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Abstract

\

We study the nqtion of rational matrix approximants to a formal matrix power
series. Various definitions ar'e discussed and a nmew definition is provided. Solutions
are characterized and-an algorithm to calculate matrix rational approximants L§ ‘ter-
.tain formal matrix power series is given. The algorithm is an extension of one given
by Cabay and ‘Choi for cal‘culatiAng scaled Padé fractions for a scalar formal powerv

serics. It is found to be less restrictive than existing algorithms. Costs are calci’ilaté\d

~

and compared with other known utational methods. The algorithm turns out to

be of lower complexity'than existing algorithms. .

s

The relationship be}jween the matrix Padé fractions and the Euclidean algorithm
P S X .
for calculating .greatest common divisors of two matrix polynomials is also studied.

Two other algorithms are given, including one that provides a fast algorithm for situa-

/

tions where a pseudo Euclidean algori‘thm‘can be applied. *
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’ Chapter 1 -

In'trod uction

o

Formal power series are expressions-of the form

A(") - goaiz’. ’

where the coefficicnts are from some algebraic structure (e.g., a field). The term for-

mal comes from the fact that we are not concerned about the convergence of the power

[

- series. The Padé Table of such a power série; is a doubly infinite array of rational
expressions

ﬁ“.‘z‘

Um/u(z)‘- s=0

Vm/u(z) 2‘~uz,‘ ‘

=0

These rational expressions are to agree with as many terms in A(z) as possible. The
- power series A(z) is said to bt: nc;orx;lalﬁf, for every such pair (m,n), .th.e agreenie_r:t is
- exact through to the z™* " term. R B

The foundations for 'Padé theory of rational approximations were laitl by Cauchy
(1821) in the work Cours d’Analyse”"~ The concept of Padé t;zble was due to Fro-
- beaius [18] who developed the basic algontbm:c aspects of the theory The reference
to Padé [24] , whose work followed that of Frobemus came from his treatment of some
abnormal cases arising in the table. |

Formal power fséfies and their Padé tz;bles have méhy/a‘pplications in mathemat-
ics‘ and engineering—relatedl disciplines. Applications include mumerical computations
for special pojwt-rf series ( e.g., Gamina'fu‘nction ) (¢f Nemeth and Zimanyi [23] ), ;;lgc'_)-'
rithms in thc'iieldtof numerical inalyqis tcf Gragg,{lQ} ),?triaignlation of Block Hankel
and TOeplitz‘ matrices "(tf Rissayenﬁ [27] ), solving l’_ili;ear«systems"of equations with
- Hankel or Toeplitz coefficient vxlxi.atric'es (cf Rissanen [25] ), in digital filtering theory (cf

i
B
LY



R

ina neighbofhood about the point. One could then determine thzit ¥(z) is an infimite )

power >series, we may ask for k+1 i’olyn(‘)miala

Bultheel [12] or Brophy and Salazar [9] ) and linear control theory (cf Elg/qrd (17]).

‘As an illustration we can single out three areas where formal pgwer serics and
\ ' .

, . . .
related rational expressions come into play. In the first case, we £an examine the

3

theory of rational approximations in relation to the field of differential equations.
. - /

y(z) (the constraints may be due to physical laws). Thus, ‘we are given an equation of

the form

a( e d(n) Fiooo b ‘?f"'%"’ c(z)y(z) = r(z) : (1.1)

5

with certain initial conditions and wish to determine the function y(z). Numerous
v :

methods exist to determine y(z) for various special types of equations. “One method

used in the 19th century to determine numerical solutions was the power series

mecthod. Here one noticed that; as long as a(z) was not zero for a particular value of z,

say z = 0, then we could divide equation (1.1) by a(z) and isolate %—;‘"— in a neighbor-

- There, one has an equation which constrains the behaviour of /a particular function

hood of 0. This ‘then implies that the higher derivatives of y(z) exist near this point

-(given that the coeficients in the equation are analytic, e.g., if the coefficients are

polyn;')'fni_als). This then implies that the Taylor expansion of y(1) exists and converges

=

power series and calculate as many terms as necessary from equation (1. l) as long as'

A

“the mmal conditions are known.

Sometimes though, we face the inverse problem. . Namcl'y,'if.lwwhavc a function

¥(z) that we can put into the form of an infinite power series, then.we want to know

Th

the constraints or @ontrols that y(z) must satisfy. ~given tl'ia_t ¥(z) is a formal

Piz) o Pucylz) ;o0 Pils) , Pol)

such that - —_ o .



PAZ’]TT;’L <o+ Pya)y(a) + Pols) = MM R(e)

- where R(z) is some power series. Here, p.: de&otes the Hégree of P(z). In the particu-
lar case where k = 1 , or in the case that all the polynomials except Py(z) are constant

polynomials, the situation looks like
Val2)y(z) = Un(z) = z"""”'R(Z)

and the pair U,(z) and V,(z) is called a Padé form of type (m,n) fory(z) In the more

general case where k > 1, the polynomials Py(z) form a Hermlte-Pade approxlmant of

I3

yfz). (S‘ee for example Baker (3] )
A second area where rational expressions have a connection comes up in the area
of algebraic computation, more specifically in the general area of calculation of

s

gréatest common divisors of two polynomials. If we have two finite-degree polynomi-

. ) : ' . Alz)
als A(z) and'B(z), then we can form the formal power series B(z)" If we find a rational

approximatiof-to this quotient, say of 'degrees m and n respectively, then we get the

~ expression. ~

-

Alz Un(z) mént v
—B{:}-- —V—,,(_z—)+ z LR(2).

We can rewrite this as

A(2) V(z) = B(:)Unle) = 71 Run(s)

. If we replace the variable z by z -1 in the above expressnon and make’a wise choice for .

ve

'm and n, then we can muluply both sl.des of the new equat:on by rticular poﬁ_er of |
vﬁto\geyfhe new expressxon e ) S B -
Ay Vi) - B‘(L) U..(z Rualz) )

where the guperscript * means to i"everse the order of the coefficients in the polyno-

mial. But then we have a Knear cotnbination_ of the two reversed polynomials. Thisis



o K ‘ '

the sort of express:on that comes up when applying Euclid’s algomhm to tfhe reversed

polynomials. By a judicious choice of m and n, we can end up finding the greatest
. N

common divisor of two polynomials by calculating certain rational approxnmants of the

power series obtained by reversing the order of the coefficients of the two polynomials

- and then obtaining the quotient power series. See chapter 5 for more details.

o ‘\n'othe‘r example that illustra‘ters.the use of formall power series and their ration.ai
approxlmauons in a natvral settlng comes from the field of dlgltal ﬁltenng(/Wc con-
sider the problem of modeling human speech production (Bult.heel [12] ) One such
model visualizes the vocal tract as a sequence of coaxial cylmders (cf Wakita [33] or

)

Stevens [31] ).

 m—— ey ¢ .
r— _
——— _-_
~
‘ ' <
glottis = B " lips o '
= Adubir g _ . —
s
. L. . ' 9 . . -—._n—! ; . « ":l.‘*fhr:

~ Ta
h PRI
S

PR

At the Ieft we have the gloms whxle at the nght we have the hps A sound such as »

vowel i is' produced by a pulse train produccd by tl}e mput (vocal chords) The vocal
Q

‘tract then produces a perlodlc aoundwave 3t the output (prs)

ks

(‘

Ina tlme-senes analyals of thls system (cf Makhoul [21] ), we sample our output

and thmk of thls model of the vocal tract as afdmcrete system wn.h a dlscretued mput v

2, snd‘ dnscreuzed o'utp’ut_ Yu- Th_e outputs,ar‘e determined by conv_oluuonj of. the

inputs with ap impulse response k. “.



nlv' ’

“

If we think of these three discrete sequences in terms of their z-transforms, i.e., as

power series ’ .

X(z)= Tzeh |, Y(2)= Tyt , Kiz)= Tkt
¢ .
then convolution of the impulse response function goes over to polynomial multiplica-

fion and we gc“t Co-
5. Y() = K(2)X(2) .

o

K(z) is called the transfer function of the system. Note that K(z) has no negative

powers since the system we are modeling is causal, that is, there is no output before

there is input’ The coéfficients of the transfer function are usually determined theoret-

. .. S ‘

ically ol{.experimentally by measuring the output of a signal from an input that iso-

~ - " ’

lates on the particular response.
. .

’ ‘ . N . N U . . ' .
‘If we now approximate K(z) by a rational expression we obtain a particular model

[ " 5

for the wocal tract. For example, if the approximatﬁoﬁoto K(z) is of the form —_— <
g 4 . . > . : :
. . ~ @ A ) . ' - ) IS E-viz,

' ' i=0

¥

( ~ ' - " . N
’ f

-, ! . . 't . ~ : .‘ M ’
<, (with vo™ 1), 1.e.,3 ratlonal approxlmatlon where the degrees are 0 and n, then we

-2

2

8

get an Autoregresswe or AR filter (for large,p degrees of the numerator, we have
,-ﬂ"

i
ARMA or Autotegressxve-movmg-averagc filters). With an AR ﬁlter the mput and ,
ouféputa are r_elated by the form ° ‘ - ST SRR
. \ c , . [ ) » .‘) .
. _ - W=y ",[ ”11’:—1 + o by, ];
'\ ' . « o
i€, a systeﬂi wlierc the o\;tput at time t depends on the mput at time t and t,he n pre- ‘

. fv .6 5 L) e .
vnous outpu{s Because of this, these filters” are also known as predlctlive filters. For .

L]

’

oo .
fur .g:er mformatlon about predlctlve ﬁlters and their uses, see- the amcle by Makhoul
. sﬁl : !.h‘ “* éo :' PR ‘5 I . < c-‘

5 (4 { . % - -
N i .8 S of . ." "
A . - R



(To sce how filters follow naturally from the model of the vocal tract as a scries of

coaxial cylinders, we refer the reader to the paper by Wakita [33] ).

2
The previous example is a good illustration of a problem that generalizes to

bigher dimensions. . We have dealt with a single-input-single-output system. Similar

N

problems occur with a multi-input-multi-output system. The formal power series that
. - . QD

results now has matrix coefficients. Agaimr the problem of modeling the input-output

system comecs up and oftén we look to ratipnal approximations of the form

V.(z)"'-U,(z) to give us approximations to the system in terms of input-output rela-

tionships.

a

Notice though that these are differences between the scalar case and the multidi-

-

mensional case that appear even here. Because the rational approximations involve
matrix polynomials, an expression of the form V,tz)”‘-Um(z) differs from an expres-
Sion of the form U,,,(:)-.V,,(z)‘—l (Approximating K(z) by V. (z)7!-U,(z) results in the
approximation V, (z)Y(z)=U_,(z)X(z) which rel;t.es the output vectors y,, - - ., y,_,
' to the input vectors 7, , --- , :r;_,,,. The other approximation, the right approxima-
tion, does -not nccessarily. i[ﬂ,ply the same relation since matrices d§ not nccessarily
commuté.)-
. . L ‘ * . .
The ]ack of‘go_mmutativity of matrices is qut one of‘the (v:omplications involved in

approximating matrix power series by rational approximants. In the calculations to

t N

. E X !
determine the rational approximants themselves, the fact that various coefficients

might not be invertible causes - problems that must be a_ddrcsdedi_

. . - -4 ’ ) : '
Once there is a desire to approximate a formal power series by a rational expres-
i LY -

B

- sion (called Padé ;Q[msi; there i the.‘problem of "how to go t;bout Qetermining the

*,

coefficients for the nuimerators and denominators. There are a number of algorithms

that calculate Padé forms. ‘In the (jnc’ dimensional case,.there are algorithms due to

» . . oy, ,‘ - . ) .
Wynn [34] , Watson and Brezinski.[8] , and Rissanen [25] . Algorithms where the



coeflicients are matrices can be found in the papers of Bultheel (10} , Bose and Basu (6]

, and Starkand [30} . : J_ R .,

.
»

The problem that occurs with most of the above algorithms is that they limit

their scope to the normal case . This is a severe restriction. For example,

- . - - ‘e 1
any power series with apy zero coefficients is not normal.

One algorithm that does not require the normality restriction was discovered by
Cabay and Choi [14]. This algorithm, called the offdiagonal algorithm, is more

efficient than previous pLgox"ithms and has interesting consequences.

T ’

This thesis presents an algorithm to calculate matrix Padé forms, that extends
the algorithm of Cabay and Choi for calculating Padé forms in the scalar case. It does
not cover all matrix power series, unlike the scalar case. For example, we limit our

* scope to the situati‘on where the input-ouput system has an equal number of outputs as
inpu'ts, i.e. we assume our matrices are square xﬁatrices. However our results are more
general than those covered by the normal case (‘which also)m’lly deals with square
matrices). In addition, it is more efficient in handling the case vyhen the power series is
normal than those ::f found in Bultheel, Bose et al , and Starkand. For example the
mgtrix offdiagonal algorithm cox;xput,es the Padé forms in complexity O(n-log?n -p’),
while the cost for the algorithms of Bose etal and Starkand are 'O(n® -p’). Here pis
the size of the matrices and p’ represents the cost of multiplying two p X p matrices.
Under normal multiplication r is 3, while ‘using Strassen’s method reduces this to r is

about 2.81. See, for example, Horowitz and Sahni [20] .

The rest of the thesis is broken into five chapters. Ci)apte_r 2 reviews the one

dimensional case of Padé forms. A general definition for Padé form of a particular

integer type is given and existence of these forms is demonstrated for all power series.
‘ _ b )

‘Uniqueness is a problem and so we characterize the Padé forms of a power series. This
4 . . .

H
¢ is done by looking at the linear system that results from the order condition. This

3

— _



’

charactel:izmion deals separately with the nonsinguiar coefficient matrix case (i.e. the
normal case) and the singular coefficient matrix case (i.e. the non-no;'mal case).
. .
Because of this characterization a special type of Padé form, clalled the scaled Padé
fraction, is identified. The§e scaled Padé fractions are shown to always exist ’and are

\

unique up to multiplication by a nonzero coefficient.

Chapter 3 is concerned with the multidimensional case where the formal power
serics has matrix coefficients. A pumber of definitions exist to p);tend the notion of
rational approximation to such a power series. We first introduce the broadest possi-
ble definition. The equations that result from this definition are examined and
existence is proved for all power serA'es and degree conditions. The lack of matrix coﬁx-
mutativity and invertiblity is discussed here. .Various examples of unexpected (and

undesirable) behaviour are included in this chapter. These examples lead us to limit

the class of formal matrix power series for which we will calculate Padé forms. This
\ : .

a

subclass of power series, called nearly norfial power series, includes all scalar 'powef
series and all normal matrix power series. As in the scalar case, we characterize the
~ Padé form problem for these nearly normal power series both in the normal case and
\the/singular case. Scaled matrix Padé fractions are introduced anci‘ soﬁ)e of their pro-
perties are discussed . The chapter also disqusﬁes definitions of Padé forms used by

‘ other authors and comparisons between these definitions and ours are given.
Chapter 4 presents a new algorithm for obtaining the Padé approximant for

‘ . & )
0 - - ~ * sge . v . .
nearly-normal power series in the multi-dimensional case. When the dimension of our

system ig one, the algorithm reduces to the offdiagonal algorithm of Cabay and Chaoi,
ihough in a somewhat diflerent set of steps. Why and how our algorithm works is

described in detail. A multidimensional example is included . A detailed cost analysis

.

is provided and results compared with other methods.

« r

Chapter § discusses the relationship between the new algorithin and the general
. ¢ T

, o

\



Euclidean algorithm for calculating the greatest common divisor of two matrix polyno-
mials. A second version of the algorithm is‘presen,ted that displays a duality between
‘the two algorithms. A comparison. of costs involved in the calculation of the greatest
common divisor via our algorilthm and via other algorithms is [;rovided. A third algo-
rithm is also included to provide a fast algorithm of a dyal version of a pseudo

Euclideaq’llgorithm where certain invertibility conditions are relaxed.

The final chapter deals with the problems encountered in calculating the matrix
Padé forms for arbitrary power series. Possible extensions and_new directions of

_rescarch topics are presented.



Chapter 2
One Dimensional Padé Fractions

——

2.1. Basic Definitions

\
Let A(z) be a formal power series with coefficients from some field K ( the ficld is
&

Usuaily the reals or the set of complex numbers ). \'&/e shall restrict the development to
. ; . . . Lo ) .

units of the set of formal power series, i.e. those power series having a nonrzero con-
t .

stant term. As we shall see later in this chapter, this assumption is made for the sake

of convenience since the results obtained can be applied to nonunit power series as
) i .

well.

For power series we have a notion of degree and order. The degree of a formal
matrix power series A(z) is dgnot.ed byh/the symbol 3(A) and is defined to he the power
of z of‘ the highest nonzero coeﬁiciéx;t of A(z); if there is no Vhigbes't p(;W.él; thc degree
is set to ®. The order of a formal matrix power series A(z) is denoted by the usu'\I sym-

bol: ord(A) and stands for the lowest power of 2 wnth a nonzero coefficient in A(z) In

our %nuatl?p ord(A) 2 0 for all power series in consideration.

Deﬁmtlon 2.1. Let A( ) be a unit formal power series and let-m and n be non-
negative integers. Then a pair, U,,,,,(z), Vialz), of polynomials is de'ﬁned" to be a
Padé form of type (m,n) to A(z) if

a) H(Upy) = m ’ HVpn) S n, : S
b) A(é)-Vm,,,(z) = Upu(z) = z":*"”-R,,,,,,(z) with ord(R,,,) = 0, and (2.1)
€) Vaal2) # 0. ‘ |

The polyﬂ”omxals Vra(2), Unsa(z), and R,,,,(z) are usually called the denomnnator,

o Dumerator, and residual of the approximation (all of type (m,n)), respectively.
_ X 7 ,

10

P



Suppose our power sé
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ries and polynomials have the following expansions:

A(Z)- ia,z' ’ ‘Um/n(z)- ﬁudz.‘. ’ Vm/n(z)- E”vizi ’ R"‘,/"(Z) = 2".2‘ 4

where a,, u

A

-0

=0 1=0-

v,, and r, are all from the field K. We first mention a notational con-

venience that we will use throughout this thesis. Namely, for the polynomial

W

.U(z) = uytuzt -yt

we write U , ie:, the same symbol but without the z variable, and the symblol U™ to

mean the vectors of coefficients

Uk ‘
~ y ) _}’
U= |- and U
. u, K
. ‘ Jug ‘

u
U,k
=

0

uk ‘ h

With the above notation, equation (2.1) can be written as'the following system of

equations

-

=

which is shomhand‘onr

;/n
~ ) H" ) m/n

m/n
a_, 8o

6,

am—n am—n#l am
Om—ntt Om-ne2 am+;
“m;n+2 O —nés. O +2
a, . Gme1 au#( -
L s d

l.ﬂlere, a, =0 fc;r‘i <0.

_ It is clear that if we can solve the matrix system of equations

H:Iu Vall -

ljv;/ n

0

P (2.2)

--—-]. (23

-
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for V,,,,. then we can get Ui from
\} H"—"/"‘Vm = Unin - } (2.5)

Thus, we concentrate on solving equation (2.4). A simple céunt reveals that our sys(c;m
of equations represented by (2.4) consisis of n equations in n + 1 unknowns. An ele-
mentary result from linear algebra ( see for example [1] ) ensures that there is at least
one Non-zero solutio? to this system (since thg nullity of the sy/'stem must Abe = 1).

" Thus, we have

-Theorem 2.1 (Frobenius). For any formal unit power series A(z) and any pair of"
nonzero iptegers (m,n), there exists a Padé form of type (m,n).
\ © % "

e

However, as we will show later, Padé forms are not necessarily unique. We expand on

this in sectiof 2.3. ™~ .
SN . T
\ ot
/‘ o A ) S : n

2.2. Solutlons o Bankel Systems : Normal Csase

A system of equations of the form

H =0,

min’ " min (26)

Where H},, depotes the n X (n+1) matrix found in (2.3j, is called a Hankel system of
’

equatnons of type (m,n). Let H,,, denote the square n X n matrix

i o
Cm—n+l Om—ne2 ... Om
: Om—n42 Om—n+3 + - Bmsl T
Hm/n- e e g . .
O - LTI a

mén—1

\Harn is called a Hankel matrix of type(m , n). . R ,
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Equation (2.6) has a solution if both H;}, and

<

8mae1Y

where v, # 0, have the same rank. Clearly this happensif H,,,, is ianvertible. ,

When the Hankel matrix is nonsingular, then not only do we get a solution but we

also can say that the solution is unique up to a choice of vo. When we place our solu-
A v

tion into equation (2.5), we get that U, (z) is also unique up to the chdice of v,. If

we set vy = 1, then we get

~
~

Theorem 2.2. (cf Gragg [19] ) If the Hankel matrix H,,,, of the formal pbwer series

A(z) is nonsingular, then the Padé form U, (z) and V,_,,(2) of type (m,n) satisfies
GCD( Umln(z) ’ Vm/n(z) ) = l' ’

where GCD means the greatest common divisor of two polynomials. In particalar, the
Padé form of type (m,n) for A(z) is unique up to multiplication by a nonzero constant.
Proof?

That a Padé form of type (m,n) exists comes from the Frobenius theorem. Let

U salz) and V’,,.(z) be the numerator and denominator, respectively, of one such

W
Padé form. Suppose that "

GCD( U'm/u(z) ’ V'../”(Z)) - P(Z) ’ v
/ ' " AR
where the factor P(z) {s nontrivial, that is, 3(P) 2 1. Factor out the greatest common

factor P(z) to get two new polynomials U%,,(z) and V:,,(z) given by *

L.

Ubsa(2) = U ral2)-P(2) 7"

VE(2) = V' al2) P(2)
Let R ]
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1= min(m = 3( U&u(z)),n = 3 Va(2))).

3%

Because we ctored out a nontrivial divisor from the original Padé form, we know
. . : o

that { > / .
/ M__/’\_\
Now-let / N

/ A
U,m/n(z"/- U:,,'.(Z)le y :

) Vm/n(z)- 44 2! /

Vm/n(z)'z -

Notice t.ﬁzit ~since V', (z) is a denommator for the Padé form, then V', (z) # 0

Hence lm,n( ) # 0. Also, because of the way [ was chosen, it follows tbat-:»(/m,n(z)

‘:A‘.
s

and lm,"( ) have degrees less than or equal to m and n, respectively. Furthermore,

i

AT Vel ) = Uppof2) = ,f{,,(z). V inl2) = U,.,,(z)-}-r’(z)-'

s {2""".’,"R'm/,.(Z)}'Z"P(Z)"

P

= imetIR, ),

’

-

.

since 3(P) = lﬂ -
Thus the paJr U,z )‘; and Var(2) is also a Padé form of type (m , n);f@i' Afz).

. o e 3, x

In partlcular V,,,,,l must satlsfy ‘equation (2.6). Since the Hankel matrix HQ,,, is non- '

o

¢ solumons to (‘2 6) are unique up to the choice of a constant, nameﬂy up to .

9 .
the chonce of the tonstant term v,. Byt [ 2 1, hence the constant term is zero. &Smte

Ve 18 DO zero, W‘¢ have a contradiction. Thus, there czn be no nontrivial’ cbnstant

-
g

factors and so the: g_i;ebatest common divisor is 1. This completes the proof.

. .
L

Any time a power series satisfies the condition that the Hankel matrix of type ‘

(m,n) is non‘singulag"for all (m,n); it is said to be normal power series. Most published

algorithmé which compute Padé forms limit their scope to solving normal power series -
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A

( see discussion in chapter 4 ). However, the normality condition for a unit power series
i N

\gﬁzery strong conditjon. For example, even the simple power series
A(z) =_1+ 22+ 24 + R(z) with ord(R)2 6 .

does not satisfy the pormality condition (Hankel matrix is singular for m=2 and
' o

n=23). .

2.3. Characterizing Solutions of Hankel Systems : Singular case

Assume now tha@ the Hankel matrix H,p,,, is a singular matrix. In ordgr to deter-
mine the solutions to system (2.8), we row reduce‘the coefficient matrix H,y,,. We do
this in the.following special way. (We will assume m 2 n for this discussion. Thi“s is
‘no probl*x as we will see later).

Let Him-1y(a-1) be the largest non-singular principal minor submatrix of H-
Since H(,_(y(n-1) i3 Don-singular, we can solve the Hankel system of type (m—1I,n~1{)

-to get the (unique up to constant multiple} Padé form of order (h— I,n—=1). Let

’ n-!
2t Vim-tyn-n(2) = Eov.z','

Ulm-ty(a-1(2) = ’2 6z~

be the unique Padé form for A(z) of type (m—1{,n— ) with
" GOD( Vim=ty(n-1(2) » Ulm—ty(n-1)(2) ) = 1.
In the case that the largest nonsingular principal minor of H,,,,,; does not exist, then
- | = p, and we set

Y(.m-n)lo = l and U(.m—uyo = apt -Q{qm_'z""‘ .

Since

i

A(l)-V(‘-__,,y(.-,)(z) - U(.--'ly(,-l)(z)- zﬁ+n-2l+1.2 r._!i; ,

=0

~



we have the following relationship

Om—n+l Cm~1
e . .

B4 n—21

Cm—l+1

Gmaey

- [0 ,
Omen—ie1

.
,0,,"0,

’

-

- 1 - - - - . -
This relationship can be used to create an important matrix identity. Let

1
1
L =
) .
Un—t
am—n+l
L
+ =
llm/n- — e e . - —
- -4
[ . L
and
8 —n+1
O —1
\ .
Hm/n = v—_._
10 0
0
b

Then, we have that ¢

am+u—2{~ll Gman—-21 s

- — — —_—e——— - ——

Cman-2f | 8men—-2041"’

' Cnen-1-1 l Cmen—i

I am;l+l

“ ' am'fn-Ql

OBm—.

Q | "'rv’ e
re | “e
0 lrl
e e e,
X Ti-2 .'lo-'l

me+n

Com+1

Omisn-1

16

» Ti-1
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We can tbiuk of the matrix L a;‘ a series of elementar} matrices multiplied together
representing a :;eries of row‘ operations on the Hankel matrix H,,,,. This in turn allows.
us to limit the tybe of solutions that eqt.xati;n(‘)(lﬁ) will have.

~ Since H(m_,y(";,) is the largest block non-singular principal minor, by examining
H., we caln deduce that

. [ .
fo-fl-""’f‘_lﬂo

The above condition implies that

AC) Viptyn-(2) = Ulmeiy(n-plz) = zmtr-isbe L5000

i=0 o N

where k 2 0 and r, = 1y, .. . o : k

There are two cases here: If k 2 [, then we already have a solution. If k </,
' §
2

then the right hand side of equation (2.7) becomes

B ’-am—n4l N M l Sm+1 .
I
|

Om-1 l Omen—1
| 0 0 0 0 (2.8)
| 0
0 | R O

l 0 / Ty - T‘[_ E—-1

Here the 'top left matrix block ‘is of size (n=1) x (n—1), the top right hand matrix
block is of size (n=1) x (I+1), the bottom right matrix.block is of size I x (I+1) with

the first k quws of this block equal to 0 rows.
Since the (I- k) x (I= k) matrix
00 .. 0 fo e )
0 _ fro | - Lt
L
To R N



is an invertible matrix (since ry # 0), we get that a basis for the solutions of equauon

(2.6) are glven by tho set

vn-l‘

[=]

N

5 - 18

~(2;8)

Here the number of zero elements varies from 0 and ! for the first vector, 1 and I-1 for

the second, and ﬁnalvl); k and ! - k for the last vector.

r

) Y : : L
Thus, the general solution to (2.6) is a linear combination of these vectors,

namely,

W

where ap, - -+,

solution is then given by

¢ -

Up—1 \/

v(; o, + +
0 .
[ 0

a; are constants from the field K.

b
\
a
0 ’ ‘
Voot ST _
S S (29 .
Uo . . .
0 - _ /
Ve

In polypomial form, the general

Vz) = 2 {Ev z } {.Ea.-z'}- - (2.10)
i=0 GL=0 T o
From é,quati'o‘n (2.5), it thén follows that

B

=0

1=0

N



- - -

.
F] - & 7. .
e I

A o o .

a

\‘%e .qummaff& ggr rt}:ults a‘s f61l8ws. ‘:.’.' < Y

Y N - v ® L v
N A\
e 'ﬁ‘\eor’em 2:3: Let Az ),be a unit fo;'mal power ser;es Then there i$ an entlre famlly

; of Padé forms of type (m, n) Thls famnly of solutlons dlﬁers only by a greatest com-

"’f-’*
%n divisor in the numerator and denomlnawr More specnﬁcally, if U,,.(2 ) Voral2)

X Y, .

3

Za‘.nd U ssal2 ) V' snl(2) are two pairs of Padé fqrms for A(z) of type (m, n) and if ,
® -, : o
7’,‘,.»’.'» M o w . ‘.
A T GOD(Us), Vi) R P2
. ‘ . 3 € . ’ a .\
and . ' o
o &
S " - ﬁ ‘
GCD(U (2), V ial2) ) =:P'(2)),
then » - -

L Un®) L Vanld) e Uiedz) | V)
P(z) P:f (7% P(2) P'(z)

,‘/,,\ ' . L& 7 e

2.4. One Dl(nenuonal Scaled Padé Fractlons

v

" The prev:ous se/cuon provxdes us with a family of Padé f};rms Furtbermore if we

factor out common divisors then we do get uniquenéss. This brings us to the following

14

- ~ '
. -~
« .

Definition 2.2_. ( cf Gragg [19] ). Let A(z) be a unit power seriés. A pair of polyno- -
‘b mlals P,,l,,,(z) and Q,,,,,,(z) is said to bea Pade fraction of A(z )of type (m,n) if
1) th& pair is a Pade form for A(z), \
2) GCD( Pni(n(z) , Qmalz) ) = 1, and - ‘ -
3) Qunt0) = 1 |
ilt i®clear nnaﬂ‘Padé fractinns are unique. However, existence is another matter. -
For we have characterized. condition 1) by equatlon (2 10) and (2.11). From these
equations.we also get that the GCD is given by
7

Y k "zaz}

1=0
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In particular, if condition 2)1s to hold then this would imply that k=0 and {=0. Thus,

unless we have a normal power series, we do not get existence of a Padé fraction.

» Some authors ( eg. Baker [2] ) bave tried to get around this by weaking the order

requirement. This approach simply asks for the rational polynomial expression that

. . .
meets the degrée requirements for the numerator and denominator and agrees with the

"power series A(z) to as many terms as possible.

., ' .
The approach of scaled Padé fractions is to try to get both uniqueness and

3

existence without lowering any of the original degree or order requirements. The hint

for this is theorem 2.3 . This says that Padé forms are unique except for common divi-

o . . ‘g - - -
sors. The approach of Padé fractions is to eliminate the common divisors and get

N

uniqueness. The approach of scaled Padé fractions is to require the common divisor to

be of a specified type, namely 2" for some integer u. v

" We can get a specific solution for the Padé form problem by returning to equation

(2.9) and setting =

@y =@, = - =a,_,; =0 and @y = 1.- . | ol

Then we get particular solutions of the form
\ . .
¢« ”_l ; v
Tmln(z)- 2‘2” ‘2!
~ i=0
' m—1 , =
Sm/n(z)- le" ‘2! ‘
=0
¢

This leads us to the following
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. ‘ |
Definition 2.3. (cf Cabay and Choi [14] ). A pair ofjpolynomials Tpin(z) and S, (2)

with T,,.(2) # 0 is said to be a scaled Padé fraction/for the unit power series A(z)f
a) mm( m - a( Tm/n)r n - a(Sm/n) ) =0 ’

b) A(z)Tornlz) = Surm = Roya(z)  with ord(R,,,) 2 n+m+1,and

c) the greatest common factor of T,,, (2) and S,,, (z)is 2!, wher® is a non-negative

integer.
*

Notice that condition a) implies that the degrees of T,,,.(z) and S,,,(z) are at most n
and m, respectively.
‘ ?

This definition thus provides a middle ground between Padé form and Padé frac-
tion. Namely, a scaled Padé fraction is a particular Padé form of type (m,n). In addi-

tion, by shifting we can remove the greatest common divisor and determine the unique
Padé fraction for A(z) of type (m,n).

We summarize our findings with

Theorem 2.4. Let A(z) be any unit power series and let n and m be two non-negative
integers. Then there exists a scaled Padé fraction of type (m, n).for A(z). ln addition,

this scaled Padé fraction is unique up to multiplication by a non-zero constaht.

Example. Let :
A(z)= 1+ 22+ ' + R(z),
where ord(R) 2 6. Suppose we wis-h to calculate a (2,3') scaled Padé fraction for A(z).
If we follow our previous discussions we can proceed as follows.
The (2,3) H;nkel matrix is given by

1 01

Hys= [0 1 of.
101 :

{
§

Notice that the matrix is singular: In addition, the.largest nonsingular principal minor



is given by

10
Hy, = :
01}

If we solve for the (1,2) Padé form for A(z) we get

Vin(z) = 1-22, and Up(z)=1. "

ts 0
: t
’1273 ° ‘2 - 0 y
1 .
t 0

We are trying to solve

<

where H,.is found to be

1010
Hi, = [0101
10'0
Again, following the 1. .d of : ~ previous section, - forn. the matrix
> \ e
- 1 00
L=10 10 *
-10 1}
Multiplying the matrix L to the left of H}, gives the matrix /
1010
Hy,, = [0101
0000

So_lving
H33-Vyy= 0
is'the same as solving.

Hyy Vos = 0.

22
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But we can read off the solutions to this equations since they are the same as the solu-

tion to the (1,2) case, or the shifted versions of this solution. Namely, we have that a

basis for the.set of solutions is given by

‘ -1 0 .
0 -1 .
N | . 1 and ol ’ ' !
! 0 1

Thus, we find our general Padé form is given by

Voas(2) = (1= 2%)(ap+ @ 2) , and Uyy(z) = apta,z,

where a, and a, are arbitrary.

a

From this we get that the Padé fraction for A(z) does not exist since the reduced

form hd

1

1- 22

docs not satisfy the order condition. On the other hand the scaled Padé fraction does

a

exist and is given by

T2/3(z) - 2—23 ~and' 52/3(2) = Z.

. e



Chapter 3

Matrix Padé Fractions

3.1. Basic Deﬁniltions

Let A(z) be a formal power series with coeflicients from the ring of p x p matrices
over some field K. Then A(z) is a unit matrix pc;wer series if A(0), the leading
coeﬂicimt in A(z), is an invertible p x p matrix. We limit our scope to unit matrix
power series. For these unit power series we have the usual’notions of degree and order

a matrix polynomial A(Y) is denoted by a(A)vand ord(A), respectively.

!

that parallel those of ope dimensional power series. As before, the degree and order of
&‘2

Because of the }ack of commutativity for matrices, any definition that specifies a

relationship inve!ving matrix multiplication must identify the side on which the multi-

plication occurs.

Definition 3.1: Let A(z) be a unit formal matrix power series and let m and n be

non-negative integers. Then a pair, U,/,(2), Vp/a(2), of p x p matrix polynomials is

-

defined to be a Right Matrix Padé Form (RMPF) of type (m,n)’to A(z) if

0) a(('fm/n) s=m 7‘/ a( Vm/n) sn ’
b) A(Z)'Vin/n(z) - Um/n(z\)_g zm+"+l'Rm/n(z) w“h ;‘Ofd(lel) Z 0 and y . (31) .

¢) The columns of V,,,,(z) are linearly independent over the field K.
. - N

~ The matrix pé)lynomials Vin(2)s Umia(z), and Rp,(2) are usually called the righi .

denominator, numeratdr, and residual ( all of type (m,n) ), respectively.

®1

There is also an equivalent definition for a Left Matrix Pédé F_‘ormv(L‘LMPF). Con-
dition b)'is replaced with an equivalent version with matrix multiplication by V,i,.'(z)‘
 being on the left., Cdn_dipion ¢) is then replaced with the condition@it the rows,

° . D
instead of the columuns, of the denoiinator must be linearly independent over the base
B ' ' ) :

s
'

24
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“field K.
As in the one dimensional situation, there is a one to one correspondence between
matrix polynomials of degree n and ( n+1 ) x 1 vectors of p x p matrix blocks. We

again use the notation of the last chapter and denote

Pn ‘ Po
Py(z) = potpz+ .. 4p:" by P,= 'p'l' or P;=| P
' Po ' p,.,

3.2. Existence of Matrix Padé Forms

"In the equation
A(z)'vm/n(z) - Um/n(z) = AZm*w&LRm/n(Z)’

let the matrix polynomials have the following expansions:
¥ T

A(Z) = ialz. ’ (jm/n("")-= fuiz‘ 4 Vm/n(z)= znviz.l and (Rm/n(z) = f:r,-z‘,

V=0 i=0 V=0 i=0
wheré q;, u,, v,, and r, are all p x p matrices with entries from the field K. Then

equation (3.1) can be written as the following block system of equations: .

m/n m/n . . :
it R Rl bl I ~ (3.2)
H 0 4
which is shorthand for
LIPS 8 Uy
a a Un °
- —nd - a . u .
m-—n + .
‘ Tm—ndl ] Vp-i m 2T
’——I-———» ————— — . L [ 3 - = . (3‘3)
Om-nt1 Om—ss2 *°° Omer | |y 0.
- % ® ’ 1
On—nt2 Om—n+s LYY B P
“ e 0
G . vamd-l . Comtn ] L
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, .
Here, a, = O for ¢ < 0.
It is clear that if we can solve the matrix block system of equations
;/nlvmln =0 (34)
for Vra, then we can get U, via
_ﬂ—lll.VM/” - ;In ) , (35)

Thus, as in the one dimensional case, we concentrate on solving equation (3.4).
For any coefficient matrix v, , let the ith column be denoted by t},(‘) . Replace

bt}

each occurrence of v; by v,(‘) in equation (3.3) and set

XG0 = ) )

Then the problem becomes one of finding p lipearly independent salutions

X, -.. | X(P) of the system of equations
— H. -X=0, , (3.8)

’

:

where X represents a p(n+/1) X 1 vector. A simple count reveals that this is a homo-
geneous system of pn equations in Ap(n+l) unknowns. An elementary result from
linear algebra ( see for example [1] ) ensures that this system has at least p solh/ii’(ms

that are linearly independent over the field K .. Thus, we have -

Theorem 3.2. (Existence of Matrix Padé Formé). For any formal matrix power

K

series A(z)-and any pair of nonzero integers (m,n), there exists an (m,n) Matrix Padé

Form (either right or left)..
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At this poim. it is worth pointing out that ours is not the only way to define a
matrix version of Padé form and indeed‘others (cf Bose [6] , Starkand [30] , and
Bultheel [‘10] ) offer alternaté definitions. The problem' lies in the matrix version of
condition ¢) of definition 2.1. We could Have-simply asked that the denominator be
nonzero in the matrix definition also. But then, once v;e had one solu?ion to our system
(3.8), we could Ecpeat the solution p times as columns of a p x p matrix and g‘et two
matrices that satisfly conditions a) and b) of our definition, This is not what we are,
‘Iooking for. For example, we could never get a uniqtfxe solution no matter how well
) ‘ .

behaved the matrix power series is.

On the other hand, a nonzero den_omiqator in the scalg\r case has additional Iﬁean-A

ing. It also means, for example, that the denominator can be divided into the numera-

tor to create a rational function. The natural matrix version of this would be to
require that thedenomin?o.\be invertible, i.e.,

det(V,,.(2)) # 0.

However, this definition creates problems with existence, as we shall see in a later sec-

~
tion. -

3.3. Solutions of Block Hankel Systems : Nonsingular Case
lﬁ the block system of equations
* : H!:/n'vmlu = 0.

(called a block Hankel system), where H?*, denotes the pnXp(n+1) block matrix from
stand for the squ;n"e pnX pn block Hankel matrix of

" the previous section, let H,,,
type (m,n) given by

JOm-ne+1 Om-ns2 ... Oy

Cm—nt? Opents -+ - Oy

s oe. ..

Gy G T G
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Equation (3.4) has a solution if both

“mﬂ""(g')

Hm/n and Hmln ' . (37)
‘ °m4n‘"8‘)
have the samg rank for every column vf? (this is not a pecessary condition, just a

sufficient ompe). Clear~ly this will happen if the block Hankel matrix H,,,, is invertible.

Definition 3.3: A matrix power series A(z) is said to be normal if, for every pair
of non-negative integers m and n; the (m,n) block Hankel matrix H,,,, of A(z)is inver-"
tible. A matrix power series is saig to be (m,n) - normal if the (i,j) block Hankel

matrices H,, are invertible for every s <™ wm and j < n.

Wy
'

We note that, since the block Hankel matrices resulted from the intreduction of a

t

systems of equations to solve for right matrix Padé forms, we really should be specify-
ing that a matrix power series is right normal or right (m, n) - normal. However;

when we are setting up the original system of equations for the right side we come

across the system of equations

N [
On—n4+1 O Un . T 8m41Y ’
8y Smen—~1 v, T 8menY

so invertibility of the Hankel matrix allows us to solve the above system of equations

in terms of v,.

If we pow set up the system of equations that result when the m‘ultiplicatiop is

done on the right, we get the systerh of equat,ioné

’ ‘ am-.n+l . am . |
[v" ". - R vl ]. D - [— vo‘“m’] , PR , ,vo.am+”]
. ) G Qe n-1 '



29

and the coefficient matrix of this system is just the block transpose of the original

Hankel matrix. But, if the Hankel matrix is invertible then so is its block transpose.

The block transpose will then have as its inverse the block transpose of the inverse of

the Hankel matrix. Thus, if a power series i3 right normal then it is also left normal
and so we need not specify a side when talki(ag about normality. As a matter of record

we also mention the fact that if a power series A(z) is normal then so is its transpose

’

power series Af(z).
If the matrix power series A(z) is normal (actually for the following discussion we
need only ask that A(z) be (m, n) - normal), then we can get right (or left) Padé forms

by row reducing equation (3.4) to the system

*
Cmal

=0 | (3.8)

np cee |V mra

Gt n

L 8

where I, is the npX np identity matrix. This implies that all the coeflicient matrices

Y,, Vo1, ..., ¥y, can be written as a multiple of v,. Since we have the linear indepen-

dence requirement, condition ¢), in the definition of Padé form, we limit our choices for

v to being an .invertible matrix. In particular, if we set vy equal to the identity -

matrix, then we can uniquely determine the denominator up to multiplication by an

invertible matrix. Thus, we find a right matrix Padé form that has the property that "

the constant term of the denominator is the identity matrix. Since g is also a?sumedf

AN

to be nonsingular, then u; is also a nonsingular matrix.
. - 1

B

Finally, we mention that for a normal power series the numerator, denominator

‘and the leading term in the residual power series are all nonsingular polynomial,

matrices for the (m,n).in discussion.
We summarize our discussion by

- ) ) N

)
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Theorem 3.4. Let A(z) be an (m,n) - normal matrix pov?er series with m and n any
nonnegative integers. Then‘thire exists a right matrix Padé form U_,(z) and V_,.(2)
of type (m,n) with the properties that
’

a) V,,.(0) = I,, the p x p identity matrlx /

b)a(V,,) = n, and 3(U,,,) = m and

m/in

C) A(z/)'vm/n(:’) - Umv/n(z) - zm".’l'leu(Z) and
d) RGCD(Um/n(Z) ’ m/n( ) )

where RGCD of two matrix polynomlals means the greatest right matrix polynomial

divisor. )

Proof: Parts a), b), and c¢) follow from the previous discussion. Part d) is proved

using arguments that parallel those of theorem 2.2 and will not be included here.

3.4. Solutions of Block Hankel System : Singular Case

The results of the previous section follow those of the one dimensional case. For
RS ‘
normal power series, the soluuons are unique up to multlphcauon by mvcrt,ﬂ)lc con-

stant matnces, the denommator is invertible and there are snmllar results for both the

right side and thé left side.

However, as mentioned in the one dimensional situation, the normality condition

- for a unit power series is a very strong condition. For example, even the simple matrix

power series
ot

CA()=1 ' + R(z) with ord(R)2 6 T
. ) 0 14 224 24 . . ‘ S

-

L]

- does not sat:sfy the normallty condmon ( block Hankel system is singular for m= 2 and
‘n= 3) Unfortunately,, though there is a big dlﬁerence in the smgular case as opposed to )

the nonsingular case w.he.n it comes to matrix Padé forms.
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3.4.1. Singular Matj'ix Denominators ‘

a,
Equation (3.1) is not necessarily equivalent to solving an equation of the form

/
A(z) = Upial2) Vora(2)™1+ REs ey (2), (3.9)

»

where the order of the residual is at least m + n + 1, even tho_ugh this is how we visu-
alize the solutions. For, even though we can find U,,,,,,.(z) and V,,,,,,(:,;_j of prescribed
degrees with the columns ;)f Vara(2) being linearly independent over the base field,
this does not force V,, () to be an invertible matrix. Linear indepéndence over the
base field K does l;ot imply linear independence over the ring of polynomials K{z] .
We say that vectors are algebraically independent if they are linearly independefxt

over the ring K|z] . | ‘ ‘

Example 3.5: Let A(z) be given by

14224 224- 25 0 -
: Alz) = [ - 2% 1+ z2+z‘]_+ R(z)

el o], [eo S I
= [0 1] + [o 1]sz-r [0 l.]z‘+ [_1 0]2 + R(:z),
where R(z) has ofder = 6. Then, if we are looking for the (2,3) right matrix Padé form

of A(z), we can solve the block Hankel system of linear equations

a

s H2‘,3'X-0

to get a basis for the solution space consisting of the vectors

. B | 0 | 0 f
| S s [—z"i:l-l] " :Xz-[—z3+z] 2

i.e., the general solution is of the form

0 ‘ A 'v N
= - - - . 0
X [_ 0?3"" bzg+ az+ b] vv (‘024' b) ['_ 224 1]

‘ . \



with a and b being free choices from K.

A natural choice for Vs (z) and U, z) is then

Voro(2) -0 0 i U : 0 0
asis —22+1 ~ S+ ‘an 2r3(2) 14222 242237
Notice that V,4(z) has determinant = O for all 2. Also notice that this solution is

unique up to a choice of a basis for the system of equations.

In particular, this is a situation where we cannot. get equation (3.9) from (3.1) .
The problem occurs because, althéugh ti)e solution space has dimension 2 when con-
sidered as a vector space over the 'ﬁeldh K, ithas only dimension 1 when considered as a
module over the ring K[z]. For later reference, we note that the rank of the matrix"
H3; is 5. In particular, the rank is not a multiple of the matrix size 2, which prc;reh‘ts*

1 ) - - -
the existence of a nonsingular V,,(z), as will be shown in section 3.8.

Example 3.5 is not.surprising for triangular matrices. Indeed, if wc desire the

(m,n) Padé form for any power series of the form

.

o(z) B(z)] .

o= |7 o)

whgr; a(z), b(z), and c(z) are all scalar power :{eries, then, wheuiv'e are solvi'ng'
) - : A(Z)'Vm/;»(z) - Um{n(z) - zm""*l'Rm/n(z) ' .

Lo
~with

’, o) wrgle) u(2) wiol)

(z)

.‘k:

Vm/n

’ . \’ and ;Umln(z) -
-02"(1). voal2) | : | ualz) uzl(2)

" i

we run i_nt_é the following situation. If we consider only the last row, vfé?et the equa- L

tions

-

C)uml) = wale) = ) e

o .
. . B . e
N . . v ‘ -
. ) . Y
o . " ) ) . : " .
. ) . - : e

N4
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c(z)vglz) = uplz) = 2™ P¥lryo(2) .

4% To determine the ldst rows of V,,,(z) and U,,,(z), we need to solve the one dimen-

4

' type(m n) for a(z)

sional Padé problem for the power series c(z) twice. But out work in chapter 2 tells us
. . .\ ’ e %
that a basié for the solutions to.this problem consist3\of s¢aled Padé fractions of type

.

(m:n) for c(}() and z~! times these particular sc/a_lg/lpadé fractions, where ! is some

). .
nqn-negative integer.
t

In particular, to determine the rest of the polynomial entries of V_, (z) and

)

U,,.(z), we need to solve

a(z)vy(z) = up(z) = —b(z)vy(2) '{ zmrevly (2)

0(3?'1'12(3) - ";2(3) = —b(z)-v22(z').+ 2Pt (z) .
. 1 ‘ ' ‘ » ’
Bit then our order condition does not need to hold as it did before. If we examine the
N ’ M . - .

system of equations that occurs here, we find that we no longer have a homogeneous

system of equations but a specific system. Hence, we need not necessarily find the
{
correct number of linearly independent solutions, and as a matter of fact, we may not

bave any solution at all. This fact coupled with the result that the entries of the last’

'

rows of both V,,,(z) and Up,,(2) differ by a power of z makes algebraically dependent'

solutions a natural occurrence in this situation. - . . &2}

Algebrancally dependent solut:ons are somethmg that we w:sh to avoid,' smce&)th-

erwxse we can-run into the following situation. Suppose that we have two scalar power

serjps a(z) and b(z). Suppose further that (for a certain integer type (m, n) we have a

adé form u(z) ang v(z) that satisfies .
a(z)9(z) = u(z) = zmtrrithe(s),

¥ . |

. E . cpe : . : ‘ !
“where £ 2 1 and, in addition, the denomlnator and numerator a_reg’b'oth of a smaller

degree than necessary. Then the polynomlals z-u(z) and z-v(z) are also Padé forms of
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If we were now to form the matrix power series

a(z) - 0 ]

A(z)ﬂ[ 0 b(:)

~

then we would want a right matrix Padé form to give information about both a(z) and
b(z). However, as it stands now, we can solve the right matrix Padé problem of type

{m,n) for A(z) by simply forming the matrices

, u(z) z-u(z) v(z) z-v(z)
Um/n(‘)_ [ 0 0 ] ' Vm/n(z) [ 0 ao ]

That is, we can find a right Padé form by simply ignoring the scalar power secries b(z)

altogether.

3.4.2. Non-Uniqueness of Matrix Padé Forms N

In the singular case, the lack of invertibility for the denominator is not the only
problem that stands apart from its scalar counterpart. Ope problem that comes up in
the matrix situation is that there is not necessarily a unique solution of the system

(even up to multiplication by an ,nons’in'gular constant matrix ). This is illustrated by

Example 3.6. Suppose

[14 22420 0
A =1|"° |+ R(2)

0 14224 ;4
1 0 10 20
= . 2 4
0 l] +_[O l]z + [0 l]z + R(:z),

_ where R(z) has order 2 6. Solving the block Hankel system of equations

¥

Hzts\'X - 0

. for the (2,3) right matrix Padé form gives the three linearly independent vectors

. 1-2:12 ' 0 | 0
X) = [ 0 ]! X2 - [1:;’22] ’ and XS- [2—23] .
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[

There are then three natural choices for V,4(z) and‘(}}lg(z) , namely,

| 1-2:7 0 ' lg—z2 0
VBl = | g | amd CUBG)= g

1-2:2 0

= [ 0] w737

-

1—-22 2=

vEl(:) = [ 0.0 ] and  Uf)(z) = [‘,’ f].

Not only do we have too many solutions for our problem, Y also find that two of
the solutions are preferable in that they result in a nonsingular denominator V,,(z),

while the third solution gives the denominator as a singular matrix. We try to avoid

1

having a singular denomingtor as this would prevent us from forming the matrix power

¢

series U,,.(2) Vp/n(2)™! . For example, a singular denominator gives no information

13

about the poles since every point is a pole in this case.

>
]

We note that in a situation of multiple solutions, we do not always have a pon- -

singular denominator as one of our choices” For example, if we combine examples 3.5

-

and 3.6 to form a matrix power series

14224224 0 - 0o 0

4 .‘= 0 } i+z2+zl 0 0 .
(2) 0 0 14+2249:4-55 0 )
-0 0~ -5 1422424

r

then the (2,3) block Hankel system will result in moré than 4 linearly independent
solutions to equation (3.6) but all these solutions, when combined into matrices result

in singular denominators. : : o



3.4.3. Left vs Right Matrix Padé Forms

4

An example that illustrates some more problems with matrix Padé forms in the
singulat block Hankel case concerns the relationship between right and left matrix
Padé forms . There is a one to one correspondence between right and left matrix Padé

forms given by the transpose operation. If we take transposes on'both sides of equa-

tion (3.1)
A(Z)'Vm/n(z) - Um/ﬂ(:) = ’n+lRm/n(z) ’

where ord(R,,,,) 2 0, we get an equation of the form

min

(Varalz)AL) = (Unjn(2)' = 2™ (R py(2)) )
The degree and order conditions are identical. Also, the rows of {V,,.(:))* are the
" same as the columns of Vm,,l(z), and hence are linearly independent when considered as
_vectors over the field K . (A(z))"is the same power series as A(z). except with each
cocﬂ];ient matrix in (A(z))" being the transpose of the corresponding coeflicicnt matrix

of A(z). Thus, there is a one to one correspondence between right matrix Padé forms

. of a matrix A(z) and left matrix Padé forms of its transpose (A(z))*. In particular, if

one wishes to calculate a left matrix Padé form for a power series A(z) and one has an
algorithm to calculate a right matrix Padé form for a given power scries, then one need

only work out t,he\right matrix Padé form for the power series (A(z))* for the denomi-

-

pator V(z) and niumerator U(z) and¥then the left Padé form for A(z) would be (V(z))'

4 . .

and (U(?))‘. , SR

‘However, if the Hankel system is singular, then the right and left solutions for a

. \ .
specified degree pair (m,n) may have diflerent properties when the block Hankel
. : - Ef‘ \\‘ ; .

\
matrix is singular as illustrated b?'

o\
\



.
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Example 3.7. Let A(z) be the same as the power series from example 3.5. Then the

L4
right matrix Padé form is given by

0 0 ‘ . 0 0
Vaslz) = —-224+1 =234 and - Upy(z) = 1+22%2 24223

In particular, the denominator is singular for all values of z. To get the left Padé form

for A(z), we find the right Padé form for the transpose power series

: (14 224924—25 =35
A(:)g 0 1+22+Z4

1 0 10 2: 0 -1 -1
= »2 4 5
. 0 1]+[0 1]. + [0 l]z + [0 O]z + R(z),

w.\hcre R(z) is of order = 6.

]+ R(z)

A solution to the block Hankel systrzm for the (2,3) Padé form that results from

this power series gives the basis

=) [14de22-0] o]
Xy = =2 J\Qf—T 0 , and X, = Y

<

One solution is then given by
H N i

, -2 0 z 0 : ' . z 0 '
Bz = |°F = 1-22|0 R)(z) = .
~ The' subsequent left matrix Padé form for the denominator and numerator is then

given by ’ . : o

~

23 1~-

C VW(z)-[‘_‘o

z 1422
7=

. ,
2 ) .

23]‘ and | .U&}Q(z:) = [0 5
Note that the denominator is nonsingular. In particular, a solution to the left matrix
Padé form problem will result in an approximation to A(z) that that satisfies equation

(3.9), whereas the right Padé form will not lead to such a solution.
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As a final note, a singular right denominator does not force the left denominator
to be nonsingular and conversely. In addition, an example of a power series that has
»

no right or left nonsingular denominator of a specified degree as part of a Padé form

can easily be constructed.

3.5. Restricting Matrix Power Series

The previous sections gave us examples of unusual behaviour for the problem of

finding matrix Padé forms of various types. The main thing that comes out of all this
is not that the solut‘ions are of vafied type but rather that our definition is too broad
and the type of matrix power series under diScussion too general.’ For example, any
matrix Pa.de form that results in the denommator being a singular matrix does nott‘

mesh with our idea that a matrix Padé form should serve as an approximate version of -

the original power series .

We wish therefore to restrict the definition oi' Padé forms to matrix power series
L_hat at least result in nonsingular denominators. Unfortunately, we cannot do any-
thing abqy the“'?;xct that once we‘(have asked for this type of restriction then we are
greatly Ixmmng the class of power series for which Padé forms exist. To get.some idea
of the limits lmposed on us, suppose we havé two unit matrix polynomlals A(z) and
B(z) of degrees n and m, respectlvely, where n 2 m. Then we.can create a formal
matrix power series by taking a quotient B(z)™!-A(z). Then, if we want the right

matrix Padé form of type (O,n- m), we find ourselves with an equation of the form

.

{B(Z)—l A( )} n- m/O Un—mlo(z) = zn-m#l‘R(z) .t

If we multiply by B(z) on the left of both sides of the equation, we

A(2) Vo™ B(2)- Uy (2) + 2"~ ™*1-R¥(2)

P
where we set R*(z) = B(z)R(z) mod z**1 . If we replace every occurence of z by

nw
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.

1/2 and then multiply each side by z” we will get the equatiomr—
A ( ) Vn—m/O B.(z)'.Uv:—‘mIO(z) + R'(z) '

where the degree of R’(z) is'less than the degree of B’(z) . Here the superscript *
means to féverse the order of the coeflicients of the original polynomial ( For a further
discussion on the * operator see chapter 5.) In particular, if we always ask that w%/"can :
get an invertible denominator, then we wonld’ need to have V,__. be an invertible
matrix. However this would mean that we could divide B’(z) into A°(z). Since the
-, set of matrix polynomials does not. form a Euclidean domain when the norm is the
degree of a matrix’ polyno‘mial (unlike the scalar polynomials case - cf [l] ), we can see .

that we have excluded certain matrix power series from consideration.

3.6. Nearly-Normal Matrix Power Series

In order to obtain solutions to the Padé form problem that approximates rational
matrix approximation we ask that the denominator be invertible. As pointed out in
section 3.3, we can achieve invertibility of the denominator if we assume that we are

i
dealing with a nermal matrix.power series. We expand this class by ' \\

s

Definition 3.8: Let m. and n be a pair of nonnegatlve mtegers A unit matrix power g

scries A(z) is said to be (m, n) nearly normal if, for any integer pair (m n) the sequence
® .

of block Hankel matrices - e,

3

H(m Yo » H(m n+ly1 v oty Hyyy - oW
all have rank a multxple of the matrix size p- A matnx power series is sald to be

-

nearly normal if the power series is (m,n) nearly-normal of any pair of integers m and
n. .

As was the situation in the normal case there is no need to specify a right or a left

“side because of the corre;pondence between right and left via transpose and because
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rank of a matrix is equal to the rank of its transpose.

It is clear that every formal scalar power series (p = 1) is nearly-normal. Further-
more, any normal formal power series is also nearly-normal. Actually we can be a bit
more specific, namely that every (m,n) normal matrix power series is also (m,n)

\

nearly-normal.

The set of all nearly-normal powers series for a given integer pair is more géneral
than the set of all normal power ‘series. For examp\le'the power series given at the
start of section 3.4is (2,3) - nearly-normz;l but it is not (2,3) - normal. Examples of
power series that are not nearly-normal can be found by recalling examples 3.5, 3.6

and 3.7, where the integer pair for each of the examples is always (2,3).

] . [
The nearly normal condition is helpful when used in conjunction with the follow-

ing observation. For any given integer pair (m,n)

Hii-ayi-1)
Hl/] — e - —_— —— e (31])
| Gi4; v
Jf H(;-1y(j-1)is of full rank, then if we row reduce the matrix H,,;, we get
I ‘
H = |___ - - (3.12)
0 o

In particﬁlar, if A(z) is (m,n)-nearly-normal and'i-j = m - n withi < m then either r,

"is the 0-matrix, 3 it is of full rank, i.e., rg is either the p x p 0-matrix, or it is inverti-

ble.
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3.7. Padé Forms of Nearly-Normal Power Series

' In order to characterize right matrix Padé forms of nearly-normal matrix power

series, we return to the vector equation

(3.6)

b

H

m/n’

X=0,

where X represents an p(n+1)X1 column vector. When we find p linearly indepen-

dent solutions we get a right Padé form denominator V , (z), and from this also get

’

the numerator U, ,(z).

In order to determine the solutions to (3.8), we row reduce the coefficient block
matrix H,,,. We do-this in a mapner similar to the one dimensional case. However,

we need to be a little more careful because of the lack of commutativity of matrices.

Let Hip_tyn-1) be the largest non-singular principal minor block submatrix of

Hepyn- Since Hip_yyin-1) 18 lAlon-singular, by theorem 3.4, we can solve for both the right
r

and the left matrix Padé forms of type (m—1I,n—1{). Let

n-l‘

VIEL pa-p(2) = 2 o{b)2,

=0

' m-{ .
T UL ya-pp(2) = 20“.('“)3'

be the left matrix Padé form for A(z) of type (m-l,n-1) with vft) = 1, and let.
. " . |
o - -l .
VIR tyen-py(2) = ZOV!R)Z',
‘-

. . |
UEL iyn-1(2) = '@0“.‘”)2’

.

ﬁbe the rfght matrix Padé form for A(z) of type (m—1I,n—1) with vfR) = 1,. If there is
i , - o
no largest nonsingular principal minor block submatrix, then we set both the right and

left denominaidr to be l"

and the right and left numerator to "be
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VL - (2)-A(2) = Uf#-’—ty(»—l)(")“Zm"_““'go'-(“z' .

we have the following block matrix identity

1 <o - By

Om—pay - - -
[ gt ]
Cp—t41.

T Oman-20

l" [0,..., 0, r&“) , e ,r}i]]

Bnen—i+]
E 4
As in the one dimensional case, the special structure of the block Hankel matrix

creates the following blcck matrix identity

L'H;:/" = ll':l/n ’ ! (3.]3)
+where ‘
1
I
. I ,
L= _ o i ,
"‘L—)I ...... ”8")
A R .
L L
| ”,(.—)1 V& ).
-
Bn-p+1 Q-1 |‘ “;n-ﬂﬂ . Bme
. Bpy—1t I Gpn 4+ n—21 - Cmen-| :
Hio= |0l LT 4
. "
B I41 ' G+ n~21 I
» .
Bm am+n-l—ll Om+n
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and -
’“m,—nﬁ [ S Gm—141 Om+)
" ar;|~1 O rn-21 Sm4n—1
Ilm/nu ——— e e e 0_________ —_— -
| 0 0 rf) -
0 L)
& rf) ]

Since H(m_,),_(,,_,)'is the largest block non-singular principal minor we can deduce
that r{t) is a singular matrix. But, if the power series was (m,n) nearly-normal, then

equation (3.11),and (3.12) shows we can say more, namely, that -

N

The above condition implies that

S

VERL iia-n(2)-A(2) = ULEL o= y(2) = gL

=0

where k20, and r; = rifl..,, with fo an invertible p x p matrix (since A(z) is a

-

ncarly-normal power series) .

If k < { then the right hand side of equation (3.11) becomes

i Cm-ntl... @p_; | Om+1
» |
am_l e e . l “ e .- e am+'_l N '
e ki Tt I (3.14)
I o ' '
] ro =
\ 0 I
IO To rl‘k-',l._
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Since the matrix ry is invertible, then so is the matrix

00Q ---0To
0 STy
t
o
k'orl"' ‘/

A basis for the solutions of the system of equations given by the matrix equation (3.14)

can now be determined to be the vectors from the‘columns of the following matrices:

[e@, ™00, 0. 0] (3.15)
- ‘ [0, olB) o efB) 0, - ,0]‘ , (3.16)
[0 y T . 1) 0 H v’('l_?-)‘ ) e ’ v&’?) ’ t ) 0]‘ . .‘ (3'17)

Here the number of zero block rows varies from 0 and { for (3-14), 1 and I-1 for (3.18),
and finally k and l - k for (3.17). Thus, a general solutj’on to eduition (3.8) in the case
of ah (m,n) nearly-normal matrix power seri‘es is a linear combination of the p-(—!c;l- 1)
vectors coming from (3.15) thraugh to (3.17) ?
Since the v's will.now all come from the right matrix Padé form we will drop the -
superscript (ﬁ)./flh ihts' place we let the superscript (i) mean that we are talking about
- theith coluyﬁx of a block vector. Then the ggd‘gfai solution té (3.8) looks-like

.3
.

.v£‘_’,. - rv,(,P_),. SR
X = [oft) |a,+ + |of) fap+ o] faggr o] a, ./ (3.18)
0 1o - vfH) 08') ‘ N
0 | U o]
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‘*@%\\ ,
By combmmg the cowmns baék lnto their matrix forms and taking p linearly indepen-

~ dent solutions, we see that a general block matrix solution has the form

n;"«l 0
)
e ) Vg1t
\ X* = oy fag+ - Y- ey, (3.19)
0 ’ \\/ 0 v
0
.0 P '
where the a, are p x p matrices of constants for ¢ =0, - - - k.

Thus, since we are interested in the general solution , we get the following matrix

equation ) ‘ \.\_ Ay
n-l 5 £ .
-— ’ Vm/n(z) = z’—‘{z 0*2’}'{\ a(z.} . . ) (320)
\1=0 \ixo0 (;'.f’j
: N ’
\ N
'.@rom equation (3.5) we also show that N N
Lo \ Y .
m=1 ) -k ‘\ A - .
Upin(2) = 271 w2 {2 o,z N % (3.21)
SRR =0 i=0 SE ‘

3 4 §
Nouce that Lhe linear mdependence requwement condition, coxfdmon 3, of
\n

deﬁnmon 3.1 nnpl:es that we: choose a(z) to be nonsmgular In addmon lf w"e are ask-

ing for a specific solution to the rxght matrix Padé problem for a neafly-normal power

L]

serics then we can ensure that we ask for one in which the first nonzero term is lnve_rt|~ ,

ble, and hence we can always find a Padé form where the denominator has nonzgro :

determinant. . ' o N o -

|
| R N\
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We summarize our findings by

Theorem 3.9. Let A(z) be a nearly-normal matrix power seri;as and m and n ﬁvo non- .
negative integers. Then there exists a right matrix Padé form. Unia(2) and Vmial2) for
A(z) ofjtype (ml,n) with the property th;it the ﬁ‘rst nonzero term of the denomin;itor is

the identity. Furthermt;ré Um,',,(z) and V. (z) are uniqué up \toiright greatest com-

mon divisor by an invertible matrix polynomial.

- . “

As with the previous section the proof of this result is a parallel of the result from
the previous chapter and will not be included here. In addition, the theorem is true if

all matrix multiplication is considered from the left instead of the right.
'3.8. Scaled Matrix Padé Fractions
Since we know the general form of a Padé form for a nearly-normal matrix power
. a . ) . . "‘ .
series, we can restrict our attention to finding a particular Padé form . We call this

partvicular‘ solution airight scaled matrix.Padé fraction. To get these fractions we sim-
ply take the general form and agk that

@g=o;® --- ma; =0 and a; = L,
" where I, stands for the p x p identity matrix. Then we get particular solutions of the

]
/

form

n—l -

 Tpia(2) = 2 vz ' = | (‘3‘;22)

j MQ" ) t. ‘ ’ .. S . - . : -ﬂ, .
Sum(z)= ! Dwzt. 0 (3.428)
=0 S T

Note that both the numerator and the denominator have invertible matrices for their
- ‘leading coefficients. This leads us to :

L



47

Definition 3.10. A pair of matrix polynomials T, (z) and S,,,,(z) is said to be a
right scaled matrix Padé fraction of type (m,n)‘for the matrix power seties A(z) if

a) mln( m - a( Tmln)? n- a(gsm/n) ) =0 ’

b) A(z) Tpa(2) = Spalz) = 2™*** LR (2)  with ord(Rps) 2 0,
¢) RGCD( Spa(2), Trmip(2)) = 21, , and )

d) The first nonzero term of T, ,(2) is invertible.
]

\‘__ - . .
In the scalar case, where p = 1, we have shown that scaled Padé fractions exist

, and are unique up to a multiplicative constant. If A(z) is a nearly normal pofter series

then we can get existence and uniqueness up to constant matrix multiple.

As in the scalar case we have

» Sy

-

Theorem 3.11. Let A(z) be an (in,n) mearly-normal square matrix power series. Then
- there are a pair of scaled nga‘trix right (or-left)'Padé fractions of type (m,n). These

scaled matrix Padé fractions are unique up'to right (or left) multiplication by an inver-

‘
-

tible constant matrix.

*

3.9. Alternate Definitions of Padé Forms

‘ ‘T}]e definition for Padé form given at the start of the chapter here is not the only
definjtion found-in the literature. The idea behind any type of Padé form is one of

y L 'Y ) ) .
approximating an infinite power series by a rational matrix expression, with the

' approximétion being good to :‘s\speciﬁed order condition. That is, we are looking for

two matrix polynomials N(z-)' and D(z) of certain degrees that satisfy

N L A(2) = N(2)-D(z)"' + z--R(zj ‘ d (3.24)"

where s is some integer (usually specified in advance ).

e = mv+n+l, and we multiply (3.14) by D(z) on the right on both sides we get

owr condition 3.1. In addition we ask for certain degree limitations on both numerator
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and denominator along with a predetermined order conditioa.

These cotditions are fairly standard and agree with most definitions of Padé
forms of type (m, n). Where our definition differs from the classical definition (¢f Bose

(6] , Bulthecl [10] , Starkand [30] ) comes in condition a) . The classical version
£S
replaces condition a) with the requirement that T,,,(z) have an invertible constant

term.~ After normalization this condition becomes Tm,"(Of- 1,, the p x p identity

matrix.

The -problem with the classical definition is that a Padé form does not always

exist for given (m,n), even in the p/= 1 scalar case. For purposes of creating a recur-

sive algorithm this is a major stumbling block. In order to get existence the normality’

condition is then imposed on the'power series.
p :

Another definition that appears in the literature (cf Rissanen [26] ) takes as its
b4
starting point the special nature of matrix inversion that differs from standard polyno-

mial reciprocal taking. For example, if the denominator D(z) i1s a unimodular matrix ,
that is, it has a constant determinant, then D(z)”! is also a matrix polynomial and so

equation (3.24) is really a polynomial approximation.
If we write D(:z)"'in its adjoint form we get
_1-  ad”D!Z“ .
D(z) 4ct(D(z)) (3.25)
50 (3.24) becomes ' .
) = NG)-84DLE) 4 eps
A(z) = N(z) det(D()) z R(z) .

L

Multiplying both sides by the scalar polynomial det(D(z)) gives the equation

A(z)-d(z) = N'(z) = 2*-R'(2)
. where d(z) = det(D(z)) and N'(z) = N(z)-adj(D(z) . )
An alternate definition can now be given that asks tAo find a scalar polynvomial d(z)

and a matrix polynomial N'(z) that satisfy certain degree requirements and asks for
SEE : | -
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certain order conditions. For more about this definition and an algorithm to calculate
these quantities we refer the reader to the article by Rissanen. Included there is an

application to calculating characteristic and minimal polynemials of a square matrix.

\



Chapter 4

A Matrix Offdiagonal Algorithm

As mentioned in the first chapter, the Padé table of a scalar power series A(z)isa
doubly infinite array of rational expressions of the form / '
‘ : .

m

S

Umln(z) - y=0

mn Vm/n("') 2” v z.\ '

=0

]
where the MacLaurin series of the rational expression Tm/n 13 to agree with as many

terms of A(z)as possible.

It was shown in chapter 2 that these rational expres:;ions of A(z) are not indepen-
dent of each other. /Various ‘relationships exist between neighboring elements in a
Padé table. These relationships have been used to develop algorithms for the calcula-
tion of individual elements of the Padé table based on previously calculated entries of
the table. In the scalar case, existing order n? algorithms include the €-algorithm of
Wynn [34] , the m-algorithm of Bauer [4] , and the Q-D algorithm of Rutishauser [28] .
For a more cémplete survey of existing m_ethods; we refer the read;e; to the articles of -

Brezinski 8] , Claessens [16] , and Wyiin [34] .

These algorithms all suffer from the same dis;ldvant;age, namel;, the requirement .
~ of normality of the power series. Algorithms that calculate P;dé fractions in the
degenerate case are given by~ Brent et al [7] Bultheel [ll] and Rissaneﬁ [25] .
Auother algorithm that could handle the degenerate situation was given by Cabay and
-'I\ao [13] This was an order n? algorithm. It was later extended by Cabay and Choi

J[14] into the oﬂ’dnagonal algorithm.

The oﬂ'dlagonal algorithm is superior to the previous algorithms. Besides ‘bcing
able to handle the degenerate case where the power series is nonnormal, offdiagonal is

- a faster algotithm. The pﬂdiagonal\algorithm is an n-log?n algorithm (when m=n), if

50
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fast multiplication and division of polynomials via fast Fourier transforms and the
Newton's division method are possible in the base field K‘ If we compare costs, the
Anti-Diagonal algorithm of Brent et al uses fast multiplication and divisiontand is also
of order n log*n. However,l it was shown experimentally by Verheijen [32] , that the
ofldiagonal algorithm hz;p a smaller constant of proportionality than that of the Anti-
Diagonal algorithm . Rissanen’s algorithm does not use fast multiplication or division
and gives an order n? algorithm. If fast arithmetic techniques are not used then the
offdiagonal algorithm is also of order n?. However, pabay and Kao [13] showed that
the consiani of proportiogality 13 again redﬁced by a factor of 1.5 over that of Ris-

..

sanen.
In addition to a sxﬁaller number of arithmetic operations, there are other advai-

tages found in the offdiagonal aléorithm. It 1s an iterative algorithm .rather than

récgrsive one, thus allowing significant cost savings during implementation. It also

" produces intermediate polynomial sequences as a by-product, which is often desirable ,

, ¢ : -
in practice (sce, for example, Chapter 5).

.The story for matrix p.ov;er series and tlx.eil;lPadé forms parallé s the scalar situa-
tion in that most algorithms require invertibiﬁty ?}nd hence normality) at every step.
Algorithms that required the normality_condition include those of Bﬁltheel [10] , Bose
‘and Basu [6] , Starkand [30], and Rissahen [27] . |

In this chapter we develop a matrix algorithm that éxtends the offdiagonal algo;
rithm from scalar poiver series to métrix power series. The algorithm is of complexity
O( n-log®n -p*). This compares favorably with the aigofithms bf Bultheel; .Bbs-e and

Basu, and Starkand which are all of complexity O( n3 -p’) and with the algorithm of

*

" Rissanen which is O( n2-{p' + p"’}). (As mentioned in chapter 1, p" represents the

cost of multiplying two P by p matrices.) The four previously derived algorithms all -

require normality. The only requirement that we need is that the power series be
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nearly-normal. Finally, our algorithm is presented in the more general case where we
have a quotient of two power series. When the denominator of the quotient power

series is set to be the identity, we get Padé fractions for a single power serics.

4.1. The Matrix Scaled Padé Table
To explain the workings of this algorithm it is helpful to use a variation of a clas-
sical device called the scaled Padé table. If A(z) is a nearly-normal matrix power series

then we have both the existence and uniqueness of scaled right matrix Padé fractions.

Because of this, we can create a doubly infinite array

Py Poyp
Po-y Py
Pl/—l Pl/O
1.
.
, .
Py Py | T R,

¢

In the array, P,/ is the (unique up to right matrix multiplication) righ’t.scaled matrix’
Padé fraction of type (i,j) for A(z)., The array is céllgd_ the extended right scaled
-matrix Padé table. The term extended comes from the addition of afn extra row and

column, (row -1 and column -1). The entries in these positions are determined by the

right scaled matrix Padé fractions
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Sptle) = —z2™1, , Tp_\(z)=0, ’ '

S_yalz) =0, T_\ul2)= =21, : \

-

form=2 ~1 and n 2 0.

There is of course a similar table for left scaled matrix Padé fractions. Since we
will be limiting our discussion to right scaled matrix Padé fractions for the rest of the
chapter, we will drop the terms right and matrix along with the modifier extended and

just refer to this table as the scaled Padé table for A(z).

Notice that determination of the scaled Padé table will also provide us with a
table of Padé fractions for A(z) . Thus, the table of scaled Padé fractions gives us the

classical version of Padé table (see Gragg [19] ).

-

4.2. Algorithm Description

For a given integer pair (m,n) the offdiagonal algorithm calculates scaled Padé’

" fractions for any integer pair (M,N) of the scaled Padé table situated on the (m,n) off-

diagonal

1

'~{(M,&)|M-N= m--n}

I

with M = m. Note thaf we can assume that m = n, since gtherwise we can work with

the formal power series for the-‘ma'trix povﬁ'er series A(z)”! ( which exists since we
“have asépmgd that A(0) iav ’inVertiblé ). At any-given stage, ihg algorithm produces two
right scaled matrix Padé fractions on thi; m-n off-diagonal, a predecessor and a
'ﬁresent frécti_o'n.

The predecessor is a right scaled matrix Padé fraction?? type (m', n’) that

satisfies” - , ,

a2

A(Z)'\}Tm'ln"(z) - Suf_lu'(;z),-. _zm"l'n"-O'l.R';,/',(z) | - (41)
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where R_.,-(0) is non-zero. The integers m’ and n' satisfy m" = n' = @ - g .

Thus, the predecessor is the unique scaled Padé fraction of type (m',n"), with the pro-

perty that the order condition is exact.

1 . . . . ' .
The present 1s a right scaled matrix Padé fraction that satisfies

AC2) Tl a1y +1)(2) = Simearym anz) = N RIAER  Vwanf2) (4.2)
L .
where R, 4 y(n +1)(0) is non-zero with(‘&k 20, or k== in which case

R s1y(n+1)(2) = 0. Thus, the present is the next scaled Padé fraction after the
predecessor. Its order condition may or may not be exact.

We note that not every scaled Padé fraction can be called a present node, since

our definition requires the present node to follow a node which meets the order require-

ments exactly. However, if S,,,(¢) and T,,,,(z) is 4 scaled Padé fraction of L‘ype (m,n),

a

with
RGCD(S'"/"(Z) ,Tm,"(:) )‘= Zh'lp )

then there must be a predecessor/present pair of Padé fractions at nodes (m-h-1,n-h-1)

and (m-h,n-h), respectively. For, by scaling backwards, we get that

S(m—hy(u-ﬁ)(<)=-z‘)'-S.,./..(z)'

Tim-ayin-af(2) = 275 Tppn(z)

, !
satisfies

A(z)'T(m—h)/(-n—hl(z) - S(m—hytﬂ-h)(z) - z(m‘—"b‘)’("-—h)+(h")+l'Rm/n(:) .

Thus, the order condition is met. In addition, the degfee requirements are met by con-

struction, so Sim-nyin-)2); T(m-'/.;y(»‘-h) are the scaled Padé ffactions of type

(m-h,n-h) by 'uniqyenesé. There is no reason that the order condition be exact here.

v

However, for the previous node we must have

54.
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| . T e
AG) Timehotyin-n=1f2) = Sim-nr=1yin-s-12) = 2™ " LR b pamn—1)(2)
where R(m_p-1yn-a-1)0) # 0. This is so because, if the order condition were higher,

\ . )
then we could scale forward to the next node (m-h,n-h) and get another pair of matrix

polynomials that are scaled right Padé fractions but with right greatest common divi- \

sor at least z/,. Then the pair S(m_',,y(,,_,,)_ and T(,,_;,y(";,,)(z) would be a safiled Padé

~

fraction with a different right greatest common divisor contradicting the uniqueness of
scaled Padé fractions.

Notice that we can write

-~

A() Tim=negy-1(2) = Sim-n-1y-1(2) = 2™ " R (0 qy-i(2),
where ) . _ &

. T(m-ﬂ-))/-—](z).‘= 0, S(m—n—)}/—-l(z)g —zm—."—l'!p and R(m—n—l)/—l(z) = [p;

and, *

O
A(Z)'T(m—nyo(z) - Stm—n}’O(Z) = zm:_”flR(m—n)/O(z)’

-

where

T(m—uyo(Z) = IP’ S(m_"yd(z) = A(z) mod zm-‘n-“l .

-

" Thus, we always have an initial value for the predecessor apd present for any formal
power series.
Graphically we can view the predecessor and present on the scaled Padé table as

shown in the following diagram: o 3
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(Sm'/n' ’ Tm'/n' )

»

(S(m' +1)(n" +1) T(m'+ l)/(n'ﬁ-‘l) )
[

| |
| |
| ,| |
’ | |
| |
| |
|

‘Sm/n r Tmln )

We use the predecessor and present fractions to move fqrward;along the m—n
offdiagonal until we get the (m, n) node, i.e., until we gét the right scaled Padé frac‘- :
tion for A(z) Qf type (m, n). Once we huave a predecessbr and present"node, there are
L xar‘e two possibili-ties that face ﬁs.

Casel: m ~ (m'+1)s k (caseof simple forward scaling). |
If m—(m'+1) < k, then we can multiply both sides of t?quation (4.2) by

z™~™ "1 and get
' A(Z)‘Tm/”(Z) - Sm/u(z) = ZM#"’l'Rm/n'(z) "

where

Tm/n(z) = km—m'—l'T(m_"Ol)/(n'+l)(z)f . d

Sm/n-(;);" zm-‘m'-l’s(m'+IY("_I4‘1)(")1 p
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and . )
Ropalz) = R(m'ﬂy(n‘n)(z)-

The order condition holds because

’ )
(m'+1)+(n"+1)+1+k+(m—m'—1)= m+n" +1+k+1

= m+ n+lt(k+n' — n+1) ;

i

2 m+n+l.

We have used the fact that k2 m —m' -1, so k=2n~—n - | (remember

n—n" = m—m'). The degree condition holds because
NT,p)Sn' +14+4m—m -1 '
. /
=n -m+m §
‘Sn-m+m  (sincen" —m' =a-m)
=n. S A\ ’

Similnrly,’\we can also show that 3(S,,,) < m. In addition, it is easy to show that

implies thag there is a box-like structure in the classical Padé table where the nodes
&

are viewed as Padéfractions. That is, the Padé fraction of nearly-normal power series

\d
A(z) is the same for a box starting from the top upper left corner (m'+1, n"+1 ) to all

’

nodes k uhits to the right and k units down.

"
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P(m'+ly(n'+l)

'P(m'#l-bly(n'«fl#l)

I
|
i
I
|
I

-

Case 2: m—(m'+1) >k
The second situation arises when m — (m'+1) > k. Then, by multiplying equay

tiog (4.1) by :*** | we get the equation

A(:)'Tm'/n'('z)'22+k - Sm'/n'(z)'22+k = z(m"+l)+(""¢!)+1+"Rm'/n'(:) » (44)

~

Notice that the order'condition is now the same as in the present

¢

A(Z)'T(m'ﬂy(n'n)(z) - S(m'+1y(n'+1)(_~') = z(m"l)“("!*l)*l*"i?(m'+ly(n'¥l)(z)' (4.5)

. . . \ ‘ . ' € .
~ If we now multiply equation (4.4) on the right by a polynomial 7'(:z) and multi-
) ply equation (4.5) on the right by-a polynomial §'(z) and follow this by subtracting

the second equation from the first, we get

) i -

o ST = S(a) = AR ) )

. where e

T(:) = 5“"'.T,..'/..'(2)'T_'(2) - ,T(..."ny(,.'n)(Z)‘S'(’)u.



. 59
and
S(z) = 24450 (2) T'(2) = Sim +1y(n +1)(2)5"(2) - v
Also, : \J
R.(:) = Rm'/u'(z)'T,(z) - R(m'#l)l(n"‘Ol)(z)'S’(Z) )
- -1
= R(m'+l)/(n'+l)(z){{R(m'+l)/(n'+l)(z)} 'Rm'/u'(z)'T'(z) - S'(Z)}
= R(m'+ly(n'+l)(z){ A'(z)T'(z) — 5'(2) } ,
where A'(z) is the matrix power series given by’
IV/“—"\\\\ .7 -1 i K
) A'(Z) = {R(m'+1y(n'+l)(z)} 'Rm'/n'(z)' _ — (47)

R, ,w(2) is a unit matrix power series eince both Rim 4 1y(n +1)(0) and R,.,..(0) are
nonsingular. ( Recall that A(z) being nearly-normal implies that both predecessor and -
present residuals will start with invertible matrices. Thus, the inverse of the present

. . . !
residual power series exists.)

N : ' /
The object now is to choose the matrix polynomials S'( \) and T'(z)in equatlon ___/
(4.6) so that S(z) and T(z} become the scaled Padé fr actlons of ty}e\i}{f; et
m'’' = m-m'~1 and n'' = pep—k=2. - - Then m'’' >n' and

re

n'"= m-m'~k-2 , since —n-m'—-tg::/. otice that n'" 2 0 since

m-m'=1>.k. We choose §'(z) agd T'(z) to be the scaled Padé fraction of type .

7 -(n_l_"';n.'.') for A’(2). Then r‘)_r'd(R"(z)) =m' +n'" +1and so in e‘qnation‘(4.6)

ord(A(2)-T(z) = §(z)) = (m* + 1)+ (0" + 1)+ b+ 1+ ord(R*(2))-
= m’ +m"+l+n +n"+k+2+1
-m+n+l

A .

-

To show that the palr S(b), T(z) in equatlon (4 6)is'a scaled matnx Padé fract.mn o

- for A{z) we need to-prove tbat the degrees of S(z) and T(z) are at most m and n,



60

respectively, with at least one of the degrees being exact, and that the RGCD of the

two matrix polynomials is of the correct type. But,

a(T) = max (T )+3(Tp )+?*" 3(5')+3(T. sun+1))

' ‘< max (0 +n' +k+2, m' +n'+1) )
S max{n—n" ~k=2+n"+k+2, m~m'~1+n'+1) .
S max(n, m—~(m'—-n'))
Smak(n,‘ m=-(m-n))
< max(n,n)
<n. ‘ o .

Similarlv a(S) s m. In additionA We can show that 8(T,,) = n or/ﬁ(s,,,',,) = m. as

To see that the resulting palr has a RGCD of the type l}\for some nonpegative

long as one of T"(z) or S’ (z) satisfy this condition.

power u requnres an argument that parallels the scalar case ;n’d) will not be mt*ludcd
here. The reader can find a proof for the scalar case in Cabﬁag and Choi [14]. Thercforc
“we have reducéd the (’m,n) scaled Pade; fraction 1’:50)/10111 for A(z) to solving the -
(m”",n”) scaled Padé fraction for the power series A{('z). where m'’ < m and n’’ < n
The"coulputation, of the (m,n) scbal,ed P"uadé/'f{actiou' required t.;otli the ‘present -
(m +1,n"+1) and the predecessor (m',n") ‘.scaléd Padé fractions If we also required

the predecessor of the (m n) scaled Padé fractlon}Y\example, if we sbould now decnde |

- to calculate scaled Padé fractlons beyond (m n)) then We’m'eed as follows o

! .

| Denote the predecessor for T'(z2) and S'( ) by T"(z) and S"(z) (every Padé

ractlosn has a predecessor by the same argument as on- pages 53-54) The new prede- kN

lcessor for T(z) and S(z) is glven by the same formula, ie.,

T‘(Z) = z2+£Tm In( )T '(2) T(m'#‘ly(u’sﬂ)‘(‘zls'v'(.'z) _ | h-‘l

M

r

S'(z) = z“"S,,,, (z)T"(z
Chisi,
To see that we lndeed get the predecessoh notice that lf

S(ln.‘+ 1y 01')(’3 )$§’ '(1) -
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o

‘ " RGCD(T(2), S (2))= z*1,

then the degree of S?(z), T*(z)is m'"—h—1and n'"—h—1, respectively. In addi-
tion.

’ ﬁ'(z)-T'(z)’— S?(z) = ¢ 40 "L R (y)

We can work out that

4

A(z)-T*(z) — S*(2)

expands to,

{A":):Tm'ln'(z) - S";,,".(z)}‘T"(z) - {A(Z)'T(m'ﬂy(n'ﬂ)(z) - S(,,.'+1y(n'+1)(3)}'5"(3) -

(s 5

™ -
This in turn reduces to

h

- , ' .
" f“"ﬁ(m'n.&'ﬂ)_({)}'s"(L’)

| BN e

= zm'4_"l+3+"R(m'+l)/(n'+l)(z){R(‘mWfly(n'#l)(z)‘l'Rm'/u'(z)'T"(,z) - S"(Z)}'

{’""*‘"'””‘-‘Rm.,,.-(:)}'T"(z) -

= :"‘""'””“R(,,.'Hy(n'ﬂ)(z)[A'(Z)'T:'(z) - S"(Z)}A ‘
- ;"-""’"'+3+“'R(m'+l)/(n'+1)(:){3"'”""“_Qh—I'R'(Z)}
- zm.".’““m,.”,.72/&.1,.3("',“)',(”,H)(z).R'(Z) . - —

= o eneTe (e e b 22h R ()R (2)

;

= L R e hoiym—h-1)(2) s where R(pm_p_yya-s-1)(0) # 0. A



4.2.1. Example of Offdiagonal Calculation

We will construct the scaled Padé fractions for a 2 x 2 matrix power series. To
avoid cumbersome fractions we will consider the power series as \'inf entries from

the field Z . the field of integers mod 5. The formal power series is gyven by
N

(1+4:+z‘+25+3za+3z° 4:+2943:5+ 4284 42°
Alz) = + R(z) -
2+ 4254 48+ 320 1+4:5+428442°

1 0], [4 4 L1l 8] ey B 4]ey B 4)es
Slor|Moal*t | ofF e alt e a|m 3 a]F TR

where'R(z) is of order 210 . We will calculate the right scaled matrix Padé fractions

for the set of integers (m,n) along the ofl-diagonal m - n = 1 up to and including entry

(5,4). '

Initially the (0,-1) and (1,0) entries in the scaled Paﬁé table represent the initial

values for the predecessor and present right scaled matrix Padé fractions. These are

given by

o . “ To-1(2) =0 Soy(z)= =1
L ’ 1+4z 4z)
* Twlz) =1 and Sy,(z) = [ 0 1] -

! ,
We see that the predecessor and present satisfy

il

) A(2) Tomy(2) = Soroy(2) = 201 ®
o ) ‘ .
A(2) Typ(z) = Sip(z) = 2*Ryplz), . : .
" where Ry,lz) is given by S " ' 4 | '

A

i =
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142243274325 1432244214428
TR y(z) = .+

1442244244325 4224+ 4244 425

], (03], 3], [B 4],
=110 4 417 |4 4)? 3 4|*

- .

Thus, we have the nodes (0,-1) and (1,0) of the scaled Padé table of A(z). Notice

that by multiplying the scaled Padé fractions located at (1,0) by z and :?, we can
obtain the right scaled matrix Padé fractions at node locations (2,1) and (3,2), respec-

tively, namely,

z 0] :+ 427 42°
Tz/x(,z) = 0 and  Sy,(z) = 0
y z
22 0 224423 458
Ty0(z) = 0 . and S3.(z) = o X
/Z’J 2:’0“

If we now align the predecessor and present we get

A(z)0 — (—z‘-i)'; 247 - ) ' (4.8)

AGYT = Syalz) = s Ryl) - (49)

To get the (5,;1) entry in the Padé table we can multiply equation (4.8) by a matrix
polynomial T’(:z) of degree < 1 and equation (4.9) by a matrix polynomial S'(2) of
degree < 4 and stay inside the degree requirements for the denominator and numera-

%

tor. In addition, to meet our order condition we wish T"(z) and §'(z) to satisfy the

condition that t.he' difference
.I'T'(’) = Rynl2)-§'(2)

be of (;rder 6.
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i

Thus, we now look for matrix polynomials, denoted here P, (:) and Q4i(z) to
avoid confusion with the original scaled Padé fractions; that satisfy the condition of

being the (4,1) right scaled matrix Padé fraction for the power series

-1 2243244 2% 14224428
Roolz) AR P
. 1+ :%+42% 442:24 321

_'0.1+102 32],. 1],
“ |4 12|* a3t oof”

If we accept for the present time that the (4,1) right scaled matrix Padé-fraction

Pyy(z) and Qy (=) for Ry,(2)7} are given by

4+4:42:2+4 2234420 2+ z‘l~'2:""f*3.;3

Py:) =
‘ 3+3: . 2z4 2%+ 421
) 24+2: 243:
Qunlz) = ) !
S 44z 2+: o

then we can get that the (5,4) right scaled matrix Padé fraction for A(z)is given by

55,4(2) = 2450/-1.(.2)'Q4/1(3) - Sllo(z):PHl(z)

- T 14324204225 3424224 2040

fl

2.+l2z+ A5 3z44224+ 4204425
Similarly, we get .
Tgu(2) = 2T (2) Qenlz) - Tl/o(z)'_Pm(Z)

[1‘+ 2+3224 323+ 21 34424322428 ‘

[ 2+2: 3z+42%+ 24

To see how we got the (4,1) rightv scaled matrix Padé fractions for R,,(z)"", we

L

o
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again use our method of thgﬂ&vious section. Let A"(z) = R,,(z)”! . We get the (2,-1)

and (3,0) nodes of the scaled Padé table f(‘)r A'(z) .'Thése results are given by

Q2/—1(2)_ nl() ’ P2/—'1(2) = — 2]

22 1
Qan(z) =1, Pylz)= -
1+22 44222 .
- . (‘,{{‘
These matrix polynomials satisfy the equations
CA(2)D = Pyy(e) = 22
A7 ' o . . ' H ‘
A=) = Ps,ogz) = 4R ,0(z), =
where
R'yo(2) 3+: 2+4:
z) = : :
30 4 3 /

\

As bcfore,,all we need is the (1,0) nght scaled matnx Padé fraction for the inverse

—

o,
of this res;dual matrix power series . Our calculations glve

3+3: 3+2: ‘
P'plz) = [ ] and 1/0( )= [ ] .

1+2 3+4:

Thuq returning from our recurswe deqcent we calculate

, (.) = 20) 3+3z 3+22 .
z) = 2%(=2%1) —
v 1+z2 4"'2"2 l+z 3+4:

J4+4s+2:%+ 2:5+ 40 2+ z+'2{2+ 328

3+3: 224 22444
A similar equation gives the denominator as

2422 2}3:] -

Qunlz) = [4+4z 2% 2
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If- we also wished to calculate the (4,3) Padé table entry for our original A(z)
(which we would want to do in case we later wished to proceed further along the
offdiagonal). then we would determine the predet;essor of the (4,1) entry in the Padé
table for A’(z). 'Sin‘ce‘ this is_just the (3,0) entry, we do not need to descend an&
furthér. ‘W-e then use the (3,0) entry Atd get the (4,3) entry by means of

Saslz) = 24802 1(2) Qaplz) — S10(2) Pyl z) T
: [_

s [l+4z 42] 22 1
A1 - -4
0 1 1+ 22 4+ 2.2

n

RS

2442242234 2t 44228

4+ 422 14322+ 21

and

I~

Tys(z) 24.'T0/—1(3)'Q3/o(2) - Tuo(z)'Pa/o(Z)

42 4

4+422 44922 ~ o

4.3. The MATRIX-OFFDIAG Algorithm

-

The results derived in the sections are summarized in the algorithm - MATRIX-

P _
OFFDIAG below. The algorithm computes the (m,n) scaled matrix Padé fraction for a

‘quotient matrix power series - B(z)~'-A(z) by solving
: AR

() Tarnle) + B(2)-Suial2) = £™* LR 0 (2)

&

. ¥ .
. The algorithm computation proceeds iteratively along the (m,n) offdiagonal calculating

the Padé fractions in steps a power of 2. We require that the quotient power series be

(m,n);nearly-normal. We then solve our original Padé problem by setting B(z) = 1,'. “

L
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The algorithm for calculating the right scaled matrix Padé fraction is then given
by an extension of the second algorithm of Choi and Cabay . (Choi , Cabay [14] ).
Esseﬁtially we use the results obtained in the last section. We give the version for

right Padé form. The left version is easily determined from the right version.
ALGORITHM (MATRIX-OFFDIAG)

INPUT: A, B, m, n, p where
’ . oo 3

1) m,n, pare nonnegative intgge?gwith m=2nandp 2 1.
2) A and B are p X p matrix power series (we note that we

only require A mod z™*"*! and Bmod z™*"**!), B must

be a unit power series.
RN

OUTPUT: Matrix polynomials S,, Sy, T, T,, and an integer IER where:
1) The pair S; and T, is the (m, n) right scaled matrix Padé fraction

for, =B~1A . o

2) The“pair So and T, is the (m-h-1,n-h-1) right scaled matrix Padé fraction

for ~B~!-A, where h is the integer determihéd b_y:

‘S‘ Zh‘lp - RGCD(S] y T] )

(Thus Sy, Ty and :"48,, z27*T, form a predecessor/present pair,

the first qﬁch pair before (m,n).)

3) IER, an integer variable that is used to indicate if invertibility |

requirements have. been met (0 if success, 1if failure).
Step 1: # initialization #

IER -0
ie-1

M,-(m-‘.n) °



N-0O ' .

Sy =-B71A mod M+ S~ ML

Tl - I}?’ To“o

1]

Step 2: # calculation of step-size #

1 =i+l

s ~ min{2'- N, n - N}\! “ /

Step 3: # Terminationucri’terion #
If s = 0exit!
Step 4: # Calculation of closest present node before the-pair Sy, T,#

Determine h such that z*-I, = RGCD(S, , T, )

© Set
Sy~z7kS, , T, -:7hT
Step 5: # Calculation of residual for §,-T! #
A . » s ‘ . ,
Compute k and the power series R, such that

(A~T, + B-S, ) mod zlnyn.;)(\‘? MEN-hebbIp

where R (0)#0ifk < 2s + h.

-- Step B: # Separating into different cases #°

* . o)
. .

If k 2 s then
Sl - Z"+h'Sl",
T, = 2**h.T,

go to step 11

68
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R ,(0) is singular, then set JER = 1 and exit.

Else go to step 7

Step 7: # Calculation of degrees for residual scaled matrix Padé fraction #

m ~ s+ h

n = s-k-1
Step 8: #Computation of residual for' Sy- T ! #

Compute R, so that

(ATO + BSQ) mod 2M+N+m'+”'-2h = ZM"‘N"QQ—IRO ,
. .

where Ry(0) # 0.

Step 9: # Computation of résidual right scaled matrix Padé fractions #

¢ ’ ’ 1]
SleOrTl’TOr

determined from MATRIX-OFFDIAG (R,, R,, m’, n', p,IER)

If IER = 1 then exit.

-~

Step 10: # Adw{ance along oﬁdiag\én:ﬂ for scaled fractions #

".0 . . 'Sl “SI‘T'; + Z’.*-k“zso's']

' LY

i Tl - TI.T'I + 2h+k*é'T0'S'i

»

- S, - Sy T Z'”'“-?SO-S'O

To=TpT o+ 27,8,

1

¥

Step 11: # Calculation of degfees of §,-T/! #



MM+,
N-N+a
go to step 2

4.4. Cost ofMafrix-Oﬂ'diagonal Algorithm

Let C,(m,n) represent the cost of calculating the (m,'n) right scaled matrix Padé

fraction of the nearly-normal p x p matrix power series B(z)™!-A(z). We will deter-
mine an)asymptotic formula for this cost in terms of m,n, and p. The determination of

the cost essentially follows the argumends from Cabay and Choi [{14] into two parts,

@ther n<Sm<2norm > 2n. Wﬁ@consider the case wheren € m < 2n.

The first step that requires a nontrivial calculation is step 1, the calculation of
the quotient pov;er series =B~ -4 mod z™~"*!. To determine a c.luotient we can usé
fas‘t inversion 'via Newton's method. This requires the calculation of the inverse of the{

leading term, “an order p", operation and then ox the order of n log n‘matrrix multiplies
sinc?tlhe number of terms desired is less than 3n. Thus the total cost of this step is of
.tvhe order oflb'-ﬁ log n- operations. As mentioned apreviously, the suﬁerscripﬁp ;gis the
géder éqnditioh for matrix multi‘plicatio(n of two p by p matrices (this is the same orde(r\f-
condition as inverting ,;1 p by p matrix).
To determine the cost of the rest of the steps we ﬁ.rsp notice that if we set q =
[logn 1, where [ ] répresents the ceiling of a real number, then the algorithm ter-.
minates after q iterations. At the beginning of the ith iteration the value of N, M, and

Y

the increment s in step 2 is found to be

| 1; | e 0’. | ' ~ : .
- = -1 : . . |

’ i—év-l ?fq'<q . & N (4.10)
N-Q {Lg.-_l :;?,' (41
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and
M= N+ (m ~ n). (4.12)
Suppese that we are at the ith iteration. We will determine the cost of complet-
ing the (i+1) st iteration. To do this, we assume that the nght scaled matrix Padé

fraction S, and T, of type (M,N) and its predecessor S, and T, are known. .

During the iterative step, the first nontrivial step is step 5 which calculates the

residual R2,(z) of the present. Let

M _ N
Ay(z) = 200,-2’., By(z) = Eob,z’ (4.13)
;- ‘ i=
and
N4+2a-71 A Ai+2a—l )
Ax(z) = 2 Opese12 By(z) = 2 bN+j+lzJ .
1=0 =0 :
In the equation - )
> (A-T, + B-S,) mod ZMEN+2e41 = ZM+N-b+k+1RI

{where h is determined from step 4), the left side is the same as
(A, T, + zM*14,T, + B,S, + N*1B,S)) mod M+ N+2e41

and this is of order M,.+ N — h + k + .1. Note that, .«3ince'A,1Tl and~BISl are'bot‘h'
matrix polynomials of degree athl‘nost M+ N = h, they do.not.‘entei' fnté the,;alcula-
tion of the residual. F?l(z) and‘.the integer k will be determined by the multiplication
of the matrix po}ly'novmial T, with A, and $; with B,. We can determine the residual
by ﬁvicg- mul“tiplying two matrix polyndmials and 'gétting ’tv?o matrix Ap.o“%or'nials,
eacix of deéree .a_t most 2N + .2s — 1 < 4N. We c'anv calculate this qu‘antity by fast

matrix polynomial mu,ltiplicatiohﬁith a cost of the order of N log N matrix multiplies,

i.e of the order of p* Nlog N operations.

ey
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!

If we do not terminate in step 6 then our next nontrivial step is the calculation of

the residuad for the predecessor. A similar argument to the one above results in a cost.

L)

of the order of p" N log N operations.

Step 9, the recursive call to compute the right scaled matrix fractions of type

& .
(m’,n") for A’(:) requires Cp(m' ,n’) operations. Notice that n’ s m' < 2N,

The final nontrivial step is step 10 where we determine the new predecessor and.

present scaled Padé fractions. This step requires 8 matrix polynomial multiplications.
: 4 y

- Since M S 2N each of these polynomial products are of degree at most m+s and so at

most of degrece 3N. By fast multiplication methods this requires on the order of

p" N log N operations.

Therefore the total cost of the i-thuiteration (without step’l ) is bounded by
2 ,
C,(m',n') + c(2N)og(2N)-p" ) o * '
< C,(2N,N) + c(2N)log(2N)p" B
< (20,271 + ci2'p” .,

But then the total cost{including step 1)in the situation where we have k iterations is

- bounded by

\

. s : = A . . . | )
. E¥1 ok) = 01— Ccoinm S
C (2t e =y {a@,z- .l) + ci2'p } + p'nlogn o

=0 N
k=1 _ , - : e R ~
=2 {cp(z",jz& + c.’z'p'} + Cp(24,2§71) + ck2tp” + p" nlogn ~
1=0 2 : . ‘ ) S

o m 2¢ 2E,2k-f1f + kokgt
&_ Al ) + ck2tp A

‘-2*{0,,(2,1.)4 cp'ﬁi}

i

=0

2"{0,('2,1) + cprREF1) £l };

" If o = 2k then this is just of order
p" n log?n

Sincefor0 < n = m < 2n
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L R . E
Cp(m,n) < E {CP( 2 ) + cn'2'p'} +p--nlogn,
° 1=0 )
we can get : -

e MATRIX-OFFDIAG can compute the right

“Theorem 4.1. If 0S n < m < 2n,
scaled matrix Padé fraction of type (mrn) for a nearly-normal p x p matrix power series

B(z)"!'-A(z) in time of O(p"-n-log?n) operatioyfs where p” is the cost of multiplying

N

two p by p matrices.

Thus we can determine the cost for finding the (m,n) scaled Padé fraction as long
as m < 2n. Suppose now that m > 2n. For ease of discussion we limit ourselves to

the case where B(z) = — 1. We can write A(z) as . ," R '

A(z) = Ay(z) + ZmInte4.(2),
where ‘ -

_ Az) = A(z) mod zm~ 1+
and where A Q(O)j'is an jnvertible matrix if p < @ (since A is a nearly normal power
_ series and As(2) is just the residual of the (m-n,0) Padé fraction). If w.< n, let th:e '
pai“r" Suiin-w)(2) Aagd' Tpsn-p)(2)_be the right scaled ‘mat‘rix ‘Padé fraction fo'r"Aé(z)"‘.

Then we can determine that th‘e_ri.ght scaled matrix Padé fraction of type (m,n) for

A(z) is given by (see Choi [15] ) . \ ‘
N | ' ) : - * ) oo .
- - ( : .

w * - :

.2 ! Al(z)snl(u-p)(z) + 27 "*“T,,(,,,“)(z), fpsa o

L )\f ?;,,(z) ] Ay(2)z", | o ‘ L otherwise - (4.149)
, - 1 . , . ,' " N ) . E . " -

Sn/(n-—p)(_z): ifps n

L A otherwise.

T.,,,‘('Z‘) - 1

g
© To see this in the case that B S nwe siiﬁ\zly notice that

. . A(Z)T,.,,,(l) - ‘S;','(Z) "-VAI(Z)TQIQ(Z)’ "‘S.,'(Z) + z"""""A,(z)Tm,,,(z)



‘ : 7-‘

= zm_”+“A2(z)Snl(n—p%z) — :"'_"*“T‘,(._“)(Z)

= 2'"'"*”/42(2){5,,/(”—“)(2) - A?(z)-lTul(u-u)l:)} _

=M A () R R )

= — ,mﬁ-n#lR

”/‘(".““)(2) .

It 1s an easy matter to check the degree and right greatest common d@lsor are of the

.correct type. Similarly it is not bard to check the case where w > n

The ébove result is helpful when we are det.erminning the ‘(;ost of the MATRl-‘(- 4
OFI'DIAG algorithm for the scaled Padé fraction of «t(ype (m,n) in the case that
m > 2n For, then wWe can return the problem to (;;ne of 'ndmg a different scaled Padé
fraction of type (n,n—p) for the power. series for A,(z)™ 1. The number of terms of the
matrix polynomxal A2( z) that er*er into the calculat:ons is at most 2n Because of thn,
lhe calculation of the inverse power series is accompléﬁed in- ordcr p nlog n opera- .

'tlons using fast dwnsnon techmques The cost of determmmg the (n, n- p,) scaled Padé

fraction is bouuded by C (n n) and hence is of the order p Tog?n. Flnally, thc cost.

of determmmg Sm/n(Z) fl‘ f equation 4 14 usmg fast muluplncatnon lnvolves m Iog m :

matrix multlplles Thus we get. /'

Theorem 4. 2. Let (m, n) be arbltrary nohnegatnve mtegers, and let A(z) be a nearly-
. normal p x p maLnx power senes Then the cost of calculatlng the (m n) nght scaled
‘matrix Padé fra,c’t:ion of ty'pev('m,n) is in £im¢ pl’ _tlie _o_i-der of {m logm + n l'o‘an}pvr,
where p” is the cost of multiplying two p by p matrices. -



Chapter 5 ..
o~
Scaled Padé Fractions and Greatest Common Divisors

..On¢ of the more interesting properties ’of Padé forms is their relationship to the
greatest common divi;ors of two pnlynomials. Rnlationships‘ between the Padé forms of

a quoticnt power scries and the greatest common divisor of two pnlyno&niais have been

% studied by many, other authors. See for cxample Berlekamp [5] and Mthece and
Shearcr [22] One of the more elegant relatlonshlps was dlscovered in 1984 by Cabay
and Choi [M] They proved that a second version of their oﬁdlagonal algorithm, when
appllcd to a quotient power scries a(z)/b(z) for a specific oﬂ'—dlagonal vga) the same as
tnc extended Euclidean algorithm as apph,e(}l to tl_le.‘pznr ofs-polyn!onlnals a’(z) and

b'( z). Because of t.ne speed®f the first version of their oﬂ’diagona] algorithm they p:"o;

.

vide an order n Iog n algonthm for ﬁndmg tbe greatest common divisor of two polyno-

mnh (if fast anthmétrc is alfowed otherwise the algorithm finds the greatest common .

divisor in order n? dperauons). -
g _ N

. . R ’ - - ~ 2 Py . oo

In the matrix case less is known aboqt anjr refanonshlps between the greatest

P S .

common dlvxsor of two matrix polynomlals and‘.rgth‘e matrlx Padé forms of the related

t
v

quotmm matrlx power series. However, any relatlonshlps found would be- mtertst:ng, ‘

glven the 1mpor€ance to engmeers oﬂsﬁndmg t_he greatest common dmsm; of two
BN

kS .
‘matrix pol) nomlals For example in hnear systems theory, one often faces the task of

 mo ollng a S) stem where thewtransfer matrix T(z) of the problem is known, or theoretn-

calh determiped.. This transfer mamx.ls a matnx of rabncnal polynomlals wnth p rows

“and q colgum 9 representlng a p-lnput q-output system Slnce the elements are ,

rauonal pol) omlals— the IOWest common mult.lples of the denomlnators ®of each

n

“colump cau be,determlncd if Lhese lowest. common multlples are placed into a dlago-

nal mau’-ix 'D(z) (lowestbcommon mul of column i of the ongmal matrix will be the
i-th dlagonal cnuzy of D(z) then, it N(z) is the onglnal matnx with- the lowest com--
.mon dmsors removed from T(z), we hai'e a repres’entatlon for the transfer function as

PEY

ETR T
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T(z)= N(z)-D(2)"!'.

Notice that both N(z) and D(z) are matrix polynomials. It is clear that this represen-
tation is not always the desired way to represent T(z) as a matrix fraction of two poly-
‘nomial matrices. In order to find a simpler fepresentation one finds the greatest com-
mon divisor of the two matrix polynomials and divides out the common factors to get

a new representation for T(z) (factors will be invertible since D(z) is invertible).

However, greatest common divisors for matrix polynomials are not as simple as

‘

they are in the one dimensional scalaP case. In the scalar case, a nontrivial common
factor is any factor that divides both polynomials and is nontrivial in the sense that it

; has degree at lcast one . For the matrix case, a common divisor can be of degree larger

"

than one aud yet be trivial in the sense that it does mot just divide the two matrix

polynomia-ls in question, but divides every matrix polynomial. For example, in the

4

-~ 2X2 case the matrix polynomial

p 1 : ' .
-= .

(2) 0 1

‘divides cvery matrixypolynomial of compatible size since its inverse is also a matrix

. ' > -
polynomial . ‘ C

. p()i= [(1)_12] ) : ' | X 0 o

>

Any polynomial matrix P(z) that has as its inverse another polynomial matrix is then

called a trivial divisor. For if Q(z) is any other matrix pnblynobmial of compatible size, ‘

+ then we would have >

Q) = Q)P P(2)

= @'(2)P(z),

p

where Q' (z) is-.-,zi‘;n:it,r,ix polynomial.  Thus, such matrix polynoxhials divide into every

=
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other matrix polynomial. Matrix polynomials that have the property that their
-
inverses are also matrix polynomijals are called unimodular matrices. They are charac-

~terized by the property that their determinant is a constant. Néntrivial divisors are

then matrix polynomials with the property that the degree of the determinant is at
least one. .

As in the scalar case, there is a correspondence between greatest common divisors
and scaled Pa(lé fractions of qpptient polynomials, We include vtbe algorithm that
results from this correspondence as an application of MATRIX-OFFDIAG. The prob-
lem with the algol'ithm is its requirement that the quotient power series be nearly-

_normal. Thus the algorithm gives a greatest common (livisor algorithm but only for

restricted pairs of matrix polynomials.

5.1. The MATRIX-OFFDIAG#2 Algorithm

Before investigating the relationship between the calculating of GCDs and the

. offldiagonal algorithm of chapter 4 we would like to redo _tl]e ofidiagonal algorithm.
so N wal

In our initial description of the "olldiagonal algorithm in ihapter 4, we had a node
“called the pl‘cdeces_sor and a node called the-bresent. The predecessor was a node on

the (m;,n) ofidiagonal of the Scale;l Padé tzlble,l where the degree was exact, i.e.
A Tarin(2) + B{2) S (2) = z"""'“-R,.l,,.'(,z") . R ))

" The present was then the next node on the ofl’dlagonal i.e. the scaled Pade fractnon of

type(m +1,n +l)and so sausﬁed ' R )

Al:)'T(m'ny(n'}:)(Zl "’ B(zl'S(}n'Hy(n'ﬂ)lZl - 3"'.&""f“&'R(m'H)l(n'-n)(-’) ) (5.2)

whcre k=2 0 Notlce that the present cannot have a nontrivial common dmsor since

o

then we would be abl‘é to factor out a power of z (since these are the only common facz.

tors allowed) and get two dlstmct scaled Padé fractions of type (m’,n"), one pau- hav-

“

ing exact order condmon the other not Since scaled Padé fractions are umque up to. "

o

v
~
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nonsingularmatrix multiplication, we would have a contradiction.

We then noticed that if we were interested in getting nodes (m’+h, n’ + A ) for
any 1 < h < k+1 then we could simply multiply'the present node by :*~! If we

wanted a node (m,n) beyond these nodes we did a recursive call.

L3
However,

-4(1)'T(m'+1y(n'+1)'3k + B(z)"s(m'+ly(n'fl)(z)’= z(m"l*‘)*(”"l*‘)*‘LR(m'#lV(n'#])(:)

so that node (m’"+1+k, n"+1+k) is exact and hence would make a next predecessor
node aleng the (m,n)-offdiagonal. Thus, to continue with this sort of iteration we

would need to align equations (5.1) with (52) to get node (m’ +k+2, n"+k+2).
“ . N -

A(-“)'f%'/..'(Z)'Z’”2 + B(2) Sppy(2) 2t*2m 2 NABIR ()

. ’ ’ .
A(:l)‘T(m'-bl)/(n"#l)(z) + B(:)'.S(m’+l)/(n'#l)(z) = g™ te *‘+3'R(m'+]y(n’+l)(z) :
o i ‘ .
To get the (m"+k+2, n' + k+2) scaled Padé fraction, we then simply find the (k+1,0)

scaled Padé fraction for the qﬁotient made from the two residual power series
Ryijw(z) and R(m'+l)/(“n'+l)(z)“'
. ) - (;
We get a new algorithm for determining the scaled Padé fractions along-the (m,n)

. ] ) . , ) . - ,
offdiagonal by iterating from predecessor/present until we reach the node that we are

* - interested in. If we return to our algorithm, we see that the above descript’i'on for the
_ -algorithm can be implemented by changing-our step size.  In light ef the fact that the

new version of the algorithm is totally iterative, we keep track of our iterations by a

4

variable i and let S{z) and T;(‘z)" deﬁﬁtev the predecessor at step i and S;-.,,A(_zv). and
 T,4y(2) the suBsecfuent predecessor (instead of a present node). u

The details of the new alg'oi-‘i‘gh;m are then given by (Ca‘bay-Choi" A[‘14] '). e
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MATRIX-OFFDIAG #2
INPUT:A, B, m, n;p where '

1) m, n, and p are nonnegative integers with p 2 1.

2) A and B are unit p x p matrix power series. Actually we simply require

[}
A mod z™*"*! and B mod :™*"*1,

OUTPUT: Matrix polynomials S,,, , T;4s,, S,, T; and an integer IER where

»

1) The pair S,,, and T,,,is the r.ight, scaled matrix Padé fraction of type (m,n) -

“of the mqt.fix power series — B~ 1-A,
2) The pair S, and T; is the right scaled Padé fraction
.of type (ju-h-1,n-h-1)

of the matrix power series — B~!-A where h is determined from

RGCD(S|+1 » Ti+]; )= zh'lp
3) IER is an error indicator. If IER = 1 then nb_ such scaled Radé fractions

&«

were found using this algorithm. If IER = 0 then algorithm was successful. .

N

~ Step 1: #Initialization# = , ’ : B
. \ . . . i ‘V , . ?
¥, . S
O. -—-1 ‘ ’ R e : ’

*»
o

S.tle?t;: #Términation Criterion #

- M -(m-n;)

EE

A . - . R v ' - ’ .
.

. IER -0 T ' - ’ \
" 8,41 ™ =B 1A mod :M*! '

L= 4§, - .

_: ~ . .

3
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If N = nthen exit, else s = i+1
Step 3: # Computation of residuals of the pair S, and T,.
Compute R, and an integer k from

-

A-T. + B-S mod :M*N+2k+3 o ,M+N+A+1.R
' ' “

where R ,(0) # 0Ois invertible if k < 2(n- N). If R,(0) is smgular set IER = 1 and exit.

Step 4: #(‘alcu@n of step size # o

-

s“min{k+1,n.-N} .
- \‘""L
Step 5: # ldentification of cases #
. W2 " .
Ifk 2 s thenlet . .
SH—] = z>'.S| ) . i
T|+l = Z"T"‘ . - ‘ ' -7
S' = Sl‘l - ‘ - - . ‘
' - ! . . .'. ,ﬂi - .. )
T" = Ti—l ) . : - . - ‘ .
and go to step 8. Else go to step 6. ' ‘
» g \ ‘e . - '
Step 8: # Computation of residual for S,;, and T, #
Cdmput.e R,_, such that .

A-Tioy % B-Sy mod MN+kt1l m ;MeN-1R.

o L ' .
where R,_,(0) # 0.. T

4 ) -

Step 7: # Advancement of scaled Padé fraction computation#

. ) og- —3 -].R -1 mod zl+2) + zt+2,. im1 )
» T,” - - T (R R, ) mod +2) 4 z“? T,.l ,

"Q% w ' s T
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' ‘
Step 8: # Calculation of degrees of 5,4, and T,,, #

N+« N+s
M-M+s
go to Step 2. .

5:2. Duality of Right Scaled Matrix Padé Fractions and LGCDs

.

V\"hen'a.é‘i{lihg with matrix polynomial;;\vtléther for greatestzcom"mon diyggors or
y

for Padé fractions, the lack of commutativit quires the specification of right or left

matrix multiplication to be included in all definitions.

L

As mentioncd préviously tllere' s a relationship ‘between the scalar offdiagonal

0y

algornhm and the extended Euclldean algonthm for :calculatmg greatest common fac-
L 28 .

tors of two Polynomlal« This duality can be extended naturally to the matrlx polyno-

\
inial case if certain jnvertibility assumptions are made. These correspond to nearly-
* . " - } . . R

- normal power series. »

The main mgredq,ent of this duallty is the correspondence between a polyhom lal

)

and its reclproc:h p6lynom|a|.

’

Definition 5. 1 Let p(z)-be any polynomlal wnth coeﬁic,ents from aring R Then the

PR <%

‘ recxprocal ol' p(z) denoted’ by P (z) IS deﬁned Wy ‘ i f o .
El B 3y S
, P (=)‘- p(z7),
‘ vghgr'elil is the degéé of.p(z).

pl2)= po+ pyz+ - + p2”

A
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then / - ‘ {
p.(z)‘g Pn + Pp-12 + -+ pOZ" ’.
e, p'(z)is t.he same as p(z) with the coefficients in reverse order.” The name recipro
cal 1s due to the fact that the roots of p(z) are the recnprocals of the roots of p (z) :
(,Iearly p(z) = (p’)'(2) when Pop, # 0.

4
Recall that ' when we have 3 polynomial ring with coefficients from a field, then we

bave the extended Euclidean algorithm which is an iterative procedure for finding ti
gre‘atest common divisor of two polynomials a(z) and b(z). It produces a sequence of
four'ﬁblvynomiﬂals

L 4:) e a() 5 nlz) , and g(e)

" that satisfy the initial conditions

)

(2= 1,y (2) = 0, roy(z) = a(2)

W)= 0, t) =1, rn=be).

" Here we assume d(a) = 3(b).
~ - . ‘\‘ R o . ;
The method to d§termine higher.valués of ri(z), and ¢,(z) involves a simple divi- .

‘ sion-algorithm

rioz) = r,-_-,(z)-q,._,('z) + 1(2)

‘with a(r,) <B(r,._l) The higher values of a,(z) ) and t,(z) are then determmed iby

workmg backwards via

)= )~ alebals)

N [ . . . B » . L
k <

e ele) = o)l

&

 whidh resultyin theidentity -~
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a(z)-t,(z) + b(z)-a(z) = r(z)

for0 < i< n+1l. ’ -~

Eventually this sequence of remainders must stop since the degrees are decreasing

at.every step. The last nonzero remainder, r,(z), is then the greatest common divisor

~ » and we get the equatvf?ion

3

ralz) = a(z)ty(z) + b(2)-8,(2) .

b
'

In addition to the above relations between ¢, , s, , r, and ¢, there are the follow-

A

mg ‘intermediate results that fall out of this sequence (McEllece and Shearer [22] )

reea(2)a ) = r(Jers() = (- 1)'6(z),  for 0% is n+1, (P1). "
fes(2)0(2) - r.(z)z._.(z) = (-1)*'a(z), for0sis atl, (P2)
(e = o, Ha2) = D", forosisafl, (P3)

™~

e -k\\;‘/a‘(l‘).-!-' a(r,_,) ==\\:9(a) , ~ forl= i < nt+l, ' (P4)
b 3(s) + a(rif))=a(b), O0sisn+1l. L © (P5)

) In the sntuatlon where we are deahn@with matnx polynomhls rather<than scalar

polynomlals, We have problems wnth using’a ”E_ﬁchdean a}gcmthm The ﬁrst mvolves .
. the lack of commutatlvny of matrlces and henge a need to sgell out if we are ﬁndmg

. In the above descr;ptlon care has been 1

the rlght or the left greatest. common dixt
taken tmdnnde the r’emamder on the eft’ thro ghout ang rthe algonthm results in the

: ﬁndmg of the left greatest common dmsor L o
A\ o

A second problem is that a dlvmon algor* does not exist for the r&of matnx .
: polynomlals when the norm is taken to be the degree. of the matrlx polynomlal because

of the lack of matnx mvertlblht.y for thc coeﬂicnents Thus a dxv:slon algorlthm exnsts ’ "

for onl) a subset of the entlte nng, ‘-s o a Euclld’s algoruthm \nll only be a\'allable
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for a stmilar subclass.

For those matrix polynomials for which we can apply Euclid’s algonthn'x there is

a duality betweeh. finding a left greatest divisor via Euclid'’s aigonthm and a right

.

scaled Padé fraction in the matrix case via MATR‘IX-OFFD!AG#? We illustrate ?Iys‘
by -

A

Example §.1. Let

, T+ 4 1 T ] -
, A=) = [ LR AL WP RSP PR R
and ) > & ¥
° ’ ' o . . ‘
‘ A4 2341 284244 234, . -
Blz) = [» 54 22 254 23 ] | ?

For ease of calculatxon we will work over the field Z,, the field of ln!egerq modulo 2. lf

we go through the Euclldean algonthm on the left then we get that the greatest com-
mon divisor on the left is

\ ot o ."’12 1
. . T ory(2) = [0 VZQ‘] .
[ ‘

To get an idea of how the left Euchdean algonthm is a_dual ¢

MATRIX O&'FDIAG algonthm we do not, wnte out, a'll the individ

dxvlsiohs with
their respcctlve \quotlents but rather/oﬁ

ncern ourselves with the matrices s, and ¢ in
. the c?nte.\ét of property P4. Fori = 2 and 8 this proj)é}ty"translateé into
s  A(2)0°+  B(z)I .= B(z) (5.1)
A. BT : - ‘
o ' -. .’_‘ % 1z {‘+‘23+22 54 224,0- —— .‘f"
- N o | ~A(Z)°I" + B(Z)'[z 4 I A A2 | -(5f2})
. : . (22 4] . o ;__ ’ B
. A(Z) + Bt ) z‘+z z° +1 c- J‘, 0} .- o , (5.3)
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22441 234 z41 22 1
A(z) Bl ah e 23+z9'+z (54)

Notice, that if at any time the maprix on the right dld not have an mveruble leading
. . . , - y
cocflicient then the algorithm would have to stop.

If we replace all occurrences of z-with 27! in the above equations and then multi-

ly each equation by 2, where [ is the smallest power that makes the expressions into
p P p t

polynomials in 2, we will get the following series of expressions. " _‘ . -
b . L o i o
g O O I L
s | ” 234 54 / 2‘ 54,7 : .
G B'(z)-[ ] [ AN f,f] 52t

’

', . ) g -
. - ;2443 3 -
] L 2[z+z)/ 1+ 2 +z] S
. Rl

e = 2
\ o w / L Z+Z
— — ; - -
1 44,6 4] . . )
A (z)[ ] B )[m HZT-- [ N ‘;] BNCEY

T

\k.’

- _ . W..41+z2'1 .
. . . = 20 1 0 Y

,

{

l+z2 z /r z+22+23 l“-z""l-z8 ’ o ," - .
%) , Z 2l (5.4%)
T+ 22+ 23 l+z+z 0’ z X _ 4

Notlce that the.. a.bove four equatlons give a sequence of 3. polynomlals
t? (z), s (z) apd r ,(z) that sahafy sthe condmon of bemg rrght scaled matrix - .
Pade (’ractlons for a (z) and b (z) in the sense of our version of MATRIX~6FFDIAG :
" ) Thcse right scaled matnx Padé t‘ractlons are of t.ype (0 l), (1,0), (2,\),, and (3 2)

_",rﬂpécuvely Also, rwe can also calculate the (4, 3) right scakd Pade fractnon by

L .
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multivaingequation (5.4*) by z.

$he formal statement of the duality result can now-be stated as

>

Theorem (Dua}ity) Let A(z) and B(z) be finite matrix pdlynomials with invertible

s . . ‘ . . - .t
_ieadmg term.  Assume that the formal matnx power series B(z)7!-A(z) is a nearly-

'é'o';m’ Ewer segies. Let Tz ), S(z) andR(z) be the flght denominators, nght

numeratgra, a7nd right residuals that result from calculatmg the right scaled matnx.

t

- Padé ff'actlons via the MATRJX OFFDIAG algornhm of Cbapter 4. Then the matnx

‘ * _poly no/;ﬂlals T, ( ), S (2 ) and R (z), that result from the algorlthm are the 3ame as

»

" the multlphers that result from t,he extended Euchdean algonthm for-left greatest

b“ﬂ ) i -
D

| common divisor (LGCD) as apphed to the matrix polynomlals A (z) d B'(z2).
/

& o S -/

Proof: ' ) . . /
‘ R , ) o

) T, _\‘ w - N
The fo}'mal proof of this result parallels-the scalar result fo}nd«{-n the paper of Cabay
Y4 -

and Choi [14] and #s not given- here. | .o o,
* “ | |
» ' : » - r

. 53 AFas Pseudo-Euchdea.n Algorn{hm L. o

4

The last sectlon gave a duallty betweeh Euclnd s algonthm }8}' determ:nlng Qhe,

-

-

left greatest common dlvlsor of two  matrix: polynomlals and the MA’I‘RIX-
J’ﬁ OFFDIAG#? algonthm for determlmng the rlgh{ scaled Pade fracuon of a- quotient :
power series, The advantage of thls of cburse is that lf weé were mterested in the

great.est common dmsor themwe need not use MATRIX-OFFDIAG#2 (i-e. Euchd«s.,

Aigonthm) but, rat.her the much faster algonthm MATRIX-OFFDIAG t -

i Thas speé‘% up lS nmpressnve and nseful m t,he( scalar case smc(e all scalar power

A L]

. series are nearly-normal Thus we can always apply the oﬂ-dl;gonal algorlthm just
hke we can always apply Euclld‘s algombm However, thls is not the case ln the

mat rix polynomlal sntuauon H"ﬁ we age always faced wlth ;he problem‘of pcr,llnpks; |

L S i . Ce e

e



~ 87

lacking iovertibility, making for a situation where Euclid's algorithm cannot- be
applied. On the other hand, when Euclid’s algorithm can be applied then, by ddality,

: MATRIX OFFDIAG#Q can be applied, and consequently the faster MATRIX-

OFFDIAG algonthm can also be used.

-

In the case where we are determmlng the greatest common divisor of two matrix
polynomials A(z) and B(z), Euclid's algorithm breaks dowh when there is a remainder
that does not have an |nvertxble mat,nx as the coeﬂicnent -of the bz,ghest power. To

counter this, at least in the case that the remamder is l-nvertlble e‘rén though the

highest term is not, we can use a type of pseudo division to get a p:_seudo Euclidean -
o . . _ R .

algorithm. To understand this pseudo division we first prove-the following lemma.

Lemma 5.2: Let R(z) be a p x P matrix polynomial of degree S n. Suppose that R(z) .

o xs nonsmgular ie. det(R(z)) ¢ 0. Then there exists a matrlx factor V(z) with the pro- ‘

pcrty that
~ "

R(z) = Q(z)-V(2).,

whcre Q(z) is a unit polynomlal i.e., det(Q(0)) # 0 The factor V(z) is of the form

S(z) - D Cl . oo Dy Ck,‘wtlh dct(S( )) = K:zh

E where the matrices C; are constant matrices and the D; are di'agonal matrices with
: 'phiy' poivérs of t on the aiagonal The lnteger h |s the leading DoOn%ero power in

| b'.:"det(R(z)) ln addmoﬂ V(z) has degree leSs th@n n.

v . . “ .~
PN . R . \__ T . R i

Pr%‘f:,L_e'm,, e B SCRER

R(g)-Ro+Rlz+ <+ Ryt

s

| v Supposc det(R(z)) - r(z) where' r(z) i r,,z‘ + r,.“z“" + .. Hh = 0, then“R(z)

is a, umt matrlx polynomlal #nd-s0 we set Q(z) = R(z) and V(z) =1 Ot.herwnse, slnce

.

dct(Ro) - det(R(O)) = 0, Ro is a ;gngula.r matrix. Thus we can column reduce Ro, via
A _ .
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multiplication on the ri‘ght by a nonsingular matrix C,, to the matrix with the 'lasi k

columas, k = 1, being zero- columns. Let C'(z"‘) be the dlagonal matnx wn‘h ! on.

the dlagonal for the last-k columns and wnth 1 along ti)e remammg‘gntnes lf ) ,

‘ . ; Y . 9
. ' | C R()-R(:)C (7Y e (
#Phen R'(:) is still a matrix polynomial by the construction of C, and C’(z). Further-

' "Eore, we can write - | L
. R(z) = R'(:) Vy(2), | (5.8
where | . . - , : | X
Vi(z) = C"(z)-c,‘" . e L e :
s o R |

If we take determmaﬁts in equat\be (5. 6) then we see t,hat R'(z ) is a factor of R(z) J&,

. \ \ 3 . R 5 '

; ‘and i - “ﬁ?(\{ T R : - .1;
» ‘ o W - . - .
' det(R'(z)) = 124 + oo | | ,

.sequence we come across the equatiog . SRR S

. w:ll tfien dmde R,”(Z) lf t,he hlsh”‘ “’em"'“;v

oy e

wh‘ere 0= s h‘—p-k‘ <h Ifuis 0 tHen we'are done Ot,hermse we repeat the
.

e A

- above constructlon on R (z) Eventually we must rea.ch a stage w‘here the leadmg

term o'f' the determmant is-nonzero. W‘orkmg backwards we can then facwr Rlz)in

¥

the desxred form! S . e
= . ' o o
We note,'th‘ahthere is a parallel rebult where the unit factor is on the right instead - -
of the left. - T e

oy Lol )

To seé¢ how the lemma is used, sipposesthat while: cal ulating our division

o a R.-x(:) - R'(Z)fQ;‘(Z) + Riﬂ(’) . |

Any mamx polynomlal that dmdes A(z) and B(z) and the renmndcrs Ro(z), v R (z)

not mvembl? then we cn n;verse

A N » £
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the order of the coefficients, use lemma 5.2 to factor the reversed polynomial into a

upit times a "scale” matrix, and reverse the orders again to get
Rii(2) Vie(2) = R'yi(2),
where R’,,,(-) bas an invertible matrix as its highest coeflicient.

If the remainder becomes singuldr, then we must stop without determining the

largest divisor. Otherwise, we can determine the largest unit divisor of A(z) and B(z). -

f

In the standard case, when we write out this greatest unit common divisor as a’
linear combination of ‘both A(z) and B{z), we will get the equation by working the divi-

sion algorithm in reverse order. Thus, we get

'~

Renl) = R(:)1 Q) = Rils) BN R
= {Rt—x(z)‘Qt—l(z) - Rt-'z(:)’}'Qk(J) = Rpol) (5.10)
= Rk—x(z') Q’E—l(:) + Rk—'.’(:)'Q,k-'.’(z)v - ' (5.11)
‘ ' ) : ‘:'h' .
3nd 50 oD.

a

If we come to a stage where pseudo division is required, then wé get a small

®

differefice in our process. . For example, suppose that the remainder R\”(Z) is the

result of a pseudo division b)} the remainder R';_,(z) so that \/ '

Rii(2) = R'ponl2) Qeos(2) + Biool2) .
Since . ) '
' R,,_Q(z)f‘)#_é(z\) "'R't—z(z) T -

we still get

Reeile) = Reco b @scdd) + Racsls)

a
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where

Qi-oz) = Vi A2) Q-2 (z) .

4
:

Therefore, we can continue the process begunan equation (5.9), obtaining eventually
Ryi(2) = A(2) Tiy(2) + B(z)-S(z)—-

'Thus as long as we never have a remainder that is singular, we can determine the
greatcst common dlvxsor for A(z) and B(z). Note that, should we attempt to reverse |

the order of the coefficients at every step, we would lose the duahty with scaled Padé

fractions bccauee we/ lose our control of the degrees of t,he comultipliers T(z) and 5(z).

However, the MATRIX-OFFDIAG algorithm can " still be used to accomplish a
speed up to this seudo-Kuclidean alzorithm. For, up until we run into a remainder

without an inve tible'leading term, we are really just doing the standard Euclidean
lgonthm Sin¢e thls is dual to MATRIX- OFFDIAG#2 we sunply use the faster

MATRIX OFF lAG algornhm for this stage Once a pseudo dnnsxon has.taken place, - ‘

~ we are just a/plymg Euchd s algorithm to the on{n/;femamder and the new pseudo
romalndcr so/ again we Just speed things up by usmg MATRWFDIAG until pseudtr‘

dmsnon is rcqulred agam This will glve us. a fast pseudo Euchdean algonthm for

ﬁndmg the left greatest common divisor of two matrix poLygomlals A(z)'and B(z).

“To sce that we can use MATR]X-OFFDIAG when we a}e_;ecﬁnred to pseudo

] o~
divide, we return to our onglnal descrlptlon of the algorithm that appeared in chapter

4. The MATRI\( OFFDIAG “algorlthm breaks down when the predecessor satlsﬁes

A(Z) Tmln( )+ B( )Smln( )- zm+n+l R /n(z)
. while the present satisﬁes -

A(Z) T(mny(un)(z) + B(z) S(mny(uﬂ)(z) = z""’"”‘” R(mﬂy(ﬂl)(z) ) (5.12).

but where R(mﬂy(“,)(z) is not a umt power series. Thus, we have a problem wnt,h the
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fé”}j & . ) ) /s

9;5\ ' N / . -1
fact."ih’at we can no longer form the power series {R'(;,,.Hy(",)(z)} , sinc} the leading

tetm 1s no longer invertible.,,l_{owever, if the residual is at least invertible, even though

the leading term is not, then we can factor the residual into - “8

Ripmaiyne1y2) = R'(mfxy(..+1)(2)LV(2) :

“ where R'(,,,Hy(,,ﬂ)(:) is a.unit matrix power series and V(z) has the special form

' -

described in lemma 5.2.
* s

If we now invert V(z) and mulidply céu?tion.(S.l?) by this matrix we get the two

equations

4()T

m/in\*~

. A - | K . - .
A(-')‘T(mﬂy(nn)(z)‘{"(z)} .+ B(z)'s(nn1y(n+1)(3)‘{v(=)] (5.14)

[y

= S R iy E)

, . . 3 -1 o R
We can then wark with the quotient- {R'(m.”y(,,ﬂ)(z)} ‘R pya(2) to further our order

_ _condition but at the cost of having denominators and numerators with negative

RN 7

p‘owers ' T B p

— i . -

On the other hand, when we mork in the dual situation, these ncgatlve powers do
N .
not matter. We still get linear combinations of the matrix polynomlals and so we can

say somethmg about the greatest comx}mn dwnsors of the two reverscd matrix polyno-
mials. To see this, assume A(z) and B(z) are.- of degree M and N, respectively, with-

!
M= N and where M-N=m-n. Suppose that we wnsh to calculate the right scaled

" Padé fraction of type (m',n’). Furthermore, assume that we can solve the nght scaled

Padé problem for the residual qgotient series wn_thout, any further matnx scaling.

_ Then, we have ’ O

()24 B(:) Spral2) 3804 = 27 PR wl2) L (503)
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J .
’ . A(z),;T’m‘/n'(z) + B(:)'S'm'ln'(z) = zm'+l"+k'*l'Rm'/n'(z) (5'15)

) : o
a -1
T"m'/n'(z) = Tm,"(z)-P(z)'z2“ + T(m‘fl)/(nfl)(z)‘{v(.z)} Q(Z) (516,

. . " A ' ‘ . —1 V A
S’m'/ﬂ'.(z)'.= Tm/n(z)'P(z)'22+k + S(m+1M){V(z)} Q(Z), (517)

and where the pair Q(z) and P(z) forms the right scaled matrix Padé fraction of type
(ni' =m—k=2,m" —m=1) for the quotient of the residues. Substitute :~lin place of z

in the the above two equations. Since our construction of V(z) implied that we bave a'

(o)

is just a polynomial in z. If We DOW multiply equation (5.16) by 2" and equa.t,ior; (5.17)

polynomial ip 27!, we get that

\

by :™, then we get that T',:,-,"'(z) and S'-/(2) where

T"ln(“"’)=== Z" T’mln(z—l)
N o
“and -

S’./n()gzmsm/n(z )

are matrik polynomials (ev'en though the original T’ and S’ were not matr’ix polyno-

>

mnals) If we now replace all occurrences of £ by 271 in equatlon (5. 15) and then multi-

ply the resulung equatlon by N+m e get

e A (z) T'l:llu(z) + B (Z) S'.'/u(z) mln’(z'“) - . ' _‘ik (518) |

where the remamder R,,, = (z) isa matnx polynomlal of smaller degree than the previ--
ous remamder Tlns process can be continued at every recursnve call wnth the resultlng‘

pseudo numerator and denommator bemg a polynomxal after the reversal process

a



We summarize our discussion by
.

S

Ve

ALGORITHM (PMATRIX-OFFDIAG).

' I}\TPUT: A,B,in,n,p where ' T
1) m, o, p are nonnégative integers ﬁ?ith m ™= nand p =.1.
2) a‘;;ld B are pxp matrix power series (as before we only net;d the polynomials
A mod z"”"'*f and B mod z"'*r"f‘ ). B must be a unit power series.
C '

OUTPUT:

1) Matrix pseudo-polynomials (i.e. negative powers are allowed) S, S5, T,, Ty and an

integer lER'where“: ’ ‘ { ' N

I

AA.TI + BSl - zm-’-h-l-l,R

m/n

A-To+ B-Sg=:"*""*""Rim_h-1y(n-h-1)

where R,,,, and R(m__v,,_ly(,,_,,_,) are matrix polynomials and h is dctérgnined via 4
= RGCD(S,;Ty) . g

In addition the degr"eeg of S;, Ty, So» T 2re at most. m, n, 111;§h-:1,.n-hi-l',-rcs'peclvﬁ;'cfy

("B'y the degree of a pseudo-polynomial we mean the highest powel; of z in the ekpres- : '
>‘ . ‘? ‘ - N : . Ta L 3 -
sion). : S -

. . Lo ’ R s'.“ B . ™~
2) IER ,’an integer variable that is used to indicate invertibility has been met (0 if suc- -

cess, 1 if failure). p
Step 1:'#initialization#

IER -0

i - —1



M -~ (m=n)
N -0 .
S, = -B7VA mod M S - z]‘f'l'lp

T,~ I, To~0 <

Step 2: #calculation of step-size# //

RERD! »

s-min{2'-N,n-NY}

Step 3: #Termination critgfjon#
epu;ﬁ ermination cri e@on

If s.= O exit

.. Step 4: #caléulat«ion'of closest present no S before the pair S;, T, #
.t . \ .

Determine h such that [

A1, = RGCD(S, , Ty )

Set
. S, - z"i_sx , T, = =hT,.
| s . L o ' .
' Step/: #Calculation of residual for §,-T1 ' # - "

Compute k and thepoWe‘r series‘R, -snch"tha,t

U (A-+ B-S, } mod (MEN=AtbrLp

. where R, # 0ifk < 2s +1.
- Step 6: #Calculation of matrix s%alihg polynomial#

' Calculate n_iatrix 'polyn‘omial“s‘ V{ ;zi.n‘d R’ such that

94
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~and where R'l,(O) is nonsingular. If such a matrix cannot be found set IER = 1 and
/ B N I

exit. .

Step \'L; #seperating into different cases# ‘ ‘ -
- . . . ‘ B N

If = s then

S, - -z""-S, , T, "‘Z'”"Tl .

{

" ®then gé to step 12. Else go to step 8.

. A

 Step 8: #calculation of degrees for residual scaled matrix Padé fraction #
m' ~ s+h .

n - s—k—1

, ‘ :
Step 9: #computation of residual for So-Tg ' #

Compute R, so that

(A 'To + B'So ) mod,:M*N"‘"""""Q"’- ZM+N—2I?—1.R0

- Lo

where Ry(0) # 0.
Step 10: #Computation of residual right pseudo-polynomials# -
""S’l S0 T.'l ' T'O_’.

' determined from PMATRIX-OFFDIAG(Rq; R’y , m’, ', p, IER). If IER = 1 then |

exit.
Step 1}: #Advance Aalbn{‘g ofidiagonal for scaled fractions #

Lo
'Sl ;Sl'vl—l'T{l»j*' zﬁ#k+2,so._srl .
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& : T, "-Tl'vf-l'T'l + hbB2T,s
SO hat Sl‘Vl—l 'T’o + Zh*.k"?'So'S'O‘ . s

To=TyVit-To# HHE2TS"

[y

Step 12: #Calculation\ of degrees of (§;-T~! N
>’ ' M- M+t . ‘
. : ‘ ) N . o R
‘ h N « N+ .
go to step 2. ; ™

4

The algorithm, when interpreted in the dual situation, gives us a fast pseudo
. ‘ - i v *
Euclidean algorithm. -



Chapter 8

s Conclusions
> ‘ s
Research into the problem of determining rational approximants to formal power
/

— -

series has been going on for well .over a hundred years. Emphasis has centered about

the calculation of these rational approximants for scalar power series. A similar prob-
7 P powe _ P

--

4

lem occurs when higher-dimensional power series are considered. This thesis has con-

-

sxdere&b(e problem of determrmng an adequate definition for % rational apprOXImant

of a formal matrlx power series and \also, given a suitable definition, the problem ‘of

»

comput—ation of these matrix fractions. In attemptmg to extend the notion of Padé

approximant we have limited our study to that-of square matrix power series.

The classical theory of Padé approximants for the scalar situation cent‘@rs_about'

the concept of a Padé form, which always exists bt is not unique, and Padé fraction,

which is unique but does not always exist. A' characterization of the system of equa-

tions that comes up #heo solving for Padé forms leads one to the concept of scaled

,
4
i

Padé fraction. These always exist and, in addition, are unique.

>\Vhen the problem of Padé approximantsiis eg(tendéd to'the mu‘ltiaimonsional
case there is égain the oroblgﬁl of existence ,and/or uniqueness of these rational frac-
) tlons Even extending the definitions of Padé form, Padé fractlon and scaled Padé
fracmon leads to dnﬂicultles For example wy must specnfy the side that the matrix

P74
'multlpllcatlon must be on smce matrices are not commutatlve Thls is easily accom-

phshed A more complex problem involves-the extensnon of a fundamental requlrement -

-

for a scalar power serleq, namely that the denominator of any ratnonal expression be

‘nonzero. Thisis a stralghtforward condmon in the soalar case, but.can be cxtended in

numerous ways in the matrix case. Asklng that he denommator be nonzero is too

_"broad while requmng that the denomlnator be mvemb (equlvalent in the scalar case)

is very restnctlve A mlddle ground is chosen and a defi luon for Padé form is glven l
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in the matrix case. This deﬁnition is me e as broad as possible apd to extend

the

demonstrated for matrix Padé forms. However, the broadness of our definition results
! )

in unexpected and unwanted, behaviour. We find that, for some particular power

series, we can end up wnh multiple answers, some with lnvenlble denommator others

with singular ones. For a parucular matrix power series a Padé form on the right may

«

have different fundamental properties than- those found on the left. ‘There are even

situations where a Pade form can be found but where the denommator will not be

invertible.

These undesirable fundamental properties force us to restrict the type of power

series that we study. A subclass of matrix power series, the nearly-normal matrix

power series, is then introduced. These nearly-normal power series proyide a more,

patural extension of scalar power series in terms of the type of Padé approximants that
». . .

one can calculate for the series. These power series are more general than the concept

&

of normal power series which are the type of matrix power series that are most often

: . N . i e o
found in the literature. Jn addition, all scalar power series are nearly-normal.

Nearly-normal power serles also lead to a type of matrix fraction that extends the

notion of scaled Padé fraction found in the scalar case. As in the scalar case, these

" exist and are unique up to multiplication by a nonzero constant matrix.
The e_xistence and uniqueness of these sqaled matrix Padé fractions for nearly-
" normal matrix power series allows us to determine an algorithm thet will calculate

t.hese quantities. AnOﬂ’-diagonal algorithm is presented in the matrix case. This algo-

eﬁnmon of Pade form in the $alar case. As in the scalar .case, existence is

- rithm. calculates the scaled matnx Padé. fractlons and extends an algorlthm that was’

first presented by Cabay and Chon {14 i in the scalar case. In partlcular, it calculates ,

the l'ractlons for any scalar power senes and any normal ‘matrix power series m add:—

-

tion to others. :



T e

A slow algorithm is also presented tﬁat calculates the matrix scaled Padé frac-
tions along the same offdiagonal. This secovnd algorithm celculates the same quantitiee
as the first. It is usefﬁ] in thet, when the algorithm is applied to the formal power
series that resuits from the quotient of two finite degree matrix polynomials, one gets a

dual algorithm to Euclid’s algorithm for calculating the greatest common divisor to
. AY . -

[

/ ‘ :
two. matrix polynomials. This duality is accomplished by reversing the ordet of the

coefficients in each polynomial. Thus, the first algorithm can be used as a fast algo-
; < -
rithm for calculating greatest common factors.

A3

In the matrix polynomial case, Euclid's algorithm is limited because of strong
invertibility restrictions. It can be extended, howei'er, to produce a pseudo-Euclidean

algorithm (inStead.of calculating a remainder sequence one caléulates 'a sequence of

pqeudo remamders) Thrs can also determme a greatest common divisor but wnth‘

fewer inv ertlbxhty restrictions. The dual version of this does not produce an algonthm ‘

/

to calqula'te P/adé fractions because the degrees of the comultlphers of the remainder

sequence: are not kept under as tight a control ‘as they are in Euclid’s. algonthm
.‘\ J
I\onetheless the ideas mvolved in the algorithm to calculate a fast, GCD algonthm

also extend to produce a fast pseudo algonthm for computlng GCD's.

-/ The~biggest, drawback to these anonthms is that they can halt when certain '

mvertlbnhty condmons are not met. Thus they can be used to reduceé a GCD calcula- ‘

£

/ uon but not always solveit. In the case that the algorlthm ls halted other algomhms

a

-

”must ‘be apphed where poss:ble _
. 'Ll

" Given the examples of unusual behaviour found in chapter 3, it is probablyv'
unhkely that the present deﬁnmons for matrix Pade approxnmant w:ll suﬂice for all
ma.tnx power s series. Thns is not.to aay that We mnght not ﬁnd a situation where we
snmply end up not calculatmg all the Pade approxnmants along a speclﬁc oﬂdlagonal

By steppmg oﬂ' the dlagonal paths, we mxght succeed m calculatlng a subset of thoae'

C Rt

8 e el



~ X
- t L

along the offdiagonal in terms of.previous successful calculations. - |
- : _ b - .
To extend the notion of Padé.approximant to all ‘unit matrix power series there '

must likely be a different potion of the degree of a matrix polynomial, and/or thﬁe

notlon “of the order of a residual sequence One likely candidate for the degree of. a
' malnx polynomial would be the determinant. degree ie., the degree of the polynomial
that results from taklng the determiﬁmt of the matrix polynomlal There are plau:n-
ble arguments for changing from degree to determinant degree both from the fields of

- algebralc computatlon and. from the study of systems theory

%

The evidence from the ﬁeld of algebralc computatlon comes from cons:derat;on of
the dual situation, namely the: problem of determlﬁg greatest common dlvxsors of

two matrix polynomlals The notion of a trivial divisor uses the concept of deter-

" minant degree mstead of polynomial degree Also for certain sets of matrix polynoml-

als thcre is a quotlent algorlthm as long as the norm used 8" that of a determmant

-~

dcgree See for example Sanov [29]

There is also ev:dence from systems theory that the determmant degree is at least.

. P

‘as lmportant as ‘the ordmary degree of a matnx polynomlal For a matrix- polynomlal

the roots are unmformatlve However, the roots of the determlnant provrde the values

where the numerator or denomlnator is singular Thls is lmportant m systems theery , \

Along with changes in the notlon of a degree of a Pade form one can also alter the -

‘ notlon of order of a matnx power serles The order condmon could be altered for each
' A v ,‘ ‘
“row or column The row:or column orders could then add to a value greater than some e

BN

‘lower bound The mvertlbnllty of a resldual could then be slmxlar to the notlon of row

‘or column proper (or at least its reversed polynomlal form could be proper) We leaVe

-~ these’ |deas for further research elforts R L / L T'; ;-
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