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ABSTRACT

Previous work and available design methods for load bearing
masonry walls are reviewed. The experimental study consisted of
tests on sixty-eight full scale concrete masonry walls subjected
to a number of combinations of vertical loads and end moments.
Variables.investigated included slenderness ratio (h/t), vertical
teinforcemeht,'horizontal reinforcement, type of construction, and
grouting procedures. |

Measurements recorded during testing included deflections,
strains, and vertical deformations.

Theoretical analyses were developed to predict the
buckling load of masonry walls and to evaluate their load bearing
capacity using a mddified moment magnifier method. The effect of
joint reinforcement on the load bearing capacity of masonry has
‘been examined.

A procedure for evaluation of tensile aﬁd shear bond
strength utilizing the centrifugal force is developed and results

using this system are reported.
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CHAPTER T

Introduction

1.1 General Remarks

The use of concrete blocks as a building material has

iﬁcfeased at a constant rate over the>last fifteen years in almost
every large city in Canada. The use of blocks is not a new idea.
It is as old aé the ancient megalithic structures of Egypt, Greece
and Mesopotamia. The interest in masonry is increasing because of
the economy of construction and the pleasing appearance presented
by masonry structures.

However, today's structures are complicated and economic
reasons demand a clear understanding of the behavior of the structure.
The thickness of load bearing masonry walls has decreased over the
years and where very thick walls were once used an eight inch wall
may now perform the same function.

Progress in the design and construction of modern masonry
buildings has resulted in the creation of a number of outstanding
projects. Masonry.buildings varying in size and architectural
aspect have been designed and erected in many parts of the world.
These structures include a 23-storey apartment building in Winnipeg,
Manitoba; a 20-storey apartment in Denver, Colorado; an 18-storey
building in Zurich, Switzerland and many more throughout Europe,

the U.S.A., Canada and South America.



A considerable amount of experimental and theoretical work
has been carried out with emphasis on the behavior of plain
masontry walls under combined vertical load and moment. However,
little research has been carried out on the behavior of reinforced
masonry walls under similar load conditions. It is hoped that the
theoretical findings and experimental data presented in this study
will complement other current research programs and assist in the
formulation of design rules comparable with those existing for

concrete and steel.

1.2 Object and Scope

The main objectives of this study are:

a) To examine the commonly used theories for evaluating thé
strength of plain and reinforced concrete block masonry.

b) To observe the behavior, cracking pattern, and ultimate
strength of plain and reinforced masonry.

c) To examine factors affecting the behavior of plain and
reinforced masonry, such as tensile bond and horizontal
joint reinforcement.

'd) To examine the stability of masonry walls.
e) To develop analysis for predicting the ultimate strength

of masonry walls under various combinations of loading.



CHAPTER 11
'Review of Previous Work and Current

Strength Analysis Theories

2.1 1Introduction

The design of load bearing masonry walls in North America
is based on codes containing empirical values for allowable
stresses and other factors. These conservative and somewhat arbitrary
values have been carried over from the time when the structural
behavior of masonry wall construction was not as well understood
as it is today. However, some of these building codes now permit
the design of masonry walls by rational methods, such as working
stress. Only quite recently has any progress been made in the use
of structural masonry. Traditionally, masonry has not been treated
as an engineered material and its use has been hampered by outmoded
regulations, resulting in buildings with excessively thick walls;
totally uneconomical beyond a two or three storey structure.
However, research work started in a number of countries in Europe
and North America and by the 1950's the Swiss had demonstrated the
potential of engineered masonry.

Since then, similar developments have taken place in many
other countries and a substantial amount of research work has
resulted in the evolution of increasingly sophisticated design guides

and codes of practice. Current procedures for the design of



masonry walls and a brief review of research work, in the same

related areas, are presented in this chapter.

2.2 Review of Previous Work

2.2.1 Wall Behavior

Research on plain masonry walls under axial and eccentric
loads has been carried out over the years in many institutions. A
series of tests at the Swiss Federal Institute for Testing Materials
and Research in Dubendorf, extending over twenty years, has yielded
a better understanding of the behaviour of masonry walls. -This
work made possible the construction of buildings up to 18 storeys
high and of a l6-storey building with bearing walls measuring
5-7/8" in thickness.

The fundamentals of the behaviour of masonry walls under
combined loading were established by Angervo1 in 1954 and by Chapman
and Slatford? in 1957 with the solution of the basic differential
equation for a column with no tensile strength. Factors affecting
the strength of maéonry walls, such as the strengths of the masonry
unit and the media connecting the units, have been the subject of
studies carried out by many investigators. Most notable are the
works of Hilsdorfa, Francis& et al and Hendrys. Hilsdorf expressed
the failure criterion for masonry by means of a straight line
relationship between lateral tension and local compression. The
second attempt to quantitatively predict the compressive strength
of masonry prisms by Francis et al was based on strain considerations.
Both Hilsdorf and Francis related the strength of the assembly to

the strength of the unit and the mortar. Their relations include



the effects of the unit height and the thickness of the joint.
The effects of the loading condition on the strength of the assembly
have been the subject of an extensive study carried out by Hendry.®
The effects of slenderness on the capacity of brick masonry walls
have been experimentally investigated by Hendrys, Fattal’ and
Yokel®. In 1971 Shahlin® suggested that for normal strength
materials and a ratio of effective height to least lateral dimension
(h/t) of less than 30, the axial load capacity of masonry walls
begomes a stress problem whereas buckling is a failure mode in
masonry for slenderness ratios greater than 30. The effect of
slenderness ratio on the lateral tensile stresses within the wall
was examined. by Smith!® using a finite element method.

In 1971 Yokell! et al carried out a series of tests on a
number of masonry walls, using both brick and coﬁcrete masonry.
They suggested that the load carrying capacity of masonry walls can
be predicted using the moment magnifier method. The work also
concluded that rational analysis can be used to determine a lower-
limit for the strength of a shear masonry wall under eccentric
vertical load. The range of eccentricities in their experimental
program carried from zero to the kern. A small number of 4 inch

12 ot al who

thick concrete masonry walls were tested by Drysdale
concluded that the present method of designing walls had a very high
safety factor. The study concluded that the slenderness coefficients
recommended for use by CSA Standard S-304=M!3, do not provide a
consistent means of accounting for strength reduction as it is

influenced by slenderness. According to the above study, formulation

of a more rational design procedure is required to permit the



advantage of the extra capacity which exists in many loading
conditions. Drysdale12 assumed that the curvature of an ecceﬁtrically
loaded wall can be approximated by a sine curve. However, the

actual curvature is a function of many factors; the most important
ones being the initial imperfections, type of loading, and crack
formation.

The behavior of coﬁcrete block masonry was the subject of
an experimental program carried out by Cransfon and Roberts.!" 1In
their work, tests on eccentrically-loaded non—reinforced walls and
couplet specimens are reported and a simple theoretical approach
for solid block masonry is derived; the same study presents a
method of predicting wall strength. Also described are additional
tests on reinforced masonry sections subjected to lateral loading
only and the simple ultimate load theory used for reinforced concrete
is shown to give a good indication of the ultimate strength of the
sections. The effect of employing different values of the partial
factor of safety for strength of the masonry is considered by
Cranston and Roberts!®. Some of their studies indicated that
present design procedures using allowable stresses result in
uneconomical design and a variable factor of safety.

There is a lack of experimental data on the compressive
strength of masonry walls especially of concrete masonry walls with
eccentricities greater than one-third the wall thickness measured’
from the centroidal axis. Consequently, in current recommended
design procedures and building code requirements for engineered
masonry, such as CSA Standard S-304~M, eccentricities up to one-third

of the wall thickness are treated by one method, while eccentricities

)



exceeding one-third are covered by a special provision. Yorkdale
and Allen!® reported on tests at the Brick Institute of America on
12 brick walls tested with eccentricities 1/2 and 5/12 the wall
thickness. They concluded that tensile stresses at the top quarter
point of both short and tall walls, loaded with an eccentricity of
5/12 of the thickness, were sufficiently large to create cracks in
the bed joints at relatively low loads.

Walls tested with load eccentricity of t/2 and slenderness
‘ratio of 10 reported by Yorkdale and Allen developed tensile strains
and cracking at relatively low loads at the top quarter point of
the height. For walls with larger slenderness ratios cracks were
formed in the top four courses. Yorkdale and Allen recommended
the use of steel reinforcement in the top quarter of the wall
height for walls loaded at eccentricities in excess of 1/3 the wall
thickness. No justification of their recommendation is given;
however, it is obvious from their testing procedure (zero eccentricity
at the bottom of the wall) that maximum moment occurs at the top
of the specimens.

The overall behavior of masonry walls is, as stated previously,
a function of the properties of the elements that make up the wall,
namely masonry units and mortars. The most important parameter is
the modulus of elasticity. There seems to be some confusion in
existing literature about this important parameter. For the same
type of construction and materials, values of modulus of elasticity
qﬁoted in literature vary from 600 - 1000 times the compressive
strength. Shahlin® presented an analytical approach for evaluating

the modulus of elasticity based on elastic considerations.



Turkstra16

used a regression analysis to express the modulus of
elasticity as a function of measured strains and uniaxial strength,
the same approach was used by Drysdale et all?.

Yokel and Dikkers!! recommended a rigidity factor (product
of moment of inertia and modulus of elasticity) defined by a
function of the applied axial load in a similar manner as used in

reinforced concrete columns. This approach however is limited to

eccentricities within the kern.

2.2.2 Tensile and Shear Bond

The bond between unit and mortar is a complex parameter
depending on such factors as surface roughness, initial rate of
absorption, workmanship, type of mortar, (as it relates to cement
content), time elapsed between mixing, curing and usage of mortar.
The interaction between masonry units and the bonding agent is a
subject that has been investigated using a variety of testing
procedures.

The most common procedure used to evaluate tensile bond is
the modulus of rupture test, which utilizes a small beam tested
under third point loading. The modulus of rupture is calculated
by assuming a linear stress distribution. However, finite elemenf
analysis indicates that the stress distribution is not linear.

In testing cross brick couplets* involving one mortér joint,
Polyakov17 found difficulties in fixing the application of load

in the center of the couplet, and also in laying the bricks. He

* Test specimen consisting of two masonry units and one mortar
joint.



made the assembly in the form of a cube of two halves mortared
together and then pulled apart by special clamps.

Other research workers, Pearson'® and Cumpfle, found the
couplet test quite satisfactory, and it is now generally accepted
that cross-brick couplets give satisfactory results for bond in
tension. In calculating the bond from this type of test, uniform
stress distribution is assumed over the bonded area. However,
this may not be valid, especially when the specimen is short as in
the case of specimens involving two bricks and one mortar joint.
Small misalignment of the load will introduce a moment which will
further alter the stress distribution. A cross brick couplet test
therefore is not entirely reliable in evaluating the tensile bond
strength.

The resistance of masonry to shearingbforces is a function
of the precompressive force acting on the masonry. To determine
the effect_of precompression on the shear strength of couplets
Hendryzo’21 et al performed a series of tests with equipment shown
in Figure 2.1, using Varying compressive load. The authors assumed
that the total shear strength of the couplets consisted of bond

shear and frictional resistance and may be represented by:

g = 0 + Uo
Xy XYo y

where

the coefficient of friction

=
I}

the shearing resistance of mortar joint for zero

(o]
X
Yo normal stress.
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1]

ny the maximum shearing stress

)
y

the normal stress

Results of tests carried out by the writer at the University
of Manitoba were in agreement with the results obtained by Hendry2°’21.

Test results for bond tension tests obtained using the apparatus

shown in Figure 2.2 were also obtained by Hendry et al.

2.2.3 Factors Affecting the Strength of Masonry

Experimental results are meagre with regard to other factors
affecting the strength of masonry assemblages, such as masonry
unit strength, mortar, joint thickness, and workmanship. As with
other building materials, the strength of masonry is affected by
workmanship. The deep furrowing of bed joints and the partial
filling of vertical head and collar joints are practices that reduce
strength to some degree. Thick joints will also lower strength.
There is little or no data available from which to derive definite
functional relations by statistical methods for the influencé of the

above parameters.

2.3 Available Strength Analysis Procedures

2.3.1 General

Masonry buildings are, at present, designed in western
countries by working or permissible stress analysis. Walls are
normally designed for allowable stress by accepted principles of
mechanics, with no allowance for moment transfer at floor to wall
connection. Loads acting on the walls include live and dead floor

loads and self-weight and lateral wind load. Additional stresses
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result from temperature variations, characteristic dimensional changes
of the materials, deflection and rotational components in contact

or built into the masonry, foundation movements, and other specific
conditions of loading. The net result is a wall with axial and
eccentric loads applied at their ends, combined with lateral loads.
All these stress conditions are superimposed to establish statically
equivalent loads at an approximate eccentricity. Component dimension
afe then assumed and the stresses calculated. The stresses are

then checked against the allowable values based on a combination of
unit strength and mortar type, or based on actual prism tests of
masonry. The decision to use plain or reinforced masonry depends

on the magnitude of the loads. The available design theories for

plain and reinforced walls are examined in the following section.

2.3.2 Elastic Analysis of Plain Masonry Walls Eccentrically Loaded

The load-carrying capacity of a plain masonry wall cross-—
section subjected to an eccentric load can be determined if the
tensile and compressiVe strength of the masonry, as well as the
stress distribution on the cross-section at fqilure, are known. The
stress distribution, in turn, depends on the stress-strain properties
of the masonry. If the assumption is made that the wall does not
warp'in flexure and that a linear stress-strain relationship exists
for masonry up to failure, then the stress distribution under the
action of the eccentric load will be as shown in Figure 2.3 for
various vertical load and moment combinations.

From this figure it is obvious that failure will occur

when either the compressive or the tensile strength of the masonry
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is reached. These types of failures are illustrated in Figure 2.3.
Figure 2.3c shows a condition where the tensile strength is reached
over a pqrtion of the wall which then becomes ineffective. This
case will not be included in this analysis for, at that stage, the
wall will be cracked extensively and, if unreinforced, will not
satisfy serviceability.

The stresses at the opposite faces of a cross-section can
be obtained using superposition of the flexural and axial stresses

using the relation:

P Pet
f = A—nti_]: s eeesecesens e st taene s eseeoeee e 2.1
where
f = stress at outer fiber
An = net area of cross—section
In = moment of inertia about the centroidal axis of
net cross—section
e = eccentricity of applied load
P = applied load
t = thickness of cross-section

In Equation 2;1, f and P are assumed positive when compressive.
If the tensile strength of the masonry is assumed zero, then
Equation 2.1 is valid only when the eccentricity of the load is less
or equal to the kern eccentricity, since a load applied at the kern
point produces zero stress in one of the outer fibers of the section.
The magnitude of the eccentricity can be obtained from

equation 2.1 as:
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eK = r{ R A T T _2.2
n

=}

For solid rectangular sections Equations 2.1 and 2.2 assume the

simpler form:

_ P be

fmax = % [1+ t] b eessessetssesseceononaan s 2.3
_ P be

fmin - A[l t] LA R A A A R R R R I R I R RN SN SR R Ry 2-4

.t
e|< = % S et e e s e st st nesscess e s e en e s e nasvennese 2.5
where

f = maximum stress at outer fiber

max

f . = minimum stress at outer fiber

min

For vertical loads applied at eccentricities greater than the kern
eccentricity and for zero tensile strength, the stress distribution
will be as shown in Figure 2.4, In this case the maximum stress

for a solid rectangular cross section and linear stress distribution

is given by:

P .
AL T T afE) crerrerereererereneanes 2.6

4
fmax 3
Equation 2.6 is derived by considering equilibrium as follows:

Consider a wall section of length % and thickness t such

that

[ T——
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Moment equilibrium about point O of Figure 2.4 yields the following

relations:
cercesentsananns 2.7

By considering force equilibrium and referring to Figure 2.4

1

E—t £ A fmax = P or
2tP

£ = iE - e Chebtecescreeestretaaenaaans cees 2.8
max

substituting & from Equation 2.8 into Equation 2.7 the following

relations are obtained

{ 2tP t 4 tp?
Pletqf -3 3 Af or
max max

4 2tP _t 4t P
Af 2 3Af or
max max
t 4 P 2tP
fmax [e - 2] 3 t A A or

f = B [—_"__2./_3._ E:l

max A.Lg - t/2

which 1s an alternative form of Equation 2.6.
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2.3.3 Elastic Analysis of Reinforced Masonry Walls

2.3.3.1 General

Many applications arise in practice where masonry walls
must be reinforced in order to improve their load bearing capacity,
to alter their load deformation characteristics, to improve ductility,
or to increase their moment resistance. Walls are often subjected
to bending moment in addition to axial load. In analyzing such walls
by elastic theory there are two separate cases to.be considered:
firstly, where the eccentricity of the load is so small that no
.tensile stress is developed in the member and secondly where the
.eccentricity produces significant tension on a portion of the cross-
section and the wall is assumed to be cracked. If P is the axial
load and M is the applied moment, it is convenient to express the
effect as equivalent to a load P acting at an eccentricity e
from the center or the centroid of the wall such that e = %. The
same assumptions as for plain walls are made in deriving the relations
for reinforced walls, namely: at any cross—-section, plane sections
remain plane and the reinforcement is the only effective tensile

component.

2.3.3.2 Reinforced Masonry Wall with the Steel in Compression

Two stress conditions exist within this loading case:
a) compression on total cross-section,
b) compression on part of the cross—-section.
Figure'2.5 shows the stress distribution on the cross-section for
condition (a). From this figure the following equations can be

obtained:
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Reinforced Wall Section with Total Cross-—Section
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P = btf ceetcecccsasanaes ceesnns ceesesssnenes . 2.9
. 1 rt_t

Moo= gl B (2 3]
N AT 3 TS SO e 2.10

12 max a
where

b = distance between reinforcing bars

fa = gtress due to applied axial load

fb = stress due to applied moment

In Equations 2.9 and 2.10 the effect of reinforcement has been
neglected. This simplification does not alter the results significantly.
Assuming that the stress distribution resulting from the

applied axial load and moment is as shown in Figure 2.6 the following

relations can be derived:

= 1
P = Z‘fmax bgt ctsecsccaseseanas cecesesrenanan 2.11
_ 1 t_ .t _ 1 2
M o= 5 fhax D8t [2 -8 3J = 12 Tpax P8t° G - 28)
e, 212

where

o
]

factor relating to the depth of the cracked section.

2.3.3.3 Reinforced Masonry Wall with Steel in Tension

If the applied loads are such as to produce tension in the

steel, the stress distribution will be as shown in Figure 2.7.
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From basic equilibrium considerations the following equations can
be obtained relating the stresses in the wall section and the

reinforcing steel.

- 1 _1 1-g
P = 5 fmax bKgt 2 ptn fmax [ s J ceenenn 2,13
M o= S bKt(E—K-t + 10 bRe 7 £ (1-g Kt - =
2 ‘max P {2 38 2 P n_ m l g 2
..... .. 2.14
where
p = AS/bt the percent of reinforcing steel
K = ;~(distance (from the compression face) toithe
centroid of steel)
n = Es/Em where
E , Em the modulus of elasticity of the steel and
masonry, respectively.
In this case,
// fa 2 fa
g = [np—f K] +2np—[np—f K] 2.15
max max
where
f = Lt Kg<omere |18 g 2.16
a 2 Tpax 8 ~ NP z R RRRRERE .

2.3.4 Ultimate Strength Analysis

The principles of ultimate strength design for reinforced
concrete members can be used to evaluate the ultimate capacity of
reinforced masonry walls. For reinforced masonry walls, as for

reinforced concrete, there are four possible modes of failure:
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a) balanced failure (simultaneous failure of masonry and
yielding of steel),

b) yielding of the steel in tension,

c) masonry failure before the steel reaches its yield strength,

d) steel in compression and crushing failure of masonry.

a) Balanced Failure.
Referring to Figure 2.8, the expressions for the ultimate

load and moment are obtained from equilibrium considerations.

P = 0.85f' @b = Af  tevvirnnrrvenennnneenns 2.17
u m Sy )
M = Pe = 0.85£' ap £ -2 R P T
m 2 2
where
Pu = ultimate axial load
e = eccentricity of ultimate load from the centroid

of the tension steel

AS = area of steel in tension

a = depth of the equivalent rectangular block = Kbc
f = yield stress for reinforcing steel

¢ = €E t/2(f 4¢ E ) = depth to the neutral axis

m s y ms :
= 1 .

Kb 0.85 for fm_i 4000 psi

em = masonry strain at ultimate load

H
b) Tension Failure.
A tension failure occurs when the ultimate load is less

than the balanced load (Pu <P In this case the distance from

b)'

the compression face to the neutral axis is smaller than it is for
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the balanced load, and the strain in the reinforcing steel is larger
than the yield strain. The ultimate load and moment can be found
using equations 2.17 and 2.18 by trial and error in conjunction

with relation:

€S €m
E—/—z"—;—z = < S evececccserrsasssccenen e ceenen 2.19
where
’ f
ES = gtrain in steel >-EX
s

¢) Compression Failure.

If the ultimate load is larger than the balanced load then,
as shown in Figure 2.8, the depth to the neutral axis from the
compreséion side is larger than for the balanced condition and the
steel strain is less than the yield strain (es < fy/ES). If the
steel is in tension the stress in the steel can be found from the

strain compatibility relations as:

t t

e (-2¢) [K, =- a]

f = ¢ E =——-——————m2 x E =eE——-————b2
S S s Cc S m s a

The ultimate load can be found using Equations 2.17 and 2.18 in

conjunction with Equation 2.20.

d) Steel in Compression.
If the moment acting on the wall is small then the steel

will be in compression. The strain in the reinforcement is a function



of the ultimate masonry strain and the cross-sectional properties.

28

If the entire cross-section is in compression as shown in Figure 2.9,

the strain in the steel is

1
e = ¢ . += [e -€ . ] ... 2.21
s min = 2 [ max min]
where

€ . = minimum strain in masonry

min

£ = maximum strain in masonry.

max

The force in the steel can be now included in the calculation of
the ultimate load using fmax = f& the ultimate strength of the

masonry and fmin as calculated by Equation 2.1.

= Loe
Boo= G LEL 4 € Tbt+Af ceeiiiiiiiiii. 2,22
P - P
- 1 N T - B e A L.
Mu_thl:m A“]]:Z 3:["12th
..... .. 2.23

For cases of partial compression on the cross-section and the

steel in compression the procedure is similar.
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CHAPTER III

Code Design Procedures

3.1 Introduction

In the previous chapter, the capacity of plain and reinforced

masonry walls was examined with regard to strength. When designing

masonry structures other factors such as slenderness effects, -
workmanship, construction procedures, etc., must be taken into
account.

In this chapter the procedures for designing load bearing
masonry walls undér three codes of practice are examined. These
building codes are:

a) Canadian CSA Standard S-304-1977, '"Masonry Design and

Construction".!3

b) "Uniform Building Code", International Conference of

Building Officials, 1973 edition.??

c¢) "British Standard Code of Practice, CP 111-1970".2"

3.2 Load Bearing Masonry Wall Design Procedure ‘According to
CSA Standard S-304-19771!3

The load bearing capacity of a masonry wall is calculated
using an allowable stress, the net area of the cross-section and
reduction factors which account for the eccentricity of load, and

wall height to thickness ratio.

30

U

J——

[OSC——,



31

The basic formula for evaluating the vertical load capacity

is given in Article 4.6.7.1 as:

Pa = CeCSfmAn ceesecaans et eeceneeneann ceeeae 3.1

Pa = CsfmAn Cteeeasasessstsaeraresenenanans cen 3.2
where .

Pa = allowable vertical load

Ce = eccentricity coefficient

CS = glenderness coefficient

fm = allowable stress

An = net cross-section area

Values of Ce and CS may be taken from tables in the Standard

or they may be calculated using the expressions:

c = 120 -

h/t ( “t)4
s 300

5.75 + ll.s + =
b

Equation 3.4 is used for t/6 < e < t/3. Equation 3.5 is to

be used for t/20 < e < t/6. Equation 3.2 is used for e < t/20
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where
e = virtual eccentricity; the eccentricity of the vertical
load plus the value calculated by dividing the moment
at the cross-section by the axial load.
e, = eccentricity at top of wall.
ep = eccentricity at bottom of wall.
The procedure in designing reinforced concrete masonry
walls is the same as for plain walls. The allowable masonry stress
is the same as for plain walls for axially loaded reinforced walls
and is increased by 107 for the case of combined loading.
For virtual eccentricity less than t/10 no reduction in
load carrying capacity is introduced in the case of reinforced
walls as a result of the introduced moment. If the virtual eccentricity"
is larger than t/3 or a value which will produce tension in the
reinforcement, the allowable 1load is calculated on fhe basis of
transformed section and a linear stress distribution. The load
calculated using this procedure is modified by applying a slenderness

coefficient to account for load-deflection effects. The slenderness

coefficient being the same as described previously.

3.3 Load Bearing Masonry WallADesign Procedure According to the
"Uniform Building Code"2®, 1973 Edition

The procedure to be followed in designing load bearing
masonry walls in accordance with the above document is summarized

in the following paragraphs:

1) Plain Masonry Walls

Design and construction of elements of plain masonry shall



be such that the unit stresses do not exceed those set
in tables in this division for the various masonry units.
2) Reinforced Masonry

All reinforced masonry shall be so designed and constructed
that the unit stresses do not exceed those set forth in
tables of this division. The design and construction of
reinforced masonry shall be based on the assumptions,
requirements and methods of stress determination specified
for reinférced concrete.

To account for-slenderness effects the axial stress is limited to

a value determined by the expression:

h }?®
' l I L l
0.2 £ [40t] ........... e 3.6

P-h
Il

where
fm = allowable compressive stress
f; = ultimate strength
h = height of wall in inches
t = thickness of wall in inches

3.4 Load Bearing Masonry Wall Design Procedure According to the
"British Standard Code of Practice CP 111-1970"*"

The British approach to masonry design is based on allowable
stress for a given masonry unit strength and the strength of a
given mortar type. This basic stress is multiplied by a reduction
factor for slenderness for h/t ratios larger thanm six. With

reasonable standard of workmanship and axially loaded walls of
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normal storey height this process gives load factors which range
between 4 and 7 for 9-inch thick walls and between 6 and 14 for
12-inch thick walls. The assessment of the amount of loading
eccentricity at a wall/slab junction is complex and is influenced
by the degree of fixity at the junction as well as by the floor
loading and relative stiffness of slab and wall. No guidance is
given by the code, and it is usual to consider all walls as being
axially loaded when the floor slab is stiff and passes over the
full width of the wall. The decision rests with the designer and
depends, obviously, on his assessment of slab thickness. The code
provides combined stress reduction factors for slenderness and

eccentric loading.

b el



CHAPTER IV

Stability of Masonry Walls

4.1 Introduction

Masonry walls behave elastically in compression, but are
brittle in tension. The strength of masonry in tension is limited
to that of tensile bond between the mortar and the masonry units.
This bond is usually small (less than 100 psi for common mortars)
and for all practical purposes it can be assumed to be zero. In
this chapter the mechanism of failure of walls with zero tensile
strength is examined. The buckling load of eccentrically loaded
slender masonry walls is evaluated, and the principles of the

moment magnifier method, as it applies to masonry, are examined.

4.2 General

A slender wall, initially straight and concentrically
loaded, will fail in buckling if the compressive strength of‘the
material is not exceeded by the critical stress.

However, the load is normally eccentrically applied
and there are imperfections in the wall. These imperfections may
be represented as additional eccentricity of loading or as initial
transverse deformation. If the wall has a limited tensile strength
the theoretical treatment is more difficult than if the tensile
sfrength were zero. Although the tensile strength of masonry is

variable, it should be included in a theoretical analysis in
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order to correlate observed experimental behavior.

When a wall without tensile strength is eccentrically
loaded outside the core boundary, tensile cracks will appear in a
portion of its height. The extent of the cracked portion is
dependent on the end eccentricities of the applied load, the
magnitude of the load and the lateral deflection. As the load
increases, the wall deflects and the eccentricity of the load in
the central portion of the wall increases while the compressed and
active section decreases. An eccentrically loaded reinforced
masonry wall will exhibit the same behavior until the crack reaches
the location of the reinforcement.

To arrive at a theoretical basis for the design of nominally
straight and concentrically loaded walls, an imperfection must be
included in the analysis. This may be present either as an
eccentricity of loading or as initial displacement of the wall.

For a purely elastic wall it is convenient to assume that
the deflected shape is sinusoidal -or parabolic, while for a brittle
wall it is simpler for analysis to assume that the deflected shape
is triangular. If the load is applied with a deliberate and known
eccentricity there seems to be no necessity to consider an additional
effect of column imperfection. As a result of these considerations
three bases can be made for theoretical analysis.

1) The wall is pinned at each end, has a triangular initial
deformation, and is concentrically loaded,
or
2) The wall is initially straight and eccentrically loaded

in single curvature bending,



or

3) The wall is initially bent in double curvature.

4.3 Walls with Pinned Ends and Triangular Initial Deformations

For zero initial deformations instability occurs when the
Euler load is reached. This results in complete collapse of the
wall, provided that the material strength is not exceeded before
collapse occurs. Where the initial deformation is finite but
less than t/6 the load/deflection curve for the wall is that for a
purely elastic wall, until the third point of the cross~section
coincides with the line of thrust. On one side of the wall cracks
then form and the load/deflection curve deviates from the elastic
curve. If the initial deformation is greater than one sixth of
the wall thickness, cracking occurs immediately load is applied if
the tensile strength is zero. After cracking has occurred the
effective depth of the section decreases with load and the height
over which cracking occurs increases. The effective depth varies
along the length of the wall and the effective eccentricity of the
load at any section depends on the deflection of the wall. At
final collapse, the effective depth at the center of the wall is
reduced to zero so that a hinge is formed. At this instant
the two parts of the wall become straight. Cracking never extends
over the entire height of the wall because the thrust line remains

concentric at the ends. Different deflection equations govern in

the cracked and uncracked portions of the wall, but they must yield

the same values of deflection and slope at the boundary between

cracked and uncracked portions.
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Figure 4.1 shows the deflected shape of a wall concentrically
loaded with initial triangular deflection.

Assume that the initial deflection is given by:

_ 2x
Yo 7 e. @ h)

where
e, = initial deflection at mid-height
x = distance measured from mid-height
h = height of the wall

If the additional deflection due to applied load is Yy» the

total deflection is given by:

y = YotV

As the wall deflects; a portion cracks and a portion remains
uncracked.
For the uncracked portion, the basic relation between load

and deformation is given by:

d2y1
+ =
ET % Py 0
Since
2
d yO

P—
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FIG. 4.1 Concentrically Loaded Wall with

Triangular Initial Deflection
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The line of thrust with respect to the cracked section is:

t'
e = %

where

~r
il

reduced depth = 3 {— - ]

where
Io = the moment of inertia of the uncracked section.
At any cracked section the following relation holds:
t')? dzyl .
EIO _t— =2 + Pe = 0
Since dzyo/dx2 = 0
t' 3 d2 . 3
EI [t] —dez + Pe 0
or

4.1
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or

EI

Pt'

o dx?

Substituting t'

gt

3(t/2 - y) the following expression is obtained:

dzy
EIo dx?
Let
(
z = t—
then

d?z
dy?

d?z

T ax2

Substituting back in Equations 4.1 and 4.2, the following

equations are obtained for the uncracked and cracked sections

respectively:

d?z

EI =5 +P [z—

o dx

d?z

EIo dx?

Pt

" 5472

t

_f} = 0 ceessartesesracnnna

4.3

4.4
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Equations 4.3 and 4.4 areAcoupled differential equations
governing the load deflection characteristics of an axially loaded
wall with initial triangular deformation. Solution of these
equations gives the maximum load that can be carried by a wall as
a function of the initial imperfection. Figure 4.2 is a graphical.
representation of the solution of the differential equations and
can be used to evaluate the buckling load for walls ﬁith no tensile
strength and triangular initial imperfections. Chapman and Slatford?

developed a detailed solution to this problem.

4.4 Straight Walls with Eccentric Load

If a straight wall is eccentrically loaded and the load is
gradually increased, part or all of the wall will crack. Figure
4.3 shows the deflected shape of such a wall. For the uncracked

portion of the wall the governing differential equation is:

2
. 4y _
EIO dx? + P(ep + y) 0] et e eeeee e sesesonoses 4.5
where

ep = eccentricity of the load

The eccentricity of the line of thrust with respect to the
cracked section is:

t'
e' = —
6
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FIG. 4.2 Maximum Load for Wall with Initial

Triangular Deflection
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and the reduced thickness is

as:

v}Y3 42
EI [tT] g;gi+1>e' = 0
or
2 3
gr £ 4 Pt I 4.6
o dx
- 54{— -y-e ]
P
Let
z = —--y-e
2 y P
then
d?z _ _ %
dx? dx?2

Substituting in Equations 4.5 and 4.6 the following

equations are obtained:
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d%z pt3 _
EIOEX—Z-—W = 0 e secessesenecacseesaanens 4.8

Equations 4.7 and 4.8 are coupled differential equations,
and they can be solved to obtain the maximum_ldad. A solution to
these equations was presented by Chapman and Slatforaz, and a
plot of this solution is shown in Figure 4.4, in which the ratio of
Pcr/Pmax versus e/t is plotted. In this plot P, is the Euler

buckling load and Pmax is the load obtained by the solution of

Equations 4.7 and 4.8.

4.5 Deflection Curve Approach to Stability of Masonry Walls

An approach to the stability of masonry walls may be
developed from the deflection curve. The results obtained using
this approach compare favorably with those obtained by Chapman and
Slatford?.

Consider the wall shown in Figure 4.5 loaded at an
eccentricity e > t/6, and having a deflected shape and cracked zone
as shown. Equilibrium at any point must be éatisfied. Assuming
that plane sections remain plane the stress distribution on any
cross—-section will be as shown in Figure 4.6. Maximum stress
occurs at the compression féce and is given as a function of the

distance from the line of thrust to the compression face by:

2P
00 = 3bu . 4.9

where

P = applied load
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FIG. 4.4 Maximum Load for Eccentrically Loaded Wall
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width of the wall

o
I

distance from line of thrust to the compression
force

[=4
Il

At any section along the wall the uncrécked thickness is
t - 3u, and therefore Equation 4.9 is valid for t/2 > e z_t/6
where t = the thickness of the wall. Maximum stress occurs at
mid-height of the wall where due to deflection (P-A effect) the
depth of the crack will be a maximum and the uncracked section a
minimum.

At this point the maximum stress is given by:

2P
= ceceneeans ceeteecenenne ceeccecenen 10
0max 3bug 4
where
u = minimum distance from the line of thrust to the

compression face

Consider the deflected wall as shown in Figure 4.7.
The x-axis is parallel to the thrust line of the load P and is
tangent to the deflection curve at the origin. At any point y = u - u

o

and at x = h/2, y = u; - u .
- Consider now an element of the deflection curve as shown in

Figure 4.8. The curvature of the compression face is caused by

the shortening of the face under compressive stress relative to the

length of the boundary of the uncracked zone, which does not change

in length since the stress is zero at this boundary.

As df -+ 0 the change in slope of the deflection curve

over the length of the element is:
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A 4.11

where

strain in element d%

™
I

The strain however is given by

- .0 _ Pu |1
£ = E 3ba [E} et essesssnssessscanen ceeen. 4.12

where

Q
1]

average stress at the face of the element

modulus of elasticity

Substituting Equation 4.12 in Equation 4.11

2P

¢ = Wdﬂ, R TR eeee . 4,13

The length of the compression face is given by df(1 - €) and it

can be expressed in terms of the radius of curvature R as:

) _ 2 1
d2(1l - ¢€) 3Eb u2(l - ¢€)

In general

Q‘L:‘
Ml N~
X

= |
i

BN

Therefore

[E—
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1+ (&7
d’y 2P dx

2 " 38 I (L S ) croocettrereesee 4.14

for small strains it can be assumed that (1 - €) = 1 and
. \ 3
Mo [an)?7 2
L dx
1 -c¢ =1

Equation 4.14 then becomes

\ .

dy _ 2 1

o GEL LT trereeresesesesesenceceienins 4.15
Let

2P _

9Eb = X
then

2y _ g1 4.16

Tn2 GT cttetreecseseeeecaesiniaiiaeienn .

The distance from the line of thrust to the compression

face as a function of the deflection curve is given by:



Substituting the above expression in 4.15 the following expression
is obtained.

d%y

K
dx?

G+ )2 ceee

es o0 e eeo e s e s v

ceeaes 4.17

which is the differential equation for the deflection curve for.

walls with no tensile strength.

A solution to this differential equation, presented in
Appendix A, yields:

P = 0.641257% Eul/n?
cr 1

L I I R A I A R )

ceees 4,18

This solution is approximated by:

P =8¢r2l—53E1/h2 : | 4.19
o > - 1 . e eeaeeetereannaan. )

within an accuracy of 4%.

Equation 4.19 is simpler to apply than Equation 4.18 and the
error of 47 is considered acceptable for all practical design
applications.

This solution compares very favorably with the one
given by Yokel?®

and Chapman and Slatford?.

4.6 Walls with Initial Double Curvature Iﬁperfections

When a wall is bent in double curvature due to eccentricities
of the vertical load, or initial imperfections, the critical load

is influenced by the location of the point of inflection.

Neglecting

54
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self-weight, the point of inflection as a function of the end

eccentricities is given by:

x, = h eeie S P 4.19
t b
where
x, = distance from support to the point of inflection
h = height of the wall
e.sey = the eccentricities of the load at top and bottom

Under these loading conditions there is a strong possibility
that the wall will buckle in a shape approaching the first mode which
is the lower-bound case. If the wall is to buckle in its first
mode the cracks created by one of the end moments will close as it
buckles, and, in effect, the rigidity will increase. At the limit,
the wall becomes member with a cracked portion and an uncracked
portion.

Figure 4.9 shows a wall bent initially in double curvature
due to the applied loads. It is safe to assume that the wall will
buckle in the direction of the larger moment and therefore it can
be further assumed that the shape of the cracked portion will be
similar to that for a wall in single curvature bending as shown in
Figure 4.10. It was shown in Section 4.5 that the moment of inertia

of a cracked wall section can be approximated by the expression:
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FIG. 4.9 Wall Bent in Double

Curvature
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Double Curvature Imperfections Bend

in the First Buckling Mode
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The equivalent stepped column shown in Figure 4.11 can be
analyzed using an energy method. For an elastic structure the
total potential energy HB is composed of the strain energy and the
potential of the applied load.

The total potential energy at buckling for any member

subjected to combined bending and axial load is given by:

h h
I, = 2| BI (32 dx -1 p (2 dx ...  4.20
B 2 o 2 “cr :
o o
where
y = the buckled shape

The equilibrium condition is expressed mathematically as:

To determine the buckling load for the stepped column a suitable
buckled shape is selected and the condition of Equation 4.21 is
imposed.

To obtain the best possible shape for the buckling
configuration, a finite element approach may be used with a fifth
order interpolating function. Equation 4.20 is rewritten to account

for the different section properties in the two segments as follows:

1 ch 1 h
n = E‘J EI (y'')? dx + —-J EI(y'')? dx
o 2
o] oh
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Letting
y = <¢>{9861}
Then
y' = <¢'>{ 06}
yll=<¢lv>{e}
yM? = <¢*>{68}<¢'>{86} = {0} [¢ 1{6}
(y'?2 = <¢">{or<¢''>{0) = {0r[¢''1{61}
where
y = deflection
y' = slope
y'' = curvature
<> = < ¢1 ¢2 ¢3 ¢4 ¢5 ¢6 > , the interpolating functions,
and
F}l
9
vy
{e}-=
Y2
Y2
y'

Since end deflections Yy and y, are zero, the interpolating

functions ¢l and ¢4 must be zero




Changing the limits of integration and substituting for

y'' and y' in Equation 4.22, the following relation is obtained for

the total potential

EI
o

1
Iy = 2%

B -

N[ =

1
P_h JO {6} [0'] {6} dn

o
I {6} [o''] {6} dn +3
o

.

{6} [&''] {6} dn

Applying Equation 4.21 to the above, the expression for the

equilibrium condition may be expressed as

’ o EI 1
§I. = EE-J [6''] {6} dn +-—El I
(o

(1
=P, h Jo [6'] {8} dn =

or,

(o , 1
J [¢''] {6} dn + B J [6'"'] {8} dn
(o] o

where

B = I1./1

The above relation can be reduced to:

2

cr
EI
o

[0''] {6} dn

1
J [¢'] {6} dn
o

[K] {8} = A [Kgl {6} cuiirriiiiiiiiiienennnnn 4.23
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where

i

(K]
[Kg]

bending stiffness matrix

geometric stiffness matrix

This equation is solved as an Eigen value problem to find A.
For hz/EIO = 1 the above relation can be solved to obtain
the coefficients which will give the buckling load for values of
o and B as Pcr = AEIO/hZ. Table 4.1 is a tabulation of A values
as found using this method. The interpolating functions and the
boundary conditions used are given in Appendix B. The critical
load (Pcr) may be evaluated for any stepped column of constant
modulus of elasticity by entering Table 4.1 with values of o and
B, finding A and multiplying A by EIO/hz.
The advantages of using this method are:
a) High order polynomials will approximate very closely the
actual shape that a stepped column may assume as a result
of initial bending and variations in the geometric properties.
It is found that a fifth order polynomial is quite adequate
in this case.
b) Using the determinate search method will assure the selection
of the best shape to minimize the energy stored in the

system.

4.7 Reinforced Masonry Walls

The behavior of slender reinforced masonry walls is more
complex than the behavior of slender unreinforced walls, since the

cross-section contains three materials at any cross-section and four
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materials overall, namely, concrete block, grout, steel and mortar.
The buckling load may also be influenced by variations in the
grouted core caused by mortar penetration into the core along the
height of the wall. Another factor influencing the buckling load
is the incomplete compaction of the grout due to the difficulty in
ramming or vibrating the grout in the presence of reinforcement.
Since it is impossible to account for the above factors, an exact
mathematical approach to buckling of reinforced masonry walls will
be at best heavily dependent on the assumptions. The behavior of
reinforced masonry walls is similar to the behavior of plain masonry
walls for those loading combinations which produce compressive
stresses in the reinforcing steel. For loading conditions which
produce tensile stresses in the reinforcement, the behavior of a
reinforced masonry section is similar to that of a reinforced
concrete section. If the assumption is made that a reinforced

wall has no tensile strength and if the effect of the reinforcement
in increasing the rigidity is ignored the buckling load for a
reinforced wall will be the same as for a plain wall.

The buckling load for a reinforced wall loaded in single
curvature can be evaluated using Equation 4.18 for eccentricities
smaller than t/3. For eccentricities larger than t/3 the steel will
be in tension and the behavior of the wall will be a function of
the extent of cracking and the transformed moment of inertia.

726

MacGregor et a recommend the use of the following relation for

flexural rigidity of wall panels with a single layer of reinforcement:
1 e

EI = E1I {— - —J > 0.10E T ceeenes ceevae 4.24
m mo (2 t — m o
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For double curvature bending the analysis is similar to
that of plain walls. The effects of the reinforcement will be to
allow the use of a limiting value for EI as given by Equation 4.24

instead of a value equal to zero as for the case of plain walls.

4.8 Effect of Tensile Bond on the Critical Load

In the previous sections the buckling load was evaluated
assuming zero tensile strength. The presence of tensile bond
strength will influence the critical load by increasing the uncracked
section, which in turn will increase the moment of inertia and
thus the critical load. It was shown in Section 2.3.2 that,
assuming linear stress distribution the depth of the uncracked

section is given by:

2tP

max

The minimum distance from the point of zero stress to the location

where the tensile stress is equal to the tensile bond is given by:

f'
5 t
T = ctesessecssseenaretrtcasttesrerenennse 4.25
max
where
fé = tensile bond strength
f = maximum cdmpressive stress
max
{ = distance from point of zero stress to the point

where the tensile stress is equal to f;
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Figure 4.12 illustrates the effort of limited tensile strength on
the extent of cracking on the cross-section. VThe additional
uncracked section, due to fé # 0, which is approximately given

by Equation 4.25, can be incorporated in the evaluation of PCr from

Equation 4.18 by including ¢ in the relation as follows:

2
_ TE 2e
PCr = Tone [1 7;} t+C b et eerenrsaaa 4.26
(see also Figure 4.12)
where
b 2e 5. . X
i7 1 - T t+C is the reduced moment of inertia.

4.9 Application of the Moment-Magnifier Method to Load Bearing
Masonry Walls

4.9.1 General
The moment-magnifier method was originally developed to

predict the ultimate strength of steel beam columns. McGuire?®
gives a detailed derivation of the method. The procedure has been
extended for use in design of intérmediate length reinforced
concrete columns by MacGregor et alzg., The method is based on the
concept that, in a column, bending moments determined by elastic
analysis are amplified by a factor dependent on:

a) effective length of the member

b) material properties

c¢) magnitude of vertical load
To obtain the resulting moment, the first order moment is multiplied

by the amplification factor. The column is then designed on the
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basis of an interaction diagram for a short column.

4.9.2 Elements of the Method

The maximum moment in an elastic beam-column loaded with

an axial load (P), and end moments (Mt’Mb) is shown by Galambos®®

to be
M = 6M et ereseenn Ceeesrerecnans cereeena 4.27
max t
where
1+ (M /M)2 - (M /M) coso
§ = /1 + O T mo 4.28
sino,
m
where
Mt = larger end moment in the column, always positive
Mb = smaller end moment in the column, positive if

column is bent in single curvature
o = h/P/EI = v P7PE
P = Euler Load = w2 EI/h?
To evaluate the maximum moment on a beam column ACI Building Code

Requirements for Reinforced Concrete (ACI 318-71)31 uses Equation

4.27 with § given by:

where

O
It

moment magnifier factor

68
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Pu = the ultimate load on the column
PCr = the critical buckling load of the column
Cm = 0.6 + 0.4 (Mb/Mt) ....... Cececcaseecaenas 4.30

The positive algebraic sign in Equation 4.30 applies when both

end moments induce compression on the same face of the column. The
ratio of the moments indicates the shape of the deformed column. If
the end moments are equal, Cm is unity; if one end of the column is
pin-ended, Cm réddces to 0.6. If the base of the column is fixed
then the carry-over moment is minus one-half the top moment; and

C, becomes 0.4.

For columns subjected to transverse loading, the maximum
moment can occur at a section away from the end of the member. 1In
this case the value of the largest calculated moment occurring
anywhere along the member is used for the value of Mt in Equation
4.27 and Cm is takeh as 1.0.

In Equation 4.29 the critical load relates to the buckling
load of an equivalent axially loaded column. In applying the method
in the design of concrete and steel columns it has been customary
to account for the end conditions that may exist in a particular
situation, thus allowing for fixity provided by bracing beams or
slabsf This in effect increases the buckling load and as a result

2 showed

the magnification factor was reduced. MacGregor and Mathews®
that by equating relations 4.28 and 4.29 with PCr = ﬂzEIo/(Kh)2 and
solving for the effective length factor (K), the following relation

is obtained:
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m /// Cmsinocm
K = — 1 - cesee 4.31
DR eTi e
—_— - |==] cos a
Mt Mt m

Solving Equation 4.31 for values of Mb/Mt from -1 to +1 and Pu/PE
from 0.03 to 0.63 MacGregor and Mathews found that the values

of the effective length factor ranged from 0.999 to 1.265. They
concluded that the values of K greater than 1.10 corresponded to
cases where Cm is underestimated by the ACI equation (columns with

o and Mb/Mt both low). If these values are excluded the average

K value was equal to 1.05. The absence of values less than 1.0
indicates that the effective lengths of columns in a braced frame,
should not be used if the column end moments are known from a second-

order analysis.

4.9.3 Application of the Moment-Amplifier Method to Masonry

It was shown in previous sectidns that the critical or
buckling load for slender walls without tensile strength is a
function of the magnitude and direction of the applied end moments.
The dependence of the critical load on the loading condition must
be recognized in applying the moment-magnifier method to the design
of masonry.

The magnification factor in the case of masonry must account
for the reduction in rigidity resulting from cracking. As the load
increases cracks propagate resulting in a reduced moment of inertia.
This produces a non-~linear increase in deflections. To account
for the dependence of rigidity on the stress level on all cross-

sections along the height of the wall the critical load to be used
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in the moment magnifier equation must be calculated using the
pfocedures developed previously in this chapter. Figure 4.13
illustrates the non-proportionality of deflections to the
eccentricities.

It was shown that, for plain masonry walls in single

curvature bending, the critical load is given by

3 EI
- 2 |1l _e}l” o
Pcr 8m [2 t:] h?

This relation is used in Equation 4.29 to evaluate the moment
magnifier Gm. For plain walls the bending stress obtained from a
first order anaiysis is multiplied by the magnification factor, Gm,
and added to the stress resulting from the axial load. The first
order bending stress is obtained using the equations derived in
Chapter II.

For walls with initial double curvature imperfections, or
walls bent in double curvature, the procedure is similar to that
for wallg in single curvature with the critical load evaluated using
the procedures described in Section 4.6. Table 4.1 lists coefficients
used to evaluate critical loads for walls in double curvature
bending. These coefficients are functions of the applied end
moments, and values of moment of inertia for cracked and uncracked
sections. For a reinforced wall the critical load used in evaluating
the moment magnifier factor is a function of the end eccentricities,
and Table 4.1 can be used in a manner similar to that for plain

walls.
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For reinforced walls in single curvature the eccentricities
smaller than t/3, the critical load is the same as that for plain
walls having the same moment of inertia. For eccentricities larger
than t/3 the steel is in tension and the cracked zone will advance

7 showed

beyond the location of the steel. For this case MacGregor?
that the moment of inertia of the section can be approximated by

the equation:
EI = KI [o.s-—"{[ > 0.10 EL evveevevenne. 431
O t -— o

For reinforced walls in double curvature, the limiting
value for the moment of inertia to be used in conjunction with
Table 4.1 is that given by Equation 4.31. The concepts discussed
briefly in this chapter are used in Chapter VIII where the moment
magnifiep method is applied to the experimental data obtained in
this study.

For design purposes the rigidity of the member is reduced
by a féctor depending on the ratio of the dead to live load in order
to account for creep which in long term loading will increase
deflections and amplify the moment acting on the section.
M’acGregor29 recommends the use of the following equation for

evaluating rigidity:
EI = ——F [EIO] cseensssnas Cecestasestnanen 4.32

where

~ ratio of dead to live load

o)
o
]
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CHAPTER V
Experimental Program
5.1 Materials

All materials used in the construction of the test specimens
are commercially available and typical of those commonly used in

masonry building construction in the Edmonton area.

5.1.1 Concrete Block Units

The basic units used for constructing all test specimens
were the 8 x 8 x 16 in. stretcher block, the 8 x 8 x 16 in. end
block and the 8 x 8 x 8 in. half block. The units are shown
schematically in Figure 5.1. The physical properties of the units

are listed in Table 5.1.

5.1.2 Mortar

Type S mortar was used throughout the experimental program.
The mortar was mixed in accordance with the CSA—A179M—1976
standard®3. Normal cement (type III, CSA-A5-1961)3%", type S hydrated
lime (CSA-A82.43-1950)3% and masonry sand were proportioned by
volume in accordance with 1 part cement, 1/2 part lime and 4-1/2
parts sand.

The sieve analysis of the sand, as shown in Table 5.2,
indicated that its fineness of 2.34 conformed to the requirements
of CSA-A82.56M-1976%%. The mortar was mixed in an electrically

driven mixer with blades on a vertical axis. From every batch of
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TABLE 5.1 Dimensions and Physical Properties of

76

Concrete Block Units
Masonry Width |Length |Height {Gross Effective Compressive
Unit in. in. in. Area Net Solid*| Strength ksi
in.? Area 7 Gross Net
Area Area
Stretcher |7 5/8 |15 5/8 (7 5/8 }119.15 54.45 [1.34 2.46
End Block |7 5/8 |15 5/8 {7 5/8 [119.15 54.45 ]1.40 2.57
Half 7 5/8 |15 5/8 (7 5/8 58.15 67.00 |[1.58 2.35
Solid 3 5/8 {15 5/8 |7 5/8 56.65 100.00 " |2.45 2.45

* Based on volume measurements of the cores

TABLE 5.2 Particle Size Distribution of Masonry Sand

Weight
Sieve Size Retained % Retained Z Cumulative
Grams Retained
#4 0 0 0
8 .0 0.25 0.25
#16 15.5 1.0 1.25
#30 649.0 42,0 43.25
#50 729.0 47.20 90.45
#100 132.0 8.55 99.0
pan 15.5 1.0
Total 1545.0 100.0 234.2
Fineness Modu}us 2.34




77

mortar four - 2 x 2 x 2 in. cubes and two standard cylinders were

cast and cured in accordance with CSA-A23.3-1973%7.

5.1.3 Grout

A mixture of normal weight crushed gravel (1/4 in. maximum
particle size) and natural sand was used to grout the reinforced
~walls. The two materials were proportioned in such a way as to
produce a blend that conformed with ASTM—CS95;7438. The mix was
proportioned by volume using type III normal cement, in accordance
with requirements of CSA Standard A 179M-19763%. The proportions
were 1 part Portland Cement, 2-1/2 parts sand, and 1-1/2 parts
coarse aggregate. From every batch of grout two standard cylinders

were cast and cured according to ASTM-C595-7438,

5.1.4 Reinforcing Steel

‘No. 3, #6 and #9 deformed bars were used for vertical
reinforcement. The average yield stress of nine specimens tested
was 59.50 ksi. The idealized stress strain relationship for the
reinforcing steel is shown in Figure 5.2. A number of test
specimens were reinforced in the horizontal direction with #9 gauge
wire reinforcement placed in the mortar joints. The joint reinforce-
ment was of a continuous truss design and consisted of two parallel
longitudinal wires welded to perpendicular wires as shown in Figure
5.3. 1In selected casés the joint reinforcement was flattened by

passing the wire through rollers which reduced the diameter by 40%.
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FIG. 5.2 1Idealized Stress-Strain Relation for Reinforcing

Steel
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5.2 Test Specimens

5.2.1 Prisms

Thirty two-block, one mortar joint, prisms were built.
Twenty of these prisms were plain and ten contained #9 gauge wire
joint reinforcement. Of the twenty plain prisms, ten were fully
bedded, and ten were constructed with face-shell mortar only. Five
of the reinforced prisms were reinforced with joint reinforcement
which had been flattened by passing it through rollers reducing the
diameter by about 40%. The remaining five contained normal type
joint reinforcement. The dimensions of these prisms are shown

schematically in Figure 5.4.

5.2.2 Short Walls

Short walls were the control specimens in the experimental
part of this study. A total of forty short walls, five blocks in
height, were built in running bond with blocks overlapping by 50%
in adjacent courses. Ten of the short walls were 1-1/2 blocks in
length and the remaining thirty were 2-1/2 blocks in length. Figures
5.4a and 5.4b illustrate schematically the dimensions of the short
walls. The specimens 1-1/2 blocks in length were plain and were
constructed with face sheli mortar. For the other specimens the
variables introduced were: full bedding or face-shell bedding, normal
or flattened joint reinforcement, completely or partially grouted,
and varying amounts of vertical reinforcement. Table 5.3 summarizes
the number of short walls and the incorporated variables. The
specimens were constructed and air cured in a laboratory environment

maintained at 72°F and 34 percent relative humidity.
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FIG. 5.4 Prism and Short Wall Specimens
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5.2.3 Full Scale Walls

All walls were constructed in running bond. Each course

" contained one stretcher, one end block and one half block. The

bed and head joint mortar was applied only to the face shells, this
practice being the most common in the construction industry. The
height of the walls varied from 12 to 22 blocks and all walls were
39.60 inches wide. The wall specimens were constructed and air
cured in a laboratory environment maintained at 72°F and 34 percent
relative humidity.

All specimens were constructed by experienced masons using
techniques typical of good workmanship and supervision. Plate 5.1
shows walls under construction. The mortar joints on both faces
were cut flush and then tooled. 1In all wall specimens the first
course was laid directly on a polyethylene sheet placed on the
laboratory floor. The thickness of the mortar joints was 3/8 in.,
and the mason kept the outer face of the wall in alignment using
horizontal line and level.

The first and last courses in all walls were fully grouted
in order to avoid local failures in testing with large eccentricities.
In walls designated to be reinforced, clean out holes were provided
in the first course. The reinforced walls were grouted in one lift,
and vibrated using a one inch diameter vibrator.

The variables introduced were similar to those for short

walls. Table 5.4 gives a summary of the full scale walls.
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PLATE 5.1 Typical Wall Construction



TABLE 5.4 Full Scale Walls
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Reinforcement
Des?Zi;tion o?u32§is Sleggsggess , Vertical Horizontal
(Nominal) |Plain | 3#3 | 3#6 | 3#9 | #9 Gauge | Plain
Wire

5 12 v /

5 12 v J/

1 14 / y

5 14 /
D 1 16 v y

5 16 / /
E 1 16 Y y

1 14 v J/

3 12 v J/
F 5 16 J/
G 3 16 Y

6 16 v J
H 5 16 | / /-
1 5 16 v /
J 4 16 Y /
K 1 16 J/
L 5 22 Y/ J/
M 2 22 / Y
N 5 16 Y y Y

Total 68
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5.3 Instrumentation

5.3.1 Prisms and Short Walls

For prisms and short walls tested in vertical compression,
vertical deformations were monitored by the movement of the head of
the testing machine with an accuracy of 1/10000 inches.

Deformations were also measured using mechanical gauges over specified
lengths in an attempt to measure deformations taking place in the

block and the mortar joint.

5.3.2 Instrumentation of Walls

Transverse deflections were measured at every two block
height using linear variable differential transducers (LVDT's),
calibrated to read increments of * 0.0001 in. The LVDT's were
attached to an independent frame and connected to the wall with
thin wires in such a way as to compensate for the vertical deformations.
Strains at the face of the wall were measured using 4 in. long
concrete strain gauges attached at midheight. Total axial deformation
was measured by the movement of the piston of the testing machine.

The strains in the reinforcing steel were measured by strain
gauges mounted on the reinforcement. The lead wires from these
strain gauges came out of the wall at the level of the position of
the gauge, in order to avoid interference with grouting, and bond,
and also to avoid possible damage to the wiring during vibration.
The procedure involved drilling 3/8" holes in the wall at the level
of the strain gauge. Wire was placed through the hole, led to the
top of the wall and connected to the strain gauge on the reinforcing

bar. The bar was then slowly lowered into position and at the same
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time the lead wire was pulled back through the hole. 1In those cases
where more than one strain gauge was used, all wires were placed
through the corresponding holes and pulled simultaneously.

Vertical load, vertical deformation, transverse deflections,
transverse strains and reinforcement strains were measured, recorded,
and partially processed automatically. The measuring devices,
(strain gauges, load cells, and linear variable differential
transducers) were powered by a common six volt power supply that
produced output in the range of * 6 volts. The analog signals
were converted into digital form by a digital voltmeter controlled
by a program in the NOVA computer. An interactive Fortran program
written for the NOVA provided the capacity to monitor load and
deflections during load application and to request output of a
set of readings, which were further recorded on a 1.2 million word
disc. The processing and recording of data at a particular level
of load application was completed in five seconds. After completion
of the test, the data was printed on a hard copy terminal, stored
on a digital cassettebtape, and transmitted to the AMDAHL 470

computer for further processing.

5.4 Test Procedure

5.4.1 Prisms

All two-block prisms were tested in axial compression. The
prisms were capped top and bottom with high strength plaster. One-
quarter (1/4) inch steel plates were placed at top and bottom and

the load was applied over the total area of the prisms.
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5.4.2 Short Walls

Short walls were tested in axial compression or combined
axial load and bending. All short walls were capped with high
strength plaster.

Ten short walls of one and one half blocks in length were
tested in axial compression with flat end conditions. The remaining
30 short walls were tested with pin-ended conditions using the
arrangement shown in Plate 5.2. The vertical load was applied by
the head of a 1.4 million 1b. capacity hydraulic testing machine
through a 6 in. deep steel channel section which consisted of 3/4 in.
side plates’and 2 in. base. A two inch diameter round bar, resting
on a 2 in. thick, 2 in. wide plate with a cylindrical groove, was
placed on top of the channel. A similar plate was placed on top
of the roller. The width of the channel was 7.75 inches. The same
supporf was provided at the top and bottom of the walls.

High strength plaster was used to achieve even bearing
surfaces on top and bottom. By allowing the plaster to flow on the
sides of the channel total support and a tight fit was provided.

To provide for application of eccentric loads the rollers
were moved to predetermined positions by means of bolts and threaded
holes in the channel, roller and plates. To maintain the walls in
vertical alignment, temporary wedges were used. These wedges were
"removed when the loading head was brought into contact with the
loading assembly and as a small precompressive force was applied-

to the wall.

5.4.3 Full Scale Walls

The walls were moved into the testing machine using the



PLATE 5.2 Test Wall Support
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device shown in Plate 5.2. The device consisted of two channel

sections connected with threaded steel rods. The channels were

placed on the two sides of the wall and compressive force was
introduced by tightening a set of bolts. To avoid damaging the
specimens, rubber pads were placed in three locations on each side
of the wall as shown in Plate 5.3. The walls were lifted by a 10-
ton overhead crane and moved into position for testing.

Plate 5.4 shows a wall specimen positioned and ready to be
tested. The load was applied using the same procedure and

arrangement as for short wall specimens.



PLATE 5.3 Device Used to Transport the

Wall and Prism Specimens
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PLATE 5.4 Wall in Position for Testing
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CHAPTER VI
Material Properties and Strength of

Prisms and Short Wall Specimens

6.1 Introduction

In this chapter the properties of the individual materials
are examined experimentally. The properties of the composite
material are then studied both theoretically and experimentally and
theoretical relations which predict these properties are developed.
Failure mechanisms for masonry are discussed and the state of stress
of loaded masonry is examined by means of a finite element analysis

in an attempt to explain the mechanisms of failure.

6.2 Strength and Modulus of Elasticity of Masonry Units

6.2.1 Compressive Strength

One of the most difficult aspects of testing masonry units
is the determination of their compressive strength. Normally the
masonry units are capped prior to testing and are subjected to
compressive stresses in a standard testing machine. Compressive
strength values of masonry units are affected by dimensions, testing
procedure, and support conditions.

Because of the restraining effect provided by the bearing
plates during testing, masonry units of different dimensions,

particularly of different height to width ratios, yield different
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compressive strength values for a given type of material. Such
uncertainties in the determination of the compressive strength of
a masonry unit are, at least in part, responsible for the wide
scatter in experimental data relating masonry strength to the
compressive strength of a single unit. In addition, the state of
stress developed in a standard compression test of a masonry unit
differs from the stress state in a masonry assembly. The masonry
unit in an assembly, is subjected to stresses in the direction of
the external load and lateral tensile stresses resulting from
differences in material properties. This aspect is further examined
in Section 6.4 of this chapter.

In this study, the compressive strength of the masonry units
was determined by testing 30 solid blocks with nominal dimensions
of 4 x 8 x 16 in. Plate 6.1 shows the test set up for evaluating i
the compressive strength and the load deformation characteristics
of the solid blocks.

The maximum and minimum observed stresses at failure were
3890 psi and 1850 psi respectively with a mean value of 2350 psi.
The coefficient of variation was 9.7% and the 95% confidence limits
on the mean were 2270 and 2420 psi. Excluding 5% of the test data
the expected strength was 1950 psi with 95% confidence limits equal
to 1900 and 2000 psi.

Compressive strains for a number of specimens were measured
by monitoring the travel of the piston of the testing machine and
by 4 inch strain gauges attached to the face of the block.

Figure 6.1 is a plot of measured stresses and strains for

a number of specimens. Applying the ACI formula for the modulus



PLATE 6.1 Test Set-up for Determining Compressive
Strength End Load Deformation
Characteristics of Solid Concrete Masonry

Units
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of elasticity of concrete and using 95 1b/ft® for the unit weight
and 1950 psi for strength, the modulus of elasticity for the concrete

block unit is:

t
i

w5 33/ £ psi = 951+5 x 33/ 1950

1.35 x 10° psi

This value, plotted in Figure 6.1, is in good agreement with the

observed data.

6.3 Properties of.Mortar
6.3.1 General |

The prime function of the mortar is to bond masonry units
into a monolithic mass ensuring a barrier to the entry of wind-
driven rain and providing required structural integrity. This
requires a complete "extent" of bond. Masonry mortar and concrete
blocks contain the same basic ingredients - cementitious material,
aggregate and water. As a result, it is commonly assumed that
mortar and concrete block perform similar functions. This is not
the case. In a masonry wall the mortar essentially acts as the
binder to‘unite the units that provide the strength. The properties
of mortar fall into two distinct groups: those of plastic mortar,

and those of hardened mortar.

6.3.2 Plastic Mortar

Workability is the most important property of plastic
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mortar. It can be defined as the ability of the mortar to spread,
qnder the trowel, into the cracks and crevices of the masonry unit.
In reality it is a combination of several properties including
plasticity, consistency and cohesion. It defies exact laboratory
measurement, but the mason can assess it by observing the response
of the mortar to his trowel.

Workability is the result of a roller-bearing effect of
the aggregate particles lubricated by the cementing slurry. Factors
affecting workability include aggregate grading, material proportions
and water content. The capacity of the mortar to retain satisfactory
workability under the influence of the suction of the concrete
block unit depends on its water retentivity. Good workability and
good water retention are essential for maximum bond with masonry

units.

6.3.3 Hardened Mortar

A number of strength properties are of prime importance in
hardened mortar. First among these is the strength of the bond
between the mortar and the masonry unit. The bond strength is
usually assessed on the basis of compressive strength values
obtained from 2-inch cubes cast and cured under conditions reflecting
construction practice. A new method which utilizes centrifugal force
to apply uniform tensile or shearing stresses on a masonry specimen
was developed during the course of the experimental part of this
study. The system consists of a rotating disc as shown schematically
in Figure 6.2 to which the test specimens are attached, as shown.

Specimens used for determining tensile bond and shear bond strength
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FIG. 6.2 Schematic Diagram of Bond Test Apparatus
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are shown in Figure 6.3. As the system is rotated at increasing
angular velocity with a small constant acceleration, the force in
the radial direction increases and at a particular velocity the
force is large enough to break the bond. The force causing failure

is then calculated, using the relationship:

F = mwR
where
F = radial force acting on the specimen
m = mass of separated portion of the specimen
w = angular velocity
R = distance from the center of rotation to the center
of mass.

A complete description of the system is given in Appendix C.

The mean tensile bond strength for 90 specimens tested
using this new system was 42 psi and with a standard deviation of
20.0 psi.

The mean shear bond strength of the fourty-five specimens
tested was 40.4 psi with a standard deviation of 21.7 psi. A
complete set of the data from tensile bond tests is given in Table
C.1 in Appendix C.

Fifty 2 x 2 x 2 in. cubes were tested in compression. The
mean compressive strength was 2540 psi with a coefficient of .
variation of 8.3%7 and a standard deviation of 210 psi. The 9%
confidence limits based on 5% exclusion were 2280 and 2210 psi. A

complete set of cube strength results is given in Table 6.1.
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Compressive Strength of Mortar

* TABLE 6.1

2 x 2 x 2 in. Cubes

102

No. Load Stress No. Load Stress No. Load Stress

(kips)  (psi) (kips)  (psi) (kips)  (psi)
7 Day Test:

1 6.00 1500 9 10.60 2650 30 10.10 2520
2 5.80 1450 10 11.50 2870 31 11.05 2760
3 6.45 1610 11 10.20 2550 32 11.30 2820
4 5.70 1430 12 9.50 2370 33 11.30 2820
5 5.90 1480 13 10.80 2700 34 11.00 2750
6 6.00 1500 14 11.50 2870 35 9.10 2270
7 4.60 1500 15 11.90 2970 36 10.40 2600
8 4.10 1030 16 10.60 2650 37 10.90 2720
9 7.00 1750 17 9.90 2470 38 10.70 2670
10 5.20 1300 18 10.40 2600 39 10.20 2550
19 8.75 2180 40 10.80 2700
28 Day Test: 20 8.80 2200 41 10.50 2620
1 10.25 2560 21 9.80 2450 42 9.60 2400
2 9.30 2320 22 9.45 2360 43 10.40 2600
3 9.00 2250 23 11.20 2800 44 9.80 2450
4 10.90 2720 24 8.40 2100 45 10.65 2660
5 10.10 2520 25 10.40 2600 46 9.80 2450
6 11.40 2850 26 8.75 2180 47 8.50 2120
7 10.18 2540 27 9.90 2470 48 10.20 2550
8 10.90 2720 28 9.60 2400 49 9.10 2270
29 9.80 2450 50 9.90 2470
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Fifty standard 6 x 12 in. mortar cylinders were tested in
axial compression. The mean compressive strength was 1600 psi with
a coefficient of variation of 26.9% and a standard deviation of
430 psi. The load deformation characteristics of the mortar cylinders
is shown in Figure 6.4. A straight line passing through the average

stress—strain data yields a modulus of elasticity of 0.7 x 108 psi.

6.4 Grout

6.4.1 Compressive Strength

The compressive strength of the grout used in grouting the
reinforced short walls and full scale walls, was evaluated
experimentally by testing thirty specimens prepared in accordance
with CSA Standard A179M-1976°%. The mean compressive strength was
2380 psi, with a standard deviation of 280 psi, and a coefficient

of variation of 10.6%.

6.4.2 Bond Between Grout and Masonry Units

The bond between the concrete Block units and the grout
was evaluated experimentally using the centrifugal testing machine
previously described. Eighteen test specimens were manufactured
by pouring grout into a 4 x 4 x 12 in. form on the bottom of which
was a 4 x 4 x 4 in. concrete block specimen cut from a 4 x 8 x 16 in.
solid block. Care was taken to ensure that the face on which the
grout was poured was an original rather than a cut face. The mean
bond value was 145 psi, with a standard deviation 7.0 psi and a
coefficient of variation of 5%. The complete test results are given

in Table C.2, in Appendix C.
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6.5 Compressive Strength of Prisms

6.5.1 General

The compressive strength of a masonry assembly is a function

of many factors, the most important being:

a) strength of the unit

b) strength of the mortar

c) thickness of the joint

d) reinforcement

e) workmanship
The compressive strength of an assemblage usually lies between the
compressive strength of the mortar and that of the masonry unit.
The modulus of elasticity of the mortar is usually smaller than that
of the masonry unit and, as a result, the free lateral deformation
of the mortar is substantially greater than that of the concrete
block. If there is a difference in the Poisson's ratio of the two
materials, the lateral strains will differ even more. Because the
masonry unit, at the mortar interface, must undergo the same lateral
expansion as the mortar due to friction and bond, the léteral
expansion of the mortar is restrained, producing tensile strains
in the masonry units. These lateral strains introduce tensile
stresses and tensile failure occurs before the compressive strength
of the unit is reached.

Assuming that the prime mode of failure in concrete block
masonry assemblages is tensile splitting it is now in order to
summarize the variables affecting this phenomenon. The physical
propertiés of mortar and masonry units, together with their geometric

relationships, control the compressive strength. Past investigators
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have tried to relate the compressive strength, the modulus of rupture,

the tensile strength and the shearing strength of the masonry unit

to the compressive strength of the assemblage. Studies of physical

- properties for mortar have usually been confined to compressive

and splitting strengths.

Studies concerning the geometric relationships have included

the effects of slenderness ratio of the assemblage, joint thickness,
net area, and core patterns. In addition to these variables there
is the influence of workmanship to be considered.

6.5.2 Analytical Evaluation of Compressive Strength of
Masonry Prisms

Based on a stress analysis Hilsdorf? in 1967 presented an

- analytical procedure to predict the compressive strength of masonry.

His work is based on solid masonry units fully bedded by mortar.
In applying the method as developed by Hilsdorf one must recognize
that in hollow concrete block construction practice, mortar is
placed only on the face shells. It has been observed, however,
that the mortar penetrates into the web by 25 to 50 percent.

Figure 6.5 shows the stress conditions in a prism of solid blocks.

‘Hilsdorf's theoretical approach of compressive strength of masonry

assemblages is based on the assumptions that masonry units behave
in accordance with a modification of Mohr's theory of failure, that

there is a perfect bond between the block and mortar interfaces and

that the distribution of lateral and vertical stresses is uniform.

Figure 6.6 shows the theoretical envelope relating the tensile and

compressive stresses in a block at failure.
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If it is further assumed that the tensile stresses are
equal in the x and z directions, then line AB in Figure 6.6 can

be represented by

o
o = o = o | 1-=2L1| ... 6.1
X z tb o]
ch
where
g = 0 = tensile stresses
X z
th = uniaxial tensile strength of block
ch = wuniaxial compressive strength of block

As the vertical load increases, the mortar has a tendency
to expand laterally. The mortar is however assumed to be in perfect
bond with the block and it is therefore confined. The strength of
the mortar increases due to the confinement and if the resulfs from
triaxial compression tests for concrete are applied to mortar, this
strength can be approximated by the following relation suggested by

Richart et al??:

oy = ocm + 4.1 oxm S ereseesereartenateacaaana 6.2
where
Oy = local stress in the vertical direction
Ocm = uniaxial compressive strength of mortar
Oxm = lateral compressive stress in the mortar joint

From Equation 6.2 the minimum lateral confinement of the mortar

joint is given by:

[ ——
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If the lateral tensile stress in the block and the compressive
lateral stresses in the mortar joint are uniformly distributed

over the height of the block and mortar joints then for

equilibrium:

b tb =>.oxm tj .................. e 6.4
where

tb = height of block

tj = height (thickness) of joint

Substituting Equation 6.4 into Equation 6.3, the equation for line

CD in Figure 6.6 is:

Yxb b1t Vy

From Equations 6.1 and 6.2 the intersection of line AB and CD, or

the failure stress'oy, can be evaluated as:

4.1 o,
y cb | 4.1 0,

+
b 0to‘c

b

L .. 6.6
b

+ 00
c

where
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Hilsdorf suggested a coefficient of non-uniformity to be applied
to Equation 6.6. This factor is not a constant but depends on
such parameters as geometric relations and strength.
The compressive strength of masonry prisms can also be
quantitatively predicted by strain compatibility. The lateral stresses

produce lateral strains and, if all the assumptions made previously

hold, then
e=io+v(c-—0)
xb Eb xb b 'y zb’ |-
1[ q
£ = =~ lo, +v, (0 -0,) e eceneeeens .. 6.7
zb E zb b Vy xb” |
where
gxb’ b the extensional strains in the x and z
directions in the block
Eb = modulus of elasticity of concrete block
Vb = Poisson's ratio for the concrete block

Similarly the strains in the same directions at the mortar joint

are given by

1
€ . =——]:—O.+\).(o + 0 .)
x] Ej X]J oy z]
1
€ . = —i-0,+v, (0 +0.) ceecearraea .. 6.8
z]j Ej z] J z x]
where
Exj’ Ezj = the extensional strains in the mortar in the

x and z direction

e



E modulus of elasticity of mortar joint

i

Vv,
J

Poisson's ratio for mortar joint

For compatibility

xb xj

P e 6.9

zb €zj

For equilibriﬁm, the total lateral tensile force on the block must

be equal to the compressive force in the mortar. In the x-direction

equilibrium requires that:

By setting €2b equal to exj and substituting for Oxj and Ozj’ the

following equation is obtained:

o (pv, - Vv
6., = o, = j(¢ u! Y e 6.11
xb zb 1+oc¢—\)b—w¢\)j e
where
Y = tb/tj
¢ = Eb/Ej

112
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Equation 6.11 suggests that lateral stresses will reduce the effective
value of fé, (the value of Gy at which failure occurs). The limiting

case from Equation 6.11 occurs when o and Oz are equal to the

b

uniaxial tensile strength of the block and Oy is zero. The other

b

extreme is when the compressive stress (Oy) is equal to the strength
of the block and the tensile stresses are zero.

If the two extreme points are conmected by a straight line
by assuming Mohr's theory of failure as suggested by Hilsdorf,
then the relationship between the tensile and compressive stress

in the block can be expressed by:

where

k = o./o

cb’ "tb

By substituting the above expression for Gx in Equation 6.11 the

b

following relation between fé and Op is obtained:

L
fm 1

k(@Y - v.) cereeteeae,
cb 1+ IR $ (? )
b 2 - \)m

A comparison of the two methods for predicting the compressive
strength of masonry prisms is shown in Figure 6.7. The comparison
is made for Op = 4000 psi; Op = 400 psi; Ocm = 2000 psi;

v=v =v =0.15 ¢ = Eb/Em = 2.
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The two methods presented are both approximate and subject
to limitations, especially when applied to hollow concrete block
assemblages. The most important limitations are:

a) Assumption that 0, =0,-

b) Assumption that extent of mortar bedding has no effect on
the behavior of the assembly.

¢) Assumption that vertical joints do not affect the strength.

d) Assumption that shear at the block mortar interface has

no effect on behavior.

e) Assumption that failure initiates at the centroidal axis.
f) Assumption that failure initiates at the masonry unit.

g) Assumption that bond provides adequate confinement.

6.5.3 Test Results

6.5.3.1 Two-Block Prisms

The failure loads and the resulting stresses for the axially
loaded two-block prisms are given in Table 6.2. The average failure
stress for plain fully bedded prisms was 2090 psi and for plain
prisms with face-shell mortar was 2010 psi. Prisms with flattened
joint reinforcement failed at an average stress of 1840 psi and

prisms with #9 gauge wire reinforcement failed at 1690 psi.

6.5.3.2 Short Walls

The results of tests on plain ungrouted short walls are
summarized in Table 6.3 for axially loaded specimens and in Table
6.4 for eccentrically loaded specimens.

Sixteen short walls, nine of which were reinforced in one

or two directions and seven of which had no vertical reinforcement



TABLE 6.2 Test Results for Axially Loaded

Two Block Prisms

Mortar Load at Stress at Stress Based

Prism |Bedded Joint Failure |(Failure Based |on Gross Area
Area |Reinforcement kips on Mortar in.?

in.?2 Bedded Area
psi

* 1 58 132.4 2270 1110
2. " 117.5 2010 990
3 " 112.9 1930 940
4 " 150.1 2570 1260
5 " 106.6 1830 890
6 " A 127.9 2190 1070
7 " &5 129.8 2230 1090
8 " A 136.0 2330 1140
9 " 90.0 1540 750
10 " 115.7 1980 970
Average 121.9 2090 1020
*%11 39 75.7 1940 640
12 " 100.0 2560 840
13 " 68.9 1760 580
14 " 78.8 2010 660
15 " 94.3 2410 790
16 " ki 90.0 2300 750
17 " 5 60.0 1530 500
18 " - 65.5 1670 550
19 " 87.5 2240 730
20 " 65.0 1660 550
Average 78.5 2010 660
21 " 90.0 2300 840
22 " Flattened 98.5 2520 830
23 " #9 Gauge 60.4 1540 510
24 " Wire 60.6 1550 510
25 " 50.8 1300 430
Average 72.0 1840 620
26 " 60.5 1550 510
27 " #9 Gauge 45.8 1170 380
28 " Wire 55.2 1410 460
29 " 60.1 1540 500
30 " 70.0 2790 840
Average 58.3 1690 540

* Specimens 1 to 10 were fully bedded.

** For specimens 11 to 30 mortar was placed at the face shells only.
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TABLE 6.3 Test Results for Axially Loaded Short Walls

117

Mortar Load at Stress at Stress Based|

Specimen | Bedded Joint Failure |Failure Based |on Gross Area
Area Reinforcement kips on Mortar in.?2

in.? Bedded Area
psi
* 1 152.5 plain 275.4 1690 550
2 152.5 plain 260.0 1700 560
Average 258.7 1690 560
*% 3 122.3 plain 215.5 1760 710
4 122.3 plain 249.1 2040 820
Average 232.3 1900 760
5 122.3 flattened 234.8 1920 770
6 122.3 #9 gauge 191.1 1560 630
wire .

Average 212.9 1740 700
7 122.3 #9 gauge 200.0 1640 660
8 122.3 wire 171.2 1340 560
Average 185.6 1490 610

* Specimens 1 and 2 were fully bedded.
*%  TFor specimens 3 to 8 mortar was placed at the face shells only.
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and were fully or partially grouted, were tested in axial compression
in an attempt to establish the contribution of vertical reinforcement
and grout in carrying axial loads. The experimental results for
these specimens are listed in Table 6.5. Analysis of results

described in this chapter are presented in Chapter IX.

6.6 Modulus of Elasticity of Hollow Concrete Masonry

6.6.1 General

In masonry design, the modulus of elasticity is a factor
affecting strength calculations and deflection calculations.
Evaluation of this important strength parameter is a complicated
task since the modulus of elasticity of masonry is affected by the
modulus of both the masonry constituents, namely the mortar and
block. Other factors which influence this parameter include the
effect of vertical joints the thickness of the horizontal joints,
stress levels and the shape of the block. Experimental information
on the modulus of elasticity of masonry is lacking. In this
section the elastic modulus of masonry ié examined both theoretically

and experimentally.

6.6.2 Theoretical Considerations for Modulus of Elasticity

Assuming that both mortar and concrete blocks obey Hooke's
law and that there is a lack of fit at the interfaces, the following
relations can be derived with reference to Figure 6.8.

The total deformation of one block plus one joint is:
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FIG. 6.8 Test Specimen for Evaluation of the Elasticity
Modulus




where
At = total deformation
Atj = joint deformation
Atb = block deformation

The deformation of the joint with thickness tj is:

where Ej is the strain caused by the stress ¢ in the joint which
has modulus of elasticity'Ej.

By Hooke's Law

At = b e, e 6.17
J Ej J

similarly for the block and the assembly we can write:

- 9
Atb = tb e es ittt at e e e e 6.18
b
o
At = E t ceseses et seeseseseesaseaesenntneanna 6.19
m
where
t—tj+tb
Em = modulus of elasticity of the assembly

Substituting in Equation 6.15 the following relation is obtained:

j E. b

I = S + 2 ¢ ettt e, ) 6.20
E E.
m i b

122
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From this relation the modulus of elasticity of the masonry

system is:

E = E e 6.21
m t. t
Jd4 b
E. T E,
Letting
t t
LI T e 6.22
t. + ¢t t
b j

and substituting in Equation 6.21, the following expression is

obtained:

Substituting into Equation 6.23 the values for the modulus of
'elasticity of the block and mortar as found experimentally in
previous sections of this chapter, the theoretical modulus for the

assembly is:

E = x 10% = 1.3 x 10° psi

m 0.375 . 7.625
0.70 1.35

6.6.3 Experimental Evaluation of Modulus of Elasticity of Hollow
Concrete Block Masonry

The stress-strain relationship derived from tests of ten, one

and one-half block wide, five block high specimens in axial compression

etk
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with flat end conditions is shown in Figure 6.9. The average

stress at failure was 2056 psi. A straight line passing through

the average values of the data obtained, suggests a value for the -
modulus of elasticity of 1.12 x 10° psi. This value is 86% of the
theoretical value. The CSA Standard S-304 M!3 recommends a modulus
of elasticity equal to 1000 times ultimate compressive strength of
the masonry. The ulpimate strength for the units and mortar used

in this study, computed in accordance with CSA Standard S-304-M'% is
1490 psi, resulting in a modulus of elasticity of 1.49 x 108 psi.
This value is much higher than that obtained experimentally.
Experimental results suggest a value of 750 fé to be more conservative
for use in the CSA Standard S-304-M!® relation for modulus of
elasticity. Factors affecting the modulus of elasticity of masonry

are discussed in Chapter IX.

6.7 Prism and Short Wall Failures

The two-block prisms, tested in axial compression with flat
ends, failed by vertical splitting in the web and face shells as
shown in Plate 6;2. This type of failure was also observed in short
wall specimens tested with flat or pinned ends with vertical loads
applied axially or at small eccentricities. As vertical load
eccentricity was increased, failure by web splitting was accompanied
almost simultaneously by cracking in the horizontal mortar joints on
the tensile face of the specimen. Typical failures of prisms and
short wall specimens tested in axial compression are shown in Plates

6.3, 6.4, 6.5 and 6.6.
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PLATE 6.2 Failure Mode of a Two-Block Fully-Bedded Prism
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PLATE 6.3 Typical Failures of Prisms with No. 9

Gauge Wire Joint Reinforcement
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PLATE 6.4 Failure Mode of Axially Loaded Concrete

Block Masonry Specimen




PLATE

6.5 Detailed View of Tensile Splitting Failure
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PLATE 6.6 Failures of Short Walls Tested with Pinned Ends
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6.8 Effect of Joint Reinforcement on Vertical Load Carrying Capacity

Most codes specify a éertain minimum percentage of steel
to bg placed in the joint of reinforced masonry walls. The CSA
Standard S-304-M'3 specifies that reinforced masonry load-bearing
and shear walls shall be reinforced horizontally and vertically
with steel having a minimum area calculated in conformance with

the following formulae:

A = 0.002 A a
v . g
Ah = 0.002 A (1 - o)
g
where
AV = area of vertical steel per unit of length of wall
Ah = area of horizontal steel per unit length of wall
Ag = gross section area per unit length of wall

= reinforcement distribution factor varying from 0.33
to 0.67 as determined by the designer.

The basis of this requirement is to provide two-way action
for resisting lateral loads. Theoretically, there is no reason
to expect that joint reinforcement will increase the load bearing
éapacity of concrete masonry walls, especially with the construction
procedures commonly used in Canada.

As a result of the substantial difference in the elastic
properties of steel and moftar it can be assumed that the stress
distribution in the mortar joint will be similar to that for a

plate with a rigid inclusion. Figure 6.10 shows the distribution
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of stress in a reinforced mortar joint uniformly loaded. Tnis stress
distribution hgs a peak of at least 1.56 W, where W is the uniformly
distributed load acting on the joint. The distribution is based on
the assumption that the steel is infinitely stiffer than the mortar
which is a realistic assumption considering that the ratio of modulus
of eiasticity of steel to that of mortar is of the order of 40 to 1.
In reality the stress distribution is more complex because of the
presence of confinement stresses and inelastic action. Exact
analytical evaluation of the stress distribution in anisotropic
plates is complex and beyond the scope of this thesis. Lekhniskii*?
gives a complete detailed account of stress patterns created in
anisbtropic plates under various loading conditionms.

The average failure stresses for prisms with normal joint
reinforcement was 187 lower than for plain prisms. For prisms
with flattened joint reinforcement the reduction was 8%.

Axially loaded short walls failed in a similar manner to
that for prisms. Short walls with normal joint reinforcement failed
at average stresses 207 less than plain walls and specimens with
flattened joint reinforcement at 8% less than plain walls. Fully
bedded specimens carried only 10% additional load to that for
specimens with face shell mortar. Eccentrically loaded short wall
specimens with round joint reinforcement failed at an average stress
22% less than plain walls. Tests on full scale walls with and without
joint reinforcement found the trend to be similar. Reinforced
short wall specimens containing joint reinforcement failed at an
average stress 6% lower than reinforced specimens without joint

reinforcement.
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6.9 Capacity of Short Wall Specimens

6.9.1 Specimens Without Vertical Reinforcement

A total of sixteen 8 x 40 x 40 in. short wall specimens
with pinned support conditions were tested under verticai loads
applied at equal top and bottom eccentricities of 0, t/6 and t/3.

Figure 6.11 shows plots of test results for eccentrically
loaded short walls loaded to failure based on data in Tables 6.2 and
6.3. It is evident from Figure 6.11 and Tables 6.2 and 6.3 that
a significant increase in "apparent'" compressive strength occurs
as a result of flexure. A similar behavior has been reported
by Yokel and Mathey"! who introduced a coefficient "a" to distinguish
compressive strength in flexure, designated by af&, from the compressive
strength f% obtained from axial load tests on prisms with flat
supports. The values of "a" given in Table 6.6 have been calculated
by taking the ratio of flexural compressive strength to axial
compressive strength. The curve shown in Figure 6.11 is a theoretical
interactién cur&e developed using a computer program capable of
analyzing plain and reinforced sections partially or fully grouted,
fully bedded or face-shell bedded. The program and the material
properties used in developing the interaction diagram are given in
Appendix D.

The theoretical interaction diagram of Figure 6.11 was
obtained using average compressive strength under kern point loading
(i.e. a fé = 1.45 x 1900 = 2750 psi). The difference in failure
stresses under axial and eccentric loads is attributed to the mode
of failure. Under axial load the failure mode is the well known

critical splitting of the blocks in the webs and flanges. 1In
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TABLE 6.6 Coefficient "a'" of Apparent Increase of

Strength Due to Flexure

e/t 0 t/6 t/3

a for 1.0 1.38 1.52
fé = 1900 psi 1.0 1.68 2.02
1.0 1.44 -

Average 1.00 1.45 1.80
a for 1.0 1.57 1.36
f& = 1650% psi 1 1.46 1.53
1 - 1.36

Average 1.00 1.50 1.40

* Specimens reinforced with #9 gauge
wire joint reinforcement.
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eccentrically loaded walls shear is introduced as shown in Figure
6.12. The shearing force opposes the splitting force on the
compression sidé.

Due to the difference in material properties, most of the
rotétion in an eccentrically loaded wall takes place in the mortar
joints resulting in the formation of a wedge. The forces acting
on the block and mortar joint are shown qualitatively in Figure
6.13. The horizontal component of the force acting on the joint
‘reduces the splitting force. ‘Another factor contributing to the
‘change in failure mode is the variation in confinement resulting
from the yariation in stress level across the joint.

As a result of the above factors the section fails when its
compfessive capacity is reached. For normal joint thicknesses this

corresponds to the compressive strength of the masonry unit.

6.9.2 Partially or Fully Grouted Specimens with Vertical Reinforcement

The test'results for axially loaded reinforced short walls
and grouted short walls are presented in Table 6.5. For fully
bedded and fully grouted plain specimens the average load at failure
was 343 kips corresponding to an average stress of 1130 psi. Only
" one specimen, face-shell bedded and fully grouted, was tested.
This specimen failed at 342.4 kips corresponding to a stress of 1130
psi. TFor a full& grouted specimen with #9 gauge wire joint reinforce-
mént the failure stress 1140 psi. It appears from this data that
there is no substantial difference in load carrying capacity among
the three types of specimens.

The type of construction (fully bedded or face-shell bedded)

had no effect on the strength of the assembly for walls built in
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FIG. 6.12 Forces Acting on the Cross-Section of

an Eccentrically Loaded Wall Portion
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running bond becausé the webs are not in vertical alignment. This
non-alignment caused the mortar placed on the cross webs to be
ineffective. Mortar penetration into the cores caused reduction
of the grouted cross-sectional area at the joint, wifh the net
result that only part of the grout is effective.

Assuming 257 active mortar penetration, an active
mortar bedded area of 122.3 in.? and the stress at failure equal
to 1900 psi for axially loaded ungrouted walls, the contribution of
the grout for the four walls was 110.9 kips. For a grout compressive
strength of 2380 psi, this yields an effective grout area of 46.6
in.? or 9.30 in.2 per core.

Walls with only three cores filled failed at an average
load of 301.6 kips. The theoretical load based on the analysis
for fully grouted walls was 298.9 kips, which is in very close
agreement with the test values.

For specimens with vertical reinforcement the contribution
of the steel in resisting axial loads was found.to be 82.0 kips for
specimens with 3-#9 bars, 50.8 kips for specimens with 3-#6 and
15.4 kips for specimens with 3-#3 bars. The percent utilization
of steel in the three groups of specimens with vertical reinforce-
ment was therefore 467, 64.1% and 77.7%, respectively.

The presence of joint reinforcement in three specimens with
vertical reinforcement had no significant effect on the capacity of
the sectioen.

Typical failures of specimens with vertical reinforcement

are shown in Plates 6.7 and 6.8.



PLATE 6.7 Failure of Short Wall Specimen with

Vertical Bars

3~#9
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PLATE 6.8 Failure of Short Wall Specimens with 3-#3

Vertical Bars
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6.10 Stress Distribution in Axially Loaded Masonry

Failure criteria were examined in Section 6.5 and relations
predicting the ultimate capacity of masonry were developed. The
derivations were based on a uniform tensile stress distribution along
the height of the block. To account for the variation in the
stress along the height and other uncertainties, Hilsdorf® suggested
the use of a "uniformity" coefficient. The stress distribution
of axially loaded masonry was evaluated by finite element using a
program developed by Dr. D.W. Murray, of the Department of Civil
Engineering, University of Alberta. This program makes use of
quadratic serendipity elements. The loading conditions and the grid
used in the analysis are shown in Figure 6.14. The analyzed portion
consisted of one block and two mortar joints. The material propefties
used in the analysis were: 1.30 x 108 psi for modulus of elasticity,
0.2 for Poisson's ratio for the block, and for the mortar 0.7 x 10°
péi for elastic modulus and 0.4 for Poisson's ratio. The results
obtained from the analysis are shown in Figure 6.15. The computed
maximum tensiie stress is approximately 400 psi. The tensile strength
of the block material, estimated using the relation fét = 7.5 vr?i:_ ,
with mean compressive strength as obtained experimentally is of the
order of 350 psi. This analysis indicates that the tensile strength
of the block material ié exceeded by 12.57, which suggests a
uniformity coefficient equal to 0.875. Substituting the mean
strength parameters obtained experimentally and the above value
for the coefficient of uniformity in Equation 6.6 the expected

stress at failure for axially loaded masonry is:
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350 + 0.011995 x 2545
350 + 0.011991 x 2350

+h
B -
]

0.875 [%350 [

0.875 [2364] = 2068 psi

which is in good agreement with the experimental evidence.




CHAPTER VII

Full Scale Wall Test Results

7.1 Introduction

The experimental program involved tests on sixty-eight full
scale_walls, which were subjected to various axial loads and moments.
A description of the walls tested is given in tabulated form in
Table 5.4 of Chapter V. The test results are presented in two
groups, namely results for axially loaded specimens, and those for
specimens subjected to eccentric loading. A complete set of
experimental data is given in Structural Engineering Report No. 71

of the Civil Engineering Department, University of Alberta

7.2 Axially Loaded Walls

Data reported in this section include tests on plain and
vertically reinforced walls with slenderness ratios varying froﬁ 12
to 22 (nominal). The actual slenderness ratios calculated on the
basis of the test set-up and actual wall thicknesses are given in
the tables of test results. All walls were tested with pin-ended
conditions. Table 7.1 gives a summary of test results for axially
loaded walls. These results were found to be in good agreement with
those obtained in tests of small specimens. The average compressive
strength of plain walls was 1830'psi. The strength calculations are
. based on mortared area and 25% active mortaf penetration. Failures

of plain walls were sudden and in some cases explosive.
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Plate 7.1 shows Walls Cl and D1 after failure. Lateral
deflections monitored during the tests showed that the walls
remained almost straight until failure occurred. Maximum deflection
at mid-height was of the order of 0.075 inches for all plain walls.
Figure 7.1 shows the deflected shape of Wall Al at different load
levels. Specimens with vertical reinforcement failed at stress
levels close to those of short wall specimens with similar reinforce-
ment. Partially grouted walls with vertical reinforcement failed
with vertical cracks forming through the ungrouted cores. Formation
of vertical cracks occurred without warning; however, complete
failures occurred after additional load was applied and the cracks
propagated from the point of origin to almost the ends of the walls.
In most cases cracks were first formed at mid-height of the walls.
In examining the walls after failure it was found that the grout
was split parallel to the reinforcement. The vertical cracks in
the walls are considered to be tension cracks resulting from the
difference in stress levels in the grouted and ungrouted portions of
the cross-section.

Plate 7.2 shows failures of axially loaded walls with
vertical reinforcement. A typical deflected shape for a reinforced
wall at various load levels is shown in Figure 7.2. Steel strains
monitored at mid-height are plotted in Figures 7.3 and 7.4. The
average steel strain at failure for Wall C2, reinforced with three
#9 bars, was 5.1 x 10™* in/in. For Wall I1, reinforced with three
#3 bars, the average steel strain at failure was 9 x 10~"% in/in. The
maximum steel strain observed was 1.2 x 10~% in/in. which is

approximately 60% of the yield strain. The efficiency of the
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PLATE 7.2 Failures of Axially Loaded Reinforced Walls
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vertical steel as a function of the area (size), calculated in
Chapter VI from short wall tests, is in agreement with the results
of this part of the study,.

The difference in Poisson's ratio aﬁd the absence of
confinement reinforcement are two possiblé factors contributing to
the decrease of steel efficiency with increasing bar size. As load
increases the vertical reinforcement expands laterally more tﬁan
the surrounding concrete due to the difference in Poisson's ratio,
giving rise to horizontal tensile stresses. Another adverse effect
is the slip between reinforcing bars and the grout. The deformations
in the reinforcement cause pressures on the contact surface between
steel and concrete perpendicular to the direction of the bars.

*2 in a study of concrete

Similar conclusions were reached by Larson
walls. The effects of the above factors are functions of the bar
size, an observation confirmed by the test results. From the
results obtained in this part of the study and those of Chapter VI,
it appears that for axially loaded wall segments where the position
of the reinforcement within the wall is not critical, smaller size
bars produce better steel utilization.

For both plain and reinforced walls the results indicated
that for axially loaded walls there was no reduction in capacity
that could be attributed to slenderness effects. The walls failed
when the stress levels reached the strength of one or more of the
materials involved. These results strengthen the statement made

by Shahlin® indicating that, for slenderness ratios less than 30,

masonry fails when the capacity of the cross-section is reached.

P
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Wall F1 contained joint reinforcement in the form of #9
- gauge wire. This wall failed at a load 27% lower than the average
1oéd of the five plain walls tested.

All reinforced walls were examined after failure in order
to observe the effectiveness of one lift grouting procedure; no
voids were found. Plate 7.3 shows a #9 bar fully surrounded by
grout when removed from a specially prepared specimen which was not
tested. On the same plate the penetration of the mortar into the
core and the reduction of the core area at the joint levels are

clearly shown.

7.3 Eccentrically Loaded Walls

7.3.1 Plain Walls, éingle Curvature Bending

"Eight walls were tested in single curvéture bending. Four
ﬁere tested with equal load eccentricities at both ends, and the
femaininé four were tested under load which waé eccentric at one
end and axial at the other. The walls tested with load eccentricity
at\one end only contained joint reinforcement in the form of 9-
gauge wire. Failure loads and resulting stresses are given in
‘Table 7.2.

All walls, except A5 and G4, failed when the stress on the
compression side reached the strength of the materials. The average
stress at failure for these walls was 3150 psi. Although failures
were complete, sufficient ﬁarning was given by crack formation on
‘the tension side. Cracks were formed at low loads in walls with
large ec;entricities; however, these walls were able to sustain

additional load. Plates 7.4 and 7.5 show Wall A2 during the test



PLATE 7.3 Grouted Core Showing Mortar Penetration
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and Wall A3 at the instant of failure. The deflected shape of

Wall A2 at various load levels is shown in Figure 7.5. Graphs of
load versus axial deformation for walls in Series A is given in
Figure 7.6. The centerline deflection as a function of the load for

the same group of walls is given in Figure 7.7.

7.3.2 Plain Walls in Double Curvature Bending

Data reported in this section was obtained from tests on
eighteen walls. The variables investigated included slenderness
rétio, unequal end eccentricities ana joint reinforcement.

Table 7.3 presents a summary of the test results and testing
conditions. The average stress at failure was 3480 psi calculated
on the basis of mortared area and 257 active mortar penetration
(bearing area equal to 122.3 in.?). Failures of walls loaded in
double curvature were explosive and complete, as demonstrated in
Plates 7.6, 7.7 and 7.8. Deflections measured during the application
of the loads indicated that the point of inflection moved to one
end, and the walls tended to assume their first buckling mode shape.
Figures 7.8 and 7.9 show the deflected shapes of walls El and E5
during the test. The failure load, for walls with large eccentricities
was close to the buckling loads as calculated using the procedure
developed in Chapter IV.

Axial deformations versus axial load plotted for Series E
in Figure 7.10, showed a linear relation. Makimum axial deformations

were of the same order regardless of eccentricities.
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7.3.3 Vertically Reinforced Walls, Single Curvature Bending

Twenty-four walls, each with one reinforcing bar in each of
the three grouted cores, were tested in single curvature with equal
end eccentricities. The walls varied in height from 12 to 22 blocks.
Three bar sizes were used, namely #9, #6, and #3. Test results were
listed in Table 7.4. 1In the table, test conditions such as
eccentricities and actual slenderness ratios, are given. Failure
moments were adjusted to account for the P-A effect based 6n the
deflection at the point of maximum moment obtained from measurements
taken during the test. A typical load deflection relation for Wall
L3 is shown in Figure 7.11.

In general, large deformations were observed before failures.
The walls failed when the compressive strength of the unit was
reached on the compression side. It was observed that when the
strength of the mortar was exceeded, particles of mortar fell to the
floor but the walls supported additional load before failing.

Plate 7.9 shows Wall L5 during the test. The mid-height
deflection is of the order of 3.5", as can be seen from the plumb
line attached to the wall at the top. At failure the crushing of
the compression side was accompanied simultaneously by separation
of the blocks on the opposite side, as shown in Plate 7.10. TFor
walls tested with load eccentricities equal or smaller to t/3,

vertical cracks were formed through the ungrouted cores. This type
of failure is shown in Plates 7.11 and 7.12. Strains in the
reinforcing bars, measured at mid-height, indicated that the load
was distributed evenly over the cross-section. Typical strain

measurements are shown in Figures 7.12 and 7.13. The variation in

JoS—
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PLATE 7.9 Wall L5 During Testing
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PLATE 7.10 Typical Failure of Reinforced Wall
Tested in Single Curvature With

Eccentricities Larger Than t/3
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strains in the three bars is attributed to the position of the

strain gauge on the face of the bars. Figure 7.14 shows the influence
of location of the strain gauge to the measured strain. For larger
bar sizes this latter aspect can contribute significantly to the
measured strain. TFrom the strain measurements it is observed

that in the case of eccentric loading, as in the case of axial
loading, the reinforcing steel does not reach its yield strain. The
maximum tensile strain for walls reinforced with 3-#9 bars was

9 x 10~* in/in. as measured in Wall L5. For Series H the maximum
tensile strain ip the reinforcement was 1.8 x 10”% in/in. which

is 87% of the yield strain.

7.3.4 Vertically Reinforced Walls Double Curvature Bending

Five walls, each reinforced with one number three bar in each
of the three grouted cores, were tested with eccentricities producing
double curvature bending. The results are listed in Table 7.5,
in which the eccentricities and wall properties are also given.

Wall J1, tested with load eccentricities of + t/6 and - t/6, failed
when its compressive capacity was reached at mid-height. The failure
mode, as demonstrated in Plates 7.13 and 7.14 was splitting of the
blocks in a similar manner to that in short specimens. All other
walls failed when the strength of the material on the compression
side was reached. Plates 7.15 and 7.16 show failures of Walls J3

and K1. The deflected shape of all walls, monitored during the
tests, indicated that reinforced walls with double curvature
imperfections have a tendency to buckle in their first mode, an

observation made previously for plain walls.
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Figure 7.15 shows the load deflection curve of Wall J4 at
20 kip load increments during testing. On the same figure the
migration of the point of inflection from mid-height towards the
lower support is clearly shown. Deflected shapes for the other
walls are given in Structural Engineering Report No. 71 of the
Department of Civil Engineering, University of Alberta.

Strain measurements at 1/4 points along the wall height
for Series J indicated that the steel remained in compression through-
out the test and that maximum strain occurred in the lower portion
of the walls as expected from the observation of the movement of the
.point of inflection. Figure 7.16 shows the average of three strain
measurements taken during testing. Maximum strain observed was

6.2 x 10~" in/in.

7.4 Effect of Eccentricities on the Load Carrying Capacity
of Masonry Walls

The tesf data indicated, as expected, a reduction in load
capacity with increasing eccentricity for all cases tested.

The reduction in axial load was also influenced by the
slenderness ratio as it relates to increased deflection which, in
effect, magnified the moment on the section. Axial load versus
ecceﬁtricity is plotted in Figqre 7.17 for plain and reinforced
walls with a nominal slenderness ratio of 16 and tested with equal
end eccentricities. The shape of the relations is similar to that
for buckling loads for masonry walls in single and double curvature

as derived in Chapter IV.
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Figure 7.17 indicates that the amount of reinforcement
influences, in a predictable manner, the capacity of the section

for eccentricities outside the kern. TFor eccentricities within the

kern, the steel utilization is not very efficient as showm in the

test results and as discussed in previous sections.

7.5 Masonry Strains

Strain measurements on the compression and tension side at
mid-height,; were taken during loading for a number of walls using
4 in. long concrete strain gauges. Because of shape variation along
the height of the block unit (thicknesses vary from 1.25 in. at bottom
to 1.75 in. at the top) strain measurements are only indicative of
the stress-strain relation of the assembly. The 4 in. gauge
length included a mortar joint in all cases. Compressive strains
at failure were between 0.002 and 0.003 in/in. Tensile strains were
of the same order; however, joint separation resulted in gauge
damage at loads much lower than the failure léad. A typical relation
between vertical load and compressive and tensile masonry strains is
given in Figure 7.18 for Wall B5. It has been observed previously
that the stress-—strain relation on the compression side is almost
linear up to failure. The same observation is also true for most
tensile strain measurements. Deviations from the straight line can
be attributed to the breaking of the bond at the joints. Masonry
strains for the axially loaded Wall Fl, measured on both sides of
the wall at mid-height, are plotted in Figure 7.19. From this
figure, and based on active mortared area of 122.35 in.? the modulus

of elasticity of the wall is of the order of 1.0 x 10° psi.
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However the strains were measured over length of 4 inches including
. a mortar joint where the average thickness of the two block portions
involved was 1.5 in. Based on an approximate minimum load bearing

2 the modulus of elasticity is 1.2 x 10°® psi. This

area of 100 in.
value is in close agreement with that obtained in tests on small
specimens.

Figure 7.20 shows masonry strains for Wail Hl which was
axiélly loaded and reinforced with three number six bars. Based on
210 in.2 minimum load bearing area, the modulus of elasticity
calculated for Wall H1 is 1.10 x 10° psi. This value is within the

two limiting values for modulus of elasticity calculated previously

for plain ungrouted walls.

7.6 Flexural Rigidity of Masonry

A reliable evaluation of axial rigidity EA and the flexural
rigidity EI of the masonry section is essential in the analysis and
désign of masonry structures.

The flexural rigidity depends on the intensity and the
distribution of stresses on the cross-section, as it relates to
the moment of inertia which decreases with flexural cracking. It
was observed from tests that, for all practical purposes, the load
deformation characteristics of masonry are linear for stress levels
up to the ultimate load, if creep and other time effects are neglected.
It is therefore desirable to relate the variation in flexural rigidity
to the eccentricity of the load and allow for the time dependent effects

by means of a factor similar to that used for concrete.
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N

Exact calculation of the moment of inertia for masonry
members is affected by such factors as type of construction as it
relates to mortared area, type of masonry units as it relates to ,
cross-sectional areas, and other factors. These factors include
mortar penetration and mortar overhang in the cores. The effect of
these factors is cumulative over the member as a whole. It is for
these reasons that the rigidity of masonry should be evaluated
experimentally.

It was shown in Chapter IV that the moment of inertia for
the evaluation of the critical buckling load is given by the

following equation:

_ 1_e]® |
I = 8 [:2 é] IO t e e s et et ee e s sens e eesasea 7.1 T

To allow for the influence of the tensile bond a factor
was introduced. This factor, calculated using procedures given
in Chapters II and IV, will increase the moment of inertia and thus
influence the buckling load.

Relation 7.1 however, is only valid for buckling cases and
it will be very conservative for strength problems. When strength |
governs, the section will fail prior to reaching its buckling load
and as a result cracks will not reach their maximum penetration.

From the load deflection curves obtained from tests, the
rigidity EI was calculated for a number of load intervals. 1In
Figure 7.21 the ratio of the calculated rigidity prior to failure,
to that obtained from the first load increment when the section was

uncracked, is plotted versus the ratio of the eccentricity to the )
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thickness. On the same figure Equation 7.1 is plotted. It is

obvious that Equation 7.1 is very conservative for all cases. A
straight line relation given by EI = EIO (1/2 - e/t) appears to

give a good estimate of the flexural rigidity for all types of loading
of plain and reinforced walls. From the experimental evidence it
appears that, for design purposes, one can safely use the following
relation for estimating the moment of inertia of eccentrically

loaded masonry walls.

[R——



CHAPTER VIII

Analysis and Synthesis of Test Results

8.1 Introduction

In this chapter, the experimental results are interpreted
and compared with analytical results based on theoretical
considerations of previous chapters. Emphasis is placed on applying
a rational analysis based on established theory in predicting the

strength of masonry under axial load and bending.

8.2 Constitutive Relations

The capacity of a masonry cross-section subjected to a
combination cf vertical load and moment can be determined if the
compressive and tensile strengths, as well as the stress distri-
bution over the cross—section at failure, are known. The stress
distribution, in turn, depends on the stress-strain properties
of the masonry. In previous chapters it has been shown that a
linear stress-strain relationship gives a close approximation of
the load deformation characteristics of masonry.

Stress distributions over the cross—section were also
assumed linear for various load-moment combinations. It was observed
that the failure mode of masonry depends on the loading conditions.
Splitting failure governs for axially loaded sections, and crushing

governs for axial load plus moment. Crushing failures were accompanied

196
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by an apparent increase in calculated normal stress at failure.

This phenomenon is attributed to the presence of shear and the fact
that most of the rotation occurs in the mortar joint when the wall
deflects. Shear and lateral forces in the joint, as they relate to
the rotation, counteract the splitting force allowing the section to
reach the compressive strength of the masonry unit, provided that
the mortar joint is not thick enough for failure to occur when the
compressive strength of the mortar is reached.

In the following sections the flexural rigidity is based
on the gross moment of inertia and a modulus of elasticity equal to
1.125 x 10°® psi. The value of the elastic modulus was experimentally
evaluated in Chapter VI and it is a mean value for all specimens
tested. The lower and upper bounds for the elastic modulus from
Figure 6.9 are 0.875 x 10° psi and 1.35 x 10° psi.

CSA Standard $-304-M'® recommends calculation of the elastic
modulus on the basis of the ultimate strength of the masonry. The
recommended value is 1000 f&. Based on this recommendation there
are two possible values for the modulus of elasticity:

a) E=1.5x 10° psi based on fé calculated as recommended
by CSA Standard S-304=M'3,

b) E = 1.9 x 10° psi based on experimental evaluation of the
ultimate compressive strength and multiplidd by the same
factor as recommended by CSA Standard S-304-M!3.

In both cases the values are much higher than the observed ones
and their use will lead to an overestimation of both flexural and

axial rigidity.



8.3 Analysis for Slender Column Effects

While the capacity of a "short" wall is dependent only on
the strength of section, the strength of "high'" walls is dependent
also on slenderness. When a wall is loaded with an eccentric
vertical load the moment along the wall height is magnified due to
deflection. For walls in single curvature bending, the moment is
maximum at mid-height, where the deflection is maximum. The magnifi

moment for any combination of loading was shown in Chapter IV to be:

It has been shown in Chapter IV that the buckling load for masonry
walls is a function of the reduced moment of inertia and the tensile
strength. For an axially loaded wall the tensile strength has no
effect on the buckling load. For an eccentrically loaded wall the
stress level at buckling decreases as the eccentricity increases,
resulting in an increase in the effect of the tensile strength as it
relates to the'depth of cracks.

The magnification factor in Equation 8.1, is a function of
the applied vertical load and the critical load. The critical load
depends on the effective moment of inertia, which in turn depends
on the magnitude of the load and its eccentricity. As a result, an

iterative procedure must be used to evaluate the effect of slender-
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ness on the load carrying capacity of masonry walls. 1In the following

sections the procedure is presented in a step by step form and then

applied in examples.



Step 1

Step 2

Step 3

Step 4
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For a given eccentricity, find the section capacity from
a short wall [h/t = 0] interaction diagram.
Calculate the critical load using Equation 4.26, repeated

here for clarity:

3
2 N
_ _T°E 2e
Y [1 _t_] t+ C] B iieeineenns .. 8.2

A

P
cr

In the above relation { is evaluated using Equations 2.6,

2.8 and 4.25. These equations are:

_ 4 P
fmax = 3 TAA <3 e/ ceeseecnnn Ceveseenoe . 8.3
2tP
£ = AF e seceseans e tereerneraeee ve 8.4
max
and
¢ f!
_ t
z = : et eeeereeateacarsaseessaseneanninn . 8.5
max

Calculate P from Equation 8.1 using the moment and the
eccentricity from Step 1. TFor this new vertical load find

the corresponding moment from the strength interaction diagram.
Repeat Steps 2 and 3 until the calculated vertical load

converges.

8.4 Application of the Moment Magnifier Method to Plain Masonry Walls

8.4.1 Single Curvature Bending, Equal End Eccentricities

The strength interaction diagram for a cross-section as
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obtained using a computer program developed for this purpose, is
shown in Figure 8.1. To account for slenderness effects, the 5asic
strength interaction diagram is modified using the iterative
procedure of Section 8.2. The reduced capacities for slenderness
ratios of 6.5 and 14 are shown in the figure. These reduced
capacities are found to be in good agreement with test data. In
the same figure, the design provision of the CSA Standard S—304-M!3
are plotted, excluding the safety factor applied to the strength.
The iterative procedure used in modifying the strength
interaction diagram for slenderness effects is illustrated in the
following example. Consider a plain wall 40 in. wide and 7.625 in.
thick with slenderness ratio of 6.5, loaded in single curvature with
an eccentricity of f/3 top and bottom. It is required to determine

the capacity of the wall.

Step 1 The capacity of a short wall (h/t = 0) of the same
cross-section, loaded at an eccentricity of t/3, is a
vertical load 135 kips‘with a corresponding moment of 343
kip-in. (Figure 8.1).

Step 2 The maximum compressive stress at this load level, based

on Equation 8.3, is:

135 4
2

fmax = 305 = 1.77 ksi

The approximate point on the cross-section where the stress

is zero is found using Equation 8.4.

£ o= 135 x 2 x 7.625
305 x 1.77

3.8 in.
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Step 3
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The reduction of the crack penetration, attributed to
the tensile strength of the masonry, is found using Equation

8.5. ‘(Figures 2.4 and 4.12 define the parameters & and Z.)

3.8 x 0.2

g = 1.77 0.43 in.

From Equation 8.2 the critical load is

) 3
2 6
2 x 1.125 x 10 2 x 2.54
cr © 12 x [6.5 x 7.625]2 [1 = T7.625 } 7.625 + 0.43 1 40

396 kips

The reduced vertical load capacity is evaluated using

Equation 8.1.

343 = 2.54 x P ——-—!'—I';— or
1 - 396
343 |1 - ==—| = 2.54 P and
396 .

P = 100 kips

This load is lower than the one obtained in Step 1 and
therefore the maximum moment that the section can carry
under this vertical load is 320 kip-in. The procedure is
repeated with P = 100 kips and Mm = 320 kip-in as the

corresponding values of Step 1. With P = 100 Step 2 gives
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g 0.59 in. and PCr = 464 kips. Repeating Step 3 with

M
m

320 kip-in. and PCr = 464 kips, the vertical load is
calculated to be 99 kips which is close to the previously
calculated load, indicating a rapid convergence in the

iterative procedure.

In all the above calculations the gross section area and
gross moment of inertia were used. To account for the fact .that at
least two blocks at the end are not cracked and that the temnsile
strength of the units influences the crack penetration, a tensile
bond strength of 200 psi was used. This is an approximation of

the average tensile strength of the masonry units and tensile bond.

8.4.2 Single Curvature Bending, Unequal End Eccentricities

When the top and bottom eccentricities are not equal,
initial moments along the héight of the wall are not constant. As
a result, crack penetration decreases with decrease in moment and
the evaluation of the critical load must be carried out using the
average of the two eccentricities. This accounts for an increased
moment of inertia.at the end which has the smaller eccentricity.
Although this is an approximation, it is found to give satisfactory
results. The remaining procedure for determining the reduced capacity
is similar to the one previously described for walls in single
curvature and with equal end eccentricities.

Figure 8.2 is an interaction diagram on which the test data
and the reduction for bending have been plotted. The results are
those for walls Gl to G5 which are specimens with joint reinforcement

which has been shown to reduce the capacity of the section,
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especially at small eccentricities.

8.4.3 Double Curvature Bending

The critical load for masonry walls with initial double
curvéture imperfections was theoretically investigated in Chapter
IV. The effect-of slemderness and loading conditions can be
evaluated in a manner similar to that for walls in single curvature
by using the critical load as evaluated in Section 4.5. In Chapter
VII, it was shown that masonry walls loaded in double curvature
buckle in the first buckling mode.

The strength of a cross—-section similar to that of the plain
walls tested is shown in Figure 8.3. On the same figure the results
obtained from the tests of Series N(h/t = 18) are plotted.

The reduced capacity of the section resulting from slenderness

effects is calculated as follows for h/t = 18 and e = t/6.

Step 1 For e = t/6 the short section (h/t = 0), can carry a
vertical load of 190 kips. The corresponding moment is
241.3 kip-in.

Step 2 The critical load for the wall is 571 kips, evaluated using
Table 4.1 with o = 0.5 and B = 0.329.

.Step 3 For P = 190 kips and PCr = 571 kips and Cm = 0.4, the
magnification factor is 0.59 which indicates that maximum

moment occurs at the top or bottom of the wall.

If the weight of the wall is increased the magnification
factor will increase as the critical load decreases. For a given
eccentricity there is a particular h/t ratio for which the magni-

fication factor is 1.0. For larger eccentricities there will be a
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reduction due to slenderness effects. For e = t/6, the magnification
factor is 1.0 for a critical load of 316 kips and slenderness rétio
of 21.5. Examples of calculating the reduced capacity of the

section resulting from slenderness effects are:presented below for

e, =-e, = t/4 and e, = e, = t/3 for h/t = 18.

Example 1: e; = -e, = t/4, h/t = 18

Step 1 The short section capacity for this eccentricity is 165 kips

with a corresponding moment of 314.5 kip-in.

Step 2

f = 1.433 ksi

max
&€ = 5.75 in.
r = 0.802 in.
I = 330 in."
B = I/I0 = 0.223
o = elﬂhz te) = 0.5
A = 3.918

PCr = 437 kips

Step 3 The amplification factor for this value of PCr and Cm 0.4
is 0.64 which indicates that maximum moment occurs at the

ends. Failure of this wall will occur when the section

capacity - at one end is reached.

Example 2: E, = -e, = t/3

Step 1 The short section capacity is P = 135 kips with a corres-

ponding moment of 342.9 kip-in.



Step 2

Step 3

Step 1

Step 2

Step 3

The critical load, calculated in a similar manner to that
for e = t/4, is 148.7 kips.
For M = 342.9 kip-in, e = t/3, C_ = 0.4 and P__ = 148

m m cr

kips, Equation 8.1 is solved for P:

342.9 = 2.54p |—O:% and

T 148.7
P = 103 kips

Since this load is lower than the section capacity, the

procedure has to be repeated.

From the interaction diagram the corresponding moment for

P = 103 kip is 335 kip-in.

For
P = 103 kips
Z = 0.56 in. and
P = 159 kips
cr

Solving Equation 8.1 for P with Mh = 335 kip-in, e = t/3,

Cm = 0.4 and PCr = 159, the vertical load capacity is found

to be 107 kips.

Repeating the cycle once again P is calculated to be 105 kips. A

horizontal line at P = 105 kips intercepts the t/3 line at the

modified interaction diagram. Therefore the capacity of this wall

is 105 kips vertical load.

For other eccentricities the procedure is repeated to find

the reduced capacities. For walls with unequal end eccentricities

208
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a similar procedure gives a lower bound interaction diagram. The
test results obtained from Series G, follow the trend suggested in
this analysis. (Table 7.3 gives a detailed account of test results).
Load deflection curves such as shown in Figure 7.15 indicate that

the moment is maximum at a point away from the end for eccentricities
greater than t/4 and for slenderness ratios greater than 18.
Deflection curves for other walls tested in double curvature are
given in Structural Engineering Report No. 71 of the Department of

Civil Engineering, the University of Alberta.

8.5 Application of the Moment Magnifier Method to Vertically
Reinforced Masonry Walls

8.5.1 Single Curvature Bending, Equal End Eccentricities

The strength of a cross-section reinforced with 3-#3
deformed bars is shown in Figure 8.4. To account for slenderness
this interaction diagram is modified using the moment magnifier
method. Consider a wall segment with h/t = 18.0. (Test series
I1 to I5). For these walls An = 305 in.? and I0 ~ 1477 in."*. The
procedure used in reducing the capacity of the section to allow
for slenderness effects follows the same steps as for plain walls.

The reduced moment of inertia is evaluated using Equations

4.24 and 4.26.
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From Figureb8.4, for e = t/12 the section capacity is P = 328 kips
and M = 207 kip-in. Using Equation 8.1, the reduced capacity is
found to be 237 kips. However at this vertical load level the
moment capacity is 362 kip-in. Reducing the vertical load to 300
kips the magnified moment from Equation 8.1 for the same

eccentricity is

M. = 0.635 x 300 ——l——‘ = 290 kip-in.
£ | _ 300
874 |

At this load level the section moment capacity is close to this

value indicating that there is no need to repeat the iteration.
Repeating the procedure for e = t/6 and evaluating ¢ and Pcr

as for plain walls, the reducedrcapacity is found to be 210 kips.

The interaction diagram modified for slenderness is plotted in

Figure 8.4 where the results for Test Series I are also plotted.

Tﬁe reduced capacity for walls reinforced with 3-#9 bars is shown in

Figure 8.5 for slenderness ratios corresponding to those used in

test Series B, C, D and L. From Figure 8.4 and 8.5 it can be seen

that the method gives satisfactory results although for axial loads

theAexperimental data do not compare favorably with the theoretical

values. As the slenderness ratio increases the critical load

decreases and Figure 8.5, indicates that for a wall with h/f ratio

of 24 the critical load is less than the strength of the cross-section.

The calculated axial load capacity is larger than the experimental

value due to the change in failure mode when moment is introduced and

inefficient development of vertical steel reinforcement. The reasons

for this discrepancy have been discussed in previous chapters.
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8.5.2 Double Curvature Bending, Equal End Eccentricities

Application of the magnifier method to vertically reinforced
walls with double curvature end moments is similar to that for
plain walls. In evaluating the critical load Table 4.1 is used and
the limiting moment of inertia is calculated using Equation 8.6.
The strength interaction for walls with 3-#3 bars in double curvature
is the same as for single curvature (Figure 8.4).

Using Equation 8.1 with Cm equal to 0.4 it can be shown that
fof h/t ratios of 18 [Test Series J1 - J5] maximum moment occurs at
the ends for all eccentricities. For Wall J1

e = = t/6 = 1.27 in.

top ®bottom
From the short wall interaction diagram of Figure 8.4, P = 265 kips
and M = 336 kip-in. The moment of inertia calculated using
Equation 8.6 is 709 in.?. With o = 0.5 and B = 0.48, A = 6.488
from Table 4.1. Therefore P_ = 6.488 x 1.125 x 10° x 1477/137% = 574
kips. The corresponding magnifier factor is 0.74, indicating that
the maximum moment occurs at the ends.

For e = t/3 the critical load calculated in a similar manner
is 286 kips and the magnifier factor is 0.84, indicating that maximum
moment still occurs at the ends. Similar calculations for
eccentricities of 3.0 and 3.54 inches yield magnification factors of
0.97 and 0.98. This analysis shows that, for reinforced walls in
double curvature with slenderness h/t ratios less than 18, maximum
moment occurs at the ends, and that there is no reduction in

capacity due to slenderness.

et
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Test data obtained from Series J fall outside the
theoretical strength interaction diagram of Figure 8.4. Load
deflection curves obtained from the tests reconfirm that maximum
moment occurs at the ends in accordance with thé previous calculations.
The slenderness ratio at which maximum moment will occur along the
height of the wall can be easily obtained for any eccentricity.
Consider for example the case. of equal and opposite eccentricities
of t/6. The magnification factor will be equal to unity for
Pcr = 411 kips. If all conditions are the same as for Wall Jl, the

wall must bé 156 inches long, or the slenderness ratio must be 20.5.



CHAPTER IX

Summary, Conclusions and Recommendations

9.1 Summary

This investigation was devoted to the study of the behavior
of masonry walls under combined vertical load and bending, and
factors affecting their strength. The experimental phase of the
study consisted of tests of small specimens to determine physical
and material properties, types of construction and reinforcement,
and tests of full scale specimens to evaluate the effects of
slenderness, grouting procedures and types of loading. The analytical
phase of the study included prediction of strength and material
properties, evaluation of buckling loads and application of theoretical

considerations to the experimental data.

9.2 Conclusions

1) The behavior of masonry is a function of the individual
materials involved, the type of construction and the loading
conditions.

2) The physical properties of masonry can be approximated from
the properties of the materials involved. However, experi-
mental investigation is essential in order to account for
factors, such as variation in thickness, vertical joints,

mortar penetration, etc.

215



3)

4)

5)

6)

7)

8)

216

The evaluation of strength of individual units is affected
by the testing procedure, end conditions and the shape of
the unit.

The tensile and shear bond strength of masonry can be
satisfactorily evaluated using the centrifugal testing
system developed in this study.

Strength evaluation based on prism testing is not always
representative of actual field conditions. Fully bedded
two block - one mortar joint prisms fail at substantially
higher loads than similar prisms with face-shell bedding
only. However, walls constructed in running bond have the
same ultimate capacity as fully bedded ones. Because of
web misalignment the bearing area is the same in both cases.
A five block prism is more representative of the strength
of masonry assemblages.

Axially loaded masonry fails in a splitting mode caused

by differences in the physical properties of the materials
involved, such as Poisson's ratio and modulus of elasticity.
With the addition of moment the failuremode of masonry
changes from splitting to crushing.

Joint reinforcement creates stress concentrations which
reduce the axial capacity of masonry. These stress
concentrations result from the large difference between the
elastic modulus of steel and that of mortar. The mortar
directly above and below the joint reinforcement fails before
the capacity of the section is reached, causing an increase in

volume which, as a result, increases the splitting force.



9)

10)

11)

12)

13)

14)
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Grouting of hollow masonry should be carried out in one
lift. This will eliminate the creation of voids in the
hardened grout by revibrating after initial setting. Also
by grouting in more than one lift, particles sitting on
mortar and block protrusions reduce the cavity and create
air pockets in the grouted core.

The bond between grout and masonry units can be satisfactor-
ily evaluated using the centrifugal testing system developed
in this study.

The contribution of grout in carrying vertical load is not
directly additive to the capacity of the masonry because of
possible splitting failure before the grout strength is
completely developed. The effective grouted area is less
than the smaller block cavity due to mortar penetration into
the core.

Vertical reinforcement is not fully developed in resisting
axial loads in reinforced masonry. The efficiency of vertical
reinforcement decreases with increasing bar size.

The modulus of elasticity of masonry can be approximated

if the modulii of the mortar and masonry units are known.
However, experimental evaluation of the modulus of elasticity
for hollow block masonry is more reliable than theoretical
evaluation because of variation in block thickness and type
of construction.

Vertically reinforced walls under combined vertical load

and moment behave in a manner similar to reinforced concrete

walls.



15)

16)

17)

18)
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Plain walls under axial load fail by splitting of the
flanges and webs of the individual masonry units. Failures
are complete and with little or no warning. The vertical
failure load at which failure occurs can be predicted by
theoretical considerations provided that the strength and
properties of the material involved are accurately evaluated.
Plain walls in single curvature bending fail when the
compressive strength of the units is reached on the compression
side. Failures of plain walls under combined 1oadiﬁg are
complete with very little or no warning prior to failure,
especially for large eccentricities of loading.

Plain walls loaded in double curvature have a tendency to
fail in their first buckling mode. TFailures of such walls
are explosive but the capacity of such walls is substantially
increased as compared to walls loaded in single curvature.
Splitting failures occur for small eccentricities and
compressive failures occur for eccentricities larger than
t/6.

The effect of slenderness on the capacity of masonry walls
can be evaluated using the moment magnifier method. The
critical load to be used in such an evaluation must account
for:

a) the effect of loading conditions,

b) tensile bond strength,

c) type of construction (reinforced or plain).

Application of the moment magnifier method to concrete

block masonry gives satisfactory results when the buckling
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loads are evaluated using the procedures developed in

this study.

9.3 Recommendations

1)

2)

3)

4)

It is recommended that the modulus of elasticity allowed

by CSA Standard S-304 M be reduced to 750 f& for concrete
block masonry and that a research project be undertaken to
evaluate elastic modulus for other forms of masonry.

It is recommended that the function of horizontal joint
reinforcement be re-examined. The liberal distribution of
total reinforcement between the horizontal and vertical
directions allowed by the CSA Standard S-304 M, should be
investigated. It is recommended that a research project

be carried out to thoroughly investigate the effect of joint
reinforcement in load bearing masonry, with emphasis on
pilasters, and masonry columns.

It is recommended that the reductions for slenderness and
eccentricities given by CSA-S-304~M be re-evaluated using
the procedures developed in this study.

As flexural rigidity and axial rigidity are of great
importance in the analysis and design of masonry structures,
it is recommended that research be carried out to evaluate
these important parameters for commonly used masonry units

and types of construction.

e st

ORI
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APPENDIX A

Solution of the Differential Equations for

Wall Without Tensile Strength
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It was shown in Chapter IV, Section 4.4 that:
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The boundary conditions of the differential Equation A.l
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with this condition the solution of the covering differential

equation can be expressed in terms of Uys where u, = (t/2 - e).

Equation A.l can be written as:
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Then

P
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= 0.0405280a [/1 “ o + oczn[/ 1-0o , /%‘:H

A plot of P/Pec versus O = uO/ul is shown in Figure A.l. From this

figure instability occurs when
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APPENDIX B
Evaluation of Interpolating Functions and
Computer Program for Evaluating the

Buckling Load for Stepped Columns
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Since deflections are zero at both ends ¢1 and ¢4 are zero.
The remaining four functions are shown schematically in Figure B.1.
The boundary conditions to be satisfied by these functions (¢2, ¢3,

¢5, ¢6) are as fol;ows:

n|lyl{y | y"" | Functions
0 0 1 0 @

1 0 0 0 2

0 0 0 1 ®

1 0 0 0 3

0 0 0 0 o

1 0 1 0 5
010 0 0 o

1 0 0 1 6

The functions which satisfy these conditions are:

¢, = = 3n°+8n* -6n®+n

¢4 = =1/2 (n® - 3n* + 3n° - n?)
¢ = =3n°+ 70" - 4nd

% = 1/2 (n° - 2n* + 1)

Differentiating these functions once yields

[&']
symmetric ¢é ¢§ ¢§ ¢é
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Substitution of the functions and integration of the above matrix

from 0 to 1 results in

0.22857

0.016666

0.0015873

-0.014285

-0.004762

symmetric

0.228571

where [Kg] is the geometric stiffness matrix.

0.00476£W
0.000793
-0.016667

0.001587

The interpolating functions are then differentiated twice

and the matrix [®''] is obtained as:

-
$5' 9" 6! ¢é' ¢,

q)I' q)'l ¢'|

[3'7] 3 3 3
symmetric ¢§'

After substitution of the corresponding functions, integrating this

o' 95!
¢z 93
¢5' o'

g

o'
g
8

g

—

——d
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matrix and evaluating [@"]2 + C[@"];, the bending stiffness matirx,

[K], is obtained.

For the case of a column with constant EIl

matrix is

[K]

[5.4857  0.3143

0.0857

+3.0857

0.1143

5.4857

-0.11428
0.01428
~0.31428

0.00857

(o = 0) this
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Solving the relation

h2
[k] {8} = Pcrﬁ; [Kg] {6}
for
h2
g -1

and the geometric and bending stiffness matrices, [Kg] and [K]

as evaluated above, using the power sweep method, PCr = 9,8734354
which compares very closely with the exact value of m%. Table B.1
is obtained by evaluating [K] and solving relations for various
values of a and B from 0.0 to 1. All mathematical operations
involving interpolating functions and the solution of the

buckling problem were carried out using a computer program. This
program with a sample input and output is given in the following
pages. The input data consists of the coefficients of the

interpolating function.
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This is a program that solves for critical
buckling load.

IMPLICIT REAL*8 (A-H,0-3%)
DIMENSION PPFI(4,4),PFI (4,4),C(4,6),AA(100),BPPFI (4,4)

*,PCRIT(20,21)

REAL VAL (21)

Initialize values to evaluate the root
IA=100
AA(1)=0.1D0
Do 1 1=2,100
AA(I)=AA(I-1)+0.1DO

Initialize the values of alpha and beta to be used.
VAL (1)=0.0
N=4§

Initailize the number of coefficients

in the poynomial.

N1=6

Initialize the number of polynomials.
NDF=4

Read in the coefficients.

READ (5,6) ((C(I,J) ,J=1,N1),I=1,NDF)

Evaluate the geometric stiffness.
CALL pHI?T1(1.,0.,C,PFI,N1,NDF)

Calculate the critical load for various values of

alpha and beta.

DO 4 I1IJ1=2,21
VAL (IJ1) =VAL (IJ1-1)+0.05

Calculate beta - the ratio of the EI's.
BETA=DFLOAT (IJ1-1) *0.05D0
DO 3 IJ=1,21

Calculate alpha - the ratio of lengths.
ALPHA=DFLOAT (1J-1) *0.05D0

Integrate polynomials from 0.0 to alpha.
CALL PHIZ(ALPHA,0.0,C,1.0,PPFI,N1,NDF)

Integrate polynomials fromm alpha to 1.0.
CALL PHI2(1_0,ALPHA,C,BETA,BPPFI,N1,NDF)

Formulate stiffness matrix.

DO 2 I=1,4
DO 2 J=1,4
BPPFI (I,J)=BPPFI (I,J)+PPFI(I,J)

Solve for critical buckling load, Pcrit.
CALL STAR(BPPFI,PFI,AA,IA,N,N1,NDF,PCRIT(IJ1-1,IJ))
CONTINUE
CONTINUE

Print table of critical loads.

WRITE(4,7)
WRITE (4, 8)
WRITE (4,9)
WRITE (4, 10) VAL
WRITE (4,9)
WRITE (4,8)
WRITE (4,9)
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DO 5 I=2,21

WRITE (4, 11) VAL (I), (PCRIT(I-1,J),d=1,21)
WRITE (4,9)

WRITE (4,8)

STOP

FORMAT (6 F12.7)

FORMAT(* 1% /////)
"FORMAT (20X, 40 (*~*))

FORMAT (20X, | 1*,31%,1")
FORMAT (20X, | {',6F5.2,' |')
FORMAT (20X,*|*,F5.2,' |',6F5.2,' |')
END

SUBROUTINE STAR(SB,SG,AA,IA,N,N1,NDF,A3)

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION AA(100),SB(4,4),SG(4,4),SBG (4,4) ,B(4)
DIMENSION IC (4) _

DO 1 I=1,IA

I1=1

A1=2A (1)

A2=AA (I+1)

IF(A1.EQ.A2) GO TO 1

CALL RSFORM(A1,SB,SG,SBG,N)

CALL DELTA(N,SBG,DET1,IC)

IF (DET1.EQ.0) GO TO 5

CALL RSFORM(A2,SB,SG,SBG,N)

CALL DELTA(N,SBG,DET2,IC)
IF(DET2) 2,6,1

CONTINUE

A3= (A2*%DET1-A1%*DET2) / (DET1-DET2)
CALL RSFORM(A3,SB,SG,SBG,N)

CALL DELTA(N,SBG,DET3,IC)
D1=DABS (A3-12)

D2=DABS (A3-A1)

IF(D1.LT.1.0D-4) GO TO 8
IF(D2.LT.1.0D-4) GO TO 8
IF(DET3) 3,8,4

DET2=DET3

A2=23

GO TO 2

DET1=DET3

A1=A3

GO TO 2

DET3=DET1

A3=R1

GO TO 8

DET3=DET2

A3=A2

GO TO 8

WRITE (6,9)

STOP

RETURN

FPORMAT (* SECTION DID NOT BOCKLE')
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END
SUBROUTINE RSFORM(EA,SB,SG,SBG,N)

IMPLICIT REAL*8 (A-H,0-32)
DIMENSION SB(4,4),SG (4,4),SBG (4,4)
DO 1 I=1,N

DO 1 J=1,N

SBG (I,J) =SB (I,J) -EA*SG (I,J)

RETURN

END

DETERMINANT BY PIVOTAL CONDENSATION
SUBROUTINE DELTA(N,A,DETERM,IC)

IMPLICIT REAL*8 (A-H,0-32)
DIMENSION A(N,N),IC(N)
KK=0

K=1

DO 1 I=1,N

IC(I) =1

CALL CHANGE (K,A,N, KK, IC)
K=2

L=1

DO 3 I=K,N
RATIO=A(I,L)/A(L,L)

DO 3 J=K,N
A(X,J)=A(I,J)-A(L,J)*RATIO
DO 4 J=K,N
A(L,J)=A(L,Jd)/A(L,L)
A(J,L1)=0.0

CALL CHANGE (K,a,N,KK,IC)
IF (K-N) 5,6,6

L=K

K=K+1

GO TO 2

DETERM=1.0D0

DO 7 L=1,N
DETERM=DETERM*A (L,L)
DETERM= (-1.0D0) **KK*DETERM
RETURN

END

SUBROUTINE THETA (N,A,B)

IMPLICIT REAL*4 (A-H,0-Z)
DIMENSION A (4,4),B (4)
B(N)=1.0D0

N1=N-1

DO 1 I=1,N1

II=N-I

SUM=0.0D0

IT1=I1+1
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DO 1 J=II1,N
SUM=SUM+A(II,J) *B (J)
B(II)=~SUM

RETURN

END

SUBROUTINE CHANGE(K,A,N,KK,IC)

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A (N,N),COLREP (4) ,ROWREP (4) ,IC(N)
ACC=DABS (A (K,K))
IROW=K

JCOL=K

DO 1 I=K,N

DO 1 J=K,N
BCC=DABS (A (I,J))
IF(ACC.GE.BCC) GO TO 1
ACC=BCC

IROW=I

JCOL=J

CONTINUE
IF(JCOL.EQ.K) GO TO 3
KK=KK+1

IIC=IC(K)

IC(K)=1IC (JCOL)
IC(JcoL)=IIC

po 2 1=1,N
COLREP(I)=A(I,K)
A(I,K)=A(I,dC0L)
A(I,JCOL)=COLREP(I)
CONTINUE
IF(IROW.EQ.K) GO TO 5
KK=KK+1

DO 4 I=1,N
ROWREP(I)=A(K,I)
A(K,I)=A(IROW,I)

A (IROW,I)=ROHWREP (I)
CONTINUE

END

SUBROUTINE PHI1(B,A,C,CC,N1,NDF)

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION HC (6,4),C(4,6),H(10),CC (4,4)
CALL EXPO (B, A,H)

DO 2 I=1,N

DO 2 J=1,NDF

SUM=0.0

DO 1 K=1,N1

II=K+I-3

IF(I.EQ.1.0RK.EQ.1) GO TO 1
SUM=SUM+ (I-1) * (K- 1) *H (II)*C (J,K)
CONTINUE

HC(I,J) =SUM
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CONTINUE
DO 4 I=1,NDF

DO 4 J=1,NDF

SUM=0.0

DO 3 K=1,N1
SUM=SUM+C (I,K) *HC (K, J)
CC(I,J)=SUM

cc (J,I)=cc(L,d)

RETURN

END

SUBROUTINE PHI2(B,A,C,BETA,CC,N1,NDF)

IMPLICIT REAL*8 (A-H,0-3%)
DIMENSION HC(6,4),C(4,6),H(10),CC (4,4)
CALL EXPO(B,A,H)

DO 2 I=3,N

DO 2 J=1,NDF

SUM=0.0

DO 1 K=3,N1

II=K+I-5

SUM=SUM+ (I~1)* (I-2)* (K- 1) * (K-2) *H (II) *C (J, K)
CONTINUE

HC(I,J) =SUM

CONTINUE

DO 4 I=1,NDF

DO 4 J=1,NDF

SUM=0.0

DO 3 K=3,N1

SUM=SUM+C (I,K) *HC (K, J)

CC (I,J)=SUN

CC (J,I)=CC(I,J)

RETURN

END
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The input data consists of the coefficients of the
interpolating function entered in increasing order of power
of the parameter eta. The following is an example of a

typical set of data for calculating critical buckling loads:

0.0,1.0,0.0,-6.0,8.0,-3.0,
0.0,0.0,0.5,-1.5,1.5,-0.5,
0.0,0.0,0.0,-4.0,7.0,-3.0,
0.0,0.0,0.0,0.5,-1.0,0.5,

B G T D = P AP A S - - - - e S 4 ——— - - -

{ a i
i { 0.0 0.01 0.02 0.03 0.04 0.05 |
| B | |
| | . |
I 0.07 { 0.10 0.10 0.20 0.20 0.09 0.12 |
| | |
I 0.02 | 0.20 0.20 0.20 0.10 0.15 0.18 |
| i |
{ 0.03 | 0.20 0.10 0.30 0.30 0.22 0.25 |
{ { |
| 0.04 | 0.10 0.10 0.10 0.20 0.30 0.40 1}
i | i
1 0.05 | 0.10 0.10 0.10 0.10 0.10 0.10 |
[ i |

[
i
1
]
1
1
]
[}
!
!
I
[}
1
|
|
[
|
|
t
i
|
|
]
t
|
[}
t
i
|
i
i
t
|
}
|
|
t
|
!
[

Note that the range of alpha and beta for which the
buckling coefficents are evaluated is controled in the

. progranm.



APPENDIX C
The Use of Centrifugal Force for Determining the

Tensile and Shear Bond of Masonry
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C.1 Introduction

The bond between the mortar and the masonry unit consists
of two major components; the tensile bond and the shear bond. The
tensile bond is developed when a tensile load is applied normal to
the bonded face and the shear bond is developed when a mortar
joint is subjected to a shear load. 1In this Appendix, a new method
of evaluating tensile and shear bond strength is presented. The
method makes use of centrifugal force to apply a tensile or a

shearing force to the specimen.

C.2 Existing Methods of Testing

A number of different tests are presently employed for
evaluating tensile and shear bond strengths. They can be divided
into four categories depending on the manner in which the load is
applied to the test specimen.

a) Modulus of Rupture

This method utilizes the beam theory to evaluate the stress

at the ektreme fibres of plain masonry beams loaded at

mid-span or third points. A linear stress distribution is
assumed.
b) Direct Tension

Specimens consisting of two or three masonry units are

placed in tension using end clamps or glued connections.

¢) Direct shear

Specimens with 1 of 2 mortar joints are subjected to a

pushout test.

et
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d) Combined Test

Single joint specimens are subjected to loads inclined to

the axis of the specimen.

Results of a number of experimental programs using the
above methods are available in the literature. A number of authors
have reported problems encountered in applying these methods. These

problems include the following:

1) 1In the modulus of rupture test the stress distribution
is not linear as assumed.

2) Difficulties exist in aligning and fixing the direction
of load in the center of the couplet in the direct tension
test.

3) The stress distribution resulting from direct shear force
applied at the outer face of the specimen is not uniform
over the total area of contact.

4) In the combined test the same problems occur as in 2 and

3 above.

C.3 Development of Centrifugal Testing Procedure

If a mass is rotated about a fixed axis at a constant
angular velocity, it is subjected to a force in the radial direction,
known as a centrifugal force. This force is a function of the mass
m, the radius of rotation R and the angular velocity w. If the
mass accelerates, an additional component of force, proportional to

the acceleration, is introduced in the tangential direction.
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If a test specimen is mounted on a rotating disc the
magnitude and direction of the force acting on the specimen is
dependent on the specimen shape and orientation, the angular velocity
and acceleration. By increasing the angular velocity sufficient
force may be developed to cause failure of the specimen. A schematic
diagram of such an apparatus is shown in Figure C.1.

Consider the case of a tensile bond specimen mounted on a
rotating disc and clamped at one end (Figure C-1). The disc is
driven by a variable speed motor starting from rest and accelerating
with a constant acceleration to an angular velocity, w. The force

acting at any section of the specimen is given by the well known

equation:
- 2

F = mw™ R Ceesscacaseeesscacesas st eseennnse c.1
where

F = centrifugal force

m = mass of section considered

w = angular velocity

R = distance to the center of mass of the portion of

the specimen where the force is calculated.

Assume further that the bonded area is A = 2.5 in. x 2.5 in. and
that the weight of the separated portion of the test specimen is 4.0
1bs. 1If the distance to the center of mass is 18.0 in. and the tensile

bond, 0., is 100 psi then the angular velocity required to break

b’
the specimen in direct tension can be calculated. At failure the

system rotates at an angular velocity given by:
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Shear Bond Specimen
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- o, A
- /X _ /b
w = /Rm ™ t ettt e ccereeraoeta et anens Cc.2

/100 X 2.52 x 32.2 x 12

_ - . 2
w = 18 = 4 58 radians/sec

or

58 x-ég = 553.8 R.P.M.
2T

If the system accelerates from rest to the speed of 553.8 rpm in

5 minutes, the tangential acceleration a will be

dv wR 58 x 18

= —— = Py = —————e = 1 2
a It . 50 % 5 3.48 in./sec
where
t = time required to reach the speed at failure.
The shearing force on the specimen due to this acceleration
will be

th = mat = ‘3—2—.3- x 3.48 = 0.43 1b.

This force will cause a shearing stress of 0.07 psi which
is 0.14% of an assumed mean tensile bond strength of 50 psi. By
decreasing the acceleration this shearing stress may be reduced
even further if desired. The effects of tangential acceleration

therefore may be neglected.
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To evaluate the shear bond strength the procedure is the
‘'same as for tensile bond, except for the orientation of the specimen
on the disc. The placement of the shear specimen is illustrated in

Figure C.1

C.4 Limitations

The uniformity of the force distribution on the specimen
depends on the shape of the specimen and the distribution of the
mass throughout the volume of the body. If the mass is not uniformly
distributed, then center of mass and the geometric center will not
coincide and as a result moment will develop which will cause a
non-uniform stress distribution. This factor is not considered to
be significant in masonry units because of the degree of quality

control in the manufacturing process.

C.5 Testing

C.5.a Test Equipment

The test apparatus is shown in Plate C.l1 and part of it is
shown in Plate C.2. 1In these photographs the compartment for the
tensile bond test is shown. The flywheel is driven by an AC/DC motor
and the acceleration is controlled by regulating the voltage input.
In the compartment for the tensile bond test, bolts attached to a
rubber padded steel plate are provided for clamping the test specimen
in position. Plate C.2 illustrates the clamping device. The
angular velocity of the flywheel is monitored in r.p.m. by an

electronic sensor attached to the apparatus. Two compartments for
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PLATE C.1 View of the Testing Machine



249

PLATE C.2 Compartment for Tensile Bond Test
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tensile bond and two compartments for shear bond strength are

provided. Two specimens can be tested simultaneously.

C.5.b Test Specimens

A total of 90 tensile bond specimens were manufactured
using 2.5 x 2.5 x 2.5 in. rectangular cubes cut from 4 x 8 x 16 in.
solid concrete block. Mortar was placed én the factory produced
face and not on the saw-cut face in order to simulate actual field
conditions. Fifty specimens were prepared by one mason using standard
construction practice and forty were prepared by another mason who
was constantly supervised in order to obtain the best workmanship
possible. Type S mortar was used in both cases. For the 40 speci-
mens, the mortar was used 90 minutes after mixing in order to
observe the effect of retempering. The mortar was mixed by volume
using the following proportions: 1 part normal cement, 1/2 part
hydrated lime, 4-1/2 parts masonry sand. All specimens were air
cured for a minimum of 28 days. 2 x 2 x 2 in. mortar cubes were
also prepared for mortar compressive strength tests. Forty-five
shear specimens, as shown schematically in Figure C.2, were prepared
and cured in a similar manner as the tensile specimens.

In order to determine the variability in test results
which might be ascribed to the characteristics of the machine, 18
special specimens were tested. These specimens were prepared by
pouring a cube of grout on top of a block section with the same
dimensions as in the mortar jointed specimens. As a result of this
procedure the effects of workmanship and elapsed time on the quality

of the mortar were eliminated. The grout was mixed by volume in
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accordance to CSA Standard Al179 M-1970 and the specimens were rodded
25 times in each of the three layers poured. The compressive
strength of the grout was 2380 psi.
These specimens not only provided a check on the variability .
of the testing procedure, but they also were used to evaluate the
bond between grout and concrete block. Test specimens are illustrated

in Plates C.3, C.4 and C.5.

C.5.c¢ Test Procedure

The test specimens were placed in the compartment and
clamped into position in such é way that the mortar joint and one
of the two block parts are air suspended. The clamping force was
applied through soft rubber pads which bind ihto the rough surface
of the block. The applied clamping force was small and applied at
a distance of 2 cm from the mortar joint in order to avoid possible
damage to the bond. The flywheel accelerated from the rest. When
fajlure occured a circuit breaker caused a signal light to go off.
At failure the speed was recorded, and the center of mass of the
separated portion of the specimen was calculated to account for the
mortar joint which might remain attached to the mixed end of the
specimen or to the separated part.

The bonded area was also determined after failure. From
these data the tensile bond was calculated using Equation C.l. The
shear bond test was carried out by placing the specimen in the
shear compartment as shown in Figure C.1. The two end portions of
the specimen were supported in such a way as to avoid bending

stresses at the mortar joints.
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PLATE C.3 Tensile Bond Specimen After Failure
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PLATE C.4 Specimen for Tensile Bond Strength Test
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PLATE C.5 Specimen for Grout Tensile Bond

After Testing
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At failure the centrifugal force was calculated as for the
tensile test by considering only the mass of the separated portion
of the specimen and the shear bond strength was evaluated using

the beam theory.

C.6 Test Results

The mean value of the tensile bond for all specimens tested
was 42 psi, the standard deviation was 20 psi and the coefficient
of variatién was 0.48. The specimens with poor workmanship had a
mean value of 50 psi, a standard deviation of 22.7 and a coefficient
of variation of 0.448. Corresponding values for the results of
specimens with good workmapship were: mean 31.3 psi, standard
deviation of 8.6 psi and a coefficient of variation of 0.274. The
reduction in the mean strength is attributed to the 90 minute delay
in manufacturing the specimens after mixing the mortar. Poor work-
manship increased the coefficient of variation by 17%.

Table C.l1 summarizes the results of the 90 mortar tensile
bond tests. Table C.2 shows the results of the grout bond tests.
Results of a statistical analysis of the data are summarized in
Table C.3. This analysis indicates that the tensile bond strength
for type S mortar and concrete block has a large coefficient of
variation, and that workmanship influences bond strength by 157 - 207%.

Although a large scatter of test results for mortar tensile
bond strength was observed, whereas the tensile bond between grout
and concrete block was very consistent. The coefficient of variation

for the grout bond tests data was 5.0%.



TABLE C.1 Tensile Bond Strength of Type S
Mortar and Concrete Block
Area of Angular Weight of Calculated
No. Contact Velocity Separated Tensile Bond
in? r.p.m. Portion Strength
1b. psi
1% 13.14 474 3.13 27.3
2 13.68 425 3.12 21.0
3 14,44 770 2.85 59.6
4 14.05 406 2,80 16.8
5 13.49 531 2.93 35.0
6 14.00 437 3.03 21.1
7 13.31 657 2.90 53.7
8 13.48 512 3.08 30.6
9 13.50 744 3.02 63.2
10 13.49 862 3.00 84.4
11 13.32 669 2,92 50.1
12 13.68 869 3.15 89.0
13 13.67 782 3.11 71.1
14 13.67 640 3.04 46.5
15 14.15 750 3.11 - 63.3
16 13.32 781 2.84 66.3
17 13.50 545 3.07 34.5
18 13.51 900 2.94 90.0
19 13.50 680 2.97 52.0
20 14.05 807 2.92 69.1
21 14.53 650 3.02 44,8
22 13.68 961 2.95 101.8
23 12.96 659 2.9 50.4
24 13.32 745 2.95 62.9
25 13.13 417 2,98 20.1
26 14.56 804 3.22 73.2
27 13.13 523 2.90 30.9
28 13.86 415 3.11 19.7
29 14,46 708 3.03 53.7
30 14.04 626 2.82 40,2
31 13.25 480 2.83 25.2
32 13.68 981 2,83 101.9
33 13.14 780 2.97 70.2
34 14.04 516 3.24 31.4
35 12.92 540 3.08 35.5
36 12.96 687 3.00 55.9
37 13.32 776 2,95 68.2
38 13.05 397 2.94 18.1
39 13.87 801 3.07 72.6
40 13.68 574 2,83 34.9
41 13.14 627 2,87 43.9
42 13.69 603 2.97 40.3
43 13.31 616 2,85 41.6




Table C.1 Cont'd
Area of Angular Weight of Calculated
No. Contact Velocity Separated Tensile Bond
in? r.p.m. Portion Strength
1b. psi

44 12.60 850 2.83 83.0
45 - 13.59 480 3.14 27.2
46 14,24 696 3.17 55.1
47 12.25 646 2.68 46.7
48 12.96 463 2,86 24,2
49 13.68 583 3.00 38.1
50 13.50 805 3.00 73.5
51%% 13.87 401 2.459 34.7
52 13.69 401 2.376 34.5
53 13.88 302 2,471 20.0
54 13.88 357 2.461 27.7
55 14.06 338 2,313 23.3
56 13.51 393 2.509 35.4
57 13.87 388 2,470 34.9
58 13.51 330 2.543 23.1
59 13.51 321 2.340 21.9
60 14.24 303 2.944 23.3
61 13.32 326 2.484 24.5
62 13.14 296 2.518 20.7
63 13.88 368 2.427 29.2
64 14.05 384 2.558 33.3
65 13.51 423 2.398 39.1
66 12.96 322 2.720 27.3
67 13.69 350 2.421 26.7
68 13.51 310 2.504 21.9
69 13.87 393 2.461 33.5
70 13.64 377 2,405 30.7
71 13.87 330 2.377 22.9
72 13.87 364 2.565 30.4
73 13.87 336 2,379 24.0
74 - 14,04 315 2.966 26.3
75 14.22 375 3.126 38.8
76 13.51 505 2.496 57.9
77 14.05 370 5.505 30.1
78 13.51 426 2,384 39.3
79 13.87 368 2,388 28.6
80 14,81 347 2,335 25.5
81 13.87 436 2.605 40.6
82 13.68 454 2.518 46.5
83 13.69 336 2.597 26.6
84 13.69 509 2.337 54.6
85 13.51 393 2.564 35.8
86 13.69 386 2.609 35.8
87 13.87 352 2.591 29.2
88 13.87 330 2,472 24.3
89 13.69 439 2.431 42.5
90 13.69 380 2.611 34.0

* Specimens

1 - 50 considered of poor workmanship
** Specimens 51 -~ 90 considered of good workmanship
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APPENDIX D

Computer Interaction Diagram
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D.1 General

The Fortran program entitled Theory pm has been developed
to provide theoretical interaction diagrams for masonry block walls.
This program will handle walls rectangular cross—section, with or
without reinforcement. Load-moment relationships can also be
computed for masonry block walls with all cavities grouted or
ungrouted.

The main program in Theory pm relies upon subroutines Prop,
Axial, Fsteel and Inerta to obtain information, balance the loads,
calculate the maximum moment for a given load and calculate the
eccentricity of load required to produce such a moment. 1In analyzing
walls with h/t > 1.0 the program calculates the deflection at
mid-height using reduced flexural rigidity. The calculated moment
includes P-A effects.

Output information provided includes the load and moment

relationship for maximum stress on a section.

D.2 Basic Assumptions for Anmalysis

The following basic assumptions were used for analysis:

1) Cross-sections which were plane before loading the member
remain plane after the load is applied. Accurate measure-
ments have shown that minor deviations from the plane
section occur when the load approaches the failure load.
However, theoretical considerations based on this assumption

predict test results satisfactorily.



D.3

2)

3)

4)

5)

6)

1)

2)

3)

4)
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The stress-strain relationship for steel is linear until
the yield strength of the steel 1s reached after which it
is plastic.

Sufficient bonding of the reinforcing bars to the grout

is developed to prevent slipping between the two materials.
This ensures that the strain in the embedded bar is the
same as that of the surrounding grout.

The stress-strain relationship of masonry follows a second
degree parabola proposed by Hognestad“"“. ’
Since the masonry units ‘'or the mortar bond may be cracke&,
due to shrinkage or other reasons, even before a load is
applied, it is unsafe to take into account their tensile
strength.

The deflection calculated by the program is based on the

wall bending in single curvature.

Limitations

The program does not fecognize any strength properties
given to the section by placing "tie-bars" around the
reinforcement.

The masonry is considered to have strength only in
compression. Any tensile strength is neglected.

When calculating the deflection of the wall, the modulus

of elasticity of the wall is taken as that of the

masonry unit. The effect of the reinforcement is neglected.
For reinforced walls the maximum reinforcement should be

equal to the balanced reinforcement for flexure.
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Figure D.1 shows the required dimensions and physical

properties of the maferials to be included in the input data

involved.

The following data refer to a wall reinforced with 3-#6 bars,

121 in. in height. The strength of the masonry is 25060 psi, the

yield strength of steel is 60 ksi and the modulus of elasticity of

steel is 29 x 10° psi. The modulus of elasticity of masonry is

taken as 1000 fé.

D.5 List of Data

BB = 40 din.

H = 7.63 in.

DD = 3.81 in.
AS = 1.33 in.?2
DC = 3.81 in.
NB = 3
AS(1) = .44 in.?
AS(2) = .44 in.?
AS(3) = .44 in.?
DH = 1.25 in.
HN = 2.
WH = 5.13
WL = 5.5

RL = 121.

ASC

FC

ES

DS(1)
DS(2)

DS(3)

0.0 in.?2
2500 psi
60,000 psi

29 x 10% psi

3.81 din.
3.81 in.

3.81 in.

S,

R ——



DATA FILE

1]
2]
3]
4]
5]
6]

7]

40., 7.63, 3.81, 3.81, 1.33, 0.,
2500., 60000., 29000000.,

3,

.44, 3.81,

.44, 3.81,

.44, 3.81,

1.25, 2., 5.13, 5.5, 121.,

266
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FIG. D-1 Input Dimensions
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C

PROGRAM THEORY

C THIS PROGRAM CALCULATES THE THEORETICAL P-M DIAGRAN

DIMENSION ECN (40),DELTA (40) ,COR(40) ,STA (40) ,YBAR (40)
COMMON N,EOH1(13),P0,BMO,DCS,DTS, RC

COMMON FC,FY,ES,BB,H,DC,DD,AS,NRU,DH, HN,WH,WL,RL
COMMON PHI,EO,J,%,ECC,EY,FCONCC (20) ,ASC, EOH (40)
&, FCONST (25)

COMMON X (16000) ,EC (20) ,B(20) ,P (40) ,BMM(1000) ,BM (40)
&,FCS(20)

COMMON PST,E(20),NB,DS (20) ,ASB(20),FSS(20),SBHM (20)
COMMON CC (40) ,XAXIS (40) ,RIX (40)

CALL PROP

FC=FC*0.85

IF (FC.EQ.1000.0) FC=1000.1

ECC = 750. * FC

EO = 0.0038

EY=FY/ES

PO = FC*BB*H +AS*FY - AS%FC - FC*HN*WL*WH

J=0

J=J+1

IF (J.EQ.1) GO TO 5

IF (P(J~1).LE. (0.6%P0)) P(J)=P(J-1)=-0.034%po
IF (P (J-1).LE.(0.1%P0)) P(J)=P(J-1)=-0.04%PO

IF (P(J=1).GT.(0.6%P0)) P{J)=P(J-1)-0.08%P0
IF(J-EQ.35)P(J) = 0.0

IF (P{(J).LE.0.0) P(J)=0.0

IF (J.EQ.2) P(J)=P (J-1)-0.08%P0

CALL AXIAL

IF (P (J)-EQ.0.0) BMO=BM (J)
IF(P(J)-.EQ.0.0)EOH (J) = 0.0

IF (P (J) .EQ.0.0) GO TO 7

GO TO 6 -

P (J)=PO

BM (J) =0.0

EOH (J)=BH (J) / (P (J))

GO TO 1

N=J-1

M=N

NJ=N-1

DO 8 IJ=3,NJ

IF (BM(IJ).GE.BM(IJ-1)) GO TO 8

IF (BM(IJ+1).LE.BM(IJ-1)) GO TO 8

M=M-1

DO 9 JJJI=IJ,NJ

P (JJJ)=P (J3J+1)

BM (JJJ) =BM (JJJ+1)

EOH (JJJ) =EOH (JJJ+1)

CONTINUE

N=M+1

po 10 J=1,N

CALL INERTA
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STA (J) = SQRT (P (J) /(ECC*RIX (J)))
COR(J) = COS(STA(J)*RL/2.)
ECN(J) = EOH (J) *COR (J) ’

DELTA (J) = EOH(J) - ECN (J)
RMEI = BM (J)/(1500000.*RIX (J))

IF(P(J) - EQ.0.0) DELTA (J) =RMEI * (RL¥¥2.) /2.
CONTINUE

WRITE (6,100)

100 FORMAT (*1*,//////23X,

& V****THEORY INTERACTION DIAGRAM*#%%1)
WRITE (6,101)

101 FORMAT (//19X,'P(0) LBS',6X,"M(0) LB-IN')

WRITE (6,102) PO,BMO

102 FORMAT (/16X,3E15.7)

WRITE (6, 103)

103 FORMAT(//,19X,'P(J)',1SX,'M(J)',10X,'ECN(J)',6X

&,"DELTA(J) ")
DO 20 J=1,N

20 WRITE (6,104) pP(J) ,BM(J) ,ECN(J) ,DELTA (J)

104 FORMAT (/16X,4E15.7)

105

106
107

WRITE (4, 105) W
FORMAT(I2,',")

DO 106 J=1,N
WRITE(4,107) P(J),BM(J)
FORMAT (/2E15. 7)

GO TO 2

END

SUBROUTINE PROP

C THIS SUBROUTINE READS AND WRITES THE COLUMN PROPERTIES

oNeRoNoNoNsNoNeNeNoNeRo RO KR!

COMMON N,EOH1(13),P0,BMO,DCS,DTS,RC

COMMON FC,FY,ES,BB,H,DC,DD,AS,NRU,DH, HN, WH,WL,RL
COMMON PHI,EO,J,Z,ECC,EY,FCONCC (20) , ASC,EOH (40)
&,FCONST (25)

COMMON X (16000),EC(20),B(20),P(40),BMM(1000) , BM (40)
&,FCS (20)

COMMON FST,E(20),NB,DS (20) ,ASB(20),FSS(20),SBM (20)
COMMON CC (40) ,XAXIS (40) ,RIX (40)

FC=CONCRETE STRENGTH

FY=STEEL STRENGTH (PSI)

ES=STEEL MODULUS OF ELASTICITY (PSI)

BB=CROSS SECTION WIDTH (IN)

H=CROSS SECTION DEPTH (IN)

DC=DISTANCE TO THE COMPRESSION STEEL (IN)
DD=DISTANCE TO THE TENSION STEEL (IN)

ASC=AREA OF COMPRESSION STEEL (SQ IN)

AST=AREA OF TENSION STEEL (SQ IN)

AS=TOTAL AREA OF STEEL (SQ IN)

DH=DISTANCE TO CLOSE EDGE OF HOLE

HN=NUMBER OF HOLES IN WALL

WH=WIDTH OF EACH HOLE

WL=LENGTH OF EACH HOLE
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C RL=TOTAL HEIGHT OF COLUMN (IN)
READ (5,100,END=115) BB,H,DD,DC,AS,ASC
100 FORMAT (6F15.2)
READ (5,101) FC,FY,ES
101 FORMAT (3F15.7)
READ (5,102) NB
102 FORMAT (1I3)
DO 1 I=1,NB
READ (5,103) ASB(I),DS(I)
103 FORMAT (2F15.7)
1 CONTINUE
READ(S, 104) DH, HN, WH, WL ,RL
104 FORMAT (5F15. 3)
. WRITE (6,105)
105 FORMAT (*1',//////30X,'COLUMN CROSS SECTION PROPERTIES
&)
WRITE (6, 106)
106 FORMAT (16X,'FC (PSI)*,3X,'FY (PSI)',5X,'ES (PSI)')
. WRITE (6,107) FC,FY,ES
107 FORMAT (/16X,1F6.1,5X,1F7.1,4%X,1F10.1)
WRITE (6,108)
108 FORMAT (//16X,*B(IN)*,5X,'H(IN)',5X,*D(IN)"*,ux,
1'DC (IN) ', 4X, *AS (SQIN) ', 3X, "ASC(SQIN) ")
WRITE (6,109) BB,H,DD,DC,AS,ASC
109 FORMAT (/12X,6F10.2)
WRITE (6,110)
110 FORMAT (//16X,*DH(IN)*,5X, HN (#)*,5X, ' WH (IN) ', 5X,
&'WL (IN)*',5X,'RL")
WRITE (6,111) DH,HN,WH,WL,RL
111 FORMAT (/12X,5F10.2)
WRITE (6,112)
112 FORMAT (//16X,'NB',4X,'ASB(I)',5X,'DS (I)")
DO 114 I=1,NB
WRITE (6,113) NB,ASB(I),DS(I)
113 FORMAT (15X,1I3,2F10.2)
114 CONTINUE
RETURN
115  STOP
END .

SUBROUTINE AXIAL
C THIS SUBROUTINE CALCULATES THE MOMENT AFTER BALANCING P

- COMMON N,EOH1(13),PO,BMO,DCS,DTS, RC
coMMON FC,FY,ES,BB,H,DC,DD,AS,NRU,DH,HN,WH,WL,RL
COMMON PHI,EO,J,Z, FCC,EY,FCONCC (20) , ASC,EO0H (40)

&,FCONST (25)

COMMON X (16000) ,EC (20) ,B(20) ,P(40) ,BMM(1000) ,BM (40)

&,FCS(20)

COMMON FST,E(20) ,NB,DS (20) ,ASB(20),FSS(20),SBM (20)
COMMON CC(40),XAXIS (40) ,RIX (40)

DIMENSION CCC (1000)

PHI=0.0000001
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PHIH=PHI*H

II=1

TEMP = 0.

CTENP = (.
14 E4=0.002

EINCR=0.002
15 E4=E4-EINCR
EINCR=EINCR/2.0
16 E4=E4+EINCR
FCCONC=9.0
IF (PHI.GT.0.)C=El4/PHI
IF(PHI.EQ.0.)C=H
ECO= (C-H) *PHI
IF (C.GE.H) C=H
IF (C.LT.H) EC0=0.0
ASC=0.0
Do 17 I=1,NB
IF (DS(I).LE.C) ASC=ASC+ASB (I)
17 CONTINUE
DX=C/10.
C CALCULATE THE CONCRETE COMPRESSION BLOCK FORCE
DO 24 I=1,10
AI=I
X (I) =C-AI*DX+DX/2.
EC (I) =PHI*X (I) +ECO
ABH = DH + WH
IF(C.LT.ABH)GO TO 18
BH=C - (DH + WH)
IF(X(I).LT.BH)GO TO 20
DDH=C - DH
IF(X(I).GT.DDH)GO TO 20
GO TO 19
18 IF(C.LT.DH)GO TO 20
AH = C ~ DH
IF(X(I).GT.AH)GO TO 20
19 B(I) = BB - (HN * WL)
GO TO 21
20 B(I) = BB
21 CONTINUE
C MAXIMUM STRAIN FOR UNCONFINED COMPRESSION EO=0.0038
IF (EC(I).GT.0.003) GO TO 22
FCC=FC* (2. 0%EC (I) /.003~ (EC (I) /. 003) *%2)
GO TO 23
22 FCC = FC¥(1.-(EC(I) - .003)*18.65)
IF(EC(I) «GT..0038) FCC = 0.0
23 FCONCC (1)=FCC*DX*B (I)
24 FCCONC=FCCONC+FCONCC (I)
RC=C
CALL FSTEEL (E4)
C CHECK FORCE COMPATIBILITY
PAXIAL = FCCONC + FST
TOLA=P (J) ¥0.025
IF (P(J).EQ.0.0) TOLA=0.001%PO
TOL=P(J) -PAXIAL
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IF (TOL.LT.-TOLR) GO TO 15
IF (TOL.GT.TOLA) GO TO 25
G0 TO 26
25 IF (EC(1).GE.E0) GO TO 30
IF(EINCR.GE.0.0000001) GO TO 16
26 COMPM=0.0
CALCULATE THE MOMENT DUE TO CONCRETE COMPRESSION FORCE
CC(J) = C
DO 27 I=1,10
27 COMPM=COMPM+FCONCC (I)* (H/2.-C+X (I))
SM=0.0
CALCULATE THE MOMENT DUE TO THE STEEL FORCES
DO 28 I=1,NB
SBM (I) = (FSS(I)-FCS (I)*ASB(I))*ABS (H/2.-DS(I))
28 SM=SM+SBM(I)
SUM THE MOMENTS ABOUT THE TENSION STEEL -
BMM(II) = COMPM - SM
CCC(II) = C
IF (II.EQ.1) GO TO 29
IF (BMM(II).LE.0.0)GO TO 31
TOLBMA=ABS (BMM (II-1) *0.01)
TTOL = BMM(II-1)*0.0001
BMTOL=BMM (II)~BMM (II-1)
BMA = -TOLBMA
IF (BMTOL.LT.TTOL) GO TO 34
IF(BMTOL.GT.0.0)GO TO 32
- 34 IF(BMTOL.GT.BMA)GO TO 33
IF(TEMP.EQ.0.)CTEMP = CCC(II-1)
IF (TEMP.EQ.0.) TEMP = BMM (II~1)
IF (TEMP.LT.BMM(II-1))CTEMP = CCC(II=-1)
IF (TEMP.LT.BMM (II-1)) TEMP=BMM (II-1)
II = II - 2
PHIH = PHIH - 2%PHINCR
PHINCR = 4.% (PHINCR/5.)
GO TO 32
29 PHINCR=0.001
GO TO 32
30 E4=0.001
PHIH=PHIH-PHINCR
PHINCR=PHINCR/5.0
PHIH=PHIH+PHINCR
PHI=PHIH/H
EINCR=EINCR/2.0
GO TO 16
31 PHIH=PHIH-PHINCR
PHINCR= (PHINCR/S.0)
32 PHIH=PHIH+PHINCR

PHI=PHIH/H
II = IT + 1
GO TO 14

33 BM(J)=BMM(II-1)
IF (TEMP.GT.BMM (II-1)) BM (J) =TEMP
CC(J) = CCC(II-1)
IF (TEMP.GT.BMM (II-1))CC(J) = CTEMP
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CONTINUE
RETURN
END

SUBROUTINE FSTEEL (Ed4)
C THIS SUBROUTINE CALCULATES THE THEORY FORCES IN THE STEEL

COMMON N,EOH1(13),P0,BMO,DCS,DTS, RC
COMMON FC,FY,ES,BB,H,DC,DD,AS,NRU,DH,HN,WH, L, RL
COMMON PHI,EO,Jd,Z%Z, ECC,EY,FCONCC (20),ASC,EOH (40)
&, FCONST (25)
COMMON X(16000) ,EC(20),B(20),P(40) ,BMM(1000) ,BM (40)
&, FCS (20)
COMMON FST,E(20) ,NB,DS(20) ,ASB(20),FSS(20) ,SBM(20)
COMMON CC(40) ,XAXIS (40),RIX (40)
FST=0.0
C=RC
DO 4 I=1,NB
E(I)=E4~-PHI*DS (I)
IF (DS(I).GE.C) GO TO 5
IF (E(I).GT.EOQ) GO TO 5
FCS (I) =FC* (2.0%E (I) /EO- (E (I) /EO) %%2)
FSC=-FCS (I) *ASB (I)
GO TO 8
5 FSC=0.0
FCS(I)=0.0
8 IF(E(I).GE.EY)GO TO 1
IF (E(I) .LE.-EY) GO TO 2
GO TO 3
1 FSS(I)=PY*ASB(I)
GO TO 4
2 FSS(I)=-FY*ASB(I)
GO TO 4

3 FSS(I)= E(I)*ES*ASB(I)
4 FST=FST+FSS (I)+FSC
RETURN
END

SUBROUTINE INERTA

C THIS SUBROUTINE CALCULATES THE MOMENT OF INERTIA OF
C THE CRACKED SECTION

COMMON N, EOH1(13),P0,BMO,DCS,DTS, RC

COMMON FC,FY,ES,BB,H,DC,DD,AS,NRU,DH, HN,WH, WL,RL
COMMON PHI,E0,J,Z, ECC,EY,FCONCC (20) ,ASC,EO0H (40)
&,FCONST (25)

COMMON X (16000) , EC (20) ,B(20) ,P(40) ,BMM (1000) , BN (40)
&,FCS (20)

COMMON FST,E(20) ,NB,DS(20) ,ASB(20),FSS(20),SBM (20)
COMMON CC(40) ,XAXIS (40) ,RIX (40)

DIMENSION XJ (1600)

AH = DH + WH
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24

25
26

30

40

IF (J.EQ.1)CC(J)=7.63
DX = CC(J)/20.

RIX (J) = O.
Do 30 1=1,20
Al = I

XJ(I) = CC(J) - AI*DX+DX/2.
ABH = DH + WH

IF(CC(J) .Lk.DH)GO TO 25
IF(CC (J).GT.ABH)GO TO 12
ABC = CC(J) - DH
IF(XJ(I).GT.ABC)GO TO 25
GO TO 24

ABD = CC(J) - ABH
IF(XJ(I).LT.ABD)GO TO 25
ABY = CC(J) - DH
IF(XJ(I)-6T.ABY)GO TO 25
GO TO 24

B(I) = BB - WL*HN

GO TO 26

B(I) = BB

RIXX = XJ(I)*XJ(I)*B(I)*DX

RIK (J) = RIX(J) +RIXX
CONTINUE

RIX2 = 0.

DO 40 I =1,NB

RNR = ES/ECC -1.
IF(DS(I).GT.CC(J))RNR=ES/ECC
RM = ABS(DS(I) - CC(J))

RIX2 = RIX2 +ASB(I)*RNR*RM*RM
CONTINUE

RIX(J) = RIX(J) + RIX2

RETURN

END
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