
HOPLoP: Multi-hop Link Prediction over Knowledge Graph Embeddings

by

Varun Ranganathan

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

© Varun Ranganathan, 2021

Abstract

Large-scale Knowledge Graphs (KGs) built from Web resources have become ubiq-

uitous, supporting many applications as a source of data for a plethora of tasks in

natural language processing and artificial intelligence. Despite their success, building

and maintaining KGs remains a challenge: manual approaches o↵er high accuracy

but very limited coverage while automatic approaches yield low coverage due to the

limitations of the state-of-the-art Information Extraction tools. As a result, even the

best KGs out there are notoriously incomplete, giving rise to a large crop of rea-

soning tools for the task of Link Prediction (LP); which aims to find missing links

between entities based on structural regularities in the graph. Among the many LP

methods, those based on embeddings have become prevalent in the literature. In par-

ticular, multi-hop LP algorithms have been found to model complex relations better

by exploiting correlations between direct relations and paths connecting the entities

related in that way. However, state-of-the-art multi-hop LP methods find paths by

traversing the KG, in its original discrete graph representation. Therefore, they are

hampered by the incompleteness of the KG and the skewed degree distribution in the

KG, causing entities that are involved in disproportionately many facts to be overly

represented during training and testing, resulting in poor generalization. We present

a simple, e�cient and highly e↵ective multi-hop LP method, called HOPLoP, whose

main predicate is to perform “traversals” on the embedding space instead of the KG

itself. We show how to train and tune our method, and report on experiments with

di↵erent embedding-based representations of KGs on many benchmarks, showing that

HOPLoP improves each LP method on its own and that it consistently outperforms

ii

the previous state-of-the-art multi-hop LP methods by a good margin. Finally, we

also describe a method for the interpretation of the paths generated during reason-

ing by HOPLoP when used with embedding models where entities and relations are

mapped to the same space.

iii

Preface

This research stems from my passion for automated reasoning and optimization tech-

niques, along with experimental observations over 4 years. In the coming decades, we

will need to use AI-based approaches to tackle world problems and open new oppor-

tunities of growth. AI algorithms need better, “information-rich” representations of

their world that allow them to learn crucial predicative patterns quicker. This thesis

presents HOPLoP, a method for end-to-end di↵erentiable multi-hop link prediction,

which e↵aciously traverses a continuous representation of a knowledge graph to make

predictions. Findings from this thesis could be adopted towards a “data-centric”

framework for AI. By separating the data representation process from the modeling

stage, we may be able to significantly reduce the computation and space required for

AI tasks.

iv

Acknowledgements

First, I would like to thank all the scientists and doctors that have helped develop

a COVID-19 vaccine so quickly. At the time of writing, Alberta is out of COVID,

which is incredible; compared to a year ago, when there was no end in sight. I would

also take this opportunity to globally thank all the doctors, nurses and social workers

for fighting against COVID.

I would like to thank my supervisor, Prof. Denilson Barbosa, for guiding me through-

out my masters. I remember our first conversation, on Feb 27, 2019. Denilson’s first

question to me was, “How can I get you to join us at to the U of A?”. I was taken

back, since, this was our very first conversation and he couldn’t have gauged much

about me from my application and a referral. We had an inspired hour of conversa-

tion and since my arrival at the U of A, he has provided me with a great o�ce space

with a great o�ce mate (shout-out to Tobias), all the tech needed for me to innovate,

ample amounts of creative space to pursue independent curiosities (such as ZORB 1),

and most importantly, developing my ability to critically question so called “truths”

of the world.

I would like to thank my former supervisor from PES University, Prof. Natarajan

Subramanyam. Back in fall 2017, after working on a project at the Microsoft Innova-

tion Labs, like any novice in Machine Learning, I was terrified of “backpropagation”.

While attempting my own derivation, I discovered “A new backpropagation algorithm

without gradient descent” 2. I, similar to my peers, was skeptical of my own idea,

1https://arxiv.org/abs/2011.08895
2https://arxiv.org/abs/1802.00027

v

https://arxiv.org/abs/2011.08895

but Natarajan guided me through my first innovative-research work, which eventually

lead to being one of the most influential data science papers of 2018 3. He has guided

me through several key decisions in my initial research career (e.g., going to NTU in-

stead of CMU for a summer internship) which, looking back, have had a monumental

impact in my life.

I would like to thank both my supervisors for their support of my winning applica-

tion for the Alberta Innovates Graduate Student Scholarship, which will support me

through my next entrepreneurial journey. I also thank my committee members Prof.

Eleni Stroulia and Prof. Marek Reformat for taking the time to review my thesis. I

thank all sta↵ members at the Alberta Machine Intelligence Institute (shout-out Ta-

lat, Shazan, Mara, Johannes, and others who I have worked closely with) and all their

partner companies (shout-out to FunnelAI, Digital Public Square, Virtuo, Quickfyre,

Provision Analytics) for allowing me to deliver high-impact solutions.

I would like to thank my family (shout-out to Amma, Appa, Patti, Menakshi, Simba)

friends (shout-out to Rahul, Vishwas, Aaditya, Pavan, Vignesh) for supporting me

from various time-zones. Last but not the least, I thank Navya, for sticking by my

side through the ebbs and flows of the last two years of our lives.

3http://opendatascience.com/most-influential-data-science-research-papers-for-2018/

vi

http://opendatascience.com/most-influential-data-science-research-papers-for-2018/

Table of Contents

1 Introduction 1

1.1 Thesis Objective . 8

1.2 Thesis Outline . 11

2 Preliminaries 13

2.1 Knowledge Graphs . 13

2.1.1 The NELL System . 16

2.2 Link Prediction . 16

2.2.1 Link Prediction to Knowledge Base Completion 17

2.3 Machine Learning . 18

2.3.1 Supervised Learning . 19

2.3.2 Unsupervised Learning . 19

2.3.3 Reinforcement Learning . 21

2.4 Gradient Descent . 21

2.4.1 Regression using Gradient Descent 23

2.5 Backpropagation and Deep Learning 25

2.5.1 Neural Networks . 25

2.5.2 Recurrent Neural Networks and Backprop Through Time . . . 29

2.6 Knowledge Graph Embeddings . 33

2.6.1 From the perspective of a neural network 34

2.6.2 TransE . 36

2.6.3 ComplEx . 37

vii

2.6.4 TuckER . 39

3 Related Work: Multi-hop algorithms for Link Prediction 40

3.1 Supervised Learning with PRA and its successors 40

3.1.1 PageRank . 40

3.1.2 Path Ranking Algorithm . 41

3.1.3 Path-RNN and Single-Model 44

3.1.4 Compositing KG Embeddings 45

3.1.5 Highlights . 47

3.2 Reinforcement Learning with DeepPath and its successors 47

3.3 Variational Inference for multi-hop LP 49

3.4 Representation Learning for Multi-hop LP with HOPLoP 50

4 HOPLoP: Multi-hop Link Prediction over Knowledge Graph Embed-

dings 52

4.1 Motivation . 52

4.2 Task . 54

4.3 Model . 57

4.4 Training . 62

4.5 Discussion . 65

4.6 M-HOPLoP: Modeling all relations at once 65

5 Experiments and Results 67

5.1 Datasets . 67

5.1.1 WN18RR . 69

5.1.2 YAGO3-10 . 69

5.2 Experimental Setup . 71

5.2.1 Relation Prediction . 74

5.2.2 Entity Prediction . 74

viii

5.3 Results . 77

5.3.1 Relation Prediction . 77

5.3.2 Entity Prediction . 80

5.4 Analysis . 81

6 Interpretability of HOPLoP 85

6.1 Example Paths and Their Interpretation 86

6.2 Distribution of Path Lengths . 89

7 Conclusion and Future Work 92

7.1 Applicability of HOPLoP . 93

7.2 Limitations of this work . 94

7.3 Future research directions . 95

Appendix A: Notes on Gradient Descent and Backpropagation 109

A.1 Gradient Descent . 109

A.1.1 Modifications made to the GD update rule 110

A.2 Derivative of common activation functions 112

A.2.1 Sigmoid . 112

A.2.2 Tanh . 112

A.2.3 ReLU . 112

A.3 Derivative of mean squared error function for linear regression 113

A.4 Derivative of binary cross-entropy function for logistic regression . . . 113

A.5 Normalization eliminates the need for bias 115

A.6 Backpropagation . 116

Appendix B: Supplementary Information 119

B.1 Dependencies . 119

B.1.1 Hardware dependencies . 119

B.1.2 Software dependencies . 120

ix

B.2 Datasets . 120

B.3 Executing code . 121

B.4 Hyperparameters . 124

x

List of Tables

3.1 Comparison of various KG embedding and multi-hop algorithms for LP. 51

5.1 Statistics of KG datasets used in experiments. 67

5.2 Statistics of tasks in KG datasets used in experiments. 68

5.3 Performance of (M-)HOPLoP against baseline path-based and embedding-

based approaches to the relation prediction task on the NELL-995

dataset. 70

5.4 Performance of (M-)HOPLoP against baseline path-based and embedding-

based approaches to the relation prediction task on the FB15K-237

dataset. DIVA attained a MAP score of 0.598. 73

5.5 Performance of (M-)HOPLoP against baseline embedding-based ap-

proaches for relation prediction on the WN18RR dataset. 76

5.6 Performance comparison of untrained HOPLoP (MAP) | baseline

KG embedding (MAP) | trained HOPLoP (MAP). 77

5.7 Performance of HOPLoP against baseline embedding-based approaches

for relation prediction on the YAGO3-10 dataset. 79

5.8 Performance of HOPLoP(TransE) in the entity prediction task on the

WN18RR dataset compared against SOTA multi-hop LP algorithms

and KG embedding models. 80

5.9 Performance of HOPLoP(TransE) in the entity prediction task on the

YAGO3-10 dataset compared against SOTA KG embedding models. . 81

xi

5.10 Runtime of HOPLoP(TransE) compared to M-Walk and MINERVA on

the WN18RR dataset. 81

B.1 Software dependencies for running provided codes. 120

B.2 Flags and long arguments that can be used to run embedding genera-

tion code (‘create-embeddings.py’). 122

B.3 Flags and long arguments that can be used to run HOPLoP code

(‘main.py’). 123

B.4 Hyperparameters used for HOPLoP 124

B.5 Optimal H values from M-HOPLoP experiments. 124

B.6 Hyperparameters used for embedding generation. 125

B.7 Optimal H values from HOPLoP experiments. 126

xii

List of Figures

1.1 An example KG showing a few entities and relations from the Movies

domain. 4

1.2 How might TransE represent our example KG? An illustration showing

a few entities embedded in a 2D space using TransE. 6

1.3 Illustration of how a trained HOPLoP may answer the query “What

genre of movies does James Cameron direct?”. 12

2.1 Dependency graph of our example sentence “James Cameron directed

the movie Avatar” as generated by displaCy Dependency Visualizer. . 15

2.2 Illustration of a non-convex error function surface and how GD “moves”

the parameters closer to the local minima. 26

2.3 Illustration of a Fully-Connected Neural Network (FCNN) with 3 input

neurons and 2 hidden layers, each non-linearly activated with 4 and 3

neurons respectively. 27

2.4 Illustration of a vanilla RNN, containing 3 input neurons and 4 hidden

neurons, unrolled upto 3 time-steps. 29

2.5 Illustration of the connections in 1 time-step of a LSTM layer. 32

2.6 Softplus (Left) and ReLU (Right) function visualization taken from

Aceves-Fernandez et al. [81]. 38

4.1 Our LP task, represented as a PGM. 54

4.2 Upon incorporating “paths” in the LP process. 55

xiii

4.3 An intermediate PGM illustration of our LP process. Once a path p

is traversed, the parent random variables S and T does not directly

influence the child random variable R. 56

4.4 Our LP task is simplified to predict the probability that a generated

path p represents the relation R = r. 57

4.5 PGM representing the Path-finding process. 58

4.6 The connections in the path-finder model. 59

4.7 PGM diagram illustrating the path-reasoning process. 60

4.8 Illustration of the connections in 1 hop of the LSTM network. 61

5.1 Number of hops H vs MAP score plots for each dataset and embedding

space. 84

6.1 Distribution of number of unique paths founds by path length for each

task in the NELL-995 dataset. 91

xiv

List of Symbols

(.)T transpose of matrix

D dimension or dataset, depending on usage

D0 output dimension

E error function

F function

H number of hops or hidden layers, depending on usage

L loss function

N data batch size

Q transition matrix

Re(.) real component

Ul number of neurons in layer l

Wl neural layer

X Inputs (set or matrix)

Y Outputs (set or matrix)

[.; .] concatenation operation

, equivalence relationship

Pr probability

xv

⇥ parameters or angle, depending on usage

⇥(t) parameters at time t

⇡ approximately equals

� composition

�l partial gradients at layer l

8 for all

� margin, in max-margin functions

(.)̂ predicted

2 in operation

1 infinity

ln natural logarithm

C Complex values

R Real values

E Set of entities

G Graph

K Set of tasks

L Set of links

O(.) Complexity (Big-O) notation

P Set of paths

R Set of relations

W Core tensor

µ learning rate

rxf(x0) = f 0(x)(x0) Gradient of function f with respect to variable x at x0

xvi

� sigmoid function

✓ subset or equivalent

⇥ product

⇥i tensor product along the ith mode

(.)~ vector

(.)~
+

vector related to a positive example

(.)~
�

vector related to a negative example

vh~ translation vector at hop h

d counter for dimensionality, used to represent elements in a vector

es source entity

et target entity

exp(.) exponent function

f 0(x) = @f(x,y)
@x Partial derivative of function f with respect to variable x.

h hops counter, used to represent a particular hop in the path traversal

hl hidden layer l representation

i general counter

l link

r relation

x input

y output

xvii

Abbreviations

AI Artificial Intelligence.

ANN Artificial Neural Network.

BCE Binary Cross-entropy Error.

BFS Breadth First Search.

BP Back-Propagation.

BPTT Back-Propagation Through Time.

DL Deep Learning.

GRU Gated Recurrent Unit.

IE Information Extraction.

KB Knowledge Base.

KBC Knowledge Base Completion.

KBP Knowledge Base Population.

KG Knowledge Graph.

LogR Logistic Regression.

LP Link Prediction.

xviii

LR Linear Regression.

LSTM Long Short Term Memory.

MCTS Monte Carlo Tree Search.

ML Machine Learning.

MSE Mean Squared Error.

NAS Neural Architecture Search.

NELL Never Ending Language Learning.

NLG Natural Language Generation.

NLP Natural Language Processing.

NN Neural Network.

PCRA Path-Constraint Resource Allocation.

PRA Path Ranking Algorithm.

ReLU Rectified Linear Unit.

RepL Representation Learning.

RL Reinforcement Learning.

RNN Recurrent Neural Network.

RWR Random Walk with Restart.

SL Supervised Learning.

SOTA state-of-the-art.

xix

SPARQL SPARQL Protocol and RDF Query Language.

SSL Self-Supervised Learning.

UL Unsupervised Learning.

xAI eXplainable Artificial Intelligence.

YAGO Yet Another Great Ontology.

ZORB Zeroth Order Relaxed Backpropagation.

xx

Chapter 1

Introduction

The Jeopardy! game show, aired on February 14-15 2011, saw Watson, a question-

answering system, win the first place prize 1 of US$1 Million after defeating human

champions Brad Rutter and Ken Jennings. To maximize earnings in each round of

this quiz show, Watson, like any human player, was tasked to generate questions,

in natural language, from clues, also given in natural language. If the question, put

forth by a player, contains the required entity 2, that player is said to have won

that round. This is a non-trivial task for a human since the game covers a wide

variety of topics including history and current events, the sciences, the arts, popular

culture, literature, and languages. The plethora of knowledge required to maximize

earnings in this game is substantial, making this task di�cult for humans without

access to external resources. Although computers do not quite share the same issue of

storage 3, the task still remains non-trivial, since computers struggle to interface with

humans via natural language [1], let alone win a game show that requires interactive

communication, in natural language, between the player and the game show host 4.

1IBM donated 100% of Watson’s winnings to charity, with 50% of those winnings going to World
Vision and 50% going to World Community Grid.

2The correct entity may refer to famous individuals, locations, companies, etc.
3During the game, Watson had access to 200 million pages of structured and unstructured content

consuming 4TB of disk storage, including the full text of the 2011 edition of Wikipedia, but was not
connected to the Internet.

4Although Watson did not have to perform speech-to-text, the questions were given to it in
plain text in natural language, which requires understanding https://www.ibm.com/cloud/watson-
natural-language-understanding

1

https://www.ibm.com/cloud/watson-natural-language-understanding
https://www.ibm.com/cloud/watson-natural-language-understanding

To identify correct entities based on the given clues, Watson utilized more than

100 di↵erent algorithms 5 to hypothesize a question that involves the correct entity.

Before Watson could do any of that, it required knowledge about various topics of

the world, including the knowledge of their representation: the english language.

Introducing Knowledge Graphs (KGs) (a.k.a Knowledge Base (KB)): a graph-based

data structure that stores knowledge of the world in it’s links, which can be understood

by both machines and humans. Each link represents a fact, usually expressed in

natural language. A link, represented as a triple (es, r, et), is directed, indicating the

relationship r between two entity nodes that connects source entity es to target entity

et.

Watson was powered by open and large-scale KGs such as DBpedia [2], WordNet

[3], and YAGO [4] amongst several other data sources. Without this preliminary

knowledge, Watson cannot recognize entities and reason about them, eventually fail-

ing at question-answering [5]. IBM’s Watson, which was just a question-answering

system back in 2011, now provides cognitive services to almost 5,000 companies, gen-

erating revenues upwards of US$1 Billion 6.

Similar to IBM Watson are Artificial Intelligence (AI)-based assistants such as

Apple’s Siri 7, Amazon’s Alexa 8, Microsoft’s Cortana 9 and Google Assistant 10, which

interact with humans via natural language. These AI-based assistants are powered by

KGs to recognize entities and user intents. For example, if I were to speak to Google

Assistant saying, “hey google play apollo by hardwell on spotify”, the program

needs to recognize hey google (cue), followed by entities such as apollo (song),

hardwell (artist), and spotify (app). The program also needs to recognize the

user’s intent, play, and execute instructions accordingly. Additionally, the program

5https://www.idga.org/archived-content/whitepapers/watson-a-system-designed-for-answers-
the-future-of

6https://www.appsruntheworld.com/customers-database/products/view/ibm-watson
7https://www.apple.com/ca/siri/
8https://en.wikipedia.org/wiki/Amazon Alexa
9https://www.microsoft.com/en-us/cortana

10https://assistant.google.com/

2

https://www.idga.org/archived-content/whitepapers/watson-a-system-designed-for-answers-the-future-of
https://www.idga.org/archived-content/whitepapers/watson-a-system-designed-for-answers-the-future-of
https://www.appsruntheworld.com/customers-database/products/view/ibm-watson
https://www.apple.com/ca/siri/
https://en.wikipedia.org/wiki/Amazon_Alexa
https://www.microsoft.com/en-us/cortana
https://assistant.google.com/

should also verify that apollo is a song by the artist hardwell, and spotify is an

application installed on the device. This verification process queries various KGs to

determine the “truth” value of these facts, which are then used to drive real-time

decisions 11 autonomously made by the software. Similarly, KGs are extensively used

in search [6] (Google Knowledge Graph 12), chatbots [7], recommender systems [8]

and autonomous systems [9]. We, recently, recognize the importance of KGs as a data

source for Machine Learning (ML), eXplainable Artificial Intelligence (XAI) [10], and

downstream tasks such as question-answering [5] and automated reasoning [11].

KG Accuracy Requirements. The tasks discussed above need KGs that are

both accurate and comprehensive, covering the topics of interest to users. Achieving

both goals is di�cult. On one hand, manually constructing KGs is time consum-

ing [12]. For example, WordNet, a manually constructed KG that contains expert-

annotated information about 155,287 English words and phrases, linking them via

semantic relations such as Hypernymy and Synonymy, took 27 years to develop, and

yet it covers only a small fraction of the “ever-growing” language. As a result, most

manually created KGs tend to have poor coverage [13], even if their accuracy is high.

On the other hand, KGs automatically constructed with the help of Information

Extraction (IE) tools, applied to Web-scale text corpora, have many more entities but

are more error-prone, since the state-of-the-art (SOTA) is not sophisticated enough

to understand the nuances of natural language [14, 15]. Also, even when IE methods

succeed, their coverage is limited to the facts explicitly mentioned in the text. Let’s

consider this excerpt from Wikipedia describing the movie TheTerminator 13:

The Terminator is a 1984 science fiction action film released by Orion

Pictures, co-written and directed by James Cameron and starring Arnold

Schwarzenegger, Linda Hamilton and Michael Biehn. It is the first work

in the Terminator franchise. ...
11Decision scenarios and appropriate reactions may be programmed, such as exception handling.
12https://en.wikipedia.org/wiki/Google Knowledge Graph
13https://en.wikipedia.org/wiki/Terminator (franchise)#The Terminator (1984)

3

https://en.wikipedia.org/wiki/Google_Knowledge_Graph
https://en.wikipedia.org/wiki/Terminator_(franchise)#The_Terminator_(1984)

Discrete KG

James
Cameron

United
States

Terminator

Terminator 2
Judgement

Day

The
Avengers

Avatar

Titanic
Romance

Thriller

Science
Fiction

Action

Horror

Steven
Spielberg

Drama

E.T.

Citizen Of

Director Of

Genre

Movie Shot in Country

Directs Genre of Movies

Canada

?

Figure 1.1: (Best viewed in color) An example KG showing a few entities and relations from the Movies domain. We color
coded the links of the graph to signify specific relations. Notice that entities such as UnitedStates, JamesCameron, Action, and
ScienceFiction can be consider as supernodes of this graph since they are linked to a higher number of entities. The dashed
dark-black line illustrates our question: given this KG, can we find a path that connects JamesCameron and ScienceFiction
to provide us with evidence that (JamesCameron, DirectsGenreofMovies, ScienceFiction).

Varun Ranganathan
4

At the time of writing, the best IE-based KG construction algorithm would be able

to extract explicit facts, expressed as links (JamesCameron, DirectorOf,

TheTerminator)14 and (TheTerminator, Genre, ScienceFiction), but would miss

out an implied fact, expressed as link (JamesCameron, DirectsGenreOfMovies,

ScienceFiction), which can be inferred from the other two. As a result, it is well

known that even the best KGs in use today are notoriously incomplete [16].

State-of-the-art KG Construction. Building accurate and comprehensive KGs

is often done through a combination of extraction methods that capture facts explic-

itly expressed in the source and inference methods that can derive implicit facts. A

popular strategy for inferring missing facts in recent years is called Link Prediction

(LP), which is the task of predicting the likelihood that any link exists in the KG, by

reasoning over the observed links in the KG.

The field of LP has been dominated by KG embedding models [17–19], since they

provide an elegant solution to the incompleteness problem. These methods learn

vector representations for discrete entities and relations of a KG and a scoring function

such that the score predicted for an observed link is generally higher than for an

unobserved link. Figure 1.2 illustrates the idea (note: details will be clearer later in

section 2.6.2). By tuning the dimensionality of the embedding space, these models

are able to generalize to unseen facts [20]. However, KG embedding models consider

only two entities and one relation to make a prediction. By doing so, these approaches

cannot reason over multiple relations and therefore, fail to model complex relations

[21].

Continuing our example, an embedding-based LP algorithm explicitly requires that

the relation DirectsGenreOfMovies be present in the graph, requiring manual or

automatic population of the KG. One relatively low-e↵ort “automatic” approach to

collect links about the relation, such as DirectsGenreOfMovies, requires manual

14We follow the standard in the literature and represent multi-word entities and relations with
“camelcasing” to avoid confusion.

5

Romance

Genre

James Cameron

Terminator 2: Judgement Day

The Avengers

Avatar

Titanic
Science Fiction

Action

Thriller Horror

United States
Canada

The Terminator

Director Of

C
itizen O

f

Movie shot

in country -1
Genre

Embedding Space

Steven Spielberg

E.T.

Drama

Figure 1.2: (Best viewed in color, refer to the color scheme in figure 1) How might
TransE represent our example KG? An illustration showing a few entities embedded
in a 2D space using TransE. We can observe how TransE “fills the gap in knowledge”
by noticing a link missing between Avatar and Action in figure 1. Upon observing
1.2, we can intuit that if we added the vector rGenre~ to the point eAvatar~ , we would
reach close to the required target entity position eAction~ , suggesting a missing link.
We also see that the resultant point in space is furthest from Drama, suggesting a low
likelihood for (Avatar, Genre, Drama).

derivation of logical formulae, which is then converted to SPARQL codes to query

for information from the KG. For example, the relation DirectsGenreOfMovies can

be expressed by this logical formula: DirectorOf � Genre, where � represents the

composition of two relations (see section 3.1.4 for more). A complex relation, such as

AthletePlaysSport, would require multiple logical formulae to achieve high coverage.

For example, the relation AthletePlaysSport can be represented by 2 formulae:

• AthletePlaysForTeam � TeamPlaysSport

• AthletePlaysInLeague � LeagueStadiums � SportUsesStadium�1

We can see that, complex relations may be represented by multiple logical formulae.

Even if we were to satisfy this laborious requirement of creating links with the relation

of interest, KG embedding models will continue to ignore the structural information

of the KG, inhibiting their predictive power.

6

LP Meets Graph Traversals. There is strong evidence in the literature show-

ing that leveraging graph traversals to create features helps with LP as it allows

correlations between paths and direct relations to be exploited [22]. LP algorithms

that leverage structural information gathered from paths are called multi-hop link

prediction algorithms. For example, the Path-Ranking Algorithm (PRA) [23], the

first multi-hop LP algorithm, learns to assign scores to pre-computed graph traver-

sals such that, paths that tend to reach correct target entities are scored higher.

To traverse a path, PRA utilizes a relation-specific transition matrix for each rela-

tion in the path and calculates the probability of reaching any entity from a source

entity. Through the training process, PRA recognizes the structure of the KG

(through the various paths given as input to PRA) and semantics behind each re-

lation (through the transition matrices). It learns to perform LP by tuning its

weights for each path such that it’s traversal procedure reaches the required tar-

get entities. By tuning the weights, PRA “scores” or “ranks” the paths in the KG.

Paths that are ranked higher provide a higher support 15 for a particular relation.

Following our previous example of DirectsGenreOfMovies, given su�cient num-

ber of training instances, a PRA model will learn to score the path DirectorOf

! Genre relatively high since DirectsGenreOfMovies is the same as the compo-

sition of the two other relations, DirectorOf and Genre. Similarly, for a rela-

tion AthletePlaysSport, paths such as, AthletePlaysForTeam! TeamPlaysSport,

which contain sports-based relations, e.g. AthleteHomeStadium, CoachWonTrophy,

ChampionshipGameOfTheNationalSport, will be scored high [23]. These examples

show that graph traversals allow LP algorithms to correlate paths with relations in

the KG. By doing so, multi-hop LP algorithms learn the global structure of the graph,

boosting performance in LP.

Multi-hop LP algorithms are also referred to as multi-hop reasoning algorithms

since they provide an interpretable path which can be used as a rule to predict links

15Support refers to how often a given path leads to the required target entiti(es).

7

in the KG. These algorithms boost LP performance while simultaneously providing

the KG system with interpretable reasoning capabilities. In this thesis, we look to

improve the performance of the multi-hop LP process without losing the ability to

interpret the reasoning process. Before improving the multi-hop LP process, we first

identify what constrains them.

Constraints on multi-hop LP algorithms. Although graph traversals greatly

help with LP, they are constrained by the incompleteness of the KG and by the

skewed degree distribution of nodes. For example, at the time of writing, about

half of all Citizenship (wdt:P27) facts in Wikidata involve just 10 countries, with

the UnitedStates (wd:Q30) alone having 13.7% of all facts. This data skew results

in embedding-based LP methods, attending more to these supernodes which appear

disproportionately more both in the training and in the validation datasets used in

the literature [19]. Moreover, there are also very large discrepancies in node degrees,

and therefore, in the number of paths involving them. Keeping with the example of

Citizenship, the degree of the node corresponding to the UnitedStates in Wikidata

is 4.8M, while the degree of TheNetherlands (wd:Q29999), the 10th country with the

highest number of facts about Citizenship, is approximately 160K. Therefore, LP

methods that exploit graph traversals are likely to attend to those paths related to

the UnitedStates disproportionately more than other countries. These issues inhibit

the performance of all multi-hop LP algorithms, since they traverse the discrete KG.

1.1 Thesis Objective

In this thesis, we explore methods for Knowledge Base Completion (KBC), which

fill the “information” gaps in KGs through the LP process. Upon exploring relevant

literature, we identify issues pertaining to KGs that negatively influence previous LP

algorithms. We introduce a novel multi-hop LP framework that learns to traverse

an embedded space where the issues of skewed node degree and incompleteness are

8

mitigated. This embedded representation of the KG is derived from KG embedding

methods, from which we borrow a few insights:

• KG embedding methods embed structural information of discrete entities onto

a point in continuous space, represented by a D-dimensional vector [24]. Uni-

formly weighting all points in the entity embedding space, i.e. treating all points

in space equally, should resolve the skewed node degree issue.

• KG embedding models produce a score to represent the likelihood of a link.

Controlling the dimensionality of KG components allows them to generalize to

unseen links. We can view the generated entity embedding space to be “more-

complete” than the KG in its discrete form.

• KG embedding methods often project the entity embedding onto a relation-

specific plane [25–28] to compute a similarity measure between two entities.

Creating relation-specific functions does not take into account the structural

information of the graph and re-introduces errors caused by skewed node de-

grees. For example, if we were to create a relation-specific function for the

Wikidata relation Citizenship in a KG, a KG embedding method would per-

form the similarity search while biasing towards certain dimensions. In this

scenario, the embedding for entity UnitedStates may share similarities with

embeddings for all individuals in the KG. These similarities maybe abused such

that individuals’ Citizenship is associated with UnitedStates with a spuri-

ously high likelihood. Traversing the entity embedding space would allow the

agent to discover paths that leads to supporting or refuting a link.

We hypothesize that the performance of a multi-hop LP algorithm can be improved

if it is allowed to leverage graph traversals that are not constrained by the KG it-

self. To verify our hypothesis, we introduce a simple yet e�cacious multi-hop link

prediction framework called HOPLoP in which graph “traversals” and “paths” are

9

defined over the embedding space instead. HOPLoP is an end-to-end di↵erentiable

multi-hop LP framework that learns to traverse an embedding space while distin-

guishing between existent and non-existent links of the KG. By doing so, HOPLoP is

able to recognize and account for errors in the embedded representation of the KG

and create appropriate decision boundaries, which leads to performance boosts in

LP. To evaluate HOPLoP, we follow standard evaluation methodologies for relation

prediction and entity prediction. We observe significant improvements over previous

SOTA algorithms for LP. Our contributions are 5-fold:

1. We introduce HOPLoP, an end-to-end di↵erentiable multi-hop link prediction

framework for LP over large KGs. End-to-end di↵erentiability improves compu-

tational e�ciency, allowing for simple optimization algorithms such as Gradient

Descent (GD) [29].

2. HOPLoP traverses over an embedding space. By doing so, HOPLoP mitigates

issues related to incompleteness and skewed degree distributions for nodes. We

are the first to demonstrate traversals over a continuous space for LP.

3. We evaluate HOPLoP on 2 popular datasets, and introduce 2 new datasets for

the task of multi-hop LP. We evaluate HOPLoP on 2 tasks: entity prediction and

relation prediction, and consistently outperform SOTA LP performance across

all datasets and metrics. For example, on the relation prediction task, HOPLoP

advances previous SOTA methods by reducing errors by 46.53% on NELL-995

and 54.97% on FB15K-237. On the entity prediction task, HOPLoP advances

previous SOTA methods with an error reduction of 53.85% on WN18RR and

56.67% on YAGO3-10.

4. We look to further explore advantages of HOPLoP and it’s end-to-end di↵eren-

tiability. We aim to see if we can confirm the advantages of multi-task learning

and parameter sharing mechanisms [30]. Similar to how Single-Model [31] ad-

10

vanced Path-RNN [32], we advance HOPLoP to M-HOPLoP, capable of reason-

ing for multiple relations. M-HOPLoP outperforms HOPLoP across all datasets

for relation prediction.

5. We also provide a method to interpret reasoning paths of HOPLoP(TransE). By

interpreting negative paths of HOPLoP(TransE), we find negative rules, which

can be used to refute the existence of a relation between two entities. We are

the first to introduce the notion of a negative path.

1.2 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 introduces all the preliminary

knowledge required to understand the remainder of this thesis, including KGs, LP,

and ML concepts such as GD, Backpropagation (BP) and Neural Networks (NNs).

We also provide an overview of KG embeddings and discuss variants used in exper-

iments. Chapter 3 delves into previous approaches for multi-hop LP. We discuss

several key approaches, their advantages and disadvantages, and how they are di↵er-

ent from HOPLoP. Chapter 4 presents HOPLoP with its motivations, mathematical

formulations of the task, descriptions of the model and the training process. We

improve upon HOPLoP by incorporating parameter sharing mechanisms for multi-

task learning. We introduce M-HOPLoP which can reason about all relations instead

of just one. Chapter 5 describes datasets and experiments performed to evaluate

the performance of HOPLoP. Results displayed in tables 5.3, 5.4, 5.5, 5.7, 5.8 and

5.9 show that HOPLoP significantly outperform baseline KG embedding models and

SOTA multi-hop LP algorithms in both entity and relation prediction tasks. Table

5.10 shows that HOPLoP is computationally inexpensive compared to SOTA multi-

hop LP algorithms. Chapter 6 provides a method to interpret HOPLoP’s reasoning

paths. Chapter 7 concludes the paper by providing a brief summary of our hypothesis

and findings. We also provide a non-exhaustive list of future research directions.

11

United States

James Cameron

Terminator 2: Judgement Day

The Avengers

Avatar

Titanic
Science Fiction

Action

Thriller Horror

Romance

Canada

ANN ANN

LSTM LSTM

Embedding Space

The Terminator

ANN ANN ANN

LSTM LSTM LSTM

Director Of
GenreC

itizen O
f

Movie shot

in country -1 Genre Drama

Figure 1.3: (Best viewed in color) Illustration of
how a trained HOPLoP may answer the query
“What genre of movies does James Cameron di-
rect?”. The position of entities in the figure are
representative of their position in a TransE-like
embedding space (refer 2.6.2). The black dashed
lines are vector representations for relations, which
links 2 entities in embedded space. To answer
this query, HOPLoP would take a list of triples
[(JamesCameron, DirectsGenreOfMovies, ei)8ei 2
entities in the domain of genre EGenre] to provide a
list of scores corresponding to input list. These
scores indicate the probabilities of the correspond-
ing link to exists in the KG. Here, we show 2 exam-
ples of paths HOPLoP takes: Green arrows signify
the hops of the path traversed by the path-finder
that enables the path-reasoner to support the link
between JamesCameron and ScienceFiction (pos-
itive pair of entities / positive example). Red ar-
rows signify path traversed by the path-finder that
does not support the link between JamesCameron
and Romance (negative pair of entities / negative
example). vi~

(·) is a vector in the embedded space
where i indicates the hop number and (·) repre-
sents the type of example. HOPLoP learns to tra-
verse an inaccurate representation of the KG to ac-
curately distinguish between positive and negative
examples. HOPLoP’s reasoning path can be inter-
preted using vector similarity metrics.

Varun Ranganathan
12

Chapter 2

Preliminaries

2.1 Knowledge Graphs

Knowledge Graphs (KGs) are flexible data models that can represent structured and

unstructured data seamlessly. For our purposes here we will define such graphs in

terms of a set of entities (E) and a set of relation names (R).

Definition 1 A Knowledge Graph is a labeled, directed graph G = (E ,R,L) consist-

ing of set of entities E which correspond to unique objects, a set of relations R which

are labels applied to links and a set of links L ✓ E ⇥ E ⇥R which connect one source

entity es 2 E to a target entity et 2 E and assigns a label r 2 R to that link, expressed

as a triple (es, r, et).

In the wide literature of graphs, entities are often referred to as “nodes” or “ver-

tices” and links are also called “edges”. In the literature of link prediction, the source

entity is often referred to as the “head”, “subject” or “query” entity, while the target

entity is also referred to as the “object” or “tail” entity. The set of relations is also

referred to as a set of “predicates”.

Each link in the graph represents a fact, which is commonly expressed in natural

language. Following our previous example, an assertive sentence such as, “James

Cameron directed the movie Avatar”, expresses a fact, whose link in the KG is

represented as triple (JamesCameron, DirectorOf, Avatar). Similarly, the sen-

13

tence, “Avatar’s genre is Science Fiction”, is represented as a link (Avatar, Genre,

ScienceFiction).

KGs represent facts of the world in a format usable by humans and machines [14].

They organise and integrate data from multiple sources, based on an ontology 1, to

capture information about entities of interest in a given domain or task (e.g. people,

places or events), and forge connections between them. To remain current, KGs need

to be constantly updated with new facts. This is done through two approaches:

1. Knowledge Base Population (KBP) [33] involves identifying new entities

and their properties from raw unstructured data. Note that properties are rep-

resented as relations in the KG whereas attributes are represented as entities

in the KG. This is consistent with our KG definition and provides preliminary

links to the KG, which is completed by a LP system. In our previous example,

JamesCameron is the entity, while ScienceFiction is an attribute, represented

by another entity in the KG; DirectorOf and Genre are properties of enti-

ties that connect entities to attributes. KBP can be done manually by human

experts or through crowd-sourcing platforms, but arriving at high quality anno-

tated data is expensive. This task can be automated using simple dependency

parsers to SOTA Natural Language Processing (NLP) techniques 2.

2. Knowledge Base Completion (KBC) [16, 24, 34] involves finding relation-

ships, general or specific, that link entities that are already present in the KG.

This is done using experts who manually develop rules to perform a task, or

by a reasoner 3 that looks at the links available in the KG to recognize pat-

terns and derive new links and rules. For example, if the reasoner knows that

JamesCameron directed movies {Terminator, Avatar, ...} and the genre of

1Ontology refers to the schema of the KG, which defines the ground truth knowledge and rules
to derive more knowledge

2https://tac.nist.gov/2020/index.html
3This can range from a rule-based static system like Rule-Based Expert Systems [35] to DeepQA

[36] which powers IBM Watson.

14

https://tac.nist.gov/2020/index.html

James Cameron

PROPN

nsubj dobj

directed

VERB

the movie Avatar

PROPN

Figure 2.1: Dependency graph of our example sentence “James Cameron directed the
movie Avatar” as generated by displaCy Dependency Visualizer 5

these movies is ScienceFiction, then it can derive a new link: (JamesCameron,

DirectsGenreOfMovies, ScienceFiction).

In figure 2.1, we show how a KBP system may populate the KG. Observe the

dependency graph generated by spaCy 4, an open-source NLP package, for the sen-

tence “James Cameron directed the movie Avatar”. We see that the proper noun

(PROPN) “James Cameron” is the subject, the proper noun “the movie Avatar” is the

object, and the relationship between the subject and object is the predicate (VERB)

“directed”. By observing the pattern that the sentence contains a predicate which de-

pends on a subject and an object, the KBP can come to the conclusion that a simple

fact is being expressed, populating the KG with the link (JamesCameron, Directed,

Avatar). The ontology may include, implicitly or explicitly, synonymy rules such as

DirectorOf�1
, Directed, where , represents a equivalence relationship.

ML techniques are generally complemented by KGs to facilitate explainability [10]

and encode domain knowledge that would be costly to learn from data alone. In this

thesis, we look to go the other way: using ML to improve KBC, in terms of accuracy

and e�ciency, by surveying the KBC research literature to spot for successes and

areas to improve. We tackle the problem of KBC through the LP task. The reasoner

of an ontology performs LP to derive and populate the KG with new knowledge.

4https://spacy.io/
5https://explosion.ai/demos/displacy?text=James%20Cameron%20directed%20the%20movie%

20Avatar&model=en core web sm&cpu=1&cph=1

15

https://explosion.ai/demos/displacy?text=James%20Cameron%20directed%20the%20movie%20Avatar&model=en_core_web_sm&cpu=1&cph=1
https://explosion.ai/demos/displacy?text=James%20Cameron%20directed%20the%20movie%20Avatar&model=en_core_web_sm&cpu=1&cph=1

2.1.1 The NELL System

The Never-Ending Language Learning (NELL) project [37] aims at building a system

capable of learning both facts and ontological rules by continuously reading the Web.

Every cycle in NELL starts with a current version of the NELL KG, consisting of

facts and inference rules (including multi-hop inference rules), and ends in a new

version of the KG, built taking into consideration new facts and inferences that may

not have been discovered before. While NELL does extract triples as in other KGs,

technically, the endpoints of those triples are string literals instead of unique entity

identifiers. Nevertheless, datasets originating from the NELL project are very often

used in LP and KBC research.

2.2 Link Prediction

Given any link, represented by triple (es, r, et), Link Prediction (LP) aims at pro-

ducing a score, indicative of the likelihood that link exists in the KG. The input

to a LP system is the source entity es, which produces a list of “all possible” links

[(es, ri, ei)8ri 2 R, ei 2 E] ranking them from highest to lowest likelihood. Surveying

the literature uncovers 2 variants of the LP task:

1. Relation prediction The relation prediction task focuses on predicting the

relationship r that exists between a source entity es and a target entity et.

Given an incomplete triple (es, ?, et), relation prediction aims to fill in the gap

in the triple, such that the resulting link exists in the KG. The question, “How is

James Cameron related to Avatar?”, involves predicting a relationship between

two entities: JamesCameron and Avatar. In this query, the goal is to predict the

relation of the incomplete triple (JamesCameron, ?, Avatar), such that resultant

link is exists in the KG. For the given query, a trained relation prediction system

should rank the relation DirectorOf higher than the relation ActedIn.

16

2. Entity prediction Given a source entity es and a relation of interest r, en-

tity prediction involves predicting target entities et such that the link (es, r, et)

exists in the KG. For example, consider the question: “Who directed the

movie Avatar?”. This question involves one entity Avatar and one relation

DirectorOf�1, forming an incomplete triple (Avatar, DirectorOf�1, ?). Now,

the aim is to search for an entity, to fill up the ‘?’ in the triple, such that the

resultant fact about the world is captured in the KG. Given a trained entity

prediction system, we should expect the correct target entity JamesCameron to

be ranked higher than an incorrect target entity such as ZoeSaldana, who was

an actress in the movie.

HOPLoP does both! Our work focuses on the latter problem but we will provide a

method to perform both entity and relation prediction using HOPLoP. In the coming

sections, we further expand on LP and provide a literature survey on multi-hop ap-

proaches for LP. In the next sub-sections, we aim to provide pre-cursor knowledge on

ML, required to understand the remainder of this thesis. We introduce KG embed-

dings, relate them to NNs, and will describe a few variants that we use in experiments.

Motivated readers may refer to [14, 19, 24, 38] for extensive surveys on LP methods

applied on KGs.

2.2.1 Link Prediction to Knowledge Base Completion

How can we use LP, especially multi-hop LP, to fill the gaps in the KG? Amongst

several approaches, here are a few:

1. Pick the top-K of predicted links and add them to the KG, or ignore if already

present. K would need to be a hyperparameter, which would need tuning.

2. Applying post-processing techniques by finding a score threshold, tuned for a

requirement such as precision, recall, accuracy, etc.

17

3. Keep the probabilities and use the probabilities in downstream tasks.

4. Since multi-hop algorithm traverse paths in the KG, we can use the highly

supported paths as rules to deduce new links.

2.3 Machine Learning

Machine Learning (ML) is the sub-branch of Artificial Intelligence (AI) which studies

an algorithm’s performance on a task taking into account the experience gained,

by the algorithm, from data. ML algorithms aim to model a population 6 based

on a subset of data from that population, often known as training data. Once the

population of data-points is modeled, predictions and decisions can be made about

unseen data-points, without explicitly programming for them. These decisions can be

made autonomously, in real-time, to execute a specific set of instructions, emulating

an “intelligent” software.

Before making predictions, ML algorithms first learn, through a process called

training, to recognize patterns within the inputs that can be leveraged to produce an

output that satisfies an objective. During the training phase, ML algorithms look at

samples from the training data and gain experience by updating their mathematical

model of the population based on an objective function, which captures the goal that

needs to be achieved. Due to the stochastic nature of ML 7, there does not exist one

ultimate algorithm that can solve all prediction problems. Therefore, practioners,

through several iterations, develop several ML algorithms that tackle the same task.

To select one model for deployment, practioners need a fair and objective comparison

of all algorithms. Between the training and deployment phases, there is a testing

phase, which evaluates and compares the performance of multiple ML algorithms de-

6In statistics, a population is a set of similar items or events which is of interest for some question
or experiment. In our case, the population of links representing facts, is the KG, in which, each
data-point in any sample of a KG is a link. https://en.wikipedia.org/wiki/Statistical population

7Many aspects of ML, such as initial parameter values and shu✏ing for batching, rely on the
randomness of numbers.

18

https://en.wikipedia.org/wiki/Statistical_population

veloped for a specific task on specific datasets. Selection of the model for deployment

is based on the predictions that model makes for a test split of the data available at

development time, which is hidden from the model during training. Relevant metrics

are calculated to measure and compare the performance of each algorithm.

HOPLoP is a framework for KBC which uses ML to discover new links in the KG.

In the coming sections, we discuss all the pre-requisite concepts required for the future

chapters, including a brief overview of the taxonomy of ML algorithms, GD, BP and

Deep Learning (DL) based neural architectures used by HOPLoP. At the end of this

chapter, we provide a discussion about KG embeddings as well as describe the KG

embedding models used in our experiments.

2.3.1 Supervised Learning

Supervised Learning (SL) is a type of ML in which the goal is to find a mathematical

function that best maps an input to the required output based on input-output pairs

contained in the training data. A major distinction from other types of ML is that

SL requires labeled data, i.e., data for which all inputs have corresponding outputs.

During the training phase, both the input and the required output must be provided

to the SL algorithm, which updates the underlying mathematical model such that

it improves at mapping that input to that required output. The most common SL

approaches use GD to update the parameters that make up the underlying math-

ematical function, which we will delve deeper in the coming sections. In the next

chapter (refer to section 3.1), we discuss about SL approaches for multi-hop LP.

2.3.2 Unsupervised Learning

Unsupervised Learning (UL) [39] is a class of ML algorithms that learn to find patterns

from unlabeled data. UL algorithms aim to create a mathematical function that maps

inputs to itself. By generating an identity mapping function, UL algorithms, through

parameter tuning [20, 25, 40, 41], force their underlying mathematical model to build

19

a compact internal representation of the population such that the model generalizes

8 to unseen examples. UL concentrates on clustering (e.g. image segmentation),

anomaly detection (e.g. credit card fraud detection), and dimensionality reduction

(e.g. visualizing higher dimensional vectors in 2D or 3D space).

Representation Learning

Representation Learning (RepL), or Self-Supervised Learning (SSL), is a sub-branch

of UL that seeks to obtain latent representations for objects based on interactions with

other objects. This is similar in the sense that UL and SSL algorithms aims to find

di↵erent representations for objects. However, SSL aims to prepare the model by pre-

training it for a general task. These models can be fine-tuned for specific downstream

tasks ranging from predicting properties of data instances (e.g. sentiment analysis) to

generate new data instances that mimic the population (e.g. document summariza-

tion), a technique used for data augmentation [42]. The general task usually involves

predicting missing parts of the input. For example, consider the Transformer [43]

model, applied on text [44] and images [45]. The general task to train these trans-

former models is using SSL, where parts of the inputs are masked 9 and the model

is made to guess the missing portion. This model is then fine-tuned by re-training

on domain or task specific data, allowing the model to adapt well to a specific task,

such as Natural Language Generation (NLG) [46], without having to train it on large

corpuses from scratch.

A similar approach has been followed by the KG embedding research community,

which uses RepL techniques to generate embeddings for components of a KG. Instead

of predicting for the hidden or masked parts in the input, KG embedding models

are tasked to di↵erentiate between “positive” links that are present in the KG and

“negative” links that have been generated, through randomized procedures [47]. This

8Generalization refers to the model’s ability to adapt properly to new, previously unseen data,
drawn from the same population as the one used to create the model. https://developers.google.
com/machine-learning/crash-course/generalization/

9With respect to language, a few tokens are left “blank” [MASK] in the input

20

https://developers.google.com/machine-learning/crash-course/generalization/
https://developers.google.com/machine-learning/crash-course/generalization/

di↵erentiation is generally done through classification or learning to rank approaches.

In the last section in this chapter, we discuss KG embeddings in detail and describe

the di↵erent baselines used in HOPLoP experiments.

2.3.3 Reinforcement Learning

Reinforcement Learning (RL) is a type of ML where the algorithm is provided feed-

back in the form of rewards. RL algorithms aim to maximize the cumulative rewards

it receives from an environment. Given a mathematical function that observes the

environment and outputs an action, RL algorithms optimize their underlying math-

ematical model to, sequentially, take actions that would maximize the cumulative

rewards received at the end of the episode. RL is similar to SL in the sense that

both types of algorithms require a feedback from the environment. However, in SL,

this feedback is immediately generated by an objective function whereas, in RL, the

feedback, in the form of a reward, is received at the end of an episode 10.

In the context of multi-hop LP, RL, in recent times, has received special atten-

tion, since it has helped mitigate skewed node degree issues, enabling multi-hop LP

algorithms to e�ciently traverse large and noisy KGs [48–50]. In the next chapter,

we will dive deeper into multi-hop approaches for LP. Specifically, we discuss both

SL and RL approaches for multi-hop LP, highlighting modeling improvements in the

literature, such as the switch from SL to RL for multi-hop reasoning.

2.4 Gradient Descent

Gradient Descent (GD) [29] is a simple algorithm at the core of many artificially

intelligent systems [51]. GD is used to train the underlying mathematical model of

several ML algorithms to perform a task, which is defined in terms of an objective

10An episode is one sequence of states, actions and rewards, ending at a terminal state. State:
Describes the current situation the RL algorithm is in, whose actions, within that environment, is
determined by a mathematical model.

21

function. In ML, we aim to create a predictive function. GD allows us to find 11 a

function that performs the required task, such as input-output mapping, which may

be expressed by a mean square error function, depending on the task. We will refer

to the term “objective function” as a function to be optimized, and refer to the term

“error function”, “cost function” or “loss function” as a function to be minimized.

Note that optimized could refer to the objective of maximizing, as done in RL, or

minimizing, as done in SL. Given a dataset containing examples of input and output

pairs, a parameterized di↵erentiable function and an objective, expressed as an error

function, GD attempts to find optimal parameter values that satisfies the objective,

by reducing the error. Before delving further into GD, we shall explain what gradients

are.

Derivatives and their Gradients

A derivative of a di↵erentiable function 12 is a function that takes a point in space as

input to calculate the slope, or the gradient, of the function at that point. Through-

out this thesis, when we refer to a derivative of a function, we refer to its partial

derivative, as opposed to its total derivative 13. Given any di↵erentiable function

f(x), its derivative function with respect to the variable x is f 0(x) = @
@x(f(x)) and its

gradient at a point x0 is rxf(x0) =
@(f(x))

@x (x0). The gradient is a vector representing

the direction and rate of fastest increase of a function. If the gradient vector is non-

zero, the direction of the gradient 14 is the direction in which the function increases

most quickly from x0, and the magnitude of the gradient is the rate of increase in

that direction. GD uses this gradient vector to “move”, or update, the parameter

11GD assumes that the function has a constant sequence of di↵erentiable computations. This
is usually determined by the practioner, although recent years have witnessed growth in Neural
Architecture Search (NAS) [52] methods. GD tunes the parameter values of the function such that
the function satisfies the objective.

12https://en.wikipedia.org/wiki/Di↵erentiable function
13The di↵erence is that a partial derivative with respect to some variable x treats all other variables

as constants https://en.wikipedia.org/wiki/Total derivative
14The direction of a vector can be visualized as a line starting from the origin 0 2 RD to the point

represented by the gradient vector rxf(x0) 2 RD

22

https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/Total_derivative

values of the model towards a local minima of an error function in the direction of

steepest descent.

2.4.1 Regression using Gradient Descent

Regression refers to a function that maps inputs to corresponding required outputs.

During the training phase, the parameters of the regression function are tuned using

GD. Given a dataset for SL, a mapping or regression function and an objective, we

can proceed to tune the parameters of the function using GD. Detailed description

of GD and it’s variants is available in Appendix A.1. The GD approach for training

regression models proceeds as follows:

Algorithm 2 Training a regression model using GD

Input: Dataset D = {..., (xi, yi), ...}, Regression function F , Error function E,

Learning rate µ, Initial Parameters ⇥(t=0)

⇥(t)
 ⇥(t=0);

Repeat:

(xi, yi) ⇠ D; . Sample one data-point

r⇥E(F (xi,⇥(t)), yi)
@(E(F (xi,⇥(t)),yi))

@⇥ (⇥(t)); . Calculate gradients

⇥(t+1)
 ⇥(t)

� µ⇥r⇥E(F (xi,⇥(t)), yi); . Update parameters

Until convergence; . Time-step increments by 1

Return ⇥(t);

Linear Regression

The Linear Regression (LR) is a simple regression model, which captures the linear

relationship between the inputs and the outputs. A LR function is parameterized by

a vector of weights; one weight parameter for each feature in the input and one bias

parameter. The LR function can be given as follows:

23

LR(x,⇥) = ⇥0 +
DX

d=1

xd ·⇥d

=
DX

d=0

xd ·⇥d

= x~ ·⇥~

(2.1)

where x is an input vector with x0 = 1, D is the input dimensionality, and ⇥0

represents the bias term and ⇥1..D is the vector of weights for LR. To train a LR

function, the most common choice for the error function is the mean squared error,

given as follows:

MSE(ŷ, y) =
1

N

D0X

d=1

(ŷd � yd)
2 (2.2)

where N is the size of the dataset, D0 is the output dimensionality, y is required

output vector and ŷ = LR(x,⇥) is the predicted output vector.

Logistic Regression

Logistic regression (LogR) is similar to LR, which has been modified to fit the clas-

sification setting. The aim is to model a probability function, which outputs values

between 0 and 1, to predict whether a data-point belongs to a particular class of

objects. Similar to LR, the LogR function can also be parameterized by a vector of

weights and is given as follows:

LogR(x,⇥) = �(LR(x,⇥)) (2.3)

where � represents the sigmoid function that squashes the result from LR between

0 and 1. To train a LogR function for classification, a common choice for the error

function is the binary cross-entropy function, given as follows:

BCE(ŷ, y) = �
1

N

D0X

d=1

yd ln ŷd + (1� yd) ln (1� ŷd) (2.4)

where ln represents the natural logarithm and ŷd = LogR(x,⇥) is the predicted,

generally probability value for the input vector. Although the MSE function can

24

be used for the classification setup, it often leads to poor convergence results. This

is because the MSE function applied on a “sigmoid-squashed” function 15 leads to

exponentially, with respect to number of features, many local minimas [53].

2.5 Backpropagation and Deep Learning

The current Deep Learning (DL) paradigm employ neural architectures, in conjunc-

tion with optimization objectives and a learning algorithm [61], to achieve SOTA

performance on various tasks [62]. The workhorse of this paradigm is the Back-

Propagation (BP) algorithm [63], which can be viewed as GD with e↵ective caching

[29], applied on a chain of di↵erentiable operations. A major advantage of using the

DL paradigm is automatic feature engineering, i.e., the ML algorithm can automati-

cally extract important features from raw inputs such as images or text. In this work,

when we refer to “backpropagation”, we refer to the GD-based Backpropagation al-

gorithm [63], as opposed to the Zeroth Order Relaxed Backpropagation (ZORB) [64],

which does not require gradients, loss function selection and hyperparameter tuning

to e�ciently train neural architectures 17. Before delving into GD-based BP, we need

to introduce NNs.

2.5.1 Neural Networks

Neural Networks (NNs), based on a collection of connected units or nodes called

artificial neurons [61], are di↵erentiable mathematical functions capable of model-

ing complex, non-linear relationships between the input and target features. Non-

linearity is achieved through the use of non-linear activation functions at each layer,

which projects an input to a higher dimensional non-linear space. A neural network is

termed “deep” if it has more than 1 hidden layers where the layers may be customized

15Output values for sigmoid-squashed functions are in the range (0, 1).
16Slope of a line is given by tan(⇥) where ⇥ is the angle between the error axis and the gradient

direction. https://en.wikipedia.org/wiki/Slope
17In theory, HOPLoP should be compatible with ZORB, but due to ZORB’s immaturity (https:

//github.com/varunranga/zorb), we do not experiment HOPLoP on this algorithm.

25

https://en.wikipedia.org/wiki/Slope
https://github.com/varunranga/zorb
https://github.com/varunranga/zorb

Figure 2.2: (Best viewed in color) Illustration of a non-convex error function surface;
image taken from [53]. GD moves the parameter values towards the local minima
of the error function. As the arrows indicate, the weights are updated such that
the error function moves towards the local minima. The ball represents the error
caused by weights at that time. The color gradient from red to yellow represents
the change in time step, i.e., time moves forward as the color of the ball changes
from red to yellow. The color of the ball also represents the gradient at that time.
Usually, we observe that as the system is trained more, naturally consuming more
time, the gradients decrease. Darker colors signify high gradient values and lighter
colors signify low gradient values. GD can be susceptible to undesirable stationary
points, such as saddle points. Saddle points are analogous to plateaus on the error
surface. As seen in the figure, the slope at the saddle point, i.e. the gradient, is
tan(0) = 0 16, which does not provide GD with information about the curvature of
the error function or the direction to move the weights towards. This inhibits vanilla
GD from finding a local minima. Several modifications have been proposed to the
update rule [54–60], in order to speed up or stabilize training.

26

x0

x1

x2

x3

Input
layer

h
(1)
0

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

Hidden
layer 1

h
(2)
0

h
(2)
1

h
(2)
2

h
(2)
3

Hidden
layer 2

ŷ0

ŷ1

ŷ2

Output
layer

Figure 2.3: (Best viewed in color) Illustration of a Fully-Connected Neural Network
(FCNN) with 3 input neurons and 2 hidden layers, each non-linearly activated with
4 and 3 neurons respectively. The output layer contains 2 output neurons. Yellow
nodes represent the ‘1’ input for the bias term; Green nodes represent real-valued
inputs; Purple nodes represent hidden neurons; Red nodes represent output neurons;
Each directed edge represent a weight between 2 neurons. We maintain this color
scheme throughout.

for specific tasks, such as Recurrence for sequences (see Section 2.5.2, Convolutions

for images [65, 66]). In this work, we term a single-(hidden)-layered fully-connected

neural network as an Artificial Neural Network (ANN) 18. The performance of neural

networks are backed by the Universal Approximation Theorem [67] and the develop-

ment of parallelized computation.

To intuit BP, let us consider a simple feed-forward neural network with H hidden

layers 19, each layer l having Ul neurons, each layer activated by function fl, which

accepts input xi = [..., xij, ...] 2 X is an input vector and output yi = [..., yij, ...] 2 Y

is a required output vector. This neural network function can be represented as:

18This will result in H hidden layers and 1 output layer to a total number of layers L = H + 1.
19See footnote 18.

27

NN(X) = fL(hL�1WL)

= fL(fL�1(hL�2WL�1)WL)

= ...

= fL(fL�1(...(f1(XW1)W2)...WL�1)WL)

(2.5)

where Wl 2 R(Ul�1+1)⇥Ul are matrices representing a neural layer and U0 = D is the

dimension of each input vector. For simplicity, we model the bias term by adding a

row of weights in weight matrices Wl and concatenating the input with a column of

1s. We refer to each Wl as a “neural layer”.

Alternatively, we need not explicitly model the bias term. Through normal-

ization [68], the bias term is eliminated (see Appendix A.5). This comes at the

cost of computation, since normalization of data before a layer is more expensive

(O(NM), N : data batch size,M : number of features), than addition of the bias

vector (O(M)), or multiplication of a vector with ones (O(1)).

Backpropagation Algorithm

Although GD can be applied to any di↵erentiable function, it is very ine�cient if

the function is complex. This ine�ciency arises from repeated gradient calculations

in each update step. The Back-Propagation (BP) algorithm [63] extends GD for a

computational graph 20. The idea involves storing the “partial gradients” at each

layer to be reused while calculating the gradients for other layers. We present the

derivation of the BP algorithm on a simple feed-forward neural network in appendix

A.6.

In general, for most deep neural architecture, the partial gradient �L for the output

layer L is:

20https://www.tutorialspoint.com/python deep learning/python deep learning computational
graphs.htm

28

https://www.tutorialspoint.com/python_deep_learning/python_deep_learning_computational_graphs.htm
https://www.tutorialspoint.com/python_deep_learning/python_deep_learning_computational_graphs.htm

�L / (NN(X)� Y) (error made)

/
@

@OL
fL(OL) (derivative of activation function at output layer)

(2.6)

and the partial gradient �l for a hidden layer l is:

�l / �l+1 (partial gradient from upper layer)

/ W T
l+1 (transpose of weight matrix of top layer)

/
@

@Ol
fl(Ol) (derivative of activation function at current layer)

(2.7)

To arrive at the actual gradient, we need to multiply the partial gradients �l of

a layer l with the input to that layer hl�1, which is already computed during the

forward propagation stage. Upon obtaining the gradient, GD is used to update the

parameters. See appendix A for a detailed derivation of BP and the derivatives of

activation functions.

2.5.2 Recurrent Neural Networks and Backprop Through
Time

h
(0)
1

h
(0)
2

h
(0)
3

h
(0)
4

Hidden layer
t(0)

x(0)
0

x(0)
1

x(0)
2

x(0)
3

Input layer
t(0)

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

Hidden layer
t(1)

x(1)
0

x(1)
1

x(1)
2

x(1)
3

Input layer
t(1)

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

Hidden layer
t(2)

x(2)
0

x(2)
1

x(2)
2

x(2)
3

Input layer
t(2)

ĥ1

ĥ2

ĥ3

ĥ4

Hidden repr.
after 3 inputs

Figure 2.4: (Best viewed in color) Illustration of a vanilla RNN, containing 3 input
neurons and 4 hidden neurons, unrolled upto 3 time-steps. Gray nodes represent
the hidden state representation of the RNN after processing the input sequence of
vectors. In this diagram, the number of hidden units is 4 and the input dimension at
each timestep is 3. At each time step, the concatenation of the input vector and the
hidden state representation is used to generate a new hidden state representation.

29

Recurrent Neural Networks (RNNs) [63, 69] are a class of deep neural networks

that learn to model temporal dynamic behaviour by utilizing an internal memory

component that stores the state of the network. In vanilla RNNs, as illustrated in

figure 2.4, a neural layer, activated by the tanh function, models the temporal dynamic

behaviour of a sequence of data-points in the dataset. At each time-step, the RNN

is provided with an input vector x(t)
i , which is concatenated with the current hidden

state of the RNN, represented as ht�1, and sent to the tanh-activated neural layer to

form a new hidden state:

h(t) = tanh(Wh ⇥ [x(t)
i ;h(t�1); 1]) (2.8)

where [.; .] signifies the concatenation operation. This hidden state vector h(t) can

be viewed as an embedding that represents the sequence of vectors [x(1)
i , ..., x(t)

i]. At

each step, h(t) may be used to generate an output y(t)i at time-step t, using another

neural layer Wo:

y(t)i = Wo ⇥ [h(t); 1] (2.9)

For optimization purposes, RNNs are often unrolled into a feed-forward NN during

implementation. For example, assuming a maximum sequence length of T , a RNN

is unrolled to a feed-forward NN with T hidden layers This feed-forward NN takes

input [x(1)
i ;h(0) = [0 2 RD]] and outputs the final representation of the sequence of

input vectors h(T)
2 RD. Weights Wh are shared at each hidden layer l and input x(l)

i

is concatenated with the hidden representation of the sequence h(l�1) to produce a

new hidden representation of the sequence h(l). RNNs are optimized using the Back-

Propagation Through Time (BPTT) algorithm, which can simply be viewed as the

GD-based BP algorithm applied on an unrolled RNN.

Due to problems such as vanishing and exploding gradients [70], vanilla RNNs have

been superseded by gated networks such as Long Short Term Memory (LSTM) [71]

30

and Gated Recurrent Unit (GRU) [72]. Gates allow recurrent networks to “choose”

the information that should be add to or taken from the hidden state representation.

LSTM networks, which has been successfully applied for a variety of sequence related

problems, learn to ignore noisy temporal patterns while paying a soft-attention to

important patterns of the sequence, making them more powerful that vanilla RNNs.

For this reason, we parameterize HOPLoP with an LSTM, but conceptually, a vanilla

RNN would su�ce. Figure 2.5 illustrates the connections within 1 time-step of an

LSTM layer.

31

C
(t�1)
1

C
(t�1)
2

C
(t�1)
3

C
(t�1)
4

Cell state
(t � 1)

h
(t�1)
1

h
(t�1)
2

h
(t�1)
3

h
(t�1)
4

Hidden state
(t � 1)

x(t)
0

x(t)
1

x(t)
2

x(t)
3

Input layer
(t)

f
(t)
1

f
(t)
2

f
(t)
3

f
(t)
4

Forget state
(t)

⇥1

Multiply

i(t)1

i(t)2

i(t)3

i(t)4

Input state
(t)

C̃
(t)
1

C̃
(t)
2

C̃
(t)
3

C̃
(t)
4

Candidate
values
(t)

⇥1

Multiply

+1

Add

C
(t)
1

C
(t)
2

C
(t)
3

C
(t)
4

Cell state
(t)

o(t)1

o(t)2

o(t)3

o(t)4

Output state
(t)

⇥1

Multiply

ĥ
(t)
1

ĥ
(t)
2

ĥ
(t)
3

ĥ
(t)
4

Hidden repr.
after t inputs

Figure 2.5: (Best viewed in color) Illustration of the connections in 1 time-step of a LSTM layer. Cd refers to the cell
state, fd denote neurons for the forget gate, id denote neurons for input gate, C̃d denote neurons for the candidate input
values, and od represent neurons for the output value. For a comprehensive explanation of LSTMs, please refer to https:
//colah.github.io/posts/2015-08-Understanding-LSTMs/.

32

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

2.6 Knowledge Graph Embeddings

KG embedding algorithms are SSL algorithms that learn to map discrete objects, such

as entities and relationships, to their corresponding vector representations. These al-

gorithms aim to model the existence of a link in a KG. To avoid confusion, when we

refer to KG embedding “model”, we talk about the KG embedding algorithm’s un-

derlying mathematical scoring function 21; when we refer to KG embedding “space”,

we talk about the space of tensors that captures the latent structure of the KG [24],

distributed over the representations for each component in the KG. Given a link,

represented by the triple (es, r, et), a KG embedding model takes as input es~ , r~, et~ ,

and computes a score representing the likelihood that the given link exists in the

KG. This is a non-trivial task, since a KG contains only positive examples of links.

This requires us to generate negative examples. For example, we can generate a

negative link (JamesCameron, DirectsGenreOfMovies, Comedy) from the positive

link (JamesCameron, DirectsGenreOfMovies, ScienceFiction) by replacing the

target entity ScienceFiction with another target entity Comedy, such that the re-

sultant link does not exist in the graph. A practitioner may generate a static set of

negative examples, as done by Xiong et al. [48], or may generate negative examples

while training the model, as done by Bordes et al. [21]. Intuitively, KG embedding

models are trained to distinguish between positive and negative examples of links.

By doing so, the gradients used to train the parameters of the scoring function are

backpropagated to update representations for the components of a link. It can be

seen that the structural information required to predict whether a link exists in the

KG is distributed over all parameters of the KG embedding model [24]: parameters

that represent each component in the KG and parameters for the scoring function.

These representations can be later used to power downstream tasks such as question

answering and automated reasoning, or even KBC as done by HOPLoP.

21This includes a mapping and an objective function

33

2.6.1 From the perspective of a neural network

A simple way to represent any object as a vector is through one-hot encoding. For

example, let us assume JamesCameron is the 450th entity discovered by the KBP

system. The system has discovered a total of 15,000 entities. In the one-hot encoding

scheme, JamesCameron would be represented as a sparse vector, in which the 450th

element is 1 while the rest of the elements are 0. Therefore,

OneHotEncoding(JamesCameron) =
h
0 ... 0 1 0 0

i
where the one-hot

vector is in R1⇥|E|. One can quickly realize that the size of this vector scales linearly

with the number of entities, i.e., the size of this vector will increase by 1 if the KBP

system discovers a new entity. This exacerbates the curse of dimensionality [73],

requiring more data-points to achieve optimal performance.

Taking inspiration from neural networks, a simple approach to reduce the dimen-

sionality used to represent the object would be to pass the one-hot encoding through

a neural layer consisting of number of neurons significantly lesser than the number of

objects. This neural layer is represented as a matrix W 2 R(|E|+1)⇥D where |E| repre-

sents the number of entities, +1 signifies a bias vector, D is the final dimensionality

of the vector representing the object. Continuing our JamesCameron example, this

computation can be shown as follows:

Embedding(JamesCameron) =

2

6666666666666666666664

0

...

0

1

0

...

...

0

1

3

7777777777777777777775

T 2

6666666666666666666664

w(1,1) w(1,2) w(1,D)

...

w(449,1) w(449,2) w(449,D)

w(450,1) w(450,2) w(450,D)

w(451,1) w(451,2) w(451,D)

...

...

w(15000,1) w(15000,2) w(15000,D)

b(1) b(2) b(D)

3

7777777777777777777775

(2.10)

34

where w(i,j) and bk is the weight and bias parameter values of the neural layer. It can

be observed that a row i in the weight matrix W is a vector representing the entity

i. Since the one-hot encoding for JamesCameron is a sparse vector, where all but one

elements are 0, calculating the embedded representation for JamesCameron can be

simplified:

Embedding(JamesCameron) =
h
w(450,1) w(450,2) w(450,D)

i
+
h
b(1) b(2) b(D)

i

(2.11)

In the example, vector
h
w(450,1) w(450,2) w(450,D)

i
from the weight matrix

partially represents the entity JamesCameron, while the vector
h
b(1) b(2) b(D)

i

represents the bias terms for each of D neurons in the neural layer. Therefore,

instead of multiplying a one-hot vector with a matrix, which is computationally

very expensive, neural layers such as the embedding lookup layer 22 extracts the

row of a matrix given the row number, which is usually an ID used to reference

the required object. To completely represent the entity JamesCameron via the vec-

tor
h
w(450,1) w(450,2) w(450,D)

i
, we would like to eliminate the bias vector, i.e.,

h
b(1) b(2) b(D)

i
= 0 2 RD. As mentioned in the previous section, this is accom-

plished by l2-normalizing the rows of the weight matrix, which is followed by almost

all KG embedding models. This implicitly models the bias, which is distributed

amongst the weight parameters of the matrix. After l2-normalization, the resultant

embedding for JamesCameron can be given as follows:

Embedding(JamesCameron) =

h
w(450,1) w(450,2) w(450,D)

i

q
w2

(450,1) + w2
(450,2) ++ w2

(450,D)

(2.12)

By eliminating the bias term 23, we now arrive at an embedding for JamesCameron

22https://www.tensorflow.org/api docs/python/tf/nn/embedding lookup
23Alternatively, we can choose not to model the bias terms, but this new model without the bias

terms can be viewed as a subset of the previous model with bias terms since, a function f(x) = xW

can be modeled by another function g(x) = xW + b, where b = 0. But, it is not possible to model
function g(x) using function f(x) for any value b 6= 0, making f(x) a subset of g(x).

35

https://www.tensorflow.org/api_docs/python/tf/nn/embedding_lookup

that fully describes the entity JamesCameron. By controlling the dimensionality D

of the resultant embeddings, these models tend to generalize to unseen links of the

KG [20]. The resultant embedded representation of the KG, modeled by the vector

representations for components of the KG and the scoring function, is more-complete

but less accurate than the discrete KG [17].

We believe that the performance in multi-hop LP can be improved if it is not

restricted by the links in the discrete KG. To verify our hypothesis introduced in

chapter 1, we use KG embedding models to create an embedded space that can be

traversed by HOPLoP. We experiment with three KG embedding models: TransE

[21], ComplEx [74], and TuckER [75].

2.6.2 TransE

Bordes et al. [21] introduced TransE, which is the first and the most competitive

translational distance KG embedding model [76]. Given a link (es, r, et), TransE

views the relation r as a vector which maps, via vector addition or translation, from

the source entity es to the target entity et in the vectorial space, i.e., et~ ⇡ es~ + r~.

The idea behind TransE is that, if we are at the source entity, expressed by point

es~ , and if were to move by r~, we should reach the required target entity, represented

by et~ ⇡ es~ + r~. Therefore, the closer es~ + r~ is to et~ , it is more likely that the link

(es, r, et) exists in the KG. The score for a link is given by: �⌃D
d=1(esd~ +rd~ �etd~)2 where

d is the dimension of entity and relation embeddings and i represents the position

of an element in the vector. Since (esd~ + rd~ � etd~) represents a distance metric, the

negative sign promotes the intuition that links scored or ranked higher are more likely

to be present in the KG. During the training phase, TransE is given a positive link

(es, r, e
+
t) and a negative link (es, r, e

�
t). TransE uses a margin-based loss function to

update the embeddings for es, r, e
+
t , and e�t such that, es~ + r~ is closer to the correct

target entity e+t
~ than the incorrect target entity e�t

~ . If the predicted score for a given

positive link is higher, by a pre-defined margin �, than the predicted score for the

36

corresponding negative link, the margin-based loss function returns 0, assuming no

errors from TransE’s perspective.

Given a relation r1�M of type 1-M 24, one can realize that es~ +r1�M~ cannot represent

multiple entities that are linked from es via the relation r1�M . This can be viewed

as a mode collapse [77, 78], where the vector es~ + r1�M~ represents the average of

all correct target entities that complete the incomplete link (es, r1�M , ?), such that

the link exists in the KG. Therefore, TransE does not perform very well on complex

relation types [21].

Another underlying assumption made by TransE is that all entities and relations

lie on the same plane. We use this to our advantage by allowing HOPLoP to traverse

over the TransE embedding space, where both entities and relations are represented.

We compare HOPLoP(TransE)’s translational vectors with vector representations of

entities and relations in the same plane, allowing us to interpret it’s traversed path

(see Chapter 6).

2.6.3 ComplEx

A binary tensor representation of a KG is a 3D tensor in R|E|⇥|R|⇥|E|, where the value at

the any index (i, j, k) corresponds to the truth value of the link (ei, rj, ek). E represents

the set of entities,R represents the set of relations, |.| represents the “size of” operator.

The binary tensor representation of the KG is very large to store and continues to

su↵er from the incompleteness problem. Therefore, tensor factorization models [79],

such as RESCAL [25] and DistMult [80], learn to decompose this binary tensor in

an attempt to compress the KG while generalizing to unseen facts. Trouillon et al.

[74] introduced ComplEx, which extends DistMult to improve asymmetric relation

modelling. ComplEx represents each components of the KG using both real and

complex valued parameters. The scoring function is based on the dot function for

complex numbers 25. The goal is to minimize the real part of the dot product of a

24Connects 1 source entity to (M)any target entities
25https://en.wikipedia.org/wiki/Dot product#Complex vectors

37

https://en.wikipedia.org/wiki/Dot_product#Complex_vectors

Figure 2.6: Softplus (Left) and ReLU (Right) function visualization taken from
Aceves-Fernandez et al. [81].

embeddings for a link es~ · r~ · et~ such that, positive links result in a lower dot product

value than negative links:

E([es~
+; r~; et~

+], [es~
�; r~; et~

�])

= Softplus(�y · score(es, r, et))
(2.13)

where E refers to the error function, y 2 {+1,�1} is the label assigned for the link

and score is given by:

score(es, r, et) = Re(< es~ , r~, et~ >) (2.14)

where (.)~ := (.)~
+
if y = +1 else (.)~ := (.)~

�
, := is the assignment operator and et~ is the

vector representing the complex conjugate of et.

The Softplus function, often viewed as a “smooth”-Rectified Linear Unit (ReLU)

26, is: Softplus(x) = ln(1 + exp(x)) compared to ReLU(x) = max(0, x).

The training process, via backpropagation, aims is to find embedding values, such

that the error reduces. To reduce errors, BP will tune the parameters such that,

scores for links tend towards �1. Entities represented in the real number space has

di↵erent latent properties compared to entities represented in the complex number

space. By enabling the representation of real and imaginary numbers, entities can

26https : / / software . intel . com/ sites / products / documentation / doclib / daal / daal - user - and -
reference-guides/daal prog guide/GUID-FAC73B9B-A597-4F7D-A5C4-46707E4A92A0.htm

38

https://software.intel.com/sites/products/documentation/doclib/daal/daal-user-and-reference-guides/daal_prog_guide/GUID-FAC73B9B-A597-4F7D-A5C4-46707E4A92A0.htm
https://software.intel.com/sites/products/documentation/doclib/daal/daal-user-and-reference-guides/daal_prog_guide/GUID-FAC73B9B-A597-4F7D-A5C4-46707E4A92A0.htm

behave di↵erently based on their role (subject or object) in a fact. During the testing

phase, the negative of the score is used to rank candidate entities for LP. Links that

result in lower scores are considered more likely to be true.

2.6.4 TuckER

TuckER [75] is a fully expressive bilinear tensor factorization model based out of the

Tucker decomposition [82]. It looks to decompose the binary tensor representation

of the KG into a set of matrices and a small core tensor. The score for a link is

computed using the embeddings for the link (es, r, et) and another 3D tensor that

learns to combine the embeddings such that TuckER produces a higher score for

positive links. The score function is given as:

score(es, r, et) = W ⇥1 es~ ⇥2 r~ ⇥3 et~ (2.15)

where W is the core tensor and ⇥i indicates the tensor product along the ith mode.

The score is then treated similar to the output of a multiple logistic regression model,

i.e., a score for each possible target entity is squashed by the sigmoid function and

TuckER minimizes the binary cross-entropy loss. TuckER is fully expressive 27 and

achieves SOTA performance in LP [75].

27Given any ground truth over the triples, there exists an assignment of values to the entity and
relation embeddings that accurately separates the true triples from false ones

39

Chapter 3

Related Work: Multi-hop
algorithms for Link Prediction

3.1 Supervised Learning with PRA and its succes-
sors

Introduced by Lao et al. [23], the Path Ranking Algorithm (PRA) is the first to

tackle multi-hop link prediction. It uses intuition from PageRank [83] which we

explain briefly, since it forms the basis for random walking.

3.1.1 PageRank

PageRank is a simple yet highly e�cient 1 algorithm based on a recursive definition:

Pr
t+1

= Q⇥ Pr
t

(3.1)

where Prt 2 R|E| is the current probability distribution over entities at time-step t and

Q is the transition matrix of the graph, which is a 2D matrix in R|E|⇥|E|. In matrix

Q, higher values signify a higher likelihood of transitioning from one node to another.

At t = 0, Prt=0 is a one-hot vector representing the source node 2. Upon convergence,

1It is also known as the “trillion dollar algorithm” https://en.wikipedia.org/wiki/PageRank
2During implementation, the input vector need not be one-hot. A binary input vector may

represent multiple source nodes. For didactic purposes, we proceed to explain PageRank with only
one source nodes. However we can initialize the distribution over multiple source nodes, and, if
the adjacency matrix is ergodic https://en.wikipedia.org/wiki/Ergodic theory, the process always
converges.

40

https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/Ergodic_theory

Prt=1 represents a distribution over the set of target entities. To illustrate this,

visualize a structure in which sinks behave as entities, and pipes that connect two

sinks can be viewed as the links of the graph. PageRank can be understood by posing

this question: “Consider you have sinks interconnected with pipes. If we pour 1 litre

of water in a particular sink, how much water will spread to other sinks?”. Similar to

PageRank is the Random-Walk with Restart (RWR) which has one extra component

called the “restart” probability. This component essentially indicates that for every

step taken in any direction, there is a probability associated in going back to the initial

starting position, which in our case is the source entity es. Equation 3.1 becomes:

Pr
t+1

= c(Q⇥ Pr
t
) + (1� c)os (3.2)

where c 2 (0, 1) is a hyperparameter that controls the probability of restarting, and os

is the one hot encoded representation of the source entity es. The restart term makes

sure that the PageRank distribution, at any time-step, is not distributed throughout

the graph. This biases the process to explore only a neighbourhood of the source

node.

3.1.2 Path Ranking Algorithm

Path Ranking Algorithm (PRA) tackles the entity prediction problem using a Random

Walk with Restart (RWR)-based inference mechanism [22] that ranks related target

entities. A single PRA model is trained to perform LP for a single relation of interest

in the KG. To avoid confusion with other relations in the graph, we interchangeably

call this relation of interest as our task. The set of relations of interest or tasks K ✓ R

is a subset of the relations in R. Given a set of source entities and pre-defined paths,

PRA performs a “weighted random walk” over all paths. During the training phase,

the weight associated with each path is tuned using GD, such that, paths that are

more likely to reach the required target entities will be scored or ranked higher, in

support of the task.

41

PRA uses bounded RWRs 3 to calculate the likelihood of reaching all entities after

traversing all pre-defined paths. To explain the “traversal” 4 process, let’s look at

this example: Let P be a random variable 5, representing the set of paths traversed

in the KG. Given a path p 2 P and p = DirectorOf ! Genre, PRA calculates a

distribution over all entities, such that, entities with high scores are more likely to be

related with the source entity. To calculate this distribution, PRA explores the graph

using RWR over each path. In our example, RWR requires the transition matrices

Qr for both relations DirectorOf and Genre:

Pr
t=0

(et|es, r, p) = os

Pr
t=1

(et|es, r, p) = c(QDirectorOf ⇥ Pr
t=0

(et|es, r, p)) + (1� c)os

Pr
t=2

(et|es, r, p) = c(QGenre ⇥ Pr
t=1

(et|es, r, p)) + (1� c)os

(3.3)

where Prt=i(et|es, r, p) is a distribution over all entities representing the probability

of reaching any entity from source entities es at time-step t = i. At t = 0, Prt=0 = os

and at t = H where H is the number of relations in the path, Prt=H(et|es, r, p) is

the final distribution over all target entities et upon traversing the path p. Each pre-

defined path is associated with a trainable likelihood parameter to perform a weighted

averaging of the RWR probabilities for each path. Once RWR inference is performed

on all paths, the resulting entity distributions are averaged by:

Pr(et|es, r) =
|P|X

p=0

⇥p ⇥ Pr
t=Hp

(et|es, r,Pp) (3.4)

where Prt=Hp(et|es, r,Pp) represents a RWR distribution, after traversing path Pp

of length Hp, over all entities in the graph and ⇥p represents the weight associated

with path Pp. During the training phase, the vector Pr(et|es, r), representing the

3RWRs are bounded by the relations in the path, i.e., the number of times the RWR inference
mechanism 3.2 is applied is determined by the path length, and each RWR inference step depends
on the relation to be traversed.

4Notice that, the RWR process, over all paths, can be pre-computed, emulating the act of traver-
sal.

5https://en.wikipedia.org/wiki/Random variable

42

https://en.wikipedia.org/wiki/Random_variable

distribution of links from source entities to the target entities via the relation r, is

compared against a ground truth vector that contains the correct target entities.

Through GD, PRA aims to reduce the binary cross-entropy error between the two

vectors. The error gradients are backpropagated to tune the weights associated with

each path. In the beginning, PRA would randomly traverse and expand nodes in the

graph. As GD tunes the weight parameter for each path, PRA starts to prefer paths

that have a higher probability of reaching the required target entities. At the end of

the training process, PRA can perform LP by traversing all pre-defined paths and

combining their RWR distributions in a weighted manner. The resultant vector gives

a distribution over all entities representing the likelihood that the relation of interest

r exists between the source entities and target entities.

The path weight can be viewed as a score to rank paths that support the task.

Paths that are scored or ranked high can be used as a “reasoning” path, to search for

equivalent paths and fill missing links. This provides an alternate approach to LP:

gather highly ranked paths, as deemed by PRA, and search for these paths in the

graph to predict the underlying relation.

Advantages PRA is an incredibly powerful reasoning tool, which learns to rank

“reasoning paths” higher amongst a set of pre-defined paths. This is done through a

supervised learning process: given source entities for a task and a set of pre-defined

paths, predict the existence of the relation of interest between the queries entity and

all other entities. Similar to training a classifier, PRA tunes the weights for each path

such that, the weighted entity distribution ranks positive target entities 6 higher than

negative target entities 7. Since all processes takes place over a discrete space, the

model is explainable. This was the first algorithm to promote explainable automated

reasoning that could operate over large-scale KGs.

6The relation of interest exists between the source and “positive” target entity.
7Similarly, the relation of interest does not, currently, exist between the source and “negative”

target entity in the KG.

43

Disadvantages Since PRA operates on the discrete KG, it is a↵ected by the KG

issues, specifically, skewed node degree caused by supernodes, incompleteness or miss-

ing links in the KG, semantically duplicate entities and relations [84, 85]. These issues

inhibit the traversal process by either, prioritizing supernodes disproportionately and

spuriously ranking them higher than correct target entities; or by, limiting the number

of links that can be traversed; or by, treating similar things di↵erently.

Di↵erences with HOPLoP HOPLoP inherently tackles relation prediction, whereas

PRA tackles entity prediction. HOPLoP does not require pre-defined paths nor tran-

sition probabilities between entities since traversals are performed in the continuous

space. During one training step, PRA requires all positive target entities, and as-

sumes all other entities to be “negative”. On the other hand, HOPLoP requires one

positive and one negative target entity, which may be hand-picked or automatically

generated. PRA’s reasoning process is explainable. Although we cannot explain the

reasoning behind HOPLoP’s LP score, we can interpret HOPLoP(TransE)’s reasoning

paths.

3.1.3 Path-RNN and Single-Model

Frameworks that followed PRA used continuous representations of the KG, which

helped the model understand the global structure of the graph [86]. Neelakantan et

al. [32] introduced Path-RNN to tackle relation prediction by reasoning about com-

position of binary relations connected in a path 8. Similar to PRA, one Path-RNN

model was used to model one relation. For a given task, Path-RNN uses PRA, in

a pre-processing step, to generate relational paths relevant to the task. To process

a traversed path, vector representations of relations were composed using a RNN,

RNNr(p). After “traversing” a path 9, the RNNr generates a vector representation

8In their paper [32], they refer to the compositing two relations as conjunction.
9The traversal is done by RNNr, which takes in a new relation at each step and “moves” to a

next state.

44

for that path, which is compared against the embedded representation for the under-

lying relation of interest. The dot product of the relation embedding and the path

embedding, generated by the RNNr, is squashed by a sigmoid function to output the

probability that relation r connects the source and the target entity:

Pr(R = r|P = p) = �(r~ ·RNNr(p)) (3.5)

Das et al. [31] introduced a multi-task framework called Single-Model that out-

performs Path-RNNs in relation prediction by introducing three modeling changes:

include entity type information at each step of the reasoning process; parameter shar-

ing within a Single-Model to reason about all relations of interest; using a LSTM over

RNN.

Di↵erences with HOPLoP HOPLoP does not acquire reasoning paths using PRA;

instead it learns to traverse the embedding space. Although both HOPLoP and Single-

Model use LSTMs, we do not explicitly provide entity type information. HOPLoP

acquires latent information from the structure of the embedding space, which may

contain entity type information [87–89]. Although we derive HOPLoP to reason about

one relation, we extend our formulation to reason about all relations of interest, using

M-HOPLoP.

3.1.4 Compositing KG Embeddings

Composition is the act of creating something new from the combination of two or

more objects. In the context of KGs, researchers have fine-tuned pre-existing KG

embeddings to encode structural information gained from traversal paths. They do

these through several di↵erent composition operations [90] or by taking advantage of

certain “composable” KG embeddings.

Guu et al. [20] tackles the entity prediction problem by introducing a novel com-

positional training objective that produces a structural regularization e↵ect in the

45

LP process. Following the previous methods, Guu et al. [20] used PRA to gener-

ate paths. Given pre-trained composable KG embeddings and paths that connect

source entities to target entities, their methodology involves fine-tuning embeddings

such that the composition of relations will represent the underlying relationship.

This is viewed as a form of structural regularization, since information about the

graph structure, captured by path traversals, is embedded into the representations

for components of the KG. For example, given a path DirectsGenreOfMovies =)

DirectorOf! Genre, Guu et al. [20]’s approach looks to fine-tune TransE such that

e~JamesCameron + r~DirectorOf + r~Genre ⇡ e~ScienceFiction. Similarly, their methodology is fol-

lowed to fine-tune RESCAL [25] KG embeddings: MGenre⇥MDirectorOf⇥e~JamesCameron ⇡

e~ScienceFiction whereMr is a function, in matrix form, that models the relation r. They

also fine-tune DistMult [80] KG embeddings and modify the loss function in a similar

manner: Softplus(�y · (e~JamesCameron ⇥ r~DirectorOf ⇥ r~Genre ⇥ e~ScienceFiction)) 10.

PTransE developed by Lin et al. [90], was a parallel study on the compositionality

of KG embeddings. They investigate the compositionality of TransE, and how to

incorporate path information. They introduce a novel scoring function that called

Path-Constraint Resource Allocation (PCRA) 11, to account for the probability of

reaching the target entity from the source entity via any of the pre-defined paths.

They experiment with the composition in the scoring function, by replacing addition

with multiplication and RNN, and found that addition works best on the TransE

space.

Di↵erences with HOPLoP These methods explicitly require paths to be fed into

their model, whereas HOPLoP does away with this requirement and searches for paths

on its own. Their approach looks to re-train KG embeddings to provide a form of

10Notice that this loss function is very similar to ComplEx. Similar to how DistMult performs
multiplication of real vectors, ComplEx perform multiplication of complex vectors, but keeps only
the real part.

11This algorithm is similar to PageRank.

46

structural regularization or train from scratch, whereas HOPLoP utilizes separate neu-

ral architectures that learns to traverse over a pre-existing embedding space. These

approaches are only compatible with composable KG embeddings such as RESCAL

[25], DistMult [80] and TransE [21], whereas HOPLoP can work with any KG embed-

ding method.

3.1.5 Highlights

Approaches that trained models in a supervised fashion over paths collected using

PRA were a↵ected by large fan-out areas caused by certain entities known as supern-

odes [91], making the LP process ine�cient [48]. In contrast, the HOPLoP framework

does not utilize PRA to collect relational paths. Instead, it learns to traverse an

embedded representation of the KG on it’s own. It does so by modifying the vector

representation for the source entity such that, at the end of the traversal process, the

resultant embedding is equal to the target entity embedding, thereby “reaching” the

target entity. By treating every point in space equally, HOPLoP’s traversal process

isn’t a↵ected by supernodes and their skewed node degrees.

3.2 Reinforcement Learning with DeepPath and
its successors

To overcome the bottleneck caused by supernodes, successor approaches sought out

techniques from Reinforcement Learning (RL) [92]. Xiong et al. [48] introduced Deep-

Path, which is the first algorithm that applies RL for KBC. DeepPath tackles relation

prediction by learning to traverse the graph such that, the path taken by the RL

agent expresses the underlying relation. Similar to PRA and Path-RNN, one Deep-

Path model is trained to model one relation. The training phase is broken down into

two parts. The first involves training the mathematical model of the RL algorithm

using Supervised Learning (SL) and paths collected by a Breath First Search (BFS)

procedure. During the second phase of training, DeepPath uses REINFORCE [93], a

47

RL algorithm, to e�ciently search for paths, based on a reward function that takes

into account the accuracy, diversity and e�ciency of a traversed path. The KG envi-

ronment operates on a discrete KG and provides the agent with rewards, which the

RL algorithm aims to increase. The RL agent, parameterized as a 2-layered ReLU-

activated neural network, takes as input the embedded representation of its current

position ec (current entity) and direction to move towards, expressed. by the vector

(et~ � ec~). At each time-step, the RL agent outputs the relation to traverse, which

is used by the environment to discretely search for the “next-hop” entity. Once the

DeepPath model has been trained for a particular relation, it traverses the KG from

the source entity to the target entity. The path used to traverse the graph is the

compared against the set of paths DeepPath finds during the training phase.

Das et al. [49] introduced MINERVA, which uses RL to tackle the entity prediction

task. Their model utilizes a policy network that finds a path that connects the source

entity with a target entity such that the underlying relation of interest is expressed.

Rather than choosing only a relation at each time-step, MINERVA can choose a

specific link, involving a relation and next-hop entity. Rather than pretraining the

RL model using SL, MINERVA is an “only-RL” solution that uses a LSTM network

to generate a path embedding at each step. This path embedding is sent to a NN

model to predict the link to traverse at that time-step. MINERVA’s environment

uses the discrete KG to search and extend the path towards the target entity. Since

MINERVA assigns a constant reward of +1 to all paths that reach the required target

entity, it ignores the quality of the path [50, 84].

To improve the quality of traversed paths, Lin et al. [50] introduced a reward

shaping strategy that gives a reward of +1 if the agent reaches the correct target

entity; but if the agent did not reach the correct target entity, the reward was a

function of a pre-trained KG embedding model. This ensures that the RL agent is

not spuriously penalized for predicting links that are not present in the KG. The

underlying assumption is that the KG embedding method is more complete than the

48

discrete KG and contains information about links that are not present in the discrete

KG. Shen et al. [94] introduced a general graph traversal algorithm called M-Walk

and applies it in the context of KBC. M-Walk employs a RNN network and Monte

Carlo Tree Search (MCTS) guiding the search to pick entities that help the agent

move towards the target entity.

3.3 Variational Inference for multi-hop LP

Ranganathan et al. [78] describe two phases in the multi-hop link prediction pro-

cess: Path-finding and Path-reasoning. Path-finding is the process of searching for

a sequence of entities and relations that connect two entities. Path-reasoning is the

process of evaluating whether a traversal path represents an underlying relationship.

Approaches prior to Chen et al. [84] did not facilitate adequate interactions between

the two phases of multi-hop LP.

For example, DeepPath and MINERVA can be interpreted as enhancing the Path-

finding step while compositional reasoning [31, 32] algorithms can be interpreted as

enhancing the Path-reasoning step. DeepPath is trained to find paths more e�ciently

between two given entities while being agnostic to whether the link exists between the

two entities. MINERVA learns to reach target nodes given a source entity-relation

pair while being agnostic to the quality of the searched path. Compositional reasoning

models learn to predict the underlying relation given paths, while being agnostic to

the path-finding procedure.

The lack of interaction prevents the model from understanding more diverse inputs

and make the model very sensitive to noise and adversarial samples. To this end, Chen

et al. [84] introduced DIVA to tackle the relation prediction problem using neural

architectures coupled with the variational auto-encoder algorithm [95] for training

and inference to cope with complex link connections in a KG.

49

Di↵erences with HOPLoP While HOPLoP and DIVA aim to improve the inter-

action between the two subtasks of multi-hop LP process, HOPLoP operates entirely

over an embedding space. By operating over an embedding space, HOPLoP is not

a↵ected by the incompleteness problem since it operates over a more-complete repre-

sentation of the KG and has the ability to create traversal functions that can account

for errors in the embedding space.

3.4 Representation Learning for Multi-hop LP with
HOPLoP

Previous approaches traverse a discrete representation of the KG, abstracted by either

the environment [48, 49, 94] or a discrete latent variable [84]. The traversal operation

in previous multi-hop approaches is restricted by the links in the KG. These links

are skewed, causing LP algorithms to spuriously favour supernodes over actual tar-

get entities [91], eventually inhibiting performance gains in the LP task. HOPLoP

is not constrained to follow links in the KG, allowing it to traverse anywhere in an

embedded space, while boosting performance of LP. During the training phase, HO-

PLoP learns to traverse the embedded space while classifying positive and generated

negative pairs of entities. Operating over an embedding space enables end-to-end dif-

ferentiability. This allows HOPLoP to be optimized e�ciently using GD methods [29],

unlike RL approaches or variational inference based optimization methods, which are

computationally expensive [96].

50

Link Prediction ML Additional #Relations Trainable Parameters

Algorithm Type Requirements Modelled KG Components Learning Function

TransE [21] SSL Negative Samples |R| d(|E|+ |R|) 0

ComplEx [74] SSL Negative Samples |R| d(|E|+ |R|) 0

TuckER [75] SL — |R| (de|E|) + (dr|R|) de ⇥ dr ⇥ de

PRA [23] SL Paths 1 |P| 0

Path-RNN [32] SL Paths 1 d|R| d(2d+ 1)

Single-Model [31] SL Entity Types, Paths |K| d(|E|+ |R|) 4d(3d+ 1)

Guu et al. [20] SL Paths, Negative Samples |K| (de|E|) + (d(1�2)
r |R|) 0

DeepPath [48] RL Entity Embeddings, Paths 1 0 512(2d+ 1) + 525312 + 1025(|R|� |K|)

MINERVA [49] RL — |K| d(|E|+ |R|) 4d(2d+ 1) + 4d(2d+ 1) + 2d(4d+ 1)

M-Walk [94] RL — 1 d(|E|) 64(de + dr + 1) + 5(65⇥ 64) + 3d(128 + de)

Reward Shaping [50] RL KG Embedding Model |R| d(|E +R|) 4d(2d+ 1) + 2d(3d+ 1) + 2d(2d+ 1) + 2d(2d+ 1)

DIVA [84] PGM Negative Samples |K| d(|E +R|) 12d+ |R|(3d+ 1) + 4d(2d+ 1) + 2d(2d+ 1) + 2d(3d+ 1)

HOPLoP SSL Entity Embeddings, Negative Samples 1 0 1000(2d+ 1) + 1001d+ 4d(2d+ 1) + (d+ 1)

M-HOPLoP SSL Entity Embeddings, Negative Samples |K| 0 1000(2d+ 1) + 1001d+ 4d(2d+ 1) + |K|(d+ 1)

Table 3.1: Comparison of various KG embedding and multi-hop algorithms for LP. de refers to the entity embedding dimension,
dr refers to the relation embedding dimension, d = de = dr is the dimension of all components, K ✓ R refers to the set of tasks
in the dataset. Since DeepPath, HOPLoP, M-HOPLoP do not train the entity embeddings, they are considered as constant and
are not counted in the set of trainable parameters. Note: The formulae describing parameter sizes for each model are best
approximates of their publicly available model descriptions and reproducible material.

Varun Ranganathan
51

Chapter 4

HOPLoP: Multi-hop Link
Prediction over Knowledge Graph
Embeddings

4.1 Motivation

• Traversing an embedded space? Our hypothesis is: performance in multi-

hop LP can be improved if the KG is more complete than its discrete represen-

tation. —What does this mean? (r.i) There should be more links in the KG

representation, allowing the path-finder to better explore the graph. (r.ii) There

should be more entities, allowing the path-finder to “hop and stop” at various

entities. KG entity embedding spaces fit these requirements: (i) In “space”

(say, RD), an “one-hop” unconstrained path-finder, should be allowed to tra-

verse from any point to any another point in space. This is possible through

simple vector addition [21]. (ii) An unconstrained path-finder should be allowed

to pause or stop anywhere in space, to model those entities that may have been

pretermitted during KBP [78]. HOPLoP’s path-finder is a one-hop function that

learns to output a sequence of translation vectors, moving itself from the source

entity to the target entity. We allow this one-hop function to perform multiple

traversals to anywhere in the space, but we control its traversal towards the

target entity.

52

• Now, because we are traversing an embedded space, we have 1 paths

from the source to the target entity. This allows the path-finder to be more

expressive. DL architectures such as LSTMs can form appropriate compressed

representations for all these paths, which then can be used by a simple logistic

regression function that models the LP task. A “distance-to-target” loss LD2T

controls the path-finder to find a traversal path, or a sequence of traversal

vectors, that link the source to the target entity, irrespective of whether a link

exists or not in the discrete KG.

• Since all operations (traversal as a sequence of translations and neu-

ral architectures) are connected and di↵erentiable, we can use simple

GD-based BP to tune the parameters of the model. This will be preferred from

using computationally expensive techniques such as, RL (which usually requires

pre-training with SL), and variational inference techniques [96]. Through back-

propagation, a logistic regression model, which predicts the existence of the link,

can propagate error gradients to the path-reasoner, which in turn can propa-

gate errors to the path-finder, facilitating adequate interactions between the

path-finder and path-reasoner [84].

• KG entity embedding space contains neural representations of enti-

ties. A neural path-finder [48] can utilize this information to model the rela-

tionship between the 2 entities using paths in the space that connect the source

to the target entity. The LSTM network can e�ciently compress long range

sequences such as paths in a KG [31, 49, 50, 84]. Since we do not alter the

existing embedding space and use seperate neural architectures to traversal any

embedded space, HOPLoP does not restrict it to any specific KG embedding

method and can be used in parallel with existing embedding use-cases.

53

4.2 Task

We formally describe our task of link prediction over a KG. To recap, a Knowledge

Graph (KG) is a collection of facts, represented as the links of a graph G = (E ,R,L)

where E is the set of entities, R is the set of relations that label the links, L ✓ E⇥E⇥R

is the set of links, each linking a source entity to a target entity via a relation. An

example of a link in the YAGO3 KG [97] is represented as

(James Cameron, directed, Avatar (2009 film)).

Figure 4.1: Our LP task, represented as a PGM.

Our task is to fill in the incompleteness of the KG by predict missing links in

the knowledge graph G. Specifically, we tackle the problem of relation prediction

(es, ?, et), i.e., find the relation between the given source and target entity. To promote

di↵erentiability, we convert this problem into the stochastic setting by modeling the

probability that a relation of interest or task k 2 K ✓ R = r 1 exists between two

entities es and et. To derive HOPLoP, we begin by representing our LP task with

a Probabilistic Graphical Model (PGM). Figure 4.1 represents our LP task, which

formally represents equation 4.1.

Pr(R = r|S, T) (4.1)

where S and T are random variables representing all source and target entities

1This means that HOPLoP can be applied to any relation in the KG, not only relations of interest.
To avoid confusion, when we refer to relation r, we refer to our task.

54

respectively.

HOPLoP learns to predict links by traversing an embedded representation of a

KG from a source entity to a target entity. This will result in a sequence of “steps”,

forming a path p. Let P be a random variable, indicative of all paths in the embedded

KG space. On incorporating path information P in the LP process, equation 4.1

becomes:

Pr(R = r|S, T) = Pr(R = r|S, T ,P)⇥ Pr(P|S, T) (4.2)

Equation 4.2 is represented by figure 4.2.

Since HOPLoP operates on an embedded space, we represent each hop as a traversal

vector. A traversal path P = p is a sequence of traversal vectors p = (v1~ , ..., vH~) where

H = |p| is the length of the sequence. Each traversal vector characterizes a “hop”

from one point in the embedding space to another point in the same embedding space.

In the next section, we describe how we attain a path p. We continue to simplify and

formulate our LP task.

Figure 4.2: Upon incorporating “paths” in the LP process.

55

Our goal is to combine the generalization ability of KG embeddings with the pre-

dictive power of global structural information. We allow the path-finder to explore

“paths”, unconstrained, over an embedded space. By doing so, there will be trade-o↵

between the completeness of a KG and the accuracy of the KG representation. There-

fore, HOPLoP aims to accurately complete an imperfect representation of the KG. To

do this, we make the assumption that any path p 2 P exists in the KG embedding

space. This assumption is represented by equation 4.3.

Pr(P = p|S, T) = 1 (4.3)

Equation 4.3 formalizes the assumption that there exists a path p given any source

entity S and any target entity T . This assumption holds since HOPLoP’s path finder

traverses the KG in a continuous space, and there always exists a line (et~ � es~) that

connects the source entity to the target entity in embedded space. As we will see,

this assumption will allow us to separate the path-finding and the path-reasoning

Figure 4.3: An intermediate PGM illustration of our LP process. Once a path p is
traversed, the parent random variables S and T does not directly influence the child
random variable R.

56

Figure 4.4: Our LP task is simplified to predict the probability that a generated path
p represents the relation R = r.

processes, while facilitating adequate interactions between the two processes. This

assumption is reflected in equation 4.4.

Pr(R = r|S, T) = Pr(R = r|S, T ,P = p) (4.4)

Since the path p is generated based on the source and the target entities, the

random variable P is a child of random variables S and T . After traversing the

KG, we know that P = p. Since the parent of the random variable R is known, the

non-descendents of R do not influence R [98]. Therefore, equation 4.4 reduces to

equation 4.5, illustrated by figure 4.4.

Pr(R = r|S, T ,P = p) = Pr(R = r|P = p) (4.5)

4.3 Model

In the previous section, we have simplified and divided our task into 2 parts: gen-

erating a path or “path-finding” and reasoning about a path to predict a link or

“path-reasoning”. To solve this problem of LP, we employ two neural network ar-

chitectures [62]. The path-finder is a simple feedforward neural network, consisting

of a hidden layer with 1000 ReLU-activated neurons, that learns to traverse the con-

57

Hop h

Figure 4.5: PGM representing the Path-finding process. The rectangle in the figure
represents a plate model, which is repeated for H hops. ec represents the current
position in the entity embedding space, vh represents the traversal vector at hop h,
� represents pointwise addition. Finding a path p from es to et is performed by an
ANN, whose parameters are controlled by ⇥ANNr .

58

1 1

R
e
L
U

Figure 4.6: (Best viewed in color) The connections in the path-finder model. An ANN
that accepts the concatenated input of the current and target entity [ec; et] 2 R2D

and outputs a translation vector vh 2 RD which is added to the current entity rep-
resentation. The ANN consists of 2 layers: a hidden layer with 1000-ReLU activated
neurons and an output layer with 100 linear neurons.

59

tinuous representation of the KG. The output layer contains neurons corresponding

to the dimension of the KG embedding space. This neural network accepts, as in-

put, concatenated vector representations of the source and target entity. It outputs

a translation vector, which is added to the source entity embedding. This resultant

vector is concatenated with the target entity embedding and fed into the neural net-

work, to perform another hop over the embedded KG. This process continues until a

maximum number of hops H is reached.

Our framework also includes a path-reasoner, which is an LSTM [71] network that

analyses the sequence of translation vectors. The LSTM network is single-layered,

consisting of LSTM cells corresponding to the entity embedding dimension. The

hidden state vector of the LSTM at the end of the traversal can be interpreted as

the path embedding. This path embedding is sent to a sigmoid-activated neuron

that performs logistic regression. The LSTM network takes, as input, the sequence

of translation vectors, outputted by the path-finder. The output aims to predict the

probability that the relation R = r holds between the source entity and the target

entity.

Figure 4.7: PGM diagram illustrating the path-reasoning process. The path is ana-
lyzed by the LSTM network, whose parameters are controlled by ⇥LSTMr . The path
representation from the LSTM is used to perform logistic regression, parameterized
by ⇥LogRr , to predict whether the relation of interest exists between the two entities.

60

Sigmoid TanhSigmoid Sigmoid

T
a
n
h

1

Figure 4.8: (Best viewed in color) Illustration of the connections in 1 hop of the LSTM network. To avoid confusion with hop
h, sh denotes the hidden representation of the LSTM at hop h and Ch denotes the cell state at hop h. At each hop, the LSTM
refers input as vh and changes it’s hidden state from s(h�1) to sh. See section 2.5.2 for more on LSTMs.

Varun Ranganathan
61

To summarize, our path-finder traverses the embedding representation of the KG

to form a path P = p as given by:

p = (v1~ , ..., vH~) (4.6)

where vi~ is defined as:

vi~ = ANNr

[es +

i�1X

h=1

vh~ ; et]

!
(4.7)

Finally, our link prediction problem is formulated by:

Pr(R = r|P = p) = �(uT
r ⇥ LSTMr(p) + br) (4.8)

where u is a trainable vector that is multiplied with the last hidden state of the

LSTM, and b represents a trainable bias. The result is squashed using the sigmoid

function � to obtain a value between 0 and 1 that represents the probability that a

link with relation r connects the source entity es to the target entity et. Subscript r

indicates relation-specific functions and parameters.

4.4 Training

The path-finder consists of a feedforward neural network that aims to traverse the

KG, from the source entity to the target entity. To learn this traversal function, we

control the path-finder by employing a distance-to-target (D2T) loss. At the end of

the traversal, we expect that the path-finder should reach the target entity position.

This loss can be given as follows.

LD2T =
DX

d=1

etd~ �

esd~ +

HX

h=1

vhd
~

!!2

(4.9)

where et~ is an embedding representing the target entity, es~ is an embedding repre-

senting the source entity, vi~ is the traversal vector, outputted by the neural network,

62

at the ith hop, d represents the element at that position in the vector and D is the

embedding dimension.

We formulate the LP task as a classification problem. The model should learn to

classify between positive and negative pairs of entities for a relation r. A positive

entity pair involves two entities which are related via the relation r and the link

(es, r, et) is observed in the KG. To perform this classification task, we use the binary

cross-entropy loss function. The classification loss can be given as follows.

LC = �y ⇥ log(o) + (1� y)⇥ log(1� o) (4.10)

where o = Pr(R = r|P = p) is the value outputted by the LSTM network, and y is

a boolean variable that signifies if the relation r holds between the source entity and

the target entity. Since our model learns to classify between positive and negative

entity pairs, following [48], we train the model with positive and negative examples

in a 1:1 ratio.

The two objectives, described in equation 4.9 and 4.10, are jointly optimized using

GD [29]. The overall objective function can be given as follows.

min
⇥r

L = LD2T + LC (4.11)

where ⇥r = ⇥ANNr [⇥LSTMr [⇥LogRr represents the parameters of the model. The

di↵erentiability of our framework allows us to jointly optimize the parameters of the

path-finder and the path-reasoner.

63

Algorithm 3 Training HOPLoP

Input: Dataset Dr = {.., (es, [.., e
+
ti , e

�
ti , ..]), ..}, Function HOPLoPr(ANNr, LSTMr,

LogRr), Hops H, Loss functions LC and LD2T , Initial Parameters ⇥(t=0)
r

⇥(t)
r ⇥(t=0)

r ;

Repeat:

(es, e
+
t , e

�
t) ⇠ Dr; . Sample a source entity, positive and negative target entity

p+ []; p� []; . Path is initially empty

e+c es; e�c es; . Initial position is source entity

for h in 1...H do

Append v+h ANNr(e+c , e
+
t) to p+ and v�h ANNr(e�c , e

�
t) to p�;

e+c e+c + v+h ; e
�
c e�c + v�h ;

end for

o+ = LogRr(LSTMr(p+)); o� = LogRr(LSTMr(p�));

r⇥rLC
@(LC(o+,1)+LC(o�,0))

@⇥r
(⇥(t)

r); . Calculate LC gradients

r⇥rLD2T
@(LD2T (e+c ,e+t)+LD2T (e�c ,e�t))

@⇥r
(⇥(t)

r); . Calculate LD2T gradients

/* �LogRr / r⇥rLC;

�LSTMr / �LogRr ;

�ANNr / r⇥rLD2T ⇥ �LSTMr ; */ . Gradient proportions for parameters

⇥(t+1)
r ⇥(t)

r � µ⇥r⇥r(LC + LD2T); . Update parameters

Until convergence; . Time-step increments by 1

Return ⇥(t)
r ;

64

4.5 Discussion

HOPLoP framework essentially performs a logistic regression [99] which learns a de-

cision boundary that can accurately distinguish positive and negative entity pairs of

entities for a particular relation of interest. This classification is based on a vector

representation of the traversed path, generated by the LSTM that analyses the se-

quence of translation vectors used to traverse from source to the target entity. The

traversal over an embedding space involves modifying the source entity embedding

several times, through vector addition, such that, at the end of the traversal, the mod-

ified source entity should represent the target entity and the sequence of modifications

applied on the source entity by the ANN should allow the LSTM to form e↵ective

path embeddings that characterizes the traversal process. Through backpropaga-

tion [63], the LSTM network controls how the neural network learns to traverse the

embedding space, thus providing adequate interaction between the path-finding and

path-reasoning processes.

4.6 M-HOPLoP: Modeling all relations at once

The inherent di↵erentiability of HOPLoP can pique the interest of an experienced

ML practioner towards multi-task learning and parameter sharing mechanisms [30].

Similar to the advancement made by the Single-Model [31] over Path-RNNs [32], we

explore multi-task learning capabilities of HOPLoP for KBC.

To this end, we make a simple yet highly e↵ective change to HOPLoP. Given a

dataset and the set of relations of interest or tasks K ✓ R, rather than performing

simple logistic regression at the end, we changed HOPLoP’s classification heads from

1 to |K|, to perform multiple logistic regression [99]. This results in a change to the

logistic regression layer, which is now parameterized by a matrix in R(D+1,|K|). In

HOPLoP, this layer is parameterized by a vector in R(D+1). For example, since we are

interested in 12 relations from the NELL-995 KG dataset, the number of classification

65

heads for M-HOPLoP will be 12. We don’t change the parameter size for the path-

finder and the LSTM layer, and continue to train M-HOPLoP to reduce the loss as

defined in equation 4.11 for HOPLoP.

By modeling all relations of interest using one M-HOPLoP model, information

regarding all relations are distributed amongst the parameters of path-finder and the

path-reasoner. Similar to HOPLoP, M-HOPLoP traverses the KG embedding space

from the source entity to the target entity. Di↵erent from HOPLoP, M-HOPLoP is

trained to recognize which relation links the two entities. This allows M-HOPLoP to

model di↵erent relations, while predicting whether a link involves a particular relation

or not.

66

Chapter 5

Experiments and Results

5.1 Datasets

To test our framework on the task of (multi-hop) link prediction, we evaluate on

standard datasets such as NELL-995 [48] and FB15K-237 [100] and their statistics

have been provided in Table 5.1. Every dataset contains a set of tasks, relations of

interest for which links must be predicted. These tasks were extracted from di↵erent

domains like Sports, People, Locations, Film, etc. For each task, there is a set of

source entities. Each source entity es is related to a set of positive target entities {...,

e+ti , ...} via a specific task r. The datasets also include several negative target entities

{..., e�ti , ...} that are not linked to the source entity via the relation of interest. For

example, given a relation task DirectsGenreOfMovies, there may be a source entity

JamesCameron for which there is a positive target entity ScienceFiction and many

Dataset #Entities #Relations #Triples Node Degree

NELL-995 75,492 400 308,426 (1, 1.0, 4.09, 2411)

FB15K-237 14,505 474 620,158 (1, 26.0, 42.75, 8642)

WN18RR 40,714 22 173,670 (1, 3.0, 4.27, 482)

YAGO3-10 123,143 74 2,158,080 (1, 10.0, 17.52, 61044)

Table 5.1: Statistics of KG datasets used in experiments. The 4-tuple in the node
degree column represents aggregate statistics (min, median, mean, max) over all
entities in the graph.

67

Dataset #Tasks Source Entities Target Entities

Positive Negative

NELL-995 12 (259, 599.5, 685.92, 1405) (1.0, 1.0, 1.15, 1.83) (2.67, 7.90, 7.08, 9.46)

FB15K-237 20 (67, 285.5, 630.9, 3245) (1.0, 1.13, 1.56, 2.94) (7.69, 10.06, 10.02, 10.72)

WN18RR 10 (25, 2222.0, 6255.6, 34087) (1.02, 1.84, 4.62, 25.16) (5.44, 28.71, 44.80, 184.16)

YAGO3-10 23 (357, 2850.0, 13019.91, 66163) (1.0, 2.61, 4.35, 21.41) (1.0, 26.15, 42.96, 211.88)

Table 5.2: Statistics of tasks in KG datasets used in experiments. 4-tuples in the
source entities column are aggregate statistics (min, median, mean, max) over all
tasks. The 4-tuples in the target entities column are aggregate statistics over all
source entities.

negative target entities such as {Horror, Drama, Comedy, ... }. Following Guu

et al. [20] and Xiong et al. [48], negative target entities are picked from the same

domain as the positive target entities, allowing for a fair evaluation of our framework.

Following our previous example, the set of negative target entities will not contain

entities such as Canada, Titanic, Football, etc., since these entities are out of the

range of the relation DirectsGenreOfMovies, whose range is equivalent to the range

of Genre. Futhermore, following Lin et al. [90], we include the reverse relations for

each relation in the KGs. Specifically, for each link (es, r, et), we add another link

(et, r�1, es) to the KG. This technique has known to improve the performance of KG

embeddings in the LP task [101], allowing us to compare HOPLoP and M-HOPLoP

to stronger baseline KG embedding models. This technique helps previous multi-hop

algorithms by enabling bi-directional traversal of a link, i.e., a RL agent is able to

step backward in the KG [48]. This allows them to correct for mistakes in the graph,

due to incompleteness, or mistakes in the traversal process.

To further evaluate our model, we introduce the WN18RR and YAGO3-10 [102]

datasets for the task of relation prediction. These datasets have been previously used

for entity prediction [34], in the literature of KG embeddings. To maintain consistency

with well-known datasets in this literature of multi-hop LP, we pick several tasks from

each dataset and generate negative target entities for links involved in these relations:

68

5.1.1 WN18RR

The WN18RR dataset was derived from the WN18 dataset introduced by Bordes et

al. [21], which had 18 relations scraped from WordNet for roughly 41,000 synsets,

resulting in 141,442 triplets. As first stated by Toutanova et al. [100] and confirmed

by Dettmers et al. [102], the WN18 dataset su↵ered from informative value, because

more than 80% of the test triples (es, r1, et) could be found in the training set with

another relation (es, r2, et) or (et, r2, es). Dettmers et al. [102] used a rule-based model

which learned the inverse relation and achieved SOTA results on the WN18 dataset.

Therefore, Dettmers et al. [102] introduced WN18RR by removing 7 spurious relations

from the WN18 dataset. These relations were either identical to or the inverse of the

remaining 11 relations in the KG. For example, the test set frequently consisted

of triples such as (es, Hyponym, et) while the training set contained its inverse (es,

Hypernym, et).

We take advantage of the hierarchical structure of WordNet to generate negative

examples. Given a positive entity pair, we include all hyponyms of the hypernyms

of the positive target entity as negative target entities for that source entity. This

ensures negative target entities are from the same domain as the positive target entity.

We pick 10 tasks from 11 relations from the KG such that the relation is involved in

atleast 1% of all facts. This covers 99.9% of the WN18RR KG.

5.1.2 YAGO3-10

YAGO3-10 [97] is a subset of YAGO3 which consists of entities which have a minimum

of 10 relations each. In this dataset, most of the triples deal with descriptive attributes

of people, such as Citizenship, Gender and Profession.

69

Tasks M-HOPLoP HOPLoP M-Walk MINERVA DeepPath PRA TransE

(TransE) (TransE) (Bernoulli)

AthletePlaysForTeam 0.911 0.953 0.847 0.827 0.721 0.547 0.727

AthletePlaysInLeague 0.973 0.997 0.978 0.952 0.927 0.841 0.726

AthleteHomeStadium 0.963 0.930 0.919 0.928 0.846 0.859 0.798

AthletePlaysSport 0.969 0.929 0.983 0.986 0.917 0.474 0.805

TeamPlaysSport 0.940 0.980 0.884 0.875 0.696 0.791 0.759

OrgHeadquateredInCity 0.963 0.956 0.950 0.945 0.790 0.811 0.912

WorksFor 0.966 0.993 0.842 0.827 0.699 0.681 0.901

BornLocation 0.956 0.965 0.812 0.782 0.755 0.668 0.744

PersonLeadsOrg 0.929 0.962 0.888 0.830 0.790 0.700 0.899

OrgHiredPerson 0.967 0.930 0.888 0.870 0.738 0.599 0.868

Overall 0.946 0.934 0.899 0.876 0.788 0.697 0.828

Table 5.3: Performance of (M-)HOPLoP against baseline path-based and embedding-based approaches to the relation prediction
task on the NELL-995 dataset. Values represent MAP scores. DIVA attained an overall MAP score of 0.886.

70

Since the YAGO is not hierarchically structured, we used Breadth First Search

(BFS) to obtain negative examples. BFS traversed the links of the graph, while

remaining agnostic to the relation, to reach entities that are connected to a source

entity. We made sure that the negative target entities, picked by BFS, were in the

range of the task. We used BFS rather than random sampling techniques to make

the dataset more competitive, following the intuition that baseline KG embedding

models will be able to distinguish between positive and negative entity pairs simply

based on the distance between the entities [27]. We pick 23 tasks from 37 relations

from YAGO such that there are atleast 3,000 facts per relation to ensure adequate

representation of the relation in embedded representation of the KG. This covers

99% of the YAGO3-10 KG. Following previous work, we extracted approximately

10 negative target entities per positive target entity. For the relation hasGender in

the YAGO3-10 dataset, there was only 1 negative target entity per positive target

entity. This is because the hasGender relation in YAGO has a binary range of entities

{male, female}. The datasets, and codes for building them, codes for experiments,

are publicly available at https://github.com/varunranga/HOPLoP. Please refer to

Appendix B for more on hyperparameter tuning and reproducibility.

5.2 Experimental Setup

Although our framework is agnostic to the KG embedding model, HOPLoP relies on

a base KG embedding model to provide an embedding space to traverse over. We

experiment with 3 popular KG embedding models as described in section 2.6.2. In

short:

• TransE [21] was the first, yet extremely competitive [76], translational distance

LP model that capture relations between entities such that es~ +r~ ⇡ et~ . ComplEx

[74] and TuckER [75] are derived from tensor factorization methods (ComplEx:

[25, 80]), TuckER: [82]) which looks to decompose the binary tensor representa-

71

https://github.com/varunranga/HOPLoP

tion of the KG. The optimization goals between the two methods are very dif-

ferent: translational distance models look to minimize the distance, in euclidean

space, between two related entities whereas tensor decomposition methods look

to maximize the probability that a link exists in the KG through classification.

• Although ComplEx and TuckER are both tensor factorization methods, Com-

plEx represents embeddings in complex space and computes dot products for

complex vectors such that positive links have a lower dot product value than

negative links. This generates embeddings that generally have more negative

values, due to the minimization procedure explained in section 2.6.3, which is

leveraged later by Ding et al. [103] to introduce sparsity and interpretability

to the embeddings. On the other hand, TuckER decomposes the binary tensor

representation of the KG B 2 {0, 1}|E|⇥|R|⇥|E| into B ⇡W ⇥1 E ⇥2 R⇥3 E , such

that W 2 Rde⇥dr⇥de , E 2 R|E|⇥de , R 2 R|R|⇥dr , and the product of matrices

should be result in higher dot product for positive links. The objective between

two tensor factorization methods di↵ers due to their view of their KG model.

We perform hyperparameter tuning for those hyperparameters introduced by HO-

PLoP. To leverage computation gains from compiled static graphs generated by ML

packages such Tensorflow [104], HOPLoP requires a pre-determined path length, which

allows for compile time optimizations 1. Therefore, we tune the maximum number of

hops in a traversal H choosing from {1, 3, 5, 10, 15, 20}.

We provide a fair comparison between HOPLoP, M-HOPLoP and KG embedding

models, we set the dimensionality of all embeddings to 100. We re-train for embed-

dings following the hyperparameters selected by the creators of the KG embedding.

Embeddings and network parameters were optimized using Adam [59] with the de-

fault hyperparameter settings (initial learning rate µ = 0.001).

1In later chapters, we see that HOPLoP learns to not hop; this is non-trivial because we do
not explicitly provide HOPLoP with feedback regarding when not to hop, nor do we set up any
constraints in the traversal process.

72

Tasks M-HOPLoP M-HOPLoP M-HOPLoP HOPLoP HOPLoP HOPLoP DeepPath PRA TransE ComplEx TuckER

(TransE) (ComplEx) (TuckER) (TransE) (ComplEx) (TuckER) (Bernoulli) (Bernoulli)

Team/Sport 0.992 0.904 0.883 0.989 0.993 0.995 0.955 0.987 0.924 0.985 0.953

Person/PlaceOfBirth 0.967 0.898 0.746 0.986 0.960 0.958 0.531 0.441 0.842 0.928 0.569

Person/Nationality 0.993 0.924 0.914 0.964 0.977 0.981 0.823 0.846 0.849 0.900 0.934

Film/Director 0.670 0.657 0.523 0.654 0.679 0.671 0.441 0.349 0.534 0.553 0.604

Film/WrittenBy 0.945 0.867 0.733 0.994 0.978 0.972 0.457 0.601 0.770 0.783 0.789

Film/Language 0.931 0.908 0.781 0.971 0.971 0.935 0.670 0.663 0.720 0.698 0.780

TvProgram/Languages 0.992 0.985 0.971 0.984 0.987 0.979 0.969 0.960 0.935 0.934 0.971

CapitalOf/Location 0.916 0.777 0.673 0.906 0.851 0.838 0.783 0.829 0.599 0.905 0.560

OrgFounder/OrgFounded 0.780 0.764 0.608 0.812 0.796 0.757 0.309 0.281 0.711 0.864 0.473

Artist/Origin 0.937 0.844 0.656 0.966 0.883 0.866 0.514 0.426 0.744 0.903 0.519

Overall 0.914 0.826 0.723 0.864 0.859 0.849 0.572 0.541 0.709 0.809 0.690

Table 5.4: Performance of (M-)HOPLoP against baseline path-based and embedding-based approaches to the relation prediction
task on the FB15K-237 dataset. DIVA attained a MAP score of 0.598.

73

We evaluate HOPLoP on 2 tasks: Relation prediction and Entity prediction. We

describe how HOPLoP can be used to perform both entity and relation prediction

while comparing it to the state-of-the-art (SOTA) in both tasks.

5.2.1 Relation Prediction

The relation prediction task is commonly used to evaluate multi-hop LP algorithms

[23, 48, 49, 94]. The reason for evaluating HOPLoP on relation prediction stems

from its mathematical derivation, making relation prediction the intrinsic evaluation

method. To recap, the relation prediction task is: given 2 entities, predict whether a

particular relation exists between them.

Methodology Given a test source entity es, a relation r and a set of target entities

et|q,r = {e+t1, e
+
t2, e

�
t3, e

�
t4, ...}, we compute the scores HOPLoPr(es, e0), computed by the

logistic regression layer, for each entity in e0 2 et|s,r. e+ti refers to a positive target

entity, whereas e�ti refers to a negative target entity. In the ideal situation, the scores

for all positive target entities will be higher than all negative target entities, i.e., all

positive target entities will be ranked higher than all negative target entities.

Following previous literature, our evaluation metric is the Mean Average Precision

(MAP) score. Given a task, the MAP score is the mean AP across all source entities.

AP is a strict metric since it penalizes when a negative target entity is ranked above

a positive target entity.

We evaluate HOPLoP and M-HOPLoP in the relation prediction task on four

datasets: NELL-995, FB15K-237, WN18RR and YAGO3-10.

5.2.2 Entity Prediction

The entity prediction task is commonly used to evaluate KG embedding-based LP

algorithms [34]. Although HOPLoP is designed for relation prediction, we describe a

procedure for the extrinsic evaluation of HOPLoP on the more-common entity pre-

74

diction task. To recap, the entity prediction task is: given a relation and a source

entity, predict the set of target entities linked to the source entity via that relation.

Methodology Given a test triple (es, r, et), we calculate the score HOPLoPr(es, e0)

for all possible e0 where e0 2 E is an entity, such that, (es, r, e0) is not a link in the KG,

unless e0 = et. This allows us to compute metrics in the filtered setting [21], which

does not penalize the model for ranking other correct target entities higher than the

correct target entity et in question. We sort this list of scores in decreasing order and

compute the rank for the correct target entity et. Since we do not train a HOPLoP

model for every relation in the dataset, we consider the worst case prediction possible,

i.e., the rank for the correct target entity et at worst is |E|.

Following previous literature, we compute 2 types of metrics: Hits@k (H@k) k 2

{1, 3, 10} and Mean Reciprocal Rank (MRR) and evaluate on two standard datasets:

WN18RR and YAGO3-10. Due to the high coverage of our datasets, we evaluate

HOPLoP(TransE) on WN18RR and YAGO3-10, since HOPLoP models most of the

relations in the KG. In the case of the previously introduced NELL-995 and FB15K-

237 [48], the set of tasks is considerably smaller than the set of relations in the

KG 2. HOPLoP does not model many relations from these KGs and therefore, we

cannot objectively compare HOPLoP’s performance on these datasets on the entity

prediction task. Nevertheless, we compare HOPLoP(TransE) against several SOTA

KG embeddings on WN18RR and YAGO3-10, which have been extensively used for

entity prediction.

2NELL-995: 12 tasks out of 200 relations (excluding inverse relations); FB15K-237: 20 tasks out
of 237 relations

75

Tasks M-HOPLoP M-HOPLoP M-HOPLoP HOPLoP HOPLoP HOPLoP TransE ComplEx TuckER

(TransE) (ComplEx) (TuckER) (TransE) (ComplEx) (TuckER) (Bernoulli) (Bernoulli)

Hypernym 0.962 0.743 0.590 0.968 0.860 0.865 0.556 0.496 0.472

DerivationallyRelated 0.989 0.931 0.604 0.993 0.977 0.909 0.955 0.953 0.460

InstanceHypernym 0.983 0.892 0.814 0.966 0.966 0.995 0.844 0.700 0.811

AlsoSee 0.864 0.695 0.486 0.938 0.841 0.844 0.411 0.301 0.264

MemberMeronym 0.656 0.339 0.334 0.706 0.643 0.898 0.152 0.112 0.112

SynsetDomainTopic 0.972 0.882 0.814 0.976 0.941 0.979 0.856 0.524 0.771

HasPart 0.760 0.651 0.510 0.832 0.738 0.906 0.345 0.382 0.307

MemberDomainUsage 0.656 0.645 0.327 0.571 0.518 0.482 0.388 0.201 0.288

MemberDomainRegion 0.673 0.575 0.459 0.669 0.652 0.696 0.468 0.507 0.237

VerbGroup 0.957 0.843 0.548 0.991 0.992 0.816 0.843 0.965 0.347

Overall 0.847 0.720 0.549 0.848 0.793 0.811 0.582 0.514 0.407

Table 5.5: Performance of (M-)HOPLoP against baseline embedding-based approaches for relation prediction on the WN18RR
dataset.

76

5.3 Results

Hypothesis: If a multi-hop LP algorithm is allowed to traverse the graph, uncon-

strained, then this will boost performance in the LP task. To this end, we proposed

HOPLoP, which traverses the KG embedding space in a unconstrained yet controlled

manner. In the context of HOPLoP, our hypothesis can be re-worded: If HOPLoP is

trained, then it learns to uncover correlations between the controlled path traversals

and the relation of interest, thus boosting LP performance. Table 5.6 observes that,

without any training, HOPLoP does not perform as well as the baselines. This shows

that the training process helps HOPLoP correlate traversal paths to a relation. This

boost in LP performance can also be observed across all datasets and metrics.

Embedding TransE ComplEx TuckER

Dataset

NELL-995 0.465 | 0.828 | 0.934 — —

FB15K-237 0.403 | 0.709 | 0.864 0.388 | 0.809 | 0.859 0.371 | 0.690 | 0.849

WN18RR 0.415 | 0.582 | 0.848 0.403 | 0.514 | 0.793 0.386 | 0.407 | 0.811

YAGO3-10 0.422 | 0.545 | 0.908 0.396 | 0.564 | 0.861 —

Table 5.6: Performance comparison of untrained HOPLoP (MAP) | baseline KG
embedding (MAP) | trained HOPLoP (MAP).

5.3.1 Relation Prediction

We compare HOPLoP with embedding-based algorithms [21, 74, 75], supervised path

traversal approaches [23], reinforced path traversal approaches [48, 49, 94]. We also

compare with DIVA [84], a probabilistic approach tackling the relation prediction

task, but report their results in the captions of tables since their paper does not

disclose MAP scores for each relation. Table 5.3 reports the results from experi-

ments involving the NELL-995 dataset, a simple dataset for which many existing

algorithms observe very high accuracies. We evaluate HOPLoP over the FB15K-237

77

dataset, which is considered to be more challenging arguably more relevant for real-

world scenarios than the NELL dataset [84]. Results from this experiment have been

reported in Table 5.4, showing that our approach performs better than SOTA ap-

proaches. From Table 5.3 and Table 5.4, we can also observe that HOPLoP improves

the performance of all KG embedding models. On the NELL-995 dataset, HOPLoP

traverses over TransE’s embedding space to boost performance by +0.106 MAP. HO-

PLoP boosts performances of TransE, ComplEx, TuckER by +0.137, +0.050 and

+0.159 MAP on the FB15K-237 dataset. We also observe that less performant KG

embedding models, such as TransE, are highly benefited by HOPLoP since their sim-

ple representation allows HOPLoP to easily understand the structure of the KG and

create appropriately complex decision boundaries.

We also evaluate HOPLoP on two new datasets introduced for the task of multi-hop

LP. We compare HOPLoP to baseline KG embedding models and observe improve-

ments in MAP scores. Specifically, on the WN18RR dataset, HOPLoP improves the

performance of TransE, ComplEx, and TuckER by +0.266, +0.279, +0.404 MAP re-

spectively. Experiments on the YAGO3-10 dataset show that HOPLoP improves the

performance of baseline KG embedding models TransE and ComplEx by +0.363 and

+0.297 MAP respectively. Due to the enormous size of the YAGO3-10, coupled with

computational constraints, we do not run experiments with TuckER.

M-HOPLoP

We observe that in M-HOPLoP (TransE) performs the best at modelling relations

for the entire dataset, although, this cannot be said for individual tasks, where HO-

PLoP(TransE) usually outperforms. We observe that M-HOPLoP does not work as

e�ciently on complex embeddings spaces such as TuckER. The performance slightly

degrades even when we shift M-HOPLoP from TransE to ComplEx. This trend is dif-

ferent compared to HOPLoP trained on individual tasks. M-HOPLoP’s degradation

in performance can be attributed to low parameter space, i.e, the path-finder and the

78

Tasks M-HOPLoP M-HOPLoP HOPLoP HOPLoP TransE ComplEx

(TransE) (ComplEx) (TransE) (ComplEx) (Bernoulli) (Bernoulli)

IsA�liatedTo 0.970 0.921 0.941 0.965 0.815 0.843

PlaysFor 0.899 0.863 0.955 0.904 0.778 0.814

IsLocatedIn 0.873 0.830 0.918 0.824 0.643 0.593

HasGender* 0.967 0.963 0.973 0.971 0.946 0.940

WasBornIn 0.820 0.792 0.883 0.766 0.415 0.390

ActedIn 0.746 0.810 0.861 0.839 0.369 0.397

IsConnectedTo 0.826 0.715 0.979 0.948 0.694 0.734

HasWonPrize 0.807 0.790 0.843 0.878 0.540 0.561

Influences 0.745 0.754 0.869 0.714 0.354 0.374

DiedIn 0.824 0.800 0.842 0.776 0.451 0.397

HasMusicalRole 0.901 0.911 0.923 0.935 0.646 0.538

GraduatedFrom 0.850 0.763 0.853 0.891 0.456 0.385

Created 0.864 0.859 0.916 0.837 0.523 0.604

WroteMusicFor 0.768 0.795 0.896 0.940 0.368 0.434

Directed 0.831 0.864 0.942 0.840 0.517 0.558

ParticipatedIn 0.623 0.683 0.790 0.770 0.476 0.552

HasChild 0.765 0.815 0.966 0.841 0.396 0.330

HappenedIn 0.877 0.806 0.955 0.877 0.600 0.628

IsMarriedTo 0.907 0.845 1.000 0.990 0.524 0.940

IsCitizenOf 0.888 0.857 0.934 0.975 0.634 0.548

WorksAt 0.903 0.817 0.968 0.997 0.581 0.621

Edited 0.867 0.773 0.988 0.948 0.328 0.426

LivesIn 0.843 0.778 0.967 0.965 0.484 0.356

Overall 0.842 0.818 0.908 0.861 0.545 0.564

Table 5.7: Performance of HOPLoP against baseline embedding-based approaches for
relation prediction on the YAGO3-10 dataset. * Due to the biased nature of this task,
a LP algorithm that always predicts male will achieve a MAP score of 0.963 in this
task.

79

LSTM from HOPLoP remain the same in M-HOPLoP. The parameters used to model

a relation still remains the same, but most of the parameters are shared across all

relations of interest. Increasing the power of the neural architecture will definitely

help, butM-HOPLoP (TransE) already achieves SOTA performance across the NELL-

995, FB15K-237, WN18RR datasets with parameter sharing mechanisms. HOPLoP

occucpies a parameter space of 381,601 to model 1 relation whereas M-HOPLoP oc-

cupies a parameter space of 383,116 (+1,515) (averaged |K| across datasets, see table

3.1) to model multiple relations.

5.3.2 Entity Prediction

We compare HOPLoP(TransE) with several SOTA KG embedding models such as

[21, 74, 80, 102, 105–107] and multi-hop LP approaches [49, 50, 94] on WN18RR and

YAGO3-10 dataset 3. From tables 5.8 and 5.9 we see that HOPLoP(TransE) consis-

tently outperforms previous SOTA approaches by a good margin. On the WN18RR

dataset and YAGO3-10, HOPLoP(TransE) achieves an error reduction (with respect

3Results were obtained from https://paperswithcode.com/task/link-prediction

Model MRR H@1 H@3 H@10

M-Walk 0.437 0.414 0.445 —

ComplEx 0.440 0.410 0.460 0.510

MINERVA 0.448 0.413 0.456 0.513

TransE 0.466 0.423 — 0.556

TuckER 0.470 0.443 0.482 0.526

Reward Shaping (ComplEx) 0.472 0.437 — 0.542

ComplEx-N3 0.480 — — 0.570

HOPLoP(TransE) 0.760 0.753 0.767 0.790

Table 5.8: Performance of HOPLoP(TransE) in the entity prediction task on the
WN18RR dataset compared against SOTA multi-hop LP algorithms and KG embed-
ding models.

80

https://paperswithcode.com/task/link-prediction

Model MRR H@1 H@3 H@10

DistMult 0.340 0.240 0.380 0.540

ComplEx 0.360 0.260 0.400 0.550

ConvE 0.440 0.350 0.490 0.620

RotatE 0.495 0.402 0.550 0.670

RefE 0.577 0.503 0.621 0.712

ComplEx-N3 0.580 — — 0.710

HOPLoP(TransE) 0.818 0.817 0.818 0.820

Table 5.9: Performance of HOPLoP(TransE) in the entity prediction task on the
YAGO3-10 dataset compared against SOTA KG embedding models.

to MRR) of 53.85% and 56.67% respectively.

5.4 Analysis

The main hypothesis of this paper is that the performance of a LP algorithm can

be improved if it is allowed to leverage graph traversals that are not constrained by

the KG. To verify this hypothesis, we introduced HOPLoP, a multi-hop link predic-

tion framework that learns to traverse an embedding space, provided by a base KG

embedding model. From Tables 5.3, 5.4, 5.5, and 5.7, we can observe that HOPLoP

Model Training (hrs.) Testing (sec./sample)

MINERVA (S=3, L=100) 3 2⇥ 10�2

M-Walk (S=5, M=128) 14 6⇥ 10�3

HOPLoP(TransE) (H=1), fastest 3.7* 3.6⇥ 10�3

HOPLoP(TransE) (H=5), best perf. 0.5 5.9⇥ 10�3

HOPLoP(TransE) (H=20), worst 1.1 1.4⇥ 10�2

Table 5.10: Runtime of HOPLoP(TransE) compared to M-Walk and MINERVA on
the WN18RR dataset. S indicates search horizons, L indicates number of rollouts
and M indicates the number of MCTS simulations. * Early stopping mechanism with
a high patience of 100 epochs did not allow quick termination of the training process.

81

consistently outperforms baseline KG embedding models and previous SOTA multi-

hop LP algorithms. We support our hypothesis with the intuition that traversing an

embedding space uncovers correlations between paths and relations facilitating better

understanding of the global structure through KG embeddings. To verify this, table

5.6 compares untrained versions of HOPLoP to baselines and the trained versions of

HOPLoP to show that untrained HOPLoP models are not as performant as baseline

KG embedding models and trained HOPLoPmodels. This shows that the training pro-

cess helps HOPLoP discover correlations between paths and relations that help boost

performance in the LP task. Futhermore, we show that HOPLoP is computationally

inexpensive. In Table 5.10, we observe that the runtime of HOPLoP (Tensorflow-gpu)

is lower than that of M-Walk (C++ & Cuda) and MINERVA (Tensorflow-gpu). We

observe a 17x improvement in training times and 2x improvements in testing times.

Figure 5.1 shows us a pattern: there is a increase in LP performance as hops

increases, but only to a certain extent. Further increasing the number of hops does

not improve LP performance, it either stabilizes or degrades. This can be attributed

to “overfitting”. Since HOPLoP can traverse more expressive “edges”, increasing the

number of hops only increases it’s expressivity, causing HOPLoP to overfit at higher

hop values.

82

83

Figure 5.1: (Best viewed in color) Number of hops H vs
MAP score plots for each dataset and embedding space.
Red: NELL-995, Green: FB15K-237, Blue: WN18RR,
Yellow: YAGO3-10. Top: TransE, Center: Complex,
Bottom: TuckER. We see that there is a increase in LP
performance as hops increases only to a limit. Further
increasing the number of hops does not improve LP per-
formance, it either stabilizes or degrades.

84

Chapter 6

Interpretability of HOPLoP

In general, a limitation of operating over an embedded space is that reasoning paths

cannot always be easily interpreted because they result from latent factors that form

the KG embedding space [10] and the weights learned by HOPLoP. HOPLoP(TransE),

however, operates on the TransE embedding space, where both entities and relations

are represented [21], geometrically allowing one to interpret it’s reasoning process

by observing the translation vectors v1~ . . . vH~ . This is not possible in the case of

ComplEx and TuckER since, for those, HOPLoP traverses the embedded space where

only entities are represented. Following the intuition that similar relationships will be

represented by similar vector representations [10], we use a function of the euclidean

distance as a similarity measure between a translation vector vh~ and an embedding

for a relation. Let s(vh~ , ri~) be the similarity function.

s(vh~ , ri~) = �

vuut
DX

d=1

(vhd
~ � rid~)2 (6.1)

where D is the dimensionality of the vectors. Negating the euclidean distance allows

us to produce a higher similarity score for more similar vectors.

Methodology Now, we shall describe our process for interpreting the traversal

paths of HOPLoP(TransE). To generate interpretable relational paths for a given

task r, we remove the relations r and r�1 from the graph. This forces beam-search

85

[108] to find other single-hop 1 or multi-hop relational paths that may represent the

task. For the task hasGender in the YAGO3-10 dataset, we do not remove the re-

lation hasGender from the dataset since it’s range {male, female} is connected to

other entities only via the hasGender relation. We also add a “NO-OP” relation,

represented by a 0-vector, to interpret the scenario where HOPLoP(TransE) does not

hop to a new entity. At each hop, we compute the similarity between the translation

vector vh~ and all relation embeddings ri~ 2 R as given by equation 6.1. The similarity

scores are used to beam-search links, first exploring relations in the graph whose em-

bedded representations are most similar to the translation vector and then exploring

entities close to HOPLoP(TransE)’s next-hop position.

6.1 Example Paths and Their Interpretation

We provide several examples of interpreted HOPLoP(TransE) paths, describing rela-

tions of interest from di↵erent KGs. In each case, a positive path is one that connects

a positive pair of entities, i.e., if a positive path exists between two entities, HO-

PLoP(TransE) tends to predict that a link, of relation type r, exists between them.

Similarly, if a negative path exists between two entities, HOPLoP(TransE) tends to

refute the existence of a link or relation type r between the two entities.

One-hop paths

PersonLeadsOrganization (NELL-995)

• CeoOf

• PersonLeadsGeopoliticalOrganization

WorksFor (NELL-995)

• TopMemberOfOrganization

1This would imply that the single-hop relation r
0 present in the graph is semantically similar to

the task r.

86

• OrganizationHiredPerson�1

PersonBornInLocation (NELL-995)

• PersonBornInCity (Positive)

• PersonMovedToStateOrProvince (Negative)

Multi-hop paths

AthletePlaysSport (NELL-995)

• Positive: AthletePlaysForTeam ! TeamPlaysSport.

Meaning: if an athlete A plays for team B and if team B is known to play sport

C, then athlete A plays that sport C.

• Negative: PersonHasCitizenship ! SportFansInCountry�1

Meaning: just because an athlete A has citizenship in a country B which con-

tains fans of sport C, it does not imply athlete A plays sport C, since a country

may contain fans of multiple sports.

PersonBornInLocation (NELL-995)

• Positive: PersonHasCitizenship ! CountryAlsoKnownAs

Meaning: if a person A has citizenship in a country B, it is highly probable

that person A was born in country B.

• Negative: PersonBelongsToOrganization ! OrganizationAlsoKnownAs�1

! AtLocation

Meaning: if a person A belongs to an organization B and it is located at C, it

does not mean person A was born at location C, since a large number of people

move for work.

87

Ethnicity/LanguagesSpoken (FB15K-237)

• Positive: Ethnicity/GeographicDistribution !

Country/OfficialLanguage

Meaning: if an ethnic group A is from a country B and country B’s has an

o�cial language C, it is highly probable that the ethnic groupB speaks language

C.

• Negative: Ethnicity/People ! Actor/DubbingPerformances/Language

Meaning: if a dub actor A performs in language B, it does not mean that the

ethnic group C of actor A can speak the language C, since dub actors learn to

speak multiple languages.

Event/Locations (FB15K-237)

• Positive: NcaaBasketballTournament/Team !

SportsTeamLocation/Teams�1

Meaning: If an NCAA Basketball Tournament A hosts a team B, and team B

plays at location C, this implies that event A happened at location C.

• Negative: Film/FilmFestivals�1
! NetflixGenre/Titles�1

! Location/Contains�1

Meaning: If a Film Festival A hosts Film B and the film B is part of the

NetflixGenre C and C contains location D, it does not imply that event A

happened at location D.

hasGender (YAGO3-10)

• Positive: playsFor ! isAffiliatedTo�1
! hasGender

Meaning: If an athlete A plays for team B, another player C is a�liated with

team B and player C has gender D, then player A also has gender D. This is

because clubs form di↵erent teams for each gender.

88

• Negative: isMarriedTo�1
! hasGender

Meaning: If a person A is married to another person B who has gender C,

person A most likely does not have the gender C of their spouse.

graduatedFrom (YAGO3-10)

• Positive: hasAcademicAdvisor ! worksAt

Meaning: If a person A has an academic advisor B who works at organization

C, the likelihood of person A graduating from C is high.

• Negative: wasBornIn ! isLocatedIn ! isLocatedIn�1

Meaning: If a person A was born in location B and a particular school C is

located at B, it does not imply that person A graduated from school C, since

many students graduate from universities far from their birth place.

6.2 Distribution of Path Lengths

Figure 6.1 presents the distribution of number of unique paths by path length of all

tasks from the NELL-995 dataset. In this case, a unique path is a unique sequence

of both relations and entities, i.e., p = [es, v1, e1, ..., vH , et]. This examples the high

number of unique paths observed, as compared to previous methods, which only look

at relations in the path. We observe that the number of unique negative paths is

higher than the number of unique positive paths. We also observe that the average

path length for positive paths is consistently lower than the average path length for

negative paths across all tasks.

These observations show the extent to which HOPLoP “explores” the embedded

KG space in search for paths with strong support either way. Figure 6.1 also shows

that some tasks have a fairly unique distributions, which indicates that HOPLoP can

adapt to them. We observe that HOPLoP(TransE) utilizes the “NO-OP” relation,

which does not change it current entity position. This explains the observation that

89

path lengths rarely cross 10, since “NO-OP” is not a relation in the KG. We also

observe that, for a few tasks, a substantial number of paths have been found exceeding

path lengths 15. This can be attributed to the “over-fitting” scenario (see section 5.4),

in which HOPLoP(TransE) creates unique traversal patterns that tend to overfit for

the data provided.

90

Figure 6.1: Distribution of number of unique paths
founds by path length for each task in the NELL-995
dataset. The y-axis is log-scaled. The light grey bars
represent number of unique positive paths. The black
bars represent number of unique negative paths. We ob-
serve that HOPLoP(TransE) finds more negative paths
than positive paths. We also observe that path length
rarely cross 10. This shows that HOPLoP(TransE) is uti-
lizing the “NO-OP” operation, which is not counted as
a relation in the KG. We also observe that, for a few
tasks, a substantial number of paths have been found ex-
ceeding path lengths 15. This can be attributed to the
“over-fitting” scenario (see section 5.4).

91

Chapter 7

Conclusion and Future Work

In this thesis, we explored the space of automated reasoning over large-scale KGs.

Specifically, we looked into the problem of Knowledge Base Completion (KBC), which

aims to fill the informational gaps by reasoning over the observed links in the KG.

Adopted from graph theory, LP is a popular technique used to tackle KBC. A few

issues that hinders LP are: incompleteness [14], duplicate entities and relations [84]

and skewed node degrees [48]. LP is dominated by KG embedding methods, which

o↵er an elegant approach to the incompleteness problem. Di↵erent from KG embed-

ding methods, multi-hop LP aims to find a traversal path in the graph such that the

path expresses the underlying relation of interest.

We hypothesized that the performance of a multi-hop LP algorithm may be im-

proved if it traverses over a more-complete representation of the KG. This means

that there should be more links and entities in the graph to allow the path-finder

to be more expressive. We take advantage of the existing KG embedding literature,

and introduce a novel framework for multi-hop LP where paths and links are defined

in the embedded space. Our framework, HOPLoP, is an end-to-end di↵erentiable

framework that traverses an entity embedding space to distinguish between existent

and non-existent links of the KG. HOPLoP is una↵ected by the skewed node degree

and the incompleteness issue, since all entities are represented as points in space

and the traversal process is unconstrained, allowing HOPLoP to take any edge in the

92

embedded representation of the KG.

We notice that the training process helps HOPLoP recognize the global structure

of the KG and uncover correlations between traversal paths and relations. This

significantly boosts LP performance, which can be attributed to the expressive but

controlled traversal in embedded space. By allowing an unconstrained traversal pro-

cess, HOPLoP is able to better express the underlying relation between the source

and target entity, which is understood by the path-reasoner, which performs the final

link prediction. Due to the inherent di↵erentiability of our framework, parameter

sharing mechanisms for multi-task learning [30], as demonstrated by Das et al. [31],

were explored by M-HOPLoP. M-HOPLoP can reason about multiple relations and

performance better than HOPLoP in LP over the entire dataset, with only a marginal

increase in parameter size (+0.397%).

Upon performing standard LP evaluation practices, we observe that HOPLoP and

M-HOPLoP outperforms previous SOTA multi-hop and KG embedding approaches

across 4 datasets and 2 variants of the LP task. On the intrinsic relation prediction

task, M-HOPLoP advances previous SOTA methods on the NELL-995 and FB15K2-

237 dataset by +0.047 and +0.105 MAP, reducing errors by 46.53% and 54.97%

respectively. On the extrinsic entity prediction task, HOPLoP(TransE) advances pre-

vious SOTA methods on the WN18RR and YAGO3-10 dataset by +0.280 and +0.238

MRR, with an error reduction of 53.85% and 56.67% respectively. We also described

a method to interpret HOPLoP(TransE)’s reasoning paths. Experiment codes, scripts

and additional materials can be obtained at https://www.github.com/varunranga/

HOPLoP. Refer to Appendix B for more details regarding supplementary and repro-

ducibility.

7.1 Applicability of HOPLoP

Similar to all KG embedding methods, HOPLoP provides a score for a given fact.

The adoption of HOPLoP would be similar to any KG embedding method, but would

93

https://www.github.com/varunranga/HOPLoP
https://www.github.com/varunranga/HOPLoP

require an existing embedding space. Motivated practitioners may use the scripts

available in the supplementary material to generate an embedding space. To replace

an existing embedding space in use would reap the highest benefits. HOPLoP can be

trained to operate over any embedding space to directly replace that KG embedding

method for LP, without any change in the training pipeline. Since HOPLoP uses

separate parameters, it would not “fine-tune” the embeddings, which might be in use

by di↵erent ML systems.

7.2 Limitations of this work

A limitation of this work is that the KG benchmark datasets, used to compare various

LP algorithms, are artificial. These datasets are extracted from real-world KGs but

the test set is artificially created. To create these datasets, authors usually capture a

sub-graph of a real-world KG, randomly select links for the test set, and remove the

selected links from the sub-graph to create a training set of links. Since KGs only

store the observed facts as links, authors generally hypothesize negative examples for

links, which is then used for training and evaluation purposes. This is di↵erent from

the case of creating a KG (e.g. YAGO [4]) where the evaluation methodology on the

accuracy and size of KGs can be quantitative compared against other KGs.

Although HOPLoP advances the state of the art in LP, the results of the experi-

ments cannot be directly translated to a rate of improvement for the KG. This is due

to the limitations in evaluation methodologies followed in the LP literature. LP eval-

uation methodologies follows a closed-world assumption where all the facts observed

in the KG are deemed “positive” while any fact that is not observed in the KG is

deemed “negative”. The results shown are indicative of HOPLoP’s LP performance

on the test set of the KGs used in experiments. Since we do not make changes to real-

world KGs, we cannot quantitatively describe the impact of HOPLoP on real-world

KGs. Similar to the study of linked data by Radulovic et al. [109], we argue that a

comprehensive study of the quality of large-scale KGs, along with the impact of all

94

KBC methods, is essential to understand to true impact of LP algorithms.

How might one use HOPLoP to quantify the improvement of a KG?

We believe that quantifying the rate of improvement of a KG will require a manual

inspection of predicted facts. To do this, we can use HOPLoP to predict links in

the KG, which can be used to add facts to the KG. For a given relation, first train

HOPLoP with positive and negative links for that relation. Use the trained HOPLoP

model to predict for links by iterating over all entities in the range and domain of the

relation. For example, if there are 5 entities in the range of a relation, and 3 entities in

the domain of the relation, if the range and domain do not share any entities, we can

predict links between 15 pairs of entities. Using HOPLoP’s probabilistic prediction for

a link, we can use post-processing techniques from section 2.2.1 to determine which

facts should be added to the KG and which facts should not be added. For example,

one might identify a threshold for prediction, i.e., if HOPLoP’s predicted value is

greater than this threshold, we can assume that the link should be present or added

to the KG. To quantitatively measure the rate of improvement, a manual inspection

of the predicted links must be done before adding the links to the real-world KG.

This manual inspection will involve examining the predictions for each link, while

manual determining whether the link actually expresses a fact in the world. By

comparing the predictions for links against some ground truth, we will be able to

quantify the improvement to a KG, with respect to the number of new facts added

and the accuracy of the information that is being added to the graph.

7.3 Future research directions

We believe this new approach of “generating” traversal paths over an embedded space

can shed light onto a new approach for modeling sequence to sequence tasks. Path

lengths are not limited by the size of the model, and thus, they may be the answer

to expressing lengthy and 1-length sequences. Paths can be created, on the go, by

an hypothetical one-hop model, similar to HOPLoP, that receives its current state

95

and a new input, and performs composition, to “move” to a new hidden state. This

approach can be used to create representations for sequences, which then can be

analyzed by a stronger “reasoning” model.

Recent applications of BP, such as KG embeddings, have shown that we can take

advantage of GD for structure learning. We show that we can use GD for sequence

creation and learning as well. We have also witnessed progress in sequence tokeniza-

tion 1, enabling us to perform online machine learning and prediction. The next

question we would like to investigate: can we create universal representations for

data? Similar to how a KG is a standard human-readable data-model, we may create

a “Sequence Space” system, which can create neural representations for data. These

neural representations can be used to train neural architectures to perform down-

stream ML tasks. This work opens up opportunities for a “data-centric” framework

for machine learning.

1https://huggingface.co/docs/tokenizers/python/latest/

96

https://huggingface.co/docs/tokenizers/python/latest/

Bibliography

[1] P. Liang, “Talking to Computers in Natural Language,” XRDS, vol. 21, no. 1,
pp. 18–21, Oct. 2014, issn: 1528-4972. doi: 10.1145/2659831.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “DB-
pedia: A Nucleus for a Web of Open Data,” in The Semantic Web, Berlin, Ger-
many: Springer Berlin Heidelberg, 2007, pp. 722–735, isbn: 978-3-540-76298-0.
[Online]. Available: https://link.springer.com/content/pdf/10.1007\%2F978-
3-540-76298-0 52.pdf.

[3] G. A. Miller, “WordNet: A Lexical Database for English,” Communications
of the ACM, vol. 38, no. 11, pp. 39–41, Nov. 1995, issn: 0001-0782. doi: 10.
1145/219717.219748.

[4] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A Core of Semantic
Knowledge,” in Proceedings of the 16th International Conference on World
Wide Web, ser. WWW ’07, Ban↵, Canada: Association for Computing Machin-
ery, 2007, pp. 697–706, isbn: 9781595936547. doi: 10.1145/1242572.1242667.

[5] A. Moschitti, K. Tymoshenko, P. Alexopoulos, A. Walker, M. Nicosia, G. Vet-
ere, A. Faraotti, M. Monti, J. Z. Pan, H. Wu, and Y. Zhao, “Question Answer-
ing and Knowledge Graphs,” in Exploiting Linked Data and Knowledge Graphs
in Large Organisations. Cham, Switzerland: Springer International Publishing,
2017, pp. 181–212, isbn: 978-3-319-45654-6. doi: 10.1007/978-3-319-45654-
6 7.

[6] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Scientific
American, vol. 284, no. 5, pp. 34–43, 2001, issn: 00368733, 19467087. [Online].
Available: http://www.jstor.org/stable/26059207.

[7] A. R. W. Tjiptomongsoguno, A. Chen, H. M. Sanyoto, E. Irwansyah, and B.
Kanigoro, “Medical Chatbot Techniques: A Review,” in Software Engineering
Perspectives in Intelligent Systems, Cham, Switzerland: Springer International
Publishing, 2020, pp. 346–356, isbn: 978-3-030-63322-6.

[8] Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, and Q. He, “A Survey
on Knowledge Graph-Based Recommender Systems,” IEEE Transactions on
Knowledge & Data Engineering, no. 01, issn: 1558-2191. doi: 10.1109/TKDE.
2020.3028705.

97

https://doi.org/10.1145/2659831
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1007/978-3-319-45654-6_7
https://doi.org/10.1007/978-3-319-45654-6_7
http://www.jstor.org/stable/26059207
https://doi.org/10.1109/TKDE.2020.3028705
https://doi.org/10.1109/TKDE.2020.3028705

[9] R. Wickramarachchi, C. A. Henson, and A. P. Sheth, “An Evaluation of Knowl-
edge Graph Embeddings for Autonomous Driving Data: Experience and Prac-
tice,” in Proceedings of the AAAI 2020 Spring Symposium on Combining Ma-
chine Learning and Knowledge Engineering in Practice, AAAI-MAKE 2020,
Palo Alto, CA, USA, March 23-25, 2020, Volume I, ser. CEUR Workshop
Proceedings, vol. 2600, CEUR-WS.org, 2020. [Online]. Available: http://ceur-
ws.org/Vol-2600/paper3.pdf.

[10] F. Bianchi, G. Rossiello, L. Costabello, M. Palmonari, and P. Minervini, “Knowl-
edge Graph Embeddings and Explainable AI,” pp. 49–72, 2020. doi: 10.3233/
SSW200011.

[11] J. Robinson and A. Voronkov, Handbook of Automated Reasoning (in two vol-
umes). Cambridge, USA: MIT Press, 2001, isbn: 978-0-262-18221-8.

[12] N. Aggarwal, S. Shekarpour, S. Bhatia, and A. Sheth, “Knowledge graphs: In
theory and practice,” in Conference on Information and Knowledge Manage-
ment, vol. 17, 2017.

[13] E. Hovy, R. Navigli, and S. P. Ponzetto, “Collaboratively built semi-structured
content and Artificial Intelligence: The story so far,” Artificial Intelligence,
vol. 194, pp. 2–27, 2013, issn: 0004-3702. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0004370212001245.

[14] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A Review of Relational
Machine Learning for Knowledge Graphs,” Proceedings of the IEEE, vol. 104,
no. 1, pp. 11–33, Jan. 2016, issn: 1558-2256. doi: 10 . 1109/JPROC.2015 .
2483592.

[15] K. Adnan and R. Akbar, “Limitations of information extraction methods and
techniques for heterogeneous unstructured big data,” International Journal of
Engineering Business Management, vol. 11, 2019. doi: 10.1177/1847979019890771.

[16] H. Paulheim, “Knowledge graph refinement: A survey of approaches and evalu-
ation methods,” Semantic Web, vol. 8, no. 3, pp. 489–508, 2017. doi: 10.3233/
SW-160218. [Online]. Available: https://madoc.bib.uni-mannheim.de/41515/.

[17] H. Cai, V. W. Zheng, and K. C. Chang, “A Comprehensive Survey of Graph
Embedding: Problems, Techniques, and Applications,” IEEE Transactions on
Knowledge and Data Engineering, vol. 30, no. 9, pp. 1616–1637, Sep. 2018,
issn: 1558-2191. doi: 10.1109/TKDE.2018.2807452.

[18] C. Meilicke, M. W. Chekol, D. Ru�nelli, and H. Stuckenschmidt, “Anytime
bottom-up rule learning for knowledge graph completion,” in Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence
IJCAI-19, International Joint Conferences on Artificial Intelligence Organiza-
tion, Jul. 2019, pp. 3137–3143. doi: 10.24963/ijcai.2019/435.

[19] A. Rossi, D. Barbosa, D. Firmani, A. Matinata, and P. Merialdo, “Knowl-
edge Graph Embedding for Link Prediction: A Comparative Analysis,” ACM
Transactions on Knowledge Discovery from Data, vol. 15, no. 2, Jan. 2021,
issn: 1556-4681. doi: 10.1145/3424672.

98

http://ceur-ws.org/Vol-2600/paper3.pdf
http://ceur-ws.org/Vol-2600/paper3.pdf
https://doi.org/10.3233/SSW200011
https://doi.org/10.3233/SSW200011
http://www.sciencedirect.com/science/article/pii/S0004370212001245
http://www.sciencedirect.com/science/article/pii/S0004370212001245
https://doi.org/10.1109/JPROC.2015.2483592
https://doi.org/10.1109/JPROC.2015.2483592
https://doi.org/10.1177/1847979019890771
https://doi.org/10.3233/SW-160218
https://doi.org/10.3233/SW-160218
https://madoc.bib.uni-mannheim.de/41515/
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.24963/ijcai.2019/435
https://doi.org/10.1145/3424672

[20] K. Guu, J. Miller, and P. Liang, “Traversing knowledge graphs in vector space,”
in Proceedings of the 2015 Conference on Empirical Methods in Natural Lan-
guage Processing, Lisbon, Portugal: Association for Computational Linguistics,
Sep. 2015, pp. 318–327. doi: 10.18653/v1/D15-1038.

[21] A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston, and O. Yakhnenko, “Trans-
lating Embeddings for Modeling Multi-Relational Data,” in Proceedings of
the 26th International Conference on Neural Information Processing Systems
- Volume 2, ser. NIPS’13, Lake Tahoe, USA: Curran Associates Inc., 2013,
pp. 2787–2795. [Online]. Available: https://proceedings.neurips .cc/paper/
2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.

[22] N. Lao and W. W. Cohen, “Relational retrieval using a combination of path-
constrained random walks,” Machine Learning, vol. 81, no. 1, 53––67, Oct.
2010, issn: 0885-6125. doi: 10.1007/s10994-010-5205-8.

[23] N. Lao, T. Mitchell, and W. W. Cohen, “RandomWalk Inference and Learning
in a Large Scale Knowledge Base,” in Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing, ser. EMNLP ’11, Edinburgh,
United Kingdom: Association for Computational Linguistics, 2011, pp. 529–
539, isbn: 9781937284114. [Online]. Available: https://aclanthology.org/D11-
1049.

[24] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge Graph Embedding: A
Survey of Approaches and Applications,” IEEE Transactions on Knowledge
and Data Engineering, vol. 29, no. 12, pp. 2724–2743, Dec. 2017, issn: 1558-
2191. doi: 10.1109/TKDE.2017.2754499.

[25] M. Nickel, V. Tresp, and H.-P. Kriegel, “A Three-Way Model for Collective
Learning on Multi-Relational Data,” in Proceedings of the 28th International
Conference on International Conference on Machine Learning, ser. ICML’11,
Bellevue, USA: Omnipress, 2011, 809––816, isbn: 9781450306195.

[26] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge Graph Embedding by
Translating on Hyperplanes,” Proceedings of the AAAI Conference on Artifi-
cial Intelligence, vol. 28, no. 1, Jun. 2014. [Online]. Available: https://ojs.aaai.
org/index.php/AAAI/article/view/8870.

[27] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning Entity and Relation Em-
beddings for Knowledge Graph Completion,” Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 29, no. 1, Feb. 2015. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/9491.

[28] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge Graph Embedding
via Dynamic Mapping Matrix,” in Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), Beijing,
China: Association for Computational Linguistics, Jul. 2015, pp. 687–696. doi:
10.3115/v1/P15-1067.

99

https://doi.org/10.18653/v1/D15-1038
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/10.1007/s10994-010-5205-8
https://aclanthology.org/D11-1049
https://aclanthology.org/D11-1049
https://doi.org/10.1109/TKDE.2017.2754499
https://ojs.aaai.org/index.php/AAAI/article/view/8870
https://ojs.aaai.org/index.php/AAAI/article/view/8870
https://ojs.aaai.org/index.php/AAAI/article/view/9491
https://doi.org/10.3115/v1/P15-1067

[29] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv
preprint arXiv:1609.04747, 2016.

[30] S. Ruder, “An overview of multi-task learning in deep neural networks,” arXiv
preprint arXiv:1706.05098, 2017.

[31] R. Das, A. Neelakantan, D. Belanger, and A. McCallum, “Chains of Reason-
ing over Entities, Relations, and Text using Recurrent Neural Networks,” in
Proceedings of the 15th Conference of the European Chapter of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), Valencia, Spain:
Association for Computational Linguistics, Apr. 2017, pp. 132–141. [Online].
Available: https://www.aclweb.org/anthology/E17-1013.

[32] A. Neelakantan, B. Roth, and A. McCallum, “Compositional Vector Space
Models for Knowledge Base Completion,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Processing (Volume 1: Long
Papers), Beijing, China: Association for Computational Linguistics, Jul. 2015,
pp. 156–166. doi: 10.3115/v1/P15-1016.

[33] H. Ji and R. Grishman, “Knowledge Base Population: Successful Approaches
and Challenges,” in Proceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language Technologies - Volume 1,
ser. HLT ’11, Portland, USA: Association for Computational Linguistics, 2011,
pp. 1148–1158, isbn: 9781932432879. [Online]. Available: https://aclanthology.
org/P11-1115.

[34] R. Kadlec, O. Bajgar, and J. Kleindienst, “Knowledge Base Completion: Base-
lines Strike Back,” in Proceedings of the 2nd Workshop on Representation
Learning for NLP, Vancouver, Canada: Association for Computational Lin-
guistics, Aug. 2017, pp. 69–74. doi: 10.18653/v1/W17-2609.

[35] C. Grosan and A. Abraham, “Rule-based expert systems,” in Intelligent Sys-
tems: A Modern Approach. Berlin, Germany: Springer Berlin Heidelberg, 2011,
pp. 149–185, isbn: 978-3-642-21004-4. doi: 10.1007/978-3-642-21004-4 7.

[36] D. A. Ferrucci, “IBM’s Watson/DeepQA,” in Proceedings of the 38th Annual
International Symposium on Computer Architecture, ser. ISCA ’11, San Jose,
USA: Association for Computing Machinery, 2011, isbn: 9781450304726. doi:
10.1145/2000064.2019525.

[37] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, B. Yang, J. Betteridge,
A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K.
Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B.
Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, and
J. Welling, “Never-Ending Learning,” Communications of the ACM, vol. 61,
no. 5, pp. 103–115, Apr. 2018, issn: 0001-0782. doi: 10.1145/3191513.

100

https://www.aclweb.org/anthology/E17-1013
https://doi.org/10.3115/v1/P15-1016
https://aclanthology.org/P11-1115
https://aclanthology.org/P11-1115
https://doi.org/10.18653/v1/W17-2609
https://doi.org/10.1007/978-3-642-21004-4_7
https://doi.org/10.1145/2000064.2019525
https://doi.org/10.1145/3191513

[38] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A Survey on Knowledge
Graphs: Representation, Acquisition, and Applications,” IEEE Transactions
on Neural Networks and Learning Systems, pp. 1–21, 2021, issn: 2162-2388.
doi: 10.1109/TNNLS.2021.3070843.

[39] G. Hinton and T. J. Sejnowski, Unsupervised Learning: Foundations of Neural
Computation. The MIT Press, May 1999, isbn: 9780262288033. doi: 10.7551/
mitpress/7011.001.0001.

[40] M. Nickel, V. Tresp, and H.-P. Kriegel, “Factorizing YAGO: Scalable Machine
Learning for Linked Data,” in Proceedings of the 21st International Conference
on World Wide Web, ser. WWW ’12, Lyon, France: Association for Computing
Machinery, 2012, pp. 271–280, isbn: 9781450312295. doi: 10.1145/2187836.
2187874.

[41] J. Pennington, R. Socher, and C. Manning, “GloVe: Global Vectors for Word
Representation,” in Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Doha, Qatar: Association for Com-
putational Linguistics, Oct. 2014, pp. 1532–1543. doi: 10.3115/v1/D14-1162.

[42] Q. Xie, Z. Dai, E. Hovy, T. Luong, and Q. Le, “Unsupervised Data Augmenta-
tion for Consistency Training,” in Advances in Neural Information Processing
Systems, vol. 33, Curran Associates, Inc., 2020, pp. 6256–6268. [Online]. Avail-
able: https://proceedings.neurips.cc/paper/2020/file/44feb0096faa8326192570788b38c1d1-
Paper.pdf.

[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is All you Need,” in Advances
in Neural Information Processing Systems, vol. 30, Curran Associates, Inc.,
2017. [Online]. Available: https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[44] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[45] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image
is worth 16x16 words: Transformers for image recognition at scale,” arXiv
preprint arXiv:2010.11929, 2020.

[46] A. Gatt and E. Krahmer, “Survey of the State of the Art in Natural Language
Generation: Core Tasks, Applications and Evaluation,” Journal of Artificial
Intelligence Research, vol. 61, no. 1, pp. 65–170, Jan. 2018, issn: 1076-9757.

[47] B. Kotnis and V. Nastase, “Analysis of the impact of negative sampling on
link prediction in knowledge graphs,” arXiv preprint arXiv:1708.06816, 2017.

101

https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/10.7551/mitpress/7011.001.0001
https://doi.org/10.7551/mitpress/7011.001.0001
https://doi.org/10.1145/2187836.2187874
https://doi.org/10.1145/2187836.2187874
https://doi.org/10.3115/v1/D14-1162
https://proceedings.neurips.cc/paper/2020/file/44feb0096faa8326192570788b38c1d1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/44feb0096faa8326192570788b38c1d1-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[48] W. Xiong, T. Hoang, and W. Y. Wang, “DeepPath: A Reinforcement Learning
Method for Knowledge Graph Reasoning,” in Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language Processing, Copenhagen,
Denmark: Association for Computational Linguistics, Sep. 2017, pp. 564–573.
doi: 10.18653/v1/D17-1060.

[49] R. Das, S. Dhuliawala, M. Zaheer, L. Vilnis, I. Durugkar, A. Krishnamurthy, A.
Smola, and A. McCallum, “Go for a Walk and Arrive at the Answer: Reasoning
Over Paths in Knowledge Bases using Reinforcement Learning,” in ICLR,
2018.

[50] X. V. Lin, R. Socher, and C. Xiong, “Multi-Hop Knowledge Graph Reasoning
with Reward Shaping,” in Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels, Belgium: Association for
Computational Linguistics, Oct. 2018, pp. 3243–3253. doi: 10.18653/v1/D18-
1362.

[51] F. Chollet, “On the measure of intelligence,” arXiv preprint arXiv:1911.01547,
2019.

[52] T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture Search: A Sur-
vey,” Journal of Machine Learning Research, vol. 20, no. 55, pp. 1–21, 2019.
[Online]. Available: http://jmlr.org/papers/v20/18-598.html.

[53] P. Radivojac and M. White, “Machine learning handbook,” 2019. [Online].
Available: https://marthawhite.github.io/mlcourse/notes.pdf.

[54] N. Qian, “On the momentum term in gradient descent learning algorithms,”
Neural Networks, vol. 12, no. 1, pp. 145–151, 1999, issn: 0893-6080. doi: https:
//doi.org/10.1016/S0893-6080(98)00116-6.

[55] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the Importance of
Initialization and Momentum in Deep Learning,” ICML’13, III–1139–III–1147,
2013.

[56] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient Methods for On-
line Learning and Stochastic Optimization,” Journal of Artificial Intelligence
Research, vol. 12, pp. 2121–2159, Jul. 2011, issn: 1532-4435.

[57] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learn-
ing lecture 6a overview of mini-batch gradient descent,” [Online]. Available:
http://www.cs.toronto.edu/⇠hinton/coursera/lecture6/lec6.pdf.

[58] M. D. Zeiler, “AdaDelta: An adaptive learning rate method,” arXiv preprint
arXiv:1212.5701, 2012.

[59] “Adam: A method for stochastic optimization,” 2014. [Online]. Available: http:
//arxiv.org/abs/1412.6980.

[60] S. Reddi, S. Kale, and S. Kumar, “On the convergence of Adam and Beyond,”
2018.

[61] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
[Online]. Available: http://www.deeplearningbook.org.

102

https://doi.org/10.18653/v1/D17-1060
https://doi.org/10.18653/v1/D18-1362
https://doi.org/10.18653/v1/D18-1362
http://jmlr.org/papers/v20/18-598.html
https://marthawhite.github.io/mlcourse/notes.pdf
https://doi.org/https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/https://doi.org/10.1016/S0893-6080(98)00116-6
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://www.deeplearningbook.org

[62] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015. doi: 10.1038/nature14539.

[63] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.
doi: 10.1038/323533a0.

[64] V. Ranganathan and A. Lewandowski, ZORB: A derivative-free backpropagation
algorithm for neural networks, 2020.

[65] Y. LeCun, L. Jackel, L. Bottou, A Brunot, C. Cortes, J. Denker, H. Drucker,
I. Guyon, U. Muller, E. Sackinger, et al., “Comparison of learning algorithms
for handwritten digit recognition,” in International Conference on Artificial
Neural Networks, Perth, Australia, vol. 60, 1995, pp. 53–60. [Online]. Available:
http://yann.lecun.com/exdb/publis/pdf/lecun-95b.pdf.

[66] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin,
B. C. Van Esesn, A. A. S. Awwal, and V. K. Asari, “The history began from
alexnet: A comprehensive survey on deep learning approaches,” arXiv preprint
arXiv:1803.01164, 2018.

[67] B. C. Csáji et al., “Approximation with artificial neural networks,” Faculty
of Sciences, Etvs Lornd University, Hungary, vol. 24, no. 48, p. 7, 2001. doi:
10.1.1.101.2647.

[68] J. Sola and J. Sevilla, “Importance of input data normalization for the applica-
tion of neural networks to complex industrial problems,” IEEE Transactions on
Nuclear Science, vol. 44, no. 3, pp. 1464–1468, 1997. doi: 10.1109/23.589532.

[69] M. I. Jordan, “Chapter 25 - Serial Order: A Parallel Distributed Processing
Approach,” in Neural-Network Models of Cognition, ser. Advances in Psy-
chology, vol. 121, North-Holland, 1997, pp. 471–495. doi: 10 . 1016/S0166 -
4115(97)80111-2.

[70] R. Pascanu, T. Mikolov, and Y. Bengio, “On the di�culty of training recurrent
neural networks,” in Proceedings of the 30th International Conference on Ma-
chine Learning, S. Dasgupta and D. McAllester, Eds., ser. Proceedings of Ma-
chine Learning Research, vol. 28, Atlanta, USA: PMLR, Jun. 2013, pp. 1310–
1318. [Online]. Available: http://proceedings.mlr.press/v28/pascanu13.html.

[71] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Com-
putation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, issn: 0899-7667. doi: 10.
1162/neco.1997.9.8.1735.

[72] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” in NIPS 2014 Workshop on
Deep Learning, December 2014, 2014. [Online]. Available: https://arxiv.org/
abs/1412.3555.

[73] E. Keogh and A. Mueen, “Curse of Dimensionality,” in Encyclopedia of Ma-
chine Learning and Data Mining. Boston, USA: Springer US, 2017, pp. 314–
315, isbn: 978-1-4899-7687-1. doi: 10.1007/978-1-4899-7687-1 192.

103

https://doi.org/10.1038/nature14539
https://doi.org/10.1038/323533a0
http://yann.lecun.com/exdb/publis/pdf/lecun-95b.pdf
https://doi.org/10.1.1.101.2647
https://doi.org/10.1109/23.589532
https://doi.org/10.1016/S0166-4115(97)80111-2
https://doi.org/10.1016/S0166-4115(97)80111-2
http://proceedings.mlr.press/v28/pascanu13.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://doi.org/10.1007/978-1-4899-7687-1_192

[74] T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, and G. Bouchard, “Complex
Embeddings for Simple Link Prediction,” in Proceedings of the 33rd Interna-
tional Conference on International Conference on Machine Learning - Volume
48, ser. ICML’16, New York, USA: Journal of Machine Learning Research,
2016, pp. 2071–2080. [Online]. Available: http://proceedings.mlr.press/v48/
trouillon16.pdf.

[75] I. Balazevic, C. Allen, and T. Hospedales, “TuckER: Tensor Factorization
for Knowledge Graph Completion,” in Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong
Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 5185–
5194. doi: 10.18653/v1/D19-1522.

[76] Y. Pinter and J. Eisenstein, “Predicting Semantic Relations using Global
Graph Properties,” in Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, Brussels, Belgium: Association for Com-
putational Linguistics, Oct. 2018, pp. 1741–1751. doi: 10.18653/v1/D18-1201.

[77] H. Thanh-Tung and T. Tran, “Catastrophic forgetting and mode collapse in
GANs,” in 2020 International Joint Conference on Neural Networks (IJCNN),
2020, pp. 1–10. doi: 10.1109/IJCNN48605.2020.9207181.

[78] V. Ranganathan and N. Subramanyam, “SDE-KG: A Stochastic Dynamic En-
vironment for Knowledge Graphs,” in Machine Learning and Knowledge Dis-
covery in Databases, Cham, Switzerland: Springer International Publishing,
2020, pp. 483–488, isbn: 978-3-030-43823-4.

[79] T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications,”
SIAM Rev., vol. 51, no. 3, 455––500, Aug. 2009, issn: 0036-1445. doi: 10 .
1137/07070111X.

[80] B. Yang, S. W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding Entities
and Relations for Learning and Inference in Knowledge Bases,” in Proceedings
of the International Conference on Learning Representations (ICLR) 2015,
May 2015. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/embedding-entities-and-relations-for-learning-and-inference-in-
knowledge-bases/.

[81] M. Aceves-Fernandez, R. Domı́nguez-Guevara, J. C. Pedraza Ortega, and J.
Vargas-Soto, “Evaluation of Key Parameters Using Deep Convolutional Neural
Networks for Airborne Pollution (PM10) Prediction,” Discrete Dynamics in
Nature and Society, vol. 2020, pp. 1–14, Feb. 2020. doi: 10.1155/2020/2792481.

[82] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” Psy-
chometrika, vol. 31, no. 3, pp. 279–311, 1966. doi: 10.1007/BF02289464.

[83] M. Bianchini, M. Gori, and F. Scarselli, “Inside PageRank,” ACM Transactions
on Internet Technology, vol. 5, no. 1, pp. 92–128, Feb. 2005, issn: 1533–5399.
doi: 10.1145/1052934.1052938.

104

http://proceedings.mlr.press/v48/trouillon16.pdf
http://proceedings.mlr.press/v48/trouillon16.pdf
https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.18653/v1/D18-1201
https://doi.org/10.1109/IJCNN48605.2020.9207181
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://www.microsoft.com/en-us/research/publication/embedding-entities-and-relations-for-learning-and-inference-in-knowledge-bases/
https://www.microsoft.com/en-us/research/publication/embedding-entities-and-relations-for-learning-and-inference-in-knowledge-bases/
https://www.microsoft.com/en-us/research/publication/embedding-entities-and-relations-for-learning-and-inference-in-knowledge-bases/
https://doi.org/10.1155/2020/2792481
https://doi.org/10.1007/BF02289464
https://doi.org/10.1145/1052934.1052938

[84] W. Chen, W. Xiong, X. Yan, and W. Y. Wang, “Variational Knowledge Graph
Reasoning,” in Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), New Orleans, USA: Association for
Computational Linguistics, Jun. 2018, pp. 1823–1832. doi: 10.18653/v1/N18-
1165.

[85] M. Gardner, A. Bhowmick, K. Agrawal, and D. Dua, “Experimenting with the
path ranking algorithm,” 2015. [Online]. Available: https://www.andrew.cmu.
edu/user/kdagrawa/documents/10605report.pdf.

[86] M. Gardner, P. Talukdar, J. Krishnamurthy, and T. Mitchell, “Incorporating
Vector Space Similarity in Random Walk Inference over Knowledge Bases,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Doha, Qatar: Association for Computational Linguis-
tics, Oct. 2014, pp. 397–406. doi: 10.3115/v1/D14-1044.

[87] V. Ranganathan, S. Suresh, Y. Mathur, N. Subramanyam, and D. Barbosa,
“GrCluster: A Score Function to Model Hierarchy in Knowledge Graph Em-
beddings,” in Proceedings of the 35th Annual ACM Symposium on Applied
Computing, ser. SAC ’20, Brno, Czech Republic: Association for Comput-
ing Machinery, 2020, 964–971, isbn: 9781450368667. doi: 10.1145/3341105.
3373978.

[88] P. Kolyvakis, A. Kalousis, and D. Kiritsis, “Hyperbolic Knowledge Graph
Embeddings for Knowledge Base Completion,” in The Semantic Web, Cham:
Springer International Publishing, 2020, pp. 199–214, isbn: 978-3-030-49461-2.
doi: 10.1007/978-3-030-49461-2 12.

[89] M. Nickel and D. Kiela, “Poincaré Embeddings for Learning Hierarchical Rep-
resentations,” in Advances in Neural Information Processing Systems, vol. 30,
Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.
cc/paper/2017/file/59dfa2df42d9e3d41f5b02bfc32229dd-Paper.pdf.

[90] Y. Lin, Z. Liu, H. Luan, M. Sun, S. Rao, and S. Liu, “Modeling Relation Paths
for Representation Learning of Knowledge Bases,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, Lisbon,
Portugal: Association for Computational Linguistics, Sep. 2015, pp. 705–714.
doi: 10.18653/v1/D15-1082.

[91] S. Raghavan and H. Garcia-Molina, “Representing Web graphs,” in Proceed-
ings 19th International Conference on Data Engineering, Mar. 2003, pp. 405–
416. doi: 10.1109/ICDE.2003.1260809.

[92] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cam-
bridge, USA: A Bradford Book, 2018, isbn: 0262039249.

[93] R. J. Williams, “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning,” Machine learning, vol. 8, no. 3-4, pp. 229–256,
1992. doi: 10.1007/BF00992696.

105

https://doi.org/10.18653/v1/N18-1165
https://doi.org/10.18653/v1/N18-1165
https://www.andrew.cmu.edu/user/kdagrawa/documents/10605report.pdf
https://www.andrew.cmu.edu/user/kdagrawa/documents/10605report.pdf
https://doi.org/10.3115/v1/D14-1044
https://doi.org/10.1145/3341105.3373978
https://doi.org/10.1145/3341105.3373978
https://doi.org/10.1007/978-3-030-49461-2_12
https://proceedings.neurips.cc/paper/2017/file/59dfa2df42d9e3d41f5b02bfc32229dd-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/59dfa2df42d9e3d41f5b02bfc32229dd-Paper.pdf
https://doi.org/10.18653/v1/D15-1082
https://doi.org/10.1109/ICDE.2003.1260809
https://doi.org/10.1007/BF00992696

[94] Y. Shen, J. Chen, P.-S. Huang, Y. Guo, and J. Gao, “M-Walk: Learning to
Walk over Graphs using Monte Carlo Tree Search,” in Advances in Neural In-
formation Processing Systems, vol. 31, Curran Associates, Inc., 2018, pp. 6786–
6797. [Online]. Available: https://proceedings.neurips.cc/paper/2018/file/
c6f798b844366ccd65d99bc7f31e0e02-Paper.pdf.

[95] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in 2nd In-
ternational Conference on Learning Representations, ICLR 2014, Ban↵, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

[96] Y. Gal, “Uncertainty in Deep Learning,” PhD thesis, University of Cambridge,
2016.

[97] F. Mahdisoltani, J. Biega, and F. M. Suchanek, “YAGO3: A Knowledge Base
from Multilingual Wikipedias,” in 7th Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 4-7, 2015, Online Proceed-
ings, 2015. [Online]. Available: http://cidrdb.org/cidr2015/Papers/CIDR15\
Paper1.pdf.

[98] J. Halpern, Reasoning about Uncertainty, ser. Reasoning about Uncertainty.
MIT Press, 2005, isbn: 9780262582599. [Online]. Available: https://books.
google.com.vc/books?id=qMBHGwAACAAJ.

[99] D. Hosmer and S. Lemeshow, Applied Logistic Regression, ser. Applied Logistic
Regression. Wiley, 2004, isbn: 9780471654025. [Online]. Available: https://
books.google.co.in/books?id=Po0RLQ7USIMC.

[100] K. Toutanova, V. Lin, W.-t. Yih, H. Poon, and C. Quirk, “Compositional
Learning of Embeddings for Relation Paths in Knowledge Base and Text,” in
Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Berlin, Germany: Association for Com-
putational Linguistics, Aug. 2016, pp. 1434–1444. doi: 10.18653/v1/P16-1136.

[101] M. Nayyeri, C. Xu, J. Lehmann, and H. S. Yazdi, “LogicENN: A Neural Based
Knowledge Graphs Embedding Model with Logical Rules,” arXiv preprint
arXiv:1908.07141, 2019.

[102] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional 2D
Knowledge Graph Embeddings,” Proceedings of the AAAI Conference on Ar-
tificial Intelligence, vol. 32, no. 1, Apr. 2018. [Online]. Available: https://ojs.
aaai.org/index.php/AAAI/article/view/11573.

[103] B. Ding, Q. Wang, B. Wang, and L. Guo, “Improving Knowledge Graph Em-
bedding Using Simple Constraints,” in Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
Melbourne, Australia: Association for Computational Linguistics, Jul. 2018,
pp. 110–121. doi: 10.18653/v1/P18-1011.

106

https://proceedings.neurips.cc/paper/2018/file/c6f798b844366ccd65d99bc7f31e0e02-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c6f798b844366ccd65d99bc7f31e0e02-Paper.pdf
https://books.google.com.vc/books?id=qMBHGwAACAAJ
https://books.google.com.vc/books?id=qMBHGwAACAAJ
https://books.google.co.in/books?id=Po0RLQ7USIMC
https://books.google.co.in/books?id=Po0RLQ7USIMC
https://doi.org/10.18653/v1/P16-1136
https://ojs.aaai.org/index.php/AAAI/article/view/11573
https://ojs.aaai.org/index.php/AAAI/article/view/11573
https://doi.org/10.18653/v1/P18-1011

[104] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: A System for Large-Scale Machine Learn-
ing,” in Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’16, Savannah, USA: USENIX Associ-
ation, 2016, pp. 265–283, isbn: 9781931971331.

[105] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang, “RotatE: Knowledge Graph Em-
bedding by Relational Rotation in Complex Space,” in International Confer-
ence on Learning Representations, 2019. [Online]. Available: https://openreview.
net/forum?id=HkgEQnRqYQ.

[106] T. Lacroix, N. Usunier, and G. Obozinski, “Canonical Tensor Decomposition
for Knowledge Base Completion,” in Proceedings of the 35th International
Conference on Machine Learning, vol. 80, Stockholmsmässan, Stockholm Swe-
den: Proceedings of Machine Learning Research, Jul. 2018, pp. 2863–2872.
[Online]. Available: http://proceedings.mlr.press/v80/lacroix18a.html.

[107] I. Chami, A. Wolf, D.-C. Juan, F. Sala, S. Ravi, and C. Ré, “Low-Dimensional
Hyperbolic Knowledge Graph Embeddings,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, Online: Association
for Computational Linguistics, Jul. 2020, pp. 6901–6914. doi: 10.18653/v1/
2020.acl-main.617.

[108] R. Haeb-Umbach and H. Ney, “Improvements in beam search for 10000-word
continuous-speech recognition,” IEEE Transactions on Speech and Audio Pro-
cessing, vol. 2, no. 2, pp. 353–356, Apr. 1994, issn: 1558-2353. doi: 10.1109/
89.279287.

[109] F. Radulovic, N. Mihindukulasooriya, R. Garćıa-Castro, and A. Gómez-Pérez,
“A comprehensive quality model for Linked Data,” Semantic Web, vol. 9, no. 1,
pp. 3–24, 2018. doi: 10.3233/SW-170267.

[110] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,” Lecture notes of
EE392o, Stanford University, Autumn Quarter, vol. 2004, pp. 2004–2005, 2003.
[Online]. Available: https://web.stanford.edu/class/ee392o/subgrad method.
pdf.

[111] J. Larson, M. Menickelly, and S. M. Wild, “Derivative-free optimization meth-
ods,” Acta Numerica, vol. 28, pp. 287–404, 2019. doi: 10.1017/S0962492919000060.

[112] Y. E. Nesterov, “A method for solving the convex programming problem with
convergence rate O(1/k2),” in Dokl. akad. nauk Sssr, vol. 269, 1983, pp. 543–
547. [Online]. Available: http://mi.mathnet.ru/eng/dan46009.

[113] P. Guo and M. R. Lyu, “A pseudoinverse learning algorithm for feedforward
neural networks with stacked generalization applications to software reliability
growth data,” Neurocomputing, vol. 56, pp. 101–121, 2004, issn: 0925-2312.
doi: https://doi.org/10.1016/S0925-2312(03)00385-0.

107

https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
http://proceedings.mlr.press/v80/lacroix18a.html
https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.1109/89.279287
https://doi.org/10.1109/89.279287
https://doi.org/10.3233/SW-170267
https://web.stanford.edu/class/ee392o/subgrad_method.pdf
https://web.stanford.edu/class/ee392o/subgrad_method.pdf
https://doi.org/10.1017/S0962492919000060
http://mi.mathnet.ru/eng/dan46009
https://doi.org/https://doi.org/10.1016/S0925-2312(03)00385-0

[114] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimiza-
tion,” Journal of Machine Learning Research, vol. 13, no. 10, pp. 281–305,
2012. [Online]. Available: http://jmlr.org/papers/v13/bergstra12a.html.

108

http://jmlr.org/papers/v13/bergstra12a.html

Appendix A: Notes on Gradient
Descent and Backpropagation

A.1 Gradient Descent

Gradient Descent (GD) is an iterative optimization algorithm that uses the gradient

of an error function, specifically its direction, to tune parameter values in the direction

of the local minima of the error function. It is based on the intuition that if a multi-

variable error/cost function c(w0) is di↵erentiable 1 in a neighborhood of a point

w0, then c(w) decreases fastest if one goes from w0 in the direction of the negative

gradient of c at w0, that is, �rwc(w0). It involves approximating the function using

the Taylor series, given by:

c(w) = ⌃1
n=0

c(n)(w0)

n!
(w � w0)

n (A.1)

where c(n)(w0) is the nth derivative of the function c(w) evaluated at point w0. New-

ton’s method expands this Taylor series with n = 2 to the whole cost using only the

first three terms.

c(w) = ⌃1
n=0

c(n)(w0)

n!
(w � w0)

n

⇡ c(w0) + (w � w0)c
0(w0) + (w � w0)

2 c
00(w0)

2

(A.2)

A stationary point of the approximated error function can be found by setting the

derivative, with respect to the weights w, of the function to zero and solving for the

1This constraint has been mitigated through Sub-gradient methods [110] and derivative-free meth-
ods [111] to optimizing a non-convex function

109

required parameters.

c0(w) ⇡
@

@w
c(w0) +

@

@w
((w � w0)c

0(w0)) +
@

@w
((w � w0)

2 c
00(w0)

2
)

⇡ c0(w0) + (w � w0)c
00(w0) = 0

(A.3)

Upon solving for the parameter w, we arrive at the following expression.

w = w0 �
c0(w0)

c00(w0)
(A.4)

Since this parameter update is based o↵ an approximation of the error function,

it is iteratively updated based on the current parameter values. This requires the

recomputation of both the first derivative and the second derivative of the function.

Compared to computing the first derivative, computing the second derivative is quite

expensive. Instead, practitioners approximate the second-order derivative using a

constant value called step size or learning rate [53]. The first-order GD update rule

is given by substituting a learning rate in place of second derivative information

µ ⇡ c00(w0). This simplifies equation A.4 to:

w = w0 � µc0(w0) (A.5)

The learning rate µ is a hyperparameter that is selected through experimentation.

Learning rate, one of many hyperparameters, including, momentum [54], nestorov

[112], batch size, epochs, etc., need to be tuned for successful GD-based training [113].

These hyperparameter values vary widely across datasets, requiring the practitioner

to perform hyperparameter tuning [114], which trains multiple models at the expense

of compute power.

A.1.1 Modifications made to the GD update rule

Once the gradient of each parameter in the compute graph is calculated, either directly

or through backpropagation, the weights are updated using the GD update rule.

110

There are several variants and advancements of GD that has been applied to optimize

a chain of di↵erentiable operations.

Batch Gradient Descent (BGD) involves updating the weights of the network after

accumulating the gradients calculated for every sample in the dataset. Although

this procedure is guaranteed to reach the local minima of a smooth convex error

function, it has a slower convergence rate since the gradients have to be computed

for each sample in the dataset before updating the network. Stochastic Gradient

Descent (SGD) uses a single sample to approximate the gradient. This results in

faster convergence, but is certainly not the best approach to solving the problem.

Since SGD approximates the gradient using a single example, a noisier gradient is

calculated, which can bump the weights out of a local minima. Mini-batch Gradient

Descent [57] combines both the ideas by using a subset of the dataset to calculate the

gradient.

Several modifications have been proposed to the update rule, in order to speed

up or stabilize training. Momentum [54] accelerates GD to move out of a local

optimum for the search of better local optima. This often leads convergence to a

saddle point. Nesterov [55] gives momentum a prior knowledge about the curvature

of the error function. This decelerates momentum, preventing it from moving the

weights out of a local optimum. Adagrad [56] adjusts the learning rate for each

parameter based on their rate of change. Parameters that did not change too often

had a higher step size that those parameters than changed frequently. This led

to increased robustness compared to SGD. RMSProp [57] and Adadelta [58] were

developed to overcome Adagrad’s radically diminishing learning rates. Adam [59]

combines RMSProp and Momentum by storing an exponentially decaying average of

past squared gradients, like RMSProp, and an exponentially decaying average of past

gradients, like momentum. AMSGrad [60] fixes convergence issues with Adam by

incorporating a “long-term memory” of past gradients. Currently, the Adam update

rule produces the fastest convergence rates compared to other update rules described

111

in this subsection. For this reason, we optimize the parameters of HOPLoP using the

Adam update rule.

A.2 Derivative of common activation functions

A.2.1 Sigmoid

�(z) =
1

1 + e�z

@

@z
�(z) =

@

@z

✓
1

1 + e�z

◆

=
e�z

(1 + e�z)2

=
1 + e�z

(1 + e�z)2
�

1

(1 + e�z)2

=

✓
1

1 + e�z

◆
�

✓
1

1 + e�z

◆2

= �(z)(1� �(z))

(A.6)

A.2.2 Tanh

tanh(z) =
sinh(z)

cosh(z)

@

@z
tanh(z) =

@

@z

✓
sinh(z)

cosh(z)

◆

=
cosh(z)@(sinh(z))@z � sinh(z)@(cosh(z))@z

cosh2(z)

=
cosh2(z)� sinh2(z)

cosh2(z)

= 1� tanh2(z)

(A.7)

A.2.3 ReLU
ReLU(z) = max(0, z)

@

@z
ReLU(z) =

(
1, if z � 0

0, if z < 0

(A.8)

112

A.3 Derivative of mean squared error function for
linear regression

LetMSE(ŷ, y) = 1
N

PN
i=1(yi�yî)

2 be the mean squared error function. Let ŷ = LR(x)

be the predicted output value. Then, the derivative of the MSE function, with respect

to the parameters of the LR function is:

@

@wj
(MSE(LR(X), Y)) =

@

@wj

1

N

NX

i=1

dX

j=0

(xijwj � yi)
2

!!

=
1

N

NX

i=1

@

@wj

dX

j=0

(xijwj � yi)
2

!

=
2

N

NX

i=1

✓
(xijwj � yi)

@

@wj
(xijwj)

◆

=
2

N

NX

i=1

(xijwj � yi)xij

=
2

N

NX

i=1

(yî � yi)xij

(A.9)

A.4 Derivative of binary cross-entropy function for
logistic regression

Let BCE(ŷ, y) = � 1
N

PN
i=1(yilog(yî)+(1�yi)log(1�yî)) be the binary cross-entropy

loss function. Let ŷ = LogR(x) be the value predicted by the logistic regression

function. The derivative of the loss function with respect to the parameters of the

logistic regression function:

113

@

@wj
BCE(LogR(X), Y)

=
@

@wj

�1

N

NX

i=1

yilog

�

dX

j=0

xijwi

!!
+ (1� yi) log

1� �

dX

j=0

xijwi

!!!!

=
�1

N

NX

i=1

yi

@

@wj

log

�

dX

i=0

xijwi

!!!
+ (1� yi)

@

@wj

log

1� �

dX

i=0

xijwi

!!!!

=
�1

N

NX

i=1

yi
yî

@

@wj

�

dX

j=0

xijwi

!!
+

(1� yi)

(1� yî)

@

@wj

1� �

dX

j=0

xijwj

!!!

=
�1

N

NX

i=1

yi
yî

@

@wj

�

dX

j=0

xijwi

!!
�

(1� yi)

(1� yî)

@

@wj

�

dX

j=0

xijwj

!
� 1

!!

=
�1

N

NX

i=1

yi
yî

@

@wj

�

dX

j=0

xijwi

!!
�

(1� yi)

(1� yî)

@

@wj

�

dX

j=0

xijwj

!!!

=
�1

N

NX

i=1

 ✓
yi
yî
�

(1� yi)

(1� yî)

◆
@

@wj

�

dX

j=0

xijwi

!!!

=
�1

N

NX

i=1

 ✓
yi � yiyî � yî + yiyî

yî(1� yî)

◆
@

@wj

�

dX

j=0

xijwi

!!!

=
1

N

NX

i=1

(yî � yi) xij

(A.10)

114

A.5 Normalization eliminates the need for bias

Let MSE(ŷ, y) = 1
N

PN
i=1(yi � yî)2 be the mean squared error function. Let ŷ =

LR(x) =
Pd

j=0 xijwj be the predicted output value. Then, the derivative for this

loss, with respect to the bias w0 is:

@

@w0
(MSE(LR(X), Y)) =

@

@w0

1

N

NX

i=1

dX

j=0

(xijwj � yi)
2

!!

=
2

N

NX

i=1

dX

j=0

(xijwj � yi)xi0

=
2

N

NX

i=1

dX

j=0

(xijwj � yi)

(A.11)

Equating the derivative of the error function to 0:

0 =
NX

i=1

dX

j=0

xijwj � yi

=
NX

i=1

w0 +

dX

j=1

xijwj � yi

! (A.12)

Upon simplifying, we get:

NX

i=1

w0 =
NX

i=1

yi �
dX

j=1

wj

NX

i=1

xij (A.13)

When all features columns of X are normalized to have zero mean, i.e. when
PN

i=1 xij for any column j:

NX

i=1

w0 =
1

N

NX

i=1

yi (A.14)

If the target feature is also normalized, then
PN

i=1 yi = 0, which would make the

eliminate the bias w0 term.

115

A.6 Backpropagation

We describe the backpropagation algorithm with respect to the linear regression set-

ting. Similar to logistic regression, the backpropagation algorithm for the classifica-

tion setting can be derived. Let xi 2 X be an input vector with elements xij 2 xi

representing the input features. Let yi 2 Y be the corresponding output for input xi.

For the linear regression setting, let us continue minimizing the mean squared error

loss, as given by:

E(NN(X), Y) =
1

N
(NN(X)� Y)2

=
1

N
(fL(...(f1(X ⇥W1))...WL)� Y)2

(A.15)

Similar to the previous examples, we proceed by calculating the gradients for

E(NN(X), Y) with respect to WL:

@

@WL
E(NN(X), Y) =

@

@WL

1

N
(NN(X)� Y)2

=
2

N
(NN(X)� Y)

@

@WL
(NN(X)� Y)

=
2

N
(NN(X)� Y)

@

@WL
NN(X)

=
2

N
(NN(X)� Y)

@

@WL
fL(hL�1WL)

Let OL = hL�1WL and use chain rule2

@

@WL
E(NN(X), Y) =

2

N
(NN(X)� Y)

@

@WL
fL(OL)

@

@WL
E(NN(X), Y) =

2

N
(NN(X)� Y)

@

@OL
fL(OL)

@

@WL
OL

=
2

N
(NN(X)� Y)

@

@OL
fL(OL)hL�1

Let �L =
2

N
(NN(X)� Y)

@

@OL
fL(OL)

@

@WL
E(NN(X), Y) = �L ⇥ hL�1

(A.16)

Then, the GD weight update rule for WL is:

116

W (t+1)
L = W (t)

L � µ
@

@WL
E(NN(X), Y)

= W (t)
L � µ(�L ⇥ hL�1)

(A.17)

Similarly, we find the gradients for E(NN(X), Y) with respect to WL�1:

@

@WL�1
E(NN(X), Y) =

@

@WL�1

1

N
(NN(X)� Y)2

=
2

N
(NN(X)� Y)

@

@WL
fL(fL�1(hL�2WL�1)WL)

Let OL = fL�1(hL�2WL�1)WL and use chain rule

@

@WL�1
E(NN(X), Y) =

2

N
(NN(X)� Y)

@

@OL
fL(OL)

@

@WL�1
OL

Notice �L =
2

N
(NN(X)� Y)

@

@OL
fL(OL)

@

@WL�1
E(NN(X), Y) = �L

@

@WL�1
fL�1(hL�2WL�1)WL

=
2

N
(NN(X)� Y)

@

@OL
fL(OL)

@

@WL�1
fL�1(hL�2WL�1)WL

= �LW
T
L

@

@WL�1
fL�1(hL�2WL�1)

= �LW
T
L

@

@OL�1
fL�1(OL�1)

@

@WL�1
OL�1

= �LW
T
L

@

@OL�1
fL�1(OL�1)hL�2

Let �L�1 = �LW
T
L

@

@OL�1
fL�1(OL�1)

@

@WL�1
E(NN(X), Y) = �L�1 ⇥ hL�2

(A.18)

Then, the GD weight update rule for WL�1 is:

W (t+1)
L�1 = W (t)

L�1 � µ
@

@WL�1
E(NN(X), Y)

= W (t)
L�1 � µ(�L�1 ⇥ hL�2)

(A.19)

Upon noticing the pattern for weight updates, we can arrive at the following weight

update rules:

117

W (t+1)
l = W (t)

l � µ(�l ⇥ hl�1) (A.20)

where �l = �l+1W T
l+1

@
@Ol

fl(Ol), �L = 2
N (NN(X)� Y) @

@OL
fL(OL) and h0 = X.

118

Appendix B: Supplementary
Information

In this chapter, information is provided for the reproducibility of the experiments

conducted in the paper. The datasets and scripts that were used to perform the

experiments are available in the https://www.github.com/varunranga/HOPLoP

B.1 Dependencies

B.1.1 Hardware dependencies

A single system was used to train all HOPLoP models. The specifications of that

system is as follows:

• CPU : Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz

• GPU : NVIDIA GeForce 1080Ti ⇥ 2

• RAM : 64GB

• Hard disk space : 3.5TB

A single system was used to train all M-HOPLoP models. The specifications of

that system is as follows:

• CPU : Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz

• GPU : NVIDIA GeForce 1080Ti + NVIDIA Titan X (Pascal)

• RAM : 64GB

119

https://www.github.com/varunranga/HOPLoP

• Hard disk space : 3.5TB

B.1.2 Software dependencies

Table B.1 provides a list of software dependencies that are required to run the required

codes. To run the codes, please make sure the packages and softwares are installed

on the system.

Package / Software Version

Ubuntu 18.04.3

Docker 19.03.5

Docker container tensorflow/tensorflow:latest-gpu-py3

Python3 3.6.8

Cuda 10.0.130

Tensorflow-gpu 2.0.0

Numpy 1.17.2

Tqdm 4.48.2

Random (Available with Python3)

Argparse (Available with Python3)

Pickle (Available with Python3)

Math (Available with Python3)

Table B.1: Software dependencies for running provided codes.

B.2 Datasets

Due to the large size of datasets, we do not provide previously introduced datasets.

The NELL-995 and FB15K-237 datasets are publicly available at https://github.

com/xwhan/DeepPath. Upon extracting the downloaded files, copy the contents of

the resultant folder to (M-)HOPLoP/Datasets/NELL995/ and

(M-)HOPLoP/Datasets/FB15K237/ respectively. Since we introduce two new datasets

for this task of multi-hop LP, we include those datasets in

120

https://github.com/xwhan/DeepPath
https://github.com/xwhan/DeepPath

(M-)HOPLoP/Datasets/WN18RR and (M-)HOPLoP/Datasets/YAGO310 directories. Al-

ternatively, you can reproduce the dataset by using the script

(M-)HOPLoP/Datasets/[WN18RR|YAGO310]/create dataset.py. Please run the com-

mand PYTHONHASHSEED=0 python3 create dataset.py in the required directory.

B.3 Executing code

The repository contains all the codes required for experiments. (M-)HOPLoP/Logs

contains the log files for all experiments. Due to the large volume of experiments

run, we do not provide the trained model files. However, we have provided bash

scripts (M-)HOPLoP/run.sh that runs all the experiments we ran with the seed for

each experiment. We have also provided a spreadsheet (M-)HOPLoP/Results.xlsx

that provides the results of all experiments. We include the bootstrapped confidence

intervals for all experiments.

HOPLoP requires an embedding space to traverse over. Therefore, the first script

that must be executed is HOPLoP/create embeddings.py. Table B.2 gives a list of

arguments and describes their purpose. Additionally, -h or --help arguments can be

invoked. Please keep in mind to save the embedding model information before execut-

ing the HOPLoP script. To execute the main HOPLoP script (M-)HOPLoP/main.py,

use the python3 command to invoke the Python3 interpreter, and send the argument

main.py to execute statements from that script while in the (M-)HOPLoP/ directory.

Additional command line arguments may be provided to set hyperparameters and

embedding spaces used by HOPLoP. Table B.3 gives a list of short and long argu-

ments. Please make sure to install all dependencies and place external datasets in

required directories before executing code.

121

Flag Long Argument Description Type Default Values / Comments

-d –dataset Dataset to be used str ‘NELL995’ [‘NELL995’, ‘FB15K237’, ‘WN18RR’, ‘YAGO310’]

-x –embedding-method Embedding Model to be used str ‘TransE [‘TransE’, ‘ComplEx’, ‘TuckER’]

-e –embedding-size Embedding dimensionality of each vector int 100

-m –margin Margin of error allowed in the loss float 1.0 For TransE embedding model

-r –learning-rate Learning rate for the optimizer float 0.001

-b –batch-size Batch size while training int 1024

-g –sampling-type Method used to negatively sample data str ‘bernoulli’ [‘uniform’, ‘bernoulli’], for TransE and ComplEx

-p –patience Patience while training the embedding model for validation loss to improve int 100

-s –save Pickle file name for the trained embeddings to save str None

-sd –seed Initial seed value int None

Table B.2: Flags and long arguments that can be used to run embedding generation code (‘create-embeddings.py’).

122

Flag Long Argument Description Type Default Values / Comments

-d –dataset Dataset to be used str ‘NELL995’ [‘NELL995’, ‘FB15K237’, ‘WN18RR’, ‘YAGO310’]

-t –task Task / Query relation to train and evaluate HOPLoP str ‘concept athleteplaysforteam’ see file ‘Dataset.py’ for options

-e –load-embedding Pickle file of the embeddings to be used str ‘NELL995 Embeddings.bin’

-x –save-result Pickle file to save the evaluation result str None

-p –patience Patience while training the embedding model for validation loss to improve int 100

-r –learning-rate Learning rate for the optimizer float 0.001

-s –save Pickle file name for the trained HOPLoP model to save str None

-l –load Pickle file name for the trained HOPLoP model to load str None

-o –hops Number of hops HOPLoP takes to perform a traversal int 10 [1, 3, 5, 10, 15, 20]

-c –batch-size Batch size of training HOPLoP model int 8

-n –network Path finder network architecture list [‘1000’, ‘relu’]

-sd –seed Initial seed value int None

Table B.3: Flags and long arguments that can be used to run HOPLoP code (‘main.py’).

123

B.4 Hyperparameters

Table B.6 and B.4 presents the list of hyperparameters that can be adjusted for em-

bedding space creation and HOPLoP training. The value of certain hyperparameters

remained constant throughout all experiments for a fair comparison of all models. For

HOPLoP and M-HOPLoP, we perform major hyperparameter tuning on the number

of hop H. Table B.7 present the optimal H values for each task in each dataset in

HOPLoP experiments. We also provide (see table B.5) the optimal H for M-HOPLoP

over each dataset.

Hyperparameter Value(s)

Learning Rate 0.001

Batch Size 8

Hops {1, 3, 5, 10, 15, 20}

Patience 100

Runs per experiment 10

Table B.4: Hyperparameters used for HOPLoP

Dataset Embedding Hop MAP Score

NELL-995 TransE 3.0 0.946

FB15K-237 TransE 5.0 0.914

ComplEx 10.0 0.826

TuckER 10.0 0.722

WN18RR TransE 5.0 0.847

ComplEx 5.0 0.720

TuckER 10.0 0.549

YAGO3-10 TransE 5.0 0.842

ComplEx 3.0 0.818

Table B.5: Optimal H values from M-HOPLoP experiments.

124

Hyperparameter Value(s) Comments

Learning Rate 0.001

Batch Size 1024

Embedding Dimension 100 For ComplEx - 50 for real and imaginary components each

Patience 100

Initialization Glorot Uniform

Negative Sampling type Bernoulli Only TransE and ComplEx

Margin 1.0 Only TransE

Max epochs 100 Only TuckER, due to computational restrictions

Input Dropout Rate 0.3 Only TuckER, from their paper

Hidden Layer 1 Dropout Rate 0.4 Only TuckER, from their paper

Hidden Layer 2 Dropout Rate 0.5 Only TuckER, from their paper

Number of runs per experiment 10

Table B.6: Hyperparameters used for embedding generation.

125

Table B.7: Optimal H values from HOPLoP experiments.

Dataset Task Embedding Hop MAP Score

NELL-995 AthleteHomeStadium TransE 10 0.930

TeamPlaysSport 20 0.980

AthletePlaysForTeam 5 0.953

PersonBornInLocation 20 0.961

AthletePlaysInLeague 5 0.997

AgentBelongsToOrg 10 0.947

OrgHiredPerson 5 0.930

TeamPlaysInLeague 1 0.977

PersonLeadsOrg 10 0.962

OrgHeadquarteredInCity 10 0.956

AthletePlaysSport 1 0.930

WorksFor 5 0.993

FB15K-237 Director/Film TransE 10 0.654

ComplEx 15 0.679

TuckER 15 0.671

Event/Locations TransE 1 0.735

ComplEx 1 0.776

TuckER 5 0.708

Person/BirthPlace TransE 15 0.980

ComplEx 15 0.960

TuckER 5 0.958

OrgHeadquarters/Location TransE 20 0.968

ComplEx 20 0.975

TuckER 15 0.933

TvProgram/Genre TransE 10 0.977

ComplEx 5 0.919

TuckER 5 0.889

126

CapitalOf/Location TransE 10 0.906

ComplEx 15 0.905

TuckER 10 0.838

Film/Music TransE 10 0.993

ComplEx 10 0.981

TuckER 15 0.977

PhoneNumber/ServiceLocation TransE 5 0.768

ComplEx 15 0.830

TuckER 5 0.822

TvProgram/CountryOfOrigin TransE 15 0.965

ComplEx 5 0.975

TuckER 5 0.965

Person/Nationality TransE 15 0.958

ComplEx 10 0.977

TuckER 5 0.981

Ethnicity/LanguagesSpoken TransE 10 0.601

ComplEx 10 0.648

TuckER 10 0.688

Profession/SpecializationOf TransE 5 0.858

ComplEx 5 0.821

TuckER 5 0.959

Artist/Origin TransE 10 0.966

ComplEx 15 0.903

TuckER 15 0.866

TvProgram/Languages TransE 5 0.984

ComplEx 15 0.987

TuckER 3 0.979

Film/Language TransE 20 0.971

ComplEx 10 0.971

TuckER 20 0.918

127

OrgFounder/OrgsFounded TransE 5 0.812

ComplEx 5 0.864

TuckER 3 0.757

OrgMember/Org TransE 15 0.871

ComplEx 15 0.921

TuckER 15 0.859

Film/Country TransE 15 0.954

ComplEx 10 0.958

TuckER 20 0.942

Film/WrittenBy TransE 10 0.994

ComplEx 5 0.978

TuckER 20 0.972

SportsTeam/Sport TransE 1 0.989

ComplEx 1 0.993

TuckER 1 0.995

WN18RR DerivationallyRelatedForm TransE 5 0.994

ComplEx 3 0.977

TuckER 15 0.772

HasPart TransE 5 0.768

ComplEx 15 0.724

TuckER 15 0.858

InstanceHypernym TransE 5 0.966

ComplEx 20 0.932

TuckER 20 0.977

Hypernym TransE 3 0.968

ComplEx 10 0.860

TuckER 10 0.760

AlsoSee TransE 10 0.923

ComplEx 20 0.772

128

TuckER 15 0.841

MemberDomainRegion TransE 5 0.669

ComplEx 10 0.652

TuckER 10 0.696

SynsetDomainTopicOf TransE 3 0.978

ComplEx 20 0.925

TuckER 10 0.969

VerbGroup TransE 5 0.984

ComplEx 3 0.983

TuckER 10 0.796

MemberDomainUsage TransE 10 0.571

ComplEx 20 0.514

TuckER 5 0.482

MemberMeronym TransE 5 0.706

ComplEx 15 0.598

TuckER 10 0.800

YAGO3-10 actedIn TransE 5 0.861

ComplEx 15 0.840

diedIn TransE 10 0.842

ComplEx 10 0.776

directed TransE 5 0.942

ComplEx 5 0.891

hasWonPrize TransE 5 0.840

ComplEx 5 0.878

edited TransE 5 0.970

ComplEx 5 0.914

participatedIn TransE 10 0.790

ComplEx 5 0.770

isMarriedTo TransE 10 0.941

ComplEx 1 0.967

129

playsFor TransE 15 0.999

ComplEx 15 0.999

isA�liatedTo TransE 5 0.941

ComplEx 10 0.951

wasBornIn TransE 5 0.883

ComplEx 5 0.766

happenedIn TransE 10 0.943

ComplEx 3 0.877

isCitizenOf TransE 3 0.936

ComplEx 5 0.958

isLocatedIn TransE 15 0.995

ComplEx 20 0.995

isConnectedTo TransE 5 0.979

ComplEx 5 0.948

hasGender TransE 1 0.973

ComplEx 1 0.971

hasMusicalRole TransE 5 0.923

ComplEx 15 0.935

hasChild TransE 5 0.958

ComplEx 10 0.841

worksAt TransE 15 0.947

ComplEx 20 0.967

livesIn TransE 5 0.945

ComplEx 10 0.931

graduatedFrom TransE 20 0.931

ComplEx 20 0.892

wroteMusicFor TransE 5 0.896

ComplEx 15 0.940

influences TransE 10 0.869

130

ComplEx 10 0.714

created TransE 20 0.945

ComplEx 20 0.952

131

	Introduction
	Thesis Objective
	Thesis Outline

	Preliminaries
	Knowledge Graphs
	The NELL System

	Link Prediction
	Link Prediction to Knowledge Base Completion

	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Gradient Descent
	Regression using Gradient Descent

	Backpropagation and Deep Learning
	Neural Networks
	Recurrent Neural Networks and Backprop Through Time

	Knowledge Graph Embeddings
	From the perspective of a neural network
	TransE
	ComplEx
	TuckER

	Related Work: Multi-hop algorithms for Link Prediction
	Supervised Learning with PRA and its successors
	PageRank
	Path Ranking Algorithm
	Path-RNN and Single-Model
	Compositing KG Embeddings
	Highlights

	Reinforcement Learning with DeepPath and its successors
	Variational Inference for multi-hop LP
	Representation Learning for Multi-hop LP with HOPLoP

	HOPLoP: Multi-hop Link Prediction over Knowledge Graph Embeddings
	Motivation
	Task
	Model
	Training
	Discussion
	M-HOPLoP: Modeling all relations at once

	Experiments and Results
	Datasets
	WN18RR
	YAGO3-10

	Experimental Setup
	Relation Prediction
	Entity Prediction

	Results
	Relation Prediction
	Entity Prediction

	Analysis

	Interpretability of HOPLoP
	Example Paths and Their Interpretation
	Distribution of Path Lengths

	Conclusion and Future Work
	Applicability of HOPLoP
	Limitations of this work
	Future research directions

	Appendix A: Notes on Gradient Descent and Backpropagation
	Gradient Descent
	Modifications made to the GD update rule

	Derivative of common activation functions
	Sigmoid
	Tanh
	ReLU

	Derivative of mean squared error function for linear regression
	Derivative of binary cross-entropy function for logistic regression
	Normalization eliminates the need for bias
	Backpropagation

	Appendix B: Supplementary Information
	Dependencies
	Hardware dependencies
	Software dependencies

	Datasets
	Executing code
	Hyperparameters

