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Abstract

The primary goal of this thesis is to implement the Kiefer-Wolfowitz non-

parametric empirical Bayes method for models with multivariate response,

using the idea of the dual algorithm outlined in a paragraph from Koenker

and Mizera (2014). The approach of Kiefer-Wolfowitz was numerically elab-

orated by Koenker and Mizera (2014) and applied to the univariate normal

means problem. For the problems with multivariate response, their method

may be not numerically feasible. If the dual problem is considered instead,

we are able to come up with an adaptive algorithm, which iteratively uses

unequally spaced grids to approximate the prior. In this way, we can solve

the dual problem without using overly many grid points. Another objective

of the thesis is to facilitate the multivariate data-analytic application of the

developed algorithm. To this end, we study Tweedie’s formula, which can be

used to compute the posterior mean, after the estimate of the prior is ob-

tained. Finally, the formulation of the Koenker–Mizera dual has been justified

in the discretized setting as the Lagrange dual of the original (discretized)

formulation.
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Chapter 1

Introduction

The primary goal of this thesis is to implement the Kiefer-Wolfowitz nonpara-

metric empirical Bayes method for models with multivariate response, using

the idea of the dual algorithm outlined in a paragraph from Koenker and

Mizera (2014):

Note that although the primal formulation is infinite-dimensional

in the objective (in F ), the objective of the dual formulation is

finite dimensional (in ν), and infinite-dimensionality appears only

in the constraint. This offers a potential for certain refinements:

instead of a uniformly spaced grid supporting an atomic measure

meant to approximate F , we could instead work with an adap-

tive (and not necessarily uniformly spaced) collection of test points

where the dual constraint is enforced. In fact, if we knew the lo-

cations of maxima for the function appearing in the constraint, we

could simply select these test points at these locations. Such in-

formation is typically unavailable, but practical implementations

may seek to refine the solution in an iterative manner by refining
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the grid in regions identified by preliminary estimation.

The approach of Kiefer-Wolfowitz was numerically elaborated by Koenker and

Mizera (2014) and applied to the univariate normal means problem. For the

problems with multivariate response, whose applications are discussed below,

their method may be not numerically feasible. The primal problem of maxi-

mizing the likelihood function can be reformulated as a convex problem and

then efficiently solved by interior point methods. However, unlike in the u-

nivariate case, the number of grid points used for multivariate problem can

be tremendously large and make the computational complexity of estimating

the prior prohibitive. For example, if the dimension of the parameter space is

three, the number of grid points needed will be then 1000×1000×1000, which

is about to make the problem intractable. If the dual problem is considered

instead, we are able to come up with an adaptive algorithm, in Section 5.1,

which iteratively uses unequally spaced grids to approximate the prior. In this

way, we can solve the dual problem without using overly many grid points.

Another objective of the thesis is to facilitate the multivariate data-analytic

application of the developed algorithm. To this end, we study Tweedie’s for-

mula in Section 2.3, which can be used to compute the posterior mean, after

the estimate of the prior is obtained. Finally, as a side product, the formula-

tion of the Koenker-Mizera dual has been justified in the discretized setting

as the Lagrange dual of the original (discretized) formulation. This is the

contents of Chapter 3.

The thesis is organized as follows. In Chapter 2, we review classical Bayes

and empirical Bayes paradigms; we discuss both parametric and nonparametric

empirical Bayes. We note that the setting of Kiefer and Wolfowitz, as an
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example of nonparametric empirical Bayes paradigm, is a convex problem;

then, duality results are applicable. We study the discretized and continuous

dual problem in separate chapters, Chapter 3 and Chapter 4. Looking at the

discretized dual problem, we find there is a potential to provide an algorithm

which computes Kiefer-Wolfowitz’s MLE in higher dimensional space. The

adaptive algorithm and numerical experiments are discussed in Chapter 5.
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Chapter 2

Empirical Bayes paradigm

This chapter introduces the main ideas in the empirical Bayes approach to

statistical inference. The fundamental empirical Bayes ideas are provided in

Section 2.1. Then we briefly review classical Bayes paradigm (Section 2.2).

In Section 2.3, Tweedie’s formula is introduced as a prediction method that

assumes the existence of the prior but does not explicitly use the informa-

tion within the prior. In Section 2.4, James-Stein estimator and hierarchical

Poisson-Gamma model are studied as two examples for the parametric ap-

proach. Finally, in Section 2.5, we observe that Kiefer-Wolfowitz estimator

can be justified as an example for nonparametric empirical Bayes paradigm.

2.1 The Problem of Multiple Prediction

We are concerned with the problem of estimating φi ∈ Rp, based on the

observations X1, ..., Xn and

Xi
ind∼ fi(·|φi) (2.1)
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for i = 1, ..., n and Xi ∈ Rp. The provision of different error distributions fi

is to allow for inclusion of covariates; without them all fi = f , which will be

assumed in what follows, unless the contrary is explicitly specified.

The φi’s are viewed as drawn independently from a distribution Q. The

performance of an estimator, or prediction φ̂i is evaluated based on the aggre-

gate squared loss function
n∑

i=1

∥∥∥φ̂i − φi

∥∥∥2 .
A classical application of this setting is the baseball predictions (Efron and

Morris 1975,1977 and Brown 2008). The performance of a baseball player is

measured by the batting average: the ratio of the number of hits H to the

number of at-bats N . The number of hits naturally can be modelled as a

binomial random variable H ∼ Bin(N, p) with an unknown parameter p that

represents the player’s latent ability. After taking the arcsin transformation

X = arcsin(H/N), each X is approximately normally distributed with mean

θ and variance 1/(4N), where θ = arcsin(
√
p). The parameter θ corresponds

to φ in (2.1).

In the classical Bayesian setting, Q can be seen as a prior distribution. In

such a case, the optimal prediction rule is the mean of the posterior density

E(φ|x) derived via the Bayes rule. However, this can be worked out only if

the prior distribution Q is known, which may not be true in applications. For

example, to make the prior to reflect the past experience, we may need a large

amount of data; in some fields, such a requirement is either impossible or too

expensive. So a natural question arises: what if the prior is unknown or cannot

be completely specified?

In such a situation, we can sometimes use the observed data to estimate
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either the prior, or directly the prediction rule. When Q is not completely

specified and depends on some unknown hyperparameter(s), say λ ∈ Rq, we

can handle the compound decision problem by first estimating λ from the

marginal density of the observations and then computing the posterior mean.

Another possible approach here is to use the hierarchical Bayes approaches,

which treats λ as a random variable and forms prior distribution on the hy-

perparameters of the prior distributions, Λ ∼ ψ(λ), which is assumed to be

known and not depending on any other unknown hyperparameters.

If the prior distribution Q is completely unknown, neither of the approaches

above is applicable since both of them assume the parametric form of the prior

is given. On the other hand, we can still work out the Bayes rule and it turns

out to be an expression which mainly depends on the marginal distribution

of X. If the error distribution f(x|φ) is taken from an exponential family,

then the so-called Tweedie’s formula shows we can either directly estimate the

marginal density f(x) or find a way to obtain the estimated prior Q̂. In either

case, the posterior mean can then be computed.

Brown (2008) applies both parametric and nonparametric empirical Bayes

methodologies for prediction of the unknown θi, the transformed latent ability

for player i. Each of them reduced the total squared error by about 50%,

compared to the näıve estimator δ0(Xi) = Xi. Jiang and Zhang (2010) also

suggest to add the covariates to the model and fit the partial linear regression

Xi = zTi β + εi + ui,

where ui is (approximately) normally distributed with variance σ2
i = 1/(4Ni),

the εi’s are independently drawn from the unknown prior distribution and zi
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contains the information that whether the player is a so-called pitcher, the

number of at-bats in the first half of the season and possible interactions.

We then want to estimate Zβ + ε. With this improvement, empirical Bayes

estimators reduced about 80% of the total squared error.

Compared to the games like basketball or baseball, a game like hockey

measures the performance of an individual player with the number of goals

and assists. Given these numbers and the amount of time on ice for each

player in a regular season, we are interested to know what are the predicted

number of goals and assists in the playoffs. Each of the variables can be

modelled with the Poisson process with an unknown parameter λ = (λ1, λ2)

that respectively represents the player’s latent ability of scoring and assisting

per unit time. To obtain the estimated λi, we can assume the two processes

are independent and then the problem is equivalent to the univariate case.

That is discussed in Section 5.3 where both the parametric and nonparametric

Bayes approaches are used. However, the goals and the assists are considered

likely to be positively correlated and the performance for an individual player

is non-trivially measured by bivariate parameters. That is why we need a

multivariate implementation.

2.2 Classical Bayes Paradigm

In the classical non-Bayesian approach, the parameter φ is unknown but fixed.

Instead, in Bayesian statistics φ is considered to be a random variable de-

scribed by a probability distribution Q, called prior distribution. The prior

distribution, based on the experimenter’s belief, is completely specified before

data analysis. Once the prior is determined, we may take a random sample
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X1, ..., Xn with distribution f(·|φ) and then the Bayes rule says how to update

our prior belief to posterior belief. If π(φ) is the density of the prior Q, then

the posterior is

π(φ|x) = f(x|φ)π(φ)
f(x)

.

Suppose the loss is squared error. To obtain the Bayes estimator of φ, we

choose a decision rule d(x) to minimize the Bayes risk

∫
Ω

(φ− d(x))2π(φ|x)dφ,

where Ω is the parametric space. Differentiating with respect to d(x) and

taking into account the posterior density integrates to 1, we obtain the Bayes

estimator as the posterior mean

d(x) = E(φ|x) =
∫
Ω

φ
f(x|φ)dQ(φ)

f(x)
,

where f(x) =
∫
Ω
f(x|φ)dQ(φ).

The following theorem states that the Bayes rule always exists in most

cases and is optimal with respect to the selected loss function.

Theorem 2.1: Suppose the following assumptions hold for the problem of

estimating g(Φ) with non-negative loss function L(φ, d).

(a) There exists an estimator δ0 with finite risk.

(b) For almost all x, there exists a value δQ(x) minimizing

E {L [Φ, δ(x)] |X = x} .

Then δQ(X) is a Bayes estimator.
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Proof. See Lehmann and Casella (1998, page 228).

The following example is due to Casella and Berger (2001, page 325).

Example. Let X1, ..., Xn be iid Bernoulli(p). Then Y =
∑n

i=1Xi is

Binomial(n, p). The prior distribution on p is assumed to be Beta(α, β). The

joint distribution of Y and p is

f(y, p) =

n
y

 Γ(α + β)

Γ(α)Γ(β)
py+α−1(1− p)n−y+β−1.

Notice that f(p|y) ∝ f(y, p) and then the posterior distribution is

f(p|y) = Γ(n+ α + β)

Γ(y + α)Γ(n− y + β)
py+α−1(1− p)n−y+β−1,

which is Beta(y + α, n − y + β). If loss is squared error, the Bayes estimator

of p is the posterior mean,

E(p|y) = y + α

α + β + n

or

E(p|y) =
(

n

α + β + n

)(y
n

)
+

(
α + β

α + β + n

)(
α

α + β

)
. (2.2)

The (2.2) suggests the Bayes estimator in this case can be seen as a linear

combination of the prior mean and the sample mean.

2.3 Tweedie’s Formula

Suppose the random vector X and the parameter of interest φ are taken from

Rp with p > 1. The parameter φ has a prior density q and the real-valued like-
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lihood function of φ is taken from multivariate exponential family, as defined

in (DasGupta, page 508),

f(x|φ) = exp
{
φTx− ψ(φ)

}
f0(x),

where ψ(φ) is the cumulant generating function and f0(x) = f(x|φ = 0).

Denote the marginal density as f(x). A straightforward calculation gives

the posterior density of φ given x,

f(φ|x) = exp
{
xTφ− λ(x)

}
[q(φ) exp {−ψ(φ)}], (2.3)

where λ(x) = ln
(

f(x)
f0(x)

)
. Notice that (2.3) is an exponential family with canon-

ical parameter x and cumulant generating function λ(x). For the multivariate

exponential family, we have the result that the first derivative of the cumulant

λ(x) equals the expectation of φ given x. Then the Bayes rule has the form

E(φ|x) = dλ(x)

dx
, (2.4)

where

λ(x) = ln

(
f(x)

f0(x)

)
and

dλ(x)

dx
=

(
∂λ(x)

∂x1
, ...,

∂λ(x)

∂xp

)
.

The expression (2.4) is called Tweedie’s formula and it was first provided

by Robbins in 1956. Efron calls such an expression Tweedie’s formula because

that Robbins “credits personal correspondence with Maurice Kenneth Tweedie

for an extraordinary Bayesian estimation formula”. In some literature, this
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formula is also referred to Robbins’ formula but in this thesis we follow the

terminology of Efron’s paper. The formula (2.4) coincides for p = 1 with that

derived in Efron (2011), who mentions a possibility of multivariate extension.

As the latter is not readily available in the literature, we provide a multivariate

version here.

Tweedie’s formula says that the Bayes rule (2.4) depends directly on the

marginal distribution of X; therefore, it is in principle not necessary to esti-

mate the prior density q. Indeed, the marginal density f(x) can be estimated

by kernel density estimation or Lindsey’s method (Efron, 2011).

Example. Suppose X is a p-dimensional random vector and µ is taken

from Rp. Given X|µ ∼ Np(µ,Σ), where the covariance matrix Σ is known. It

is clear that the canonical parameter φ = Σ−1µ and the Bayes rule is

E(φ|x) =
d ln

(
f(x)
f0(x)

)
dx

, (2.5)

where

f0(x) = (2π)−
p
2 |Σ|−

1
2 exp

{
−x

TΣ−1x

2

}
.

Then (2.5) becomes

E(φ|x) = d ln(f(x))

dx
− d ln(f0(x))

dx

=
d ln(f(x))

dx
+ Σ−1x.

Now the Bayes rule for µ would be,

E(µ|x) = x+ Σ
d ln(f(x))

dx
.
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2.4 Parametric Empirical Bayes

Consider the setting defined in Section 2.1. If we can specify the parametric

family of Q but leave certain hyperparameters unknown and the hyperparame-

ters eventually are estimated from the data, this is called parametric empirical

Bayes. The first major work in this area was made by Efron and Morris (1975,

1977). The procedure is first writing out the marginal distribution and then

obtain the estimators for all hyperparameters. As soon as the prior is specified,

the classical Bayesian follows and we can compute the posterior expectation

without any trouble.

In this section, James-Stein estimator and hierarchical Poisson-Gamma

model are studied as two examples of parametric empirical Bayes.

2.4.1 James-Stein Estimator

The approach leading to the James-Stein estimator assumes the observed den-

sity and the prior are both normal. To illustrate the outcome of this method,

let us first consider a univariate case. Consider φ ∼ N(0, a) with a unknown

and the error distribution f(x|φ) we observed is N(φ, 1). Since we do not know

the value of a in the prior N(0, a), the classical Bayes approach cannot be used

directly. However, we can follow empirical Bayes paradigm and extract the

information about a from the marginal density of X.

It is not hard to see that the marginal distribution of X is again a normal

distribution with mean 0 and variance a+ 1. The Bayes estimator of φi is

φ̂i = E(φi|xi) =
(
1− 1

â+ 1

)
xi.

12



Using the method of moments, we may obtain a for an estimator

â =

∑n
i=1 x

2
i

n
− 1.

In the empirical Bayes, the unknown term 1/(a + 1) is unbiasedly estimated

by (n− 2)/
∑n

i=1 x
2
i . This results in the James-Stein estimator

φ̂
(JS)
i =

(
1− n− 2∑n

i=1 x
2
i

)
+

xi,

where the notation ()+ is the positive part of function and it is defined as

f+(x) = max {f(x), 0} .

More generally, assume that φi
ind∼ N(M,A) and Xi|φi

ind∼ N(φi, σ
2
0) with

i = 1, ..., n and n > 4, where the hyperparameters M and A are the mean and

variance of the prior distribution. The marginal density of Xi is

Xi ∼ N(M,A+ σ2
0)

and the posterior density

φi|xi ∼ N(M +B(xi −M), Bσ2
0),

where

B =
A

A+ σ2
0

.

13



Now the Bayes estimator of φi is

φ̂i =M +B(zi −M).

Although the values of A and B are unknown at the beginning, we can obtain

the estimators from marginal density. Eventually, the James-Stein estimator

acquires the form

φ̂
(JS)
i = x+

(
1− (n− 3)σ2

0

S

)
+

(xi − x), (2.6)

where S =
∑n

i=1(xi − x)2.

The estimator (2.6) shrinks each observed value xi toward sample mean

x. The amount of shrinkage depends on other observations. This fact might

counter our intuition because each observation xi|φi is taken independently,

but in most cases this type of shrinkage will reduce the total squared of error

and improve the estimate of φi.

There is another very appealing theoretical property of this approach which

is not so obvious at first glance.

Theorem 2.2: For n > 3, the following is true that

Eφ

{
||φ̂(JS) − φ||2

}
< Eφ

{
||φ̂(MLE) − φ||2

}

for all φ.

Proof. See James and Stein (1961).

The theorem says that for n > 3, the James-Stein estimator is always closer

to φ than MLE; this fact severely shocked the statistical world.
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We end up of this section with an example of Casella (1985) giving an intu-

itive justification of James-Stein estimator in the one-way analysis of variance

(ANOVA).

Example. Suppose there are five treatments. Let x1, ..., x5 be observed

means and θ1, ..., θ5 represent true means. Consider testing

H0: all θi’s equal

versus

HA: at least two of θi ’s not equal.

If H0 is true, then we should estimate θ with the sample mean x, whereas if

HA is true, then we should estimate each θi with xi. James-Stein estimator

takes a compromise between these two extremes and can be seen as a linear

combination of x and xi (Figure 2.1). It becomes clear if we rewrite (2.6) as

φ̂
(JS)
i =

(
(n− 3)σ2

0

S

)
x+

(
1− (n− 3)σ2

0

S

)
xi. (2.7)

From 2.1, we can see that James-Stein estimator affects extreme means x1

and x5 much more that if affects the ones that are close to x. The amount of

shrinkage depends the F statistic that test ANOVA null hypothesis. If there

are n treatments, the F statistic is

F =

∑n
i=1

(
xi −X

)2
(n− 1)σ̂0

2 ,

where σ̂0
2 estimates σ2

0. Here we assume σ2
0 is known, hence the null hypothesis

15



Figure 2.1: The Empirical Bayes Estimator in the One-Way ANOVA
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mean
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●

●

●

●

●

will be tested by

TS =

∑n
i=1

(
xi −X

)2
(n− 1)σ2

0

∼
χ2
n−1

(n− 1)

and (2.7) now can be written as

φ̂
(JS)
i =

(
n− 3

n− 1

)
TS−1x+

[
1−

(
n− 3

n− 1

)
TS−1

]
xi.

As TS becomes large and the data favors HA, φ̂
(JS)
i puts more weights on xi

and less on x, which consists of our intuition.

2.4.2 Hierarchical Poisson-Gamma Model

Poisson distribution is frequently used in the modelling of counts. In many

cases, we will find that the observed variability is greater that the Poisson

predicts. Such a phenomenon is called overdispersion. When the Poisson dis-

tribution is chosen, overdispersion is often a problem because in the model we

assume mean and variance are identical, but usually they are not. One way to
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deal with the overdispersion is to treat Poisson parameter as a random vari-

able following Gamma distribution. Then it can be shown that the marginal

distribution is negative binomial and it has larger variance than mean.

Suppose X|φ ∼ Poi(φ) and φ ∼ Gamma(a, b), where a, b are positive and

unknown. The marginal distribution of X is

f(x) =
Γ(x+ a)( b

1+b
)x( 1

1+b
)a

Γ(a)Γ(x+ 1)

which is a negative binomial distribution with parameters a and b/(1 + b).

The method of moments estimators for a, b are â = x2/(s2 − x) and b̂ =

(s2−x)/x, where s2 = (
∑n

i=1 x
2
i − nx2) /(n− 1). A straightforward calculation

gives the posterior density

f(φ|x) = φ(x+a)−1exp{− φ

( b
1+b

)
}/[Γ(x+ a)(

b

1 + b
)x+a]

which is a gamma distribution with parameters x+a and b/(1+b). The Bayes

estimator of φi is

φ̂i = (1− x

s2
)xi +

x2

s2
.

2.5 Nonparametric Empirical Bayes

The classical Bayes approach assumes the prior is completely known and set

up before seeing any data. However, in practice this may not be feasible. The

question is: if the prior Q is considered to exist but not known, is there a

way to obtain an approximation to the unknown prior distribution function,

or to the Bayes prediction rule, when the error distributions f(·|φi) are given?

Robbins (1956) was one of the first people who asked this question.

17



Suppose we observe x1, ..., xn and the decision about φn+1 is to be made.

The key idea of the nonparametric empirical Bayes approach is to find a de-

cision whose form depends on x1, ..., xn such that the overall expected loss

asymptotically equals to the minimum possible Bayes risk relative to Q. “[We]

hope for large n...[we are] able to extract some information about [the prior]

from the values...which have been observed, hopefully in such a way that [em-

pirical Bayes] will be close to the optimal but unknown [Bayesian].” (Robbins,

1964) Given the squared loss function, to compute the posterior mean of φi, a

possible approach is to find a way to estimate Q.

Let X be a random variable having probability density function or proba-

bility mass function depending on an hyperparameter φ,

L(φ) = f(x|φ)

and the parameter φ be a random variable with a prior distribution function

Q. The marginal distribution of X is then the mixture

L(Q) = f(x|Q) =
∫
Ω

L(φ)dQ(φ), (2.8)

where Ω is the parameter space.

2.5.1 Kiefer-Wolfowitz Estimator

The method of Kiefer and Wolfowitz (1956) estimates the unknown prior via

maximum likelihood. This amounts to

max
Q∈P

L(Q) = max
Q∈P

∫
Ω

L(φ)dQ(φ),
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where P is the class of all probability measures on Ω. Once the estimator Q̂

is obtained, the posterior mean can be computed as

∫
Ω
φL(φ)dQ(φ)∫

Ω
L(φ)dQ(φ)

.

Example. Assume Xi
ind∼ Poisson(φi), where i = 1, ..., n and φi’s are

assumed to be taken from a distribution function Q. Kiefer-Wolfowitz MLE

solves

max
Q∈P

{
n∑

i=1

ln (Li(Q))

}
= max

Q∈P

{
n∑

i=1

ln

(∫
Ω

exp{−φ}φxi

xi!
dQ(φ)

)}
.

Suppose the number of distinct data points is K. The Kiefer-Wolfowitz

estimator can be rewritten as

max
Q∈P

{
ln

(
K∏
i=1

(Li(Q))
ni

)}
= max

Q∈P

{
K∑
i=1

niln (Li(Q))

}
,

which is equivalent to

min
L(Q)∈M

{
−

K∑
i=1

niln (Li(Q))

}
, (2.9)

where M represents the set of mixture density vectors M = {L(Q)|Q ∈ P}

and L(Q) = {L1(Q), ..., LK(Q)}.

What does the set M look like? Let us denote the trace of the curve L(φ)

as Γ = {L(φ)|φ ∈ Ω}. Then we will have

L(Q) =

∫
Ω

L(φ)dQ(φ).
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Every element in M can be written as a convex combination of the elements

in Γ. A fundamental result of convex geometry tell us that M = conv(Γ).

Therefore, the set M is convex, because a convex hull itself is convex. The

following example (Lindsay, 1995) can explain this.

Figure 2.2: The Likelihood Curve Γ for Two Cauchy Observations

Example. Let L(φ) be the Cauchy location density

1

π

[
1 + (x− φ)2

]−1
.

Given a pair of observations (x1, x2) = (1,−1) and the location parameter

φ ∈ [−10, 10], the curve has the form

Γ = {(f1, f2)|φ ∈ Ω} =
{([

1 + (1− φ)2
]−1

,
[
1 + (−1 + φ)2

]−1
)
|φ ∈ Ω

}
.

The convex hull M of Γ is the region bounded by dashed lines (Figure 2.2).
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Chapter 3

Duality: Discretized Version

In this chapter, we derive the duality theorem for the parameter spaces con-

taining finitely many elements. This corresponds to the discretized version

of the Kiefer and Wolfowitz method, which is used in implementations after

all. From a theoretical point of view, the required mathematical formulation

avoids sophisticated functional analysis. Later in Chapter 4, we use the result

to obtain the continuous version (Duality Theorem 3) which has the analogous

form as the discretized version studied in this chapter.

Section 3.1 introduces Lagrange duality as defined in Boyd and Vanden-

berghe (2004). Section 3.2 gives the derivation of the discrete duality theorem.

3.1 Lagrange Duality in Convex Optimization

We follow Boyd and Vandenberghe (2004). Consider an optimization problem

in the standard form:

min
x
f0(x)
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subject to fi(x) 6 0, i = 1, ...,m, (3.1)

hi(x) = 0, i = 1, ..., p,

where f0 is the objective function. We assume the domain is nonempty. The

problem (3.1) is called convex when the objective f0 is convex and subject

to convex inequalities constraints fi(x) 6 0, i = 1, ...,m and affine equalities

constraints hi(x) = 0, i = 1, ..., p.

In calculus, we learned how to use Lagrange’s multipliers to solve the ex-

tremum problems with constraints. The similar idea, only concerning also

inequality constraints, is applied here. Taking the constraints into account,

we write the objective function with a weighted sum of the constraints: the

Lagrangian L : Rn×Rm×Rp → R associated with the problem (3.1) is defined

to be

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x).

The vectors λ and ν are called Lagrange’s multiplier vectors. We define the

Lagrange dual function as the minimum value of the Lagrangian over x:

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)
,

where the domain D =
⋂m

i=0 dom(fi) ∩
⋂p

i=1 dom(hi). If the Lagrangian is

unbounded below in x, the dual function takes the value −∞.

We use the curled inequality symbol � (and its strict form �) to denote

componentwise inequality (and strict inequality, respectively) between vectors.

It can be shown (Boyd and Vandenberghe, 2004, page 216) that for λ � 0

and any ν, the dual function gives the lower bound on the optimal value p∗ of
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the problem (3.1)

g(λ, ν) 6 p∗. (3.2)

A natural question is: what is the greatest lower bound that can be obtained

from the dual function (3.2)? This leads to the optimization problem

max
λ,ν

g(λ, ν) (3.3)

subject to λ � 0,

which is called the Lagrange dual problem associated with the problem (3.1);

the original problem (3.1) is then called the primal problem.

If we denote the optimal value of the dual as d∗, from (3.2) it is straight-

forward to see that d∗ 6 p∗. We would like to know when the equality will

hold; it does not in general, but if the primal problem (3.1) is convex with

the equality constraints Ax = b, we usually have strong duality d∗ = p∗ under

some simple conditions. One of those is called Slater’s condition: there exists

an x ∈ relint(D), such that

fi(x) < 0, i = 1, ...,m, Ax = b

where

relint(D) =
{
x ∈ D|B(x, r)

⋂
aff(D) ⊆ D, for some r > 0

}
.

Theorem 3.1: (Slater’s theorem) If the problem is convex of the form

min f0(x)
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subject to fi(x) 6 0, i = 1, ...,m,

Ax = b,

with f0, ..., fm convex and satisfies Slater’s condition, then strong duality

holds.

For any optimization problem with differentiable objective and constraint

functions satisfying strong duality, any pair of primal and dual optimal points,

say x̃ and (λ̃, ν̃), must satisfy the famous Karush–Kuhn–Tucker (KKT) con-

ditions:

fi(x̃) 6 0, i = 1, ...,m,

hi(x̃) = 0, i = 1, ..., p,

λ̃i > 0, i = 1, ...,m,

λ̃ifi(x̃) = 0, i = 1, ...,m,

∇f0(x̃) +
m∑
i=1

λ̃i∇fi(x̃) +
p∑

i=1

ν̃i∇hi(x̃) = 0.

Moreover, when the primal problem is convex, the KKT conditions are also

sufficient for the points to be primal and dual optimal.

Theorem 3.2: If a convex optimization problem with differentiable objective

and constraint function satisfies Slater’s condition, then the KKT conditions

provide necessary and sufficient conditions for optimality: x is optimal if and

only if there are (λ, ν) that, together with x, satisfy the KKT conditions.

Theorem 3.2 can be used for checking primal and dual optimal and deriving

the optimal solution from one to the other.
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3.2 The Lagrange Dual

Consider now the setting of Kiefer-Wolfowitz estimation problem in which the

parameter space contains finitely many elements. Denote the grid points as

{u1, ..., um} and corresponding masses {π1, ..., πm} with
∑m

i=1 πi = 1. In such

a case, the following duality theorem can be proved.

Notation. Let A be a n by m matrix consisting of the error density on the

given grid points defined by Aij = f(xi|uj), where xi’s are observed values and

uj’s are grid points. We write 1m×1 = (1, ..., 1)T , π = (π1, ..., πm)
T and the

marginal density g = Aπ.

Theorem 3.3: The primal problem

min
g,π

{
−

n∑
i=1

ln (gi) |Aπ = g, 1Tπ = 1 and π � 0

}
(3.4)

has the associated dual Lagrange problem

max
ν

{
n∑

i=1

ln (νi) |ATν � n1, ν � 0

}
(3.5)

and Slater’s condition is satisfied. If g∗, π∗, λ∗and ν∗are any points that

satisfy the KKT conditions

ν∗i = 1/g∗i λ∗iπ
∗
i = 0 Aπ∗ = g∗ 1Tπ∗ = 1 and π∗ � 0,

then (g∗, π∗) and (λ∗, ν∗) are primal and dual optimal.

Proof. First we derive the dual problem. For λ � 0, the Lagrange dual function

is given by

g(λ, µ, ν) = inf
g,π
L(g, π;λ, µ, ν)
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= inf
g,π

{
−

n∑
i=1

ln (gi)) + νT (g − Aπ) + µ(1Tπ − 1) + λT (−π)

}

= inf
g

{
n∑

i=1

(νigi − ln(gi))

}
+ inf

π

{
πT
(
−ATν + µ1− λ

)}
− µ, (3.6)

which can be determined analytically, since the infimum of the first term in

(3.6) can be found by taking the derivative with respect to g and the minimum

is attained when

gi = 1/νi

for i = 1, ..., n; the second term is a linear function which is bounded below

only when it is identically zero. Therefore,

g(µ, ν) =
n∑

i=1

{ln(νi) + 1} − µ =
n∑

i=1

ln(νi) + n− µ,

if ATν + λ − µ1 = 0 and −∞ otherwise. The Lagrange dual problem is to

maximize this dual function g subject to λ � 0, i.e.,

max
µ,ν

n∑
i=1

ln(νi) + n− µ (3.7)

subject to ATν � µ1 and ν � 0.

Now look at the inequality constraint in the dual problem and multiply

the both sides by πT ,

πTATν 6 µπT1,

or

gTν 6 µ.

Also, we know that g̃i = 1/νi and this yields n 6 µ. On the other hand, the
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matrix A consists of the values of error distribution and therefore it is bounded

above. That is, there exists some real number K > 0, such that Aij < K for

all i, j. Setting vi = 1/K for all i shows µ = n is feasible. Therefore, the dual

problem (3.7) can be rewritten as (3.5).

Note that the primal (3.4) is a problem minimizing a convex function over

a convex set which suggests the primal problem is convex. The Slater condi-

tion says that the optimal duality gap between (3.4) and (3.5) is zero if the

inequality constraint is strictly feasible, i.e., there exist a π such that π � 0;

we can see it is satisfied.

The last part of the proof follows the previous result: For a convex problem

that satisfies Slater’s condition, the KKT conditions provide necessary and

sufficient conditions for optimality. Taking the derivative of L in g gives the

5th KKT condition:

ν∗i = 1/g∗i .

Therefore, for any points that satisfy the KKT conditions

ν∗i = 1/g∗i , λ∗iπ
∗
i = 0 Aπ∗ = g∗ 1Tπ∗ = 1 and π∗ � 0,

the pairs (g∗, π∗) and (λ∗, ν∗) are primal and dual optimal.
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Chapter 4

Duality: Continuous Version

The aim of the present chapter is to establish duality result when the pa-

rameter space Ω is continuous. The formulation of the dual problem can be

deducted analogously from the discretized form derived in the previous chap-

ter. Strong duality theorem, however, could be very hard to obtain by using

general methods. Instead, it is better to use the results of Lindsay (1983), who

studied maximum likelihood estimation for mixture distributions.

In Chapter 3, we proved that if the parameter space Ω is discrete, the

primal problem

min
g,π

{
−

n∑
i=1

ln (gi) |Aπ = g, 1Tπ = 1 and π � 0

}

and the associated dual problem

max
ν

{
n∑

i=1

ln (νi) |ATν 6 n1, ν � 0

}

are in the strong duality relationship, where A consists of the error density

on the given grid points defined by Aij = f(xi|uj), where xi’s are observed
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values and uj’s are grid points. If we look closely at the dual problem, we find

that the constraints require that each component of ATν is less or equal to n.

Denote the jth column of A as aj and we have

aTj ν =
n∑

i=1

f(xi|uj)νi 6 n,

for all j = 1, ...,m. Each column of A corresponds to a grid point. When

the parameter space contains an interval, as the number of grid points in-

creases, the inequality constraints are likely to hold for all grid points and the

associated dual problem is expected to have the form,

max
ν

{
n∑

i=1

ln (νi) |
n∑

i=1

νiLi(φ) 6 n for all φ

}
.

In Section 4.1, we sketch the proof of duality results for this formulation;

the technical issues are postponed to Section 4.2.

4.1 The Continuous Duality Theorem

The result of Lindsay (1983) is built on the work of Böhning and Hoffmann

(1981) who at that time are studying the problem of finding MLE for a certain

class of discrete sampling models. The problem is to find a probability measure

Q, such that the log likelihood function is maximized

max
Q∈P

{
K∑
i=1

niln (Li(Q))

}
(4.1)

or

min
L(Q)∈M

{
−

K∑
i=1

niln (Li(Q))

}
. (4.2)
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For simplicity, from now on we write the objective function as

l(p) =
K∑
i=1

niln(pi),

where pi = Li(Q) and p ∈ M. Note that l is strictly concave on all positive

values of its variables.

Since we are working on a convex setM, it is natural to study the behaviour

of the objective function l along paths between arbitrary points in the convex

set. For this purpose, we give the following definition on directional derivative.

Definition: The directional derivative of l at y in direction z is defined as

d1(y, z) = lim
β→0

l [(1− β)y + βz]− l(y)

β
,

where β ∈ (0, 1), y � 0 and z � 0. And d1(y, z) = +∞ for y = 0 in any

arbitrary direction z � 0.

Back to (4.1), we are interested to know the necessary and sufficient condi-

tions for maxima of the concave function l and the following theorem proposed

by Böhning and Hoffmann answered this question.

Theorem 4.1: (Equivalence Theorem) For a differentiable concave function

l, a is MLE if and only if Dil(a) = ∇l(a) · a for i = 1, ..., n.

Proof. Suppose a is MLE, then d1(a, ei) 6 0 for i = 1, ..., n from the definition

of directional derivative. Also notice that d1(a, a) =
∑n

i=1 aid1(a, ei) = 0 and

ai > 0 for each i, then we conclude

d1(a, ei) = 0, (4.3)
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for each i.

Recall the fact that d1(y, z) = ∇l(y) · (z − y) (Appendix 1, Theorem 6.1),

then

d1(z, ei) = ∇l(a) · (ei − a). (4.4)

Combing (4.3) and (4.4), we obtain Dil(a) = ∇l(a) · a for all i.

Conversely, suppose Dil(a) = ∇l(a) · a for i = 1, ..., n, then using Theorem

6.1 again, we find out that

d1(a, ei) = ∇l(a) · (ei − a) = Dil(a)−∇l(a) · a 6 0

for all i. For p ∈ M, we have

d1(a, p) =
n∑

i=1

pid1(a, ei) 6 0,

since pi > 0 for all i. For y � 0 , we have the following inequality sup
z∈M

d1(y, z) >

l(z)− l(y) (Appendix 1, Theorem 6.3). Therefore,

0 = sup
p∈M

d1(z, p) > l(p)− l(a).

That is a is MLE..

Applying the equivalence theorem, Böhning and Hoffmann proved a duality

theorem.

Theorem 4.2: (Duality Theorem). For y � 0, any a ∈ M is MLE if and

only if a solves the primal problem:

min
p∈M

l(p)
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subject to

d1(y, ei) 6 0 i = 1, ..., n.

Proof. If a is MLE, then by Equivalence Theorem, we will have

d1(y, a) = ∇l(y) · (a− y) = ∇l(y) · (
n∑

i=1

aiei − y)

=
n∑

i=1

ai∇l(y) · (ei − y) =
n∑

i=1

aid1(y, ei) 6 0.

Also, for any concave function l, we are able to show that d1(y, z) > l(z)− l(y)

(Appendix 1, Theorem 6.2). It follows that

l(y) > l(y) + d1(y, a) > l(y) + (l(a)− l(y)) = l(a).

That is, a is the solution to the primal problem. Conversely, suppose a is a

solution of the primal problem, then by Theorem 6.3 in Appendix 1

0 = sup
16i6n

d1(y, ei) = sup
a∈M

d1(y, a) > l(a)− l(y),

for any y � 0 . Hence, a is MLE.

The following example is due to Böhning and Hoffmann (1982).

Example. Consider a n-cell multinomial, the kernel of the log likelihood

function is

l(p) =
K∑
i=1

niln(pi),

where n is the n-vector of observed frequency. The MLE can be worked out as

p̂ = n/N , where N =
∑K

i=1 ni. The primal problem is then to minimize l under
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Figure 4.1: Geometric Demonstration of the Duality Theorem
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the constraints ni/pi 6 N (Figure 4.1). Geometrically, above the constraint

region the objective function l is increasing under the direction (x, y) when

x and y are nonnegative. Hence, it attains the minimum at the only vertex.

According to the duality theorem, this point is the MLE.

Now we are ready to state Lindsay’s duality result. Consider two equivalent

problems:

Problem 1. Minimize l(p) subject to p � 0 and d1(p, L(φ)) 6 0 for all

φ ∈ Ω.

Problem 2. Maximize l(ν) subject to ν � 0 and
∑n

i=1 νiLi(φ) 6 n for all

φ ∈ Ω.

Note that Problem 1 is equivalent to the one found by Böhning and Hoffmann.

Theorem 4.3: (Duality Theorem 2) Suppose the trace of the curve Γ is com-

pact and the mixture MLE is L̂ = L(Q̂) , then p = L̂ solves Problem 1 and

ν̂i = ni/L̂i solves Problem 2.

Proof. Problems 1 and 2 are equivalent by the change of variable (p1, ..., pK) =
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(n1/ν1, ..., nK/νK). Directly applying duality result of Böhning and Hoffmann

gives the result that p = L̂ solves Problem 1.

Before we move on, I need to emphasize that the questions like the exis-

tence and uniqueness of the solution have not been discussed yet and will be

discussed on Section 4.2.

Koenker and Mizera (2014), elaborating on Lindsay’s result, derived the

associated dual problem of (4.2) without assuming the likelihood curve Γ is

closed.

Theorem 4.4: (Duality Theorem 3) Let Q̂ of (4.2) be an atomic probabili-

ty measure, with at most K points of support. The locations φ̂j and the

corresponding masses p̂j can be found via the dual problem:

max
ν

{
n∑

i=1

ln (νi) |
n∑

i=1

νiLi(φ) 6 n for all φ

}
. (4.5)

The solution ν̂ of (4.5) satisfies

ν̂i =
ni

L̂i

=
ni∑m

j=1 Li(φ̂j)p̂j
for all i,

where m is the number of grid points and φ̂j are exact if the equality in the

dual constraint (4.5) holds.

Proof. In order to illustrate the idea of the proof, we assume Ω = (−∞,∞)

and the number of distinct data points K is 1. The same arguments can be

applied to the case K > 1.

To be able to apply Duality Theorem 2, we compactify R with ∞ and

require the likelihood vector at ∞ is 0, i.e. L(∞) = 0. Caratheodory’s theorem
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guarantees that the solution Q̂ has no more than K points of support and we

need to show that ∞ is not one of those atoms.

Suppose we have two solutions Q̂ and Q̂∗: Q̂ has the support set {ε̂1, ..., ε̂J},

where ε̂1 = ∞ and the corresponding masses {π̂1, ..., π̂J}; Q̂∗ has the support

set {ε̂2, ..., ε̂J} and the masses {π̂∗
2, ..., π̂

∗
J}. If π̂1 > 0, then

L(Q̂) =
J∑

j=1

L(ε̂j)π̂j =
J∑

j=2

L(ε̂j)π̂j <
J∑

j=2

L(ε̂j)π̂
∗
j = L(Q̂∗).

It contrasts the fact that Q̂ is MLE.

4.2 Technical Issues

The following theorem is due to Lindsay (1983).

4.2.1 Existence and Support Size

Theorem 4.5: (Existence and Support Size). Suppose that Γ is compact and

M = conv(Γ) contains at least one point with positive likelihood, then there

exists unique L̂ ∈ ∂M such that L̂ maximizes the log likelihood function l

over M. The solution L̂ can be expressed as L(Q̂), where Q̂ has no more

than K points of support.

Proof. For the continuous function l, it turns out that there is no stationary

point in the compact set M so l approaches its maxima at the boundary. The

uniqueness can be proved by contradiction. Suppose there are two distinct

points L̂1 and L̂2 on the boundary of M which maximize the objective function
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l. That is, l(L̂1) = l(L̂2). The function l is strictly concave, for any α ∈ [0, 1],

l(αL̂1 + (1− α)L̂2) > αl(L̂1) + (1− α)l(L̂2) > l(L̂2).

This contradicts the fact that L̂2 is a maximum point. The second part is

the direct consequence of a famous theorem of Caratheodory (Roberts and

Varberg, 1973, page 76).

The uniqueness of MLE L̂ will be clear from the following example.

Example. Consider the upper set U =
{
p|l(p) > l(L̂)

}
. The strictly

concavity of l implies the upper set U is convex and close (Lindsay, 1995). Let

L(φ) be the Gaussian kernel

exp

{
−(x− φ)2

2

}
.

Given a pair of observations (x1, x2) = (1,−1) and φ ∈ [−10, 10]. Then the

likelihood curve has the form

Γ = {(f1, f2)|φ ∈ Ω} =

{(
exp

{
−(1− φ)2

2

}
, exp

{
−(−1− φ)2

2

})
|φ ∈ Ω

}
,

the uniqueness can be seen as there is only one contact point between the

upper set U and the convex hull M (Figure 4.2).

4.2.2 Identifiability

Given the unique estimated mixture likelihood vector L̂, a natural question

to ask is can we find the MLE Q̂ via the equations L(Q̂) = L̂? If yes, is the

solution Q̂ unique? For univariate data points, Lindsay found out the answers
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Figure 4.2: The Geometry of the Likelihood Maximization Problem
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are positive for the both questions under the assumption of likelihood function

L(φ) belonging to exponential family. However, the answer of identifiablity is

unknown for multivariate case. Lindsay (1995) said that “the results [are] very

difficult to obtain in higher dimensions, and hard to generalize outside the

exponential family”. Nevertheless, if the primary goal is to make prediction,

this will not cause a problem. First of all, we note that the uniqueness theorem

does not depend on the dimension of parameter space. In other words, the

result that there is only one L̂ that maximizes the log likelihood function l is

also true when the dimension of the parameter space is greater than 1. If there

exists distinct solutions, say Q̂1 and Q̂2, the uniqueness theorem guarantees

their marginal densities are the same. That is, L(Q̂1) = L(Q̂2). Tweedie’s

formula says the Bayes rule solely depends on the marginal density, hence the

predicted value is unique.

In this section, I will follow the work of Lindsay (1983) and discuss uni-

variate identifiability problem.

Recall Theorem 6.5 in Appendix 1, the mixture MLE L̂ must lie in one of
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the support hyperplanes of the mixture likelihood set M = conv(Γ), denoted

as H. In symbols, we write

L̂ ∈ H =

{
z|

J∑
j=1

νjzj = n

}
,

where νj = nj/L̂j. The property of hyperplane gives the following theorem.

Theorem 4.6: (Uniqueness). Assume the trace of the curve Γ is compact.

Let H be a support hyperplane of conv(Γ) containing L̂, if H ∩ Γ consists

of affinely independent vectors, then L̂ on the boundary of M = conv(Γ)

can be uniquely written as a convex combination of elements of Γ and the

number of the elements is at most K.

Proof. By the construction of L, the mixture MLE L̂ lies in Γ. If L̂ ∈ H,

then L̂ ∈ H ∩ Γ. On the other hand, if H ∩ Γ consists of affinely independent

vectors, then by Caratheodory’s Theorem and affine independence, there exist

unique L(ε1), L(ε2),... ,L(εJ), such that

L̂ =
J∑

j=1

πjL(εj),

where J 6 K and
∑J

j=1 πj = 1.

From Uniqueness Theorem, finding a likelihood function L(φ) to have an

unique MLE Q̂ is equivalent to finding L(φ) such that the both conditions

hold:

(1) There are at most K solutions to

K∑
i=1

ν̂iLi(φ) = n
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given the constraint
K∑
i=1

ν̂iLi(φ) 6 n,

where ν̂i = ni/L̂i .

(2) The set {L(ε1),L(ε2), ..., L(εJ)} are affinely independent.

Let us consider the condition (1) at first. Recall the following result from

mathematical analysis which can be proved by induction:

Lemma 4.1: Let the polynomials q1(x), ..., qK(x) be nonzero polynomials and

with degree a1, ..., aK, and let the real constants a1, ..., aK be distinct, then

K∑
i=1

qi(x)exp {cix}

has at most K − 1 +
∑K

i=1 ai real zeros.

Proof. See Pólya and Szegö, 1925, page 46.

Suppose the function f(φ) =
∑K

i=1 ν̂iLi(φ)−n is analytic in φ. In order to

bound the number of roots to f(φ) at K, it is sufficient to show that f ′(φ) has

at most 2K − 1 zeros, since maxima must alternate with minima. If L(φ) is

the kernel of exponential family with the form L(φ) = exp {φx− ψ(φ)}, then

we have

f ′(φ) =
K∑
i=1

ν̂i [xi − ψ′(φ)] exp {φxi − ψ(φ)} .

Therefore, if ψ′(φ) is in the right form, the theorem above can be applied. For

example, for normal density with mean φ and variance 1, we have ψ′(φ) = φ

and f ′(φ) has at most 2K − 1 zeros.

Now consider the condition (2). It is sufficient to show there exist K vectors
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L(ε1), L(ε2), ..., L(εK) which are linearly independent. Let

M = [L(ε1), L(ε2), ..., L(εK)]

be aK×K matrix with kth column L(εk). It is equivalent to show det(M ) 6= 0.

This is true if L(φ) is the kernel of exponential family (Karlin, 1968, page 18-

20,117-120).
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Chapter 5

Implementation

In practice, we have to work on the discretized parameter space Ω and es-

timate Q by a finite-dimensional approximation. When we look at the dual

problem, we find there is an potential to give an algorithm which computes

Kiefer-Wolfowitz’s MLE in higher dimensional space. The primary goal of this

chapter is to develop the adaptive algorithm which can be used in multivariate

case.

In Section 5.1, I discuss the algorithm which can iteratively capture the

support points with a grid of moderate size. A univariate numerical experiment

is given in Section 5.2.

5.1 Adaptive Algorithm

It can be seen that Kiefer-Wolfowitz method also works for multivariate re-

sponse and then it is natural to ask for an algorithm applied to this case. The

univariate algorithm can be well done with a uniformly spaced grid as long

as the grid is fine enough. However, for multivariate case, the number of grid
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points grows quickly and make the computation prohibitive.

On the other hand, if we look at the primal and dual problems (4.2), (4.5),

we find the objective function of the primal formulation is infinite-dimensional

in Q, whereas the objective of the dual formulation is finite dimensional in

ν and infinite-dimensionality is only in the constraint (Koenker and Mizera,

2014). This provides a possibility of iteratively using unequally spaced grids

to approximate Q. Duality results tell us the maxima locate where the dual

constraint is active. If such information is available, we could simply select

the test points at these locations. Unfortunately, in practice such information

is unavailable, we need to refine the solution in an iterative manner by looking

at the grid identified by previous iteration.

Recall that the support points of Q̂ locate at where the directional deriva-

tive is zero (Theorem 6.5). We start with an unequally spaced grid. Begin

the loop. In each iteration, we look at the points where the critical condition

(5.1) likely holds but throw out the rest of points. This can be done because

the solution of the dual problem does not depend on the value of points out of

the solution set. Next we solve the dual problem with the updated grid. Then

we double the size of the gird in case of any solution is missing in the coming

iterations. Go back to where we start the loop and continue. The algorithm

stops when the index equals the desired number of iteration. The algorithm

can be naturally generated to multivariate case.

The set {u1, ..., um} represents a grid, not necessarily equally spaced. Let A

be a n by m matrix consisting with the error density on the given grid points

defined by Aij = f(xi|uj), where xi’s are observed values and uj’s are grid

points. To find the solution that the dual objective function is maximized, we
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look at the set {
uj|aTj v = n

}
, (5.1)

where aj is the jth column of A and j = 1, ...,m .

In practice, we look at where the equality in (5.1) nearly holds. That is,

for a small ε > 0, the plausible solution lie within the set

{
uj| |aTj v − n|< ε

}
.

Denote the index by i and the number of iteration by I. The algorithm

works as following:

(1) Set m = 10, ε = 1 and i = 1.

(2) Repeat

(3) Start with an unequally spaced grid G = {u1, ..., um} and generate

matrix A.

(4) If i > 1: Calculate the difference ATv − n1 and update the grid G by

look at the condition

|aTj v − n|6
(
1− i

I + 0.1

)
ε (5.2)

for each j.

(5) Maximize the dual problem with the grid G.

(6) Update m to 2m. Increase i by one.

(7) Until i equals I.

In step 4, as the gap |aTj v − n| getting close to zero, the number of points

in the updated grid is much smaller than the ones in un-updated grid. That

is, only the potential solutions are interested. The cost of computation in
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optimization is therefore significantly reduced. From step 6, we can see the

grid gets finer after each iteration so we are not likely miss any support point.

As the number of iteration I goes to infinity, we will see the right-hand side of

(5.2) goes to zero. All of these together suggest when the number of iteration

is sufficiently large, we may capture the solution of the dual problem with a

grid of moderate size.

5.2 Numerical Experiments

First we numerically verify that the solution of the dual problem locate at

where the directional derivatives are zero and do not depend on the rest of the

points in the grid. Then we demonstrate the performance of the adaptive al-

gorithm in Bayesian estimation and compare it with the one using a uniformly

spaced grid. The multivariate example is left to the future work.

The sample is randomly taken from Gaussian mixture model Xi
ind∼ N(θi, 1)

with prior distribution θi
ind∼ Unif(5, 15), where i = 1, ..., 100.

Recall the adaptive algorithm is introduced based on the fact that the

support points locate at where the directional derivatives are zero and do not

depend on the rest of the points in the grid. To see this is numerically true,

for each iteration we graph the vector ATv by only taking the points where

the critical condition nearly holds and compare the curve to the one generated

with a uniformly spaced grid. In Figure 5.1, we find the sequence of the curves

eventually “converges” to the curve generated with a uniformly spaced grid.

And the solution of the dual problem locate around where the curve touch the

horizontal line. These are what we all expect to see.

The adaptive algorithm starts with 11 unequally spaced grids and the num-
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Figure 5.1: Experiment
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uniform

ber of iteration is set to be 10. In the end, the average number of grid used,

after 30 repetition, is 937, compared to 1000 points used in the uniformly

spaced algorithm.

When we look at the mixture density and Bayes rule, the two algorithms

give very similar estimated results.

Figure 5.2: Adaptive Algorithm
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Figure 5.3: Algorithm with A Uniformly Spaced Grid
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5.3 Empirical Ice Hockey

To test the performance of empirical Bayes paradigm, Brown (2008) delivered

an example on prediction of the second-half season baseball batting average.

As we know, baseball is a game that each player’s performance can be measured

by a single variable: batting average. In this sense, we may call baseball a

univariate game. Nevertheless, for hockey, we need two variables, goals and

assists, to describe players’ performance. Hence, hockey is a bivariate game.

In this chapter, I will only study the univariate case, that is, the two variables

are assumed to be independent.

Consider n players involving in regular season and playoffs. For each player,

given the total time on ice t and the number of goals and assists he earned

by time t in regular season, denoted as Gt and At, we wish to estimate the

expected number of goals and assists earned in playoffs.

Table 5.1 gives us a 2012-2013 regular season summary from the National
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Hockey League. For each player, all the information we have now are the

number of goals and assists he earns by time t.

Table 5.1: 2012-2013 Regular Season Summary
Player Goal Assist Time On Ice (Seconds)

Adam Burish 1 2 10:34
Adam Cracknell 2 4 8:36
Adam McQuaid 1 3 14:17

... ... ... ...

5.3.1 Univariate Case

To make the story simple, we assume Gt and At are independent and only

consider Gt from now on.

In practice, the family {Gt}t>0 can be modeled by Poisson process, then

we will have

Gt ∼ Poi(λt),

where λ describes the expected number of goals per unit time in regular season.

To compare the performance of different methods, we calculate the sum of

squared prediction error,

SSPE(λ) =
n∑

i=1

[λ̂it2i − g2i]
2,

where g2i = g2i(t) represents the number of goals the player i gained by time

t2i in the playoffs. In other words, the sum of squared prediction error is the

Euclidean distance between the predicted goals up to time t2 and the observed

ones.
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Description of estimators

Näıve estimator. We take the näıve estimator as the baseline, which simply

uses the observed number of goals per unit time in regular season multiplied

by time on ice in the playoffs as its prediction

λ̂0 = g1i/t1i.

We then are able to compute the sum of squared prediction error due to the

näıve estimator

SSPE(λ̂0) =
n∑

i=1

[λ̂0t2i − g2i]
2,

and then calculate the ratio

SSPE∗(λ̂) =
SSPE(λ̂)

SSPE(λ̂0)
.

In this way, SSPE∗(λ̂0) = 1. If the ratio is far away from 1, it suggests the

method is efficient and it significantly reduces the prediction errors.

EB (James-Stein (Subsection 2.4.1)). Suppose Gt|λ ∼ N(θt, σ2) and λ ∼

N(M,A) , where σ2 is known. The posterior density is again a normal distribu-

tion with mean M+B(tgt− t2M) and variance Bσ2 , where B = A/(t2A+σ2)

, then the James-Stein estimator (method of moments) of λi is

λ̂i =
1

t

(
g1 +

(
1− σ2

S

)
+

(g1i − g1)

)
,

where S =
∑n

i=1 g
2
1i − ng1

2 .

EB (Poisson-Gamma (Subsection 2.4.2)). Suppose Gt|λ ∼ Poi(λt) and

λ ∼ Gamma(a, b), then the Bayes estimator (method of moments) of λi under
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the Poisson-Gamma model is

λ̂i =
(1− x

s2
)g1i +

x2

s2

t1i
,

where s2 = (
∑n

i=1 g
2
1i − ng1

2) /(n− 1).

NPEB (Tweedie (Section 2.3)). Suppose Gt ∼ Poi(λt) and λ ∼ Q(·), then

the Bayes estimator of λi by using Tweedie’s formula is

λ̂i
.
=

(
gi + 1

t1i

)
f̂(gi + 1)

f̂(gi)
,

where f̂(gi) is the estimated marginal density of Gt using kernel density esti-

mation.

NPEB (KW (Subsection 2.5.1)). Suppose Gt ∼ Poi(λt) and λ follows an

unknown prior Q, then the Kiefer-Wolfowitz estimator of λi is

λ̂i =

∑m
j=1 ujL(g1i|uj)π̂j∑m
j=1 L(g1i|uj)π̂j

.

The result of this is obtained by using interior point method implemented by

Mosek.

Table 5.2 demonstrates the performance among different estimators. It can

be seen that in this data set, Kiefer-Wolfowitz estimator outperforms other

empirical Bayes estimators, both for goals and assists.
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Table 5.2: Playoffs Prediction for All Players
Estimator SSPE*(Goals) SSPE*(Assists)
Näıve 1 1
EB(JS) 0.997 0.997
EB(PoiGam) 0.811 0.867
NPEB(Tweedie) 0.824 0.882
NPEB(KW) 0.803 0.861
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Chapter 6

Conclusion

The primary goal of this thesis is to implement the Kiefer-Wolfowitz non-

parametric empirical Bayes method for models with multivariate response.

The current method may be not numerically feasible when the response vari-

ables are multivariate. Motivated by one paragraph from Koenker and Mizera

(2014), we consider the dual problem instead and able to come up with an

adaptive algorithm, which iteratively uses unequally spaced grids to approx-

imate the prior. In the end, we can solve the dual problem without using

overly many grid points. The algorithm has a potential to compute Kiefer-

Wolfowitz’s MLE in higher dimensional space. The numerical experiment and

the field study on hockey both provide good performance.

The future work is to generate the adaptive algorithm to multivariate and

be able to apply it to bivariate hockey game.
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Appendix 1 Results in Vector

Calculus

Theorem 6.1: For y � 0 and z � 0, d1(y, z) = ∇l(y) · (z − y).

Proof. The proof is similar to univariate case. If a function l is differentiable

at z then there exists a linear map Ta : Rn → R such that

l(a+ v) = l(a) + Ta(v) + ‖v‖E(a, v),

for ‖v‖ < r for some r > 0, where E(a, v) → 0 as ‖v‖ → 0.

Then we follow the idea of Apostol (page 259) and write the difference

l [(1− β)y + βz]− l(y)

as

l [(1− β)y + βz]− l [(1− β)y] + l [(1− β)y]− l(y)

= T(1−β)y (βz) + ‖βz‖E((1− β)y, βz) + Ty (−βy) + ‖−βy‖E(y,−βy). (6.1)
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Notice that the maps T(1−β)y and Ty are linear, then we can rewrite (3) as

βT(1−β)y(z) + ‖βz‖E((1− β)y, βz)− βTy(y) + ‖−βy‖E(y,−βy).

Now

lim
β→0

1

β
{l[(1− β)y + βz]− l(y)} = Ty(z)− Ty(y)

= Ty

(
n∑

i=1

ziei

)
− Ty

(
n∑

i=1

yiei

)
= Ty

(
n∑

i=1

(zi − yi)ei

)
=

n∑
i=1

(zi − yi)Ty(ei)

=
n∑

i=1

(zi − yi)Dil(y) = ∇l(y) · (z − y).

Hence, d1(y, z) = ∇l(y) · (z − y).

Theorem 6.2: If l is concave, then d1(y, z) > l(z) − l(y) for y, z � 0 with
n∑

i=1

yi = 1 and
n∑

i=1

zi = 1.

Proof. If f is concave, then by definition of concavity we immediately have

l [(1− β)y + βz]− l(y) > (1− β)l(y) + βl(z)− l(y) = β (l(z)− l(y)) .

Divide β on the both sides and then take the limit as β goes to zero, then

d1(y, z) = lim
β→0

1

β
{l [(1− β)y + βz]− l(y)} > l(z)− l(y).

This completes the proof.
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Theorem 6.3: If l is concave, then sup
16i6n

d1(y, ei) = sup
z∈S

d1(y, z) > l(z)− l(y)

for y � 0 with
n∑

i=1

yi = 1.

Proof. By Theorem 6.2, the inequality holds and we only need to show sup
16i6n

d1(y, ei) =

sup
z∈S

d1(y, z). Let m = sup
16i6n

Dil(y), we will have

d1(y, z) = ∇l(y) · (z − y) =
n∑

i=1

ziDil(y)−∇l(y) · y

6 m
n∑

i=1

zi −∇l(y) · y = m−∇l(y) · y.

The equality holds when z = ei and i is the index such that Dil(y) = m. On

the other hand, we have

d1(y, ei) = ∇l(y) · ei −∇l(y) · y 6 m−∇l(y) · y.

We proved sup
16i6n

d1(y, ei) = sup
z∈S

d1(y, z).

For convenience, we write DQ(φ) = d1(L(Q), L(φ)).

Theorem 6.4: The following three statements are equivalent:

(1) Q̂ maximizes ln(L(Q)).

(2) Q̂ minimizes sup
φ
DQ(φ).

(3) sup
φ
{DQ̂(φ)} = 0.

Proof. Suppose Q̂ maximizes l(Q), we have d1(L̂, L(Q)) 6 0 for all Q, so (1)

implies (3). The statements (2) and (3) are equivalent by noticing that

sup
φ
DQ(φ) > d1(L(φ), L(φ)) = 0.
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To prove (3) implies (1), we will show sup
φ
DQ(φ) = 0 only if Q = Q̂. Theorem

6.2 says

d1(L(Q), L(φ)) > l(φ)− l(Q),

for all Q, φ. Suppose Q = Q∗ and Q∗ 6= Q̂, then l(φ) > l(Q) for some φ and

DQ(φ) > 0.

Theorem 6.5: The support of MLE Q̂ lies in the set {φ|DQ̂(φ) = 0}.

Proof. Suppose εj are support points of Q̂, then

0 = DQ̂(Q̂) =

∫
DQ̂(φ)dQ̂(φ) =

J∑
j=1

DQ̂(εj)πj,

where all πj are positive. From Theorem 6.4 part 3, we have DQ̂(εj) 6 0,

therefore, DQ̂(εj) = 0 for all j.
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