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Abstract

Improvements in the imaging techniques have enabled the capturing of images with

high resolution, thereby permitting the reconstruction of complex porous media that

can be analyzed by computer simulations. The two most popular methods for numer-

ically analyzing transport in porous media are pore network modeling (PNM) and

direct numerical simulation (DNS).

This thesis describes a method to characterize the microstructure of various porous

media used for fuel cell and electrolyzer. In this work, two fibrous gas diffusion layers

(Toray 120C, SGL 39BA) and one powder based sintered titanium paper were directly

scanned using X-ray micro computed tomography (µCT). The obtained raw images

were binarized, and cropped to three subsamples. To assess the validity of subsamples,

the statistical characterization were performed using two-point correlation and chord

length functions. Stochastic reconstructions were used to generate catalyst layers

(CLs).

The microstructure of the subsamples are analyzed by computing pore size distri-

bution (PSD), mercury intrusion porosimetry (MIP), and water intrusion. PNM uses

pore networks extracted from the subsamples to obtain PSDs. The networks are then

used for non-wetting phase intrusion in the domain using percolation algorithms. For

DNS, the sphere fitting algorithm is used for the PSD calculations. The PSD in-

formation is then used for water and mercury intrusion using the cluster based full

morphology (FM) algorithm. PSDs computed from MIP data are in good agreement

with the PSDs from sphere fitting algorithm.

Dry and wet transport properties are computed using both methods and compared
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to experimental references. Two diameter cases provided by PNM are used for nu-

merical calculations. Using the equivalent diameter returned closer results compared

to the experimental transport properties. In PNM, relative water permeability results

show different trends based on the intrusion algorithm used for the transport sim-

ulations. Employing the invasion percolation (IP) algorithm returns better results

compared to the reference results. The DNS results obtained based on saturated

images return acceptable results.

Keywords: Pore network, Full morphology, Direct numerical simulation, Image anal-

ysis, Tomography, Two-phase flow, Mercury intrusion porosimetry, Pore size distri-

bution
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Chapter 1

Introduction

1.1 Motivation

Today’s energy transition is one related to a move away from the consumption of

carbon-emitting fuels to the consumption of non-carbon-emitting fuels, a process

called decarbonization [4]. While the current energy transition is being driven by

technological, economic, and political factors, it is primarily driven by environmental

factors based on changing social values - the drive to reduce global greenhouse gas

(GHG) emissions. [4].

Canada generates 1.7 % of global GHG emissions, however it is one of the most

energy and emission intensive nations in the world. The International Energy Agency

(IEA) recommends that Canada take action to reduce its emissions and energy in-

tensities in order to strengthen its position as a responsible energy supplier and user

[4]. The Organization for Economic Co-operation and Development (OECD) notes

Canada’s status as one of the most GHG emission-intensive economies in the world,

and the fourth largest emitter of GHGs in the group of OECD nations [4]. Trans-

portation represents 25% of overall GHG emissions. Growing economic activity in

Canada affects the number of freight trucks on the road, thus emissions from the

freight transportation subsector are projected to rise [5].

Polymer electrolyte membrane (PEM) fuel cells are electrochemical energy con-

version devices which have proven to be one of the most promising technologies owing

to their high efficiency, zero local emissions, and rapid start-up capacity. In addition

to transportation, fuel cells are being applied in many applications such as a backup

power, forklift engines, and power plants [6].

Figure 1.1 shows the schematic of a proton exchange membrane fuel cell (PEMFC).

A PEMFC consists of four main components: a) the bipolar plate, which contains the

current collectors and gas channels; b) gas diffusion layer (GDL) and micro porous
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Figure 1.1 – Schematic of a proton exchange membrane fuel cell.

layer (MPL); c) the catalyst layer (CL); and d) the proton exchange membrane. In a

PEMFC, hydrogen enters through the anode channels and reacts to produce protons

and electrons. Protons are conducted through the polymer electrolyte membrane

(PEM) to the cathode side. The protons react with the oxygen and electrons from

the cathode side to produce water and heat. The electrochemical reactions for cathode

and anode can be shown as:

Anode : H2 → 2H+ + 2e−

Cathode :
1

2
O2 + 2H+ + 2e− → H2O

(1.1)

where the liquid water is the final product of the reaction. The overall electrochemical

reaction in the PEMFC can be written as:

1

2
O2 +H2 → 2H2O + Electricity +Heat (1.2)

Effective water management mitigates mass transport losses and leads to an increase

in the maximum current density and power output. At high current density, water

vapour pressure may exceed saturation pressure within the cell, leading to the for-

mation of liquid water. This water blocks gas transport and reduces the maximum

power output of the cell. A highly porous and hydrophobic GDL in the electrode

aids the supply and removal of reactants and products, but the water accumulation
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Figure 1.2 – Schematic of a polymer electrolyte water electrolyzer.

within the GDL pore region leads to a decrease of pore sizes. The pores then need

higher pressure to be intruded by gas. Therefore, understanding water balance of

high current density in the cell is crucial to cell performance.

PEMFC are powered by hydrogen gas. However, hydrogen is not found in nature,

and it must be manufactured. A technology to manufacture hydrogen from water is

the polymer electrolyte water electrolyzer (PEWE). Figure 1.2 shows a schematic of

PEWE. The half reactions at the anode and cathode can be shown as:

Anode : H2O →
1

2
O2 + 2H+ + 2e−

Cathode : 2H+ + 2e− → H2

(1.3)

In the PEWE, water is supplied to the anode side and is transported through porous

transport layer (PTL) to the catalyst layer. It is decomposed into protons, electrons

and oxygen. The oxygen is then transported through the anode PTL to be discharged

from the cell. Protons are transported through the proton exchange membrane (PEM)

to the cathode, while electrons are transported through the external circuit. The

anode half reaction is called the oxygen evolution reaction (OER) and the cathode half

reaction is called the hydrogen evolution reaction (HER). Mass transport losses are

due to the accumulation of oxygen gas in the anode, which might displace the reacting

liquid water from the catalyst surface. The oxygen gas generated from the anode
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catalyst layer (CL) should be removed from the anode electrode but it accumulates

in the anode CL and PTL. The oxygen bubbles trapped in the anode PTL hinder the

mass transport efficiency so that the mobility of the reactant is limited.

Given the critical importance of mass transport in enhancing fuel cell and PEWE

performance, the effect of the morphology on gas and water transport in these mate-

rials need to be studied in detail.

1.2 Background

1.2.1 Porous media

Proton exchange membrane fuel cells (PEMFCs) and polymer electrolyte water elec-

trolyzers (PEWEs) are composed of an anode, a cathode, and a membrane. The

anode and cathode are the heart of the cell and both are porous media. The major

components of anode and cathode are the catalyst layers (CLs), and the gas diffusion

layers (GDLs) in PEMFC; and the catalyst layers (CLs) and the porous transport

layers (PTLs) in PEWE. A catalyst layer is the centre of the electrochemical reac-

tions. Reactants and products are delivered through the layers and electrochemical

reactions take place in CL. The anode and cathode CLs are responsible for the hydro-

gen oxidation reaction (HOR) and oxygen reduction reaction (ORR) in PEMFC; and,

the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) in

PEWE. The anode and cathode are separated by PEM in both PEMFC and PEWE.

Each of the components has a specific function and material characteristics, which

are discussed in the next sections.

1.2.1.1 Catalyst layers

Catalyst layers (CLs) in PEMFC and PEWE, where the electrochemical reaction

occurs, are porous composites made of ionomer, and either carbon supported catalyst

or iridium particles, respectively. It is a thin film with nanoscale pores. The pores

enable the reactants and products transport to the reaction sites. The typical material

properties for CL are shown in Table 1.1.

Table 1.1 – Parameters of CL

Thickness 5 – 60 µm [7]
Pore size 5 – 130 nm [8]
Porosity 30 – 60 % [9]
Pt particle size 2 – 5 nm [8]
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New fabrication techniques, such as electrospraying and inkjet printing, have en-

abled researchers to develop structures with varying porosity and pore sizes. The

question, however, remains as to what is the most appropriate structure to be used

in each application and how the morphology affects transport and water accumu-

lation. In order to address this question, the development of numerical models for

computer-aided design of porous media is of paramount importance.

1.2.1.2 Fuel cell gas diffusion layers

Gas diffusion layers (GDLs) in PEMFC and porous transport layers (PTLs) in the

cathode of PEWE are in direct contact with the gas channels. They are responsible

for transporting the fuel and reactant from the channels in the bipolar plates to

the catalyst layer, transporting electrons from the CL to the bipolar plates, and

providing structural support to the membrane electrode assembly (MEA). They are

made of carbon fibers or carbon cloth materials, and usually have high porosity for

easy transport of gases. In PEMFCs, they are often treated with PTFE to make them

hydrophobic which facilitates water removal from the cell. Nowadays, micro porous

layers (MPLs) are often embedded onto the GDL surface, since it has been found

that the addition of an MPL at the GDL-CL interface improves the performance of

the cell under wet conditions. Carbon based GDLs are generally classified as either

single layer or dual layer on the basis of the existence of a micro porous layer (MPL).

Figure 1.3 shows comparison of the µCT images between the single and dual layer

GDLs.

Conventional GDLs such as SGL 38 and 39 series are manufactured by the fol-

lowing steps [10]:

1. Chopped carbon fibers are processed to a primary carbon fiber web.

2. The raw paper is impregnated with carbonizable resins.

3. They are cured and graphitized to adjust the porosity and to enhance electrical

and thermal conductivity.

4. The carbon paper is treated with PTFE to make the material hydrophobic.

5. Micro-porous layer is coated on the carbon paper

6. Sintering bonds the substrate and MPL.

The carbon fiber GDLs typically have a porosity of 70% to 90% with a mean pore

diameter on the order of 10 µm [11], and thickness ranges from 100 µm to 300 µm

[12].

5



500 µm

(a) CT image of single-layer GDL, SGL
38BA

500 µm

MPL

(b) CT image of dual-layer GDL, SGL 38BC

Figure 1.3 – CT images of single and dual layer GDLs in two directions. Carbon
based GDLs are classified as either single layer or dual layer on the basis
of the existence of a micro porous layer (MPL)

1.2.1.3 Electrolyzer porous transport layers

At the anode side of a PEWE, a titanium (Ti) porous media is a preferred material

because of the highly corrosive environment in the anode. Carbon materials used

as gas diffusion layers in fuel cell cannot be used in PEWE. The high electrical

potentials imposed at the anode side (∼ 2 V) with respect to H2 electrode, and

highly acidic (∼ pH 2) and oxygen rich environment facilitate the oxidation of carbon

or graphite materials. Ti is able to withstand the harsh environment and provides

effective electrical conductivity. There are three types of Ti PTLs, powder based

sintered Ti, felt type Ti fiber paper, and Ti foam [13]. Sintered powder PTLs generally

have porosities below 50% whereas the felt type Ti papers are available in a wide range

of fiber sizes and porosities [13].

The powder based Ti PTLs, typically fabricated by thermal sintering, have the

following properties shown in Table 1.2.
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Table 1.2 – Parameters of powder based sintered Ti PTLs for PEWE [1].

Thickness 0.8 – 2 mm
Porosity 20 – 50 %
Pore size 5 – 30 µm
Particle size 25 – 250 µm

1.2.2 Transport properties

Mass transport in PEMFC and PEWE has an important role in the cell performance.

The reactants should be transported sufficiently fast to the reaction sites for ideal cell

performance as insufficient supply of reactants limits the maximum achievable current

density. In PEMFC, GDLs allow transport reactants and products to the catalyst

layer. Transport of reactants in the through-plane direction is mainly controlled by

diffusion, whereas in-plane transport is both diffusion and pressure driven [14]. In

PEWE, transport occurs mainly due to pressure gradients. Accurate determination

of these transport properties, i.e., diffusivity and permeability, in both in-plane and

through-plane directions under dry and partially saturated conditions is therefore

crucial to optimize cell performance in computational modeling.

1.2.2.1 Effective diffusivity

Effective diffusivity is an important parameter for porous layers as it is the main mode

of gas transport in porous media of PEMFC. The diffusion of gases to the catalyst

layer in the cathode electrode should be as high as possible to achieve high current

density in a fuel cell. Diffusion is governed by Fick’s law:

J = −D∇C (1.4)

where J is the diffusion flux, C is the concentration, and D is the diffusion coefficient.

In porous media, Fick’s law must be volume-averaged leading to the average form

of equation (1.4):

Ĵ = −Deff∇C (1.5)

where Ĵ is the superficial flow rate. The effective diffusion coefficient, Deff , can be

defined as a function of the bulk diffusion coefficient of gases, porosity, and liquid

water saturation of porous media:

Deff = Dbluka(ε)b(S) (1.6)

where a(ε) and b(S) are functions defining the impact of the porosity and liquid water

saturation on the diffusivity, ε is the porosity, Dbulk is the bulk diffusivity. There
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are some analytical formulas to relate the effective diffusivity to the other properties,

however their accuracy is limited, for example, the Bruggman equation is most widely

used formula [15]:

Deff = Dbulk(ε)
1.5(1− S)1.5 (1.7)

This relation however was developed for a packed bed of spherical particles and

therefore it is not applicable to fibrous media or porous media in general.

1.2.2.2 Permeability

Permeability is an important property in electrolyzer and fuel cell operation as it is

a material-specific characteristic which is measuring the resistance to flow. For flow

at low Reynolds number (Re < 1), flow in porous media can be described by Darcy’s

law:

∇p = −µ
k

v (1.8)

where ∇p is the pressure gradient across porous media, v is the velocity, µ is the

dynamic viscosity, and k is the permeability of the porous media. In this flow regime,

viscous interactions of the fluid lead to the pressure drop through the porous media.

1.3 Literature review

Many experimental and numerical studies revealed the importance of understanding

the microstructure and wettability of the porous media in order to estimate effective

transport properties and electrochemical performance [16–23]. For example, vary-

ing PTFE content, leading to different pore size distribution (PSD), has been shown

experimentally to impact PEMFC performance [23, 24]. However, conducting ex-

periments is time consuming and expensive. Moreover, it is difficult to visualize the

transport phenomena inside the cell.

Numerical models can be used to perform careful parametric studies to elucidate

the importance of pore-level features, such as PSD, fibre diameter, and many other

design parameters. Numerical approaches to estimate transport properties in PEMFC

and PEWE materials are: a) pore network models (PNM) [3, 25–28], and b) direct

numerical simulations (DNS) [29–33].

This chapter provides a concise review of literature relevant to the works done in

this thesis. Specifically, imaging techniques and numerical approaches used for water

intrusion and transport properties are highlighted.
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1.3.1 Numerical characterization

A popular approach to analyze the aspect of GDL and PTL morphology and trans-

port is pore scale modelling. Pore scale models resolve the heterogeneity of the porous

media by solving related governing equations at a pore size scale. Two major pore

scale modelling approaches are pore network modelling (PNM) and direct numerical

simulation (DNS) [34, 35]. PNM utilizes a simplified network comprised of spherical

pores and cylindrical throats. One can either generate an artificial pore network or ex-

tract the network from microstructural images, such as µCT tomography. Transport

inside the network is computed solving 1D analytical solutions of the relevant trans-

port equations [36]. DNS, on the other hand, employs the porous media geometry

obtained from tomography images directly for its simulations. Instead of extracting

idealized networks, DNS solves the transport equations on computational meshes gen-

erated from tomography images. In voxel-based mesh generation, the image voxels

are directly converted to mesh elements. Additional structural information can be

exploited for each simulation, but it needs more computational resources than PNM.

Each DNS simulation needs a computational mesh to analyze transport properties

in porous media. Therefore, analyzing the transport properties of partially-saturated

materials requires a new mesh for each saturation level.

1.3.1.1 Pore Network Modeling

Many authors have employed pore network modeling (PNM) to estimate porous media

properties, such as diffusivity, permeability, capillary pressure curves, and interfacial

area. The basic concept of PNM is to simplify the void space by an idealized geometry

of pores and throats, and compute the transport of fluid between pores and throats

using simplified governing equations. Because of the simplicity and the computational

efficiency, PNM has been widely used for analyzing PEMFC and PEWE porous media.

The first step of the PNM simulation is defining a network that can represent the

material of interest. Obtaining a network can be done either generating an artificial

network or extracting one from a binary image stack. One approach of modelling

PTLs with PNM is using a regular cubic network, i.e. placing pores and throats in

a cubic lattice [25, 37]. Achieving high porosity (> 80%) is, however, difficult when

using spherical pores and cylindrical throats in a cubic network because the pores

are likely to overlap with one another. For this reason, Gostick et al. [25] computed

transport properties of Toray and SGL GDLs using a cubic network with cubic pores

and cuboid throats. The size of the rectangular pores and throats were set using

a Weibull distribution. The size distribution was calibrated to achieve the desired
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porosity and the dry transport properties of the commercial PTLs. Material-specific

relative gas and liquid permeabilities and diffusivities were computed as a function of

water saturation. Water intrusion was simulated by injecting water in the through-

plane direction based on the capillary pressure of each throat. They generated cubic

networks for two different fibrous GDLs, i.e., SGL 10BA and Toray 090, and showed

very close simulation results for mercury intrusion cumulative curves, and dry and

wet transport properties compared to experimental data. Cubic networks however

are not the most appropriate network to represent the entangled fibrous structure of

PTLs.

To overcome this limitation, some research focused on generating more realistic

networks. Sinha et al. [38] built a random tetragonal pore network based on the

randomly stacked regular fiber screens reported in [39]. Using cubic and cuboid pores

and throats, respectively, the pore and throat sizes were assumed to have a cut-off

log-normal distribution. The randomly stacked fiber screens and the tetragonal con-

nectivity enabled the pores to be randomly distributed in the 3D domain. The pore

network was generated to have similar mean pore diameter, thickness, and porosity to

Toray carbon paper without PTFE content. They computed the dry gas permeabili-

ties of the pore network and showed good agreement with experimental data. They

also showed the liquid water transport in the pore network; but it was not compared

to the experimental data, and the transport properties were not computed.

Luo et al. [40] proposed a topologically equivalent pore network (TEPN). Instead

of making a random pore network, they employed a stochastic modelling method to

generate pore scale 3D images of carbon paper and carbon cloth GDLs. The generated

images were used to extract topologically equivalent pore networks using the maximal

ball algorithm developed by Dong and Blunt [41]. The network extraction from the

stochastic images allowed generating a pore network with a high porosity, a large span

of pore size distribution, and more realistic connectivity between pores compared to

a random cubic network. The pore networks were generated with structural inputs

from Toray 060 and E-TEK carbon cloth materials. They computed permeabilities

under the dry and wet conditions, and the dry permeabilities from the two networks

showed good agreement with experimental data. The relative permeability curves

were, however, not compared to experimental data or any other literature.

Subsequently, Gostick [42] developed a 3D irregular pore network model using

Voronoi and Delaunay tessellations to achieve topological equivalence to Toray 090.

Base points were distributed in the model domain, and Delaunay cells were created

by selecting three points. Centroids of each Delaunay cell were connected creating

the Voronoi tessellation. The Delaunay tessellation represents the pore space and the
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Voronoi tessellation represents the solid fiber structure. To account for the anisotropy

of fibrous GDL materials, the base points were scaled prior to performing the tessella-

tions. Tranter et al. [26] studied the effect of compression using artificial Voronoi and

Delaunay networks. The network was generated to achieve microstructural equiva-

lence to Toray 120. Their simulation results for the dry transport properties showed

good agreement to experimental single phase transport data. The effect of com-

pression was to reduce effective transport, especially in the in-plane direction. The

model proved it possible to deform the networks to analyze the effect of compression

using PNM. For the relative transport properties, both research showed the air rela-

tive diffusivity and permeability decay exponentially according to the power relation,

(1 − s)λ, with 2 ≤ λ ≤ 4. The water relative permeability found to fit a log normal

expression similar to that presented by Hwang and Weber [2]. The relative transport

properties were, however, not compared to another simulations or experimental data.

Another more realistic way of generating pore networks is extracting them from

images obtained from µCT images. Gostick [43] developed a network extraction

algorithm from 3D microstructure images. The pore regions of the image were first

segmented using the watershed segmentation algorithm and the segmented regions

were then used to separate the pore network. Pore sizes were determined from the

maximum sphere sizes that can fit in pore spaces. Connectivity between pores wase

defined by the pore spaces having shared facets. Throat sizes were determined from

the maximum circle sizes fit in the facets. They compared the simulation results of

Berea sandstone to the network extracted from the maximal ball algorithm by Dong

and Blunt [41] and their permeability results showed great agreement with each other.

Furthermore, they extracted a network from tomography images for Toray 120A and

computed the dry permeability. The permeability values were within acceptable range

to their experimental data.

Image-based pore network extraction enabled the use of pore network modeling

for a variety of different materials. Since then many authors have employed the net-

work extraction method in PEMFC and PEWE studies. Fazeli et al. [27], using an

extracted network from synchrotron based X-ray images, investigated the effect of

compression on liquid water transport and oxygen transport resistance, under dry

and wet conditions of Toray 090 and SGL 25BC at each compression state. Invasion

percolation simulations were performed for the water saturation on the corresponding

network of each sample. They found that Toray 090 under 10% compression showed

the lowest average saturation and wet transport resistance, whereas saturation was

the least at its uncompressed state in SGL 25BC. Lee et al. [44] developed a model

for stochastic reconstruction for sintered titanium powder PTL based on the infor-
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mation from µCT images. They used a material density map of the binary images

to determine the position of spherical particles. The particles were used as seeding

points, and simulated the surface morphology to achieve the irregular morphology of

the sintered Ti by filling in the regions surrounding the Ti particles. Pore networks

were extracted from the stochastic Ti models with three different mean pore diameter

cases and PNM was used to examine the impact of the PTL microstructure on the

transport properties [28]. They tested varying inlet conditions for oxygen gas perco-

lation through displaced liquid water in the domain, and found that a small coverage

of the inlet face led to high gas saturations, which affect the cell performance. They

also reported larger pore and throat diameters exhibits enhanced water permeation.

Despite the amount of research on GDL analysis using PNM extracted from µCT

images, a critical gap in literature is the lack of articles that have studied the accuracy

of the method by direct comparison of the predicted results to experimental data and

direct numerical simulations of µCT images. In this work, the network extraction

algorithm developed by Gostick [43] was used to simulate non-wetting phase intrusion

and to compute transport properties under the dry and wet conditions.

1.3.1.2 Direct Numerical Simulation

Analysis of pore-scale phenomena has gained popularity over the past decade. The

idea solving the species transport equations directly on a computational mesh gen-

erated from material images enabled to study pore-scale transport and reaction phe-

nomena. This approach is sometimes called a direct numerical simulation (DNS).

Advancements in imaging techniques have enabled visualizing the microstructure of

porous layers with high resolution. Numerical tools have been developed to convert

µCT, nano-CT, and FIBSEM images into a computational mesh and advances in high

performance computing allow now users to perform numerical simulations in domains

with many cells enabling the use of a continuum approach. The mesh from images

can be generated either directly converting the image voxels into hexahedral elements

or using a meshing algorithm to generate tetrahedral elements. The former approach

is used both in CFD, and in lattice Boltzmann methods (LBM). The latter approach

is somtimes used for CFD simulations.

Wang et al. [45] developed a DNS model to achieve a pore-level description of

a PEMFC electrode. They constructed idealized two and three dimensional regu-

lar microstructures to represent the cathode catalyst layer. The governing partial

differential equations were discretized using the commercial CFD software Fluent.

This was the very first implementation of DNS on idealized simple 2D and 3D CL

microstructures. Mukherjee et al. [46] applied the same model to more realistic
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cases. They studied a pore-scale description of species and charge transport through

a bilayer cathode catalyst layer (CL). The CL structures were generated using a

stochastic reconstruction technique. To make the CL structures statistically homo-

geneous and isotropic, the porosity and the two-point auto-correlation functions of

the image where the same as that of a two-dimensional TEM image of an actual CL

sample.

Sabharwal et al. [29] employed FIBSEM image reconstructions and converted

them into computational meshes to predict transport properties and electrochemical

performance of low loading fuel cell electrodes. The FIBSEM data was converted to

a mesh and the gas transport in the CL was studied using Fick’s law, i.e., equation

(2.13). They showed that the gas transport results were affected by the artificial

anisotropy in the microscope images due to FIB slicing. A study of the representative

elementary volume showed that, in CLs, gas transport was not affected up to domain

sizes of less than 200 nm.

Pfrang et al. [47] computed the thermal conductivities of the three commercial

GDLs using µCT images. To compute the thermal conductivity, they employed a

commercial software GeoDict. Their results showed clear anisotropy between the in-

plane and through-plane directions when it comes to a fibrous carbon paper. They

did not distinguish PTFE from carbon fibres because the simple thresholding method

used to extract the solid phase could not separate them.

Rosén et al. [48] reported saturation dependent gas transport properties in GDL

using µCT images. They computed gas transport properties, i.e. permeability and

diffusivity, using lattice Boltzmann and finite difference methods. A synchrotron

imaging was used to obtain real-time water saturation images. They found that the

saturation in the GDL domain was not homogeneous during the cell operation and

water was likely to reside in the larger pores. They computed relative gas permeability

and diffusivity in the saturation range of 0.1–0.4. The results were shown to follow

power law relationships in the form of (1− s)λ with λ of 3 for the permeability, and

λ of 2 for the diffusivity.

Garcia-Salaberri et al. [31, 49] studied effective transport properties of dry and

wet cases. The GDL images were obtained from a synchrotron imaging technique.

They also tried to estimate the minimum domain size, i.e., representative elementary

volume, of fibrous GDLs, that can provide repeatable results. The governing equa-

tions were solved by means of the lattice Boltzmann method. To obtain the saturated

GDL images, water was invaded into the GDL sample from the bottom face through

a PTFE pipe, while air was allowed to be discharged through the top face. In-plane

and through-plane relative diffusivity showed following a power law of (1− s)λ with
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λ equal to 2 in the IP case, and in the range of 2 to 4 in the TP case in agreement

with Rosén et al. [48]. Moosavi et al. [33] employed the same water injecting and

image scanning methods, used by Garcia-Salaberri et al. [31], to obtain the saturated

GDL images. Instead of using LBM, they utilized a finite volume method (FVM)

with tetrahedral mesh elements to investigate the transport properties based on both

dry and wet µCT of fibrous GDLs. Their relative transport properties were in good

agreement with previous numerical [31, 48] and experimental results [2].

The above researches show that using direct imaging methods to obtain real images

of porous media provides sufficient quality to characterize the microstructure of porous

media. Computing transport properties with a mesh generated from the real structure

images also provides reliable results for both dry and wet conditions.

In order to study transport in partially-wetted samples, understanding the water

distribution in the sample is critical. Several research studies performed water in-

trusion experiments in a synchrotron and imaged the water distribution at varying

saturation levels in the porous media. This technique provides an excellent option

to study liquid water transport. However, the accessibility of the device is limited

and scanning various saturation levels using direct imaging is time consuming. To

circumvent this endeavour, the full morphology algorithm has been recently used to

predict the water distribution in partially saturated PTLs [30, 50–54].

The full morphology (FM) method, also known as a morphological image opening

(MIO), takes a dry binary image of a porous media and uses a structural element to

apply the image opening technique. A distinct advantage of FM over PNM is the

direct use of tomography images without geometric abstraction. The image opening

fills up a sections of the image denoted as pore region with a structural element,

usually a sphere. The pore space occupied by the structural elements represents the

region saturated by water and the region unoccupied by the elements represents the

fraction of dry phase which is air. The water saturated sections can be analyzed by

grouping them as a bunch of connected clusters.

Schulz et al. [55] employed FM approach for modelling two-phase behaviour in the

gas diffusion medium. They applied morphological opening to determine where the

structural element can fit within the pore space. The radius of the structural element

was changed based on corresponding capillary pressure. Their model predicted a cap-

illary pressure-saturation curve in good agreement with experimental data; however,

their model would not account for the actual GDLs with multiple contact angles.

To compare the intrusion simulations between PNM and FM, Agaesse et al. [53]

performed two-phase simulations using PNM and FM in a 3D GDL microstructure

obtained from µCT reconstruction. They compared the simulated water saturation
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results to the experimental µCT reconstructions of partially saturated GDLs at dif-

ferent capillary pressures. They found that both approaches predicted well the exper-

imental liquid water intrusion curves. They computed the effective diffusivity and the

effective electrical conductivity using DNS and PNM [56]. They studied two different

types of GDL and two compression levels. They compared the effective transport

properties obtained from DNS, PNM extracted networks, and PNM structured net-

work (cubic) to experimental data. The DNS results showed the best accuracy, and

the structured network cases showed the largest deviations. However, they did not

perform relative transport simulations.

Gostick [42] applied both the morphological image opening (MIO) and PNM per-

colation algorithms to the estimation of capillary pressure-saturation curves. Instead

of using dilation and erosion, distance transforms were used for a cluster labelling of

invaded regions. They outlined two limitations of the MIO algorithm: a) coalescence

of menisci is not accounted for, and b) the intruding water front is limited to spherical

shape, thereby implicitly assuming a contact angle of 180◦. They performed mercury

and the liquid water intrusions on the artificially generated images, and the intrusion

cumulative curves between PNM and MIO were nearly identical. Tranter et al. [26]

also showed very similar intrusion results between PNM and MIO. They also showed

that the intrusion curves shifted when the sample images were compressed, and the

MIO result showed better agreement with the experimental curve than the PNM re-

sult. However, neither of them performed transport simulations with the saturated

images obtained from the MIO technique.

Sabharwal et al. [30] applied FM to investigate the liquid water intrusion in dry

GDL and compared them to the actual saturation images. A comparison of the

water distributions at similar saturation showed good agreement between µCT and

FM results. A major difference, however, was the appearance of smaller and discrete

liquid water clusters compared to the larger water clusters in the µCT reconstructions.

A comparison of dry and wet relative diffusivity obtained from both µCT and FM

images showed great agreement to each other in both the in-plane and through-plane

directions. All those studies show that the FM approach provides a good prediction of

a non-wetting phase intrusion in the PEMFC and PEWE porous media with sufficient

accuracy. However, they did not perform the permeability simulations.

The major gap observed was that several authors have employed either PNM

or DNS to predict transport properties of porous media in PEMFC and PEWE.

Few literature were found using both approaches, and compared the results to each

other and to the experimental data. In this thesis, the FM model is used to generate

virtual saturation images of liquid water at desired saturation levels and the transport

15



properties are computed using a finite element based DNS model. Both the PNM and

the DNS approaches are used to study the difference of the two numerical approaches

in the PEMFC and PEWE porous media microstructure modelling.

1.3.2 Experimental characterization

Porosity and pore size distribution are the two most common parameters used to

characterize a porous media. The estimation of these parameters can be achieved

both numerically and experimentally. Direct imaging followed by image analysis

techniques, such as image segmentation and filtration, have been used widely for

numerical characterization of porous media. A widely used experimental method for

estimating the PSD is a mercury intrusion porosimetry (MIP). A brief explanation

of the techniques used in this thesis is given in this section.

1.3.2.1 Imaging

Tomographic imaging techniques have been applied for analyzing fuel cell porous me-

dia by visualizing the microstructure of the media. In particular, micro and nanoscale

X-ray computed tomography (µCT and nano-CT), and focused ion beam-scanning

electron microscopy (FIBSEM) have been used for visualizing the micro- and nano-

structure of porous materials.

X-ray computed tomography offers both micro and nanoscale visualization and

it is non-destructive. For these reasons, this method is one of the most widely used

techniques. The computed tomography works by taking many 2D radiographs of

a sample while the sample is rotated 180◦ or 360◦. From these raw images, a 3D

image stack can be reconstructed, which allows characterizing microstructure of the

porous media. µCT can achieve voxel resolution of around 1-5 µ m which enable the

distinction of the smallest size pores in fibrous PTLs without MPL. µCT has been

used for visualizing single and dual layer PTLs [32, 57–59]. The achievable voxel

resolutions of nano-CT (nCT) is about 50 nm [60]. nCT has been used for imaging

nanoscale porous media, such as catalyst layers (CLs) and micro porous layer [60–62].

Additionally, µCT has been used to obtain tomography images of partially saturated

PTLs [31, 63, 64].

FIBSEM uses an ion beam to slice the sample and an electron beam to image the

exposed sample. For this reason, this is a destructive imaging technique. However, the

resolution it can achieve is about 2 nm/pixel which is sufficient to capture nanoscale

pores of CLs [13, 65–70]. However, the resolution in the slicing direction is 10-20 nm,

which can lead to loss of information in the same direction [69].
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There are two methods commonly used to visualize water behaviour in an operat-

ing PEM fuel cell: neutron imaging [13, 16, 71, 72], and synchrotron X-ray imaging

[31, 57, 73, 74]. In neutron imaging, the different decay of the neutron beam intensity

through the sample and water is used to identify the regions with liquid water. The

neutron beam has a high sensitivity to molecules with low atomic numbers but low

sensitivity to metals. This characteristics allow capturing the amount of liquid water

in the cell. The spatial resolution of the neutron imaging is about 10 µm [75].

Synchrotron X-ray imaging is capable of resolving the liquid water distribution in

the PTL with a temporal resolution less than a few seconds. The spatial resolution of

the synchrotron imaging is about 1 µm. The X-ray beam interacts with the sample as

it is transmitted. The attenuated intensity of the X-ray beam at each location depends

on the material and the thickness. Since the X-ray beam is highly attenuated when

travelling across high atomic number materials, the metal parts have to be replaced

for accurate imaging of water distribution. Manke et al. [76] visualized the eruptive

water emergence of liquid water into the channel from the GDL. Haußmann et al.

[73] investigated water transport in GDL and showed that cracks in the micro porous

layer can serve as water transport pathways to the channel. Chenvalier et al. [72]

tested the precision and accuracy of liquid water measurements in operating PEM

fuel cells. They proved that the accuracy of the synchrotron X-ray radiography can

be impacted by the noise level of the CCD camera.

In this thesis, µCT is used to obtain tomography images of the PTL materials.

The choice of µCT is based on the characteristic pore size of the materials used in

this thesis. In-situ experiment to analyze the water distribution of the material could

be used to further validate the material results. However, such experiments require

access to synchrotron facilities and are challenging and time consuming. Therefor,

they are not within the scope of this thesis.

1.3.2.2 Mercury Intrusion Porosimetry

Mercury intrusion porosimetry (MIP) is an analytical method for the determination

of the cumulative intrusion pore volume of porous media. Mercury is forced into

the void part of the material by increasing its pressure and the mercury intrusion

is recorded at each liquid pressure. The relation between the applied pressure and

amount of intruded mercury is used to determine total pore volume and pore size

distribution (PSD). To obtain PSD, some assumptions are made: a) contact angle

between mercury and the surface solid is constant and the surface tension of the work-

ing fluid is known. b) the shape of the pores are assumed cylindrical for estimating

the pore radius based on the invasion pressure.
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One of the main advantages of mercury is that it is non-wetting to almost all

materials. Using mercury as the working fluid is beneficial to obtain the overall PSD

of the media. However, differentiating between hydrophobic and hydrophilic networks

is not possible since mercury is highly non-wetting. The capillary pressure curves

using MIP will be used to assess the capillary pressure curves obtained numerically.

1.3.2.3 Transport Property Estimation

Mass transport in fuel cells and electrolyzers is a key process because poor mass

transport leads to significant performance losses. Mass transport occurs mainly by

convection and diffusion. Convection refers to the transport of a species by bulk

motion of a fluid under the action of a mechanical force. Diffusion refers to the

transport of a species due to a gradient in concentration.

1.3.2.3.1 Diffusivity Many experimental studies have been carried out on vari-

ous PTL samples to measure the effective diffusivity. LaManna et al. [77] studied the

effect of MPL, GDL thickness and PTFE in through-plane direction for three different

types of GDLs. They found that the effective diffusion coefficient decreased linearly

with increasing PTFE while the introduction of an MPL reduced the coefficient by

26 - 38%. Thickness had no effect on single layer GDLs but lower thickness resulted

in low diffusion coefficients for MPL coated GDLs.

Hwang et al. [2] applied an electrochemical limiting-current method to measure

the effective diffusivity in the through-plane direction for uncompressed, dry and

wet samples. They found that the porosity is the critical factor that controls the

effective diffusivity and increasing loading reduces the porosity and the available

diffusion pathway. The PTFE treated materials showed better gas diffusion because

the hydrophobic PTFE pathways.

Unsworth et al. [78] investigated effective diffusion coefficients and the effect of

thickness and microstructure of Toray and SolviCore GDLs using the closed-tube

method. They used a Loschmidt cell which is an experimental apparatus using the

closed-tube method. They found that diffusibility (effective diffusivity normalized by

the bulk diffusivity) varied with thickness. They compared the diffusivility of the

Toray GDLs (Toray 060, and 120), which have a uniform microstructure but different

thickness. The difference of the diffusibility between two samples were 8%. They

then proposed a modified correlation that relates diffusibility to porosity for carbon

paper GDLs with less than 10%-wt. of PTFE.

Mangal et al. [79] used a diffusion bridge to measure the through-plane diffusivity

of Toray gas diffusion layers. Two plates with a gas channel were assembled together
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and the PTL was placed between the two plates. Compressed oxygen and nitrogen

gases were sent through each side of the gas channel and both gases were controlled

by a mass flow controller for uniform flow rate. A differential pressure controller

was used to control the static pressure difference between the gas channels. A back

pressure controller was connected to the nitrogen channel and used to control the

static pressure of the system. They tested same PTLs with different PTFE loading

and found that the diffusivity of the PTLs were decreasing with increasing PTFE

loading.

Rashpov et al. [80] measured in-plane effective diffusion coefficients of Toray, SGL,

and Freudenberg GDLs as a function of compression. They found the presence of

carbonaceous binder have significant impact on the effective diffusivity. Furthermore,

compression of the porous samples led to more tortuosity. Especially, samples with

high PTFE contents showed becoming more tortuous when they were compressed

than the samples with low PTFE.

Xu [81] used a diffusion bridge for measuring in-plane diffusivity. Various PTL

and CL samples were tested with different compression levels. The diffusion bridge

setup used by Mangal et al. [79] was enhanced to achieve a better accuracy. They

found that the GDL materials with less carbon matrix and large porosity showed the

highest diffusibility, i.e., SGL 29BA and Freudenberg H2315. Additionally, when the

results were compared with the theoretical models, the error increased with a lower

porosity and a higher compression level. They proposed that the Knudsen effect

should be considered at a high compression level.

In this thesis, the experimental dry gas diffusivities in the through-plane and in-

plane directions measured using the diffusion bridge setup proposed by Mangal et al.

[79] and Xu [81] are compared to the values obtained by numerical simulations.

1.3.2.3.2 Permeability Gostick et al.[82] measured the gas permeability of sev-

eral common PTLs in three perpendicular directions and compared them with the

analytical models . The data were well described by the Carman-Kozeny model as a

function of porosity and Carmen-Kozeny constants were determined for each mate-

rial. Additionally, they compared the data to the Tomadakis-Sotirchos (TS) model

and found to agree well. Since the TS model requires no fitting parameters, it was

appropriate for predicting anisotropic materials.

Koido et al. [83] measured the relative gas permeability of Toray 060 material with

5% PTFE contents using steady-state method. A GDL test piece was sandwiched

between similar GDLs. The GDL at the inlet was set to ensure homogeneous distri-

bution of water within the GDL test piece and the outlet GDL was for minimizing the
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effect of the outflow boundary. The measured gas permeabilities showed decreasing

permeability with increasing saturation. They also computed relative permeabilities

with computational modeling. The experiments and the modeling showed similar

decreasing trends for gas relative permeability.

Hussaini et al. [84] experimentally measured absolute permeability and air-water

relative permeability for fuel cell GDL materials such as Toray carbon paper (060, 090,

120) and E-Tek carbon cloth. They found that the carbon paper materials showed

18% higher in-plane absolute permeability than the through-plane permeability. They

suggested that measuring the in-plane permeability showed much less uncertainty

than in the through-plane direction.

Mangal et al. [79] tested through-plane permeability of Toray GDLs using the

same diffusion bridge. The permeability of Toray samples was found to be the range

of 1.13× 10−11− 0.35× 10−11 m2. They compared the experimental data to Carman-

Kozeny equation and the prediction of permeability showed high accuracy for low

PTFE content samples but discrepancies occurred at high PTFE samples.

Xu [81] measured in-plane permeability of various GDLs and compared the ex-

perimental results to the Carman-Kozeny model and found that the SGL-BA series

materials showed increasing of error with increasing volume fraction in matrix. They

concluded that the reliability of the Carman-Kozeny model dependent on the maxi-

mum pore diameter and the amount of carbon matrix.

In this thesis, experimental dry gas permeabilities of GDL, PTL, and CL samples

were used to validate modelling predictions. The same diffusion bridge mentioned

in Section 1.3.2.3.1 was used to measure the gas permeability of each sample with a

variation, which a single gas is forced to pass through the PTL samples.

1.4 Objectives

The objectives of this thesis is to study the validity of PNM and DNS approaches to

estimate transport properties based on µCT images. Based on the literature review

in these areas, the following research gaps are identified:

• Two popular modelling approaches, i.e., PNM and DNS, have been used in

many studies. However, none of these studies have employed both of these

methods to estimate transport properties of GDLs, electrolyzer PTL and CL

samples.

• Many studies have used pore size distributions (PSDs) for characterizing the

microstructure. Several modelling studies have used PSDs to validate their
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microstructure models, but only few of those studies compared the numerical

PSDs with the experimental PSDs.

• There have been many studies about predicting transport properties of fuel cell

GDL materials. However, analyzing transport properties of PTLs for proton

exchange water electrolyzer (PEWE), such as Titanium powder based material,

has not been well described either experimentally or computationally.

Based on the aforementioned gaps, the objectives of this thesis are:

• Create tomography images of morphologically different porous media using

µCT.

• Simulate liquid water and mercury intrusion in porous media to compare sim-

ulation results from PNM and DNS.

• Use tomography images to predict dry permeability and diffusivity of the porous

media with the two numerical approaches and evaluate them by comparing to

experimental properties.

• Estimate relative transport properties and compare the results between the

PNM and DNS approaches.
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Chapter 2

Methodology

As discussed in Chapter 1, one of the goals of this thesis is to use numerical simulation

to estimate transport properties of PEMFC and PEWE porous media from X-ray CT

tomography images. This chapter describes the theory and algorithms used for image

acquisition, analysis, and statistical functions. The PNM and DNS methods used to

simulate gas and water transport, as well as liquid injection, are also described.

2.1 Imaging

Many different methods have been used for visualizing the microstructure of porous

media. X-ray micro computed tomography (µCT) is a non-destructive imaging tech-

nique that is widely used to characterize PEMFCs gas diffusion layers. µCT is a

powerful method to investigate structures in the 1 µm to 25 µm range. Another

popular methods for visualizing the nanoscale structures of porous media, such as

fuel cell catalyst layers [32, 69], are focused ion beam-scanning electron microscopy

(FIBSEM) and nano-CT. In this work, µCT was selected for image acquisition as the

focus of this work was analyzing the microstructure of GDLs and PTLs.

Figure 2.1 shows a flow chart of the image processing procedure followed to gen-

erate a binarized image for µCT data. As described before, µCT is commonly used

to obtain three dimensional image volumes with microstructural information of the

sample. This is done through stacking of many two dimensional radiographs taken

at different angles and performing reconstruction using a back projection algorithm

[85] to generate a three dimensional sample stack. Reconstruction of the raw im-

ages generates a set of cross sectional images from the radiographs known as the raw

reconstruction stack. The three dimensional stack contains microstructural informa-

tion as a function of the X-ray absorption coefficient of the material at each location.

The raw reconstruction stack is then aligned and cropped based on a selected re-
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Figure 2.1 – Schematic of the image processing steps for µCT data.

gion of interest (ROI). Alignment is required to place each tomography image at the

same position. The reconstruction stack is then filtered and binarized to segment the

grayscale images into binary pore and solid regions. The following sections describe

each image acquisition and processing steps, in detail.

2.1.1 Image acquisition

Obtaining a three dimensional image using µCT requires combining 2D radiographs

acquired at a specific angle range. That means the sample is rotated in small steps in

a range of either 180◦ or 360◦. µCT imaging is based on the attenuation difference of

X-rays depending on the elements of the sample. The resulting scanned image shows

the contrast between the phases of the material. The X-ray attenuation is governed

by:

I = I0e
−µt (2.1)

where I is the intensity of the X-rays after passing through the thickness t, I0 is the

incident X-ray intensity, and µ is the linear attenuation coefficient of the material.

The detected X-ray intensity, I, is a measure of the attenuation coefficient based on

the sample position.

Image scanning was performed using a Bruker SkyScan1172 micro CT located

at the Centennial Centre for Interdisciplinary Science (CCIS), University of Alberta.

The sample should be centred and orthogonal to the sample rotation plate to get

accurate 2D tomograph results of the sample. Furthermore, the sample should be

attached onto the rotation plate which is held to the rotation stage. In the case of

PTL samples, they are too thin to be placed perpendicular to the sample rotation

plate. For this reason, a sample holder is required to place the sample in an orthogonal

manner. Two stainless steel sample clips are used for the sample holder to hold the
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(a)

(b)

Figure 2.2 – (a) Internal view of Bruker SkyScan 1172. (b) Sample holder used to
hold the sample on the rotation stage.

sample vertically. Figure 2.2 shows an internal view of the µCT equipment and the

sample holder design.

As can be seen in Figure 2.3, magnification of the sample depends on the position

of the sample. The sample has the greatest magnification when it is placed close to

the x-ray source. The resolution of a CT scanner is represented as the voxel size

which can be determined by the magnification (M) and the distance between pixels.

The magnification is determined as follows [86]:

M =
A+B

A
(2.2)

where A is the distance from the x-ray source to the sample, and B is the distance

from the sample to the detector. The maximum magnification can be achieved by

positioning the sample as close to the detector as necessary to fit the projection within

the field of view of the detector. In order to separate solid from pore space achieving

good contrast between phases is of paramount importance. There are three major
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Figure 2.3 – Schematic setup of µCT showing objects in three different positions

parameters required to be optimized to achieve optimal contrast between phases: i)

X-ray energy, ii) voxel size, and iii) exposure time.

The X-ray energy determines the transmission rate of the X-rays through the

sample, and as a result it determines the contrast of the resulting images. Too

high energy would result in images that are entirely white, while too little energy

would not allow any X-rays to transmit across the material. The source voltage,

which controls the energy intensity, has therefore a significant impact on the final

result depending on the material. The optimal source voltage highly depends on the

material composition of the sample. A material with low atomic number, such as

carbon fiber paper, requires low X-ray energy to achieve high contrast because those

materials attenuate less X-rays than high atomic number material [87]. In this work,

for the carbon fiber material, a 29 kV source voltage was used since the density and

thickness of the carbon paper are small. On the other hand, a source voltage of 90

kV was used for imaging Ti material as Ti has a higher atomic number than carbon

[88].

The voxel size refers to the length of each voxel which determines the size of

reconstructed 3D data. SkyScan 1172 provides maximum magnification of 1 µm, but

a small voxel size leads to longer acquisition times. Scanning with low resolution

relative to the size of the structure of interest can cause an underestimation of the

density owing to an overestimation of object thickness [86]. The ratio of voxels to the
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Table 2.1 – µCT operational parameters

Parameter Ti SGL 39BA
Source voltage (kV) 90 29
Current (µA) 112 175
Rotation step(◦) 0.2 0.2
Random movement 10 10
Averaging 3 3
Resolution (µm) 1.79 1.79
Duration 6 h 5 h
Exposure (ms) 5301 3534
Filtration Al 0.5 mm –

object size should be higher for accurate morphologic measurements. The exposure

time is determined automatically by the software based on selected X-ray energy,

voxel size, and the parameters mentioned in Table 2.1. The exposure time refers to

the time to record one radiograph.

In Table 2.1, the parameters used for µCT scan are specified. Averaging option

is the number of images used to average the shadow projection. A higher number for

frame averaging will increase the signal to noise ratio. Random movement sets the

number of pixels for random synchronous movement of acquisition area. This can

be activated to reduce ring-artifacts produced from local irregularities of sensitivity

of the sensor. Based on these parameters, the total duration can be determined as

follows [89]:

T = N × (P + (E × A)) (2.3)

where T is total duration, N is the number of radiographic images, P is a pausing

parameter, E is the exposure time, and A is the averaging parameter. The pausing

parameter, P , can be used to remove afterimage effects. Residual information from

the previous image could appear on the next image when the scanning is too fast.

Additionally, filtration can be added when objects are dense. Filters reduce beam

hardening artifacts by absorbing low energy X-ray. The filter is placed between the

X-ray source and the sample. Frequently used filters are 0.1 to 2 mm of copper and

0.5 to 1.5 mm of tin, combinations of both, and aluminum [87]. Beam hardening

is the most common CT artifact, which appears when the X-ray beam encounters

differences in absorption from different angles and along different paths through the

object [87].
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2.1.2 Image reconstruction

After all 2D radiographs are obtained, a set of grey-scale cross sectional images of the

material can be reconstructed to create a 3D stack. This was done with the NRecon

software (Bruker corp.). The algorithm used for the reconstruction is the Feldkamp

filtered back-projection algorithm implemented in the NRecon software [85].

When the radiographs are transformed to a 3D stack, they often contain noise

which may be attributed to the scanning steps. There could be artifacts in each 2D

reconstructed image, caused by variations in the sensitivity of the detector, which

could be an afterimage. These sort of artifacts are usually removed by applying a

flat-field correction technique which removes the effect of pixel-to-pixel sensitivity

variation across the array. Other commonly occurring artifacts are ring artifacts and

beam hardening artifacts. Ring artifacts are caused by a miscalibration or defective

detector elements, which results in rings centered on the center of rotation of the

2D tomography images. To reduce ring artifacts, ring artifact reduction is used.

If the cause of the artifact is the miscalibration, it can be reduced by rescanning

the object after a calibration. If it is due to a defective detector, the ring artifact

reduction function in NRecon mitigates the artifact using filtering methods [86]. Beam

hardening causes the edges of an object to appear brighter than the center, even if

the material is the same throughout. This artifact occurs when penetrated X-rays are

insufficient. The method to reduce this artifact is called beam hardening correction.

The reconstruction software NRecon provides methods for reducing both artifacts.

However, there could still be remaining noise in the reconstructed images. More

detail discussion about the CT artifacts can be found in reference [90, 91].

2.1.3 Filtering and binarization

Due to the remaining noise, further noise reduction is required. In order to remove

noise from the reconstructed set of µCT images, a bilateral filter is applied on the

images [92]. The filter smooths images while preserving edges. The filter replaces

the intensity of each pixel with an average intensity of nearby pixels. This leads the

pixels in the same phase to have similar intensities as shown in Figure 2.4. It can be

seen that the filtered image shown in Figure 2.4b has less noise than Figure 2.4a.

The filtered images can then be binarized. Image binarization is the process of

taking a grayscale CT image and converting it to black and white. When it comes

to the pore scale PTL modeling, the binarization is crucial since it determines the

porosity and microstructure. The reconstructed set of images were segmented to

binary form using the FIJI/ImageJ software packages [93]. Image segmentation can
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(a)

(b)

Figure 2.4 – µCT image at different preprocessing stages, a) raw reconstructed image
aligned and cropped, b) image after applying 3D bilateral filter.

be done using either thresholding algorithms provided by FIJI or manually selecting a

pixel intensity that divides two phases into the black and white regions based on the

grayscale intensity histogram. In this work, the conventional thresholding algorithms

implemented in FIJI were tested. Finally, Otsu’s and Sauvola’s algorithms are used

for the fibrous samples and Ti, respectively. These algorithms are chosen since they

were able to generate binary images with similar porosity to experimental data.

For Ti samples, a Sauvola algorithm was applied for segmenting filtered images

[94]. Sauvola’s method computes a local threshold for each pixel individually taking

into account image intensities in the local neighbourhood of the pixels. The threshold,

t(x, y, z), is computed using the mean, m(x, y, z), and standard deviation, s(x, y, z),

of the pixel intensities in a selected window:

t(x, y, z) = m(x, y, z)

[
1 + k

(
s(x, y, z)

R
− 1

)]
(2.4)

where R is the maximum value of the standard deviation (R = 128 for a grayscale

image), and k is a parameter which takes positive values in the range [0, 1]. Param-

eter k and window size need to be selected by trial and error based on the visual

comparison. Selected parameters in this work were 20 for window size and 0.5 for the

k value.

For fibrous carbon samples, a global thresholding Otsu algorithm was applied [95].

The algorithm presumes that the image has a bi-modal intensity histogram of two

phases. Otsu’s thresholding method iterates through all potential threshold values to
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determine the best threshold value that divides the foreground and background. The

threshold value can be defined as a weighted sum of variances of the two phases:

σ2
w(t) = w0(t)σ2

0(t) + w1(t)σ2
1(t) (2.5)

where weights w0 and w1 are the probabilities of two phases with respect to the

entire pixels, t is a selected threshold value, and σ0 and σ1 are variances of the two

phases. As the goal of this algorithm is to find the threshold value that minimizes

the variances between two phases, the threshold value with the least σ2
w is selected.

After the binarization, some imperfections could happen due to the fact that the

grayscale intensities of carbon matrix are relatively in lower range than those of the

carbon fibers. This can cause that some portion of carbon matrix are not segmented

as solid. In order to fill the imperfections, a 3D morphological closing and opening

with a spherical structural element of 3 voxels was applied to the 39BA samples.

The initially generated 3D image stack is aligned and cropped to 1500 × 1500 ×
δt voxels (where δt is the thickness of each image stack).

2.1.4 Stochastic reconstructions

Stochastic reconstructions provide an alternative to direct imaging techniques to gen-

erate porous media. Using this method porous media with different morphology can

easily be generated in order to understand the effect of varying morphological factors

such as fiber diameter. Furthermore, for nanoscale media, such as CL, stochastic

reconstructions can be a good option, since reconstructions using FIBSEM and nano-

CT are time consuming and might contain artifacts.

In this work, stochastic reconstructions for CL samples were generated using a

random overlapping sphere based algorithm. The algorithm has been implemented in

pyFCST by Sabharwal et al. [96]. More details about the algorithm can be found in

reference [54]. The algorithm inserts spheres in an empty domain for the solid phase.

The size of spheres can be defined as a constant radius value or a distribution. To

pack spheres in the domain, a random location is selected to be used as a center. As

the spheres are placed in the domain, they might overlap one another. The amount

of overlapping can be controlled by adjusting penetration parameter, ψ. Spheres keep

being placed in the domain until the desired porosity is achieved.

2.1.5 Statistical functions

Statistical functions provide information about the probabilities of geometric features.

These functions can be used for characterizing heterogeneous porous media because
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each statistical function provides information about different aspects of the porous

media. There have been many studies proposing a number of statistical functions

for porous media [97–100]. In this thesis, the two-point correlation and chord length

functions are used. The two-point correlation function provides the probability of

finding any two points at a certain distance, r, in the same phase, i, which may be

used to estimate the phase volume fraction and interfacial area. The chord length

function is the probability of finding a chord of given size in one phase, which may be

used to estimate the size distribution of the phase. A chord is the line segment between

immediate inter-phase boundaries. This section describes the two-point correlation

function and chord length function which are used for porous media characterization

in this work.

2.1.5.1 Two-point correlation function

The two-point correlation function, S
(j)
2 (−→r1 ,

−→r2), is the probability of finding any two

points, −→r1 and −→r2 , in one phase j [98]. This can be calculated by counting the number

of times that both ends of a line of length r fall in the same phase. This number is

then normalized by the total number of translations to obtain the probability. The

two-point correlation function can be defined as [98]:

S
(j)
2 (−→r1 ,

−→r2) = P{I(j)(−→r1) = 1 and I(j)(−→r2) = 1} (2.6)

where−→r1 and−→r2 are two arbitrary points in the phase j, and the characteristic function

I(j)(−→r ) is defined as:

I(j)(−→r ) =

{
1, when −→r is in phase j.

0, otherwise.
(2.7)

Figure 2.5 provides an illustrative example for obtaining two-point correlations.

A porous media can be assumed as statistically homogeneous, if the averaged

value of probability functions are similar in all subsamples of the physical space [100]

and if its probability distribution functions are the same for a transverse shift [99].

For statistically homogeneous media, the two-point correlation function depends

only on the distance between two points, r = ||−→r1 − −→r2 ||, which can be expressed as

S
(j)
2 (r). This leads to following relations [98]:

S
(j)
2 (0) = φj and lim

r→∞
S

(j)
2 (r) = φ2

j (2.8)

where φj is the volume fraction of phases j.

Once the correlation function of one phase is known, the other functions which

are found in different phases can be obtained easily since they are linearly dependent.
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Figure 2.5 – A schematic diagram of two-point correlation function estimation.

This feature of the two-point correlation function can lead to an estimation of inter-

facial area between two phases. The specific surface area of a two-phase medium can

be obtained as a function of its two-point correlation function as follows [100]:

sj = −β d
dr
S

(j)
2 (r)

∣∣∣∣
r=0

(2.9)

where sj is the specific inter-phase area, and β is 4 for 2D and 6 for 3D. The specific

surface area can be used to estimate permeability of the porous media by using the

Kozeny-Carman relations.

2.1.5.2 Chord length function

The chord length function, Cj(r)dr, is defined as the probability of finding a chord

of length between r and r + dr in a phase j [101]. Chords are defined as the lengths

between intersections of line with the two-phase interface [97, 101]. In order to cal-

culate the chord length function, all the chords in a given direction are recorded and

binned by their frequency. The chord length function is then obtained by normalizing

computed chords by the total number of chords. Figure 2.6 shows an illustration of

void chords in a two-phase image.

The mean chord length (λD) is the first moment of the chord length function

defined as [101]:

λD =

∫ ∞
0

rC(r)dr (2.10)
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Figure 2.6 – A schematic diagram of chord length function estimation.

The chord length function contains information of clusters in the image so that it

includes the implication of pore size distribution function.

The statistical functions such as two-point correlation and chord length functions

are implemented by Pant [100] in the Porous Media Stochastic Reconstruction Tool-

box (PMSRT) and it is used for this thesis.

2.2 Pore network modeling

Pore network modeling (PNM) is a popular approach for simulating transport in

porous media. PNM solves 1D analytical solutions of the relevant transport equa-

tions on a simplified pore space. The pore space is described as a network of pores

and throats and some idealized geometries, such as spherical pores and cylindrical

throats, are assigned for each pore and throat. Generating pore networks and run-

ning transport simulations are done using OpenPNM: A Pore Network Modeling

Package [36].

A pore network can be either structured or unstructured. The structured model is

a network constructed based on a rigid lattice such as a cubic lattice. Each nodal point

is assigned a pore location, and the connection between two nodal points becomes a

throat. Pore and throat sizes can be assigned randomly or using statistical distribu-
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tion functions. Representing realistic PTLs with structured networks is challenging

since it is difficult to express same feature of the PTL microstructure, such as entan-

gled fibers, within a cubic network. In unstructured networks, nodal point locations

and pore connections are not predetermined. The location can be assigned with any

of the following methods: a) randomly distributed nodal points [102], b) using specific

tessellation functions, such as Voronoi and Dellaunai tessellations [42], c) analyzing

images obtained from either stochastic reconstructions, or d) µCT images using a

watershed partitioning algorithm [43]. This technique is termed network extraction.

In this work, unstructured networks obtained using the watershed partitioning net-

work extraction algorithm in reference [43] on either stochastic reconstructions or

µCT images.

Once the network is extracted, the pore size distribution can be obtained directly,

since pore and throat information was determined during the network extraction.

Based on the size information, any simulation can be performed in PNM, such as

mercury and liquid water intrusion, and dry and wet transport simulations. This

section provides the theoretical background of all these simulations in PNM.

2.2.1 Network extraction

Pore network extraction can be used to create a pore network based on a stack

of segmented µCT images. The network extraction is done using the open source

porous media image analysis toolkit, PoreSpy [103]. The source code for the network

extraction is shown in Appendix A. The algorithm uses a watershed segmentation to

determine the pore region based on the distance from the solid region. The SNOW

algorithm proceeds in the following steps [43]:

1. Obtain Euclidean distance map of the pore space

2. Apply a Gaussian filter on the distance map to reduce the occurrence of plateaus

3. Apply a maximum filter with a spherical structuring element of radius R on the

smoothed distance map to identify peaks in the image

4. Trim saddle points and merge nearby peaks

5. Obtain separate pore space using a watershed segmentation

6. Obtain pore network information based on local peaks of segmented regions as

nodal points.

33



The Euclidean distance between each pore voxel and the nearest solid voxel is calcu-

lated using the scipy image module. As the distance map of the pore region contains

many spurious peaks (local maxima), applying the Gaussian filter with sigma of 0.4

removes some of the erroneous peaks, which is shown in Figure 2.7b. The maximum

filter with a structural element of R = 4 is then applied. The maximum filter replaces

the value of each voxel with the lightest voxel found within its neighbours, defined by

structural element [43]. The maximum filtered image is shown in Figure 2.7c. The

intensity values in the distance map and the maximum filtered image are compared

to each other. This enables identifying peaks of the image by storing the same values

between the maximum filtered distance map and the previously smoothed distance

map. The selected peaks are shown in Figure 2.7d.

Once a set of peaks are found, peaks on saddles points are removed. They were

identified as peaks erroneously in the previous step, but they need to be removed since

they are connected to voxels with higher values. Removal of these peaks eliminates

thin regions between solids [43].

The next step is merging peaks placed nearby, which would occur in large pore

spaces. At the point when the sets of peaks are discovered that are nearer to one

another than the solid, the one more far from the solid is kept. This behaviour will

avoid generating two overlapping pores in one large pore space which will change the

size distribution of the network [43].

The peaks arranged from the above steps are used as markers for the watershed

segmentation and nodal points to create spherical pores of local pore spaces. A marker

based watershed algorithm is used to segment the pore region as shown in Figure 2.7e.

The extracted network includes pore location, connectivity, and pore and throat size

information. The size data include two different cases, which are inscribed diameter

and equivalent diameter. The inscribed diameter is calculated from the diameter

of the sphere fitted in a segmented void region whereas the equivalent diameter is

computed from the sphere with the same volume as the segmented local pore region.

The information obtained from network extraction can be directly used for calculating

pore and throat size distributions and running transport simulations in the open

source pore network modeling framework, OpenPNM [36, 104]. More details about

the algorithm can be found in reference [43].

2.2.2 Intrusion

To study multiphase flow in porous media using PNM, a quasi-static intrusion algo-

rithm for the pore network is required. When referring to transport of a non-wetting

34



(a) (b)

(c) (d)

(e)

Figure 2.7 – Network extraction steps using a watershed segmentation in PNM: a)
A binary image to be extracted, b) Euclidean distance map of the pore
space, c) The distance map applied by a maximum filter d) Peaks ob-
tained by comparing the distance map and the maximum filtered image,
and e) a result image of the watershed segmentation.
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fluid in porous media, intrusion is defined as the displacement of the wetting phase

by invasion of the non-wetting phase. There are two algorithms addressing the inva-

sion of non-wetting phase into porous media implemented in OpenPNM: a) Ordinary

percolation (OP), and b) Invasion percolation (IP). The capillary pressure of each

pore is calculated based on the throat diameters using the Washburn equation:

pc = −2γcosθ

rp
(2.11)

where γ is the surface tension of the liquid, θ is the contact angle between the solid

surface and the liquid, and rp is the pore radius. The capillary pressure pc is defined

as :

pc = pl − pg (2.12)

where pl and pg are liquid and gas pressure. It is assumed that pg is zero. In this

section, the two intrusion algorithms are explained, which are used for simulating

mercury and water intrusion to obtain microstructural information and results of two

phase simulation.

2.2.2.1 Ordinary percolation

For mercury intrusion porosimetry (MIP), the ordinary percolation (OP) algorithm is

used. Appendix A provides an example of the MIP code. All six faces of the network

are assigned as boundaries. The OP algorithm proceeds as follows:

1. An initial low capillary pressure is selected.

2. All throats which can be invaded at the specified pressure are identified.

3. The selected throats are marked as ‘Invaded’.

4. Any throats set as ‘Invaded’ in previous step, but if it is not connected to the

injection face or pathway of invaded pores and throats, are set back to a ‘Not

invaded’.

5. The algorithm proceeds until the entire domain is saturated.

The OP algorithm scans all clusters that can be invaded based on the initial capil-

lary pressure. The capillary pressure is increased stepwise and all throats and pores

connected to the source of invading fluid are invaded at the same time. In terms

of computational efficiency, the calculation of this algorithm is performed based on

clusters of connected pores, which requires less computational cost. For liquid water

intrusion, the same algorithm may be used but the bottom face of the network is

assigned as a boundary.
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2.2.2.2 Invasion percolation

Water intrusion is also described using the invasion percolation (IP) algorithm pre-

sented by Wilkinson and Willemsen [105] and implemented in OpenPNM. The bottom

face (z = 0) is used as a boundary for water intrusion. The IP algorithm proceeds

by scanning throats connected to the boundary face and invading them with the low-

est capillary pressure. Appendix B provides codes for the IP simulation. The IP

algorithm works as follows:

1. Inlet pores are selected from the boundary face

2. Throats connected to the inlet pores are added to a list and sorted based on

entry capillary pressure.

3. A throat with the lowest capillary pressure and the pore connected to it are

invaded.

4. The throats connected to the newly invaded pore are added to the list for the

next step.

5. Invasion continues until the domain is fully occupied by the invading phase.

As mentioned above, the intrusion algorithm represents drainage of a wetting

phase invaded by a non-wetting phase. Resistance is based on the capillary pressure

of each throat, which means the invading process starts with an initial dry network

and sequentially invades accessible throats of least resistance. In the general case of

invasion percolation, when a throat is invaded, the pores connected with the throat

are spontaneously filled, since pores are larger than throats. Invasion percolation

progresses one element at a time by tracking a list of non-invaded throats connected

to the invaded pores. This enables an invasion sequence to be determined, which

allows a more precise prediction of liquid water break through at each saturation

point.

The major difference of IP from OP is that IP progresses by invading one pore

at a time. Figure 2.8 shows difference between OP and IP. Both algorithms show

nearly identical saturated portions when Sat.= 0.17 and Sat.= 0.77. The major

difference is shown when Sat.= 0.46, which appears to be the first breakthrough

saturation. The OP algorithm could not capture this saturation point, since there is

no point between Sat.= 0.17 to 0.77. For this reason, even though IP requires more

computational resources, it is more appropriate to evaluate the breakthrough point

of the simulation.
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Figure 2.8 – Illustrative comparison of the invasion percolation (IP) and ordinary
percolation (OP) algorithms where gray represents the intruding phase.
The result from IP is able to capture the first breakthrough point at
Sat.= 0.46, whereas that from OP show sudden jump from Sat.= 0.17 to
0.77.

In this work, MIP simulation is done only using the OP algorithm, whereas the

liquid water intrusion is simulated using both OP and IP. For both intrusion cases,

the process is assumed to be quasi-static and capillary driven.

2.2.3 Diffusion

In order to estimate diffusivity, the Fick’s law module in OpenPNM is used. Fick’s

first law of diffusion states that:

Na = ctDa∇xa (2.13)

where Na is flux of species, ct is the bulk concentration, Da is the molecular diffusivity,

and xa is the mole fraction of species a. This relation is employed to define the

diffusion between pore i and j in a pore network. Equation (2.13) can be discretized

as:

Na,ij =
na,ij
Aij

=
ctDa

lij
(xa,i − xa,j) (2.14)
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where na,ij is the molar flux between pores i and j, and Aij and lij are the cross-

sectional area and length of the pore and throat conduit. The diffusive conductivity,

gij between two neighbouring pores i and j through the connecting throat is defined

as:

gij =
cDAij
lij

(2.15)

The conductivity is used in Fick’s law to define the diffusive transport between pore

i and j:

na,ij = gij(xi − xj) (2.16)

In order to estimate diffusive mass transport in the entire network, a resistance net-

work is constructed where the following material balance is performed at every pore,

i,
n∑
j=1

gij(xi − xj) = 0 (2.17)

where j are all the neighbouring pores, gij is the conductance between pores and

throat conduit, and x is the molar fraction at each pore. The net diffusive conduc-

tance, gij, of pore and throat assembly is calculated as:

gij =

(
1

gp,i
+

1

gt,ij
+

1

gp,j

)−1

(2.18)

where gp,i, gp,j and gt,ij represent the conductance of each pore i, pore j and throat

ij, which are defined as:

gp,i =
cDgAp,i
rp,i

gt,ij =
cDgAt,ij
lt,ij

(2.19)

where lt,ij is the length of the throat, rp,i is the radius of the pore, Ap,i and At,ij are

the cross sectional area of pore i and throat ij, c is the bulk concentration, and Dg

is the bulk diffusivity of the gas.

The effective diffusion coefficient can be calculated as from the predicted net flow rate

as:

Deff
a =

N out
a L

cA(xina − xouta )
(2.20)

where N out
a is the flow rate of species a at the outlet surface, L is the length of the

porous media, and A is the total cross sectional area of the entire porous media.

Appendix A provides sample code to perform diffusion simulations.
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2.2.4 Permeation

To estimate permeability, the OpenPNM fluid flow module is used. The convec-

tive transport in each pore can be approximated by Hagen-Poiseuille equation in a

cylindrical tube:

Q =
πr4

8µl
∆p (2.21)

where ∆p is the pressure difference between the two ends, l is the length of pipe,

µ is the dynamic viscosity, Q is the volumetric flow rate, and r is the pipe radius.

Employing this relation to pores i and j, equation (2.21) can be written as:

q =
πr4

ij(pi − pj)
8µlij

(2.22)

where pi and pj are the pressures in pores i and j, and lij and rij are the length and

radius of the throat connecting pores i and j. For simplicity, the pressure loss in each

half-pore is neglected [36]. The flow rate given by equation (2.22) can be generalized

as:

q = gij(pi − pj) (2.23)

where gij is the conduit’s hydraulic conductance. Equation (2.23) may be used to

construct a resistance network where the material balance at each pore i can be

defined as:
n∑
j=1

gij(pj − pi) = 0 (2.24)

where pi and pj are the pressures of each pore. The hydraulic conductance, gij, of the

pores and throat assembly can be determined using equation (2.18). The conductance

of each pore and throat is defined as:

gp,i =
πr4

p,i

8µlp,i

gt,ij =
πr4

t,ij

8µlt,ij

(2.25)

where rp,i and rt,ij are the radius of pore i and throat ij.

Once the net flow rate, Q, is obtained by summing the flow rate of outlet pores,

the permeability of the network can be found from Darcy’s law:

K =
QµL

A(Pin − Pout)
(2.26)

where K is the absolute permeability, and Pin and Pout are inlet and outlet boundary

pressures.

k =
ṁµl

ρA∆p
(2.27)
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Figure 2.9 – Example 3 x 2 network for building coefficient matrix. Each pore is
numbered from 0 to 5.

2.2.5 Solution methodology

Diffusion and permeation can be calculated using the same resistance network based

conservation rule, i.e., equations (2.17) and (2.24). In this section, an analytical

example is shown to illustrate how the resistance network result in a linear system of

equation that can be solved using a linear algebra solvers. To illustrate this case, a

simple 3 × 2 pore network, see Figure 2.9, is employed to describe the methodology

solving pressure driven convective flow in the network with inlet and outlet pressure

boundary conditions.

The 3 × 2 pore network, as shown in Figure 2.9, contains 6 pores and 7 throats.

The pores on left and right sides have known pressures as a boundary condition.

To analyze the flow between pores, the relation shown in equation (2.24), which

is analogous to Kirchhoff’s junction rule, is utilized. In Kirchhoff’s current law, the

algebraic sum of all the currents entering and leaving a junction must be equal to

zero. Applying the equivalent material balance rule to the pore network in Figure 2.9

yields:

Pore 0: g01(p0 − p1) + g02(p0 − p2) = 0

Pore 1: g10(p1 − p0) + g13(p1 − p3) = 0

Pore 2: g20(p2 − p0) + g23(p2 − p3) + g24(p2 − p4) = 0

Pore 3: g31(p3 − p1) + g32(p3 − p2) + g35(p3 − p5) = 0

Pore 4: g42(p4 − p2) + g45(p4 − p5) = 0

Pore 5: g54(p5 − p4) + g53(p5 − p3) = 0

(2.28)
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By rearranging equation (2.28) with respect to the pressure, the following equations

are obtained:

Pore 0: p0(g01 + g02) + p1(−g01) + p2(−g02) = 0

Pore 1: p0(−g10) + p1(g10 + g13) + p3(−g13) = 0

Pore 2: p0(−g20) + p2(g20 + g23 + g24) + p3(−g23) + p4(−g24) = 0

Pore 3: p1(−g31) + p2(−g32) + p3(g31 + g32 + g35) + p5(−g35) = 0

Pore 4: p2(−g42) + p4(g42 + g45) + p5(−g45) = 0

Pore 5: p3(−g53) + p4(−g54) + p5(g54 + g53) = 0

(2.29)

In matrix form, the equations above can be written as:
A −g01 −g02 0 0 0
−g10 B 0 −g13 0 0
−g20 0 C −g23 −g24 0

0 −g31 −g32 D 0 −g35

0 0 −g42 0 E −g45

0 0 0 −g53 −g54 F




p0

p1

p2

p3

p4

p5

 =


0
0
0
0
0
0

 (2.30)

where
A = g01 + g02,

B = g10 + g13,

C = g20 + g23 + g24,

D = g31 + g32 + g35,

E = g42 + g45,

F = g54 + g53

Next, the boundary conditions must be applied. The pressure boundary conditions

given in Figure 2.9 are:

p0 = p1 = pin

p4 = p5 = pout

Therefore, the system of equation reduces to:[
C −g23,
−g32 D

] [
p2,
p3

]
=

[
g20pin + g24pout,
g31pin + g35pout

]
(2.31)

The reduced system is solved by OpenPNM using the scipy direct solvers within

python. This methodology was used to solve steady state transport with no reaction.
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2.2.6 Multiphase transport

Multiphase transport is simulated by solving the governing equations in each phase

separately. To do this, the conductance values, i.e., hydraulic or diffusive conductance,

of pores and throats occupied by the liquid phase are severely reduced. This is done

by multiplying a factor of 10−6 the original conductance values. In this way, the gas

phase cannot pass through the pores and throats when saturated by the liquid phase.

The gas transport will occur through the non-saturated pores only.

Likewise, the liquid phase transport properties can be determined based on the

invasion steps made by the percolation algorithm. When computing transport prop-

erties for the liquid phase at a specific saturation level, the conductance values of

saturated pores and throats are used for transport simulations, and non-saturated

regions are restricted.

In this way relative transport characteristics for the gas and liquid phases can

be determined by running transport simulations successively, while the percolation

algorithm is running.

2.3 Direct numerical simulation

This section describes the continuum based numerical models in OpenFCST [96] used

to simulate transport in porous media. In DNS, the transport equations are solved

directly on a computational mesh generated based on the microstructure images.

Before running simulations an algorithm is used to enhance the mesh by adding pore

size data in each cell. This data will also be used to perform the intrusion simulation

based on the capillary pressure of each pore. To calculate pore data and virtual

intrusion in the porous media, two algorithms, proposed by Sabharwal et al. [29, 30]

and implemented in OpenFCST, are used, i.e., a sphere fitting algorithm and a full

morphology (FM) algorithm.

2.3.1 Pore size distribution

Computing a pore size distribution (PSD) of the porous media is the first step of the

pore scale modelling since the pore data is required to obtain the enhanced compu-

tational mesh and to run intrusion simulations using the FM algorithm. Pore size

data can be obtained using a sphere fitting algorithm. Computing the PSD of a given

microstructure requires the Euclidean distance transform at each pore voxel. The

Euclidean distance transform finds the nearest point of the solid phase for each pore

voxel and stores the distance between the pore and nearest solid voxel. The Euclidean
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Figure 2.10 – Illustrative explanation for computing the pore size distribution.

distance value at each pore voxel represents the maximum sphere radius, which can be

inscribed within the pore region as the centre of the sphere. The algorithm computes

pore radius and feasible locations by the following steps:

1. A Euclidean distance transform (D) is computed using the scipy distance−
transform edt function.

2. A distance value in the distance map is selected as a radius value.

3. The algorithm then finds all locations where D > radius.

4. Another Euclidean distance transform map (N) is computed on the neighbour-

hood to the selected locations in previous step.

5. Find locations in the distance map N with radius smaller than that in distance

map D and add these locations in pore distribution matrix P with the radius

value.

6. Repeat 2–5 until the radius reaches the maximum value in the distance trans-

form matrix (D).

Figure 2.10 shows how the sphere fitting algorithm assigns a radius value to each

pixel. Based on the Euclidean distance map, D, the algorithm tries to find the

feasible locations where voxels with the selected radius (r) can fit. Once the feasible

locations are identified, the value of radius are assigned to the voxels within the N .
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For example, when r is
√

2, values in D larger than
√

2 become 0, and the algorithm

computes another distance map, N , based on 0 points. In the distance map, N ,

all values smaller than
√

2 are converted to
√

2, and the converted values are used

for radius of each pore voxel. When r is
√

10, the same procedures generate the N

distance map in the bottom line of Figure 2.10. As the three values at the left-top

side of N are larger than
√

10, they are not converted to
√

10, and remain at
√

2

as assigned in the previous step. For this reason, every pore voxel has a pore size

information which can be either the centre of a sphere or part of a larger sphere.

2.3.2 Meshing

Unlike the PNM approach which approximates pore space to obtain the pore network,

in direct numerical simulations, the binary image is directly converted to a 3D un-

structured hexahedral VTK mesh. The VTK mesh is generated using a python based

module in OpenFCST developed by Sabharwal et al. [29] that converts each voxel in

the image to a mesh element, thereby a hexahedral geometry mesh is generated using

the TVTK python library. The VTK conversion can be done with multiple material

IDs at the same resolution and additional information can be passed to every cell in

the form of “field data”. In this way the computed pore sizes can be saved in each

cell of the mesh.

A stack of binarized µCT images is used to generate a 3D mesh which can then

be used in OpenFCST for transport simulations. To reduce the unwanted isolated

region in the void area, the percolating void phase is first identified. The cluster

identification proposed by Hoshen and Kopelman [106] and the percolating network

extraction algorithm proposed by Pant [100] are used. First, a cluster label is as-

signed to each pixel of the target phase. Isolated regions are found at this stage and

individually labeled. Then, all labels assigned to the isolated regions are replaced

by equivalent minimum labels, which is the label of solid region in this case. The

extracted percolating clusters are used for mesh generation. Appendix D provides

sample code for the mesh generation.

2.3.2.1 Image coarsening

Given the size of the original image stacks, which are 600 × 600 × thickness, δt

voxels, it is computationally expensive to run Stokes flow simulations. This is because

velocities in all three dimensions, as well as the pressure, must be resolved. To

circumvent this issue, the original domain is cropped and coarsened [100]. Each

subsample is firstly cropped to 400 × 400 × δt voxels and the cropped stack is then
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Figure 2.11 – Illustration of the boundary based water injection.

coarsened to 200 × 200 × δt voxels. The in-plane length, 400 voxels, is selected to

adequately account for the in-plane pore sizes while coarsening the stack is done to

reduce the computational cost required for the simulation.

Image coarsening can be performed using the Porous Media Stochastic Reconstruc-

tion Tool (PMSRT) using a nearest neighbor interpolation method. The algorithm for

resizing a binary image developed and implemented by Pant is discussed in reference

[100]. Appendix E provides sample code for PMSRT running.

2.3.3 Intrusion

The cluster based full morphology (FM) method proposed and implemented in Open-

FCST by Sabharwal is used for intrusion simulations [30]. The algorithm is used for

both water and mercury intrusion. The algorithm provides three different intrusion

modes. The first two modes are for water intrusion termed boundary mode and nucle-

ation mode. The boundary mode injects water from the bottom boundary face while

the nucleation mode intrudes water within the domain. The third and last mode is

mercury intrusion which injects mercury from all external 6 faces.

Figure 2.11 represents an illustration of water intrusion using the boundary mode.

The bottom face is selected as a boundary face and water is intruded if the liquid

pressure at the boundary is higher than the critical intrusion pressure for the pore.

The critical intrusion pressure is computed using the Washburn equation given by

equation (2.12). The boundary mode is used for water intrusion into PTLs and MIP

for CLs.

The nucleation mode is used to introduce water within the CL porous media.

In the CL of PEMFC, water molecules are produced as the product of the oxygen

reduction reaction within the layer. Therefore, the nucleation mode may be more

appropriate to represent the water intrusion in the CL.

Running intrusion simulations requires several inputs to specify the characteristics
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of the material and the liquid. The input parameters are the contact angle, the

intrusion mode, and the number of steps for computing the pore size distribution.

Based on the inputs, the FM algorithm proceeds with the following steps:

1. Calculate the pore size distribution of the sample based on the algorithm de-

scribed in Section 2.3.1.

2. The critical intrusion pressure of each pore is calculated based on the pore

radius obtained from PSD and the contact angle.

3. Based on the capillary pressure of each pore, all pore clusters with lower critical

intrusion pressure than the liquid pressure are scanned.

4. If the selected pores are connected to the existing liquid filled pores, the clusters

are set to 1, which means intruded, and stored as an array of liquid filled

(intruded) pores.

These steps are continued until all pores in the microstructure are intruded. More

details about the algorithm can be found in reference [30]. Figure 2.12 shows various

stages of liquid water intrusion in a PTL image sample using the boundary mode. It

can be seen that the bottom face is selected as a boundary face and liquid water is

intruded based on the capillary pressure of the bottom pore spaces.

2.3.4 Diffusion

Mass transport is governed by Fick’s second law. In the absence of a chemical reaction,

the mass conservation for oxygen is:

∇ · (Dact∇xa) = 0 (2.32)

where Da is the diffusion coefficient, ctot is the total gas concentration, and xO2 is the

molar fraction of species a. The boundary conditions are specified as follows:

xa = xina on Γ1,

xa = xouta on Γ2,

(Dact∇xa) · n = 0 everywhere else,

(2.33)

where Γ1 is the inlet plane and Γ2 is the outlet plane opposite to the inlet plane, and

xina and xouta are Dirichlet boundary conditions at the inlet and outlet faces.

The governing equation is solved using a finite element solver developed in our

laboratory, open source fuel cell simulation toolbox, OpenFCST [96]. In order to

47



Figure 2.12 – Sections of a sample PTL image at various stages of intrusion algorithm.
Black represents pore space, white solid, and grey liquid water.
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solve the partial differential equation, the equation is first discretized using the finite

element method, the boundary conditions are applied, and the linear system of alge-

braic equations is solved using an iterative solver, Conjugate gradient (CG). Once the

solution has been obtained, the flux of the species is calculated at post-processing at

the boundary of the domain using Fick’s first law given in equation (2.13). By inte-

grating the flux over the outlet surface, the net flow rate of species can be obtained.

The effective diffusion coefficient can then be calculated using equation (2.20). In

this work, the simulations were performed at a constant temperature 353 K and a

constant pressure of 1 atm.

2.3.4.1 Solution methodology

The governing equation in Section 2.3.4 is solved with the boundary conditions given

in equations (2.33). The governing equation is discretized using the Bubnov-Galerkin

method. The governing equation is multiplied by scalar test function, v, and inte-

grated over the domain, Ω, to obtain the weak form.∫
Ω

v[∇ · (A∇u)]dΩ = 0 (2.34)

where A is a transport coefficient, i.e. air diffusivity, and u is the solution function.

The LHS of equation (2.34) can be rearranged using tensor algebra as:

−
∫

Ω

v[∇ · (A∇u)]dΩ +

∫
Ω

∇ · (vA∇u)dΩ = 0 (2.35)

By applying the divergence theorem, the LHS can be simplified to:

−
∫

Ω

v[∇ · (A∇u)]dΩ +

∫
Γ

(vA∇u) · ndΓ = 0 (2.36)

where Γ represents the boundaries and n is the normal direction to the boundary.

Next, a finite element approximation is used such that v and u are approximated by

u =
∑

φiui and v =
∑

φjvj (2.37)

where φi(x, y, z) are first order Lagrange elements. After substituting the approxi-

mation functions, a linear system of algebraic equation is obtained for ui. The linear

system is solved using the Conjugate Gradient (CG) solver. The module for solving

diffusion in a 3D microstructure is developed and implemented by Sabharawal et al.

[29] in OpenFCST.
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2.3.5 Permeation

Fluid flow of very low Reynolds number characteristic of transport in a PTL is gov-

erned by the incompressible Stokes flow equation:

−µ∇ · [(∇u) + (∇u)T ] +∇p = f

∇ · u = 0
(2.38)

where u denotes the velocity of a fluid, p is the pressure, f are external forces, and µ

is the dynamic viscosity. The governing equation is subject to the following Dirichlet

boundary conditions:

p = pin on Γ1

p = 0 on Γ2

u = 0 on Γ2

(2.39)

where pin is the assigned pressure on the inlet face. The governing equation is dis-

cretized with the finite element method and the system is solved using the Conjugate

Gradient (CG) solver in OpenFCST. The effective permeability can be calculated

using equation (2.26) with the net flow rate at the outlet face.
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Chapter 3

Results and Discussion

This chapter describes the analysis of obtained µCT images and transport studies

carried out using the numerical tools described in Chapter 2. The objective of this

study is to understand the difference between the two different approaches for ana-

lyzing 3D microstructure characteristics, and to estimate transport properties, using

µCT images. Section 3.1 presents a discussion of image acquisition results. This sec-

tion explains image binarization results and the assessment of segmentation quality,

as well as microstructure characterization using statistical analysis and intrusion al-

gorithms. Section 3.4 and Section 3.5 estimate dry transport properties of three PTL

samples and a CL stochastic reconstruction using PNM and DNS methods. The pre-

dicted results are compared to experimentally measured results. Section 3.6 presents

relative transport properties of partially wetted samples.

3.1 Image analysis

Three PTL samples, i.e., Toray 120C, SGL 39BA, and sintered Ti, were imaged using

µCT. These materials are selected due to their microstructural differences. Fibrous

carbon papers are widely used for PEMFC GDLs and PEWE cathode PTLs. Toray

120C has carbon fibers with 10% PTFE, whereas SGL 39BA has carbon fibers with

5% PTFE, and a porous carbon matrix between the fibers to hold them together.

Due to the difference in internal structures, they have different porosity and pore size

distribution. Sintered Ti has been studied widely as PTL for the PEWE anode side.

Since the sintered Ti is manufactured based on the Ti powder, its microstructure

is completely different from the fibrous materials mentioned above, and has a lower

porosity than the fibrous materials.

The µCT image reconstruction of dry and wet Toray 120C GDL with 10% PTFE

content were previously published in ref. [30, 107]. The same Toray 120C dry image

51



reconstruction was used in this study. Other samples were scanned at the UofA

and reconstructed using the method described in Chapter 2. The originally prepared

reconstruction sample size was 1500 × 1500 × thickness, δt. The raw images obtained

from µCT were segmented using either the Otsu or Sauvola algorithms. The binarized

original stacks were then cropped into three subsamples. Each of the three subsamples

has dimensions of 600 × 600 × δt.

In this section, microstructural characteristics of three subsamples were analyzed

using statistical functions. Pore size distributions (PSDs) obtained from PNM and

FM were compared. The cumulative volume fraction of each sample was predicted us-

ing mercury intrusion porosimetry (MIP) algorithms from both PNM and FM meth-

ods. Other PSDs were obtained by taking the derivative of the mercury intrusion

curves (MIP-PSD). Finally, PSDs and MIP-PSDs were compared to experimental

results.

3.1.1 Image segmentation

The original samples, with a full domain size of 1500 × 1500 × δt voxels, were first

segmented. Figure 3.1 shows the reconstructed image of each step of the segmentation

process for Toray 120C µCT sample. Figure 3.1a shows a raw sectional image of Toray

120C. The raw image shows clearly divided solid and void phases. Figure 3.1b shows

the image after the application of the bilateral filter. Applying the bilateral filter

on the raw images significantly decreases the noise in both void and solid regions

and makes the grayscale intensity of the solid region more uniform. In this case, the

quality of the filtered image in Figure 3.1b is similar to that of the raw image, but the

solid part of the filtered image has more regularity than the raw image. Figure 3.1c

shows the image after binarization. Otsu algorithm was applied to segment the stack

shown in Figure 3.1c. The segmentation quality can be checked by overlaying the

edges of the segmented images onto the filtered images. The edge overlaying image is

shown in Figure 3.1d. The figure shows that the solid and void phases are segmented

correctly. The porosity can be computed by:

ε =
Vvoid
Vbulk

=
Nvoid

Nbulk

(3.1)

where Vvoid and Vbulk are the volume of void region and the entire domain respectively,

and, Nvoid and Nbulk are the number of voxels in the void region and the entire domain

of the binarized image. The thickness of the stack can be determined by the number

of pixels in the z-direction. The segmented Toray 120C stack has a porosity of 66%

and a thickness of 280 µm in agreement with the porosity and thickness in reference
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(a)

(b)

(c)

(d)

(e) (f)

Figure 3.1 – Sections of a Toray 120C image at various stages of the image processing:
a) raw reconstructed image aligned and cropped, b) after applying 3D
bilateral filter, c) segmented using the Otsu’s algorithm, d) overlay result,
e) raw image in 3D view, and f) segmented image in 3D view.

[30], i.e., 65.9% and 282 µm (Note that the values are not the same as reported by

manufacturer due to cropped surface.). The thickness and the porosity of the Toray

120C are slightly smaller than the measured values. This is because the surface region

of the original sample was cropped. The core region was used in this study because

the same thickness samples were employed in literature [30]. The same thickness and

porosity were used in order to be able to compare to previous studies in literature for

validation purposes. The pixel resolution of the reconstruction stack was 1.33 µm in
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(a)

(b)

(c)

(d)

(e) (f)

Figure 3.2 – Sections of a SGL 39BA image at various stages of the image processing,
a) raw reconstructed image aligned and cropped, b) after applying 3D
bilateral filter, c) segmented using the Otsu’s algorithm, d) overlay result,
e) raw image in 3D view, and f) segmented image in 3D view.

all directions.

The raw µCT scan for 39BA is shown in Figure 3.2a. As shown in the figure, the

raw image contains a substantial amount of noise in the pore region. This should be

smoothed as some of this noise has similar gray levels to some of the solid region,

which could correspond to the solid part when segmenting the image. The use of the

bilateral filter successfully smoothed the noise as shown in Figure 3.2b, even though

some bright pixels remain in the pore region after filtering, and their gray levels

are lower than the solid pixels. Next, the Otsu algorithm was used to segment the

sample. The result is shown in Figure 3.2c. The experimentally measured porosity of

the 39BA is higher than the porosity computed from the CT images, i.e., 89 % vs 80

%, respectively. The reason for the discrepancy is that pores smaller than the voxel

resolution exist in the carbon matrix. More specifically, the highest resolution of the
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Figure 3.3 – Experimental MIP result for SGL 39BA, showing a pressure, 410 kPa,
corresponding to the voxel resolution, 1.79 µm.

Skyscan 1172 is 1 µm, while the pores in the carbon matrix are nanoscale. Hence,

fibers, carbon matrix and PTFE are treated as a single solid phase, and the pores

smaller than the voxel resolution are neglected. Based on the experimental mercury

intrusion data, shown in Figure 3.3, the pressure corresponding to the voxel resolution

is around 410 kPa. The volume fraction below the voxel resolution is about 9%, which

proves the estimated CT porosity of 80% is in agreement with our observations.

A µCT image of the Ti sample is shown in Figure 3.4a. The image contains more

noise in the void and solid regions than the Toray image. The solid region has a rough

surface and the void region contains some bright pixels. Those bright pixels might

come from the solid information in following slices, called afterimage effect, which

should be reduced since the following slices already contain this information. The

roughness in one phase could also be noise, which leads to incorrect segmentation

result. This noise can be reduced by filtering the images. The bilateral filtered image

of the sintered Ti is shown in Figure 3.4b. In the filtered image, the solid phase is

smoothed which helps segmentation. As a result, the solid regions have a smoother

surface than the raw image and the background noise is also reduced. The Sauvola

algorithm with parameters of 20 for window size and 0.5 for the k value was used

for segmentation instead of Otsu because the Sauvola algorithm could achieve the

desired porosity. The overlaid result in Figure 3.4d shows very good segmentation

results.

Given that there is no published literature on the Ti sample used in this study,

the thickness was measured from the µCT images, and found to be 292 µm. This

value is in agreement with the values of 288 µm obtained from a mercury intrusion
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(a)

(b)

(c)

(d)

(e) (f)

Figure 3.4 – Sections of a Ti sinter image at various stages of the image processing,
a) raw reconstructed image aligned and cropped, b) after applying 3D
bilateral filter, c) segmented using the Sauvola’s algorithm, d) overlay
result, e) raw image in 3D view, and f) segmented image in 3D view.

Table 3.1 – Comparison of the thickness and porosity of the PTLs.

PTL CT thickness, δt [µm] Measured δt [µm] CT porosity, ε Measured ε Resolution [µm]
Toray 120C 280 362 ± 5.9 [108] 0.66 0.73 [108] 1.33
SGL 39 BA 310 277.8± 7.9 [109], 280 ± 30∗∗∗ 0.80 0.89 ± 0.03∗ 1.79
Ti sinter 292 288∗, 305∗∗ 0.46 0.46 ± 0.02∗ 1.79
∗ Measured by mercury intrusion porosimetry
∗∗ Measured by a micrometer
∗∗∗ Based on manufacturer’s datasheet

experiment and 305 µm measured by a micrometer. The thickness and porosity of

each sample are shown in Table 3.1. Results for the samples scanned in our laboratory

are in excellent agreement.
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Figure 3.5 – 3D reconstruction of the CL reconstruction image. The pore and solid
regions are shown in blue and red, respectively.

3.1.2 Stochastic reconstructions for CL

The overlapping sphere stochastic reconstruction algorithm in OpenFCST was used

to generate multiple CL samples. Sabharwal et al. [54] already studied the mi-

crostructural characteristics of the CL stochastic reconstructions by comparing the

microstructural features with a real CL microstructure obtained from FIBSEM. In

order to make a stochastic reconstruction represent a real material, it is important

to achieve statistical equivalence of the stochastic reconstructions to a real FIBSEM

reconstruction. For this reason, they generated CL stochastic reconstructions with

different particle radii and compared statistical correlations with those of the FIB-

SEM reconstruction. The study concluded that selecting the appropriate particle

size had a critical effect on generating statistically equivalent structures and that

the stochastic reconstructions with a particle radius 40 nm showed best agreement

with the FIBSEM data. As the two-point correlation function and the chord length

function in the x and y directions were proven to be nearly identical to the FIBSEM

results in the reference [54], in this work, the CL stochastic reconstructions generated

with the same conditions mentioned in reference [54] were used.

As discussed in Section 2.1.4, three input parameters were selected for the CL re-

constructions: a sphere particle radius of 40 nm, a porosity of 36%, and free overlap-

ping spheres. Figure 3.5 shows the CL stochastic reconstruction result. The domain

size was 600 × 600 × 600 nm3 with a voxel resolution of 2 nm. The stochastic recon-

struction samples are used for further studies, such as computing PSD and intrusion

simulations.
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3.1.3 Statistical analysis

Figure 3.6 shows the two-point correlation functions of subsamples for each PTL case

in x (in-plane) and z (through-plane) directions. The two-point correlation functions

are equal to the porosity of the sample at a distance of zero and converge to a value

of the porosity squared, ε2, at large distances.

Figure 3.6a and Figure 3.6b show the void phase x and z two-point correlation

functions for three Toray 120C subsamples of size 600 × 600 × 210 voxels. The

three correlation functions are very similar. The porosity of the original stack is

approximately 66% and the individual subsections have porosities that are within

1%.

Figure 3.7 shows the chord length functions of subsamples for each case in x (in-

plane) and z (through-plane) directions. As discussed in Section 2.1.5.2, the chord

length function contains the length information of the clusters in the image. The

statistical functions for the y-direction are not shown here because they have nearly

identical distributions as the x-direction.

Figures 3.7a and 3.7b show the chord length functions of Toray 120C subsamples.

Each of the chord length functions has identical values, which indicates that each

subsample has nearly identical microstructure. Figures 3.7a and 3.7b show that the

chord length function is different in the x and z directions. The chord length function

in the x-direction spans 0 to 200 µm whereas the chord in the z-direction spans a

range of 0 to 100 µm. This highlights the anisotropy of the Toray 120C.

A similar phenomena is seen for the SGL 39BA shown in Figure 3.6c and Figure

3.6d. The fluctuations are significant in the z-direction of the two-point correlation

shown in Figure 3.6d. The fluctuation on the graph represents the fact that the

binary microstructure is not rigorously statistically homogeneous [110]. The fluctu-

ations would be reduced with a larger domain; however, the trends of the two-point

correlation functions are similar for all three subsamples, and it is reasonable to con-

clude that the subsamples have similar morphology.

For the SGL 39BA results, the chord length function in the x-direction has a

non-negligible probability of finding chords of up to 400 µm whereas the probability

becomes nearly zero as the chord lengths reach around 300 µm in the z-direction.

This also indicates the SGL 39BA sample is anisotropic. The chord length functions

of the SGL 39BA subsamples show some probability of finding chords at the longest

distance of the graphs, which are about 1000 µm and 300 µm in the in-plane and

through-plane directions, respectively. This means there are void chords that span

through the size of the image in one direction. This is possible because the top and
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Figure 3.6 – Two-point correlation in the void phase in: a) x and b) z direction for
Toray 120C; c) x and d) z direction for SGL 39BA; e) x and f) z direction
for Ti.

59



0 200 400 600
Distance /um

0.000

0.005

0.010

0.015

0.020

0.025

C
(v

) (
r)

-x
di

re
ct

io
n

stack1
stack2
stack3

(a)

0 100 200 300
Distance /um

0.00

0.01

0.02

0.03

0.04

C
(v

) (
r)

-z
di

re
ct

io
n

stack1
stack2
stack3

(b)

0 200 400 600 800 1000
Distance /um

0.00

0.01

0.02

0.03

C
(v

) (
r)

-x
di

re
ct

io
n

stack1
stack2
stack3

(c)

0 50 100 150 200 250 300
Distance /um

0.00

0.01

0.02

0.03

C
(v

) (
r)

-z
di

re
ct

io
n

stack1
stack2
stack3

(d)

0 100 200 300
Distance /um

0.00

0.02

0.04

0.06

C
(v

) (
r)

-x
di

re
ct

io
n

stack1
stack2
stack3

(e)

0 100 200 300
Distance /um

0.00

0.02

0.04

C
(v

) (
r)

-z
di

re
ct

io
n

stack1
stack2
stack3

(f)

Figure 3.7 – Chord length function in the void phase in: a) x and b) z direction for
Toray 120C; c) x and d) z direction for SGL 39BA; e) x and f) z direction
for Ti.
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Figure 3.8 – Porosity profiles for each PTL sample in the z-direction: a) Toray 120C,
b) SGL 39BA, and c) Ti.

bottom (surface) regions are not cropped and the original image has high porosity,

80 %. Unlike the porosity profile of Toray 120C shown in Figure 3.8a, the porosity of

the 39BA image slices at the top (z=0) and bottom (z=175) regions are higher than

90%, as shown in Figure 3.8b. This explains the images contain mostly void voxels

which become the longest chords.

The void phase x- and z-direction two-point correlation functions for the Ti sub-

samples are nearly identical for each subsamples and in both directions because the

Ti material is a powder based PTL, which has a lower porosity and less heterogeneity

than the fibrous PTLs.

The chord length functions for the Ti samples do not follow the same trend as

the Toray 120C and SGL 39BA as its x- and z-direction chord length functions are

very similar to each other. This is due to the homogeneity of the Ti subsamples.

The main difference between the x- and z-direction is that the maximum probability

value is higher and the probability at values smaller than the maximum is lower in

the x-direction than those in the z-direction. However, it is not as significant as in

the fibrous PTLs.

61



Table 3.2 – Average specific interface area and the mean chord length for each sub-
sample.

Specific interface area (m2/m3 × 10−3) Mean chord length (µm)
Subsample XY YZ ZX Total (x/y/z) Porosity (%)

Toray 120C
1 44.06 24.39 25.06 93.51 50.9 / 49.4 / 26.1 67.9
2 42.96 25.12 24.13 92.20 48.4 / 50.3 / 27.0 66.5
3 44.44 24.71 25.43 94.58 48.5 / 47.2 / 25.4 65.8

SGL 39BA
1 18.13 13.21 14.38 45.72 107.3 / 98.8 / 64.3 80.2
2 17.83 12.77 14.05 44.66 103.9 / 99.8 / 63.9 80.6
3 18.04 13.63 14.25 45.92 111.6 / 101.9 / 65.4 79.8

Ti
1 27.13 31.59 27.55 86.27 26.7 / 30.7 / 27.5 46.2
2 26.25 30.76 26.73 83.74 27.8 / 32.1 / 28.8 46.8
3 26.67 31.20 27.03 84.91 27.2 / 31.5 / 28.2 46.4

As described in Section 2.1.5.1, the slope of the two point correlation function at

r = 0 represents the interface area. Table 3.2 shows the specific interface area of each

material. The specific interface areas are computed separately for each direction and

the total interface area is computed by summing the values in all directions. It is

shown that the specific area of each sample has similar values for all material cases.

Table 3.2 shows the mean chord length for each subsample computed by equation

(2.10). There are clear differences between mean chord length of the fibrous samples

show clear differences in the in-plane and through-plane. This is again an indication

of the anisotropy of the fibrous materials. The deviations between subsamples are not

significant, which proves the sample size selected is statistically meaningful. As the

graphs of Ti showed the least discrepancy between the subsamples, the mean chord

length show the smallest discrepancy. This proves higher statistical homogeneity of

Ti subsamples than the fibrous materials.

3.1.3.1 Pore size distribution

The pore size distribution (PSD) calculated using the sphere fitting algorithm in

OpenFCST and the pore sizes obtained from the network extraction step in PNM are

compared in Figure 3.9. As discussed in Section 2.2.1, the PNM network extraction

returns two different pore sizes, i.e., inscribed diameter and equivalent diameter. The

PSDs from both diameter cases are shown. Since the pore size distribution is a

probability distribution function, the area under each curve is 1.

For the PNM results, the equivalent diameter PSD has a larger pore diameter

range than the inscribed diameter, since it is calculated based on larger sphere sizes

as described in Section 2.2.1. For the fibrous materials, i.e., Toray 120C and SGL

39BA, Figures 3.9a and 3.9b show that the sphere fitting and the inscribed diameter

results from PNM have a similar range of pore sizes and pore size probabilities.
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Figure 3.9 – Comparison of pore size distributions for PTL and CL samples obtained
from PNM and the sphere fitting algorithm. PNM In and PNM Eq rep-
resent inscribed diameter and equivalent diameter respectively. a) Toray
120C, b) SGL 39BA, c) Ti, and d) CL
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Figures 3.9c and 3.9d show that, on the other hand, large discrepancies between

two methods exist for the granular materials, i.e., sintered Ti and CL stochastic

reconstructions. For these cases, the sphere fitting method captured more small and

large pores than the PNM results. During the network extraction steps, the erroneous

peaks which lie on saddles or plateaus of the distance map are removed. Some peaks

that are close to the neighbouring peaks may be removed at this step. This may

truncate some smaller pores in PNM.

As described in Section 2.3.1, the PSD results from the sphere fitting algorithm

are obtained by directly finding locations that fit to a specific radius value on the

distance map. As such, the algorithm assigns pore radius data to all voxels in the

domain. For this reason, there should be small pores between two relatively big pores

to fill the entire domain. This leads to the sphere fitting algorithm returning some

portion of voxels with a radius of one voxel length.

One missing piece of information in PSDs from PNM is throat size data. The

data obtained from the network extraction in PNM contain pore and throat sizes and

the volumes of the pores. If one pore region is made as a result of the watershed

segmentation, the volume of the segmented pore region is assigned only for a pore

volume. The throats connecting to the pore have size data, but the volume of each

throat is zero. As PSDs shown in Figure 3.9 are computed based on differential

volume fractions, results from PNM are not able to incorporate throat sizes.

Figure 3.10 shows the pore sizes assigned to the two CL reconstruction slices using

the sphere fitting algorithm in OpenFCST, and the pore region segmentation results

from the network extraction in Porespy. The first slice was obtained from the y-

direction surface of the domain, i.e., Y is equal to 0, and the second slice was from

the internal domain, i.e., Y is equal to 150 voxels. The sphere fitting shows small pore

regions around the solid (white in the figure), but the network extraction does not

show this feature. Each coloured region in the sphere fitting represents a pore size,

and different colours in the network extraction indicate each segmented pore region.

The segmented pore regions are used to determine pore sizes in the pore network.

The inscribed pore diameters are computed by fitting spheres inside the pore regions,

whereas the equivalent pore diameters are obtained based on spheres having the same

volumes as the pore regions. Three points in the first image of Figure 3.10 are selected

to compare the pore sizes between PNM and FM at the surface of the domain. The

assigned pore radii at the selected points A, B, and C are 43 nm, 63.6 nm, and 14.3

nm in the sphere fitting case, respectively. The pore diameters at the same points in

the network extraction case are 48.8 nm for A, and 56.5 nm for B and C as they are

in the same region. The values are used for radii in the sphere fitting, but they are
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Figure 3.10 – Methods to determine pore sizes in the sphere fitting algorithm and the
network extraction. The sphere fitting algorithm assigns a radius value
to each voxel. The network extraction segments the entire pore region
to separated pore spaces using a watershed algorithm. The different
colours represent different radii in the sphere fitting case. The colours in
the network extraction represent different pore regions. The pore sizes
in PNM are determined by computing a radius that can be inscribed in
a segmented pore region. White represents the solid region. Pore radii
in the sphere fitting case at the selected points A, B, C, D, and E are 80
nm, 43 nm, 63.6 nm, 34.9 nm, and 26.6 nm. Assigned pore diameters
in the network extraction at the selected points are 79.9 nm, 48.8 nm,
56.5 nm, 72 nm, and 53 nm, respectively.
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diameters in the network extraction. For the points from the internal domain, i.e.,

D and F, the radius values are 34.9 nm and 26.6 nm in the sphere fitting case; and

the diameters are 72 nm and 53 nm in the network extraction. This indicates that

computed pore sizes between two algorithms are similar in the internal domain, but

the surface pores in the sphere fitting have larger pore sizes.

All the selected points show that the sphere fitting results contain more pore size

information. For example, the region where C is in PNM becomes one pore with one

pore size, 56.5 nm, but in FM the same region contains pores ranging from 14.3 nm

to 63.6 nm.

In general, the inscribed diameter cases show a better match with the sphere fitting

results than the equivalent diameter cases. Based on the results from PNM, it is more

reasonable to use the inscribed diameter than the equivalent diameter for predicting

PSD. For the granular materials (Ti, CL), the PSD results from the sphere fitting

and PNM show larger discrepancies than those of fibrous materials. As a result, it

appears neither PSD cases in PNM are sufficient to represent PSDs of microstructures.

To account for more pore size data in PNM, the throat size information should be

incorporated into the PSDs obtained from PNM.

3.2 Mercury intrusion porosimetry

To validate the pore sizes assigned by FCST and the network in PNM, mercury

intrusion results obtained numerically are compared to experimental results. The

mercury intrusion simulations can be done using the pore sizes obtained from the

reconstructed images. To obtain the numerical mercury intrusion results using both

PNM and FM, the methods discussed in Sections 2.2.2.1 and 2.3.3 were used, respec-

tively. The cumulative intrusion curve created from PNM is computed based upon

the throat sizes in the PNM extracted network. As such, the intrusion simulations

in PNM should be understood as intruding pores based on the capillary pressures of

the throats connected to the pores.

In the FM algorithm, the intrusion accuracy could vary based on the number

of incremental pressure steps between Pstart and Pend; and the number of steps for

calculating PSD. Since the FM algorithm uses discrete PSD information, the intrusion

simulation is highly dependent on the PSD data. If the number of steps for the PSD

calculation is not sufficient, many voxels would have the same radius value, which

can lead to a big jump in the cumulative intrusion curve. Due to this reason, the

number of steps for computing PSD and saturation are set to 100 to achieve evenly

distributed saturation values.
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Figure 3.11 shows the simulated mercury distributions at various saturation levels

(0.2, 0.4, 0.6, and 0.8) using OpenFCST and OpenPNM for Toray 120C. Partial

saturation images are obtained as discussed in Section 2.3.3. Figures 3.11a and 3.11b

show the mercury saturation of 0.2. Mercury first intrudes the surface pores in both

FM and PNM. As mentioned in Sections 2.2.2 and 2.3.3, mercury intrusion takes

place from all 6 faces. This is clearly shown in both methods. At low pressure, larger

pores connected to the surface are flooded. As pressure increases, smaller pores

connected to either mercury clusters or the surface are flooded, as shown in Figures

3.11c and 3.11d. Finally, at high saturation, Figures 3.11g and 3.11h show that only

the smallest internal pores are not filled with mercury. The two methods show similar

intrusion trends. The marked regions A and B in Figures 3.11c and 3.11d show a

similar growth of intruded area, and point C is newly intruded at the saturation

level of 0.4. However, the intrusion patterns are not identical. For example, point D

in Figure 3.11f is flooded in PNM at saturation of 0.6. The same region is flooded

at saturation of 0.8 in FM. The point D has a radius of 19 µm in both PNM and

FM, which corresponds to a capillary pressure of 37 kPa. At the saturation level of

0.6, corresponding capillary pressure is higher than 50 kPa based on the cumulative

intrusion curves for Toray 120C, shown in Figure 3.12a. This shows that D is flooded

at a higher capillary pressure than that of the corresponding pore size. In FM,

saturation of the point D is even slower than PNM. This is because mercury clusters

connected to D are small pores that require higher capillary pressures to be intruded.

The point E in Figure 3.11h shows non-flooded regions at 0.8 saturation in PNM.

These pores have pore radii ranging from 14.5 µm to 21 µm, which have capillary

pressures between 35 kPa and 50 kPa. As the corresponding capillary pressure at

0.8 saturation is about 65 kPa, the pore volumes in E are going to be a portion of

pressures higher than 65 kPa. The discrepancies observed may increase inaccuracy

of predicting pore sizes. The effect of larger pores concealed by smaller pores due to

their capillary pressures is called shielding effect [111].

Figure 3.12a shows the experimental and numerical mercury cumulative intrusion

curves for Toray 120C. Since experimental MIP data for Toray 120C is not available,

the experimental data for Toray 090 with 10% PTFE content is shown in Figure 3.12a

for reference. Toray 090C has a similar microstructure and mechanical properties

compared to Toray 120C, although it has a lower thickness.

Looking at the cumulative intrusion curves for Toray 120C, the experimental curve

shows a faster intrusion than the simulated cases. As mentioned in Section 3.1.1, the

surface region of the Toray 120C sample is cropped. Since this region with larger pores

has been removed from the image, the simulation curve starts to intrude mercury at
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Figure 3.11 – Mercury distribution in partially saturated Toray 120C with a satura-
tion level of a) 0.2 from FM, b) 0.2 from PNM, c) 0.4 from FM, d) 0.4
from PNM, e) 0.6 from FM, f) 0.6 from PNM, g) 0.8 from FM, and h)
0.8 from PNM.

68



104 105 106

Capillary pressure [Pa]

0.0

0.2

0.4

0.6

0.8

1.0

Sa
tu

ra
ti

on

Toray090
FM
PNM

(a)

104 105 106

Capillary pressure [Pa]

0.0

0.2

0.4

0.6

0.8

1.0

Sa
tu

ra
ti

on

SGL 39BA
FM
PNM

(b)

104 105 106

Capillary pressure [Pa]

0.0

0.2

0.4

0.6

0.8

1.0

S
at
u
ra
ti
o
n

Ti

FM

PNM

(c)

107 108

Capillary pressure [Pa]

0.0

0.2

0.4

0.6

0.8

1.0

Sa
tu

ra
ti

on

Exp.
FM
PNM

(d)

Figure 3.12 – Comparison of numerically predicted mercury intrusion porosimetry re-
sults for a) Toray 120C, b) SGL 39BA, c) Ti, and d) CL reconstruction.
Each sample is compared to the experimental intrusion curve. For the
Toray 120C, the experimental result of Toray 090C is used.
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smaller pore sizes. Therefore, it is likely that if the full domain (surface region + core

region) was used for the simulations, the virtual MIP would show more portions in

the low pressure range. When comparing FM and PNM, the results are similar up

to a saturation of 0.7, then the discrepancy increases. The FM curve shows a slower

intrusion trend than the PNM curve. This is due to the fact that the FM PSD was

able to capture smaller pores, as assumed in Section 3.1.3.1. This trend is in better

agreement with the experimental case.

The mercury distributions in 39BA at various levels of saturation are shown in

Figure 3.13. The main difference between 39BA and Toray 120C distributions is

because of the effect of the surface regions. Unlike the Toray 120C sample, the surface

regions of 39BA are not cropped. Due to this, Figure 3.13a shows that both the top

and bottom surfaces are flooded first in both FM and PNM. The mercury region grows

internally after the surfaces are sufficiently flooded, which means the surface contains

larger pores than the internal part of the material. In fibrous media, cropping the top

and bottom surfaces can remove large pores, and this can lead to lowering transport

properties. Pore region A in Figure 3.13d is not flooded at saturation of 0.2 in PNM.

This region contains three pores with pore radii ranging from 35 µm to 44µm and

they are flooded at pressures above 17 kPa. The same region as A in FM has pore

radii between 32 µm and 51 µm. The larger size pores in A made flooding easier in

FM than PNM. Based on Figure 3.12b, saturation of 0.8 requires 22 kPa in PNM.

The maximum pore radii at points B,C, and D in Figure 3.13h are 27 µm, 35 µm,

and 26 µm, respectively. These pores are all intruded after the capillary pressure of

24 kPa, which is saturation of 0.86.

For the 39BA sample, neither simulation method could adequately capture the

small pores in the carbon matrix (below CT resolution). As a result, the simulated

intrusion curves show excellent agreement up to 0.8 (where all pores are captured), but

faster saturation compared to the experimental MIP data at the respective pressures

which are required to intrude the pores below the voxel size. The voxel resolution

of the image stack is 1.79 µm, and the carbon matrix region is assumed as solid, as

discussed in Section 3.1.1. PNM and FM show very similar results at low saturations.

At high saturations, FM is better able to capture the slow intrusion despite the missing

carbon matrix pores.

For the mercury distributions in the Ti samples, Figures 3.14a and 3.14b show

intrusion results at the saturation level of 0.2 from FM and PNM, respectively. Both

simulation results show similar patterns of intruded area. The intruded regions grow

similarly in both methods as the saturation level increases. The discrepancies at

the saturation of 0.4 between Figures 3.14c and 3.14d are very small. Figures 3.14e
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Figure 3.13 – Mercury distribution in partially saturated 39BA with a saturation level
of a) 0.2 from FM, b) 0.2 from PNM, c) 0.4 from FM, d) 0.4 from PNM,
e) 0.6 from FM, f) 0.6 from PNM, g) 0.8 from FM, and h) 0.8 from PNM.
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and 3.14f show the mercury saturation at 0.6 where the two algorithms also show

similar saturated clusters. The same trends are shown in Figures 3.14g and 3.14h.

This implies that, even though the pore sizes computed from FM and PNM are

not exactly the same, the intrusion algorithms from FM and PNM work similarly

for granular materials. However, as FM has more detail information of pore sizes,

intrusion follows a more realistic pattern, as observed in the cumulative intrusion

curve in Figure 3.12c.

The intrusion curves in Figure 3.12c show better predictions with FM than with

PNM at high capillary pressure (small pore sizes). It can be seen that the FM

intrusion curve follows the experimental results closely above a capillary pressure of

50 kPa. Inter-sample intrusion might be responsible for the discrepancy below 50

kPa. The PNM curve has a similar trend, but the intrusion occurred slightly faster

than the experimental and FM results.

The CL results for partial saturation are shown in Figure 3.15. The saturation im-

ages show similar mercury distributions between FM and PNM. They start intruding

the surface of the material, shown in Figures 3.15a and 3.15b, and then proceed to

the internal regions (see Figures 3.15e and 3.15f). Finally, nearly all the pores in the

cropped part are intruded in FM. In FM at saturation of 0.8, only small pores are left

to be intruded, as shown in Figure 3.15g. A and B in Figure 3.15h show discrepancies

in PNM from FM at saturation of 0.8. The largest pore radii of A and B are 24 nm

and 22 nm, respectively. The fact that these pore regions are not flooded indicates

that throats connected to these pores are constricted. This might be a reason for

the discrepancy in saturated volume fraction at small pore sizes in Figure 3.12d. For

the granular materials, the discrepancies in pore sizes between the surface and the

internal regions are not as large as in the fibrous materials.

The cumulative intrusion curves, shown in Figure 3.12d, are compared to the ex-

perimental MIP data. The numerical intrusion curves were first obtained by intruding

mercury from 6 faces. The CL results show similar trends to the Ti case, in which

the FM result shows slower intrusion than that of PNM due to the higher resolu-

tion of smaller pores. The experimental result is obtained from the CL samples with

porosity of 38.7 ± 6.7%. The simulation results show faster intrusion in general than

the experimental data. The experimental MIP curve starts intruding at 20 MPa and

reaches full saturation at 90 MPa. The simulation results show large discrepancies

compared to the experimental data.

The observed discrepancies might be due to the boundary conditions used for

intrusion. CLs are usually very thin (∼ 5 µm) and cannot be placed in the penetrom-

eter cell without backing substrates. Due to the backing substrates, only one side of
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Figure 3.14 – Mercury distribution in partially saturated Ti with a saturation level of
a) 0.2 from FM, b) 0.2 from PNM, c) 0.4 from FM, d) 0.4 from PNM,
e) 0.6 from FM, f) 0.6 from PNM, g) 0.8 from FM, and h) 0.8 from
PNM.
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Figure 3.15 – Mercury distribution in partially saturated CL with a saturation level
of a) 0.2 from FM, b) 0.2 from PNM, c) 0.4 from FM, d) 0.4 from
PNM, e) 0.6 from FM, f) 0.6 from PNM, g) 0.8 from FM, and h) 0.8
from PNM.
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Figure 3.16 – Comparison of the cumulative intrusion curves for CL from a) FM and
b) PNM. Mercury is intruded from the bottom face.

the CL can be used as an intrusion boundary. To study the effect of the boundary

conditions and assess if they are responsible for the observed discrepancies between

simulations and experiments, the simulations were performed such that only the bot-

tom side boundary can be intruded with mercury. Figure 3.16 shows the simulated

results for the same stochastic reconstruction sample when it is intruded from one

side using FM and PNM. Both methods show slower intrusion than in the previous

case. Intrusion starts at a pressure of 10 MPa until a saturation of 0.2. Then, both

simulation results show very similar intrusion trends from saturations of 0.2 and 0.6,

and the FM result shows smoother saturation after the saturation of 0.6. These sim-

ulation results show closer prediction to the experimental data than the results in

Figure 3.12d. The experimental result still shows slower intrusion than the PNM

simulation, but the intrusion from the bottom face closely predicted the experimental

intrusion curves for CL.

As discussed earlier in this chapter, large pores that are accessed through smaller

pores are incorrectly included to pressures of the smaller pores. When mercury is

intruded from the bottom face, the mercury clusters would have a lower probability of

flooding pores at each capillary pressure. Due to this reason, the simulation cases with

the bottom boundary in Figure 3.16 show lower saturations than the all-face boundary

cases up to 30 MPa. The saturation rate then increases steeply after this pressure.

This proves many pores are assigned to incorrect pressures, which correspond to

incorrect pore sizes.

In all cases of the cumulative intrusion curves, the FM results show smoother

changes when the intrusion curves approach full saturation (s = 1). The FM results

show better agreement than the PNM results especially for the Ti and CL cases.

This is because the FM algorithm segmented the image using a larger number of
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Figure 3.17 – Comparison of cumulative intrusion curves for higher resolution images
to an original tomography stack.

small pores than PNM. Both FM and PNM follow analogous intrusion procedures.

However, the computed pore sizes by FM and PNM are different (see Section 3.1.3.1),

which leads to the different intrusion trends in the same material. The method of

sphere fitting in FCST followed by FM is better able to reproduce intrusion trends

and therefore is recommended. Based on these results the method should also be able

to provide more accurate relative transport properties.

In order to study the effect of the number of voxels, 100 × 100 × 100 voxels of Ti

is sampled and enlarged to 400 × 400 × 400 voxels. The original voxel size is 1.79

µm and the refined voxel size is 0.45 µm in all directions. The cumulative intrusion

curves for the original images and the refined images are shown in Figure 3.17. The

intrusion curve for the original stack is nearly identical to the cumulative PSD curve

that the pore sizes converted to corresponding pressures. This explains that the effect

of mercury intrusion through constricted parts is very small. The cumulative intrusion

curve for the enlarged sample shows lower saturations from 70 kPa, and small portions

after 400 kPa. This means the sphere fitting algorithm captured that 4% of the pore

regions are assigned to pore radii smaller than 1.79 µm. The discrepancy implies that

the voxel size could have an impact on the microstructure analysis. This might need

to be studied in future work.

3.2.1 MIP-PSD

Mercury intrusion porosimetry (MIP) is the most widely used experimental technique

for estimating pore size distributions (PSDs) of porous media [79, 112, 113]. The PSD

can be obtained by first using the Washburn equation (2.12) to relate the fluid intru-

sion pressure (pl) to the capillary radius (rc). The capillary pressure (pc) is equal to pl

because the sample is under vacuum before intrusion. Then, the cumulative normal-
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ized intrusion curve is differentiated with respect to the radius. The logarithmic pore

size distribution ( dX
d(ln(r))

) for a given pressure (Pi) normalized with respect to total

pore volume (Vpore) is calculated using equation (2.12) with the following relations:

P · r = −2γcosθ (3.2)

dP · r + dr · P = 0 (3.3)

dP

P
= −dr

r
(3.4)

d(ln(P )) = −d(ln(r)) (3.5)

dX

d(ln(r))
= − dX

d(ln(P ))
=
Xi−2 − 8Xi−1 + 8Xi+1 −Xi+2

12∆ln(P )
(3.6)

where Xi is the volume fraction of intruded pores with the radius of ri. The derivative

is approximated by a four-point finite difference method [114]:

f ′(xi) =
f(xi−2)− 8f(xi−1) + 8f(xi+1)− f(xi+2)

12∆x
(3.7)

Since PSD is already defined in Section 3.1.3.1, the pore size distribution obtained

by differentiating the cumulative mercury intrusion curve is called MIP-PSD in this

work. The primary difference between the MIP-PSD and the PSD is that the MIP-

PSD accounts for the connectivity between the pores. The difference between the two

kinds of PSDs will be shown in this section.

Figure 3.18 shows the predicted MIP-PSDs for the four samples. Generally, the

MIP-PSD from FM is better able to match experiments since the cumulative intrusion

is used to calculate PSD. As already mentioned in Section 3.1.3.1, MIP-PSD from

FM utilizes a larger number of pores than the PSD obtained from PNM.

The MIP-PSDs of Toray 120C, shown in Figure 3.18a, show that the MIP-PSD

from PNM has a higher peak point due to the faster intrusion in the small pores.

The experimental PSD is for Toray 090C, which is thinner than the Toray 120C,

but has similar bulk density and porosity [80]. The numerically obtained MIP-PSDs

have more small pore fractions than the experimental PSD. Based on the MIP-PSDs

from FM and PNM, neither result is close to the experimental PSD of Toray 090C.

However, considering the experimental data is from a different sample, trends of the

numerical and experimental results are similar.

In Figure 3.19a, MIP-PSD from the FM algorithm, FM MIP, is compared with

the PSD from the sphere fitting algorithm, FM PSD. It is shown that both numerical

results have a similar distribution when it comes to the pore size ranges and the

probabilities. Therefore, MIP is an effective technique to estimate the PSD of this
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Figure 3.18 – Comparison of numerically predicted MIP-PSD results for a) Toray
120C, b) SGL 39BA, c) Ti, and d) CL obtained from PNM and FM
methods.

sample as the intrusion process provides similar results, even though it could result

in screening of large pores due to limited connectivity of large pores by small pores.

Figure 3.20a shows the comparison of MIP-PSD and PNM PSD obtained from

PNM. In this case, the PNM PSD shows similar probabilities to Toray 090 result

between 20–30 µm, and have higher probabilities between 6–20 µm. The distribution

of PNM PSD is close to that in the FM results.

Of the four Toray 120C numerical PSD predictions, three cases, i.e., PSD from

sphere fitting algorithm, MIP-PSD from FM, and PNM PSD, show similar distribu-

tions. MIP-PSD from FM shows good agreement with the FM PSD. On the other

hand, MIP-PSD from PNM and PNM PSD show discrepancies to each other. This

shows that the shielding effect by small pores in MIP is more significant in PNM for

this material.

For the SGL 39BA, the experimental PSD in Figure 3.18b shows a main peak

at 40–50 µm and a second smaller peak at 0.7–0.9 µm. Both numerical approaches

similarly predicted the main peak. The small pore range around 1 µm, which occupies
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Figure 3.19 – Comparison of numerically predicted PSD and MIP-PSD results ob-
tained by FM algorithm for a) Toray 120C, b) SGL 39BA, c) Ti, and
d) CL reconstruction. Each sample is compared to the experimental
intrusion curve. For the Toray 120C, the experimental result of Toray
090C is used.

about 9% of the entire pore volume, cannot be observed in the numerically obtained

PSDs due to the voxel size. The FM MIP case contains a higher portion of pores

between 10 µm and 30 µm, and lower probabilities in the range of 50–100 µm than the

experimental PSD. The pore radii between 5 µm and 10 µm show some probabilities

in FM MIP. FM shows noise within this range. When comparing MIP-PSD from

PNM to the main distribution of the experimental PSD, the PNM MIP case shows

a good prediction when estimating pore size ranges. The peak point probability is

higher than 1 because the probabilities below the pore radius of 5 µm are nearly

zero, and PNM MIP does not show noise in a small pore range below 20 µm. As

the second peak in the experimental PSD of 39BA is unable to be captured in the

numerical simulations, the volume fractions of the small pores are treated as larger

pores.

The FM MIP of 39BA shown in Figure 3.19b shows very similar distribution to

the FM PSD result as seen in the Toray case. The FM PSD has a higher probability
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Figure 3.20 – Comparison of numerically predicted PSD and MIP-PSD results ob-
tained from PNM for a) Toray 120C, b) Ti, c) SGL 39BA, and d) CL
reconstruction.

at the peak point than the FM MIP case, since the FM PSD has no noise in the range

of 4–10 µm. For this material, FM MIP and FM PSD are in very good agreement

for the pore sizes above 50 µm. This indicates that the effect of shielding large pores

in MIP is sufficiently small to represent the actual pore size distribution.

The PNM PSD shown in Figure 3.19d exhibits a similar peak point to the PNM MIP

result, but it does not show large pore portions above 70 µm, and has more small pore

probabilities in between 8 µm and 30 µm. This shows that the PNM PSD, which is

computed without considering throat sizes, is not appropriate to represent the actual

pore sizes.

For the PSDs of fibrous materials, FM PSD and FM MIP show similar results

to each other. Even though the FM MIP results show small discrepancies in large

pore ranges and some noise in small pore ranges, the MIP-PSDs from FM are suffi-

cient to represent the actual PSDs. This proves either the sphere fitting algorithm or

MIP-PSD from FM can be used to determine PSD of the fibrous materials. This is,

however, not the case in PNM. The PNM MIP for Toray 120C shows a discrepancy
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from the PNM PSD. This proves a large amount of pore volume is assigned to in-

correct pore sizes due to screened large pores. For 39BA, PNM MIP shows a better

prediction than PNM PSD because PNM PSD is not sufficiently represent the PSD

of the material. Based on these observations, neither PNM PSD nor PNM MIP could

successfully represent the actual pore sizes for fibrous materials.

Figure 3.18c provides a comparison of MIP-PSDs for Ti. The FM MIP case shows

better prediction than the PNM result. As the cumulative intrusion curve from FM

already showed nearly identical predictions at high pressure ranges, the PSD result

obtained from the cumulative curve is also in great agreement. The PNM MIP case

also shows reasonable prediction, but not as good as the FM MIP.

Figure 3.19c shows the comparison of FM MIP to the FM PSD from the sphere

fitting algorithm. The FM MIP and FM PSD show similar distributions as in the

fibrous materials. There are some discrepancies but none are significant. As a result,

either of them is appropriate to define the pore size distribution of the material.

Figure 3.20c shows the discrepancies of PNM MIP and PNM PSD cases to the

experimental result. The PNM PSD and PNM MIP show a similar lower limit to

each other, but PNM PSD does not show pores larger than 40 µm. For this material,

PNM MIP shows a better prediction than PNM PSD, as the PNM PSD is incorrect

due to its insufficient pore sizes. As the PNM MIP obtained based on throat sizes

shows better predictions, the throat sizes should be considered for PNM PSD as well.

The MIP-PSDs for the CL reconstruction are shown in Figure 3.18d. The results

from FM and PNM have similar distributions to each other. The MIP-PSDs obtained

from PNM and FM show similar trends as in the Ti case. FM PSD and FM MIP

show nearly identical distributions as shown in Figure 3.19d, and PNM MIP has a

closer distribution to the results from FM, shown in Figure 3.20d. As a result, MIP-

PSD is able to represent the actual pore size distribution for the granular materials.

The MIP-PSD results for CL, however, show large discrepancies to the experimental

data, because the MIP-PSDs are obtained from the case that mercury is intruded

from all faces.

The mercury intrusion of CL from the bottom boundary showed closer intrusion

curves to the experimental data than the case using 6 faces in Section 3.2. To com-

pare the MIP-PSDs of the bottom inlet boundary cases, the results for the bottom

boundary case are provided in Figure 3.21. The plots exhibit that the MIP-PSD re-

sults for the bottom boundary case show closer predictions to the experimental data

than the case using 6 faces.

Figure 3.22 shows that the differences in mercury cumulative intrusion curves, and

the PSDs obtained from the intrusion curves, depends on the inlet boundaries. As
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Figure 3.21 – MIP-PSDs for the CL stochastic reconstructions predicted based on the
cumulative intrusion curves using the bottom boundary face.

already mentioned in Section 3.2, the intrusion curves, shown in Figures 3.22a and

3.22c, show slower intrusion trends when mercury intruded from the bottom face.

The saturation levels in the bottom boundary cases increase steeper than the 6-face

cases. This clearly shows that more pore volumes are assigned to higher pressures

than the pressures corresponding their pore sizes in the bottom boundary cases. That

being said, more pores would be assigned to incorrect pore sizes due to a higher effect

of shielding large pores.

Figures 3.22b and 3.22d show MIP-PSDs of CL obtained from the intrusion curves.

MIP-PSDs with the bottom boundary show lowered large pore probabilities and raised

mid-range pore probabilities in both FM and PNM. The discrepancies between the two

boundary cases is larger in PNM than FM due to less connectivity. The experimental

MIP for a real CL material is performed with a substrate on one side. This implies

the experimental PSD for CL could have incorrectly assigned pore sizes.

For the granular materials, such as Ti and CL, the PNM PSD results could not

show large pore regions. The MIP-PSDs from both PNM and FM show similar

distributions to the pore size distributions from the sphere fitting algorithm.

In general, the FM approach shows that PSDs predicted using mercury intrusion

cumulative curves are in great agreement with PSDs obtained directly from images.

For the PNM method, PSDs obtained from the MIP simulations show better agree-

ment than the pore inscribed diameter cases due to throat size information. However,

MIP-PSD from PNM could not always show good prediction of the actual pore size

distribution. MIP-PSDs obtained from the intrusion curves using 6-face boundaries

are much closer than the single face boundary simulations, as the pore connectivity

to the mercury clusters is limited.
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Figure 3.22 – Comparison of numerically predicted cumulative intrusion curves and
MIP-PSDs for CL with the two boundary options; a) cumulative intru-
sion curves from FM b) MIP-PSDs from FM, c) cumulative intrusion
curves from PNM, and d) MIP-PSDs from PNM.

3.3 Liquid water intrusion

Regarding the liquid water injection in PTLs, water is intruded from the bottom of the

domain. In the CL, the ORR takes place on the Pt surface, therefore, the nucleation

mode of water injection described in Section 2.3.3 is deemed to be representative of

the water intrusion in the CL [54]. In the present study, pores with the smallest radius

(2 nm) were selected as the water nucleation points, and used as nucleation sites for

the water injection simulations for both FM and PNM. As mentioned in 2.2.2, PNM

provides two intrusion algorithms, i.e., invasion percolation and ordinary percolation,

and both algorithms are used.

Figure 3.23 shows partially wet images of Toray 120C from FM (left) and PNM

(right). The results from both methods show general agreement in propagation of

water clusters. Figures 3.23a and 3.23b show the liquid water distributions at the

saturation of 0.2, intruded from the bottom face of Toray 120C. The lower left and

right faces are intruded in the figures, which proves the water intrusion started from
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Figure 3.23 – Liquid water distribution in partially saturated Toray 120C with a sat-
uration level of a) 0.2 from FM, b) 0.2 from PNM, c) 0.38 from FM,
d) 0.38 from PNM, e) 0.6 from FM, f) 0.6 from PNM, g) 0.8 from FM,
and h) 0.8 from PNM.
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Figure 3.24 – Through-plane (z-direction) local saturation profiles from the FM and
PNM simulations for each sample. The normalized distance 0 is for the
inlet face, and 1 is for the outlet face. Each figures shows the local
saturation profiles of; a) Toray 120C at 38% saturation; b) SGL 39BA
at 35% saturation; c) Ti at 35% saturation; and d) CL reconstruction
at 45% saturation.

the bottom face. The FM case shows more water clusters in the surface of the cropped

region, but in general both PNM and FM show similar water clusters. Figures 3.23c

and 3.23d show the water distribution at the saturation of 0.38 predicted by FM

and PNM, respectively. Some discrepancies can be observed. Figure 3.23d shows no

water clusters on the left wall (region A) of the cropped region and the top face (region

B), whereas water has intruded these regions in Figure 3.23c. The same regions are

intruded at the saturation level of 0.6 in PNM as shown in Figure 3.23f. Considering

they are at the same saturation, PNM must have intruded pores somewhere else

compared to FM. The discrepancies in pore saturations between the two models are

explained using local saturation profiles in the next paragraph.

The local saturation results are obtained from the total saturation of 38%, which

corresponds to Figures 3.23c and 3.23d. The PNM results have a steeper variation

in the z-direction than the FM result. Since the liquid water is intruded from the

bottom face, a higher saturation is shown at the inlet face (distance = 0) for both

algorithms, but especially for PNM. Although the total saturation is the same, i.e.
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38%, for both algorithms, about 23% of the outlet face (distance = 1) is saturated in

FM whereas PNM shows nearly zero saturation. PNM shows higher saturations in

the z-direction distance range of 0.0–0.4 and lower saturations in the range of 0.4–1.0

than FM. FM results will therefore predict faster breakthrough than PNM, which

implies the inlet pores in FM have more connections with similar sized pores to the

outlet pores. The higher saturation region in the PNM results indicate that more

pores near the bottom face are intruded than FM. That being said, PNM has more

water clusters than FM near the bottom face at the same saturation. In the in-plane

directions, shown in Figures 3.25a and 3.25b, the local saturation curves are very

similar with only small discrepancies between PNM and FM.

The reason that PNM has more water near the inlet is because PNM assigns

one pore size at one pore region. Figure 3.26 shows the first slice of Toray 120C

from PNM and FM at the saturations of 0.1 and 0.38. Both methods show water

clusters at similar regions, but PNM shows a larger portion of saturated parts. As

already discussed in Section 3.1.3.1, one pore region in PNM becomes one pore, but

several pore sizes are assigned in FM. For this reason, FM occupies the largest pore

in one region first and neighbouring pores are occupied subsequently, whereas the

same region will be occupied at once in PNM, because it has only one largest value.

This discrepancy leads PNM to have more saturated voxels, which results in different

distributions of water clusters at the same saturation.

The experimental breakthrough pressure and saturation are 3–4 kPa and 52–53%,

respectively [31]. Computed breakthrough pressure and saturation using FM are 3.3

kPa and 38%. Those from PNM are 4 kPa and 34%. For both cases, the breakthrough

pressures are within the experimental range, but the saturation values are lower than

the experimental data.

At the saturation level of 0.6, both PNM and FM show similarly distributed water

clusters, but FM shows more breakthrough clusters at the top face. Figures 3.23g

and 3.23h show the water clusters at saturation of 0.8. Most pores are saturated

with water in a similar manner, but pore region C at the top right face still shows

discrepancy between PNM and FM. Pores in the region C have sizes ranging from

4 µm to 13 µm in both PNM and FM. Since the pore sizes in both methods are

similar, the reason for the late flooding is due to the differences in pore connectivity.

Unlike the PNM case, only small pores remain unintruded in FM. As a result, the

pores in C would be concealed at higher pressures. This would lead to a discrepancy

in the cumulative saturation curves between FM and PNM. Since FM shows more

water clusters than PNM at the saturation level of 0.38, it could be assumed that FM

reaches the outlet more easily, due to having more pore size information than PNM.
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Figure 3.25 – In-plane (x/y-directions) local saturation profiles from the FM and
PNM simulations for each sample; Toray 120C at 38% saturation (a)
and b)); SGL 39BA at 35% saturation (c) and d)); Ti at 35% saturation
e) and f); and CL reconstruction at 45% saturation (g) and h)).
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FM sat. = 0.1 FM sat. = 0.38

PNM sat. = 0.1 PNM sat. = 0.38 

Figure 3.26 – Comparison of saturation trends between FM and PNM. The water
clusters at the bottom slice of Toray 120C at 0.1 and 0.38 saturations
where the water clusters are gray, pores are black, and solid regions are
white.
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Figure 3.27 – Comparison of numerically predicted water intrusion results for a) Toray
120C, b) SGL 39BA, c) Ti, and d) CL reconstruction.

Comparison of simulated capillary pressure–saturation curves for Toray 120C,

shown in Figure 3.27a, shows that the water intrusion in PNM took place rapidly

in a saturation range of 0.2–0.9. A reason for this trend is limited information of

pores and their connectivity. As observed in Section 3.2, large pores that are intruded

through smaller pores are flooded at higher pressures than the pressures to their sizes,

which is called shielding effect. The effect of shielding was even larger when using

the bottom boundary. Due to this reason, the intrusion curves from FM and PNM

show discrepancies. However, as can be seen in Figure 3.27a, both numerical water

intrusion results are different from the experimental results of Gostick et al. [115]

and Garcia-Salaberri et al. [63]. The discrepancies between experimental and FM

results were already shown by Sabharwal et al. [30]. Since the liquid water intrusion

in both numerical methods are computed based on capillary pressures of previously

determined pore sizes, the result could vary with respect to the inlet pore sizes and

contact angle. If the surface area of the Toray image was included, the intrusion would

have started from the lower pressure range. Furthermore, if the various contact angles

of the Toray material were considered, the numerical intrusion curves would shift to

a higher pressure range.
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Figure 3.28 shows the water saturation images of 39BA. As in the previous case,

there is general agreement between the two models, but there are also some distinct

differences. Figures 3.28a and 3.28b show the liquid water intrusion of the 39BA

sample from the bottom boundary in FM and PNM, respectively. At this saturation

(20%), both results show very similar water clusters to each other. At the saturation

of 35%, however, the FM saturation result in Figure 3.28c shows some water clusters

at the top, but these are not seen in PNM, shown in Figure 3.28d. This shows that

the liquid water intrusion in PNM is slower in penetrating the sample. As in the

Toray case, PNM would have more water clusters near the bottom face than FM.

In order to see the discrepancies in water distributions between the two methods,

local saturation profiles are computed. The through-plane local saturation profiles

for SGL 39BA at 35% saturation are shown in Figure 3.24b. The FM results show a

steep decreasing function similar to the PNM results, since the inlet pores are very

large compared to the internal pores. The FM profile shows lower saturations at the

distance between 0 and 0.3, but it shows higher saturations between 0.4 and 1 than

PNM. At the outlet surface, there is no saturated portion in PNM, but FM shows

about 8% of saturation. As FM has a higher middle region saturation, it should be

more likely to breakthrough than PNM. This explains the discrepancy of the water

clusters in Figures 3.28c and 3.28d. PNM could not achieve a breakthrough at the

outlet until 90% of the inlet pores are saturated, but more pores near the bottom

face are flooded as in the Toray case. High saturation at the inlet and very low

saturation at the outlet surface explain that the surface region can have an important

role in total saturation rate, which can affect the relative transport properties. In

the in-plane case shown in Figures 3.25c and 3.25d, the saturation profiles from both

algorithms are in a similar range of saturation.

The experimentally measured breakthrough pressure and saturation values are 1.8

kPa and 25%. These are measured in our laboratory using the SGL 39BA samples.

Those values obtained numerically are 1 kPa and 36% in FM, and 1.4 kPa and 45%

in PNM. The experimental results require a higher pressure and a lower saturation

to reach the breakthrough than the simulations. The missing small pores might

attribute to the discrepancies between the experimental and numerical results, since

more small pores between large pores would limit pore connections and the water

intrusion within the domain.

Figures 3.28e and 3.28f show the water saturation of 60% for FM and PNM. PNM

shows no water clusters at region A, but FM started intruding the same region. FM

at 0.8 saturation in Figure 3.28g shows more water clusters at the top than PNM

in Figure 3.28h, although they are at the same saturation level. The PNM result
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still does not show the water clusters at the region A. Because each pore in PNM

has limited pore connections, the shielding effect in PNM is more significant than

FM. Considering the thickness, i.e., 310 µm, and the mean pore size, i.e., 45 µm,

of 39BA, less than 8 pores would be placed in the through-plane direction in PNM,

which might not be sufficient to depict the water intrusion trends.

The cumulative intrusion curves for 39BA are shown in Figure 3.27c. The nu-

merical intrusion curves show similar trends as in the Toray cases. The FM results

show more gradual saturations than PNM. PNM shows a steep increasing function

from 0.3 saturation, which indicates a significant shielding effect of larger pores in

the domain.

The partially wet figures for Ti are shown in Figure 3.29. As the Ti materials are

hydrophilic, the non-wetting phase is air. The water contact angle used in literature

is usually 50◦ [44, 116]. As the intrusion algorithms are built to mimic the intrusion of

non-wetting phase, Ti cases in this work show water displaced by air in the domain.

Due to this, the blue regions in Figure 3.29 are intruded air clusters in the domain

that is fully saturated with water at first.

Overall saturation trends in FM and PNM are similar, as the intruded clusters

increase by occupying the same regions. Figures 3.29a and 3.29b shows that only a

small amount of the bottom pores are intruded in PNM. On the other hand, at least

one pore at the top surface in the FM case is intruded. In the cropped region, many

pores that are intruded in FM, are not saturated in PNM. This implies that water

clusters near the bottom face would be displaced more in PNM. As the saturation

level increases to 0.35, the discrepancy in saturated regions between FM and PNM

gets larger. The selected pore regions A in PNM shows no intruded clusters, whereas

the same regions in FM have intruded clusters. Point B in Figure 3.29d shows a small

air cluster beneath the top face. The water clusters in these regions are displaced at

saturation of 0.6 in PNM. In order to find the discrepancies in intruded clusters at

saturation of 0.35, saturation at each slice needs to be compared.

Figure 3.24c shows the through-plane saturation profile for Ti. The differences

of pore sizes between surface and internal regions are not as significant as in the

fibrous material in Ti. Both PNM and FM show some saturations at the outlet. As

the inlet pores of Ti are smaller than those of fibrous materials, the number of the

inlet pores are sufficient to make connections with similar sized neighbouring pores.

This allows the Ti case to have higher saturation at the outlet face. The FM result

shows saturation of 0.55 whereas PNM shows a saturation level of 0.35 at the outlet

surface. In the FM case, saturation at the outlet is higher than the internal region

(0<distance<1). Since the surface has bigger pores than the internal region, once
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Figure 3.28 – Liquid water distribution in partially saturated 39BA with a saturation
level of a) 0.2 from FM, b) 0.2 from PNM, c) 0.4 from FM, d) 0.4 from
PNM, e) 0.6 from FM, f) 0.6 from PNM, g) 0.8 from FM, and h) 0.8
from PNM.
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intruded clusters reach a breakthrough to the outlet surface, the saturated portion at

the outlet surface could be higher than the internal region. The air clusters occupy

more than 80% of the inlet surface in PNM, while the inlet saturation in FM is about

60%. This implies that FM requires less pressure to reach the outlet than PNM. The

saturation profiles in the in-plane directions are shown in Figures 3.25e and 3.25f.

The local saturation curves of PNM and FM show similar saturation trends in the x-

direction. In the y-direction, PNM shows a higher saturation at the distance between

0 and 0.4, and a lower saturation than FM between 0.7 and 1.

When the saturation reaches 0.8, the intruded regions are similar in both methods.

Based on the observations, the water displacement in PNM is slower than FM up to

0.6, and then becomes faster after 0.6.

This is proven in the cumulative intrusion curves, shown in Figure 3.27c. The

discrepancies between the intrusion curves from PNM and FM are not as significant

as in the fibrous materials. This shows that the shielding effect in Ti is less significant

than the fibrous material cases.

When the liquid water is displaced by air from the bottom face, the FM results

generally show faster breakthrough than the PNM. As discussed already in Section

2.2.2, the intrusion algorithms proceed based on the pore sizes obtained from each

algorithm. The more pore information present, the more realistic the intrusion. To

account for the gradual intrusion in PNM, OpenPNM provides a function called

late pore filling [25, 42]. This function first intrudes 75% of a pore volume at a

corresponding intrusion step, and the residual pore volume is saturated at the next

intrusion step. However, it could not mimic gradual intrusion procedures successfully.

For the CL stochastic reconstructions, the liquid water saturation at 0.2 are shown

in Figures 3.30a and 3.15b. The liquid water occupancy grows from the nucleation

sites in the inner domain. As PNM cannot capture all the smallest pores, i.e., 2 nm,

that FM can, the nucleation sites would be different between the two algorithms.

Even though the liquid water intrusion might be started from different positions in

each method, the liquid water clusters show a similar overall growth. At saturation

of 0.2, shown in Figures 3.30a and 3.30b, FM shows more water clusters than PNM.

The FM result at this saturation have distributed water clusters, as the smallest pores

could be anywhere based on the distance map. Water in PNM are all connected to

the cluster A in Figure 3.30b. At the saturation level of 0.45, shown in Figures 3.30c

and 3.30d, PNM shows similar water clusters to FM in B and C. The water clusters

on the left and right edges shown in the FM case are, however, not seen in the PNM

figure. In order to understand where the water clusters are placed in PNM, local

saturations are discussed in the next paragraph.
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Figure 3.29 – Intruded air distribution in partially saturated Ti with a saturation
level of a) 0.2 from FM, b) 0.2 from PNM, c) 0.35 from FM, d) 0.35
from PNM, e) 0.6 from FM, f) 0.6 from PNM, g) 0.8 from FM, and h)
0.8 from PNM.
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Figure 3.30 – Liquid water distribution in partially saturated CL reconstruction with
a saturation level of a) 0.2 from FM, b) 0.2 from PNM, c) 0.45 from
FM, d) 0.45 from PNM, e) 0.6 from FM, f) 0.6 from PNM, g) 0.8 from
FM, and h) 0.8 from PNM.

95



The through-plane local saturation profiles for CL at 0.45 saturation are shown

in Figure 3.24d. Since the nucleation points of the liquid water intrusion in the CL

reconstruction are placed within the domain, the results show larger fluctuations than

the other materials. PNM shows higher saturations in the distance between 0.1 and

0.5, which explains more water clusters within this range. FM has higher saturations

at the top and bottom faces (distance of 0 and 1, respectively) than the PNM results.

This shows that the pore connections in FM have more probabilities to reach the top

and bottom pores from the nucleation sites. The two results show similar variations

in the distance of 0.3–0.9, which explains that the water intrusion in the internal

domain proceeds similarly in both algorithms. In the in-plane directions, shown in

Figures 3.25g and 3.25h, the largest discrepancy is seen in the surface of the domain.

Figures 3.30e and 3.30f show the saturation at 0.6. FM starts intruding the bottom

side of the cropped region, whereas PNM remains nearly the same as the previous

step, i.e., saturation of 0.45. When the saturation is 0.8, shown in Figures 3.30g and

3.30h, the water clusters at the bottom of the cropped region in PNM do not increase

as much as in the FM result. As they are at the same saturations, PNM would have

saturated pores in different parts of the domain, such as the cropped region.

The cumulative intrusion curves for CL are shown in Figure 3.27d. The PNM and

FM results for the CL reconstruction show smoother increasing functions than the

fibrous PTLs, which are similar to the Ti cases. As in the Ti case, CL shows that

the intrusion in PNM proceeds faster than FM within the saturation range of 0.1–0.9

because of the larger shielding effect in PNM.

3.4 Dry effective diffusivity

Diffusion simulations in PTL and CL domains were performed as discussed in Chapter

2. For the DNS simulations, the average simulation time for the dry PTL samples,

with around 50 million DOFs, was around 5 hours per direction and 20 minutes for

the CL reconstruction on a single core of Intel(R) Xeon(R) CPU E5-2690 v2 with

a clock speed of 3.00 GHz. For the PNM simulations using the same images, the

entire simulations in all directions for one image stack took around 5 minutes for

PTL samples and 2 minutes for the CL reconstructions. Domain sizes used for the

simulations are 600×600× δt voxels for the GDL and PTL samples, and 300×300×300

voxels for the CL reconstructions.

Figures 3.31 and 3.32 show the oxygen molar fraction distributions in the domain

for each PTL sample and CL reconstruction obtained from DNS and PNM. The

red represents the inlet which has the highest mole fraction, i.e. 0.4, and the blue
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represents the outlet boundary with a mole fraction of 0.01. The results show a

gradual reduction in molar fraction in the corresponding direction, which proves the

simulations in both numerical approaches provide physical results.

The formation factor for through-plane and in-plane gas diffusivity of the three

PTL samples are shown in Table 3.3. The formation factor is defined as the ratio of

the effective diffusivity by the bulk gas diffusivity. Since the transport simulations

can be performed using either equivalent diameter or inscribed diameter in PNM, the

results from both diameter cases are included. Experimental results for the Toray

120C are obtained from literature [31, 79, 117–120] and those for the other materials

were measured experimentally in our laboratory. As shown in the table, the PNM

formation factors obtained from the inscribed diameter are significantly lower than

the experimental value. The results obtained from the equivalent diameter appear,

therefore, to be more reasonable.

For the Toray 120C, the estimated formation factor for DNS simulations in the in-

plane and through-plane directions are 0.442 and 0.223, respectively. The formation

factors in both directions are in good agreement with the experimental ranges of

0.31-0.54 and 0.14-0.33, respectively. The formation factors computed by the PNM

equivalent diameter are 0.414 and 0.167 in the in-plane and through-plane directions,

respectively. Although the results from PNM are lower than those from DNS, they

are also in agreement with the range of experimental data from literature.

In the case of 39BA, the average formation factors from DNS are 0.415 and 0.610

in the through-plane and in-plane directions, respectively. These are in very good

agreement with the experimental values of 0.414 and 0.602. The formation factors

from PNM, on the other hand, are 0.283 and 0.492 in each direction. It can be

seen that the formation factors from PNM are nearly 26% and 31% lower in the in-

plane and through-plane directions, respectively. Though the domain size used for

the 39BA simulation was 313 and 1074 µm in through-plane and in-plane directions

respectively, the number of pores generated from the images were around 2200 due

to its high porosity and large pore regions. The number of pores generated from the

Toray 120C was 5300. Considering the number of pores used in the Toray 120C case,

the number of pores used for 39BA simulations in PNM might not be sufficient to

predict the formation faction in 39BA.

For Ti, the through-plane formation factor obtained from DNS, 0.259, is within

the experimental range. The value obtained from PNM, 0.229, is lower than the DNS

results, but also within the experimental range. The results from both approaches

show around ±6% discrepancies from the experimental result. In the in-plane direc-

tion, the average formation factors are 0.177 for DNS and 0.159 for PNM. The
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.31 – Oxygen molar fraction profiles from DNS for a) Toray 120C in the
through-plane, and b) in-plane directions, c) SGL 39BA in the through-
plane, and d) in-plane directions, e) Ti in the through-plane, and f) in-
plane directions, g) CL in the through-plane, and h) in-plane directions.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.32 – Oxygen molar fraction profiles from PNM for a) Toray 120C in the
through-plane, and b) in-plane directions, c) SGL 39BA in the through-
plane, and d) in-plane directions, e) Ti in the through-plane, and f) in-
plane directions, g) CL in the through-plane, and h) in-plane directions.
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experimental in-plane formation factor is 0.27, which is 50% and 70% greater than

the DNS and PNM results. The results from both simulation methods show that

the through-plane formation factor is around 31% higher than the in-plane result.

However, this trend is not shown in the experimental case and the in-plane result

is 10% higher than the through-plane result. This could be attributed to the air

leak during the in-plane diffusion experiments. The diffusion bridge designed for the

in-plane gas transport requires at least 1 × 5 cm2 of material size. However, the

Ti sample used for the experiments was only 1 × 2 cm2 due to limited material

availability. The rubber gaskets were placed on the rest of the bridge to prevent

the gas leak. Because of this reason, there could be unintended gas leak which will

increase the gas diffusivity of this case.

For the CL stochastic reconstructions, both DNS and PNM predicted a nearly

identical formation factor compared to the experimental result. The experimentally

measured formation factors of a CL sample with Pt loading of 0.125 mg/cm2 and

Nafion loading of 30% were obtained by Xu [81] in our laboratory. As discussed in

Section 3.1.2, the CL stochastic reconstructions were generated to represent the mi-

crostructural characteristics and transport properties of the FIBSEM reconstructions

of a CL sample with a Pt loading of 0.025 mg/cm2 and ionomer loading of 30% by

weight. Since the same simulation results were already published by Sabharwal et al.

[30], this work aims at validating the result again by comparing the simulations to

the experimental data.

3.5 Dry effective permeability

Permeation simulations in PTL and CL domains were performed as discussed in

Chapter 2. Figures 3.33 and 3.34 show the pressure distribution for each material in

the in-plane and the through-plane directions obtained from DNS and PNM. The red

face represents the inlet face with the highest pressure and the blue face represents the

outlet boundary. As can be seen in the figures, all cases show gradual decrements in

pressure within their domains, which prove the simulations in PNM and DNS returned

physical results. The elapsed computational time for PNM is the same as mentioned

in Section 3.4 because all diffusion and permeation simulations are performed at

once. For the DNS simulations, the meshes were obtained from coarsened images as

discussed in Section 2.3.2.1. Each simulation took 4–8 hours using 15 cores with about

30–50 million DOFs. The computations were enabled in part by support provided by

WestGrid [124] and Compute Canada [125].

The dry effective permeability of the three PTLs in the through-plane and in-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.33 – Pressure profiles from DNS for a) Toray 120C in the through-plane, and
b) in-plane directions, c) SGL 39BA in the through-plane, d) in-plane
directions, e) Ti in the through-plane, and f) in-plane directions, and
g) CL reconstruction in the through-plane and h) in-plane directions.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.34 – Pressure profiles from DNS for a) Toray 120C in the through-plane, and
b) in-plane directions, c) SGL 39BA in the through-plane, d) in-plane
directions, e) Ti in the through-plane, and f) in-plane directions, and
g) CL reconstruction in the through-plane and h) in-plane directions.
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Figure 3.35 – a) Mesh accuracy tests using different levels of adaptive mesh refine-
ment, and b) domain size analysis using the Ti meshes. The domain
lengths 100 and 200 represent the number of voxels in the in-plane
directions. The coarsened cases are obtained from larger images by
coarsening twice in the in-plane directions, e.g., images with 400 voxels
in one direction are coarsened to 200 voxels.

plane directions are also shown in Table 3.3. The permeability results from PNM

show again that using the inscribed diameter is not appropriate. The values obtained

from the equivalent diameter, however, are comparable with the experimental results.

The effective permeability in DNS is computed by solving the Stokes flow equations

using the incompressible fluid flow module in OpenFCST. In order to obtain reliable

simulation results from a mesh, adaptive refinement is applied to refine the mesh

elements near the solid wall. Figure 3.35a shows the permeability results according

to different levels of adaptive refinement. For the meshes with the in-plane length

of 100 voxels, the permeability results are decreased and stabilized at the refinement

level of 2. This is because the refined mesh elements near solid walls are better

able to account for boundary layers of the fluid. Based on the results from three of

the 100 length meshes, level 1 adaptive refinement returns sufficiently reliable values

with moderate computation cost. Due to this reason, the 200 in-plane length meshes,

which are obtained by coarsening 400 length images, are tested with 1 level of adaptive

refinement, and returned large decreases compared to non-refined meshes. The reason

for the steeper slopes in the coarsened meshes than the original meshes is because of

a larger voxel size of coarsened images.

In order to determine the representative size of the coarsened meshes, three dif-

ferent sizes were selected, and three meshes for each domain size case were generated.

Figure 3.35b shows the through-plane permeability variations for each mesh case.

Mesh elements near solid walls were refined adaptive based on the mesh size for bet-
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ter accuracy, i.e., twice for the 100 size meshes, and once for the 200 size meshes. The

original voxel meshes, i.e. 100 and 200 in Figure 3.35b, show ±10% of uncertainty,

which explains these domains are not sufficiently large to represent the permeability.

The coarsened 100 results in Figure 3.35 shows a larger mean value than the 200 cases.

This explains that coarsening in the in-plane directions increases the through-plane

permeability. The 100 coarsened case shows a larger uncertainty than the 200 cases.

The 200 coarsened case (obtained from 400×400×160 stacks) shows the smallest un-

certainty (±3%), which implies the 400×400×160 domain can sufficiently represent

the permeability of the material.

The tests for the mesh refinement level and the domain size, however, were tested

only for the Ti mesh in the z-direction due to limited time and computational re-

sources. For all the other results, i.e., Ti in the x- and y-direction; Toray 120C and

SGL 39BA in all directions, smaller meshes were generated, and one simulation was

performed for each direction. Instead of keeping the full thickness, the original images

were coarsened in all directions (400×400× δt is coarsened to 200×200× δt
2

). For this

reason, the reliability of these results is lower than the results of the Ti z-direction.

The domain size and mesh refinement tests should be done for all cases in future

work.

For the Toray 120C, the results from DNS and PNM in both directions are lower

than the experimental results. The permeability results from DNS are 0.336×10−11 m2

in the through-plane direction and the mean in-plane permeability is 0.936×10−11 m2.

The PNM through-plane permeability (0.408×10−11 m2) is 22% lower than the lower

reference value of 0.5×10−11 m2, and the average in-plane permeability (0.903×10−11

m2) is similar to the in-plane lower reference value of 0.90×10−11 m2. Permeability

simulations using the same Toray 120C images were reported by Garcia-Salaberri et

al. [49]. They employed a larger domain with size 0.78 × 0.78 × 0.367 mm3 and

the permeability results were obtained using lattice Boltzmann method (LBM) in

through-plane and in-plane directions, resulting in 0.55×10−11 and 1.7×10−11 m2,

respectively. Moosavi et al. [33] reported the permeability of Toray 120C using the

finite volume method, and their results for the through-plane gas permeability was

0.579×10−11 m2. The number of through-plane voxels in their simulations were 280.

This means that they employed more surface pores than the meshes for Toray 120C in

this work. As the surface pores have larger pore sizes, reducing the thickness would

decrease the mass flux through the domain, which results in a lower permeability.

Due to this reason, the lower permeability than the references obtained for Toray

120C in this work is reasonable.

The 39BA PTL through-plane results from DNS and PNM are 4.245×10−11 m2
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and 4.960×10−11 m2, respectively. The average in-plane results are 7.046×10−11 m2

from DNS and 5.690×10−11 m2 from PNM. The in-plane and through-plane perme-

abilities from DNS are 13% and 20% higher than the experimental values, respectively.

The through-plane permeability from PNM is 33% higher than the experimental

results. The average in-plane permeability from PNM shows a small discrepancy,

however, the x-direction permeability is nearly identical to the through-plane perme-

ability. This is unreasonable due to the anisotropy of the material. All the simulation

results show higher predictions than the experimental values for the 39BA material.

There could be several reasons for the higher simulation results. First, missing small

pores in the carbon matrix would lower the flow resistance in the domain, which

would result in a higher mass flux. Second, when the material is placed in the diffu-

sion bridge for the experiments, a little compression of the material is unavoidable.

The effect of compression reduces effective transport in the material [26]. Due to these

reasons, it is reasonable that the transport simulations with uncompressed materials

show higher permeabilities.

In the case of Ti, the through-plane permeability from PNM is 0.566×10−11 m2,

which shows is 4% larger than the experimental range. The through-plane results

from DNS are 0.469×10−11 m2. In the in-plane direction, the average results are

0.300×10−11 m2 and 0.306×10−11 m2 from PNM and DNS, respectively. The sim-

ulation results show a larger through-plane permeability than the in-plane values,

which is in agreement with the anisotropy observed in the diffusion case. The ex-

perimentally measured in-plane permeability is about 0.63×10−11 m2, which is 17%

greater than the through-plane result. As discussed in the dry diffusivity section, the

in-plane experimental results could be inaccurate due to a gas leak in the diffusion

bridge, since the permeation experiments uses the same diffusion bridge as for the

diffusion experiments.

For the CL stochastic reconstructions, the simulation results from both DNS and

PNM are order of 10−18 m2, but the experimental results reported by Xu [81] were

around 4.1 ×10−16 m2. In their study, the effective pore diameter is 7.0 nm, which

will result in significant Kundsen slip effects. The Kundsen effect is considered in

the diffusion simulations for both PNM and DNS, whereas it is not implemented for

the permeation in both methods. As a result, the permeability results from both

PNM and DNS are lower than the experimental values. The Knudsen effect should

be incorporated for the permeation simulations in future work.

In general, both DNS and PNM predicted the dry permeability of each material

reasonably. The DNS results were more reliable even though the simulations were

done with the coarsened meshes. PNM could not show the anisotropy in 39BA
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properly, however, the results were generally similar to those from DNS.

3.6 Relative diffusivity

The formation factor at varying saturations are computed using both PNM and DNS.

PNM makes an array of intruded pores, and exclude them from the transport sim-

ulations as discussed in Section 2.2.6. In DNS, the non-wetting phase is intruded

in the domain using the FM algorithm as mentioned in Section 2.3.3 and then the

computational mesh is generated only of the not intruded pore voxels. The main dif-

ference between PNM and DNS in terms of the transport simulation under saturated

condition is that the DNS method needs separate image stacks at each saturation

from the FM algorithm.

Figure 3.36 shows the calculated relative formation factors of the three PTLs in

the in-plane and through-plane directions. The relative diffusivity is normalized by

the dry diffusivity results since dry diffusivities are different for DNS and PNM. The

normalization is used to better compare. Even though PNM provides two percolation

algorithms (i.e. invasion percolation (IP) and ordinary percolation (OP)), the relative

diffusivity were computed only for the IP case, since IP and OP return the same

intrusion results.

Figures 3.36a and 3.36b show the relative diffusivity for Toray 120C. Hwang and

Weber [2] reported the through-plane relative diffusivity for Toray 120C measured

experimentally as shown in Figure 3.36a. Likewise, Tranter et al. [3] measured the

in-plane relative diffusivity of Toray 120 with 5% PTFE content. In both directions,

the results from DNS show better prediction than PNM. The relative diffusivity

results from PNM are lower than the DNS result at saturations between 0.1–0.7. At

the saturation level of 0.7, PNM results are zero. In the in-plane direction, DNS and

PNM show a larger discrepancy to each other. PNM predicts lower values than DNS

through the entire saturation range.

The results for 39BA are shown in Figures 3.36c and 3.36d. The in-plane results

are compared with experimental results of SGL 34BA and SGL 10BA measured by

Tranter et al. [3] shown in Figure 3.36d. Both reference materials have 5% PTFE

content, and the thickness of 10BA and 34BA are 400 µm and 280 µm, respectively.

In the through-plane direction, both DNS and PNM show very similar results to each

other. The DNS results show a much closer prediction than the PNM results in the

in-plane direction.

The reason for the noted faster change in PNM is related to the water injection

from the bottom side. As the porosity of the surface region is higher than the internal
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Figure 3.36 – Variation of the formation factors in the through-plane and in-plane
directions with saturation: a) and b) Toray 120C in through-plane and
in-plane directions compared to previously reported literature data for
Toray 120 GDLs [2, 3], c) and d) SGL 39BA in through-plane and in-
plane directions, e) and f) Ti in through-plane and in-plane directions,
and g) and h) for CL reconstructions. The in-plane results for 39BA are
compared to results of SGL 34BA and SGL 10BA from the literature
[3].
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region for fibrous material, the surface region of the 39BA would be mostly large

pores. Injecting water from the bottom side gradually occupies these large pores in

the bottom surface. Then, the gas flux would decrease at the inlet face since the

number of pores through which the gas can pass decreases. At some point when

most of the large pores at the bottom face are saturated, the gas flux would decrease

significantly because gas flow can pass through only small pores. PNM, however,

uses less pore size data than FM, which would result in a faster blockage of the inlet

face of the non-wetting phase. The same trends are shown in the Toray 120C case in

Figure 3.36a.

The relative diffusivity curves for Ti are shown in Figure 3.36e and Figure 3.36f.

It can be seen that the DNS results are larger than the PNM results through all

saturations, but the discrepancy is not significant. PNM shows a faster decreasing

function that reaches 0 at the saturation level of 0.6. DNS shows some amount

of mass flux until 0.7 saturation. In the in-plane direction, the PNM results show

larger discrepancies than the through-plane results compared to DNS. As shown in

the figure, the in-plane diffusivity of PNM decreases fast in the saturation range of

0–0.4. This implies that the pores intruded by the non-wetting phase more penalize

the gas flow than the DNS case.

The relative diffusivity of the CL reconstructions are shown in Figures 3.36g and

3.36h. As discussed in the water intrusion section, the liquid water injection in the

CL occurs within the domain, and the CL stochastic reconstructions do not have

anisotropy, which means the relative diffusivity curves are supposed to be the same in

the in-plane and through-plane directions. The curves from DNS show nearly identical

and smooth decreasing functions whereas the PNM results show more fluctuations

in both directions. The simulation results are compared to the relative diffusivity

computed using the FIBSEM images reported by Sabharwal et al. [29]. The DNS

result is in good agreement with the reference and the PNM results in Figure 3.36h

also follows the DNS results similarly.
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Chapter 4

Conclusions and future work

The objective of this thesis was:

• Create tomography images of morphologically different porous media using

µCT.

• Simulate liquid water and mercury intrusion in porous media to compare sim-

ulation results from PNM and DNS.

• Use tomography images to predict dry permeability and diffusivity of the porous

media with the two numerical approaches and evaluate them by comparing to

experimental properties.

• Estimate relative transport properties and compare the results between the

PNM and DNS approaches.

In this thesis, two different numerical approaches were used to estimate characteristics

of microstructure and transport properties of commercial porous transport layers

(PTLs). The two numerical approaches studied were pore network modeling (PNM)

and continuum based direct numerical simulation (DNS) methods. In both cases,

µCT images were employed to extract a pore network and generate a mesh to perform

simulations.

Two fibrous GDL and one PTL samples (Toray 120C, SGL 39BA, and Ti sinter)

were scanned using a µCT to obtain tomographic images. Since the fibrous materials

(Toray 120C and SGL 39BA) were based on carbon fibres, the x-ray voltage was set

to 25–30 kV whereas it was 90–100 kV for the Ti powder based sample. A sample was

placed vertically on the sample plate using the sample holder. Using a sample holder

was essential to obtain proper cross-sectional images since a tilted sample could return

cross-sections of an inclined image. After scanning the samples, the raw tomography

images were reconstructed and then the reconstructed images were cropped into a
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1500 × 1500 × thickness, δt. The image stack for each sample was then used as an

original stack to be binarized.

Image segmentation was performed on the original image stacks. Obtaining ac-

curate binary images was crucial since small errors in the segmentation could lead to

erroneous results. For an accurate segmentation, a given raw image must be of high

quality and contain very little noise. The bilateral filter was applied to the original

images to remove noise in the images. One parameter to be matched after binarization

was the porosity. Then, the segmentation quality was visually assessed by overlaying

the edges of the binary images onto the filtered images. In this work, the Otsu and

Sauvola algorithms were used for the image segmentation. The threshold algorithms

that can achieve desired porosities of the samples were selected. The resolved porosity

for each sample showed a good agreement with experimentally measured values and

the overlaid images showed a great segmentation quality. Then, the segmented stacks

were cropped into three 600 × 600 × δt subsamples for further studies.

Statistical functions, such as the two-point correlation function, the chord length

function and the pore size distribution, were used to characterize the porous media

microstructure. The two-point correlation function and the chord length function

were used to show the similarity, or lack thereof, between each PTL subsamples.

The pore size distribution were obtained separately from the two different numerical

methods (PNM and DNS). PNM extracts a network using the watershed segmenta-

tion algorithm implemented in PoreSpy [43]. The pore network contains geometric

information, such as pore and throat sizes, which can be used to obtain pore and

throat size distributions. In PNM, using the inscribed diameters was better able to

predict reasonable pore sizes than the equivalent diameters. In DNS, the sphere fit-

ting algorithm was used to compute pore sizes by assigning pore radii to all voxels.

PSDs obtained from PNM could not show the pore size data of the materials precisely.

To compare the predicted PSDs, virtual MIP was performed for both approaches.

The mercury intrusion curves from both cases returned nearly identical results, and

showed a good agreement to the experimental MIP curves. From the predicted MIP

curves, MIP-PSDs were computed by taking derivative with respect to pore sizes.

The MIP-PSDs and the experimental PSDs of the materials were compared to the

PSDs computed from the sphere fitting algorithm and the network extraction. The

MIP-PSDs showed nearly identical to the FM PSDs with only small discrepancies

for all cases but CL. The discrepancies were because of the shielding effect, but the

discrepancies were not significant. Based on these observations, MIP-PSDs were

sufficient to represent the pore sizes of the materials.

If mercury is intruded only using the bottom face boundary, the shielding effect
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had a larger impact on the intrusion curves than for other materials that using the

6-face boundaries. Larger pores were concealed by smaller pores. This resulted in

higher small-sized pore portions than the 6-face boundary cases.

Liquid water intrusion in PTLs showed overall agreement of saturation patterns

between FM and PNM, as the pore sizes of the domain were similarly obtained. FM

reached the first breakthrough faster than PNM as FM used more pore size data

than PNM. The larger number of pore sizes leaded to smoother intrusion trends

and more realistic pore filling than PNM. As PNM had less pore connectivity, the

shielding effect was larger than in FM, which result in a steeper intrusion than PNM

in mid-range pores.

Dry transport properties for the three PTLs were computed using the PNM and

DNS methods. For the PNM cases, since it provides two pore sizes, i.e. inscribed

diameter and equivalent diameter, transport properties from both diameter cases were

computed. The results using the equivalent diameters were in better agreement with

the experimental values. The inscribed diameter results were lower than the reference

data. The results from the DNS were in great agreement with the experimental

results in all cases. The dry diffusivity results from PNM were good for the Toray

120C and Ti cases, but they were too low for 39BA. For permeability, not all results

from PNM matched well to the experimental results. The permeability simulations

in DNS were also performed, and showed a reasonable agreement with the reference

data. Therefore, DNS is more accurate and more reliable than PNM. PNM should

use the equivalent diameters to estimate transport properties.

To compute the relative transport properties, water intrusion simulations were

performed. The relative transport properties from PNM were computed by restricting

the pores that were intruded. DNS showed a better agreement to available literature

data than the PNM results for the relative diffusivity. PNM result for the throgh-

plane 39BA showed a similar relative diffusivity to the DNS results. Other than

this, PNM results showed lower relative diffusivity than the DNS results in all cases

because the liquid water clusters in PNM blocked the gas outlet face faster than in

the FM algorithm.

In general, both DNS and PNM are very useful techniques for a pore scale analy-

sis. DNS results are more accurate and reliable than PNM. However, PNM is faster

as it sacrifices some information from the source images. In PNM, in order to com-

pute PSDs, the inscribed diameter method is recommended, but when it comes to

computing transport properties, using the equivalent diameter gives more reasonable

results. DNS uses all image voxels for simulations, which results in a great accuracy

but high computational cost.

112



4.1 Future work

The observations in this work have showed the possibilities of both PNM and DNS

methods for further investigations of 3D microstructure. Both numerical approaches

showed very close predictions to experimental results when it comes to pore size dis-

tribution (PSD) and mercury intrusion porosimetry (MIP). The results for the liquid

water intrusion, however, showed discrepancies from experimental references. For the

liquid water intrusion, only one contact angle was used by assuming all the internal

materials were one solid. An actual GDL, however, contains multiple contents, such

as carbon matrix; PTFE; and micro porous layer (MPL). These contents may have

critical impacts on the internal water propagation.

The carbon matrix in SGL 39BA was not separated from the solid region. As

a result, small pores in the carbon matrix were ignored, which could have made

differences of the gas transport in the domain. In this regard, separating the carbon

matrix and the carbon fibres would be useful for a better accuracy in transport

simulations.

Segmenting the carbon matrix from the SGL fibrous papers with a high accuracy

is very difficult due to overlapping environment in grayscale intensities between the

carbon matrix, fibres, and pore regions. One method to overcome this limit is using

stochastic reconstructions. The GDL generator module in pyFCST is able to generate

fibres and the carbon matrix separately. This module can be used to study the

optimized GDL and PTL conditions for fuel cell and electrolyzer performances.
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Linares. Influence of the Teflon loading in the gas diffusion layer of PBI-

based PEM fuel cells. Journal of Applied Electrochemistry, 38(6):793–802,

2008. doi: 10.1007/s10800-008-9512-8. URL https://link.springer.com/

content/pdf/10.1007{%}2Fs10800-008-9512-8.pdf.

[119] Nada Zamel, Nelson G.C. Astrath, Xianguo Li, Jun Shen, Jianqin Zhou,

Francine B.G. Astrath, Haijiang Wang, and Zhong-Sheng Liu. Experimen-

tal measurements of effective diffusion coefficient of oxygen–nitrogen mixture

in PEM fuel cell diffusion media. Chemical Engineering Science, 65(2):931–

937, jan 2010. ISSN 0009-2509. doi: 10.1016/J.CES.2009.09.044. URL https:

//www.sciencedirect.com/science/article/pii/S0009250909006472.

[120] Reto Flückiger, Stefan A. Freunberger, Denis Kramer, Alexander Wokaun,
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Appendix A

PNM code for MIP and dry
transport simulations

# −∗− coding: utf−8 −∗−
”””
Created on Wed Jul 25 12:48:35 2018

@author: Yeop
”””
from porespy.networks import regions to network, add boundary regions
from porespy.networks import label boundary cells
from porespy.tools import pad faces
from porespy.tools import make contiguous
import porespy as ps
import openpnm as op
import matplotlib.pyplot as plt
import os
import imageio
import scipy as sp
import time
import numpy as np
from openpnm.models import physics as pm
from tqdm import tqdm
import skimage.external.tifffile as tiff

start = time.time()
########################### Import image

↪→ ################################

ws = op.Workspace()
ws.clear()
prj = op.Project(name = ’reconstruction’)

path = ’/home/yeop/Documents/Article/Ti/1/’# + str(i+1)+’/’
# path = os.getcwd()
file = ’stack1.tif’
fetch file = os.path.join(path,file)
im = imageio.mimread(fetch file, memtest=False)
im = sp.array(im, dtype = bool)
im = sp.invert(im)
voxel = 1.79e−6

########################### SNOW algorithm
↪→ ################################

regions = ps.filters.snow partitioning(im, dt = None, r max=5, sigma=0.4, return all=True,
mask=True, randomize=True)
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im = regions.im
dt = regions.dt
regions = regions.regions
b num = sp.amax(regions)

plt.imshow((regions∗im)[10, :, :], cmap=plt.cm.nipy spectral)
plt.imshow((im)[10, :, :], cmap=plt.cm.Greys)
plt.axis(’off’)
plt.show()

structure size = im.shape
porosity = ps.metrics.porosity(im)

# Boundary pores
regions = add boundary regions(regions=regions, faces=[’front’, ’back’, ’left’,

’right’, ’top’, ’bottom’])

# Padding distance transform and image to extract geometrical properties
dt = pad faces(im=dt, faces=[’front’, ’back’, ’left’,

’right’, ’top’, ’bottom’])
im = pad faces(im=im, faces=[’front’, ’back’, ’left’,

’right’, ’top’, ’bottom’])
regions = regions∗im
regions = make contiguous(regions)

plt.imshow((regions)[:, 13, :], cmap=plt.cm.nipy spectral)
plt.axis(’off’)
plt.show()

# Extract void and throat information from image
net = regions to network(im=regions, dt=dt, voxel size=voxel)
# Find void to void connections of boundary and internal voids
boundary labels = net[’pore.label’] > b num
loc1 = net[’throat.conns’][:, 0] < b num
loc2 = net[’throat.conns’][:, 1] >= b num
pore labels = net[’pore.label’] <= b num
loc3 = net[’throat.conns’][:, 0] < b num
loc4 = net[’throat.conns’][:, 1] < b num
net[’pore.boundary’] = boundary labels
net[’throat.boundary’] = loc1 ∗ loc2
net[’pore.internal’] = pore labels
net[’throat.internal’] = loc3 ∗ loc4

# label boundary cells
net = label boundary cells(network=net, boundary faces=[’front’, ’back’, ’left’,

’right’, ’top’, ’bottom’])

############################# Calculate porosity
↪→ ##############################

porosity network = sum(net[’pore.volume’][net[’pore.internal’]])/(structure size[0]∗structure size[1]∗structure size
↪→ [2]∗voxel∗∗3)

print(”porosity image :”, porosity, ”porosity network :”, porosity network)
############################# Define Network

↪→ ##################################
# print(net.keys())
pn = op.network.GenericNetwork(project = prj, name = ’network’)
pn.update(net)
#print(pn)
pore d = pn[’pore.diameter’][pn.pores(’internal’)]
pore r = (pn[’pore.diameter’][pn.pores(’internal’)])/2
pore v = pn[’pore.volume’][pn.pores(’internal’)]
pore r eq = (pn[’pore.equivalent diameter’][pn.pores(’internal’)])/2

############################# Add geometrical model
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↪→ ###########################

net health = pn.check network health()
if len(net health[’trim pores’]) > 0:

op.topotools.trim(network=pn, pores=net health[’trim pores’])

################################ Define phases
↪→ ################################

hg = op.phases.Mercury(network=pn, name = ’hg’)
air = op.phases.Air(network=pn, name = ’air’)
water = op.phases.Water(network = pn, name = ’water’)
air[’pore.temperature’] = 353
water[’pore.temperature’] = 353
air[’pore.diffusivity’]= 2.2e−5
air[’throat.diffusivity’] = 2.2e−5
air[’pore.molar density’] = 34.52
water[’pore.contact angle’] = 110
water[’pore.surface tension’] = 0.0725

################################ Define physics
↪→ ###############################

phys hg = op.physics.Standard(network=pn, phase=hg, geometry = pn, name = ’phys hg’)
phys air = op.physics.Standard(network = pn, phase = air, geometry = pn, name = ’phys air’)
phys water = op.physics.Standard(network = pn, phase = water, geometry = pn, name = ’phys water’)

throat diam = ’throat.diameter’
pore diam = ’pore.indiameter’

pmod = pm.capillary pressure.washburn
phys hg.add model(propname=’throat.entry pressure’,

model=pmod,
surface tension=’pore.surface tension’,
contact angle=’pore.contact angle’,
diameter=’throat.diameter’)

phys air.add model(propname=’throat.entry pressure’,
model=pmod,
surface tension=’pore.surface tension’,

contact angle=’pore.contact angle’,
diameter=’throat.diameter’)

phys water.add model(propname=’throat.entry pressure’,
model=pmod,
surface tension=’pore.surface tension’,
contact angle=’pore.contact angle’,
diameter=’throat.diameter’)

####### ADD LATE PORE FILLING
phys hg.add model(propname=’pore.pc star’,

model=op.models.misc.from neighbor throats,
throat prop=’throat.entry pressure’,
mode=’min’)

phys hg.add model(propname = ’pore.late filling’,
model = op.models.physics.multiphase.late filling,
pressure = ’pore.pressure’,
Pc star = ’pore.pc star’,
eta = 2.5, Swp star = 0.25,
regen mode = ’deferred’)

phys hg[’throat.pc star’] = phys hg[’throat.entry pressure’]
phys hg.add model(propname = ’throat.late filling’,

model = op.models.physics.multiphase.late filling,
Pc star = ’throat.pc star’,
pressure = ’throat.pressure’,
eta = 2.5, Swp star = 0.25,
regen mode = ’deferred’)
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lpf = ’pore.late filling’
phys water.add model(propname=’pore.pc star’,

model=op.models.misc.from neighbor throats,
throat prop=’throat.entry pressure’,
mode=’min’)

phys water.add model(propname=lpf,
model=pm.multiphase.late filling,
pressure=’pore.pressure’,
Pc star=’pore.pc star’,
Swp star=0.25,
eta=2.5)

Sat=[]
############################### run MIP simulation
mip = op.algorithms.Porosimetry(network=pn, name = ’MIP’)
mip.setup(phase=hg)
mip.set inlets(pores=pn.pores(’boundary’))
mip.settings[’late pore filling’] = ’pore.late filling’
mip.run(points = 100)
for pc in tqdm(np.unique(mip[’pore.invasion pressure’])):

# Update the occupancy of each phase at the current value of s
hg.update(mip.results(Pc=pc))
# The following is kludgey. We have added a Multiphase class that does
# this automatically but I won’t use it here for simplicity
air[’pore.occupancy’] = 1−hg[’pore.occupancy’]
air[’throat.occupancy’] = 1−hg[’throat.occupancy’]
# Regenerate the physics’ to remove saturation effects from previous loops
phys air.regenerate models()
phys water.regenerate models()
this sat = 0
this sat += np.sum(pn[”pore.volume”][hg[”pore.occupancy”] == 1])
this sat += np.sum(pn[”throat.volume”][hg[”throat.occupancy”] == 1])
Sat.append(this sat)
op.io.VTK.save(network = pn, phases=[hg], filename=path+’MIP/hg mip ’+str(len(Sat)))

x,y = mip.get intrusion data()
mip.plot intrusion curve()

###### Output MIP data
np.savetxt(path+’MIP/sat.csv’, Sat/Sat[−1], delimiter=’,’)
np.savetxt(path+”pnm mip.csv”, (x,y), delimiter = ’,’)

############################# Add geometry models
pn.add model(propname=’throat.endpoints’,

model=op.models.geometry.throat endpoints.spherical pores,
pore diameter=’pore.inscribed diameter’,
throat diameter=’throat.inscribed diameter’,
throat centroid=’throat.centroid’)

pn.add model(propname=’throat.conduit lengths’,
model=op.models.geometry.throat length.conduit lengths)

pn.add model(propname=’pore.area’,
model=op.models.geometry.pore area.sphere,
pore diameter=’pore.equivalent diameter’)

pn.add model(propname = ’throat.area’,
model = op.models.geometry.throat area.cylinder,
throat diameter=’throat.equivalent diameter’
)

pn.add model(propname = ’pore.diameter’,
model = op.models.geometry.pore size.equivalent diameter)

pn.add model(propname = ’throat.diameter’,
model = op.models.geometry.throat size.equivalent diameter)

phys air.add model(propname = ’throat.diffusive conductance’,
model = op.models.physics.diffusive conductance.ordinary diffusion,
pore area=’pore.area’,
throat area=’throat.area’,

135



pore diffusivity=’pore.diffusivity’,
throat diffusivity=’throat.diffusivity’,
conduit lengths=’throat.conduit lengths’,
conduit shape factors=’throat.poisson shape factors’)

phys air.add model(propname = ’throat.hydraulic conductance’,
model = op.models.physics.hydraulic conductance.hagen poiseuille,
pore area=’pore.area’,
throat area=’throat.area’,
pore viscosity=’pore.viscosity’,
throat viscosity=’throat.viscosity’,
conduit lengths=’throat.conduit lengths’,
conduit shape factors=’throat.flow shape factors’)

########################## run diffusivity simulation
↪→ #########################

def diffusivity(phase, conductance model, axis=0):
fd = op.algorithms.FickianDiffusion(network=pn)
fd.setup(phase=phase, conductance=conductance model)
if axis == 0:

fd.set value BC(pores=pn.pores(’front’), values=0.4)
fd.set value BC(pores=pn.pores(’back’), values=0.01)
L = im.shape[1]∗voxel
A = im.shape[0]∗im.shape[2]∗(voxel∗∗2)

elif axis == 1:# Through plane
fd.set value BC(pores=pn.pores(’left’), values=0.4)
fd.set value BC(pores=pn.pores(’right’), values=0.01)
L = im.shape[0]∗voxel
A = im.shape[1]∗im.shape[2]∗(voxel∗∗2)

else:
fd.set value BC(pores=pn.pores(’top’), values=0.4)
fd.set value BC(pores=pn.pores(’bottom’), values=0.01)
L = im.shape[2]∗voxel
A = im.shape[0]∗im.shape[1]∗(voxel∗∗2)

fd.run()
return fd.calc effective diffusivity(domain area=A, domain length=L)

prop = ’throat.diffusive conductance’

Deff 0 = diffusivity(air, prop, axis = 0)/air[’pore.diffusivity’][0]
Deff 1 = diffusivity(air, prop, axis = 1)/air[’pore.diffusivity’][0]
Deff 2 = diffusivity(air, prop, axis = 2)/air[’pore.diffusivity’][0]

print(’Diffusibility’)
print(’X : ’, Deff 0)
print(’Y : ’, Deff 1)
print(’Z : ’, Deff 2)

######################### run permeability simulation
↪→ #########################

def permeability(phase, conductance model, axis=0):
perm = op.algorithms.StokesFlow(network=pn)
perm.setup(phase=phase, conductance=conductance model)
if axis == 0:

perm.set value BC(pores=pn.pores(’front’), values=1)
perm.set value BC(pores=pn.pores(’back’), values=0.01)
L = im.shape[1]∗voxel
A = im.shape[0]∗im.shape[2]∗(voxel∗∗2)

elif axis == 1: # Through plane
perm.set value BC(pores=pn.pores(’left’), values=1)
perm.set value BC(pores=pn.pores(’right’), values=0.01)
L = im.shape[0]∗voxel
A = im.shape[1]∗im.shape[2]∗(voxel∗∗2)

else:
perm.set value BC(pores=pn.pores(’top’), values=1)
perm.set value BC(pores=pn.pores(’bottom’), values=0.01)
L = im.shape[2]∗voxel
A = im.shape[0]∗im.shape[1]∗(voxel∗∗2)

perm.run()
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return perm.calc effective permeability(domain area=A, domain length=L)
prop = ’throat.hydraulic conductance’

perm 0 = permeability(air, prop, axis = 0)
perm 1 = permeability(air, prop, axis = 1)
perm 2 = permeability(air, prop, axis = 2)

print(’Permeability’)
print(’X : ’, perm 0)
print(’Y : ’, perm 1)
print(’Z : ’, perm 2)

############################### Rel diff
↪→ ###############################

# Ignore the pore entry pressures
phys air[’pore.entry pressure’] = −999999
phys water[’pore.entry pressure’] = −999999

############################### Plot PSD (dv/v)
↪→ ###############################

v tot = pore v.sum()
no bins = 100
n, bins, patches = plt.hist(pore r, bins = no bins)
x new = []
for x in range(len(bins)):

if x == len(bins)−1:
break

else:
x new.append((bins[x]+bins[x+1])/2)

idx = []
dV = []
for x in range(len(bins)−1):

if x == 99:
idx.append(np.where((pore r >= bins[x]) & (pore r <= bins[x+1])))

else:
idx.append(np.where((pore r >= bins[x]) & (pore r < bins[x+1])))

dV.append(pore v[idx[x]].sum())

dv v = dV/v tot
plt.figure()
plt.plot(x new, dv v)
plt.show()
np.savetxt(path +”pnm psd pore inscribed.csv”, (x new, dv v,), delimiter = ’,’)
n, bins, patches = plt.hist(pore r eq, bins = no bins)

timestamp = time.strftime(”%Y−%m−%d %H−%M−%S”)
# take the current date and time
############################### Document gen

↪→ ##################################
def DocumentationCreator(timestamp):

”””
Creates a text file within the same folder as the image stack that is used to
document properties of the generated strucutre

Args:
− folder name (str, class variable): folder path for where images will be saved
− timestamp (str): string containing information of the date and time the

structure was generated
− other class variables are included to be added to the documentation text

Returns:
− text document containing parameters describing the generated structure
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”””

por = porosity

folder name = path
# imports folder name
document name = folder name + ’ documentation’
document file = open(folder name + ’/Void test eq’’.txt’,’w’)
# creates text file in same folder as image stack

document file.write(’%s\n\n’ %(document name))
document file.write(’Date generated: %s\n’ %(timestamp))
# saves date and time structure was generated
document file.write(’Structure size: %s\n’ %(str(structure size)))
# saves structure size
document file.write(’Image porosity: %.10f\n’ %(por))
# saves actual porosity of generated structure
document file.write(’Network porosity: %.10f\n’ %(porosity network))
# saves extracted porosity of generated structure
document file.write(’Diffusibility x : %.10f\n’ %(Deff 1))
document file.write(’Diffusibility y : %.10f\n’ %(Deff 0))
document file.write(’Diffusibility z : %.10f\n’ %(Deff 2))
document file.write(’Permeability x : %.20f\n’ %(perm 1))
document file.write(’Permeability y : %.20f\n’ %(perm 0))
document file.write(’Permeability z : %.20f\n’ %(perm 2))

document file.close()

return
################################# Export data

↪→ #################################
DocumentationCreator(timestamp)

por x = ps.metrics.porosity profile(im, axis = 0)
por y = ps.metrics.porosity profile(im, axis = 1)
por z = ps.metrics.porosity profile(im, axis = 2)

ws.save project(prj, path+’recon project ins’)
prj.export data(phases = [air, hg, water, mip], filename=path + ’PNM dry’, filetype=’vtp’)
ps.io.to vtk(im, path=path + ’/extracted network’, voxel size=voxel)

############################# porosity profile
↪→ ##################################

plt.figure(0, figsize = (13,3))
for i in range (1, 4):

plt.subplot(1, 3, i)
plt.subplot(1,3,1)
plt.plot(por x)

plt.title(r’X−direction’)
plt.ylabel(r’Porosity(%)’)
plt.subplot(1,3,2)
plt.plot(por y)

plt.title(r’Y−direction’)
plt.ylabel(r’Porosity(%)’)
plt.subplot(1,3,3)
plt.plot(por z)

plt.title(’Z−direction’)
plt.ylabel(’Porosity(%)’)

plt.tight layout()
plt.savefig(path + ”prosity profile TIfoam”)

plt.show()
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end = time.time()
print(”Time elapsed wall−clock time : ”, end−start)
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Appendix B

PNM code for relative transport
simulations

import openpnm as op
import numpy as np
import matplotlib.pyplot as plt
import os
import scipy as sp
import imageio
import csv
from tqdm import tqdm

path = ’/home/yeop/Documents/Article/Ti/1/’
wrk = op.Workspace()
wrk.settings[’loglevel’] = 50
print(wrk)

file = ’stack1.tif’
fetch file = os.path.join(path,file)
im = imageio.mimread(fetch file)
im = sp.array(im, dtype = bool)
im = sp.invert(im)
voxel = 1.79e−6

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−− Invasion percolation
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# f = [0.1, 0.3, 0.5, 0.7, 1] # When testing inlet conditions,
# for i in f:
f = 1
wrk.clear()
wrk.load project(path + ’recon project eq’)
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prj = wrk[’reconstruction’]
pn = prj.network
air = prj.phases(’air’)
water = prj.phases(’water’)
phys air = prj.physics(’phys air’)
phys water = prj.physics(’phys water’)

water[”pore.occupancy”] = False
water[”throat.occupancy”] = False
air[”pore.occupancy”] = False
air[”throat.occupancy”] = False

phys air.add model(propname=’throat.multiphase conductance’,
model=op.models.physics.multiphase.conduit conductance,
throat conductance=’throat.diffusive conductance’,
mode=’medium’,
factor=1e−8)

phys water.add model(propname=’throat.multiphase conductance’,
model=op.models.physics.multiphase.conduit conductance,
throat conductance=’throat.diffusive conductance’,
mode=’medium’,
factor=1e−8)

phys air.add model(propname=’throat.conduit conductance’,
model=op.models.physics.multiphase.conduit conductance,
throat conductance=’throat.hydraulic conductance’,
mode=’medium’,
factor=1e−8)

phys water.add model(propname=’throat.conduit conductance’,
model=op.models.physics.multiphase.conduit conductance,
throat conductance=’throat.hydraulic conductance’,
mode=’medium’,
factor=1e−8)

#for CL Inlet$
# inlet = np.where(pn[’pore.diameter’]<=4.5e−9)
#for PTL Inlet$
inlet = np.random.permutation(pn.pores(’left’))[:int(pn.num pores(’left’)∗f)]

# Instantiate an invasion percolation algorithm and inject water from the top
ip = op.algorithms.InvasionPercolation(network=pn)
ip.setup(phase=water)
ip.set inlets(pores=inlet)
ip.run()

# Instantiate a diffusion algorithm for the air phase
fda tp = op.algorithms.FickianDiffusion(network=pn, phase=air)
# Apply a concentration gradient from top to bottom, same direction as invasion
fda tp.set value BC(pores=pn.pores(’left’), values=1)
fda tp.set value BC(pores=pn.pores(’right’), values=0)
# Run it to obtain the effective diffusivity of the dry network
fda tp.run()
Deff a tp = fda tp.rate(pores=pn.pores(’left’))
# Instantiate a diffusion algorithm for the water phase
fda ip = op.algorithms.FickianDiffusion(network=pn, phase=air)
fda ip.set value BC(pores=pn.pores(’top’), values=1)
fda ip.set value BC(pores=pn.pores(’bottom’), values=0)

fda ip.run()
Deff a ip = fda ip.rate(pores=pn.pores(’top’))

sta ip = op.algorithms.StokesFlow(network = pn, phase = air)
sta ip.set value BC(pores = pn.pores(’top’), values = 1)
sta ip.set value BC(pores = pn.pores(’bottom’), values = 0)
sta ip.run()
K a ip = sta ip.rate(pn.pores(’top’))
phys air.regenerate models()

sta tp = op.algorithms.StokesFlow(network = pn, phase = air)
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sta tp.set value BC(pores = pn.pores(’left’), values = 1)
sta tp.set value BC(pores = pn.pores(’right’), values = 0)
sta tp.run()
K a tp = sta tp.rate(pn.pores(’left’))

stw tp = op.algorithms.StokesFlow(network = pn, phase = water)
stw tp.set value BC(pores = pn.pores(’right’), values = 1)
stw tp.set value BC(pores = pn.pores(’left’), values = 0)
stw tp.run()
K w tp = stw tp.rate(pn.pores(’right’))

swat = []
deffa tp = []
deffa ip = []
ka tp = []
kw tp = []
pc = []

fda tp.settings[’conductance’] = ’throat.multiphase conductance’
fda ip.settings[’conductance’] = ’throat.multiphase conductance’
sta tp.settings[’conductance’] = ’throat.conduit conductance’
stw tp.settings[’conductance’] = ’throat.conduit conductance’

# Loop over 40 invasion configurations
for seq in tqdm(sp.linspace(0, pn.Nt+pn.Np,40)):

# Update the occupancy of each phase at the current value of s
water.update(ip.results(Snwp=seq/(pn.Np+pn.Nt)))
# The following is kludgey. We have added a Multiphase class that does
# this automatically but I won’t use it here for simplicity
air[’pore.occupancy’] = ˜water[’pore.occupancy’]
air[’throat.occupancy’] = ˜water[’throat.occupancy’]
# Regenerate the physics’ to remove saturation effects from previous loops
phys air.regenerate models()
phys water.regenerate models()
# Run both algorithms
fda tp.run()
fda ip.run()
sta tp.run()
stw tp.run()
# Determine the flux into the top of the domain, in each phase
deffa tp.append(fda tp.calc effective diffusivity(domain length = im.shape[0]∗voxel, domain area = im.shape[1]∗

↪→ im.shape[2]∗voxel∗∗2 ))
deffa ip.append(fda ip.calc effective diffusivity(domain length = im.shape[1]∗voxel, domain area = im.shape[0]∗

↪→ im.shape[2]∗voxel∗∗2))
ka tp.append(sta tp.calc effective permeability(domain length = im.shape[0]∗voxel, domain area = im.shape[1]∗

↪→ im.shape[2]∗voxel∗∗2))
kw tp.append(stw tp.calc effective permeability(domain length = im.shape[0]∗voxel, domain area = im.shape

↪→ [1]∗im.shape[2]∗voxel∗∗2))

swat.append(seq/(pn.Np+pn.Nt))
op.io.VTK.save(network = pn, phases=[fda tp,fda ip,sta tp,sta ip,stw tp,air, water, phys air, phys water],

↪→ filename=path +’any/ip/water ip ’+str(int(i∗10))+ ’ ’ +str(len(swat)))
if water[’throat.occupancy’].any():

pi = np.max(ip[’throat.entry pressure’][water[’throat.occupancy’]])
else:

pi = 0
pc.append(pi)

# Plot the results for each phase as function of water saturation
deffa tp IP = deffa tp/deffa tp[0]
deffa ip IP = deffa ip/deffa ip[0]
ka tp IP = ka tp/ka tp[0]
kw tp IP = kw tp/kw tp[−1]

figure 0 = plt.plot(pc, swat)
plt.show()
np.savetxt(path+”pnm water ip.csv”, (pc,swat), delimiter = ’,’)
with open(path+’pnm rel IP ’+str(int(i∗100))+’.csv’, ’w’) as csv file:

142



csv writer = csv.writer(csv file, delimiter = ’,’)
csv writer.writerow(swat)
csv writer.writerow(np.asarray(deffa tp IP).flatten())
csv writer.writerow(np.asarray(deffa ip IP).flatten())
csv writer.writerow(np.asarray(ka tp IP).flatten())
csv writer.writerow(np.asarray(kw tp IP).flatten())

fig = plt.plot(swat, deffa tp IP, ’b−o’)
fig = plt.plot(swat, deffa ip IP, ’r−o’)
fig = plt.show()
fig1 = plt.plot(swat,ka tp IP, ’b−o’)
fig1 = plt.plot(swat,kw tp IP, ’r−o’)
fig1 = plt.show()

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−− Ordinary percolation
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

wrk.clear()
wrk.load project(path + ’recon project eq’)
prj = wrk[’reconstruction’]
pn = prj.network
air = prj.phases(’air’)
water = prj.phases(’water’)
phys air = prj.physics(’phys air’)
phys water = prj.physics(’phys water’)

water[”pore.occupancy”] = False
water[”throat.occupancy”] = False
air[”pore.occupancy”] = False
air[”throat.occupancy”] = False

phys air.add model(propname=’throat.multiphase conductance’,
model=op.models.physics.multiphase.conduit conductance,
throat conductance=’throat.diffusive conductance’,
mode=’medium’,
factor=1e−8)

phys water.add model(propname=’throat.multiphase conductance’,
model=op.models.physics.multiphase.conduit conductance,
throat conductance=’throat.diffusive conductance’,
mode=’medium’,
factor=1e−8)

phys air.add model(propname=’throat.conduit conductance’,
model=op.models.physics.multiphase.conduit conductance,
throat conductance=’throat.hydraulic conductance’,
mode=’medium’,
factor=1e−8)

phys water.add model(propname=’throat.conduit conductance’,
model=op.models.physics.multiphase.conduit conductance,
throat conductance=’throat.hydraulic conductance’,
mode=’medium’,
factor=1e−8)

# Instantiate an ordinary percolation algorithm and inject water in through−plane
op1 = op.algorithms.OrdinaryPercolation(network=pn)
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op1.setup(phase=water)
op1.set inlets(pores=inlet)
op1.run(points = 70)

# Instantiate a diffusion algorithm for the air phase
fda tp = op.algorithms.FickianDiffusion(network=pn, phase=air)
# Apply a concentration gradient from top to bottom, same direction as invasion
fda tp.set value BC(pores=pn.pores(’left’), values=1)
fda tp.set value BC(pores=pn.pores(’right’), values=0)
# Run it to obtain the effective diffusivity of the dry network
fda tp.run()
Deff a tp = fda tp.rate(pores=pn.pores(’left’))
# Instantiate a diffusion algorithm for the water phase
fda ip = op.algorithms.FickianDiffusion(network=pn, phase=air)
# Apply a concentration gradient from top to bottom, same direction as invasion
fda ip.set value BC(pores=pn.pores(’top’), values=1)
fda ip.set value BC(pores=pn.pores(’bottom’), values=0)

fda ip.run()
Deff a ip = fda ip.rate(pores=pn.pores(’top’))

sta tp = op.algorithms.StokesFlow(network = pn, phase = air)
sta tp.set value BC(pores = pn.pores(’left’), values = 1)
sta tp.set value BC(pores = pn.pores(’right’), values = 0)
sta tp.run()
K a tp = sta tp.rate(pn.pores(’left’))

stw tp = op.algorithms.StokesFlow(network = pn, phase = water)
stw tp.set value BC(pores = pn.pores(’right’), values = 1)
stw tp.set value BC(pores = pn.pores(’left’), values = 0)
stw tp.run()
K w tp = stw tp.rate(pn.pores(’right’))

deffa tp = []
deffa ip = []
ka tp = []
kw tp = []

# Here we must tell the transport alg to use the multiphase conductance, rather
# than the default which is the single phase value
fda tp.settings[’conductance’] = ’throat.multiphase conductance’
fda ip.settings[’conductance’] = ’throat.multiphase conductance’
sta tp.settings[’conductance’] = ’throat.conduit conductance’
stw tp.settings[’conductance’] = ’throat.conduit conductance’

Snwparr = []
Pcarr = []
Sarr=np.linspace(0,1,num=70)
Sat=[]
for pc in tqdm(np.unique(op1[’pore.invasion pressure’])):

# Update the occupancy of each phase at the current value of s
water.update(op1.results(Pc=pc))
Pcarr.append(pc)

air[’pore.occupancy’] = ˜water[’pore.occupancy’]
air[’throat.occupancy’] = ˜water[’throat.occupancy’]
# Regenerate the physics’ to remove saturation effects from previous loops
phys air.regenerate models()
phys water.regenerate models()
this sat = 0
this sat += np.sum(pn[”pore.volume”][water[”pore.occupancy”] == 1])
this sat += np.sum(pn[”throat.volume”][water[”throat.occupancy”] == 1])
Sat.append(this sat)
# Run all algorithms
fda tp.run()
fda ip.run()
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sta tp.run()
stw tp.run()
op.io.VTK.save(network = pn,

phases=[fda tp,fda ip,sta tp,stw tp,water],
filename=path+’any/op/water op ’+str(len(Sat)))

# Determine the flux into the top of the domain, in each phase
deffa tp.append(fda tp.calc effective diffusivity(domain length = im.shape[0]∗voxel,

domain area = im.shape[1]∗im.shape[2]∗voxel∗∗2))
deffa ip.append(fda ip.calc effective diffusivity(domain length = im.shape[1]∗voxel,

domain area = im.shape[0]∗im.shape[2]∗voxel∗∗2))
ka tp.append(sta tp.calc effective permeability(domain length = im.shape[0]∗voxel,

domain area = im.shape[1]∗im.shape[2]∗voxel∗∗2))
kw tp.append(stw tp.calc effective permeability(domain length = im.shape[0]∗voxel,

domain area = im.shape[1]∗im.shape[2]∗voxel∗∗2))

tot vol = np.sum(pn[”pore.volume”]) + np.sum(pn[”throat.volume”])
Sat = np.asarray(Sat)
Sat /= tot vol
Pcarr = np.asarray(Pcarr)

np.savetxt(path+”pnm water op.csv”, (Pcarr,Sat), delimiter = ’,’)
with open(path+’pnm rel OP.csv’, ’w’) as csv file:

csv writer = csv.writer(csv file, delimiter = ’,’)
csv writer.writerow(Sat)
csv writer.writerow(np.asarray(deffa tp/deffa tp[0]).flatten())
csv writer.writerow(np.asarray(deffa ip/deffa ip[0]).flatten())
csv writer.writerow(np.asarray(ka tp/ka tp[0]).flatten())
csv writer.writerow(np.asarray(kw tp/kw tp[−1]).flatten())
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Appendix C

Code for MIP and PSD in
OpenFCST

”””
Created on Thu Aug 1 11:05:36 2019

@author: yeop
”””

import pyfcst.ips.analysis as an
from pyfcst.ips.analysis.Intrusion import Intrusion
import pyfcst.ips.inout as io
import numpy as np
import matplotlib.pyplot as plt

################# load image stack
’’’
When the region of interest is not zero (not black), uncomment the commented line to invert the white region black
When sequence =”no”, 3D stack image file is read. To read the sequential images, set it ”yes”.
Ex)
sequential=”Slice ”
image = io.reader(temp dir+sequential, sequence = ’yes’)
image = image.getarray()
’’’

path = ”/home/yeop/Documents/Article/image gen/CL recon/”
sample = ”stack1.tif”
image=io.reader(path+sample, sequence=”no”).getarray()

#image = np.invert(image) #Uncomment this when invert the white region to black.

################# Calculating PSD using sphere fitting algorithm
’’’
By setting material = 0, the module computes the distance map of black region. If it is set 255, the module will run

↪→ with white region of the image. However, unlike the sphere fitting module can assign the region of interest
↪→ , the intrusion module only works with the material = 0. When computing both PSD and MIP, set the
↪→ material = 0 and invert the image color.

’’’
sphere = an.distanceSD(image,

label = ”Pore”,
voxelsize = [2e−9, 2e−9, 2e−9],
voxelunit = ”m”,
material = 0)

sphere.calcPSD(100)
#tag = ’Example ’
#sphere.plot distn(datatype = ’cpsd’, label = tag)
#sphere.plot distn(datatype = ’psd’, label = tag)
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span = sphere.span
dxdr = sphere.psd/sum(sphere.psd)/((sphere.span[1])−(sphere.span[0]))
rdxdr = span∗dxdr

np.savetxt(path+’psd.csv’,(span, rdxdr, sphere.psd),delimiter=’,’)

################## Calculating virtual MIP
’’’
Intrusion module always works on the black region (intensity 0).
Check the color of the region of interest is black (or intensity 0).
’’’
obj = Intrusion(image,

[3e−9, 3e−9, 3e−9],
folder=path,
mode=’MIP’,
nsteps = 40,
Contact angle=140,
Surface tension=0.48,
psd type = ’single’)

poreIn=np.zeros(image.shape)
P,sat = obj.run(poreIn=poreIn, Pstart = 0, nsteps=40,mesh=”off”)

result = P, sat
np.savetxt(path+”fcst mip.csv”, result, delimiter = ”,”)

# Calculating MIP based PSD
r = −(2∗0.48∗np.cos(140∗np.pi/180)/P)
r[0]=0
sat = np.asarray(sat)/100
dx = np.asarray([y−x for x, y in zip(sat, sat[1:])])
dr = np.asarray([x−y for x, y in zip(P, P[1:])])
rdxdr mip= P[1:]∗dx/dr

plt.figure(0)
plt.plot(span,rdxdr)
plt.plot(r[1:], rdxdr mip)
mip psd = r[1:], rdxdr mip
np.savetxt(path+”mip psd.csv”, mip psd, delimiter = ”,” )

147



Appendix D

Mesh generation in OpenFCST

#!/usr/bin/env python2
# −∗− coding: utf−8 −∗−
”””
Created on Wed Nov 14 13:15:06 2018

@author: yeop
”””

import pyfcst.mesh.PhaseGenerator as grid
from PIL import Image
import os
import numpy as np
import pyfcst.ips.inout as io
import scipy as sp

temp dir = ’/home/yeop/Documents/Article/image resizing/Ti/150cube real/’+str(j+1)+’/’

##### Stack to image part
image = io.reader(temp dir + ’stack1.tif’)
image = image.getarray()
image = np.array(image, dtype = np.float)
image = np.absolute(image)

os.makedirs(temp dir+’/vtk/’ + ”Sample−1”+”/inputs/stack1/”)
for i in range(image.shape[2]):

sp.misc.imsave(temp dir +’vtk/’+ ”Sample−1”+”/inputs/stack1/” + ”Segmented−%03d.tif” %(i+1), image[:,:,
↪→ i])

#Determine voxel sizes for all directions
imsize origin = [300.0, 300.0, 300.0]
voxel origin = 1.79e−4
coarsened = [150.0, 150.0, 150.0]
vox ip = imsize origin[0]/coarsened[0]∗voxel origin
vox tp = imsize origin[2]/coarsened[2]∗voxel origin
voxel = [vox ip, vox ip, vox tp]
np.savetxt(temp dir+”voxel size.txt”, voxel, delimiter = ”,” )

#Defining variables to read in images; Omit this section if you already have a 3D array
# To generate VTK mesh

foldername = temp dir+’/results/resized images1/’
basename = ”resized image”
num images = int(coarsened[2])

output = temp dir + ”sample−1.vtk”
name=foldername+basename+’%.3d’
extension=’.png’
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tmp = []

#Looping over images and reading them
for k in range(num images):

filename=name%(k+1)+extension
tmp.append(np.asarray(Image.open(filename),dtype=np.float))

#Generating the 3D numpy array
#changing all non−zero material ids to 20; assuming that pixel value of 0 was the one of interest
image=np.dstack(tmp)
image[image>0]=1
image[image==0]=255
image[image==1]=0
#Generating the VTK mesh using the Mesh module in PythonFCST

os.chdir(temp dir)
o=grid(image,output,scale=voxel,limit=0)
o.write()
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Appendix E

Python code for running PMSRT

”””
Created on Fri Oct 19 10:47:00 2018

@author: yeop
”””
from matplotlib import pyplot as pl
import pyfcst.ips.inout as io
import numpy as np
import scipy as sp
import subprocess
from numpy import genfromtxt
import pickle
import shutil
import sys,os,re

pl.rcParams[’figure.figsize’] = (7.5, 5)
pl.rcParams.update({’font.size’: 20})

temp dir =’/home/yeop/Documents/Article/toray/600to200/’
Param path = ’/home/yeop/Documents/Article/image resizing/’
pmsrt path = ’/home/yeop/pmsrt/Install/bin/’
files = ’/parameters.prm’
voxel1 = [1.79, 1.79, 1.79]

###### Stack to image part
image = io.reader(temp dir + ’/stack1.tif’)
image = image.getarray()
image = np.array(image, dtype = np.uint8)
image[image>0] = 1
image[image==0] = 255
image[image==1] = 0

os.makedirs(temp dir + ”/inputs/reference images/stack1”)
for j in range(image.shape[2]):

sp.misc.imsave(temp dir + ”/inputs/reference images/stack1/” + ”Slice %03d.tiff” %(j+1), image[:,:,j].astype(
↪→ np.uint8))

##### Read sequential images
im path = temp dir+’/inputs/reference images/stack1/’
sequence=”Slice 0001.tiff”
image = io.reader(im path+sequence,sequence = ’yes’)
image = image.getarray()

##### Run PMSRT#########
dest path = temp dir

shutil.copy(Param path+files, dest path)
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args = (pmsrt path + ”./Reconstruction”, dest path + ”/parameters.prm”)
sample = dest path
os.chdir(sample + ”/”)

pmsrt = subprocess.Popen(args, stdout=subprocess.PIPE)
pmsrt.wait()
print pmsrt.stdout.read()

skip lines=0
first string = ’Distance (Pixels)’

with open(sample + ’/results/PMSRT Output.dat’) as myFile:
for num, line in enumerate(myFile, 1):

if first string in line:
skip lines=num

myFile.close()
corr functions = genfromtxt(sample + ’/results/PMSRT Output.dat’, delimiter=’\t’,

skip header=skip lines, filling values=’0.0’)
height=corr functions.shape[0]
width=len(corr functions[1])−1

corr array=np.zeros((height,width))

for i in range(0,height):
for j in range(0, width):

corr array[i][j]=corr functions[i][j]

corr pickle = open(sample + ’/results/corr’,’w’)
pickle.dump(corr array,corr pickle)
corr pickle.close()
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