
University of Alberta

Low POWER, HIGH THROUGHPUT INTERNET ROUTING TABLE LOOKUP

USING MULTI-BIT TRIES OF SRAM

by

Jason W. Klaus

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful­
fillment of the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Fall 2008

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-55122-1
Our file Notre reference
ISBN: 978-0-494-55122-1

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par ('Internet, prefer,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriety du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• + •

Canada

In loving memory of my father...
who taught me to dream in binary

Abstract

A solution to the Internet routing table lookup problem for "backbone" routers is

presented. It leverages the power efficiency and low cycle times of Static Random

Access Memory (SRAM) to construct a pipelined fixed-stride multi-bit hardware

trie on a proposed chip, with very low power consumption. The parallelism in the

design proves to be far more scalable than the industry standard Ternary Content

Addressable Memory (TCAM), requiring 16.7% of the TCAM chip area and 1.1%

of the power, per lookup, for the same number of lookups per second. Unlike

other hardware trie implementations, the design also boasts well bounded worst

case update times.

Acknowledgements

I would like to thank my professor, Dr. Duncan Elliott, for his guidance, instruction
and support. I would also like to thank my colleagues for their suggestions and
assistance: Tyler Brandon, John Koob and Leendert van den Berg.

This research was funded by Alberta Ingenuity, the Alberta Informatics Circle
of Research Excellence (iCORE), the Natural Sciences and Engineering Research
Council of Canada (NSERC), and the University of Alberta.

Table of Contents

1 Introduction to Internet Routing 1
1.1 Internet Protocol (IP) 1
1.2 Routing Table Lookups 2
1.3 IPv4 Address Space Growth and Exhaustion 4
1.4 Introduction to IP version 6 (IPv6) 6
1.5 The Proposed Solution 7

2 Previous Work in Routing Table Lookups 9
2.1 Software Approaches 9

2.1.1 Background on Software Tries 10
2.1.2 Software Trie Approaches 12
2.1.3 Other Software Approaches 15

2.2 Hardware Solutions 17
2.2.1 Background on TCAM 17
2.2.2 TCAM Approaches 19
2.2.3 Background on Hardware Tries 24
2.2.4 Hardware Trie Approaches 25
2.2.5 Other Hardware Approaches 28

3 Design 33
3.1 Significant Differences 34
3.2 Lookup Bank: An SRAM Bank And A Register 36
3.3 Lookup Node: Lookup Bank For Multiple Agents 37
3.4 Background: Multiplexing Signals 38
3.5 Lookup Bus: Connects Multiple Lookup Nodes 39
3.6 Lookup Stage: Lookup Bus With Agents 41
3.7 First Lookup Stage: A Special Case 42
3.8 Lookup Table: Combines Multiple Stages Together 45
3.9 Lookup Process 45
3.10 Update Process 48

3.10.1 Addition Process 50
3.10.2 Removal Process 50
3.10.3 Worst Case Updates 53

3.11 Arbiter 55

3.12 Packaging & I/O Signals 56

4 Testing 59
4.1 VHDLCode 59
4.2 Functional Simulation 59
4.3 FPGA Implementation 60

5 Quantitative Comparisons of Stride Choices 63
5.1 Source of Routing Table Data 63

5.1.1 Border Gateway Protocol (BGP) Tables 64
5.1.2 The Largest Routing Table 65
5.1.3 Reducing the Complexity of Stride Choice Comparisons . . 65

5.2 Developing Stride Choice Comparison Metrics 69
5.2.1 Metric #1: Required Memory Bits 69
5.2.2 Metric #2: Required Memory Entries 70
5.2.3 Metric #3: Required Design Area 70

5.3 Stride Choice Comparisons Using Three Metrics 74
5.3.1 Metric #2: Required Memory Entries 74
5.3.2 Metric #1: Required Memory Bits 77
5.3.3 Metric #3: Required Design Area 77

6 Comparisons with TCAM 87
6.1 Features of the TCAM Solution 87
6.2 Comparison of the TCAM Solution 92

7 Conclusion 95

7.0.1 Future Work 96

Bibliography 97

A History of the Internet Protocol (IP) 107

B Process Examples 109
B.l Lookup Process Examples 109

B.l.l Lookup Example 1: IP Address 01101111 109
B.1.2 Lookup Example 2: IP Address 11010010 109

B.2 Addition Process Examples 116
B.2.1 Addition Example 1: Prefix 01101000/7-+ Port 4 116
B.2.2 Addition Example 2: Prefix 01100000/3^ Port 1 116

B.3 Removal Process Examples 125
B.3.1 Removal Example 1: Prefix 01100000/3 125
B.3.2 Removal Example 2: Prefix 01101000/7 125

List of Tables

1.1 Example Routing Table Lookup 4

1.2 Different Router Requirements 4

2.1 Example 8 bit IP address prefixes 25

3.1 Example 8 bit IP address prefixes 35
3.2 Comparison Of Different Multiplexer Designs 39
4.1 Xilinx Virtex-II Pro XC2VP100 FPGA Features 60
4.2 Lookup Table FPGA Resource Usage 61

5.1 Performance of a State of the Art SRAM 71
5.2 Formulas for Estimating the Performance of a State of the Art SRAM 72
5.3 Formulas for Estimating the Performance of a Design 73
5.4 Ratio of Throughput to Chip Area For the Best Three Stride Choices 86
5.5 Performance of the Design with Preferred StrideChoice {09,07,08,03,05} 86

6.1 Features of the Required Forwarding Next Port SRAM 90
6.2 Features of the TCAM Solution 92
6.3 Feature Differences Between TCAM Solution and the Proposed So­

lution 93

List of Figures

1.1 Internet Routing Example: Computer A sends a packet to Computer
B on a different Internet Service Provider (ISP) 3

2.1 Example Basic Binary Trie 11
2.2 Example Binary Patricia Trie 11
2.3 Example Basic Prefix Trie 12
2.4 Example Fixed-Stride {2,1} Prefix Trie 13
2.5 TCAMCell 18
2.6 Example Fixed-Stride {4,2,2} Hardware Prefix Trie 25

3.1 Example Fixed-Stride {4,2,2} Hardware Prefix Trie With Default
Ports 35

3.2 Example Lookup Bank 36
3.3 Lookup Node For L Lookup Agents 38
3.4 Three Different Multiplexing Schemes 39
3.5 Lookup Bus For L Lookup Agents And B Lookup Nodes 40
3.6 Lookup Stage For L Parallel IP Address Lookups 43
3.7 First Lookup Stage For L Parallel IP Address Lookups 44
3.8 Lookup Table Composed of N Stages For L Parallel IP Address

Lookups 46
3.9 IP Address Lookup Process 47
3.10 IP Address Prefix Addition Process 51
3.11 IP Address Prefix Removal Process 52

5.1 Prefixes of Each Length in the Routing Table of AS7500 66
5.2 Required Next-Stride Lookup Tables For Each Total of All Previous

Stride Bits to Support All Routing Tables 68
5.3 Preferred Stride Choices for Minimizing the Design's Required Mem­

ory Entries 76
5.4 Preferred Stride Choices for Minimizing the Design's Required Mem­

ory Bits 78
5.5 Preferred Stride Choices for Minimizing the Design's Chip Area . . 79
5.6 Total Power Consumption for the Preferred Stride Choices for Min­

imizing the Design's Chip Area 81

5.7 Maximum Throughput for the Preferred Stride Choices for Mini­
mizing the Design's Chip Area 83

5.8 Design Chip Area vs. Maximum Throughput for All Stride Choices
and 16 Lookups/Cycle 85

6.1 TCAM Search Throughput and Active Power Consumption for Var­
ious Numbers of Banks 89

6.2 TCAM Leakage Power for Various processes 91

B.l Lookup Example 1: First Stage Lookup Returns A Pointer 110
B.2 Lookup Example 1: Second Stage Lookup Returns A Pointer I l l
B.3 Lookup Example 1: Last Stage Returns A Port Number 112
B.4 Lookup Example 2: First Stage Lookup Returns A Pointer 113
B.5 Lookup Example 2: Second Stage Lookup Returns A Port Number . 114
B.6 Lookup Example 2: Last Stage Doesn't Perform A Lookup 115
B.7 Addition Example 1: First Stage Lookup Returns A Pointer 117
B.8 Addition Example 1: Second Stage Lookup Returns A Port Number 118
B.9 Addition Example 1: Second Stage Entry Changed To Point To

Newly Allocated Bank 119
B.10 Addition Example 1: Third Stage Entry Changed To New Prefix's

Port Number 120
B.ll Addition Example 1: Third Stage Entry Changed To New Prefix's

Port Number 121
B.12 Addition Example 2: Prefix Does Not Extend Past First Stage 122
B. 13 Addition Example 2: First Stage Entry's Pointer Followed And Tar­

get Bank's Default Entry Changed To New Prefix's Port Number . . 123
B.14 Addition Example 2: First Stage Entry Changed To New Prefix's

Port Number 124
B. 15 Removal Example 1: Search Of First Stage For A Replacement Prefix 126
B.16 Removal Example 1: First Stage Entry's Pointer Followed And Tar­

get Bank's Default Entry Removed 127
B.17 Removal Example 1: First Stage Entry Removed 128
B. 18 Removal Example 1: No Bank Deallocation Possible 129
B. 19 Removal Example 2: First Stage Lookup Returns A Pointer 130
B.20 Removal Example 2: Second Stage Lookup Returns A Pointer . . . 131
B.21 Removal Example 2: Prefix Does Not Extend Past Third Stage . . . 132
B.22 Removal Example 2: Third Stage Entry Removed 133
B.23 Removal Example 2: Third Stage Entry Removed 134
B.24 Removal Example 2: Third Stage Bank Deallocation May Be Possible 135
B.25 Removal Example 2: Third Stage Bank Entry Matches Default Entry 136
B.26 Removal Example 2: Third Stage Bank Entry Matches Default Entry 137
B.27 Removal Example 2: Third Stage Bank Entry Matches Default Entry 138
B.28 Removal Example 2: Third Stage Bank Deallocated 139

B.29 Removal Example 2: Second Stage Bank Entry Matches Default
Entry 140

B.30 Removal Example 2: Second Stage Bank Entry Matches Default
Entry 141

B.31 Removal Example 2: Second Stage Bank Entry Matches Default
Entry 142

B.32 Removal Example 2: Second Stage Bank Entry Mismatches De­
fault Entry 143

List of Acronyms

AS Autonomous System
ASIC Application Specific Integrated Circuit
BCAM Binary Content Addressable Memory
BGP Border Gateway Protocol
CAM Content Addressable Memory
CIDR Classless Inter-Domain Routing
CMOS Complementary Metal Oxide Semiconductor
CPU Central Processing Unit
FPGA Field Programmable Gate Array
FTP File Transfer Protocol
IC Integrated Circuit
IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
ISP Internet Service Provider
LUT Look-Up Table
NAT Network Address Translator
NNTP Network News Transfer Protocol
SMTP Simple Mail Transfer Protocol
SOC System On a Chip
SRAM Static Random Access Memory
TCAM Ternary Content Addressable Memory
TCP Transmission Control Protocol
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VLSI Very Large Scale Integration

Chapter 1

Introduction to Internet Routing

This thesis presents a solution to the routing table lookup problem. This chapter

describes the problem in detail by first explaining the Internet Protocol (IP), then

how computers are addressed and organized into networks, and finally how routers

forward packets between computers. The chapter also describes how the current

IP version 4 (IPv4) address space grew, the problem of its eventual exhaustion, the

motivation for adopting the new IP version 6 (IPv6), and the relevance of solutions

to IPv4 routing table lookups to IPv6 routing table lookups. Finally an overview of

the proposed solution is presented. A history of the Internet and the IP can be found

in appendix A and should be read first by anyone not familiar with them.

1.1 Internet Protocol (IP)

The Internet Protocol (IP) defines the most fundamental details about how com­

puters communicate over a network. Each computer's interface on the network is

assigned a different and unique IP address. To communicate, computers send data

to each other in the form of packets. Each packet has a two parts: a header which

contains IP information, and a body which contains the actual data. Each IP header

contains, among other information, a source and a destination address, correspond­

ing to the computer that sent the packet and the computer that is to receive the

packet, respectfully. In IP version 4 (IPv4), the version predominantly used today,

IP addresses are four bytes (32 bits) long [53]. IPv4 addresses are often expressed

1

1 Introduction to Internet Routing Klaus

as four tuples of decimal numbers between 0 and 255 each, such as 192.168.1.1.

For very large IP networks, such as the Internet, it is impractical to have every

computer connected to every other computer directly. A common solution to this

problem is to group a bunch of local computers together into a smaller network,

called a subnet. These computers are all connected to a common router that controls

the subnet, which in turn can be connected to other routers. Several subnets are

then connected together through a router to form a larger subnet, usually called

a site, and so on, until the entire network is connected. Computers on the same

subnet are often assigned a contiguous range of IP addresses, such as 192.168.1.1,

192.168.1.2, ... to 192.168.1.15 for a 15 computer network for example. Subnets

are often represented as a prefix of the group of IP address of the computers they

comprise, which is written as a normal IP address followed by a forward slash

and the length of the prefix in bits out of 32. For example, 192.168.1.0/24 is a

prefix that represents the 256 IP addresses between 192.168.1.0 and 192.168.1.255

inclusive.

To send a packet to another computer, a computer first forwards the packet to

its local router, which analyzes the packets' destination IP address. If the packet

is destined for a computer directly connected to the router it forwards it to that

computer. If not, then the router looks at a set of rules to determine where the

packet should go. Often the router will forward the packet to another router it

thinks is closer to the destination computer. That router then uses its own rules

to determine where the packet should go, and so on and so on, until the packet is

ultimately forwarded to its destination. A slightly more complicated example of

this can be seen in Figure 1.1.

1.2 Routing Table Lookups

As mentioned in the previous section, routers forward the packets they receive to

their destinations. They do this by keeping routing tables that contain rules that

match various fields in a packet's header (most commonly the packet's destination

IP address) to output ports on the router. A router's ports might be connected to

2

Klaus 1.2 Routing Table Lookups

Computer A

Backbone
ISP Router A

Backbone
ISP Router C

Computer B

Backbone
ISP Router B

Figure 1.1: Internet Routing Example: Computer A sends a packet to Computer B
on a different Internet Service Provider (ISP)

computers or even other routers. Rules that match on the destination IP address are

expressed as IP address prefixes representing wildcarded ranges of IP addresses. If

an incoming packet's destination IP address falls under the range of one of these

address prefixes it is forwarded to the port indicated by that rule. If more than one

prefix is a match for a particular destination IP address then the longest match­

ing prefix is considered to be the best match and that rule used. For example,

if a router's lookup table contains the address prefixes listed in Table 1.1, and it

received a packet with destination IP address 192.168.5.2, then it would be for­

warded to port 7, not port 12, since 192.168.5.0/24 is a longer matching prefix

than 192.168.0.0/16.

Routing tables are also dynamic. As new computers, routers and subnets are

added to the Internet, new entries must be added. Likewise, if old computers,

routers or subnets leave the Internet, some entries must be removed. More com-

3

1 Introduction to Internet Routing Klaus

IP Address Prefix
192.168.0.0/16
192.168.5.0/24
192.169.0.0/16

Destination Port
Port 12
Port 7
Port 14

Table 1.1: Example Routing Table Lookup

Router Application
Small Subnet

Small ISP
Medium ISP
"Backbone"

Lookup Table Entries
10

100
1000

250,000

Packets Per Second
100

10,000
1,000,000

1,260,000,000

Table Updates
1 per day

1 per minute
1 per second

100 per second

Table 1.2: Different Router Requirements

monly, hardware failure, power outages or any number of reasons may cause a

computer, router or subnet to temporarily leave the Internet, only to return later. In

all these cases the routing tables must adapt to ensure packets reach their destina­

tions whenever possible.

Routing requirements vary considerably depending on what role the router plays.

A router that administers a small subnet of only a handful of computers might have

only a handful of routing table entries, process only hundreds of packets a second

and rarely need updating. In stark contrast, a so called "backbone" router that con­

nects the largest Internet sites together can have 250 thousand routing table entries

[27], processes 1.26 billion packets per second1, and requires updating 100 times

a second [22]. This disparity in routing requirements is summarized in Table 1.2.

Clearly, designing solutions for routing table lookups for "backbone" routers is a

considerable challenge.

1.3 IPv4 Address Space Growth and Exhaustion

When the Internet first began it was envisioned that only a handful of governments,

universities and corporations around the world would ever utilize it. After all, these

large organizations were the only ones that could afford to have computers and pay

'Current backbone routers support 1.2 Tbps switching [65]. Assuming an average packet size of
1000bits [22]: l.2Tb/sx \024Gb/Tb + WOObits/packet = \MGp/s

4

Klaus 1.3 IPv4 Address Space Growth and Exhaustion

the enormous communications costs. To this end, the IPv4 32bit address space was

allocated into three different classes to correspond roughly with the sizes of subnets

that the Internet would comprise. Class A allotments were the largest, assigning a

single 8 bit prefix to an organization for a total of 224 = 16,777,216 IP addresses.

Class B allotments were the middle ground, assigning a single 16 bit prefix to an

organization for a total of 216 = 65,536 IP addresses. Class C allotments were the

smallest, assigning a single 24 bit prefix to an organization for a total of 28 = 256

IP addresses [19].

This prediction didn't hold, however. Advances in technology soon brought

computer and bandwidth prices crashing down, making it far more affordable to be

on the Internet. Many companies started seeing the Internet as a new frontier for

business and were eager to get connected. The number of organizations requesting

class B allotments sky-rocketed, threatening to exhaust that class of addresses. In

an effort to slow down this trend and provide a short term solution, Classless Inter-

Domain Routing (CIDR) was introduced. CIDR abolished the three class system of

address allocation, allowing organizations to be allocated any address prefix length

that they required. Since many organizations needed more than 256 IP addresses

(former class C) but far less than 65,536 IP addresses (former class B) several such

organizations could split the space formerly reserved for one class B prefix instead

of each requiring their own. An unfortunate side effect of CIDR was a complica­

tion in "backbone" routing table lookups, as subnet address prefixes could now be

any length instead of falling into one of three classes, dramatically increasing the

difficulty of the longest prefix matching problem.

Around the same time as CIDR a new specification emerged called Network

Address Translator (NAT) [62]. NAT describes how a subnet of computers can

use private IP addresses for communication amongst themselves, but then bind to

globally unique IP addresses for connections to computers outside the subnet. This

allows many organizations to reuse the same IP address ranges internally (often

ranges that are not allowed to be used globally) while retaining a much smaller set

of globally unique IP addresses for whenever external connections are required. The

5

1 Introduction to Internet Routing Klaus

end result is that organizations can make due with much smaller global IP address

range allotments, further delaying the effects of IPv4 address space exhaustion.

1.4 Introduction to IP version 6 (IPv6)

While both CIDR and NAT greatly slowed the rate of IPv4 address space exhaus­

tion, they are not long term solutions [19]. To solve the problem once and for all,

the IP version 6 (IPv6) specification is being slowly adopted [15]. IPv6 calls for

128 bit IP addresses, and in its current form, reintroduces at least a partial partition

to the address space once more [24]. The lower 64 bits of each IPv6 address repre­

sents a universal identifier for the specific device. The upper 64 bits of each IPv6

address designate the particular subnet the address belongs to, being split between a

global IPv6 address prefix for the site the subnet resides in and an ID for the subnet

within the current site. The exception to this rule is the section of IPv6 address

space allocated to mapping to the old IPv4 address space in the name of backward

compatibility.

At first glance it looks as though the requirements of IPv6 routing tables are

significantly different than those of IPv4 routing tables. While the IPv4 address

space is very densely allocated into prefixes of varying lengths, the IPv6 address

space will be very sparsely allocated into prefixes of a few standard lengths. This

calls into question the benefit of designing solutions to the IPv4 routing table lookup

problem, as not only is IPv4 being phased out in favor of IPv6, but solutions for IPv4

may not readily also apply to IPv6. However, upon closer inspection, it is clear

that IPv4 solutions to the routing table lookup problem are indeed still valuable

for "backbone" routers. While preliminary versions of the IPv6 specification have

been around for many years now adoption has been very slow; many newer devices

are designed to support both IPv4 and IPv6, but large amounts of legacy IPv4 only

software and hardware still remain. Furthermore, even if a push is eventually made

to switch over the majority of traffic to IPv6 networks the IPv4 routing table will

still need to remain part of the IPv6 routing table for many years after for backwards

compatibility. Finally, since only a portion of the upper 64 bits of an IPv6 address

6

Klaus 1.5 The Proposed Solution

will be used to denote a site's prefix, it is envisioned that "backbone" routing tables

will contain prefixes at most 50 bits long; far closer to existing 32 bit prefixes than

initially expected for 128 bit IPv6 addresses.

1.5 The Proposed Solution

This thesis presents a solution to the routing table lookup problem for "backbone"

routers. The proposed design offers far better scalability than previous solutions,

boasting an average of 53.7 billion lookups/second, with only 7.85W of total power

consumption, and a chip area of 71. Imm2. While the solution is presented for IPv4,

it still remains relevant for IPv6.

The rest of the thesis is organized as follows: Chapter 2 summarizes all of the

previously published solutions to the routing table lookup problem. Chapter 3 pro­

vides the motivation for this work and describes the entire design of the solution,

including how lookups and updates are handled. Chapter 4 describes how the de­

sign was validated, including the details of the Field Programmable Gate Array

(FPGA) implementation. Chapter 5 develops several metrics for comparing stride

choices for the design, applies them to real "backbone" routing tables, then deter­

mines the performance of the design with the preferred strides. Finally, Chapter 6

develops a model for Ternary Content Addressable Memory (TCAM) to determine

the performance of a comparable solution to the routing table lookup problem in

TCAM, then compares it with the proposed design.

7

1 Introduction to Internet Routing Klaus

8

Chapter 2

Previous Work in Routing Table
Lookups

Designing solutions to the Internet routing table lookup problem has been an active

area of research for many years. Published solutions can be divided into two main

categories: software solutions and hardware solutions. Of the software solutions,

a large number employ a trie data structure, which is of particular interest to the

author. Of the hardware solutions, the majority favor Ternary Content Addressable

Memory (TCAM), which is the current industry standard.

2.1 Software Approaches

In general software implementations of routing table lookups define some sort of

data structure to store the routing information and explain how lookups and updates

can be performed on it. Software implementations generally assume they will be

run on commodity CPUs with standard memory and caching architectures. The

authors of software implementations compare their work based on the total amount

of memory required, and on the number of memory accesses, actual CPU time or a

bound on asymptotic time required for lookups and updates.

Software implementations are limited by the general purpose CPUs and mem­

ory they run on. While these continue to evolve and keep an attractive price point,

they cannot keep pace with the every increasing demands on "backbone" routers,

whose users themselves also get more powerful CPUs, demand larger amounts of

9

2 Previous Work in Routing Table Lookups Klaus

bandwidth and continue to increase in number. Since software solutions are also

serial by nature, they cannot take advantage of hardware pipelining or paralleliza-

tion to help close the performance gap. Moreover, specialized hardware can often

be tailored for smaller areas and reduced power consumption when compared to

general purpose hardware, further disadvantaging software solutions.

2.1.1 Background on Software Tries

A basic binary trie (from retrieval) is a tree data structure similar to a binary tree,

where each node stores data and has up to two child nodes: a left child and a right

child. Unlike binary trees, however, binary tries always store data for a given key in

a specific node in the trie. The root node of the trie corresponds to the zero length

key. Its left and right children correspond to the one digit keys 0 and 1 respectfully.

Similarly, the left and right children of the 0 keyed node correspond to the two digit

keys 00 and 01 respectfully, and so on. When a new key-data pair is inserted into

the trie, any missing parent nodes of the new node are added in with NULL data.

An example of a simple binary trie can be seen in Figure 2.1. A search of a trie for

a particular key starts at the root, and a comparison of the first (most significant) bit

of the key. If the bit is a 0 then the search continues down the left child, otherwise

it continues down the right child. This process continues until either all the bits of

the search key are consumed (indicating the correct node has been found) or the

indicated child node is absent from the trie (indicating the key is not in the trie). If

the correct node has NULL data then the key is also not in the trie, otherwise there

is an exact match.

A basic binary trie can be easily transformed into a binary Patricia trie by com­

pressing paths traversing nodes with NULL data and only a single child. Figure

2.2 shows the binary Patricia obtained by transforming the example basic binary

trie from Figure 2.1. The right child of the root node, corresponding to the 1 key

with NULL data, has been compressed so that the 11 key becomes the new right

child. The left child of the root node, corresponding to the 0 key, cannot be sim­

ilarly compressed because while it has only one child it also stores the data value

10

Klaus 2.1 Software Approaches

Key

0

010

O i l

11

Data

A

B

C

D

Figure 2.1: Example Basic Binary Trie

Key

0

010

O i l

11

Data

A

B

C

D

Figure 2.2: Example Binary Patricia Trie

"A". Likewise the right child of that node, corresponding to the 01 key, cannot be

compressed because while it stores a NULL data value it has two child nodes. Pa­

tricia tries often reduce the number of nodes required compared to basic tries at the

cost of additional complexity in storing the compressed paths.

A basic binary trie can also easily be adapted to store prefixes, and hence solve

the routing table lookup problem. Instead of key-data pairs we now have prefix-

port pairs, associating a given address prefix with the appropriate router output port.

Shorter length prefixes are treated exactly like their shorter length key counterparts,

being stored closer to the root than longer length prefixes. A parent node also

propagates its own port value to all nodes below it that have NULL port values,

filling in for more specific prefixes missing from the trie. An example of a simple

prefix trie can be seen in Figure 2.3. Searching a prefix trie is similar to searching

a binary trie, only all search keys are maximal length, and when a search stops

11

2 Previous Work in Routing Table Lookups Klaus

Prefix

000/1

010/3

011/3

110/2

Port

A

B

C

D

Figure 2.3: Example Basic Prefix Trie

(either due to a non-existent child or consuming all the search key bits) the last

node traversed has the longest matching prefix's port number stored in it.

A binary prefix trie can also be further extended into a multi-bit prefix trie.

Instead of examining just a single bit at each level, multiple bits are examined. The

number of bits examined at a time is called the stride. If a stride of x bits is examined

at a given level, then the node at that level of the trie has 2X children corresponding

to the 2X possible values those bits can have. A prefix that covers several children of

a given node is expanded and its port number is stored in every child node covered

by that prefix, unless of course a more specific prefix also covers the child. Multi-

bit tries that always divide up an address into the same strides are called fixed-stride

tries, where as those that vary the strides based on the contents of the trie are called

variable-stride tries. An example of a fixed-stride {2,1} prefix trie (a prefix trie

whose first stride is 2 bits and second stride is 1 bit) is shown in Figure 2.4. While

multi-bit tries are generally less efficient in storage than their binary counterparts,

they often make up for it by being more efficient in processing operations.

2.1.2 Software Trie Approaches

The following section summarizes the previously published solutions to the routing

table lookup problem that make use of software tries.

Chiueh and Pradhan [13] presented a modified fixed-stride {16,8,8} trie com­

bined with a caching scheme. It depends on the spatial and temporal locality of

12

Klaus 2.1 Software Approaches

Prefix

000/1

010/3

011/3

110/2

Port

A

B

C

D

Figure 2.4: Example Fixed-Stride {2,1} Prefix Trie

lookups for good performance, and it is unclear how updates are handled.

Nilsson and Karlsson [46] designed a Level Compressed (LC) trie which com­

bines a variable-stride trie with a skip function to bypass sparse sections. The skip

function reduces the memory required to store the trie and reduces the number of

nodes that have to be analyzed per lookup. Its perceived benefit is diminished,

however, by the requirement to store the original prefixes separately and compare

against them with each skip to ensure that the skipped bits match the prefix. It also

further complicates an already complex update process for variable-stride tries.

Lampson et al. [34] proposed a fixed-stride {16,16} trie where each second

level lookup-table is replaced by sorted prefix start and end values that are binary

searched to find the longest matching prefix. Unfortunately, this means the worst

case number of memory accesses depends on the size of the lookup table, and up­

dates may require moving many such values to keep them sorted.

Kijkanjanarat and Chao [30] presented two tries: one indexed by the start of the

IP address being looked up and the other indexed by the end of the address. These

two tries share leaf nodes, which somewhat reduces the number of nodes required

compared to a single trie at the cost of increased complexity and memory accesses

per lookup and update.

Yilmaz et al. [82] described Linked list Cascade Addressable Trie (LCAT) which

uses a lot of extra memory to be able to rebuild the original prefixes and simplify

updates. Of particular interest is their proposed default route for each node in the

trie, which ensures update time is well bounded in the worst case. This idea has

been incorporated into the design in this thesis.

13

2 Previous Work in Routing Table Lookups Klaus

Kobayashi and Murase [31] stored prefixes in an {8,8,8,8} multi-bit trie, com­

pressing some nodes using either an Index method or the Candidate Prefix Table

(CPT) method. The Index method stores the multi-bit node's data as a compressed

bitmap. The CPT method replaces one or more multi-bit nodes with a list of the pre­

fixes they represent. While these compression schemes save memory they compli­

cate lookups and especially updates, as adding or removing prefixes might require

changing the type of compression used on a node.

Pak and Bahk [49] significantly improved over the Patricia trie by removing

backtracking. Single bit compares are replaced by full prefix compares, and an 8

bit front index table is used to speed up lookups. They achieved better performance

and memory utilization with fairly straightforward lookups and updates.

Wuu and Pin [78] stored prefixes in a {8,8,8,8} multi-bit trie using bitmap

compression on the nodes in the last two strides. The compression, while reduc­

ing memory consumption, complicates lookups and makes updates prohibitively

expensive.

Oh and Ann [47] created Bit-Map (BM) trie which transforms the routing table

into a bit-map where a one in a particular position denotes a prefix covering that

range. The bit-map is compressed by only keeping track of how many ones have

been encountered up to a certain position. Lookups require few memory accesses

to retrieve the compressed information at the cost of up to 76 additions and shifts,

per lookup, to decode it.

Ahmand and Mahapatra [2] designed M-trie, a logic minimization structure

where prefixes are stored in a ternary trie where each node has entries for 0, 1 or X

(don't care). M-trie is very efficient for adding and removing prefixes, optimizing

the stored prefixes as needed. Unfortunately, M-trie is not practical for lookups,

with the authors suggesting to store the optimized prefixes in a TCAM. It is not

clear, however, how incremental updates to the M-trie can be easily synchronized

to a TCAM.

Most of the previously published software trie solutions to the routing table

lookup problem trade more complex lookup and update procedures for reducing

14

Klaus 2.1 Software Approaches

the amount of memory needed to store the trie. In any event none of them can scale

to the throughput required for "backbone" routing table lookups.

2.1.3 Other Software Approaches

The following section summarizes the previously published software solutions to

the routing table lookup problem that do not make use of tries.

Doeringer et al. [18] presented a trie-like structure called Dynamic Prefix Trie

(DP-Trie) where lookups are done using bit comparisons down the trie to locate a

leaf then back up towards the root to find the longest matching prefix. DP-Trie pro­

vides good average-case lookup performance and deterministic tries after updates

at the cost of complex nodes and operations on them.

Yazdani and Min [81] described how to store prefixes in a tree where each node

has up to some M number of children. In this tree less specific prefixes are always

stored above the more specific prefixes they contain. Lookups consist of searching

down the tree until a leaf is found, keeping track of the last matching prefix. Un­

fortunately, keeping the tree somewhat balanced is difficult for updates. The worst

case lookup time is also still the number of bits in an IP address for the case where

a length 32 prefix has every possible parent prefix added to the tree as well.

Wang et al. [73] transformed prefixes into address ranges that are sorted and

stored in a table. An initial table looks up the first 16 bits of an address to identify

which ranges should be binary searched to locate the range that contains the address.

Unfortunately, updates require rebuilding the entire table, and the approach doesn't

scale well with the number of prefixes.

Berger [8] stored prefixes in a binary tree where each node is a prefix. Lookups

mostly require log(N) memory access since updates occasionally try to re-balance

the tree, but this is not guaranteed. The authors also propose some skip and indexing

functions similar to what is used in tries but do not discuss their costs and benefits.

Bian and Khatri [9] employed an adaptation of the Expresso-MV algorithm to

compress the routing table. Unfortunately, updates require a complete rebuild of

the routing table. The authors also erroneously assume that IP address lookups not

15

2 Previous Work in Routing Table Lookups Klaus

matching any prefixes don't occur and optimize for this, when in fact packets with

addresses not matching any prefixes are supposed to be dropped.

Futamura et al. [20] proposed two different algorithms each with their own ben­

efits and limitations. The first, "Elevator - Stairs", builds a Patricia-trie out of the

prefixes and creates a hash table to skip a certain number of levels into the trie for

faster lookups at the cost of increased memory usage and more complicated up­

dates. The second, "logW - Elevators", builds several such hash tables for various

levels to always complete a lookup within a number of steps proportional to the

logarithm of the length of the lookup addresses. It uses more memory and further

complicates updates but has slightly better lookup performance.

Lim et al. [38] sorted and stored the prefixes based first on how many other

prefixes encompass them, then by the value of their bits. A separate lookup table

on the first 8 bits of an IP address determines where in the main table to start binary

searching prefixes and how many to search. Once a matching prefix is found it may

also have a pointer to the location of its encompassed prefixes which are similarly

binary searched, and so on, until the last matching prefix, and hence the longest, is

found. With large numbers of prefixes this scheme might require a large number of

memory accesses per lookup, and updates to the main table are difficult unless a lot

of empty entries are left for additions.

Wuu et al. [79] constructed a heap of all the prefixes in the form of a tree with

the longest prefixes closest to the root of the tree. While lookups stop immediately

once a matching prefix is found, this approach speeds up a few lookups at the cost

of slowing down most of the others. The authors also proposed storing two prefixes

per node in some cases to reduce the number of memory accesses, but at the cost of

greater lookup and update complexity.

Dharmapurikar et al. [17] applied Bloom filters to longest prefix matching, re­

sulting in an approach with few average case memory accesses per lookup and

reasonable memory size. Unfortunately, updates are complicated and require addi­

tional processing and memory. Hasan et al. [23] expanded on Bloomier filters which

extend Bloom filters, using extra storage and complexity to remove the possibility

16

Klaus 2.2 Hardware Solutions

of false positive matches on lookups and hence reduce the number of required mem­

ory accesses. Unfortunately, updates require additional processing and occasionally

require reconstruction of the tables.

Most of the previously published software solutions to the routing table lookup

problem, that don't use tries, also involve complex lookup and update procedures.

In any event none of them can scale to the throughput required for "backbone"

routing table lookups.

2.2 Hardware Solutions

In general hardware implementations of routing table lookups involve specialized

memory architectures for storing routing prefixes and specialized computational

hardware for handling lookups and updates. The authors of hardware implemen­

tations compare their work based on the total amount of memory or transistors

required, as well as the lookup latency, throughput and power consumption.

Hardware implementations often involve custom circuits designed around com­

modity or even fully custom Integrated Circuit (IC) components. Designing, testing

and fabricating an Application Specific Integrated Circuit (ASIC) is a very resource

intensive proposition, so it's not surprising that many authors instead present their

designs along with simulation results and configurable logic implementations such

as a Field Programmable Gate Array (FPGA). While often insightful as to the ex­

pected properties of the actual ASIC if it were to be built, great care must be taken

to ensure that these results are accurate. Moreover, since the cost of an ASIC is

so high, custom hardware solutions must present a very compelling advantage over

existing commodity hardware and software solutions to justify the investment.

2.2.1 Background on TCAM

In general, a Content Addressable Memory (CAM) is a two dimensional array of

cells like a traditional memory, such as Static Random Access Memory (SRAM), in

that it can be used to store data for retrieval at another time. In addition to read and

write operations, a CAM can also perform searches of all of the values it contains, in

17

2 Previous Work in Routing Table Lookups Klaus

SL BLln BL1

D1D2

00
01
10
11

Match

None
Zero
One
All

BL2 BL2n ISLn

Figure 2.5: TCAM Cell

parallel, to check for matches against a key. Where as a Binary Content Addressable

Memory (BCAM) can only look for keys that match its data exactly, a Ternary

Content Addressable Memory (TCAM) can store and search against wild-carded

entries, which offers far more flexibility. Not surprisingly this means a TCAM can

be adapted to storing and searching routing tables prefixes, with shorter prefixes

padded with don't care bits on their ends.

A standard TCAM cell is composed of two SRAM cells and additional match

line circuitry. A transistor diagram of a TCAM cell is shown in Figure 2.5. Depend­

ing on the two bits stored in the cell, it can match nothing, a zero, a one, or both a

zero and a one (wild-card). Several TCAM cells are generally connected together

to form a word, sharing a common match line. To search, this match line is first

pre-charged to Vjd, then the search data is applied to the search lines. Search data

can also be any combination of ones, zeros, wild-cards and match only wild-cards.

If one or more cells in a TCAM word mismatch the search data then they discharge

the match line. If the match line of a TCAM word remains at Vdd then the word has

matched the search. An entire TCAM is composed of many TCAM words, all of

which are searched in parallel to look for matches.

In the case of Internet routing table lookups, the entries stored in a TCAM are

address prefixes ending in wild-cards, and the search data is binary IP addresses.

18

Klaus 2.2 Hardware Solutions

A given IP address may match several prefixes, but the longest matching prefix

is required. To that end the prefixes in the TCAM must be priority encoded such

that the only match reported, if any, is the longest matching prefix. The index of

the matching entry is then used to access a small standard memory to retrieve that

entry's destination port number.

2.2.2 TCAM Approaches

TCAM solutions to the Internet routing table lookup problem are very popular in

industry for a reason. A TCAM is very flexible and well suited to pattern match­

ing. Storing each prefix as an entry is simple and makes it easy to gauge how close

the TCAM is to being full. Storing extra information like quality of service met­

rics or expanding to IPv6 support is straightforward if the word size of the TCAM

is increased. On the downside, TCAM cells are complicated compared to SRAM

cells. Increasing the TCAM word size means increasing the match line capaci­

tance, and increasing the number of entries in a TCAM increases the search and

bit line capacitances. These higher capacitances mean a larger TCAM has dramati­

cally slower performance and increased power consumption compared to a similar

sized SRAM. Moreover, the full parallel search nature of a TCAM means signifi­

cant power is expended with each search and it is impossible to conduct multiple

searches of the same TCAM in parallel. A standard TCAM therefore does not scale

well to the sizes demanded by "backbone" routers, prompting much research into

improvements. Similar interest exists in coming up with efficient priority encoding

schemes that make updating easy while keeping a TCAM memory efficient.

Pei and Zukowski [51] applied tries to the general routing problem (before the

Internet was prevalent), observing that a single trie could be divided into several

tries searched in parallel, with CAM being the fully parallel case. They found that

in the worst case the CAM solution was superior in terms of speed and layout except

where the address space is large and fully utilized. The CAM solution did, however,

consume a lot more power.

19

2 Previous Work in Routing Table Lookups Klaus

McAuley and Francis [42] compared RAM, BCAM and TCAM implementa­

tions of generalized routing tables for three different types of addressing. They

presented three BCAM and TCAM organizations: single cycle per lookup using

a single memory, multiple cycles per lookup using a single memory, and single

cycle per lookup using multiple memories. The single cycle per lookup, multiple

memories approach assigns a unique priority to each memory to make prioritizing

matches easier.

Kobayashi et al. [32] created a Vertical Logic operation with Mask encoded

Prefix length (VLMP) for determining the longest matching prefix in TCAM. It

removes the requirement to keep TCAM entries sorted at the cost of extra hardware

and power consumption, and the approach doesn't scale well to large TCAMs.

Shah and Gupta [61] presented the Prefix-Length Ordering (PLCLOPT) and

Chain-Ancestor Ordering (CAO_OPT) constraining algorithms that keep an exter­

nal trie to calculate the swaps required to add a new prefix (or remove an existing

prefix) from a TCAM while preserving an ordering for longest prefix matching.

This approach greatly reduces the number of prefixes moved in the worst case with­

out adding additional TCAM complexity at the cost of external processing.

Liu [41] described two methods of compressing the prefixes stored in a TCAM:

pruning and mask extension. Unfortunately, both methods would require external

processing of updates to re-compact the existing prefixes.

Arsovski et al. [6] designed a 12 transistor TCAM cell with asymmetric 4 tran­

sistor SRAM cells that uses a current-race sensing scheme where match lines are

first grounded and then current is injected to drive them high. A reference full match

line is used to determine which match lines have mismatches preventing them from

charging as quickly. This approach saves power by only requiring matches to rise to

half the high state voltage and by only needing to discharge uncommon full matches

as opposed to pre-charging common mismatches.

Zane et al. [83] considered two different optimizations to TCAM. The first used

a hashing function on lookup IP addresses to select a small subset of many TCAM

blocks to search in parallel for a match. This approach significantly reduces search

20

Klaus 2.2 Hardware Solutions

power consumption provided the hashing function creates a good prefix distribution

amongst the blocks, which can degrade as updates are made. The second optimiza­

tion involves storing the prefixes in a trie, then dividing up the sub-tries amongst all

the TCAM blocks with a small index TCAM to identify which need to be searched

on a match. This approach again offers significant power savings at the cost of com­

plicated updates that must occasionally re-partition the sub-tries at great expense.

Gamache et al. [21] presented a custom 512 bit matching, 512 bit storage TCAM

with 168 blocks of 128 entries each. Searches are pipelined to first find a longest

match in each block, then combine these results to determine the global longest

match, then read the storage information of that match. Their TCAM also makes

use of partitioned match lines to save power, and custom 9-phase wired-NOR logic

for determining the longest matching prefix. The authors estimate their 21,504

entry TCAM would have a 18mm x 18mm die size, a 200MHz pipelined lookup

throughput and a power consumption of around 16W in a O.lfim process. These

estimated features provide a good baseline for what was possible for TCAM designs

in the year 2003.

Kocak and Basci [33] divided prefixes into two or more TCAMs based on prefix

length. Lookups consist of first searching the TCAM with the longest prefixes for

a match, and only searching the TCAM with the next longest prefixes in the event

of a mismatch. This approach saves power since not all lookups require searching

all TCAMs, but its benefit is limited for backbone routers since a large percentage

of the prefixes are all of length 24.

Pagiamtzis and Sheikholeslami [48] demonstrated two optimizations to TCAM

to reduce power consumption. The first is to break up large match lines into seg­

ments where previous segments disable subsequent segments in the case of mis­

match. The second is to amplify search data from small voltage swing global search

lines to large swing local search lines.

Akhbarizadeh et al. [5] created Prefix Content Addressable Memory (PCAM),

a custom TCAM cell for longest prefix matching that uses 22 percent less area with

somewhat slower performance and increased power consumption.

21

2 Previous Work in Routing Table Lookups Klaus

Wu et al. [76] sorted the prefixes stored in a TCAM into different levels with

empty entries between each group. Updates require external processing, with the

average case requiring one or two entry changes, but in the worst case it can take

much more than that. The authors also don't address what happens when the free

space between groups gets filled up by updates.

Akhbarizadeh et al. [4] divided the prefixes into two groups: the disjoint set

of prefixes that don't encompass any other prefixes, and the remaining prefixes

that do encompass at least one other prefix. Since the prefixes in the first group

don't overlap with each other at most one will match a given lookup IP address,

eliminating the need for longest prefix match logic. In most cases there are far

more prefixes in the first group so the number of TCAM entries requiring longest

prefix match logic is significantly reduce. Unfortunately, updates are complicated

by the need to distinguish between the two groups and the favorable distribution of

prefixes between the two groups is not guaranteed.

Pao [50] observed that storing IPv4 and IPv6 addresses in 144bit or larger sized

TCAM entries is wasteful since most matches occur on the first part of the address.

He split address entries into two different partitions searched one after another,

where often times the first search was all that was required to determine a match.

This eliminated the need to even load the second part of the search address in such

cases, increasing the lookup throughput especially in low pin count devices.

Kasnavi et al. [28] created a Hardware-based Longest Prefix Matching (HLPM)

where TCAM entries are divided into four stages with previous stages disabling

subsequent stages for each match to save power. Each entry also contains a special

length field used by custom logic to determine the longest prefix match, removing

the requirement for managing the order of entries in the TCAM.

Wu et al. [77] divided the prefixes into three groups: those that encompass

other prefixes but are not encompassed themselves, those that are encompassed by

other prefixes, and those that neither encompass other prefixes or are encompassed

themselves. Lookups involve accessing an index TCAM (without longest prefix

match) that stores the first group of prefixes. In the case of a match, the appropriate

22

Klaus 2.2 Hardware Solutions

TCAM (with longest prefix match) storing the contained prefixes of the matching

prefix is accessed. In the case of a mismatch by the index TCAM a TCAM (without

longest prefix match) containing all the prefixes in the third group is accessed. This

approach reduces the power consumed per lookup at the cost of more complicated

lookups and updates, and requires all of the prefix relationships to be tracked.

Akhbarizadeh and Nourani [3] designed Multi-Selector and Multi-Block Popular-

prefix Table (MSMB-PT) which divides the prefixes into multiple TCAMs accessed

by multiple Range Detectors (RDs) doing lookups in parallel. Each RD has a small

cache that stores popular prefixes to help reduce contention among the RDs for pop­

ular TCAMs. Updates to the MSMB-PT are complicated by the need to keep the

prefixes balanced between the TCAMs and to update the RDs as to the location of

each prefix. Lin et al. [39] proposed a similar approach using an algorithm applied

to a trie construction to determine which prefixes go into which TCAMs. It allows

more straightforward distributing of update prefixes to the TCAMs with occasional

re-balancing, but still requires external processing and memory.

Chang [12] demonstrated that tree-style AND-type match lines and segmented

search lines help reduce TCAM search latency and energy.

Wu and Wang [75] ensured that prefixes were sorted in a TCAM such that a

prefix always comes after those prefixes it encompasses, making the first matching

prefix of a lookup the longest matching prefix. When a new prefix is added to

the TCAM it is swapped with prefixes that encompass it until a prefix that isn't

encompassed by any other prefix is obtained, which can be safely stored at the end

of the TCAM.

Mohan and Sachdev [45] proposed a new TCAM cell architecture where only

a single transistor loads the match line. While this single match line transistor is

not fully enabled when a mismatch occurs in the cell, the extra search latency and

power consumption this causes is more than offset by the reduced search latency and

power consumption of the far less loaded match line. The authors also presented a

method for sharing charge from early stages of a segmented match line with future

stages to reduce latency and save power.

23

2 Previous Work in Routing Table Lookups Klaus

All of the previously discussed research attempts to improve upon the shortcom­

ings of TCAM. Some researches investigated different cell designs or used pipelin­

ing to help reduce power consumption and area. Others presented custom priority

encoding hardware for selecting the longest matching prefix, making updates easy.

Still others presented advanced update schemes, often requiring external process­

ing and memory, to preserve some prefix orderings to make priority encoding easy.

While all of this research has helped alleviate some of the biggest problems with

scaling TCAM designs to larger capacities, the parallel search nature of TCAM will

always prevent it from increasing throughput and decreasing power consumption at

the same fast pace of SRAM based designs.

2.2.3 Background on Hardware Tries

One of the very attractive aspects of software fixed-stride multi-bit prefix tries is

that they lend themselves readily to hardware implementations. A node of a multi-

bit trie that is indexed by a binary key maps perfectly onto a standard memory. Each

entry in the memory can contain either a port number if the result is known, or a

pointer into a new memory to continue the search. The next stride of the search IP

address is used to index into this new memory, and the process repeats. An example

of a fixed-stride {4,2,2} hardware prefix trie populated with the prefixes from Table

2.1 is shown in Figure 2.6.

As an example, consider a search of the hardware trie in Figure 2.6 for the 8 bit

IP address 01101 111 (shown in bold). The first four bits of this address (0110) are

used to index into the first memory. The retrieved memory entry is a pointer to the

first bank for the next stride, so the search continues. The next two bits of the search

address (11) are used to index into this first bank, yielding yet another pointer. The

last two bits of the search address (11) are then used to index the first bank of the

last stride, yielding port 2, which is the expected answer.

24

Klaus 2.2 Hardware Solutions

Stride 1
(4 bits)

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

P0

PO

P0

PO

PO

P8

Bl

PI

P5

B2

P5

P5

P8

B3

P5

P5

Stride 2
(2 bits)

00

01

10

11

PI

PI

B2

Bl

Bank 1

Bank 1

00

01

10

11

P8

P8

P9

P9
Bank 3

Stride 3
(2 bits)

00

01

10

11

PI

PI

P3

P2

Bank 1

00

01

10

11

P4

P4

PI

PI
Bank 2

00

01

10

11

P6

P6

P7

P7
Bank 3

Figure 2.6: Example Fixed-Stride {4,2,2} Hardware Prefix Trie

Prefix
00000000/1
01100000/3
01101110/7
01101110/8
01101000/7

Port
0
1
2
3
4

Prefix
10000000/1
10010000/4
10010010/7
11000000/3
11011000/5

Port
5
6
7
8
9

Table 2.1: Example 8 bit IP address prefixes

2.2.4 Hardware Trie Approaches

Hardware tries offer an interesting alternative to TCAM by exploiting the fact that

SRAM is cheaper, smaller, faster and less power consuming than TCAM. By care­

fully choosing the strides to partition an IP address, hardware tries can offer fairly

efficient storage of a large number of prefixes, especially in densely packed address

spaces. This proves very promising as efforts to conserve IPv4 address space is

resulting in very densely packed clusters of prefixes in "backbone" routing tables.

25

2 Previous Work in Routing Table Lookups Klaus

Unfortunately, in the worst case, tries can be extremely inefficient ways of storing

address prefixes, especially in very sparse address spaces. This not only provides a

challenge for the upcoming switch to IPv6, but also in allowing for future expan­

sion of existing routing tables. Care must be taken in assuring that a good stride

choice for one routing table isn't also a poor choice for another lookup table, or

won't become a poor choice with future prefixes being added to the current table.

Another problem hardware tries share with their software brethren is that they are

often difficult to update, with incredibly long update times required in the worst

case.

Gupta et al. [22] discussed a fixed-stride {24,8} multi-bit hardware trie using

two DRAMs called DIR-24-8-BASIC. They also proposed DIR-24-8-INT which

adds a second level of indexing to the second memory to save space at the cost of

an extra memory access per lookup and added complexity. They suggested optimal

strides for tries of depths 3 to 6 to optimize memory usage, and present a number

of different update schemes requiring different amounts of processor and routing

table update time. The architecture can be pipelined to handle one lookup per clock

cycle, but updates have very large worst case times.

Huang and Zhao [26] designed a fixed-stride {16,16} RAM based trie with

compressed second stride lookup tables requiring at most three memory accesses

per lookup. The compression, while reducing memory consumption, requires spe­

cialized hardware to decode and makes incremental updating of the routing table

impractical.

Uga and Shiomoto [69] presented a Patricia trie combined with three CAMs

that index all level 8, 16 and 24 nodes in the trie. Each lookup involves searching

all three CAMs in parallel to obtain a pointer into the Patricia trie from which to

conduct a much shorter search of 9 nodes or less.

Wang et al. [72] proposed a {16,16} multi-bit hardware trie where entries in the

second level memory are compressed based on common prefix bits. This technique

reduces the required storage but reconstruction of the second memory is required

on updates.

26

Klaus 2.2 Hardware Solutions

Sungkee et al. [64] designed a {16,8,8} multi-bit hardware trie with compres­

sion. Lookups require up to four memory accesses while additions require any­

where from two to four 64 byte blocks to be regenerated. Unfortunately, additions

require external processing and there is no mention of how removals are handled.

Sahni and Kim [58] created a dynamic programming algorithm to calculate the

best partitions for a fixed-stride hardware trie for a given set of prefixes in order

to minimize memory usage. While it is faster that previous algorithms (but not

asymptotically so), it does not consider hardware overheads and assumes a single

memory. Sahni and Kim [59] also proposed a similar algorithm for variable-stride

hardware tries that was asymptotically faster that other algorithms.

Chang and Lim [11] implemented a fixed-stride multi-bit trie with one SRAM

per stride. Each entry has a port number for each possible prefix length ending

in that stride, as well as a pointer to the next stride's memory if needed. This

approach requires a lot of extra memory to store this information and it somewhat

complicates lookups, but makes updates very easy. They proposed a skip function

that provides very little memory savings at the cost of added lookup and update

complexity. They also proposed a compression scheme for the port information that

further complicates lookups. Finally they recommended a {14,4,4,4,4,2} partition

for the single 40,000 prefix table they analyzed.

Taylor et al. [67] described Fast Internet Protocol Lookup (FIPL), which is a

multi-bit trie that stores bitmaps of which entries have corresponding next hop ports

and next stride lookup pointers. The corresponding ports and pointers are stored

contiguously in a separate location, requiring up to 11 memory accesses per lookup.

Updates require external processing and there is no discussion of how fragmentation

is handled.

Wang et al. [74] stored prefixes in a compressed trie where leaf nodes are

grouped and stored in a larger node structure, and intermediate nodes are grouped

and stored in a larger pointer structure. While this reduces the required memory

usage it dramatically complicates lookups and updates on the trie.

27

2 Previous Work in Routing Table Lookups Klaus

Qin et al. [54] presented a CAM that is used to match some subset of a lookup

IP address' bits to one of many much smaller Patricia tries for further processing.

They recommend TCAM over BCAM for more even prefix distributions among

the tries, but even good initial prefix distributions might degrade over time with

updates.

Wang et al. [71] built the prefixes into a trie, then stored each small sub-trie into

fixed-stride multi-bit tries stored in DRAM. The root prefix of each small sub-trie

is stored in a TCAM which is longest prefix matched on each lookup to determine

which sub-trie to access. Updates consist of adding entries to the TCAM and oc­

casionally regenerating complete sub-tries to reduce the number of entries in the

TCAM, which requires external processing.

Almost all of the previously discussed hardware trie solutions attempt to reduce

the required memory for storing the routing table. While some achieve some fairly

large savings, most of the solutions have fairly complex lookup and update proce­

dures. Furthermore, none of the solutions are presented with adequate investigation

into how they perform using a variety of different routing tables; most present re­

sults for a single routing table if they present any results at all.

2.2.5 Other Hardware Approaches

Still other hardware solutions to the routing table lookup problem have been pub­

lished that aren't based completely on TCAM or hardware tries. This subsection

outlines these non-conventional hardware approaches.

Hsiao and Jen [25] mapped a routing table to compressed combinational logic

and implement it in an FPGA. Similarly Sangireddy and Somani [60] used binary

decision diagrams to generate their compressed logic for an FPGA. While these

approaches are very FPGA resource efficient it is impossible to update the rout­

ing table without reprogramming the FPGA. Reprogramming the FPGA involves

regenerating the combinational logic, recreating a bit file based on this new logic,

and finally programming the FPGA with this new bit file. This whole process can

take hours, requires additional computing resources, and takes the FPGA offline

28

Klaus 2.2 Hardware Solutions

during each reprogramming operation. An FPGA, while much more economical,

is also much slower and consumes more power than an ASIC, and does depend on

memory technology for its logic units despite what some authors suggest.

van Lunteren [70] described Balanced Routing Table Search (BaRTS) which

consists of a trie-like structure where each stride hashes certain (not necessarily

sequential) bit positions. A certain number of additional prefix comparisons must

be made at each stride as well; the data for which is stored in a wide memory,

requiring only a single memory access per node. He only briefly discussed how to

deal with memory fragmentation issues and presented no concrete strategy.

Lin and Chang [40] proposed a TCAM to check for matches against all prefixes

with length greater than 24, then a compact IP-routing block to store the remaining

prefixes in a compressed form that complicates lookups. Unfortunately, updates to

the TCAM and IP-routing block are not discussed despite being non-trivial.

Lim et al. [37] split up all the prefixes by length into different hash tables that

are searched in parallel for lookups. Collisions are handled by storing all the collid­

ing prefixes in a binary tree and binary searching the prefixes with each matching

lookup. The lookup performance of each hash table depends on the quality of the

hashing function which may degrade with updates, and the required size of each

hash table is difficult to determine in advance when taking into account updates.

Kaxiras and Keramidas [29] designed IPStash: a set associative memory archi­

tecture with a few fixed levels to which all prefixes are mapped. Unfortunately,

conflicts among prefixes are possible and cannot be handled by the architecture.

Also, increasing the size of IPStash requires increasing its memory's size and asso­

ciativity, which offers poor scalability.

Mohammadi et al. [44] created Hardware Assisted Software IP Lookup (HASIL),

which involves adding three new instructions to a general purpose Central Process­

ing Unit (CPU) to help speed up software lookups using Dynamic M-way Prefix

(DMP) trees. It is unclear why only three custom instructions were decided on

when a fully custom CPU would improve performance even further.

29

2 Previous Work in Routing Table Lookups Klaus

Ravikumar and Mahapatra [55] described a reconfigurable combinational logic

block that analyzes incoming lookups and decides on one or more independently

selectable TCAM arrays to continue the search in. This approach dramatically re­

duces power consumption since only a fraction of the total TCAM is searched,

provided that the combinational logic can keep the prefixes well distributed and

grouped. Unfortunately, updates are complicated and may require reprogramming

of the combinational logic and the moving of many address prefixes. A very similar

approach was also proposed by Zheng et al. [84]. Ravikumar et al. [56] replaced the

combinational logic with a fixed division that selects exactly one TCAM for each

prefix or lookup IP address based on their higher order bits, trading the flexibility

of the combinational logic for the simplicity of a known partition.

Lim and Lee [36] proposed an Enhanced Binary Tree (EnBiT) which divides

prefixes into a number of different balanced trees based on whether or not they

encompass other prefixes. A TCAM is used to decide which sub-tree(s) must be

further searched for each lookup. While the author claims that updates are straight­

forward it is unclear how they could based on what few details are discussed. Tang

et al. [66] present a similar approach where the sub-trees are stored as compressed

bitmaps in SRAM. How this approach can be updated is not discussed and most

likely requires rebuilding substantial portions if not all of the sub-trees and TCAM

entries.

Lim and Jung [35] split up prefixes by length into different RAM tables, storing

them based on hashing. Any prefixes colliding with existing prefixes were stored

in a separate small TCAM. A lookup is done in parallel in each RAM table and the

TCAM to determine the longest matching prefix for a given IP address. Unfortu­

nately, this approach relies heavily on the RAM table hashing function distributing

prefixes evenly in the face of updates to avoid wasting RAM and requiring a larger

TCAM.

Xu et al. [80] used the Comb Extraction Scheme (CES) to split each prefix into

two smaller prefixes consisting of its even and odd bits respectively. These two

tables are searched in parallel for each lookup and matching entries are compared

30

Klaus 2.2 Hardware Solutions

to determine which original prefixes completely match. While both of these tables

are much smaller than the original table, collisions between prefixes quadratically

increase the number of comparisons that must be made for each lookup. While the

authors suggest a custom ASIC to handle these comparisons, the number of colli­

sions in larger routing tables would quickly make even this approach impractical.

Mingfeng and Zhenghu [43] divided prefixes into groups based on length, then

stored each group's prefixes in BCAMs based on a hashing function. Colliding and

non-standard length prefixes are stored in a separate TCAM. Lookup IP addresses

are hashed to determine which BCAM in each group they should be matched against

and also looked up in the TCAM, with the results being combined to determine the

longest matching prefix. This approach's usefulness is highly dependent on the

quality of the hash function, which can degrade with new updates to the routing

table.

Tzeng [68] proposed a Speedy Packet Lookup (SPaL) technique where the line

cards of a router are re-designed so that each is responsible for a subset of the

prefixes based on certain prefix bits. Each line card devotes part of its cache to its

specific prefixes and the rest to the remaining prefixes. For lookups each line card

checks its local cache, and in the case of a miss, uses a crossbar to check the cache

of the line card responsible for the applicable prefixes before consulting the central

routing table. This approach makes better use of the limited cache on each line card

at the cost of the crossbar between line cards, and relies heavily on the spatial and

temporal locality of lookup requests to be effective.

Baldwin and Ng [7] designed a router where each output port has its own

TCAM that stores all of the prefixes that point to it. Each lookup involves match­

ing the IP address against each of these TCAMs and choosing the TCAM with the

longest matching prefix. While this approach removes the need to determine which

port corresponds to the longest prefix match in a particular TCAM, simplifying

each TCAM's design, it requires external logic to determine which TCAM has the

longest matching prefix. This approach also requires extra TCAM space as pre­

fixes are not guaranteed to be evenly distributed amongst the many ports of a router.

31

2 Previous Work in Routing Table Lookups Klaus

Finally this approach cannot support multiple lookups in parallel per clock cycle.

Sun and Zhao [63] converted prefixes into the ranges of addresses each port

covers which are sorted and stored in a tree. Each tree node stores some compressed

range endpoints and a pointer to the group of tree nodes below the current node. The

authors describe how to build the tree but not how to update it, which presumably

requires external processing to completely rebuild it each time.

Deng et al. [16] stored all prefixes of length 24 or less into a single stride multi-

bit DRAM trie, and all longer prefixes into a TCAM. Each lookup accesses both

the trie and the TCAM to determine the longest prefix match. While each update

now operates on a smaller TCAM or multi-bit trie, updates on the single stride 24

bit trie can still be prohibitively expensive in the worst case.

There is a wide assortment of different hardware solutions to the routing table

lookup problem that aren't completely TCAM or hardware trie based. Unfortu­

nately, very few of them can be both pipelined, to reduce cycle time, and efficiently

replicated, to support multiple lookups per cycle. The solutions that do, one FPGA

based and one cache based, are impractical to update and require temporal and

spatial locality in the lookups, respectively. Clearly better hardware solutions are

needed to scale with the increasing demands of "backbone" routers.

32

Chapter 3

Design

Previous work on the Internet routing table lookup problem has yielded very few

practical solutions for the demands of "backbone" routers. Software solutions run­

ning on general purpose hardware just aren't fast enough to handle the data rates.

A TCAM, although the industry favorite, just doesn't scale well to the large sizes

demanded, and consumes incredibly large amounts of power in the applications it

is used in. Other hardware solutions, while innovative, often prove impractical or

require further development.

With the rapid progression of Very Large Scale Integration (VLSI) techniques

for Application Specific Integrated Circuit (ASIC) design and the continued de­

crease in Complementary Metal Oxide Semiconductor (CMOS) feature sizes, more

and more transistors are becoming possible on a single chip. It is now commonplace

for a System On a Chip (SOC) to combine many specialized processors, memories

and logic together to solve a wide range of problems.

The goal of this research is to exploit the speed, compactness and power ef­

ficiency of SRAM through a hardware trie implemented as a SOC to solve the

Internet routing table lookup problem for "backbone" routers. By implementing

the hardware trie using many small pipelined banks of SRAM, new untapped pos­

sibilities for parallelism are exploited. This innovative approach to a hardware trie

provides exceptional throughput and power efficiency that an existing TCAM just

cannot match, while offering comparable latency and ASIC size. Plus new additions

to the hardware trie structure ensure that updates to the lookup table are bounded to

33

3 Design Klaus

take reasonable amounts of time in even the worst case.

This chapter begins by outlining the significant differences between the pro­

posed implementation and an existing fixed-stride multi-bit hardware trie imple­

mentations. Next, each of the major components of the design are presented in

much greater detail, including the lookup and update processes. Each component

builds on the previous components, starting with each bank of memory and work­

ing up to the complete lookup table design and other high level components. This

bottom-up approach was also used for the design work itself, but with a constant

vision of the high level result kept in mind. It helps to refer back to Figure 3.1 in

this section while reading the rest of the chapter.

3.1 Significant Differences

This section provides an overview of the significant differences between the pro­

posed implementation and an existing fixed-stride multi-bit hardware trie imple­

mentations. First, the design trades some extra memory space for increased perfor­

mance, replacing complicated compression schemes with less efficient, but simple

to use, representations. Second, instead of storing all of the nodes used for one

level of the trie in one large memory, each is implemented as its own concurrently

accessible smaller memory. Third, each smaller memory is coupled with a register

to store a default port number for the memory, with the goal of simplifying and

bounding updates. Finally, each memory entry stores either a destination port num­

ber and the length of its corresponding prefix, or a pointer to a new memory. The

addition of the prefix length field to the entries is a requirement of the new update

procedures. An example simple fixed-stride {4,2,2} hardware prefix trie with these

modifications, populated with the prefixes from Table 3.1 is shown in Figure 3.1.

Consider three separate searches of the trie shown in Figure 3.1 for 8 bit IP

addresses 00101001 (shown in light grey), 01101 111 (shown in medium grey) and

11010100 (shown in dark grey). The first (light grey) search accesses the first mem­

ory and immediately returns port number 0 as an answer. The second (medium

grey) search must first follow two pointers before arriving at port number 2 as an

34

Klaus 3.1 Significant Differences

Stride 1
(4 bits)

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

PDLO

P0L1

P0L1

P0L1

P0L1

P0L1

P0L1

Bl

P1L3

P5L1

B2

P5L1

P5L1

P8L3

B3

P5L1

P5L1

Bank 1

Stride 2
(2 bits)

**

00

01

10

11

P1L3

PDLO

PDLO

B2

Bl *r
Bank 1

r
**

00

01

10

11

P6L4

B3

PDLO

PDLO

PDLO

Bank 2

**

00

01

10

11

P8L3

PDLO

PDLO

P9L1

P9L1

Bank 3

Stride 3
(2 bits)

00

01

10

PDLO

PDLO

PDLO

P3L2

11IP2L1
Bank 1

**
00

01

10

11

PDLO

P4L1

P4L1

PDLO

PDLO

Bank 2

**

00

01

10

11

PDLO

PDLO

PDLO

P7L1

P7L1

Bank 3

Figure 3.1: Example Fixed-Stride {4,2,2} Hardware Prefix Trie With Default Ports

Prefix
00000000/1
01100000/3
01101110/7
01101110/8
01101000/7

Port
0
1
2
3
4

Prefix
10000000/1
10010000/4
10010010/7
11000000/3
11011000/5

Port
5
6
7
8
9

Table 3.1: Example 8 bit IP address prefixes

answer. Finally the last (dark grey) search must follow a single pointer to arrive at

an answer of port number default, which indicates that the correct answer is the de­

fault answer for the memory, which is port number 8. Notice that all three of these

lookups access different memories, with the exception that they all need to access

the first memory. By making three copies of the first memory it is now possible to

conduct all three of these searches in parallel. Throughput can be further increased

by pipelining each level of the trie.

35

3 Design Klaus

000

001

010

011

100

101

110

111

P0L1

B5

Bl

P0L1

PDLO

P2L3

PDLO

PDLO

SRAM

|P4L2
Register

Figure 3.2: Example Lookup Bank

3.2 Lookup Bank: An SRAM Bank And A Register

The basic building block of the proposed hardware trie consists of an SRAM bank

indexed by the appropriate stride of the IP address that is being looked up. Each

entry in the SRAM has a single bit to identify whether it's a destination port number

and the length of its corresponding prefix, or a pointer to a new memory. A port

number and prefix length entry indicates that the answer to the lookup is known and

no more searching is required. A pointer entry indicates that further searching is

required with the next stride of the address.

In addition to the SRAM bank, each lookup bank includes a register that stores

the default port number and associated prefix length for the entire bank. If any entry

in the SRAM contains the special default port number then that entry is treated as

having the register's port number instead. An example lookup bank for a stride of

3 bits is shown in Figure 3.2.

Note that the length of the appropriate prefix stored in an SRAM entry is actu­

ally the length of the prefix relative to the current stride. For example, when adding

prefix 11011000/5 to the fixed-stride {4,2,2} prefix trie in Figure 3.1, that prefix

will be stored in the third and fourth entries of bank 3 of the second stride. The

length of the 5 bit prefix relative to the second stride is 5 — first stride = 5 — 4 = 1

36

Klaus 3.3 Lookup Node: Lookup Bank For Multiple Agents

bit so the length of this new prefix is actually stored as 1. Likewise, a prefix of

length 6 would be stored in the second stride with a length of 2. The special length

of 0 is reserved for use with entries that default to the port number stored in the

register, as is the case for the first two entries of bank 3 of the second stride. These

three lengths are the only valid lengths of prefixes that can be stored in the second

stride (anything shorter would be stored in stride 1, anything longer would be stored

in stride 3) so the optimal binary representation for the prefix lengths (in this case)

takes two bits. This is a savings of two bits over the 4 bits that would be required to

store a length value between 0 and 8 for the 8 bit prefixes.

3.3 Lookup Node: Lookup Bank For Multiple Agents

Every clock cycle, if enabled, a lookup bank processes a supplied address fragment

(the section of the lookup IP address corresponding to the current stride) producing

resolved data and default data. The resolved data is the bank's SRAM entry ad­

dressed by the address fragment, and is either a port number and prefix length, or

a pointer to another memory bank. The default data is the contents of the bank's

register, which is the default port number and prefix length for the bank.

To support multiple lookups in parallel, a lookup bank must be shared between

several different lookup agents. Each of these agents may access the lookup bank,

but at most one will do so during any given clock cycle. (How this is guaranteed

is explained later in Section 3.11) Each agent supplies each lookup node with an

enable signal which is high only if that agent wishes to access the node. These

enable signals are logically ORed together to produce the enable signal for the

node's bank. They are also used to multiplex the correct address fragment into

the bank from amongst the address fragments supplied by each lookup agent. The

block diagram for a lookup node is shown in Figure 3.3. It may also help to refer to

the implementation of a lookup bank in Figure 3.2 on page 36.

While there are multiple lookup agents that may read from a lookup node there

is only a single agent responsible for updating it. For clarity the signals required for

updating a lookup node are omitted from Figure 3.3. These signals include a write

37

3 Design Klaus

Address_l

• i
i <

Address_L

Enable 1

1
•

Enable L
\

M I ilf

plexer

•

L

•

V
A

^

* - T L ^

Address

. Enable

/

Lookup
Bank

Rpqnlx/Pfl

Default

Figure 3.3: Lookup Node For L Lookup Agents

enable, update default (for selecting between updating the SRAM or the register),

input SRAM data and input register data signals. The update agent also shares the

first lookup agent's enable and address signals.

Since multiple lookup agents access the same lookup bank it may seem advan­

tageous to use multi-port SRAM to reduce the complexity of the bused memory

signals. Unfortunately, even dual-port SRAM tends to be 1.5 to 2 times the size of

its single ported counterpart, easily countering a slight reduction in bus logic.

3.4 Background: Multiplexing Signals

In the lookup node, as well as later sections of this design, there arises a need to

select a single signal from among many based on a supplied address or that signal's

companion enable signal. There are several different ways of designing such a

multiplexing circuit, and all have their strengths and weaknesses.

The three most popular methods to multiplex signals are: address based multi­

plexer trees, tristate buses, and enable based multiplexer trees. Examples of each

of these types of multiplexers are shown in Figure 3.4. Address based multiplexer

trees, while more complex than the other methods, provide built in address decoding

which is perfect if individual enable lines aren't already available. Tristate buses,

while poor at scaling for long wires, require the fewest transistors to implement.

Enable based multiplexer trees offer a good compromise between the other two ap-

38

Klaus

Data 1

3.5 Lookup Bus: Connects Multiple Lookup Nodes

Data 1 Data

Enable

Data 2

Data Enable 2

Enable 3

Address 1 Address 2 Enable 4

\&1
Data

Address Based Multiplexer Tree Tr I state Bus

Enable_4

Enable Based Multiplexer Tree

Figure 3.4: Three Different Multiplexing Schemes

Property
Enable Type
Cell Count

Cell Transistors
Total Transistors

Propagation Delay
FPGA Usable

Address Based
Multiplexer Tree

Address
inputs — 1

14
14 x inputs - 14
oc log2(inputs)

Yes

Tristate Bus
Individual

inputs
4

4 x inputs
oc inputs

No

Enable Based
Multiplexer Tree

Individual
2 x inputs — 1

4
8 x inputs — 4
<x log2(inputs)

Yes

Table 3.2: Comparison Of Different Multiplexer Designs

proaches, and in some cases are even superior [14]. The benefits and limitations of

each type of multiplexer are summarized in Table 3.2. Because this design must be

FPGA implementable, only the address and enable based multiplexer trees are used.

Which is used in each case depends on whether or not individual enable signals are

available. The address multiplexing of the lookup bus is an ideal candidate for an

enable based multiplexer tree, for example.

3.5 Lookup Bus: Connects Multiple Lookup Nodes

Just as many lookup agents may access a single lookup node, many lookup nodes

may be accessed by a single lookup agent. Multiple lookup nodes are combined

together and made available to all agents through a common lookup bus. Every

clock cycle each of the L lookup agents provides an enable signal, the number of

39

3 Design Klaus

• • •

1 Address_l 1

t *! •<(
' s mi\

Address L

En_l_

EnableJL

i
EnableJ.

t / '

Addr_l
•r •

J I
Addr_L
En_l_l

•

• • •

l 1 • • •

i
1 En 1 B

_r
p

I < "
Bank L

i \
J

En L 1

• • •

Addr_l

< t j •
AddrJ.
En_l_B

4

• En L B

" En L B

7"
Bank_l
< * ', i
Bank L

Lookup
Nodel

•
•
•

Lookup
NodeB

Res_B

Def_B

Def_

Reg

*>>
f ^
: i <

1 *

• •

" Def_B

\ 1 •

• • •

Def 1

r • •
\ /
V

Prevtfank L w

i

•
•
»

Res_l

r i \

' Def_B

V

• • •
• • •

V Res_l

Res_B T

/ • • • \

i£j i

• • •

Res_B

/
/ , / | Resolved_l

< • J I
ResolvedJ-

Default 1

•f :
f i Default L

Figure 3.5: Lookup Bus For L Lookup Agents And B Lookup Nodes

the bank it wishes to access (if any) and the address within that bank it wishes to

read. If the enable signal is high then the designated bank is read; otherwise nothing

is read for the agent that clock cycle. The enable signal of each lookup agent is

demultiplexed according to its bank number, passing the enable signal to only the

designated node while passing low as the enable to all other nodes. The address

of the lookup agent is simply passed to every lookup node and will be ignored

by all nodes except possibly the one designated by the agent. The number of the

designated bank for each lookup agent is also registered and used to multiplex out

the designated node's resolved and default data back to the agent on the following

clock cycle. The block diagram for a lookup bus is shown in Figure 3.5. It may also

help to refer to the implementation of a lookup node in Figure 3.3 on page 38.

As with the lookup node the lookup bus also involves some update signals that

are omitted from Figure 3.5 for simplicity. The update agent's write enable, update

default, input SRAM data and input register data signals are simply connected to

each update node. The update agent also shares the first lookup agent's enable,

bank number and address signals.

Another option for generating the output resolved and default data signals for

40

Klaus 3.6 Lookup Stage: Lookup Bus With Agents

each lookup agent would be to register the demultiplexed enable signals for each

lookup agent instead of their bank numbers and use crossbars instead of multiplex­

ers. While this would simplify the output bus designs and reduce the propagation

delay on the output signals it would require more registers and increase the propa­

gation delay on the demultiplexed enable signals. For this reason multiplexers were

selected instead.

For this design to function correctly it is a requirement that multiple agents do

not try and access the same memory bank during the same clock cycle. While

there are several ways of ensuring this, this design uses an arbiter at the input to the

lookup table to ensure that two lookups that could potentially access the same nodes

never issue in the same clock cycle. The full details of the arbiter implementation

and estimations of its effects on throughput are in Section 3.11. An alternative

approach would be to have one of the lookup agents stall if such a conflict situation

arose. Another would be for each memory bank to have an input queue, like some

CPU functional units have, where lookups would wait until the specific memory

was free. While these approaches are practical for other applications they would

greatly complicate the lookup bus design, increasing search latency while offering

little improvement in throughput and no improvement in worst case throughput, as

will be shown in Section 3.11.

3.6 Lookup Stage: Lookup Bus With Agents

Routing table lookups enter a stage as five inputs: a lookup enable signal, a perform

lookup signal, an IP address, a port number and a default port number. Each lookup

is assigned to a lookup agent, which accesses the lookup bus, if required, then

outputs the updated inputs from the stage. A block diagram of a lookup stage is

shown in Figure 3.6. It may help to refer to the block diagram of the lookup bus

in Figure 3.5 on page 40. The lookup enable signal indicates if the lookup agent

is being supplied with work this clock cycle. The perform lookup signal indicates

if this lookup agent should access the lookup bus to read a memory entry. The IP

address is the full address that is being handled by the lookup. The port number

41

3 Design Klaus

indicates where the packet with the given IP address should be routed to, if known.

The default port number indicates where the packet with the given IP address should

be routed to if the final port number turns out to be the special default port.

The first lookup agent also acts as an update agent for the stage, processing

updates for all of the nodes on the lookup bus when required. Again for simplicity

all of the update signals aren't shown in Figure 3.6. The actual update signals

passed between stages will be covered in a subsequent section.

In this design a routing table lookup is passed from lookup agent to lookup

agent as it progresses through the lookup table. An alternative approach would be

to have a lookup assigned to a single lookup agent that accessed all the lookup

buses and handled that lookup from start to finish. While this approach may seem

more straightforward it greatly complicates the lookup bus as many more lookup

agents would need to be attached to the nodes of a stage in order to maintain the

same throughput. Intuitively, a lookup agent's bus connection for a particular stage

would sit idle most of the time as the agent accessed lookup buses in other stages.

This is why the current approach is used.

3.7 First Lookup Stage: A Special Case

The first lookup stage is slightly different from the other stages in several respects.

Firstly, it has only a single lookup bank that is replicated so each lookup agent

has a copy that it uses exclusively. Secondly, since there is only one bank per

lookup agent there is no need for lookup agents to supply a bank number with their

lookup requests. Thirdly, if an IP address is being processed by a first stage lookup

agent then that agent will always perform a lookup, so no input perform signal is

necessary. Fourthly, since this is the first lookup for a given IP address there is

no existing port number or default port number data, so these inputs are also not

needed. Lastly, to efficiently keep all copies of the first bank the same, the update

agent performs identical updates on all banks in the first stage in parallel. A block

diagram of the first stage is shown in Figure 3.7. As with previous figures, all update

signals have been omitted for clarity.

42

Klaus 3.7 First Lookup Stage: A Special Case

3
M
O
O

<D

<
Ou,

c3
=

l-l

o
PL,
1)

u>
&,
3
O
O

u
i-.
3

43

3 Design Klaus

Enableln 1

Enableln L

lpAddressln_l

lpAddressln_L

En 1

Addr_l
Lookup
Bank 1

Def_l

Res_l

Look_l|

Enln l l

lpln_l

AAddr 1 Res li- ef_l

EnOut 1

Lookup
Agent 1

- ^ .

PerfOut 1

lpOut_l
•y

PortOut_l
•4
DefOut_l
•+

En L

Addr_L
Lookup
Bank L

Def_L

Res_L

lpln_L

Look_L| ^Addr_L R e s , ^ j4Def_L

Enln L

Lookup
Agent L

^ X .

EnOut L

PerfOut L

lpOut_L
•4

PortOut_L
•4

DefOut_L
•4

EnableOut 1

EnableOut_L

PerformOut 1

PerformOut_L

lpAddressOut_l
*—s—

lpAddressOut_L

PortOut_l
* .

PortOut_L

DefaultPortOut_l
*—7—

DefaultPortOut L

Figure 3.7: First Lookup Stage For L Parallel IP Address Lookups

While it would also be possible to replicate more than just the first stride mem­

ories to reduce conflicts and increase the design's throughput, it will be shown in

Section 3.11, that for large enough first stride memories, the possible benefit of

this approach is small compared to the added cost of replicating all of the second

stride memories. Then, in Subsection 5.2.3, it will be shown that larger first stride

memories result in more favorable chip areas. Thus only replicating the first stride

memory was used for this design.

44

Klaus 3.8 Lookup Table: Combines Multiple Stages Together

3.8 Lookup Table: Combines Multiple Stages Together

A complete lookup table consists ofN lookup stages, corresponding to the N strides

of the trie, chained together, followed by some result logic. The result logic trans­

forms the output data from the final lookup stage into the results output from the

lookup table. Each of these results consist of: a lookup signal that indicates if a

lookup is being output this clock cycle, the IP address of the lookup being output,

and the port number a packet with that IP address should be routed to. A block dia­

gram of a lookup table is shown in Figure 3.8. As with previous figures, all update

signals have been omitted for clarity.

3.9 Lookup Process

When an IP address of a packet to route enters the lookup table the lookup process

begins. The IP address is handed to a lookup agent in the first lookup stage for

processing on the first clock cycle. Every subsequent clock cycle the IP address is

passed on to another lookup agent in the next lookup stage. After the last lookup

stage, the port number to route the packet to has been determined and is output. A

diagram of the lookup process is shown in Figure 3.9. Some examples of the lookup

process in action can be found in Appendix B.l.

The IP address lookup is analyzed by a local lookup agent every time it is passed

to a new stage. The first stage always performs a lookup, and therefore takes the

first stride of the IP address and uses it to index into its only lookup bank. If the

entry is a port number then no further lookups are necessary, and the answer is

passed along unchanged through the other stages to the result logic. If the entry is a

pointer then at least one more lookup is required, so the lookup agent instructs the

following agent to carry out a lookup on the bank indicated by the pointer. In either

case the default port number passed out is the default data of the first stage's bank.

In the second and all remaining lookup stages, the local lookup agent analyzes

what the previous stage's lookup agent reported. If another lookup is required then

the agent uses its stride of the IP address to index into the bank indicated by the

45

03

S C
O

to

Q

L
o

o
k

u
p

ln
l

•
•

•
•

Lookupln_L

lpA
ddressln_l

•
r

:
;

?

:
lpA

ddressln_L

Lookup
S

tage 1

^

E
nable_l

•
•

•
•

E
nableJ.

P
erform

_l

•
•

•
•

P
erform

_L

lpA
ddress_l

•
/

T

•
/

:

lpA
ddress_L

P
ort_l

T
/

T

i
j

i
P

ort_L

D
efaultP

ort_l

T
/

T

i
5

i
D

efaultP
ort L

Lookup
S

tage 2

/
\

E
nable_l

•
•

•
•

E
nable_L

P
erform

_l

•
•

•
•

P
erform

_L

lpA
ddress_l

:
s

:
:

i
•

lpA
ddress_L

P
ort_l

T
s

T

i
j

i
P

ort_L

D
efaultP

ort_l

T
i

:
i

'
:

D
efaultP

ort L

E
nable_l

•
•

•
•

E
nableJ.

P
erform

_l

•
•

•
•

P
erform

_L

ipA
ddress_l

:
T

:
:

s
•

lpA
ddress_L

P
ort_l

*
/

T

i
}

i
P

ort_L

D
efaultP

ort_l

'
/

*
:

y
:

D
efaultP

ort L

Lookup
S

tage N

/
\

E
nableJ.

•
•

•
•

E
nableJ.

P
erform

_l

•
•

•
•

P
erform

_L

lpA
ddress_l

*
/

*
:

s
"

lpA
ddress_L

P
o

rt_
l

:
i

:
:

y
i

P
ort_L

D
efaultP

ort_l

•
/

:
i

y
i

D
efaultP

ort L

R
esult

Logic

L
o

o
ku

p
O

u
tl

•
•

•
•

LookupO
ut_L

lpA
ddressO

ut_l

*
/

T

:
/

:

lpA
ddressO

ut_L

P
ortO

ut_l

•
/

:
i

'
:

P
ortO

ut_L

Figure 3.8: L
ookup T

able C
om

posed of N
 Stages For L

 Parallel IP A
ddress L

ookups

D
ef

au
ltP

or
t

:=
 U

N
K

N
O

W
N

P

or
t

:=
 U

N
K

N
O

W
N

B

a
n

k
:=

1

P
or

t
:=

D

ef
au

ltP
or

t

B
an

k
:=

R

es
ol

ve
dD

at
a

P
er

fo
rm

 L
oo

ku
p

on
 B

an
k

in

N
ex

t
S

ta
ge

-J

G
o

to
 N

ex
t

S
ta

ge

(N
o

Lo
ok

up
)

I P
or

t
: =

R

es
ol

ve
dD

at
a

D
ef

au
ltP

or
t

:=

D
ef

au
ltD

at
a Y

es

P
or

t
:=

D

ef
au

ltP
or

t

P
o

rt
:=

D

e
fa

u
ltD

a
ta

So
"

C

Fi
gu

re
 3

.9
:

IP
 A

dd
re

ss
 L

oo
ku

p
Pr

oc
es

s

3 C
O

t-

3

3 Design Klaus

previous stage. If the entry is a port number then again no further lookups are

necessary. If the entry is a pointer then again at least one more lookup is required.

In either case the new default port number is analyzed. If it is the special default

(unknown) value then the new entry "defaults" to the value from the previous stage,

otherwise the new default port number is used. If, on the other hand, no new lookup

is required then an answer is already known and the port number and default port

number from the previous stage are simply passed along to the next stage.

The port number and default port number output from the last stage are then

analyzed by the result logic. If the port number is the special default value then the

value of the default port number is used as the result. Otherwise the port number is

used as the result.

An alternative approach would be to allow lookups that determine their port

number early to leave the lookup table early, and hence out-of-order. While this

would improve the latency of those lookups, it could actually increase the latency of

other lookups started a cycle or two earlier if those lookups took longer to determine

their port numbers. This is because, as will be discussed in Section 3.12, of the

limited number of lookup results output by the chip per cycle. The early finishing,

but later issued, lookup could take the spot of the later finishing, but earlier issued,

lookup, making an already slow lookup even slower. Increasing the number of

lookups retired per cycle would require more pins or faster I/O, without any added

benefit to throughput. Furthermore, out-of-order completion further complicates

the use of the design compared to in-order completion.

3.10 Update Process

The update process is actually the two separate processes of adding a new prefix

to the lookup table, and removing an existing prefix from it. Where as lookups are

pipelined and several are executed at once, only one update is processed at any one

time. In addition, when the system is undergoing an update no new lookups are

allowed, although existing lookups will finish. This ensures the system is always in

a consistent state and that there are no update conflicts. Updates can take anywhere

48

Klaus 3.10 Update Process

between a few to many thousands of clock cycles, but are bounded to never run

extremely long, as will be shown in Subsection 3.10.3. In general many simple

update steps are preferred over several complicated ones so that the maximum clock

frequency, and hence the lookup throughput of the design isn't adversely affected.

This tradeoff of favoring lookups over updates is acceptable since updates occur far

less frequently (hundreds/second) than lookups (billions/second)1.

In each stage, the first lookup agent is extended to also perform the duties of

update agent. Each update agent executes commands by reading and writing the

lookup banks in its stage, and by querying data or sending commands to the previ­

ous or next stage's update agent.

An alternative approach would be to have a single update agent with read and

write access to all of the lookup banks. While this would seem more straightfor­

ward, it would require an extra read connection on each lookup bus, which would

result in decreased lookup performance. Since fast lookups are a much larger pri­

ority than simplified updates this approach was not used.

One of the limitations of the proposed architecture is with a prefix whose ad­

dress spaces is completely covered by more specific prefixes. For example, prefix

0100/2 is completely covered by the prefixes 0100/3 and 0110/3. Because of longest

prefix matching, no IP address will end up being routed by the covered prefix, only

by perhaps those more specific prefixes. While having a completely covered, and

hence redundant, prefix in the lookup table is of no benefit, it may come into play

again if one of the more specific prefixes covering it were to be removed. Un­

fortunately, the proposed architecture has no way of storing redundant prefixes, so

adding a redundant prefix will modify nothing and no record of it will be kept. Like­

wise if a previously stored prefix becomes redundant, through the addition of more

specific prefixes that completely cover it, the redundant prefix will simply cease

to be in the table without any warning given. While this behavior can be worked

around and doesn't impact normal operation, it is still important to keep in mind

when updating the lookup table.

'Recall Table 1.2 on Page 4

49

3 Design Klaus

3.10.1 Addition Process

A diagram of the addition process is shown in Figure 3.10. Some examples of the

addition process in action can be found in Appendix B.2.

When an update agent receives a new IP address prefix addition it checks to see

if that prefix extends past the current stage. If it does then the update agent looks

up its stride of the prefix in the appropriate lookup bank and analyzes the entry. If

the entry is a pointer to a bank in the next stage then it is followed. If the entry is a

port number then a new bank must be allocated in the next stage. This new bank's

default entry is changed to be the port number and prefix length of the analyzed

entry, and the analyzed entry is changed to point to the new bank. The pointer to

the new bank is then followed. If the prefix does not extend past the current stage

then a search of all the entries encompassed by the prefix is conducted. If a searched

entry is a port number and prefix length then it is replaced by the new prefix's data if

the existing prefix length is less than or equal to the new prefix's length, otherwise

it is left unchanged. If a searched entry is a pointer to a bank in the next stage

then that bank's default entry is checked. If the default entry's prefix length is less

than or equal to the new prefix's length then it is replaced by the new prefix's data,

otherwise it is left unchanged.

A special case of the addition process occurs when the prefix being added is

zero length, representing a default route for the entire table. In this case the addition

becomes a simple modification of the default entry of the replicated lookup bank in

the first stage.

3.10.2 Removal Process

A diagram of the removal process is shown in Figure 3.11. Some examples of the

removal process in action can be found in Appendix B.3.

When an update agent receives a new IP address prefix removal it checks to see

if that prefix extends past the current stage. If it does then the update agent looks

up its stride of the prefix in the appropriate lookup bank and analyzes the entry.

If the entry is a port number, then there is an error, since the lookup table cannot

50

G
o

To

N
ex

t
S

ta
ge

A
dd

re
ss

 :
=

 "
F

irs
t

A
dd

re
ss

 I
n

P
re

fix
 R

an
ge

"
La

st
A

dd
re

ss
 :

=
 "

La
st

 A
dd

re
ss

 I
n

P
re

fix
 R

an
ge

"
E

nd

R
ea

d
E

nt
ry

A

t
A

dd
re

ss

A
dd

re
ss

 :
=

A

d
d

re
ss

+
1

N
ex

tB
an

k
:=

"N

ew
 B

an
k"

S
et

 E
nt

ry

Fo
r

P
re

fix

A
s

P
oi

nt
er

 T
o

N
ew

 B
an

k

I
N

ex
tB

an
k

:=
 E

nt
ry

S
et

 N
ew

B

an
k'

s
D

ef
au

ltD
at

a
To

 E
nt

ry

A
llo

ca
te

N

ew
 B

an
k

In

N
ex

t
S

ta
ge

G

et
 N

ex
tB

an
k'

s
D

ef
au

ltD
at

a

R
ep

la
ce

 E
nt

ry

W
ith

 P
re

fix

P
or

t&
Le

ng
th

R
ep

la
ce

D

ef
au

ltD
at

a
W

ith
 P

re
fix

P

or
t&

Le
ng

th

Fi
gu

re
 3

.1
0:

 I
P

A
dd

re
ss

 P
re

fix
 A

dd
iti

on
 P

ro
ce

ss

c "a

C
-3

5

F
ind R

eplacem
ent

P
ort&

Length
A

ddress :=
 "F

irst A
ddress In P

refix R
ange"

LastA
ddress :=

 "Last A
ddress In P

refix R
ange"

•2?

Q

R
eplace

D
efaultD

ata
W

ith R
eplacem

ent
P

ort&
Length

A
ddress :=

"F

irst A
ddress In B

ank"
LastA

ddress :=

"Last A
ddress In B

ank"

Figure 3.11: IP A
ddress Prefix R

em
oval Process

Klaus 3.10 Update Process

possibly be holding the prefix to be removed. If the entry is a pointer to a bank

in the next stage then it is followed. If the prefix does not extend past the current

stage then a search is conducted of entries within the current bank for prefixes that

encompass the prefix to be removed. The most specific (longest) such prefix, if

found, will be used as a replacement for any entries removed in the next step. If no

such more specific prefix is found locally then every entry removed in the next step

will be set to a port of default and length of 0. Next a search of all of the entries

encompassed by the prefix to be removed is conducted. If a searched entry is a port

number and prefix length that matches the prefix to be removed then it is set to the

replacement entry, otherwise it is left alone. If a searched entry is a pointer to a

bank in the next stage then that bank's default entry is checked. If the default entry

matches the prefix to be removed then it is set to the replacement entry, otherwise

it is left alone. After all of the entries have been processed then the bank must be

checked to see if it can be deallocated. If the bank is in the first stage then this is

not possible, otherwise each entry is checked to see if it contains the port number

default and prefix length 0. If so then the bank is deallocated and the bank in the

previous stage that pointed to it has its pointer entry changed to the default entry of

the newly deallocated bank. Once again a check is performed of this previous stage

bank to see if it can be deallocated, which continues until either the first stage is

reached or a bank is found to contain a non-default port number or pointer, which

means it can't be deallocated.

A special case of the removal process occurs when the prefix being removed is

zero length, representing a default route for the entire table. In this case the removal

becomes a simple modification of the default entry of the replicated lookup bank in

the first stage, setting it to the port number default.

3.10.3 Worst Case Updates

One of the significant problems with previous software and hardware trie imple­

mentations is that in the worst case adding or removing a prefix can take an ex­

tremely long time. Prefixes can cover millions of entries, and in a dense address

53

3 Design Klaus

space with enough prefixes it is possible that adding or removing a prefix might

require checking and modifying millions of entries in the trie. If such a situation

were to arise then the lookup table might be unable to handle new lookups for sev­

eral seconds or more, shutting down the router for this time, which is completely

unacceptable.

The update procedures presented for this design consist of the following four

steps: navigate to the target bank, find the replacement entry, modify each entry

covered by the prefix to reflect the change, and deallocate banks if possible. For

prefix additions, only the first and third steps are required. For prefix removals, all

four steps are required. In the worst case, navigating to the target bank is linear

work with respect to the number of stages. Finding a replacement entry consists

of searching up to half of a bank's entries. Deallocating banks if possible is, in

the worst case, proportional to the sum of the sizes of a bank in each stage but the

first. The big difference in this design comes with modifying the entries covered

by a prefix to reflect the change. Because each modification involves either a port

number and prefix length, or a default entry at the other end of a pointer, the work

required is, in the worst case, proportional to the number of entries in a bank, not the

number of entries in the trie! A prefix can cover at most half the entries in a bank (if

it covers them all then it can be reflected in the default entry) so the work required

is more precisely proportional to half a bank's entries in the worst case. In general

the number of stages is far less than the number of entries in a bank, so the worst

case update time for this design is either proportional to half the size of the largest

bank, or to the sum of the sizes of a bank in each stage but the first. If the first stage

has the largest bank, which is commonly the case, then the worst case update time

is proportional to half the size of the first stage bank. For a first stride of 16 bits,

for example, this would be some small multiple of 216 -h 2 = 215 = 32,768 clock

cycles, far less than the potential millions of clock cycles for previous designs.

When looking at real "backbone" routing tables, it is readily apparent that no

entries exist for prefixes shorter than 8 bits [27]. If this was guaranteed to be the

case then the design could be modified to make finding a replacement entry in the

54

Klaus 3.11 Arbiter

first stage far more efficient, since prefixes of these shorter lengths could never be

found. This design modification, combined with the fact that a first stage prefix

could cover only ^ = 255 °^ ̂ e e n t r i e s m t n e first s t a g e bank, would significantly

reduce the worst case update time even further. However, since this lack of shorter

prefixes is only a legacy left over from IPv4 classes and no guarantee for the future,

the design does not make that assumption.

3.11 Arbiter

In previous sections it was assumed that no more than one lookup agent would

access a given lookup node during the same clock cycle. It is the arbiter's job to

structure the input of the lookup table such that this never occurs. Since in the first

stage each lookup agent has its own copy of the lookup bank, conflicts are only

possible between agents in subsequent stages. In order for such a conflict to occur,

two lookup agents in the first stage must access the same entry during the same

clock cycle. That entry must be a pointer, which would then direct two lookup

agents in the second stage to access the same bank on the following clock cycle. In

order for the two lookup agents in the first stage to access the same entry, the two

lookups they are performing must have the same first stride bits. Therefore if two

lookups with the same first stride bits are never allowed to issue in the same clock

cycle there is no possibility of conflicts.

The arbiter receives all incoming IP address lookup requests serially. It allocates

them into groups of however many can be performed in parallel by the lookup table.

Every time the lookup table is ready for new input the arbiter supplies it the current

group and starts a new one. If the current group is full the arbiter waits until a new

one is started. If the next IP address would share the same first stride bits as another

address already in the group the arbiter waits for a new group.

This arbiter design is easy to implement. Unfortunately, conflicts between the

first stride bits of IP addresses being looked up reduces the throughput of the lookup

table. Assuming uniformly random lookup requests, the chances that two IP ad­

dresses will have the same first stride bits is inversely exponentially proportional

55

3 Design Klaus

to the length of the first stride of the lookup table. This is an important factor to

consider when selecting the strides of a lookup table.

More formally, the average number of lookups completed per clock cycle, as­

suming a full load of random lookup requests, for a lookup table capable of L par­

allel lookups per clock cycle and a first stride of F bits using this simple arbiter

design is: Zfc | (^ 11*=! ^ F ^) +LU^ZI ^W^- A s a n example, a lookup table with

a first stride of F = 16 bits that supports L = 8 parallel lookups would achieve an

average of 7.9987 lookups per clock cycle. It is easy to see that, for larger sized

first strides and uniformly random lookup requests, the loss in throughput from us­

ing the simple arbiter design is negligible and therefore a more complicated arbiter

design isn't needed.

In reality the lookup requests of a router will not be uniformly random. In

certain cases there could be large amounts of traffic directed at a small subset of the

address space, limiting the throughput of the proposed design. In these cases even a

more advanced arbiter design won't improve things much as most of the throughput

will be lost to conflicts that cannot be avoided. One possible solution to this problem

would be to have a small cache of popular lookup addresses to ensure that many

identical lookup requests do not adversely affect the design's performance.

3.12 Packaging & I/O Signals

A lookup table capable of L parallel IP address lookups per cycle requires L input

IP address and enable signals per cycle and outputs L output IP addresses, port

numbers and enable signals per cycle. If IP addresses are each 32 bits, port numbers

are each 6 bits and enable signals are each one bit then each lookup requires 32 +

1 = 33 input pins and 32 + 6 + 1 = 39 output pins for a total of 33 + 39 = 72 pins

per lookup done in parallel. This large number of pins per lookup and the serial

nature of the arbiter are strong arguments for high speed serial input and output

of lookups. In this scheme, a new lookup IP address is input and the result of a

previous lookup is output every clock cycle. The arbiter combines L lookups into

a single parallel input for the lookup table, which is clocked once every L input

56

Klaus 3.12 Packaging & I/O Signals

clock cycles. The output of the lookup table is also serialized into L clock cycles of

lookup results to be output. For an 5 stage (stride) lookup table, each lookup takes

5 + 2 clock cycles (one cycle per stage plus one more for combining the results

and another spent being deserialized on input and serialized on output) for a total

latency of L* (5 + 2) input cycles per lookup barring any conflicts the arbiter needs

to resolve.

An alternative approach would be to assign an incrementing tag number of say

8 bits to each input lookup request. This tag number could then be output by the

chip instead of the entire IP address, saving 24 output pins at the cost of 8 more

input pins, reducing the pin count by 16. It would also makes it easier for the

off chip logic to match the result port numbers to the original packets. While not

implemented in this design this approach would be even more attractive if the design

were modified to support 128 bit IPv6 addresses.

In the event of a conflict, the arbiter asserts a wait signal to pause lookup input

until the conflict has been resolved. It also asserts the wait signal whenever an

update is started until the update has finished and normal input can resume.

In the event of an error during an update, an error signal is asserted by the

lookup table and the update is aborted. Updates in general also require a 2 bit

input operation code (to identify a lookup, addition or removal), an input IP address

prefix, an input prefix length, and an input port number (in the case of additions).

The input IP address prefix can be loaded in on the same 32 input pins as the lookup

IP addresses. The prefix length requires an additional 6 input pins (to represent a

value between 0 and 32 inclusive) and the input port number requires another 8

input pins. Thus updates require an additional 1 + 2 + 6 + 8 = 17 input pins.

In addition to power, ground, reset and clock pins the lookup table therefore

requires 72 + 1 + 17 = 90 lookup and update pins.

57

3 Design Klaus

58

Chapter 4

Testing

4.1 VHDL Code

The entire design was implemented generically in VHDL (Very High Speed In­

tegrated Circuit (VHSIC) Hardware Description Language), with properties such

as the number of bits in an IP address, the number and size of each multi-bit trie

stride, and the number of possible ports all being easily changed through generic

constants. Not only did this make the implementation incredibly flexible so it could

be used to try a wide variety of configurations, it also made it a lot easier to test

each of these configurations as very little source code changed between them. By

validating one configuration through extensive testing only a few corner cases re­

mained to be validated with all the other configurations, drastically reducing testing

time.

4.2 Functional Simulation

As each building block of the design was implemented it was functionally tested

using ModelSim v6.0e from Mentor Graphics. The complete lookup table and ar­

biter were also functionally simulated and verified. Functional testing consisted

of a combination of basic operation scenarios, specifically targeted corner cases,

and thousands of randomly generated inputs. In particular, cases that covered all

branches of the lookup and update process diagrams were developed. In all cases

C++ programs were written to generate the expected output for each test case to be

59

4 Testing Klaus

Feature
Logic Cells
Block Ram

18 x 18 Multipliers
Digital Clock Management Blocks

Configuration Size
PowerPC 405 Processors

Max Available RocketIO Transceivers
Max Available User I/O Pins

Value
99,216

1,992Kb
444
12

33.65Mbits
2

20
1164

Table 4.1: Xilinx Virtex-II Pro XC2VP100 FPGA Features

compared against the output of the functional simulations.

4.3 FPGA Implementation

The FPGA development board used for validating the design was the AMIRIX

Systems API 100. The API 100 combines a Xilinx Virtex-II Pro XC2VP100 FPGA

with a large number of peripherals on a PCI card that can inserted into a host com­

puter. The XC2VP100 has 99,216 logic cells, 7,992 Kb of block ram, and two

embedded PowerPC 405 processors. The features of the XC2VP100 are listed in

Table 4.1.

A {16,8,8} partition with support for four simultaneous lookups was selected

for the FPGA implementation. Unfortunately, due to the limited amount of block

memory in less than ideal sizes and its use by other components of the system, only

4 first stride memories, 128 second stride memories and 32 third stride memories

could be realized. While large enough to support some pretty elaborate routing ta­

ble test cases it was clear that simulating full "backbone" routing tables, requiring

thousands of memories per stride, would not be possible in a FPGA. Not surpris­

ingly the lookup table was memory bound and took up only 16,065 (18%) of the

88,192 4 input Look-Up Tables (LUTs) and 5,166 (5%) of the 88,192 flip flops.

A summary of the FPGA resource usage is in Table 4.2. The lookup table had a

maximum throughput of 94.1MHz without any significant optimizations.

Testing the lookup table at almost 100MHz presented a fairly difficult challenge

60

Klaus 4.3 FPGA Implementation

FPGA Resource
Look-Up Tables

Flip Flops
Block Rams

Total Available
88,192
88,192

444

Total Used
16,065
5,166
319

Utilization
18%
5%

71%

Table 4.2: Lookup Table FPGA Resource Usage

due to large amount of input and output data required. Transferring in four 32 bit IP

addresses and returning four 32 bit IP addresses and four 6 bit port numbers in the

just over 10ns cycle time was out of the question for any of the standard peripherals

on the development board; unfortunately, the board did not expose the FPGA's high

speed serial links. This left three alternatives: generate the input within the FPGA,

run the lookup table at a much slower clock frequency, or buffer input within the

FPGA then release it into the lookup table at full speed. While generating the input

within the FPGA would have been the most straightforward it would also be the

least flexible and hardest to verify as the input generation and output verification

would all be internal to the FPGA. The second alternative of running the lookup

table at a lower clock frequency would offer the flexibility of externally generated

and verified data, but wouldn't validate the extremely high throughput of the design.

It's for these reasons that the third approach was selected: to offer the best of the

first two approaches at the cost of some added complexity in its implementation.

Test input was sent to the FPGA through the evaluation board's serial port for

simplicity. A simple text based command format was used to specify the sequence

of IP address lookups, prefix additions and prefix removals for each test. Additional

commands reset the lookup table, clearing its contents, and released all of the pre­

viously buffered commands to the lookup table at full speed. One of the embedded

PowerPCs in the FPGA was used to parse the serial port input and supply it to a

very wide internal memory. This very wide internal memory could buffer up to a

few thousand commands, which were then dispatched together to the lookup table

as fast as it could handle them. The output of the lookup table during a run was sim­

ilarly buffered into a very wide internal memory to be later read by the PowerPC

and sent back across the serial port. The number of clock cycles each run took was

61

4 Testing Klaus

also tracked and printed to the serial port, to verify how quickly the lookup table

could process each sequence.

Testing of the FPGA implementation involved verifying basic operation, specif­

ically targeted corner cases, thousands of randomly generated operations, lookup

performance and worst case update performance. A lot of the test cases generated

for the design's functional simulation in ModelSim were easily re-used here, and

C++ programs were again used to validate the output of the FPGA.

62

Chapter 5

Quantitative Comparisons of Stride
Choices

One of the most important implementation decisions for any multi-bit hardware trie

design is the choice of how many strides, and the sizes of each. A poor choice of

strides can dramatically increase the memory required to store a set of prefixes; it

also affects the area, power consumption, latency and throughput of the final design

in hardware. Additionally, a good choice of strides for one set of prefixes might

be a very bad choice in strides for another set. Unfortunately, most of the previous

work on multi-bit hardware tries doesn't address this important issue, or makes

recommendations based on only one set of prefixes from a single routing table.

In this chapter all possible choices of strides for this lookup table design are

compared using real prefixes from real "backbone" routing tables. First, the source

of this routing table data is presented and analyzed. Next, several different metrics

for evaluating stride choices are developed. Finally, these metrics are applied to all

the possible stride choices, the results are compared, and the preferred choice of

stride is presented.

5.1 Source of Routing Table Data

This section presents the source of the routing table data used for comparing stride

choices. The largest routing table is analyzed, and the information about all the

routing tables is condensed into a form that makes stride choice comparisons much

63

5 Quantitative Comparisons of Stride Choices Klaus

easier.

5.1.1 Border Gateway Protocol (BGP) Tables

The "backbone" routers at the heart of the Internet use the Border Gateway Protocol

(BGP) to communicate routing information between each other to build their own

routing tables. Each group of "backbone" routers under a single technical adminis­

tration (for example, an Internet Service Provider) is assigned a unique Autonomous

System (AS) number [57]. Each AS advertises the IP address ranges assigned to

each of its internal networks to each of its AS neighbors, who then forward this

information on to each of their neighbours, and so on, until each AS knows about

every other AS. Each AS uses these advertisements to construct a BGP routing ta­

ble mapping each advertised IP address range to the best path to the destination

AS that advertised it. Each of these paths might involve one or more intermediate

Autonomous Systems as every AS is not directly connected to every other AS. The

BGP routing table can then be used to create an IP address lookup table, mapping

IP address ranges to the appropriate port connected to the appropriate next-hop AS.

While the BGP routing table of an AS might not directly correspond to the IP

address lookup table of one of that AS's routers it offers a very good approximation

of the types of prefixes the lookup table would contain. While using the actual

lookup tables of "backbone" routers would be ideal for stride comparisons, very

few are made public, for security and other reasons. Fortunately a large number

of AS BGP routing tables were made publicly available on http://bgp.potaroo.net/

as part of a project to study the growth of the BGP table, among other things.

BGP tables from each of the Autonomous Systems in Table 5.1.1 were captured on

three different dates: December 22, 2005; November 26, 2006; and May 27, 2007.

Unfortunately, at the time of writing, it looks as though http://bgp.potaroo.net/ now

only presents data on a single AS.

64

http://bgp.potaroo.net/
http://bgp.potaroo.net/

Klaus 5.1 Source of Routing Table Data

AS Numbers of BGP Routing Tables Captured
286 1221 1239 1668 2493 2497 2828 2905 2914 3257 3277 3292

3303 3333 3356 3549 3561 4513 5459 5511 5650 6079 6395 6453
6509 6539 6939 7018 7500 7660 8075 11537 11608

5.1.2 The Largest Routing Table

The AS with the largest number of prefixes on May 27, 2007 was AS7500 with

222,728. It started at 169,103 prefixes on December 22, 2005 and grew to 205,784

prefixes on November 26, 2006. Figure 5.1 shows the number of prefixes of each

length AS7500 had in its routing table on each of the three capture dates. There

are several interesting properties of BGP routing tables to take note of from this

graph. First, that there are clusters of prefixes of lengths 8,16 and 24, corresponding

to the old classes before Classless Inter-Domain Routing (CIDR) was introduced.

Second, there are no prefixes of length less than 8. While nothing in CIDR prevents

such large ranges of IP addresses to be allocated to a single provider, it is unlikely

to happen for the remaining use of IPv4, due to the scarcity of available address

ranges. Lastly, there are a somewhat significant number of prefixes of length 25 or

more. Ideally such specific prefixes could be aggregated into larger prefix ranges

and not need to be advertised individually in the BGP table. Unfortunately, that is

not the case and any solution to the routing table lookup problem must handle them

as well.

5.1.3 Reducing the Complexity of Stride Choice Comparisons

While knowing the number of prefixes in the largest "backbone" routing table is

enough to appropriately size a TCAM to handle all of the different routing tables,

it's not so straight-forward for multi-bit hardware tries. For a given stride choice a

routing table with a smaller number of prefixes might actually require more memory

than a routing table with more prefixes. All of the routing tables must therefore be

taken into consideration for all possible stride choices.

To simplify this problem, observe that, for a given set of routing prefixes P,

there is certain subset of prefixes, Pn, containing all prefixes of length longer than

65

1000000

3

5 "S

C<3

K

O

I

a g
U

100000 I

10000 I

1000

100

10

i
1

1
1

1
r

2006-N
ov-26 iZ

.Z
D

2007-M

ay-27

i
r

n
r

T
i

i
r

~\
i

i
i

i
i

i
i

r

l

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
A

ll

Prefix L
ength

Figure 5.1: Prefixes of E
ach L

ength in the R
outing T

able of A
S7500

Klaus 5.1 Source of Routing Table Data

n bits. If the prefixes P were to be stored in a two stride multi-bit trie whose first

stride was n bits wide, then all of the prefixes in P — P'„ would be stored in that first

stride, and the prefixes in Pn would need to be stored in the second stride. Adding

each prefix in Pn to the lookup table involves looking up the first n bits of the prefix

in the first stride lookup table and adding a pointer to a new second stride lookup

table, unless of course a previous prefix in Pn shared the same first n prefix bits and

has already added the pointer and new lookup table. The number Lp{n) of second

stride lookup tables required to store the Pn prefixes is therefore less than or equal

to the number of prefixes in Pn. Now observe that if the first stride of n bits is

partitioned into two strides of total length n, the P — P„ prefixes will be stored in

the first two strides, and the Pn prefixes will require Lp(n) new lookup tables in the

third stride. Also observe that if the second stride was partitioned and the first stride

of n bits was not, the P — Pn prefixes would still be stored in the first stride, while

the Pn prefixes would still require Lp(n) second stride lookup tables (and perhaps

some third stride lookup tables as well). Thus no matter how many strides of how

many bits the first n bits of the trie are partitioned into, and no matter how many

strides of how many bits the subsequent strides are partitioned into, a set of prefixes

P will always require Lp(n) m'^-stride lookup tables when the first m — 1 strides

total n bits, for any value of m. By precomputing the Lp{n) values, for all possible

n for a set of prefixes P, the number of lookup tables needed for each stride for a

given choice of strides is now easily determined.

The problem is even further simplified by now computing the Lp(n) values, for

each set of prefixes P, corresponding to each of the different routing tables. The

maximum Lp(n) value for a given n amongst all of the sets of prefixes, Lmax(n), is

therefore the number of next-stride lookup tables required to handle all possible sets

of prefixes. It, therefore, suffices to use the single set of Lmax(ra) values to evaluate

a given choice of strides, instead of each set of Lp(n) values for each set of prefixes

P.

The Lmaxin) values, for each value of n for each capture year, are plotted in

Figure 5.2. Several important observations can be made by looking at this graph.

67

100000 n
—

i—
i—

i—
i—

i—
i—

i—
i—

i—
i—

i—
i—

i—
i—

i—
i—

i—
i—

i—
i—

i—
i—

i—
i—

i—
i—

i—
i—

i—
i—

r

2005-D
ec-22

^
m

2006-N
ov-26 T

:

]
2007-M

ay-27

10000

1000

100

10

JL
 I [

0
1

2
3

4
5

6
7

8
9

10
11 12

13 14
15

16
17 18

19 20
21 22 23 24 25 26 27 28 29 30 31

n =
 T

otal of A
ll Previous Stride B

its

ure 5.2: R
equired N

ext-Stride L
ookup T

ables For E
ach T

otal of A
ll Previous Stride B

its to Support A
ll R

outing T
ables

Klaus 5.2 Developing Stride Choice Comparison Metrics

First, the growth of Lmax(n) is clearly not exponential with respect to n (especially

for n > 24). This indicates that a single stride of 32 bits is not a very efficient choice

for these prefix sets, and significant savings can therefore be realized by using more

than one stride. Second, starting a new stride after the first 17 to 23 bits is clearly

a bad idea as it would require well over 10,000 next-stride lookup tables. A single

stride spanning this bit range clearly offers significant memory savings. Third, the

first two observations present a trade-off: longer strides spanning certain ranges

can reduce the required number of next-stride lookup tables to save memory, but

at the same time longer strides are less efficient, allocating memory for address

ranges not covered by any prefixes. Finally, it's clear that the number of next-

stride lookup tables, Lmax(n), required for a given n is growing as time passes and

the IPv4 address space gets closer to exhaustion. This growth, present in the 5 <

n < 26 range, is also stable, providing confidence that a multi-bit hardware trie

implementation, with a particular choice in strides, will remain viable for years to

come, as long as some extra lookup tables are provided for each stride past the first.

5.2 Developing Stride Choice Comparison Metrics

In this section three different stride choice comparison metrics are developed with

varying levels of computational complexity.

5.2.1 Metric #1: Required Memory Bits

A poor choice in strides for a multi-bit hardware trie can drastically increase the

required memory for a design. It seems only natural then that one of the chosen

metrics should be the required number of memory bits of the design. With this

metric the number of entries in a stride's lookup table is multiplied by the number

of bits required to store each entry. The number of bits needed to store the default

port information is added, then the resulting number is multiplied by the number

of lookup tables required for that stride. This is repeated for each of the remaining

strides, with the total being the number of memory bits needed for the entire design.

69

5 Quantitative Comparisons of Stride Choices Klaus

5.2.2 Metric #2: Required Memory Entries

This metric counts the number of memory entries required for a design, which is

a simplification over counting the number of memory bits required for that design.

Recall from Section 3.2 that each memory entry stores either a port number and

relative prefix length, or a pointer to a next stride lookup table. Observe that each

port number is a fixed number of bits. Also note that the number of bits required to

store the relative prefix length is logarithmic with respects to the size of the stride.

Finally, note that the number of bits required to store a pointer to a next stride

lookup table is logarithmic with respects to the number of next stride lookup tables.

It is, therefore, expected that the size of each memory entry varies only slightly

between the different strides, and the added complexity of counting individual bits,

instead of entries, is not required to draw the same conclusions.

5.2.3 Metric #3: Required Design Area

Far more complicated than either of the previous two metrics, the last metric seeks

to estimate the actual chip area consumed by the design, which is predominately

due to the SRAMs. It is expected that this approach will give the most accurate

results, as it factors in several second order effects not considered by the other

metrics. As an added benefit, this approach also allows estimation of the power

consumption, latency and throughput of the final design, for little added cost. This

provides several different comparison points for stride choices resulting in similar

chip areas. It is important to note, however, that more complicated metrics, such as

active power consumption and maximum throughput, are dependent on the actual

workload of the router, and these metrics are therefore approximations. It is also

important to remember that these estimates are not substitutes to results from an

actual hardware implementation.

Just as there are a huge number of possible stride choices, there are a large num­

ber of different SRAM sizes required depending on those stride choices. The size

of a stride determines the number of entries required, and the number of next stride

lookup tables affects the size of each of those entries. Unfortunately, it is not prac-

70

Klaus 5.2 Developing Stride Choice Comparison Metrics

Technology
Cell Height
Cell Width
Cell Area

Macro Organization
Macro Height
Macro Width
Macro Area

Macro Access Time
Macro Active Power

Macro Leakage Power

Value

45nm SOI
0.38pm
0.83pm

0.315pm2

32ATxl6
0.475mm
0.482mm
0.229mm2

A5Qps
2\mW
24mW

Notes

1024 word lines
512 bit line pairs

0.9V, 85°C, Typical Process
\GHz, 1.0V, 125°C, Fast Process
1GHz, 1.0V, 125°C, Fast Process

Table 5.1: Performance of a State of the Art SRAM

tical to implement each of these possible combinations in hardware to gather the

most accurate numbers, and previously published work covers only a small fraction

of these configurations. To solve this problem, a published state of the art SRAM

design is selected as a baseline, and the properties of all the other SRAM configu­

rations are extrapolated from it. While this approach clearly introduces some error

into the values, it is expected that they will still be accurate enough to draw some

meaningful conclusions.

Pilo et al. [52] presented a SRAM macro in 45nm SOI technology with a fast

access time and advanced power reduction techniques. The published performance

of this SRAM macro are in Table 5.1.

Based on these figures and an accurate layout diagram of the macro cell the

authors provided, it is possible to estimate how the macro overhead will change if

the number of columns and rows in the macro were to be changed. The overhead

affecting the width of the macro can be attributed to repeaters, which scale with the

number of columns in the macro (0.043/um/ column), and to word line drivers and

row decoders, which mostly don't change with the number of columns (27.8pm).

Likewise the overhead affecting the height of the cell can be attributed again to re­

peaters, which scale with the number of rows in the macro (0.044pm/raw), and to

column decoders and sense amplifiers, which mostly don't change with the num­

ber of rows (47.4pm). The required width and height of a custom SRAM macro

71

5 Quantitative Comparisons of Stride Choices Klaus

Width
Height
Area

Cycle Time
Active Power

Leakage Power
Total Power

Symbol

Sw
SH

SA

STC

Spa
Spi
Spt

Formula

[(0.83jum + 0.043jum) x columns + 27.Spm]
[(0.38^ra + 0.044^m) x rows + 41A/jm]

Sw XSH

± x (Sw/0AS2mm + SH/0A75mm) x 4l0ps
(SA/0.229mmI) x 2lmW
{SA/0.229mm2) x 24mW

Spa + Spi

Table 5.2: Formulas for Estimating the Performance of a State of the Art SRAM

cell is therefore estimated to be [(0.83^ra + 0.043/im) x columns + 21 .S/um] and

[(0.3Spm +0.044pm) x rows + 47 Apm] respectively. These formula are summa­

rized in Table 5.2.

Approximations of the new cycle times, active power, and leakage power of a

scaled macro cell are also possible. Since the capacitance of each bit line scales

linearly with the height of the macro, and the capacitance of each word line scales

linearly with the width of the macro, it is expected that the cycle time of the macro,

which is dominated by the capacitances of the bit lines and word lines, will scale

linearly with the width and height of the macro as well. The active power is domi­

nated by the charging of all the bit lines, with the number of bit lines scaling with

the width of the cell and the length of each scaling with the height of the cell. Thus

it is estimated that the active power will scale with the area of the cell. Finally

the leakage power is dominated by the number of cells in the macro, and is there­

fore estimated to scale with the area of the macro cell as well. These formulas are

summarized in Table 5.2.

To calculate the total area of the design, the estimated area of the SRAMs in

each stride are summed. The area overhead of the non-SRAM logic is estimated to

be 0.25mm2 for a single lookup per cycle, and expected to scale linearly with the

number of additional lookups per cycle supported. This formula is summarized in

Table 5.3.

To calculate the total power consumption of the design, the estimated active

and leakage power consumed by each stride is summed. The estimated leakage

72

Klaus 5.2 Developing Stride Choice Comparison Metrics

Number of Strides
Stride Memories

Stride Width
Stride Memory Area
Max. Lookups/Cycle

Stride Area
Stride Active Power

Stride Leakage Power
Stride Total Power

Average Lookups/Cycle

Design Cycle Time
Design Throughput

Design Latency
Design Area

Design Active Power
Design Leakage Power

Design Total Power

Symbol
N

Mk

Wk

Ak

Limax
Tk
1A
jk
1Pa
Tk
*Pl
Tk
1Pt

'-'avg

DT

DL

DA

DPa

DPI

DPt

Formula or Description

Number of strides in the design
Number of memories in stride k

Number of bits in stride k
Area of a memory in stride k

Maximum number of lookups/cycle supported
Mk xAk

'-'max * bpa

Mk x Sk
Pl

max%=l (S^) + 200 ps
Lavg/L>Tc

I S 3 (Ore)
I J L I C ^ + L ^ X 0.25mm2

I^_ 1 (r / J+L m a t x22 .9mW
lf = 1 (r / /)+L m a x x26.2mW

DPa+ DPl

Table 5.3: Formulas for Estimating the Performance of a Design

power for a stride is the expected leakage power of a single memory for that stride

multiplied by the number of memories in that stride. The estimated active power for

a stride is the expected active power for a single memory for that stride multiplied by

the number of lookups per cycle; This is the maximum number of memories that can

possibly be active in that stride at one time. In actuality, on average, fewer than that

will be active, as some lookups will be resolved in previous strides. This estimate,

therefore, provides a good upper-bound on the maximum expected average power,

and hence total power for the design. The active and leakage power overheads of

the non-SRAM logic are estimated to be 22.9mW and 26.2mW respectively for a

single lookup per cycle, and expected to scale linearly with the number of additional

lookups per cycle supported. These formulas are summarized in Table 5.3.

To calculate the maximum throughput for the design, the stride with the largest

memory cycle time dictates the highest frequency that the design could possibly op­

erate at. In practice, however, the routing, logic and register overhead of connecting

these memories up in the design will be added to that. Determining the exact value

73

5 Quantitative Comparisons of Stride Choices Klaus

of this overhead would require implementing the design in hardware, so an approx­

imation of 200ps is used instead. The listed number of lookups per cycle indicates

the maximum number of lookups that can be completed each clock cycle, but in

practice the average number of lookups completed per cycle can be much less than

that. As mentioned in Section 3.11, conflicts can occur between lookups that would

cause them to access the same memories at the same time, which forces the arbiter

to issue them in different clock cycles, reducing the design's throughput. The equa­

tion from that section is used to calculate the expected average lookups completed

per cycle, which is then multiplied by the highest possible frequency to determine

the maximum possible throughput for that stride choice. These formulas are sum­

marized in Table 5.3.

To calculate the total latency of the design, the cycle time of the design is mul­

tiplied by the number of strides in the design plus 3. Each lookup spends one clock

cycle in each stage (stride), one in the arbiter, one to determine the final lookup

result, and finally one during input and output from the chip. This formula is sum­

marized in Table 5.3.

5.3 Stride Choice Comparisons Using Three Metrics

In this section, each of the three metrics is applied to every single possible stride

choice, for every possible number of strides. In addition the number of parallel

lookups, per clock cycle, supported is varied in all cases and is factored into the

results. Only the last capture taken on May 27, 2007 is used for this analysis to limit

the size of the data set, although the results are comparable for the other capture

dates as well. The most promising candidates from each metric are presented and

compared to evaluate the effectiveness of each metric. Finally, the preferred stride

choice is selected and presented.

5.3.1 Metric #2: Required Memory Entries

Figure 5.3 shows the design's preferred stride choices to minimize the number of

memory entries. Not shown on this graph is the result for a single stride of 32 bits

74

Klaus 5.3 Stride Choice Comparisons Using Three Metrics

which requires (1 + 232) x L = 4,294,967,297 x L memory entries, where Lmax is

the maximum number of simultaneous lookups per cycle supported.

Based on the prefix distributions seen in Figure 5.1 it is unsurprising to see that

almost all the preferred stride choices are based on separating the address space

between the first 24 bits and the last 8 bits. The second less extreme drop between

the number of length 25 to 27 prefixes to the length 28 to 32 prefixes is reflected

in the benefit of partitioning the last 8 bits into two strides of 3 and then 5 bits

respectively.

Increasing the number of strides from 1 can dramatically decrease the required

number of memory entries initially, with most of the reduction realized with 5

strides. Although not shown on the graph, for one lookup per cycle, minor re­

ductions continue logarithmically until 12 strides, at which point the overhead of

having an extra default entry per memory overtakes any reductions from moving to

more strides of smaller size.

As mentioned previously in Section 3.7 increasing the number of supported

lookups per cycle requires replicating the first stride memory. Thus certain stride

choices like {24,8} might result in the fewest memory entries for 1, 2 or 4 lookups

per cycle, but other stride choices like {22,10}, with smaller first stride memories,

become better choices for 8 or more lookups per cycle.

Based on the number of required memory entries the preferred stride choice

for up to 5 strides and 16 lookups per cycle is {09,08,04,03,08} with 1,317,582.

This offers a factor of 50,000 reduction in memory entries over the single stride of

32 bits for the same 16 lookups per cycle. Without any other constraints taken into

account, it always makes sense to increase the number of parallel lookups using this

metric as the incremental cost of an additional first stride memory will always be

less than the incremental benefit of an additional lookup per cycle. This approach

is not practical, however, as will be shown in Subsection 5.3.3.

75

le+09

3

5

le+08

c
W

le+07

=5
v\)

a "^3

C
O

C

o

•2

I

le+
06

le+05

-
i

1
r

1 L
ookup/C

ycle
•

2 L
ookups/C

ycle
•

4 L
ookups/C

ycle
•

8 L
ookups/C

ycle
•

16 L
ookups/C

ycle
B

r-

O
O

0
0

•<t

o
o

C
S

O

0
0

O
O

Q
.

©
„

o„

©
„

r~-
o
o

oo
o O
S

0
0

©..

0
0

o

0
0

©
„

r-
Q
.

©_

©
„

o
c->

o

oo
©
,

en

©
„

r-

oo

Q
.

ei

©
„

Q
.

oo

O
.

©

V
>

©
„

P
I

©
.

o_

Q
.

Q
,

©
„

©
„

>o

Q
,

V
O

©
_

C
O

©
_

©
„

©
.

s

Stride C
hoices

Figure 5.3: Preferred Stride C
hoices for M

inim
izing the D

esign's R
equired M

em
ory E

ntries

Klaus 5.3 Stride Choice Comparisons Using Three Metrics

5.3.2 Metric #1: Required Memory Bits

Figure 5.4 shows the design's preferred stride choices to minimize the number of

memory bits. Not shown on this graph is the result for a single stride of 32 bits

which requires 55,834,574,856 x L memory bits, where L^^ is the maximum num­

ber of simultaneous lookups per cycle supported.

It's clear that the same trends and observations that apply to the preferred stride

choices for reducing memory entries also apply to the preferred stride choices for

reducing memory bits. While a lot of the preferred stride choices for reducing

memory bits are the same as those for reducing memory entries there are some slight

differences; implying that counting memory entries is not a perfect approximation

for counting memory bits.

Based on the number of required memory bits, the preferred stride choice for

up to 5 strides and 16 lookups per cycle is {10,08,03,03,08} with 16,980,853.

This also offers a factor of 50,000 reduction in memory bits over the single stride

of 32 bits for the same 16 lookups per cycle. Just as with the memory entries

metric, without any other constraints taken into account, it always makes sense to

increase the number of parallel lookups using this metric as the incremental cost of

an additional first stride memory will always be less than the incremental benefit of

an additional lookup per cycle. This approach is not practical, however, as will be

shown in Subsection 5.3.3.

5.3.3 Metric #3: Required Design Area

Figure 5.5 shows the design's preferred stride choices to minimize the design's area,

which includes not only the memory cell area, but the row and column overheads

as well. Not shown on this graph is the result for a single stride of 32 bits, which

requires 20,680 x L mm2, where Lmax is the maximum number of simultaneous

lookups per cycle supported.

One of the most apparent differences between the results of this metric and the

previous two is that larger first strides and smaller second strides are far less favor­

able for producing the smallest chip area. The reason for this is because the chip

77

3 03

53

le+10
1

1
r

1 L
ookup/C

ycle |

2 L
ookups/C

ycle |

4 L
ookups/C

ycle
r^

I

8 L
ookups/C

ycle

16 L
ookups/C

ycle

le+09

I

m

&

o

a

le+08

le+07

oo

J~

©

cs

0
0

o„

•*

0
0

©
„

0
0

Q
.

V
O

r
—
<

>
-
y
-

0
0

o
„

t-©„

r»

Sr"

0
0

o
„

V
O

©
.

0
0

^
H

S
H

0
0

©
.

>o

©
„

o>

i
-
H

H--

0
0

©
.

•
*

©
„

0
0

©
„

ri

•
—
1

H-"

0
0

©
„

•*

o_

r-o„

m

f
H

Hr<

O
O

©
.

•
*

o
„

•
*

©
„

V
O

»-H

^^

O
O

©
„

en

o

•
*

o„

r-~

»—<
>̂

0
0

©
„

en

©
„

en

©_

oo"

©
„

o

I
—
*

0
0

©
„

en

©_

en

©
„

r-©„

0
0

©_

en

©
„

en

©
„

*o~

0
„

>n

©_

en

©

-*

©

•
*

"

©_

I
D

©
„

en

©
,

en
 4,0

©
.

t--

K

S
Stride C

hoices

Figure 5.4: Preferred Stride C
hoices for M

inim
izing the D

esign's R
equired M

em
ory B

its

10
00

0
1

L
oo

ku
p/

C
yc

le

2
L

oo
ku

ps
/C

yc
le

4

L
oo

ku
ps

/C
yc

le

8
L

oo
ku

ps
/C

yc
le

16
 L

oo
ku

ps
/C

yc
le

32
 L

oo
ku

ps
/C

yc
le

10

00

< •J
S u

10
0

s©

10

m
 ^,

0
\

«
—

1

w

,—
i ^ 1

-
^

<s

^̂

00

o
 3 *-
^

00

©
.

in

^
H

oC

o
 ^̂

oo

o
„

en

»—
(

,-T

S
r^

00

©
„

eS

J—
<

<N

^*

00

©
„

00

o
„

r»

p

O
S

o ^̂

in

p
.

en

p
„

m
"

ej
\"

o

w

m

©
„

en

p
.

in
" *̂ ^ •^

r1

S
tr

id
e

C
ho

ic
es

U
~

l

p
.

en

p
„

cs

o
f

w
^

in

©
.

en

©
_

en

©
*

«
-H

 {01,

in

p
.

en

©
,

00

©
_

r-
"

o
 {09,

eN

P
„

en

p
.

en

p
.

m
 {09,

CN

p
.

en

p
.

en
"

p
.

en
"

T
-

H

,—
1

cN

p
.

en

p
.

en

Q
,

<N

es
"

ST

c o
n

 s O

ci
" I C

o

o

3 co
 S
'

Fi
gu

re
 5

.5
:

Pr
ef

er
re

d
St

ri
de

 C
ho

ic
es

 f
or

 M
in

im
iz

in
g

th
e

D
es

ig
n'

s
C

hi
p

A
re

a
C

o

5 Quantitative Comparisons of Stride Choices Klaus

area metric takes into account the fact that there's a fixed width and height overhead

added on to each memory, as explained in Subsection 5.2.3. This overhead makes

it extremely inefficient to create small memories that store only a few hundred bits

or less, and heavily favors larger memories that can amortize the cost over a much

larger number of bits. Thus, while this actually makes large first stride memories

more attractive, it also makes having lots of small second stride memories pro­

hibitively expensive. Accordingly the preferred stride choices usually partition the

first 24 bits fairly evenly into two larger strides, such as {11,13}.

The reduced size of the first stride also means that adding an extra first stride

memory, to support an additional lookup per cycle, is a much cheaper incremen­

tal cost. Preferred stride choices such as {11,13,03,05} remain attractive from 1

lookup per cycle all the way to 32 lookups per cycle, with smaller first stride choices

like {09,15,03,05} only providing a slight advantage in chip area for 16 or more

lookups per cycle.

Figure 5.6 shows the expected total power consumption of each of the preferred

stride choices for reducing the design's chip area. Not shown on this graph is the

result for a single stride of 32 bits which requires 4,064 xLW, where Lmax is the

maximum number of simultaneous lookups per cycle supported.

As expected the preferred stride choices for reducing the design's memory chip

area also have very good expected total power consumptions. This is because the

often dominant leakage power consumption is directly proportional to the total de­

sign area. On the other hand, the incremental total power consumption for adding

an extra lookup per cycle is more than the incremental chip area. This occurs be­

cause, while the increase in leakage power is directly proportional to the increase in

area, the increase in active power consumption is directly proportional to the num­

ber of lookups per cycle, and hence increases much faster with more lookups per

cycle.

Figure 5.7 shows the expected maximum throughput of each of the preferred

stride choices for reducing the design's chip area. Not shown on this graph is the

result for a single stride of 32 bits which is 7.83 x L million lookups per second,

80

10
00

i

1

1

1

r
i

1
1

i
1

L
oo

ku
p/

C
yc

le
 ^

^
^

|
2

L
oo

ku
ps

/C
yc

le
 C

A
I.

"2
1

4
L

oo
ku

ps
/C

yc
le

 [

|

8
L

oo
ku

ps
/C

yc
le

 \
Z

i

16
 L

oo
ku

ps
/C

yc
le

 \
~~

32
 L

oo
ku

ps
/C

yc
le

10

0

u

10

O
O

o

T

i­ es

^r
^

0
0 o
„

•̂
1 »—
^

O
N

o

 ^

O
O

o

.
en

^ »—<

 *̂
w

-<

O
O

<=>
.

<s

—
„

C
N

—

W
-'

O
O

o

„
O

O

C
J.

r- o

.
o

\
o

 ^̂

</-
)

o
„

en

o
.

>n

^
H

oC

o
 *-̂

>r
>

Q
.

en

©
„

en

i—
t

,-T

•
^

>n

o
.

en

©
„

C
4

*-
H

c
f ^

m

o
„

en

o
„

en

i-
H

©
~

o

>n

o
.

en

©
,

O
O

©

„
r-
-~

o

 {09,

«s

©
„

en

o
„

en

©
„

>
/•

>
" {09,

es

©
,

en

©
,

en

©
„

en
" ~

eN

©
„

en

Q
.

en

©
„

es
 {12,

St
rid

e
C

ho
ic

es

Fi
gu

re
 5

.6
:

T
ot

al
 P

ow
er

 C
on

su
m

pt
io

n
fo

r
th

e
Pr

ef
er

re
d

St
ri

de
 C

ho
ic

es
 f

or
 M

in
im

iz
in

g
th

e
D

es
ig

n'
s

C
hi

p
A

re
a

5 Quantitative Comparisons of Stride Choices Klaus

where Lmax is the maximum number of simultaneous lookups per cycle supported.

As mentioned in Subsection 5.2.3 there are three main factors that influence the

expected throughput of a stride choice for the design. The first is the largest cy­

cle time of a stride, which dictates the maximum frequency that the design can be

clocked at. It's clear from the graph that very large strides, like for {24,8}, have

very large memory access times, low maximum frequencies and hence low lookup

throughput. The second factor is the maximum number of lookups per cycle sup­

ported by replicating the first memory. The more lookups that can execute per cycle,

the higher the expected throughput, with doubling the number of maximum lookups

doubling the throughput in most cases. The final factor affecting throughput is the

likelihood of conflicting lookups that need to be resolved by the arbiter. The smaller

the first stride, the more likely it is that two random lookups will target the same

entry, forcing a stall and decreasing the throughput. This is most apparent with

the stride choice {01,10,13,03,05} where the expected lookups per cycle reaches

a maximum of 1.5, no matter what the maximum number of lookups per cycle is

increased by. This is because the single bit first stride memory supports only two

different lookups per cycle, and half the time the second lookup conflicts with the

first and needs to be stalled. Clearly this stride choice would benefit from replicat­

ing not just its first stride memories, but its second stride memories as well. If this

were done, however, this stride choice would require a lot more area to implement,

and {11,13,03,05 } would remain a better choice.

Conflicts creating stalls that affect throughput are also apparent, however, as

stride choices like {09,07,08,03,05} see their incremental benefit of adding more

lookups per cycle decay as the likelihood of conflicts increases in the 9 bit first

stride memory. Replicating the 9 bit first stride memory from 8 times to 16 times

to 32 times, for example, results in diminishing returns as the expected lookups per

cycle goes from 7.84 to 14.8 to 23.8.

As mentioned in the previous two sections, the previous two metrics both favor

increasing the maximum lookups per cycle arbitrarily large as the incremental cost

is always less than the incremental benefit. While diminishing returns on through-

82

-1

1
1

I
1

L
oo

ku
p/

C
yc

le

•
•

•
§

le
+1

1

2
L

oo
ku

ps
/C

yc
le

 H
T

4

L
oo

ku
ps

/C
yc

le
 [

Z
Z

8
L

oo
ku

ps
/C

yc
le

 [
 _

16

 L
oo

ku
ps

/C
yc

le

32
 L

oo
ku

ps
/C

yc
le

le
+1

0

le
+0

9

le
+0

8
en

~*
,

o\

f
—
1

»
—
1

i-
H

oo

o.

•
*

oo

Q
.

<r
>

O

W
-

0
0

o„

en

*"
-

i-
H

W
^

0
0

=>
-

tN
 s -H >̂

0
0

©
„

0
0
 7,0

o„

O
S

©

w

>o

o
.

en
 5,0 *̂

O
N

©

•
^

1̂
1

Q
.

en
 3,0

^
H

rS

,—«

W
^

m

©
„

Cn
 2,0

i
—
<

c-f

,
—
1

*V
>

m

©
_

ro
 3,0

i
—
I

©
"

i
—
1
 {01,

>o

©
„

cn
 8,0

o
„

t~

©
 {09,

ts

©
„

en
 3,0

©
_

ir
T

y—
i

{09,

CN

o
„

en
 3,0

©
„

cn
"

»—<
 {11,

(S

Q
,

en
 3,0

Q
,

ri

,
-
H
 {12,

St
rid

e
C

ho
ic

es

Fi
gu

re
 5

.7
:

M
ax

im
um

 T
hr

ou
gh

pu
t f

or
 t

he
 P

re
fe

rr
ed

 S
tr

id
e

C
ho

ic
es

 f
or

 M
in

im
iz

in
g

th
e

D
es

ig
n'

s
C

hi
p

A
re

a

5 Quantitative Comparisons of Stride Choices Klaus

put from this third metric clearly show that this is not the case, there are several

other factors that also limit the usefulness of arbitrarily large scaling as well. The

most compelling of these is the added complexity to the non-memory parts of the

design. Up until this point we assumed that the area, power and latency of the

SRAM memory were the dominant factors in the overall design. While this is true

for a small number of parallel lookups per cycle, it will no longer hold for large

numbers of parallel lookups. While doubling the number of parallel lookups might

only double a fraction of the chip memory area (the first stride memories) it will

double the number of lookup agents and all of the routing logic required for them

to access all of the existing memories. Furthermore, the added complexity of bus­

ing twice as many lookup agents to all the memories will increase the latency of

every agent's access, requiring more pipeline stages to maintain the same lookup

frequency. This in turn increases the power consumption of the design and overall

lookup latency. The complexity of the arbiter is also dramatically increased as well.

Without implementing the design in hardware it is difficult to gauge the exact

extent of these scaling limitations to parallelism. We feel that 16 lookup per cycle

is a reasonable compromise: offering high throughput without overly complicat­

ing the busing and arbitration logic. With this in mind, a scatter plot of the best

stride choices for minimizing the design's chip area while increasing the design's

throughput was generated and is showing in Figure 5.8, for 16 lookups/cycle. From

the plot, it is clear that stride choice {11,13,03,05} offers the best throughput for

the lowest chip area, while {09,07,08,03,05} offers the smallest chip area for the

highest throughput. The plot also shows that {12,12,03,05} offers a good compro­

mise between the two extremes. To determine which of these three stride choices is

in fact the best, the ratios of throughput per area for all three were calculated, and

are summarized in Table 5.4.

From Table 5.4, the design with the best throughput for a given chip area has

a stride choice of {09,07,08,03,05}. It has a chip area of 71.1mm2, total power

consumption of 7.85W, maximum cycle time of 275ps, average lookups per cycle

of 14.8, and a maximum throughput of 53.7 billion lookups per second. These

84

V
I,

 I
 „

 I
I

JL
Ii

lL
fl

f\

A
ll

St
rid

e
C

ho
ic

es

x

{1
1,

13
,0

3,
05

}
A

{1
2,

12
,0

3,
05

}
0

{0
9,

07
,0

8,
03

,0
5}

fj

le
+1

1

In
cr

ea
si

ng
 T

hr
ou

gh
pu

t
(L

oo
ku

ps
/S

ec
on

d)

Fi
gu

re
 5

.8
:

D
es

ig
n

C
hi

p
A

re
a

vs
. M

ax
im

um
 T

hr
ou

gh
pu

t
fo

r
A

ll
St

ri
de

 C
ho

ic
es

 a
nd

 1
6

L
oo

ku
ps

/C
yc

le

5 Quantitative Comparisons of Stride Choices Klaus

Stride Choice
{11,13,03,05}
{12,12,03,05}

{09,07,08,03,05}

Chip Area
60.7mm2

66.0mm2

71.1mm2

Throughput
38.9 billion lookups/sec
44.4 billion lookups/sec
53.7 billion lookups/sec

Lookups/sec/mm2

641 million
673 million
755 million

Table 5.4: Ratio of Throughput to Chip Area For the Best Three Stride Choices

Chip Area
Active Power

Leakage Power
Total Power
Cycle Time

Lookup Latency
Maximum Lookups per Cycle
Average Lookups per Cycle
Average Lookups/Second
Average Energy/Lookup

Value

71.1mm2

0A0W
7.45W
7.85W
275/75
1.92ns
16.0
14.8

53.7 billion
0.157n7

Table 5.5: Performance of the Design with Preferred Stride Choice
{09,07,08,03,05}

numbers are summarized in Table 5.5.

86

Chapter 6

Comparisons with TCAM

In this chapter a Ternary Content Addressable Memory (TCAM) solution to the

same "backbone" routing table lookup problem is presented. The features of this

TCAM solution are derived, then compared to the proposed solution.

6.1 Features of the TCAM Solution

While the features of SRAM cells implemented in 45nm process technologies have

been widely published, such as in the paper described in subsection 5.2.3, there

is an apparent lack of similar publications for TCAM cells. This is compounded

by the fact that TCAM macros published for older processes are often very small

capacity and low throughput, making them unsuitable for "backbone" routing table

lookup applications.

Agrawal and Sherwood [1] address the lack of published design data by esti­

mating the features of TCAM macros based on the desired configuration, capacity

and technology process used. While their estimates are not perfect, they offer good

insight into the expected features of TCAM macros in a 45nm process, providing

a level playing field for comparing against the proposed design. They also pro­

vide a download-able program at http://www.cs.ucsb.edu/~arch/memmodel/ (Note:

"memmodel" and not "mem-model" as in the paper) that takes in the desired TCAM

parameters and process technology size and produces all of the relevant feature and

performance estimates. This program was used to produce a lot of the parameters

87

http://www.cs.ucsb.edu/~arch/memmodel/

6 Comparisons with TCAM Klaus

presented in the following paragraphs.

From subsection 5.1.2 the largest "backbone" routing table available had 222,728

prefixes on May 27, 2007. A TCAM solution to the "backbone" routing table

lookup problem would therefore need a capacity of 222,728 rows of 32 bit entries to

store all of the required prefixes. Matches to each search would need to be priority

encoded to determine the longest matching prefix, whose entry location would then

be used to address a 222,728 entry SRAM that stored each 8 bit forwarding port

number. For higher throughput, the three steps of TCAM search, priority encoding

and forwarding port number lookup are all done in separate pipeline stages.

While the TCAM parameter calculating program does not provide estimates of

the entire TCAM and priority encoder area, it does estimate a TCAM cell's size by

linearly scaling a reference 0.18 /̂m process TCAM. A 45nm process TCAM cell's

width and height are estimated to be 4.33 x process/0.18 = 4.33 x 0.045/0.18 =

1.0825,um and 4.05 x process/0.18 = 4.05 x 0.045/0.18 = 1.0125^m respectively,

for an area of 1.0825^m x 1.0125^m = 1.096>n2. Thus a TCAM with 222,728

rows of 32 bits each has an area of 7.81mm2 from its bit cells alone, not count­

ing sense amplifiers, row decoders, column decoders, bank overhead and priority

encoding.

The TCAM parameter calculating program takes in the number of banks to di­

vide the TCAM into. Since simply adding additional rows to a TCAM increases

the length and hence capacitance of its search and bit lines, the performance of a

TCAM macro cannot scale with its capacity. Thus, it is common to divide a TCAM

into many smaller connected banks, trading added routing and priority encoding

complexity for increased performance and similar capacity. To determine the ap­

propriate number of banks for the TCAM solution, the search throughput and active

power consumption for various numbers of banks are plotted in Figure 6.1.

The search throughput and active power consumption increase fairly equally

until 256 banks, at which point the latency of the priority encoder becomes larger

than the latency of the search itself. Increasing the number of banks past this point,

therefore, offers no improvement in throughput. The search power does still in-

88

oo

•a
 o u o J3
 u

S3

u

V
2 s Q

.
J=

M

l
3 O

le
+

10

le
+

09

le
+

08

le
+

07

le
+

06

le
+

05

le
+

04

1
1

r
M

ax
 S

ea
rc

h
T

hr
ou

gh
pu

t
M

ax
 S

ea
rc

h
P

ow
er

—

_
L

le
+

08

le
+

07

le
+

06

le
+

05

le
+

04

le
+

03

le
+

02

16

32

64

N
um

be
r

of
 T

C
A

M
 B

an
ks

12
8

25
6

51
2

10
24

Fi
gu

re
 6

.1
:

T
C

A
M

 S
ea

rc
h

T
hr

ou
gh

pu
t

an
d

A
ct

iv
e

Po
w

er
 C

on
su

m
pt

io
n

fo
r

V
ar

io
us

 N
um

be
rs

 o
f

B
an

ks

S3

O
 •a
 I 3 c o

U
 o

O

O
, i u

PN

T
O

a s J?

to

T
O

3

6 Comparisons with TCAM Klaus

Feature

Memory Organization
Memory Rows

Memory Columns
Memory Height
Memory Width
Memory Area

Memory Active Power
Memory Leakage Power

Memory Total Power
Memory Max Access Time

Value

222,728x32
1741
1024

0.786mm
0.922mm
0.724mm2

66.4mW
15.9mW
142.3mW

803/M

Table 6.1: Features of the Required Forwarding Next Port SRAM

crease slightly despite no increase in searches per second, however, because of the

added power dissipated in the more complicated bank routing. Since adding more

banks past 256 adds no additional throughput at the cost of added search power,

256 banks was selected for the TCAM solution. This gives the TCAM an estimated

search latency of 93Qps and an active power consumption of 7.83nJ/search.

To calculate the leakage power of a TCAM, the program uses an internal list of

technology parameters. Unfortunately, the program only has these parameters for

0.18/vm, 0.13/um, 0. lO/um, and 0.07/jm processes. The leakage power of the TCAM

solution is plotted for each of these processes in Figure 6.2. It's clear from the

graph that the leakage power of the TCAM solution steadily increases as the process

technology size decreases, although predicting exactly what the value might be for

A5nm is not straight-forward. As a very conservative estimate, the leakage power

of 5.17W for the 70«m process is used to represent the TCAM solution.

The same model presented in subsection 5.2.3 is used to estimate the features of

the required forwarding port number SRAM. Table 6.1 summarizes these estimated

features.

This TCAM solution has a total TCAM bit cells area of 7.81mm2 and a forward­

ing SRAM area of 0.724mm2, for a total minimum area of 8.53mm2. The total la­

tency of the TCAM search, priority encoding and forwarding SRAM lookup stages

are 939 ps, 918p.y, and 803ps respectively, for a minimum cycle time of 939ps and

90

10
00

00

V
O

o a,

a>

IB
 •a

10
00

0

10
00

lo
ot

10

T
ot

al
 L

ea
ka

ge
 P

ow
er

C
el

l L
ea

ka
ge

 P
ow

er

0.
18

_l
_

0.
16

0.

14

0.
12

0.

1

T
ec

hn
ol

og
y

Si
ze

 (u
m

)

0.
08

0.

06

0.
04

Fi
gu

re
 6

.2
:

T
C

A
M

 L
ea

ka
ge

 P
ow

er
 f

or
 V

ar
io

us
 p

ro
ce

ss
es

P
N

K
 81

to
 £ s

6 Comparisons with TCAM Klaus

Feature

TCAM Organization
TCAM Minimum Area
TCAM Active Power

TCAM Leakage Power
TCAM Total Power
TCAM Cycle Time

TCAM Latency
TCAM Lookups/Second
TCAM Energy/Lookup

Value

256 banks of 871 words by 32 bits
8.53mm2

8.40W
5.25W
13.7W
939ps
2.82ns

1.06 billion
12.9nJ

Table 6.2: Features of the TCAM Solution

a maximum throughput of 1.06 billion lookups/second. The search active power

of the TCAM cells and priority encoder is therefore 8.33W, combining with the

active power of the forwarding SRAM (66.4mW) for a total search active power of

8.40W. The minimum leakage power of the TCAM cells and priority encoder is

5.17W, combining with the leakage power of the forwarding SRAM (15.9mW) for

a total leakage power of 5.25W. This means the entire TCAM solution has a total

power of 13.7W. A summary of the features of the entire TCAM solution is shown

in Table 6.2.

6.2 Comparison of the TCAM Solution

From subsection 5.3.3 the hardware trie design proposed in this thesis has an av­

erage lookups per second of 53.7 billion. For a comparable search throughput, the

TCAM solution would have to be replicated over 50 times, requiring a total area of

at least 427mm2 and a total search power of 685W. Clearly, with 16.7% the area

and 1.1% the power, per lookup, for the same throughput, the proposed hardware

trie design is a dramatic improvement over TCAM. These results are summarized

in Table 6.3.

92

Klaus 6.2 Comparison of the TCAM Solution

Feature

Chip Area
Active Power

Leakage Power
Total Power
Cycle Time

Latency
Lookups/Second
Energy/Lookup

TCAM Solution

427mm2

420W
263W
685W
939ps
2.82ns

53.0 billion
\2.9nJ

Proposed Solution

71.1mm2

0.4CW
1A5W
7.85W
215ps
1.92ns

53.7 billion
0.157n/

% of TCAM Value

16.7%
0.01%
2.83%
1.15%
29.3%
68.1%
101%
1.22%

Table 6.3: Feature Differences Between TCAM Solution and the Proposed Solution

93

file:///2.9nJ

6 Comparisons with TCAM Klaus

94

Chapter 7

Conclusion

This thesis presents a solution to the routing table lookup problem for "backbone"

routers. Previously published software and hardware solutions lack the scalability

required to keep pace with the ever growing demands placed on the Internet's "back­

bone" routers. The proposed design leverages the power efficiency and low cycle

times of SRAM to construct a pipelined fixed-stride hardware trie on a chip. An in­

novative design allows multiple lookups to be done per cycle, providing incredibly

high throughput with very low power consumption. Special design considerations

ensure that updating the routing table is straight-forward and well bounded in even

the worst case.

The design was implemented in VHDL to validate it, not only through func­

tional simulation, but also through an FPGA implementation. Several different

metrics were developed to evaluate the pros and cons of different stride choices

using real "backbone" routing tables, with chip area estimation proving to be the

most accurate. A stride choice of {09,07,08,03,05} with 16 lookups/cycle proved

to be the preferred in terms of chip area, power and throughput, boasting an average

of 53.7 billion lookups/second, with only 7.S5W of total power consumption, and

a chip area of 71.1mm2. This solution is far more efficient than the industry stan­

dard TCAM; It requires 16.7% of the TCAM chip area and 1.1% of the power, per

lookup, for the same throughput.

95

7 Conclusion Klaus

7.0.1 Future Work

The next step in this research is to implement and validate the proposed design in

hardware. Different pipelining schemes could be experimented with during this

process to help increase throughput at the cost of additional power and latency. The

benefits and costs of adding a tag number to each lookup request could also be

explored.

Another idea would be to look into improved ways of implementing both really

small and really large memories. A really small memory could be replaced by a

register file, for example, taking up less chip area than a handful of bit cells and all

of the overhead sense amplifiers and decoders of an SRAM.

Other possibilities for improving throughput exist as well. By gaining access to

real "backbone" packet to destination address traces, different arbiter designs could

be more accurately evaluated, possibly motivating a more complicated arbiter to

improve throughput. A small cache of previous lookups for the design might also

offer some advantages, both by handling some additional lookups, and by reducing

the number of conflicts that cause stalls.

Finally, the design could be extended to handle IPv6 addresses or more packet

fields in addition to the destination address. While these sparser address spaces

are not idea for trie based designs, the proposed design may prove to still be fairly

efficient.

96

Bibliography

[1] B. Agrawal and T. Sherwood. Ternary cam power and delay model: Exten­

sions and uses. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 16(5):554-564, May 2008.

[2] S. Ahmand and R. Mahapatra. M-trie: an efficient approach to on-chip logic

minimization. In IEEE/ACM International Conference on Computer Aided

Design, 2004 (ICCAD-2004), pages 428-435, 2004.

[3] M.J. Akhbarizadeh and M. Nourani. Throughput increase in packet forward­

ing engines using adaptive block-selection scheme. IEEE Communications

Letters, 9(9):838-840, 2005.

[4] M.J. Akhbarizadeh, M. Nourani, and CD. Cantrell. Segregating the encom­

passing prefixes to enhance the performance of packet forwarding engines. In

IEEE Global Telecommunications Conference, 2004 (GLOBECOM'04), vol­

ume 3, pages 1612-1616, December 2004.

[5] M.J. Akhbarizadeh, M. Nourani, D.S. Vijayasarathi, and P.T. Balsara. Pcam:

a ternary cam optimized for longest prefix matching tasks. In Proceedings on

the IEEE International Conference on Computer Design: VLSI in Computers

and Processors, 2004 (ICCD 2004), pages 6-11, October 2004.

[6] I. Arsovski, T. Chandler, and A. Sheikholeslami. A ternary content-

addressable memory (team) based on 4t static storage and including a current-

race sensing scheme. IEEE Journal of Solid-State Circuits, 38(1): 155—158,

January 2003.

[7] R.W. Baldwin and E. Ng. Technique to eliminate sorting in ip packet for­

warding devices. In Proceedings on the IEEE International Conference on

Computer Design: VLSI in Computers and Processors, 2004 (ICCD 2004),

97

BIBLIOGRAPHY Klaus

pages 554-559, October 2004.

[8] M. Berger. Ip lookup with low memory requirement and fast update. In

Workshop on High Performance Switching and Routing, 2003 (HPSR), pages

287-291, June 2003.

[9] Jianjian Bian and S.P. Khatri. Ip routing table compression using espresso-mv.

In The 11th IEEE International Conference on Networks, 2003 (ICON 2003),

pages 167-172, October 2003.

[10] V. Cerf, Y. Dalai, and C. Sunshine. Specification of internet transmission

control program. Technical Report RFC675, The Internet Engineering Task

Force, December 1974.

[11] R.C. Chang and B.H. Lim. Efficient ip routing table lookup scheme. IEE

Proceedings - Communications, 149(2):77-82, April 2002.

[12] Yeim-Kuan Chang. A 2-level team architecture for ranges. IEEE Transactions

on Computers, 55(12): 1614-1629, December 2006.

[13] T. Chiueh and P. Pradhan. High-performance ip routing table lookup using

cpu caching. In Proceedings on the Eighteenth Annual Joint Conference of the

IEEE Computer and Communications Societies (INFOCOM '99), volume 3,

pages 1421-1428, March 1999.

[14] K. Choi and W.S. Adams. Vlsi implementation of a 256256 crossbar inter­

connection network. In Proceedings on the Sixth International Parallel Pro­

cessing Symposium, 1992, pages 289-293, March 1992.

[15] S. Deering and R. Hinden. Internet protocol, version 6 (ipv6) specification.

Technical Report RFC2460, The Internet Engineering Task Force, December

1998.

[16] Yaping Deng, Ke Yin, and Lei Yu. High speed ip routing lookup algorithm

based on ram and team. In Proceedings on the 2006 International Conference

on Communications, Circuits and Systems, volume 3, pages 1677-1680, June

2006.

[17] S. Dharmapurikar, P. Krishnamurthy, and D.E. Taylor. Longest prefix match­

ing using bloom filters. IEEE/ACM Transactions on Networking, 14(2):397-

98

Klaus BIBLIOGRAPHY

409, April 2006.

[18] W. Doeringer, G. Karjoth, and M. Nassehi. Routing on longest-matching pre­

fixes. IEEE/ACM Transactions on Networking, 4(l):86-97, February 1996.

[19] V. Fuller and T. Li. Classless inter-domain routing (cidr): The internet address

assignment and aggregation plan. Technical Report RFC4632, The Internet

Engineering Task Force, August 2006.

[20] N. Futamura, R. Sangireddy, S. Aluru, and A.K. Somani. Scalable, memory

efficient, high-speed lookup and update algorithms for ip routing. In Proceed­

ings on the The 12th International Conference on Computer Communications

and Networks, 2003 (ICCCN 2003), pages 257-263, October 2003.

[21] B. Gamache, Z. Pfeffer, and S.P. Khatri. A fast ternary cam design for ip

networking applications. In Proceedings on the The 12th International Con­

ference on Computer Communications and Networks, 2003 (ICCCN 2003),

pages 434-439, October 2003.

[22] P. Gupta, S. Lin, and N. McKeown. Routing lookups in hardware at memory

access speeds. In Proceedings on the Seventeenth Annual Joint Conference

of the IEEE Computer and Communications Societies (INFOCOM '98), vol­

ume 3, pages 1240-1247, March-April 1998.

[23] J. Hasan, S. Cadambi, V. Jakkula, and S. Chakradhar. Chisel: A storage-

efficient, collision-free hash-based network processing architecture. In 33rd

International Symposium on Computer Architecture, 2006 (ISCA '06), pages

203-215, 2006.

[24] R. Hinden and S. Deering. Ip version 6 addressing architecture. Technical

Report RFC4291, The Internet Engineering Task Force, February 2006.

[25] Ilion Yi-Liang Hsiao and Chein-Wei Jen. A new hardware design and fpga

implementation for internet routing towards ip over wdm and terabit routers.

In Proceedings on the The 2000 IEEE International Symposium on Circuits

and Systems, 2000 (ISCAS 2000 Geneva), volume 1, pages 387-390, May

2000.

[26] Nen-Fu Huang and Shi-Ming Zhao. A novel ip-routing lookup scheme and

99

BIBLIOGRAPHY Klaus

hardware architecture for multigigabit switching routers. IEEE Journal on

Selected Areas in Communications, 17(6): 1093-1104, June 1999.

[27] Geoff Huston. As65000 bgp routing table analysis report.

http://bgp.potaroo.net/as2.0/bgp-active.html, September 2007.

[28] S. Kasnavi, V.C. Gaudet, P. Berube, and J.N. Amaral. A hardware-based

longest prefix matching scheme for teams. In IEEE International Symposium

on Circuits and Systems, 2005 (ISCAS 2005), pages 3339-3342, May 2005.

[29] S. Kaxiras and G. Keramidas. Ipstash: a power-efficient memory architecture

for ip-lookup. In Proceedings on the 36th Annual IEEE/ACM International

Symposium on Microarchitecture, 2003 (MICRO-36), pages 361-372, Decem­

ber 2003.

[30] T. Kijkanjanarat and H.J. Chao. Fast ip lookups using a two-trie data struc­

ture. In Global Telecommunications Conference, 1999. GLOBECOM'99, vol­

ume 2, pages 1570-1575, 1999.

[31] M. Kobayashi and T. Murase. A processor based high-speed longest prefix

match search engine. In 2001 IEEE Workshop on High Performance Switching

and Routing, pages 233-239, May 2001.

[32] M. Kobayashi, T. Murase, and A. Kuriyama. A longest prefix match search

engine for multi-gigabit ip processing. In 2000 IEEE International Conference

on Communications (ICC 2000), volume 3, pages 1360-1364, June 2000.

[33] T. Kocak and F. Basci. A low-power network search engine based on statistical

partitioning. In 2004 Workshop on High Performance Switching and Routing

(HPSR), pages 264-268, 2004.

[34] B. Lampson, V. Srinivasan, and G. Varghese. Ip lookups using multiway and

multicolumn search. IEEE/ACM Transactions on Networking, 7(3):324-334,

June 1999.

[35] Hyesook Lim and Yeojin Jung. A parallel multiple hashing architecture for

ip address lookup. In 2004 Workshop on High Performance Switching and

Routing (HPSR), pages 91-95, 2004.

[36] Hyesook Lim and Bomi Lee. A new pipelined binary search architecture for

100

http://bgp.potaroo.net/as2.0/bgp-active.html

Klaus BIBLIOGRAPHY

ip address lookup. In 2004 Workshop on High Performance Switching and

Routing (HPSR), pages 86-90,2004.

[37] Hyesook Lim, Ji-Hyun Seo, and Yeo-Jin Jung. High speed ip address lookup

architecture using hashing. IEEE Communications Letters, 7(10):502-504,

October 2003.

[38] Hyesook Lim, Bomi Lee, and Wonjung Kim. Binary searches on multiple

small trees for ip address lookup. IEEE Communications Letters, 9(l):75-77,

January 2005.

[39] Dong Lin, Yue Zhang, Chengchen Hu, Bin Liu, Xin Zhang, and Derek Pao.

Route table partitioning and load balancing for parallel searching with teams.

In IEEE International Parallel and Distributed Processing Symposium, 2007

(IPDPS 2007), pages 1-10, March 2007.

[40] Po-Chou Lin and Chung-Ju Chang. A priority team ip-routing lookup scheme.

IEEE Communications Letters, 7(7):337-339, July 2003.

[41] Huan Liu. Reducing routing table size using ternary-cam. In Hot Intercon­

nects 9, 2001, pages 69-73, 2001.

[42] A.J. McAuley and P. Francis. Fast routing table lookup using cams. In Pro­

ceedings on the Twelfth Annual Joint Conference of the IEEE Computer and

Communications Societies: Networking: Foundation for the Future (INFO-

COM '93), pages 1382-1391, March-April 1993.

[43] Tan Mingfeng and Gong Zhenghu. High speed ip lookup algorithm with scal­

ability and parallelism based on cam array and team. In 2004 IEEE Inter­

national Conference on Communications, volume 2, pages 1085-1089, June

2004.

[44] H. Mohammadi, N. Yazdani, B. Robatmili, and M. Nourani. Hasil: hardware

assisted software-based ip lookup for large routing tables. In The 11th IEEE

International Conference on Networks, 2003 (ICON 2003), pages 99-104,

October 2003.

[45] N. Mohan and M. Sachdev. Low-capacitance and charge-shared match lines

for low-energy high-performance teams. IEEE Journal of Solid-State Circuits,

101

BIBLIOGRAPHY Klaus

42(9):2054-2060, September 2007.

[46] S. Nilsson and G. Karlsson. Ip-address lookup using lc-tries. IEEE Journal

on Selected Areas in Communications, 17(6): 1083-1092, June 1999.

[47] Seung-Hyun Oh and Jong-Suk Ann. Bit-map trie: a data structure for fast

forwarding lookups. In IEEE Global Telecommunications Conference, 2001

(GLOBECOM'01), volume 3, pages 1872-1876, November 2001.

[48] K. Pagiamtzis and A. Sheikholeslami. A low-power content-addressable

memory (cam) using pipelined hierarchical search scheme. IEEE Journal of

Solid-State Circuits, 39(9): 1512-1519, September 2004.

[49] Wooguil Pak and Saewoong Bahk. Flexible and fast ip lookup algorithm. In

IEEE International Conference on Communications, 2001 (ICC 2001), vol­

ume 7, pages 2053-2057, June 2001.

[50] D. Pao. Team organization for ipv6 address lookup. In The 7th International

Conference on Advanced Communication Technology, 2005 (ICACT 2005),

volume 1, pages 26-31, February 2005.

[51] T.-B. Pei and C. Zukowski. Putting routing tables in silicon. IEEE Network

Magazine, 6(l):42-50, January 1992.

[52] H. Pilo, V. Ramadurai, G. Braceras, J. Gabric, S. Lamphier, and Yue Tan.

A 450ps access-time sram macro in 45nm soi featuring a two-stage sensing-

scheme and dynamic power management. In 2008 IEEE International Solid-

State Circuits Conference (ISSCC) Digest of Technical Papers, pages 378-

379,621, 2008.

[53] J. Postel. Internet protocol. Technical Report RFC791, The Internet Engineer­

ing Task Force, September 1981.

[54] G. Qin, S. Ata, I. Oka, and C. Fujiwara. Effective bit selection methods for

improving performance of packet classifications on ip routers. In IEEE Global

Telecommunications Conference, 2002 (GLOBECOM'02), volume 3, pages

2350-2354, November 2002.

[55] V.C. Ravikumar and R.N. Mahapatra. Team architecture for ip lookup using

prefix properties. IEEE Micro, 24(2):60-69, March-April 2004.

102

Klaus BIBLIOGRAPHY

[56] V.C. Ravikumar, R.N. Mahapatra, and Laxmi Narayan Bhuyan. Easecam:

an energy and storage efficient team-based router architecture for ip lookup.

IEEE Transactions on Computers, 54(5):521-533, May 2005.

[57] Y. Rekhter, T. Li, and S. Hares. A border gateway protocol 4 (bgp-4). Tech­

nical Report RFC4271, The Internet Engineering Task Force, January 2006.

[58] S. Sahni and Kun Suk Kim. Efficient construction of fixed-stride multibit tries

for ip lookup. In Proceedings on the The Eighth IEEE Workshop on Future

Trends of Distributed Computing Systems, 2001 (FTDCS 2001), pages 178-

184, November 2001.

[59] S. Sahni and Kun Suk Kim. Efficient construction of variable-stride multibit

tries for ip lookup. In Proceedings on the 2002 Symposium on Applications

and the Internet. (SAINT 2002), pages 220-227, February 2002.

[60] R. Sangireddy and A.K. Somani. Binary decision diagrams for efficient hard­

ware implementation of fast ip routing lookups. In Proceedings on the Tenth

International Conference on Computer Communications and Networks, 2001,

pages 12-17, October 2001.

[61] D. Shah and P. Gupta. Fast updating algorithms for team. IEEE Micro, 21(1):

36-47, January-February 2001.

[62] P. Srisuresh and K. Egevang. Traditional ip network address translator (tradi­

tional nat). Technical Report RFC3022, The Internet Engineering Task Force,

January 2001.

[63] X. Sun and Y.Q. Zhao. An on-chip ip address lookup algorithm. IEEE Trans­

actions on Computers, 54(7):873-885, July 2005.

[64] J. Sungkee, Sang-Hun Chung, Jung-Wan Cho, and Hyunsoo Yoon. A scalable

and small forwarding table for fast ip address lookups. In Proceedings on the

2001 International Conference on Computer Networks and Mobile Comput­

ing, pages 413-418, October 2001.

[65] Cisco Systems. Cisco carrier routing system. PDF Document, Oc­

tober 2006. URL h t t p : / / w w w . c i s c o . c o m / a p p l i c a t i o n /

p d f / e n / u s / g u e s t / p r o d u c t s / p s 5 7 6 3 / c l 0 3 1 / e d e c o n t -

103

http://www.cisco.com/application/

BIBLIOGRAPHY Klaus

0900aecd800f8118 .pdf .

[66] Yi Tang, Wei Lin, and Bin Liu. A team index scheme for ip address lookup. In

First International Conference on Communications and Networking in China,

2006 (ChinaCom'06), pages 1-5, October 2006.

[67] D.E. Taylor, J.W. Lockwood, T.S. Sproull, J.S. Turner, and D.B. Parlour. Scal­

able ip lookup for programmable routers. In Proceedings on the Twenty-First

Annual Joint Conference of the IEEE Computer and Communications Soci­

eties (INFOCOM 2002), volume 2, pages 562-571, June 2002.

[68] N.-F. Tzeng. Spal: a speedy packet lookup technique for high-performance

routers. In International Conference on Parallel Processing, 2004 (ICPP

2004), volume 1, pages 284-291, 2004.

[69] M. Uga and K. Shiomoto. A fast and compact longest match prefix look-up

method using pointer cache for very long network address. In Proceedings on

the Eight International Conference on Computer Communications and Net­

works, 1999, pages 595-602, October 1999.

[70] J. van Lunteren. Searching very large routing tables in fast sram. In Proceed­

ings on the Tenth International Conference on Computer Communications and

Networks, 2001, pages 4-11, October 2001.

[71] P.-C. Wang, C.-T. Chan, R.-C. Chen, and H.-Y. Chang. Efficient entry-

reduction algorithm for team-based ip forwarding engine. IEE Proceedings

- Communications, 152(2): 172-176, April 2005.

[72] Pi-Chung Wang, Chia-Tai Chan, and Yaw-Chung Chen. A fast ip routing

lookup scheme. In 2000 IEEE International Conference on Communications

(ICC 2000), volume 2, pages 1140-1144, June 2000.

[73] Pi-Chung Wang, Chia-Tai Chan, Shuo-Cheng Hu, and Yaw-Chung Chen.

Routing interval: a new concept for ip lookups. In Joint 4th IEEE Interna­

tional Conference on ATM (ICATM 2001) and High Speed Intelligent Internet

Symposium, 2001, pages 310-315, April 2001.

[74] Pi-Chung Wang, Chia-Tai Chan, Shuo-Cheng Hu, Yu-Chen Shin, and Yaw-

Chung Chen. Hardware-based ip routing lookup with incremental update.

104

Klaus BIBLIOGRAPHY

In Proceedings on the Ninth International Conference on Parallel and Dis­

tributed Systems, 2002, pages 183-188, December 2002.

[75] Weidong Wu and Ruixuan Wang. A team management scheme for ip lookups.

14th IEEE International Conference on Networks, 2006 (ICON '06), 1:1-4,

September 2006.

[76] Weidong Wu, Bingxin Shi, and Feng Wang. Fast updating scheme of forward­

ing tables on team. In Proceedings on the The IEEE Computer Society's 12th

Annual International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunications Systems, 2004. (MASCOTS 2004), pages

522-527, October 2004.

[77] Weidong Wu, Jian Shi, Ling Zuo, and Bingxin Shi. Power-efficient teams for

bursty access patterns. IEEE Micro, 25(4):64-72, July-August 2005.

[78] Lih-Chyau Wuu and Shou-Yu Pin. A fast ip lookup scheme for longest-

matching prefix. In Proceedings on the 2001 International Conference on

Computer Networks and Mobile Computing, pages 407-412, October 2001.

[79] Lih-Chyau Wuu, Kuo-Ming Chen, and Tzong-Jye Liu. A longest prefix first

search tree for ip lookup. In 2005 IEEE International Conference on Commu­

nications (ICC 2005), volume 2, pages 989-993, May 2005.

[80] Zhen Xu, G. Damm, I. Lambadaris, and Y.Q. Zhao. Ip packet forwarding

based on comb extraction scheme. In 2004 IEEE International Conference on

Communications, volume 2, pages 1065-1069, June 2004.

[81] N. Yazdani and P.S. Min. Fast and scalable schemes for the ip address

lookup problem. In Proceedings of the IEEE Conference on High Perfor­

mance Switching and Routing, 2000 (ATM 2000), pages 83-92, June 2000.

[82] P.A. Yilmaz, A. Belenkiy, N. Uzun, N. Gogate, and M. Toy. A trie-based

algorithm for ip lookup problem. In IEEE Global Telecommunications Con­

ference, 2000 (GLOBECOM'00), volume 1, pages 593-598, December 2000.

[83] F. Zane, Girija Narlikar, and A. Basu. Coolcams: power-efficient teams for

forwarding engines. In Twenty-Second Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM 2003), volume 1, pages

105

BIBLIOGRAPHY Klaus

42-52, March-April 2003.

[84] Kai Zheng, Chengchen Hu, Hongbin Liu, and Bin Liu. An ultra high through­

put and power efficient team-based ip lookup engine. In Twenty-third Annual

Joint Conference of the IEEE Computer and Communications Societies (IN-

FOCOM 2004), volume 3, pages 1984-1994, March 2004.

106

Appendix A

History of the Internet Protocol (IP)

While millions and millions of people use the Internet every day, very few of us
know how it started or how it works. To understand the Internet, however, we also
need to understand computers.

Computers speak to each other using various agreed upon methods of sharing
and interpreting data called protocols, similar to how humans communicate using
different languages. Often different computer tasks involve different operations,
and hence use different protocols. Protocols are often organized into different lev­
els, with lower level protocols handling very basic computer interactions, while
higher level protocols offer much more specialized functionality by making use of
functions provided by lower level protocols. This allows many higher level proto­
cols to make use of the same lower level protocol and not have to worry about the
low level details.

Prior to the Internet, many organizations developed their own protocols to han­
dle interactions between their computers. A given computer was connected to a
handful of other computers using the same protocol, forming what is called a net­
work. Many different networks were formed, each using its own protocol, and each
providing limited or no connectivity to other networks. The Internet as we know it
today started as an effort to connect all of these different networks together. That ef­
fort culminated in the release of RFC675 in 1974 which specifies the Transmission
Control Protocol (TCP) and the Internet Protocol (IP) version 1 [10].

The idea behind these new protocols was to standardize the lowest level pro­
tocols computers use to communicate with each other. Higher level protocols that
provided services such as electronic mail (SMTP), news (NNTP), and file transfer
(FTP) could then make use of these new low level protocols instead of defining their
own. A network that implemented these low level protocols could be connected
seamlessly with other similar networks, providing high level services to each other
without being forced to change their existing infrastructure.

107

A History of the Internet Protocol (IP) Klaus

108

Appendix B

Process Examples

All of the following process examples use the same fixed-stride {4,2,2} hardware
prefix trie shown in Figure 3.1 on Page 35 and built from the prefixes in Table 3.1
on Page 35.

B.l Lookup Process Examples

B.l.l Lookup Example 1: IP Address 01101111
In this example IP address 01101111 is being looked up. In Figure B.l the first
stage lookup of 0110 in the first bank results in a pointer to the first bank in the
second stage. The default data from the first bank is the default value so is not
stored. In Figure B.2 the second stage lookup of 11 in the first bank results in a
pointer to the first bank in the third stage. The default data from the first bank is
port number 1 which is stored. In Figure B.3 the last stage lookup of 11 in the first
bank results in a port number value of 2 which is output as the result.

B.1.2 Lookup Example 2: IP Address 11010010
In this example IP address 11010010 is being looked up. In Figure B.4 the first
stage lookup of 1101 in the first bank results in a pointer to the third bank in the
second stage. The default data from the first bank is the default value so is not
stored. In Figure B.5 the second stage lookup of 00 in the third bank results in a
port number value of default which is stored. The default data from the third bank
is port number 8 which is stored. In Figure B.6 the last stage doesn't perform a
lookup. Since the stored port number is the special default value the stored default
port number is output as the result, which is 8.

109

3

5 I a.

I
S

tart
I

D
efaultP

ort :=
 U

N
K

N
O

W
N

P

ort :=
 U

N
K

N
O

W
N

B

a
n

k
:=

1

B
ank :=

R

esolved D
ata

P
erform

 Lookup
on B

ank in
N

ext S
tage

G
o to N

ext S
tage

(N
o Lookup)

P
ort :=

R

esolvedD
ata

D
e

fa
u

ltP
o

rt :=

D
e

fa
u

ltD
a

ta Y
es

L
ookup:

01101111

B
a
n
k
 1

D
e
f
a
u
l
t
P
o
r
t
:

P
o
r
t
:

B
a
n
k
:

U
N
K
N
O
W
N

U
N
K
N
O
W
N

1

Stride
 1

(4
 bits)

*
*
*
*

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
0

P
0
L
1

P
8
L
1

P
8
L
1

P
G
L
1

P
6
L
1

P
0
L
1

Bl

P
1
L
3

P
5
L
1

B2

P
5
L
1

P
5
L
1

P
8
L
3

B3

P
5
L
1

P
5
L
1

1

1

•

1

1

1

I

1

1

1

1

/

1 1 1 1 1 1 1 •

•

•

Stride
 2

(2
 bits)

*
*

00

01

10

11

P
1
L
3

PDLG

P
D
L
0

B2

Bl

B
a
n
k
 1

*
*

00

01

10

11

P
6
L
4

B3

P
D
L
8

P
D
L
6

P
D
L
8

B
a
n
k
 2

*
*

00

01

10

11

P
8
L
3

PDLG

PDLG

P
9
L
1

P
9
L
1

B
ank 3

S
tride 3

(2 bits)

*
*

00

01

10

11

P
D
L
O

P
D
L
O

P
D
L
O

P
3
L
2

P
2
L
1

B
ank 1

*
*

00

01

10

11

P
D
L
O

P
4
L
1

P
4
L
1

P
D
L
O

P
D
L
O

B
ank 2

*
*

00

01

10

11

P
D
L
O

P
D
L
O

P
D
L
8

P
7
L
1

P
7
L
1

B
ank 3

Figure B
.l: L

ookup E
xam

ple 1: First Stage L
ookup R

eturns A
 Pointer

Klaus B. 1 Lookup Process Examples

r H

+•>
l_
O

CL

+•> r->
3
fO

4 -
<U

Q

z
3
o
z
^ z 3 i-l

+-> ^
I - C
O ID
CL 00

i H

Lo
ok

up
:

01
10

11
1

ro
(U

"O
i_
X l / l

- -

(\ l
01
-a

« U)

+3
5
(N

- -

• M

5
fN

©
- 1
Q
a.

*

| V)

^ i H

<»-
*
*

©
_ l
a
a.
o ©

©
- 1

a a.

G>
©

©
- 1
a
a.
r H
O

r\i
_ i
ro
a.
o i-H

•s
J

o
B-

r H
O

fM
oa

o
i-H

rH
- 1
fM
a.

i-H
r H

t
i H

ea

r H
I - l

l
t

P
4L

1

§

P
4L

1

i-H
O

I
o
i-H

1
i-H
i-H

_ i _ i _ i _ i _ i rsi

c
(0

CO

J | S SlfN |_i

1
*

P
8L

3

1

1
§

1
s

CD
_ l a a.
i-H

e

©
_i

a
CL
r H
O

P
7
L

l|

©
i-H

- -

P
9L

1

©

P
7

L
l|

= 1

P
9L

1

^

rH ^ ^
1/1

"5 5
L .
•M " *
in *-^

3
a
a .

* * * *

i H

©
a.
o ©
o
©

i H

©
a.
i-H
©
©
©

3
©
CL

©
I -H

©
©

^
©

a.
r H
r H
©
©

^
«
a.
©
©
r H
S

i-H

©

a.
r H
©
r H
©

GO

©
r H
r H
©

2
M
CL

r H
r-H
t-H
©

I -H

• • J

in
a.
©
©
©
r H

CO

r-t
©
©
r H

1-4

m
a.
©
r H
©
r H

r H

m
a.
r H
r H
©
r H

ro

0 0
a.

©
©
r H
r H

ro
00

r~\
©
I -H
r H

I - l

m
a.
©
r-1
r H
r H

3
m
o-

r H
r H
r H

r-l

JX.

c ro
00

E
<D

O
O H

04

M
O
O

_)
0>
W)
03

• * - »

<Z>

-o
e o

00

l>

X
PJ
CL,
3

o
o

(S
03

I-l

• r H

P H

5
O z

il-
3 * II

t
o ..

S t
3 O
ro Q-« • -
(U
Q

11 JK
.. CD

ro

II

JUE

ro
oa

ro
4-*
ro
a • a
<U

> o
w
<u

C£

II

f
o
a. 4-<

D

>*-<U
U

ro
ro
Q
+-»
3

ro
01
Q

9 2

a) ro

111

3

5 I

P
erform

 Lookup
o

n B
ank in

N
ext S

tage
P

ort :=

D
e

fa
u

ltP
o

rt

P
ort :=

D

e
fa

u
ltP

o
rt

P
o

rt:=

D
e

fa
u

ltD
a

ta

L
ookup:

01101111
D

e
fa

u
ltP

o
rt:

1
P

o
rt:

2
B

ank:
1

S
tride 1

(4 bits)
S

tride 2
(2 bits)

*
*
*
*

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
O

P
9
L
1

P
0
L
1

P
9
L
1

P
0
L
1

P
G
L
1

P
G
L
1

Bl

P
1
L
3

P
5
L
1

B2

P
5
L
1

P
5
L
1

P
8
L
3

B3

P
5
L
1

P
5
L
1
 >

**

00

01

10

11

P
1
L
3

P
D
L
O

P
D
L
O

B2

Bl

P
6L4

00

01

10

11

B
3

P
D

L9

P
D

L9

PD
LO

B

ank 2

B
ank 1

**

00

01

10

11

P
8
L
3

P
D
L
O

P
D
L
O

P
9
L
1

P
9
L
1

B
ank 3

S
tride 3

(2 bits)

10
B2

^JT

11
B

l
^\l

'
B

ank 1
|

V
 **

00

01

10

11

P
D
L
O

P
D
L
O

P
D
L
O

P
3
L
2

P
2
L
1

B
ank 1

**

00

01

10

11

P
D
L
O

P
4
L
1

P
4
L
1

P
D
L
O

P
D
L
O

B
ank 2

**

00

01

10

11

P
D
L
O

P
D
L
O

P
D
L
O

P
7
L
1

P
7
L
1

B
ank 3

Figure B
.3: L

ookup E
xam

ple 1: L
ast Stage R

eturns A
 Port N

um
ber

Klaus B.l Lookup Process Examples

z
3
o
z
X.
z
= 3

+•>
l_

o
£L
+•>
r->
3
03

>f-
<V

Q

z
s o
z
^ z
=> ro

+-> . *
I - C
o m

0 . CQ

o

L
o
o
k
u
p

1
1
0
1
0
0
1

m 2
•a n
*- ~. ft Ci in —

©
- i
Q

a.

* *

©
- i
Q
0 .

O
O

o
- J
Q
O .

i - l

o

O l
_ l
l*>
0L

O
I-H

I - l
_ l
rg
o.
i - i
r H

r H

an
k

m

©
- i
Q

a.

* #

r H
- 1

"a-
0 .

©

o

• H
_ l
<t
CL

i-H
O

©
_ 1

o
a.

o i H

©
_ l

a
a.
l-H
i-H

(N

an
k

CQ

©
- 1
o
a.

* *

©
- i
Q
0 .

O
O

©
- 1
o
0 .

r H
©

r H
_ l

r>»
a.

o r H

r H
_ l
1 ^

a.
i-H
r H

^ r
_l _i _i —i ro

c
ro

CQ

i
d
e
2

bi
ts
)

J
e
l

it
s)

St
ri
c

(4
 b

P
1
L
3

*

©

o

* *

1
i

- -

3
2

|o
oo
o

P
D
L
8

O

3

10001

f M
CO

e
i-H

- -

©

00
10

i H
OQ

i-H

B
a
n
k
 1

. . . ^

iH

©

|o
on

©

J0
10

0

P
6
L
4
|

*

N
iH

©

|o
io
i

m
CO

e
o

s
OQ

01
10

P
D
L
6
|

i-i
©

t

P
1
L
3

|0
11
1

©
_ i
Q

a.
e
i-H

\

P
5
L
1

11
00
0

P
D
L
0

i - i
i - t

s
GO

10
01

B
a
n
k
 2

- -

P
5
L
1

11
01

0

P
8
L
3

P
5
L
1

II0
l|

P
D
L
6

§

- -

P
8
L
3

11
00

PD
L8

J

i-H
©

A

m

11
01

P
9
L
l
|

e
r H

- -

P
5
L
1

11
11

0

P
9
L
1

l-H

P
5
L
1

|
l
l
l
l
 c

ro
CO

o
Cu,
<

o
a*
o
o

<u

• 4 - 1

00

(D

*
W
ex,

o
o

OQ
<u
1—
3

Q.
3

.* o
o

E

t
01

a.

V
c
ro

CO
c
o

<u
<3>
ro • M

10
V
o>

z

EP
II

^ c
ro
m

ID
4-1

ro O
TJ

Iv
e

o 1/)
01
c£

113

5 >>
^

ft.

S
ta

rt

Jl
D

e
fa

u
ltP

o
rt :=

 U
N

K
N

O
W

N

P
ort :=

 U
N

K
N

O
W

N

B
a

n
k

:=

1

B
ank :=

R

esolvedD
ata

P
erform

 Lookup
on B

ank in
N

ext S
tage

N
o

G
o to N

ext S
tage

(N
o Lookup)

P
ort :=

R

esolvedD
ata

Y
es

D
e

fa
u

ltP
o

rt :=

D
e

fa
u

ltD
a

ta Y
es

L
o

o
ku

p
:

11010010

S
tride 1

(4 bits)

*
*
*
*

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
8

p
e
n

p
e
n

P
0
L
1

pen

P
9
L
1

p
e
n

Bl

P
1
L
3

P
5
L
1

B2

P
5
L
1

P
5
L
1

P
8
L
3

B3

P
5
L
1

P
5
L
1

B
ank 1

D
e
f
a
u
l
t
P
o
r
t
:

8

P
o
r
t
:

U
N
K
N
O
W
N

B
a
n
k
:
 3

S
tride 2

(2 bits)

>

**

00

01

10

11

P
1
L
3

P
D
L
0

P
D
L
8

B2

Bl

B
ank 1

**

00

01

10

11

P
6
L
4

B3

P
D
L
6

P
D
L
9

P
D
L
0

B
ank 2

**

00

01

10

11

P
8
L
3

P
D
L
6

P
D
L
9

P
9
L
1

P
9
L
1

B
ank 3

S
tride 3

(2 bits)

**

00

01

10

11

P
D
L
8

P
D
L
0

P
D
L
0

P
3
L
2

P
2
L
1

B
ank 1

**

00

01

10

11

P
D
L
0

P
4
L
1

P
4
L
1

P
D
L
0

P
D
L
9

B
ank 2

**

00

01

10

11

P
D
L
0

P
D
L
8

P
D
L
9

P
7
L
1

P
7
L
1

B
ank 3

Figure B
.5: L

ookup E
xam

ple 2: Second Stage L
ookup R

eturns A
 Port N

um
ber

G
o

to
 N

ex
t

S
ta

ge

(N
o

Lo
ok

up
)

P
or

t
:=

D

e
fa

u
ltP

o
rt

U
x

Y
es

P

o
rt

:=

R
es

ol
ve

dD
at

a

D
e

fa
u

ltD
a

ta
 X

Y

es

P
or

t
:=

D

e
fa

u
ltP

o
rt

P
or

t
:=

D

e
fa

u
ltD

a
ta

Lo
ok

up
:

11
01

00
10

S
tr

id
e

1
(4

 b
its

)

**
**

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
G

P
6
L
1

P
0
L
1

P
9
L
1

p
e
n

p
e
n

P
6
L
1

Bl

P
1
L
3

P
5
L
1

B2

P
5
L
1

P
5
L
1

P
8
L
3

B3

P
5
L
1

P
5
L
1

D
e

fa
u

lt
P

o
rt

:
8

P
o

rt
:

8
B

an
k:

3

S
tr

id
e

2
(2

 b
its

)

*
*

00

01

10

11

P
1
L
3

P
D
L
0

P
D
L
G

B2

Bl

B
an

k
1

B
an

k
1

B
an

k
3

S
tr

id
e

3
(2

 b
its

)

*
*

00

01

10

11

P
D
L
0

P
D
L
G

P
D
L
G

P
3
L
2

P
2
L
1

B
an

k
1

*
*

00

01

10

11

P
6
L
4

B3

P
D
L
G

P
D
L
G

P
D
L
G

B
a
n
k
 2

H :

\

*
*

00

01

10

11

P
D
L
0

P
4
L
1

P
4
L
1

P
D
L
G

P
D
L
G

B
a
n
k
 2

*
*

00

01

10

11

P
8
L
3

P
D
L
G

P
D
L
G

P
9
L
1

P
9
L
1

*
*

00

01

10

11

P
D
L
G

P
D
L
G

P
D
L
0

P
7
L
1

P
7
L
1

B
an

k
3

c t/5

CO
 I 3

Fi
gu

re
 B

.6
:

L
oo

ku
p

E
xa

m
pl

e
2:

 L
as

t S
ta

ge
 D

oe
sn

't
Pe

rf
or

m
 A

 L
oo

ku
p

B Process Examples Klaus

B.2 Addition Process Examples

B.2.1 Addition Example 1: Prefix 01101000/7 -* Port 4
In this example IP prefix 01101000/7 to port 4 is being added to the routing table.
In Figure B.7 the prefix extends past the first stage (whose stride is 4) so the first
four bits of the prefix, 0110, are indexed into the first bank. The result is a pointer to
the first bank in the second stage which is followed. In Figure B.8, since the prefix
also extends past the second stage a lookup is performed using 10 as the index to
the first bank in the second stage. This yields a port number, which means a new
bank must be allocated in the third stage. After the second bank in the third stage
is allocated its default value is set to the port number and prefix length read from
the first bank in the second stage (port default, length 0). In Figure B.9 the entry
in the first bank of the second stage is changed to now point to the newly allocated
second bank in the third stage. This pointer is then followed, arriving at the third
stage, which the prefix does not extend past. In Figure B.10 and Figure B.ll the
two entries in the second bank of the third stage that are covered by the prefix being
added are read. Since they both contain prefix lengths of 0 they are both replaced
by the prefix's entry of port 4 length 1.

B.2.2 Addition Example 2: Prefix 01100000/3 -> Port 1
In this example IP prefix 01100000/3 to port 1 is being added to the routing table.
In Figure B.12 the prefix does not extend past the first stage (whose stride is 4). In
Figure B. 13 the first entry covered by the prefix in the first bank of the first stage is
read. It contains a pointer to the first bank of the second stage so that bank's default
entry is analyzed. Since it contains a shorter prefix (corresponding to 00000000/1)
it is replaced by the new prefix's entry of port 1 length 3. In Figure B. 14 the second
and last entry covered by the prefix in the first bank of the first stage is read. Since
it contains a port number for a shorter prefix (corresponding to 00000000/1) it is
replaced by the new prefix's entry of port 1 length 3.

116

S
et

 E
n

tr
y

Fo
r

P
re

fix

A
s

P
oi

nt
er

 T
o

N
ew

 B
an

k

S
et

 N
ew

B

an
k'

s
D

e
fa

u
ltD

a
ta

To

 E
nt

ry

A
llo

ca
te

N

ew
 B

an
k

In

N
ex

t
S

ta
ge

A
d
d
i
t
i
o
n
:

0
1
1
0
1
0
0
*
7
7
 P
4

S
tr

id
e

1

(4
 b

its
)

*
*
*
*

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
9

p
e
n

P
G
L
1

P
8
L
1

p
e
n

p
e
n

p
e
n

B
l

P
1
L
3

P
5
L
1

B
2

P
5
L
1

P
5
L
1

P
8
L
3

B
3

P
5
L
1

P
5
L
1

A
d

d
re

ss
:

L
a

st
A

d
d

re
ss

:
N

e
xt

B
a
n
k:

1

S
tr

id
e
 2

(2

 b
its

)

/

*
*

0
0

0
1

1
0

11

P
1
L
3

P
D
L
6

P
D
L
G

P
D
L
G

B
l

B
a
n
k
 1

X

*
*

0
0

0
1

10

11

P
6
L
4

B
3

P
D
L
G

P
D
L
G

P
D
L
G

B
an

k
2

*
*

0
0

0
1

10

1
1

P
8
L
3

P
D
L
G

P
D
L
O

P
9
L
1

P
9
L
1

B
an

k
1

B

an
k

3

S
tr

id
e

3

(2
 b

its
)

*
*

0
0

0
1

10

11

P
D
L
G

P
D
L
O

P
D
L
G

P
3
L
2

P
2
L
1

B
an

k
1

*
*

0
0

0
1

1
0

1
1

P
D
L
O

P
D
L
O

P
D
L
G

P
D
L
O

P
D
L
G

B
an

k
2

*
*

0
0

0
1

10

11

P
D
L
O

P
D
L
O

P
D
L
O

P
7
L
1

P
7
L
1

B
an

k
3

F
ig

u
re

 B
.7

:
A

d
d
it

io
n

 E
x
am

p
le

 1
:

F
ir

st
 S

ta
g
e

L
o
o
k
u
p

 R
et

u
rn

s
A

 P
o
in

te
r

3

5
S

ta
rt

N
o

to
 5 Example Proces

G
o To

N
ext

S
tage

i

Ne i k \

^
P

re
fix

E
x

te
n

d
s

^k
^

P
ast S

tage?
f

N
extB

ank :=

E
ntry

:xtB
a

n
k :=

"N

ew
 B

ank"

•
S

et E
ntry

For P
refix

A
s P

ointer To
N

ew
 B

ank

i
S

et N
ew

B

ank's
D

e
fa

u
ltD

a
ta

To E
ntry

Y
e

sV

R
ead E

ntry
F

or P
refix

\y\V

S

N
.

^
r

E
ntry Is

^
W

^

k
P

o
rt&

L
e

n
g

th
?

^T

^
k

X

ŵ

f
^^f

Y
esT

4

*

A
llo

ca
te

N
ew

 B
ank In

N
ext S

tage

A
d

d
itio

n

G
1

1
0

1
0

0
*/7

S
trid

e
1

(4 b
its)

*
*

*
*

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

PD
LG

P
0L

1

P
9L

1

p
e

n

P
6L

1

P
0L

1

P
8L

1

B
l

P
1L

3

P
5L

1

B
2

P
5L

1

P
5L

1

P
8L

3

B
3

P
5L

1

P
5L

1

B
a

n
k

1

• • • i • • •

/
a i i i i • • •

• • P
4

A
ddress:

LastA
ddress:

N
extB

ank:
1

S
trid

e 2
(2 b

its)

**

00

0
1

10

11

P
1L

3

P
D

L0

P
D

L0

P
D

L0

B
l

B
a

n
k

1

**

00

0
1

10

11

P
6L

4

B
3

P
D

L8

PD
LO

PD
LG

B
a

n
k 2

**

00

0
1

10

11

P
8L

3

PD
LO

PD
LO

P
9L

1

P
9L

1

B
a

n
k 3

/ H ; l S
trid

e 3
(2 b

its)

**

00

0
1

10

11

P
D

L0

PD
LO

P
D

L8

P
3L

2

P
2L

1

B
a

n
k

1

**

00

0
1

10

11

PD
LO

PD
LO

PD
LO

PD
LO

PD
LO

B
a

n
k 2

**

00

0
1

10

11

PD
LO

PD
LO

PD
LO

P
7L

1

P
7L

1

B
a

n
k 3

Figure B
.8: A

ddition E
xam

ple 1: Second Stage L
ookup R

eturns A
 Port N

um
ber

G
o

To

N
ex

t
S

ta
ge

N
ex

tB
an

k
:

E
nt

ry

R
ea

d
E

nt
ry

Fo

r
P

re
fix

N
ex

tB
an

k
:=

"N

ew
 B

an
k"

S
et

 E
nt

ry

Fo
r

P
re

fix

A
s

P
oi

nt
er

 T
o

N
ew

 B
an

k

S
et

 N
ew

B

an
k'

s
D

e
fa

u
ltD

a
ta

To

 E
nt

ry

A
llo

ca
te

N

ew
 B

an
k

In

N
ex

t
S

ta
ge

A
d
d
i
t
i
o
n
:

0
1
1
0
1
0
G
*
/
7

P
4

S
tr

id
e

1
(4

 b
its

)

*
*
*
*

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
0

P
0
L
1

P
0
L
1

P
8
L
1

P
6
L
1

P
8
L
1

P
8
L
1

Bl

P
1
L
3

P
5
L
1

B2

P
5
L
1

P
5
L
1

P
8
L
3

B3

P
5
L
1

P
5
L
1

A
d

d
re

ss
:

L
a

st
A

d
d

re
ss

:
N

e
xt

B
a

n
k:

2

S
tr

id
e

2
(2

 b
its

)

B
an

k
1

X
**

00

01

10

11

P
6
L
4

B3

P
D
L
G

P
D
L
0

P
D
L
G

B
an

k
1

B
an

k
3

S
tr

id
e

3
(2

 b
its

)

**

00

01

10

11

P
1
L
3

P
D
L
8

P
D
L
0

B2

Bl

<

**

00

01

10

11

P
D
L
0

P
D
L
8

P
D
L
G

P
3
L
2

P
2
L
1

B
an

k
1

**

00

01

10

11

P
D
L
9

P
D
L
G

P
D
L
G

P
D
L
G

P
D
L
G

•

•

•

•

•

•

•

B
a
n
k
 2

**

00

01

10

11

P
8
L
3

P
D
L
G

P
D
L
G

P
9
L
1

P
9
L
1

1 1
 B
a
n
k
 2

**

00

01

10

11

P
D
L
G

P
D
L
G

P
D
L
G

P
7
L
1

P
7
L
1

B
an

k
3

s a.

5'

s 3 ft
 a

Fi
gu

re
 B

.9
:

A
dd

iti
on

 E
xa

m
pl

e
1:

 S
ec

on
d

St
ag

e
E

nt
ry

 C
ha

ng
ed

 T
o

Po
in

t T
o

N
ew

ly
 A

llo
ca

te
d

B
an

k
&

5

C
/5

5 i I ft.

A
ddress :=

 "F
irst A

ddress In P
refix R

ange"
LastA

ddress :=
 "Last A

ddress In P
refix R

ange"

T

R
ead E

ntry
A

t A
ddress

A
ddress :=

A

d
d

re
ss+

1 Gp

N
extB

ank :=
 E

ntry

G
et N

extB
ank's

D
e

fa
u

ltD
a

ta

R
eplace

D
e

fa
u

ltD
a

ta
W

ith P
refix

P
ort&

Length

A
d

d
itio

n
:

0110100*/7
P4

S
tride 1

(4 bits)

*
*
*
*

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0110

0111

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
0

p
e

n
P
O
L
L

P
8
L
1

P
0
L
1

P
O
L
L

P
0
L
1

Bl

P
1
L
3

P
5
L
1

B2

P
5
L
1

P
5
L
1

P
8
L
3

B3

P
5
L
1

P
5
L
1

B
ank 1

A
d

d
re

ss:
00

L
a

stA
d

d
re

ss:
0

1
N

extB
ank:

2

S
tride 2

(2 bits)

/

**

00

01

10

11

P
1
L
3

P
D
L
O

P
D
L
0

B2

Bl

B
ank 1

**

0
0

0
1

10

11

P
6
L
4

B3

P
D
L
0

P
D
L
O

P
D
L
O

B
ank 3

S
tride 3

(2 bits)

**

00

01

10

11

P
D
L
O

P
D
L
O

P
D
L
6

P
3
L
2

P
2
L
1

B
ank 1

**

0
0

01

10

11

P
D
L
O

P
4
L
1

P
D
L
O

P
D
L
O

P
D
L
O

i

Ba

**

00

01

10

11
 n
k
2

P
8
L
3

P
D
L
O

P
D
L
O

P
9
L
1

P
9
L
1

:1
B
a
n
k
 2

**

00

01

10

11

P
D
L
8

P
D
L
O

P
D
L
8

P
7
L
1

P
7
L
1

B
ank 3

Figure B
.10: A

ddition E
xam

ple 1: T
hird Stage E

ntry C
hanged T

o N
ew

 Prefix's Port N
um

ber

N
>

A
dd

re
ss

 :
=

 "
F

irs
t

A
dd

re
ss

 I
n

P
re

fix
 R

an
ge

"
La

st
A

dd
re

ss
 :

=
 "

La
st

 A
dd

re
ss

 I
n

P
re

fix
 R

an
ge

"

T

Q
T]

R

ea
d

E
nt

ry

A
t

A
dd

re
ss

A

dd
re

ss
 :

=

A
d

d
re

ss
+

1

N
ex

tB
an

k
:=

 E
nt

ry

G
et

 N
ex

tB
an

k'
s

D
e

fa
u

ltD
a

ta

R
ep

la
ce

D

e
fa

u
ltD

a
ta

W

ith
 P

re
fix

P

or
t&

Le
ng

th

A
d

d
it

io
n

01

10
10

0*
77

P4

S
tr

id
e

1
(4

 b
its

)

*
*
*
*

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
O

P
8
L
1

P
0
L
1

P
G
L
1

P
0
L
1

P
0
L
1

P
G
L
1

Bl

P
1
L
3

P
5
L
1

B2

P
5
L
1

P
5
L
1

P
8
L
3

B3

P
5
L
1

P
5
L
1

A
d
d
r
e
s
s
:
 0
1

L
a
s
t
A
d
d
r
e
s
s
:
 0
1

N
e
x
t
B
a
n
k
:

2

S
tr

id
e

2
(2

 b
its

)

**

00

01

10

11

Ba
 P
1
L
3

P
D
L
O

P
D
L
O

B2

Bl

n
k
 1

**

00

01

10

11

P
6
L
4

B3

P
D
L
O

P
D
L
O

P
D
L
8

B
an

k
2

**

00

01

10

11

P
8
L
3

P
D
L
8

P
D
L
O

P
9
L
1

P
9
L
1

S
tr

id
e

3
(2

 b
its

)

**

00

01

10

11

P
D
L
O

P
D
L
O

P
D
L
G

P
3
L
2

P
2
L
1

B
an

k
1

**

00

01

10

11

P
D
L
O

P
4
L
1

P
4
L
1

P
D
L
8

P
D
L
O

B
an

k
2

**

00

01

10

11

P
D
L
6

P
D
L
O

P
D
L
8

P
7
L
1

P
7
L
1

B
an

k
1

B
an

k
3

B
an

k
3

Fi
gu

re
 B

.l
l:

 A
dd

iti
on

 E
xa

m
pl

e
1:

 T
hi

rd
 S

ta
ge

 E
nt

ry
 C

ha
ng

ed
 T

o
N

ew
 P

re
fi

x'
s

Po
rt

 N
um

be
r

3 c5

to

I I to

to

s

G
o To

N
ext

S
tage

N
extB

ank :
E

ntry
R

ead E
ntry

F
or P

refix

N
e

xtB
a

n
k :=

"N

ew
 B

a
n

k"

S
et E

n
try

F
or P

refix
A

s P
ointer To

N
ew

 B
ank

I
Y

es

S
et N

ew

B
ank's

D
e

fa
u

ltD
a

ta
To E

n
try

A
llo

ca
te

N
ew

 B
ank In

N
ext S

tage

A
d

d
itio

n
:

0
1

1
*****/3

p
i

S
tride 1

(4 bits)

B
ank 1

A
d
d
r
e
s
s
:

L
a
s
t
A
d
d
r
e
s
s
:

N
e
x
t
B
a
n
k
:

1

S
tride 2

(2 bits)

*
*
*
*

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
0

P
9
L
1

P
G
L
1

P
8
L
1

P
O
L
L

P
9
L
1

P
9
L
1

Bl

P
6
L
1

P
5
L
1

B2

P
5
L
1

P
5
L
1

P
8
L
3

B3

P
5
L
1

P
5
L
1

1 1 1 1 1 1 1 •

1 F
 • • •

•

**

00

01

10

11

P
8
L
1

P
D
L
8

P
D
L
0

B2

Bl

B
a
n
k
 1

**

00

01

10

11

P
6
L
4

B3

P
D
L
G

P
D
L
8

P
D
L
8

B
a
n
k
 2

**

00

01

10

11

P
8
L
3

P
D
L
8

P
D
L
8

P
9
L
1

P
9
L
1

B
ank 3

S
tride 3

(2 bits)

**

00

01

10

11

P
D
L
0

P
D
L
0

P
D
L
G

P
3
L
2

P
2
L
1

B
ank 1

**

00

01

10

11

P
D
L
8

P
4
L
1

P
4
L
1

P
D
L
0

P
D
L
8

B
ank 2

**

00

01

10

11

P
D
L
8

P
D
L
8

P
D
L
8

P
7
L
1

P
7
L
1

B
ank 3

Figure B
.12: A

ddition E
xam

ple 2: Prefix D
oes N

ot E
xtend Past First Stage

A
dd

re
ss

 :
=

 "
F

irs
t

A
dd

re
ss

 I
n

P
re

fix
 R

an
ge

"
La

st
A

dd
re

ss
 :

=
 "

La
st

 A
dd

re
ss

 I
n

P
re

fix
 R

an
ge

"
Q

T]

t
Re
ad
 E
nt
ry

At
 A
dd
re
ss

>
i

Ad
dr
es
s
:=

Ad
dr

es
s+

1

N
ex

tB
an

k
:=

 E
nt

ry

G
et

 N
ex

tB
an

k'
s

D
e

fa
u

lt
D

at
a

R
ep

la
ce

D

e
fa

u
ltD

a
ta

W

ith
 P

re
fix

P

o
rt

&
L

e
n

g
th

A
d

d
it

io
n

:
0

1
1

**
**

*/
3

p
i

S
tr

id
e

1
(4

 b
its

)

*
*
*

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
6

P
O
L
L

P
6
L
1

P
8
L
1

P
9
L
1

P
9
L
1

P
6
L
1

Bl

p
e
n

P
5
L
1

B2

P
5
L
1

P
5
L
1

P
8
L
3

B3

P
5
L
1

P
5
L
1

B
an

k
1

A
d
d
r
e
s
s
:

0
1
1
0

L
a
s
t
A
d
d
r
e
s
s
:

0
1
1
1

N
e
x
t
B
a
n
k
:

1

S
tri

de
 2

(2

 b
its

)

>

**

00

01

10

11

P
1
L
3

P
D
L
O

P
D
L
O

B2

Bl

B
an

k
1

*
*

00

01

10

11

P
6
L
4

B3

P
D
L
O

P
D
L
O

P
D
L
O

B
an

k
2

*
*

00

01

10

11

P
8
L
3

P
D
L
O

P
D
L
O

P
9
L
1

P
9
L
1

B
an

k
3

S
tr

id
e

3
(2

 b
its

)

*
*

00

01

10

11

P
D
L
O

P
D
L
O

P
D
L
6

P
3
L
2

P
2
L
1

B
an

k
1

*
*

00

01

10

11

P
D
L
O

P
4
L
1

P
4
L
1

P
D
L
6

P
D
L
O

B
an

k
2

*
*

00

01

10

11

P
D
L
O

P
D
L
O

P
D
L
O

P
7
L
1

P
7
L
1

B
an

k
3

Fi
gu

re
 B

.1
3:

 A
dd

iti
on

 E
xa

m
pl

e
2:

 F
ir

st
 S

ta
ge

 E
nt

ry
's

 P
oi

nt
er

 F
ol

lo
w

ed
 A

nd
 T

ar
ge

t
B

an
k'

s
D

ef
au

lt
E

nt
ry

 C
ha

ng
ed

 T
o

N
ew

 P
re

fi
x'

s
Po

rt
 N

um
be

r

ST
" 3 re

T
O

&

5

3

I 2
ft.

A
ddress :=

 "F
irst A

ddress In P
refix R

ange"
LastA

ddress :=
 "Last A

ddress In P
refix R

ange"
Q

D

R
ead E

ntry
A

t A
ddress

A
ddress :=

A

d
d

re
ss+

1

N
e

xtB
a

n
k :=

 E
ntry

G
et N

e
xtB

a
n

k's
D

e
fa

u
ltD

a
ta

R
eplace

D
e

fa
u

ltD
a

ta
W

ith P
refix

P
ort&

Length

A
d

d
itio

n

Q
H

*****/3
P

I

S
tride 1

(4 bits)

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
8

P
0
L
1

P
G
L
1

P
0
L
1

P
8
L
1

p
e
n

p
e
n

Bl

P
1
L
3

P
5
L
1

B2

P
5
L
1

P
5
L
1

P
8
L
3

B3

P
5
L
1

P
5
L
1

B
ank 1

A
d
d
r
e
s
s
:

0
1
1
1

L
a
s
t
A
d
d
r
e
s
s
:

0
1
1
1

N
e
x
t
B
a
n
k
:

1

S
tride 2

(2 bits)

*
*

00

01

10

11

P
1
L
3

P
D
L
O

P
D
L
O

B2

Bl

B
ank 1

*
*

00

01

10

11

P
6
L
4

B3

P
D
L
O

P
D
L
O

P
D
L
O

B
ank 2

B
ank 3

S
tride 3

(2 bits)

*
*

00

01

10

11

P
D
L
O

P
D
L
O

P
D
L
O

P
3
L
2

P
2
L
1

B
ank 1

*
*

00

01

10

11

P
D
L
O

P
4
L
1

P
4
L
1

P
D
L
O

P
D
L
O

B
ank 2

*
*

00

01

10

11

P
8
L
3

P
D
L
O

P
D
L
O

P
9
L
1

P
9
L
1

*
*

00

01

10

11

P
D
L
O

P
D
L
O

P
D
L
O

P
7
L
1

P
7
L
1

B
ank 3

Figure B
.14: A

ddition E
xam

ple 2: First Stage E
ntry C

hanged To N
ew

 Prefix's Port N
um

ber

Klaus B.3 Removal Process Examples

B.3 Removal Process Examples

B.3.1 Removal Example 1: Prefix 01100000/3
In this example IP prefix 01100000/3 is being removed from the routing table. In
Figure B.15 the prefix doesn't extend past the first stage, so a search for the longest
prefix that encompasses the prefix to be removed is conducted. A search of entry
0100 in the first bank of the first stage yields prefix 00000000/1 - • Port 0 which
suffices, so it will therefore be used as a replacement for the removed prefix's en­
tries. In Figure B.20 the first entry covered by the prefix in the first bank of the first
stage is read. It contains a pointer to the first bank of the second stage so that bank's
default entry is analyzed. Since it contains a match to the prefix to be removed it
is replaced by port 0 length 1. In Figure B.21 the second and last entry covered by
the prefix in the first bank of the first stage is read. Since it contains a match to the
prefix to be removed it is replaced by port 0 length 1. In Figure B.22 since it is the
first stage no bank deallocation is possible.

B.3.2 Removal Example 2: Prefix 01101000/7
In this example IP prefix 01101000/7 is being removed from the routing table. In
Figure B. 19 the prefix extends past the first stage (whose stride is 4) so the first four
bits of the prefix, 0110, are indexed into the first bank. The result is a pointer to the
first bank in the second stage which is followed. In Figure B.20, since the prefix
also extends past the second stage a lookup is performed using 10 as the index to
the first bank in the second stage. This yields a pointer, which is also followed. In
Figure B.21, since the prefix does not extend past the current stage a search for the
longest prefix that encompasses the prefix to be removed is conducted. Since such
a prefix does not exist within the scope of this stage, the default entry will be used
as a replacement for the removed prefix's entries. In Figure B.22 and Figure B.23
the two entries in the second bank of the third stage that are covered by the prefix
being removed are read. Since they are both entries for the prefix to be removed
they are both replaced by the default entry of port default length 0. In Figure B.24
since it is a third stage bank deallocation may be possible. In Figure B.25, Figure
B.26 and Figure B.27 each entry in the second bank of the third stage is read and
verified to match the default entry, which means the bank can be safely deallocated.
In Figure B.28 the second bank of the third stage is deallocated and the second
stage is revisited. Since it is a second stage bank deallocation may be possible. In
Figure B.29, Figure B.30 and Figure B.31 the first three entries in the first bank of
the second stage are read and verified to match the default entry. In Figure B.32
the last entry in the first bank of the second stage is read and it does not match the
default entry, which means the bank cannot be deallocated.

125

3 8
a,
«3

S
ta

rt
F

ind R
eplacem

ent
P

ort&
Length

N
o

^
r

P
refix E

xte
n

d
^

k
P

ast S
tage?

G
o To

N
ext S

tage

•
N

e
xtB

a
n

k :=

E
ntry

SV

V

\ \
L

%

L

\

\
Y

es
\

R
ead

E
n

try
For

P
refix

/

* » %
 %

F
irst S

earch 0
1

0
*

F
or P

refix L
e

n
g

th
2 O

r Less

E
lse S

earch 0
0

**
For P

refix Length
1 O

r Less

E
lse U

se
 U

nknow
n

»
F

o
r R

eplacem
ent

\
(D

efer to
 ****)

*

F
ound

P
0L1

(0
***)

R
em

o
val:

A
d

d
re

s
s
:

L
a

s
tA

d
d

re
s

s
:

N
e

x
tB

a
n

k
:

1

S
trid

e

1

(4
 b

its
)

*
*

*
*

P
D

L.G

0
0

0
0

P
0

L
1

0
0

0
1

P
O

L
L

0
0

1
0

P
O

L
I

0
0

1
1

0
1

0
0

0
1

0
1

P
G

L
1

P
6

L
1

P
6

L
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

B
l

P
1

L
3

P
5

L
1

B
2

P
5

L
1

P
5

L
1

P
8

L
3

B
3

P
5

L
1

P
5

L
1

B
a

n
k

1

S
trid

e 2

(2
 b

its)

*
*

0
0

0
1

1
0

1
1

P
1

L
3

P
D

L
6

P
D

LO

B
2

B
l

B
a

n
k

1

*
*

0
0

0
1

1
0

1
1

P
6

L
4

B
3

P
D

LO

P
D

LO

P
D

LO

B
a

n
k 2

*
*

0
0

0
1

1
0

1
1

P
8

L
3

P
D

LO

P
D

LO

P
9

L
1

P
9

L
1

B
a

n
k 3

Figure B
.15: R

em
oval E

xam
ple 1: Search O

f First Stage For A
 R

eplacem
ent Prefix

S
trid

e
 3

(2

b

its
)

*
*

0
0

0
1

1
0

1
1

P
D

L
6

P
D

L
6

P
D

LO

P
3

L
2

P
2

L
1

B
a

n
k

1

*
*

0
0

0
1

1
0

1
1

P
D

LO

P
4

L
1

P
4

L
1

P
D

LO

P
D

LO

B
a

n
k 2

*
*

0
0

0
1

1
0

1
1

P
D

L
8

P
D

LO

P
D

L
0

P
7

L
1

P
7

L
1

B
a

n
k 3

Klaus B.3 Removal Process Examples

A
d

d
re

s
s

:
0
1
1
G

L
a

s
tA

d
d

re
s
s
:

01
1]

N
e

x
tB

a
n

k
:

1

v
a

l:

**
*/

3

o *
E *
a: r-i

o S
tr

id
e
 1

;

S
tr

id
e
 2

;

S
tr

id
e
 3

(4
 b

its
)

;
(2

 b
its

)
;
(2

 b
its

)

o
a
a.
* #

P
0
L

1

*

. _ .

O

*
* *

PD
LO

©
©

o a.
rH
O

P
3L

2

s
_ * .

PD
LO

o
©

- -

rH
_ l

|o
oo

o
PD

LO

rH
©

rH
- 1
O

0
0
0
1

f M
CO

©
r H

- -

rH
_ l
©

0
0
1
0

P
2L

1

r H
r H

r
rH

m

r H
r H

B
a
n
k
 1

*

B
a
n
k

1

. . . *

rH
_ l

0
0
1
1

rH
_ l

©
©
rH
©

PD
LO

* *

P
6L

4

*

\

tH
—1
O

|0
1
0
1

P
4
L

1

©
©

m
m

©
©

^

rH

m

©
r H
r H
©

P
4
L

1

r H
©

CD
_ l
a
0 .

r H
©

t

P
1L

3|

|0
11

1

o
a a.
©
r H

PD
LO

©
rH

\

P
5

L
l|

10

00

o
a
a.
r H
r H

PD
LO

r H
r H

s
I N
CO

1
0
0
1

B
a
n
k

2

B
a
n
k

2

- -

P
5

L
1

11
01

0

P
D

LO

* *

P
8L

3

*

P
5
L

l|

11
01

1

1
§

PD
LO

r H
©

P
7
L

1

©
r H

P
7L

1

r H
r H

c
(0

CO

I
S

- -

P
8L

3
11

00

o
_ l a a.
r-i
©

t
CO

11
01

P
9L

1

©
rH

- -

P
5

L
l|

11

10

P
9L

1

r H
r H

P
5

L
l|

11

11
1

m

c
ro
m

- -

r H

c
03

CO

01
Ol
c
(0
cc
X

l l -
(U

Q.
c

VI
Ul
01

d
d
r

<
I"
Li.

= II
l/>
m
(U

d
d
r

<

Ol

QC

X
1 ^

c Q.

c

V)
0)

•D
T3 <
l/l
ro

_ i

II
v)
wi
<u

• o

tA
d

</> (0
—i

T

V

II >H
•• +
1/1 Wl
Vfl 1/1
Ol 01

TJ T3
•O TO

< <

y

<

r
> * VI

£ B
LU TJ

ro <
Ol 4J
cc <

l/> J "

5 £

1
i L

|£ 1*1 C 01 r j |

ac
e

E

W
ith

a

ce
m

&

L
e
n

"5. o- =
o> <" P tt DC ° -

fi
£
k

r

V >v

(0
4-*

0) ro
u Q
ro +J
D. 3
oi .ro

-
c

0) O l
u c

e
p
la

&

Le

IW
ith

 R

P
or

t

3? .

t

v̂

B
an

k
n
tr

y

N
ex

t
:=

E

G
e
t

N
e

xt
B

a
n

k'
s

D
e

fa
u

ltD
a

ta

PH

x
pa

>
o
£

PQ

127

3

5

A
d

d
re

ss
:=

 "F
irst A

d
d

re
ss

In
 P

refix
R

a
n

g
e

"
L

a
stA

d
d

re
ss

:=
 "L

a
st A

d
d

re
ss

In
 P

refix
R

a
n

g
e

"

E
n

try Is

P
o

rt&
L

e
n

g
th

?

N
o

R
ead E

ntry
A

t A
ddress

A
ddress :=

A

ddress+
1

n

Je
s

„
f

Length =

^
W

^

^
^

^
^

L
P

re
fix

 L
e

n
g

th
?

^
r

Yes
f^

\^
/\

N
o i V

 N
o

k
R

eplace
E

n
try

W
ith

R
e

p
la

ce
m

e
n

t
P

o
rt&

L
e

n
g

th

N
o

A
d

d
re

ss
=

LastA

ddress?

Y
es^

1 ss Exa roce

N
extB

ank
:=

 E
ntry

1 r

/
\

S

Length =

X

P
refix Length?

G
et N

extB
ank's

D
efaultD

ata

f
\/Y

e
s

R
eplace

D
e

fa
u

ltD
a

ta
W

ith
R

e
p

la
ce

m
e

n
t

P
o

rt&
L

e
n

g
th

R
em

o
val:

S
trid

e 1

(4 bits)

Address: 0
1
1
1

LastAddress: 0
1
1
1

NextBank: 1

S
trid

e 2

(2 b
its)

**

00

0
1

10

11

P
0

L
1

P
D

L0

P
D

L8

B
2

B
l

B
an

k 1

**

00

0
1

10

11

P
6L

4

B
3

PD
LO

P
D

LO

PD
LO

B
an

k 2

B
an

k 1

B
an

k 3

S
trid

e 3

(2 b
its)

**

00

0
1

10

11

P
D

L0

PD
LO

P
D

L0

P
3L

2

P
2

L
1

B
an

k 1

**

00

0
1

10

11

P
D

L
0

P
4

L
1

P
4

L
1

P
D

LO

PD
LO

B
an

k 2

**

00

0
1

10

11

P
8L

3

P
D

LG

PD
LO

P
9

L
1

P
9

L
1

**

00

0
1

10

11

PD
LO

PD
LO

PD
LO

P
7

L
1

P
7

L
1

B
an

k 3

05
Figure B

.17: R
em

oval E
xam

ple 1: First Stage E
ntry R

em
oved

G
o

To

P
re

vi
ou

s
S

ta
ge

R
ep

la
ce

E

nt
ry

 F
or

P

re
fix

 W
ith

N

ex
tB

an
k'

s
D

ef
au

ltD
at

a

R
ea

d
E

nt
ry

A

t
A

dd
re

ss

A
dd

re
ss

 :
=

"F

irs
t

A
dd

re
ss

 I
n

 B
an

k"

La
st

A
dd

re
ss

 :
=

"L

as
t

A
dd

re
ss

 I
n

 B
an

k"

R
em

o
va

l:

S
tr

id
e
 1

(4
 b

it
s
)

^

*r
 ^

r
^

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
O

P
0
L
1

P
0
L
1

P
0
L
1

P
0
L
1

P
0
L
1

P
0
L
1

B
l

P
6
L
1

P
5
L
1

B
2

P
5
L
1

P
5
L
1

P
8
L
3

B
3

P
5
L
1

P
5
L
1

B
a

n
k

1

A
d
d
r
e
s
s
:
 0
1
1
1

L
a
s
t
A
d
d
r
e
s
s
:
 0
1
1
1

N
e
x
t
B
a
n
k
:

1

S
tr

id
e
 2

(2
 b

it
s
)

>

B
a

n
k

1

*
*

0
0

0
1

1
0

1
1

P
6

L
4

B
3

P
D

L
0

P
D

LO

P
D

LO

B
a

n
k

2

*
*

0
0

0
1

1
0

1
1

P
8
L
3

P
D
L
9

P
D
L
O

P
9
L
1

P
9
L
1

B
a

n
k

3

S
tr

id
e
 3

(2
 b

it
s
)

*
*

0
0

0
1

1
0

1
1

P
0
L
1

P
D
L
O

P
D
L
O

B
2

B
l

!^
f

^

*
*

0
0

0
1

1
0

1
1

P
D
L
O

P
D
L
O

P
D
L
O

P
3
L
2

P
2
L
1

B
a

n
k

1

*
*

0
0

0
1

1
0

1
1

P
D
L
O

P
4
L
1

P
4
L
1

P
D
L
O

P
D
L
0

B
a

n
k

2

*
*

0
0

0
1

1
0

1
1

P
D
L
O

P
D
L
O

P
D
L
O

P
7
L
1

P
7
L
1

B
a

n
k

3

F
ig

u
re

 B
.1

8
:

R
e
m

o
v
a
l

E
x
a
m

p
le

 1
:

N
o

 B
a
n
k

 D
e
a
ll

o
c
a
ti

o
n

 P
o

ss
ib

le

3
F

ind R
e

p
la

ce
m

e
n

t
P

o
rt&

L
e

n
g

th

G
o To

Next Stage

•

NextBank :=
Entry

>

Read
Entry
For

Prefix

/

R
e
m
o
v
a
l
:

0
1
1
0
1
0
0
*
7
7

S
tride 1

(4 b
its)

#
*
*
*

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
O

P
B
L
1

P
G
L
1

P
8
L
1

P
0
L
1

P
0
L
1

P
9
L
1

Bl

P
1
L
3

P
5
L
1

B2

P
5
L
1

P
5
L
1

P
8
L
3

B3

P
5
L
1

P
5
L
1

B
ank 1

A
d
d
r
e
s
s
:

L
a
s
t
A
d
d
r
e
s
s
:

N
e
x
t
B
a
n
k
:
 1

S
tride 2

(2 bits)

**

00

01

10

11

P
1
L
3

P
D
L
O

P
D
L
O

B2

Bl

B
ank 1

**

00

01

10

11

P
6
L
4

B3

P
D
L
O

P
D
L
O

P
D
L
O

B
ank 2

**

00

01

10

11

P
8
L
3

P
D
L
0

P
D
L
O

P
9
L
1

P
9
L
1

B
ank 3

S
tride 3

(2 b
its)

**

00

01

10

11

P
D
L
O

P
D
L
O

P
D
L
O

P
3
L
2

P
2
L
1

B
ank 1

**

00

01

10

11

P
D
L
O

P
4
L
1

P
4
L
1

P
D
L
8

P
D
L
8

B
ank 2

**

00

01

10

11

P
D
L
O

P
D
L
9

P
D
L
O

P
7
L
1

P
7
L
1

B
ank 3

F
igure B

.19: R
em

oval E
xam

ple 2: First Stage L
ookup R

eturns A
 Pointer

Fi
nd

 R
ep

la
ce

m
en

t
P

or
t&

Le
ng

th

G
o

To

N
ex

t
S

ta
ge

•
N

ex
tB

an
k

:=

E
n

tr
y

\ R
ea

d
E

n
tr

y
F

or

P
re

fix

/

R
em

ov
al

:
01

10
1O

0*
/7

A
d

d
re

s
s

:
L

a
s

tA
d

d
re

s
s

:
N

e
x

tB
a

n
k

:
2

S
tr

id
e

1

(4
 b

it
s)

*
*

*
*

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

PD
LO

P
G

L
1

P
0L

1

P
9L

1

P
9L

1

P
9L

1

P
G

L
1

B
l

P
1L

3

P
5L

1

B
2

P
5L

1

P
5L

1

P
8L

3

B
3

P
5L

1

P
5L

1

B
an

k
1

X

**

00

0
1

10

1
1

P
6L

4

B
3

PD
LO

PD
LO

PD
LG

B
an

k
2

B
an

k
1

**

00

0
1

10

1
1

P
8L

3

PD
LO

PD
LO

P
9L

1

P
9L

1

B
an

k
3

S
tr

id
e

2

(2
 b

it
s)

**

00

0
1

10

1
1

P
1L

3

PD
LG

PD
LG

B
2

B
l

«
'

S
tr

id
e

3

(2
 b

it
s)

**

00

0
1

10

1
1

PD
LO

PD
LO

PD
LO

P
3L

2

P
2

L
1

B
an

k
1

**

00

0
1

10

1
1

PD
LO

P
4L

1

P
4L

1

PD
LO

PD
LO

B
an

k
2

**

00

0
1

10

1
1

PD
LG

PD
LO

PD
LG

P
7

L
1

P
7

L
1

B
an

k
3

ST

F
ig

u
re

 B
.2

0
:

R
e

m
o

v
a

l
E

x
a

m
p

le
 2

:
S

e
c

o
n

d
S

ta
g

e
L

o
o

k
u

p
R

e
tu

rn
s

A

P
o

in
te

r

to

So

o <
 a 3

3

5 I s

F
ind R

e
p

la
ce

m
e

n
t

P
o

rt&
L

e
n

g
th U

se
 U

n
kn

o
w

n
 F

or
R

e
p

la
ce

m
e

n
t

(D
e

fe
r to

 **)

G
o To

N
ext S

tage

•
N

e
xtB

a
n

k :=

E
n

try

V R
ead

E
n

try
F

or
P

refix

/

B
a
n
k 1

R
em

oval:
0110100*77

S
trid

e 1

(4 b
its)

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1000

1
0

0
1

1010

1
0

1
1

1100

1
1

0
1

1110

1
1

1
1

P
D

L0

P
0L

1

P
9L

1

P
0L

1

P
0L

1

P
9L

1

P
O

LL

B
l

P
1L

3

P
5L

1

B
2

P
5L

1

P
5L

1

P
8L

3

B
3

P
5L

1

P
5L

1

1 • 1 1 1 1 1 1 1 1 1
1 1 1

/

• • • • •
^

• • •

L
a:

S
trid

e 2

(2 b
its)

**

00

0
1

10

1
1

P
1L

3

P
D

L9

P
D

L9

B
2

B
l

B
an

k 1

**

00

0
1

10

1
1

P
6L

4

B
3

P
D

L9

P
D

L0

P
D

L9

B
an

k 2

**

00

0
1

10

1
1

P
8L

3

P
D

L9

P
D

L9

P
9L

1

P
9L

1

A
d

d
re

s
s

:
J

tA
d

d
re

s
s

:
N

e
x

tB
a

n
k

:
2

• • •

k •
L

i
\

•
\

i
\

•
\

i i
\

•
\

•
V

•

"
^

• • • • • • •

S
trid

e 3

(2 b
its)

**

00

0
1

10

1
1

P
D

L0

P
D

L0

P
D

L0

P
3L

2

P
2L

1

B
an

k 1

**

00

0
1

10

1
1 JPD

L0 |

P
4L

1

P
4L

1

P
D

L9

P
D

L9

B
an

k 2

**

00

0
1

10

1
1

P
D

L9

P
D

L9

P
D

L0

P
7L

1

P
7L

1

B
a
n
k 3

B

a
n
k 3

F
igure B

.21: R
em

oval E
xam

ple 2: Prefix D
oes N

ot E
xtend Past T

hird Stage

Klaus B.3 Removal Process Examples

©
©

l/>
1/1

cu 1_
• o
T 3

<

B B

l - »
(0
>
o E
0)
oc

I - l
O (N

m J*:
W C
cu as
i- O Q

• a 4->

•o x
< (U
•H Z
10
(0

_ l

1 ^
^
* 1
o l
o rH
e iH
rH

o

m
aj

• a
i_

.-V. i / i

- -

fN

(U
-a
& i / i

• M

X I

(N

4->

. D

fN

(9
_ l

a
a.
*
*

m
_ i
rH
0 .

*

e
_ i
a
a.
o
o

©
- J
Q
a.
o
o

(9
_ l
Q
a.
i-H

o

V

e
_ i
a
a.
r H

o

PM
_ l
rn
a.
©
r H

^

CN
09

O
t H

•H
_ l
PM
a.
i - i
I - I

*
•H
SO

« H
i-H

i - J
Q

\ 0L

• *

: *

I
£

P
4
L

l|

rH
©

©
_l
a
a.

©
rH

o
_ J
a
a.
rH
rH

fN

c
(0

QQ

^7

fM
J *
C

OQ

O
_ l
Q
a.
*
*

m
_ i
00
a.
*

1
s
- -

I
s

o
- 1
a
a.
rH
©

o
_ l a
0L

rH
©

P
7

L
l|

©
rH

P
9L

1

£

P
7

L
l|

rH
I-H

P
9L

1

rH
rH

c
CO

m
c
fO

QQ

EEr-

S
tr

id
e

1

(4
 b

its
) 1

*
*

©

©
©
©
©

•H

O

rH
©
©
©

3

©

S

rH

©

rH
rH
©
©

©

©
©

©

rH

©

rH
©
rH
©

00

©
T-l
i-H
©

P
1L

3J

rH
rH
rH
©

P
5

L
l|

©
©
©
rH

03

r-4
©
©
rH

P
5

L
l|

©
l-H
©
rH

P
5L

1

rH
rH
©
rH

P
8L

3

§
rH
rH

03

rH
©
rH
rH

P
5L

1

©
rH
rH
rH

P
5

L
l|

rH
rH
rH
i-H

c
ro
00

01
o>
c
ro

C£

X

at
a .
c

i/i
in
cu

d
d
r

<
t"
u_ s

II

cu
-̂

5
^

cu
Ol

QC

X

a>
a .
c

i/)
cu
•o
• o

<
1/)
ro
_ i

II
in
in
CU

• a
• o

5
in
ro

_ i

7

II <->
•• +
in m
tn in
Oi m
-o TJ
TJ T3
< <

^

<

M S
c S
ai -o

ro <
CU -4-1
cc <

^ £

If

in £

o
z

*

Y
es

k

V ^ > *
r

V

ro
ai ro
U Q
ro 4-1
a . ^
cu ro

* tn
Q

+-»
c

cu oi
u c
ro cu
"5- 3!

th
R

P

or
t

5

£•
c
UJ JJ.

Si
n

2

£ -£ o> E S 0) CU

ro wo
a t
ai 0

cc Q-

«!£

£

in
J *

tB
a

n

X
cu
z
*
0

ro

tD
a

t

=j
m
•s
Q

J

CQ

a
60

133

!/5

2 I I en

g

03

A
ddress :=

 "F
irst A

ddress In
 P

refix R
ange"

LastA
ddress :=

 "Last A
ddress In

 P
refix R

ange"

E
ntry Is

P
ort&

Length?

N
o

R
ead E

ntry
A

t A
ddress

A
ddress :=

A

ddress+
1

ik

k
Y

e
s

„
f

Length =

^
W

^

^
^

^
^

k
P

refix L
e

n
g

th
?

^r

Yes f
^

\
.
f
\

^
N

o
 1 J

N
o

k.
R

eplace E
ntry

W
ith

R
eplacem

ent
P

ort&
Length

N
o

A
ddress =

LastA

ddress?

Y
es^

N
extB

ank
:=

 E
ntry

G
et N

extB
ank's

D
efaultD

ata

L
e

n
g

th

••

P
refix Length?

Yes
R

eplace
D

efaultD
ata

W
ith R

eplacem
ent

P
ort&

Length

R
em

o
val:

0110100*77

S
trid

e
 1

(4
 b

its
)

*
*

*
*

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0
0
0

1
0

0
1

1
0
1
0

1
0

1
1

1
1
0
0

1
1

0
1

1
1
1
0

1
1

1
1

P
D

L0

P
0

L
1

P
0

L
1

P
G

L
1

P
0

L
1

P
0

L
1

P
0

L
1

B
l

P
1L

3

P
5

L
1

B
2

P
5

L
1

P
5

L
1

P
8L

3

B
3

P
5

L
1

P
5

L
1

B
a

n
k

1

A
d

d
re

s
s

:
0

1

L
a

s
tA

d
d

re
s

s
:

0
1

N
e

x
tB

a
n

k
:

2

S
trid

e
 2

(2
 b

its
)

**

0
0

0
1

1
0

1
1

P
1L

3

PD
LO

PD
LO

B
2

B
l

B
a

n
k 1

X

**

0
0

0
1

10

1
1

P
6L

4

B
3

PD
LO

PD
LO

PD
LO

B
a

n
k 2

**

0
0

0
1

10

1
1

P
8L

3

PD
LO

PD
LO

P
9

L
1

P
9

L
1

B
a

n
k 3

S
trid

e
 3

(2
 b

its
)

**

0
0

0
1

1
0

1
1

PD
LO

PD
LO

PD
LO

P
3L

2

P
2

L
1

B
a

n
k 1

**

0
0

0
1

1
0

1
1

P
D

LO
j

PD
LO

PD
LO

PD
LO

PD
LO

B
a

n
k 2

**

0
0

0
1

10

1
1

PD
LO

PD
LO

P
D

LO

P
7

L
1

P
7

L
1

B
a

n
k 3

Figure B
.23: R

em
oval E

xam
ple 2: T

hird Stage E
ntry R

em
oved

G
o

To

P
re

vi
ou

s
S

ta
ge

R
ep

la
ce

E

nt
ry

 F
or

P

re
fix

 W
ith

N

ex
tB

an
k'

s
D

ef
au

ltD
at

a

R
ea

d
E

nt
ry

A

t
A

dd
re

ss

A
dd

re
ss

 :
=

"F

irs
t

A
dd

re
ss

 I
n

 B
an

k"

La
st

A
dd

re
ss

 :
=

"L

as
t A

dd
re

ss
 I

n
 B

an
k"

R
e
m
o
v
a
l
:

0
1
1
0
1
G
G
*
/
7

S
tr

id
e

1

(4
 b

it
s)

00
00

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

PD
LO

P
8L

1

P
0L

1

P
0L

1

P
0L

1

P
0L

1

P
0L

1

B
l

P
1L

3

P
5L

1

B
2

P
5L

1

P
5L

1

P
8L

3

B
3

P
5L

1

P
5L

1

B
an

k
1

A
d

d
re

s
s

:
0

0

L
a

s
tA

d
d

re
s

s
:

1
1

N

e
x

tB
a

n
k

:
2

/

B
an

k
2

**

00

0
1 10

1
1

P
8L

3

PD
LO

PD
LO

P
9L

1

P
9L

1

B
an

k
3

S
tr

id
e

2

(2
 b

it
s)

**

00

0
1

10

1
1

P
1L

3

P
D

L8

PD
LO

B
2

B
l

B
an

k
1

• • • • • • • N
i

S
tr

id
e

3

(2
 b

it
s)

**

00

0
1

10

1
1

PD
LO

PD
LO

PD
LO

P
3L

2

P
2L

1
B

an
k

1

**

0
0

0
1

10

1
1

P
6L

4

B
3

PD
LO

PD
LO

PD
LO

• • •
i

•
\

•
\

•
\

•
\

i i
\ •

\

**

0
0

0
1

10

1
1

PD
LO

PD
LO

PD
LG

PD
LO

P
D

L6

B
an

k
2

**

00

0
1 10

PD
LO

PD
LO

PD
LO

P
7L

1

1
1

P
7

L
1

B
an

k
3

F
ig

u
re

 B
.2

4
:

R
em

o
v

al
 E

x
am

p
le

 2
:

T
h

ir
d

S
ta

g
e

B
an

k
D

ea
ll

o
ca

ti
o

n
M

ay
 B

e
P

o
ss

ib
le

5 T
O

"•o

3 T
O

C

o
 a T
O

to

3

3 03

I to
&

3

a,
05

G
o To

P
revious S

tage

R
eplace

E
ntry F

or
P

refix W
ith

N
extB

ank's
D

efaultD
ata

R
ead E

ntry
A

t A
ddress

A
ddress :=

"F

irst A
ddress In

 B
ank"

LastA
ddress :=

"Last A

ddress In
 B

ank"

R
e
m
o
v
a
l
:

0
1
1
0
1
0
0
*
7
7

S
tride 1

(4 bits)

*
*
*
*

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
0

P
0
L
1

P
0
L
1

P
0
L
1

P
0
L
1

P
6
L
1

p
e
n

B
l

P
1
L
3

P
5
L
1

B
2

P
5
L
1

P
5
L
1

P
8
L
3

B
3

P
5
L
1

P
5
L
1

B
ank 1

A
d
d
r
e
s
s
:
 0
1

L
a
s
t
A
d
d
r
e
s
s
:
 1
1

N
e
x
t
B
a
n
k
:

2

S
tride 2

(2 bits)

B
ank 3

S
tride 3

(2 bits)

*
*

0
0

0
1

1
0

11

P
1
L
3

P
D
L
O

P
D
L
0

B
2

B
l

•

**

0
0

0
1

1
0

1
1

P
D
L
O

P
D
L
O

P
D
L
O

P
3
L
2

P
2
L
1

'•/
A

 •

•

>1*

/
•

B
a

*
*

0
0

0
1

1
0

1
1
 n
k
 1

P
6
L
4

B
3

P
D
L
O

P
D
L
O

P
D
L
0

•

•

1

k

•

\

•

i
\

•

\

B
a
n
k
 1

*
*

0
0

0
1

1
0

1
1

P
D
L
O

P
D
L
O

P
D
L
O

P
D
L
O

P
D
L
O

•

•

•

•

•

•

•

•

^

•

•

•

•

•

B
a

*
*

0
0

0
1

10

11
 n
k
2

P
8
L
3

P
D
L
O

P
D
L
O

P
9
L
1

P
9
L
1

•

V

•

"
^

•

•

•

•

•

1 •

•

•

•

•

•

B
a
n
k
 2

*
*

0
0

0
1

1
0

1
1

P
D
L
O

P
D
L
O

P
D
L
O

P
7
L
1

P
7
L
1

B
ank 3

F
igure B

.25: R
em

oval E
xam

ple 2: T
hird S

tage B
ank E

ntry M
atches D

efault E
ntry

G
o

To

P
re

vi
ou

s
S

ta
ge

R
ep

la
ce

E

nt
ry

 F
or

P

re
fix

 W
ith

N

ex
tB

an
k'

s
D

ef
au

ltD
at

a

A
dd

re
ss

 :
=

"F

irs
t A

dd
re

ss
 I

n
 B

an
k"

La

st
A

dd
re

ss
 :

=

"L
as

t
A

dd
re

ss
 I

n
 B

an
k"

R
em

o
va

l:

01
10

10
0*

77

S
tr

id
e

1

(4
 b

its
)

*
*
*
*

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
0

p
e
n

P
A
L
I

P
0
L
1

P
0
L
1

p
e
n

p
e
n

B
l

P
1
L
3

P
5
L
1

B
2

P
5
L
1

P
5
L
1

P
8
L
3

B
3

P
5
L
1

P
5
L
1

A
d

d
re

ss
:

10

L
a

st
A

d
d

re
ss

:
1
1

N

e
xt

B
a
n
k:

2

S
tr

id
e

 2

(2
 b

its
)

/

*
*

0
0

0
1

10

11

P
1
L
3

P
D
L
8

P
D
L
O

B
2

B
l

B
a
n
k
 1

B
an

k
2

*
*

0
0

0
1

10

11

P
8
L
3

P
D
L
O

P
D
L
8

P
9
L
1

P
9
L
1

S
tr

id
e

3

(2
 b

its
)

*
*

0
0

0
1

1
0

11

P
D
L
O

P
D
L
O

P
D
L
O

P
3
L
2

P
2
L
1

B
an

k
1

*
*

0
0

0
1

10

11

P
6
L
4

B
3

P
D
L
O

P
D
L
O

P
D
L
O

•

•

•

•

i

•

\

i

\

•

\

•

\
i
 i
\

•

\

*
*

0
0

0
1

10

1
1

P
D
L
O

P
D
L
O

P
D
L
O

P
D
L
O

P
D
L
O

B
an

k
2

B
an

k
1

B

an
k

3

*
*

0
0

0
1

10

1
1

P
D
L
O

P
D
L
O

P
D
L
O

P
7
L
1

P
7
L
1

B
an

k
3

F
ig

ur
e

B
.2

6:
 R

em
ov

al
 E

xa
m

pl
e

2:
 T

hi
rd

 S
ta

ge
 B

an
k

E
nt

ry
 M

at
ch

es
 D

ef
au

lt
 E

nt
ry

5 4)

I g

a.

G
o To

P
revious S

tage

R
eplace

E
ntry For

P
refix W

ith
N

extB
ank's

D
efaultD

ata

D
eallocate

N
extB

ank

A
ddress :=

A

d
d

re
ss+

1

R
ead E

ntry
A

t A
ddress

A
ddress :=

"F

irst A
ddress In B

ank"
LastA

ddress :=

"Last A
ddress In B

ank"

B
ank 1

R
em

o
val:

0110100^
/7

S
trid

e
1

(4 b
its)

***#

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1000

1
0

0
1

1010

1
0

1
1

1100

1
1

0
1

1110

1
1

1
1

PD
LO

P
0L

1

P
0L

1

P
0L

1

P
8L

1

P
0L

1

P
G

L1

B
l

P
1L

3

P
5L

1

B
2

P
5L

1

P
5L

1

P
8L

3

B
3

P
5L

1

P
5L

1

• • • • • • • • 1 1 • • • 1 1 • • • • • • •
^

• • • • •

A
d

d
re

s
s

:
1

1
L

a
s

tA
d

d
re

s
s

:
1

1
N

e
xtB

a
n

k:
2

S
trid

e 2
(2 b

its)

**

0
0

0
1

10

1
1

P
1L

3

PD
LO

PD
LO

B
2

B
l

B
a

n
k

1

**

0
0

0
1

10

1
1

P
6L

4

B
3

PD
LO

PD
LO

PD
LO

B

a
n

k 2

**

00

0
1

10

1
1

P
8L

3

PD
LO

PD
LO

P
9L

1

P
9L

1

• • • • •

K • • • •
\

•
\

•
\

•
\

i i
\

•
\

•
V

•

^
• • • • • • • • • • •

S
trid

e 3
(2 b

its)

**

00

0
1

10

1
1

PD
LO

PD
LO

PD
LO

P
3L

2

P
2L

1

B
a

n
k

1

**

0
0

0
1

10

1
1

PD
LO

P
D

L8

P
D

L8

PD
LO

PD
LO

B
a

n
k 2

**

0
0

0
1

10

1
1

P
D

L8

PD
LO

P
D

L8

P
7L

1

P
7L

1

B
ank 3

B
ank 3

Figure B
.27: R

em
oval E

xam
ple 2: T

hird Stage B
ank E

ntry M
atches D

efault E
ntry

G
o

To

P
re

vi
ou

s
S

ta
ge

R
ep

la
ce

E

nt
ry

 F
or

P

re
fix

 W
ith

N

ex
tB

an
k'

s
D

ef
au

ltD
at

a

D
ea

llo
ca

te

N
ex

tB
an

k
R

ea
d

E
nt

ry

A
t

A
dd

re
ss

A
dd

re
ss

 :
=

"F

irs
t A

dd
re

ss
 I

n
 B

an
k"

La

st
A

dd
re

ss
 :

=

"L
as

t A
dd

re
ss

 I
n

 B
an

k"

R
em

o
va

l:

0
1

1
0

1
0

0
*/

?

S
tr

id
e

1

(4
 b

its
)

*
*
*
*

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
O

P
0
L
1

P
G
L
1

P
0
L
1

P
8
L
1

P
0
L
1

P
8
L
1

B
l

P
1
L
3

P
5
L
1

B
2

P
5
L
1

P
5
L
1

P
8
L
3

B
3

P
5
L
1

P
5
L
1

A
d

d
re

ss
:

1
1

L

a
st

A
d

d
re

ss
:

1
1

N

e
xt

B
a

n
k:

2

S
tr

id
e

2

(2
 b

its
)

*
*

0
0

0
1

10

11

P
1
L
3

P
D
L
O

P
D
L
6

P
D
L
O

B
l

/

•/

A

•

•
 •

B
a

*
*

0
0

0
1

10

11
 n
k
l

P
6
L
4

B
3

P
D
L
O

P
D
L
O

P
D
L
O

B
an

k
1

1 1 1 1 I •

1 1 1 •

•

B
a
n
k
 2

*
*

0
0

0
1

10

11

P
8
L
3

P
D
L
O

P
D
L
O

P
9
L
1

P
9
L
1

B
an

k
3

S
tr

id
e

3

(2
 b

its
)

*
*

0
0

0
1

10

11

P
D
L
O

P
D
L
9

P
D
L
O

P
3
L
2

P
2
L
1

B
an

k
1

*
*

0
0

0
1

10

11

P
D
L
O

P
D
L
O

P
D
L
O

P
D
L
O

P
D
L
O

B
an

k
2

*
*

0
0

0
1

10

11

P
D
L
O

P
D
L
0

P
D
L
O

P
7
L
1

P
7
L
1

B
an

k
3

F
ig

ur
e

B
.2

8:
 R

em
ov

al
 E

xa
m

pl
e

2:
 T

hi
rd

 S
ta

ge
 B

an
k

D
ea

ll
oc

at
ed

3 03

I to

O

a,
«5

G
o To

P
revious S

tage

R
eplace

E
ntry For

P
refix W

ith
N

extB
ank's

D
efaultD

ata

R
ead E

ntry
A

t A
ddress

A
ddress :=

"F

irst A
ddress In B

ank"
LastA

ddress :=

"Last A
ddress In B

ank"

R
em

o
val:

0
1

1
0

1
0

0
*/7

S
trid

e
1

(4 b
its)

***#

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1000

1
0

0
1

1
0

1
0

1
0

1
1

1100

1
1

0
1

1110

1
1

1
1

P
D

L0

P
0L

1

P
0L

1

P
8L

1

P
0L

1

P
0L

1

P
G

L1

B
l

P
1L

3

P
5L

1

B
2

P
5L

1

P
5L

1

P
8L

3

B
3

P
5L

1

P
5L

1

B
a

n
k

1

• 1 1 •

A
d

d
re

s
s

:
0

0
L

a
s

tA
d

d
re

s
s

:
1

1
N

e
xtB

a
n

k:
2

S
trid

e 2
(2 b

its)

**

00

0
1

10

1
1

P
1L

3

P
D

L0

PD
LO

P
D

L6

B
l

B
a

n
k

1

**

00

0
1

10

1
1

P
6L

4

B
3

PD
LO

P
D

L0

PD
LO

B
a

n
k 2

**

00

0
1

10

1
1

B
a P

8L
3

P
D

L8

PD
LO

P
9L

1

P
9L

1
n

k 3

''^9

/ \

•
\

S
trid

e 3
(2 b

its)

**

0
0

0
1

10

1
1

P
D

L0

PD
LO

PD
LO

P
3L

2

P
2L

1

B
a

n
k

1

**

0
0

0
1

10

1
1

PD
LO

PD
LO

PD
LO

PD
LO

PD
LO

B
a

n
k 2

**

0
0

0
1

10

1
1

PD
LO

PD
LO

PD
LO

P
7L

1

P
7L

1

B
a

n
k 3

Figure B
.29: R

em
oval E

xam
ple 2: Second Stage B

ank E
ntry M

atches D
efault E

ntry

G
oT

o
P

re
vi

ou
s

S
ta

ge

R
ep

la
ce

E

nt
ry

 F
or

P

re
fix

 W
ith

N

ex
tB

an
k'

s
O

ef
au

ltD
at

a

z
D

ea
llo

ca
te

N

ex
tB

an
k

R
ea

d
E

nt
ry

A

t
A

dd
re

ss

A
dd

re
ss

 :
=

"F

irs
t

A
dd

re
ss

 I
n

B
an

k"

La
st

A
dd

re
ss

 :
=

"L

as
t

A
dd

re
ss

 I
n

B
an

k"

R
em

o
va

l:

0
1

1
0

1
0

0
*/

?

S
tr

id
e

1
(4

 b
it

s)

*
*

*
*

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

10
10

1
0

1
1

11
00

1
1

0
1

11
10

1
1

1
1

B
a

r

PD
LO

P
G

L1

P
0L

1

P
0L

1

P
9L

1

P
0L

1

P
0L

1

B
l

P
1L

3

P
5L

1

B
2

P
5L

1

P
5L

1

P
8L

3

B
3

P
5L

1

P
5L

1

ik
l

• • • • • • • • i • • • •

/

• • • • • • • • i
>

•
~

• • • • • • i

A
d

d
re

s
s

:
0

1
L

a
st

A
d

d
re

ss
:

11

N
e

xt
B

a
n

k:

2

S
tr

id
e

2
(2

 b
it

s)

**

00

0
1 10

1
1

P
1L

3

PD
LO

PD
LO

P
D

L0

B
l

B
a

n
k

1

**

0
0 0
1 10

1
1

P
6L

4

B
3

PD
LO

PD
LO

PD
LO

B
a

n
k

2

**

00

0
1 10

1
1 B
a

P
8L

3

PD
LO

PD
LO

P
9L

1

P
9L

1

n
k

3

>
•

\

' 1
 S

tr
id

e
3

(2
 b

it
s)

**

0
0

0
1 10

1
1

PD
LO

PD
LO

PD
LO

P
3L

2

P
2L

1

B
a

n
k

1

**

0
0

0
1 10

1
1

PD
LO

PD
LO

PD
LO

PD
LO

PD
LO

B
a

n
k

2

**

0
0 0
1 10

1
1

PD
LO

PD
LO

PD
LO

P
7L

1

P
7L

1

B
a

n
k

3

Fi
gu

re
 B

.3
0:

 R
em

ov
al

 E
xa

m
pl

e
2:

 S
ec

on
d

St
ag

e
B

an
k

E
nt

ry
 M

at
ch

es
 D

ef
au

lt
E

nt
ry

C
/3

5 I to

s
ft,
05

G
o To

P
revious S

tage

I
R

eplace
E

ntry F
or

P
refix W

ith
N

extB
ank's

D
efaultD

ata

D
eallocate

N
extB

ank

A
ddress :=

"F

irst A
ddress In

 B
ank"

LastA
ddress :=

"Last A

ddress In
 B

ank"

R
e
m
o
v
a
l
:

0
1
1
0
1
0
0
*
7
7

S
tride 1

(4 bits)

*
*
*
*

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
O

P
0
L
1

P
0
L
1

P
G
L
1

P
0
L
1

P
0
L
1

P
0
L
1

B
l

P
1
L
3

P
5
L
1

B
2

P
5
L
1

P
5
L
1

P
8
L
3

B
3

P
5
L
1

P
5
L
1

B
ank 1

A
d
d
r
e
s
s
:
 1
0

L
a
s
t
A
d
d
r
e
s
s
:
 1
1

N
e
x
t
B
a
n
k
:

2

S
tride

 2

(2
 b

its)

/

*
*

0
0

0
1

10

11

P
1
L
3

P
D
L
O

P
D
L
O

P
D
L
O

B
l
 X

B

ank 1

:f
 *
*

0
0

0
1

10

11

P
6
L
4

B
3

P
D
L
O

P
D
L
O

P
D
L
O

B
ank 2

*
*

0
0

0
1

10

11

P
8
L
3

P
D
L
O

P
D
L
O

P
9
L
1

P
9
L
1

B
ank 3

S
tride 3

(2 bits)

*
*

0
0

0
1

10

11

P
D
L
O

P
D
L
O

P
D
L
O

P
3
L
2

P
2
L
1

B
ank 1

*
*

0
0

0
1

10

11

P
D
L
O

P
D
L
O

P
D
L
O

P
D
L
O

P
D
L
O

B
ank 2

*
*

0
0

0
1

10

11

P
D
L
O

P
D
L
O

P
D
L
O

P
7
L
1

P
7
L
1

B
ank 3

F
igure B

.31: R
em

oval E
xam

ple 2: S
econd S

tage B
ank E

ntry M
atches D

efault E
ntry

G
o

To

P
re

vi
ou

s
S

ta
ge

R
ep

la
ce

E

nt
ry

 F
or

P

re
fix

 W
ith

N

ex
tB

an
k'

s
D

ef
au

ltD
at

a

A
dd

re
ss

 :
=

"F

irs
t

A
dd

re
ss

 I
n

 B
an

k"

La
st

A
dd

re
ss

 :
=

"L

as
t

A
dd

re
ss

 I
n

 B
an

k"

R
e
m
o
v
a
l
:

0
1
1
0
1
0
0
*
7
7

S
tr

id
e

1

(4
 b

its
)

*
*
*
*

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P
D
L
O

p
e
n

p
e
n

p
e
n

P
0
L
1

P
0
L
1

P
8
L
1

B
l

P
1
L
3

P
5
L
1

B
2

P
5
L
1

P
5
L
1

P
8
L
3

B
3

P
5
L
1

P
5
L
1

B
an

k
1

A
d

d
re

ss
:

1
1

L

a
st

A
d

d
re

ss
:

1
1

N

e
xt

B
a

n
k:

2

S
tr

id
e

2

(2
 b

its
)

/

*
*

0
0

0
1

10

11

P
6
L
4

B
3

P
D
L
G

P
D
L
O

P
D
L
O

B
an

k
2

*
*

0
0

0
1

10

11

P
8
L
3

P
D
L
G

P
D
L
0

P
9
L
1

P
9
L
1

B
an

k
3

S
tr

id
e

3

(2
 b

its
)

*
*

0
0

0
1

1
0

1
1

P
D
L
G

P
D
L
G

P
D
L
G

P
3
L
2

P
2
L
1

B
an

k
1

*
*

0
0

0
1

10

1
1

P
D
L
O

P
D
L
O

P
D
L
G

P
D
L
O

P
D
L
O

B
an

k
2

*
*

0
0

0
1

1
0

1
1

P
D
L
O

P
D
L
O

P
D
L
O

P
7
L
1

P
7
L
1

B
an

k
3

SO

<
 3

ft

re

C
o

F
ig

ur
e

B
.3

2:
 R

em
ov

al
 E

xa
m

pl
e

2:
 S

ec
on

d
S

ta
ge

 B
an

k
E

nt
ry

 M
is

m
at

ch
es

 D
ef

au
lt

 E
nt

ry

