
Majorana-Anderson

Impurity Models

by

Sankaranarayanan Ganesh

A thesis submitted in partial fulfilment of the requirements for the degree of

Master of Science

Department of Physics

University of Alberta

© Sankaranarayanan Ganesh 



ii

Abstract

Majorana fermions emerge in topological superconductors as end zero modes in one

dimension, and vortex-trapped zero modes or chiral edge modes in two dimensions.

A question of much recent interest is the effect of electron-electron interactions on

such Majorana fermions. We introduce a class of interacting Majorana-Anderson

impurity models which admit an exact solution at finite temperature for a wide range

of parameters, including on-site interactions of arbitrary strength. A general model

in this class is solved by mapping it via the Z2 slave-spin method to a non-interacting

resonant level model for auxiliary Majorana fermions. The resulting gauge constraint

is eliminated by exploiting the transformation properties of the Hamiltonian under

a special local particle-hole transformation. To demonstrate our results, we study

representative systems of a quantum dot coupled to (i) the end mode of a Kitaev

chain, and (ii) the chiral edge modes of a Read-Green superconductor. In both cases,

we obtain exact expressions for the dot spectral functions and host local density of

states at any temperature. In case (i), we also study how the interaction strength

and localisation length of the end mode affect physical properties of the dot, such as

quasiparticle weight, double occupancy, and odd-frequency pairing correlations.

Chapters  and  of this thesis are based on Ref. [].
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chapter 1

Overview

In , Ettore Majorana introduced a representation of the Dirac equation that

allowed real solutions []. These solutions correspond to fermions that are their

own antiparticles, and which now bear his name. Majorana fermions were originally

introduced as a candidate particle type for neutrinos, a proposition that survives

even today. However, once exclusive to the realm of high-energy physics, Majorana

fermions have recently entered the world of mainstream condensed matter physics

through their experimental realisation in topological superconductors, with exciting

prospects for quantum computation (see the reviews [–]).

At the intersection of topological physics and the study of strongly correlated

systems, a promising new research direction has emerged that investigates the effect of

interactions on such emergent Majorana fermions, with striking predictions ranging

from emergent supersymmetry to exotic Kondo effects [–].

This thesis introduces a wide class of interacting quantum impurity models in

Majorana fermion systems, analogous to the classic Anderson impurity model, that

are exactly solvable at any temperature and for arbitrary interaction strengths.

Chapters  and  of this thesis are based on Ref. [].
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Models that fall in this class include an interacting quantum dot hybridising with

a Majorana zero mode in a one-dimensional topological superconductor, a model

of interest that has been experimentally realised recently []. An exact solution to

such models presents a significant advance over existing approximate mean-field or

numerical studies of similar models, and paves the way for future exact studies of

the equilibrium and non-equilibrium properties of models of correlated Majorana

fermions, including those of relevance to transport experiments in Majorana devices.

The structure of this thesis is as follows. Chapter  is an introduction to Majorana

fermions in condensed matter. The concept is motivated from the perspective of

error correction in quantum computation. Several toy models are constructed in

which isolated Majorana fermions emerge, and these models are recognised as those

of topological superconductors. Practical versions of these toy models, and a few

experiments that have realised them, are then discussed briefly. It is then recognised

that Majorana fermions present an opportunity to realise correlation physics in new

degrees of freedom previously unavailable. A guide to the literature on the relatively

new field of interacting Majorana fermions is then presented, with this avenue

of research motivating the consideration of the models introduced in subsequent

chapters. Chapter  introduces the general class of Majorana-Anderson impurity

(MAI) models. The Z2 slave-spin representation is then reviewed in context, and used

in conjunction with a Majorana representation of spin operators to map the general

Hamiltonian of this class of models to a quadratic form. Noting that the slave-spin

representation introduces a gauge structure, the fate of the associated constraint in

calculations of correlation functions is then discussed. Some immediate extensions of

the MAI class of models are then highlighted. Chapters  and  apply this method of

exact solvability to study an interacting quantum dot coupled to emergent Majorana

fermions in the toy models introduced in Chapter . Finally, we conclude with a brief

summary of our key results, and discuss prospects for future work.

A good knowledge of the methods of many-body physics, particularly the Matsub-

ara imaginary-time formalism, is assumed on the part of the reader. An acquaintance
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with the basic aspects of the BCS theory of superconductivity is also assumed. These

are the only overarching prerequisites. Isolated parts of the thesis make use of coher-

ent state functional integrals, but these sections (or at least the computational details)

can be safely skipped without loss of continuity. Throughout, we work in natural

units ~=c=1.





chapter 2

Majorana fermions in condensed matter

 . toy models of topological superconductors

In this chapter, we will construct toy models of condensed matter systems in which

we may expect Majorana fermions as emergent excitations. One motivation to embark

on such an endeavour comes from practical applications to quantum computation.

A classical computer is a device that processes information stored in bits. A bit is

classical system that can exist in one of two states (such as an on/off switch for a

light bulb), which we denote as  and . A quantum computer operates on qubits,

which are two-state quantum systems. A prototypical example is a spin-/moment

with states span{|0〉 , |1〉}. The basis states are defined by σz |0〉=−|0〉 and σz |1〉= |1〉,

where σ = (σx,σy ,σz) is a Pauli spin-/ operator. Unlike a bit, a qubit may exist

in a superposition of states such as
∣∣∣ψ〉

=α |0〉+ β |1〉. In a multi-qubit system, this

results in a far larger space of states than a classical counterpart constructed from

bits, resulting in far more powerful computational ability [].

However, using qubits to store information also leads to new kinds of error []. In

classical computers, the only error that can occur is an erroneous discrete flip of a
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bit from  to  (or vice versa). A classical computer corrects such errors by storing

and comparing multiple copies of information. In addition to such classical errors,

a quantum computer is also susceptible to phase errors. The exact source of such

errors is not important in the present discussion, but may occur due to interactions

with the environment or due to imprecise control in gate operations (processing of

information). Let us understand what these errors are in more detail. Consider an n-

qubit system, modelled by a chain of n spins and described by a general superposition

state ∣∣∣ψ〉
=

∑
{σ}
c{σ} |σ1〉 ⊗ ...⊗ |σn〉 , (.)

where {σ} denotes a configuration of qubits (spins) and c{σ}=cσ1...σn are the expansion

coefficients. The sum is over all such configurations. A classical error is represented

by σxj , which discretely flips the spin on the j-th site. A phase error is represented

by σzj , which generally introduces a relative phase difference between states in the

superposition
∣∣∣ψ〉

. As an example, for n=3 and
∣∣∣ψ〉

=a |110〉+b |100〉, σz2
∣∣∣ψ〉

=a |110〉−

b |100〉, which is physically distinct from
∣∣∣ψ〉

.

Let us now try to construct a qubit that is protected from classical and phase errors,

following Kitaev []. To this end, note that the qubit basis states {|0〉 , |1〉} can also

be interpreted as the Fock (occupancy) states of a spin-polarised (spinless) electron

on a lattice site. In a chain of such qubits, a single classical error is now forbidden,

as this requires a single electron to disappear from the chain. This obviously cannot

happen in a system that conserves electric charge, but also cannot happen in a system

that spontaneously breaks this symmetry – a superconductor also conserves fermion

parity (electric charge mod ). However, an electron can presumably tunnel from one

site to another, which would lead to two classical errors, but this may conceivably be

avoided by simply placing the sites far apart.

Phase errors in such a chain of electrons are now mathematically represented by

(2c†j cj−1). For example, a state a |110〉+b |101〉→a |110〉−b |101〉 under the action of

(2c†2c2−1). For protection against phase errors, consider the following construction.
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One can formally decompose the electron fields into real and imaginary parts as

cj =
1
2

(
γj + iγ ′j

)
, c†j =

1
2

(
γj − iγ ′j

)
, (.)

which define Majorana fermion operators γj and γ ′j that are Hermitian, and satisfy the

Clifford algebra

{γi ,γj} = {γ ′i ,γ
′
j } = 2δij , {γi ,γ ′j } = 0. (.)

‘Complex fermions’ such as electrons can be crudely regarded as bound pairs of

Majorana fermions. The phase error operator (2c†j cj−1)= iγjγ ′j can be described as

a pairing of the Majorana fermions γj and γ ′j . If we can engineer a system in which

such pairing is unlikely, then such a system would be protected against phase errors.

Roughly speaking, we must fractionalise the electrons into component Majorana

fermions and then spatially separate the components. Since any physical fermionic

Hamiltonian must conserve fermion parity, a single Majorana operator cannot

appear as a standalone term; provided we can find Majorana fermions γ and γ ′ that

are unpaired, then they must not appear in the Hamiltonian at all. Such Majorana

fermions are termed Majorana zero modes (MZMs), and qubits constructed from

these are protected from classical and phase errors. The information stored in such

qubits can be processed by gate operations that are physically implemented by

braiding, that is controlled exchanges of MZMs, which generally satisfy non-Abelian

exchange statistics [, ]. In the following sections, we will construct toy models

that support such MZMs, and then look for experimentally realisable systems that

may be described by these models.

.. Kitaev chain

To find a system that supports MZMs, note that an arbitrary quadratic Hamilto-

nian governing a chain of spinless electrons admits a Majorana representation. For

This means the Hamiltonian must be constructed out of bosonic terms such as c†i cj or cicj , in
order for it to be interpreted as an observable and for the existence of stationary states.
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Figure . – (a) Construction of the Kitaev chain by pairing (purple bands) Majorana
fermions between sites to obtain unpaired Majorana zero modes at the ends. (b)
Pairing of Majorana fermions in a typical tight-binding chain. The blue bands
indicate on-site pairing due to chemical potential terms and purple bands indicate
nearest neighbour pairing due to hopping terms.

example, a N -site tight-binding chain is described by a Hamiltonian

HT = −t
N−1∑

j=1

(c†j cj+1+h.c.)−µ
N∑

j=1

c†j cj ,

= − it
2

N−1∑

j=1

(γjγ
′
j+1 −γ

′
jγj+1)−

µ

2

N∑

j=1

(1 + iγjγ
′
j ), (.)

and can thus be thought of as the pairing of Majorana fermions on and between sites.

There are two Majorana fermions, or equivalently one spinless electron, on every

physical lattice site. In the tight-binding chain, it is easy to see that all available

Majorana fermions are paired up in one way or another in the Hamiltonian (see

Figure .b). Beginning with an open chain of Majorana fermions, we can try to

reverse engineer an electronic system that supports unpaired Majorana fermions.

One simple scenario is shown in Figure .a, and can be described by a Hamiltonian,

H1 = it
N−1∑

j=1

γ ′jγj+1, (.)

where Majorana fermions on neighbouring sites are paired. γ1 and γ ′N are unpaired

MZMs that do not appear in H1, and are exactly localised at the ends of the chain. To

see what electronic system H1 corresponds to and attempt a possible realisation in

real physical systems, we re-express H in terms of the electron fields c(†)
j = 1

2(γj±iγ ′j )

to get

H1 = −t
N∑

j=1

(c†j cj+1 − cjcj+1 + h.c.). (.)
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This is a mean-field BCS Hamiltonian of a one-dimensional superconducting chain

with equal hopping integral and pairing potential. To induce superconductivity in a

system of spinless (spin-polarised) electrons requires odd-parity pairing, which in

the case of a one-dimensional chain translates to a pairing potential ∆∝〈cici+1〉. Such

a system is described by a general Hamiltonian

HK =
N−1∑
j=1

[
−t(c†j cj+1 + h.c)−µ(c†j cj − 1/2) +∆(cjcj+1 + h.c)

]
,

=
i
2

N−1∑
j=1

[
(∆+ t)γ ′jγj+1 + (∆− t)γjγ ′j+1 −µγjγ

′
j

]
. (.)

where ∆>0 is the p-wave pairing potential that can be taken as real-valued without

loss of generality. This model is called the Kitaev chain. For ∆= t and µ= 0, HK

reduces to H1 and we recover unpaired MZMs γ1 and γ ′N . These two modes form a

highly non-local electronic state f (†) = 1
2(γ1±iγ ′N ), the occupancy of which describes a

qubit. Note that the wavefunction of this electronic state is non-local, with support

fractionalised between the ends of the chain. We refer to the wavefunction piece

localised at each end as a MZM wavefunction. Explicit expressions for the MZM

wavefunctions are given in Appendix A of Ref. [] and in Ref. []. The ground

state of the Kitaev chain is thus two-fold degenerate, at least for ∆ = t and µ = 0,

with respect to the occupancy of this non-local electronic state defined by f (†). We

denote these ground states by
∣∣∣ψ〉

and f †
∣∣∣ψ〉

, which surprisingly differ in fermion

parity. These degenerate ground states form basis states |0〉 and |1〉 for a qubit that

is protected from both, classical and phase errors. The information stored in such

In retrospect, that H1 is a superconductor is not so surprising. The fact that γ1 is an unpaired
MZM in this system means symmetry transformations cannot mix it with other Majorana operators. A
U (1) transformation on the electron field c1 implies γ1→γ1 cosθ−γ ′1 sinθ, and so mixes γ1 and γ ′1. If
H1 were to respect this symmetry, γ1 must generally appear along with γ ′1 in H1. In a superconductor,
this U (1) symmetry is broken down to Z2. Since Z2 transformations do not mix different Majorana
operators, unpaired Majorana fermions are possible in superconductors.

A complex valued pair potential ∆= |∆|eiθ can be made real by a gauge transformation on the
electron fields.

The support of the wavefunction is the real-space domain where it is non-zero. This is where
there is a non-zero probability of finding the particle. By fractionalised support for the f -electron
wavefunction, we mean that it is piecewise defined with the two pieces localised at the ends of the
chain. We refer to each piece as a MZM wavefunction.
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a qubit can be processed by gate operations that are physically implemented by

braiding the MZMs at the ends of the chain [, ]. However, braiding is well defined

only in two-dimensional systems in which particles with non-Abelian statistics may

occur. Nevertheless, one can construct wire networks from many Kitaev chains that

remarkably permit non-Abelian statistics and therefore braiding of the MZMs in such

networks [].

In addition to supporting a zero-energy fermionic excitation, fractionalised be-

tween the ends of the chain, we expect the Kitaev chain to also have the usual Bogoli-

ubov quasiparticle excitations in the bulk, which are separated from the ground state

by an energy gap, characteristic of superconductors. To study the bulk properties, it

is convenient to use periodic boundary conditions and pass to momentum space, in

which HK can be written in Bogoliubov-de Gennes (BdG) form as

HK =
1
2

∑
k∈FBZ

(
c†k c−k

)−2t cosk −µ 2i∆sink

−2i∆sink 2t cosk +µ


 ckc†−k

 , (.)

where the sum is over momenta in the first Brillouin zone (−π,π), and a lattice

constant of unity has been assumed. The bulk energy spectrum is obtained from

eigenvalues of the BdG matrix, which are ±E(k) where

E(k) =
√

(2t cosk +µ)2 + 4∆2 sin2 k, k ∈ (−π,π). (.)

Note that the BdG matrix doubles the number of physical degrees of freedom (elec-

trons and holes considered separately), resulting in a redundancy in the number of

energy levels which now occur in doubled ±E(k) pairs (see Figure .). Only E(k)≥0

correspond to physically distinct energy levels. This can easily be seen by diagonal-

ising the BdG matrix by a Bogoliubov-Valatin transformation on the electron fields;

defining the quasiparticle fermion operators ak =ukck+vkc
†
−k and choosing uk , vk to

obtain the correct anti-commutation relations for ak , a
†
k and to diagonalise the BdG

matrix, one obtains

HK =
1
2

∑
k∈FBZ

(
a†k ak

)E(k) 0

0 −E(k)


aka†k

 =
∑
k∈FBZ

E(k)
(
a†kak −

1
2

)
. (.)
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Figure . – (a) Doubled tight-binding dispersion for electrons (blue) and holes
(red), for µ=0.5t. (b) Bulk dispersion of Bogoliubov quasiparticles (superposition of
electrons and holes) in the Kitaev chain, for µ=0.5t,∆=0.2t. Finite ∆ opens a gap in
the bulk excitation spectrum. As in (a), only the blue band with E≥0 is physical.

Before studying the bulk properties of the Kitaev chain in more detail, it is

pertinent to ask if the MZMs it supports for ∆= t and µ=0 survive away from this

special choice of parameters (henceforth called the Kitaev point). This is necessary for

the sake of stability of our qubit, let alone the question of whether one is able to tune

to these special parameters in an experiment. Consider small perturbations away

from the Kitaev point. If the MZMs are destroyed, then the states
∣∣∣ψ〉

and f †
∣∣∣ψ〉

will

split in energy, with one of them moving away from zero energy. Such a splitting is

described by an effective Hamiltonian,

Hδ = δf †f =
δ
2

(1+iγ1γ
′
N ), (.)

and thus corresponds to pairing of the MZMs at the opposite ends of the chain. As

stated earlier, the qubit is not immune to phase errors if such pairing is allowed in

the Hamiltonian. There are two ways in which such pairing can effectively arise. (i) If

the chain is closed (periodic boundary conditions), then the MZMs are paired just

like other Majorana fermions in the bulk and the ground state is non-degenerate even

at the Kitaev point. (ii) If the medium (bulk) separating the two MZMs is gapless,

then we might intuitively expect the MZM wavefunctions to tunnel/delocalise into

the bulk and overlap (pair). Case (i) can obviously be avoided. As regards protection

against case (ii), a natural expectation is that a gapped bulk excitation spectrum,
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Figure . – Closures of the gap in the bulk excitation spectrum of the Kitaev chain.
(a) For µ=−2t, the bulk gap closes at k=0, and (b) for µ=2t, the gap closes at k=π.
In both plots, ∆=0.2t.

along with very large separation between the ends of the chain, will prevent overlap

of the MZM wavefunctions. It may be helpful to think of the bulk as a potential

barrier; the MZM wavefunction on one end will generally decay exponentially into

the bulk and will not penetrate to the other end (beyond the barrier) and overlap with

the other MZM wavefunction, if the barrier is effectively infinite in length [, ].

This intuition turns out to be correct, as we shall see shortly; the MZMs are pro-

tected as long as the bulk gap does not close. However, there clearly exist parameter

values for which there are no MZMs. For example, ∆= t= 0 and µ>0, the ground

state of HK is obtained by pairing Majorana fermions on-site to form the ‘complex

fermions’ cj with c†j cj = 1 for every j. This is the picture that also holds for µ/t�1,

while ∀j, c†j cj = 0 characterises the ground state in the µ/t�1 limit. In both these

(gapped) regimes, there seem to be no MZMs. However, as was just argued, the

MZMs are protected by the bulk gap. Therefore, we expect the bulk gap to close

as we vary µ from zero to ±∞, characteristic of a quantum phase transition. This is

easily seen to be true from the bulk excitation spectrum given by Eq. (.), which

closes at k = 0,π for µ=±2t respectively (see Figure .). Since the Kitaev point is

inside the region
∣∣∣µ∣∣∣<2t, we may conjecture that the MZMs are protected inside the

phase that this region defines. As
∣∣∣µ∣∣∣ is increased, the bulk gap closes at the lines∣∣∣µ∣∣∣ = 2t of critical points, and is again finite for

∣∣∣µ∣∣∣ > 2t. From anywhere in these

regions with
∣∣∣µ∣∣∣>2t, one can continuously tune to the trivial regime µ=±∞ without
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Figure . – Boundary LDOS (blue) of a semi-infinite Kitaev chain in (a) the topolog-
ical phase with µ=1.7t, and (b) the trivial phase with µ=2.3t. In both plots, ∆=0.5t
and shown in dashed red is the bulk LDOS. Note in (a) the presence of a zero-energy
subgap excitation at the boundary that is due to the MZM, which is missing in (b).

encountering a phase transition where the bulk gap closes. Since the MZMs are

clearly absent in the trivial regime, we may conjecture that they are absent in the

entire regions defined by
∣∣∣µ∣∣∣>2t. These two distinct phases are called the topological

phase (
∣∣∣µ∣∣∣<2t) and the trivial phase (

∣∣∣µ∣∣∣>2t) and are characterised respectively by the

presence and absence of boundary MZMs. Superconductors like the Kitaev chain

that support protected gapless boundary modes in a certain phase are known as

topological superconductors [, –]. We will shortly encounter the reason for this

nomenclature. The local density of states (LDOS) at the ends of the Kitaev chain

provides an explicit check of the verity of these statements. The boundary LDOS can

be obtained from the boundary Green function of the Kitaev chain, which is explicitly

calculated for a semi-infinite chain in Appendix A. The results for the topological

and trivial phases are shown in Figures .a-b. Figure .a confirms our conjecture

that a MZM (signified by the infinitely sharp peak at zero energy) is present even

away from the Kitaev point, throughout the topological phase. Figure .b, which

shows the boundary LDOS in the trivial phase just beyond the critical line µ= 2t,

is characterised by the absence of a MZM and the associated subgap zero-energy

excitation.

Note that ∆=0 and
∣∣∣µ∣∣∣<2t is a line segment inside the topological region of the phase diagram

that characterises a normal metal with a gapless excitation spectrum.
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In Figures .a-b, note that the bulk LDOS of both phases look qualitatively

identical. The distinguishing feature between the two phases has thus far been the

presence or absence of boundary localised MZMs, whose presence results in a two-

fold degenerate ground state for an open, infinite chain. Even in the case of a closed

chain, when there are no boundary MZMs present, the bulk gap closes at the lines of

critical points µ=±2t. We then have no means (yet) of distinguishing between the

different phases of the system, if at all they still exist. It is clear that we must study

the bulk properties of both phases in more detail, hoping to find differences that

can be used to construct something like an order parameter, in order to distinguish

the two phases in the bulk itself. To this end, consider the bulk Hamiltonian of

a closed Kitaev chain given by Eq. (.). Both regions,
∣∣∣µ∣∣∣ < 2t and

∣∣∣µ∣∣∣ > 2t, are

superconducting, so the usual local order parameter description (Landau-Ginzburg

theory) is not sufficient to distinguish the two. There exists another picture of the BCS

theory of superconductivity that exploits an analogy between the BdG Hamiltonian

in (.) and that of a spin in a magnetic field, due to Anderson []. For details on

the application of this formalism to s-wave superconductors, see Refs. [, ]. We

apply this formalism to the Kitaev chain, following Refs. [, ]. The analogy with a

magnet rests on the observation that the BdG matrix in (.) can be written as

hK (k) = (−2t cosk −µ)τz − (2∆sink)τy ≡ dk · τ, (.)

where dk = −(0,2t cosk+µ,2∆sink), and τ = (τx, τy , τz) is a Pauli spin-/ operator

acting on the space of Nambu spinors, variously called the Nambu space, isospin

space, or particle-hole space. Imagine a second-quantised isospin operator τk =

(c†k c−k)τ(ck c†−k)
ᵀ for every k in the first Brillouin zone. The dk vector plays the role

of a site (k) dependent magnetic field for a chain of isospins τk in momentum space.

If there are no pairing correlations (∆= 0), then τk is magnetised aligned along −ẑ

(in isospin space) for (−2t cosk)<µ i.e. for occupied electron states below the Fermi

level, and along ẑ for (−2t cosk)>µ i.e. for empty electron states above the Fermi

level. There is then a sharp domain wall in the isospin chain at the Fermi momentum,
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where the τk reverse their orientation. For non-zero pairing correlations ∆, dk tilts

the quantisation axis away from ẑ.

Let us see if we can use the perspective offered by this analogy with a magnet to

distinguish between the topological and trivial phases of the Kitaev chain. Clearly,

we must look at the profile of dk as this dictates the form of the BdG matrix hK (k). To

this end, we define the unit vector d̂k=dk/E(k) which is ill-defined at the transitions

µ=±2t, and study its properties within the topological and trivial phases. Note that

d̂k is restricted to the y-z plane, and so can be located anywhere on a unit circle

(S1) centred at the origin on this plane. The momentum k takes values in the first

Brillouin zone (−π,π), which is also a circle as the end points are identified due to

being related by a reciprocal lattice vector 2π. Therefore, the function d̂(k) = d̂k is

really a map d̂ : S1→S1, which has an associated integer-valued winding number

w captured by the homotopy group π1(S1) =Z []. This expresses the fact that

one can wrap a circle around a circle clockwise or anticlockwise, once, twice, thrice

and so on. Maps that wrap with different winding numbers cannot be continuously

deformed into one other; they are said to be homotopically inequivalent.

Consider first the trivial phase
∣∣∣µ∣∣∣ > 2t. For µ < −2t, the z-component ẑ · dk =

−(2t cosk+µ) is strictly positive for all k. Therefore, as k sweeps through the (circular)

Brillouin zone (−π,π), the unit vector d̂k oscillates like a pendulum in the upper

half plane, due to the sink in the y-component. Similarly, for µ>2t, ẑ ·dk is strictly

negative for all k and so the unit vector d̂k oscillates in the lower half plane. In both

cases, we note that d̂k does not wind around as k sweeps the Brillouin zone and so

w=0 (see Figure .a).

Now, consider the topological phase
∣∣∣µ∣∣∣<2t. This is the case when the Fermi level

lies inside the conduction band (−2t cosk), and so the z-component ẑ·dk=−(2t cosk+µ)

Two maps are said to be homotopic if they can be ‘continuously deformed’ into one other. More
formally, two maps f0, f1 : X→Y are homotopic if there exists, for t∈ [0,1], a t-parametrised family of
continuous maps (called a homotopy) ft : X→Y such that ft=0 =f0 and ft=1 =f1. This can be used to
impose an equivalence relation on the space of maps from X to Y . πn(X) is defined to be the set of
equivalence classes (under homotopy) of maps from the n-sphere Sn to the target space X. It can be
shown that this set has a natural group structure, and so πn(X) is called the n-th homotopy group of X.
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Fi g u r e  . – Ill u st r ati o n of t h e  wi n di n g of d k a s k s w e e p s t h e  fi r st  B rill o ui n z o n e i n
( a) t h e t ri vi al  p h a s e, a n d ( b) t h e t o p ol o gi c al  p h a s e  wit h ∆ > 0 .  N ot e t h at d k wi n d s
cl o c k wi s e o n c e i n ( b), b ut  d o e s  n ot  wi n d i n ( a). F o r cl a rit y,  w e h a v e ill u st r at e d t h e
wi n di n g of d k , i n st e a d of t h at of t h e  u nit v e ct o r ˆd k a s  di s c u s s e d i n t h e t e xt.

h a s t w o z e r o s  w h e r e it c h a n g e s si g n. F o r ∆ > 0 , it i s e a s y t o s e e b y f oll o wi n g t h e

e v ol uti o n of ˆd k wit h k t h at it  wi n d s a r o u n d o n c e, cl o c k wi s e a n d s o w = − 1 ( s e e Fi g u r e

 . b). Si mil a rl y, it c a n b e s e e n t h at ˆd k wi n d s a nti- cl o c k wi s e o n c e if ∆ < 0 a n d s o w = 1 .

If t h e i s o s pi n s a r e vi s u ali s e d a s a c h ai n of s pi n s i n  m o m e nt u m s p a c e  wit h l e n gt h

e q u al t o t h e  fi r st  B rill o ui n z o n e, t h e s e t w o c a s e s  wit h a  n o n- z e r o  wi n di n g  n u m b e r

r e s ult i n t o p ol o gi c all y  n o n-t ri vi al t e xt u r e s o n t hi s c h ai n t h at c a n n ot b e  d ef o r m e d

i nt o o n e a n ot h e r o r t o a t ri vi al t e xt u r e ( wit h all i s o s pi n s  p oi nt e d  u p f o r e x a m pl e) b y

m e a n s of  p u r el y l o c al  d ef o r m ati o n s.  N ot e t h at f o r ∆ = 0 (t h e g a pl e s s  m et al i n si d e t h e

t o p ol o gi c al r e gi o n), t h e r e i s a g ai n  n o  wi n di n g.  We t h u s a r ri v e at t h e c o n cl u si o n t h at

t h e t o p ol o gi c al a n d t ri vi al  p h a s e s a r e  di sti n g ui s h e d b y t h e  wi n di n g  n u m b e r w ( c all e d

a t o p ol o gi c al i n v a ri a nt) of t h e  m a p ˆd : k → ˆd k .  Alt h o u g h t h e l o c al b ul k  p r o p e rti e s of

b ot h  p h a s e s r e m ai n t h e s a m e, t h e y a r e t o p ol o gi c all y i n e q ui v al e nt a s t h e  m a p s d T R

a n d d T P t h at  d e fi n e t h e  B d G  H a milt o ni a n s i n t h e t ri vi al a n d t o p ol o gi c al  p h a s e s a r e

n ot  h o m ot o pi c.  T hi s all o w s  u s t o  di sti n g ui s h t h e  di ff e r e nt  p h a s e s i n t h e b ul k it s elf,

wit h o ut l o o ki n g at t h e b o u n d a ri e s.

N ot e t h at e v e n t h o u g h t h e  wi n di n g  n u m b e r w i s i nt e g e r- v al u e d, o nl y t h e  p h a s e s

wit h w = ± 1 a r e a c c e s si bl e t o t h e  Kit a e v c h ai n.  T h at w i s i nt e g e r- v al u e d i s  d u e t o



chapter  . majorana fermions in condensed matter 

the fact that the x̂ · d̂k = 0, which restricts d̂k to the unit circle in the y-z plane. No

other model specific properties are invoked; it can be seen that taking multiple

copies of the Kitaev chain Hamiltonian will also result in a similar d̂k vector with

the x-component equal to zero. To access phases with winding numbers |w| > 1,

multiple such copies are required. An equivalent statement to the above is that

the BdG matrix hK (k) of the Kitaev chain satisfies a chiral symmetry that places it

in the BDI symmetry class in the classification table of non-interacting topological

insulators and superconductors [–]. The BDI class has a Z topological invariant.

If we consider perturbations to the Kitaev chain Hamiltonian that result in x̂ · d̂k ,0,

then this moves the Hamiltonian to class D, which admits only a Z2 topological

invariant and thus only two topologically distinct phases, of which one will be a

trivial phase with no end modes in an open chain. Finally, we remark that in the

presence of interactions, the winding number does not correctly classify the different

phases of Majorana chains. Fidkowski and Kitaev [, ] have shown that the Z

classification is broken down to Z8 in the presence of interactions for a Majorana

chain in class BDI. Even in the absence of interactions, a homotopy classification

based on winding numbers is insufficient to classify all topological superconductors,

but generally works for two-band Hamiltonians like those of the Kitaev chain in the

BdG formulation of Eq. (.)[].

With this, we pause the discussion of the Kitaev chain to pursue other toy mod-

els that might support emergent, unpaired Majorana fermions. A discussion of

experimental realisations of the Kitaev chain is relegated to a future section.

.. Read-Green superconductor

Let us now try to construct a two-dimensional version of the Kitaev chain. Since

the Kitaev chain is a one-dimensional spinless p-wave superconductor, it is natural

to also look for unpaired Majorana fermions in a two-dimensional, spinless p-wave

This will also result in multiple MZMs at the ends of the chain. In absence of the protecting
symmetries that define the BDI class, multiple MZMs at one end of the chain will generally pair up
and move away from zero energy.
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superconductor. To construct a specific model Hamiltonian, we begin by stacking

(along ŷ) N Kitaev chains that have N fermionic sites each. In addition to intra-

chain hopping and pairing, there can now also be inter-chain hopping and pairing

of electrons. We know how to generalise the tight-binding dispersion in the Kitaev

chain to a square lattice; −2t cosk→−2t(coskx+cosky). In the limit N →∞ and

with periodic boundary conditions, a natural guess for the bulk Hamiltonian can be

obtained from generalising that of the Kitaev chain in Eq. (.) to

HR =
1
2

∑
k∈FBZ

(
c†k c−k

)−2t(coskx+cosky)−µ 2i∆sinkx+f (k)

−2i∆sinkx+f ∗(k) 2t(coskx+cosky)+µ


 ckc†−k

 , (.)

where k=(kx, ky) is now a momentum vector in the first Brillouin zone (−π,π)×(−π,π)

and f (k) is a contribution to the p-wave pairing potential that must be determined

according to our preferences; we would like the bulk excitation spectrum to look as

close to the Kitaev chain as possible, in the hope that the two-dimensional model will

also support unpaired Majorana fermions. The eigenvalues of the BdG matrix are

±E(k), where the bulk excitation spectrum is

E(k) =
√

(2t coskx + 2t cosky +µ)2 + 4∆2 sin2 kx + |f |2 + 2i∆sinkx(f − f ∗). (.)

Two intuitive choices are f =±2∆sinky , which sets the last term inside the square root

to zero. For the choice f =−2∆sinky , the BdG Hamiltonian in Eq (.) becomes

HR =
1
2

∑
k∈FBZ

(
c†k c−k

)−2t(coskx+cosky)−µ 2i∆(sinkx+i sinky)

−2i∆(sinkx−i sinky) 2t(coskx+cosky)+µ


 ckc†−k

 , (.)

which has a bulk excitation spectrum given by

E(k) =
√

(2t coskx + 2t cosky +µ)2 + 4∆2(sin2 kx + sin2 ky). (.)

This model of a spinless kx+iky superconductor will henceforth be called the Read-

Green superconductor, after Read and Green [] who studied the continuum version

This choice can also be motivated from the need to avoid gapless nodal points or lines in the
Brillouin zone, for generic values of µ and ∆. except perhaps at isolated critical points.
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Figure . – Closures of the gap in the bulk excitation spectrum ω(k) of the Read-
Green superconductor. (a) For µ=−4t, the gap closes at k=0, and (b) for µ=4t, the
gap closes at k=(π,π). In both plots, ∆=0.7t. Recall that only one band (blue) with
energies ω≥0 contains physically distinct states.

Figure . – (a) Closure of the bulk gap at k=(0,π) and k=(π,0) for µ=0. (b) Bulk
excitation spectrum away from critical points for µ=2t. In both plots ∆=0.7t.

of the lattice model above. Note that the bulk excitation spectrum becomes gapless at

the points k∈{(0,π), (π,0)} for µ=0, at k=(π,π) for µ=4t, and at k=0 for µ=−4t (see

Figures .a-b and Figure .a). Away from these critical values of µ, the bulk remains

fully gapped throughout the Brillouin zone (see Figure .b). The line of critical

points at µ=±4t might have been anticipated as a straightforward generalisation

of the critical lines at µ=±2t in the Kitaev chain. In analogy, one may guess that

the regions
∣∣∣µ∣∣∣> 4t are topologically trivial with no edge states (in particular, the

unpaired Majorana fermions we are looking for). The difference between the regions

−4t < µ< 0 and 0<µ< 4t, separated by a line of gapless critical points, remains to

be seen. The presence or absence of edge states will manifest in the edge spectral

function of the Read-Green superconductor. An inverse Fourier transform of Eq. .

gives the real space lattice Hamiltonian, which for a semi-infinite plane geometry
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with a single edge reads as

HR =
∞∑

x=−∞

∞∑
y=1

[
−t

(
c†x+1,ycx,y + c†x,y+1cx,y + h.c.

)
+
(
∆c†x+1,yc

†
x,y + i∆c†x,y+1c

†
x,y + h.c.

)
−µc†x,ycx,y

]
. (.)

Since translation invariance is broken only along ŷ, one may work in a mixed (kx, y)

representation and calculate the edge spectral function AE(kx,ω). This has been done

in Appendix A, and results for the three distinct phases discovered above are shown

in Figures .a-c. As expected, the regions
∣∣∣µ∣∣∣>4t form a trivial phase with an edge

spectral function not very different to that of the bulk, fully gapped with only the

usual Bogoliubov quasiparticle excitations. However, the regions −4t < µ < 0 and

0<µ< 4t are distinct topological phases that host linearly dispersing, chiral edge

excitations that lie within the bulk energy gap. The two phases, −4t < µ < 0 and

0<µ<4t, are distinguished by the opposite chiralities of their edge modes, as evident

from the opposite signs of the group velocities (∂ω/∂kx) of the subgap excitations

in Figures .a-b. For example, the edge modes of the −4t < µ < 0 phase are all

right-moving on the single boundary of the semi-infinite plane.

In order to distinguish between these phases without regard to the edge modes,

one can try to construct a topological invariant as done for the Kitaev chain earlier.

To this end, we cast the BdG matrix in Eq. (.) as an isospin Hamiltonian,

hR(k) = −
[
2t(coskx+cosky)+µ

]
τz − (2∆sinkx)τ

y − (2∆sinky)τx ≡ d̂(k) · τ. (.)

Unlike the Kitaev chain, all three components of d(k) are non-zero, which implies

the unit vector d̂(k) can generally point anywhere on the unit sphere S2. This

indirectly also implies that the Read-Green superconductor falls under symmetry

class D in the periodic table of topological superconductors [–]. Also in two-

dimensions, the Brillouin zone (−π,π)×(−π,π) is a Cartesian product of two circles

S1, and is therefore a torus T 2, which means we must now consider homotopy classes

of maps d̂ : T 2→ S2 and can therefore no longer rely on the exhaustive table of
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Figure . – (Clockwise from top left) Intensity plot of the edge spectral function
AE(kx,ω) of a semi-infinite planar Read-Green superconductor in (a) topological
phase with µ = −3t, (b) topological phase with µ = 3t, and (c) trivial phase with
µ=−5t. In all plots, ∆=1.5t, ω is in units of t, and k is really ka where a is a lattice
constant we have set to unity. The two distinct topological phases [(a) and (b)] host
chiral edge modes of opposing chiralities, featuring as linearly dispersing subgap
states. Recall that only excitations with energies ω>0 are physical. The two-band
structure is an artifact of the BdG formalism, which doubles the number of physical
degrees of freedom.
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homotopy groups πn(Sm). Classifying maps between general topological manifolds

up to homotopy is an extremely difficult problem. However, in the present case

of interest, that is maps from T 2 to S2, we find our salvation in the Hopf theorem

[] in differential topology; two continuous maps from a compact, oriented, n-

dimensional manifold to the n-sphere Sn are homotopic if and only if they have the

same Brouwer degree. The Brouwer degree of a continuous map is (informally) the

number of times it wraps the domain manifold around Sn, and is therefore integer-

valued. An immediate result of the Hopf theorem is that homotopy classes of maps

d̂ : T 2→S2 are indexed by an integer. Therefore, we arrive at the result that there

exists a Z topological invariant for the Read-Green superconductor, in accordance

with the result in Refs. [–] for class D superconductors in two dimensions. The

topological invariant in this case (which we simply state without proof) is the first

Chern number

C1 =
1

4π

∫
FBZ

d2k
d(k)

|d(k)|3
·
(
∂d
∂kx
× ∂d
∂ky

)
. (.)

Similar to the Kitaev chain, only the phases with Chern numbers 0 (trivial) and

±1 (topological with opposite chiralities) are accessible to the Read-Green lattice

Hamiltonian as presented above.

From an explicit calculation of the edge spectral function of a Read-Green super-

conductor in a semi-infinite plane geometry, we have seen the existence of gapless,

linearly dispersing, chiral edge modes. We will now show that these are chiral Majo-

rana fermions, following Refs. [, , ]. To this end, it is convenient to work with a

continuum model, instead of the lattice version discussed above. To obtain such a

model, note that the phase transition at µ=−4t is accompanied by a closing of the

bulk energy gap at k=0. Linearising Eq. (.) near this point, and defining µ̃=µ+4t,

Each choice of parameters µ,∆ in the Hamiltonian defines a map d̂, and so there is an entire
family of them. The problem is that of classifying these maps up to homotopy.
As the domain manifold and Sn are both oriented, there is a notion of orientation for the wrapping,

which is why the degree can be positive or negative. This is just a generalisation of the concept of
winding numbers of maps between circles, discussed in the previous section on the Kitaev chain.
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Rin

trivial phase

µ̃<0

µ̃>0

topological phase

Rout

µ̃<0

trivial phase

Figure . – Read-Green superconductor on an annulus. The inner and outer edges
host chiral Majorana fermions with opposing chiralities.

we obtain

HR =
1
2

∫
d2k

(
c†k c−k

) −µ̃ 2i∆(kx+iky)

−2i∆(kx−iky) µ̃


 ckc†−k

 ,
=

1
2

∫
d(x,y)d(x′, y′)δ(x−x′)δ(y−y′)

×
(
c†x′ ,y′ cx′ ,y′

) −µ̃ 2∆(∂x+i∂y)

−2∆(∂x−i∂y) µ̃


cx,yc†x,y

 , (.)

where we have Fourier transformed back to real space in the second line, and d(x,y)=

dxdy. This model then captures the transition from the topological (µ̃>0) to trivial

phase (µ̃<0) at µ̃=0. Instead of a rectangular geometry, we consider this model in its

topological phase on an annulus of inner (outer) radius Rin (Rout), with a trivial phase

(or vacuum) forming outside (see Figure .) []. Using polar coordinates r=(r,θ), a

The continuum and lattice models only agree near k=0. This means that the momentum integral
should be regulated in the Hamiltonian. We could also just consider the continuum version as a model
of its own right, severing ties with the lattice model. Such subtleties are not our concern here.
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Hamiltonian describing such a setup can be written as

HR =
1
2

∫
d(r,θ)d(r ′,θ′)

(
c†r ′ ,θ′ cr ′ ,θ′

)
δ(r − r ′)δ(θ −θ′)hR(r,θ)

cr,θc†r,θ
 , (.)

where d(r,θ)=r dr dθ and the BdG Hamiltonian hR(r,θ) is defined as

hR(r,θ) ≡

 −µ̃(r) 2∆eiθ(∂r+ir−1∂θ)

−2∆e−iθ(∂r−ir−1∂θ) µ̃(r)

 , (.)

where µ̃(r)>0 inside the annulus, and µ̃<0 outside. Instead of a discontinuous step

function, we assume a smooth, slowly varying profile for µ̃(r) [one example is tanh(r)

near Rin and tanh(−r) near Rout with some smooth interpolation in between]. The

factor eiθ disappears upon rewriting HR in terms of new fermion fields ψ†r,θ=eiθ/2c†r,θ
andψr,θ=e−iθ/2cr,θ. Note, however, thatψ(†)

r,θ obey anti-periodic boundary conditions

ψ
(†)
r,θ+2mπ=(−1)mψ(†)

r,θ.

Say the BdG Hamiltonian has eigenvectors χm(r,θ) = [um(r,θ) vm(r,θ)]ᵀ with

eigenvalues Em defined by hRχm=Emχm. Since hR is self-adjoint, it admits a spectral

decomposition of the form

δ(r − r ′)δ(θ −θ′)hR(r,θ) =
∑
m

Emχm(r,θ)χ†m(r ′,θ′). (.)

Using this in Eq. (.), we find

HR =
∑
m

Em
2

{∫
d(r ′,θ′)

[
um(r ′,θ′)ψ†r ′ ,θ′ + vm(r ′,θ′)ψr ′ ,θ′

]
×
∫

d(r,θ)
[
u∗m(r,θ)ψr,θ + v∗m(r,θ)ψ†r,θ

]}
, (.)

which is diagonal in the Bogoliubov quasiparticle operators

γm =
∫

d(r,θ) (u∗mψr,θ + v∗mψ
†
r,θ), γ†m =

∫
d(r,θ) (umψ

†
r,θ + vmψr,θ). (.)

The requirement of non-zero γm imposes anti-periodic boundary conditions (4π

periodicity) on um(r,θ) and vn(r,θ), so that the integrands in Eq. (.) are not odd

in θ∈ (0,2π).

Note that the pairing term actually transforms as eiθc†r,θ(∂r + ir−1∂θ)c†r,θ = ψ†r,θ(∂r + ir−1∂θ +
1/2r)ψ†r,θ . The extra 1/2r factor disappears as (ψ†r,θ)2 =0. Similarly for the pairing term involving ψr,θ .



chapter  . majorana fermions in condensed matter 

Let us now solve for the eigenvectors χm, whose component functions um and vm

are solutions to the following system of coupled first-order differential equations:

−µ̃(r)u(r,θ) + 2∆(∂r + ir−1∂θ)v(r,θ) = Eu(r,θ), (.)

µ̃(r)v(r,θ)− 2∆(∂r − ir−1∂θ)u(r,θ) = Ev(r,θ). (.)

We are primarily interested in the nature of the chiral edge states we found in a

brute force calculation of the edge spectral function in the lattice model. To this

end, we may approximate r−1 in Eqs. (.)-(.) by R−1 ∈ {R−1
out,R

−1
in }, which form

the two boundaries of the annulus under consideration. Solving Eqs. (.)-(.) is

equivalent to solving a single second-order partial differential equation for one of

u(r,θ) or v(r,θ). The former satisfies

2∆
µ̃(r)2 −E2

[
∂2
r u(r,θ) +R−2∂2

θu(r,θ)
]
− 1

2∆
u(r,θ)

− 2
1− [E/µ̃(r)]2 ·

∂r µ̃(r)/µ̃(r)
µ̃(r)/∆

[
∂ru(r,θ)− iR−1∂θu(r,θ)

]
≈ 0. (.)

Let us assume that ∂r µ̃(r)/µ̃(r)� µ̃(r)/∆∼ξ−1, where ξ is the coherence length of the

superconductor; the last term in Eq. (.) can thus be dropped. This is similar to a

WKB approximation; one considers r ‘slightly away’ from the edge of the annulus

(where µ̃(r) changes sign) so that the spatial variation of µ̃(r) is slow, but close enough

to the edge that the approximation r−1≈R−1 made above still holds. Using a separa-

tion of variables, by substituting in u(r,θ)=f (r)g(θ) and then dividing throughout

by f (r)g(θ), we obtain

1
f (r)

∂2
r f +

[
E2 − µ̃(r)2

4∆2

]
= − 1

R2g(θ)
∂2
θg ≡ λ

2, (.)

where λ2 is a constant, since θ and r are independent variables. A specific solution to

the angular equation is g(θ)=exp(iRλθ). Using the anti-periodic boundary condition

g(θ+2π)=−g(θ) determines λ=m/2R, where m∈2Z+1 is an odd integer. Therefore,

the angular part of um(r,θ) is then

gm(θ) = exp
( imθ

2

)
, m ∈ 2Z+ 1. (.)
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The radial equation is then

∂2
r f +

[
E2

4∆2 −
m2

4R2 −
µ̃(r)2

4∆2

]
f (r) = 0. (.)

Now, assume Em=±m∆/R. Then given R∈{Rin,Rout}, the two solutions (to the radial

equation) are

fin(r) ≈ exp
[
− 1

2∆

∫ r

Rin

dr ′ µ̃(r ′)
]
, fout(r) ≈ exp

[
− 1

2∆

∫ Rout

r
dr ′ µ̃(r ′)

]
. (.)

These solutions are valid in the respective approximations r∼Rin and r∼Rout; since

µ̃>0 inside the domain of integration in the exponents of fin and fout, these solutions

are exponentially suppressed away from the inner and outer boundaries (respectively)

of the annulus. It remains to be seen which of Em=±m∆/R correspond to Ein
m and

Eout
m .

The eigenfunctions vin/out
m (r,θ) can be obtained from uin/out

m (r,θ) using Eq. (.).

For vin
m (r,θ),

vin
m (r,θ) = −

[
2∆

Ein − µ̃(r)

]
(∂r − iR−1

in ∂θ)uin
m (r,θ),

= uin
m (r,θ)

[
µ̃(r)−m∆/Rin

Ein
m − µ̃(r)

]
, (.)

where the Leibniz integral rule has been used to calculate ∂rfin. For Ein
m =m∆/Rin, we

then have the result vin
m (r,θ)=−uin

m (r,θ). Similarly,

vout
m (r,θ) = −uout

m (r,θ)
[
µ̃(r) +m∆/Rout

Eout
m − µ̃(r)

]
,

and for Eout
m = −m∆/Rout, we get vout

m (r,θ) = uout
m (r,θ). The eigenvectors χin/out

m =

(uin/out
m vin/out

m )ᵀ and respective eigenvalues Ein/out
m of the BdG Hamiltonian hR(r,θ),

That these are solutions to the radial equation can be verified by direct substitution into the radial
equation, and calculating the derivatives ∂rf and ∂2

r f using the Leibniz integral rule. In calculating
∂2
r f , one actually obtains a term proportional to ∂r µ̃. Such terms can be ignored under the assumption
∂r µ̃(r)/µ̃(r)� µ̃(r)/∆ made earlier.
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with a suitable choice of normalisation constantN −1/2, read

χin
m (r,θ) =

1
√
N
eimθ/2fin(r)

 i−i
 , Ein

m =
m∆

Rin
, m ∈ 2Z+ 1 (.)

χout
n (r,θ) =

1
√
N
einθ/2fout(r)

1

1

 , Eout
n = − n∆

Rout
, n ∈ 2Z+ 1 (.)

where fin/out(r) are specified by Eq. (.). Note that the excitations with wavefunc-

tions given by χin/out
m are exponentially localised at the inner and outer edges of the

annulus. In the thermodynamic limit Rin/out→∞, these excitations become gapless.

To show that the edge excitations are chiral Majorana fermions, note that HR in

Eq. (.) can be roughly separated into two parts as HR=Hbulk+Hedge, where Hbulk

describes the gapped quasiparticle excitations in the bulk (irrespective of the topology

of the system) and Hedge describes the edge excitations just described. Using Eqs.

(.)-(.) in Eq. (.), the quasiparticle operators (edge modes) that diagonalise

Hedge are given by

γ in
m =

∫
d(r,θ)
√
N

eimθ/2fin(r)
1
i

(ψr,θ −ψ†r,θ), (.)

γout
m =

∫
d(r,θ)
√
N

eimθ/2fout(r)(ψr,θ +ψ†r,θ). (.)

Crucially, note that (γ in/out
m )† = γ−m, and the operators γ in/out

m satisfy the Clifford

algebra {γ in
m ,γ

in
−n}= {γout

m ,γout
−n }=2δmn and {γ in

m ,γ
out
n }=0. This identifies the modes on

each edge as Majorana fermions. To see this more explicitly and the fact that they

are chiral, note that the effective Hamiltonian describing excitations on both edges,

using Eq. (.), is

Hedge =
1
2

∑
m

m∆

Rin
γ in
−mγ

in
m −

1
2

∑
n

n∆
Rout

γout
−n γ

out
n , m,n ∈ {. . . ,−3,−1,1,3, . . . },

=
∑
p

p∆

Rin
γ in
−pγ

in
p −

∑
q

q∆

Rout
γout
q γout

−q , p ∈ {1,3,5, . . . }, q ∈ {−1,−3,−5, . . . },

where we have used the property (γ in/out
m )†=γ−m to restrict the angular momentum

quantum numbers p (q) to the positive (negative) odd integers. These are the only
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physical excitations; to see why, recall that the BdG Hamiltonian [for example, in Eq.

(.)] doubles the number of physical degrees of freedom, so that energy eigenvalues

appear in doubled ±E pairs. This implies that only states with Ein/out
m ≥0 are physically

distinct from each other. Therefore, the inner and outer edge modes have positive

and negative angular momentum respectively, and are thus chiral, with the inner

(outer) edge excitations moving anti-clockwise (clockwise), as shown in Figure ..

To show that the inner and outer edge modes are separately Majorana fermions, let

us consider Hedge above in the thermodynamic limit Rin/out→∞, so that the inner

and outer modes both have a gapless dispersion k. Constructing the operators

fk =
1
2

(γ in
k + iγout

k ), f †k =
1
2

(γ in
−k + iγout

−k ), (.)

it is easily seen that {fk , f †k }= 1 and {fk , fk}= 0, using the fact that γ in/out
k satisfy the

Clifford algebra. The operators fk , f
†
k therefore destroy and create complex fermions,

albeit highly non-local fractionalised ones, with weight equally distributed between

the two well-separated edges of the annulus. Now, a chiral Hamiltonian for the

f -fermions can be written as 

H =
∑
k

2kf †k fk ,

=
∑
k≥0

2k
(
f †k fk − f

†
−kf−k

)
,

=
∑
k≥0

k
2

[
(γ in
−k − iγ

out
−k )(γ in

k + iγout
k )− (γ in

k − iγ
out
k )(γ in

−k + iγout
−k )

]
,

=
∑
k≥0

kγ in
−kγ

in
k −

∑
k≤0

kγout
k γout

−k ,

=Hedge. (.)

Therefore, a chiral complex fermion is constructed from two chiral Majorana fermions.

If instead of the annulus, we consider the Read-Green superconductor on a geometry

with a single edge, such as a disk or a semi-infinite plane, then only a single species of

The sums should strictly be replaced by integrals, but we ignore such issues of rigour here.



chapter  . majorana fermions in condensed matter 

chiral Majorana modes with a gapless dispersion will be seen. This is the case in Fig-

ures .a-b, which show the edge spectral function of a Read-Green superconductor

on a semi-infinite plane. The subgap states with a linear (in momentum) dispersion

are precisely the chiral Majorana fermions we discovered above.

These edge states are quite different to the on-site localised, unpaired, zero-energy

Majorana modes (MZMs) that appeared as end modes in the Kitaev chain. The

ground state in that case was twofold degenerate, and these states could form a

qubit protected by an energy gap from the bulk excitations of the system. In the

Read-Green superconductor, the discussion above seems to imply that zero-energy

modes only appear in the thermodynamic limit when the chiral edge modes become

gapless. This also means that zero energy states, when they occur, are not protected

by an energy gap from other excitations of the system. It is pertinent to ask if we can

realise protected MZMs in the Read-Green superconductor, as it is one dimension

closer to the real world than the Kitaev chain. In the annulus geometry considered

above, recall that the inner edge states have quantised energies Ein
m =m∆/Rin, where

m is a positive odd integer. Recall that the condition of odd m has its origins in the

anti-periodic boundary conditions on the fermion fields ψr,θ in Eq. (.), which

follow from the exp(iθ) factors in the BdG Hamiltonian in polar coordinates [see

Eq. (.) and the discussion below there]. If we could somehow remove the exp(iθ)

factor in the pairing terms in Eq. (.), then the fields ψr,θ would satisfy the

usual periodic boundary conditions, which would presumably lead to even angular

momentum quantum numbers m and thus to the desired zero-energy mode. This is

easy to do; imagine that the core trivial region of the annulus in . is a vortex in

the order parameter field []. The precise mechanism of the formation of such a

vortex is unimportant for the discussion here. This implies that the phase φ(r,θ) of

the order parameter field ∆ winds by 2π around the vortex (if it is threaded by one

flux quantum hc/2e). One choice of the phase field that satisfies this is φ(r,θ)=−θ.

One can then replace ∆→ ∆exp(−iθ) in Eq. (.), which gets rid of all exp(iθ)
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factors there. Now solving for the eigenfunctions of the BdG Hamiltonian with

periodic boundary conditions, one finds edge states with energies Ein
m =m∆/Rin and

Eout
m =−m∆/Rout wherem∈{0,2,4, . . . }. The energy spectrum thus includes two MZMs,

with one localised on each edge of the annulus. If the core trivial region is a vortex

formed by an external magnetic field, then we expect Rin i.e. the size of the vortex to

be on the order of the coherence length of the superconductor, which would result in

the next excited vortex-bound state to be separated by an energy gap from the MZM.

Several such vortices, each harbouring a trapped MZM, can thus be used to construct

a system of qubits that are protected from errors, provided the vortices are spatially

well separated to prevent tunnelling of MZMs between vortices [–]. Braiding of

the vortex-trapped MZMs, which are actually non-Abelian anyons, can be used to

process information stored in the qubits they construct [, ].

 . practical realisations

The Kitaev chain, constructed in section .. as a toy model with MZMs, is a one-

dimensional p-wave superconductor made of spinless fermions. At first sight, it

seems an impossible endeavour to experimentally realise such a system, as:

. The model involves spinless (spin-polarised) fermions, but we only have spin-

ful electrons at our disposal in solid-state systems.

. Off-diagonal long-range order, defining of a superconducting state, cannot

spontaneously form in one-dimensional systems by virtue of the Mermin-

Wagner theorem [–]. Even in the case of quasi-long-range order at zero

temperature, the importance of fluctuations in the order parameter makes the

BCS mean-field formalism used in the model suspect.

. The model involves spin-triplet superconducting pairing, as must be the case

for spin-polarised fermions. Nearly all superconductors in nature involve

spin-singlet s-wave pairing.

Strictly, ∆→ ∆(r)exp(−iθ) as ∆(r) must be zero inside the vortex. This can be done by assuming
the same profile for ∆(r) and µ̃(r), and does not change our conclusions.
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We briefly sketch how these issues can be addressed by modifying the Hamiltonian of

the Kitaev chain, while trying to preserve its topological phase with MZMs, following

Ref. []. One can add a spin index to all the fermion fields in the Hamiltonian [Eq.

.] to obtain a model of spin-/ electrons. This generates two decoupled copies of

the Kitaev chain, which implies there are now two MZMs at each end. In the absence

of protecting symmetries (time-reversal), the MZMs will generally pair up and form

a local complex fermion with non-zero energy. However, we can add a Zeeman term

−h(c†j↑cj↑−c
†
j↓cj↓) to the Hamiltonian, and tune h relative to the chemical potential µ

so that the spin-up electrons are in the topological phase
∣∣∣µ∣∣∣<2t while the spin-down

electrons are in the trivial phase
∣∣∣µ∣∣∣>2t. This would then result in a single MZM at

each end of the chain.

Since the chain of electrons cannot spontaneously order (long range), it is clear that

superconductivity would have to be induced by proximity to a bulk superconductor.

This would then justify the BCS form used for the Hamiltonian of the Kitaev chain, as

fluctuations in the order parameter are governed by the bulk superconductor. Nearly

all superconductors are s-wave spin-singlet in nature, and we must somehow induce

p-wave spin-triplet superconductivity in the chain while proximitising it with an

s-wave superconductor. Simply changing the pairing in the spinful Kitaev chain

to s-wave destroys the topological features of the model. However, in conjunction

with s-wave pairing, if one adds Rashba spin-orbit coupling [, ] of the form

kσ
y
j =−ik(c†j↑cj↓−c

†
j↓cj↑), where k is the momentum and σy is the y-component of the

electrons’ spin, it can be shown that one effectively obtains p-wave pairing terms for

small momenta in the Hamiltonian [].

Given a one-dimensional electronic system, the three key ingredients required to

overcome the issues ()-() above and engineer a Kitaev chain are then (i) a magnetic

field to ‘spin-split’ electron bands, (ii) an s-wave superconductor to proximity-induce

superconductivity, and (iii) spin-orbit coupling along an axis perpendicular to the

Zeeman field to render the induced superconductivity p-wave. There are several

different designs that use these ingredients to create specific realisations of the Kitaev
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chain. The semiconductor nanowire proposal of Refs.[, ], building on earlier

work in Refs. [, ], involves proximitising a Rashba spin-orbit coupled semicon-

ductor nanowire (such as InSb) with an s-wave superconductor in the presence of

a transverse magnetic field. For a moderately large magnetic field, the nanowire

enters a topological phase with predicted boundary MZMs. Another proposal [, ]

involves gapping the edge modes of a quantum spin Hall insulator (d topological

insulator) [, , , ]. The quantum spin Hall insulator supports two counter-

propagating chiral edge fermions with opposite spins and a linear Dirac dispersion,

which thus form a spin-orbit coupled one-dimensional electronic system. To render

the system spinless, one applies a Zeeman field to open a gap in the Dirac spectrum

and locates the chemical potential inside the gap. Proximity effects from an s-wave

superconductor can then induce inter-band p-wave superconductivity. Yet another

proposal [, ] utilises a ferromagnetic chain deposited on a superconducting lead

substrate that also provides spin-orbit coupling.

The Read-Green (spinless, px+ipy) superconductor can be engineered in a similar

fashion. In fact, all the proposals referred to above began with the seminal work []

of Fu and Kane, who showed that proximitising the surface of a three-dimensional

topological insulator with a bulk s-wave superconductor induces a time-reversal

symmetric relative of the Read-Green superconductor on the interface. To localise

unpaired Majorana fermions, however, requires time-reversal symmetry breaking. To

realise chiral Majorana fermions, one requires a one-dimensional boundary for the d

px+ipy superconductor. In the Fu-Kane proposal, since the latter state itself is formed

on the boundary of the d topological insulator, it cannot have a boundary of its own.

However, such a boundary can be created by forming a domain wall between the

px+ipy state on the surface, and a ferromagnetic insulator that breaks time-reversal

symmetry. Chiral Majorana fermions will then flow on this domain wall. One can

also lift time-reversal symmetry by creating a vortex in the surface state using an

applied magnetic field. Such a vortex will then trap a localised and unpaired MZM,

precisely like the Read-Green superconductor as discussed in section ...
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Unlike the Kitaev chain, which must be specifically engineered using heterostruc-

tures of ordinary materials, we mention that there do exist materials that might in-

trinsically realise spin-triplet p-wave superconductivity in two dimensions. Sr2RuO4

is a leading candidate as a spinful px+ipy superconductor [], and more recently

the surface states of certain iron-based superconductors [–] have also attracted

attention. Such superconductors admit half-quantum hc/4e vortices that trap MZMs,

in addition to hc/2e vortices that do not. The fractional quantum Hall state at filling

fraction ν=5/2 is also predicted to realise a spinless px+ipy superconductor (albeit of

composite fermions), and is in fact the original context in which such a phase was

proposed by Read and Green []. However, predictions of Majorana edge states

in the A phase of superfluid Helium- under confinement precede the advent of

topological superconductors, and its status as a topological px+ ipy superfluid is

reviewed in Ref. [].

 . experimental signatures

Now that practical realisations of the Kitaev chain and Read-Green superconductor

have been discussed, the question of how to detect Majorana fermions in these

systems remains. We very briefly outline the most basic measurement protocol aimed

at detecting the presence of a MZM and associated key experiments, referring the

reader to Refs. [, ] for extensive reviews of the current experimental status of the

field.

For the Kitaev chain, the simplest means of detecting the presence of a MZM is

through tunnelling spectroscopy; a tunnel junction is created between the Kitaev

chain in its topological phase and a normal metallic probe. An applied bias volt-

age causes electrons to flow from the metallic probe into the superconductor. The

measured tunnelling conductance, as a function of bias voltage, then probes the

local density of states of the Kitaev chain at the junction. Due to the presence of a

zero-energy MZM at the end of the chain, there can be a non-zero (2e2/h) conductance

even at zero bias voltage [, ]. Such measurements were first made by Mourik et al.
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Figure . – Tunnelling conductance as a function of applied bias voltage in the
Mourik et al. experiment [], shown for various magnetic fields ( to  mT
in  mT steps). The proximity-induced superconducting gap in the nanowire is
between the green arrows. Note the zero bias peak for a range of magnetic fields
from approximately -mT.

[], on a device constructed after the semiconductor nanowire proposals of Lutchyn,

Oreg et al. [, ]. Their pioneering measurements (subsequently reproduced by

other groups), shown in Figure ., clearly display a zero-bias peak that develops

for a range of magnetic fields, consistent with the presence of a MZM at the end

of the nanowire. However, not all features of the data align with predictions based

on the Lutchyn-Oreg realisation of the Kitaev chain. For example, the onset of the

zero-bias peak is predicted to be accompanied by a phase transition, signalled by the

closing and re-opening of the superconducting gap. No such transition is seen in

the data. The zero bias conductance is also much smaller than the predicted 2e2/h.

Also, it turns out that the finite length of the nanowire used in this experiment is

not negligible, and should result in some visible splitting of the zero-bias peak due

to a residual coupling between the two MZMs of the nanowire. The lack of such

a splitting in the data is yet another discrepancy with theoretical predictions. An

extensive debate regarding the conclusions of the experiment followed, and it was

realised [] that the presence of disorder could also result in zero bias peaks that
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could mimic the signature of a MZM (even in the trivial phase). In all subsequent

experiments, the key issue has become that of distinguishing zero bias peaks due

to non-topological, subgap Andreev bound states (resulting from disorder), from

the zero bias peak contributed by a topologically protected MZM []. A conclusive

demonstration of the existence of MZMs in such semiconductor devices would thus

have to incorporate signatures other than the zero bias peak. One must show that (i)

there is a state pinned to zero energy; (ii) this zero-energy state exists in a limited

parameter range of chemical potential and applied magnetic field; (iii) the onset

of a zero bias peak that indicates the existence of such a zero energy state must be

accompanied by a closing and re-opening of the bulk gap; (iv) the zero bias peak

must be observed at both ends of the nanowire. While these requirements have been

individually satisfied in various experiments, no one experiment has conclusively

demonstrated all these properties in a single device, to the best of our knowledge.

More recently, the Yazdani group at Princeton has experimentally realised [] the

Kitaev chain in ferromagnetic iron (Fe) atomic chains deposited on a superconducting

lead (Pb) substrate, which also provides the necessary spin-orbit coupling, following

an earlier theoretical proposal []. Their approach, using scanning tunnelling

spectroscopy (STS), permits measurements of the LDOS across the entire Fe chain.

Their results, partially reproduced in Figure ., clearly show zero bias peaks in

the STS spectra on each end of the chain that are resolved from the other subgap Yu-

Shiba-Rusinov states [–]. Spatial and energy resolved maps of the LDOS clearly

show strongly localised zero-energy excitations at the ends of the chain. Subsequent

experiments [–] from the same and other groups have since reproduced and

improved upon these results, including measurements of the localisation length of

an MZM that agree remarkably well with expectations from theory. There is now

a consensus that the results of all these experiments, taken together, indicate that

MZMs have indeed been observed, although no one explanation seems to fit all

aspects of the data in any experiment.

The vortex-bound MZMs present in px+ ipy superconductors can also be de-
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Figure . – STS measurements by Nadj-Perge et al. [] of the spatially resolved
LDOS across an Fe chain deposited on a superconducting Pb substrate. (B) and (C)
show the topography respectively of the upper and lower ends of the Fe chain. (A,
D, E) show STM spectra measured at the various locations on the Fe chain marked in
(B) and (C). There are zero bias peaks (in red in A, D, E) at the ends (locations  and
) of the Fe chain, that are well resolved from the other subgap Yu-Shiba-Rusinov
states. (F) Spatial and energy resolved conductance maps near the end of another Fe
chain. Note the increased conductance at zero energy at the end of the chain, which
supports the existence of a localised MZM there.

tected by spectroscopy measurements. Experiments on Fu-Kane heterostructures

are extensively reviewed in Ref. []. We choose to highlight here the results of

two experiments that potentially bear relevance to the models discussed later in

this thesis. The first is a recent experiment by Machida et al. [], which presents

spectroscopy data on hundreds of vortex cores in an Abrikosov vortex lattice in the

iron-based superconductor Fe(Se,Te), previously established (in both theory and

experiment) to host a topological px+ipy state with hc/4e vortex-trapped MZMs on

its surface [–, , ]. Their results, partially reproduced in Figure ., show a

large fraction of zero bias peaks in the STS spectra of the vortex lattice that is heavily
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Figure . – (a-e) STM images of vortices by mapping the zero-energy conductance
on the surface px+ipy state of the iron-based superconductor Fe(Se,Te) []. Images
are of the same field of view, for increasing magnetic fields of (a)  T, (b)  T, (c)  T,
(d)  T, and (e)  T. (f-j): Fourier transformed images of (a-e). (k-o): Probabilities of
observing peaks at given energies in the STS spectra of all the vortices, in correspon-
dence with (a-e). Note that the fraction of observed zero bias peaks decreases with
increasing magnetic field.

suppressed with increasing magnetic field, which results in a denser vortex lattice. A

preliminary analysis of the data [] indicates that this is explained by hybridisation

(tunnelling) of MZMs between vortices, in addition to disordered vortex distributions.

The importance of the experiment is in the fact that it is a step towards realising

a system of interacting Majorana fermions, where the interactions result from the

overlap of MZM wavefunctions from (at least) four vortex cores [].

Experiments aimed at detecting chiral Majorana edge modes of px+ipy supercon-

ductors have been relatively scarce, partly due to the difficulty in engineering the

heterostructures required to observe such a phenomenon, though concrete proposals
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Figure . – STM experiment by Menard et al. [] on a (a) Si()/Pb/Co
heterostruture (schematic shown), which realises a px+ipy superconductor with
magnetic islands. (b-c) Topography of the sample, showing in-grown magnetic
clusters of Co-Si on the lead surface. (d) Conductance map at a subgap energy on
the area shown in (c), showing gapless states localised at the boundary between the
Co-Si disk and the superconductor. Everywhere else, a superconducting gap persists
(dark blue regions) with no low energy excitations.

for such experiments have existed for a while [, –]. However, we mention a

recent STM experiment by Menard et al. [] that shows promising results. A het-

erostructure, combining the three essential ingredients required for spinless px+ipy

superconductivity, is fabricated by growing a monolayer of superconducting lead on

top of the semiconductor Si(), after which magnetic islands of Co-Si are grown

on the surface (see Figure .a). As mentioned in the previous section, gapless and

chiral Majorana modes are expected to localise on the one-dimensional boundary

between these magnetic islands and the superconducting state. A conductance map

of the heterostructure at a subgap energy reveals gapless excitations localised at the
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boundary between a magnetic disk and the surrounding superconductor (see Figure

.d).

 . interactions in majorana systems

The experiment by Machida et al., discussed in the previous section, presents an

interesting avenue of research. Vortex-bound MZMs, when brought together, will

generally hybridise and form Majorana bands. If the vortex lattice is dense enough to

allow nearest neighbour MZM wavefunctions to overlap, the low energy physics at

energy scales below the superconducting gap is expected to be entirely dominated

by these Majorana degrees of freedom [, ]. The richness of strongly correlated

electron systems is motivation enough to realise and study interaction effects in

correlated Majorana systems. The vortex lattices of topological superconductors

present a natural setting to realise such interacting Majorana fermions. To describe

such systems, Majorana-Hubbard [–] and Majorana-Falicov-Kimball [–]

models on various lattice geometries have been proposed, with interaction effects

in some cases leading to rich phase diagrams and exotic effects such as emergent

supersymmetry at critical points. This work has been reviewed recently in Ref. [].

We mention in particular the Majorana-Falicov-Kimball model of Ref. [], which

models an itinerant band of Majorana fermions interacting with a species of localised

fermions, and admits an exact solution at finite temperature by means of the Z2

slave-spin technique []. The methods of Ref. [] provide the motivation for the

exact solution of the Majorana-Anderson impurity models presented in the following

chapters of this thesis.

We also mention a few other settings in which correlations between Majorana

fermions become important, and lead to new physical effects. One is the avenue of

research motivated by transport experiments on superconducting Rashba nanowires,

exploring interacting Anderson-type impurity models involving small numbers of

MZMs on mesoscopic islands coupled to dissipative baths, some of which are pre-

dicted to exhibit exotic Kondo effects [–]. Another is motivated by the search for
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so-called Fibonacci anyons, whose braiding structure is richer and more suitable for

quantum computation than MZMs []. For example, Ref. [] shows that Fibonacci

anyons emerge in a constructed model with interactions between chiral Majorana

fermions.





chapter 3

Majorana-Anderson impurity models

 . general structure of models

Motivated by studies of interaction effects in Majorana fermion systems, we consider

Majorana-Anderson impurity (MAI) models described by a lattice Hamiltonian of the

form

H =HC +HA +Hhyb, (.)

where HC describes an arbitrary host material or leads that couple to the quantum

dot. We assume that HC is bilinear in fermion operators {cj , c†j }, where j denotes the

set of all quantum numbers required for a description of the host. For example, ciα

with α ∈ {L,R} and lattice-site index i could describe left (L) and right (R) leads that

couple to the quantum dot. The dot is modelled as an Anderson impurity with

Hamiltonian

HA =U
(
2nd↑ − 1

)(
2nd↓ − 1

)
+
ε
2

(
nd↑ +nd↓ − 1

)
− h

2

(
nd↑ −nd↓

)
, (.)

The terms ‘quantum dot’ and ‘impurity’ are used interchangeably in this thesis, and are synony-
mous within the current scope of discussion.
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where ndσ = d†σdσ is the number operator for impurity fermions of spin σ ∈ {↑,↓}.

U describes on-site Coulomb repulsion, h is a Zeeman field, and ε is a shift in the

chemical potentials of the impurity fermions. The hybridisation between the host

and impurity is described by

Hhyb = −i
∑
j

Vj
(
cj + c†j

)(
d↑ + d†↑

)
(.)

which allows for the possibility of spatially extended hybridisation (strength Vj).

This form of Majorana hybridisation arises naturally if the host material supports

localised Majorana zero modes (MZMs) in proximity to the quantum dot. As MZMs

arise in effectively spin-polarised superconductors, it is reasonable to expect that

only one impurity spin species will hybridise [–]. In Ref. [], Hoffmann et

al. consider a quantum dot hybridising with a superconducting Rashba nanowire

(Kitaev chain) and prove the existence of a fully spin-polarised tunnelling regime

such as that considered here by tuning the distance between the dot and an end MZM

hosted by the nanowire.

Note also that the number nd↓ of spin-down fermions commutes with the Hamilto-

nian and is thus conserved. The problem studied here can therefore be thought of as

a Majorana version of the X-ray edge problem [, ]. By contrast with the classic

Nozières-De Dominicis solution of the original problem [], which is restricted

to asymptotically low frequencies, here we find an exact solution for the impurity

spectral functions at all frequencies. As nd↓ is conserved, the Hilbert space of many-

body eigenstates of H breaks into two sectors labelled by the eigenvalues nd↓=±1,

within which H is bilinear and so can be exactly diagonalised. However, this is a

weak notion of exact solvabilty. To calculate zero temperature properties, one must

know which of the two sectors contains the ground state, and this requires numerics

and becomes rapidly tedious as the number of impurities increases. Also, at any

finite temperature, the system is specified by a mixed state (density matrix) operator

that involves states from both sectors. Calculation of the temperature dependent

weights assigned to individual states in each sector is a very difficult problem which
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again requires numerics. By contrast, we obtain an exact solution to the MAI class of

models for arbitrary temperatures.

 . Z2 slave-spin representation

The key ingredient in constructing an exact solution of the MAI models introduced

in section . is a slave-spin technique [, , ] in the minimal Z2 formulation

of Rüegg et al. [, ]. We review this method here in the context of our impurity

models, following Ref. []. The idea behind any slave-particle method is to represent

local degrees of freedom by auxiliary ones in an enlarged Hilbert space. The auxiliary

degrees of freedom are then subjected (enslaved) to constraints in order to account

for this enlargement of the Hilbert space and obtain a faithful representation of

the original problem. The Z2 slave-spin method rests on the observation that an

interaction of the form

U
(
2nd↑ − 1

)(
2nd↓ − 1

)
, (.)

has two distinct eigenvalues ±U determined by the local fermion occupancy modulo

 (or equivalently the local magnetic moment), which can be viewed as the two states

of a spin-1/2 degree of freedom. Building on this observation, let us introduce a

spin-1/2 (Pauli) operator µ = (µx,µy ,µz) such that

µz |±〉 = ±|±〉 . (.)

Now, the interaction on the quantum dot has as its eigenstates the four d-fermion

Fock states and so the physical impurity Hilbert space is

Hd = span(
{
|0〉d , |↑

〉
d , |↓

〉
d , |↑↓

〉
d
}
) . (.)

We wish to associate the states |0〉d , |↑↓
〉
d with no local moment and |↑

〉
d , |↓

〉
d with

a moment to the eigenstates of µz, say |+〉 and |−〉 respectively. But to ensure that

the anti-commutation properties of fermions are preserved, we need to introduce

auxiliary fermions fσ and construct a tensor product space HSS from the two µz
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Figure . – Illustration of Z2 slave-spin representation. Figure adapted from [].

eigenstates |±〉 and the f -fermion Fock states {|0〉f , |↑
〉
f , |↓

〉
f , |↑↓

〉
f }, that is define a

‘slave-spin Hilbert space’

HSS ≡ span
(
{|+〉 , |−〉} ⊗

{
|0〉f , |↑

〉
f , |↓

〉
f , |↑↓

〉
f

})
.

Note that dimHSS = 8, twice as large as the physical Hilbert space Hd . This means

HSS is endowed with a gauge structure – there are redundant or unphysical states

in HSS . We will shortly see how to deal with this problem. The physical fermion

operators (dσ ) that act on Hd are then represented on HSS as

d
(†)
σ → µxf

(†)
σ . (.)

We note that the anti-commutation relations of d(†)
σ are preserved in this definition.

It is also consistent with our requirement that µz describe the local moment; the left

and right hand sides (LHS and RHS) of this definition both change the local moment

when acting on Hd and HSS respectively. It also provides a natural formulation of

the constraint required to eliminate the extra unphysical states in HSS . The fact

that ndσ → nf σ and our requirement that µz describe the local d-fermion moment as(
2nd↑ − 1

)(
2nd↓ − 1

)
→ µz also constrains the f -fermion moment as(

2nf ↑ − 1
)(

2nf ↓ − 1
)

= µz, (.)

allowing the identification of the physical subspace of HSS (see Figure .). States

in HSS such as |+〉⊗|↑
〉
f are therefore unphysical and one should ensure that these
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do not contribute to any physically observable quantities by enforcing the constraint

above.

In the literature, the relation dσ→µxfσ in the slave-spin representation is written

as an equality. Strictly speaking, this is not well defined – the operators on either side

of the relation act on different vector spaces that are not isomorphic (the dimension

of the slave-spin Hilbert space is larger than that of the physical space). What is

typically meant by the equality is the following – the slave-spin Hilbert space contains

a physical subspace that is isomorphic to the physical space of states (Figure .). The

equality between dσ and µxfσ holds only when the domain of the latter is restricted

to this subspace, that is when the gauge constraint is strictly imposed.

The constraint equation also allows a simplified rewriting of the interaction term

in MAI models in terms of a single spin-1/2 operator. With a view towards the

exact solution to be presented later, we also rewrite the impurity chemical potential

and Zeeman terms in Eq. (.) []. To this end, note that the idempotency of the

number operators nf σ implies

µz
(
2nf ↓ − 1

)
=

(
4nf ↑nf ↓ − 2nf ↑ − 2nf ↓ + 1

)(
2nf ↓ − 1

)
= nf ↑ −

1
2
. (.)

Therefore, using the results in Eqs. (.)-(.), we arrive at the slave-spin (SS) repre-

sentation of the MAI class of models [Eqs. (.)-(.)], specified by the Hamiltonian

HSS =HC −
∑
j

iVj
(
cj + c†j

)(
f↑ + f †↑

)
µx +Uµz +

1
2

[ε+ h+ (ε − h)µz]
(
nf ↓ −

1
2

)
. (.)

 . majorana representation of spin

The next step towards an exact solution of the MAI class of models is to rewrite the

SS Hamiltonian entirely in terms of fermion operators. To this end, we define the

operators

Γα↑ = µα
(
f↑ + f †↑

)
, α ∈ {x,y,z}. (.)



chapter  . majorana-anderson impurity models 

It is easily seen that the operators Γα↑ satisfy the Clifford algebra{
Γα↑ ,Γ

β
↑

}
= 2δαβ , (.)

and are thus Majorana fermion operators. Using the Pauli matrix identity,

µαµβ = δαβ + iεαβγµγ , (.)

the spin operators µα may be expressed as Majorana fermion bilinears in terms of Γα↑
as

µx = −iΓy↑ Γ
z
↑ , µy = −iΓz↑ Γ

x
↑ , µz = −iΓx↑ Γ

y
↑ . (.)

Since a pair of Majorana operators form a complex fermion that has a Hilbert space

dimension of , one may formally assign a Hilbert space dimension of
√

2 to each

Majorana fermion []. The tensor product of the µ spin space and (f↑+f
†
↑ ) Majorana

Hilbert space thus has a dimension of 2
√

2 = (
√

2)3, which is also the dimension of

the Hilbert space spanned by the three Γα↑ , which attests to the consistency of the

definition in Eq. (.).

Using Eqs. (.) and (.), one may rewrite the SS Hamiltonian (HSS) entirely

in terms of fermions as

HSS =HC −
∑
j

iVj
(
cj + c†j

)
Γx↑ − iUΓx↑ Γ

y
↑ +

1
2

[
ε+ h− i(ε − h)Γx↑ Γ

y
↑

](
nf ↓ −

1
2

)
. (.)

For ε = h, HSS is bilinear in fermion operators and is thus exactly solvable. The

chemical potential ε of the physical impurity fermions can be tuned via applied gate

potentials on the quantum dot, and h can be controlled using an applied magnetic

field. We thus expect this exactly solvable limit to be realisable in an experimental

situation. Henceforth, this exactly solvable limit will be assumed unless specified

otherwise.

 . fate of the gauge constraint

Although we have arrived at an exactly solvable representation of the original physical

model, the redundant states in the enlarged Hilbert space HSS introduced by the SS
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representation necessitates the application of a gauge constraint in calculating all

physical quantities, in order to ensure that unphysical states do not contribute. In

practice, this is done by including in all expectation values a projector that projects

out these unphysical states. To construct such a projector, note that the gauge

constraint in Eq. (.) can be rewritten as

µz = 2
(
nf ↑ +nf ↓ − 1

)2
− 1 = (−1)nf (.)

where we have used the fact that n2
f σ = nf σ in arriving at the first equality, and

nf =nf ↑+nf ↓ is the total f -fermion number. Multiplying both sides of the equation

by µz and re-arranging terms, we obtain a natural definition for the projector,

P =
1
2

[1 + (−1)nf µz] . (.)

As required, P=1 when acting on physical states that satisfy the gauge constraint and

P=0 on unphysical states. The physical partition function is therefore expressed in

the SS representation as

Z = tre−βH = tre−βHSSP. (.)

We now show that the partition function for MAI models can actually be computed

directly in the SS representation without the necessity of the projector, even away

from the exactly solvable point ε = h. The proof is similar to those constructed

for other such constraint-free models studied using the Z2 slave-spin method [,

, , ]. Defining a local particle-hole transformation D↑ that acts only on

d↑-fermions as

D↑d↑D−1
↑ = d†↑ , (.)

let us consider the transformation of the physical Hamiltonian in Eqs. (.)-(.)

under D↑. Clearly, the host Hamiltonian HC and the hybridisation Hhyb are invariant.

However,

D↑HA(U,ε,h)D−1
↑ = −4U

(
nd↑ −

1
2

)(
nd↓ −

1
2

)
− ε

2

(
nd↑ −nd↓

)
+
h
2

(
nd↑ +nd↑ − 1

)
=HA(−U,h,ε), (.)
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where we have used the relation D↑nd↑D−1
↑ =1−nd↑ to obtain the first equality. How-

ever, since the physical partition function is invariant under similarity transforma-

tions of the Hamiltonian, we have

Z(U,ε,h) = Z(−U,h,ε), (.)

where the dependence on other parameters (such as the hybridisation V ) has been

suppressed as they are unaffected by D↑.

Now, the action of D↑ in the SS representation (on HSS) is represented by µx, and

so

µxHSS(U,ε,h)µx =HSS(−U,h,ε), (.)

as is obvious from Eq. (.). Exploiting this property in the calculation of the

partition function, we obtain

Z(−U,ε,h) = trµxe−βHSS (U,h,ε)µxP,

= tre−βHSSµxPµx, (.)

where the cyclicity of the trace has been used in the second step. To simplify further,

we observe from (.) that µxPµx=1−P, and thus

Z(−U,h,ε) = tre−βHSS (U,ε,h) (1−P)

= tre−βHSS (U,ε,h) −Z(U,ε,h). (.)

Now using Eq. (.), we obtain

Z(U,ε,h) =
1
2

tre−βHSS (U,ε,h) =
1
2
ZSS(U,ε,h), (.)

with no projector in sight, thus proving that the physical partition function can be

computed directly in the SS representation (with HSS) without applying the gauge

constraint.

It is natural to ask now if the projector can also be disposed of in calculating

correlation functions. Let G be a correlation function of M operators O1, ...,OM
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constructed out of the physical fermion operators {c(†)
j ,d

(†)
σ }. Considering a given

imaginary-time ordering of the operators {Oi}, we have

G = 〈O(τ1)...O(τM)〉 =
1
Z

tre−βH
M∏
i=1

eτiHOie
−τiH . (.)

Inserting two identity operators inside the trace asD↑D−1
↑ and then using the cyclicity

of the trace,

G(U,ε,h) =
1

Z(U,ε,h)
trD↑−1D↑e−βH(U,ε,h)D↑−1D↑

M∏
i=1

eτiH(U,ε,h)Oie
−τiH(U,ε,h)

=
1

Z(−U,h,ε)
tre−βH(−U,h,ε)D↑

 M∏
i=1

eτiH(U,ε,h)Oie
−τiH(U,ε,h)

D−1
↑ , (.)

where in the last step, the results D↑H(U,ε,h)D−1
↑ = H(−U,h,ε) and Z(U,ε,h) =

Z(−U,h,ε) have been used. Again inserting multiple identities D↑D↑−1 inside the

product,

G(U,ε,h) =
1

Z(−U,h,ε)
tre−βH(−U,h,ε)

 M∏
i=1

eτiH(−U,h,ε)D↑OiD−1
↑ e
−τiH(−U,h,ε)

 . (.)

If we now make the assumption that ∀i,
[
Oi ,D↑

]
=0, then it follows that G(U,ε,h)=

G(−U,h,ε). In the SS representation, the same correlation function G is expressed as

G =
(

2
ZSS

)
tre−βHSS

 M∏
i=1

eτiHSSO
(SS)
i e−τiHSS

P. (.)

Since the action of D↑ is implemented by µx in the SS representation, inserting the

identity µxµx and repeating the steps in Eqs. (.)-(.), making use of the results

G(U,ε,h)=G(−U,h,ε) and µxPµx=1−P, yields

G(U,ε,h) =
2
ZSS

tre−βHSS (U,ε,h)

 M∏
i=1

eτiHSS (U,ε,h)µxO
(SS)
i µxe−τiHSS (U,ε,h)

 (1−P) . (.)

The operators {O(SS)
i } are the SS representations of {Oi}, and so are constructed from

cj , slave-fermions dσ , and slave-spin µx operators. This implies that µxO(SS)
i µx=O(SS)

i

for all i, from which it immediately follows that

G =
1
ZSS

tre−βHSS
 M∏
i=1

eτiHSSO
(SS)
i e−τiHSS

 . (.)



chapter  . majorana-anderson impurity models 

Therefore, correlation functions of operators Oi that are invariant under the particle-

hole transformation D↑ can be calculated in the SS representation without constraint.

For example, this includes any operator function of d↓ and cj . Correlation functions

involving d↑ cannot typically be calculated without constraint.

However, it turns out to be possible to exactly implement the constraint in any

correlation function in the MAI class of models. This rests on the observation that

the projector P in Eq. (.), expressed equivalently as

P =
1
2

[
1 +

(
2nf ↑ − 1

)(
2nf ↓ − 1

)
µz

]
, (.)

admits a representation entirely in terms of fermions. Using the Majorana operators

Γz↑ =µz(f↑+f
†
↑ ) and γ ′f ↑=−i(f↑−f †↑ ) to write 2nf ↑−1= iµzΓzγ ′f ↑, we obtain

P =
1
2

[
1 + iΓzγ ′f ↑(2f

†
↓ f↓ − 1)

]
, (.)

which only involves fermion operators in terms of which the SS Hamiltonian is

quadratic. As seen above, a (time-ordered) correlation function G′ of a physical

operatorO that does not commute withD↑must be calculated in the SS representation

with the projector,

G′ = 2〈TτOSS(τ1)OSS(τ2)P〉SS

=
〈
TτOSS(τ1)OSS(τ2)

[
1 + iΓz(0)γ ′f ↑(0)

{
2f †↓ (0)f↓(0)− 1

}]〉
SS

(.)

As the expectation value on the RHS is taken with respect to the quadratic HSS (at

the exactly solvable point ε=h), the RHS can be Wick contracted into a product of

one-particle Green functions of free fermions that can be evaluated exactly. Since the

gauge constraint can be explicitly implemented in this way, all correlation functions

can be calculated exactly for the MAI class of models.

 . extensions of the mai class of models

In this section, we briefly comment on two immediate extensions of the MAI class of

models that are possible while retaining exact solvability. The first is a generalisation
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of the hybridisation term in Eq. .. While applications to spin-polarised topological

superconductors naturally justify a spin-selective choice of hybridisation [–], it

is possible to generalise the latter in MAI models such that impurity fermions of both

spins hybridise equally with the host fermions and retain exact solvability. To this

end, consider a general hybridisation of the form

H ′hyb = −i
∑
jσ

Vj√
2

(cj + c†j )(dσ + d†σ ), (.)

where the index j denotes a complete set of quantum numbers required to describe

the host fermions. Now, the operator (d↑+d
†
↑+d↓+d

†
↓)/
√

2 is Hermitian, squares to one,

and so can be thought of as a Majorana operator. In the SS representation,

H ′hyb→−i
∑
jσ

Vj√
2

(cj + c†j )(fσ + f †σ )µx.

If we now carry out similar transformations as done in sections . and ., with

Γα↑ replaced by new Majorana operators χα=
∑
σ µ

α(dσ+d†σ )/
√

2, where α∈{x,y,z} as

before, and χ4 =(d↑+d
†
↑−d↓−d

†
↓)/
√

2, we find that the resulting slave-spin Hamiltonian

is bilinear in fermions for ε=h=0. The definition of the χ4 fermion is again required

in order for the slave-spin Hilbert space to be of dimension equal to eight and thus

be a faithful representation of the original problem. Therefore, generalising the

hybridisation in the MAI class of models comes at the cost of setting the impurity

chemical potential and Zeeman terms to zero.

Another extension is to consider periodic Majorana-Anderson models, which can

be thought of as a Majorana version of the periodic Anderson model []. This model

describes a lattice of Anderson impurities hybridising with the itinerant fermions

of some host Hamiltonian, and is obtained simply by adding a site index to all the

impurity fermion operators in the MAI Hamiltonian –

HPMA =HC − i
∑
j

Vj(cj + c†j )(dj↑ + d†j↑)

+
∑
j

Uj

(
2n(d)

j↑ − 1
)(

2n(d)
j↓ − 1

)
+
εj
2

(
n

(d)
j↑ +n(d)

j↓ − 1
)
−
hj
2

(
n

(d)
j↑ −n

(d)
j↓

)
, (.)
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where n(d)
jσ =d†jσdjσ . The exact solution of this model for εj =hj is obtained following

the same methods as for the MAI model in sections . and .. The bilinear SS

representation of HPMA is simply that of the MAI model in Eq. (.) with lattice

indices for all the slave-fermions.

In the case of periodic Majorana-Anderson models, since the impurity Hilbert

space is enlarged on every site, there is correspondingly a local gauge constraint to im-

plement on every site. A proof that this constraint can be disposed of in calculations of

the partition and most correlation functions in the SS representation follows along the

same vein as the one given for MAI models in section .. We briefly sketch the proof

for the partition function, for the sake of completeness. Considering an on-site par-

tial particle-hole transformation Dj↑ that acts only on dj↑ as Dj↑dj↑D−1
j↑ =d†j↑, we find

Dj↑HPMA(Uj ,εj ,hj)D−1
j↑ =HPMA(−Uj ,hj ,εj) and so ZPMA(Uj ,εj ,hj)=ZPMA(−Uj ,hj ,εj).

In the SS representation, Dj↑ is implemented by µxj and so

ZPMA(U1,ε1,h1,U2, ...) = trµx1e
−βH (SS)

PMA(U1,ε1,h1,U2,...)µx1P1

∏
j>1

Pj ,

= tre−βH
(SS)
PMA(U1,ε1,h1,U2,...)(1−P1)

∏
j>1

Pj ,

=
1
2

tre−βH
(SS)
PMA(U1,ε1,h1,U2,...)

∏
j>1

Pj , (.)

where the projector Pj is the same as that for the MAI model [Eq. (.)], but with

site indices for all slave-spin and slave-fermion operators. Repeating this for every

site j ∈{1, ...,N } immediately gives ZPMA=Z (SS)
PMA/2

N , which implies that the physical

partition function can be calculated in the SS representation without constraint. A

similar proof holds for correlation functions of operators that commute with Dj↑ for

every j. However, there is one important difference in this regard between the periodic

Majorana-Anderson and MAI class of models. In the latter, since the projector P

could be explicitly implemented (see section .), all correlation functions could be

exactly calculated. In the case of periodic Majorana-Anderson models, correlation

functions in the SS representation will involve an infinite string of projectors as in Eq.

(.), also similar to the Majorana-Falicov-Kimball model []. Although Pj admits
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a representation in terms of the slave-fermions that appear in the bilinear H (SS)
PMA,

Wick contraction of the infinite string of projectors inside correlation functions will

result in an infinite product of slave-fermion Green functions which likely cannot be

computed practically. Therefore, at least in the thermodynamic limit, one is restricted

to computation of correlation functions of operators that commute with all the Dj↑.





chapter 4

Kitaev Majorana-Anderson impurity model

As a first application and concrete demonstration of our results in chapter , we

consider the case of a quantum dot hybridising with the end mode of a semi-infinite

Kitaev chain, motivated by a recent experiment on such a hybrid system []. The

geometry of the setup is shown schematically in Figure .. The Hamiltonian,

HK =
∞∑
i=1

[
−tc†i ci+1 +∆cici+1 + h.c.

]
−µ

∞∑
i=1

c†i ci , (.)

describes a semi-infinite Kitaev chain with hopping integral t, p-wave pairing po-

tential ∆, and chemical potential µ. As discussed in section .. the Kitaev chain

supports two phases - a topologically trivial phase for
∣∣∣µ∣∣∣>2t characterised by strong

pairing of on-site Majorana modes γi = ci+c
†
i and γ ′i =−i(ci−c†i ), and a topological

phase for
∣∣∣µ∣∣∣<2t that is characterised by strong pairing of nearest neighbour modes

γ ′i and γi+1. The latter phase supports Majorana zero modes (MZMs) γ1 and γ ′N

(N→∞ in a semi-infinite chain) that are exponentially localised at the left and right

ends.

The quantum dot is modelled as an Anderson impurity, coupled to the Majorana
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QD

Kitaev chain
V
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Figure . – Geometry of the setup described by the KMAI model.

end mode γ1 of the Kitaev chain. The resulting system is described by a Hamiltonian,

H =HK − iV γ1d↑ + iV d†↑γ1 +HA, (.)

where HA is the Hamiltonian describing the Anderson impurity, given by Eq. (.).

This model is hereafter referred to as the KMAI (Kitaev-Majorana-Anderson impurity)

model. The SS representation of the KMAI model is obtained by simply substituting

HC =HK and Vj =V δj1 in Eq. (.) to get

HSS =HK − iV (c1 + c†1)Γx↑ − iUΓx↑ Γ
y
↑ + ε(nf ↓ − 1/2), (.)

where we have specialised to the exactly solvable limit ε = h.

 . calculations of correlation functions

.. Slave-fermion Green functions

All physical GFs can be expressed in terms of the GFs of slave-fermion operators

{Γx↑ ,Γ
y
↑ ,Γ

z
↑ , f↓,γ

′
f ↑=−i(f↑−f †↑ )}, which we denote by

Gαβ↑ (τ1 − τ2) = −
〈
TτΓ

α
↑ (τ1)Γβ↑ (τ2)

〉
, α∈{x,y,z} (.)

Gγ ′f ↑(τ1 − τ2) = −
〈
Tτγ

′
f ↑(τ1)γ ′f ↑(τ2)

〉
, (.)

Gf ↓(τ1 − τ2) = −
〈
Tτf↓(τ1)f †↓ (τ2)

〉
. (.)
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The calculation of these slave-fermion GFs is the subject of this subsection. The

one-particle GFs of Γz↑ , γ
′
f ↑, and f↓ are trivial to calculate using the equation of motion

method [] - the f↓ are decoupled from the other fermions and have an energy ε,

and Γz↑ , γ
′
f ↑ are zero energy Majorana modes that do not appear in HSS [see Eq. (.)].

For example,

Gzz↑ (τ) = −
〈
TτΓ

z
↑ (τ)Γz↑ (0)

〉
,

= −θ(τ)
〈
Γα↑ (τ)Γβ↑ (0)

〉
+θ(−τ)

〈
Γz↑ (0)Γz↑ (−τ)

〉
, (.)

where θ(τ) is the Heaviside step function. Taking derivatives with respect to τ , and

using Γz↑ (τ)=exp(τHSS)Γz↑ exp(−τHSS), we obtain

−∂τGzz↑ (τ) = δ(τ)
{
Γz↑ ,Γ

z
↑

}
+
〈
Tτ

[
HSS ,Γ

z
↑ (τ)

]
Γz↑ (0)

〉
. (.)

Since Γz↑ does not appear in the Hamiltonian, the two operators commute. Using

the fact that {Γα↑ ,Γ
β
↑ }= 2δαβ, and Fourier transforming to the Matsubara frequency

representation, we obtain

Gzz↑ (ikn) =
2
ikn

, (.)

where ikn are fermionic Matsubara frequencies. The Matsubara GFs of γ ′f ↑ and f↓ can

be similarly calculated, with the results

Gγ ′f ↑(ikn) =
2
ikn

, (.)

Gf ↓(ikn) =
1

ikn − ε
, (.)

The calculations of the GFs of Γx↑ and Γ
y
↑ are nontrivial and necessitate the use

of boundary Green function methods [, ], to which we turn next. For this

purpose, it turns out to be convenient to express HSS entirely in terms of complex

fermions. Defining new complex fermion operators,

η =
1
2

(Γy↑ + iΓx↑ ), η† =
1
2

(Γy↑ − iΓ
x
↑ ), (.)

HSS in Eq. (.) can be expressed, apart from trivial additive constants which do not

affect correlation functions, as

HSS =HK −V (c†1η + c1η + h.c.) +U (2η†η − 1) + ε(nf ↓ − 1/2). (.)
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Later, we will show that the GFs of the Majorana fermions {Γx↑ ,Γ
y
↑ } can be calculated

from the Nambu GF of the spinor (η η†)ᵀ. Eq. (.) can be rewritten in Bogoliubov-

de-Gennes (BdG) form with Nambu spinor

Ψ = (f↓ f †↓ η η† c1 c†1 c2 c†2 ...)ᵀ

and semi-infinite BdG matrix hSS as

HSS =
1
2
Ψ†hSSΨ, hSS =



ε0 0 0 0 0 0 0 ...

0 −ε0 0 0 0 0 0 ...

0 0 2U 0 −V −V 0 ...

0 0 0 −2U V V 0 ...

0 0 −V V −µ 0 −t −∆

0 0 −V V 0 µ ∆ t

0 0 0 0 −t ∆ −µ 0
...

...
...

... −∆ t 0 . . .



. (.)

Defining the matrices

T =

 −t −∆
∆ t

 , C =

 −V −V

V V

 , (.)

the BdG matrix can be written in block tridiagonal form as

hSS =



ε0σ
z 0 0 0 0 . . .

0 2Uσz C 0 0 . . .

0 C† −µσz T 0 . . .

0 0 T † −µσz T 0

0 0 0 T † −µσz T
...

...
... 0 T †

. . .


≡


HA J 0

J† HS TSB

0 T †SB HB

 , (.)

where the new symbols defined in the matrix on the far right are to be identified with

the corresponding partitions of the matrix in the middle, and {σx,σy ,σz} are Pauli

matrices in Nambu space. Physically, HA describes the impurity, HS the boundary

site of the Kitaev chain, HB the bulk of the Kitaev chain, J the coupling between
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the boundary and impurity, and TSB the coupling between the boundary and bulk.

Partitioning the resolvent matrix G = (z−hSS)−1 in correspondence with the partitions

of hSS , we write

G =


GA GAS GAB

GSA GS GSB

GBA GBS GB

 . (.)

The identity (z − hSS)G = 1 leads to a set of nine simultaneous equations for the

submatrices of G that include

(z −HA)GA − JGSA = 1,

−T †SBGSA + (z −HB)GBA = 0,

−J†GA + (z −HS)GSA − TSBGBA = 0, (.)

from which we obtain for the impurity part of the resolvent,

G−1
A = z −HA − J

[
z −HS − TSB(z −HB)−1T †SB

]−1
J†

≡ z −HA − JgS(z)J†. (.)

Since HS describes the boundary site of the Kitaev chain, an interpretation of TSB(z −

HB)−1T †SB as the self-energy due to coupling the boundary site to the bulk leads to

the identification of the term in square brackets in the first line as the left boundary

(Nambu) GF of the Kitaev chain (without an impurity), which we denote as gS(z) in

the second line. The expression for G−1
A itself can be interpreted similarly, with

the third term being the self-energy due to coupling (J) the impurity (HA) to the

boundary of the Kitaev chain. An explicit expression for gS(z) can be calculated

following the method outlined in Ref. []. The strategy is as follows - we first

calculate the bulk GF of an infinite Kitaev chain and then obtain the boundary GF

z ∈ C is a general complex-valued frequency. Evaluation of the resolvent G(z) on the imaginary
axis z = ikn yields the frequency representation of the corresponding Matsubara GF whereas the substi-
tutions z =ω ± iη, with ω ∈ R and η a positive infinitesimal, yield the (real) frequency representation
of the retarded and advanced GFs respectively [].

In other words, gS is the real-space Nambu GF of the spinor (c1 c†1)ᵀ, where c(†)
1 annihilates

(creates) a fermion at the boundary site j = 1.
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from the Dyson equation that results when the chain is effectively cut in half by an

infinite local potential. Since the calculation is somewhat tedious and lies outside the

current line of development, it has been relegated to Appendix A. Substitution of HA

and J from Eq. (.) into Eq. (.) yields

G−1
A =

 z − ε0σ
z 0

0 z − 2Uσz −V 2
[∑2

µ,ν=1g
µν
S (z)

]
(1−σx)

 . (.)

The sum of all matrix elements of the Nambu GF gS(z) is simply the frequency

representation of the boundary Majorana GF gγ1
(τ) =−

〈
Tτγ1(τ)γ1(0)

〉
, where γ1 =

c1 +c†1. The inverse of the first diagonal block of GA is clearly the Nambu GF of

(f↓ f †↓ )ᵀ and is consistent with Eq. (.), while the inverse of the second block is that

of (η η†)ᵀ which we denote as Gη and is given by

Gη(z) =
1

z2 − 4U2 − 2V 2zgγ1
(z)

 z+ 2U −V 2gγ1
(z) −V 2gγ1

(z)

−V 2gγ1
(z) z − 2U −V 2gγ1

(z)

 . (.)

The GFs of the Majorana fermions Γx↑ and Γ
y
↑ can be computed from Gη , as η(†) =

(Γy↑ ±iΓ
x
↑ )/2. For example, the Matsubara GF of Γy↑ =η+η† is

Gyy↑ (τ) =−
〈
Tτ [η(τ) + η†(τ)][η(0) + η†(0)]

〉
=

2∑
µ,ν=1

Gµν
η (τ),

=⇒ Gyy↑ (z) =
2z − 4V 2gγ1

(z)

z2 − 4U2 − 2V 2gγ1
(z)
. (.)

Similarly,

Gxx↑ (τ) = −(−i)2
〈
Tτ [η(τ)− η†(τ)][η(0)− η†(0)]

〉
=

2∑
µ,ν=1

(−1)µ+νGµν
η (τ)

=⇒ Gxx↑ (z) =
2z

z2 − 4U2 − 2V 2zgγ1
(z)
. (.)

Mixed GFs such as Gxy↑ (z) can also be calculated from appropriate linear combinations

of the matrix elements Gµν
η (z) in Eq. (.).
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.. Impurity Green functions

Recall from section . that correlation functions of physical operators that commute

with the local particle-hole transformation D↑ can be calculated in the SS represen-

tation without constraint. The one-particle Green function (GF) of the impurity

d↓-fermion is an example. The corresponding Matsubara function is expressed in the

SS representation using Eqs. (.) and (.) as

Gd↓ = −
〈
Tτµ

x(τ)f↓(τ)µx(0)f †↓ (0)
〉
SS
,

= −
〈
TτΓ

y
↑ (τ)Γy↑ (0)Γz↑ (τ)Γz↑ (0)f↓(τ)f †↓ (0)

〉
SS
, (.)

where the Pauli matrices µx, µy have been expressed in terms of Majorana fermions

(Γ) using Eq. (.). Since the expectation value on the RHS is with respect to the

thermal ensemble defined by the quadratic HSS , one may Wick contract the RHS into

Gd↓(τ) = −
〈
TτΓ

y
↑ (τ)Γy↑ (0)

〉
SS

〈
TτΓ

z
↑ (τ)Γz↑ (0)

〉
SS

〈
Tτf↓(τ)f †↓ (0)

〉
SS
,

= Gyy↑ (τ)Gzz↑ (τ)Gf ↓(τ). (.)

The GFs on the RHS are those of slave-fermions and therefore strictly defined only

with respect to the slave-spin Hamiltonian HSS , whereas the LHS is a physical GF

defined with respect toH . It is to be understood from context whether a GF is physical

or defined only in the SS representation. Working in the Matsubara frequency

representation, we obtain

Gd↓(ikn) =
1
β2

∑
ipn

∑
iqn

Gyy↑ (ipn)Gzz↑ (iqn)Gf ↓(ikn − ipn − iqn), (.)

which is diagrammatically represented in Figure .. β = T −1 is the inverse tem-

perature and ipn, iqn, ikn are fermionic Matsubara frequencies. Therefore, the d↓-

fermion in the SS representation corresponds to f↓ dressed by a two-particle bubble

of the spin-up Majorana fermions Γy↑ and Γz↑ , similar to the localised fermions in the

Majorana-Falicov-Kimball model []. However, in contrast to usual diagrammatic

perturbation theory, the bubble diagram in Figure . gives the exact, fully resummed
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Figure . – Diagrammatic representation of the physical d↓ impurity propagator
in terms of slave-fermion propagators. Matsubara frequencies are omitted for
simplicity.

propagator of the physical d↓-fermion. The fact that the physical impurity GF is a

convolution product of free slave-fermion GFs gives rise to temperature dependence

in the physical spectral function, as will be seen below. This emphasises that the

physical impurity degrees of freedom are interacting, even though the slave-fermions

are not. The slave-fermion GFs appearing in the RHS of Eq. (.) were calculated

explicitly in section ... Substituting the results for Gzz↑ and Gf ↓,

Gd↓(ikn) =
1
β2

∑
ipn

∑
iqn

Gyy↑ (ipn)
2
iqn

1
ikn − ipn − iqn − ε

,

=
1
β

∑
ipn

Gyy↑ (ipn)
2nF(ε)− 1
ikn − ipn − ε

, (.)

where the Matsubara sum over iqn has been performed in the second line and nF(x)=

[exp(x/T ) + 1]−1 is the Fermi function at a temperature T . Note that if ε= 0 (when

the physical Hamiltonian H enjoys full particle-hole symmetry), the sum over iqn

gives βδkn,pn/2 and so Gphd↓(ikn)=Gyy↑ (ikn)/2, where the superscript ph denotes the GF

in the particle-hole symmetric limit. Denoting the corresponding spectral function

as Aphd↓(ω) = −2Im
{
Gphd↓(ikn→ω+ iη)

}
and introducing the spectral representation of
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this GF, we obtain

Gd↓(ikn) =
∫ ∞
−∞

dω′

2π
A
ph
d↓(ω

′)
2
β

∑
ipn

1
ipn −ω′

2nF(ε)− 1
ikn − ipn − ε

,

=
∫ ∞
−∞

dω′

2π

A
ph
d↓(ω

′)

ikn − ε −ω′
· 2[2nF(ω′)−nB(ε)− 1][2nF(ε)− 1] , (.)

where nB(x)=[exp(x/T )− 1]−1 is the Bose function at a temperature T . Although the

integral cannot be computed in closed form, the spectral function can be obtained

upon analytic continuation ikn→ω+iη to real frequencies using the distribution

identity (x − x0 + iη)−1 =P (1/x−x0)− iπδ(x − x0),where P denotes the Cauchy principal

value, with the result

Ad↓(ω,T ) = 2[1− 2nF(ε)] {nB(ε)nF(ω − ε) + [nB(ε) + 1][1−nF(ω − ε)]}Aphd↓(ω − ε),

(.)

where

A
ph
d↓(ω) = − ImGyy↑ (ω) = −2Im

ω+ iη − 2V 2gγ1
(ω)

(ω+ iη)2 − 4U2 − 2V 2(ω+ iη)gγ1
(ω)

, (.)

is the temperature independent spectral function in the particle-hole symmetric limit

ε=0. A discussion of the various features of Ad↓ is relegated to section ..

Recall from section . that the one-particle GF for the hybridising d↑ impurity

fermion must be calculated in the SS representation with constraint,

Gd↑(τ1 − τ2) = −
〈
Tτd↑(τ1)d†↑(τ2)

〉
,

= −
〈
Tτµ

x(τ1)f↑(τ1)µx(τ2)f †↑ (τ2)P
〉
SS
. (.)

To express the operators inside the expectation value in terms of the slave-fermions

that define HSS , we may use µx = −iΓy↑ Γ
z
↑ [see Eq. (.)], the fermion representation

of P in Eq. (.), and

f
(†)
↑ =

1
2

[
(f↑ + f †↑ )± (f↑ − f †↑ )

]
,

=
1
2

(
µzΓz↑ ± iγ

′
f ↑

)
,

=
i
2

(
−Γx↑ Γ

y
↑ Γ

z
↑ ±γ

′
f ↑

)
. (.)
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Substituting these into Eq. (.), some tedious but straightforward algebraic simpli-

fication and Wick contraction gives

Gd↑(τ1 − τ2) =
1
4

[Gxx↑ (τ1 − τ2) +Gyy↑ (τ1 − τ2)Gzz↑ (τ1 − τ2)Gγ ′f ↑(τ1 − τ2)

+ 2iGf ↓(0)Gxy↑ (τ1 − τ2)Gzz↑ (τ2)Gγ ′f ↑(τ2)

+ 2iGf ↓(0)Gxy↑ (τ1 − τ2)Gzz↑ (τ1)Gγ ′f ↑(τ1)

− iGxy↑ (τ1 − τ2)Gzz↑ (τ2)Gγ ′f ↑(τ2)

− iGxy↑ (τ1 − τ2)Gzz↑ (τ1)Gγ ′f ↑(τ1)]. (.)

Note that the exact d↑-fermion GF is not represented by a single two-bubble diagram

of slave-fermion propagators, but is a finite series of diagrams. This is unlike the

d↓-fermion GF shown in Figure .. A laborious Fourier transform to the Matsubara

frequency representation, substitution of the relevant slave-fermion GFs from section

.., and tortuous algebra including Matsubara sums yields the simple result

Gd↑(ikn) =
ikn −V 2gγ1

(ikn) + 2U [2nF(ε)− 1]

(ikn)2 − 4U2 − 2iknV 2gγ1
(ikn)

. (.)

.. Local Green functions of the host material

The host cj-fermion operators that appear in the slave-spin Hamiltonian HSS are

the same as the physical cj-fermions, as only the impurity fermion Hilbert space is

enlarged in the slave-spin method. The local GFs of the cj-fermions can be calculated

in the same boundary GF framework presented in section .., by repartitioning

and considering appropriate blocks of the BdG and resolvent matrices in Eqs. (.)

and (.). Let us first calculate the boundary Nambu GF, that is of (c1 c†1)ᵀ, in the

KMAI model. This corresponds to the GS block in the resolvent matrix in Eq. (.).

The identity (z − hSS)G = 1 yields the following simultaneous equations for GS ,
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(z −HA)GAS − JGS = 0,

−J†GAS + (z −HS)GS − TSBGBS = 1,

−T †SBGS + (z −HB)GBS = 0, (.)

from which we obtain

G−1
S = z −HS − TSB(z −HB)−1T †SB − J

†(z −HA)−1J,

= g−1
S (z)− J†(z −HA)−1J,

= g−1
S (z)− 2V 2z

z2 − 4U2 (1 +σx) , (.)

where gS(z) is the left boundary Nambu GF of the Kitaev chain in the absence of

an impurity, as defined earlier in Eq. (.) and calculated in Appendix A. The

second term in the second and third lines of Eq. (.) is thus the self-energy due to

hybridisation with an interacting Anderson impurity. For convenience, we relabel

GS(z)→Gc(j = 1;z), where j is a lattice site index and the subscript c denotes that it

is a c-fermion GF. The interior, local GFs for j >1 can be calculated using the Dyson

equation,

G−1
c (j > 1;z) = g−1

S (z)− T †ρj−1(i = j−1;z)T , (.)

where T is a coupling matrix defined earlier in Eqs. (.)-(.) and ρj−1(i= j−1;z)

is the right boundary Nambu GF of a finite (j −1)-site (subscript) Kitaev chain coupled

to an Anderson impurity at the left boundary (i = j−1). This is a finite KMAI system

with a finite slave-spin BdG Hamiltonian h(j−1)
SS that is obtained simply by truncating

hSS in Eq. (.) appropriately, at the (j−1)-th µσz block. ρj−1(i= j−1;z) itself can be

calculated from the Dyson equation,

ρj−1(i = j−1;z) =
[
z+µσz − T †ρj−2(i = j−2;z)T

]−1
,

= T −1
[
(z+µσz)T −1 − T †ρj−2(i = j−2;z)

]−1
. (.)

The RHS of this equation is a matrix Möbius transformation [] of ρj−2(i = j−2;z).

Given a 2M×2M matrix Λ =
(
a b
c d

)
, where a,b,c,d are M×M matrices, the matrix



chapter  . kitaev majorana-anderson impurity model 

Möbius transformation of anotherM×M matrix x by Λ is defined as Λ•x=(ax+b)(cx+

d)−1. Therefore, we have

ρj−1(i = j−1;z) =

 0 T −1

−T † (z+µσz)T −1

 • ρj−2(i = j−2;z),

=

 0 T −1

−T † (z+µσz)T −1


j−2

• ρ1(z), (.)

where ρ1(z) is the GF of a single site coupled to an Anderson impurity, and so given

by

ρ1(z) =
[
z+µσz − J†(z −HA)−1J

]−1
,

=
[
z+µσz − 2V 2z

z2 − 4U2 (1 +σx)
]−1

. (.)

The local density of states (LDOS) on a general site j can be calculated from the

corresponding local GF as − ImtrGc(j;z).

 . impurity spectral functions

We now turn to a discussion of the various features of the impurity spectral functions

Adσ (ω,T ) in the KMAI model, beginning with a study of their temperature depen-

dence. We reproduce from section .. the relevant results - the d↓-fermion spectral

function is

Ad↓(ω,T ) = 2[1− 2nF(ε)] {nB(ε)nF(ω − ε) + [nB(ε) + 1][1−nF(ω − ε)]}Aphd↓(ω − ε),

(.)

where the temperature independent spectral function at the particle-hole symmetric

point ε=0 is

A
ph
d↓(ω) = −2Im

ω+ iη − 2V 2gγ1
(ω)

(ω+ iη)2 − 4U2 − 2V 2(ω+ iη)gγ1
(ω)

. (.)

The first term in Eq. (.) corresponds to the absorption of a spin-up bosonic two-

particle fluctuation of energy ε by a spin-down fermion of energy ω − ε, while the
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Figure . – Spectral functions of (a) localised d↓ and (b) hybridising d↑-fermions
for various temperatures T , shown in the topological phase. In all plots, µ=0.2t, ∆=
0.5t, V =0.4t, U =0.8t, ε=0.1t are fixed. T =0.02t (green), T =0.03t (blue), T =0.5t
(red) .
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Figure . – Spectral functions of (a) localised d↓ and (b) hybridising d↑-fermions
for various temperatures T , shown in the topological phase. In all plots, µ=0.2t, ∆=
0.5t, V =0.4t, U =0.8t, ε=−0.1t are fixed. T =0.02t (green), T =0.03t (blue), T =0.5t
(red). Note that ε<0 and the spectral asymmetry is reversed here in comparison to
the plots in Figure ..

second term describes the emission, stimulated or spontaneous, of such a two-particle

fluctuation by a fermion of energy ω. Turning now to the hybridising d↑-fermion, its

spectral function is given by

Ad↑(ω,T ) = −2Im
ω+ iη −V 2gγ1

(ω) + 2U [2nF(ε)− 1]

(ω+ iη)2 − 4U2 − 2(ω+ iη)V 2gγ1
(ω)

. (.)

It is easy to see that the deviation ε from particle-hole symmetry sets the scale for

the interaction-induced temperature dependence of both spectral functions. Low

temperature and ε > 0 accentuate the spectral asymmetry in Ad↓ (or Ad↑) about
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ω= ε (or ω= 0), shifting spectral weight towards excitations with energy ω>ε (or

ω < 0). It can be seen from Eq. (.) that, in the limit T � ε, the temperature-

dependent prefactors of Aphd↓(ω) tend to unity, and particle-hole symmetry is restored

(see Figure .a). Similarly, the temperature-dependent factor 2U [2nF(ε) − 1] in

Eq. (.) tends to zero for T � ε and particle-hole symmetry is also restored to

Ad↑ in this limit (see Figure .b). This behaviour with respect to temperature can

be intuitively understood in the atomic limit (V = 0) of an isolated impurity. In

this limit, the GFs of the impurity fermions can be calculated exactly, as the exact

eigenstates and eigenvalues of HA in Eq. (.) are known - these are the Fock states

{|0〉d , |↑
〉
d , |↓

〉
d , |↑↓

〉
d} [see Eq. (.)] with respective eigenvalues {U−ε/2,−U−ε/2,−U+

ε/2,U+ε/2} in the exactly solvable limit ε=h. Using the Lehmann representation

of the spectral function, it is easy to show that the spectral functions in the atomic

limit (superscript at) are

Aatd↓(ω,T ) =
〈
nd↑

〉
2πδ(ω − ε − 2U ) +

〈
1−nd↑

〉
2πδ(ω − ε+ 2U ), (.)

Aatd↑(ω,T ) =
〈
nd↓

〉
2πδ(ω − 2U ) +

〈
1−nd↓

〉
2πδ(ω+ 2U ), (.)

where 〈ndσ〉 is the mean occupation of impurity spin σ ∈{↑,↓}. The two infinitely sharp

peaks in Ad↓ at the energies ω±=ε±2U correspond to localised charge excitations

(|↑
〉
→|↑↓

〉
and |0〉→|↓

〉
respectively) that can occur from injecting a d↓-fermion on

the quantum dot. The spectral weight (probability) for ω+ (|↑
〉
→ |↑↓

〉
) is greater

as it is proportional to the d↑-fermion occupancy
〈
n↑

〉
, which is favoured over d↓-

fermion occupancy for ε>0 since the latter has a chemical potential of ε−2U while

the former has one of −2U . Flipping the sign of ε reverses this asymmetry, for d↓-

fermion occupancy is then favoured (see Figure .) — the spectral weight of ω−<0

This is just the spectral function in the basis specified by the exact eigenstates of the Hamiltonian,
and is given by []

Adσ (ω,T ) =
2π
Z

∑
mn

∣∣∣〈m|d†σ |n〉∣∣∣2 (e−βEm + e−βEn
)
δ (ω −Em +En) ,

where β=T −1 and the states summed over are the exact many-body eigenstates of the Hamiltonian
under consideration. There are sharp peaks (delta functions) at the exact excitation energies of the
system.
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Figure . – Spectral functions of (a) localised d↓ and (b) hybridising d↑-fermions
for various interaction strengths U , shown in the topological phase. In all plots,
µ= 0.2t, ∆= 0.5t, V = 0.4t, ε = 0.1t, T = 0.05t are fixed. U = 0.05t (green), U = 0.8t
(blue), U =1.2t (red).

is then greater than that of ω+. The temperature dependence of Ad↑ can be similarly

explained. This behaviour with temperature carries over when the hybridisation V is

finite, which is the case in Figures .-.. Of course, then the eigenstates of HA are

not the true stationary states of the system, and the charge excitations with energies

ω± acquire a finite lifetime, which is reflected as a broadening of the sharp spectral

peaks at those energies that were present in the atomic limit.

In the topological phase of the KMAI model, when the hybridisation (V ) and

interaction (U ) are both non-zero, both impurity GFs have three poles which manifest

as quasiparticle peaks in their spectral functions (Figure .). The two side peaks

correspond to impurity charge excitations, present also in the atomic limit (V =0),

with a gap that increases monotonically with both U and V . For small U and V , these

excitations feature as sharp peaks inside the energy gap of the Kitaev SC. As U or

V is increased, they fall into the SC energy bands and broaden, and then eventually

again become sharp peaks when they move out of the bandwidth of the SC. The fact

that the gap increases monotonically with U is not so surprising, as these excited

states differ in charge/occupancy, and the same behaviour is seen in the atomic limit.

The reason for the monotonicity of the gap with hybridisation V is unclear.

The third quasiparticle peak, at ω=ε in Ad↓ and ω=0 in Ad↑ is never broadened

The monotonicity of the gap with V is also present only in the topological phase.
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and persists for any non-zero U,V . Let us first consider the peak at ω=ε in Ad↓. This

is where a sharp peak would occur were the d↓-fermion free (U = 0), but it is not

and the peak persists for large U . This is actually a signature of the presence of a

MZM, as can be understood from the small U/V limit. A semi-infinite Kitaev chain

in the topological phase implies that there must be an exact zero energy Majorana

mode at the boundary. But the original MZM (c1 +c†1) of the Kitaev chain is now

fused/paired with (d↑+d
†
↑) to form a local complex fermion at some non-zero energy

(proportional to V ) due to the hybridisation term Hhyb in the Hamiltonian. Neither

of the two Majorana modes that make up the d↓-fermion can be the new MZM as

nd↓ is conserved. The only choice left is −i(d↑−d†↑), and therefore this must be the

new MZM in the small U/V limit. Note that this is permitted as nd↑ is not conserved

in the KMAI model. As it has to be an exact zero energy mode, interactions cannot

change its energy. In this limit then, the d↓-fermion becomes free, and this features

as a sharp ’free fermion’ peak in Ad↓ at ω=ε. That −i(d↑−d†↑) is the preferred MZM in

this limit features as a sharp peak at zero energy ω=0 in Ad↑.

This picture is further corroborated by spectral functions of the Majorana modes

(d↑+d
†
↑) and −i(d↑−d†↑), shown in Figures .a-b. As expected, the zero energy (ω=0)

peak is only present in the spectral function of −i(d↑−d†↑). In the large U/V limit,

energetics suggest that the original mode (c1+c†1) will be the preferred MZM. This is

because −i(d↑−d†↑) participates in the interaction, which tends to split the zero energy

level. Therefore, the hybridisation and interaction terms in the KMAI model compete

over the preferred MZM, with the former selecting −i(d↑−d†↑) and the latter (c1+c†1).

Another check of this picture is provided by the local density of states of the host

cj-fermions, and will be discussed below in section ..

Recall from section .. that the non-local zero energy level due to the MZMs splits away from
zero energy only if the Kitaev chain is of finite length (or gapless in the bulk), with a splitting that is
exponentially suppressed in the length.
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Figure . – Spectral functions of the Majorana modes (a) (d↑+d†↑) and (b) −i(d↑−d†↑),
shown in the topological phase. In both plots, µ= 0.2t, ∆= 0.5t, V = 0.3t, U = 0.3t.
The spectral peak at ω= 0 in (b) has weight that increases with hybridisation V ,
implying that −i(d↑−d†↑) is a Majorana zero mode in the small U/V limit. The
absence of a similar zero energy excitation in (a) is consistent with the fact that
(d↑ + d†↑) pairs up with the original MZM (c1 +c†1) to form a complex fermion at
non-zero energy.

 . local fermi liquid

A Fermi liquid is an interacting fermionic phase of matter with a ground state that is

adiabatically connected to a free fermion ground state [, , ]. The momentum

(k) spectral function in a Fermi liquid is given by A(k,ω)=Zkδ(ω−εk)+g(k,ω), where

g(k,ω) is a smooth function that contributes a diffuse, featureless background, and

εk is the dispersion of excitations. Zk, called the quasiparticle weight, captures the

essence of Fermi liquid theory and indicates that there still exists a Fermi surface

where a discontinuity in the fermion occupation number occurs.

Since the free-fermion peak at ω=ε in Ad↓(ω) remains sharp even in the presence

of interactions, a natural quantity to study is the associated quasiparticle weight

Z. This can be calculated from Eqs. (.)-(.). For ω ≈ ε in Eq. (.), Aphd↓ is

evaluated at zero energy. Inside the SC gap, the retarded GF of the MZM γ1 of a

semi-infinite Kitaev chain takes the form

gγ1
(ω) =

λ(µ,∆)
ω+ iη

, ω ∈ SC gap (.)

where η is a positive infinitesimal and λ(µ,∆) is the spectral weight (characterising

the localisation) of the MZM peak in the boundary LDOS of the Kitaev chain. For



chapter  . kitaev majorana-anderson impurity model 

example, at the Kitaev point λ(µ= 0,∆= t) = 2, and thus gγ1
(ω) is a free Majorana

GF, which reflects the fact that the MZM is exactly localised at the boundary and

decoupled from the bulk. Thus, max(λ) = 2 and λ → 0 at the topological phase

transition
∣∣∣µ∣∣∣ = 2t. Given the complicated form of gγ1

(ω) [see Appendix A], it is

difficult to derive a general closed-form expression for the function λ(µ,∆). However,

the allowed values of λ can be derived by numerically integrating the Majorana LDOS

−2Imgγ1
(ω) over an infinitesimal neighbourhood ofω=0. In the expression (.) for

the spectral function away from particle-hole symmetry, since nF(ω−ε)→1/2 forω≈ε,

the temperature dependent pre-factor of Aphd↓ becomes [1 + 2nB(ε)] [1 + 2nF(ε)] = 1.

Therefore, near ω=ε, the spectral function is temperature independent and given by

Ad↓(ω) ≈ 2πZ(U/V )δ(ω − ε), ω ∈ {ε − η,ε+ η}, (.)

where η is a positive infinitesimal and the quasiparticle weight Z is found to be

Z(U/V ) =
1

1 + (2/λ)(U/V )2 . (.)

In the non-interacting limitU =0, the d↓-fermion is free and so Z=1. The interaction

renormalises Z to a value less than one (Figure .), and transfers some spectral

weight to other excitations, thus giving credence to a local Fermi liquid picture []

for the d↓-fermion. It should be noted that this picture holds only in the topological

phase, as the free-fermion peak for finite U and V has its origins in −i(d↑−d†↑) being

an MZM candidate, which is not true in the trivial phase. This can be seen from the

fact that λ→ 0 at the transition (
∣∣∣µ∣∣∣ = 2t) into the trivial phase (λ= 0), which also

implies Z→0 at the transition (and equal to zero in the trivial phase).

The local Fermi liquid picture is also not valid for the hybridising d↑-fermion,

in spite of the presence of a seemingly free-fermion peak at ω = 0 in its spectral

function (Figure .b). The spectral weight of this peak is trivially less than one due

to proximity coupling with the Kitaev chain, even in the absence of interactions. For

U =0, it is easy to see from Eq. (.) that Ad↑(ω)→−2Im(2ω+iη)−1 =πδ(ω) for ω≈0

and so the peak there has spectral weight 0.5. It is as if half the d↑-fermion is localised

on the quantum dot with zero energy – this is the new MZM −i(d↑−d†↑), as can also be
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Figure . – Interaction dependence of the d↓-fermion quasiparticle weight Z, for
several values of µ and ∆, which control the localisation length of the original end
MZM (c1+c†1) of the Kitaev chain. Continuous curves correspond to Eq. ., while
dots are the result of numerically integrating Ad↓(ω,T ) over a small neighbourhood
of ω=ε.

seen from Figures .a-b. Conforming with this picture discussed in detail in section

., Z is suppressed at large U , the regime in which (c1+c†1) is the preferred MZM.

 . density fluctuations on the quantum dot

Another measure of inter-particle correlations on the quantum dot is provided by the

mean-squared density fluctuation

D =
1
2

〈
[nd − 〈nd〉]2

〉
=

1
2

[〈
n2
d

〉
− 〈nd〉2

]
, (.)

where nd =nd↑+nd↓ is the total number of impurity fermions. Consider the particle-

hole symmetric model with ε=0. Since the physical Hamiltonian H [see Eq. (.)]

enjoys full particle-hole symmetry, DHD−1 =H where DdσD−1 =d†σ for σ ∈{↑,↓}, and
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therefore

〈nd〉 =
1
Z

trDe−βHD−1nd ,

=
1
Z

tre−βHDndD−1,

=
1
Z

tre−βH (2−nd),

= 2− 〈nd〉 , (.)

where the cyclicity of the trace has been used in the second line, and the fact that

D(nd↑ + nd↓)D−1 = 1−nd↑+1−nd↓ has been used in the third line. This immediately

implies 〈nd〉= 1 in the particle-hole symmetric (ε= 0) model. In this case then, the

mean-squared density fluctuation D in Eq. (.) reduces to the double occupancy

D=
〈
nd↑nd↓

〉
. Since nd↑nd↓ is not invariant under D↑, the partial particle-hole trans-

formation that acts only on d↑, the double occupancy cannot be calculated in the SS

representation without constraint (see the discussion in section .). Even though

the constraint can be explicitly implemented, there is a simpler way to calculate

D directly from the partition function. Recall from section . that the physical

partition function can be calculated without constraint in the SS representation and

is given by Z=ZSS /2. In the particle-hole symmetric model, as

Z = trexp−β
[
HK +Hhyb +U (2nd↑ − 1)(2nd↓ − 1)

]
, (.)

it is easy to see that

− ∂ lnZ
∂(βU )

= 4D − 1, (.)

with D the double occupancy defined previously. Therefore, D can be calculated

directly from a derivative of the slave-spin partition function ZSS , which can be

exactly calculated as it is defined by a quadratic action. However, this is true only for

the particle-hole symmetric model with ε=0.

The coherent state functional integral for the SS representation of the KMAI

model, in the form given in Eq. (.), is

ZSS =
∫
D[c̄, c]D[f̄↓, f↓]D[η̄,η]D[Γz↑ ]D[γ ′f ↑]e

−S[c̄,c,f̄↓,f↓,η̄,η,Γ
z
↑ ,γ
′
f ↑], (.)

Since coherent states are not definable for Majorana operators, a coherent state functional integral
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where the (slave-spin) action is defined as

S
[
c̄, c, f̄↓, f↓, η̄,η,Γ

z
↑ ,γ

′
f ↑

]
=

∫ β

0
dτ [

∞∑
j=1

c̄j∂τcj + f̄↓∂τf↓ + η̄∂τη +
1
4
Γz↑∂τΓ

z
↑ +

1
4
γ ′f ↑∂τγ

′
f ↑

+HSS(c̄, c, f̄↓, f↓, η̄,η)]. (.)

The dependence on imaginary time (τ) of all fermion fields integrated over has been

suppressed for notational clarity. Note that, although Γz↑ and γ ′f ↑ are zero modes that

do not appear in HSS , their inclusion via Berry phase terms in the path integral is

necessary to obtain a faithful representation of the physical problem – the dimension

of the SS impurity Hilbert space must equal eight. The exact Nambu GF of the η

fermions was calculated in section ... Therefore, if the Kitaev chain is integrated

out (cj-fermions), the effective action must be

Seff
[
f̄↓, f↓, η̄,η,Γ

z
↑ ,γ

′
f ↑

]
=

∫ β

0
dτ

[
f̄↓(∂τ + ε)f↓ +

1
4
Γz↑∂τΓ

z
↑ +

1
4
γ ′f ↑∂τγ

′
f ↑

]
+

1
2

∑
ikn

[
η̄(ikn) η(−ikn)

] [
−G−1

η (ikn)
] η(ikn)

η̄(−ikn)

 . (.)

As the Nambu spinor Ψη =(η η̄)ᵀ satisfies the Majorana condition Ψ†=Ψᵀσx, Ψ† is

not linearly independent from Ψ and it suffices to integrate over the latter field in

the functional integral [–] (also see Appendix B). Setting ε=0 and performing

the functional integral, we obtain

ZSS ∝ Pf[−βG−1
η (ikn)] ∝

√
Det[−βG−1

η (ikn)], (.)

where Pf is the Pfaffian and is, up to an irrelevant sign, the square root of the

determinant. Constants that result from the functional integral over f↓, Γ
z
↑ , γ

′
f ↑ have

been ignored and buried in the proportionality sign, as only factors which depend on

of Majorana fields, strictly speaking, does not exist. This is not a problem here as we have an even
number of Majorana fermions that can be paired up as complex fermions. See Appendix B for a
discussion on how this problem can be circumvented in general and more details on Majorana path
integrals.

See the discussion of this point in section .. A Majorana fermion can be thought of as nominally
spanning a Hilbert space dimension of

√
2.
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the interaction strength U are relevant for the double occupancy D. Det indicates

a determinant over both, the Nambu matrix structure of G−1
η and over Matsubara

frequencies. Using the operator identity DetM = exp(TrlnM), it is easy to show that

ZSS =exp 1
2 Trln[−βG−1

η ]. Using the result for G−1
η from section .., we thus obtain

lnZSS =
1
2

∑
ikn

lnβ2
[
−(ikn)2 + 2V 2ikngγ1

(ikn) + 4U2
]
+ const. (.)

Therefore, using Eq. (.), the double occupancy is given by

D = 1 +
2U
β

∑
ikn

2
(ikn)2 − 4U2 − 2V 2ikngγ1

(ikn)
,

= 1 +
2U
β

∑
ikn

Gxx↑ (ikn)

ikn
, (.)

where the slave-fermion GF Gxx↑ (τ)=−
〈
TτΓ

x
↑ (τ)Γx↑ (0)

〉
SS

has been introduced using the

result in section ... Introducing the spectral representation of this GF with spectral

function Axx↑ (ω) = −2ImGxx↑ (ikn→ω+ iη) and performing the resulting Matsubara

sum, we obtain the result

D =
1
4

+
U
2

∫ ∞
−∞

dω
2π

Axx↑ (ω)
nF(ω)
ω
−
����������

U

∫ ∞
−∞

dω
2πω

Axx↑ (ω). (.)

The last term vanishes as Axx↑ is even in ω, making the integrand odd in ω. Plots

of D (Figure .) reveal that density fluctuations (or double occupancy for ε=0) are

suppressed at large U and low T , but encouraged by hybridisation V . Therefore,

at low temperatures in the interaction dominated regime, we expect a local (Ising)

moment to develop on the quantum dot.

This property of Axx↑ (ω) can be seen in the spectral representation,

Gxx↑ (ipn) =
∫ ∞
−∞

dω
2π

Axx↑ (ω)

ipn −ω
.

By virtue of being a Majorana GF, Gxx↑ (−ipn)=−Gxx↑ (ipn). Using this property and changing integration
variables ω→−ω, it is easy to show that Axx↑ (ω) = Axx↑ (−ω).
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Figure . – Interaction dependence of impurity double occupancy for various
temperatures T in the particle-hole symmetric KMAI model (ε=0). Black: atomic
limit (V =0), all other curves: µ=0.2t, ∆=0.5t, V =0.4t, ε=0. .

 . odd-frequency superconductivity

The essence of superconductivity is captured by a non-zero anomalous Green func-

tion, called the Gor’kov function, ∆σ1σ2
(r1−r2, t1−t2)=−

〈
Tτcσ1

(r1, t1)cσ2
(r2, t2)

〉
, where

σi is a spin index, ri and τi are space and (real) time coordinates respectively. Berezin-

skii [] noticed that Fermi statistics imposes specific symmetry constraints on the

Gor’kov function under permutations of its spin, spatial, and temporal arguments

(1↔ 2). Let us denote the respective permutation operators as Pσ,Pr , and Pt. For

example, Pσ∆σ1σ2
(r1−r2, t1−t2)≡∆σ2σ1

(r1−r2, t1−t2). Specifically, Berezinskii showed

that PσPrPt∆σ1σ2
(r1−r2, t1−t2) =−∆σ1σ2

(r1−r2, t1−t2), which is denoted symbolically

as PσPrPt = −1. A Gor’kov function that changes sign under Pt is said to denote

odd-frequency pairing of electrons [].

Unlike the d↓-fermion, the number nd↑ of the hybridising d↑-fermion is not con-

served. In fact, Majorana hybridisation with the Kitaev chain results in proximity-

induced superconductivity for the d↑-fermions on the quantum dot. The only pos-

sibility in this case is pure odd-frequency pairing [], characterised by the real

(imaginary) part of the retarded Gor’kov function being odd (even) in frequency
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Figure . – Left panel – Real (blue) and imaginary (red) parts of the impurity
retarded Gor’kov function FRd↑(ω) in the topological phase of the KMAI model,
showing odd-frequency pairing correlations on the quantum dot. Parameters are
chosen as µ= 0.2t, ∆= 0.5t, V = 0.4t, U = 0.7t. Right panel – Meissner effect of (a)
a conventional superconducting ring and (b) an odd-frequency superconducting
ring. An external magnetic field induces a paramagnetic supercurrent in the odd-
frequency superconductor, which leads to an attractive force between the ring and
the magnet. Figure and caption adapted from Lee et al. [].

[, , , ] (Figure .). The latter is obtained by analytic continuation

of the Matsubara Gor’kov function F(τ) = −
〈
Tτd↑(τ)d↑(0)

〉
, which can be calculated

in the SS representation by implementing the gauge constraint exactly, following

a similar calculation as that of the d↑-fermion Matsubara GF in section ... The

frequency representation of F(τ) is given by

F(ikn) =
V 2gγ1

(ikn)

(ikn)2 − 4U2 − 2V 2ikngγ1
(ikn)

, (.)

where gγ1
(ikn) is odd in ikn by virtue of being a Majorana GF [, ]. The explicit

form of the pairing terms on the quantum dot can be seen by integrating out the

Kitaev chain in the physical action for the KMAI model. Introducing the Nambu

(Majorana) spinors Ψj =(cj c̄j)ᵀ and χσ =(dσ d̄σ )ᵀ, the physical partition function

of the KMAI model can be written as a functional integral,

Z=
∫
D[χσ ]D[Ψj]e

−S̃[χσ ,Ψj ], (.)
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where the physical action is defined as

S̃[χσ ,Ψj] =
∫ β

0
dτ

1
2

∑
j

Ψ†j ∂τΨj +
1
2

∑
σ

χ†σ∂τχσ − iV χ†↑(1 +σx)Ψ1 +HK +HA

 ,
(.)

where HK is the Kitaev chain and HA is the physical Hamiltonian of the Anderson

impurity, given by Eqs. (.) and (.) respectively. The third term in the action is

the hybridisation Hhyb written in terms of Nambu spinors. Now, if the fields Ψj for

j >1 (the Kitaev chain minus its boundary site) are integrated out, we must obtain

S̃eff[χσ ,Ψ1] =
∫ β

0
dτ

1
2

∑
σ

χ†σ (τ)∂τχσ (τ) +HA − iV χ†↑(τ) (1 +σx)Ψ1(τ)


+
∫ β

0
dτ dτ ′

1
2
Ψ1(τ)

[
−g−1

S (τ − τ ′)
]
Ψ1(τ ′), (.)

where gS(τ−τ ′) is the boundary Nambu GF of the Kitaev chain calculated in Appendix

A. The Gaussian functional integral over Ψ1 can now be performed (see Appendix B

to see how) to obtain an effective action for the quantum dot,

S̃eff[χσ ] =
∫ β

0
dτ

1
2

∑
σ

χ†σ (τ)∂τχσ (τ) +HA


+
V 2

2

∫ β

0
dτ dτ ′χ†↑(τ)gγ1

(τ − τ ′) (1 +σx)χ↑(τ
′), (.)

where gγ1
=
∑2
µ,ν=1g

µν
S is the Majorana GF of the MZM (c1 +c†1) in the Kitaev chain.

Rewriting S̃eff in terms of (dσ , d̄σ ), we have

S̃eff[d̄σ ,dσ ] =
∫ β

0
dτ

1
2

∑
σ

χ†σ (τ)∂τχσ (τ) +HA


+
∫ β

0
dτ dτ ′

V 2

2
gγ1

(τ − τ ′)
[
d̄↑(τ)d↑(τ

′) + d↑(τ)d̄↑(τ
′) + d↑(τ)d↑(τ

′) + d̄↑(τ)d̄↑(τ
′)
]
.

(.)

The last two terms in the second integral are effective pairing terms that emerge due

to coupling with the superconducting Kitaev chain. Since the frequency-dependent,

This is not the slave-spin action introduced in Eq. ..
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effective pairing potential is proportional to V 2gγ1
(τ − τ ′), which is odd in (τ−τ ′)

by virtue of being a Majorana GF, we see that the inherited superconductivity is

purely odd-frequency. Note also that odd-frequency pairing on the quantum dot is a

consequence of the Majorana hybridisation (Hhyb) and in fact obtains regardless of

the specific host c-fermion Hamiltonian. It is a consequence of the fact that it is a

Majorana mode of the host that couples to the impurity, and Majorana GFs are always

odd in frequency.

Since the quantum dot considered here is essentially a ‘zero dimensional’ local

system, some elaboration is needed as regards the statement that it is superconducting.

If one considers a host Hamiltonian that supports an array of MZMs, and if each MZM

is coupled to a quantum dot similar to the hybridisation in our MAI models, then

this array of quantum dots would be a bonafide pure odd-frequency superconductor.

For example, a ring of such odd-frequency superconducing dots would exhibit a

paramagnetic Meissner response to an external magnetic field []. In practice

however, the Kitaev chains that host the MZMs are realised as semiconducting

Rashba nanowires proximitized by bulk s-wave superconductors. This means that

the net Meissner response, dominated by the bulk s-wave superconductors, would be

diamagnetic.

 . local density of states of the host

The local Nambu GFs Gc(j;ω) of the host cj-fermions were calculated in section ...

The LDOS on site i is then simply obtained as ρ(i;ω)=− ImtrGc(i;ω). At the boundary

(i=1), the LDOS displays three quasiparticle peaks in the topological phase for non-

zero hybridisation and interaction (Figure .a), similar to the impurity spectral

functions in section .. The two subgap states at non-zero energy in Figure .a

are non-topological Andreev bound states induced by the quantum dot, reminiscent

of Yu-Shiba-Rusinov states [–, ]. By tuning (increasing) the interaction and

hybridisation strengths, it is possible to push these states out of the SC gap.

The third quasiparticle peak is at zero energy and appears at any finite interaction
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Figure . – (a) Interaction dependence of the boundary local density of states
ρ(i = 1;ω) of the host c-fermions, for µ= 0.2t, ∆ = 0.5t, V = 0.4t, and U = 0 (blue),
U = 0.3t (red). (b) Spectral weight of the MZM peak (ω = 0) in the c-fermion
boundary LDOS shown in (a) as a function of U/V . For µ = 0, ∆ = t (red) and
µ=0.2t, ∆=0.5t (blue).

strength U and hybridisation V , but disappears for U = 0 (V still non-zero). This

is consistent with the analysis of the impurity spectral functions in the small and

large U/V limits in section ., as we now explain. If the hybridisation with the

impurity is switched off (V =0), then the LDOS is just that of the Kitaev chain. There

are no side peaks, and the lone subgap zero energy quasiparticle peak corresponds

to the MZM of the Kitaev chain. In the presence of hybridisation, but still in the

non-interacting limit, the MZM peak immediately disappears for any finite V , which

is consistent with −i(d↑−d†↑) becoming the new MZM as discussed in section ..

Now, as soon as interactions are switched on, the MZM peak at ω= 0 immediately

reappears, along with two other subgap quasiparticle states. The reappearance of the

MZM peak at any finite U is an omen of what happens in the large U/V limit - the

interaction-favoured (c1 +c†1) regains its status as the MZM of the model. If this is

correct, then the spectral weight of the zero-energy peak must increase monotonically

with U . This is confirmed numerically, with the result shown in Figure .b. This is

to be compared with the suppression of the quasiparticle weight Z of the d↓-fermion

with increasing interaction strength U (Figure .).

Since all local GFs in the KMAI model can be calculated (see section ..), it is

also possible to study the effect the quantum dot has on the localisation of the MZM.
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Figure . – LDOS ρ(i;ω) of the host c-fermions on (a) site i=2 and (b) site i=4.
Parameters chosen as µ= 0.2t, ∆= 0.5t, V = 0.3t, and U = 0 (blue, dashed), U = 0.2t
(red, solid).

Away from the special point (µ=0,∆= t) on the phase diagram of the Kitaev chain, we

know that the MZM (c1+c†1) has a finite localisation length with a wavefunction that

exponentially decays into the bulk. However, in the presence of hybridisation with the

impurity, particularly for weak interactions (small U/V ), we have found previously

that −i(d↑−d†↑) is the preferred MZM, and this mode is exactly localised on the

quantum dot. As seen in Figures .a-b, the LDOS on interior sites do not support

zero-energy peaks in the non-interacting limit, even when (µ,∆), (0, t). When U ,0,

the zero-energy peaks reappear, and thus interactions allow a finite penetration depth

of the MZM wavefunction. Generically then, we expect the characteristic localisation

length of the MZM in the KMAI model to differ from that in the Kitaev chain (without

an impurity). This can be quantified by studying the decay of spectral weight of the

zero-energy peak with distance away from the boundary, but we do not pursue this

here.

A curious feature of the LDOS of the interior sites shown in Figures .a-b is a

seemingly oscillatory behaviour inside the SC bands. These oscillations are greatly

enhanced as one proceeds into the bulk of the chain, with the oscillations tracing on

average, but not converging to the bulk LDOS of the Kitaev chain (Figures .a-b).

The oscillations are due to interference effects from scattering off the boundary of

the chain, and the lack of convergence to the bulk LDOS is a generic feature of
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Figure . – LDOS ρ(i;ω) of the host c-fermions in blue on (a) site i=10 and (b)
site i=45. Parameters chosen as µ=0.2t, ∆=0.5t, V =0.4t, U =0.7t. Shown in red in
both plots is the bulk LDOS of the Kitaev chain.

one-dimensional systems [–].

 . departures from exact solvability

We now consider deviations from the exactly solvable point ε=h of the KMAI model.

Defining δ=(ε−h)/2, the new physical Hamiltonian H ′ [see Eq. (.)] can be written

as

H ′ =H(µ,∆,V ,U,ε) + δ(nd↑ −nd↓), (.)

where H is the exactly solvable part with ε=h. In the SS representation, using Eq.

(.) specialised to the KMAI model, this becomes

H ′SS =HSS(ε=h)− δ(nf ↓ − 1/2)− iδΓx↑ Γ
y
↑ (nf ↓ − 1/2), (.)

where HSS(ε=h) is the bilinear exactly solvable part. For sufficiently small δ, correc-

tions to physical observables away from the exactly solvable limit can be computed

by treating the last term in Eq. . in perturbation theory, in analogy to the pertur-

bative analysis of small departures from the Toulouse point in the Kondo problem

[]. We emphasise that this is distinct from ordinary perturbation theory in the

physical interaction strength U ; here U can be arbitrarily large, and the perturbation

corresponds to a change in the Zeeman field, as evident from Eq. (.).
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As an example, let us calculate the correction to the free energy away from the

exactly solvable point, to linear order in δ. The functional integral for the KMAI

model [see Eq. (.)] away from the exactly solvable point is now defined with

respect to an action

S ′ = S − δ(nf ↓ − 1/2)− iδΓx↑ Γ
y
↑ (nf ↓ − 1/2) ≡ S + Sδ

where S is the quadratic action that appears in Eqs. (.)-(.). The physical free

energy corresponding to H ′ is given in the SS representation by

F′ = −1
β

lnZ ′SS = F − 1
β

ln
Z ′SS
ZSS

,

where unprimed quantities are defined with respect to the exactly solvable limit ε=h

of the KMAI model and are thus independent of δ. Using the linked cluster theorem

[, ],

ln
Z ′SS
ZSS

=
〈
e−Sδ

〉
c
− 1 =

∞∑
m=1

(−1)m

m!
〈Sδ〉c ,

where the connected (subscript c) average is with respect to the functional integral

defined by the unprimed action S, that is Eq. (.)-(.). It is easy to see that the

corrections to the free energy are thus connected, closed-loop Feynman diagrams.

For example, the first order correction to the free energy is

1
β
〈Sδ〉c = −δ

β

∫ β

0
dτ

〈
f †↓ (τ)f↓(τ)− 1/2

〉
c

− iδ
β

∫ β

0
dτ

〈
Γx↑ (τ)Γy↑ (τ)

〉
c

〈
f †↓ (τ)f↓(τ)− 1/2

〉
c
. (.)

Fourier transforming to the Matsubara frequency domain,

1
β
〈Sδ〉c =

iδ

β2

∑
ikn,ipn

Gxy↑ (ikn)Gf ↓(ipn)− δ
β

∑
ikn

Gf ↓(ikn)− iδ
2β

∑
ikn

Gxy↑ (ikn). (.)

Substituting in the relevant slave-fermion GFs from section (..) and performing

the Matsubara sums over Gf ↓, we get

1
β
〈Sδ〉c = −δ [nF(ε)− 1/2]

2U
β

∑
ikn

2
(ikn)2 − 4U2 − 2V 2ikngγ1

(ikn)

− δnF(ε). (.)

Recall from section . that the proofs presented there for disposal of constraints in the partition
and correlation functions did not depend on the exact solvability of the KMAI model, only on its
transformation properties under a partial particle-hole transformation D↑.
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Recognising the Matsubara sum above as the same that appears in the calculation

of the double occupancy [see Eqs. (.)-(.)], the correction to the free energy to

linear order in δ can be written as

F′(1) = 2[1− 2nF(ε)] [1/4−D]−nF(ε),

where F′(1) is defined through the perturbative expansion F′=F+F′(1)δ+F′(2)δ
2+O(δ3),

and D is the temperature-dependent double occupancy in the particle-hole symmet-

ric, exactly solvable model, given in Eq. (.).





chapter 5

Read-Green Majorana-Anderson impurity

model

We now consider the two-dimensional spinless px+ipy superconductor, or the Read-

Green superconductor [], on a semi-infinite square lattice coupled to an Anderson

impurity on its edge. The geometry of the setup is depicted schematically in Figure

.. The Read-Green superconductor is described by a Hamiltonian,

HR =
∞∑

x=−∞

∞∑
y=1

[
−t

(
c†x+1,ycx,y + c†x,y+1cx,y + h.c.

)
+
(
∆c†x+1,yc

†
x,y + i∆c†x,y+1c

†
x,y + h.c.

)
−µc†x,ycx,y

]
, (.)

with hopping integral t, p-wave pairing potential ∆, and chemical potential µ. The

Read-Green superconductor supports three distinct phases – two topological SC

phases for 0<µ<4t and −4t <µ<0 that support gapless, chiral Majorana edge modes

with opposite chiralities, and a topologically trivial SC phase for
∣∣∣µ∣∣∣>4t. Note that

the system described by HR has a single edge (y=1) and no corners.

The Anderson impurity is coupled locally to the edge modes on the (x=0, y=1)
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Figure . – Geometry of setup described by the RMAI model.

site, and the resulting system is described by a Hamiltonian,

H =HR − iV (c0,1 + c†0,1)(d↑ + d†↑) +HA, (.)

where V is the hybridisation strength and HA is the Anderson impurity Hamiltonian

given by Eq. (.). This model is hereafter referred to as the RMAI model, for brevity

and to distinguish it from the KMAI model. The slave-spin representation of the

RMAI model is simply obtained by substituting HC =HR and Vj =Vx,y =V δx,0δy,1 in

Eq. (.) to get

HSS =HR − iV (c0,1 + c†0,1)Γx↑ − iUΓx↑ Γ
y
↑ + ε(nf ↓ − 1/2), (.)

where we have assumed the exactly solvable limit ε=h of the MAI class of models,

discussed in Chapter ..

 . calculation of correlation functions

We now discuss the calculation of correlation functions in the RMAI model. Since the

calculations in the KMAI and RMAI cases are similar, this section is less complete than

section ., and we refer the reader there for further details regarding calculational

methods.
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.. Slave-fermion Green functions

As in the case of the KMAI model, all physical Green functions can be expressed in

terms of the one-particle Green functions of slave-fermions {Γx↑ ,Γ
y
↑ ,Γ

z
↑ , f↓,γ

′
f ↑}. The

one-particle Green functions of Γz↑ ,γ
′
f ↑, and f↓ in the RMAI model are the same as

those in the KMAI model, and given by Eqs. (.)-(.). Those of Γx↑ and Γ
y
↑ require

boundary Green function methods. Defining

η =
1
2

(Γy↑ + iΓx↑ ), η† =
1
2

(Γy↑ − iΓ
x
↑ ), (.)

the slave-spin representation of the RMAI model in Eq. (.) can be expressed as

HSS =HR −V (c†0,1 + c0,1η + h.c.) +U (2η†η − 1) + ε(nf ↓ − 1/2). (.)

Defining a Nambu spinor Ψc(x,y)=(cx,y c†x,y)ᵀ, we may write HR as

HR =
1
2

∞∑
x=−∞

[Ψ†c (x,y)TxΨc(x+1, y) +Ψ†c (x,y)TyΨc(x,y+1) + h.c.]−Ψ†c (x,y)µσzΨc(x,y),

(.)

where σz is a Pauli matrix defined in Nambu space, and the matrices Tx,Ty are defined

as

Tx =

−t −∆
∆ t

 , Ty =

 −t −i∆

−i∆ t

 . (.)

While HR itself breaks translation invariance in ŷ, coupling to the impurity breaks

translation invariance in both x̂ and ŷ directions. However, we choose to work in a

mixed (kx, y) representation, in which the Nambu spinors are defined as Ψc(kx, y)=

[cy(kx) c†y(−kx)]ᵀ and the SS representation of the RMAI model is

HSS =
1
2

∑
kx

∞∑
y=1

{[
Ψ†c (kx, y)TyΨc(kx, y+1) + h.c.

]
+Ψ†c (kx, y)Ξ(kx)Ψc(kx, y)

}
−V

∑
kx

[
c†1(−kx)η + c1(kx)η + h.c.

]
+ 2U (η†η − 1) + ε(nf ↓ − 1/2), (.)

where the matrix Ξ(kx) has been defined as

Ξ(kx) =

−2t coskx −µ −2i∆sinkx

2i∆sinkx 2t coskx +µ

 . (.)
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We use periodic boundary conditions in x̂, that is the system is wrapped onto a

semi-infinite (along ŷ) cylinder of infinite cross-sectional radius, such that kx assumes

values in the first Brillouin zone. In this mixed representation, HSS can be written in

Bogoliubov-de Gennes (BdG) form with a semi-infinite BdG matrix hSS , Defining the

matrices

Yk = diag[Ξ(−π), . . . ,Ξ(π)],

TY = diag(Ty , . . . ,Ty),

HA = diag(εσz,2Uσz),

J =

0 . . . 0

C . . . C

 , C =

−V −V

V V

 (.)

the BdG matrix hSS can be written in block tridiagonal form as

hSS =



HA J 0 . . .

J† Yk TY 0

0 T†Y Yk TY
... 0 T†Y

. . .


. (.)

Each Yk block is itself block diagonal, with the diagonal blocks being the xmatrix

function Ξ(kx) evaluated at every point in the first Brillouin zone. In the limit of

infinite length along x̂, Yk has elements parametrised by a continuous momentum

kx∈ (−π,π), taking values in the first Brillouin zone. Each Yk block of hSS represents

a single layer of the two-dimensional superconductor along the ŷ direction, with

the first Yk block corresponding to terms in HSS that describe the edge (y = 1) in

momentum space (kx). TY = diag(Ty , ...,Ty) has the same dimensions as Yk and de-

scribes hopping and pairing between neighbouring layers along ŷ. J couples the

impurity (HA) equally to every kx mode of Ψc(kx, y=1) on the edge, and so to the site

(x=0, y=1) in real space.

Partitioning the resolvent matrix G=(z−hSS)−1 as in Eq. (.), in correspondence

with the partitions of hSS in Eq. (.), and solving for GA from the simultaneous



chapter  . read-green majorana-anderson impurity model 

equations obtained as (z−hSS)G=1, we get

G−1
A = b

z − εσz 0

0 z − 2Uσz −V 2∑
kx
gγ (kx;y=1;z)

 , (.)

where gγ (kx;y=1;z) is the frequency representation of the boundary Matsubara GF

gγ (kx;y=1;τ)=−
〈
Tτγ(kx;y=1;τ)γ(−kx;y=1;0)

〉
, (.)

ad with γ(kx;y = 1) = [c1(kx)+c†1(−kx)]. This is the sum of all matrix elements of the

Nambu GF of [c1(kx)+c
†
1(−kx)]ᵀ, which has been calculated explicitly in Appendix A.

The sum over kx of gγ (kx;y=1;τ), in the limit of infinite x̂, is an integral over the first

Brillouin zone, and defines

gγ (x=0;y=1;z) =
∫ π

−π

dkx
2π

gγ (kx;y=1;z), (.)

which is the local GF of the Majorana mode (c0,1+c†0,1) that the impurity hybridises

with. The integral must be computed numerically. Inverting the second diagonal

block of G−1
A , we find the Nambu GF of (η η†)ᵀ as

Gη =
1

z2 − 4U2 − 2V 2zgγ (x=0;y=1;z)

×

 z+ 2U −V 2gγ (x=0;y=1;z) −V 2gγ (x=0;y=1;z)

−V 2gγ (x=0;y=1;z) z − 2U −V 2gγ (x=0;y=1;z)

 . (.)

As in section .. for the case of the KMAI model, all GFs of the form Gαβ↑ (τ) =

−
〈
TτΓ

x
↑ (τ)Γy↑ (0)

〉
with α,β∈{x,y} can be calculated from appropriate linear combina-

tions of the matrix elements of Gη . The results are

Gyy↑ (z) =
2z − 4V 2gγ (x=0;y=1;z)

z2 − 4U2 − 2V 2zgγ (x=0;y=1;z)
, (.)

Gxx↑ (z) =
2z

z2 − 4U2 − 2V 2zgγ (x=0;y=1;z)
, (.)

Gxy↑ (z) = − 4iU
z2 − 4U2 − 2V 2zgγ (x=0;y=1;z)

. (.)
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.. Impurity Green functions

One can now do the same computations for the physical impurity GFs as done in

the KMAI model in section .., with the slave-fermion GFs there appropriately

replaced with the results for the RMAI model obtained in the previous subsection.

We simply list the relevant results here, referring to section .. for more details on

specific calculations. Although the one-particle GF for the d↓-fermion does not admit

a closed form expression, its spectral function is given by

Ad↓(ω,T ) = 2[1− 2nF(ε)] {nB(ε)nF(ω − ε) + [1 +nB(ε)] [1−nF(ω − ε)]}Aphd↓(ω − ε),

(.)

where

A
ph
d↓(ω) = − ImGyy↑ (ω) = −2Im

ω+ iη − 2V 2gγ (x=0;y=1;ω)

(ω+ iη)2 − 4U2 − 2V 2(ω+ iη)gγ (x=0;y=1;ω)
, (.)

with η>0 is a positive infinitesimal, is the temperature independent spectral function

in the particle-hole symmetric model with ε=0.

The Matsubara GF for the hybridising d↑-fermion can be calculated by explicitly

implementing the gauge constraint, with the result being

Gd↑(ikn) =
ikn −V 2gγ1

(ikn) + 2U [2nF(ε)− 1]

(ikn)2 − 4U2 − 2iknV 2gγ1
(ikn)

, (.)

from which the spectral function is obtained as Ad↑(ω,T )=−2ImGd↑(ikn→ω+iη).

.. Local Green functions of the host fermions

The local GFs of the cx,y fermions that form the Read-Green superconductor can

be calculated in the boundary GF framework described earlier in this section, by

repartitioning and considering appropriate blocks of the BdG and resulting resolvent

matrices. However, the BdG matrix in Eqs. (.) is expressed in a mixed (kx, y)

representation. To calculate local GFs, it is better to work with a real space (x,y)

representation of the BdG matrix. Recall that each block Yk in the BdG matrix of Eq.

(.) describes an infinite one-dimensional layer of the system (infinite number of x
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sites), but in the momentum kx representation. Working in the momentum represen-

tation allows us to work with a bounded ‘matrix’ Yk that has elements parametrised

by the continuous variable kx ∈ (−π,π). However, Yk is infinite dimensional when

expressed in the real space (x) representation. To circumvent this problem, we work

with a large but finite system and numerically calculate blocks of the resolvent matrix.

The BdG matrix in the (x,y) representation of a finite Nx×Ny RMAI model can be

written similar to Eq. (.) as a block tridiagonal matrix,

h
(Nx,Ny )
BdG =



HA J̃ 0 . . . 0

J̃† Y T̃Y . . .
...

0 T̃†Y
. . . . . . 0

...
...

. . . Y T̃Y

0 0 0 T̃†Y Y


, (.)

where there are Ny blocks of Y . The various matrix blocks are defined as follows; Y

is simply Yk written in the (x,y) representation i.e. an inverse Fourier transform of Yk

and describes hopping and pairing in x̂ between sites on a single layer. Nearest neigh-

bour hopping and pairing implies Y is also a block tridiagonal matrix of dimensions

2Nx×2Nx. T̃Y = diag(Ty , . . . ,Ty) similar to TY in Eq. (.), but now of dimensions

2Nx×2Nx like Y . Since Y is written in the (x,y) basis, and the impurity couples only

to a single site on the bulk edge, J has to be modified accordingly to J̃ . We choose Nx

odd and couple the impurity to the median site. Therefore, we have

Y =



−µσz Tx . . . 0

T †x
. . . . . .

...
...

. . . −µσz Tx

0 . . . T †x −µσz


, J̃ =

 0 . . . 0 . . . 0

0 . . . C . . . 0

 , (.)

where Tx has been defined in Eq. (.). The matrix J̃ couples the η-fermion block of

HA to the median diagonal block of Y with coupling matrix C (assuming Nx is odd).

The 2Nx×2Nx diagonal blocks of the resolvent matrix (z−hBdG)−1 corresponding to the

The bulk edge is simply the bulk of the edge layer y=1, far away from the corners.
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Figure . – Spectral functions of (a) localised d↓ and (b) hybridising d↑-fermions
for various temperatures T , shown in the topological phase. In all plots, µ=2.0t, ∆=
0.5t, V = 0.4t, U = 0.8t, ε= 0.1t are fixed. T = 0.05t (green), T = 0.2t (blue), T = 0.9t
(red).

Figure . – Spectral functions of (a) localised d↓ and (b) hybridising d↑-fermions
for various temperatures T , shown in the topological phase. In all plots, µ=2.0t, ∆=
0.5t, V =0.4t, U =0.8t, ε=−0.1t are fixed. T =0.05t (green), T =0.2t (blue), T =0.9t
(red). Note that ε<0 and the spectral asymmetry is reversed here in comparison to
the plots in Figure ..

matrices Y are then computed numerically, using efficient algorithms for computing

blocks of the inverse of a block tridiagonal matrix []. These blocks contain the

c-fermion local (Nambu) Green functions Gc(xx′;yy;z), from which we may compute

the LDOS of the host fermions on various sites. One can also calculate the spatial

distribution of the LDOS at a given energy around the impurity.
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Figure . – Spectral functions of (a) localised d↓ and (b) hybridising d↑ fermions
for various interaction strengths U , shown in the topological phase. In all plots,
µ=2.0t, ∆=0.5t, V =0.4t, T =0.2t, ε=0.1t are fixed. U =0.1t (green), U =0.7t (blue),
U =1.2t (red).

 . impurity fermion properties

We now discuss various features of the impurity spectral functions Adσ (ω,T ) in

the RMAI model, given by Eqs. (.)-(.). The behaviour with temperature of

the spectral functions is the same as that found in the case of the KMAI model,

where the impurity hybridises with the end mode of a Kitaev chain. The deviation ε

from particle-hole symmetry sets the scale for the interaction-induced temperature

dependence of both spectral functions Adσ . For ε>0 and T .ε, there is pronounced

spectral asymmetry about ω=ε (ω=0) in Ad↓ (Ad↑), with larger weight for excitations

with ω> 0 (ω< 0) (see Figure .). Flipping the sign of ε reverses this asymmetry

(Figure .), and T �ε removes it. As in section ., this behaviour can be intuitively

understood from the impurity spectral functions in the atomic limit (V =0), which

are independent of the host material and are given in Eqs. (.)-(.). The reader

is referred to the discussion there for more detail on the temperature dependence of

impurity spectral functions, which seems to be largely independent of the specific

host material.

Let us now consider the interaction dependence of the impurity spectral functions

in the topological phase of the RMAI model, as shown in Figures .a-b. The line

shape of the spectral functions here is very different to that of the impurities in the
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KMAI model, discussed in detail in section . The two key features not present in

the KMAI spectral functions are as follows; (i) both impurity spectral functions do

not exhibit a gap in the excitation spectrum, and (ii) there are only two (broadened)

quasiparticle peaks that manifest in the spectral function, which can be traced back

to the charge excitations present in the atomic limit (V = 0). These differences are

due to the differences between the Majorana edge states in the Kitaev chain and

the Read-Green superconductor, which the d↑-fermion tunnels into. In the former,

the Majorana end mode manifests as a localised zero-energy state protected from

other excitations by an energy gap. Half the d↑-fermion [specifically −i(d↑−d†↑)]

could tunnel into this state, which resulted in a subgap quasiparticle peak in its

spectral function in the KMAI model, in addition to the charge excitation peaks at

non-zero energy. The absence of such a localised, gap-protected excitation in the

Read-Green superconductor explains why the impurity spectral functions have only

the two charge excitation peaks in the RMAI model. Recall that the Read-Green

superconductor supports chiral Majorana edge modes that have a gapless, linear

dispersion. This is why the impurity spectral functions are also not gapped; there is a

continuum of edge states the d↑-fermion can tunnel into.

Recall also the Fermi liquid picture that existed for the localised d↓-fermions in the

KMAI model. This was due to the presence of a gap-protected zero-energy state that

(half) the d↑-fermion could tunnel into. Since the energy of this state was pinned to

zero due to the bulk gap and the topology of the Kitaev chain, local interactions with

the d↓-fermion could not affect this state. This manifested as a free-fermion peak in

the d↓-fermion spectral function at ω=ε with a reduced quasiparticle weight, which

gave credence to a local Fermi liquid picture. The absence of this gap-protected zero-

energy state on the edge of the Read-Green superconductor implies no such picture

exists for the d↓-fermions in the RMAI model. However, as discussed in section ..,

a vortex in the Read-Green superconductor traps a MZM that is protected by an

energy gap from other local excitations. We then expect a local Fermi liquid picture

to hold in the case of an Anderson impurity hybridising with these vortex modes in
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Figure . – LDOS of the c-fermions at (a) impurity site (x,y) = (0,1) for various
interaction strengths U =0.3t (blue), U =0.7t (red) (b) sites (x,y)= (±1,1) (red/blue)
for interaction strength U =0.3t. In all plots, µ=2.0t, ∆=0.5t, V =0.4t are fixed..

the manner considered above.

 . host fermion properties

A prescription for calculating all Nambu GFs Gc(xx′;yy;z) was described in section

.., for the case of a finite RMAI model of size Nx×Ny sites. The local density of

states on a specific site is then simply − ImtrGc(xx′;yy;z). In contrast to the semi-

infinite plane geometry considered in Appendix A, the chiral edge modes in the

finite size system are not gapless, but quantised with a level spacing that goes as

(NxNy)−1. A qualitatively new feature in a finite size Read-Green superconductor is

the emergence of localised zero energy states at the corners [, ]. In the case of

odd Nx and Ny , Komnik and Heinze [] have shown that a non-local zero-energy

fermionic state is fractionalised between the four corners. While the corner modes

are not Majorana fermions like the end modes of a Kitaev chain, these can still be

used to construct a protected qubit for the purposes of quantum information and

computation. In the present discussion, we only focus on the ‘bulk edge’ states that

the impurity hybridises with.

The impurity induces localised bound states (inside the bulk gap), reminiscent

of Yu-Shiba-Rusinov states [–, ], that the c-fermions can tunnel into. These
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Figure . – Spatial profile of the c-fermion LDOS (intensity plot) near the edge
at an energy ω = 0.9t (inside the bulk energy gap) for (a) non-zero hybridisation
V =0.4t, U =0.3t, µ=2.0t, ∆=0.5t (b) zero hybridisation V =0 and µ=2.0t, ∆=0.5t.
The ticks on the x-axis correspond to the boxes on the immediate right, while ticks
on the y-axis correspond to the boxes immediately above..

states feature as two quasiparticle peaks in the c-fermion LDOS on sites near the

impurity site (x = 0, y = 1) [see Figures .a-b]. In the case of the KMAI model,

impurity induced bound states with energies inside the bulk gap featured as sharp

peaks (infinite limetime) in the c-fermion LDOS. However, such states acquire a finite

lifetime in the RMAI model due to the absence of an energy gap at the edge of the

Read-Green superconductor.

A curious feature in Figure .b is the inequality between the LDOS on sites

(x = 1, y = 1) and (x = −1, y = 1). This is seen more prominently in a map of the

spatial profile of the LDOS at a certain energy, as shown in Figure .a. Such a map,

at energies of the impurity induced bound states, also shows the spatial decay of

these local excitations away from the impurity site. We now show that the mirror

asymmetry present in the c-fermion LDOS near the edge (Figure .a) is actually due

to the symmetry properties of the bulk Hamiltonian. To this end, consider a ‘mirror

transformation’ Mx such that

Mxcx,yM
−1
x = c−x,y, Mxc

†
x,yM

−1
x = c†−x,y. (.)

Let us consider the transformation of the bulk Hamiltonian of the Read-Green
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Figure . – Spatial profile of the c-fermion LDOS (intensity plot) in the bulk at
an energy ω= 3.0t (inside SC energy bands) for (a) ∆x = 0.5t (b) ∆x =−0.5t. In all
plots, µ=2.0t, ∆y =0.5t are fixed. The ticks on the x-axis correspond to the boxes on
the immediate right, while ticks on the y-axis correspond to the boxes immediately
above..

superconductor under Mx. The bulk Hamiltonian is given by

HR =
∞∑

x,y=−∞

[
−t

(
c†x+1,ycx,y + c†x,y+1cx,y + h.c.

)

+
(
∆c†x+1,yc

†
x,y + i∆c†x,y+1c

†
x,y + h.c.

)
−µc†x,ycx,y

]
. (.)

Clearly, the terms that are diagonal in x are invariant under Mx; a simple relabelling

x→−x restores them to their original form. Therefore, let us consider the transforma-

tion of terms off-diagonal in x. To this end, it is convenient to work with anisotropic

coupling constants tx, ty and ∆x, ∆y that describe hopping and pairing along x̂, ŷ

respectively. The terms in HR that describe hopping along x (which we collectively

denote as T̂x) transform as

MxT̂xM
−1
x = −tx

∑
x,y

(
c†−x−1,yc−x,y + c†−x,yc−x−1,y

)
,

= −tx
∑

x′ ,y

(
c†x′−1,ycx′ ,y + c†x′ ,ycx′−1,y

)
, x′=−x,

= −tx
∑

x′′ ,y

(
c†x′′ ,ycx′′+1,y + c†x′′+1,ycx′′ ,y

)
, x′′=x′ −1,

= T̂x, (.)
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and therefore are invariant underMx. The pairing terms off-diagonal in x, collectively

denoted as ∆̂x, transform as

Mx∆̂xM
−1
x = ∆x

∑
x,y

(
c†−x−1,yc

†
−x,y + c−x,yc−x−1,y

)
,

= ∆x

∑
x′ ,y

(
c†x′−1,yc

†
x′ ,y + cx′ ,ycx′−1,y

)
, x′=−x,

= ∆x

∑
x′′ ,y

(
c†x′′ ,yc

†
x′′+1,y + cx′′+1,ycx′′ ,y

)
, x′′=x′−1,

= −∆̂x. (.)

Therefore, one has the result MxHR(∆x)M−1
x =HR(−∆x), where the dependence of

HR on other coupling constants has been suppressed as they are unaffected by Mx.

Since the bulk Hamiltonian itself transforms non-trivially under Mx, we expect the

mirror asymmetry in the LDOS near the edge (Figure .a) to also be present in the

bulk. Specifically, the result above indicates that ρ(x,y,ω;∆x)=ρ(−x,y,ω;−∆x). This

is clearly verified by inspection of separate plots of the left and right hand sides of

this equation, for a given energy ω and in the bulk of the system, shown in Figures

.a-b.
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Conclusion

In summary, we have introduced a general class of exactly solvable quantum impurity

models describing the local hybridisation of a Majorana mode in an arbitrary host ma-

terial with an interacting quantum dot, with broad relevance to current experiments

on d topological superconductor-quantum dot hybrid structures. A general model

in this class is exactly solved by mapping it via the Z2 slave-spin representation to

a non-interacting resonant level model for auxiliary Majorana degrees of freedom.

The resulting gauge constraint is then eliminated by exploiting the transformation

properties of the Hamiltonian under a special local particle-hole transformation. We

then showed that correlation functions in this many-body problem can be computed

exactly at both zero and finite temperature when the deviation in impurity chemi-

cal potential from the particle-hole symmetric point precisely equals the impurity

Zeeman energy.

To highlight the utility and specific features of our exact solution, we studied a

hybrid system of an interacting quantum dot coupled to the end MZM of a Kitaev

chain (KMAI model), motivated by recent experimental progress in realising such

a setup. Since this model falls within the MAI class, exact expressions for the dot
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spectral functions and host LDOS can be calculated using the model’s free-fermion

slave-spin representation. We found a non-trivial temperature dependence in the

dot spectral functions, indicative of the fact that the physical dot fermions are

interacting, even though the slave-fermions are not. It was shown that the interaction

and hybridisation with the quantum dot favoured different MZMs, and affected

its localisation length. We then found that the non-hybridising fermion on the

quantum dot could be described by a local Fermi liquid picture, and calculated the

associated interaction-dependent quasiparticle weight. It was then established that

hybridisation with the end MZM of the Kitaev chain induced purely odd-frequency

pairing correlations for the hybridising fermions on the quantum dot. In addition, we

also studied the interaction-dependence of the double occupancy on the quantum dot

for various temperatures, finding a general suppression with increasing interactions

strengths. Finally, departures from the exactly solvable limit were considered, and we

demonstrated how corrections to the free energy could be calculated perturbatively,

with the perturbation corresponding to a shift in the chemical potential or Zeeman

field on the quantum dot.

As another distinct example, a hybrid system of a quantum dot coupled to the

chiral Majorana edge modes of a spinless px+ipy superconductor was then considered

(RMAI model). The dot spectral functions and host LDOS were then studied, and the

key differences from those functions in the KMAI model were traced to the chiral

nature of the gapless edge modes in a px + ipy superconductor.

Several extensions of our work are possible. For example, one can consider a

class of periodic Anderson models, describing a lattice of interacting impurities

hybridising with Majorana modes. Such models could potentially be realised in an

Abrikosov vortex lattice of a topological px + ipy superconductor, with each vortex

hosting a localised and unpaired Majorana mode. It was shown in . that this class

of models also admits an exact solution by the Z2 slave-spin method. It would be

interesting to study both zero and finite temperature phase transitions in models of

this class.



chapter  . conclusion 

Another direct application of the MAI class of models is to transport in junctions

of topological superconductors and quantum dots. Specifically, one would like to

study the various fractional a.c. and d.c. Josephson effects found in such junctions

[–] in an exactly solvable model. In Appendix C, we set up one represen-

tative transport problem in a topological superconductor-quantum dot-topological

superconductor (TSC-QD-TSC) junction, and prove that the average non-equilibrium

current can be calculated exactly without constraint in the quadratic slave-spin

representation of the model.
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[] M. T. Deng, S. Vaitiekėnas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg,

J. Nygård, P. Krogstrup, and C. M. Marcus, “Majorana Bound State in a Coupled

Quantum-Dot Hybrid-Nanowire System,” Science ,  ().

[] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Informa-

tion (Cambridge University Press, Cambridge, ).

[] A. Y. Kitaev, “Unpaired Majorana Fermions in Quantum Wires,” Phys.-Usp. ,

 ().

[] A. Y. Kitaev, “Fault-Tolerant Quantum Computation by Anyons,” Annals of

Physics ,  ().

[] F. Konschelle and F. Hassler, “Effects of Nonequilibrium Noise on a Quantum

Memory Encoded in Majorana Zero Modes,” Phys. Rev. B ,  ().

[] C. Zeng, C. Moore, A. M. Rao, T. D. Stanescu, and S. Tewari, “Analytical

Solution of the Finite-Length Kitaev Chain Coupled to a Quantum Dot,” Phys. Rev.

B ,  ().

[] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, “Non-Abelian

Statistics and Topological Quantum Information Processing in D Wire Networks,”

Nature Physics ,  ().

[] M. Sato and Y. Ando, “Topological Superconductors: A Review,” Rep. Prog. Phys.

,  ().

http://dx.doi.org/10.1103/PhysRevB.94.235102
http://dx.doi.org/ 10.1103/PhysRevLett.110.196401
http://dx.doi.org/ 10.1103/PhysRevLett.110.196401
http://dx.doi.org/10.1088/1367-2630/14/12/125018
http://dx.doi.org/ 10.1126/science.aaf3961
http://dx.doi.org/ 10.1070/1063-7869/44/10S/S29
http://dx.doi.org/ 10.1070/1063-7869/44/10S/S29
http://dx.doi.org/ 10.1016/S0003-4916(02)00018-0
http://dx.doi.org/ 10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/PhysRevB.88.075431
http://dx.doi.org/ 10.1103/PhysRevB.99.094523
http://dx.doi.org/ 10.1103/PhysRevB.99.094523
http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1088/1361-6633/aa6ac7
http://dx.doi.org/10.1088/1361-6633/aa6ac7


bibliography 

[] X.-L. Qi and S.-C. Zhang, “Topological Insulators and Superconductors,” Rev.

Mod. Phys. ,  ().

[] B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Super-

conductors (Princeton University Press, Princeton, ).

[] P. W. Anderson, “Random-Phase Approximation in the Theory of Superconductiv-

ity,” Phys. Rev. ,  ().

[] P. Coleman, Introduction to Many Body Physics (Cambridge University Press,

Cambridge, ).

[] F. von Oppen, Y. Peng, and F. Pientka, “Topological Superconducting Phases in

One-Dimension,” in Topological Aspects of Condensed Matter Physics (Les Houches

, Session CIII), edited by C. Chamon, M. Goerbig, R. Moessner, and

L. Cugliandolo (Oxford University Press, Oxford, ).

[] A. Hatcher, Algebraic Topology (Cambridge University Press, Cambridge, ).

[] A. Kitaev, “Periodic Table for Topological Insulators and Superconductors,” AIP

Conf. Proc. ,  ().

[] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, “Classification of Topological

Quantum Matter with Symmetries,” Rev. Mod. Phys. ,  ().

[] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, “Topological Insula-

tors and Superconductors: Tenfold Way and Dimensional Hierarchy,” New J. Phys.

,  ().

[] L. Fidkowski and A. Kitaev, “Effects of Interactions on the Topological Classifica-

tion of Free Fermion Systems,” Phys. Rev. B ,  ().

[] L. Fidkowski and A. Kitaev, “Topological Phases of Fermions in One Dimension,”

Phys. Rev. B ,  ().

http://dx.doi.org/ 10.1103/RevModPhys.83.1057
http://dx.doi.org/ 10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRev.112.1900
http://dx.doi.org/ 10.1063/1.3149495
http://dx.doi.org/ 10.1063/1.3149495
http://dx.doi.org/ 10.1103/RevModPhys.88.035005
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1103/PhysRevB.81.134509
http://dx.doi.org/ 10.1103/PhysRevB.83.075103


bibliography 

[] N. Read and D. Green, “Paired States of Fermions in Two Dimensions with Break-

ing of Parity and Time-Reversal Symmetries and the Fractional Quantum Hall

Effect,” Phys. Rev. B ,  ().

[] J. Milnor, Topology from the Differentiable Viewpoint, (rev. ed.) ed. (Princeton

University Press, Princeton, N.J., ).

[] M. Stone and R. Roy, “Edge modes, edge currents, and gauge invariance in px + ipy

superfluids and superconductors,” Phys. Rev. B ,  ().

[] R. Jackiw and P. Rossi, “Zero Modes of the Vortex-Fermion System,” Nucl. Phys.

B ,  ().

[] R. R. Biswas, “Majorana Fermions in Vortex Lattices,” Phys. Rev. Lett. ,

 ().

[] M. Cheng, R. M. Lutchyn, V. Galitski, and S. Das Sarma, “Splitting of Majorana-

Fermion Modes due to Intervortex Tunneling in a px + ipy Superconductor,” Phys.

Rev. Lett. ,  ().

[] M. Cheng, R. M. Lutchyn, V. Galitski, and S. Das Sarma, “Tunneling of Anyonic

Majorana Excitations in Topological Superconductors,” Phys. Rev. B , 

().

[] N. D. Mermin and H. Wagner, “Absence of Ferromagnetism or Antiferromagnetism

in One- or Two-Dimensional Isotropic Heisenberg Models,” Phys. Rev. Lett. ,

 ().

[] P. C. Hohenberg, “Existence of Long-Range Order in One and Two Dimensions,”

Phys. Rev. ,  ().

[] S. Coleman, “There Are No Goldstone Bosons in Two Dimensions,” Commun.Math.

Phys. ,  ().

http://dx.doi.org/ 10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.69.184511
http://dx.doi.org/10.1016/0550-3213(81)90044-4
http://dx.doi.org/10.1016/0550-3213(81)90044-4
http://dx.doi.org/ 10.1103/PhysRevLett.111.136401
http://dx.doi.org/ 10.1103/PhysRevLett.111.136401
http://dx.doi.org/10.1103/PhysRevLett.103.107001
http://dx.doi.org/10.1103/PhysRevLett.103.107001
http://dx.doi.org/ 10.1103/PhysRevB.82.094504
http://dx.doi.org/ 10.1103/PhysRevB.82.094504
http://dx.doi.org/ 10.1103/PhysRevLett.17.1133
http://dx.doi.org/ 10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/ 10.1007/BF01646487
http://dx.doi.org/ 10.1007/BF01646487


bibliography 

[] A. Akhmerov, J. Sau, and B. van Heck, “Topology in Condensed Matter,”

https://topocondmat.org ().

[] G. Bihlmayer, O. Rader, and R. Winkler, “Focus on the Rashba Effect,” New J.

Phys. ,  ().

[] Y. A. Bychkov and E. I. Rashba, “Properties of a D Electron Gas with Lifted

Spectral Degeneracy,” JETP Lett. ,  ().

[] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, “Majorana Fermions and a Topologi-

cal Phase Transition in Semiconductor-Superconductor Heterostructures,” Phys.

Rev. Lett. ,  ().

[] Y. Oreg, G. Refael, and F. von Oppen, “Helical Liquids and Majorana Bound

States in Quantum Wires,” Phys. Rev. Lett. ,  ().

[] J. Alicea, “Majorana Fermions in a Tunable Semiconductor Device,” Phys. Rev. B

,  ().

[] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, “Generic New Platform

for Topological Quantum Computation Using Semiconductor Heterostructures,”

Phys. Rev. Lett. ,  ().

[] L. Fu and C. L. Kane, “Superconducting Proximity Effect and Majorana Fermions

at the Surface of a Topological Insulator,” Phys. Rev. Lett. ,  ().

[] L. Fu and C. L. Kane, “Josephson Current and Noise at a Superconductor/Quantum-

Spin-Hall-Insulator/Superconductor Junction,” Phys. Rev. B ,  ().

[] M. Z. Hasan and C. L. Kane, “Colloquium: Topological Insulators,” Rev. Mod.

Phys. ,  ().

[] J. Maciejko, T. L. Hughes, and S.-C. Zhang, “The Quantum Spin Hall Effect,”

Annu. Rev. Condens. Matter Phys. ,  ().

http://dx.doi.org/10.1088/1367-2630/17/5/050202
http://dx.doi.org/10.1088/1367-2630/17/5/050202
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/ 10.1103/PhysRevLett.105.177002
http://dx.doi.org/ 10.1103/PhysRevB.81.125318
http://dx.doi.org/ 10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/ 10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/ 10.1146/annurev-conmatphys-062910-140538


bibliography 

[] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani, “Proposal for

Realizing Majorana Fermions in Chains of Magnetic Atoms on a Superconductor,”

Phys. Rev. B ,  ().

[] A. P. Mackenzie and Y. Maeno, “The superconductivity of Sr2RuO4 and the physics

of spin-triplet pairing,” Rev. Mod. Phys. ,  ().

[] G. Xu, B. Lian, P. Tang, X.-L. Qi, and S.-C. Zhang, “Topological Superconductivity

on the Surface of Fe-Based Superconductors,” Phys. Rev. Lett. ,  ().

[] Z. Wang, P. Zhang, G. Xu, L. K. Zeng, H. Miao, X. Xu, T. Qian, H. Weng,

P. Richard, A. V. Fedorov, H. Ding, X. Dai, and Z. Fang, “Topological nature of

the FeSe0.5Te0.5 superconductor,” Phys. Rev. B ,  ().

[] N. Hao and J. Hu, “Topological Phases in the Single-Layer FeSe,” Phys. Rev. X ,

 ().

[] T. Mizushima, Y. Tsutsumi, T. Kawakami, M. Sato, M. Ichioka, and K. Machida,

“Symmetry-Protected Topological Superfluids and Superconductors —From the

Basics to He—,” J. Phys. Soc. Jpn. ,  ().

[] R. M. Lutchyn, E. P. a. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M.

Marcus, and Y. Oreg, “Majorana Zero Modes in Superconductor–Semiconductor

Heterostructures,” Nat Rev Mater ,  ().

[] K. T. Law, P. A. Lee, and T. K. Ng, “Majorana Fermion Induced Resonant Andreev

Reflection,” Phys. Rev. Lett. ,  ().

[] K. Flensberg, “Tunneling Characteristics of a Chain of Majorana Bound States,”

Phys. Rev. B ,  ().

[] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. a. M. Bakkers, and L. P.

Kouwenhoven, “Signatures of Majorana Fermions in Hybrid Superconductor-

Semiconductor Nanowire Devices,” Science ,  ().

http://dx.doi.org/10.1103/PhysRevB.88.020407
http://dx.doi.org/10.1103/RevModPhys.75.657
http://dx.doi.org/ 10.1103/PhysRevLett.117.047001
http://dx.doi.org/10.1103/PhysRevB.92.115119
http://dx.doi.org/ 10.1103/PhysRevX.4.031053
http://dx.doi.org/ 10.1103/PhysRevX.4.031053
http://dx.doi.org/10.7566/JPSJ.85.022001
http://dx.doi.org/10.1038/s41578-018-0003-1
http://dx.doi.org/ 10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevB.82.180516
http://dx.doi.org/10.1126/science.1222360


bibliography 

[] J. Liu, A. C. Potter, K. T. Law, and P. A. Lee, “Zero-Bias Peaks in the Tunneling

Conductance of Spin-Orbit-Coupled Superconducting Wires with and without

Majorana End-States,” Phys. Rev. Lett. ,  ().

[] C.-X. Liu, J. D. Sau, T. D. Stanescu, and S. Das Sarma, “Andreev Bound States

versus Majorana Bound States in Quantum Dot-Nanowire-Superconductor Hybrid

Structures: Trivial versus Topological Zero-Bias Conductance Peaks,” Phys. Rev. B

,  ().

[] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDon-

ald, B. A. Bernevig, and A. Yazdani, “Observation of Majorana Fermions in

Ferromagnetic Atomic Chains on a Superconductor,” Science ,  ().

[] L. Yu, “Bound State in Superconductors with Paramagnetic Impurities,” Acta Phys.

Sin. ,  ().

[] H. Shiba, “Classical Spins in Superconductors,” Prog. Theor. Phys. ,  ().

[] A. I. Rusinov, “On the Theory of Gapless Superconductivity in Alloys Containing

Paramagnetic Impurities,” Sov. Phys. JETP ,  ().

[] R. Pawlak, M. Kisiel, J. Klinovaja, T. Meier, S. Kawai, T. Glatzel, D. Loss, and

E. Meyer, “Probing Atomic Structure and Majorana Wavefunctions in Mono-Atomic

Fe Chains on Superconducting Pb Surface,” npj Quantum Information , 

().

[] M. Ruby, F. Pientka, Y. Peng, F. von Oppen, B. W. Heinrich, and K. J. Franke,

“End States and Subgap Structure in Proximity-Coupled Chains of Magnetic

Adatoms,” Phys. Rev. Lett. ,  ().

[] S. Jeon, Y. Xie, J. Li, Z. Wang, B. A. Bernevig, and A. Yazdani, “Distinguishing

a Majorana Zero Mode Using Spin-Resolved Measurements,” Science , 

().

http://dx.doi.org/ 10.1103/PhysRevLett.109.267002
http://dx.doi.org/10.1103/PhysRevB.96.075161
http://dx.doi.org/10.1103/PhysRevB.96.075161
http://dx.doi.org/10.1126/science.1259327
http://dx.doi.org/ 10.7498/aps.21.75
http://dx.doi.org/ 10.7498/aps.21.75
http://dx.doi.org/10.1143/PTP.40.435
http://dx.doi.org/10.1038/npjqi.2016.35
http://dx.doi.org/10.1038/npjqi.2016.35
http://dx.doi.org/10.1103/PhysRevLett.115.197204
http://dx.doi.org/10.1126/science.aan3670
http://dx.doi.org/10.1126/science.aan3670


bibliography 

[] B. E. Feldman, M. T. Randeria, J. Li, S. Jeon, Y. Xie, Z. Wang, I. K. Drozdov,

B. Andrei Bernevig, and A. Yazdani, “High-Resolution Studies of the Majorana

Atomic Chain Platform,” Nature Physics ,  ().

[] T. Machida, Y. Sun, S. Pyon, S. Takeda, Y. Kohsaka, T. Hanaguri, T. Sasagawa,

and T. Tamegai, “Zero-Energy Vortex Bound State in the Superconducting Topo-

logical Surface State of Fe(Se,Te),” Nat. Mater. ,  ().

[] H.-H. Sun and J.-F. Jia, “Detection of Majorana Zero Mode in the Vortex,” npj

Quant Mater ,  ().

[] D. Wang, L. Kong, P. Fan, H. Chen, S. Zhu, W. Liu, L. Cao, Y. Sun, S. Du,

J. Schneeloch, R. Zhong, G. Gu, L. Fu, H. Ding, and H.-J. Gao, “Evidence

for Majorana Bound States in an Iron-Based Superconductor,” Science , 

().

[] P. Zhang, K. Yaji, T. Hashimoto, Y. Ota, T. Kondo, K. Okazaki, Z. Wang, J. Wen,

G. D. Gu, H. Ding, and S. Shin, “Observation of Topological Superconductivity

on the Surface of an Iron-Based Superconductor,” Science ,  ().

[] C.-K. Chiu, T. Machida, Y. Huang, T. Hanaguri, and F.-C. Zhang, “Scalable

Majorana Vortex Modes in Iron-Based Superconductors,” arXiv:. [cond-

mat] ().

[] C.-K. Chiu, D. I. Pikulin, and M. Franz, “Strongly Interacting Majorana

Fermions,” Phys. Rev. B ,  ().

[] G. C. Menard, S. Guissart, C. Brun, R. T. Leriche, M. Trif, F. Debontridder,

D. Demaille, D. Roditchev, P. Simon, and T. Cren, “Two-Dimensional Topological

Superconductivity in Pb/Co/Si(),” Nat Commun ,  ().

[] S. B. Chung, X.-L. Qi, J. Maciejko, and S.-C. Zhang, “Conductance and Noise

Signatures of Majorana Backscattering,” Phys. Rev. B ,  ().

http://dx.doi.org/10.1038/nphys3947
http://dx.doi.org/ 10.1038/s41563-019-0397-1
http://dx.doi.org/ 10.1038/s41535-017-0037-4
http://dx.doi.org/ 10.1038/s41535-017-0037-4
http://dx.doi.org/ 10.1126/science.aao1797
http://dx.doi.org/ 10.1126/science.aao1797
http://dx.doi.org/10.1126/science.aan4596
http://dx.doi.org/10.1103/PhysRevB.91.165402
http://dx.doi.org/10.1038/s41467-017-02192-x
http://dx.doi.org/ 10.1103/PhysRevB.83.100512


bibliography 

[] S. B. Chung and S.-C. Zhang, “Detecting the Majorana Fermion Surface State of
3He−B through Spin Relaxation,” Phys. Rev. Lett. ,  ().

[] R. Shindou, A. Furusaki, and N. Nagaosa, “Quantum Impurity Spin in Majorana

Edge Fermions,” Phys. Rev. B ,  ().

[] A. Rahmani and M. Franz, “Interacting Majorana Fermions,” Rep. Prog. Phys.

,  ().

[] T. Hayata and A. Yamamoto, “Quantum Monte Carlo Simulation of a Two-

Dimensional Majorana Lattice Model,” Phys. Rev. B ,  ().

[] A. Rahmani, D. Pikulin, and I. Affleck, “Phase Diagrams of Majorana-Hubbard

Ladders,” Phys. Rev. B ,  ().

[] K. Wamer and I. Affleck, “Renormalization Group Analysis of Phase Transitions in

the Two-Dimensional Majorana-Hubbard Model,” Phys. Rev. B ,  ().

[] C. Li and M. Franz, “Majorana-Hubbard Model on the Honeycomb Lattice,” Phys.

Rev. B ,  ().

[] I. Affleck, A. Rahmani, and D. Pikulin, “Majorana-Hubbard Model on the Square

Lattice,” Phys. Rev. B ,  ().

[] A. Rahmani, X. Zhu, M. Franz, and I. Affleck, “Emergent Supersymmetry from

Strongly Interacting Majorana Zero Modes,” Phys. Rev. Lett. ,  ().

[] X.-H. Li, Z. Chen, and T.-K. Ng, “Majorana Falicov-Kimball Models,”

arXiv:. [cond-mat] ().

[] Z. Chen, X. Li, and T. K. Ng, “Exactly Solvable BCS-Hubbard Model in Arbitrary

Dimensions,” Phys. Rev. Lett. ,  ().

[] C. Prosko, S.-P. Lee, and J. Maciejko, “Simple Z2 lattice gauge theories at finite

fermion density,” Phys. Rev. B ,  ().

http://dx.doi.org/10.1103/PhysRevLett.103.235301
http://dx.doi.org/ 10.1103/PhysRevB.82.180505
http://dx.doi.org/ 10.1088/1361-6633/ab28ef
http://dx.doi.org/ 10.1088/1361-6633/ab28ef
http://dx.doi.org/10.1103/PhysRevB.96.035129
http://dx.doi.org/ 10.1103/PhysRevB.99.085110
http://dx.doi.org/ 10.1103/PhysRevB.98.245120
http://dx.doi.org/ 10.1103/PhysRevB.98.115123
http://dx.doi.org/ 10.1103/PhysRevB.98.115123
http://dx.doi.org/10.1103/PhysRevB.96.125121
http://dx.doi.org/ 10.1103/PhysRevLett.115.166401
http://dx.doi.org/ 10.1103/PhysRevLett.120.046401
http://dx.doi.org/10.1103/PhysRevB.96.205104


bibliography 

[] A. Rüegg, S. D. Huber, and M. Sigrist, “Z2 Slave-Spin Theory for Strongly

Correlated Fermions,” Phys. Rev. B ,  ().

[] Y. Hu and C. L. Kane, “Fibonacci Topological Superconductor,” Phys. Rev. Lett.

,  ().

[] M. Cheng, M. Becker, B. Bauer, and R. M. Lutchyn, “Interplay between Kondo

and Majorana Interactions in Quantum Dots,” Phys. Rev. X ,  ().

[] S. Hoffman, D. Chevallier, D. Loss, and J. Klinovaja, “Spin-Dependent Coupling

between Quantum Dots and Topological Quantum Wires,” Phys. Rev. B , 

().

[] M. Lee, J. S. Lim, and R. López, “Kondo Effect in a Quantum Dot Side-Coupled

to a Topological Superconductor,” Phys. Rev. B ,  ().

[] D. E. Liu, M. Cheng, and R. M. Lutchyn, “Probing Majorana Physics in Quantum-

Dot Shot-Noise Experiments,” Phys. Rev. B ,  ().

[] G. D. Mahan, “Excitons in Degenerate Semiconductors,” Phys. Rev. , 

().

[] P. Nozieres and C. T. De Dominicis, “Singularities in the X-Ray Absorption and

Emission of Metals. III. One-Body Theory Exact Solution,” Phys. Rev. , 

().

[] L. de’Medici, A. Georges, and S. Biermann, “Orbital-Selective Mott Transition in

Multiband Systems: Slave-Spin Representation and Dynamical Mean-Field Theory,”

Phys. Rev. B ,  ().

[] S. D. Huber and A. Rüegg, “Dynamically Generated Double Occupancy as a Probe

of Cold Atom Systems,” Phys. Rev. Lett. ,  ().

[] D. Guerci, “Transport through a Magnetic Impurity: A Slave-Spin Approach,”

Phys. Rev. B ,  ().

http://dx.doi.org/10.1103/PhysRevB.81.155118
http://dx.doi.org/ 10.1103/PhysRevLett.120.066801
http://dx.doi.org/ 10.1103/PhysRevLett.120.066801
http://dx.doi.org/ 10.1103/PhysRevX.4.031051
http://dx.doi.org/ 10.1103/PhysRevB.96.045440
http://dx.doi.org/ 10.1103/PhysRevB.96.045440
http://dx.doi.org/ 10.1103/PhysRevB.87.241402
http://dx.doi.org/ 10.1103/PhysRevB.91.081405
http://dx.doi.org/ 10.1103/PhysRev.153.882
http://dx.doi.org/ 10.1103/PhysRev.153.882
http://dx.doi.org/10.1103/PhysRev.178.1097
http://dx.doi.org/10.1103/PhysRev.178.1097
http://dx.doi.org/ 10.1103/PhysRevB.72.205124
http://dx.doi.org/10.1103/PhysRevLett.102.065301
http://dx.doi.org/ 10.1103/PhysRevB.99.195409


bibliography 

[] J. Fu, J. Knolle, and N. B. Perkins, “Three Types of Representation of Spin in

Terms of Majorana Fermions and an Alternative Solution of the Kitaev Honeycomb

Model,” Phys. Rev. B ,  ().

[] D. Guerci and M. Fabrizio, “Unbinding Slave Spins in the Anderson Impurity

Model,” Phys. Rev. B ,  ().

[] R. Zitko and M. Fabrizio, “Z2 Gauge Theory Description of the Mott Transition in

Infinite Dimensions,” Phys. Rev. B ,  ().

[] A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University

Press, Cambridge, ).

[] H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter

Physics (Oxford University Press, Oxford, ).

[] A. Umerski, “Closed-Form Solutions to Surface Green’s Functions,” Phys. Rev. B

,  ().

[] S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University

Press, Cambridge, ).

[] A. Altland and B. D. Simons, Condensed Matter Field Theory, nd ed. (Cambridge

University Press, Cambridge, ).

[] T. Jonckheere, J. Rech, A. Zazunov, R. Egger, and T. Martin, “Hanbury Brown

and Twiss Noise Correlations in a Topological Superconductor Beam Splitter,” Phys.

Rev. B ,  ().

[] R. Shankar and A. Vishwanath, “Equality of Bulk Wave Functions and Edge

Correlations in Some Topological Superconductors: A Spacetime Derivation,” Phys.

Rev. Lett. ,  ().

[] R. Shankar, Quantum Field Theory and Condensed Matter (Cambridge University

Press, Cambridge, ).

http://dx.doi.org/ 10.1103/PhysRevB.97.115142
http://dx.doi.org/10.1103/PhysRevB.96.201106
http://dx.doi.org/10.1103/PhysRevB.91.245130
http://dx.doi.org/ 10.1103/PhysRevB.55.5266
http://dx.doi.org/ 10.1103/PhysRevB.55.5266
http://dx.doi.org/ 10.1103/PhysRevB.95.054514
http://dx.doi.org/ 10.1103/PhysRevB.95.054514
http://dx.doi.org/10.1103/PhysRevLett.107.106803
http://dx.doi.org/10.1103/PhysRevLett.107.106803


bibliography 

[] M. A. Srednicki, Quantum Field Theory (Cambridge University Press, Cam-

bridge, ).

[] V. L. Berezinskii, “New Model of the Anisotropic Phase of Superfluid Helium-,”

JETP Lett. ,  ().

[] J. Linder and A. V. Balatsky, “Odd-Frequency Superconductivity,”

arXiv:. [cond-mat] ().

[] S.-P. Lee, R. M. Lutchyn, and J. Maciejko, “Odd-Frequency Superconductivity in

a Nanowire Coupled to Majorana Zero Modes,” Phys. Rev. B ,  ().

[] A. Balatsky and E. Abrahams, “New Class of Singlet Superconductors Which

Break the Time Reversal and Parity,” Phys. Rev. B ,  ().

[] T. R. Kirkpatrick and D. Belitz, “Disorder-Induced Triplet Superconductivity,”

Phys. Rev. Lett. ,  ().

[] Y. Asano and Y. Tanaka, “Majorana Fermions and Odd-Frequency Cooper Pairs in

a Normal-Metal Nanowire Proximity-Coupled to a Topological Superconductor,”

Phys. Rev. B ,  ().

[] Z. Huang, P. Wölfle, and A. V. Balatsky, “Odd-Frequency Pairing of Interacting

Majorana Fermions,” Phys. Rev. B ,  ().

[] A. V. Balatsky, I. Vekhter, and J.-X. Zhu, “Impurity-Induced States in Conven-

tional and Unconventional Superconductors,” Rev. Mod. Phys. ,  ().

[] M. G. Reuter, “Closed-Form Green Functions, Surface Effects, and the Importance

of Dimensionality in Tight-Binding Metals,” J. Chem. Phys. ,  ().

[] M. G. Reuter, T. Seideman, and M. A. Ratner, “Probing the Surface-to-Bulk

Transition: A Closed-Form Constant-Scaling Algorithm for Computing Subsurface

Green Functions,” Phys. Rev. B ,  ().

http://dx.doi.org/10.1103/PhysRevB.95.184506
http://dx.doi.org/10.1103/PhysRevB.45.13125
http://dx.doi.org/ 10.1103/PhysRevLett.66.1533
http://dx.doi.org/ 10.1103/PhysRevB.87.104513
http://dx.doi.org/ 10.1103/PhysRevB.92.121404
http://dx.doi.org/10.1103/RevModPhys.78.373
http://dx.doi.org/ 10.1063/1.3447960
http://dx.doi.org/ 10.1103/PhysRevB.83.085412


bibliography 

[] M. G. Reuter, N. M. Boffi, M. A. Ratner, and T. Seideman, “The Role of Dimen-

sionality in the Decay of Surface Effects,” J. Chem. Phys. ,  ().

[] P. B. Wiegmann and A. M. Finkelstein, “Resonant-Level Model in the Kondo

Problem,” Sov. Phys. JETP ,  ().

[] M. G. Reuter and J. C. Hill, “An Efficient, Block-by-Block Algorithm for Inverting

a Block Tridiagonal, Nearly Block Toeplitz Matrix,” Comput. Sci. Disc. , 

().

[] A. Komnik and S. Heinze, “Analytical Results for the Green’s Functions of Lattice

Fermions,” Phys. Rev. B ,  ().

[] Y. Peng, Y. Bao, and F. von Oppen, “Boundary Green Functions of Topological

Insulators and Superconductors,” Phys. Rev. B ,  ().

[] L. P. Rokhinson, X. Liu, and J. K. Furdyna, “The Fractional a.c. Josephson Effect in

a Semiconductor–Superconductor Nanowire as a Signature of Majorana Particles,”

Nature Physics ,  ().

[] P. Stefanski, “Properties of the Majorana-State Tunneling Josephson Junction Me-

diated by an Interacting Quantum Dot,” J. Phys.: Condens. Matter , 

().

[] C. Laflamme, J. C. Budich, P. Zoller, and M. Dalmonte, “Non-equilibrium

8π Josephson effect in atomic Kitaev wires,” Nature Communications , 

().

[] E. Grosfeld and A. Stern, “Observing Majorana Bound States of Josephson Vortices

in Topological Superconductors,” PNAS ,  ().

[] F. Bastianelli and P. Van Nieuwenhuizen, Path Integrals and Anomalies in Curved

Space (Cambridge University Press, Cambridge, ).

http://dx.doi.org/10.1063/1.4792643
http://dx.doi.org/ http://www.jetp.ac.ru/cgi-bin/e/index/e/48/1/p102?a=list
http://dx.doi.org/10.1088/1749-4699/5/1/014009
http://dx.doi.org/10.1088/1749-4699/5/1/014009
http://dx.doi.org/10.1103/PhysRevB.96.155103
http://dx.doi.org/ 10.1103/PhysRevB.95.235143
http://dx.doi.org/ 10.1038/nphys2429
http://dx.doi.org/ 10.1088/1361-648X/ab052a
http://dx.doi.org/ 10.1088/1361-648X/ab052a
http://dx.doi.org/ 10.1038/ncomms12280
http://dx.doi.org/ 10.1038/ncomms12280
http://dx.doi.org/10.1073/pnas.1101469108


bibliography 

[] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, th ed. (Oxford

University Press, Oxford, ).

[] J. Maciejko, An Introduction to Nonequilibrium Many-Body Theory ().





appendix A

Boundary Green functions of topological

superconductors

a. kitaev chain

In this section, we provide a derivation of the left boundary Green function (GF) of

a semi-infinite Kitaev chain [], following the method outlined in Appendix A of

Ref. []. The strategy is as follows - we first calculate the bulk GF of an infinite

Kitaev chain and then obtain the boundary GF from the Dyson equation one gets

when the chain is cut in half by an infinite local potential. The Hamiltonian for an

infinite Kitaev chain is

HK =
∑
i

[
−tc†i ci+1 +∆cici+1 + h.c.

]
−µ

∞∑
i=1

c†i ci . (A.)

Imposing periodic boundary conditions and exploiting translational invariance

to Fourier transform to momentum space, the Hamiltonian can be written as a

Bogoliubov-de-Gennes (BdG) equation,

HK =
1
2

∑
k

Ψ†k

 −2t cosk −µ −2i∆sink

2i∆sink 2t cosk +µ

Ψk ≡ 1
2

∑
k

Ψ†k hkΨk , (A.)
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where Ψk = (ck c†−k)
ᵀ is a Nambu spinor. The real space bulk (Nambu) GF is then

obtained as an inverse Fourier transform of the momentum space GF,

gB(i − j;z) =
∫ π

−π

dk
2π
eik(xj−xi ) (z − hk)−1 ,

=
∫ π

−π

dk
2π
eik(xj−xi ) z − (2t cosk +µ)σz + 2∆sinkσy

z2 − (µ− 2t cosk)2 − 4∆2 sin2 k
, (A.)

where {σx,σy ,σz} is a set of Pauli matrices in Nambu space. z is a general complex-

valued frequency such that z= ikn (fermionic Matsubara frequencies) on the imaginary

axis and z=ω (real frequencies) on the real axis. For example. evaluating gB(i−j;z) on

the imaginary axis or for z=ω+i0+ yields the Matsubara or retarded GFs respectively.

Placing a local scattering potential of strength φ at the site i = 0, the Hamiltonian is

modified to H ′K =HK+φc†0c0. The Dyson equation for the new real space GF is then

g′(ij;z) = gB(i − j;z) + gB(i − 0;z)φσzg′(ij;z). (A.)

Taking the limit φ → ∞ to cut the chain, we obtain the left boundary GF of the

semi-infinite chain as

g′(11;z) = gB(0;z)− gB(1− 0;z)g−1
B (0;z)gB(0− 1;z),

≡ gS(z) (A.)

To calculate gB(0;z), gB(1− 0;z), and gB(0− 1;z), one needs to compute the integral in

Eq. (A.). To do so, we make the substitution w = −cosk to get

gB(i − j;z) =
∫ π

−π

dw

2π
√

1−w2

∑
s=±1

(
−w+ is

√
1−w2

)xj−xi
z2 − (2tw−µ)2 − 4∆2(1−w2)

×
[
z+ (2tw−µ)σz + 2s∆

√
1−w2

]
. (A.)

Factorising the denominator in the summand, we find

gB(i − j;z) =
1

8π (∆2 − t2)

∫ π

−π
dw

1
√

1−w2(w−Q+)(w−Q−)

×
∑
s=±1

(
−w+ is

√
1−w2

)xj−xi [
z+ (2tw−µ)σz + 2s∆

√
1−w2

]
, ∆ , t (A.)
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where the roots are

Q±(z) =
1

2(∆2 − t2)

[
−tµ±

√
∆2µ2 − (∆2 − t2) (z2 − 4∆2)

]
. (A.)

The equation above only holds when ∆ , t as it is easy to see that the denominator

inside the summand in Eq. (A.) is quadratic in w only if this condition holds. Using

the following integrals,

1
π

∫ 1

−1
dx

1
√

1− x2(x − a)
=
−1/a
√

1− 1/a2
, Ima , 0 (A.)

1
π

∫ 1

−1
dx

xn
√

1− x2(x − a)
= an−1

(
1− 1
√

1− 1/a2

)
, n ∈ {1,2}, Ima , 0 (A.)

we obtain

gB(0;z)=(z −µσz)F−1(z) + 2tσzF0(z), (A.)

gB(1− 0;z)=2i∆F−1(z)σy−(z−µσz)F0(z)+(2tσz+2i∆σy)
[

1
4(t2−∆2)

−F1(z)
]
, (A.)

gB(0− 1;z)=−2i∆F−1(z)σy−(z−µσz)F0(z)+(2tσz−2i∆σy)
[

1
4(t2−∆2)

−F1(z)
]
, (A.)

where for m∈{0,±1}

Fm(z) =
1

4(t2 −∆2)
· 1
Q+(z)−Q−(z)

∑
s=±1

sQms (z)
√

1− 1/Q2
s (z)
. (A.)

The left boundary GF of a semi-infinite Kitaev chain is then obtained by inserting

Eqs. (A.)-(A.) into the expression for gS(z) in Eq. (A.). The local density of

states (LDOS) at the boundary (normalised to 2π) is obtained from the left boundary

(retarded) GF as − ImtrgS(ω+iη) and is shown in the topological phase in Figure A.

and in the trivial phase in Figure A.. The bulk LDOS is also shown in both plots

for comparison. That the topological phase hosts localised zero energy end modes

manifests as a subgap spectral peak at ω=0 in the LDOS.

a. read-green superconductor

Using the same method as in the previous section, one can calculate the boundary

GF of a semi-infinite two-dimensional spinless px+ ipy or Read-Green supercon-
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Figure A. – Local density of states (blue) at the left boundary of a semi-infinite
Kitaev chain in (a) the topological phase: µ = 0.5t,∆ = 0.5t and (b) the trivial phase:
µ = 3.0t,∆ = 0.5t. That the topological phase hosts localised zero energy end modes
(Majorana zero modes) manifests as a subgap spectral peak at ω = 0 in the LDOS
shown in (a). The bulk LDOS is shown in dashed red for comparison.

ductor []. The bulk superconductor is described by a fully translation invariant

Hamiltonian,

HR =
∑
x,y

[
−t

(
c†x+1,ycx,y + c†x,y+1cx,y + h.c.

)
+
(
∆c†x+1,yc

†
x,y + i∆c†x,y+1c

†
x,y + h.c.

)
−µc†x,ycx,y

]
, (A.)

where t is the hopping integral, µ is the chemical potential, and ∆ is the p-wave

pairing potential that can be made real by a suitable gauge transformation in the

phase of the Cooper pair wavefunction. Imposing periodic boundary conditions and

Fourier transforming to momentum space k=(kx, ky), HR can be written in BdG form

with Nambu spinor Ψk=(ck c†−k)ᵀ as

HR =
1
2

∑
k

Ψ†k

 ξk 2i∆k

−2i∆∗k −ξk

Ψk ≡
1
2

∑
k

Ψ†khR(k)Ψk, (A.)

where ξk = −2t(coskx + cosky)−µ and ∆k = 2∆(sinkx + i sinky). The bulk GF in

momentum-frequency space is then [z−hR(k)]−1, which when evaluated gives

gB(kx, ky ;z) =
1

z2 −E2(k)
[z+ hR(k)] , (A.)

where E(k) =
√
ξ2
k+|∆k|2 . We now cut the system to obtain an edge by adding a

term J
∑
x c
†
x,0cx,0 to HR and sending J→∞. Note that translation invariance is lost
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only along y in this procedure. The Dyson equation for Nambu GFs in the new

semi-infinite system can be written as

g′(kx;y,y
′;z) = gB(kx;y − y′;z) + gB(kx;y − 0;z)Jσzg′(kx;0− y′;z), (A.)

where we work in a mixed (kx, y) representation with Nambu spinors defined as

(ckx,y c†−kx,y)ᵀ. The edge GF gE(kx;z)=g′(kx;1,1;z) is then obtained in the limit J→∞

as

gE(kx;z) = gB(kx;0;z)− gB(kx;1− 0;z)g−1
B (kx;0;z)gB(kx;0− 1;z). (A.)

The GFs appearing on the RHS can be computed from a partial inverse Fourier

transform of the momentum-space bulk GF gB(kx, ky ;z), given by

gB(kx;y − y′;z) =
∫ π

−π

dky
2π

eiky(y−y′)

z2 −E2(k)
[z+ hR(k)] . (A.)

This integrals for y−y′ = 0,±1 can be computed following the same steps as in the

previous section – using the substitution w=−cosky and the standard integrals in

Eqs. (A.)-(A.). The results are

gB(kx;0;z) = [z − (µ+ 2t coskx)σ
z − 2∆sinkxσ

y]F−1(kx;z) + 2tσzF0(kx;z), (A.)

gB(kx;1− 0;z) = 2i∆F−1(kx;z)σ
x−[z−(µ+ 2t coskx)σ

z − 2∆sinkxσ
y]F0(kx;z)

+ (2tσz+2i∆σx)
[

1
4(t2−∆2)

−F1(kx;z)
]
, (A.)

gB(kx;0− 1;z) = −2i∆F−1(kx;z)σ
x−[z−(µ+ 2t coskx)σ

z − 2∆sinkxσ
y]F0(kx;z)

+ (2tσz−2i∆σx)
[

1
4(t2−∆2)

−F1(kx;z)
]
, (A.)

where for m∈{0,±1}

Fm(kx;z) =
1

4(t2 −∆2)
· 1
Q+(kx;z)−Q−(kx;z)

∑
s=±1

sQms (kx;z)√
1− 1/Q2

s (kx;z)
, (A.)

Q±(kx;z) =
1

2(∆2 − t2)

{
− t(µ+ 2t coskx)

±
√
∆2(µ+ 2t coskx)2 − (∆2 − t2)

[
z2 − 4∆2(1 + sin2 kx)

]}
. (A.)
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Figure A. – Intensity plot of the spectral function AE(kx;ω) on the edge of a semi-
infinite Read-Green superconductor in the (a) topological phase: µ = −3.0t,∆ = 1.5t
and (b) trivial phase: µ = −5.0t,∆ = 0.5t. The topological phase hosts chiral Majorana
fermions as edge modes, featuring as linearly dispersing subgap states in the surface
spectral function.

The spectral function AE(kx;ω) at the edge is obtained from the retarded edge GF

as − ImtrgE(kx;ω+iη), and is shown in Figures A.a-b in both, topological and trivial

phases. The linearly dispersing subgap edge states present in the topological phase

are chiral Majorana fermions. Reversing the sign of µ reverses the chirality of the

Majorana edge modes.
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appendix B

Path integrals for Majorana fermions

Partition functions of Fermi and Bose systems admit representations as coherent state

functional integrals. This involves working in the (overcomplete) basis of fermion

or boson coherent states, which are eigenstates of fermion or boson annihilation

operators. Since Hamiltonians of condensed matter systems are usually expressed

in second quantised form, the coherent state basis is a natural basis to work in.

However, Majorana operators do not admit coherent states that form a complete or

over-complete basis. In this section, we outline the construction of coherent state

functional integrals for Majorana fermions following Refs. [, ], although our

conventions differ from those references.

Consider a Hamiltonian that is bilinear in Majorana fermions,

H = i
∑
ij

γihijγj , (B.)

where the Majorana operators are Hermitian γ†j =γj and satisfy the Clifford algebra

{γi ,γj}= 2δij . The factor of i is required in order for H to be Hermitian. The prob-

lem of non-existent coherent states for Majorana fermions can be circumvented by
For details of the construction of such functional integrals, see Ref. []. This is necessary

background that is assumed in the rest of this section.
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expressing all the Majorana fermions in terms of complex fermions. There are two

ways in which this can be done: (i) fermion halving – all the Majorana fermions in the

problem are paired up as complex fermions, and (ii) fermion doubling – introducing

an extra, unphysical Majorana fermion for each physical one and then pairing up

the two to create complex fermions. The latter approach is discussed here. For more

details on both constructions, see Ref. []. To this end, we introduce a spurious

species of Majorana fermions ηi that exist alongside γi on every site. Combining η

and γ to create complex fermions as

ψj =
1
2

(
γj + iηj

)
, ψ†j =

1
2

(
γj − iηj

)
, (B.)

the Hamiltonian in Eq. (B.) can be expressed as

H = i
∑
ij

(ψi +ψ†i )hij(ψj +ψ†j ). (B.)

The partition function Z = trexp(−βH) with inverse temperature β can now be ex-

pressed as a path integral using coherent states for complex fermions in the standard

way. Note that H must be normal ordered in this procedure in order to make the

replacements ψ̂→ψ and ψ̂†→ ψ̄, from fermion operators to Grassmann numbers.

Since

:H := i
∑
ij

hij
(
ψ†i ψj −ψ

†
jψi +ψiψj +ψ†i ψ

†
j

)
, (B.)

the path integral representation of Z is

Z =
∫
D[ψ̄,ψ]e−S[ψ̄,ψ], (B.)

where the action is defined in the usual way as

S[ψ̄,ψ] =
∫ β

0
dτ

∑
j

ψ̄j∂τψj + i
∑
ij

hij
(
ψ̄iψj − ψ̄jψi +ψiψj + ψ̄iψ̄j

) ,
=

∫ β

0
dτ

∑
j

ψ̄j∂τψj + i
∑
ij

(ψi + ψ̄i)hij(ψj + ψ̄j)

 ,
where we have made the replacement −ψ̄jψi =ψiψ̄j in the second line (since Grass-

mann numbers anti-commute) to get back the original form of H . In summary, we do
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not have to worry about normal ordering of the Hamiltonian when writing down the

action for the path integral. τ ∈ [0,β] is a compactified imaginary time variable.

Since the Majorana fermions η introduced earlier are spurious, one must ensure

that they do not contribute to the thermodynamics. Going back to the original

Majorana representation in terms of γ and η, we find

S[γ,η] =
∫ β

0
dτ

1
4

∑
j

(
γj∂τγj + ηj∂τηj + iγj∂τηj − iηj∂τγj

)
+ i

∑
ij

γihijγj

 . (B.)

The cross terms in the Berry phase part of the action can be written as a total derivative

i∂τ(γjηj). Performing the τ integral, this gives rise to boundary terms that evaluate

to zero, of the form

iγj(τ)ηj(τ)
∣∣∣β
0

=
[
ψj(τ) + ψ̄j(τ)

] [
ψj(τ)− ψ̄j(τ)

]∣∣∣∣β
0
,

= 2
[
ψ̄j(β)ψj(β)− ψ̄j(0)ψj(0)

]
,

= 0, (B.)

where the last line follows because the complex fermions (Grassmann fields) obey

anti-periodic boundary conditions in imaginary time, ψ(β)=−ψ(0) and similarly for

ψ̄ []. The action therefore simplifies to

S =
∫ β

0
dτ

1
4

∑
j

γj∂τγj + i
∑
ij

γihijγj +
1
4

∑
j

ηj∂τηj

 ≡ S[γ] + S[η]. (B.)

The action therefore separates into terms that only involve either γ or η with no

cross-terms. The measure of the path integral can also be expressed in terms of the

Majorana fermions γ and η. To see this, note that the path integral measure in Eq.

(B.) is [], using a discretised imaginary time variable m,

D[ψ̄,ψ] = lim
N→∞

N∏
m=1

∏
j

dψ̄j(m)dψj(m),

= lim
N→∞

N∏
m=1

∏
j

i
2

dγj(m)dηj(m),

=D[γ]D[η]. (B.)
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The pre-factor limN→∞(i/2)N×Nsites is a constant multiplier to the partition function

that can be ignored. The path integral in Eq. (B.) can thus be written as

Z =
∫
D[γ]e−S[γ]

∫
D[η]e−S[η]. (B.)

The η fermions are just spectators in calculating properties of the physical γ fermions

and can thus be ignored. In this case, the path integral over the η fermions can be

carried out explicitly, resulting in a constant multiplicative factor to Z that can be

dropped. Therefore, given a Majorana fermion (γ) Hamiltonian such as Eq. (B.), one

can write down a coherent state functional integral similar to the complex fermion

case with two caveats:

n The path integral measure D[γ] only involves γ as there is no ’conjugate’

Grassmann field, in contrast to D[ψ̄,ψ] for a theory of complex fermions ψ;

n The Berry phase term (γj∂τγj)/4 in the action carries a pre-factor of 1/4, which

arises because γj operators satisfy a Clifford algebra. It is convenient at times

to think of this as 1
2γj(

1
2∂τ )γj→ 1

2γj(
−ikn

2 )γj , where the latter is obtained upon

Fourier transforming to the Matsubara frequency representation. One can

then interpret ikn/2 as a ’Majorana Matsubara frequency’, which is half the

complex fermion Matsubara frequency ikn=(2n+1)πT .

Consider now a general Gaussian functional integral for Majorana fermions γ ,

with a real Grassmann source J , given by

Z[J] =
∫
D[γ]e−

1
2

∫
dxdx′γ(x)A(x−x′)γ(x′)+

∫
dxJ(x)γ(x). (B.)

This continuum functional integral is obtained from a limiting procedure N→∞ on

the discretised version,

Z[J] =
∫

dγ1 ...dγ2N e
− 1

2γiAijγj+Jiγi , (B.)

where the Einstein summation convention has been used. Since the {γi} anti-commute,

Aij =−Aji can be taken to be anti-symmetric without loss of generality. Let us first

calculate the source-free integral,

Z[0] =
∫

dγ1 ...dγ2N

∞∑
m=0

(−1)m

m!2m
(γiAijγj)

m, (B.)
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where the exponential has been expanded into a power series. Since
∫

dγ = 0 by

definition, only terms with all γ1, ...,γ2N will give a non-zero contribution to the

integral, that is only the m=N term in the power series contributes. Therefore,

Z[0] =
(−1)N

N !2N

∫
dγ1 ...dγ2N (γiAijγj)

N ,

=
1

N !2N

∑
P ∈S2N

sgn(P )AP (1)P (2)AP (3)AP (4)...AP (2N−1)AP (2N )

≡ PfA,

where in the second line, the sum is over all permutations P of {1,2, ...,2N }, and the

third line defines the Pfaffian of the matrix A []. It can be shown that Pf2A=detA;

to see this, consider Z[0]2 with an action of the form −(1
2γiAijγj+

1
2γ
′
iAijγ

′
j ). The γ

and γ ′ Majorana fermions can be paired up to form complex fermions ψ with the

action −ψ̄iAijψ – the path integral defined by this action then gives the regular detA,

which immediately proves that detA=Pf2A.

To compute a general Z[J] with non-zero source, we invoke a change of variables,

defining

χi = γi −A−1
ij Jj . (B.)

Using the antisymmetry of Aij , it is easy to show that the path integral in Eq. (B.)

transforms in the continuum limit to

Z[J] = lim
N→∞

∫
dχ1 ...dχ2N e

− 1
2χiAijχj e−

1
2 JiA

−1
ij Jj ,

= Pf(A)exp
[
−1

2

∫
dxdx′ J(x)A−1(x − x′)J(x′)

]
. (B.)
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appendix C

Transport in a TSC-QD-TSC junction

In the MAI class of models [], consider a TSC-QD-TSC junction (see Figure C.) with

Hamiltonian

H =HL +HR +HQD +Hhyb, (C.)

where HL and HR are Kitaev chains that form the left and right leads (LL and RL)

respectively:

HL =
i
2

N−1∑
j=1

(∆L + tL)γ ′−j−1γ−j + (∆L − tL)γ−j−1γ
′
−j −µLγ−jγ

′
−j , (C.)

HR =
i
2

N−1∑
j=1

(∆R + tR)γ ′jγj+1 + (∆R − tR)γjγ
′
j+1 −µLγjγ

′
j , (C.)

where the Majorana operators are defined in terms of complex fermions as γj =(cj+c
†
j )

and γ ′j =−i(cj−c†j ), and satisfy the Clifford algebra
{
γi ,γj

}
=2δij and

{
γi ,γ

′
j

}
=0. ∆L,R

are the p-wave pairing potentials, tL,R are hopping integrals, and µL,R are chemical

potentials. In the topological phases of LL and RL, i.e. for
∣∣∣µL∣∣∣<2tL and

∣∣∣µR∣∣∣<2tR, the

LL hosts Majorana zero modes (MZMs) γ ′−1 and γ−N while the RL has γ1 and γ ′N as

its MZMs. Henceforth, we will assume semi-infinite leads given by the limit N→∞.
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QDLL-TSC RL-TSC
VRVL j= 1 j=N

γ′!Nγ1γ′!−1γ−N

Figure C. – Setup of the TSC-QD-TSC junction.

The QD is modelled as an Anderson impurity described by

HQD = U(t)
(
2nd↑ − 1

)(
2nd↓ − 1

)
+
ε
2

(
nd↑ +nd↓ − 1

)
− h

2

(
nd↑ −nd↓

)
, (C.)

where ndσ = d†σdσ is the number operator for impurity spin σ . U(t) describes a time-

dependent on-site Coulomb repulsion (quench on the charging energy of the QD), h

is a Zeeman field, and ε is a shift in the chemical potentials of the impurity fermions.

The hybridisation between the leads and QD is

Hhyb = iVLγ
′
−1d↑ + iVRγ1d↑ + h.c. = i (VLγ

′
−1 +VRγ1)

(
d↑ + d†↑

)
(C.)

where VL,R are the hybridisation strengths. We have coupled spin-up electrons on the

QD to nearby MZMs in the leads. The fact that experimental realisations of the Kitaev

chain involve proximitised spin-orbit coupled nanowires subjected to magnetic fields

justifies a spin-selective choice of hybridisation, and the inclusion of a Zeeman term

in the QD Hamiltonian (C.).

Although we have considered here a quench on the QD charging energy U , one

may also quench the hybridisation as in Ref. []. The proofs to be presented in the

next section will hold in this case as well. However, note that exact solvability requires

ε = h at all times. Departures from this limit have to be considered perturbatively as

in Ref. [].

The Z2 slave-spin representation [] of H , obtained by fractionalising dσ→µxfσ

and using the resulting gauge constraint

µz = 2(nf − 1)2 − 1, (C.)
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is given by

HSS =HL +HR + i (VLγ
′
−1 +VRγ1)

(
f↑ + f †↑

)
µx +U (t)µz +

1
2

[ε+ h+ (ε − h)µz]
(
nf ↓ −

1
2

)
.

(C.)

For ε = h, this is bilinear in Majorana operators defined as Γa↑ = µa(f↑+f
†
↑ ) for a∈{x,y,z}

[]:

HSS =HL +HR + i (VLγ
′
−1 +VRγ1)Γx↑ − iU (t)Γx↑ Γ

y
↑ +

1
2

[
ε+ h− i(ε − h)Γx↑ Γ

y
↑

](
nf ↓ −

1
2

)
.

(C.)

Henceforth, we will assume the exactly solvable limit ε=h of Eq. (C.) unless other-

wise mentioned. We show now that the projector

P =
1
2

[1 + (−1)nf µz] (C.)

constructed from the gauge constraint [Eq. (C.)] can be disposed of in calculating

the non-equilibrium current in the slave-spin representation, similar to Ref. [].

Say at time t=0, the charging energy of the QD is U (t=0) =U0 and the system is

in thermal equilibrium at an inverse temperature β with a density matrix

ρ(t=0;V ,U0,ε,h) =
1

Z(V ,U0,ε,h)
exp(−βH(V ,U0,ε,h)) , (C.)

where Z is the physical partition function trexp(−βH). In the Heisenberg picture,

the current operators for the leads in equilibrium (at t = 0) are given by

jL(t=0) =
dNL
dt

= −i[NL,H]

= −i
∞∑
j=1

[
c†−jc−j ,HL

]
−
∞∑
j=1

iVL
[
c†−jc−j , c−1 − c†−1

] (
d↑ + d†↑

)
= ΩL + iVL

(
c−1 + c†−1

)(
d↑ + d†↑

)
, (C.)

and similarly, jR(t=0) = ΩR + iVR
(
c1 − c†1

)(
d↑ + d†↑

)
. (C.)

In the case of normal metallic leads that conserve total particle number, ΩL,R=0, but

as a superconductor spontaneously breaks this symmetry, these terms will contribute

to the current. Therefore, the total current through the QD in equilibrium is

j(t=0) =
1
2

(jL − jR) =
ΩL −ΩR

2
+
i
2

[
VL

(
c−1 + c†−1

)
−VR

(
c1 − c†1

)](
d↑ + d†↑

)
(C.)
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Defining a particle-hole transformation D↑d↑D−1
↑ =d†↑ , observe that

D↑j(t=0)D−1
↑ = j(t=0) (C.)

D↑ρ(t=0;Vα,U0,ε,h)D−1
↑ = ρ(t=0;Vα,−U,h,ε) (C.)

where the second equality comes from the fact thatD↑H(Vα,U,ε,h)D−1
↑ =H(Vα,−U,h,ε)

and Z(Vα,U,ε,h) = Z(Vα,−U,h,ε).

After a quench on the QD charging energy, the average current at any t >0 is given

by []〈
j
〉

(t;Vα,U,ε,h) = trρ(t=0;Vα,U0,ε,h)K†(t;Vα,U,ε,h)j(t=0)K(t;Vα,U,ε,h),

(C.)

where K(t,0) is the evolution operator,

K(t;Vα,U,ε,h) = T̂ exp
(
−i

∫ t

0
dt′H(t′)

)
(C.)

Inserting identities D−1
↑ D↑ thrice inside the trace in Eq. (C.), using cyclicity, and

the relations Eqs. (C.)-(C.), it is easy to see that〈
j
〉

(t;Vα,U,ε,h) =
〈
j
〉

(t;Vα,−U,h,ε). (C.)

In the slave-spin representation, the current operator at t=0 is

jSS(t=0) =
1
2

(j(SS)
L − j(SS)

R ) =
ΩL −ΩR

2
+
i
2

[
VL

(
c−1 + c†−1

)
−VR

(
c1 − c†1

)]
Γx↑ . (C.)

Since the action of D−1
↑ is represented on the slave-spin Hilbert space by µx, the phys-

ical average current at t >0 in Eq. (C.) is expressed in the slave-spin representation

as

〈
j
〉
SS (t;Vα,−U,h,ε) = trµx2ρSS(t=0;Vα,U0,ε,h)µxµx

×K†SS(t;Vα,U,ε,h)µxjSS(t=0)µxKSS(t;Vα,U,ε,h)µxP, (C.)

where we have used the relation Z=ZSS /2 to obtain ρ→ 2ρSS , and

ρSS(t=0;Vα,U0,ε,h) =
1

ZSS(Vα,U0,ε,h)
exp(−βHSS(t=0;Vα,U0,ε,h)) , (C.)

KSS(t;Vα,U,ε,h) = T̂ exp
(
−i

∫ t

0
dt′HSS(t′)

)
. (C.)
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Note that HSS(t) is quadratic in fermions, so Wick’s theorem applies in calculation of

averages. Again using the cyclicity of the trace, and the relations µxPµx = 1−P and

µxjSS(t=0)µx= jSS(t=0), Eq. (C.) simplifies to

〈
j
〉
SS (t;Vα,U,ε,h) = trρSS(t=0,Vα,U0,ε,h)K†SS(t;U )µxjSS(t=0)KSS(t;U ) (C.)

with the projector disposed of.
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