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ABSTRATT

In sheort-term forecasting, the future load on a power system ls
predicted by extrapeclating a predetermined relationship between the
lead and its influential variables. Determination of this
relationship, involves modelling the load as mathematical function of
its influential wvarlables, and estimating the coefficlents of the
model through the use of an efflclent parameter estimatlion technique.

Parameter estimation techniques in short-term load forecasting,
can be classified as either static or dynamic, and are generally based
on either the least squares or the least absolute value error
minimisation criterion. In this thesls, a comparative study of these
techniques are presented.

First, the applicatlion of the least squares, linear programming
and a new least absolute value estlimation technique to off-line
forecasting are comparatively investigated. Next, the effectiveness of
the Kalman filter, a recently developed weighted least absolute value
filter and an adaptive general exponential smoothing algorlithm, as
dynamic on~line forecasting methods are compared.

From the results presented, it will be seen that the new least
absoclute value technique offers the best cholce of a statlc estimator
in all cases, whilst the weighted least absolute value filter is a

comparable alternative to the popular Kalman filter.
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CHAPTER I

INTRODUCTION

In most countries the world over, economic development is
directly dependent on the state of available electric energy,
especially since most industrles depend almost entirely on its use.
Such 2 source of continous, cheap and reliable energy is of foremost
economic importance.

Electrical load forecasting is one of the more important
strategles used to ensure that the energy supplied by a utility has
these qualities. To this end most utilitles maintain a staff of
trained personnel to carry out this specialised function.

Load forecasting is basically the science or art of predicting
the future load on a given system, for a specified period of time
ahead. These predictions may be just for a fraction of an hour zhead,
or as much as fifty years Into the future.

Researchers on the subject have categorized load forecasting into
three general subject areas, namely [1,2,3,4]

(a) Long range forecasting which is used to predict loads as distant
as fifty years ahead, so that expansion planning can be facilitated.
(b) Medium range forecasting which is used to predict weekly, monthly
and yearly peak loads up to ten years ahead, so that efficlent
operational planning can be carried out, and

(c) Short range forecasting which is used to predict loads up to a
week ahead, so that day to day running and dispatching costs can be

minimised.



In all categories of lead forecasting, load models are developed
to mathematically represent the relationship between the load and
influential variables such as time, weather, econemic factors etec..
The precise relationship between the load and these variables |is
usually determined through statistical analysis of previous
observations.

Correllation analyses are performed to identify suspected
influential factors and statistical tests are used to determine their
rele in the load model. Once the mathematical model is constructed,
parameter estimation techniques =are then used to determine the
coefficients of the terms in the model.

Forecasts can then be made by extrapelating thls relatlionship to
the required lead time ahead, given that the corresponding values of
influential variables are avallable or predictable. Since factors
such as weather and economic Iindices are Increasingly difflcult te
accurately predict for longer lead times ahead, the greater the lead
time, the less accurate the prediction is llkely to be.

The final accuracy of any forecast is thus dependent on the load
model employed, the accuracy of predicted variables and the
coefficients assigned by the relevant estimation technique. Since
different methods of estimation will result in differing values of
estimated parameters, it follows that the resulting forecasts will
differ in predictive accuracy.

In general, parameter estimation algorithms wused in load
.forecasting have been limited to those based on the least squares

minimisation criterion, even though estimation theory indicates that



algorithms based on the least absolute value criterion are a viable
alternative [5].

This can be attributed to the fact that the least squares
principle is quite easy to implement and resultsin efficient and
robust estimation algorithms. The least absolute wvalue principle on
the other hand, usually requires the use of iterative llpear
programming methods and as such resulting algorithms tend to be
computationally inefficlent and not as easy to implement as thelr
least squares based counterparts.

This has been the case until quite recently, when a new
non-iterative short cut to least absolute value solutions has opened
up new possibilities for least absolute value based algorithms [s].
This new technique claims to be able to produce estimates with
efficiencies not far removed from those produced by least squares
methods.

In this thesis the primary objective is to compare the accuracy
of forecasts made via the least absolute criterion to those obtained
via the least squares principle. Also to be compared, 1is the
performance of the new least absolute value technique to that of
conventional linear programming methods. The final alm here is to
determine the sultability of the new method as a forecasting tool.

The load forecasting problem will be restricted to the short-term
case primarily because it is beyond the scope of this thesis to
develop load models covering all aspects of load forecasting. It is
expected however, that comparisons made will hold true for most

aspects of load forecasting, especlally since the role of parameter



estimation in forecasting is essentially simllar

1.1: Qutline of thesis

The thesis begins in chapter II by introducing the short-term
load forecastling problem. Here the general characteristics of load
behaviour and the short term modelling techniques applicable to such
loads are reviewed.

In chapter III the static parameter estimation problem ls
presented followed by the theory and development the least squares and
least absolute value methods. Chapter IV on the other hand deals with
the dynamic estimation problem.

Here the dynamic estimation problem ls presented followed by the
derivations of the Kalman and a recently developed least absolute
value based filter. Also included in this chapter is the formulation
of an =adaptive general exponentlial smoothing algorithm that will
feature in on-line simulations.

Load models for on and off-line simulations are developed In
chapter V. Three off-line models and a single on-line model are used
to simulate the responses of the static and dynamic estimation
algorithms respectively, and the results are presented in chapter VI.

Finally conclusions are drawn and recommendations made in chapter VII.



CHAPTER 1II

SHORT-TERM LOAD FORECASTING

In this chapter, the aspects of short term load forecasting
relevant to this thesis are reviewed.

The characteristics of expected load behaviour and the state of
the art short-range forecasting techniques are covered in general.
Finally the chapter concludes by examining the basic criteria that are
used to gauge the design and performance of any short-term load

predictor,

2.1: Introduction to short-term load forecasting

Short-term load forecasting is an integral part of power system
operation that is essential for an inexpensive supply of rellable
electric energy. It is used to predict load demands up to a week ahead
so that the day to day operation of a power system can be efficlently
planned and operating cosis minimised.

Short-term forecasting can be subclassified into two general
categories, namely on and off-line forecasting. This categorisation,
as the names suggest, stem from the areas of application of the load
predictors.

Off-line predictors are primarily applied to the scheduling of
the large generating units whose “start up" time may vary from a few
hours ahead to a few days ahead. The scheduling process is termed unit

commitment and ensures that there is sufficlient operating generation



capacity to meet the variable load demand with specified reliablility
{6].

Incorrect scheduling by way of poor forecasting can result in
excessive daily operational cost as it may necessitate the use of
costly quick start units in the event of underscheduling, or
alternatively result in the uneconomic operation of large generating
units, in the case of overscheduling [6].

In the minute to minute operation of a power system, the economlc
dispatching of load to the various generating units that make up the
generating mix, depends upon calculations minlmising a cost function
that is subjective to the characteristics of the unlts. These
calculations are based on values of load demand predicted a few hours
in advance, and as such the optimum generating mix is dependent upon
the accuracy of the on~line forecasts.

Accurate short-term load predictors have long been recognised as
2 basic necessity for the optimum economic operation of power systems
and this has led to many accurate forecasting models being developed.
While it is recognised that further sophistication of load models
will only result in marginal increases in predictive accuracy, there
is much to be gained economically as incremental savings integrated
over a year can lead to a significant reduction in capital expenditure
on the balance sheets. Thlis is especially important since the cost of
electricity 1is regulated by local government and competition from
non-electric energy  sources, for example natural gas for

heating, cooking, etc., may threaten market share.



2.2: Load characteristics

A prerequisite to the development of an accurate load foreasting
model, is an in depth understanding of the characteristics of the load
to be modelled. This knowledge of load behaviour is gained from
experience with the load and through statistical analyses of past load
data. Utilities with similar climatic and economic enviroments usually
experience similar load behaviour and load models developed for one
utllity can usually be modified to suit another.

A review of the literature on short-term load modelling indicates
that the load supplied by a power system is dynamic in nature and
directly reflects the activities and conditions in the surrounding
environment. Researchers have found that this load can be separated
into 2 standard or base load, a weather dependent load and a residual
load ([7.8]. In the following sections the characteristics of each of

these load components are reviewed in turn.

2.2.1: Standard load

The standard or base load is the largest component of total
system load and results directly from the business and economic
conditions of the load environment. The base load usually accounts
for about ninety percent of total load and c¢an be spectrally

decomposed into four distinct components , namely [9,10,11,12,13]

(a) A long-term load that reflects the economic growth of the Iindustry

and is usually directly proportional to the growth of the national

economy.



(b) A seasonal component that results from the changes in electricity
demand from one season to another. In North America this load pattern
is characterised by midwinter and midsummer peaks Interspaced by
troughs occuring during the central spring and autumn seasons.

(c) A weekly load cycle that results from one day of the week
being characteristically different the from others. Weekly busliness
cycles and repetitive local activities are the main reasons for this
aspect of load behaviour that is characterised by relatively constant
midweek demands and smaller weekend loads.

(d) A dally load cycle that result from the basic daily similarity
of consumer activities. Low early morning demand peaking to =

mid-afterncon high usually characterises this load c¢ycle.

2.2.2: Weather dependent load

Load feorecasters have always been aware that weather contrlibutes
significantly to the dynamics of load demand, and researchers over the
years have tried to determine viable relationships between the two so
that accurate load models could be developed [7,8,14,15,16].

The effects of weather on load is usually modelled by expressing
the load as a linear regression of explanatory meteorologlcal facters
such as temperature, windspeed, humidity etc. While it is recognised
that an extremely wide variety of explanatory weather wvariables Is
required to totally represent the effects of weather, studies have
shown that a few basic meteorological factors usually account for most

of theweather dependent load.

The specific weather variables that are normally used to model



weather dependent load are dry bulb temperature, windspeed, humidity
and daylight illumination. Daylight tllumination is usually the least
significant of these weather variables and since metering is difficult
and costly, it Is wusually omitted from meost models.

The general effects of these weather variables on load are

summarised below, under their respective headings.

Temperature

In most load enviroments, dry bulb temperature is the most
significant weather variable and usually accounts for the largest
percentage of weather dependent load. Deviations of temperatures from
the norm can result in major changes in the load pattern. These
changes however, do not occur immediately, but are rather delayed due
to thermal storage in buildings [7].

The effects of temperature are not uniform and can only be
specified for a short perilod of time. This is seen especially at night
when changes in temperature have less effect on the load than
equivalent changes during the day. In general, the effects of
temperature are to increase the heating load when the temperature ls
below room temperature and to increase the cooling load when it is
above.,

Temperature effects are usually modelled by conslidering the load
to be a function of the effective temperature or temperature
deviation, rather than the actual temperature. This stems from the
realisation that the general effects of base temperature are already

included in the seasonal load cycle and only deviations from the norm



will result in load changes [17,18].

Windspeed

A factor that can contribute significantly to weather dependent
load is the wind. Wind effects are especially prevalent durlng winter
and are as a direct consequence of the cooling power of the wind.

The cooling effect of the wind is dependent on both the windspeed
and the dry bulb temperature, and has greatest significance at very
low wvalues of temperature when the inflltration of cold air inte
bulldings usually results in a high degree of heat losses.

Research has shown [7], that the heat loss from a bullding is
proportional to the product of the square rocot of the windspeed and
the temperature deviation from the comfort level of approximately
18°C. This effect is relatively small in post winter seasons and for
simplicity, are usually only included in winter models [7].

Some researchers prefer to use the windchill factor as a
representation of the wind in their medels, as the windchill factor
is often strongly correllated with winter load [18,20]. Others contend
that the windchill factor is only a measure of the discomfort level of
the wind and temperature and as such, is not 2 true Index for gauging
the resulting load response [7,8]. High windchills however, do have

the psycological effect of causing people to turn up their thermostats.
Humidity

A weather variable that greatly influences air conditioning and

other related cooling loads in summer, is the level of humidity in the

10



atmosphere. The effects of high humidity are generally only noticeable
when the temperature is qulte high, usually above rcom temperature.

The effects of humidity can be accounted for by modelling it as 2
function of either the relative humidity, the temperature humidity
index or the dew point temperature, though use of the temperature
humidity index is most common [7.8,19,20].

The temperature humidity index is a measure of the discomfort
level or equivalent heat stress in summer and depends on both the
temperature and relative humidity. It is the variable that normally
shows greatest correllation with summer load and only influences the

load above a predetermined cutoff temperature.

Illumination

The effects of daylight illumination on load are relatively small
compared to those of the other meteorclogical factors previously
discussed, and as such are often omitted from most load models

Low daytime illumination can cause an Iincrease in daytime
lighting load and advance the effects of nightfall, thercby =zltering
the evening load pattern {7,8].

The level of luminous radlation reclieved at ground level is the
term used to model this effect, a factor that is influenced by such

weather conditions as cloud cover, surface albido, dust, fog, haze etc..

2.2.3: Resldual) load

The residual load that occurs in load modelling uswvzlly accounts

for a small percentage of total load and generally results from

11



irregularities In the behaviour of the consuming publlc. Abnormal
consumer demands, though quite frequent 1Iin occurence, are very
difficult to model and predict and are not accounted for, in most load
models.

The common facets of unpredictable locad behaviour ranges from
public response to major television events, to strikes, storms,
disasters, time changes etc., and while these events are usually known

well in advance they are not easily predictable and usually different

with each occurence [21].

2.3: Short-term load forecasting models

Prior to the development of efficlent computers, short term load
forecasting was based primarily on simple relationships, heuristlically
derived from experience with the system load. The use of statistical
techniques were limited, since early computers were unable to handle
the large databases necessary to develop accurate relationships on
which modern predictors are based.

The extensive computerisation of the power industry over the past
forty years orso, has led to many new techniques developed. Most of
these techniques are analytic in nature and based on statistical or
signal processing techniques, with the exception of the most recent
approach which is based on the principle of artifical intelliglence.

Reviewers of short-term load forecasting methods have found that
the modelling techniques foremost in use in todays industry, can be

categorized as one of the following [4,21,22,23]

12



(1) Multiple linear regression
{2) General exponential smoothing
(3) Stochastic time series

{4) State space

(5) Expert systems approach.

These techniques are classified on the basis of the underlying
mathematical principle employed in load modelling, and each possess
distinct advantages and disadvantages over the others. In load
forecasting, these approaches may be used individually or combined to
increase accuracy. In the followlng subsections each of these methods

are reviewed in turn.

2.3.1: Multiple linear regression

The multiple linear regression technique is the oldest of the
existing load forecasting methods and was originally applied to short
term forecasting by H.A.Dryar in 1844 ([7]. In this method, the load is
expressed as a functien of explanatory weather and non-weather
variables that i{nfluence the load. The Iinfluential variables are
identif'ied on the basis of correlation analysis with load, and theilr
significance is determined through statistical tests such as the F and
T tests [19,24].

Mathematically the load model is written as

y(t) = 2, + alxltt) P, + ahxn(t) + r{t) (2.1)

13



where y{t) is the load at time t.
xltt).....xn(t) are explanatory vartables
r{t) is the residual load at time %, and

2, 2......2.2r€ the regression coefficlents relating the lead

ol

y(t) to the explanatory variables.

The regression coefficients are found using the least squares or
least absolute value estimation technique. Past observations of load
and explanatory variables are used to set up a system of
overdetermined equations, whose minimised solution gives the wvalue
of the regression coefficlents and completes the mathematical model
for future predictions.

The multiple linear regression technique has found greatest
application as an off-line forecasting method and is generally
unsuitable for on-line forecasting as it requires many external
variables that are difficult to introduce into an on-line algorithm.

These models are relatively simple to apply but require extensive
initial analysis to identify the regressors and thelr place in the
model. Also because the relationship between the load and weather
variables is time specific, this model requires the continuous

re-estimation of its coefficients to perform accurately.

2.2.2: General exponential smoothing

The theory of general exponential smoothing was originally

developed by R.G.Brown ({19629), but was first applled to short-term
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load forecasting by Christlaanse (1870) [25,26].
In this technlque the load is modelled using a time dependent
fitting function that satisfies the relationship

f£(t) = Lf(t-1) (2.2)

where f(t) is the fitting function at time t,and

L 1is a constant matrix called the transition matrix.

Mathematlically the model is expressed as

y(t) = B(ITE(L) + r(t) (2.3)
where y(t) = load at time ¢
B(t) = coefficient vector at time t, and
r(t) = residual load or noise at time t.

The coefficlent vector is estimated from 2 data window of previous

observations, usling the weighted or discounted least squares error

minimisation technique.

The estimated coefficient vector is thus obtained by minimising

the cost function [25.28]
N-1

J =5 wiyN-g) - £1(-p1 (2.4)

where 0 S w S 1 1s called the weighting factor, and
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« = 1-w is called the smoothing constant

The coefficient vector that minimises the cost function J

can be
written as
BIN) = F 1 (N)h(N) (2.5)
where
N-1 .
F(N) = E, wE(=3)£7(=)) (2.8)
and
N-1
R(N)= 5 wE -3y (N-3) (2.7)
The forecast at a lead time 1, is then given by
y(N+1) = £T(1IBN) (2.8)
and the coefficlents and the forecasts can be updated using
B(N+1) =LTB(N) + F £(0) [y(N+1)=y(N)] (2.9)
and
FIN+1+1) = £T(1)B(N+1) (2.10)
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This method can be used for both on and off-line forecasting,
though its recursive nature and generally poor long range accuracy
makes it much more suitable for on-line forecasting.

The low accuracy encountered for longer leada times stems from the
fact that this technique cannot make use of weather information and as
such cannot account for weather related load changes. Simplicity,
recursiveness, and econcomy of use however, makes this method a very

attractive forecasting toel.

2.2.3: Stecchastic time seriles

The theory of stochastic time series methods was Introduced by
Weiner{1949) and later applied to load forecasting by Whittle(1368)
[27,28]. Further work by Box and Jenkins (1970) established the time
series approach as one of the more accurate forecasting methods
avallable, and today it still stands as one of the more popular
on-line forecasting techniques [29].

In this method the load is modelled as the output of a llnear
filter driven by white noise. Depending on the characteristics of the
linear filter, different load models can be classified.

The autoregressive and the moving average processes are the two
simplest form of stochastic time series and though neither of these
processes is usually individually capable of accurately modelling the
load, they form the basis for development of more complex processes.

In the autoregressive process the current value of load is

expressed linearly in terms of previous values and a random noise. The

17



order of this process depends upon the oldest previous value at which
the load is regressed. The moving average process on the other hand
expresses the load linearly in terms of current and previous values of

a white neise serles and again the order of the series depends upon

the oldest previous value [19,29].

The autoeregressive and the moving average processes are usually
combined to give the popular ARMA or auto regressive moving average
process which has found widespread use in the power industry. In the
ARMA process the load at any instant t, is expressed as a linear
combination of its past values and a white nolse series and the order
of this process is specified by the orders of the AR and MA series
included in its composition [19,29].

Time series defined as AR, MA or ARMA are referred to as
stationary processes in that thelr means and covariances are
stationary with respect to time. If the process being meodelled is
nonstationary however, it is first transformed to a stationary serles
before being modeled as AR, MA or ARMA.

Stationarity of a nonstationary process is accomplished by the
method of differencing and the order of a differenced process refers
to the amount of times the process has been differenced before
achieving stationarity. Differenced processes modelled as AR, MA or
ARMA are now called Iintegrated processes and are relabelled ARI, IMA
and ARIMA [19,29].

The autoregressive integrated moving average or ARIMA process,
like the ARMA process is a very popular load modelling technique that

produces very accurate on line forecasts. For longer lead times ahead
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however a seasonal or periocdic component must be included into these
processes. This resuits in what is known as a seasonal process and the
abbreviations SARMA and SARIMA are now used [30].

The lack of weather input into time serles models usually limits
thelir forecast lead time but by expressing these processes in transfer
function form however, it becomes possible to input some weather
information. This is usually limited to the single most influential
variable, that is temperature, which generally accounts for most of
weather induced load [19,29].

The popularity of the stochastlic time series approach to on-line
forecasting stems mainly from the level of accuracy available and
their ease of on-line implementation. Identification of the time
series models is a major disadvantage however, as the identificatlion
process requires extensive analysis of raw load data through the use

of range-mean ,correlation and autocorrelation analyses.

2.2.4 State space methods

The application of state space formulation to short-term load
forecasting was initiated by Toyoda et al.(1970), when they
investigated the applicabllity of state estimation to tlme series
forecasting [31]. Sharmz and Mahalanabis (1972), later showed that
this technigque could be used to improve the forecasts of a general
exponential smoothing algorithm [32].

This is a general forecasting approach that can include any of the
previously discussed methods, though in short range forecasting,

time series methods are most common.
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In the state space method, the load is modeled as a function of
state wvariables wusing state space formulation. Here two sets of
discrete equations, namely the state and measurement equatlions, are
used to identify the process [18,31,32].

This technique depends largely upon the initlal model adopted
and usually employs an optimal filter to generate its forecasts. The
Kalman filter is most often used as its recurslve nature makes for an
ideal on-line predictor [31,32].

The state space approach can also be applled to off~line
forecasting by lncorporating a weather input in the state equation.
This is usually accomplished through the use of transfer function
models [19,29].

The identification process is the main stumbling block of this
method, as an accurate load model is always required beforehand.
Secondly since this method almost invarliably makes use of an optimal
filter, the covariances of the nolse processes have to be identifled,
a task that 1is generally not easily accomplished. However, this

disadvantage Is usually compensated by an lIncrease in accuracy over

the original model.

2.2.5: Expert systems approach

The forecasting technique that has been receliving the most
attention in the past decade is the expert systems approach. Thls
technique can trace its roots to the method of pattern recognition
developed by Mathewson and Nichelson in 1868 [131].

Develeopments 1in the fleld of artificial intellligence have
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prompted modern forecasters to develop computer programs that can act
as experts, with regards to load behaviour. The works of Jabbour et
al., Rahman, Bhatnagar and Baba are among the earliest published on
this subject [33,34,35].

Forecast models in this technique, are bullt using mathematical
relationships extracted through statistical analysis of previous data
and from the knowledge of experts in the field. A computer algorithm
is developed that acts as a rule based expert i.e the program will
respond in an IF-THEN manner according to rules drawn up by the
programmers [18,20].

Forecasts are created by presenting forecast variables to the
program through an interface and prompting for the desired lead time
prediction. This approach to short term forecasting is becoming
increasingly popular as researchers have been able to prove that its
forecast accuracy 1s comparable to those obtained using the best of
conventional techniques. Its major disadvantage lies in the fact that
it requires the use of costly computer centres to store, analyse and

predict data.

2.4: Design and performance criteria

The review of short range forecasting methods has indicated, that
dependent on the forecasting technique employed, many different load
models can be developed to predict the same load. For these models to
be considered good or efficient however, their formulation must

feature certain basic qualities and their performance must be within
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tolerable limits.
The literature lndicates that some of the qualitles preferred (n
a load forecasting algorithm include adaptiveness, recursiveness,

economy, robustness and accuracy [21]. Under the following headings

below, these qualities are briefly reviewed.

Adaptiveness

The parameters of a short term load forecasting model are usually
estimated from a fixed window of data and are only accurate for a
specifiied period of time ahead. As the forecast perlod elapses and new
measurement becomes avallable, the algorithm should be able to

automatically update its data window and recompute its estimates.

Recursiveness

As new data such as weather and load measurements become

avallable the algorithm should be able to correct its forecasts and

predict for the next step.

Computational economy

The pursuit of accuracy can lead to very complicated models that
require the use of excessive computing facilities. A forecasting
algorithm however, should try to be computationzally efficlent with

regards to executlon time and core utilisation.

Robustness

An algorithm should be rohust to mis-specification and erreonous
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data 1.e reasonable forecasts should be produced even if the model is
predicting for condlitions for which it is not specifled, or even If

its database is contaminated with bad or anomalous data.

Accuracy

The performance of a short term load forecasting =algorithm
depends largely upon the forecasting lead time as well as upon such
factors as load behaviour and model type.

For models with 2 24 hour prediction period errors in the range
of 2-3% are considered normal, whereas for models with a lead time of
one hour the same error is considered large [20,23]. Models with
longer lead times than 24 hours show reduced accuracy and for a lead

time of one week, accuracies within 10% are to be expected.
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CHAFTER III

PARAMETER ESTIMATION: THE STATIC CASE

In this chapter, the parameter estimation techniques applicable
to off-line feorecasting are considered. These techniques are sometimes
referred to as static estimation techniques as they are required to
produce independent estimates from fixed or static windows of previous
data.

The chapter begins by stating the estimation problem and briefly
reviewing its methods of solution. Next 2 more indepth look at the
methods applicable to short term load forecasting is presented. Here
the history and theoretical development of the least squares and the
least absolute value methods of estimation are reviewed.

Included in the review of least absolute value techniques is the
derivation of a new non-iterative method of LAV estimation that will
feature in this thesis. Also included in this sectlon ls a proposed
improvement to this new algerithm that would enable it to perfeorm

more robustly as an off-line load forecasting algorithm.

3.1: The static estimation problem

In short term load forecasting the load z(t) at any instant in

time ¢, can be modelled as

z(t) = h(t)e + r{t) (3.1)

24



where h{t) = {(1xn) row vector of fitting functions
e = (nx1) column vector of coefficients, and
r{t) = noise or residual load at time t.

The vector © of coefficients to be estimated for the forecast
lead time ahead, is considered fixed for the previous m load
observations, referred to as the data window. 6 can then be estimated
by solving the series of m equations in n unknowms, representing the
measurements in the data window.

At any time t therefore, we have

p— — g — — - e —

z{t-1) £{t-1) r(t-1)
z(t-2) £(t-2) r{t-2) (3.2)
. = : e + .
Lz(t;n)_ 5 f(t;n) 1L 4 _r(t;n)_

This system of equations can be expressed in compact vector form

Z2=He +r (3.2)

where 2 (mx1) column vector of load measurements (zi.....zm)

H = (mxn) matrix of fitting functions relating Z2 to 8
6 = (nx1) vector of coefficlents to be estimated, and
r =

{mx1) vector of residuals (ri.rz....,rm)

In general, the number of measurements n, exceeds the number of
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parameters m to Ue estimated, that is m > n, and the system of
equations is overdetermined with no unique solution. A "gcod" solution
can be obtained however, if it minimises the residual vector =r,
measured in some sense.

This can be accomplished in more than one ways, depending upon
the cost funection of the residuals to be minimised. In short-term
load forecasting, the least sum of the squares of the residuals and
the least sum of the absolute value of the residuals are the functions
most commonly employed, through the least squares function ls by far,
the more common of the two.

A third cost function called the Chebyshev function Is often
used by statisticlians but to date has not found any applicatlon in
short-range load forecasting.

The least absolute value or LAV cost function is a minimum when
the sum of the absolute values of the residuals is a minimum. This
cost function can be expressed mathematically as [38,37]

m
J,(8) = E |z, - He| (3.4)

]

o
&l

and the resulting estimate that makes this function a minimum ls
referred to as the I..1 or least absolute value estimate or solution.
On the other hand, the least squares, LS or Lz estimate mininises

the sum of the squares of the residuals via the least squares cost

function given by [36,37,38]
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m
2,172
Jy(8) ={ £z -HB[D

(3.5)

m

{ = (rlJ

2,172
1=1 }

In general any order of estimate LP can be made by minimising the
generalised cost functlion [38]

P (3.8)

m

J(8) = { E|z -He[}
where P varies from 1 to infinity.

We note that when P = 1 the L1 or least absolute value estimate
results. Similarly when P = 2 the least squares or L2 estimates
resultsr Again when P 1s infinity the I.co or Chebyshev estimate 1s
obtained. The Chebyshev estimate is also referred te as the minmex
estimate as it minimises the largest absolute value of the residuals.

It should be noted that while it is possible to obtain estimates
with the appelate P ranging from one to infinicy, only the Li. L2 and
minmax criteria have been extensively researched in the literature on
parameter estimation.

In this thesis only the least squares and least absolute value
estimation criteria are considered, and in the following sections the

roles of these criteria in static parameter estimation are reviewed.

° The minimisation of the square of equation (3.5) is the equivalent
to the minimisation of the same function.
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3.2: A review of the LS and LAV methods of parameter estimation

The problem of finding the best estimate or fit to a data set is
one that had plagued mathematicians for many centuries. The
developmen’. of the least squares and least absolute value methods are
direct results of early efforts to congquer this problem.

The least absolute value technique was first applied by Boswich
in 1757 when he presented a procedure for finding the best measurement
fit based on the sum of the absolute deviations [39]. In 1795 Gauss
used the least squares estimation method to predict the motion of
several heavenly bodies and later showed that this technigque could be
derived from his law of error distribution [40].

These two methods were the subject of numerous research papers by
the advocates of each during the early part of the nineteenth century
and it became generally accepted at that time, that the least squares
method resulted in better estimates.

In 1839 Jefferys showed that the least squares method gave the
best estimate only if the error distribution was Gaussian and
concluded that for other unsymmetrical distributions with small
measurement set the least absolute value method was the best choice
{a1].

Until the advent of modern computers, the least squares technique
remained the more popular of the two techniques and researchers found
that by using weighted matrices an even better method developed. This
became known as the welighted least squares method and today, still

remains as one of the more popular estimation methods.
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Even with the availability of computers the least squares method
continued to flourish, mainly because of the lack of efficient least
absolute value algorithms and partly because ithe least squares method
had become something of a fixture with mathematicians.

Early efforts to apply the LAV principle to computers relied on
linear programming techniques that suffered the disadvantage of being
iterative and requiring large computing effort in the form of time and
storage. However with the development of more efficient and simple LAV
algorithms, researchers have found it much simpler and sometimes even
more accurate to apply the LAV method to a variety of parameter
estimation problems (5,38,42].

The results of research to date indicate that LAV techniques gilve
better approximations when the measurement set has an unknown
distribution and 2lso when the sample size is small. In addition, the
nature of the LAV solution allows it to reject outlying data without
any previous knowledge of its location [5,42]. The LS method on the
other hand performs better when the error distribution is Gaussian,

and the sample size is large.

3.2.1: Least squares estimation

Glven the overdetermined system of equatlons

Z2=He +r

the least squares estimate is obtained by solving the normalised

system of equations [40,43]
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AT B TRA AR Fem mr o= h e e s

H'Z = HHe (3.7)
yielding
P S )
BLS— (H'H) "HZ (3.8)
In many cases, weights are assigned to each measurement so that
the measurements with the larger weights have a greater influence on
the solution. In short-term load forecasting larger weights are

usually assigned to the more recent observations as they are generally

more indicative of immediate load trends.

The cost function for the weighted least squares estimatlon can
be written as [44]

J(8) = (Z - HOIW'(Z - He) (3.9)
where W is a diagonal (nxn) weighting matrix, i.e

W = diagonal ( L i=1, ....n)

Again from the overdetermined equations

Z=He +r

we have, after multiplication by the weighting matrix W

WZ = WHe (3.10)
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Normalising this system of equation and solving gives
H'WZ = H'WHe (3.11)
and

8, = (HWH)HWZ (3.12)
The least squares and the weighted least squares methods are the
most widely used parameter estimation techniques in short-term load
forecasting. They find especial use in the multiple linear regression
and the general exponential smoothing techniques and are usually
employed at one stage or another in the other forecasting techniques.
Least squares algorithms are easy to implement on a digital
computer and usually require a minimum of computing effort and time.
They are also very robust and produce excellent estimates when the
error distributlon is Gaussian. The only recognizable dlisadvantage is

that they do not inherently ignore outlliers or so called bad data when

estimating [5,42,43].

3.2.2: Least absolute value estimation

The use of the LAV criterion in parameter estimation and model
fitting can be traced to the early works of Boswich (1757) and Laplace
(1793) [39). This criterion has been studied under a wide variety of

labels such as the minimum or least sum of absolute error (MSAE, LSAE)
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criterion, the L1 or Gershgorin norm, and the minimum or least
absolute value/ deviations (LAV,LAE, MAV,MAD) [39].

Given the overdetermined system of equations of equation (3.1),
the optimal LAV solution or estimate eL” is reached only when the sum
of the absoclute value of the reslduals is an absclute minimum.

Unlike the least squares methed of estimation however, no
mathematical procedure has been developed to give an optimal LAV
estimate In a single computational sequence. Rather, true LAV
solutions are only obtalnable through the use of lterative linear
programming techniques.

This iterative dlsadvantage has led to the development of many
approximate LAV algorithms that greatly reduces the number of
iterations requlired and in the case of a more recent study: to the
development of a completely non-iterative algorithm [5,38].

In this thesis both the linear programming and the this newly
developed non-iterative approach to LAV estimation are featured. The
mechanics governing these methods, and their inherent advantages and

disadvantages are discussed in turn, In the remainder of this chapter.

Linear programming

The llnear programming approach to LAV estimation is one that has
played a central role in the development of LAV estimation theory.
Linear programming techniques are iterative in nature and uses the
methods of successive improvements to reach their seolution.

Using this approach, the resulting LAV algorithm is usually

formulated to solve 2 constralned or an unconstralned estimation
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problem. Research has shown that the unconstrained or unrestricted
problem usually results in a non-unique solution, whereas the use of
constraints severly limits the chances of 2 non-unique solution
[39,45].

Inherent in any linear programming algorithm is a cost function
to be minimised or maximised. If the problem formulation requires a
cost function to be minimised, it is referred to as =z primal
formulation. On the other hand, a cost functlon to be maximised is
labelled a dual formulation. Research has indicated that the primal
formulation in linear programming is preferrable as it is generally
much more efficient with regards to computing time and storage [39].

After the problem has been stated as a constrained primal or
some similar formulation, an iterative technique 1s employed to
converge to the best solution. The earliest and most widely known of
these is the simplex method [38,461. This method however, has been
found to be computationally inefficient and subsequent studies have
led to a revised simplex method that is computationally much more
efficient, but still suffers from non-uniqueness of solution In many
cases [46].

Further work on LAV linear programming has led to the development
of many special purpose algorithms that are even more efficient and
produce unique solution in most cases. These algorithms are generally
derivatives of simplex techniques but are much more computationally
efficient as they eliminate many or bypass many stages In the simplex
procedure [38].

The formulation of the LAV estimation as a primal constrained
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linear programming problem is as follows [386,37,48].

Given the overdetermined system of equations as stated in
equation (3.1). The LAV estimation problem is to determine euv such
that the cost function given by equation (3.3) is minimised. Thls
cost function can be rewritten as

n
J(e) = %z - J§1HU¢9J[ (3.13)
where z1 is the i th element of Z2

eJ is the jth element of ©

H,, 1s the element in the 1*® row and the J*" column of

the (mxn) matrix H, which defines the relationship

between 2 and ©

and the 1" residual is given by
r =z - ZTH o (3.14)

The linezar programming formulation of the LAV estimation problem

can now be stated as follows:

o
Minimise lgi subject to the constraints
o
) = .
r,o* J§1Huej >z, i=1,2,....,m (3.15)
1
r - ZH 8) =2 -z i=1,2,....m (3.18)

1 31y
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It can be shown that the constraints restricts the value of r, to
the absolute value of the 1*® residual. Minimising the sum of the rl‘s
in the linear programming problem produces the LAV estimate [36,37].

The LAV based linear programming algorithm used In this thesis
can be found in the IMSLSTAT Library and is based on the tecchnique
developed by Barrodale and Roberts (1973) [38,47].

The main advantage of linear programming techniques is that they
will present the optimal LAV estimate Iin almost all cases. Thelr
disadvantages are that they require excessive computational effort due
to their tterative nature, and that the solution obtained may not be

unique.

New LAV technique

The iterative nature of linear programming methods has deterred
many potential users of the least absolute value criterion, even
though estimation via thls criterion is advantagecus in many cases.
Even with highly efficient modified simplex algorithms, the cemputing
effort required for linear programming solutions is still very much
greater than that required for the equivalent least squares solution.

This has led researchers along the path of reducing the number of
iterations in LAV estimation. Schlossmacher (1973), proposed 2
technique using weighted least squares estimatlon to converge to =z
final solution, but his method did not largely reduce the number of
iterations over the then present technicues [48].

Sporito, Hand and ﬂcCormick (1977) later showed that by using the

least squares estimate as an initial guess in the highly efficlent
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algorithm of Barrodale and Roberts, many iteratlions In the linear
programming procedure could be saved [49,50}. The use of the LS and
WLS as initial estimates in linear preogramming technlques is now a
well established procedure and f{eatures 1in the IMSLSTAT linear
programming LAV package used in this thesis [47].

In 1987 Christensen and Soliman developed a new LAV technique
that was ncn-iterative in nature and produces a unique solution if the
matrix H is of full rank [5]. This novel approach manipulated a
simple theoretical relationship between LS and LAV solutlons and has
produced estimates closely matching those resulting from conventlonal
linear programming algorithms.

The method of Christensen and Scolimen follows directly from the

theorem governing LAV estimation, which reads as follows [5,42].

Theoremn: If the column rank of the (mxn} matrix is k where (k < n),

then the LAV estimate lnterpeclates at least k of the m measurements.

From this theorem, Christensen and Soliman proposed, that by
selecting the best n of these measurements with H belng of full rank,
a fully determined system of equations is obtained that could be
solved to give the LAV estimate. The stages in this new algorithm are

as follows:

(1) Given the overdetermined system of equations shown below

2 = He+r (3.16)
o o
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{mx1) vector of measurements

E
=3
o
3
]
™
:
n

L1
1}

(nxl) coefficient vector to be estimated
H = (mxn) matrix of rank n relating Zm to em. and

{mx1) vector of residuals

1
1l

find the least squares solution SLS where

'

8 = [H'H 7'z (3.17)
LS({m) m m mm

and the subscript LS(m) refers to a least squares estimate made from m

measurement observations.

(2) Calculate the residuals resulting from the estimate © i.e.

LS(m)'

r =z -H®#® (i=2,...,m) (3.18)

where I-Il is the im row of the (mxn) matrix H
zi Is the ith measurement, and
rl refers to the ith residual
(3) Compute the standard deviation of the residuals as follows

_ 1 - =2
c = [m 1:51(rt -r) J (3.19)

where r = mean value of residuals.
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and reject those observations with residuals larger this value.

Note that points with residuals larger than the standard
deviation are then considered as outllers and in keeping with the

nature of LAY solutions are lgnored.

(4) Recompute a LS estimate from the reduced measurement set. Thus

assuming that p polnts are rejected, then the new least squares

estimate is given by

=[(H H 17

eI.S(ta-;:a) - m=-p m=p m-p m-p (3.20)

where the subscript m-p now indicates a reduced measurement set

(5) Rank the residuals beginning with the smallest and ending with

the largest and select the first n measurements corresponding to the

first n smallest residuals.

(8) A perfectly determined system of equations Iis now
available that can be solved to give the least absolute value estimate

for the overdetermined system of equations given by equation (3.16].

The LAV estimate 1s therefore found to be

-1
LAY a 2n (3.21)
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where the subsceript k now refers to the final reduced set of n

selected measurements.

(7) The residuals resulting from this LAV estimate can be computed

as follows

r =z -H® (i=1,...,m) (3.22)

This algerithm, although only recently developed, has been
applied to many power system estimation problems and found to be a

comparable alternative to existing estimation methods [51,52,53].

The major advantages of this new estimation procedure are
(a) it is non-lterative and very efficient with regards to computing
effort and time,

(b) it has inherent "bad data " rejection properties, and
(c) it produces 2 unique solution in all cases provided the final
matrix Hn selected is of full rank.

The major disadvantage of this algorithm is that, the matrix Hn
selected may not always be of full rank, in which case the solution
produced will be erreneous. This has been a relatively non-existent
situation in so far as the algorithm has been tested. However when the
measurement equations are periodically repetitive, the chances of Hn
being of less than full rank are greatly increased.

This ls a2 common situation in short term load forecasting where

load behaviour is periodic and many load cycles are Included in the
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measurement set. This difficulty can be high-lighted by consldering a

simple harmonic decomposition model given by

ylt) = a * alsin(ut) + azcos(wt) (3.23)

where w = n/4

The coefficlents an.a .azl are to be determined from twe (2)

1
complete load cycles of four (4) observations each, that is, a total
of elght (8} observatlions. Given that the observations are recorded at
fixed discrete intervals apart beginning at t = 0, and can be denoted

as yl,yz,“.,ya, the overdetermined system of equations can be written

as follows.

Y, sin(n/2) cos(n/4) 17 ]

Y, sin(x) cos(n)

y sin(3n/2) cos(3n/2)

Y, sin(2n) cos(2m) "

Ye sin(5n/2) cos(Sn/2) (3.24)
Y sin(3n) cos(3n)

v, sin(7n/2) cos{Tn/2)

Vg sin(4mn) cos(4n)

We note that rows of the H matrix (8x3) that occur one full cycle
apart are essentially the same. For example, rows 1 & 5, 2 & 6, etc.

are exactly the same.
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Application of the proposed algorithm requires the best three (3)
point to be selected. We note, that it is possible for the points
(1,2,3), (2,3,4) ete. to be selected, in which H_ will be of full rank
and a good solution will result. Alternatively the points (1,5,8),
(2.6,7). (3,7,8) etc. can be selected, in which case the rank of H_
will no longer be n, and a valid solution is no longer possible.

This problem can be rectified by the implementation of a two
stage ranking procedure in place of steps {(3),(4) and (5) of the
original algorithm, if it can be assumed (as is the general case in

load forecasting) that

(1) the m observations are from L complete cycles of g observations
per cycle, l.e. Lg = m, and

(2) the observations occur at fixed discrete intervals apart.

The modified LAV procedure that can be incorporated as an option

for periodic observations in the original algorithm, is as follows:

(1) Given the overdetermined system of equations (3.16), find the
least squares estimate (3.17)

_ exgTey 1=14T

eLS(m) - [HmHn] Hmzm

(2) Calculate the residuals corresponding to this estimate (3.18),

and separate these residuals into g groups of L residuals, for each of

the g discrete observations in a cycle.
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(3) Rank each of the g groups of residuals, and select the

measurements cerresponding te the smallest residual of each group.

(4) Next, select the n smallest residuals from amongst the
preselected best of each of the q groups, to give a perfectly

determined system and solve to get the LAV estimate.

Referring to the example of equation (3.23), we note that there
will now be four groups of residuals, each consisting of two residuals
e.g. (1,85), (2,8), (3,7) and (4,8). The observations in each of these
groups correspond to rows in the H matrix separated by a complete
cycle, i.e. to the rows that are mathematically ldentical.

Since only one residual will be selected from each group, this
new procedure will eliminate the chances of the final matrix Hn
selected being of less than full rank.

The effectiveness of this modified LAV procedure 1is further

demonstrated with the help of the following numerical example.

Example

Consider a process to be modelled by equation (3.23) where we are
required to estimate the coefficients [ ao.al.azl using the LAV
criterion. Given eight previous process measurements corresponding to

[y1'yz""'ye] recorded at fixed discrete intervals of one quarter of

a period apart, we can rewrite equation (3.24) to read
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106 1 1 o} 2,

99 1 0 1 2,

g4 1 -1 0 2,

101 = 1 0 -1

10S 1 1 o (3.25)
= 1] 1 o] 1

a5 1 -1 0

_ 104 | _ 1 0 ~1 ]

We will now find the LAV estimate using (a) linear programming,

(b) the original LAV procedure and {c¢) the modified LAY procedure.

Linear programming

The LAV estimate determined using linear programming is given by

GLP =[100 6 ~-1]
with

Sum of absolute errors = 5

Original technique

Using this technique we first find the least squares estimate to
be

GLS(B) = [100.375 5.500 ~-1.750]

with the residuals
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-0.125
-0.375
0.875
r = 1.125 {3.26)
0.875
=0.37S
-0.125

-1.87S

and a standard deviation of 1.0508.

We note that the fourth and eight residuals are larger in
absolute value than the standard deviation, and therefore the
corresponding measurements are rejected.

We recompute the least squares estimate and residuals to be

eLS(s) = [98.817 4.417 0.083], and
2.667
0.000
-0.500
r = 2.187 (3.27)
1.867
0.000

0.500

5.187
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We then select the measurements corresponding to the three(3)
smallest absolute residuals. Points 2, 6 and 3 therefore, are selected
to give a perfectly determined system of equations whose least squares
solution is the LAV estimate. The reduced equations corresponding to

these residuals can now be written as

99 1 0 1 ao
g9 = 1 0 1 2, {3.28)
94 1 1 0 2,

We can Iimmediately observe that these equations are 111
conditioned and does not possess a unique solution. A possible

solution to equation (3.28) is

8 = [47 -47 52}

LAYV
an estimate that is far removed from the linear programming estimate
given previously. We note that this solution is only possible due to
the fact that the measurements corresponding to rows 1 and 2 in

equation (3.28) are the same. In general however, a solutlon to this

problem is highly unlikely.

Modiflied technique

Having found the initlal least squares estimate and the

corresponding residuals (3.26), we can now seperate the residuals into
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four groups of tweo residuals each, as shown below

Group 1 Group 2 Group 3 Group 4
-0.125 =-0.375 0.875 1.125
0.875 -0.375 -0.125 -1.875

and select the three smallest of the best four residuals.

The

residuals selected correspond to the measurements 1,7 and 2 which

results in the perfectly determined equation below.

a9 1 o] 1 a

85 = 1 -1 0 a (2.238)

108 1 1 0 2
which gives
e = [100.5 5.5 ~-1.5]
LAV
with

Sum of absolute errers = 85

which is a true LAV solutlon to the problem set given.
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CHAPTER 1V

PARAMETER ESTIMATION: THE DYNAMIC CASE

The material presented in this chapter deals with the application
of dynamic estimation theory to on-line short-term load forecasting.
The dynamic parameter estimation problem is first introduced followed
by the theory and development of the Kalman and a newly developed
least absolute value based filter,

Next, the formulation of a recursive general exponentlal
smoothing algorithm that will also feature in on line simulations, is
presented. Finally the chapter concludes by discussing the procedure
for the application of the Kalman, the new least absolute value based
filter and the general exponential smoothing algorithm to on-line

forecastling.

4,1: Stochastlic estimatlion.

Stochastic estimation is the process of assessing unknown system
states from nolse corrupted observations of functions of the sald
state. In this process, the statistical properties of the nolises are
assumed known and the estimate is determined so that it minimises a
speciflied cost function of the estimation error.

The literature indicates, that for a process where the error
distribution 1s Gaussian, the least squares cost criterion results in
optimal estimation. This is the case of the popular Kalman filter that

has found application throughout modern control theory [54].
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In keeping with the advantages of the least absolute value
eriterion however, researchers have theorised that least absolute
value based stochastic estimation would inherit these advantages in
cases of non-Gaussian error distribution [55,56].

The inherent iterative nature of least absolute value solutlions
however, has prevented the realisation of such an estimator, untlil
more recently, when the development of a new non~iteratlve LAV
estimation technique , has resulted in a practical formulation for a
recursive LAV based stochastic estimator [S].

In the following sections, the dynamic stochastic estlimatlion
problem is presented followed by the theoretical development of the
Kalman ,a weighted least absolute wvalue filter and a general

exponential smeothing algorithm.

4.2: Dynamic estimation problem

A discrete process whose states are to be estimated can be

represented by the state equations [26,57]

x(k+1) = o(kIx{k) + w(k) (4.1
and the corresponding measurement equation

z(k) = H(k)x(k) + v(k) (4.2)

where x(k) = (nxl) process state vector at time tk
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Plk) (nxn) state transition matrix relating x(k) to
®(k+1} in the absence of a forecing function.

wik)

(nx1)} nolse vector with known covariance

z(k)

{mx1) vector measurement at time tk
H(k) = (mxn) matrix giving the ideal relatiocnship
between measurement and state vector at time tk

vik) = (mx1) measurement error with known covariance

The noise processes w(k) and v(k) are assumed to be uncorrelated

white noise processes, with the following characteristics:

. Qlk) , i=k
E [w(k)w (k)] = [0 12k (4.3)
£ [vaovita] = (B0 15K (4.4)
and
E (w(k)vi(k)] =0 for all i and k (4.5)

Given the estimated state vector at the (k-l)th instant for a
known process, the valuve of the state at the k*® instant can be

predicted from the state equation as follows:
x(k/k-1) = @(k-1)x(k-1) (4.8)
where Q(k/k-lj refers tc the value of the state vector at the K

instant predicted at the k-1*® discrete instant, and the symbol " ~ "

refers to estimated values.

49



Associated with this estimate will be an estimation error gliven by
e(k/k-1) = x{k) - x(k/k-1) (4.7)
where x(k) is the actual value of the state vector at the kth Instant.

Substituting for x(k) and x(k/k-1) from equations (4.1) and (4.6)

respectively, gives

e(k/k-1) = ¢(k-1)x{k-1) + w(k-1) - ¢lk~-1)x(k-1)

¢(k-1)e{k-1) + w(k~1) (4.8)
and thus the estimation error can also be predicted from the value
given at the previous discrete Iinstant. The error covarlance
corresponding to this predicted error can also be found from

P(k/k-1) = Ele(k/k-1)e” (k/k-1)] (4.9)
which can be simplifled to read (58,59]

P(k/k=1) = ¢(k=1)P(k-1)¢' (k-1) + Q(k-1) (4.10)

With the availability of the measurement observation z(k), it is
now desirable to determine a suitable gain factor K(k), so that the

predicted state estimate can be corrected by the measurement error and

be optimal in a choosen manner. The corrected or smoothed estimate can

now be represented as [57,58,58]
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x(k) = x(k/k=1) + K(k)[z(k) - H(k)x(k/k-1)] (4.11)

where x{k) is the smoothed estimate at the k* interval and Kuo is
the gain or correction factor at the x*" instant.

Associated with the smoothed estimate for the state vector will
be a new value of estimatlion error given by

e(k) = x(k) - x(k) (4.12)

x(k) - { x(k/k-1) + K(k)[z(k) - H(k)x(k/k-1)] }

[x(k) - x(k/k-1)] - K(k) [H(K)x(k) - H(K)x(k/k-1)

+ vi{k)] (4.13)

and corresponding to this new value of estimation error will be a new

or smoothed value of error covariance given by

P(k) = E [e(k)e (k)] (4.14)

Substituting for e(k) and simplifying gives

Pk) = [I - K(K)H(K) IP(k/k-1)(1 - K(K)H(K)]T

+ K(K)R(KIK (k) (4.15)

where I is the (nxn) identity matrix.
It can be seen, that given an initial estimate for the state
vector x(k-1), with the gain factor K(k) known for all k, it is

possible to recursively predict and correct the state vector and error
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covariance for the all k.

Equations (4.8), (4.10), (4.11) and (4.15) together constitute a
recursive chain that =allows for sequentlal data preocessing, and
together with the gain vector K(k), forms the basis of the discrete
filter.

Calculation of the gain is usually done so as te satisfy a
choosen estimation error cost function, and when this function is the
based on the stochastic least squares minimisation criterla the
resulting filter 1s the discrete Kalman filter, named after Its
developer R.E.Kalman [54].

The gain vector K(k) can also be derived from the least absolute
value criterion, as is the case of the more recently developed
weighted least absolute value fllter [60]. In the following sectlions,
both the Xalman and the new filter gains are derived and thelr

completete formulations presented.

4.2.1: Kalman filtering

The stochastic least squares cost functlon to be minimised can be

written as [58]
- T
J2 =E [kgle (kle(k)] (4.16)
where e is the error at the k" instant and m s the total number of
observations. If the m measurements are processed sequentially as in

the case of the discrete filter, the cost function will be a minimum

when each individuzl cost element 1s an absolute minimum
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Consider the errcor at the kth instant to be

e(k) = z(k) - H(k)x(k) (4.17)

H(k)x(k) - H(k)}x(k)

[}

where Q(k) is the estimated state wvector at that instant and x(k) is

the actual value of the state vector at that Instant.

The least squares cost at the kth instant is then glven by

J, (k) = E{ e(k)e (k) } (4.18)

E{ (H(k) [x(k) - x(kID)T(H(K) [x(k) - x(k)])}

E{ tr(H(k)(x(k)-x(k)1)(H(K) [x(k) - x()3])T

E{tr(H(k)[x(k) - x(k)IIx(k) - x(k))H (k))}

E{tr(B(K)P(K)H (k))} (2.19)

and we can see that by minimising the trace of the error covariance,

the cost function is minimised. From equation (4.15) we have

P(k)

[T - K(K)E(x)IP(k/k-1){T - K(k)H(k)]®

+ K{K)IR(K)K (k)

P(k/k-1) - K(K)E(k)}P(k/k-1) - P(k/k-1)H (k)K (k)

+ K(k)[H(K)P(k/k-1)H (k) + R(K)1™K (k) (4.20)

The expression for tr{P(k)} will be 2 minimum when its derivative

with respect to K(k) is zero, thus given [58,59] that
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as/dAltrace(AB)] = B' (4.21)

and

d/dAltrace (ACAT)] = 2AC (4.22)

and noting that P(k) is symmetric, we get after differentiation

dP(k)/dK(k) = 2K(k) [H(k)P(k/k-1)H (k) + R(k)]

- 2[H(X)P(k/k-1)]17 (4.23)
Equating to zero gives
K(k) = P(k/k-1)H(k) [H(k}P(k/k-1)H (k) + R(k)]™ (4.24)
Equation (4.24) can now be implemented along with equations (4.6},
(4.8), (4.10) and (4.15) to complete the discrete Xalman filter. The

complete filter formulation is presented below.

Discrete ¥Xalman fllter

Given initial values for P(k-1) and x(k-1), equations (4.6) and

(4.9) can be used to predict the values of P(k) and x(k) as follows

(1) P(k/k-1) = ¢(k-1}P(k=1)¢ (k-1) + Q(k-1)

{2)  w(krsk=-1)

#(k-1)x(k-1)

Having predicted P{k/k-1) and x(k/k-1) with Q(k) and R(k) known,

the Xalman gain vector at the kt‘h instant can now be calculated from
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equation (4.24) as

(3)  K(k) = P(k/k-1)HT (k) [H(k)P(k/k-1)H (k) + R(k)]™*

and the predicted estimates P(k/k-1) and x(k/k-1) corrected by

equaticns (4.15) and (4.11) as follows

(@)  P(k) = [I - K(k)H(k)IP(k/k~1)[1 - K(K)H(XK)1®
+ K(K)R(KIKT(K)
(5)  x(k) = x{k/k-1) + K(k)[z(k) - H(K)x(k/k-1)]

The updated estimates P(k) and x(k) are now available and can be
used as initial values for the next discrete step thereby creating a

recursive chain for least squares based stochastic estimatlion.

4.2.2: Least absolute value filtering

The weighted least absolute value cost function to be minimised

can be written as [57,58,61]
- - -1
J, = L INlx-x) -wi(z - Hx) | (4.25)

where x = {nxl) actual state vector
x = (nx1) state vector to be estimated
w = welghting element of 1*" measurement
th

z2=1 measurement observation

H = (mxn) measurement vector at the 1+ instant, and
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where Px= (nxn) error covariance matrix, and

e = (mx1) column(1,1,1,..... .1) vector
The minimum value of this cost function is given by
]

Jy= Elgl=0 (4.26)
where
e = N(x - %) - zf(z1 -Hx) =0 (4.27)
Rewriting equation (4.27) in compact vector form for all i, gives
E=Mx-x) - W2 - Hx) =0 (4.28)

where E = column (g .,e..,....,8)
1 2 m

W= column (w;l. Wl ...wh

2 'm

Z =column (z, z,...,2 )
1 2 o
H = matrix of row vectors Hl. ( i1=1,...,m), and
M = LeTP;i, where
L = (mx1) column {1,1,...1) vector

Equation (4.28) can be rearranged to read

(M + WiHix = Mz + W'z (4.29)
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Adding and subtracting W 'Hx to thr right hand side of this

equation ylelds

(M + Wik = (M + WIH)R + Wiz - Hx) (4.30)

This 1s an overdetermined system of equations that can be solved

using the new LAV procedure of section 3.2.2.

If equation (4.30) is rewritten as

Ax = A% + W ' (z - Hx) (4.31)
where

A= (M+ W) (4.32)
then

x = % + (ATA) ATz - H) (4.33)

is the least squares solution and the least absolute value estimate is

given by
- 0_1 ﬂ_l -~ -
X=X+ A W (z - H) (4.38)
where A = (nxn) matrix of vectors corresponding to the m smallest
residuals

ﬁq= (nxn) diagonal of weighting elements corresponding to the

measurements selected

I
n

(nxn) matrix of n selected measurement row vectors, and

(nx1) column vector of selected measurements

N
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Equation (4.34) can be rewritten as

x = % + K(z - Hx) (4.35)
where
K = A ly? (4.386)
= (WA)!

The gain vector calculated here, is for the static case using the
m previous observations. For the dynamic (sequential) estimation

however, the gain vector at the k"h discrete instant becomes [58,81]

K(k) = [W(kIA(K)]™? (4.37)
= [W(KIM(k) + H(k)]™ (4.38)
= [u(kJLe’p;‘(kJ + H(k)1™? (4.39)

and substituting for the Kalman gain equatlon in the discrete Kalman
filter gives the new weighted least absolute value filter. This filter
1s essentlally the same as the Kalman filter except that the gain
vector is calculated on the basis of the least absolute value

criterion rather than the least squares criterion.
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4.1.3: Adaptlive general exponential smeoothing

A discrete load process can be modelled by the equatlon
z(k) = £ (K)B(k) + e(k) (4.40)

where B(k) is the vector of coefficients to be estimated, for the
instant k
e(k) is residual load at the k" discrete instant
z(k) is the load measurement at the k™ interval, and
f(k) is 2 vector fitting function that is related to

successive values by the equation
f(k) = Lf(k-1) (4.41)

where L is called the transition matrix and is constant and speciflc
to the process at hand

It is desired to estimate the coefficient vector g(k), that
minimises a2 welghted (discounted) least squares cost function given

by (261
T J T 2
J= Jgow [z(t-J) - £ (-J)B(T)] (4.42)
where w is a welghting factor choosen so that the welghted squared
residuals are totally discounted in T previous observatlons.

The cost function given is a minimum when its derivative with

respect to the coefficient vector is =zero. Differentlating and
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equating to zero, therefore yields
T T , ¥
BT = [ T W=7 (=117 Ez(T-JF(-))) (4.43)

which can be written in compact form as

B(T) = FHTIg(T) (4.44)
where
T T
F(T) = Erf(=J)f (=) (4.45)

is called the coefficient matrix of welghted fitting functions. and
T
g(m) = | EW'z(T-)(-)) (4.48)

is called the data vector

The data vector can be rearranged to read [25]

g(T) = 2(T)F(0) + uL7'g(T-1) (4.47)
and multiplying throughout by FHT) gives

B(T) = 2(T)F H(TIF(0) + wF~ *(TIL™'F(T)B(T-1) (4.48)

Given that F(T) will have reached a steady state value in T
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previous observations, we can represent it by F for purposes of

simplification. The matrix F can also be rearranged to read (251

F = F(T-1) + £(D)FT(0) (4.49)

Premultiplying equation (4.45) by L'1 and post multiplying by the

identity matrix LT gives

LU = Jéow"[L'lf(-j) ML (- 1L" (4.50)
= (1) (F - £{0)£7(0)] LT (4.51)
since
LMe(-5) = £(-3-1) (4.52)

substituting for WL'F in equation (4.48) gives

8(T) = z(T)F*£(0) + F M F - £(0)£7(0)ILTB(T-1)

Z(T)F£(0) + LTB(T-1) - F r(0)£T(0ILTB(T-1)

LTB(T-1) + F £ (0)[z(T) - £ (OILTB(T-1)] (4.53)

now since £ (0)L'B(T-1) 1is an apriorl estimate for the load at time

T-1, we can rewrite equation (4.53) as

B(T) = L'B(T-1) + F£(0)(2(T) - 2(T)] (4.54)
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where z(T) = £1(0)L'B(T-1)

Note that by making the feollowing equivalents

olk) =L"

x(k) = B(k)

H(k) = £ (k), and
K(k) = F'£(0)

we obtain the general exponential smoothing equivalent of the discrete
Kalman filter. We note also that the galn vector K ls constant for all

k, and is independent of the process noises.

4.3: Dynamic on-line estimation and forecasting.

An inherent characteristic of both the Kalman and the new WLAV
filter, is that the galn vector and the error covariance will settle
down to stationary values after a sufficiently large amount of
measurement data ls processed. At this stage it is no longer necessary
to recursively re-estimate the gain and covarlances, and stages 1,3
and 4 can be dropped from the discrete Kalman And WLAV fllter
formulations

The simplicity of the foregoeing forecasting procedure is limited
only by the large initial data analysis that is required to accurately

determine the values of steady state galn for the stochastic fllters.
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This difficulty is compounded by the fact that both algorithms assume
that the covarlances of the noise processes are known for all k.

This is generally not the case with load feorecasting data
however, and Q(k) and R(k) must be accurately determined so that the
estimation process is optimal.

Estimates of Q(k) and R(k) can be made from the recursive
estimation equations of Sage and Husa [62]. These are estimation
equations that can be implemented with the filter in question to glve
suboptimal estimates for Q(k) and R(k), so that K(k) can determined
for all k. These equations are as follows

(6) R(k) (17K) [ (k-1)R{k=1) + ro(k) - H(k)P(k/k-1)H (k)] (4.80)

(7)) Qk) = (1/K)[(k-1)Q(k~1) + r2(KIK(KIK (k) + P(k/k)

- $(K)P(k-1/k-1)¢") (4.81)

Equations (4.60) and (4.61) can be iuacluded as stages (6) and (7)
in the respective filters. These equations possess the steady state
characteristics of the stochastic fllters and as such the values of
Q({k) and R(k) will attain steady state along with K(k) and P(k)
(62,63].

A simple on-line forecasting and smoothing zalgorithm Iis now
avallable that requires a minimum of computing effort. We note, that
these simplified filtering algorithms are now identical to the general

exponential smoothing algorithm, except for differences in steady

state gain values.
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In general, if we represent the steady state gain vector by Ks.

the on~line forecasting procedure can be described as follows.

4.2.1: On-line forecasting procedure

Given an initial estimate x(k-1) with Ks known, the values of

x(k/k-1) and z(k/k-1) can be predicted from

(1) x(k/k=1)

Il

¢(k)Ix(k) (4.58)

and

z(k/k-1)

H(k)x(k/k-1} (4.58)

Upon the availabllity of the measurement z(k) the estimated state

vector can be smoothed as follows

(2} x(k) = x(ksk-1) + K [z(k) - z(k/k-1)] (4.57)

where r(k) = z(k) - z(k/k-1) (4.58)

is the prediction error for the k™ discrete interval.
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CHAPTER V

LOAD MODELLING

In short-term load forecasting, the future load on a power system
is predicted by extrapolating a pre-determined relationship between
the load and its influential variables, namely time and/or weather.
Determination of this relationship is a twe stage process that
requires (a) identifying the relationship between the locad and related
variables, and (b) quantifying this relationship through the use of a
suitable parameter estimation technique.

In order to study the effects of parameter estimation techniques
on short-term load forecasting accuracy therefore, it 1is first
necessary to identify and develop suitable load models that will allow
for the appllication of these estimation methods.

In chapter III, statlic parameter estimation techniques applicable
to off-line forecasting were reviewed and in chapter IV dynanmic
estimation algorithms applicable to on-line forecasting were reviewed.
In this chapter, load models are developed that will allow for the
study and comparison of the effectiveness of these parameter
estimation methods as they apply to short-term load forecasting.
Here three off-line load models and a single on-line model are
identified and developed for forecast simulations. These models will
be used in both summer and winter forecasting modes and as such, where
applicable, winter and a summer load formulations are included. These
models and the mechanics governing their application are discussed, in

turn, in the following two sections.
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5.1: 0Off-line load models

In this section three off-line load models are identifled for use
with the static estimation techniques of chapter III. These models
will be referred to as models A,B and C respectively and are
identified on the basis of the author’s familiarity with their
underlying modelling technique.

Medels A and B are based on the principles of multiple linear
regression and general exponential smoothing respectively, whilst
model C is a hybrid load model that embodies both these principles.
These models are all developed for the twenty-four off-line
forecasting problem i.e. they will be used to predict hourly loads up

to twenty-four hours ahead.

In the following subsections each of these models are discussed

in greater detall.

5.1.2: Model A

This is a multiple linear regression model that expresses the
load at any discrete instant t, as a function of a base load and a
weather dependent component. The base load 1s assumed constant for
each discrete interval, as is the relationship between the load and
its weather dependent variables.

This model will be used for both winter and summer load forecast
simulations, and since the relationship between load and weather differ
significantly over these two seasons, a different load formulation will

be required in each case. This will result in two load models, namely a
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winter and a summer model.

These models are based on the assumptlom that a common dally Lase
load cycle is experienced by days occuring during the week, 1l.e. days
Monday to Friday, and that a constant but different base load cycle
is experienced by weekend days, namely Saturday and Sunday. As such,
to continocusly predict the load over a complete week, two models are
required, i.e. one for predicting weekday loads and one for predicting
weekend loads.

However, since the primary objective of this thesis is to study
and compare the influences of various parameter estimation techniques
on predictive accuracy, and not on load forecasting as such, only the
weekday load model will be developed for forecast simulatlion.

Correlation analysis of load and temperature deviations from the
norm, has indicated that the load to be modelled is dependent on both
the immediate and previous values of temperature dJdeviation. This
correlation however, i1s strongest for immediate wvalues of
temperature deviation and dles out in approximately seventy-two hours.

The windchill and wind cooling factors alsc displayed similar
relationships in winter, as did the temperature humidity facter in
summer. The wind cooling factor however, was selected in favour of the
windchill factor, as it generally resulted in smaller prediction
errors during forecast trials.

Based on these analyses, initial winter and summer models were
formulated and tested in off-line simulations, and after extensive
re-formulation and re-testing using the methods of triz]l and error,

the following two load model formulations were selected.
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Winter model

Mathematically, the load at any discrete Iinstant t, where t

varies from one to twenty-four,can be expressed as

y(t) = a(t) +a (OT(E) + a(OTHH) + a (T (1)

+ ag(t)T(t-l) + as(t)T(t-Z) + aé(t)T(t-B) + aT(t)W(t)

+ aa(t)H(t-l) + ag(t)W(t-2) (5.1)
where y(t) = load at time t
T(t) = temperature devlation at time t
W(t) = wind cooling factor at time t
ab(t) = base load at time t, and
ai(t).az(t)....,agtt) are the regression coefficients to

be estimated at time t.

The temperature deviation at the instant t, 1ls calculated as the
difference between the dry bulb temperature at the time t, and the
average dry bulb temperature of the previous twenty (four weeks)
weekday temperature measurements, corresponding to the same discrete

instant, i.e.

T(t) =T (t} - T (t) {5.2)
d a

where Td(t) dry bulb temperature at time t, in °C, and

Ta(t) [Td(t—24) + Td(t-48) + + Td(t-480]]/20 (5.3)

is the average dry bulb temperature at time t.

68



It should be noted here, that equations {5.2) and (5.3) refer to
a data bhase comprising only of weekday temperature recordings.
The wind cooling factor is calculated from

172

Wit) = (18 - Td(t)]IV(t]] (5.4)

where V(t) = wind speed in km/h at time t.
Summer model

The summmer equivalent of the load model given by equation (S.1)

can be written as

y(t) = a (t) +a (£)T(t) + a_(t)T3(t) + a_(t)T (t)
Q 1 2 3
+ 2 (£)T(E-1) + a(t)T(t-2) + 2, (£)T(t-3) + a (t)H(t)

+ aa(t)H(t~1) + ag(t)H(t-z) (5.5)

where again

y(t) = load at time t
T(t) = temperature deviation at time t
au(t) = base load at time t

al(t).az(t).....agtt] are the regression coefficlents to be
estimated at time t, and the temperature deviatlon ls calculated as for

the winter model.
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In this model however, the wind cocling factor is replaced by the

temperature humidity factor H(t), which is given by
H{t) = 0.855 Td(t) + 0.2 Tp(t) + 5.05 (5.8)
where Tp{t) = dew point temperature at time t, in °C.

It should be noted, that if the dry bulb temperature is less than
twenty-five degrees centigrade, the temperature humldity factor tis
made equal to zero. This stems from the realisation that the effects

of humidity are negligible, when the temperature is below room level.

In both the winter and summer models, the base load and
regression coefficlients are assumed fixed for each of the twenty-four
discrete instants in a2 dzy, and as such, twenty-four seperate
coefficient estimates are required to predict the next day hourly load
profile. The coefficients corresponding at any given discrete interval
therefore, are estimated using the previous four weeks of weekday data
corresponding to the said discrete instant.

Given therefore, that the load models of equation (5.1) and (S5.5)

can be rewrlitten as
y(t) = £T(L)B(L) (5.7)

where f(t) is a fitting function given by
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T(t)
T2(t)
73(t)
T(t-1)
£(t) = T(t-2) (5.8)
T(t~3)

Wit)

Wit-1)

Wwit-2)

in winter, and

T(t)
T3(t)
T3(t)
T(t-1)
£(t) = T(t-2) (5.9)
T(t-3)

H{t)

H(t-1)

H(t-2}

in summer, and where B(t) is a coefficient vector given by
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— —

aoft)
ai(t)
glt) = : (5.10)
aB(t)

L_ 2, (t)

the overdetermined system of equations corresponding to the estimate

at the instant t, will read

y(t-24) £(t-24) [ sm}
y(t-48) f(t-48)
: - : (S.11)
| y(t-s80) | £(t-580) |

and can be solved using an appropiate estimation technique. The
estimated coefficient vector can now be substituted into equation

(5.1) or (5.5) to give the load prediction for the time t.

5.1.2: Model B

This is a harmonic decomposition model that expresses the load at
any time t, as 2 function of a constant base load and a Fourier
harmonic series. This modelling approach 1is normally wused Iin
conjunction with the general exponential smoothing technique discussed

in chapter II, as 1t satisfies the fitting function relationship given
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by equation (2.2).

Examination of previous load data revealed the presence of a
weekly load c¢ycle that is characterised by distinct dailly
periodicities. This behavioural pattern 1is confirmed by the
autocorrellation plot shown in figure I.

In this model however, the weekly cycle is accounted for, by the
use of a dally load model, whose coefficients are estimated seven
times weekly. Also since this is a load shape model that does not take
weather into consideration, a single load model will suffice for both
winter and summer simulatlons.

The load at any time t therefore, can be written as

-]
yit) = a, + lEl[alsin(iwt) + blcos(iwt)l (5.12)
where y{t) = load at time t
m =9
w = 2n/24
a, = constant base load for each day of the week, and

a.l.bl,.....a.g.b9 are the coefficlents corresponding to the

harmonics in the load composition.

It should be noted that it is possible to decompose the load into
a maximun of eleven harmonics, but from trial simulations it was found
that the use of more than the first nine harmonics, did not result in
any significant improvement in accuracy, and as such the tenth and the

eleventh harmonics were dropped from the load model.
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To predict the hourly lead profile for any day of the week, an

overdetermined system of equations is once agaln set up usling data

from the previous four weeks corresponding to the day in question.

Civen again that equation (5.10)} can be written in the form of

equation (5.7), l.e.

y(t) = £7(t)8

where now

£(t)

and

1
sin(wt)
cos(wt)
siniSmt)

cos(Suwt)
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The overdetermined system of equations can now be written as

y(t-168) £T(t-168) [ 8 J
y(£-192) £T(t-192)

y(£-336) = £T(£-338) (5.16)
y(t-672) £T(t-672)

and B estimated and substituted into equation (5.12) te give the

forecast for the next twenty-four hours.

5.1.3: Model C

This is a hybrid load model that expresses the load as the sum of
a time-varying base load and a weather dependent component. This model
was developed with the aim of eliminating the disadvantages of the
previous two models by combining their modelling approaches.

Model A possesses the advantage of being weather responsive, but
suffer the disadvantages of requiring (a) twenty-four seperate
coefficient estimates in order to predictthe next day load, and (b)
the use of weekday and weekend models both with winter and summer
formulations.

Model B on the other hand, only requires the use of a single

model formulation and hence the estimation of a single coefficient
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vector in order to predict the next day load. However it suffers the
ma jor disadvantage of being weather insensitive.

It is evident therefore, that by combining these two load models,
a computationally efflcient and weather sensitive model will result.
This new model will also eliminate the use of seperate weekday and
weekend models, as is the case with model A. Also by limiting the
weather input to temperature only. a single load model could be used
for both winter and summer load forecast simulations. Its main

disadvantage however, ls that it assumes that the relatlionship between

load and weather is constant for all time of day.

Mathematically therefore, we can express the load at any discrete
instant as

9
y(t) = a, + l§1[alsin[iwt) + btcos(iwt)] + coT(t)
+ cIT(t—l) + czT(t-z) + cs(t—a) (5.17)

where T(t) is the temperature deviation at time t, and is given by

T(t) = Td{t) - Tc(t) (5.18)
where Tc(tJ is the average dry bulb temperature for the discrete
instant t, calculated from the previous twenty-elght dally temperature

measurements corresponding to the said discrete instant, l.e.

T _(t) = [T (t-24) +...... + T (t-672)] (5.19)
< d
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Alternatively equation (5.16) can be rewritten in the form of

equation (5.13), i.e.

y(t) = £7(t)B

where
1
siniwt]
£(t) = cos(Qwt) (5.20)
T(t)
L T(‘t-a)
and

B = b {5.21)
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and the vector of coefficients B can be estimated as for model B,

i.e., from the system of equations glven by

y(t-168) £7(t-168) T[ 8 j
y(t-192) £7(-192)

y(£-336) = £7(£-336) (5.22)
y(t-572) £T(£-672)

The next day forecast can then be made, by substlituting for B and

the predicted values of temperature deviation into equation (5.17).

5.2: On-line model

In this section of the chapter, a single load model is identlifled
and developed for on-line load simulations. This model will be
referred to as model D, and will be expressed In state space
formulation so that it can be directly implemented with the dynamic
estimation algorithms of chapter IV.

Model D is a harmonic decomposition model that will be used to
predict loads one discrete interval ahead, and 1s choosen on the basis
of its simplicity and ease of application. It should be noted, that

while this model will not result in ultimate predictive accuracy, the
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development of more complex and accurate on-line models is beyond the
scope of this thesis.
In the following subsection, the basic principles governing the

theory and application of this model, are presented.

5.2.1: Model D

Examination of one year of previous load data, has revealed the
presence of three basic periodicities in the load structure to be
modelled. There is a seasonal cycle with two period; per year, upon
which 15 superimposed a weekly cycle made up of seven daily
periodicities.

An autocorrelation plot of this data with the seasonal cycle
removed, confirms the dominance of weekly cycle over the daily cycle
(figure 1). This 1is revealed by the higher correlation factor
experienced by load measurements one week (168 hours) apart. A weekly
load model is therefore selected for on-line simulation.

This choice of load model will avoid the discontinuities that
would otherwise arise with the use of seperate weekday and weekend
models, and will result in better accuracy over a daily model. Also
because, the estimation process is adaptive and seasonal changes occur
relatively slowly, this model will easily accomadate seasonal load
changes.

The model choosen to represent the load is a Fourier harmonic
series with a period of one week. This model can be expressed

mathematically as
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FIGURE 5.1

AUTQOCORRELATION PLOT OF HOURLY LOAD DATA FOR 1989
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m
z(t) = lEo[alsin(wlt) - blcos(wlt)] + g(t) (5.23)
m
= bo * 1Ezlalsin(m!t) + blcos(wlt)] + g(t) (5.24)
where z(t) = load measurement at time t,

e(t) = residual load at time t,

bO = a constant,and

az'bf""ab'bm are the coefficients quantifying the influence

of their respective harmonics in the load model.

w = 2ni/168 Is the frequency of the 1*® narmexnie.

It should be noted that 1 1ls a positive integer less than the
Nyquist limit (84), and represents the dominant harmonics in the load
composition.

The load model given by equation (5.24) can be rewritten as

z(t) = £7(t)B(L) + elt) (5.25)
where
1
sin(w t)
1
:osgwit)
£(t) = : (5.28)

siniwmt)

cos(w t)
m
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and

gt} = . (5.27)

Since load observations are only avallable at Iintervals one hour
apart, the load model can be considered to be a discrete process with

a sampling time of one hour. We can therefore rewrite equation (5.25)

to read

z(k) = £1(k)B(K) + elk) (S.28)

Tn accomodate fluctuations in lozd behaviour from week to week,

we can assume that the parameter vector B(k) undergees small changes

to account for these variations. Thus we can write
B(k+1) = B(k) + w(k) {5.29)
where w(k) = {nx1) noise vector representing the changes in B(k)

Equations (5.29) and (5.28) together, now constitute a discrete
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state space model for the load process to be modelled. Here the
measurement vector f(k) ls a function of k however, and will have to
calculated for each discrete instant.

Given that the relationship between fitting functions f(t),

seperated by one discrete interval k, is

f(k+1) = Lf(k) (5.30)

where L is called the transition matrix and is given by

L = 0 -sin(wl) cosl(w ) I (5.31)
0 Il cos(w ) sin(w)
| m m
0 | —sinfw ) cos(w )
L | -]

It can be proven, that if the state and measurement are

correspondingly altered to read as follows [25,32]

B(k+1) = LTB(K) + wlk) (5.32)

and

z(k) = £1(0)B(k) + &(k) (5.33)

83



an equivalent state space model with stationary state transition
matrix and measurement vector is obtained.

Equations (5.32) and (5.33) are now in the form of equations
(4.1) and (4.2) and can be readily tmplemented in any of the dynamic
estimation algorithms of chapter IV.

From the foregoiong analogy with chapter IV therefore, we get the

following equivalents.

x(k} = B(k)
#(k) = LT(k)
H(k) = £ (0)
v{k) = e(k)
wik) = w(k), and
z{k) = z(k)

It should be noted here, that L(k)} and hence ¢{x) are constant

for all k. Also since

£T(0) =101 ....... 0 1] (5.34)
is constant for all k, then H(k) is alsc fixed for all k.

A power spectrum analysis was performed to identify the dominant
harmonics to be used in the load model. Here the seasonal moving

average was removed from the hourly load data, so that its periedic

behaviour would not influence the relatlive strenghts of the weekly
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harmonics under scrutiny.

The power spectrum plot is shown in figure 2. From it, we can see
that only twelve harmonics are essential forr an accurate

representation of the weekly load. The order of these harmonics have

been identified as

{1, 2, 4, 5, 8, 7, 8, 9, 11, 14, 21, and 28]

respectively.

It should be noted, that the addition of other than the doeminant

harmenics will result in additional noise in the estimatlon process.
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FIGURE 5.2

POWER SPECTRUM OF HARMONICS IN LOAD COMPOSITION
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CHAPTER VI

LOAD FORECAST SIMULATION

In this chapter, the results of off and on-line leoad forecast
simulations are presented. These forecasts have been simulated using
previous load and weather data recorded for the city of Edmonton,
Alberta.

Hourly load data for the year 139838, was provided by the Edmonton
Power Company, while weather data recorded at the Edmonton munincipal
airport, was provided by the Atmospheric Environment Service of
Alberta.

The results presented in this chapter has been separated into two
sections, namely off and on-line simulations. In the first section,
the results of off-line simulations made using the static parameter
estimation methods of chapter III are presented, while the second
section contains the results of on-line forecasts made using the
dynamic estimation algorithms of chapter IV.

In each section, the results presented are followed by indepth
discussions reviewing the advantages and disadvantages of each of the

parameter estimation algorithm used in that section.

6.1: Off-line simulations

In this section, the three off-line load models developed in
section 5.1 of chapter V, have been used to predict the next day

hourly load profile for selected periods of both the winter and summer
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of 1988.

For each load model, forecasts are made using each of the three
static parameter estimation methods , i.e the least squares , the new
LAV and the linear programming techniques, and in each case, these
estimation methods are applied to both contaminated and uncontaminated
data bases.

In the following subsections, the results obtained via each load

model, are presented.

6.1.1: Model A

This load model has been used to predict the twenty-four hour
load profiles for one day in winter and one day in summmer.
Simulations are restricted to a single day in each case, primarily
because of the large number of estimates that are required to
completely forecast the next day load.

The forecast simulations presented here however, are generally
indicative of the responses to be expected during these seasons, and
as such will allow for a generalised comparison of the responses of
the given parameter estimation methods as they apply to this load
model.

It should be noted here, that the over—determined system of
equations to be solved for each discrete instant is non-periodic, and
as such the new LAV technique will be applied in its unmodified state.
Furthermore, since this technique makes use of two least squares
estimate in its computations, it will also be used to provide both

these least squares estimates.
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In the remainder of this subsection, predictions made for the
winter and summer day choosen for both un-contaminated and
contaminated data sources are presented.

Here the results of winter simulations are presented in tables
8.1 and 6.2, followed by the summer forecast results in tables 6.3 and
6.4. These results are also presented graphically in figures 6.1 ,6.2,

5.3 and 6.4.

For purposes of simplicity of presentation, the following

abbreviations will be used hereafter in this sectlon:

h = hour of day

z = actual recorded load

2. = Load forecast made from least squares estimates
LR Load forecast made from the least squares estimate

corresponding to the second estimation stage in the new

LAV algorithm.

L Load forecasted using the new LAV algorithm, and

zLP = Linear programming estimated load

The percentage errors corresponding to the forecasted loads, are

glven by
g = {{z - zLS)/z] 100
€ op = [{z - stz)/Z] 100
€ v = [{z - zLAv)/zl 100, and
€, = {{z - sz)/z] 100
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TABLE 6.1

MODEL A: WINTER DAY FORECAST
h z Zs is ZLs2 €sz2| ZrLav| Suav] Zue Cp
1 564 550 2.45 546 3.08 548 2.74 550 2.33
2 544 538 0.74 534 1.79 530 2.52 534 1.76
3 541 525 2.78 525 2.88 524 2.6 525 2.95
4 533 517 2.93 515 3.19 525 1.40 516 3.16
5 835 509 4.79 504 5.62 512 4.21 511  4.35
6 558 530 4.86 528 5.24 533 4.46 528 5.37
7 622 605 2.68 603 3.04 560 9.81 598 3.36
8 729 725 0.43 726 0.29 736 -1.02 731 ~-0.28
9 768 766 .0.13 752 2.04 758 1.28 758 1.20
10 800 793 0.76 796 0.39 784 1.93 780 1.18
1t 809 813 -0.51 814 -0.69 812 -0.41 815 -0.77
12 818 827 -1.18 827 -1.20 831 -1.68 827 -1.14
13 801 807 -0.81 817 -2.01 -817 -2.02 818 -2.21
14 799 806 -0.85 816 -2.14 816 -2.23 816 -2.21
15 796 804 -1.09 809 -1.70 843 -6.00 826 -3.88
16 797 797 -0.11 806 -1.14 823 -3.34 798 -0.14
17 803 818 -1.88 814 -1.40 835 -4.06 823 -2.54
18 822 872 -6.10 877 -5.81 981 -19.39. 860 -4.70
19 833 836 -0.39 841 -0.96 914 -9.82 826 0.83
20 809 794 1.73 808 0.08 858 -6.13 811 -0.32
21 784 760 3.06 773 1.33 780 0.38 770 1.66
22 746 1722 3.15 725 2.68 728 2.68 718 3.71
23 682 668 1.93 664 2.62 661 3.03 656 3.73
24 613 599 2.22 597 2.58 646 -5.44 602 1.68
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TABLE 6.2

MODEL A: WINTER DAY FORECAST WITH BAD DATA
h z st :1..5 stz ct..sz zLAV CLAV zLP Lp
1 564 476 15.48 550 2.41 551 2.30 550 2.33
2 544 473 12.91 539 0.85 609 -11.99 524 3.52
3 541 471 12.76 526 2.75 523 3.21 525 2.95
4 533 485 12.61 518 2.74 517 2.88 516 3.16
5 535 502 6.10 508 4.77 503 5.95 511 4.34
& 558 526 5.65 530 4.85 528 5.34 528 5.37
7 622 bB11 1.71 604 2.76 594 4.38 599 3.63
8 729 714 1.98 726 0.38 732 -0.53 720 1.11
g 768 630 17.89 7867 0.02 761 0.89 751 2.08
10 800 1036 -29.57 787 1.55 777 2.75 808 -1.12
11 808 1066 -31.85 806 0.26 816 -0.81 821 -1.53
12 818 882 -9.13 829 -1.36 825 -0.93 832 -1.79
13 801 832 -3.84 807 -0.78 809 -1.02 820 -2.42
14 798 941 -17.85 807 -1.03 852 -6.74 824 -3.15
15 796 365 54.12 751 5.63 1251 -57.28 398 49.85
16 797 645 18.97 795 0.15 666 16.40 528 33.68
17- 803 824 -2.70 810 -0.92 810 -0.89 823 -2.54
18 822 1058 -28.81 856 -4.25 851 -3.60 860 -4.70
19 833 1120 -34.56 800 3.95 786 4.35 826 0.83
20 809 937 -15.89 797 1.36 837 -3.49 811 -0.32
2t 784 663 15.39 765 2.37 645 17.66 770 1.66
22 746 696 6.58 721 3.33 657 11.90 718 3.71
23 682 666 2.26 8670 1.73 680 0.15 656 3.75
24 613 605 1.18 602 1.74 650 -6.19 594 2.96
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TABLE 6.3

MODEL A: SUMMER DAY FORECAST
h| 2 ZLs s | Zus2|  Susz| ZFrav| Frav| Zie e
1 537 522 2.61 503 6.19 498 7.12 499 7.05
2 439 491 1.47 488 6.09 484 2.94 475 4.64
3 488 506 -3.75 532 -9.05 454 6.87 526 -7.93
4 487 500 -2.83 500 -2.71t 502 -3.23 488 -0.28
5 480 493 -0.64 484 1.22 478 2.43 487 0.53
6 493 487 1.11 487 1.22 483 1.98 487 1.12
7 529 531 -0.53 530 -0.33 482 8.74 533 -0.79
8 627 649 -3.51 ©38 -1.91 657 -4.79 642 -2.49
9 718 711 1.01 713 0.76 712 0.88 716 0.30
10 760 771 -1.58 787 -3.58 790 -4.05 783 -3.08
11 803 804 -0.18 799 0.49 783 2.39 792 1.28
12 840 829 1.21 818 2.52 820 2.34 816 2.74
13 845 842 0.29 839 0.64 841 0.46 837 0.88
14 847 847 -0.02 847 -0.11 847 -0.02 846 0.01
15 8498 850 -0.16 849 -0.08 833 1.78 843 0.6%
16 844 854 -1.21 856 -1.52 858 -1.69 858 -1.75
17 832 833 -0.90 834 -~0.31 845 -1.66 841 -1.15
18 804 794 1.14 795 1.02 842 -4.82 788 0.71
19 748 755 ~-0.88 744 0.66 701 6.34 753 -0.55
20 716 721 -0.82 711 0.62 708 1.02 713 0.36
21 687 690 '0.94 692 0.64 692 0.61 694 0.39
22 B70 665 0.65 661 1.20 669 0.11 671 -0.23
23 660 626 5.07 614 €.93 636 3.58 622 5.69
24 600 582 2.90 581 3.03 591 1.44 589 1.83
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TABLE 6.4

MODEL A: SUMMER DAY FORECAST WITH BAD DATA
h z Zus s Z1s2 CLs2| Zuav| SFrav| Zue CLe
1 537 788 -46.82 575 -7.09 544 -1.36 580 -10.04
2 499 687 -37.79 48 3.46 613 -22.90 488 2.04
3 488 547 -12.22 491 -0.80 432 11.38 507 -4.02
4 487 510 -4.77 497 -2.18 1160-138.25 483 0.72
5 490 490 -0.06 489 0.05 483 0.13 489 0.02
6 493 478 2.70 487 1.11 484 1.63 484 1.63
7 529 400 24.36 547 -3.40 469 11.29 510 3.43
8 627 588 6.20 653 -4.30 683 -8.99 641 -2.37
9 719 803 -11.70 715 0.48 770 -7.14 712 0.95
10 760 1097 -44.35 800 -5.32 785 -3.41 809 -6.52
11 803 867 ~-8.00 801 0.15 798 0.55 792 1.28
12 840 933 -11.15 830 1.19 792 5.71 816 2.74
13 845 810 4.06 842 0.26 850 -0.60 836 1.00
14 847 783 6.81 847 -0.11 846 0.03 846 0.01
15 849 804 5.27 852 -0.41 854 -0.61 843 0.69
16 844 438 48.10 860 -1.95 860 -1.93 849 -0.61
17 832 826 0.68 838 -0.77 870 -4.85 841 -1.15
18 804 782 2.68 797 0.84 783 2.52 798 0.71
19 749 755 -0.891 760 -1.53 593 20.72 753 -0.55
20 716 590 17.50 735 -2.68 745 -4.13 709 0.88
21 697 646 7.26 681 2.20 691 0.83 691 0.83
22 670 701 -4.70 660 1.39 631 5.79 657 1.80
23 660 647 1.90 631 4.29 626 5.05 622 5.67
24 600 564 5.84 584 2.55 597 0.40 586 2.28
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MODEL A:

FIGURE 6.1

WINTER DAY FORECAST CURVES
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FIGURE 6.2

MODEL A: WINTER DAY BAD DATA FORECAST CURVES
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FIGURE 6.3

MODEL A: SUMMER DAY FORECAST CURVES
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FIGURE 6.4

SUMMER DAY BAD DATA FORECAST CURVES

MODEL A:
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6.1.2: Discussion of Model A results

The multiple linear regression model described as model A, was
used to predict the hourly load profile for a single days in winter
and summer, corresponding to both contaminated and uncontaminated data
bases. The contaminated data bases were created by replacing twenty
percent of the original load measurements with gross errors.

Forecasting using this load model was restricted to a single day
in either season, primarily because of the excessive volume of
computations that are associated with a single twenty-four hour load
prediction. For the same reason, the parameters estimated by each of
the four methods, are not included in the results presented. It should
be noted however, that since a single day's forecast requires
twenty-four separate estimates for each estimatlion methed, the results
presented will afllow for fairly generalised comparison of these
techniques.

Examination of the results presented in subsection B.1 for the
uncontaminated data cases, reveals that the predictions made via the
four estimates are essentially the same, except for a single hour's
prediction where the linear programming estimate resulted In an
exaggeration of the winter mid-afternoon peak load.

With twenty percent gross measurement error contamination of the
data bases however, the forecasts produced via the various estimation
methods are significantly dissimilar. Here we note, that the
conventional least squares forecast is severly distorted by very large
prediction errors, whilst the predictions made via the reduced data

set least squares estimate is relatively unchanged.

o8



The linear programming and the new LAV algorithms on the other
nand, produced forecasts that were significantly better than those of
obtained from the conventional least squares estimates, but still
suffered from poor predictions in a few cases. These large errors can
be attributed to the poor conditioning of the data set after the
inclusion of the gross error measurements, and can only be remedlied by

a reformulation of the load model structure.

6.1.3: Model B

Forecasting using this load model involves solving for an
overdetermined system comprising of periodically repetitive equations,
and as explained in chapter V, this can inhibit the performance of the
new LAV algorithm.

In order to combat this short coming however, a modification to
the original algorithm was suggested, that resulted in what was
referred to as the modified LAV algorithm. This modified LAV procedure
will be used hereafter with both models B and C, in place of the
original algorithm.

This technique was used to produce three estimates for each of
the data sets involved. These are the estimates corresponding to the
first, third and final stages in this algorithm, and together with
estimates produced by a LAV based linear programming algorithm ,were
used to predict the next day hourly load profile for two weeks in both

winter and summer of 1989.

The mean absolute error obtained for each hour of day, for these
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two weeks of winter and summer forecast simulations, are listed in
tables 6.5 and 6.6 and presented graphically in figures 6.5 and 6.8
respectively.

Next, the data bases corresponding to an average winter and an
average summer day were selected and contaminated with twenty-five
percent gross measurement errors. These contaminated data bases were
then used to predict the twenty-four hour lcad for the days selected,
and the responses compared to the original predictions.

The responses obtained for both contaminated and uncontaminated
data are presented in tables 6.7, 6.8, 6.8 and 6.10 These responses
are further illustrated graphically in figures 6.7, 6.8, 6.9, and
6.10. In each case, four sets of parameters were estimated. These are

presented in tables 6.11, £.12, 6.13 and 6.14.

In this and the next load meodel, the following symbols will be

used to represent all estimated parameters.

eLs = least squares parameters

eLSZ = least squares parameters corresponding to the
forecasted load 2.

BLAV = new LAV parameters

BLP = linear programming parameters,

and | refers to 1°® coefficient in the parameter(coefficient) vector.

100



TABLE 6.5

MODEL B: HOURLY MEAN ABSOLUTE WINTER FORECAST ERRORS
h sLS eI..SZ E:L.W' r'-LF’
1 7.393 7.930 7.325 7.857
2 8.183 8.780 8.266 8.458
3 8.535 8.799 7.885 8.853
4 8.305 9.052 8.066 8.915
5 8.790 9.358 8.207 8.556
6 8.376 g9.181 7.835 8.993
7 6.586 7.2789 6.978 6.701
8 4,952 5.883 6.738 5.575%
g 4.485 3.893 5.770 4.519
10 5.036 4.596 6.182 4.487
11 5.378 5.026 - 6.258 5.321
12 5.333 5.081 5.920 5.110
13 5.700 5.241 5.676 4,983
14 5.569 5.158 5.863 5.305
15 .5.375 5.218 65.112 4,927
16 4.983 4.665 5.777 4.272
17 4.500 4,543 6.205 4.713
18 5.054 5.512 7.081 5.031
18 4.314 4,256 5.228 4.237
20 4.302 4.034 4.627 4.470
21 4.312 4.199 4.768 4.904
22 4.604 4.181 4,955 4.959
23 5.423 5.124 5.464 5.475
24 6.327 5.828 6.445 6.287
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TABLE 6.6

MODEL B: HOURLY MEAN ABSOLUTE SUMMER FORECAST ERRORS

h Cis € s2 Elav €p
1 5.063 5.692 6.767 5.175
2 5.485 6.033 6.380 5.168
3 4.950 5.215 6.570 5.641
4 5.067 5.307 65.834 4.974
5 4.862 4.881 6.862 4.602
6 5.549 5.906 8.625 5.293
7 5.113 5.448 7.501 5.103
8 4.145 4.702 5.278 4.709
9 3.771 4.429 5.714 3.747
10 3.819 4.004 5.274 3.899
11 3.887 4.223 5.286 4.783
12 4.100 4.587 5.546 4.504
13 4.068 4,284 5.600 4.219
14 4.271 4.309 5.743 4.536
15 4.374 4.520 5.565 4.350
16 4.591 4.624 5.8695 4.931
17 4.564 4.648 5.517 4._664
18 4.651 4.628 5.491 4.585
19 4.713 4.667 5.575 5.066
20 5.185 5.229 6.115 5.316
21 5.391 5.594 6.234 5.699
22 5.007 5.050 6.406 4.929
23 6.021 5.940 7.580 5.678
24 5.756 6.031 6.596 6.435
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MODEL B:

FIGURE 6.5

MEAN ABSOLUTE WINTER FORECAST ERRORS

ERROR (%)
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FIGURE 6.6

MODEL B: MEAN ABSOLUTE SUMMER FORECAST ERRORS
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TABLE 6.7

MODEL B: WINTER DAY FORECAST
h z Zis €s Zis2 Cisz2| Zrav| Srav| Zur Eip
1 557 571 -2.63 544 2.26 538 3.35 585 -1.51
2 533 548 -2.989 522 2.06 510 4,19 545 -2.39
3 518 536 -3.49 507 2.07 501 3.20 502 3.01
4 516 527 -2.13 499 3.19 492 4.60 491 4.78
5 514 529 -3.00 501 2.42 494 3.75 514 -0.12
B 532 544 -2.37 518 2.968 514 3.35 532 -0.08
7 608 8608 -0.07 584 3.84 580 4_.57 595 2.01
8 719. 714 0.66 694 3.41 693 3.48 7086 1.70
9 763 786 -3.04 768 -0.68 768 -0.67 768 -0.77
10 785 808 -3.05 7885 -0.16 779 0.73 778 0.75
11 794 821 -3.41 793 0.08 788 0.79% 783 0.07
12 792 828 -4.60 802 -1.38 796 -0.60 798 -0.81
i3 785 821 -4.70 794 -1.25 789 -0.57 796 -1.43
14 783 814 -4.05 788 -0.75 785 -0.32 804 -2.78
15 780 814 -4.40 792 -1.5%6 782 -0.32 794 -1.83
16 784 811 -3.51 785 -0.24 783 0.02 785 -0.25
17 786 825 -5.06 811 -3.21 820 -4.36 821 -4.50
18 795 856 -7.70 853 -7.32 856 -7.75 849 -6.89
19 820 852 -3.81 833 -1.66 831 -1.36 833 -1.68
20 798 821 -2.98 792 0.67 786 1.44 802 -0.61
21 778 797 -2.48 772 0.7%5 7868 1.13 772 0.76
29 728 7%4 -3.80 727 0.02 735 -0.9% 733 -0.79
23 661 ©688 -4.20 659 0.16 669 ~1.21 669 -1.34
24 585 622 -5.41 593 -1.48 597 -2.20 597 -2.08
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TABLE 6.8

MODEL B: WINTER DAY FORECAST WITH BAD DATA
hl 2 ZLs Ls ZLs2 €s2] Ziav] Fuav| Zue ELp
1 557 457 17.83 551 0.95 536 3.75 537 3.52
2 5323 452 15.03 583 -9.45 537 -0.81 507 4.86
3 518 433 16.34 526 -1.66 531 -2.55 493 3.56
4 516 415 19.48 432 16.18 487 5.44 483 4.38
5 514 431 16.13 506 1.43 484 3.73 494 3.85
6 532 447 15.84 576 -8.40 530 0.28 513  3.48
7 608 485 20.21 605 0.49 588 1.54 580 4.55
8 718 564 21.44 705 1.88 705 1.88 683 3.51
9 763 625 18.07 780 -2.33 768 -0.78 768 ~-0.67
10 785 642 18.20 821 -4.62 797 -1.55 777 0.98
11 794 641 18.18 831 -4.76 812 -2.30 78 0.97
12 792 646 18.38 805 -1.70 ‘798 -0.79 798 ~-0.77
13 785 ©654 16.62 820 -4.50 789 -0.54 788 ~-0.41
14 783 647 17.37 833 -6.38 799 -2.10 782 0.03
15 780 635 18.51 815 -4.50 808 -3.67 787 -0.93
16 784 636 18.75 801 -2.22 798 -1.88 785 -0.24
17 786 653 18.81 814 -3.64 804 -2.29 797 -1.47
18 795 673 15.34 867 -9.18 845 -6.35 825 -3.85
19 820 663 19.14 857 -4.58 841 -2.61 823 -1.18
20 798 643 19.33 801 -0.48 798 -0.01 802 -0.62
21 778 634 18.41 797 -2.55 774 0.42 772 0.75
22 728 601 17.35 766 -5.32 732 -0.64 730 -0.38
23 661 545 17.51 696 ~5.30 673 -1.889 668 ~-1.18
24 585 489 16.26 608 -4.02 602 -2.93 598 -2.32
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TABLE 6.9

MODEL B: SUMMER DAY FORECAST
h z ZLS SLS stz sx.sz ZLAV ELAV ZLP CLP
1 536 573 -6.85 575 -7.30 585 -9.22 564 -5.23
2 5i0 541 -6.11 544 -5.75 546 -7.10 544 -6.75
3 485 513 -5.78 510 -5.36 510 -5.34 515 -6.25
4 476 503 -5.80 494 -3.88 491 -3.23 492 -3.55
5 476 506 -6.35 499 -4.86 495 -4.16 506 -6.39
6 491 505 -2.890 487 -1.35 499 -1.72 502 -2.40
7 536 553 -3.25 548 -2.27 552 -3.00 543 -1.41
8 644 649 -0.92 646 -0.44 653 -1.41 B52 -1.27
9 732 741 -1.24 732 -0.10 729 0.28 737 -0.77
10 791 814 -2.92 810 -2.48 802 -1.40 807 -2.04
11 821 853 -3.98 859 -4.72 863 -5.13 864 -5.35
12 838 867 -3.55 876 -4.57 876 -4.54 881 -5.16
13 848 880 -3.82 887 -4.65 881 -3.91 882 -4.12
14 862 883 -2.50 884 -2.61 887 -2.91 882 -2.32
15 855 883 -3.32 882 -3.18 883 -3.39 883 -3.34
16 856 881 -2.99 882 -3.15 882 -3.11 883 -3.18
17 843 860 -2.03 862 -2.34 863 -2.40 861 -2.21
18 819 822 -0.44 824 -0.73 822 -0.49 824 -0.63
19 788 783 0.54 782 0.68 782 0.64 782 0.76
20 755 754 0.11 753 0.13 753 0.17 753 0.18
21 725 723 0.17 725 -0.06 725 -0.09 726 ~-0.16
22 705 690 2.05 687 2.48 689 2.14 688 2.32
23 B70 663 0.90 664 0.87 664 0.77 666 0.53
24 610 622 -1.98 626 -2.71 634 -4.01 622 -2.03
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TABLE 6.10

MODEL B: SUMMER DAY FORECAST WITH BAD DATA
hi = ZLs s ZLs2 Cls2| Zeav| Srav| Zue SLe
1 536 470 12.21 552 -3.14 568 -6.03 564 -5.27
2 510 432 15.24 477 6.43 518 -1.64 524 -2.86
3 485 405 16.33 448 7.57 505 -4.31 504 -3.97
4 476 414 12.90 456 4.19 488 -2.92 502 -5.59
5 476 421 11.47 489 1.28 495 -4.14 501 -5.28
6 491 404 17.57 445 9.35 490 0.19 491 -0.10
7 536 436 18.54 514 4.03 535 0.14 543 ~-1.37
8 644 526 18.21 666 -3.52 661 -2.66 652 -1.38
9 732 598 18.27 742 -1.40 738 -0.85 730 O0.2tv
10 791 631 20.22 804 -1.75 793 -0.37 793 -0.34
11 821 656 20.04 855 -4.18 857 -4.41 851 -3.65
12 838 689 17.72 859 -2.53 875 -4.51 869 -3.79
13 848 705 16.84 887 -4.68 886 -4.60 881 -4.01
14 862 686 20.37 887 -2.95 880 -2.11 882 -2.36
15 855 679 20.52 872 -2.09 871 -1.84 871 ~-1.97
16 856 700 18.13 887 -3.66 886 -3.57 878 -2.68
17 843 690 18.06 861 -2.14 863 -2.38 862 -2.32
18 819 639 21.86 822 -0.46 823 -0.53 817 0.22
19 788 608 22.79 786 0.22 784 0.44 781 0.82
20 755 604 18.87 747 1.03 747 1.05 754 0.11
21 725 582 19.84 731 -0.92 731 -0.87 725 -0.13
22 705 543 22.90 689 2.23 681 3.28 684 2.87
23 670 520 22.32 656 2.07 642 4.17 641 4.27
24 610 501 17.79 635 -4.22 632 -3.63 607 0.45
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FIGURE 6.7
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FIGURE 6.8

MODEL B: WINTER DAY FORECAST WITH BAD DATA
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FIGURE 6.9
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MODEL B:

SUMMER

FIGURE 6.10

DAY FORECAST WITH EAD DATA
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TABLE 6.11

MODEL B: WINTER DAY ESTIMATED PARAMETERS

LS Lsz LAY Lp

LI O - O T
‘v‘n_d.l.‘vqp.v'n“v“-'d‘ 4 U N N w w0

721.059 696.937 694.355| 702.326
-122.459 | -125.288 | -128.086( -123.493
-100.004 | -102.281 | -100.660 | -98.743

-58.054 -58.908 -61.446 | -57.423

8.354 4.487 3.879 4.292
16.818 20.103 18.890 16.971
-4.271 -2.031 1.186 1.843

0.8609 0.666 -2.307 5.539

-10.318 -9.235 -7.417 -6.738
~-10.680 -13.503 -16.668 | -10.088
-0.148 -0.957 -2.503 -1.165

1.002 2.225 2.850 5.168

0.04GC -1.655 -1.946 -4.223

3.508 5.764 5.002 5.790
-3.890 -3.841 -3.177 -5.604
-1.244 -1.603 -2.471 -5.270

1.842 3.451 3.380 -2.041
-0.947 -1.846 -0.060 -0.091

1.023 0.106 0.948 -0.463
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MODEL E:

TABLE 6.12

WINTER DAY ESTIMATED BAD DATA PARAMETERS

LS

Ls2

LAY

LP

LI L
‘v‘v_v.l -F-o’ av.'uvn-a"s'u’u [T T

571.751
-91.073
-75.307
-43.872
6.270
11.684
-3.180
1.403
-8.940
-7.504
-2.079
5.549
-4.442
0.224
-3.534
-2.057
0.843
-1.463
1.738

716.974
-128.147
-104.353

-65.270

11.928
14.966
3.397
7.383
-6.726
-2.982
-3.658
0.573
-25.005
-3.520
-9.846
-8.593
2.681
-4.350
9.988

702.768
-123.418
-102.658

-58.664

5.996
18.988
0.776
2.367
-13.205
-8.653
-1.531
-6.956
-6.079
1.9865
-3.715
-4.379
3.561
-2.328
4.484

692.444,
-125.466
-99.836
-63.509
6.685
14.750
-1.538
0.853
-11.437
-12.436
1.115
-0.168
3.003
2.502
-4.972
-1.566
2.527
0.431
0.610
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TABLE 6.13

MODEL B: SUMMER DAY ESTIMATED PARAMETERS

Ls Lse LAV LP

@ n oo
TSI T TP o TS T e

711.332| 710.863| 711.562| 711.203
-135.731 | -139.150 | -133.018 | -137.737
-136.177 | -137.233 | -135.158 | -138.310

-17.086 | -16.456 | -16.393 | -17.293

37.497 41.335 42.288 39.942
14.487 '15.734 15.018 15. 147

4.824 4.380 6.953 2.967
-10.177 -9.368 -7.614 | -11.289
-7.061 -4.712 -3.361 -5.779
-2.698 -1.703 -0.179 -2.053
3.486 1.548 1.033 0.748
2.327 2.232 1.084 1.188
2.406 3.193 3.861 3.381.
-0.360 -0.279 1.946 -0.380
-0.551 -0.157 0.367 -2.708
-1.776 -2.838 -3.748 -6.135
-2.108 -2.228 -2.390 -1.438
-1.810 -3.012 -1.067 ~2.785
0.904 1.742 2.708 2.972
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TABLE 6.14

MODEL B: SUMMER DAY ESTIMATED BAD DATA PARAMETERS

LS Ls2 LAY Le

572.195 | 708.385 | 713.681| 709.069
-112.693 | -170.051 | -159.152 | ~149.826
-98.876 | -144.070 | -136.860 | -128.646
-18.042 | -39.274 | -24.875 | -22.417
27.383 44,044 40.0732 35.218
11.566 14.080 18.326 14.551

:

;

® 4.781 14.438 8.767 5.591
% -8.653 | -12.977 | -13.876| -12.833
® -3.954 -4.497 -5.020 -3.357
* -4.537 | -11.870 -9.353 -7.450
5 1.078 7.703 7.418 4.670
'. 14.038 10.313 10.097 16.145
B 11.516 12.566 7.710 15.031
* -2.817 4.415 2.111 0.581
Py 2.135 6.170 4.061 -0.061
* -3.052 -4.038 -8.281 -4.576
b 2.481 2.195 3.463 4.278
? -1.153 -3.686 -3.205 -0.724

0.201 8.328 3.554 3.504
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6.1.4: Discussion of Model B results

The harmonic decomposition model labelled as model B, was used to
forecast the next day lead hourly load profile for two weeks perlods
of both winter and summer load. The mean absolute values of the dally
errors are presented in tables 6.5 and 6.5, and shown in flgures 6.5
and 6.6. These results were obtalned from uncontaminated data sources
and were simulated for the purposes of generalised comparison.

Examination of the daily error profiles indicates that in
general, the forecast obtained via the different parameter estimatlon
methods are essentially the same, with the exception of the llnear
programming technique case where significantly larger errors were
recorded than for the other methods.

These errors are especially larger in winter and can be
attributed to the fact that the load model used here is weather
insensitive, and =2s such, this =algorithm treated the measurement
observations corresponding to relative extreme weather conditions as
bad data points. Further since such extreme weather conditions are
less frequent in summer, the errors obtained there are correspondingly
smaller.

From the results of the days selected for bad data predictions,
it 1is easily seen that with twenty-five percent gross error
measurements in the databases, only the conventlional least sguares
predictions are significantly affected. Here the reduced least squares

and the two least absolute value prccictions are relatively unchanged.
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Further scrutiny of these results however, reveals that the forecasts
made via the new LAV technique are the least affected by the bad data

contamination.

6.1.5: Model C

This load model, like previous model has been used to predict the
next day responses for two weeks each, of winter and summer load.
Here, the new LAV algorithm is once again used in place of the
original algorithm as this load model formulation is essentlally
similar to its predecessor.

The mean absolute error profiles obtained from winter and summer
simulations, are presented in tables 6.15 and 6. 16 respectively. These
results are further illustrated graphically in figures 6.11 and 6.12
respectively.

This load model was also used to predict the twenty-four hour
load for a selected winter and a selected summer day. Here also,
forecasts were made with these data bases contaminated with
twenty-five percent gross measurement errors.

The results of these simulations are listed in tat”.s 6.17, 6.18,
6.19 and 6.20, and presented graphically in figures 6.13, B6.14, 6.15
and 5.16. The parameters estimated in each case, are presented in

tables B.21, 6.22, 6.23 and 6.24 respectively.
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TABLE 6.15

MODEL C: HOURLY MEAN ABSOLUTE WINTER FORECAST ERRORS
h cI.S CLSZ CLAV cLP
1 4.122 3.816 4.714 4.439
2 4,182 3.571 4.503 4.054
3 4.362 3.711 4.139 4.218
4 4.608 3.668 5.239 4.504
5 4.826 3.796 4.738 4.893
6 5.526 4.093 5.582 5.285
7 4.677 3.565 4.766 3.973
8 3.405 3.426 4.515 3.320
S 2.704 .| 2.753 3.397 2.848
10 2.556 | 2.519 3.761 2.768
11 2.699 2.763 4.370 3.118
12 2.592 2.426 3.981 2.868
13 2.780 2.870 3.249 2.932
14 2.513 2.589 3.373 2.766
15 2.328 2.867 3.031 2.559
16 2.389 2.898 2.723 2.747
17 3.252 4.680 3.733 3.594
18 3.957 5.350 4.433 4.083
18 2.460 2.983 2.293 2.305
20 2.316 2.364 2.254 2.134
21 2.305 2.683 2.245 2.282
22 2.451 2.879 2.507 2.405
23 2.821 3.290 4.084 2.956
24 3.399 3.884 4.681 3.786
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MODEL C:

TABLE 6.16

HOURLY MEAN ABSOLUTE SUMMER FORECAST ERRORS

LS

Ls2

LAY

. —b b amh b
NN eI RRP - OWONRU S W

MNWRORMNMNNDNNNDAN AR = =2 2RO 2 N -

.612
.390
.861
.937
.114
.843
.438
.093
.646
.781
.839
.130
.038
.890
.053
.370
.645
.474
.442
.474
.645
.760
.4380
.531

NWNRNNRMNNR 2 o s = 2 WD =N~

.804
.283

.772

.104
.301
.542

.931
.287

.770

.785
.540
779
.891
.829
.823
.293
.428
.201
. 147
.613
.716
.749
. 466
.567

.776
.425
.221
. 177
.576
.834
.002
.706
.778
.642
.846
.706
.898
.834
.938
.616
.454
.682
.424
.078
.853
.113
.556
.691
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FIGURE 6.11

MODEL C: MEAN ABSOLUTE WINTER FORECAST ERRORS
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MODEL C:

FIGURE 6.12

MEAN ABSOLUTE SUMMER FORECAST ERRORS
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TABLE 6.17

MODEL C: WINTER DAY FORECAST
h z zI.E'.v eLS zLS2 cL52 ZLAV CLAV zLP cLP
{ 557 586 -1.76 585 -1.57 570 -2.34 563 -1.22
o 533 543 -2.01 541 -1.54 540 -1.50 543 -2.00
3 518 528 -2.00 523 ~-1.10 511 1.29 518 -0.03
4 516 512 0.62 509 1.34 488 3.44 502 2.52
= =514 513 0.06 510 0.62 512 0.21 513 0.01
& 532 532 -0.18 528 0.67 530 0.28 534 -0.52
2 808 597 1.72 584 2.15 595 1.99 591 2.76
8§ 719 709 .36 711 1.01 696 3.08 705 1.90
g 763 787 -0.59 784 -0.22 760 0.28 762 0.02
10 785 788 -0.53 793 -1.06 791 -0.87 790 -0.74
11 792 803 -1.14 808 ~-1.85 814 -2.62 808 -1.79
12 792 813 -2.75 818 -3.33 829 -4.75 817 -3.22
i3 785 817 -4.16 825 -5.17 827 -5.37 825 -5.11
14 783 809 -3.40 814 -4.06 816 -4.25 813 -3.93
i5 780 805 -3.35 812 -4.18 816 -4.65 807 -3.58
18 784 801 -2.24 810 -3.34 814 -3.92 799 ~-1.92
17 786 815 -3.72 828 -5.44 827 -5.26 818 -4.11
18 795 839 -5.63 849 -6.82 849 -6.83 846 ~-6.42
19 820 834 -1.76 831 -1.40 831 -1.46 832 -1.48
20 798 806 -1.08 805 -0.92 811 -1.63 807 -1.16
21 778 786 ~-1.04 792 ~-1.87 797 -2.52 795 -2.20
20 728 741 -1.87 741 -1.83 744 -2.25 743 -2.20
53 861 678 -2.68 678 -2.61 682 -3.30 683 -3.41
54 585 611 -4.48 613 -4.85 619 -5.81 611 -4.47
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TABLE 6.18

MODEL C: WINTER DAY FORECAST WITH BAD DATA
B z ZLs fLs ZLs2 € s2| Zuav| Fuav| Fre e
1 557 498 10.52 612 -9.91 608 -8.32 570 -2.36
2 533 469 11.95 481 g.62 545 -2.44 527 1.10
3 518 393 23.98 381 26.40 482 4.97 498 3.76
4 516 405 21.44 483 6.26 513 0.50 492 4.56
5 514 352 31.48 489 4.81 482 6.03 505 1.68
6 532 567 -6.66 476 10.46 575 -8.25 536 -0.89
7 B08 475 21.76 671 -10.48 576 5.22 609 -0.25
g 719 545 24.13 656 8.65 721 -0.31 683 4.98
g 763 - 580 23.86 744 2.45 758 0.58 757 0.70
10 785 526 32.81 731 6.75 739 5.80 778 0.68
11 794 629 20.71 747 5.8 807 -1.71 804 -1.37
12 792 664 16.13 867 =-9.52 827 -4.52 813 -2.73
13 785 675 13.98 855 -8.98 838 ~-6.85 807 -2.87
14 783 640 18.14 812 -3.74 833 -6.51 820 -4.78
15 780 689 11.63 814 -4.45 834 -6.97 806 -3.41
16 784 634 19.03 839 -7.03 774 1.20 793 -1.24
17 786 625 20.47 777 1.08 805 -2.47 786 ~-1.36
ig 795 622 21.73 775 2.42 836 -5.18 817 -2.80
18 820 648 20.77 809 1.29 840 -2.52 824 -0.56
20 798 613 23.16 826 -3.62 790 0.88 809 -1.43
21 778 626 19.41 777 0.04 778 -0.05 785 -0.98
22 728 557 23.46 734 -0.85 723 0.64 742 -2.01
23 661 548 16.96 653 1.10 670 -1.42 670 -1.41
24 585 446 23.74 613 -4.95 593 -1.46 610 -4.32
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TABLE 6.19

MODEL C: SUMMER DAY FORECAST
h z ZLs Ls Zus2 €s2| Ziav| Siav| Zue “Lp
1 536 522 2.49 523 .2.34 528 1.28 524 2.18
2 510 485 4.72 487 4.45 484 4.98 485 4.79
3 485 469 3.14 471 2.87 463 4.49 470 2.94
4 476 462 2.81 463 2.56 459 3.47 483 2.60
5 476 465 2.30 471 0.92 474 0.40 466 1.93
& 491 470 4.13 468 4.50 463 5.58 472 3.8t
7 536 528 1.32 520 2.82 506 5.50 525 1.95
8 644 634 1.42 B30 2.09 827 2.51 828 2.25
g 732 726 0.88 715 2.20 716 2.12 718 1.78
10 791 780 0.02° 778 1.52 774 2.05 782 1.05
11 821 824 -0.46 821 -0.07 829 -0.99 826 -0.71
12 838 834 0.39 830 0.89 836 0.12 835 0.25
13 848 838 1.16 835 1.50 833 1.72 837 1.26
14 862 840 2.44 836 2.99 828 3.85 837 2.80
15 855 843 1.39 844 1.22 852 0.28 848 0.78
16 856 836 2.22 839 1.91 837 2.13 839 1.89
17 843 827 1.83 821 2.50 831 1.37 832 1.28
183 818 805 1.60 804 1.81 804 1.80 798 2.44
19 788 753 4.33 755 4.17 752 4.53 759  3.61
20° 755 736 2.42 729 3.42 721 4.40 747 1.03
21 725 724 0.13 725 -0.01 723 0.14 731 -0.91
22 705 688 2.24 694 1.56 688 2.31 691 1.88
23 670 667 0.33 665 0.71 6684 0.88 669 0.01
24 610 628 -3.01 628 -3.11 634 -3.94 630 -3.30
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TABLE 6.20

MODEL C: SUMMER DAY FORECAST WITH BAD DATA
h z %s €Ls ZLs2 Sus2| Zrav Zie
1 536 416 22.33 478 10.62 502 529 1.
2 510 366 28.15 386 22.22 458 477 ©.
3 485 344 28.90 401 17.15 451 487 3.
4 476 348 26.80 365 23.13 431 461 3.
5 476 348 26.80 332 30.24 422 460 3.
& 491 357 27.28 365 25.63 422 465 5.
7 536 416 22.21 486 7.33 504 522 2.
g8 644 526 18.18 635 -1.79 636 631 1.
g 732 .638 12.72 755 ~-3.25 724 726 0.
10 781 ‘679 14.07 813 -2.89 785 788 0.
11 821 646 21.29 818 0.17 823 822 -0.
12 838 665 20.57 847 -1.11 827 841 -0.
13 848 687 18.87 831 1.98 829 849 -0.
14 862 698 19.01 863 -0.16 854 838 2.
15 855 664 22.31 823 3.68 824 835 2.
16 856 684 20.02 888 -5.04 854 857 -0.
17 843 628 25.46 749 11.10 790 6.24 837 0.
18 819 558 31.86 795 2.92 789 3.63 804 1.
19 788 546 30.71 702 10.82 717 8.91 744 5
20 755 578 23.33 691 8.36 708 5.97 728
21 725 557 23.04 687 3.80 708 2.22 729
22 705 518 26.43 698 0.95 682 3.23 692
23 670 496 25.86 631 5.77 641 4.32 653
24 610 473 22.29 619 -1.58 617 -1.23 626
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FIGURE 6.13

WINTER DAY FORECAST
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FIGURE 6.14

MODEL C: WINTER DAY FORECAST WITH BAD DATA
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MODEL C:

FIGURE 6.15

SUMMER DAY FORECAST
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FIGURE 6.16

MODEL C: SUMMER DAY FORECAST WITH BAD DATA
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TABLE 6.21

MODEL C: WINTER DAY ESTIMATED PARAMETERS

LS Ls2 LAV LP

¥y o ¥ U ¥ oK B
o ﬂoﬂ‘v‘ﬂ-V.Dqﬂ’qll‘d’ﬂnd'“l‘v' oW N N = - 0O

[T

732.820 | 733.564 1| 734.153 732.241
-128.496 | -133.281 [ -136.332 | -132.281
-101.385 | -104.646 | -105.621 | -102.825

-60.213 1 -60.210] -60.590 -62.094

9.394 10.856 12.323 11.425
15.972 16.154 15.326 14.665

-4.292 -4.233 -3.0656 -5.525
0.325 -1.830 -2.422 -0.681
-9.919 -8.340 -7.648 -8.144
-10.875 -8.573 -8.112 -10.139
0.145 -0.766 -0.263 -0.076
1.272 3.017 3.143 3.398
0.650 1.108 1.061 -1.197
3.201 4.009 4.195 3.410
-3.577 -2.112 -2.425 -3.219
-1.549 -1.7486 -3.630 -3.200
2.081 2.582 1.945 1.831
-1.162 -2.567 -3.066 -3.698
0.933 0.411 1.768 0.929
0.339 0.286 1.488 1.228
0.300 1.020 -0.116 -0.928
-0.253 1.037 -3.187 0.570
-4.282 -6.179 -1.933 -4.702
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TABLE 6.22

MODEL C: WINTER DAY ESTIMATED BAD DATA PARAMETERS
1 s 6 s2 O av Or
"o 574.776 719.677 | 724.514 | 722.469
'1 -105.450 | -152.350 | -132.543 | -130.313
i -77.498 | -117.811 | -104.905 | -103.859
*2 -47.717 -80.376 -58.454 -65.138
P2 7.326 14.188 15.412 11.030
? 13.738 9.008 15.080 12.312
3 -8.055 -3.458 -6.508 -4.402
" 3.771 '-2.266 11.134 0.136
P -8.860 -11.850 -2.625 -11.810
" -5.887 -16.387 -11.883 -8.441
bs -1.835 15.088 3.161 5.432
e -0.708 8.400 4,392 0.596
i -2.290 27.765 0.051 -0.814
., 1.272 16.878 12.704 5.830
by -5.380 -2.306 -5.052 -0.338
*a -1.047 7.535 0.191 -3.575
P 1.027 -11.471 0.888 -0.475
*s -8.976 1.524 -1.508 2.707
Py 3.737 2 089 -2.433 4.144
‘o 43.598 21.826 15.570 5.011
' -43.339 4.191 -18.060 -0.004
2 2.447 -46.005 9.898 -10.533
€ -6.129 14.762 -9.682 2.048
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TABLE 6.23

MODEL C: SUMMER DAY ESTIMATED PARAMETERS

onnvnuvcrvnvnuvvnvucvr

a ,.,,...\u-u-uunu-"“'
W W O @ @ & 8

s ® sz OLav e
704.018| 702.204 | 702.318! 704.277
-148.402 | -149.561 | -150.567 | -151.327
-124.472 | -122.839 | -121.227 | -123.194
-27.770| -24.544 | -23.635| -27.1862
36.053 36.351 37.985 36.016
15.677 14.216 14.517 13.846
4.792 4.729 4.181 3.267
-12.297 | -13.484 | -14.534 -12.318
-6.388 ~7.367 -4.917 -7.062
-6.433 -6.035 -5.335 -3.830
2.126 2.087 2.510 2.241
2.025 1.731 3.279 0.945
2.816 2.976 4.391 4.711
0.714 2.948 4,786 0.064
2.326 0.374 -1.138 1.988
-3.752 -2.826 -4.125 -3.787
1.204 1.215 3.169 0.872
-2.980 -3.438 -3.258 -1.889
0.648 3.097 3.618 1.055
1.341 3.075 4.634 3.307
1.158 0.424 -5.720 -1.632
1.536 0.605 4.214 2.820
3.938 4.135 5.240 3.430
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TABLE 6.24

SUMMER DAY ESTIMATED BAD DATA PARAMETERS

Lse

LAY

LP

A - - - A
onovo'-c-"-dq-a.-uapuu-Auuuuu—o

o n N
U N -

558.914

-101.276°

-94.261
-28.675
35.640
10.443
-6.371
-1.083
-8.389
0.571
5.576
15.563
9.760
-8.620
-0.374
-1.767
0.305
-0.835
-1.258
-22.440
8.451
16.757
3.135

654.409
-166.700
~137.861

-50.687

54.951
13.495
16.937
-6.766

-15.991

-12.965

-3.232
-4.204
10.732
5.319
3.428
4.554
4.411
-3.665
8.125
-18.831
28.036
-19.603
19.581

683.179
-152.083
-125.914

-30.073

44.281
17.734
4.781
~11.489

-11.484

-7.554
-0.014
1.870
5.295
3.984
4.666
-3.261
-0.400
-4.228
5.323
-9.402
14.627
-5.203
9.008

701.044
-149.051
-124.977
-27.064
36.736
13.774
4.444

-14.031

-6.122
-5.720
-1.692
6.820
6.662
0.129
3.321
-0.118
2.270
-2.333
3.450.
-0.434
1.565
-0.241
5.811
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6.1.6: Discussion of Model C results

The observations made from the results of model B, are further
confirmed by the results of simulations made with load model C. This
is 2 weather sensitive hybrid of the two previous two load models,
that was applied to the same data bases as medel B.

The results of the two weeks each of winter and summer
simulations, once again indicate that with uncontaminated data
sources, the predictions made via the different estimation techniques
are basically similar. In this load model however, the linear
programming technique did not result in larger winter prediction
errors, which only serves to valldate the explanation of fered
previocusly.

With the contaminated data sources, we once again note the
unchanged performance of the two least absolute value forecasts from
the uncontaminated predictions. The reduced least squares method also
performed within tolerable limits, but its predictions are somewhat

more erratic than the least absolute value predictions.

6§.2: Discussion of off-line simulation results

In subsections 6.1.1, 6.1.3, and 6.1.5 of this chapter, the
results of off-line forecasts simulations for each of the three
off-1ine load models developed in section 5.1 of chapter V are

presented. These results were simulated using the static parameter
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estimation methods of chapter III, und will form the basis for
generalised conclusions reflecting the effectiveness of the said
algorithms as off-line forecasting tools.

It should be noted, that in short-term load forecasting, the use
of static parameter estimation techniques 1s generally limited to
multiple linear regression and general exponential smoothing medels,
even though they are also applicable to certain time series methods.
This is a relatively rare situation however, and since the development
of time series models s beyond the scope of this thesis, the
off-line load models developed have been restricted to the multiple
linear regression and the general exponentlial smoothing cases.

Each of the three off-line load models developed, have been used
to predict the next day load corresponding to four separate parameter
estimates. Of these, two are based on the least squares minimisatlion
criterion, while the remaining two are results of the least absolute
value minimisation criterion.

The first least squares estimate is obtained from a conventional
least squares algorithm, while the second estimate is made using the
same technique, but from a reduced data set where measurement outliers
with least squares residuals larger than the standard deviation have
been removed. As explained earlier in this chapter, both these
estimates are outputs of the new LAV algorithm.

The least absolute value estimates on the other hand were
produced by the new LAV algorithm and a linear programming algorithm

respectively. It should be noted here, that a modiflied version of this
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algorithm was required for use with models B and C. The modifled
procedure is essentially the same as for the original algorithm,
except that the ranking procedure has been modified to accomodate
periodic data.

From the results obtained in general, ii is evident that least
absolute value estimates is to be preferred in cases where the data
source is likely to be contaminated with errors. For uncontaminated
data sources however, the performance of the conventional least
squares method is the best choice, since these estimates require the
minimum of computing effort and the use of least absolute value
techniques will offer no gain in accuracy.

A comparison of the techniques used in these off-line simulations
revezls that the new LAV technique will result in predlctlve
accuracies matching that of the of the linear programming technique in
21l cases. As such, in cases where a least absolute estimation method
is required, one will be well advised to use thls technique as it is
computationally much more efficient than its 1linear programming

counterpart and will generally result in equivalent or better

predictive accuracies.
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6.3: On-~line simulations

In this section, the on-line load model developed in section 5.2,
is used to simulate the forecast responses of the three dynamic
forecasting algerithms developed in Chapter IV. Here, the steady state
gain factors are first determined off-line, and then used to predict
the "one step ahead" load for each of three data sets.

The first two data sets, each consists of eight weeks (1344
hours) of winter and summer observations respectively, and forecasts
made here will allow for a generalised comparison of the effectlveness
of the three dynamic estimation algorithms, as on-line load
forecasting methods.

The third data set consists of two days of hourly load data, of
which two measurement observations have been replaced by gross error
values. One gross error peoint is made excessively larger than its
actual value, while the other is made significantly lower than its
corresponding true value.

The forecasting algorithms are allowed to recursively track the
load data, with and without the injected error points, and the
resulting output recorded in each case.The results obtalned for these
and the forementioned simulations,are presented in the following

subsectlons.

6.3.1: Steady state gain vectors

Twelve weeks of hourly load observations have been used to
determine the steady gain vectors for both the Kalman and the weighted

least absolute value filter. Of these, the first two weeks were used
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to make least squares approximations fer the initial state vector and

its corresponding error covariance matrix.

The general procedure used in determining the steady state galn

values were as follows.

Given that the two weeks (336 hours) of hourly data can be

written in vector form as

2=4Ax+B (6.1)
where Z = column [21’22' ........ zaasl of previocus loacd
cobservations
x = state vector to be determined
B = column [bx‘bz‘ ........ b336] of residuals corresponding
to the estimate x, and
A = e’ is matrix of output row vectors with
el = (336x1) column [1,........... 1] vector

We first find the least squares estimate for the state vector X

as follows

x = (ATA)"Y ATz (6.2)

and then approximate its corresponding error covariance [63] to be

P = (HH™R (6.3)
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where R 1s the initial value of measurement noise covariance,
Since the values of the noise covariances are unknown, we begin
the estimation process with initial guesses of both these values. In

this study, the following initial values for the noise covariances

were used:
R = 100,

and Q = (nxn) diagonal matrix, with
Q = S

11

With initial values of %, P, R and Q now available, the fllters
were allowed to recursively track the remaining eight weeks of load
data until steady state was achleved.

In figures 6.17 and B.18, the estimated values of the Kalman and
the WLAV fllter gains are plotted as a function of discrete time. It
should be noted that in these figures, the value of the first element
of the two gain vectors are actually used to represent the respective
galn vectors.

The steady state gain values recorded for the Kalman and the WLAV
filter as well as the calculated value of the general exponent ial

smoothing vector are presented in table 6.25.
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FIGURE 6.17

KALMAN FILTER GAIN RESPONSE
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FIGURE 6.18

WLAV FILTER GAIN RESPONSE
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SREADY STATE GAIN VECTORS

TABLE 6.25

Kalman gain WLAV gain CES geain
Kn K“ H

0.03114 0.07598 0.00486
0.01187 0.00009 0.00055
0.04691 0.07586 0.00870
0.02145 0.00002 0.00148
0.04221 0.07585 0.00954
~0.00270 0.000786 -0.00052
0.04740 0.07597 0.00964
0.01020 0.00055 0.00043
0.04700 0.07603 0.00971
0.01785 0.00048 0.00099
0.04433 0.075605 0.00968
0.02400 0.00042 0.00151
0.04140 0.07607 0.00961
0.03100 0.00037 0.00214
0.03553 0.07608 0.00947
0.03928 0.00029 0.00321
0.02375 0.07611 0.00808
0.03497 0.00038 0.00255
0.02753 0.07611 0.00819
0.03189 0.00050 0.00216
0.02946 0.07614 0.00826
0.02287 0.00088 0.00129
0.03636 0.07617 0.00940
0.02275 0.00102 0.00116
0.03675 0.07623 0.00941
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5.3.2: Simulation Results

Using the steady state values previously determined, the three
forecasting algorithms were applied to eight weeks of both winter and
summer data. Initial values for the state vectors in each case, was
determined by "running” the algorithms on two previous weeks of
corresponding data using least squares initial values.

The average error statistics obtained for both winter and summer
simulations, as well as the overall average values are presented below

in Table 6.26.

Table 6.26

AVERAGE ERROR STATISTICS

Winter Summer Overall
% MAE % BMSE | %4 MAE % BRMSE | % MAE % RMSE
Kalman | 2.615 3.296 | 2.263 2.971 | 2.438 3.134
WLAV 2.794 3.516 | 2.718 3.410 | 2.756 3.483
GES 4.301 5.358 | 3.687 4.544 | 3.984 4.851
MAE = mean absolute error RMSE = root mean square error

Average dally error profiles for winter and summer forecast
simulations are shown in Figures 6.19 & 6.20 respectively, while in
Flgures §.21, 6.22 and 6.23, the responses of each of the three

algorithms on the contaminated data base, are presented separately.
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MODEL D:

FIGURE 6.19
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FIGURE 6.20

MODEL D: SUMMER DAILY MEAN ABSOLUTE ERROR PROFILES
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FIGURE 6.21

KALMAN FILTER BAD DATA RESPONSE
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FIGURE 6.22

WLAV FILTER BAD DATA RESPONSE
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GES ALGORITHM BAD DATA RESPONSE

FIGURE 6.23
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8.3.3: Discussion

A very important factor in any load forecasting algorithm, is the
cholce of load model, as it ultimately determines the degree of
accuracy achieveable by the algorithm. For the purposes of this study
however, a simple load model was identified and developed for on-line
implementation. As such, the level of overall accuracy cbtained may be
significantly less than that to be expected from an actual forecasting
algorithm, employed by an electric utility.

The fitting function chosen to model the load was Fourier
harmonic series made up of a constant and twelve harmonics f{dentified
on the basis of a power spectral analysis (Fig.5.2) of all possible
harmonics. Since the Fourler series, in this case, could consist of a
maximum of eighty=-four harmonics, thereby resulting in an impractical
£itting function, 2 small percentage of modelling accuracy was
compromised by restricting the harmonles to those with high power
spectral factors.

An examination of the resulis presented in Table 6.26, shows 2
significant increase in accuracy from winter to summer for each of the
three algorithms. This can be attributed to tke fact that the load
model used was weather insensitive, and could not respond to the
sudden temperature changes that occured with greater frequency during
winter.

Also, from Figures 6.1S8 and 6.20, it can be seen that relatively
large errors occur at the eight hour in both, the winter and summer

dally average error profiles. This error, much larger than for any
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other time of day, is due to the sudden large load demand that occurs
as a result of combined businesses and industries beginning their
daily activities.

While it 1is appareat that this error can be greatly reduced by
adding a pre-determined fixed amount to the forecasted load at this
time of day. it should be noted that this step would have interfered
with the comparison of the responses of the algorithms in thelr
intrinsic state and as such, this mechanism was not lncorperated into
the forecasting procedure.

Although, it is now obvious that the load model used in this
study has limited potential, it should be recognised that 1t does
provice a fair basis for the compariscn of the simulated responses of
the different on-line forecasting algorithms. Also the development of
an accurate on-line load model in state space formulation is extremely
complex, and beyond the scope of this thesis.

The efficiency of any forecasting algorithm is measured by the
computing effort it requires to perform the desired forecast function.
Since it is obvious that all three estimation techniques make use of
the same forecasting algorithm then, the computing effort required in
each case must be the same.

The difference in effort stems however from the initial analysis
required to determine the respective steady state galn vectors. For
the general exponential smoothing case, 2 minimum of effort was needed
since this gain vector is time independent and depends only on the

weighting factor and fitting function.

It should be noted here, that a welghting factor of 0.885 was
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used in this study as it exponentially discounts previous observations
in approximately three weeks, and from experimentation was found give
better accuracy than other tested values.

The Kalman and weighted least absolute value based algorithms on
the other hand, both required more extensive tnitial analysis, as it
was necessary to "run" each respective filter on previous load data
before the steady state galn vectors could be determined. Trom figures
6.17 and 6.18 however, we can see that the Kalman filter required
approximately eight weeks of initial data before It achieved steady
state, whereas the weighted least absolute value filter only required
two weeks of the same data.

It should be noted, that even though the WLAV filter requires =z
fractlon of the initial data needed by the Kalman fillter, it does
require a larger initial effort per measurement, due to an increased
matrix inverse -equirement in its recursive structure. This increased
effort per measurement 1s marginal however, and is amply compensated
by the large saving in Initial computing effort.

The extra initial effort required by the two filtering algorithms
is compensated by the fact that both algorithms ylelded significantly
superior forecasts oveé those obtained from the less complex general
exponential smoothing algorithm. This is to be expected however as
this =algorithm does not make allowances for the estimation =and
measurement nelse process.

The results listed under Table 6.26, show that the Kalman based
forecasting algorithm produces better winter and summer forecasts than

both the WLAV and GES based algorithms even when measured on both the
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mean absolute error and root mean squared error criteria. On the
other hand the results shown in Figures 6.15, 6.16 and 6.17 clearly
indicate, that the GCES based algorithm which produces the least
accurate forecasts on regular data, has better on-line bad data
rejection properties than elther of the other two algorithms.

It is quite easy to spot the correlation between the bad data
responses and the gain vector values listed in Table 6.25. The WLAV
filtering =algorithm with its large value of gain results in the
largest next step errors while the Kalman based algorithm with a
slightly smaller value of gain produces correSpondlngly smaller
errors. The GES based algorithms however, with its very low value of
gain results in significantly smaller errors almost indistinguishable
from its regular performance.

It is now quite obvious that when applled to on-line functions
the weighted least absolute value based algorithm cannot inherit the
bad data rejection properties expected of an LAV estlimator. This 1is
not totally surprising, since the forecasting algorithms only make use
of steady state gain vectors that does not take the error into
account.

One should not summarily discuss the WLAVF as being lnadequate
however as it does possess a quick error response due to its high gain
value and with this load model it is on the average only marginally
less efficient than the Kalman filter. Also, other ongoling research
[61] using the WLAV filter indicates that it does indeed possess some
bad data rejection property and its performance in general 1is

comparable to that of the Kalman filter.
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All in all, one can surmise that since forecast error reduction
is the ultimate aim of any forecasting algorithm, an ideal algorithm
would be one that possess the properties of the Kalman filter when
processing regular data, and the low gain wvalue property of the
general exponential smoothing algorithm on contaminated data polnts.

This idea is not far fetched and can be Incorporated on the
Kalman or WLAV filter, if a data point corresponding to =a
predetermined fixed or greater value of absolute error 1is deemed a
“bad data" point and used to trigger a clause in the algorithm that

corresponding alters the value of galn at the next step.
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CHAPTIER 7

CONCLUDING REMARKS

In this thesis, the use of the least squares and least absolute
value methods of parameter estimation in short-term load forecasting
was researched. First, the subject of short-term load forecasting was
reviewed in chapter II, with espectal emphasis on load modelling
techniques and the role of parameter estimatlion methods thereln.

From this review, it was found that parameter estlimatlion In
short-term load forecasting, could be described as either statlic or
dynamic depending upon the modelling strategy adopted.

In chapter III, the static parameter estimatlon problem was
introduced and its least squares and least absolute methods of
solution reviewed. Here, the theory of conventicnal least squares,
linear programming and a newly developed method of least absolute
value estimation were presented.

The dynamic estimation problem was dealt with in chapter IV. Here
the application of the Kalman and a recently developed welighted least
absolute value filter to on-line forecasting were introduced, and a
generalised dynamic forecasting algorithm developed for on-line
simulations, later on in the thesis.

In chapter V, off and on-line load models were identified and
developed to facllitate comparison of the estimation technliques
reviewed in the two previous chapters, and in chapter VI, the results
of these forecast simulations were presented.

From the results of off-line simulations using the statlc
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parameter estimation techniques reviewed in chapter III, it can be
concluded that if the data source is free of errors, the use of either
the least squares or the least absnlute value minimisation criterion
will result in the same degree of predictive accuracy.

On the other hand, it can alsc be concluded, that if the data
source is contaminated with gross error points, then the use of the
least absolute wvalue criterion, will result in greater predictive
accuracy-

From these results, it was also observed that both the linear
programming and the new least absolute value algorithm resulted 1in
similar predictions, with contaminated and uncontaminated data. As
such it can be concluded that since the new LAV algorithm is
computationally much more efficlent and a precise least absolute value
estimate is of lesser importance, then this new technique will offer
the best choice in all ;ases.

From the results of on-line simulations presented in secticn 6.2,
it can be seen, that the Kalman filtering algorithm resulted in
greater predictive accuracy with uncontaminated data in both cases,
even though the performance of the welghted least absolute filter was
not far removed, and especially close in winter.

It should be noted here, that in the estimation of the steady
state gain vectors for both filters, the equations of Sage and Husa
were used to approximate the noise covariances at each step [equations
4.50 and 4.51]. These equations however, were derived for use on the
Kalman fllter and based on the least squares minimisation criterioen,

and as such, may have resulted in a WLAV filter steady state galn
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vector somewhat different from its actual value.

Since a change in steady state gain value could result in a
significant change in the level of predictive accuracy, no flrm
comparison can be made between the Kalman and the new fllter, other
than the latter requires the processing of a smaller number of initlal
measurements in order to achieve steady state.

The results presented in section 6.2 also indicate, that for
sequential on-line forecasting, neither filter will inherently be able
to identify and reject bad data points. This stands to reason however,
since these bad data points were not reflected in values of nolse

covarlances estimated during steady state analysis.

7.1: Recommendations

A desirable quality in any load forecasting algorithm, is the
ability of the algorithm to forecast within expected limits, even when
the forecasting data base contains a small percentage of measurement
errors. In short-term forecasting, this quality of u predictor Is
usually ensured by prefiltering the data base of suspechted error
polints.

In prefiltering, errors in the data base are Ilderntified and
replaced by corresponding "good" measurements further down the data
source. These so called bad data points, are usually measurements
recorded for unusual dally events such as holidays, major television
events etc., and in rare cases can be introduced through operator

mistakes at the man=-machine interface.
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Since this prefiltering procedure 1s an integral part of the new
LAV algorithm, it is recommended that for off-line load forecasting,
the new LAV algorithm be used in place of the conventional least
squares estimation methods. However, if the possibility exists that
the H matrix selected may sometimes be close to 11l conditicned, as
was the case with the multiple linear regression model of section
5.1.1; one should refrain from selecting Jjust the best number of
measurements corresponding to number of unknowns and use the reduced
least squares estimate instead.

An interesting observation made during off-1ine simulatlons, was
that the reduced least squares estlimates resulting from the rejection
of outliers with residuals larger than the standard deviation, were in
most cases, very close to the estimates produced by the new LAV and
the linear programming algorithms.

This seems to suggest, that there lis a possible relationship
between the measurements rejected and the optimal least absolute value
estimate, that could ultimately result in a much more robust and
efficlent LAV algorithm. As such a possible topic for future research
would be to investigate the relationship between the rejection of
outlying measurements and the resulting estimates with the =aim of
further simplying the new LAV procedure.

In on-line forecasting, errors in the data base will be reflected
in the values of estimated noise covarliances and the resulti-z steady
gain vector, and as can be seen from figures 6.13 and 6.14, these have
less influence on the WLAV filter gain than they do on the Xalman

filter gain. However, there Is 2 need for more indepth comparative
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studies of these two filters using a wider variety of on-line load
models, before any firm conclusions can be made.

An interesting prospect for future research would be to formulate
the off-line load model of subsection S5.1.3 (Model C), as a state
space model, and apply it via these filters to on-line forecasting.
The rationale for this, stems from the degree of accuracy that was
gained by model D, when allowances were made for the nolse processes
in the cases of the Kalman and the WLAV fllter.

This can be seem more clearly by considering the improvement in
predictive accuracy from models B to C, and then noting that model D
which is very similar to model B, showed a significant improvement In
accuracy after it was used in conjunction with an optimal filter.

Another possibllity for futute studles, would be to investligate
the possibility of including a time propagating standard deviation
equation in either the Kalman or WLAV filter, so that it can be used
as error detector when forecasting sequentially as in figures 6.1S,
6.16 and 6.17. Here, values of prediction error larger than the
standard deviation would be considered to be the result of a bad data

point, and would be limited in its influence on the estimate for the

next step.
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