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Abstract 

A solution to the Internet routing table lookup problem for "backbone" routers is 

presented. It leverages the power efficiency and low cycle times of Static Random 

Access Memory (SRAM) to construct a pipelined fixed-stride multi-bit hardware 

trie on a proposed chip, with very low power consumption. The parallelism in the 

design proves to be far more scalable than the industry standard Ternary Content 

Addressable Memory (TCAM), requiring 16.7% of the TCAM chip area and 1.1% 

of the power, per lookup, for the same number of lookups per second. Unlike 

other hardware trie implementations, the design also boasts well bounded worst 

case update times. 
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Chapter 1 

Introduction to Internet Routing 

This thesis presents a solution to the routing table lookup problem. This chapter 

describes the problem in detail by first explaining the Internet Protocol (IP), then 

how computers are addressed and organized into networks, and finally how routers 

forward packets between computers. The chapter also describes how the current 

IP version 4 (IPv4) address space grew, the problem of its eventual exhaustion, the 

motivation for adopting the new IP version 6 (IPv6), and the relevance of solutions 

to IPv4 routing table lookups to IPv6 routing table lookups. Finally an overview of 

the proposed solution is presented. A history of the Internet and the IP can be found 

in appendix A and should be read first by anyone not familiar with them. 

1.1 Internet Protocol (IP) 

The Internet Protocol (IP) defines the most fundamental details about how com­

puters communicate over a network. Each computer's interface on the network is 

assigned a different and unique IP address. To communicate, computers send data 

to each other in the form of packets. Each packet has a two parts: a header which 

contains IP information, and a body which contains the actual data. Each IP header 

contains, among other information, a source and a destination address, correspond­

ing to the computer that sent the packet and the computer that is to receive the 

packet, respectfully. In IP version 4 (IPv4), the version predominantly used today, 

IP addresses are four bytes (32 bits) long [53]. IPv4 addresses are often expressed 
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1 Introduction to Internet Routing Klaus 

as four tuples of decimal numbers between 0 and 255 each, such as 192.168.1.1. 

For very large IP networks, such as the Internet, it is impractical to have every 

computer connected to every other computer directly. A common solution to this 

problem is to group a bunch of local computers together into a smaller network, 

called a subnet. These computers are all connected to a common router that controls 

the subnet, which in turn can be connected to other routers. Several subnets are 

then connected together through a router to form a larger subnet, usually called 

a site, and so on, until the entire network is connected. Computers on the same 

subnet are often assigned a contiguous range of IP addresses, such as 192.168.1.1, 

192.168.1.2, ... to 192.168.1.15 for a 15 computer network for example. Subnets 

are often represented as a prefix of the group of IP address of the computers they 

comprise, which is written as a normal IP address followed by a forward slash 

and the length of the prefix in bits out of 32. For example, 192.168.1.0/24 is a 

prefix that represents the 256 IP addresses between 192.168.1.0 and 192.168.1.255 

inclusive. 

To send a packet to another computer, a computer first forwards the packet to 

its local router, which analyzes the packets' destination IP address. If the packet 

is destined for a computer directly connected to the router it forwards it to that 

computer. If not, then the router looks at a set of rules to determine where the 

packet should go. Often the router will forward the packet to another router it 

thinks is closer to the destination computer. That router then uses its own rules 

to determine where the packet should go, and so on and so on, until the packet is 

ultimately forwarded to its destination. A slightly more complicated example of 

this can be seen in Figure 1.1. 

1.2 Routing Table Lookups 

As mentioned in the previous section, routers forward the packets they receive to 

their destinations. They do this by keeping routing tables that contain rules that 

match various fields in a packet's header (most commonly the packet's destination 

IP address) to output ports on the router. A router's ports might be connected to 

2 



Klaus 1.2 Routing Table Lookups 

Computer A 

Backbone 
ISP Router A 

Backbone 
ISP Router C 

Computer B 

Backbone 
ISP Router B 

Figure 1.1: Internet Routing Example: Computer A sends a packet to Computer B 
on a different Internet Service Provider (ISP) 

computers or even other routers. Rules that match on the destination IP address are 

expressed as IP address prefixes representing wildcarded ranges of IP addresses. If 

an incoming packet's destination IP address falls under the range of one of these 

address prefixes it is forwarded to the port indicated by that rule. If more than one 

prefix is a match for a particular destination IP address then the longest match­

ing prefix is considered to be the best match and that rule used. For example, 

if a router's lookup table contains the address prefixes listed in Table 1.1, and it 

received a packet with destination IP address 192.168.5.2, then it would be for­

warded to port 7, not port 12, since 192.168.5.0/24 is a longer matching prefix 

than 192.168.0.0/16. 

Routing tables are also dynamic. As new computers, routers and subnets are 

added to the Internet, new entries must be added. Likewise, if old computers, 

routers or subnets leave the Internet, some entries must be removed. More com-

3 



1 Introduction to Internet Routing Klaus 

IP Address Prefix 
192.168.0.0/16 
192.168.5.0/24 
192.169.0.0/16 

Destination Port 
Port 12 
Port 7 
Port 14 

Table 1.1: Example Routing Table Lookup 

Router Application 
Small Subnet 

Small ISP 
Medium ISP 
"Backbone" 

Lookup Table Entries 
10 

100 
1000 

250,000 

Packets Per Second 
100 

10,000 
1,000,000 

1,260,000,000 

Table Updates 
1 per day 

1 per minute 
1 per second 

100 per second 

Table 1.2: Different Router Requirements 

monly, hardware failure, power outages or any number of reasons may cause a 

computer, router or subnet to temporarily leave the Internet, only to return later. In 

all these cases the routing tables must adapt to ensure packets reach their destina­

tions whenever possible. 

Routing requirements vary considerably depending on what role the router plays. 

A router that administers a small subnet of only a handful of computers might have 

only a handful of routing table entries, process only hundreds of packets a second 

and rarely need updating. In stark contrast, a so called "backbone" router that con­

nects the largest Internet sites together can have 250 thousand routing table entries 

[27], processes 1.26 billion packets per second1, and requires updating 100 times 

a second [22]. This disparity in routing requirements is summarized in Table 1.2. 

Clearly, designing solutions for routing table lookups for "backbone" routers is a 

considerable challenge. 

1.3 IPv4 Address Space Growth and Exhaustion 

When the Internet first began it was envisioned that only a handful of governments, 

universities and corporations around the world would ever utilize it. After all, these 

large organizations were the only ones that could afford to have computers and pay 

'Current backbone routers support 1.2 Tbps switching [65]. Assuming an average packet size of 
1000bits [22]: l.2Tb/sx \024Gb/Tb + WOObits/packet = \MGp/s 
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Klaus 1.3 IPv4 Address Space Growth and Exhaustion 

the enormous communications costs. To this end, the IPv4 32bit address space was 

allocated into three different classes to correspond roughly with the sizes of subnets 

that the Internet would comprise. Class A allotments were the largest, assigning a 

single 8 bit prefix to an organization for a total of 224 = 16,777,216 IP addresses. 

Class B allotments were the middle ground, assigning a single 16 bit prefix to an 

organization for a total of 216 = 65,536 IP addresses. Class C allotments were the 

smallest, assigning a single 24 bit prefix to an organization for a total of 28 = 256 

IP addresses [19]. 

This prediction didn't hold, however. Advances in technology soon brought 

computer and bandwidth prices crashing down, making it far more affordable to be 

on the Internet. Many companies started seeing the Internet as a new frontier for 

business and were eager to get connected. The number of organizations requesting 

class B allotments sky-rocketed, threatening to exhaust that class of addresses. In 

an effort to slow down this trend and provide a short term solution, Classless Inter-

Domain Routing (CIDR) was introduced. CIDR abolished the three class system of 

address allocation, allowing organizations to be allocated any address prefix length 

that they required. Since many organizations needed more than 256 IP addresses 

(former class C) but far less than 65,536 IP addresses (former class B) several such 

organizations could split the space formerly reserved for one class B prefix instead 

of each requiring their own. An unfortunate side effect of CIDR was a complica­

tion in "backbone" routing table lookups, as subnet address prefixes could now be 

any length instead of falling into one of three classes, dramatically increasing the 

difficulty of the longest prefix matching problem. 

Around the same time as CIDR a new specification emerged called Network 

Address Translator (NAT) [62]. NAT describes how a subnet of computers can 

use private IP addresses for communication amongst themselves, but then bind to 

globally unique IP addresses for connections to computers outside the subnet. This 

allows many organizations to reuse the same IP address ranges internally (often 

ranges that are not allowed to be used globally) while retaining a much smaller set 

of globally unique IP addresses for whenever external connections are required. The 

5 



1 Introduction to Internet Routing Klaus 

end result is that organizations can make due with much smaller global IP address 

range allotments, further delaying the effects of IPv4 address space exhaustion. 

1.4 Introduction to IP version 6 (IPv6) 

While both CIDR and NAT greatly slowed the rate of IPv4 address space exhaus­

tion, they are not long term solutions [19]. To solve the problem once and for all, 

the IP version 6 (IPv6) specification is being slowly adopted [15]. IPv6 calls for 

128 bit IP addresses, and in its current form, reintroduces at least a partial partition 

to the address space once more [24]. The lower 64 bits of each IPv6 address repre­

sents a universal identifier for the specific device. The upper 64 bits of each IPv6 

address designate the particular subnet the address belongs to, being split between a 

global IPv6 address prefix for the site the subnet resides in and an ID for the subnet 

within the current site. The exception to this rule is the section of IPv6 address 

space allocated to mapping to the old IPv4 address space in the name of backward 

compatibility. 

At first glance it looks as though the requirements of IPv6 routing tables are 

significantly different than those of IPv4 routing tables. While the IPv4 address 

space is very densely allocated into prefixes of varying lengths, the IPv6 address 

space will be very sparsely allocated into prefixes of a few standard lengths. This 

calls into question the benefit of designing solutions to the IPv4 routing table lookup 

problem, as not only is IPv4 being phased out in favor of IPv6, but solutions for IPv4 

may not readily also apply to IPv6. However, upon closer inspection, it is clear 

that IPv4 solutions to the routing table lookup problem are indeed still valuable 

for "backbone" routers. While preliminary versions of the IPv6 specification have 

been around for many years now adoption has been very slow; many newer devices 

are designed to support both IPv4 and IPv6, but large amounts of legacy IPv4 only 

software and hardware still remain. Furthermore, even if a push is eventually made 

to switch over the majority of traffic to IPv6 networks the IPv4 routing table will 

still need to remain part of the IPv6 routing table for many years after for backwards 

compatibility. Finally, since only a portion of the upper 64 bits of an IPv6 address 

6 



Klaus 1.5 The Proposed Solution 

will be used to denote a site's prefix, it is envisioned that "backbone" routing tables 

will contain prefixes at most 50 bits long; far closer to existing 32 bit prefixes than 

initially expected for 128 bit IPv6 addresses. 

1.5 The Proposed Solution 

This thesis presents a solution to the routing table lookup problem for "backbone" 

routers. The proposed design offers far better scalability than previous solutions, 

boasting an average of 53.7 billion lookups/second, with only 7.85W of total power 

consumption, and a chip area of 71. Imm2. While the solution is presented for IPv4, 

it still remains relevant for IPv6. 

The rest of the thesis is organized as follows: Chapter 2 summarizes all of the 

previously published solutions to the routing table lookup problem. Chapter 3 pro­

vides the motivation for this work and describes the entire design of the solution, 

including how lookups and updates are handled. Chapter 4 describes how the de­

sign was validated, including the details of the Field Programmable Gate Array 

(FPGA) implementation. Chapter 5 develops several metrics for comparing stride 

choices for the design, applies them to real "backbone" routing tables, then deter­

mines the performance of the design with the preferred strides. Finally, Chapter 6 

develops a model for Ternary Content Addressable Memory (TCAM) to determine 

the performance of a comparable solution to the routing table lookup problem in 

TCAM, then compares it with the proposed design. 

7 
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Chapter 2 

Previous Work in Routing Table 
Lookups 

Designing solutions to the Internet routing table lookup problem has been an active 

area of research for many years. Published solutions can be divided into two main 

categories: software solutions and hardware solutions. Of the software solutions, 

a large number employ a trie data structure, which is of particular interest to the 

author. Of the hardware solutions, the majority favor Ternary Content Addressable 

Memory (TCAM), which is the current industry standard. 

2.1 Software Approaches 

In general software implementations of routing table lookups define some sort of 

data structure to store the routing information and explain how lookups and updates 

can be performed on it. Software implementations generally assume they will be 

run on commodity CPUs with standard memory and caching architectures. The 

authors of software implementations compare their work based on the total amount 

of memory required, and on the number of memory accesses, actual CPU time or a 

bound on asymptotic time required for lookups and updates. 

Software implementations are limited by the general purpose CPUs and mem­

ory they run on. While these continue to evolve and keep an attractive price point, 

they cannot keep pace with the every increasing demands on "backbone" routers, 

whose users themselves also get more powerful CPUs, demand larger amounts of 
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2 Previous Work in Routing Table Lookups Klaus 

bandwidth and continue to increase in number. Since software solutions are also 

serial by nature, they cannot take advantage of hardware pipelining or paralleliza-

tion to help close the performance gap. Moreover, specialized hardware can often 

be tailored for smaller areas and reduced power consumption when compared to 

general purpose hardware, further disadvantaging software solutions. 

2.1.1 Background on Software Tries 

A basic binary trie (from retrieval) is a tree data structure similar to a binary tree, 

where each node stores data and has up to two child nodes: a left child and a right 

child. Unlike binary trees, however, binary tries always store data for a given key in 

a specific node in the trie. The root node of the trie corresponds to the zero length 

key. Its left and right children correspond to the one digit keys 0 and 1 respectfully. 

Similarly, the left and right children of the 0 keyed node correspond to the two digit 

keys 00 and 01 respectfully, and so on. When a new key-data pair is inserted into 

the trie, any missing parent nodes of the new node are added in with NULL data. 

An example of a simple binary trie can be seen in Figure 2.1. A search of a trie for 

a particular key starts at the root, and a comparison of the first (most significant) bit 

of the key. If the bit is a 0 then the search continues down the left child, otherwise 

it continues down the right child. This process continues until either all the bits of 

the search key are consumed (indicating the correct node has been found) or the 

indicated child node is absent from the trie (indicating the key is not in the trie). If 

the correct node has NULL data then the key is also not in the trie, otherwise there 

is an exact match. 

A basic binary trie can be easily transformed into a binary Patricia trie by com­

pressing paths traversing nodes with NULL data and only a single child. Figure 

2.2 shows the binary Patricia obtained by transforming the example basic binary 

trie from Figure 2.1. The right child of the root node, corresponding to the 1 key 

with NULL data, has been compressed so that the 11 key becomes the new right 

child. The left child of the root node, corresponding to the 0 key, cannot be sim­

ilarly compressed because while it has only one child it also stores the data value 

10 
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Key 

0 

010 

O i l 

11 

Data 

A 

B 

C 

D 

Figure 2.1: Example Basic Binary Trie 

Key 

0 

010 

O i l 

11 

Data 

A 

B 

C 

D 

Figure 2.2: Example Binary Patricia Trie 

"A". Likewise the right child of that node, corresponding to the 01 key, cannot be 

compressed because while it stores a NULL data value it has two child nodes. Pa­

tricia tries often reduce the number of nodes required compared to basic tries at the 

cost of additional complexity in storing the compressed paths. 

A basic binary trie can also easily be adapted to store prefixes, and hence solve 

the routing table lookup problem. Instead of key-data pairs we now have prefix-

port pairs, associating a given address prefix with the appropriate router output port. 

Shorter length prefixes are treated exactly like their shorter length key counterparts, 

being stored closer to the root than longer length prefixes. A parent node also 

propagates its own port value to all nodes below it that have NULL port values, 

filling in for more specific prefixes missing from the trie. An example of a simple 

prefix trie can be seen in Figure 2.3. Searching a prefix trie is similar to searching 

a binary trie, only all search keys are maximal length, and when a search stops 
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Prefix 

000/1 

010/3 

011/3 

110/2 

Port 

A 

B 

C 

D 

Figure 2.3: Example Basic Prefix Trie 

(either due to a non-existent child or consuming all the search key bits) the last 

node traversed has the longest matching prefix's port number stored in it. 

A binary prefix trie can also be further extended into a multi-bit prefix trie. 

Instead of examining just a single bit at each level, multiple bits are examined. The 

number of bits examined at a time is called the stride. If a stride of x bits is examined 

at a given level, then the node at that level of the trie has 2X children corresponding 

to the 2X possible values those bits can have. A prefix that covers several children of 

a given node is expanded and its port number is stored in every child node covered 

by that prefix, unless of course a more specific prefix also covers the child. Multi-

bit tries that always divide up an address into the same strides are called fixed-stride 

tries, where as those that vary the strides based on the contents of the trie are called 

variable-stride tries. An example of a fixed-stride {2,1} prefix trie (a prefix trie 

whose first stride is 2 bits and second stride is 1 bit) is shown in Figure 2.4. While 

multi-bit tries are generally less efficient in storage than their binary counterparts, 

they often make up for it by being more efficient in processing operations. 

2.1.2 Software Trie Approaches 

The following section summarizes the previously published solutions to the routing 

table lookup problem that make use of software tries. 

Chiueh and Pradhan [13] presented a modified fixed-stride {16,8,8} trie com­

bined with a caching scheme. It depends on the spatial and temporal locality of 
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Prefix 

000/1 

010/3 

011/3 

110/2 

Port 

A 

B 

C 

D 

Figure 2.4: Example Fixed-Stride {2,1} Prefix Trie 

lookups for good performance, and it is unclear how updates are handled. 

Nilsson and Karlsson [46] designed a Level Compressed (LC) trie which com­

bines a variable-stride trie with a skip function to bypass sparse sections. The skip 

function reduces the memory required to store the trie and reduces the number of 

nodes that have to be analyzed per lookup. Its perceived benefit is diminished, 

however, by the requirement to store the original prefixes separately and compare 

against them with each skip to ensure that the skipped bits match the prefix. It also 

further complicates an already complex update process for variable-stride tries. 

Lampson et al. [34] proposed a fixed-stride {16,16} trie where each second 

level lookup-table is replaced by sorted prefix start and end values that are binary 

searched to find the longest matching prefix. Unfortunately, this means the worst 

case number of memory accesses depends on the size of the lookup table, and up­

dates may require moving many such values to keep them sorted. 

Kijkanjanarat and Chao [30] presented two tries: one indexed by the start of the 

IP address being looked up and the other indexed by the end of the address. These 

two tries share leaf nodes, which somewhat reduces the number of nodes required 

compared to a single trie at the cost of increased complexity and memory accesses 

per lookup and update. 

Yilmaz et al. [82] described Linked list Cascade Addressable Trie (LCAT) which 

uses a lot of extra memory to be able to rebuild the original prefixes and simplify 

updates. Of particular interest is their proposed default route for each node in the 

trie, which ensures update time is well bounded in the worst case. This idea has 

been incorporated into the design in this thesis. 
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Kobayashi and Murase [31] stored prefixes in an {8,8,8,8} multi-bit trie, com­

pressing some nodes using either an Index method or the Candidate Prefix Table 

(CPT) method. The Index method stores the multi-bit node's data as a compressed 

bitmap. The CPT method replaces one or more multi-bit nodes with a list of the pre­

fixes they represent. While these compression schemes save memory they compli­

cate lookups and especially updates, as adding or removing prefixes might require 

changing the type of compression used on a node. 

Pak and Bahk [49] significantly improved over the Patricia trie by removing 

backtracking. Single bit compares are replaced by full prefix compares, and an 8 

bit front index table is used to speed up lookups. They achieved better performance 

and memory utilization with fairly straightforward lookups and updates. 

Wuu and Pin [78] stored prefixes in a {8,8,8,8} multi-bit trie using bitmap 

compression on the nodes in the last two strides. The compression, while reduc­

ing memory consumption, complicates lookups and makes updates prohibitively 

expensive. 

Oh and Ann [47] created Bit-Map (BM) trie which transforms the routing table 

into a bit-map where a one in a particular position denotes a prefix covering that 

range. The bit-map is compressed by only keeping track of how many ones have 

been encountered up to a certain position. Lookups require few memory accesses 

to retrieve the compressed information at the cost of up to 76 additions and shifts, 

per lookup, to decode it. 

Ahmand and Mahapatra [2] designed M-trie, a logic minimization structure 

where prefixes are stored in a ternary trie where each node has entries for 0, 1 or X 

(don't care). M-trie is very efficient for adding and removing prefixes, optimizing 

the stored prefixes as needed. Unfortunately, M-trie is not practical for lookups, 

with the authors suggesting to store the optimized prefixes in a TCAM. It is not 

clear, however, how incremental updates to the M-trie can be easily synchronized 

to a TCAM. 

Most of the previously published software trie solutions to the routing table 

lookup problem trade more complex lookup and update procedures for reducing 
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the amount of memory needed to store the trie. In any event none of them can scale 

to the throughput required for "backbone" routing table lookups. 

2.1.3 Other Software Approaches 

The following section summarizes the previously published software solutions to 

the routing table lookup problem that do not make use of tries. 

Doeringer et al. [18] presented a trie-like structure called Dynamic Prefix Trie 

(DP-Trie) where lookups are done using bit comparisons down the trie to locate a 

leaf then back up towards the root to find the longest matching prefix. DP-Trie pro­

vides good average-case lookup performance and deterministic tries after updates 

at the cost of complex nodes and operations on them. 

Yazdani and Min [81] described how to store prefixes in a tree where each node 

has up to some M number of children. In this tree less specific prefixes are always 

stored above the more specific prefixes they contain. Lookups consist of searching 

down the tree until a leaf is found, keeping track of the last matching prefix. Un­

fortunately, keeping the tree somewhat balanced is difficult for updates. The worst 

case lookup time is also still the number of bits in an IP address for the case where 

a length 32 prefix has every possible parent prefix added to the tree as well. 

Wang et al. [73] transformed prefixes into address ranges that are sorted and 

stored in a table. An initial table looks up the first 16 bits of an address to identify 

which ranges should be binary searched to locate the range that contains the address. 

Unfortunately, updates require rebuilding the entire table, and the approach doesn't 

scale well with the number of prefixes. 

Berger [8] stored prefixes in a binary tree where each node is a prefix. Lookups 

mostly require log(N) memory access since updates occasionally try to re-balance 

the tree, but this is not guaranteed. The authors also propose some skip and indexing 

functions similar to what is used in tries but do not discuss their costs and benefits. 

Bian and Khatri [9] employed an adaptation of the Expresso-MV algorithm to 

compress the routing table. Unfortunately, updates require a complete rebuild of 

the routing table. The authors also erroneously assume that IP address lookups not 
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matching any prefixes don't occur and optimize for this, when in fact packets with 

addresses not matching any prefixes are supposed to be dropped. 

Futamura et al. [20] proposed two different algorithms each with their own ben­

efits and limitations. The first, "Elevator - Stairs", builds a Patricia-trie out of the 

prefixes and creates a hash table to skip a certain number of levels into the trie for 

faster lookups at the cost of increased memory usage and more complicated up­

dates. The second, "logW - Elevators", builds several such hash tables for various 

levels to always complete a lookup within a number of steps proportional to the 

logarithm of the length of the lookup addresses. It uses more memory and further 

complicates updates but has slightly better lookup performance. 

Lim et al. [38] sorted and stored the prefixes based first on how many other 

prefixes encompass them, then by the value of their bits. A separate lookup table 

on the first 8 bits of an IP address determines where in the main table to start binary 

searching prefixes and how many to search. Once a matching prefix is found it may 

also have a pointer to the location of its encompassed prefixes which are similarly 

binary searched, and so on, until the last matching prefix, and hence the longest, is 

found. With large numbers of prefixes this scheme might require a large number of 

memory accesses per lookup, and updates to the main table are difficult unless a lot 

of empty entries are left for additions. 

Wuu et al. [79] constructed a heap of all the prefixes in the form of a tree with 

the longest prefixes closest to the root of the tree. While lookups stop immediately 

once a matching prefix is found, this approach speeds up a few lookups at the cost 

of slowing down most of the others. The authors also proposed storing two prefixes 

per node in some cases to reduce the number of memory accesses, but at the cost of 

greater lookup and update complexity. 

Dharmapurikar et al. [17] applied Bloom filters to longest prefix matching, re­

sulting in an approach with few average case memory accesses per lookup and 

reasonable memory size. Unfortunately, updates are complicated and require addi­

tional processing and memory. Hasan et al. [23] expanded on Bloomier filters which 

extend Bloom filters, using extra storage and complexity to remove the possibility 
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of false positive matches on lookups and hence reduce the number of required mem­

ory accesses. Unfortunately, updates require additional processing and occasionally 

require reconstruction of the tables. 

Most of the previously published software solutions to the routing table lookup 

problem, that don't use tries, also involve complex lookup and update procedures. 

In any event none of them can scale to the throughput required for "backbone" 

routing table lookups. 

2.2 Hardware Solutions 

In general hardware implementations of routing table lookups involve specialized 

memory architectures for storing routing prefixes and specialized computational 

hardware for handling lookups and updates. The authors of hardware implemen­

tations compare their work based on the total amount of memory or transistors 

required, as well as the lookup latency, throughput and power consumption. 

Hardware implementations often involve custom circuits designed around com­

modity or even fully custom Integrated Circuit (IC) components. Designing, testing 

and fabricating an Application Specific Integrated Circuit (ASIC) is a very resource 

intensive proposition, so it's not surprising that many authors instead present their 

designs along with simulation results and configurable logic implementations such 

as a Field Programmable Gate Array (FPGA). While often insightful as to the ex­

pected properties of the actual ASIC if it were to be built, great care must be taken 

to ensure that these results are accurate. Moreover, since the cost of an ASIC is 

so high, custom hardware solutions must present a very compelling advantage over 

existing commodity hardware and software solutions to justify the investment. 

2.2.1 Background on TCAM 

In general, a Content Addressable Memory (CAM) is a two dimensional array of 

cells like a traditional memory, such as Static Random Access Memory (SRAM), in 

that it can be used to store data for retrieval at another time. In addition to read and 

write operations, a CAM can also perform searches of all of the values it contains, in 
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Figure 2.5: TCAM Cell 

parallel, to check for matches against a key. Where as a Binary Content Addressable 

Memory (BCAM) can only look for keys that match its data exactly, a Ternary 

Content Addressable Memory (TCAM) can store and search against wild-carded 

entries, which offers far more flexibility. Not surprisingly this means a TCAM can 

be adapted to storing and searching routing tables prefixes, with shorter prefixes 

padded with don't care bits on their ends. 

A standard TCAM cell is composed of two SRAM cells and additional match 

line circuitry. A transistor diagram of a TCAM cell is shown in Figure 2.5. Depend­

ing on the two bits stored in the cell, it can match nothing, a zero, a one, or both a 

zero and a one (wild-card). Several TCAM cells are generally connected together 

to form a word, sharing a common match line. To search, this match line is first 

pre-charged to Vjd, then the search data is applied to the search lines. Search data 

can also be any combination of ones, zeros, wild-cards and match only wild-cards. 

If one or more cells in a TCAM word mismatch the search data then they discharge 

the match line. If the match line of a TCAM word remains at Vdd then the word has 

matched the search. An entire TCAM is composed of many TCAM words, all of 

which are searched in parallel to look for matches. 

In the case of Internet routing table lookups, the entries stored in a TCAM are 

address prefixes ending in wild-cards, and the search data is binary IP addresses. 
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A given IP address may match several prefixes, but the longest matching prefix 

is required. To that end the prefixes in the TCAM must be priority encoded such 

that the only match reported, if any, is the longest matching prefix. The index of 

the matching entry is then used to access a small standard memory to retrieve that 

entry's destination port number. 

2.2.2 TCAM Approaches 

TCAM solutions to the Internet routing table lookup problem are very popular in 

industry for a reason. A TCAM is very flexible and well suited to pattern match­

ing. Storing each prefix as an entry is simple and makes it easy to gauge how close 

the TCAM is to being full. Storing extra information like quality of service met­

rics or expanding to IPv6 support is straightforward if the word size of the TCAM 

is increased. On the downside, TCAM cells are complicated compared to SRAM 

cells. Increasing the TCAM word size means increasing the match line capaci­

tance, and increasing the number of entries in a TCAM increases the search and 

bit line capacitances. These higher capacitances mean a larger TCAM has dramati­

cally slower performance and increased power consumption compared to a similar 

sized SRAM. Moreover, the full parallel search nature of a TCAM means signifi­

cant power is expended with each search and it is impossible to conduct multiple 

searches of the same TCAM in parallel. A standard TCAM therefore does not scale 

well to the sizes demanded by "backbone" routers, prompting much research into 

improvements. Similar interest exists in coming up with efficient priority encoding 

schemes that make updating easy while keeping a TCAM memory efficient. 

Pei and Zukowski [51] applied tries to the general routing problem (before the 

Internet was prevalent), observing that a single trie could be divided into several 

tries searched in parallel, with CAM being the fully parallel case. They found that 

in the worst case the CAM solution was superior in terms of speed and layout except 

where the address space is large and fully utilized. The CAM solution did, however, 

consume a lot more power. 
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McAuley and Francis [42] compared RAM, BCAM and TCAM implementa­

tions of generalized routing tables for three different types of addressing. They 

presented three BCAM and TCAM organizations: single cycle per lookup using 

a single memory, multiple cycles per lookup using a single memory, and single 

cycle per lookup using multiple memories. The single cycle per lookup, multiple 

memories approach assigns a unique priority to each memory to make prioritizing 

matches easier. 

Kobayashi et al. [32] created a Vertical Logic operation with Mask encoded 

Prefix length (VLMP) for determining the longest matching prefix in TCAM. It 

removes the requirement to keep TCAM entries sorted at the cost of extra hardware 

and power consumption, and the approach doesn't scale well to large TCAMs. 

Shah and Gupta [61] presented the Prefix-Length Ordering (PLCLOPT) and 

Chain-Ancestor Ordering (CAO_OPT) constraining algorithms that keep an exter­

nal trie to calculate the swaps required to add a new prefix (or remove an existing 

prefix) from a TCAM while preserving an ordering for longest prefix matching. 

This approach greatly reduces the number of prefixes moved in the worst case with­

out adding additional TCAM complexity at the cost of external processing. 

Liu [41] described two methods of compressing the prefixes stored in a TCAM: 

pruning and mask extension. Unfortunately, both methods would require external 

processing of updates to re-compact the existing prefixes. 

Arsovski et al. [6] designed a 12 transistor TCAM cell with asymmetric 4 tran­

sistor SRAM cells that uses a current-race sensing scheme where match lines are 

first grounded and then current is injected to drive them high. A reference full match 

line is used to determine which match lines have mismatches preventing them from 

charging as quickly. This approach saves power by only requiring matches to rise to 

half the high state voltage and by only needing to discharge uncommon full matches 

as opposed to pre-charging common mismatches. 

Zane et al. [83] considered two different optimizations to TCAM. The first used 

a hashing function on lookup IP addresses to select a small subset of many TCAM 

blocks to search in parallel for a match. This approach significantly reduces search 
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power consumption provided the hashing function creates a good prefix distribution 

amongst the blocks, which can degrade as updates are made. The second optimiza­

tion involves storing the prefixes in a trie, then dividing up the sub-tries amongst all 

the TCAM blocks with a small index TCAM to identify which need to be searched 

on a match. This approach again offers significant power savings at the cost of com­

plicated updates that must occasionally re-partition the sub-tries at great expense. 

Gamache et al. [21] presented a custom 512 bit matching, 512 bit storage TCAM 

with 168 blocks of 128 entries each. Searches are pipelined to first find a longest 

match in each block, then combine these results to determine the global longest 

match, then read the storage information of that match. Their TCAM also makes 

use of partitioned match lines to save power, and custom 9-phase wired-NOR logic 

for determining the longest matching prefix. The authors estimate their 21,504 

entry TCAM would have a 18mm x 18mm die size, a 200MHz pipelined lookup 

throughput and a power consumption of around 16W in a O.lfim process. These 

estimated features provide a good baseline for what was possible for TCAM designs 

in the year 2003. 

Kocak and Basci [33] divided prefixes into two or more TCAMs based on prefix 

length. Lookups consist of first searching the TCAM with the longest prefixes for 

a match, and only searching the TCAM with the next longest prefixes in the event 

of a mismatch. This approach saves power since not all lookups require searching 

all TCAMs, but its benefit is limited for backbone routers since a large percentage 

of the prefixes are all of length 24. 

Pagiamtzis and Sheikholeslami [48] demonstrated two optimizations to TCAM 

to reduce power consumption. The first is to break up large match lines into seg­

ments where previous segments disable subsequent segments in the case of mis­

match. The second is to amplify search data from small voltage swing global search 

lines to large swing local search lines. 

Akhbarizadeh et al. [5] created Prefix Content Addressable Memory (PCAM), 

a custom TCAM cell for longest prefix matching that uses 22 percent less area with 

somewhat slower performance and increased power consumption. 
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Wu et al. [76] sorted the prefixes stored in a TCAM into different levels with 

empty entries between each group. Updates require external processing, with the 

average case requiring one or two entry changes, but in the worst case it can take 

much more than that. The authors also don't address what happens when the free 

space between groups gets filled up by updates. 

Akhbarizadeh et al. [4] divided the prefixes into two groups: the disjoint set 

of prefixes that don't encompass any other prefixes, and the remaining prefixes 

that do encompass at least one other prefix. Since the prefixes in the first group 

don't overlap with each other at most one will match a given lookup IP address, 

eliminating the need for longest prefix match logic. In most cases there are far 

more prefixes in the first group so the number of TCAM entries requiring longest 

prefix match logic is significantly reduce. Unfortunately, updates are complicated 

by the need to distinguish between the two groups and the favorable distribution of 

prefixes between the two groups is not guaranteed. 

Pao [50] observed that storing IPv4 and IPv6 addresses in 144bit or larger sized 

TCAM entries is wasteful since most matches occur on the first part of the address. 

He split address entries into two different partitions searched one after another, 

where often times the first search was all that was required to determine a match. 

This eliminated the need to even load the second part of the search address in such 

cases, increasing the lookup throughput especially in low pin count devices. 

Kasnavi et al. [28] created a Hardware-based Longest Prefix Matching (HLPM) 

where TCAM entries are divided into four stages with previous stages disabling 

subsequent stages for each match to save power. Each entry also contains a special 

length field used by custom logic to determine the longest prefix match, removing 

the requirement for managing the order of entries in the TCAM. 

Wu et al. [77] divided the prefixes into three groups: those that encompass 

other prefixes but are not encompassed themselves, those that are encompassed by 

other prefixes, and those that neither encompass other prefixes or are encompassed 

themselves. Lookups involve accessing an index TCAM (without longest prefix 

match) that stores the first group of prefixes. In the case of a match, the appropriate 
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TCAM (with longest prefix match) storing the contained prefixes of the matching 

prefix is accessed. In the case of a mismatch by the index TCAM a TCAM (without 

longest prefix match) containing all the prefixes in the third group is accessed. This 

approach reduces the power consumed per lookup at the cost of more complicated 

lookups and updates, and requires all of the prefix relationships to be tracked. 

Akhbarizadeh and Nourani [3] designed Multi-Selector and Multi-Block Popular-

prefix Table (MSMB-PT) which divides the prefixes into multiple TCAMs accessed 

by multiple Range Detectors (RDs) doing lookups in parallel. Each RD has a small 

cache that stores popular prefixes to help reduce contention among the RDs for pop­

ular TCAMs. Updates to the MSMB-PT are complicated by the need to keep the 

prefixes balanced between the TCAMs and to update the RDs as to the location of 

each prefix. Lin et al. [39] proposed a similar approach using an algorithm applied 

to a trie construction to determine which prefixes go into which TCAMs. It allows 

more straightforward distributing of update prefixes to the TCAMs with occasional 

re-balancing, but still requires external processing and memory. 

Chang [12] demonstrated that tree-style AND-type match lines and segmented 

search lines help reduce TCAM search latency and energy. 

Wu and Wang [75] ensured that prefixes were sorted in a TCAM such that a 

prefix always comes after those prefixes it encompasses, making the first matching 

prefix of a lookup the longest matching prefix. When a new prefix is added to 

the TCAM it is swapped with prefixes that encompass it until a prefix that isn't 

encompassed by any other prefix is obtained, which can be safely stored at the end 

of the TCAM. 

Mohan and Sachdev [45] proposed a new TCAM cell architecture where only 

a single transistor loads the match line. While this single match line transistor is 

not fully enabled when a mismatch occurs in the cell, the extra search latency and 

power consumption this causes is more than offset by the reduced search latency and 

power consumption of the far less loaded match line. The authors also presented a 

method for sharing charge from early stages of a segmented match line with future 

stages to reduce latency and save power. 
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All of the previously discussed research attempts to improve upon the shortcom­

ings of TCAM. Some researches investigated different cell designs or used pipelin­

ing to help reduce power consumption and area. Others presented custom priority 

encoding hardware for selecting the longest matching prefix, making updates easy. 

Still others presented advanced update schemes, often requiring external process­

ing and memory, to preserve some prefix orderings to make priority encoding easy. 

While all of this research has helped alleviate some of the biggest problems with 

scaling TCAM designs to larger capacities, the parallel search nature of TCAM will 

always prevent it from increasing throughput and decreasing power consumption at 

the same fast pace of SRAM based designs. 

2.2.3 Background on Hardware Tries 

One of the very attractive aspects of software fixed-stride multi-bit prefix tries is 

that they lend themselves readily to hardware implementations. A node of a multi-

bit trie that is indexed by a binary key maps perfectly onto a standard memory. Each 

entry in the memory can contain either a port number if the result is known, or a 

pointer into a new memory to continue the search. The next stride of the search IP 

address is used to index into this new memory, and the process repeats. An example 

of a fixed-stride {4,2,2} hardware prefix trie populated with the prefixes from Table 

2.1 is shown in Figure 2.6. 

As an example, consider a search of the hardware trie in Figure 2.6 for the 8 bit 

IP address 01101 111 (shown in bold). The first four bits of this address (0110) are 

used to index into the first memory. The retrieved memory entry is a pointer to the 

first bank for the next stride, so the search continues. The next two bits of the search 

address (11) are used to index into this first bank, yielding yet another pointer. The 

last two bits of the search address (11) are then used to index the first bank of the 

last stride, yielding port 2, which is the expected answer. 
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Figure 2.6: Example Fixed-Stride {4,2,2} Hardware Prefix Trie 

Prefix 
00000000/1 
01100000/3 
01101110/7 
01101110/8 
01101000/7 

Port 
0 
1 
2 
3 
4 

Prefix 
10000000/1 
10010000/4 
10010010/7 
11000000/3 
11011000/5 

Port 
5 
6 
7 
8 
9 

Table 2.1: Example 8 bit IP address prefixes 

2.2.4 Hardware Trie Approaches 

Hardware tries offer an interesting alternative to TCAM by exploiting the fact that 

SRAM is cheaper, smaller, faster and less power consuming than TCAM. By care­

fully choosing the strides to partition an IP address, hardware tries can offer fairly 

efficient storage of a large number of prefixes, especially in densely packed address 

spaces. This proves very promising as efforts to conserve IPv4 address space is 

resulting in very densely packed clusters of prefixes in "backbone" routing tables. 
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Unfortunately, in the worst case, tries can be extremely inefficient ways of storing 

address prefixes, especially in very sparse address spaces. This not only provides a 

challenge for the upcoming switch to IPv6, but also in allowing for future expan­

sion of existing routing tables. Care must be taken in assuring that a good stride 

choice for one routing table isn't also a poor choice for another lookup table, or 

won't become a poor choice with future prefixes being added to the current table. 

Another problem hardware tries share with their software brethren is that they are 

often difficult to update, with incredibly long update times required in the worst 

case. 

Gupta et al. [22] discussed a fixed-stride {24,8} multi-bit hardware trie using 

two DRAMs called DIR-24-8-BASIC. They also proposed DIR-24-8-INT which 

adds a second level of indexing to the second memory to save space at the cost of 

an extra memory access per lookup and added complexity. They suggested optimal 

strides for tries of depths 3 to 6 to optimize memory usage, and present a number 

of different update schemes requiring different amounts of processor and routing 

table update time. The architecture can be pipelined to handle one lookup per clock 

cycle, but updates have very large worst case times. 

Huang and Zhao [26] designed a fixed-stride {16,16} RAM based trie with 

compressed second stride lookup tables requiring at most three memory accesses 

per lookup. The compression, while reducing memory consumption, requires spe­

cialized hardware to decode and makes incremental updating of the routing table 

impractical. 

Uga and Shiomoto [69] presented a Patricia trie combined with three CAMs 

that index all level 8, 16 and 24 nodes in the trie. Each lookup involves searching 

all three CAMs in parallel to obtain a pointer into the Patricia trie from which to 

conduct a much shorter search of 9 nodes or less. 

Wang et al. [72] proposed a {16,16} multi-bit hardware trie where entries in the 

second level memory are compressed based on common prefix bits. This technique 

reduces the required storage but reconstruction of the second memory is required 

on updates. 
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Sungkee et al. [64] designed a {16,8,8} multi-bit hardware trie with compres­

sion. Lookups require up to four memory accesses while additions require any­

where from two to four 64 byte blocks to be regenerated. Unfortunately, additions 

require external processing and there is no mention of how removals are handled. 

Sahni and Kim [58] created a dynamic programming algorithm to calculate the 

best partitions for a fixed-stride hardware trie for a given set of prefixes in order 

to minimize memory usage. While it is faster that previous algorithms (but not 

asymptotically so), it does not consider hardware overheads and assumes a single 

memory. Sahni and Kim [59] also proposed a similar algorithm for variable-stride 

hardware tries that was asymptotically faster that other algorithms. 

Chang and Lim [11] implemented a fixed-stride multi-bit trie with one SRAM 

per stride. Each entry has a port number for each possible prefix length ending 

in that stride, as well as a pointer to the next stride's memory if needed. This 

approach requires a lot of extra memory to store this information and it somewhat 

complicates lookups, but makes updates very easy. They proposed a skip function 

that provides very little memory savings at the cost of added lookup and update 

complexity. They also proposed a compression scheme for the port information that 

further complicates lookups. Finally they recommended a {14,4,4,4,4,2} partition 

for the single 40,000 prefix table they analyzed. 

Taylor et al. [67] described Fast Internet Protocol Lookup (FIPL), which is a 

multi-bit trie that stores bitmaps of which entries have corresponding next hop ports 

and next stride lookup pointers. The corresponding ports and pointers are stored 

contiguously in a separate location, requiring up to 11 memory accesses per lookup. 

Updates require external processing and there is no discussion of how fragmentation 

is handled. 

Wang et al. [74] stored prefixes in a compressed trie where leaf nodes are 

grouped and stored in a larger node structure, and intermediate nodes are grouped 

and stored in a larger pointer structure. While this reduces the required memory 

usage it dramatically complicates lookups and updates on the trie. 
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Qin et al. [54] presented a CAM that is used to match some subset of a lookup 

IP address' bits to one of many much smaller Patricia tries for further processing. 

They recommend TCAM over BCAM for more even prefix distributions among 

the tries, but even good initial prefix distributions might degrade over time with 

updates. 

Wang et al. [71] built the prefixes into a trie, then stored each small sub-trie into 

fixed-stride multi-bit tries stored in DRAM. The root prefix of each small sub-trie 

is stored in a TCAM which is longest prefix matched on each lookup to determine 

which sub-trie to access. Updates consist of adding entries to the TCAM and oc­

casionally regenerating complete sub-tries to reduce the number of entries in the 

TCAM, which requires external processing. 

Almost all of the previously discussed hardware trie solutions attempt to reduce 

the required memory for storing the routing table. While some achieve some fairly 

large savings, most of the solutions have fairly complex lookup and update proce­

dures. Furthermore, none of the solutions are presented with adequate investigation 

into how they perform using a variety of different routing tables; most present re­

sults for a single routing table if they present any results at all. 

2.2.5 Other Hardware Approaches 

Still other hardware solutions to the routing table lookup problem have been pub­

lished that aren't based completely on TCAM or hardware tries. This subsection 

outlines these non-conventional hardware approaches. 

Hsiao and Jen [25] mapped a routing table to compressed combinational logic 

and implement it in an FPGA. Similarly Sangireddy and Somani [60] used binary 

decision diagrams to generate their compressed logic for an FPGA. While these 

approaches are very FPGA resource efficient it is impossible to update the rout­

ing table without reprogramming the FPGA. Reprogramming the FPGA involves 

regenerating the combinational logic, recreating a bit file based on this new logic, 

and finally programming the FPGA with this new bit file. This whole process can 

take hours, requires additional computing resources, and takes the FPGA offline 
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during each reprogramming operation. An FPGA, while much more economical, 

is also much slower and consumes more power than an ASIC, and does depend on 

memory technology for its logic units despite what some authors suggest. 

van Lunteren [70] described Balanced Routing Table Search (BaRTS) which 

consists of a trie-like structure where each stride hashes certain (not necessarily 

sequential) bit positions. A certain number of additional prefix comparisons must 

be made at each stride as well; the data for which is stored in a wide memory, 

requiring only a single memory access per node. He only briefly discussed how to 

deal with memory fragmentation issues and presented no concrete strategy. 

Lin and Chang [40] proposed a TCAM to check for matches against all prefixes 

with length greater than 24, then a compact IP-routing block to store the remaining 

prefixes in a compressed form that complicates lookups. Unfortunately, updates to 

the TCAM and IP-routing block are not discussed despite being non-trivial. 

Lim et al. [37] split up all the prefixes by length into different hash tables that 

are searched in parallel for lookups. Collisions are handled by storing all the collid­

ing prefixes in a binary tree and binary searching the prefixes with each matching 

lookup. The lookup performance of each hash table depends on the quality of the 

hashing function which may degrade with updates, and the required size of each 

hash table is difficult to determine in advance when taking into account updates. 

Kaxiras and Keramidas [29] designed IPStash: a set associative memory archi­

tecture with a few fixed levels to which all prefixes are mapped. Unfortunately, 

conflicts among prefixes are possible and cannot be handled by the architecture. 

Also, increasing the size of IPStash requires increasing its memory's size and asso­

ciativity, which offers poor scalability. 

Mohammadi et al. [44] created Hardware Assisted Software IP Lookup (HASIL), 

which involves adding three new instructions to a general purpose Central Process­

ing Unit (CPU) to help speed up software lookups using Dynamic M-way Prefix 

(DMP) trees. It is unclear why only three custom instructions were decided on 

when a fully custom CPU would improve performance even further. 
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Ravikumar and Mahapatra [55] described a reconfigurable combinational logic 

block that analyzes incoming lookups and decides on one or more independently 

selectable TCAM arrays to continue the search in. This approach dramatically re­

duces power consumption since only a fraction of the total TCAM is searched, 

provided that the combinational logic can keep the prefixes well distributed and 

grouped. Unfortunately, updates are complicated and may require reprogramming 

of the combinational logic and the moving of many address prefixes. A very similar 

approach was also proposed by Zheng et al. [84]. Ravikumar et al. [56] replaced the 

combinational logic with a fixed division that selects exactly one TCAM for each 

prefix or lookup IP address based on their higher order bits, trading the flexibility 

of the combinational logic for the simplicity of a known partition. 

Lim and Lee [36] proposed an Enhanced Binary Tree (EnBiT) which divides 

prefixes into a number of different balanced trees based on whether or not they 

encompass other prefixes. A TCAM is used to decide which sub-tree(s) must be 

further searched for each lookup. While the author claims that updates are straight­

forward it is unclear how they could based on what few details are discussed. Tang 

et al. [66] present a similar approach where the sub-trees are stored as compressed 

bitmaps in SRAM. How this approach can be updated is not discussed and most 

likely requires rebuilding substantial portions if not all of the sub-trees and TCAM 

entries. 

Lim and Jung [35] split up prefixes by length into different RAM tables, storing 

them based on hashing. Any prefixes colliding with existing prefixes were stored 

in a separate small TCAM. A lookup is done in parallel in each RAM table and the 

TCAM to determine the longest matching prefix for a given IP address. Unfortu­

nately, this approach relies heavily on the RAM table hashing function distributing 

prefixes evenly in the face of updates to avoid wasting RAM and requiring a larger 

TCAM. 

Xu et al. [80] used the Comb Extraction Scheme (CES) to split each prefix into 

two smaller prefixes consisting of its even and odd bits respectively. These two 

tables are searched in parallel for each lookup and matching entries are compared 
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to determine which original prefixes completely match. While both of these tables 

are much smaller than the original table, collisions between prefixes quadratically 

increase the number of comparisons that must be made for each lookup. While the 

authors suggest a custom ASIC to handle these comparisons, the number of colli­

sions in larger routing tables would quickly make even this approach impractical. 

Mingfeng and Zhenghu [43] divided prefixes into groups based on length, then 

stored each group's prefixes in BCAMs based on a hashing function. Colliding and 

non-standard length prefixes are stored in a separate TCAM. Lookup IP addresses 

are hashed to determine which BCAM in each group they should be matched against 

and also looked up in the TCAM, with the results being combined to determine the 

longest matching prefix. This approach's usefulness is highly dependent on the 

quality of the hash function, which can degrade with new updates to the routing 

table. 

Tzeng [68] proposed a Speedy Packet Lookup (SPaL) technique where the line 

cards of a router are re-designed so that each is responsible for a subset of the 

prefixes based on certain prefix bits. Each line card devotes part of its cache to its 

specific prefixes and the rest to the remaining prefixes. For lookups each line card 

checks its local cache, and in the case of a miss, uses a crossbar to check the cache 

of the line card responsible for the applicable prefixes before consulting the central 

routing table. This approach makes better use of the limited cache on each line card 

at the cost of the crossbar between line cards, and relies heavily on the spatial and 

temporal locality of lookup requests to be effective. 

Baldwin and Ng [7] designed a router where each output port has its own 

TCAM that stores all of the prefixes that point to it. Each lookup involves match­

ing the IP address against each of these TCAMs and choosing the TCAM with the 

longest matching prefix. While this approach removes the need to determine which 

port corresponds to the longest prefix match in a particular TCAM, simplifying 

each TCAM's design, it requires external logic to determine which TCAM has the 

longest matching prefix. This approach also requires extra TCAM space as pre­

fixes are not guaranteed to be evenly distributed amongst the many ports of a router. 
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Finally this approach cannot support multiple lookups in parallel per clock cycle. 

Sun and Zhao [63] converted prefixes into the ranges of addresses each port 

covers which are sorted and stored in a tree. Each tree node stores some compressed 

range endpoints and a pointer to the group of tree nodes below the current node. The 

authors describe how to build the tree but not how to update it, which presumably 

requires external processing to completely rebuild it each time. 

Deng et al. [16] stored all prefixes of length 24 or less into a single stride multi-

bit DRAM trie, and all longer prefixes into a TCAM. Each lookup accesses both 

the trie and the TCAM to determine the longest prefix match. While each update 

now operates on a smaller TCAM or multi-bit trie, updates on the single stride 24 

bit trie can still be prohibitively expensive in the worst case. 

There is a wide assortment of different hardware solutions to the routing table 

lookup problem that aren't completely TCAM or hardware trie based. Unfortu­

nately, very few of them can be both pipelined, to reduce cycle time, and efficiently 

replicated, to support multiple lookups per cycle. The solutions that do, one FPGA 

based and one cache based, are impractical to update and require temporal and 

spatial locality in the lookups, respectively. Clearly better hardware solutions are 

needed to scale with the increasing demands of "backbone" routers. 
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Design 

Previous work on the Internet routing table lookup problem has yielded very few 

practical solutions for the demands of "backbone" routers. Software solutions run­

ning on general purpose hardware just aren't fast enough to handle the data rates. 

A TCAM, although the industry favorite, just doesn't scale well to the large sizes 

demanded, and consumes incredibly large amounts of power in the applications it 

is used in. Other hardware solutions, while innovative, often prove impractical or 

require further development. 

With the rapid progression of Very Large Scale Integration (VLSI) techniques 

for Application Specific Integrated Circuit (ASIC) design and the continued de­

crease in Complementary Metal Oxide Semiconductor (CMOS) feature sizes, more 

and more transistors are becoming possible on a single chip. It is now commonplace 

for a System On a Chip (SOC) to combine many specialized processors, memories 

and logic together to solve a wide range of problems. 

The goal of this research is to exploit the speed, compactness and power ef­

ficiency of SRAM through a hardware trie implemented as a SOC to solve the 

Internet routing table lookup problem for "backbone" routers. By implementing 

the hardware trie using many small pipelined banks of SRAM, new untapped pos­

sibilities for parallelism are exploited. This innovative approach to a hardware trie 

provides exceptional throughput and power efficiency that an existing TCAM just 

cannot match, while offering comparable latency and ASIC size. Plus new additions 

to the hardware trie structure ensure that updates to the lookup table are bounded to 
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take reasonable amounts of time in even the worst case. 

This chapter begins by outlining the significant differences between the pro­

posed implementation and an existing fixed-stride multi-bit hardware trie imple­

mentations. Next, each of the major components of the design are presented in 

much greater detail, including the lookup and update processes. Each component 

builds on the previous components, starting with each bank of memory and work­

ing up to the complete lookup table design and other high level components. This 

bottom-up approach was also used for the design work itself, but with a constant 

vision of the high level result kept in mind. It helps to refer back to Figure 3.1 in 

this section while reading the rest of the chapter. 

3.1 Significant Differences 

This section provides an overview of the significant differences between the pro­

posed implementation and an existing fixed-stride multi-bit hardware trie imple­

mentations. First, the design trades some extra memory space for increased perfor­

mance, replacing complicated compression schemes with less efficient, but simple 

to use, representations. Second, instead of storing all of the nodes used for one 

level of the trie in one large memory, each is implemented as its own concurrently 

accessible smaller memory. Third, each smaller memory is coupled with a register 

to store a default port number for the memory, with the goal of simplifying and 

bounding updates. Finally, each memory entry stores either a destination port num­

ber and the length of its corresponding prefix, or a pointer to a new memory. The 

addition of the prefix length field to the entries is a requirement of the new update 

procedures. An example simple fixed-stride {4,2,2} hardware prefix trie with these 

modifications, populated with the prefixes from Table 3.1 is shown in Figure 3.1. 

Consider three separate searches of the trie shown in Figure 3.1 for 8 bit IP 

addresses 00101001 (shown in light grey), 01101 111 (shown in medium grey) and 

11010100 (shown in dark grey). The first (light grey) search accesses the first mem­

ory and immediately returns port number 0 as an answer. The second (medium 

grey) search must first follow two pointers before arriving at port number 2 as an 
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Figure 3.1: Example Fixed-Stride {4,2,2} Hardware Prefix Trie With Default Ports 

Prefix 
00000000/1 
01100000/3 
01101110/7 
01101110/8 
01101000/7 

Port 
0 
1 
2 
3 
4 

Prefix 
10000000/1 
10010000/4 
10010010/7 
11000000/3 
11011000/5 

Port 
5 
6 
7 
8 
9 

Table 3.1: Example 8 bit IP address prefixes 

answer. Finally the last (dark grey) search must follow a single pointer to arrive at 

an answer of port number default, which indicates that the correct answer is the de­

fault answer for the memory, which is port number 8. Notice that all three of these 

lookups access different memories, with the exception that they all need to access 

the first memory. By making three copies of the first memory it is now possible to 

conduct all three of these searches in parallel. Throughput can be further increased 

by pipelining each level of the trie. 
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Figure 3.2: Example Lookup Bank 

3.2 Lookup Bank: An SRAM Bank And A Register 

The basic building block of the proposed hardware trie consists of an SRAM bank 

indexed by the appropriate stride of the IP address that is being looked up. Each 

entry in the SRAM has a single bit to identify whether it's a destination port number 

and the length of its corresponding prefix, or a pointer to a new memory. A port 

number and prefix length entry indicates that the answer to the lookup is known and 

no more searching is required. A pointer entry indicates that further searching is 

required with the next stride of the address. 

In addition to the SRAM bank, each lookup bank includes a register that stores 

the default port number and associated prefix length for the entire bank. If any entry 

in the SRAM contains the special default port number then that entry is treated as 

having the register's port number instead. An example lookup bank for a stride of 

3 bits is shown in Figure 3.2. 

Note that the length of the appropriate prefix stored in an SRAM entry is actu­

ally the length of the prefix relative to the current stride. For example, when adding 

prefix 11011000/5 to the fixed-stride {4,2,2} prefix trie in Figure 3.1, that prefix 

will be stored in the third and fourth entries of bank 3 of the second stride. The 

length of the 5 bit prefix relative to the second stride is 5 — first stride = 5 — 4 = 1 
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bit so the length of this new prefix is actually stored as 1. Likewise, a prefix of 

length 6 would be stored in the second stride with a length of 2. The special length 

of 0 is reserved for use with entries that default to the port number stored in the 

register, as is the case for the first two entries of bank 3 of the second stride. These 

three lengths are the only valid lengths of prefixes that can be stored in the second 

stride (anything shorter would be stored in stride 1, anything longer would be stored 

in stride 3) so the optimal binary representation for the prefix lengths (in this case) 

takes two bits. This is a savings of two bits over the 4 bits that would be required to 

store a length value between 0 and 8 for the 8 bit prefixes. 

3.3 Lookup Node: Lookup Bank For Multiple Agents 

Every clock cycle, if enabled, a lookup bank processes a supplied address fragment 

(the section of the lookup IP address corresponding to the current stride) producing 

resolved data and default data. The resolved data is the bank's SRAM entry ad­

dressed by the address fragment, and is either a port number and prefix length, or 

a pointer to another memory bank. The default data is the contents of the bank's 

register, which is the default port number and prefix length for the bank. 

To support multiple lookups in parallel, a lookup bank must be shared between 

several different lookup agents. Each of these agents may access the lookup bank, 

but at most one will do so during any given clock cycle. (How this is guaranteed 

is explained later in Section 3.11) Each agent supplies each lookup node with an 

enable signal which is high only if that agent wishes to access the node. These 

enable signals are logically ORed together to produce the enable signal for the 

node's bank. They are also used to multiplex the correct address fragment into 

the bank from amongst the address fragments supplied by each lookup agent. The 

block diagram for a lookup node is shown in Figure 3.3. It may also help to refer to 

the implementation of a lookup bank in Figure 3.2 on page 36. 

While there are multiple lookup agents that may read from a lookup node there 

is only a single agent responsible for updating it. For clarity the signals required for 

updating a lookup node are omitted from Figure 3.3. These signals include a write 
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Figure 3.3: Lookup Node For L Lookup Agents 

enable, update default (for selecting between updating the SRAM or the register), 

input SRAM data and input register data signals. The update agent also shares the 

first lookup agent's enable and address signals. 

Since multiple lookup agents access the same lookup bank it may seem advan­

tageous to use multi-port SRAM to reduce the complexity of the bused memory 

signals. Unfortunately, even dual-port SRAM tends to be 1.5 to 2 times the size of 

its single ported counterpart, easily countering a slight reduction in bus logic. 

3.4 Background: Multiplexing Signals 

In the lookup node, as well as later sections of this design, there arises a need to 

select a single signal from among many based on a supplied address or that signal's 

companion enable signal. There are several different ways of designing such a 

multiplexing circuit, and all have their strengths and weaknesses. 

The three most popular methods to multiplex signals are: address based multi­

plexer trees, tristate buses, and enable based multiplexer trees. Examples of each 

of these types of multiplexers are shown in Figure 3.4. Address based multiplexer 

trees, while more complex than the other methods, provide built in address decoding 

which is perfect if individual enable lines aren't already available. Tristate buses, 

while poor at scaling for long wires, require the fewest transistors to implement. 

Enable based multiplexer trees offer a good compromise between the other two ap-
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Figure 3.4: Three Different Multiplexing Schemes 

Property 
Enable Type 
Cell Count 

Cell Transistors 
Total Transistors 

Propagation Delay 
FPGA Usable 

Address Based 
Multiplexer Tree 

Address 
inputs — 1 

14 
14 x inputs - 14 
oc log2(inputs) 

Yes 

Tristate Bus 
Individual 

inputs 
4 

4 x inputs 
oc inputs 

No 

Enable Based 
Multiplexer Tree 

Individual 
2 x inputs — 1 

4 
8 x inputs — 4 
<x log2(inputs) 

Yes 

Table 3.2: Comparison Of Different Multiplexer Designs 

proaches, and in some cases are even superior [14]. The benefits and limitations of 

each type of multiplexer are summarized in Table 3.2. Because this design must be 

FPGA implementable, only the address and enable based multiplexer trees are used. 

Which is used in each case depends on whether or not individual enable signals are 

available. The address multiplexing of the lookup bus is an ideal candidate for an 

enable based multiplexer tree, for example. 

3.5 Lookup Bus: Connects Multiple Lookup Nodes 

Just as many lookup agents may access a single lookup node, many lookup nodes 

may be accessed by a single lookup agent. Multiple lookup nodes are combined 

together and made available to all agents through a common lookup bus. Every 

clock cycle each of the L lookup agents provides an enable signal, the number of 
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Figure 3.5: Lookup Bus For L Lookup Agents And B Lookup Nodes 

the bank it wishes to access (if any) and the address within that bank it wishes to 

read. If the enable signal is high then the designated bank is read; otherwise nothing 

is read for the agent that clock cycle. The enable signal of each lookup agent is 

demultiplexed according to its bank number, passing the enable signal to only the 

designated node while passing low as the enable to all other nodes. The address 

of the lookup agent is simply passed to every lookup node and will be ignored 

by all nodes except possibly the one designated by the agent. The number of the 

designated bank for each lookup agent is also registered and used to multiplex out 

the designated node's resolved and default data back to the agent on the following 

clock cycle. The block diagram for a lookup bus is shown in Figure 3.5. It may also 

help to refer to the implementation of a lookup node in Figure 3.3 on page 38. 

As with the lookup node the lookup bus also involves some update signals that 

are omitted from Figure 3.5 for simplicity. The update agent's write enable, update 

default, input SRAM data and input register data signals are simply connected to 

each update node. The update agent also shares the first lookup agent's enable, 

bank number and address signals. 

Another option for generating the output resolved and default data signals for 
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each lookup agent would be to register the demultiplexed enable signals for each 

lookup agent instead of their bank numbers and use crossbars instead of multiplex­

ers. While this would simplify the output bus designs and reduce the propagation 

delay on the output signals it would require more registers and increase the propa­

gation delay on the demultiplexed enable signals. For this reason multiplexers were 

selected instead. 

For this design to function correctly it is a requirement that multiple agents do 

not try and access the same memory bank during the same clock cycle. While 

there are several ways of ensuring this, this design uses an arbiter at the input to the 

lookup table to ensure that two lookups that could potentially access the same nodes 

never issue in the same clock cycle. The full details of the arbiter implementation 

and estimations of its effects on throughput are in Section 3.11. An alternative 

approach would be to have one of the lookup agents stall if such a conflict situation 

arose. Another would be for each memory bank to have an input queue, like some 

CPU functional units have, where lookups would wait until the specific memory 

was free. While these approaches are practical for other applications they would 

greatly complicate the lookup bus design, increasing search latency while offering 

little improvement in throughput and no improvement in worst case throughput, as 

will be shown in Section 3.11. 

3.6 Lookup Stage: Lookup Bus With Agents 

Routing table lookups enter a stage as five inputs: a lookup enable signal, a perform 

lookup signal, an IP address, a port number and a default port number. Each lookup 

is assigned to a lookup agent, which accesses the lookup bus, if required, then 

outputs the updated inputs from the stage. A block diagram of a lookup stage is 

shown in Figure 3.6. It may help to refer to the block diagram of the lookup bus 

in Figure 3.5 on page 40. The lookup enable signal indicates if the lookup agent 

is being supplied with work this clock cycle. The perform lookup signal indicates 

if this lookup agent should access the lookup bus to read a memory entry. The IP 

address is the full address that is being handled by the lookup. The port number 
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indicates where the packet with the given IP address should be routed to, if known. 

The default port number indicates where the packet with the given IP address should 

be routed to if the final port number turns out to be the special default port. 

The first lookup agent also acts as an update agent for the stage, processing 

updates for all of the nodes on the lookup bus when required. Again for simplicity 

all of the update signals aren't shown in Figure 3.6. The actual update signals 

passed between stages will be covered in a subsequent section. 

In this design a routing table lookup is passed from lookup agent to lookup 

agent as it progresses through the lookup table. An alternative approach would be 

to have a lookup assigned to a single lookup agent that accessed all the lookup 

buses and handled that lookup from start to finish. While this approach may seem 

more straightforward it greatly complicates the lookup bus as many more lookup 

agents would need to be attached to the nodes of a stage in order to maintain the 

same throughput. Intuitively, a lookup agent's bus connection for a particular stage 

would sit idle most of the time as the agent accessed lookup buses in other stages. 

This is why the current approach is used. 

3.7 First Lookup Stage: A Special Case 

The first lookup stage is slightly different from the other stages in several respects. 

Firstly, it has only a single lookup bank that is replicated so each lookup agent 

has a copy that it uses exclusively. Secondly, since there is only one bank per 

lookup agent there is no need for lookup agents to supply a bank number with their 

lookup requests. Thirdly, if an IP address is being processed by a first stage lookup 

agent then that agent will always perform a lookup, so no input perform signal is 

necessary. Fourthly, since this is the first lookup for a given IP address there is 

no existing port number or default port number data, so these inputs are also not 

needed. Lastly, to efficiently keep all copies of the first bank the same, the update 

agent performs identical updates on all banks in the first stage in parallel. A block 

diagram of the first stage is shown in Figure 3.7. As with previous figures, all update 

signals have been omitted for clarity. 
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Figure 3.7: First Lookup Stage For L Parallel IP Address Lookups 

While it would also be possible to replicate more than just the first stride mem­

ories to reduce conflicts and increase the design's throughput, it will be shown in 

Section 3.11, that for large enough first stride memories, the possible benefit of 

this approach is small compared to the added cost of replicating all of the second 

stride memories. Then, in Subsection 5.2.3, it will be shown that larger first stride 

memories result in more favorable chip areas. Thus only replicating the first stride 

memory was used for this design. 
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3.8 Lookup Table: Combines Multiple Stages Together 

A complete lookup table consists ofN lookup stages, corresponding to the N strides 

of the trie, chained together, followed by some result logic. The result logic trans­

forms the output data from the final lookup stage into the results output from the 

lookup table. Each of these results consist of: a lookup signal that indicates if a 

lookup is being output this clock cycle, the IP address of the lookup being output, 

and the port number a packet with that IP address should be routed to. A block dia­

gram of a lookup table is shown in Figure 3.8. As with previous figures, all update 

signals have been omitted for clarity. 

3.9 Lookup Process 

When an IP address of a packet to route enters the lookup table the lookup process 

begins. The IP address is handed to a lookup agent in the first lookup stage for 

processing on the first clock cycle. Every subsequent clock cycle the IP address is 

passed on to another lookup agent in the next lookup stage. After the last lookup 

stage, the port number to route the packet to has been determined and is output. A 

diagram of the lookup process is shown in Figure 3.9. Some examples of the lookup 

process in action can be found in Appendix B.l. 

The IP address lookup is analyzed by a local lookup agent every time it is passed 

to a new stage. The first stage always performs a lookup, and therefore takes the 

first stride of the IP address and uses it to index into its only lookup bank. If the 

entry is a port number then no further lookups are necessary, and the answer is 

passed along unchanged through the other stages to the result logic. If the entry is a 

pointer then at least one more lookup is required, so the lookup agent instructs the 

following agent to carry out a lookup on the bank indicated by the pointer. In either 

case the default port number passed out is the default data of the first stage's bank. 

In the second and all remaining lookup stages, the local lookup agent analyzes 

what the previous stage's lookup agent reported. If another lookup is required then 

the agent uses its stride of the IP address to index into the bank indicated by the 
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previous stage. If the entry is a port number then again no further lookups are 

necessary. If the entry is a pointer then again at least one more lookup is required. 

In either case the new default port number is analyzed. If it is the special default 

(unknown) value then the new entry "defaults" to the value from the previous stage, 

otherwise the new default port number is used. If, on the other hand, no new lookup 

is required then an answer is already known and the port number and default port 

number from the previous stage are simply passed along to the next stage. 

The port number and default port number output from the last stage are then 

analyzed by the result logic. If the port number is the special default value then the 

value of the default port number is used as the result. Otherwise the port number is 

used as the result. 

An alternative approach would be to allow lookups that determine their port 

number early to leave the lookup table early, and hence out-of-order. While this 

would improve the latency of those lookups, it could actually increase the latency of 

other lookups started a cycle or two earlier if those lookups took longer to determine 

their port numbers. This is because, as will be discussed in Section 3.12, of the 

limited number of lookup results output by the chip per cycle. The early finishing, 

but later issued, lookup could take the spot of the later finishing, but earlier issued, 

lookup, making an already slow lookup even slower. Increasing the number of 

lookups retired per cycle would require more pins or faster I/O, without any added 

benefit to throughput. Furthermore, out-of-order completion further complicates 

the use of the design compared to in-order completion. 

3.10 Update Process 

The update process is actually the two separate processes of adding a new prefix 

to the lookup table, and removing an existing prefix from it. Where as lookups are 

pipelined and several are executed at once, only one update is processed at any one 

time. In addition, when the system is undergoing an update no new lookups are 

allowed, although existing lookups will finish. This ensures the system is always in 

a consistent state and that there are no update conflicts. Updates can take anywhere 
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between a few to many thousands of clock cycles, but are bounded to never run 

extremely long, as will be shown in Subsection 3.10.3. In general many simple 

update steps are preferred over several complicated ones so that the maximum clock 

frequency, and hence the lookup throughput of the design isn't adversely affected. 

This tradeoff of favoring lookups over updates is acceptable since updates occur far 

less frequently (hundreds/second) than lookups (billions/second)1. 

In each stage, the first lookup agent is extended to also perform the duties of 

update agent. Each update agent executes commands by reading and writing the 

lookup banks in its stage, and by querying data or sending commands to the previ­

ous or next stage's update agent. 

An alternative approach would be to have a single update agent with read and 

write access to all of the lookup banks. While this would seem more straightfor­

ward, it would require an extra read connection on each lookup bus, which would 

result in decreased lookup performance. Since fast lookups are a much larger pri­

ority than simplified updates this approach was not used. 

One of the limitations of the proposed architecture is with a prefix whose ad­

dress spaces is completely covered by more specific prefixes. For example, prefix 

0100/2 is completely covered by the prefixes 0100/3 and 0110/3. Because of longest 

prefix matching, no IP address will end up being routed by the covered prefix, only 

by perhaps those more specific prefixes. While having a completely covered, and 

hence redundant, prefix in the lookup table is of no benefit, it may come into play 

again if one of the more specific prefixes covering it were to be removed. Un­

fortunately, the proposed architecture has no way of storing redundant prefixes, so 

adding a redundant prefix will modify nothing and no record of it will be kept. Like­

wise if a previously stored prefix becomes redundant, through the addition of more 

specific prefixes that completely cover it, the redundant prefix will simply cease 

to be in the table without any warning given. While this behavior can be worked 

around and doesn't impact normal operation, it is still important to keep in mind 

when updating the lookup table. 

'Recall Table 1.2 on Page 4 
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3.10.1 Addition Process 

A diagram of the addition process is shown in Figure 3.10. Some examples of the 

addition process in action can be found in Appendix B.2. 

When an update agent receives a new IP address prefix addition it checks to see 

if that prefix extends past the current stage. If it does then the update agent looks 

up its stride of the prefix in the appropriate lookup bank and analyzes the entry. If 

the entry is a pointer to a bank in the next stage then it is followed. If the entry is a 

port number then a new bank must be allocated in the next stage. This new bank's 

default entry is changed to be the port number and prefix length of the analyzed 

entry, and the analyzed entry is changed to point to the new bank. The pointer to 

the new bank is then followed. If the prefix does not extend past the current stage 

then a search of all the entries encompassed by the prefix is conducted. If a searched 

entry is a port number and prefix length then it is replaced by the new prefix's data if 

the existing prefix length is less than or equal to the new prefix's length, otherwise 

it is left unchanged. If a searched entry is a pointer to a bank in the next stage 

then that bank's default entry is checked. If the default entry's prefix length is less 

than or equal to the new prefix's length then it is replaced by the new prefix's data, 

otherwise it is left unchanged. 

A special case of the addition process occurs when the prefix being added is 

zero length, representing a default route for the entire table. In this case the addition 

becomes a simple modification of the default entry of the replicated lookup bank in 

the first stage. 

3.10.2 Removal Process 

A diagram of the removal process is shown in Figure 3.11. Some examples of the 

removal process in action can be found in Appendix B.3. 

When an update agent receives a new IP address prefix removal it checks to see 

if that prefix extends past the current stage. If it does then the update agent looks 

up its stride of the prefix in the appropriate lookup bank and analyzes the entry. 

If the entry is a port number, then there is an error, since the lookup table cannot 
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possibly be holding the prefix to be removed. If the entry is a pointer to a bank 

in the next stage then it is followed. If the prefix does not extend past the current 

stage then a search is conducted of entries within the current bank for prefixes that 

encompass the prefix to be removed. The most specific (longest) such prefix, if 

found, will be used as a replacement for any entries removed in the next step. If no 

such more specific prefix is found locally then every entry removed in the next step 

will be set to a port of default and length of 0. Next a search of all of the entries 

encompassed by the prefix to be removed is conducted. If a searched entry is a port 

number and prefix length that matches the prefix to be removed then it is set to the 

replacement entry, otherwise it is left alone. If a searched entry is a pointer to a 

bank in the next stage then that bank's default entry is checked. If the default entry 

matches the prefix to be removed then it is set to the replacement entry, otherwise 

it is left alone. After all of the entries have been processed then the bank must be 

checked to see if it can be deallocated. If the bank is in the first stage then this is 

not possible, otherwise each entry is checked to see if it contains the port number 

default and prefix length 0. If so then the bank is deallocated and the bank in the 

previous stage that pointed to it has its pointer entry changed to the default entry of 

the newly deallocated bank. Once again a check is performed of this previous stage 

bank to see if it can be deallocated, which continues until either the first stage is 

reached or a bank is found to contain a non-default port number or pointer, which 

means it can't be deallocated. 

A special case of the removal process occurs when the prefix being removed is 

zero length, representing a default route for the entire table. In this case the removal 

becomes a simple modification of the default entry of the replicated lookup bank in 

the first stage, setting it to the port number default. 

3.10.3 Worst Case Updates 

One of the significant problems with previous software and hardware trie imple­

mentations is that in the worst case adding or removing a prefix can take an ex­

tremely long time. Prefixes can cover millions of entries, and in a dense address 
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space with enough prefixes it is possible that adding or removing a prefix might 

require checking and modifying millions of entries in the trie. If such a situation 

were to arise then the lookup table might be unable to handle new lookups for sev­

eral seconds or more, shutting down the router for this time, which is completely 

unacceptable. 

The update procedures presented for this design consist of the following four 

steps: navigate to the target bank, find the replacement entry, modify each entry 

covered by the prefix to reflect the change, and deallocate banks if possible. For 

prefix additions, only the first and third steps are required. For prefix removals, all 

four steps are required. In the worst case, navigating to the target bank is linear 

work with respect to the number of stages. Finding a replacement entry consists 

of searching up to half of a bank's entries. Deallocating banks if possible is, in 

the worst case, proportional to the sum of the sizes of a bank in each stage but the 

first. The big difference in this design comes with modifying the entries covered 

by a prefix to reflect the change. Because each modification involves either a port 

number and prefix length, or a default entry at the other end of a pointer, the work 

required is, in the worst case, proportional to the number of entries in a bank, not the 

number of entries in the trie! A prefix can cover at most half the entries in a bank (if 

it covers them all then it can be reflected in the default entry) so the work required 

is more precisely proportional to half a bank's entries in the worst case. In general 

the number of stages is far less than the number of entries in a bank, so the worst 

case update time for this design is either proportional to half the size of the largest 

bank, or to the sum of the sizes of a bank in each stage but the first. If the first stage 

has the largest bank, which is commonly the case, then the worst case update time 

is proportional to half the size of the first stage bank. For a first stride of 16 bits, 

for example, this would be some small multiple of 216 -h 2 = 215 = 32,768 clock 

cycles, far less than the potential millions of clock cycles for previous designs. 

When looking at real "backbone" routing tables, it is readily apparent that no 

entries exist for prefixes shorter than 8 bits [27]. If this was guaranteed to be the 

case then the design could be modified to make finding a replacement entry in the 
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first stage far more efficient, since prefixes of these shorter lengths could never be 

found. This design modification, combined with the fact that a first stage prefix 

could cover only ^ = 255 °^ ̂ e e n t r i e s m t n e first s t a g e bank, would significantly 

reduce the worst case update time even further. However, since this lack of shorter 

prefixes is only a legacy left over from IPv4 classes and no guarantee for the future, 

the design does not make that assumption. 

3.11 Arbiter 

In previous sections it was assumed that no more than one lookup agent would 

access a given lookup node during the same clock cycle. It is the arbiter's job to 

structure the input of the lookup table such that this never occurs. Since in the first 

stage each lookup agent has its own copy of the lookup bank, conflicts are only 

possible between agents in subsequent stages. In order for such a conflict to occur, 

two lookup agents in the first stage must access the same entry during the same 

clock cycle. That entry must be a pointer, which would then direct two lookup 

agents in the second stage to access the same bank on the following clock cycle. In 

order for the two lookup agents in the first stage to access the same entry, the two 

lookups they are performing must have the same first stride bits. Therefore if two 

lookups with the same first stride bits are never allowed to issue in the same clock 

cycle there is no possibility of conflicts. 

The arbiter receives all incoming IP address lookup requests serially. It allocates 

them into groups of however many can be performed in parallel by the lookup table. 

Every time the lookup table is ready for new input the arbiter supplies it the current 

group and starts a new one. If the current group is full the arbiter waits until a new 

one is started. If the next IP address would share the same first stride bits as another 

address already in the group the arbiter waits for a new group. 

This arbiter design is easy to implement. Unfortunately, conflicts between the 

first stride bits of IP addresses being looked up reduces the throughput of the lookup 

table. Assuming uniformly random lookup requests, the chances that two IP ad­

dresses will have the same first stride bits is inversely exponentially proportional 
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to the length of the first stride of the lookup table. This is an important factor to 

consider when selecting the strides of a lookup table. 

More formally, the average number of lookups completed per clock cycle, as­

suming a full load of random lookup requests, for a lookup table capable of L par­

allel lookups per clock cycle and a first stride of F bits using this simple arbiter 

design is: Zfc | ( ^ 11*=! ^ F ^ ) +LU^ZI ^W^- A s a n example, a lookup table with 

a first stride of F = 16 bits that supports L = 8 parallel lookups would achieve an 

average of 7.9987 lookups per clock cycle. It is easy to see that, for larger sized 

first strides and uniformly random lookup requests, the loss in throughput from us­

ing the simple arbiter design is negligible and therefore a more complicated arbiter 

design isn't needed. 

In reality the lookup requests of a router will not be uniformly random. In 

certain cases there could be large amounts of traffic directed at a small subset of the 

address space, limiting the throughput of the proposed design. In these cases even a 

more advanced arbiter design won't improve things much as most of the throughput 

will be lost to conflicts that cannot be avoided. One possible solution to this problem 

would be to have a small cache of popular lookup addresses to ensure that many 

identical lookup requests do not adversely affect the design's performance. 

3.12 Packaging & I/O Signals 

A lookup table capable of L parallel IP address lookups per cycle requires L input 

IP address and enable signals per cycle and outputs L output IP addresses, port 

numbers and enable signals per cycle. If IP addresses are each 32 bits, port numbers 

are each 6 bits and enable signals are each one bit then each lookup requires 32 + 

1 = 33 input pins and 32 + 6 + 1 = 39 output pins for a total of 33 + 39 = 72 pins 

per lookup done in parallel. This large number of pins per lookup and the serial 

nature of the arbiter are strong arguments for high speed serial input and output 

of lookups. In this scheme, a new lookup IP address is input and the result of a 

previous lookup is output every clock cycle. The arbiter combines L lookups into 

a single parallel input for the lookup table, which is clocked once every L input 
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clock cycles. The output of the lookup table is also serialized into L clock cycles of 

lookup results to be output. For an 5 stage (stride) lookup table, each lookup takes 

5 + 2 clock cycles (one cycle per stage plus one more for combining the results 

and another spent being deserialized on input and serialized on output) for a total 

latency of L* (5 + 2) input cycles per lookup barring any conflicts the arbiter needs 

to resolve. 

An alternative approach would be to assign an incrementing tag number of say 

8 bits to each input lookup request. This tag number could then be output by the 

chip instead of the entire IP address, saving 24 output pins at the cost of 8 more 

input pins, reducing the pin count by 16. It would also makes it easier for the 

off chip logic to match the result port numbers to the original packets. While not 

implemented in this design this approach would be even more attractive if the design 

were modified to support 128 bit IPv6 addresses. 

In the event of a conflict, the arbiter asserts a wait signal to pause lookup input 

until the conflict has been resolved. It also asserts the wait signal whenever an 

update is started until the update has finished and normal input can resume. 

In the event of an error during an update, an error signal is asserted by the 

lookup table and the update is aborted. Updates in general also require a 2 bit 

input operation code (to identify a lookup, addition or removal), an input IP address 

prefix, an input prefix length, and an input port number (in the case of additions). 

The input IP address prefix can be loaded in on the same 32 input pins as the lookup 

IP addresses. The prefix length requires an additional 6 input pins (to represent a 

value between 0 and 32 inclusive) and the input port number requires another 8 

input pins. Thus updates require an additional 1 + 2 + 6 + 8 = 17 input pins. 

In addition to power, ground, reset and clock pins the lookup table therefore 

requires 72 + 1 + 17 = 90 lookup and update pins. 
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Chapter 4 

Testing 

4.1 VHDL Code 

The entire design was implemented generically in VHDL (Very High Speed In­

tegrated Circuit (VHSIC) Hardware Description Language), with properties such 

as the number of bits in an IP address, the number and size of each multi-bit trie 

stride, and the number of possible ports all being easily changed through generic 

constants. Not only did this make the implementation incredibly flexible so it could 

be used to try a wide variety of configurations, it also made it a lot easier to test 

each of these configurations as very little source code changed between them. By 

validating one configuration through extensive testing only a few corner cases re­

mained to be validated with all the other configurations, drastically reducing testing 

time. 

4.2 Functional Simulation 

As each building block of the design was implemented it was functionally tested 

using ModelSim v6.0e from Mentor Graphics. The complete lookup table and ar­

biter were also functionally simulated and verified. Functional testing consisted 

of a combination of basic operation scenarios, specifically targeted corner cases, 

and thousands of randomly generated inputs. In particular, cases that covered all 

branches of the lookup and update process diagrams were developed. In all cases 

C++ programs were written to generate the expected output for each test case to be 
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Feature 
Logic Cells 
Block Ram 

18 x 18 Multipliers 
Digital Clock Management Blocks 

Configuration Size 
PowerPC 405 Processors 

Max Available RocketIO Transceivers 
Max Available User I/O Pins 

Value 
99,216 

1,992Kb 
444 
12 

33.65Mbits 
2 

20 
1164 

Table 4.1: Xilinx Virtex-II Pro XC2VP100 FPGA Features 

compared against the output of the functional simulations. 

4.3 FPGA Implementation 

The FPGA development board used for validating the design was the AMIRIX 

Systems API 100. The API 100 combines a Xilinx Virtex-II Pro XC2VP100 FPGA 

with a large number of peripherals on a PCI card that can inserted into a host com­

puter. The XC2VP100 has 99,216 logic cells, 7,992 Kb of block ram, and two 

embedded PowerPC 405 processors. The features of the XC2VP100 are listed in 

Table 4.1. 

A {16,8,8} partition with support for four simultaneous lookups was selected 

for the FPGA implementation. Unfortunately, due to the limited amount of block 

memory in less than ideal sizes and its use by other components of the system, only 

4 first stride memories, 128 second stride memories and 32 third stride memories 

could be realized. While large enough to support some pretty elaborate routing ta­

ble test cases it was clear that simulating full "backbone" routing tables, requiring 

thousands of memories per stride, would not be possible in a FPGA. Not surpris­

ingly the lookup table was memory bound and took up only 16,065 (18%) of the 

88,192 4 input Look-Up Tables (LUTs) and 5,166 (5%) of the 88,192 flip flops. 

A summary of the FPGA resource usage is in Table 4.2. The lookup table had a 

maximum throughput of 94.1MHz without any significant optimizations. 

Testing the lookup table at almost 100MHz presented a fairly difficult challenge 
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FPGA Resource 
Look-Up Tables 

Flip Flops 
Block Rams 

Total Available 
88,192 
88,192 

444 

Total Used 
16,065 
5,166 
319 

Utilization 
18% 
5% 

71% 

Table 4.2: Lookup Table FPGA Resource Usage 

due to large amount of input and output data required. Transferring in four 32 bit IP 

addresses and returning four 32 bit IP addresses and four 6 bit port numbers in the 

just over 10ns cycle time was out of the question for any of the standard peripherals 

on the development board; unfortunately, the board did not expose the FPGA's high 

speed serial links. This left three alternatives: generate the input within the FPGA, 

run the lookup table at a much slower clock frequency, or buffer input within the 

FPGA then release it into the lookup table at full speed. While generating the input 

within the FPGA would have been the most straightforward it would also be the 

least flexible and hardest to verify as the input generation and output verification 

would all be internal to the FPGA. The second alternative of running the lookup 

table at a lower clock frequency would offer the flexibility of externally generated 

and verified data, but wouldn't validate the extremely high throughput of the design. 

It's for these reasons that the third approach was selected: to offer the best of the 

first two approaches at the cost of some added complexity in its implementation. 

Test input was sent to the FPGA through the evaluation board's serial port for 

simplicity. A simple text based command format was used to specify the sequence 

of IP address lookups, prefix additions and prefix removals for each test. Additional 

commands reset the lookup table, clearing its contents, and released all of the pre­

viously buffered commands to the lookup table at full speed. One of the embedded 

PowerPCs in the FPGA was used to parse the serial port input and supply it to a 

very wide internal memory. This very wide internal memory could buffer up to a 

few thousand commands, which were then dispatched together to the lookup table 

as fast as it could handle them. The output of the lookup table during a run was sim­

ilarly buffered into a very wide internal memory to be later read by the PowerPC 

and sent back across the serial port. The number of clock cycles each run took was 
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also tracked and printed to the serial port, to verify how quickly the lookup table 

could process each sequence. 

Testing of the FPGA implementation involved verifying basic operation, specif­

ically targeted corner cases, thousands of randomly generated operations, lookup 

performance and worst case update performance. A lot of the test cases generated 

for the design's functional simulation in ModelSim were easily re-used here, and 

C++ programs were again used to validate the output of the FPGA. 
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Chapter 5 

Quantitative Comparisons of Stride 
Choices 

One of the most important implementation decisions for any multi-bit hardware trie 

design is the choice of how many strides, and the sizes of each. A poor choice of 

strides can dramatically increase the memory required to store a set of prefixes; it 

also affects the area, power consumption, latency and throughput of the final design 

in hardware. Additionally, a good choice of strides for one set of prefixes might 

be a very bad choice in strides for another set. Unfortunately, most of the previous 

work on multi-bit hardware tries doesn't address this important issue, or makes 

recommendations based on only one set of prefixes from a single routing table. 

In this chapter all possible choices of strides for this lookup table design are 

compared using real prefixes from real "backbone" routing tables. First, the source 

of this routing table data is presented and analyzed. Next, several different metrics 

for evaluating stride choices are developed. Finally, these metrics are applied to all 

the possible stride choices, the results are compared, and the preferred choice of 

stride is presented. 

5.1 Source of Routing Table Data 

This section presents the source of the routing table data used for comparing stride 

choices. The largest routing table is analyzed, and the information about all the 

routing tables is condensed into a form that makes stride choice comparisons much 
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easier. 

5.1.1 Border Gateway Protocol (BGP) Tables 

The "backbone" routers at the heart of the Internet use the Border Gateway Protocol 

(BGP) to communicate routing information between each other to build their own 

routing tables. Each group of "backbone" routers under a single technical adminis­

tration (for example, an Internet Service Provider) is assigned a unique Autonomous 

System (AS) number [57]. Each AS advertises the IP address ranges assigned to 

each of its internal networks to each of its AS neighbors, who then forward this 

information on to each of their neighbours, and so on, until each AS knows about 

every other AS. Each AS uses these advertisements to construct a BGP routing ta­

ble mapping each advertised IP address range to the best path to the destination 

AS that advertised it. Each of these paths might involve one or more intermediate 

Autonomous Systems as every AS is not directly connected to every other AS. The 

BGP routing table can then be used to create an IP address lookup table, mapping 

IP address ranges to the appropriate port connected to the appropriate next-hop AS. 

While the BGP routing table of an AS might not directly correspond to the IP 

address lookup table of one of that AS's routers it offers a very good approximation 

of the types of prefixes the lookup table would contain. While using the actual 

lookup tables of "backbone" routers would be ideal for stride comparisons, very 

few are made public, for security and other reasons. Fortunately a large number 

of AS BGP routing tables were made publicly available on http://bgp.potaroo.net/ 

as part of a project to study the growth of the BGP table, among other things. 

BGP tables from each of the Autonomous Systems in Table 5.1.1 were captured on 

three different dates: December 22, 2005; November 26, 2006; and May 27, 2007. 

Unfortunately, at the time of writing, it looks as though http://bgp.potaroo.net/ now 

only presents data on a single AS. 
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AS Numbers of BGP Routing Tables Captured 
286 1221 1239 1668 2493 2497 2828 2905 2914 3257 3277 3292 

3303 3333 3356 3549 3561 4513 5459 5511 5650 6079 6395 6453 
6509 6539 6939 7018 7500 7660 8075 11537 11608 

5.1.2 The Largest Routing Table 

The AS with the largest number of prefixes on May 27, 2007 was AS7500 with 

222,728. It started at 169,103 prefixes on December 22, 2005 and grew to 205,784 

prefixes on November 26, 2006. Figure 5.1 shows the number of prefixes of each 

length AS7500 had in its routing table on each of the three capture dates. There 

are several interesting properties of BGP routing tables to take note of from this 

graph. First, that there are clusters of prefixes of lengths 8,16 and 24, corresponding 

to the old classes before Classless Inter-Domain Routing (CIDR) was introduced. 

Second, there are no prefixes of length less than 8. While nothing in CIDR prevents 

such large ranges of IP addresses to be allocated to a single provider, it is unlikely 

to happen for the remaining use of IPv4, due to the scarcity of available address 

ranges. Lastly, there are a somewhat significant number of prefixes of length 25 or 

more. Ideally such specific prefixes could be aggregated into larger prefix ranges 

and not need to be advertised individually in the BGP table. Unfortunately, that is 

not the case and any solution to the routing table lookup problem must handle them 

as well. 

5.1.3 Reducing the Complexity of Stride Choice Comparisons 

While knowing the number of prefixes in the largest "backbone" routing table is 

enough to appropriately size a TCAM to handle all of the different routing tables, 

it's not so straight-forward for multi-bit hardware tries. For a given stride choice a 

routing table with a smaller number of prefixes might actually require more memory 

than a routing table with more prefixes. All of the routing tables must therefore be 

taken into consideration for all possible stride choices. 

To simplify this problem, observe that, for a given set of routing prefixes P, 

there is certain subset of prefixes, Pn, containing all prefixes of length longer than 
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Klaus 5.1 Source of Routing Table Data 

n bits. If the prefixes P were to be stored in a two stride multi-bit trie whose first 

stride was n bits wide, then all of the prefixes in P — P'„ would be stored in that first 

stride, and the prefixes in Pn would need to be stored in the second stride. Adding 

each prefix in Pn to the lookup table involves looking up the first n bits of the prefix 

in the first stride lookup table and adding a pointer to a new second stride lookup 

table, unless of course a previous prefix in Pn shared the same first n prefix bits and 

has already added the pointer and new lookup table. The number Lp{n) of second 

stride lookup tables required to store the Pn prefixes is therefore less than or equal 

to the number of prefixes in Pn. Now observe that if the first stride of n bits is 

partitioned into two strides of total length n, the P — P„ prefixes will be stored in 

the first two strides, and the Pn prefixes will require Lp(n) new lookup tables in the 

third stride. Also observe that if the second stride was partitioned and the first stride 

of n bits was not, the P — Pn prefixes would still be stored in the first stride, while 

the Pn prefixes would still require Lp(n) second stride lookup tables (and perhaps 

some third stride lookup tables as well). Thus no matter how many strides of how 

many bits the first n bits of the trie are partitioned into, and no matter how many 

strides of how many bits the subsequent strides are partitioned into, a set of prefixes 

P will always require Lp(n) m'^-stride lookup tables when the first m — 1 strides 

total n bits, for any value of m. By precomputing the Lp{n) values, for all possible 

n for a set of prefixes P, the number of lookup tables needed for each stride for a 

given choice of strides is now easily determined. 

The problem is even further simplified by now computing the Lp(n) values, for 

each set of prefixes P, corresponding to each of the different routing tables. The 

maximum Lp(n) value for a given n amongst all of the sets of prefixes, Lmax(n), is 

therefore the number of next-stride lookup tables required to handle all possible sets 

of prefixes. It, therefore, suffices to use the single set of Lmax(ra) values to evaluate 

a given choice of strides, instead of each set of Lp(n) values for each set of prefixes 

P. 

The Lmaxin) values, for each value of n for each capture year, are plotted in 

Figure 5.2. Several important observations can be made by looking at this graph. 
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Klaus 5.2 Developing Stride Choice Comparison Metrics 

First, the growth of Lmax(n) is clearly not exponential with respect to n (especially 

for n > 24). This indicates that a single stride of 32 bits is not a very efficient choice 

for these prefix sets, and significant savings can therefore be realized by using more 

than one stride. Second, starting a new stride after the first 17 to 23 bits is clearly 

a bad idea as it would require well over 10,000 next-stride lookup tables. A single 

stride spanning this bit range clearly offers significant memory savings. Third, the 

first two observations present a trade-off: longer strides spanning certain ranges 

can reduce the required number of next-stride lookup tables to save memory, but 

at the same time longer strides are less efficient, allocating memory for address 

ranges not covered by any prefixes. Finally, it's clear that the number of next-

stride lookup tables, Lmax(n), required for a given n is growing as time passes and 

the IPv4 address space gets closer to exhaustion. This growth, present in the 5 < 

n < 26 range, is also stable, providing confidence that a multi-bit hardware trie 

implementation, with a particular choice in strides, will remain viable for years to 

come, as long as some extra lookup tables are provided for each stride past the first. 

5.2 Developing Stride Choice Comparison Metrics 

In this section three different stride choice comparison metrics are developed with 

varying levels of computational complexity. 

5.2.1 Metric #1: Required Memory Bits 

A poor choice in strides for a multi-bit hardware trie can drastically increase the 

required memory for a design. It seems only natural then that one of the chosen 

metrics should be the required number of memory bits of the design. With this 

metric the number of entries in a stride's lookup table is multiplied by the number 

of bits required to store each entry. The number of bits needed to store the default 

port information is added, then the resulting number is multiplied by the number 

of lookup tables required for that stride. This is repeated for each of the remaining 

strides, with the total being the number of memory bits needed for the entire design. 
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5.2.2 Metric #2: Required Memory Entries 

This metric counts the number of memory entries required for a design, which is 

a simplification over counting the number of memory bits required for that design. 

Recall from Section 3.2 that each memory entry stores either a port number and 

relative prefix length, or a pointer to a next stride lookup table. Observe that each 

port number is a fixed number of bits. Also note that the number of bits required to 

store the relative prefix length is logarithmic with respects to the size of the stride. 

Finally, note that the number of bits required to store a pointer to a next stride 

lookup table is logarithmic with respects to the number of next stride lookup tables. 

It is, therefore, expected that the size of each memory entry varies only slightly 

between the different strides, and the added complexity of counting individual bits, 

instead of entries, is not required to draw the same conclusions. 

5.2.3 Metric #3: Required Design Area 

Far more complicated than either of the previous two metrics, the last metric seeks 

to estimate the actual chip area consumed by the design, which is predominately 

due to the SRAMs. It is expected that this approach will give the most accurate 

results, as it factors in several second order effects not considered by the other 

metrics. As an added benefit, this approach also allows estimation of the power 

consumption, latency and throughput of the final design, for little added cost. This 

provides several different comparison points for stride choices resulting in similar 

chip areas. It is important to note, however, that more complicated metrics, such as 

active power consumption and maximum throughput, are dependent on the actual 

workload of the router, and these metrics are therefore approximations. It is also 

important to remember that these estimates are not substitutes to results from an 

actual hardware implementation. 

Just as there are a huge number of possible stride choices, there are a large num­

ber of different SRAM sizes required depending on those stride choices. The size 

of a stride determines the number of entries required, and the number of next stride 

lookup tables affects the size of each of those entries. Unfortunately, it is not prac-
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Technology 
Cell Height 
Cell Width 
Cell Area 

Macro Organization 
Macro Height 
Macro Width 
Macro Area 

Macro Access Time 
Macro Active Power 

Macro Leakage Power 

Value 

45nm SOI 
0.38pm 
0.83pm 

0.315pm2 

32ATxl6 
0.475mm 
0.482mm 
0.229mm2 

A5Qps 
2\mW 
24mW 

Notes 

1024 word lines 
512 bit line pairs 

0.9V, 85°C, Typical Process 
\GHz, 1.0V, 125°C, Fast Process 
1GHz, 1.0V, 125°C, Fast Process 

Table 5.1: Performance of a State of the Art SRAM 

tical to implement each of these possible combinations in hardware to gather the 

most accurate numbers, and previously published work covers only a small fraction 

of these configurations. To solve this problem, a published state of the art SRAM 

design is selected as a baseline, and the properties of all the other SRAM configu­

rations are extrapolated from it. While this approach clearly introduces some error 

into the values, it is expected that they will still be accurate enough to draw some 

meaningful conclusions. 

Pilo et al. [52] presented a SRAM macro in 45nm SOI technology with a fast 

access time and advanced power reduction techniques. The published performance 

of this SRAM macro are in Table 5.1. 

Based on these figures and an accurate layout diagram of the macro cell the 

authors provided, it is possible to estimate how the macro overhead will change if 

the number of columns and rows in the macro were to be changed. The overhead 

affecting the width of the macro can be attributed to repeaters, which scale with the 

number of columns in the macro (0.043/um/ column), and to word line drivers and 

row decoders, which mostly don't change with the number of columns (27.8pm). 

Likewise the overhead affecting the height of the cell can be attributed again to re­

peaters, which scale with the number of rows in the macro (0.044pm/raw), and to 

column decoders and sense amplifiers, which mostly don't change with the num­

ber of rows (47.4pm). The required width and height of a custom SRAM macro 
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Width 
Height 
Area 

Cycle Time 
Active Power 

Leakage Power 
Total Power 

Symbol 

Sw 
SH 

SA 

STC 

Spa 
Spi 
Spt 

Formula 

[(0.83jum + 0.043jum) x columns + 27.Spm] 
[(0.38^ra + 0.044^m) x rows + 41A/jm] 

Sw XSH 

± x (Sw/0AS2mm + SH/0A75mm) x 4l0ps 
(SA/0.229mmI) x 2lmW 
{SA/0.229mm2) x 24mW 

Spa + Spi 

Table 5.2: Formulas for Estimating the Performance of a State of the Art SRAM 

cell is therefore estimated to be [(0.83^ra + 0.043/im) x columns + 21 .S/um] and 

[(0.3Spm +0.044pm) x rows + 47 Apm] respectively. These formula are summa­

rized in Table 5.2. 

Approximations of the new cycle times, active power, and leakage power of a 

scaled macro cell are also possible. Since the capacitance of each bit line scales 

linearly with the height of the macro, and the capacitance of each word line scales 

linearly with the width of the macro, it is expected that the cycle time of the macro, 

which is dominated by the capacitances of the bit lines and word lines, will scale 

linearly with the width and height of the macro as well. The active power is domi­

nated by the charging of all the bit lines, with the number of bit lines scaling with 

the width of the cell and the length of each scaling with the height of the cell. Thus 

it is estimated that the active power will scale with the area of the cell. Finally 

the leakage power is dominated by the number of cells in the macro, and is there­

fore estimated to scale with the area of the macro cell as well. These formulas are 

summarized in Table 5.2. 

To calculate the total area of the design, the estimated area of the SRAMs in 

each stride are summed. The area overhead of the non-SRAM logic is estimated to 

be 0.25mm2 for a single lookup per cycle, and expected to scale linearly with the 

number of additional lookups per cycle supported. This formula is summarized in 

Table 5.3. 

To calculate the total power consumption of the design, the estimated active 

and leakage power consumed by each stride is summed. The estimated leakage 
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Number of Strides 
Stride Memories 

Stride Width 
Stride Memory Area 
Max. Lookups/Cycle 

Stride Area 
Stride Active Power 

Stride Leakage Power 
Stride Total Power 

Average Lookups/Cycle 

Design Cycle Time 
Design Throughput 

Design Latency 
Design Area 

Design Active Power 
Design Leakage Power 

Design Total Power 

Symbol 
N 

Mk 

Wk 

Ak 

Limax 
Tk 
1A 
jk 
1Pa 
Tk 
*Pl 
Tk 
1Pt 

'-'avg 

DT 

DL 

DA 

DPa 

DPI 

DPt 

Formula or Description 

Number of strides in the design 
Number of memories in stride k 

Number of bits in stride k 
Area of a memory in stride k 

Maximum number of lookups/cycle supported 
Mk xAk 

'-'max * bpa 

Mk x Sk
Pl 

max%=l (S^) + 200 ps 
Lavg/L>Tc 

I S 3 (Ore) 
I J L I C ^ + L ^ X 0.25mm2 

I^_ 1 ( r / J+L m a t x22 .9mW 
lf = 1 ( r / / )+L m a x x26.2mW 

DPa+ DPl 

Table 5.3: Formulas for Estimating the Performance of a Design 

power for a stride is the expected leakage power of a single memory for that stride 

multiplied by the number of memories in that stride. The estimated active power for 

a stride is the expected active power for a single memory for that stride multiplied by 

the number of lookups per cycle; This is the maximum number of memories that can 

possibly be active in that stride at one time. In actuality, on average, fewer than that 

will be active, as some lookups will be resolved in previous strides. This estimate, 

therefore, provides a good upper-bound on the maximum expected average power, 

and hence total power for the design. The active and leakage power overheads of 

the non-SRAM logic are estimated to be 22.9mW and 26.2mW respectively for a 

single lookup per cycle, and expected to scale linearly with the number of additional 

lookups per cycle supported. These formulas are summarized in Table 5.3. 

To calculate the maximum throughput for the design, the stride with the largest 

memory cycle time dictates the highest frequency that the design could possibly op­

erate at. In practice, however, the routing, logic and register overhead of connecting 

these memories up in the design will be added to that. Determining the exact value 
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of this overhead would require implementing the design in hardware, so an approx­

imation of 200ps is used instead. The listed number of lookups per cycle indicates 

the maximum number of lookups that can be completed each clock cycle, but in 

practice the average number of lookups completed per cycle can be much less than 

that. As mentioned in Section 3.11, conflicts can occur between lookups that would 

cause them to access the same memories at the same time, which forces the arbiter 

to issue them in different clock cycles, reducing the design's throughput. The equa­

tion from that section is used to calculate the expected average lookups completed 

per cycle, which is then multiplied by the highest possible frequency to determine 

the maximum possible throughput for that stride choice. These formulas are sum­

marized in Table 5.3. 

To calculate the total latency of the design, the cycle time of the design is mul­

tiplied by the number of strides in the design plus 3. Each lookup spends one clock 

cycle in each stage (stride), one in the arbiter, one to determine the final lookup 

result, and finally one during input and output from the chip. This formula is sum­

marized in Table 5.3. 

5.3 Stride Choice Comparisons Using Three Metrics 

In this section, each of the three metrics is applied to every single possible stride 

choice, for every possible number of strides. In addition the number of parallel 

lookups, per clock cycle, supported is varied in all cases and is factored into the 

results. Only the last capture taken on May 27, 2007 is used for this analysis to limit 

the size of the data set, although the results are comparable for the other capture 

dates as well. The most promising candidates from each metric are presented and 

compared to evaluate the effectiveness of each metric. Finally, the preferred stride 

choice is selected and presented. 

5.3.1 Metric #2: Required Memory Entries 

Figure 5.3 shows the design's preferred stride choices to minimize the number of 

memory entries. Not shown on this graph is the result for a single stride of 32 bits 
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which requires (1 + 232) x L = 4,294,967,297 x L memory entries, where Lmax is 

the maximum number of simultaneous lookups per cycle supported. 

Based on the prefix distributions seen in Figure 5.1 it is unsurprising to see that 

almost all the preferred stride choices are based on separating the address space 

between the first 24 bits and the last 8 bits. The second less extreme drop between 

the number of length 25 to 27 prefixes to the length 28 to 32 prefixes is reflected 

in the benefit of partitioning the last 8 bits into two strides of 3 and then 5 bits 

respectively. 

Increasing the number of strides from 1 can dramatically decrease the required 

number of memory entries initially, with most of the reduction realized with 5 

strides. Although not shown on the graph, for one lookup per cycle, minor re­

ductions continue logarithmically until 12 strides, at which point the overhead of 

having an extra default entry per memory overtakes any reductions from moving to 

more strides of smaller size. 

As mentioned previously in Section 3.7 increasing the number of supported 

lookups per cycle requires replicating the first stride memory. Thus certain stride 

choices like {24,8} might result in the fewest memory entries for 1, 2 or 4 lookups 

per cycle, but other stride choices like {22,10}, with smaller first stride memories, 

become better choices for 8 or more lookups per cycle. 

Based on the number of required memory entries the preferred stride choice 

for up to 5 strides and 16 lookups per cycle is {09,08,04,03,08} with 1,317,582. 

This offers a factor of 50,000 reduction in memory entries over the single stride of 

32 bits for the same 16 lookups per cycle. Without any other constraints taken into 

account, it always makes sense to increase the number of parallel lookups using this 

metric as the incremental cost of an additional first stride memory will always be 

less than the incremental benefit of an additional lookup per cycle. This approach 

is not practical, however, as will be shown in Subsection 5.3.3. 
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Klaus 5.3 Stride Choice Comparisons Using Three Metrics 

5.3.2 Metric #1: Required Memory Bits 

Figure 5.4 shows the design's preferred stride choices to minimize the number of 

memory bits. Not shown on this graph is the result for a single stride of 32 bits 

which requires 55,834,574,856 x L memory bits, where L^^ is the maximum num­

ber of simultaneous lookups per cycle supported. 

It's clear that the same trends and observations that apply to the preferred stride 

choices for reducing memory entries also apply to the preferred stride choices for 

reducing memory bits. While a lot of the preferred stride choices for reducing 

memory bits are the same as those for reducing memory entries there are some slight 

differences; implying that counting memory entries is not a perfect approximation 

for counting memory bits. 

Based on the number of required memory bits, the preferred stride choice for 

up to 5 strides and 16 lookups per cycle is {10,08,03,03,08} with 16,980,853. 

This also offers a factor of 50,000 reduction in memory bits over the single stride 

of 32 bits for the same 16 lookups per cycle. Just as with the memory entries 

metric, without any other constraints taken into account, it always makes sense to 

increase the number of parallel lookups using this metric as the incremental cost of 

an additional first stride memory will always be less than the incremental benefit of 

an additional lookup per cycle. This approach is not practical, however, as will be 

shown in Subsection 5.3.3. 

5.3.3 Metric #3: Required Design Area 

Figure 5.5 shows the design's preferred stride choices to minimize the design's area, 

which includes not only the memory cell area, but the row and column overheads 

as well. Not shown on this graph is the result for a single stride of 32 bits, which 

requires 20,680 x L mm2, where Lmax is the maximum number of simultaneous 

lookups per cycle supported. 

One of the most apparent differences between the results of this metric and the 

previous two is that larger first strides and smaller second strides are far less favor­

able for producing the smallest chip area. The reason for this is because the chip 
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5 Quantitative Comparisons of Stride Choices Klaus 

area metric takes into account the fact that there's a fixed width and height overhead 

added on to each memory, as explained in Subsection 5.2.3. This overhead makes 

it extremely inefficient to create small memories that store only a few hundred bits 

or less, and heavily favors larger memories that can amortize the cost over a much 

larger number of bits. Thus, while this actually makes large first stride memories 

more attractive, it also makes having lots of small second stride memories pro­

hibitively expensive. Accordingly the preferred stride choices usually partition the 

first 24 bits fairly evenly into two larger strides, such as {11,13}. 

The reduced size of the first stride also means that adding an extra first stride 

memory, to support an additional lookup per cycle, is a much cheaper incremen­

tal cost. Preferred stride choices such as {11,13,03,05} remain attractive from 1 

lookup per cycle all the way to 32 lookups per cycle, with smaller first stride choices 

like {09,15,03,05} only providing a slight advantage in chip area for 16 or more 

lookups per cycle. 

Figure 5.6 shows the expected total power consumption of each of the preferred 

stride choices for reducing the design's chip area. Not shown on this graph is the 

result for a single stride of 32 bits which requires 4,064 xLW, where Lmax is the 

maximum number of simultaneous lookups per cycle supported. 

As expected the preferred stride choices for reducing the design's memory chip 

area also have very good expected total power consumptions. This is because the 

often dominant leakage power consumption is directly proportional to the total de­

sign area. On the other hand, the incremental total power consumption for adding 

an extra lookup per cycle is more than the incremental chip area. This occurs be­

cause, while the increase in leakage power is directly proportional to the increase in 

area, the increase in active power consumption is directly proportional to the num­

ber of lookups per cycle, and hence increases much faster with more lookups per 

cycle. 

Figure 5.7 shows the expected maximum throughput of each of the preferred 

stride choices for reducing the design's chip area. Not shown on this graph is the 

result for a single stride of 32 bits which is 7.83 x L million lookups per second, 
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5 Quantitative Comparisons of Stride Choices Klaus 

where Lmax is the maximum number of simultaneous lookups per cycle supported. 

As mentioned in Subsection 5.2.3 there are three main factors that influence the 

expected throughput of a stride choice for the design. The first is the largest cy­

cle time of a stride, which dictates the maximum frequency that the design can be 

clocked at. It's clear from the graph that very large strides, like for {24,8}, have 

very large memory access times, low maximum frequencies and hence low lookup 

throughput. The second factor is the maximum number of lookups per cycle sup­

ported by replicating the first memory. The more lookups that can execute per cycle, 

the higher the expected throughput, with doubling the number of maximum lookups 

doubling the throughput in most cases. The final factor affecting throughput is the 

likelihood of conflicting lookups that need to be resolved by the arbiter. The smaller 

the first stride, the more likely it is that two random lookups will target the same 

entry, forcing a stall and decreasing the throughput. This is most apparent with 

the stride choice {01,10,13,03,05} where the expected lookups per cycle reaches 

a maximum of 1.5, no matter what the maximum number of lookups per cycle is 

increased by. This is because the single bit first stride memory supports only two 

different lookups per cycle, and half the time the second lookup conflicts with the 

first and needs to be stalled. Clearly this stride choice would benefit from replicat­

ing not just its first stride memories, but its second stride memories as well. If this 

were done, however, this stride choice would require a lot more area to implement, 

and {11,13,03,05 } would remain a better choice. 

Conflicts creating stalls that affect throughput are also apparent, however, as 

stride choices like {09,07,08,03,05} see their incremental benefit of adding more 

lookups per cycle decay as the likelihood of conflicts increases in the 9 bit first 

stride memory. Replicating the 9 bit first stride memory from 8 times to 16 times 

to 32 times, for example, results in diminishing returns as the expected lookups per 

cycle goes from 7.84 to 14.8 to 23.8. 

As mentioned in the previous two sections, the previous two metrics both favor 

increasing the maximum lookups per cycle arbitrarily large as the incremental cost 

is always less than the incremental benefit. While diminishing returns on through-
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5 Quantitative Comparisons of Stride Choices Klaus 

put from this third metric clearly show that this is not the case, there are several 

other factors that also limit the usefulness of arbitrarily large scaling as well. The 

most compelling of these is the added complexity to the non-memory parts of the 

design. Up until this point we assumed that the area, power and latency of the 

SRAM memory were the dominant factors in the overall design. While this is true 

for a small number of parallel lookups per cycle, it will no longer hold for large 

numbers of parallel lookups. While doubling the number of parallel lookups might 

only double a fraction of the chip memory area (the first stride memories) it will 

double the number of lookup agents and all of the routing logic required for them 

to access all of the existing memories. Furthermore, the added complexity of bus­

ing twice as many lookup agents to all the memories will increase the latency of 

every agent's access, requiring more pipeline stages to maintain the same lookup 

frequency. This in turn increases the power consumption of the design and overall 

lookup latency. The complexity of the arbiter is also dramatically increased as well. 

Without implementing the design in hardware it is difficult to gauge the exact 

extent of these scaling limitations to parallelism. We feel that 16 lookup per cycle 

is a reasonable compromise: offering high throughput without overly complicat­

ing the busing and arbitration logic. With this in mind, a scatter plot of the best 

stride choices for minimizing the design's chip area while increasing the design's 

throughput was generated and is showing in Figure 5.8, for 16 lookups/cycle. From 

the plot, it is clear that stride choice {11,13,03,05} offers the best throughput for 

the lowest chip area, while {09,07,08,03,05} offers the smallest chip area for the 

highest throughput. The plot also shows that {12,12,03,05} offers a good compro­

mise between the two extremes. To determine which of these three stride choices is 

in fact the best, the ratios of throughput per area for all three were calculated, and 

are summarized in Table 5.4. 

From Table 5.4, the design with the best throughput for a given chip area has 

a stride choice of {09,07,08,03,05}. It has a chip area of 71.1mm2, total power 

consumption of 7.85W, maximum cycle time of 275ps, average lookups per cycle 

of 14.8, and a maximum throughput of 53.7 billion lookups per second. These 
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5 Quantitative Comparisons of Stride Choices Klaus 

Stride Choice 
{11,13,03,05} 
{12,12,03,05} 

{09,07,08,03,05} 

Chip Area 
60.7mm2 

66.0mm2 

71.1mm2 

Throughput 
38.9 billion lookups/sec 
44.4 billion lookups/sec 
53.7 billion lookups/sec 

Lookups/sec/mm2 

641 million 
673 million 
755 million 

Table 5.4: Ratio of Throughput to Chip Area For the Best Three Stride Choices 

Chip Area 
Active Power 

Leakage Power 
Total Power 
Cycle Time 

Lookup Latency 
Maximum Lookups per Cycle 
Average Lookups per Cycle 
Average Lookups/Second 
Average Energy/Lookup 

Value 

71.1mm2 

0A0W 
7.45W 
7.85W 
275/75 
1.92ns 
16.0 
14.8 

53.7 billion 
0.157n7 

Table 5.5: Performance of the Design with Preferred Stride Choice 
{09,07,08,03,05} 

numbers are summarized in Table 5.5. 
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Chapter 6 

Comparisons with TCAM 

In this chapter a Ternary Content Addressable Memory (TCAM) solution to the 

same "backbone" routing table lookup problem is presented. The features of this 

TCAM solution are derived, then compared to the proposed solution. 

6.1 Features of the TCAM Solution 

While the features of SRAM cells implemented in 45nm process technologies have 

been widely published, such as in the paper described in subsection 5.2.3, there 

is an apparent lack of similar publications for TCAM cells. This is compounded 

by the fact that TCAM macros published for older processes are often very small 

capacity and low throughput, making them unsuitable for "backbone" routing table 

lookup applications. 

Agrawal and Sherwood [1] address the lack of published design data by esti­

mating the features of TCAM macros based on the desired configuration, capacity 

and technology process used. While their estimates are not perfect, they offer good 

insight into the expected features of TCAM macros in a 45nm process, providing 

a level playing field for comparing against the proposed design. They also pro­

vide a download-able program at http://www.cs.ucsb.edu/~arch/memmodel/ (Note: 

"memmodel" and not "mem-model" as in the paper) that takes in the desired TCAM 

parameters and process technology size and produces all of the relevant feature and 

performance estimates. This program was used to produce a lot of the parameters 
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6 Comparisons with TCAM Klaus 

presented in the following paragraphs. 

From subsection 5.1.2 the largest "backbone" routing table available had 222,728 

prefixes on May 27, 2007. A TCAM solution to the "backbone" routing table 

lookup problem would therefore need a capacity of 222,728 rows of 32 bit entries to 

store all of the required prefixes. Matches to each search would need to be priority 

encoded to determine the longest matching prefix, whose entry location would then 

be used to address a 222,728 entry SRAM that stored each 8 bit forwarding port 

number. For higher throughput, the three steps of TCAM search, priority encoding 

and forwarding port number lookup are all done in separate pipeline stages. 

While the TCAM parameter calculating program does not provide estimates of 

the entire TCAM and priority encoder area, it does estimate a TCAM cell's size by 

linearly scaling a reference 0.18 /̂m process TCAM. A 45nm process TCAM cell's 

width and height are estimated to be 4.33 x process/0.18 = 4.33 x 0.045/0.18 = 

1.0825,um and 4.05 x process/0.18 = 4.05 x 0.045/0.18 = 1.0125^m respectively, 

for an area of 1.0825^m x 1.0125^m = 1.096>n2. Thus a TCAM with 222,728 

rows of 32 bits each has an area of 7.81mm2 from its bit cells alone, not count­

ing sense amplifiers, row decoders, column decoders, bank overhead and priority 

encoding. 

The TCAM parameter calculating program takes in the number of banks to di­

vide the TCAM into. Since simply adding additional rows to a TCAM increases 

the length and hence capacitance of its search and bit lines, the performance of a 

TCAM macro cannot scale with its capacity. Thus, it is common to divide a TCAM 

into many smaller connected banks, trading added routing and priority encoding 

complexity for increased performance and similar capacity. To determine the ap­

propriate number of banks for the TCAM solution, the search throughput and active 

power consumption for various numbers of banks are plotted in Figure 6.1. 

The search throughput and active power consumption increase fairly equally 

until 256 banks, at which point the latency of the priority encoder becomes larger 

than the latency of the search itself. Increasing the number of banks past this point, 

therefore, offers no improvement in throughput. The search power does still in-
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6 Comparisons with TCAM Klaus 

Feature 

Memory Organization 
Memory Rows 

Memory Columns 
Memory Height 
Memory Width 
Memory Area 

Memory Active Power 
Memory Leakage Power 

Memory Total Power 
Memory Max Access Time 

Value 

222,728x32 
1741 
1024 

0.786mm 
0.922mm 
0.724mm2 

66.4mW 
15.9mW 
142.3mW 

803/M 

Table 6.1: Features of the Required Forwarding Next Port SRAM 

crease slightly despite no increase in searches per second, however, because of the 

added power dissipated in the more complicated bank routing. Since adding more 

banks past 256 adds no additional throughput at the cost of added search power, 

256 banks was selected for the TCAM solution. This gives the TCAM an estimated 

search latency of 93Qps and an active power consumption of 7.83nJ/search. 

To calculate the leakage power of a TCAM, the program uses an internal list of 

technology parameters. Unfortunately, the program only has these parameters for 

0.18/vm, 0.13/um, 0. lO/um, and 0.07/jm processes. The leakage power of the TCAM 

solution is plotted for each of these processes in Figure 6.2. It's clear from the 

graph that the leakage power of the TCAM solution steadily increases as the process 

technology size decreases, although predicting exactly what the value might be for 

A5nm is not straight-forward. As a very conservative estimate, the leakage power 

of 5.17W for the 70«m process is used to represent the TCAM solution. 

The same model presented in subsection 5.2.3 is used to estimate the features of 

the required forwarding port number SRAM. Table 6.1 summarizes these estimated 

features. 

This TCAM solution has a total TCAM bit cells area of 7.81mm2 and a forward­

ing SRAM area of 0.724mm2, for a total minimum area of 8.53mm2. The total la­

tency of the TCAM search, priority encoding and forwarding SRAM lookup stages 

are 939 ps, 918p.y, and 803ps respectively, for a minimum cycle time of 939ps and 
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6 Comparisons with TCAM Klaus 

Feature 

TCAM Organization 
TCAM Minimum Area 
TCAM Active Power 

TCAM Leakage Power 
TCAM Total Power 
TCAM Cycle Time 

TCAM Latency 
TCAM Lookups/Second 
TCAM Energy/Lookup 

Value 

256 banks of 871 words by 32 bits 
8.53mm2 

8.40W 
5.25W 
13.7W 
939ps 
2.82ns 

1.06 billion 
12.9nJ 

Table 6.2: Features of the TCAM Solution 

a maximum throughput of 1.06 billion lookups/second. The search active power 

of the TCAM cells and priority encoder is therefore 8.33W, combining with the 

active power of the forwarding SRAM (66.4mW) for a total search active power of 

8.40W. The minimum leakage power of the TCAM cells and priority encoder is 

5.17W, combining with the leakage power of the forwarding SRAM (15.9mW) for 

a total leakage power of 5.25W. This means the entire TCAM solution has a total 

power of 13.7W. A summary of the features of the entire TCAM solution is shown 

in Table 6.2. 

6.2 Comparison of the TCAM Solution 

From subsection 5.3.3 the hardware trie design proposed in this thesis has an av­

erage lookups per second of 53.7 billion. For a comparable search throughput, the 

TCAM solution would have to be replicated over 50 times, requiring a total area of 

at least 427mm2 and a total search power of 685W. Clearly, with 16.7% the area 

and 1.1% the power, per lookup, for the same throughput, the proposed hardware 

trie design is a dramatic improvement over TCAM. These results are summarized 

in Table 6.3. 
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Klaus 6.2 Comparison of the TCAM Solution 

Feature 

Chip Area 
Active Power 

Leakage Power 
Total Power 
Cycle Time 

Latency 
Lookups/Second 
Energy/Lookup 

TCAM Solution 

427mm2 

420W 
263W 
685W 
939ps 
2.82ns 

53.0 billion 
\2.9nJ 

Proposed Solution 

71.1mm2 

0.4CW 
1A5W 
7.85W 
215ps 
1.92ns 

53.7 billion 
0.157n/ 

% of TCAM Value 

16.7% 
0.01% 
2.83% 
1.15% 
29.3% 
68.1% 
101% 
1.22% 

Table 6.3: Feature Differences Between TCAM Solution and the Proposed Solution 
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Chapter 7 

Conclusion 

This thesis presents a solution to the routing table lookup problem for "backbone" 

routers. Previously published software and hardware solutions lack the scalability 

required to keep pace with the ever growing demands placed on the Internet's "back­

bone" routers. The proposed design leverages the power efficiency and low cycle 

times of SRAM to construct a pipelined fixed-stride hardware trie on a chip. An in­

novative design allows multiple lookups to be done per cycle, providing incredibly 

high throughput with very low power consumption. Special design considerations 

ensure that updating the routing table is straight-forward and well bounded in even 

the worst case. 

The design was implemented in VHDL to validate it, not only through func­

tional simulation, but also through an FPGA implementation. Several different 

metrics were developed to evaluate the pros and cons of different stride choices 

using real "backbone" routing tables, with chip area estimation proving to be the 

most accurate. A stride choice of {09,07,08,03,05} with 16 lookups/cycle proved 

to be the preferred in terms of chip area, power and throughput, boasting an average 

of 53.7 billion lookups/second, with only 7.S5W of total power consumption, and 

a chip area of 71.1mm2. This solution is far more efficient than the industry stan­

dard TCAM; It requires 16.7% of the TCAM chip area and 1.1% of the power, per 

lookup, for the same throughput. 
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7 Conclusion Klaus 

7.0.1 Future Work 

The next step in this research is to implement and validate the proposed design in 

hardware. Different pipelining schemes could be experimented with during this 

process to help increase throughput at the cost of additional power and latency. The 

benefits and costs of adding a tag number to each lookup request could also be 

explored. 

Another idea would be to look into improved ways of implementing both really 

small and really large memories. A really small memory could be replaced by a 

register file, for example, taking up less chip area than a handful of bit cells and all 

of the overhead sense amplifiers and decoders of an SRAM. 

Other possibilities for improving throughput exist as well. By gaining access to 

real "backbone" packet to destination address traces, different arbiter designs could 

be more accurately evaluated, possibly motivating a more complicated arbiter to 

improve throughput. A small cache of previous lookups for the design might also 

offer some advantages, both by handling some additional lookups, and by reducing 

the number of conflicts that cause stalls. 

Finally, the design could be extended to handle IPv6 addresses or more packet 

fields in addition to the destination address. While these sparser address spaces 

are not idea for trie based designs, the proposed design may prove to still be fairly 

efficient. 
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Appendix A 

History of the Internet Protocol (IP) 

While millions and millions of people use the Internet every day, very few of us 
know how it started or how it works. To understand the Internet, however, we also 
need to understand computers. 

Computers speak to each other using various agreed upon methods of sharing 
and interpreting data called protocols, similar to how humans communicate using 
different languages. Often different computer tasks involve different operations, 
and hence use different protocols. Protocols are often organized into different lev­
els, with lower level protocols handling very basic computer interactions, while 
higher level protocols offer much more specialized functionality by making use of 
functions provided by lower level protocols. This allows many higher level proto­
cols to make use of the same lower level protocol and not have to worry about the 
low level details. 

Prior to the Internet, many organizations developed their own protocols to han­
dle interactions between their computers. A given computer was connected to a 
handful of other computers using the same protocol, forming what is called a net­
work. Many different networks were formed, each using its own protocol, and each 
providing limited or no connectivity to other networks. The Internet as we know it 
today started as an effort to connect all of these different networks together. That ef­
fort culminated in the release of RFC675 in 1974 which specifies the Transmission 
Control Protocol (TCP) and the Internet Protocol (IP) version 1 [10]. 

The idea behind these new protocols was to standardize the lowest level pro­
tocols computers use to communicate with each other. Higher level protocols that 
provided services such as electronic mail (SMTP), news (NNTP), and file transfer 
(FTP) could then make use of these new low level protocols instead of defining their 
own. A network that implemented these low level protocols could be connected 
seamlessly with other similar networks, providing high level services to each other 
without being forced to change their existing infrastructure. 
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Appendix B 

Process Examples 

All of the following process examples use the same fixed-stride {4,2,2} hardware 
prefix trie shown in Figure 3.1 on Page 35 and built from the prefixes in Table 3.1 
on Page 35. 

B.l Lookup Process Examples 

B.l.l Lookup Example 1: IP Address 01101111 
In this example IP address 01101111 is being looked up. In Figure B.l the first 
stage lookup of 0110 in the first bank results in a pointer to the first bank in the 
second stage. The default data from the first bank is the default value so is not 
stored. In Figure B.2 the second stage lookup of 11 in the first bank results in a 
pointer to the first bank in the third stage. The default data from the first bank is 
port number 1 which is stored. In Figure B.3 the last stage lookup of 11 in the first 
bank results in a port number value of 2 which is output as the result. 

B.1.2 Lookup Example 2: IP Address 11010010 
In this example IP address 11010010 is being looked up. In Figure B.4 the first 
stage lookup of 1101 in the first bank results in a pointer to the third bank in the 
second stage. The default data from the first bank is the default value so is not 
stored. In Figure B.5 the second stage lookup of 00 in the third bank results in a 
port number value of default which is stored. The default data from the third bank 
is port number 8 which is stored. In Figure B.6 the last stage doesn't perform a 
lookup. Since the stored port number is the special default value the stored default 
port number is output as the result, which is 8. 
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B.2 Addition Process Examples 

B.2.1 Addition Example 1: Prefix 01101000/7 -* Port 4 
In this example IP prefix 01101000/7 to port 4 is being added to the routing table. 
In Figure B.7 the prefix extends past the first stage (whose stride is 4) so the first 
four bits of the prefix, 0110, are indexed into the first bank. The result is a pointer to 
the first bank in the second stage which is followed. In Figure B.8, since the prefix 
also extends past the second stage a lookup is performed using 10 as the index to 
the first bank in the second stage. This yields a port number, which means a new 
bank must be allocated in the third stage. After the second bank in the third stage 
is allocated its default value is set to the port number and prefix length read from 
the first bank in the second stage (port default, length 0). In Figure B.9 the entry 
in the first bank of the second stage is changed to now point to the newly allocated 
second bank in the third stage. This pointer is then followed, arriving at the third 
stage, which the prefix does not extend past. In Figure B.10 and Figure B.ll the 
two entries in the second bank of the third stage that are covered by the prefix being 
added are read. Since they both contain prefix lengths of 0 they are both replaced 
by the prefix's entry of port 4 length 1. 

B.2.2 Addition Example 2: Prefix 01100000/3 -> Port 1 
In this example IP prefix 01100000/3 to port 1 is being added to the routing table. 
In Figure B.12 the prefix does not extend past the first stage (whose stride is 4). In 
Figure B. 13 the first entry covered by the prefix in the first bank of the first stage is 
read. It contains a pointer to the first bank of the second stage so that bank's default 
entry is analyzed. Since it contains a shorter prefix (corresponding to 00000000/1) 
it is replaced by the new prefix's entry of port 1 length 3. In Figure B. 14 the second 
and last entry covered by the prefix in the first bank of the first stage is read. Since 
it contains a port number for a shorter prefix (corresponding to 00000000/1) it is 
replaced by the new prefix's entry of port 1 length 3. 
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Klaus B.3 Removal Process Examples 

B.3 Removal Process Examples 

B.3.1 Removal Example 1: Prefix 01100000/3 
In this example IP prefix 01100000/3 is being removed from the routing table. In 
Figure B.15 the prefix doesn't extend past the first stage, so a search for the longest 
prefix that encompasses the prefix to be removed is conducted. A search of entry 
0100 in the first bank of the first stage yields prefix 00000000/1 - • Port 0 which 
suffices, so it will therefore be used as a replacement for the removed prefix's en­
tries. In Figure B.20 the first entry covered by the prefix in the first bank of the first 
stage is read. It contains a pointer to the first bank of the second stage so that bank's 
default entry is analyzed. Since it contains a match to the prefix to be removed it 
is replaced by port 0 length 1. In Figure B.21 the second and last entry covered by 
the prefix in the first bank of the first stage is read. Since it contains a match to the 
prefix to be removed it is replaced by port 0 length 1. In Figure B.22 since it is the 
first stage no bank deallocation is possible. 

B.3.2 Removal Example 2: Prefix 01101000/7 
In this example IP prefix 01101000/7 is being removed from the routing table. In 
Figure B. 19 the prefix extends past the first stage (whose stride is 4) so the first four 
bits of the prefix, 0110, are indexed into the first bank. The result is a pointer to the 
first bank in the second stage which is followed. In Figure B.20, since the prefix 
also extends past the second stage a lookup is performed using 10 as the index to 
the first bank in the second stage. This yields a pointer, which is also followed. In 
Figure B.21, since the prefix does not extend past the current stage a search for the 
longest prefix that encompasses the prefix to be removed is conducted. Since such 
a prefix does not exist within the scope of this stage, the default entry will be used 
as a replacement for the removed prefix's entries. In Figure B.22 and Figure B.23 
the two entries in the second bank of the third stage that are covered by the prefix 
being removed are read. Since they are both entries for the prefix to be removed 
they are both replaced by the default entry of port default length 0. In Figure B.24 
since it is a third stage bank deallocation may be possible. In Figure B.25, Figure 
B.26 and Figure B.27 each entry in the second bank of the third stage is read and 
verified to match the default entry, which means the bank can be safely deallocated. 
In Figure B.28 the second bank of the third stage is deallocated and the second 
stage is revisited. Since it is a second stage bank deallocation may be possible. In 
Figure B.29, Figure B.30 and Figure B.31 the first three entries in the first bank of 
the second stage are read and verified to match the default entry. In Figure B.32 
the last entry in the first bank of the second stage is read and it does not match the 
default entry, which means the bank cannot be deallocated. 
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