process Interface Units

(HLPIU), and Data Hiway Ports (DHP-II).

The CB-Files provide two way communication to the process and
provide the first layer of SISO automatic plant control. The
CB-files provide for 8 process variables and 8 remote variables to
be measured and digitized. In conjunction with the measurements,
8 analog outputs are provided so that the process variables may be
maintained at a specific target. The remote variables allow for
additional plant measurements to be made or for cascading of

individual controllers.

The LEPIU's allow for low-energy slgnals, specifically the
millivolt analog signals associated with temperature measurements
to be conditioned, linearized according to thermocouple type, and
then digitized. This device provides an inexpensive alternative

for the acquisition and monitoring of temperature measurements.
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The HLPIU provides the same service as the LEPIU, with the
exception that it is wused for high level current or voltage
signals in the range of 4-20mA or 1-5Volts. It is a device which
only allows process variables to be monitored, and thus sends no

control signals to the field.

The final common TDC-2000 device is a DHP. The DHP allows for
other non Honeywell computing devices to reside on the TDC-2000
Hiway. Examples are intelligent measuring devices such as
component analyzers, which have RS-232, IEEE-488 bus protocol

communication capabilities.

All these devices described above are linked together via a high
speed dual coaxial link, which in practice allows the TDC-2000
devices to be distributed plant wide. The individual controllers
within the CB-Files may be manipulated in two fashions. Elther
board mounted LA201 devices which are hard wired into the CB-Flles
are used, or TDC-2000 operator consoies are used which reside on
the Hiway. Figure 3.4.1 does not show the operator consoles,

since they are currently not used at the higher oleflins plant.

The final and most desirable item from the point of high level
control and unit optimization is the PMX-45000 (Process Management
Exxon - 45000 ) process control minicomputer. This computer
allows for all resident Hiway devices to be scsned on a user
specified frequency for purposes of supervisory or advanced

control and improved process monitoring. By using the HPV2 (high



performance video 2 ) consoles, the plant schematics may be made
available to the console cperator. Naturally these schematics
allow the console operaiors to monitor all process variables which
have been incorporated into the distributed control system. The
HPV2 console may be thought of as a window into the process which
allows the console operator to monitor and control the overall
health and operation of the plant. The HPV1 console allows the
control engineer to develop and implement advanced control
strategies to improve unit quality, production and energy

utilization.

The PMX-45000 computer is a single processor,multi-user,
multi-tasking, interrupt-based system which uses RTMOS (real time
management operating system) to coordinate user and device
activities with the appropriate priority and schedule. The
concepts of ‘"realtime" and "freetime" are used to distinguish
between activities that must run on a fixed schedule and priority,
and activities which may run in the background only after all

realtime tasks have been completed for the defined period.

The PMX-45000 system has extended memory capablility wliclh its
predecessor the PMX-4500 system does not have. This ailuws for
additional information to reside in main or "core" memory, and
reduces the amount of page swapping that was necessary with the
older system. However, page swapping is still performed with
realtime and freetime FORTRAN programs. The page swapping scheme

used is one with a fixed page size of 8 kilowords, with a word
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size of 24 bits. The page allocation is static, and thus the
program is always swapped into the same "core" memory locatlon
provided that it is not occupied by a program of higher priority.
If a program of higher priority is occupying the memory location,
it must finish executing, and be placed back on "bulk" or
secondary memory if a program of lower priority is to be executed
in the same "core" location. Understanding the manner in which
page swapping is done is necessary 1f a program 1s larger than 8
‘'words, thus occupying several pages or segments in main memory.
If the system loading is high and the program is poorly segmented,
“thrashing" may occur by which the computer spends all of its time
communicating with the "bulk" controller. The term “thrashing" is
used when the program segments spend their time moving from “"core"

to "bulk" memory and back.

The PMX-45000 system supports 3 computer languages for software
devnlopment. The first 1is simply called PAL (Programming
Assembler Language) and is used primarily for additions and
modifications to the existing RTMOS and PMX operating systems.
The second language is BPL (Basic Programming Language). It is
used to enhance and provide special computatlions for the standard
control and calculation algorithms that are an integral part of
the PMX software. The final and third language is ANSI X3.9-1966
FORTRAN 1IV. The FORTRAN language 1s specifically used for
application software that requires special features such as

mathematical functions, matrix manipulations, and file handling.
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FORTRAN programs may be written either as real-time or free-time
programs. Once written, they are compiled and loaded onto the
“bulk" or secondary memory system. If written for free-time, they
are typically invoked manually. 1f written for real-time, they
will be automatically invoked by a BPL program which has been
appropriately scheduled. PMX-45000 also allows FORTRAN users to
have access to the complete "point record"” historical and on-line
data base through the use of "multi-point" lists. Each
multi-point list allows for 64 points or process parameters to be
accessed by any FORTRAN program which has requested the list. A
further programming requirement that the PMX system provides is
"working" or "scratch pad" memory for FORTRAN programs which is
needed to save Iintermediate results or variables Dbetween
executions. This memory is easily defined and is referred to as a

real-time or a free-time data table.

3.4.2 Structure of Adaptive Control Software

In implementing MAPC much consideration was given to the future
use, readability and maintainability of the softwzre. In order to
accomp. ish these objectives the software was written in FORTRAN
with modularity stemming from the generic operations that were
required. Flgure 3.4.2 1illustrates the manner in which the MAPC
oftware was segmented and the logic that links each segment based
on the digital switches that were defined to allow the user to

turn specific segments on and off.
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Figure 3.4.2 Task Structure of the MAP Controller Software

A=Q
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&
RLS MAPC
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The MAPC software vas wi..ten in 4 distinct segments. The "main"
segment is run on a schedu'ed frequency and is responsible for
data scaling, data filtering and the maintenance of all data
vectors required for the recursive estimator and the multi-step
controller segments. An "on-line initialization" segment allows
the user to re-initialize all vectors and matrices to
user-specified initial values. This may be invoked by placing the
"initialization" switch to the on position. The initialization
segment will then toggle all switches to the off position, and
thus, allow only the main program to run. The user then has the
flexibility to select a complete adaptive multi-step controller or
can scparately enter the model parameters and have a fixed
parameter multi-step controller. This flexibility was bullt to
facilitate evaluation of the adaptive controller, and for future

non-adaptive applications.

The RLS estimation segment will run when the RLS switch is in the
"on" position. The segment 1is responsible for scaling the
covariance matrix based on the current tr{P(-)} speciflcation, the
use of Blerman’s UD-factorization for covariance updating and
estimation gain vector computation, and model parameter updating.
It should be noted that this segment need not exist Iif a

non-adaptive controller 1s desired. The removal of the segment

will in no way affect the remaining software.

The MPC segment performs all the computations required to compute

the control vecter Au of dimension Nuxl and implement the first
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element in that vector. It is responsible for the covariance and
Kalman gain updates of the two-step Kalman Filter, the formation
of the 1impulse and step response co-efficlent matricus, the
computation of the future output vector, and the solutlion of the
Bu = (ATA + AD-ATC Y () - Y (k) } equation. It should be
noted that the two-step Kalman filter was implemented such that
the incremental control value is implemented prior to performing
the time update to the Kalman filter. This allows the processor
to perform the computation intensive time update durlng the

intermediate period between control intervals.

3.4.3 Practical Considerations

When implementing any controller in an industrial environment
there exist certain items which must be considered if the
application is to be successful. This 1s no different wlith
adaptive control, and the importance of providing a consistent,
standard system cannot be over-emphasized. Typlcally, the console
operators are not technically versed with the technology that has
been implemented and thus it is important to educate them on the
limitations of the technology. With the implementation of MAPC at
Esso Chemical’'s higher olefins plant, the application was made
completely transparent to the console operator. The MAP
controller was made to resemble a standard PID controller for the
console operator, so that any changes that had to be made on-line

to the setpoint, output clamps, or controller status could be

103



performed as before. This was an attempt to maintain a consistent
"look, touch and feel" for the console operator as well as for

future application engineers.

Control applications at the PMX level may be implemented as
setpoint or direct digital controllers. With setpoint control,
the PMX control application manipulates the setpoint of a
secondary controller which is typically a TDC-2000 PID controller.
Console operators will limit movement in the secondary loop by
setting setpoint high and low clamps. Similarly, with direct
digital controllers, the control value computed by the PMX
application is sent directly to the final control element. In
this case console operators will limit movement by setting clamps
to the output of the valve. It should be noted that these clamps
are soft in that they reside in the Honeywell process control
system rather than in the field. Naturally hard limits also exist
in the field due to the limited capacity or movement of final
control elements. Typically, the soft limits have smaller ranges
to prevent and warn console operators of potential process or

control application problems.

With setpoint or output clamps being violated, the anti-windup
status (AWS) word or field associated with the point record is set
to true. This allows suitable software to be written to prevent
the MAP controller from running. In any event, when the AWS is
set to true, estimation 1is disabled to prevent saturation

non-linearities or process drift to corrupt the model parameters.
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At the same time, the incremental control action is taken is set
to Au=0. Once the process output or secondary setpoint are no
longer limited, the estimation and multi-step control will resume

as before.

In adaptive control there always exists the possiblility of having
the model parameters unexpectedly dri/t into unstable reglons.
Although this should be prevented by having a deadzone on the
model prediction errors, experienre has shown that during plant
upsets the deadzone is violateu and the estimation algorithm
attempts to produce a new set of parameters which may or may not
be a good reflection of the true process dynamics. To prevent
such an occurrence, the parameters may have upper and lower
limits. These limits may be selected based on the natural
variation of the parameters during a PRBS test, and are best
computea by off-line simulation and analysis. MacGregor, (1987)
computes the upper and lower bounds on each individual parameter
by measuring the individual model parameter variation over the
fixed data set. The upper and lower bounds are computed as the
:zvfﬁfjb standard deviations. These bounds are then used during
on-line parameter estimation to guard agalnst a poor parameter set
from being identified. Once confidence is gained in the parameter
estimation these parameter limits may be widened. These upper and
lower bounds must be implemented in a manner which does not
interfere with the estimation algorithm. Techniques such as
parameter projection (Shah,1986) 1illustrate how to handle

parameter limits in an elegant manner, without upsetting the
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4.0 EXPERIMENTAL APPLICATION OF MULTI-STEP ADAPTIVE
PREDICTIVE CONTROL IN THE ACADEMIC AND INDUSTRIAL
ENVIRONMENT

The multi-step adaptive predictive controller (MAPC) discussed in
the previous chapters was applied to 3 processes. The first
process was a continuous stirred tank heater and constituted the
university application of MAPC. The purpose of this applicatlion
was to examine and analyze the capabllitles and limitations of the
MAP controller in a stable and controlled atmosphere. The
following two applications were performed at the higher olefins
plant at Esso Chemical Canada in Sarnia, Ontario. The first of
the industrial applications was implemented on a polychamber
reactor, to adaptively control the outlet temperature on the gth
catalyst bed. The second application was later performed on the
unit hydrofiner which is responsible for the removal of polscns

from the propylene feed.

The following sections describe the operation of these processes
and present the experiments that were performed to test the
capabilities and 1limitations of the MAP controller. The
industrial applications provided a true testing ground for the
controller. It had to deal with a variety of conditlions that are
typically not found in the laboratory. Finally, the results are
summarized to show both the advantages and disadvantuges of the

MAP controller.
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4.1 CONTINUOUS STIRRED TANK HEATER

4.1.1 Process Description

The continuous stirred tank heater (CSTH) consists of a an open
vessel approximately 12.5 cm in diameter and 130 cm in height.
Cold water enters the tank at the top and is heated by a steam
coil. The steam is supplied from the university heating utility.
The level in the tank is controlled via a local pneumatic
proportional controller which regulates the valve at the tank
outlet. Prior to the outlet valve are four thermocouples which
are situated at different positions from the tank outlet along a
long copper ‘tube. For the experimental configuration refer to

Figure 4.1.1.

The control objective in this configuration is to maintain one of
the four thermocouples at a wuser-specified temperature by
manipulating the steam valve position. Servo response ls possible
by varying the temperature setpoint. Similarly, regulatory
response is witnessed when the cold water rate is adjusted. The
cold water produces a disturbance which alters the process steady
state and also the transportation time delay. By reducing the
cold water flow rate, the time delay assoclated with temperature
is lengthened. Thus, there exists an inverse relationship between

the cold water flow rate and the process time delay.

Uncontrollable disturbances may also arise with the experimental
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Figure 4.1.1 Process Diogram of Continuous Stirred Tank Heater
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equipment. A common uncontrollable disturbance was associated
with the oversized steam trap. Condensate build-up in the steam
lines resulted in poor heat transfer. With a sudden release of
the condensate from the steam trap, the heat transfer increased
and resulted in a sudden temperature increase. To circumvent this
problei:, the process was brought to a steady state operation where
the steam flow rate was quite high. This managed to clear the

condensate from the steam lines and steam trap much more readily.

For all the experiments that were performed, the steady state

operating conditions were on average as shown liu Table 4.1.1.

Table No. 4.1.1 CSTH Steady State Operation Conditions

Inlet Cold Water Temperature 19°C
Inlet Cold Water Rate 80 cm’/s
Water Level in Tank 100 cm
Steam Valve Position 50 %
Outlet Water Temperature 38°C

Based on the above steady state operating conditlons, the process
reaction curves were obtained on a strip chart recorder so that
knowledge could be gathered pertaining to the continuous time
plant parameters. Knowing the continuous time plant parameters
would allow a correct discrete process ARIMA model to be selected

for the recursive identification as well as selecting the
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appropriate order and time constant of the A/T(z_l) filter.

The results of the open loop step tests that were perforred on the
on the CSTH for the three thermocouples is as shown in Table
4.1.2. In each case, the responses were plotted on a sirin chart
recording, which revealed a first order + time delay contilruous
time model was more than adequate to describe the open leocp
dynamics. Table 4.1.2 represents the average response obtained
throughout the various experiments that were performed. The
continuous time parameters which were obtalned are deflned by the

first order transfer function model in the s-domain as shown

below,

Table No. 4.1.2 Continuous Time Process Parameters

Thermocouple Time Deadtime Gain
Number Constant
T (s) T, (8) K (%/%)
p d P
1 35 q -1.80
40 25 -1.625
40 35 -1.5C
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4.1.2 CSTH Experimental Results

This section describes the experimental tests that were performed
on the CSTH to evaluate the performance of the MAP controller. It
must be stated that the CSTH 1is not an ideal candidate for
adaptive coantrol since it does not demonstrate time-varying
behavior or highly non-linear dynamics. Due to this fact emphasis
was then placed on quick identification of an ARIMA model, and
then the immediate use of this model in the MAP controller. The
results obtained from the various tests with the MAP controller
were then compared with the results obtained by using a standard
PID (proportional-integral-derivative) controller which was tuned
to give a quick, over-damped servo response for thermocouple No.

1.

The items which were investigated using the CSTH as the process

may be summarized as follows:

I RLS Open Loop Identification in a Noisy Environment

II Interaction Between the Kalman Fllter and RLS

II1 Servo Response of MAP Controller

Iv Regulatory Response of MAP Controlier

A MAP Controller Behavior in presence ¢!/ Changing Deadtime

Dynamlics
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4.1.3 RLS Open Loop Identification in a Noisy Environment

The behavicer of the RLS algorithm and Identification was
investigated by choosing the CSTH thermccouple which exhlbited the
highest amount of measurement variation. This, without doubt, was
thermocouple No. 1. The variation 1in the measurement was
approximately 4% of the temperature range. The varlation was
mainly caused by the poor location of the thermocouple which was
situated at the immediate outlet of the CSTH tank. The cold water
would channel through the tank leading to a poor mixing with the

warmer water which resulted in a nolsy temperature measurement.

Based on an open loop step test which was performed, the
continuous time transfer function model which describes the

dynamics of the CSTH for TC#1 is,

yx(t) - _-1.506 | ult)

35s + 1
yi(t) = Temperature Measurement ( 0-100% )
u(t) = Gteam Valve Position ( 0-100% )

Similarly, a discrete time transfer function may be obtained by
selecting a suitable sample time and then mapping the centlnuous
time model into the discrete domain. The sample time selected was
about 1/6 of the tp or 6 seconds. Based on this T' and selectlng

the n and n as 1, the discrete time #transfer function may be
a

11



written as,

-0.23735
) - 0.8425-z "

by (k) - Au(k-1)

The negative sign in the gain is due to the fact that the steam
valve is "air to close", so that increasing the signal from 4-20mA
closes the valve and causes a subsequent drop in water

temperature.

Figures 4.1.2, 4.1.3 and 4.1.4 show the behavior of the parameters
under open loop identificatien when three different orders of the
1/T(z"') filter are used on the regressor vector. Table 4.1.3
summarizes the discrete time model parameters for the three tests

as well as the filter order and pole locatlion.

Table 4.1.3 Summary of Estimated Discrete Time Models

For TC 1
Test No. Estimated Plant A Filter 0‘2
Model -1 e
T(z )
-1
. -0.0912-2 - A 4654
1 + 0,4239-2 1
-0.7514-2" " A-0.200-2}
2 : — : = 0.351
1 - 0.3527-2 1 - 0.800-z
-0.3751-2"} 5-0.04-2 "
3 . - — - 0.006
1 - 0.8375:2 1 -1.6-2 + 0.64-2

In all three cases the tr{P} was held at a constant value of 1
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during steady state operation and at a value of 10 durling the
pulses in the steam valve. The tr(P} was increased during the
pulses to facilitate a quick identification of the plant model.
Based on the tests performed there is no doubt that the third test
provided the best discrete time model. The third test used a s
order residual filter with a discrete pole location of 0.8. This
filter pole location was chosen to be somewhat smaller than the

actual plant pole location of 0.842S.

The first test used only the A operator on the regressor vector,
which would effectively eliminate any low frequency disturbances
in the temperature output, but would not filter the high frequency
components that were present with this particular temperature
measurement. As a result, a high frequency model wzs estimated
that had a pole location in the left half plane of the unlt circle

suggesting that the plant dynamics were oscillatory.

The second test used a first order residual filter. This test
again revealed a high frequency model, however 1its dyramlcs are
not oscillatory as in the first case. The residual filter in this
case has a finite high frequency gain and thus influences the
estimation to identify a model with much more significant high

frequency components.

Looking at the variance of the residual sequences, 1t is evident
that the third test minimized this variance best. Its value was

0.0056, compared with 4.6541 aad 0.3505 for the first and second
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tests. This emphasizes the fact that using the correct order of
A/T(z™Y),  the parameter identification may be both fast and
stahle. In the third test the parameter:z cunverged in about 40
sample intervals, or 240 seconds, te  values which were
approximately equal to the discrete time model determined from a

continuous, process reaction curve.
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4.1.4 Interaction Between The Kalman Filter & RLS Algorithm

Chapter 2.0 described the manner in which the MAP controller was
implemented. The ARIMA model parameters are estimated on-line and
chen used in an observable state-space model to provide the basis
for the modified Kalman filter predictor. During the time that
the parameters are adapting, fluctuations in the ARIMA parameters
will cause similar fluctuations 1in the Kalman gain vector
elements. This variation in the Kalman gain vector elements will
also cause variations in the residual filter bandwidth.
Variations in this bandwidth must be maintained to a safe minimum,
otherwise, 1in a noisy environment, the expansion of the bandwidth
may cause instabllity in the controller. The manner in which the
bandwidth may be kept artificially small 1is by selecting an
appropriate value for the ratio of the process to measurement

noise covarlances, R /R¢
w

The experimental results from the CSTH revealed, that in the
closed loop, severe changes in the bandwidth of the residual or
Kalman filter during parameter estimation caused highly non-linear
temperature behavior during servo changes. The intensity of this
non-linear response could be regulated by 2 "tuning knat",
First, the gain of the RLS algorithm may be reduced by adjusting
the tr(P}. Lowering the tr(P} causes slower parameter changes
resulting in slower and smoother bandwidth transitions 1in the

residual Kalman filter.
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The second tuning "tuning knob", RH/RV, allows the user to
artificially adjust the bandwidth of the Kalman flilter.
Decreasing RH/RV causes the bandwidth to decrease allowing high
frequency disturbances tc be masked. As a result, the controller
will take little or no action on these disturbances. Naturally,
increasing this ratio has the opposite effect on the bandwidth and
so the controller will see these disturbances and attempt to

compensate for them.

Theoretically, if the model prediction errors were =zero, RH/Rw
would have no effect on servo response. In practice, this is
seldom the case, and so the selection of RH/Rv is also important
when considering the servo response. Figures 4.1.5 to 4.1.7
illustrate the experiments which revealed the non-linear behavior
of the MAP controller in the closed loop when the Kalman filter
and the RLS algorithm interacted. In all three cases the
temperature measurement used was T/C #2. Figure 4.1.5 shows the
effect of a quick ; parameter change that was caused by increasing
the gain of the estimator during the setpoint change. As ;

increased from -0.92 to -0.904 the tr{M} experienced a similar

transient causing the temperature to overshoot and settle out.

Figure 4.1.6 shows the result of slow ; transitions. If ; has a
slow transient during identification the tr{M} will also
experience a slow transient. Thils resulted in a servo response
which was damped 1illustrating that it was not significantly

affected by the RLS and Kalman fllter transients.
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Figure 4.1.7 shows an extreme example of what happens with the MAP
controller when both the tr{P} and R"/Rv are chosen high. The
result is an ; parameter which responds quickly causing the tr(M}
to have a fast translent. This leads to the extreme non-linear

temperature response which was only stablilized once both the a

parameter and tr{M} reached their steady-state values.
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4.1.5 Servo Response of the MAP Controller

This sectlon investigates the behavior of the MAP controller
during servo changes with the RLS algorithm turned off. The
previous section showed the possible non-linear response which
results if the RLS algorithm is on. The tuning parameter which
was manipulated was the control weighting, A. All other
parameters were maintained constant. McIntosh, (1988) showed that
a good selection of A can be made by scaling it according to the
magnitude of the tr(ATA) matrix. Selecting

Al = m - tr(ATA)

H
u

where m is some arbitrary factor used to determine the amount of
energy to be expended in controlling the output. Choosing A to be
large relative to the tr(ATA) will reduce the incremental control
actions. Choosing A to be small or zero as is the default case
with the GPC controller (Clarke, Mohtadi and Tuffs,1987) will
cause the control action to be fast and very responsive to

deviations from the setpoint.

Two experiments were performed with the CSTH to demonstrate the
servo behavior of the MAP controller. The first order model was
identified prior to the servo tests and then held constant
throughout the test to prevent any non-linear responses in the

Kalman filter.
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The model identified for TC#2 was :

-0.45-27!
Ay(k) = N Au(k-3)
1 -0.8-2

The remaining controller parameters were sclected to be :

The values selected for the three horizons were fairly standard,
however, the selection of the ratio of process/measurement noilse
covariance was chosen to be abnormally high. This was done
because of a high confidence in the model parameters. With a good
model any noise contained in the model residuals can typically be
characterized to be auto-regressive or of a low frequency. Low
frequency noise occurs when unexpected loads are imposed on the
system. With the CSTH, such a load could be generated by suddenly

varying the cold water flow rate into the tank.

Figure 4.1.8 shows the response of the CSTH to a 10% setpoint
increase in temperature with A = 10. This is similar to choosing
the value of m#l. The output and input responses are smooth.
They show no signs of high frequency fluctuations. The response
time in this case is 114 seconds. It should be remembered that
this includes ‘he deadtime of approximately 30 seconds. The
deadtime is Included as part of the overall response time due to
the fact that setpoint changes at time k are actually implemented

by the MAP controller at time k+d+1.



Filgure 4.1.9 illustrates a similar servo response except A=0. In
this case the output response remains fairly smooth as in Figure
4.1.8. However, the input response which is the manipulation of
the steam valve is rapid and jittery. This is what was expected
when A is selected to be small or zero. The response time was a
fast 60 seconds. Subtracting the dead~time of 30 seconds leads to
a process response time, Tr, of 30 seconds which is faster than

the open loop tp.

This demonstration of A-welghting 1s important because it shows

that it has two qualities which become important in an industrial

environment. First, A-welighting allows the wuser to tune the
output response for servo type changes. With some off-line
simulation, a desired response can be achieved. Second, the

appropriate choice of A also permits the user to have smooth
control action. This prevents unnecessary manipulations of
control elements which may, in a large plant, effect cther

upstream/downstream processes.
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4.1.6 Regulatory Response of MAP Controller

It has been stated in previous sections that the MAP controller
has 2 degrees of freedom. Holding the horizons constant, the
servo and regulatory behaviors can be tuned individually provided
the model prediction errors are white noise. Naturally, this will
not always be the case, however a good selection of the RH/Rv
parameter will ensure that unmodelled disturbances will be
compensated adequately by the controller. Walgama, (1986) showed
that this ratio is similar to derivative action. The larger the
value, the stronger the predictive action taken on unmodelled

disturbances that fall within the bandwidth of the plant

The regulatory ability of the MAP controller was tested on the
CSTH by providing an unmodelled disturbance. This was performed
by varying the flow rate of the cold water injection into the
tank. The flow rate was changed by *10%. This experiment used
the model which was identified for the servo response tests. The
controller horizons were maintalned as before, and the control

weighting was set to A=10.

Figures 4.1.10 and 4.1.11 show the regulatory response of the
controller to a 10% decrease and then a similar Iincrease in cold
water flow rate. During this time, the cold water temperature was
constant. In Figure 4.1.10, the temperature deviated by 8% and it
took the controller 400 seconds to settle the temperature to lts

intial setpoint. Figure 4.1.11 refers to a 10% in.rease in cold

to
™



water flow. Unfortunately during this time another disturbance
occurred which was associated with the steam trap. This
disturbance which occurred several times without warning
throughout all the experiments typically caused a rise in the

temperature. This is evident from Figure 4.1.11.

Figure 4.1.12 illustrates a 10% decrease in cold water flow with a
noise covariance ratio set to Rw/Rv=2.0. In this case the
temperature deviated only 6%, however it still took approximately
400 seconds for the TC#2 temperature to settle within %54 of the

temperature setpoint.

These two experiments suggest that increasing the RH/Rv tuning
knob allows the MAP controller to compensate for unmodelled
disturbances in a manner which reduces the overall impact of the

disturbance on the controlled varilable.
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4.1.7 HAP Controller Behavior in Presence of Changing
Deadtime Dynamics

Varying time delay dynamics can seriously degrade the performance
of any controller. This section describes the experimental tests
that were performed to test the MAP controller under extreme
variations in time delay dynamics. Results are then compared with

a well tuned PID controller.

In all three experiments that were performed, a first order model
was used. The prediction and control horizons, as well as the
control weighting and ratio of process/measurement noise
covariance, were maintained constant. Ad justments to these
parameters were only made when controller behavior became
oscillatory or unstable in order to stabilize the CSTH

temperature.

Results from the first experiment are shown in Figure 4.1.13. The
process model estimated for TC#1 was first order with no time
delay. From the actual process reaction curves, TC#l has
approximately 3 seconds of time delay. This was considered to be
insignificant when using a sample time, Ts=10 seconds. Flgure
4.1.13 shows the trajectories of the model parameters. The
parameters converge during an open loop identification to their
steady state values by 40Ts after which the MAP controller 1is
turned on. After a short transient in the tr(M) which determines
the bandwidth of the Kalman filter, the controller begins to

regulate the CSTH temperature by manipulating the steam valve. To

to
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introduce the change in time delay the thermocouple switch is
changed to TC#2 at lloTs. TC#2 has approximately three sample
intervals of time delay which 1is significant relative to the
process model which has been estimated for TC#1. With the RLS
identification still active, the model parameters begin to drift
and diverge from their originally estimated values. The discrete
pole location exits the unit circle leading to an unstable process
model. The resultant closed loop control of the CSTH temperature
becomes unstable and the controller must be placed into manual

mode to prevent the underdamped oscillations.

The second experiment involved the identification of the same
model as wused in the first experiment. This open loop
identification occurs from 160—220Ts. The results are summarized
in Figure 4.1.14. After the parameters have reached their steady
state values and the controller has gone through an initial
transient with the Kalman filter, the switch is used to select
TC#2. During this entire experiment the RLS estimator was left
active. The gain of the estimator is summarized in the diagram of
the tr{P}. The controller in this instance does not become
unstable immediately. However, after a servo change of +10% is
implemented, the parameters begin to drift. Once the discrete
pole moves outside the unit circle, the control action immediately
becomes unstable and oscillatory. During the initial stages of
the parameter drift, the control weighting was increased to A=25
in an attempt to limit rapid control actions from occurring. This

seemed to have little effect on stabllizing the CSTH temperature.
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The last experiment was less severe in that the increase In time
delay was restricted to a single unit of discrete time delay. A
first order plus time delay model was open loop identified for
TC#2 this time as shown in Figure 4.1.15. After identification of
the model parameters the RLS algorithm was shut off at TSEZIU.

Once the Kalman filters reached their steady state, the time delay

was increased by about one sample interval ( 10 seconds ) by
selecting TC#3. Figure 4.2.15 -rAemonstrates the controller
performance to a +10% increase in temperature setpoint. The

resulting temperature response exhibits a small overshoot with
rapid recovery to the desired setpoint. The regulatory behavior
is then tested by decreasing the cold water flow by 10% at TSEJ7S.
A corresponding deviation of 10%4 occurs in the CSTH temperature.
The temperature then oscillates in a damped manner towards lts
original setpoint. To ald the controller in recovering fiom the
oscillatory behavior the maximum prediction horizon, Nz' is

increased from 10 to 14.

The experiments performed were both adaptive and non-adaptive.
The adaptive experiments clearly 1illustrate that incorrect time
delay specification in the model, or simply having a process whose
time delay varies significantly, will cause the MAP controller to
become unstable. In this case, the time delay variation was in

the neighborhood of the process time constant.

The non-adaptive experiment illustrated that the MAP controller

continues to be quite robust. Its servo response becomes faster



with the increase in time delay, but most important it continues
to maintain a stable temperature for the CSTH. Similarly, it
provides fairly good regulation of the CSTH temperature in the
presence of cold water disturbances. In this experiment it
required some adjustment of the prediction horizon N2 to more

quickly dampen the resulting oscillations.

It is convenient to compare these results with those obtained with
an ordinary PID controller. Figure 4.1.16 1illustrates these
results. The discrete PID controller was ini‘ ‘ally tuned to have
good servo and regulatory response for TC#l. TC#1 demonstrated no
no time delay when using a sample period of Ts=10 seconds. "Good
tuning" was considered to be a damped servo response and
non-oscillatory regulation. Figure 4.1.16(a) shows that the PID
controller drives the temperature to a new setpoint value in 44
seconds. Similarly, the regulation of temperature to a 10% change

in cold water flow is fast and non-oscillatory.

To understand the behavior of the PID controller to successive
increases in time delay the thermocouple switch was used to select
TC#2 and TC#3 which have 25 and 35 second time delays. Figure
4.1.16(b) illustrates that with the increase in time delay the
servo response 1s no longer damped. However the temperature does
settle out quickly with no oscillation. When the regulatory
behavior 1s examined, the results demonstrate that the PID
controller has degraded and a continuous oscillation results with

a perlod and magnitude of 200 seconds and *5% of the temperature
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range for TC#2. Similar results were obtained when TC#3 was used.
Here the temperature overshoot is in excess of 5% for the 10%
servo change. The temperature response also demonstrates a 4%
undershoot before it finally settles to the desired setpoint. The
regulatory response to an 1increase in cold water flow rate
produces a similar cycle as with TC#2. In this case the

oscillation magnitude is similar to that of TC#2.

The behavior of the PID controller is predictable with subsequent
increases in time delay. As the time delay increases for a glven
set of tuning constants the degree of oscillatory behavior also
increases. To circumvent this problem the PID controller would
have to be de-tuned and thus could not respond as quickly to

process disturbances as would the MAP controller.
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4.2 REACTOR BED TEMPERATURE CONTROL

4.2.1 Process Description

irst industrial application was performed on a relatively
S 1e process control problem. The higher olefins unit in Sarnia
uses 2 polychamber reactors to oglimerize dilute propylene to
higher chain olefins, namely nonene and tetramer. Figure 4.2.1
shows the simple process flow diagram for a single reactor. The
dilute propylene enters the top of the reactor and then passes
over five beds of catalyst. These beds of catalyst provide the
medium in which the propylene is gradually converted through a
highly exothermic reaction to a higher chain olefin. To provide
additional cooling and maintain a stable polymerization, the
individual beds are quenched using a liquid which is relatively
unreactive. The liquid is predominantly propane and represents a

recycle stream from the first level of separation downstream.

The bed outlet temperature control on the individual reactors is
mzintained by fcur PID controllers. The target or outlet
temperature setpoint 1s maintained by manipulating "air to close"
quench valves. There are twp pecullarities of the quench system
which can cause temperature control problems and alsoc represent
unmjelled system disturbances. The f'irst one deals with the fact
“hat all the bed quench lines are connected to a single header and
fed from a single pump. Pressure fluctuations on the header

caused by an ill-tuned controller moving a valve too fast causes
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Figure 4.2.1

Process Diagram of Reactor Bed Temperature Control

QUINGH /OISR T
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subsequent bed outlet temperature fluctuations. The second
peculiarity is with the temperature of the quench. QOuench
temperature is controlled by a series of fin-fan coolers which are
either off or on. Sudden cocling or heating will cause bed outlet

temperature {luctuations.

Finally, the exothermic process may be considered
“{l1l-conditioned". During open loop experiments it was found that
the process gain and time constant can vary depending on whether
quench is increased or decreased. Increasing the quench causes a
small temperature decrease suggesting the process has a small
steady state gain. On the other hand, decreasing the quench will
cause a rapid and large temperature increase indicating that the

gain is large and time constant small.

For the industrial experiment the fifth bed was selected for the
primary reason that it offered the largest relative time delay as
compared to the other beds. The fifth bed is the deepest bed and
therefore provides the longest liquid transport delay. It was
initially felt that this would be a good application for adaptive
control due to the decay of catalyst activity over the reactor

life.

The sections which follow describe the steps that were taken to
understand the process dynamics in order to identify a process
model. With the experimental data, it was then also possible to

tune the RLS estimator off-line. Finally, some results are
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presented that show the performance of the complete MAP controller

as applied to the fifth bed ocutlet temperature control.
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4.2.2 Process Mcdel Selection and Identification

The first implementation of the MAP controller to an industrial
process proceeded with several on-line tests and then some intense
off-line analysis of the data. This was done to establish the
confidence necessary to run the MAP controller continuously and

without an incident.

Chapter 3 described some of the practical considerations involved
in 1lmplementing a more sophisticated adaptive model based
controller. Prior to placing the MAP controller on-line the

following steps were performed :

1. Open loop test.

2. PRBS test.

3 Oft-line analysis to determine model order and time
delay.

4. Simulation study to tune RLS estimator.

Figure 4.2.2 1illustrates the open loop step test that was
performed on the fifth bed characteristic outlet temperature. The
PID controller was placed into manual mode, and the output was
manually operated to provide the openr loop step test. The series
of steps reveal that the process is predominantly first order,
however the potential for second order dynamics does exist with
large movements in the quench valve. A large decrease in the fifth
bed quench valve will cause a rapid increase in quench header
pressure. This increase in quench header pressure causes more
quench to flow to the fourth bed for a given valve position and

thus causes the fourth bed outlet temperature to drop. The drop
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in fourth bed outlet temperature will cause a subsequent .J:co. in
the fifth bed ocuflet temperature. The reverse is true wi: the
fifth bed quench valve 1is opened quickly. Table 4.2.1 summarizes
the continuous time parameters from the successively performed

step tests :

Table 4.2.1 Summary of Reactor Step Tests
Step Test Tp Ta Kp
Number (min) (min) (°F/%)
1 6 0 -0.48
2 5 5 -0.60 -
3 3 9 -0.30 ]
4 13 6 -0. 40

Looking at Table 4.2.1 the average values of the

The negative

galn

parameters are

is caused

rp=7min ,Td=5min and Kp=-0.445°F/%.
by the fact that as the valve is opened, the quench flow increases
causing a drop in the bed outlet temperature. The step tests also
suggest that there is significant variation in the continuous time

parameters and that a longer test may be required in ordzr to

provide good process data for model identification.
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The step tests provided an 1initial guess for the model

structure. The structure wmay be defined as :

TS = 2 minutes
n = 1
a
= 1
b
= 3

In order to achieve a better understanding of the process dynamics
a closed locp PRBS test was performed. The closed loop test was
selected for 2 reasons. First, it 1s important to prevent a
temperature runaway in the reactors and so any extended testing
must be performed with cautlon. Second, it presented a good
opportunity to determine how good a process modei a closed loop

test could yleld.

The existing PID controller was altered to provide proportional
action on the error ( ysp(k) - y(k) ) rather than on the process
variable ( y(k) - y(k-1) ). This was done to ensure that the
manipulated variable, in th.s case the valve, provided the
necessary "proportional k:ck" to the process in the closed loop.
fhis is required in order to minimize the correlation between the

manipulated variable and the process output noise.

Prior to performing the test, some steady state operating data was
analyzed to determine the natural variation of the bed outlet
temperature in the closed loop. The standard deviation of the

output was cy=t1°F. Based on this output variation, the magnitude
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of the PRBS signal was selected to be +3°F.  The sample time was
chosen as Ts= 2 min. and the PRBS -<witching Iinterval as T = 4
8w

min. The PRBS test was then performed over a 6 hour period as

shown in Figures 4.2.3 (a)-(d).

From these 4 figures, it can wve sz2en that the selection of the
PRBS magnitude of +3°F was a goecu on, as it did not influence the
fourth bed temperature as drastically as the open loop step tests
did. Also, the downward drifting valve position over the 6 hour
period demonstrates the non-stationary characteristic of the
process. As the daily temperature began to rise, it caused a
similar rise in the quench temperature. If the test were
performed in the open loop, this drifting would have caused an
unacceptable rise in the bed outlet temperature. However, since
the test was performed under clesed loop conditlons, the rise in
quench temperature was automatically .ompensated for by the PID
controller which increased the amount of quench flow to the
reactor catalyst bed. With this test, the outlet temperature was
maintained within a comfortable +10°F range which was deemed

acceptable by the higher clefin operators.

With this PRBS data, a more sophisticated analysis of the process
dynamics could be made using some of the techniques discussed in
Chapter 3.0. A cross-correlation analysls identified the process
time delay to be 3 sample periods or 6 minutes. Figure 4.2.4(c)
illustrates the step response formed from the estimate of the

cross-correlation sequence. From the estimate of the step
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response, the time delay of 3 sample intervals corresponded well

with the reactor step test data.

Figure 4.2.4 (b) and (c) illustrate the impulse and si<p response
coefficients obtalned from using the IDSA Software Package
(McGregor, 1988). The step response shows that a first order
process + time delay model is satisfactory. Thus n and n_ were

chosen as 1.

The next step after identifying the process model order and time
delay, was to perform several simulations using the PRBS data to
tune the RLS estimator. To do this, an off-line version of the
RLS estimator was used. This off-line simulation allowed for the

following estimator "tuning knobs" to be selected :

tr{P) = trace of the covarlance matrix
T(z‘l)p = regressor filter discrete pole location
a = prediction error deadzone

Figure 4.2.4 (d) shows the most successful simulation where the

RLS tuning parameters were selected as :

tr(P}) = 8, T(z")p = -0.8, A =0.0

The T(z-l) order was selected approprlately as second order. The
parameter trajectories show how quickly the model can adapt when a
good PRBS test is performed. In this case, the test was performed

under closed loop conditions with the setpoint of the fifth bed
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PID temperature controller being manipulated. The 1identified

model may be summarized in the following discrete form :

-1
Ay(k) = 0.17092 -2 - Au(k-3)

1 - 0.8885-z '

To verify the goodness of model fit to the data, the model
prediction error may be examined by looking at the residual
auto-correlation sequence. Figure 4.2.4 (g) 1illustrates the
residual auto-correlation sequence with the standard error limits.
Notice that the first 3 lags exceed the positive standard error
limit. This states thiat ‘he model residuals still contaln some
structure to them. In this case the structure may be ldentified
as first order AR in nature based on the rules found in Box and
Jenkins, (1984). To remove this structure a residual flilter
similar to the l/T(z_l) filter would have to be designed. This
has been explained in Section 3.3.2 as the F(z™') filter. The
F(z-l) filter is much harder to design in the adaptive case since
it requires a priori knowledge of the residual dynamics.
Sripada, (1988) describe a technique for estimating such a filter
on-line and then conditioning the regressor vector. This was not
performed in these experiments as it was felt that the complexity

was unjustified.



4.2.3 Multi-Step Adaptive Predictive Control Of
Reactor Bed COutlet Temperature

With the off-line analysis complete, it was now possible to go to
the higher olefins unit and attempt to control the bed outlet
temperature with the MAP controller. This section briefly
describes some of the features that the Honeywell PMX ITI
computer interface provided for the engineer/operator. It also
reviews the experimental results which best demonstrated the

operation of the MAP controller.

4.2.3.1 Operator/Engineer Interface

The interface for both the operator and the engineer was through
the use of the Honeywell PMX-III color console, which is capable
of allowing descriptive schematics to be built to display
information more readily. Flgure 4.2.5 illustrates the interface
to the MAP controller. The operators were educated on how to turn
the controller ON and OFF. This can be done by simply placing the
secondary TDC-2000 controller into automatic mode from computer
mode. Additionally, the PID controller could be placed back on by
changing the primary MAP controller into manual, and switching the
PID temperature controller into automatic mode. All other
information found on this display was strictly for monltoring and
tuning the MAP controller, which would be performed by the

englineer.

The monitoring and tuning information for the controller and
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estimator were displayed independently of each other on the same
schematic. The table telow summarizes the parameters that could

be changed on-line and the parameters that were displayed for

monitoring the MAP controller.

Controller Estimator
Tuning N, N, N tr(P}), 4, 8"
Parameter u d
A, R/R
u W \'Z
Monitor Au, |[K||, tr{M} e(k), a(k)
Parameter

Similarly, the same schematic provided the digital switches that
allowed the engineer to select on-line controller initialization,
RLS estimator on/off and MAP controller on/off. This loglc has

already been described in Chapter 3.0.

4.2.3.2 Experimental Results

The experimental results that are presented in this section span a
period of testing from November 1988 to January 1989. During this
time the MAP controller was run continuously on the HOIS reactors.
The predominant use of the MAP controller in this setting was for
regulation of the fifth bed outlet temperature. There was little

attention given to the servo response. The controller had to
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perform well given the unmodw-llad disturbances which could arise,
with the constraint that fas! aovement of the quench valve was
undesirable because it would cauvse the entire temperature profile
in the reactor to cycle. Based on this criteria the controller

parameters were selected to be as follows:

N =4, N_ =10, N =1, A =100, R/R = 0.05
[ w v

The selection of the prediction and control horizons was fairly
standard given that this is a long range predictive controller.
The control welghting and ratio of covariance nolses were selected
based on an off-line simulation of the MAP controller. This
tuning gave the control valve a smooth response without
excessively sacrificing the output or temperature response to step
type disturbances. The results that follow demonstrate the
performance of the MAP controller in the presence of disturbances.
The data that is shown was collected on a daily basis using the
historical data base that 1s available on the Honeywell PMX
computer. Although the controller sample interval was 2 minutes,
the data collected represents 6 minute averages which are readily
avallable from the computer database for a period of 4 days. Each

plot represents a single day of 6 minute averages or 240 samples.

Figure 4.2.6 represents the controller behavior with the RLS
estimator turned off. It should be noted that the values of the
model parameters at this point were ldentified by the off-line

simulation. The parameters were identified as 9T=[-0.854 -0.142].



The RLS estimator was turned off after the initial estimation so
that during periods of regulation the parameters would not drift
and cause instability in the controller. From the experiments
performed on the CSTH, this was the correct decisic  since the
CSTH results demonstrated that during regulation the controller
could easily become unstable if the RLS estimator remained on.
Figure 4.2.6 illustrates the effect of suddenly cooling the quench
flow to the reactors. rrior to turning on the fin-fan coolers at
Ts=140 the quench temperature was slowly rising. This quench
temperature rise manifested itself in a subsequent rise in the bed
outlet temperatures. This caused the fifth bed quench valve to
open '7)4. After the quench was cooled, the valve came back to a
range here the bed outlet temperature could be controlled.
Althougl 't seems that the controller took a significant amount of
time to recover, thls is deslired because of the fact that rapid
valve movement may cause further oscillations 1in the reactor

temperature profile.

Looking at Figure 4.2.7 the fifth bed temperature came to setpoint
by T8=15 the following day. This represents a period of 11 hours
on November 14 to recover from a -15°F deviation from a 405°F
setpoint. Figure 4.2.7 also 1illustrates the MAP controller
response to a disturbance caused by an increase in the fourth bed
outlet temperature at Ts=120. The MAP controller was able to
regulate the fifth bed outlet temperature to +15°F given that the
temperature disturbance on the fourth bed was +20°F. The

controller 1is again relatively slow 1in bringing the bed
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temperature to setpoint.

Figures 4.2.8 to 4.2.10 represent three days of testing during
which the model parameters were re-estimated using the natural
excitation of the process. In Figure 4.2.8 the model parameter
vector elements were @'=[ -0.854 -0.148 1 . The corresponding
controller parameters which were monitored to give an indication
Kalman filter bandwidth were ||K(k)||=1.18 and tr{M}=7.139. K(k)
1s the current computed Kalman gain vector and M is the error
covariance matrix used in the computation of the Kalman gains. A
rise In these two monitoring parameters indicated an increase in
the Kalman filter bandwidth. During this day, the controller
adequately compensated for a quench temperature disturbance. This

is shown by the movement of the quench valve from 704 to 60%

starting at Ts=40. This corresponds well with the gradual
decrease in quench temperature. The model prediction error 1is
shown in Figure 4.2.8(e). The estimated standard deviaticn and

mean of this random!y fluctuating signal are ;°=0.0111 and
;e=—0.0028. The prediction error indicates how well the model
represents the movement of the process. Figure 4.2.8 (f)
illustrates the auto-correlation sequence of the residuals. It
provides information regaiding the "whiteness" of the residual
sequence. In this case the sequence decays below the standard
error limits within 5 lags. This suggests that the MPE is not as
“white" as would be desired. This may be due to several reasons
the main one being that the current model does not account for all

the process dynamics. Residual dynamics will be influenced by
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unmodelled disturbance dynamics. Low frequency disturbances such
as quench temperature fluctuations will "colour" the MPE. In most
cases, the MPE will have AR(1) dynamics as was true in thls case.
The rules for identifying residual dynamics are summarlized in Box

and Jenkins, (1976).

Figure 4.2.9 shows 24 hour~ of data that caused much excitation in
the process. During this period the estimator had been left on

with its tuning parameters set to the following values,
A =0.1 and tr(P} = 0.1

From the diagrams it may be observed that the model parameters
reach a new steady state of 8'=[ -0.918 -0.091 1. These new
parameters caused a similar shift in the bandwidth of the Kalman
filter. The steady state values of the Kalman filter parameters
were ||K(k)||=1.312 and tr{M}=8.596. In both cases, the ratlo of
the noise covariances was, R"/Rv=0.05. Figure 4.2.9 (g) and (h)
demonstrate the behaviour of the MPE. The reslidual time plot
shows significant peaks occurring that correspond with the
unmodelled disturbances. Naturally, this leads to an MPE with a
high varliance since the estimated model cannot account for the
disturbance dynamics. The residual auto-correlation sequence can
now be used to identify the structure of the unmodelled dynamics.
This sequence 1is slowly osclillating suggesting that the
disturbance dynamics are AR(2) with the discrete pole locatlions

being complex.



Figure 4.2.10 represents the following day after the
re-estimation. The controller response may be observed for two
transitions in the fourth bed outlet temperature. In this case
the MAP controller responds relatively quickly. It must be noted
that during these three days the control welghting had been
adjusted from a previous value of Au=100 to Au=50. Figure
4.2.10(e) illustrates the model prediction error. The model
prediction error now has an estimated standard deviation and mean
of ;e=0.0102 and &e= -0.00023. The reduction in residual
variance suggests that the model 1s providing a better
prediction than it had with the previous parameter set.
Additionally, controller response to the fourth bed outlet
temperature disturbance was excellent. The objective of quick

disturbance rejection with smooth manipulation of the fifth bed

quench valve was well executed.

Figure 4.2.11 and 4.2.12 illustrate the MAP controller’s response
to servo changes. In Figure 4.2.11 the RLS estimator was turned
off and thus the model parameters were not permitted to adapt.
The setpoint change from 416°F to 411°F was implemented at Ts=80.
By T’=100 or 2 hours later the fifth bed outlet temperature had

reached its new setpoint.

Figure 4.2.12 tillustrates the same MAP controller with the
exception that the control horizon has been changed to a value of
Nu=2. All other controller tuning parameters had remalned the

same. The data which is displayed was collected based on a sample
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period of 2 minutes. This was equivalent to the controller sample

period. Additionally, this on-line experiment was performed with
the RLS estimator on. The gain of the estimator was set by
holding the tr{P}=0.1. The low gain trace specification was

chosen such that large swings in the Kalman filter bandwidth would
not occur rendering the controller unstable as was shown to be the

case with the CSTH experimental results.

Figure 4.2.12 (e} and (f) show the resulting parameter
tirajectories during the servo changes. It can be seen that the
model parameters do not change significantly. This may be

explained by looking at the model prediction error in Flgure
4.2.12 (g). The variance of the mcdel prediction error appears to
e small, however as was true in i uure 4.2.8, the reslaual
auto-correlation tequence can reveal detalls of the unmodelled
dynamics that simply analyzing the time residual sequence cannot.
The auto-correlation sequence decays exponentlally below the
standard error limits within 4 lags. It again breaks these limits
on the negative side from the 9 to 13 lags. Thls suggests that
the unmodelled disturbance dynamics may be AR(2) with lmaglnary
roots. It is the imaginary roois that will cause the osclllations
in the auto-correlation sequence. These oscillatlons that were
detected in the residuals may be explained by locking at Figure
4.2.12 (c) and (d). Both Figures show low frequency osclllations
to be present in the quench and fourth bed outlet temperatures
which would directly influence the estimation and control of the

fifth bed reactor outlet temperature.
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In summary, this first application of the MAF controller
demonstrated that the technology could be easily applied to an

industrial process without a major upset in operations.

Both the open loop step tesis and closed lecop PRBS tests provided
sufficiently rich data in order to estimate a good process model.
Off-line data analysis of the PRBS data and subsequently
controller simulation provided the needed confidence with which to

run the on-line controller application.

The MAP controller was tuned to provide good regulatory response
which was similar to the existing PID controller. The use of
natural process excitation proved to be successful in establishing

a new model parameter set which minimized the residual variatlon.

The application of the MAP controller operated side by side with
the existing controller technology at the HOIS. Acceptance by the
operators was good, once they were trained and convinced by
operating data that the MAP controller satisfied the necessary

control objectlves.
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4.2.4 PID Control Of Reactor Bed Qutlet Temperature

Figure 4.2.13 illustrate the behavior of the existing PID-DDU
controller for the fifth bed outlet temperature control. The
Honeywell PMX-III PID control equation 1Is Incremental and
non-interacting in the time dJomain and may be written in the

following form :

aulk) = K [Ay(k) s By v Te (y (k) - vk )
1 o = sp
T K
k- [+
where,
Ko = reset constant ( minutes )
K1 = llinear galn constant
K2 = derivative constant ( minutes )
T = sample time { minutes )

The PID controller preovides proportional action on the process
variable rather than on the error. This prevents the controller
from "kicking" the process in response to step type servo changes.
It was previously mentioned that slow response is desired in order
to prevent large temperature oscillations from occurring within
the reactor. There exists a greater linterest In the input or
manipulated variable response rather than on the output response,
because fast Input responses cause other bed temperatures to

cycle.

The PID controller tuning constants during this period of



of experimentation were :

15 minutes
2.2
0.05 minutes

= reset constant

= linear gain constant

K
K
K = derivative constant
T

2 minutes

1]

= sample time

Comparing the MAP to the PID controller for thls experiment there
were no real gains in performance with the MAP controller. It
could be stated that the MAP controller performed equivalent to
the PID controller. This experiment provided a good first
application of the MAP ce¢: ' +*1'er in an environment which provided
good step and ramp type :"isuturtuanc.es. Flgure 4.2.13 (b) shows the
valve response of the PID controller. Tnis response is similar
to that of the MAP controller. Both contrellers were able to
achieve the desired smooth control valve movement to unmodelled

disturbances.

In this case, the step quench temperature disturbance at Ts=20 did
not have much affect on the fifth bea outlet temperature control.
However, the fourth bed outlet temperature had a significant
affect on the fifth bed outlet temperature. The PID controller
was able to more than adequately control the temperature to a

target of 416°F.

Although there were no significant Improvements 1in performance
with the MAP controller, it may be concluded that the RLS

estimation was very successful when used in the closed loop with
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the existing PID controller. A good model could be estimated very
quickly and resulted in a successful application of the MAP
controller. The atility to rapidly estimate a process model
without upsetting the process is significant, because it allows
a controller to be commissioned faster in an industrial
environment. Once the MAP controller was placed on, very little
additional tuning needed to be done. In contrast, the existing
PID controller on the reactor outlet temperature may need periodic
changes made to the tuning constants to meet the desired control

objective.
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Figure 4.2.8 Reactor MAP Controller 24 Hour Test on
8 December 1988 ( ..cont)
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4.3 HYDROFINER TOTAL GUTLET POISONS CONTROL

4.3.1 Process Descript:ion

The second industrial application was performed on a somewhat more
difficult process than the first. This second process involves
the conversion of butadienes, propadienes and methyl acetylenes to
butylene and propylene. The main feed to the HOIS unit is
propylene which comes directly from the bottom stream of the
de-ethanizer at the light ends recovery section of the gas
cracking plant. This stream contains alkenes which may cause
premature deactivation of the polymer reactor catalyst. In order
to prevent this deactivation the propylene stream must be

hydrofined.

Figure 4.3.1 1illustrates the ©basic hydrofining operation.
Hydrogen gas and propylene flow into a reactor vessel containing a
catalyst which selectively converts the methyl acetylene and
propadiene to propylene. In controlling the hydrofiner operation,
the effluent recycle is maintained constant. The hydrofiner
outlet 1is analyzed on-line for specific poisons using a gas
chromatograph. The cycle time of the gas chromatograph is 18
minutes. The poisons are controlled by adjusting the pure
hydrogen stream which is injected together with the propylene at

the inlet of the hydrofiner.

There are two major disturbances which affect the performance of
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Figure 4.3.1(a)

Process Diagram of Hydrofiner Control
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the hydrofining operation. First the propylene flow varies
continuously depending on the inventory in the unit feed surge
drum. An increase in propylene flow leads to additional hydrogen
being required in order to maintain the total outlet poisons at
setpoint. Second, the amount of total poisons contained in the
propylene will vary based on the wuypstream operation. Again,
additional hydrogen will be required when an incres®t 1n the totzl

inlet poisons is detected.

To control the total outlet poisons, any feedback control strategy
will cascade to the Honeywell TDC-2000 hydrogen flow controller.
The hydrogen flow may be manipulated by incrementally varying the
setpoint of the hydrogen PID flow controller. This strategy
differed from the first implementation of the MAP controller in

that the first one directly manipulated the valve.

The following section describes the implementation of the MAP
controller to the hydrofining process. It summarizes several days
of consecutive on-line eétimation and control. This application
of the MAP controller was significantly more challenging, although
not 23 much caution was exercised as with the first application.
Thia wes malnly due to the fact that the hydrogen flow was a

.~ee¢” manipulated variable, and thus quick, exaggerated

fluctuations would not upset any upstream or recycle processes.
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4.3.2 Process Model Selection and Identification

The second implementation of the MAP contrecller followed the same
basic steps as the first implementation. Several open loop step
tests were done to determine the basic hydrofiner dynamics.
Secondly, an open loop PRBS test was performed to more rigorously
define the dynamics and include them in a discrete time model
which could then be used by the MAP controller. These parameters

would form the basis for the on-line model.

This second implementation of the MAP controller did not utilize
much off-line simulation or modelling. Confidence galned in the
first implementation allowed for a quicker and smoother
commissioning. The following section describes the detalls of
establishing the initial model. The remaining sections focus on

the experiments performed with the MAP controller.

Open Loop Step Tests

The HOIS operators often run the hydrofiner in open loop due to
problems with the existing PID control strategy. Because of this,
it was very simple to perform and obtain data for the open loop
step tests. Figure 4.3.2 and 4.3.4 clearly show two individual
step tests that were performed on different days in an attempt to
keep the total outlet poisons to a target value of 350 ppm. The

total inlet poisons on both days ranged from 5300 to 7200 ppm.
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The fresh feed to the hydrofiner in the Figure 4.3.2 is
approximately 20-30 BPH higher than in Figure 4.3.3. These two
parameters, mainly the total inlet polsons and fresh feed,
significantly influence the performance of the hydrofiner.
Specifically, these two parameters will cause the process gain Kp
to fluctuate as they represent loads and different operating

points to the overall system.

Figure 4.3.2 shows the first step test occurs at T8= 148, when the
hydrogen flow was increased from 2.9 to 3.5 KSCF/HR. This
resulted in a reduction of the total outlet poisons from 1981.7 to
190.3 PPM, and a continuous time gain of Kp= ~-29.85. The
corresponding time constant rp=48 minutes and the time delay td=18
minutes. As was discussed in Chapter 3, it 1is advantageous to
have both the input and output units in the same dynamic range for
numerical purposes. In thls case the input, or the hydrogen flow
was multiplied by 100. This factor would aild in reducing

numerical round-off problems.

Similar continuous time parameters may be established when Figure
4.3.3 1is examined. In this Figure the gain is Kp= -12. 4. The
time constant and time delay are Tp= 42 min. and rd= 18 min. The

resulting discrete time prccess models from the step tests may be
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summarized as follows when the sample time is T = & min.
|

Ay(k) = 73.50°2 o Au{k-3)
1 - 0.8824-2

and
-1.657-2" "

Ay(k) = - © Au(k-3)

1 - 0.8668-2"

The sample time was chosen to be approximately ;r = 6 minutes.
p

This sample time was a good selection as it corresponds well with

the manner in which the Honeywell PMX computer schedules the

processing of real-time programs.

Open Loop PRBS Test

Figure 4.3.3 1illustrates the open 1loop PRBS test that was
performed. At TSE 70 the total outlet poisons were brought to 600
ppm by stepping the hydrogen flow from 3.1 to 3.3 KSCF/HR. After
this the PRBS test began with a hydrogen mean level of 3.3
KSCF/7HR. The PRBS signal magnitude was chosen to be $200 SCF/HR
and the switching Interval was Tsu= 12 minutes. The PRBS
controller was scheduled to run every 6 minutes, and incrementally
ad justed the hydrogen flow controller. Both the mean level and
signal magnitude could be adjusted on-line so that the Lotal
outlet polisons target could be maintained by the operators. This
on-line mean level adjustment occurred soon after the PRBS test

began. The mean level was changed from 3.3 to 3.1 KSCF/HR. At
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the conclusion of the test the hydrogen was adjusted to 3.4
KSCF/HR which allowed the total outlet poisons to be maintained at

a target of 350 ppm.

This PRBS data was then used to identify an off-line discrete time
model using the IDSA software package (McGregor and Taylor, 1986).
The results of the off-line identification produced the following

model :

-1
Ay(k) = ~4.0383-2 - Au(k-3)

1 - 0.7060-27!

Again the sample time wvas Ts=6 minutes. When the step test and
PRBS test models are compared they seem toc agree very well. The
PRBS model has a somewhat higher gain and faster time constant.
This was shown in the last experiment not to be a serious concern

once the on-line estimator is functioning.

Figure 4.3.5 1illustrates the parameter trajectories that
correspond to the on-line step test that was performed on 3
December 1988. The tr{P}=0.005 and Ad=0.0 “or the identification
period. The initial parameter estimates were taken from the model
parameters identified using the PRBS data. By the end of the
identification period, the parameter vector has settled to
9T=[-0.836, -1.92 ]T. These parameters correspond well with the
discrete models identified by non-parametric techniques. During
this identification period a second order A/T(z'l) regressor

filter was used with a discrete time pole location of 0.7.
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By performing the on and off-line identification, confidence was
obtained in the use of the on-line RLS estimator for the
hydrofinirg control problem. Both the step and PRBS test showed
good agreement among the various model parameter sets that were
identified. Also, the off-line identification allowed for the

tuning and initial parameter sets to be determined.



4.3.3 Multi-Step Adaptive Predictive Control of
Hydrofiner Total Outlet Poisons Control

The testing of the MAP controller on the hydrofiner took place
during the month of December, 1988. The results that are
presented correspond o several days of testing where the
controller was shown to operate both successfully and poorly over

a variety of process conditions.

As was done with the reactor MAP control application, a separate
operator/engineer window was built for operating and monitoring
the performance of the hydrofiner MAP controller. Filgure 4.3.6
illustrates the operator/engineer interface. This interface 1is
identical to the one used for the reactor experiments and thus no
further explanation will be made. To turn the MAP controller on
the hydrogen f{low controller would simply be changed from

AUTOmatic mode to COMputer mode.

Figure 4.3.7(a)-(h) illustrates the first attempt to place the MAP
controller on-line. Prior to placing the controller on, the RLS
estimator was allowed to run for several days with the following

tuning parameters:

tr(P} = 0.005, A =G, and_A _ _ 0.09-(1-z"")
T(z')  1-1.4-27'+0.49-27

At Ts=80, an open loop PRBS test was attempted by manipulating the
hydrogen flow controller setpoint. Unfortunately, soon after the

test was started, the gas chromatograph analyzer falled, and was
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brought back on-line at about Ts=110. During the analyzer outage
the RLS estimator was turned off as is indicated by the constant
model prediction error in Figure 4.3.7(g). At Ts=110, the MAP
controller was turned on with its tuning parameters set as

follows:

N =1, N_=10, N =1, a =10 000, R/7R = 0.05
w v

As the controller was turned on, the RLS estimator trace
specification was set to tr{P}=0.1 during the period from
130<Ts<160. After this period, the tr(P} was set back to a value
of 0.005. Figures 4.3.7(e)~(f) 1illustrate the parameter
trajectories during this period. The final steady state model
parameter values are GT = [ -0.82 -3.5 ]T. With the parameters
identified, the gain of the estimator was reduced to tr{P}=0.00S.
This value was chosen as it would allow the estimator to respond
slowly to any parameter changes. Also, it would prevent any
significant interactions with the controllers Kalman Fllter.
Looking at the MPE plot, Figure 4.3.7(g) shows a reduction in the
residual variance after the identification perlod. This would
indicate the the newly identified model will perform better than
the old, as it will be able to provide a better prediction of the

future process output.

Figures 4.3.8(a)-(g) 1illuztrate the results of the previous days
estimation and controller tuning. During the sample interval
OSTSSSO. the total outlet poisons began to drift from 3S5SOppm

towards an asymptotic value of 2000ppm. This was caused by the
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slow increase in the total inlet poisons, which caused a similar
drift in the B or discrete gain parameter. In fact, Figure
4.3.8(f) shows a sign reversal in the B trajectory. Because the
controller was extremely detuned with a countrol welghting of

A=10,000, it did not respond to the b parameter shift.

At T 2100 the controller tuning was changed to,
8

N =4, N_ =10, N =2, and A = 1200
1 2 u

These new tuning parameters would permit the controller to respond
much fasti'r to disturbances which affect the total outlet poisons.
With the tuning changes and the slow decrease in inlet polsons,
the parameters again drifted and were re-identified by Ts=210 as
eT=[ -0.875 -4.00 ]T. At this point, the estimator was turned off
to allow viewing of the MAP controller in a non-adaptive role.
With the new model parameter set ldentified, it was also noticed
that the standard deviation in the model prediction error had
decreased from ;°=7.44ppm to a ;e=1.73ppm. This represents a
significant reduction in MPE variation with the newly ldentified

parameters.

Figure 4.3.8(h) represents the auto-correlation sequence for the
MPE of Figure 4.3.8(g). The auto-correlation sequence identifies
the degree of whiteness in the MPE. Ideally all values
corresponding to lags>0 should be below the 2; limits. However,
since a low order model 1is being fitted to a process which may

possess several higher frequency pole locations there exist
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structured model errors. The auto-correlatlon sequence in this
diagram reveals that some correlation does exist as is evident
from the first 3 lags being above the 2; limits. Once inside the
2; limits, any trends in the data ar: investigated to reveal the
structure of the noise. In this case, 1t is apparent that after
the 16" lag, the MPE is positively bilased. This would suggest
that the prediction of the total outlet poisons is typically lower
than the actual value. This could be corrected by some additional
noise filtering of the regressor vectc: 1f an AR model was fitted
to the MPE and then used as the regressor fllter. This typically
is extremely difficult to do in the adaptive case. Several
authors have demonstrated that estimating a C(z_l) or nolse
polynomial can be extremely difficult because it takes the

parameters of the polynomial so long to converge.

Figures 4.3.9(a)-(g) 1illustrate the performance of the MAP
controller with the RLS estimator turned off. Figures 4.3.9(e)
and (f) show that throughout the entire 24 hour test period no
identification was performed with the parameter vector belng
9T=[ -0.877 -3.98 ]T. The controller tuning paramete: s were set

as follows,
N =4 N =10, N =2, A =400 and R'/Rv = 0.001

These controller tuning parameters would allow the controller to
manipulate the hydrogen flow setpoint quite strongly as compared
to the previous tests. In this instance, A=400 corresponded to an

m-factor of 0.6149.



Figures 4.3.9{a) and (b) illustrate the controllers response to
step type disturbances in the inlet poisons and fresh feed flows.
The first disturbance was noted in Figure 4.3.9(d) at ng70 where
the fresh feed to the hydrofiner has increased from 125 to 180
barrels per hour (BPH). During this time the inlet poisons had
remained fairly steady. The fresh feed disturbance caused a
subsequent increase in the total outlet poisons from 350 to
950ppm. The controller responded quickly as is shown by the rapid
increase in hydrogen flow which caused the outlet polisons to
return to its initial target of 350ppm in 25 sample intervals or

150 minutes.

At Ts=145 the HOIS operators had noticed a dramatic step increase
in inlet poisons of 700ppm and proceeded to turn the MAP
controiler off. At this time, they manually increased the
hydrogen flow to 3.05 KSCF/HR and then turned the MAP controller
back on. It should be noted that in a similar instance with the
PID controller, that the operators would have performed the same
function, and assisted the process to return to steady state in a
manual fashion. With the controller back on-line, 1t continued to
provide excellent regulation of total outlet poisons. This
regulation 1is again 1illustrated at Ts§145 where another step
increase of S0 BPH of fresh feed occurred. Again, the total
outlet polsons were reduced from a level of 1000ppm to thelr
desired target of 350ppm in a matter of 20 sample intervals or 120

minutes.
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Soon after recovering from this S0 BPH increase the fresh feed to
the hydrofiner was cut by 90 to 100 BPH. This represents a
dramatic decrease in fresh feed and the result to the total outlet
poisons was a reading of Oppm. The MAP controller was unable to
manipulate the hydrogen flow quick enough to bring the outlet
poisons t> the 350ppm target by the end of the 24 hour test

period.

Looking at Figure 4.3.9(q) the MPE fluctuated in conjunction with
the disturbances that occurred during this period. As the fresh
feed increased rapidly, the total outlet polsons also increased.
Since the model did not account for the disturbances, the
prediction was lower than the actual output. This resulted in an
increased MPE magnitude during periods where the outlet polsons
were above the 350ppm target due to the fresh feed and linlet
poisons disturbances. From the time plot of the MPE, it 1s also
apparent that the noise is structured rather than whlte. This
structuring is again due to the disturbances that were occurring

during this period.

The next test period is illustrated by Figures 4.3.10(a)-(g). The
model parameter set and controller tuning constants were
maintained similar to those in the last test described by Figures
4.3.9(a)-(g). During this period, the RLS estimator also remained
off as is indicated by the constani{ parameter trajectories shown

in Figures 4.3.10(e) and (f).
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This 24 hour test period provided a good example of how well the
MAP controller can perform when the disturbances are restricted to
slow, ramp type functions. Both the total inlet poisons and fresh
feed had demonstrated fluctuations similar in magnitude as in
Figure 4.3.9, however they were restricted to ramps rather than
step type disturbances. The regulation of the total outlet

poisons was excellent compared to previous results.

Looking at the MPE, it is apparent that it is more white than the
MPE in Figure 4.3.9(g). This of course 1is due to the lack of
marked step type disturbances which heavily influence the MPE.
Comparing the mean and standard deviations of the MPE during tle

two periods,

Figure 4.3.9(g) Figure 4.3.10(g)
= -0.62 m = -0.02
e e
o = 3.86 c = 1.66
e e

it is evident that the ramp type disturbances influsmce the MPE to
a lesser degree than step type disturbances, «i.n though the

magnitudes of the disturbances are relatively equ:sl.

Figures 4.3.11(a)-(g) illustrate a 24 hour test period where the
MAP controller failed. During this period the controller tuning

constants were as follows,

N =4, N_=10, N =2, A =400 and Rw/Rv = 0.00S

At the beginning of the test, the model parameters were similar to
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the parameters in the last test, with eT=[ -0.877 -3.98 1'. For
the beginning of the test the estimator remalned off. During this
initial period the total outlet poisons control was poor and so it
was declided to re-estimate the model parameters to improve the
contrel. It must be noted that the estimator had been turned off
for about 4 days and was now turned on at T’390. The estimator

tuning parameters were set to Ad=0 and tr{P}=0.001.

Figure 4.3.11(e)-(f) show the rapld fluctuation in the model
parameters. In fact, the B parameter changes signs for a short
period and causes the MAP controller to drive the hydrogen flow to
zero. The parameters are permitted to identify for approximately
2 hours and then the estimator is turned off. The new parameter
set is @8'=[ -0.767 ~-1.75 1T It iIs evident from the remaining
test period, that this parameter set is poor since the control has
become oscillatory during a period where the fresh feed and total
inlet poisons disturbances were minimal. The MPE shown in Figure
4.3.11(g) also 1illustrates the poor abllity of the model to
predict the total outlet poisons. From T'zldo the MPE 1is
completely structured indicated by the periodic low frequency sine
wave. Here the estimator did not remain on long enough for the
model parameters to properly converge and so the residual

auto-correlation sruence demonstrates an osclillatory MPE

behavior.

Figures 4.3.12(a)-(g) illustrate a test period where the deadzone

on the prediction error was used and was the cause of oscillatory
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controller response. The tr{P} and Ad specification for the 24
hour period were 0.05 and 3ppm. From OSTSSSO, the model
parameters exhibited no movement due to the fact that the e(k)SAd.
As a result the controller response was very good In holding the
outlet poisons to a target of 3SOppm. The controller tuning

parameterc for this period were,
N =4, N_=10, N =2, A =400 and Rw/Rv = 0.005

At TSESO, a step increase of 400ppm inlet polsons occurred. This
resulted in a sudden increase in the MPE beyond the Ad of 3ppm.
With the MPE beyond the deadzone limits, the model parameters
began to move because the estimator was now functioning outslde
the deadzone. Once the MPE was reduced to within the Ad, then the
estimator stopped adapting the parameters. Although it seems to
be a good idea to have some criteria to prevent adaptation during
periods of low excitation, it appears that in this case the choice
of Ad was poor as it initiated a cycle in the outlet polisons
control. This could be directly attributed to the fact that the
parameters were not allowed to adapt continuously as they would be

able to do if the Ad=0.

Figure 4.3.13 shows the same controller as was used in Figure
4.3.12, however Ad=0 and thus the RLS estimator was on during the
entire test period. The tr{P} was set to 0.05 as in the prevlous
case with the exception of the time period extending from
1405T55155 where the tr{P}=0.1. The tr{P} was increased in order

to accelerate the 1identification of the parameters and thus
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improve the control of the total outlet poisons. This Increase
coincided with the fresh feed and total inlet polsons disturbances
which occurred at Ts=155. The disturbances whi. occurred caused
sufficient excitation for the RLS estimator to identify a new set
of model parameters. The resulting pzrameter trajectorles are
shown in Figures 4.3.13 (e) and (f). Notice that the discrete
gain parameter g increased as the fresh feed decreased. This
trajectory intuitively makes sense since the hydrofiner requires
less hydrogen with less fresh feed. Also, with less fresh feed,
more poisons can be converted with the same quantity of hydrogen.

With the increase in fresh feed after TSZZOO from 140 to 200 BPH,

the b parameter returned to its original value of -2.4.

Several conclusions may be made from the hydroflner experiments.
First, off-line analysis of the step and PRBS test data 1is
important in deciding the plant model order and approximating an
initial discrete time parameter set. Simulations using the RLS
algorithm allowed for proper selection of the tr{P} parameter,
tch controls the estimator gain and subsequent model parameter
.ajectories. In this application, a low tr(P} specification had
to be used in order to prevent large model parameter fluctuatlons.
This was due to the fact that the plant gain was very high. Very
small changes in hydrogen flow would significantly influence the

hydrofiner total outlet poisons.

In all the experiments, the MAP controller prediction and control

horizons remained constant. It was the control weighting, A, and



the ratio of process and measurcment noise covariances, Rw/Rv’
that were used to tune the controller. This tuning was consistent
with the guidelines that were established by McIntosh, (1988).
Initially, A was chosen to be very high leading to slow and small
control hydrogen movement. This caused the process to drift
unacceptably from the target of 350 PPM. After some re-tuning,
the best choice of A was found to be 400. The nolse covariance
term was difficult to select. The experimental results
demonstrate a high amount of process noise. Typically,
measurement noise associated with a GC is small and thus the
logical selection of the ratio would be to select it high.
However, the experiments showed that the best cholice was in the

range of 0.001 to O0.G05.

The use of the deadzone on the MPE proved to be unsuccessful as it
lead tc an oscillatory process response. A poor choice of a
non-linear technique to turn the estimator on/off can prove to be
disastrous as in this case. Best on-line estimation results were
obtained with an engineer present to monitor the performance and
behavior of the model parameter trajectorles. Good estimation
results were also obtained when the deadzone, Ad=0 and the RLS
estimator trace specification was low allowing for a slow
parameter identification. With the hydrofiner experiments on-line
estimation proved to be valuable when control performance
deterliorated. Since the hydrofiner 1is subjected to large
variations in fresh feed and total inlet polsons, its ability to

convert the poisons fluctuates. This directly manifests itself in
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large process gain changes. In additi-n, process gain 1is
affected by the steady state level of total outlet polsons.
On-line estimation permitted the estimation of an improved model,
which subsequently improved the MAP controller performance.
Figure 4.3.8 and 4.3.9 provide data that demonstrate improved

controller performance after re-identification.

An obvious difficulty with adaptive control 1is selecting the
appropriate time to activate the estimator. In most cases the
estimator activated when the model prediction error became large
and subsequently controller performance became oscillatory. The
estimator was then detuned or turned off, when the model

parameter trajectories seemed to reach some stable steady state.

Finally, operator acceptance was enthuslastic. Again, once the
operators were educated and trained, they used the technology in
harmony with the existing PID controllers. Operators would turn
the strategy off to make needed corrections to the hydrogen flow
when the MAP controller could not handle an excessive load of
fresh feed or total inlet polsons. Also, step and PRBS testing

posed no significant unit problems.
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4.3.4 PID Feedback-Feedforward Control of Hydrofiner
Total OQutlet Poisons

The existing PID control strategy was compared versus the
performance of the MAP controller. This strategy has two
components to it. A feedforward component looks at the total
lb-moles of poisons in the fresh feed flow and the hydrofiner
recycle flows. This value is computed based on the stoichilometric
conversion of the various poisons to propylene and butylene using
hydrogen. This wvalue can be dynamically compensated using a
lead/lag algorithm. In the existing feedforward control strategy,
no dynamic compensation was performed. Similarly, the feedback
strategy uses a PID controller with no time delay.compensation to
compute the required hydrogen. The 1lb-moles of hydrogen and
poisons are then passed to a ratio control tag. The ratio tag
computes and controls the ratio of 1lb-moles of hydrogen to
lb-moles of poisons by adjusting the hydiogen controller setpoint.

The PID tuning constants were :

K° = 30 min Reset Constant

K1 = 0.0016 Linear Gain Constant

KZ = 0 min Derivative Constant

T = 6 min Sample and Control Time

The value of the linear gain constant reveals that in order for
the PID control strategy to function properly it must be grossly
detuned. This is due to the long time delay of 18 minutes
assoclated with the inlet and outlet poisons analysis. Since the

process was not modelled in this case, it was very easy for the
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control strategy to over control the total outlet poisons by
excessively varying the hydrogen flow controller. The long reset
time also reveals that the strategy was tuned to be cautious in

over controlling the hydrogen flow controller.

Figure 4.3.14 illustrates typical behaviour of the existing PID
control strategy over a 3 day period. The strategy is capable of
slowly tracking changes ir. ; .ocess conditions with the changes 1in
fresh feed and poisons occurring. However, because 1t remalins
very much detuned in order to prevent uncontrcllable oscillations
it allows the total outlet polsons to deviate as much as 850 ppm
from the target of 350 ppm. Although similar deviations were
observed with the MAP controller there were experiments which
clearly illustrated that it could move the hydrogen flow rapidly
enough to bring the total outlet poisons back to target quickly
and with a minimum of overshoot. Figure 4.3.9 illustrates the MAP
controller quickness to respond to a large feed disturbance. This
type of response is not presently possible with the PID control
strategy. It could be made possible if the time delay assoclated
with the analyzer was compensated for. Thils was not done for this

serles of experiments.
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Figure 4.3.10 MAP Conirol of Hydrofiner ( ... cont )
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Figure 4.3.12 MAP Control of Hydrofiner ( ... cont )
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5.0 CONCLUSIONS AND FUTURE WORK

The main contribution of this thesis is the evaluation and
implementation of the Multi-Step Adaptive Predictive Controller
(MAPC) in an industrial environment. MAPC, developed and analyzed
by Sripada, (1988) and Foley, (1988), was successfully applied to
two industrial chemical processes at Esso Chemical Canada in

Sarnia at the higher olefins plant in the fall of 1988.

The conclusions from both the university and 1Industrial
applications are summarized in two parts. The first part deals
with the on-line recursive least squares estimator. The second

part with the multi-step adaptive predictive controller.

5.1 Recursive Least Squares Estimator Conclusions

1. Using a Pseudo Random Binary Sequence to provide broadband
frequency excitation to the process works extremely well in
both the open and closed loop cases. The polychamber reactor
used a closed loop test and the Hydrofiner used an open loop
test. Both were well accepted by the process operators. It
was shown that PRBS testing increases the overall output
variation of the process by a relatively small, acceptable

amount.

v

Regressor filtering 1is critical for good, robust parameter

estimation. For the university results, it was imperative
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that a second order A/T(z-l) filter be used for the flirst
order plant model. A successful choice for the fllter pole
location was demonstrated to be 0.7 to 0.8. This discrete
filter pole location generally corresponds to the corner
frequency location of the continuous time plant frequency
response. It is important in chemical process control that a
good low frequency model is estimated. This low freguency
range extends from the low frequencies to the plant crossover

frequency.

Off-line analysis of PRBS test data prior to on-line
parameter estimation 1is very helpful In determining initial
model parameter estimates. Software analysis packages such
as IDSA (MacGregor and Taylor,1987 ), MATLAB-386 (Matlab
Corporation, 1987) and STATGRAPHICS (Statgraphics

Corporation, 1987) provide a control engineer with a means to

analyze and simulate the process off-line. Off-1ine
simulation allows 1initial “tuning" parameters to be
established. This leads to easy and confident on-line

implementation of the estimator.

The use of the constant trace forgetting factor posed no
problems. It was very convenlent to change the trace
speclification in order to provide additional paranmeter
filtering. Low trace specifications made the model
parameters converge slowly, thus minimizing the risk of

process upsets. It must be emphasized that this s a must in

to



the chemical process area. Internal plant recycles can cause
ma jor incidents if a control strategy responds too rapidly to

process disturbances.

Using a deadzone on the model prediction error is not an
effective means for turning the RLS estimator on and off.
Selecting a deadzone too large keeps the estimator turned off
all the time. Process dynamics may change, and the deadzone
does not allow the estimator to ldentify the new parameter
set. Selecting a deadzone which is to small may cause model
parameters to drift or to oscillate. Further, a deadzone
specification does not address structured dynamics which may
be resident in the model prediction errors. It is possible
to have model prediction errors which are normally
distributed about zero witr a certain standard deviation but
still contain structured dynamics. Off-line analysis of the
residual auto-correlation sequence provided an effective
means for showing structured unmodelled dynamics in the
residual series. An effective on/off RLS estimator criterion
would look at both time and frequency characteristics of the

model prediction errors.
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5.2

Multi-Step Adaptive Predictive Control Conclusions

The most important property of a controller which is to
function in a chemical industry is 1its ablility to provide
good, robust regulatory response. The majority of industrial
FID controllers are tuned for such a response. In
implementing the MAP controller, it was the regulatory
characteristics that were emphasized. It was found that the
MAP controller was able to provide good regulatory response
in both the polychamber bed temperature control and

hydrofiner total outlet poisons control applications.

In tuning the MAP controller, the most convenient approach
was to fix the control, maximum and minimum prediction
horizons (i.e. Nu. N1 and Nz) and manlpulate the control
welghting and ratio of noise covariances (i.e. A and Rw/RvL
Theoretically, if no model-plant mismatch exists the control
weighting factor does not affect regulatory response. In all
the experiments performed, the control weighting had to be
carefully selected in order to provide good process
regulation. It was found that wusing the guldeline
established by McIntosh, (1988) of using A=tr{ATA)/Nu was very
successful in estimating the amount of control weighting to

be used.

During the university CSTH experiments it was discovered

that the performance of the MAP controller was very peculiar



during fast parameter transients. Fast parameter estimation
caused a non-linear interaction with the Kalman filter
predictor. This non-linear 1interactlion could cause
uncontrollable oscillations and instability if the RLS
estimator and Rw/Rv tuning parameters were not chosen
correctly. In the experiments, decoupling of the two was
achieved by detuning the model parameter estimator and/or the
Kalman filter predictor. An alternative to detuning would be
to fix the Kalman gain vector during estimation. Once the
estimation was complete, the Kalman gain vector could be
allowed to update. Any future work would have to investigate
the process response to updating the Kaiman gain vector after
parameter estimation with a range of R"/RV values. This
would be to ascertain whether this technique of decoupling

had any adverse effects on the process output.

Operator acceptance of the MAP controller was enthuslastic.
Every effort was made to design the MAP software and operator
interface to be consistent with the existing control software
at the Higher Olefins Plant. This consistency of the
operator interface resulted in a minimum of training being
recuired. The 1industrial experiments were left on fer
several weeks with the RLS estimator being both attended and
unattended. The hydrofiner avrplication showed many periods
where the RLS estimator was left on for several days, with
plenty of movement in the parameter trajectories. The

ability of an adaptive controller to function in this wmanner



is proof that the board operators were confident of the

integrity of the technology.

The software implementation of the MAP controller on the
Honeywell PMX computer using the ANSI-66 Fortran programming
language posed no special computing problems. However, the
sof tware did take a considerable amount of time to write,
implement and verify. Complexities arose in prog}ammlng the
state space model, non-linear modified Kalman fliter
predictor and the horizon of future output predictions. In
order to take advantage of the sparse nature of the
state-space model matrices a significant programming effort
is required to sort out the complex indexing operations that
are required for a MAP controller which can handle all the

possible combinations and permutations of plant models.
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5.3 Future Work

The work performed in this thesis focused on Single-Input, Single
Output ( SISO ) control applications with overdamped responses.
Although these comprise the majority of applications in chemical
process control, recently there has been a significant interest in
multi-variable process control. A good example of this is Shell
Corporation’s use of Quadratic Dynamic Matrix Control ( QDMC ) and
Exxon Chemical’'s use of Linear Programmed Dynamic Matrix Control (
LPDMC ). Both these control strategies provide robust
multi-variable control with constraint handling capabilities.
Since computer computational time and memory storage is no longer
an issue with modern control computers, extending the capabilities
of MAPC to handle constraints is a must. Constraint handling
(Muhta, 1990) enables control engineers and process operators to
tune an application to the day to day requirements of the plant.
Multi~-variable control on the other hand allows severzl

interacting control objectives to be met in an optimal fashion.

To improve the robustness of MAPC, the RLS estimator and Kalman
filter predictor must be decoupled in a more sensible way than
simply detuning the two components to provide a linear process
response. This was found to be a nuisance with the MAP controller
as care always had to be exercised to prevent the control

application from becoming oscillatory or unstable.

A third item which should be considered is estimation and control
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of high~r order systems with time delay. It was found that two
model parameters are relatively simple to estimate.
Unfortunately, the use of higher order models increases the time

required for the parameters to converge.
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