n University of Alberta

a ;;'

A Framework for Enforcing Privacy in Mining Frequent
Patterns

by

Stanley R. M. Oliveira
Osmar R. Zaiane

Technical Report TR 02-13
June 2002

DEPARTMENT OF COMPUTING SCIENCE
University of Alberta
Edmonton, Alberta, Canada

A Framework for Enforcing Privacy in Mining Frequent Patterns

Stanley R. M. Oliveira!+? Osmar R. Zaiane!

oliveira@cs.ualberta.ca zaiane@cs.ualberta.ca

'"Department of Computing Science, University of Alberta, Canada
2Embrapa Information Technology, Campinas, Sao Paulo, Brazil

Abstract

Discovering hidden patterns from large amounts of data plays an important role in marketing, busi-
ness, medical analysis, and other applications where these patterns are paramount for strategic de-
cision making. However, recent research has shown that some discovered patterns can pose a threat
to security and privacy. One alternative to address the privacy requirements in mining hidden pat-
terns is to look for a balance between hiding restrictive patterns and disclosing non-restrictive ones.
In this paper, we propose a new framework for enforcing privacy in mining frequent itemsets. We
combine, in a single framework, techniques for efficiently hiding restrictive patterns: a transaction
retrieval engine relying on an inverted file and Boolean queries; and a set of algorithms to “sanitize” a
database. In addition, we introduce mining performance measures for frequent itemsets that quantify
the fraction of mining patterns which are preserved after sanitizing a database. We also report the

results of a performance evaluation of our research prototype and an analysis of the results.

1 Introduction

Data mining techniques have emerged as a means of extracting hidden or previously unknown informa-
tion from large repositories of data. One of the most studied problems in data mining is the process of
discovering frequent itemsets and, consequently, association rules [2, 3, 22]. The discovery of interest-
ing frequent patterns among huge amounts of transactional records can be very effective in revealing
actionable knowledge that leads to strategic decisions.

Despite its benefits in various areas, data mining can also pose a threat to privacy and information
security if not done or used properly. Recent advances in data mining and machine learning algorithms
have introduced new problems in database security [11, 5, 14, 21], i.e., these techniques are now moving
to other domains where privacy issues are very significant. The basic problem is that from non-sensitive
data, one is able to infer sensitive information, including personal information, facts, or even patterns

that are not supposed to be disclosed.

There is no exact solution that resolves this privacy problem in data mining. An approximate
solution could be sufficient depending on the application since the level of privacy can be interpreted
in different contexts. Clifton et al. [12] argued that the goal is to achieve a solution with bounded
error, or difference from the data house solution. Indeed, privacy issues in data mining cannot simply
be addressed by restricting data collection or even by restricting the use of information technology. An
appropriate balance between a need for privacy and knowledge discovery should be found [7].

Clifton and Marks [13] enumerated various scenarios in which mining applications require preventing
the disclosure of information, including market basket analysis. Let us consider, for example, a situation
in which one supplier offers products at a reduced price to some consumers and, in turn, this supplier
receives permission to access the database of the consumers’ customer purchases. The threat becomes
real whenever the supplier is allowed to derive highly sensitive knowledge from unclassified data that
is not even known to the database owners (consumers). In this case, the consumers benefit from
reduced prices, whereas the supplier is provided with enough information to predict inventory needs
and negotiate other products to obtain a better deal for his consumers. This implies that the competitors
of this supplier start losing business.

Notice that the simplistic solution to enforce privacy in data mining is to implement a filter after
the mining phase to weed out/hide the restricted discovered patterns. However, in the context of our
research, the users are provided with the data and not the patterns, and are free to use their own
tools, and thus the restriction for privacy has to be applied before the mining phase on the data itself.
The process of removing or altering transactions for the purpose of hiding restricted patterns from
within the data is also refered to as “data sanitization” in [5]. As we shall see, in our techniques, we
do not add itemsets in transactions but only strategically and selectively remove individual items from
sensitive transactions preventing the disclosure of some patterns while preserving as much of the original
information as possible for other applications.

In this paper, we propose a new framework for enforcing privacy in mining frequent patterns that
combines techniques for efficiently hiding restrictive rules. The framework is composed of a transaction
retrieval engine relying on an inverted file and Boolean queries for retrieving transaction IDs from a
database, and a set of sanitizing algorithms. One major novelty with our approach is that we take into
account the impact of our sanitization not only on hiding the patterns that should be hidden but also
on hiding legitimate patterns that should not be hidden. Thus, our framework tries to find a balance
between privacy and disclosure of information by attempting to minimize the impact on the sanitized
transactions. Other approaches presented in the literature focus on the hiding of restrictive patterns
but do not study the effect of their sanitization on accidentally concealing legitimate patterns or even
generating artifact patterns.

The main contributions of this paper are the following: (1) the design and implementation of the
framework; (2) algorithms for cleansing a transactional database; (3) a taxonomy for our algorithms;
and (4) performance measures for mining frequent patterns that quantify the fraction of mining patterns
which are preserved, under a certain privacy threshold 1, after sanitizing a database.

This paper is organized as follows. In Section 2, we provide some basic concepts on transactional

databases, frequent patterns and association rules, and the process of sanitizing a database. In addition,
the definition of the research problem is given. We present our framework in detail in Section 3. In
Section 4, we introduce our transaction sanitizing algorithms. In Section 5, we present the experimental
results and discussion. Related work is reviewed in Section 6. Finally, Section 7 presents our conclusions

and a discussion of future work.

2 Basic Concepts

In this section, we briefly review some concepts related to transactional databases, frequent patterns,
and association rules. In addition, we present the formulation of the research problem addressed in this

paper and describe the process of sanitizing a transactional database.

2.1 Transactional Databases

A transactional database is a relation consisting of transactions in which each transaction ¢ is charac-
terized by an ordered pair, defined as t = (TID, list_of-elements), where TID is a unique transaction
identifier number and list_of_items represents a list of items making up the transactions [10]. For in-
stance, in market basket data, a transactional database is composed of business transactions in which
the list of elements represents items purchased in a store.

In general, transactional databases require the transforming of relational data into a single table, and
miners then are able to look for patterns in such an engineered table. Based on such a data structure,
data mining systems for transactional data can answer queries such as “identify the sets of items which
are frequently sold together” that a regular data retrieval system cannot.

A transactional database may have additional tables associated with it. Such tables may contain
information concerning sales, such as the date of the transaction, the customer’s 1D number, the I D
of the sales person, the branch at which the sale occurred [17], and so on. A sample transactional

database, composed of six transactions, is shown in Fig 3 (Section 3.2).

2.2 The Basics of Mining Frequent Patterns and Association Rules

The discovery of the recurrent patterns in large transactional databases has become one of the main
topics in data mining. In its simplest form, the task of finding frequent patterns can be viewed as the
process of discovering all item sets, i.e., all combinations of items that are found in a sufficient number
of examples, given a frequency threshold o. If the frequency threshold is low, then there may be many
frequent patterns in the answer set.

The items in a frequent pattern are Boolean, i.e., items are either present or absent. For this
reason, a transactional database may be represented by a sparse matrix in which the rows correspond
to transactions and the columns correspond to the items available in one store. If the element (3,7) is
1, this indicates that customer ¢ purchased item j, while 0 indicates that the item j was not purchased.

A data mining system is able to generate thousands or even millions of frequent patterns. For

instance, in a dataset with m items, 2™ patterns are possible. So this task is exhaustive since there is

an exponential number of patterns generated from the variables present in the whole data. In market
basket applications, for example, the number of frequent patterns tends to be quite large.

In most cases, only a small fraction of the patterns generated would actually be of interest to any
miner. The research challenge in discovering frequent patterns is to find useful and valuable ones. Han
and Kamber [17] suggested that a pattern is interesting if it satisfies the following conditions: (a) it is
easily understood by humans; (b) it is valid on new or test data with some degree of certainty; (c) it is

potentially useful; (d) it is novel; and (e) it meets a frequency threshold controlled by the user.

2.3 The Basics of Frequent Patterns and Association Rules

When the frequent patterns are known, finding association rules is simple. Association rules provide
a very simple but useful form of rule patterns for data mining. A rule consists of a left-hand side
proposition (the antecedent or condition) and a right-hand side (the consequent). Both the left and
right-hand side consist of Boolean statements (or propositions). The rules state that if the left-hand
side is true, then the right-hand side is also true.

More formally, association rules are defined as follows: Let I = {iy,...,i,} be a set of literals, called
items. Let D be a database of transactions in which each transaction ¢ is an itemset such that ¢t C I. A
unique identifier, called TID, is associated with each transaction. A transaction t supports X, a set of
items in I, if X C ¢. An association rule is an implication of the form X = Y, where X C I, Y C I and
X NY = 0. Thus, we say that a rule X = Y holds in the database D with confidence ¢ if |X|)L(J‘Y| >
where |A] is the number of occurrences of the set of items A in the set of transactions D. Similarly, we

XUyl
N

say that a rule X = Y holds in the database D with support o if > o where N is the number
of transactions in D.

As stated before, association rule mining algorithms rely on support and confidence and mainly
have two major phases: (1) based on a support o set by the user, frequent itemsets are determined
through consecutive scans of the database; (2) strong association rules are derived from the frequent
item sets and constrained by a minimum confidence ¢ also set by the user. Since the main challenge is
the discovery of the frequent itemsets, we consider only this second phase in our analysis.

One well-known algorithm for association rules is Apriori [2, 3]. This algorithm constructs a can-
didate set of large itemsets, counts the number of occurrences of each candidate itemset, and then
determines large itemsets based on a predetermined minimum support. The main idea behind the apri-
ori algorithm is the a priori property, where every subset of a frequent itemset must also be a frequent
itemset. Other algorithms for finding association rules involve some variations to reduce the number
of data scans required, such as hashing and transaction reduction, or even partitioning the data and
sampling the data. Examples of such algorithms include the hash-based algorithm for association rules
introduced by Park et al. [20], the sampling algorithm for association rules proposed by Toivonen [23],

and the binary tree algorithm proposed by Gyenesei [16].

2.4 Privacy Preservation: Problem Definition

In this paper we focus on the discovery of frequent patterns. Unlike association rules that rely on
support and confidence, frequent patterns satisfy a support threshold o only.
In this work, our goal is to hide a group of frequent patterns which contain highly sensitive knowledge.

We refer to these frequent patterns as restrictive patterns, and we define them as follows:

Definition 1 (Restrictive Patterns) Let D be a transactional database, P be a set of all frequent
patterns that can be mined from D, and Rulesy be a set of decision support rules that need to be hidden
according to some security policies. A set of patterns, denoted by Rp, is said to be restrictive if Rp C P

and if and only if Rp would derive the set Rulesy. ~“Rp is the set of non-restrictive patterns such that

“"Rp URp = P.
Transaction
Inverted File <——>| Retrieval
Engine
Transactional Set of Sanitizing
Database
Algorithms

A

Figure 1: (A): Privacy Preservation Framework. (B):Visual representation of restrictive and non re-
strictive patterns and the patterns effectively discovered after transaction sanitization

Figure 1B illustrates the relationship between the set P of all patterns in the databse D, the re-
strictive and non-restrictive patterns, as well as the set P’ of patterns discovered from the sanitized
database D'. 1, 2, and 3 are potential problems that represent the restrictive patterns that are failed to
be hidden, the legitimate patterns accidentally missed, and the artificial patterns created by the sani-
tization process. These are explained in Section 5 in the discussion of how to measure the effectiveness
of our algorithms.

A group of restrictive patterns is mined from a database D based on a special group of transactions.

We refer to these transactions as sensitive transactions and define them as follows.

Definition 2 (Sensitive Transactions) Let T be a set of all transactions in a transactional database
D and Rp be a set of restrictive patterns mined from D. A set of transactions is said to be sensitive,

denoted by St, if ST C T and if and only if all restrictive patterns can be mined from St and only from
Sr.

One simple and effective way to hide some restrictive patterns is to decrease their support in a

given database. This procedure of altering the transactions is called the sanitization process [5]. To

do so, a small number of transactions have to be modified by deleting one or more items from them or
even changing items in transactions such as in [5]. On one hand, this approach slightly modifies some
data, but this is perfectly acceptable in some real applications. On the other hand, such an approach
must hold the following restrictions: (1) the impact on the data in D has to be minimal and (2) an
appropriate balance between a need for privacy and knowledge discovery must be guaranteed.

The specific problem addressed in this paper can be stated as follows: If D is the source database
of transactions and P is a set of relevant association patterns that could be mined from D, the goal is
to transform D into a database D’ so that the most frequent patterns in P can still be mined from D’

while others will be hidden. In this case, D’ becomes the released database.

2.5 The Sanitization Process

As mentioned in the previous section, the goal of the sanitization process is to hide some restrictive
patterns that contain highly sensitive knowledge. Figure 2 illustrates the different steps in this process.
In the first step, the set P of all patterns from D is identified. The second step distinguishes restricted
patterns R, from the non-restrictive patterns “Rp by applying some security policies. It should be
noted that what constitutes restrictive patterns depends on the application and the importance of
these patterns in a decision process. In Step 3, sensitive transactions are identified within D. In our
approach, we use a very efficient retrieval mechanism called the transaction retrieval engine (discussed
in Section 4.2) to speed up the process of finding the sensitive transactions. Finally, Step 4 is dedicated
to the alteration of these sensitive transactions to produce the sanitized database D’. In our framework,
the process of modifying such transactions satisfies a privacy threshold 1 controlled by the user. This
threshold basically expresses how relaxed the privacy preserving mechanisms should be. When ¢ = 0%,
no restrictive patterns are allowed to be discovered. When 1 = 100%, there are no restrictions on the
restrictive patterns. The advantage of having this threshold is that it enables a compromise to be found
between hiding patterns while missing legitimate ones and finding all legitimate patterns but uncovering

restrictive ones. This is indeed the balance between privacy and the disclosure of information.

Identify Classify Select the Modify some
Discovered Discovered Sensitive Sensitive
Patterns Patterns Transactions Transactions
Transactional Step 1 Setp 2 Step 3 Step 4 Sanitized
Database Database

Figure 2: The Sanitization Process

3 The Framework for Privacy Preservation

As depicted in Figure 1(A), our framework encompasses a transactional database (modeled into a
document database), an inverted file, a set of sanitizing algorithms used for hiding restrictive patterns

from the database, and a transaction retrieval engine for fast retrieval of transactions.

3.1 Mapping a Transactional Database into a Text Document Database

In our approach, we build an index schema to speed up the sanitizing process of a transactional database.
To accomplish this, we map a transactional database into a text document database.

A text database is a file that contains word descriptions for objects. A text database is considered
to be composed of two fundamental units: the document and the term. A document can be a traditional
document, such as a book, product specifications, summary reports, or bug reports. Other text doc-
uments include chapters, sections, paragraphs, or even e-mail messages and Web pages. On the other
hand, a term can be a word, word-pair, or phrase within a document, such as the word computer or
word-pair computer science.

For our purpose, we define a text database as a collection of transactions in which each transaction is
a document and terms are represented by items. This model preserves all the information and provides

the basis for our indexing, borrowing from the information retrieval domain.

3.2 The Inverted File Index

Database design and configuration become increasingly important as a database’s size and number of
concurrent users grow. An application that begins small might grow significantly over time, and its
database must grow as well. For instance, in a transactional database, there are thousands or even
millions of transactions. For this reason, the design of an index schema will be very important to deal
with emerging performance problems.

Considering that in our approach we map a transactional database into a text database, we need
to look for an index schema to deal with a text database. One very efficient strategy for indexing a
text database is an inverted file [6]. An inverted file, a structure comprising the vocabulary and the
occurrences, is a word-oriented mechanism for indexing a text collection with the purpose of speeding up
the searching task. The vocabulary is the set of all different words in the text, whereas the occurrences
represent a data structure which assigns to each text word the list of documents in which such an word
is presented.

In our framework, the inverted file’s vocabulary is composed of all the different items in the trans-
actional database, and for each item there is a corresponding list of transaction IDs in which the item
is present. Figure 3 shows an example of an inverted file corresponding to the sample transactional

database shown in the figure.

| Docs | Itens/Terms | Items Freq

T1 ABCD A 5 T1,T2,T3,T4, TS
T2 | ABC B | 5 T1,T2,T3,T5,T6
T3 ABD

4 T1,T2,T4,T
T4 A C D C b B B 5
T5 ABC D 4 T1,T3, T4, T6
16 B D Vocabulary Transaction IDs

Figure 3: An example of transactions modeled by documents and the corresponding inverted file

As can be seen, this schema saves space because all the occurrences of the same item in a transaction
are referenced only once. In addition, the pointers may be smaller because there are fewer transactions
than item positions. For single-item queries, it is not necessary to access the text because when a item
appears in a transaction, the algorithm retrieves the entire transaction.

We implemented the vocabulary based on a perfect hash table [15], with no collision, insertion, or
deletion. For a given item, one access suffices to find the list of all transaction IDs that contain the
item. The occurrences with transaction IDs are created and simultaneously sorted in ascending order
of transaction IDs. Thus, to search for a transaction ID of a particular item, we use a binary search in
which, in the worst case, the access time is O(logN), where N is the number of transaction IDs in the
occurrences.

The sequence of steps that we need in order to build the inverted file proposed in our framework,
scanning the transactional database only once, are the following: (1) building the vocabulary composed
of all different items and computing the frequency of each item as we read each transaction and (2)

building and/or updating the occurrence list for each different item in one transaction.

3.3 The Transaction Retrieval Engine

To search for sensitive transactions in the transactional database, it is necessary to access, manipulate,
and query transaction IDs. The transaction retrieval engine performs these tasks. It accepts requests
for transactions from a sanitizing algorithm, determines how these requests can be filled (consulting the
inverted file), processes the queries using a query language based on the Boolean model, and returns
the results to the sanitizing algorithm. The process of searching for sensitive transactions through
the transactional database works on the inverted file. In general, this process follows three steps: (1)
Vocabulary search: each restrictive pattern is split into single items. Isolated items are transformed
into basic queries to the inverted index; (2) Retrieval of transactions: The lists of all transaction
IDs of transactions containing each individual item respectively are retrieved; and (3) Intersections
of transaction lists: The lists of transactions of all individual items in each restrictive pattern are
intersected using a conjunctive Boolean operator on the query tree to find the sensitive transactions
containing a given restrictive pattern.

The transaction retrieval engine designed for our framework relies on the Boolean model. The
selection of such a model was influenced by the following reasons: First, the Boolean model is a simple
information retrieval model based on set theory and Boolean algebra. However, because we use only
AND operations for retrieving sensitive transactions, our transaction retrieval engine is confined to this
Boolean operation. Second, Boolean expressions have a precise semantic since the index terms are
present or absent in a transaction. Third, the Boolean operation AND is very simple, intuitive, and
easy to implement.

To illustrate how our transaction retrieval engine works, Figure 4 shows the search for the restrictive
pattern ACD in the sample database depicted in Figure 3. As illustrated, a Boolean query has a syntax
composed of items (i.e., basic queries) represented by a set of transactions as well as the Boolean AND

operator which works on their operands (which are a set of transactions) and delivers a set of sensitive

transactions. Since the scheme is in general compositional (i.e., operators can be composed over the
results of other operators), a query syntax tree is naturally defined in which the leaves correspond to

the basic queries and the internal nodes to the operators.

Items: A C D

Basic Queries: {T1,T2,T3,T4,T5} {T1,T2,T4,T5} {T1,T3,T4, T6}

AND AND AND
A AND = {Tl1,T2,T3,T4,T5} AND = {T1,T2,T3,T4,T5} {T1,T4} = {T1, T4}
C D {T1,T2,T4,T5} {T1,T3,T4,T6} Sensitive Transactions

Figure 4: Processing the internal nodes of the query syntax tree

4 The Sanitization Algorithms

In our taxonomy for transactional database sanitizing algorithms for the purpose of information hiding,
we distinguish the algorithms that solely remove information from the algorithms that modify existing
information. The first algorithms only reduce the support of some items, while the second may increase
the support of some items. We believe that the algorithms that remove information have a smaller
impact on the database since they do not generate artifacts such as illegal patterns that would not exist
had the sanitizing not happened. Among the approaches that remove information only, we distinguish
the pattern restriction-based approaches that remove complete restrictive patterns from the sensitive
transactions and the item restriction-based approaches that selectively remove some items from sensitive
transactions, as can be seen in Figure 5. The pattern restrictive-based approaches have a bigger impact

on the database as more legal patterns may end-up hidden along with the restricted patterns.

Sanitizing Algorithms

Item Restriction—Based Pattern Restriction—Based

‘ ° ‘ Na‘ive

MinFIA MaxFIA IGA

Figure 5: A Taxonomy of Sanitizing Algorithms

In this section, we present the idea behind our hiding strategies. For each algorithm, the inputs

are a transactional database D, a set of restrictive patterns Rp, and a privacy threshold v, while the

output is the sanitized database D’.

To sanitize a database, each sanitizing algorithm requires an additional scan over the original
database D in order to alter some sensitive transactions while keeping the other transactions intact. An
initial scan is necessary to build the inverted index.

In most cases, a sensitive transaction contains more than one restrictive pattern. We refer to these
transactions as conflicting transactions since modifying one of them causes an impact on other restrictive
patterns or even on non-restrictive ones. The degree of conflict of a sensitive transaction is defined as
the number of restrictive patterns that can be mined from the sensitive transaction.

To illustrate the presented concepts, let us consider the sample transactional database in Figure
3. Suppose that we have a set of restrictive patterns Rp = {ABD, ACD}. This example yields the
following results. The sensitive transactions Sy containing the restrictive patterns are {T1, T3, T4}.
The degrees of conflict for the transactions T1, T3 and T4 are 2, 1 and 1 respectively. Thus, the only
conflicting transaction is T1, which covers both restrictive patterns at the same time. An important
observation here is that any pattern that contains a restrictive pattern is also a restrictive pattern.
Hence, if ABD is a restricted pattern but not ACD as above, the pattern ABCD will also be restrictive
since it contains ABD. This is because if ABCD is discovered as a frequent pattern, it is straight forward
to conclude that ABD is also frequent, which should not be disclosed.

All our item restriction-based and pattern restriction-based algorithms have essentially four major

steps:

1. Identify sensitive transactions for each restrictive pattern after building an inverted index where
the vocabulary is the set of all items in the database and the occurences are the transaction IDs. In
our algorithms, we also generated an inverted index where the vocabulary is the set of restrictive

patterns and the occurences are the IDs of sensitive transactions.

2. For each restrictive pattern, identify a candidate item that should be eliminated from the sensitive

transactions. This candidate item is called the victim item.

3. Based on the privacy threshold %, calculate for each restrictive pattern the number of sensitive

transactions that should be sanitized.

4. Based on the number found in step 3, identify for each restrictive pattern the sensitive transactions

that have to be sanitized and remove the victim item from them.

Most of our sanitizing algorithms mainly differ in step 2 in the way they identify a victim item to
remove from the sensitive transactions for each restrictive pattern, and in step 4 where the sensitive

transactions to be sanitized are selected. Steps 1 and 3 remain essentially the same for all approaches.

4.1 The Naive Algorithm

The main idea behind the Naive Algorithm, denoted by NA, is to select all items in a given restrictive
pattern as victims. The rationale behind this selection is that by removing from the sensitive transac-

tions the items of a restrictive pattern, such a pattern will be hidden. If a sensitive transaction contains

10

exactly the same items as a restrictive pattern, the Naive Algorithm removes all items of this transaction
except for the item with the highest frequency in the database. Because one item must be kept, the
number of transactions is not modified.

Selecting the sensitive transactions to sanitize is based simply on their degree of conflict. Given the
number of sensitive transactions to alter, based on 1, this approach selects for each restrictive pattern
the transactions with the smallest degree of conflict. The rationale is, as above, to minimize the impact
of the sanitization on the discovery of the legitimate patterns.

The sketch of the Naive Algorithm is presented below:

Naive_Algorithm
Input: D, Rp, ¢
Output: D’
Step 1. For each restrictive pattern rp; € Rp do
1. T'[rp;] < Find_Sensitive_Transactions(rp;, D);
Step 2. For each restrictive pattern rp; € Rp do
1. Victimsyp, < V itemy, such that itemy € rp;
Step 3. For each restrictive pattern rp; € Rp do
1. NumbTrans,, < |T[rp;]| x (1 =) // |T[rp;]] is the number of sensitive transactions for rp;
Step 4. D' + D
For each restrictive pattern rp; € Rp do
1. Sort_Transactions(7[rp;]); //in ascending order of degree of conflict
2. TransToSanitize < Select first NumbT'rans,,, transactions from T'[rp;]
3. in D’ foreach transaction ¢t € TransToSanitize do
3.1. t « (t — Victims,yp,)
End

The four steps in this algorithm correspond to the four steps described above for all pattern
restriction-based algorithms. The first step builds an inverted index of the item in D in one scan
of the database. As illustrated in the example in Figure 3, the support of each item in the database is
also calculated during this scan and attached to the respective items in the inverted index. This sup-
port of the items is used in step 2 to identify the victim items Victims,,, for each restrictive pattern.
For the Naive algorithm, all items in a given restrictive pattern are selected. Line 1 in step 3 shows
that 1) is used to compute the number NumbT'rans,,, of transactions to sanitize. This means that the
threshold %) is actually a measure of the impact of the sanitization rather than a direct measure of the
restricted patterns to hide or disclose. Indirectly, ¥ does have an influence on the hiding or disclosure
of restricted patterns. There is actually only one scan of the database in the implementation of step
4. Transactions that do not need sanitization are directly copied from D to D', while the others are
sanitized before being copied to D’. In our implementation, the sensitive transactions to be cleansed
are first marked before the database scan for copying. The selection of the sensitive transactions to
sanitize, TransToSanitize, is based on their degree of conflict, hence the sorting in line 1 of step 4.
When a transaction is selected for sanitization, the victim items are removed from it (line 3.1 in step
4).

Theorem 1 The running time of the Naive Algorithm is O(ny x NlogN), where ny is the number of

11

restrictive patterns in D and N 1is the number of transactions in D.

Proof. Let D be the source database, N the number of transactions in D, nq the number of restrictive
patterns in D, ny the maximum number of items in a restrictive pattern, and let ng the maximum
number of items in one transaction. Assume that the inverted file is stored in memory in which the
vocabulary is a hash table containing all distinct items in D, their frequencies, and that for each item,
there is a corresponding list of transaction IDs.

In step 1, for each restrictive pattern, the algorithm searches for the transaction IDs corresponding
to each item and makes an AND operation on many sorted lists, taking 2 lists at a time. For the first
AND operation, the algorithm takes O(N), assuming that each list contains all N transaction IDs, in
the worst case. The resulting list has to be AND-performed with the third item’s list, and this process
continues until the last item’s list has been considered. This entire process encompasses no — 1 AND
operations, so that the running time for each pattern takes O((n2 —1) x N). Because step 1 is executed
ny times, the complexity of this loop is O(ny x (ng — 1) x N). Considering that ne < ny and ny < N,
the running time for step 1 can be simplified to O(n; x N).

Steps 2 is also executed n; times. For each restrictive pattern rp;, all items in rp; are selected as
victim items, so that this operation takes O(ngy). Thus, step 2 takes O(n; X ng).

Step 3 contains a straightforward computation and takes O(1) per restrictive pattern since the
algorithm simply selects the number of sensitive transactions to be touched. Because this step is
executed m; times, the running time for step 3 takes O(n;).

Step 4 is the most expensive step of the algorithm. In line 1 of step 4, the algorithm sorts all sensitive
transactions of each restrictive pattern by frequency. Considering that in the worst case all transactions
in D are sensitive, Line 1 takes O(ny x NlogN) since this operation is executed n; times. In Line 2, in
the worst case, all transactions in D are sensitive and are stored in the data structure TransToSanitize
to be sanitized. So Line 2 takes O(ny x N). In Line 3, the algorithm cleanses at most ng — 1 items in
each sensitive transaction since one item is required to keep the number of transactions in D. Thus,
Line 3 takes O(n; x (ng —1)). The running time for Step 4 is O(n1 X NlogN +ny x N +nq x (ng — 1)).
When N and n; are large, ny x NlogN grows faster than ny x N and ny x (ng —1). Thus, the running
time for step 4 takes O(ny x NlogN).

The running time of the Naive algorithm is the sum of running times for each step executed, i.e.,
O(n1 X N+mny Xng+ny+n1 X NlogN). When N is large, n; X NlogN grows faster than n; x N and
NlogN, ni x ng and ny. Thus, the running time of the Naive Algorithm takes O(n; x NlogN), which

is almost linear. O

4.2 The Minimum Frequency Item Algorithm

The main idea behind the Minimum Frequency Item Algorithm, denoted by MinFIA, is to select as a
victim item, for a given restrictive pattern, the restrictive pattern item with the smallest support in the
database. The rationale behind this selection is that removing the item from the sensitive transactions

with the smallest support will have the smallest impact on the database and the legitimate patterns to

12

be discovered. Again, selecting the sensitive transactions to sanitize is simply based on their degree of
conflict. Given the number of sensitive transactions to alter, based on), this approach selects for each
restrictive pattern the transactions with the smallest degree of conflict.

The sketch of the Minimum Frequency Item Algorithm is presented below:

Minimum Frequency _Item_Algorithm
Input: D, Rp, ¢
Output: D’
Step 1. For each restrictive pattern rp; € Rp do
1. T[rp;] <Find_Sensitive_Transactions(rp;, D);
Step 2. For each restrictive pattern rp; € Rp do
1. Victimyp, < item, such that item, € rp; and
Y itemy, € rp; support(itemy, D) > support(item,, D)
Step 3. For each restrictive pattern rp; € Rp do
1. NumbTrans,, < |T[rp;]| x (1 =) // |T[rp;]] is the number of sensitive transactions for rp;
Step 4. D' «+ D
For each restrictive pattern rp; € Rp do
1. Sort_Transactions(T[rp;]); //in ascending order of degree of conflict
2. TransToSanitize < Select first NumbTrans,,, transactions from T'[rp;]
3. in D' foreach transaction ¢ € TransToSanitize do
3.1. t < (t — Victimyp,)
End
The four steps of this algorithm correspond to those in the Naive Algorithm. The only difference is

that the Minimum Frequency Item Algorithm selects exactly one victim item, as aforementioned.

Theorem 2 The running time of the Minimum Frequency Item Algorithm is O(ny x NlogN), where

n1 s the number of restrictive patterns in D and N is the number of transactions in D.

Proof. Let D be the source database, N the number of transactions in D, nq the number of restrictive
patterns in D, ny the maximum number of items in a restrictive pattern, and let ng the maximum
number of items in one transaction. Assume that the inverted file is stored in memory in which the
vocabulary is a hash table containing all distinct items in D and their frequencies, and that for each
item, there is a corresponding list of transaction IDs.

From Theorem 1, we know that step 1 takes O(ny x N), step 3 takes O(ny x N), and step 4 takes
O(n1 x NlogN). So we have to analyze the running time for step 2.

In Steps 2, for each restrictive pattern rp;, the algorithm sorts the corresponding items by frequency
in order to select the one with the least frequency. This procedure takes O(ng). Because the loop in
this step is executed ny times, step 2 takes O(n; X n2).

The running time of the Minimum Frequency Item Algorithm is the sum of running times for each
step executed, i.e., O(ny X N+nqy Xng+mny+n1 x NlogN). When N is large, ny X NlogN grows faster
than ny x N and NlogN, ni X ny and ny. Thus, the running time of the Minimum Frequency Item
Algorithm takes O(n; x NlogN). O

13

4.3 The Maximum Frequency Item Algorithm

Unlike the Minimum Frequency Item Algorithm, the idea behind the Maximum Frequency Item Algo-
rithm, denoted by MaxFIA, is to select as a victim item, for a given restrictive pattern, the restrictive
pattern item with the maximum support in the database. After identifying a victim item for each
restrictive pattern, the algorithm selects the sensitive transactions to sanitize based on their degree of
conflict. The sketch of the Maximum Frequency Item Algorithm is presented below:

Maximum Frequency Item_Algorithm
Input: D, Rp, ¢
Output: D’
Step 1. For each restrictive pattern rp; € Rp do
1. T[rp;] +Find_Sensitive_Transactions(rp;, D);
Step 2. For each restrictive pattern rp; € Rp do
1. Victimgp, < item, such that item, € rp; and
V itemy, € rp; support(itemy, D) > support(item,, D)
Step 3. For each restrictive pattern rp; € Rp do
1. NumbTrans,, < |T[rp;]| x (1 =) // |T[rp;]] is the number of sensitive transactions for rp;
Step 4. D' «+ D
For each restrictive pattern rp; € Rp do
1. Sort_Transactions(7[rp;]); //in ascending order of degree of conflict
2. TransToSanitize < Select first NumbT'rans,,, transactions from T'[rp;]
3. in D’ foreach transaction ¢t € TransToSanitize do
3.1. t « (t — Victim,,)
End
The steps of this algorithm are very similar to those in the Minimum Frequency Item Algorithm.
The only difference is in regard to the selection of the victim item. Apart from this, the running time for
the Maximum Frequency Item Algorithm is O(ny x NlogN). This proof is similar to that in Theorem

2.

4.4 The Item Grouping Algorithm

The main idea behind the Item Grouping Algorithm, denoted by IGA, is to group restricted patterns
in groups of patterns sharing the same itemsets. If two restrictive patterns intersect, by sanitizing the
conflicting sensitive transactions containing both restrictive patterns, one would take care of hiding
these two restrictive patterns at once and consequently reduce the impact on the released database.
However, clustering the restrictive patterns based on the intersections between patterns leads to groups
that overlap since the intersection of itemsets is not transitive. By solving the overlap between clusters
and thus isolating the groups, we can use a representative of the itemset linking the restrictive patterns
in the same group as a victim item for all patterns in the group. By removing the victim item from
the sensitive transactions related to the patterns in the group, all sensitive patterns in the group will
be hidden in one step. This again will minimize the impact on the database and reduce the potential
accidental hiding of legitimate patterns.
The sketch of the Item Algorithm is presented below:

14

Item_Grouping_Algorithm
Input: D, Rp, ¢
Output: D’
Step 1. For each restrictive pattern rp; € Rp do
1. T[rp;] <Find_Sensitive_Transactions(rp;, D);
Step 2.
1.Group restrictive patterns in a set of groups GP such that V G € GP,V rp;,rp; € G,
rp; and rp; share the same itemset I. Give the class label a to G
such that o € I and V3 € I, support(a, D) < support(S, D).
2. Order the groups in GP by size in terms of number of restrictive patterns in the group.
3. Compare groups pairwise G; and G starting with the largest. For all rp, € G; N G; do
3.1. if size(G;) # size(G;) then remove rp;, from smallest(G;, G)
3.2. else remove rp; from group with class label « such that
support(a, D) < support(5, D) and «, 3 are class labels of either G; or G
4. For each restrictive pattern rp; € Rp do
4.1. Victim,p, < a such that « is the class label of G and rp; € G
Step 3. For each restrictive pattern rp; € Rp do
1. NumbTransyy, < |T[rp;]| x (1 —) // |T[rp;]| is the number of sensitive transactions for rp;
Step 4. D' < D
For each restrictive pattern rp; € Rp do
1. Sort_Transactions(T[rp;]); //in descending order of degree of conflict
2. TransToSanitize < Select first NumbTrans,,, transactions from T'[rp;]
3. in D' foreach transaction ¢ € TransToSanitize do
3.1. t « (t — Victim,,)
End
Steps 1 and 3 are identical to the respective steps in the previous algorithms. Step 4 is slightly differ-
ent from Step 4 in the previous algorithms since the sensitive transactions are now ordered in descending
order of their degree of conflict so that more conflicting transactions are selected for sanitization instead
of non conflicting ones. The reason is that since the victim item now represents a set of restrictive
patterns (from the same group), sanitizing a conflicting transaction will allow many restrictive patterns
to be taken care of at once per sanitized transaction. The goal of step 2 is to identify a victim item per
restrictive pattern. This is done by first clustering restrictive patterns in a set of overlapping groups GP
(task 1), such that all restrictive patterns in the same group G share some items that are the same. The
shared items are the class label of the group. For example, the patterns “ABC” and “ABD” would be
in the same group labelled either A or B (depending on support of A and B - task 1, line 3). However,
“ABC” could also be in another group if there was one where restrictive patterns shared “C.” Tasks 2
and 3 identify such overlap between groups and eliminate it by favouring larger groups or groups with

a class label with higher support in the database.

Theorem 3 The running time of the Item Grouping Algorithm is O(ny X NlogN), where ny is the

number of restrictive patterns in D and N is the number of transactions in D.

Proof. Let D be the source database, N the number of transactions in D, nq the number of restrictive
patterns in D, no the maximum number of items in a restrictive pattern, ng the maximum number of

items in one transaction, and let C'; the number of clusters in V..

15

From Theorem 1, we know that the running times of steps 1, 3, and 4 are O(n; x N), O(ny X ng),
and O(ny x NlogN) respectively. So we have to analyze the running time of step 2.

In step 2, the following computations are performed: (a) Sort the clusters by descending order of
the number of patterns. This takes O(C x logCt); (b) Given that the clusters are sorted by size, the
clusters with overlapped patterns can be removed. This process requires an entire scan over the clusters
and takes O(C}); (c) Now, the algorithm deals with clusters that have the same size, share more than
one item and have the same patterns. To select the clusters with the same size takes O(C1) in the worst
case; (d) The last computation is to check the support of the items shared by the same clusters in order
to select the cluster with the least support item. Doing so implies one access to the inverted file for
the shared items in each cluster, since the inverted file is built on a hash table. In the worst case, all
clusters in V. have the same size. So the last computation takes O(C7). Thus, the total cost of step 2
is O(Cy x logCy 4+ C1 + Cy + C1). When C] is large, Cy x logCy grows faster than C7, so this cost can
be simplified to O(Cy x logCh).

The running time of the Item Grouping Algorithm is the sum of the running times for each step
executed, i.e., O(ny x N 4+ C1logCi + ny x NlogN + NlogN + NlogN). When N is large, ny X NlogN
grows faster than n; x N, C; X logC}, and NlogN. Thus, the running time of the Item Grouping
Algorithm takes O(ny x NlogN), and this completes the proof of Theorem 3. O

5 Experimental Results

We performed two series of experiments: the first to measure the effectiveness of our sanitization algo-
rithms and the second to measure the efficiency and scalability of the algorithms. All the experiments
were conducted on a PC, AMD Athlon 1900/1600 (SPEC CFP2000 588), with 1.2 GB of RAM running
a Linux operating system. To measure the effectiveness of the algorithms, we used a dataset generated
by the IBM synthetic data generator to generate a dataset containing 500 different items, with 100K
transactions in which the minimum size per transaction is 40 items. The effectiveness is measured in
terms of the number of restrictive patterns effectively hidden, as well as the proportion of legitimate
patterns accidentally hidden due to the sanitization. Some types of sanitization could also lead to the
discovery of non-existing patterns in the original database D, but not in D’ the sanitized database. As
depicted in Figure 1 of Section 2.4, if P is the set of all mining patterns in the original database D and
we have some restricted patterns Rp, the legitimate patterns are “Rp such that P = "Rp U Rp. After
sanitization, the patterns P’ that should be discovered from the sanitized database D’ should be equal
to “"Rp and only “Rp. However, this is not the case, and we have three possible problems, as illustrated
in Figure 1.

Problem 1 occurs when some restrictive patterns are discovered. We call this problem Hiding
Fazilure, and it is measured in terms of the percentage of restrictive patterns that are discovered from
D'. Tdeally, the hiding failure should be 0%. The hiding failure is measured by HF :i%((DD,)) where
#Rp(X) denotes the number of restrictive patterns discovered from database X. In our framework,

the proportion of restrictive patterns that are nevertheless discovered from the sanitized database can

16

be controlled with the privacy threshold v, and this proportion ranges from 0% to 100%. Note that
1) does not control the hiding failure directly, but indirectly by controlling the proportion of sensitive
transactions to be sanitized for each restrictive pattern.

Problem 2 occurs when some legitimate patterns are hidden by accident. This happens when some
non-restrictive patterns lose support in the database due to the sanitization process. We call this
problem Mzisses Cost, and it is measured in terms of the percentage of legitimate patterns that are
not discovered from D’. In the best case, this should also be 0%. The misses cost is calculated as

follows: MC =%~ ?gf:)gj&(;)l){’? (D) where # ~ Rp(X) denotes the number of non-restrictive patterns

discovered from database X. Notice that there is a compromise between the misses cost and the hiding
failure. The more restrictive patterns we hide, the more legitimate patterns we miss. This is basically
the justification for our privacy threshold %, which with tuning, allows us to find the balance between
privacy and disclosure of information whenever the application permits it.

Problem 3 occurs when some artificial patterns are generated from D’ as a product of the sanitization
process. We call this problem Artifactual Patterns, and it is measured in terms of the percentage
of the discovered patterns that are artifacts. This is measured as: AP :%

the cardinality of X. One may claim that when we decrease the frequencies of some items, the relative

where |X| denotes

frequencies in the database may be modified by the sanitization process, and new patterns may emerge.

However, in our experiments, AP was always 0% with all algorithms regardless of the values of 1.

5.1 Measuring effectiveness

We selected for our experiments a set of ten restrictive patterns from the dataset ranging from two to
five items in length, with support ranging from 20% to 40% in the database.

Note that the higher the support for the restrictive patterns, the larger the number of sensitive
transactions, and the greater the impact of the sanitization on the database.

We ran the Apriori algorithm to select such patterns. The time required to build the inverted file in
main memory was 4.05 seconds. Based on this inverted file, we retrieved all the sensitive transactions
in 1.02 seconds. With our ten original restrictive patterns, 22479 patterns (out of 1866693) became
restricted in the database since any pattern that contains restrictive patterns should also be restricted.

Thus, in our experiments Rp contained the 22479 restrictive patterns.

100 . . . - 100

60 Ve

Hiding Failure (%)
R,
Misses Cost (%)

40

20 o

0 20 40 60 80 100 0 20 40 60 80 100
Privacy Threshold (%) Privacy Threshold (%)

Figure 6: Effect of ¢ on the hiding failure and the misses cost

17

Figure 6 shows the effect of the privacy threshold ¢ on the hiding failure and the misses cost for
all four algorithms, considering the minimum support threshold o = 10%. As can be observed, when
1 is 0%, no restrictive association is disclosed for all four algorithms. However, 90% of the legitimate
patterns in the case of Naive, 69% in the case of MaxFIA, 65% in the case of MinFIA, and 44% in the
case of IGA are accidentally hidden.

When 1) is equal to 100%, all restrictive patterns are disclosed and no misses are recorded for
legitimate patterns. What can also be observed is that the hiding failure for IGA is better than that
for the other approaches. In addition, the impact of IGA on the database is smaller and the misses cost

of IGA is the lowest among all approaches until 1 = 40%. After this value, MinFTA and MaxFTA yield
better results than IGA’s.

100 - - - : - 100

T T
* 0=5% ——

O =10% -—*-= 2 R S x 0 =10% -
O =15% ~*- k O =15% ~*-
0=20% 8 ; 0 =20% 8
80 - A 80 - - 4
g e
< s
® 60 [< 60 -
3 2
T o x
w @
=y 2
£ a0t / 2 a0
I X =
20 e 1 20
Y
0 P . ' | . 0 . . . M
0 20 40 60 80 100 0 20 40 60 80 100
Privacy Threshold (%) Privacy Threshold (%)

Figure 7: Effect of support threshold on privacy preservation (Naive)

100 . . . ——— 100 .
O=5% —— Feem 0=5% ——
0=10% % / G 100
O =15% % O =15% %
=209 o s 0=20% &
g 9=20% 1 el b
4 3 %
S g = [— *
S 60 / s 1 < w0t . -
E]) 8 h -
i ; o ..
L!; X X §
2 / \
S 40t / 1 2 40 N
5 / N 5
20 | 1 20 Fe
0 L gl L L L 0 L L L ey
0 20 40 60 80 100 0 20 40 60 80 100
Privacy Threshold (%) Privacy Threshold (%)

Figure 8: Effect of support threshold on privacy preservation (MinFIA)

Figures 7, 8, 9, and 10 show the effect of varying the support threshold for the patterns in the mining
process. Notice that the higher the support, the more effective the hiding of patterns even with a more
relaxed privacy threshold. However, the misses are more recurrent. In practice, the support threshold
for mining frequent patterns should always be set to 0% since before sanitizing the database one cannot
know the support threshold that the user will select. Thus, for better privacy preservation, the security
administrator should assume the lowest support threshold possible.

We could measure the dissimilarity between the original and sanitized databases by computing the

difference between their sizes in bytes. However, we believe that this dissimilarity should be measured

18

100 : : ! e ’ 100 ! ! ! |
0=5% —— O =5% —+—
0 =10% ~* y O 100
0 =15% - . 3 O =15% -
0=20% & 0 =20% &
80 - S 80 @ a
s = T
& S
e 01 S %or S
T ; o N -
w : @ 5,
= X * 2 ™,
£ 0 ! 2 a0t .
F *.
20 20 e
8
0 I i . . 0 . . P e 3
0 20 40 60 80 100 0 20 40 60 80 100
Privacy Threshold (%) Privacy Threshold (%)

Figure 9: Effect of support threshold on privacy preservation (MaxFTA)

100 - - - - 100 - - - .
0 =5% —— O =5% ——
0 =10% -~ -/ G 100
0=15% O=15% —*-
=209 - J 0=20% &
s 9=20% - Fa 8 b
g g
o 60 < 60 -
3 2
Kl) < S .
L Qe
£ 40 3 b £ 40 | . q
20 A o , 20 o 1
0 L 2l - L L L 0 L L P C
0 20 40 60 80 100 0 20 40 60 80 100
Privacy Threshold (%) Privacy Threshold (%)

Figure 10: Effect of support threshold on privacy preservation (IGA)

comparing their contents, instead of their sizes in bytes. Comparing their contents is more intuitive and
more reasonable as well.

To measure the dissimilarity between the original and the sanitized datasets we could simple compare
the difference of their histograms. In this case, the horizontal axis of a histogram contains all items in
the dataset, while the vertical axis corresponds to their frequencies. The sum of the frequencies of all
items gives the total of the histogram. So the dissimilarity between D and D’ is given by:

Dissimilarity(D,D') = m X Z [fp(i) — fpr(9)]
i= i=1

where fx (i) represents the frequency of the ith item in the dataset X.

Figure 11 shows the differential between the initial size of the database and the size of the sanitized
database with respect to the privacy threshold 7). To have the smallest impact possible on the database,
the sanitization algorithm should not reduce the size of the database significantly. As can be seen in the
first graph, IGA is the one that impacts the least on the database for all values of the privacy threshold
1. In the worst case, when 1 = 0%, 3.55% of the database is lost. MinFIA and MaxFIA lose 6.35% and
6.78% respectively, and Naive reduces 16.41% of the database, with the same threshold. This is due to
the fact that Naive removes all items of a restrictive pattern in its corresponding sensitive transactions,

while the other algorithms only remove one item for each restrictive pattern. Thus, as can be seen, the

19

20

151 IGA 8

10

Dissimilarity (%)

. . . . >
0 20 40 60 80 100
Privacy Threshold (%)

Figure 11: The difference in size between D and D’

four algorithms slightly alter the data in the original database, while enabling flexibility for someone to

tune them.

5.2 CPU Time for the Sanitization Process

We tested the scalability of our sanitization algorithms vis-a-vis the size of the database as well as the
number of patterns to hide. We varied the size of the original database D from 20K transactions to 100K
transactions, while fixing the privacy threshold 1 and the support threshold to 0%, and keeping the set
of restrictive patterns constant (10 original patterns). Figure 12 shows that the four algorithms increase
CPU time almost linearly with the size of the database. Note that Naive, MinFIA, and MaxFIA yield
almost the same CPU time since they are very similar. These slight differences can be seen in Table
1. The I/O time (2 scans of the database) is also considered in these figures. This demonstrates good

scalability with the cardinality of the transactional database.

Table 1: Results of CPU Time for the Sanitization Process (Figure 12)

Algorithm Database Size
20K | 40K | 60K | 80K [100K
Naive 15.56 | 61.02 | 131.17 | 229.84 | 341.44

MinFIA 15.26 | 60.48 | 130.74 | 231.00 | 332.19
MaxFIA 15.23 | 60.07 | 129.41 | 227.63 | 331.32
IGA 13.49 | 53.66 | 119.67 | 208.45 | 312.79

The slight inflection in the curve is due to the fact that the larger the database, the more restrictive
patterns can be derived from the 10 original restrictive patterns. This significantly increases the number
of sensitive transactions to be touched. The number of restrictive patterns actually increases more
than the number of transactions, making most sensitive transactions conflicting ones (i.e. with many
restrictive patterns).

We also varied the number of restrictive patterns to hide from approximately 1290 to 6600, while
fixing the size of the database to 100K transactions and fixing the support and privacy thresholds as

before. Figure 13 shows that our algorithms scale well with the number of patterns to hide. The figure

20

= N N w %)
o =3 a S a
=} 3 =} S =}

CPU Time (sec.)

=
o
S

Naive —+—

MnFIA - |

MaxFIA ----x--
IGA &

o
t=}

0
50 60 70 80 920 100

.
40
Database Size (number of transactions in thousands)

.
20 30

Figure 12: Sanitization process scalability with respect to database size

300

250

CPU Time (sec.)
= = N
o u o
o o o

a1
=}
T

o

.
2 3 4 5 6 7 8 9 10
Set of Restrictive Patterns

Figure 13: Sanitization process scalability with respect to number of restrictive patterns
reports the size of the original set of restricted patterns, which varied from 2 to 10. This makes the set

of all restricted patterns range from approximately 1298 to 6608. Again, the algorithms Naive, MinFia,
and MaxFIA yielded results very similar as depicted in Table 2.

Table 2: Results of CPU Time for the Sanitization Process (Figure 13)

Algorithm || Number of Original Restrictive Patterns
2 | 4 | 6 [8] 10
Naive 58.00 | 110.04 | 167.00 | 218.15 | 288.01
MinFIA 57.55 | 109.79 | 166.38 | 218.67 | 286.26
MaxFIA 57.09 | 108.72 | 164.89 | 216.08 | 283.50
IGA 55.01 | 101.25 | 156.98 | 205.22 | 272.54

This scalability is mainly due to the inverted files we use in our approaches for indexing the transac-
tions per item and indexing the sensitive transactions per restrictive pattern. There is no need to scan
the database again whenever we want to access a transaction for sanitization purposes. The inverted

file gives direct access with pointers to the relevant transactions.

21

6 Related Work

Some effort has been made to address the problem of protecting sensitive information from discovery
of highly sensitive knowledge in data mining. Early on, O’Leary [19] studied the threat imposed by
data mining techniques regarding the process of uncovering hidden patterns from large databases. He
emphasized the need for limiting the disclosure of personal information, a topic which has also been
investigated by researchers in the statistical databases area [8].

Recently, researchers within the information security community have investigated the impact of
data mining technology on database security [13, 7, 11, 9]. Such investigation considers how much
information can be inferred or calculated from large data repositories made available through data
mining algorithms and looks for ways to minimize the leakage of information. This effort has been
restricted basically to classification [18, 1, 4] and association rules [5, 14, 21]. We focus on the latter
category.

Atallah et al. [5] considered the problem of limiting disclosure of sensitive rules, aiming at selectively
hiding some frequent itemsets from large databases with as little impact on other, non-sensitive frequent
itemsets as possible. Specifically, the authors dealt with the problem of modifying a given database so
that the support of a given set of sensitive rules, mined from the database, decreases below the minimum
support value.

Dasseni et al. [14] extended the work presented in [5]. They investigated confidentiality issues of
a broad category of association rules. This solution requires CPU-intensive algorithms and, in some
way, modifies true data values and relationships. In the same direction, Saygin et al. [21] introduced
a method for selectively removing individual values from a database to prevent the discovery of a set
of rules, while preserving the data for other applications. They proposed some algorithms to obscure a
given set of sensitive rules by replacing known values with unknowns, while minimizing the side effects
on non-sensitive rules.

How efficient are the previous solutions considering the three potential problems presented in Figure
1B? In [5], the authors attempt to the theoretical approach, whereas in [14, 21] the authors focus more
on the practical value. Such solutions deal with the problem 1 since they hide sensitive association
rules. In addition, they aim at minimizing the problem 2. On the other hand, these solutions introduce
the problem 3. The reason for this is simple - they add noise to the data by turning some items from 0
to 1 in some transactions. In doing so, they increase the frequencies of some items in the original data,
so that a miner is allowed to discovery new patterns or even association rules that do not exist in the
non cleansed database.

Our work differs from the related work in some aspects, as follows: First, the hiding strategies
behind our algorithms deal with the problem 1 and 2 in Figure 1, and most importantly, they do not
introduce the problem 3 since we do not add noise to the original data. Second, we study the impact of
our hiding strategies in the original database by quantifying how much information is preserved after
sanitizing a database. So, our focus is not only on hiding restrictive patterns but also on maximizing

the discovery of patterns after sanitizing a database. More importantly, our sanitizing algorithms select

22

sensitive transactions with the lowest degree of conflict and remove from them the victim item with
specific criteria, while the algorithms in related work remove and/or add items from/to transactions
without taking into account the impact on the sanitized database. Third, our framework can achieve a
reasonable performance since it is built on indexes. Another difference of our framework from the related
work is that we “plug” a transaction retrieval search engine for searching transaction IDs through the
transactional database efficiently. In addition, we present a taxonomy for sanitizing algorithms which

has not been considered in the literature so far.

7 Conclusions

In this paper, we have introduced a new framework for enforcing privacy in mining frequent patterns,
which combines three advances for efficiently hiding restrictive rules: inverted files, one for indexing
the transactions per item and a second for indexing the sensitive transactions per restrictive pattern; a
transaction retrieval engine relying on boolean queries for retrieving transaction IDs from the inverted
file and combining the resulted lists; and a set of sanitizing algorithms. This framework aims at meeting
a balance between privacy and disclosure of information.

In the context of our framework, the integration of the inverted file and the transaction retrieval
engine are essential to speed up the sanitization process. This is due to the fact that these two modules
feed the sanitizing algorithms with a set of sensitive transactions to be sanitized. It should be noticed
that this index schema and the transaction retrieval engine are simple to be implemented and can deal
with large databases without penalizing the performance since these two techniques are scalable.

The experimental results revealed that our algorithms for sanitizing a transactional database can
achieve reasonable results. Such algorithms slightly alter the data while enabling flexibility for someone
to tune them. In particular, the IGA algorithm reached the best performance, in terms of dissimilarity
and preservation of legitimate frequent patterns. In addition, the IGA algorithm also yielded the best
response time to sanitize the experimental dataset. This is because when the algorithm removes one
item of a sensitive transaction, it hides some restrictive patterns that are clustered by such an item.
Apart from the contributions of the sanitizing algorithms, in this paper we also introduced a taxonomy
for our algorithms based on transaction sanitization.

Another contribution of this work includes three performance measures that quantify the fraction
of mining patterns which are preserved in the sanitized database. The Hiding Failure measures the
amount of restrictive patterns that are disclosed after sanitization. Misses Cost measures the amount
of legitimite patterns that are hidden by accident after sanitization, and Artifactual Patterns measure
the artificial patterns created by the addition of noise in the data. We evaluated such metrics by testing
different values of the privacy threshold % for our algorithms.

The work presented herein adresses the issue of hiding some frequent patterns from transactional
databases. All association rules deriavable from these frequent patterns are thus also hidden. This could
make the approach sometimes restrictive. For instance, if the pattern ABC' is restricted, the pattern

ABC'D would also be restricted since it includes the previous one, and the association rule ABC' — D

23

would be hidden even though initially there was no restrictions on D. There is no means to specify the
constraints on the association rules rather than the frequent patterns. One may want to express that
AB — (' is restricted but not C' — AB. However, this is not feasible at the frequent patterns level
since both rules are derived from the same frequent pattern ABC. We are investigating new optimal
sanitization algorithms that not only impact the support of a frequent pattern to be hidden but also
impact on the confidence of some combinations of these itemsets (i.e. association rules) to allow for
instance A — B but not B — A. We are also investigating, in the context of privacy in data mining,
association rules or other patterns, the integration of role-based access control in relational databases

with rule-based constraints specifying privacy policies.

8 Acknowledgments

Stanley Oliveira was partially supported by CNPq (Conselho Nacional de Desenvolvimento Cientifico e
Tecnolégico) of Ministry for Science and Technology of Brazil, under Grant No. 200077/00-7. Osmar
Zalane was partially supported by a Research Grant from NSERC, Canada.

References

[1] D. Agrawal and C. C. Aggarwal. On the Design and Quantification of Privacy Preserving Data
Mining Algorithms. In Proceedings of ACM SIGMOD/PODS, Santa Barbara, CA, May 2001.

[2] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in large
databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management
of Data, pages 207-216, Washington, D.C., May 1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings of the
20th International Conference Very Large Data Bases, VLDB, pages 487-499, Santiago, Chile,
September 1994.

[4] R. Agrawal and R. Srikant. Privacy-Preserving Data Mining. In Proceedings of of the 2000 ACM
SIGMOD International Conference on Management of Data, pages 439-450, Dallas, Texas, May
2000.

[6] M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and V. Verykios. Disclosure limitation of
sensitive rules. In Proceedings of IEEE Knowledge and Data Engineering Workshop, Chicago,
[llinois, November 1999.

[6] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wesley Longman,
1999.

[7] L. Brankovic and V. Estivill-Castro. Privacy Issues in Knowledge Discovery and Data Mining.
In Proceedings of Australian Institute of Computer Ethics Conference (AICEC99), Melbourne,
Victoria, Australia, July 1999.

[8] S. Castano, M. Fugini, G. Martella, and P. Samarati. Database Security. Addison-Wesley Longman
Limited, England, 1995.

24

[9]

[21]

22]

[23]

L. Chang and I. Moskowitz. An Integrated Framework for Database Privacy Protection. In Pro-
ceedings of the 14h Annual IFIP WG 11.83 Working Conference on Database Security, Schoorl, The
Netherlands, August 2000.

Z. Chen. Data Mining and Uncertain Reasoning. John Wiley and Sons, Inc., New York, NY, 2001.

C. Clifton. Using Sample Size to Limit Exposure to Data Mining. Journal of Computer Security,
8(4):281-307, November 2000.

C. Clifton, W. Du, M. Atallah, M. Kantarcioglu, X. Lin, and J. Vaidya. Distributed Data Mining
to Protect Information Privacy. Proposal to the National Science Foundation, December 2001.

C. Clifton and D. Marks. Security and Privacy Implications of Data Mining. In Workshop on Data
Mining and Knowledge Discovery, pages 15-19, Montreal, Canada, February 1996.

E. Dasseni, V. S. Verykios, A. K. Elmagarmid, and E. Bertino. Hiding Association Rules by Using
Confidence and Support. In Proceedings of the jth Information Hiding Workshop (IHW2001),
Pittsburg, PA, April 2001.

M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. M. auf der Heide, H. Rohnert, and R. E. Tarjan.
Dynamic Perfect Hashing: Upper and Lower Bounds. SIAM Journal on Computing, 23(4):738-761,
1994.

A. Gyenesei. Data Mining Approach for Solving Decision Support Problems of Warehouse Net-
works, POLVAX (in Hungarian), pages 69-93.

J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers,
San Francisco, CA, 2001.

T. Johnsten and V. Security Procedures for Classification Mining Algorithms. In Proceedings of
15th Annual IFIP WG 11.8 Working Conference on Database and Applications Security, pages
293-309, Niagara on the Lake, Ontario, Canada, July 2001.

D. E. O’Leary. Knowledge Discovery as a Threat to Database Security. In G. Piatetsky-Shapiro
and W. J. Frawley (editors): Knowledge Discovery in Databases. AAAI/MIT Press, pages 507-516,
Menlo Park, CA, 1991.

J. S. Park, M-S. Chen, and P. S. Yu. An Effective Hash-Based Algorithm for Mining Association
Rules. In Michael J. Carey and Donovan A. Schneider, editors, Proceedings of the 1995 ACM
SIGMOD International Conference on Management of Data, pages 175-186, San Jose, California,
November 1995.

Y. Saygin, V. S. Verykios, and C. Clifton. Using Unknowns to Prevent Discovery of Association
Rules. SIGMOD Record, 30(4), December 2001.

C. Silverstein, S. Brin, and R. Motwani. Beyond Market Baskets: Generalizing Association Rules
to Dependence Rules. Data Mining and Knowledge Discovery, 2(1):39-68, 1998.

H. Toivonen. Sampling large databases for association rules. In T. M. Vijayaraman, Alejandro P.
Buchmann, C. Mohan, and Nandlal L. Sarda, editors, Proceedings of the 22nd International Confer-
ence on Very Large Data Bases, pages 134-145, Mumbai, Bombay, India, September 1996. Morgan
Kaufman.

25

