
University of Alberta

Large-Scale Real-Time Electromagnetic Transient Simulation of Power Systems
Using Hardware Emulation on FPGAs

by

Yuan Chen

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Power Engineering and Power Electronics

Department of Electrical and Computer Engineering

c©Yuan Chen
Spring 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential
users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author’s prior written permission.

To my parents, my wife, and my sons,

for their love, endless support,

and encouragement.

Abstract

Real-time electromagnetic transient (EMT) simulation plays an important role in the plan-

ning, design, and operation of modern power transmission systems with adequate security

and reliability due to increased load growth, interconnectivity, and stressful operating con-

ditions. Real-time EMT simulators are widely employed for such applications as testing of

advanced protective schemes for lines and generators, testing closed loop control systems

either for conventional power systems or for power electronic based applications such as

HVDC and FACTS, and for the training of system operators under realistic scenarios.

Real-time EMT simulation of large transmission networks requires very high compu-

tational capability. To meet the stringent real-time step-size constraints, a compromise is

usually made between the size of the system simulated and the complexity of the com-

ponent models. Taking advantage of the inherent parallel architecture, high density, and

high clock speed, field programmable gate array (FPGA) has gained increasing popularity

in high performance computation for various computationally expensive applications.

This thesis describes how FPGAs can be used for realizing real-time electromagnetic

transient simulation of large-scale power systems using digital hardware emulation. De-

tailed parallel hardware modules for various power system components are described,

including linear lumped RLCG elements, supply sources, circuit breakers. Hardware mod-

ules for transmission lines include traveling wave (Bergeron) model, frequency-dependent

line model (FDLM), and universal line model (ULM). Various rotating electric machines

are modeled using universal machine (UM) model. The network solution exploits sparse

matrix techniques for improved efficiency. A novel parallelled EMT solution algorithm

is described that accommodates the parallel FPGA architecture. For inclusion of nonlin-

ear elements in power system, a parallel iterative nonlinear network solver is described

that uses Newton-Raphson method both continuous and piecewise. Multiple FPGAs are

utilized for real-time EMT emulation of large-scale power systems. A novel functional

decomposition method is introduced to allocate the model components to the available

hardware emulation modules in the FPGAs. All hardware arithmetic units designed are

deeply pipelined to achieve highest computation throughput. 32-bit floating-point num-

ber representation is used for high accuracy throughout the EMT simulation. The whole

design is based on VHDL for portability and extensibility.

Various power system case studies are used to validate the proposed FPGA-based real-

time EMT simulator. The captured real-time oscilloscope results demonstrate excellent

accuracy and small simulation time-step of the simulator in comparison to the off-line

simulation of the original systems in the ATP or EMTP-RVr off-line EMT programs.

Acknowledgements

I would like to express my sincere thanks to my supervisor Dr. Venkata Dinavahi for his

full support, encouragement, and guidance for my research throughout the years I spent

at the University of Alberta. His insightful guidance, passion and enthusiasm for the re-

search has been an invaluable motivation for my life.

It is an honor for me to extend my gratitude to my Ph.D. committee members Dr. José

R. Marti (ECE, UBC), Dr. Behrooz Nowrouzian, Dr. John Salmon, Dr. Andy Knight, and Dr.

Dan Sameoto (MecE, U of A) for reviewing my thesis and providing invaluable comments.

Special thanks go to my colleagues and friends at the RTX-Lab: Vahid Jalili-Marandi, Md

Omar Faruque, Aung Myaing, Zhiyin Zhou, Jiadai Liu, and Yifan Wang.

I wish to extend my deepest appreciation to my wife, Zhaohui, my sons, Leo and Nichola.

Without their understanding, support, encouragement, and happiness, this thesis could

not be finished.

Finally, financial help from NSERC, the University of Alberta, and Government of the

Province of Alberta for my living in Edmonton during these years is greatly appreciated.

Table of Contents

1 Introduction 1
1.1 Electromagnetic Transient Simulation of Power Systems 1
1.2 Survey of Digital Real-Time EMT Simulators 3
1.3 Motivation for this Work . 6
1.4 Research Objectives . 7
1.5 Thesis Outline . 8

2 FPGA Background 9
2.1 FPGA Architecture . 9

2.1.1 Logic Array Blocks (LABs) and Adaptive Logic Modules (ALMs) . . 11
2.1.2 Memory Blocks . 12
2.1.3 Digital Signal Processing Blocks (DSPs) 12
2.1.4 Phase-Locked Loops (PLLs) . 13
2.1.5 Input/Output Elements (IOEs) . 14

2.2 FPGA Design Tools and Design Flow . 14
2.3 FPGA Design Issues . 16

2.3.1 Data Representation . 16
2.3.2 Parallelism . 17
2.3.3 Pipelining . 18

2.4 Summary . 18

3 FPGA-Based Real-Time EMT Simulator 20
3.1 Frequency-Dependant Line Model . 20

3.1.1 FDLM Model Formulation . 20
3.1.2 Real-Time FPGA Implementation of FDLM 25

3.2 Linear Lumped RLCG Elements . 27
3.2.1 Model Formulation . 27
3.2.2 Real-Time FPGA Implementation of Linear Lumped RLCG Elements 35

3.3 Sources . 36
3.3.1 Modeling of Sources . 36
3.3.2 Real-Time FPGA Implementation of Sources 36

3.4 Circuit Breakers . 38

3.4.1 Modeling of Circuit Breakers . 38
3.4.2 Real-Time FPGA Implementation of Circuit Breakers 39

3.5 Network Solver . 40
3.5.1 Network Solution in the EMTP . 40
3.5.2 Real-Time FPGA Implementation of Network Solver 40

3.6 Paralleled EMTP Algorithm . 43
3.6.1 Analysis of Parallelism in the EMTP Algorithm 43
3.6.2 MainControl Module . 44

3.7 Implementation of Real-Time EMT Simulator on FPGA 45
3.8 Real-Time EMT Simulation Case Study . 47
3.9 Summary . 48

4 An Iterative Real-Time Nonlinear EMT Solver on FPGA 51
4.1 Nonlinear Network Transient Solution . 51

4.1.1 Compensation Method . 52
4.1.2 Newton-Raphson Method . 54

4.2 Real-Time Hardware Emulation of Nonlinear Solver on FPGA 55
4.2.1 Hardware Architecture and Parallelism 56
4.2.2 Floating-Point Nonlinear Function Evaluation 57
4.2.3 Computing J and −F (ikm) in Parallel 59
4.2.4 Parallel Gauss-Jordan Elimination . 59
4.2.5 Computing vc . 61

4.3 FPGA-Based Nonlinear Transient Simulation 61
4.3.1 FPGA Hardware Implementation . 61
4.3.2 Case Studies . 61

4.4 Summary . 65

5 Digital Hardware Emulation of Universal Machine and Universal Line Models 68
5.1 Introduction . 68
5.2 Universal Machine Model . 69

5.2.1 UM Model Formulation . 69
5.2.2 Interfacing UM Model with EMTP . 71
5.2.3 Real-Time Hardware Emulation of UM Model 73

5.3 Universal Line Model . 78
5.3.1 ULM Model Formulation in Frequency-Domain 78
5.3.2 Time-Domain Representation . 80
5.3.3 Real-Time Hardware Emulation of ULM Model 81

5.4 Network Hardware Emulation . 85
5.4.1 Hardware Architecture and Parallelism 85
5.4.2 FPGA Resource Utilization . 87

5.5 Real-Time Simulation Case Study . 87
5.6 Summary . 89

6 Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 94
6.1 Introduction . 94
6.2 Functional Decomposition Method for Large-Scale Real-Time EMT Simulation 95
6.3 Functional Module and Parallelism . 96
6.4 Multiple FPGA Based Hardware Design for Real-Time EMT Simulation . . 98

6.4.1 Case Study I: 3-FPGA Hardware Design 99
6.4.2 Case Study II: 10-FPGA Hardware Design 103

6.5 Performance and Scalability of the Multi-FPGA Real-Time Hardware Emu-
lator . 108

6.6 Summary . 111

7 Conclusions and Future Work 113
7.1 Contributions of this Thesis . 113
7.2 Directions for Future Work . 115

Bibliography 116

Appendix A System Data of Case Study in Chapter 3 123

Appendix B System Data of Case Studies in Chapter 4 126
B.1 Case Study I . 126
B.2 Case Study II . 127

Appendix C System Data of Case Study in Chapter 5 128
C.1 Transmission Lines . 128
C.2 Synchronous Machines . 128
C.3 Loads and Transformers . 128

List of Tables

2.1 Main logic resource of Altera Stratix III EP3SL340 11

3.1 Coefficients for updating RLCGtype1 elements history currents (3.55) . . . 34
3.2 Coefficients for updating RLCGtype2 elements history currents (3.56) . . . 34
3.3 FPGA resources utilized by modules . 47

5.1 Equivalence between mechanical and electrical quantities for the UM model 71

6.1 FPGA resources utilized by individual system functional modules 97
6.2 Resource utilization for the 3-FPGA hardware design 100
6.3 EMTP-RV execution time for the two case studies 107

A.1 Transmission line parameters . 123
A.2 Load parameters . 124
A.3 Generator and transformer parameters . 125

B.1 Data for Case Study I . 126
B.2 Data for Case Study II . 127

C.1 UM machine resistances and inductances . 129

List of Figures

1.1 Hardware-in-the-loop configuration. 2
1.2 A dual-DSP architecture for transmission line simulation [13]. 4
1.3 (a) Partitioning of a large power network into sub-systems, and (b) its block

diagonal format system admittance matrix [14]. 5
1.4 Study zone and external system in FDNE [30]. 6

2.1 Altera Stratix III FPGA architecture block diagram [53]. 10
2.2 LAB structure [53]. 11
2.3 ALM block diagram [53]. 12
2.4 (a) Single-port RAM, and (b) true dual-port RAM. 13
2.5 DSP block structure [53]. 13
2.6 Stratix III PLL Block Diagram [53]. 14
2.7 Structure of IOE [53]. 15
2.8 General FPGA design flow. 15
2.9 32-bit floating-pointer number format. 17
2.10 An example showing the different implementations in (a) FPGA, and (b)

CPU/DSP. 18
2.11 An example of convolution implemented in FPGA [57]. 19

3.1 (a) A transmission line, and (b) its frequency-dependent model. 22
3.2 (a) RC network realization of Zeq(ω) approximating Zc(ω), (b) discrete-time

model of ith RC block, and (c) overall Thévenin equivalent network of Zeq(ω). 23
3.3 Discrete-time equivalent network for FDLM. 25
3.4 FDLM module and its input/output signals. 25
3.5 Functional units in the FDLM module showing parallel computations. 26
3.6 Pipelined computation scheme in the Convolution unit. 27
3.7 Pipelined computation scheme in the Update unit. 27
3.8 A resistance R element and its discrete-time model. 28
3.9 (a) An inductance L element, and (b) its discrete-time Norton equivalent. . . 29
3.10 (a) A capacitance C element, and (b) its discrete-time Norton equivalent. . . 30
3.11 (a) A seriesRL branch element, (b) combined R, L discrete-time models, and

(c) its Norton equivalent. 31

3.12 (a) A series RC branch element, and (b) its discrete-time Norton equivalent. 31
3.13 (a) A series LC branch element ,and (b) its discrete-time Norton equivalent. 32
3.14 (a) A series RLC branch element, and (b) its discrete-time Norton equivalent. 33
3.15 (a) RLCG branch, and (b) its discrete-time Norton equivalent. 33
3.16 RLCG module and its input/output signals. 35
3.17 Pipelined computation scheme for calculating Ihpe1 of RLCGtype1 elements. 35
3.18 Pipelined computation scheme for calculating Ihpe2 of RLCGtype2 elements. 36
3.19 (a) cos function, and (b) structure of cos function look-up table. 37
3.20 Source module and its input/output signals. 37
3.21 Pipelined configuration for calculating source values. 37
3.22 An example showing the scheme of LUT addressing unit. 38
3.23 Ideal time-controlled switch. 39
3.24 Switch module and its input/output signals. 39
3.25 Functions realized in the Switch module. 39
3.26 Inverse admittance matrix (Y −1) (126 x 126) of a modified IEEE 39-bus test

system. 41
3.27 Network Solver module and its input/output signals. 41
3.28 Pipelined and parallelled calculation scheme for iA1 and iA. 42
3.29 Pipelined calculation scheme for vA. 42
3.30 (a) An example sparse matrix, and (b) its storage format. 42
3.31 Fast floating-point multiply-accumulator unit (FFPMAC): (a) hardware de-

sign, and (b) timing diagram. 43
3.32 Parallelled real-time EMTP algorithm for FPGA implementation. 44
3.33 MainControl module and its input/output signals. 45
3.34 FSM diagram for parallelled real-time EMTP algorithm for FPGA imple-

mentation. 45
3.35 Real-time EMT simulator implemented on an Altera Stratix S80 FPGA de-

velopment board. 46
3.36 Single-line diagram of the power system used in the Case Study. 48
3.37 Execution time for each stage of the paralleled EMTP algorithm. 48
3.38 Real-time oscilloscope traces (a,c) and off-line simulation results from ATP

(b,d) for a capacitor C1 switching transient at Bus 12. (a, b) Bus 12 voltages,
(c, d) Bus 12 currents. Scale: x-axis: 1div. = 5ms, y-axis: (a) 1div. = 58kV, (c)
1div. = 0.44kA. 49

3.39 Real-time oscilloscope traces (a,c) and off-line simulation results from ATP
(b,d) for a three-phase to ground fault transient at Bus 2. (a, b) Bus 12 volt-
ages, (c, d) Bus 12 fault currents. Scale: x-axis: 1div. = 5ms, y-axis: (a) 1div.
= 58kV, (c) 1div. = 0.22kA. 50

4.1 (a) Network with p nonlinear elements, and (b) illustration of compensation
method. 53

4.2 (a) Piecewise linear function, and (b) its implementation in PNR. 55
4.3 NR module and its input/output signals. 56
4.4 Overall architecture of the nonlinear solver in the FPGA. 56
4.5 Finite state machine (FSM) diagram of NR module. 57
4.6 Floating-point nonlinear function computation using LUT and linear inter-

polation. 58
4.7 (a) Linear interpolation of f(x), and (b) its pipelined computation scheme. . 58
4.8 Parallel computational scheme for calculating J and −F (ikm). 59
4.9 Hardware design of Parallel Gauss-Jordan elimination. 60
4.10 Pipelined computational scheme for calculating vC 61
4.11 Altera Stratix III development board DE3 and connected DAC card. 62
4.12 Single-line diagram for Case Study I (Surge arrester transient in a series

compensated transmission system). 62
4.13 Real-time oscilloscope traces (a) and off-line simulation results from ATP (b)

of the three-phase voltages across the surge arresters for a three-phase fault.
Scale: x-axis: 1div. = 10ms, y-axis: 1div. = 2kV. 63

4.14 Real-time oscilloscope traces (a), off-line simulation results from ATP (b),
and zoomed and superimposed view (c) of the three-phase currents in the
surge arresters for a three-phase fault. Scale: x-axis: 1div. = 10ms, y-axis:
1div. = 128A. 64

4.15 (a) Single-line diagram, and (b) equivalent network diagram for Case Study
II (ferroresonance transient). 65

4.16 Piecewise nonlinear magnetization characteristic of transformer. 65
4.17 Real-time oscilloscope traces (a), off-line simulation results from ATP (b),

and zoomed and superimposed view (c) of the three-phase voltages at the
transformer terminals during a three-phase-to-ground fault. Scale: x-axis:
1div. = 10ms, y-axis: 1div. = 68kV. 66

4.18 Execution time for the case studies in µs. Si (i=0,..3) are the states of the
finite state machine of the nonlinear solver (Fig. 4.5). 67

5.1 Winding representations in the UM model. 70
5.2 (a) Mechanical system of rotor, and (b) its electrical analog. 72
5.3 Interfacing of the UM model to the network using the compensation method. 73
5.4 UM module and its input/output signals. 74
5.5 Main functional units in the UM module. 74
5.6 Finite state machine diagram of the iteration process of the UM module. . . . 75
5.7 Pipelined computation scheme in the Speed & Angle unit. 75
5.8 Parallel computation scheme in the FrmTran unit. 76

5.9 Parallel computation scheme in the Compidq0 unit. 77
5.10 Pipelined computation scheme in the Flux & Torque unit. 78
5.11 (a) An n-phase transmission line, and (b) its time-domain representation. . . 79
5.12 Linear interpolation for calculating imr(t− τ) and imr(t− τ −∆t). 81
5.13 ULM module and its input/output signals. 82
5.14 Main functional units implemented in the ULM module showing parallel

computations. 83
5.15 Parallel computation scheme in Update x unit. 84
5.16 Parallel computation scheme in Convolution unit. 84
5.17 Overall hardware architecture of the real-time network emulator. 85
5.18 Detailed functional units of the real-time network emulator. 86
5.19 Operations within one time-step of the real-time network emulator. 87
5.20 FPGA resources utilized by modules of the real-time network emulator. . . 88
5.21 Single-line diagram of power system for the Case Study. 89
5.22 Real-time oscilloscope traces (a), off-line EMTP-RV simulation (b), and zoomed

and superimposed view (c) of the three-phase voltages at Bus 2 during a
three-phase fault at Bus 3. Scale: x-axis: 1div. = 10ms, y-axis: 1div. = 5.2kV. . 90

5.23 Real-time oscilloscope traces (a) and off-line EMTP-RV simulation (b) of the
three-phase voltages at Bus 3 during a capacitor switching at Bus 3. Scale:
x-axis: 1div. = 10ms, y-axis: 1div. = 10.4kV. 91

5.24 Real-time oscilloscope traces (a), off-line EMTP-RV simulation (b), and zoomed
and superimposed view (c) of the electromagnetic torque of UM2 during a
capacitor switching at Bus 3. Scale: x-axis: 1div. = 10ms, y-axis: 1div. =
4.7kNm. 92

5.25 Break down of one time-step (∆t) in µs for various stages and modules for
the Case Study. 93

6.1 Functional decomposition of a power system for hardware emulation. . . . 97
6.2 Multi-FPGA prototyping board. 99
6.3 3-FPGA hardware architecture for real-time EMT simulation in Case Study I. 99
6.4 Single-line diagram of the power system modeled in Case Study I. 101
6.5 Spatio-temporal design workflow for the 3-FPGA real-time EMT simulator

for Case Study I. 102
6.6 Real-time oscilloscope traces (a), off-line simulation results from EMTP-RV

(b), and zoomed and superimposed view (c) of Bus 1 voltages for a three-
phase fault at Bus 2, Scale: x-axis: 1div. = 10ms, y-axis: 1div. = 6.8kV. 104

6.7 10-FPGA hardware architecture for real-time EMT simulation in Case Study
II. 105

6.8 Single-line diagram of the power system modeled in Case Study II. 106
6.9 Allocation of components of Case Study II in the 10-FPGA design. 107

6.10 Real-time oscilloscope traces (a), off-line simulation results from EMTP-RV,
and zoomed and superimposed view (c) of generator G9 terminal currents
during a three-phase fault at Bus 2, Scale: x-axis: 1div. = 10ms, y-axis: 1div.
= 25A. 108

6.11 Execution time of each functional module with respect to the number of
pipelined elements per module in the multi-FPGA real-time EMT simulator. 110

6.12 Minimum time-step achieved in the 3-FPGA and 10-FPGA hardware de-
signs for real-time EMT simulation. 111

6.13 Variation of number of FPGAs with system size and the time-step in the
multi-FPGA hardware design. 111

A.1 Tower geometry of transmission lines in the case study. 124

C.1 Tower geometry of transmission lines in the case study. 129

List of Acronyms

ALM Adaptive Logic Module

ASIC Application-Specific Integrated Circuit

ATP Alternative Transients Program

CNR Continuous Newton-Raphson

CORDIC COordinate Rotation DIgital Computer

CPU Central Processing Unit

DAC Digital to Analog Converter

DSP Digital Signal Processing (Processor)

EMT ElectroMagnetic Transients

EMTP ElectroMagnetic Transients Program

FDLM Frequency-Dependent Line Model

FDNE Frequency-Dependent Network Equivalent

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GJE Gauss-Jordan Elimination

HIL Hardware-in-the-Loop

HPC High Performance Computation

IOE Input/Output Element

IP Intellectual Property

JTAG Joint Test Action Group

LAB Logic Array Block

LE Logic Element

LUT Look-up Table

NR Newton-Raphson

PH Processing Hardware

PLL Phase Locked Loop

PNR Piecewise Newton-Raphson

(S)RAM (Static) Random Access Memory

RISC Reduced Instruction Set Computer

TNA Transient Network Analyzer

ULM Universal Line Model

UM Universal Machine

VF Vector Fitting

VHDL Very High-Speed Integrated Circuit Hardware Description Lan-
guage

VLSI Very Large-Scale Integrated Circuit

1
Introduction

Electromagnetic transients (EMT) are the temporary overvoltages and overcurrents caused
by the change of power system configuration due to switching operation, fault, lightning
strike, and other disturbances [1]. Typical EMT phenomena include lightning strikes on
transmission lines, energization of transmission lines, shunt capacitor switching, inter-
ruption of small inductive currents, energization of transformer-terminated lines, motor
starting, inrush current in transformer, linear resonance at fundamental or at a harmonic
frequency, series capacitor switching and sub-synchronous resonance, load rejection, tran-
sient recovery voltage across circuit breakers, and very fast transients in gas-insulated bus
ducts caused by disconnected operations [2]. It is called an electromagnetic transient be-
cause it involves predominantly interactions between the magnetic fields of inductance
and the electric fields of capacitances in the system. It is distinguished from electrome-
chanical transient which involves interactions between the mechanical energy stored in
the rotating machines and the electrical energy stored in the network [3]. Electromagnetic
transients can span a wide frequency range, from dc to several MHz; thus the EMT study
is the most detailed study, and is different from other power system studies such as short-
circuit, power flow, and transient stability. For example, phaser equations are replaced by
differential equations; single-phase representation is replaced by multi-phase representa-
tion.

1.1 Electromagnetic Transient Simulation of Power Systems

Transients can damage component insulation, activate control or protective systems, and
cause system interruption, thus EMT simulation plays an important role in the planning,
design, and operation of modern power systems due to their increasing complexity. For ex-

1

Chapter 1. Introduction 2

Digital

real-time

simulator

System

under

test

D/A

A/D

Amplifiers

Sensors

Figure 1.1: Hardware-in-the-loop configuration.

ample, it is used for determining component rating, insulation level, and design of protec-
tion schemes. Simulation can be accomplished in either off-line or real-time mode. For off-
line transient simulation, the Electromagnetic Transients Program (EMTP) [4, 5] is widely
accepted as an industrial standard. In the EMTP, the continuous models of all lumped
elements in power systems are first discretized using the Trapezoidal rule of integration,
and the transmission lines are represented using traveling wave model. Then the nodal
analysis method is employed to solve for the node voltages of the network. Compared to
other transient solution methods such as state variable analysis, the EMTP features sim-
plicity (the whole system is reduced to a collection of equivalent resistance networks) and
robustness (Trapezoidal rule of integration is numerically stable and robust). Over the
years, more efficient models and algorithms have been developed, which enable the sim-
ulation of EMT in greater detail and efficiency. For instance, the modeling of transmission
lines have evolved from the simple π representation, traveling wave model, frequency-
dependant line model, to the most complicated universal line model. The widely used
off-line EMT simulation software packages (referred as EMTP-type softwares) that offer
a wide variety of modeling capability are ATP, PSCAD/EMTDCr, EMTP-RVr, MICRO-
TRAN, NETOMACr, etc.

Real-time simulation is desired for the testing of manufactured control and protection
equipment in a hardware-in-the-loop (HIL) configuration. In the HIL simulation, as shown
in Fig. 1.1, the simulation results have to be synchronized with the real-time clock to inter-
face with the physical system under test such as a protective relay and machine drive. This
is the only way that the physical device can be tested under realistic transient conditions
of interest without the risk of putting it into the real world system. HIL simulation can
be performed in two ways [6]: control hardware-in-the-loop (CHIL) and power hardware-
in-the-loop (PHIL). In a CHIL simulation, the hardware under test is a controller, which
exchanges signals with the simulated system at a low power level, while in a PHIL simula-
tion the hardware under test involves actual power devices that require significant power
flow between the hardware and the simulation system.

Real-time simulators were first developed on analog devices back in 1930s, known as
transient network analyzers (TNAs). The analog TNA used scaled-down models of power

Chapter 1. Introduction 3

system components. For example, the frequency response of a long transmission line was
approximated by cascading several analog π sections representing shorter line segments.
The merits of analog TNA is that the simulation is naturally in real time because of its real
component representation, while the disadvantages include high cost, large space, and
long set up and changeover times. Over the last two decades, owing to the fast develop-
ing VLSI technology, the general purpose central processing unit (CPU) and digital signal
processor (DSP) have been widely used to build the EMT simulators, known as real-time
digital simulators. This type of simulators is fully digital featuring great flexibility, reduced
cost, increased efficiency, thus enabling them to supplant analog TNAs. In the real-time
digital simulator, the simulation time-step is the critical factor in order to reproduce the
high frequency transients, for example, to investigate 10KHz voltage disturbance a 50µs
time-step is required at least according to Nyquist criterion. Moreover, there is an ever
increasing pressure to accommodate large system sizes. As a result, the more powerful
computational hardware are always demanded and great efforts have been put into de-
signing high performance digital real-time simulator, as discussed in the following survey.

1.2 Survey of Digital Real-Time EMT Simulators

Back in late 1980s, researchers were able to realize a real-time digital simulator using avail-
able digital hardware. [7, 8] presented a real-time digital simulator for the simulation
of transmission lines using the Bergeron’s traveling wave model and Marti’s frequency-
dependent line model, respectively. This simulator was based on a single DSP and inter-
faced into a TNA replacing the bulky and expensive part of the transmission line replica.
[9] proposed a digital simulator for real-time protection relay testing. This simulator used
IBM RISC 6000 processor for the real-time computation of network transients and a DSP
for real-time instrument transformer transients. In [10–13], a dual DSP architecture was
proposed for real-time transmission line simulation, where each DSP simulated one end
of the transmission line (sending-end or receiving-end), as shown in Fig. 1.2. In contrast
to customized hardware architecture, [14] realized real-time simulation based on the stan-
dard workstation equipment. It achieved the simulation time-step ranging from 38µs to
107µs for systems from 18 to 30 nodes using an IBM RISC 6000 workstation. In the late
1990s to mid 2000s, the PC-cluster architecture has drawn increasing attractions [15–17]. It
uses a cluster of standard PCs interconnected by high-speed interface cards. This architec-
ture features cost effectiveness, great flexibility, and easy extensibility.

During the same time, constant research interest and effort have led to the development
of commercial digital real-time simulators. Some commercial available digital real-time
simulators are as follows:

• The RTDSr, from RDTS Technologies Inc., was the first commercial real-time dig-
ital simulator proposed in 1991 for testing relays in real time [18, 19]. The latest

Chapter 1. Introduction 4

DSP DSP
Shared

memory

local

memory

local

memory

Backplane

Sending

end

Receiving

end

Figure 1.2: A dual-DSP architecture for transmission line simulation [13].

RTDS simulator adopts a custom parallel processing architecture. Each hardware
unit (called a Rack) typically consists of several Giga Processor Cards (GPC) which
are powered by IBM PowerPC 750GX RISC processors, and one Giga Transceiver
Workstation InterFace Card (GTWIF) which handles the communication between the
rack and the host computer [20].

• HYPERSIMr [21, 22], from Hydro-Quebec, is a full digital real-time simulator based
on large parallel supercomputers such as the SGI Origin 3800 scaled from 2 to 512
processors. Now it is adapted to a new PC-cluster platform [23].

• eMEGAsimr [24, 25], from OPAL-RT Technologies Inc., utilizes the commercial-off-
the-shelf (COTS) multi-core processor (Intel or AMD) module along with fast on-chip
inter-processor shared-memory communication. The simulated network is built on
the host PC using MATLAB/SIMULINK in block diagram format, or custom defined
C S-function. The compiled code is then downloaded into target PCs for simulation.

• NETOMACr [26, 27], from SIEMENS AG, is a PC-based real-time simulator orig-
inally for relay testing. It runs the NETOMAC program to generate the transient
output to a interface card connected to the tested relay.

To summarize, there are three points worthy of note:

1. The evolution of digital real-time simulator is from the fully custom DSP-based, to
the commercial supercomputer-based, to the low-cost standard PC-based. Although
the current DSP and general purpose CPU are very powerful, essentially they are
sequential hardware devices. Massive parallel processing using such hardware is
still a bottleneck.

2. In order to simulate large network in real time, parallel processing is always neces-
sary. This is achieved by using parallel processing hardware to share the burden of

Chapter 1. Introduction 5

Sub-system 1

Sub-system 4
Sub-system 3

Sub-system 2

Transmission line

links

[Y]

matrix

(a) (b)

1

2

3

4

Figure 1.3: (a) Partitioning of a large power network into sub-systems, and (b) its block
diagonal format system admittance matrix [14].

computation. To do this, the simulated system is first partitioned into smaller sub-
systems illustrated in Fig. 1.3 (a), and all sub-systems are linked by transmission
lines. Due to the traveling wave delay of the linking transmission line, each sub-
system is decoupled with the others, thus the system admittance matrix is in a block
diagonal format, as shown in Fig. 1.3 (b). Then each processing hardware is made
responsible for calculation of the quantities within a sub-system. Before proceeding
to the next time-step the neighboring hardware need to exchange data of the both
sides of the linking transmission line.

3. Another important approach1 to accommodate large network sizes while maintain-
ing sufficient accuracy for real-time simulation [28–30] is to divide the system into a
Study Zone, a restricted part of the system where the transient phenomena occur and
whose components must be fully characterized including any nonlinear and time-
variant elements, and an External System which encompasses the rest of the system
as shown in Fig. 1.4 [30]. The external system is represented by a linear equivalent
network, i.e., a frequency-dependent network equivalent (FDNE). However, deriv-
ing an accurate FDNE model is a finely-tuned art requiring skill and significant setup
time. In contrast to a full-scale representation, there is also a certain degree of loss of
one-to-one mapping between the original system physical layout and the simulator
architecture.

1This material has been published: X. Nie, Y. Chen, and V. Dinavahi, “Real-time transient simulation based
on a robust two-layer network equivalent”, IEEE Trans. on Power Systems, vol. 22, no. 4, pp. 1771-1781,
November 2007.

Chapter 1. Introduction 6

External systemStudy Zone

Frequency-Dependent

Network Equivalent

(FDNE)

Figure 1.4: Study zone and external system in FDNE [30].

1.3 Motivation for this Work

The endless growing complexity and size of modern power systems demand faster and
higher performing real-time digital simulators. The ultimate performance of any real-time
simulator depends to a large extent on the capabilities of the underlying hardware. Field
Programable Logic Array (FPGA) offers viable alternative for speeding up the digital sim-
ulator without sacrificing accuracy. Unlike general purpose CPU or DSP which is basically
a sequential device, FPGA is a digital hardware device which allows true parallel process-
ing, supporting multiple simultaneous threads of execution. Moreover, the FPGA is a fully
user configurable device, i.e., it can be configured to fit any specific application in order
to maximize performance. It is this inherent hardware parallelism and configurability that
makes the FPGA suitable for the EMTP hardware implementation.

FPGAs are increasingly being used to design high-end computationally intense appli-
cations. In the power engineering field, they have been employed in digital simulation of
electrical machines [31–35], power electronics [36–39], digital control [40–46], pulse-width
modulation [47–50], and protective relays [51, 52]. However, in the general simulation of
electromagnetic transient, FPGAs have not been fully used to replace the DSP and gen-
eral purpose CPU. A complete real-time EMT simulator based on FPGA is still challeng-
ing. The first challenge is that the FPGA design is quite difficult compared to software
programming using the high-level languages like C/C++. In the FPGA design, every cal-
culation needs to be assigned a specific hardware module. Many independent hardware
modules may work together in parallel only if the algorithm itself can be performed in
parallel. To implement a complicated algorithm such as the universal line model great
effort is needed to analyze the algorithm, find the internal parallelism, design respective
hardware modules, and interconnect hardware modules. It would be much more compli-
cated if multiple FPGAs are employed in order to simulate large-scale power systems due
to the massive and high-speed inter-FPGA data sharing. The second challenge is that the
user friendly interface (GUI) for the FPGA-based transient simulator is still not available.
Running a real-time simulation on the FPGA-based simulator is restricted to experienced

Chapter 1. Introduction 7

personnel. This thesis focuses on the first challenge to design a fully FPGA-based real-time
digital simulator for electromagnetic transient simulation of large-scale power system us-
ing detailed component models. In the knowledge of the author, it is the first time that
the EMT transient simulator is realized in FPGA using most detailed models for most of
power system components.

1.4 Research Objectives

To realize real-time electromagnetic transient simulation of large-scale power systems us-
ing FPGAs, the main research objective of this thesis are listed as follows:

1. Individual components of power systems have to be modeled and implemented.
The complexity of models determines the accuracy of simulation results. However,
implementing more complicated models implies more logic resource utilization of
FPGA and longer execution times. Based on the available FPGA resource, required
simulation time-step, and the size of simulated network, the models of components
which can be implemented need to be carefully chosen. The implemented power
system components include transmission lines modeled using frequency-dependent
line model (FDLM) and universal line model (ULM), linear lumped RLCG elements,
supply sources, circuit breakers, rotating machines modeled using universal machine
(UM) model, nonlinear inductances and surge arresters.

2. The linear network needs to be solved efficiently using sparse matrix technique.

3. Solving nonlinear network accurately in real time is hard to achieve in the CPU
and DSP based digital simulator. An real-time iterative Newton-Raphson nonlinear
solver on the FPGA is required.

4. The traditional EMTP algorithm is essentially a sequential procedure. In order to
take advantages of parallel architecture of FPGA, the EMTP algorithm needs to be
reformulated. The possible parallel computational tasks have to be extracted and
allocated into parallel computational hardware.

5. To simulate large-scale power systems, a single FPGA is no longer able to meet real-
time requirements; multiple FPGAs are necessary. In the multi-FPGA architecture,
fast data transfer between FPGAs using limited FPGA input/output pins becomes
critical. How to allocate the hardware modules for various components of the power
system in such a multi-FPGA architecture is very important.

6. The parameters of simulated network are extracted from the netlist generated by off-
line EMTP software ATP or EMTP-RV . Then they are sorted according to different
types of components and processed for the requirement of the corresponding hard-
ware. Finally they are translated to 32-bit floating-point format and saved as various

Chapter 1. Introduction 8

RAM initial data files. When the FPGAs are powered up, the parameters are ready
in RAMs. A Matlab script file is developed to fulfil these tasks.

7. The implemented hardware modules are made of many basic arithmetic units such
as adders/subtractors, multipliers, RAMs, and registers. To achieve high perfor-
mance these individual hardware units need to be combined properly to form a
pipeline. Parallelled and pipelined computation schemes are key for real-time EMT
simulation on FPGA.

8. The proposed real-time EMT simulation hardware designs need to be validated by
various transient case studies. The real-time results captured from oscilloscope are
compared with off-line simulation results from ATP or EMTP-RV.

1.5 Thesis Outline

This thesis consists of seven chapters. Other chapters are outlined as follows:
Chapter 2 gives a general introduction to FPGA technology including its architecture

and design tools and design flow. Some FPGA design issues are also discussed.
Chapter 3 describes a real-time EMT simulator based on a single FPGA. Details in mod-

eling basic power system components including frequency-dependent transmission lines
(FDLM), linear lumped RLCG elements, supply sources, circuit breakers, and their FPGA
implementations are provided. The EMTP algorithm is parallelized to fit into the parallel
architecture of the FPGA.

Chapter 4 describes a real-time hardware emulation of nonlinear elements in power
system using an iterative Newton-Raphson method along with the compensation method.
Sparse matrix techniques, parallel Gauss-Jordan elimination are exploited for improved
efficiency.

Chapter 5 extends the transmission line model from FDLM to the most comprehen-
sive and accurate universal line model (ULM). This chapter also presents the hardware
emulation of the universal machine (UM) model.

Chapter 6 presents the real-time hardware emulation of large-scale power systems us-
ing a multi-FPGA architecture. A novel functional decomposition method is introduced
to allocate the model components to the hardware emulation modules. A three-phase 420-
bus power system is simulated in a 10-FPGA hardware platform.

Chapter 7 describes the conclusions and future work.

2
FPGA Background

The implementation of digital systems can be based on microprocessors, reconfigurable
hardware, or application specific integrated circuits (ASICs). On the one hand, micro-
processor implementation is fully software programmable thus very flexible but with low
hardware efficiency; on the other hand, ASIC gives highest performance at the cost of
loss of flexibility, high development cost, and long time to market. The reconfigurable
hardware fills the gap effectively between microprocessors and ASICs. The configurable
hardware is an off-the-shelf device featuring custom reprogrammable, low development
cost, and short development cycle. Among reconfiguration hardware FPGA is the most
widely used.

In this chapter, an introduction to the FPGA technology is presented. First the simpli-
fied FPGA architecture is described briefly. Then the FPGA design tools and design flow
are discussed. Finally some important issues in FPGA hardware design are also discussed.

2.1 FPGA Architecture

In general, the FPGA is a two dimensional array of programmable logic building blocks
interconnected by a matrix of wires and programmable switches. Each logic building
block performs a basic logic function. The programmable switches control configuration
of logic building blocks and the interconnection of the wires, thus achieving field pro-
grammability. The switches are physical transistors controlled through different program-
ming technologies which classify FPGA into three categories: SRAM-based, fuse-based,
and EPROM/EEPROM/flash-based, with the SRAM-based FPGA being the most popular
and of interest for most applications. In the SRAM-based FPGA the configuration file is
stored in the distributed SRAM. The configuration is usually fast, but reconfiguration is

9

Chapter 2. FPGA Background 10

IOEs

IOEs

IOEs

IOEs

IOEs

IOEs

IOEs

IOEs

IOEs

IOEs

IOEs IOEs IOEs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

M9k RAM Blocks M114K RAM BlocksDSP Blocks

IOEs

Figure 2.1: Altera Stratix III FPGA architecture block diagram [53].

required when the power is turned off due to the volatility of the SRAM. Modern FPGA
also contains many blocks of memory, and other specialized functional circuits such as
digital signal processing (DSP) blocks, phase locked loop (PLL), and even soft processor
cores. The major SRAM-based FPGA vendors are Alterar and Xilinxr which share over
60% of the market. Since Altera StratixTM III FPGA is utilized in the design of the real-time
EMT simulator, its architecture is described in more detail as follows.

As shown in Fig. 2.1, the Altera Stratix III device contains a two-dimensional row- and
column-based architecture including a large amount of logic array blocks (LABs), memory
blocks, and DSP blocks which are interconnected by a series of column and row intercon-
nects [53]. Table 2.1 lists the main logic resource of Stratix III EP3SL340 FPGA.

Chapter 2. FPGA Background 11

Table 2.1: Main logic resource of Altera Stratix III EP3SL340
Feature EP3SL340
Equivalent logic elements (LEs) 340,000
Adaptive logic modules (ALMs) 135,000
M144k RAM blocks 48
M9k RAM blocks 1,040
MLAB blocks 6,750
Total RAM Kbits 16,272
DSP blocks (18x18-bit multipliers) 72 (576)
Phase locked loops (PLLs) 12
Maximum user I/O pins 1,760

2–4 Altera Corporation
Stratix II Device Handbook, Volume 1 May 2007

Logic Array Blocks

Figure 2–2. Stratix II LAB Structure

LAB Interconnects

The LAB local interconnect can drive ALMs in the same LAB. It is driven
by column and row interconnects and ALM outputs in the same LAB.
Neighboring LABs, M512 RAM blocks, M4K RAM blocks, M-RAM
blocks, or DSP blocks from the left and right can also drive an LAB's local
interconnect through the direct link connection. The direct link
connection feature minimizes the use of row and column interconnects,
providing higher performance and flexibility. Each ALM can drive
24 ALMs through fast local and direct link interconnects. Figure 2–3
shows the direct link connection.

Direct link
interconnect from
adjacent block

Direct link
interconnect to
adjacent block

Row Interconnects of
Variable Speed & Length

Column Interconnects of
Variable Speed & Length

Local Interconnect is Driven
from Either Side by Columns & LABs,

& from Above by Rows

Local Interconnect LAB

Direct link
interconnect from
adjacent block

Direct link
interconnect to
adjacent block

ALMs

Figure 2.2: LAB structure [53].

2.1.1 Logic Array Blocks (LABs) and Adaptive Logic Modules (ALMs)

Each LAB consists of 10 ALMs, carry chains, shared arithmetic chains, LAB control signals,
local interconnect, and register chain connection lines as shown in Fig. 2.2. The local
interconnect transfers signals between ALMs in the same LAB. Look-up table (LUT) chain
connections transfer the output of one ALM’s LUT to the adjacent ALM for fast sequential
LUT connections within the same LAB. Register chain connections transfer the output of
one ALM’s register to the adjacent ALM’s register within an LAB [53].

ALM is the core and basic logic building block in the Altera Stratix III architecture.
As shown in Fig. 2.3, each ALM contains a combinational logic, two registers, and two
adders to implement arithmetic logic. The combinational logic has 8 inputs and contains

Chapter 2. FPGA Background 12

White Paper

FPGA Architecture

July 2006, ver. 1.0 1

WP-01003-1.0

Introduction
Altera continues to lead the FPGA industry in architectural innovation. The logic fabric and routing architecture in
Altera® FPGAs are unmatched, providing customers with a number of advantages. Altera was the first to introduce
the 8-input fracturable look-up table (LUT) with the Stratix® II family in 2004. At its core is the adaptive logic
module (ALM) with 8 inputs, which can implement a full 6-input LUT (6-LUT) or select 7-input functions. The
ALM can also be efficiently partitioned into independent smaller LUTs, providing the performance advantage of
larger LUTs and the area efficiency of smaller LUTs. The Stratix series of FPGAs also excels in routing through the
MultiTrack™ interconnect, which provides the industry’s best connectivity. As a result, Altera FPGA architecture is at
least one generation ahead of the competition, and routing architecture is two generations ahead.

This paper describes the leading-edge architectural innovations in Altera FPGAs and their advantages:

■ The ALM’s 1.8X density advantage over the competition
■ Optimal register-to-logic ratio (2:1) to ensure that the devices are not register-limited
■ The most routing connectivity, with up to five times the logic in a single hop compared to the competition
Logic Fabric
The key to the high-performance, area-efficient architecture is the ALM. It consists of combinational logic, two
registers, and two adders as shown in Figure 1. The combinational portion has eight inputs and includes a LUT that
can be divided between two adaptive LUTs (ALUTs) using Altera’s patented LUT technology. An entire ALM is
needed to implement an arbitrary six-input function, but because it has eight inputs to the combinational logic block,
one ALM can implement various combinations of two functions.

Figure 1. Adaptive Logic Module (ALM) Block Diagram

In addition to implementing a full 6-input LUT, the ALM can, for example, implement 2 independent 4-input
functions or a 5-input and a 3-input function with independent inputs. Table 1 shows a summary of combinational
logic configurations supported in an ALM. For a more detailed architectural description, refer to the Stratix II Device
Handbook. Because 2 registers and 2 adders are available, the ALM has the flexibility to implement 2.5 logic
elements (LEs) of a classic 4-input LUT (4-LUT) architecture, consisting of a 4-LUT, carry logic, and a register.

1
2
3
4
5
6
7
8

ALM Inputs

ALM

8-Input Fracturable LUT

Register

Register

Combinational
Logic

Adder

Adder

Two RegistersTwo Adders

regout(0)

combout(0)

regout(1)

combout(1)

Figure 2.3: ALM block diagram [53].

two adaptive four-input look-up-tables (ALUTs) which support a variety of combinational
configurations such as fully 6-input LUT, or two independent 4-input functions. Histor-
ically Altera used logic elements (LEs) as its basic logic building blocks in the FPGA. A
LE contains a 4-input LUT, a register, and special-purpose carry circuitry for arithmetic
circuits. Thus an ALM is able to implement 2.5 LEs equivalently.

2.1.2 Memory Blocks

Stratix III memory contains three types of memory blocks, namely M144k (144-Kbit) RAM
blocks, M9K (9-Kbit) RAM blocks, and MLAB (320-bit) blocks. As can be seen in Fig. 2.1
and Table 2.1, these memory blocks are placed in different locations in the FPGA with var-
ious quantities. They can provide dedicated true dual-port, simple dual-port, and single-
port RAM, ROM, and FIFO buffers with fully custom word width and length configura-
tion. Fig. 2.4 shows a single-port RAM (a) and a true dual-port RAM. These massive,
high speed access (up to 600MHz), and parallelized memory blocks are extremely useful
in parallel computations as discussed in detail later.

2.1.3 Digital Signal Processing Blocks (DSPs)

High-speed DSP blocks provide dedicated implementation of multipliers (faster than 300
MHz), multiply-accumulate functions, and finite impulse response (FIR) filters. It can im-
plement up to either eight full-precision 9x9-bit multipliers, four full-precision 18x18-bit
multipliers, or one full-precision 36x36-bit multiplier with add or subtract features. DSP
blocks are grouped into two columns in each device. Fig. 2.5 shows the simplified DSP
block structure.

Chapter 2. FPGA Background 13

din_a[#,0]

address_a[#,0]

clock_a

wren_a
do_a[#,0]

din_b[#,0]

address_b[#,0]

wren_b

do_b[#,0]

din[#,0]

address[#,0]

clock

wren clock_b

do[#,0]

(a) (b)

Figure 2.4: (a) Single-port RAM, and (b) true dual-port RAM.

X

X

X

X

+

+-∑

+-∑

18

18

18

18

18

18

18

18

Optional

Input

Registers

Optional

Pipeline

Registers

Optional

Output

Registers
Summation

Unit

Adder/

Subtractors/

Accumulators

Multipliers

Figure 2.5: DSP block structure [53].

2.1.4 Phase-Locked Loops (PLLs)

Stratix III devices offer up to 12 PLLs that provide robust clock management and synthesis
for device clock management, external system clock management, and high-speed I/O
interfaces. The main goal of a PLL is to synchronize the phase and frequency of an internal
or external clock to an input reference clock. Fig. 2.6 shows the Stratix III PLL block
diagram.

Chapter 2. FPGA Background 14

Chapter 6: Clock Networks and PLLs in Stratix III Devices 6–21
PLLs in Stratix III Devices

© July 2010 Altera Corporation Stratix III Device Handbook, Volume 1

The loop filter converts these up and down signals to a voltage that is used to bias the
VCO. The loop filter also removes glitches from the charge pump and prevents
voltage overshoot, which filters the jitter on the VCO. The voltage from the loop filter
determines how fast the VCO operates. A divide counter (m) is inserted in the
feedback loop to increase the VCO frequency above the input reference frequency.
VCO frequency (fVCO) is equal to (m) times the input reference clock (fREF). The input
reference clock (fREF) to the PFD is equal to the input clock (fIN) divided by the pre-scale
counter (N). Therefore, the feedback clock (fFB) applied to one input of the PFD is
locked to the fREF that is applied to the other input of the PFD.

The VCO output from Left/Right PLLs can feed seven post-scale counters (C[0..6]),
while the corresponding VCO output from Top/Bottom PLLs can feed ten post-scale
counters (C[0..9]). These post-scale counters allow a number of harmonically
related frequencies to be produced by the PLL.

Figure 6–19 shows a simplified block diagram of the major components of the
Stratix III PLL.

PLL Clock I/O Pins
Each Top/Bottom PLL supports six clock I/O pins, organized as three pairs of pins:

■ 1st pair: 2 single-ended I/O or 1 differential I/O

■ 2nd pair: 2 single-ended I/O, 1 differential external feedback input (FBp/FBn), or
1 single-ended external feedback input (FBp)

■ 3rd pair: 2 single-ended I/O or 1 differential input

Figure 6–19. Stratix III PLL Block Diagram

Notes to Figure 6–19:
(1) The number of post-scale counters is 7 for Left/Right PLLs and 10 for Top/Bottom PLLs.
(2) This is the VCO post-scale counter K. If the design enables this ÷2 counter, the device can use a VCO frequency range of 300 to 650 MHz. The

VCO frequency reported by the Quartus II software is divided by the post-scale counter K.

(3) The FBOUT port is fed by the M counter in Stratix III PLLs.
(4) The global (GCLK) or regional (RCLK) clock input can be driven by an output from another PLL, a clock pin-driven global or regional clock, or

through a clock control block provided the clock control block is fed by an output from another PLL or a pin driven dedicated global or regional
clock. An internally generated global signal or general purpose I/O pin cannot drive the PLL.

Clock
Switchover

Block

inclk0

inclk1

Dedicated Clock inputs
from pins

Cascade input
from adjacent PLL

pfdena

clkswitch
clkbad0
clkbad1
activeclock

PFD

Lock
Circuit

locked

÷n CP LF VCO
÷2
(2)

GCLK/RCLK (4)

84

FBIN
DIFFIOCLK network
GCLK/RCLK network

no compensation mode
ZDB, External feedback modes
LVDS Compensation mode
Source Synchronous, normal modes

÷C0

÷C1

÷C2

÷C3

÷Cn

÷m

(1)

P
L

L
 O

u
tp

u
t

M
u

x

Casade output
to adjacent PLL

GCLKs

RCLKs

External clock
outputs

DIFFIOCLK from
Left/Right PLLs

LOAD_EN from
Left/Right PLLs

FBOUT (3)

External
memory
interface DLL

8
8

To DPA block on
Left/Right PLLs

 /2, /4

Figure 2.6: Stratix III PLL Block Diagram [53].

2.1.5 Input/Output Elements (IOEs)

IOEs are special logic blocks at the periphery of device for external connections. Each
Stratix III device I/O pin is fed by an I/O element (IOE) located at the end of LAB rows and
columns around the periphery of the device. I/O pins support numerous single-ended and
differential I/O standards. Each IOE contains a bidirectional I/O buffer and six registers
for registering input, output, and output-enable signals. Fig. 2.7 shows the IOE structure.

2.2 FPGA Design Tools and Design Flow

Along with the evolution of FPGA density and speed the FPGA design tools have also
achieved a mature level being able to support all aspects of the entire FPGA design. Mean-
while, abundant vendor and third-party intellectual property (IP) cores make FPGA de-
sign fully self-contained. The Altera Quartus II software, for example, provides a full-
integrated development environment for design, verification, debugging, and implemen-
tation. The generic FPGA design flow mainly consists of design entry, synthesis, imple-
mentation, verification, and configuration, as shown in Fig. 2.8.

Design Entry- The entry design can be based on schematic or hardware description
language (HDL). The schematic-based FPGA design is used when the schematic of the
design is available. Most commonly the entry design is done using HDL, especially when
the design is algorithm oriented. The HDL is a powerful language to describe the behavior
or structure of a digital system. It supports top-down or bottom-up design methodology.
Systems can be described at different levels from architecture level to gate level. Two
widely used HDLs are very high speed integrated circuit hardware description language
(VHDL) and Verilog HDL. For commonly used hardware components such as memory
block, IO interface, arithmetic unit, the venders’ IP cores are the best choice since these

Chapter 2. FPGA Background 15

Chapter 7: Stratix III Device I/O Features 7–13
Stratix III I/O Structure

© July 2010 Altera Corporation Stratix III Device Handbook, Volume 1

■ On-chip series termination without calibration

■ On-chip parallel termination with calibration (OCT RT)

■ On-chip differential termination (OCT RD)

■ PCI clamping diode

The I/O registers are composed of the input path for handling data from the pin to the
core, the output path for handling data from the core to the pin, and the output-enable
(OE) path for handling the OE signal for the output buffer. These registers allow faster
source-synchronous register-to-register transfers and resynchronization. The input
path consists of the DDR input registers, alignment and synchronization registers,
and HDR. You can bypass each block of the input path.

Figure 7–7 shows the Stratix III IOE structure.

The output and OE paths are divided into output or OE registers, alignment registers,
and HDR blocks. You can bypass each block of the output and OE path.

f For more information about I/O registers and how they are used for memory
applications, refer to the External Memory Interfaces in Stratix III Devices chapter.

Figure 7–7. IOE Structure for Stratix III Devices (Note 1), (2)

Notes to Figure 7–7:
(1) D3_0 and D3_1 delays have the same available settings in the Quartus® II software.
(2) One dynamic OCT control is available per DQ/DQS group.

2
OE
from
Core

4

Open Drain

On-Chip
Termination

Bus-Hold
Circuit

Programmable
Current

 Strength and
Slew Rate

Control

PCI Clamp

VCCIO

VCCIO

Programmable
Pull-Up Resistor

Half Data
Rate Block

Alignment
Registers

Half Data
Rate Block

Write
Data
from
Core

Alignment
Registers

4 Half Data
Rate Block

Alignment and
Synchronization

Registers

PRN
D Q

PRN
D Q

PRN
D Q

PRN
D Q

PRN
D Q

OE Register

OE Register

Output Register

Output Register

clkout

To
Core

To
Core

D5, D6
Delay

Input Register

PRN
D Q

Input Register

PRN
D Q

Input Register

clkin

D5, D6
Delay

Read
Data
to
Core

From OCT
Calibration

Block

D2 Delay
D3_0
Delay

D3_1
Delay

D1
Delay

Output Buffer

Input Buffer

D5_OCT D6_OCT

Firm Core

DQS Logic Block

Dynamic OCT Control (2)

D4 Delay
DQS
CQn

Figure 2.7: Structure of IOE [53].

Design entry Synthesis
Programming

(configuration)

Functional

simulation

Timing analysis

and simulation
On-chip debug

Implementation

(map, place, and route)

Design

Verification

Figure 2.8: General FPGA design flow.

cores are well designed, fully tested, and optimized to the FPGA utilized. For example,
MegaWizardr and SOPC builderr design tools are included in Alter Quartus II software.

Functional simulation- The functional simulation is employed to verify the entry de-
sign before the synthesis process. It is helpful to ensure the required functionality is sat-

Chapter 2. FPGA Background 16

isfied by checking the output simulation waveforms before starting the time consuming
synthesis process.

Synthesis- This process translates entry design file (source HDL codes) into a device
netlist format. The netlist describes the digital system in terms of basic logic components
such as logic gates, registers, multiplexors, etc.

Implementation- This process is comprised of three sub-processes: Map, Place, and
Route. The Map sub-process divides the whole design into the basic logic blocks such as
ALM, IOE, DSP. The Place sub-process assigns them to physical location. The Route sub-
process selects wire segment and switches for interconnection.

Timing analysis and simulation- Design verification at this stage can be done using
timing analysis and timing simulation. It is a very important step to guarantee that the
FPGA device’s functionality meets all required timing constrains for the design.

Device Programming- After implementation, the design is converted to a format that
can be accepted by the FPGA. This file which is called a bitstream is the configuration file of
the FPGA. It is downloaded into the FPGA using the JTAG interface from a host computer.
Now the FPGA design is finished and it is ready for use.

2.3 FPGA Design Issues

2.3.1 Data Representation

What data format to use is the first question that needs to be addressed for any FPGA im-
plementation, since it will affect the accuracy of computation and logic resource utilization.
Basically there are two types of number system: fixed-point number and floating-point
number. Comparing with the fixed-point number, on the one hand, the floating-point
number has advantages of dynamic range, high accuracy; so it is widely used in high pre-
cision arithmetic. On the other hand, floating-point computation takes longer execution
time and requires more hardware resources to implement. For example, a float-point mul-
tiplier needs 2 adders, 1 multiplier, and usually has more than 5 clock cycle latency. That is
why the implementation of floating-point arithmetic was difficult until recently, i.e., until
the increased density and speed of modern FPGA.

In this thesis, the 32-bit (single-precision, IEEE Standard 754) floating-point format is
utilized in the FPGA-based real-time EMT simulation. As shown in Fig. 2.9, a 32-bit
floating-point number consists of 1 sign bit, 8 exponent bits, and 23 fraction (mantissa) bits.
A floating-point number v is described as follows

v = (−1)sign × 2(exponent−exponent bias) × (1.mantissa), (2.1)

where the exponent bias is 127. The range of v is approximately 10−38 to 1038.
In the EMTP, the accumulation (

∑
) is commonly used in the convolution integration

and matrix multiplication . However, a floating-point accumulation typically consumes

Chapter 2. FPGA Background 17

sign exponent mantissa

bit 31 30 23 022

Figure 2.9: 32-bit floating-pointer number format.

more FPGA resources and has a very long latency [54]. For this reason, a fixed-point accu-
mulator is used instead of a floating-point accumulator. The fixed-point number format is
40.100 with 40 bits integer and 100 bits fraction to guarantee both the range and precision.
All data in FPGA are saved and processed in floating-point number format. Only when
accumulation is required, the floating-point number is converted to fixed-point format, the
accumulation result is then converted back to floating-point format.

2.3.2 Parallelism

The most attractive feature of an FPGA is its intrinsic massive parallel architecture. It
means that FPGAs can be partitioned and configured into a large number of parallel-
processing units and all units can process their data simultaneously. A general purpose
CPU or DSP, on the other hand, is a sequential device in which one or several instructions
are executed sequentially. The process of an instruction includes fetch, decode, execution,
and write-back in one or more clock cycles. As mentioned earlier, modern FPGAs con-
tain many blocks of memory which can be configured to be of various types with any bus
width and depth. Thus, many independent memory units can be accessed concurrently,
whereas in a general purpose CPU or DSP, all memory and buses are shared in a time di-
vision multiplexing mode. For computationally complex applications, the dedicated high-
performance DSP blocks provide fast and flexible computation engines. Many DSP blocks
can be configured together to perform many addition, subtraction, multiplication, and
summation with any data bandwidth simultaneously. Meanwhile, FPGAs also provide
very wide IO bandwidth, for instance, Altera Stratix III EP3SL340 has 1,760 user I/O pins
which make the parallel input/output possible. An example shown in Fig. 2.10 is used to
explain the difference between FPGA and general purpose CPU or DSP for implementing
a function. In the FPGA implementation scheme (Fig. 2.10 (a)), 2 hardware multipliers and
1 adder are implemented and connected together. In the CPU implementation (Fig. 2.10
(b)), a set of instructions are first developed, then fetched, decoded, and executed one after
the other sequentially. It is clear that the FPGA implementation is space-oriented (each cal-
culation is processed in its own hardware units in parallel), while the CPU implementation
is time-oriented (each instruction is processed in a single hardware sequentially).

Chapter 2. FPGA Background 18

+

+

x

d1

d2

d3

d4

res1

res2

res

MOV A, d1

MOV B, d2

ADD A, B

MOV RES1, A

MOV A, d3

MOV B, d4

ADD A, B

MOV RES2, A

MOV A, RES1

MOV B, RES2

MUL A, B

MOV RES, A

A B

ALU

(a) (b)

Figure 2.10: An example showing the different implementations in (a) FPGA, and (b)
CPU/DSP.

2.3.3 Pipelining

In the paralleled architecture, the pipelining technique is another important strategy for
improving hardware performance. In pipeline scheme, a function is divided into sev-
eral stages depending on the number of operations, in which different operations are per-
formed. Registers are then inserted between these stages to separate the operations. Thus,
data can march through the operations at every clock. Although a pipeline has the cost
of latency which is the input to output delay in terms of clock cycles, the key merit for a
pipeline is its computational throughput, which is defined as the number of operations
that can be performed per unit of time.

An example to illustrate the pipeline scheme is the convolution function which is
widely used in digital signal processing. A convolution function defined by

C =
N∑
i=1

ci =
N∑
i=1

aixi + biyi, (2.2)

can be hardware implemented in FPGA shown in Fig. 2.11. The pipeline consists of 4
stages. In Stage 1, all input data are accessed from the RAM banks simultaneously. The
multiplications are carried out at Stage 2 and the addition is done at Stage 3. The final
summation is done at Stage 4. As shown in the figure, the data flows into the pipeline
every clock and is processed independently at each individual stage. In this case, the
latency is 4 clock cycles while the throughput is 1 result per clock cycle. If the convolution
operation is performed without the pipeline, the latency and throughput would be 4 clock
cycles and 1 result per 4 clock cycles, respectively.

2.4 Summary

With the fast increasing density and speed, FPGAs have been gaining great interest for
high performance computation (HPC) applications. The intrinsic massive parallel archi-

Chapter 2. FPGA Background 19

X

X

RAM

a

RAM

x

RAM

b

RAM

y

+
+

ai

xi

ci

bi

yi

Reg.

C

Reg.

Reg.

Stage 1 Stage 2 Stage 3 Stage 4

Data flow

RAM

c

reg.Reg.

 


)(
1

iiii

n

i

i ybxacC

Figure 2.11: An example of convolution implemented in FPGA [57].

tecture, fully custom configuration, hardware pipelining support, abundant IP cores, and
complete development environment features make the FPGA outperform the general pur-
pose CPU or DSP for most digital signal processing applications. Therefore, the FPGA is
chosen in this thesis for real-time EMT simulation which involves many computationally
intensive algorithms. This chapter provided a brief overview of the hardware architecture,
tools and procedures, and issues involved when using FPGAs for digital system design.

3
FPGA-Based Real-Time EMT Simulator

In this chapter1 the process of implementing a real-time electromagnetic transient simula-
tor on a single FPGA is described. The FPGA is used to emulate the basic power system
components including transmission lines, linear lumped RLCG elements, supply sources,
circuit breakers. The modeling of each component is described before giving the FPGA im-
plementation details. The central component of this simulator is the frequency-dependent
line model (FDLM) which is a widely used accurate line model. The network is solved
using sparse matrix technique for improved efficiency. The EMTP algorithm is analyzed,
and the inherent parallel computations are realized in the parallel hardware architecture
of FPGA. All developed hardware computational units are fully pipelined to achieve the
highest throughput. A case system consisting of 15 transmission lines, 4 generators, and 8
loads is simulated for two transients. The captured real-time simulation waveforms from
the oscilloscope show the detailed agrement with the ATP off-line results.

3.1 Frequency-Dependant Line Model

3.1.1 FDLM Model Formulation

Taking into account the frequency dependence of parameters and the distributed nature of
losses in the transmission lines, Marti’s frequency-dependent line model (FDLM) [55,56] is
widely used and simulated [8,12,13]. This model is based on the well known line equations

1Material from this chapter has been published: Y. Chen and V. Dinavahi, “FPGA-based real-time EMTP”,
IEEE Trans. on Power Delivery, vol. 24, no. 2, pp. 892-902, April 2009.

20

Chapter 3. FPGA-Based Real-Time EMT Simulator 21

in the frequency-domain as follows

Vk(ω) = cosh[γ(ω)`]Vm(ω)− Zc(ω) sinh[γ(ω)`]Im(ω),

Ik(ω) =
1

Zc(ω)
sinh[γ(ω)`]Vm(ω)− cosh[γ(ω)`]Im(ω),

(3.1)

where Vk(ω), Vm(ω), Ik(ω) and Im(ω) are the frequency-domain quantities corresponding
to sending-end (’k’) and receiving-end (‘m’) voltages and currents, respectively; ` is the
line length; Zc(ω) and γ(ω) are frequency-dependent characteristic impedance and propa-
gation function defined as

Zc(ω) =

√
R(ω) + jωL(ω)

G+ jωC
,

γ(ω) =
√

(R(ω) + jωL(ω))(G+ jωC),

(3.2)

where R(ω), L(ω), G, and C are series resistance, series inductance, shunt conductance,
and shunt capacitance, respectively. New equations that relate currents and voltages in
the frequency-domain are then introduced [56]:
forward traveling functions

Fk(ω) = Vk(ω) + Zc(ω)Ik(ω),

Fm(ω) = Vm(ω) + Zc(ω)Im(ω),
(3.3)

and backward traveling functions

Bk(ω) = Vk(ω)− Zc(ω)Ik(ω),

Bm(ω) = Vm(ω)− Zc(ω)Im(ω).
(3.4)

By eliminating Vk(ω), Vm(ω), Ik(ω) and Im(ω) from (3.1) and (3.4), we obtain

Bk(ω) = A1(ω)Fm(ω),

Bm(ω) = A1(ω)Fk(ω),
(3.5)

where
A1(ω) = e−γ(ω)` =

1
cosh[γ(ω)`] + sinh[γ(ω)`]

. (3.6)

Equations (3.4) give the Thévenin equivalent network shown in Fig. 3.1. The voltage
sources bk(t) and bm(t) are the time-domain forms of Bk(ω) and Bm(ω), which are convo-
lution integrals of (3.5) as

bk(t) =
∫ ∞
τ

fm(t− u)a1(u)du,

bm(t) =
∫ ∞
τ

fk(t− u)a1(u)du,
(3.7)

where a1(t), defined as the weighting function, is the time-domain form of A1(ω), and

fk(t) = 2vk(t)− bk(t),

fm(t) = 2vm(t)− bm(t).
(3.8)

Chapter 3. FPGA-Based Real-Time EMT Simulator 22

+

-

+
-

+

-

+
-

ik(t)

vk(t)

Zeq

bk(t)

Zeq im(t)

vm(t)bm(t)

ik(t) im(t)

vk(t) vm(t)
mk

(a) (b)

Figure 3.1: (a) A transmission line, and (b) its frequency-dependent model.

Accuracy of Marti’s line model greatly depends on the fitting of Zc(ω) and A1(ω). The
appropriate techniques used are Bode’s asymptotic fitting technique [56] in the EMTP.
Zc(ω) is fitted by an Nzc-order rational function of the form

Zeq(s) = k0 +
Nzc∑
i=1

ki
s+ pi

, (3.9)

which is realized by a series ofRC parallel blocks as shown in Fig. 3.2 (a). The parameters
are calculated as follows

R0 = k0, Ri = ki/pi, Ci = 1/ki. (3.10)

By applying Trapezoidal rule of integration to each RC parallel block its discrete-time
model is obtained as shown in Fig. 3.2 (b), where

Reqi =
Ri

∆t
2Ci

Ri + ∆t
2Ci

, (3.11)

and

vhi(t−∆t) =
R2
i

∆t
Ci

(Ri + ∆t
2Ci

)2
i(t−∆t) +

Ri − ∆t
2Ci

Ri + ∆t
2Ci

vhi(t− 2∆t)

= D1ii(t−∆t) +D2ivhi(t− 2∆t).

(3.12)

Combining all RC blocks discrete-time models together gives the overall Thévenin
equivalent network shown in Fig. 3.2 (c), where

Req = R0 +
Nzc∑
i=1

Reqi, (3.13)

and

vh(t−∆t) =
Nzc∑
i=1

vhi(t−∆t). (3.14)

Chapter 3. FPGA-Based Real-Time EMT Simulator 23

Reqii(t)
vhi(t-Δt)

(b)

+
+ 



vi(t)

(a)

Reqi(t)
vh(t-Δt)

+
+ 



v(t)

(c)

R0

R1

C1

Ri

Ci

RNzc

CNzc

Figure 3.2: (a) RC network realization of Zeq(ω) approximating Zc(ω), (b) discrete-time
model of ith RC block, and (c) overall Thévenin equivalent network of Zeq(ω).

Specifically, for sending-end (′k′) and receiving-end (′m′), (3.14) becomes

vhk(t−∆t) =
Nzc∑
i=1

vhki(t−∆t) =
Nzc∑
i=1

D1iik(t−∆t) +D2ivhki(t− 2∆t),

vhm(t−∆t) =
Nzc∑
i=1

vhmi(t−∆t) =
Nzc∑
i=1

D1iim(t−∆t) +D2ivhmi(t− 2∆t).

(3.15)

Again,Nzc is total number ofRC parallel blocks or the order of the approximation ofZc(ω);
ik and im are line currents at both ends. Computational efficiency of the convolutions
of (3.7) may be greatly increased if the weighting function a1(t) has the form of sum of
exponential terms [55]. To do so, the same fitting techniques for Zc(ω) are applied in the
approximation of weighting functionA1(ω). However, rather than a proper form of Zeq(s),
the A1(ω) is first back-winded by the propagation delay τ to produce

P (ω) = A1(ω)ejωτ , (3.16)

and then approximated in a strictly proper manner by a Np-order rational function

Pa(s) =
Np∑
i=1

ki
s+ pi

. (3.17)

Thus we obtain a sum of exponentials from the inverse Fourier transformation as

a1a(t) = u(t− τ)
Np∑
i=1

kie
−pi(t−τ), (3.18)

where u(t− τ) is step response with τ delay.

Chapter 3. FPGA-Based Real-Time EMT Simulator 24

For the i-th term kie
−pi(t−τ)u(t − τ) in approximated function a1a(t), the convolution

integral is

bi(t) =
∫ ∞
τ

f(t− u)kie−pi(u−τ)du. (3.19)

bi(t) can then be directly obtained from recursive convolution [55] by

bi(t) = Mi · bi(t−∆t) + Pi · f(t− τ) +Qi · f(t− τ −∆t), (3.20)

where 
Mi = e−pi∆t = α,

Pi = ki
pi

(1− 1−α
pi∆t

),

Qi = ki
pi

(1−α
pi∆t
− α).

(3.21)

Specifically, bk(t) for sending-end (’k’) and bm(t) for receiving-end (’m’) are given as

bk(t) =
Np∑
i=1

bki(t) =
Np∑
i=1

[Mi · bki(t−∆t) + Pi · fm(t− τ) +Qi · fm(t− τ −∆t)],

bm(t) =
Np∑
i=1

bmi(t) =
Np∑
i=1

[Mi · bmi(t−∆t) + Pi · fk(t− τ) +Qi · fk(t− τ −∆t)].

(3.22)

To calculate (3.22), the past values of fm(t) and fk(t) have to be stored. The number of
stored past value Ntau depends on the propagation delay τ and time-step ∆t as follows

Ntau = τ/∆t. (3.23)

Finally, by combining (3.15) with (3.22), the equivalent time-domain network of FDLM
model is obtained as shown in Fig. 3.3, where the equivalent current sources are given by

ihlnk(t) = [bk(t) + vhk(t−∆t)]/Req,

ihlnm(t) = [bm(t) + vhm(t−∆t)]/Req,
(3.24)

and the equivalent resistance is given by (3.13).
The line currents for sending-end (’k’) and receiving-end (’m’) are calculated as

ik(t) = vk(t)/Req − ihlnk(t),

im(t) = vm(t)/Req − ihlnm(t).
(3.25)

Three-phase system is commonly decoupled into three separate systems. In the EMTP,
the Clarke’s transformation is used to transform the three phases to two aerial modes (α,
β) and one ground mode (0) [5]. The Clarke’s transformation matrix is defined as

iphase =

 ia
ib
ic

 = T imode = T

 i0
iα
iβ

 , (3.26)

Chapter 3. FPGA-Based Real-Time EMT Simulator 25

+

-

+

-

ik(t)

vk(t)
Req

ihlnk(t)

Req

im(t)

vm(t)

ihlnm(t)

Figure 3.3: Discrete-time equivalent network for FDLM.

vphase =

 va
vb
vc

 = Tvmode = T

 v0

vα
vβ

 , (3.27)

where the transformation matrix T is given by

T =
1√
3

 1
√

2 0
1 −1/

√
2
√

3/
√

2
1 −1/

√
2 −

√
3/
√

2

 . (3.28)

3.1.2 Real-Time FPGA Implementation of FDLM

A hardware module FDLM is designed to emulate FDLM model in the FPGA. Fig. 3.4
shows the symbol of the FDLM module and its input/output signals. The main operations
carried out in this module include convolution for bk(t), bm(t) (3.22), calculating ihlnk(t),
ihlnm(t) (3.24), and updating fk, fm (3.8) and vhk(t−∆t), vhm(t−∆t) (3.15).

clock

TLdone

Vb

TLcmd

Va

Sw_now Ihlnk

Ihlnm

Figure 3.4: FDLM module and its input/output signals.

Due to the traveling time delay of FDLM model, the calculations at sending-end and
receiving-end are naturally decoupled, which means they can be processed fully in parallel
in hardware. Moreover, for three-phase systems, the calculations in α mode and β mode
can also be carried out simultaneously. As can be seen in Fig. 3.5, four identical hardware

Chapter 3. FPGA-Based Real-Time EMT Simulator 26

parts are implemented in the FPGA, and each part contains a Convolution unit and a
Update unit.

Convolution

Unit

Update

Unit
α mode

β mode
Convolution

Unit

Update

Unit

Convolution

unit

Update

Unit
α mode

β mode Convolution

Unit

Update

Unit

FDLM Module

S
en

d
in

g
-e

n
d

R
ec

ei
v
in

g
-e

n
d

Figure 3.5: Functional units in the FDLM module showing parallel computations.

Convolution Unit

Depending on the order of fitted rational function Np the recursive convolutions of (3.22)
are very time-consuming in the EMTP. The Convolution unit is fully pipelined to im-
prove the data throughput. Fig. 3.6 shows the pipelined computation scheme in this unit.
A floating-point multiply-add (y = a × b + c × d + e × f) unit is first used to calculate
bki(t), followed by a floating-point accumulator (y =

∑
ai) unit to calculate bk(t). Then the

equivalent current ihlnk(t) (3.24) is calculated using another floating-point multiply-add
(y = a× b + c× d) unit. RAMs are utilized to save the parameters such as Mi, Pi, and Qi.
The RAM used to save bki is a dual-port RAM which can be read out and written in at the
same time.

Update Unit

After the network is solved, the history terms are updated in the Update unit shown in
Fig. 3.7. The updated terms include fk(t), fm(t) (3.8) and vhk(t−∆t), vhm(t−∆t) (3.15). As
can be seen in Fig. 3.7, a floating-point multiply-add (y = a×b−c×d) unit is employed to
calculate fk, while the other floating-point multiply-add (y = a×b−c×d) unit is employed
to calculate line current ik (3.25) concurrently. Then vhk(t−∆t) is calculated in a floating-

Chapter 3. FPGA-Based Real-Time EMT Simulator 27

a

b

c
y

d

e

f

19 clock cycles

y

5 clock cycles

ai

y

a

b

c

d

12 clock cycles

Geq

Convolution Unit

= RAMs

Mi

Qi

Pi

fm(t-τ)

fm(t-τ-Δt)

bki(t)

bk(t)

bki(t)

vhk(t-Δt)

ihlnk(t)
y=a*b+c*d+e*f

y=a*b+c*d

y=∑ai

Figure 3.6: Pipelined computation scheme in the Convolution unit.

point multiply-add (y = a × b + c × d) unit and a floating-point accumulator (y =
∑
ai)

unit.

= RAMs

y

a

b

c

d

12 clock cycles

y

d

c

b

a

12 clock cycles

y

a

b

c

d

12 clock cycles

ihlnk(t)

`1'

Geq

vk

`1'

`2'

bk(t)

fk

vhki(t-Δt)
y

5 clock cycles

ai

vhk(t-Δt)

Update Unit

D1i

D2i

vhki(t-2Δt)

ik

y=a*b-c*d

y=a*b-c*d

y=a*b+c*d y=∑ai

Figure 3.7: Pipelined computation scheme in the Update unit.

3.2 Linear Lumped RLCG Elements

3.2.1 Model Formulation

In the EMTP, the linear lumped elements R, L, C, and G are represented as their discrete-
time models using trapezoidal rule of integration. Meanwhile, the series combinations of
basic elements such as RL, RC, LC, RLC, RLCG are treated as single branch element in
order to reduce the number of nodes of network simulated.

Chapter 3. FPGA-Based Real-Time EMT Simulator 28

Resistance R Element

The discrete-time model of a resistance R shown in Fig. 3.8 is the same as its continuous-
time model. The voltage and current relationship is given as

vkm(t) = Rikm(t). (3.29)

R

k m

ikm(t)

vkm(t)

Figure 3.8: A resistance R element and its discrete-time model.

Inductance L Element

The differential equation for an inductance L shown in Fig. 3.9 (a) is

vkm(t) = L
dikm(t)
dt

. (3.30)

Integrating this equation form time (t−∆t) to t gives

ikm(t)− ikm(t−∆t) =
1
L

∫ t

t−∆t
vkm(t)dt. (3.31)

Applying the trapezoidal rule of integration yields

ikm(t) = ikm(t−∆t) +
∆t
2L

[vkm(t) + vkm(t−∆t)]

=
∆t
2L
vkm(t) + [ikm(t−∆t) +

∆t
2L
vkm(t−∆t)]

=
vkm(t)
Req

+ Ih(t−∆t).

(3.32)

(3.32) can be represented by an equivalent resistance Req in parallel with a current source
(history term) Ih(t − ∆t) as shown in Fig. 3.9 (b), where the equivalent resistance Req is
defined as

Req =
2L
∆t

, (3.33)

and the history term Ih(t−∆t) is known from the solution at the preceding time-step and
updated for use in the next time-step using

Ih(t−∆t) = [ikm(t−∆t) +
∆t
2L
vkm(t−∆t)], (3.34)

or recursively using

Chapter 3. FPGA-Based Real-Time EMT Simulator 29

L

(a) (b)

k m

Req

Ih(t-Δt) mk

ikm(t)

vkm(t)

ikm(t)

vkm(t)

Figure 3.9: (a) An inductance L element, and (b) its discrete-time Norton equivalent.

Ih(t−∆t) = Ih(t− 2∆t) +
∆t
L
vkm(t−∆t)

= Ih(t− 2∆t) +
2
Req

vkm(t−∆t).
(3.35)

Capacitance C Element

The differential equation for a capacitance C shown in Fig. 3.10 (a) is given as

ikm(t) = C
dvkm(t)
dt

. (3.36)

Integrating this equation form time (t−∆t) to t gives

vkm(t)− vkm(t−∆t) =
1
C

∫ t

t−∆t
ikm(t)dt. (3.37)

Applying the trapezoidal rule of integration yields

ikm(t) = −ikm(t−∆t) +
2C
∆t

[vkm(t)− vkm(t−∆t)]

=
2C
∆t

vkm(t) + [−ikm(t−∆t)− 2C
∆t

vkm(t−∆t)]

=
2C
∆t

vkm(t) + Ih(t−∆t).

(3.38)

(3.38) can be represented by an equivalent resistance Req in parallel with a current source
(history term) Ih(t −∆t) as shown in Fig. 3.10 (b), where the equivalent resistance Req is
defined as

Req =
∆t
2C

, (3.39)

and the history term Ih(t−∆t) is known from the solution at the preceding time-step and
updated for use in the next time-step using

Ih(t−∆t) = −ikm(t−∆t)− 2C
∆t

vkm(t−∆t), (3.40)

Chapter 3. FPGA-Based Real-Time EMT Simulator 30

(a) (b)

k m

Req

Ih(t-Δt) mk

Cikm(t)

vkm(t)

ikm(t)

vkm(t)

Figure 3.10: (a) A capacitance C element, and (b) its discrete-time Norton equivalent.

or recursively using

Ih(t−∆t) = −Ih(t− 2∆t)− 4C
∆t

vkm(t−∆t)

= −Ih(t− 2∆t)− 2
Req

vkm(t−∆t).
(3.41)

Series RL Branch Element

The series RL branch element shown in Fig. 3.11 (a) is first replaced by the discrete-time
model of R and L shown in Fig. 3.11 (b).

Combining (3.29) and (3.32) gives

vkm(t) = Rikm(t) + [ikm(t)− ikm(t−∆t)− ∆t
2L
vL(t−∆t)]

2L
∆t

. (3.42)

Substituting vL(t−∆t) and rearranging yields

ikm(t) =
1

R+ 2L
∆t

vkm(t) +
1

R+ 2L
∆t

[vkm(t−∆t)− (R− 2L
∆t

)ikm(t−∆t)]. (3.43)

(3.43) can be represented by an equivalent resistance Req in parallel with a current
source (history term) Ih(t−∆t) as shown in Fig. 3.11 (c), where the equivalent resistance
Req is defined as

Req = R+
2L
∆t

, (3.44)

and the history term Ih(t−∆t) is known from the solution at the preceding time-step and
updated for use in the next time-step using

Ih(t−∆t) =
vkm(t−∆t)
R+ 2L

∆t

−
(R− 2L

∆t)ikm(t−∆t)
R+ 2L

∆t

, (3.45)

or recursively using

Ih(t−∆t) = −
R− 2L

∆t

Req
Ih(t− 2∆t) +

4L
∆t

R2
eq

vkm(t−∆t). (3.46)

Chapter 3. FPGA-Based Real-Time EMT Simulator 31

2L/∆t

i(t-∆t)+(∆t/2L)vL(t-∆t)

LR

(a) (b)

k m k m

Req

Ih(t-Δt)

(c)

mk
vL(t)

Rikm(t)

vkm(t)

ikm(t)

vkm(t)

ikm(t)

vkm(t)

Figure 3.11: (a) A series RL branch element, (b) combined R, L discrete-time models, and
(c) its Norton equivalent.

Series RC Branch Element

Similarly, combining the discrete-time model of R and C, a series RC branch element
shown in Fig. 3.12 (a) can be represented as its equivalent network shown in Fig. 3.12 (b),
where the equivalent resistance Req is defined as

Req = R+
∆t
2C

, (3.47)

and the history term Ih(t−∆t) is known from the solution at the preceding time-step and
updated recursively for use in the next time-step using

Ih(t−∆t) = −
R− ∆t

2C

Req
Ih(t− 2∆t)− 2R

R2
eq

vkm(t−∆t). (3.48)

(a) (b)

k m

Req

Ih(t-Δt) mk

CR ikm(t)

vkm(t)

ikm(t)

vkm(t)

Figure 3.12: (a) A series RC branch element, and (b) its discrete-time Norton equivalent.

Series LC Branch Element

Combining the discrete-time model of L and C, a series LC branch element shown in Fig.
3.13 (a) can be represented as its equivalent network shown in Fig. 3.13 (b), where the

Chapter 3. FPGA-Based Real-Time EMT Simulator 32

ikm(t)

vkm(t)

(a) (b)

k m

Req

Ih(t-Δt) mk

CL ikm(t)

vkm(t)

Figure 3.13: (a) A series LC branch element ,and (b) its discrete-time Norton equivalent.

equivalent resistance Req is defined as

Req =
2L
∆t

+
∆t
2C

, (3.49)

and the history term Ih(t−∆t) is known from the solution at the preceding time-step and
updated recursively for use in the next time-step using

Ih(t−∆t) = 1
Req

[Vh,L(t−∆t) + Vh,C(t−∆t)],

Vh,L(t−∆t) = −Vh,L(t− 2∆t) + 4L
∆t ikm(t−∆t),

Vh,C(t−∆t) = Vh,C(t− 2∆t)− ∆t
C ikm(t−∆t),

ikm(t−∆t) = 1
Req

vkm(t−∆t) + Ih(t−∆t).

(3.50)

Series RLC Branch Element

Combining the discrete-time model of R, L and C, a series RLC branch element shown in
Fig. 3.14 (a) can be represented as its equivalent network shown in Fig. 3.14 (b), where
the equivalent resistance Req is defined as

Req = R+
2L
∆t

+
∆t
2C

, (3.51)

and the history term Ih(t−∆t) is known from the solution at the preceding time-step and
updated recursively for use in the next time-step using

Ih(t−∆t) = 1
Req

[Vh,L(t−∆t) + Vh,C(t−∆t)],

Vh,L(t−∆t) = −Vh,L(t− 2∆t) + 4L
∆t ikm(t−∆t),

Vh,C(t−∆t) = Vh,C(t− 2∆t)− ∆t
C ikm(t−∆t),

ikm(t−∆t) = 1
Req

vkm(t−∆t) + Ih(t−∆t).

(3.52)

Chapter 3. FPGA-Based Real-Time EMT Simulator 33

(a) (b)

k m

Req

Ih(t-Δt) mk

CLRikm(t)

vkm(t)

ikm(t)

vkm(t)

Figure 3.14: (a) A series RLC branch element, and (b) its discrete-time Norton equivalent.

RLCG Branch

Combining the discrete-time model ofR, L, C, andG, theRLCG element shown in branch
Fig. 3.15 (a) can be represented as its equivalent network shown in Fig. 3.15 (b), where
the equivalent resistance Req is defined as

Req = R+
2L
∆t

+
G∆t

2C

G+ ∆t
2C

, (3.53)

and the history term Ih(t−∆t) is given as

Ih(t−∆t) = 1
Req

[Vh,L(t−∆t) + Vh,CG(t−∆t)],

Vh,L(t−∆t) = −Vh,L(t− 2∆t) + 4L
∆t ikm(t−∆t),

Vh,CG(t−∆t) = G−∆t
2C

G+ ∆t
2C

Vh,CG(t− 2∆t)− G2 ∆t
C

(G+ ∆t
2C

)2
ikm(t−∆t),

ikm(t−∆t) = 1
Req

vkm(t−∆t) + Ih(t−∆t).

(3.54)

Note that G is in ohms.

(a) (b)

k m

Req

Ih(t-Δt) mk

C
LR

G

ikm(t)

vkm(t)

ikm(t)

vkm(t)

Figure 3.15: (a) RLCG branch, and (b) its discrete-time Norton equivalent.

It is clear from the above discussion that all the RLCG elements share the same discrete-
time equivalent network which is an equivalent conductance Geq in parallel with a history
current Ih(t−∆t). Moreover, the history current update equations (3.35), (3.41), (3.46), and
(3.48) have the same format, while equations (3.50), (3.52), and (3.54) have the same format.

Chapter 3. FPGA-Based Real-Time EMT Simulator 34

Thus, all the RLCG elements can be divided into two types: RLCGtype1 which includes
R, L, C, RL, and RC elements and RLCGtype2 which includes LC, RLC, and RLCG

elements. Although it is possible to have a general formula to include all types of RLCG
elements, the number of RLCGtype1 RLCG elements in power systems is higher than the
number of RLCGtype2 elements. The formula of updating history current of RLCGtype1
is much simpler than that of RLCGtype2, which will improve the computational efficiency
significantly.

The generic equation for updating RLCGtype1 elements history currents is

Ihpe1(t−∆t) = P1Ihpe1(t− 2∆t) + P2vkm(t−∆t), (3.55)

where P1, P2 are coefficients with respect to different elements which are listed in Table
3.1. Note for resistance R, P1, P2 are zeros since there is no equivalent current source.

Table 3.1: Coefficients for updating RLCGtype1 elements history currents (3.55)
RLCGtype1 elements Req(1/Geq) P1 P2

R R 0 0
L 2L

∆t 1 ∆t
L

C ∆t
2C -1 −4C

∆t

RL R+ 2L
∆t −R− 2L

∆t

R+ 2L
∆t

4L
∆t

(R+ 2L
∆t

)2

RC R+ ∆t
2C −R−∆t

2C

R+ ∆t
2C

− 2R
(R+ ∆t

2C
)2

The generic equations for updating RLCGtype2 elements history terms are given as
Ihpe2(t−∆t) = 1

Req
[Vh,L(t−∆t) + Vh,c(t−∆t)],

Vh,L(t−∆t) = P1Vh,L(t− 2∆t) + P2ikm(t−∆t),
Vh,C(t−∆t) = P3Vh,C(t− 2∆t) + P4ikm(t−∆t),

(3.56)

where Req(1/Geq), P1, P2, P3, and P4 are coefficients with respect to different elements
which are listed in Table 3.2.

Table 3.2: Coefficients for updating RLCGtype2 elements history currents (3.56)
RLCGtype2 elements Req(1/Geq) P1 P2 P3 P4

LC 2L
∆t + ∆t

2C -1 4L
∆t 1 −∆t

C

RLC R+ 2L
∆t + ∆t

2C -1 4L
∆t 1 −∆t

C

RLCG R+ 2L
∆t + G∆t

2C

G+ ∆t
2C

-1 4L
∆t

G−∆t
2C

G+ ∆t
2C

− G2 ∆t
C

(G+ ∆t
2C

)2

The branch current for all RLCG elements is

ikm(t) =
1
Req

vkm(t) + Ihpe(t−∆t). (3.57)

Chapter 3. FPGA-Based Real-Time EMT Simulator 35

clock

PEdone

Va

PEcmd

Ihpe

Sw_now

Vb

Figure 3.16: RLCG module and its input/output signals.

3.2.2 Real-Time FPGA Implementation of Linear Lumped RLCG Elements

A hardware module RLCG is designed to emulate the linear lumped RLCG elements in the
FPGA. Fig. 3.16 shows the symbol of the RLCG module and its input/output signals. The
main function of the RLCG module is to update history currents Ihpe(t−∆t). The pipelined
hardware computation schemes for updating the history currents for RLCGtype1 (3.55)
and RLCGtype2 (3.56) RLCG elements are shown in Fig. 3.17 and Fig. 3.18, respectively.

12 clock cycles

a

b

c

d

12 clock cycles

a

b

c

d

p2

p1

vkma

b

Geq

vk

vm

‘1’

Ihpe1(t-2Δt)

7 clock cycles

= RAMs

ikm
vkm

Ihpe1(t-Δt)

y=a-b

y

y

y

y=a*b+c*d

y=a*b+c*d

Figure 3.17: Pipelined computation scheme for calculating Ihpe1 of RLCGtype1 elements.

Chapter 3. FPGA-Based Real-Time EMT Simulator 36

a

b

c
y

d

e

f

19 clock cycles

vk

vm

Geq

‘1’

y

12 clock cycles

a

b

c

d

y

a

b

c

d

y

a

b

c

d

12 clock cycles

p1

p2

p1

p2

p3

p4

vhc(t-2∆t)

p3

p4

Geq

= RAMs

ikm

vhc(t-∆t)

vhL(t-∆t)

vhL(t-2∆t)

Ihpe2(t-∆t)

Ihpe2(t-2∆t)

y=a*b+c*d

y=a*b+c*d

y=a*b+c*d
y=a*b+c*d+e*f

Figure 3.18: Pipelined computation scheme for calculating Ihpe2 of RLCGtype2 elements.

3.3 Sources

3.3.1 Modeling of Sources

The ideal voltage source and current source are represented using sinusoidal function (cos
function) in the EMTP. The look-up table (LUT) is the most commonly used method to
evaluate this nonlinear function. Since cos is a periodic function, as shown in Fig. 3.19
(a), only half cycle of cos function values need to be stored in the LUT in order to save the
memory space of the LUT. The accuracy of the cos value is determined by the length of
the LUT. In this design, 4096 (212) cos values for half cycle are stored in the LUT; thus, the
interval of the LUT is dθ=π/4096. Fig. 3.19 (b) shows the structure of the LUT.

A voltage or current source is expressed as

v(t), i(t) = mag · cos(ωt+ pha)

= mag · cos(ωn∆t+ pha),
(3.58)

where mag, ω, and pha (0 to π) are the source magnitude, frequency, and phase angle,
respectively. To retrieve the cos value from the LUT, the phase angle pha is converted to
the address (0 to 4095) of the LUT.

3.3.2 Real-Time FPGA Implementation of Sources

A hardware module Source is designed to emulate the source components in the FPGA.
Fig. 3.20 shows the symbol of the Source module and its input/output signals. The
main function of the Source module is to calculate the source values at each simulation
time-step.

Chapter 3. FPGA-Based Real-Time EMT Simulator 37

addres

0 cos(0)
cos(dθ)
cos(2dθ)

cos(4095dθ)

cos value

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1
2

4095

π 2π

(a) (b)

pha

 +ω∆t +ω∆t +ω∆t

-π

Figure 3.19: (a) cos function, and (b) structure of cos function look-up table.

clock

SOdone

Vb

SOcmd

Sw_now

Is

Figure 3.20: Source module and its input/output signals.

As shown in Fig. 3.21, the calculation of the source values begins with the updating of
the phase angle pha. The new pha is obtained by adding the previous pha by ω∆t. Since
the LUT has only half cycle of cos functions values, the calculated pha needs to be checked
with π; if greater than π, it is subtracted by π and the sign is inverted. Then the new
pha is converted to the address of the LUT. Finally the retrieved cos value is multiplied
by the magnitude mag. The type of the source (current or voltage) is checked before the
calculated source values being saved as vb or is.

Update pha

15 clock cycles

LUT

addressing
y=a*b

pha

ω∆t

3 clock cycles

new_pha
LUT

5 clock cycles

vb

is

mag

a

b

y

= RAMs

Figure 3.21: Pipelined configuration for calculating source values.

Chapter 3. FPGA-Based Real-Time EMT Simulator 38

left shifting 5 bits of 1.mantissa

1.1000110011001100110011000000

address xi exp dexp 1.mantissa

0

1

2

3

4

5

6

7

49

50

0

0.0625

0.125

0.1875

0.25

0.325

0.375

0.4375

3.0625

3.125

-4

-3

-3

-2

-2

-2

-2

1

1

1

1

2

2

2

2

5

5

0 0

0

0.000...000

1.000...000

1.000...000

1.100...000

1.000...000

1.010...000

1.100...000

1.110...000

1.10001...0

1.10010...0

...

...

...

...

...

...

...

...

...

...

x=3.1

leading `1'

mantissa

10000000

exp.

Figure 3.22: An example showing the scheme of LUT addressing unit.

One challenge of implementing a floating-point LUT is that the LUT is addressed by
integer number whereas the input is in floating-point format. The straightforward method
is to convert the floating-point input into integer format at the expense of extra latency
for the conversion. In this design, this conversion is omitted. The exponent and mantissa
of the input floating-point number are used directly to access the LUT provided the in-
terval of the LUT is always a power of 2. Assume the floating-point input is x, the LUT
addressing unit in Fig. 3.21 outputs the addresses of the point xi making x− xi < step,
where step is the interval of the LUT. This is done by left shifting the leading ’1’ and man-
tissa of x by dexp bits, where the dexp is the difference of the exponent of input x and step.
An example is shown in Fig. 3.22. In this example, step is 0.0625 (2−4), and input x is 3.10
whose exponent is 1 (without bias). So dexp is 5 (=1 − (−4)). Left shifting the leading ’1’
and mantissa 5 bits gives 49 which is the address of xi (3.0625).

3.4 Circuit Breakers

3.4.1 Modeling of Circuit Breakers

In the EMTP, circuit breakers are commonly represented as ideal time-controlled switches
shown in Fig. 3.23. It opens at top with infinite resistance (R=∞) and closes at tcl with
zero resistance (R=0). The operation of switch usually causes the change of the system
topology leading to the change of network admittance matrix Y .

Chapter 3. FPGA-Based Real-Time EMT Simulator 39

top

tcl

k m

Figure 3.23: Ideal time-controlled switch.

3.4.2 Real-Time FPGA Implementation of Circuit Breakers

A hardware module Switch is designed to simulate circuit breakers in the FPGA. Fig. 3.24
shows the symbol of this module and its input/output signals. Since the switch is time-
controlled, the core of this module is a real-time clock generator. As shown in Fig. 3.25, the
input system clock frequency (80MHz) is divided by 800 to generate a 10µs-period clock
signal. This clock signal is counted and compared with the switch operation time swtime
(integer of 10µs) saved in a RAM. Once the switch’s swtime is reached, the corresponding
switch state bit in Sw now register is inverted using ‘0’/ ‘1’ for switch open/closed.

clock Sw_now

Simu_on dTover

Figure 3.24: Switch module and its input/output signals.

Another important function of the Switch module is to generate the dTover signal
which indicates the end of the real simulation time-step ∆t. When a simulation step is
finished, the dTover signal is checked. If it is not ‘1’, the simulation step is finished within
∆t, thus the real-time simulation is achieved. Otherwise, the simulation step takes longer
time than ∆t, and the real-time constrain is not met.

clock
1/800

division

dTover

generation

Update

switch status

ΔT

Ts=12.5ns
10μs

ΔT

dTover

Sw0Sw2Sw3Sw4Sw5Sw6Sw7 Sw1

Simu_on

Sw_now

‘0’=open

‘1’=closed

swtime

Figure 3.25: Functions realized in the Switch module.

Chapter 3. FPGA-Based Real-Time EMT Simulator 40

3.5 Network Solver

3.5.1 Network Solution in the EMTP

After the discrete-time models of transmission lines and linear lumped RLCG elements are
obtained, the system admittance matrix Y is assembled using nodal analysis method. Y is
symmetrical and unchanged if there is no switch operation causing the change of system
topology. For any type of network with n nodes, the nodal equation can be formed as

Y v(t) = i(t), (3.59)

where v(t) is vector of n node voltages and i(t) is vector of n current sources. If there are
nodes with known voltages, (3.59) can be partitioned into a set A of nodes with unknown
voltages and a set B of nodes with known voltages. Thus (3.59) becomes[

Y AA Y AB

Y BA Y BB

] [
vA
vB

]
=
[
iA
iB

]
. (3.60)

The unknown voltages vA are then found by solving the system of linear, algebraic equa-
tions

Y AAvA = iA − iA1, (3.61)

where
iA1 = Y ABvB, (3.62)

where iA is the current sources of unknown nodes. It is assembled by transmission line his-
tory currents ihln, lumped RLCG element history currents ihpe, and known current sources
is as follows

iA = ihln + ihpe + is. (3.63)

In the off-line EMTP, (3.61) is solved first by triangularizing the Y AA matrix through a
Gaussian elimination procedure and then backsubstituting for the updated values. In the
real-time EMT simulator, (3.61) is solved by multiplying the precalculated inverse system
admittance matrix Y −1

AA by (iA− iA1). To account for switches in the network for a specific
transient study, Y −1 corresponding to those switch combinations are precalculated and
stored in the memory. Meanwhile, since Y and Y −1 matrices are very sparse for power
systems, sparse matrix technique is employed for the matrix-vector multiplication, which
reduces memory utilization and increases the calculation efficiency significantly. Fig. 3.26
shows the inverse admittance matrix for a modified IEEE 39-bus test system (Fig. 6.4). A
95.92% sparsity can be seen.

3.5.2 Real-Time FPGA Implementation of Network Solver

A hardware module Network Solver is designed to emulate the network solver in the
FPGA. Fig. 3.27 shows the symbol of this module and its input/output signals. The main
functions of this module are to calculate iA1 (3.62), iA (3.63), and vA (3.61).

Chapter 3. FPGA-Based Real-Time EMT Simulator 41

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Non−zero elements = 648
Sparsity= 95.92%

Figure 3.26: Inverse admittance matrix (Y −1) (126 x 126) of a modified IEEE 39-bus test
system.

clock

NWdone

Is

NWcmd

Sw_now

Ihlnm

Ihpe

Va

Ihlnk

Vb

Figure 3.27: Network Solver module and its input/output signals.

As shown in Fig. 3.28, the calculation of iA1 and iA are carried out concurrently. Mean-
while, i = iA − iA1 is also calculated in order to calculate vA shown in Fig. 3.29. As can
be seen in these two figures, the core unit is a fast floating-point multiply-accumulator
(FFPMAC) unit along with a compact sparse matrix storage format, which are discussed in
detail as follows.

To carry out fast sparse matrix-vector multiplication, first a very compact sparse matrix
storage format which uses only one vector is defined. Each entry in this format has (a) a
32-bit val to store the subsequent non-zero value of matrix in row order; (b) a 10-bit cid to
identify column index of this non-zero value; and (c) a 1-bit rlb to label all non-zero values
in the same row with ′0′ or ′1′. Fig. 3.30 shows an example sparse matrix and its storage
format.

Chapter 3. FPGA-Based Real-Time EMT Simulator 42

= RAMs

yy=a+b+c+d

a

b

c

d

14 clock cycles

y

10 clock cycles

‘0’

is

reg.

ihln

ihpe

vB
iA1

iA

y

b

a

7 clock cycles

i

reg.

YAB

rlb

cid

vol

sel

32

10

1

y=a-b

FFPMAC
ai

bi

y=∑ai*bi

Figure 3.28: Pipelined and parallelled calculation scheme for iA1 and iA.

y
FFPMAC

ai

bi

10 clock cycles

reg.

reg.

rlb

cid

vol

sel

YAA
-1

i
vA

= RAMs

32

10

1

y=∑ai*bi

Figure 3.29: Pipelined calculation scheme for vA.

y00

0

0

0

y40

y01

y11

0

0

0

0

0

y22

y32

0

0

y13

0

0

0

y04

0

y24

0

0

valcidrlb

0

0

0

1

1
0

1

0

0

0

1
4

1

3

2

0

4

2
y40

y32

y24

y22

y13

y11

y04

y01

y00

(a) (b)

Figure 3.30: (a) An example sparse matrix, and (b) its storage format.

In the FFPMAC unit shown in Fig. 3.31 (a), the accumulation is done in fixed-point
format. The reason has been discussed in Section (2.3.1). Thus the FFPMAC unit contains
one floating-point multiplier (FPMUL), one floating-to-fixed point converter (FLP2FIX),
two fixed-point adders, and one fixed-to-floating point converter (FIX2FLP). To calculate
Y −1
AAi shown in Fig. 3.29, for example, the elements of sparse matrix Y −1

AA are retrieved
from its RAM while the cid is used to access the i stored in its RAM. Registers are inserted

Chapter 3. FPGA-Based Real-Time EMT Simulator 43

ai

bi

FPMUL FLP2FIX

rst0

/rst1

acc0

acc1

FIX2FLP

registers

5 clock cycles

register

m
u

x

a

a

FFPMAC

2 clock

cycles

7 clock cycles 1 clock cycle

2 clock

cycles

sel

y

b

b

+y00i0 +y01i1 +y04i4 +y11i1 +y13i3 +y22i2 +y24i4 +y32i2 +y40i0 X

+y00i0 +y01i1 +y04i4 0 0 +y22i2 +y24i4 0 +y40i0

0 +y11i1 +y13i3 0 0 +y32i2 0 0

X

clock

d

d

rst0

rst1

acc0

acc1

(a)

(b)

Figure 3.31: Fast floating-point multiply-accumulator unit (FFPMAC): (a) hardware design,
and (b) timing diagram.

for synchronizing the pipeline. The realized matrix-vector multiplication is fully pipelined
and fast because there is no stall between two consecutive matrix row-vector multiplica-
tions. This is achieved by two parallel fixed-point adders (accumulators) acc0 and acc1

with opposite reset inputs rst0 and rst1 controlled by the row label bit rlb. Fig. 3.31
(b) shows the logic timing diagram for the fast floating-point multiply-accumulator unit
based on the example in Fig. 3.30. As can be seen, the accumulation of the first matrix
row-vector multiplication is processed in acc0 , while the acc1 is reset to zero which makes
it ready for accumulation of the next matrix row-vector multiplication.

3.6 Paralleled EMTP Algorithm

3.6.1 Analysis of Parallelism in the EMTP Algorithm

To fully exploit the parallel architecture of the FPGA, the inherent parallelism in the EMTP
algorithm needs to be analyzed. The EMTP algorithm actually consists of three stages:

Chapter 3. FPGA-Based Real-Time EMT Simulator 44

FDLM

Convolution and cur.

source calculation

RLCG

Send history

currents

Source

Calculate

supply sources

Switch

Check switch

state

Network Solver

Solve nodal equation

FDLM

Update history

terms

RLCG

Update history

terms

Error

Yes

No

Stage 1

Stage 2

Stage 3

current voltage

Finished in one time-step?

iS

ihln ihpe vB

vA vB

Figure 3.32: Parallelled real-time EMTP algorithm for FPGA implementation.

Stage 1 - Evaluating the nodal currents, Stage 2 - solving the nodal equation, and Stage
3 - updating the history terms. These three stages form an unavoidable sequentiality in
the EMTP algorithm. For example, to solve the nodal equation, the nodal currents have
to be known from Stage 1. Similarly, to update the history terms in Stage 3, we need the
node voltages from Stage 2. Nevertheless, we can parallelize the operations within each of
these stages. Fig. 3.32 shows the parallelled real-time EMTP algorithm flowchart. In Stage
1 four operations are performed simultaneously: the calculation of the supply sources,
calculation of transmission lines equivalent current sources at both sending and receiving
ends, retrieving the RLCG elements’ history current sources from memory, and checking
switch states. Similarly, in Stage 3 the history terms for the transmission lines and RLCG
elements are updated simultaneously.

3.6.2 MainControl Module

The MainControl module, as shown in Fig. 3.33, coordinates the operation of the whole
FPGA-based real-time EMT simulator to carry out the parallelled EMTP algorithm. It
sends out control signals (TLcmd, PEcmd, SOcmd, NWcmd) to each module to perform

Chapter 3. FPGA-Based Real-Time EMT Simulator 45

clock

TLdone TLcmd

Simu_ondTover

PEdone PEcmd

SOdone SOcmd

NWdone NWcmd

Figure 3.33: MainControl module and its input/output signals.

the required functions. Meanwhile, it receives the acknowledge signals (TLdone, PEdone,
SOdone,NWdone) to judge if the function is done. Fig. 3.34 shows the finite state machine
(FSM) diagram of the MainControl module.

TLcmd=`01'

PEcmd=`01'

SOcmd=`1'

Simu_on=`1'
done=TLdone & PEdone

& SOdone
NWcmd=`1'

done=NWdone

TLcmd=`10'

PEcmd=`10'

done=TLdone &

PEdone

dtOver=?

S0

S1

S2

S3

S4
S5

S6

done=`0'

done=`0'

d
o
n

e=
`0

'

done=`1'

done=`1'
done=`1'

start

`1'

`0'

Figure 3.34: FSM diagram for parallelled real-time EMTP algorithm for FPGA implemen-
tation.

3.7 Implementation of Real-Time EMT Simulator on FPGA

The FPGA-based real-time EMT simulator is implemented on a Alterar StratixTM S80 De-
velopment Board, shown in Fig. 3.35. The Stratix EP1S80 FPGA used on this board has the
following features: 79,040 logic elements (LEs); 7,427,520 total RAM bits; 176 DSP blocks
based on 9x9 multiplier; and 679 maximum user I/O pins.

Table 3.3 lists resources utilization by each module of the FPGA-based real-time EMT
simulator. As can be seen from this table, the logic elements and DSP Blocks are almost

Chapter 3. FPGA-Based Real-Time EMT Simulator 46

Network Solver

Module
RLCG

Module

Source

Module

FDLM

Module

FPGA

Control

Module

Oscilloscope

Switch

Module

Data

signals

Control signals

vB

ih
p
e

ih
lnvB vB

vAvA

Host PC

is

JT
A

G

Data

signals

OP5330

DACs board

User I/O

Figure 3.35: Real-time EMT simulator implemented on an Altera Stratix S80 FPGA devel-
opment board.

fully utilized. Also as mentioned earlier, the FDLM module utilizes the most logic resources
of the FPGA. The second most resource intensive module is the Network Solver mod-
ule.

To simulate a power network in the proposed FPGA-based real-time EMT simulator,

Chapter 3. FPGA-Based Real-Time EMT Simulator 47

Table 3.3: FPGA resources utilized by modules
Module Logic Elements DSP Blocks Memory Bits
FDLM 37245 (47.1%) 96 (54.5%) 733632 (9.80%)
RLCG 10909 (13.8%) 40 (22.7%) 64896 (0.87%)
Source 2231 (2.8%) 16 (9.0%) 162278 (2.18%)
Switch 366 (0.4%) 0 768 (0.01%)
Network Solver 18588 (23.5%) 16 (9.0%) 49023 (1.04%)
MainControl 163 (0.2%) 0 0
Total 69502 (87.8%) 168 (95.2%) 1010597 (13.90%)

the network is first modeled in the off-line ATP software. The generated netlist is then an-
alyzed and converted into various initial files of RAMs which are used to save the network
parameters. Once the VHDL code for the simulator is compiled, the bitstream in the Host
PC is downloaded into the FPGA development board through the JTAG interface. The
simulation starts immediately once the download is finished. The real-time simulation re-
sults are sent to a DAC board connecting to the oscilloscope. The DAC board (OP5330 from
OPAL-RT) has 16-bit resolution DACs and maximum ± 16V output voltage, so the real-
time result in floating-point format has to be converted and truncated to a 16-bit binary
before sending to the DAC. The truncation would cause loss of some information.

3.8 Real-Time EMT Simulation Case Study

An example of a power system is simulated to show the effectiveness of the proposed
FPGA-based real-time EMT simulator. The system consists of 15 transmission lines, 4 gen-
erators, and 8 loads as shown in Fig. 3.36. The complete system data is listed in Appendix
A. The transformers are modeled as the Thévenin equivalent networks. The lines are mod-
eled using the frequency-dependent line model. Each of the system component is allocated
to the appropriate FPGA module (Fig. 3.35) to process its calculation. For example, the 15
transmission line models are pipelined through the FDLM module. Fig. 3.37 shows the ex-
ecution time for each stage of the paralleled EMTP algorithm (Fig. 3.32) for implementing
this system. The total execution time is 11.213µs, while the actual time-step is 12µs. Based
on the 12.5ns clock period used for the FPGA, this implies that it took 960 clock cycles to
complete one loop of simulation for this case study. The achieved time-step ∆t=12µs is
at least 4 times smaller than the acceptable time-step of 50µs for transient simulation. As
such it is possible to simulate a system that is at least 4 times as large as the present system,
i.e., a system with 60 lines, 16 generators, and 32 loads can be simulated in real time with a
time-step of ∆t=50µs on this FPGA. We can also see from this figure, that the Stage1 utilizes
the most execution time. This is due to the convolution operation of FDLM as mentioned
earlier. The time-step could be decreased significantly if more parallel FDLM modules are
implemented on a larger FPGA.

Chapter 3. FPGA-Based Real-Time EMT Simulator 48

L7

L6

L4 L5

Load1 Load2

C1

Load3Load5
Load4 Load6

C2

G2

T1G1

T2

G3T3

G4

T4
L8

L9
L10

L11

L12
L14

L13
L15

SW1

4

56

87

9 10 11

15

16

13

14

L2
L1 L3

12 2

Load7 Load8
Fault

Rf

31

Figure 3.36: Single-line diagram of the power system used in the Case Study.

5.500μs 3.375μs 2.338μs

Stage 1 Stage2 Stage 3

11.213μs

Figure 3.37: Execution time for each stage of the paralleled EMTP algorithm.

Two transient events are simulated. The first transient event is the capacitorC1 switched
at Bus 12 at time t = 0.05s. Fig. 3.38 (a) and Fig. 3.38 (c) show the three-phase voltages
and currents waveforms at Bus 12 captured by a real-time oscilloscope connected to the
DACs. As can be seen in these figures, during the capacitor transient, voltage va drops
from 110kV to almost 0kV immediately. A negative peak current of 1.5kA happens on ib

at t = 0.05s and a positive peak current of 1.3kA appears on ia at t = 0.053s. The transient
lasts for about one cycle. Identical behavior can be observed from Fig. 3.38 (b) and Fig.
3.38 (d) which show the off-line ATP simulation results with a time-step of 12 µs. The sec-
ond transient event is the Bus 2 three-phase-to-ground fault with 2Ω resistance to ground
which occurs at t = 0.05s. Fig. 3.39 (a) and Fig. 3.39 (c) show the three-phase voltages and
fault currents waveforms at Bus 12 captured by real-time oscilloscope. As can be seen, the
voltages drop from 180kV peak to 60kV peak, and high frequency transient currents occur
during the fault. The transient lasts for about 2 cycles. Again, detailed agreement between
ATP off-line simulation shown in Fig. 3.39 (b) and Fig. 3.39 (d) and the FPGA-based
real-time EMT simulator results can be observed.

3.9 Summary

In this chapter a FPGA-based real-time EMT simulator is described. The emulated power
system components include linear lumped RLCG elements, transmission lines, supply

Chapter 3. FPGA-Based Real-Time EMT Simulator 49

0.04 0.05 0.06 0.07 0.08

-250

-200

-150

-100

-50

0

50

100

150

200

250

V
o

lt
a
g

e
 (

k
V

)

Simulation time (s)

0.04 0.05 0.06 0.07 0.08

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
C

u
rr

e
n

t
(k

A
)

Simulation time (s)

(a)

(c)

(b)

(d)

1 div.

1 div.

1 div.

1 div.

va vb vc

ia ib ic

Figure 3.38: Real-time oscilloscope traces (a,c) and off-line simulation results from ATP
(b,d) for a capacitor C1 switching transient at Bus 12. (a, b) Bus 12 voltages, (c, d) Bus 12
currents. Scale: x-axis: 1div. = 5ms, y-axis: (a) 1div. = 58kV, (c) 1div. = 0.44kA.

sources, circuit breakers. The central feature of this simulator is the frequency-dependent
line model which allows for accurate line transient calculations. The network is solved
efficiently on a proposed fast network solver hardware module exploiting sparse matrix
technique. To fully exploit the parallel processing capacity of the FPGA, a paralleled EMTP
algorithm is described which utilizes a deeply pipelined computation and a high precision
floating-point number representation. An example of a power system with full frequency-
dependent line modeling illustrates the accuracy of the FPGA-based real-time simulator.
The transient results from the FPGA-based real-time simulator show excellent agreement
with an off-line ATP simulation of the original system.

Chapter 3. FPGA-Based Real-Time EMT Simulator 50

0.04 0.05 0.06 0.07 0.08

-250

-200

-150

-100

-50

0

50

100

150

200

250

V
o

lt
a
g

e
 (

k
V

)

Simulation time (s)

0.04 0.05 0.06 0.07 0.08

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
u

rr
e
n

t
(k

A
)

Simulation time (s)

1 div.
1 div.

va vb vc

ia ib ic

1 div.
1 div.

(a)

(c)

(b)

(d)

Figure 3.39: Real-time oscilloscope traces (a,c) and off-line simulation results from ATP
(b,d) for a three-phase to ground fault transient at Bus 2. (a, b) Bus 12 voltages, (c, d) Bus
12 fault currents. Scale: x-axis: 1div. = 5ms, y-axis: (a) 1div. = 58kV, (c) 1div. = 0.22kA.

4
An Iterative Real-Time Nonlinear EMT Solver

on FPGA

In this chapter1 an iterative real-time nonlinear electromagnetic transient solver on FPGA
is described to emulate the nonlinear elements in the power systems. Nonlinear elements
play a significant role in the inception and propagation of transient overvoltages and over-
currents in electrical power systems. The commonly occurring nonlinear phenomena in
power systems include magnetic saturation in transformers, ferroresonance, switching
surges, and lightning strikes. Accurate simulation of nonlinear phenomena is vital from
the perspective of such studies as insulation coordination, protection system design, power
quality, and in general for maintaining the transmission and distribution infrastructure in
a reliable working condition. In the off-line EMTP, the nonlinear solution has been well
analyzed and implemented. However in real-time simulators, accurate simulation of non-
linear elements is very challenging due to the computational burden. The background on
the nonlinear solution technique and on the Newton-Raphson algorithm is described first
before giving the details of the hardware designs. Two real-time transient simulation case
studies are presented. The real-time simulation results have been validated using off-line
results from an ATP simulation.

4.1 Nonlinear Network Transient Solution

In off-line EMTP-type software programs such as ATP, EMTP-RV, and PSCAD/EMTDC,
the representation of nonlinear elements is either through a piecewise linear approxima-

1Material from this chapter has been published: Y. Chen and V. Dinavahi, “An iterative real-time nonlinear
electromagnetic transient solver on FPGA”, IEEE Trans. on Industrial Electronics, vol. 58, no. 6, pp. 2547-2555,
June 2011.

51

Chapter 4. An Iterative Real-Time Nonlinear EMT Solver on FPGA 52

tion method (also known as pseudo nonlinear method) or an iterative method [4,5]. In the
former the nonlinearity is represented by several linear segments. At each simulation time-
step it is actually a specific linear element, such as a constant inductance, several of which
can be used to represent, for example, the saturation characteristic of a transformer. How-
ever, the computational bottleneck occurs as the operating point switches from one linear
segment to the next necessitating a recalculation of the system admittance matrix which
results in a substantially longer run time for a large network. The frequent switching be-
tween linear segments is also known to cause numerical oscillations. For a more accurate
simulation of nonlinear elements, an iterative method based on Newton-Raphson (N-R)
can be used. Within each simulation time-step several N-R iterations are required for con-
vergence, and each iteration entails a recalculation of the Jacobian matrix and solution of
a set of linear equations. This process is very time-consuming. In an off-line simulator the
computational burden can perhaps be overlooked, however, it becomes quite cumbersome
in a real-time simulator. In a deterministic hard real-time system built using CPU or DSP
based sequential hardware, an iterative nonlinear solution may not even be implementable
using a requisite time-step mainly due to the uncertainty of convergence of the iterations
within the time-step, and the limited computational power of such hardware. With FPGA
being used for real-time EMT simulation, accurate real-time simulation of nonlinear ele-
ment using iterative method is possible.

4.1.1 Compensation Method

With the inclusion of nonlinear elements, the power system network becomes a nonlinear
system. In the EMTP, instead of solving the entire nonlinear network, the compensation
method is commonly used to reduce computational burden. In compensation method [58],
the nonlinear elements are first separated from the linear network, as shown in Fig. 4.1 (a),
where p nonlinear elements connected to nodes (’ki’) and (’mi’) {i = 1, 2..., p} have been
extracted from a n-node linear network. Seen from these nodes the linear network can be
represented as

vkm = vkmo −Reqikm, (4.1)

where vkm and ikm are vectors of p voltages across and currents through nonlinear ele-
ments, and vkmo is a vector of p open-circuit voltages (without the nonlinear branches)
between nodes (‘ki’) and (‘mi’). Req is a p× p Thévenin equivalent resistance matrix of the
linear network. To obtain Req, vectors rthev i (n × 1) {i = 1, 2, ..., p} which are the differ-
ences of the kith and mith columns of inverse admittance of the linear network Y −1 are
first calculated. Then the (i, j) element ofReq is given as

Req(i, j) = [rthev j]ki − [rthev j]mi. (4.2)

Chapter 4. An Iterative Real-Time Nonlinear EMT Solver on FPGA 53

ik1m1

Solution

Nonlinear

equation

Linear

equation

vkm

(a) (b)

vk1m1

v k
2
m

2

v k
p
m

p

ik2m2

ikimi

vkimi

ikpmp

k1 m1

k2

m2

kimi

kp

mp vkmo

ikm

vkm=vkmo-Reqikm

Linear Network

vkm=f(ikm)

Figure 4.1: (a) Network with p nonlinear elements, and (b) illustration of compensation
method.

The v and i characteristics of the nonlinear elements are expressed as

vkm = f(ikm), (4.3)

where f is the nonlinear functions.
When (4.1) and (4.3) are solved simultaneously as illustrated graphically in Fig. 4.1

(b), the current ikm has been obtained. Then ikm is superimposed on the linear network as
a current source, thus the entire network is solved as follows

vc = vo −Rthevikm, (4.4)

where vc is the compensated final node voltages, and vo is the node voltages without
nonlinear elements. Rthev is a n× p resistance matrix expressed as

Rthev = [rthev 1 rthev 2 ... rthev p]. (4.5)

The merits of compensation method is to solve a small size of nonlinear equations. The
size is determined by the number of nonlinear elements p. In the three-phase power system
if there are M three-phase nonlinear elements, the total number of nonlinear equations is
p = 3 × M . Fortunately, the three-phase nonlinear elements are commonly separated
by transmission lines. In such case, due to the traveling time delay of transmission lines
the M three-phase nonlinear elements are decoupled with each other, which implies that
M sets of 3 nonlinear functions can be solved simultaneously in a parallel computational
environment.

Chapter 4. An Iterative Real-Time Nonlinear EMT Solver on FPGA 54

4.1.2 Newton-Raphson Method

The Newton-Raphson method is widely used to solve the nonlinear equations due to its
quadratic convergence. Substituting (4.3) into (4.1) the nonlinear equations are obtained
as

F (ikm) ≡ f(ikm)− vkmo +Reqikm = 0. (4.6)

The objective of Newton-Raphson method is to find solution ikm. By applying the first
order Taylor series expansion for the nonlinear equations (4.6), the updated solution is
obtained by solving the following system of linear equations

J(ik+1
km − i

k
km) = −F (ikkm), (4.7)

where J is Jacobian matrix, ik+1
km and ikkm are the current vectors at the (k+1)th and kth iter-

ations, respectively. This method is referred to as the continuous Newton-Raphson (CNR)
method in this design since the nonlinear function is a continuous analytical equation. The
Jacobian matrix and nonlinear equations are computed at each iteration using{

J = ∂F (ikm)
∂ikm

= Req + ∂f(ikm)
∂ikm

,

−F (ikkm) = vkmo −Reqi
k
km − f(ikkm).

(4.8)

The convergence criteria is defined as

‖ik+1
km − i

k
km‖ < ε1 and ‖F (ik+1

km)‖ < ε2, (4.9)

with ε1 and ε2 set to sufficiently small values.
If the nonlinear function is given by a piecewise linear curve, the method becomes

piecewise Newton-Raphson (PNR) [59]. As shown in Fig. 4.2 (a), each linear segment of
the piecewise curve can be defined by

vkm = ekmj +Rjikm, ikm ∈ [Ikmj−, Ikmj+], (4.10)

where ekmj andRj are the intercept voltage and resistance of the jth segment of the curve,
which falls within the interval Ikmj− and Ikmj+.

Substituting (4.10) into (4.1) the nonlinear equations become

F (ikm) ≡ (vkmo −Reqikm)− (ekmj +Rjikm) = 0. (4.11)

Using (4.7) and (4.8) directly, we obtain

(−Req −Rj)(ik+1
km − i

k
km) = (ekmj +Rji

k
km)− (vkmo −Reqi

k
km),

(Req +Rj)ik+1
km = vkmo − ekmj .

(4.12)

It is important to observe that the term ikkm is canceled out in (4.12), which means that
the calculation of Jacobian matrix J is not required in the PNR method. This is becauseRj

which is the derivatives of the piecewise linear curve have been precalculated. Thus the

Chapter 4. An Iterative Real-Time Nonlinear EMT Solver on FPGA 55

ekm1

ekm2

ekm3

ekmj

vkm

 …

Ikmj- Ikmj+

R1

R2

R3

Rj

vkm

ikm
vkm=vkmo-Reqikm vkm=ekmj-Rjikm

vkmo

Req
Rj

ekmj

(a) (b)

ikm

 …

Figure 4.2: (a) Piecewise linear function, and (b) its implementation in PNR.

computational burden of PNR is much less than that of CNR at cost of reduced accuracy.
Since (4.10) is for the jth segment of the piece-wise curve, the solution is then checked
to see if the solution satisfies [Ikmj−, Ikmj+]. If it does, a valid solution has been found;
otherwise, the next iteration starts.

If the nonlinear element is a nonlinear inductance, its nonlinear flux-current character-
istic is given as

λ = f(ikm). (4.13)

Applying the Trapezoidal rule of integration to (4.13) yields

λ(t) =
∫
vkm(t)dt, (4.14)

the linear flux-voltage characteristic is obtained as

λ =
∆t
2
vkm(t) + λhis(t−∆t), (4.15)

where the history term is given as

λhis(t−∆t) = λ(t−∆t) +
∆t
2
vkm(t−∆t). (4.16)

Then the voltage-current characteristic of nonlinear inductance is obtained by substituting
(4.15) into (4.13).

4.2 Real-Time Hardware Emulation of Nonlinear Solver on FPGA

A hardware module NR is designed to emulate nonlinear elements using iterative Newton-
Raphson method in the FPGA. The symbol of this module and its iuput/output signals is
shown in Fig. 4.3. The signal Vn receives open circuit voltages v0 form Network Solver

Chapter 4. An Iterative Real-Time Nonlinear EMT Solver on FPGA 56

clock

NRdone

Vn

NRcmd

Vc
Sw_now

Figure 4.3: NR module and its input/output signals.

module (Section 3.5.2). The calculated compensated voltage vc is sent through signal Vc.
NRcmd and NRdone are control and acknowledge signals. The details of the architecture
and functions of this module are described as follows.

4.2.1 Hardware Architecture and Parallelism

As shown in Fig. 4.4, the hardware architecture of NR module consists of four main hard-
ware submodules: (1) NLFunc (evaluating nonlinear function f(ikm) and ∂f(ikm)/∂ikm;
(2) CompJF (computing J and−F (ikm) (4.8)); (3) GJE (Gauss-Jordan Elimination) for solv-
ing (4.7) or (4.12) for ikm; and (4) CompVc (computing the compensated node voltage vc
(4.4)).

NLFunc CompJF GJE

NR Module

vo

f(ikm)

df(ikm)/dikm

J

-F(ikm)

vc

CompVc
ikm

Figure 4.4: Overall architecture of the nonlinear solver in the FPGA.

The overall algorithm of N-R solution is in sequential; that is, one N-R iteration starts
with calculating f(ikm) and ∂f(ikm)/∂ikm; then the J and −F (ikm) can be calculated;
After that the ikm is solved using Gauss-Jordan elimination method. Finally the compen-
sated node voltages vc is calculated. The convergence check determines if the iteration
is finished or not using (4.9). However, the parallel operations still exist in each step of
iteration. Fig. 4.5 shows the finite state machine (FSM) diagram for NR module. The se-
quential operations are clearly shown by state transitions S0 → S1 → S2 → S3 → S4 → S0.
The possible parallel operations, which take advantage of the hardware parallelism of the
FPGA, are also shown in Fig. 4.5. For example, in state S0, the nonlinear function evalua-
tions f(ikm) and ∂f(ikm)/∂ikm are performed simultaneously. The computation of J and

Chapter 4. An Iterative Real-Time Nonlinear EMT Solver on FPGA 57

Comp. f(ikm)

Comp. df(ikm)/ikm

S0

Comp. J

Comp. -F(ikm)

S1

Gauss-Jordan

Elimination

S2

Check

Convergence

S4

Solve for vc

S3

start

end

no

yes

Figure 4.5: Finite state machine (FSM) diagram of NR module.

−F (ikm) in (4.8) are also processed concurrently in state S1. Meanwhile, the Gauss-Jordan
elimination procedure is paralleled in state S2 as discussed in more detail later.

4.2.2 Floating-Point Nonlinear Function Evaluation

At each N-R iteration, nonlinear function evaluation is required. The computational bur-
den of this evaluation depends on the number of nonlinear elements in the original system
and the nature of these nonlinearities. The commonly used methods for nonlinear function
evaluation on the FPGA include the look-up table (LUT) method and other approxima-
tion methods such as COordinate Rotation DIgital Computer (CORDIC), series expansion,
and the regular N-R iteration (an inner iterative loop inside the outer iteration) [60, 61].
Many of them have been implemented in hardware, however, based on fixed-point format
mostly. The floating-point implementation is still cumbersome due to its large latency and
logic resource utilization. Among the above methods, the LUT is still widely used due to
its speed and convenience of implementation. To reduce the size of LUT and improve the
accuracy, linear interpolation has been used in this design to compute intermediate values
between two locations of the LUT. Fig. 4.6 shows the hardware design of the NLFunc sub-
module. It consists of an Address generation unit, a dual-port RAM unit serving as
a LUT, and a Linear interpolation unit. The Address generation unit has been
utilized in Source module in Section 3.3.2, it is not discussed here again.

After f(xi) and f(xi+1) are retrieved from the LUT the linear interpolation is employed
to calculate f(x). The hardware design of Linear interpolation unit is shown in
Fig. 4.7 (b). It utilizes 2 floating-point subtractors (y = a − b) and multiplier-adder (y =
a× b+ c× d). The calculation is quite straightforward as illustrated in Fig. 4.7 (a).

Chapter 4. An Iterative Real-Time Nonlinear EMT Solver on FPGA 58

Address

generation
LUT

Linear

interpolation

xi

xi+1

f(xi)

f(xi+1)
f(x)x

x

xi

NLFunc

Figure 4.6: Floating-point nonlinear function computation using LUT and linear interpo-
lation.

12 clock cycles

a

b

c

d

a

b
`1'

7 clock cycles

= RAMs

a

b

f(xi)

f(xi+1)

x

xi

7 clock cycles

∆yi

∆x

f(xi)

step

∆yi/step

1 clock cycle

f(x)

Linear interpolation

∆x

f(xi+1)

f(x)

f(xi)

xi x xi+1

f(x)=f(xi)+(∆yi/step)∆x

∆x

∆yi

step

y

y

y

y=a-b

y=a-b

y=a*b+c*d

(a)

(b)

Figure 4.7: (a) Linear interpolation of f(x), and (b) its pipelined computation scheme.

Chapter 4. An Iterative Real-Time Nonlinear EMT Solver on FPGA 59

a

b
y=a-b

7 clock cycles

= RAMs

a

b

CompJF

Req

f(ikm)

J

ikm

km

km

di

idf)(

y

yy=a-b

vko

vmo

vkmo

14 clock cycles

a

b

c

d

-F(ikm)
y=a-b-c*d y

Req

Figure 4.8: Parallel computational scheme for calculating J and −F (ikm).

4.2.3 Computing J and −F (ikm) in Parallel

Since f(ikm) and ∂f(ikm)/∂ikm being calculated, the computations of J and −F (ikm)
(4.8) are carried out in parallel as shown in Fig. 4.8. The computations are quite straight-
forward. J is calculated by an adder. −F (ikm) is calculated by an arithmetic unit (y =
a− b− c× d) after vkm0 being computed by a subtractor.

4.2.4 Parallel Gauss-Jordan Elimination

The set of linear algebraic equations in (4.7) or (4.12) are solved by Gauss-Jordan elimi-
nation (GJE). Compared to other elimination methods such as Gaussian elimination with
backward substitution and LU decomposition, the GJE has more number of operations
than those of other two methods; however, the size of linear algebraic equations is only 3
under the situation that the three-phase nonlinear elements are separated by transmission
lines as stated early. This makes the number of operation almost no difference in three
linear solution methods. The Gauss-Jordan elimination is employed in this design because
the algorithm is straightforward, which makes it easier for hardware implementation.

To simulate M three-phase nonlinear elements, M sets of 3 linear equations need to be
solved within each iteration of each simulation time-step. For a large M , the sequential
GJE can be very time consuming. Hence, a parallelled and pipelined scheme has been
designed to speed up this process, as shown in Fig. 4.9. It consists of 3 elimination units
(Eli1, Eli2, and Eli3) and a factorization unit (Fac). Before the GJE process begins,
the 3 × 3 matrix J and 3 × 1 vector −F (ikm) for each three-phase nonlinear element are
augmented together as a 3 × 4 matrix. For M three-phase nonlinear elements, M sets of
3 × 4 matrices are combined together by rows to get a 3 × 4M matrix whose each row is
stored in the RAM of 3 elimination units. Then the GJE computation proceeds according
to the following two steps:

Chapter 4. An Iterative Real-Time Nonlinear EMT Solver on FPGA 60

RAM

12 clock cycles

a

b

c

7 clock cycles

d
ia

g

7 clock cycles

a

b

RAM

12 clock cycles

y=c-a*b

a

b

c

7 clock cycles

RAM

12 clock cycles

a

b

c

7 clock cycles

m
u
x

m
u
x

m
u
x

m
u
x

m
u
x

m
u
x

m
u
x

reg
.

reg
.

reg
.

reg
.

reg
.

reg
.

reg
.

reg
.

reg
.

p
iv.

p
iv.

p
iv.

0

0

0

Eli1

Eli2

Eli3

Fac

y

y=c-a*b

y=c-a*b y

y

yy=a/b

Parallel

GJE

J F J F J F

1 2 M

...

...

...

Figure 4.9: Hardware design of Parallel Gauss-Jordan elimination.

1. Factorization: The ith (i = 1, 2, 3) row is retrieved from the corresponding elimination
unit, and the diagonal element is identified and registered as diag in the Fac unit.
Then the remaining elements within the row are divided by the registered diag, and
the factorized row is sent back to all elimination units.

2. Elimination: The elimination is done simultaneously in all elimination units. In the
ith elimination unit elimination is not needed, so the factorized row is just saved
in its RAM. In other two elimination units the ith element of corresponding row is
recognized and registered as piv, then multiplied by the elements of factorized row.
The resulting product is then added to the corresponding element of row in its RAM.

Chapter 4. An Iterative Real-Time Nonlinear EMT Solver on FPGA 61

a

b

y=a-b

7 clock cycles

= RAMs
CompVc

y

vo

10 clock cycles

vc
yai

bi

reg.

reg.

rlb

cid

vol

sel

Rthev ikm y=∑ai*bi

FFPMAC
1

10

32

Figure 4.10: Pipelined computational scheme for calculating vC .

4.2.5 Computing vc

Finally the complete node voltages can be calculated. A hardware submodule is designed
to calculate vc, as shown in Fig. 4.10. Since Rthev ia a sparse matrix, sparse matrix tech-
nique is employed here. This is realized by a FFPMAC unit along with a sparse matrix
storage format scheme which has been discussed in detail in Network Solver module
in Section 3.5.2.

4.3 FPGA-Based Nonlinear Transient Simulation

4.3.1 FPGA Hardware Implementation

The iterative real-time nonlinear electromagnetic transient solver is implemented on a Al-
tera Stratix III Development Board DE3, as shown in Fig. 4.11. The FPGA used on this
board is a Stratix III EP3SL150 which has the following main features: 142,500 equivalent
logic elements (LEs); 6,390 total RAM Kbits; 384 18x18-bit multiplier; 8 phase-locked loop
(PLL), and 1152 maximum user I/O pins. A DAC card is connected to the DE3 board.
The DAC has 14-bit resolution, 125 MSPS data rate, and ± 500mV output voltage range.
The simulation results in 32-bit floating-point format are truncated to 14-bit binary before
sending to DAC, causing the loss of some information..

4.3.2 Case Studies

Two case studies are used to show the effectiveness of the proposed iterative real-time non-
linear transient solver on the FPGA. The first case study is a three-phase series-compensated
transmission system whose single line diagram is shown in Fig. 4.12. The compensation
capacitor C connected in series between two lines (line1 and line2) is protected by a surge
arrester. The lines are modeled using distributed parameter line model (Bergeron’s model)
to capture the traveling waves due to transients on the system. The surge arresters are

Chapter 4. An Iterative Real-Time Nonlinear EMT Solver on FPGA 62

DAC card

Figure 4.11: Altera Stratix III development board DE3 and connected DAC card.

highly nonlinear resistors characterized by

i = p(
v

Vref
)q, (4.17)

where q is the exponent, Vref and p are arbitrary reference values. The elements RL1, LL1,
and RL2 represent a composite load, and Rf is the fault resistance. The CNR method is
used to solve the nonlinear equations. The complete system data is listed in Appendix B.1.

line1 line2

Surge arrester

CB

C

vc

ic
Rs Ls

Vs

Series compensator

Rf

LL1

RL1
RL2

Figure 4.12: Single-line diagram for Case Study I (Surge arrester transient in a series com-
pensated transmission system).

Chapter 4. An Iterative Real-Time Nonlinear EMT Solver on FPGA 63

0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27
-600

-400

-200

0

200

400

600
C

u
rr

e
n

t
(A

)

Simulation time (s)

0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

4

V
o

lt
a

g
e

 (
V

)

Simulation time (s)

(a) (b)

(d)(c)

1 div.

1 div.

1 div.1 div.

va vb vc

ia ib ic

Figure 4.13: Real-time oscilloscope traces (a) and off-line simulation results from ATP (b)
of the three-phase voltages across the surge arresters for a three-phase fault. Scale: x-axis:
1div. = 10ms, y-axis: 1div. = 2kV.

A three-phase fault is applied at the load terminals at t=0.2 seconds by closing the cir-
cuit breaker CB. The current increases in the series capacitor and produces an overvoltage
that is limited by the surge arresters. Fig. 4.13 (a) shows the three-phase voltage transients
across the surge arresters captured from a real-time oscilloscope connected to the DAC
card on the Stratix III FPGA board. The peak overvoltage is limited to 8kV compared to
15kV without the arrester. Fig. 4.14 (a) shows the three-phase transient currents in the
surge arresters in the real-time simulation. Large currents drawn by the arresters can be
observed. Similar behavior can be observed from Fig. 4.13 (b) and Fig. 4.14 (b) which
show the off-line ATP simulation results. The difference between the off-line and real-time
results might be caused by the different initial values and switching time.

The second case study illustrates ferroresonance in the three-phase voltage transform-
ers. Fig. 4.15 (a) and (b) show the single-line and equivalent network diagrams of this case
study, respectively. The voltage transformer is connected to the power system represented
by a voltage source Vs through a circuit breaker CB. Cw is the circuit breaker’s grading
capacitance, Cs is the total phase-to-earth capacitance including transformer winding ca-
pacitance. The resister Rfe represents transformer core losses. The transformer current is
represented by its piecewise nonlinear magnetization characteristic shown in Fig. 4.16;
thus the PNR is used in this case study with 5 linear segments to represent the nonlinear-
ity. The complete system data is also listed in Appendix B.2. The ferroresonance response
is verified by the opening the circuit breaker caused by a three-phase fault on the trans-
former at t=0.2 seconds. Again similar behavior of real-time and off-line simulations can
be observed from Fig. 4.17.

Chapter 4. An Iterative Real-Time Nonlinear EMT Solver on FPGA 64

0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27
-600

-400

-200

0

200

400

600

C
ur

re
nt

 (A
)

Simulation time (s)

0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27
-600

-400

-200

0

200

400

600

C
u

rr
e

n
t

(A
)

Simulation time (s)

(b)(a)

1 div.

1 div.

ia ib ic

(c)

1 div.

1 div.

Figure 4.14: Real-time oscilloscope traces (a), off-line simulation results from ATP (b), and
zoomed and superimposed view (c) of the three-phase currents in the surge arresters for a
three-phase fault. Scale: x-axis: 1div. = 10ms, y-axis: 1div. = 128A.

Fig. 4.18 (a) and (b) show the execution time for each state in the finite state machine
in Fig. 4.5 for the two case studies. The execution time for ”others” include time used
for calculating transmission lines, RLCG elements, and sources, etc. Based on the 60MHz
FPGA input clock the total execution time for Case Study I is 4.91µs for the average of 3
iterations, while the actual time-step is 5µs. For Case Study II, since there are no calcula-
tions for the Jacobin matrix the execution time is only 2.89µs, while the actual time-step is
3µs.

Chapter 4. An Iterative Real-Time Nonlinear EMT Solver on FPGA 65

Vs

v

CB

Cw Cs Rfe L

Rs Ls

(a) (b)

CB VT

Vs

Figure 4.15: (a) Single-line diagram, and (b) equivalent network diagram for Case Study II
(ferroresonance transient).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

50

100

150

200

250

300

350

400

450

F
lu

x
(W

b
−T

)

I (A)

Figure 4.16: Piecewise nonlinear magnetization characteristic of transformer.

4.4 Summary

In this chapter a fully iterative nonlinear electromagnetic transient solver is described for
implementation on the FPGA. The nonlinear solver utilizes the compensation method with
the Newton-Raphson algorithm, dedicated floating-point arithmetics, sparsity techniques,
and parallel Gauss-Jordan elimination as its main modules among others. The entire de-
sign is deeply pipelined and parallelled to achieve the highest throughput and lowest la-
tency. The two case studies illustrate the use of both the continuous Newton-Raphson
and piecewise Newton-Raphson for the nonlinear solver. Together with other modules
developed in Chapter 3, the FPGA-based real-time EMT simulator now includes transmis-
sion lines, linear lumped RLCG elements, supply sources, circuit breakers, and nonlinear
elements.

Chapter 4. An Iterative Real-Time Nonlinear EMT Solver on FPGA 66

(a) (b)

(c)

0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x 10
5

(c)

1 div.
1 div.

1 div.
1 div.

Figure 4.17: Real-time oscilloscope traces (a), off-line simulation results from ATP (b), and
zoomed and superimposed view (c) of the three-phase voltages at the transformer termi-
nals during a three-phase-to-ground fault. Scale: x-axis: 1div. = 10ms, y-axis: 1div. =
68kV.

Chapter 4. An Iterative Real-Time Nonlinear EMT Solver on FPGA 67

Calculate v0 others

0.88 0.14 0.21 0.45 0.58 1.05

One iteration

Calculate v0 others

0.88 0.10 0.17 0.45 0.33 0.71

One iteration

Execution time for one time-step: 2.89μs

Execution time for one time-step: 4.91μs

(a) Case Study I

(b) Case Study II

...

...

S0

S0

S1

S1

S2

S2

S3

S3

Figure 4.18: Execution time for the case studies in µs. Si (i=0,..3) are the states of the finite
state machine of the nonlinear solver (Fig. 4.5).

5
Digital Hardware Emulation of Universal

Machine and Universal Line Models

In this chapter1, rotating electric machines are emulated in the FPGA using the univer-
sal machine model (UM). Moreover, a comprehensive transmission line model called uni-
versal line model (ULM) is also implemented in the FPGA. Compared to the frequency-
dependent line model (FDLM) implemented in Section 3.1.2, ULM offers more accurate
and general simulation of transmission lines and cables to include asymmetrical and un-
balance. First an introduction to UM and ULM models is presented. Then the UM and
ULM formulation are described, and their detailed hardware implementation details are
discussed. A real-time transient simulation case study is used. The captured real-time
simulation results have been validated using off-line simulation results from the EMTP-
RV software.

5.1 Introduction

Rotating electric machinery are widely used in power systems either as generators or in-
dustrial loads, and their accurate modeling is paramount for electromagnetic transient
simulation. The machine itself can be of many different types such as induction machine,
synchronous machine, and DC machine. Each type of machine may have different elec-
trical representation and custom interfaces between the machine and the network, and
between the machine and associated mechanical system. It would be extremely cumber-
some and timing-consuming to code each of them individually into the Electromagnetic

1Material from this chapter has been published: Y. Chen and V. Dinavahi, “Digital hardware emulation of
universal machine and universal line models for real-time electromagnetic transient simulation”, IEEE Trans.
on Industrial Electronics, vol 59, no. 2, pp. 1300-1309, February 2012.

68

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 69

Transient Program (EMTP) [4]. For this reason, the UM model was proposed [64, 65]. It
is a unified, generalized model which can be used to represent up to 12 types of rotating
machines. The UM model is established on the concept that all types of machines can be
represented by some coupled electrical coils, and that the associated mechanical system
can be replaced by the equivalent electrical analog.

The propagation of electromagnetic transients on a transmission line is greatly influ-
enced by the frequency dependence of its parameters namely its series impedance and
shunt admittance. Traditionally, the most accurate transmission line model is the FDLM
built in the modal-domain [56]. The transformation matrix between the modal-domain
and the phase-domain is real and constant. This model works well for symmetrical and
transposed lines; however, for asymmetrical and untransposed line configurations, the
use of a constant modal transformation matrix causes error and numerical instability, espe-
cially for cable models. Although this deficiency can be overcome by taking the frequency-
dependence of the transformation matrix into account [66], the practical implementation
of the model is complicated. Phase-domain modeling avoids the transformation matrix by
formulating the transmission line equations directly in the phase-domain [67–69]. Among
these phase-domain line models, the ULM [69] is considered numerically efficient and
robust for both overhead lines and underground cables.

Accurate modeling of rotating machines and transmission lines are two of the most
computationally demanding tasks for a real-time simulator. Moreover, a realistic repro-
duction of high-frequency transients often requires a very small simulation time-step. Ex-
isting real-time simulators largely employ sequential processors such as general purpose
CPUs or DSPs as their core computational processors. To meet the stringent real-time step-
size constraints, a compromise is usually made between the size of the system simulated
and the complexity of the component models. For example, a rotating machine is modeled
by its Thévenin equivalent or a low-order lumped machine model, and a transmission line
is modeled by a relatively simpler distributed parameter traveling wave model instead
of a frequency-dependent model, when large systems need to be simulated in real-time.
Of course, sacrificing the model complexity degrades the accuracy of the transients the
real-time simulator is able to reproduce. Owing to the fast developments in capacity and
speed of high-end FPGA real-time digital hardware emulation of UM and ULM model is
possible.

5.2 Universal Machine Model

5.2.1 UM Model Formulation

The UM model is established on the synchronously rotating dq0 reference frame. It can
have at most three stator windings, any number of windings D1, D2, ..., Dm on the rotor
direct axis (d-axis), and any number of windingsQ1, Q2, ..., Qn on the rotor quadrature axis

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 70

StatorRotor

q-axis

d-axis

a

b

c

Q
1

Q
2

D
1

f

Figure 5.1: Winding representations in the UM model.

(q-axis). Without loss of generality, as shown in Fig. 5.1, three stator windings {a, b, c}, one
field winding f , one damper winding D1 on d-axis, and two damper windings {Q1, Q2}
on the q-axis are considered in this design. The voltage-current-flux relationship in these
coupled windings can be described by

vdq0 = −Ridq0 −
dλdq0
dt

+ u, (5.1)

and
λdq0 = Lidq0, (5.2)

where

vdq0 =



vd
vq
v0

vf
0
0
0


, idq0 =



id
iq
i0
if
iD1

iQ1

iQ2


,λdq0 =



λd
λq
λ0

λf
λD1

λQ1

λQ2


,u =



−ωλq
ωλd

0
0
0
0
0


, (5.3)

are vectors of voltages, currents, flux linkages, and speed voltages of the windings.

R =



Rd 0 0 0 0 0 0
0 Rq 0 0 0 0 0
0 0 R0 0 0 0 0
0 0 0 Rf 0 0 0
0 0 0 0 RD1 0 0
0 0 0 0 0 RQ1 0
0 0 0 0 0 0 RQ2


, (5.4)

is a diagonal matrix of winding resistances, while

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 71

Table 5.1: Equivalence between mechanical and electrical quantities for the UM model
Mechanical Electrical
Tm: load torque [Nm] Im: current source [A]
Te: air gap torque [Nm] Ie: current [A]
J : inertia [kg-m2] C: capacitance [F]
D: damping [Nm-s/rad] 1/R: conductance [S]
ω: rotor speed [rad/s] V : voltage [V]

L =



Ld 0 0 Mdf MdD1 0 0
0 Lq 0 0 0 MqQ1 MqQ2

0 0 L0 0 0 0 0
Mdf 0 0 Lf MfD1 0 0
MdD1 0 0 MfD1 LD1 0 0

0 MqQ1 0 0 0 LQ1 MQ1Q2

0 MqQ2 0 0 0 MQ1Q2 LQ2


,

is a symmetrical matrix of the winding leakage inductances with L and M denoting the
self and mutual inductances, respectively.

The electromagnetic torque is calculated using

Te = λdiq − λqid. (5.5)

Instead of a mechanical model of the mass-shaft system in most machine models, the
UM uses an equivalent electric network with lumped R, L, C elements to represent the
mechanical part of machine [64]. This gives the greatest flexibility to model different me-
chanical systems using the existing electrical models in the EMTP framework. By replac-
ing the mechanical parameters with their analog electrical quantities as shown in Table 5.1,
the differential equation (5.6) describing the dynamics of the rotor can be modeled by an
electrical circuit. Fig. 5.2 shows an example of a single-mass mechanical system and its
electrical analog.

Tm = J
dω

dt
+Dω + Te. (5.6)

5.2.2 Interfacing UM Model with EMTP

To interface the UM model to the existing EMTP framework, the differential equation (5.1)
is discretized using the Trapezoidal rule of integration to yield

vdq0(t) = −Ridq0(t)− 2
∆t
λdq0(t) + u(t) + vhist, (5.7)

where ∆t is the time-step and vhist is the history term expressed as

vhist = −vdq0(t−∆t)−Ridq0(t−∆t)

+
2

∆t
λdq0(t−∆t) + u(t−∆t). (5.8)

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 72

C

ie

im R

v
Tm Te

J, D
ω

(b)(a)

To UM electrical model

Figure 5.2: (a) Mechanical system of rotor, and (b) its electrical analog.

To incorporate the UM model into the EMTP solution, the compensation method is
employed. The network is first solved without the machine and represented by a Thévenin
impedanceReq and a voltage source vabc 0 expressed as

vabc = vabc 0 +Reqiabc. (5.9)

To link the dq0 quantities of the machine with the abc phase quantities of the rest of the
network, the Park’s transformation matrix P is used. P is an orthogonal matrix defined as

P =

√
2
3

 cos(β) cos(β − 1200) cos(β + 1200)
sin(β) sin(β − 1200) sin(β + 1200)
1/
√

2 1/
√

2 1/
√

2

 , (5.10)

where β is the rotor angle.
Transforming (5.9) into dq0 frame, we obtain vd

vq
v0

 =

 vd 0

vq 0

v0 0

+Req dq

 id
iq
i0

 , (5.11)

where  vd 0

vq 0

v0 0

 = P

 va 0

vb 0

vc 0

 , (5.12)

and
Req dq = PReqP

−1. (5.13)

Substituting (5.11) into (5.7), the voltages are eliminated as

Aidq0 = b, (5.14)

where

A = Rc +Req dq1 + ωL2,

b = vdq0 0 + vhist,
(5.15)

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 73

UM
Mechanical

Equivalent

Network
Req

Network

va_0

vb_0

vc_0

dq0

abc

vd

vq

v0

va

vb

vc

ia

ib

ic

id

iq

i0

ie

vabciabc vabc_0

Figure 5.3: Interfacing of the UM model to the network using the compensation method.

with
Rc = R+

2
∆t
L, (5.16)

Req dq1 =
[

[Req dq]3×3 03×4

04×3 04×4

]
, (5.17)

L2 =



0 Lq 0 0 0 MqQ1 MqQ2

−Ld 0 0 −Mdf −MdD1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


. (5.18)

After the machine terminal currents id, iq, i0 are solved in (5.14), they are transformed
back to ia, ib, ic in the abc frame and superimposed into the rest of the network to calculate
the compensated voltages vc. Fig. 5.3 illustrates this compensation method.

5.2.3 Real-Time Hardware Emulation of UM Model

Hardware Architecture and Parallelism

A hardware module UM is designed to emulate the UM model in the FPGA. Fig. 5.4 shows
the symbol of this module and its input/output signals. As shown in Fig. 5.5, UM mod-
ule mainly consists of six functional units. The Speed & Angle unit is responsible for
predicting and calculating rotor speed ω and rotor angle β. The FrmTran unit transforms
the UM quantities between the abc and dq0 frames. The Compidq0 unit is used to calculate
the machine current idq0. The flux linkages λdq0 and torque Te are solved in the Flux &

Torque unit. The Update unit updates machine history terms vhist and the history terms
of the equivalent mechanical network. Finally, the CompVc unit calculates the complete
voltages of the network vc.

To solve the nonlinear equations of the machine, iterations are required. The number of
iterations is generally small (1 to 3) due to the relatively large inertia of machine. Fig. 5.6

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 74

clock

UMdone

Vn

UMcmd

VcSw_now

Figure 5.4: UM module and its input/output signals.

Compidq0

Flux

&

Torque

Update

Speed

&

Angle

dq0

FrmTran

abc

[ia ib ic] [id iq i0]

idq0

λdq0

Te

vabc_0

Req

ω

Req_dq

vdq0_0
CompVc

ω

idq0 vhist

vhist

vabc_0

Req

ω

vdq0_0

∆β

vabc

Te

λdq0

UM Module

∆β

Figure 5.5: Main functional units in the UM module.

shows the finite state machine (FSM) diagram of the iteration process. When the network
is solved without machines for applying the compensation method [58], the UM proce-
dure starts with the prediction of rotor speed ω using linear extrapolation in state S1. Then
in state S2 the rotor angle β is calculated, followed by Park’s transformation matrices P
and P−1 (5.10). The P and P−1 matrices are calculated using a sinusoidal function look-
up table (LUT). The Thévenin equivalent for the rest of network is then transformed into
the abc frame in state S3. Then in state S4 the current idq0 is calculated using a parallel
Gauss-Jordan elimination method. Once the idq0 is available, the flux linkages λdq0, elec-
tromagnetic torque Te, and rotor speed ω are computed sequentially in dq0 frame in state
S5. Meanwhile, the idq0 is transformed back to abc frame to superimpose into the rest of
network to calculate the complete node voltages of the network vc in state S5. The calcu-
lated ω is compared with the predicted ω in state S6. If the difference is within the given
tolerance, the iteration process is terminated; otherwise the next iteration is started.

Obviously, solving the UM model is very time-consuming since it needs iterations and
each iteration involves 6 sequential steps. To improve the hardware computational effi-
ciency of the UM model, parallelism has to be employed. Although the overall procedure
is sequential, there exist possible parallel processing paths. For instance, in state S3 of Fig.

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 75

Calculate (5.15)

Solve for idq0 (5.14)

S1
S2

S4

abc to dq0

(5.12)&(5.13)

S3

1. Calculate λdq0 (5.2), Te (5.5), ω

2. Transform idq0 back into abc

frame, calculate complete

voltages vc

 ω converged ?

start

end S5
S6

y

n

Predict ω

(5.19)

Calculate β (5.20)

P, P-1 (5.10)

Figure 5.6: Finite state machine diagram of the iteration process of the UM module.

Speed & Angle

= RAMs

y

12 clock cycles

y=a*b-c*d

ω(t-Δt)

ω(t-2Δt)

‘1’
‘2’

a

b

c

d

y

12 clock cycles

y=a*b+c*d

ω(t-Δt)

‘Δt/2’
a

b

c

d

Δβ

ω(t)

Figure 5.7: Pipelined computation scheme in the Speed & Angle unit.

5.6, (5.12) and (5.13) are calculated simultaneously; in state S4, calculatingA and b (5.15)
are carried out concurrently; and in state S5, after idq0 is calculated, the machine variables
λdq0, Te, and ω are calculated in dq0 frame, while idq0 is transformed back to abc frame thus
the complete voltages vc are calculated simultaneously. Furthermore, parallel processing
can also be applied into each individual calculation as discussed in details as follows.

Speed & Angle Unit

In the Speed & Angle unit, the rotor speed ω is predicted with linear extrapolation as

ω(t) = 2ω(t−∆t)− ω(t− 2∆t). (5.19)

The rotor position (incremental) ∆β is then calculated using the predicted speed with
trapezoidal rule of integration as

∆β(t) = β(t)− β(t−∆t) =
∆t
2

[ω(t−∆t) + ω(t)]. (5.20)

ω and ∆β are calculated in the Speed & Angle unit shown in Fig. 5.7.

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 76

p11

a

b

c y

ai

bi

ai

bi

ai

bi

y

y

y

10 clock cycles

p12

p13

p21

p22

p23

p31

p32

p33

r11

r21

r31

r12

r22

r32

r13

r23

r33

p11

p21

p31

p12

p22

p32

p13

p23

p33

r11 r12 r13

r21 r22 r23

r31 r32 r33

d
e

f

p11 p21 p31

p12 p22 p32

p13 p23 p33

p12 p12 p13

p21 p22 p23

p31 p32 p33

P-1P Req

19 clock cycles

ai

bi

y
vabc_0

vdq0_0

Req_dq

ai

bi

y

mux

idq0iabc

Δβ

abc

dq0

P
-1 P

FramTran

LUT

vabc_0
vdq0_0

iabc idq0

Req_dq

= RAMs

Req

y=∑ai*bi

y=∑ai*bi

y=∑ai*bi

y=∑ai*bi

y=∑ai*bi

y=a*b+c*d+e*f

Figure 5.8: Parallel computation scheme in the FrmTran unit.

FramTran Unit

In the FrmTran unit, the quantities in dq0 and abc frame are transformed. This includes
transforming vabc 0 into vdq0 0, Req into Req dq in the dq0 frame, and idq0 back to iabc in
the abc frame. Fig. 5.8 shows its parallel computation scheme. First the Park matrices
P−1 and P are calculated using a LUT based on the calculated ∆β from the Speed &

Angle unit. The process of the LUT has been discussed in Section 3.3.2. To perform the
frame transformation in parallel P and P−1 are saved in various RAMs. The matrix P is
stored in a single RAM, and P−1 is stored in 3 individual RAMs but in a row-wise format,
while the matrixReq is also stored in 3 individual RAMs but in column-wise format. With
this configuration the matrix multiplication of PReq is performed by 3 fast floating-point
multiply-accumulate (FFPMAC, y =

∑
aibi) units in parallel. Thus one row of P can mul-

tiply three columns of Req resulting in three elements in one row of the product matrix
simultaneously. Then these intermediate results along with three elements in one column
of matrix P−1 are multiplied using a floating-point multiply-add (y = a×d+ c×d+ e×f)
unit resulting in one element of the final product matrix. Meanwhile another FFPMAC unit
is used to calculate vdq0 0 at the same time. It is worthy to note that this parallel config-
uration is important to reduce the execution time. For example, performing PReqP

−1

sequentially needs 54 clock cycles, while only 9 clock cycles are required in the proposed
scheme. The same configuration is used for calculating iabc, but a multiplexer is used to
select the elements of P−1.

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 77

a

b

c
y

d

a

b
y

7 clock cycles

a

b

c
y

d

14 clock cycles

Rc-row4

Rc-row5

Rc-row6

Rc-row7

Rc_row1

Req_dq_row1

L2_row1

Rc_row2

Req_dq_row2

L2_row2

Rc_row3

Req_dq_row3

Parallel

GJE

Compidq0

a

b
y

7 clock cycles

vdq0_0

vhist

b

A_row1

A_row2

A_row3

A_row4

A_row5

A_row6

A_row7

ω

ω

y=a+b+c*d

y=a+b+c*d

y=a+b

y=a+b

= RAMs

Figure 5.9: Parallel computation scheme in the Compidq0 unit.

Compidq0 Unit

In the Compidq0 unit, a set of algebraic equations (5.14) are solved for idq0. First A and
b are calculated (5.15). Since A is a 7×7 matrix for 7 windings representation, 49 clock
cycles (not including hardware latency) are required to calculate A. This is very time-
consuming especially when the number of machines is large. A parallel scheme shown
in Fig. 5.9 is designed to improve the computational efficiency. Each row of matrix A is
calculated independently. Since only first 2 rows of the L2 (5.18) and first 3 rows of the
Req dq1 (5.17) have non-zero elements, the first 2 rows of A are calculated by 2 arithmetic
(y = a+ b+ c× d) units, while the third row ofA is carried out by an adder. The rest rows
of A are from matrix Rc (5.16), so they are retrieved directly from corresponding RAMs.
The calculation of b is performed concurrently by an adder. After A and b are available,
idq0 are solved in a parallel GJE unit which has been discussed in Section 4.2.4. Here 7
independent elimination units are utilized in the parallel GJE unit for solving a set of 7
algebraic equations in parallel.

Flux & Torque Unit

In the Flux & Torque unit, the flux λdq0 (5.2) and torque Te (5.5) are calculated. As can
be seen in (5.2), the matrix L is very sparse, so the sparse matrix technique is employed,
as shown in Fig. 5.10. After λdq0 is available, Te is calculated.

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 78

= RAMs
Flux & Torque

y

10 clock cycles

vc

yai

bi

reg.

reg.

rlb

cid

vol

sel

L idq0 y=∑ai*bi

1

10

32

λ

idq0

yy=a*b-c*d

a

b

c

d

λd

λq

id

iq

12 clock cycles

Te

Figure 5.10: Pipelined computation scheme in the Flux & Torque unit.

Update Unit

In the Update unit, the history term for machine vhist and for the RLC elements used to
represent the equivalent mechanical part of the machine are updated. V hist is updated in
the Update unit, while the update of RLC elements history has been discussed in Section
3.2.2.

CompVc Unit

Finally, the compensated node voltages vc are calculated by superimposing iabc into the
linear network. The hardware unit to do it is the same with the CompVc module in Section
4.2.5.

5.3 Universal Line Model

5.3.1 ULM Model Formulation in Frequency-Domain

For a n-phase transmission line as shown in Fig. 5.11 (a), the solution of the traveling
wave equations can be expressed in frequency-domain at the sending-end (‘k’) and the
receiving-end (‘m’) as

Ik = Y cV k − 2Iki = Y cV k − 2HImr,

Im = Y cV m − 2Imi = Y cV m − 2HIkr.
(5.21)

In the above equations Ik, V k and Im, V m are n dimensional current and voltage vec-
tors at both line ends, respectively. Iki and Imi are the incident currents, whereas Ikr and
Imr are the reflected currents. The two n×n matrix transfer functions which characterize a
transmission line are the characteristic admittance matrix Y c and the propagation matrix
H expressed as

Y c =
√
Y /Z, (5.22)

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 79

ik(t)

ihlnk

G G

ihlnm

Vk Vm

Ik Im

Imr

Iki

Ikr

Imi

(a)

(b)

im(t)

vk(t) vm(t)

Figure 5.11: (a) An n-phase transmission line, and (b) its time-domain representation.

and
H = e−

√
(Y Z)l, (5.23)

where the Y and Z are n×n shunt admittance and series impedance matrices per unit
length, respectively; l is the line length.

In order to implement the model in time-domain, the elements ofY c andH are approx-
imated with rational functions. The fitting method used here is Vector Fitting (VF) [70]. The
elements of Y c are in general very smooth and can be easily fitted in the phase-domain.
The (i, j) element of Y c is expressed as

Y c,(i,j)(s) =
Np∑
m=1

rYc,(i,j)(m)
s− pYc

(m)
+ d(i,j), (5.24)

where Np is the number of poles; rYc , pYc
, and d are residues, poles, and proportional

terms, respectively. Note that all elements of Y c have identical poles pYc
.

The fitting of the propagation matrix H is somewhat different. It is first fitted in the
modal-domain with poles and time delays in each mode, followed by final fitting in the
phase-domain. The (i, j) element ofH is expressed as

H(i,j)(s) =
Ng∑
k=1

(
Np,k∑
n=1

rH,(i,j),k(n)
s− pH,k(n)

)e−sτk , (5.25)

where Ng denotes the number of modes; Np,k and τk are the number of poles and time
delay used for fitting the kth mode. rH,k and pH,k are residues and poles for kth mode.
Again the poles are identical for all elements in each mode.

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 80

5.3.2 Time-Domain Representation

By transforming (5.21) into the time-domain using inverse Fourier Transformation, the
Norton equivalent circuit for the ULM model is obtained, as shown in Fig. 5.11 (b). The
history current ihlnk

, ihlnm and equivalent impedance matrixG are expressed as

ihlnk
= Y c ∗ vk(t)− 2H ∗ imr(t− τ),

ihlnm = Y c ∗ vm(t)− 2H ∗ ikr(t− τ),
(5.26)

and
G = d+ rYcλYc , (5.27)

where the symbol ‘*’ denotes the matrix-vector convolution. The coefficient λYc is defined
as

λYc = (
∆t
2

)/(1− pYc

∆t
2

). (5.28)

To perform the convolution of Y c ∗ vk(t), a state variable xYc is defined as

xYc(t) = αYcxYc(t−∆t) + vk(t−∆t). (5.29)

The convolution is then computed using

Y c ∗ vk(t) = cYcxYc(t), (5.30)

where the coefficient αYc and cYc are expressed as

αYc = (1 + pYc

∆t
2

)/(1− pYc

∆t
2

), (5.31)

and
cYc = rYc(αYc + 1)λYc . (5.32)

To perform the convolution ofH ∗ imr(t− τ), a state variable xH is defined as

xH(t) = αHxH(t−∆t) + imr(t− τ −∆t). (5.33)

The convolution is then computed using

H ∗ imr(t− τ) = cHxH(t) +GHimr(t− τ), (5.34)

where the coefficient αH , cH , andGH are expressed as

αH = (1 + pH
∆t
2

)/(1− pH
∆t
2

), (5.35)

cH = rH(αH + 1)λH , (5.36)

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 81

t-(k+2)∆t t-(k+1)∆t t-k∆tt-τt-τ-∆t

ε

imr(t-(k+2)∆t)

imr(t-(k+1)∆t)

imr(t-τ-∆t)

imr(t-τ)

imr(t-k∆t)

ε
t

Figure 5.12: Linear interpolation for calculating imr(t− τ) and imr(t− τ −∆t).

and
GH = rHλH , (5.37)

with
λH = (

∆t
2

)/(1− pH
∆t
2

). (5.38)

As seen from (5.33) and (5.34), imr(t − τ −∆t) and imr(t − τ) are required to perform
the convolution of H ∗ imr(t − τ). Linear interpolation is used to accurately calculate
imr(t − τ −∆t) and imr(t − τ) since the travel time τ is normally not an integer multiple
of the time-step ∆t. Assume that τ is expressed as:

τ = (k + ε)∆t, (5.39)

where k is an integer and ε is a number between 0 and 1.
As illustrated in Fig. 5.12, imr(t− τ −∆t) and imr(t− τ) can be calculated using linear

interpolation as

imr(t−τ−∆t) = imr(t−(k+2)∆t)+(imr(t−(k+1)∆t)−imr(t−(k+2)∆t))(1+ε), (5.40)

and

imr(t− τ) = imr(t− (k + 1)∆t) + (imr(t− k∆t)− imr(t− (k + 1)∆t))(1 + ε). (5.41)

In order to carry out these two interpolations (k+ 2) time-steps history values of imr(t)
need to be saved. For example, if τ = 9.26∆t, 11 time-steps history values of imr(t) must
be saved.

5.3.3 Real-Time Hardware Emulation of ULM Model

Hardware Architecture and Parallelism

A hardware module ULM is designed in the FPGA to emulate the ULM model in real time.
Fig. 5.13 shows the symbol of the ULM module and its input/output signals. As seen from

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 82

clock

TLdone

Vn/c

TLcmd

Ihlnk

Ihlnm

SW_now

Figure 5.13: ULM module and its input/output signals.

the (5.26) the main computations involved in the ULM model are two convolutions at both
ends of the transmission line. Depending on the number of phases of the transmission line
and the number of poles of fitted rational functions, the convolution is in general quite ex-
pensive computationally. Parallel computation is essential to improve the computational
efficiency. First, due to the traveling time delay of the ULM model, the sending-end and
receiving-end of a transmission line are decoupled. Thus, the calculations at both ends can
be conducted fully in parallel. Further more, the two convolutions can be performed at
different stage of a simulation time-step. The convolution ofH ∗ imr(t− τ) is independent
of the node voltages, so that it can be carried out before the network is solved; whereas the
convolution of Y c ∗ vk(t) must be processed after network is solved. In this way the com-
putation time can be reduced significantly. The computational efficiency can be improved
even further for multi-phase transmission lines where the calculation in each phase can
be executed simultaneously. Based on these three considerations, the detailed hardware
computation units of the ULM module are designed, as shown in Fig. 5.14. It can first
be seen that two identical parts are implemented, for sending-end and receiving-end of
transmission line, respectively. To explain these computation units easily, rearrange (5.26),
(5.30), and (5.34) to obtain

ihlnk
= ihlnk1

− 2(ihlnk2
+ ihlnk3

), (5.42)

where
ihlnk1

= cYcxYc(t), (5.43)

ihlnk2
= cHxH(t), (5.44)

ihlnk3
= GHimr(t− τ). (5.45)

The Interpolation unit is responsible for calculating imr(t − τ − ∆t) (5.40) and
imr(t − τ) (5.41). The Update x unit is used to update two state variables xYc(t) (5.29)
and xH(t) (5.33). The Convolution unit is responsible for calculating ihlnk1

(5.43) and
ihlnk2

(5.44). A fast floating-point multiply-accumulator (FFPMAC, y =
∑
aibi) unit is used

to calculate ihlnk3
(5.45). Finally the line history term ihlnk

is obtained (5.42) in the Ihlnk
unit.

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 83

Ihlnk

Convo-

lution
Inter-

polation

Update

x

x

x

α

c

imr(t)

Sending-end

vk

Receiving-end

ihlnk

ULM Module

imr(t-τ-∆t)

FPMAC

GH

ihlnk1

ihlnk2

ihlnk3
imr(t-τ)

Convo-

lution
Inter-

polation

Update

x

x

x

α

c

ikr(t)

vm ihlnm
ikr(t-τ-∆t)

FPMAC

GH

ihlnm1

ihlnm2

ihlnm3
ikr(t-τ)

Ihlnm

Figure 5.14: Main functional units implemented in the ULM module showing parallel com-
putations.

Update x Unit

Fig. 5.15 illustrates the parallel computation scheme of (5.29) or (5.33) in the Update x

unit for a three-phase transmission line. The signals shown in this figure are for (5.29) only.
Here the state variable xYc and coefficientαYc areNp×3 matrices, whereas the line voltage
vk is a 1×3 vector. Each column corresponds to one phase denoted by subscript {a,b,c}.
All matrices are stored in 3 individual RAMs in column-wise format. The xYc is calculated
using three floating-point multiply-add (y = a × b + c) units for three phases in parallel.
The updated xYc is sent back to the RAMs which are dual-port that support the ‘read’ and
‘write’ functions simultaneously.

Convolution Unit

Once xYc or xH is updated, the convolution of (5.43) or (5.44) can be carried out. Fig. 5.16
illustrates the parallel computation scheme in the Convolution unit for a three-phase
transmission line. The signals shown in this figure are for (5.43) only. Here the coeffi-
cient cYc is a 3Np × 3 matrix and stored in three RAMs in column-wise format. Three
FFPMAC (y =

∑
aibi) units are used for calculations in the three phases in parallel, when

a connected floating-point add (y = a + b + c) unit combines them to get final result of
convolution. Note that this final result is not available for three phases at the same time.
It comes sequentially as phase a, phase b, and phase c. Full parallelism is possible if more
arithmetic units are designed subject to FPGA resource utilization.

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 84

Np×1 Np×1Np×1

xYc_a xYc_b xYc_c

Np×1 Np×1Np×1

αYc_a αYc_b
αYc_c

1×1

vk_a vk_b vk_c

αYc_a

xYc_a

vk_a

αYc_b

xYc_b

vk_b

αYc_c

xYc_c

vk_c

a

a

a

b

b

b

c

c

c

y

y

y

xYc

αYc

vk

xYc_a

xYc_b

xYc_c

1×1 1×1

12 clock cycles

Update x

= RAMs

y=a*b+c

y=a*b+c

y=a*b+c

Figure 5.15: Parallel computation scheme in Update x unit.

y=a+b+c

Np×1 Np×1Np×1

Np×1 Np×1Np×1

Np×1 Np×1Np×1

Np×1 Np×1Np×1

xYc

cYc

cYc_a cYc_b
cYc_c

cYc_a

cYc_b

cYc_c

xYc_a xYc_b xYc_c

xYc_a

xYc_b

xYc_c

a

b

c

y

ai

bi

ai

bi

ai

bi

y

y

y

10 clock cycles

14 clock cycles

Convolution

= RAMs

ihlnk1

y=∑ai*bi

y=∑ai*bi

y=∑ai*bi

Figure 5.16: Parallel computation scheme in Convolution unit.

Interpolation Unit

In the Interpolation unit, imr(t−τ−∆t) (5.40) and imr(t−τ) (5.41) are calculated. The
hardware design of this unit has been shown in Section 4.2.2.

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 85

Network

Solver

Module

RLCG

Module

UM

Module

ULM

Module

FPGA

125MSPS

DACsControl

Module

oscilloscope

Switch

Module

Data

signals

Control signals

NR

Module
vn

vc

ih
p
e

ih
ln

vc vc

vnvn
vn vc

JTAG

Host PC

Source

Module

vs is

Figure 5.17: Overall hardware architecture of the real-time network emulator.

5.4 Network Hardware Emulation

5.4.1 Hardware Architecture and Parallelism

The hardware emulation of the ULM and UM models along with the network solution
is realized on a single FPGA platform. The UM and ULM models are implemented in
the UM module and ULM module respectively as shown in Fig. 5.5 and Fig. 5.14. The
remaining modules that assist in the network solution include: (a) Source module; (b)
RLCG module; (c) NR module; (d) Switch module; (e) Network Solver module; and (f)
Control module. These modules have been implemented in the FPGA as presented in
Chapter 3 and 4. The overall hardware architecture is shown in Fig. 5.17. Fig. 5.18 shows
more detailed functional units inside each module.

Fig. 5.19 shows the overall procedure in a simulation time-step in the proposed hard-
ware. There are 4 stages in a simulation time-step. In Stage 1, the Source module cal-
culates the known voltage and current sources for the Network Solver module; the
RLCG module and ULM module send out their corresponding history current terms to the
Network Solver module; whereas the Switch module checks the switches state and
sends it to the Network Solver module. During Stage 2, the node voltages are solved
without taking into account the electric machines and nonlinear elements. In Stage 3, the
UM module and NR module starts to solve machines’ equations and nonlinear equations,
respectively, and the complete node voltages are calculated. Meanwhile, the ULM module
computes the convolution for ihlnk1 and ihlnk3 (updating history term, part a). Finally, the
upgrading of history terms in the RLCG module, UM module, NR module, and the calcula-
tion of ihlnk2 and ihlnk (updating history term, part b) in the ULM module are carried out in

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 86

cl
o

ck
1

/8
0

0

d
iv

is
io

n

d
T

o
v

er

g
en

er
at

io
n

U
p

d
at

e

sw
it

ch
 s

ta
tu

s

Δ
T

T
s=

1
2
.5

n
s

1
0
μ

s

Δ
T

d
T

o
v

er S
w

0
S
w

2
S
w

3
S
w

4
S
w

5
S
w

6
S
w

7
S
w

1

S
im

u
_

o
n

S
w

_
n

o
w

‘
0
’

=
o
p

en

‘
1
’

=
cl

o
se

d

sw
ti

m
e

U
p

d
at

e
p

h
a

1
5
 c

lo
ck

 c
y
cl

es

L
U

T

ad
d

re
ss

in
g

y=
a
*
b

p
h
a

ω
∆

t

3
 c

lo
ck

 c
y
cl

es

n
ew

_
p
h
a

L
U

T

5
 c

lo
ck

 c
y
cl

es

v b i s

m
a
g

a b

y

=
 R

A
M

s

1
2
 c

lo
ck

 c
y
cl

es

a b c d

1
2
 c

lo
ck

 c
y
cl

es

a b c d

p
2

p
1

v k
m

a b

G
eq

v k v m

‘
1
’

I h
p
e1

(t
-2
Δ

t)

7
 c

lo
ck

 c
y
cl

es

=
 R

A
M

s

i k
m

v k
m

I h
p
e1

(t
-Δ

t)

y=
a
-b

y y

y

y=
a
*
b
+

c*
d

y=
a
*
b
+

c*
d

a b c
y

d e f

1
9
 c

lo
ck

 c
y
cl

es

v k v m G
eq

‘
1
’

y

1
2
 c

lo
ck

 c
y
cl

es

a b c d

y

abcd

y

a b c d1
2
 c

lo
ck

 c
y
cl

es

p 1 p 2

p 1

p 2

p 3p 4

v h
c(

t-
2
∆

t)

p 3p 4

G
eq

=
 R

A
M

s

i k
m

v h
c(

t-
∆

t)

v h
L
(t

-∆
t)

v h
L
(t

-2
∆

t)

I h
p
e2

(t
-∆

t)

I h
p
e2

(t
-2
∆

t)

y=
a

*
b

+
c*

d

y=
a

*
b

+
c*

d

y=
a

*
b

+
c*

d
y=

a
*
b
+

c*
d
+

e*
f

=
 R

A
M

s

y
y=

a
+

b
+

c+
d

a b c d

1
4
 c

lo
ck

 c
y
cl

es

y

1
0
 c

lo
ck

 c
y
cl

es

‘
0
’

i s

re
g
.

i h
ln i h
p

e

v B
i A

1 i A

y

b a

7
 c

lo
ck

 c
y
cl

es

i

re
g
.

Y
A

B

rl
b

ci
d

vo
l

se
l

3
21
01

y=
a
-b

F
F

P
M

A
C

a
i

b
i

y=
∑

a
i*

b
i

y

F
F

P
M

A
C

a
i

b
i

1
0
 c

lo
ck

 c
y
cl

es

re
g
.

re
g
.

rl
b

ci
d

vo
l

se
l

Y
A

A
-1

i

v A

=
 R

A
M

s

3
2

1
01

y=
∑

a
i*

b
i

T
L

cm
d

=
`0

1
'

P
E

cm
d

=
`0

1
'

S
O

cm
d

=
`1

'

S
im

u
_
o

n
=

`1
'

d
o

n
e=

T
L

d
o

n
e

&
 P

E
d

o
n

e

&
 S

O
d

o
n

e
N

W
cm

d
=

`1
'

d
o

n
e=

N
W

d
o

n
e

T
L

cm
d

=
`1

1
'

P
E

cm
d

=
`1

0
'

U
M

cm
d

=
`1

0
'

N
R

cm
d

=
`1

0
'

d
o
n

e=
T

L
d

o
n

e
&

 P
E

d
o
n

e
&

U
M

d
o
n

e
&

 N
R

d
o
n

e

d
tO

v
er

=
?

S
0

S
1

S
2

S
3

S
6

S
7

S
8

d
o

n
e=

`0
'

d
o

n
e=

`0
'

d
o

n
e=

`0
'

d
o

n
e=

`1
'

d
o

n
e=

`1
'

d
o

n
e=

`1
'

st
a

rt

`1
'

A
d

d
re

ss

g
en

er
at

io
n

L
U

T
L

in
ea

r

in
te

rp
o

la
ti

o
n

x i x i
+

1

f(
x i

)

f(
x i

+
1
)

f(
x)

x

xx i

N
L

F
u

n
c

a b
y=

a
-b

7
 c

lo
ck

 c
y
cl

es

=
 R

A
M

sa b

C
o
m

p
J
F

R
eq

f(
i k

m
)

J

i k
m

kmkm

d
ii

d
f

)
(

y y
y=

a
-b

v k
o

v m
o

v k
m

o

1
4
 c

lo
ck

 c
y
cl

es

a b c d

-F
(i

km
)

y=
a
-b

-c
*
d

y

R
eq

R
A

M

1
2
 c

lo
ck

 c
y
cl

es

a b c

7
 c

lo
ck

 c
y
cl

es

diag

7
 c

lo
ck

 c
y
cl

es

a b

R
A

M

1
2
 c

lo
ck

 c
y
cl

es

y=
c-

a
*
b

a b c

7
 c

lo
ck

 c
y
cl

es

R
A

M

1
2
 c

lo
ck

 c
y
cl

es

a b c

7
 c

lo
ck

 c
y
cl

es

mux

muxmuxmuxmuxmuxmux

reg.

reg.

reg.

reg.

reg.

reg.

reg.

reg.

reg.

piv.piv.piv.

00 0

E
li

1

E
li

2

E
li

3

F
a

c

y

y=
c-

a
*
b

y=
c-

a
*
b

y y

y
y=

a
/b

P
a
ra

ll
el

G
J
E

ab

y=
a
-b

7
 c

lo
ck

 c
y
cl

es

=
 R

A
M

s

C
o

m
p

V
c

y

v o

1
0
 c

lo
ck

 c
y
cl

es

v c
y

a
i

b
i

re
g

.

re
g

.

rl
b

ci
d

vo
l

se
l

R
th

ev
i k

m

y=
∑

a
i*

b
i

F
F

P
M

A
C

1

1
0 3
2

1
2
 c

lo
ck

 c
y
cl

es

a b c d

a b
`1

'

7
 c

lo
ck

 c
y
cl

es

=
 R

A
M

sa b

f(
x i

)

f(
x i

+
1
)

x x i

7
 c

lo
ck

 c
y
cl

es

∆
y i ∆
x

f(
x i

)

st
ep

∆
y i

/s
te

p

1
 c

lo
ck

 c
y
cl

e

f(
x)

L
in

ea
r

in
te

rp
o
la

ti
o
n

∆
x

y

y y

y=
a
-b

y=
a
-b

y=
a
*
b
+

c*
d

S
p

ee
d

 &
 A

n
g

le

=
 R

A
M

s

y

1
2
 c

lo
ck

 c
y
cl

es

y=
a
*
b
-c

*
d

ω
(t

-Δ
t)

ω
(t

-2
Δ

t)

‘
1
’

‘
2
’

a b c d

y

1
2
 c

lo
ck

 c
y
cl

es

y=
a
*
b
+

c*
d

ω
(t

-Δ
t)

‘
Δ

t/
2
’

a b c d

Δ
β

ω
(t

)

p
1

1

a b c
y

a
i

b
i

a
i

b
i

a
i

b
i

y y y

1
0

 c
lo

ck
 c

y
cl

es

p
1

2

p
1

3

p
2

1

p
2

2

p
2

3

p
3

1

p
3

2

p
3

3

r 1
1

r 2
1

r 3
1

r 1
2

r 2
2

r 3
2

r 1
3

r 2
3

r 3
3

p
1

1

p
2

1

p
3

1

p
1

2

p
2

2

p
3

2

p
1

3

p
2

3

p
3

3

r 1
1

 r

1
2

 r

1
3

r 2
1

 r

2
2

 r

2
3

r 3
1

 r

3
2

 r

3
3

d e f

p
1

1

 p

2
1

 p

3
1

p
1

2

 p

2
2

 p

3
2

p
1

3

 p

2
3

 p

3
3

p
1

2

 p

1
2

 p

1
3

p
2

1

 p

2
2

 p

2
3

p
3

1

 p

3
2

 p

3
3

P
-1

P
R

eq

1
9

 c
lo

ck
 c

y
cl

es

a
i

b
i

y
v a

b
c_

0
v d

q
0

_
0

R
eq

_
d
q

a
i

b
i

y

m
u
x

i d
q

0
i a

b
c

Δ
β

a
b

c

d
q

0

P
-1

P

F
ra

m
T

ra
n

L
U

T

v a
b
c_

0
v d

q
0

_
0

i a
b
c

i d
q

0

R
eq

_
d
q

=
 R

A
M

s

R
eq

y=
∑

a
i*

b
i

y=
∑

a
i*

b
i

y=
∑

a
i*

b
i

y=
∑

a
i*

b
i

y=
∑

a
i*

b
i

y=
a
*
b
+

c*
d
+

e*
f

a b c
y

d a b
y

7
 c

lo
ck

 c
y

cl
es

a b c
y

d

1
4

 c
lo

ck
 c

y
cl

es

R
c-

ro
w

4

R
c-

ro
w

5

R
c-

ro
w

6

R
c-

ro
w

7

R
c_

ro
w

1

R
eq

_
d

q
_

ro
w

1

L
2

_
ro

w
1

R
c_

ro
w

2

R
eq

_
d

q
_

ro
w

2

L
2

_
ro

w
2

R
c_

ro
w

3

R
eq

_
d

q
_

ro
w

3

P
ar

al
le

l

G
JE

C
o

m
p

i d
q

0

a b
y

7
 c

lo
ck

 c
y

cl
es

v d
q

0
_

0

v h
is

t

b

A
_
ro

w
1

A
_
ro

w
2

A
_
ro

w
3

A
_
ro

w
4

A
_
ro

w
5

A
_
ro

w
6

A
_
ro

w
7

ω ω

y=
a
+

b
+

c*
d

y=
a
+

b
+

c*
d

y=
a
+

b

y=
a
+

b

=
 R

A
M

s

=
 R

A
M

s
F

lu
x

 &
 T

o
rq

u
e

y

1
0
 c

lo
ck

 c
y
cl

es

v c

y
a

i

b
i

re
g

.

re
g

.

rl
b

ci
d

vo
l

se
l

L
i d

q
0

y=
∑

a
i*

b
i

1

1
0 3
2

λ

i d
q
0

y
y=

a
*
b
-c

*
d

a bc d

λ d λ q i di q

1
2
 c

lo
ck

 c
y
cl

es

T
e

I h
ln

k

C
o

n
v

o
-

lu
ti

o
n

In
te

r-

p
o

la
ti

o
n

U
p

d
at

e
x

x

x α

c

i m
r(

t)S
en

d
in

g
-e

n
d

v k

R
ec

ei
v

in
g
-e

n
d

i h
ln

k

U
L

M
 M

o
d

u
le

i m
r(

t-
τ-
∆

t)

F
P

M
A

C

G
H

i h
ln

k1

i h
ln

k2

i h
ln

k3
i m

r(
t-
τ)

C
o

n
v

o
-

lu
ti

o
n

In
te

r-

p
o

la
ti

o
n

U
p

d
at

e
x

x

x α

c

i k
r(

t)

v m
i h

ln
m

i k
r(

t-
τ-
∆

t)

F
P

M
A

C

G
H

i h
ln

m
1

i h
ln

m
2

i h
ln

m
3

i k
r(

t-
τ)

I h
ln

m

N
p
×

1
N

p
×

1
N

p
×

1

x Y
c_

a
x Y

c_
b

x Y
c_

c

N
p
×

1
N

p
×

1
N

p
×

1α
Y

c_
a

α
Y

c_
b

α
Y

c_
c

1
×

1 v k
_

a
v k

_
b

v k
_

c

α
Y

c_
a

x Y
c_

a

v k
_

a

α
Y

c_
b

x Y
c_

b

v k
_

b

α
Y

c_
c

x Y
c_

c

v k
_

c

a a ab b bc c c

y y y

x
Y

c

α
Y

c

v k

x Y
c_

a

x Y
c_

b

x Y
c_

c

1
×

1
1
×

1

1
2

 c
lo

ck
 c

y
cl

es

U
p

d
a

te
 x

=
 R

A
M

s

y=
a
*
b
+

c

y=
a
*
b
+

c

y=
a
*
b
+

c

y=
a

+
b

+
c

N
p
×

1
N

p
×

1
N

p
×

1

N
p
×

1
N

p
×

1
N

p
×

1

N
p
×

1
N

p
×

1
N

p
×

1

N
p
×

1
N

p
×

1
N

p
×

1

x
Y

c

c Y
c

c Y
c_

a
c Y

c_
b

c Y
c_

c

c Y
c_

a

c Y
c_

b

c Y
c_

c

x Y
c_

a
x Y

c_
b

x Y
c_

c

x Y
c_

a

x Y
c_

b

x Y
c_

c

a b c

y

a
i

b
i

a
i b
i a
i

b
i

y y y

1
0

 c
lo

ck
 c

y
cl

es

1
4

 c
lo

ck
 c

y
cl

es

C
o

n
v

o
lu

ti
o

n

=
 R

A
M

s

i h
ln

k1

y=
∑

a
i*

b
i

y=
∑

a
i*

b
i

y=
∑

a
i*

b
i

S
w

it
ch

 M
o

d
u

le

R
L

C
G

 M
o

d
u

le

R
L

C
G

T
y

p
e1

R
L

C
G

T
y

p
e2

S
o

u
rc

e
M

o
d

u
le

-1

-0
.8

-0
.6

-0
.4

-0
.20

0
.2

0
.4

0
.6

0
.81

S
im

u
_
o
n

cl
o
ck

S
w

_
n
o
w

d
T

o
v
er

M
a

in
C

o
n

tr
o

l
M

o
d

u
le

N
et

w
o

rk
 S

o
lv

er
 M

o
d

u
le

N
R

 M
o

d
u

le

U
L

M
 M

o
d

u
le

U
M

 M
o

d
u

le

v b i s

T
L

cm
d

S
im

u
_
o
n

P
E

cm
d

S
O

cm
d

N
W

cm
d

d
T

o
v
er

P
E

d
o
n
e

S
O

d
o
n
e

N
W

d
o
n
e

N
W

d
o
n
e

N
W

cm
d

S
w

_
n
o
w I h

ln
m

I h
p

e2

I h
ln

k

I h
p

e1 v b i s

v c
1

P
E

d
o
n
e

PEcmd Sw_now v n

v a

S
O

d
o
n
e

SOcmd

N
R

d
o
n
e

v nNRcmdSw_now

v c
1

TLdone

v nTLcmd

I h
ln

k

I h
ln

m
SW_now

ab

y=
a
-b

7
 c

lo
ck

 c
y
cl

es

=
 R

A
M

s
C

o
m

p
V

c

y

v o

1
0
 c

lo
ck

 c
y
cl

es

v c
y

a
i

b
i

re
g

.

re
g

.

rl
b

ci
d

vo
l

se
l

R
th

ev
i k

m
y=

∑
a

i*
b

i

F
F

P
M

A
C

1

1
0 3
2

v c
2

UMdone

UMcmd Sw_now

T
L

d
o
n
e

v n

v b

v c

v c

S
4

S
5

d
o

n
e=

`0
'

T
L

cm
d

=
`1

0
'

U
M

cm
d

=
`0

1
'

N
R

cm
d

=
`0

1
'

d
o

n
e=

T
L

d
o

n
e

&
 U

M
d

o
n

e

&
 N

R
d

o
n

e

d
o

n
e=

`1
'

U
M

d
o
n
e

N
R

d
o
n
e

U
M

cm
d

N
R

cm
d

F
P

G
A

`0
'

Fi
gu

re
5.

18
:D

et
ai

le
d

fu
nc

ti
on

al
un

it
s

of
th

e
re

al
-t

im
e

ne
tw

or
k

em
ul

at
or

.

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 87

Send history
current

RLCG
Send history

current

ULM
Calculate

vs, is

Source

Solve voltages w/o machines

and nonlinear elements.

Network Solver

Machine Eqs. &

complete voltages

UM
Update history

term (part a)

ULM

Update history

term vhist

UM
Update history

term (part b)

ULM
Update history

current

RLCG

 step
 n
Δ

t
step

(n
+

1
)Δ

t

S
tag

e 1
S

tag
e 2

S
tag

e 3
S

tag
e 4

ihpe ihln
vs, is

vn

Check

states

Switch

NR
Newton

iteration

NR
Update

history term

vc

Figure 5.19: Operations within one time-step of the real-time network emulator.

Stage 4. From the above procedure, it is obvious that the parallel processing exists in each
stage, while preserving the necessary sequential stages in the overall transient simulation
algorithm.

5.4.2 FPGA Resource Utilization

The FPGA platform used to implement the real-time electromagnetic transient network
emulator is a Altera Stratix III Development Board DE3, as shown in Fig. 4.11. Fig. 5.20
shows the FPGA hardware resource utilization generated by the Altera Quartus II software
in percentage for each module of the real-time network emulator. As can be seen from this
figure, the ULM module utilizes the most logic resource of the FPGA, and the UM module
has the second highest resource consumption in the FPGA.

5.5 Real-Time Simulation Case Study

To show the effectiveness of proposed hardware design, an example power system is sim-
ulated. The system consists of 3 UM synchronous generators, 2 ULM lines, 3 transformers,
and 3 loads as shown in Fig. 5.21. The complete system data is listed in Appendix C. The

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 88

Unused
13.80%

UM
21.92%

ULM
40.15%

Source
2.75%

RLCG
4.06%

NR
10.08%

Switch
0.11%

N/W
Solver
7.04%

Control
0.09%

Logic Elements

Utilization

Unused
29.13%

UM
21.88%

ULM
25.00%

Source
2.08%

RLCG
8.33%

NR
11.50%

Switch
0.00%

N/W
Solver
2.08% Control

0.00%

Multiplier Utilization

Unused
52.50%

UM
30.18%

ULM
3.56%

Source
9.79%

RLCG
0.61%

NR
1.90% Switch

0.01% N/W
Solver
1.45%

Control
0.00%

Memory Utilization

Total: 86.20% Total: 70.87% Total: 47.50%

Figure 5.20: FPGA resources utilized by modules of the real-time network emulator.

transformers are modeled as equivalent leakage reactance only. Each ULM utilizes 9th
order rational functions to fit its characteristic admittance matrix and propagation matrix.

Two transients events are simulated. The first transient event is a three-phase-to-
ground fault at Bus 3 which occurs at t = 0.1s. Fig. 5.22 (a) shows the three-phase voltages
waveforms at Bus 2 captured from a real-time oscilloscope connected to the DACs. Iden-
tical behavior can be observed from Fig. 5.22 (b) which shows the off-line EMTP-RV sim-
ulation with a time-step of 8 µs and (c) which shows the zoomed and superimposed view.
The second transient event is the capacitor C switched at Bus 3 at time t = 0.1s. Fig. 5.23
(a) and Fig. 5.24 (a) show the three-phase voltages waveforms at Bus 3 and electromag-
netic torque of UM2 from the real-time oscilloscope. Fig. 5.23 (b) and Fig. 5.24 (b) show
the corresponding transient waveforms obtained from the off-line simulation. Again, de-
tailed agreement between EMTP-RV off-line simulation and the real-time electromagnetic
transient network emulator results can be observed. Due to the limited 14-bit resolution
of the DACs, small discrepancies exist such as the initial low frequency torque oscillation
seen in Fig. 5.24 (b) (off-line simulation) which is truncated from Fig. 5.24 (a) (real-time
simulation). Nevertheless, when the transient data in 32-bit floating-point format is stored
in the memory and plotted, the low frequency torque oscillation is visible as shown in Fig.
5.24 (c).

The achieved time-step in this implementation is 6.72µs based on a FPGA clock fre-
quency of 130MHz. A detailed break down of this time-step for various stages of com-
putation (Fig. 5.19) and modules is shown in Fig. 5.25. The computation for the UM
equations in Stage 3 is most time-consuming, and the updating of history terms in the ULM
module has the second highest latency. The detailed execution time of one UM generator
and one ULM line in Stage 3 are also shown in Fig. 5.25. The computation of the 3 UM
generators in the system is pipelined through one UM module, while the computation of
the 2 ULM lines is pipelined through one ULM module. As seen from Fig. 5.20, the FPGA

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 89

UM

1

UM

2

UM

3

Load1

Load2

Load3

T1

T2

T3

ULM Line1 ULM Line2

sw

C
1

2 3

4

5

6

Figure 5.21: Single-line diagram of power system for the Case Study.

is almost 90% full on logic elements and 70% full on the multipliers. Depending on the size
of the system and the time-step required for a certain transient, more UM and ULM mod-
ules can be replicated on a larger FPGA to either reduce the time-step or accommodate a
large system.

5.6 Summary

This chapter describes a digital hardware emulation of UM and ULM models for real-time
electromagnetic transient simulation on the FPGA. Taking advantages of inherent parallel
architecture of FPGA, the hardware is paralleled and fully pipelined to achieve efficient
real-time simulation of electromagnetic transients. An example system with 3 UM and 2
ULM models is simulated within a 6.72 µs time-step on a 130MHz FPGA clock frequency.
The captured real-time waveforms are validated by off-line EMTP-RV simulation results.

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 90

(a) (b)

1 div.

0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x 10
4

Vo
lta

ge
 (V

)

Simulation time (s)

va

1 div.

1 div.

vb vc

0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x 10
4

V
o

lt
a
g

e
 (

V
)

Simulation time (s)

(a) (b)

1 div.

(c)

1 div.

1 div.

Figure 5.22: Real-time oscilloscope traces (a), off-line EMTP-RV simulation (b), and
zoomed and superimposed view (c) of the three-phase voltages at Bus 2 during a three-
phase fault at Bus 3. Scale: x-axis: 1div. = 10ms, y-axis: 1div. = 5.2kV.

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 91

0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18

-4

-3

-2

-1

0

1

2

3

4

x 10
4

V
o

lt
a
g

e
 (

V
)

Simulation time (s)

va vb vc

1 div.

1 div.

(a) (b)

Figure 5.23: Real-time oscilloscope traces (a) and off-line EMTP-RV simulation (b) of the
three-phase voltages at Bus 3 during a capacitor switching at Bus 3. Scale: x-axis: 1div. =
10ms, y-axis: 1div. = 10.4kV.

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 92

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x 10
4

T
o

rq
u

e
 (

N
m

)

Simulation time (s)

1 div.

1 div.

(a) (b)

(c)

0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115 0.12
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

4

To
rq

ue
 (N

m
)

Simulation time (s)

FPGA (Real-time)

EMTP-RV (Off-line)

Figure 5.24: Real-time oscilloscope traces (a), off-line EMTP-RV simulation (b), and
zoomed and superimposed view (c) of the electromagnetic torque of UM2 during a ca-
pacitor switching at Bus 3. Scale: x-axis: 1div. = 10ms, y-axis: 1div. = 4.7kNm.

Chapter 5. Digital Hardware Emulation of Universal Machine and Universal Line Models 93

Speed &

Angle
FrmTran

37

Compidq0 Flux & Torque

CompVc

2.25 µs

0.24 µs 0.63 µs 0.79 µs

0.28 µs

0.59 µs

Interpolation Update x Convolution

0.77 µs

0.16 µs 0.61 µs

UM module

ULM module

U
M

U
L

M

R
L

C
G

S
w

it
ch

1
.5

4
 µ

s

S
ta

g
e

M
o

d
u

le

4
.0

8
 µ

s

1
.1

8
 µ

s

0
.6

8
 µ

s

0
.9

7
 µ

s

0
.3

7
 µ

s

1
2

3
4

 Δ
t

=
 6

.7
2

µ
s

0
.1

3
 µ

s

N
/W

 S
o

lv
er

Figure 5.25: Break down of one time-step (∆t) in µs for various stages and modules for the
Case Study.

6
Multi-FPGA Hardware Design for Large-Scale

Real-Time EMT Simulation

In this chapter1 a multi-FPGA hardware design for detailed real-time EMT simulation of
large-scale power systems is described. First the functional decomposition method is in-
troduced for the hardware emulation of large-scale power system. Then two case studies
are provided to show the details of multi-FPGA based hardware design using functional
decomposition method for real-time EMT simulation. The real-time simulation results are
validated using the off-line simulation software EMTP-RV. The performance and scalabil-
ity analysis for the proposed multi-FPGA hardware design are also given.

6.1 Introduction

Nowadays the real-time EMT simulators are required not only to reproduce detailed high-
frequency transients but also to be able to simulate large-scale power system transients due
to the increasing complexity of modern power systems. But in practical large-scale real-
time EMT simulators accuracy and computational efficiency are conflicting requirements
that have ramifications in terms of simulator hardware and cost. A realistic reproduc-
tion of high-frequency transients requires detailed modeling of power system components
and a small simulation time-step. Thus, large system size entails excessive computational
burden. To lower computational burden using simplified modeling or a large time-step
would lower fidelity of the simulation. Inevitably, to meet real-time constraints and to ac-
commodate large system sizes, a compromise is needed in component model complexity

1Material from this chapter has been submitted: Y. Chen and V. Dinavahi, “Multi-FPGA digital hardware
design for large-scale real-time EMT simulation of power systems”, IEEE Trans. on Industrial Electronics, pp.
1-8, 2011.

94

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 95

to curtail simulator cost at the expense of accuracy. In such cases simplified modeling of
system components is tolerated. Simplified models include PI or traveling wave represen-
tation for lines and cables, Thévenin equivalent representation for machines, and switched
piecewise linear approximation for nonlinear elements.

6.2 Functional Decomposition Method for Large-Scale Real-Time
EMT Simulation

Parallel processing is extensively used in existing real-time simulators to execute large-
scale system models cooperatively on multiple sequential processors. This parallel pro-
cessing relies on the fundamental premise that a power system can be decomposed into
smaller subsystems (Fig. 1.3) due to the natural travel time delay of the transmission line
or cable which provides the decoupling necessary for the subsystem calculations to occur
without timing conflict; thus one or more subsystems can be assigned to multiple sequen-
tial processors which share the computational workload, subject to the condition that the
simulation time-step is less than the travel time on the link lines. However, this method
has some drawbacks:

1. If there is no real transmission line or cable connecting any two subsystems or if two
neighboring subsystems are tightly coupled, fictitious lines or cables with travel time
are necessary to partition the network. Such artificial lines introduce errors in the fre-
quency response of the simulated transient; although the errors can be compensated
or minimized, the location and the length of the link lines still need to be carefully
chosen to maintain accuracy.

2. After executing their respective calculation the sequential processors need to ex-
change subsystem data with each other at the cost of extra communication latency
within the time-step which limits the achievable bandwidth of the real-time simula-
tor.

3. The partitioning scheme to divide the original system into smaller subsystems is
arbitrary at best, usually based on the experience and the specific requirements of
the user, albeit some simulators such as HYPERSIM have an automatic partitioning
method.

4. Based on a given network topology it is quite possible to find a large subsystem
which cannot be decomposed further leading to uneven computational workload for
the processors. In such cases, the overall computational bandwidth of the real-time
simulator is limited by the speed of the processor to which the largest subsystem is
assigned.

The traditional method for accommodating large network sizes on limited simulator
hardware is to use a frequency-dependent network equivalent (FDNE) where the original

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 96

system is divided into a study zone (modeled in detail) and an external system (modeled as
lumped RLCG groups derived from approximating the frequency response of the external
system at the interfacing port), as shown in Fig. 1.4. While network equivalents are still
used in some off-line and real-time simulators, the prevailing requirement is to represent
the original system in full detail without using simplified equivalents.

Digital hardware emulation of large-scale networks has the potential to alleviate all of
the above compromises and uncertainties inherent in large-scale real-time EMT simula-
tion, using the FPGA as the core simulator hardware. A functional decomposition method
is introduced for allocating the system model calculation to the multi-FPGA hardware re-
source. This method of power system decomposition relies on systematically clustering the
model calculation of system components on individual FPGAs based on the component
functionality independent of the network topology. As seen in Fig. 6.1, a generic power
system composed of lines, generators, nonlinear elements, loads, buses, circuit breakers,
etc., can be mapped into a multi-FPGA architecture such that each processing hardware
(PH) is responsible for the model calculation of one type of system component. For exam-
ple, all transmission lines are simulated in the specified PH. Conventional network parti-
tioning using transmission line links is no longer required to simulate a large-scale system.
Alternately, the models for each type of system component are calculated simultaneously
in their own PHs. As shown later, functional decomposition lends itself to the full exploita-
tion of pipelining and hardware parallelism inherent in an FPGA. It does not require arti-
ficial lines or cables of fixed latency to be inserted, rendering the hardware emulation true
to the original system. It removes the uncertainty related to partition boundaries, while
allowing detailed modeling of all system components with an even distribution of compu-
tational workload. Since system components of the same type are clustered together, this
method naturally allows multi-rate simulation where multiple time-steps can be chosen
for various functional types to account for model complexity or to increase computational
efficiency.

6.3 Functional Module and Parallelism

The hardware modules corresponding to the system functional components are imple-
mented in the 65nm Stratix III EP3SL340 FPGA from Altera whose logic resources are
shown in Table 2.1. The emulated modules include the RLCG module for lumped RLCG
elements and transformers, the ULM module for transmission lines and cables, the UM mod-
ule for machines, the NR module for nonlinear elements, the Switch module for circuit
breakers, and the Network Solver module is realized solving the network equation. In
addition, a Control module is implemented to coordinate the calculations all the other
modules. Since each module is hardware independent with respect to the other, the paral-
lelism between various functional modules is achieved naturally. This means that the pro-
cessing in all modules can be carried out simultaneously. This is system-level parallelism

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 97

Transmission

lines

Nonlinear

elementsLumped RLCGs

Machines

Circuit

breakers

Buses

PH3
PH2

PH5

PH4PH1

PH6

Figure 6.1: Functional decomposition of a power system for hardware emulation.

existing in the FPGA-based real-time EMT emulator. Parallelism also exists within each
of the functional modules which have been shown in previous chapters. For example, in
the ULM module [71], the calculations at both sending-end and receiving-end is conducted
fully in parallel. For multi-phase transmission lines the calculation in each phase is also
executed simultaneously. This is module-level parallelism.

Table 6.1 lists the main logic resources utilized by each functional module in the design.
As can be seen the ULM module utilizes the most logic resources. To emulate a large-
scale power system network in real time, hardware parallelism and pipelining need to be
exploited on a larger-scale which can be realized by using multiple hardware functional
modules; however, as seen from Tables 2.1 and 6.1, this is hard to achieve on a single
FPGA due to the limitations of its logic resources. Multiple FPGAs have to be employed
invariably to enable massive parallelism and pipelining for large-scale systems.

Table 6.1: FPGA resources utilized by individual system functional modules
Functional Combinational DSP 18-bit Memory
module ALUTs multipliers (Kbits)
RLCG 3,701 (1.36%) 8 (1.39%) 123.16 (0.76%)
ULM 44,610 (16.49%) 96 (16.67%) 707.27 (4.35%)
UM 24,679 (9.12%) 88 (15.27%) 870.74 (5.35%)
NR 11,729 (4.33%) 16 (2.78%) 217.39 (1.33%)
Switch 124 (0.05%) 0 (0%) 0 (0%)
N/W Solver 2,151 (0.79%) 4 (0.69%) 43.8 (0.27%)
Control 200(0.07%) 0 (0%) 0 (0%)

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 98

6.4 Multiple FPGA Based Hardware Design for Real-Time EMT
Simulation

Based on the hardware resource utilization of the individual functional modules, the num-
ber of modules of a specific type to replicate and the number of pipelined components per
module are decided in the multi-FPGA design. From the EMT user viewpoint there are
3 main variables for real-time simulation: (1) the simulation time-step ∆t, (2) number of
nodes in the modeled system, and (3) the number of FPGAs employed. These variables
influence specific aspects of the real-time EMT simulation: the time-step ∆t influences the
maximum frequency of the simulated transient; the number of nodes influences the size
or scale of the system simulated; and the number of FPGAs influences the hardware cost.
Accordingly, there are 3 questions a hardware designer is faced with:

1. For a given system size and hardware configuration, what is the minimum time-step
∆tmin achievable for real-time EMT simulation?

2. For a given system size and a specified time-step ∆t, what is the minimum number
of FPGAs required for real-time simulation?

3. For a fixed hardware configuration and a specified time-step ∆t, what is the largest
power system network that can be simulated in real time?

The hardware designs presented in this section attempt to reveal the answers to these
questions.

The DN7020k10 multi-FPGA board from The Dini Groupr is utilized to realize these
designs. This board is populated with 10 Altera Stratix III EP3SL340 FPGAs arranged in
a 2 × 5 matrix as shown in Fig. 6.2. Taken together FPGA0-FPGA9 provide 3,380,000
equivalent logic elements, 162,720 memory Kbits, and 5,760 18-bit multipliers. Ample
pin connections are also provided between adjacent FPGAs; each pair of adjacent FPGAs
share a maximum of 220 pins for high speed bidirectional data transfer. A 48-pin bus
(MainBus) is connected to all FPGAs. The FPGA interconnects are either single-ended
or LVDS. The multi-FPGA board has programmable clock synthesizers (2KHz-710MHz),
and global clock networks that reach every FPGA. The hardware designs are performed
in VHDL on the host PC using the Altera Quartus II environment. The configuration files
(bitstreams) are downloaded from the host PC into the individual FPGAs using the JTAG
interface through a USB cable. Fast configuration using Compact FLASH is also possible
when the debugging is finished. A 125 MSPS DAC card is connected through a high-speed
QSE connector to the multi-FPGA board to enable the capture of real-time results on the
oscilloscope.

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 99

FPGA0 FPGA1 FPGA2 FPGA3 FPGA4

FPGA5 FPGA6 FPGA7 FPGA8 FPGA9

22 in.

7
.5

 in
.

Figure 6.2: Multi-FPGA prototyping board.

ULM

Modules

x 5

UM

Modules

x 6

NR

Modules

x 2

RLCG

Modules

x 16

N/W Solver

Modules

x 16

vn

ihln Control

Module

Switch

Module

vc

ihpe

vnvc

vn

vc

SRAM

R
eg

.

Mainbus

Reg.

OscilloscopeHost PC

FPGA2FPGA1FPGA0

Multi-FPGA Board

DACs card

JTAG Global clock

clockclockclock

QSE Connector

R
eg

.
R

eg
.

R
eg

.
R

eg
.

R
eg

.
R

eg
.

R
eg

.

R
eg

.

R
eg

.

R
eg

.
R

eg
.

SRAM SRAM

ihln

Figure 6.3: 3-FPGA hardware architecture for real-time EMT simulation in Case Study I.

6.4.1 Case Study I: 3-FPGA Hardware Design

This case study shows the design details of a 3-FPGA functionally decomposed real-time
EMT simulator. As can be seen in Fig. 6.3, FPGA0 is fully employed to realize 5 ULM

hardware modules; FPGA1 is used to implement 6 UM and 2 NR modules, whereas FPGA2

implements other modules which includes 16 Network Solver, 8 RLCG, 1 Switch, and
1 Control modules. This arrangement of the various modules into the 3 FPGAs mini-
mizes the interconnected signals between FPGAs. This is important because on the one

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 100

hand, the limited FPGA pins cannot support massively parallel data input/output, while
on the other hand, on a multi-FPGA board only neighboring FPGAs are usually intercon-
nected and support high-speed data transfer, for example, the 225MHz data transfer for
single-ended signals on adjacent FPGAs on the DN2070k10 board. In the 3-FPGA hard-
ware configuration the transferred signals include the node voltages vn which are calcu-
lated in the Network Solver modules in FPGA2 and are sent to FPGA1 and FPGA0; the
compensated voltages vc which are calculated in the UM and NR modules in FPGA1 and
are sent to FPGA0 and FPGA2; and the line history currents ihln which are calculated in
the ULM modules in FPGA0 and are sent to FPGA2 via FPGA1. Buffer registers are in-
serted for signal input and output between the 3 FPGAs. The MainBus is used by the
Control module in FPGA2 to send control signals and receive acknowledge signals. The
Switch module in FPGA2 also uses it to send switch status signals. The logic resource
utilization for this 3-FPGA design is shown in Table 6.2. As can be seen the hardware
space for FPGA0 and FPGA1 are filled to capacity with modules of the specific functional
components with little room for further expansion, while FPGA2 still has leftover capacity.
Although some resources may appear to be under-utilized, the resource that reaches its
limit first determines the maximum capacity for any specific FPGA, e.g. DSP block in the
FPGA1. Table 6.2 also shows the fmax of each FPGA. The fmax is the maximum clock fre-
quency that the designed hardware can operate at, and it is calculated based on the longest
signal path latency in the design. It is obvious that the higher the resource utilization of the
FPGA, the lower is the fmax, i.e., fmax0 < fmax1 < fmax2. Furthermore, although multi-rate
simulation is clearly available in various different modules, for simplicity a 100MHz clock
frequency is chosen for all FPGAs in this design.

To test the 3-FPGA hardware design a sample power system shown in Fig. 6.4 is
modeled. It is a modified version of the IEEE 39-bus New England test system. This sys-
tem consists of 35 three-phase transmission lines modeled using the ULM; 10 three-phase
generators modeled using the UM model; 19 three-phase loads modeled using RLCG ele-
ments, 11 three-phase transformers modeled using equivalent RLCG elements, and 3 series
compensation capacitors, resulting in a total of 99 lumped RLCG elements; and 3 three-

Table 6.2: Resource utilization for the 3-FPGA hardware design
FPGA0 FPGA1 FPGA2

Logic utilization 96% 80% 35%
-Combinational ALUTs 84% 64 % 27%
-Dedicated logic registers 44% 37 % 14%
DSP block 18-bit elements 83% 97% 22%
Block memory bits 22% 35% 17%
PLLs 8% 8% 8%
Pins 13% 32% 52%
fmax (MHz) 100.4 136.9 170.8

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 101

1

4

8

27

1
4

2
0 2
1

12

23
2422

2
6

3
4

3
0

G2

G10

G1

G8

G3

G5

G4

G7

G6

G9

1

2

30
25

37

26

27

3

39 4

5

8

7

6 12

31 10

14

15

16

32

20

34

33

19

21 22

35

24

29

38

23

36

28

9

3

1
8

25

1
1

3
3

3
5

2

5
6

7

1
3

9
1

0

2
9

1
9

1
7

1
6

1
5

2
8

11

3
2

31

17

13

18

41

42

40

C1

Figure 6.4: Single-line diagram of the power system modeled in Case Study I.

phase nonlinear surge arresters which protect 3 series compensation capacitors. The total
number of nodes in the network is 126.

The spatio-temporal design workflow to model this system in real time on the 3-FPGA
hardware design is shown in Fig. 6.5. As can be seen, the 35 lines are allocated to the 5
ULM modules with 7 lines pipelined through each module. The 10 generators are allocated
to the 5 UM modules with 2 generators pipelined per module and with one module empty.
The 99 RLCG elements are allocated into 8 RLCG modules (12 RLCGs each for the first 5
modules and 13 RLCGs each for the remaining 3 modules). The 3 surge arresters are allo-
cated to the 2 NRmodules (2 in the first module and 1 in the second). The 126 node voltages
are solved in 16 Network Solver modules (8 nodes each in first 14 modules and 7 nodes
each in the other 2 modules). Fig. 6.5 also shows the constitution of a simulation time-step
in the 3-FPGA real-time EMT simulator. One simulation time-step ∆t has 3 periods: Pe-
riod I in which the node voltages vn (without taking into account the electric machines and
nonlinear elements) are solved in Network Solvermodule; Period II in which the UM and
NR modules start to solve their respective equations and the compensated voltages vc are
calculated; meanwhile, the ULM modules compute part of their convolutions; and Period
III in which the RLCG, UM, and ULM modules update their history terms. The minimum

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 102

N/W Modules #1

(8 nodes)

ULM Module #1

(7 lines)

UM Module #1

(2 gens)

NR Module #1

(2 non. elem.)

ihpe(n-1)Δt

vn ihpenΔt

0.64 μs

6.21 μs

4.0 μs

3.62 μs 4.70 μs

0.67 μs

2.19 μs

vn

RLCG Module #1

(12 RLCGs)

FPGA2

RLCG Module #5

(12 RLCGs)

RLCG Module #6

(13 RLCGs)

RLCG Module #8

(13 RLCGs)

FPGA2

N/W Modules #14

(8 nodes)

N/W Modules #15

(7 nodes)

N/W Modules #16

(7 nodes)

ihln(n-1)Δt

FPGA1

UM Module #2

(2 gens)

UM Module #5

(2 gens)

UM Module #6

(0 gens)

NR Module #2

(1 non. elem.)

UM Module #1

(2 gens)

FPGA1

UM Module #2

(2 gens)

UM Module #5

(2 gens)

UM Module #6

(0 gens)

FPGA0

ULM Module #2

(7 lines)

ULM Module #5

(7 lines)

ULM Module #1

(7 lines)

FPGA0

ULM Module #2

(7 lines)

ULM Module #5

(7 lines)

vc

vc

vn

vc

vn

vc

ihlnnΔt

H
a
r
d

w
a
r
e
 S

p
a
c
e

Time

Ave. 3 iterations

Period I

(tp1=0.64 μs)

Period II

(tp2=6.21 μs)

Period III

(tp3=4.70 μs)

Δtmin=11.55 μs

Figure 6.5: Spatio-temporal design workflow for the 3-FPGA real-time EMT simulator for
Case Study I.

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 103

time-step ∆t achieved for modeling the system in Fig. 6.4 in the 3-FPGA hardware design
is 11.55 µs, with Period I taking the minimum execution time of 0.64µs for the Network
Solver modules, and Period II taking the maximum execution time of 6.21µs for the NR
modules for an average 3 iterations for the nonlinear solution. In Period II, the execution
time is determined by the NR module in FPGA1, while in Period III the execution time is
determined by the ULM module in FPGA0. As a comparison, the execution time per sim-
ulation step of this system modeled in EMTP-RV with ∆t = 12µs running on a PC (AMD
Phenom II 955 CPU, 3.2GHz, 4 cores, 16GB system memory) is 192µs, as shown in Table
6.3.

A three-phase-to-ground fault at Bus 2 which occurs at t = 0.05s is emulated in the
3-FPGA hardware design. Fig. 6.6 (a) shows the three-phase voltages waveforms at Bus 1
captured from a real-time oscilloscope connected to the DAC card. The voltage transient
lasts about 2 cycles and its peak value falls from 20kV to 15kV. Identical behavior can be
observed from Fig. 6.6 (b) which shows the off-line EMTP-RV simulation and (c) which
shows the zoomed and superimposed view.

6.4.2 Case Study II: 10-FPGA Hardware Design

This case study utilized all the 10 FPGAs to exploit maximum hardware space on the multi-
FPGA board. The 10-FPGA hardware architecture is shown in Fig. 6.7. FPGA0, FPGA1,
and FPGA2 remain the same as in Case Study I. FPGA3 is employed for realizing the UM
and NR modules as FPGA1. FPGA4 through FPGA9 are employed for realizing ULM mod-
ules. In Fig. 6.7, vc1, vc3 denote the compensated voltages computed in FPGA1 and
FPGA3, respectively, and iFk {k = 0, 4, 5, 6, 7, 8, 9} are history current vectors calculated in
FPGAk.

The number of any specific functional modules implemented in this multi-FPGA archi-
tecture depends on three criteria: demand, logic utilization, and module execution time.
The demand is determined by the number of each type of functional component in the
power system. For example, there are many more transmission lines than generators in a
power system; thus the number of the ULM modules is expected to be more than that of the
UM modules. The logic utilization of modules (Table 6.1) determined the possible number
of modules implemented on any FPGA. The module execution time affects the time-step
directly. More parallel modules are required for those components that have longer exe-
cution times. The detailed timing analysis for each functional module is discussed in the
next section.

A large-scale power system shown in Fig. 6.8 is used to test the 10-FPGA real-time
EMT simulator. This system is constructed by replicating the Case Study I system 10 times
and interconnecting using transmission lines. The augmented system consists of:

• 376 three-phase transmission lines modeled using the ULM.

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 104

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

-3

-2

-1

0

1

2

3

x 10
4

Simulation time (s)

V
o

lt
a
g

e
 (

V
)

va vb vc

(a) (b)

1 div.

1 div.

0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
x 10

4

V
o

lt
a
g

e
 (

V
)

Simulation time (s)

FPGA (Real-Time)

EMTP-RV

(c)

Figure 6.6: Real-time oscilloscope traces (a), off-line simulation results from EMTP-RV (b),
and zoomed and superimposed view (c) of Bus 1 voltages for a three-phase fault at Bus 2,
Scale: x-axis: 1div. = 10ms, y-axis: 1div. = 6.8kV.

• 100 three-phase generators modeled using the UM model.

• 190 three-phase loads modeled using RLCG elements.

• 110 three-phase transformers modeled using equivalent RLCG elements with a total
990 lumped RLCG elements.

• 30 three-phase nonlinear surge arresters which protect 30 series compensation capac-
itors.

The number of network nodes in this system is 1260.

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 105

U
L

M

M
od

u
le

s

x
5

U
M

 M
od

u
le

s

x
6

N
R

 M
od

u
le

s

x
2

N
/W

 M
od

u
le

s
x

16

R
L

C
G

 M
od

u
le

s
x

8

S
w

it
ch

 M
od

u
le

 C
on

tr
ol

 M
od

u
le

U
L

M

M
od

u
le

s

x
5

U
L

M

M
od

u
le

s

x
5

U
L

M

M
od

u
le

s

x
5

U
L

M

M
od

u
le

s

x
5

U
L

M

M
od

u
le

s

x
5

U
L

M

M
od

u
le

s

x
5

U
M

 M
od

u
le

s

x
6

N
R

 M
od

u
le

s

x
2

v n v c
1

v c
3

v c
1

i F
0

i F
0

i F
5

v c
3

v c
1

v c
1

i F
4

i F
4

i F
9

i F9

i F8

iF
5

iF
6

v c
1

v c
1

v c
1

v c
1

v n
i F

7
M

ai
nb

us

M
u

lt
i-

F
P

G
A

 B
oa

rd

H
os

t P
C

cl
oc

k

F
P

G
A

5

O
sc

ill
os

co
pe

D
A

C
s

ca
rd

SR
A

M

cl
oc

k
cl

oc
k

cl
oc

k
cl

oc
k

cl
oc

k

cl
oc

k

cl
oc

k

cl
oc

k

cl
oc

k

JTAG Global clock

v c
1

QSE Connector

R
eg

.

SR
A

M
SR

A
M

SR
A

M
SR

A
M

SR
A

M
SR

A
M

SR
A

M
SR

A
M

SR
A

M

F
P

G
A

0
F

P
G

A
1

F
P

G
A

6

F
P

G
A

2

F
P

G
A

7
F

P
G

A
8

F
P

G
A

3
F

P
G

A
4

F
P

G
A

9

v n
v n

v n

v n
v n

v n
v n

v c
3

v c
3

v c
3

v c
3

v c
3

v c
3

v c
3

Fi
gu

re
6.

7:
10

-F
PG

A
ha

rd
w

ar
e

ar
ch

it
ec

tu
re

fo
r

re
al

-t
im

e
EM

T
si

m
ul

at
io

n
in

C
as

e
St

ud
y

II
.

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 106

Fi
gu

re
6.

8:
Si

ng
le

-l
in

e
di

ag
ra

m
of

th
e

po
w

er
sy

st
em

m
od

el
ed

in
C

as
e

St
ud

y
II

.

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 107

N/W #1

(80 nodes)

RLCG #1

(120 RLCGs)

ULM #1

(11 lines)

5 ULM modules

55 lines

UM #1

(8 gens)

NR #1

(8 non. elem.)

2 NR modules

15 non. elements

ULM #2

(11 lines)

ULM #3

(11 lines)

ULM #4

(11 lines)

ULM #5

(11 lines)

UM #2

(8 gens)

UM #3

(8 gens)

UM #4

(8 gens)

UM #5

(9 gens)

UM #6

(9 gens)

NR #2

(7 non. elem.)

6 UM modules

50 generators

N/W #2

(80 nodes)

N/W #14

(80 nodes)

N/W #15

(70 nodes)

N/W #16

(70 nodes)

RLCG #2

(120 RLCGs)

RLCG #6

(130 RLCGs)

RLCG #7

(130 RLCGs)

RLCG #8

(130 RLCGs)

16 N/W modules

1260 nodes

8 RLCG modules

990 RLCGs

UM #1

(8 gens)

NR #1

(8 non. elem.)

2 NR modules

15 non. element

UM #2

(8 gens)

UM #3

(8 gens)

UM #4

(8 gens)

UM #5

(9 gens)

UM #6

(9 gens)

NR #2

(7 non. elem.)

6 UM modules

50 generators

ULM #1

(11 lines)

5 ULM modules

55 lines

ULM #2

(11 lines)

ULM #3

(11 lines)

ULM #4

(11 lines)

ULM #5

(11 lines)

ULM #1

(11 lines)

5 ULM modules

55 lines

ULM #2

(11 lines)

ULM #3

(11 lines)

ULM #4

(11 lines)

ULM #5

(11 lines)

ULM #1

(10 lines)

5 ULM modules

50 lines
ULM #2

(10 lines)

ULM #3

(10 lines)

ULM #4

(10 lines)

ULM #5

(10 lines)

ULM #1

(11 lines)

5 ULM modules

51 lines

ULM #2

(10 lines)

ULM #3

(10 lines)

ULM #4

(10 lines)

ULM #5

(10 lines)

ULM #1

(11 lines)

5 ULM modules

55 lines

ULM #2

(11 lines)

ULM #3

(11 lines)

ULM #4

(11 lines)

ULM #5

(11 lines)

ULM #1

(11 lines)

5 ULM modules

55 lines

ULM #2

(11 lines)

ULM #3

(11 lines)

ULM #4

(11 lines)

ULM #5

(11 lines)
FPGA9

FPGA8

FPGA0

FPGA1

FPGA2

FPGA3

FPGA4

FPGA5

FPGA6

FPGA7

35 ULM modules

376 lines

8 RLCG modules

990 RLCGs

6 UM modules

100 generators

2 NR modules

30 non. elements

16 N/W modules

1260 nodes

Subtotal

Total

Figure 6.9: Allocation of components of Case Study II in the 10-FPGA design.

The allocation of all components into this 10-FPGA design is shown in Fig. 6.9. The
overall clock frequency driving all FPGAs for the 10-FPGA hardware design is 100 MHz.
The achieved minimum time-step ∆t in the 10-FPGA hardware design is 36.12 µs. As
shown in Table 6.3, the execution time per simulation step of EMTP-RV is 2120µs.

Table 6.3: EMTP-RV execution time for the two case studies
∆t Execution time per simulation step

Case Study I 12 µs 192 µs
Case Study II 36µs 2120 µs

Fig. 6.10 (a) shows the terminal currents of generator G9 during the three-phase-to-
ground fault at Bus 2, where the transients can be seen clearly. Again, the detailed agree-
ment between real-time and off-line simulations can be observed in Fig. 6.10 (b) and (c).

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 108

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

Simulation time (s)

C
u

rr
e
n

t
(A

)

(a) (b)

1 div.

1 div.

ia ib ic

0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09
-80

-60

-40

-20

0

20

40

60

80

C
u

r
r
e
n

t
(A

)

Simulation time (s)

FPGA

EMTP-RV

(c)

Figure 6.10: Real-time oscilloscope traces (a), off-line simulation results from EMTP-RV,
and zoomed and superimposed view (c) of generator G9 terminal currents during a three-
phase fault at Bus 2, Scale: x-axis: 1div. = 10ms, y-axis: 1div. = 25A.

6.5 Performance and Scalability of the Multi-FPGA Real-Time Hard-
ware Emulator

To answer the 3 questions posed earlier, first a detailed analysis of the time-step is in order.
As shown in Figs. 6.5 and 6.9, the simulation time-step ∆t can be determined as

∆t = tp1 + tp2 + tp3, (6.1)

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 109

where tp1, tp2, and tp3 are the execution times in Period I, Period II, and Period III, respec-
tively, which are calculated as

tp1 = tNW , (6.2a)

tp2 = max{tULM , tUM , tNR}p2, (6.2b)

tp3 = max{tULM , tUM , tRLCG}p3, (6.2c)

where tNW , tULM , tUM , tNR, tRLCG are execution times for Network Solver module,
ULM module, UM module, NR module, and RLCG module, respectively. The execution time
for each module is calculated according to the total hardware latency of the module and
pipelined components fed into the module. For example, tULM in Period II can be deter-
mined as

tULM = (34 + 8 ∗Nline) ∗ Tf , (6.3)

where the number ‘34’ denotes the total hardware latency in terms of clock cycles;
Nline is the number of lines pipelined into the module, and Tf is the working clock period
of FPGA (10 ns in this design). The number ‘8’ is related to the assumption that each trans-
mission line has a 9th-order (Np = 9 in (5.24)) fitted rational functions for the characteristic
admittance matrix and total 13th-order (Np,1 = 4 and Np,2 = 9 in (5.25)) of fitted rational
functions in 2 (Ng = 2 in (5.25)) propagation modes for the propagation function matrix.
The execution time of the ULM module in Period II and Period III with respect to the number
of lines pipelined through the module is plotted in Fig. 6.11 (b). Similarly, Fig. 6.11 (a)
shows tRLCG with respect to the number of RLCG elements; Fig. 6.11 (c) shows tUM with
respect to the number of machines; Fig. 6.11 (d) shows tNR with respect to the number of
nonlinear elements; and Fig. 6.11 (e) shows tNW with respect to the number of network
nodes.

The performance of the proposed multi-FPGA hardware design is investigated by the
minimum time-step with respect to the simulated system size. The Case Study I test sys-
tem (Fig. 6.4) is used as a reference system to determine the number of RLCG elements,
transmission lines, machines, and nonlinear elements with respect to the system size quan-
tified in terms of the number of network nodes. Based on this information, the minimum
time-step is calculated for a given size of power system, as shown in Fig. 6.12. As can be
seen in this figure, the minimum time-step of 11.55µs and 36.12µs are achieved for Case
Study I for a system of 126 nodes in the 3-FPGA design and Case Study II for a system of
1260 nodes in the 10-FPGA design, respectively. Fig. 6.12 also shows the largest system
size that can be simulated with a specified time-step. For example, with a 50µs time-step
using detailed modeling a system of 850 nodes can be simulated on the 3-FPGA design,
while a system of 1860 nodes can be simulated on the 10-FPGA hardware design. Note that
with simplified models much larger systems can be simulated with the same time-step.

The number of FPGAs required to carry out real-time EMT simulation varies with the
specific time-step and the given system size. Fig. 6.13 shows the surface plot of the varia-
tion of number of FPGAs required with respect to system size, and the minimum time-step

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 110

20 40 60 80 100
0

1

2

3

4

5

t R
L

C
 (µ

s)

Number of pipelined RLCs
5 10 15 20

0

2

4

6

8

10

t U
L

M
 (µ

s)

Number of pipelined lines

2 4 6 8 10
0

5

10

15

t U
M

 (µ
s)

Number of pipelined machines

5 10 15 20 25
0

5

10

15

t N
R
 (µ

s)
Number of pipelined nonlinear elements

0 200 400 600 800 100012001400160018002000
0

2

4

6

8

t N
/W

 (µ
s)

Number of nodes

Period II
Period III

Period II
Period III

(a) (b)

(c) (d)

(e)

Figure 6.11: Execution time of each functional module with respect to the number of
pipelined elements per module in the multi-FPGA real-time EMT simulator.

achieved. This plot shows the possible combinations of these 3 variables, and the two case
studies presented before represent two extremities of this 3-D surface. Clearly, the varia-
tion of the minimum time-step is nonlinear with respect to the system size and the number
of FPGAs used. The slope of ∆t versus system size curve tends to decrease as the num-
ber of FPGAs increases. In general, for a fixed large-scale system size employing more
FPGAs would allow to achieve a lower time-step for real-time EMT simulation but with
diminishing returns. Nevertheless, the achieved time-step would be so small as to allay
any concerns related to detailed system modeling. Meanwhile, larger and faster FPGAs
would allow more parallel functional modules to be emulated, and would also raise the
maximum frequency (fmax) of the design, which will ultimately lead to further reduction
of time-step.

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 111

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
0

10

20

30

40

50

60

70

80

90

100

110

120

M
in

im
u

m
 ∆

 t
 (µ

s)

System size (nodes)

3−FPGA
10−FPGA

Case study I Case study II

Figure 6.12: Minimum time-step achieved in the 3-FPGA and 10-FPGA hardware designs
for real-time EMT simulation.

0200400600800100012001400160018002000

2

4

6

8

10

0
10
20
30
40
50
60
70
80
90

100
110
120

Number o
f F

PGAs

System size (nodes)

M
in

im
u

m
 ∆

 t
 (µ

s)

Case Study II

Case Study I

Figure 6.13: Variation of number of FPGAs with system size and the time-step in the multi-
FPGA hardware design.

6.6 Summary

Hardware emulation on FPGAs makes it possible to overcome many of the limitations re-
lated to the real-time EMT simulation of large-scale power systems by allowing the user
to achieve such level of detail that is seldom achieved on traditional sequential proces-
sors. This chapter proposed a multi-FPGA design based on the functional decomposition
methodology for hardware emulation of systems using detailed modeling of the individ-
ual components. The functional decomposition method circumvents the need for artificial
lines for dividing the system, reduces subsystem communication latencies, and is inde-
pendent of a specific partitioning scheme. Furthermore, this method is ideally suited for

Chapter 6. Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation 112

achieving full parallelism and pipelining in the implemented system modules on the FP-
GAs. Although a single time-step is chosen to illustrate this method, multi-rate simula-
tion with multiple time-steps for various functional components is clearly possible. Two
case studies involving a three-phase 42-bus and a 420-bus power systems are presented
to analyze the performance of the proposed hardware design with detailed modeling of
the power system components. The achieved minimum time-steps for these systems are
11.55µs and 36.12µs on the 3-FPGA and the 10-FPGA hardware designs, respectively, on a
clock frequency of 100MHz. Smaller time-steps and even larger system sizes can be easily
achieved as the design is fully scalable and extensible for an FPGA-cluster. Every new
generation of FPGA technology features devices with significant increase in logic resource
count and clock speed which should satisfy even the most demanding real-time EMT sim-
ulation.

7
Conclusions and Future Work

Endless demand of electrical energy is making modern power systems increasingly com-
plex as well as large in size. Highly accurate and efficient modeling and simulation tools
are required for analyzing power systems. This leads to the great importance of real-time
simulation of electromagnetic transients for planning, design, operation, and control of
modern power systems. The EMT simulation of large-scale power systems in real-time us-
ing detailed modeling is computationally very demanding and challenging in traditional
general purpose CPU and DSP based real-time simulator due to their sequential processed
software implementation.

The hardware emulation of complicated model algorithms to achieve high performance
computation is drawing more attention nowadays. Due to their inherent parallel architec-
ture, high clock speed, and high logic resource capacity, FPGAs are increasingly being
used as core computational hardware in many applications which traditionally used se-
quential general purpose processors or digital signal processors for carrying out intensive
calculations such as electromagnetic transient simulation.

This thesis describes digital hardware emulation of power system component models
for large-scale real-time electromagnetic transient simulation. The summary of the com-
pleted thesis work and suggestions for future work are presented in this chapter.

7.1 Contributions of this Thesis

The main contributions of this thesis can be summarized as follows:

• The complete real-time EMT simulator is realized in the FPGA. The emulated power
system components include linear lumped RLCG elements, frequency-dependent
transmission lines (FDLM), supply sources, and circuit breakers. The network is

113

Chapter 7. Conclusions and Future Work 114

solved efficiently on a proposed fast network solver hardware module exploiting
sparse matrix techniques. This is the first time that real-time EMT simulation using
detailed models is carried out in a single FPGA. Through this work FPGA shows
great potential on accurate and efficient hardware emulation of EMT.

• A novel parallel EMT solution algorithm is proposed. The potential parallel pro-
cessing in the EMT solution is investigated in order to accommodate the parallel
architecture of the FPGA. Moreover, parallel processing inside each individual com-
ponent model is realized as well. For example, the independent hardware units are
developed for emulation of both ends and each phase of transmission lines.

• An iterative Newton-Raphson nonlinear solver is implemented in the FPGA. Real-
time simulation of nonlinear elements is always challenge due to the iterative nature
of the solution algorithm on the sequential hardware like CPU and DSP. Taking ad-
vantages of compensation method, proposed fast sparse matrix processing hardware
module, and proposed parallel Gauss-Jordan elimination hardware module, the non-
linear elements such as nonlinear surge arresters and nonlinear inductances are able
to be emulated accurately and efficiently in the FPGA.

• Accurate EMT simulation of power systems requires detailed and generalized mod-
els of rotating machines and transmission lines. The universal machine (UM) model
is a sufficiently generalized machine model which can accurately represent several
types of rotating machines for transient studies. The universal line model (ULM)
is the most accurate and general model for both overhead line and underground
cable in both symmetrical and unsymmetrical scenarios. These two models have
been implemented in off-line simulation programs successfully; however, due to the
complexity of UM and ULM models and limited computational power of traditional
sequential hardware, the real-time implementation of UM and ULM models is chal-
lenging. It is the first time that these two models are emulated in the FPGA for
real-time EMT simulation. The emulated hardware modules are fully paralleled and
deeply pipelined.

• For real-time EMT simulation of large-scale power systems, multiple FPGAs are nec-
essary. A novel functional decomposition method is introduced to allocate power
system components into the corresponding hardware functional modules in the mul-
tiple FPGA architecture. A 10-FPGA hardware platform is used to provide proof-of-
concept. A large-scale power system with 1260 nodes is simulated in real-time. This
is the first time that real-time EMT simulation of large-scale power systems is real-
ized on a multi-FPGA architecture.

• An IEEE 32-bit floating-point number representation is used for high accuracy through-
out the EMT simulation. All hardware arithmetic units designed are deeply pipelined

Chapter 7. Conclusions and Future Work 115

to achieve highest computation throughput. The whole design is based on VHDL
language for fast portability and extensibility on any FPGA platform.

7.2 Directions for Future Work

The following topics are proposed for future work:

• More complex geometrical models of electrical machines such as permeance network
model (PNM) could be emulated in the FPGA. PNM, also known as reluctance net-
work models or magnetic equivalent circuits, is considered as a compromise between
finite element (FE) analysis and lumped parameter d-q models. Its advantages are
the relatively low computing time compared to FE and the high accuracy, achieved
through a division of the geometry. Using PNM fault conditions such as stator wind-
ing inter-turn short-circuit, broken rotor bars and end rings, and air-gap eccentricity
in induction machines can be studied in real-time.

• Sophisticated power electronic apparatus and their digital control systems are find-
ing increasing applications in electric power systems at generation, transmission, dis-
tribution, and utilization levels. They constitute a higher computational burden (due
to higher number of switches) and require smaller time-steps (due to high switch-
ing frequency and the need for accounting the switching signals accurately), thus
FPGAs have been widely employed. In EMTP-type off-line simulation softwares,
power electronic apparatus are modeled in system-level which it is not able to re-
produce the device nonlinear characteristics realistically. Using FPGA, the power
electronic can be modeled in device-level allowing investigating the switching tran-
sients, power losses, and thermal characteristics of the device.

• The transformers are modeled by Thévenin equivalent network in the FPGA-based
real-time EMT simulator in this thesis. Accurate modeling of transformer taking
into account the nonlinear phenomena such as hysteresis and the topology of the
transformers for real-time EMT simulation would be a future area of interest.

Bibliography

[1] H. W. Dommel and W. S. Meyer, “Computation of electromagnetic transients”, in Proc.
IEEE, vol. 62, no. 7, pp. 983-993, April 1974.

[2] H. W. Dommel, “Techniques for analyzing electromagnetic transients”, IEEE Comput.
Appl. Power, vol. 10, Issue 3, pp. 18-21, July 1997.

[3] N. Watson and J. Arillate, Power systems electromagnetic transients simulation, The Insti-
tution of Engineering and Technology, London, U. K.,2003.

[4] H. W. Dommel, “Digital computer solution of electromagnetic transients in single and
multiphase networks”, IEEE Trans. on Power Apparatus and Systems, vol. PAS-88, no. 4,
pp. 388-399, April 1969.

[5] H. W. Dommel, EMTP theory book, Bonneville Power Administration, 1984.

[6] W. Ren, M. Sloderbeck, M. Steurer, V. Dinavahi, T. Noda, S. Filizadeh, A. R. Chevrefils,
M. Matar, R. Iravani, C. Dufour, J. Belanger, M. O. Faruque, K. Strunz, and J. A. Martinez,
“Interfacing issues in real-time digital simulators”, IEEE Trans. on Power Delivery, vol.
26, no. 2, pp. 1221-1230, April 2011.

[7] R. M. Mathur and X. Wang, , “Real-time digital simulator of the electromagnetic tran-
sients of transmission lines”, IEEE Trans. on Power Delivery, vol. 4, no. 2, pp. 1275-1280,
April 1989.

[8] X. Wang and R. M. Mathur, “Real-time digital simulator of the electromagnetic tran-
sients of transmission lines with frequency dependence”, IEEE Trans. on Power Delivery,
vol. 4, no. 4, pp. 2249-2255, October 1989.

[9] M. Kezunovic, J. K. Bladow, and D. M. Hamai, “Transients computation for relay
testing in real-time”, IEEE Trans. on Power Delivery, vol. 9, no. 3, pp. 1298-1307, July
1994.

[10] A. M. Cullen and R. M. Mathur, “Real-time, multi-processor, simulation of electro-
magnetic transients of transmission lines with frequency dependent parameters”, Proc.
of The First International Conference on Digital Power System Simulators (ICDS), Texas,
U.S.A., pp. 271-276, April 1995.

116

Bibliography 117

[11] A. EI Hakimi, H. Le-Huy, C. Dufour, and I. Kamwa, “Real-time methods for power
transmission networks simulation”, Proc. of The First International Conference on Digital
Power System Simulators (ICDS), Texas, U.S.A., pp. 1-4, April 1995.

[12] C. Dufour, H. Le-Huy, J. Soumagne, and A. E. Hakimi, “Real-time simulation of
power transmission lines using Marti model with optimal fitting on dual-DSP card”,
IEEE Trans. on Power Delivery, vol. 11, no. 1, pp. 412-419, January 1996.

[13] X. Wang, D. A. Woodford, R. Kuffel, and R. Wierckx, “A real-time transmission line
model for a digital TNA”, IEEE Trans. on Power Delivery, vol. 11, no. 2, pp. 1092-1097,
April 1996.

[14] J. R. Marti and L. R. Linares, “Real-time EMTP-based transients simulation”, IEEE
Trans. on Power Systems, vol. 9, no. 3, pp. 1309-1317, August 1994.

[15] Y. Fujimoto, Y. Bin, H. Taoka, H. Tezuka, S. Sumimoto, and Y. Ishikawa, “Real-time
power system simulator on a PC-cluster”, Proc. of the International Conference on Power
Systems Transients (IPST 1999), Budapest, Hungary, pp. 671-676, June 1999.

[16] J. A. Hollman and J. R. Marti, “Real-time network simulation with PC-cluster”, IEEE
Trans. on Power Systems, vol. 18, no. 2, pp. 563-569, May 2003.

[17] L. Pak, M. O. Faruque, X. Nie, and V. Dinavahi, “A versatile cluster-based real-time
digital simulator for power engineering research”, IEEE Trans. on Power Systems, vol.
21, no. 2, pp. 455-465, May 2006.

[18] P. G. Mclaren, R. Kuffel, R. Wierckx, J. Giesbrecht, and L. Arendt, “A real time digital
simulator for testing relays”, IEEE Trans. on Power Delivery, vol. 7, no. 1, pp. 207-213,
January 1992.

[19] P. Forsyth, T. Maguire, and R. Kuffel, “Real-time digital simulation for control
and protection system testing”, The 35th Annual IEEE Electronics Specialists Conference,
Aachen, Germany, pp. 1-6, 2004.

[20] Online available at “http://www.rtds.com”

[21] V. Q. Do, J. C. Soumagne, G. Sybille, G. Turmel, P. Giroux, G. Cloutier, and S. Poulin,
“HYPERSIM, an integrated real-time simulator for power network and control sys-
tems”, Proc. of International Conference on Digital Power System Simulators (ICDS 1999),
Vasteras, Sweden, May 1999.

[22] D. Pare, G. Turmel, J.-C. Soumagne, V. Q. Do, S. Casoria, M. Bissonnette, B. Marcourx,
and C. McNabb, “Validation tests of the HYPERSIM digital real time simulator with a
large AC-DC network”, Proc. of the International Conference on Power Systems Transients
(IPST 2003), New Orleans, Louisiana, USA, pp. 1-6, September 2003.

Bibliography 118

[23] C. Larose, S. Guerette, F. Guay, A. Nolet, T. Yamamoto, H. Enomoto, Y. Kono, Y.
Hasegawa, and H. Taoka “A fully digital real-time power system simulator based
on PC-cluster”, Proc. of Mathematics and Computers in Simulation, vol. 63, pp. 151-159,
November 2003.

[24] J. Bélanger, V. Lapointe, C. Dufour, and L. Schoen, “eMEGAsim: An open high-
performance distributed real-time power grid simulator, architecture and specification”,
Proc. of the International Conference on Power Systems (ICPS 2007), Bangalore, India, De-
cember 2007.

[25] J. Bélanger, L. A. Snider, J. N. Paquin, C. Pirolli, and W. Li, “A modern and open
real-time digital simulator of contemporary power systems”, Proc. of the International
Conference on Power Systems Transients (IPST 2009), Kyoto, Japan, June 2009.

[26] R. Krebs and O. Ruhle, “NETOMAC real-time simulator - a new generation of stan-
dard test modules for enhanced relay testing”, Proc. of the IEEE International Conference
on Developments in Power System Protection, Vol. 2, pp. 669-674, April 2004.

[27] B. Kulicke, E. Lerch, O. Ruhle, and W. Winter, “NETOMAC - calculating, analyz-
ing and optimization the dynamic of electrical systems in time and frequency domain”,
Proc. of International Conference on Power Systems Transients (IPST 1999), Budapest, Hun-
gary, pp. 1-6, June 1999.

[28] A. S. Morched and V. Brandwajn, “Transmission network equivalents for electromag-
netic transients studies”, IEEE Trans. on Power Apparatus and Systems, vol. PAS-102, pp.
2984-2994, September 1983.

[29] M. Abdel-Rahman, A. Semlyen, and R. Iravani, “Two-layer network equivalent for
electromagnetic transients”, IEEE Trans. on Power Delivery, vol. 18, no. 4, pp. 1328-1335,
October 2003.

[30] X. Nie, Y. Chen, and V. Dinavahi, “Real-time transient simulation based on a robust
two-layer network equivalent”, IEEE Trans. on Power Systems, vol. 22, no. 4, pp. 1771-
1781, November 2007.

[31] F. Ricci and H. Le-Huy, ”An FPGA-based rapid prototyping platform for variable-
speed drives”, Proc. of IEEE 28th Annual Conference of the Industrial Electronics Society
(IECON 02), vol. 2, no., pp. 1156-1161, November 2002.

[32] P. Le-Huy, S. Guerette, L. A. Dessaint, and H. Le-Huy, ”Dual-Step Real-Time Simula-
tion of Power Electronic Converters Using an FPGA”, Proc. of IEEE 2006 IEEE Interna-
tional Symposium on Industrial Electronics, vol. 2, no., pp. 1548-1553, July 2006.

Bibliography 119

[33] O. A. Mohammed, N. Y. Abed, and S. C. Ganu, ”Real-time simulations of electrical
machine drives with hardware-in-the-Loop”, Proc. of the IEEE Power Engineering Society
General Meeting (2007), vol., no., pp.1-6, June 2007.

[34] E. Duman, H. Can, and E. Akin, ”Real time FPGA implementation of induction ma-
chine model - a novel approach”, Proc. of the International Aegean Conference on Electrical
Machines and Power Electronics (ACEMP 2007), vol., no., pp. 603-606, September 2007.

[35] H. Chen. S. Sun, D. C. Aliprantis, and J. Zambreno, ”Dynamic simulation of electric
machines on FPGA boards”, Proc. of the IEEE International Electric Machines and Drives
Conference (IEMDC 2009), vol., no., pp. 1523-1528, May 2009.

[36] T. Kato, K. Inoue, and T. Hashimoto, “Practical modeling and simulation of a power
electronic system”, Proc. of the Power Conversion Conference (PCC 2007), vol., no., pp.
477-484, Nagoya, April 2007.

[37] G. Parma, and V. Dinavahi, “Real-Time Digital Hardware Simulation of Power Elec-
tronics and Drives”, IEEE Trans. on Power Delivery, vol. 22, no. 2, pp. 1235-1246, April
2007.

[38] J. Poon, P. Haessig, J. G. Hwang, and I. Celanovic, “High-speed hardware-in-the
loop platform for rapid prototyping of power electronics systems”, Proc. of the IEEE
Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply (CITRES
2010), vol., no., pp. 420-424, September 2010.

[39] A. Myaing and V. Dinavahi, “FPGA-based real-time emulation of power electronic
systems with detailed representation of device characteristics”, IEEE Trans. on Industrial
Electronics, vol. 58, no. 1, pp. 358-368, January 2011.

[40] E. Monmasson and M. N. Cirstea, “FPGA design methodology for industrial control
systems-a review”, IEEE Trans. on Industrial Electronics, vol. 54, no. 4, pp. 1824-1842,
August 2007.

[41] M. N. Cirstea and A. Dinu, “A VHDL holistic modeling approach and FPGA im-
plementation of a digital sensorless induction motor control scheme”, IEEE Trans. on
Industrial Electronics, vol. 54, no. 4, pp. 1853-1864, August 2007.

[42] Y. F. Chan, M. Moallem, and W. Wang, “Design and implementation of modular
FPGA-based PID controllers”, IEEE Trans. on Industrial Electronics, vol. 54, no. 4, pp.
1898-1906, August 2007.

[43] Y.-S. Kung, C.-C. Huang, and M.-H. Tsai, “FPGA realization of an adaptive fuzzy
controller for PMLSM drive”, IEEE Trans. on Industrial Electronics, vol. 56, no. 8, pp.
2923-2932, August 2009.

Bibliography 120

[44] L. Idkhajine, E. Monmasson, M. W. Naouar, A. Prata, and K. Bouallaga, “Fully inte-
grated FPGA-based controller for synchronous motor drive”, IEEE Trans. on Industrial
Electronics, vol. 56, no. 10, pp. 4006-4017, October 2009.

[45] S. Karimi, P. Poure, and S. Saadate, “An HIL-based reconfigurable platform for de-
sign, implementation, and verification of electrical system digital controllers”, IEEE
Trans. on Industrial Electronics, vol. 57, no. 4, pp. 1226-1236, April 2010.

[46] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan, and M. W. Naouar,
“FPGAs in industrial control applications”, IEEE Trans. on Industrial Informatics, vol. 7,
no. 2, pp. 224-243, May 2011.

[47] R. Foley, R. Kavanagh, W. Marnane, and M. Egan, “Multiphase digital pulsewidth
modulator”, IEEE Trans. on Power Electronics, vol. 21, no. 3, pp. 842-846, May 2006.

[48] S. C. Huerta, A. de Castro, O. Garcia, and J. A. Cobos, “FPGA-based digital
pulsewidth modulator with time resolution under 2 ns”, IEEE Trans. on Power Elec-
tronics, vol. 23, no. 6, pp. 3135-3141, November 2008.

[49] G. Oriti and A. L. Julian, “Three-phase VSI with FPGA-based multisampled space
vector modulation”, IEEE Trans. on Industry Applications, vol. 47, no. 4, pp. 1813-1820,
July 2011.

[50] J. Alvarez, O. Lopez, F. D. Freijedo, and J. Doval-Gandoy, “Digital parameterizable
VHDL module for multilevel multiphase space vector PWM”, IEEE Trans. on Industrial
Electronics, vol. 58, no. 9, pp. 3946-3957, September 2011.

[51] S. P. Valsan and K. S. Swarup, “Protective relaying for power transformers using field
programmable gate array”, IET Electric Power Applications, vol. 2, no. 2, pp. 135-143,
March 2008.

[52] X. Liu, A. H. Osman, and O. P. Malik, “Real-time implementation of a hybrid protec-
tion scheme for bipolar HVDC line using FPGA”, IEEE Trans. on Power Delivery, vol. 26,
no. 1, pp. 101-108, January 2011.

[53] Online documents available at “http://www.altera.com”

[54] Z. Luo and M. Martonosi, “Accelerating pipelined integer and floating-point accumu-
lations in configurable hardware with delayed addition techniques”, IEEE Transactions
on Computers, vol. 49, no. 3, pp. 208-218, March 2000.

[55] A. Semlyen and A. Dabuleanu, “Fast and accurate switching transient calculations
on transmission lines with ground return using recursive convolutions”, IEEE Trans. on
Power Apparatus and Systems, Vol. PAS-94, No. 2, pp. 561-571, March/April 1975.

Bibliography 121

[56] J. R. Marti, “Accurate modeling of frequency-dependent transmission lines in elec-
tromagnetic transient simulations”, IEEE Trans. on Power Apparatus and Systems, vol.
PAS-101, no. 1, pp. 147-155, January 1982.

[57] Y. Chen and V. Dinavahi, “FPGA-based real-time EMTP”, IEEE Trans. on Power Deliv-
ery, vol. 24, no. 2, pp. 892-902, April 2009.

[58] H. W. Dommel, “Nonlinear and time-varying elements in digital simulation of elec-
tromagnetic transients”, IEEE Trans. on Power Apparatus and Systems, vol. 90, no. 4, pp.
2561-2567, June 1971.

[59] L. O. Chua, “Efficient computer algorithms for piecewise linear analysis of resistive
nonlinear networks”, IEEE Trans. on Circuit Theory, vol. CT-18, no. 1, pp. 73-85, January
1971.

[60] S. Lachowicz and H. Pfleiderer, “Fast evaluation of the square root and other non-
linear functions in FPGA”, Proc. of 4th IEEE International Symposium on Electronic Design
Teat and Applications, Hongkong, China, pp. 1-4, January 2008.

[61] N. Boullis, O. Mencer, W. Luk, and H. Styles, “Pipelined function evaluation on FP-
GAs”, Proceedings of 9th IEEE Field-Programmable Custom Computing Machines, pp. 1-3,
2001.

[62] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication on FPGAs”,
FPGA’05, Monterey, California, USA, pp. 1-12, February, 2005.

[63] Y. Chen and V. Dinavahi, “An iterative real-time nonlinear electromagnetic transient
solver on FPGA”, IEEE Trans. on Industrial Electronics, vol. 58, no. 6, pp. 2547-2555, June
2011.

[64] H. K. Lauw and W. Scott Meyer, “Universal machine modeling for the representation
of rotating electric machinery in an electromagnetic transients program”, IEEE Trans. on
Power Apparatus and Systems, vol. 101, no. 6, pp. 1342-1350, June 1982.

[65] H. K. Lauw, “Interfacing for universal multi-machine system modeling in an electro-
magnetic transients program”, IEEE Trans. on Power Apparatus and Systems, vol. 104, no.
9, pp. 2367-2373, September 1985.

[66] L. Marti, “Simulation of transients in underground cables with frequency-dependent
modal transformation matrices”, IEEE Trans. on Power Delivery, vol. 3, no. 3, pp. 1099-
1110, July 1988.

[67] T. Noda, N. Nagaoka, and A. Ametani, “Phase domain modeling of frequency-
dependent transmission lines by means of an ARMA model”, IEEE Trans. on Power
Delivery, vol. 11, no. 1, pp. 401-411, January 1996.

Bibliography 122

[68] H. V. Nguyen, H. W. Dommel, and J. R. Marti, “Direct phase-domain modeling of
frequency-dependent overhead transmission lines”, IEEE Trans. on Power Delivery, vol.
12, no. 3, pp. 1335-1342, July 1997.

[69] A. Morched, B. Gustavsen, and M. Tartibi, “A universal model for accurate calculation
of electromagnetic transients on overhead lines and underground cables”, IEEE Trans.
on Power Delivery, vol. 14, no. 3, pp. 1032-1038, July 1999.

[70] B. Gustavsen and A. Semlyen, “Simulation of transmission line transients using vec-
tor fitting and modal decomposition”, IEEE Trans. on Power Delivery, vol. 13, no. 2, pp.
605-614, April 1998.

[71] Y. Chen and V. Dinavahi, “Digital hardware emulation of universal machine and
universal line models for real-time electromagnetic transient simulation”, IEEE Trans.
on Industrial Electronics, pp. 1-8, 2011.

A
System Data of Case Study in Chapter 3

The system data for the real-time simulation case study is given in Table A.1, Table A.2,
and Table A.3. Fig. A.1 shows the tower geometry for the lines used in the case study.

Table A.1: Transmission line parameters

Line Length Zc order A1 order

L1 120km 12 19

L2 136km 11 19

L3 165km 12 19

L4 150km 11 18

L5 120km 11 20

L6 400km 12 30

L7 220km 12 14

L8 35km 12 24

L9 10km 12 18

L10 35km 12 24

L11 15km 12 12

L12 65km 12 19

L13 133km 12 19

L14 42km 12 21

L15 375km 12 30

123

Appendix A. System Data of Case Study in Chapter 3 124

6m

3.932m 3.932m

Overhead Shield Wire
3/8" Grade 220 Steel

Drake
Conductor

6m

15m

24m

30m
A

B

C

Figure A.1: Tower geometry of transmission lines in the case study.

Table A.2: Load parameters

Load Zph

Load1 1200Ω, 500mH

Load2 2150Ω, 380mH

Load3 250Ω, 25mH

Load4 350Ω, 60mH

Load5 250Ω, 25mH

Load6 420Ω, 30mH

Load7 200Ω, 130mH

Load8 650Ω, 250mH

C1 5µF

C2 20µF

Appendix A. System Data of Case Study in Chapter 3 125

Table A.3: Generator and transformer parameters

Generator Parameters per phase

G1 1.03∠20.2◦, ZG1: 1.2Ω, 38.98mH

G2 1.01∠10.5◦, ZG2: 1.1Ω, 45.52mH

G3 1.03∠-6.8◦, ZG3: 0.9Ω, 38.98mH

G4 1.01∠-17.0◦, ZG4: 0.8Ω, 35.23mH

Transformer Parameters per phase

T1 ZT1: 1.5Ω, 23.4mH

T2 ZT2: 0.8Ω, 29.5mH

T3 ZT3: 1.6Ω, 23.4mH

T4 ZT4: 0.6Ω, 20.8mH

B
System Data of Case Studies in Chapter 4

B.1 Case Study I

Table B.1: Data for Case Study I

Parameters Values

Vs 20Kv peak

Rs, Ls 5Ω, 24.1mH

Transmission line resistance mode +: 1.273e-5Ω/m, mode 0: 3.864e-4Ω/m

Transmission line inductance mode +: 9.337e-4mH/m, mode 0: 4.126e-3mH/m

Transmission line capacitance mode +: 1.274e-5µF/m, mode 0: 7.751e-6µF/m

Transmission line length Line1: 100km, Line2: 100km

Series compensator C 100µF

RL1, LL1 8Ω, 4000mH

RL2 270Ω

Rf 0.0001Ω

Vref , p, and q 8192V, 600A, and 6

126

Appendix B. System Data of Case Studies in Chapter 4 127

B.2 Case Study II

Table B.2: Data for Case Study II

Parameters Values

Vs 125Kv peak

Rs, Ls 1Ω, 15mH

CW 5nF

CS 1.25nF

Rfe 200MΩ

C
System Data of Case Study in Chapter 5

C.1 Transmission Lines

ULM transmission lines (Line1 and Line2) parameters:
3 conductors, diameter: 3.105cm, resistance: 0.0583Ω/Km, 150Km, and the tower ge-

ometry is shown in Fig. C.1.

C.2 Synchronous Machines

UM synchronous machines (UM1, UM2, and UM3) parameters:
1000MVA, 22kV, Y connected, field current: 2494A, 2 poles, 60Hz, single-mass, J=5.5628e4

[kg −m2], D=0.678e4 [Nm− s/rad].
The winding resistances (in Ω) and leakage inductances (in H) are listed in Table C.1.

C.3 Loads and Transformers

Loads and transformers parameters:
Load1, Load2, and Load3: 5Ω, 4H
XT1, XT2, and XT3: 15mH
C: 20µF

128

Appendix C. System Data of Case Study in Chapter 5 129

30m

A
B

C

28m

4.87m4.87m

6m

Figure C.1: Tower geometry of transmission lines in the case study.

Table C.1: UM machine resistances and inductances
Rd 9.6800e-4 Rq 9.6800e-4 R0 9.6800e-4

Rf 1.1109 RD1 3.4985 RQ1 0.7627

RQ2 1.2270

Ld 0.0018 Lq 0.0017 L0 2.4136e-4

Lf 0.6345 LD1 0.5483 LQ1 1.1811

LQ2 0.5882 Mdf 0.0234 MdD1 0.0234

MqQ1 0.0226 MqQ2 0.0226 MfD1 0.5480

MQ1Q2 0.4184

	Introduction
	Electromagnetic Transient Simulation of Power Systems
	Survey of Digital Real-Time EMT Simulators
	Motivation for this Work
	Research Objectives
	Thesis Outline

	FPGA Background
	FPGA Architecture
	Logic Array Blocks (LABs) and Adaptive Logic Modules (ALMs)
	Memory Blocks
	Digital Signal Processing Blocks (DSPs)
	Phase-Locked Loops (PLLs)
	Input/Output Elements (IOEs)

	FPGA Design Tools and Design Flow
	FPGA Design Issues
	Data Representation
	Parallelism
	Pipelining

	Summary

	FPGA-Based Real-Time EMT Simulator
	Frequency-Dependant Line Model
	FDLM Model Formulation
	Real-Time FPGA Implementation of FDLM

	Linear Lumped RLCG Elements
	Model Formulation
	Real-Time FPGA Implementation of Linear Lumped RLCG Elements

	Sources
	Modeling of Sources
	Real-Time FPGA Implementation of Sources

	Circuit Breakers
	Modeling of Circuit Breakers
	Real-Time FPGA Implementation of Circuit Breakers

	Network Solver
	Network Solution in the EMTP
	Real-Time FPGA Implementation of Network Solver

	Paralleled EMTP Algorithm
	Analysis of Parallelism in the EMTP Algorithm
	MainControl Module

	Implementation of Real-Time EMT Simulator on FPGA
	Real-Time EMT Simulation Case Study
	Summary

	An Iterative Real-Time Nonlinear EMT Solver on FPGA
	Nonlinear Network Transient Solution
	Compensation Method
	Newton-Raphson Method

	Real-Time Hardware Emulation of Nonlinear Solver on FPGA
	Hardware Architecture and Parallelism
	Floating-Point Nonlinear Function Evaluation
	Computing bold0mu mumu JJunitsJJJJ and -bold0mu mumu FFunitsFFFF(bold0mu mumu iiunitsiiiikm) in Parallel
	Parallel Gauss-Jordan Elimination
	Computing bold0mu mumu vvunitsvvvvc

	FPGA-Based Nonlinear Transient Simulation
	FPGA Hardware Implementation
	Case Studies

	Summary

	Digital Hardware Emulation of Universal Machine and Universal Line Models
	Introduction
	Universal Machine Model
	UM Model Formulation
	Interfacing UM Model with EMTP
	Real-Time Hardware Emulation of UM Model

	Universal Line Model
	ULM Model Formulation in Frequency-Domain
	Time-Domain Representation
	Real-Time Hardware Emulation of ULM Model

	Network Hardware Emulation
	Hardware Architecture and Parallelism
	FPGA Resource Utilization

	Real-Time Simulation Case Study
	Summary

	Multi-FPGA Hardware Design for Large-Scale Real-Time EMT Simulation
	Introduction
	Functional Decomposition Method for Large-Scale Real-Time EMT Simulation
	Functional Module and Parallelism
	Multiple FPGA Based Hardware Design for Real-Time EMT Simulation
	Case Study I: 3-FPGA Hardware Design
	Case Study II: 10-FPGA Hardware Design

	Performance and Scalability of the Multi-FPGA Real-Time Hardware Emulator
	Summary

	Conclusions and Future Work
	Contributions of this Thesis
	Directions for Future Work

	Bibliography
	Appendix System Data of Case Study in Chapter 3
	Appendix System Data of Case Studies in Chapter 4
	Case Study I
	Case Study II

	Appendix System Data of Case Study in Chapter 5
	Transmission Lines
	Synchronous Machines
	Loads and Transformers

