Bl S

Canadian Theses Service Service des thises canadiennes

Onawa, Canada
K1A O

NOTICE

qugny { this microform is hea ent upon the
of the original thesis .,J."n?.“.‘é' unm

iﬁnﬂ mmmmmmwmd
ion possible.

priginal pages were typed a lypnniu'
! mglnnwcﬁmp?m

Reproduction in full or in part of this microform is gove
by the Canadian Copyright Act, R.S.C. 1970, c.
subsequent amendments.

AVIS

alité de cette microforme dépend grandement de la
mﬁiﬁhlﬂnmﬂnmm Nous avons

mlﬂmmrummﬂﬂnpﬁhuﬁd-mmc

S manque des pages, veulllez communiquer avec
université qui a coniéré le grade.

alité d'impression de certaines pages peut lais -
dt%rmmliln”’ mﬁmﬁﬁmt‘a
plidnif:ﬁtd\mnﬂnmimﬂmumu:uu
mﬁrumplmapﬁﬂgﬂiﬁm

2, de Catle microlorme est
:urhdmld‘mlm SRC
1970, ¢. C-30, ﬂnsmﬁm;,,, .

Canad?d

University of Alberta

PARALLEL SORTING ON MULTIPROCESSOR COMPUTERS

by

Shi, Hanmao

SUBMITTED TO
THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE OF
Master of Science

Department of Computing Science

Edmonton, Alberta
FALL 1990

i+l

Otawa, Canada
K1A ON4

The author has granted an kvevocsble non-
exclusive icence allowing the National Lirary
of Canada $0 reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
mmummmmm
to interested persons.

~ The author retains ownership of the copyright

in his/her thesis. Neither the thesis nor
Mﬂiammumbamar
oum reproduced without his/her per-

Lm:mﬂmmmﬂ
non exclusive permettant 4 la Biblloth
nationsle du Canada de reprodulre, prédber,
distribuer ou vendre des coples de sa thdse
de queique manidre et sous queique forme
qQue ce 30it pour mettre des exemplaires de
cette thése A la disposition des personnes
intéressées.

L‘nﬁtmamﬁﬂmmam
qui protége sa thése. Nila thése ni des extraits
substantiels de celleci ne dolvent &tre
imprimés ou autrement reproduits sans son
autorisation.

ISBN ©-315-64974-7

UNIVERSITY OF ALBERTA

RELEASE FORM

DEGREE FOR WHICH THIS THESIS WAS PRESENTED: Master of Science

YEAR THIS DEGREE GRANTED: Fall 1990

Permission is hereby granted to The University of Albenta Library *o reproduce single copies of this
thesis and 10 lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may
be printed or otherwise reproduced without the author’s written permission.

o ‘__,;""'J <
Permanent Address:

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have rcad, and recommend to the Faculty of Graduate Studics

and Rescarch, for acceplance, a thesis entitled Parallel Sorting on Multiprocessor Computers submitied

by Shi, Hanmao in partial fulfiliment of the requirements for the degree of Master of Science.

To My Parents

ABSTRACT

Sorting in computer terminology is defined as the process of rearranging a sequence
of values in ascending or descending order. With the advent of parallel processing, paral-
lel sorting has been &n active area of research. Many parallel sorts which are theoreti-
cally optimal have been proposed. Unfortunately, their experimental results have been
rather bleak.

In this thesis, the performance problem of parallel sorting on multiprocessor com-
puters is studied. Based on the general strategies utilized, many parallel sorts suitable for
multiprocessors can be placed into one of two rough categories: merge-based sorts and
partition-based sorts. Merge-based sorts consist of multiple stages of merge, and are gen-
crally believed to perform well only with a small number of processors. Partition-based
sorts consist of two phases: partitioning the data into smaller subsets and then sorting
each in parallel. The key point of this sort method lies in developing an efficient, well-
balanced partitioning scheme. Previous partition-besed sorts are unstable in the sense
that one of subsets may contain significantly more elements than its average share. A new
problem. A proof is prescnted which shows PSRS is theoretically optimal when » 2p’.
The algorithm has been implemented on the 64-processor Myrias SPS-2 and it shows half
linear speedup. The significance of the result is that it demonstrates the first successful
linear speedup paraliel sort workable on paraliel multiprocessors with a large number of

Acknowledgements

I am indebted for advice and guidance to my supervisor Dr. Jonathan Schaeffer. His
knowledge and experience have guided me throughout this research.

I would like to thank the members of my examining committee: Dr. W. Joerg, W.
Dobosiewicz, and B. Joe, for their valuable comments and suggestions and for their time
spent in reading this thesis.

I would also like to express my appreciation to the Department of Computing Sci-

Finally, deepest thanks to my parents, to whom I owe most.

Table of Contents

Chapter 1: Overview of Parallel SOting ..., 1
1.1, INETOQUCHION <oouveerireieerrerserseraesasssessonsssessissesasstsnsassssssssassnsssssssnsssesssatssmasisassnssases 1
1.2. SOrtiNg NEIWOIKScovvnrieerienmmsensessuemeniisesasenmmmniiissssssnsssnssssasisnses 2
1.3. Parallel Sorting on Shared Memory Models of Parallel Computation 4
1.4. Sorting on Multiprocessor COMPULETScccuimimmmmimismnmnmminimssinsessses 5
1.5, THE PIODICITcoeereiieeererersrssetessrsnanesiais s s s sbsssas s sssbsb sasastsasusussannisssasases 7
1.6. Thesis OTRANIZALONccoiuerenmierirncsnsnnscinironssssisinarns st sttt ssssassenssss 8

Chapter 2: Previous STAIEScocreesiseniniimisimsussssssmssetisssissinsinisssssssessssssss 9
2.1, INITOBUCHION ...ovvenrerrereneserrraesessessnsstosssssasssensesnssasrstsstss sanessssssmsasssasissssssssesssssssnss 9

2.2.2. Time Complexity and Performance Analysiscoecoienetmiinniinniinenicniins 11
2.3. Parallel Two-way Merge Sort (PTMS) ..o 12
2.3.2. Time Complexity and Performance Analysiscoocimnmmscnisinnncnsivssninens 13
2.4.1. Algorithm DESCTIPUONccccvrrrreecresnseusemsnssmmantssssasssssasstssissnscsnesssssstsssss 14
2.4.2. Time Complexity and Performance Analysis everorersesssssssnssssssssases 13
2.5. The Quickmerge Algorithm cevsssesnssassssnsasssessassnsrssssssssesssssssnanss 10
2.5.2. Time Complexity and Performance Analysis ——— . 17

2.6.1. Algorithm DESCTIPHONcccovcuvvenrmvensirssssssisanssnsscsssssssssssinsssssssesssssnsssssnss 19
2.6.2. Time Complexity and Performance Analysiscccoevininiesnisnscinisinnnns 20
2.7. SUMMABTY ...oocvnerierenirerresscnasessssssrssnssssssessnsssssssss smssssssssssssssssnsssssensssassssssassssss 20
Chapter 3: Parallel Sorting by Regular Sampling (PSRS)cccoviniisisissinicns 22
3.2. Panallel Sorting by Regular SAMPHNgccnvveiinnninninnsnsessincssnisissnes 24

3.3. Time Complexity and Performance Analysisccovevvenvrincninvnisissnsnisnes 20

33

i3

37

42

5.2. Extension of PSRS on LANGsveicnnnnnnninsensssannes ssssesssnsrosessssoneasss O

]
g

;
|

)

List of Tables

Table 4.1 Sorting times of PMScooemiiimmistisssmissmnismtissssssssssasecsess 43
Table 4.2 SPeedups Of PMScoouce vouisiimimmssmmimmmesssssimassssimmss s ssinimssissenss 43
Table 4.3 Sorting times of QUICKIMIETEEcoouimemmieursssassnimieminnissamnstssiensenseaeess 45
Table 4.4 Speedups of QUICKIETEE ..vuvuuecuiumniesmmmirinmssssuumssenistias s ssssseses 45
Table 4.5 RDFAS Of QUICKINETEEcvovuuiermensisimmssssensssenssssssnsessssssmasasssisssssssenssssesses 46
Table 4.6 SOrting times Of PSSccco.oiiiuiiimmmmmmmmisensssiissi st 46
Table 4.7 SPeedups Of PSScccomummmismessssmsmmssmsmmsssssassssmsssssssssinsas e ssasssesess 47
Table 4.9 Sorting times of PSRSovvoninimiiimiiminisssismssssinnmmsssssmsissssssesess 48
Table 4.10 Speedups Of PSRSoccveiiiiinmmimmniinsssassssimssmsmisss s s 48
Table 4.11 RDFASOf PSRScooovinniriniiensiisssstsnsmsnsssssssisssssiusiasissssss isassssssssnasnnss 49
Table 4.12 Sorting times Of PSRS (E) ..c..cccoucimersmmmmmssenssssssssrsnissmisssusssuetsssssssenss 50
Table 4.13 Speedups of PSRS (E)conummmmmmmammmssssumssssiusessmmssmssssemmessssssscnsscennes 50

List of Figures

Figure 1.1 A comparison-exchange module ..o csmnsissene: 2
Figure 2.1 Paralle] tWO-WRY METBEcuvemmiiimmisissnsssssstustissmnninsisssssssesssassnsssnasiass 12
Figure 2.2 Example of paralle]l METgecoooomimiimsecicimiininiminisimsesesmsesissssnss 15
Figure 2.3 Example of QUiCKMETBEccuiemmmiminmmmecscniniiminiinisisssnsemcnicsissiissinse 17
Figure 3.1 Example Of PSRSccoocoiiiiiminninsrienctisssissinsisi e eneess 27
Figure 4.1 Fire up and merge paraliel tasks [KVWST] .ccoerrerrrenensscsescasssensnenssssssssess 33
Figure 4.2 Component scheme of a Myrias card cage [KVWST] corervceccrcnceesseninens 33
Figure 4.3 Speedups Of PMS ..ot sy 50
Figure 4.4 Speedups of QUICKIETEEcouuiermmnsriseusctmsssinienisnsssssssssesnassninsss s 52
Figure 4.5 Speedups Of PSScoouciimiiminimisimsssisennsssan st 53

Chapter 1
Overview of Parallel Sorting

1.1. Introduction

Sorting in computer terminology is defined as the process of rearranging a sequence
of values in ascending or descending order. Computer programs, such as compilers, edi-
tors, or database systems, often choose to sort tables and lists of symbols stored in
memory in order to enhance the speed and simplicity of algorithms used to access them.
Because of both their practical importance and theoretical interest, algorithms for sorting
data stored in random access memory (internal sorting) have been the focus of extensive
research. Early serial sorting algorithms were investigated [Kn73, Me84]. Many efficient
serial algorithms! are known which can sort n values in O(n log n) comparisons2, the
theoretical lower bound for this problem. When n is large, this represents a significant
amount of CPU time. Many applications, such as database enquiry evaluations, need to
sort large lists frequently. IBM estimates that about 25% of total computing time is spent
on sorting in commercial computing centers [Me84]. When a quick system response is
critical (e.g. on-line enquiry), serial sorting can be undesirable.

The advent of parallel processing opens a new area of algorithmic research. Parallel
processing makes it possible to perform more than a single comparison during each time
unit; parallel processing also makes it possible to move multiple data items simultane-

! Stricly speaking, sorting algorithms can be divided into two large groups: those thet are comparison-
based and those that are not. The algorithms in the first group only make use of the fact that the universe is
lincarly ordered; while the algorithms in the second group depend on specific characteristics of keys in
some restricted domains. Unless stated otherwise, we are referring 10 comparison-based algorithms.

2 Unless statod otherwise, in this thesis, & stands for the size of the data 10 be soried and p for the
aumber of processors. All the logarithms use base two.

ously. By exploiting both kinds of parallelism, parallel algorithms for sorting can, in
principle, sort n values in less than O(n log n) time units. In the last two decades,
research on parallel sorting has evolved from the early sorting networks to (theoretical)
shared memory models of parallel computation. Much of the work has been largely con-
cerned with purely theoretical issues [BDHM84, Ri86]. Recently, with multiprocessor
computers increasingly available, more realistic parallel sorts for the realizable architec-

ture are becoming many rescarchers’ interests [De82, EvYo8S5, FrMa88, Ri86).

1.2. Sorting Networks

It is somewhat surprising that initially the simple hardware problem of designing a
multiple-input, multiple-output switching network was a prime motivation for the
development of parallel sorting algorithms. Since a sorting network with n input lines
can order any permutation of (1, 2, ..., n), it can be used as a multiple-input, multiple-
output switching network. One of the carliest and most important results is due to
Batcher, who presented two fundamental paraliel merging networks: the odd-even net-
work and the bitonic network. Both sorting networks require O(n log? n) comparators
to sort n values in O(log? n) time [Ba68). As shown in Figure 1.1, a comparator is a
module that receives two numbers on its two input lines A, B, and outputs the minimum

on its output line L and the maximum on its output line H.
| }——=MIN(A, B)
H——=MAX(A, B)

Figure 1.1 A comparison-exchange module

Sincedm.awidenngeofnetwakwpologieshavebeenpmposed,mddwirabilityw

support fast sorting algorithms has been extensively investigated [Fe81, Pe77, Si79].
Until recently, however, the best-known performance remained an O(log® n) sorting
time with O(n log?n) comparators. Despite the advances of VLSI technology,
O(n log? n) comparators still represent a significant cost, especially when » is large.
Another disadvantage is that a sorting network requires all the input data to be available
simultaneously, which is far from easy to meet in practice. For these reasons, special pur-
pose sorting networks have rarely been used in practice. A recent theoretical result may
renew the interest in network sorting algorithms. Ajtai showed a network of O(n log n)
comparators that can sort n values in O(log n) comparisons [Aj83, GiRy88). Unfor-
tunately his algorithm is unsuitable for implementation.

Sorting networks are characterized by their property of nonadaptability. They per-
form the same sequence of comparisons, regardless of the results of intermediate com-
parisons. Because of this, networking algorithms are conveniently implemented on
SIMD (Single Instruction stream, Multiple Data streams) machines. For instance,
Thompson and Kung adapted the bitonic sorting scheme to a mesh-connected processor,
with three alternative indexing rules: the row-major rules, the snakelike row-major rules
and the shuffied row-major rules [ThKu77). The lower bound of sorting on a SIMD
machine is dominated by the number of paraliel routine steps and is often referred as the
distance-bound. In the case of a n x n mesh-connected processor, the distance-bound is
O(n), since it may have to change the elements from two opposite corners of the mesh-
connected processor. This distance-bound effectively imposes a bound of O(n) sorting
time on the mesh processor.

In summary, special purpose sorting networks are not cost-effective in practice.
Most issues addressed are largely of theoretically interest. It is beyond the scope of this
paper to investigate all these sorting networks in details.

1.3. Parallel Sorting on Shared Memory Models of Paraliel Computation

After the time bound of O(log? n) was achieved with the network sorting algo-
rithms, researchers cagerly attempted to improve it with new models of parallel computa-
tion. One of the most used models of parallel computation is the PRAM (Parallel Ran-
dom Access Model) [Qu87]. The PRAM consists of a set of processors and a common
random access memory, where each processor is fully programmable and can read or
write to the common random access memory at every step of the computation. Different
processors may read the same location at the same time, but writing to the same location
is disallowed. The model essentially neglects any hardware constraints which a specific
multiprocessor architecture would impose. In particular, it assumes a conflict-free com-
munication channel of virtually unlimited bandwidth between the processors and the
common random access memory. With this model, Cook et al. formally proved O(log n)
to be the theoretical lower bound of sorting » values in parallel [CRR86]. Based on the
same or similar models, various "fast" parallel sorting algorithms have been proposed
[Co86, Hi78, Pr78, Va75]. One of the fastest parallel sorts achieves a complexity of
(C log n)Va +O(log n) using n'** processot: [Pr78]. Thesc algorithms generally use
enumeration to compute the rank of each element. Sorting is performed by computing in
paraliel the rank of each clement, and routing the elements to the location specified by
their ranks. Unfortunately, the PRAM and its associated models are too powerful to be
implemented with short-term or foresceable technology. Hence sorting on PRAM
remains only of pure theoretical interest.

L]

1.4. Sorting on Multiprocessor Computers

The rapid advances of VLSI technology have made it possible to design and fabri-
cate single-chip processors that have transistor complexity and performance comparable
to CPUs found in minicomputers and mainframes [He84). The cost of hardware contin-
ues to drop. As pipe-lined vector processing computers approach the limits imposed by

community in general, have begun to realize that further substantial gains in processing
speed could be achieved by linking a number of processors together. Thus, the computing

cessor computer or, simply, multiprocessor. Each processor could work in parallel on
independent subcomputations, or tasks, contributing to the fast solution of a large prob-
lem. Two cypes of multiprocessors can be identified with respect to memory organiza-
tion: shared memory multiprocessors and distributed memory multiprocessors. In the
former case, each processor accesses the shared main memory through buses or a net-
work, possibly via its own small private cache. In the latter case, the processor plus local
a network. Shared memory multiprocessors have the significant advantage of fast com-
munication through shared memory, but have also a limitation on the number of proces-
sors (some researchers suggest that 16 might be the maximum) due to the fact that the
mini-supercomputers remain of this type. Notable examples are the Cray series, and the

casier 10 build and more important, scalable [Sm87). No limitation exists on the number
of processors. Examples are the Hypercube (KaKa89), the BBN, the Myrias SPS-2

[KVWS87), etc. However, the recent explosive growth of research on distributed systems
may result in a blurring of this simple distinction [BaTa88, LaEI90]. In the remainder of
this thesis, unless explicitly stated otherwise, by multiprocessor we mean either a shared
memory or distributed multiprocessor.

The speedup of a program on a multiprocessor can be defined for a given number of
procescors p as the ratio of time elapsed when executing the program on a single proces-

solving a problem on a multiprocessor with p identical processors is p. Unfortunately,

ted that the effective performance

Hw87].
The multiprocessor approach introduces three new requirements that are not

encountered in the uniprocessor environment. First, each problem to be solved must be

addition, the memory latency has been further aggravated by the addition of a network
between processors and memories. As a result, the behavior of a parallel program exents
great effect on the efficiency of the program executing on such architectures [EgKa2S1.
Roughly speaking, if tasks are relatively independent of each other and possess a good

Various sorting algorithms suitable for paralle! multiprocessors have been proposed.
Unfortunately, their experimental results give a rather pessimistic picture. Some of them

show a limited speedup, generally believed to be 5 or 6, regardless of the number of pro-
cessors available [De82]. Others perform well only with a very small number of proces-
sors [FrMa88, Qu88].

1.5. The Problem

Although more realistic, as compared to the PRAM, sorting networks are not yet
considered cost-effective in practice. The remaining avenue of approach to efficient sort-
ing is to find fast parallel sorts suitable for multiprocessors. The speedup of a parallel sort
achievable on a multiprocessor depends largely on how well we can minimize the aver-
age memory latency and the overhead of scheduling and synchronization. Based on the
general strategies utilized, most parallel sorts suitable for multiprocessor computers can
be placed into one of two rough categories: merge-based sorts, and partition-based sorts.
Merge-based sorts consist of multiple merge stages, and perform well only with a small
number of processors. When the number of processors utilized gets larger, so does the
overhead of scheduling and synchronization, which reduces the speedup. The perfor-
mance degrades when the overhead of scheduling and synchronization prevails over the
benefits obtained from parallelism. On the other hand, partition-based sorts consist of
two phases: partitioning the data set into smaller subsets such that all elements in one
subset are no greater than any element in another; and sorting each subset in parallel. The
performance of partition-based sorts primarily depends on how well we can quickly parti-
tion the data evenly into smaller ordered subsets. Unfortunately, to the author’s
knowledge, no effective method is currently available, and it is an open question of how
to achieve linear speedup for parallel sorting on multiprocessors with a large number of
processors.

[-]

1.6. Thesis Organization

are examined that are considered representative. Some of them represent "state-of-the-
art” parallel sorts suitable for multiprocessors. The topics of discussion of each algorithm
include the algorithm description, its time complexity, and performance analysis. Chapter
3 is wholly devoted to our new proposed parallel sort PSRS (Parallel Sorting by Regular
Sempling). A theoretical proof is presented which shows PSRS is asymptotically optimal
when n 2 p3. Chapter 4 describes our experiments on the 64-PE Myrias SPS-2, a paral-
lel multiprocessor computer recently developed by the Myrias Research Corporation
based in Edmonton. PSRS and three of the five algorithms discussed in Chapter 2 are
implemented on the SPS-2. The performance results show PSRS has the best speedups
among the four. On the average, PSRS achicves the speedup of roughly % when p pro-

cessors are utilized. The experiments demonstrate the first successful linear speedup
parallel sort workable for parallel multiprocessors with many processors. One of
interesting point is that PSRS spends 4.05 seconds to sort one million 32-bit integers with
64 PEs. It has been reported that a Cray X-MP, which is one of the most commercially
successful supercomputers and costs about 7 times more than a 64-PE Myrias SPS-2,
spends 4.96 seconds sorting the same number of integers>. Chapter 5 discusses the exten-

Chapter 2
Previous Studies

2.1. Introduction

practical to include all previous proposed parallel sorts here due to space limitations. Nei-
ther is there a necessity to do so, since many of them are based on unrealistic assump-
tions, which are beyond our interests. Our focus will be on those which are suitable for
multiprocessors. By suitable we mean those algorithms that are realistic and likely to
yield good performance in an implementation. Instead of saying a few words about each
algorithm, we have chosen to look at five algorithms that we consider representative. The
algorithms examined here are panallel Quicksort, parallel two-way merge sort, parallel
merge sort, Quickmerge, and parailel sorting by sampling. The first two are straightfor-
ward extensions of their respective serial sorts, while the latter three represent "state-of-
the-art” parallel sorts for multiprocessors. They are all easily implementable on general
purpose multiprocessors. Algorithms which depend on specific multiprocessor architec-

The topics of discussion for each algorithm include the algorithm description, its
time complexity, and performance analysis. For practical purpose, we always assume
P < n.Our emphasis is on their speedups in practice, not merely in theory.

10

2.2. Parallel Quicksort (PQ)
The Quicksort algorithm is considered to be the most efficient general-purpose sort-
ing algorithm, as both empirical and analytic studies have shown [Ho61, Kn73, Lo74). It

implemented by several authors [De82, EvYo85, MoSt87). However, their basic results

are similar.

2.2.1. Algorithm Description

All the data to be sorted are stored in an amay. A single global stack stores the:
indices of subarrays that are still unsorted. A number of processors work independently.
Whenever a -tocessor is without work, it checks to see if the stack is nonempty. If it is,
mepmeessnrlacksthestlck.pupupmofmdmssafmunsomdsuhmynﬂ’mesmk
and then unlocks the stack. If the unsorted subarray is smaller than a predefined thres-
hold, the processor sorts it using a simple insertion method. Otherwise the processor par-
nmmsubﬁﬁy.unngmemedimﬁmeﬁﬁhmﬂﬂ%mdhsﬂemtofﬂwsubirrly
mmmhﬁiymmﬂgsmkmhchmmmmmﬂiemmgm

11

Two phases may be distinguished in PQ. In the first phase, the number of processors
is greater than the number of available subarrays to be sorted. Thus some processors
remain idle during that phase. In the second phase there are enough subarrays so that all
processors can keep busy. Because of the first phase, the speedup of the algorithm can’t
be linear. The best speedup theorctically achicvable with this algorithm is
O /(1+(2p —2-log p)/ log n)) [De82)]. No synchronization overhead is assumed in
this complexity. The speedup should grow as more processors arc used. However, experi-
ments show only a limited speedup, generally believed to be 5 or 6 [FrMa88], can be
achieved. The most important factor that constrains the speedup is the low amount of
parallelism early in the algorithm’s execution. The initial partitioning step, during which

nothing to do. This is not an insignificant amount of time to wai:. The partitioning of the
original unsorted array forms a significant sequential component that puts a ceiling on the
maximum speedup achievable, regardless of the number of processors available. The
second factor, which limits the speedup when more processors are used, is the contention
processors may happen to require access to the global stack simultaneously, yet only one
of them is allowed to access it at a time, others have t0 wait for another chance after the
stack is released. If the number of processors is large, accessing the stack inevitably

processors may mean a lower speedup. There
is an optimal number of processors for sorting a certain sized problem [De82).

Like PQ, PTMS [EvYo86] is a straightforward extension of the sequential two-way
tion. It consists of multiple stages. During each stage, pairs of sorted subarrays produced
in the previous stage are merged into longer ones. PTMS makes use of the simple fact

2.3.1. Algorithm Description

The algorithm has two phases. In the first phase, cach of p processors sorts a con-
tiguous subarray of approximately % elements of the armay using sequential Quicksort.
After this phase, all processors synchronize, and the array can now be seen as a setof p
sorted subarrays. Phase two consists of log p merge stages, assuming p is a power of 2.

—Lsuﬂslsnbuﬂys:re merged pairwise

During each stage i, where 1Si Slogp, 2i-1

of each stage, all processors synchronize. For example, Figure 2.1 illustrates how cight
mmwmldmmmymdieh:pnmng,mhafmmmmamn;u
ous portion of the armay in parallel with sequential Quicksort. The merge phase consists
of three stages. In the first stage, cight sorted subarrays are merged pairwise in parallel
mﬂnpmmﬁmmmmnﬂmﬁysmmmmmmm

13

Figure 2.1 Parallel two-way merge

2.3.2. Time Complexity and Performance Analysis

The maximal speedup theoretical achievable is O(p / (1 +(2p —2~logp)/ log n))
[EvY086]. The low parallelism late in the algorithm’s execution is the major factor that
limits the speedup. In the first merge stage, only half of the processors are busy. In the
second merge stage, only one fourth of the processors are busy, and so on. In the last
merge stage, a single processor has to perform a merge of two sorted subarrays of total
size n, which puts a ceiling of O(r) on the sorting time regardless of the value of p.
Experiments show the algorithm works well with a few number of processors. When p is

so does the overhead of scheduling and synchronization, which reduces the speedup. The
performance degrades when the total overhead prevails over the benefits obtained from

14

2.4. Parallel Merge Sort (PMS)

It becomes clear that vetter speedups can’t be achieved with merge-based sorts if the
performance problem inherent in the process of merging two sorted subarrays remains
unsolved. With this in mind, Francis and Mathieson proposed a parallel merge, which
climinates the O(n) lower bound by first dividing the data to be merged evenly among
the processors, and then merging them in parallel [FrMa88]. Based on this parallel
merge, PMS was proposed by the same authors.

2.4.1. Algorithm Description

The algorithm is basically similar to PTMS. It has also two distinct phases. The
first phase is the same as that of PTMS, with each of p processors sorting a contiguous
subarray of no more than [%’I clements of the array with Quicksort. Phase two also con-
sists of log p merge stages, assuming p is power of 2. During each stage i, where

1<i<logp, -E— sorted subarrays produced in the previous stage are merged pairwise
- 2!-1

all processors synchronize. The difference from PTMS lies in the process of merging
two ordered subarrays into a longer one. The parallel merge allows each pair of sorted
mmysmbsﬂﬁgedby:mpdmminﬁeﬂofiﬁngkmﬂ.
Specifically, at stage i, p processors are divided inm-%mp;cfnsiﬂ, Each group
2 ~ 1 processors of a group works in parallel o Gind a pair of boundaries with a modified
binary search. These pairs of boundaries divide the two sorted subarrays 10 be merged

15

synchronize, and the two subarrays can be seen as 2° independent pairs of sorted sublists.
With the demarcations established before, 2° pairs of sublists are then merged in paraliel
by the same group of 2’ processors, one per processor. Figure 2.2 illustrates how two
sorted subarrays are merged by two processors in parallel. First, the two subarrays are
divided evenly into two pairs of sublists such that each element of one pair is no greater
then any of the other. This can be done with a modified binary search on the two subar-
rays. The dashed lines in the figure show the demarcations for the established partition-

1[5[6]7 [15][31

Figure 2.2 Example of paraliel merge

2.4.2. Time Complexity and Performance Analysis
The time complexity of this algorithm is O(%lng n)+ C)(% log p) [FrMa88]. This
complexity assumes no synchronization overhead. Francis’ implementation on the

Sequence Balance 2100, a bus-connected, shared memory multiprocessor, shows a near-
linear speedup when the number of processors utilized is not large. Unfortunately, he

16

eral, the algorithm works well with a small number of processors. It is, however, not suit-
able for a large number of processors because the overhead of the synchronization and
scheduling required can make the parallelism completely worthless. Furthermore, the
algorithm is not well suitable for distributed multiprocessors because of the intensive

data motion involved in the process of the merging.

2.5. The Quickmerge Algorithm

PQ is known to inefficiently use processors early in its execution, while merge-
based parallel sorts suffer from the high overhead of scheduling and synchronization as
well as the intensive data motion during its merging process. Quickmerge [Qu8s8], a
hybrid of mergesort and Quicksort as its name suggests, is intended to take advantage of

both the algorithms to overcome their respective deficiencies.

2.5.1. Algorithm Description

The Quickmerge algorithm has three phases. In the first phase, each of p processors
sorts a contiguous subarray of approximately % clements of the array using sequential
Quicksort. After this phase all processors synchronize. The array can now be seen as a set

of p sorted subarrays of size %

Ind\cﬁrstsatedlistof%elemcms.p-levenlysplcedclmmsmusedas

boundaries to partition each of the remaining sorted lists into p sublists. The second
phmaccmnplishad\epuﬁtioningufouows.l!achmwti,whaeISlSp-l.
finds, for lists 2 through p inparﬂlel,dleindexofmelargestelememnohrgetthmme

elenwntbcawdath\dex[-i-x—:-jindwﬁmuwdﬁsLAﬂuﬂﬁsphandlmm
4

syndmize.Atd:ispointuchofﬂlewmdlimhubeendividedinwp sorted sublists

17
with the property that each element in every list’s ith sorted sublist is greater than any
element in any list’s (i =1)th sorted sublist, for2<i <p.

In the third phase, each processor i, where 1 Si Sp, performs a merge sort on

arcations established in phase two,

every list’s ith sorted sublists. Because of the d
these merges are completely independent of each other, and are therefore done simultane-

illustrates how a list of twenty-four elements are sorted by three processors using Quick-
merge. After the first phase, the array consists of three sorted lists of size eight. During
the second phase, each sorted list is divided into three sublists. In the last phase, each

processor performs a merge on its own set of sublists. Note that every processor knows

2.5.2. Time Complexity and Performance Analysis

The time complexity of this algorithm depends largely on how evenly the data can
be partitioned in the second phase. In the best case, each processor performs a merge sort
on approximately % elements. The best time complexity is therefore
Op +p lng% + %log n) =D(§logn), for n 2 pZ. In the worst case, a single processor
may have to perform a merge sort on O(n) elements in phase three. Hence the worst

time complexity of Quickmerge is O(p +n logp + (% +p)lcg%).

18

fessor #3

Figure 2.3 Example of Quickmerge

Quinn's experiments show a better execution time than PQ [Qu88]. Like PMS, the
algorithm is suitable only for multiprocessors with a small number of processors. As the
have to merge significantly more than its share of elements in the third phase of the algo-
rithm. This reduces the speedup, since the final synchronization can’t complete until the

last processor finishes merging.

19

2.6. Paraliel Sorting by Sampling (PSS)

The ability to partition the data evenly into ordered subsets is essential for
partition-based sors. If the distribution statistics of the data are known, we can casily
divide the data into p equal-sized subsets such that each element in the i th subset is no
greater than any clement in the (i+1)th subset, where i =1,2,....p = 1, and then sort
cach subset in parallel. Unfortunately, in general, we have no such luck. To overcome
this difficulty, we may draw a random sample from the data and use the order information
of the sample to help the partitioning [HuCh83). The effectiveness of sampling depends
largely on the distribution of the original data, the choice of a proper sample size, and the

way in which the sample is drawn.

2.6.1. Algorithm Description

The algorithm is basically similar to Quickmerge, except for the additional work of
selecting p — 1 clements as boundaries to form p partitions. We sometimes call such cle-
ments pivots. PSS has three distinct phases. In the first phase, p — 1 unique pivots are
selectcdfrﬁﬂtheghtlﬁiemvmﬁes:lectﬂdbydﬂmglﬂmllmndnmsamplem
medntn,mmngu.:ndmenglecnngp-lelmntsevcnlyspaeedﬁﬂmthcmmdsam
ple. All are done in serial by one processor.

mieenﬂﬂphnse:seqmv:lemmhothphngmmdmﬁ(}mcm;emgemﬁ
Elchmi.whﬁelsiSP.EHMlmnﬁzms:nhnﬂydmﬂmmlyi
elen:nuufﬂiemyunngmﬂQumkmﬂﬂﬁiﬂsﬂguﬂexnfﬁgm;eﬂelanEm
mhgadzmachafﬂsjﬂipim.jsl.z.m,p—L After this phase all processors
:yndmi&Atmpﬂintﬂaedmmhemmhegnsgtafp sorted lists, each
having been divided into p sorted sublists with the property that each clement in every
liiuilhmﬂmﬂnhpﬂﬂ'dﬂnmyelﬁmtmmyhn:(i-l)ﬂiHﬂmﬂmfm

25isp.
The last phase is exactly the same as that of Quickmerge. After this phase all pro-
cessors synchronize and the array is sorted.

2.6.2. Time Complexity and Performance Analysis

It is not an easy task to give a theoretical analysis on the speedup of the sort. Gen-
erally speaking, the performance depends tn a large degree on the distribution of the ori-
ginal data and the choice of a proper sam:'~ vize. If the data to be sorted has a uniform or
near uniform distribution, a small sample is almost sufficient to achieve an even partition-
ing. On the other hand, if the data has unusual ordering characteristics, a larger sample

2.7. Summary

We have examined five parallel sorting algorithms suitable for parallel multiproces-
sors. Quicksort has been parallelized by several authors. The basic result is that initial
data splitting limits the speedup to 8 maximum, generally believed to be about 5 or 6,
regardless of how many processors used. A similar effect happens to Evan's PTMS, as
little paraliclism can be exploited in the last few phases of merge. Francis noticed this
problem and proposed a parallel merge which eliminates the O(r) lower bound by first
mm;ﬂg@mhwgedwﬂymgﬂwﬁmm:mmmnl
algorithm works well only with a small number of processors. The Quickmerge algo-
rithm is a combination of Quicksort and mergesort. Similarly, the sort is unsuitable for a

21

partitioned. When the number of processors increases, so does the probability that one of
the processors will have to merge significam!ly more than its share of elements in the
third phase of the algorithm. The performance of PSS depends on the distribution of the
original data and the choice of a proper sample size. Theoretically, it is always possible
that in the worst case one processor may have to perform a merge sort on nearly all the
data.

In conclusion, we can distinguish two kinds of sort based on their general strategies:
merge-based sorts and partition-based sorts. Merge-based sorts consist of multiple merge
stages, and performs well only with a small number of processors. They are not suitable
for distributed memory multiprocessors. PTMS and PMS belong to this category. On the
other hand, partition-based sorts consist of two phases: partitioning the data set into
smaller subsets such that all elements in one subset are no greater than any element in
another; and sorting each subset in parallel. Examples are PQ, Quickmerge, and PSS.
Partition-based sorts encounter the difficulty of achieving a balanced or even partitioning.
To solve this problem, we propose a new partitioning scheme called regular sampling,
which is described in the next chapter.

Chapter 3
Parallel Sorting by Regular Sampling (PSRS)

3.1. Introduction

In the review chapter we summarized that parallel sorts suitable for multiprocessors
fall into two rough categories: merge-based sorts and partition-based sorts. Merge-based
sorts consist of multiple merge stages and are generally believed to perform well only
with a small number of processors. Partition-based sorts consist of two phases:

(1) partition the data set into p subsets such that each element in the ith subset is no
greater than any element in the (i +1)th subset, where i =1, 2,p=1;
(2) sort each independent subset in parallel.

The key point of this sort method lies in developing an efficient, well-balanced par-
titioning scheme. A recursive binary partitioning scheme has been tried in the PQ algo-
rithm (Section 2.2). The problem lies in the first few partitioning steps, which include
significant sequential components that impose an O(n) lower bound on the sorting time,
regardless of the number of processors available. It becomes clear that the sort would
pmbib!ymnmuchfgsnﬁif:w;yemldbefcundmdcgp‘iryp:rﬁﬁmingnﬂgmp

An arbitrary p 'ary partitioning will not make much sense as one of p partitions may
contain significantly more elements than its average share. In such a case, one of p

2

23

to perform well, it is critical that the partitioning is well-balanced. It seems difficult since,
in general, we have no knowledge of the distribution of the data before we start sorting.
To overcome this difficulty, we may draw a (random) sample from the data. Intui-
tively, the sample provides a representation of the original data. In other words, the ele-
ments of a sample bear some order information of the original data. Therefore, the order
statistics of a sample can be used to help partitioning (see Section 2.5). The effectiveness
of random sampling depends on how well the sample drawn represents the original data.
This in turn depends on the distribution of the original data, the choice of a proper sample

size, and some other factors.

parallel a contiguous list of approximately % clements at the beginning, as in Quick-
merge. After this the data can be seen as a set of sorted lists. Because the data are now
locally ordered, intuitively, a set of elements evenly spaced from all the sorted lists
should make a good representation of the original data. Their order statistics can there-
fore be used to help partition the data, hopefully, into well-balanced smaller subsets. We
refer to the process of selecting a set of elements evenly spaced from all the sorted lists
of the array to be representatives of the original data as regular sampling, as opposed to

3.2. Parallel Sorting by Regular Sampling

Let the data { %y, X3, ..., X,) to be sorted on & p-processor multiprocessor be
denoted by X and the size of X by n; let X;,; be { x;, X4y, .. X;), where 1 Si Sj<n. X
is a subset of a lincarly ordered domain. We assume n 2 p?, p? divides n, and x; # x;,
where 1 Si < j Sn. The first assumption is based on our observation that in practice
paraliel sorting makes sense only when n is large compared with the number of proces-
sors p. The last two assumptions are only to simplify the discussions which follow and
the modifications will be trivial if these two assumptions are not strictly met.

PSRS has three phases. In the first phase, each of p processors sorts in paraliel a

where 1 Si <p, sorts a list X . With sequential Quicksort. After this phase

(i-1pe 21 ix=
P P
all processors synchronize and X is now said to be locally ordervd.
We define the regular sample of X as a set of p? clements evenly spaced from all

Rt for j =0,1, —_— 1.

X X a A* X nm ’
14— 1+ j X— 1Hp=1—+jx—
] » ?"’ » Hp ?;J »

In other words, from the p sorted lists, we extract p clements evenly spaced throughout
each of the lists. Intuitively, as X is now locally ordered, these p? elements make a good
representation of the original X . Their order information is useful to help partition X
the sorted results are as follows:

yliyz*f et §ypii

where y, is the kth smallest clement in the regular sample. Because the regular sample
contains the p low ends of all the p lists, we exclude the first p smallest elements of the
sorted regular sample and choose p - 1 elements,

y L iy E 1] iii!y

p+5) " 2181 T 0te)

evenly spaced from the remainder of the regular sample as p—1 pivots, which are then
used as boundaries to form p partitions of X. The partitioning is accomplished as fol-
lows. Each processor i, where 1 i < p, finds, for lists 1 through p in parallel, the index
of the largest element no larger than each of the jth pivots, j =1, ..., p — 1. After this
phase all the processors synchronize. At this point each of the p sorted lists of X has
been divided into p sorted sublists with the property that each element in every list’s i th
sorted sublist is greater that any element in any list’s (i —1)th sorted sublist, for2<i <p.

In the last phase, each processor i, where 1 S < p, performs a two-way mergesort
to merge every list’s i th sorted sublists. Note that unlike phase one, in which each pro-
cessor sorts a contiguous block of keys, in phase three each processor merges p sublists
stored in p different areas. Because of the demarcations established in phase two, their
merges are completely independent of each other, and can therefore be done simultane-
ously. After this all processors synchronize, and X is sorted.

Figure 3.1 illustrates a three-processor sort of an array of thirty-six elements using
sorted first and two elements, 11 and 23, of it are chosen as boundaries to form three par-
titions of the array. A binary search is then used 10 divide each sorted list into three sub-
lists. In the final phase each processor performs a merge on its own set of sublists. The

26
dashed lines connecting the sublists in the figure demarcate the elements to be merged in
the final phase. Note that every processor knows where to begin storing its merged list,
since the sizes of all the three partitions are known.

3.3. Time Complexity and Performance Analysis

The initial Quicksort phase has time complexity Q(%log% +p). The first term

Quicksort and the final term represents the time needed to synchronize p processors. In
phase two, sorting the regular sample using sequential Quicksort needs D(pilo;pi)
time. 'Iheneachptocessormustpeffmnpslbin;rysemhesnn:medligafsizem
greatermm%.ﬂencemetimcompleﬁty of phase two is O +p2logp?+p logi).
mphuedm,weshdlptovethatnopimmmgesnmm%elemem.ﬁu:die
lastphasecanﬁnishintimnonmthnn()(p+%lo¢p),Upnnsumﬁﬂncva'die
times of all the three phases, we get the time complexity of PSRS as follows:
0(p+pzlogp2+£-logp+%logn).whichisuympmc 'mﬁ(%logn)wh:nn 2p.

Nowwemrnmmvemtdwsizeofdgdmmbeﬁﬁggjbymymﬂin;dre;

last phase of the algorithm is less than %

'S¥Sd Jo dwwxg g aundy

gagﬂﬁasa$aww¢mkasaasggs,aaanizuaaa;g

W&EEEQW@@EWE‘

~ '
Q ? - . M,

LAY ATV AIRITACIRS R
Jockscodvizzods stk 61 's
1 x,i, ,” \
by 1101 “ o "

I i 8 | 2 £ 7 1
£#f20853001g Wiﬂ_.ﬂ __.....:%Q:;,Esmﬂﬁ ,
g,ii.,aa;] ﬁ‘,. u vy 0

L T 2 90 T 7,27 TRl SLLLOLSLPL LTI ARG S5 TAN

28
Proof:
Consider any processor i, where 1 i S p . There are three cases:
Casel:i =1.

All the data to be merged by processor 1 must be less than or equal to y lEJ!

Since there are (p2-p [E_I) elements of the regular sample which are greater

than y lij' there are at least (p2-p LEJ)x L elements of X which are
P

greater than y iInotherwctdsitherematmtn—(pzsp—[gj)xj—:
p+L5] 277 p?

p+lB)

@+ L%j)x Lz-:Zx%elementsofX which are less than or equal to y
p } P13

Case2:i=p

All the data to be merged by processor p must be greater than y E'l‘here
(Filp‘@*lzj

are (p-1)xp + [gj clements of the regular sample which are less than or equal to

. That is, there are at least (p2 - +1Epx 2 57+ clements of X
y(psiypﬂij ! P -2 l 1) o7 p
which are less than or equal to y , or there arc at most

@-1o+(E)
(2xp - [Ej)xfﬁfp < ng clements of X which are greater than

Y o-tpoe12)

Cased:1<i<p

All data to be merged by processor i must be greater than y and less

(ﬁﬂ?*lél

than or equal to y 'Ihﬁemnlam((i—mm+[£j)xp—+p clements

bp+ &)

29

of X which are less than equalto y P On the other hand, there are at least
i (‘!lh@*lzj

(p=i)xp - [ﬂj) x % elements of X which are greater than y 2y Since the
Loy p y n:;p*tij

size of X is n, there are at most 2p x%ép =2x—=p -:23(!1 elements of X
P /

N
3

for processor i to merge.

which other partition-based sorts, such as Quickmerge and PSS, don't have. Theoretically
PSRS is optimal when n 2 p?, regardless of the distribution of the original data. Aside
from easy scheduling and few synchronization points, another advantage of PSRS lies in
its good per-task locality of reference. In all three phases, each task accesses only a small
portion (never exceeding %) of the data and the accesses are highly localized. This
minimizes the amount of paging, hence reducing the average memory latency. The algo-
rithm is especially suitable for distributed memory multiprocessors. If each PE is initially
allocated a portion of approximately % clements, then no data transmission is required
p ~ 1 pivots are required to be broadcast to all the PEs. In the last phase, each PE has to
send p — 1 sublists to the other p — 1 PEs. After a PE receives its sublists, it stores them
locally and then works on them, totally independent of others. The total number of mes-
n. To sum up, PSRS has O(p?) message complexity and O(n) data traffic complexity,

s szhnimn.niuynmﬁnmmmmmzr%] clements.

wherep « n.

The disadvantage of PSRS lies in the fact that PSRS is asymptotically optimal when
n 2 p’. This means the number of the data must be large compared with the number of
processors in order for PSRS to yield good performance. In practice, however, it is still
quite reasonable to assume n 2 p3

The above analysis is backed by the experiments on the Myrias SPS-2, which are

described in the next chapter.

Chapter 4
Experiments on the Myrias SPS-2

4.1. Introduction to the Myrias SPS-2

The rapid advances of VLSI technology have made it possible to design and fabri-
cate single-chip processors that have transistor complexity and performance comparable
to CPU’s found in minicomputers and mainframes [He84). As the cost of hardware con-
tinues to drop, many computer manufacturers, and the scientific computing community in
general, have begun to realize that further substantial gains in processing speed could be
achieved by linking a number of cheaper processors together. The computing power of
many individual processors can then be hamessed into a single, paraliel multiprocessor
computer.

The Myrias Research Corporation has taken this approach in the construction of a
parallel computing system that allows a large number of heterogeneous tasks to be exe-
cuted simultaneously. Their final aim is to develop a parallel processing system that has
four main features [KVW87]:

scalability: no a priori limit on performance should be imposed,

programmability: the computer should be easy to use,

reliability: failures should not interrupt the execution of user programs, and

Unlike many of today’s other paraliel multiprocessor computers, the Myrias SPS-2
system architecture was derived from a high-level language extension (PARDO) and its

31

32
independent iterations of a looping construct simultaneously.

4.2. PARDO Extension and the Myrias Memory Model
Access to parallelism within the Myrias SPS-2 system is provided by a single
PARDO extension to the high-level programming languages, Fortran and C. This
PARDO extension causes independent loop iterations to be executed in parallel as
independent tasks. Parallel tasks can be heterogencous and recursive. Each task, in princi-
ple, gets (by demand paging) a virtual copy of the current address space, and manages its
own portion of the program, totally oblivious to other concurrent tasks. When the tasks of
a loop all complete, the new parent state is formed by merging the results computed by
all the parallel tasks. Specifically, there are four merging rules:
(1) no update:
if no child task assigns to a variable, then the parent variable is unchanged.
(2) one task updates:
if exactly one child task assigns to a variable, the variable in the parent task is
changed to the assigned variable.
(3) several tasks update with the same value:
if more than one child task assign to a variable, but the values assigned are identical,
then the variable in the parent task is changed to the assigned value.
(4) otherwise:
any other update pattern will cause the value of the parent task varisbie to be
The parent task then resumes just as it would at com tion of a corresponding
serial do loop in Fortran (farbq:mé)(ggFi;EAI)mfmmﬂshelnnd

ﬂnsmmmundﬂnsmmlmmmmmndgmﬂm

33

replication [BKTJ89].
The Myrias SPS-2 system provides a transparent control mechanism that automati-
cally schedules parallel tasks on PEs, optimizes the use of hardware resources, and

manages all data motion.

4.3. Present Hardware Configurations

The Myrias SPS-2 system has a hierarchical architecture consisting of many pro-
cessing clements (PEs). Presently one PE contains a Motorola 68020 CPU, 68851
MMU, 68882 FPU, 4 MBytes of memory, and a custom ASIC (Application Specific
Integrated Circuits) that provides fast communication links between PEs and various
supporting functions. Four PEs share a single bus on a multiple-processing element board
with 16 MBytes of memory. Up to 16 multiple-processing boards share two 33
Mbytes/sec backplane buses in a card cage (Figure 4.2). Multiple cages can further be
interconnected to build larger configurations. There is virtually no restriction on the size
of a configuration one can build. Our experiments were done on a 64-PE Myrias SPS-2.

4.4. General Programming Considerations

At present the Myrias SPS-2 supports two high-level languages: MPF (Myrias
Parallel Fortran) and MPC (Myrias Parallel C). The languages are standard, apart from
the PARDO extension discussed in Section 4.2. The operation system available is a
modified version of AT&T Bell Laboratories’ UNIX. t

t Regisered trademark of ATAT in the USA and other countries.

ORIGINAL

PARENT
TASK

G

MERGIN

ATED
PARENT
TASK

-

Figure 4.1 Fire up and merge parallel tasks [KVW87)

ARBITRATOR

T 1T "1 oMM

BACKPEANE

MPE (16)

Figure 4.2 Component scheme of a Myrias card cage [KVW87]

Programming on the Myrias SPS-2 is much easier compared with many other mul-
tiprocessor computers, as users don’t have to be aware of the underlying hardware
configuration unless performance issucs are concemed. PARDO is indeed a very power-
ful and flexible language facility. There are no restrictions on the number of "iterations”
in a PARDO, nor on the depth of nesting of PARDO and recursive subroutines, nor on
the requirement that parallel tasks should be homogeneous. Parallelism in the majority of

The simplest way to provide an adequate supply of tasks is to execute every piece of

36

code in parallel and to make each PARDO contain as many child tasks as possible.
Unfortunately such an approach may not always yield programs with good performance
on the Myrias SPS-2. Rather, parallelism should not be overstated. Each PARDO
requires some system management work, which includes child task creation and syn-
chronization, and a certain amount of memory replication and merging. The Myrias
SPS-2 has no central physical memory, therefore it has the requirement of reference
locality similar to those of other virtual memory machines with caches. In order to make
a PARDO worthwhile, each child task must perform an adequate amount of computing
while at the same time read and write as few locations of different pages as possible. For
this reason, it is often wise to put PARDOs on the outermost reaches of a program, so as

to maximize the ratio of computing to data motion cost.

4.5. Notes on the Implementation

We have implemented PSRS and three parallel sorts discussed in Chapter 2 (i.e.
PMS, Quickmerge, and PSS) in MPC on the 64-PE SPS-2. PQ and PTMS discussed in
Chapter 2 were not implemented simply because they are both O(n) bound, and are
therefore unlikely to show better performance. The pseudo-codes of these four algorithms
can be found in Appendix A1. The Myrias SPS-2 provides a transparent control mechan-
ism that automatically schedules paraliel tasks, optimizes resource usage, and manages
data motion. This, however, has both advantages and disadvantages. The major advan-
tage is that it simplifies programming. A user should not worry about the details of task
allocation and data motion. One the other hand, this also makes it impossible for a user to
have his or her own control schemes to execute one'’s specific program. It is not always
pleasant since the system’s general optimizer can't take advantage of the properties
specific to a program.

37

4.6. Performance Results and Analysis

For each of the four algorithms implemented, we present a table of sorting times,
and a table and a graph of speedups (see in the end of this chapter). The size of test data
ranges from 0.1 million to 10 million integcrs. The numbers of processors utilized are 2,

4, 8, 16, 32, and 64. Each data item in the tables of sorting times was collected as the

test data were generated in the following way: each processor i, where 1 Si <p, gen-
crates in parallel a portion (approximately %) of the test data by the standard library rou-
tine rand() initialized with random seed i x seed. Rand() here is a multiplicative
congruential random number generator which retums successive pseudo-random 32-bit
integers in the range from 0 to 2*' — 1 with period 232. Different test data are generated
through changing the value of seed.

More precisely. we made two common modifications. First, we used the median of the
first, middle, and last elements of the subarray as the splitter. Second, we sorted subar-
rays with size less than ten integers using linear insertion sort. The same version was
also used in the implementation of all the four parallel sorts. Unfortunately, one PE on
the SPS-2 can only sort at most 0.2 million 32-bit integers due to the limited space of its
main memory. To compute the speedups, we need to know the sequential sorting time of
the improved Quicksort on the Myrias SPS-2 when n is larger than 0.2 million. Since
the theoretical lower bound of sequential sorting is O(n log n), it is reasonabl
the time of sorting » integers using the improved Quicksort on one PE of the Myrias
SPS-2 as follows:

tpe(n) =Cnlogn (1)

38

where C is a constant independent of size n. The sequential times with a size larger than
0.2 million in all the tables of sorting times except the last one (in italics) are calculated

according to the following formula, a simple derivation from (1):

_ nlogn .
t£ (") = 750,000 Tog 100,000 ~ "7 (100000

where 0.4 million S n < 10 million and #p¢ (100,000) = 6.63 seconds, the experimental
time for the improved sequential Quicksort to sort 0.1 million integers on one PE of the
SPS-2. Note that if one uses this formula to compute tpg (200,000), the result is almost a
perfect match with the corresponding experimental time.

Table 4.1 shows the sorting times of PMS. Table 4.2 and Figure 4.3 show the speed-
ups of PMS on the 64-PE Myrias SPS-2. There is almost no speed improvement at all
compared with the sequential Quicksort. Some speedups are even less than one. The
results are quite disappointing. The problem is found to be largely due to the poor perfor-
mance of the second phase of the algorithm. Phase two of PMS has log p merge stages.

Stage i, where 1 <i Slogp, has f; independent paraliel tasks. Each parallel task has

two nested PARDO statements, each involving a large amount of memory replications
and merging required by the Myrias memory model. The high overhead of the PARDO
statements plus the relatively small computational granularity makes the parallelism
nearly worthless. To get a sense how much a PARDO statement overhead would be, it is
foundthattheﬁmeofexecuﬁngmePARDOmwmntwithﬂ“itﬁiﬁms"ﬁﬁnempty
loop body, which requires no memory replication and merging at all, is approximately
0.108 seconds, a significant amount of CPU time.
Tabk43dmdnmngnmonummsp&duplﬂQumm
befoundin'l‘able4.4mdl=igm4.4.'l'lumulumwhbeﬂsﬂnnFMS‘.espashﬂy
when p is less than 16. However, when p increases from 16 0 32, there is almost no

39

can be explained by Table 4.5. RDFA in the table stands for Relative Deviation of the
size of the largest one of the p partitions From the Average size of the p partitions,
which is defined as follows:

RDFA = — P2

n
p
where m is the size of the largest one of the p pnxﬁﬁonsmd%theavmgesiz:ufthep

partitions. Since m 2 := it is always the case that RDFA 2 0. The smaller the RDFA is,

anced the partitioning becomes. This reduces the speedup since the final synchronization
can’t complete until the last processor finishes merging. The reasons behind this effect
have already been explained in Section 2.4.2.

Table 4.7 and Figure 4.5 show the speedups of PSS. The sorting times of PSS are
given in Table 4.6. Random sampling scems to be an effective approach to parallel sort-
ing. An initial sample of 16 xp elements randomly spread over the data scems to be

value of p in general, yet much slower when p is larger than 24. This is mainly because
sor may have to merge significant more data than its share. This coincides with the values

40

Table 4.9 shows the sorting times of PSRS. The speedups of PSRS can be found in
Table 4.10 and Figure 4.6. To get more confidence in the speedups, we also took an
experimental approach to estimate the sequential sorting time of the improved version of
Quicksort on the Myrias SPS-2. We have a uniprocessor computer Menaik, which has a
32 MByte main memory and is able to sort 4 million 32-bit integers without any memory
shortage. The machine is of RISC (Reduced Instruction-Set Computer) architecture and
runs much faster than a single PE on the SPS-2. Without memory limitations, we would
have the following approximate equation:

tpe(ny) _ e (n2)
Menair (1) Udenait (B2)

where 1. and n, are the sizes of data to be sorted, IMenair (1) represents the sequential
sorting time of the improved Quicksort on Menaik.

The sequential sorting times in Table 4.12 (in italics) are calculated based on the
above assumption, as are the speedups in Table 4.13 and Figure 4.7. Table 4.13 and Fig-
ure 4.7 give better speedups than Table 4.10 and Figure 4.6, especially when » is large.
This is understandable. Because of memory limitations, when more data are being
sorwd,thacisagreuachancethaapagewinmywuideofthemainmw.md
therefore more paging will result. The overhead of paging affects the time of sorting,
especially when n ishrgecanpnredwithmesiuofthemainnmmy.Duewme
slower sequential time when n is larger, the resulting speedups in Table 4.13 and Figure
4.7 overstate to some extent the actual performance of the parallel sortS.

med\edauobnimd,lfewobmadomcmbeundeonmepelfonmweof
PSRS:

6 It should be poimted out that some rescarchers usc the slower wquontial time whea & is large 10 calcw-
late the spoedup. Their results are infiationary.

41

number of PEs, the speedup increases are nearly linear, provided that the problem size is
large enough to give each PE a sufficient amount of work to do. When both the sizes of
Jirst successful linear speedup parallel sort workable for parallel multiprocessors with a
large number of processors.

(b) Although we have used a conservative approach in computing the speedups in
Table 4.10 and Figure 4.6, the results are still quite impressive. PSRS has a speedup of
31.73 when sorting 8 million 32-bit integers with 64 PEs. The trends of both the graphs
suggest that better speedup can be expected if more than 64 PEs are utilized. PSRS sorts
one million 32-bit integers in only 4.05 seconds using 64 PEs. It has been reported that a
Cray X-MP, which is one of the most commercially successful supercomputers and costs
almost 7 times more than a present 64-PE Myrias SPS-2, spends 4.96 seconds in sorting

the same number of integers. On the average, PSRS achieves a speedup of roughly %

when p PEs are utilized.

(c) Table 4.11 shows PSRS is extremely stable. The size of the largest one of the p
partitions is very close to the average, which indicates that the regular sample indeed
provides a very good representation of the original data. Surprisingly, even when p is
very small, the small regular sample is still able to help partition the data evenly.
Theoretically, the RDFA of PSRS is always less than one.

(d) PSRS runs poorly on the SPS-2 when the size of the data is not large enough.
Two factors may contribute to this. The first factor comes from the Myrias SPS-2. PSRS’
implementation on the SPS-2 requires the use of at least three PARDO statements. The
overhead of each PARDO statement is not an insignificant time. In order so gain some

42

speedup, the problem size must be large enough to provide each individual processor a

sufficient amount of computation. The second factor +* ‘mes from the algorithm itself. The

this cost in the total mﬁngﬁﬂgincms:swiththemohhesigafdgmwhich
reduces the speedup.

(¢) The executions of PSRS on the Myrias SPS-2 show that more than half of its
sorting time is due to the system activities This explains why we get nearly 50%
efficiency. Most of the system time is spent in memory replication and merging required
by the Myrias SPS-2 new memory model. The rest is spent in task creation, scheduling,
and synchronization. As sorting is in fact a data-intensive problem, it is not a "good”
problem for the Myrias SPS-2 to solve. Nonetheless, 50% cfficiency is still quite impres-
sive, considering the fact that sorting is generally believed to be a hard problem to be
parallelized.

4.7. Summary
In this chapter, we present the performance results of the four algorithms on the 64-
PE Myrias SPS-2. The speedups obtained are highly reliable because the sequential time
when a is large is extrapolated according to the sequential lower bound. In general, the
speedup relationships of the four algorithms arc as follows:
PMS S Quickmerge S PSS < PSRS

mmeadupsofPMSmfoundmheuﬂHmeEantmﬁmlemmd
Mathieson’s claim that PMS has linear speedup [FrMa88]. It may largely be due to the

43

seems to be an effective approach to parallel sorting. Since our test data are not “general”,
we are not quite sure if it works equally well on data from real-life applications.

The speedup of PSRS is the best among the four. The significance of the result is
that it demonstrates the first successful parallel sort workable for multiprocessors with

many processors.

"~ Sorting Times
(in seconds)

E 4PEs | 8PEs | 16PEs | 32PEs | 64PEs
1] 570 | 665] 698 | 746 | -

1126

"13.10

24.49

26.86

62.71

~$9.03

7504

162,13

. - 162.43 | 155.73

Table 4.1 Sorting times of PMS

16PEs

Table 4.2 Speedups of PMS

Sorting Times
Sizes (in seconds)
1PEs 2PEs | 4PEs | 8PEs | 16PEs | 32PEs | 64PEs
100000 | 6.63 | S5.54 | 3.27 | 3.24 | 342 | 4.25 -
200000 1400 | 11.29 6.18 493 437 5.59 -
400000 | 29.71 | 23.74 | 12.34 8.67 6.34 7.89 -
800000 62.62 - 2627 | 16.73 | 1033 | 10.26 | 19.12
1000000 7956 - 4068 | 2089 | 1246 | 11.35 | 19.98
2000000 § 167.10 - - - 2493 | 1864 | 25.39
4000000 | 350.17 - - - - 3363 | 34.69
8000000 | 732.28 - - - - 75.72
10000000 | 928.20 - - - - 92.56
Table 4.3 Sorting times of Quickmerge
Speedups
8PEs | 16PEs | 32PEs | 64PEs
205 1.94 1.56 -
284 >.20 2.50 -
343 4.69 i -
3.74 6.06 6.10 3.28
3.81 6.39 7.01 3.98
- 6.70 8.96 6.58
- - 1041 10.09
- - - 9.67
- - - 10.03

Table 4.4 Speedups of Quickmerge

45

Sizes RDFAs
2PEs | 4PBs | 8PEs | 16PEs | 32PEs | 64PEs
100000 | 0.183 | 0.745 | 2.97 11.80 31.000 -
200000 § 0.092 | 0.369 | 1.501 5.584 | 23.493 -
400000 | 0.462 | 0.183 | 0.731 3.004 | 11.722 -
800000 - 0.096 | 0.369 1.493 5943 | 23.170
1000000 - 0.078 | 0.296 1.195 4773 | 18.761
2000000 - - 0.603 2.397 9.410
4000000 - - - 1.207 4.757
8000000 - - - 2.3
10000000 - - - 1.995
Table 4.5 RDFAs of Quickmerge
Sorting Times
(in seconds)
4PEs | 8PEs | 16PEs | 32PEs | 64PEs
3.16 2.54 2.18 232 -
6.15 4.61 3.30 321 -
12.54 8.3 559 484 -
27.50 | 16.67 9.61 7.61 8.17
39.61 | 21.16 | 11.81 8.90 9.00
- - 2403 14.96 13.53
- - - 2966 | 21.22
- - - - 38.29
- - - - 48.62

Table 4.6 Sorting times of PSS

Table 4.7 Speedups of PSS

Table 4.8 RDFAs of PSS

47

" Sorting Times

(inseconds)
8PEs | 16PEs

Table 4.10 Speedups of PSRS

48

Table 4.11 RDFAs of PSRS

49

Sorting Times

(in seconds)) o
1PEs | 2PEs | 4PEs | 8PEs | 16PEs | 32PEs | 64PEs
663 | 5411 296| 210 145 | 142 | -
1400 | 11.18 | 582 | 382 | 225 | 18 | -
3122 | 2335 | 1197 | 748] a0 2711 | -
67.17 - 2546 | 1528 | 793 | 465 | 3.6l
85.97 - 3824 | 1931 | 983 | 568 | 405
18145 - - - 2021 | 1067 | 6358

422.46 - - - - | 2164 | 11.84

Table 4.12 Sorting times of PSRS (E)

Speedups
4PEs s | 32PEs
224 | 3.16 4,67 -
240 | 366 | 622 7.41 -
260 | 417 | .61 11.52 -
264 | 440 | 847 | 1445 | 1861
225 | 445 | 875 | 15.14 | 21.23
- - 898 | 17.01 | 27.58
- - 1719.52 | 35.68

Table 4.13 Speedups of PSRS (E)

SPEEDUPS

16+

124

PES
----—--- SPEEDUPS = 0.5 PES

Figure 4.3 Speedups of PMS

52

SPEEDUPS

Figure 4.4 Speedups of Quickmerge

SPEEDUPS

321

28+

12

53

4M

+1M

———i) M

Figure 4.5 Speedups of PSS

SPEEDUPS

16+

124

Figure 4.6 Speedups of PSRS

32}

28+

SPEEDUPS 16+
124

8

---—--- SPEEDUPS = 0.5 PES

Figure 4.7 Speedups of PSRS (E)

Chapter §
Extensions of PSRS on Hypercubes and LANSs

PSRS has been implemented on the Myrias SPS-2, whose memory model is quite
different from those of other multiprocessors. This, however, does not mean the algo-
rithm is suitable only for this architecture. Rather, the essence of the algorithm makes it
equally applicable to many other architectures. Two extensions at least can be made to
the work presented.

8.1. Extension of PSRS on Hypercube Computers

A hypercube computer [KaKa89] is a multiprocessor in which the (processor) nodes
can be imagined to lic at the vertices of a multi-dimensional cube.” Multiprocessors
based on this topology require modest interconnections, yet seem rich enough to allow
many of the classical interconnections to be easily constructed. For this reason, hyper-
cube computers have emerged as the most promising multiprocessors of its kind. Another
appealing feature of hypercubes is their homogeneity and symmetry properties. Despite
of these facts, sorting on hypercube _omputers seems a challenge problem [Wa87,
SeZi87, Jo84].

Assume p is the number of nodes of a hypercube and » is the number of data to be
sorted, where p is a power of 2 and p? divides n. The nodes are indexed by a lincar
sequence ranging from 0 to p—1, with the neighboring nodes differing in exactly one bit
position in their binary representations. We also assume the data are initially distributed
evenly at all the p nodes. The » clements are said t0 be sorted if all clements are sorted at
mhnode,muchemtummhwbuw)mmmyewnmuum

7 The author sssumes the reader has some knowledge of hypercube computers.

node.

57

For a sort for hypercubes, its complexity is usually measured in terms of computing

cost as well as communication cost. Presently, Johnsson's algorithm [Jo84], which is an

adaptation of Batcher’s bitonic sorting algorithm [Ba68], is considered the fastest worst

case algorithm for hypercubes in theory. His algorithm achieves D(%log% + %logzp)

computing complexity and O(%logzp) communication complexity.

PSRS appears casily adaptable to hypercubes. Here is a hypercube version of PSRS.

Phase 1.

Each node sorts in parallel its local list of size % with sequential Quicksort.

After that, each one sends p elements evenly spaced from its local sorted list to
one designated node, say node 0.

. After it receive all p2 elements, node O first selects p - 1 pivots with the same

method as described in Section 3.2, then broadcasts the chosen pivots to all
other nodes. After each node receives p — 1 pivots, a binary search is used to
partition each local list into p sublists.

. Each node i, 0Si € p -1, sends each of its (j+1)th sublists to nodes j,

jsoolo "'P-l.jii.

. Finally, after it receives p — 1 sublists from other nodes, each node performs a

merge on all the received sublists plus the local one unsent. The sort competes
after all nodes finish merging.

from node A 10 node B must cross a sequence of nodes starting at node A and ending at

node B.

58

The lower bound of the total computing time required for sorting n numbers is
therefore D(pil@g pt+ % logp + % log n), which is asymptotic to D(% log n) when
n 2p’. The computing time alone is not sufficient to distinguish a pﬁlel sort for
hypercubes. In order to study the communication complexity of this algorithm we use
the following model [SaSc89):

1. Moving a vector of length m from one node to a neighbor takes the time f+mT,
wher. P represents the communication start-up time and T the clemental transfer time.

2. It takes the same time mmﬁvethes:ﬂgd;uﬁﬁnmmﬂemmynumhﬁoﬁu
log p neighbors.

The algorithms and estimates for the times of data transfers required in phase 1,
phase 2, and phase 3 are sketched below. Exponents applied to the binary bits O and 1

stand for concatenation. Other details can be referred to [SaSc89].

Algorithm for data gathering in phase 1:
For j =logp,logp - 1, .., 1 do:
All nodes numbered 0®8” =/ 1a;, where a; is any (j-1)-bit binary number, send in
pﬂhlﬂnumpecﬂvedgum:umumadﬁmnmepmvmsﬁspsmm
O"’"'j*laj.
The algorithm consists of a total of log p mp;Atﬂ:jdimﬁdtllpmﬁmmsfm
pzj“MMBmmmnmhnMdekmuaﬂmm

ﬂaummmmmmﬂmmuﬁdfmmnjpzmuppﬂ
node, is

?@*2““?1) = flogp +(p-1pt

j=

59

Forj=logp,logp -1, .., 1do:

in parallel the received p — 1 pivots to nodes 087 =/ 14;.
The above algorithm consists of a total of log p steps all requiring the same amount of
time. Hence the total time of broadcasting p —1 pivots in phases 2 is
B+@-1n)logp.

The data transfer operations in phase 3 are equivalent to transposing a p X p matrix

0si,j Sp - 1. To formulate the algorithm, we denote by (i), the bit in position £ of
the log p-bit binary representation of number i and i* the number whose binary
representation differs only in the k th bit from that of i. Let L; ; be the (j+1)th sublist at
node i and IL; ;| be its length, where 0<i,j Sp — 1. [L; ;] stands for the p ¥ p matrix

as explained before. Then we have the folloving equation and inequalities:

OSIL‘-Jlgﬁ.OSi.jgp!l (1)

r=-1 ' ,
j=0

N

ro! 2 :
iwD '

Equation (2) and inequality (1) are rivial. The proof of inequality of (3) can be found in
Section 3.3.

Fork =1,2,.., logp do:

Each node i, such that (/) = 1, exchanges with node i* all sublists L, ; and L »,

forall0< j Sp ~ 1 such that (j); =0.

The principle of the algorithm is to exchange data across opposite edges along the logp
dimensions in turn. The first step consists of exchanging the matrices that are in the upper
ﬁghundlowerleﬁposiﬁomofthehrgeZXZblockmiﬁixehlﬁnedﬁﬁn(Lu']byspliti
ﬁngi(intofomequdpmﬁachofd\efwcanagainhe;plitinﬁfmmimhem’ﬂg
mnner.ﬂ\enextncpdealswithuchoﬁhefwinﬂgsiﬁﬁlnwny;swidmgm'iginﬂ
matrix, and the total number of the sublists exchanged is still p. To obtaia the time
bound of each step, we introduce the following lemmas:

Lemma 1. Atstepk.whexelstSbgp,dlthesublistssentby:nymﬂemstcm
from 2t different rows and 287 ~* different columns of the original
matrix.

Proof:Atmeﬁrsutep.alldlcsublimsembymynaﬂ:mﬁﬁnmgﬁngkmuﬂ

g-diffm: columns of the original matrix. After each step, the number of different rows

ofthesublimtobemtdouﬂawhikdwnumbeafdiﬁmmﬂumﬂﬂgsubliﬁsm

be sent reduces by half.

Lemma 2. Atstep k, where 1Sk Sb;p.d\emalﬁzsahllﬂiembliﬁnembymy
node is no larger than

m[z‘".’l, qls? —t-t-li]!
p p

Proof: Straightforward from Lemma 1, equation (2), and inequality (3).

Hence step k costs less than or equal to

-1R p-k+1 B |
2(p+(m[2‘ P.2"" p])t).

61
The upper bound of the total communication time of phase 3 is

k [, , . *7-,,
328 + (min 2‘-‘%.2‘“!-**‘% y) = 251911:)4-@»!.
k=] !)

Upon summation over three phases, we get the upper bound of the total communication

4Plogp *‘iP" +@ - 1)p +log p)1t,

where the first item represents the total start-up time, while the latter one stands for the
total transmission time. The total start-up time is determined only by p and has a rela-

tively low order. When n > p, the total communication cost is asymptotic m()(q'::).

Summarizing, the extension of PSRS on a hypercube computer has O(%logn)
computing complexity and C)(%) communication complexity, where & >> p. Com-
5.2. Extension of PSRS on LANs

The last decade has witnessed the explosive growth of LANs (Local Area Networks)
[Ta88]S. Large files on such a network may be physically distributed over a number of
stations. The problem of sorting a distribused file is 10 relocate some of the data items so

S Again, the suthor assames the reader has some knowlodgs of LANs.

62

that each data item of a subfile at one station will be less (or greater) than any data item
of a subfile at another. More precisely, the problem can be stated as follows:

A file X of size n is distributed over p stations of a LAN. The stations are logically
ordered into a linear sequence with station i +1 being immediately to the right of station
i, where 1 i Sp — 1. We initially assume an equal numbﬂ'of%elmnﬁ at each sta-
tion. The distributed sorting problem is to relocate some of the elements 0 that each
subfile at each station is sorted and each clement at station is less than or equal to any
clement at station i +1.

To simplify the discussion, we refer to an Ethernet-type LAN, where all stations are
intmmnec!eﬂbylmbus@ﬁhmﬁmmtheLAHisablewgnd;mmgem
any other station(s) across the bus. Since the cost of a distributed sort is dominated by
the communication cost, its complexity is usually measured in terms of the required
ing problem [Ch89, Ro85, We84). Two of them are worthy to be mentioned. One is attri-
iteration, every partition is divided further into two smaller ones. On the average, the
algorithm has message complexity O(p log p) and data traffic complexity O(n log p).

Another one is atributed to Rotem [Ro85). His algoritt.a stants with finding p ~ 1
mmmmubymlmgndiﬁhﬁdmﬂmhﬁek&:ﬂsmn[ﬁﬂ]mn
mﬁﬁmﬂmﬁﬂaﬁﬁﬂmumhﬂymm@:@m
tion. The algorithm has message complexity O(p? log #) and data traffic complexity
O(n).

63

distributed sorting algorithms, they still suffer from drawbacks. Wegner’s algorithm
requires a great amount of data traffic, while Rotem’s algorithm requires too many mecs-
sages.

Although PSRS is developed for sorting on & multiprocessor, the algorithm can be
applied to distributed sorting in a straightforward manner. As has been analyzed in Sec-
tion 3.2, the algorithm has O(x) data traffic complexity and O(p?2) message complexity,
which is a substantial improvement of the O(p? log n) worst case of Rotem’s algorithm.

Chapter 6
Conclusions

6.1. Thesis Summary

mance problem of parallel sorting on multiprocessor computers is studied. The speedup
of a parallel sort achicvable on a multiprocessor depends largely on how well we can
minimize the average memory latency and the overhead of scheduling and synchroniza-
tion. Many parallel sorts suitable for multiprocessors fall into one of two rough
categories: merge-based sorts and partition-based sorts. Merge-based sorts consist of
multiple stages of merge, and are generally believed to perform well only with a small
number of processors. Partition-based sorts consist of two phases: partitioning the data
into smaller subsets and then sorting each in parallel. The perf ce of merge-based

are unstable in the sense that one processor may have to sort significantly more elements
than its average share. This reduces the speedup since the final synchronization can't
complete until the last processor finishes sorting. PSRS is proposed by the author to solve
this problem. The basic idea is to make use of the order information of a small set of ele-
PSRS is optimal when & 2p>. In particular, we show that each processor has 10 access
mﬂynmnmamm%mmannﬂmmmmmymm In

ts on the 64-PE Myrias SPS-2, it defeats the best previous proposed paral-

Hm@wmmmmm:mp,ﬁﬂsm:m&m%m

64

65

p PEs are utilized. The speedups obtained are highly reliable since the sequential time
when n is large is computed according to the sequential sorting lower bound O(n log n).
The experiments demonstrate the first successful parallel sort workable on multiproces-
sors with many processors. The basic idea developed is equally applicable to hypercube
computers and LANs.
6.2. General Conclusions

Panalle]l processing has emerged as an active field of research and development by
computer professionals. Various classes of panallel and vector supercomputers have

mmclhﬂwﬂﬂzkhvﬁpsfmmvuRmyﬁmmmhfﬁm
algorithms, languages, software and hardware techniques 10 yield higher performance.
lel algorithms which are theoretically optimal have been proposed. Despite this, their
experimental results have been rather bleak.

PSRS is intended %0 minimize both. It has a high per-task reference locality, yet is very

is indeed achievable. mmmmhmmwp, g
that sorting is generally believed a hard problem 10 be parallelized. The success of PSRS

indicates that better performance for the current supercomputers are obtainable.

[Aj83]

[Ba68]

[BaTa88)

References

M. Ajtai, "An O(n log n) Sorting Network,” Proceedings of the 15th Annual
ACM Symposium on Theory of Computing (Boston, Apr. 25-27), ACM, New
York, pp. 1-9, 1983.

ming with Shared

HE. Bal and A.S. Tanenbaum, "Distributed Progran
Daw,"” IEEE Conf. on Computer Languages, IEEE, pp. 82-91, 1988,

(BDHM84] D. Bitton, D. J. DeWitt, D. K. Hsiso, and J. Menon, "A Taxonomy of Paral-

(BKTI89]

[CRR86]

[Ch89)

[Co86]

lel Sorting,” ACM Computing Surveys, Vol. 16, No. 3, pp. 287-318, Sept.
Techniques for Speeding up Panallel Applications on Distributed Systems,”
Report IR-202, Dept. of Mathematics and Computer Science, Vrije, Oct.
1989.

lel Random Access Machiaes Without Simultanecous Writes,” SIAM J. Com-
puters, Vol. 15, No. 1, pp. 87-97, Feb. 1987.

in a Network,” Journal of Parallel and Distribused Computing, Vol. 7, pp.
464-481, 1989.

67

[De82]

[DoDu89]

(EgKa88]

[EvYo8S]

[EvY086}

[Fe81]

(Fré3)

(FrMa88]

[GiRy88)

(He84)

68

J. Deminet, "Experience with Multiprocessor Algorithms," IEEE Trans. on
Computers, Vol. C-31, pp. 278-288, Apr. 1982,

J. J. Dongarra and 1. S. Duff, "Advanced Architecture Computers,” Report
CS-89-90, Department of Computing Science, University of Tennessec,
Tennessee, 1989.

S. J. Egger and R. H. Katz, "The Effect of Sharing on the Cache »nd Bus Per-
formance of Parallel Programs,” Report No. UCB/CSD 88/475, University of
California, 1988.

D. J. Evans and N. Y. Yousif, "Analysis of the Performance of the Parallel
Quicksort Method,” BIT 25, pp. 106-112, 1985.

D. J. Evans and N. Y. Yousif, "The Parallel Neighbor Sort and Two-way
Merge Algorithm,” Parallel Computing, Vol. 3, pp. 85-90, 1986.

T.Y. Feng, "A Survey of Interconnection Networks," Computer 14, Dec.
1981.

G. N. Frederickson, “Tradeoffs for Selection in Distributed Networks,” Proc.
2nd ACM Symposium on the Principles of Disiributed Computing, Montreal,
Quebec, Canada, pp. 154-160 , 1983.

R. S. Francis and 1. D. Mathieson, "A Benchmark Parallel Sort for Shared
Memory Multiprocessors,” IEEE Trans. on Computers, Vol. 37, No. 12, pp.
1619-1626, Dec. 1988.

A. Gibbons and W. Rytter, "Efficent Parallel Algorithms,” Cambridge
University Press, Cambridge, 1988.

J. L. Hennessy, "VLSI Processor Architecture,” /EEE Trans. on Compusers,
Vol. C-33, No. 12, pp. 1221-1246, Dec. 1984.

(Hi78]

[Ho61]

{HuCh83)

Hw87])

[Jo84]

[KaKa89]

(Kn73]

[(KVW§7]

(Lo74)

69

D. S. Hirschberg, "Fast Parallel Sorting Algorithms," Comm. ACM 21, pp.
657-666, Aug. 1978.

C.A.R. Hoare, "Partition: Algorithm 63; Quicksort: Algorithm 64; and Find:
Algorithm 65," Comm. ACM, Vol. 4, No. 7, pp. 321-322, 1961.

1. S. Huang and Y. C. Chow, "Parallel Sorting and Data Partitioning by Sam-
K. Hwang, "Advanced Parallel Processing with Supercomputer Architec-
tures,” Proceeding of the IEEE, Vol. 75, No. 10, pp. 1348 1377, Oct. 1987.

cube", ICPP, 1984.

S. P. Kartashev and S. 1. Kartashev, "Supercomputing Systems: Architec-
tures, Design, and Performance,” Van Nostrand Reinhold Inc., New York,
1989,

D. E. Knuth, "The Art of Computer ming: Vol. 3, Sorting and

1973.

A.M. Kobos, R.E. VanKooten, and M.A. Walker, "The Myrias Paralle! Com-
puter System,” Algorithms and Applications on Vector and Parallel Compui-
ers, Th. J. Decter and H.A. van der Vorst (Ed.), pp. 103-127, Elsevier Sci-
Management Policies for NUMA Multiprocessors,” Report No. CS-90-10,

[Mc84]
[MoSt87]

[Pe77]

[Pr78]

[Qu87)

(Qu8s)

[Ri86)

[Ro85)

[SaSc89]

[SeZi87]

[Si79]

[Sm87]

70

ACM, Vol. 17, No. 3, pp. 143-152, 1974.

K. Mehlom, "Sorting and Searching,” Springer-Verlag, Berlin, 1984.

P. Moller-Nielsen and J. Staunstrup, "Problem-heap: A Paradigm for Mul-
tiprocessor Algorithms," Parallel Computers, Vol. 4, pp. 63-74, Feb. 1987.
M. C. Pease, "The Indirect Binary n-Cube Microprocessor Array," /EEE
Trans. on Computers, Vol. 31, No. 2, Feb. 1977.

F. P. Preparata, "New Parallel Sorting Schemes,” /EEE Trans. on Comput-
ers, Vol. 27, pp. 669-673, 1978.

M. J. Quinn, "Designing Efficient Algorithms for Parallel Computers,”
McGraw-Hill Book Company, New York, 1987,

M. J. Quinn, "Parallel Sorting Algorithms for Tightly Coupled Multiproces-
sor." Parallel Computing 6, North-Holland, pp. 349-357, 1988.

D. Richards, “Parallel Sorting -- A Bibliography,” ACM SIGACT News Sum-
mer, pp. 24-28, 1986.

D. Rotem, N. Santoro, and J. B. Sidney, "Distributed Sorting," /EEE Trans.
on Computers, Vol. 34, No. 4, pp. 372-275, 1985.

Y. Saad and M. H. Schultz, "Data Communication in Hypercubes," Journal
of Parallel and Distributed Compuzing, Vol. 6, No. 1, pp. 115-135, 1989.

S. Seidel and L. R. Ziegler, "Sorting on Hypercubes,” Hypercube Multipro-
cessors, M. T. Heath (Ed.), SIAM, pp. 285-291, 1987.

H. J. Siegel, "Interconnection Networks for SIMD Machines,” /EEE Com-
puters 12, Jun. 1979.

B. J. Smith, "Shared Memory, Vectors, Message Passing, and Scalability,”

[Ta88]

[ThKu77]

[Va75)

[Wa87)

[We84)

)

Verlag, Berlin, 1987.

A. S. Tanenbaum, "Computer Networks,” Prentice-Hall, Inc., New Jersey,
1988.

C. D. Thompson and H. T. Kung, "Sorting on A Mesh-connected Parallel
Computer,” Comm. ACM 20, 4, pp. 263-271, 1977.

L. G. Valliant, "Parallelism in parison Problems," SIAM J. Computers

3, 4, Sept. 1975.

B. Wagar, "Hyperquicksort: A Fast Sorting Algorithm for Hypercubes,"
Hypercube Multiprocessors, M. T. Heath (Ed.), SIAM, pp. 292-299, 1987.

L. M. Wegner, "Sorting a Distributed File in A Network," Computer Net-
works 8, pp. 451-461,)84,

‘q‘
"~

Appendix Al
Pseudo-codes of PMS, Quickmerge, PSS, and PSRS

Al.1 Paraliel Merge Sort

procedure pms(array A, p)

/farray (0:n —1): array 10 be sorted, n : size of the array, p: number of processors
begia
//Divide the array into p contiguous lists and sort each in paralicl
//Store the stan-points and end-points of all the lists in bk 1 and bk 2 respectively
gn = |(n+p-1)p)
gsn = |(gn+p-1)p)
fori =0top-1 doim paraliel
start = ixgn
end = (i +1)xgn-1
ifend zn thewend =n-1
bklli] = start
bk2(i) = end
//Sort subsrray array (siart :end) with sequential Quicksort
quicksori(array, start , end)
endfor
k=p
while £ > 1 do
M kmod 220 thea
bklk]=0
bi2(k] =-1
k=k+l
for i =1 %0 k sicp 2 do in parallel
permerge(array , bk1li-1}, bk2li-1), bk1li}, bk2(i), arrayl, bkili-1}, [2¢p/k))
bRI{ (i-1V2) = bkl{i-1]
bi2((i-1y2] = bi2(i)
k=ki2
i kmod 220 thea
bklik]=0
b2k} =-1
k=k+1
fori = 1 o k sicp 2 do In paraliel
armorge(array 1, bki[i-1), bk2(i-1), bkI(i), bk2(i), arvay . BhI(i -1, |2tk])

n

73

bkl (i-1V2) = bkI[i-1)
bk2[(i-1)2) = bk2(i)
endfor
k=kn2
endwhile
ead

procedure parmergearray 1, from 1,101, from2, 102, array2, at , np)

//Merge two soried lists, array 1(from 1:10 1) and array | (from 2:10 2], with ap processors in paralicl
//The merged results are stored in array 2 starting from index at
begin

//Divide the two lists into ap pairs of sublists:

larrayl{pbkli]: pbkl{i+11-1) & arrayl(pbk2(i} : pbk2[i +1]-1),0<i S np-1

avl = |(io 1-from 1+from2-i0 2+2)/np |

fori =0 to np-1 do in parallel

Ib = max {from 1, from l+ixavl—(w2—fmn2+l)}

ub = min {10 1+1, from 1 +i xavi

length = i xavl +from 1+from2
while [b+1 < ub do
k = (Ib+ub)2
Warraylk) S array[length—k]
thea /b =k
eloeub =k
endif
endwhile
W array(lb) S array 1(length—ub]
then pbkl[i) = ub
eloepbk1[i) = b
endif
pbk2li) = length—pbk 1{i]
endfor
pbkinp])=it01+1
pbk2np] = 102+1
/Merge each pair in parallel
for i =00 np-1 do in paraiiel
merge two sublists, array |(pbk 1(i] : pbk 1[i+1}-1] and array 1[pbk2(i] : pbk 2{i +1}-1). The
merged resulis are stored in array2 suarting from index at +pbk 1(i }-from 1+pbk 2[i |-from 2
eadfor
ond

74

A1.2 Quickmerge

procedure qm(array,n,p)

/larray [0:n-1): array 10 be sorted, A : size of the array, p: number of processors
begin
//Divide the array into p contiguous lists and sort each in pasaliel
gn = [(r+p-1)ip]
ssn = [(gn+p-1)p}
for i =0top-1 do in paraliel
start = ixgn
end = (i+1)xgn-1
ifend 2n themend =n-1
//Sor subarray array start :end) with sequential Quicksort
quicksort(array, start , end)
endfor
/IChoose p—1 elements evenly spaced from the first soried list as pivots
//Store them in pivots(1:p-1]
fori =1top-1do
pivois (i) = array [ixggn)
endfor
//Divide in paraliel each sorted list i into p sublists:
llarray [subsize (i x(p+1)+j) : subsize (ix(p+1)+j+1}-1],
//0 S j S p—1 with the chosen pivots as splitters
fori =0 to p-1do ia parallel siart = ixgn
end = (i+1)xgn-1
itend 2n themend =n-1
subsize (ix(p+1)) = start
subsize [ix(p+1)+p] = end +1
sublists(array , start, end , subsize , i X(p +1), pivots , 1, p-1)
endfor
//Count the size of each of the p partitions
fori =0top-1do
bucksize[i]=0
for j =i to px(p+1)-1 sicp p+1 do
bucksize [i) = bucksize [i +subsize [j +1]-subsize ;]
endfor
endfor
//Decide the start-point of each partition in the final array
fori =1top-1do
bucksize [i) = bucksize [i Hbucksize [i-1]
endfor
bucksize [0) = 0
//Mesge each partition in parallel
fori =00 p—1 do in paraliel
merge the following sublists with the standard two-way mergesort 0%) Sp-1:

75

array [subsize [i +j x(p+1)) : subsize [i+jx(p+1)+1]-1]. The merged results are siored in array
starting from index bucksize i]
endfor
end

A13 Paraliel Sortiag by Sampling

procedure pas(array,n;p)
/larray [(:n—1): array o be sorted, A : size of the armay, p : number of processors
begin
//Draw & random sample of size 16xp from array and store them in subsize (0:16xp 1]
for i =0to 16xp-1do
subsize [i) = array [rand) mod n)
quicksory(subsize . 0, 16xp—1)
//Chooee p -1 elements evenly spaced from the sorted sample as pivots
//Store them in pivois[1:;p-1)
pivots [i] = subsize (i x16}
//Divide the armay into p contiguous lists and sort each in paraliel
//Divide in parallel each sorted list i into p sublists
lfarray [subsize [i x(p +1)+j +1] : subsize [i x(p +1)+j}-1),
//0 % j < p—1 with the chosen pivots as splitiers
m=|(n+p-1)p)
gen = | (gn+p-1)ip
for i = 0 to p=1 do im paraliel
Start = [Xgn
end = (i+1)xgn-1
Mend 2n them end = n~1
{/Son subaray array [start :end] with sequential Quickson
Subsize [i x(p +1)] = siart
subsize [ix(p+1)+p] = end +1
subliste(array , start , end , subsize , i x(p+1), pivots , 1, p-1)
fori =0top-1do
bucksize[i) =0
for j =i o px(p+1)-1step p+1 do
bucksize (i] = bucksize [i }+subsize [j+1]}-subsize (j]
sndfor
//Decide the stant-point of each partition in the final array
fori=1t0p-lde
bucksize (i] = bucksize [i Jbucksize [i—1])

76

endfor

bucksize [0) = 0

//Merge each partition in parallel

for i =0top-1do in paraliel
merge the following sublists with the siandard two-way mergesort:
array [subsize (i +jx(p +1)] : subsize [i+jx(p+1)+1]-1], 0<j Sp-1. The merged resulls are
stored in array starting from index bucksize [i]

endfor

end

A1.4 Parallel Sorting by Regular Sampling

procedure psrs(array,n,p)

/larray [0:n—1): array 10 be sorted, a: size of the amay, p: number of processors
begin

//Divide the array into p contiguous lists and sort cach in paralicl
//Select p elements evenly spaced from each of the p soried lists
//as the r-qular sample and store them in subsize (0;p*-1]
= |(r+p-1)p}
g2n = |(gn+p-1)r)
for i =0top-1 do in parallel

siart = ixgn

end = (i +1)xgn-1

ifend 2n ther end =n-1

//Sort subarra arre.y [start :end] with sequential Quicksort

quicksort(arr.- 5, start, end)

for j=0top-1do

Wj>;an Send
then subsize [ixp+j] = arrayj/(muggn]
eloe subsize i <p+j) = array [end]
endif

endfor
endfor)
//Sort the regular sample subsize (0 : p>-1]
//Choose p—1 pivots from the sored regular sample with scquential Quicksort
//Swore them in pivots[1:p-1]
quicksory(subsize , 0, p?-1)
for i=] top-1do

pivots (i } = subsize [ixp+|p12]1
eadfor
//Divide in parallel cach sorted list i into p sublists:
llarray [subsize (i x(p+1)+j) : subsize [ix(p+1)+j+1}-1],
/10 < j S p-1 with the chosen pivots as splitters
fori =00 p-1do in paraliel

start = ixXgn

77

end = (i+1)gn-1
ifend 2n themend =n-1
subsize [ix(p+1)] = siart
;ubxixhx(p*l)ﬂ!hndﬂ
sublists(array , start, end , subsize , i x(p+1), pivois, 1, p~1)
endfor
fori =0top-1do
bucksizeli} =0
forj=i topx{p+1)-1step p+1 do
bucksize [i] = bucksize [i |+subsize [j +1]-subsize [j]
endfor
fori=lwp-l1do
bucksize (i] = bucksize [i Yvbucksize [i-1)
endfor
bucksize[0] =0
fori =0top-1do ia paraliel
merge the following sublists with the siandard two-way mergesort:
array [subsize (i +j(p+1)} : subsize [i+jx(p+1)+1}-1), 05 Sp-1. The merged results are
siored in array starting from index bucksize [i]
endfor
end

procedure sublists(array, siart, end , subsize , at , pivots , fp . lp)
//This procedure is called by qm, pss, and psrs
//Recursively divide array [siart :end) into p mbh:uwnh
Hpivots (fp :ip | = splitiers. The final demarcations for the sublists
//are stored in subsize mﬁmﬁm
bega |
mid = |(fp+ip)2)
pv = pivot [mid)
b = siart
ub = end
while ib < ub do
center = |(Ib+ub)2]
W array (cener) > pv
them wb = center -1
eloe [b = center +1
subsise [at +mid) = Ib

it fp <mid then sublists(array, start, Ib-1, subsize at, pivots, fp . mid-1)
itmid < lp then sublists(array , Ib, end , subsize , at , pivots , mid+1, lp)

78

