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ABSTRACT

The existence of the baryon asymmetry of the Universe puts strong constraints on
extensions of the Standard Model which violate baryon and/or lepton number. Inter-
actions violating baryon number (B) but conserving lepton number (L) in the early
Universe could wash away any previously established baryon asymmetry. Interac-
tions which violate lepton number separately, with or without associated violation of
baryon number, could combine with non-perturbative electroweak effects to eradicate
the cosmological baryon asymmetry. We derive constraints on such interactions aris-
ing from the persistence of the cosmological baryon asymmetry. After implementing
astrophysical constraints, we discuss the prospects for observing B and [for L violation
in laboratory experiments. Modulo loopholes that we mention, we find that even if
R-parity is violated, the lifetime of the lightest supersymmetric particle must be so
long that its decays could not be observed in accelerator experiments, and that L-
violating Z decays would have unobservably small branching ratios. The only novel
signature for accelerator experiments that survives our analysis is a small window
for the lightest supersymmetric particle to be strongly-interacting or charged, with a
lifetime that is short on a cosmological time-scale but long enough to appear stable
in accelerator experiments. We also find that if AB = 2 interactions exist, the rates
they yield for n — i oscillations and N — N annihilations in nuclei are probably below

the present observational threshold.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

It is a misfortune of present day particle physics that everything we can calculate
within the Standard Model seems to agree with experiment [1]. This is wonderful for
the model, but boring for physicists, and not altogether in line with our prejudices
about what a theory should look like‘. We therefore assume that there is physics be-
yond the Standard Model (SM), and compute constraints on new theories by requiring

that they agree with observation.

It appears that non-perturbative electroweak processes that violate B 4+ L
(which I will frequently call “sphalerons”, although this is not accurate), but conserve
B~ L, become strong enough at high temperatures to be in thermal equilibrium in the
early Universe above T, 2 100 GeV [2, 3]. Any previously produced B+ L asymmetry
would therefore be taken to its equilibrium value. Unless the Baryon Asymmetry of
the Universe (BAU) is produced after the “sphalerons” drop out of equilibrium ( T
= T.), there must be an initial asymmetry in B — L to preserve B # 0. Furthermore,
for the asymmetry to survive at T > T,, no other interaction violating B or L may
simultaneously be in thermal equilibrium. This requirement puts strong upper bounds
on the effective coupling constants of interactions violating any combination of B and
L other than that taken to zero by the “sphalerons” [4, 5, 6, 7, 8, 9] (modulo extra

symmetries and mass effects . ..see chapter 4).

This iniroduction consists of a short review of the Standard Model [10], super-

symmetry [11], and the connection between instantons, anomalies and B+ L violation
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in the early Universe. There is no review of cosmology (see [12}). The second chapter
is a quick overview of the argument constraining B, L and B — L violating operators
in which estimates of the upper bounds on the interaction rates are calculated. This
material was originally presented in reference [7]: “Cosmological baryon asymmetry
constraints on extensions of the Standard Model”. In the third chapter we calculate
the constraints on B or L violating operators more carefully, and look at the impli-
cations of those constraints for laboratory experiments (This comes from reference
[8]). The fourth chapter is a more detailed look at what the equilibrium asymmetrics
between particle and antiparticle densities are, and at the implications of extra global
symmetries for our constraints. This was motivated by a recent preprint of Ibanez
and Quevedo [13] pointing out that our bounds on higher dimensional supersymmetric

operators are too optimistic if there are extra global symmetries.
1.2 The Standard Model

a) Gauge theories

One of the most familiar globa! internal symmetries is that of phase invariance; one
may chose the overall phase of a complex field at will. However, it seems intuitively
peculiar that one must make the same transformation at éll points in space-time—in
a fuzzy way one might expect to be able to chose different origins for the coordinates
of an internal symmetry at different points (particularily if these are separated by a

space-like distance).
If a Lagrangian £(¢, 0,¢) is invariant under the global transformation
¢ — e (1.1)

tlken one can make the transformation local by making 8 space-time dependent. This,
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however, is no longer a symmetry of £ because the derivative of ¢ picks up an extra

term:

0,6 — 0,0 + i6D,6. (1.2)

So one introduces a new field with an unphysical longitudinal degree of freedom that
can be used to remove the unwanted terms in the kinetic energy. (In a discretized
model of space-timne, 4, is a phase degree of freedom living on the links between

lattice sites {14].) The new (“covariant”) derivative is
D,=0,—-1A, - (13)
and the transformation under phase rotations of the vector field is
A, — A, —i0,0 (1.4)

The kinetic term for the new field is

1

KT.= —I;F,‘,F“” (1.3)
where g is the gauge coupling and
F,, =0,A, - 0,A, (1.6)

so, as required, the longitudinal component of A, does not propagate.

So we see that a global symmetry can be made local by adding a new vec-
tor particle that mediates an interaction between particles transforming under the
symmetry. This is an attractive thing to do beéause local symmetries are “nicer”
than global ones (the associated currents are conserved in all field configurations,
unlike global symmetries where the equations of motion must be satisfied), and more

imporfantly, because this seems to correspond to the world we live in.
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b) The Standard Model lagrangian

The Standard Model (SM) [15] is based on three local, or gauge, symmetries: the
U(1) of hypercharge, weak SU(2) and colour SU(3). These groups act on a variety
of fermions, most of which have been discovered. The colour SU(3) only couples
to the quarks, which are Dirac fermions (four degrees of freedom) and assumed to
come in SU(3) triplets. SU(3) is asymptotically free, since it is a non-abelian gauge
theory, so the interaction becomes stronger at large distances anxd quarks scem to
only exist in colour singlet bound states. This makes it difficult, at low energivs, to
calculate measurable quantities from the lagrangian because it contains quark degrees
of freedom and in the real world we see mesons (¢§) and baryons (¢qqq). However,

insofar as it can be tested, quarks and SU(3) colour seem to describe the strong

interactions.

The weak SU(2) acts only on the left-handed (LH) fermions (in doublets) so
the right-handed (RH) leptons and quarks appear as SU(2) singlets. All fermions
carry hypercharge Y = 2[Q — T3] (Q is electric charge; T; is the diagonal SU(2)
generator; the photon will therefore be a linear combination of the hypercharge and

diagonal SU(2) gauge bosons). The fermions of which matter is composed are

v
{ = y €R (1.7)
€L
ug
@=  Ug , dy (1.8)
di

where a is an SU(3) colour index and runs from 1 to 3. This is the first family, or

generation, of the SM. There are two more, consisting of the muon, its associated
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neutrino and the charm and strange quarks, and then the tau, its neutrino and the
top and bottom quarks. The top quark has not yet been seen, but is assumed to exist

because of loop effects.

The kinetic term for the fermions is (J is a generation index)

Ly =Y i (BPY + 8P+ EPeh + TP uh+ P d}) (1.9)
J
where
P=+"8, - i% W, - i-}2:B,,) (1.10)

for doublets, and for singlets:
u Y
P=7"(8 - i5By)- (1.11)
W,, are the triplet of SU(2) gauge bosons, and B, is the gauge boson for hypercharge.

The kinetic terms for the gauge bosons are the generalisation of (1.5) and

(1.6):
4_;_5 B,,B* - 1 FA pawv (1.12)

ng == 4 92 [T
where g and ¢ are the hypercharge and SU(2) gauge couplings,
B”y = a“By - ayB“ (1.13)
and FJ, is the commutator of the SU(2) covariant derivatives:
FA = ,WA-0,Wh + A BCWIWE, (1.14)
It is experimentally known that all the fermions (except possibly the neutrinos)
have masses, as do the weak gauge bosons. This presents a problem, because mass

terms mix the left and right handed componenfs of the fermions, so cannot be gauge

invariant in a chiral model. Furthermore, a theory with explicit mass terms for
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gauge bosons violates unitarity and is not renormalizable because the gauge boson

propagator goes to a constant for large momenta, rather than as 1/ k2.

This problem is solved [16] by realizing that the fermion and gauge boson mass
terms are special cases of an interaction with a scalar field (constant field)...and of
course Yukawa and scalar kinetic terms can be made gauge invariant. So the trick
is to introduce a scalar field with a potential the shape of a mexican hat (¢! with a
negative mass term) so the scalar field will develop a vacuum expectation value (the
field sits in the brim of the hat). This destroys the gauge invariance in the Fock space
(“Spontaneous Symmetry Breaking”) but since the original lagrangian had a gauge

symmetry, the theory can be shown to be [17] well behaved and renormalizable.

The weak gauge bosons and the Standard Model fermions get masses from
the introduction of a scalar SU(2) doublet called the Higgs (which unfortunately has

never been seen)

H* 0 i
H= = exp[-z-?-é] (1.15)
H° p
with the hypercharge of the lower component chosen so that it is electrically neutral.
(One needs to end up with the unbroken U(1) of electromagnetism, so the scalar that

acquires a vacuum expectation value {vev) must be neutral.) Since SU(3) is unbroken,

the Higgs carries no colour. The second parametrization of (1.15) will be uscful later.
The Higgs lagrangian is
p A 2
Ly =D,H'D'H - —2-H*H + Z(H'H) (1.16)

and has a minimum at < H >= p/v/X = v/v2. If the Higgs field configuration is as
in equation (1.15) with v2p(z) = v+ h(z) then one can make a gauge transformation
(this cannot affect the physics) to remove the exponent. The physical Higgs is then
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a real scalar field that corresponds to radial oscillations in the brow of the :nexican
hat. The three angular degrees of freedom become the longitudinal component of the

now massive (the Higgs kinetic term includes 1v%(7- W)?) gauge bosons.

The Higgs also has gauge invariant Yukawa interactions that give the fermions
masses:

Ly = (h;THey + hq Hul + hig Hdy) + hec. (1.17)

where h;; is an arbitrary 3 x 3 matrix of complex coupling constants and H=inH"

is the “charge conjugate” Higgs, used so that the up quark can get a mass.

The complete lagrangian for the Standard Model is therefore

Lsy=Ly+Ls+Ly+Ly . (1.18)
1.3 Supersymmetry

a) Improving the Standard Model: Grand Unified Theories

The Standard Model has a number of features that are unattractive to theorists [18]:
the U(1) charges are not quantized (non-abelian charges are fixed by the commutation
relations of the symmetry group algebra), there is no explanation of why there are
three generations (there is not even a theoretical definition of generation), there is no
relation between the leptons and quarks, the loop corrections to the Higgs mass are
quadratic in the cutoff, etc.. Some of these features can be made more to our taste
by embedding the SM in a Grand Unified Theory (GUT, see [18]); one assumes that
at high energies (~ 10'® GeV) there is a single gauge group (so only one coupling
constant) and a complicated scalar sector (there are often more coupling constants

here than in the SM), such that the large group (say SU(5)) will spontaneously break
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to smaller subgroups at some large energy, and this combination of smailer groups
will look like the Standard Model when the parameters of the theory are run down
from the breaking scalé via the renormalization group equations. This solves some
of the problems of the SM: the U(1) has quantized charges since it is embedded in a
larger group, and the leptons and quarks are partners in the same gauge multiplets
in the fundamental theory; they just look very different at low energies because the
symmetry is spontaneously broken (like electrons and neutrinos in the SM). Putting
the leptons and quarks together in a gauge multiplet has the added attraction that
there will be explicit B and/or L violation via the exchange of heavy gauge bosons.
This must be very weak at low energies, because the proton has not bheen observed
to decay [19], but could give sufficient B violation in the early Universe to account

for the observed excess of matter over anti-matter.

However, there is no explanation of three generations (nothing, I think, can do
this) and the loop contributions to the Higgs mass must cancel against the bare mass
to ~ 13 decimal places to produce a physical mass ~ 102 GeV (this si the “hierarchy
problem”). Furthermore, there is no relation between the fermions and bosons of the
theory; it could be attractive, having unified all the gauge interactions, to represent

the bosons and fermions as different realizations of the same field.

There are two possible solutions to the hierarchy problem: put lots of non-
perturbative physics above the weak scale (technicolour [20]), or add particles to
the theory to cancel the divergences (supersymmetry [11]). Since non-perturbative

calculations are difficult, I will concentrate on supersymmetry.
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b) More improvements to the Standard Model: supersymmetry

In supersymmetry (SUSY), one introduces a symmetry turning fermions into bosons,
which unfortunately doubles the number of particles in the Standard Model because
none of the known fermions and bosons can be taken as partners. However, for every
divergent scalar loop contribution to the Higgs mass, there is a fermion loop of the
opposite sign which will cancel up to terms of order the mass difference between the

boson and fermion.

Another reason for looking at supersymmetric theories is that internal, su-
persymmetric and Poincaré transformations are the only allowed symme:ries in field
theory. One can show that in a relativistic quantum field theory in four dimensions
with a non-trivial S-matrix, the only possible conserved quantities transforming as
tensors are the Poincaré generators and the scalar charges of internal symmetries [21].
The (only [22]) loophole that allows one to relate space-time symmetries to supersym-
metry in a non-trivial way is that the generators are spin 1/2 Grassman operators,

with anti-commutation relations

a) 25 = 2 “'Pp
{Q QB} aag (1.19)

{QmQB} = {Qc’h Qg} = {Qa’ P;x} = {Q&, Pp} =0

where a and 8 run from 0 to 1. (Two SUSY transformations give a space-time
translation, so local supersymmetry must include gravity!) The Qqa, Q4 are spin 1/2

Grassman operators, so must take bosons to fermions and vice versa.

One can check [23] that the lagrangian for a free complex scalar and chiral

fermion

L= -12-6,,.A'0"‘A + 590™ 0 (1.20)
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is invariant under the infinitesimal SUSY transformation generated by =Q:

54 =2
(1.21)

8¢ = iv20™z0,, A

provided that the equations of motion are satisfied. (The fermions in this section
are all chiral and in two-component notation—see the appendices of [11] or [18] for
conventions, contractions, etc.) This makes sense because an on-shell chiral fermion
has two degrees of freedom, but an off-shell one has four (2 cemplex ﬁeldé). So one
must add another non-propagating scalar field to be the supersymmetric partner of
the fermion's off-shell degrees of freedom. The free supersymmetric lagrangian is
therefore .

L= %OMA'ED"'A + é&am it + -;-F'F (1.22)

and the supersymmetric transformations are

6A = 2w
§¢ = iv/20™0,,A + V2 F (1.23)

6F = 1/2:6™ 00

From equation (1.22) it is clear that A has mass dimension 1, ¢ has mass dimension
3/2, and F dimension 2. ¢ therefore has dimensiou -1/2 from equation (1.23), so Q

has dimension 1/2 as expected from (1.19).

One can add mass terms and interacticiss to equation (1.22) without violating
the supersymmetry, provided that the sup«:pastners have the same masses and the
YA vertex has the same coupling conxtant as AAF. It is this constraint on the
masses that forces SUSY, if it exizts iz the real world, to be broken (we have not seen

superpartners for any of the fermi:n. we know).
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The less intuitive (but necessary because we use it in chapters 2 and 3) way
to do SUSY is to imagine that space-time has four Grassman dimensions (65,05 ;
a,a : 1..2) as well as the four real ones we are familiar with. Quantum fields (called
superfields) are therefore functions of eight variables, and the Q,, Q;; generate trans-
laticns in the Grassman dimensions like P,, generates translations in real dimensions.
It therefore makes sense that two SUSY transformations are a translation, since in

this formalism they are all translations.

Grassman numbers anticommuite, so the Taylor expansion of a superfield in 8,

and 8, terminates:

5(2,00,0:) =  f(z)+0w(z) +6%(z) + 08m(z) + 60n(z)
+00™0v,,(z) + 000A(z) + 060y(x) + 606066D(z)  (1.24)

Two things are apparent: there are far more degrees of freedom here than in (1.22),
and there is a real vector field in this expansion, so it may be possible to write down
supersymmetric gauge theories. The solution to the first problem is to constrain S:

if one demands that it be independant of 4

0 -
755(.8.0)=0 (1.25)
then ome has
O(y,0) = A(y) + 0¥(z) + 06 F(y) (1.26)

(where y is translated with respect to z of equation 1.24: y™ = z™ + i60™8 ...not
important for handwaving purposes.) @ is called a chiral superfield, because its
fermion component is chiral (LH); it has the right number of degrees of freedom to
belong to the lagrangian of equation (1.22). One can also make vector superfields, by

requiring S = S*.
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For the sake of simplicity, I will forget about vector superfields for the moment,
and try to write down a superfield lagrangian that will turn into a sensible real
space-time lagrangian for the component fields when we integrate over the Grassman
dimensions. Integration is supposed to be a linear operator, so for a Grassman variable
n one defines

[nan=1 (1.27)

and

/ dp=0 (1.28)
The only term that will survive when a superfield is integrated over 8 and § is thercfore
the D-term of equation (1.24). The F-term of a chiral superfield would also survive

integration over just 8. Now clearly the product of chiral superficlds is a chiral

superfield, so if one writes down a “superpotential”
P =a;®; + mjxd;®: + gjud, ®:d, (1.29)

the coefficient of 68 in the Taylor expansion of P will survive the integration over 6.
Since the F component field has one higher dimension than the superficld (because
80 has dimension -1), the F-term of P would be dimension four—just right to be a
lagrangian. Furthermore, the F-term is a good candidate because we want an action

that is invariant under supersymmetry, and 6F is a total derivative (see equation
(1.23)). One finds as the F-term of P:

1
P |r= ajF; + mj(A;jFi - 5111,'1/’&) + giui(AjAcF = Y Fy) (1.30)

so one can take the 89 component of P and the 88 component of P! as an interaction

lagrangian. But there are not yet any kinetic terms.

We know that the D-term of a general superfield S has two dimensions more

than the superfield. We also know that §D must be a total derivative, because the
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infinitesimal parameter ¢ of a supersymmetric transformation has dimension -1/2, so
6D ~ g(stuff) implies that “stuff” has dimension 5/2, and there are o such component

fields. One gets kinetic terms for the component fields by taking the D-term of ®®:
¥t |p=i0,05™Y + A"OA+ F°F. (1.31)

Solving for F gives
L=P|r +P'|r +®3' |p= i0nth;jd™9; + A]04; - L; (1.32)

where

a°P
L= Z(a¢.3¢,""'/”+h ) +Z|a¢' (1.33)

The gauge fields must now be included. By taking suitable derivatives of a

vector superfield, one can construct a chiral superfield whose 86 component is the
kinetic terms for a massless vector boson (two degrees of freedom) and its associated
fermion superpartner (gaugino). The superpotential must be chosen gauge invariant,
and the matter field kinetic terms can be made gauge invariant by taking

&} exp{~20TV)&;|, = FJF; - Dad]D"4; - i%;D,3"0,; (1.34)

. T - 2
—iV(AT40As - Xa¥TAA4) + §|AIT 4]
where V4 are the vector superfields, {T"'} are the generators of the gauge group,
Dy, is the appropriate covariant derivative, and A4 are the gauginos. Note that the
“kinetic term”, or D-term, has introduced a quartic interaction among the scalars,
and a Yukawa interaction between a matter scalar and fermion, and a gaugino. This

will be useful in chapters 2 and 3.

The supergauge transformation under which equation (1.34) is invariant, and

which reduces to an ordinary gauge transformation for the component fields, is

® — exp{~iTA}®
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&t — &' exp{iTA'} (1.35)
| ~;-(A+ A

where A is also a chiral superfield.

1.4 Low temperature B+1L violation in the Standard Model

In any gauge theory with SU(2) as a subgroup, there is an infinite set of vacua, labelled
by integers that in some sense count how “knotted” the vacuum field configuration is
[24]. These vacua are analogous to the countably infinite set of distinct ground states
allowed for a particle in a periodic potential if one neglects tunnelling through the
barrier. However, in the particle case, one discovers that when tunnelling is included,
the correct eigenstates correspond to a particle of fixed momentum (k € (0,2x))
“hopping” along from one minimum to the next. In gauge theory, there are solutions
of the Euclidean equations of motion (instantons [25] = knots in the gauge ficld)
that allow the field to pass from one vacuum state to another. The true vacua are
therefore similar to the momentum eigenstates of the periodic potential, and labelled

by an angle 6 rather than an integer m.

When fermions are included in the theory, one discovers that gauge ficld knots
act as sources for chiral fermions [26]. Since the SM SU(2) gauge fields couple to
LH leptons and quarks, this means that instantons create baryons and leptons (B+L
not conserved). Unfortunately tunnelling processes are highly suppressed, so the
zero temperature rate could never account for the baryon asymmetry observed in the
Universe today [26]. However, at finite temperatuge, the rate for B+L violation due
te these processes is only Boltzmann suppressed (~ exp(--amy /a,T), a ~ 1) so at
temperatures near 100 CeV it exceeds the expansion rate of the Universe and is in

thermal equilibrium [2, 3].
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a) Instantons and sphalerons

Any finite action field configuration {i.e. something suitable to do perturbation theory
about) must go to zero as an appropriate power of 1/r at infinity, to within a gauge
transformation. Gauge transformations at infinity are mappings from Sj to the gauge
group and can be classified by their winding number [24], which is the number of
times the surface at infinity can be wrapped around the gauge group. This is easier
to understand for a U(1) theory in two dimensions: the relevant mapping takes the
circle at infinity to the angle 8 € (0, 27) parametrizing the U(1) phase rotation. These
mappings can be separated into classes labelled by an integer which is the number of
times the mapping goes around the gauge group circle when one makes one circuit
around the space-time circle at infinity. It is clear that in this example, mappings
with different winding numbers cannot be continuously deformed into each other,
so the classes are distinct. This is also the case [24] for an SU(2) gauge group in
four space-time dimensions. A vacuum state can therefore be labelled by its winding

number, like the position basis states of the periodic potential.

Ordinary particles that satisfy the Schroedinger equation can pass through
potential barriers that they classically do not have enough energy to pass over. How-
ever, the tunnelling amplitude is small, because the wave function under the barrier
is exponentially damped due to the energy being imaginary. Now, one can also get
imaginary energy by Wick rotating ¢ — i, and one can show [24] that by computing
the action for solutions of the Euclidean equations of motion that take the particle

from one side of the barrier to the other, one can get the tunnelling amplitude.

This is nice, because it can be generalized to gauge field theory. It turns out
[25] that there are finite action solutions of the Euclidean equations of motion with

winding number +1. These (zero-temperature) solutions are called instantons, and
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correspond to the transformation of an “n” vacuum into an “n + 1" vacuum. The
time-independent lowest energy field configurations (vacua?) are therefore labelled

by an angle 6 rather than an integer, where 6 is analogous to the momentum of the

Bloch wave eigenstates of the periodic potential.

However, for B+ L violation it is the rate at which the winding number changes
that is of interest, not the definition of the vacuum state. In a classical approximation
to the path integral, the amplitude to get from an initial to a final state is suppressed
by the action for the intermediate field configuration. (One can then compute small
corrections about this amplitude as a determinant.) The action for an arbitrary field
configuration of winding number +v has a minimum value, as can be shown via the

Cauchy-Schwarz inequality:

. .11/2
4 = [dan(FF) = [ [atamerF [ d*xTrFF]
> /d"xTrFI':' = 3273y (1.36)

(Instantons are actually solutions of the cuclidean equations of motion that also satisfy
F = F, so they have action —872/¢?.) So it is clear that the rate for B+L violation
due to field configuration of finite winding number will be infinitesimally small, as it

contains a factor exp{—872/¢%}.

The instanton arguments presented so far have all been at zero temperature.
At finite temperature one could hope that new field configurations of unit winding
number might appear, corresponding to the field “climbing over the barrier”, rather
than tunnelling through. This is the case for the particle in the periodic potential,
and the finite temperature rate for the particle to climb over is only Boltzmann
suppressed (~ exp{—(height of barrier)/temperature}). It is not obvious that the
finite temperature behaviour of large coherent field configurations will mimic that

of a particle in a thermal bath [27](far more degrees of freedom in the field theory
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case). However it has been shown (28] that there are static unstable solutions of the
equations of motion that represent the gauge field “sitting on top of the barrier” at
T 3 0. They are called “sphalerons”, and the rate per unit volume at which the
field climbs over the barrier and passes through the sphaleron configuration can be
estimated to be [3]

po T () (zr_zw;))zexp [_a(x/gz)zmw(T)] e

~ mw(T) \d4r awT

where w, ~ mw(T) is the value of the sphaleron negative energy mode, Ny Nyo & 103
comes from integrating over the translational and rotational degrees of freedom and
a is of order one. This estimate is only applicable for temperatures below the elec-
troweak phase transition (see [29] for a review of phase transitions in cosmology. The
idea is roughly that at finite temperature a particle is slowed down by its interactions
with the thermal bath, so it picks up a temperature-dependant contribution to its
mass. [f the “thermal mass” my, is sufficiently large, the effective mass ~ —p + my
is positive and the Higgs vacuum expectation value is zero. The fermions and gauge
bosons are therefore massless.); once the gauge bosons become massless, the only
dimensionful parameter is the temperature, so one expects a rate [30, 27} per unit
volume

I ~ oy AT? (1.38)

where A ~ 102 from numerical simulations [30).

b) The azial anomaly

In a theory of massless fermions, it is classically true that the axial current is con-

served:

Y 8t sty =8 JE =0 (1.39)
I .
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where f is a label that runs over all the fermions in the theory. However, masses
violate this conservation law, and a mass scale must necessarily be introduced to
renormalize a quantum theory. This leads to the so-called “axial anomaly": although

equation (1.39) is classically true, it can be shown that when loop effects are included,

one gets

N .
w_ 4
JE = I 67r2FF (1.40)

Integrating this over a space-time volume between ¢; and t; gives

Qs(t2) — Qs(t1) = 2Nv (1.41)

where N the number of fermion generations and v is the winding number of the
gauge field configvration between ¢) and ¢,. This is why the rate for instantons or
sphalerons is of interest: they emit chiral fermions. In weak SU(2), all the baryons
and leptons that couple to the gauge fields are left-handed, so configurations of non-
zero winding number must produce a net baryon and lepton number to give AQs # 0.
(They also manage to emit an appropriate combination of fermions to conserve all the
gauged currents). So equations (1.37) and (1.38) give the finite temperature rates for
B + L violation due to electroweak field configurations of unit winding number. I will
frequently refer to these as “sphalerons”, although a sphaleron is really an unstable

static configuration corresponding to the field sitting on top of the barrier.

¢) In the early Universe ...

It is experimentally obvious that at least locally in our corner of the Universe, there is
a substantial excess of matter (baryons) over anti-matter. The earth is clearly made
of matter, and the sun seems to be, since the solar wind is composed of particles.
The galaxy is presumed to be made cf matter because we do not sce large amounts

of 4 ray radiation from matter-anti-matter annihilation. This same argument applies
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to the galaxy clusters we can see, so it appears that if the Universe contains equal
amounts of matter and anti-matter, they are separated at least on the scale of galaxy

clusters. This is difficult to arrange.

Instead, one can assume that the baryon asymmetry was created at some
carlier time. For this to work, one needs a theory [31] with baryon number violation
(obviously),C and CP violation (otherwise the same number of baryons and anti-
baryons would be generated; B is odd under C and CP), and the interactions must
be taking place out of thermal equilibrium, because the equilibrium particle and nii-
particle number densities are the same if there are no conserved quantum numbers.
It is fairly easy to have interactions out of thermal equilibrium in the early Universe
because it is expanding, and the SM contains B and CP violation. However, it was
long thought that the anomalous B+L violation of the SM was too weak to be of
interest, and that the BAU was generated by the decay of heavy GUT particles.

This, of course, could still be true.

The usual definition of thermal equilibrium in the early Universe is that the
interaction rate exceeds the expansion rate, or equivalently, that the average time
between interactions is less than the age of the Universe. If one uses this criterion for
the anomalous B + L violation rates of equations (1.37) and (1.38), one finds that

they will be in thermal equilibrium for temperatures satisfying
T, ~ 100 GeV < T < 102 GeV. (1.42)

It is not clear whether the BAU can be made via these processes. Numerous models
have been proposed [32]. However, it is clear that any B+L asymmetry produced
before these interactions come into thermal equilibrium will be wiped out (providing
B-L is zero and there are no extra global symmetries; see chapter 4). If, on the other

hand, an asymmetry in B-L is created at some temperature Tp > Tc (the GUT scale,
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for instance), then no interaction violating any combination of B and L independent of
that of the “sphalerons” can be in thermal equilibrium between when the asymmetry
is created (or when the “sphalerons” come into thermal equilibrium, whichever is
later) and when the “sphalerons” drop out of equilibrium (modulo chapter 4). This
is the idea of the following chapters, where we will derive constraints on interactions
that violate some combination of L and B other than that taken to zcro by the

“sphalerons”.

So for the whole of this thesis, I will assume that the baryon asymmetry was
created in some particle physics scenario at a temperature above the clectroweak
phase transition. Furthermore, this asymmetry must have B — L # 0 so that it can

not be wiped out by the sphalerons alone.



CHAPTER TWO
ESTIMATED CONSTRAINTS

2.1 Introduction

The possibility of generating the cosmological baryon asymmetry via non-equilibrium
B-,C-, and CP-violating interactions in the early Universe {31] is a very attractive fea-
ture of GUTs. However, an early baryon asymmetry could be washed out by baryon
number violating interactions in the later Universe. For instance, non-perturbative
electroweak interactions (“sphalerons”) [26], which violate B + L, are believed to have
been in thermal equilibrium in the early universe [2] at temperatures above 10 GeV.
The “sphalerons” would have removed any previously existing B + L asymmetry un-
less B — L # 0, which is not expected in minimal GUTs such as SU(5). We will
assume that the BAU was not made at the electroweak phase transition, although

there are a number of models that do this [32].

If there were other perturbative interactions beyond the SM that violated
B - L, they would wipe out the BAU in conjunction with the “sphalerons”. This
potential disaster was first explored in the case of AL = 2 Majorana neutrino masses
by Fukugita and Yanagida [4], who pointed out that it would be averted only if the
majorana neutrino masses were < 50 keV. The purpose of this chapter is to extend
Fukugita and Yanagida's line of argument to general B and L violating effective
interactions, discussing in particular the types of AB # 0 interactions that could
mediate neutron anti-neutron oscillationsor AB # AL proton decay, and interactions

that violate R-parity in supersymmetric theories.

We first consider generic effective B or L violating interations of dimension 2 <

21
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2.2 Constraints from cosmology

D < 10, and discuss the requirement that they not take the baryon asymmetry to zero.
We will see later (chapter 4) that to be sure to wash out the BAU, one must have all the
Standard Model interactions in equilibrium with the “sphalerons”and the extra B or
L violating operator. Some of the Higgs couplings are quite weak, so the lightest right-
handed fermions do not come into chemical equilibrium until fairly low temperatures,
and any ‘beyond the Standard Model’ interactions could be in equilibrium until this
happens if there is an asymmetry stored in the RH fermions. We therefore list,
in tables A.1, A.2, A.3 and A.4, bounds calculated using a variety of maximum
temperatures on the standard catalogue of SU(3) x SU(2) x U(1) invariant B and/or
L violating operators made out of fields present in the Standard Model [34, 33] and its
supersymmetric extension [35, 33]. Similar results can be derived in a model including
a singlet neutrino (super)-field. For each operator, we tabulate the best previous
limit on its magnitude as well as the new limits we obtain from the persistence
of the cosmological baryon asymmetry. We then work out the applications of this
general analysis to n — #i oscillations, R-parity breaking, and the decay of the lightest
supersymmetric particle (LSP). Our limits suggest that 7,5 3> 108 sec (using Tiaz ~
Teur), and 71sp > 10710 sec in most models, so that it seems very unlikely that
neutron-anti-neutron oscillations or LSP decay will be observed in present laboratory
experiments. It remains possible that the LSP could decay on a timescale relevant to

cosmology.

2.2 Constraints from cosmology

Let us first consider the general case of an effective non-renormalizable interaction of

dimension D =4 +n

Lp=—2 (2.1)
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where M is a mass parameter (but not » w.wass svale. * -ause there are phase space
factors and coupling constants mixed into it) and % > I Wi assume that the gen-
eration structure of the interaction is generic, and oes .ot accidentally preserve one
of the e, 4 or 7 lepton flavours. Quark generatiosy ire rnot comcerved in the SM
and hence cannot provide an accidental conserved w astity *fa might vitiate our

argument [5]. The corresponding interaction rate is

T2n+i

rD(T) ~ Algn

(2.2)

for T < M, and thermodynamic equilitirium is avo. .ed if Tp(Tj < H(i'j, where H

is the Hubble expansion rate:

% ~ 95T m, (2.9)
giving -
on ~ Ml
M®2 o (2.4)

In the case of a AB = 2 interaction that could cause n — i oscillations, persis-
tence of the BAU requires that the out-of-equilibrium condition (2.4) be imposed for
all temperatures below that at which the baryon asymmetry is generated (probably,
see [36]). This would be ~ 10 GeV in the conventional GUT scenario, in which case
we would require

M > 10142/ Gev (2.5)

for AB = 2 interactions.

Let us assume the existence of strong non-perturbative B and L violating but
B- L conserving electroweak interactions with an interaction rate I,y ~ 0.01a°T 6(T-
T.) [30], where T, ~ 100 GeV is an effective threshold temperature whose precise value

depends on details of the electroweak theory (see section 4c of the introduction).
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Since the BAU could have been generated at any temperature between the
electroweak phase transition and my, and since the SM interactions that ensure the
washout of the baryon asymmetry drop out of equilibrium at various temperatures,
we will consider a serics of conditions for the preservation of the BAU: absence of
thermodynamic equilibrium for any ‘beyond-the Standard-Model' B — L violating
interaction at temperatures (A) T = T, = 100 GeV, (B) T= 10% GeV, (C) T= 1¢°
GeV, (D) T= 10° GeV, and (E) T= 10'2 GeV. We present rough estimates of the
constraints here. In the next chapter we will calculate the interaction rates more
carefully and list the bounds in the tables at the end. These more accurate bounds

are slightly weaker than those we present here.

As one might expect for dimension D > 4 operators, the bounds are signifi-
cantly better at higher temperatures. We find from equation (2.4) that

1018 )?‘:

M> Tmu (m

(2.6)

The parametrization (2.2) is not applicable to renormalizable intcractions. \We

estimate the rate for an operator of the form

Lp = A0, (2.7)
to be 'y ~ A2T. This is out of equilibrium if
9
2 < (-‘i) T (2.8)
My

so that the most stringent upper bound on A comes from case(A): T ~ 100 GeV
Ag1078 (2.9)

We parametrize superrenormalizable D = 3 and D = 2 interactions by cocfficients m

and u? respectively, yielding interaction rates
2 ut

m
F3~ T D~g (2.10)
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For these two types of interaction, the most stringent upper bounds on the parameters

m and p again come at T ~ 100 GeV:
m<1078GeV, <1072 GeV (2.11)

The constraints (2.6), (2.9) and (2.11) have dramatic implications for models, as -2

now discuss.

2.3 Standard Model B and L violating operators

The effective operators describing new interactions beyond the SM must be made
out of light fields, and invariant under the symmetries which survive below the scale
M, including Lorentz invariance, the appropriate gauge and discrete symmetries,
and perhaps supersymmetry. Often these residual symmetries suffice, by themselves,
to rule out the appearance of operators of a given dimension which violate some
global conserved charge. For example, it is impossible to construct gauge and Lorentz
invariant renormalizable B or L violating interactions within the Standard Model.
This is nc longer true in the supersymmetric version of the theory, where the addition
of squarks and sleptons permits [35] the construction of renormalizable superpotential
terms that violate B or L. In most models, these are removed by the imposition of an
additional discrete symmetry, such as R-parity [38]. If one removes the requirement
of supersymmetry, as in the soft SUSY-breaking terms induced via supergravity [39),

then further D = 2 or 3 B and L violating operators are possible.

In table A.3, we display the types of operators that may appear at various
dimensions involving the Standard Model fields. The notation is schematic: g¢,!
represent quarks or leptons (¢° and [° are their conjugates), h is the Higgs scalar,

and D is a gauge-covariant derivative. All indices are suppressed. There are various
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ways of producing gauge and Lorentz singlets ...for example, gqql represents six
independent operators formed from different combinations of chirality, weak isospin,

and hypercharge.

The D = 5 entry in the table is the effective low energy lepton number vi-
olating operator arising from the see-saw neutrino mass generation mechanism [40],
whose cosmological implications were first discussed by Fukugita and Yanagida. The
remaining operators involve baryon number violation, and laboratory limits on these
operators involve an estimate of their hadronic matrix elements. We use the estimates
of Costa and Zwirner [33] for nucleon decay matrix elements to convert nucleon de-
cay partial width limits into estimates of the operator mass scale listed in the column

under “laboratory limit”.

For the D = 7 operators which could induce AB = -AL proton decay, we find
that the cosmological limits from the preservation of the BAU at T, = 10'2 GeV
yield limits on M that are stronger than direct laboratory searches by four orders of

magnitude. This is even more true for B and L violating operators of dimension D=
9,10, or 11.

The D = 9 six-quark operator violates baryon number by two units without
violating L. So the laboratory limit arises from the bound on neutron-anti-neutron
oscillations [41) (7w > 1.2 X 108 seconds) which we convert to a limit on M using
matrix element estimates from the reviews [33] and [42]. Cosmologically, the violation
of barvon number alone means that the effects of this operator may (or may not [36])
be able to relax the baryon number of the Universe to zero in the :bse ace of the
“sphalerons”. This depends on the combination of left and right quark ficlds, as they
carry different fractions of the BAU. It will be discussed in chapter 4. Assuming the

BAU does go to zero, the limits in the columns of our table should be interpreted
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as the lower bound on M (a mass scale divided by coupling constants) necessary to

ensure the survival of baryon number generated at T ~ Tp,..

2.4 Supersymmetric B or L violating operators

We now take a general look at sources of baryon and/or lepton number violation in
supersymmetric theories. With the common definition of R-parity: R = (—1)>5+L+38,
violation of B and/or L usually also signifies the breaking of R~parity (S is the spin).
R-parity violation may appear directly in exactly supersymmetric theories, e.g. those
with additional superpotential terms or D-terms beyond the minimal extension of the
Standard Model.

The MSSM superpotential is
Pyin =h HQU® + hy AQD® + h ALE® + c¢HA (2.12)

where the chiral multiplets are denoted by H and H for the Higgs doublets, Q and L
for the left-handed quark and lepton doublets, and U¢, D¢ and E* for the right-handed
singlet fermions. The coupling h; are the standard Higgs Yukawa couplings and ¢ is a
Higgs mass mixing parameter necessary to avoid a massless axion-like state. R-parity

could be introduced explicitely by adding to the superpotential

Pp= mLH + MLLE® + M LQD* + \U°D°D¢
+TIITQQQL + TIEQQQI? + 'IllT;UcUchEc (2.13)
+A+‘HHHL + fi;HHLL + I%-‘s-Ucl)"D"U"D"'Dc +...

Alternatively, sources of R-parity breaking may be found in D-terms or soft SUSY
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breaking terms, which take the form
L3> pih+ ydint
+malle + malGde + myicded® (2.14)
+mglh + mslzz1

The explicit R-parity-breaking terms we consider are listed in tables A.1, A.2 (D < 4)
and A.4 (D > 4). In addition the generaion of a sneutrino () vev could break R-
parity spontaneously [44]. As in the czse of the non-supersymmetric Standard Model
described above, the survival of the cosmological baryon asymmetry in spite of such
terms will impose much tighter constraints than are available from laboratory cross-

section measurements and the absence of rare processes.

As was discussed in detail by Hall and Suzuki [45], the m;LH term is a source
for Majorana neutrino masses, and the strongest constraint they derive:

&
-

. <0.
me < 01305y

GeV (2.13)

is based on the mass limit (m,, < 1 eV) from neutrino-less double beta decay (We
have rescaled their limit to account for the more recent constraint on the Majorana
neutrino mass.) From equation (2.11) we see that our (admittedly rough) limit is five
orders of magnitude stronger. It is also generation independent, whereas the bound
from neutrino masses is much weaker for v, and v,. Analogous arguments place
constraints on the soft masses: y;. < O(1) GeV from Majorana neutrino masses and

p1 < 1072 GeV from our arguments. The lab bound is again weakened by going to

higher generations.

The dimension-4 terms in (2.12) have been discussed extensively in the liter-

ature [43, 46, 56, 47, 48, 49, 50]. The strongest constraints on A, and ), are on the
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off-diagonal elements [50, 43, 46, 56]:

A3 < 9 5 1079 ( m )1/2 (2.16)
1= 100GeV )
~ 1/2
13 ¢ 19-8 { __™ ) 17
A S 10 (IOOGeV (2.17)

due to their radiative contribution to the electron neutrino Majorana mass. Charged

current universality of quark and lepton couplings to W bosons leads to the limits

12k < , ( = ) 2.1
M <004 1oGev (2.18)
2 <o. ( m ) 2,
A < 003 fh5Gev (2.19)
and the absence of neutrino-less double beta decay gives
= 5/2
11 ¢ -3( m ) .
Ay <3x10 T100GeV (2.20)

The A} coupling is strongly constrained by the absence of n — i oscillations as was

first pointed out by Zwirner (47}, who found

m )5/2

llk< -7
At s2x10 (IOOGeV

(2.21)

(see also reference [49] where a stronger limit is derived from NN — KK + ...,
but is subject to larger nuclear uncertainties). The remaining bounds in [56] are
typically O(.1) to O(.4) from a variety of sources such as charged = decay, 7 decay,
v, — € scattering, etc. If two or more such couplings are non-zero, typical constraints
[48, 43] A < 1073 may be obtained from p — ey or u — 3e. From equation (2.9), we

fin.. the surprisingly strong cosmological estimate
A3 < 1078 (2.22)

which is again generation independent.
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We are not aware of any bounds on the soft terms myg34. These are generic

D = 3 mass terms, so we find
Moz < 1078 GeV (2.23)

We cannot improve existing bounds on the D = 5 supersymmetric F-term QQQL be-
cause it involves the same fields as the effective operator induced by the “sphalerons”.
We are not aware of any previous bound on M;'QQQH, but we find lhere using
Trmaz = 10° GeV that M, > 10! GeV. This is of course analogous to the bound on
M;'HHLL already derived by Fukugita and Yanagida. Finally for the D = 7 term,

the current limit from n — 7 oscillations is

2/3
Mg > 108 (228N Gev (2.24)
m
whereas we find
- Tm 5/6
My > 104 (mc;‘;\;) GeV (2.25)

Lastly, we come to limits on # vevs which would break R-parity spontancously
[44]. In the absence of any explicit R-parity breaking terms in the superpotential,
spontaneous R-parity breaking would lead to a massless goldstone boson, the majoron.
For majoron emission from stars to be compatible with observation, one must have
[51] a sneutrino vev of less than 9 keV. Explicit R-parity breaking would remove the
astrophysical bound, but not our cosmological constraints which require the vev to
be orders of magnitude below the weak scale (assuming of course, that the vev forms
above T = 100 GeV).

A sneutrino vev would induce mixing between the corresponding ncutrino and
gauginos leading to a non-vanishing neutrino mass [45). Upper limits on the & vev
[48] from Majorana neutrino masses range from O(1) MeV for < & ># 0 to O(10)
GeV for < 7, ># 0.
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A sneutrino v.e.v. in the ordinary Yukawa term h.HLE° leads to a D = 3
lepton number violating term h, < i > he°. However, we get better constraints from

the D-term g < 7 > A¢, where A is the gaugino. We find that for all generations
m < 3 x 1075GeV (2.26)

We do not address here the technical question of whether such a small v.e.v. can be
generated in a realistic model before the non-perturbative electroweak interactions
drop out of equilibrium. This is of course a necessary condition for our constraints,
and it is what we would expect if the sneutrino v.e.v. were comparable in size to that
of the Higgs. Such a large v.e.v. is ruled out by our bounds. The maximum size of a
sneutrino v.e.v. that does not cohabit with the “sphalerons” is a dynamical question

that we do not address here.

2.5 What can we see in the lab?

We comment finally on the observability of neutron-anti-neutron oscillations and R-
parity breaking in the light of our results. In tlie case of the D = 9 qqqqqq operator, to
tolerate M ~ 108 GeV close to the laboratory limit we require the baryon asymmetry
to be created at a temperature below

T~ (353- W") mT ~ 10° GeV (2.27)

Mpl

This suggests that if n — & oscillations are seen, then the baryon asymmetry was
made at the EPT (or maybe produced as an ez asymmetry; see chapter 4). A similiar
calculation in the MSSM for the D = 7 U¢D°D°U¢D°D*® operator gives T < 106 GeV.
This would be consistent with a RH lepton asymmetry produced at high temperatures
and later turned into a baryon asymmetry by the “sphalerons”, with baryogenesis at
the EPT and with the Affleck and Dine [79] scenario.



2.5 What can we see in the lab? 32

If R-parity was broken, then the lightest supersymmetric particle (LSP) could
decay. However, this would be observable in the laboratory only if the LSP decay
path length were < 1 m, corresponding to a life-time 775p < 107% seconds. There
are two important candidate decay modes for the LSP: LSP — vff and LSP — vy.

Orne can easily estimate that the former has a partial life-time [49, 43]

10~ sec (IOOGeV)5 ( mj )“‘

~ 2
Tosf A2 100 GeV (2.28)

mrsp

where A is one of the trilinear superpotential couplings in equation (2.12). An anal-

ogous estimate gives

~-17 3 . 4
~10 sec (IOOGeV)( m; ) (2.20)

Tin = A2 misp 100 GeV

We found that A < 10~8, which from equations (2.28) and (2.29) suggests that the
decay of the LSP would be unobservable.

Similiar estimates apply, as one can verify after making a basis change, if one
breaks R-parity by an HL coupling or a sneutrino vev. This suggests that R-parity
breaking will be unobservable in laboratory experiments, modulo loopholes discussed

in more detail in the following chapters.

We conclude that the survival of the cosmological ba;yon asymimetry imposes
severe constraints on B — L violating interactions beyond the ‘standard Model. These
bounds are in many cases far stronger than those derived from laboratory experiments.
A corollary is that many interesting proposed non-Standard-Model phenomena (R-
parity violation,n « #i oscillations) appear to have little chance of being seen in the

laboratory in the near future if our assumptions are correct.



CHAPTER THREE
MORE DEPENDABLE CONSTRAINTS

3.1 Introduction

It appears that non-perturbative electroweak interactions that violate baryon num-
ber B and lepton number L, whilst conserving the combination B — L, are likely to
have been strong in the early Universe at temperatures above about 100 GeV {2],[3].
They therefore pose a threat to the baryon asymmetry of the Universe, if it was gener-
ated primordially at higher temperatures, as in many scenarios for baryogenesis. This
threat is not fatal if the early Universe had asymmetries in B — L and B + L, since
these could not both be wiped out by the non-perturbative electroweak interactions.
However, in this case the addition to the Standard Model of any interactions violating
some other combination of B and L would, if they were in thermal equilibrium in the

early Universe, be fatal for the survival of any primordial baryon asymmetry.

This important observation was first made by Fukugita and Yanagidald], who
used it to constrain Majorana neutrino masses (see also Refs. [5],{6] which extend the
Fukugita-Yanagida analysis). Their argument has subsequently been used on many
other conjectured extensions of the Standard Model (7, 8],[9], including interactions
that violate R parity in supersymmetric extensions of the Standard Model, and AB =
2 interactions that could lead to neutron-antineutron oscillations or nucleon-nucleon

annihilations in nuclei. (A related study of AB = 2 limits had also appeared in Ref.
[43).)

R parity could be violated either explicitly by B and/or L-violating inter-

actions in the lagrangian{45], and/or spontaneously by a vacuum expectation value

33
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(v.e.v.) for a sneutrino field: < 0}#|0 ># 0[44]. The cosmological bounds would
apply to any source of explicit R-violation, or to spontaneous R-violation if it were
present at some temperature T above T, ~ 100 GeV, below which the rates for non-
perturbative electroweak interactions are presumably negligible[2]. A priori, these
constraints on explicit R-violation appeared so severe as to make it scem very un-
likely that a violation of R-parity could be seen in an accelerator experiment{7, 8J.
Likewise, the constraints on putative AB = 2 interactions may (this depends on how
the BAU is made) make it difficult for n — 7 oscillations or N — N annihilations in

nuclei to be observable in the laboratory(7, 8].

However, we should emphasize that there are several escape routes from these
discouraging arguments. The baryon asymmetry might be generated at some low
temperature T < T.. R parity might be violated spontaneously by a v.e.v. that only
appears at some T < T,.. The B- and/or L-violating interactions might conserve[5),[7]
some other quantum number able to “encode” the primordial baryon asymmetry and
hience allow it to survive strong non-perturbative effects. (This “conserved” quantum
number could be associated with an exact symmetry of the lagrangian !, or could be
“effectively conserved” by the interactions in chemical equilibriumn, but violated by

some other out-of-equilibrium operator.)

The purpose of this chapter is to develop more thouroughly our cosmological
constraints on B and L violation, and to confirm the claims of the previous chapter.
In Section 2 we consider carefully the rates for interactions due to couplings of various
different dimensions, compare them with the Hubble expansion rate, and infer the
corresponding cosmological upper limits on the couplings. After including the nu-

merical factors due to thermal averaging, etc., we find bounds which are far stronger

1This is possible in the leptonic sector, to the extent that the neutrinos do not mix, but not in the
quark sector, where there is substantial Cabibbo-Kobayashi-Maskawa mixing between the different
generations.
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than many laboratory constraints. In Section 3 we revisit constraints on explicit and
spontaneous lepton number violation{4]-[9]. In Section 4 we address R parity, first
giving a complete discussion of possible R-violating effects, including the possibilities
of spontaneous R violation and a right-handed neutrino. Then we give more precise
bounds on the coefficients of these interactions, incorporating the results of Section
2. These are then translated into lower limits on the lifetime of the lightest super-
symmetric particle (LSP). We find that the LSP lives long enough to escape from
a laboratory experiment before decaying, and may well live long enough to be sub-
ject to astrophysical constraints on particles decaying after nucleosynthesis[52],[53].
In this case it is likely to live longer than the age of the Universe[54], which would
enforce very stringent upper bounds on possible R-violating interactions. R-violating
decays of the Z°[55], such as Z® — 7 + (chargino) should be unobservable, as should
other signatures of R-violation at future hadron-hadron colliders such as the LHC or
SSC[46]-[57). The only exception to these arguments is a small window for the LSP
to be charged or strongly-interacting, and sufficiently short-lived to escape the con-
straints from cosmological nucleosynthesis, in which case the LHC, SSC or LEP might
see massive, apparently stable particles instead of the usual missing energy signature
for supersymmetry. At the end of this section we also discuss briefly cosmological
aspects of an alternative[58] to R parity in supersymmetric models. In Section 5 we

update our previous discussion(7] of AB = 2 interactions.

3.2 Rate estimates and bounds on coupliugs

a) Interaction rates

In this section we evaluate the reaction rates, taking into account the thermal averages

appropriate for early Universe calculations, and then estimate the bounds on the
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different types of couplings.

We begin by considering the simplest case of 1 D = 4 interaction with di-
mensionless coupling, which could be either of Yukawa or quartic scalar type. In a

supersymmetric theory, which is our main interest, these would both arise from a

superpotential term of the generic form
F 3 hiji®:®;® (3.1)
for some chiral superfields ®; ;. The quartic scalar couplings arise from
| |2 3 hlleidel® (3.2)

(we denote by ¢ the spin-0 components of the chiral superfields ®: the fermionic

components will be denoted by 1) which yields the simple squared matrix element
IM[?=ht . (3.3)

However, such quartic couplings do not viuiate any quantum numbers, since the same
particles are destroyed then re-created. The one-to-two decay processes arising from

the same superpotential term (3.1):
o*F
hijidi 34
53,05, ViU 3 hijudit; v (3.4)
do violate quantum numbers and yield a squared matrix element

M| =2k p' (3.5)

for fermions with final-state four-momenta p,p’. The thermally-averaged decay rate

is then given by

(27)*6“po - p - p)IMI’f" (3.6)

Ty = / dspo ] dsp ) d3
127 ] or)%2E, | @n)R2E | (2n)2E
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where the subscript 0 refer to the initial-state spin-0 particle with thermal distribution

-1
fo= [eBo/T - 1] (3.7)
and number density
3
ng = %T” : (3.8)
Evaluation of the integrals in (3.6) yields
h®m3r _om3h?
I = W =14x10 —a.,— (39)

at high temperatures T > my, the decaying scalar mass.

In the case of D = 3 interactions, we can consider superpotential terms of the
form

F 5 mj®;®; (3.10)

or soft supersymmetry-breaking lagrangian terms of the forms
L3 -m§" bipson — ms" Yty . (3.11)

We will consider the latter two possibilities (3.11) here. In the case of the three-scalar

process of scalar decay, the high-temperature rate is similar to that in (3.9), namely
mir

192¢(3)T

The rate due to the supersymmetry-breaking fermion mass term in (3.11) is best

r, = ~ 0.014 m3/T . (3.12)

treated by first rediagonalizing the fermion mass matrix. For off-diagonal terms
Am}j ~ mf” & my, the resulting basis rotation will be by an angle § ~ Amy/m; ~
m§ /m;. In the rotated basis there are species-changing effective gauge vertices that
alter the external species through the mixing angle 8. The resulting interactions have
effective rates given by 6% times the normal gauge interaction rates, and hence of

order
rg*0°T
192¢(3)

I8 o 62Ty, o ~14x1072 2 7 3.13
12~ 0Ty ~ 1.4 X 9 m (3.13)



3.2 Rate estimates and bounds on couplings 38

which we will typically use at T ~ my, so that it becomes of order 1.4x102¢*(m )?/T,
where g may represent any of the Standard Model gauge couplings.

Finally, D = 2 interactions could also arise from soft supersymmetry-breaking

terms in the Lagrangian:
>~} $id; (3.14)

which can be regarded as mass insertions on external scalar lines. Again, if we change
basis to diagonalize the squared-mass matrix, we get an effective interaction which
has the form of a standard gauge interaction, which changes species by an amount of

order 8 ~ Am2/m2 ~ u2” /m2. The interaction rate is therefore of order

AD ., g2 2(112)2
0 ~ 019, ~ 1.4 x 10 T (3.15)
mg
which we will typically use at T ~ my, so that it becomes of order 1.4x 10~%(p3)%¢*/T3.

Finally, we consider non-renormalizable interactions Op of dimension D =

4 4 n, whose strengths we parametrize by mass parameters Mp:

(3.16)

There are large numbers of possible interactions, and for each one the numbers of
initial- and final-state particles can be varied (e.g., for an interaction of six fields, 1
— 5,2 = 4,3 — 3, etc.). We do not attempt to perform accurately the appropriate
higher-order thermal averages, but simply estimate

10-3
ME

Tp= . T+l (3.17)

where the numerical coefficient of I'p has been chosen to agree roughly with the

previous calculations (3.9),(3.12).
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b) Comparison with Hubble expansion rate

We now compare the interaction rates with the Hubble expansion rate:

H =[5 Gy (3.18)

where we approximate the energy density by a free gas of massless particles:

™ Ny T 3
P22 3o Ness (3.19)

and N,;; is the effective number of degrees of freedom for the minimal supersymiaetric

extension of the Standard Model

9
N,ﬂ =(Np+ ng) = —i-é . (3.20)
Substituting the number (3.20) into (3.19) and (3.18), we find
H~ 25—I-Q— (3.21)
mpl

to be compared with the reaction rates I' of the previous section.

We take as our criterion for maintaining the cosmological baryon asymmetry

the simple out-of-equilibrium condition I'(T') < H(T) for
T.<T <>Tm¢, STy~ 102 GeV (3.22)

where, in the absence of any detailed model, we assume that the non-perturbative
electroweak interactions drop out of equilibrium at T, = 100 GeV. T} is an estimate
of the temperature at which they may have started to be in equilibrium, assuming
that they had a rate[30]

Ty ~ (0.01 to 0.1)e’T (3.23)

Taking Te: = T is likely to be too stringent a constraint for two reasons. The

first is that “sphalerons” only take (B + L), to zero. Since the RH fermions will
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be out of chemical equilibrium down to Tp < Ty (see the next chapter), it could
be possible to store the asymmetry in some right-handed particle and have various
B — L violating operators in equilibrium above Tp. Secondly, it is well known that
cosmological baryosynthesis would have been possible with reduced efficiency even if
the analogous Sakharov([31] out-of-equilibrium condition for B-, C- and CP-violating
interactions were not respected. For comparison, we note here that the efficiency of
baryosynthesis would exceed 10~3 if the ratio of the B violating interaction rate to the
expansion rate is of order 10[60]. Aggressive model-builders may fecl free to exploit

a similar grace factor here, if they need it.

The out-of-equilibrium condition (3.22) becomes, for the different interactions

discussed in Section 3.2 a),

05T o { 14x10252 1.4x 1022, 14 % 10-2¢2(mf)2/T,
14 x 1077 ()79, Z5rie ] (3.24)

from Eqgs. (3.9), (3.12), (3.13), (3.15), (3.17) respectively. It is evident that t!.c
strongest restrictions on the D < 4 interactions come from T ~ T, =~ 100 GeV. For
orientation, we take the unknown mass-scale mg ~ T, ~ 100 GeV also, although this
could be an underestimate by an order of magnitude in which case our bounds on
h from (3.9) and 2 from (3.15) should also be relaxed by a factor of three and an
order of magnitude, respectively. In the case of (3.13), we take m; = m,z, g = g,
for orientation. In the cases of the non-renormalizable D > 4 interactions (3.17), the
strongest restrictions come from the maximum temperature we can impose bounds
at. This is the minimum of Ty (see equation 3.22), the temperature at which the
BAU is created, and, if the asymmetry is stored in a RH fermion, the temperature
at which it goes out of équilibrium (see chapter 4). Tables A.1 and A.2 compile

all the upper limits on renormalizable B- and/or L-violating intcractions that we
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extract from Eq. (3.24). Tables A.3 and A.4 list the bounds we can compute for
higher dimensional operators at various temperatures. Also shown are the laboratory
upper limits on each of these couplings[43],[45],[46],[56],[47]-[50]. We see that in many
cases the cosmological bounds (3.24) improve on the laboratory bounds by many
orders of magnitude. This has the consequence that many of the iaboratory searches
for physics beyond the Standard Model are doomed to failure if our cosmological
argument applies. However, we should re-emphasize that there are loopholes in this

argument, as discussed in paragraph 4 of Section 3.1.
3.3 Application to lepton number violation

a) Ezplicit lepton number violation and neutrino masses

The above argument that non-perturbative electroweak phenomena, perturbative
B- and/or L-violation from some source beyond the Standard Model, and the survival
of a primordial cosmological baryon asymmetry were mutually incompatible was first
developed by Fukugita and Yanagida[4]. They applied this argument to a AL = 2
Majorana mass term for neutrinos, using it to derive bounds on neutrino masses[4)-
[6]. In this section we first recapitulate the essence of their argument to exemplify
the quantitative discussion of the previous section, and then go on to consider models

with spontaneous violation of lepton number, and hence Majorons{61].

A AL = 2 Majorana mass term
Ly =—-mpywv (3.25)

is of the D = 3 type (3.11) introduced earlier, and hence bounded by the third
constraint in (3.24), as already noted in the Table:

my <23x107% GeV . (3.26)
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It is not entirely clear that this bound is directly applicable to a majorana neutrino
mass, because it was derived for a particic with a large L conserving mass and a
small L violating mass cozrection. To conservatively avoid the confusion arising from
having L violating propagation but L conserving interactions, one can compute the
rates for interactions with an L violating internal propagator. The rate for the decay
W~ — e~v (ordinary W decay with to e’ with a majorana mass insertion on the
neutrino leg) is

2,2
[ ~3x 10-3-9—;-’M (3.27)

for small mjs. This gives a similar bound to (3.26).

A large right-handed vz Majorana mass term My, is also of interest. Indeed,
the requirement that Majorana neutrino masses and electroweak non-perturbative
effects do not erase a pre-existing baryon asymmetry, is the complement of a previ-
ous insight of Fukugita and Yanagida[62], that the out-of-equilibrium decay of a vp
respecting such conditions could generate a lepton number asymmetry, which non-

perturbative electroweak effects could convert into the observed baryon asymmetry.

It is clear that the L violating v propagation would be out of equilibrium if
A’[M 2, TM ol 1012 GeV . (3.28)

However, equation (3.28) may again not be the relevant bound. The particles involved
in the L violating interaction (in this case, v propagation) are not those in the
effective B + L violating vertex induced by “sphalerons”, so the B — L asymmetry
among this second group of particles will survive if tkey are not in thermal equilibrium
with the vg. As with the left-handed majorana neutrino masses, it is probably safer

to compute an L violating interaction rate among Standard Model particles induced
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by the heavy vg. In the limit My 3> T, the rate for ef H= — e H* is

hah
Ty~ 3% 10'4|—;7L2’—'°|2T3 . (3.29)
k

Requiring [';; < H gives bounds on the sum of masses divided by coupling constants:

E hikh;}c < 105

3.30
k A'Ik \ mpleaz ( )

where Tpqe: is the maximum temperature at which we want these interactions out
of equilibrium. Fortunately, this is the same combination of masses and coupling
constants that enters the “LH" neutrino seesaw mass matrix. If we assume that we
are working in a basis where this is diagonal, we have that the left-handed majorana

neutrino masses induced by the seesaw satisfy:

I 108 < H>? 1 TeV
my < o2 100 keV T (3.31)

Using Thaz ~ 1 TeV, we therefore infer that

m, S max (50 keV, 100 keV) . (3.32)

This argument does not exclude a left-handed Majorana origin for the possible 17 keV
neutrino mass claimed recently[63], and is of course completely compatible with the
neutrino mass difference of order 10~3 eV that is the most appealing explanation[64]
for the apparent solar neutrino deficit[65], tolerating either a left- or right-handed

Majorana origin for neutrino masses of this order.

b) Spontaneous lepton number violation and Majorons

There has been much interest in the possibility that lepton number might be an

exact global symmetry which is broken spontaneously by a Higgs field with L = 2, in
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which case a Goldstone boson emerges, the Majoron[61]. Models with [ =1 triplet
Majoron fields now appear to have been ruled out by LEP data on the invisible Z°
decay width[66], leaving only the I = 0 singlet Majoron possibility. In the MSSM,
the scalar partner of the neutrino (which has L = 1) could also acquire a vev. The
constraints on the associated majoron are considerably stronger than those on the
singlet because the sneutrino is a doublet; this will be discussed later under Rp
violation. If one introduces a singlet scalar ¢ with couplings to singlet neutrinos N*
(RH) via the lagrangian

8,00" ¢ + Mi¢N'N* + h.c. (3.33)
and ¢ acquires a vev

#(z) = IV + (@) expi{) (3.34)

then the first term of the expansion of the exponential in the Yukawa interaction gives

a Majorana mass M; = \;V to the V;, and the second term is
INX(NINT — NINT) (3.35)

If one adds a Dirac mass matrix between the SM neutrinos v§ and the N7 with

mp < AV, then diagonalizing the seesaw mass matrix mixes a small amount of N

into vy

uzuL+%§N (3.36)

so that the effective coupling of the singlet majoron x to neutrinos is of the form
t— ..
Ly= B > ikXViTsVe (3.37)
Jk

where the entries in the matrix g;x are of order

- m;orm
g ~ L . (3.38)
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One might guess that V is at least as large as the conventional I = % Higgsvev.: V2
100 GeV. The strongest previous upper bound on the g;; comes from consideration of
the supernova 1987a. As argued in Ref. [67], the remnant neutron star core is probably
filled for t, ~ 10 seconds with a degenerate v, gas. In this case, one can estimate the

energy emission rate per unit time and volume due to 7.v, — xx annihilation to be

> oo 21:52 gej(31n — 4P2F 23) (3.39)

resulting in the upper bound
(Ey/2 % 10%rg)* (R/lOLm)l
(ty/los (N‘,e/2 X 105‘)12

where E, is the neutron star binding energy emitted in the form of Majorons, R is

Ge=(Y g)iS15x10°° (3.40)
b

tho radius of the neutron star, and N,, is the number of 2,'s in the core.

The cosmological argument of Fukugita and Yanagida [4) can be used to
strengthen this bound considerably. Since we expect V 2 100 GeV, which is sup-
ported by the astrophysical bound (3.40), we could expect that the large singlet v.e.v.
V forms at some temperature Ty before the electroweak phase transition, i.e., above
T.. In this case, there is an epoch T. < T < T during which apparent L violation
and non-perturbative electroweak B- and L-violation coexist. The L violating rate

for v — €W is approximately

Tu ~ 107%g;. T (3.41)
which is slightly smaller than the decay rate for W — xvv:
2,2 02
Tw ~ 10-32_%"_“2 . (3.42)

Requiring these interactions to be less than the Hubble expansion rate gives
gik S 1078 (3.43)

Similar bounds apply to the analogous Majoron couplings of the p and 7 generations.
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3.4 Application to R-violation

a) Classification of R-violating interactions

As we have already indicated, the presence of non-perturbative electroweak inter-
actions that violate B and L but conserve B — L severely constrains other interactions
that violate B — L. In view of the standard definition of R parity[68] in supersym-
metric theories:

R = (_1)25+L+3B (3'44)

where S is the spin, sources of R violation must also violate either L and/or B.

R parity may be broken either explicitly{43] and/or spontaneously[44], and
may or may not involve fields beyond those in the Minimal Supersymmetric Standard

Model. The latter can be described by the superpotential
Fsu = h HQU® + hy HQD® + h, HLE® + eHH (3.45)

where the chiral supermultiplets are denoted by H and H for the Higgs doublets, Q(L)
for the left-handed quark (lepton) doublets, and U¢, D¢ and E° for the right-handed
singlets in the model. The couplings h; are the standard Higgs Yukawa couplings,
and € is a Higgs mixing parameter. Note that we have suppressed all generation
indices, and all the matter supermultiplets (couplings /;) should be understood as
vectors (matrices) in generation space. R-violation could be introduced cxplicitly[4)]

by adding to the superpotential

miLH 4+ M LLE® + MyLQD° + \U°D°D*
1 1 3 1 crrc ne pe
+ EQQQL + EQQQH*' :{,'[';U U*D°E

Fpx

1. I 1 1 7€ 1Y YET I IYC C r
+ EHHHL+M-5-HHLL+WUDDUDD +... (3.46)
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Alternatively, sources of R-violation may be found in soft supersymmetry-breaking

terms, which take the form
L3 13t + p2ih* + molle + malid® + maicd°d® + msth + m.cé’i=1+ (3.47)

where the lower-case letters (with tildes) denote the Standard Model particle (spart-
ner) members of the supermultiplets in (3.45). We do not consider any special gen-
eration structure for the matrix couplings (m;, A;, pi, M;), but are aware that our
subsequent arguments could in principle be evaded by invoking specific generation-

dependent symmetries (5], [7], [36], [37).

As already mentioned, the alternative to explicit R-breaking is spontaneous R-
violation due to a v.e.v. for one of the sneutrinos 7 in one of the L supermnltiplets[44].
A U vev. may develop with or without any of the above explicit R-violating
terms[69). Our cosmological bounds would apply to spontaneous R-violation that
persisted above the electroweak phase transition. Within the context of the minimal
supersymmetric Standard Model (3.45) without explicit R-violation, the sneutrino

vev would give rise to an fermion mass term of the form
Feyydh, <> I.zeﬁz (3.48)

which would be subject to cosmological bounds of the same type as thcse applying to
the explicit R-violating term m; LH in (3.46). Another source of effective L-violating

vertices in the presence of < 7 ># 0 would be the SU(2) gaugino interaction:
L>V2<o>WHe +he. (3.49)

which is an effective D = 3 fermion mass-mixing term of the type shown in (3.11).

In the absence of explicit R-violation, the spontaneous breakdown of R-parity

would lead to a massless Goldstone boson, the Majoron. This Majoron is the phase of



3.4 Application to R-violation 48

an SU(2) doublet, so is severely constrained by various laboratory and astrophysical
observations. In particular, since the sneutrino is a doublet, its associated majoron
mixes slightly (~<&>/<H>) with the Higgs, and thereby acquires a dircct coupling
to ordinary matter. Requiring this coupling to be small gives the (severe) upper

beund < # >S 9 keV [51]. Explicit R-violating terms are often added to avoid this

constraint.

Another possible source of explicit and spontaneous (via g v.e.v.) It violation
[69] is to add a right-handed neutrino singlet field vp via the following terms in the

superpotential:

Fyn = myvpvr + hyHLvg + ’\V:l;t . (3.50)

The above are the simplest mechanisms for R-violation; the most relevant
laboratory bounds[43],{45),[46],(56] on these sources of R-violation are compiled in the
Tables. Also shown are the constraints on these R-violating couplings that arise from
our cosmological bounds (3.24). We sce that the cosmological bounds are considerably
stronger, at least for renormalizable interactions. This has dramatic consequences for
the search for R-violating signatures of supersymmetry that we discuss in the next

section, subject of course to the caveats that we mentioned in paragraph 4 of Section

3.1.

b} Lightest supersymmetric particle decay

When sources of R-parity violation are introduced, the lightest R-odd particle (the
Lightest Supersymmetric Particle or LSP) becomes unstable. In most supersymmetric
models the LSP is a neutral spin—% fermion, called a neutralino, which is some linear
combination of the neutral gauginos and higgsinos(70]. To compute the decay rate

and branching ratios of the LSP, we consider the case of explicit R violation, and work
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in the mass eigenstate basis in which the possible R-violating fermion mass term from
an HL superpotential term has been rotated away[45], and all the R-violating fermion

interactions now arise from the following trilinear superpotential terms:
3Fax = MLLE® 4+ M LQD* + XU°D°D* (3.51)

where we have suppressed the implicit generation indices. We note that the trilinear

R-violating superpotential terms do not involve the Higgs superfields.

The most important mechanisms for LSP decay are associated with tree and
one-loop diagrams. We consider first tree-level LSP decay. Since neither higgsinos
nor gauginos participate in the R-violating superpotential (3.44), LSP decay proceeds
through a first coupling to a fermion-sfermion pair, followed by virtual sfermion decay
via an R-violating trilinear interaction. Since the higgsino-fermion-sfermion coupling
is related to a small Higgs-matter Yukawa coupling, tree-level LSP decay normally
proceeds mainly from the gaugino components of the neutralino. This might not be
true if the higgsino components of the LSP dominate over the gaugino components,
or if the LSP decay to a top quark is kinematically accessible and the R-violating
UcDe D¢ superpotential term is non-negligible for the top, or if the ratio tan 8 = vy /vy
of supersymmetric Higgs v.e.v.’s is very large and the b quark Yukawa coupling is
large. However, we shall ignore these possibilities. We will also ignore final-state
particle masses, and therefore treat fermions of different helicities independently. In

the limit of degenerate sfermion masses, we find for the LSP— f, f. f; decay width

2 {2, -
r = ’\2%;53” {4( +95+93) [ T 3(52';;%”"3) (3.52)
+(3m§- ~ Misp)(Misp — m?) i ( m% )]
8Misp m% - Misp
m2 2
+(9192 + 9195 + 9203)

(i) G+
Misp m}‘AJ}I.SP Misp
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2’ In ( mz. ) - 1) -1+ mi (i m"}n - (m - Migp)" )]}
Misp — “2m? - MLsp Misp \iG1 (2m} - ‘”Lsp)"m

/\2 AILSP 2 -
614473 m‘} (6 + 25 + 93 + 9192 + 9203 + ga0n) (mj > m,) (3.53)

where ) is the relevant R-violating superpotential term from Eq. (3.51), and g is the
coupling of the ¢’th fermion-sfermion supermultiplet to the combination of gaugine
components in the LSP. There is an identical rate for decay to the CP-conjugate
channel, and to obtain the total LSP decay rate one must sum over all the different

matter supermultiplets in all generations that can participate in the LSP decay via

R-violating interactions.

Violation of R parity may also induce LSP decay to two-body final states via
loop diagrams. Colour conservation forbids decays to quarks and gluons. Decays
to Ht¢~ or H% could only proceed via two-loop diagrams. The LSP can decay to
W=EEF or Zv if it is heavy enough, and the rates for these decay modes are likely to

be comparable to the yv decay mode whose rate we now compute.

Since we are only interested in decay into an on-shell photon, only the dipole
piece of the induced electromagnetic vertex for LSP — qv contributes. Parametrizing
the induced dipole vertex as

; 8
D Mg = —it(p,) —22T — (FY + Fys)u(p 3.54
a (pv) ———— (Fy' + F'ys)u(pLse) (3.54)

the LSP decay rate is[71]

m m, m?
M(LSP - v+7) =52 (1- T4 (1 =) [|F.;’|2 + |F2"|2] . (359)

Computation of the loop diagrams gives, for an LSP that is dominated by its photino

component:

sz = FzA = )2\/_ Mpsp(ly + 1) (3.96)
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where I, and I, are parametric integrals whose leading terms in an expansion in

mLsp/m,- are
1 mygp 1 misp
~—— N —— . 3.597
I 6 m; I 2 “m; (3.57)

Plugging the approximations (3.57) into the expressions (3.56) for the dipole vertex
factors Fg ~, and then into the decay rate formula (3.55), we find
o’x misp

AP, Vg
TP H2md md

(3.58)

where ) is the relevant R-violating superpotentiz? ~upling from Eq. (3.51). Again,
there is also an equal rate for decay to the CP-conjugate channel, and one must sum
over all the possible final-state neutrino generations and over the flavours of matter

~ supermultiplets that can appear in the loop.

To compare the competing decay rates (3.58) and (3.53), we make the sim-
plifying assumption that one type of R-violating coupling dominates, and we assume
also that the gaugino couplings in (3.53) have the magnitude

(44
sin2 ow

(R+B+0G+00+0n0+0n)24r (3.59)

so that
Ftree ~ T

TLoop  3sin’Oya

~ 600 . (3.60)

We therefore conclude that the tree-level three-body decays are likely to dominate in
LSP decay.

To get some idea of what the LSP lifetime might be, we use equation (3.59)

as before, obtaining

. ~(10‘6)2 20GeVys My
LP=3"X" Vinise | 1200 GeV

where we have scaled the important unknown quantities by our cosmological upper

) x 1074 (3.61)

limit on A, and values of msp and m i that are closer to experimental lower limits in
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the minimal supersymmetric extension of the Standard Model. The estimate (3.61)

will be compared with astrophysical{52],{33] and accelerator constraints in the next

subsections.

c) Astrophysical limits on LSP decays

We base our analysis on the updated astrophysical constraints on massive unstahle
relic particles given in Ref. [33]. There upper bounds were given on msp(nisp/n,)
as a function of the LSP lifetime. The standard calculations[70],[72] of the relic
LSP abundance are still largely applicable in the presence of R-violating interactions
respecting the cosmological constraints discussed in Section 2 of this chapter. Typi-
cally, they give nysp comparable to or even larger than np, so that stable LSP’s could
provide the critical density for closure of the Universe, Qrsp = prsp/pe =1: pc ~
2x 10-2%h2gcm ™3 where the present Hubble expansion rate Ho = ho X 100kms™'M!.
We focus for the purposes of orientation on the likelihood that unstable LSP’s have
the density comsparable to n§¢p which would have given Qg 5p = 1 if they had been
stable. We consider illustrative cases where nygp = nfgp (100n5¢p)(0.01n55p). Ex-
amination of Figs. 3 and 6 of Ref. [33] then indicates that the LSP lifetime should
either obey

Tse S 1s (0.1s) (1000s) (3.62)

or
TLsp 2 107y (10%) (10%%y) . (3.63)
The upper bound (3.62) comes from considerations of the effects of LSP decay hadron

showers on the primordial abundances of light nuclei, and the lower bound (3.9%)

from upward-going decay muons in underground detectors. These constraints wonld
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be respected if

20 GeV\%/2 m; \? -8/10=7-5\ (10-9.5 .
AR (’nIsT) (200 GeV) X 1075107 (107) (364
or if
20 GeV\%2 ¢ mjp N2 o 205y (10-195 -
A (mLS.P) (—200 GeV) % 10-2(10~20%) (1071%%) . (3.63)

We see that there is roughly three orders of magnitude of A values allowed beiween
the cosmological upper bound A S 1076 (see the Table) and the astrophysical lower
bound (3.64), whose width depends on the masses of the LSP and the sfermions as
well as on nygp. Assuming for definiteness that nysp = nggp, we see that the window

is open only for

mi 4/5
misp 2 20 GeV (m) (3.66)

Using the model-independent LEP lower bound m; R 45 GeV([73], we infer that the

window near A ~ 108 is open only for

mysp 2 1 GeV . (3.67)

If Nature does not exploit this window, she must respect the stringent upper bound
(3.65), which corresponds to A S (%), and is very suggestive that R parity is in fact

strictly conserved.

d) Comparison with Z° decay limits

If R parity is not conserved, supersymmetric particles may be produced singly
in either hadron-hadron collisions or e*e~ annihilation. In view of the cleanliness
and large number of Z° decays at LEP, these provide the most stringent accelerator
upper limits on R-violation available for the time being. The Z° could decay into an

ordinary fermion and a supersymmetric one (a gaugino/higgsino mixture), provided
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the sum of their masses is less than mze. In the case of the LSP, the lower bound
(3.61) on T, sp indicates that it would decay outside any detector. Hence, if the LSP
is neutral as generally expected, its production in association with a neutrino would
simply add to the invisible decay width of the Z° This would be detectable only if
the mixing between the neutralino and a neutrino were relatively large. Using the
latest experimental determination[66] of the number of equivalent neutrinos in Z°
decay, N, = 2.99 £ 0.05, one can only infer the following upper bound on the LSP/v
mixing angle 8.5p/,:

SinoLsp/,, <02 (95%cl.) (3.68)

if one assumes for simplicity that the neutralino components of the LSP have negligible

couplings to the Z%, which is strictly true for any linear combination of higgsinos.

The Z° could also decay to a SM charged lepton and a supersymmetric fermion.The
cleanliness of this reaction means that a branching ratio of 10~ could be detectable
when LEP gets 107 Z%s, corresponding to a mixing angle below 103, In an interaction-
eigenstate basis, the Z° necessarily decays into a particle-antiparticle pair. However,
since the propagating fermions must be mass eigenstates, it is possible for the Z° to
decay into an apparently ordinary charged lepton (a , for instance) and a (mostly) su-
persymmetric chargino (which we denote by ) if there are R-violating contributions
to the charged fermion mass matrix[55]. In a one-generation model, the superpoten-

tial terms that could give such contributions are
F3mHL + h,HLE® (3.69)

with a non-vanishing sneutrino v.e.v. < 0}7|0 > = V in the second term. Including

D-term contributions and an SU(2) gaugino mass M, gives a charged fermion mass
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matrix
M, V2miycos 0 W+
(W, k7, 77) | V2 mysin B —€ h.V h (3.70)
gV -my m, T+

where tan 8 = vy/v.

The matrix (3.70), which we denote by A, can be diagonalized by independrnt

unitary transformations U, and Ug:
Ut MUg = Myiog = diag(M, M_,m,) . (3.71)

Since sparticles have not been pair-produced at LEP, we know that My > 45 GeV[73].
In fact, in the area of the ¢ — Mj plane where M_ > 45 GeV, one finds M, > 90
GeV, so the heavier sparticle can be ignored. Denoting the relevant left-eigenvectors

of M by €_,¢,, the relevant right-eigenvectors by r_,r,, and defining the matrix

Y 0 [T3 - sin 0“, Qem] (372)

the effective coupling of the Z° to the 7*x~ mass eigenstates will be
|Aess? = |6F AL + |rFar_[? (3.73)

vielding a branching ratio for Z — 7*x~ of

B(Z° = m*x") = 0.72(1 - —)2 (1- L ) Aessl? (3.74)

to which should be added the corresponding branching ratio for decays into the CP-

conjugate state.

What if LEP should see 2% — rx events with a sample of, say, 10" Z° decays?
We show in the figures contours of the values of m; and V that would give B(Z° —

7tx~") = 5 x 107 and hence 10 Z° — rx events. Three parameter choices are
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shown: ™ig. B.lisfor my £ 0, V =0, corresponding to explicit, not spontancous
R-violation, Fig. B.2 is for m; = 0 and V # 0, corresponding to spontancous, not

explicit R-violation, and Fig. B.3 is for a mixed case.

We see that the typical values of m; required in the figures to get an observable
rate for Z® — 7y decay are many orders of magnitude larger than those allowed by
the cosmological upper bound of Section 2. Thus, if LEP should sce any Z — 7y
events, one would conclude that our cosmological argument was being evaded, either
because the baryon asymmetry of the Universe was generated after the electroweak
phase transition, or because R-violation occurs spontaneously after the electroweak
phase transition, or because some accidental symmetry allows the baryon asymmetry
to survive non-perturbative effects. In the absence of such deviousness, our cosmolog-

ical argument would have led us to expect mixing 8,,, between the supersymmetric

fermion and the 7 of order

gV or my < 10~

Oyr ~ m, —m
X T

and hence B(Z° — 7y) S 10716,

e) Implications for LHC physics

The possible signatures of R-violation at high-energy pp colliders have been dis-

cussed in Ref. [46])-[57]. As discussed there, three classes of R-violating events can be
distinguished:

1) R conservation in sparticle pair-production, R violation in their decays,

2) R violation in single sparticle production, R conservation in decay,

3) R violation in single sparticle production, R violation in decay.
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Modulo the caveats expressed in the last paragraph of the previous section, the cos-
mological upper hounds on R-violation derived in Section 2 suggest the following

prognoses for observing these classes of events.

1) In this case, the sparticle pair-production cross-section would be as large as in nor-
mal analyses. The lower limit (3.61) indicates that any R-violating decays could only
occur outside the detector. Hence, if the LSP is neutral as usually expected, the sig-
nal for supersymmetry is the same missing-energy signature normally expected for R-
conserving models[68],{70]. However, if the magnitude of R-violation is in the window
(3.64), the normal cosmological argument[70] that the LSP must be weakly-interacting
and neutral (based on the non-observation{74] of anomalous heavy nuclei) is no longer
valid, and one could entertain the possibility that the LSP is strongly-interacting or
charged, even though this occurs rarely in models. A strongly-interacting LSP would
be confined with conventional quarks and /or gluons inside neutral or charged hadrons.
A heavy neutral hadron would be difficult to distinguish from a conventional neutron
or K] in a detector. A heavy, apparently stable charged particle, either strongly- or
only clectromagnetically-interacting, wouid be easy to see in principle®. We conclude
that sparticles could be seen via this class of events, although possibly via the unusual

signature of massive “stable” charged particles.

2) In this case, the bounds of Section 2.1 suggest that R-violating production cross-
sections will be too small to be detected. By the time the LHC or SSC comes into
operation, LEP will have provided model-independent lower limits on sparticle masses

of order my or mz. Hence the cross-sections for single sparticle (,‘?) production will

2Such a particle is not excluded by unsuccessful searches for anomalous heavy isotopes, because
these are only sensitive to stable relics with lifetimes > 10%.
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be suppressed relative to single 1V or Z production by a factor

- ) .
Since the LHC or SSC is expected to produce at wmost 0(10°)1¥" particles, we conclude
(modulo the caveats at the end of the previous scction on Z° decay) that this class of
events should be unobservably rare, although the missingz energy or “stable” charged
particle signature would be detectable in principle. Conversely. observation of such a
class of events would indicate that Nature was cvading our cosmological arguments

by one of the mechanisms mentioned earlier.

3) According to our cosmological arguments, the production cross-section for this
class of events should be as unobservably small as for the previous class, and there is
the added disadvantage that it is likely to be more difficult to pick out an R-violating

decay signature such as X — L+ jet or jet + jet.

We conclude that, if our cosmological arguments are correct, the prospects for observ-
ing R violation at the LHC are not brigli. The only, somewhat distant, possi” lity
of a distinctive signature appear to be that the LSP lives in the window (3.G4) and is
strongly-interacting or charged, offering the possibility of detecting heavy, apparently

stable charged sparticles.

f) Constraints on generalized matter parity

It has recently been pointed out{58] that R parity is not the only discrete symmetry
that forbids B- and L-violating dimension-four interactions involving particles in the
minimal supersymmetric extension of the Standard Model. There is just one other

example[58], a Z3 symmetry called GBPR;3L3, under which the Standard Model
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supermultiplets have the following transformation properties:

1.1

(QU,D,L,E.H,H) — (Q,%U, aD,ZL, E, %H, oH):a€Zy (3.77)

a
This has the advantage over R parity that it also forbids some B-violating dimension-

five interactions allowed by R patitx. e cubic and quartic superpotential terms

forbidden by GBPR3L3 are
Fy D ALLE° + NLQD® + N'U°DD* + QQQL+ UUDE + QQQH (3.78)

after transformation of the H and L superfields to a basis where there is no quadratic

HL mixing term. The dimension-five interaction terms allowed by GBPR;L3 are
Lx>(QUEH+LLAA+LHAA)p+(HHAE*+ H*HE+QUL*+UD"E)p (3.79)

The cosmological bounds (3.24) can be applied directly to the GBPR3L3-violating
interactions (3.78) 3 as noted in the Table, and also to the GBP R;3Lj-conserving

interactions (3.79), for which the lower bounds are
AL R 10° GeV (3.80)

at a temperature of 1 TeV. (In general, M > (1013/T)V/2" T GeV where n = D - 4
and T is in GeV.) The phenomenology of GBP R3Ls-violation that follows from the
upper bounds in the Table echoes that of R-violation which was discussed in the
previous subsections, and will not be discussed here. Note that the limits (3.80)
are, in general, bounds on a mass scale divided by coupling constants, so must be

interpreted with some care.

3These bounds were not evaluated by the authors of Ref. [58], who preferred to exploit the
loopholes mentioned in paragraph 4 of Section 1.
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3.5 Cosmological constraints on AB = 2 interactions
a) AB =2 interactions

Certain extensions of the Standard Model contain new interactions which violate
baryon number by two units. Possibilities include both AB = 2, AL = 0 in-
teractions which could induce neutron-antineutron oscillations or nucleon-nucleon
annihilation{75], and AB = AL = 2 interactions which could induce hydrogen-
antihydrogen oscillations{76]. The latter type of interaction conserves B — L, like
the non-perturbative electroweak effects, so they together may not be able to wash
out the BAU. This depends on the explicit field content of the operators, so for

convenience we will neglect this class of interactions.

The low-energy effects of AB = 2, AL = 0 interactions may be represented
by operators in an effective lagrangian involving only the light fields of the theory.
For a theory with the particle content of the minimal Standard Model, the lowest-
dimension AB = 2, Lorentz and gauge invariant operators are six-quark interactions
of dimension nine

oy 1
L34 ~ 375 (09 090) (3.81)

where for a single generation there are four independent operators of different Lorentz,

weak isospin, and colour structure.

In the case of theories with the low-energy ficld content of the minimal su-
persymmetric extension of the Standard Model, a AB = 2, AL = 0 interaction first

appears as a dimension-seven F-term
= 1 c Ncrre c [
L5552 ~ 373 (UsD DU DD )F - (3.82)

To produce an effective six-quark operator, this F-term must have the external squark
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lines “dressed” by gluino exchange, resulting in an effective interaction of the form

= a2l 1
LSISY 11~ = =5 B (1°¢°¢° 1°¢°C°) (3.83)

where 7 is the gluino mass scale.

b) Cosmological and laboratory limits

At present the best laboratory limit on the AB = 2, AL = 0 interaction comes
from Kamiokande limits on the non-observation of nucleon-nucleon annihilations in
the 160 nucleus[41]. They quote a lower limit on the inverse annihilation rate in 10
of 3.4 % 10% years at 90 % C.L., corresponding to a lower limit of 1.2 x 108 sec. at 90 %
C.L. for the free neutron-antineutron oscillation time. If we use the estimates for the
hadronic matrix element of the six-quark operator (3.81) from Costa and Zwirner{33]

or Mohapatra[42], we find that
M>10°°° GeV . (3.84)

The same estimate (and limit) would apply to the “dressed” supersymmetric inter-
action (3.83) giving
M, R (100 GeV/i)*® x 107 GeV . (3.85)

If we now compare these to our cosmological rate estimate (3.17) and demand
that out-of-equilibrium condition (3.24) be respected at temperatures T < 1,4, We
see that the direct laboratory limits are several orders of magnitude weaker than the

cosmological limits calculated at T, ~ 1012 GeV:
M > 10"4 GeV, M, > 107 GeV (3.86)

but stronger than the bounds computed at Tyo, ~ 1 TeV:

2/3
100 ~GeV) GV

M>100GeV, ALD 105( =

(3.87)
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So, if neutron-antineutrcn oscillations were seen in the laboratory close to present
experimental limits , our analysis suggests that the baryon asymmetry of the Universe

was either produced late (at the EPT?) or as an ep asymmetry.



CHAPTER FOUR
EQUILIBRIUM CONSTRAINTS

4.1 Equilibrium in the early Universe

If a particle species in the early Universe is interacting sufficiently fast (T 3> H),
the timescale on which the temperature is changing is much longer than that on
which the interactions take place, so one can pretend that the particle species i has

an equilibrium number density:

i [® 2d
ni(mi,uisT)_ J ‘[) i (4.1)

T o2 elE-mIT + 1

where - (+) is for bosons (fermions), g; is the number of spin states, m; is the mass
and p; is the chemical potential (4 < m for bosons). In the limit m;, y; < T, (4.1)

can be approximated as

/°° (22 + ar)(1 + a/x + (a* = V*)/az?)dr
0

n Ji 3
n'_'wQT ec+1

3 (4.2)

where z = (E — u)/T,a = p/T,b = m/T and one usually neglects the chemical

potential and mass terms because they are very small.

The chemical potential of the i** particle species in a thermal bath is defined

as
= 9F

where F is the Helmholtz free energy and JV; is the number of particles ‘i’ in the bath.

(4.3)

Intuitively, y; is the energy (in excess of that of the particle) that one must add to
the system when one adds a particle, so the anti-particle number density will be (4.1)

with the opposite sign for . For u,m <« T, the particle asymmetry can therefore be

63
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..pproximated as

. . , 2 | 2 bhosons
~ 2Git2 ,,./ fol o~ g"GT (4.4)

. 1 fermions

If one neglects the masses of the particles in the carly Universe, the baryon
and lepton asymmetries of the Universe in the Standard Model and the minimal su-
persymmetric Standard Model are proportional to sums of chemical potentials (when

masses are neglected):

B = B + Bp x 3, —-{ (uf, +dy) + (uhy + db)}

gen.=i

L =Lg+Lg o« ) {(e,+v})+ep) (4.3)

gen=i

N.. . o .
B =B, +Br+Bs « ). ?{(u‘L+d‘L)+(u'R+d‘,,)+2(U'L+D +Uj + D)}

gen.=i

L =Li+Lp+Ls o« Y {(e} +v)) +ef+2AEL + V] + E}))

gen=i

where Bg and Lg are the baryon and lepton number carried by scalars, N, is the
number of colours and the chemical potential for a particle is represented by the
symbol for that particle. It will be useful later to have the B and L carried by the

fermions divided into LH and RH components, because the sphalerous take B+ L —
0.

Equation (4.5) is strictly true only when the particles are massless [36, 37)
which we assume to be the case above the electroweak phase transition. The asym-
metry in relativistic leptons, for example, of mass m; and chemical potential y; would
be y;f(m;/T), so that even if 3" u; = 0, (lepton number violating interaction in equi-
librium), one would not get L = 0. However, since the sphalerons go out of equilibrium

at a temperature that is comparable with that of the EPT, this does not substantially
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affect the bounds computed in the previous chapter. (Except, perhaps in the case of
an Affleck and Dine [79] baryogenesis scenario with a reheat temperature below that

of the EPT.)

When the number density of a particle species “a” in a thermal bath is con-
stant, it is said to be in chemical equilibrium [78]. If it is kept in chemical equilibrium

via an interaction:
p q
Z n.-I,- - E ijj (46)
i=1 j=1

where n; (m;) is the number of incident (outgoing) particles f; (O;) and a is one of
the i or j, then demanding that the total derivative of the free energy with respect

to N, [78] be zero gives

OF N, & 3
— =) ni;—y mip;=0. (4.7)
2,: N ON, g ,; "

So when a reaction is in equilibrium, the sum of the chemical potentials of the ingoing
particles is equal to that of the out-going and every such reaction constrains the
chemical potentials to satisfy a homogeneous equation. Solving for the potentials is a
simple exercise in matrix algebra; if there are m interactions in equilibrium, involving

n particles, then one can write this as the matrix equation

Mi=0 (4.8)

where M is an m x n matrix. If m > n, then g = (1, ft2y o itn)¥ = 0, and the
interactions take all the particle asymmetries to zero. If instead n — m = p > 0, then
there are p symmetries or possible combinations of chemical potentials that sum to a
constant = a conserved quantum number. {These are not neccessarily symmetries of

the lagrangian; there could be out-of-equilibrium interactions that violate them.)
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4.2 Chemical potentials in the Standard Model

Above the electroweak phase transition, the gauge bosons are massless and should
have zero chemical potential (unless there is a condensate, but this would break the
gauge symmetry). One can show [6] that requiring the thermal bath to have Q4 = 0
(where Q3 is the charge associated with the diagonal SU(2) generator) implies that
the chemical potential of the W's is zero. A similar argument should apply to the
gluons, so one can conclude that all particles in a gauge multiplet have the same
chemical potential. If one just considers gauge interactions, there are 16 independent
chemical potentials: h, €}, q},e%, ub, di, where i is a flavour index running from 1
to 3. Requiring that the total electric charge, or hypercharge, be zero gives another

constraint:

N, N, - :
Qe,,,=‘93‘ (qz+2up~dp) =3 €, =S e +h=0 (4.9)

which can be used to solve for h as a function of chemical potentials carrying B or L.

Including the Higgs interactions implies

—h+0, -eh=0
~h+q -dh=0 (4.10)

htq —uly=0

The lepton-Higgs interactions leave one independent lepton chemical potential per
generation. Since the quark-Higgs couplings are not generation diagonal, there will
be one free quark potential. The free chemical potentials correspond to the four
global symmetries of the SM Lagrangian: L;, B. Note, however, that unless & = 0,

the asymmetries stored in the left and right-handed particles will not he equal.
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The electroweak B + L violating processes require
3Ny + Y €, =0 (4.11)

leaving the three global symmetries B/3 — L'. Now suppose that all the above Stan-
dard Model processes, and the sphalerons, are in thermal equilibrium; if any interac-
tion violating all the L' or B/3 — L’ comes into thermal equilibrium, it will provide
three more homogeneous equations for (4.8), and fc rce every chemical potential to
zero.So any L or B — L violating intei:ction with - neric generation non-diagonal

couplings will take the baryon asymmetry to zero.

However, one does not have to force all the chemical potentials to zero to wipe

out the BAU; one just needs
B = Ny(2q, + ug+dg) = 4Nyq, =0 (4.12)

so a “beyond the Standard Model” B violating interaction that takes g to zero will
remove any existing baryon asymmetry. This is independent of non-perturbative elec-
troweak effects (equation 4.11). However, if the sphalerons are in thermal equilibrium,
any B violating interaction will wipe out the BAU, not just those that take q; to zero.
(Algebraically, this is because one can express h as a function of q, alone using (4.11),
so that q; or ug or dg = 0 implies h = 0 and ug = dg = q¢ = 0.) It is also worth
noting that L violating interactions do not need to take each family asymmetry to

zero; one only needs L' + L2 + L3 — 0.

It has just been shown that any B, L, or B — L violating interaction in ther-
mal equilibrium with the sphalerons would wipe out a pre-existing BAU, which is the
premise we used to calculate bounds on higher dimensional SM operators in the pre-
vious chapter. Such constraints get better for high temperatures, so one would like to
know the maximum temperature at which they are applicable . .. which unfortunately

is rather low.
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The gauge interactions are quite strong, so should stay in thermal equilibrium
up to higher temperatures than the “sphalerons”. The Higgs Yukawa couplings are

in some cases very small, and taking the rate for h — ey ep to be

h2 m?
~ ~2%%ce’'th
[~ 10722t (4.13)

then I' < H above T ~ 1 TeV. One can casily calculate the temperature at which
the other Higgs couplings go out of equilibrium, but this is not the point. If the RH
electrons are not in chemical equilibrium with the rest of the SM particles, one could
in principle store an asymmetry in them, allow arbitrary B and/or L interactions
to be in thermal equilibrium with the sphalerons down to T > 1 TeV, and then
transfer the ep asymmetry to the baryons via the higgs coupling and the sphalerons.
The maximum temperature at which our constraints apply therefore depends on the
baryogenesis model. If the asymmetry is created in the LH fermiouns, we can use

Tha: = 10'2 GeV, and get very strong limits. If it is in some RH fermion, then the

bounds are weaker.

4.3 The Minimal Supersymmetric Standard Model

In the MSSM, the scalar partners of the leptons and quarks carry B and L (see
equations 4.5). In an exactly supersymmetric theory, they would be massless above
the electroweak phase transition, and could only carry an asymmetry in a condensate.
However, we expect supersymmetry to be broken by explicit mass terms for the
superpartners because they have not been observed, so the squarks and sleptons can

have chemical potentials.

Asin the SM, the gauge interactions will force all members of a gauge multiplet

to have the same chemical potential (providing the gauge symmetry is unbroken).
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The quartic scalar field couplings from the F and D terms of the supersymmetric
lagrangian do not bring particles into chemical equilibrium (no constraints on the
chemical potentials) because they always involve particle anti-particle pairs. The
D term Yukawas, involving a gaugino and the fermion and scalar components of a
superfield imply:

¢+A+¥=0 (4.14)

where ¢, ¥ and ) are the chemical potentials for the matter scalar and fermion and

the gaugino respectively. As a particlular example of this, one has

Qu+i+qr=0
Qu+W+q, =0 (4.15)
QL+E+qL=0

where Q; is the “left-handed” scalar quark doublet, § the gluino, W the wino and
B is the fermion partner of the hypercharge gauge boson. All the gauginos therefore
have the same chemical potential, and one can calculate the chemical potential of any

scalar knowing that of the gauginos and the fermion superpartner.

Since we are working above the EPT, we assume that the gauge bosons have
zero chemical potential. After including, as above, constraints on other particles
due to the gauge interactions being in chemical equilibrium one is left with eighteen
free chemical potentials which can be taken to belong to the fermions: A (the gaugino
chemical potential), £, €5, ¢}, u$i, d5, h and h, where i is a generation index, fermions
are lower case letters and scalars are capitals (so h and h are the superpartners of
the Higgs). Demanding that the electric charge of the thermal bath be zero gives one

more constraint.

The Higgs mixing term e H will force H to have the opposite chemical po-

tential from H. Each trilinear term in the superpotential contributes three Yukawa
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interactions to the lagrangian, and these will share the same equation of chemical

equilibrium, given the relation between scalars and fermions in (4.15). Using h = —h,

these will be

€, —h—(ei+2)=0
gt —h—(d3+)) =0 (4.16)
gL +h—(uf+2)=0

There are now five chemical potentials left, which can be taken to be £}, q; and .

If the sphalerons are in thermal equilibrium, there is one more constraint.
However, it is not the same as in the Standard Model, because gauge field config-
urations of finite winding number couple to the axial current, and there are chiral
fermions in the MSSM that do not carry baryon or lepton number.The appropriate
equation is [13

e+ Y G (h+hy+4A=0 . (4.17)

This allows u= . ..-apute A in terms of By and Ly, but imposes no coustraints
on B or L unless we already know \. One could thercfore have B or L violating
interactions in thermal equilibrium with the sphalerons without wiping out the BAU.
However, one expects SUSY breaking majorana masses for the gauginos (we have not
seen gluinos), which would force A — 0, so that (4.17) would reduce to the same

equation as for the Standard Model, and all the arguments of the previous section

would apply.

It has been shown [13] that at temperatures sufficiently high that the e HH
Higgs mixing term and the SUSY breaking mass terms are out of thermal equilib-
rium, the MSSM has extra anomalous global symmetries. One then finds [13] that

the sphalerons take B + L + ‘the conserved charge of one of these symmetries' to
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zero, so that in the presence of B, L or B — L violation, the BAU is not washed
out. However, the right-handed electron drops out of chemical equilibrium before the
supersymmetry-breaking mass terms, so this argument will not be reviewed in detail

here.

4.4 Protecting the BAU

In this thesis, I have used B to represent both the quantum number and the asym-
metry, which naturally leads to some confusion. In the first sense, B is a quantum
number: +1/3 for quarks of all colours, chiralities and flavours. In the second sense,
B is the sum of the particle-anti-particle asymmetries for all the baryon-number car-
rying particles (see equation 4.3). The confusion arises because interactions that
violate B in the first sense (B for the rest of this section) do not necessarily take B
in the second sense (b for the rest of the section) to zero. For instance, as pointed
out by Dreiner and Ross, [36}], the U°D°D® superpotential term in the MSSM would

not wash out the BAU in the absence of sphalcrons because it gives
up+2dp=3q.-h=0 (4.18)

which does not imply b(= 12q;) = 0 unless & is known as a function of ¢ (as is the
case when sphaierons are in equilibrium). This interaction allows two dp quarks to
turn into an anti-Ug squark, so in equilibrium the excess of Up will be twice that of
the dps. This dees not force the BAU to zero because the chiral structure of the SM

puts different fractions of the baryon asymmetry into the ug, dp and q;.

For the same reason, although the sphalerons violate B + L, they do not take
b+ [ to zero: one can easily see, from (4.9), (4.5) and (4.10) that (4.11) implies

52
b+ =0 .
+53 (4.19)
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If all the Standard Model interactions and the “sphalerous™ are in chemical
equilibrium, any interaction forcing b or [ to zcro will wipe out the BAU. Hence the
constraints of chapters 2 and 3. However, although any B violating interaction takes
b to zero in this case, it is not true that any L violating interaction will take ! to
zero. This is because the SM conserves each lepton family number individually. So
if one of the lepton family numbers is accidentally conserved in a B — L violating
interaction, [ will not go to zero, and the baryon asymmetry will survive [3]. There
is no particular reason to assume that an L-violating interaction wonld respect one
of the lepton family numbers; however. if it was incapable of taking [ to zero, none of

the constraints calculated in this thesis would apply.

It has been previously mentioned that the smallness of the Higgs coupling
between left and right handed fermions makes our constraints on higher dimensional
operators weaker than one might initially think. This is 2 variation on the obser-
vation that an accidentally conserved quantum number can protect the BAU: if a
right-handed particle is out of chemical equilibrium with respect to the rest of the
SM particles, it behaves as if it carried an accidentally conserved gnantum wunber,
and any asymmetry stored in it is effectively conserved until the particle comes into
chemical equilibrium. It is possible that our constraints still apply at T > 1 TeV
(when the ep go out of chemical equilibrium), but this hecomes a model dependent
statement. For instance, if the asymmetry is produced in the LH fermions, the con-
straints apply up to ~ 10'2 GeV (10° GeV in the MSSM [13]) and are very strong; on
the other hand, if the asymmetry is in the right-handed electrous, B — L-violating

interactions can be in equilibrium down to temperatures of order 1 TeV.



CHAPTER FIVE
CONCLUSION

In chapter two we presented order-of-magnitude constraints on B- and L-violating
extensions of the Standard Model that follow from requiring that a primordial cos-
mological baryon asymmetry survive despite the strong non-perturbative clectroweak
interactions that violate B+ L and conserve B— L. In chapter three, we examined this
scenario more carefully, giving quantitative rate estimates for different interactions
and obtained generic bounds on the corresponding couplings. We then made applica-
tions of these bounds to explicit and spontaneous lepton number violation, and to the
violation of R [68] (and GBPR;3L;) (58] parity in supersymmetric models. We also
discussed cosmological constraints on AB = 2 interactions that can be independent

of the «+istence of non-perturbative clectroweak interactions.

As seen in the tables, our bounds are in general much more stringent than those
coming from present laboratory experiments. Thus, for example, if our arguments
apply, R-violating decays of the Z° or of the LSP should be unobservable, and the
only possible observable signature of R-violation would be a small window for the
LSP to be a massive charged or strongly-interacting particle which would live long
enough to appear stable in any laboratory experiment, but with a lifetime < 104 s.
Cosmological arguments also suggest that n — #i oscillations or N — .V annihilations

in nuclei should be unobservable.

As we pointed out in the introduction to chapter 3, there are several loopholes
in our cosmological arguments. For example, generating the cosmological baryon

agymmetry at some temperature 7' < T, ~ 100 GeV seems to require new physics
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beyond the Standard Model at the electroweak scale (an extra Higgs doublet ? addi-
tional CP-violation ?). Spontaneous R-violation is also likely to require an extension
of the clectroweak sector of the Standard Model. In fact, the only way of avoiding
our constraints without introducing new physics appears to be to protect the BAU

with a conserved {or effectively conserved) quantum number.

One could therefore conclude that the observation of a large Majorana neu-
trino mass, or of R- or GBPR3Lj-violation, or any other interaction violating our
constraints could be taken as evidence that other new physics conld show up in ac-

celerator experiments.
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Iuteraction | D T = 100 GeV lab limit
12l 2 p<.1GeV it <1—=100 GeV
migdel | 3| m§<107® GeV none ?
mylesl |31 my<107% GeV none ?

mjucdeds | 3 | mg <1075 GeV none ?
m:{lfz 3 | mf <3x1075 GeV m:{ <0.lm&w

Table A.1: bounds on B or L violating soft (D < 3) supersymmetry-breaking inter-

actions
Interaction | D T =100 GeV lab limit
m(LH)f 3 Im<3x107% GeV m < 0155
M(LLE®)r | 4 A< 1077 MB < 2 x 10732
A(QDL)r | 4 A< 1077 MB < 1073 !/
A(UeDDe)p | 4 A< 1077 M < 2 x 10-75(35';-;35’2
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Table A2: bounds on renormalizable (D < 4) supersymmetric B or L violating

interactions
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Figure B.1: The Rp violating branching ratio BR(Zp — 7*x.) in the (eM,) plane
with V = 0. The dashed lines are contours of M; (in GeV) that would give 10 events
at LEP with 107 Z¢s. The solid lines correspond to M, = 40 (90) GeV.



200

175

150

125

100

75

50

25

0

-400 -300 -200-100 O
¢ (GeV)

Appendiz B 83

l
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Figure B.2: The Rp violating branching ratio BR(Zp — 7+x..) in the (eM,) plane

with M = 0. The dashed lines are contours of V (in GeV) that would give 10 events
at LEP with 107 Zys. The solid lines correspond to M, =40 (90) GeV.
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Figure B.3: The Rp violating branching ratio BR(Zo — 7*x_) in the (eM>) plane.
The dashed lines are contours of M; = V (in GeV) that would give 10 events at LEP
with 107 Zgs. The solid lines correspond to M, = 40 (90) GeV



