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Abstract 

This thesis explores terahertz radiation sources and detectors, where the driving physical 

mechanism for generation and detection is second-order nonlinear phenomena. The heart of this 

work considers novel crystals and waveguiding arrangements for terahertz radiation generation 

and/or detection to advance the field of nonlinear optics. 

Experimental investigations are conducted using emerging pnictide and chalcogenide 

ternary crystals for both the generation and detection of terahertz radiation. While a CdSiP2 crystal 

is shown to provide appreciable optical rectification phase-matching (surpassing that of a ZnGeP2 

crystal), an AgGaSe2 crystal exhibits unprecedented optical rectification phase-matching 

(coherence length of ~800 µm for frequencies between 0.5-2.9 THz). A BaGa4Se7 crystal is 

revealed as a highly-efficient terahertz radiation emitter (i.e. the terahertz radiation power 

produced by BaGa4Se7 is better than ZnTe in select terahertz spectral bands). Subsequently, a 

ZnGeP2 crystal is shown to exhibit exceptional electro-optic phase-matching, allowing it to surpass 

the bandwidth of ZnTe for terahertz radiation detection. 

Numerical and experimental techniques are utilized to investigate waveguiding 

arrangements for terahertz radiation generation. However, due to the lack of numerical methods 

capable of incorporating all 18 dispersive second-order nonlinear tensor elements, two separate 

formalisms are developed to integrate second-order nonlinear effects into finite-difference time-

domain simulations. Using the developed methods and experimental terahertz time-domains 

spectroscopy techniques, LiNbO3 planar waveguides are investigated for producing terahertz 

radiation. Key observations include ultra-broadband terahertz radiation generation spanning 

0.18-106 THz, terahertz radiation generation enhancement near the phonon resonances of LiNbO3, 



iii 

 

phase-matched terahertz radiation produced in the backward direction (i.e. the direction opposite 

to the propagation direction of the excitation electric field), and high experimentally-realized 

optical-to-terahertz conversion efficiencies (i.e. >10-5). 

Interestingly, the aforementioned nonlinear finite-difference time-domain formalisms are 

not restricted to the terahertz frequency regime, but can accurately model second-order nonlinear 

processes within various other spectral regions. To make use of such an exciting outcome, this 

thesis briefly extends beyond the terahertz spectral regime to examine second-order nonlinear 

effects for the generation of radiation in the infrared and visible spectral regimes. Accordingly, an 

entirely new class of multi-band photonic sources is proposed, in which a single waveguiding 

structure concurrently satisfies phase-matching for several second-order nonlinear processes. A 

multi-band waveguide is experimentally-realized, which simultaneously produces phase-matched 

THz radiation and phase-matched radiation in the visible spectral regime. 

The findings in this thesis are invaluable to the continuing development of terahertz radiation 

sources and detectors being driven by the physical mechanism of second-order nonlinear 

phenomena. 

 



iv 

 

Preface 

Parts of Chapter 1 consist of work submitted as invited review articles: 

1. B. N. Carnio, K. T. Zawilski, P. G. Schunemann, O. Moutanabbir, and A. Y. Elezzabi, “The 

coming age of pnictide and chalcogenide ternary crystals in the terahertz frequency regime,” 

IEEE Trans. Terahertz Sci. Technol. under review (2021). 

2. B. N. Carnio, O. Moutanabbir, and A. Y. Elezzabi, “Nonlinear photonic waveguides: A versatile 

platform for terahertz radiation generation (a review),” Laser Photonics Rev. under review 

(2021). 

 

Chapter 4 describes work that has been published as: 

3. B. N. Carnio, P. G. Schunemann, K. T. Zawilski, and A. Y. Elezzabi, "Generation of broadband 

terahertz pulses via optical rectification in a chalcopyrite CdSiP2 crystal," Opt. Lett. 42, 3920-

3923 (2017). 

4. B. N. Carnio, K. T. Zawilski, P. G. Schunemann, and A. Y. Elezzabi, “Optical rectification in a 

chalcopyrite AgGaSe2 crystal for broadband terahertz radiation generation,” Opt. Lett. 44, 2867-

2870 (2019). 

5. B. N. Carnio, E. Hopmann, K. T. Zawilski, P. G. Schunemann, and A. Y. Elezzabi, “Dependence 

on excitation polarization and crystal orientation for terahertz radiation generation in a 

BaGa4Se7 crystal,” Opt. Express 28, 15016-15022 (2020). 

6. B. N. Carnio, K. T. Zawilski, P. G. Schunemann, and A. Y. Elezzabi, “Generation of narrowband 

terahertz radiation via phonon mode enhanced nonlinearities in a BaGa4Se7 crystal,” Opt. Lett. 

45, 4722-4725 (2020). 



v 

 

7. B. N. Carnio, S. R. Greig, C. J. Firby, K. T. Zawilski, P. G. Schunemann, and A. Y. Elezzabi, 

“Terahertz electro-optic detection using a <012>-cut chalcopyrite ZnGeP2 crystal,” Appl. Phys. 

Lett. 108, 261109 (2016). 

 

The work presented in Chapter 5 has been published as: 

8. B. N. Carnio and A. Y. Elezzabi “A modeling of dispersive tensorial second-order nonlinear 

effects for the finite-difference time-domain method," Opt. Express 27, 23432-23445 (2019). 

9. B. N. Carnio and A. Y. Elezzabi, “An extensive finite-difference time-domain formalism for 

second-order nonlinearities based on the Faust-Henry dispersion model: Application to terahertz 

generation,” J. Infrared Milli. Terahz. Waves 41, 291-298 (2020). 

 

 Chapter 6 reports on work published as: 

10. B. N. Carnio and A. Y. Elezzabi, "Investigation of ultra-broadband terahertz generation from 

sub-wavelength lithium niobate waveguides excited by few-cycle femtosecond laser pulses," 

Opt. Express 25, 20573 (2017). 

11. B. N. Carnio and A. Y. Elezzabi, “Enhanced broadband terahertz radiation generation near the 

reststrahlen band in sub-wavelength leaky-mode LiNbO3 waveguides,” Opt. Lett 43, 1694-

1697 (2018). 

12. B. N. Carnio and A. Y. Elezzabi, “Backward terahertz difference frequency generation via 

modal phase-matching in a planar LiNbO3 waveguide,” Opt. Lett. 45, 3657-3660 (2020). 

13. B. N. Carnio, B. Shahriar, E. Hopmann, and A. Y. Elezzabi, “Excitation mode-dependent 

terahertz radiation generation from a sub-wavelength Si-SiO2-LiNbO3-polymer-Si planar 

waveguide,” IEEE Trans. Terahertz Sci. Technol. 11, 462-465 (2021). 



vi 

 

 The discussions in Chapter 7 are associated with works published as: 

14. B. N. Carnio and A. Y. Elezzabi, “Second harmonic generation in metal-LiNbO3-metal and 

LiNbO3 hybrid-plasmonic waveguides,” Opt. Express 26, 26283-26291 (2018). 

15. B. N. Carnio and A. Y. Elezzabi, “Second harmonic generation in CdSiP2 nanowires in the 

optical frequency regime,” IEEE Photonic Tech. Lett. 30, 1408-1411 (2018). 

16. B. N. Carnio and A. Y. Elezzabi, “Phase-matched frequency-conversion in waveguides by 

means of transverse wavevector projections,” J. Opt. Soc. Am. B 37, 1140-1143 (2020). 

17. B. N. Carnio and A. Y. Elezzabi, “Off-normal incidence coupling for perfectly phase-matched 

second harmonic generation in a sub-micron LiNbO3 planar waveguide,” J. Light. Technol. 

38, 3959-3964 (2020). 

 

 The discussions in Chapter 8 are related to works published as: 

18. B. N. Carnio and A. Y. Elezzabi, “Generation of mid-infrared and visible radiation in a multi-

band phase-matched sub-wavelength LN waveguide,” J. Opt. Soc. Am. B 36, 1695-1699 

(2019). 

19. B. N. Carnio, E. Hopmann, B. Y. Shahriar, and A. Y. Elezzabi, “A Multi-Band Photonic Source 

by Means of Phase-Matched Nonlinear Generation Processes,” IEEE Photon. Technol. Lett. 

33, 366-369 (2021). 

 



vii 

 

Acknowledgements 

I would like to thank my supervisor, Professor Abdul Elezzabi, for all that he has done for 

me. Without question, some of his finest traits include his enthusiasm toward research, the close 

relationship he develops with his graduate students, and his ability to motivate others. These 

attributes are undoubtedly correlated to any success I achieved during graduate studies, as well as 

any success I may find during my future. While Professor Elezzabi always recognized the 

importance of a strong work ethic, I am grateful he also taught me that hard work alone is not 

enough, but working effectively and efficiently is equally important. I appreciate Professor 

Elezzabi for helping me improve my writing skills, which certainly needed a lot of work. Oddly, I 

always enjoyed our disagreements, as they seemed to lead to productive discussions that allowed 

me to find clarity on the subject being debated. Thank you for shaping me into the researcher that 

I have become. 

I am thankful for the friends I made in the lab: Dr. Curtis Firby, Dr. Shawn Greig, Dr. Nir 

Katchinskiy, Dr. Haizeng Li, Dr. Michael Nielsen, Dr. Shawn Sederberg, Amir 

Badkoobehhezaveh, Ryan Boehnke, Eric Hopmann, Aiden McDermott, Sawyer McPherson, Liam 

McRae, Taylor Robertson, Katherine Smith, and Wu Zhang. I enjoyed the time spent with each of 

you. Although I felt sadness anytime someone moved on from the lab, I was happy to see each of 

you achieve your goals and I was excited to watch you accept new and bigger challenges. As we 

all end up in different places, I hope we stay in contact. 

I am lucky to have access to the Electrical and Computer Engineering Machine Shop and 

their wonderful staff (Herbert Dexel, Reiner Schwarze, and Terry Kugler), who were always 

accommodating. Additionally, I am grateful to have access to the world-class nanoFAB facility 



viii 

 

and its amazingly knowledgeable staff. I would also like to extend a special thanks to the many 

other University of Alberta staff members, including Rick McGregor and Alan Lim. 

I am extremely grateful to Professor Oussama Moutanabbir, who has been exceedingly kind 

to me. I am lucky to have met such a wonderful individual, who was willing to provide me with 

support and opportunities even before I completed my PhD. I am grateful for the opportunity to 

join your talented group, and I am eager to contribute to the research. 

I would like to thank Dr. Kevin Zawilski and Dr. Peter Schunemann of BAE Systems for 

their collaboration partnership. Their willingness to share novel and exotic crystals with us was 

integral to the conducted work. 

I am exceptionally grateful for the support provided by my family, my dad and his fiancée, 

my nonno and nonna, my mom and her husband, and my brother, his wife, and their three children. 

I would like to extend a special thanks to my dad, who encouraged me to pursue engineering, my 

nonno and nonna, who dedicated an enormous amount of their time and energy to raising me, and 

my mom and brother, who were there for me even before I went into engineering. I can honestly 

say I don’t know how I would have completed this degree without so much help from family, and 

I am especially grateful to everyone for helping look after our three kids without hesitation.  

I cannot forget our three cats, Maisie, Max, and Jenkins, whose unconditional affection was 

needed through the stress of graduate school. 

I am overly grateful to my wife, Allison, and our three wonderful daughters, Mattea, Chiara, 

and Daniella. It is amazing to think that Allison and I added three members to our family during 

the last two years of my PhD. Although it was interesting at times, trying to complete my PhD 

degree while having a toddler (Mattea) and newborn twins (Chiara and Daniella), thinking of them 



ix 

 

motivated me through the late nights. I am blessed to have their love and affection. More than 

anything else, I strive to be a good husband and father. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The University of Alberta is located on Treaty 6 territory, the traditional lands of First Nations 

and Métis people. 



x 

 

Table of contents 
 

Chapter 1. Introduction .......................................................................................................... 1 

1.1. Key properties of THz radiation ................................................................................. 2 

1.2. Applications of THz radiation .................................................................................... 4 

1.3. Overview of THz sources, detectors, and measurement techniques .......................... 9 

1.4. Pnictide and chalcogenide ternary crystals in the THz frequency regime ............... 11 

1.4.1. Key properties of pnictide ternary crystals ........................................................ 13 

1.4.2. Linear THz radiation properties of pnictide ternary crystals ............................. 15 

1.4.3. THz radiation generation via nonlinear frequency-conversion in pnictide ternary 

crystals .................................................................................................................................. 17 

1.4.4. THz radiation detection using pnictide ternary crystals .................................... 21 

1.4.5. Key properties of chalcogenide ternary crystals ............................................... 21 

1.4.6. Linear THz radiation properties of chalcogenide ternary crystals .................... 25 

1.4.7. THz radiation generation via nonlinear frequency-conversion in chalcogenide 

ternary crystals ...................................................................................................................... 28 

1.4.8. THz radiation detection using chalcogenide ternary crystals ............................ 30 

1.4.9. Pnictide and chalcogenide ternary crystals for high-field THz radiation 

generation .............................................................................................................................. 32 

1.5. On-chip waveguiding platforms for THz radiation generation ................................ 34 

1.5.1. Guided excitation electric fields and guided generated THz radiation ............. 37 

1.5.2. Guided excitation electric fields and free-space THz radiation emission ......... 44 

1.5.3. Free-space excitation electric fields for generating guided THz radiation ........ 51 



xi 

 

1.6. Thesis objectives ...................................................................................................... 54 

1.7. Thesis overview ........................................................................................................ 55 

Chapter 2. Second-order nonlinear phenomena: A complete prospective .......................... 58 

2.1. General framework ................................................................................................... 62 

2.1.1. Anharmonic EOM ............................................................................................. 62 

2.1.2. Maxwell’s equations .......................................................................................... 63 

2.2. Monochromatic incident electric fields .................................................................... 66 

2.2.1. Anharmonic EOM and Maxwell’s equations .................................................... 66 

2.2.2. A quantitative example ...................................................................................... 77 

2.2.3. Tensor representation of the second-order nonlinear polarization .................... 85 

2.3. Nonlinear second-order interaction via a broadband electric field pulse ................. 89 

2.3.1. Induced polarization and Maxwell’s equations ................................................. 90 

2.3.2. A quantitative example ...................................................................................... 94 

2.3.3. Tensor representation of second-order nonlinear polarization .......................... 99 

2.4. Summary................................................................................................................. 102 

Chapter 3. THz-TDS system ............................................................................................. 104 

Chapter 4. THz radiation generation and detection using pnictide and chalcogenide ternary 

crystals ........................................................................................................................................ 111 

4.1. Generation of broadband THz radiation pulses in a CSP Crystal .......................... 112 

4.1.1. Excitation arrangement .................................................................................... 112 

4.1.2. Linear THz radiation properties ...................................................................... 114 



xii 

 

4.1.3. THz-TDS measurements in the nonlinear regime ........................................... 116 

4.2. OR in an AGS crystal for broadband THz radiation generation ............................ 119 

4.2.1. Linear THz radiation properties ...................................................................... 120 

4.2.2. THz-TDS measurements in the nonlinear regime ........................................... 123 

4.3. Generation of narrowband THz radiation from a BGS crystal ............................... 126 

4.3.1. Nonlinear crystal properties ............................................................................ 126 

4.3.2. Dependence of THz radiation generation on the excitation polarization angle and 

crystal orientation................................................................................................................ 127 

4.3.3. Optimal BGS crystal arrangements for THz radiation generation .................. 133 

4.4. THZ EO detection using a (012)-cut ZGP crystal .................................................. 139 

4.4.1. Excitation arrangement and linear THz radiation properties .......................... 140 

4.4.2. EO sampling measurements ............................................................................ 142 

4.5 Summary.................................................................................................................. 145 

Chapter 5. FDTD modeling of second-order nonlinear effects: A complete picture ........ 147 

5.1. Modeling of dispersive tensorial second-order nonlinear effects for the FDTD 

method: Implementing Miller’s rule ....................................................................................... 148 

5.1.1. Derivation of the second-order nonlinear current density ............................... 148 

5.1.2. Discretization of the second-order nonlinear current density .......................... 151 

5.1.3. Frequency-conversion in a LN crystal ............................................................ 158 

5.2. Modeling of dispersive tensorial second-order nonlinear effects for the FDTD 

method: Implementing the Faust-Henry model ...................................................................... 167 



xiii 

 

5.2.1. Nonlinear formalism ........................................................................................ 167 

5.2.2. OR in a ZnTe Crystal ...................................................................................... 169 

5.3. Summary................................................................................................................. 175 

Chapter 6. THz radiation generation using LN waveguiding arrangements ..................... 177 

6.1. Ultra-broadband THz radiation generation from sub-wavelength LN waveguides 177 

6.1.1. Waveguiding structure ..................................................................................... 178 

6.1.2. OR THz radiation generation .......................................................................... 182 

6.2. THz radiation generation near the reststrahlen band in sub-wavelength LN 

waveguides .............................................................................................................................. 188 

6.2.1. Waveguiding arrangement ............................................................................... 189 

6.2.2. OR THz radiation generation .......................................................................... 192 

6.3. Backward THz DFG via modal phase-matching in a planar LN waveguide ......... 197 

6.3.1. Waveguiding structure ..................................................................................... 197 

6.3.2. DFG THz radiation generation ........................................................................ 199 

6.4. Excitation mode-dependent THz radiation generation from a planar LN waveguide

................................................................................................................................................. 204 

6.4.1. Waveguiding structure ..................................................................................... 205 

6.4.2. OR THz radiation generation .......................................................................... 207 

6.5. Summary................................................................................................................. 211 

Chapter 7. Generation of radiation in the near-IR and visible spectral regions ................ 212 



xiv 

 

7.1. SHG in Au-LN-Au and LN hybrid-plasmonic waveguides ................................... 214 

7.1.1. Waveguiding structures ................................................................................... 214 

7.1.2. SHG in MLNM nanoplasmonic and LNHP waveguides ................................ 217 

7.2. Optical frequency SHG in a CSP photonic waveguide .......................................... 223 

7.2.1. Waveguiding structure ..................................................................................... 223 

7.2.2. SHG in CSP and LN photonic waveguides ..................................................... 225 

7.3. Phase-matched frequency-conversion in waveguides by means of transverse 

wavevector projections ........................................................................................................... 230 

7.3.1. Coupling arrangement ..................................................................................... 231 

7.3.2. SHG via off-normal-incidence coupling ......................................................... 232 

7.4. Off-normal-incidence coupling for phase-matched SHG in a sub-micron LN planar 

waveguide ............................................................................................................................... 238 

7.4.1. Experimental arrangement ............................................................................... 238 

7.4.2. Waveguide characteristics ............................................................................... 239 

7.4.3. Coupling characteristics .................................................................................. 243 

7.4.4. Experimental measurements ............................................................................ 244 

7.5. Summary................................................................................................................. 246 

Chapter 8. Simultaneous generation of phase-matched radiation across multiple spectral 

bands ........................................................................................................................................... 248 

8.1. Generation of mid-IR and visible radiation in a multi-band planar LN waveguide250 

8.1.1. Waveguiding structure ..................................................................................... 250 



xv 

 

8.1.2. SFG and DFG in a planar LN waveguide ....................................................... 252 

8.2. A multi-band planar LN waveguide for generating THz radiation and visible light

................................................................................................................................................. 258 

8.2.1. Waveguiding structure ..................................................................................... 258 

8.2.2. SHG visible-light generation ........................................................................... 261 

8.2.3. OR THz radiation generation .......................................................................... 264 

8.3. Summary................................................................................................................. 266 

Chapter 9. Conclusion ....................................................................................................... 267 

9.1. Future directions ..................................................................................................... 269 

9.2. Outlook ................................................................................................................... 271 

References ......................................................................................................................... 272 

Appendix A ....................................................................................................................... 299 

Phase-matching in second-order nonlinear interactions ................................................ 299 

 

 



xvi 

 

List of Tables 

Table 1.1. Structural and optical properties of various pnictide ternary crystals in the THz 

frequency regime. ......................................................................................................................... 15 

Table 1.2. Structural and optical properties of various chalcogenide ternary crystals in the THz 

frequency regime. ......................................................................................................................... 23 

 



xvii 

 

List of figures 

Fig. 1.1. (a) EM spectrum showing that THz radiation lies between technologies prevalent in 

electronics and photonics. (b) Output power of various sources used to produce radiation within 

and near the THz spectral region [2]............................................................................................... 2 

Fig. 1.2. Absorption of THz radiation due to water vapor [8]. The spectra are obtained using an air 

biased coherent detection (ABCD) system and a Fourier-transform infrared (FTIR) spectroscopy 

system [8]. ....................................................................................................................................... 3 

Fig. 1.3. (a) Optical arrangement showing a metallic blade concealed within an envelope [7]. (b) 

THz radiation image clearly identifying the concealed cutting blade [7]. (c) Spectral “fingerprint” 

of various explosives in the THz frequency regime [6]. ................................................................. 5 

Fig. 1.4. (a) Illustration of the technique used to measure the coating thickness of a pharmaceutical 

tablet [11]. (b) Experimental THz time-domain signal recorded after reflecting from the various 

interfaces of the pharmaceutical tablet [11]. ................................................................................... 6 

Fig. 1.5. Illustration of point-to-point communication using a secure THz radiation channel for 

terabit-per-second (Tbps) data transfer [18]. .................................................................................. 7 

Fig. 1.6. THz radiation images of a spinach leaf undergoing a natural drying process, where dark 

regions correspond to a high water content [9]. .............................................................................. 9 

Fig. 1.7. An illustration of the unit cell structure of the ZGP, CSP, CdGeP2, and MnSiP2 crystals.

....................................................................................................................................................... 13 

Fig. 1.8. Ordinary and extraordinary (a) refractive indices and (b) extinction coefficients of ZGP 

crystals in the THz frequency regime [39]. .................................................................................. 16 



xviii 

 

Fig. 1.9. (a) DFG THz radiation produced using a ZGP crystal excited at various external phase-

matching angles [51]. (b) Generation of broadband THz radiation from a ZGP crystal excited using 

a pulse that had a duration of 100 fs and a central wavelength of 1.3 µm [53]. The inset compares 

the spectral distributions of the generated THz radiation for ZGP and GaAs crystals. OR phase-

matching contours for ZGP crystals cut along the (c) (110) and (d) (012) crystal planes [54]. (e) 

THz time-domain electric field signals and (f) the associated spectra produced using (110)-cut 

CSP, ZGP, and CdGeP2 crystals [28]. .......................................................................................... 20 

Fig. 1.10. Temperature-dependent (a) ordinary and (b) extraordinary refractive indices of an 

AgGaS2 crystal [69]. Temperature-dependent (c) ordinary and (d) extraordinary absorption 

coefficients of an AgGaS2 crystal [69]. (e) Refractive indices and (f) extinction coefficients along 

the [100], [010], and [001] crystallographic axes of an LiInSe2 crystal [72]. .............................. 27 

Fig. 1.11. (a) THz time-domain signals and (b) the associated spectra produced using LiGaSe2, 

LiGaS2, LiInSe2, and LiInS2 crystals [75]. (c,d) THz time-domain signals and (e) the associated 

spectra produced using an LiGaS2 crystal. In (e), the spectra centered at ~13 and 22 THz were 

obtained using a GaSe crystal [76]. .............................................................................................. 29 

Fig. 1.12. (a) EO time-domain signal and (b) the associated spectrum obtained using an AgGaS2 

crystal [82]. (c) EO time-domain signals obtained using Zn1−xCdxTe crystals [87]. (d) EO spectra 

obtained using Zn1−xMnxTe crystals [66]. ..................................................................................... 31 

Fig. 1.13. (a) DFG THz radiation spectral power produced from a GaAs planar waveguide [102]. 

The theoretical spectral power fits, obtained using monochromatic excitation electric fields and 

excitation electric fields having 100 GHz bandwidths, are shown for comparison [102]. (b) DFG 

THz radiation generated from a GaP planar waveguide [103]. .................................................... 38 



xix 

 

Fig. 1.14. (a) Illustration depicting THz radiation generation from a poled polymer-coated 

cylindrical metal wire waveguiding arrangement [94]. (b) Spectral density of OR THz radiation 

generated from the waveguide illustrated in (a) [94]. (c) DFG THz radiation produced by a GaP 

rectangular waveguide that had widths of 200, 500, and 1000 µm [106]. (d) DFG THz radiation 

generated by GaP ridge waveguides that had ridge widths of 200, 300, 500, and 1000 µm, where 

the inset illustrates a scanning electron microscope image of a GaP ridge waveguide that had a 

ridge width of 300 µm [107]. ........................................................................................................ 40 

Fig. 1.15. (a) Scanning electron microscope image of a GaP photonic crystal waveguide that had 

a 300 µm-wide line defect [108]. (b) DFG THz radiation produced by the waveguide shown in (a) 

[108]. ............................................................................................................................................. 41 

Fig. 1.16. (a) Cross-sectional illustration of an acrylate-poled polymer-acrylate planar waveguide 

embedded within a parallel plate waveguide [110]. (b) THz electric field pulses produced by the 

waveguiding arrangement depicted in (a) for waveguide lengths of 1, 2, and 3 mm [110]. (c) An 

AlGaAs-GaAs-AlGaAs ridge waveguide embedded within a metallic slit waveguide [111]. (d) A 

GaP ridge waveguide embedded within a rectangular Si waveguide [112]. (e,f) A waveguiding 

arrangement that consisted of a photonic crystal waveguide, (e), with an embedded AlGaAs ridge 

waveguide, (f) [114]. (g) Illustration of a Ti:LN channel waveguide embedded within a quartz-

LN-HDPE waveguide [115]. (h) DFG THz radiation produced by the waveguiding arrangement 

depicted in (g) [115]...................................................................................................................... 43 

Fig. 1.17. (a) Illustration of a LN-MgO:LN-PET planar waveguide showing the generated THz 

radiation being emitted as Cherenkov waves [116]. (b) Spectra of the DFG THz radiation produced 

by the waveguide in (a) [116]. ...................................................................................................... 45 



xx 

 

Fig. 1.18. (a) Illustration of a Bk7-LN-Si prism leaky planar waveguide, which depicts the 

generated THz radiation being emitted as Cherenkov waves [118]. (b) THz electric field pulses 

produced by the Bk7-LN-Si prism leaky planar waveguide that had an LN thickness of 50 µm and 

(c) the spectra obtained from the leaky planar waveguide that had LN thicknesses of 30 and 50 µm 

[118]. (d) Illustration of the metal-air-LN-Si prism leaky planar waveguide, showing the generated 

THz radiation being emitted as Cherenkov waves [121]. (e) THz electric field pulses produced by 

the metal-air-LN-Si prism leaky planar waveguide that had no air gap and an infinite air gap and 

(f) the spectral density of the THz electric field pulses shown in (e) [121]. (g) Illustration of the 

Si-LN-Si leaky planar waveguide, depicting the propagation direction of the generated THz 

radiation [123]. (h) THz electric field pulse produced by the Si-LN-Si leaky planar waveguide and 

(i) the spectral density of the THz electric field pulses shown in (h)  [123]. ................................ 48 

Fig. 1.19. (a) Cross-sectional image of an MgO:LN ridge waveguide and (b) a semi-cone Si lens 

that surrounded the ridge waveguide [124]. (c) Spectral power of the OR THz radiation produced 

by the MgO:LN ridge waveguide [124]. (d) Illustration of a PPMgLN ridge waveguide [126]. DFG 

THz radiation produced by PPMgLN ridge waveguides having grating periods of (e) 91 µm and 

(f) 137 µm [126]. .......................................................................................................................... 50 

Fig. 1.20. (a) An Al-GaAs-Al parallel plate waveguide and (b) the spectral density of the OR THz 

radiation generated by this waveguiding structure [128]. The inset depicts the generated THz 

electric field pulse [128]. (c) Illustration of GaP rectangular waveguides that had cross-sectional 

dimensions of 600 µm × 400 µm and 1000 µm × 700 µm and (d) the spectral densities of the OR 

THz radiation produced by these waveguides [129]. The inset shows the generated THz electric 

field pulses [129]. (e-g) Illustration of a tilted wavefront excitation pulse propagating through a 

LN planar waveguide and the guided generated THz radiation, where (e) depicts the earliest instant 



xxi 

 

in time, (f) shows a subsequent instant in time, and (g) illustrates the latest instant in time [131]. 

(h) DFG THz radiation produced by a LN planar waveguide at various excitation pulse wavefront 

tilt angles [131]. For comparison, the dotted line represents THz radiation generation from a bulk 

LN crystal [131]. DFG THz radiation produced by planar and rectangular PPLN waveguides in 

the (i) forward direction and (j) backward direction [132]. .......................................................... 53 

Fig. 2.1. Displacement of an electron cloud with respect to its heavier (i.e. fixed) nucleus (a) at 

equilibrium, (b) in the regime described by a linear restoring force, and (c) in the regime described 

by a nonlinear restoring force. (d) Displacement of an atom with respect to another heavier (i.e. 

fixed) atom. (e) Representative restoring force curve. ................................................................. 60 

Fig. 2.2. (a) SHG, (b) SFG, and (c) DFG processes depicted as photons incident on a medium and 

photons exiting the medium. (d) SHG, (e) SFG, and (f) DFG processes depicted in terms of energy 

conservation diagrams. The photons in (f) signify that frequency components at 𝜔2 must initially 

be present in order for the DFG process to occur. ........................................................................ 61 

Fig. 2.3. (a) Time-domain and (b) frequency-domain representation of 𝑬𝑖
𝑤(𝑧, 𝑡). ...................... 78 

Fig. 2.4. (a) Refractive index and (b) extinction coefficient of a medium described using 

N=5×1022 cm-3, 𝜔0 (2π)⁄ =4000 THz, and 𝛾 (2π)⁄ =20 THz. ....................................................... 79 

Fig. 2.5. (a) The bound electric charge displacement of 𝒔𝑤,(2)(𝑧, 𝑡), as well as each of its 

contributions. (b) Fourier transform of 𝒔𝑤,(2)(𝑧, 𝑡) obtained over a temporal window of 500 fs. (c) 

The maximum amplitudes of 𝒔2𝜔1

𝑤,(2)(𝑧, 𝑡), 𝒔2𝜔2

𝑤,(2)(𝑧, 𝑡), 𝒔𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡), 𝒔𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡), and 𝒔0
𝑤,(2)(𝑧) at 

various positions within the medium. The vertical dotted-line at 𝑧=70 µm corresponds to the 

recorded position of the time-domain bound electric charge displacements shown in (a). .......... 80 



xxii 

 

Fig. 2.6. (a) The electric field of 𝑬𝑔
𝑤(𝑧, 𝑡), as well as each of its contributions. (b) Fourier transform 

of 𝑬𝑔
𝑤(𝑧, 𝑡) obtained over a temporal window of 500 fs. The Fourier transform of 𝑬𝑖

𝑤(𝑧, 𝑡) is shown 

for comparison. (c) The maximum amplitudes of 𝑬2𝜔1

𝑤 (𝑧, 𝑡), 𝑬2𝜔2

𝑤 (𝑧, 𝑡), 𝑬𝜔1+𝜔2
𝑤 (𝑧, 𝑡), and 

𝑬𝜔1−𝜔2
𝑤 (𝑧, 𝑡) at various positions within the medium. The vertical dotted-line represents 𝑧 =70 µm, 

which correspond to the recorded position of the time-domain electric fields in (a). .................. 84 

Fig. 2.7. (a) A hypothetical representation of a 2D unit cell with the atomic constituents at their 

equilibrium positions. The various colors represent different atomic constituents. (b) A 

perturbation causing the inner atomic constituents to be displaced along the x axis, where such 

constituents may exhibit a displacement in both the x and y axes when returning to their 

equilibrium positions. ................................................................................................................... 86 

Fig. 2.8. Frequency-domain depiction of the (a) SHG and (b) OR processes. ............................. 93 

Fig. 2.9. (a) Time-domain and (b) frequency-domain representation of 𝑬𝑖
𝑝(𝑧, 𝑡). ....................... 94 

Fig. 2.10. (a) The bound electric charge displacement of 𝒔𝑂𝑅
𝑝,(2)(𝑧, 𝑡), 𝒔𝑆𝐻𝐺

𝑝,(2)(𝑧, 𝑡), and 𝒔𝑝,(2)(𝑧, 𝑡). 

(b) Fourier transform of 𝒔𝑝,(2)(𝑧, 𝑡). (c) The maximum amplitudes of 𝒔𝑂𝑅
𝑝,(2)(𝑧, 𝑡) and 𝒔𝑆𝐻𝐺

𝑝,(2)(𝑧, 𝑡), 

where the vertical dotted-line at 𝑧=500 µm corresponds to the recorded position of the time-

domain bound electric charge displacements shown in (a). ......................................................... 95 

Fig. 2.11. (a) The electric field of 𝑬𝑂𝑅
𝑝 (𝑧, 𝑡), 𝑬𝑆𝐻𝐺

𝑝 (𝑧, 𝑡) , and 𝑬𝑔
𝑝(𝑧, 𝑡). (b) Fourier transform of 

𝑬𝑔
𝑝(𝑧, 𝑡). The Fourier transform of 𝑬𝑖

𝑝(𝑧, 𝑡) is shown for comparison. (c) The maximum amplitudes 

of 𝑬𝑂𝑅
𝑝 (𝑧, 𝑡) and 𝑬𝑆𝐻𝐺

𝑝 (𝑧, 𝑡) at various positions within the medium, where the vertical dotted-line 

at 𝑧=500 µm corresponds to the recorded position of the time-domain electric fields shown in (a).

....................................................................................................................................................... 97 



xxiii 

 

Fig. 3.1. (a) Schematic of the THz-TDS system typically used to conduct experimental 

measurements. ‘M’ indicates planar mirrors, ‘PM’ indicates parabolic mirrors, and ‘L’ indicates 

lenses. (b) Photograph of the THz-TDS system. ........................................................................ 106 

Fig. 3.2. (a) Raw voltage signal obtained using the THz-TDS system and its corresponding electric 

field magnitude. (b) The associated spectral density (i.e. Fourier transform). ........................... 110 

Fig. 4.1. Unit cell structure of the CSP crystal. The optical excitation pulse and the generated THz 

radiation are polarized perpendicular and parallel to the crystal’s c-axis, respectively. ............ 113 

Fig. 4.2. (a) Extraordinary refractive indices and (b) extraordinary extinction coefficients of the 

CSP and ZGP crystals. (c) Extraordinary absorption coefficients for CSP, ZGP, ZnTe, and LN 

crystals. The experimental data for ZnTe and LN are obtained from Refs. [147] and [148], 

respectively. ................................................................................................................................ 115 

Fig. 4.3. (a) THz time-domain signals and (b) spectral densities of the electric fields generated 

from the CSP and ZGP crystals. ................................................................................................. 117 

Fig. 4.4. The coherence lengths of the CSP and ZGP crystals. .................................................. 118 

Fig. 4.5. THz peak-to-peak electric field as a function of the peak intensity of the optical excitation 

pulse. ........................................................................................................................................... 119 

Fig. 4.6. (a) Time-domain electric field pulses transmitted through the AGS crystal, having 

polarizations oriented along the ordinary and extraordinary axes of the crystal. (b) Spectral density 

of the transmitted pulses, where the phonon resonances cause absorption at several frequencies 

across the measured spectra. The free-space THz radiation signal and spectrum are shown as a 

reference. ..................................................................................................................................... 121 

Fig. 4.7. (a) Ordinary and (b) extraordinary refractive indices and extinction coefficients of the 

uniaxial AGS crystal. The shaded area in (a) corresponds to the region where no and кo are not 



xxiv 

 

calculated due to the spectral density vanishing. (c) OR coherence length of the AGS crystal for 

the scenario where the excitation pulse polarization is oriented along the ordinary crystal axis.

..................................................................................................................................................... 122 

Fig. 4.8. (a) THz time-domain electric field pulse generated by the AGS crystal via the process of 

OR. (b) Spectral density of the generated THz radiation pulse, showing absorption from the lowest-

frequency B2 mode at 1.6 THz. ................................................................................................... 124 

Fig. 4.9. (a) THz peak-to-peak electric field measured upon varying the angle between the 

polarization of the optical excitation pulse and the crystal’s c-axis. (b) Peak-to-peak THz electric 

field measured for various peak excitation pulse intensities in the AGS crystal. ....................... 125 

Fig. 4.10. (a) Schematic showing the setup implemented to perform OR THz radiation generation 

experiments using the BGS crystal. xr, yr, and zr define the reference coordinates. (b) An illustration 

of the unit cell of the BGS crystal. The near-IR excitation electric field polarization and the 

generated THz radiation electric field polarization are shown. .................................................. 128 

Fig. 4.11. (a) THz time-domain signals generated by exciting the BGS crystal along its X crystallo-

physical axis (i.e. 𝜃𝑐=𝜃𝑝) and (b) the corresponding spectral power. (c) Spectral powers at the 

frequencies of 1.97 and 2.34 THz as a function of 𝜃𝑝. The inset shows an illustrative representation 

of the orientations of �⃗� 𝑒𝑥𝑐 and �⃗� 𝑇𝐻𝑧 with respect to the X, Z, xr, and zr axes. Here, the excitation 

polarization and crystal orientation are fixed using the relationship of 𝜃𝑐=𝜃𝑝. .......................... 130 

Fig. 4.12. (a) THz time-domain signals generated by exciting the BGS crystal along its Z crystallo-

physical axis (i.e. 𝜃𝑐=𝜃𝑝+90°) and (b) the corresponding power spectra. (c) Spectral powers at the 

frequencies of 1.97 and 2.34 THz as a function of 𝜃𝑝. The inset shows the illustrative representation 



xxv 

 

of the orientations of �⃗� 𝑒𝑥𝑐 and �⃗� 𝑇𝐻𝑧  with respect to the X, Z, xr, and zr axes. Here, the excitation 

polarization and crystal orientation are fixed using the relationship of 𝜃𝑐=𝜃𝑝+90°. .................. 131 

Fig. 4.13. (a) THz time-domain signals when the X crystallo-physical axis of the BGS crystal is 

oriented along the transmission axis of the wire-grid polarizer (i.e. 𝜃𝑐=90°) and (b) the 

corresponding power spectra. (c) Spectral powers at the frequencies of 1.97 and 2.34 THz as a 

function of 𝜃𝑝. The inset shows the illustrative representation of the orientations of �⃗� 𝑒𝑥𝑐 and �⃗� 𝑇𝐻𝑧  

with respect to the X, Z, xr, and zr axes for 𝜃𝑐=90°. .................................................................... 132 

Fig. 4.14. (a) THz time-domain signals when the Z crystallo-physical axis of the BGS crystal is 

oriented along the transmission axis of the wire-grid polarizer (i.e. 𝜃𝑐=0°) and (b) the 

corresponding power spectra. (c) Spectral powers at the frequencies of 1.97 and 2.34 THz as a 

function of 𝜃𝑝. The inset shows the illustrative representation of the orientations of �⃗� 𝑒𝑥𝑐 and �⃗� 𝑇𝐻𝑧  

with respect to the X, Z, xr, and zr axes for 𝜃𝑐=0°. ...................................................................... 133 

Fig. 4.15. Illustration of the experimental arrangement for (a) the BGS crystal when �⃗� 𝑒𝑥𝑐 ∥ 𝑋, (b) 

the BGS crystal when �⃗� 𝑒𝑥𝑐 ∥ 𝑍, and (c) the ZnTe crystal. The generated THz radiation is passed 

through a wire-grid polarizer to obtain the component polarized along the Z crystallo-physical axis. 

This THz radiation is subsequently recorded using a 500 µm-thick (110)-cut ZnTe EO sampling 

crystal. The (110)-cut ZnTe EO crystal orientation is optimized for maximum THz radiation 

generation. ................................................................................................................................... 134 

Fig. 4.16. (a) Time-domain signals and (b) power spectra for THz radiation produced using the 

�⃗� 𝑒𝑥𝑐 ∥ 𝑋 and �⃗� 𝑒𝑥𝑐 ∥ 𝑍 BGS crystal configurations. For comparison, broadband THz radiation 

emission from the ZnTe crystal arrangement is shown. ............................................................. 136 



xxvi 

 

Fig. 4.17. Spectral densities at the frequencies of (a) 1.97 THz and (b) 2.34 THz, as generated from 

the BGS crystal �⃗� 𝑒𝑥𝑐 ∥ 𝑋 configuration and the ZnTe crystal configuration. Spectral densities at 

the frequencies of (c) 1.97 THz and (d) 2.34 THz, as generated from the BGS crystal �⃗� 𝑒𝑥𝑐 ∥ 𝑍 

configuration and the ZnTe crystal configuration. ..................................................................... 139 

Fig. 4.18. (a) The unit cell and (012)-cut plane of the ZGP crystal. The illustration shows the 

polarization of the THz electric field in the EO detection measurements, which is rotated 110° with 

respect to the [100] crystallographic axis about the direction normal to the (012)-cut plane. �⃗�  is the 

wavevector of the THz electric field. (b) Schematic of the (012)-cut plane showing the THz 

polarization direction. ................................................................................................................. 141 

Fig. 4.19. (a) Refractive index and extinction coefficient of ZGP over the frequency range of 0.1-

3.8 THz. (b) Absorption coefficient of ZGP over the frequency range of 0.1-3.8 THz. ............ 142 

Fig. 4.20. (a) THz time-domain pulses and (b) spectral density obtained using ZGP, ZnTe, and 

ZnSe EO crystals. Spectral densities are scaled to facilitate bandwidth comparison. ................ 143 

Fig. 4.21. The normalized amplitude of the response function for crystal thicknesses of (a) 500 µm 

and (b) 1080 µm. ......................................................................................................................... 145 

Fig. 5.1. An illustration of the LN crystal having a thickness ℓ and an excitation electric field 

polarization at the angle of 𝜃𝑝 with respect to the crystal’s c-axis. ............................................ 158 

Fig. 5.2. (a) Refractive index and (b) extinction coefficient for the extraordinary LN crystal axis 

in the THz frequency regime. (c) Refractive index and (d) extinction coefficient for the ordinary 

LN crystal axis in the THz frequency regime. (e) Extraordinary and ordinary refractive indices in 

the optical frequency regime. The experimental data is obtained from Refs. [171,172] and the LN 

crystal is taken to be lossless in the optical regime. ................................................................... 161 



xxvii 

 

Fig. 5.3. Second-order nonlinear susceptibility elements of LN for (a) 𝜒33
(2)(Ω,𝜔, Ω − 𝜔), (b) 

𝜒31
(2)(Ω,𝜔, Ω − 𝜔), and (c) 𝜒15

(2)(Ω,𝜔, Ω − 𝜔). The curve fits are calculated using Miller’s rule with 

the experimental data from Refs. [98,174,175]. ......................................................................... 162 

Fig. 5.4. (a) The z-component of the spectral power obtained using the dispersive 

𝜒33
(2)(Ω,𝜔, Ω − 𝜔) and the frequency-independent 𝜒33

(2)
=348 pm/V. (b) Relative spectral power 

calculated when implementing the dispersive 𝜒33
(2)(Ω,𝜔, Ω − 𝜔) and the frequency-independent 

𝜒33
(2)

=348 pm/V............................................................................................................................ 163 

Fig. 5.5. (a) Coherence length for THz radiation produced in the forward direction. (b) The 

x-component of the spectral power recorded in free-space. (c) Coherence length for THz radiation 

produced in the backward direction. (d) The x-component of the spectral power recorded near the 

input face of the LN crystal. ....................................................................................................... 165 

Fig. 5.6.  (a) The z-component and (b) the x-component of the spectral power at various electric 

field polarization angles. ............................................................................................................. 166 

Fig. 5.7. (a) Magnitude and (b) phase of 𝜒36
(2)(Ω) for ZnTe, as defined by the Faust-Henry model 

for dispersion. The Faust-Henry curve fitting parameters are obtained from Refs. [96,166]. .... 170 

Fig. 5.8. Illustration of the ZnTe crystal (a) perpendicular and (b) parallel to the propagation 

direction of the electric fields. The ZnTe crystal is excited at a polarization angle of 45° relative to 

the c-axis of the crystal. .............................................................................................................. 171 

Fig. 5.9. (a) THz time-domain electric fields and (b) spectral powers produced by OR in thin film 

ZnTe crystals having ℓ=0.1-1 µm. .............................................................................................. 172 



xxviii 

 

Fig. 5.10. (a) THz time-domain electric fields and (b) spectral powers from ZnTe crystals having 

ℓ=10-40 µm. The time-domain signals and the power spectra are to scale with the data presented 

in Fig. 5.9. ................................................................................................................................... 173 

Fig. 5.11. (a) THz time-domain electric fields and (b) spectral powers for THz radiation that is 

polarized along the x and z axes, calculated for the ℓ=1 µm ZnTe crystal. ................................ 174 

Fig. 5.12. Schematic of the SiO2-ZnTe-air planar waveguide along the (a) y-z and (b) x-y cross-

sections, which show the Gaussian electric field pulse being coupled into the waveguide and the 

generated THz radiation being coupled out of the waveguide. (c) THz time-domain electric field 

and (d) spectral power of the generated THz radiation. .............................................................. 175 

Fig. 6.1. Schematic showing the sub-wavelength SiO2-LN-SiO2 waveguiding geometry 

incorporating Si prisms. Depicted in the illustration is the waveguide width, W, length, L, and core 

thickness, 𝑇. The z-polarized optical excitation pulse is coupled into the SiO2-LN-SiO2 waveguide 

and the generated THz electric field has a polarization oriented along the z axis. ..................... 179 

Fig. 6.2. (a) LN, (b) SiO2, and (c) Si refractive indices and extinction coefficients. The 

experimental data is obtained from Refs. [148,171,172] for LN, Ref. [182] for SiO2, 

and Refs. [182,183] for Si. The inset in (a) displays the LN extraordinary refractive index at 

frequencies of 100-500 THz. ...................................................................................................... 180 

Fig. 6.3. Magnitude and phase of the 𝜒33
(2)

 second-order nonlinear susceptibility element of LN. 

The experimental data is obtained from Refs. [30, 98, 170, 174,188–191]. ............................... 182 

Fig. 6.4. (a) THz time-domain electric field generated from a SiO2-LN-SiO2 waveguide having 

𝑇=500 nm, L=100 µm, and excited by a =10 fs, 𝜉𝑒𝑥𝑐 𝑊⁄ =10 nJ/cm, 780 nm optical pulse. The 

time-domain signal is recorded after exiting the Si prisms. (b) NESD of the THz radiation 

measured after exiting the Si prisms. (c-f) Time-averaged spatial distribution of the electric field 



xxix 

 

at frequencies of 10, 20, 30, and 40 THz propagating outwards from the waveguide. The electric 

field values in (e) and (f) are scaled by a factor of 5. ................................................................. 183 

Fig. 6.5. (a) NESD of the THz radiation emitted from a waveguide having 𝑇=0.3-5 µm, L=100 µm, 

and being excited by a =10 fs, 𝜉𝑒𝑥𝑐 𝑊⁄ =10 nJ/cm optical pulse. (b) The effective refractive index 

of the excitation mode (i.e. 𝑛𝑒𝑓𝑓
𝑚 ), as well as the effective group refractive index of the excitation 

mode (i.e. 𝑛𝑒𝑓𝑓,𝑔
𝑚 ) at 𝑇=0.3, 0.5, and 5 µm. (c) 𝜉𝑂𝑅 𝑊⁄  contained in the generated THz frequency 

components. The inset shows the intensity profiles of the modes. ............................................. 185 

Fig. 6.6. (a) NESD of the THz electric field emitted from a waveguide having 𝑇=500 nm, 

L=100 µm, and excited by =7-100 fs, 𝜉𝑒𝑥𝑐 𝑊⁄ =10 nJ/cm optical pulses. (b) 𝜉𝑂𝑅 𝑊⁄  of the 

generated THz radiation. ............................................................................................................. 186 

Fig. 6.7. (a) NESD and (b) 𝜉𝑂𝑅 𝑊⁄  emitted from waveguides having L=100-300 µm, 𝑇=500 nm, 

and excited by a =7 fs, 𝜉𝑒𝑥𝑐 𝑊⁄ =10 nJ/cm optical pulse. ......................................................... 187 

Fig. 6.8. (a) NESD and (b) 𝜉𝑂𝑅 𝑊⁄  generated using waveguides having L=100 µm, 𝑇=500 nm, 

and excited by =7 fs, 𝜉𝑒𝑥𝑐 𝑊⁄ =2-10 nJ/cm optical pulses. ....................................................... 188 

Fig. 6.9. A schematic of the sub-wavelength planar LN waveguide used to generate THz radiation. 

The LN crystal’s c-axis is oriented along the z axis. .................................................................. 189 

Fig. 6.10. (a) Spatial intensity profile of the 5.6 THz mode supported by waveguides having core 

thicknesses of (i) 300 nm, (ii) 500 nm, (iii) 1 µm, and (iv) 5 µm. The green, red, and blue regions 

represent the LN crystal, the SiO2 surrounding layers, and free-space, respectively. (b) The 

propagation length (i.e. Lp) and the OR coherence length (i.e. 𝐿𝑐
𝑂𝑅) of the waveguide mode at a 

frequency of 5.6 THz. The inset shows the effective refractive index of the THz mode. (c) Spatial 



xxx 

 

distribution of the electric field obtained by propagating a 5.6 THz electric field pulse along a 

waveguide having L=100 µm and 𝑇=500 nm. ............................................................................ 191 

Fig. 6.11. (a) Spatial distribution of the THz electric field produced by a waveguide having 

𝑇=500 nm and L=100 um. (b) THz time-domain electric field pulse generated by the planar LN 

waveguide and recorded in free-space. The arrow indicates the time at which the electric field 

distribution in (a) is recorded. (c) NESD of the THz radiation produced by the waveguide and 

emitted into free-space. The frequency components being considered are those emitted in the 

forward direction along the y axis with respect to the waveguide’s end face. ............................ 194 

Fig. 6.12. NESD of THz radiation produced by waveguides having (a) L=100 µm and 𝑇=0.3-5 µm, 

and (b) 𝑇=500 nm and L=20-200 µm. ........................................................................................ 195 

Fig. 6.13. Conversion efficiency of waveguides having L=100 µm and 𝑇=0.3-5 µm, as well as 

𝑇=500 nm and L=20-200 µm. ..................................................................................................... 196 

Fig. 6.14. Illustration of the SiO2-LN-air planar waveguiding arrangement used for the phase-

matched backward DFG process. ............................................................................................... 198 

Fig. 6.15. The backward DFG coherence length calculated using (a) the TE0 �⃗� 𝑖 mode for the 

𝑇=5 µm planar waveguide and (b) the TE2 �⃗� 𝑖 mode for the 𝑇=25 µm planar waveguide. The insets 

in (a) and (b) show the TE0 �⃗� 𝑖 mode and the TE2 �⃗� 𝑖 mode, respectively. The black areas identify 

the coherence lengths, where perfect phase-matching occurs along the red lines. In (a) and (b), 

perfect-phase matching occurs at fi=2.4 and 2.6 THz, respectively. .......................................... 199 

Fig. 6.16. (a) THz time-domain electric field pulses and (b) the associated spectral powers 

generated in the L=100-500 µm and 𝑇=5 µm planar waveguides. The electric fields are recorded 



xxxi 

 

at the planar waveguide’s input. The inset shows the conversion efficiency for the L=100-500 µm 

planar waveguides. ...................................................................................................................... 200 

Fig. 6.17. (a) THz time-domain electric field pulses and (b) the associated spectral powers 

produced in the 𝑇=2-5 µm and L=500 µm planar waveguides. The electric fields are recorded at 

the input of the planar waveguide. (c) The conversion efficiency (i.e. 𝜂𝐷𝐹𝐺) and �⃗� 𝑖 propagation 

length (i.e. Lp) for the 𝑇=2-5 µm planar waveguides. The inset shows the overlap integral values.

..................................................................................................................................................... 202 

Fig. 6.18. (a) THz time-domain electric field pulses and (b) the associated spectral powers 

produced in the 𝑇=15-25 µm and L=500 µm planar waveguides. The electric fields are recorded 

at the input of the planar waveguide. (c) The conversion efficiency (i.e. 𝜂𝐷𝐹𝐺) and �⃗� 𝑖 propagation 

length (i.e. Lp) for the 𝑇=15-25 µm planar waveguides. The inset shows the overlap integral values.

..................................................................................................................................................... 204 

Fig. 6.19. Schematic of the LN planar waveguide depicting the (a) TE0, (b) TE1, and (c) TE2 

excitation modes. (d) The effective group refractive indices for the TE0, TE1, and TE2 excitation 

modes. ......................................................................................................................................... 206 

Fig. 6.20. (a) THz time-domain electric field generated from the TE0, TE1, and TE2 excitation 

modes of a LN planar waveguide and from a 500 µm-thick bulk ZnTe crystal. The red arrows 

indicate pulses from reflections in the EO crystal. (b) Spectral densities obtained by isolating the 

individual pulses at t=4, 10, and 17 ps. The inset shows the THz spectral density of the bulk ZnTe 

crystal. ......................................................................................................................................... 209 

Fig. 6.21. (a) Energy and (b) conversion efficiency for the generated THz radiation. 𝜉𝑂𝑅 ∝ 𝐼𝑝
2 and 

𝜂𝑂𝑅 ∝ Ip are the theoretical equations describing this second-order nonlinear process. ............ 210 



xxxii 

 

Fig. 7.1. (a) Cross-sectional schematic of the W=400 nm and 𝑇=780 nm MLNM nanoplasmonic 

waveguide. (b) λexc=1550 nm and (c) λSHG=775 nm modal intensity distributions supported by the 

MLNM nanoplasmonic waveguide. (d) Cross-section of the W=400 nm and 𝑇=100 nm LNHP 

waveguide. (e) λexc=1550 nm and (f) λSHG=775 nm modal intensity distributions supported by the 

LNHP waveguide. ....................................................................................................................... 216 

Fig. 7.2. (a) Effective refractive indices of the MLNM nanoplasmonic and LNHP modes, 

illustrating phase-matching between λexc=1550 nm and λSHG=775 nm. (b) Coherence length for the 

MLNM nanoplasmonic and LNHP waveguides. (c) Propagation lengths of the excitation and SHG 

wavelengths for the MLNM nanoplasmonic and LNHP waveguides. ....................................... 217 

Fig. 7.3. Magnitude of the time-averaged spatial electric field distribution recorded at 

λSHG=775 nm for the (a) MLNM nanoplasmonic and (b) LNHP waveguides. (c) SHG time-domain 

electric field pulses and (d) SHG spectral density recorded in the waveguides near the positions of 

maximum electric fields. ............................................................................................................. 219 

Fig. 7.4. Conversion efficiency for various lengths of the MLNM nanoplasmonic and LNHP 

waveguides. For comparison, the conversion efficiency is determined in a 400 nm × 509 nm 

phase-matched MLN waveguide with a 100 nm thick gold layer situated on the LN, as well as a 

400 nm × 837 nm phase-matched LN photonic waveguide (see insets). ................................... 222 

Fig. 7.5. Illustration of the CSP/LN photonic waveguide. A 1550 nm excitation pulse is converted 

to 775 nm via nonlinear effects in the photonic waveguides. The cross-sections of the photonic 

waveguides are cut along the (110) and (010) planes of the CSP and LN crystals, respectively.

..................................................................................................................................................... 224 

Fig. 7.6. (a) The effective refractive indices of the TE00 excitation mode and TM20 SHG mode for 

the 600 nm × 650 nm CSP photonic waveguide. The insets depict the transverse mode profiles at 



xxxiii 

 

wavelengths of exc=1550 nm and SHG=775 nm. (b) The effective refractive indices of the TM00 

excitation mode and TM02 SHG mode for the 600 nm × 987 nm LN photonic waveguide. The 

insets depict the exc=1550 nm and SHG=775 nm transverse mode profiles. (c) Coherence length 

between the excitation and SHG frequency components propagating along the CSP and LN 

photonic waveguides. .................................................................................................................. 226 

Fig. 7.7. (a) Conversion efficiency for various photonic waveguide lengths. Time-averaged spatial 

electric field distribution at SHG=775 nm on the (b) y-x and (c) x-z planes of the W=600 nm × 

𝑇=650 nm × L=30 µm CSP photonic waveguide. Time-averaged spatial electric field distribution 

at SHG=775 nm on the (d) y-z and (e) x-z planes of the W=600 nm × H=987 nm × L=30 µm LN 

photonic waveguide. The transverse distributions in (c) and (e) are obtained along the dotted lines 

in (b) and (d), respectively. ......................................................................................................... 228 

Fig. 7.8. (a) SHG time-domain electric field signals and (b) their associated spectral densities.

..................................................................................................................................................... 229 

Fig. 7.9. Schematic of the coupling arrangement used to angularly excite the LN waveguide, where 

𝜃1 is the coupling angle directed towards the y-z plane and 𝜃2 is the coupling angle directed towards 

the x-y plane. ............................................................................................................................... 231 

Fig. 7.10. (a) TM10 mode supported at the excitation wavelength of λexc=800 nm. (b) TM40 mode 

supported at the SHG wavelength of λSHG=400 nm. (c) Magnitude of the coupling coefficient for 

the TM10 excitation mode. .......................................................................................................... 232 

Fig. 7.11. (a) SHG time-domain signal produced from the W=670 nm, 𝑇=800 nm, and L=250 µm 

waveguide at 𝜃1=40°. (b) Spectral power of the SHG signal for 𝜃1=0° and 𝜃1=40°. Time-averaged 



xxxiv 

 

spatial power distributions at λSHG=400 nm along the (c) x-y plane and (d) z-y plane of the 

waveguide for 𝜃1=40°. ................................................................................................................ 234 

Fig. 7.12. (a) TM11 mode supported at the excitation wavelength of λexc=800 nm. (b) TM42 mode 

supported at the SHG wavelength of λSHG=400 nm. (c) Magnitude of the coupling coefficient for 

the TM11 mode. ........................................................................................................................... 235 

Fig. 7.13. (a) SHG time-domain signal produced from the W=600 nm, 𝑇=940 nm, and L=250 µm 

waveguide at 𝜃1=𝜃2=40°. Time-averaged spatial power distributions at λSHG=400 nm along the (b) 

x-y plane and (c) z-y plane of the waveguide for 𝜃1=𝜃2=40°. (d) Spectral power of the SHG signal 

for 𝜃1=𝜃2=0° and 𝜃1=𝜃2=40°. .................................................................................................... 237 

Fig. 7.14. Schematic of the experimental arrangement, which implements an acylindrical lens to 

couple the excitation pulse into the planar waveguide. The acylindrical lens is necessary to obtain 

the required line focus to couple the light into the planar waveguide. ....................................... 238 

Fig. 7.15. (a) FESEM image showing the cross-section of the SiO2-LN-air planar waveguide 

having a core thickness of 775 nm. Electric field distributions supported by the SiO2-LN-air planar 

waveguide at (b) the excitation wavelength of λexc=800 nm and (c) its SHG wavelength of 

λexc=400 nm. ................................................................................................................................ 240 

Fig. 7.16. (a) Effective refractive indices of the excitation and SHG modes, where perfect phase-

matching is observed at the wavelengths of λSHG=395 nm and λSHG=402.4 nm. (b) Coherence length 

for the TE0 excitation and TE3 SHG modes, as well as the TE1 excitation and TE4 SHG modes.

..................................................................................................................................................... 241 

Fig. 7.17. (a) FDTD simulations showing the modes excited in the waveguide via coupling at the 

incident angles of (a) 𝜃𝑖=0° and (b) 𝜃𝑖=10°. To excite the TE1 mode necessary for phase-matched 



xxxv 

 

SHG, the optical excitation pulse must be coupled in at an off-normal-incidence angle. The y:x 

spatial aspect ratio of these images is 155:1. .............................................................................. 243 

Fig. 7.18. (a) Image showing the perfectly phase-matched SHG light produced at all positions 

along the 2.8 mm-long planar waveguide having a LN layer thickness of 775 nm. (b) The SHG 

signal measured from the planar waveguide having a thickness of 775 nm, where phase-matched 

SHG occurs having a central-wavelength of λSHG=402.4 nm and exhibiting the narrow linewidth 

of 1.5 nm. The inset shows the spectrum of the laser pulse that is exciting the planar waveguide, 

which encompasses wavelength components between λexc=770-840 nm. .................................. 244 

Fig. 7.19. (a) Energy of the SHG pulse and (b) SHG conversion efficiency with respect to the 

energy of the excitation pulse. As expected, 𝜉𝑆𝐻𝐺 ∝ 𝜉𝑒𝑥𝑐
2  and  𝜂𝑆𝐻𝐺 ∝ 𝜉𝑒𝑥𝑐. ............................. 246 

Fig. 8.1. Schematic of the multi-band generation planar waveguide producing Ω𝑆𝐹𝐺  and Ω𝐷𝐹𝐺 . The 

c-axis of the LN crystal is aligned along the z axis..................................................................... 251 

Fig. 8.2. (a) Intensity distribution of representative excitation modes at 𝜆1=806 nm and 

𝜆2=1009 nm. (b) Intensity distribution of a representative SFG mode at 𝜆𝑆𝐹𝐺=448 nm. The modal 

intensity distributions shown in (a) and (b) are calculated for the 𝑇=700 nm planar waveguide. The 

coherence length for the (c) 𝑇=700 nm and (d) 𝑇=600 nm planar waveguides. ........................ 253 

Fig. 8.3. Time-averaged spatial distribution of the electric field at the wavelengths of (a) 

𝜆𝑆𝐹𝐺=448 nm and (b) 𝜆𝐷𝐹𝐺=4 µm. .............................................................................................. 254 

Fig. 8.4. (a) Time-domain electric fields of the SFG and DFG radiation after exiting the planar 

waveguide. Power spectra of the radiation produced through (b) SFG and (c) DFG. Time-

frequency spectra for the (d) SFG and (e) DFG electric fields. .................................................. 256 



xxxvi 

 

Fig. 8.5. (a) SFG and (b) DFG spectra showing the wavelength distribution for the 𝑇=700 nm 

planar waveguide. (c) SFG and (d) DFG spectra showing the wavelength distribution for the 

𝑇=600 nm planar waveguide. ..................................................................................................... 257 

Fig. 8.6. (a) Planar waveguide depicting excitation by the near-IR pulse, as well as the SHG and 

THz radiation generation. (b) Schematic showing the planar waveguide, prism dimensions, and 

LN c-axis. .................................................................................................................................... 259 

Fig. 8.7. (a) The effective refractive indices calculated for the excitation modes (dotted lines) and 

the SHG modes (solid lines) supported by the LN planar waveguide. (b) TE0 mode electric field 

profile at λexc=806 nm and (c) TE2 mode electric field profile at λSHG=403 nm. ........................ 262 

Fig. 8.8. SHG spectral power generated by the LN planar waveguide. ..................................... 263 

Fig. 8.9. The Cherenkov angle and intensity distributions for the near-IR excitation modes at 

𝜆𝑐
𝑒𝑥𝑐=800 nm. .............................................................................................................................. 264 

Fig. 8.10. (a) THz radiation pulses generated by the TE0 and TE1 near-IR modes and (b) their 

associated spectral powers. The generated THz radiation is sampled using a 500 µm-thick ZnTe 

EO crystal.................................................................................................................................... 265 

Fig. A1. Frequency-conversion occurring within a non-centrosymmetric crystal due to second-

order nonlinear interactions. The various generation events are vertically offset. ........................300 

 



xxxvii 

 

List of Fundamental constants 

𝑚𝑒=9.11×10-31 kg Electron mass 

𝑞=1.602×10-19 C Elementary charge 

𝜇0=4π×10-7 H/m Permeability free-space 

𝜀0=8.854×10-12 F/m Permittivity of free-space 

𝑐=2.998×108 m/s Speed of light in a vacuum 

 



xxxviii 

 

List of Abbreviations 

AGS AgGaSe2 

ABCD Air biased coherent detection 

BWO Backward wave oscillator 

BGS BaGa4Se7 

CSP CdSiP2 

DFG Difference frequency generation 

DC Direct current 

EL Electroluminescence 

EM Electromagnetic 

EO Electro-optic 

EOM Equations of motion 

FESEM Field emission scanning electron microscope 

FDTD Finite-difference time-domain 

FTIR Fourier-transform infrared 

FWHM Full-width half-maximum 

HDPE High density polyethylene 

HGF Horizontal gradient freeze 

IMPATT Impact ionization avalanche transit-time 

IR Infrared 

LN LiNbO3 

LNHP LiNbO3 hybrid-plasmonic 



xxxix 

 

MLN Metal-LiNbO3 

MLNM Metal-LiNbO3-metal 

MMIC Microwave millimeter integrated circuit 

NESD Normalized energy spectral density 

NA Numerical aperture 

1D One-dimensional 

OR Optical rectification 

PPLN Periodically-poled LiNbO3 

PPMgLN Periodically-poled MgO-doped LiNbO3 

PCA Photoconductive antenna 

PET Polyethylene terephthalate 

QC Quantum cascade 

QCL Quantum cascade laser 

QWP Quarter waveplate 

RTD Resonant tunneling diode 

SHG Second harmonic generation 

SVAA Slowly varying amplitude approximation 

SPDC Spontaneous parametric down conversion 

SFG Sum frequency generation 

Tbps Terabit-per-second 

THz Terahertz 

THz-TDS Terahertz time-domain spectroscopy 



xl 

 

3D Three-dimensional 

TE Transverse electric 

TEM Transverse electromagnetic 

TM Transverse magnetic 

2D Two-dimensional 

VGF Vertical gradient freeze 

WP Wollaston prism 

ZGP ZnGeP2 

 



1 

 

Chapter 1. 

Introduction 
 

Terahertz (THz) radiation is an electromagnetic (EM) wave that lies between microwaves 

(e.g. the EM waves used for Wi-Fi and microwave ovens) and infrared (IR) waves (i.e. the EM 

waves used for thermal imaging), as illustrated in Fig. 1.1(a) [1]. Although definitions vary, THz 

radiation is often defined as encompassing frequencies between ~0.3-10 THz (i.e. wavelengths 

between ~0.03-1 mm) [1]. As depicted in Fig. 1.1(b), electronic technologies such as impact 

ionization avalanche transit-time (IMPATT) diodes, Gunn diodes, resonant tunneling diodes 

(RTDs), Schottky diodes, microwave millimeter integrated circuits (MMICs), klystrons, and 

backward wave oscillators (BWOs) are typically utilized towards the longer-wavelength side of 

the EM spectrum [2]. Alternatively, photonic technologies including gas lasers, free electron 

lasers, quantum cascade lasers (QCLs), Si impurity lasers, and electroluminescence (EL) structures 

are often employed towards the shorter-wavelength side of the EM spectrum [see Fig. 1.1(b)] [2]. 

THz radiation lies in the transitory region of the EM spectrum, where it is unclear if electronics or 

photonics prevail, leading to this spectral region being denoted as the “THz gap”. In comparison 

to electronic and photonic technologies, far fewer technologies have been developed within the 

“THz gap”, with existing THz radiation technologies consisting of photomixers, photoconductive 

antennas (PCAs), and quantum cascade (QC) structures [see Fig. 1.1(b)] [2]. Although not 

depicted in Fig. 1.1(b), nonlinear frequency-conversion structures are also among the most 

prominent THz radiation technologies [3]. While a surplus of application potential exists for THz 
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radiation (see Section 1.2), further work is needed to advance THz technologies, particularly in the 

discovery and innovation of THz radiation sources and detectors. 

 

Fig. 1.1. (a) EM spectrum showing that THz radiation lies between technologies prevalent in 

electronics and photonics. (b) Output power of various sources used to produce radiation within 

and near the THz spectral region [2]. 

 

1.1. Key properties of THz radiation 

THz radiation is non-ionizing [1], meaning each THz radiation photon does not contain 

sufficient energy to remove a valence electron from atoms or molecules. Such a property is highly 

beneficial, since exposure to ionizing radiation (e.g. x-rays) is linked to severe health effects, such 
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as cancers [4]. At low powers, THz radiation is non-destructive and non-invasive [1], such that an 

object interacting with THz radiation does not undergo permanent changes (i.e. after exposure to 

THz radiation, the object exhibits the same physical state it had prior to the interaction). Such 

properties allow the THz radiation to extract information about a particular object, without 

physically altering the object of interest. Numerous dielectric materials are transparent to THz 

radiation (e.g. many types of textiles, polymers, pigments, papers, clothing, cardboards, plastics, 

woods, and ceramics [1,5]), allowing THz radiation to image or identify an object concealed by 

various materials opaque to the naked eye [6,7]. Water vapor in the atmosphere absorbs THz 

radiation within various narrow spectral bands (see Fig. 1.2) [8]. Although such absorption is 

beneficial when using THz radiation to monitor the water content of an object [9], it may be a 

drawback in other applications (e.g. wireless communication). In applications that permit a 

 

Fig. 1.2. Absorption of THz radiation due to water vapor [8]. The spectra are obtained using an 

air biased coherent detection (ABCD) system and a Fourier-transform infrared (FTIR) 

spectroscopy system [8]. 
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controlled environment, water vapor absorption can be mitigated by operating in a nitrogen-purged 

chamber. It is also possible to operate within spectral bands less affected by the absorption, such 

as the region between 1.45-1.55 THz (see Fig. 1.2). Additionally, THz radiation used for high-

altitude applications (e.g. aircraft-to-aircraft, aircraft-to-satellite, and satellite-to-satellite 

communication) avoids water vapor absorption, due to decreased levels of water vapor [1]. 

 

1.2. Applications of THz radiation 

THz radiation is emerging as a key solution to a broad range of problems, extending across 

the health, safety, communication, manufacturing, security, and consumer industries. In this 

section, specific uses of THz radiation are discussed. In all of the applications outlined in this 

section (excluding communication), it is highly beneficial to create a spatial map using information 

extracted from the THz electric field magnitude and phase. Such spatial information could be 

attained using THz focal plane arrays. 

Since many dielectric materials are transparent in the THz frequency range, THz radiation 

can be used to identify concealed metallic weapons, explosives, and hazardous chemicals. In 

general, THz radiation passes through the material concealing the object under investigation, 

interacts with the object in either a reflection or a transmission arrangement, and is subsequently 

detected. As shown in Fig. 1.3(a) and 1.3(b), Delgado-Notario et al. used THz radiation to identify 

a metallic blade concealed within an envelope [7]. When attempting to identify explosives or 

hazardous chemicals, the THz absorption spectra is obtained and assessed against a database 

containing the spectral “fingerprint” [see Fig. 1.3(c)] of known substances [6]. Such identification 

techniques could be used for security monitoring at airports, within postal sorting stations, and at 

sporting events or concerts, to name a few. Hazardous chemical gases are considered high-risk, as 
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they can rapidly immerse an area if not properly contained. THz radiation has been shown to 

identify harmful gaseous chemicals (e.g. carbon monoxide [10]), critical to ensuring a safe 

environment, especially in manufacturing facilities implementing processes that rely on harmful 

chemical gases [10]. 

 

Fig. 1.3. (a) Optical arrangement showing a metallic blade concealed within an envelope [7]. 

(b) THz radiation image clearly identifying the concealed cutting blade [7]. (c) Spectral 

“fingerprint” of various explosives in the THz frequency regime [6]. 

 

When considering objects comprised of various layers, the thickness of the layers can be 

extracted using techniques based on pulsed THz electric fields. A portion of THz pulse is reflected 

from the outer interface of the object, as well as each interface within the object. The thickness of 

each layer is then extracted from the time delay between the resulting THz electric field pulses. 

By obtaining spatially-dependent measurements, the layers can be assessed for non-uniformities 

or cracks. Such a technique is non-destructive, such that the object under investigation retains its 

original integrity. Fitzgerald et al. determined the coating thickness of ibuprofen tablets [11], 
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where Fig. 1.4(a) and 1.4(b) show an illustration of the measurement technique and the 

experimental results, respectively. Given the temporal separation between the peaks, the layer 

thickness was determined as 314 ± 4 µm [11]. This pulsed THz electric field technique has also 

been used to determine the thickness of a tooth’s enamel layer, where Crawley et al. investigated 

numerous human incisors and measured enamel thicknesses ranging from 400-900 µm [12]. This 

technique was also utilized by Adam et al. to detect layers of paint hidden beneath a main painting 

[13], as well as Picot et al. to measure the thicknesses of various paint coatings used in the 

automotive sector (e.g. primer coat, external primer coat, intermediate primer coat, basecoat, and 

clear coat) [14]. 

 

Fig. 1.4. (a) Illustration of the technique used to measure the coating thickness of a 

pharmaceutical tablet [11]. (b) Experimental THz time-domain signal recorded after reflecting 

from the various interfaces of the pharmaceutical tablet [11]. 

 

THz radiation has the ability to identify various skin conditions, critical to the health and 

dermatology industry. Here, THz radiation is reflected from the area of concern, and is then 



7 

 

detected and assessed. The technique is non-invasive, such that it does not alter the region of the 

skin being assessed. THz radiation techniques have been implemented to distinguish regions of 

healthy tissue from cancerous tissue [15,16], as well as measure the depth of skin burns [17].  

 

Fig. 1.5. Illustration of point-to-point communication using a secure THz radiation channel for 

terabit-per-second (Tbps) data transfer [18]. 

 

The demand for wireless data transmission has drastically increased over the last several 

decades. THz radiation carrier waves permit the transfer of information over relatively short-

distances (e.g. typically meters to tens of meters), beneficial for information-transfer between 

phones, tablets, laptops, and smart devices, to name a few. A unique opportunity for THz radiation 

lies in upgrading the current state of screen-mirroring technology [18]. Due to the requirement of 

a high-bandwidth, it is difficult to continuously play videos using the screen-mirroring technique, 
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which could potentially be resolved by incorporating THz radiation carrier waves. Another unique 

application for THz radiation lies in providing secure military communication channels [18]. As 

depicted in Fig. 1.5, point-to-point communication could be achieved between separate military 

vehicles in close proximity [18]. Since the THz radiation carrier waves are absorbed relatively 

rapidly by water vapor in the atmosphere, the communication channel is intrinsically secure from 

signal interception away from the transmitting source. 

The structural integrity of a building, where supporting materials are often concealed within 

more aesthetically appealing materials, can be assessed using THz radiation technology [5]. In 

such an application, THz radiation is transmitted through the outer material and reflected from the 

supporting structure. By obtaining a spatial map of the concealed supporting structure, defects and 

weaknesses (e.g. cracks) are identified. The technique is non-destructive, such that the materials 

concealing the supporting material are unaffected by the testing process. As discussed by Krügener 

et al., THz radiation has been shown to identify defects in concrete, wood, cement, adhesives, and 

other construction materials [5]. 

THz radiation can be used to assess packaged or unpackaged foods [19], where THz 

radiation pulses interact with the food item (in a reflection or transmission arrangement) and are 

subsequently detected. Such measurements are performed without physical contact with the food, 

ideal for avoiding contamination. Afsah-Hejri et al. have used THz radiation to identify various 

items contained within foods, including glass, metals, human hair, and insects [19]. Since THz 

radiation is strongly-absorbed by water molecules, it is ideal for monitoring the dehydration 

process of foods [9]. Zhang et al. used THz radiation to monitor the water content of spinach (see 

Fig. 1.6) and rapeseed leaves [9]. 
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Fig. 1.6. THz radiation images of a spinach leaf undergoing a natural drying process, where dark 

regions correspond to a high water content [9]. 

 

1.3. Overview of THz sources, detectors, and measurement 

techniques 

Solid-state electronics [20], spintronic emitters [21], electron-beam based oscillators [22], 

plasma sources [23], optically-pumped gas lasers [24], free-electron lasers [25], QCLs [26], photo-

induced currents [27], and nonlinear crystals [28] have been exploited for generating coherent THz 

radiation. Nonetheless, nonlinear crystals stand out due to their potential for ultra-broadband 

generation (e.g. bandwidths in excess of 50 THz have been reported [29]). In such nonlinear 

crystals, the second-order nonlinear processes of difference frequency generation (DFG) and 

optical rectification (OR) are used to produce THz radiation. In DFG, the presence of two photons 

at the angular frequencies of 𝜔1 and 𝜔2 lead to a photon being produced at the angular frequency 

of Ω. For example, electric field frequency components at 𝜔1 (2𝜋)⁄ =380 THz and 

𝜔2 (2𝜋)⁄ =375 THz can produce electric field frequency components at Ω (2𝜋)⁄ =5 THz. 

Importantly, DFG occurs within non-centrosymmetric materials (i.e. materials that lack inversion 

symmetry) [30,31]. OR is the aggregate of DFG processes occurring across the bandwidth of an 

ultrashort electric field pulse, such that OR is strongly correlated to DFG. To better explain the 

OR process, we consider a broadband electric field pulse encompassing frequencies between 375-
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380 THz, where 375 THz<𝜔1 (2𝜋)⁄ <380 THz and 375 THz<𝜔2 (2𝜋)⁄ <380 THz. In such a 

scenario, DFG events occur across all of the encompassed frequencies (the process being referred 

to as OR) to produce Ω (2𝜋)⁄ ≤5 THz, excluding Ω (2𝜋)⁄ =0 THz [i.e. the direct current (DC) 

component]. Such effects and associated aspects (i.e. DFG, OR, non-centrosymmetric materials, 

etc.) are discussed in detail in Chapter 2. 

Ultrafast photo-induced currents [27] and the linear electro-optic (EO) effect (i.e. Pockel’s 

effect) [32] are overwhelmingly utilized for the phase-resolved detection of coherent THz 

radiation. The linear EO effect can be used for ultra-broadband detection, where bandwidths in 

excess of 30 THz have been reported [32]. In a material exhibiting the linear EO effect (i.e. a non-

centrosymmetric material), a birefringence is induced in the material that is proportional to the 

electric field. To better understand the physical mechanism driving the linear EO effect, it is 

beneficial to introduce a representative example: consider two separate electric field pulses 

encompassing frequencies between 355 THz<𝜔1 (2𝜋)⁄ <395 THz and 𝜔2 (2𝜋)⁄ ≤5 THz, 

excluding DC. The second-order nonlinear interaction of these electric fields leads to the 

generation of another electric field pulse encompassing frequencies between 355 THz≲

Ω (2𝜋)⁄ ≲395 THz (note the similarities to the OR process). If the crystal structure permits the 

generated electric field pulse at Ω (2𝜋)⁄  to exhibit a different polarization than the electric field 

pulse at 𝜔1 (2𝜋)⁄ , then the electric field at 𝜔1 (2𝜋)⁄  undergoes a polarization change. Therefore, 

as the THz electric field propagates through the material, it induces an ultrafast birefringence 

change in the material that exists for the duration of the THz electric field pulse (often several 

hundreds of femtoseconds). 

To measure an ultrafast birefringence, it is typical to employ a THz time-domain 

spectroscopy (THz-TDS) arrangement [33]. Here, a coherent THz electric field pulse is often 
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produced by focussing an ultrashort electric field pulse onto a material supporting the DFG or OR 

process. Subsequently, several off-axis parabolic mirrors are used to collect and focus the 

generated THz electric field pulse onto a material exhibiting the linear EO effect. The THz electric 

field pulse is transmitted through the material collinearly with an ultrashort optical probe electric 

field pulse, where the probe pulse typically exhibits a temporal duration of tens to hundreds of 

times less than the duration of the THz electric field pulse. In the presence of the THz electric 

field, the probe pulse undergoes a change in its polarization state due to the linear EO effect. 

Optical components [e.g. a Wollaston prism (WP) and a quarter waveplate (QWP)] are then used 

in conjunction with electrical devices (e.g. balanced photodetector, lock-in amplifier, etc.) to 

determine the induced polarization change, where this polarization change is proportional to the 

electric field of the THz pulse. By altering the path length between the THz electric field pulse and 

the ultrashort probe pulse (e.g. using a retroreflector attached to an electrically-controlled linear 

delay line), the polarization change can be recorded for localized regions along the THz electric 

field pulse, permitting a time-domain representation of the THz electric field strength to be 

obtained. Chapter 3 discusses the THz-TDS technique in further detail. 

 

1.4. Pnictide and chalcogenide ternary crystals in the THz 

frequency regime1 

When considering second-order nonlinear processes for the generation and detection of THz 

radiation, key attributes (e.g. conversion efficiency, bandwidth, etc.) are highly-dependent on the 

material supporting the nonlinear interaction. Pnictide ternary crystals (AxByPnz, where Pn=N, P, 

 
1
A version of this section’s work is under review in IEEE Transactions on Terahertz Science and Technology. 
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As, Sb, Bi, or Mc) and chalcogenide ternary crystals (AxByChz, where Ch=S, Se, Te, Po, or Lv) 

are gaining interest as being highly versatile THz radiation sources and detectors. Notably, ternary 

oxide crystals having the stoichiometric structure AxByOz are excluded from the chalcogenide 

crystal classification (see Ref. [34]). Both pnictide and chalcogenide ternary crystals can exhibit 

excellent optical and THz frequency properties [e.g. high optical nonlinearly, low loss, good phase-

matching (see Appendix A), etc.], such that these classes of nonlinear crystals are appealing for 

use in the THz frequency regime. For example, ZnGeP2 (ZGP), CdGeP2, and CdSiP2 (CSP) crystals 

are recognized for their high second-order nonlinear coefficients [35,36], with CSP possessing a 

relatively wide bandgap of 2.45 eV [37]. While chalcogenide ternary crystals typically exhibit 

lower nonlinear coefficient magnitudes than that of the pnictide ternary crystals, many of the 

chalcogenide ternary crystals display more attractive (e.g. wider) transparency ranges in 

comparison to the pnictide crystals. 

 This section presents a detailed survey of recent developments in THz radiation generation 

and detection using pnictide and chalcogenide ternary crystals. Such crystals are assessed for 

coherent THz radiation generation via second-order nonlinear frequency-conversion techniques 

(i.e. OR and DFG), as well as their use in the phase-resolved detection of THz radiation via the 

EO effect. Additionally, we discuss phase-resolved (i.e. THz-TDS) spectroscopic investigations 

performed on select ternary crystals from both classes. It is envisioned that further development 

of the pnictide and chalcogenide ternary crystals for THz radiation generation and detection will 

lead to the advancements in security, medicine, communication, industry, applied research, and 

fundamental research. 
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1.4.1. Key properties of pnictide ternary crystals 

In the THz frequency regime, four pnictide ternary crystals stand out: ZGP, CSP, CdGeP2, 

and MnSiP2. The structural and optical properties of these intriguing crystals are listed in Table I. 

Since there is no data for the second-order nonlinear coefficients in the THz frequency regime, the 

second harmonic generation (SHG) nonlinear coefficients are presented as a nonlinearity metric, 

as a high SHG nonlinear coefficient is often associated with a high THz nonlinear coefficient [38]. 

Interestingly, all of these crystals have a tetragonal crystal structure and exhibit the chalcopyrite 

atomic arrangement [35,39–41], as illustrated in Fig. 1.7 [42]. ZGP, CSP, CdGeP2, and MnSiP2 

exhibit a point group symmetry of 4̅2𝑚 [35,39–41]. Symmetries in the nonlinear coefficient tensor 

are dictated by the point group symmetry of the crystal, wherein the nonlinear coefficient tensor 

associated with 4̅2𝑚 crystals is [43], 

 

�̿�4̅2𝑚 = [
0 0 0
0 0 0
0 0 0

𝑑14 0 0
0 𝑑14 0
0 0 𝑑36

] , (1.1) 

 

Fig. 1.7. An illustration of the unit cell structure of the ZGP, CSP, CdGeP2, and MnSiP2 crystals. 
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where d14 and d36 are the non-vanishing tensor elements. It is common to excite 4̅2𝑚 symmetry 

crystals using an optical electric field polarized along the [100] crystallographic axis, 𝐸[100], and 

an electric field polarized along the [010] crystallographic axis, 𝐸[010], to induce a second-order 

nonlinear polarization along the crystal’s [001] crystallographic axis, 𝑃[001]
(2)

= 2𝜀0𝑑36𝐸[100]𝐸[010]. 

In this arrangement, the induced second-order nonlinear polarization dipoles (i.e. 𝑃[001]
(2)

) 

subsequently emit [001]-polarized EM radiation. It should be noted that the EO coefficient tensor 

for crystals exhibiting 4̅2𝑚 point group symmetry is closely related to �̿�4̅2𝑚 in Eq. (1.1) (see 

Ref. [30]).  

Of all the pnictide crystals, ZGP has undoubtedly been the most studied at THz frequencies. 

In part, this is due to the reliability in growing high-quality ZGP crystals, as well as its high 

nonlinear coefficient (d36=75 pm/V at an excitation wavelength of λexc=9.6 µm [35]) and its wide 

wavelength transparency range of 0.74-12 µm [39]. Furthermore, ZGP exhibits a bandgap of 2 eV 

[44], which is higher than the energy of the excitation photons typically used for nonlinear 

frequency-conversion processes (e.g. ~0.8-1.55 eV). Both CSP and CdGeP2 pnictide crystals also 

possess high nonlinear coefficients (i.e. d36=84.5 pm/V at λexc=4.6 µm for CSP [35] and 

d36=162 pm/V at λexc=10.6 µm for CdGeP2 [36]), which are higher than that of ZGP (i.e. 

d36=75 pm/V at λexc=9.6 µm [35]). The transparency spectral range of the CSP crystals extends 

well into the visible spectral regime (i.e. lower cut-off wavelength of 520 nm [35]) and it has the 

largest bandgap of all the investigated pnictide crystal (i.e. 2.45 eV [37]). Although CdGeP2 

exhibits the highest nonlinear coefficient of the investigated pnictide crystals, this comes at the 

expense of a comparatively narrower bandgap (i.e. 1.72 eV [40]) and a transparency range having 

the lower cut-off wavelength of 900 nm [40]. While the MnSiP2 crystal exhibits a narrow bandgap, 
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a poor lower cut-off wavelength for its transparency range, and a low nonlinear coefficient in 

comparison to the other investigated pnictide crystals, it has the benefit of offering the higher upper 

cut-off wavelength of 18.2 µm (i.e. 16.5 THz) [41], thus making this pnictide crystal specially-

suited for high-frequency THz radiation generation and detection. 

 

Table 1.1. Structural and optical properties of various pnictide ternary crystals in the THz 

frequency regime. 

Crystal 

composition 

Crystal 

structure 

Point 

group 

symmetry 

Bandgap 

(eV) 

SHG nonlinear 

coefficient 

magnitude (pm/V) 

Transparency 

range (µm/THz) 

ZGP 

Tetragonal 

(chalcopyrite) 

[39] 

4̅2𝑚 [39] 2 [44] 
d36=75 

(λexc=9.6 µm) [35] 

0.74 – 12 µm 

(25 – 405 THz) 

[39] 

CSP 

Tetragonal 

(chalcopyrite) 

[35] 

4̅2𝑚 [35] 
2.45 

[37] 

d36=84.5 

(λexc=4.6 µm) [35] 

0.52 – 9.5 µm 

(31.6 – 577 THz) 

[35] 

CdGeP2 

Tetragonal 

(chalcopyrite) 

[40] 

4̅2𝑚 [40] 
1.72 

[40] 

d36=162 

(λexc=10.6 µm) [36] 

0.9 – 11 µm 

(27.3 – 333 THz) 

[40] 

MnSiP2 

Tetragonal 

(chalcopyrite) 

[41] 

4̅2𝑚 [41] 1.5 [41] 
d36=32.8 

(λexc=2.1 µm) [41] 

<1.3 – 18.2 µm 

(16.5 – >231 THz) 

[41] 

 

1.4.2. Linear THz radiation properties of pnictide ternary crystals 

 THz-TDS has been utilized to determine the linear THz radiation properties of pnictide 

ternary crystals. Within the 0.2-3.4 THz frequency range, ZGP was shown to be a positive uniaxial 

crystal that exhibited ordinary, no, and extraordinary, ne, refractive indices that ranged from 
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Fig. 1.8. Ordinary and extraordinary (a) refractive indices and (b) extinction coefficients of ZGP 

crystals in the THz frequency regime [39]. 

 

3.38-3.44 and 3.41-3.46, respectively [see Fig. 1.8(a)] [39]. Clearly, no and ne varied depending on 

whether the ZGP crystal was grown using a horizontal gradient freeze (HGF) method or a vertical 

gradient freeze (VGF) method, and exhibited a birefringence of ne–no≈0.02 at frequencies between 

0.2-3.4 THz [39]. Due to this birefringence, the ZGP crystal could be used to construct THz 

waveplates for manipulating the polarization state of THz radiation electric fields [45]. In addition 

to the refractive indices and birefringence, it is critical to examine the THz radiation losses in these 

crystals. As shown in Fig. 1.8(b), the ZGP crystal exhibited the low ordinary, αo, and extraordinary, 

αe, absorption coefficients of <16 cm-1 at frequencies between 0.2-3.4 THz (i.e. ordinary, κo, and 

extraordinary, κe, extinction coefficients of <0.013) [39]. Although not within the aforementioned 

THz frequency spectral window, the IR-active B2 phonon mode at 3.6 THz would absorb THz 

radiation polarized along the extraordinary crystal axis, whereas the IR-active E phonon mode at 

4.26 THz would absorb ordinary-polarized THz radiation [39]. Another pnictide ternary crystal 

worth mentioning is MnSiP2. A sample that had a thickness of 340 µm was shown to exhibit an 
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~50% transmittance and a nearly frequency-independent refractive index of ~3.1 within the 

frequency range of 0.4-2 THz [41]. 

 

1.4.3. THz radiation generation via nonlinear frequency-conversion in 

pnictide ternary crystals 

THz radiation generation in ZGP via the nonlinear DFG processes has been reported by 

numerous groups [46–52]. While several theoretical and numerical analyses have provided 

valuable information [46–48], only the experimental investigations will be discussed [49–52]. 

Using 1055 and 1064.2 nm excitation wavelengths in an oe-e DFG arrangement (i.e. one excitation 

wavelength as an ordinary wave, o, the other excitation wavelength an extraordinary wave, e, and 

the THz radiation generated as an extraordinary wave, e), Creeden et al. reported the generation of 

radiation at 2.45 THz for an external phase-matching angle of 22° [49]. It was shown that the 

average power of the generated THz radiation reached the high value of 2 mW when the ZGP 

crystal was excited at a peak excitation intensity of 300 MW/cm2 [49]. Alternatively, Kumbhakar 

et al. investigated phase-matched DFG in a ZGP crystal for both the oe-o configuration (one 

excitation wavelength as an ordinary wave, o, the other excitation wavelength an extraordinary 

wave, e, and the THz radiation generated as an ordinary wave, o) and the oe-e configuration [50]. 

Using a fixed excitation wavelength of 1064 nm and an excitation wavelength tunable between 

1064-1093 nm, the authors reported the generation of THz radiation tunable between ~1-4 THz 

[50]. As shown in Fig. 1.9(a), a wider frequency tunability range of 0.2-6 THz (i.e. 50-1500 µm) 

was demonstrated by Sirotkin et al., where these frequencies were produced using a 10 mm-thick 

ZGP crystal in the oe-o configuration [51]. The crystal was excited using mid-IR excitation 

wavelengths ranging from 1900-2400 nm, which were incident at external phase-matching angles 
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between 5°-34° [51]. However, due to the low conversion efficiency achieved using this 

arrangement (i.e. <10-9 ), the maximum generated THz radiation power was only a few nanowatts 

(e.g. ~4 nW at 1.6 THz) [51]. To enhance the optical-to-THz conversion efficiency, Shi et al. 

annealed a ZGP crystal to reduce absorption losses at excitation wavelengths near 1064 nm [52]. 

Conversion efficiencies as high as 2.6×10-4 (oe-o configuration) and 3.7×10-4 (oe-e configuration) 

were achieved for DFG radiation produced between ~0.2-3.7 THz in a 20.6 mm-thick ZGP crystal 

[52]. 

THz radiation generated via the process of OR has been demonstrated in (110)-cut ZGP 

crystals having lengths <1 mm [53]. As shown in Fig. 1.9(b), a THz radiation pulse (<1 ps in 

duration) was produced when using a 100 fs laser excitation pulse that had a central wavelength 

of 1.3 µm [53]. The inset of Fig. 1.9(b) shows that the frequency associated with maximum 

generation was higher in the ZGP crystal (i.e. ~1 THz) in comparison to a GaAs crystal (i.e. 

~0.6 THz) [53]. Interestingly, the ZGP crystal did not express any evidence of phase-mismatching 

(i.e. no dips or nulls were observed in the generated spectrum) [53]. This is due to the fact that the 

(110)-cut ZGP crystal exhibited an OR coherence length ≳1 mm (for THz frequency generation 

below 2.7 THz) at the central wavelength of 1.3 µm (i.e. 0.95 eV), as depicted in Fig. 1.9(c) [54]. 

Nonetheless, at frequencies <3 THz, the ZGP phase-matching contour plot shows that optimal 

phase-matching occurred at the excitation wavelength of ~1.18 µm (i.e. 1.05 eV), with phase-

mismatching becoming increasingly prevalent away from ~1.18 µm [54]. For example, at an 

excitation wavelength of 800 nm (i.e. 1.55 eV), the OR coherence length became only a few 

hundred microns for frequencies between ~2-3 THz [54]. Notably, a (012)-cut ZGP crystal 

exhibited phase-matching characteristics similar to that of a (110)-cut ZGP crystal for frequencies 
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<4 THz [see Fig. 1.9(d)], and (012)-cut ZGP crystals of various thicknesses have been shown to 

generate THz radiation at frequencies up to ~3 THz [54]. 

Piyathilaka et al. investigated several pnictide ternary crystals excited using various 

wavelengths [28]. The authors employed a 500 µm-thick (110)-cut CSP crystal excited using 

femtosecond pulses that had central wavelengths of 800, 1300, and 1540 nm [28]. At a peak 

excitation intensity of 15 GW/cm2, the 800 nm central-wavelength laser excitation pulse produced 

a 25 kV/cm peak-to-peak THz radiation electric field, while the 1300 nm and 1540 nm central-

wavelength excitation pulses at the same peak intensity produced much higher peak-to-peak THz 

radiation electric field strengths of 290 and 170 kV/cm, respectively [28]. A similar crystal, 

CdGeP2, was also investigated by the same authors for OR THz radiation generation [28]. As 

shown in Fig. 1.9(e) and 1.9(f), the THz radiation electric field signal produced using this crystal 

is comparable to those generated from ZGP and CSP crystals [all of the crystals were cut along 

the (110) crystal plane, polished to a thickness of 500 µm, and excited by a femtosecond pulse that 

had a central wavelength of 1300 nm] [28]. Interestingly, it was also shown that the CdGeP2 crystal 

exhibited nearly perfect OR phase-matching at the central wavelength of ~1550 nm, thus offering 

great potential for coherent THz radiation generation using wavelengths within the 

telecommunication band [28]. This claim was further supported by the fact that the CdGeP2 crystal 

was shown to express stronger THz radiation generation than both the ZGP and CSP crystals when 

excited by a 1540 nm excitation pulse [28]. Specifically, a 17 GW/cm2 peak intensity laser 

excitation pulse generated THz electric fields that had peak-to-peak values of 130, 190, and 

220 kV/cm from 500 µm-thick ZGP, CSP, and CdGeP2 crystals, respectively [28]. 
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Fig. 1.9. (a) DFG THz radiation produced using a ZGP crystal excited at various external phase-

matching angles [51]. (b) Generation of broadband THz radiation from a ZGP crystal excited 

using a pulse that had a duration of 100 fs and a central wavelength of 1.3 µm [53]. The inset 

compares the spectral distributions of the generated THz radiation for ZGP and GaAs crystals. 

OR phase-matching contours for ZGP crystals cut along the (c) (110) and (d) (012) crystal planes 

[54]. (e) THz time-domain electric field signals and (f) the associated spectra produced using 

(110)-cut CSP, ZGP, and CdGeP2 crystals [28]. 
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1.4.4. THz radiation detection using pnictide ternary crystals 

Pnictide ternary crystals have received limited attention for their use as THz EO detectors. 

Such an observation is surprising, given the fact that EO sampling is a second-order nonlinear 

process, the same as DFG and OR.  

 

1.4.5. Key properties of chalcogenide ternary crystals 

Numerous chalcogenide ternary crystals have been investigated for use in the THz frequency 

regime. Among the vast number of chalcogenide ternary crystals, AgGaS2, AgGaSe2 (AGS), 

BaGa4S7, BaGa4Se7 (BGS), Cd4SiS6, Cd4SiSe6, LiGaS2, LiGaSe2, LiInS2, LiInSe2, PbGa6Te10, 

PbIn6Te10, Zn1-xCdxTe, and Zn1-xMnxTe crystals show great promise. The structural and optical 

properties of these chalcogenide ternary crystals are displayed in Table II. Similar to the pnictide 

ternary crystals, the SHG nonlinear coefficient magnitudes are presented, as there is no reported 

data for the nonlinear coefficients at THz frequencies.  

Chalcogenide ternary crystals exhibit various structures (i.e. tetragonal, orthorhombic, 

monoclinic, cubic, and trigonal) and various point group symmetries (i.e. 4̅2𝑚, 𝑚𝑚2, 𝑚, 4̅3𝑚, 

and 32). The nonlinear coefficient tensor associated with the 4̅2𝑚 point group symmetry is defined 

in Eq. (1.1), whereas the nonlinear coefficient tensors associated with the other point group 

symmetries are [43]: 

 
�̿�𝑚𝑚2 = [

0 0 0
0 0 0

𝑑31 𝑑32 𝑑33

0 𝑑15 0
𝑑24 0 0
0 0 0

] , (1.2) 

 

�̿�𝑚 = [
𝑑11 𝑑12 𝑑13

0 0 0
𝑑31 𝑑32 𝑑33

0 𝑑15 0
𝑑24 0 𝑑26

0 𝑑35 0
] , (1.3) 
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�̿�4̅3𝑚 = [
0 0 0
0 0 0
0 0 0

𝑑14 0 0
0 𝑑14 0
0 0 𝑑14

] , (1.4) 

 
�̿�32 = [

𝑑11 −𝑑11 0
0 0 0
0 0 0

𝑑14 0 0
0 −𝑑14 −𝑑11

0 0 0

] , (1.5) 

where dij (i=1, 2, or 3 and j=1, 2,…, 6) represent the non-vanishing tensor elements. Since these 

crystals possess various point group symmetries and numerous non-vanishing tensor elements, 

they can be implemented at a variety of orientations for the generation and detection of THz 

radiation. The general expressions for the induced second-order nonlinear polarizations are, 

 

[
 
 
 
 𝑃[100]

(2)

𝑃[010]
(2)

𝑃[001]
(2)

]
 
 
 
 

= 2𝜀0 [

𝑑11 𝑑12 𝑑13

𝑑21 𝑑22 𝑑23

𝑑31 𝑑32 𝑑33

𝑑14 𝑑15 𝑑16

𝑑24 𝑑25 𝑑26

𝑑34 𝑑35 𝑑36

]
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2
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2

𝐸[001]
2

2𝐸[010]𝐸[001]

2𝐸[100]𝐸[001]

2𝐸[100]𝐸[010]]
 
 
 
 
 
 
 

 , (1.6) 

where 𝑃[100]
(2)

, 𝑃[010]
(2)

, and 𝑃[001]
(2)

 are the second-order nonlinear polarizations induced along the [100], 

[010], and [001] crystallographic axes, respectively, and 𝐸[100], 𝐸[010], and 𝐸[001] are the excitation 

electric fields polarized along the [100], [010], and [001] crystallographic axes, respectively. 

Importantly, a time-varying second-order nonlinear polarization (e.g. a time-varying 𝑃[100]
(2)

, 𝑃[010]
(2)

, or 

𝑃[001]
(2)

) emits EM radiation having the same polarization state. Notably, the EO coefficient tensors for 

crystals exhibiting 4̅2𝑚, 𝑚𝑚2, 𝑚, 4̅3𝑚, and 32 point group symmetries are closely related to their 

associated second-order nonlinear coefficient tensors (see Ref. [30]).  

As shown in Table II, all of the chalcogenide ternary crystals exhibit appreciable SHG nonlinear 

coefficient magnitudes in the pm/V range. Although the majority of the chalcogenide ternary crystals 

exhibit a lower transparency range cut-off wavelength of <1 µm, a few crystals (e.g. PbGa6Te10 and  



23 

 

Table 1.2. Structural and optical properties of various chalcogenide ternary crystals in the THz 

frequency regime. 

Crystal 

composition 

Crystal 

structure 

Point 

group 

symmetry 

Bandgap 

(eV) 

SHG nonlinear 

coefficient magnitude 

(pm/V) 

Transparency range 

(µm/THz) 

AgGaS2 

Tetragonal 

(chalcopyrite) 

[55] 

4̅2𝑚 [55] 2.7 [55] 
d36=12.6 

(λexc=10.6 µm) [55] 

0.47 – 13 µm   

(23.1 – 638 THz) 

[55] 

AGS 

Tetragonal 

(chalcopyrite) 

[55] 

4̅2𝑚 [55] 1.8 [55] 
d36=39.5 

(λexc=10.6 µm) [55] 

0.76 – 18 µm 

(16.7 – 395 THz)  

[55] 

BaGa4S7 

Orthorhombic 

[55] 

𝑚𝑚2 

[55] 

3.54 

[55] 

d32=5.7 (λexc=2.3 µm) 

[55] 

0.35 – 13.7 µm 

(21.9 – 857 THz)  

[55] 

BGS 
Monoclinic 

[55] 
𝑚 [55] 

2.64 

[55] 

d11=24.3 

(λexc=1.064 µm) 

d13=20.4 

(λexc=1.064 µm) [56] 

0.47 – 18 µm 

(16.7 – 638 THz)  

[55] 

Cd4SiS6 
Monoclinic 

[57] 
𝑚 [57] 

1.92 

[57] 

d15=3.6 (λexc=2.05 µm) 

[57] 

0.45 – 17.6 µm 

(17 – 667 THz)  

[57] 

Cd4SiSe6 
Monoclinic 

[57] 
𝑚 [57] 

1.46 

[57] 

d15=12.2 

(λexc=2.05 µm) [57] 

0.64 – 20.3 µm 

(14.8 – 469 THz)  

[57] 

LiGaS2 

Orthorhombic 

(chalcopyrite) 

[55] 

𝑚𝑚2 

[55] 

4.15 

[55] 

d31=5.8 (λexc=2.3 µm) 

d24=5.1 (λexc=2.3 µm) 

[55] 

0.32 – 11.6 µm 

(25.9 – 938 THz)  

[55] 

LiGaSe2 

Orthorhombic 

(chalcopyrite) 

[55] 

𝑚𝑚2 

[55] 

3.34 

[55] 

d31=9.9 (λexc=2.3 µm) 

d24=7.7 (λexc=2.3 µm) 

[55] 

0.37 – 13.2 µm 

(22.7 – 811 THz)  

[55] 
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Crystal 

composition 

Crystal 

structure 

Point 

group 

symmetry 

Bandgap 

(eV) 

SHG nonlinear 

coefficient magnitude 

(pm/V) 

Transparency range 

(µm/THz) 

LiInS2 

Orthorhombic 

(chalcopyrite) 

[55] 

𝑚𝑚2 

[55] 

3.57 

[55] 

d31=7.3 (λexc=2.3 µm) 

d24=5.7 (λexc=2.3 µm) 

[55] 

0.34 – 13.2 µm 

(22.7 – 882 THz)  

[55] 

LiInSe2 

Orthorhombic 

(chalcopyrite) 

[55] 

𝑚𝑚2 

[55] 

2.86 

[55] 

d31=11.8 (λexc=2.3 µm) 

d24=8.2 (λexc=2.3 µm) 

[55] 

0.46 – 14 

(21.4 – 652 THz)  

[55] 

PbGa6Te10 Trigonal [58] 32 [58] 
1.35 

[59] 

d11=25.5 

(λexc=10.6 µm) [58] 

1.4 – 22.3 µm 

(13.5 – 214 THz)  

[60] 

PbIn6Te10 Trigonal [58] 32 [58] 
1.08 

[61] 

d11=48.5 

(λexc=10.6 µm) [58] 

3 – 20 µm 

(15 – 100 THz)  

[61] 

Zn1-xCdxTe 

Cubic 

(zincblende) 

[62] 

4̅3𝑚 [62] 

1.45-

2.25 

[63] 

Undetermined 

~0.7 – 30 µm 

(~10 – 429 THz)  

[64,65] 

Zn1-xMnxTe 

Cubic 

(zincblende) 

[66] 

4̅3𝑚 [66] 
2.28-2.9 

[67,68] 
Undetermined 

~0.53 – >0.7 µm 

(~<429 – 566 THz)  

[67] 

 

PbIn6Te10) do not satisfy this criteria, thus restricting their application to fewer excitation laser sources. 

Additionally, while the majority of the chalcogenide ternary crystals have a bandgap >1.55 eV (i.e. 

<800 nm), Cd4SiSe6, PbGa6Te10, and PbIn6Te10 possess narrower bandgaps, making them prone to 

single-photon absorption when excited by typical laser excitation sources (e.g. ~800 nm Ti:Sapphire 

lasers). Although PbIn6Te10 possess the highest nonlinear coefficient of the investigated chalcogenide 

ternary crystals (i.e. d11=48.5 pm/V at λexc=10.6 µm [58]), it suffers from a narrow bandgap of 1.08 eV 
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and a lower transparency range cut-off wavelength of 3 µm [61]. On the other hand, AGS exhibits the 

high second-order nonlinear coefficient magnitude of d36=39.5 pm/V at λexc=10.6 µm, a bandgap of 

1.8 eV, and a lower transparency range cut-off wavelength of 760 nm [55], making it a viable crystal 

for excitation using an ~800 nm femtosecond Ti:Sapphire laser source or laser sources having longer 

emission wavelengths. In general, the SHG nonlinear coefficient magnitudes of the chalcogenide 

ternary crystals (i.e. see Table II) are lower than those of the pnictide ternary crystals (i.e. see Table I) 

by tens of pm/V. However, many of the chalcogenide ternary crystals exhibit better lower transparency 

range cut-off wavelength (e.g. 470 nm for BGS [55]) in comparison to the pnictide ternary crystals, 

thus allowing for more flexibility in choosing excitation laser sources. 

 

1.4.6. Linear THz radiation properties of chalcogenide ternary crystals 

THz-TDS measurements have been conducted on several uniaxial and biaxial chalcogenide 

ternary crystals to extract their linear THz radiation properties. In the frequency range of 

0.2-2.4 THz, such measurements were performed on an AgGaS2 crystal at temperatures that 

ranged from 30°C-230°C [69]. At 30°C, no varied from 2.97-3.15, while ne exhibited less 

dispersion and ranged from 2.99-3.06 [see Fig. 1.10(a) and 1.10(b), respectively] [69]. At this same 

temperature and across this same frequency range, the absorption coefficients were found to be 

αo<34 cm-1 and αe<17 cm-1 (i.e. κo<0.037 and κe<0.017), as shown in Fig. 1.10(c) and 1.10(d), 

respectively [69]. Across the investigated frequency range (i.e. 0.2-2.4 THz), both the refractive 

indices and the absorption coefficients typically increased with increasing temperature [69]. An E 

phonon mode signature at 1.03 THz and a B2 phonon mode signature at 1.86 THz were evident in 

the refractive indices and the absorption coefficients [69]. Another uniaxial chalcogenide ternary 
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crystal, PbIn6Te10, has been considered in the spectral range of 0.3-1.3 THz, where no and ne were 

found to be ~3.9 and ~4, respectively [70]. 

Takeya et al. investigated LiGaS2, LiGaSe2, LiInS2, and LiInSe2 biaxial crystals at 

frequencies between 0.4-2 THz and extracted the refractive indices along the [100] 

crystallographic axis, n[100], and the [001] crystallographic axis, n[001] [71]. For all of these crystals, 

n[001] was found to be higher than n[100] at each frequency [71]. Specifically, n[001] ranged between 

2.76-3.04 and n[100] ranged between 2.61-2.74 across the investigated frequency range of 

0.4-2 THz [71]. Along the [001] crystallographic axis, the THz radiation absorption coefficient, 

α[001], was measured to be <9 cm-1 for all of these crystals [71]. A more detailed study was 

performed by Liang et al. on LiInSe2 at frequencies between 0.3-2.3 THz [72]. Here, n[100], the 

refractive index along [010] crystallographic axis (n[010]), and n[001] were determined, as well as 

the absorption coefficient along the [100] crystallographic axis (α[100]), the absorption coefficient 

along the [010] crystallographic axis (α[010]), and α[001] [72]. The values of n[100] and n[001] were 

quite similar, and both were higher than n[010] [see Fig. 1.10(e)] [72]. Similarly, α[100] and α[001] 

were similar, both of which were higher than α[010] [see Fig. 1.10(f)] [72]. α[100], α[010], and α[001] 

exhibited strong absorption due to phonon resonances at 1.9, 2.13, and 1.3 THz, respectively [72]. 

Liang et al. also reported on the temperature dependency of n[100], n[001], α[100], and α[001] for a 

LiInSe2 crystal [73]. At frequencies between 0.3-2.3 THz, n[100], n[001], α[100], and α[001] typically 

increased as the temperature changed from 20-300 K [73]. Using THz-TDS measurements at 

frequencies between 0.3-2.7 THz, Yiwen et al. showed that the biaxial nature of a BGS crystal 

caused the THz radiation to propagate through the crystal as two elliptically-polarized eigenmodes 

[74]. These modes had frequency-dependent major axis directions and ellipticities, which varied 

by as much as ~45° and ~40° within the 0.5-2.5 THz frequency range [74]. 
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Fig. 1.10. Temperature-dependent (a) ordinary and (b) extraordinary refractive indices of an 

AgGaS2 crystal [69]. Temperature-dependent (c) ordinary and (d) extraordinary absorption 

coefficients of an AgGaS2 crystal [69]. (e) Refractive indices and (f) extinction coefficients 

along the [100], [010], and [001] crystallographic axes of an LiInSe2 crystal [72]. 
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1.4.7. THz radiation generation via nonlinear frequency-conversion in 

chalcogenide ternary crystals 

THz radiation generation via OR in 2 mm-thick lithium-based chalcogenide ternary crystals 

(i.e. LiGaS2, LiGaSe2, LiInS2, and LiInSe2) has been reported by Takeya et al. [71,75]. THz 

radiation containing frequency components up to 4 THz was produced by exciting these lithium-

based crystals using a 1560 nm, 63 fs laser pulse. The peak-to-peak THz electric fields generated 

from the LiGaSe2 and LiInSe2 crystals were >2.5 times higher than those produced from the 

LiGaS2 and LiInS2 crystals, as shown in Fig. 1.11(a) [75]. The long lasting (i.e. >20 ps) oscillations 

observed in the THz radiation electric field signal produced from the LiInSe2 crystal were 

attributed to the 2.87 THz phonon resonance, as observed in Fig. 1.11(b). Similarly, phonon modes 

at 2.6 and 3.45 THz [see Fig. 1.11(b)] led to the beating observed in the THz radiation electric 

field signal produced from the LiGaSe2 crystal [75]. More recently, Knorr et al. reported on the 

DFG of phase-locked THz radiation electric fields exceeding 13 MV/cm [see Fig. 1.11(c) and 

1.11(d)], which were produced using a 1 mm-thick LiGaS2 crystal in a type II phase-matching 

configuration [76]. The DFG spectra are displayed in Fig. 1.11(e), which exhibited central 

frequencies of ~30 and 42 THz, as dictated by the phase-matching angle of the crystal [76]. A 

similar arrangement based on DFG in a LiGaS2 crystal was also shown to generate radiation 

centred at ~25 THz [77]. Notably, DFG THz radiation generation using this LiGaS2 crystal follows 

the same principles outlined in detail in Refs. [32,78–80]. Liang et al. investigated another 

chalcogenide ternary crystal, AGS, in the THz frequency regime, where OR in this crystal 

exhibited a bandwidth >2 THz [81]. Using the similar crystal of AgGaS2, Porer et al. incorporated 

a 780 nm, 12 fs excitation pulse to produce ultra-broadband THz radiation centered at 45 THz 

[82]. In order to satisfy the phase-matching requirements, the crystal was rotated by the azimuthal 
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Fig. 1.11. (a) THz time-domain signals and (b) the associated spectra produced using LiGaSe2, 

LiGaS2, LiInSe2, and LiInS2 crystals [75]. (c,d) THz time-domain signals and (e) the associated 

spectra produced using an LiGaS2 crystal. In (e), the spectra centered at ~13 and 22 THz were 

obtained using a GaSe crystal [76]. 
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angle of 45° and tilted by the polar angle of 57° [82]. Interestingly, Sell et al. implemented a similar 

approach and crystal, but utilized a fixed laser source at 1.1 µm and a laser source tunable from 

1.1-1.5 µm, which produced THz radiation centred at ~72 THz [83]. Notably, a more detailed 

description of the DFG THz radiation generation arrangement implemented in Refs. [82,83] is 

described in Refs. [32,78–80].  

Work by both Kang et al. and Liu et al. showed that a (110)-cut Zn1-xCdxTe crystal (excited 

using a 180 fs, 820 nm electric field pulse) produced THz radiation of varying strengths, with the 

highest peak-to-peak electric field value obtained from a Zn0.95Cd0.05Te crystal [84,85]. 

Subsequent work by Yi et al. theoretically determined that, when utilizing an 850 nm laser 

excitation pulse, optimal THz radiation generation occurred from a Zn0.35Cd0.65Te crystal [86]. OR 

THz radiation generation was also investigated using a similar crystal, (110)-cut Zn0.972Mn0.028Te, 

where a THz electric field pulse having a peak-to-peak value ~20% higher than that produced from 

a ZnTe crystal was generated [66]. Although no experimental THz generation measurements have 

been reported on PbGa6Te10 and PbIn6Te10 crystals, detailed theoretical calculations determined 

that the conversion efficiency of THz radiation sources based on these chalcogenide ternary 

crystals could be as high as 10-2, with PnIn6Te10 being more efficient than PbGa6Te10 [58].  

 

1.4.8. THz radiation detection using chalcogenide ternary crystals 

In comparison to nonlinear radiation generation, significantly fewer studies have been 

reported on EO sampling using chalcogenide ternary crystals. EO sampling of a THz radiation 

pulse that contained frequencies >60 THz was achieved using a 100 µm-thick AgGaS2 crystal [see 

Fig. 1.12(a) and 1.12(b)] [82]. In this arrangement, a 780 nm, 12 fs EO sampling pulse was used 

to detect the THz radiation when the AgGaS2 crystals was rotated by the azimuthal angle of 45° 
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and tilted by the polar angle of 57° [82]. A detailed description of the principles associated with 

this high-frequency EO sampling arrangement can be found in Refs. [32,79]. The application of a 

(110)-cut Zn1−xCdxTe crystal for THz EO sampling was demonstrated by both Liu et al. and Kang 

et al. [85,87]. Figure 1.12(c) depicts the THz electric field pulses sampled by a 180 fs, 

 

Fig. 1.12. (a) EO time-domain signal and (b) the associated spectrum obtained using an AgGaS2 

crystal [82]. (c) EO time-domain signals obtained using Zn1−xCdxTe crystals [87]. (d) EO spectra 

obtained using Zn1−xMnxTe crystals [66]. 
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820 nm probe pulse in (110)-cut Zn1−xCdxTe crystals that had varying Cd molar fractions [87]. 

The influence of Cd on the strength of the detected THz signal was clearly apparent, where the 

Zn0.95Cd0.05Te crystal exhibited a peak-to-peak amplitude ≳25% higher than that of ZnTe or 

Zn1−xCdxTe with x≥0.1 [87]. An enhanced THz EO sampling response was also observed from 

(110)-cut Zn1−xMnxTe crystals [66,88]. As shown in Fig. 1.12(d), the sampled THz radiation 

spectral density depended on the crystal composition, with the Zn0.972Mn0.028Te crystal being  

>30% higher than that of a ZnTe crystal [66]. This enhancement was attributed to the low density 

of free charge carriers that resulted from the Mn atoms tendency to substitute the Zn atoms [88].  

 

1.4.9. Pnictide and chalcogenide ternary crystals for high-field THz 

radiation generation 

Pnictide and chalcogenide ternary crystals provide a multitude of application potential due 

to their inherent properties. To achieve high-field, high-power, high-efficiency, and/or wide-

bandwidth nonlinear frequency-conversion, the nonlinear media must possess several key 

properties. A high second-order nonlinearity permits more efficient frequency-conversion in 

comparison to an identical nonlinear media with a lower second-order nonlinearity. A wide 

bandgap is necessary to avoid free carrier generation via single-photon or multi-photon absorption, 

and a wide transparency range allows for flexibility in selecting the excitation wavelength. 

Additionally, crystals should have low absorption losses at both the excitation wavelengths and 

the generated THz frequencies. High absorption at the excitation wavelengths would limit the 

efficiency of the frequency-conversion process from occurring, while absorption at the generated 

THz frequencies would allow the frequency-conversion process to occur, but the generated THz 

frequency components would be absorbed before exiting the nonlinear crystal. A high laser 
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damage threshold is also beneficial, as it allows for a higher excitation intensity. Another critical 

property is the ability of a nonlinear crystal to exhibit phase-matching between the excitation 

wavelengths and the generated THz frequencies. While phase-matching is sometimes achieved in 

bulk crystals, more elaborate schemes can be implemented to satisfy phase-matching conditions, 

such as exciting the crystal at off-normal incidence angles [89], using a tilted-wavefront 

arrangement [90], implementing waveguiding geometries [91], etc.  

Pnictide and chalcogenide ternary crystals inherently posses many of the aforementioned 

properties. For example, the CSP pnictide crystal exhibits a d36=84.5 pm/V at λexc=4.6 µm [35], a 

wide bandgap of 2.45 eV [37], and a wide transparency range of 0.52-9.5 µm (i.e. 31.6-577 THz) 

[35]. Furthermore, the CSP crystal absorption is low at excitation wavelengths in the near-IR 

regime (e.g. absorption coefficients are ≲1 cm-1 at ~1 µm [92]). For a femtosecond excitation pulse 

having a central wavelength of 800 nm, saturation of the generated THz radiation occurs at a peak 

intensity above 100 GW/cm2 [28]. The damage threshold has not been determined when this 

crystal is excited by femtosecond electric field pulses, which could be the focus of future studies. 

Nonetheless, THz electric fields as high as 0.4 MV/cm have been produced using CSP crystals 

[28]. Alternatively, the AGS chalcogenide crystal exhibits a d36=39.5 pm/V at λexc=10.6 µm [55], 

a bandgap of 1.8 eV [55], and a transparency range of 0.76-18 µm (i.e. 16.7-395 THz) [55]. The 

losses are low for excitation wavelengths in the near-IR regime (e.g. absorption coefficients are 

<0.5 cm-1 at ~1 µm [93]). While THz electric field strengths have not been explicitly stated in 

literature for a AGS crystal, peak-to-peak values exceeding 13 MV/cm have been obtained using 

a LiGaS2 chalcogenide crystal [76]. Since the second-order nonlinearity of AGS is >6 times higher 

than that of LiGaS2 [55], this suggests the enormous potential of AGS for high-field THz radiation 

generation. 
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1.5. On-chip waveguiding platforms for THz radiation 

generation2 

When compared to its neighboring frequency ranges (i.e. microwave and IR), one can say 

that the THz frequency range has faltered in addressing practical applications. While there are 

numerous on-chip integrated microwave, IR, and optical sources capable of produce high powers, 

there is a lack of compact THz sources, thereby limiting the development of critical THz radiation 

technologies. Although scientific progress has broadened the scope and understanding of the 

intriguing THz spectral regime, these advances are calling for THz-wave technologies to evolve 

beyond laboratory research and into the realm of real-world applications. To enable THz radiation 

technology to traverse into solving real-world problems and open up doors to new applications, 

the first step is to realize THz sources that are compact, broadband, and highly efficient. 

As waveguides are compatible with on-chip fabrication techniques and can exhibit small 

footprints, they provide an optimal platform for on-chip THz radiation generation via nonlinear 

frequency-conversion processes [e.g. DFG and OR]. Notably, since the cross-sectional dimensions 

of a waveguide are directly related to the effective refractive indices of the guided excitation mode 

and the guided THz mode, waveguides provide added versatility in satisfying the conditions for 

phase-matching (see Appendix A). Not to mention, diffraction is advantageously avoided in 

waveguides, since the excitation electric field remains confined along the entire length of the 

waveguide, thus permitting high peak intensities (e.g. >GW/cm2) beneficial to nonlinear 

frequency-conversion processes. In this respect, it is important to consider the advantages of 

specific waveguiding geometries (e.g. planar dielectric waveguides, parallel plate waveguides, 

 
2A version of this section’s work is under review in Laser & Photonics Reviews. 
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rectangular dielectric waveguides, metallic slit waveguides, ridge waveguides, photonic crystal 

waveguides, etc.) for guiding the optical excitation electric fields and the generated THz radiation. 

Parallel plate and metallic slit waveguides allow the generated THz radiation to be guided as a 

transverse electromagnetic (TEM) mode, such that there is no cut-off frequency. Rectangular 

dielectric waveguides, ridge waveguides, and metallic slit waveguides are ideal for achieving high 

optical-to-THz conversion efficiencies. In such waveguiding structures, the excitation electric field 

can be confined to a small cross-sectional area, which aids in achieving a high peak intensity and 

thus a high conversion efficiency. Planar waveguides are specially-suited for handling very high 

excitation electric field energies (e.g. millijoules to joules). Specifically, in DFG and OR, THz 

radiation generation saturates at peak excitation intensities higher than the threshold for multi-

photon absorption, such that the excitation electric field can be spread along the planar waveguide 

to ensure its peak intensity remains below the multi-photon absorption threshold. Photonic crystal 

waveguides allow for the design of transmission bands and stop bands, which provide control of 

the frequencies supported by the waveguide. As such, the optimal choice of waveguide depends 

on several factors, including the excitation pulse energy, the excitation pulse peak intensity, the 

generated THz frequencies, and the intended application. 

Nonlinear frequency-conversion for THz radiation generation in a waveguide is governed 

by the orientation and the atomic or molecular asymmetry of the nonlinear waveguiding layer. 

Naturally, this layer is composed of either a nonlinear crystalline material [30], or a polymer whose 

chromophores are aligned through a poling process [94,95]. Some common nonlinear crystals used 

for THz radiation generation in waveguides are GaP, GaAs, and LiNbO3 (LN). GaP, and GaAs 

crystals exhibit a 4̅3𝑚 point group symmetry [96,97], with the second-order nonlinear coefficient 
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tensor given in Eq. (1.4). Withal, a LN crystal exhibits a 3𝑚 point group symmetry [30], with a 

second-order nonlinear coefficient tensor of [30,43], 

 

�̿�3𝑚 = [
0 0 0

−𝑑22 𝑑22 0
𝑑31 𝑑31 𝑑33

0 𝑑15 −𝑑22

𝑑15 0 0
0 0 0

] , (1.7) 

where d15, d22, d31, and d33 are non-vanishing tensor elements. For 4̅3𝑚 crystals, a typical 

arrangement employs electric fields polarized along the [100] crystallographic axis, 𝐸[100], and the 

[010] crystallographic axis, 𝐸[010], to produce a second-order nonlinear polarization along the 

[001] crystallographic axis, 𝑃[001]
(2)

= 4𝜀0𝑑36𝐸[100]𝐸[010]. Similarly, for crystals belonging to the 

3𝑚 symmetry group, it is common to excite them using an electric field polarized along the [001] 

crystallographic axis, 𝐸[001], which produces a second-order nonlinear polarization along the 

crystal’s [001] crystallographic axis, 𝑃[001]
(2)

= 2𝜀0𝑑33𝐸[001]
2 . These excitation arrangements can be 

realized using 4̅3𝑚 crystals cut along the (110) crystallographic plane or 3𝑚 crystals cut along the 

(100) or (010) crystallographic planes. In these scenarios, d36 and d33 become the primary tensor 

element influencing the second-order nonlinear frequency-conversion process in the 4̅3𝑚 and 3𝑚 

crystals, respectively. Interestingly, such second-order nonlinear tensor elements can be very high 

for nonlinear interactions occurring at THz frequencies, since significant enhancement occurs near 

phonon mode resonances (i.e. the atoms and ions of the crystal respond strongly near these 

resonances) [38]. For THz radiation generated by near-IR excitation wavelengths, d36≈50 and 

25 pm/V for GaAs and GaP, respectively, and d33≈180 pm/V for LN [96,98,99]. Nonetheless, in 

addition to the crystal’s nonlinearity, the efficiency of THz radiation generation within a nonlinear 

waveguide is highly-dependent on other factors, including the spatial pattern of the mode, 
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confinement of the mode to the nonlinear medium, mode parity, waveguide dispersion, excitation 

angle, etc. 

In this section, we survey past and recent progress in nonlinear frequency-conversion for the 

generation of THz radiation in waveguides. Such THz radiation waveguiding sources provide an 

ideal platform for integration with photonic chips, primarily due to the waveguide’s compatibility 

with nanofabrication techniques and the added benefit of a small footprint. The second-order 

nonlinear interactions of DFG and OR are considered in the most widely used nonlinear materials, 

which include GaP, GaAs, LN, and poled-polymers. A comprehensive discussion of recent 

developments is presented for a variety of waveguiding arrangements, emphasizing their inherent 

characteristics and potential. Herein, such arrangements are categorized as those that confine both 

the optical excitation and the generated THz electric fields, those that confine the optical excitation 

electric field but not the generated THz radiation, and those that confine the generated THz 

radiation but not the optical excitation electric field. Within each of these categories, a broad 

assortment of waveguiding platforms are considered, including planar dielectric waveguides, leaky 

planar waveguides, parallel plate waveguides, metallic slit waveguides, rectangular waveguides, 

ridge waveguides, wire waveguides, photonic crystal waveguides, poled waveguides, and multiple 

waveguides embedded within each other. 

 

1.5.1. Guided excitation electric fields and guided generated THz 

radiation 

Exploiting the modal confinement properties of waveguides is an effective approach to 

achieving nonlinear THz radiation generation over long distances (e.g. up to millimeters or 

centimeters). As such, for both OR and DFG nonlinear processes, it is common for both the optical 
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excitation electric fields and generated THz radiation to be guided along a waveguiding structure. 

It should be noted to the reader that, in the following discussions, we differentiate between THz 

radiation frequencies produced by OR and DFG as fOR and fDFG, respectively. Owing in part to 

their fabrication simplicity, planar dielectric waveguides have emerged as a prominent platform 

to guide both the excitation electric fields and the generated THz radiation. Yang et al. reported a 

theoretical analysis to determine the OR coherence length in planar dielectric waveguides [100]. 

At an excitation wavelength of 1550 nm, a ZGP-GaAs-ZGP planar waveguide (that had a 

60 µm-thick GaAs layer) exhibited the long coherence length of 4 mm [100]. Pálfalvi et al. 

proposed another waveguiding geometry, which reduced THz loss by ensuring that the majority 

of the THz radiation energy was guided in the low-loss cladding layers of the waveguide [101]. 

To allow for phase-matching, the proposed arrangement required an excitation pulse that had a 

tilted wavefront [101]. Vodopyanov and Avetisyan investigated a 7.5 mm-long, 61 µm-thick 

GaAs planar waveguide [102]. When excited at wavelengths near 2128 nm, the waveguide 

produced THz radiation at the frequency of 2.07 THz [see Fig. 1.13(a)] [102]. A 290 µm-thick, 

 

Fig. 1.13. (a) DFG THz radiation spectral power produced from a GaAs planar waveguide [102]. 

The theoretical spectral power fits, obtained using monochromatic excitation electric fields and 

excitation electric fields having 100 GHz bandwidths, are shown for comparison [102]. (b) DFG 

THz radiation generated from a GaP planar waveguide [103]. 
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10 mm-long, (100) GaP planar waveguide was also investigated for DFG THz radiation 

generation, where the waveguide was excited using a fixed wavelength (chosen within the range 

of 920-1500 nm) and a wavelength tuned across the range of 920-1500 nm [103]. As shown in 

Fig. 1.13(b), THz radiation was produced up to ~5 THz and followed the trend expected by 

theoretical calculations [103]. A similar GaP planar waveguide configuration was investigated by 

Saito et al.; however, elliptically-polarized THz radiation was produced by adjusting the 

polarization of the excitation pulses and the length of the GaP waveguide [104]. 

Generally, in comparison to planar waveguides, three-dimensional (3D) waveguides are 

more versatile for on-chip light guiding beyond a single plane. Excitation electric fields guided 

along various 3D platforms (i.e. rectangular dielectric waveguides, ridge waveguides, and 

cylindrical metal wire waveguides) have been realized for producing guided THz radiation via OR 

and DFG. A unique structure that consisted of a cylindrical metal wire, partially coated with a 

poled polymer that had a second-order nonlinearity, was experimentally investigated by Zhu et al. 

[94]. As depicted in Fig. 1.14(a), when the excitation pulse was guided along the polymer coated 

wire, it produced OR THz radiation that was also guided along the wire’s metallic surface [94]. 

Using an 820 nm femtosecond excitation pulse, the authors demonstrated the generation of guided 

THz radiation having a bandwidth that extended up to 1 THz [see Fig. 1.14(b)] [94]. Using a LN 

rectangular (i.e. 9.4 µm thickness, 126 µm width, and 1 mm length) waveguide excited near 

1060 nm, Takushima et al. numercially demonstrated THz radiation generation at the frequencies 

of 1 and 1.45 THz, which corresponded to DFG phase-matching for a TE11 (i.e. transverse electric) 

THz mode  and a TE31 THz mode, respectively [105]. THz radiation generation via DFG was also 

observed using a (110) GaP rectangular waveguide, where a fixed wavelength of 1064 nm and a 

tunable wavelength between 1048-1063 nm were simultaneously used to excite the  
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Fig. 1.14. (a) Illustration depicting THz radiation generation from a poled polymer-coated 

cylindrical metal wire waveguiding arrangement [94]. (b) Spectral density of OR THz radiation 

generated from the waveguide illustrated in (a) [94]. (c) DFG THz radiation produced by GaP 

rectangular waveguides that had widths of 200, 500, and 1000 µm [106]. (d) DFG THz radiation 

generated by GaP ridge waveguides that had ridge widths of 200, 300, 500, and 1000 µm, where 

the inset illustrates a scanning electron microscope image of a GaP ridge waveguide that had a 

ridge width of 300 µm [107]. 

 

waveguide [106]. 5 mm-long, 160 µm-thick waveguides that had widths of 200, 500, and 1000 µm 

exhibited THz radiation emission at ~1.6-2.1 THz, ~1.2-2.3 THz, and ~1.2-2 THz, respectively 

[see Fig. 1.14(c)] [106]. Similar experiments were performed using a 200 µm thick, (110) GaP 

ridge waveguide that was fabricated on a 150 µm-thick GaP slab, as shown in the inset of 
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Fig. 1.14(d) [107]. This structure was excited using a wavelength fixed at 1064 nm and a 

wavelength tunable from 1058-1063 nm [107]. As shown in Fig. 1.14(d), the generated THz 

radiation exhibited peak emission at the frequencies of 1.3, 1.05, 0.8, and 0.7 THz for ridge widths 

of 200, 300, 500, and 1000 µm, respectively [107]. 

 

Fig. 1.15. (a) Scanning electron microscope image of a GaP photonic crystal waveguide that 

had a 300 µm-wide line defect [108]. (b) DFG THz radiation produced by the waveguide shown 

in (a) [108]. 

 

Photonic crystal waveguides have been utilized for guiding both the excitation electric field 

and the generated THz radiation. A GaP photonic crystal fiber, comprised of a solid GaP central 

section surrounded by circular air regions, was proposed by Li et al. for producing OR THz 

radiation [109]. Their theoretical analysis showed that THz radiation generation near 1 THz was 

possible when the photonic crystal fiber was excited by a 1040 nm, 100 fs laser pulse [109]. Saito 

et al. reported on THz radiation generation from a 60 µm-thick, 10 mm-long, (110) GaP photonic 

crystal waveguiding arrangement that had a 300 µm wide line defect [see Fig. 1.15(a)] [108]. 

When the photonic crystal waveguide was simultaneously excited at a fixed wavelength of 
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1216 nm and a wavelength tunable between 1217-1221 nm, a ~0.6-0.8 THz DFG signal was 

obtained [see Fig. 1.15(b)] [108]. 

Since the optical excitation wavelength is much shorter in comparison to the generated THz 

wavelength, it has become typical to embed the waveguide guiding the excitation electric field 

within the waveguide that guides the generated THz radiation. Such embedded waveguiding 

configurations have been used in both OR and DFG processes for producing THz radiation. An 

acrylate-poled polymer-acrylate planar waveguide embedded within a parallel plate waveguide 

[see Fig. 1.16(a)] was experimentally investigated by Cao et al. for OR THz radiation generation 

[110]. An 820 nm, 100 fs excitation pulse was guided along the acrylate-poled polymer-acrylate 

planar waveguide and produced THz radiation that coupled into the parallel plate waveguide 

[110]. THz electric field pulses having ≲1 ps durations were measured from waveguides that had 

lengths of 1, 2, and 3 mm, the results of which are shown in Fig. 1.16(b) [110]. The embedded 

waveguiding configuration illustrated in Fig. 1.16(c) was proposed by Marandi et al., where 1.5 

and 1.6 µm excitation wavelengths were guided along the AlGaAs-GaAs-AlGaAs ridge 

waveguide and produced DFG THz radiation at 3.5 THz, which propagated along the metallic slit 

waveguide [111]. Another arrangement for DFG THz radiation generation implemented a GaP 

ridge waveguide embedded within a rectangular Si waveguide [see Fig. 1.16(d)], where the former 

and latter mentioned waveguides were used to guide the excitation wavelengths and the generated 

THz radiation, respectively [112]. Using numerical methods, this arrangement was shown to 

produce radiation at 5.93 THz (conversion efficiency of 6.6×10-4  W−1) when excited using 

wavelengths near 1550 nm [112]. Chen et al. proposed a hybrid waveguiding platform that 

consisted of a Ti-diffused LN channel waveguide embedded within a photonic crystal waveguide 

[113]. The proposed structure guided two excitation wavelengths (i.e. 1542 and 1550 nm) in the 
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Fig. 1.16. (a) Cross-sectional illustration of an acrylate-poled polymer-acrylate planar 

waveguide embedded within a parallel plate waveguide [110]. (b) THz electric field pulses 

produced by the waveguiding arrangement depicted in (a) for waveguide lengths of 1, 2, and 

3 mm [110]. (c) An AlGaAs-GaAs-AlGaAs ridge waveguide embedded within a metallic slit 

waveguide [111]. (d) A GaP ridge waveguide embedded within a rectangular Si waveguide 

[112]. (e,f) A waveguiding arrangement that consisted of a photonic crystal waveguide, (e), with 

an embedded AlGaAs ridge waveguide, (f) [114]. (g) Illustration of a Ti:LN channel waveguide 

embedded within a quartz-LN-HDPE waveguide [115]. (h) DFG THz radiation produced by the 

waveguiding arrangement depicted in (g) [115]. 
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Ti-diffused LN channel waveguide, and confined the DFG THz wave within the photonic crystal 

waveguide [113]. For a channel length of 12 mm, the authors calculated a maximum conversion 

efficiency of 1.5×10−5 W-1 at 1 THz [113]. Another similar geometry was proposed by Chen et al., 

where a THz electric field produced via DFG was guided by an AlGaAs photonic crystal 

waveguide [see Fig. 1.16(e)] and the excitation wavelengths at 1565 and 1590 nm were guided by 

an embedded AlGaAs ridge waveguide [see Fig. 1.16(f)] [114]. The conversion efficiency of the 

proposed 12 mm long waveguiding structure was calculated to be 7.6×10-5 W-1 for generation at 

3 THz [114]. Experimentally, DFG THz radiation generation was observed in a Ti:LN channel  

waveguide embedded in a waveguide comprised of a quartz cladding layer, a LN core layer, and 

a high density polyethylene (HDPE) ridge [see Fig. 1.16(g)] [115]. The excitation electric fields 

(a fixed wavelength of 1555 nm and a wavelength tunable between 1530-1610 nm) were confined 

to propagate in the Ti:LN layer, whereas the generated THz radiation was guided by the quartz-

LN-HDPE waveguide [115]. As shown in Fig. 1.16(h), 1.33 THz radiation was produced using an 

11 mm-long waveguide that had a LN thickness of 14 µm, a 500 µm × 500 µm HDPE ridge cross-

section, and a 100 nm × 9 µm a Ti:LN channel cross-section [115]. 

 

1.5.2. Guided excitation electric fields and free-space THz radiation 

emission 

Various configurations have been reported that employ waveguides to confine the excitation 

electric field, while allowing the generated THz electric field to propagate unguided into free-

space. Although the investigations are limited, planar dielectric waveguides that confine the 

excitation electric fields have been implemented as a platform for producing THz radiation. DFG 

THz radiation was produced using an LN-MgO:LN-polyethylene terephthalate (PET) planar 
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waveguide with a Si prism array contacted to its surface [shown in Fig. 1.17(a)], where the 

generated THz radiation was emitted as Cherenkov waves [116,117]. A 70 mm-long waveguide 

that had an MgO:LN thickness of 3.8 µm produced free-space radiation tunable between 

0.2-7.8 THz [see Fig. 1.17(b)], where the generated radiation exhibited a maximum energy of 

~3.2 pJ and a maximum conversion efficiency of 10-7 [116,117]. Since the THz frequency 

components propagated though an array of Si prisms (opposed to a single larger prism), this 

arrangement was optimal for extracting narrowband THz radiation [116,117]. While no studies 

have been performed on planar dielectric waveguides for the generation of OR THz radiation, we 

envision such investigations being conducted going forward, due to the advantages associated with 

both planar waveguides and the OR process (e.g. ease of fabricating planar waveguides, the ability 

of planar waveguides to support large excitation energies, OR producing broadband THz radiation, 

etc.). 

 

Fig. 1.17. (a) Illustration of a LN-MgO:LN-PET planar waveguide showing the generated THz 

radiation being emitted as Cherenkov waves [116]. (b) Spectra of the DFG THz radiation 

produced by the waveguide in (a) [116]. 

 

Leaky planar waveguides have been utilized to weakly confine optical excitation electric 

fields and generate OR THz radiation emitted as free-space Cherenkov waves. Typically, leaky 
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waveguides consist of a low index dielectric core and higher index dielectric cladding layer(s) 

[91]. As long as the dielectric core layer is sufficiently thick, the majority of the optical excitation 

electric field is guided, while radiating weakly into free-space (e.g. a Si-LN-Si waveguide having 

an LN layer thickness of a few tens of micrometers exhibits radiative losses of only a few percent 

when excited at the wavelength of 800 nm) [91]. Notably, all the forthcoming leaky planar 

waveguide investigations have been conducted for an optical excitation electric field polarization 

oriented along the LN layer’s [001] crystallographic axis. OR THz radiation generation was 

numerically investigated for a Si-LN-Si leaky planar waveguide that had LN thicknesses of 20 

and 40 µm [91]. When excited by an 800 nm, 100 fs pulse, the generated THz radiation bandwidth 

extended past 4 THz [91]. Bodrov et al.  reported on a similar leaky planar waveguide that 

consisted of Bk7-LN-Si layers [see Fig. 1.18(a)] [118]. By coupling a high-energy (i.e. microjoule) 

780 nm, 50 fs excitation pulse into a leaky planar waveguide that had a LN layer thicknesses of 

50 µm, an ~1 ps-long OR THz electric field pulse was produced [see Fig. 1.18(b)] [118]. As 

shown in Fig. 1.18(c), frequency components >3 THz were obtained using waveguides that had 

LN layer thicknesses of 30 and 50 µm [118]. The dependence of the generated OR THz radiation 

on the excitation electric field wavelength was further studied by Bodrov et al. [119]. Using 

excitation pulses that had a duration of ~50 fs and central wavelengths of 800, 1300, 1500, 2000, 

and 2100 nm, OR THz radiation was produced from a 9 mm-long air-LN-Si leaky planar 

waveguide that had an LN thickness of 40 µm [119]. The authors showed that the conversion 

efficiency could be improved by a factor of three when the excitation wavelength was increased 

from 800 nm to 2.1 µm [119]. While the previously mentioned experiments were conducted with 

optical excitation pulses at energies in the microjoule range, Bakunov et al. reported on Cherenkov 

THz radiation generation from an air-LN-Si waveguide excited by ultrashort laser pulses at 
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nanojoule energies [120]. A 10 mm-long air-LN-Si leaky planar waveguiding arrangement that 

had an LN thickness of 35 µm was excited by an 8 nJ, 800 nm, 100 fs pulse [120]. THz radiation 

was produced up to ~4.5 THz at a conversion efficiency of 8×10-5, where this latter value is two 

orders of magnitude higher than that of free-space THz radiation generation arrangements 

impending a bulk ZnTe crystal [120]. A variation of the leaky planar waveguide, comprised of 

metal-air-LN-Si layers [see Fig. 1.18(d)], exhibited a good THz radiation conversion efficiency of 

2.5×10-3 when excited at an energy of ~20 J [121,122]. The metal substrate layer reflected the 

THz radiation generated at the Cherenkov angle of −|𝜃𝑐|, which combined with the THz radiation 

generated at the Cherenkov angle of +|𝜃𝑐| [121,122]. Controlling the thickness of the air layer 

allowed the Cherenkov THz radiation waves to interfere constructively at specific frequencies 

[121,122]. Figure 1.18(e) illustrates the THz electric field pulses produced by a leaky planar 

waveguide that had an LN thickness of 35 µm and no air gap or an infinite air gap [121]. As shown 

in Fig. 1.18(f), the corresponding spectra exhibited different spectral shapes due to the interfering 

THz radiation [121]. Bakunov et al. reversed the orientation of the Si prisms (with respect to the 

propagation direction of the excitation beam) in a Si-LN-Si waveguiding structure, as shown in 

Fig. 1.18(g) [123]. Consequently, the generated THz electric fields (emitted at the Cherenkov 

angle) propagated within the Si prism and experienced total internal reflection from the hypotenuse 

side of the Si prism [123]. The THz radiation pulses subsequently emerged into free-space as two 

laterally displaced beams, which propagated parallel to the propagation direction of the excitation 

laser pulse [123]. Figures 1.18(h) and 1.18(i) depict the generated THz time-domain electric field 

pulse and its corresponding spectral density, respectively, obtained using a 55 µm-thick LN layer 

and a 10 µJ, 35 fs, 800 nm laser pulse [123]. The majority of the generated THz frequency 
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Fig. 1.18. (a) Illustration of a Bk7-LN-Si prism leaky planar waveguide, which depicts the 

generated THz radiation being emitted as Cherenkov waves [118]. (b) THz electric field pulses 

produced by the Bk7-LN-Si prism leaky planar waveguide that had an LN thickness of 50 µm 

and (c) the spectra obtained from the leaky planar waveguide that had LN thicknesses of 30 and 

50 µm [118]. (d) Illustration of the metal-air-LN-Si prism leaky planar waveguide, showing the 

generated THz radiation being emitted as Cherenkov waves [121]. (e) THz electric field pulses 

produced by the metal-air-LN-Si prism leaky planar waveguide that had no air gap and an 

infinite air gap and (f) the spectral density of the THz electric field pulses shown in (e) [121]. 

(g) Illustration of the Si-LN-Si leaky planar waveguide, depicting the propagation direction of 

the generated THz radiation [123]. (h) THz electric field pulse produced by the Si-LN-Si leaky 

planar waveguide and (i) the spectral density of the THz electric field pulses shown in (h)  [123]. 
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components were observed <3 THz and a high conversion efficiency of 3.5×10-3 was realized 

when producing the OR THz electric field [123].  

3D Cherenkov waveguiding arrangements and poled waveguides have been employed to 

confine and guide the optical excitation electric field and generate free-space THz radiation. Fan  

et al. reported on the generation of OR THz radiation emitted as Cherenkov waves from a 

3.8 µm×5 µm×10 mm MgO:LN ridge waveguide [124]. Figure 1.19(a) shows a cross-sectional 

view of the ridge waveguide, where the (100) crystallographic plane of the MgO:LN layer was set 

normal to the propagation direction of the excitation electric field [124]. The MgO:LN layer was 

coated with a 3.5 μm-thick PET film that exhibited a refractive index lower than that of the 

MgO:LN, which confined the 1560 nm excitation pulse within the ridge waveguide but allowed 

the generated THz radiation to escape [124]. A 40° apex angle semi-cone Si lens was used to out-

couple the generated Cherenkov THz radiation from the arrangement and into free-space [see 

Fig. 1.19(b)] [124]. The MgO:LN ridge waveguide was excited using either a 20 or 60 fs pulse, 

which generated THz radiation having a bandwidth that extended past 6 THz, as shown in 

Fig. 1.19(c) [124]. Similarly, a 3 µm × 7 µm × 10 mm MgO:LN ridge waveguiding arrangement 

that utilized a half-cone Si lens was investigated by Takeya et al. [125]. When excited using a 

1560 nm, 48 fs pulse, OR THz radiation was produced up to ~5 THz [125]. Schulz et al. 

numerically investigated DFG THz radiation from a folded Si rectangular waveguide coated with 

a cladding material that had a second-order nonlinearity [95]. Tunable THz radiation generation 

was shown to be possible across the spectral range of 1-10 THz, and conversion efficiencies on 

the order of 10-4 were achieved for milliwatt optical excitation powers [95]. DFG in quasi-phase-

matched crystals is another promising method for generating tunable, highly coherent THz 

radiation. Avetisyan et al. analyzed phase-matched DFG THz radiation emitted normal to the 
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Fig. 1.19. (a) Cross-sectional image of an MgO:LN ridge waveguide and (b) a semi-cone Si lens 

that surrounded the ridge waveguide [124]. (c) Spectral power of the OR THz radiation produced 

by the MgO:LN ridge waveguide [124]. (d) Illustration of a PPMgLN ridge waveguide [126]. 

DFG THz radiation produced by PPMgLN ridge waveguides having grating periods of (e) 

91 µm and (f) 137 µm [126]. 

 

surface of a periodically-poled LN (PPLN) waveguide [127]. When a 6 mm-long, 300 µm-thick 

planar PPLN waveguide was excited at 600 W, it was estimated that 2 mW of THz radiation would 

be generated at 2 THz [127]. Experimental realization of DFG THz radiation from a periodically-
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poled MgO-doped LN (PPMgLN) ridge waveguide was reported by Sasaki et al., where the THz 

wave was emitted normal to the surface of the PPMgLN ridge waveguide [see Fig. 1.19(d)] [126]. 

A fixed excitation wavelength of 1554 nm and a tunable wavelength between 1560-1578 nm were 

employed to excite the PPMgLN ridge waveguide [126]. DFG THz radiation at 1.5 THz  [see 

Fig. 1.19(e)] and 1 THz [see Fig. 1.19(f)]  was observed from PPMgLN ridge waveguides that had 

grating periods of 91 and 137 µm,  respectively [126]. 

 

1.5.3. Free-space excitation electric fields for generating guided THz 

radiation  

To date, only a few investigations have been reported using a free-space excitation electric 

field to generate guided OR or DFG THz radiation. Coleman and Grischkowsky investigated OR 

THz radiation generated from an Al-GaAs-Al parallel plate waveguide [see Fig. 1.20(a)] that had 

a length of 860 µm and a 120 µm-thick GaAs layer [128]. Here, the excitation electric field 

propagated through the waveguide (i.e. the lateral beam dimension was less than the GaAs layer 

thickness), while the generated THz radiation was guided by the parallel plate waveguide and 

emitted into free-space [128]. When the Al-GaAs-Al parallel plate waveguide was excited using 

an 810 nm femtosecond laser pulse, a <1 ps-long THz electric field pulse was produced [see inset 

of Fig. 1.20(b)] that encompassed frequency components ≲3 THz [see Fig. 1.20(b)]  [128].  Due 

to the absence of a cut-off frequency in the THz spectrum, it was inferred that the OR THz 

radiation was guided along the waveguide as the TEM mode [128]. Figure 1.20(c) illustrates 

waveguides investigated by Chang et al., where these waveguides had cross-sectional dimensions 

of 600 µm × 400 µm and 1000 µm × 700 µm [129]. In these arrangements, the excitation electric 

fields had lateral beam dimensions less than the GaP rectangular regions, such that they were not 
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guided or confined by the GaP layers [129]. However, the generated THz radiation was guided by 

the rectangular GaP waveguide, since the wavelengths were comparable to the cross-sectional 

dimensions of the waveguides [129]. Figure 1.20(d) presents the THz time-domain electric field 

pulses, and their associated spectra, obtained using 6 mm-long, (110) GaP rectangular waveguides 

excited by 1064 nm, 110 fs laser pulses [129]. The waveguide that had the smaller and larger 

cross-sections exhibited peak generation at the frequencies of ~0.7  THz and ~0.4 THz, 

respectively [129]. This difference was attributed to the cross-sectional dimensions of the 

waveguides, which influenced the effective refractive index of the THz mode and thus modified 

the OR phase-matching condition [129]. Interestingly, modifying the shape of the excitation 

optical beam can enhance the OR THz radiation generation process. Xu et al. excited a similar 

GaP rectangular waveguide (cross-sectional dimensions of 1 mm × 0.7 mm) using a 1040 nm-

wavelength non-diffracting Bessel beam [130]. In comparison to a Gaussian beam that had the 

same power as the central spot of the Bessel beam and the same central beam size, the Bessel 

beam provided a THz radiation power enhancement of 3.5 and 3.3 for a 6 mm-long and 10 mm-

long GaP waveguide, respectively [130]. A 33 µm-thick LN planar waveguide was experimentally 

investigated by Lin et al. for OR THz radiation generation [131]. As illustrated in Fig. 1.20(e)-

1.20(g), an 800 nm, 70 fs excitation pulse that had a tilted wavefront produced phase-matched 

THz radiation that was guided along the planar waveguide [131]. The generated THz radiation 

spectra were centered at the frequencies of 0.2, 0.4, 0.65, and 0.95 THz and increased for steeper 

excitation pulse tilt angles [see Fig. 1.20(h)] [131]. Huang et al. observed forward and backward 

DFG THz radiation in a 500 µm-thick and 25 mm-long PPLN planar waveguide, as well as a 

25 mm-long PPLN rectangular waveguide that had a thickness of 500 µm and a width of 600 µm 

[132]. The excitation electric fields had beam dimensions less than the PPLN waveguiding regions, 
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Fig. 1.20. (a) An Al-GaAs-Al parallel plate waveguide and (b) the spectral density of the OR 

THz radiation generated by this waveguiding structure [128]. The inset depicts the generated 

THz electric field pulse [128]. (c) Illustration of GaP rectangular waveguides that had cross-

sectional dimensions of 600 µm × 400 µm and 1000 µm × 700 µm and (d) the spectral densities 

of the OR THz radiation produced by these waveguides [129]. The inset shows the generated 

THz electric field pulses [129]. (e-g) Illustration of a tilted wavefront excitation pulse 

propagating through a LN planar waveguide and the guided generated THz radiation, where (e) 

depicts the earliest instant in time, (f) shows a subsequent instant in time, and (g) illustrates the 

latest instant in time [131]. (h) DFG THz radiation produced by a LN planar waveguide at 

various excitation pulse wavefront tilt angles [131]. For comparison, the dotted line represents 

THz radiation generation from a bulk LN crystal [131]. DFG THz radiation produced by planar 

and rectangular PPLN waveguides in the (i) forward direction and (j) backward direction [132]. 

 

whereas the generated THz radiation was guided by the waveguiding regions [132]. For excitation 

wavelengths near 1540 nm, phase-matched THz radiation generation was observed at a frequency 

of 1.5 THz in the forwards direction [see Fig. 1.20(i)] and 0.6 THz in the backwards direction [see 
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Fig. 1.20(j)] [132]. In comparison to the planar waveguide, the rectangular waveguide exhibited a 

THz power enhancement of 1.6 and 1.8 for the forward and backward generated THz radiation, 

respectively [132]. 

 

1.6. Thesis objectives 

The main objective of this work is to explore and discover second-order nonlinear THz 

radiation sources and detectors using novel crystals and/or unique waveguiding geometries.  

The primary goals of this work are to: 

1. Explore emerging pnictide and chalcogenide ternary crystals for the generation and 

detection of THz radiation via second-order nonlinear effects. 

2. Develop a comprehensive numerical technique to model second-order nonlinear 

frequency-conversion, which incorporates all 18 elements of the nonlinear tensor and 

dispersion for each element. 

3. Explore novel waveguiding arrangements for the generation of THz radiation occurring 

through second-order nonlinear processes. 

4. Provide a fundamental physical understanding of second-order nonlinear optical effects. 

This is necessary because, when considering second-order nonlinear interactions, there is 

a lack of intuitive and comprehensive discussions that consider both the incident and 

resulting electric fields, as well as the behavior of the induced dipoles in the medium.   

5. Offer a clear and comprehensive understanding of the current-state of THz radiation 

sources and detectors that operate on the physics driving second-order nonlinear 

interactions.  
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The physical principles driving second-order nonlinear interactions persist into the spectral 

regions neighboring the THz frequency regime. As such, the work presented in this thesis briefly 

delves beyond the THz frequency regime to consider second-order nonlinear generation within the 

IR and visible spectral regions. 

In relation to such work, the main goals are to: 

6. Investigate waveguiding geometries for the generation of radiation in the IR and visible 

regions of the EM spectrum. 

7. Develop a new class of multi-band photonic sources, in which a single waveguiding 

structure concurrently satisfies the phase-matching requirements of several second-order 

nonlinear processes. 

 

1.7. Thesis overview 

The nine chapters presented in this thesis provide novel theoretical, numerical, and 

experimental investigations pertaining to second-order nonlinear phenomena for the generation 

and detection of radiation, mainly within the THz spectral regime. Emerging crystals are 

investigated for THz radiation generation and detection, and unique waveguiding arrangements 

are considered for THz radiation generation. The novel THz radiation sources and detectors 

presented in this thesis (exhibiting key properties such as high-field THz radiation generation, high 

conversion efficiency, wide generation and detection bandwidths, etc.) are key to advancing the 

field of nonlinear optics. This thesis is organized as follows: 

Chapter 2 provides a comprehensive study of second-order nonlinear effects for the 

generation of radiation. While such an investigation relies on derivations pertaining to the 

equations of motion (EOM) and Maxwell’s Equations, emphasises is placed on interpreting the 
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resulting equation to provide an intuitive description of the physics driving the nonlinear 

interactions. Second-order nonlinear frequency-conversion is considered for the representative 

scenarios of monochromatic incident electric fields and a pulsed incident electric field. 

Chapter 3 provides a detailed description of the THz-TDS system used to characterize the 

investigated THz radiation sources and detectors. This discussion considers the optical 

components incorporated within the THz-TDS system, as well the electrical equipment needed to 

modulate and process the optical signals. 

Chapter 4 presents experimental investigations on pnictide ternary crystals (e.g. ZGP and 

CSP) and chalcogenide ternary crystals (e.g. AGS and BGS) for THz radiation generation and/or 

detection. Broadband THz radiation generation is observed from the CSP and AGS crystals, while 

narrowband THz radiation generation is observed from the BGS crystal. The ZGP crystals is 

investigated for phase-resolved THz radiation detection via the linear EO effect. 

Chapter 5 presents two separate numerical formalisms for modeling second-order nonlinear 

effects in finite-difference time-domain (FDTD) simulations. The novel methods incorporate all 

18 elements of the second-order nonlinear tensor, and allow for dispersion of each element. The 

developed methods are applied to evaluate nonlinear frequency-conversion from a 3𝑚 point group 

symmetry crystal (i.e. LN) and a 43𝑚 point group symmetry crystal (i.e. ZnTe). 

Chapter 6 provides numerical and experimental investigations of LN planar waveguides for 

the generation of THz radiation. Using the methods developed in Chapter 5, such waveguides are 

shown to exhibit ultra-broadband Cherenkov THz radiation generation (i.e. bandwidth >100 THz), 

enhanced THz radiation generation near the LN phonon resonances, and phase-matched THz 

radiation generation occurring in the backward direction (i.e. the direction opposite to the 

propagation direction of the excitation electric field pulse). A planar LN waveguide is 
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experimentally realized, which produces THz radiation emitted as Cherenkov waves. Upon scaling 

the length of the waveguide, we envision it being integrated as on-chip sources of THz radiation. 

Chapter 7 expands on the knowledge-base created in the previous chapters to show that the 

theoretical, numerical, and experimental approaches can go beyond the THz spectral regime. The 

numerical methods developed in Chapter 5 are implemented to investigate LN plasmonic 

waveguides and a CSP photonic waveguide, both of which show conversion efficiency 

enhancement in comparison to LN photonic waveguides of comparable dimensions. Subsequently, 

LN waveguides are used as a platform to study off-normal-incident coupling arrangements and the 

impact of these coupling arrangements on SHG. Phase-matched SHG is experimentally-realize 

using a planar LN waveguide excited via an off-normal-incident coupling arrangement. 

Chapter 8 presents an entirely new class of multi-band photonic sources, where a single 

waveguiding structure simultaneously satisfies phase-matching for several second-order nonlinear 

processes. The methods developed in Chapter 5 are used to investigate concurrent phase-matched 

sum frequency generation (SFG) and phase-matched DFG for a planar LN waveguide. 

Subsequently, a planar LN waveguide is experimentally-realized for the simultaneous generation 

of radiation via the phase-matched second-order nonlinear processes of SHG and OR. 

Chapter 9 summarizes the theoretical, numerical, and experimental investigations conducted 

within this thesis, as well as key outcomes and observations. Future studies are proposed that 

pertain to this work. 
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Chapter 2. 

Second-order nonlinear phenomena: A 

complete prospective 
 

At its basic level, optics can be viewed as the behavior of EM waves as they interact with 

matter comprised of atoms and electrons. An EM wave incident on a medium induces a 

displacement of positive and negative electrical charges, resulting in electric dipole moments 

[133]. Interestingly, the electric dipoles arise from electron clouds being displaced with respect to 

their corresponding nuclei, as well as the displacement of atomic constituents in IR-active lattice 

vibrations. It is important to note that we use expressions such as “bound charge displacement” or 

“bound electric charge displacement” when referring to both of the aforementioned situations. 

Figure 2.1(a)-2.1(c) illustrate an atom (i.e. nucleus and electron could) that is part of a broader unit 

cell (not shown). At equilibrium, the electron cloud is displaced from its much heavier (i.e. fixed) 

nucleus [see Fig. 2.1(a)] due to forces exerted on it from other atomic constituents within the unit 

cell. When an EM wave is incident on a medium, it is often appropriate to assume the electron 

cloud oscillates in response to the perturbation by following the oscillations of the EM wave [133]. 

Figure 2.1(b) represents this scenario, where the electron cloud is displaced with respect to 

equilibrium. Here, the incident electric field exerts a force on the electric dipole, displacing the 

electron cloud and causing it to experience a restoring force in an effort to return to its equilibrium 

position. As shown in Fig. 2.1(e), the restoring force, F, is analogous to that of a linear spring 

undergoing a small displacement (i.e. 𝐹 ≈ −𝑘(1)∆𝑠, where 𝑘(1) is the first-order spring constant 

and ∆𝑠 is the spring’s displacement from its equilibrium position) [134]. Here, the electron cloud 
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returns to its equilibrium position at the same frequencies present in the incident electric field [43], 

and the interaction is denoted as occurring within the linear optical regime. Such behavior is only 

observed for sufficiently weak EM waves, while more involved electron cloud displacement 

occurs for stronger EM waves. Figure 2.1(c) represents this latter scenario, where the electron 

cloud is again displaced with respect to equilibrium, experiencing a restoring force in an effort to 

return to its equilibrium position. However, as shown in Fig. 2.1(e), the restoring force is 

analogous to that of a spring undergoing a large displacement (i.e. 𝐹 = −𝑘𝑠(∆𝑠)∆𝑠 = −𝑘(1)∆𝑠 −

𝑘(2)∆𝑠2 − 𝑘(3)∆𝑠3 − ⋯, where 𝑘𝑠 is the overall spring constant, 𝑘(2) is the second-order spring 

constant, 𝑘(3) is the third-order spring constant, etc.) [134]. In such a situation, the electron cloud 

returns to its equilibrium position at the same frequencies present in the incident electric field, as 

well as frequencies not present in the incident electric field [43]. The new frequencies arise due to 

the spring’s stiffness changing as the spring is either elongated or compressed, which occurs since 

the spring constant depends on displacement [i.e. 𝑘𝑠(∆𝑠)]. Such an interaction is defined as 

occurring within the nonlinear optical regime. The aforementioned picture can also be applied to 

lattice vibrations within the unit cell. Figure 2.1(d) depicts the displacement of an atom with 

respect to another heavier (i.e. fixed) atom, which exhibits a linear restoring force for ∆𝑠<∆𝑠0 and 

a nonlinear restoring force for ∆𝑠>∆𝑠0 [see Fig. 2.1(e)]. In general, the intensity of the incident 

EM wave and various properties of the material itself are key characteristics distinguishing 

whether the interaction occurs in the linear or nonlinear optical regime [30,133]. 

Despite the development of detailed mathematical models and ground-breaking 

experimental works in the second-order nonlinear optical regime [90,135–138], the area lacks 

comprehensive intuitive discussions pertaining to the physics driving the various nonlinear 

processes.  For example,  Fig. 2.2  shows illustrations typically  used to  describe the  second-order 
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Fig. 2.1. Displacement of an electron cloud with respect to its heavier (i.e. fixed) nucleus (a) at 

equilibrium, (b) in the regime described by a linear restoring force, and (c) in the regime 

described by a nonlinear restoring force. (d) Displacement of an atom with respect to another 

heavier (i.e. fixed) atom. (e) Representative restoring force curve. 

 

nonlinear processes of SHG, SFG, and DFG. As shown in Fig. 2.2(a)-2.2(c), photons at the angular 

frequencies of 𝜔1 and 𝜔2 produce photons at the angular frequencies of 2𝜔1 via SHG, 𝜔1 + 𝜔2 
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via SFG, and 𝜔1 − 𝜔2 via DFG, respectively. Alternatively, Fig. 2.2(d)-2.2(f) depict these second-

order nonlinear processes though their need to satisfy energy conservation. While such pictorials 

are important and informative, they are incomplete in describing the entire nature of the physical 

processes. Specifically, the medium in which the frequency-conversion occurs is depicted as a 

“black box”, with only the incident and resulting photons being illustrated. To obtain a complete 

understanding of second-order nonlinear phenomena, it is necessary to consider the response 

occurring within the nonlinear medium. 

 

Fig. 2.2. (a) SHG, (b) SFG, and (c) DFG processes depicted as photons incident on a medium 

and photons exiting the medium. (d) SHG, (e) SFG, and (f) DFG processes depicted in terms of 

energy conservation diagrams. The photons in (f) signify that frequency components at 𝜔2 must 

initially be present in order for the DFG process to occur. 

 

In this section, we introduce second-order nonlinear interactions occurring within a non-

centrosymmetric material by considering key representative scenarios (i.e. monochromatic 

incident electric fields and a pulsed incident electric field). To provide a complete picture, we 

consider the relationship between the electric field incident on the medium, the induced 
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displacement of the bound electric charges in the medium, and the resulting electric field. Detailed 

mathematical derivations are presented along with intuitive physical interpretations. 

 

2.1. General framework 

It is critical to have a comprehensive understanding of the anharmonic EOM, which 

describes the displacement of the bound electric charges in a medium, as well as Maxwell’s 

equations, which describe the EM waves resulting from the motion of the bound electric charges. 

 

2.1.1. Anharmonic EOM 

When first-order and second-order nonlinear effect are considered, the bound electric charge 

displacement in a medium is described by the anharmonic EOM [30], 

𝑚𝑒

𝜕2𝒔(𝒓, 𝑡)

𝜕𝑡2
+ 𝑚𝑒𝛾

𝜕𝒔(𝒓, 𝑡)

𝜕𝑡
+ 𝑚𝑒𝜔0

2𝒔(𝒓, 𝑡) + 𝔖𝑚𝑒𝒔
2(𝒓, 𝑡) = −𝑞𝑬(𝒓, 𝑡) , (2.1) 

where s(𝒓, 𝑡) is the displacement of the bound electric charges, 𝜔0 is the resonant frequency 

associated with the bound electric charge displacement in the medium, 𝛾 is the damping term 

associated with the bound electric charge displacement in the medium, 𝔖 represents the 

nonlinearity of the medium, 𝑬(𝒓, 𝑡) represents the electric field in the medium, t is the time, 𝒓 =

(𝑥, 𝑦, 𝑧), and x, y, and z are the axes of the Cartesian coordinate system. Notably, while 𝔖 can be 

approximated using 𝜔0 and the lattice constant defining a material’s unit cell (see Ref. [30]), the 

nonlinearity of a medium is typically determined empirically. Equation (2.1) is solved using 

perturbation theory [30], which allows 𝒔(𝒓, 𝑡) and 𝑬(𝒓, 𝑡) to be expressed as: 

𝒔(𝒓, 𝑡) → ℌ𝒔(1)(𝒓, 𝑡) + ℌ2𝒔(2)(𝒓, 𝑡) + ⋯ , (2.2) 

𝑬(𝒓, 𝑡) → ℌ𝑬(𝒓, 𝑡) , (2.3) 
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respectively, where ℌ is the expansion parameter. Substituting Eqs. (2.2) and (2.3) into Eq. (2.1) 

and rearranging based on the order of ℌ gives, 

ℌ{𝑚𝑒

𝜕2𝒔(1)(𝒓, 𝑡)

𝜕𝑡2
+ 𝑚𝑒𝛾

𝜕𝒔(1)(𝒓, 𝑡)

𝜕𝑡
+ 𝑚𝑒𝜔0

2𝒔(1)(𝒓, 𝑡) + 𝑞𝑬(𝒓, 𝑡)}

+ ℌ2 {𝑚𝑒

𝜕2𝒔(2)𝒓, (𝑡)

𝜕𝑡2
+ 𝑚𝑒𝛾

𝜕𝒔(2)(𝒓, 𝑡)

𝜕𝑡
+ 𝑚𝑒𝜔0

2𝒔(2)(𝒓, 𝑡)

+ 𝔖𝑚𝑒[𝒔
(1)(𝒓, 𝑡)]

2
} + ⋯ = 0 . 

(2.4) 

Invoking the fact that each order of ℌ is independent [30], we can write, 

𝑚𝑒

𝜕2𝒔(1)(𝒓, 𝑡)

𝜕𝑡2
+ 𝑚𝑒𝛾

𝜕𝒔(1)(𝒓, 𝑡)

𝜕𝑡
+ 𝑚𝑒𝜔0

2𝒔(1)(𝒓, 𝑡) = −𝑞𝑬(𝒓, 𝑡) , (2.5) 

𝜕2𝒔(2)(𝒓, 𝑡)

𝜕𝑡2
+ 𝛾

𝜕𝒔(2)(𝒓, 𝑡)

𝜕𝑡
+ 𝜔0

2𝒔(2)(𝒓, 𝑡) + 𝔖[𝒔(1)(𝒓, 𝑡)]
2

= 0 . (2.6) 

Perturbation theory further dictates that the bound electric charge displacement is obtained by 

setting ℌ=1 [30], such that 𝒔(𝒓, 𝑡) = 𝒔(1)(𝒓, 𝑡) + 𝒔(2)(𝒓, 𝑡). The emission of EM waves in response 

to this time-varying 𝒔(𝒓, 𝑡) is discussed in the following section. 

 

2.1.2. Maxwell’s equations 

In the time-domain, Maxwell’s equations are expressed in differential form as [30,133]: 

∇ ∙ 𝑫(𝒓, 𝑡) = 𝜌𝑓(𝒓, 𝑡) , (2.7) 

∇ ∙ 𝑩(𝒓, 𝑡) = 0 , (2.8) 

∇ × 𝑬(𝒓, 𝑡) = −
𝜕𝑩(𝒓, 𝑡)

𝜕𝑡
 , (2.9) 

∇ × 𝑯(𝒓, 𝑡) = 𝑱𝑓(𝒓, 𝑡) +
𝜕𝑫(𝒓, 𝑡)

𝜕𝑡
 , (2.10) 



64 

 

where H(𝒓, 𝑡) is the magnetic field, D(𝒓, 𝑡) is the electric displacement field, B(𝒓, 𝑡) is the 

magnetic flux density, 𝜌𝑓(𝒓, 𝑡) is the free charge volume density in the medium, and 𝑱𝑓(𝒓, 𝑡) is the 

free current density in the medium. The constitutive relations further describe the interaction of 

EM waves with a given medium, which, in a non-magnetic medium, are expressed as [30,133]: 

𝑫(𝒓, 𝑡) = 𝜀0𝑬(𝒓, 𝑡) + 𝑷(𝒓, 𝑡) , (2.11) 

𝑩(𝒓, 𝑡) = 𝜇0𝑯(𝒓, 𝑡) , (2.12) 

where P(𝒓, 𝑡) is the polarization induced in the medium, given as [30,133], 

𝑷(𝒓, 𝑡) = 𝑷(1)(𝒓, 𝑡) + 𝑷(2)(𝒓, 𝑡) + 𝑷(3)(𝒓, 𝑡) + ⋯ , (2.13) 

where 𝑷(1)(𝒓, 𝑡) represents the first-order contribution, 𝑷(2)(𝒓, 𝑡) represents the second-order 

contribution, 𝑷(3)(𝒓, 𝑡) represents the third-order contribution, and so on. While Eqs. (2.7)-(2.13) 

describe the interaction of an EM wave with a general non-magnetic medium, several assumptions 

can be introduced to simplify the complexity of the equations. Specifically, only the first-order 

and second-order polarization terms are considered [i.e. 𝑷(𝒓, 𝑡) = 𝑷(1)(𝒓, 𝑡) + 𝑷(2)(𝒓, 𝑡)] and the 

medium is assumed to be absent of free charges and free currents [i.e. 𝜌𝑓(𝒓, 𝑡)=0 and 𝑱𝑓(𝒓, 𝑡)=0]. 

This results in Eqs. (2.7)-(2.13) simplifying to: 

∇ ∙ 𝑫(𝒓, 𝑡) = 0 , (2.14) 

∇ ∙ 𝑩(𝒓, 𝑡) = 0 , (2.15) 

∇ × 𝑬(𝒓, 𝑡) = −
𝜕𝑩(𝒓, 𝑡)

𝜕𝑡
 , (2.16) 

∇ × 𝑯(𝒓, 𝑡) =
𝜕𝑫(𝒓, 𝑡)

𝜕𝑡
 , (2.17) 

𝑫(𝒓, 𝑡) = 𝜀0𝑬(𝒓, 𝑡) + 𝑷(𝒓, 𝑡) , (2.18) 

𝑩(𝒓, 𝑡) = 𝜇0𝑯(𝒓, 𝑡) , (2.19) 
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𝑷(𝒓, 𝑡) = 𝑷(1)(𝒓, 𝑡) + 𝑷(2)(𝒓, 𝑡) . (2.20) 

Importantly, a medium exhibiting second-order nonlinear effects [i.e. 𝑷(2)(𝒓, 𝑡)≠0] must be non-

centrosymmetric, while a centrosymmetric medium always exhibits 𝑷(2)(𝒓, 𝑡)=0 [30,31]. In a 

centrosymmetric medium, inverting the atomic constituents about the center of the unit cell leads 

to an indistinguishable arrangement of the basic atomic structure. Therefore, when a 

centrosymmetric medium is perturbed by an EM wave, any displacement incurred by the bound 

electric charges in one direction is exactly cancelled by their displacement in the opposite direction 

as the EM wave reverses its polarization orientation. The wave equation can be derived from 

Eqs. (2.16)-(2.20). Using the vector identity ∇ × (∇ × 𝑨) = ∇(∇ ∙ 𝑨) − ∇2𝑨, where 𝑨 is a vector, 

Eq. (2.16) is manipulated to obtain, 

∇[∇ ∙ 𝑬(𝒓, 𝑡)] − ∇2𝑬(𝒓, 𝑡) = −
𝜕[∇ × 𝑩(𝒓, 𝑡)]

𝜕𝑡
 . (2.21) 

Subsequently, Eqs. (2.17)-(2.19) and the relationship 𝑐 = (𝜀0𝜇0)
−1/2 are used to simplify 

Eq. (2.21), giving, 

−∇[∇ ∙ 𝑬(𝒓, 𝑡)] + ∇2𝑬(𝒓, 𝑡) −
1

𝑐2

𝜕2𝑬(𝒓, 𝑡)

𝜕𝑡2
=

1

𝑐2𝜀0

𝜕2𝑷(𝒓, 𝑡)

𝜕𝑡2
 . (2.22) 

In general, ∇[∇ ∙ 𝑬(𝒓, 𝑡)] is non-zero [30]; however, it can be shown that ∇[∇ ∙ 𝑬(𝒓, 𝑡)]=0 for a 

plane wave. In such a scenario, Eq. (2.20) is used to show that Eq. (2.22) becomes, 

∇2𝑬(𝒓, 𝑡) −
1

𝑐2

𝜕2

𝜕𝑡2
[𝑬(𝒓, 𝑡) +

1

𝜀0
𝑷(1)(𝒓, 𝑡)] =

1

𝑐2𝜀0

𝜕2𝑷(2)(𝒓, 𝑡)

𝜕𝑡2
 . (2.23) 

Using this wave equation, the electric field can be calculated for a given second-order nonlinear 

polarization. 
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2.2. Monochromatic incident electric fields 

An informative scenario to consider is an electric field comprised of two monochromatic 

EM waves interacting within a one-dimensional (1D) isotropic and uniform dielectric medium. 

The EM waves induce bound electric charge oscillations (described by the anharmonic EOM), 

leading to the emission of EM waves (described by Maxwell’s equations). Prior to investigating 

this scenario, it is imperative to clarify certain points. Dispersion and absorption loss are 

considered in the medium. The monochromatic EM waves are assumed to propagate along the 

z Cartesian coordinate and exist in the spatial region of 𝑧≥0. We investigate the scenario where 

frequency-conversion is restricted to less than a few percent, such that depletion of the two incident 

monochromatic EM waves is not considered [30,31]. Additionally, cascading effects (i.e. electric 

field frequency components produced by second-order nonlinear effects subsequently producing 

other electric field frequency components via second-order nonlinear effects) are ignored [30,31]. 

 

2.2.1. Anharmonic EOM and Maxwell’s equations 

Consider two monochromatic EM waves incident on the medium and exhibiting an electric 

field of, 

𝑬𝑖
𝑤(𝑧, 𝑡) = 𝑬𝜔1

𝑤 (𝑧, 𝑡) + 𝑬𝜔2
𝑤 (𝑧, 𝑡)

= 𝐴1𝑒
−𝑘0(𝜔1)𝜅(𝜔1)𝑧 cos[𝜔1𝑡 − 𝑘0(𝜔1)𝑛(𝜔1)𝑧 − 𝜗1] �̂�

+ 𝐴2𝑒
−𝑘0(𝜔2)𝜅(𝜔2)𝑧 cos[𝜔2𝑡 − 𝑘0(𝜔2)𝑛(𝜔2)𝑧 − 𝜗2] �̂� , 

(2.24) 

where the superscript ‘w’ indicates that the corresponding variable is associated with 

monochromatic EM waves,  𝐴1 represents the amplitude of the first monochromatic EM wave, 𝐴2 

represents the amplitude of the second monochromatic EM wave, 𝜔1 is the angular frequency of 
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the first monochromatic EM wave, 𝜔2 is the angular frequency of the second monochromatic EM 

wave, 𝜗1 is the phase shift of the first monochromatic EM wave, 𝜗2 is the phase shift of the second 

monochromatic EM wave, 𝑘0(𝜔) represents the free-space wavenumber at the angular frequency 

of 𝜔, 𝑛(𝜔) represents the refractive index of the medium at the angular frequency of 𝜔, 𝜅(𝜔) 

represents the extinction coefficient of the medium at the angular frequency of 𝜔, 𝑬𝜔1
𝑤 (𝑧, 𝑡) is the 

electric field component related to 𝜔1, and 𝑬𝜔2
𝑤 (𝑧, 𝑡) is the electric field component related to 𝜔2. 

The mathematical analysis is drastically simplified by expressing Eq. (2.24) as complex 

exponentials, 

𝑬𝑖
𝑤(𝑧, 𝑡) = �̃�𝜔1

𝑤 (𝑧, 𝑡)�̂� + �̃�𝜔2
𝑤 (𝑧, 𝑡)�̂� + CC

=
�̃�1

2
𝑒−𝑖[𝜔1𝑡−�̃�(𝜔1)𝑧]�̂� +

�̃�2

2
𝑒−𝑖[𝜔2𝑡−�̃�(𝜔2)𝑧]�̂� + CC , 

(2.25) 

where �̃�1 = 𝐴1𝑒
𝑖𝜗1, �̃�2 = 𝐴2𝑒

𝑖𝜗2, CC indicates the complex conjugate, �̃�(𝜔) is the complex 

wavenumber [= 𝜔 �̃�(𝜔) 𝑐⁄ ] in the medium at the angular frequency 𝜔, �̃�(𝜔) is the complex 

refractive index [= 𝑛(𝜔) + 𝑖𝜅(𝜔)] of the medium at the angular frequency 𝜔, �̃�𝜔1
𝑤 (𝑧, 𝑡) is the 

complex electric field component related to 𝜔1, and �̃�𝜔2
𝑤 (𝑧, 𝑡) is the complex electric field 

component related to 𝜔2. Notably, although several variables in Eq. (2.25) are complex [i.e. �̃�1, 

�̃�2, �̃�(𝜔1), and �̃�(𝜔2)], the imaginary parts ultimately cancel out due to the presence of the 

complex conjugate (i.e. CC), resulting in a real-valued 𝑬𝑖
𝑤(𝑧, 𝑡). For this scenario, Eqs. (2.5), (2.6), 

and (2.23) reduce to: 

𝑚𝑒

𝜕2𝒔𝑤,(1)(𝑧, 𝑡)

𝜕𝑡2
+ 𝑚𝑒𝛾

𝜕𝒔𝑤,(1)(𝑧, 𝑡)

𝜕𝑡
+ 𝑚𝑒𝜔0

2𝒔𝑤,(1)(𝑧, 𝑡) = −𝑞𝑬𝑤(𝑧, 𝑡) , (2.26) 

𝜕2𝒔𝑤,(2)(𝑧, 𝑡)

𝜕𝑡2
+ 𝛾

𝜕𝒔𝑤,(2)(𝑧, 𝑡)

𝜕𝑡
+ 𝜔0

2𝒔𝑤,(2)(𝑧, 𝑡) + 𝔖[𝒔𝑤,(1)(𝑧, 𝑡)]
2

= 0 , (2.27) 
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𝜕2𝑬𝑤(𝑧, 𝑡)

𝜕𝑧2
−

1

𝑐2

𝜕2

𝜕𝑡2
[𝑬𝑤(𝑧, 𝑡) +

1

𝜀0
𝑷𝑤,(1)(𝑧, 𝑡)] =

1

𝑐2𝜀0

𝜕2𝑷𝑤,(2)(𝑧, 𝑡)

𝜕𝑡2
 , (2.28) 

respectively, where 𝑬𝑤(𝑧, 𝑡) is the electric field in the medium, 𝒔𝑤,(1)(𝑧, 𝑡) is the first-order bound 

electric charge displacement in the medium, 𝒔𝑤,(2)(𝑧, 𝑡) is the second-order bound electric charge 

displacement in the medium, 𝑷𝑤,(1)(𝑧, 𝑡) is the first-order polarization in the medium, and 

𝑷𝑤,(2)(𝑧, 𝑡) is the second-order polarization in the medium. 𝑬𝑤(𝑧, 𝑡) consists of contributions at: 

(i) the angular frequencies present in Eq. (2.24) [i.e. 𝑬𝜔1
𝑤 (𝑧, 𝑡) and 𝑬𝜔2

𝑤 (𝑧, 𝑡)] and (ii) angular 

frequencies arising from the second-order nonlinear interactions [i.e. 𝑬2𝜔1

𝑤 (𝑧, 𝑡), 𝑬2𝜔2

𝑤 (𝑧, 𝑡), 

𝑬𝜔1+𝜔2
𝑤 (𝑧, 𝑡), and 𝑬𝜔1−𝜔2

𝑤 (𝑧, 𝑡)]. The latter contribution occurs because of the [𝒔𝑤,(1)(𝑧, 𝑡)]
2
 term 

in Eq. (2.27). 𝑬𝑤(𝑧, 𝑡) is expresses as the superposition of the various contributions, such that, 

𝑬𝑤(𝑧, 𝑡) = 𝑬𝑖
𝑤(𝑧, 𝑡) + 𝑬𝑔

𝑤(𝑧, 𝑡)

= 𝑬𝜔1
𝑤 (𝑧, 𝑡) + 𝑬𝜔2

𝑤 (𝑧, 𝑡) + 𝑬2𝜔1

𝑤 (𝑧, 𝑡) + 𝑬2𝜔2

𝑤 (𝑧, 𝑡) + 𝑬𝜔1+𝜔2
𝑤 (𝑧, 𝑡)

+ 𝑬𝜔1−𝜔2
𝑤 (𝑧, 𝑡) , 

(2.29) 

where 𝑬𝑔
𝑤(𝑧, 𝑡) represents the electric field containing angular frequencies not present in 𝑬𝑖

𝑤(𝑧, 𝑡) 

[i.e. 𝑬𝑔
𝑤(𝑧, 𝑡)=𝑬2𝜔1

𝑤 (𝑧, 𝑡) + 𝑬2𝜔2

𝑤 (𝑧, 𝑡) + 𝑬𝜔1+𝜔2
𝑤 (𝑧, 𝑡) + 𝑬𝜔1−𝜔2

𝑤 (𝑧, 𝑡)]. Equation (2.29) can be 

written in its complex form, 

𝑬𝑤(𝑧, 𝑡) = �̃�𝜔1
𝑤 (𝑧, 𝑡)�̂� + �̃�𝜔2

𝑤 (𝑧, 𝑡)�̂� + �̃�2𝜔1

𝑤 (𝑧, 𝑡)�̂� + �̃�2𝜔2

𝑤 (𝑧, 𝑡)�̂� + �̃�𝜔1+𝜔2
𝑤 (𝑧, 𝑡)�̂�

+ �̃�𝜔1−𝜔2
𝑤 (𝑧, 𝑡)�̂� + CC , 

(2.30) 

where �̃�𝜁
𝑤(𝑧, 𝑡) represents the complex electric field contribution at the angular frequency of 

𝜁 [= 𝜔1, 𝜔2, 2𝜔1, 2𝜔2, 𝜔1 + 𝜔2, or 𝜔1 − 𝜔2] and exhibits the form of a plane wave [i.e. 

�̃�𝜁
𝑤(𝑧, 𝑡) ∝ 𝑒−𝑖[𝜁𝑡−�̃�(𝜁)𝑧]]. Similar to 𝑬𝑤(𝑧, 𝑡), 𝒔𝑤,(1)(𝑧, 𝑡) consists of contributions at: (i) the 

angular frequencies present in Eq. (2.24) [i.e. 𝒔𝜔1

𝑤,(1)(𝑧, 𝑡) and 𝒔𝜔2

𝑤,(1)(𝑧, 𝑡)] and (ii) angular 
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frequencies arising from the second-order nonlinear interactions [i.e. 𝒔2𝜔1

𝑤,(1)
(𝑧, 𝑡), 𝒔2𝜔2

𝑤,(1)
(𝑧, 𝑡), 

𝒔𝜔1+𝜔2

𝑤,(1) (𝑧, 𝑡), and 𝒔𝜔1−𝜔2

𝑤,(1) (𝑧, 𝑡)]. 𝒔𝑤,(1)(𝑧, 𝑡) is expresses as the superposition of the various 

contributions, 

𝒔𝑤,(1)(𝑧, 𝑡) = 𝒔𝜔1

𝑤,(1)(𝑧, 𝑡) + 𝒔𝜔2

𝑤,(1)(𝑧, 𝑡) + 𝒔2𝜔1

𝑤,(1)(𝑧, 𝑡) + 𝒔2𝜔2

𝑤,(1)(𝑧, 𝑡) + 𝒔𝜔1+𝜔2

𝑤,(1) (𝑧, 𝑡)

+ 𝒔𝜔1−𝜔2

𝑤,(1) (𝑧, 𝑡) , 
(2.31) 

which in complex form is, 

𝒔𝑤,(1)(𝑧, 𝑡) = �̃�𝜔1

𝑤,(1)(𝑧, 𝑡)�̂� + �̃�𝜔2

𝑤,(1)(𝑧, 𝑡)�̂� + �̃�2𝜔1

𝑤,(1)(𝑧, 𝑡)�̂� + �̃�2𝜔2

𝑤,(1)(𝑧, 𝑡)�̂�

+ �̃�𝜔1+𝜔2

𝑤,(1) (𝑧, 𝑡)�̂� + �̃�𝜔1−𝜔2

𝑤,(1) (𝑧, 𝑡)�̂� + CC , 
(2.32) 

where �̃�𝜁
𝑤,(1)(𝑧, 𝑡) represents the complex first-order bound charge displacement contribution at 

the angular frequency of 𝜁 and exhibits the form of a plane wave [i.e. �̃�𝜁
𝑤,(1)(𝑧, 𝑡) ∝ 𝑒−𝑖[𝜁𝑡−�̃�(𝜁)𝑧]]. 

Inserting Eqs. (2.30) and (2.32) into Eq. (2.26) and rearranging gives six independent equations 

for each frequency (recall 𝜁=𝜔1, 𝜔2, 2𝜔1, 2𝜔2, 𝜔1 + 𝜔2, or 𝜔1 − 𝜔2), 

𝑚𝑒

𝜕2�̃�𝜁
𝑤,(1)(𝑧, 𝑡)

𝜕𝑡2
+ 𝑚𝑒𝛾

𝜕�̃�𝜁
𝑤,(1)(𝑧, 𝑡)

𝜕𝑡
+ 𝑚𝑒𝜔0

2�̃�𝜁
𝑤,(1)(𝑧, 𝑡) = −𝑞�̃�𝜁

𝑤(𝑧, 𝑡) . (2.33) 

Solving Eq. (2.33) permits [30]: 

𝒔𝜁
𝑤,(1)(𝑧, 𝑡) = �̃�𝜁

𝑤,(1)(𝑧, 𝑡)�̂� + CC = −
𝜀0

𝑁𝑞
�̃�(1)(𝜁)�̃�𝜁

𝑤(𝑧, 𝑡)�̂� + CC , (2.34) 

with, 

�̃�(1)(𝜁) =
𝑁𝑞2

𝜀0𝑚𝑒

1

𝜔0
2 − 𝜁2 − 𝑖𝛾𝜁

 , (2.35) 

where N is the density of electric dipoles in the medium and �̃�(1)(𝜁) is the first-order susceptibility 

of the medium at the angular frequency of 𝜁. The amplitude of 𝒔2𝜔1

𝑤,(1)(𝑧, 𝑡), 𝒔2𝜔2

𝑤,(1)(𝑧, 𝑡), 
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𝒔𝜔1+𝜔2

𝑤,(1) (𝑧, 𝑡), and 𝒔𝜔1−𝜔2

𝑤,(1) (𝑧, 𝑡) are typically much less than those of 𝒔𝜔1

𝑤,(1)
(𝑧, 𝑡) and 𝒔𝜔2

𝑤,(1)
(𝑧, 𝑡), 

such that 𝒔𝑤,(1)(𝑧, 𝑡) ≈ 𝒔𝜔1

𝑤,(1)(𝑧, 𝑡)�̂� + 𝒔𝜔2

𝑤,(1)(𝑧, 𝑡)�̂�. Using this approximation and considering 

Eq. (2.27), it can be inferred that 𝒔𝑤,(2)(𝑧, 𝑡) exhibits contributions at the angular frequencies of 

2𝜔1, 2𝜔2, 𝜔1 + 𝜔2, 𝜔1 − 𝜔2, and DC [i.e. 𝒔2𝜔1

𝑤,(2)(𝑧, 𝑡), 𝒔2𝜔2

𝑤,(2)(𝑧, 𝑡), 𝒔𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡), 𝒔𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡), 

and 𝒔0
𝑤,(2)(𝑧), respectively]. Therefore,  

𝒔𝑤,(2)(𝑧, 𝑡) = 𝒔2𝜔1

𝑤,(2)(𝑧, 𝑡) + 𝒔2𝜔2

𝑤,(2)(𝑧, 𝑡) + 𝒔𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡) + 𝒔𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡) + 𝒔0
𝑤,(2)(𝑧) , (2.36) 

which in complex form is, 

𝒔𝑤,(2)(𝑧, 𝑡) = {�̃�2𝜔1

𝑤,(2)(𝑧, 𝑡)�̂� + �̃�2𝜔2

𝑤,(2)(𝑧, 𝑡)�̂� + �̃�𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡)�̂� + �̃�𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡)�̂� + CC}

+ 𝑠0
𝑤,(2)(𝑧)�̂� , 

(2.37) 

where 𝑠0
𝑤,(2)(𝑧) represents the real-valued second-order bound electric charge displacement 

contribution at the angular frequency of zero (i.e. DC) and �̃�2𝜔1

𝑤,(2)(𝑧, 𝑡), �̃�2𝜔2

𝑤,(2)(𝑧, 𝑡), �̃�𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡), 

and �̃�𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡) represent the complex second-order bound electric charge displacement 

contributions at the angular frequencies of 2𝜔1, 2𝜔2, 𝜔1 + 𝜔2, and 𝜔1 − 𝜔2, respectively. 

Notably, we have assumed that the displacement of 𝒔𝑤,(2)(𝑧, 𝑡) occurs along the same direction as 

the polarization of 𝑬𝑖
𝑤(𝑧, 𝑡), although this can differ for the general case that implements the 

second-order nonlinear tensor (see Section 2.2.3). Using 𝒔𝑤,(1)(𝑧, 𝑡) ≈ 𝒔𝜔1

𝑤,(1)(𝑧, 𝑡)�̂� +

𝒔𝜔2

𝑤,(1)(𝑧, 𝑡)�̂� and Eq. (2.37) allows the following five independent equations to be obtained from 

Eq. (2.27): 
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𝜕2�̃�2𝜔1

𝑤,(2)
(𝑧, 𝑡)

𝜕𝑡2
+ 𝛾

𝜕�̃�2𝜔1

𝑤,(2)
(𝑧, 𝑡)

𝜕𝑡
+ 𝜔0

2�̃�2𝜔1

𝑤,(2)(𝑧, 𝑡)

+
𝔖𝜀0

2

4𝑁2𝑞2
[�̃�1�̃�

(1)(𝜔1)]
2
𝑒−𝑖[2𝜔1𝑡−2�̃�(𝜔1)𝑧] = 0 , 

 

(2.38) 

𝜕2�̃�2𝜔2

𝑤,(2)(𝑧, 𝑡)

𝜕𝑡2
+ 𝛾

𝜕�̃�2𝜔2

𝑤,(2)(𝑧, 𝑡)

𝜕𝑡
+ 𝜔0

2�̃�2𝜔2

𝑤,(2)(𝑧, 𝑡)

+
𝔖𝜀0

2

4𝑁2𝑞2
[�̃�2�̃�

(1)(𝜔2)]
2
𝑒−𝑖[2𝜔2𝑡−2�̃�(𝜔2)𝑧] = 0 , 

 

(2.39) 

𝜕2�̃�𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡)

𝜕𝑡2
+ 𝛾

𝜕�̃�𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡)

𝜕𝑡
+ 𝜔0

2�̃�𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡)

+
𝔖𝜀0

2

2𝑁2𝑞2
�̃�1�̃�

(1)(𝜔1)�̃�2�̃�
(1)(𝜔2)𝑒

−𝑖{(𝜔1+𝜔2)𝑡−[�̃�(𝜔1)+�̃�(𝜔2)]𝑧} = 0 , 

 

(2.40) 

𝜕2�̃�𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡)

𝜕𝑡2
+ 𝛾

𝜕�̃�𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡)

𝜕𝑡
+ 𝜔0

2�̃�𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡)

+
𝔖𝜀0

2

2𝑁2𝑞2
�̃�1�̃�

(1)(𝜔1)[�̃�2�̃�
(1)(𝜔2)]

∗
𝑒−𝑖{(𝜔1−𝜔2)𝑡−[�̃�(𝜔1)−�̃�∗(𝜔2)]𝑧}

= 0 , 

(2.41) 

𝜔0
2𝑠0

𝑤,(2)(𝑧) +
𝔖𝜀0

2

2𝑁2𝑞2
�̃�1�̃�

(1)(𝜔1)[�̃�1�̃�
(1)(𝜔1)]

∗
𝑒−2𝑘0(𝜔1)𝜅(𝜔1)𝑧

+
𝔖𝜀0

2

2𝑁2𝑞2
�̃�2�̃�

(1)(𝜔2)[�̃�2�̃�
(1)(𝜔2)]

∗
𝑒−2𝑘0(𝜔2)𝜅(𝜔2)𝑧 = 0 . 

(2.42) 

By solving Eqs. (2.38)-(2.42), we obtain [30]: 

𝒔2𝜔1

𝑤,(2)(𝑧, 𝑡) = �̃�2𝜔1

𝑤,(2)(𝑧, 𝑡)𝒙 + CC

= −
𝜀0

4𝑁𝑞
�̃�1

2�̃�(2)(2𝜔1: 𝜔1, 𝜔1)𝑒
−𝑖[2𝜔1𝑡−2�̃�(𝜔1)𝑧]�̂� + CC , 

 

(2.43) 
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𝒔2𝜔2

𝑤,(2)(𝑧, 𝑡) = �̃�2𝜔2

𝑤,(2)(𝑧, 𝑡)𝒙 + CC

= −
𝜀0

4𝑁𝑞
�̃�2

2�̃�(2)(2𝜔2: 𝜔2, 𝜔2)𝑒
−𝑖[2𝜔2𝑡−2�̃�(𝜔2)𝑧]�̂� + CC , 

 

(2.44) 

𝒔𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡) = �̃�𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡)�̂� + CC

= −
𝜀0

2𝑁𝑞
�̃�1�̃�2�̃�

(2)(𝜔1 + 𝜔2: 𝜔1, 𝜔2)𝑒
−𝑖{(𝜔1+𝜔2)𝑡−[�̃�(𝜔1)+�̃�(𝜔2)]𝑧}�̂�

+ CC , 

 

(2.45) 

𝒔𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡) = �̃�𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡)𝒙 + CC

= −
𝜀0

2𝑁𝑞
�̃�1�̃�2

∗ �̃�(2)(𝜔1 − 𝜔2: 𝜔1, −𝜔2)𝑒
−𝑖{(𝜔1−𝜔2)𝑡−[�̃�(𝜔1)−�̃�∗(𝜔2)]𝑧}�̂�

+ CC , 

(2.46) 

𝒔0
𝑤,(2)(𝑧) = 𝑠0

𝑤,(2)(𝑧)�̂�

= −
𝜀0

2𝑁𝑞
�̃�1�̃�1

∗𝜒(2)(0: 𝜔1, −𝜔1)𝑒
−2𝑘0(𝜔1)𝜅(𝜔1)𝑧�̂�

−
𝜀0

2𝑁𝑞
�̃�2�̃�2

∗𝜒(2)(0:𝜔2, −𝜔2)𝑒
−2𝑘0(𝜔2)𝜅(𝜔2)𝑧�̂� , 

(2.47) 

with, 

�̃�(2)(2𝜔1: 𝜔1, 𝜔1) =
𝔖𝑚𝑒𝜀0

2

𝑁2𝑞3
�̃�(1)(2𝜔1)�̃�

(1)(𝜔1)�̃�
(1)(𝜔1) , (2.48) 

�̃�(2)(2𝜔2: 𝜔2, 𝜔2) =
𝔖𝑚𝑒𝜀0

2

𝑁2𝑞3
�̃�(1)(2𝜔2)�̃�

(1)(𝜔2)�̃�
(1)(𝜔2) , (2.49) 

𝜒(2)(𝜔1 + 𝜔2: 𝜔1, 𝜔2) =
𝔖𝑚𝑒𝜀0

2

𝑁2𝑞3
�̃�(1)(𝜔1 + 𝜔2)�̃�

(1)(𝜔1)�̃�
(1)(𝜔2) , (2.50) 

𝜒(2)(𝜔1 − 𝜔2: 𝜔1, −𝜔2) =
𝔖𝑚𝑒𝜀0

2

𝑁2𝑞3
�̃�(1)(𝜔1 − 𝜔2)�̃�

(1)(𝜔1)�̃�
(1)(−𝜔2) , (2.51) 



73 

 

𝜒(2)(0: 𝜔1, −𝜔1) =
𝔖𝑁𝑞3

𝜀0𝑚𝑒
2𝜔0

2

1

(𝜔0
2 − 𝜔1

2)2 + (𝛾𝜔1)2
 , (2.52) 

𝜒(2)(0: 𝜔2, −𝜔2) =
𝔖𝑁𝑞3

𝜀0𝑚𝑒
2𝜔0

2

1

(𝜔0
2 − 𝜔2

2)2 + (𝛾𝜔2)2
 , (2.53) 

where the �̃�(2) terms represent the second-order nonlinear susceptibility of the medium, with 

𝜒(2)(0: 𝜔1, −𝜔1) and 𝜒(2)(0: 𝜔2, −𝜔2) being real-valued. Notably, �̃�(2)(𝜔1 + 𝜔2: 𝜔1, 𝜔2) is 

interpreted as the second-order nonlinear susceptibility of the medium at the angular frequency of 

𝜔1 + 𝜔2, due to an incident electric field containing angular frequency components at 𝜔1 and 𝜔2 

(with the other �̃�(2) definitions being interpreted in a similar fashion). Additionally, as seen from 

Eqs. (2.45) and (2.46), the sum of 𝜔1 and 𝜔2 leads to 𝜔1 + 𝜔2 and the difference between 𝜔1 and 

𝜔2 leads to 𝜔1 − 𝜔2, respectively. However, the resulting angular frequency of 𝜔1 − 𝜔2 can 

instead be interpreted as the sum of 𝜔1 and −𝜔2, where the latter is a negative frequency. Such an 

approach mathematically links the various second-order nonlinear processes, allowing certain 

portions of the derivations to be simplified. Importantly, no physical differences arise by treating 

the 𝜔1 − 𝜔2 process as the sum of 𝜔1 and −𝜔2, opposed to the difference between 𝜔1 and 𝜔2. 

The total bound electric charge displacement is, 

𝒔𝑤(𝑧, 𝑡) = 𝒔𝑤,(1)(𝑧, 𝑡) + 𝒔𝑤,(2)(𝑧, 𝑡)

= 𝒔𝜔1

𝑤,(1)(𝑧, 𝑡) + 𝒔𝜔2

𝑤,(1)(𝑧, 𝑡) + 𝒔2𝜔1

𝑤,(1)(𝑧, 𝑡) + 𝒔2𝜔2

𝑤,(1)(𝑧, 𝑡)

+ 𝒔𝜔1+𝜔2

𝑤,(1) (𝑧, 𝑡) + 𝒔𝜔1−𝜔2

𝑤,(1) (𝑧, 𝑡) + 𝒔2𝜔1

𝑤,(2)(𝑧, 𝑡) + 𝒔2𝜔2

𝑤,(2)(𝑧, 𝑡)

+ 𝒔𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡) + 𝒔𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡) + 𝒔0
𝑤,(2)(𝑧) . 

(2.54) 
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Recall that a time-dependent second-order nonlinear polarization produces an electric field [i.e. 

see Eq. (2.28)]. 𝒔𝑤,(1)(𝑧, 𝑡) and 𝒔𝑤,(2)(𝑧, 𝑡) are directly related to the polarization in the medium 

via the expressions 𝑷𝑤,(1)(𝑧, 𝑡) = −𝑁𝑞𝒔𝑤,(1)(𝑧, 𝑡) and 𝑷𝑤,(2)(𝑧, 𝑡) = −𝑁𝑞𝒔𝑤,(2)(𝑧, 𝑡), such that: 

𝑷𝑤,(1)(𝑧, 𝑡) = 𝑷𝜔1

𝑤,(1)(𝑧, 𝑡) + 𝑷𝜔2

𝑤,(1)(𝑧, 𝑡) + 𝑷2𝜔1

𝑤,(1)(𝑧, 𝑡) + 𝑷2𝜔2

𝑤,(1)(𝑧, 𝑡)

+ 𝑷𝜔1+𝜔2

𝑤,(1) (𝑧, 𝑡) + 𝑷𝜔1−𝜔2

𝑤,(1) (𝑧, 𝑡)

= �̃�𝜔1

𝑤,(1)(𝑧, 𝑡)𝒙 + �̃�𝜔2

𝑤,(1)(𝑧, 𝑡)�̂� + �̃�2𝜔1

𝑤,(1)(𝑧, 𝑡)�̂� + �̃�2𝜔2

𝑤,(1)(𝑧, 𝑡)�̂�

+ �̃�𝜔1+𝜔2

𝑤,(1) (𝑧, 𝑡)�̂� + �̃�𝜔1−𝜔2

𝑤,(1) (𝑧, 𝑡)�̂� + CC . 

(2.55) 

with, 

𝑷𝜁
𝑤,(1)(𝑧, 𝑡) = �̃�𝜁

𝑤,(1)(𝑧, 𝑡)�̂� + CC = 𝜀0�̃�
(1)(𝜁)�̃�𝜁

𝑤(𝑧, 𝑡)�̂� + CC , (2.56) 

and, 

𝑷𝑤,(2)(𝑧, 𝑡) = 𝑷2𝜔1

𝑤,(2)(𝑧, 𝑡) + 𝑷2𝜔2

𝑤,(2)(𝑧, 𝑡) + 𝑷𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡) + 𝑷𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡)

+ 𝑷0
𝑤,(2)(𝑧, 𝑡)

= {�̃�2𝜔1

𝑤,(2)(𝑧, 𝑡)𝒙 + �̃�2𝜔2

𝑤,(2)(𝑧, 𝑡)�̂� + �̃�𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡)�̂� + �̃�𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡)�̂�

+ CC} + 𝑃0
𝑤,(2)(𝑧)�̂� , 

(2.57) 

with, 

𝑷2𝜔1

𝑤,(2)(𝑧, 𝑡) = �̃�2𝜔1

𝑤,(2)(𝑧, 𝑡)�̂� + CC

=
𝜀0

4
�̃�1

2�̃�(2)(2𝜔1: 𝜔1, 𝜔1)𝑒
−𝑖[2𝜔1𝑡−2�̃�(𝜔1)𝑧]�̂� + CC , 

(2.58) 

𝑷2𝜔2

𝑤,(2)(𝑧, 𝑡) = �̃�2𝜔2

𝑤,(2)(𝑧, 𝑡)�̂� + CC

=
𝜀0

4
�̃�2

2�̃�(2)(2𝜔2: 𝜔2, 𝜔2)𝑒
−𝑖[2𝜔2𝑡−2�̃�(𝜔2)𝑧]�̂� + CC , 

(2.59) 
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𝑷𝜔1+𝜔2

𝑤,(2)
(𝑧, 𝑡) = �̃�𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡)𝒙 + CC

=
𝜀0

2
�̃�1�̃�2𝜒

(2)(𝜔1 + 𝜔2: 𝜔1, 𝜔2)𝑒
−𝑖{(𝜔1+𝜔2)𝑡−[�̃�(𝜔1)+�̃�(𝜔2)]𝑧}�̂� + CC , 

(2.60) 

𝑷𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡) = �̃�𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡)�̂� + CC

=
𝜀0

2
�̃�1�̃�2

∗ �̃�(2)(𝜔1 − 𝜔2: 𝜔1, −𝜔2)𝑒
−𝑖{(𝜔1−𝜔2)𝑡−[�̃�(𝜔1)−�̃�∗(𝜔2)]𝑧}�̂�

+ CC , 

(2.61) 

𝑷0
𝑤,(2)(𝑧) = 𝑃0

𝑤,(2)(𝑧)�̂�

=
𝜀0

2
�̃�1�̃�1

∗𝜒(2)(0: 𝜔1, −𝜔1)𝑒
−2𝑘0(𝜔1)𝜅(𝜔1)𝑧�̂�

+
𝜀0

2
�̃�2�̃�2

∗𝜒(2)(0: 𝜔2, −𝜔2)𝑒
−2𝑘0(𝜔2)𝜅(𝜔2)𝑧�̂� , 

(2.62) 

where �̃�𝜁
𝑤,(1)(𝑧, 𝑡) represents the complex first-order polarization contributions at the angular 

frequency of 𝜁,  𝑃0
𝑤,(2)(𝑧, 𝑡) represents the real-valued second-order polarization contribution at 

the angular frequency of zero (i.e. DC), and �̃�2𝜔1

𝑤,(2)(𝑧, 𝑡), �̃�2𝜔2

𝑤,(2)(𝑧, 𝑡), �̃�𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡), and 

�̃�𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡) represent the complex second-order polarization contributions at the angular 

frequencies of 2𝜔1, 2𝜔2, 𝜔1 + 𝜔2, and 𝜔1 − 𝜔2, respectively. Inserting Eq. (2.30), (2.55), and 

(2.57) into Eq. (2.28) and simplifying yields six independent equations, represented as: 

𝜕2�̃�𝜁
𝑤(𝑧, 𝑡)

𝜕𝑧2
−

�̃�2(𝜁)

𝑐2

𝜕2�̃�𝜁
𝑤(𝑧, 𝑡)

𝜕𝑡2
=

1

𝑐2𝜀0

𝜕2�̃�𝜁
𝑤,(2)(𝑧, 𝑡)

𝜕𝑡2
 , (2.63) 

where �̃�(𝜁) = √1 + �̃�(1)(𝜁) and �̃�𝜔1

𝑤,(2)(𝑧, 𝑡)=�̃�𝜔2

𝑤,(2)(𝑧, 𝑡)=0 [i.e. 𝜔1 and 𝜔2 are the angular 

frequencies present in 𝑬𝑖
𝑤(𝑧, 𝑡), such that second-order nonlinear polarizations are not induced at 

these angular frequencies]. Notably, since a time-independent charge cannot produce propagating 
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EM waves, there is no electric field contribution from the 𝑷0
𝑤,(2)(𝑧) polarization term. Solving 

Eq. (2.63) for the electric field contributions at 2𝜔1, 2𝜔2, 𝜔1 + 𝜔2, and 𝜔1 − 𝜔2 yields [30]: 

𝑬2𝜔1

𝑤 (𝑧, 𝑡) = �̃�2𝜔1

𝑤 (𝑧, 𝑡)�̂� + CC

=
𝜔1�̃�1

2�̃�(2)(2𝜔1: 𝜔1, 𝜔1)

4�̃�(2𝜔1)𝑐

𝑒𝑖[2�̃�(𝜔1)−�̃�(2𝜔1)]𝑧 − 1

2�̃�(𝜔1) − �̃�(2𝜔1)
𝑒−𝑖[2𝜔1𝑡−�̃�(2𝜔1)𝑧]�̂�

+ CC , 

(2.64) 

𝑬2𝜔2

𝑤 (𝑧, 𝑡) = �̃�2𝜔2

𝑤 (𝑧, 𝑡)�̂� + CC

=
𝜔2�̃�2

2�̃�(2)(2𝜔2: 𝜔2, 𝜔2)

4�̃�(2𝜔2)𝑐

𝑒𝑖[2�̃�(𝜔2)−�̃�(2𝜔2)]𝑧 − 1

2�̃�(𝜔2) − �̃�(2𝜔2)
𝑒−𝑖[2𝜔2𝑡−�̃�(2𝜔2)𝑧]�̂�

+ CC , 

(2.65) 

𝑬𝜔1+𝜔2
𝑤 (𝑧, 𝑡) = �̃�𝜔1+𝜔2

𝑤 (𝑧, 𝑡)�̂� + CC

=
(𝜔1 + 𝜔2)�̃�1�̃�2𝜒

(2)(𝜔1 + 𝜔2: 𝜔1, 𝜔2)

4�̃�(𝜔1 + 𝜔2)𝑐

𝑒𝑖[�̃�(𝜔1)+�̃�(𝜔2)−�̃�(𝜔1+𝜔2)]𝑧 − 1

�̃�(𝜔1) + �̃�(𝜔2) − �̃�(𝜔1 + 𝜔2)

× 𝑒−𝑖[(𝜔1+𝜔2)𝑡−�̃�(𝜔1+𝜔2)𝑧]𝒙 + CC , 

(2.66) 

𝑬𝜔1−𝜔2
𝑤 (𝑧, 𝑡) = �̃�𝜔1−𝜔2

𝑤 (𝑧, 𝑡)𝒙 + CC

=
(𝜔1 − 𝜔2)�̃�1�̃�2

∗ �̃�(2)(𝜔1 − 𝜔2: 𝜔1, −𝜔2)

4�̃�(𝜔1 − 𝜔2)𝑐

𝑒𝑖[�̃�(𝜔1)−�̃�∗(𝜔2)−�̃�(𝜔1−𝜔2)]𝑧 − 1

�̃�(𝜔1) − �̃�∗(𝜔2) − �̃�(𝜔1 − 𝜔2)

× 𝑒−𝑖[(𝜔1−𝜔2)𝑡−�̃�(𝜔1−𝜔2)𝑧]�̂� + CC , 

(2.67) 

respectively, where several approximations are utilized. Specifically, the slowly varying amplitude 

approximation (SVAA) is implemented, such that Eqs. (2.64)-(2.67) are valid for: 

|2�̃�(𝜔1) − �̃�(2𝜔1)| ≪ 2|�̃�(2𝜔1)| , (2.68) 

|2�̃�(𝜔2) − �̃�(2𝜔2)| ≪ 2|�̃�(2𝜔2)| , (2.69) 
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|�̃�(𝜔1) + �̃�(𝜔2) − �̃�(𝜔1 + 𝜔2)| ≪ 2|�̃�(𝜔1 + 𝜔2)| , (2.70) 

|�̃�(𝜔1) − �̃�∗(𝜔2) − �̃�(𝜔1 − 𝜔2)| ≪ 2|�̃�(𝜔1 − 𝜔2)| , (2.71) 

respectively. The left-hand side of these approximations represent the degree of phase-matching 

(see Appendix A), or phase-mismatching, of the second-order nonlinear interactions. Phase-

mismatching occurs when the generated electric fields (having angular frequencies of 2𝜔1, 2𝜔2, 

𝜔1 + 𝜔2, and 𝜔1 − 𝜔2) propagate through the medium with a different refractive index than the 

incident electric fields (having angular frequencies of 𝜔1 and 𝜔2). Consequently, the electric field 

generated at a given position in the medium may not constructively interfere with the electric field 

generated from a previous position. If phase-mismatching is severe, the amplitude of the generated 

electric fields changes rapidly, thereby causing the terms on the left-hand side to be large and the 

SVAA to be invalid. Additionally, in the second-order nonlinear process described by Eq. (2.67), 

a photon is destroyed at the angular frequency of 𝜔1 to produce photons at both 𝜔1 − 𝜔2 and 𝜔2. 

However, in this analysis, a sufficiently large electric field is assumed at both 𝜔1 and 𝜔2, such that 

the angular frequency components destroyed at 𝜔1 and generated at 𝜔2 are negligible. Moreover, 

we assume no frequency components are initially present at 𝜔1, 𝜔2, 𝜔1 + 𝜔2, and 𝜔1 − 𝜔2. Such 

assumptions simplify the mathematical analysis and facilitate a more intuitive investigation. To 

briefly summarize this section, Eqs. (2.64)-(2.67) describe the electric fields resulting from 

𝑬𝑖
𝑤(𝑧, 𝑡) [see Eq. (2.24)] when considering first-order and second-order nonlinear effects in a 

dispersive and lossy 1D medium, but ignoring depletion of 𝑬𝑖
𝑤(𝑧, 𝑡) and cascading effects.  

 

2.2.2. A quantitative example 

To illustrate the bound electric charge displacement in a given medium and the resulting 

electric field, the equations derived in Section 2.2.1 are evaluated using specific parameter values.  
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Fig. 2.3. (a) Time-domain and (b) frequency-domain representation of 𝑬𝑖
𝑤(𝑧, 𝑡). 

 

𝑬𝑖
𝑤(𝑧, 𝑡) is described using 𝐴1=6 kV/cm, 𝐴2=5 kV/cm, 𝜔1 (2π)⁄ =600 THz, 𝜔2 (2π)⁄ =400 THz, 

𝜗1=60°, and 𝜗2=160°. The time and frequency domain representations of 𝑬𝑖
𝑤(𝑧, 𝑡) are shown in 

Fig. 2.3(a) and 2.3(b), respectively, where it is clear that angular frequencies exist at 

𝜔1 (2π)⁄ =600 THz and 𝜔2 (2π)⁄ =400 THz. The medium is described using N=5×1022 cm-3, 

𝜔0 (2π)⁄ =4000 THz, 𝛾 (2π)⁄ =20 THz, and 𝔖=2×1044 m-1s-2. 𝑛 and 𝜅 of this medium [extracted 

from Eq. (2.35)] are shown in Fig. 2.4(a) and 2.4(b), respectively. Clearly, 

�̃�(𝜔1)=1.1215+8.8×10-5i, �̃�(𝜔2)=1.12+5.7×10-5i,  �̃�(2𝜔1)=1.1299+20.2×10-5i, 

�̃�(2𝜔2)=1.1235+12.2×10-5i, �̃�(𝜔1 + 𝜔2)=1.1263+15.9×10-5i, and �̃�(𝜔1 −

𝜔2)=1.1192+2.8×10-5i. As can be inferred from Eqs. (2.43)-(2.46), the magnitude of the �̃�(2) terms 

(i.e. |�̃�(2)|) influences the strength of the bound electric charge displacement, while the phase of 

the  �̃�(2) terms (i.e. 𝜙{�̃�(2)}) influences the phase of the bound electric charge displacement. 

Similarly, |�̃�(2)| and 𝜙{�̃�(2)} influence the strength and phase of the resulting electric field, 

respectively [see Eqs. (2.64)-(2.67)]. From Eqs. (2.48)-(2.53), it is determined that 

|�̃�(2)(2𝜔1: 𝜔1, 𝜔1)|=25.5 pm/V, |�̃�(2)(2𝜔2: 𝜔2, 𝜔2)|=23.6 pm/V, |�̃�(2)(𝜔1 +
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𝜔2: 𝜔1, 𝜔2)|=24.5 pm/V,   |�̃�(2)(𝜔1 − 𝜔2: 𝜔1, −𝜔2)|=23 pm/V,   |�̃�(2)(0: 𝜔1, −𝜔1)|=23.2 pm/V, 

|�̃�(2)(0: 𝜔2, −𝜔2)|=22.7 pm/V, and 𝜙{�̃�(2)} ≲3.2 mrad for all of the processes. 

 

Fig. 2.4. (a) Refractive index and (b) extinction coefficient of a medium described using 

N=5×1022 cm-3, 𝜔0 (2π)⁄ =4000 THz, and 𝛾 (2π)⁄ =20 THz. 

 

The bound electric charge displacement is considered at a position of 𝑧=70 µm. Figure 2.5(a) 

displays 𝒔𝑤,(2)(𝑧, 𝑡), as well as each of its contributions [i.e. 𝒔2𝜔1

𝑤,(2)(𝑧, 𝑡), 𝒔2𝜔2

𝑤,(2)(𝑧, 𝑡), 𝒔𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡), 

𝒔𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡), and 𝒔0
𝑤,(2)(𝑧)]. As this displacement is the motion of the electric charges that result 

from the incident electric field [i.e. Eq. (2.24)], the time-domain displacements presented in 

Fig. 2.5(a) provide an intuitive representation of the events occurring within the medium. It is 

worth noting that the maximum displacement of the bound electric charge is on the order of 

10-20 m, which is much smaller than the typical size of an atom (e.g. angstroms) [133]. The Fourier 

transform of 𝒔𝑤,(2)(𝑧, 𝑡) is shown in Fig. 2.5(b). As expected, bound electric charge displacement 

is induced at the frequencies of 2𝜔1 (2π)⁄ =1200 THz, 2𝜔2 (2π)⁄ =800 THz, 

(𝜔1 + 𝜔2) (2π)⁄ =1000 THz, (𝜔1 − 𝜔2) (2π)⁄ =200 THz, and 0 THz (i.e. DC). Figure 2.5(c) 

shows  the  maximum  amplitudes  of 𝒔2𝜔1

𝑤,(2)(𝑧, 𝑡),   𝒔2𝜔2

𝑤,(2)(𝑧, 𝑡) ,   𝒔𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡),   𝒔𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡),  and 
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Fig. 2.5. (a) The bound electric charge displacement of 𝒔𝑤,(2)(𝑧, 𝑡), as well as each of its 

contributions. (b) Fourier transform of 𝒔𝑤,(2)(𝑧, 𝑡) obtained over a temporal window of 500 fs. 

(c) The maximum amplitudes of 𝒔2𝜔1

𝑤,(2)(𝑧, 𝑡), 𝒔2𝜔2

𝑤,(2)(𝑧, 𝑡), 𝒔𝜔1+𝜔2

𝑤,(2) (𝑧, 𝑡), 𝒔𝜔1−𝜔2

𝑤,(2) (𝑧, 𝑡), and 

𝒔0
𝑤,(2)(𝑧) at various positions within the medium. The vertical dotted-line at 𝑧=70 µm 

corresponds to the recorded position of the time-domain bound electric charge displacements 

shown in (a). 

 

𝒔0
𝑤,(2)(𝑧) for a given position within the medium, which are denoted as 𝐴2𝜔1

𝑠 (𝑧), 𝐴2𝜔2

𝑠 (𝑧), 

𝐴𝜔1+𝜔2
𝑠 (𝑧), 𝐴𝜔1−𝜔2

𝑠 (𝑧), and 𝐴0
𝑠(𝑧), respectively. These amplitudes decrease with increasing 𝑧, due 

to absorption loss at 𝜔1 and 𝜔2 (i.e. the amplitude of the incident electric fields are reduced as 

they propagate within the medium, thereby limiting the strength at which they can induce bound 

electric charge displacement). 
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The electric field resulting from the displacement of the bound electric charges is evaluated 

at a position of 𝑧=70 µm. Figure 2.6(a) displays 𝑬𝑔
𝑤(𝑧, 𝑡), as well as each of its contributions [i.e. 

𝑬2𝜔1

𝑤 (𝑧, 𝑡), 𝑬2𝜔2

𝑤 (𝑧, 𝑡), 𝑬𝜔1+𝜔2
𝑤 (𝑧, 𝑡), and 𝑬𝜔1−𝜔2

𝑤 (𝑧, 𝑡)]. The maximum amplitudes of 𝑬2𝜔1

𝑤 (𝑧, 𝑡), 

𝑬2𝜔2

𝑤 (𝑧, 𝑡), 𝑬𝜔1+𝜔2
𝑤 (𝑧, 𝑡), and 𝑬𝜔1−𝜔2

𝑤 (𝑧, 𝑡) for a given position within the medium are denoted as 

𝐴2𝜔1
(𝑧), 𝐴2𝜔2

(𝑧), 𝐴𝜔1+𝜔2
(𝑧), and 𝐴𝜔1−𝜔2

(𝑧), respectively. Therefore, for 𝑧=70 µm, 

𝐴2𝜔1
(𝑧)=346 V/m, 𝐴2𝜔2

(𝑧)=584 V/m, 𝐴𝜔1+𝜔2
(𝑧)=768 V/m, and 𝐴𝜔1−𝜔2

(𝑧)=771 V/m. The 

conversion efficiencies for each of these processes are obtained from the relationships: 

𝜂2𝜔1
(𝑧) =

𝐴2𝜔1

2 (𝑧)𝑛(2𝜔1)

𝐴1
2𝑛(𝜔1) + 𝐴2

2𝑛(𝜔2)
 , (2.72) 

𝜂2𝜔2
(𝑧) =

𝐴2𝜔2

2 (𝑧)𝑛(2𝜔2)

𝐴1
2𝑛(𝜔1) + 𝐴2

2𝑛(𝜔2)
 , (2.73) 

𝜂𝜔1+𝜔2
(𝑧) =

𝐴𝜔1+𝜔2
2 (𝑧)𝑛(𝜔1 + 𝜔2)

𝐴1
2𝑛(𝜔1) + 𝐴2

2𝑛(𝜔2)
 , (2.74) 

𝜂𝜔1−𝜔2
(𝑧) =

𝐴𝜔1−𝜔2
2 (𝑧)𝑛(𝜔1 − 𝜔2)

𝐴1
2𝑛(𝜔1) + 𝐴2

2𝑛(𝜔2)
 , (2.75) 

where we have utilized the condition 𝑛(𝜁) ≫ 𝜅(𝜁), which is typically valid when the angular 

frequencies are far from any resonances in the medium. 𝜂2𝜔1
=2×10-7, 𝜂2𝜔2

=5.6×10-7, 

𝜂𝜔1+𝜔2
=9.7×10-7, and 𝜂𝜔1−𝜔2

=9.7×10-7 at 𝑧=70 µm. The Fourier transform of 𝑬𝑔
𝑤(𝑧, 𝑡) is shown 

in Fig. 2.6(b), along with the Fourier transform of 𝑬𝑖
𝑤(𝑧, 𝑡). While 𝑬𝑖

𝑤(𝑧, 𝑡) oscillates at the angular 

frequencies of 𝜔1 (2π)⁄ =600 THz and 𝜔2 (2π)⁄ =400 THz, 𝑬𝑔
𝑤(𝑧, 𝑡) oscillates at the angular 

frequencies of 2𝜔1 (2π)⁄ =1200 THz, 2𝜔2 (2π)⁄ =800 THz, (𝜔1 + 𝜔2) (2π)⁄ =1000 THz, and 

(𝜔1 − 𝜔2) (2π)⁄ =200 THz, as expected. It is important to understand the terminology associated 

with each of the frequency-conversion processes. Generation at the angular frequency of 2𝜔1, as 
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well as generation at 2𝜔2, is referred to as SHG. Additionally, generation at the angular frequency 

of 𝜔1 + 𝜔2 is referred to as SFG, whereas generation at 𝜔1 − 𝜔2 is referred to as DFG. 

Figure 2.6(c) shows 𝐴2𝜔1
(𝑧), 𝐴2𝜔2

(𝑧), 𝐴𝜔1+𝜔2
(𝑧), and 𝐴𝜔1−𝜔2

(𝑧) for various positions within 

the medium. Notably, the left-hand sides of the SVAA [see Eqs. (2.68)-(2.71)] are more than two 

orders of magnitude smaller than the corresponding right-hand sides, such that the observed 

amplitudes vary sufficiently slowly to satisfy the SVAA. As seen from Fig. 2.6(c), the maximum 

amplitudes exhibit a quasi-periodic behavior with respect to position in the medium, which is 

related to phase-mismatching effects. 𝑬2𝜔1

𝑤 , 𝑬2𝜔2

𝑤 , 𝑬𝜔1+𝜔2
𝑤 , and 𝑬𝜔1−𝜔2

𝑤  are the aggregate of 

second-order nonlinear generation at the current position of 𝑧 = 𝑧0, as well as generation at 

previous positions of 𝑧 < 𝑧0 (i.e. angular frequency components previously produced within the 

medium that continue to propagate). To better understand this phenomenon, we consider 

𝑬2𝜔1

𝑤 (𝑧, 𝑡) produced from 𝑬𝜔1
𝑤 (𝑧, 𝑡). In the ideal situation, 𝑬𝜔1

𝑤 (𝑧, 𝑡)  propagates through the 

medium while experiencing the same refractive index as 𝑬2𝜔1

𝑤 (𝑧, 𝑡). As such, newly-generated 

𝑬2𝜔1

𝑤 (𝑧, 𝑡) components produced at 𝑧 = 𝑧0 constructively interfere with previously-generated 

𝑬2𝜔1

𝑤 (𝑧, 𝑡) components from 𝑧 < 𝑧0, resulting in an electric field that grows linearly with 𝑧. 

However, in other scenarios, 𝑬𝜔1
𝑤 (𝑧, 𝑡) propagates through the medium with a different refractive 

index than 𝑬2𝜔1

𝑤 (𝑧, 𝑡). Therefore, previously-generated 𝑬2𝜔1

𝑤 (𝑧, 𝑡) components from 𝑧 < 𝑧0 and 

newly-generated 𝑬2𝜔1

𝑤 (𝑧, 𝑡) components at 𝑧 = 𝑧0 interfere constructively at certain positions 

within the crystal but destructively at others, thus leading to the quasi-periodic behavior seen in 

Fig. 2.6(c). To quantify such effects, it is customary to use the coherence length, defined as the 

length at which the generated electric field ceases to combine constructively and begins to 
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destructively interfere, thus producing a local maximum [i.e. the first maximum in Fig. 2.6(c)]. 

From Eq. (2.64), it is determined that the position of the first maximum occurs at, 

𝐿𝑐
2𝜔1 =

𝜋𝑐

2𝜔1|𝑛(𝜔1) − 𝑛(2𝜔1)|
 , (2.76) 

where we have utilized the conditions of 𝑛(𝜔1) ≫ 𝜅(𝜔1) and 𝑛(2𝜔1) ≫ 𝜅(2𝜔1). 𝐿𝑐
2𝜔1=15 µm, 

in agreement with the position of the first maximum in Fig. 2.6(c). When observing Fig. 2.6(c), it 

is interesting to notice that the magnitudes of the minimums increase with increasing 𝑧 and the 

magnitudes of the maximums decrease with increasing 𝑧, which are related to loss in the medium. 

Specifically, at the minimums, 𝑬2𝜔1

𝑤 (𝑧, 𝑡) components produced over the last half of the cycle are 

unable to fully compensate for 𝑬2𝜔1

𝑤 (𝑧, 𝑡) components produced over the first half of the cycle, 

since absorption loss causes generation to weaken with increasing 𝑧. At the maximums, 𝑬2𝜔1

𝑤 (𝑧, 𝑡) 

components produced over the first half of the current cycle are less than 𝑬2𝜔1

𝑤 (𝑧, 𝑡) components 

produced over the first half of the previous cycle, again due to absorption loss causing generation 

to weaken with increasing 𝑧. Another interesting observation is that the maximum 𝐴2𝜔2
(𝑧) is 

greater than the maximum 𝐴2𝜔1
(𝑧) [see Fig. 2.6(c)], despite the fact that 𝐴2𝜔1

𝑠 (𝑧) ≈ 𝐴2𝜔2

𝑠 (𝑧) [see 

Fig. 2.5(c)]. This is due to phase-matching between 𝑬𝜔2
𝑤 (𝑧, 𝑡) and 𝑬2𝜔2

𝑤 (𝑧, 𝑡) being better in 

comparison to phase-matching between 𝑬𝜔1
𝑤 (𝑧, 𝑡) and 𝑬2𝜔1

𝑤 (𝑧, 𝑡).  𝑬2𝜔2

𝑤 , 𝑬𝜔1+𝜔2
𝑤 , and 𝑬𝜔1−𝜔2

𝑤  can 

be interpreted in a similar manner to 𝑬2𝜔1

𝑤 , with their corresponding coherence lengths being 

obtained from Eqs. (2.65)-(2.67) as: 

𝐿𝑐
2𝜔2 =

𝜋𝑐

2𝜔2|𝑛(𝜔2) − 𝑛(2𝜔2)|
 , (2.77) 

𝐿𝑐
𝜔1+𝜔2 =

𝜋𝑐

|𝜔1𝑛(𝜔1) + 𝜔2𝑛(𝜔2) − (𝜔1 + 𝜔2)𝑛(𝜔1 + 𝜔2)|
 , (2.78) 
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Fig. 2.6. (a) The electric field of 𝑬𝑔
𝑤(𝑧, 𝑡), as well as each of its contributions. (b) Fourier 

transform of 𝑬𝑔
𝑤(𝑧, 𝑡) obtained over a temporal window of 500 fs. The Fourier transform of 

𝑬𝑖
𝑤(𝑧, 𝑡) is shown for comparison. (c) The maximum amplitudes of 𝑬2𝜔1

𝑤 (𝑧, 𝑡), 𝑬2𝜔2

𝑤 (𝑧, 𝑡), 

𝑬𝜔1+𝜔2
𝑤 (𝑧, 𝑡), and 𝑬𝜔1−𝜔2

𝑤 (𝑧, 𝑡) at various positions within the medium. The vertical dotted-line 

represents 𝑧 =70 µm, which correspond to the recorded position of the time-domain electric 

fields in (a). 



85 

 

𝐿𝑐
𝜔1−𝜔2 =

𝜋𝑐

|𝜔1𝑛(𝜔1) − 𝜔2𝑛(𝜔2) − (𝜔1 − 𝜔2)𝑛(𝜔1 − 𝜔2)|
 , (2.79) 

respectively, where we have utilized the condition of 𝑛(𝜁) ≫ 𝜅(𝜁). 𝐿𝑐
2𝜔2=54 µm, 𝐿𝑐

𝜔1+𝜔2=28 µm, 

and 𝐿𝑐
𝜔1−𝜔2=142 µm, in agreement with the first maximums observed in Fig. 2.6(c). 

 

2.2.3. Tensor representation of the second-order nonlinear polarization 

Sections 2.2.1 and 2.2.2 consider an isotropic medium, such that each second-order nonlinear 

process was described by a single �̃�(2). For an anisotropic medium, the second-order nonlinear 

polarizations [i.e. Eqs. (2.58)-(2.62)] become more cumbersome as bound electric charge 

oscillations can couple with perturbations in different directions. To aid in understanding second-

order nonlinear effects in anisotropic materials, it is helpful to consider the hypothetical two-

dimensional (2D) unit cell depicted in Fig. 2.7. Figure 2.7(a) illustrates the equilibrium positions 

of the atomic constituents, where such constituents are coupled by the forces they exhibit on each 

other, as depicted by the springs. Consider a perturbation causing the inner atomic constituents to 

be displaced along the x axis [see Fig. 2.7(b)], where the corner (i.e. gold colored) atomic 

constituents are assumed to be heavier and remain fixed. Due to the anisotropy of the unit cell, the 

inner atomic constituents may exhibit a displacement in both the x and y axes when returning to 

their equilibrium positions. When bound electric charge displacement occurs along both axes, 

electric fields can be produced having polarization components along both axes, despite the initial 

perturbation being along one axis (i.e. the x axis). Notably, while we have illustrated the 

displacement of the atomic constituents within a unit cell, an analogous interpretation can be made 

for the anisotropic displacement of electron clouds relative to their corresponding nuclei. 

Additionally, while a 2D representation is presented for simplicity, this same reasoning applies to 
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Fig. 2.7. (a) A hypothetical representation of a 2D unit cell with the atomic constituents at their 

equilibrium positions. The various colors represent different atomic constituents. (b) A 

perturbation causing the inner atomic constituents to be displaced along the x axis, where such 

constituents may exhibit a displacement in both the x and y axes when returning to their 

equilibrium positions. 

 

the 3D scenario, where an incident perturbation along one direction can induce bound electric 

charge displacement along any direction in the 3D unit cell. The frequency-domain expression for 

the second-order nonlinear polarization in an anisotropic medium is [30], 

�̃�𝜓
(2)(Ω) = 𝜀0𝜒𝜓𝑥𝑥

(2) (Λ)�̃�𝑥(𝜔1)�̃�𝑥(𝜔2) + 𝜀0�̃�𝜓𝑦𝑦
(2) (Λ)�̃�𝑦(𝜔1)�̃�𝑦(𝜔2)

+ 𝜀0�̃�𝜓𝑧𝑧
(2) (Λ)�̃�𝑧(𝜔1)�̃�𝑧(𝜔2) + 𝜀0𝜒𝜓𝑦𝑧

(2) (Λ)�̃�𝑦(𝜔1)�̃�𝑧(𝜔2)

+ 𝜀0�̃�𝜓𝑧𝑦
(2) (Λ)�̃�𝑧(𝜔1)�̃�𝑦(𝜔2) + 𝜀0�̃�𝜓𝑥𝑧

(2) (Λ)�̃�𝑥(𝜔1)�̃�𝑧(𝜔2)

+ 𝜀0�̃�𝜓𝑧𝑥
(2) (Λ)�̃�𝑧(𝜔1)�̃�𝑥(𝜔2) + 𝜀0�̃�𝜓𝑥𝑦

(2) (Λ)�̃�𝑥(𝜔1)�̃�𝑦(𝜔2)

+ 𝜀0�̃�𝜓𝑦𝑥
(2) (Λ)�̃�𝑦(𝜔1)�̃�𝑥(𝜔2) , 

(2.80) 
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where Λ denotes ‘Ω:𝜔1, 𝜔2’, Ω represents the generated angular frequency (=𝜔1+𝜔2), 𝜓= x, y, or 

z, �̃�𝜓
(2)(Ω) is the second-order nonlinear polarization induced along the 𝜓 axis, �̃�𝑥, �̃�𝑦 and �̃�𝑧 are 

the incident electric field components polarized along the  x, y, and z axes, respectively, and �̃�𝜓𝜚𝜍
(2)

 

is the second-order nonlinear susceptibility associated with the induced polarization along the 𝜓 

axis due to �̃�𝜚 and �̃�𝜍 (𝜚= x, y, or z and 𝜍= x, y, or z). Importantly, Eq. (2.80) gives Ω = 2𝜔1 (when 

𝜔1 → 𝜔1 and 𝜔2 → 𝜔1), Ω = 2𝜔2 (when 𝜔1 → 𝜔2 and 𝜔2 → 𝜔2),  Ω = 𝜔1 + 𝜔2 (when 𝜔1 →

𝜔1 and 𝜔2 → 𝜔2), Ω = 𝜔1 − 𝜔2 (when 𝜔1 → 𝜔1 and 𝜔2 → −𝜔2), and Ω = 0 (when 𝜔1 → 𝜔1 

and 𝜔2 → −𝜔1 or 𝜔1 → 𝜔2 and 𝜔2 → −𝜔2).  Additionally, it does not matter which frequency 

component is defined as 𝜔1 and 𝜔2 (i.e. it is equivalent to substitute 𝜔1 → 𝜔2 and 𝜔2 → 𝜔1), such 

that: 

�̃�𝜓𝑧𝑦
(2) (Ω:𝜔1, 𝜔2)�̃�𝑧(𝜔1)�̃�𝑦(𝜔2) = �̃�𝜓𝑧𝑦

(2) (Ω:𝜔2, 𝜔1)�̃�𝑧(𝜔2)�̃�𝑦(𝜔1)

= �̃�𝜓𝑦𝑧
(2) (Ω:𝜔1, 𝜔2)�̃�𝑦(𝜔1)�̃�𝑧(𝜔2) , 

(2.81) 

�̃�𝜓𝑧𝑥
(2) (Ω:𝜔1, 𝜔2)�̃�𝑧(𝜔1)�̃�𝑥(𝜔2) = �̃�𝜓𝑧𝑥

(2) (Ω:𝜔2, 𝜔1)�̃�𝑧(𝜔2)�̃�𝑥(𝜔1)

= �̃�𝜓𝑥𝑧
(2) (Ω:𝜔1, 𝜔2)�̃�𝑥(𝜔1)�̃�𝑧(𝜔2) , 

(2.82) 

�̃�𝜓𝑦𝑥
(2) (Ω:𝜔1, 𝜔2)�̃�𝑦(𝜔1)�̃�𝑥(𝜔2) = �̃�𝜓𝑦𝑥

(2) (Ω:𝜔2, 𝜔1)�̃�𝑦(𝜔2)�̃�𝑥(𝜔1)

= �̃�𝜓𝑥𝑦
(2) (Ω:𝜔1, 𝜔2)�̃�𝑥(𝜔1)�̃�𝑦(𝜔2) , 

 

(2.83) 

where �̃�𝜓𝑧𝑦
(2) (Ω:𝜔2, 𝜔1) = �̃�𝜓𝑦𝑧

(2) (Ω:𝜔1, 𝜔2), �̃�𝜓𝑧𝑥
(2) (Ω:𝜔2, 𝜔1) = �̃�𝜓𝑥𝑧

(2) (Ω:𝜔1, 𝜔2), and 

�̃�𝜓𝑦𝑥
(2) (Ω:𝜔2, 𝜔1) = �̃�𝜓𝑥𝑦

(2) (Ω:𝜔1, 𝜔2) is evident from Eqs. (2.48)-(2.53). Clearly, Eqs. (2.81)-

(2.83) permit Eq. (2.80) to be written as, 
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�̃�𝜓
(2)(Ω) = 𝜀0�̃�𝜓𝑥𝑥

(2) (Λ)�̃�𝑥(𝜔1)�̃�𝑥(𝜔2) + 𝜀0�̃�𝜓𝑦𝑦
(2) (Λ)�̃�𝑦(𝜔1)�̃�𝑦(𝜔2)

+ 𝜀0�̃�𝜓𝑧𝑧
(2) (Λ)�̃�𝑧(𝜔1)�̃�𝑧(𝜔2) + 2𝜀0𝜒𝜓𝑦𝑧

(2) (Λ)�̃�𝑦(𝜔1)�̃�𝑧(𝜔2)

+ 2𝜀0�̃�𝜓𝑥𝑧
(2) (Λ)�̃�𝑥(𝜔1)�̃�𝑧(𝜔2) + 2𝜀0�̃�𝜓𝑥𝑦

(2) (Λ)�̃�𝑥(𝜔1)�̃�𝑦(𝜔2) , 

(2.84) 

which can be recast in the form of matrix notation as, 

[

�̃�𝑥
(2)(Ω)

�̃�𝑦
(2)(Ω)

�̃�𝑧
(2)(Ω)

] = 𝜀0

[
 
 
 �̃�𝑥𝑥𝑥

(2) (Λ) �̃�𝑥𝑦𝑦
(2) (Λ) �̃�𝑥𝑧𝑧

(2) (Λ)

�̃�𝑦𝑥𝑥
(2) (Λ) �̃�𝑦𝑦𝑦

(2) (Λ) �̃�𝑦𝑧𝑧
(2) (Λ)

�̃�𝑧𝑥𝑥
(2) (Λ) �̃�𝑧𝑦𝑦

(2) (Λ) �̃�𝑧𝑧𝑧
(2) (Λ)

�̃�𝑥𝑦𝑧
(2) (Λ) �̃�𝑥𝑥𝑧

(2) (Λ) �̃�𝑥𝑥𝑦
(2) (Λ)

�̃�𝑦𝑦𝑧
(2) (Λ) �̃�𝑦𝑥𝑧

(2) (Λ) �̃�𝑦𝑥𝑦
(2) (Λ)

�̃�𝑧𝑦𝑧
(2) (Λ) �̃�𝑧𝑥𝑧

(2) (Λ) �̃�𝑧𝑥𝑦
(2) (Λ)]

 
 
 

×

[
 
 
 
 
 
 
 

�̃�𝑥
2(𝜔1)

�̃�𝑦
2(𝜔1)

�̃�𝑧
2(𝜔1)

2�̃�𝑦(𝜔1)�̃�𝑧(𝜔2)

2�̃�𝑥(𝜔1)�̃�𝑧(𝜔2)

2�̃�𝑥(𝜔1)�̃�𝑦(𝜔2)]
 
 
 
 
 
 
 

 . 

(2.85) 

Equation (2.85) is often depicted using condensed notation, where the first subscript position of 

the �̃�(2) terms are represented as 𝑥 → 1, 𝑦 → 2, and 𝑧 → 3, and the second and third subscript 

positions are represented as 𝑥𝑥 → 1, 𝑦𝑦 → 2, 𝑧𝑧 → 3, 𝑦𝑧 → 4, 𝑥𝑧 → 5, and 𝑥𝑦 → 6 [43], such 

that, 

[

�̃�𝑥
(2)(Ω)

�̃�𝑦
(2)(Ω)

�̃�𝑧
(2)(Ω)

] = 𝜀0 [

�̃�11
(2)(Λ) �̃�12

(2)(Λ) �̃�13
(2)(Λ)

�̃�21
(2)(Λ) �̃�22

(2)(Λ) �̃�23
(2)(Λ)

�̃�31
(2)(Λ) �̃�32

(2)(Λ) �̃�33
(2)(Λ)

�̃�14
(2)(Λ) �̃�15

(2)(Λ) �̃�16
(2)(Λ)

�̃�24
(2)(Λ) �̃�25

(2)(Λ) �̃�26
(2)(Λ)

�̃�34
(2)(Λ) �̃�35

(2)(Λ) �̃�36
(2)(Λ)

]

×

[
 
 
 
 
 
 
 

�̃�𝑥
2(𝜔1)

�̃�𝑦
2(𝜔1)

�̃�𝑧
2(𝜔1)

2�̃�𝑦(𝜔1)�̃�𝑧(𝜔2)

2�̃�𝑥(𝜔1)�̃�𝑧(𝜔2)

2�̃�𝑥(𝜔1)�̃�𝑦(𝜔2)]
 
 
 
 
 
 
 

 . 

(2.86) 
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Alternatively, the following convention for Eq. (2.86) is also used, 

[

�̃�𝑥
(2)(Ω)

�̃�𝑦
(2)(Ω)

�̃�𝑧
(2)(Ω)

] = 2𝜀0 [

�̃�11(Λ) �̃�12(Λ) �̃�13(Λ)

�̃�21(Λ) �̃�22(Λ) �̃�23(Λ)

𝑑31(Λ) 𝑑32(Λ) �̃�33(Λ)

�̃�14(Λ) �̃�15(Λ) �̃�16(Λ)

𝑑24(Λ) �̃�25(Λ) �̃�26(Λ)

�̃�34(Λ) �̃�35(Λ) �̃�36(Λ)

]

×

[
 
 
 
 
 
 
 

�̃�𝑥
2(𝜔1)

�̃�𝑦
2(𝜔1)

�̃�𝑧
2(𝜔1)

2�̃�𝑦(𝜔1)�̃�𝑧(𝜔2)

2�̃�𝑥(𝜔1)�̃�𝑧(𝜔2)

2�̃�𝑥(𝜔1)�̃�𝑦(𝜔2)]
 
 
 
 
 
 
 

 , 

(2.87) 

where �̃�𝑖𝑗
(2)(Λ) = 2�̃�𝑖𝑗(Λ) (i=1, 2, or 3 and j=1, 2, 3, 4, 5, or, 6). 

 

2.3. Nonlinear second-order interaction via a broadband 

electric field pulse 

The previous discussion considered an electric field oscillating at monochromatic 

frequencies. Such a description is valid for continuous wave excitation of a nonlinear medium. 

However, since the efficiency of second-order nonlinear interactions is proportional to the incident 

radiation intensity, it is often desirable to access this nonlinearity via pulsed electric fields. It is 

important to consider a broadband electric field pulse incident on a nonlinear medium, since subtle 

differences arise in both the frequency-conversion process and the terminology, when compared 

to monochromatic incident electric fields (see Section 2.2). For this discussion, a 1D isotropic, 

uniform, dispersionless, and lossless medium is considered. Furthermore, cascading effects and 

depletion effects are ignored [30,31]. Such assumptions simplify the mathematical analysis, which 

in turn allows for a more intuitive interpretation of the nonlinear frequency-conversion process. 

Again, the electric fields are assumed to propagate along the z axis and exist for 𝑧≥0. 
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2.3.1. Induced polarization and Maxwell’s equations 

A transform-limited Gaussian electric field pulse is incident on the medium, where this 

electric field has the form, 

where the superscript ‘p’ indicates that the corresponding variable is associated with the pulsed 

Gaussian electric field, 𝐴 is the amplitude of the electric field pulse, 𝜔𝑐 is the central angular 

frequency, 𝜗 is the phase shift, 𝜎 describes the duration of the Gaussian envelope, 𝑘(𝜔𝑐) is the 

wavenumber [= 𝜔𝑐𝑛 𝑐⁄ ] at the angular frequency of 𝜔𝑐, and 𝑛 is the frequency-independent 

refractive index. The frequency-domain representation of such an electric field pulse is depicted 

in Fig. 2.8. Figure 2.8(a) shows an angular frequency of 𝜔1 combining with an angular frequency 

of 𝜔2 to produce an angular frequency of Ω = 𝜔1 + 𝜔2. This process occurs over the entire 

spectrum, resulting in generation across a spectral band centered at 2𝜔𝑐. Although such a process 

involves an infinite number of both SHG and SFG events, this process is often referred to as SHG. 

Figure 2.8(b) shows an angular frequency of 𝜔1 combining with an angular frequency of −𝜔2 to 

produce an angular frequency of Ω = 𝜔1 − 𝜔2. Again, this process occurs over the entire 

spectrum, resulting in generation across a spectral band near DC. Although such a process is 

comprised of an infinite number of DFG events, it is often referred to as OR. By considering the 

SHG process as the sum of 𝜔1 and 𝜔2 to obtain Ω = 𝜔1 + 𝜔2 and the OR process as the sum of 

𝜔1 and −𝜔2 (i.e. a negative frequency) to obtain Ω = 𝜔1 − 𝜔2, the induced second-order 

nonlinear polarizations for SHG and OR are described by the same integral equation, which in the 

frequency-domain is [139], 

𝑬𝑖
𝑝(𝑧, 𝑡) = 𝐸𝑖

𝑝(𝑧, 𝑡)𝒙 = 𝐴𝑒−(𝑡−𝑧𝑛 𝑐⁄ )2 𝜎2⁄ cos[𝜔𝑐𝑡 − 𝑘(𝜔𝑐)𝑧 − 𝜗] �̂� , (2.88) 
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𝑷𝑝,(2)(𝑧, Ω) = 𝜀0 ∫ �̃�(2)(Ω:𝜔1, Ω − 𝜔1)𝐸𝑖
𝑝(𝑧, 𝜔1)𝐸𝑖

𝑝(𝑧, Ω − 𝜔1)𝑑𝜔1

∞

−∞

�̂� , (2.89) 

where we have assumed that the polarization of 𝑷𝑝,(2)(𝑧, Ω) and 𝑬𝑖
𝑝(𝑧, 𝑡) are the same, although 

they can differ for the general case of a second-order nonlinear tensor (see Section 2.3.3). 

Additionally, by using 𝐸𝑖
𝑝(𝑧, 𝜔1) and 𝐸𝑖

𝑝(𝑧, Ω − 𝜔1) in Eq. (2.89), cascading effects have been 

ignored. Introducing the assumption of a dispersionless and lossless second-order nonlinear 

susceptibility [i.e. �̃�(2)(Ω:𝜔1, Ω − 𝜔1) = 𝜒(2)] permits Eq. (2.89) to be written as, 

𝑷𝑝,(2)(𝑧, Ω) = 𝜀0𝜒
(2) ∫ 𝐸𝑖

𝑝(𝑧, 𝜔1)𝐸𝑖
𝑝(𝑧, Ω − 𝜔1)𝑑𝜔1

∞

−∞

= 𝜀0𝜒
(2){𝐸𝑖

𝑝 ∗ 𝐸𝑖
𝑝}(𝑧, Ω)�̂� , (2.90) 

where {𝐸𝑖
𝑝 ∗ 𝐸𝑖

𝑝}(𝑧, Ω) represents the convolution operation. Applying the inverse Fourier 

transform allows Eq. (2.90) to be expressed in the time-domain as, 

𝑷𝑝,(2)(𝑧, t) = 𝜀0𝜒
(2)[𝐸𝑖

𝑝(𝑧, t)]
2
�̂� . (2.91) 

Substituting Eq. (2.88) into Eq. (2.91) and simplifying yields: 

𝑷𝑝,(2)(𝑧, t) = 𝑷𝑂𝑅
𝑝,(2)(𝑧, 𝑡) + 𝑷𝑆𝐻𝐺

𝑝,(2)(𝑧, 𝑡) , (2.92) 

with, 

  

𝑷𝑂𝑅
𝑝,(2)(𝑧, 𝑡) =

𝜀0𝜒
(2)𝐴2

2
𝑒−2(𝑡−𝑧𝑛 𝑐⁄ )2 𝜎2⁄ �̂� , (2.93) 

𝑷𝑆𝐻𝐺
𝑝,(2)(𝑧, 𝑡) =

𝜀0𝜒
(2)𝐴2

2
𝑒−2(𝑡−𝑧𝑛 𝑐⁄ )2 𝜎2⁄ cos[2𝜔𝑐𝑡 − 2𝑘(𝜔𝑐)𝑧 − 2𝜗] �̂� . (2.94) 

Here, 𝑷𝑂𝑅
𝑝,(2)(𝑧, 𝑡) is the second-order nonlinear polarization related to OR and 𝑷𝑆𝐻𝐺

𝑝,(2)(𝑧, 𝑡) is the 

second-order nonlinear polarization related to SHG. The electric field in the medium can be 

expressed as, 
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where 𝑬𝑔
𝑝(𝑧, 𝑡) represents the electric field containing angular frequencies not present in 𝑬𝑖

𝑝(𝑧, 𝑡) 

[i.e. 𝑬𝑔
𝑝(𝑧, 𝑡)=𝑬𝑂𝑅

𝑝 (𝑧, 𝑡) + 𝑬𝑆𝐻𝐺
𝑝 (𝑧, 𝑡)]. Since the medium is dispersionless, the first-order 

polarization is simply:  

𝑷𝑝,(1)(𝑧, 𝑡) = 𝑷𝑖
𝑝,(1)(𝑧, 𝑡) + 𝑷𝑂𝑅

𝑝,(1)(𝑧, 𝑡) + 𝑷𝑆𝐻𝐺
𝑝,(1)(𝑧, 𝑡) , (2.96) 

with, 

𝑷𝑖
𝑝,(1)(𝑧, 𝑡) = 𝜀0𝜒

(1)𝑬𝑝(𝑧, 𝑡) , (2.97) 

𝑷𝑂𝑅
𝑝,(1)(𝑧, 𝑡) = 𝜀0𝜒

(1)𝑬𝑂𝑅
𝑝 (𝑧, 𝑡) , (2.98) 

𝑷𝑆𝐻𝐺
𝑝,(1)(𝑧, 𝑡) = 𝜀0𝜒

(1)𝑬𝑆𝐻𝐺
𝑝 (𝑧, 𝑡) , (2.99) 

where 𝑷𝑖
𝑝,(1)(𝑧, 𝑡) is the first-order polarization related to the incident electric field, 𝑷𝑂𝑅

𝑝,(1)(𝑧, 𝑡) is 

the first-order polarization related to OR, and 𝑷𝑆𝐻𝐺
𝑝,(1)(𝑧, 𝑡) is the first-order polarization related to 

SHG. For this scenario, Eq. (2.23) reduces to, 

𝜕2𝑬𝑝(𝑧, 𝑡)

𝜕𝑧2
−

1

𝑐2

𝜕2

𝜕𝑡2
[𝑬𝑝(𝑧, 𝑡) +

1

𝜀0
𝑷𝑝,(1)(𝑧, 𝑡)] =

1

𝑐2𝜀0

𝜕2𝑷𝑝,(2)(𝑧, 𝑡)

𝜕𝑡2
 . (2.100) 

Inserting Eqs. (2.92), (2.95), and (2.96) into Eq. (2.100) and simplifying yields three independent 

equations: 

𝜕2𝑬𝑖
𝑝(𝑧, 𝑡)

𝜕𝑧2
−

𝑛2

𝑐2

𝜕2𝑬𝑖
𝑝(𝑧, 𝑡)

𝜕𝑡2
= 0 , (2.101) 

𝜕2𝑬𝑂𝑅
𝑝 (𝑧, 𝑡)

𝜕𝑧2
−

𝑛2

𝑐2

𝜕2𝑬𝑂𝑅
𝑝 (𝑧, 𝑡)

𝜕𝑡2
=

1

𝑐2𝜀0

𝜕2𝑷𝑂𝑅
𝑝,(2)(𝑧, 𝑡)

𝜕𝑡2
 , (2.102) 

𝜕2𝑬𝑆𝐻𝐺
𝑝 (𝑧, 𝑡)

𝜕𝑧2
−

𝑛2

𝑐2

𝜕2𝑬𝑆𝐻𝐺
𝑝 (𝑧, 𝑡)

𝜕𝑡2
=

1

𝑐2𝜀0

𝜕2𝑷𝑆𝐻𝐺
𝑝,(2)(𝑧, 𝑡)

𝜕𝑡2
 , (2.103) 

where we used the relationship 𝑛 = √1 + 𝜒(1). Solving Eqs. (2.102) and (2.103) give: 

𝑬𝑝(𝑧, 𝑡) = 𝑬𝑖
𝑝(𝑧, 𝑡) + 𝑬𝑔

𝑝(𝑧, 𝑡) = 𝑬𝑖
𝑝(𝑧, 𝑡) + 𝑬𝑂𝑅

𝑝 (𝑧, 𝑡) + 𝑬𝑆𝐻𝐺
𝑝 (𝑧, 𝑡) , (2.95) 
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𝑬𝑂𝑅
𝑝 (𝑧, 𝑡) =

𝜒(2)𝐴2𝑧

𝜎2𝑐𝑛
(𝑡 −

𝑧𝑛

𝑐
) 𝑒−2(𝑡−𝑧𝑛 𝑐⁄ )2 𝜎2⁄ �̂� , (2.104) 

𝑬𝑆𝐻𝐺
𝑝 (𝑧, 𝑡) =

𝜒(2)𝐴2𝜔𝑐𝑧

2𝑐𝑛
𝑒−2(𝑡−𝑧𝑛 𝑐⁄ )2 𝜎2⁄ sin[2𝜔𝑐𝑡 − 𝑘(2𝜔𝑐)𝑧 − 2𝜗] �̂� , (2.105) 

respectively, where the assumption of 𝜎2𝜔𝑐 ≫ 2|𝑡 − 𝑧𝑛 𝑐⁄ | is utilized to obtain 𝑬𝑆𝐻𝐺
𝑝 (𝑧, 𝑡). By 

restricting the analysis to times between 𝑡 = 𝑧𝑛 𝑐⁄ ± 2𝜎, the aforementioned assumption reduces 

to 𝜎𝜔𝑐 ≫ 4, which requires 𝑬𝑖
𝑝(𝑧, 𝑡) to exhibit several cycles within its envelope. As seen from 

Eq. (2.105), the envelope of 𝑬𝑆𝐻𝐺
𝑝 (𝑧, 𝑡) at 𝑡 = 𝑧𝑛 𝑐⁄ ± 2𝜎 is given as 𝑒−2(𝑡−𝑧𝑛 𝑐⁄ )2 𝜎2⁄ = 𝑒−8, 

meaning 𝑬𝑆𝐻𝐺
𝑝 (𝑧, 𝑡) is 0.03% of its maximum value at these times. Additionally, we assume no 

frequency components are initially present at the OR angular frequencies or the SHG angular 

frequencies, and the SVAA was not required when solving for 𝑬𝑂𝑅
𝑝 (𝑧, 𝑡) or 𝑬𝑆𝐻𝐺

𝑝 (𝑧, 𝑡), since a 

dispersionless medium implies perfect phase-matching. To briefly summarize this section, 

Eqs. (2.104) and (2.105) describe the electric fields resulting from 𝑬𝑖
𝑝(𝑧, 𝑡) [see Eq. (2.88)] when 

considering first-order and second-order nonlinear effects in a 1D medium, but ignoring dispersion 

and loss in the medium, dispersion of the second-order nonlinear susceptibility, depletion of 

𝑬𝑖
𝑝(𝑧, 𝑡), and cascading effects. 

 

Fig. 2.8. Frequency-domain depiction of the (a) SHG and (b) OR processes. 
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2.3.2. A quantitative example 

To illustrate the displacement of the bound electric charges due to 𝑬𝑖
𝑝(𝑧, 𝑡) and the resulting 

electric field, the equations derived in Section 2.3.1 are evaluated using specific parameter values. 

𝑬𝑖
𝑝(𝑧, 𝑡) is described using A=1 kV/cm, 𝜔𝑐 (2π)⁄ =600 THz, 𝜗=60°, and 𝜎=√2 ln(2)⁄ ×10 fs. 

Figure 2.9(a) and 2.9(b) show the time and frequency domain representation of this 𝑬𝑖
𝑝(𝑧, 𝑡), 

respectively, where it is clear that the central frequency of the spectrum is located at 

𝜔𝑐 (2π)⁄ =600 THz. As seen from Eqs. (2.35) and (2.48)-(2.53), for a lossless medium (i.e. 𝛾=0), 

dispersionless 𝜒(1) and 𝜒(2) occur when 𝜔0 ≫ 𝜔1, 𝜔0 ≫ 𝜔2 and 𝜔0 ≫ Ω, resulting in a medium 

described by, 

𝜒(1) ≈
𝑁𝑞2

𝜀0𝑚𝑒𝜔0
2 , (2.106) 

and  

𝜒(2) ≈
𝔖𝑁𝑞3

𝜀0𝑚𝑒
2𝜔0

6 . (2.107) 

Although the parameter values of N=1026 cm-3, 𝜔0 (2π)⁄ =60000 THz, and 𝔖=1.6×1048 m-1s-2 are  

 

Fig. 2.9. (a) Time-domain and (b) frequency-domain representation of 𝑬𝑖
𝑝(𝑧, 𝑡). 
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unphysical, they are utilized as they provide the practical parameter values of 𝜒(1)=2.24 (i.e. n=1.8) 

and 𝜒(2)=31.2 pm/ V. 

The displacement of the bound electric charges is considered at a position of 𝑧=500 µm. The 

relationships 𝒔𝑂𝑅
𝑝,(2)(𝑧, 𝑡) = −𝑷𝑂𝑅

𝑝,(2)(𝑧, 𝑡) (𝑁𝑞)⁄ , 𝒔𝑆𝐻𝐺
𝑝,(2)(𝑧, 𝑡) = −𝑷𝑆𝐻𝐺

𝑝,(2)(𝑧, 𝑡) (𝑁𝑞)⁄ , and 

𝒔𝑝,(2)(𝑧, 𝑡) = −𝑷𝑝,(2)(𝑧, 𝑡) (𝑁𝑞)⁄  are used to obtain the bound electric charges displacements, 

which are shown in Fig. 2.10(a). 𝒔𝑂𝑅
𝑝,(2)(𝑧, 𝑡) simply exhibits the square of the envelope of 𝑬𝑖

𝑝(𝑧, 𝑡) 

[i.e. 𝑒−2(𝑡−𝑧𝑛 𝑐⁄ )2 𝜎2⁄ ].  Alternatively,  𝒔𝑆𝐻𝐺
𝑝,(2)(𝑧, 𝑡)  exhibits oscillations at  2𝜔𝑐,  which are contained 

 

Fig. 2.10. (a) The bound electric charge displacement of 𝒔𝑂𝑅
𝑝,(2)(𝑧, 𝑡), 𝒔𝑆𝐻𝐺

𝑝,(2)(𝑧, 𝑡), and 𝒔𝑝,(2)(𝑧, 𝑡). 

(b) Fourier transform of 𝒔𝑝,(2)(𝑧, 𝑡). (c) The maximum amplitudes of 𝒔𝑂𝑅
𝑝,(2)(𝑧, 𝑡) and 𝒔𝑆𝐻𝐺

𝑝,(2)(𝑧, 𝑡), 

where the vertical dotted-line at 𝑧=500 µm corresponds to the recorded position of the time-

domain bound electric charge displacements shown in (a). 
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within a Gaussian envelope described by 𝑒−2(𝑡−𝑧𝑛 𝑐⁄ )2 𝜎2⁄ . 𝒔𝑝,(2)(𝑧, 𝑡) is the superposition of these 

contributions, and exhibits a maximum displacement amplitude of 1.7×10-25 m. Figure 2.10(b) 

shows the Fourier transform of 𝒔𝑝,(2)(𝑡), where frequencies are observed at 𝜔 (2𝜋)⁄ ≲50 THz and 

𝜔 (2𝜋)⁄ ≈1100-1300 THz. Figure 2.10(c) shows the maximum amplitudes of 𝒔𝑂𝑅
𝑝,(2)(𝑧, 𝑡) and 

𝒔𝑆𝐻𝐺
𝑝,(2)(𝑧, 𝑡) for a given position within the medium, which are denoted as 𝐴𝑂𝑅

𝑠 (𝑧) and 𝐴𝑆𝐻𝐺
𝑠 (𝑧), 

respectively. The maximum bound charge displacement amplitudes are independent of 𝑧, since 

there is no absorption loss in the medium. If loss was considered, the maximum charge 

displacement amplitudes would decrease with increasing 𝑧. 

The electric field resulting from displacement of the bound electric charges is considered at 

𝑧=500 µm, where 𝑬𝑂𝑅
𝑝 (𝑧, 𝑡), 𝑬𝑆𝐻𝐺

𝑝 (𝑧, 𝑡) , and 𝑬𝑔
𝑝(𝑧, 𝑡) are shown in Fig. 2.11(a). Notably, 𝜎𝜔𝑐=64 

(i.e. 𝜎𝜔𝑐 ≫ 4), such that Eq. (2.105) is valid in describing 𝑬𝑆𝐻𝐺
𝑝 (𝑧, 𝑡). Similar to 𝒔𝑆𝐻𝐺

𝑝,(2)(𝑧, 𝑡), 

𝑬𝑆𝐻𝐺
𝑝 (𝑧, 𝑡) exhibits oscillations at 2𝜔𝑐, which are contained within a Gaussian envelope described 

by 𝑒−2(𝑡−𝑧𝑛 𝑐⁄ )2 𝜎2⁄ . While 𝑬𝑂𝑅
𝑝 (𝑧, 𝑡) exhibits a bipolar electric field pulse that is also contained 

within a Gaussian envelope of 𝑒−2(𝑡−𝑧𝑛 𝑐⁄ )2 𝜎2⁄ , it is difficult to distinguish the envelope shape. 

Electric field generation is highly correlated with acceleration and deceleration of the bound 

electric charges. For example, 𝑬𝑂𝑅
𝑝 (𝑧, 𝑡)=0 [see Fig. 2.11(a)] when the bound electric charges 

change direction and exhibits an acceleration of zero, corresponding to maximum 𝒔𝑂𝑅
𝑝,(2)(𝑧, 𝑡) [see 

Fig. 2.10(a)]. Furthermore, when the bound electric charges exhibit maximum acceleration or 

deceleration [i.e. at the inflection points of 𝒔𝑂𝑅
𝑝,(2)(𝑧, 𝑡)], the amplitude of 𝑬𝑂𝑅

𝑝 (𝑧, 𝑡) is maximum. 

The maximum amplitudes of 𝑬𝑂𝑅
𝑝 (𝑧, 𝑡) and 𝑬𝑆𝐻𝐺

𝑝 (𝑧, 𝑡) for a given position within the medium are 

denoted as 𝐴𝑂𝑅(𝑧) and 𝐴𝑆𝐻𝐺(𝑧), respectively. 𝐴𝑂𝑅(𝑧)=5.2 V/m and 𝐴𝑆𝐻𝐺(𝑧)=543 V/m at 
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𝑧=500 µm, such that 𝑬𝑔
𝑝(𝑧, 𝑡) is indistinguishable from 𝑬𝑆𝐻𝐺

𝑝 (𝑧, 𝑡) [see Fig. 2.11(a)]. The 

conversion efficiencies for the OR and SHG processes are obtained from the relationships of, 

𝜂𝑂𝑅(𝑧) =
∫ [𝑬𝑂𝑅

𝑝 (𝑧, 𝑡)]
2
𝑑𝑡

∞

−∞

∫ [𝑬𝑖
𝑝(𝑧, 𝑡)]

2
𝑑𝑡

∞

−∞

 , (2.108) 

and 

𝜂𝑆𝐻𝐺(𝑧) =
∫ [𝑬𝑆𝐻𝐺

𝑝 (𝑧, 𝑡)]
2
𝑑𝑡

∞

−∞

∫ [𝑬𝑖
𝑝(𝑧, 𝑡)]

2
𝑑𝑡

∞

−∞

 , (2.109) 

 

Fig. 2.11. (a) The electric field of 𝑬𝑂𝑅
𝑝 (𝑧, 𝑡), 𝑬𝑆𝐻𝐺

𝑝 (𝑧, 𝑡) , and 𝑬𝑔
𝑝(𝑧, 𝑡). (b) Fourier transform of 

𝑬𝑔
𝑝(𝑧, 𝑡). The Fourier transform of 𝑬𝑖

𝑝(𝑧, 𝑡) is shown for comparison. (c) The maximum 

amplitudes of 𝑬𝑂𝑅
𝑝 (𝑧, 𝑡) and 𝑬𝑆𝐻𝐺

𝑝 (𝑧, 𝑡) at various positions within the medium, where the 

vertical dotted-line at 𝑧=500 µm corresponds to the recorded position of the time-domain 

electric fields shown in (a). 
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respectively, such that 𝜂𝑂𝑅=5.1×10-9 and 𝜂𝑆𝐻𝐺=2.1×10-5 at 𝑧=500 µm. This difference in 𝐴𝑂𝑅 and 

𝐴𝑆𝐻𝐺 , as well as 𝜂𝑂𝑅 and 𝜂𝑆𝐻𝐺 , is due to the fact that a rapidly-oscillating bound electric charge is 

more efficient at producing EM radiation than a slowly-oscillating bound electric charge, as can 

be inferred from the 𝜕2𝑷𝑝,(2)(𝑧, 𝑡) 𝜕𝑡2⁄  term in  Eq. (2.100). The Fourier transform of 𝑬𝑔
𝑝(𝑧, 𝑡) is 

shown in Fig. 2.11(b), where no generation occurs at DC, as expected. Figure 2.11(c) shows 

𝐴𝑂𝑅(𝑧) and 𝐴𝑆𝐻𝐺(𝑧) for various positions within the medium. Since the medium is dispersionless, 

any newly-generated 𝑬𝑂𝑅
𝑝 (𝑧, 𝑡) [or 𝑬𝑆𝐻𝐺

𝑝 (𝑧, 𝑡)] components constructively interfere with 

previously-generated 𝑬𝑂𝑅
𝑝 (𝑧, 𝑡) [or 𝑬𝑆𝐻𝐺

𝑝 (𝑧, 𝑡)] components, resulting in an electric field that 

grows linearly with 𝑧. 

Although a dispersive medium is not directly considered for 𝑬𝑖
𝑝(𝑧, 𝑡), it is nonetheless 

important to discuss this scenario. If phase-mismatching ensued in such a dispersive medium, 

𝐴𝑂𝑅(𝑧) and 𝐴𝑆𝐻𝐺(𝑧) would exhibit a quasi-periodic behavior, analogous to that observed in 

Fig. 2.6(c). Importantly, the coherence lengths of the OR process, 𝐿𝑐
𝑂𝑅, and the SHG process, 𝐿𝑐

𝑆𝐻𝐺 , 

are described by the expressions [140,141]: 

𝐿𝑐
𝑂𝑅(Ω𝑂𝑅) =

𝜋𝑐

Ω𝑂𝑅|𝑛𝑑
𝑔(𝜔𝑐) − 𝑛𝑑(Ω𝑂𝑅)|

 , (2.110) 

𝐿𝑐
𝑆𝐻𝐺(Ω𝑆𝐻𝐺) =

𝜋𝑐

|𝜔1𝑛𝑑(𝜔1) + 𝜔2𝑛𝑑(𝜔2) − Ω𝑆𝐻𝐺𝑛𝑑(Ω𝑆𝐻𝐺)|
 , (2.111) 

respectively, where 𝑛𝑑 is the refractive index of the dispersive medium, 𝑛𝑑
𝑔

 is the group refractive 

index of the dispersive medium, Ω𝑂𝑅 represents the angular frequency components produced 

through the OR process, and Ω𝑆𝐻𝐺  represents the angular frequency components produced through 

the SHG process. To better understand 𝐿𝑐
𝑂𝑅, we refer to 𝒔𝑂𝑅

𝑝,(2)(𝑧, 𝑡) [i.e. see Fig. 2.10(a)], despite 

it representing the dispersionless scenario. 𝒔𝑂𝑅
𝑝,(2)(𝑧, 𝑡) exhibits a displacement in accordance with 
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the envelope of 𝑬𝑖
𝑝(𝑧, 𝑡), independent of the events occur within the envelope, such that 𝐿𝑐

𝑂𝑅 

depends on the group refractive index of the envelope, opposed to the phase refractive index of 

the wave within the envelope. In general, 𝐿𝑐
𝑆𝐻𝐺  must be calculated for all of the various SFG events 

associated with the spectral components of 𝑬𝑖
𝑝(𝑧, 𝑡), such that 𝐿𝑐

𝑆𝐻𝐺  exhibits the same form as 

𝐿𝑐
𝜔1+𝜔2 [see Eq. (2.78)]. However, implementing 𝜔1 = 𝜔2 ≈ Ω𝑆𝐻𝐺/2 permits the 𝐿𝑐

𝑆𝐻𝐺  to be 

approximated as, 

𝐿𝑐
𝑆𝐻𝐺(Ω𝑆𝐻𝐺) ≈

𝜋𝑐

Ω𝑆𝐻𝐺|𝑛𝑑(Ω𝑆𝐻𝐺/2 ) − 𝑛𝑑(Ω𝑆𝐻𝐺)|
 , (2.112) 

which exhibits a form similar to 𝐿2𝜔1

𝑐𝑜ℎ  [see Eq. (2.76)] and 𝐿2𝜔2

𝑐𝑜ℎ  [see Eq. (2.77)]. 

 

2.3.3. Tensor representation of second-order nonlinear polarization 

Sections 2.3.1 and 2.3.2 consider an isotropic medium that is both dispersionless and 

lossless, such that each second-order nonlinear process was described by a single 𝜒(2) value. For 

a dispersive, lossy, and anisotropic medium, the second-order nonlinear polarizations [i.e. 

Eqs. (2.93)-(2.94)] become more cumbersome. The frequency-domain expression representing 

each of the second-order nonlinear processes is, 
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�̃�𝜓
(2)(Ω) = 𝜀0 ∫ �̃�𝜓𝑥𝑥

(2) (Ω:𝜔1, Ω − 𝜔1)�̃�𝑥(𝜔1)�̃�𝑥(Ω − 𝜔1)𝑑𝜔1

∞

−∞

+ 𝜀0 ∫ �̃�𝜓𝑦𝑦
(2) (Ω:𝜔1, Ω − 𝜔1)�̃�𝑦(𝜔1)�̃�𝑦(Ω − 𝜔1)𝑑𝜔1

∞

−∞

+ 𝜀0 ∫ �̃�𝜓𝑧𝑧
(2) (Ω:𝜔1, Ω − 𝜔1)�̃�𝑧(𝜔1)�̃�𝑧(Ω − 𝜔1)𝑑𝜔1

∞

−∞

+ 2𝜀0 ∫ �̃�𝜓𝑦𝑧
(2) (Ω:𝜔1, Ω − 𝜔1)�̃�𝑦(𝜔1)�̃�𝑧(Ω − 𝜔1)𝑑𝜔1

∞

−∞

+ 2𝜀0 ∫ �̃�𝜓𝑥𝑧
(2) (Ω:𝜔1, Ω − 𝜔1)�̃�𝑥(𝜔1)�̃�𝑧(Ω − 𝜔1)𝑑𝜔1

∞

−∞

+ 2𝜀0 ∫ �̃�𝜓𝑥𝑦
(2) (Ω:𝜔1, Ω − 𝜔1)�̃�𝑥(𝜔1)�̃�𝑦(Ω − 𝜔1)𝑑𝜔1

∞

−∞

 . 

(2.113) 

However, the second-order nonlinear susceptibilities are often considered to be independent of the 

angular frequencies present in the incident electric field [i.e. �̃�𝜓𝜚𝜍
(2) (Ω:𝜔1, Ω − 𝜔1) = �̃�𝜓𝜚𝜍

(2) (Ω)], 

such that Eq. (2.113) simplifies to, 



101 

 

[

�̃�𝑥
(2)(Ω)

�̃�𝑦
(2)(Ω)

�̃�𝑧
(2)(Ω)

] = 𝜀0

[
 
 
 �̃�𝑥𝑥𝑥

(2) (Ω) �̃�𝑥𝑦𝑦
(2) (Ω) �̃�𝑥𝑧𝑧

(2) (Ω)

�̃�𝑦𝑥𝑥
(2) (Ω) �̃�𝑦𝑦𝑦

(2) (Ω) �̃�𝑦𝑧𝑧
(2) (Ω)

�̃�𝑧𝑥𝑥
(2) (Ω) �̃�𝑧𝑦𝑦

(2) (Ω) �̃�𝑧𝑧𝑧
(2) (Ω)

�̃�𝑥𝑦𝑧
(2) (Ω) �̃�𝑥𝑥𝑧

(2) (Ω) �̃�𝑥𝑥𝑦
(2) (Ω)

�̃�𝑦𝑦𝑧
(2) (Ω) �̃�𝑦𝑥𝑧

(2) (Ω) �̃�𝑦𝑥𝑦
(2) (Ω)

�̃�𝑧𝑦𝑧
(2) (Ω) �̃�𝑧𝑥𝑧

(2) (Ω) �̃�𝑧𝑥𝑦
(2) (Ω)]

 
 
 

×

[
 
 
 
 
 
 
 
 
 
 
 
 
 ∫ �̃�𝑥(𝜔1)�̃�𝑥(Ω − 𝜔1)𝑑𝜔1

∞

−∞

∫ �̃�𝑦(𝜔1)�̃�𝑦(Ω − 𝜔1)𝑑𝜔1

∞

−∞

∫ �̃�𝑧(𝜔1)�̃�𝑧(Ω − 𝜔1)𝑑𝜔1

∞

−∞

2∫ �̃�𝑦(𝜔1)�̃�𝑧(Ω − 𝜔1)𝑑𝜔1

∞

−∞

2∫ �̃�𝑥(𝜔1)�̃�𝑧(Ω − 𝜔1)𝑑𝜔1

∞

−∞

2∫ �̃�𝑥(𝜔1)�̃�𝑦(Ω − 𝜔1)𝑑𝜔1

∞

−∞ ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 . 

(2.114) 

In contracted notation, Eq. (2.114) becomes, 

[

�̃�𝑥
(2)(Ω)

�̃�𝑦
(2)(Ω)

�̃�𝑧
(2)(Ω)

] = 𝜀0 [

�̃�11
(2)(Ω) �̃�12

(2)(Ω) �̃�13
(2)(Ω)

�̃�21
(2)(Ω) �̃�22

(2)(Ω) �̃�23
(2)(Ω)

�̃�31
(2)(Ω) �̃�32

(2)(Ω) �̃�33
(2)(Ω)

�̃�14
(2)(Ω) �̃�15

(2)(Ω) �̃�16
(2)(Ω)

�̃�24
(2)(Ω) �̃�25

(2)(Ω) �̃�26
(2)(Ω)

�̃�34
(2)(Ω) �̃�35

(2)(Ω) �̃�36
(2)(Ω)

]

×

[
 
 
 
 
 
 
 
 
 
 
 
 
 ∫ �̃�𝑥(𝜔1)�̃�𝑥(Ω − 𝜔1)𝑑𝜔1

∞

−∞

∫ �̃�𝑦(𝜔1)�̃�𝑦(Ω − 𝜔1)𝑑𝜔1

∞

−∞

∫ �̃�𝑧(𝜔1)�̃�𝑧(Ω − 𝜔1)𝑑𝜔1

∞

−∞

2∫ �̃�𝑦(𝜔1)�̃�𝑧(Ω − 𝜔1)𝑑𝜔1

∞

−∞

2∫ �̃�𝑥(𝜔1)�̃�𝑧(Ω − 𝜔1)𝑑𝜔1

∞

−∞

2∫ �̃�𝑥(𝜔1)�̃�𝑦(Ω − 𝜔1)𝑑𝜔1

∞

−∞ ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 . 

(2.115) 

Expressed in terms of the second-order nonlinear coefficients, Eq. (2.115) is, 
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[

�̃�𝑥
(2)(Ω)

�̃�𝑦
(2)(Ω)

�̃�𝑧
(2)(Ω)

] = 2𝜀0 [

�̃�11(Ω) �̃�12(Ω) �̃�13(Ω)

�̃�21(Ω) �̃�22(Ω) �̃�23(Ω)

𝑑31(Ω) 𝑑32(Ω) �̃�33(Ω)

�̃�14(Ω) �̃�15(Ω) �̃�16(Ω)

𝑑24(Ω) �̃�25(Ω) �̃�26(Ω)

�̃�34(Ω) �̃�35(Ω) �̃�36(Ω)

]

×

[
 
 
 
 
 
 
 
 
 
 
 
 
 ∫ �̃�𝑥(𝜔1)�̃�𝑥(Ω − 𝜔1)𝑑𝜔1

∞

−∞

∫ �̃�𝑦(𝜔1)�̃�𝑦(Ω − 𝜔1)𝑑𝜔1

∞

−∞

∫ �̃�𝑧(𝜔1)�̃�𝑧(Ω − 𝜔1)𝑑𝜔1

∞

−∞

2∫ �̃�𝑦(𝜔1)�̃�𝑧(Ω − 𝜔1)𝑑𝜔1

∞

−∞

2∫ �̃�𝑥(𝜔1)�̃�𝑧(Ω − 𝜔1)𝑑𝜔1

∞

−∞

2∫ �̃�𝑥(𝜔1)�̃�𝑦(Ω − 𝜔1)𝑑𝜔1

∞

−∞ ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 . 

(2.116) 

 

2.4. Summary 

While second-order nonlinear interactions have been known for over 50 years, this chapters 

presented a more comprehensive picture of these phenomena, citing and explaining the differences 

between monochromatic and broadband incident electric fields. The detailed investigations 

presented in this chapter extended beyond other nonlinear optics discussions, accomplished by 

addressing the relationship between the incident electric field, the induced displacement of the 

bound electric charge in the medium, and the electric field resulting from the induced dipoles. We 

have provided a detailed mathematical approach, as well as an intuitive interpretation of the 

derived equations, which is crucial to understanding the physics driving the second-order nonlinear 

processes. The anharmonic EOM and Maxwell’s Equations were derived for second-order 

nonlinear interactions, and subsequently used to investigate key representative scenarios (i.e. an 
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incident electric field composed of two monochromatic waves and an incident transform-limited 

Gaussian electric field pulse). Notably, while this section explicitly distinguished complex variable 

through the use of the ‘~’ accent (e.g. �̃�, �̃�, �̃�, �̃�, etc.), the ‘~’ accent is typically omitted in 

discussions pertaining to second-order nonlinear effects. Additionally, when discussing OR in a 

general context, it is typical to refer to the polarization matrices in Eq. (2.86) or (2.87), despite the 

fact that the polarization matrices in Eq. (2.115) or (2.116) provides a more complete picture of 

the OR process. 
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Chapter 3. 

THz-TDS system 
 

THz-TDS is a method of measuring the time-domain electric field of a THz radiation pulse, 

thereby providing both frequency-domain magnitude and phase information. While this section 

discusses the general THz-TDS system used to conduct the measurements presented in the 

forthcoming chapters, variations are frequently made to the THz radiation source, THz radiation 

detector, and the excitation laser. Figure 3.1(a) depicts a schematic of the primary THz-TDS 

system used to conduct the measurements, and Fig. 3.2(b) shows a photograph of this THz-TDS 

system. The main Ti:Sapphire oscillator used for the system provides a train of electric field pulses 

at a repetition rate of 5.1 MHz, where each pulse is horizontally-polarized (i.e. parallel to the 

surface of the optical table), exhibits a central wavelength near 800 nm, and has a duration of 50 fs. 

The pulse train beam passes through a 70:30 beam splitter, resulting in two independent beams 

having different powers. The higher-power pulse train beam (i.e. denoted as the pump or excitation 

beam) is used to generate THz radiation and the lower-power pulse train beam (i.e. denoted as the 

probe beam) is used to detect the THz radiation. To achieve THz radiation generation, the pump 

beam is focused onto a THz source, which can be a nonlinear crystal, a PCA, or a spintronic 

emitter, to name a few. In the current THz-TDS system, a (110)-cut ZnTe crystal having a 

thickness of 500 µm is frequently used to produce the THz electric field pulses. Typically, a 10 cm 

focal-length lens (L1) focuses the pump laser beam onto the ZnTe crystal, providing a beam waist 

diameter of ~38 µm and a peak excitation intensity of ~1 GW/cm2. Second-order nonlinear dipoles 

are induced in the ZnTe crystal, subsequently emitting EM radiation at frequencies between ~0.1-
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3 THz via OR. Since the pump pulse beam is modulated by a mechanical chopping wheel at the 

reference frequency of fR (see Fig. 3.1), the generated THz radiation beam is also modulated at this 

same fR. Due to the spot size of the pump laser beam being much smaller than the wavelength of 

the generated THz radiation, the nonlinear dipoles appear as point source THz emitters, resulting 

in diverging THz radiation that is collimated by PM1 (i.e. a 50.8 mm focal-length off-axis 

parabolic mirror). Subsequently, a set of 101.6 mm focal-length parabolic mirrors (PM2 and PM3) 

are used to focus and re-collimate the THz radiation, where samples are often placed at the focus 

of PM2. PM4 (50.8 mm focal-length) focusses the THz radiation onto a crystal [typically 500 

µm-thick (110)-cut ZnTe] that acts as an EO detector for the THz electric field. Notably, the THz 

radiation exhibits a beam waist diameter of a few hundreds of microns. The ZnTe EO crystal is 

key to sensing the THz time-domain electric field; however, it is also necessary to have the THz 

electric field pulse simultaneously (i.e. temporally and spatially) coincide with the probe pulse 

within the EO crystal. To realize spatial overlap between the THz radiation beam and the probe 

beam, a 2 mm hole is formed through PM4. Since the THz radiation beam fills the reflective face 

of the parabolic mirror, the hole has minimal impact on the radiation. A 15 cm focal-length lens 

(L2) is typically used to focus the probe beam through the hole in PM4 and onto the same position 

of the EO crystal as the focused THz radiation. The focused probe beam has a beam waist diameter 

of ~57 µm. Temporal overlap is achieved by ensuring the pump pulse/THz radiation path length 

is identical to the path length traversed by the probe pulse. Coarse adjustment is made to the 

temporal overlap by the placement of the various optical components, while fine adjustments are 

made by a stepper motor controlled retroreflector. 
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Fig. 3.1. (a) Schematic of the THz-TDS system typically used to conduct experimental 

measurements. ‘M’ indicates planar mirrors, ‘PM’ indicates parabolic mirrors, and ‘L’ indicates 

lenses. (b) Photograph of the THz-TDS system. 

 

As the probe pulse propagates through the ZnTe EO crystal, it experiences a phase-

retardation induced by the THz electric field, which is expressed as [142], 
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Γ =

2𝜋𝑛𝑝
3𝑟41ℓ𝐸𝑇𝐻𝑧

𝜆𝑝
 , (3.1) 

where 𝜆𝑝 is the central wavelength of the probe pulse, 𝑛𝑝 is the refractive index of the EO crystal 

at 𝜆𝑝, 𝑟41 is the EO coefficient of the EO crystal, ℓ is the thickness of the EO crystal, and 𝐸𝑇𝐻𝑧 is 

the value of the THz electric field. To extract Γ, and subsequently 𝐸𝑇𝐻𝑧, from the laser beam probe 

pulse, we utilize a QWP, WP, and Nirvana 2017 balanced photodetector set up for common-mode 

rejection. Here, the photocurrent difference measured by the balanced photodetector is described 

as [142], 

 ∆𝕀

𝕀1 + 𝕀2
= sin(Γ) ≈

2𝜋𝑛𝑝
3𝑟41ℓ𝐸𝑇𝐻𝑧

𝜆𝑝
 , (3.2) 

where ∆𝕀 is the current difference measured between the photodiodes of the balanced 

photodetector, 𝕀1 is the current measured by one of the photodiodes of the balanced photodetector, 

and 𝕀2 is the current measured by the other photodiode of the balanced photodetector. In the 

absence of a THz electric field (i.e. 𝐸𝑇𝐻𝑧=0), the horizontally-polarized probe beam is converted 

to circularly-polarized light by the QWP. Since the horizontal and vertical polarization components 

are equal in amplitude, the WP splits the laser probe beam into two orthogonally polarized beams 

of equal power, thereby inducing no current difference in the balanced photodetector (i.e. ∆𝕀=0, 

since the photodetector is balanced). In the presence of a positive THz electric field (i.e. 𝐸𝑇𝐻𝑧>0), 

the horizontally-polarized probe beam experiences a positive phase retardation (i.e. Γ>0) resulting 

in a right-handed elliptically-polarized probe laser beam emerging from the EO crystal. After 

passing through the QWP, the probe beam exhibits a right-handed ellipticity wherein the vertical 

polarization component is greater than the horizontal polarization component. As such, passing 

this beam through the WP results in two beams of different average powers, thereby inducing a 
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positive current difference in the balanced photodetector (i.e. ∆𝕀>0). Similarly, for a negative THz 

electric field (i.e. 𝐸𝑇𝐻𝑧<0), the horizontally-polarized probe laser beam experiences a negative 

phase retardation (i.e. Γ<0), resulting in a left-handed elliptically-polarized probe beam emerging 

from the EO crystal. After passing through the QWP, the probe pulse exhibits a right-handed 

ellipticity wherein the horizontal polarization component is greater than the vertical polarization 

component. Therefore, passing this beam through the WP results in two beams of different average 

powers, thereby inducing a negative current difference in the balanced photodetector (i.e. ∆𝕀<0). 

While the pump pulse/THz radiation path length is fixed, the stepper motor is used to adjust the 

path length traversed by the probe beam, thus permitting discrete points of the THz electric field 

pulse to be sampled. Typically, the THz electric field pulse is recorded every 42 fs, such that the 

probe path length is altered by 12.6 µm each step. Discrete data measurements are collected to 

obtain ∆𝕀 across the entire duration of the THz electric field pulse, thus allowing the THz signal 

to be reconstructed point-by-point. Notably, each measurement processes a train of probe pulses 

having a repetition rate of 5.1 MHz, modulated at the chopping frequency of fR. However, due to 

the long rise time of the balanced photodetector (i.e. 3 µs for the Nirvana 2007 balanced 

photodetector), the resulting ∆𝕀 is a square wave of frequency fR. The balanced photodetector 

converts ∆𝕀 to a voltage signal, which is then sent to a Stanford SR560 preamplifier and processed 

using a bandpass filter having cut-off frequencies of 1 and 30 kHz. The filtered voltage signal 

(along with fR from the mechanical chopper) is then sent to a Stanford SR830 lock-in amplifier. 

The lock-in amplifier transforms the filtered square wave voltage signal at fR to DC, and passes it 

through a low-pass filter having a time constant of 𝒯 [corresponding to a cut-off frequency of 𝑓𝑐 =

(2𝜋𝒯)−1]. Given a low-pass filter with a sharp roll-off, this process effectively removes the noise 

outside of 𝑓𝑐, permitting the extraction of signals submerged in high-noise backgrounds. While a 
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low-pass filter having a long time constant (i.e. low cut-off frequency) and a sharp roll-off permits 

more noise to be removed, this requires long processing times. We empirically determine that time 

constants of 100-300 ms and roll-offs of 6-12 dB provide a good compromise between noise 

reduction and time utilization efficiency. Using a time constant of 100 ms and a roll off-of 6 dB 

dictates that the lock-in amplifier requires 500 ms to reach 99% of the final signal value. As a 

typical THz electric field signal recording extends ~10 ps and the detection process is performed 

at discrete points separated by 𝛥𝑡=42 fs, this corresponds to 238 recorded points for a total time of 

~2 minutes. Notably, this is the time required by the lock-in amplifier to properly process the input 

signal, and does not include other factors that increase the overall measurement time (e.g. the time 

required by the stepper motor to physically move the retroreflector or reading the lock-in 

amplifier’s output to the computer). The voltage signal output by the lock-in amplifier is described 

by the equation, 

 
∆𝑉(𝜌𝛥𝑡) =

2𝜋𝑛𝑝
3𝑟41ℓ𝐸𝑇𝐻𝑧(𝜌𝛥𝑡)2𝕀𝒢𝑡𝒢𝐴0.64

√2𝜆𝑝

 , (3.3) 

where 𝜌 is a non-negative integer (=0, 1, 2, …), 𝕀1 ≈ 𝕀2 = 𝕀,  𝒢𝑡 is the tranimpedance gain of the 

balanced photodetector, and 𝒢𝐴 is the gain of the preamplifier. The factor of 0.64 arises from the 

lock-in amplifier extracting the first harmonic of the square wave, while the factor of 1 √2⁄  arises 

from the lock-in amplifier outputting the root-mean-square voltage. Clearly, the peak ∆𝑉 (i.e. ∆𝑉𝑝) 

is recorded when 𝐸𝑇𝐻𝑧 is at its peak (i.e. 𝐸𝑇𝐻𝑧
𝑝

). Figure 3.2(a) shows a typical voltage signal 

measured using the THz-TDS system and output by the lock-in amplifier (𝒯=300 ms, a 6 dB roll-

off, 𝕀=500 µA, 𝒢𝑡=105, and 𝒢𝐴=1). Equation (3.3) permits this voltage signal to be expressed in 

terms of the electric field, as displayed in Fig. 3.2(a). At a time of t=4 ps, ∆𝑉𝑝=25 mV, 

corresponding to 𝐸𝑇𝐻𝑧
𝑝

=1585 V/m. The spectral density (i.e. Fourier transform) of the THz time-
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domain signal is depicted in Fig. 3.2(b), showing the presence of frequency components ≲3 THz. 

Notably, when conducting the measurements, the THz-TDS system is purged with dry nitrogen 

gas to minimize absorption of the THz radiation by water vapor. 

 

Fig. 3.2. (a) Raw voltage signal obtained using the THz-TDS system and its corresponding 

electric field magnitude. (b) The associated spectral density (i.e. Fourier transform). 
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Chapter 4. 

THz radiation generation and 

detection using pnictide and 

chalcogenide ternary crystals 
 

The emergence of THz radiation sources and detectors has opened up a wealth of real-world 

applications, spanning the fields of physics, chemistry, biology, medicine, non-destructive testing, 

material characterization, security, short range point-to-point wireless communication, and inter-

satellite communication links, to name a few [5,6, 15, 18,143–145]. OR and DFG conversion 

efficiencies strongly depend on the material’s second-order nonlinear coefficient magnitude, linear 

optical absorption, threshold for multi-photon absorption, THz radiation absorption, optical and 

THz dispersion, and optical-to-THz phase-matching conditions. Likewise, these same properties 

influence the linear EO effect (i.e. Pockel’s effect), which is the counterpart of OR and is 

commonly used for the detection of ultrashort THz radiation pulses. As the aforementioned 

properties are mainly influenced by the nonlinear crystal itself, exploring and identifying novel 

classes of nonlinear crystals will open the door to a new frontier of THz radiation applications. In 

Section 1.4, we argued that both pnictide and chalcogenide ternary crystals constitute emerging 

classes of nonlinear crystals with the potential to advance THz radiation sources and detectors. In 

this chapter, we investigate THz radiation generation using a pnictide crystal (i.e. CSP) and 

chalcogenide crystals (i.e. AGS and BGS), as well as THz radiation detection using a pnictide 

crystal (i.e. ZGP). 
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4.1. Generation of broadband THz radiation pulses in a CSP 

Crystal3 

As seen from Table 1.1, CSP exhibits a wide bandgap of 2.45 eV [37], a high second-order 

nonlinear coefficient (i.e. d36=84.5 pm/V at an excitation wavelength of 4.6 µm [35]), and a wide 

transparency range of 0.52-9.5 µm [35]. While such properties suggest CSP has the potential to be 

an excellent source of THz radiation, generation in the THz frequency regime is influenced by 

other factors (e.g. phase-matching). In this section, OR from a CSP crystal is experimentally 

investigated for the generation of THz radiation, which allows the OR phase-matching condition 

to be quantified. Of all pnictide crystals, ZGP has overwhelmingly received the majority of interest 

for nonlinear frequency-conversion (see Section 1.4). As such, OR THz radiation generation from 

the CSP crystal is compared to that from a ZGP crystal. 

 

4.1.1. Excitation arrangement 

For the excitation arrangement depicted in Fig. 4.1, the second-order nonlinear polarization 

matrix defining the CSP crystal is given as [43], 

 

[

𝑃𝑥
(2)

𝑃𝑦
(2)

𝑃𝑧
(2)

] = 2𝜀0 [
0 0 0
0 0 0
0 0 0

𝑑14 0 0
0 𝑑14 0
0 0 𝑑36

]

[
 
 
 
 
 
 

𝐸𝑥
2

𝐸𝑦
2

𝐸𝑧
2

2𝐸𝑥𝐸𝑧

2𝐸𝑦𝐸𝑧

2𝐸𝑥𝐸𝑦]
 
 
 
 
 
 

 , (4.1) 

 
3
A version of this section’s work is published as B. N. Carnio, P. G. Schunemann, K. T. Zawilski, and A. Y. Elezzabi, 

"Generation of broadband terahertz pulses via optical rectification in a chalcopyrite CdSiP2 crystal," Opt. Lett. 42, 

3920-3923 (2017). 
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where 𝑑14 and 𝑑36 are non-vanishing second-order nonlinear coefficients, 𝐸𝑥,𝑦,𝑧 represent the 

excitation electric fields polarized along the x, y, and z axes, respectively, and 𝑃𝑥,𝑦,𝑧
(2)

 represent the 

second-order nonlinear polarizations oriented along the x, y, and z axes, respectively. A 780 nm, 

50 fs laser excitation pulse, having a polarization oriented perpendicular to the crystal’s c-axis 

(i.e. its [001] crystallographic axis), is directed towards the (110)-cut CSP crystal at normal 

incidence. In this arrangement, the nonlinear polarization equation [see Eq. (4.1)] reduces to 

𝑃𝑧
(2)

= 4𝜀0𝑑36𝐸𝑥𝐸𝑦, where the optical electric field polarization is split equally along the x and y 

axes and THz radiation generation occurs along the c-axis (i.e. z axis) of the crystal. The CSP 

crystal employed in the experiments is grown using the HGF method described in Ref. [146] and 

a 980 µm-thick crystal is cut from the high-quality boule along the (110) plane. Importantly, the 

growth technique has been shown to influence the THz radiation properties (see section 1.4.2). 

The linear THz radiation properties and the nonlinear frequency-conversion properties of the CSP  

 

Fig. 4.1. Unit cell structure of the CSP crystal. The optical excitation pulse and the generated 

THz radiation are polarized perpendicular and parallel to the crystal’s c-axis, respectively. 
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crystal will be compared against an established crystal. Specifically, a (110)-cut, 990 µm-thick 

ZGP crystal is employed in the experiments, also grown using the HGF method [146]. 

 

4.1.2. Linear THz radiation properties 

The linear THz radiation properties (i.e. the refractive index, 𝑛, and extinction coefficient, 

𝜅) of a crystal influence OR THz radiation generation via phase-matching. The complex refractive 

index, �̃� = 𝑛 + 𝑖𝜅, of a bulk crystal can be determined by measuring THz radiation transmission 

through the sample and using the following Fresnel equation, 

 �̃�𝑠𝑎𝑚𝑝𝑙𝑒

�̃�𝑟𝑒𝑓

=
4�̃�

(1 + �̃�)2
𝑒𝑖𝑘0(�̃�−1)ℓ , (4.2) 

where �̃�𝑠𝑎𝑚𝑝𝑙𝑒 represents the experimentally measured THz electric field pulse transmitted 

through the sample, �̃�𝑟𝑒𝑓 represents the reference THz electric field pulse transmitted through 

free-space, 𝑘0 is the free-space wavevector, and ℓ is the thickness of the sample. �̃�𝑠𝑎𝑚𝑝𝑙𝑒 polarized 

along the c-axis of the CSP crystal and �̃�𝑟𝑒𝑓  are obtained using the THz-TDS system (see 

Chapter 3) incorporating a 500 µm-thick ZnTe OR crystal and a 500 µm-thick ZnTe EO crystal. 

Using Eq. (4.2), along with the measured �̃�𝑠𝑎𝑚𝑝𝑙𝑒 and �̃�𝑟𝑒𝑓, the complex extraordinary refractive 

index of the CSP crystal is determined in the frequency range of 0.6-2.9 THz. As shown in 

Fig. 4.2(a), the extraordinary CSP refractive index, 𝑛𝑒, has values between 3.34-3.48 and exhibits 

positive dispersion (|𝑑𝑛𝑒 𝑑𝑓⁄ | ≲0.3 THz-1) within the investigated frequency range (i.e. 

0.6-2.9 THz). This dispersion is a result of THz radiation polarized along the c-axis of the CSP 

crystal coupling to the crystal’s B2 phonon modes. Figure 4.2(b) presents the extraordinary CSP 

extinction coefficient, 𝜅𝑒, which shows that the material exhibits extremely low loss (𝜅𝑒≤0.016) 
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over the same investigated frequency range. This finding is a very appealing for OR, since the 

generated THz radiation in the CSP crystal will experience minimal absorption. For comparison, 

𝑛𝑒 and 𝜅𝑒 for the (110)-cut ZGP crystal are presented in Fig. 4.2. While the ZGP crystal exhibits 

very low dispersion (|𝑑𝑛𝑒 𝑑𝑓⁄ | ≲0.02 THz-1) and small losses (𝜅𝑒≤0.018), we will later show that 

phase-mismatching between the optical excitation pulse and the generated THz radiation is 

significantly better in the CSP crystal opposed to the ZGP crystal. Figure 4.2(c) compares the 

extraordinary absorption coefficient, 𝛼𝑒 , of CSP to those of ZGP, ZnTe, and LN [147,148]. 

Clearly, the CSP 𝛼𝑒 is less than 𝛼𝑒 for both the ZnTe and LN crystals over the entire frequency 

 

Fig. 4.2. (a) Extraordinary refractive indices and (b) extraordinary extinction coefficients of the 

CSP and ZGP crystals. (c) Extraordinary absorption coefficients for CSP, ZGP, ZnTe, and LN 

crystals. The experimental data for ZnTe and LN are obtained from Refs. [147] and [148], 

respectively. 
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range of 0.6-2.9 THz, while the 𝛼𝑒 for CSP is less than that for ZGP at frequencies between 

0.6-2.6 THz. When considering the frequency range of 1-2 THz, 𝛼𝑒 is more than 4.4 times higher 

for ZnTe opposed to CSP and more than 17.6 times higher for LN in comparison to CSP, 

emphasizing the benefit of the CSP crystal’s low loss. 

 

4.1.3. THz-TDS measurements in the nonlinear regime 

 To investigate OR, the CSP crystal is incorporated as the THz radiation source in the 

THz-TDS system. Broadband THz radiation generation is obtained by focusing 118 nJ, 780 nm, 

50 fs optical excitation pulses onto the CSP crystal. As shown in Fig. 4.3(a), the THz radiation 

signal is comprised of a main pulse having a duration of ~2 ps, followed by a series of oscillations 

having a peak-to-peak signal strength ≤13% of the main pulse. These oscillations have a frequency 

of 3 THz and originate from phonon-polariton coupling, where the ordinary group refractive index 

of the excitation pulse, 𝑛𝑜,𝑔
𝑒𝑥𝑐, and 𝑛𝑒 of the THz radiation become equal [149]. From the EO signal, 

the conversion efficiency of the OR process is estimated to be 10-6 [150].  However, this can be 

enhanced by spatially confining the optical excitation pulse or using an amplifier to increase the 

energy of the excitation pulse. In comparison to the THz radiation signal generated from the 

990 µm-thick, (110)-cut ZGP crystal, the peak-to-peak THz amplitude generated from the CSP 

crystals is 1.6 times higher [see Fig. 4.3(a)]. 

The spectral density (i.e. Fourier transform) of the THz radiation signals generated from the 

CSP and ZGP crystals are displayed in Fig. 4.3(b), where both crystals generate a similar THz 

radiation spectrum extending past 3 THz. Since we are using a 50 fs excitation pulse, the generated 

bandwidth could exceed 8.8 THz [i.e. the full-width half-maximum (FWHM) bandwidth of the 

excitation pulse]. As such, the sharp decrease in spectral density at ~3 THz is attributed to the 
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bandwidth limitation of the 500 µm-thick ZnTe EO sampling crystal employed in the THz-TDS 

system. 

 

Fig. 4.3. (a) THz time-domain signals and (b) spectral densities of the electric fields generated 

from the CSP and ZGP crystals. 

 

Examining the spectrum of the CSP crystal in the frequency range below 3 THz reveals three 

dips at 0.84, 1.90, and 2.89 THz. While the minimum at 2.89 THz is due to the phonon-polariton 

effect discussed previously, the dips at the frequencies of 𝑓𝑑=0.84 and 1.9 THz are attributed to 

phase-mismatching between the optical excitation pulse and the generated THz radiation. 

Theoretically, 𝑛𝑜,𝑔
𝑒𝑥𝑐 can be obtained from the equation [151],  

 𝑛𝑜,𝑔
𝑒𝑥𝑐 = 𝑛𝑒(𝑓𝑑) +

𝑐𝜌

𝑓𝑑ℓ
 , (4.3) 

where 𝜌 is a positive integer and 𝑛𝑒(𝑓𝑑) is the extraordinary refractive index at the frequency 𝑓𝑑. 

Using the aforementioned 𝑓𝑑 values of 0.84 and 1.9 THz, along with Eq. (4.3), 𝑛𝑜,𝑔
𝑒𝑥𝑐 is found to be 

3.70. Although dispersive effects cause the optical excitation pulse to spatially separate during 

propagation, the excitation pulse travels through the CSP crystal having this effective group 

refractive index of 𝑛𝑜,𝑔
𝑒𝑥𝑐=3.70. Also seen in Fig. 4.3(b) are three phase-mismatching frequency dips 
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at 𝑓𝑑=0.62, 1.35, and 2.11 THz in the spectrum associated with the ZGP crystal. Using Eq. (4.3), 

we calculate 𝑛𝑜,𝑔
𝑒𝑥𝑐 for the ZGP crystal to be 3.84.  

Phase-matching in the OR process is quantified by calculating the coherence length (see 

Section 2.3.2), given as, 

 𝐿𝑐
𝑂𝑅(𝑓) =

𝑐

2𝑓|𝑛𝑜,𝑔
𝑒𝑥𝑐 − 𝑛𝑒(𝑓)|

 . (4.4) 

Figure 4.4 illustrates 𝐿𝑐
𝑂𝑅 for the CSP and ZGP crystals in the frequency range of 0.6-2.9 THz. As 

expected, both CSP and ZGP have an 𝐿𝑐
𝑂𝑅 less than their thicknesses, which is consistent with the 

observation of phase-mismatching dips in Fig. 4.3(b). Importantly, 𝐿𝑐
𝑂𝑅 indicates that phase-

matching could be satisfied using CSP and ZGP crystals having thicknesses ≲200 µm and 

≲100 µm, respectively. 

 

Fig. 4.4. The coherence lengths of the CSP and ZGP crystals. 

 

In the regime where the optical excitation intensity is below the threshold for the onset of 

multi-photon absorption, the THz electric field generated in the CSP crystal is proportional to the 

peak intensity of the excitation pulse, Ip. Figure 4.5 shows this expected THz radiation generation 

characteristic (i.e. the generated THz electric field increases linearly with Ip). Such an observation 
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suggests that the CSP crystal can produce higher-strength THz radiation amplitudes by increasing 

the excitation pulse peak intensity. This can be easily realized by spatially confining the excitation 

electric field to a waveguiding structure [118]. 

 

Fig. 4.5. THz peak-to-peak electric field as a function of the peak intensity of the optical 

excitation pulse. 

 

4.2. OR in an AGS crystal for broadband THz radiation 

generation4 

AGS exhibits a bandgap of 1.8 eV [55], a high second-order nonlinear coefficient of 

d36=39.5 pm/V (at an excitation wavelength of 4.6 µm) [55], and a transparency range of 

0.76-18 µm [55] (see Table 1.2). While such properties are important for OR THz radiation 

generation, they do not indicate the degree of OR phase-matching in the AGS crystal. Here, we 

investigate OR phase-matching for the AGS crystal, and show phase-matched OR THz radiation 

generation. 

 
4
A version of this section’s work is published as B. N. Carnio, K. T. Zawilski, P. G. Schunemann, and A. Y. Elezzabi, 

“Optical rectification in a chalcopyrite AgGaSe2 crystal for broadband terahertz radiation generation,” Opt. Lett. 44, 

2867-2870 (2019). 
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4.2.1. Linear THz radiation properties 

The linear THz radiation properties of the AGS crystal are investigated by performing THz-

TDS experiments. The AGS crystal used in this study was grown via the HGF method using low 

axial temperature gradients and Ar-overpressure, as described by Schunemann et al. [152].  A 

485 µm-thick, (110) plate (measuring 5 mm × 10 mm) was cut from an AGS crystal boule and the 

large faces were polished. In the THz-TDS system [see Chapter 3], the THz electric field pulses 

are generated from a 500 µm-thick ZnTe OR crystal excited using 800 nm, 50 fs laser pulses. 

Subsequently, the THz electric field pulses are detected using a 500 µm-thick ZnTe EO crystal 

and 800 nm, 50 fs laser pulses. Figure 4.6(a) shows the THz electric field pulses transmitted 

through the AGS crystal at normal incidence, where the electric fields are polarized along the 

ordinary and extraordinary crystal axes. Oscillations are observed following the main pulses, 

which are due to the THz radiation coupling to the phonon modes of the AGS crystal and 

propagating as phonon-polaritons [153]. The spectral densities of the transmitted signals are shown 

in Fig. 4.6(b). The ordinary-polarized THz radiation shows weak absorption at 0.74 THz, which 

originates from the lowest-frequency E mode of the AGS crystal. Much stronger absorption is 

witnessed across the spectral range of 2.1-2.5 THz, which is attributed to the higher-frequency E 

modes. Notably, THz radiation near the lowest-frequency phonon resonance (i.e. 0.74 THz) only 

propagates a few wavelengths within the crystal, resulting in much lower absorption in comparison 

to THz radiation near the higher-frequency phonon mode. When considering the spectral density 

of the extraordinary-polarized THz radiation, absorption is witnessed at a frequency of 1.68 THz, 

which corresponds to the lowest-frequency B2 mode of the AGS crystal. Although the other B2 

modes have central frequencies located outside of the THz spectrum, the off-resonant spectral 
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wings are wide enough to cause a reduction in the spectral density at frequencies between ~2.5-

2.9 THz. 

 

Fig. 4.6. (a) Time-domain electric field pulses transmitted through the AGS crystal, having 

polarizations oriented along the ordinary and extraordinary axes of the crystal. (b) Spectral 

density of the transmitted pulses, where the phonon resonances cause absorption at several 

frequencies across the measured spectra. The free-space THz radiation signal and spectrum are 

shown as a reference. 

 

The linear THz radiation properties are determined for the uniaxial AGS crystal. The 

ordinary, no, and extraordinary, ne, refractive indices, as well as the ordinary, кo, and extraordinary, 

кe, extinction coefficients, are obtained from the experimental transmission measurements (see 

Fig. 4.6) and Eq. (4.2). Due to the vanishing spectral content between ~2.1-2.5 THz, no and кo are 

only calculated within the 0.5-2 THz frequency range [see Fig. 4.7(a)], whereas ne and кe are 

calculated for all frequencies between 0.5-2.9 THz [see Fig. 4.7(b)]. As seen in Fig. 4.7(a), the 

signature of the lowest-frequency E mode appears at 0.74 THz, where no varies from 3.07-3.15 

and кo reaches values as large as 0.08. At frequencies between 1-2 THz, no increases at the fast 

rate of ~0.14 THz-1 and кo monotonically increases up to a value of 0.09, due to the influence of 

higher-frequency E modes. ne and кe are influenced by the lowest-frequency B2 mode at 1.68 THz, 
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where ne and кe reach a maximum value of 3.19 and 0.08, respectively [see Fig. 4.7(b)]. Away 

from this resonance, higher-frequency B2 modes cause ne to increases at a rate of ~0.14 THz-1 and 

кe to increase to a value of 0.09. As such, along both crystal axes, a fast rate of increase in the 

refractive index is accompanied by a large increase in the extinction coefficient, both of which are 

inherent signatures of a phonon resonance. 

 

Fig. 4.7. (a) Ordinary and (b) extraordinary refractive indices and extinction coefficients of the 

uniaxial AGS crystal. The shaded area in (a) corresponds to the region where no and кo are not 

calculated due to the spectral density vanishing. (c) OR coherence length of the AGS crystal for 

the scenario where the excitation pulse polarization is oriented along the ordinary crystal axis. 
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When investigating OR in a nonlinear crystal, it is necessary to consider phase-matching, 

which is accomplished by calculating the OR coherence length [see Eq. (4.4)]. Using the 

experimental data from Ref. [154], 𝑛𝑜,𝑔
𝑒𝑥𝑐=3.25 at a wavelength of 800 nm for the AGS crystal. The 

minimum coherence length for the AGS crystal, 𝐿𝑐
𝑂𝑅, is ~800 µm over the investigated frequency 

range of 0.5-2.9 THz, as depicted in Fig. 4.7(c). Notably, over a similar frequency range, the CSP 

and ZGP crystals exhibit the comparatively shorter coherence lengths of ≲200 µm (see Fig. 4.4). 

As such, the AGS crystal serves as an excellent candidate for THz radiation generation via OR. 

 

4.2.2. THz-TDS measurements in the nonlinear regime 

The nonlinear properties of the crystal are investigated by utilizing the (110)-cut AGS crystal 

as the THz radiation source in the THz-TDS system. The crystal is excited using an 800 nm, 50 fs 

Ti:Sapphire oscillator and the generated THz radiation is measured using a 500 µm-thick ZnTe 

EO crystal. AGS exhibits the same second-order nonlinear polarization matrix as CSP [see 

Eq. (4.1)]. As such, the polarization of the optical excitation pulse is oriented along the ordinary 

axis of the crystal to generate THz radiation having a polarization along the crystal’s c-axis 

(coinciding with the extraordinary crystal axis). As shown in Fig. 4.8(a), the generated THz electric 

field pulse is followed by low-amplitude oscillations. Here, the optical excitation signal generates 

localized nonlinear dipoles near the lowest-frequency B2 phonon resonance of the AGS crystal, 

which oscillate and emit THz radiation for the lifetime of the phonon resonance. For an excitation 

pulse energy of 8.2 nJ, the energy of the generated THz radiation pulse is 4.1 fJ, corresponding to 

a conversion efficiency of 6×10-7. Obviously, this conversion efficiency could be improved by 

using higher energy excitation pulses or spatially confining the excitation pulse, where the latter 

could be achieved through the use of a waveguide comprised of the AGS crystal. 
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The generated THz spectral density is shown in Fig. 4.8(b), which has a dynamic range of 

more than 40 dB and a bandwidth extending up to ~4 THz. Notably, this bandwidth is limited by 

the 500 µm-thick ZnTe EO detection crystal and not the AGS crystal itself. Due to absorption from 

the lowest-frequency B2 phonon mode, a strong null is observed in the spectrum at a frequency of 

1.6 THz. Although enhancement of both the nonlinear coefficient and absorption loss occur near 

this phonon resonance [38], absorption dominates due to the bulk nature of the crystal. However, 

by implementing the AGS crystal in a waveguiding geometry, such as that proposed in Ref. [124], 

phonon mode enhancement of the nonlinear coefficient could be made to dominate over phonon 

mode absorption, thereby permitting enhanced THz radiation generation. The spectral density also 

provides important information for phase-matching. The only null in the spectral density is due to 

the lowest-frequency B2 mode, meaning phase-matching is satisfied within the 485 µm-thick AGS 

crystal, in agreement with the calculated coherence length [see Fig. 4.7(c)]. 

THz radiation generation is investigated for various excitation polarization angles and 

excitation intensities. Figure 4.9(a) shows THz radiation produced by varying the angle, 𝜃𝑝, 

 

Fig. 4.8. (a) THz time-domain electric field pulse generated by the AGS crystal via the process 

of OR. (b) Spectral density of the generated THz radiation pulse, showing absorption from the 

lowest-frequency B2 mode at 1.6 THz. 
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between the polarization of the excitation pulse and the c-axis of the crystal. Here, a THz wire-

grid polarizer is placed behind the AGS crystal and oriented to only pass THz electric fields that 

are polarized perpendicular to the optical excitation pulse polarization. As expected, there is no 

THz radiation generation when the polarization of the optical excitation pulse is directed along the 

c-axis (e.g. 𝜃𝑝=0°), whereas THz radiation generation is maximum when the polarization of the 

excitation pulse is set perpendicular to the c-axis (e.g. 𝜃𝑝=90°). For all the angles, THz electric 

field generation is in good agreement with the theoretical equation, 𝐸𝑇𝐻𝑧 = sin2(𝜃𝑝) [150]. 

Figure 4.9(b) shows the intensity scaling of the THz electric field produced using the AGS crystal. 

As the peak intensity of the excitation signal in the crystal, Ip, is increased up to ~0.07 GW/cm2, 

the peak-to-peak value of the generated THz electric field shows the onset of saturation. A simple 

saturation curve [∝ 𝐼𝑝 (1 + 4𝐼𝑝)⁄ ] is fit to the experimental data. By extrapolating this curve, THz 

radiation generation saturation is estimated to occur at Ip≈0.3 GW/cm2. Due to the bandgap of AGS 

being 1.8 eV [55], this saturation is likely due to two-photon absorption. 

 

Fig. 4.9. (a) THz peak-to-peak electric field measured upon varying the angle between the 

polarization of the optical excitation pulse and the crystal’s c-axis. (b) Peak-to-peak THz electric 

field measured for various peak excitation pulse intensities in the AGS crystal. 
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4.3. Generation of narrowband THz radiation from a BGS 

crystal5 

BGS exhibits the key properties of a wide bandgap (i.e. 2.64 eV [55]) , a reasonable second-

order nonlinear coefficient (i.e. d11=24.3 pm/V at an excitation wavelength of 1064 nm [56]), and 

a wide transparency range of 0.47-18 µm [55] [see Table 1.2]. Since BGS is biaxial and optically 

complex, a complete investigation must be performed to characterize the THz radiation generation 

properties of this crystal. Here, a systematic experimental investigation is conducted to determine 

the optimal near-IR excitation polarization angles and crystal orientations for OR THz radiation 

generation in the crystal. Subsequently, THz radiation generation using the optimal BGS crystal 

arrangements are compared to that from a ZnTe crystal. 

 

4.3.1. Nonlinear crystal properties 

The BGS crystal was grown using the HGF method [155] and exhibits the following second-

order nonlinear polarization tensor [56], 

 

[

𝑃𝑋
(2)
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(2)

𝑃𝑍
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] = 2𝜀0 [
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 , (4.5) 

 
5
A version of this section’s work is published as B. N. Carnio, E. Hopmann, K. T. Zawilski, P. G. Schunemann, and 

A. Y. Elezzabi, “Dependence on excitation polarization and crystal orientation for terahertz radiation generation in a 

BaGa4Se7 crystal,” Opt. Express 28, 15016-15022 (2020) and B. N. Carnio, K. T. Zawilski, P. G. Schunemann, and 

A. Y. Elezzabi, “Generation of narrowband terahertz radiation via phonon mode enhanced nonlinearities in a 

BaGa4Se7 crystal,” Opt. Lett. 45, 4722-4725 (2020). 
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where X, Y, and Z are the crystallo-physical axes of the crystal [156], d11, d12, d13, d15, d24, d26, d31, 

d32, d33, and d35 are non-vanishing tensor elements, 𝐸𝑋,𝑌,𝑍
(2)

 are the excitation electric fields oriented 

along the X, Y, and Z crystallo-physical axes, respectively, and 𝑃𝑋,𝑌,𝑍
(2)

 are the second-order nonlinear 

polarizations oriented along the X, Y, and Z crystallo-physical axes, respectively. It is important to 

note that the crystallo-physical axes (i.e. X, Y, and Z) are defined with respect to the crystal itself, 

and differ from the Cartesian coordinate system. For a bulk BGS crystal cut along the (010) crystal 

plane, 𝐸𝑌=0 V/m and THz radiation can only be produced along the X and Z crystallo-physical 

axes, allowing the tensor formalism in Eq. (4.5) to be simplified to two equations: 

 𝑃𝑋
(2)

= 2𝜀0𝑑11𝐸𝑋
2 + 2𝜀0𝑑13𝐸𝑍

2 + 4𝜀0𝑑15𝐸𝑋𝐸𝑍 , (4.6) 

 𝑃𝑍
(2)

= 2𝜀0𝑑31𝐸𝑋
2 + 2𝜀0𝑑33𝐸𝑍

2 + 4𝜀0𝑑35𝐸𝑋𝐸𝑍 . (4.7) 

Equations (4.6) and (4.7) show that the BGS crystal can support THz radiation generation having 

a polarization along either the X or Z crystallo-physical axes, regardless of the polarization of the 

excitation radiation. Nonetheless, the strength of the generated THz radiation also depends on the 

magnitude of the nonlinear coefficients and phase-matching. 

 

4.3.2. Dependence of THz radiation generation on the excitation 

polarization angle and crystal orientation 

Figure 4.10(a) shows a schematic of the experimental arrangement used to excite the BGS 

crystal, as defined with respect to the reference coordinates xr, yr, and zr. Here, the near-IR 

excitation electric field, �⃗� 𝑒𝑥𝑐, has a linear-polarization defined by the angle 𝜃𝑝 and the BGS 

crystal’s angular orientation is denoted as 𝜃𝑐. A THz wire-grid polarizer, used to select the 

polarization component of the generated THz radiation, is set to have its transmission axis fixed 
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along the zr axis. This arrangement ensures that well-defined linearly-polarized THz radiation, 

�⃗� 𝑇𝐻𝑧, is incident on a fixed-orientation 500 µm-thick ZnTe EO crystal. The polarizations of �⃗� 𝑒𝑥𝑐 

and �⃗� 𝑇𝐻𝑧 are depicted relative to the unit cell of the BGS crystal [see Fig. 4.10(b)], described using 

the crystallographic coordinate system (i.e. [100], [010], and [001]) [156,157]. 

 

Fig. 4.10. (a) Schematic showing the setup implemented to perform OR THz radiation 

generation experiments using the BGS crystal. xr, yr, and zr define the reference coordinates. (b) 

An illustration of the unit cell of the BGS crystal. The near-IR excitation electric field 

polarization and the generated THz radiation electric field polarization are shown. 

 

OR experiments are conducted by focusing Ti:Sapphire laser pulses onto the BGS crystal, 

where this crystal is integrated as the THz radiation source of the THz-TDS system [see chapter 3]. 

The excitation pulses each have a duration of 50 fs, a central wavelength of 800 nm, and an average 

power of 24 mW. At the input face of the BGS crystal, the laser beam spot size is 590 µm, 

corresponding to a peak intensity of 34 MW/cm2. Since the OR process strongly depends on the 

polarization of �⃗� 𝑒𝑥𝑐 and the crystal orientation, this nonlinear phenomenon is investigated for 

various angles of 𝜃𝑝 and 𝜃𝑐 [see Fig. 4.10(a)]. OR measurements are performed for an �⃗� 𝑒𝑥𝑐 
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oriented along the X axis of the BGS crystal (i.e. 𝜃𝑐=𝜃𝑝) [see Fig. 4.11(c)]. As displayed in 

Fig. 4.11(a), the maximum �⃗� 𝑇𝐻𝑧 is measured when the crystal’s Z axis is aligned with the 

transmission axis of the wire-grid polarizer (i.e. 𝜃𝑝=0°) and �⃗� 𝑇𝐻𝑧 is nearly zero when the crystal’s 

X axis is aligned along the transmission axis (i.e. 𝜃𝑝=90°). A close examination of the �⃗� 𝑇𝐻𝑧  time-

domain signals indicate evidence of frequency beating. As shown from the power spectra in 

Fig. 4.11(b), this is as a result of narrowband (i.e. 50 GHz linewidth) generation at 1.97 and 

2.34 THz. The generated frequencies can be used to calculate the beating period of the time-

domain signal as |2.34 THz-1.97 THz|-1=2.7 ps, which agrees with the beating period seen in 

Fig. 4.11(a). Additionally, the spectral power generated along the Z crystallo-physical axis (i.e. 

𝜃𝑝=0°) is ~14 times higher than the spectral power produced along the X crystallo-physical axis 

(i.e. 𝜃𝑝=90°), such that the generated THz radiation has a polarization ratio of 14:1. The peak 

spectral powers (i.e. square of the Fourier transform) at 1.97 and 2.34 THz are displayed in 

Fig. 4.11(c) for the various excitation angles. When 𝜃𝑝≈90°, THz radiation generation is 

influenced by a combination of the d11 nonlinear coefficient [see Eq. (4.6)] and phase-matching 

between the X-polarized �⃗� 𝑒𝑥𝑐 pulse and the X-polarized �⃗� 𝑇𝐻𝑧 pulse. However, when 𝜃𝑝≈0°, THz 

radiation generation is influenced by a combination of the d31 nonlinear coefficient [see Eq. (4.7)] 

and phase-matching between the X-polarized �⃗� 𝑒𝑥𝑐 pulse and the Z-polarized �⃗� 𝑇𝐻𝑧 pulse. Clearly, 

the latter combination proves to be optimal, since the highest spectral powers are measured at 

𝜃𝑝=0° and 22.5°. At these excitation angles, generation at 2.34 THz is >20% higher than 

generation at 1.97 THz. 
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Fig. 4.11. (a) THz time-domain signals generated by exciting the BGS crystal along its 

X crystallo-physical axis (i.e. 𝜃𝑐=𝜃𝑝) and (b) the corresponding spectral power. (c) Spectral 

powers at the frequencies of 1.97 and 2.34 THz as a function of 𝜃𝑝. The inset shows an 

illustrative representation of the orientations of �⃗� 𝑒𝑥𝑐 and �⃗� 𝑇𝐻𝑧 with respect to the X, Z, xr, and zr 

axes. Here, the excitation polarization and crystal orientation are fixed using the relationship of 

𝜃𝑐=𝜃𝑝. 

 

OR is investigated for �⃗� 𝑒𝑥𝑐 polarized along the Z axis of the BGS crystal (i.e. 𝜃𝑐=𝜃𝑝+90°), 

as illustrated in the inset in Fig. 4.12(c). The generated THz time-domain signals are shown in 

Fig. 4.12(a), whereas the associated power spectra are presented in Fig. 4.12(b). The THz time-

domain pulses exhibit a nearly monotonic decay with a characteristic time of approximately 10 ps. 

The peak spectral powers at various angles show a strong narrowband (i.e. 50 GHz linewidth) 

frequency component at 1.97 THz and a weak one at 2.34 THz, such that narrowband generation 

occurs mainly at the frequency of 1.97 THz. As expected, the measured decay time agrees with 

the measured linewidth via the theoretical relationship [i.e. (2×10 ps)-1≈50 GHz]. The spectral 

power generated along the Z crystallo-physical axis (i.e. 𝜃𝑝=90°) is ~15 times higher than the 
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Fig. 4.12. (a) THz time-domain signals generated by exciting the BGS crystal along its 

Z crystallo-physical axis (i.e. 𝜃𝑐=𝜃𝑝+90°) and (b) the corresponding power spectra. (c) Spectral 

powers at the frequencies of 1.97 and 2.34 THz as a function of 𝜃𝑝. The inset shows the 

illustrative representation of the orientations of �⃗� 𝑒𝑥𝑐 and �⃗� 𝑇𝐻𝑧 with respect to the X, Z, xr, and zr 

axes. Here, the excitation polarization and crystal orientation are fixed using the relationship of 

𝜃𝑐=𝜃𝑝+90°. 

 

spectral power produced along the X crystallo-physical axis (i.e. 𝜃𝑝=0°), such that the generated 

THz radiation has a polarization ratio of 15:1. Figure 4.12(c) shows the peak spectral powers for 

the various excitation angles at the frequencies of 1.97 and 2.34 THz. When 𝜃𝑝≈0°, THz radiation 

generation is influenced by a combination of the d13 nonlinear coefficient [see Eq. (4.6)] and phase-

matching between the Z-polarized �⃗� 𝑒𝑥𝑐 pulse and the X-polarized �⃗� 𝑇𝐻𝑧 pulse. However, when 

𝜃𝑝≈90°, THz radiation generation is influenced by a combination of the d33 nonlinear coefficient 

[see Eq. (4.7)] and phase-matching between the Z-polarized �⃗� 𝑒𝑥𝑐 pulse and the Z-polarized �⃗� 𝑇𝐻𝑧 

pulse. The latter of these is the optimal combination, since the highest spectral powers are 

measured at 𝜃𝑝=67.5° and 90°. For these angles, the generated radiation at 1.97 THz is 13 times 

greater than that at 2.34 THz. 
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OR experiments are performed to investigate THz radiation generation when the crystal’s 

X axis is oriented along the wire-grid polarizer’s transmission axis (i.e. 𝜃𝑐=90°), as shown in the 

inset of Fig. 4.13(c). The time-domain signals, power spectra, and peak spectral powers at 1.97 

and 2.34 THz are displayed in Fig. 4.13(a), 4.13(b), and 4.13(c), respectively. Clearly, THz 

radiation generation is weak, where the highest spectral power in Fig. 4.13(c) is 0.17 and 0.04 

times the highest spectral power in Fig. 4.11(c) and 4.12(c), respectively. 

 

Fig. 4.13. (a) THz time-domain signals when the X crystallo-physical axis of the BGS crystal is 

oriented along the transmission axis of the wire-grid polarizer (i.e. 𝜃𝑐=90°) and (b) the 

corresponding power spectra. (c) Spectral powers at the frequencies of 1.97 and 2.34 THz as a 

function of 𝜃𝑝. The inset shows the illustrative representation of the orientations of �⃗� 𝑒𝑥𝑐 and 

�⃗� 𝑇𝐻𝑧 with respect to the X, Z, xr, and zr axes for 𝜃𝑐=90°. 

 

OR is investigated when the crystal’s Z axis is oriented along the wire-grid polarizer’s 

transmission axis (i.e. 𝜃𝑐=0°), as depicted in the inset of Fig. 4.14(c). The generated THz time-

domain signals are shown in Fig. 4.14(a) and the associated power spectra are presented in 

Fig. 4.14(b). Interestingly, �⃗� 𝑒𝑥𝑐 can be used as a means to control the relative strength between the 
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narrowband peaks at 1.97 and 2.34 THz. Here, when �⃗� 𝑒𝑥𝑐 is oriented along the crystal’s Z axis 

(i.e. 𝜃𝑝=90°), narrowband generation occurs primarily at 1.97 THz, since the spectral power at this 

frequency is 15 times higher than that at 2.34 THz. By altering 𝜃𝑝, the peak spectral power at 

2.34 THz increases at the expense of the peak spectral power observed at 1.97 THz. When �⃗� 𝑒𝑥𝑐 is 

oriented along the X axis of the crystal (i.e. 𝜃𝑝=0°), the peak spectral power at 2.34 THz is 1.5 

times higher than the peak spectral power at 1.97 THz. Figure 4.14(c) shows the peak spectral 

powers at 1.97 and 2.34 THz, depicting this dependence on the polarization angle. 

 

Fig. 4.14. (a) THz time-domain signals when the Z crystallo-physical axis of the BGS crystal is 

oriented along the transmission axis of the wire-grid polarizer (i.e. 𝜃𝑐=0°) and (b) the 

corresponding power spectra. (c) Spectral powers at the frequencies of 1.97 and 2.34 THz as a 

function of 𝜃𝑝. The inset shows the illustrative representation of the orientations of �⃗� 𝑒𝑥𝑐 and 

�⃗� 𝑇𝐻𝑧 with respect to the X, Z, xr, and zr axes for 𝜃𝑐=0°. 

 

4.3.3. Optimal BGS crystal arrangements for THz radiation generation  

As determined in Section 4.3.2, optimal THz radiation generation is achieved from the BGS 

crystal when: (i) �⃗� 𝑒𝑥𝑐 ∥ 𝑋 and �⃗� 𝑇𝐻𝑧 ∥ 𝑍, and (ii) �⃗� 𝑒𝑥𝑐 ∥ 𝑍 and �⃗� 𝑇𝐻𝑧 ∥ 𝑍. The former arrangement 



134 

 

is depicted in Fig. 4.15(a) and corresponds to 𝜃𝑐=0°/𝜃𝑝=0° in Fig. 4.10(a), while the latter 

arrangement is depicted in Fig. 4.15(b) and corresponds to 𝜃𝑐=0°/𝜃𝑝=90° in Fig. 4.10(a). For 

comparison, THz radiation generation is measured from the 500 µm-thick, (110)-cut ZnTe crystal 

arrangement presented in Fig. 4.15(c). 

 

Fig. 4.15. Illustration of the experimental arrangement for (a) the BGS crystal when �⃗� 𝑒𝑥𝑐 ∥ 𝑋, 

(b) the BGS crystal when �⃗� 𝑒𝑥𝑐 ∥ 𝑍, and (c) the ZnTe crystal. The generated THz radiation is 

passed through a wire-grid polarizer to obtain the component polarized along the Z crystallo-

physical axis. This THz radiation is subsequently recorded using a 500 µm-thick (110)-cut ZnTe 

EO sampling crystal. The (110)-cut ZnTe EO crystal orientation is optimized for maximum THz 

radiation generation. 

 

OR experiments are conducted using a laser beam having a spot size of 54 µm and a peak 

intensity of 4.1 GW/cm2. Figure 4.16(a) shows the THz time-domain signals produced by the BGS 
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crystal arrangements [i.e. see Fig. 4.15(a) and 4.15(b)], along with the THz time-domain signal 

obtained from the ZnTe crystal arrangement [i.e. see Fig. 4.15(c)]. The peak-to-peak amplitude of 

the ZnTe THz electric field signal is >4 times higher than those from the BGS crystal, while the 

durations of the BGS THz electric field signals are >5 time longer than that from the ZnTe crystal. 

Figure 4.16(b) depicts the THz spectral powers associated with the BGS and ZnTe crystals. Unlike 

the broadband THz radiation emission obtained from the ZnTe crystal, the THz radiation produced 

from the BGS crystal shows two narrow [i.e. 50 GHz linewidth] spectral bands centered at 1.97 

and 2.34 THz. Interestingly, for the �⃗� 𝑒𝑥𝑐 ∥ 𝑋 BGS crystal arrangement, the spectral power at 

2.34 THz exceeds that of ZnTe by 63%. More impressively, for the �⃗� 𝑒𝑥𝑐 ∥ 𝑍 BGS crystal 

arrangement, the spectral power at 1.97 THz is 4.5 times higher than that from the ZnTe crystal. 

Clearly, by choosing suitable orientations for �⃗� 𝑒𝑥𝑐, the BGS crystal strongly outperforms ZnTe for 

THz radiation generation at both 1.97 and 2.34 THz. Therefore, the BGS crystal has the potential 

to be used in a wide range of applications, since it is uncommon for a bulk crystal to surpass ZnTe 

for THz radiation generation. 

The BGS spectral powers in Fig. 4.16(b) are dramatically influenced by the numerous 

phonon modes supported by this crystal. The total number of optical phonon modes in the BGS 

crystal is 69, which are both Raman-active and IR-active [158]. Interestingly, the heaviest atom 

(i.e. Ba) does not vibrate at frequencies above the phonon gap, but vibrates at frequencies below 

the phonon gap [158]. As such, the low THz frequency regime we investigate is associated with a 

vibrating Ba atom. An A' phonon mode is supported at 2.1 THz [158], which separates the 

generation bands observed in the spectra. A combination of numerous other A' and A" phonon 

modes absorb the THz radiation produced at frequencies below the 1.97 THz spectral peak and 

above the 2.34 THz spectral peak [158]. However, only select phonon modes influence the 
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narrowband THz radiation generation process in the (010)-cut BGS crystal. For example, although 

a phonon mode exists at the wavenumber of 78.7 cm-1 (i.e. 2.36 THz) [158], it does not influence 

THz radiation generation due to the implemented crystal orientation and excitation polarization 

angles. 

 

Fig. 4.16. (a) Time-domain signals and (b) power spectra for THz radiation produced using the 

�⃗� 𝑒𝑥𝑐 ∥ 𝑋 and �⃗� 𝑒𝑥𝑐 ∥ 𝑍 BGS crystal configurations. For comparison, broadband THz radiation 

emission from the ZnTe crystal arrangement is shown. 

 

Due to the biaxial nature of the BGS crystal, along with its non-negligible THz loss, the 

generated THz radiation (i.e. see Fig. 4.16) propagates through this crystal as two elliptically-

polarized eigenmodes [74]. As determined in Ref. [74], one of the elliptically-polarized 

eigenmodes exhibits the low extinction coefficient of <0.02 at the frequencies of 1.97 and 

2.34 THz, which are separated by the much higher extinction coefficient value of 0.2 at 2.1 THz. 

Clearly, these absorption loss values are in strong agreement with the �⃗� 𝑒𝑥𝑐 ∥ 𝑋 and �⃗� 𝑒𝑥𝑐 ∥ 𝑍 THz 

radiation spectra displayed in Fig. 4.16(b). The other elliptically-polarized eigenmode discussed 

in Ref. [74] shows less agreement with the spectra depicted in Fig. 4.16(b), suggesting that the 

generated THz radiation mainly propagates as the former elliptically-polarized eigenmode. It is 
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also necessary to consider phase-matching for the OR process. For both THz elliptically-polarized 

eigenmodes, the refractive indices are ~10 at 1.97 and 2.34 THz [74]. Although such a refractive 

index is high, it may be the result of the dense phonon mode distribution of the BGS crystal. The 

high THz refractive indices of ~10 and the much lower group refractive index of the excitation 

pulse (i.e. ~2.8 at 800 nm [156]) suggest that THz radiation generation is only occurring over the 

last few tens of micrometres in the BGS crystal, due to phase-mismatching effects. Nonetheless, 

THz radiation generation from these few tens of micrometres is much higher than THz radiation 

generation from the 500 µm-thick ZnTe crystal (i.e. 4.5 times higher at 1.97 THz). 

It is crucial to determine the energy of the generated THz radiation and its conversion 

efficiency. When the �⃗� 𝑒𝑥𝑐 laser pulse energy is 4.2 nJ, the measured THz radiation energy is found 

to be 0.09 and 0.28 fJ for the �⃗� 𝑒𝑥𝑐 ∥ 𝑋 and �⃗� 𝑒𝑥𝑐 ∥ 𝑍 BGS crystal arrangements, respectively. This 

corresponds to a conversion efficiency of 2.2×10-8 for the  �⃗� 𝑒𝑥𝑐 ∥ 𝑋 configuration and 6.3×10-8 for 

the �⃗� 𝑒𝑥𝑐 ∥ 𝑍 configuration. Notably, these conversion efficiencies could be increased by using 

higher energy laser pulses or confining the excitation electric field to waveguides comprised of the 

BGS crystal. It is also informative to determine the energy encompassed within each of the 

generated spectral bands. For the frequency band centered at 2.34 THz, the encompassed energy 

is 0.06 and 0.02 fJ for the �⃗� 𝑒𝑥𝑐 ∥ 𝑋  and �⃗� 𝑒𝑥𝑐 ∥ 𝑍 configurations, respectively.  For the frequency 

band centered at 1.97 THz, the encompassed energy is 0.03 fJ for the �⃗� 𝑒𝑥𝑐 ∥ 𝑋 configuration and 

0.26 fJ for the �⃗� 𝑒𝑥𝑐 ∥ 𝑍 configuration.  

The THz spectral density is investigated for its dependence on the peak laser excitation 

intensity, Ip. The excitation laser beam is focused on the BGS crystal to achieve a spot size of 

54 µm and its peak intensity is varied using an adjustable neutral density filter. The spectral density 
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is calculated by integrating over the FWHM bandwidth of the generated THz radiation bands. At 

the frequency of 1.97 THz, the ZnTe crystal configuration exhibits higher spectral densities in 

comparison to the BGS crystal �⃗� 𝑒𝑥𝑐 ∥ 𝑋 configuration [Fig. 4.17(a)]. However, for all investigated 

Ip, the BGS crystal provides superior generation at the frequency of 2.34 THz [Fig 4.17(b)]. At the 

highest peak intensity of Ip=3.2 GW/cm2, the BGS crystal shows an enhancement of 32% in 

comparison to the ZnTe crystal. The THz spectral density dependence on Ip is also investigated for 

the BGS crystal �⃗� 𝑒𝑥𝑐 ∥ 𝑍 configuration. At the frequency of 2.34 THz [Fig. 4.17(d)], the spectral 

densities of the ZnTe crystal are higher than that from the BGS crystal. However, at the frequency 

of 1.97 THz, the BGS crystal provides superior generation for all investigated Ip [Fig. 4.17(c)]. At 

Ip=3.2 GW/cm2, the BGS crystal shows an improvement of 2 times relative to the ZnTe crystal. 

It is necessary to consider the influence of multi-photon absorption on the intensity-

dependent THz spectral densities shown in Fig. 4.17. The band gap of the BGS crystal is 2.64 eV 

[156], such that the 800 nm excitation pulse has the potential to induce the two-photon absorption 

process, provided it exhibits a sufficiently high intensity. This process produces electron-hole pairs 

by exciting electrons from the valence band to the conduction band, where these free carriers 

subsequently absorb THz radiation produced by the OR process. Notably, the two-photon 

absorption process is independent of the polarization of �⃗� 𝑒𝑥𝑐, such that this process should be 

similar for both the �⃗� 𝑒𝑥𝑐 ∥ 𝑋 and �⃗� 𝑒𝑥𝑐 ∥ 𝑍 excitation configurations. As seen from Fig. 4.17, 

minimal or no saturation of the BGS spectral densities are observed with increasing Ip. 

Alternatively, spectral density saturation is clearly evident for the ZnTe crystal. Therefore, the 

threshold for multi-photon absorption effects is higher for BGS in comparison to ZnTe, which is 

another beneficial property for THz radiation generation in the BGS crystal. 
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Fig. 4.17. Spectral densities at the frequencies of (a) 1.97 THz and (b) 2.34 THz, as generated 

from the BGS crystal �⃗� 𝑒𝑥𝑐 ∥ 𝑋 configuration and the ZnTe crystal configuration. Spectral 

densities at the frequencies of (c) 1.97 THz and (d) 2.34 THz, as generated from the BGS crystal 

�⃗� 𝑒𝑥𝑐 ∥ 𝑍 configuration and the ZnTe crystal configuration. 

 

4.4. THZ EO detection using a (012)-cut ZGP crystal6 

ZGP exhibits a reasonable bandgap (i.e. 2 eV [44]) and transparency range (i.e. 0.74-12 µm 

[39]), as stated in Table 1.1, as well as an EO coefficient of r41=1.6 pm/V [159]. In addition to 

 
6
A version of this section’s work is published as B. N. Carnio, S. R. Greig, C. J. Firby, K. T. Zawilski, P. G. 

Schunemann, and A. Y. Elezzabi, “Terahertz electro-optic detection using a <012>-cut chalcopyrite ZnGeP2 crystal,” 

Appl. Phys. Lett. 108, 261109 (2016). 
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these properties, phase-matching is crucial to the EO THz radiation detection process. In this 

section, a ZGP crystal is used to detect THz radiation via the linear EO effect and its phase-

matching properties are compared against other crystals. 

 

4.4.1. Excitation arrangement and linear THz radiation properties 

The ZGP crystal was grown from a melt using the HGF method, as described in Ref. [160]. 

A 20 mm × 15 mm (012)-cut ZGP crystal having a thickness of 1080 µm was cut from a 

240 g-sized single crystal boule. The ZGP unit cell and (012)-cut plane are illustrated in Fig. 4.18. 

The linear THz radiation properties of the ZGP crystal are determined using the THz-TDS system 

outlined in Chapter 3, but incorporating a GaAs PCA as the THz source, a 100 µm-thick, (110)-cut 

ZnTe EO crystal as the THz detector, and a 80 MHz, 10 fs, 780 nm Ti:Sapphire excitation laser. 

The generated THz radiation pulses are linearly polarized, have a center frequency at 1.2 THz, 

and have a bandwidth extending up to 3.8 THz. The complex refractive index of the ZGP crystal 

in the THz frequency regime is extracted using normal-incidence experimental transmission 

measurements and Eq. (4.2). Importantly, the THz electric field has polarization components 

along both the ordinary and extraordinary axes of the ZGP crystal, such that the calculated complex 

refractive index can be interpreted as an effective value influenced by both the ordinary and 

extraordinary complex refractive indices. This leads to effective values for the refractive index, n, 

extinction coefficient, 𝜅, and absorption coefficient, 𝛼, of the ZGP crystal. As shown in 

Fig. 4.19(a), n varies between 3.35-3.45 over the investigated frequency range of 0.1-3.8 THz, 

which corresponds to a percent difference of only 3%. The increase in n above 2.6 THz is due to 

the interaction of the THz radiation pulse with the wing of the 4.26 THz phonon resonance. Over 

the frequency range of 0.1-3.8 THz, the ZGP crystal exhibits low THz loss (i.e. 𝜅 varies between 
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Fig. 4.18. (a) The unit cell and (012)-cut plane of the ZGP crystal. The illustration shows the 

polarization of the THz electric field in the EO detection measurements, which is rotated 110° 

with respect to the [100] crystallographic axis about the direction normal to the (012)-cut plane. 

�⃗�  is the wavevector of the THz electric field. (b) Schematic of the (012)-cut plane showing the 

THz polarization direction. 

 

0.002-0.018), as shown in Fig. 4.19(a). With such small variation in n and a low 𝜅, the ZGP crystal 

is expected to exhibit a flat EO response over this frequency range, provided that phase-matching 

is achieved between the THz radiation and the optical sampling probe pulse. Figure 4.19(b) shows 

𝛼 of the ZGP crystal, which is similar to that of ZnTe at frequencies between 0.1-2.6 THz [147]. 

At frequencies between 3-3.8 THz, the 𝛼 of ZGP is 46% lower than that of ZnTe, due to the fact 

that a two-phonon process occurring in ZnTe causes significant absorption in the vicinity of 

3.7 THz [161,162]. 

In the experimental transmission arrangement, a component of the THz electric field 

polarization is perpendicular to the c-axis of the crystal, such that all E phonon modes have the 

potential to be excited [42]. Nonetheless, no phonon features are evident at ~2.8 THz [see Fig. 
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4.19], corresponding to ZGP’s lowest-frequency E phonon mode [163]. Interestingly, the absence 

of this mode is consistent with the IR reflection and transmission experiments reported in earlier 

studies [42,164], which measure all IR-active phonons except this particular mode. Such an 

observation is further supported by the data provided in Ref. [165], which shows what appears to 

be an extremely weak influence of this resonance in the measured reflectance data. 

 

Fig. 4.19. (a) Refractive index and extinction coefficient of ZGP over the frequency range of 

0.1-3.8 THz. (b) Absorption coefficient of ZGP over the frequency range of 0.1-3.8 THz. 

 

4.4.2. EO sampling measurements 

The EO detection properties of the ZGP crystal are compared to those of a 100 µm-thick 

ZnTe crystal and a 500 µm-thick ZnSe crystal. These crystals are integrated into the THz-TDS 

system [i.e. see Chapter 3] as THz detectors. In the ZGP crystal EO sampling measurements, the 

THz polarization is set at an angle of 110° with respect to its [100] crystallographic axis (see 

Fig. 4.18). As shown in Fig. 4.20(a), the EO signals of the ZnTe and ZnSe crystals are higher than 

that of the ZGP crystal by a factor of 4 and 27, respectively. The strength of an EO signal detected 

by a nonlinear crystal depends on numerous factors, including the crystal’s point group symmetry 

and cut plane, as well as the polarization direction of the THz radiation and optical probe pulse. 
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The weaker EO strength measured by the ZGP crystal, in comparison to the ZnTe and ZnSe 

crystals, is likely due to a combination of such factors. Both the ZnTe and ZGP EO signals show 

pulse durations of ~0.8 ps, while the ZnSe crystal exhibits the longer pulse duration of ~1.4 ps. 

This suggests the ZnSe crystal does not possess the bandwidth necessary to detect the high-

frequency THz radiation components emitted from the GaAs PCA. Figure 4.20(b) displays the 

spectral density measured by the three EO sampling crystals. Both the ZGP and ZnTe crystals 

show similar frequency responses up to the ~3.8 THz bandwidth limit of the GaAs PCA. 

Alternatively, the ZnSe crystal has a bandwidth extending up to ~1.7 THz, due to poor phase-

matching between the THz radiation and the optical probe pulse. 

 

Fig. 4.20. (a) THz time-domain pulses and (b) spectral density obtained using ZGP, ZnTe, and 

ZnSe EO crystals. Spectral densities are scaled to facilitate bandwidth comparison. 

 

The EO detection bandwidths of ZGP, ZnTe, ZnSe, and GaP crystals are investigated by 

computing the complex EO response function, given as [166], 

 

�̃�(𝜔) =
𝑐 

𝑖𝜔ℓ

𝑒𝑖ℓ𝜔[�̃�(𝜔)−𝑛𝑔
𝑝
] 𝑐⁄

− 1

�̃�(𝜔) − 𝑛𝑔
𝑝  , (4.8) 
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where 𝜔 is the angular frequency (=2𝜋𝑓), �̃�(𝜔) is the complex refractive index [= 𝑛(𝜔) + 𝑖𝜅(𝜔)] 

at the angular frequency of 𝜔, ℓ is the crystal thickness, and 𝑛𝑔
𝑝
 is the group refractive index of the 

optical probe pulse. Notably, 𝑛𝑔
𝑝
 for ZGP is experimentally determined by placing the crystal in 

the optical probe beam path of the THz-TDS system and measuring the time delay of the THz 

radiation pulse induced by the resulting time delay of the probe pulse. The normalized amplitude 

of the response function, |�̃�𝑛𝑜𝑟𝑚(𝜔)|, is calculated for ZGP, ZnTe, ZnSe, and GaP crystals having 

thicknesses of 500 µm [see Fig. 4.21(a)] and 1080 µm [see Fig 4.21(b)]. For a thickness of 500 µm 

[i.e. Fig. 4.21(a)], the ZnSe detection bandwidth is severely limited by the low responses occurring 

at 1.64, 2.72, and 3.41 THz. When this response is compared with the ZnSe spectral power 

presented in Fig. 4.20(b), these frequencies are clearly identifiable, suggesting that Eq. (4.8) very 

accurately models the EO detection properties of the ZnSe crystal. The poor bandwidth response 

of ZnSe is a result of the large difference between the THz refractive index (𝑛>3 at the investigated 

THz frequencies [167]) and the optical group refractive index (𝑛𝑔
𝑝
=2.75 at 780 nm) [168]. 

Similarly, the GaP crystal exhibits a very limited detection bandwidth of <1.7 THz, due to the 

large THz-optical index mismatch of 13% (i.e. 𝑛≈3.2 at frequencies between 0.1-3.8 THz and 

𝑛𝑔
𝑝
=3.6) [166]. The 500 µm-thick ZnTe crystal has a low response at frequencies >3.3 THz, again 

due to the poor index matching (i.e. 𝑛>3.4 at frequencies >3.3 THz and 𝑛𝑔
𝑝
=3.28) [147,166]. 

However, the ZGP crystal is capable of detecting all frequencies emitted from the GaAs PCA (i.e. 

0.1-3.8 THz) as a result of its excellent phase-matching properties (i.e. 𝑛=3.35-3.45 at these THz 

frequencies, while 𝑛𝑔
𝑝
=3.43). As such, the ZGP crystal has an EO detection bandwidth that is 1.2 

times larger than that of ZnTe (i.e. <3.3 THz) and more than twice as large as the bandwidth of the 

ZnSe and GaP crystals (i.e. ≲1.7 THz). 
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For a crystal thickness of 1080 µm [i.e. Fig. 4.21(b)], both the ZnSe and GaP crystals exhibit 

bandwidths up to ~0.8 THz, while the ZnTe bandwidth ranges up to ~3 THz. As such, increasing 

the crystal thickness from 500 µm to 1080 µm reduces the EO detection bandwidths by 53% for 

ZnSe and GaP and 9% for ZnTe. Alternatively, as the crystal thickness increases, the ZGP crystal 

maintains its frequency response of 0.1-3.8 THz. At a thickness of 1080 µm, the ZGP crystal has 

an EO detection bandwidth that is 1.3 times larger than that of the ZnTe crystal and 4.8 times larger 

than that of the ZnSe and GaP crystals. Clearly, over the investigated frequency range, both the 

500 and 1080 µm-thick ZGP crystals exhibit the most uniform EO frequency response of all the 

studied crystals. 

 

Fig. 4.21. The normalized amplitude of the response function for crystal thicknesses of (a) 

500 µm and (b) 1080 µm. 

 

4.5 Summary 

OR THz radiation generation is experimentally investigated using the pnictide ternary crystal 

of CSP, as well as the chalcogenide ternary crystals of AGS and BGS. By using a CSP crystal 

having a thickness on the order of the coherence length (i.e. ~200 µm), the generated THz spectrum 

is expected to exhibit a uniform spectral distribution. While OR in the AGS crystal produced 
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phase-matched THz radiation generation over the entire crystal thickness of 485 µm, phase-

matching is expected to be satisfied for crystal thicknesses up to ~800 nm (considering frequencies 

between 0.5-2.9 THz). OR in the BGS crystal produced narrowband (i.e. 50 GHz linewidth) THz 

radiation centered at the frequencies of 1.97 and 2.34 THz, where the spectral power at 1.97 THz 

was shown to be 4.5 times higher than that from a ZnTe crystal. This chapter also considered the 

phase-resolved detection of THz radiation using the pnictide ternary crystal of ZGP, where 

detection occurred via the linear EO effect. It was shown that ZGP exhibited a wider THz EO 

detection bandwidth than the conventional EO sensing crystals of ZnTe, ZnSe, and GaP. Such 

investigations are critical to advancing THz radiation generation and detection using the emerging 

pnictide and chalcogenide ternary crystal classes. 
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Chapter 5. 

FDTD modeling of second-order 

nonlinear effects: A complete picture 
 

The finite difference time domain (FDTD) technique has evolved to become one of the most 

powerful numerical methods for modeling EM phenomena and optical devices. In part, this is due 

to the simplicity of the numerical algorithm in calculating the evolution of the electric and 

magnetic fields in real time. While the FDTD technique would be ideal for modeling on-chip 

devices based on optical nonlinearities, the exploration of intricate and complex nonlinear 

interactions in on-chip structures have been constrained by inadequacies of nonlinear FDTD 

methods. To date, no complete second-order nonlinear optical formalism is available, not even by 

leading commercial software packages. In this Chapter, we develop methods capable of describing 

the complete second-order nonlinear picture (i.e. OR, DFG, SHG, SFG, and cascading interactions 

involving these processes) within FDTD simulations. The methods are capable of describing 

frequency-conversion from all 18 elements of the second-order nonlinear tensor, where dispersion 

of each tensor element is included. While such methods are capable of modeling arbitrary 

geometries, they are ideal for compact on-chip structures, such as waveguiding arrangements (see 

Section 1.5). Notably, to simplify the presentation of the equations derived in this chapter, the ‘~’ 

accent typically used to denote complex variables has been omitted. 
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5.1. Modeling of dispersive tensorial second-order nonlinear 

effects for the FDTD method: Implementing Miller’s rule7 

In general, the second-order nonlinear susceptibility is influenced by dispersion at the 

frequencies of the incident electric field, as well as dispersion at the frequencies of the generated 

electric field (see Chapter 2). Herein, we present a generalized FDTD formalism for modeling 

frequency-conversion from all 18 elements of the second-order nonlinear tensor, where dispersion 

of each tensor element is included at both the excitation and generated frequencies. 

 

5.1.1. Derivation of the second-order nonlinear current density 

Light interacting with a non-centrosymmetric material can be described by the current 

density, 𝐽 = 𝐽(1) + 𝐽(2), where 𝐽(1) and 𝐽(2) are the linear (i.e. first-order) and second-order current 

densities, respectively. Although 𝐽(1) and its implementation into an FDTD formalism has been 

well-established [169], a generalized FDTD formalism needs to be developed for nonlinear light 

interactions involving 𝐽(2). When a non-centrosymmetric material is excited using optical electric 

fields having frequencies of ω and Ω-ω, a 𝐽(2) is induced at the frequency Ω. The second-order 

nonlinear susceptibility tensor associated with such an interaction (utilizing contracted notation 

for the tensor elements) is written as, 

�̅̅�(2)(Λ) = [

𝜒11
(2)(Λ) 𝜒12

(2)(Λ) 𝜒13
(2)(Λ)

𝜒21
(2)(Λ) 𝜒22

(2)(Λ) 𝜒23
(2)(Λ)

𝜒31
(2)(Λ) 𝜒32

(2)(Λ) 𝜒33
(2)(Λ)

𝜒14
(2)(Λ) 𝜒15

(2)(Λ) 𝜒16
(2)(Λ)

𝜒24
(2)(Λ) 𝜒25

(2)(Λ) 𝜒26
(2)(Λ)

𝜒34
(2)(Λ) 𝜒35

(2)(Λ) 𝜒36
(2)(Λ)

] , (5.1) 

 
7
A version of this section’s work is published as B. N. Carnio and A. Y. Elezzabi “A modeling of dispersive tensorial 

second-order nonlinear effects for the finite-difference time-domain method," Opt. Express 27, 23432-23445 (2019). 
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where Λ represents ‘Ω:ω,Ω-ω’. The tensor in Eq. (5.1), expressed using its non-contracted tensor 

element representation, is, 

�̅̅�(2)(Λ) =

[
 
 
 𝜒𝑥𝑥𝑥

(2) (Λ) 𝜒𝑥𝑦𝑦
(2) (Λ) 𝜒𝑥𝑧𝑧

(2) (Λ)

𝜒𝑦𝑥𝑥
(2) (Λ) 𝜒𝑦𝑦𝑦

(2) (Λ) 𝜒𝑦𝑧𝑧
(2) (Λ)

𝜒𝑧𝑥𝑥
(2) (Λ) 𝜒𝑧𝑦𝑦

(2) (Λ) 𝜒𝑧𝑧𝑧
(2) (Λ)

𝜒𝑥𝑦𝑧
(2) (Λ) 𝜒𝑥𝑥𝑧

(2) (Λ) 𝜒𝑥𝑥𝑦
(2) (Λ)

𝜒𝑦𝑦𝑧
(2) (Λ) 𝜒𝑦𝑥𝑧

(2) (Λ) 𝜒𝑦𝑥𝑦
(2) (Λ)

𝜒𝑧𝑦𝑧
(2) (Λ) 𝜒𝑧𝑥𝑧

(2) (Λ) 𝜒𝑧𝑥𝑦
(2) (Λ)]

 
 
 

 , (5.2) 

where 𝜒ℎ𝑗𝑘
(2)

 is the second-order nonlinear susceptibility representing generation along the h axis 

due to excitations along the j and k axes. Notably, the subscripts h, j, and k are either x, y or z. Each 

individual element in the nonlinear tensor produces a second-order nonlinear polarization 

according to the following equation [139], 

𝑃ℎ:𝑗,𝑘
(2)(Ω) = 𝜀0 ∫ 𝜒ℎ𝑗𝑘

(2)(Ω:𝜔, Ω − 𝜔)𝐸𝑗(𝜔)𝐸𝑘(Ω − 𝜔)𝑑𝜔
∞

−∞

 , (5.3) 

where 𝐸𝑗,𝑘 are the optical excitation electric fields having polarizations along the j and k axes, 

respectively. Moreover, the subscript h:j,k signifies that excitation frequencies oriented along the 

j and k axes produce a second-order nonlinear polarization along the h axis. To incorporate second-

order nonlinear dispersive effects, the FDTD model implements 𝜒ℎ𝑗𝑘
(2)

 coefficients according to 

Miller’s rule [38], 

𝜒ℎ𝑗𝑘
(2)(Ω:𝜔, Ω − 𝜔) = 𝛿ℎ𝑗𝑘𝜒ℎ(Ω)𝜒𝑗(𝜔)𝜒𝑘(Ω − 𝜔) , (5.4) 

where 𝛿ℎ𝑗𝑘 is Miller’s proportionality constant and 𝜒ℎ,𝑗,𝑘 are the linear susceptibilities along the 

h, j, and k axes, respectively. It should be noted that Miller’s formalism inherently links the 

nonlinear dispersion of an optical material to the linear material dispersion, at both the excitation 

frequencies (i.e. ω and Ω-ω) and the generation frequency (i.e. Ω). It is interesting to note the 

similarities between Eq. (5.4) and Eqs. (2.48)-(2.53). Using the definition in Eq. (5.4) for 𝜒ℎ𝑗𝑘
(2)

, 

Eq. (5.3) becomes, 
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𝑃ℎ:𝑗,𝑘
(2)(Ω) = 𝜀0𝛿ℎ𝑗𝑘𝜒ℎ(Ω)∫ 𝑆𝑗(𝜔)𝑆𝑘(Ω − 𝜔)𝑑𝜔

∞

−∞

 , (5.5) 

where, 

𝑆𝑗,𝑘(𝜔) = 𝜒𝑗,𝑘(𝜔)𝐸𝑗,𝑘(𝜔) . (5.6) 

The integral in Eq. (5.5) is the convolution operation, such that this equation can be recast in a 

more compact form, 

𝑃ℎ:𝑗,𝑘
(2)(Ω) = 𝜀0𝛿ℎ𝑗𝑘𝜒ℎ(𝛺){𝑆𝑗 ∗ 𝑆𝑘}(Ω) . (5.7) 

By transforming 𝑃ℎ:𝑗,𝑘
(2)

 to the time-domain, we obtain, 

𝑃ℎ:𝑗,𝑘
(2)(𝑡) = 𝜀0𝛿ℎ𝑗𝑘{𝜒ℎ ∗ (𝑆𝑗𝑆𝑘)}(𝑡) , (5.8) 

where t is time. Using Eq. (5.8), the complete set of second-order nonlinear polarizations along 

the x, y, and z axes are [170]: 

𝑃𝑥
(2)(𝑡) = 𝑃𝑥:𝑥,𝑥

(2) (𝑡) + 𝑃𝑥:𝑦,𝑦
(2) (𝑡) + 𝑃𝑥:𝑧,𝑧

(2) (𝑡) + 2𝑃𝑥:𝑦,𝑧
(2) (𝑡) + 2𝑃𝑥:𝑥,𝑧

(2) (𝑡) + 2𝑃𝑥:𝑥,𝑦
(2) (𝑡) , (5.9) 

𝑃𝑦
(2)

(𝑡) = 𝑃𝑦:𝑥,𝑥
(2)

(𝑡) + 𝑃𝑦:𝑦,𝑦
(2)

(𝑡) + 𝑃𝑦:𝑧,𝑧
(2)

(𝑡) + 2𝑃𝑦:𝑦,𝑧
(2)

(𝑡) + 2𝑃𝑦:𝑥,𝑧
(2)

(𝑡) + 2𝑃𝑦:𝑥,𝑦
(2)

(𝑡) , (5.10) 

𝑃𝑧
(2)(𝑡) = 𝑃𝑧:𝑥,𝑥

(2) (𝑡) + 𝑃𝑧:𝑦,𝑦
(2) (𝑡) + 𝑃𝑧:𝑧,𝑧

(2) (𝑡) + 2𝑃𝑧:𝑦,𝑧
(2) (𝑡) + 2𝑃𝑧:𝑥,𝑧

(2) (𝑡) + 2𝑃𝑧:𝑥,𝑦
(2) (𝑡) . (5.11) 

The second-order nonlinear polarizations are related to the second-order nonlinear current 

densities through: 

𝐽𝑥
(2)(𝑡) =

𝑑𝑃𝑥
(2)(𝑡)

𝑑𝑡
 , (5.12) 

𝐽𝑦
(2)(𝑡) =

𝑑𝑃𝑦
(2)(𝑡)

𝑑𝑡
 , 

(5.13) 

𝐽𝑧
(2)(𝑡) =

𝑑𝑃𝑧
(2)(𝑡)

𝑑𝑡
 . 

(5.14) 
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Equations (5.12)-(5.14) allow the full, dispersive second-order nonlinear susceptibility tensor to 

be implemented in the FDTD algorithm. Nonetheless, an accurate representation of the linear 

susceptibility is still required. Since most physical processes permit the linear susceptibility (i.e. 

𝜒ℎ,𝑗,𝑘) to be represented by a frequency-independent term and a summation of Lorentzian 

oscillators, the linear susceptibility along the x, y, and z axes is, 

𝜒𝑥,𝑦,𝑧(𝜔) = 𝜒𝑠
𝑥,𝑦,𝑧

+ ∑
(𝜔𝑚

𝑥,𝑦,𝑧
)2𝜒𝑚

𝑥,𝑦,𝑧

(𝜔𝑚
𝑥,𝑦,𝑧

)2 − 𝑖𝛾𝑚
𝑥,𝑦,𝑧

𝜔 − 𝜔2

𝑄𝑥,𝑦,𝑧

𝑚=1

 , (5.15) 

where 𝜒𝑠
𝑥,𝑦,𝑧

 is the frequency-independent linear susceptibility, 𝜒𝑚
𝑥,𝑦,𝑧

 is the Lorentz susceptibility 

of the mth Lorentzian oscillator, 𝜔𝑚
𝑥,𝑦,𝑧

 is the resonant angular frequency of the mth Lorentzian 

oscillator, 𝛾𝑚
𝑥,𝑦,𝑧

 is the damping factor of the mth Lorentzian oscillator, and 𝑄𝑥,𝑦,𝑧 is the number of 

Lorentzian oscillators used to describe the linear susceptibility. 

 

5.1.2. Discretization of the second-order nonlinear current density 

To discretize the 𝐽ℎ
(2)

 terms in Eqs. (5.12)-(5.14), we must first discretize the 𝑆𝑗,𝑘 and 𝑃ℎ:𝑗,𝑘
(2)

 

terms in Eq. (5.6) and Eq. (5.7), respectively. Using Eq. (5.15), 𝑆𝑗,𝑘 is written as, 

𝑆𝑗,𝑘(𝜔) = 𝐺𝑠
𝑗,𝑘(𝜔) + ∑ 𝐺𝑚

𝑗,𝑘

𝑄𝑗,𝑘

𝑚=1

(𝜔) , (5.16) 

where: 

𝐺𝑠
𝑗,𝑘(𝜔) = 𝜒𝑠

𝑗,𝑘
𝐸𝑗,𝑘(𝜔) , (5.17) 

𝐺𝑚
𝑗,𝑘(𝜔) =

(𝜔𝑚
𝑗,𝑘

)2𝜒𝑚
𝑗,𝑘

(𝜔𝑚
𝑗,𝑘

)2 − 𝑖𝛾𝑚
𝑗,𝑘

𝜔 − 𝜔2
𝐸𝑗,𝑘(𝜔)      𝑓𝑜𝑟 𝑚 = 1,2, . . . 𝑄𝑗,𝑘 . (5.18) 

To solve the term in Eq. (5.17), it is first transformed to the time-domain, 
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𝐺𝑠
𝑗,𝑘(𝑡) = 𝜒𝑠

𝑗,𝑘
𝐸𝑗,𝑘(𝑡) . (5.19) 

Using temporal averaging of the 𝐺𝑠
𝑗,𝑘

 term, Eq. (5.19) is then discretized for the time iteration of 

𝜌 to obtain, 

𝐺𝑠
𝑗,𝑘(𝜌 + 1) = 2𝜒𝑠

𝑗,𝑘
𝐸𝑗,𝑘(𝜌) − 𝐺𝑠

𝑗,𝑘(𝜌 − 1) , (5.20) 

where 𝜌 is related to the time step, Δt, via the relationship t=𝜌Δt. To solve Eq. (5.18), the terms 

are first rearranged to, 

(𝜔𝑚
𝑗,𝑘

)2𝐺𝑚
𝑗,𝑘(𝜔) − 𝑖𝛾𝑚

𝑗,𝑘
𝜔𝐺𝑚

𝑗,𝑘
(𝜔) − 𝜔2𝐺𝑚

𝑗,𝑘
(𝜔)

= (𝜔𝑚
𝑗,𝑘

)2𝜒𝑚
𝑗,𝑘

𝐸𝑗,𝑘(𝜔)               𝑓𝑜𝑟 𝑚 = 1,2, . . . 𝑄𝑗,𝑘 . 

(5.21) 

Next, using the fact that −𝑖𝜔𝐺𝑚
𝑗,𝑘

(𝜔) ⇔
𝑑𝐺𝑚

𝑗,𝑘
(𝑡)

𝑑𝑡
 and −𝜔2𝐺𝑚

𝑗,𝑘
(𝜔) ⇔

𝑑2𝐺𝑚
𝑗,𝑘

(𝑡)

𝑑𝑡2 , Eq. (5.21) is 

transformed to its time-domain form, 

(𝜔𝑚
𝑗,𝑘

)2𝐺𝑚
𝑗.𝑘

(𝑡) + 𝛾𝑚
𝑗,𝑘 𝑑𝐺𝑚

𝑗,𝑘(𝑡)

𝑑𝑡
+

𝑑2𝐺𝑚
𝑗,𝑘(𝑡)

𝑑𝑡2

= (𝜔𝑚
𝑗,𝑘

)2𝜒𝑚
𝑗,𝑘

𝐸𝑗,𝑘(𝑡)                        𝑓𝑜𝑟 𝑚 = 1,2, . . . 𝑄𝑗,𝑘 . 

(5.22) 

Using central-differencing techniques, this equation is discretized for the time iteration 𝜌 to obtain, 

𝐺𝑚
𝑗,𝑘(𝜌 + 1) =

2𝛥𝑡2(𝜔𝑚
𝑗,𝑘

)2𝜒𝑚
𝑗,𝑘

𝛾𝑚
𝑗,𝑘

𝛥𝑡 + 2
𝐸𝑗,𝑘(𝜌) +

4 − 2𝛥𝑡2(𝜔𝑚
𝑗,𝑘

)2

𝛾𝑚
𝑗,𝑘

𝛥𝑡 + 2
𝐺𝑚

𝑗,𝑘(𝜌)

+
𝛾𝑚

𝑗,𝑘
𝛥𝑡 − 2

𝛾𝑚
𝑗,𝑘

𝛥𝑡 + 2
𝐺𝑚

𝑗,𝑘(𝜌 − 1)        𝑓𝑜𝑟 𝑚 = 1,2, . . . 𝑄𝑗,𝑘 . 

(5.23) 

Now that both 𝐺𝑠
𝑗,𝑘

 and 𝐺𝑚
𝑗,𝑘

 have been retrieved in their discretized form, a solution for 𝑆𝑗,𝑘 is 

obtained by converting Eq. (5.16) to the time-domain and discretizing it for the time iteration of 

𝜌+1, 



153 

 

𝑆𝑗,𝑘(𝜌 + 1) = 𝐺𝑠
𝑗,𝑘(𝜌 + 1) + ∑ 𝐺𝑚

𝑗,𝑘

𝑄𝑗,𝑘

𝑚=1

(𝜌 + 1) . (5.24) 

Importantly, 𝑆𝑗,𝑘(𝜌) must also be obtained, which leads to the following equations: 

𝐺𝑠
𝑗,𝑘

(𝜌) = 𝜒𝑠
𝑗,𝑘

𝐸𝑗,𝑘(𝜌), (5.25) 

𝐺𝑚
𝑗,𝑘(𝜌) =

2𝛥𝑡2(𝜔𝑚
𝑗,𝑘

)2𝜒𝑚
𝑗,𝑘

𝛾𝑚
𝑗,𝑘

𝛥𝑡 + 2
𝐸𝑗,𝑘(𝜌 − 1) +

4 − 2𝛥𝑡2(𝜔𝑚
𝑗,𝑘

)2

𝛾𝑚
𝑗,𝑘

𝛥𝑡 + 2
𝐺𝑚

𝑗,𝑘(𝜌 − 1)

+
𝛾𝑚

𝑗,𝑘
𝛥𝑡 − 2

𝛾𝑚
𝑗,𝑘

𝛥𝑡 + 2
𝐺𝑚

𝑗,𝑘(𝜌 − 2)      𝑓𝑜𝑟 𝑚 = 1,2, . . . 𝑄𝑗,𝑘 , 

(5.26) 

𝑆𝑗,𝑘(𝜌) = 𝐺𝑠
𝑗,𝑘(𝜌) + ∑ 𝐺𝑚

𝑗,𝑘

𝑄𝑗,𝑘

𝑚=1

(𝜌) . (5.27) 

Alternatively, 𝐺𝑠
𝑗,𝑘(𝜌) and 𝐺𝑚

𝑗,𝑘(𝜌) can instead be obtained from Eq. (5.20) and (5.23), which is 

achieved by using the results from the current time iteration at the next time iteration. Next, using 

Eq. (5.15), 𝑃ℎ:𝑗,𝑘
(2)

 in Eq. (5.7) is recast as, 

𝑃ℎ:𝑗,𝑘
(2) (Ω) = 𝐾𝑠

ℎ𝑗𝑘(Ω) + ∑ 𝐾𝑚
ℎ𝑗𝑘(Ω)

𝑄ℎ

𝑚=1

 , (5.28) 

where: 

𝐾𝑠
ℎ𝑗𝑘(Ω) = 𝜀0𝛿ℎ𝑗𝑘𝜒𝑠

ℎ{𝑆𝑗 ∗ 𝑆𝑘}(Ω) , (5.29) 

𝐾𝑚
ℎ𝑗𝑘(Ω) = 𝜀0𝛿ℎ𝑗𝑘

(𝜔𝑚
ℎ )2𝜒𝑚

ℎ

(𝜔𝑚
ℎ )2 − 𝑖𝛾𝑚

ℎΩ − Ω2
{𝑆𝑗 ∗ 𝑆𝑘}(Ω)          𝑓𝑜𝑟 𝑚 = 1,2, . . . 𝑄ℎ . (5.30) 

Equation (5.29) is solved by first converting it to the time-domain, 

𝐾𝑠
ℎ𝑗𝑘(𝑡) = 𝜀0𝛿ℎ𝑗𝑘𝜒𝑠

ℎ𝑆𝑗(𝑡)𝑆𝑘(𝑡) , (5.31) 

and then discretizing it for the time iteration of 𝜌+1 to obtain, 
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𝐾𝑠
ℎ𝑗𝑘(𝜌 + 1) = 𝜀0𝛿ℎ𝑗𝑘𝜒𝑠

ℎ𝑆𝑗(𝜌 + 1)𝑆𝑘(𝜌 + 1) . (5.32) 

Clearly, this depends on the solution to 𝑆𝑗,𝑘, which is presented in Eq. (5.24). Equation (5.30) is 

solved by first rearranged it into the form, 

(𝜔𝑚
ℎ )2𝐾𝑚

ℎ𝑗𝑘(Ω) − 𝑖𝛾𝑚
ℎΩ𝐾𝑚

ℎ𝑗𝑘
(Ω) − Ω2𝐾𝑚

ℎ𝑗𝑘
(Ω)

= 𝜀0𝛿ℎ𝑗𝑘(𝜔𝑚
ℎ )2𝜒𝑚

ℎ {𝑆𝑗 ∗ 𝑆𝑘}(Ω)         𝑓𝑜𝑟 𝑚 = 1,2, . . . 𝑄ℎ . 

(5.33) 

Utilizing −𝑖Ω𝐾𝑚
ℎ𝑗𝑘

(𝛺) ⇔
𝑑𝐾𝑚

ℎ𝑗𝑘
(𝑡)

𝑑𝑡
 and −Ω2𝐾𝑚

ℎ𝑗𝑘
(𝛺) ⇔

𝑑2𝐾𝑚
ℎ𝑗𝑘

(𝑡)

𝑑𝑡2
 with Eq. (5.33), we obtain the 

time-domain equation, 

(𝜔𝑚
ℎ )2𝐾𝑚

ℎ𝑗𝑘
(𝑡) + 𝛾𝑚

ℎ
𝑑𝐾𝑚

ℎ𝑗𝑘(𝑡)

𝑑𝑡
+

𝑑2𝐾𝑚
ℎ𝑗𝑘(𝑡)

𝑑𝑡2

= 𝜀0𝛿ℎ𝑗𝑘(𝜔𝑚
ℎ )2𝜒𝑚

ℎ 𝑆𝑗(𝑡)𝑆𝑘(𝑡)         𝑓𝑜𝑟 𝑚 = 1,2, . . . 𝑄ℎ . 

(5.34) 

Using central-differencing techniques, Eq. (5.34) is discretized for the time iteration of 𝜌, 

𝐾𝑚
ℎ𝑗𝑘(𝜌 + 1) = 𝜀0𝛿ℎ𝑗𝑘

2𝛥𝑡2(𝜔𝑚
ℎ )2𝜒𝑚

ℎ

𝛾𝑚
ℎ𝛥𝑡 + 2

𝑆𝑗(𝜌)𝑆𝑘(𝜌) +
4 − 2𝛥𝑡2(𝜔𝑚

ℎ )2

𝛾𝑚
ℎ𝛥𝑡 + 2

𝐾𝑚
ℎ𝑗𝑘(𝜌)

+
𝛾𝑚

ℎ𝛥𝑡 − 2

𝛾𝑚
ℎ𝛥𝑡 + 2

𝐾𝑚
ℎ𝑗𝑘(𝜌 − 1)           𝑓𝑜𝑟 𝑚 = 1,2, . . . 𝑄ℎ , 

(5.35) 

where Eq. (5.35) depends on the 𝑆𝑗,𝑘 solution in Eq. (5.27). Now that 𝐾𝑠
ℎ𝑗𝑘

 and 𝐾𝑚
ℎ𝑗𝑘

 are obtained 

in their discretized form, a discretized solution is attained for 𝑃ℎ:𝑗,𝑘
(2)

 by converting Eq. (5.28) to the 

time-domain and discretizing it for the time iteration of 𝜌+1, 

𝑃ℎ:𝑗,𝑘
(2) (𝜌 + 1) = 𝐾𝑠

ℎ𝑗𝑘(𝜌 + 1) + ∑ 𝐾𝑚
ℎ𝑗𝑘(𝜌 + 1)

𝑄ℎ

𝑚=1

 . (5.36) 
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The above equation is the final, discretized form for 𝑃ℎ:𝑗,𝑘
(2)

, where 𝐾𝑠
ℎ𝑗𝑘

 and 𝐾𝑚
ℎ𝑗𝑘

 are given in 

Eqs. (5.32) and (5.35), respectively. Finally, the discretization of 𝑃ℎ
(2)

 [Eqs. (5.9)-(5.11)] for the 

time iteration of 𝜌+1 is straightforward and results in: 

𝑃𝑥
(2)(𝜌 + 1) = 𝑃𝑥:𝑥,𝑥

(2) (𝜌 + 1) + 𝑃𝑥:𝑦,𝑦
(2) (𝜌 + 1) + 𝑃𝑥:𝑧,𝑧

(2) (𝜌 + 1) + 2𝑃𝑥:𝑦,𝑧
(2) (𝜌 + 1)

+ 2𝑃𝑥:𝑥,𝑧
(2) (𝜌 + 1) + 2𝑃𝑥:𝑥,𝑦

(2) (𝜌 + 1) , 

(5.37) 

𝑃𝑦
(2)(𝜌 + 1) = 𝑃𝑦:𝑥,𝑥

(2) (𝜌 + 1) + 𝑃𝑦:𝑦,𝑦
(2) (𝜌 + 1) + 𝑃𝑦:𝑧,𝑧

(2) (𝜌 + 1) + 2𝑃𝑦:𝑦,𝑧
(2) (𝜌 + 1)

+ 2𝑃𝑦:𝑥,𝑧
(2) (𝜌 + 1) + 2𝑃𝑦:𝑥,𝑦

(2) (𝜌 + 1) , 

(5.38) 

𝑃𝑧
(2)(𝜌 + 1) = 𝑃𝑧:𝑥,𝑥

(2) (𝜌 + 1) + 𝑃𝑧:𝑦,𝑦
(2) (𝜌 + 1) + 𝑃𝑧:𝑧,𝑧

(2) (𝜌 + 1) + 2𝑃𝑧:𝑦,𝑧
(2) (𝜌 + 1)

+ 2𝑃𝑧:𝑥,𝑧
(2) (𝜌 + 1) + 2𝑃𝑧:𝑥,𝑦

(2) (𝜌 + 1) , 

(5.39) 

whereas the discretization of 𝐽ℎ
(2)

 [Eqs. (5.12)-(5.14)] for the time iteration of 𝜌+1/2 provides: 

𝐽𝑥
(2)(𝜌 + 1/2) =

𝑃𝑥
(2)(𝜌 + 1) − 𝑃𝑥

(2)(𝜌)

𝛥𝑡
 , (5.40) 

𝐽𝑦
(2)(𝜌 + 1/2) =

𝑃𝑦
(2)(𝜌 + 1) − 𝑃𝑦

(2)(𝜌)

𝛥𝑡
 , (5.41) 

𝐽𝑧
(2)(𝜌 + 1/2) =

𝑃𝑧
(2)(𝜌 + 1) − 𝑃𝑧

(2)(𝜌)

𝛥𝑡
 . (5.42) 

To include second-order nonlinear effects in the FDTD formalism, these 𝐽(2) terms are 

incorporated in the update equations: 
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𝐸𝑥
𝑝−1/2,𝑟,𝑠(𝜌 + 1)

= 𝐸𝑥
𝑝−1/2,𝑟,𝑠(𝜌) −

𝛥𝑡

𝜀0𝜀𝑟𝑥
𝐽′𝑥

(1)𝑝−1/2,𝑟,𝑠
(𝜌 +

1

2
)

−
𝛥𝑡

𝜀0𝜀𝑟𝑥
𝐽𝑥
(2)𝑝−1/2,𝑟,𝑠

(𝜌 +
1

2
) 

+
𝛥𝑡

𝜀0𝜀𝑟𝑥𝛥𝑦
[𝐻𝑧

𝑝−1/2,𝑟+1/2,𝑠
(𝜌 +

1

2
) − 𝐻𝑧

𝑝−1/2,𝑟−1/2,𝑠
(𝜌 +

1

2
)] 

−
𝛥𝑡

𝜀0𝜀𝑟𝑥𝛥𝑧
[𝐻𝑦

𝑝−1/2,𝑟,𝑠+1/2
(𝜌 +

1

2
) − 𝐻𝑦

𝑝−1/2,𝑟,𝑠−1/2
(𝜌 +

1

2
)] , 

(5.43) 

𝐸𝑦
𝑝,𝑟−1/2,𝑠(𝜌 + 1)

= 𝐸𝑦
𝑝,𝑟−1/2,𝑠(𝜌) −

𝛥𝑡

𝜀0𝜀𝑟𝑦
𝐽′𝑦

(1)𝑝,𝑟−1/2,𝑠
(𝜌 +

1

2
)

−
𝛥𝑡

𝜀0𝜀𝑟𝑦
𝐽𝑦
(2)𝑝,𝑟−1/2,𝑠

(𝜌 +
1

2
) 

+
𝛥𝑡

𝜀0𝜀𝑟𝑦𝛥𝑧
[𝐻𝑥

𝑝,𝑟−1/2,𝑠+1/2
(𝜌 +

1

2
) − 𝐻𝑥

𝑝,𝑟−1/2,𝑠−1/2
(𝜌 +

1

2
)] 

−
𝛥𝑡

𝜀0𝜀𝑟𝑦𝛥𝑥
[𝐻𝑧

𝑝+1/2,𝑟−1/2,𝑠
(𝜌 +

1

2
) − 𝐻𝑧

𝑝−1/2,𝑟−1/2,𝑠
(𝜌 +

1

2
)] , 

(5.44) 

𝐸𝑧
𝑝,𝑟,𝑠−1/2(𝜌 + 1)

= 𝐸𝑧
𝑝,𝑟,𝑠−1/2(𝜌) −

𝛥𝑡

𝜀0𝜀𝑟𝑧
𝐽′𝑧

(1)𝑝,𝑟,𝑠−1/2
(𝜌 +

1

2
)

−
𝛥𝑡

𝜀0𝜀𝑟𝑧
𝐽𝑧
(2)𝑝,𝑟,𝑠−1/2

(𝜌 +
1

2
) 

+
𝛥𝑡

𝜀0𝜀𝑟𝑧𝛥𝑥
[𝐻𝑦

𝑝+1/2,𝑟,𝑠−1/2
(𝜌 +

1

2
) − 𝐻𝑦

𝑝−1/2,𝑟,𝑠−1/2
(𝜌 +

1

2
)] 

−
𝛥𝑡

𝜀0𝜀𝑟𝑧𝛥𝑦
[𝐻𝑥

𝑝,𝑟+1/2,𝑠−1/2
(𝜌 +

1

2
) − 𝐻𝑥

𝑝,𝑟−1/2,𝑠−1/2
(𝜌 +

1

2
)] , 

(5.45) 
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𝐻𝑥
𝑝,𝑟−1/2,𝑠−1/2

(𝜌 +
1

2
) = 𝐻𝑥

𝑝,𝑟−1/2,𝑠−1/2
(𝜌 −

1

2
) 

+
𝛥𝑡

𝜇0𝛥𝑧
[𝐸𝑦

𝑝,𝑟−1/2,𝑠(𝜌) − 𝐸𝑦
𝑝,𝑟−1/2,𝑠−1(𝜌)]

−
𝛥𝑡

𝜇0𝛥𝑦
[𝐸𝑧

𝑝,𝑟,𝑠−1/2(𝜌) − 𝐸𝑧
𝑝,𝑟−1,𝑠−1/2(𝜌)] , 

(5.46) 

𝐻𝑦
𝑝−1/2,𝑟,𝑠−1/2

(𝜌 +
1

2
) = 𝐻𝑦

𝑝−1/2,𝑟,𝑠−1/2
(𝜌 −

1

2
) 

+
𝛥𝑡

𝜇0𝛥𝑥
[𝐸𝑧

𝑝,𝑟,𝑠−1/2(𝜌) − 𝐸𝑧
𝑝−1,𝑟,𝑠−1/2(𝜌)]

−
𝛥𝑡

𝜇0𝛥𝑧
[𝐸𝑥

𝑝−1/2,𝑟,𝑠(𝜌) − 𝐸𝑥
𝑝−1/2,𝑟,𝑠−1(𝜌)] , 

(5.47) 

𝐻𝑧
𝑝−1/2,𝑟−1/2,𝑠

(𝜌 +
1

2
) = 𝐻𝑧

𝑝−1/2,𝑟−1/2,𝑠
(𝜌 −

1

2
) 

+
𝛥𝑡

𝜇0𝛥𝑦
[𝐸𝑥

𝑝−1/2,𝑟,𝑠(𝜌) − 𝐸𝑥
𝑝−1/2,𝑟−1,𝑠(𝜌)]

−
𝛥𝑡

𝜇0𝛥𝑥
[𝐸𝑦

𝑝,𝑟−1/2,𝑠(𝜌) − 𝐸𝑦
𝑝−1,𝑟−1/2,𝑠(𝜌)] , 

(5.48) 

where p, r, and s are the spatial indices of the field components along the x, y, and z axes, 

respectively, Δx, Δy, and Δz are the mesh steps along the x, y, and z axes, respectively, Hx, Hy, and 

Hz are the magnetic field components along the x, y, and z axes, respectively,  𝜀𝑟𝑥, 𝜀𝑟𝑦, and 𝜀𝑟𝑧 are 

the relative permittivities along the x, y, and z axes, respectively, and 𝐽′𝑥
(1)

, 𝐽′𝑦
(1)

, and 𝐽′𝑧
(1)

 are the 

dispersive parts of the linear components of the current densities along the x, y, and z axes, 

respectively. 
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5.1.3. Frequency-conversion in a LN crystal 

The derived FDTD method is evaluated by simulating the representative effects of OR and 

DFG. These nonlinear effects are investigated using an LN crystal layer having a thickness ℓ, as 

illustrated in Fig. 5.1. LN serves as a prime material to evaluate the generalized second-order 

nonlinear method, since it exhibits strong nonlinear dispersion in the THz frequency regime, 

contains a nonlinear tensor with numerous non-vanishing elements, and has sufficient nonlinear 

experimental data available. The LN layer is excited using an electric field pulse having a central-

wavelength of 1550 nm, a duration of 80 fs, and a polarization angle of 𝜃𝑝 with respect to the 

crystal’s c-axis (see Fig. 5.1). Here, it is assumed that an index-matched layer and free-space are 

positioned at the input and output faces of the LN layer, respectively. The c-axis of the crystal is 

oriented along the z axis, the [100] crystallographic axis is aligned with the x axis, and the y axis 

is defined as the direction of propagation. Since a bulk crystal is being simulated, periodic 

boundary conditions are implemented for the boundaries normal to the x and z axes, whereas 

 

Fig. 5.1. An illustration of the LN crystal having a thickness ℓ and an excitation electric field 

polarization at the angle of 𝑝 with respect to the crystal’s c-axis. 
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perfectly matched layers are used for the boundaries normal to the propagation direction (i.e. 

y axis). A mesh size of 40 nm is used, which is sufficiently small for both the excitation and 

generated frequency components. 

It is critical to determine the frequency-dependence of the LN refractive indices, extinction 

coefficients, and second-order nonlinear susceptibilities. The extraordinary, ne, and ordinary, no, 

refractive indices are shown in Fig. 5.2(a), 5.2(c), and 5.2(e) for the frequency ranges of interest. 

Furthermore, the extraordinary, кe, and ordinary, кo, extinction coefficients are shown in 

Fig. 5.2(b) and 5.2(d), respectively. The experimental data is obtained from Refs. [171,172] and 

the curve fits are achieved using a superposition of Lorentzian oscillators. Clearly, the fitted curves 

match the experimental data very well. Both ne and кe show a phonon resonance at 7.6 THz, 

corresponding to the lowest-frequency A1 mode of LN, whereas three E mode phonon resonances 

(located at 4.6, 7.9, and 9.7 THz) are observed in no and кo [171]. Since nonlinear dispersion is 

directly related to linear dispersion via Miller’s rule, the 𝜒(2) elements of the LN crystal cannot be 

taken as constants. The LN crystal belongs to the 3m point group symmetry class, such that its 

second-order nonlinear susceptibly tensor is written as [173], 

�̅̅�(2)(Λ) = [

0 0 0

−𝜒22
(2)(Λ) 𝜒22

(2)(Λ) 0

𝜒31
(2)(Λ) 𝜒31

(2)(Λ) 𝜒33
(2)(Λ)

0 𝜒15
(2)(Λ) −𝜒22

(2)(Λ)

𝜒15
(2)(Λ) 0 0

0 0 0

] , (5.49) 

where Λ represents ‘Ω,𝜔, Ω − 𝜔’ and 𝜒15
(2)(Ω,𝜔, Ω − 𝜔), 𝜒22

(2)(Ω,𝜔, Ω − 𝜔), 𝜒31
(2)(Ω,𝜔, Ω − 𝜔), 

and 𝜒33
(2)(Ω,𝜔, Ω − 𝜔) are the non-vanishing tensor elements. Notably, since the THz region 

exhibits significant dispersion, the Kleinman symmetry condition is invalid and the 

𝜒15
(2)(Ω,𝜔, Ω − 𝜔) element differs from the 𝜒31

(2)(Ω,𝜔, Ω − 𝜔) element [31]. It may be important 

to note that contracted notation is being used in Eq. (5.49), where 𝜒15
(2)(Ω,𝜔, Ω − 𝜔), 
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𝜒22
(2)(Ω,𝜔, Ω − 𝜔), 𝜒31

(2)(Ω, 𝜔, Ω − 𝜔), and 𝜒33
(2)(Ω,𝜔, Ω − 𝜔) correspond to 𝜒𝑥𝑥𝑧

(2) (Ω,𝜔, Ω − 𝜔), 

𝜒𝑦𝑦𝑦
(2) (Ω,𝜔, Ω − 𝜔), 𝜒𝑧𝑥𝑥

(2) (Ω,𝜔, Ω − 𝜔), and 𝜒𝑧𝑧𝑧
(2) (Ω,𝜔, Ω − 𝜔), respectively. From Eq. (5.3), 

(5.9), (5.11), (5.49), and the fact that propagation is along the y axis, it is determined that the 

second-order nonlinear polarizations occurring along the x and z axes are, 

𝑃𝑥
(2)(Ω) = 2𝜀0 ∫ 𝜒15

(2)(Ω,𝜔, Ω − 𝜔)𝐸𝑥(𝜔)𝐸𝑧(Ω − 𝜔)𝑑𝜔
∞

−∞

 , (5.50) 

and, 

𝑃𝑧
(2)(Ω) = 𝜀0 ∫ 𝜒31

(2)(Ω,𝜔, Ω − 𝜔)𝐸𝑥(𝜔)𝐸𝑥(Ω − 𝜔)𝑑𝜔
∞

−∞

+ 𝜀0 ∫ 𝜒33
(2)(Ω,𝜔, Ω − 𝜔)𝐸𝑧(𝜔)𝐸𝑧(Ω − 𝜔)𝑑𝜔

∞

−∞

 , 

(5.51) 

such that it is necessary to consider dispersion for the 𝜒15
(2)(Ω,𝜔, Ω − 𝜔),  𝜒31

(2)(Ω,𝜔, Ω − 𝜔), and 

𝜒33
(2)(Ω,𝜔, Ω − 𝜔) tensor elements. Figure 5.3(a) illustrates the highly-dispersive 𝜒33

(2)(Ω,𝜔, Ω −

𝜔) element, which is calculated using Miller’s rule [Eq. (5.4)], a proportionality constant of 

𝛿𝑧𝑧𝑧=1.3 pm/V, and the experimental data from Refs. [98,174]. Similarly, the 𝜒31
(2)(Ω,𝜔, Ω − 𝜔) 

element [see Fig. 5.3(b)] is obtained using a proportionality constant of 𝛿𝑧𝑥𝑥=0.21 pm/V and the 

experimental data from Ref. [175], whereas 𝜒15
(2)(Ω,𝜔, Ω − 𝜔) [see Fig. 5.3(c)] is described using 

𝛿𝑥𝑥𝑧=0.71 pm/V and the experimental data from Ref. [175]. Importantly, in comparison to the low-

frequency (i.e. ≲1 THz) nonlinear susceptibility values, all three of the nonlinear elements exhibit 

an enhancement of >7 times at their lowest-frequency phonon resonance. 

To illustrate the implication of a dispersive second-order nonlinear susceptibility on the 

nonlinear frequency-conversion process, simulations are performed using ℓ=150 µm and 𝜃𝑝=0°, 
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Fig. 5.2. (a) Refractive index and (b) extinction coefficient for the extraordinary LN crystal axis 

in the THz frequency regime. (c) Refractive index and (d) extinction coefficient for the ordinary 

LN crystal axis in the THz frequency regime. (e) Extraordinary and ordinary refractive indices 

in the optical frequency regime. The experimental data is obtained from Refs. [171,172] and the 

LN crystal is taken to be lossless in the optical regime. 
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Fig. 5.3. Second-order nonlinear susceptibility elements of LN for (a) 𝜒33
(2)(Ω,𝜔, Ω − 𝜔), (b) 

𝜒31
(2)(Ω,𝜔, Ω − 𝜔), and (c) 𝜒15

(2)(Ω,𝜔, Ω − 𝜔). The curve fits are calculated using Miller’s rule 

with the experimental data from Refs. [98,174,175]. 

 

such that the 1550 nm excitation pulse is polarized along the crystal’s c-axis. Here, the only 

contributing nonlinear element is 𝜒33
(2)(Ω,𝜔, Ω − 𝜔). The simulations are conducted using the 

fully-dispersive 𝜒33
(2)(Ω,𝜔, Ω − 𝜔) element [see Fig. 5.3(a)], as well as the frequency-independent 

𝜒33
(2)

=348 pm/V. Figure 5.4(a) depicts the spectral power generated along the z axis, 𝒮𝒫𝑧, where 

the phase-mismatching effects appear as dips in the spectral power (e.g. 𝑓𝑑=0.8 THz, 1.5 THz, 

etc.), in agreement with those predicted by the theoretical formula, 
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𝑓𝑑 =
𝑐𝜌

ℓ|𝑛𝑒,𝑔
𝑒𝑥𝑐 − 𝑛𝑒(𝑓𝑑)|

 , (5.52) 

where 𝜌 is a positive integer, 𝑛𝑒,𝑔
𝑒𝑥𝑐 is the extraordinary group refractive index at the excitation 

wavelength of 1550 nm, and 𝑛𝑒(𝑓𝑑) is the extraordinary refractive index at the frequency of 𝑓𝑑. 

When comparing 𝒮𝒫𝑧 obtained using the dispersive 𝜒33
(2)(Ω,𝜔, Ω − 𝜔) and the frequency-

independent 𝜒33
(2)

=348 pm/V, significant disagreement is evident, especially at frequencies near 

the 7.6 THz phonon resonance of the LN crystal. Figure 5.4(b) shows the relative spectral power, 

which is defined as 𝒮𝒫𝑧 obtained using the dispersive 𝜒33
(2)(Ω,𝜔, Ω − 𝜔) divided by 𝒮𝒫𝑧 obtained 

using the frequency-independent 𝜒33
(2)

=348 pm/V. While the discrepancy in the relative spectral 

power is moderate at frequencies <6 THz, it is more than 60 times higher at frequencies near 

7.6 THz. Therefore, a dispersive nonlinear element is critical to accurately modeling frequency-

conversion near the phonon resonance of a crystal. 

 

Fig. 5.4. (a) The z-component of the spectral power obtained using the dispersive 

𝜒33
(2)(Ω,𝜔, Ω − 𝜔) and the frequency-independent 𝜒33

(2)
=348 pm/V. (b) Relative spectral power 

calculated when implementing the dispersive 𝜒33
(2)(Ω,𝜔, Ω − 𝜔) and the frequency-independent 

𝜒33
(2)

=348 pm/V. 
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The nonlinear algorithm is also used to model DFG THz radiation generation in a LN crystal 

having ℓ=50-150 µm and an excitation electric field pulse at 𝜃𝑝=45°. In DFG, phase-matching can 

occur between the pump frequency, fp, the signal frequency, fs, and either the forward, 𝑓𝑖
+, or 

backward, 𝑓𝑖
−, propagating idler frequencies. The forward propagation DFG coherence length, 

𝐿𝑐
𝐷𝐹𝐺,+

, is, 

𝐿𝑐
𝐷𝐹𝐺,+ =

𝑐

2
|𝑛𝑝𝑓𝑝 − 𝑛𝑠𝑓𝑠 − 𝑛𝑖𝑓𝑖

+|
−1

 , (5.53) 

and the backward propagation DFG coherence length, 𝐿𝑐
𝐷𝐹𝐺,−

, is, 

𝐿𝑐
𝐷𝐹𝐺,− =

𝑐

2
|𝑛𝑝𝑓𝑝 − 𝑛𝑠𝑓𝑠 + 𝑛𝑖𝑓𝑖

−|
−1

 , (5.54) 

where np, ns, and ni are the pump, signal, and idler refractive indices, respectively, and 𝑓𝑖 =

|𝑓𝑝 − 𝑓𝑠|. Since the excitation angle is 𝜃𝑝=45°, the electric fields at fp, fs, and 𝑓𝑖
+ or 𝑓𝑖

− are polarized 

along the ordinary, extraordinary, and ordinary crystal axes, respectively. When considering THz 

radiation generation in the forward direction [i.e. Eq. (5.53)], phase-matching occurs at 𝑓𝑖
+=3 THz 

[see Fig. 5.5(a)]. This agrees with the FDTD model, where the x-component of the spectral power, 

𝒮𝒫𝑥, exhibits THz radiation generation at 𝑓𝑖
+=3 THz, as seen in Fig. 5.5(b). Similarly, 𝐿𝑐

𝐷𝐹𝐺,−
 from 

Eq. (5.54) is displayed in Fig. 5.5(c), which shows that phase-matching occurs at the idler 

frequency of 𝑓𝑖
−=1.8 THz. By performing FDTD simulations and recording 𝒮𝒫𝑥 near the input 

facet of the LN layer, we confirm that 𝑓𝑖
−=1.8 THz [see Fig. 5.5(d)]. Clearly, the versatility of this 

nonlinear FDTD approach arises from its ability in modeling excitation electric fields at arbitrary 

polarization states, along with the dispersive second-order nonlinear susceptibilities. 

Next, by using ℓ=150 µm and 𝜃𝑝=0°-90°, we examine the two simultaneous nonlinear 

frequency-conversion processes of DFG and OR in the THz frequency regime. These two 
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Fig. 5.5. (a) Coherence length for THz radiation produced in the forward direction. (b) The 

x-component of the spectral power recorded in free-space. (c) Coherence length for THz 

radiation produced in the backward direction. (d) The x-component of the spectral power 

recorded near the input face of the LN crystal. 

 

processes depend on the polarization state of both the excitation electric field and the generated 

THz radiation. Broadband THz radiation polarized along the z axis is produced via OR, whereas 

narrowband THz radiation produced via DFG is polarized along the x axis. Figure 5.6(a) depicts 

𝒮𝒫𝑧, where THz radiation generation is highest when the excitation pulse is oriented along the 

crystal’s c-axis (i.e. 𝜃𝑝=0°), since 𝑃𝑧
(2)

 is maximum and the only contribution is from the 
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𝜒33
(2)(Ω,𝜔, Ω − 𝜔) term [see Eq. (5.51)]. THz radiation generation decreases as 𝜃𝑝 increases, since 

the contribution from 𝜒33
(2)(Ω,𝜔, Ω − 𝜔) is reduced; nonetheless, the weaker 𝜒31

(2)(Ω,𝜔, Ω − 𝜔) 

coefficient now contributes to 𝑃𝑧
(2)

. At 𝜃𝑝=90°, THz radiation generation is lowest, since 𝑃𝑧
(2)

 is 

only influenced by 𝜒31
(2)(Ω,𝜔, Ω − 𝜔). Figure 5.6(b) depicts 𝒮𝒫𝑥, where THz radiation generation 

vanishes at both 𝜃𝑝=0° and 90°, since 𝑃𝑥
(2)

=0 [see Eq. (5.50)]. The power spectra are similar in 

magnitude at the intermediate angels of 𝜃𝑝=22.5° and 67.5°, whereas THz radiation generation is 

highest when 𝜃𝑝=45°. As such, the presented generalized FDTD method is capable of modeling 

dispersive second-order nonlinear frequency-conversion processes that depend on the excitation 

polarization state and the generated electric field polarization. 

 

Fig. 5.6.  (a) The z-component and (b) the x-component of the spectral power at various electric 

field polarization angles. 
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5.2. Modeling of dispersive tensorial second-order nonlinear 

effects for the FDTD method: Implementing the Faust-Henry 

model8 

In the THz frequency regime, Miller’s rule can accurately describe crystals belonging to  3𝑚 

symmetry group (e.g. LN and LiTaO3), but is incapable of modeling 43𝑚 crystals (e.g. ZnTe, 

GaAs, GaP) [166,176–179]. This is due to the fact that, in 43𝑚 crystals, the ionic displacement 

and the excitation electric fields are out-of-phase at frequencies below the lattice resonance and 

are in-phase above it, such that the second-order nonlinear susceptibility dispersion does not follow 

the linear susceptibly dispersion [176]. Since crystals exhibiting 43𝑚 point group symmetry are 

frequently employed for THz radiation generation, it is crucial to develop an FDTD formalism to 

describe nonlinear frequency-conversion in this class of crystals. Here, we develop a nonlinear 

FDTD technique that utilizes the Faust-Henry model to describe dispersion of all 18 elements of 

the second-order nonlinear tensor. Unlike the formalism developed in Section 5.1, the Faust-Henry 

nonlinear FDTD technique is capable of modeling frequency-conversion near a phonon resonance 

in 4̅3𝑚 crystals. 

 

5.2.1. Nonlinear formalism 

When the frequencies of ω and Ω-ω are present in a non-centrosymmetric crystal, a second-

order nonlinear polarization, 𝑃ℎ
(2)

, is generated at the angular frequency of Ω, 

 
8
A version of this section’s work is published as B. N. Carnio and A. Y. Elezzabi, “An extensive finite-difference 

time-domain formalism for second-order nonlinearities based on the Faust-Henry dispersion model: application to 

terahertz generation,” J. Infrared Milli. Terahz. Waves 41, 291-298 (2020). 
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𝑃ℎ
(2)(Ω) = ∑ ∑ 𝑃ℎ:𝑗,𝑘

(2) (Ω)

𝑘=𝑥,𝑦,𝑧𝑗=𝑥,𝑦,𝑧

 , (5.55) 

where h, j, and k represent the axes of x, y, or z. Each term in Eq. (5.55) is expressed as [139], 

𝑃ℎ:𝑗,𝑘
(2) (Ω) = 𝜀0𝜒ℎ𝑗𝑘

(2) (Ω){𝐸𝑗 ∗ 𝐸𝑘}(Ω) , (5.56) 

where 𝜒ℎ𝑗𝑘
(2)

 are the second-order nonlinear susceptibility elements, Ej is the electric field along the 

j axis, Ek is the electric field along the k axis, and, 

{𝐸𝑗 ∗ 𝐸𝑘}(Ω) = ∫ 𝐸𝑗(𝜔)𝐸𝑘(Ω − 𝜔)𝑑𝜔
∞

−∞

 , (5.57) 

represents the convolution operation. The Faust-Henry model for 𝜒ℎ𝑗𝑘
(2)

 is described by [176], 

𝜒ℎ𝑗𝑘
(2) (Ω) = 𝜒𝐸

ℎ𝑗𝑘
+ ∑

(Ω𝑚
ℎ𝑗𝑘

)2𝜒𝐸
ℎ𝑗𝑘

𝐶𝑚
ℎ𝑗𝑘

(Ω𝑚
ℎ𝑗𝑘

)2 − 𝑖𝛾𝑚
ℎ𝑗𝑘

Ω − Ω2

𝑄ℎ𝑗𝑘

𝑚=1

 , (5.58) 

where 𝜒𝐸
ℎ𝑗𝑘

 is the electronic component of the second-order nonlinear susceptibility, 𝐶𝑚
ℎ𝑗𝑘

 is the 

Faust-Henry coefficient, Ω𝑚
ℎ𝑗𝑘

 is the resonant angular frequency, 𝛾𝑚
ℎ𝑗𝑘

 is the damping factor, and 

Qhjk is the number of Lorentzian oscillators. Using Eq. (5.58), Eq. (5.56) is written as, 

𝑃ℎ:𝑗,𝑘
(2) (Ω) = 𝜀0𝜒𝐸

ℎ𝑗𝑘
{𝐸𝑗 ∗ 𝐸𝑘}(Ω) + ∑

(Ω𝑚
ℎ𝑗𝑘

)2𝜀0𝜒𝐸
ℎ𝑗𝑘

𝐶𝑚
ℎ𝑗𝑘

(Ω𝑚
ℎ𝑗𝑘

)2 − 𝑖𝛾𝑚
ℎ𝑗𝑘

Ω − Ω2
{𝐸𝑗 ∗ 𝐸𝑘}(Ω)

𝑄ℎ𝑗𝑘

𝑚=1

 . (5.59) 

By defining the time as t=𝜌Δt, where Δt is the time step at an increment 𝜌, Eq. (5.59) can be 

transformed to the time-domain and discretized according to the techniques discussed in 

Section 5.1, such that, 

𝑃ℎ:𝑗,𝑘
(2) (𝜌 + 1) = 𝑃𝑠

(2)(𝜌 + 1) + ∑ 𝑃𝑚
(2)

𝑄ℎ𝑗𝑘

𝑚=1

(𝜌 + 1) , (5.60) 

where: 



169 

 

𝑃𝑠
(2)(𝜌 + 1) = 2𝜀0𝜒𝐸

ℎ𝑗𝑘
𝐸𝑗(𝜌)𝐸𝑘(𝜌) − 𝑃𝑠

(2)
(𝜌 − 1) , (5.61) 

𝑃𝑚
(2)(𝜌 + 1) =

2(Ω𝑚
ℎ𝑗𝑘

)2𝜀0𝛥𝑡2𝜒𝐸
ℎ𝑗𝑘

𝐶𝑚
ℎ𝑗𝑘

𝛾𝑚
ℎ𝑗𝑘

𝛥𝑡 + 2
𝐸𝑗(𝜌)𝐸𝑘(𝜌) +

4 − 2(Ω𝑚
ℎ𝑗𝑘

)2𝛥𝑡2

𝛾𝑚
ℎ𝑗𝑘

𝛥𝑡 + 2
𝑃𝑚

(2)(𝜌)

+
𝛾𝑚

ℎ𝑗𝑘
𝛥𝑡 − 2

𝛾𝑚
ℎ𝑗𝑘

𝛥𝑡 + 2
𝑃𝑚

(2)(𝜌 − 1) . 

(5.62) 

The discretized second-order nonlinear polarization equation is, 

𝑃ℎ
(2)(𝜌 + 1) = ∑ ∑ 𝑃ℎ:𝑗,𝑘

(2) (𝜌 + 1)

𝑘=𝑥,𝑦,𝑧𝑗=𝑥,𝑦,𝑧

 . (5.63) 

This 𝑃ℎ
(2)

 term can be used to obtain the second-order nonlinear current density, 

𝐽ℎ
(2)

(𝜌 +
1

2
) =

𝑃ℎ
(2)(𝜌 + 1) − 𝑃ℎ

(2)(𝜌)

𝛥𝑡
 , (5.64) 

which is included in the FDTD update equations [see Eqs. (5.43)-(5.48)]. 

 

5.2.2. OR in a ZnTe Crystal 

The developed FDTD formalism is used to study OR near the phonon resonance of a ZnTe 

crystal, such that it is necessary to define the dispersive second-order nonlinear susceptibility 

coefficient, 𝜒36
(2)(Ω) [i.e. 𝜒𝑧𝑥𝑦

(2) (Ω) in non-contracted notation]. Figure 5.7 shows 𝜒36
(2)(Ω) calculated 

using the Faust-Henry dispersion model, where the parameters [𝜒𝐸
𝑧𝑥𝑦

=139 pm/V, 

𝐶1
𝑧𝑥𝑦

=-0.07 pm/V, Ω1
𝑧𝑥𝑦

/(2π)=5.3 THz, 𝛾1
𝑧𝑥𝑦

/(2π)= 0.09 THz, and 𝑄𝑧𝑥𝑦=1] are determined using 

Refs. [96,166]. At the frequency of 5.1 THz, |𝜒36
(2)(Ω)| experiences a minimum, whereas |𝜒36

(2)(Ω)| 

is maximum at 5.3 THz. This is opposite to the behavior of the refractive index near a phonon 

resonance (i.e. as the frequency increases, the refractive index exhibits a maximum value followed 

by a minimum value). Notably, this difference between the linear and nonlinear THz radiation 
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properties is responsible for the inability of Miller’s rule to describe 𝜒36
(2)(Ω), and the need to 

implement the Faust-Henry dispersion model. 

 

Fig. 5.7. (a) Magnitude and (b) phase of 𝜒36
(2)(Ω) for ZnTe, as defined by the Faust-Henry model 

for dispersion. The Faust-Henry curve fitting parameters are obtained from Refs. [96,166]. 

 

A schematic of the ZnTe crystal and excitation arrangement is shown in Fig. 5.8. The 

(110)-cut ZnTe crystal of thickness ℓ is excited using an electric field pulse having a duration of 

80 fs, a central-wavelength of 800 nm, and polarized at an angle of 45° relative to the crystal’s 

c-axis (i.e. z axis). Since SiO2 is a commonly-used substrate material, the ZnTe crystal is 

surrounded by a SiO2 layer at the input face and free-space at the output face. Along the coordinate 

system defined in Fig. 5.8, the 𝜒36
(2)(Ω) coefficient for the (110)-cut ZnTe crystal is related to the 

second-order nonlinear polarizations via, 

[

𝑃𝑥
(2)(Ω)

𝑃𝑦
(2)(Ω)

𝑃𝑧
(2)(Ω)

] = 𝜀0 [

0 0 0
0 0 0

−𝜒36
(2)(Ω) 𝜒36

(2)(Ω) 0

0 −𝜒36
(2)(Ω) 0

𝜒36
(2)(Ω) 0 0

0 0 0

]

[
 
 
 
 
 
 
{𝐸𝑥 ∗ 𝐸𝑥}(Ω)

{𝐸𝑦 ∗ 𝐸𝑦}(Ω)

{𝐸𝑧 ∗ 𝐸𝑧}(Ω)

2{𝐸𝑦 ∗ 𝐸𝑧}(Ω)

2{𝐸𝑥 ∗ 𝐸𝑧}(Ω)

2{𝐸𝑥 ∗ 𝐸𝑦}(Ω)]
 
 
 
 
 
 

 . (5.65) 
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Therefore, exciting the ZnTe crystal using electric fields polarized along the x and z axes induce 

both 𝑃𝑥
(2)

 and 𝑃𝑧
(2)

. 

 

Fig. 5.8. Illustration of the ZnTe crystal (a) perpendicular and (b) parallel to the propagation 

direction of the electric fields. The ZnTe crystal is excited at a polarization angle of 45° relative 

to the c-axis of the crystal. 

 

OR is investigated in thin film ZnTe crystals, which have the potential for enhanced THz 

radiation generation near the phonon resonance. Notably, when investigating OR in the isotropic 

ZnTe crystal, the generated THz radiation polarized along the x and z axes are identical except for 

a constant scaling factor. Figure 5.9(a) depicts the THz time-domain electric field pulses generated 

in ℓ=0.1-1 µm ZnTe crystals and emitted into free-space. The oscillations following the main 

pulses have a frequency of 5.3 THz and are due to the phonon resonance. The spectral power of 

the generated radiation, 𝒮𝒫, is shown in Fig. 5.9(b). For ℓ=0.1-0.2 µm, reduced generation is 

observed at the frequency of 5.1 THz and enhanced generation occurs at the frequency of 5.3 THz, 

in good agreement with |𝜒36
(2)(Ω)| [see Fig. 5.7(a)]. In the ℓ=0.5-1 µm crystals, phonon loss 

becomes appreciable and the enhanced THz radiation generation at 5.3 THz is less evident. 

Clearly, the Faust-Henry FDTD formalism is capable of modeling frequency-conversion processes 

in the ZnTe crystal, even across spectral regions that exhibit high 𝜒36
(2)(Ω) dispersion. 
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Fig. 5.9. (a) THz time-domain electric fields and (b) spectral powers produced by OR in thin 

film ZnTe crystals having ℓ=0.1-1 µm. 

 

Although THz radiation generation has been demonstrated at the phonon resonance of very 

thin (i.e. ℓ=0.1-1 µm) ZnTe crystals, the shape of the THz radiation spectrum varies significantly 

for thicker crystals, due to phase-mismatching effects, multiple reflections occurring within the 

crystal, and strong phonon mode absorption loss. Figure 5.10(a) illustrates THz radiation 

generation from ZnTe crystals having thicknesses of ℓ=10-40 µm. The time-domain electric field 

signals are obviously shorter in comparison to the signals obtained from the thin film ZnTe crystals 

[see Fig. 5.9(a)] and exhibit lower-amplitude phonon oscillations. By examining Fig. 5.10(b), it is 

clear that the 𝒮𝒫 vanishes at frequencies within the range of ~5-6 THz, which spans the phonon 

absorption linewidth. Notably, multiple peaks are evident in the spectra, which are due to phase-

mismatching effects and multiple reflections in the crystal. 
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Fig. 5.10. (a) THz time-domain electric fields and (b) spectral powers from ZnTe crystals having 

ℓ=10-40 µm. The time-domain signals and the power spectra are to scale with the data presented 

in Fig. 5.9. 

 

To illustrate that the nonlinear formalism is capable of modeling THz radiation generation 

from arbitrary elements of the nonlinear tensor [see Eq. (5.65)], we investigate THz radiation 

generation along the x axis [i.e. 𝑃𝑥
(2)(Ω) = −2𝜒36

(2)(Ω){𝐸𝑥 ∗ 𝐸𝑧}(Ω)] and z axis [i.e. 𝑃𝑧
(2)(Ω) =

−𝜒36
(2)(Ω){𝐸𝑥 ∗ 𝐸𝑥}(Ω)]. When considering the ℓ=1 µm ZnTe crystals, the x and z-polarized time-

domain signals [Fig. 5.11(a)] have the same shape, but their amplitudes differ by a factor of two. 

This is in agreement with the theoretical formulas,   

𝐸𝑥(Ω) ∝, sin(2𝜃𝑝) , (5.66) 

and 

𝐸𝑧(Ω) ∝ sin2(𝜃𝑝) , (5.67) 
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where 𝑝 (=45) is the angle between the z axis and the excitation polarization direction, such that 

Ex=2Ez. Similarly, the corresponding spectra [Fig. 5.11(b)] have the same shape and differ in 

magnitude by a factor of four. 

 

Fig. 5.11. (a) THz time-domain electric fields and (b) spectral powers for THz radiation that is 

polarized along the x and z axes, calculated for the ℓ=1 µm ZnTe crystal. 

 

The versatility of our approach is further demonstrated by investigating THz radiation 

generation in the 2D arrangement depicted in Fig. 5.12(a) and 5.12(b), where a free-space pulse 

exhibiting a Gaussian spatial distribution is coupled into a SiO2-ZnTe-air planar waveguide having 

a thickness of 4 µm and a length of 100 µm. The electric field pulse has a duration of 80 fs, a 

central-wavelength of 800 nm, and a beam waist of 4 µm. By exciting the waveguide using an 

electric field pulse polarized perpendicular to the c-axis, the majority of the energy couples into 

the transverse magnetic (TM) mode. Through the process of OR, THz radiation is generated having 

a polarization along the c-axis. The majority of this THz energy couples into the TE mode, which 

propagates towards the waveguide output and is emitted into free-space. The generated time-

domain pulse consists of oscillations having a duration of ~10 ps [see Fig. 5.12(c)] and the 

associated spectral power shows the highest generation at 4.8 THz [see Fig. 5.12(d)]. At this 
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frequency, the effective refractive index of the THz mode is equal to the effective group refractive 

index of the excitation mode (i.e. both are 3.25), allowing for phase-matched THz radiation 

generation. 

 

Fig. 5.12. Schematic of the SiO2-ZnTe-air planar waveguide along the (a) y-z and (b) x-y cross-

sections, which show the Gaussian electric field pulse being coupled into the waveguide and the 

generated THz radiation being coupled out of the waveguide. (c) THz time-domain electric field 

and (d) spectral power of the generated THz radiation. 

 

5.3. Summary 

FDTD formalisms are developed to describe nonlinear frequency-conversion from all 18 

dispersive elements of the second-order nonlinear susceptibility tensor. A method based on 

Miller’s rule is developed, which applies to many crystal classes (e.g. those exhibiting 3m point 

group symmetry), but not 43𝑚 point group symmetry crystals. To address this concern, a method 

based on the Faust-Henry model is developed to describe second-order nonlinear frequency-

conversion in 43𝑚 crystals, where many crystals within this class are critical to THz radiation 
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generation (e.g. ZnTe, GaAs, GaP, etc). Importantly, the developed methods describe all second-

order nonlinear processes, including OR, DFG, SHG, and SFG. Additionally, these formalisms 

describe second-order nonlinear cascading effects, permitting the modeling of arrangements such 

as that in Ref. [180]. While the formalisms developed in this chapter were not applied to quasi-

phase-matched structures or the tilted pulse front technique for THz radiation generation, they are 

nonetheless capable of modeling such processes. Interestingly, since confining an excitation pulse 

having a tilted pulse front to a planar waveguide beneficially impacts the conversion efficiency 

(see Ref. [101]), this arrangement should be explored further. Although the developed nonlinear 

methods permit modeling of second-order nonlinearities in arbitrary geometries, they are 

envisioned to have the most dramatic impact in developing nonlinear frequency-conversion 

structures for on-chip applications, such as waveguides.
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Chapter 6. 

THz radiation generation using LN 

waveguiding arrangements 
 

An important advantage of waveguides is their ability to confine an optical excitation pulse 

as it propagates, thus permitting high peak intensities (e.g. >GW/cm2), critical to boosting 

nonlinear frequency-conversion efficiencies. Other key advantages of waveguiding geometries are 

their compatibility with nanofabrication techniques and ability to realize a small footprint, making 

them ideal for integration onto photonic chips. Herein, the numerical FDTD methods previously 

developed [see Chapter 5] are implemented to model THz radiation generation in planar LN 

waveguides. Subsequently, THz radiation produced from a planar LN waveguide is observed 

experimentally. Such investigations push beyond previous works (see Section 1.5) to develop 

novel THz waveguiding sources. In this chapter, we omit the ‘~’ accent typically used to denote 

complex variables related to a material’s nonlinearity. 

 

6.1. Ultra-broadband THz radiation generation from 

sub-wavelength LN waveguides9 

When considering OR THz radiation generation in a bulk LN crystal, generation is limited 

to less than a few THz, due to the large refractive index mismatch between the excitation pulse 

 
9
A version of this section’s work is published as B. N. Carnio and A. Y. Elezzabi, "Investigation of ultra-broadband 

terahertz generation from sub-wavelength lithium niobate waveguides excited by few-cycle femtosecond laser pulses," 

Opt. Express 25, 20573 (2017). 



178 

 

and the generated THz radiation. In this section, we show that ultra-broadband Cherenkov THz 

radiation can be produced by implementing the LN crystal in a sub-wavelength waveguiding 

arrangement. 

 

6.1.1. Waveguiding structure 

Figure 6.1 depicts a schematic of the LN waveguide, where the LN layer (having its c-axis 

oriented along the z axis) can have a sub-wavelength thickness, 𝑇, with respect to the 780 nm 

central-wavelength optical excitation pulse. In order to confine the optical excitation beam, the LN 

layer is sandwiched between two 500 nm-thick SiO2 cladding layers. SiO2 is chosen for these 

layers because extensive work has been performed to perfect the bonding process between this 

material and thin film LN [181]. This bonding technique produces high-quality, single-crystal LN 

thin films that exhibit refractive index values matching that of bulk LN [181]. As a result of the 

LN thickness being sub-wavelength with respect to the THz radiation (i.e. 𝑇 << THz, where THz 

is the THz radiation wavelength), the SiO2-LN-SiO2 waveguide can be inserted between two high-

index dielectric layers to allow the generated THz radiation to be emitted as Cherenkov waves. 

47-cut high-resistivity Si prisms are implemented on the waveguide structure, where the angle is 

chosen to allow the generated THz radiation to be directed towards the Si-air interface at normal 

incidence.  Since the waveguide width, W, is much larger than the THz wavelengths (i.e. W>>λTHz), 

2D FDTD simulations are sufficient to model the structure. In the forthcoming discussions, both 

the optical excitation pulse energy, 𝜉𝑒𝑥𝑐, and the generated OR THz energy, 𝜉𝑂𝑅, are presented per 

waveguide width (i.e. W). 
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Fig. 6.1. Schematic showing the sub-wavelength SiO2-LN-SiO2 waveguiding geometry 

incorporating Si prisms. Depicted in the illustration is the waveguide width, W, length, L, and 

core thickness, 𝑇. The z-polarized optical excitation pulse is coupled into the SiO2-LN-SiO2 

waveguide and the generated THz electric field has a polarization oriented along the z axis. 

 

To obtain a realistic picture of OR in the sub-wavelength SiO2-LN-SiO2 waveguide, it is 

essential to accurately model the refractive index, n, and extinction coefficient, κ, of LN, SiO2, and 

Si. Since both the optical excitation pulse and the generated THz radiation are polarized along the 

c-axis of the LN crystal (i.e. z axis), only the extraordinary refractive index, 𝑛𝑒, and extinction 

coefficient, 𝜅𝑒, need to be defined. Figure 6.2(a) shows 𝑛𝑒 and 𝜅𝑒 for the LN crystal, where the 

curves are obtained using a double Lorentzian model,  

 (𝑛𝑒 + 𝑖𝜅𝑒)
2 = 𝜀∞ +

𝐷1
2

𝐷2
2 − 𝜔2

+ ∑
𝜒𝑚𝜔𝑚

2

𝜔𝑚
2 − 𝑖𝛾𝑚𝜔 − 𝜔2

2

𝑚=1

 , (6.1) 

where 𝜀∞ is the frequency-independent relative permittivity, D1 and D2 are optical dispersion 

coefficients, 𝜒𝑚  is the Lorentzian susceptibility, 𝜔𝑚 is the angular frequency of the phonon 

resonance, 𝛾𝑚 is the damping term associated with each resonance, and 𝜔 is the angular frequency.  
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Fig. 6.2. (a) LN, (b) SiO2, and (c) Si refractive indices and extinction coefficients. The 

experimental data is obtained from Refs. [148,171,172] for LN, Ref. [182] for SiO2, 

and Refs. [182,183] for Si. The inset in (a) displays the LN extraordinary refractive index at 

frequencies of 100-500 THz. 

 

An excellent fit to the combined experimental data from Refs. [148,171,172] is achieved using the 

parameters 𝜀∞=0.95, 𝐷1/(2π)=3226 THz, 𝐷2/(2π)=1700 THz, 𝜒1=16.6, 𝜒2=2.6, 𝜔1/(2π)=7.5 THz, 

𝜔2/(2π)=18.9 THz, 𝛾1/(2π)=0.73 THz, and 𝛾2/(2π)=0.89 THz. Clearly, the strong phonon 

absorption bands centered at 7.6 and 19 THz, as well as the optical dispersion [see inset of 
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Fig. 6.2(a)], are well-represented by this model. The use of the bulk refractive index values 

represent the actual index of the LN thin films, permitted the films are grown using highly-

optimized techniques, such as those discussed in Ref. [181]. Using a multi-coefficient fitting 

routine [184], n and κ for SiO2 exhibit an excellent fit to the experimental data provided in 

Ref. [182] [see Fig. 6.2(b)]. Importantly, the strong phonon resonance features at 14.1 and 

32.7 THz, as well as the weaker mode at 23.7 THz, are fitted with a high degree of precision. As 

discussed in Ref. [185], bulk refractive index values well-describe those for SiO2 layers having 

thicknesses larger than 20 nm. As shown in Fig. 6.2(c), n and κ for Si (including the region between 

10 and 50 THz) are both very accurately modelled, where the experimental data is obtained from 

Refs. [182,183]. Notably, multi-photon absorption, self phase modulation, and Raman effects in 

LN occur at peak excitation intensities >100 GW/cm2 [186], while the optical damage threshold 

of LN is ~10 TW/cm2 [187]. Peak excitation pulse intensities in our simulations are restricted to 

values <100 GW/cm2 to avoid these effects. 

The LN crystal is excited along its c-axis, such that the 𝜒33
(2)

 second-order nonlinear 

susceptibility element drives the frequency-conversion process. Since dispersion of the LN 𝜒33
(2)

 

element is negligible at the excitation wavelengths, 𝜒33
(2)

 can be described using the Faust-Henry 

model (Section 5.2) opposed to Miller’s rule (Section 5.1). This permits improved computational 

speed, since the FDTD method based on Miller’s rule is more involved in comparison to the Faust-

Henry FDTD method. The LN 𝜒33
(2)

 element (i.e. the 𝜒𝑧𝑧𝑧
(2)

 element in non-contracted notation)  is 

described by Eq. (5.58) with the parameters 𝜒𝐸
zzz=-51.8 pm/V, Ω1

𝑧𝑧𝑧/(2π)=7.5 THz, 

Ω2
𝑧𝑧𝑧/(2π)=18.9 THz, γ1

𝑧𝑧𝑧/(2π)=0.73 THz, γ2
𝑧𝑧𝑧/(2π)=0.89 THz, C1

𝑧𝑧𝑧=5, C2
𝑧𝑧𝑧=0.78, and Q𝑧𝑧𝑧=2. 

Figure 6.3 shows the modelled 𝜒33
(2)

, along with experimental data for the LN nonlinear 
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susceptibility [30, 98, 170, 174,188–191]. Due to the lack of explicit frequency information, the 

low-frequency measurements are plotted at 150 GHz, where 𝜒33
(2)

 dispersion is negligible. 

 

Fig. 6.3. Magnitude and phase of the 𝜒33
(2)

 second-order nonlinear susceptibility element of LN. 

The experimental data is obtained from Refs. [30, 98, 170, 174,188–191]. 

 

6.1.2. OR THz radiation generation 

THz radiation generation is demonstrated for an L=100 µm LN waveguide that has 

𝑇=500 nm. The waveguide is excited by an optical excitation pulse having a duration, τ, of 10 fs, 

a central-wavelength of 780 nm, and an 𝜉𝑒𝑥𝑐 𝑊⁄ =10 nJ/cm. Figure 6.4(a) displays the generated 

THz time-domain electric field pulse, which has a bipolar shape and a short duration of <1 ps.  At 

this 𝜉𝑒𝑥𝑐 𝑊⁄ , the THz radiation pulse has a peak-to-peak electric field strength of 1.6 kV/cm, which 

is a considerably high electric field value obtained from a sub-wavelength waveguide.  

Of great interest is the spectral content of the THz radiation pulse. Figure 6.4(b) shows the 

THz energy spectral density normalized to the device width (i.e. W), denoted as the normalized 

energy spectral density (NESD). Remarkably, the spectrum is ultra-broad, extending from 

0.18-81 THz when using a 40 dB dynamic range (which is chosen as a conservative estimate 
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Fig. 6.4. (a) THz time-domain electric field generated from a SiO2-LN-SiO2 waveguide having 

𝑇=500 nm, L=100 µm, and excited by a =10 fs, 𝜉𝑒𝑥𝑐 𝑊⁄ =10 nJ/cm, 780 nm optical pulse. The 

time-domain signal is recorded after exiting the Si prisms. (b) NESD of the THz radiation 

measured after exiting the Si prisms. (c-f) Time-averaged spatial distribution of the electric field 

at frequencies of 10, 20, 30, and 40 THz propagating outwards from the waveguide. The electric 

field values in (e) and (f) are scaled by a factor of 5. 

 

based on the 50 dB range achieved in Ref. [124]). Over this bandwidth, the generated THz 

radiation signal has an 𝜉𝑂𝑅 𝑊⁄ =1.35 pJ/cm, such that the conversion efficiency for this L=100 µm 

structure is 1.35×10-4. There is reduced generation at the frequencies of 13 and 28.3 THz, where 

|𝜒33
(2)

| exhibits minimums (see Fig. 6.3). Such minimums correspond to spectral regions where the 

electric and ionic contributions of the second-order susceptibility destructively interfere [176]. The 

minimum at 28.3 THz causes the NESD to fall below the 40 dB dynamic range, leading to a null 
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within the generation spectrum when using this bandwidth definition. Also observed in the 

frequency spectrum is the strongest phonon resonance of the SiO2 layer occurring at 32.7 THz.  

When exciting the SiO2-LN-SiO2 waveguide with an optical pulse, the induced nonlinear 

dipoles emit THz radiation that experiences an effective refractive index, 𝑛𝑒𝑓𝑓
𝑇𝐻𝑧, dominated by the 

Si layers. The equation describing the Cherenkov emission angle of the THz radiation is, 

 𝜃𝑐(𝑓) = cos−1 [
𝑛𝑒𝑓𝑓,𝑔

𝑚

𝑛𝑒𝑓𝑓
𝑇𝐻𝑧(𝑓)

] , (6.2) 

where 𝑛𝑒𝑓𝑓,𝑔
𝑚  is the effective group refractive index of the excitation mode. Since the refractive 

index of the Si prisms varies by only 0.009 within the frequency range of 0.18-81 THz (i.e. the 

bandwidth of the generated THz radiation), 𝜃𝑐=47.2°-47.4° over this frequency interval (i.e. 

𝑛𝑒𝑓𝑓,𝑔
𝑚 =2.32 and 𝑛𝑒𝑓𝑓

𝑇𝐻𝑧=3.417-3.426). Figures 6.4(c)-6.4(f) show this nearly constant THz radiation 

emission angle at the representative frequencies of 10, 20, 30, and 40 THz. 

For a constant excitation pulse energy, the peak intensity of the excitation mode, and 

therefore the THz signal strength, depends on 𝑇. Figure 6.5(a) shows the NESD for a waveguide 

having 𝑇=0.3-5-µm, L=100 µm, and excited by a =10 fs, 𝜉𝑒𝑥𝑐 𝑊⁄ =10 nJ/cm optical pulse. The 

reststrahlen bands at 7.6 and 19 THz clearly exhibit stronger absorption with increasing 𝑇. This is 

a result of the generated THz radiation needing to propagate larger distances in the LN core before 

exiting the LN. Group velocity dispersion of the excitation mode causes a reduction in the length 

over which the high-frequency and low-frequency components in the optical excitation pulse 

exhibit the spatial overlap necessary to generate THz radiation. The effective refractive index of 

the excitation mode, 𝑛𝑒𝑓𝑓
𝑚 , and 𝑛𝑒𝑓𝑓,𝑔

𝑚  are shown in Fig. 6.5(b) for 𝑇=0.3, 0.5 and 5 µm. Dispersion 

of the optical excitation mode in the 𝑇=5 µm waveguide is determined mainly by the LN refractive 

index, since the excitation mode primarily occupies the LN layer. However, the optical excitation 
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mode begins to leak into the SiO2 cladding regions for 𝑇=300 and 500 nm, such that dispersion of 

the excitation mode is influenced by both the LN and SiO2 refractive indices. Importantly, at the 

optical excitation pulse central-frequency of 385 THz (i.e. wavelength of 780 nm), sub-wavelength 

effects cause 𝑛𝑒𝑓𝑓,𝑔
𝑚  to increase from 2.28 (𝑇=5 µm waveguide) to 2.32 (𝑇=500 nm waveguide). 

As shown in Fig. 6.5(c), reducing 𝑇 from 5 µm to 300 nm results in a 22 times improvement to 

𝜉𝑂𝑅 𝑊⁄ . This is due to better confinement of the excitation pulse to the LN layer and lower 

absorption of the generated THz frequencies within the LN reststrahlen bands. The spatial intensity 

profiles displayed in the inset of Fig. 6.5(c) show that the optical mode is mainly confined to the  

 

Fig. 6.5. (a) NESD of the THz radiation emitted from a waveguide having 𝑇=0.3-5 µm, 

L=100 µm, and being excited by a =10 fs, 𝜉𝑒𝑥𝑐 𝑊⁄ =10 nJ/cm optical pulse. (b) The effective 

refractive index of the excitation mode (i.e. 𝑛𝑒𝑓𝑓
𝑚 ), as well as the effective group refractive index 

of the excitation mode (i.e. 𝑛𝑒𝑓𝑓,𝑔
𝑚 ) at 𝑇=0.3, 0.5, and 5 µm. (c) 𝜉𝑂𝑅 𝑊⁄  contained in the 

generated THz frequency components. The inset shows the intensity profiles of the modes. 
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LN and SiO2 layers, and negligibly intensity values exist in the Si layers. Here, 𝑇=500 nm is 

chosen as a compromise between a large 𝜉𝑂𝑅 𝑊⁄  and a dimension that would be easily fabricated. 

The NESD dependence on   is shown in Fig. 6.6(a) for a SiO2-LN-SiO2 waveguide having 

L=100 µm, 𝑇=500 nm, and excited at =7-100 fs and 𝜉𝑒𝑥𝑐 𝑊⁄ =10 nJ/cm. Here, the =7 fs curve 

exhibits the largest THz bandwidth, producing frequency components between 0.18-106 THz 

when considering a dynamic range of 40 dB. Alternatively, the radiation produced by the =10, 

20, 50, and 100 fs optical excitation pulses have bandwidths that extend up to 81, 42, 21, and 

11 THz, respectively. Therefore, to achieve an ultra-wide spectrum that produces THz radiation 

well above the LN phonon mode at 19 THz, it is best to excite the waveguide with ≲20 fs optical 

pulses. Interestingly, as shown in Fig. 6.6(b), reducing  from 100 fs to 7 fs allows for a 2300% 

improvement in the generated THz energy. This is due to the increase in the peak excitation mode 

intensity that arises from shortening the optical pulse (while retaining the optical energy) and the 

additional high-frequency THz radiation generation that results from the shorter duration pulse. 

 

Fig. 6.6. (a) NESD of the THz electric field emitted from a waveguide having 𝑇=500 nm, 

L=100 µm, and excited by =7-100 fs, 𝜉𝑒𝑥𝑐 𝑊⁄ =10 nJ/cm optical pulses. (b) 𝜉𝑂𝑅 𝑊⁄  of the 

generated THz radiation. 
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In this waveguide configuration, it is essential to understand the relationship by which the 

THz NESD changes with L. Figure 6.7(a) shows the THz NESD for waveguides having 

L=100-300 µm, 𝑇 =500 nm, and driven by a =7 fs optical excitation pulse at 𝜉𝑒𝑥𝑐 𝑊⁄ =10 nJ/cm. 

NESD values at frequencies ≲13 THz continually improve by increasing L up to 300 µm, while 

higher-frequency components experience little or no benefit from increasing L. Group velocity 

dispersion of the optical excitation mode causes the encompassed frequency components to 

spatially separate during propagation, therefore negating high-frequency THz radiation generation. 

This reduced generation causes 𝜉𝑂𝑅 𝑊⁄  to saturate with increasing L, as shown in Fig. 6.7(b), with 

the energy improvement mainly arising from additional generation at frequencies ≲13 THz.  

 

Fig. 6.7. (a) NESD and (b) 𝜉𝑂𝑅 𝑊⁄  emitted from waveguides having L=100-300 µm, 𝑇=500 nm, 

and excited by a =7 fs, 𝜉𝑒𝑥𝑐 𝑊⁄ =10 nJ/cm optical pulse. 

 

As in all nonlinear frequency-conversion devices, it is necessary to understand the impact of 

the excitation pulse energies. The THz NESD and 𝜉𝑂𝑅 𝑊⁄  are shown in Fig. 6.8(a) and 6.8(b), 

respectively, for waveguides having L=100 µm, 𝑇=500 nm, and excited by a =7 fs optical pulse 

at 𝜉𝑒𝑥𝑐 𝑊⁄ =2-10 nJ/cm. Both the spectrum and 𝜉𝑂𝑅 𝑊⁄  show the expected second-order 

improvement with increasing 𝜉𝑒𝑥𝑐 𝑊⁄ . This is witnessed by the 25 times enhancement in 𝜉𝑂𝑅 𝑊⁄  
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that occurs when 𝜉𝑒𝑥𝑐 𝑊⁄  is increased from 2 nJ/cm to 10 nJ/cm. This second-order increase in the 

generated THz energy occurs because the optical excitation pulse energy is restricted to values 

below the threshold for multi-photon absorption, self phase modulation, and Raman effects. 

 

Fig. 6.8. (a) NESD and (b) 𝜉𝑂𝑅 𝑊⁄  generated using waveguides having L=100 µm, 𝑇=500 nm, 

and excited by =7 fs, 𝜉𝑒𝑥𝑐 𝑊⁄ =2-10 nJ/cm optical pulses. 

 

6.2. THz radiation generation near the reststrahlen band in 

sub-wavelength LN waveguides10 

Near the phonon resonance of a material, enhancement of the second-order nonlinear 

susceptibility occurs in conjunction with an increase in reststrahlen band absorption [38]. As such, 

although this resonance enhancement leads to a high portion of the excitation photons being 

converted to THz photons, the majority of the THz photons are absorbed within the bulk crystal. 

Interestingly, to exploit the nonlinear susceptibility enhancement and minimize the reststrahlen 

band absorption, the crystal can be made extremely thin (e.g. hundreds of nanometers). In this 

 
10

A version of this section’s work is published as B. N. Carnio and A. Y. Elezzabi, “Enhanced broadband terahertz 

radiation generation near the reststrahlen band in sub-wavelength leaky-mode LiNbO3 waveguides,” Opt. Lett 43, 

1694-1697 (2018). 
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section, we investigate the generation of THz electric field pulses from a planar LN waveguide 

supporting THz modes, where sub-wavelength core thicknesses are necessary for producing 

coherent radiation in the frequency band exhibiting nonlinear susceptibility enhancement. 

 

6.2.1. Waveguiding arrangement 

Figure 6.9 shows a schematic of the sub-wavelength waveguide consisting of a LN core 

having thickness 𝑇, length L, width W, and whose crystal c-axis is oriented along the z axis. The 

optical excitation mode is confined to the LN core by two SiO2 cladding layers having thicknesses 

of 10 µm. The excitation electric field pulse exhibits a polarization oriented along the c-axis of the 

LN crystal, such that its 𝜒33
(2)

 second-order nonlinear susceptibility permits the generation of OR 

THz radiation polarized along the LN c-axis. Due to the planar nature of the structure, and since 

the waveguide’s width (i.e. W) is larger than the THz electric field wavelength, it is sufficient to 

employ 2D simulations to investigate THz radiation generation and propagating within the 

 

Fig. 6.9. A schematic of the sub-wavelength planar LN waveguide used to generate THz 

radiation. The LN crystal’s c-axis is oriented along the z axis. 
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waveguide. Notably, the forthcoming simulations are performed using 50 fs, 780 nm excitation 

pulses having a peak electric field amplitude of 0.4 V/nm (i.e. peak intensities of ~90 GW/cm2 in 

the LN crystal). This peak intensity value is below the threshold intensity for multi-photon 

absorption, Raman effects, self-phase modulation, and optical laser damage [186,187]. The 

refractive indices and extinction coefficients provided in Fig. 6.2(a) and 6.2(b) are used for LN 

and SiO2, respectively. Similarly, the 𝜒33
(2)

 second-order nonlinear susceptibility of LN is obtained 

from Fig. 6.3, where enhancement occurs near the LN phonon resonance frequencies. From this 

model, we obtain a low-frequency (i.e. ≲1 THz) | 𝜒33
(2)

|≈350 pm/V. Alternatively, 

|𝜒33
(2)

|=660 pm/V at 5.6 THz and |𝜒33
(2)

|=881 pm/V at 6 THz, corresponding to an enhancement of 

1.9 and 2.5, respectively. 

The nonlinear conversion efficiency relies on the propagation and confinement 

characteristics of the THz modes supported by the waveguide. Figure 6.10(a) shows the spatial 

intensity profiles of representative THz modes at 5.6 THz (i.e. a frequency within the region of 

𝜒33
(2)

 enhancement) for waveguides having LN core thicknesses between 𝑇=0.3-5 µm. As seen 

from the 𝑇=5 µm intensity profile, waveguides having sufficiently large thicknesses confine the 

5.6 THz mode to the LN core. However, such confinement is undesirable at 5.6 THz and other 

frequencies near the LN resonance, since it results in significant reststrahlen band absorption of 

the generated THz radiation. On the contrary, for small waveguide thicknesses (i.e. 𝑇≤1 µm), the 

modes leak into the surrounding SiO2 cladding material and free-space. Due to the low-loss of 

SiO2 at frequencies ≲7 THz, the THz modes propagate with minimal absorption. Importantly, 

although leakage of the mode results in an inherent increase in the electric field radiated from the 

waveguide, the majority of the electric field remains guided along the waveguide. 
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Fig. 6.10. (a) Spatial intensity profile of the 5.6 THz mode supported by waveguides having 

core thicknesses of (i) 300 nm, (ii) 500 nm, (iii) 1 µm, and (iv) 5 µm. The green, red, and blue 

regions represent the LN crystal, the SiO2 surrounding layers, and free-space, respectively. (b) 

The propagation length (i.e. Lp) and the OR coherence length (i.e. 𝐿𝑐
𝑂𝑅) of the waveguide mode 

at a frequency of 5.6 THz. The inset shows the effective refractive index of the THz mode. (c) 

Spatial distribution of the electric field obtained by propagating a 5.6 THz electric field pulse 

along a waveguide having L=100 µm and 𝑇=500 nm. 

 

The propagation length, Lp, associated with the 5.6 THz mode is presented in Fig. 6.10(b) 

for waveguides having thicknesses ranging from 𝑇=0.3-5 µm. Lp≈9 µm for large thicknesses of 

𝑇>2 µm, where Lp is limited by LN reststrahlen band loss, since the modes are mainly confined to 

the LN core. Alternatively, for waveguides having small core thicknesses, there is a drastic 
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increase in Lp, reaching values as high as 35 µm at 𝑇=500 nm and 55 µm at 𝑇=300 nm. Evidently, 

waveguides having 𝑇<2 µm are necessary to minimize LN reststrahlen band absorption loss and 

achieve THz radiation generation from the frequency region exhibiting 𝜒33
(2)

 enhancement. As 

shown in the inset of Fig. 6.10(b), the effective refractive index of the THz mode, 𝑛𝑒𝑓𝑓
𝑚,𝑇𝐻𝑧

, at 

5.6 THz increases with increasing LN core thicknesses (varying from 2.1-5.7 as 𝑇 is increases 

from 300 nm-5 µm). Notably, the THz modes at 𝑇<2 µm have an 𝑛𝑒𝑓𝑓
𝑚,𝑇𝐻𝑧

 that is a strongly 

influenced by both the low refractive index of the surrounding SiO2 materials and the high 

refractive index of LN. 𝑛𝑒𝑓𝑓
𝑚,𝑇𝐻𝑧

 (in conjunction with the effective group refractive index of the 

excitation mode, 𝑛𝑒𝑓𝑓,𝑔
𝑚 ) allows the OR coherence length to be calculated as 𝐿𝑐

𝑂𝑅(𝑓) =

𝑐𝑓−1|𝑛𝑒𝑓𝑓,𝑔
𝑚 − 𝑛𝑒𝑓𝑓

𝑚,𝑇𝐻𝑧(𝑓)|
−1

2⁄   [see Fig. 6.10(b)]. For a waveguide having 𝑇=500 nm, the 

5.6 THz mode propagates in-phase with the optical pulse for a distance >1 mm. This is drastically 

different from waveguides having 𝑇>2 µm, where 𝐿𝑐
𝑂𝑅<14.4 µm. Clearly, THz modes supported 

by sub-wavelength waveguides have the added benefit of better phase-matching and larger 

propagation distances in the frequency region exhibiting LN nonlinearity enhancement. 

Figure 6.10(c) shows the spatial electric field distribution of a 5.6 THz electric field pulse after 

propagating along a 𝑇=500 nm and L=100 µm waveguide and being emitted from the waveguide’s 

end facet. The THz radiation is emitted as cylindrical waves, meaning the THz mode exhibits 

sufficient confinement for the waveguide’s output to act as a point emission source. 

 

6.2.2. OR THz radiation generation 

THz electric field generation is investigated for a planar LN waveguide having dimensions 

of 𝑇=500 nm and L=100 µm. As shown in Fig. 6.11(a), the excitation pulse generates THz 
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radiation along the waveguide, which is emitted as cylindrical waves at the waveguide’s output 

(spatial electric field is recorded at a time of 2.4 ps after exciting the waveguide). Notably, these 

cylindrical waves could be collimated by implementing a cylindrical lens or a planar parabolic 

reflector. An off-axis parabolic reflector would be inefficient at collecting the highly-

divergent generated THz radiation (estimated at less than a few tens of percent), such that an 

on-axis parabolic reflector is likely the better option. The THz time-domain electric field signal 

recorded in free-space, at a distance of 80 µm from the waveguide’s output, is shown in 

Fig. 6.11(b). Interestingly, for the waveguide length of L=100 µm, the electric field reaches a high 

peak-to-peak value of 3.4 kV/cm. The decaying tail of the THz time-domain signal is composed 

of frequencies near the LN phonon resonance, where the second-order nonlinear susceptibility of 

LN experiences enhancement. At these near-resonance frequencies, the optical excitation pulse 

excites strong nonlinear dipoles in the LN crystal, which continue to oscillate and emit THz 

radiation even after the excitation pulse passes the spatial location. 

The NESD, calculated from the THz electric field emitted into free-space, is shown in 

Fig. 6.11(c). Although the LN nonlinearity is strongest at a frequency of 7.5 THz [see Fig. 6.3], 

LN reststrahlen band loss strongly absorbs the generated photons before they can be emitted from 

the waveguide. As such, the peak NESD instead occurs at the lower frequency of 5.6 THz, where 

𝜒33
(2)

 exhibits enhancement but LN reststrahlen band loss is sufficiently low to allow for extraction 

of the THz radiation from the waveguide. An important metric for frequency-conversion structures 

is the conversion efficiency, which is calculated as 2.5×10-4 for this 100 µm-long waveguide. The 

planar LN waveguide also has the property of broadband THz radiation generation. When using a 

40 dB dynamic range (which is less than the dynamic range values often obtained experimentally 

[124]), this waveguide is able to produce frequency components between 0.2-11.6 THz. 
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Fig. 6.11. (a) Spatial distribution of the THz electric field produced by a waveguide having 

𝑇=500 nm and L=100 um. (b) THz time-domain electric field pulse generated by the planar LN 

waveguide and recorded in free-space. The arrow indicates the time at which the electric field 

distribution in (a) is recorded. (c) NESD of the THz radiation produced by the waveguide and 

emitted into free-space. The frequency components being considered are those emitted in the 

forward direction along the y axis with respect to the waveguide’s end face. 

 

THz radiation generation depends on the waveguide thickness, since this property affects 

absorption of the THz radiation produced in the LN core, influences the energy of the excitation 

pulse in the LN core, and impacts the bandwidth of the emitted THz radiation. Planar LN 

waveguides are studied having a length of L=100 µm and thicknesses ranging from 𝑇=0.3-5 µm.  

The NESD of the generated THz radiation is shown in Fig. 6.12(a), where it is clear that the peak 
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NESD value increases with 𝑇. This effect is from the peak electric field in the LN remaining 

constant with varying waveguide thicknesses, such that waveguides having larger thicknesses are 

excited by higher energy optical pulses. When considering the high-frequency region (i.e. 

~4-7 THz), the NESD is highest for waveguides having smaller core thicknesses. As was discussed 

in the waveguide analysis [see Fig. 6.10(b)], this high-frequency NESD improvement is from the 

𝑇≤1 µm waveguide modes having lower THz loss (i.e. longer Lp) and better OR phase-matching 

(i.e. longer 𝐿𝑐
𝑂𝑅) than the modes supported by waveguides having larger thicknesses. Notably, the 

phase-mismatching effects associated with the large-thickness waveguides (i.e. 𝑇>2 µm) are 

evident from the low-amplitude oscillation seen in the NESD curves at frequencies between 

2.6-5 THz. 

 

Fig. 6.12. NESD of THz radiation produced by waveguides having (a) L=100 µm and 

𝑇=0.3-5 µm, and (b) 𝑇=500 nm and L=20-200 µm. 

 

The THz electric field strength and bandwidth are also influenced by the length of the 

waveguides, such that waveguides are investigated for L=20-200 µm and 𝑇=500 nm. As shown in 

Fig. 6.12(b), the NESD peak value increases with increasing L. Interestingly, for frequencies in 

the spectral region of the NESD maximum, phase-mismatching effects are not observed (indicated 
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by the absence of phase-mismatching oscillations in the NESD), which is due to Lp<𝐿𝑐
𝑂𝑅 

[see Fig. 6.10(b)]. The NESD at frequencies ≲5 THz decreases for waveguides having L>100 µm, 

which is a result of the phase-mismatching effects occurring within this spectral region. For a 

waveguide length of L=100 µm, a large NESD value is achieved for frequencies near 5.6 THz (i.e. 

in the region exhibiting LN nonlinearity enhancement) and THz radiation generation occurs at 

frequencies ≲5 THz, since this waveguide length is sufficiently short to avoid phase-mismatching 

effects. As such, the optimal spectrum is produced by this L=100 µm planar LN waveguide. 

 

Fig. 6.13. Conversion efficiency of waveguides having L=100 µm and 𝑇=0.3-5 µm, as well as 

𝑇=500 nm and L=20-200 µm. 

 

The OR conversion efficiency, 𝜂𝑂𝑅, is an important property for designing the planar LN 

waveguides. Waveguides having 𝑇=0.3-2 µm have high 𝜂𝑂𝑅 (i.e. ≥1.7×10-4), as shown in 

Fig. 6.13. Although the maximum 𝜂𝑂𝑅 is 2.9×10-4 and occurs for a waveguide core thickness of 

𝑇=1 µm, the NESD of frequencies ≥5.5 THz is low [i.e. ≤2.5 pJ/(cm THz)]. As such, the 

waveguide having 𝑇=500 nm is optimal when designing a frequency-conversion structure having 
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both a high conversion efficiency (i.e. 𝜂𝑂𝑅=2.5×10-4) and strong high-frequency generation [e.g. 

NESD=10.9 pJ/(cm THz) at 5.6 THz]. Waveguides having L>100 µm provide the largest 

conversion efficiencies (i.e. 𝜂𝑂𝑅>2×10-4), where 𝜂𝑂𝑅 is seen to level off and decreases slightly. 

This is caused by phase-mismatching effects decreasing the NESD at frequencies ≲5 THz and the 

waveguide length approaching the propagation length of frequencies near the LN resonance. 

 

6.3. Backward THz DFG via modal phase-matching in a 

planar LN waveguide11 

In typical (i.e. forward) DFG geometries, the pump, signal, and idler waves propagate in the 

same direction. On the other hand, the backward DFG arrangement permits the idler wave to 

propagate in the direction opposite to the pump and signal waves. Due to forward and backward 

DFG arrangements providing different phase-matching requirements, the backward DFG 

geometry provides an added degree-of-freedom for generating phase-matched THz radiation. In 

this section, narrowband phase-matched THz radiation is produced via the backward DFG process 

in a SiO2-LN-air planar waveguide. 

 

6.3.1. Waveguiding structure 

Figure 6.14 shows the SiO2-LN-air planar waveguide having a LN layer thickness of 𝑇 and 

a length of L. The planar waveguide is excited using an electric field having a central-wavelength 

of 1550 nm and a pulse duration of 100 fs.  Both the TM0 pump electric field mode, �⃗� 𝑝, and the 

 
11

A version of this section’s work is published as B. N. Carnio and A. Y. Elezzabi, “Backward terahertz difference 

frequency generation via modal phase-matching in a planar LiNbO3 waveguide,” Opt. Lett. 45, 3657-3660 (2020). 
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TE0 signal electric field mode, �⃗� 𝑠, are excited at a peak electric field amplitude of 108 V/m. Due 

to the 𝜒15
(2)

 second-order nonlinear susceptibility element of the LN crystal, the TE0 and TE2 idler 

electric field modes, �⃗� 𝑖, are produced through the backward DFG process. Importantly, �⃗� 𝑝 at the 

pump frequency of fp interacts with �⃗� 𝑠 at the signal frequency of fs to produce �⃗� 𝑖 at the idler 

frequency of 𝑓𝑖  = 𝑓𝑝 − 𝑓𝑠. Unlike a PPLN waveguide (or the LN waveguides discussed in Sections 

6.1 and 6.2) that depends on the 𝜒33
(2)

 nonlinear susceptibility element for THz radiation generation 

[192–197], the modal phase-matched LN waveguiding arrangement illustrated in Fig. 6.14 relies 

on the 𝜒15
(2)

 nonlinear susceptibility element to generate THz radiation. The values of this dispersive  

𝜒15
(2)

  element are obtained from Fig. 5.3(c), the refractive indices and extinction coefficients of the 

 

Fig. 6.14. Illustration of the SiO2-LN-air planar waveguiding arrangement used for the phase-

matched backward DFG process. 
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LN crystal are provided in Fig. 5.2, and the refractive index and extinction coefficient of the SiO2 

substrate are taken from Ref. [182]. 

 

6.3.2. DFG THz radiation generation 

Phase-matching is investigated between �⃗� 𝑝 (i.e. the TM0 pump mode), �⃗� 𝑠 (i.e. the TE0 signal 

mode), and �⃗� 𝑖 (i.e. the TE0 and TE2 idler modes). The coherence length for the backward DFG 

process is given as, 𝐿𝑐
𝐷𝐹𝐺,− = 𝑐|𝑓𝑝𝑛𝑒𝑓𝑓

𝑚,𝑝 − 𝑓𝑠𝑛𝑒𝑓𝑓
𝑚,𝑠 + 𝑓𝑖𝑛𝑒𝑓𝑓

𝑚,𝑖 |
−1

2⁄ , where 𝑛𝑒𝑓𝑓
𝑚,𝑝

, 𝑛𝑒𝑓𝑓
𝑚,𝑠

, and 𝑛𝑒𝑓𝑓
𝑚,𝑖

 are 

the effective modal phase refractive indices of �⃗� 𝑝, �⃗� 𝑠, and �⃗� 𝑖, respectively. The inset of Fig. 6.15(a) 

depicts the TE0 �⃗� 𝑖 mode for the 𝑇=5 µm planar waveguide. Figure 6.15(a) shows that perfect 

phase-matching occurs at fi=2.4 THz, determined using the relationship of 𝑓𝑖  = 𝑓𝑝 − 𝑓𝑠. The inset 

of Fig. 6.15(b) depicts the TE2 �⃗� 𝑖 mode for the 𝑇=25 µm planar waveguide, and Fig. 6.15(b) shows  

 

Fig. 6.15. The backward DFG coherence length calculated using (a) the TE0 �⃗� 𝑖 mode for the 

𝑇=5 µm planar waveguide and (b) the TE2 �⃗� 𝑖 mode for the 𝑇=25 µm planar waveguide. The 

insets in (a) and (b) show the TE0 �⃗� 𝑖 mode and the TE2 �⃗� 𝑖 mode, respectively. The black areas 

identify the coherence lengths, where perfect phase-matching occurs along the red lines. In (a) 

and (b), perfect-phase matching occurs at fi=2.4 and 2.6 THz, respectively. 
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that perfect phase-matching occurs at fi=2.6 THz. Importantly, although the 𝑇=5 µm planar 

waveguides supports 11 TM modes and 11 TE modes, the TM0 �⃗� 𝑝 mode and TE0 �⃗� 𝑠 mode can be 

selectively excited using the coupling approach outlined in Ref. [91]. FDTD simulations show that 

a Gaussian beam waist diameter of 4 µm allows the power coupled into the TM0 and TE0 modes 

to be >500 higher than the power coupled into the higher-order (i.e. ρ=1-10) TMρ and TEρ modes. 

Similar reasoning holds for waveguides having other 𝑇. 

The backward DFG process is investigated for planar waveguides having L=100-500 µm 

and 𝑇=5 µm, where �⃗� 𝑖 is phase-matched using the TE0 mode [see Fig. 6.15(a)]. The generated 

THz time-domain electric fields are shown in Fig. 6.16(a), where the L=100 µm planar waveguide 

produces an electric field pulse having a short duration of ~4 ps. In comparison, the L=400-500 µm 

planar waveguides have durations of >10 ps, since the phase-matched backward DFG process is 

occurring over larger distances. The monotonically decaying nature of the time-domain electric 

fields suggest that generation occurs at a single frequency. Figure 6.16(b) shows the power spectra  

 

Fig. 6.16. (a) THz time-domain electric field pulses and (b) the associated spectral powers 

generated in the L=100-500 µm and 𝑇=5 µm planar waveguides. The electric fields are recorded 

at the planar waveguide’s input. The inset shows the conversion efficiency for the 

L=100-500 µm planar waveguides. 
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of the generated THz radiation, confirming this single-frequency generation at the idler frequency 

of fi=2.4 THz, as predicted from 𝐿𝑐
𝐷𝐹𝐺,−

 in Fig. 6.15(a). A FWHM linewidth of 260 GHz is 

obtained for the shortest planar waveguide length of L=100 µm; however, much narrower FWHM 

linewidths of <100 GHz are achieved for L=400-500 µm. Interestingly the L=100, 200, and 

300 µm spectral powers vary greatly, whereas the L=400 and 500 µm spectra are nearly identical. 

We must determine whether this is due to separation of �⃗� 𝑠 and �⃗� 𝑝, or due to absorption of the THz 

radiation. The distance at which �⃗� 𝑠 lags �⃗� 𝑝 by a time of Δt is given by the equation, 𝐿𝑠 =

𝑐∆𝑡 |𝑛𝑒𝑓𝑓,𝑔
𝑚,𝑝 − 𝑛𝑒𝑓𝑓,𝑔

𝑚,𝑠 |⁄ , where 𝑛𝑒𝑓𝑓,𝑔
𝑚,𝑝

is the effective group modal refractive index of �⃗� 𝑝 and 𝑛𝑒𝑓𝑓,𝑔
𝑚,𝑠

 

is the effective group modal refractive index of �⃗� 𝑠. Ls=353 µm when using Δt=100 fs (i.e. the 

duration of the pump and signal pulses). However, the propagation length due to absorption losses 

at 2.4 THz is Lp=203 µm, such that THz radiation absorption is the effect preventing further 

generation at L>300 µm. The DFG conversion efficiency, 𝜂𝐷𝐹𝐺 , of the narrowband THz radiation 

produced by the backward DFG process is shown in the inset of Fig. 6.16(b). 𝜂𝐷𝐹𝐺  increases 

linearly for L=100-200 µm and plateaus at the value of 𝜂𝐷𝐹𝐺=3.4×10-6 for L>300 µm, since 

Lp=203 µm. It is important to determine if 𝜂𝐷𝐹𝐺  is limited by the spatial modal overlap of  �⃗� 𝑝, �⃗� 𝑠, 

and �⃗� 𝑖, which is investigated by calculating the DFG overlap integral normalized to T, 

 

𝕊 = √
𝑇

√2

|∫ 𝐸𝑝(𝑥)𝐸𝑠(𝑥)𝐸𝑖(𝑥)
∞

−∞
𝑑𝑥|

√∫ 𝐸𝑝
2(𝑥)

∞

−∞
𝑑𝑥√∫ 𝐸𝑠

2(𝑥)
∞

−∞
𝑑𝑥√∫ 𝐸𝑖

2(𝑥)
∞

−∞
𝑑𝑥

 . (6.3) 

𝕊 exhibits the high value of 0.65 for the 𝑇=5 µm planar waveguide, such that 𝕊 does not 

significantly suppress 𝜂𝐷𝐹𝐺 . Notably, since THz radiation in the planar waveguide is confined 

below its diffraction limit, it would be emitted from the waveguide in the form of diverging 
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cylindrical waves. Similar to the discussion in Section 6.2.2, an on-axis planar parabolic 

reflector may be a good choice to collimate the generated THz radiation. 

 

Fig. 6.17. (a) THz time-domain electric field pulses and (b) the associated spectral powers 

produced in the 𝑇=2-5 µm and L=500 µm planar waveguides. The electric fields are recorded at 

the input of the planar waveguide. (c) The conversion efficiency (i.e. 𝜂𝐷𝐹𝐺) and �⃗� 𝑖 propagation 

length (i.e. Lp) for the 𝑇=2-5 µm planar waveguides. The inset shows the overlap integral values. 

 

The backward DFG process is further investigate for the 𝑇=2-5 µm and L=500 µm planar 

waveguides. As shown in Fig. 6.17(a), the generated THz time-domain electric fields have 

durations >10 ps and are monotonically decreasing in time. Narrowband THz radiation generation 

is achieved [see Fig. 6.17(b)], where the central frequency of the spectra is tunable within the range 

of 2.4-3 THz for 𝑇=2-5 µm. 𝜂𝐷𝐹𝐺  is shown in Fig. 6.17(c), where the highest conversion efficiency 
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of 𝜂𝐷𝐹𝐺=3.4×10-6 is observed for 𝑇=5 µm and reduces to the value of 𝜂𝐷𝐹𝐺=2.9×10-6 for 𝑇=2 µm. 

Since 𝕊=0.43-0.65 for the 𝑇=2-5 µm waveguides [inset of Fig. 6.17(c)], 𝜂𝐷𝐹𝐺  is not limited by 𝕊. 

Lp is shown in Fig. 6.17(c), where Lp=140-203 µm for the 𝑇=2-5 µm planar waveguides. As such, 

waveguides longer that this provide diminishing benefits. 

Interestingly, modal phase-matching can be applied to higher-order �⃗� 𝑖 modes, which allows 

for added tunability of the generated fi. The backward DFG process is investigated for planar 

waveguides having 𝑇=15-25 µm and L=500 µm, where �⃗� 𝑖 is phase-matched using the TE2 mode 

[see Fig. 6.15(b)]. Figure 6.18(a) shows the generated THz time-domain electric fields, which have 

time durations >10 ps, due to the long length of the planar waveguide (i.e. L=500 µm). It can be 

inferred that several frequencies are contributing to the modulated (i.e. beating) shape of the time-

domain electric fields. From the power spectra shown in Fig. 6.18(b), it is evident that two 

narrowband spectral regions are associated with THz radiation generation in each waveguide. The 

lower-frequency and higher-frequency spectral regions occur because �⃗� 𝑖 is phase-matched via the 

TE0 and TE2 modes, respectively. For the 𝑇=25 µm planar waveguide, THz radiation generation 

occurs at fi=2.6 THz, in agreement with 𝐿𝑐
𝐷𝐹𝐺,−

 in Fig. 6.15(b). The center of the high-frequency 

spectra is tunable between 2.6-3.2 THz by using 𝑇=15-25 µm waveguides. 𝕊 ≈0.36 for all 

waveguides having 𝑇=15-25 µm [see inset of Fig. 6.18(c)], such that the TE2 �⃗� 𝑖 modal distribution 

still allows for an appreciable spatial overlap. Figure 6.18(c) shows that 𝜂𝐷𝐹𝐺=4.15×10-6-4.55×10-6 

for the 𝑇=15-25 µm waveguides, which considers both the low-frequency and high-frequency 

spectral bands. As shown in Fig. 6.18(c), Lp=63-145 µm for the 𝑇=15-25 µm waveguides, such 

that waveguides longer than this provide diminishing benefits for THz radiation generation within 

the high-frequency spectral bands. 
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Fig. 6.18. (a) THz time-domain electric field pulses and (b) the associated spectral powers 

produced in the 𝑇=15-25 µm and L=500 µm planar waveguides. The electric fields are recorded 

at the input of the planar waveguide. (c) The conversion efficiency (i.e. 𝜂𝐷𝐹𝐺) and �⃗� 𝑖 propagation 

length (i.e. Lp) for the 𝑇=15-25 µm planar waveguides. The inset shows the overlap integral 

values. 

 

6.4. Excitation mode-dependent THz radiation generation 

from a planar LN waveguide12 

THz radiation generation in waveguides only supporting a few optical modes is highly 

dependent on the relative coupling strength of the excitation pulse into each of these modes. In 

 
12

A version of this section’s work is published as B. N. Carnio, B. Shahriar, E. Hopmann, and A. Y. Elezzabi, 

“Excitation mode-dependent terahertz radiation generation from a sub-wavelength Si-SiO2-LiNbO3-polymer-Si planar 

waveguide,” IEEE Trans. Terahertz Sci. Technol. 11, 462-465 (2021). 
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particular, each mode exhibits a different effective group refractive index, and thus different OR 

phase-matching requirements. When considering the generation of Cherenkov THz radiation, this 

difference in the effective group refractive index manifests as the generated THz radiation being 

emitted at different Cherenkov angles. Herein, we investigate OR THz radiation produced in a 

SiO2-LN-polymer planar waveguiding arrangement, which supports three TE modes (i.e. the TE0, 

TE1, and TE2 modes) at the optical excitation wavelengths. 

 

6.4.1. Waveguiding structure 

Figure’s 6.19(a)-6.19(c) depict the SiO2-LN-polymer planar waveguiding arrangement used 

for THz radiation generation. The LN layer is 530 nm thick, which is sandwiched between a 

2 µm-thick SiO2 layer and a 1.2 µm-thick polymer layer (i.e. AZ 1512 photoresist). Notably, the 

SiO2 and polymer layers are crucial to confine the excitation modes to the LN region. An excitation 

pulse having a central wavelength of 800 nm, a pulse duration of 50 fs, and a polarization along 

the c-axis of the LN crystal [i.e. z axis in Fig. 6.19(a)-6.19(c)] is coupled into the TE0, TE1, and 

TE2 modes supported by the SiO2-LN-polymer waveguiding region. The incident excitation beam 

has a diameter of 2.7 mm, which remains collimated along the z axis, but is focused to a width of 

4 µm along the x axis [using an acylindrical lens having a numerical aperture (NA) of 0.49]. 

Clearly, since the beam waist along the focused dimension is larger than the thickness of the LN 

region, the excitation beam does not fully couple into the waveguide. This coupling arrangement 

can be further improved by incorporating a higher NA acylindrical lens or by implementing a more 

complex coupling configuration [198]. Since the LN crystal has a non-vanishing 𝜒33
(2)

 second-order 

nonlinear coefficient  [see Fig. 5.3(a)],  the TE0,  TE1,  and  TE2  modes  induce  z-polarized second- 
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Fig. 6.19. Schematic of the LN planar waveguide depicting the (a) TE0, (b) TE1, and (c) TE2 

excitation modes. (d) The effective group refractive indices for the TE0, TE1, and TE2 excitation 

modes. 

 

order nonlinear dipoles. Subsequently, these oscillating bound charges produce THz radiation that 

form Cherenkov waves in the Si prism. The 45°-cut Si prism allows the generated THz radiation 

to avoid total internal reflection at the Si-air interface, permitting the THz radiation to be coupled 

out into free-space. Importantly, due to the planar nature of the Si-SiO2-LN-polymer-Si 

arrangement and the THz radiation being emitted as Cherenkov waves, the generated THz 

radiation has a planar wavefront [91,120]. Figure 6.19(d) shows the effective group refractive 

indices, 𝑛𝑒𝑓𝑓,𝑔
𝑚 , of the TE0, TE1, and TE2 modes. For this Cherenkov generation scheme, the 
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emission angle of the generated THz radiation can be calculated using Eq. (6.2) (which depends 

on 𝑛𝑒𝑓𝑓,𝑔
𝑚  and the effective refractive index of the generated THz radiation, 𝑛𝑒𝑓𝑓

𝑇𝐻𝑧). Since the LN 

thickness (i.e. 530 nm) is sub-wavelength with respect to the generated THz radiation wavelengths, 

𝑛𝑒𝑓𝑓
𝑇𝐻𝑧 is simply the THz refractive index of the Si prism (i.e. ~3.42 for frequencies <4 THz [199]). 

At the central excitation wavelength of 800 nm, 𝜃𝑐=47.6°, 44.6°, and 50.6° for the TE0, TE1, and 

TE2 modes, respectively. Therefore, the TE0, TE1, and TE2 modes will each produce their own 

angle-dependent Cherenkov THz radiation pulse. 

 

6.4.2. OR THz radiation generation 

THz radiation generation is experimentally investigated from the SiO2-LN-polymer planar 

waveguide, as well as from a 500 µm-thick, (110)-cut bulk ZnTe crystal for comparison. To 

measure THz radiation generation, the waveguiding structure and the bulk ZnTe crystal are 

separately utilized as the THz source in the THz-TDS system [see Chapter 3]. Figure 6.20(a) shows 

the THz time-domain signal produced by the planar waveguiding arrangement and the THz time-

domain signal obtained from the bulk ZnTe crystal. Three temporally-separated THz radiation 

pulses are produced by the TE0, TE1, and TE2 modes supported by the planar waveguide. Despite 

these THz radiation pulses being emitted at various 𝜃𝑐, they are collected and measured by the 

THz-TDS system, as it incorporates parabolic coupling and focusing mirrors to direct all of the 

beams to a 500 µm-thick ZnTe EO sampling crystal. However, the different 𝜃𝑐 cause the three 

THz radiation pulses to traverse different paths through the THz-TDS system, manifesting as a 

path length difference due to inexactness in the positions of the mirrors, inexactness in the angles 

of the mirrors, deformities in the surfaces of the parabolic mirrors, etc. Since the THz radiation 

pulses propagate >40 cm and the path length difference between the THz radiation pulses at t=4 ps 
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and t=17 ps is only 3.9 mm, it is challenging to determine with high certainty at which positions 

in the system the path length difference manifests. Nonetheless, we expect that the lowest-

amplitude THz radiation pulse observed at t=17 ps is being generated by the TE2 mode. The low-

amplitude of this THz radiation pulse is due to the dispersion of 𝑛𝑒𝑓𝑓,𝑔
𝑚  [i.e. see Fig. 6.19(d)], which 

varies from 2-2.4 over the wavelength range of 760-820 nm. The frequency components in the TE2 

mode spatially-separate after a much shorter distance than the frequency components in the TE0 

or TE1 modes. This, in turn, lowers the peak intensity of the TE2 mode and its efficiency to generate 

THz radiation. Despite the TE1 mode having an odd spatial distribution, this mode is excited due 

to non-idealities in the waveguide and coupling arrangement (e.g. roughness of the waveguide’s 

input facet, the excitation beam deviating from normal incidence, etc.). However, since the 

Gaussian excitation beam has a spatial profile that is similar to the TE0 mode, the TE0 mode is 

expected to exhibit a higher coupling efficiency than the TE1 mode. Therefore, it is possible that 

the highest-amplitude THz radiation pulse at t=4 ps is produced by the TE0 mode and the THz 

radiation pulse at t=10 ps is produced by the TE1 mode. It should be noted that the THz radiation 

pulses indicated by the red arrows occur from reflections in the 500 µm-thick EO crystal. This 

observation is supported by comparing the THz time-domain signal from the waveguiding 

arrangement to that from the bulk ZnTe crystal, indicating that these pulses are not from the 

generation arrangements but are artifacts of the THz-TDS system. To further verify that the three 

THz radiation electric field pulses in Fig. 6.20(a) are from the TE0, TE1, and TE2 modes of the 

sub-wavelength LN planar waveguide, we consider THz radiation generation from a LN planar 

waveguide having a thickness much larger than the wavelength of the excitation electric field. For 

such waveguides, numerous of the lowest-order excitation modes exhibit the same 𝑛𝑒𝑓𝑓,𝑔
𝑚 , and 

therefore the same 𝜃𝑐, such that there is no temporal separation between the THz radiation pulses 
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produced by the various excitation modes. This is supported by many publications [91, 116, 118–

121,123], where only a single THz radiation pulse is observed. Additionally, we conduct an 

experimental analysis on a 5 µm-thick LN planar waveguide that is otherwise similar to the sub-

wavelength 530 nm-thick LN planar waveguide. For such a waveguide, many of the lowest-order 

excitation modes (i.e. the TE0, TE1, TE2, TE3, and TE4 modes) exhibit the same 𝑛𝑒𝑓𝑓,𝑔
𝑚 ≈2.28, and 

therefore the same 𝜃𝑐≈48°. Our measurements confirm the generation of only a single THz 

radiation pulse. 

 

Fig. 6.20. (a) THz time-domain electric field generated from the TE0, TE1, and TE2 excitation 

modes of a LN planar waveguide and from a 500 µm-thick bulk ZnTe crystal. The red arrows 

indicate pulses from reflections in the EO crystal. (b) Spectral densities obtained by isolating 

the individual pulses at t=4, 10, and 17 ps. The inset shows the THz spectral density of the bulk 

ZnTe crystal. 

 

Figure 6.20(b) shows the spectral densities of the THz radiation electric field pulses 

produced by the TE0, TE1, and TE2 modes, and the inset of Fig. 6.20(b) depicts the spectral density 

of the THz radiation electric field pulse produced by the bulk ZnTe crystal. Notably, these spectral 

densities are obtained by isolating each of the THz radiation pulses, thus avoiding the EO reflection 
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artifacts. Clearly, the THz radiation pulses produced by the planar waveguide and the THz 

radiation pulse produced by the bulk ZnTe crystal have similar bandwidths, encompassing 

frequencies up to ~3 THz. 

It is imperative to determine the OR THz radiation energy, 𝜉𝑂𝑅, and OR conversion 

efficiency, 𝜂𝑂𝑅, at various excitation pulse peak intensities in the planar waveguide, Ip. 

Figure 6.21(a) shows that 𝜉𝑂𝑅 ∝ 𝐼𝑝
2, as expected, and 𝜉𝑂𝑅 exhibits a maximum value of 22 fJ at 

Ip=4 GW/cm2. Additionally, Fig. 6.21(b) shows the expected relationship of 𝜂𝑂𝑅 ∝ Ip and 𝜂𝑂𝑅 

exhibits a maximum value of 1.1×10-5 at Ip=4 GW/cm2. The out-coupling Si prism has an 

extinction coefficient of 0.006 in the THz frequency regime, corresponding to an absorption 

coefficient of 2.5 cm-1 at the frequency of 1 THz. Since the generated THz radiation propagates an 

average distance of 3.5 mm through the Si prism, 59% of the generated THz radiation is being lost 

to absorption, which reduces 𝜉𝑂𝑅 and 𝜂𝑂𝑅 by the same amount. Therefore, implementing a lower 

THz radiation absorbing Si prism would permit a maximum 𝜉𝑂𝑅=54 fJ and a maximum 𝜂𝑂𝑅 

=2.7×10-5. Importantly, this 𝜂𝑂𝑅 is comparable to Cherenkov waveguide THz radiation generation 

arrangements that utilize similar Ip, such as that in Ref. [120]. 

 

Fig. 6.21. (a) Energy and (b) conversion efficiency for the generated THz radiation. 𝜉𝑂𝑅 ∝ 𝐼𝑝
2 

and 𝜂𝑂𝑅 ∝ Ip are the theoretical equations describing this second-order nonlinear process. 
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6.5. Summary 

Using the numerical FDTD techniques developed in Chapter 5, three unique planar LN 

waveguides are investigated for THz radiation generation via the second-order nonlinear processes 

of OR or DFG. The planar LN waveguide in Section 6.1 produced Cherenkov THz radiation that 

encompassed frequencies across the ultra-broad spectral range of 0.18-106 THz. The waveguide 

presented in Section 6.2 exhibited THz radiation generation enhancement near the LN phonon 

mode resonance, which allowed for THz radiation having a high central-frequency (i.e. 5.6 THz), 

a high electric field (i.e. kV/cm), and a high conversion efficiency (i.e. ~10-4). Section 6.3 

considered a planar waveguide that supported phase-matched THz radiation generation in the 

backwards direction (i.e. the generated THz radiation propagates in the direction opposite to the 

propagation direction of the excitation pulse). Such a waveguide was shown to produces 

narrowband (i.e. <100 GHz) THz radiation tunable between 2.4-3.2 THz. In Section 6.4, OR 

experiments were conducted using a planar LN waveguide, where the generated THz radiation 

was emitted into free-space as Cherenkov waves dependent on the excitation mode. The THz 

radiation encompassed frequencies up to ~3 THz and exhibited a conversion efficiency on the 

order of 10-5. Upon scaling the length of the waveguide, we envision such structures being 

integrated as on-chip sources of THz radiation. Additionally, by utilizing excitation pulses with 

ultrashort pulse duration (i.e. ≲10 fs), we foresee these waveguides being used to produce ultra-

broadband THz radiation. 
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Chapter 7. 

Generation of radiation in the near-IR 

and visible spectral regions 
 

Second-order nonlinear optical phenomenon are not constrained to THz frequencies, since 

the physical principles driving the nonlinear interactions extend into other spectral regimes. 

Without any modification to the numerical approaches develop in Chapter 5, they can be used to 

explore generation in the near-IR and visible regions of the EM spectrum. Optical frequency-

conversion in these spectral regions has become essential with advancements in optical 

communication [180,200,201], optical computing [202–204], and entangled photon generation for 

quantum computing [205,206]. In optical communication, all-optical frequency-conversion is 

necessary to implement wavelength division multiplexers for broadband data transfer 

[180,200,201]. These devices depend on frequency-conversion via the cascaded processes of 

SFG/DFG or SHG/DFG [180,200,201]. Additionally, developing the critical components of 

optical computing (e.g. the optical transistor and logic gates) rely upon all-optical nonlinear 

frequency-conversion processes [202–204]. Previously, optical NOT, AND, OR, NAND, NOR, 

XOR, and XNOR gates have been proposed, which require structures that convert the wavelength 

of light using the effects of SHG, SFG, DFG, and spontaneous parametric down conversion 

(SPDC) [202–204]. Regarding optical frequency-conversion for quantum photonics, cascaded 

SHG/SPDC or SFG/SPDC processes in waveguides are critical to the generation of polarization 

entangled photon pairs [205,206]. 
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When considering on-chip applications, it is imperative that the optical frequency-

conversion takes place in a compact footprint that is suitable for fabrication on the limited surface 

area of the chip. Both nanoscale and microscale structures are the primary means of achieving 

frequency-conversion in a small footprint, which has been observed in LN, AlN, GaN, and ZnSe 

waveguides [207–211], LN microresonators [212,213], and LN photonic crystal cavities 

[214,215]. Preferred arrangements for second-order nonlinear frequency-conversion are 

waveguides satisfying modal phase-matching or quasi-phase-matching, since both configurations 

allow for phase-matched operation, permit strong confinement of the fields, and have a small 

footprint compatible with on-chip applications. In this Chapter, SHG in LN and CSP waveguiding 

arrangements is numerically investigated (using the techniques developed in Chapter 5) for 

producing radiation in the near-IR and visible spectral regions. Subsequently, a planar LN 

waveguiding arrangement is experimentally-realized, which produces radiation in the visible 

spectral region via SHG. As discussed in Chapter 2, SHG, SFG, DFG, and OR are all second-order 

nonlinear processes capable of converting photons at certain frequencies to photons at other 

frequencies, such that this chapter emerges as a natural extension of investigating second-order 

nonlinear phenomena. 
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7.1. SHG in Au-LN-Au and LN hybrid-plasmonic 

waveguides13 

Plasmonic effects are realized when an EM wave couples to the surface of a metal, resulting 

in the energy of the EM wave occupying a localized spatial region. Typically, higher peak 

intensities are realized when utilizing plasmonic confinement techniques, opposed to other 

confinement techniques (e.g. a dielectric waveguide of comparable dimensions). Since conversion 

efficiency is directly related to the peak intensity of the excitation pulse, plasmonic structures have 

received considerable attention in the area of nonlinear frequency-conversion. Herein, a metal-

LN-metal (MLNM) nanoplasmonic waveguide and a LN hybrid-plasmonic (LNHP) waveguide 

are investigated for ultrashort electric field pulse generation occurring via the second-order 

nonlinear process of SHG. 

 

7.1.1. Waveguiding structures 

Figure 7.1(a) and 7.1(d) illustrate the MLNM nanoplasmonic and LNHP 

frequency-conversion waveguides, respectively, which are supported by a SiO2 platform. The 

MLNM nanoplasmonic waveguiding structure is composed of a thin LN layer of thickness 𝑇, 

width W, and length L that is sandwiched between two 100 nm-thick gold film layers. 

Alternatively, the LNHP waveguide is composed of stacked gold, LN, and Si layers. Here, the LN 

width, thickness, and length are denoted as W, 𝑇, and L, respectively, the gold thickness is set to 

100 nm, and the Si layer thickness is set as 123 nm. Since a substantial portion of the excitation 

 
13

A version of this section’s work is published as B. N. Carnio and A. Y. Elezzabi, “Second harmonic generation in 

metal-LiNbO3-metal and LiNbO3 hybrid-plasmonic waveguides,” Opt. Express 26, 26283-26291 (2018). 
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and SHG modes are situated in the Si, this layer is used to adjust the effective refractive indices of 

these modes, where a Si thickness of 123 nm permits phase-matching. Notably, gold is chosen as 

the metal layer because it provides a stable chemical structure in air. This contrasts with silver, 

which is known to react with sulfur compounds in air and produce silver sulfide. In both 

waveguides, the c-axis of the LN is oriented along the z axis and the crystal’s cross-section is cut 

along the (010) plane. The waveguides are excited by an electric field pulse having a 

central-wavelength of 1550 nm and a pulse duration of 100 fs. As such, the resulting excitation 

mode generates photons near a wavelength of 775 nm via SHG as it propagates along the LN 

waveguides. Importantly, very detailed analyses have been performed on coupling into these 

plasmonic waveguides [216–219]. For LN, the second-order nonlinear coefficient tensor is, 

 

𝑑𝐿𝑁 = [
0 0 0

−𝑑22 𝑑22 0
𝑑31 𝑑31 𝑑33

0 𝑑31 −𝑑22

𝑑31 0 0
0 0 0

] , (7.1) 

where d31=4 pm/V, d22=-2.4 pm/V, and d33=20.6 pm/V at an excitation wavelength of 1550 nm 

[189–191,220–222]. Notably, Eq. (7.1) utilizes the Kleinman symmetry condition, which is valid 

since dispersion is low across the relevant spectral regions [31]. The simulations implement the 

complete second-order nonlinear coefficient tensor of LN [i.e. Eq. (7.1)]. Furthermore, while 

nonlinear effects such as multi-photon absorption occur in LN at intensities >100 GW/cm2 [186], 

the excited waveguide modes all have a peak intensity of 10 GW/cm2, such that these nonlinear 

effects do not influence the SHG process. The ordinary and extraordinary refractive indices of the 

uniaxial LN crystal are obtained from Ref. [172], the linear optical properties of Si and SiO2 are 

both taken from Ref. [182], and the linear optical data for gold is attained from Ref. [223]. 

Figure 7.1(a) illustrates the cross-section of the W=400 nm and 𝑇=780 nm MLNM 

nanoplasmonic waveguide. At these dimensions, the MLNM nanoplasmonic waveguide supports 
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the excitation mode and the quasi-TM00 SHG mode displayed in Fig. 7.1(b) and 7.1(c), 

respectively. Notably, these modes exhibit significant spatial overlap and have the majority of their 

electric field polarization along the z axis, such that photons generated near 775 nm couple to the 

quasi-TM00 SHG mode with a high efficiency. Similarly, the W=400 nm and 𝑇=100 nm LNHP 

waveguide [Fig. 7.1(d)] supports the excitation mode displayed in Fig. 7.1(e) and the SHG mode 

presented in Fig. 7.1(f). Again, since these modes occupy the same spatial region and both possess 

a significant z-directed electric field polarization component, photons generated near 775 nm 

couple to the SHG mode with high efficiency. 

 

Fig. 7.1. (a) Cross-sectional schematic of the W=400 nm and 𝑇=780 nm MLNM nanoplasmonic 

waveguide. (b) λexc=1550 nm and (c) λSHG=775 nm modal intensity distributions supported by 

the MLNM nanoplasmonic waveguide. (d) Cross-section of the W=400 nm and 𝑇=100 nm 

LNHP waveguide. (e) λexc=1550 nm and (f) λSHG=775 nm modal intensity distributions 

supported by the LNHP waveguide. 
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7.1.2. SHG in MLNM nanoplasmonic and LNHP waveguides 

The phase-matching condition is investigated for both the MLNM nanoplasmonic and LNHP 

waveguides. Figure 7.2(a) depicts the effective refractive indices of the modes, 𝑛𝑒𝑓𝑓
𝑚 , for both 

waveguides over the wavelength ranges of λexc=1450-1650 nm and λSHG=725-825 nm. By 

choosing 𝑇=780 nm for the MLNM nanoplasmonic and 𝑇=100 nm for the LNHP waveguides, the 

excitation wavelength of λexc=1550 nm is phase-matched to the SHG wavelength of λSHG=775 nm. 

The SHG coherence length, 𝐿𝑐
𝑆𝐻𝐺 , is calculated from the relationship (see Section 2.3.2), 

 

Fig. 7.2. (a) Effective refractive indices of the MLNM nanoplasmonic and LNHP modes, 

illustrating phase-matching between λexc=1550 nm and λSHG=775 nm. (b) Coherence length for 

the MLNM nanoplasmonic and LNHP waveguides. (c) Propagation lengths of the excitation 

and SHG wavelengths for the MLNM nanoplasmonic and LNHP waveguides. 
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𝐿𝑐
𝑆𝐻𝐺(𝜆𝑆𝐻𝐺) =

𝜆𝑆𝐻𝐺

2|𝑛𝑒𝑓𝑓
𝑚 (𝜆𝑒𝑥𝑐) − 𝑛𝑒𝑓𝑓

𝑚 (𝜆𝑆𝐻𝐺)|
 , (7.2) 

where λSHG= λexc/2. 𝐿𝑐
𝑆𝐻𝐺  is presented in Fig. 7.2(b), where the large peaks correspond to perfect 

phase-matching between λexc=1550 nm and λSHG=775 nm. Importantly, a large 𝐿𝑐
𝑆𝐻𝐺  is also 

obtained in the vicinity of λSHG=775 nm. For example, at a SHG wavelength of λSHG=780 nm, the 

MLNM nanoplasmonic and the LNHP waveguides have an 𝐿𝑐
𝑆𝐻𝐺  of 310 and 28 µm, respectively. 

Figure 7.2(c) shows the propagation length, Lp, of the excitation and SHG wavelengths. The small 

Lp values (i.e. <40 µm) observed in both waveguides are primarily due to loss introduced by the 

gold layers at both the excitation and SHG wavelengths. Clearly, the MLNM nanoplasmonic 

waveguide exhibits the largest Lp at the SHG wavelengths, since the associated quasi-TM00 mode 

is mainly confined to the LN core and only a small portion of the electric field interacts with the 

gold layers. In both the MLNM nanoplasmonic and LNHP waveguide, Lp<𝐿𝑐
𝑆𝐻𝐺  near the central 

excitation and SHG wavelengths, such that absorption loss is the dominant mechanism limiting 

the length over which frequency-conversion can occur in these waveguides. 

The time-averaged spatial distribution of the electric field magnitude at λSHG=775 nm is 

provided for the MLNM nanoplasmonic waveguide [Fig. 7.3(a)] and the LNHP waveguide 

[Fig. 7.3(b)]. For the MLNM nanoplasmonic waveguide [i.e. Fig. 7.3(a)], the electric field of the 

quasi-TM00 SHG mode increases in magnitude with increasing propagation distance along the 

y axis. Since no electric field amplitude oscillations are observed, the MLNM nanoplasmonic 

waveguide does not support other phase-mismatched SHG modes. Furthermore, the quasi-TM00 

nature of this SHG mode would allow for efficient coupling into photonic waveguiding structures 

(e.g. a LN core). For the LNHP waveguide [i.e. Fig. 7.3(b)], the SHG mode has the highest electric 

field magnitude at a distance of y=4-6 µm from the input of the waveguide, such that the optimal 
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waveguide length of the LNHP waveguide is found to be between y=4-6 µm. Beyond this 

propagation distance, the SHG electric field decreases due to high loss at the excitation and SHG 

wavelengths. Clearly, part of the electric field propagates in the SiO2 substrate layer. This is due 

to the height of the Si layer being 123 nm, which is less than the SHG wavelength in the Si layer 

(i.e. ~200 nm). An interesting observation from Fig. 7.3(b) is the presence of electric field 

amplitude oscillations, where each electric field maximum is separated by a distance of ~1.2 µm.  

 

Fig. 7.3. Magnitude of the time-averaged spatial electric field distribution recorded at 

λSHG=775 nm for the (a) MLNM nanoplasmonic and (b) LNHP waveguides. (c) SHG 

time-domain electric field pulses and (d) SHG spectral density recorded in the waveguides near 

the positions of maximum electric fields. 
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This effect is due to a portion of the generated photons coupling to a phase-mismatched waveguide 

mode having an effective refractive index of 2.74 at λSHG=775 nm. 

Figure 7.3(c) shows the SHG time-domain electric field signals recorded near the regions 

where the field is strongest. Notably, the electric field is very high in both the MLNM 

nanoplasmonic and LNHP waveguides, exhibiting peak-to-peak values of 40 and 16 kV/cm, 

respectively. For both the MLNM nanoplasmonic and LNHP waveguides, the SHG pulse durations 

are ~70 fs. Since SHG is dependent on the intensity of the excitation pulse, the SHG signals exhibit 

a shorter pulse duration than the 100 fs excitation pulse. As seen from Fig. 7.3(d), the spectral 

density of the SHG electric field pulses show uniform spectral distributions centered around 

~775 nm. This is expected, since Lp<𝐿𝑐
𝑆𝐻𝐺  near 775 nm in the MLNM nanoplasmonic waveguide 

and the LNHP waveguides [see Figs. 7.2(b) and 7.2(c)]. From these spectral density plots, the SHG 

FWHM power bandwidths are calculated as 12 nm (i.e. 6 THz). Therefore, in terms of frequency, 

the SHG pulses have a larger bandwidth in comparison to the 4.4 THz FWHM power bandwidth 

associated with the 100 fs excitation pulse. Again, this is due to the SHG dependence on the 

excitation pulse intensity. 

The performance of the phase-matched frequency-conversion plasmonic waveguides is 

studied by calculating the SHG conversion efficiency, 𝜂𝑆𝐻𝐺 . Figure 7.4 demonstrates enhanced 

frequency-conversion obtained from the MLNM nanoplasmonic and LNHP waveguides in 

comparison to phase-matched Metal-LN (MLN) plasmonic and LN photonic waveguides. By 

choosing the LN photonic waveguide to have cross-sectional dimensions of 400 nm × 837 nm (see 

Fig. 7.4 inset), phase-matching is achieved between the TM00 mode at λexc=1550 nm and the TM02 

mode at λSHG=775 nm. Similarly, the cross-sectional dimensions of the MLN plasmonic waveguide 

are chosen as 400 nm × 509 nm, with a 100 nm-thick top gold layer (see Fig. 7.4 inset). This allows 
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phase-matching to be achieved between the plasmonic excitation mode at λexc=1550 nm and the 

quasi-TM00 SHG mode at λSHG=775 nm. The MLN plasmonic waveguide exhibits the lowest 

conversion efficiency (i.e. 𝜂𝑆𝐻𝐺<9×10-6) at nearly all investigated lengths. This is due to the 

plasmonic excitation mode being highly confined to the metal-LN interface, while the quasi-TM00 

SHG mode is primarily located in the LN central region, such that the spatial overlap of the electric 

fields is poor. Oscillations are evident in 𝜂𝑆𝐻𝐺  of the LN photonic waveguide, which arise from 

generation of the phase-mismatched TM00 SHG mode. From the effective refractive index of the 

TM00 excitation mode (𝑛𝑒𝑓𝑓
𝑚 =1.64) and the TM00 SHG mode (𝑛𝑒𝑓𝑓

𝑚 =2), the coherence length of 

these modes is calculated as 𝐿𝑐
𝑆𝐻𝐺=1.1 µm at λSHG=775 nm. The power converted to a SHG mode 

is back-converted to the excitation mode after the distance of 2𝐿𝑐
𝑆𝐻𝐺  [224] [see also Fig. 2.6(c) in 

Section 2.2.2]. This effect is clearly observed in Fig. 7.4, where the spatial oscillations have a 

period of 2𝐿𝑐
𝑆𝐻𝐺=2.2 µm. Notably, in this photonic waveguide, coupling between the TM00 

excitation mode and the phase-mismatched TM00 SHG mode is unavoidable because of the 

significant spatial overlap they exhibit. 

The MLNM nanoplasmonic waveguide and the photonic LN waveguide are excited at the 

same peak intensity of 10 GW/cm2, corresponding to excitation energies of 0.83 and 1 pJ, 

respectively. The L=10 µm MLNM nanoplasmonic waveguide has 𝜂𝑆𝐻𝐺=6.5×10-5, which is 2.5 

times higher than the value attained from the photonic LN waveguide. Furthermore, the L=20 µm 

MLNM nanoplasmonic waveguide reaches a high 𝜂𝑆𝐻𝐺  of 1.1×10-4, where this value is 1.15 times 

the value obtained from the photonic LN waveguide. Although the MLNM nanoplasmonic 

waveguide clearly exhibits the largest 𝜂𝑆𝐻𝐺  at waveguide lengths between L=4.7-20 µm, this 

comes at the expense of having a large footprint (i.e. large L). For lengths of L=1.2-4.7 µm, the 

LNHP waveguide exhibits the highest conversion efficiencies, ranging from 𝜂𝑆𝐻𝐺=0.5-2.3×10-5 
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and reaching its maximum value at L=4.5 µm. In comparison to the photonic LN waveguide of 

L=2.1 and 4.5 µm, the LNHP waveguide exhibits an 𝜂𝑆𝐻𝐺  that is 11 and 4 times higher, 

respectively. This dramatic enhancement is achieved despite the fact that the LNHP and photonic 

LN waveguides are being excited at the different energies of 0.22 and 1 pJ, respectively. This 

improvement in 𝜂𝑆𝐻𝐺  is attained by confining the electric field to a smaller region in the LNHP 

waveguide in comparison to the LN photonic waveguide [225]. The L>4.5 µm LNHP waveguides 

are strongly influenced by loss at the excitation and SHG wavelengths, such that 𝜂𝑆𝐻𝐺  decreases 

to ~0 at L20 µm. Clearly, the LNHP waveguides are well-suited as miniaturized radiation sources 

for on-chip nano-optoelectronic applications. 

 

Fig. 7.4. Conversion efficiency for various lengths of the MLNM nanoplasmonic and LNHP 

waveguides. For comparison, the conversion efficiency is determined in a 400 nm × 509 nm 

phase-matched MLN waveguide with a 100 nm thick gold layer situated on the LN, as well as 

a 400 nm × 837 nm phase-matched LN photonic waveguide (see insets). 
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7.2. Optical frequency SHG in a CSP photonic waveguide14 

As stated in Table 1.1, CSP has the key properties of a wide bandgap (i.e. 2.45 eV [37]) and 

a high second-order nonlinear coefficient (i.e. d36=84.5 pm/V at an excitation wavelength of 

4.6 µm [35]). Additionally, CSP exhibits a transparency range having a lower cut-off wavelength 

of 520 nm [35] [see Table 1.1]. In this section, nonlinear FDTD simulations are performed to 

investigate SHG near the wavelength of 775 nm in a CSP photonic waveguide, the results of which 

are compared to SHG from a LN photonic waveguide. 

 

7.2.1. Waveguiding structure 

The CSP and LN photonic waveguiding structure, having dimensions of W × 𝑇 × L and being 

situated on a low-index SiO2 layer, is illustrated in Fig. 7.5. A 1550 nm central-wavelength electric 

field pulse having a duration of 100 fs is coupled into the CSP or LN region and propagates along 

the photonic waveguide. In such a frequency-conversion structure, SHG is the nonlinear process 

responsible for producing photons having wavelengths near 775 nm. To maximize frequency-

conversion, the CSP photonic waveguide cross-section is cut along the (110) crystal plane and the 

LN photonic waveguide cross-section is cut along the (010) crystal plane, as shown in Fig. 7.5. 

Notably, both CSP and LN are uniaxial crystals with their optical axes along the c-axis. As such, 

z-directed electric field polarizations experience an extraordinary refractive index, while x and y-

polarized electric fields experience an ordinary refractive index. When simulating the photonic 

 
14A version of this section’s work is published as B. N. Carnio and A. Y. Elezzabi, “Second harmonic generation in 

CdSiP2 nanowires in the optical frequency regime,” IEEE Photonic Tech. Lett. 30, 1408-1411 (2018). 
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waveguides, the peak excitation pulse intensity is kept to values <11.4 GW/cm2, which is below 

the threshold for multi-photon absorption15 [186]. 

The uniaxial CSP and LN crystals are modeled using the linear optical data from Refs. [146] 

and [172], respectively, whereas the linear optical properties of the SiO2 layer are taken from 

Ref. [182]. The comprehensive FDTD simulations implement the full second-order nonlinear 

tensor for both CSP and LN. Since CSP has 4̅2𝑚 point group symmetry [226], it has a nonlinear 

tensor of the form [43], 

 

𝑑𝐶𝑆𝑃 = [
0 0 0
0 0 0
0 0 0

𝑑36 0 0
0 𝑑36 0
0 0 𝑑36

] , (7.3) 

 

Fig. 7.5. Illustration of the CSP/LN photonic waveguide. A 1550 nm excitation pulse is 

converted to 775 nm via nonlinear effects in the photonic waveguides. The cross-sections of the 

photonic waveguides are cut along the (110) and (010) planes of the CSP and LN crystals, 

respectively. 

 
15Using a 1550 nm, 84 fs pump pulse having a peak intensity between 0-20 GW/cm2, we experimentally observed 

intensity-independent transmission through the CSP crystal and a linear-dependence with SHG electric field 

generation in the CSP crystal. 
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where the Kleinman symmetry condition is utilized [31]. d36=105 pm/V at the excitation 

wavelength of 1550 nm, which is calculated using Miller’s rule with d36=84.5 pm/V at a 

wavelength of 4.56 µm [226] and the CSP linear optical data in Ref. [146]. In reference to the 

coordinate system illustrated in Fig. 7.5, 𝑑𝐶𝑆𝑃 is used to ascertain the z-directed second-order 

nonlinear polarization, 

 𝑃𝑧,𝐶𝑆𝑃
(2)

= 2𝜀0𝑑36𝐸𝑥
2 − 2𝜀0𝑑36𝐸𝑦

2 , (7.4) 

where 𝐸𝑥,𝑦 are the excitation electric fields polarized along the x and y axes, respectively. From 

Eq. (7.4) and the orientation of the CSP photonic waveguide shown in Fig. 7.5, it is evident that 

the excitation electric field should be largest along the x axis in order to generate the highest 𝑃𝑧,𝐶𝑆𝑃
(2)

. 

Alternatively, the LN crystal has 3m point group symmetry [173], the nonlinear tensor in Eq. (7.1), 

and d31=4 pm/V, d22=-2.4 pm/V, and d33=20.6 pm/V at 1550 nm [173, 189, 231,232, 190, 220–

222,227–230]. As such, the z-directed second-order nonlinear polarization is,  

 𝑃𝑧,𝐿𝑁
(2)

= 2𝜀0𝑑31𝐸𝑥
2 + 2𝜀0𝑑31𝐸𝑦

2 + 2𝜀0𝑑33𝐸𝑧
2 , (7.5) 

where 𝐸𝑧 is the excitation electric field polarized along the z axis. Since d33 is ~5 times larger than 

d31, the LN excitation mode should have the largest electric field contribution along the z axis to 

produce the highest 𝑃𝑧,𝐿𝑁
(2)

. 

 

7.2.2. SHG in CSP and LN photonic waveguides 

The CSP and the LN photonic waveguides are set to have the same sub-micron width of 

W=600 nm, while the photonic waveguide thickness, 𝑇, is optimized to achieve phase-matching. 

The insets in Fig. 7.6(a) display the phase-matched modes supported by the W=600 nm and 

𝑇=650 nm CSP photonic waveguide at the wavelengths of 1550 and 775 nm. Clearly, this photonic 
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waveguide supports the TE00 mode at 1550 nm and the TM20 mode at 775 nm. Figure 7.6(a) shows 

the effective refractive indices of the CSP mode, 𝑛𝑒𝑓𝑓
𝑚,𝐶𝑆𝑃

, at the excitation wavelengths and the 

SHG wavelengths, where 𝑛𝑒𝑓𝑓
𝑚,𝐶𝑆𝑃

=2.68 at exc=1550 nm and SHG=775 nm. The LN photonic 

waveguide of W=600 nm and 𝑇=987 nm supports the TM00 mode at 1550 nm and the TM02 mode 

at 775 nm, as shown in the insets of Fig. 7.6(b). The frequency-dependent effective refractive 

 

Fig. 7.6. (a) The effective refractive indices of the TE00 excitation mode and TM20 SHG mode 

for the 600 nm × 650 nm CSP photonic waveguide. The insets depict the transverse mode 

profiles at wavelengths of exc=1550 nm and SHG=775 nm. (b) The effective refractive indices 

of the TM00 excitation mode and TM02 SHG mode for the 600 nm × 987 nm LN photonic 

waveguide. The insets depict the exc=1550 nm and SHG=775 nm transverse mode profiles. (c) 

Coherence length between the excitation and SHG frequency components propagating along the 

CSP and LN photonic waveguides. 
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indices of the LN mode, 𝑛𝑒𝑓𝑓
𝑚,𝐿𝑁

, at the excitation wavelengths and SHG wavelengths are shown in 

Fig. 7.6(b), where 𝑛𝑒𝑓𝑓
𝑚,𝐿𝑁

=1.82 at exc=1550 nm and SHG=775 nm. The SHG coherence length, 

𝐿𝑐
𝑆𝐻𝐺 , is calculated using Eq. (7.2). 𝐿𝑐

𝑆𝐻𝐺  is shown in Fig. 7.6(c) for the CSP and LN photonic 

waveguides, where 𝐿𝑐
𝑆𝐻𝐺  increases sharply near the SHG wavelength of 775 nm. 

Figure 7.7(a) displays the SHG conversion efficiency, 𝜂𝑆𝐻𝐺 , for both the phase-matched CSP 

and LN photonic waveguides at various lengths, L. In all of the photonic waveguides, the spatial 

oscillations observed in the conversion efficiency are due to the propagation of phase-mismatched 

modes. For an excitation pulse having an energy of 𝜉𝑒𝑥𝑐=786 fJ, the LN photonic waveguide 

produces SHG radiation at 𝜂𝑆𝐻𝐺<1.4×10-4 for all L<30 µm. In comparison, when exciting the CSP 

photonic waveguide at the same peak intensity of 5.8 GW/cm2 (i.e. 𝜉𝑒𝑥𝑐=400 fJ), 𝜂𝑆𝐻𝐺  from the 

CSP photonic waveguide is higher by a factor of ~6. More importantly, when the CSP and LN 

photonic waveguides are exciting at the same excitation energy of 𝜉𝑒𝑥𝑐=786 fJ, 𝜂𝑆𝐻𝐺  from the CSP 

photonic waveguide is higher by ~11 times. While the 𝑑36 coefficient of the CSP crystal is >5 

times higher than the 𝑑33 coefficient of the LN crystal, 𝜂𝑆𝐻𝐺  in the CSP photonic waveguide is 

also dictated by strength of the Ey electric field component. According to Eq. (7.4), this Ey 

component reduces the magnitude of 𝑃𝑧,𝐶𝑆𝑃
(2)

. 

The time-averaged spatial distribution of the electric field at a wavelength of 775 nm is 

shown along the y-x plane [Fig. 7.7(b)] and the x-z plane [Fig. 7.7(c)] of the CSP photonic 

waveguide. Clearly, the generated radiation strength increases as the excitation pulse propagates 

along the CSP photonic waveguide, which is due to the generated radiation combining in-phase. 

Both electric field distributions show the three lobes of the phase-matched TM20 SHG mode, while 

the y-x distribution displays alternating regions of high and low electric field magnitude in the 
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Fig. 7.7. (a) Conversion efficiency for various photonic waveguide lengths. Time-averaged 

spatial electric field distribution at SHG=775 nm on the (b) y-x and (c) x-z planes of the 

W=600 nm × 𝑇=650 nm × L=30 µm CSP photonic waveguide. Time-averaged spatial electric 

field distribution at SHG=775 nm on the (d) y-z and (e) x-z planes of the W=600 nm × H=987 nm 

× L=30 µm LN photonic waveguide. The transverse distributions in (c) and (e) are obtained 

along the dotted lines in (b) and (d), respectively. 

 

direction of propagation. This mode beating effect indicates that the SHG electric field produced 

in the CSP photonic waveguide is a superposition of the phase-matched TM20 SHG mode and the 

phase-mismatched TM00 SHG mode. In these photonic waveguides, frequency-conversion 

between the TE00 excitation mode and the phase-mismatched TM00 SHG mode is unavoidable due 

to their significant spatial overlap. At λSHG=775 nm, the coherence length between the TE00 

excitation mode and this phase-mismatched TM00 SHG mode is 𝐿𝑐
𝑆𝐻𝐺=0.88 µm, such that the 

power converted to this TM00 SHG mode is back-converted [see Ref. [224] and Fig. 2.6(c) in 

Section 2.2.2] to the excitation mode at a distance of 2𝐿𝑐
𝑆𝐻𝐺=1.76 µm. This back-conversion leads 

to the oscillations observed in Fig. 7.7(b), which clearly repeat every 1.76 µm. Similarly, the 

electric field distribution at a wavelength of 775 nm is shown along the y-z plane [Fig. 7.7(d)] and 

the x-z plane [Fig. 7.7(e)] for the LN photonic waveguide. The SHG radiation shows a modal 
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beating due to the LN photonic waveguide being influenced by the phase-mismatched TM00 SHG 

mode. 

The SHG time-domain signals recorded near the output of the CSP and LN photonic 

waveguides (at the center of their cross-sections) are displayed in Fig. 7.8(a). The peak-to-peak 

electric field recorded in the LN photonic waveguide has an appreciable value of 23 kV/cm. 

Nonetheless, the CSP photonic waveguide excited at 𝜉𝑒𝑥𝑐=400 and 786 fJ generates electric fields 

having peak-to-peak values 2.6 and 5 times higher, respectively. Figure 7.8(b) shows the spectral 

density of the time-domain signals recorded in the photonic waveguides. No phase-mismatching 

dips are observed in either the CSP or LN spectra, since the cross-sections of the photonic 

waveguides are optimized for excitation at a wavelength of λexc=1550 nm. 

 

Fig. 7.8. (a) SHG time-domain electric field signals and (b) their associated spectral densities. 
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7.3. Phase-matched frequency-conversion in waveguides by 

means of transverse wavevector projections16 

When considering nonlinear frequency-conversion in a waveguide, it is important to evaluate 

the phase-matching conditions, as well as the spatial overlap between the excitation mode and the 

generation mode. Although often discussed in far less detail, nonlinear frequency-conversion is 

equally dependent on the coupling arrangement of the excitation electric field. Quite obviously, if 

the excitation pulse does not couple into a given mode, then this particular mode cannot contribute 

to nonlinear frequency-conversion, even if it satisfies the phase-matching and spatial overlap 

requirements. A TEM00 free-space Gaussian electric field normally-incident on a dielectric 

waveguide does not couple into the odd-ordered modes, even when the incident electric field 

polarization is the same as the odd-ordered modes [89]. Alternatively, an off-normal-incidence 

TEM00 free-space Gaussian electric field can couple into both even-ordered and odd-ordered 

modes, given an incident electric field polarization matching that of the modes [89]. Such coupling 

is achieved by the angular-dependence introducing transverse wavevector projections on the cross-

section of the waveguide [89]. In this section, FDTD simulations demonstrate the need to utilize 

the off-normal-incidence coupling arrangement to achieve phase-matched SHG from the TM10 and 

TM11 excitation modes in a LN waveguide. 

 

 
16A version of this section’s work is published as B. N. Carnio and A. Y. Elezzabi, “Phase-matched frequency-

conversion in waveguides by means of transverse wavevector projections,” J. Opt. Soc. Am. B 37, 1140-1143 (2020). 
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7.3.1. Coupling arrangement 

Figure 7.9 shows a schematic representation of the waveguiding geometry, which is 

composed of a SiO2 substrate and a LN core (length L, thickness 𝑇, and width W) having its c-axis 

aligned with the z axis. The excitation electric field is taken to have a Gaussian spatial distribution, 

which couples into the waveguide at the arbitrary angles of 𝜃1 (directed towards the y-z plane) and 

𝜃2 (directed towards the x-y plane). This excitation electric field has a pulse duration of 40 fs, a 

central-wavelength of 800 nm, a beam waist radius of 1 µm, and has its main polarization 

component oriented along the LN c-axis. The linear optical properties of the LN crystal and the 

SiO2 platform are obtained from Refs. [172, 182,233], whereas the nonlinear optical properties of 

the LN crystal are taken from Ref. [190]. FDTD simulations are conducted, which model coupling 

of the excitation electric field into the waveguide and the SHG process occurring within the 

waveguide. 

 

Fig. 7.9. Schematic of the coupling arrangement used to angularly excite the LN waveguide, 

where 𝜃1 is the coupling angle directed towards the y-z plane and 𝜃2 is the coupling angle 

directed towards the x-y plane. 
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7.3.2. SHG via off-normal-incidence coupling 

To demonstrate the requirement of introducing a transverse wavevector projection to couple 

into the odd-ordered excitation modes, a waveguide is investigated having the dimensions of 

W=670 nm, 𝑇=800 nm, and L=250 µm. Although the waveguide supports several excitation and 

SHG modes, the modes important to the SHG process are those that simultaneously exhibit a non-

zero spatial overlap integral [234], 𝕊, and have the same effective phase refractive index, 𝑛𝑒𝑓𝑓
𝑚 . 

These conditions are satisfied by the TM10 mode at the excitation wavelength of λexc=800 nm [see 

Fig. 7.10(a)] and the TM40 mode at the SHG wavelength of λSHG=400 nm [see Fig. 7.10(b)], where  

 

Fig. 7.10. (a) TM10 mode supported at the excitation wavelength of λexc=800 nm. (b) TM40 mode 

supported at the SHG wavelength of λSHG=400 nm. (c) Magnitude of the coupling coefficient 

for the TM10 excitation mode. 
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𝕊=181 mm-1 and 𝑛𝑒𝑓𝑓
𝑚 =1.88. However, for any angle 𝜃2, the excitation field can only couple into 

the TM10 waveguide mode provided that 𝜃1≠0, as this allows the incident electric field to satisfy 

the EM waveguide boundary conditions [89]. Figure 7.10(c) depicts the magnitude of the coupling 

coefficient for the TM10 mode, |�̃�10|, spanning the range of 𝜃1=0°-60° for 𝜃2=0°. Clearly, |�̃�10|=0 

at 𝜃1=0° and increases to a maximum value at 𝜃1≈40°. Therefore, this waveguide is practical for 

the SHG process as it satisfies the phase-matching condition, exhibits a high spatial overlap 

between the excitation and SHG modes, and can achieve appreciable coupling efficiencies for the 

excitation electric field [89]. 

Figure 7.11(a) illustrates the SHG time-domain electric field obtained when 𝜃1=40°, 

calculated at the center of the waveguide’s transverse profile (i.e. x=z=0 µm). Clearly, the time-

domain signal consists of two SHG pulses. A weak SHG signal is observed at t=0.1 ps and has the 

short-duration of ~28 fs. Here, the free-space electric field couples to the TM00 mode and generates 

this signal through a phase-mismatched process. More importantly, a stronger SHG signal is 

observed having a long-duration of 0.8 ps. As expected, this is from the angularly-incident free-

space electric field coupling into the TM10 mode, permitting SHG through phase-matching with 

the TM40 mode. As discussed in Ref. [235], the long duration of the generated signal is due to the 

phase-matched TM10 and the TM40 modes travelling at difference group velocities. This duration 

is expressed as, 

 
Δ𝑡 =

𝐿

𝑐
|𝑛𝑒𝑓𝑓,𝑔

𝑚 (𝜆𝑆𝐻𝐺) − 𝑛𝑒𝑓𝑓,𝑔
𝑚 (𝜆𝑒𝑥𝑐)| , (7.6) 

where 𝑛𝑒𝑓𝑓,𝑔
𝑚  is the effective group refractive index of the modes supported by the waveguide. 

𝑛𝑒𝑓𝑓,𝑔
𝑚 =3.6 for the TM40 SHG mode and 𝑛𝑒𝑓𝑓,𝑔

𝑚 =2.6 for the TM10 excitation mode, such that 

Δt=0.8 ps, in agreement with the duration observed in Fig. 7.11(a). Notably, even though 𝑛𝑒𝑓𝑓,𝑔
𝑚  
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are not equal, phase-matching is satisfied because both the TM10 and the TM40 modes have the 

same 𝑛𝑒𝑓𝑓
𝑚 =1.88. Figure 7.11(b) shows the SHG spectra produced at the angles of 𝜃1=0° and 

𝜃1=40°. At 𝜃1=0°, a weak SHG signal is obtained at the wavelength of λSHG=405 nm, which is due 

to phase-matching between the TM00 mode at the excitation wavelength and the TM22 mode at the 

SHG wavelength. At 𝜃1=40°, narrowband (i.e. 0.6 nm linewidth) SHG is observed at the 

wavelength of λSHG=400 nm, which is due to phase-matching between the TM10 mode at the 

excitation wavelength and the TM40 mode at the SHG wavelength. At this λSHG=400 nm, the 

spectral power for 𝜃1=40° is >210 times higher than the spectral power for 𝜃1=0°. Interestingly, 

the SHG spectral power coupled to the TEph mode, 𝒮𝒫𝑝ℎ
𝑆𝐻𝐺 , is related to the coupling coefficient, 

 

Fig. 7.11. (a) SHG time-domain signal produced from the W=670 nm, 𝑇=800 nm, and 

L=250 µm waveguide at 𝜃1=40°. (b) Spectral power of the SHG signal for 𝜃1=0° and 𝜃1=40°. 

Time-averaged spatial power distributions at λSHG=400 nm along the (c) x-y plane and (d) 

z-y plane of the waveguide for 𝜃1=40°. 
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 𝒮𝒫𝑝ℎ
𝑆𝐻𝐺 ∝ |�̃�𝑚𝑣

4 | , (7.7) 

where �̃�𝑚𝑣 is the complex coupling coefficient of the TEmv mode at the excitation wavelength. As 

such, a change of 𝜃1=40° (i.e. |�̃�10|=0.9) to 𝜃1=19° (i.e. |�̃�10|=0.64) results in a reduction in this 

spectral power (i.e. 𝒮𝒫40
𝑆𝐻𝐺) by a factor of 1/4. Figures 7.11(c) and 7.11(d) show the time-averaged 

spatial distribution of the power at λSHG=400 nm for 𝜃1=40°. Here, the SHG spatial power 

distribution is dominated by the TM40 mode, since the phase-matching condition is satisfied. 

 

Fig. 7.12. (a) TM11 mode supported at the excitation wavelength of λexc=800 nm. (b) TM42 mode 

supported at the SHG wavelength of λSHG=400 nm. (c) Magnitude of the coupling coefficient 

for the TM11 mode. 
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In general, it is constructive to investigate the excitation of a mode that requires an off-

normal-incidence angle in both transverse dimensions (i.e. 𝜃1≠0° and 𝜃2≠0°). A waveguide having 

W=600 nm, 𝑇=940 nm, and L=250 µm supports the TM11 mode at the excitation wavelength of 

λexc=800 nm [see Fig. 7.12(a)] and the TM42 mode at the SHG wavelength of λSHG=400 nm [see 

Fig. 7.12(b)]. These modes satisfy perfect phase-matching, 𝑛𝑒𝑓𝑓
𝑚 =1.72, and exhibit a spatial 

overlap integral of 𝕊=69 mm-1. Figure 7.12(c) illustrates the magnitude of the coupling coefficient 

for the TM11 mode, |�̃�11|. As expected, |�̃�11|=0 if either 𝜃1=0° or 𝜃2=0°; however, coupling 

reaches a maximum value at 𝜃1=𝜃2≈40°. As such, this waveguide is practical for the SHG process, 

since it satisfies the phase-matching condition, exhibits a high spatial overlap between the modes, 

and achieves appreciable coupling efficiencies for the excitation electric field [89]. 

Figure 7.13(a) illustrates the SHG time-domain signal recorded at x=z=0 µm, where the 

waveguide is excited by an electric field incident at the angles of 𝜃1=𝜃2=40°. The signal observed 

at t=0.1 ps is due to a portion of the angularly-incident electric field coupling to the TM00 mode 

and producing phase-mismatched SHG. Similarly, the signal at t=0.2 ps occurs from a portion of 

the angularly-incident electric field coupling to the TM10 and TM01 modes, which produce phase-

mismatched SHG. However, the signal between t=0.4 and 1.2 ps is due to the excitation electric 

field coupling to the TM11 mode and generating a SHG signal that is phase-matched to the TM42 

mode [see Fig. 7.13(b) and 7.13(c)]. The duration of this time-domain signal (i.e. 0.8 ps) agrees 

with Eq. (7.6), where 𝑛𝑒𝑓𝑓,𝑔
𝑚 =3.8 for the TM42 SHG mode and 𝑛𝑒𝑓𝑓,𝑔

𝑚 =2.8 for the TM11 excitation 

mode. Here, the observed beating period is due to phase-matched SHG occurring at two distinct 

wavelengths within the investigate range. Figure 7.13(d) depicts the power spectra of the SHG 

signals produced by excitation electric fields incident at the angles of 𝜃1=𝜃2=0° and 𝜃1=𝜃2=40°. 
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As expected, by exciting the waveguide at 𝜃1=𝜃2=40°, narrowband (i.e. 0.6 nm linewidth) SHG is 

produced at λSHG=400 nm. This spectral power is >10 times higher than the spectral power 

produced at 𝜃1=𝜃2=0°, since the TM11 mode is only excited by introducing a projection of the 

traverse wavevectors on the waveguide’s cross-section (i.e. when 𝜃1≠0° and 𝜃2≠0°). As seen from 

Eq. (7.7), when 𝜃1=𝜃2=40° (i.e. |�̃�11|=0.9) is decreased to 𝜃1=𝜃2=24° (i.e. |�̃�11|=0.64), the 

spectral density (i.e. 𝒮𝒫42
𝑆𝐻) is reduced by a factor of 1/4. 

 

Fig. 7.13. (a) SHG time-domain signal produced from the W=600 nm, 𝑇=940 nm, and 

L=250 µm waveguide at 𝜃1=𝜃2=40°. Time-averaged spatial power distributions at λSHG=400 nm 

along the (b) x-y plane and (c) z-y plane of the waveguide for 𝜃1=𝜃2=40°. (d) Spectral power of 

the SHG signal for 𝜃1=𝜃2=0° and 𝜃1=𝜃2=40°. 
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7.4. Off-normal-incidence coupling for phase-matched SHG 

in a sub-micron LN planar waveguide17 

 While the off-normal-incidence excitation technique and its impact on nonlinear frequency-

conversion was numerically considered in Section 7.3, this section experimentally investigates off-

normal-incidence coupling for SHG in a SiO2-LN-air planar waveguide. 

 

7.4.1. Experimental arrangement 

The angular coupling arrangement being investigated is illustrated in Fig. 7.14, where a 

SiO2-LN-air planar waveguide is the platform implemented to demonstrate SHG via off-normal-

incidence excitation. The planar waveguide is 2.8 mm-long and the LN layer has a thickness of 

775 nm. This structure is excited using a 5.1 MHz Ti:Sapphire oscillator producing electric field 

pulses having a duration of 50 fs, a central-wavelength of 790 nm, and nanojoule energies. These 

optical pulses are coupled into the waveguide at an incident angle of 𝜃𝑖≈10° [see Fig. 7.14]. Here,  

 

Fig. 7.14. Schematic of the experimental arrangement, which implements an acylindrical lens 

to couple the excitation pulse into the planar waveguide. The acylindrical lens is necessary to 

obtain the required line focus to couple the light into the planar waveguide. 

 
17

A version of this section’s work is published as B. N. Carnio and A. Y. Elezzabi, “Off-normal incidence coupling 

for perfectly phase-matched second harmonic generation in a sub-micron LiNbO3 planar waveguide,” J. Light. 

Technol. 38, 3959-3964 (2020). 
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a high NA (i.e. 0.49) acylindrical lens is used to focus the laser pulse and achieve a line focus of 

~4 m×2.7 mm. The LN wafer used in the experiments is obtained from NANOLN. Their 

commercial fabrication technique implements He+ ions into a bulk, single crystalline LN wafer, 

which is then flipped and bonded onto 2 µm of SiO2 that is grown via plasma enhanced chemical 

vapour deposition on a 400 µm-thick Si wafer. After splitting the LN wafer along the He+ ion 

implementation region, chemical mechanic polishing is used to obtain a sub-micron LN layer 

thickness. 

 

7.4.2. Waveguide characteristics 

Figure 7.15(a) shows a field emission scanning electron microscope (FESEM) image of the 

single-crystalline LN layer, which is cut along the (100) crystallographic plane and has a thickness 

of 775 nm. Since the d33 nonlinear coefficient of LN is the tensor element having the highest 

magnitude, an electric field polarized along the c-axis of the LN is used to generate a SHG electric 

field that is also polarized along the c-axis. In terms of planar waveguide notation, this means a 

TE mode at the excitation wavelength produces a TE mode at the SHG wavelength. To achieve 

high SHG conversion under these excitation conditions, it is important to first determine the 

excitation and SHG modes supported by the planar waveguide, as well as the conditions for perfect 

phase-matching and high spatial overlap. Figure 7.15(b) and 7.15(c) illustrate the TE electric field 

distributions supported by the LN planar waveguide at the representative excitation wavelength of 

λexc=800 nm and its SHG wavelength of λSHG=400 nm, respectively. At λexc=800 nm, the LN 

waveguide supports three excitation modes (i.e. TE0, TE1, and TE2), whereas seven modes (i.e. 

TE0, TE1, TE2, TE3, TE4, TE5, and TE6) are supported by the planar waveguide at λSHG=400 nm. 
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Fig. 7.15. (a) FESEM image showing the cross-section of the SiO2-LN-air planar waveguide 

having a core thickness of 775 nm. Electric field distributions supported by the SiO2-LN-air 

planar waveguide at (b) the excitation wavelength of λexc=800 nm and (c) its SHG wavelength 

of λexc=400 nm. 
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Fig. 7.16. (a) Effective refractive indices of the excitation and SHG modes, where perfect phase-

matching is observed at the wavelengths of λSHG=395 nm and λSHG=402.4 nm. (b) Coherence 

length for the TE0 excitation and TE3 SHG modes, as well as the TE1 excitation and TE4 SHG 

modes. 
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Since the extraordinary refractive index of the LN crystal exhibits positive dispersion, 

perfect phase-matching can only occur between an excitation mode and a higher-order SHG mode. 

Calculations of the effective refractive indices of the waveguide modes, 𝑛𝑒𝑓𝑓
𝑚 , are shown in 

Fig. 7.16(a). Clearly, over the SHG wavelength range of λSHG=380-420 nm, perfect phase-

matching only occurs at two wavelengths. The TE0 excitation mode at λexc=790 nm and the TE3 

SHG mode at λSHG=395 nm both have an 𝑛𝑒𝑓𝑓
𝑚 =2.13. On the other hand, the TE1 excitation mode 

at λexc=804.8 nm and the TE4 SHG mode at λSHG=402.4 nm have an 𝑛𝑒𝑓𝑓
𝑚 =1.99. As determined 

using Eq. (7.2), the coherence length, 𝐿𝑐
𝑆𝐻𝐺 , is infinite for these wavelengths [see Fig. 7.16(b)]. 

Nonetheless, the efficiency of the SHG process also depends on the spatial overlap between the 

excitation and SHG modes, which is characterized by the spatial overlap integral [234], 

 
𝕊 =

1

√𝑤𝑏

|∫ 𝐸𝑒𝑥𝑐
2 (𝑥)𝐸𝑆𝐻𝐺(𝑥) 𝑑𝑥|

∫𝐸𝑒𝑥𝑐
2 (𝑥)𝑑𝑥√∫𝐸𝑆𝐻𝐺

2 (𝑥)𝑑𝑥
 , (7.8) 

where Eexc is the excitation electric field, ESHG is the SHG electric field, and wb (=2.7 mm) is the 

major-axis length of the focused laser beam. The numerator in Eq. (7.8) depends on the intensity 

of the excitation mode, which has an even spatial distribution across the SiO2-LN-air layers, and 

on the electric field of the SHG mode, which can either have an even (e.g. TE4) or odd (e.g. TE3) 

spatial distribution across the SiO2-LN-air layers. Consequently, for the TE1 excitation and TE4 

SHG modes, 𝕊=2.6 mm-1, whereas 𝕊=0.05 mm-1 for the TE0 excitation and TE3 SHG modes. 

Indeed, the higher 𝕊 implies a higher SHG energy being produced in the frequency-conversion 

process. 
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7.4.3. Coupling characteristics 

To facilitate phase-matched SHG between the TE1 excitation and TE4 SHG modes, the TE1 

excitation mode must be excited within the planar waveguide. Coupling into the odd-ordered 

waveguide modes can be achieved by angularly-exciting the waveguide [89]. By performing 

FDTD simulations, angular coupling and mode excitation are investigated using a 790 nm, 50 fs 

laser pulse focused onto the waveguide’s input facet, where the beam is incident at an angle 𝜃𝑖 

relative to the direction of normal incidence [see Fig. 7.14]. Figure 7.17(a) shows a snapshot of 

the time-domain electric field distribution after the planar waveguide is excited by end-coupling 

at 𝜃𝑖=0°. Although the excitation field couples into the TE0 and TE2 excitation modes, it does not 

couple into the TE1 excitation mode, such that phase-matched SHG cannot occur at 𝜃𝑖=0°. 

Figure 7.17(b) shows a snapshot of the time-domain electric field distribution after the planar 

waveguide is excited at 𝜃𝑖=10°. Clearly, the excitation field couples into the TE1 excitation mode, 

thus permitting phase-matched SHG. Since the TE0, TE1, and TE2 modes have different effective 

 

Fig. 7.17. (a) FDTD simulations showing the modes excited in the waveguide via coupling at 

the incident angles of (a) 𝜃𝑖=0° and (b) 𝜃𝑖=10°. To excite the TE1 mode necessary for phase-

matched SHG, the optical excitation pulse must be coupled in at an off-normal-incidence angle. 

The y:x spatial aspect ratio of these images is 155:1. 
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group refractive indices, they spatially separate as they propagate along the planar waveguide [see 

Fig. 7.17(b)]. 

 

7.4.4. Experimental measurements 

Figure 7.18(a) depicts the SHG signal produced when the planar waveguide is excited at 

𝜃𝑖≈10°, which allows for a sufficiently high coupling efficiency of 2.6% into the TE1 mode at 

λexc=804.8 nm. The signal is detected at all positions along the planar waveguide, where SHG is 

clearly seen to originate at the entrance facet of the waveguide and is emitted into free-space at 

the waveguide’s exit face. As shown in Fig. 7.18(b), this SHG signal has a wavelength of 

λSHG=402.4 nm and a narrow linewidth of 1.5 nm. Although phase-mismatched SHG occurs across 

the entire λexc=770-840 nm bandwidth of the excitation pulse [see inset of Fig. 7.18(b)], this 

 

Fig. 7.18. (a) Image showing the perfectly phase-matched SHG light produced at all positions 

along the 2.8 mm-long planar waveguide having a LN layer thickness of 775 nm. (b) The SHG 

signal measured from the planar waveguide having a thickness of 775 nm, where phase-matched 

SHG occurs having a central-wavelength of λSHG=402.4 nm and exhibiting the narrow linewidth 

of 1.5 nm. The inset shows the spectrum of the laser pulse that is exciting the planar waveguide, 

which encompasses wavelength components between λexc=770-840 nm. 
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process is negligible compared to the phase-matched SHG occurring at λSHG=402.4 nm. The 

measured SHG signal at λSHG=402.4 nm agrees well with the perfect phase-matching wavelength 

of the TE1 excitation and TE4 SHG modes [see Fig. 7.16(b)], which exhibits the high spatial 

overlap of 𝕊=2.6 mm-1. Furthermore, the absence of the SHG signal at λSHG=395 nm confirms the 

negligible spatial overlap (i.e. 𝕊=0.05 mm-1) between the TE0 excitation and TE3 SHG modes. 

It is necessary to determine the energy of the SHG pulse, 𝜉𝑆𝐻𝐺 , and the SHG conversion 

efficiency, 𝜂𝑆𝐻𝐺 . Figure 7.19(a) shows 𝜉𝑆𝐻𝐺  produced through the phase-matched SHG process, 

which is measured at various excitation pulse energies, 𝜉𝑒𝑥𝑐. The highest SHG energy of 

𝜉𝑆𝐻𝐺=82 fJ is achieved by exciting the waveguide at 𝜉𝑒𝑥𝑐=1.8 nJ and the trend agrees with theory 

(i.e. 𝜉𝑆𝐻𝐺 ∝ 𝜉𝑒𝑥𝑐
2 ). Figure 7.19(b) shows 𝜂𝑆𝐻𝐺  for various 𝜉𝑒𝑥𝑐, where the highest conversion 

efficiency of 𝜂𝑆𝐻𝐺=4.6×10-5 is obtained at 𝜉𝑒𝑥𝑐=1.8 nJ and  𝜂𝑆𝐻𝐺 ∝ 𝜉𝑒𝑥𝑐. Importantly, 𝜂𝑆𝐻𝐺  could 

be improved by implementing several different approaches. While only 2.6% of the excitation 

pulse energy couples into the planar waveguide at 𝜃𝑖=10°, 10% of the excitation pulse energy 

couples into the planar waveguide at 𝜃𝑖=26°. Therefore, the measured 𝜂𝑆𝐻𝐺=4.6×10-5 at 𝜃𝑖=10° is 

estimated to increase to 𝜂𝑆𝐻𝐺=1.8×10-4 at 𝜃𝑖=26°. In the experimental off-normal-incidence 

coupling arrangement, a broadband excitation field is used to achieve narrowband phase-matched 

SHG. However, by simply exciting the waveguide using a narrowband field at the wavelength of 

𝜉𝑒𝑥𝑐=804.8 nm, 𝜂𝑆𝐻𝐺  is estimated to increase by approximately an order of magnitude. 

Furthermore, the pulse beam waist of 4 µm is significantly larger than the LN thickness of 775 nm, 

which means  𝜂𝑆𝐻𝐺  could be enhanced by reducing the pulse beam waist. The propagation lengths 

of the TE1 excitation mode and the TE4 SHG mode are both >10 cm, which is more than an order 

of magnitude longer than the investigated waveguide length of 2.8 mm. Therefore, 𝜂𝑆𝐻𝐺  could be 

enhanced by simply increasing the length of the waveguide. 
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Fig. 7.19. (a) Energy of the SHG pulse and (b) SHG conversion efficiency with respect to the 

energy of the excitation pulse. As expected, 𝜉𝑆𝐻𝐺 ∝ 𝜉𝑒𝑥𝑐
2  and  𝜂𝑆𝐻𝐺 ∝ 𝜉𝑒𝑥𝑐. 

 

7.5. Summary 

Using the FDTD methods derived in Chapter 5, second-order nonlinear frequency-

conversion is investigated in LN plasmonic waveguides, CSP photonic waveguides, and LN 

photonic waveguides for producing radiation in the near-IR and visible spectral regions. For 

waveguide lengths of a few microns to a few tens of microns, SHG occurred at a higher conversion 

efficiency in LN nanoplasmonic waveguides in comparison to a photonic LN waveguide having 

comparable dimensions. This conversion efficiency improvement is related to the plasmonic 

waveguiding structures confining the excitation electric field to a more localized spatial region 

than the photonic LN waveguide. A photonic waveguide comprised of the highly-nonlinear CSP 

crystal was shown to produce SHG radiation having a very high electric field (i.e. >100 kV/cm) 

and conversion efficiency (i.e. >10-3), where the latter is 11 times higher than that achieved from 

a LN photonic waveguide. Odd-ordered excitation modes were considered for phase-matched 

SHG in a LN photonic waveguide, where SHG using these modes was only observed when the 

excitation electric field exhibited transverse wavevector projections on the waveguide’s cross-
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section. As was shown both numerically and experimentally, such a requirement was satisfied 

using an off-normal-incidence coupling scheme. Such investigations of nonlinear frequency-

conversion in waveguides, as well as their coupling schemes, are key to advancing the areas of 

optical communication, optical computing, and entangled photon generation for quantum 

computing. Waveguiding geometries are ideal for on-chip applications, due to their compatibility 

with nanofabrication techniques and their ability to realize a small footprint.
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Chapter 8. 

Simultaneous generation of phase-

matched radiation across multiple 

spectral bands 
 

Multi-band photonic sources can be realized by satisfying the phase-matching requirements 

for several second-order nonlinear processes (e.g. SFG and DFG or SHG and OR) within the same 

structure, thus permitting generation within multiple spectral bands. As photonic technologies 

continue to advance, there is a need to increase the density of photonic devices on a single chip. 

Although miniaturization has been a highly successful approach for increasing the density of the 

photonic devices, this technique has been challenging when integrating nonlinear frequency-

conversion photonic sources onto the same chip. Here, the strength of the converted radiation 

directly depends on the length of the photonic source; hence, there is a trade-off between 

miniaturization and the generated optical power. By combining the generation characteristics of 

two physical phenomena into a single platform, this limitation can be relaxed. 

Multi-band generation would find use in the synchronous monitoring of nonlinear optical 

processes in photonic integrated circuits. In optical circuits that perform nonlinear processes for 

various applications (e.g. optical computing [203], optical communication [200], and entangled 

photon generation [206]), there is a need to non-invasively probe the efficiency of the frequency-

conversion process during operation. Direct optical probing disturbs the nonlinear process by 

splitting and sampling a portion of the generated beam, which presents added difficulties when the 
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generated energy is confined to a waveguide. Instead, it is advantageous to monitor another 

nonlinear process that is occurring at the same time and from the same optical excitation. For 

instance, THz radiation produced through the process of OR is highly correlated to the radiation 

produced by the SHG process. Here, the SHG conversion efficiency, 𝜂𝑆𝐻𝐺 , may be calibrated to 

the OR THz radiation conversion efficiency, 𝜂𝑂𝑅. In the ideal scenario (e.g. no saturation of the 

generated radiation), the conversion efficiencies are correlated by the relationship 𝜂𝑆𝐻𝐺 ∝ 𝜂𝑂𝑅. In 

a non-ideal system, other effects influence the second-order nonlinear generation processes. For 

example, temperature fluctuations lead to changes in the refractive indices of the nonlinear 

material. Interestingly, such fluctuations influence the emission wavelength at which SHG occurs, 

as well as the Cherenkov emission angle of the generated THz radiation, such that the SHG 

emission wavelength is correlated to the Cherenkov emission angle of the generated THz radiation. 

Additionally, in photonic circuits, temporal synchronization is important between the various 

optical components for addressing and clocking. As such, having THz radiation pulses, which can 

be converted into electrical signals, offers a means of synchronizing the nonlinear optical 

components with the optoelectronic devices on the same chip. Since Si is highly transparent to 

THz radiation, this hybrid integration is especially beneficial for Si-based photonic systems, where 

all the Si chip levels could be addressed simultaneously for clocking and parallel processing. 

Furthermore, since the THz radiation is broadband, selective device addressing can be realized via 

the incorporation of frequency-selective metasurfaces, where different nonlinear frequency-

conversion structures are assigned a unique signature represented by a specific narrowband THz 

frequency. 

In this chapter, multi-band generation via concurrent phase-matched second-order nonlinear 

processes is investigated both numerically and experimentally. Therefore, this chapter leverages 
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the physics connecting the various second-order nonlinear processes outlined in Chapter 2 (i.e. 

SHG, SFG, DFG, and OR) to simultaneously produce phase-matched radiation within multiple 

spectral bands. The numerical FDTD simulations conducted in this chapter incorporate the FDTD 

methods developed in Chapter 5. 

 

8.1. Generation of mid-IR and visible radiation in a multi-

band planar LN waveguide18 

Numerous waveguiding geometries have been proposed and investigated for producing 

visible light via phase-matched SFG, as well as mid-IR radiation via phase-matched DFG. Since 

the conversion efficiencies associated with these frequency-conversion processes are typically 

small (e.g. <0.1%), much of the excitation pulse energy is not converted to new frequencies. 

Therefore, by constructing a single waveguiding structure to concurrently satisfy phase-matching 

for both of these nonlinear processes (i.e. SFG and DFG), the surplus energy of the excitation pulse 

can be used to simultaneously produce frequency components within multiple spectral bands. 

Here, a planar waveguide having a sub-micron LN core is considered, which produces multi-band 

radiation within the visible and mid-IR regions of the EM spectrum. 

 

8.1.1. Waveguiding structure 

Figure 8.1 shows a schematic of the planar waveguiding structure consisting of a LN core 

having thickness 𝑇, length L, and having its c-axis oriented along the z axis. The LN layer is 

 
18

A version of this section’s work is published as B. N. Carnio and A. Y. Elezzabi, “Generation of mid-infrared and 

visible radiation in a multi-band phase-matched sub-wavelength LN waveguide,” J. Opt. Soc. Am. B 36, 1695-1699 

(2019). 
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sandwiched between two SiO2 cladding layers of thickness 𝑇𝑐=500 nm and two high-index 42° Si 

prisms. When exciting the planar waveguide with z-polarized femtosecond excitation pulses 

having the central angular frequencies of 𝜔1 and 𝜔2, SFG and DFG produce the angular 

frequencies of Ω𝑆𝐹𝐺 = 𝜔1 + 𝜔2 and Ω𝐷𝐹𝐺 = |𝜔1 − 𝜔2|, respectively. Figure 8.1 illustrates the 

emission directions of the generated radiation, where Ω𝑆𝐹𝐺  is emitted along the planar waveguide 

and Ω𝐷𝐹𝐺  is emitted at the Cherenkov angle. For the prism angle of 42°, Ω𝐷𝐹𝐺  propagates nearly 

normal to the Si-air interface. The planar waveguide is numerically investigated by performing 2D 

FDTD simulations, where the refractive index and extinction coefficient data for LN, SiO2, and Si 

are obtained from Refs. [172], [182], and [182], respectively. The LN second-order nonlinear 

susceptibility, 𝜒33
(2)

(Ω𝑆𝐹𝐺,𝐷𝐹𝐺: 𝜔1, 𝜔2), is obtained using Refs. [38,190], and the LN multi-photon 

absorption threshold is acquired from Ref. [186]. 𝜒33
(2)

(Ω𝑆𝐹𝐺,𝐷𝐹𝐺: 𝜔1, 𝜔2) [i.e. 

𝜒𝑧𝑧𝑧
(2)

(Ω𝑆𝐹𝐺,𝐷𝐹𝐺: 𝜔1, 𝜔2) in non-contracted notation] is described by Eq. (5.58) with the parameters  

 

Fig. 8.1. Schematic of the multi-band generation planar waveguide producing Ω𝑆𝐹𝐺  and Ω𝐷𝐹𝐺 . 

The c-axis of the LN crystal is aligned along the z axis. 
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𝜒𝐸
zzz=19.8 pm/V, Ω1

𝑧𝑧𝑧/(2π)=1360 THz, Ω2
𝑧𝑧𝑧/(2π)=15.9 THz, γ1

𝑧𝑧𝑧/(2π)=0 THz, γ2
𝑧𝑧𝑧/(2π)=0 THz, 

C1
𝑧𝑧𝑧=1, C2

𝑧𝑧𝑧=4.1, and Q𝑧𝑧𝑧=2. 

 

8.1.2. SFG and DFG in a planar LN waveguide 

In order to achieve the highest conversion efficiency for both Ω𝑆𝐹𝐺  and Ω𝐷𝐹𝐺 , the LN planar 

waveguide must satisfy phase-matching at both of these angular frequencies. However, since Ω𝑆𝐹𝐺  

and Ω𝐷𝐹𝐺  cover different spectral regions, it would be unfeasible to confine the corresponding 

wavelengths within the LN core and achieve phase-matching via geometric manipulation. To 

overcome this challenge, we design a planar waveguide that exhibits Ω𝑆𝐹𝐺  phase-matching but 

allows Ω𝐷𝐹𝐺  to escape in the form of Cherenkov waves, which therefore add coherently outside 

the waveguide’s LN core. In this manner, it is possible to achieve optimal generation efficiencies 

for both Ω𝑆𝐹𝐺  and Ω𝐷𝐹𝐺 , without the need to directly consider phase-matching of Ω𝐷𝐹𝐺 . The 

coherence length, 𝐿𝑐
𝑆𝐹𝐺 , for the radiation generated via SFG (see Chapter 2) is, 

 
𝐿𝑐
𝑆𝐹𝐺(𝜆𝑆𝐹𝐺) =

1

2 |
𝑛𝑒𝑓𝑓,1

𝑚

𝜆1
+

𝑛𝑒𝑓𝑓,2
𝑚

𝜆2
−

𝑛𝑒𝑓𝑓,𝑆𝐹𝐺
𝑚

𝜆𝑆𝐹𝐺
|

 , 
(8.1) 

where 𝑛𝑒𝑓𝑓,1
𝑚  and 𝑛𝑒𝑓𝑓,2

𝑚  are the effective refractive indices of the excitation modes, 𝑛𝑒𝑓𝑓,𝑆𝐹𝐺
𝑚  is the 

effective refractive index of the SFG mode, 𝜆1,2 are the free-space wavelengths of the excitation 

modes, and 𝜆𝑆𝐹𝐺 = (1 𝜆1⁄ + 1 𝜆2⁄ )−1 is the free-space wavelength of the SFG mode. For the 

planar waveguide being investigated, phase-matching is achieved between the TM0 excitation 

modes [see Fig. 8.2(a) for the representative modes at 𝜆1=806 nm and 𝜆2=1009 nm] and the TM2 

SFG mode [see Fig. 8.2(b) for the representative mode at 𝜆𝑆𝐹𝐺=448 nm]. Notably, phase-matching 

for the DFG wavelength, 𝜆𝐷𝐹𝐺 = |1 𝜆1⁄ − 1 𝜆2⁄ |−1, is inherently satisfied if the combined 
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thicknesses of the waveguide core and cladding are of sub-wavelength dimensions with respect to 

𝜆𝐷𝐹𝐺 in the planar waveguide,  

 
𝑇 + 𝑇𝑐 ≲

𝜆𝐷𝐹𝐺

𝑛𝑒𝑓𝑓,𝐷𝐹𝐺
 , (8.2) 

where 𝑛𝑒𝑓𝑓,𝐷𝐹𝐺 is the effective refractive index of the DFG wavelength. Here, 𝑛𝑒𝑓𝑓,𝐷𝐹𝐺 =

(𝑛𝐿𝑁𝑇 + 𝑛𝑐𝑇𝑐)/(𝑇 + 𝑇𝑐), where 𝑛𝐿𝑁 and 𝑛𝑐 are the refractive indices of the LN and SiO2, 

respectively. 

 

Fig. 8.2. (a) Intensity distribution of representative excitation modes at 𝜆1=806 nm and 

𝜆2=1009 nm. (b) Intensity distribution of a representative SFG mode at 𝜆𝑆𝐹𝐺=448 nm. The 

modal intensity distributions shown in (a) and (b) are calculated for the 𝑇=700 nm planar 

waveguide. The coherence length for the (c) 𝑇=700 nm and (d) 𝑇=600 nm planar waveguides. 
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Figure 8.2(c) shows 𝐿𝑐
𝑆𝐹𝐺  for the 𝑇=700 nm planar waveguide [calculated using Eq. (8.1)] at 

various excitation wavelengths. Perfect phase-matching (i.e. 𝐿𝑐
𝑆𝐹𝐺→∞) is denoted by the distinct 

trend line. Here, 𝜆𝑆𝐹𝐺448 nm at all positions along this phase-matching line and 𝜆𝐷𝐹𝐺 can vary 

over many spectral ranges. However, for the purpose of this study, we will only focus on 

𝜆𝐷𝐹𝐺=4-6 µm (i.e. in the mid-IR spectral region), as represented by the annotated points in 

Fig. 8.2(c). The DFG phase-matching requirement is satisfied at both annotations because 

𝜆𝐷𝐹𝐺/𝑛𝑒𝑓𝑓,𝐷𝐹𝐺≥2.3 µm, which is greater than 𝑇 + 𝑇𝑐=1.2 µm. Since phase-matching critically-

depends on 𝑇, we investigate 𝐿𝑐
𝑆𝐻𝐺  for a planar waveguide of T=600 nm [see Fig. 8.2(d)]. Similar 

to the 𝐿𝑐
𝑆𝐹𝐺  trend in Fig. 8.2(c), the annotations along the phase-matching line express that 

𝜆𝑆𝐹𝐺427 nm and 𝜆𝐷𝐹𝐺=4-6 µm. Evidently, for these representative planar waveguides, 𝜆𝑆𝐹𝐺 is 

dictated by the waveguide’s core thickness and 𝜆𝐷𝐹𝐺 is determined by the excitation wavelengths. 

This feature allows for independent control over 𝜆𝑆𝐹𝐺 and 𝜆𝐷𝐹𝐺. 

 

Fig. 8.3. Time-averaged spatial distribution of the electric field at the wavelengths of (a) 

𝜆𝑆𝐹𝐺=448 nm and (b) 𝜆𝐷𝐹𝐺=4 µm. 

 

An additional interesting feature of this planar waveguiding platform is the spatial 

distribution of the emitted wavelengths, 𝜆𝑆𝐹𝐺 and 𝜆𝐷𝐹𝐺. This characteristic is investigated for the 
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𝑇=700 nm and L=40 µm planar waveguide excited by pulses having durations of 200 fs, peak 

intensities of 90 GW/cm2, and central-wavelengths of 𝜆1=806 nm and 𝜆2=1009 nm. Figure 8.3(a) 

and 8.3(b) present the time-averaged spatial distribution of the electric field at 𝜆𝑆𝐹𝐺=448 nm and 

𝜆𝐷𝐹𝐺=4 µm, respectively. Clearly, 𝜆𝑆𝐹𝐺  is emitted co-linearly from the planar waveguide output, 

while 𝜆𝐷𝐹𝐺 is emitted at the Cherenkov angle of ~48°. 

Figure 8.4(a) shows the SFG and DFG electric fields having peak-to-peak values of 15 and 

1 kV/cm, respectively, which are considerably high given the short interaction length of L=40 µm. 

When considering the total radiation produced via SFG and DFG, the conversion efficiency is 

calculated to be 14×10-5 and 0.5×10-5, respectively. This difference is due to the nonlinear 

polarization dipoles being more efficient emitters at higher frequencies, as discussed in Chapter 2. 

Additionally, due to the large refractive index difference of the Si and air regions, ~30% of the 

DFG radiation intensity is reflected from the Si-air interface. However, anti-reflective layers could 

be included to reduce this effect. Figures 8.4(b) and 8.4(c) show the SFG and DFG spectral powers, 

respectively. The SFG light is produced having a FWHM bandwidth of 2 nm (i.e. 3 THz), whereas 

that of the DFG radiation is 168 nm (i.e. 3.2 THz). Since phase-matching is satisfied across the 

entire bandwidths of the excitation pulses, no nulls are observed in either the SFG or DFG spectra. 

When using the planar waveguide cross-section to tune the refractive index of 𝜆𝑆𝐹𝐺 for phase-

matching, an important issue to consider is the effect of waveguide and material dispersion on the 

generated SFG and DFG pulses. The time-frequency spectra presented in Fig. 8.4(d) and 8.4(e) 

show that all the frequencies encompassed in the electric field pulses arrive at the same time, such 

that both waveguide and material dispersion effects are negligible. 
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Fig. 8.4. (a) Time-domain electric fields of the SFG and DFG radiation after exiting the planar 

waveguide. Power spectra of the radiation produced through (b) SFG and (c) DFG. Time-

frequency spectra for the (d) SFG and (e) DFG electric fields. 

 

To show that 𝜆𝑆𝐹𝐺 is dictated by 𝑇 and 𝜆𝐷𝐹𝐺 is controlled by 𝜆1,2, the planar waveguides are 

investigated for various excitation wavelengths and core thicknesses. The 𝑇=700 nm and L=40 µm 
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planar waveguide is excited using 200 fs pulses having central-wavelengths of 𝜆1=806 nm and 

𝜆2=1009 nm, as well as 𝜆1=835.2 nm and 𝜆2=970 nm. It should be noted that both of these 

excitation wavelength sets allow for phase-matching of the generated SFG signal [see Fig. 8.2(c)]. 

As depicted in Fig. 8.5(a), the location of the SFG spectral bands are at ~448 nm, regardless of 

which excitation wavelengths are used. In contrast, Fig. 8.5(b) shows that 𝜆𝐷𝐹𝐺=4 or 6 µm, highly 

dependent on the choice of excitation wavelengths. To demonstrate that 𝜆𝑆𝐹𝐺 can be altered 

through the choice of 𝑇, while maintaining the same 𝜆𝐷𝐹𝐺 of 4 and 6 µm, a 𝑇=600 nm planar 

waveguide is investigated. This waveguide is excited using 200 fs pulses having 𝜆1=770.8 nm and 

 

Fig. 8.5. (a) SFG and (b) DFG spectra showing the wavelength distribution for the 𝑇=700 nm 

planar waveguide. (c) SFG and (d) DFG spectra showing the wavelength distribution for the 

𝑇=600 nm planar waveguide. 
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𝜆2=955.2 nm, as well as 𝜆1=797.2 nm and 𝜆2=919 nm. As shown in Fig. 8.5(c) and 8.5(d), 𝜆𝑆𝐹𝐺 is 

shifted to ~427 nm and 𝜆𝐷𝐹𝐺 is maintained at 4 and 6 µm. Notably, although the wavelengths of 4 

and 6 µm are used to represent the DFG process within the mid-IR region, the generated radiation 

is not restricted to these wavelengths. For example, by choosing the excitation wavelengths of 

𝜆1=849.6 nm and 𝜆2=950.8 nm, the DFG process would produce radiation at the central-

wavelength of 𝜆𝐷𝐹𝐺=7.9 µm, whereas DFG radiation would be produced at the central-wavelength 

of 𝜆𝐷𝐹𝐺=10.1 µm when 𝜆1=859.2 nm and 𝜆2=940.4 nm. 

 

8.2. A multi-band planar LN waveguide for generating THz 

radiation and visible light19 

While multi-band generation was numerically considered in Section 8.1, this section 

experimentally investigates multi-band generation in a SiO2-LN-polymer planar waveguide via 

the second-order nonlinear processes of SHG and OR. 

 

8.2.1. Waveguiding structure 

The multi-band generation technique is investigated using the planar waveguide platform 

illustrated in Fig. 8.6(a), which consists of a LN core region, as well as SiO2 and polymer cladding 

regions. A near-IR laser pulse couples into the planar waveguide, which produces modal phase-

matched SHG light and THz radiation phase-matched via the Cherenkov emission technique. The 

near-IR excitation pulse has a central wavelength of 𝜆𝑐
𝑒𝑥𝑐=800 nm, a pulse duration of 50 fs, and  

 
19

A version of this section’s work is published as B. N. Carnio, E. Hopmann, B. Y. Shahriar, and A. Y. Elezzabi, “A 

Multi-Band Photonic Source by Means of Phase-Matched Nonlinear Generation Processes,” IEEE Photon. Technol. 

Lett. 33, 366-369 (2021). 
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Fig. 8.6. (a) Planar waveguide depicting excitation by the near-IR pulse, as well as the SHG and 

THz radiation generation. (b) Schematic showing the planar waveguide, prism dimensions, and 

LN c-axis. 

 

is focused onto the input facet of the planar waveguide using an acylindrical lens to achieve a beam 

waist size of ~4 µm. Although this beam waist size is much larger than the LN layer, it substantially 

relaxes coupling alignment while still permitting an excitation pulse peak intensity, Ip, of 

2.4 GW/cm2 to be coupled into the LN layer. Notably, the second-order nonlinear frequency-
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conversion processes are expected to improve until the onset of limiting nonlinear effects (e.g. 

multi-photon absorption), observed at Ip of a few hundred GW/cm2 [186]. The excitation pulse is 

polarized along the c-axis of the LN crystal, such that it produces SHG light and THz radiation 

having a polarization along the c-axis through the 𝜒33
(2)

 second-order nonlinear susceptibility tensor 

element. For the 𝜆𝑐
𝑒𝑥𝑐=800 nm near-IR excitation pulse, 𝜒33

(2)
≈50 pm/V for generation in the SHG 

frequency regime and the 𝜒33
(2)

 magnitude is ~350 pm/V for generation in the THz frequency 

regime (i.e. ≲ 4 THz), as presented in Ref. [190] and Fig. 5.3(a), respectively. Here, it is important 

to discuss the interrelatedness of the nonlinear processes. The nonlinear dipoles induced by the 

SHG process and the OR process both occupy the same spatial region (i.e. the LN layer) and are 

both induced by the same near-IR excitation pulse. These oscillating nonlinear dipoles 

simultaneously emit SHG light and THz radiation through the acceleration and deceleration of the 

bound electric charges. However, the SHG light is emitted from the waveguide output face and 

the generated THz radiation is out-coupled using a high-index Si prism (see Fig. 8.6). This presents 

an added benefit, as wavelength demultiplexing techniques would be required if the different 

wavelength were to occupy the same spatial region. Therefore, the SHG and THz radiation 

generation processes are integrated, whereas the output paths are advantageously decoupled. 

The dimensions of the LN planar waveguide are shown in Fig. 8.6(b), where the SiO2, LN, 

and polymer regions have thickness of 2 µm, 530 nm, and 1.2 µm, respectively. Notably, a range 

of polymer thicknesses are acceptable, provided it is sufficiently thick (≳500 nm) to confine the 

near-IR excitation pulse to the LN layer and adequately thin (≲5 µm) to permit the formation of 

Cherenkov THz radiation waves in the Si prism. The length of the waveguide is LWG=14 mm, but 

the 45°-cut Si prism has a base length of Lprism=10 mm. As such, the phase-matched SHG light is 
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produced over a length of LWG=14 mm, whereas the phase-matched THz radiation is being 

generated over the length of Lprism=10 mm. The SHG light is emitted co-linearly from the output 

facet of the planar waveguide, which is sent to a spectrometer and a power meter. The generated 

THz radiation is emitted near-normal to the Si prism hypotenuse face, where it is directed through 

the THz-TDS system [see Chapter 3] implementing a 500 µm-thick ZnTe EO crystal, as well as a 

THz power meter. 

 

8.2.2. SHG visible-light generation 

The modal phase-matching technique is used to obtain phase-matched SHG from the planar 

waveguide. Figure 8.7(a) depicts the effective refractive indices of the waveguide modes, 𝑛𝑒𝑓𝑓
𝑚  

(i.e. the TE0, TE1, and TE2 excitation modes and the TE0, TE1, TE2, TE3, and TE4 SHG modes). 

The TE0 mode at the excitation wavelength of λexc=806 nm and the TE2 mode at the SHG 

wavelength of λSHG=403 nm both have an 𝜂𝑒𝑓𝑓
𝑚 =2.09, such that the modal phase-matching 

condition is satisfied. Here, the near-IR excitation pulse couples into the waveguide and propagates 

as the TE0 mode [Fig. 8.7(b)], which subsequently produces SHG light that propagates along the 

waveguide as the TE2 mode [Fig. 8.7(c)]. Notably, the SHG light is in-phase for all positions along 

the waveguide at λSHG=403 nm, but not at wavelengths far from λSHG=403 nm, such that modal 

phase-matching only occurs over a narrow wavelength range. When considering the λexc=806 nm 

TE0 excitation and λSHG=403 nm TE2 SHG modes, the spatial overlap integral is 2.5 mm-1 [234], 

such that these modes exhibit a good spatial overlap to support modal phase-matched SHG. 

The SHG process is investigated for the planar waveguide being excited by the near-IR 

pulse. The SHG spectrum is shown in Fig. 8.8, which is centered at the SHG wavelength of 

𝜆𝑐
𝑆𝐻𝐺=403 nm, in agreement with the calculated values of 𝑛𝑒𝑓𝑓

𝑚  [see Fig. 8.7(a)]. Furthermore, 
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Fig. 8.7. (a) The effective refractive indices calculated for the excitation modes (dotted lines) 

and the SHG modes (solid lines) supported by the LN planar waveguide. (b) TE0 mode electric 

field profile at λexc=806 nm and (c) TE2 mode electric field profile at λSHG=403 nm. 

 

despite the near-IR excitation pulse having the wide bandwidth of λexc≈770-840 nm, the SHG 

spectrum has a narrow FWHM linewidth of only 1.2 nm. This narrow linewidth, in conjunction 

with 𝜆𝑐
𝑆𝐻𝐺=403 nm, confirms that modal phase-matching between the TE0 excitation mode and the 

TE2 SHG mode is producing the SHG light within the linewidth of λSHG=403 ± 0.6 nm. A narrow-

bandwidth, and therefore long-duration, is critical to applications such as frequency comb 

generation, which has been observed in microresonators via cascaded second-order nonlinear 



263 

 

processes [236]. Interestingly, such frequency comb generation could be achieved by employing 

our multi-band generation technique in a microresonator structure. In this situation, SHG would 

be involved in producing the frequency combs, while the generated THz radiation could be used 

to monitor the frequency comb generation process, since the generated THz radiation is correlated 

to the SHG light. Using the measured SHG power, the SHG conversion efficiency, 𝜂𝑆𝐻𝐺 , is 

calculated to be 3.7×10-4, which is obtained by dividing the energy of the near-IR excitation pulse 

by the energy of the SHG light. Furthermore, we obtain 𝜂𝑆𝐻𝐺/Ip=1.5×10-2 %/(GW cm-2), where 

this expression is expected to remain valid for Ip up to several hundreds of GW/cm2 [186]. The 

observed 𝜂𝑆𝐻𝐺/Ip values are high, given the fact that a broadband excitation pulse (i.e. bandwidth 

of λexc≈770-840 nm) is being converted to a narrowband SHG pulse (i.e. FWHM bandwidth of 

λSHG=403 ± 0.6 nm). Additionally, the near-IR excitation beam waist size is much larger than the 

thickness of the LN layer, such that the SHG conversion efficiency could be improved by 

optimizing the near-IR excitation beam waist size for coupling into the TE0 near-IR mode. 

 

Fig. 8.8. SHG spectral power generated by the LN planar waveguide. 
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8.2.3. OR THz radiation generation 

The Cherenkov emission technique is implemented to achieve phase-matched THz radiation 

generation from the LN planar waveguide. Cherenkov emission depends on the effective group 

refractive index of the near-IR excitation mode, 𝑛𝑒𝑓𝑓,𝑔
𝑚 , where 𝑛𝑒𝑓𝑓,𝑔

𝑚 =2.31 and 2.43 for the TE0 

the TE1 near-IR excitation modes, respectively. Figure 8.9 illustrates the phase-matching 

Cherenkov emission angle, 𝜃𝑐 [calculated using Eq. (6.2)] for the TE0 and TE1 near-IR excitation 

modes.  For   𝑓≤4 THz,   𝜃𝑐≈47.6°   and   44.6°  for  the  TE0  and  TE1  near-IR  excitation  modes, 

respectively. Clearly, the Cherenkov angles weakly depend on the frequency of the generated THz 

radiation, due to the negligible dispersion in the Si prism, but strongly depend on 𝑛𝑒𝑓𝑓,𝑔
𝑚 . 

 

Fig. 8.9. The Cherenkov angle and intensity distributions for the near-IR excitation modes at 

𝜆𝑐
𝑒𝑥𝑐=800 nm. 

 

THz radiation generation is investigated in the LN planar waveguide being excited by the 

near-IR excitation pulse. Figure 8.10(a) displays the THz time-domain signal transmitted through 

the Si prism, where the THz radiation pulses generated by the TE0 and TE1 near-IR excitation 
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modes arrive at different instances in time. Since the generated THz radiation pulses are emitted 

at different 𝜃𝑐, they accumulate different path lengths as they propagate through the THz-TDS 

system, which manifests as the observed temporal delay. Although difficult to determine with 

high certainty, The THz radiation pulses at t=4 ps and t=10 ps are expected to result from the TE0 

and TE1 near-IR excitation modes, respectively (see Section 6.4.2). It is also necessary to consider 

the emission characteristics of the THz radiation produced from the planar waveguide. The 

generated THz radiation is collimated upon exiting the Si prism, which is ideal for directing and 

manipulating the THz radiation beam. Nonetheless, free-space propagation could be avoided 

entirely in an on-chip arrangement by fabricating an integrated THz waveguide to collect the 

generated THz radiation and direct it to another region of the chip. Alternatively, a metasurface or 

plasmonic structure could be used in place of the Si prism, which would allow the generated THz 

radiation to be coupled out of the waveguide and directed into a THz waveguide. The spectral 

power of the THz time-domain pulses produced by the planar waveguide is shown in Fig. 8.10(b), 

where the bandwidths extend up to ~3.5 THz and have dynamic ranges >50 dB. Therefore, unlike 

 

Fig. 8.10. (a) THz radiation pulses generated by the TE0 and TE1 near-IR modes and (b) their 

associated spectral powers. The generated THz radiation is sampled using a 500 µm-thick ZnTe 

EO crystal. 
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the narrowband SHG signal, which is simultaneously produced by the same waveguide, the 

generated THz radiation exhibits a wide bandwidth. Using the measured THz power, the OR 

conversion efficiency, 𝜂𝑂𝑅, is calculated as 4.6×10-6. 𝜂𝑂𝑅/Ip=1.9×10-4 %/(GW-cm-2), which is 

expected to remain valid for Ip up to a few hundred GW/cm2 [186]. Since the conversion 

efficiencies of both the SHG process and the OR THz radiation generation process are ≤3.7×10-4, 

frequency-conversion is negligibly influenced by depletion of the excitation electric field. 

 

8.3. Summary 

Using a planar LN waveguide, multi-band generation was simultaneously achieved via the 

second-order nonlinear processes of SFG and DFG, which was observed by conducting numerical 

FDTD simulation incorporating the methods developed in Chapter 5. In this planar waveguiding 

arrangement, the phase-matched SFG wavelengths were emitted co-linearly from the output of the 

planar waveguide and the phase-matched DFG wavelengths were emitted at the Cherenkov angle. 

Subsequently, a planar LN waveguide was experimentally-realized for multi-band generation, 

where modal phase-matched SHG produced wavelengths at 403±0.6 nm [conversion efficiency of 

1.5×10-2 %/(GW-cm-2)] and OR produced Cherenkov-emitted frequencies at ≲3.5 THz 

[conversion efficiency of 1.9×10-4 %/(GW-cm-2)]. We envision multi-band photonic sources based 

on phase-matched second-order nonlinear processes being integrated for use in on-chip 

applications. 
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Chapter 9. 

Conclusion 
 

The investigations commenced in this thesis explore THz radiation sources and detectors 

operating on the physical principles of second-order nonlinear phenomena. At its heart, this work 

examines novel crystals and waveguiding arrangements for THz radiation generation and/or 

detection. 

By incorporating emerging pnictide and chalcogenide ternary crystals into a THz-TDS 

system, crystals from these classes are experimentally-investigated for second-order nonlinear 

THz radiation generation and detection. CSP and AGS crystals were both shown to provide better 

OR phase-matching in comparison to ZGP, where the AGS crystal exhibited the very long 

coherence length of ~800 µm between 0.5-2.9 THz. A BGS crystal was shown to be a highly-

efficient source of narrowband THz radiation, where the THz power generated from this crystal 

was higher than that from a ZnTe crystal within select spectral bands. Regarding THz radiation 

detection, a ZGP crystal was shown to provide phase-matched THz radiation EO detection across 

an exceptionally wide bandwidth, surpassing that of ZnTe. 

Waveguiding arrangements were exploited for producing THz radiation through second-

order nonlinear processes. Since numerical simulation techniques are in their infancy when it 

comes to modeling nonlinear optical interactions, two separate formalisms were developed to 

permit the incorporation of all 18 dispersive second-order nonlinear tensor elements into FDTD 

simulations. Although these nonlinear FDTD formalisms described second-order nonlinear 

interactions in arbitrary geometries, they are expected to provide the largest impact to on-chip 
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nonlinear frequency-conversion structures (e.g. waveguides). Using the developed nonlinear 

FDTD formalisms, LN planar waveguides were examined for second-order nonlinear THz 

radiation generation. Key highlights include ultra-broadband THz radiation generation (i.e. 

0.18-106 THz), THz radiation generation enhancement near the LN phonon resonances, and 

phase-matched THz radiation produced in the backward direction (i.e. the direction opposite to the 

excitation electric field’s propagation direction). A select LN planar waveguiding arrangement 

was incorporated into a THz-TDS system to experimentally realize THz radiation generation. The 

generated THz radiation was emitted into free-space as Cherenkov waves (dependent upon the 

excitation mode) and exhibited a conversion efficiency >10-5. 

The previously mentioned nonlinear FDTD formalisms are not constrained to the THz 

frequency regime, but extend to other spectral regimes, permitting second-order nonlinear 

interactions to be explored without boundaries. To make use of this marked opportunity, this thesis 

briefly devolved beyond the THz spectral regime to investigate second-order nonlinear phenomena 

for generation within the IR and visible spectral regimes. When compared to a LN photonic 

waveguide, a LN plasmonic waveguide and a CSP photonic waveguide provided up to an order of 

magnitude improvement in conversion efficiency. Additionally, a LN photonic waveguide was 

used as a platform to show that an off-normal-incident coupling angle was required to realize SHG 

incorporating odd-ordered excitation modes. A planar LN waveguide was utilized to 

experimentally-realize such an off-normal-incident coupling scheme, where phase-matching 

between the odd-ordered TE1 excitation mode and the even-ordered TE4 SHG mode produced 

radiation at 402 nm. 

A new class of photonic sources was proposed based on multi-band radiation generation. By 

simultaneously satisfying the phase-matching conditions for SFG and DFG, visible-light and 
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mid-IR radiation were produced in a planar LN waveguide. To experimentally-realize such a 

multi-band source, a similar planar LN waveguide was exploited to concurrently satisfying the 

phase-matching conditions of SHG and OR, which produced spectral components at ~403 nm 

[conversion efficiency of 1.5×10-2 %/(GW cm-2)] and frequency components ≲3.5 THz 

[conversion efficiency of 1.9×10-4 %/(GW cm-2)], respectively. 

 

9.1. Future directions 

Chapter 4 considered pnictide and chalcogenide ternary crystals for THz radiation generation 

and detection. Future investigations should continue to explore crystals within these classes for 

both generation and detection. Largely due to the fact that these crystal classes are up-and-coming 

THz sources and detectors, the incorporation of such crystals into waveguiding geometries for THz 

radiation generation and detection is non-existent, which should be the focus of future 

investigations. 

In Chapter 5, nonlinear FDTD formalisms were developed to model all 18 second-order 

nonlinear tensor elements, allowing for dispersion of each element. Using the approach in 

Chapter 5 as a template, formalisms could be developed for third-order nonlinear effects, fourth-

order nonlinear effects, etc. 

In Section 6.1, a numerical investigation was conducted that showed ultra-broadband (i.e. 

0.18-106 THz) THz radiation generation from a sub-wavelength LN waveguide. While such a 

waveguide was experimentally-realized (see Section 6.4), certain constraints prevented the 

investigation of THz frequencies ≳3 THz. Specifically, due to phase-mismatching in the 

500 µm-thick EO crystal used in the THz-TDS system, the detected frequencies were limited to 

≲3 THz. As such, while the sub-wavelength LN waveguide was likely producing THz radiation 
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above this cut-off frequency, the THz-TDS system was unable to detect it. To address this concern, 

it is necessary to utilize an EO crystal capable of detecting high THz frequencies (e.g. GaSe 

[32,78]) or utilize a FTIR spectroscopy system, where the latter comes at the expense of losing the 

phase-information. Another factor limiting the THz radiation bandwidth is the duration of the 

excitation laser pulses, which was 50 fs in the experiments discussed in Section 6.4. Since the 

FWHM bandwidth of a 50 fs Gaussian pulse is 8.8 THz, OR is expected to be limited to a few tens 

of THz. Various Ti:Sapphire lasers are capable of producing electric field pulses having durations 

≲10 fs, which could be utilized to resolve this issue. Additionally, the experimentally-realized LN 

planar waveguide had a length of 1 cm. THz radiation produced using a shorter-length (e.g. tens 

to hundreds of microns) waveguide would bring this waveguiding arrangement closer to being 

realized for on-chip applications. A LN planar waveguide was numerically studied for THz 

radiation generation enhancement near the LN phonon resonance (i.e. Section 6.2) and backward 

THz radiation generation (i.e. Section 6.3). These structures should be fabricated and incorporated 

into a THz-TDS system to experimentally-realize THz radiation generation. 

Chapter 7 considered waveguides for generation in the near-IR and visible spectral regimes. 

LN plasmonic waveguides (Section 7.1) and a CSP photonic waveguide (Section 7.2) have been 

investigated numerically, such that the next step is to fabricate and test these structures 

experimentally. 

Chapter 8 explored waveguiding arrangements to simultaneously generate radiation within 

multiple spectral bands. A centimeter-long multi-band LN planar waveguide was experimentally-

investigated (section 8.2), such that preparing and testing a shorter-length (e.g. tens to hundreds of 

microns) waveguide would be the next step in preparing this multi-band waveguiding structure for 

on-chip applications. 
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9.2. Outlook 

This thesis considered THz radiation generation and detection occurring through second-

order nonlinear interactions, which have provided advancements to the field of nonlinear optics. 

THz sources and detectors were explored using the emerging classes of pnictide and chalcogenide 

ternary crystals. However, only a select few crystals were considerer (i.e. ZGP, CSP, AGS, and 

BGS), such that this work serves as a launching pad for others to continue exploring these crystal 

classes within the THz spectral regime. In this thesis, several unique LN planar waveguiding 

geometries were investigated, which have the potential to bring THz radiation from being largely 

constrained to laboratory research environments and emerge into the realm of real-world 

applications. Going forward, we expect the integration of pnictide and chalcogenide ternary 

crystals into waveguiding arrangements to lead to breakthroughs within the domain of THz 

radiation technologies. Within the scope of this work, an entirely new class of multi-band photonic 

sources was proposed, which produced radiation within multiple spectral bands by simultaneously 

satisfying the phase-matching conditions for several second-order nonlinear processes. A novel 

discovery such as this has the potential the excite an endless number of future investigations. The 

work in this thesis sets the foundation for THz radiation generation and detection using novel 

crystals and/or waveguiding arrangements, which is one-day expected to allow THz radiation 

technologies to break-free from the constraints of laboratory environments and flourish in real-

world applications. 
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Appendix A 
 

Phase-matching in second-order nonlinear interactions 

Second-order nonlinear frequency-conversion is illustrated in Fig. A1, with photons being 

used to represent electric fields within the crystal. As excitation electric fields at the angular 

frequencies of 𝜔1 (i.e. 𝐸𝜔1
) and 𝜔2 (i.e. 𝐸𝜔2

) propagate through a non-centrosymmetric crystal, 

they continuously generate an electric field at the angular frequency of 𝜔3 = 𝜔1 + 𝜔2 (i.e. 𝐸𝜔3
). 

However, to obtain an intuitive understanding of phase-matching, generation can be considered at 

the discrete positions of 𝑥𝑖 (where i=1, 2, or 3) within the crystal. The excitation electric fields at 

position 𝑥𝑖 (i.e. 𝐸𝜔1

𝑥𝑖  and 𝐸𝜔2

𝑥𝑖 ) produce an electric field at position 𝑥𝑖, denoted as 𝐸𝜔3

𝑥𝑖:𝑥𝑖. 𝐸𝜔3

𝑥1:𝑥1 and 

𝐸𝜔3

𝑥2:𝑥2 continue to propagate along the crystal and are denoted as 𝐸𝜔3

𝑥3:𝑥1 and 𝐸𝜔3

𝑥3:𝑥2 at position 𝑥3, 

respectively. The total electric field at 𝑥3, 𝐸𝜔3

𝑥3 , is the superposition of the various electric field 

contributions, such that 𝐸𝜔3

𝑥3 = 𝐸𝜔3

𝑥3:𝑥1 + 𝐸𝜔3

𝑥3:𝑥2 + 𝐸𝜔3

𝑥3:𝑥3. Phase-matching is achieved when 𝐸𝜔3

𝑥3:𝑥1, 

𝐸𝜔3

𝑥3:𝑥2, and 𝐸𝜔3

𝑥3:𝑥3 constructively interfere, while phase-mismatching occurs when 𝐸𝜔3

𝑥3:𝑥1, 𝐸𝜔3

𝑥3:𝑥2, 

and 𝐸𝜔3

𝑥3:𝑥3 exhibit destructive interference. The conditions leading to phase-matching are discussed 

in Chapter 2. Notably, the aforementioned discussion pertains to: (i) SHG when 𝜔1 → 𝜔1 and 

𝜔2 → 𝜔1 or 𝜔1 → 𝜔2 and 𝜔2 → 𝜔2, (ii) SFG when 𝜔1 → 𝜔1 and 𝜔2 → 𝜔2, and (iii) DFG when 

𝜔1 → 𝜔1 and 𝜔2 → −𝜔2. Additionally, phase-matching in OR is similar to the aforementioned 

discussion, where phase-matching occurs when the electric fields generated at various positions 

within the crystal exhibit constructive interference. 
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Fig. A1. Frequency-conversion occurring within a non-centrosymmetric crystal due to second-

order nonlinear interactions. The various generation events are vertically offset. 

 

 

 

 


