
Studying Trends, Topics, and Duplicate Questions on Q&A Websites for
Game Developers

by

Arthur Veloso Kamienski

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering and Intelligent Systems

Department of Department of Electrical and Computer Engineering
University of Alberta

© Arthur Veloso Kamienski, 2021

Abstract

The game development industry is growing and there is a high demand for develop-

ers that can produce high-quality games. These developers need resources to learn

and improve the skills required to build those games in a reliable and easy manner.

Question and Answer (Q&A) websites are learning resources that are commonly used

by software developers to share knowledge and acquire the information they need.

However, we still know little about how game developers use and interact with Q&A

websites. In this thesis, we analyze the largest Q&A websites that discuss game de-

velopment to understand how effective they are as learning resources and what can

be improved to build a better Q&A community for their users.

In the first part of this thesis, we analyzed data collected from four Q&A websites,

namely Unity Answers, the Unreal Engine 4 (UE4) AnswerHub, the Game Develop-

ment Stack Exchange, and Stack Overflow, to assess their effectiveness in helping

game developers. We also used the 347 responses collected from a survey we ran

with game developers to gauge their perception of Q&A websites. We found that

the studied websites are in decline, with their activity and effectiveness decreasing

over the last few years and users having an overall negative view of the studied Q&A

communities. We also characterized the topics discussed in those websites using a

latent Dirichlet allocation (LDA) model, and analyze how those topics differ across

websites. Finally, we give recommendations to guide developers to the websites that

are most effective in answering the types of questions they have, which could help the

websites in overcoming their decline.

In the second part of the thesis, we explored how we can further help Q&A web-

ii

sites for game developers by automatically identifying duplicate questions. Duplicate

questions have a negative impact on Q&A websites by overloading them with ques-

tions that have already been answered. Therefore, we analyzed the performance of

seven unsupervised and pre-trained techniques on the task of detecting duplicate

questions on Q&A websites for game developers. We achieved the highest perfor-

mance when comparing all the text content of questions and their answers using a

pre-trained technique based on MPNet. Furthermore, we could almost double the

performance by combining all of the techniques into a single question similarity score

using supervised models. Lastly, we show that the supervised models can be used

on websites different from the ones they were trained on with little to no decrease in

performance. Our findings can be used by Q&A websites and future researchers to

build better systems for duplicate question detection, which can ultimately provide

game developers with better Q&A communities.

iii

Preface

The research work presented in this thesis has been conducted in the Analytics of

Software, GAmes, And Repository Data (ASGAARD) lab led by Dr. Cor-Paul Beze-

mer.

Chapter 2 has been published as “A. Kamienski and C. Bezemer, 2021. An Empir-

ical Study of Q&A Websites for Game Developers, Empirical Software Engineering

Journal” [57]. The research conducted in this chapter received research ethics ap-

proval from the University of Alberta Research Ethics Board, Project Name “A study

of Question and Answer websites for game developers”, Project ID “Pro00101354”, in

June 12th, 2020. I was responsible for collecting and processing data from Q&A web-

sites, building topic models, creating and sharing the survey with game developers,

analyzing the data, and for manuscript composition. Dr. Bezemer was the supervi-

sory author and was involved in concept formation and manuscript composition.

Chapter 3 has been submitted for review as “A. Kamienski, A. Hindle, and C.

Bezemer, 2021. Analyzing techniques for duplicate question detection on Q&A web-

sites for game developmers, Empirical Software Engineering Journal”. I was respon-

sible for collecting and processing data from Q&A websites, implementing question

comparison techniques, analyzing results, and for manuscript composition. Dr. Beze-

mer and Dr. Hindle were the supervisory authors and were involved in concept

formation and manuscript composition.

iv

Acknowledgements

I would like to thank everyone that contributed in any way to the work presented in

this thesis. First and foremost, I would like to express my gratitude to Dr. Cor-Paul

Bezemer, who has provided invaluable advice and guidance throughout my studies.

Dr. Bezemer has taught me much about conducting and presenting research in a

reliable, responsible, and effective manner. I owe him this research project and the

start of my research carreer.

I am also grateful to Dr. Abram Hindle for his guidance and feedback on my

research work, and for being one of my thesis examiners. I would also like to thank

Dr. Lei Ma for being my thesis examiner.

Thanks to all my friends that helped me during my studies, both in academic

matters or otherwise. To all my friends at the ASGAARD lab, thank you for always

being there whenever I needed support. A special thanks to Dener, who helped me

set up and use several of the computational resources I used for my work.

Last but not least, I would like to thank my parents, my sister, and my wife for

all of the love, care, and emotional support during my studies. You are my lifeline

and never let me down, even in the toughest times.

v

Table of Contents

1 Introduction and Background 1

1.1 Introduction . 1

1.2 Q&A websites for game developers 4

1.3 Thesis outline . 5

2 An Empirical Study of Q&A Websites for Game Developers 6

2.1 Abstract . 6

2.2 Introduction . 7

2.3 Background and Related work . 10

2.3.1 Q&A communities . 10

2.3.2 Game development Q&A websites 12

2.3.3 Topic modeling of Q&A websites 13

2.4 Methodology . 14

2.4.1 Data collection . 14

2.4.2 Data preprocessing . 16

2.4.3 Text preprocessing . 16

2.4.4 Topic modeling . 17

2.4.5 Topic labeling . 18

2.4.6 Survey with game developers 19

2.5 Results . 22

2.5.1 RQ1. How did the studied game development Q&A communi-

ties evolve in terms of user participation? 23

vi

2.5.2 RQ2. What topics are most frequently discussed by game de-

velopers on the studied Q&A websites? 36

2.5.3 RQ3. What are the characteristics of posts from each topic? . 42

2.5.4 RQ4. How do game developers perceive the studied communities? 49

2.6 Implications of our findings . 54

2.7 Threats to validity . 57

2.7.1 Construct validity . 57

2.7.2 Internal validity . 57

2.7.3 External validity . 58

2.8 Conclusion . 59

3 Analyzing Techniques for Duplicate Question Detection on Q&A

Websites for Game Developers 61

3.1 Abstract . 61

3.2 Introduction . 62

3.3 Background and related work . 66

3.3.1 Q&A websites . 66

3.3.2 Duplicate document detection on websites 68

3.4 Methodology . 69

3.4.1 Data collection . 70

3.4.2 Data preprocessing . 72

3.4.3 Comparing questions . 73

3.4.4 Training supervised classifier models 80

3.5 Results . 83

3.5.1 RQ1. What is the performance of unsupervised and pre-trained

techniques for duplicate question detection on game develop-

ment Q&A data? . 83

vii

3.5.2 RQ2. How can we leverage labelled data to improve the per-

formance of unsupervised techniques? 91

3.6 Comparison with other studies . 100

3.7 Implications of our findings . 104

3.7.1 For the developers of Q&A websites for game development . . 104

3.7.2 For researchers . 105

3.8 Threats to validity . 107

3.8.1 Internal validity . 107

3.8.2 External validity . 108

3.8.3 Construct validity . 109

3.9 Conclusion . 110

4 Conclusion & Future Work 111

4.1 Conclusion . 111

4.2 Future work . 113

Bibliography 115

viii

List of Tables

2.1 Summary of data collected from the four largest Q&A websites for

game developers . 17

2.2 Summary of LDA topics for Unity Answers and the UE4 AnswerHub 20

2.3 Summary of LDA topics for Stack Overflow and the Game Develop-

ment Stack Exchange . 21

2.4 Summary of the responses received on the survey with game developers 22

2.5 Major releases for Unity and the UE4 game engines. 26

2.6 Distribution of topics and posts per category. 38

2.7 Summary of topic trends per website. 41

2.8 Description of post aspects used for comparing topics. 43

2.9 Summary of comparisons between topics for each studied website. . . 46

2.10 Topics with statistically significant and non-negligible differences with

others in terms of presence of code in posts in the studied communities. 47

2.11 Topics with statistically significant and non-negligible differences with

others in terms of the number of characters in their questions and

answers in the studied communities. 48

3.1 Summary of the three datasets used in our methodology. 72

3.2 Summary of the techniques for duplicate question detection we used in

our study. 74

3.3 Parameters used for training Doc2Vec models. 79

ix

3.4 Performance of the question comparison techniques on the Game De-

velopment Stack Exchange. 86

3.5 Performance of the question comparison techniques on the dataset

about game development on Stack Overflow. 87

3.6 Performance of the question comparison techniques on the dataset

about general development on Stack Overflow. 88

3.7 Performance of the supervised models for different numbers of candi-

date pairs. 96

3.8 Performance of the duplicate detection models in cross-dataset settings. 97

3.9 Summary of duplicate questions pairs that were misclassified for each

dataset. 99

x

List of Figures

2.1 Overview of our data collection and processing methodology in Chapter 2. 15

2.2 Evolution of the studied Q&A communities given by the number of

posts per month. 27

2.3 Evolution of the studied Q&A communities given by the number of

active users per month. 28

2.4 Monthly percentages of answered and resolved questions, and answer

effectiveness in the studied Q&A communities. 30

2.5 Distribution of active user experience per semester. 35

2.6 Percentage of posts assigned to each topic in the studied Q&A com-

munities. 39

2.7 Representation of the selection process respondents went through when

answering the survey. 51

2.8 Access categories of Unity and UE4 users for the most frequently ac-

cessed learning resources. 52

2.9 Current and previous frequencies with which survey respondents ac-

cessed the studied Q&A communities. 54

2.10 Flowchart showing our recommended decision process when choosing

a Q&A website on which to post questions. 56

3.1 Overview of the steps we have taken in our methodology in Chapter 3. 70

3.2 Overview of the methodology we used for comparing questions using

seven techniques. 76

xi

3.3 Overview of our approach to ranking question pairs according to sim-

ilarity scores. 84

3.4 Distribution of ranks of true duplicate pairs according to different tech-

niques. 92

xii

Chapter 1

Introduction and Background

1.1 Introduction

The game development industry has grown over the past few years [59] to become

the largest in the entertainment segment with almost two hundred billion dollars of

revenue in 2021 [129]. To keep up with the large growth, game development companies

need to build high-quality games and require a skilled workforce of game developers.

Meanwhile, game developers need ways to improve their skills and be on par with the

best practices and latest technologies of the field.

Software developers in general face a similar situation and have shown a liking for

Question and Answer (Q&A) websites to find the help and information they need [69].

The largest of those websites focused on software development is Stack Overflow1,

which currently receives millions of accesses per month [82]. While several researchers

have studied Stack Overflow and how developers use it to share knowledge, there is

still little information about how and if these Q&A websites help game developers.

Despite game developers also using Stack Overflow, other websites such as Unity

Answers2, the Unreal Engine 4 (UE4) AnswerHub3, and the Game Development Stack

Exchange4 have accrued hundreds of thousands of questions about game development

and are valuable sources of data. Therefore, studying these websites can lead to

1https://stackoverflow.com/, accessed August 17, 2021.
2https://answers.unity.com/, accessed August 17, 2021.
3https://answers.unrealengine.com/, accessed August 17, 2021.
4https://gamedev.stackexchange.com/, acessed August 17, 2021.

1

https://stackoverflow.com/
https://answers.unity.com/
https://answers.unrealengine.com/
https://gamedev.stackexchange.com/

valuable insights about how game developers use, interact and share knowledge in

them.

In this thesis, we conducted two studies to analyze those Q&A websites from differ-

ent perspectives and understand better their role as resources for game developers. In

the first study, we explore the hypothesis that the Q&A websites are useful resources

for learning game development skills. Meanwhile, the second study explores the hy-

pothesis that we can help the websites by implementing better duplicate detection

models with low resources. Based on our findings, we proposed measures that can

help the studied websites in fostering better communities for their users, which can

in turn increase their effectiveness in providing information to game developers. The

two studies we conducted in this thesis were:

Research Study 1: An Empirical Study of Q&A Websites for Game

Developers (Chapter 2)

Motivation: Despite several other studies having analyzed Q&A websites focused

on discussing a variety of topics, no studies so far have analyzed Q&A websites for

game developers. Therefore, in this study, we explore four Q&A websites that discuss

game development and access their activity and effectiveness over time, the topics

they discuss, and the perception of their users. By studying these websites, we seek

to bring new understanding about how game developers use and interact in those

websites, leading to insights into how we can help them become better resources for

their users.

Findings: We found that the studied Q&A websites are in decline, with the num-

ber of posts and active users per month, the percentage of answered and resolved

questions, and their answer effectiveness decreasing over the past few years. We also

found that the release of new products is positively correlated to growth, while the per-

centage of answered and resolved questions are negatively correlated to it. Moreover,

most of the topics discussed by the communities are specific to game development,

and topics differ in many aspects such as the presence of code and the length of their

2

posts. Finally, users of Unity Answers and the UE4 AnswerHub who responded our

survey had a negative view of those communities, preferred other online resources,

and did not actively contribute to them.

Research Study 2: Analyzing Techniques for Duplicate Question Detec-

tion on Q&A Websites for Game Developers (Chapter 3)

Motivation: As we showed in Chapter 2, there are several challenges in building

and maintaining an effective Q&A website. One of such challenges is dealing with

duplicate questions, as they can hinder a website’s effectiveness by overloading it with

similar questions that may have already been answered, while making new questions

which still lack answers harder to find. Currently, most Q&A websites deal with

duplicate questions by offering users a feature to manually identify them. However,

the high volume of duplicate questions makes the task of manual identification very

burdensome to the websites’ communities. In this study, we explore and compare

several techniques for automatically detecting duplicate questions. Q&A websites can

use our analysis of those different techniques for building better duplicate detection

systems which can improve their ability of helping their users.

Findings: We found that comparing questions using the similarities between all

their text content (i.e., title, body, and tags) along with their answers using a model

based on MPNet offered the best performance for identifying duplicates. The sim-

ilarity measures based on TF-IDF, BM25, and the Jaccard coefficient also showed

good performance in ranking question pairs. We achieved higher performance when

detecting duplicate questions using a supervised classifier trained on a small set of

labelled questions pairs, almost doubling the results obtained by the best technique

we analyzed. Finally, the supervised classifiers could identify duplicate questions on

datasets other than the ones used for training them with only a slight decrease in

performance.

While the findings from the first study provide insights and recommendations on

how to help the studied Q&A communities and their users, the second study gives

3

a deeper understanding on how to improve the studied Q&A websites by providing

them with better tools to increase their effectiveness. Together, the studies paint

a thorough picture of Q&A websites for game developers and can be used by their

communities and maintainers to build a thriving environment for game developers.

1.2 Q&A websites for game developers

Question and Answer (Q&A) websites allow users to interact with each other by

posting and answering questions. Unlike other online forums where threads do not

follow a specific format, Q&A websites offer a structure for organizing and separating

posts into questions, comments, and answers. Threads are created when an user posts

a question, and answers and comments can only be posted as a reply. While answers

are meant to expose solutions to a question, comments are used for general discussions

about a question or answer. Questions usually have tags attached to them to indicate

the topic or broad category which they discuss, and can be marked as resolved when

they receive an answer that correctly answers them.

There are several Q&A websites which discuss a variety of topics. While some

websites do not focus on a single subject, others target specific niches such as science,

business, and languages. For example, Quora5 is a well-known Q&A website where

users can ask question about any topic they like. Meanwhile, Stack Overflow6, one

of the most accessed websites on the internet, focuses on discussing questions about

software, programming, and technology.

Some Q&A websites focus on game development topics, such as Unity Answers7,

the Unreal Engine 4 (UE4) AnswerHub8, and the Game Development Stack Ex-

change9. Game developers also discuss game development issues on Stack Overflow,

although in limited quantity. These websites host hundreds of thousands of posts

5https://www.quora.com/, accessed August 20, 2021.
6https://stackoverflow.com/, accessed August 20, 2021.
7https://answers.unity.com/, accessed August 20, 2021.
8https://answers.unrealengine.com/, accessed August 20, 2021.
9https://gamedev.stackexchange.com/, acessed August 20, 2021.

4

https://www.quora.com/
https://stackoverflow.com/
https://answers.unity.com/
https://answers.unrealengine.com/
https://gamedev.stackexchange.com/

and are a valuable source of information about how game developers build games and

interact with each other.

1.3 Thesis outline

The remainder of this thesis is organized as follows: Chapter 2 presents an empirical

study on the trends, topics and user perception of four of the largest Q&A websites

for game developers (Unity Answers, the Unreal Engine 4 (UE4) AnswerHub, the

Game Development Stack Exchange, and Stack Overflow). Chapter 3 presents an

analysis of the performance of different techniques for duplicate detection on the Game

Development Stack Exchange and on Stack Overflow. Finally, Chapter 4 concludes

the thesis by highlighting our findings and contributions and discussing possible future

research directions.

5

Chapter 2

An Empirical Study of Q&A
Websites for Game Developers

2.1 Abstract

The game development industry is growing, and training new developers in game

development-specific abilities is essential to satisfying its need for skilled game devel-

opers. These developers require effective learning resources to acquire the information

they need and improve their game development skills. Question and Answer (Q&A)

websites stand out as some of the most used online learning resources in software

development. Many studies have investigated how Q&A websites help software de-

velopers become more experienced. However, no studies have explored Q&A websites

aimed at game development, and there is little information about how game devel-

opers use and interact with these websites. In this chapter, we study four Q&A

communities by analyzing game development data we collected from their websites

and the 347 responses received on a survey we ran with game developers. We observe

that the communities have declined over the past few years and identify factors that

correlate to these changes. Using a Latent Dirichlet Allocation (LDA) model, we

characterize the topics discussed in the communities. We also analyze how topics dif-

fer across communities and identify the most discussed topics. Furthermore, we find

that survey respondents have a mostly negative view of the communities and tended

to stop using the websites once they became more experienced. Finally, we provide

6

recommendations on where game developers should post their questions, which can

help mitigate the websites’ declines and improve their effectiveness.

2.2 Introduction

The game development industry is growing [59] and hungers for experienced de-

velopers that can produce high-quality games [45]. This high demand for skilled

game developers needs to be satisfied by the training of new developers in game

development-specific abilities, and those seeking to develop games need ways to ac-

quire the knowledge they need to hone their skills. Moreover, amateur and profes-

sional game developers alike need to stay updated on the most recent practices and

technologies.

Developers in other fields of the software development industry face similar chal-

lenges and have shown a preference for question and answer (Q&A) websites (mostly

Stack Overflow1) when it comes to acquiring new knowledge and seeking solutions to

the problems they face [69]. Research has shown that these Q&A websites provide a

fertile environment for knowledge sharing [8], and a large number of studies analyzed

how these websites can help their communities by providing information and assis-

tance [4]. Other studies have found similar results for general purpose [2], social [40],

and health Q&A websites [49]. Yet, no research analyzed if and how Q&A websites

related to game development help game developers.

Several Q&A websites specialize in game development, amassing hundreds of thou-

sands of posts and offering a rich set of valuable data that could help to understand

the game development environment. Studying these websites can provide us with a

deeper understanding of the social and technical aspects of game development.

In this chapter, we explore the data that we collected from four Q&A websites,

three of which target game developers (Unity Answers2, the Unreal Engine 4 (UE4)

1https://stackoverflow.com/, accessed February 3, 2021.
2https://answers.unity.com/, accessed February 3, 2021.

7

https://stackoverflow.com/
https://answers.unity.com/

AnswerHub3, and the Game Development Stack Exchange4) and Stack Overflow,

which targets all types of software developers. We analyze their content and activity

to understand how game developers use them and what topics are discussed in them.

We also use the 347 game developers’ responses we received through a survey about

two of these websites to analyze their users’ behaviour and opinions. Specifically, we

answer the following research questions (RQs):

RQ1. How did the studied game development Q&A communities

evolve in terms of user participation?

We analyze the communities’ activity and effectiveness over time to understand

their ability of fostering an active user base. We also explore factors that are

correlated to the changes we observed in the communities. We find that the com-

munities have been in decline, with the number of posts and active users per month,

the percentages of answered and resolved questions, and their answer effectiveness,

measured as the percentage of answers marked as the accepted solution to their

questions, decreasing over time. We also find that growth positively correlates to

the release of new products, and negatively correlates to the percentage of answered

and resolved questions. The most experienced users have a higher effectiveness and

answered and solved a large number of questions, but the overall experience of the

community decreased over time.

RQ2. What topics are most frequently discussed by game developers

on the studied Q&A websites?

Game development requires specific software development knowledge and a di-

versified set of skills [58, 84]. However, there is still a lack of understanding of what

those skills are, and how prominent they are to the game development community.

With this in mind, this question explores the topics discussed by the Q&A websites

in their questions, answers, and comments. We find that most of the topics we

3https://answers.unrealengine.com/, accessed February 3, 2021.
4https://gamedev.stackexchange.com/, accessed February 3, 2021.

8

https://answers.unrealengine.com/
https://gamedev.stackexchange.com/

identified are specific to game development, covering several subjects unique to it.

Nevertheless, the most discussed topic in Unity Answers and the UE4 AnswerHub

was Bug reports, while Stack Overflow and the Game Development Stack Exchange

had many posts about object-oriented programming.

RQ3. What are the characteristics of posts from each topic?

Posts from game development Q&A websites about distinct topics may have

different characteristics, be that in the way users write or interact with them. In

this question, we explore if and how posts from the topics we identified differ in

terms of specific aspects, such as the length of their text and the presence of code

in them. We also compare posts belonging to a same topic across the studied

Q&A websites to identify if there is any distinction in the way the communities

discuss them. We show that topics were discussed with varying levels of abstraction

and complexity, differing in terms of the presence of code and the length of their

posts. Furthermore, we found that Unity Answers and Stack Overflow discussed

code more frequently than the UE4 AnswerHub and the Game Development Stack

Exchange.

RQ4. How do game developers perceive the studied communities?

We conducted a survey among game developers to provide a better view of

how they regard Unity Answers and the UE4 AnswerHub and to complement our

previous analyses. We chose to only ask questions about those two websites as

their communities focus on their own game engine. We find that most respondents

prefer other learning resources, such as online guides and tutorials, despite having

accessed the Q&A websites in the past. Most respondents also do not actively

contribute to the communities and even show disapproval for them. Moreover,

respondents accessed the websites less frequently than they used to.

By answering these questions and bringing new knowledge about the studied game

development Q&A communities, we shed light on how their users interact and discuss

game development technologies. We also assess the overall health of the communities,

9

identify factors that relate to it, and characterize the topics in which they are the best

and the worst at discussing. Our findings help game developers in understanding the

characteristics of each of the studied Q&A websites, and we provide recommendations

that can help them in choosing on which community to post their questions. By

directing questions to communities that can handle them more effectively, we can

help mitigate the communities’ decline and increase their overall effectiveness.

The remainder of this chapter is organized as follows. In Section 2.3 we provide

background information on Q&A websites and game engines, and discuss prior work

conducted on these topics. Section 2.4 explains our methodology and Section 2.5

describes the motivation, approach, and findings for each of our RQs. We discuss the

implications of our findings in Section 2.6, the threats to validity in Section 2.7, and

conclude the chapter in Section 2.8.

2.3 Background and Related work

In this section, we provide background information on Q&A communities, Q&A web-

sites for game development, and topic modeling of Q&A websites. We also provide

an overview of other work related to this chapter and to these concepts.

2.3.1 Q&A communities

Question and Answer (Q&A) websites allow registered users to ask for help from peers

by posing questions about the knowledge they seek and the problems they are facing.

Users can interact either by asking, answering, or commenting on a question. Some

Q&A websites, such as Yahoo! Answers5 and Quora6, cover a variety of subjects,

while others specialize in specific areas like programming, cooking, photography, and

academic research. These websites host large communities of users that share the

same interest for a topic.

5https://answers.yahoo.com/, accessed February 5, 2021.
6https://www.quora.com/, accessed February 5, 2021.

10

https://answers.yahoo.com/
https://www.quora.com/

Software developers are especially fond of Q&A websites, and a large number of

these websites focus on different aspects of software development. The most promi-

nent Q&A website aimed at developers is Stack Overflow, which hosts a large com-

munity of users and millions of questions about programming and technology. Stack

Overflow currently receives over 120 million monthly visitors and ranks on the top 50

most popular websites in the world [82].

The large amounts of data generated through Q&A websites are an essential as-

set to understanding how the members of the communities behave, how they share

knowledge among them, and how useful these websites are for users.

While there have been studies on other Q&A websites, software engineering re-

searchers have invested enormous effort in studying Stack Overflow, and hundreds of

papers have used its data since its initial release in 2008 [4]. Mamykina et al. [69]

showed that Stack Overflow was more effective than other Q&A websites with high re-

sponse rates and fast response times on the website’s first years online while. Asaduz-

zaman et al. [9] explored why questions go unanswered and Wang et al. [124] identified

factors that lead to fast answers.

Several studies have examined the topics users ask about [5, 6, 12, 14, 103, 125],

their opinions [64], pain-points [29], and their overall asking and answering behaviour [106,

118]. Others have analyzed the quality of the knowledge that is shared. Zhang et

al. [137] analyzed obsolete answers, while Parnin et al. [83] have compared the web-

site’s discussions to API documentation. Research has also shown the usefulness of

the information shared on the website, exploring how developers use the code shared

on the website [7, 131], and how to use it to augment other software development

resources [36, 119].

Studies have also investigated methods of improving Stack Overflow, such as help-

ing users find the information [77, 136], identifying expert users and using their knowl-

edge to help the community [38], and increasing user contribution using symbolic

rewards, such badges and bounties [20, 145].

11

Fewer studies explored the content of other Q&A communities. Hong et al. [49]

have analyzed how users share knowledge on a health Q&A website, and Fu and

Oh [40] analyzed the quality of answers on social Q&A websites. Other studies have

provided ways of improving Q&A websites, such as increasing the overall polite-

ness [126], increasing the popularity of academic answers [143], finding experts to

answer questions [89, 110], predicting relevant discussions [90], and improving the

way the community welcomes new users [108]. A significant portion of the research

on other Q&A websites also focused on exploring what motivates users to participate

in these communities [21, 31, 35, 41, 55, 142].

2.3.2 Game development Q&A websites

Among the many Q&A websites on the Internet, there are several that focus on

discussing the development of games. Despite game development being composed of

several skills ranging from programming to physics, these Q&A websites for game

development usually revolve around a single game development engine and seek to

help users find the solutions to the problems that surface when using that engine.

Game development engines are an integral part of the game development environ-

ment and shape the way games are made [39]. Unity and Unreal Engine 4 (UE4)

are two of the most used game development engines, aggregating millions of regis-

tered users and being used to develop a large number of commercial games. These

engines also ranked among the most popular technologies used by survey respondents

on Stack Overflow’s 2020 developer survey [81].

Both Unity and UE4 provide specialized Q&A websites, namely Unity Answers and

the UE4 AnswerHub, to help engine users find the answers to their game development

questions. Unity Answers and the UE4 AnswerHub are the two largest Q&A websites

specializing in game development, hosting hundreds of thousands of questions about

this topic. In comparison, Stack Overflow has less than sixty-five thousand questions

related to these game engines, while the Game Development Stack Exchange hosts

12

fifty thousand questions in total, as of February 2021.

Game engines have seen various applications in research, such as simulating rock-

falls [44], running behavioural experiments [18], and exploring urban areas [28]. There

have also been studies on their performance [24, 71] and their use in serious game de-

velopment [24, 26]. Studies on the game development community itself tend to focus

on social aspects, such as gender [16, 17, 37] and the relationship between developers

and game engines [127], rather than user behaviour and how they share knowledge.

As far as we know, our study is the first to explore game development Q&A websites

and their communities.

2.3.3 Topic modeling of Q&A websites

The Latent Dirichlet Allocation (LDA) model is a statistical generative model that

identifies latent topics present in the set of documents given as input using a Dirichlet

distribution [15]. The model assigns each word a probability of belonging to a given

topic, therefore allocating them into groups. We can then use these probabilities

to classify documents into the topics represented by the words. The LDA model is

unsupervised, taking only the corpus and the number of topics to be identified as

input, along with other tuning parameters. The final topics are unlabelled, and we

need to identify their meaning (if any) by manually analyzing the words that compose

them.

Many studies have used LDA for modeling topics from corpora of documents ex-

tracted from different sources [54]. The LDA model has also seen ample use in soft-

ware engineering and mining software repositories research, where researchers used

the extracted topics to analyze discussions related to different aspects of software

development [22]. For example, Ray et al. [96] used the topics extracted from feature

descriptions on GitHub to identify project domains, while Lukins et al. [68] used an

LDA-based approach for automatic bug localization in open-source software. Other

have used LDA to categorize and detect duplicate bug reports [19, 112], and analyze

13

reviews for mobile apps [51] and games [34].

Software engineering researchers have also amply used LDA to identify topics dis-

cussed on Stack Overflow. For example, Allamanis and Sutton [6] found that software

developers discuss topics relating to how and why implementations and technologies

do or do not work, while Barua et al. [12] analyzed how topics interact and change

over time. Other studies analyzed the topics discussed on Stack Overflow about

specific software development subjects such as machine learning [11, 42], mobile de-

velopment [66, 103], and security [134]. Researchers have also analyzed the trends for

topics of different software development disciplines finding that, for example, contin-

uous engineering topics attracted fewer answers and are decreasing over time [135],

while web development topics increased their share of questions [10]. We use similar

techniques as those studies to analyze the topics of posts on Q&A websites for game

development. Our study is, to the best of our knowledge, the first to analyze the

topics discussed by game developers in Q&A websites.

2.4 Methodology

We used five distinct datasets from different sources for this study. These datasets

comprise data we collected from four Q&A websites and from the responses game

developers gave to our survey about these communities. In this section, we describe

the process of collecting and processing this data before using it for our analysis.

Figure 2.1 provides an overview of the steps taken in our methodology. The code and

data used in this study can be found online in our replication package7.

2.4.1 Data collection

We used data from four Q&A websites in this study, namely Unity Answers, the UE4

AnswerHub, Stack Overflow, and the Game Development Stack Exchange. We chose

to analyse these websites as they are the four largest Q&A websites discussing game

7http://doi.org/10.5281/zenodo.5047790.

14

http://doi.org/10.5281/zenodo.5047790

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Answers for Game Development</title>

 <link rel="stylesheet" href="css/styles.css?v=1.0">

</head>

<body>

XML/HTML
Parser

Data
cleaning

Game dev.
Q&A data

Data
preprocessing

Unity Answers

Game Dev.
Stack Exchange

Stack Overflow

Data dump

Web
Crawler

Data collection

UE4
AnswerHub

Data dump

Game dev.
posts

Removal of
non-English

text

Removal of
HTML tags

Stemming &
tokenizing

</>
HTML

Text
preprocessing

игра

ゲーム

Processed
documents

LDA model

Topic list

Topic
modeling

Game Dev

Game Dev

Manual
labeling

Assign
categories

Labeled
documents

Topic
labeling

RQ1

Survey about
Q&A websites
for game dev.

Survey with
game devs.

Share with
game devs.

Survey
responses

RQ2, RQ3 RQ4

Figure 2.1: Overview of our data collection and processing methodology.

development that we could find.

We acquired the data from Stack Overflow and the Game Development Stack Ex-

change from the December 2020 Stack Exchange data dump8. For Stack Overflow, we

selected posts (i.e., questions, answers, and comments) that had at least one of the fol-

lowing tags to compose our game development dataset: ‘game-engine’, ‘game-physics’,

‘game-development’, ‘gameobject’, ‘2d-games’, ‘unreal-engine4’, ‘unreal-development-

kit’, ‘unreal-blueprint’, ‘unrealscript’, ‘unityscript’, ‘unity-ui’, ‘unity-webgl’, ‘unity-

networking’, ‘unity-editor’, ‘unity5’, ‘unity5.3’, ‘unity2d’, ‘unity3d’, ‘unity3d-mecanim’,

‘unity3d-5’, ‘unity3d-unet’, ‘unity3d-2dtools’, ‘unity3d-terrain’, ‘unity3d-gui’, ‘unity3d-

editor’. We manually selected these tags from the list returned by Stack Overflow’s

tag search engine9 for the terms ‘game’, ‘unity’, and ‘unreal’. We only selected tags

related to overall game development and game engines and excluded tags related to

other frameworks and programming languages, such as Python and JavaScript.

As opposed to the other websites, Unity Answers and the UE4 AnswerHub do

8https://archive.org/details/stackexchange, accessed February 5, 2021.
9https://stackoverflow.com/tags, accessed February 5, 2021.

15

https://archive.org/details/stackexchange
https://stackoverflow.com/tags

not share their data in a structured format. Therefore, we created a web crawler to

harvest data directly from the Unity Answers and UE4 AnswerHub websites. We used

the websites’ question catalogs, displayed on their homepage, as the starting point

of crawling. These catalogs list the questions posted on the sites and contain IDs

used to access them. We collected all of the question pages indexed by the catalogs,

from oldest to newest. The pages also included the answers and comments posted as

replies to the question. Likewise, we extracted the IDs of users that authored these

posts and used them to access their profiles. We conducted the same procedure for

Unity Answers and the UE4 AnswerHub. The crawler ran from August 3rd to August

11th, 2020, collecting 593,006 pages from Unity Answers and 279,902 pages from the

UE4 AnswerHub.

2.4.2 Data preprocessing

The data we collected is in XML format for Stack Overflow and the Game Develop-

ment Stack Exchange, and HTML format for Unity Answers and UE4 AnswerHub.

We therefore parsed those files into tabular format and selected the information we

use in this study. For all posts, we selected the post ID, post date, author ID, and

their text contents. We also selected the fields indicating to which post an answer or

comment belongs, and the fields indicating if an answer was accepted and a question

was resolved. For Unity Answers and the UE4 AnswerHub, we collected information

about the type of user (e.g., moderator or staff member).

We performed several cleaning steps on the data, such as type conversions, date for-

matting, and removal of posts with missing information. Table 2.1 shows a summary

of our data at the end of the cleaning process.

2.4.3 Text preprocessing

Prior to extracting topics from the posts for RQ2 and RQ3, we perform a series of text

preprocessing steps. These steps aim to remove any of the text’s unwanted features

16

Table 2.1: Summary of the data we collected from Q&A websites about game devel-
opment.

Website Questions Answers Comments Posts' Users

Unity Answers 381,055 347,264 652,091 1,380,410 196,954

UE4 AnswerHub 193,338 170,269 402,494 766,101 80,094

Stack Overflow 64,648 73,002 228,540 366,190 65,735

Game Dev. Stack Exchange 50,395 76,478 211,627 338,500 33,735

Total 689,436 667,013 1,494,752 2,851,201 376,481

'Posts = Questions + Comments + Answers

and provide better results in the next steps of the methodology.

We started by removing posts that belonged to any sections of the websites that

were not primarily in English. We used a unique token to represent the presence of

code in the texts, and replaced any code contained between the <code> HTML tag

with it using regular expressions. Similarly, we replaced images using regular expres-

sions that matched tags, and URLs using regular expressions that matched

<a> tags or a contiguous string of characters preceded by http:// or https://. We

removed any of the other HTML tags or symbols using Python 3’s Beautiful Soup 4

library [99]. Finally, we used Python 3’s Gensim library [97]’s text preprocess

function with default parameters to remove punctuations, multiple whitespaces, nu-

meric characters, stopwords, and short words. The function also stems the texts using

the Porter Stemmer [87], and tokenizes it by splitting words separated by spaces.

2.4.4 Topic modeling

We used two Latent Dirichlet Allocation (LDA) models to extract topics from the

websites’ posts. As Unity Answers and the UE4 AnswerHub are the official Q&A

websites for their game engines, we believe the terminology used on them is different

than that used on the other two websites. Therefore, we trained one of the models

17

using data from Unity Answers and the UE4 AnswerHub, and the other one using

data from Stack Overflow and the Game Development Stack Exchange.

We used Gensim’s implementation of the algorithm provided by its ldamodel func-

tion. We set the alpha and eta parameters to “auto”, the passes parameter to 1,

and the eval every parameter to 5. We also used a value of 42 for the random state

to ensure reproducibility. We defined the number of topics as 30, as we believed that

was a good number of topics for an initial analysis. We experimented with other

numbers of topics from 15 to 50, but found that the resulting topics were harder to

interpret and did not provide satisfactory results.

We used the preprocessed texts obtained in Section 2.4.3 as input for the model.

As an output, the model produced 30 sets of words accompanied by their probabilities

of belonging to each set for each post. These sets represent the topics identified by

the model based on the initial parameters. We used the word probabilities to assign

the posts to each topic.

2.4.5 Topic labeling

The topics provided by the LDA models were initially unlabeled, given that they

are only collections of co-occurring words that do not necessarily carry any meaning

with them. Therefore, we manually labeled each of the topics from both models by

analyzing their 15 most important words. We also randomly sampled and read ten

posts from each topic to corroborate our manual classification. We excluded two

topics from Stack Overflow and the Game Development Stack Overflow, as we could

not find a suitable label for them.

After labeling the topics, we found that some of them comprised a large portion of

the posts while providing little information regarding their content. Six of the topics

(three from each model) were related to words commonly used in Q&A discussions,

such as “help,” “try,” and “issue,” and do not have a specific relation to game de-

velopment. However, they are present in over 90% of posts and appear as the three

18

most important topics in most of them. We have thus opted to ignore these topics

for our analysis by unassigning them to their posts. Table 2.2 and Table 2.3 show the

lists of all of the topics, including their most important tokens.

We note that eliminating the topics left some posts without a topic assigned to

them. The absence of a topic should indicate that the post discusses no other topic of

interest. We opted to remove those posts from our analysis, as they only accounted

for 0.6% (16,979) of the total. Thus, after removing the topics mentioned above, we

obtained 27 topics for Unity Answers and the UE4 AnswerHub, and 25 topics for

Stack Overflow and the Game Development Stack Exchange.

We further classified the topics into three broad categories to analyze the higher-

level concepts discussed in the posts. We thus assigned any topic related to a specific

programming language, paradigm, or concept to the “General software development”

category and topics discussing errors, crashes, and bugs related to any tool, frame-

work, platform, or programming language to the “Bugs, crashes and errors” category.

We assigned the rest of the game development topics to the “Game development”

category.

2.4.6 Survey with game developers

We ran a survey with game developers from June 16th to August 14th, 2020. We

shared the survey on major online game development communities on websites such as

Facebook and Reddit, and received 347 responses. A list of the surveyed communities

is available online in our replication package.

We asked the developers multiple-choice and essay questions about their use of

Unity, UE4, and their Q&A communities. The survey comprised 48 questions in 20

sections10. We directed respondents to different sections depending on their answers.

For example, we asked questions about Unity only to those that used it for studying

or working in the past.

10Survey available at https://figshare.com/s/a8fe3851e409967e2d39

19

https://figshare.com/s/a8fe3851e409967e2d39

Table 2.2: Summary of the labels and categories manually assigned to the topics
obtained from running the LDA algorithm to data from Unity Answers and the UE4
Answerhub.

Category Topic Top 5 tokens

Game development

Game objects object, compon, spawn, attach, destroi

Meshes mesh, node, map, scale, size

Lighting light, normal, shadow, graph, dynam

Rendering img, text, screenshot, imag, render

Game mechanics frame, block, speed, fp, damag

Movement rotat, move, direct, forward, movement

Geometry point, sphere, shot, cube, draw

Game loop time, run, second, continu, stop

External tools widget, plugin, thread, launcher, process

Positioning locat, pawn, cast, target, hit

Collisions collis, box, physic, overlap, wall

3D modeling import, model, templat, export, root

Character animation charact, plai, control, anim, state

Materials materi, textur, color, channel, bump

Camera and display camera, screen, world, main, view

Game engines project, engin, crash, build, file

FX sound, parent, child, item, hear

General software development

Runtime save, content, load, game, devic

General programming privat, float, public, int, playercontrol

Networking player, server, client, connect, send

GUI click, select, button, input, press

Object Oriented Programming class, type, instanc, static, custom

Event handling event, tick, enabl, disabl, true

File management editor, file, asset, addit, data

Bugs, crashes and errors

Bug reports issu, problem, fix, level, bug

Programming errors cpp, string, arm, format, lol

General errors error, compil, messag, fail, dll

20

Table 2.3: Summary of the labels and categories manually assigned to the topics
obtained from running the LDA algorithm to data from Stack Overflow and the
Game Development Stack Exchange.

Category Topic Top 5 tokens

Game development

Game objects object, script, compon, variabl, gameobject

Rendering render, textur, shader, mesh, map

Game environments scene, agre, disabl, particl, enabl

Viewport window, platform, devic, opengl, mode

Game mechanics player, tile, enemi, spawn, mechan

Movement right, direct, turn, left, move

Geometry point, object, angl, distanc, box

Positioning posit, rotat, vector, transform, calcul

Collisions collid, physic, collis, forc, hit

3D modeling model, import, format, blender, score

Character animation anim, charact, item, grid, hand

Display size, scale, draw, target, unit

Camera camera, space, screen, world, coordin

Game engines uniti, project, error, build, version

Sound/audio sound, plai, step, sourc, cube

General software development

Runtime data, save, load, text, store

GUI control, button, true, click, select

General programming valu, number, arrai, list, float

User accounts user, share, profil, pictur, cach

Networking server, client, send, connect, messag

Publishing apps support, app, googl, api, applic

Java/Android development main, thread, librari, coroutin, java

Object Oriented Programming type, class, instanc, entiti, static

Event handling input, state, event, action, inspector

File management imag, sprite, file, level, path

21

Table 2.4: Summary of the respondents of our survey.

Category Responses

Age

≤17 20 (6%)

18-29 223 (64%)

30-39 80 (23%)

≥40 23 (7%)

Prefer not to say 1 (<1%)

Gender

Man 313 (90%)

Woman 22 (6%)

Other 5 (1%)

Prefer not to say 7 (2%)

Game developer type

(not mutually exclusive)

Hobbyist 141 (41%)

Student 107 (31%)

Professional 179 (52%)

Years of experience

in game development

≤1 77 (22%)

2-3 53 (15%)

3-4 89 (26%)

5-9 77 (22%)

≥10 51 (15%)

All respondents also answered questions about their previous experience with game

development and had the option to provide additional personal information such as

their age and their country of residence. We used this information to characterize the

population that originated our sample of respondents. Table 2.4 shows a summary of

the responses we acquired for these questions. The majority of respondents are male

game developers of less than 30 years of age. A significant portion of respondents

(31%) are students, and many have only a few years of experience, which indicates

that they are still early in their game development careers.

2.5 Results

In this section we discuss the motivation, approach and findings for each of our

Research Questions.

22

2.5.1 RQ1. How did the studied game development Q&A
communities evolve in terms of user participation?

Motivation: The goal of this research question is to uncover the trends experienced

by the studied communities through a set of different measures. These trends pro-

vide insights on how successful the studied communities have been in nurturing and

maintaining an active user base. We also identify a group of factors to investigate

possible correlations to the changes we observed. Understanding what those factors

are and how they relate to these trends allows us to derive actions for helping the

communities prosper.

Approach: We used the creation dates of posts to analyze the evolution of the

studied Q&A communities. We grouped the posts (questions, answers or comments)

into months by removing the day from the post date. The monthly data provided

less noise for temporal analysis. We removed the last incomplete month before the

data collection, as it does not provide enough data for an accurate analysis. Overall,

we grouped the posts into 131 months for Unity Answers (from October 2009 to

July 2020), 78 months for the UE4 AnswerHub (from March 2014 to July 2020), 146

months for Stack Overflow (from August 2008 to December 2020), and 128 months

for the Game Development Stack Exchange (from December 2009 to December 2020).

We used the number of total posts per month and the number of active users per

month to measure community activity. We defined the number of active users as the

number of unique users that created a post in a given month.

We analyzed the percentages of answered and resolved questions per month as

a proxy for the communities’ ability to help users who post questions. Answered

questions are questions with one or more answers, while resolved questions are ques-

tions that have an accepted answer, indicating that the issue at hand was actually

solved. We calculated these percentages by dividing the number of answered and

resolved questions by the total number of posted questions in a month. Likewise, we

measured the answer effectiveness per month, which we defined as the percentage of

23

accepted answers from the total number of answers posted in a month.

We used the Cox-Stuart test [27] to obtain the statistical significance of the trends

in these measures. With this test, we test the null hypothesis of randomness against

the alternative hypothesis of a decreasing or an increasing trend in the data. The

Cox-Stuart test divides the sequence of observations in half and compares them by

performing a sign test. The test yields a p-value (p) that we used to discard the null

hypothesis if less or equal to a threshold of 0.05.

We moved on to identify factors correlated to the trends observed using the steps

above. We identified thirteen major releases related to the Unity and UE4 game

engines that occurred during the studied period. We defined major releases as the

release of new products or updates in which there was a change in the most significant

digit of the version number of the game engines. For Unity, we also included the

release of version 3.5, as it introduced several major new features and was described

by their creators as “one of the biggest additions to Unity since its inception” [117] at

the time of its release. Major releases are associated with significant changes in the

engines, which research has shown correlates to increased activity [65]. In addition,

changes in the licensing models (such as the free and public releases for Unity and

UE4) and the release of asset stores have made game development with those engines

more accessible to the public, which may also lead to increased activity. Table 2.5

shows the list of releases we identified.

We compared the number of posts and active users in Unity Answers and the

UE4 AnswerHub 30 days before and after each release to measure the correlation

between these releases and the communities’ trends. We only considered these two

communities for the release-level analysis as they are focused on discussing a single

engine each. All releases were more than 60 days apart, and the selected periods did

not overlap. We left out three releases that occurred on the first or last 30 days of the

observed period and did not provide a large enough sample for this comparison. We

measured the difference between the distributions of the two 30-day intervals using

24

the median daily number of posts and active users. We ran the Wilcoxon-signed-rank

test [128] to decide whether these differences were statistically different. We used

the p-value (p) provided by the test to discard the null hypothesis of the two samples

belonging to the same distribution if below a threshold of 0.05. This method is similar

to the one used by Linares-Vásquez et al. [65] to identify the correlations between

API changes and discussions on Stack Overflow.

We also calculated Cliff’s delta (d) to show the magnitude of this difference [25].

The delta describes the proportion of times that a median from the first period is

higher than one from the second. We used the interpretation proposed by Romano et

al. [102] to define the effect size as negligible (|d| ≤ 0.147), small (0.147 < |d| ≤ 0.33),

medium (0.33 < |d| ≤ 0.474), or large (0.474 < |d| ≤ 1).

We calculated the Pearson correlation coefficient to analyze how user activity, as

measured by the number of active users and posts per month, correlates to the changes

in the other measures.

We used the total number of posts made by each user as a proxy for their ex-

perience in using the Q&A websites. Users start with zero experience and become

more experienced as they interact with the community. Therefore, we calculated

each user’s experience in each month after their first post to understand how user

experience evolved.

Finally, we defined experienced users as the top 1% of users with the largest number

of posts in each community (1,875 users on Unity Answers and 802 users on the UE4

AnswerHub). Other studies also analyzed the contributions of the top 1% of the

most experienced and active users on Stack Overflow [69, 76]. We measured the

contributions of experienced users by the number of questions they answered and

resolved and their answer effectiveness.

Findings: Three of the studied communities have become less active over

the past few years. Figure 2.2 shows the number of posts per month for the four

studied websites. We observed that the number of posts per month decreases on

25

the Game Development Stack Exchange after October 2012 (p < .001), on Unity

Answers after March 2014 (p < .001), and on the UE4 AnswerHub after March 2015

(p < .001). These decreases occurred after periods of growth for Unity Answers

(p < .001) and the Game Development Stack Exchange (p = .03), and stability for

the UE4 AnswerHub (p = .69) after the communities’ initial release.

We found an 81% decrease when comparing the maximum number of posts in

March 2014 (21,525) to the lowest one in November 2019 (4,093) on Unity Answers,

and a 90% decrease on the UE4 AnswerHub, with the number of posts going from

21,736 to 2,273 between March 2015 and February 2020. In the Game Development

Stack Exchange the number of posts dropped from 4,785 in October 2012 to 1,380 in

September 2020, representing a 71% decrease.

Table 2.5: Major releases for Unity and the UE4 game engines. We only study
releases related to Unity Answers and the UE4 AnswerHub, as these websites focus
on discussing a single game engine each.

Engine Label Date Description

Unity

a 28-10-2009 Free release

b 15-10-2010 v3.0

c 14-02-2012 v3.5

d 13-11-2012 v4.0

e 19-03-2014 Asset store release

f 15-03-2015 v5.0

g 10-07-2017 v2017.1

h 02-05-2018 v2018.1

i 15-04-2019 v2019.1

j 22-07-2020 v2020.1

Unreal Engine

k 19-03-2014 v4.0/Public release

l 03-09-2014 Marketplace release

m 02-03-2015 Free release

26

a eb c d f g h i j

0

5K

10K

15K

20K

25K

2009 2011 2013 2015 2017 2019
Date

P
os

ts
 p

er
 m

on
th

(a) Unity Answers

k l m

0

5K

10K

15K

20K

25K

2009 2011 2013 2015 2017 2019
Date

P
os

ts
 p

er
 m

on
th

(b) UE4 AnswerHub

0

5K

10K

15K

20K

2009 2011 2013 2015 2017 2019
Date

P
os

ts
 p

er
 m

on
th

(c) Stack Overflow

0

5K

10K

15K

20K

2009 2011 2013 2015 2017 2019
Date

P
os

ts
 p

er
 m

on
th

(d) Game Development Stack Exchange

Figure 2.2: Evolution of the studied Q&A communities given by the number of posts
per month. The solid vertical lines represent events that occurred throughout the
communities’ lifetime. The line labels (a-m) refer to the ones shown in Table 2.5.
Dashed vertical lines represent minor updates.

27

a eb c d f g h i j

0

1K

2K

3K

4K

5K

2009 2011 2013 2015 2017 2019
Date

A
ct

iv
e

us
er

s

(a) Unity Answers

k l m

0

1K

2K

3K

4K

5K

2009 2011 2013 2015 2017 2019
Date

A
ct

iv
e

us
er

s

(b) UE4 AnswerHub

0

1K

2K

3K

4K

5K

2009 2011 2013 2015 2017 2019
Date

A
ct

iv
e

us
er

s

(c) Stack Overflow

0

1K

2K

3K

4K

5K

2009 2011 2013 2015 2017 2019
Date

A
ct

iv
e

us
er

s

(d) Game Development Stack Exchange

Figure 2.3: Evolution of the studied Q&A communities given by the number of active
users per month. The solid vertical lines represent events that occurred throughout
the communities’ lifetime. The line labels (a-m) refer to the ones shown in Table 2.5.
Dashed vertical lines represent minor updates.

28

We also observed the decline of those three communities (Unity Answers, the UE4

AnswerHub, and the Game Development Stack Exchange) in the number of active

users per month (Figure 2.3). We noticed that the decline only started a few years

after the decline in the number of posts per month in all of the communities. The

three communities showed a similar pattern of early growth in number of active users

followed by a period of stability before the decrease. On Unity Answers, the number

of active users showed an initial growth until 2014 (p < .001) and a decreasing trend

from late 2017 until early 2020 (p < .001). These trends are also present on the UE4

AnswerHub, where the number of active users grew until 2016 (p < .001) and started

falling in 2018 (p < .001), and on the Game Development Stack Exchange, where

that number grew until 2013 (p < .001) and decreased after 2016 (p < .001).

Between their highest and lowest points, the number of active users decreased 57%

on Unity Answers, going from 4,481 to 1,953 between August 2017 and October 2019,

76% on the UE4 AnswerHub, going from 3,354 in March 2018 to 816 in February 2020,

and 61% on the Game Development Stack Exchange, going from 904 in August 2016

to 351 in October 2020.

We noticed that these measures increased on Unity Answers and the UE4 Answer-

Hub during the first months of 2020, especially after March. These trends are likely

a symptom of the COVID-19 pandemic, which may have increased the time game

developers dedicated for learning and improving their skills. The number of posts

and active users reached levels similar to what they were in 2018. On Unity Answers,

the growth seems to be short-lived, with considerable declines occurring in June 2020.

However, we note that these increases are still in development, and more observations

are needed to analyze their overall trends.

In contrast to those three communities, we did not observe any decreases in posts or

active users per month on Stack Overflow (Figure 2.2c and Figure 2.3c). Instead, the

number of game development questions and active users discussing them grew until

2016 (p < .001), and plateaued after that (p = .09). The fact that Stack Overflow

29

0%

25%

50%

75%

100%

2009 2011 2013 2015 2017 2019
Date

Resolved questions
Answered questions

Answer effectiveness

(a) Unity Answers

0%

25%

50%

75%

100%

2009 2011 2013 2015 2017 2019
Date

Resolved questions
Answered questions

Answer effectiveness

(b) UE4 AnswerHub

0%

25%

50%

75%

100%

2009 2011 2013 2015 2017 2019
Date

Resolved questions
Answered questions

Answer effectiveness

(c) Stack Overflow

0%

25%

50%

75%

100%

2009 2011 2013 2015 2017 2019
Date

Resolved questions
Answered questions

Answer effectiveness

(d) Game Development Stack Exchange

Figure 2.4: Monthly percentages of answered and resolved questions, and answer
effectiveness in the studied Q&A communities.

did not suffer a decrease as the other communities may be a consequence of it not

being dedicated to discussing game development topics, and being a popular place

for asking general software development questions.

The percentages of answered and resolved questions decreased over time.

Figure 2.4 shows the percentages of answered and resolved questions for questions

posted in each month in the studied communities. We found that in all of the com-

munities, the percentages were at an all-time high during the first few months after

their launch and decreased in most of the following months (p < .001 in all commu-

nities).

There were sharper declines on Unity Answers and the UE4 AnswerHub when

compared to the other two websites. On Unity Answers, the percentage of answered

questions remained above 97% during the first twelve months, and reached its lowest

30

point of 34% in June 2020. A similar decline occurred in the percentage of resolved

questions, which peaked at 93% in October 2009 and reached a low of 11% in June

2020. On the UE4 AnswerHub, the percentage of answered questions fell from 97%

in March 2014 to 37% in July 2020. Meanwhile, the percentage of resolved questions

decreased from 81% in March 2014 to 14% in July 2020.

On the other hand, Stack Overflow and the Game Development Stack Exchange

consistently kept the percentage of answered questions above 90% until 2013 and 2015,

respectively. Furthermore, these percentages remained above 80% for most months

until 2018, only showing steeper drops after that. Nevertheless, the percentage of

answered questions reached 59% in November 2020 on Stack Overflow and 46% in

April 2020 on the Game Development Stack Exchange. The percentages of resolved

questions suffered similar decreases, going from 100% in October 2009 to 25% in

November 2020 on Stack Overflow, and from 79% in September 2010 to 24% in

September 2020 on the Game Development Stack Exchange. These percentages are

higher than the ones found for all of the questions in Stack Overflow11, where the

percentages of answered and resolved questions peaked at 88% and 65% in 2009, and

had a low of 45% and 24% in October, 2020.

Answers have become less effective on Unity Answers and the UE4 An-

swerHub throughout the years. Figure 2.4a and Figure 2.4b show the answer

effectiveness on Unity Answers and the UE4 AnswerHub. We found that the answer

effectiveness reached its highest value in the first months, peaking at 53% in February

2010 on Unity Answers and at 67% in December 2014 on the UE4 AnswerHub.

The answer effectiveness has fallen on Unity Answers when analyzing the whole

studied period (p < .001), despite experiencing an increase between February 2012

and September 2013 (p < .001). The lowest effectiveness we found on Unity Answers

was 18% in June 2020. On the UE4 AnswerHub, the answer effectiveness increased

11https://data.stackexchange.com/stackoverflow/query/1284342/answered-and-resolved-
questions#graph, accessed February 5, 2021.

31

https://data.stackexchange.com/stackoverflow/query/1284342/answered-and-resolved-questions#graph
https://data.stackexchange.com/stackoverflow/query/1284342/answered-and-resolved-questions#graph

from March 2014 to December 2014 (p = .03), but decreased over the following years

(p < .001), reaching a low of 23% in June 2019.

We observed different patterns on Stack Overflow and the Game Development

Stack Exchange. On those communities, the answer effectiveness grew until 2013 (p =

.005 for Stack Overflow and p < .001 for the Game Development Stack Exchange)

before stabilizing in the following years. Furthermore, on Stack Overflow the answer

effectiveness started decreasing in 2017 (p = .009).

The communities grew as major releases occurred. We found that the

release of Unreal Engine 4 for free in March 2015 correlates to an increase in the

number of posts per day (p < .001, large effect size) and of active users per day

(p < .001, large effect size) on the UE4 AnswerHub. When comparing the intervals

prior and after the release, the median number of posts (456.5) and active users (212)

per day increased over 50% (to 709 and 318.5, respectively).

On Unity Answers, a 35% increase in the median number of posts per day (from

146 to 197.5, p = .003, large effect size) and a 29% increase in the median number of

active users per day (from 76.5 to 98.5, p = .004, large effect size) followed the release

of Unity v3.0. The release of Unity v4.0 correlates to a smaller increase of 17% in

the median number of active users per day (from 175.5 to 206, p = .008, large effect

size).

These are only three of the ten major releases we analyzed. On Unity Answers, the

release of the Unity Asset Store correlates to decreases of 19% (from 306.5 to 279.5,

p < .001, large effect size) and 7% (from 728 to 592.5, p = .02, medium effect size)

in the median number of posts per day and active users per day, respectively. Other

major releases showed no statistically significant difference based on the test results.

Nevertheless, the statistically significant releases correspond to the net growth in the

communities. These results are consistent with the ones found for Stack Overflow,

where changes in Android APIs correlate to increases in discussions [65].

The percentages of answered and resolved questions went down as the

32

communities grew. The increase in the number of posts and active users in all of

the communities correlates to a decrease in the percentages of answered and resolved

questions. We found correlation coefficients below -0.5 between these measures during

the period of the communities’ growth.

After the growth, we found correlations between 0.4 and 0.9 for all of the communi-

ties but Stack Overflow. For Stack Overflow, the correlations between the percentages

and the number of posts remained at -0.5 during the period of stability after 2016. We

found no correlation between the number of posts and the percentages of answered

and resolved questions for Stack Overflow after 2016.

The decrease of the percentages while the community grew may be an indication

of an overload caused by the large number of posts. On the other hand, the effects

of a smaller and less active community may be playing a part in decreasing these

percentages during the communities’ decline.

Experienced users stopped contributing to the communities. Figure 2.5

shows the experience of active users over time on the studied communities. The

overall experience of users started decreasing after 2013 on the Game Development

Stack Exchange, after 2015 on Unity Answers and after 2017 on Stack Overflow and

the UE4 AnswerHub. On the UE4 AnswerHub, 44% (34) of experienced moderators

also became inactive in 2017.

This decrease occurred as experienced users become inactive, and new inexperi-

enced users joined the community. While experienced users stopped using the com-

munities, new users did not acquire enough experience to replace them.

Experienced users increased the percentage of answered and resolved

questions. Experienced users significantly contributed to the communities by reduc-

ing the number of unanswered questions. We found that the top 1% most experienced

users posted answers on 63% (149,794) of the 235,900 answered questions on Unity

Answers, 67% (85,667) of the 128,100 answered questions on the UE4 AnswerHub,

and 60% (26,157) of the 43,799 questions on the Game Development Stack Exchange.

33

Experienced users contributed slightly less on Stack Overflow, posting answers on

only 43% (22,142) of the (51,971) answered questions.

Experienced users also provided more effective answers. On Unity Answers, these

users had an answer effectiveness of 39%, which is 18 percentage points higher than

the effectiveness of other users (21%). On the UE4 AnswerHub experienced users had

an answer effectiveness of 57%, compared to the effectiveness of 35% of others. This

difference was smaller on the Game Development Stack Exchange, where experienced

users had an effectiveness of 41% (against 30% of other users), and on Stack Overflow,

where experienced users had an effectiveness of 48% (against 32% of other users).

Overall, experienced users resolved 66% (68,588) of the 103,723 resolved questions

on Unity Answers, 68% (54,833) of the 80,749 resolved questions on the UE4 Answer-

Hub, 54% (14,484) of the 26,806 resolved questions on the Game Development Stack

Exchange, and 43% (11,812) of the 27,460 on Stack Overflow.

We found that 10% (77) of the most experienced users we selected on the UE4 An-

swerHub were moderators. These moderators had an even higher answer effectiveness

(80%), answered 38,937 questions (30% of the total number of answered questions),

and resolved 32,540 questions (40% of the total number of resolved questions). We

also identified moderators among the most experienced users on Unity Answers, but

their contribution to the community was far smaller than that of the UE4 Answer-

Hub’s moderators.

Other studies have also found that a small percentage of experienced users con-

tribute to Q&A communities by providing a large number of higher-quality an-

swers [69, 76].

Summary: All of the studied communities have stopped growing during the last
few years. The communities have become less active, and the percentage of unan-
swered questions has increased. Additionally, answers have become less effective,
and most questions go unresolved. These changes correlate to the release of new
products and engine versions, and to the decrease of the overall experience of the
communities.

34

10

1,000

100,000

2009 2011 2013 2015 2017 2019
Date

E
xp

er
ie

nc
e

(a) Unity Answers

10

1,000

100,000

2009 2011 2013 2015 2017 2019
Date

E
xp

er
ie

nc
e

(b) UE4 AnswerHub

10

1,000

100,000

2009 2011 2013 2015 2017 2019
Date

E
xp

er
ie

nc
e

(c) Stack Overflow

10

1,000

100,000

2009 2011 2013 2015 2017 2019
Date

E
xp

er
ie

nc
e

(d) Game Development Stack Exchange

Figure 2.5: Distribution of active user experience per semester (measured in the
cumulative number of posts made by each user) for the studied Q&A communities.

35

2.5.2 RQ2. What topics are most frequently discussed by
game developers on the studied Q&A websites?

Motivation: Developing games requires a set of skills that are unique to the game

development context [58, 84]. For example, other than the programming concepts

needed to create and manipulate game behaviour, game developers also need a basic

understanding of physics, graphic design, and sound editing. In this research question,

we explore the topics of posts collected from the studied game development Q&A

websites to identify how prominent they are in the community and how they have

changed over time. This analysis reveals the topics in which game developers are most

or least interested or those with which they require more or less help in understanding.

Game development websites and their communities can use our findings to identify

which topics they must focus on to help game developers in their work and improve

their experience.

Approach: We analyzed the distribution of posts per topic and category in each of

the studied communities. We identified the all-time most discussed topics and cate-

gories according to the proportion of posts assigned to them. We chose to analyze the

proportion instead of the absolute number of posts as we are interested in exploring

how these topics relate to each other. Furthermore, by using the proportion of posts,

we avoid the effect of the growth or decline of the game development community.

We compared the distributions of posts belonging to each topic in the studied web-

sites. As we obtained the topics from two different LDA models (see Section 2.4.4),

we compared Unity Answers and the UE4 AnswerHub separately from Stack Over-

flow and the Game Development Stack Exchange. We used the Chi-square test to

determine if there is a statistical significant difference between the distribution of

posts per topic for each pair of websites. This test compares the frequencies of posts

per topic between the websites to determine if they come from the same distribution.

We rejected the null hypothesis of the distributions being the same if the resulting

p-value is below the threshold of 0.05, indicating that the websites discussed topics

36

in different proportions.

While analyzing the topics in an all-time manner is useful for understanding his-

torical and consolidated patterns, this approach hides possible trends that might have

occurred over the years. The proportion of topics might change as time passes, and

a long history of similar patterns might overshadow those that occurred in brief in-

tervals. Thus, we use the time of posting collected with each post to calculate the

distribution of topics per month.

We use the Cox-Stuart test [27] to identify any trend in the percentage of posts per

month for each topic. We test the null hypothesis of randomness in the data against

the hypothesis of non-randomness in the form of a decreasing or increasing trend. We

then reject the null hypothesis if the resulting p-value is below a threshold of 0.00096

(0.05/52) that we obtained using the Bonferroni correction for 52 comparisons (one

for each topic in Table 2.2 and Table 2.3).

Findings: Most of the topics discussed on the studied Q&A websites are

specific to game development. Table 2.6 shows the number of topics belonging to

the categories we defined. We found that 17 topics (63%) on Unity Answers and the

UE4 AnswerHub are specific to game development, while 7 (26%) relate to general

software development, and 3 (26%) relate to bugs, crashes, and errors. We found

similar results on Stack Overflow and the Game Development Stack Exchange, with

16 topics (64%) being specific to game development, and 9 (36%) relating to general

software development.

Table 2.6 also shows the number of posts assigned to each of the categories. We

observed that 27% of posts on Unity Answers and 31% of posts on the UE4 An-

swerHub belong to Bugs, crashes and errors, despite that category having only three

topics assigned to it. On the other hand, only 15% of posts on Unity Answers and

13% on the UE4 AnswerHub belong to the General software development category.

We did not identify any topics and posts relating to bugs, crashes and errors on Stack

Overflow and the Game Development Stack Exchange, probably because these topics

37

Table 2.6: Distribution of topics and posts per category.

Website Category Topics % of topics Posts % of posts

Unity Answers

Game development 17 63% 795,506 58%

General software dev. 7 26% 207,053 15%

Bugs, crashes and errors 3 11% 375,248 27%

UE4 AnswerHub

Game development 17 63% 423,439 56%

General software dev. 7 26% 96,116 13%

Bugs, crashes and errors 3 11% 233,383 31%

Stack Overflow
Game development 16 64% 232,702 64%

General software dev. 9 36% 133,048 36%

Game Development Stack Exchange
Game development 16 64% 215,635 64%

General software dev. 9 36% 122,092 36%

are specific to a game engine.

The distributions of topics show no statistically significant difference

between the websites. Figure 2.6 shows the distribution of topics on the studied

communities. We found a p-value of 0.24 after comparing both pairs of websites using

the Chi-square test, and thus could not reject the null hypothesis of those samples

coming from different distributions.

However, we still observed slight differences in the ranking of topics between the

websites. For example, we found that Game objects was among the least discussed

topics on the UE4 AnswerHub, while Unity Answers frequently discussed it, given

that Game Objects are a specific type of object used as a basis for building charac-

ters, props and scenery in the Unity game engine. Similarly, Stack Overflow had a

larger focus on discussing Game objects than the Game Development Stack Exchange.

Those differences indicate that the websites have slightly different focuses, which may

be a consequence of the different engines discussed on them and overall community

preferences.

Bug reports was the most discussed topic on Unity Answers and the UE4

AnswerHub. Figure 2.6a and Figure 2.6b show the percentage of posts assigned to

38

0% 10% 20% 30%

Programming errors
Geometry

General programming
FX

External tools
File management

3D modeling
Lighting

Rendering
General errors

Camera and display
Event handling

Networking
Positioning

Materials
Game mechanics

Character animation
Meshes

Obj. Oriented Prog.
Runtime

GUI
Game loop

Collisions
Movement

Game objects
Game engines

Bug reports

Percentage of posts

Bugs, crashes, and errors
Game development
General software development

(a) Unity Answers

0% 10% 20% 30%

General programming
Programming errors

Geometry
FX

General errors
File management

Positioning
External tools

Camera and display
Game mechanics

3D modeling
Game objects

Lighting
Event handling

Collisions
Materials

Movement
Runtime

GUI
Game loop
Networking
Rendering

Character animation
Obj. Oriented Prog.

Meshes
Game engines

Bug reports

Percentage of posts

Bugs, crashes, and errors
Game development
General software development

(b) UE4 AnswerHub

0% 10% 20% 30%

3D modeling
Sound/audio

Character animation
User accounts

Game environments
Game mechanics

Networking
GUI

Android development
Event handling

Display
Publishing apps

Camera
Runtime

Collisions
File management

Viewport
Movement
Geometry
Rendering

General programming
Positioning

Game engines
Obj. Oriented Prog.

Game objects

Percentage of posts

Game development
General software development

(c) Stack Overflow

0% 10% 20% 30%

3D modeling
GUI

Android development
User accounts

Game environments
Sound/audio

Character animation
Event handling

Networking
Runtime
Camera

Publishing apps
File management

Display
Collisions

Game mechanics
Game engines

Movement
Viewport

General programming
Game objects

Geometry
Positioning
Rendering

Obj. Oriented Prog.

Percentage of posts

Game development
General software development

(d) Game Development Stack Exchange

Figure 2.6: Percentage of posts assigned to each topic in the studied Q&A communi-
ties.

39

each topic on Unity Answers and the UE4 AnswerHub. We found that over 24% of

posts on Unity Answers (334,839) and over 29% of posts on the UE4 AnswerHub

(222,579) discuss Bug reports. Most of the other topics in those websites had fewer

than 10% of posts assigned to them, with the only exception being Game engines on

the UE4 AnswerHub. This finding indicates that game developers used Unity Answers

and the UE4 AnswerHub as bug reporting platforms, as they are maintained by the

companies that develop the game engines they discuss.

Game developers discussed different aspects of game development. Fig-

ure 2.6 shows the distribution of topics on the studied communities. We observed that

topics related to game development are among the most discussed in all of the com-

munities and describe many different aspects unique to game development. For exam-

ple, topics such as Meshes, Rendering, and Positioning relate to game world-building,

whileMovement, Collisions, and Character animation discuss game behaviour. Other

topics discuss the tools used for game development (e.g., Game engines), and the im-

plementation of various game mechanics (e.g., Game loop).

Other game development topics have accrued a smaller number of posts and do not

appear among the top-ranked ones. The lower-ranked topics may represent the ones in

which game developers are less interested or have fewer issues. We also observed that

some of these topics relate to specific niches inside the game development community,

such as 3D modeling, Sound/audio, and FX, and may therefore have a smaller group

of developers discussing them.

Object-oriented programming was one of the most popular topics on

Stack Overflow and the Game Development Stack Exchange. Figure 2.6c

and Figure 2.6d show the distribution of posts per topic on those two websites. We

found that Object-oriented programming was the most discussed topic on the Game

Development Stack Exchange with 15% of posts (51,671), and the second most dis-

cussed on Stack Overflow with 16% of posts (58,430). The Game objects topic was

also popular on those websites, being the most frequently discussed on Stack Overflow

40

with 17% of posts (62,934), and the fifth most discussed on the Game Development

Stack Exchange with 7% of posts (23,586). Game objects are the base class for enti-

ties in the Unity game engine, and game developers need to understand basic object

oriented programming concepts to use them effectively.

Game developers also discussed Object-oriented Programming and Game Objects

in the other websites, although in smaller proportions. Together, the two topics

accounted for only 10% of posts on Unity Answers, and 5% on the UE4 AnswerHub.

The percentage of posts changed over time for several topics. Table 2.7

shows the number of topics with increasing and decreasing trends (p < 0.00096) for

each of the studied communities. Over 30% of the topics showed changes in all of

the communities, and over half on Unity Answers and the UE4 AnswerHub. We

noticed that abrupt changes occurred at the start of the studied period, which can

be explained by the low number of questions asked in the communities at that time.

However, most of the topics had subtle changes of only a couple percentage points

over the years.

Table 2.7: Summary of topic trends per website.

Website Increasing topics Decreasing topics Topics changed % of topics

Unity Answers 6 9 15 56%

UE4 AnswerHub 13 2 15 56%

Stack Overflow 8 2 10 40%

Game Development Stack Exchange 4 4 8 32%

Summary: Game developers discussed topics specific to game development more
frequently than others. These topics covered several aspects unique to game de-
velopment. The most discussed topic on Unity Answers and the UE4 AnswerHub
was Bug reports, indicating that game developers used those websites as official
bug reporting systems. Game developers also frequently discussed object-oriented
programming, especially on Stack Overflow and the Game Development Stack Ex-
change.

41

2.5.3 RQ3. What are the characteristics of posts from each
topic?

Motivation: In RQ2 (Section 2.5.2) we explored and compared the topics discussed in

the studied game development Q&A communities using the distribution of posts per

topic and category. While that analysis is important for identifying relevant topics

and trends in the game development community, we still lack understanding of how

these topics differ in practice. For example, game developers might discuss some

topics frequently but in little detail, which may be of little use for those seeking to

learn more about the subject. On the other hand, unpopular topics might offer more

in-depth discussions, which provide a more reliable source of information. Therefore,

analyzing the characteristics of the posts from each topic and how they differ might

uncover the topics at which the game development community is proficient and those

it should focus on improving, while also setting expectations for newcomers.

Exploring how topics differ among themselves is useful for understanding the game

development community as a whole. However, we have collected texts from posts of

four distinct Q&A websites which have different features, communities, and focus on

specific aspects of game development. Therefore, we also explore how those topics

differ in terms of the websites where they are discussed. A better understanding of

the websites’ specific characteristics can aid game developers in choosing with which

community they will interact and be a part of based on their preferences.

Approach: We compared posts from each topic in each community based on six

different aspects. We compared questions, answers and comments separately, as each

has unique characteristics ensuing from their distinct uses in the websites. Table 2.8

describes the 10 comparisons we made (5 for questions, 3 for answers, and 2 for

comments) based on the type of the posts, along with brief descriptions for each of

them. The aspects we chose for these comparisons serve as proxies for measuring

the quality of discussions for each topic. For example, the number of responses and

answered questions point to how much help a user gets when asking a question.

42

Meanwhile, the number of resolved questions and accepted answers and the length

of post texts gauge the quality of the help provided by other users by measuring if

correct solutions are provided and how thoroughly they are discussed. Finally, the

presence of code in posts indicates if the topics are discussed at a more technical or

conceptual level.

Table 2.8: Description of the comparisons made for each topic based on the type of
post being compared.

Post aspect Post types Description

Number of responses Questions
The number of responses (comments

or answers) added to a question

Resolved questions Questions
Whether the questions received an answer

marked as accepted

Answered questions Questions
Whether the question received at least

one answer

Accepted answers Answers
Whether the answer is the correct solution

to a question

Length of text Questions, Answers, Comments
The length of the text contained in the

post in characters (excluding code)

Presence of code Questions, Answers, Comments Whether the post contains a code snippet

We chose to compare one topic against the rest as opposed to all-vs-all, as we sought

to identify the ones that stand out from the norm. The comparison between two topics

may be relevant when validating a specific hypothesis about them, but its meaning

becomes harder to interpret when analyzed as one of many other comparisons. We

compare topics separately for each of the four studied websites, to avoid any bias

caused by the differences between the communities. We also compared the high-

level categories we identified in Section 2.4.5, but decided to leave them out of our

analysis as they mirrored the results we found for individual topics. Therefore, we

perform 1040 comparisons (27 topics × 10 comparisons, for Unity Answers and the

43

UE4 AnswerHub, and 25 topics × 10 comparisons for Stack Overflow and the Game

Development Stack Exchange).

We used the Mann-Whitney U-test [70] to identify statistical significant differences

between the distributions used in the comparisons. In this test, we reject the null

hypothesis of two independent samples belonging to the same population if the re-

sulting p-value is below a predefined threshold. To counteract the effect of multiple

comparisons, we used the Bonferroni correction for 1040 comparisons, obtaining a

threshold for the p-value of 4.8×10−5.

Furthermore, we calculated the effect size of the statistical significant differences

using Cliff’s delta (d). We used the same thresholds as in RQ1 (Section 2.5.1) to

determine if the difference was negligible (|d| ≤ 0.147), small (0.147 < |d| ≤ 0.33),

medium (0.33 < |d| ≤ 0.474), or large (0.474 < |d| ≤ 1), following the interpretation

proposed by Romano et al. [102].

We also compared the values of each aspect to provide a more palpable comparison.

For aspects that represent binary values, such as resolved questions and accepted

answers, we calculated the percentage of posts showing a positive value for that

aspect. We compared other aspects using their median values.

We also used the aspects described in Table 2.8 to compare each topic across

different websites. However, as opposed to the one-vs-rest comparison used previously,

we compared the distribution of a topic in one of the websites with the distribution of

the same topic on the other. We still performed 520 comparisons, resulting from the

comparison of the distribution of 10 post aspects for each of the 27 topics in Unity

Answers and the UE4 AnwerHub, and 25 topics in Stack Overflow and the Game

Development Stack Exchange.

Once again, we used the Mann-Whitney U-test [70] to determine the statistical

significance of the differences, using the same threshold of 9.6×10−5 for its p-value

obtained from the Bonferroni correction for 520 comparisons. We also calculated the

effect size of the differences using Cliff’s delta (d), and classified the results using the

44

aforementioned criteria. Lastly, we compared the values of the aspects using the same

percentages and medians described before.

Results: Most topics are significantly different. However, most differ-

ences are negligible. Table 2.9 shows a summary of the comparisons we performed

for each aspect and each topic in the studied websites. Of the 1040 comparisons we

performed, 676 (65%) showed statistical significant differences, meaning that the top-

ics are different in most of the aspects we elected for comparison. Yet, we found that

only 90 (13%) of these differences were non-negligible, and only four showed effect

sizes above small.

Similarly, we found that topics differed in many aspects when comparing them

across websites, but most of the differences were negligible. Out of the 520 compar-

isons we made, 383 (74%) were statistically significant. However, only 76 (20%) of

these showed non-negligible effect sizes, 24 of them showing effect sizes above small.

Our following analysis focuses on the non-negligible differences between topics.

The frequency in which game developers discussed code varied for some

topics. Table 2.10 shows the topics with statistically significant and non-negligible

differences in terms of presence of code in their posts studied communities. Nine of

the topics we analyzed had more code in their posts than others. Notably, game

developers discussed code more often in topics such as Game Objects, Object-oriented

programming, and General programming. We note that these three topics relate to

software development and programming concepts, which explains their higher per-

centage of code.

Positioning, Movement, and Game loop were the only other topics specific to game

development to show a difference in terms of the percentage of posts discussing code

in them. The presence of code indicates that those topics are focused on discussing

implementation issues, while the rest of the game development topics discuss those

subjects more conceptually.

Many topics differ in the length of the text in all post types. Table 2.11

45

Table 2.9: Summary of the comparisons we performed for each of the studied websites.

Website Comparisons Stat. significant % Non-negligible %

Unity Answers 270 234 87% 35 15%

UE4 AnswerHub 270 189 70% 27 14%

Stack Overflow 250 131 52% 14 11%

Game Development Stack Exchange 250 122 49% 14 11%

Total 1040 676 65% 90 13%

shows the topics with statistically significant and non-negligible differences in terms of

the median number of characters in questions and answers in the studied communities.

63 (70%) of the 90 non-negligible differences we found among topics were in terms

of the length of the text contained in their posts. 37 of the differences occurred

in terms of comments, 23 in terms of answers, and 3 in terms of questions. Those

differences occurred in 21 different topics, with 9 of the topics only showing differences

for comments. All of the topics had longer post contents than the others.

Some topics were longer in multiple websites and post types, such as Networking,

Collisions, Object Oriented Programming, and Positioning. We found the largest

differences between topics on the Game Development Stack Exchange, where the

median character length of answers about game mechanics and networking was 908.5

and 869, respectively, compared to the median of 556 of others. The length of the

text of a post may reflect the complexity and richness of the description used in

the discussion. The fact that game developers provide more detail when discussing

Networking and Collision may increase the effectiveness of the discussion by providing

better answers for questions [43]. On the other hand, shorter questions may have

superior quality than others [95] and may receive more useful answers [75].

Posts on Unity Answers and Stack Overflow discussed code more fre-

quently than on the UE4 AnswerHub and the Game Development Stack

Exchange. We observed that posts in Unity Answers contained code more frequently

than in the UE4 AnswerHub for 23 topics in 46 comparisons. The differences were

46

Table 2.10: Topics with statistically significant and non-negligible differences with
others in terms of presence of code in posts in the studied communities.

Topic Post type Website
Code (%)

In topic In others

Game objects

Questions

Unity Answers 56 38

Stack Overflow 91 61

Game Dev. Stack Exchange 86 41

Answers

Unity Answers 49 34

Stack Overflow 92 44

Game Dev. Stack Exchange 89 41

General programming

Questions
Stack Overflow 83 66

Unity Answers 84 39

Answers Unity Answers 62 35

Comments Unity Answers 33 10

Object Oriented Programming

Questions
Unity Answers 63 39

UE4 AnswerHub 33 10

Answers
Unity Answers 56 34

UE4 AnswerHub 27 7

General errors
Questions

Unity Answers 63 39

UE4 AnswerHub 39 10

Answers UE4 AnswerHub 23 7

Positioning
Questions

Unity Answers 59 39

Game Dev. Stack Exchange 63 45

Answers Game Dev. Stack Exchange 56 38

Movement
Questions Unity Answers 56 39

Answers Unity Answers 49 34

Game loop Questions Unity Answers 56 39

File management Answers UE4 AnswerHub 23 8

Programming errors Answers UE4 AnswerHub 30 8

47

Table 2.11: Topics with statistically significant and non-negligible differences with
others in terms of the number of characters in their questions and answers in the
studied communities.

Topic Post type Website
Median length

Topic Others

Networking

Questions
Game Dev. Stack Exchange 828 636

Stack Overflow 654 545

Answers

Game Dev. Stack Exchange 869 558

Stack Overflow 430 320

UE4 AnswerHub 321 253

Unity Answers 288 226

Object Oriented Programming

Questions Game Dev. Stack Exchange 761 636

Answers
UE4 AnswerHub 308 252

Unity Answers 291 224

Collisions Answers

Stack Overflow 397 319

UE4 AnswerHub 330 253

Unity Answers 310 222

Positioning Answers
UE4 AnswerHub 315 254

Unity Answers 282 225

Materials Answers
UE4 AnswerHub 314 253

Unity Answers 286 225

Game mechanics Answers
Game Dev. Stack Exchange 908.5 556

Unity Answers 291 225

Game objects Answers
UE4 AnswerHub 305 253

Unity Answers 290 221

Movement Answers
UE4 AnswerHub 319 253

Unity Answers 317 223

Geometry Answers Unity Answers 292 226

Lighting Answers UE4 AnswerHub 353 253

FX Answers UE4 AnswerHub 335 254

Character animation Answers UE4 AnswerHub 316 253

48

small for 27 comparisons, medium for 15 comparisons, and large for 4 comparisons.

The largest differences between the websites occurred in the General programming

topic, with 84% of questions and 62% of answers on Unity Answers containing code,

against 61% and 43% on the UE4 AnswerHub. The fact that the UE4 AnswerHub

discussed less code may be an effect of its use of the Blueprints Visual Scripting sys-

tem, which replaces the need of writing raw code in many tasks. The Unity engine

did not have a visual scripting tool until August 2020.

We observed similar results when comparing Stack Overflow with the Game Devel-

opment Stack Exchange. We found that 20 topics had more code on Stack Overflow,

with small differences for 25 comparisons and medium differences for 5 comparisons.

This time, the largest differences occurred in the Game Mechanics topic, with 76%

of questions and 50% of answers containing code on Stack Overflow, against 37% and

17% on the Game Development Stack Exchange.

Summary: The topics showed significant differences in many aspects across the
studied communities. Despite most of the differences being negligible, we could
still identify topics that differed with at least small effect sizes in terms of the
percentage code snippets in their posts and the length of their text. We also found
significant non-negligible differences between posts belonging to the four websites,
mainly in terms of the percentage of posts containing code.

2.5.4 RQ4. How do game developers perceive the studied
communities?

Motivation: The data we collected from the studied Q&A communities allowed us to

quantitatively study them through the interactions of users, and the tools provided

by their websites. Our previous analyses are limited by the information we can infer

from these interactions, and our previous findings build an incomplete image that may

not reflect what developers undergo when using these communities. In this research

question, we bridge the gap between our previous analysis and the actual way users

experience the communities.

Approach: We used the 347 responses we collected from our survey with game

49

developers (Section 2.4.6) to study their perception of Unity Answers and the UE4

AnswerHub. We chose to ask questions only about these two websites, as they each

have a unique community associated with their game engine. Only survey respondents

who reported having used Unity or UE4 for studying or working answered questions

about that engine’s community. We further divided that group of respondents to

isolate the ones that had actually used the studied Q&A websites.

We analyzed the frequency with which engine users accessed the Q&A websites.

We split respondents into three mutually exclusive categories according to their access

frequencies: those that had never accessed the site, those that had at least once, and

those that did it regularly. We defined regularly as one or more accesses per month.

Figure 2.7 represents the funnel that respondents went through when answering the

survey, which allowed us to separate them into these groups.

Respondents who had accessed at least one of the Q&A websites indicated if they

used the communities to ask questions, answer questions, report bugs, or search for a

question related to theirs. We gave these respondents the option to write what they

liked and disliked about the communities.

We asked respondents who regularly accessed the Q&A websites what the highest

frequency with which they accessed the websites was. We also asked these respondents

to classify their access as daily, weekly, or monthly. If their access frequencies changed,

respondents chose their current frequency among those same options, with the addi-

tion of “less than monthly” and “stopped accessing.” Respondents who changed their

access frequencies or did not regularly access the websites could provide a reason for

doing so.

We compared the respondents’ usage of the Q&A communities to their usage of

a set of other learning resources. We identified twenty resources available for Unity

and nineteen for UE4. We asked engine users to indicate the frequency with which

they accessed each resource for finding solutions to their game development questions.

We split respondents according to their access frequency of these resources using the

50

Have you ever
used

 <engine>
as a learning or
working tool?

Have you ever
accessed the

 <engine's Q&A
website>?

Have you ever
accessed the

website
regularly?

Has your
access

frequency
changed?

Yes Yes Yes Yes

No No No No

347
respondents

Unity users UE4 users

191
(55%)

52
(15%)

295
(85%)

156
(45%)

210
(71%)

99
(52%)

85
(29%)

92
(48%)

100
(48%)

39
(39%)

60
(61%)

110
(52%)

22
(20%)

88
(80%)

47
(78%)

13
(22%)

Figure 2.7: Representation of the selection process respondents went through when
answering the questions of our survey. The boxes show the number of respondents
which answered each of the questions with “Yes” or “No”.

same categories we did for the Q&A websites.

Findings: Respondents prefer other resources for finding solutions to

their game development problems. Figure 2.8a and Figure 2.8b show the access

categories of respondents who used Unity and UE4 for the most frequently accessed

learning resources, along with Unity Answers and the UE4 AnswerHub. We found

that most respondents are aware of the existence of the studied Q&A communities.

71% (210) of 295 Unity users accessed Unity Answers, and 52% (99) of 191 UE4 users

accessed the UE4 AnswerHub at least once in the past. These percentages are low

when compared to the ones we found for other resources. A higher percentage of

respondents reported having used the engines’ documentation (93% of Unity users,

87% of UE4 users), video tutorials (93% and 89%), online guides (85% and 82%)

and the engines’ official forums (86% and 79%). A high percentage of Unity users

(84%) also report having used Stack Overflow in general, likely looking for solutions

related to the C# programming language used in the Unity engine. Considering the

percentage of respondents that used each resource, Unity Answers ranked seventh out

of the twenty resources we identified for Unity. The UE4 AnswerHub ranked eleventh

out of the nineteen resources we identified for UE4.

In contrast, respondents accessed Unity Answers and the UE4 AnswerHub more

frequently. 37% (110) of Unity users and 31% (60) of UE4 users reported having

accessed the communities regularly. These percentages rank third when compared to

51

Official documentation

Video tutorials

Online guides

Official forums

General Stack Overflow

Unity Answers

0% 25% 50% 75% 100%
Respondents

Regular access
At least one access
No access

(a) Usage of learning resources for Unity

Official documentation

Video tutorials

Online guides

Official forums

General Stack Overflow

UE4 AnswerHub

0% 25% 50% 75% 100%
Respondents

Regular access
At least one access
No access

(b) Usage of learning resources for UE4

Figure 2.8: Access categories of Unity and UE4 users for the most frequently accessed
learning resources.

the other resources available for the engines.

Respondents who did not access the Q&A communities regularly also expressed

their preference for other resources. When asked the reason for not accessing com-

munities more frequently, 21 of the 49 respondents for Unity Answers and 5 of the

16 respondents for the UE4 AnswerHub mentioned using other means to find the

solution to their problems.

Over half of the respondents did not actively participate in the Q&A

communities. Only 40% (83) of respondents who accessed Unity Answers and 52%

(51) who accessed the UE4 AnswerHub actively interacted with the communities by

creating posts. Meanwhile, over 90% of respondents (191 on Unity Answers and 93

on the UE4 AnswerHub) used the communities to search for questions related to their

problems.

Most of the respondents who reported having posted on the communities asked

questions (71 on Unity Answers and 44 on the UE4 AnswerHub), while only a few

gave answers (33 and 22). These results are similar to those found for Stack Overflow,

where most users ask rather than answer questions [125]. On the UE4 AnswerHub,

one in every five respondents (20%) also used the community to report bugs.

Respondents have a mostly negative view of the communities. When

52

asked about their likes and dislikes about the communities, 52 (57%) of the 92 that

answered the question expressed disapproval for Unity Answers and 23 (64%) of the

36 for the UE4 AnswerHub. In contrast, only 33 (36%) respondents indicated some

approval for Unity Answers and 10 (28%) for the UE4 AnswerHub. Other responses

were not related to the communities or did not convey a definite opinion.

For Unity Answers, 21 (23%) respondents complained about the low quality of an-

swers. Eight (9%) of those respondents emphasized that many answers are obsolete

and have broken links to other websites, which is also a problem faced by Stack Over-

flow [137]. Six (17%) respondents also mentioned the low quality of answers on the

UE4 AnswerHub. Additionally, respondents criticized both communities for having

unanswered questions (17 of the total 128 responses, 13%), for the overall website

design and organization (seven responses, 5%), and the communities’ low activity

(11 responses, 9%). Six (5%) respondents mentioned the existence of resources other

than Unity Answers for finding the answers they needed.

In contrast, thirteen of the 128 responses (10%) showed approval for the com-

munities as they served their purpose of finding solutions. Other responses did not

highlight the Q&A websites themselves but focused on the members of the commu-

nity. Fifteen (12%) responses praised the communities for being large, supportive,

active, and experienced.

The frequency with which respondents accessed the communities de-

creased. Figure 2.9a and Figure 2.9b show the distribution of the previous and

current access frequencies reported by respondents who accessed the Q&A websites.

We observed a decrease in the “daily” and “weekly” categories of access frequency in

both communities, while the other categories increased. We found that over half of

the respondents that accessed the communities regularly (65 of 110 for Unity Answers

and 33 of 60 for the UE4 AnswerHub) either decreased or stopped their access to the

communities.

The main reason respondents gave for decreasing their access was becoming more

53

No access

Less than monthly

Monthly

Weekly

Daily

0 30 60 90 120
Respondents

A
cc

es
s

fr
eq

ue
nc

y

Current Previous

(a) Respondents’ access frequencies of Unity
Answers

No access

Less than monthly

Monthly

Weekly

Daily

0 30 60 90 120
Respondents

A
cc

es
s

fr
eq

ue
nc

y

Current Highest

(b) Respondents’ access frequencies of the
UE4 AnswerHub

Figure 2.9: Current and previous frequencies with which survey respondents accessed
the studied Q&A communities.

experienced and not needing the communities’ help anymore. Some respondents also

mentioned using other resources to find the answers they needed, while others reduced

or stopped their use of the game engines. The respondents who stopped accessing the

communities altogether reported similar motives as those that decreased their access.

The only reason respondents gave for increasing their access frequency was the still

existent necessity of answering their questions and acquiring more knowledge.

Summary: Despite knowing of the Q&A communities’ existence, most survey
respondents would rather use other learning resources. Of the ones that used the
communities, most did not show support for them and did not post any questions
or answers. The respondents who regularly accessed the communities decreased
their access frequency as they acquired knowledge.

2.6 Implications of our findings

Our findings indicate that there are several challenges in maintaining healthy Q&A

communities, especially when they become more popular and cater to a specific niche.

All of the studied communities showed some sign of decline, despite those changes

being more subtle in the smaller ones.

As the communities grew, new and inexperienced users joined and increased the

number of questions. At the same time, experienced users that could provide solutions

54

to those questions became inactive for possibly feeling overloaded. More questions

went unanswered and unresolved, causing frustration for newcomers. Users started

seeking other resources for solving their problems, and community growth halted

or even decreased. These communities could not yet recover after experiencing this

decline.

Meanwhile, we have shown that the studied Q&A websites have different character-

istics, discussing topics in different proportions and with varying levels of complexity

of abstraction. These findings help in guiding game developers towards the websites

that are most effective in answering the type of question they have. To further aid

game developers in choosing the right Q&A website to post their questions, we created

a flowchart (Figure 2.10) detailing our recommended decision process.

We based the flowchart on our analysis of the topics that each community is most

effective in discussing. For example, we recommend that game developers post ques-

tions related to bugs and errors in Unity Answers and the UE4 AnswerHub given that

those two websites had several posts related to these topics. Similarly, we recommend

that game developers post programming questions on Stack Overflow or the Game

Development Stack Exchange, as those topics were some of the most discussed in

the two websites. We also direct game developers to the Game Development Stack

Exchange if their questions fit a set of five topics (Rendering, Geometry, Movement,

Game mechanics, and Positioning) that have been more effectively handled by that

website.

By directing game development questions to the websites that are more likely to

welcome and solve them, we can help the studied Q&A websites in mitigating their

decline. For example, reducing the amount of questions asked in the largest websites

and directing them to the smaller ones, we may avoid overloading a single community

with a flood of questions. Moreover, we can increase the communities’ effectiveness

by reducing the number of questions that go unanswered and unresolved.

However, we note that many uncontrollable factors may be at play when it comes to

55

what is causing the communities’ decline and Q&A website administrators should also

act towards improving the websites and providing a better environment for nurturing a

community. While we cannot infer causality and provide fail-proof advice, our findings

also hint at actions that can help in lifting these communities, such as maintaining

an active staff of moderators and investing in gamification features to motivate users’

participation [8, 20, 31, 108, 126, 145].

What is your question about?

Other

YESNO

YES

YES

NO

NO

Networking
File

management

Mobile
development

Object-oriented
programming

Where should you ask your game development question?

C:\Users

Unity Answers UE4 AnswerHub
Game Development

Stack Exchange
Stack Over�ow

Does your question �t
any of these topics?

Is your question
about an error?

Programming topics,
such as...

Engine-speci�c
bugs and errors

Game development
in general

Does your question discuss
 game development concepts?

Which game engine
are you using?

Rendering Geometry

Positioning

Movement

Game
mechanics

Figure 2.10: Flowchart showing our recommended decision process to choosing in
which Q&A website to post questions about game development.

56

2.7 Threats to validity

In this section we discuss the threats to the internal and external validities of our

study.

2.7.1 Construct validity

The choices we made in our methodology (Section 2.4) may have directly affected

our findings. We have identified game development questions on Stack Overflow

using a group of manually-selected tags. Therefore, we may have missed other game

development questions with different tags than the ones we selected.

The LDA algorithm can provide different results based on its training input, and

the preprocessing steps we perform on the data can have a direct impact in its output.

Moreover, the output also depends on the initial parameters, and altering them might

change the resulting set of topics.

We have experimented using additional preprocessing steps (such as pruning the

corpora) and other sets of parameters for modeling topics. The results of these exper-

iments were similar to the ones we presented, with slight variations in the meaning of

topics and words assigned to them. Ultimately, we chose those that offered the best

set of topics with our minimum possible interference.

Furthermore, we based our choice of the labels and categories assigned to each

topic on our own experience and expertise with the game and software development

disciplines. While we cannot guarantee that these labels precisely describe all of the

subjects discussed in each topic, we bolstered our decision of labels with a manual

analysis of the content of posts. Therefore, we are confident these labels can approx-

imately describe their topics.

2.7.2 Internal validity

While we have not drawn any conclusions related to causality in our data, we have

indicated measures that may help developers and communities based on our find-

57

ings (Section 2.6). However, we note that many unmeasured factors may have an

effect on the patterns we observed. Thus, we cannot guarantee that the measures

we recommended will have an effect on these websites and their communities. Yet,

we still believe our findings are useful for game developers and game development

communities by bringing more understanding of their past discussions.

The proposed taxonomy we used for classifying the topics obtained by the LDA

algorithm was not validated by a video game expert. Future studies should validate

the taxonomy in a large-scale study with a diverse group of game developers who

have broad experiences with developing games with the studied game engines and

some familiarity with the game development topics and discussions.

2.7.3 External validity

In this chapter, we have only analyzed data from three game development Q&A

websites and questions related to game development on Stack Overflow. We note,

however, that those websites are the largest of their kind, and we believe that they

could reflect the trends in the game development community as a whole. Yet, our

findings may be limited to the developer communities that interact with them. Future

studies should investigate how our findings apply to other groups of developers that

use other websites.

Furthermore, our findings may only apply to Q&A websites that discuss game

development, and not to other types of websites or general-purpose Q&A websites.

However, our analysis focuses on features common to many other Q&A websites and

may serve as a foresight of what other communities experience if they meet similar

conditions. Further studies should compare our findings to other Q&A communities.

Part of our study focused on analyzing specific aspects of the Unity engine and

the Unreal Engine 4. While the majority of game developers use these two engines,

future studies need to investigate how our findings hold for other game engines.

Our survey’s responses come from game developers that were active members of

58

the selected game development communities when we shared the survey. Also, we

only asked questions about Unity Answers and the UE4 AnswerHub, and our findings

may not apply to other Q&A websites for game developers. Thus, this specific sample

may not be an accurate representation of the whole game development community.

Nevertheless, these respondents are still community members and their responses

provide valuable information on the part of those communities they represent.

2.8 Conclusion

In this chapter, we analyzed game development Q&A communities using data from

Unity Answers, the UE4 AnswerHub, the Game Development Stack Exchange, and

game development-related questions from Stack Overflow. We also analyzed 347 re-

sponses game developers gave to our survey. We have explored how the communities

evolved using measures of their activity and effectiveness, while also identifying what

factors correlate to these measures’ changes. We explored the topics discussed in

those communities, analyzing these topics’ distribution and identifying the most fre-

quently discussed topics. We compared the topics among themselves and between the

four websites using characteristics extracted from their posts. Finally, we examined

how survey respondents used these communities through their access frequencies and

their contributions to the websites. We also compared the respondents’ usage of the

websites to other online learning resources. Our most important findings are:

(1) The Q&A communities are declining, with their activity levels and effectiveness

decreasing over time.

(2) Experienced users contribute to the community by answering and resolving a

large number of questions. These users stopped using the community, reducing the

communities’ effectiveness.

(3) Game developers mainly discussed topics related to game development, with

topics about Bug Reports having accrued a larger number of posts on Unity Answers

and the UE4 AnswerHub.

59

(4) Topics have shown varying levels of abstraction and complexity, differing in

terms of the length of their posts and the frequency with which code is discussed in

them.

(5) Users do not often participate by posting questions or answers, have a mostly

negative view of the community, and have reduced their access frequencies.

These findings bring new understanding about game developers, their communities,

and the topics that they discuss. Based on these findings, we provide recommenda-

tions that help game developers in directing their questions to communities that can

handle them better, which can aid the communities to overcome their decline and

become more effective in the future.

60

Chapter 3

Analyzing Techniques for
Duplicate Question Detection on
Q&A Websites for Game
Developers

3.1 Abstract

Game development is currently the largest industry in the entertainment segment

and has a high demand for skilled game developers that can produce high-quality

games. To satiate this demand, game developers need resources that can provide

them with the knowledge they need to learn and improve their skills. Question and

Answer (Q&A) websites are one of such resources that provide a valuable source of

knowledge about game development practices. However, the presence of duplicate

questions on Q&A websites hinders their ability to effectively provide information for

their users. While several researchers created and analyzed techniques for duplicate

question detection on websites such as Stack Overflow, so far no studies have explored

how well those techniques work on Q&A websites for game development. With that

in mind, in this chapter we analyze how we can use pre-trained and unsupervised

techniques to detect duplicate questions on Q&A websites focused on game develop-

ment using data extracted from the Game Development Stack Exchange and Stack

Overflow. We also explore how we can leverage labelled data to improve the perfor-

61

mance of those techniques. The pre-trained technique based on MPNet achieved the

highest results in identifying duplicate questions about game development, and we

could achieve a better performance when combining multiple unsupervised techniques

into a single supervised model. Furthermore, the supervised models could identify

duplicate questions on websites different from those they were trained on with little to

no decrease in performance. Our results lay the groundwork for building better dupli-

cate question detection systems in game development Q&A websites and ultimately

providing game developers with a more effective Q&A community.

3.2 Introduction

The video game industry is currently the largest entertainment industry in the world,

having accumulated almost 180 billion dollars in revenue in 2020 and surpassing

global movie and North American sports industries [129]. Behind all of the games

the industry produces, there is a large number of game developers that help conceive,

create, and build each of them. A strong growth is still expected for the future of the

video game industry and the game development community needs to be prepared to

supply skilled workers to satiate this demand.

Several online and offline resources seek to teach game development skills to aspir-

ing developers, thereby being an important asset to train new developers. An example

of such resources is Question and Answer (Q&A) websites, which are popular choices

for knowledge sharing among game developers. Some of the largest Q&A websites

for game development, such as Unity Answers1, the Unreal Engine 4 (UE4) Answer-

Hub2, and the Game Development Stack Exchange3, host hundreds of thousands of

discussions about many aspects of game development and are a valuable source of

knowledge for those seeking to learn about those topics.

However, maintaining a healthy and active Q&A community that can effectively

1https://answers.unity.com, accessed September 6th, 2021.
2https://answers.unrealengine.com, accessed September 6th, 2021.
3https://gamedev.stackexchange.com, accessed September 6th, 2021.

62

https://answers.unity.com
https://answers.unrealengine.com
https://gamedev.stackexchange.com

help its members is a hard task and comes with several challenges. One of these chal-

lenges is dealing with the large number of duplicate questions posted by users [144],

which can negatively impact the websites. For example, users who are willing to an-

swers questions have the additional burden of manually filtering through and marking

questions which are duplicate, while question askers may experience increased wait

times to get their responses.

Duplicate questions can be even more hurtful for Q&A websites for game devel-

opment. According to our prior work, the four largest websites that discuss game

development topics have been in decline over the last few years [57], and the presence

of many duplicate questions may further decrease their effectiveness. Additionally,

detecting duplicate questions is a hard task for websites such as Unity Answers and

the UE4 AnswerHub, as they do not provide users with a feature of manually tagging

duplicate questions. As a consequence, these Q&A websites and their moderators

have to dedicate many resources to reducing the effects of this phenomenon.

With that in mind, several researchers have proposed methods to automatically

identify duplicate questions, which reduce the effort of manually identifying such

questions and can help prevent the posting of new duplicates [3, 111, 121, 122, 138,

139, 144]. While researchers have put a lot of effort into identifying duplicates on

large and popular Q&A websites such as Quora4 and Stack Overflow, little is known

about how duplicate question detection techniques adapt to the context of game

development. Previous work has shown that the performance of duplicate detection

techniques in Stack Overflow can vary according to the programming language being

discussed [3, 121, 122, 138, 139]. Similarly, the performance of these techniques may

be affected by the specific characteristics of different communities or different question

topics such as game development.

Identifying duplicate questions on Q&A websites for game development is an ar-

duous task, as sources of labelled data are scarce and developing custom-tailored

4https://www.quora.com, accessed September 6th, 2021.

63

https://www.quora.com

techniques from scratch can be very computationally expensive. Furthermore, it is

very hard to reuse previously proposed techniques developed for the software engi-

neering domain (e.g., Stack Overflow), as almost no studies provide resources for

implementing and reusing their proposed approaches.

Therefore, in this chapter, we analyze how existing pre-trained and unsupervised

techniques can be used to detect duplicate game development questions. We also

introduce new techniques which have not been previously used for the task of detecting

duplicate questions in the software engineering domain. We evaluate the performance

of those techniques using labelled game development data from the Stack Exchange

data dump. We also use the labelled data to train supervised models and evaluate

their performance at detecting duplicate questions in different datasets, including the

ones that were not used for training them. More specifically, we explore the following

research questions (RQs):

- RQ1. What is the performance of unsupervised and pre-trained

techniques for duplicate question detection on game development Q&A

data?

There are several techniques for measuring the similarity between two documents

that do not rely on a labelled set of data. These techniques are valuable for websites

that do not offer a feature for tagging duplicate questions, thus not having a source

of data for training supervised models. In this research question, we test and

compare seven different techniques to evaluate how they perform on the task of

identifying duplicate questions about game development. We find that computing

the similarity between all question elements (i.e., title, body, tags, and answers)

using a model based on MPNet [113] provides the best results for the task.

-RQ2. How can we leverage labelled data to improve the performance

of unsupervised techniques?

Despite being relatively small, the set of labelled duplicate questions we ac-

quired from the studied websites can still prove useful for improving the results

64

we obtained in RQ1. Furthermore, the techniques we explored in RQ1 use differ-

ent methods for characterizing duplicate questions, and aggregating them into a

single metric may help us achieve even higher performance. In this question, we

use the similarity scores obtained by the unsupervised techniques and the set of

labelled data to build a supervised model to compare questions and provide a new

similarity score. Using this model, we could almost double the recall-rate@k score

of the best technique we found in RQ1 for game development questions on Stack

Overflow. We also found that we can use the supervised models for classifying

duplicate questions on different websites with little to no decrease in performance.

The answers to these questions can provide important knowledge regarding the

task of identifying duplicate questions on Q&A websites. By analyzing how to use

existing unsupervised and pre-trained techniques and how to leverage labelled data

to aid in this task, we lay the groundwork for Q&A websites with low resources (such

as those focused on game development) and future researchers to build systems that

can detect duplicate questions more reliably. Our main contributions are:

• We explore and compare seven unsupervised and pre-trained techniques for

duplicate question detection of ranging complexities, laying the groundwork for

the development of unsupervised duplicate detection systems;

• We introduce and analyze two new techniques for detecting duplicate questions

based on BERTOverflow [116] and MPNet [113], which have not been previously

used in the software engineering domain;

• We show that using answers can improve the performance of the studied tech-

niques;

• We show that a small set of labelled data can be used for improving the perfor-

mance of duplicate detection systems;

• We show that supervised models can be used for detecting duplicate question

65

on websites other than the ones in which they were trained with little to no

decrease in performance;

• We provide recommendations for developing systems for duplicate question de-

tection, such as the best approaches for choosing candidate question pairs prior

to training and evaluating supervised models, and outlining the common pitfalls

that can occur when designing those systems;

• We provide a replication package containing all data and techniques used in

this chapter, allowing researchers to use, reproduce, and evaluate our results in

future studies.

The remainder of this chapter is organized as follows: Section 3.3 discusses back-

ground and related work. Section 3.4 describes our methodology and we present

our findings in Section 3.5. In Section 3.6 we discuss the matter of comparing our

methodology to those of other studies, and in Section 3.7 we discuss the implications

of our findings. Section 3.8 presents the threats to the validity of our study. Finally,

Section 3.9 concludes the chapter.

3.3 Background and related work

In this section we provide an overview of some of the concepts discussed in this chapter

and of other related work.

3.3.1 Q&A websites

Question and Answer (Q&A) websites are places of knowledge sharing and commu-

nity interaction. In those websites, users can ask their peers questions about their

specific problems, or answer questions asked by others. Using those posts, community

members can share information among themselves and provide a more approachable,

personal and customized experience to those who need it. These websites, perhaps

due to the faster and easier way with which they allow users to acquire information,

66

have become some of the most popular websites on the internet, receiving millions of

accesses and posts each month.

Some Q&A websites cover a broad range of topics (e.g., Quora), while others

cater to specific communities of users that share similar interests. Currently, there

are Q&A websites covering a range of topics, from cooking5 and photography6 to

academic research7. The large amounts of data generated by these websites are a

valuable asset to understanding how users discuss these topics, share knowledge, and

interact among themselves.

Software developers have become specially fond of Q&A websites, with many web-

sites focusing on specific aspects of technology and software development. Stack

Overflow, the most popular of these websites aimed at developers, currently holds

millions of posts regarding varied topics about programming and technology, receiv-

ing 100 million monthly visitors and ranking among the 50 most popular websites in

the world [82].

Many researchers have previously studied Stack Overflow and its many aspects [4].

For example, Barua et al. [12] have analyzed the topics discussed by developers,

while Wu et al. [131] have explored how developers utilize the code discussed in it,

and Bazelli et al. [13] have explored the personality traits of Stack Overflow users.

Researchers have also analyzed Q&A websites focused on discussing varied topics,

such as health [49] and social [40] Q&A websites. Many of these studies searched for

ways of improving these websites, such as helping users find information [90, 143] and

facilitating their interactions [89, 108, 110, 126], and analyzed users’ motivations for

participating in the websites [21, 31, 35, 41, 55, 142].

Kamienski and Bezemer [57] were the first to analyze Q&A websites for game de-

velopment. In their study, they found that three of the largest of those Q&A websites,

namely Unity Answers, the UE4 AnswerHub, the Game Development Stack Exchange

5https://cooking.stackexchange.com/, accessed September 6th, 2021.
6https://photo.stackexchange.com/, accessed September 6th, 2021.
7https://www.researchgate.net/topics, accessed September 6th, 2021.

67

https://cooking.stackexchange.com/
https://photo.stackexchange.com/
https://www.researchgate.net/topics

were in decline, with a decrease in user activity over the past few years. They also

found similar results for questions about game development on Stack Overflow. Their

findings stress the importance of studying and improving those Q&A websites to pro-

vide a better and more effective community for game developers.

3.3.2 Duplicate document detection on websites

Detecting duplicate documents is an important task for many types of websites. In

forums, social networks, and Q&A communities alike, the presence of multiple posts

with the same or closely related content may flood the website and hinder the ability

of its users of finding the information they want. This effect is similar to spamming,

and can also be detrimental by increase the amount of resources the websites have to

dedicate to deal with the issue.

Many of the websites that suffer from having multiple duplicate posts have a system

of manual duplicate detection. In those websites, users have to manually tag duplicate

content, while referencing the original ones. Another common approach is to have

moderators manually filter and approve posts before they can be published. These

manual approaches require a lot of effort from users and moderators.

With that in mind, several researchers have looked into ways of relieving the bur-

den of manually identifying duplicate documents by proposing automated duplicate

document detection techniques [23, 67]. Specifically in the software engineering con-

text, researchers have invested great effort into studying and developing automated

detection techniques for duplicate pull requests [61, 62, 123] and bug reports [46, 47,

92, 93].

Software engineering researchers have also focused on studying duplicate questions

on Stack Overflow. While some studies have analyzed different aspects of duplicate

questions (e.g., their main characteristics [33] and impacts in the community [1]), the

majority of work focused on developing systems to automatically detect duplicate

questions. For example, Zhang et al. [144] introduced DupPredictor, which uses

68

title, description, topic and tag similarities to identify duplicates. Building on that,

Ahasanuzzaman et al. [3] described Dupe, which increased the performance of the

previous approach by using a two-step ranking system and a different set of question

similarity metrics.

Others have since improved on those results by using different sets of techniques

and similarity measures. Zhang et al. [138, 139] have achieved a higher performance

when detecting duplicates by introducing several new features (e.g., features based

on Doc2Vec and association rules). More recently, Wang et al. [121, 122] could also

achieve a higher performance when using different neural network architectures, such

as Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN).

Other studies have sought to aid and improve the development of duplicate ques-

tion detection techniques by creating and analyzing features, methodologies, and the

quality of labelled datasets [50, 74, 111, 132, 140, 141].

Researchers have also tackled the problem of detecting duplicate questions on other

Q&A websites such as Quora or those belonging to the Stack Exchange network8 [48,

52, 88, 101, 107, 146]. Studies have also explored how to use domain adaptation to

create duplicate detection techniques with no labelled data [56, 63, 86, 100, 104, 109,

133]. As far as we know, no other studies have analyzed duplicate questions about

game development, or made any efforts to develop and evaluate duplicate detection

models for this specific domain.

3.4 Methodology

In this section we describe our methodology for collecting and processing the data used

in our study, and applying techniques for duplicate question detection. Figure 3.1

shows an overview of the steps we have taken in this methodology. The code, data,

and models used in this study are available online in our replication package9 to allow

8https://stackexchange.com/, accessed September 6th, 2021.
9Our replication package is available online at https://github.com/asgaardlab/done-21-arthur-

duplicate gamedev questions-code.

69

https://stackexchange.com/
https://github.com/asgaardlab/done-21-arthur-duplicate_gamedev_questions-code
https://github.com/asgaardlab/done-21-arthur-duplicate_gamedev_questions-code

RQ1 RQ2

?

?

?

XML

HMTL

1
2
3
4
5
6
7
8
9

10
11
12
13

?

?

?

? ?

?

How to

Identify

Duplicate

Questions

w/ labels!

1
2
3
4
5
6
7
8
9

10
11
12
13

TRAIN

TRAIN

TRAIN

TEST

Stack Over�ow
Data dump

Game Dev.
Stack Exchange

posts
Parse XML �les Unsupervised

techniques
Select

candidate pairs
Tune

parameters

Train duplicate
question
classi�er

Create train and
test sets

Compare
questions

Remove HTML
tags

Stack Over�ow
Game Dev.

posts

Select relevant
posts

Game Dev.
Stack Exchange

Data dump

Sampled
Stack Over�ow

posts

Stemming and
tokenizing

Rank question
pairs

Undersample
train set

Score question
pairs with
classi�er

Training supervised modelsComparing
questions

Data
preprocessingData collection

Figure 3.1: Overview of the steps we have taken in our methodology.

future researchers to use, reproduce, and evaluate our results.

3.4.1 Data collection

In this study, we used two sets of game development questions that were extracted

from the Game Development Stack Exchange and Stack Overflow to test and evaluate

the performance of the duplicate question detection techniques. We chose these two

websites as they are the largest sources of labelled game development Q&A data.

While part of our methodology is not reliant on labelled data, we still need these

labels to evaluate our approach. Other larger websites such as Unity Answers and

the UE4 AnswerHub do not offer a duplicate tagging feature, hindering our ability

to use their data for our analyses. We also used a third set of general software

development questions from Stack Overflow as a way of analyzing how the techniques

perform on a different domain.

We collected the three sets of questions from the June 2021 Stack Exchange data

70

dump10. To build these question sets, we first downloaded all of the posts (i.e.,

questions, answers, and comments) for Stack Overflow and the Game Development

Stack Exchange, along with the lists of relationships between posts.

From the two initial datasets, we selected the questions and answers from the list

of posts. We also selected only the duplicate question relationships from the list of

all post relationships, excluding those relationships that contain references to deleted

questions that are not present in the datasets.

We followed the same methodology as Kamienski and Bezemer [57] to create the

set of questions about game development from Stack Overflow. Thus, we selected

the questions from the set of Stack Overflow posts by searching for questions marked

with one of the following tags: ‘game-engine’, ‘game-physics’, ‘game-development’,

‘gameobject’, ‘2d-games’, ‘unrealscript’, ‘unreal-engine4’, ‘unreal-blueprint’, ‘unreal-

development-kit’, ‘unityscript’, ‘unity-ui’, ‘unity-editor’, ‘unity-networking’, ‘unity-

webgl’, ‘unity5’, ‘unity5.3’, ‘unity3d’, ‘unity3d-5’, ‘unity3d-mecanim’, ‘unity3d-unet’,

‘unity3d-2dtools’, ‘unity3d-gui’, ‘unity3d-terrain’, ‘unity3d-editor’, ‘unity2d’.

We created our third set of questions by sampling a small number of questions

from Stack Overflow. Despite containing questions about multiple topics other than

game development, this dataset allows us to test our approaches on a different set of

data and analyze how they perform on a distinct yet related domain. We chose to

sample a similar number of questions to those in the other datasets to eliminate the

risk of performance variations caused by disparate amounts of data. Therefore, we

randomly selected a number of questions equal the mean number of game development

questions in the other two datasets mentioned above. We used the same approach

to randomly sample duplicate question pairs, thus maintaining a similar proportion

of duplicates across all datasets. We performed this process five times using different

random seeds to obtain five distinct samples with the same number of questions and

duplicate pairs. For the remainder of this chapter we treat the five samples as a single

10https://archive.org/details/stackexchange, accessed September 6th, 2021.

71

https://archive.org/details/stackexchange

dataset and report the mean and standard deviation obtained from the samples for

each of our results.

Table 3.1 shows the summary of each of the three datasets of questions we used in

our study. We defined a duplicate question as a question that has a duplicate relation

with another one in the dataset, in a unidirectional relationship. We refer to the

questions referenced by duplicate questions as main questions. Duplicate questions

point to one or more main questions11, forming a duplicate question pair.

Table 3.1: Summary of the three datasets used in our methodology. Duplicate ques-
tions are defined as questions that have a duplicate relation with others. Each du-
plicate question forms one or more pairs with other questions of the dataset. The
percentages are show in relation to the total number of questions in each dataset.

Website Topic Questions Non-duplicates Duplicates Pairs

Stack Exchange Game development 51,797 50,694 1,103 (2.1%) 1,144

Stack Overflow
Game development 68,200 67,191 1,009 (1.5%) 1,070

General development 59,998 58,891 1,107 (1.8%) 1,107

3.4.2 Data preprocessing

The data we collected from the Stack Exchange data dump is in raw XML format

and needs to be preprocessed before being used in our study. First, we parsed the

XML files to extract the title, body, and tags for each of the questions in the dataset,

which comprise all of the textual information provided by the question author at the

time of posting. We also exclude from our dataset questions with no text as they

may harm our future analyses.

We selected the accepted answer for each answered question in our dataset to be

used when comparing questions in Section 3.4.3. If the question had no accepted

answers, we chose the one with the largest number of votes that was posted first.

11Although duplicate questions usually point to only one main question, some duplicates point to
several others. For example, question 10661714 links to five main questions: https://stackoverflow.
com/questions/10661714. However, over 95% of duplicate questions have only one main question in
our datasets.

72

https://stackoverflow.com/questions/10661714
https://stackoverflow.com/questions/10661714

Other studies have also used the number of votes received by answers as proxies for

their quality [30, 78, 91]. We extracted the answer bodies from the selected answers

and matched them to their corresponding questions.

We processed all the text elements we collected (i.e., question titles, bodies, tags,

and answers) by removing any HTML tags and replacing any references to code

snippets, images, and URLs with unique token identifiers. As the techniques used

in this study are intended for natural language, these elements may degrade their

results [12, 111, 116, 134]. Using regular expressions, we identified URLs contained

in <a> tags or following a pattern of contiguous strings of characters preceded by

http:// or https:// and replaced them with tokens. We also used regular expressions

to replace any content between <code> and HTML tags with tokens. We

used Python 3’s Beautiful Soup 4 library [99] to completely remove other HTML tags

and elements.

As a final preprocessing step, we applied the text preprocess function provided

by Python 3’s Gensim library [97] to remove punctuation, multiple whitespaces, nu-

meric characters, stopwords, and short words. The function also stems the texts using

the Porter Stemmer [87] and tokenizes them by splitting words separated by spaces.

3.4.3 Comparing questions

To identify if a question is a duplicate of another one, we need ways of comparing

them and analyzing how similar they are. Researchers have proposed several method-

ologies to measure question similarity, ranging from a simple matching of co-occurring

terms [3, 144], to more complex deep-learning-based techniques [121, 122]. In this

study, we analyze how seven techniques perform on the task of identifying duplicate

questions about game development. Two of those techniques have not yet been used

for the task of detecting duplicate questions in a software engineering domain.

We chose techniques that range in complexity and computational cost, as a way of

identifying those that are more cost-effective for our task. We only use unsupervised

73

and pre-trained techniques as they do not demand labelled data and can be imple-

mented with relatively few computational resources. While custom techniques created

to perform specific tasks can achieve higher performance on their domains, the cost

of implementing them is high (both in terms of amount of data and computation),

and they may not be a feasible alternative for some websites.

Table 3.2 presents a summary of the techniques we used, indicating the ones that

have been previously used for detecting duplicate questions in software engineering

domains. We used these techniques to produce similarity scores between the ques-

tions in our three datasets. Aside from BM25, which already produces a similarity

score between two documents as its output, all of the other techniques convert the

input documents to vectors of real numbers. We then compared these vectors using

the cosine similarity (or the Jensen-Shannon divergence for probability distributions)

to obtain a similarity measure between the documents. We used these similarity mea-

sures as a proxy for the likelihood of two questions being duplicates. We analyzed

each of these similarity measures separately to identify the best one in the task of

identifying duplicate questions.

Table 3.2: Summary of the techniques for duplicate question detection we used in
our study. The Pre-trained column shows the techniques that require a training step
prior to duplicate question detection. The Supervised column shows if a technique
requires a labelled set of data during training.

Technique Pre-trained Supervised Prev. used in Soft. Eng. Used in

Jaccard No No Yes [111, 144]

TF-IDF No No Yes [138, 139]

BM25 No No Yes [3, 111, 139]

Topic Yes No Yes [111, 138, 139, 144]

Doc2Vec Yes No Yes [138, 139]

BERTOverflow Yes No No

MPNet Yes Yes No

We also analyzed how using different text elements from questions affect the per-

74

formance of the techniques in Table 3.2. Figure 3.2 shows an overview of the method-

ology we used for comparing the questions using these different elements. We used

a similar approach to other studies [3, 111, 139, 140, 144] to create five documents

using question titles, bodies, and tags individually, the junction of titles and bodies,

and the junction of titles, bodies, and tags. We also introduce a new comparison

between all of the elements (i.e., title, bodies, and tags) with the addition of their

answers. For duplicate questions that do not have answers, we only use their titles,

bodies, and tags for this comparison. Other studies have shown that answers can be

useful for detecting duplicate questions [1, 63], and we thus evaluate the impact of

their usage in our methodology.

We applied each technique to each of these documents, obtaining 42 different sim-

ilarity measures for each question pair (6 documents × 7 techniques). We performed

this process for comparing each duplicate question to every other answered question

in the dataset, as main questions need to have at least one answer to be referenced

by a duplicate12. We provide further explanations of the comparison techniques we

used in the following sections.

Jaccard similarity

The Jaccard similarity coefficient [53] is a common metric for measuring the simi-

larity between two mathematical sets and is frequently used in information retrieval

systems as a way of comparing two documents [79]. Before calculating the Jaccard

similarity between two texts, we converted them into sets by selecting the unique

tokens contained in each of them. Then, we calculated the metric using the equation

Jaccard(A,B) = |A∩B|
|A∪B| , where A and B are the sets of tokens for two documents A

and B.

12https://stackoverflow.com/help/duplicates, accessed September 6th, 2021.

75

https://stackoverflow.com/help/duplicates

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Main question

physics game-loop frame-rate fixed-timestep

When should I use a fixed or variable time step?

Should a game loop be based on fixed or variable time steps?
Is one always superior, or does the right choice vary by game?
Variable time step Physics updates are passed a "time elapsed
since last ...

asked Jul 26 '10 at 11:36
Gam E. De Veloper
2,789 3 15 9

101k views

11
answers

264
votes

Duplicate question

Title

Body

Tags

x =

Fully Fixed
You lose most of the benefits of a fixed timestep when you
throw in a variable step once each frame...

aswered May 16 '11 at 15:02
John Doe
7,502 5 33 54

12
votes

Main question answer

Answer

42 similarities

Title

Body

Tags

6 question parts 7 techniques

Jaccard

TF-IDF

BM25

Topic

Doc2Vec

BERTOver�ow

MPNet

Answer
(if available)

Figure 3.2: Overview of the methodology we used for comparing questions using seven
techniques.

76

TF-IDF similarity

Term frequency-inverse document frequency (TF-IDF) is a technique for defining the

relevance of a word in a document relative to all of the other documents in the corpus.

Despite its simplicity, TF-IDF is used in many information retrieval applications and

has been shown to be an effective technique for comparing documents [94]. In our

study, we used the TfidfVectorizer implementation provided by Python’s scikit-

learn library [85] with default parameters for converting the documents of our corpora

into vectors of TF-IDF values. In this implementation, the TF-IDF value of term t

in a document d is given by the equation

TF -IDF (t, d) = TF (t, d)× log

(︃
n

DF (t) + 1

)︃
,

where TF (t, d) is the number of times term t appears in document d, n is the number

of documents in the corpus, and DF (t) is the number of documents that contain term

t. We computed the TF-IDF vectors separately for each of the six documents from

each question in each dataset. We then computed the cosine similarity between two

TF-IDF vectors to obtain a TF-IDF similarity measure using scikit-learn’s cosine -

similarity function.

BM25

BM25 is a ranking function that takes into account the frequency of each token in the

corpus and in each document of the corpus to assign a score to a pair of documents.

We used our own custom implementation of the BM25 algorithm derived from the

one provided in Gensim 3.813. Based on the study of BM25 parameters for duplicate

question detection on Stack Overflow performed by Ahasanuzzaman et al. [3], we

defined the values of the free parameters k1 and b as 0.05 and 0.03, respectively.

13https://github.com/RaRe-Technologies/gensim/blob/3.8.3/gensim/summarization/bm25.py,
accessed September 6th, 2021.

77

https://github.com/RaRe-Technologies/gensim/blob/3.8.3/gensim/summarization/bm25.py

Topic similarity

We measured the similarity between the topics of two documents using the latent

Dirichlet allocation (LDA) algorithm [15]. This unsupervised algorithm assumes that

topics are represented by distributions of words to compute the probability of a doc-

ument belonging to a topic. We trained LDA models based on our datasets using

Gensim’s implementation given by the LDAModel class. We trained one model for each

set of documents extracted from questions from each dataset, totalling 18 different

models (6 document sets × 3 datasets). We used these models to calculate vectors

of topic probabilities for each question in our datasets. The main parameters that

control the output of the algorithm are alpha and eta, which we set to symmetric

and auto, respectively. We set the number of topics to 30, which is also the value

used in other studies [139, 140]. Finally, we calculated the Jensen-Shannon diver-

gence to measure the similarity between two vectors of topic probabilities using the

jensenshannon function from Python’s Scipy package [120]. We chose to use the

Jensen–Shannon divergence for these comparisons as it is a more appropriate metric

for calculating the similarity between two probability distributions when compared

to the cosine similarity used in other studies.

Doc2Vec similarity

Doc2Vec [60] is an unsupervised algorithm based on Word2Vec [72, 73] for repre-

senting documents as fixed-length vectors of numbers. These vectors are created in

a way such that two semantically similar documents are closer apart in the multi-

dimensional space than two semantically different ones. We used Gensim’s Doc2Vec

class to train Doc2Vec models based on our data and compute vectors for the doc-

uments in our datasets. We trained one model for each set of documents in our

three datasets, obtaining 18 models (6 document sets × 3 datasets). We used the

same parameters as indicated by Zhang et al. [138], which are shown in Table 3.3.

We compared the vectors obtained from the algorithm using scikit-learn’s cosine -

78

similarity function to produce a similarity measure between the documents.

Table 3.3: Parameters used for learning document embeddings using Gensim’s
Doc2Vec implementation, following suggestions from Zhang et al. [138].

Parameter Value Description

vector size 100 Number of dimensions of the feature vector

window 15 Maximum distance between the current and predicted words

min count 1 Minimum frequency required for words before being ignored

sample 1e-5 Threshold for downsampling high-frequency words

negative 1 Number of “noise words” drawn when negative sampling

epochs 100 Number of passes over the training corpus

seed 42 Seed number for the random number generator

BERTOverflow similarity

BERTOverflow [116] is a model for producing word embeddings that is pre-trained

on 152 million sentences collected from Stack Overflow’s data dump. This model is

based on BERT [32], a deep neural network-based algorithm for producing vector

representations of words which can be expanded and fine-tuned for different natural

language processing tasks. Unlike Word2Vec, BERT uses the context in which words

are used to create more accurate vector representations. Despite not being trained

specifically for the game development domain or for detecting duplicate questions14,

we used BERTOverflow in the hope that some of the knowledge it acquired from

training on Stack Overflow can be used for our intended application. We used the

pre-trained model provided by the authors in Python’s Transformers package [130]15

with default parameters, and adapted it to produce document vectors using the Sen-

tenceTransformers [98]16 package. We performed no other training steps to tune

14BERTOverflow was originally created for code and named entity recognition, but its word em-
beddings can be used for many natural language processing tasks.

15https://huggingface.co, accessed September 6th, 2021.
16https://www.sbert.net, accessed September 6th, 2021.

79

https://huggingface.co
https://www.sbert.net

the model. As the model implements its own tokenization function, we used the

untokenized documents extracted from questions to produce sentence embeddings.

We compared the document vectors produced for each document using scikit-learn’s

cosine similarity function to produce a similarity measure between the documents.

MPNet similarity

MPNet [113] is another deep neural network-based model for creating word embed-

dings for natural language processing tasks. It uses permuted language modelling

and token position information to obtain an increased performance when compared

to other BERT-based models. In our study, we used the paraphrase-mpnet-base-v2

model provided by the SentenceTransformers [98] package, which is based on MPNet,

to produce document vectors. This model was pre-trained and fine-tuned for the task

of producing document vectors, and currently offers the best average performance on

a set of document comparison tasks17. We used the model with default parameters

and did not perform other training or tuning steps. Similar to what we did with

BERTOverflow, we used untokenized documents for creating sentence embeddings

based on the documents extracted from questions. Once again, we compared the

document vectors using the cosine similarity function provided by scikit-learn to

produce a similarity measure between the documents.

3.4.4 Training supervised classifier models

The question comparison techniques we described in Section 3.4.3 provide similarity

scores that help us in identifying duplicate questions. However, each technique takes a

different approach to determining how similar two documents are and provide different

views on the task of detecting duplicates. Therefore, we sought to merge the similarity

measures described above into a single score that can hopefully combine these views

and achieve higher performance on the task of detecting duplicate game development

17https://www.sbert.net/docs/pretrained models.html, accessed September 6th, 2021.

80

https://www.sbert.net/docs/pretrained_models.html

questions.

Figure 3.1 shows an overview of the methodology we used to obtain the new simi-

larity measure. This new measure is the output of a supervised classifier model that

uses the 42 other measures as features and tries to predict whether a pair of questions

are duplicates, in an approach similar to that used by Zhang et al. [139]. We calculate

the new measure by first applying the techniques described in Section 3.4.3 to extract

the similarity scores from a pair of questions and then using the classifier to make a

final prediction. We leveraged the small set of labelled duplicate pairs provided by

our datasets to train these classifiers.

Instead of using all possible question pairs to train and evaluate the models, we

limited the number of pairs by selecting a number C of candidate questions for com-

parison with each duplicate question in the datasets. The selection of candidate

questions was proposed by Ahasanuzzaman et al. [3] as a way of reducing the com-

putational cost of identifying duplicate questions. The authors of that study selected

the 10,000 most relevant candidate questions for each duplicate using BM25 prior

to computing the final similarity score using their custom technique. As far as we

know, the authors did not use any other techniques for improving search speed such

as inverse indices. In our study, we compared the different similarity measures we

obtained in Section 3.4.3 and experimented with several different values for C to

identify the set of parameters that produces the best result.

We note that selecting candidates prior to training and evaluating the model can

introduce bias towards the metric used for choosing relevant candidates. However,

this process also reduces the proportion of duplicate to non-duplicate question pairs,

which may aid the supervised model during training and scoring.

Prior to training the model, we randomly split the set of all candidate question

pairs into train and test sets. We performed the split by defining 20% of the duplicate

questions as test duplicates and assigning all of the candidate pairs composed by them

to the test set, while assigning the remaining pairs to the train set. We made sure

81

to exclude any reference to test duplicate questions from the train set (i.e., candidate

question pairs in which the duplicate question plays the role of a candidate), to avoid

leaking test information into the train set.

To provide the model with additional examples of unrelated questions, we included

20% of fake candidate pairs in the train set. We selected those fake candidate pairs by

applying the same process used for duplicate questions to a set of randomly selected

questions. As the number of duplicate question pairs is tiny when compared to the

number of non-duplicate pairs, we undersampled the majority class of non-duplicate

pairs in the train set by randomly selecting non-duplicate pairs while maintaining

the duplicate ones, reaching a proportion of 1 true duplicate pair to 99 non-duplicate

pairs. We experimented using a larger number of duplicate pairs to non-duplicate

pairs, but found that they reduced the performance of the classifier models. We did

not undersample or alter the number of candidate pairs in the test set to simulate

real world conditions.

Finally, we trained the classifier models using Random Forests provided by scikit-

learn’s RandomForestClassifier class. We trained the model using the similarity

measures generated by the techniques in Section 3.4.3 for the question pairs in the

train set, trying to predict whether the pairs are duplicates or not. The Random

Forest models output a probability of the two questions in a pair being duplicate,

which we use as a measure of the similarity between the two questions, in a similar

fashion to the other techniques we discussed above.

We decided not to experiment with other types of supervised models as the results

reported by other researchers did not show great differences in performance when

changing the models used for this task [121, 122, 138, 139]. Instead, we chose to

use the random forest algorithm as it obtained some of the best results in other

studies [138, 139] that used it, while still being relatively simple.

We tuned the hyperparameters of the random forest to improve its performance in

each individual train set using scikit-learn’s RandomizedSearchCV. We ran 30 itera-

82

tions of a random parameter search with 5-fold cross validation. We used the same

approach as we did to separate the train and test sets to create custom folds for the

search, thus making sure that no information is leaked across folds. We trained the

final Random Forest model using the whole train set and the best parameters found

during search. Finally, we scored the test set of candidate pairs using the trained

models, obtaining a measure for their likelihood of being duplicates of one another.

3.5 Results

In this section we discuss the motivation, approach and findings for each of our

research questions. Section 3.5.1 discusses the performance of the similarity scores

obtained from the techniques described in Section 3.4.3, while Section 3.5.2 analyzes

the performance of the supervised classifier models described in Section 3.4.4.

3.5.1 RQ1. What is the performance of unsupervised and
pre-trained techniques for duplicate question detection
on game development Q&A data?

Motivation: There are several techniques for identifying duplicate questions. While

some of those techniques require labelled data to learn to identify duplicate documents

for specific applications, others can be used with no other information aside from the

text contained in those documents. These techniques are usually unsupervised or

pre-trained on different sets of data, and are specially useful when little to no labelled

data is available, such as in the case of Unity Answers and the UE4 AnswerHub,

the two largest Q&A websites for game development. Another advantage to those

techniques is that they do not need large corpora or vast computational resources

to function, and can thus be applied in situations where those two factors are a

constraint. In this research question, we analyze the performance of seven of those

unsupervised and pre-trained techniques on the task of identifying duplicate questions

on two datasets of game development questions collected from Stack Overflow and

83

the Game Development Stack Exchange. By understanding how well those techniques

can detect duplicate questions, we can determine how suitable they are for usage in

Q&A websites as alternatives to more complex techniques that may not be easily

implemented.

Approach: We used the similarity scores described in Section 3.4 to create different

ranks for all of the question pairs produced from comparing duplicate questions to

other answered questions in the dataset. Figure 3.3 shows an overview of our approach

for evaluating these similarity scores. For a given duplicate question, we ordered the

question pairs using each of the 42 similarity scores we obtained from comparing 6

question pairs using 7 techniques. We assigned an increasing rank number to each of

the question pairs, with tied pairs being assigned the average rank of the tied group,

obtaining 42 different ranks (one for each similarity). We used these ranks as a proxy

for how well the similarity scores can identify true duplicate pairs. Better performing

scores should assign top ranks to true duplicate pairs, while keeping false duplicate

pairs at the bottom of the ranking.

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Duplicate
question

Other
questions

Question
pairs

Similarity
rankings

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Similarity
scores

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

Semi-fixed or Fully-fixed timestep?

I am making an iphone shmup and am trying to decide what
type of game loop to use. I want to use either semi-fixed
timestep or fully-fixed timestep. With semi-fixed timestep I will
make zero...

asked May 16 '11 at 1:47
A. Notter Pearson
887 2 8 10

11k views

2
answers

15
votes

game-loop

BERTOver�ow

MPNet

Doc2Vec

Topic

BM25

TF-IDF

Jaccard

Figure 3.3: Overview of our approach to ranking question pairs according to similarity
scores.

We used the recall-rate@k measure to analyze how each similarity score performs

at providing a limited number of suggestions for possible duplicate questions. This

measure was used in a number of other studies [3, 105, 111, 114, 115, 121, 122, 139,

84

144], and evaluates the ability of a score of accurately recommending a true duplicate

question among a list of the top-k highest scores, simulating a real-world search

system. In our study, we defined the recall-rate@k as the percentage of duplicate

questions that have at least one true duplicate question pair ranked among the top-

k recommendations. We used the following equation to calculate the recall-rate@k

measure for each of the similarity score rankings mentioned above:

recall-rate@k =

∑︁N
i=1 vi
N

,

where N is the number of duplicate questions in the dataset and vi is a binary variable

indicating if a duplicate question has at least one true duplicate pair with a rank of

k or lower. We used values of k equal to 5, 10 and 20 in our analysis, as these are the

most commonly used values in other studies.

Findings: The techniques performed worse when detecting game devel-

opment questions than when detecting general development questions on

Stack Overflow. Table 3.4, Table 3.5, and Table 3.6 show the performance of

the 42 similarity scores we tested for identifying duplicate questions measured with

different metrics. All of the similarity scores had lower performance at detecting

duplicate questions from the two game development datasets than questions about

general development from Stack Overflow. While the drop in performance was not as

pronounced for the Game Development Stack Exchange, there was a large difference

when detecting duplicate questions about game development from Stack Overflow.

Nevertheless, up to 29% of the duplicate questions about game development were

correctly ranked by the techniques.

Similarities calculated with MPNet achieved the highest performance.

The similarities calculated using MPNet were the most effective when ranking ques-

tion pairs from the Game Development Stack Exchange and about general develop-

ment on Stack Overflow. On those datasets, the technique could correctly classify

40% and 50% of duplicate question pairs among the top 5 most similar pairs, respec-

85

Table 3.4: Performance of the studied techniques according to different metrics on
the Game Development Stack Exchange. Columns 1 to 5 indicate the question part
that was used for comparing the questions, as such: 1 - title, 2 - body, 3 - tags, 4 -
title and body, 5 - title, body, and tags, and 6 - title, body, tags, and answers. Values
in bold show the best scores we obtained for each metric in each dataset. Values
in parentheses show the standard deviations we obtained for the five samples of the
dataset about general development on Stack Overflow.

Metric Technique 1 2 3 4 5 6

recall-rate@5

Jaccard 15.41 11.51 4.71 14.96 16.23 15.41

TF-IDF 18.04 17.14 6.07 25.39 27.11 27.02

BM25 16.95 12.33 7.07 15.50 16.95 20.85

Topic 0.00 1.09 0.91 1.27 1.00 1.45

Doc2Vec 0.00 1.27 0.00 1.27 1.72 1.00

BERTOv. 5.26 2.99 4.71 4.90 5.62 6.26

MPNet 27.20 25.20 7.07 37.72 37.81 39.62

recall-rate@10

Jaccard 20.13 14.05 7.80 18.13 19.58 20.76

TF-IDF 21.94 22.94 9.25 31.01 33.64 33.54

BM25 22.21 15.23 9.61 20.40 21.94 26.56

Topic 0.54 1.54 1.00 1.45 2.18 2.27

Doc2Vec 0.00 1.72 0.00 1.36 2.90 1.99

BERTOv. 6.53 3.45 6.07 5.62 6.17 7.62

MPNet 33.45 30.92 9.97 44.79 46.33 45.87

recall-rate@20

Jaccard 25.11 17.32 11.51 22.39 25.29 24.57

TF-IDF 27.38 27.83 13.78 38.17 41.61 41.98

BM25 27.74 20.04 14.51 26.56 28.74 34.72

Topic 0.73 1.99 1.27 1.99 3.26 3.35

Doc2Vec 0.00 2.18 0.00 2.72 4.35 3.08

BERTOv. 7.62 3.81 8.16 6.71 7.71 9.61

MPNet 39.80 37.26 14.14 52.86 53.31 53.94

86

Table 3.5: Performance of the studied techniques according to different metrics on
the dataset about game development on Stack Overflow. Columns 1 to 5 indicate
the question part that was used for comparing the questions, as such: 1 - title, 2 -
body, 3 - tags, 4 - title and body, 5 - title, body, and tags, and 6 - title, body, tags,
and answers. Values in bold show the best scores we obtained for each metric in each
dataset. Values in parentheses show the standard deviations we obtained for the five
samples of the dataset about general development on Stack Overflow.

Metric Technique 1 2 3 4 5 6

recall-rate@5

Jaccard 8.92 6.64 1.68 8.62 8.42 7.83

TF-IDF 11.00 7.63 2.38 10.80 11.20 15.76

BM25 11.40 6.14 2.18 7.73 8.62 16.15

Topic 0.50 0.79 0.20 0.40 0.50 1.19

Doc2Vec 0.00 0.50 0.00 0.79 0.59 0.89

BERTOv. 3.67 1.88 1.68 2.97 3.27 3.17

MPNet 13.58 8.72 2.78 14.87 14.77 14.97

recall-rate@10

Jaccard 12.49 7.63 2.38 11.10 11.30 10.21

TF-IDF 15.86 10.01 3.27 15.16 14.77 21.51

BM25 14.27 7.53 2.87 10.21 11.30 21.70

Topic 0.59 0.99 0.30 0.59 0.69 1.78

Doc2Vec 0.00 0.69 0.00 1.39 1.59 0.89

BERTOv. 4.56 1.98 2.28 3.96 3.77 3.37

MPNet 17.74 11.10 3.47 21.01 19.72 21.01

recall-rate@20

Jaccard 16.65 10.21 4.26 14.07 14.17 11.99

TF-IDF 21.21 13.78 4.36 18.93 19.72 28.84

BM25 19.23 9.12 4.86 12.98 14.27 29.34

Topic 0.99 1.59 0.50 1.19 0.89 2.28

Doc2Vec 0.00 0.79 0.00 1.59 2.28 1.49

BERTOv. 5.65 2.28 3.47 4.56 4.36 4.06

MPNet 23.09 15.46 5.45 26.76 26.26 26.66

87

Table 3.6: Performance of the studied techniques according to different metrics on
the dataset about general development on Stack Overflow. Columns 1 to 5 indicate
the question part that was used for comparing the questions, as such: 1 - title, 2 -
body, 3 - tags, 4 - title and body, 5 - title, body, and tags, and 6 - title, body, tags,
and answers. Values in bold show the best scores we obtained for each metric in each
dataset. Values in parentheses show the standard deviations we obtained for the five
samples of the dataset about general development on Stack Overflow.

Metric Technique 1 2 3 4 5 6

recall-rate@5

Jaccard 24.82 (0.86) 10.30 (0.42) 13.08 (1.11) 17.40 (1.06) 22.20 (1.86) 20.96 (1.39)

TF-IDF 29.00 (0.97) 17.43 (0.82) 13.76 (1.18) 30.62 (0.58) 37.00 (0.79) 40.70 (1.03)

BM25 27.68 (1.38) 11.83 (0.36) 15.39 (1.54) 22.58 (0.78) 28.83 (1.51) 35.66 (1.33)

Topic 0.41 (0.21) 0.40 (0.23) 1.15 (0.30) 0.61 (0.35) 0.68 (0.14) 0.77 (0.22)

Doc2Vec 0.02 (0.04) 0.58 (0.23) 0.02 (0.04) 0.88 (0.27) 1.56 (0.25) 1.90 (0.28)

BERTOv. 7.14 (1.35) 1.38 (0.37) 8.06 (0.35) 3.00 (0.49) 5.04 (0.68) 4.72 (0.58)

MPNet 40.09 (0.57) 23.11 (1.54) 16.75 (0.69) 45.98 (1.04) 48.51 (1.09) 50.14 (1.28)

recall-rate@10

Jaccard 30.28 (1.28) 13.01 (0.57) 17.24 (0.68) 21.64 (0.86) 27.70 (1.87) 25.17 (1.79)

TF-IDF 34.42 (1.08) 21.59 (0.34) 18.37 (1.01) 36.49 (0.63) 44.03 (0.91) 48.35 (0.47)

BM25 32.76 (1.56) 15.52 (0.39) 20.11 (1.51) 28.08 (0.92) 35.34 (1.43) 43.63 (1.67)

Topic 0.74 (0.29) 0.67 (0.36) 1.52 (0.36) 0.94 (0.48) 1.37 (0.28) 1.45 (0.23)

Doc2Vec 0.02 (0.04) 0.90 (0.21) 0.02 (0.04) 1.26 (0.43) 2.40 (0.46) 2.71 (0.38)

BERTOv. 8.42 (1.26) 1.66 (0.37) 10.05 (0.48) 3.90 (0.47) 6.20 (0.65) 5.85 (0.68)

MPNet 46.34 (0.99) 28.06 (1.77) 22.02 (1.09) 52.27 (0.56) 55.68 (0.54) 57.32 (0.63)

recall-rate@20

Jaccard 35.25 (2.03) 16.01 (0.96) 22.71 (0.44) 26.50 (1.20) 33.21 (1.72) 30.59 (1.39)

TF-IDF 39.75 (1.21) 26.63 (0.37) 24.16 (0.56) 42.85 (1.00) 51.18 (0.59) 56.12 (1.08)

BM25 38.57 (1.74) 19.89 (0.44) 25.98 (0.85) 34.04 (0.99) 41.86 (1.17) 52.11 (1.28)

Topic 1.08 (0.30) 0.86 (0.39) 2.44 (0.56) 1.68 (0.61) 2.48 (0.48) 2.40 (0.32)

Doc2Vec 0.02 (0.04) 1.34 (0.36) 0.04 (0.05) 2.03 (0.61) 3.47 (0.56) 3.94 (0.33)

BERTOv. 9.67 (1.44) 1.95 (0.36) 12.47 (0.50) 4.95 (0.74) 7.32 (0.48) 7.36 (0.78)

MPNet 52.21 (1.28) 33.60 (1.68) 27.79 (0.50) 59.06 (0.29) 61.97 (0.94) 63.61 (0.34)

88

tively. The technique had a lower performance on game development questions on

Stack Overflow, having only classified at most 27% of duplicate questions among the

20 top ranked pairs.

Other noteworthy techniques are the Jaccard, TF-IDF, and BM25 similarities,

which could correctly rank up to 40% of duplicate pairs among the top 5 most similar

pairs. These techniques achieved the highest performance when ranking duplicate

questions about game development from Stack Overflow, even surpassing the scores

obtained by MPNet similarities. Despite achieving up to 15% lower scores than MP-

Net on the other two datasets, these are relatively simple techniques when compared

to the other ones we tested, and may be useful if time and computational resources

are a limiting factor when detecting duplicate questions.

We achieved the highest performance when comparing all question parts

including answers. We found that merging the title, body, and tags of the questions

into a single document before comparing questions yielded some of the best results

for almost all of the metrics and similarities we tested. Moreover, we found that using

only the title of the questions was also a good strategy for finding duplicates, even

beating the performance of comparing all of the questions parts for some techniques.

These results are consistent with other studies that compared different question parts

to detect duplicate questions on Stack Overflow [3, 139, 144].

We also found that using the answers from other questions can greatly improve

the performance of the techniques. In all datasets, the similarities calculated using

answers achieved the best overall results. We observed an increase of up to two per-

cent points on the dataset from the Game Development Stack Exchange and general

questions on Stack Overflow when using answers for comparing question pairs. The

increase in performance was even higher for game development questions on Stack

Overflow, with a boost of up to 15 percent points for the similarities calculated using

TF-IDF and BM25.

The fact that some techniques gained a large boost when we used answers for com-

89

paring question pairs may indicate that some questions are marked as duplicates as a

way of referencing the answers posted in the other question, while the questions are

not duplicates themselves. For example, question 8651718 on the Game Development

Stack Exchange asks how to shoot bullets from a spaceship using C++ and is marked

as a duplicate of question 8632619, which asks how to spawn enemies using Java. The

user that identified the duplicates posted a comment noting that the solutions to both

questions are similar, but changes should be made to accommodate the differences

between the projects.

The Topic, Doc2Vec and BERTOverflow similarities achieved a low per-

formance. On all of the datasets these similarities ranked fewer than 10% of the

duplicate question pairs among the 20 most similar pairs. Other studies have also

shown that topic similarities offer poor performance on the task of identifying du-

plicate questions on Stack Overflow [139, 140, 144]. However, our results differ from

the ones found by Zhang et al. [139, 140], where Doc2Vec similarities obtained better

performance. These differences may be in part due to the different sets of data used

in our studies. We further discuss some of those differences in Section 3.6.

The fact that the similarities calculated with BERTOverflow showed poor perfor-

mance can be a consequence of the absence of a fine-tuning step prior to computing

sentence embeddings. BERTOverflow is a model for generating word embeddings

trained on Stack Overflow data and we performed no other training steps to adapt

it to the task of generating and comparing sentence embeddings, as was done for the

MPNet model.

Similarity scores based on Jaccard, TF-IDF, BM25 and MPNet could

correctly rank most duplicate question pairs among the 5% most similar

pairs. Figure 3.4 shows the distribution of ranks assigned to true duplicate question

pairs for all of the 42 similarity scores we tested on our three datasets. When using

18https://gamedev.stackexchange.com/questions/86517, accessed September 6th, 2021.
19https://gamedev.stackexchange.com/questions/86326, accessed September 6th, 2021.

90

https://gamedev.stackexchange.com/questions/86517
https://gamedev.stackexchange.com/questions/86326

Jaccard, TF-IDF, BM25 and MPNet similarities, we observed that at least 75% of the

duplicate question pairs were ranked among the 2,500 most similar pairs. Given that

we compared each duplicate question with over 50,000 questions for each dataset, that

represents less than 5% of all of the question pairs we analyzed. Other techniques

produced worse rankings, but could still place most duplicate pairs among the 20%

(10,000) most similar pairs.

However, as we can see from Table 3.4, Table 3.5, and Table 3.6, these rankings

do not necessarily translate to good performance on ranking duplicate pairs among

the 20 most similar ones. Instead, these results show that these techniques can be

used by themselves as heuristics for reducing the number of questions that have to

be compared to identify their duplicates. Given that techniques such as the Jaccard,

TF-IDF, and BM25 similarities have fast computation times, they may prove useful

for a pre-selection step such as the one discussed in Section 3.4.4. A limited number of

question pairs can help improve the performance of duplicate question detection sys-

tems by reducing the number of false duplicate pairs that are evaluated and reducing

the time it takes to evaluate a set of questions.

Summary: The studied techniques could rank up to 54% of the duplicate question
pairs among the 20 most similar pairs in datasets about game development. How-
ever, these techniques showed worse performance when ranking duplicate questions
about game development than when ranking questions about general development
on Stack Overflow. We achieved the best results by using MPNet similarities for
comparing question titles, bodies, tags, and answers. Other techniques also had
noteworthy performance and can be used for selecting candidate question pairs for
improving the performance of duplicate question detection systems.

3.5.2 RQ2. How can we leverage labelled data to improve
the performance of unsupervised techniques?

Motivation: In RQ1 (Section 3.5.1) we explored unsupervised and pre-trained tech-

niques for the task of detecting duplicate game development questions. While these

techniques do not require labelled data, our datasets contain a small set of labelled

91

Game Dev. SE Game Dev. SO General Dev. SO
Jaccard

T
F

−
ID

F
B

M
25

D
oc2V

ec
Topic

B
E

R
TO

verflow
M

P
N

et

10 1000 100K 10 1000 100K 10 1000 100K

6
5
4
3
2
1

6
5
4
3
2
1

6
5
4
3
2
1

6
5
4
3
2
1

6
5
4
3
2
1

6
5
4
3
2
1

6
5
4
3
2
1

Figure 3.4: Distribution of ranks of true duplicate pairs in the three different datasets
used in this study according to different techniques. Labels 1 to 5 indicate the question
part that was used for comparing the questions, as such: 1 - title, 2 - body, 3 - tags,
4 - title and body, 5 - title, body, and tags, and 6 - title, body, tags, and answers.

92

duplicate question pairs that can be useful for learning the characteristics of duplicate

questions. Furthermore, we have explored a set of 42 similarity scores that take dif-

ferent approaches to comparing questions, and aggregating them into a single score

can be helpful to achieve a higher performance on the task of detecting duplicate

questions. In this research question, we explore how we can combine these different

scores and use the labelled duplicate question data to build a better similarity score

that can more reliably detect duplicate questions.

Approach: We followed the methodology described in Section 3.4.4 to build a su-

pervised classification model for detecting duplicate question pairs. We started by

selecting candidate question pairs for each duplicate question in the datasets by select-

ing the top ranked pairs according to the TF-IDF similarity score between question

titles, bodies and tags. We analyzed how the number of selected candidate pairs

affects performance by training models with sets of various numbers of candidates.

As we discussed in RQ1 (Section 3.5.1), TF-IDF is a simple and fast technique

that provided one of the best rankings for duplicate question pairs. Even though

the MPNet similarity scores offered better performance, computing those similarities

takes considerably more time as the vectors used for representing each document are

much larger than the ones used for TF-IDF20. For example, it took around 10 seconds

to compute TF-IDF vectors for each dataset using one core of an 8th generation Intel

Core i7 processor, and another 180 seconds to compute their similarities. Meanwhile,

it took around 360 seconds to compute MPNet vectors for each dataset using a Tesla

P100 GPU, and another 270 seconds to compute their similarities on the laptop

mentioned above.

We followed the methodology described in Section 3.4.4 to create train and test

sets. We trained Random Forest models using the hyperparameters that provided the

20While the vectors produced by TF-IDF have as many dimensions as the size of the vocabulary
in the corpus, these vectors are sparse and can only have as many non-zero values as the number of
unique words in a document. In our datasets, the median number of unique words in each question
is around 30. Meanwhile, MPNet produces dense vectors with a fixed size of 768 dimensions.

93

best recall-rate@5 for each set of candidates during the hyperparameter tuning stage.

We then used the trained models to obtain similarity scores for the candidate pairs

in the test sets. Similar to what we did in RQ1, we analyzed the final performance

of the models using the recall-rate@k metric for values of k of 5, 10, and 20.

Given that we created models to identify duplicate question pairs on specific

datasets, they might have learned particular characteristics of the questions on which

they were trained. We thus analyze the performance of a model when identifying

duplicate question pairs from other datasets than the one used for training it. For

example, we use the model trained on the Game Development Stack Exchange data

to identify duplicate questions on Stack Overflow, and vice-versa. As some of Q&A

websites do not have the labelled data required to train supervised classifiers, a model

trained on another set of data may prove a better alternative than using other tech-

niques such as the ones we discussed in RQ1.

We investigated the duplicate question pairs that our classifier could not correctly

rank among the top 20 results. First, we selected the set of misclassified pairs in the

test set and checked if the true duplicate pair was among the set of candidate questions

or if it was removed during the candidate selection process. Furthermore, we read

both questions of the misclassified pairs to define a possible cause for the low ranking.

We also read the top ranked question associated to each of those question pairs, to

see if it was a possibly unlabelled duplicate pair. We judged a top ranked question

as a correct pair for the duplicate question if it provided enough information to solve

the problem being discussed. We performed this analysis for the datasets about game

development from Stack Overflow and the Game Development Stack Exchange, and

for one of the samples of the dataset about general software development on Stack

Overflow.

Findings: The optimal number of candidates depends on the dataset and

metric being used. Table 3.7 shows the performance of the classifier models we

trained using different numbers of candidate pairs. We observed that the performance

94

of the classifiers varied according to the number of candidate question pairs used for

training and evaluating them. Overall, using a larger number of candidates increased

the performance of the classifiers in the recall-rate@10 and recall-rate@20 metrics,

but decreased the recall-rate@5 metric. We found that the classifiers achieved the

highest performance in the recall-rate@5 metric when using a number of candidates

between 500 and 1,500. Meanwhile, a number of candidates between 2,000 and 7,500

achieved higher recall-rates at 10 and 20.

Therefore, we recommend using a number of candidates in the range of 1,000 to

7,500. We note that the performance of the classifiers trained using that range showed

only small differences in performance, and that using larger numbers of candidates

can increase the time it takes to evaluate each duplicate question. We used a number

of candidates of 1,500 for our other analyses, as it showed a good performance in all

datasets and recall-rates.

We could almost double the performance of the unsupervised techniques

by using supervised classifiers. Table 3.7 highlights the best scores achieved by

our models in bold. We observed a performance increase of up to 14 percent points

in the recall-rate@5 for the model trained on game development questions from Stack

Overflow (from 16.15 to 30.20), representing an 88% increase when compared to

the best similarity scores we obtained in RQ1 (Section 3.5.1). We also observed

a performance increase of 20% for the models trained on general questions from

Stack Overflow, which could correctly classify 60% (against 50% in RQ1) of duplicate

questions among the 5 most similar question pairs. We observed similar increases

in the other recall-rate metrics for these two datasets. The classifiers trained on the

Game Development Stack Exchange showed more modest increases of up to 9%.

The models could predict duplicate questions on other datasets with

little to no decrease in performance. Table 3.8 shows the performance of models

trained with 1,500 candidates when detecting duplicate questions on datasets other

than those used for training them. We found that the models trained on game develop-

95

Table 3.7: Performance of the duplicate question classifier models for different num-
bers of candidate pairs according to different metrics. Values in bold show the best
results obtained for a metric in a given dataset. Values in parentheses show the
standard deviations we obtained for the five samples of the dataset about general
development on Stack Overflow.

Dataset Candidates
Recall-rate@

5 10 20

Game Dev. Stack Exchange

100 39.37 46.15 51.58

250 38.01 47.51 54.75

500 36.20 44.80 55.66

750 38.01 49.77 58.82

1000 38.46 46.15 56.11

1500 40.27 50.68 58.82

2000 39.82 47.51 56.11

2500 41.18 49.32 57.01

5000 40.72 50.23 58.82

7500 38.91 49.32 56.56

10000 38.46 47.96 58.82

Stack Overflow/Game dev.

100 30.20 37.13 46.53

250 29.21 38.12 47.52

500 25.25 35.15 43.07

750 29.70 39.11 48.51

1000 28.22 40.10 48.51

1500 27.23 38.12 50.00

2000 28.22 38.12 48.51

2500 28.22 38.61 48.02

5000 29.70 38.61 47.03

7500 28.22 38.61 49.01

10000 29.70 38.12 47.52

Stack Overflow/General dev.

100 58.28 (3.60) 64.34 (2.16) 68.42 (1.79)

250 59.64 (3.58) 64.70 (3.33) 70.59 (2.19)

500 59.91 (5.16) 65.70 (4.48) 72.13 (3.28)

750 59.82 (4.48) 66.16 (3.86) 71.40 (3.67)

1000 60.00 (3.75) 65.79 (4.13) 72.13 (2.61)

1500 59.55 (5.12) 65.88 (3.98) 72.49 (3.08)

2000 58.82 (4.34) 65.88 (4.75) 72.31 (2.99)

2500 59.00 (4.75) 65.61 (3.75) 72.22 (3.19)

5000 59.10 (4.64) 66.43 (3.78) 72.13 (3.30)

7500 55.93 (7.98) 64.16 (5.16) 71.68 (3.13)

10000 57.83 (4.47) 65.16 (3.72) 72.13 (2.53)

96

Table 3.8: Performance of the duplicate detection models in cross-dataset settings.

Test dataset Train dataset
Recall-rate@

5 10 20

Game Dev. Stack Exchange

Game Dev. Stack Exchange 40.27 50.68 58.82

Stack Overflow/Game dev. 35.75 44.80 53.39

Stack Overflow/General dev. 39.00 (2.03) 48.60 (1.30) 55.84 (0.41)

Stack Overflow/Game dev.

Game Dev. Stack Exchange 26.73 35.15 47.03

Stack Overflow/Game dev. 27.23 38.12 50.00

Stack Overflow/General dev. 25.54 (0.57) 33.27 (0.81) 45.05 (1.68)

Stack Overflow/General dev.

Game Dev. Stack Exchange 58.01 (3.42) 63.98 (2.78) 69.77 (3.78)

Stack Overflow/Game dev. 52.76 (4.79) 61.00 (5.38) 68.14 (4.43)

Stack Overflow/General dev. 58.44 (4.58) 65.39 (3.70) 72.40 (2.87)

ment questions could identify duplicate questions about general software development

on Stack Overflow with a decrease of only a couple percent points when compared

to the one trained on that data. Models trained on Stack Overflow data also showed

similar performance to the one trained on Stack Exchange when detecting duplicate

questions on the Game Development Stack Exchange.

We observed the largest decreases in performance when using other models to

detect duplicate questions about game development on Stack Overflow. Even then,

the decrease in performance was at most three percent points when using the clasifier

trained on the Game Development Stack Exchange, which is less than a 10% decrease.

Therefore, supervised models trained on other datasets achieved higher performance

than the unsupervised and pre-trained models we explored in RQ1, being another

viable option for websites with no labelled data available.

The datasets contain several unlabelled duplicate question pairs. Ta-

ble 3.9 shows a summary describing the duplicate questions pairs that were not ranked

among the 20 most similar pairs by the models trained using 1,500 candidate pairs.

Between 19% and 25% of the misclassified duplicate pairs did not have their main

97

questions in the set of candidate questions and therefore our classifier had no chance

of correctly ranking those pairs. This loss is justified by the increased performance

we obtained by reducing the set of questions the model needed to evaluate. Further-

more, including a larger number of candidates in the evaluation does not necessarily

increase the performance of the classifier, as we have shown above.

We also found that many of the misclassified duplicate questions about game de-

velopment actually had an unlabelled duplicate pair as the top ranked question in the

list of most similar pairs. This finding is similar to those found by Zhang et al. [144]

and Ahasanuzzaman et al. [3], and stresses the importance of these automatic sys-

tems for duplicate question detection. If we considered these unlabelled pairs as

correct classifications, the performance of our models could be increased by up to

50%. The percentage of unlabelled duplicates could be even higher if we considered

other questions with high ranks, and not just the most similar one.

Finally, we noticed that several main questions discuss more general topics that en-

compass the specific issue discussed in the duplicate question. For example, question

number 11675521 on the Game Development Stack Exchange asks about copyright

issues with reproducing the mechanics of a specific board game called Risk. That

question was marked as a duplicate of another one that discusses how closely a game

can resemble another one in general terms22. However, our classifier model found a

question that is more similar to the first one, as it also discusses copyright issues in

creating a reproduction of Risk23. Therefore, some of the question pairs marked as

duplicates offer additional challenges for automatic detection, as they discuss similar

yet different topics and require an understanding of how these topics relate to one

another.

21https://gamedev.stackexchange.com/questions/116755, accessed September 6th, 2021.
22https://gamedev.stackexchange.com/questions/1653, accessed September 6th, 2021.
23https://gamedev.stackexchange.com/questions/69119, accessed September 6th, 2021.

98

https://gamedev.stackexchange.com/questions/116755
https://gamedev.stackexchange.com/questions/1653
https://gamedev.stackexchange.com/questions/69119

Table 3.9: Summary of the duplicate pairs that our supervised models ranked below
the 20 most similar pairs. Percentages are shown in relation to the total number of
misclassified duplicates in each dataset.

Description
Game Dev.

Stack Exchange

Game Dev.

Stack Overflow

General Dev.

Stack Overflow

Duplicate pairs

in test set
221 202 221

Misclassified

duplicate pairs
91 (100%) 101 (100%) 53 (100%)

Main question not in

the list of candidates
19 (21%) 19 (19%) 13 (25%)

Top ranked question is

an unlabelled duplicate
44 (48%) 51 (50%) 10 (19%)

Main question discusses

a more general topic
40 (44%) 42 (42%) 28 (53%)

99

Summary: We could almost double the performance of unsupervised techniques
using supervised models trained with labelled data. We obtained the best perfor-
mance by choosing a number of candidate question pairs in the range of 500 to
2,500. The supervised models could detect duplicate questions on datasets other
than the ones they were trained on with a decrease in performance of up to 10%.

3.6 Comparison with other studies

Performing a fair comparison between methodologies for detecting duplicate questions

on Stack Overflow is hard as most studies [3, 121, 122, 138, 139, 140, 144] use different

datasets and do not provide any code for reproducing their results. For example,

several studies [3, 111, 121, 122, 138, 139, 140, 144] have used data collected from a

recent Stack Exchange data dump at the time of their writing and sampled it based

on post dates and tags to obtain a subset of questions. As the Stack Exchange data

dump is mutable (e.g., questions can be edited and deleted after they are posted)

and sampling techniques depend on several different parameters, it is very difficult to

reproduce and obtain the same dataset.

These issues are also discussed in other studies that have tried to reproduce and

compare duplicate detection techniques on Stack Overflow [3, 111, 139]. Silva et

al. [111] found a large performance decrease when reproducing the methodology pro-

posed by Ahasanuzzaman et al. [3] and Zhang et al. [144], while also showing that

the performance varies greatly when using sets of questions posted in different years.

Zhang et al. [139] also tried to reproduce Ahasanuzzaman et al.’s [3] methodology and

found a slight increase in performance when evaluating their implementation on their

data. All of the studies note the challenges of correctly reproducing those results, as

neither the code nor the data are available for the reproduced studies.

We also noticed that several of the studies show at least one design choice that

harms the reproducibility of their methodology or its ability to be applied on real-

world scenarios. Some of these choices can also artificially boost the performance of

the duplicate detection techniques, and the results reported by those studies should

100

suffer large decreases when applied to real Q&A websites. These pitfalls make the task

of performing a fair comparison between studies even harder, as each methodology

can use a different approach for evaluating their proposed techniques despite using the

same recall-rate measures. We outline below some of the common pitfalls we observed

when developing our methodology for duplicate question detection and analyzing

those proposed by other studies. We hope that future researchers take these pitfalls

into consideration when designing their own systems for duplicate detection, which

will help in their adoption by Q&A websites.

1. Undersampling the test set - Five of the studies we analyzed [121, 122, 138,

139, 140] have randomly sampled questions that are not part of any duplicate

pairs to make the dataset balanced between duplicate and non-duplicate pairs.

While this is a valid approach for building a train set, undersampling should not

be performed on the test set. The problem of identifying duplicate questions

is imbalanced by nature and removing this imbalance during evaluation makes

the task easier and not consistent with real-world situations.

2. Splitting all questions between train and test sets - Splitting datasets

between train and test sets is a common approach for evaluating machine learn-

ing techniques. However, when evaluating techniques for duplicate question

detection, only the set of duplicate questions should be split between train

and test. The remaining questions should be used by both sets, as duplicate

questions should be compared to all other answered questions present in the

website. Assigning a limited number of questions to be compared in the test

set makes the problem easier in a similar manner as undersampling the test set

does. We found five studies that split all of the dataset between train and test

sets, limiting the number of questions used during evaluation [121, 122, 138,

139, 140].

3. Appending a ‘[duplicate]’ tag to question titles - On Stack Overflow and

101

other Q&A websites of the Stack Exchange network duplicate questions have the

tag ‘[duplicate]’ appended to their titles after they are marked as such. While

this tag becomes part of the title of the question and can be used for identifying

future duplicate relations, it was not present when the question was first posted.

Therefore, appending the tag to duplicate questions leads to information leakage

and is not representative of real-world scenarios. Four of the studies we analyzed

have artificially appended the tag to the titles of duplicate questions [3, 111,

121, 122].

4. Removing duplicate questions without answers - Duplicate questions

can only point to other questions that already have an answer. However, the

duplicate questions themselves do not need to have answers to be marked as

such, and duplicates without answers should also be considered in the analysis.

We found three studies that removed duplicates without answers [138, 139, 140].

5. Only comparing duplicates with historical questions - Ideally, duplicate

questions should be identified at the time of their posting, and thus should

only point to questions that have been created before that. However, there are

several instances of questions that are marked as duplicates of more recent ones.

Some examples are the questions 339039624, 113976225, and 513749726, which

point to questions that have been posted one to nine months later. Two studies

only compared duplicate questions to those posted earlier [3, 144].

6. Using old data - We found two studies that used data that was over six years-

old at the time of their writing [121, 122]. Using old data may lead to results

that are not useful or representative of current Q&A websites. For example, the

number of duplicate questions on Stack Overflow grows quickly with the passage

of time [3, 111] and the rules for marking questions as duplicates and the way

24https://stackoverflow.com/questions/3390396, accessed September 6th, 2021.
25https://stackoverflow.com/questions/1139762, accessed September 6th, 2021.
26https://stackoverflow.com/questions/5137497, accessed September 6th, 2021.

102

https://stackoverflow.com/questions/3390396
https://stackoverflow.com/questions/1139762
https://stackoverflow.com/questions/5137497

users interact with them may change. Silva et al. [111] have also shown that

the performance of duplicate detection techniques degrades when considering

questions posted in more recent years. While publicly available data is scarce

for some Q&A websites, the Stack Exchange data dump is updated monthly

and researchers should try to use the most recent snapshot available. We note

that old data can still be useful as a benchmark for models, but the results

obtained when using it should not be expected to hold for current applications.

7. Training on test duplicate questions - As we compare duplicate questions

with every other answered question in our dataset, it is easy to form training

pairs which contain duplicate questions that are also in the test set. These test

duplicate questions should therefore be removed from the dataset prior to form-

ing question pairs, to avoid leaking information by using them during training.

It is hard to identify if this type of leakage has occurred in other studies, but we

have succumbed to this pitfall ourselves during the initial stages of our study

before correcting it. Some common signs that the duplicate detection model

has been trained on test data are the inability to generalize to other datasets,

and high and near-constant values of recall-rates across multiple values of k.

Because of these pitfalls, we chose not to perform a direct comparison between

the performance of our techniques and those of other studies. Even if we tried to

reproduce other methodologies, the uncertainty of the correctness of our implemen-

tations would make the comparison meaningless and unfair. Instead, we have made

the datasets we used in our study, together with the implementation of our approach,

publicly available in our replication package27, and we invite other researchers to

use these datasets as means of comparing their methodologies to ours. Our datasets

have pre-defined train and test splits and can be recreated from the original Stack

Exchange data dump using the code found in the package.

27Our replication package is available online at https://github.com/asgaardlab/done-21-arthur-
duplicate gamedev questions-code.

103

https://github.com/asgaardlab/done-21-arthur-duplicate_gamedev_questions-code
https://github.com/asgaardlab/done-21-arthur-duplicate_gamedev_questions-code

3.7 Implications of our findings

In this section we discuss some of the implications of our findings. We focus our

discussion on the implications for the developers of Q&A websites and for researchers,

as those are the two main groups that can benefit from our findings.

3.7.1 For the developers of Q&A websites for game develop-
ment

As we discussed in Section 3.2, Q&A websites suffer with the presence of duplicate

questions and a lot of work goes into manually identifying them. Several researchers

have tried to help those websites by creating techniques for automatic duplicate de-

tection. Most of those techniques are supervised and require a labelled set of training

data that is not available for most Q&A websites for game development. Therefore,

in our work, we have explored alternatives for these supervised techniques and have

thus analyzed how unsupervised and pre-trained techniques perform in the task of

duplicate question detection in those websites.

Our findings show that some of the techniques we analyzed are viable options for

the websites that lack the data needed for training supervised models. For example,

we could correctly identify up to 39% of duplicate question pairs using a list of the

five most similar pairs according to the MPNet similarity. If the Q&A websites

implemented that technique, that would lead to a reduction of up to 39% in the

posting of questions that have already been answered. We have also shown that other

simpler techniques are good choices for unsupervised duplicate detection systems if

performance and processing time need to be prioritized.

Furthermore, our results from RQ2 (Section 3.5.2) show that even small sets of

labelled data can improve the results provided by the techniques we analyzed in RQ1

(Section 3.5.1). Our supervised models achieved an increased performance in all

datasets we used, and almost doubled the performance of detecting duplicate game

development questions on Stack Overflow. We trained these models using only a

104

few hundred pairs of labelled duplicate questions, which is a really small number

when compared to the hundreds of thousands of pairs in other websites such as

Stack Overflow28. Therefore, even small websites can take advantage of their data to

improve their duplicate detection systems.

Meanwhile, websites with no labelled data at all can invest some effort into manu-

ally labelling a set of a few hundred duplicate pairs to train those supervised models.

Another viable option is to train supervised models using the data from other websites

(such as Stack Overflow) to create their own duplicate detection systems. As we have

shown in RQ2, cross-website models could achieve higher performance than the un-

supervised techniques and had only a small decrease in performance when classifying

data from a dataset other than the one used for training it.

All of these findings describe viable approaches for developing systems for duplicate

question detection. Although the techniques we described may not achieve perfor-

mance as high as some other tailor-made techniques, they may be the only alternatives

for Q&A websites with low resources and no labelled data, such as those focused on

discussing game development. Those websites can also use off-the-shelf tools such as

ElasticSearch29 that can be quickly deployed and scaled to help in implementing the

techniques. Ultimately, our results can help those websites in building better systems

for duplicate detection, which can improve their ability of helping users acquire the

information they need.

3.7.2 For researchers

Throughout this chapter, we have discussed several methodological choices that led

to the best results for the models and techniques we have studied. For example, we

have shown that the performance of the models is affected by the number of candidate

28The current number of duplicate question pairs on Stack Overflow is available by running the
following query on the Stack Exchange data explorer website https://data.stackexchange.com/sta
ckoverflow/query/1440749/number-of-duplicate-questions-on-stack-overflow.

29https://www.elastic.co/elasticsearch/, accessed September 6th, 2021.

105

https://data.stackexchange.com/stackoverflow/query/1440749/number-of-duplicate-questions-on-stack-overflow
https://data.stackexchange.com/stackoverflow/query/1440749/number-of-duplicate-questions-on-stack-overflow
https://www.elastic.co/elasticsearch/

question pairs chosen for evaluation and by the parts of the questions that are used for

the comparison. We have also analyzed several techniques for comparing questions,

and how they perform in the task of ranking duplicate questions and selecting can-

didate questions. Additionally, we have introduced new methodologies for detecting

duplicate questions in the software engineering domain, such as using MPNet and

BERTOverflow30, and using answers from main questions. Future researchers can

build upon all of these findings, and use them to decide what are the best approaches

to use in their own methodologies.

Moreover, we have tried our best to reproduce a real-world scenario for duplicate

detection in our methodology. For example, we compared duplicate questions against

answered questions using only the information provided at the time of their posting.

We have not altered the contents of the questions aside from preprocessing their

texts, and we used all of the questions available in our datasets for evaluating our

methodology, without reducing the number of non-duplicate questions in the test

set. These choices are different from the ones taken in other studies and can lead to

reduced performances when evaluating the methodologies. However, we believe these

approaches can better gauge the performance of the proposed techniques when applied

on Q&A websites, and should be adopted by other researchers when conducting

similar studies into duplicate question detection. Future researchers can therefore

use and improve our proposed methodology to build systems that can more closely

reflect real-world situations. We have also outlined some of the common pitfalls that

occur when evaluating duplicate detection systems in Section 3.6, which can help

researchers avoid them in the future.

We have made all of the code and data used in our study available in our replication

package. We included thorough explanations and comments so that other researchers

can use, reproduce and evaluate our results and methodology. We also made available

30Despite being trained using Stack Overflow data, BERTOverflow was created for code and
named entity recognition and not was not previously used for duplicate question detection.

106

all of the models we used (both unsupervised and supervised) so that other researchers

can use them without having the burden of retraining from scratch. Everything is

bundled in a Docker container to allow running the whole methodology with minimum

effort, even on other datasets. Finally, we have introduced fixed datasets for duplicate

question detection in the software engineering domain (Section 3.6) to allow for a

fair comparison among methodologies. With these measures, we hope to reduce the

burden required for reproducing our results and allow for future studies to use and

build upon our methodologies and develop better duplicate detection systems.

3.8 Threats to validity

In this section we discuss the threats to the validity of our study.

3.8.1 Internal validity

Throughout this study we performed several preprocessing steps to manipulate our

data and adapt it to our needs. While we have not changed any of the content of the

posts, our results might have been affected by one of these data processing steps.

We sampled our data from Stack Overflow to obtain a set of game development

questions and a small set of general development questions. Despite repeating this

sample multiple times using different random seeds, we cannot guarantee that this

data is still representative of the whole set of questions from Stack Overflow without

further analysis of the remaining data.

We selected only one answer from each question to use when comparing the ques-

tions in Section 3.4.3. We used the number of votes, the time of posting, and the

flag indicating if the answer was accepted to elect the answer for the comparison.

However, it is hard to decide which is the best answer for a given question, and our

heuristic for choosing those answers may not lead to the best results. For example,

Omondiagbe et al. [80] found that the number of votes and is not a good indicator

for answer acceptability and that accepted answers are usually not the first ones to

107

be posted for questions about Java and JavaScript on Stack Overflow. Future studies

should explore using different heuristics for choosing answers for duplicate question

detection.

Our results are dependent on our parameter and implementation choices for some

of our models and algorithms, such as TF-IDF, BM25, LDA, and Doc2Vec, and other

sets of parameters or implementations might offer different results. We also used

parameters that were previously tested on Stack Overflow, which may not be the best

ones to use for the game development domain. Moreover, we trained our supervised

models using a random forest algorithm with parameters defined using a random

search approach, and other algorithms with different parameter choices might lead

to a better performance. Future studies should explore which sets of parameters,

implementations, and algorithms offer the best results for the game development

domain.

3.8.2 External validity

In this study we focused our analysis on the data obtained from two Q&A websites,

namely the Game Development Stack Exchange and Stack Overflow. We chose to

study these websites as they are the two Q&A largest websites for game development

that offer a labelled set of duplicate questions. Despite showing that our models can

maintain their performance when detecting duplicate questions on different datasets

(Section 3.5.2) we cannot guarantee that the models will work on other Q&A websites,

whether they are focused on game development or not. Moreover, our results show

that the performance of the techniques we tested can vary according to the dataset

and using them on other Q&A websites can provide different results than the ones we

obtained. Further studies should test the techniques and methodologies we presented

on different Q&A websites.

108

3.8.3 Construct validity

In our study, we ranked question pairs to identify if they are duplicates or not using

a set of different similarity scores. We used the recall-rate@k metric to evaluate how

we could use these techniques in Q&A websites, simulating a real-world scenario in

which we provide users with a list of suggestions. This metric should be more suitable

for evaluating the performance in this task than other metrics commonly used for

classification as it only considers the samples with the highest scores as opposed to

all of them. For example, we could obtain near perfect ROC-AUC (area under the

receiver operating characteristic curve) measures of above 0.95 for some similarity

scores, as most of the duplicate question pairs were ranked among the top 5% most

similar pairs (Section 3.5.1). We note, however, that the number k used for the recall-

rates evaluation should be relatively small in order to provide a reasonably-sized list

of suggestions.

We did not evaluate whether the techniques can identify that a question does not

have a duplicate. Ideally, a real system for detecting duplicate questions should avoid

giving wrong recommendations if it is the first time that a question has been posted.

Future studies should test whether the techniques are able to correctly detect if a

question does not have any duplicates.

Our evaluation is not time aware and the performance of some similarity measures

and the supervised classifiers can degrade over time. For example, the vocabulary

used in the studied websites can change as new topics and technologies emerge, intro-

ducing unseen words and phrases. The unseen text is not a problem for the similarity

measures based on MPNet, BERTOverflow, and Jaccard, but may reduce the per-

formance of the measures based on the other techniques that use the vocabulary for

training. As a consequence, the supervised classifiers can also suffer a decrease in per-

formance, despite not being directly trained using the vocabulary from the datasets.

Future studies should evaluate the results of the techniques and classifiers over time.

109

3.9 Conclusion

In this chapter, we explored different approaches to identifying duplicate questions on

game development Q&A websites. Given that there is a lack of labelled data for du-

plicate questions about game development, we evaluated seven different unsupervised

and pre-trained techniques for this task, including two new techniques which have

not been previously used in the software engineering domain. We further improved

our results by training supervised models with the small number of labelled duplicate

questions about game development. Our main findings include:

(1) Unsupervised and pre-trained techniques could identify up to 54% of the du-

plicate question pairs about game development among the 20 most similar question

pairs. Comparing question titles, bodies, tags, and answers with MPNet offered the

best performance.

(2) Supervised models trained on a small set of labelled duplicate questions could

almost double the performance obtained by the unsupervised and pre-trained tech-

niques.

(3) Supervised models could predict duplicate questions on datasets other than the

ones they were trained on with little to no decrease in performance.

Our results provide valuable insights into the development of systems for duplicate

question detection. Furthermore, we have shown that using unsupervised techniques

or labelled data from other websites are viable approaches for building a duplicate

detection system, which opens new paths for websites with low resources. Ultimately,

our findings can be used by developers of those Q&A websites and future researchers

to develop systems that can detect duplicate questions more reliably.

110

Chapter 4

Conclusion & Future Work

4.1 Conclusion

Several studies have analyzed Q&A websites and their many aspects. While most

studies focused on general purpose or programming Q&A websites such as Quora

and Stack Overflow, none had explored Q&A websites focused on discussing game

development and there was little knowledge about how game developers used and

interacted with them. In this thesis, we conducted two studies to analyze Q&A

websites for game developers from different perspectives and gauge their effectiveness

as learning resources and provide insights on how they can improve to provide a

better Q&A community for their users. In the first study, we tested the hypothesis

that those Q&A websites are useful resources for learning game development skills,

but found that the studied websites have decreased their effectiveness and are not

helping game developers as much as they used to. In the second study, we tested the

hypothesis that we can help the websites by implementing better duplicate detection

models with low resources, and found several viable approaches to improving the way

they handle duplicate questions. We highlight the main findings and contributions of

our studies below.

• In Chapter 2, we analyzed the trends, topics, and user perception of the four

largest Q&A websites that discussed game development. We found that the

studied Q&A websites are in decline, with the number of posts, users, and

111

their effectiveness decreasing over time. We also showed that experienced users

played a large role in the communities, and that the effectiveness of the com-

munities decreased as they stopped contributing. Moreover, we analyzed the

topics discussed by game developers and found that most of them are related

to game development, despite the topic about Bug Reports having the largest

number of posts among all topics. The topics differ in terms of the length of

posts and the frequency in which they discuss code, showing different levels of

abstraction and complexity. Finally, users have a mostly negative view of the

studied Q&A communities, do not actively participate, and have decrease the

frequency with which they access the websites. To help mitigate the decline of

these Q&A websites, we created a flowchart with recommendations for game

developers to use when deciding where to post their questions.

• In Chapter 3, we tackled the problem of automatically identifying duplicate

questions on Q&A websites for game developers. We analyzed the performance

of different unsupervised and pre-trained techniques for duplicate question de-

tection, including two new techniques that had not yet been used in the software

engineering domain. We showed that comparing all the text contents of ques-

tions including their answers with the technique based on MPNet achieved the

highest performances without any labelled data. Furthermore, we could gain

a large boost in performance when using a small set of labelled data to train

supervised models. The supervised models could identify duplicate questions

on datasets other than the ones in which they were trained with only a small

decrease in performance. Finally, we provide recommendations for developing

systems for duplicate question detection, and a replication package that can be

used to reproduce and evaluate our results. Future researchers and Q&A web-

sites can used our findings to build better duplicate detection systems, which

can lead to better Q&A communities for game developers.

112

4.2 Future work

The following list presents possible future research directions:

• Studying other online game development forums and communities -

We focused our study on Q&A websites for game developers. However, as we

discussed in Section 2.5.4, game developers also use several other resources for

learning and sharing knowledge, such as the official forums and Reddit. Future

studies should explore these other resources to identify if they suffer from the

same problems as the studied Q&A websites.

• Analyzing the sentiment of posts on Q&A websites for game develop-

ers - In Chapter 2, we showed that the studied Q&A communities are declining

and that users have a negative view towards them. While several factors may

be at play, the way users interact with each other may have a large impact on

the way the users perceive the community. Future research should analyze the

sentiment of questions and answers posted on those Q&A websites to better

understand how users interact.

• Analyzing the code written and shared by game developers - In our

study, we only analyzed text written in natural language on Q&A websites.

However, a large portion of the posts we analyzed also contain code snippets

that provide valuable information about how game developers write and share

code. Future studies should analyze the code provided by those posts.

• Evaluating the performance of fine-tuned supervised models on Q&A

websites for game developers - In Chapter 3, we analyzed several techniques

for duplicate question detection on Q&A websites. We focused on using tech-

niques that required little or no labelled data to provide viable alternatives for

websites with a low amount of resources. However, we have shown that our

supervised models can also detect duplicate questions on websites other than

113

those used for training them. Therefore, fine-tuned supervised models trained

on other Q&A websites with a large set of labelled data could achieve higher

performance than our models. Future studies should evaluate the performance

of those fine-tuned models on game development Q&A websites.

114

Bibliography

[1] D. Abric, O. E. Clark, M. Caminiti, K. Gallaba, and S. McIntosh, “Can du-
plicate questions on Stack Overflow benefit the software development commu-
nity?” In 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), IEEE, 2019, pp. 230–234.

[2] L. A. Adamic, J. Zhang, E. Bakshy, and M. S. Ackerman, “Knowledge sharing
and yahoo answers: Everyone knows something,” in Proceedings of the 17th
international conference on World Wide Web, 2008, pp. 665–674.

[3] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider, “Min-
ing duplicate questions of Stack Overflow,” in 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR), IEEE, 2016, pp. 402–412.

[4] A. Ahmad, C. Feng, S. Ge, and A. Yousif, “A survey on mining Stack Overflow:
Question and answering (Q&A) community,” Data Technologies and Applica-
tions, 2018.

[5] S. Ahmed and M. Bagherzadeh, “What do concurrency developers ask about?
A large-scale study using Stack Overflow,” in Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Measure-
ment, 2018, pp. 1–10.

[6] M. Allamanis and C. Sutton, “Why, when, and what: Analyzing Stack Over-
flow questions by topic, type, and code,” in 2013 10th Working Conference on
Mining Software Repositories (MSR), IEEE, 2013, pp. 53–56.

[7] L. An, O. Mlouki, F. Khomh, and G. Antoniol, “Stack Overflow: A code laun-
dering platform?” In 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), IEEE, 2017, pp. 283–293.

[8] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec, “Discovering
value from community activity on focused question answering sites: A case
study of Stack Overflow,” in Proceedings of the 18th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, 2012, pp. 850–
858.

[9] M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and K. A. Schneider, “Answer-
ing questions about unanswered questions of Stack Overflow,” in 2013 10th
Working Conference on Mining Software Repositories (MSR), IEEE, 2013,
pp. 97–100.

115

[10] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions asked by web
developers,” in Proceedings of the 11th Working Conference on Mining Soft-
ware Repositories, 2014, pp. 112–121.

[11] A. A. Bangash, H. Sahar, S. Chowdhury, A. W. Wong, A. Hindle, and K. Ali,
“What do developers know about machine learning: A study of ml discus-
sions on stackoverflow,” in 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), IEEE, 2019, pp. 260–264.

[12] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? An analysis of topics and trends in Stack Overflow,” Empirical Software
Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[13] B. Bazelli, A. Hindle, and E. Stroulia, “On the personality traits of StackOver-
flow users,” in 2013 IEEE international conference on software maintenance,
IEEE, 2013, pp. 460–463.

[14] S. Beyer, C. Macho, M. Di Penta, and M. Pinzger, “What kind of questions
do developers ask on Stack Overflow? A comparison of automated approaches
to classify posts into question categories,” Empirical Software Engineering,
vol. 25, no. 3, pp. 2258–2301, 2020.

[15] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal
of machine Learning research, vol. 3, no. Jan, pp. 993–1022, 2003.

[16] B. M. Blodgett and A. Salter, “# 1reasonwhy: Game communities and the
invisible woman,” in Foundations of Digital Games, 2014.

[17] B. M. Blodgett and A. Salter, “Hearing ‘lady game creators’ tweet: #1reason-
why, women and online discourse in the game development community,” in
14th Annual Conference for the Association of Internet Researchers (AoIR),
2013.

[18] J. Brookes, M. Warburton, M. Alghadier, M. Mon-Williams, and F. Mush-
taq, “Studying human behavior with virtual reality: The Unity experiment
framework,” Behavior research methods, pp. 1–9, 2019.

[19] A. Budhiraja, R. Reddy, and M. Shrivastava, “Lwe: Lda refined word embed-
dings for duplicate bug report detection,” in Proceedings of the 40th Inter-
national Conference on Software Engineering: Companion Proceeedings, 2018,
pp. 165–166.

[20] H. Cavusoglu, Z. Li, and K.-W. Huang, “Can gamification motivate voluntary
contributions? The case of StackOverflow Q&A community,” in Proceedings of
the 18th ACM conference companion on computer supported cooperative work
& social computing, 2015, pp. 171–174.

[21] L. Chen, A. Baird, and D. Straub, “Why do participants continue to con-
tribute? Evaluation of usefulness voting and commenting ootivational affor-
dances within an online knowledge community,” Decision Support Systems,
vol. 118, pp. 21–32, 2019.

116

[22] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey on the use of topic
models when mining software repositories,” Empirical Software Engineering,
vol. 21, no. 5, pp. 1843–1919, 2016.

[23] A. Chowdhury, O. Frieder, D. Grossman, and M. C. McCabe, “Collection
statistics for fast duplicate document detection,” ACM Transactions on Infor-
mation Systems (TOIS), vol. 20, no. 2, pp. 171–191, 2002.

[24] E. Christopoulou and S. Xinogalos, “Overview and comparative analysis of
game engines for desktop and mobile devices,” International Journal of Serious
Games, vol. 4, no. 4, 2017.

[25] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal questions,”
Psychological bulletin, vol. 114, no. 3, p. 494, 1993.

[26] B. Cowan and B. Kapralos, “A survey of frameworks and game engines for
serious game development,” in 2014 IEEE 14th International Conference on
Advanced Learning Technologies, IEEE, 2014, pp. 662–664.

[27] D. R. Cox and A. Stuart, “Some quick sign tests for trend in location and
dispersion,” Biometrika, vol. 42, no. 1/2, pp. 80–95, 1955.

[28] V. Cristie and M. Berger, “Game engines for urban exploration: Bridging sci-
ence narrative for broader participants,” in Playable Cities, Springer, 2017,
pp. 87–107.

[29] A. Cummaudo, R. Vasa, S. Barnett, J. Grundy, and M. Abdelrazek, “Inter-
preting cloud computer vision pain-points: A mining study of Stack Overflow,”
arXiv preprint arXiv:2001.10130, 2020.

[30] D. H. Dalip, M. A. Gonçalves, M. Cristo, and P. Calado, “Exploiting user
feedback to learn to rank answers in Q&A forums: A case study with Stack
Overflow,” in Proceedings of the 36th international ACM SIGIR conference on
Research and development in information retrieval, 2013, pp. 543–552.

[31] S. Deng, J. Tong, Y. Lin, H. Li, and Y. Liu, “Motivating scholars’ responses in
academic social networking sites: An empirical study on ResearchGate Q&A
behavior,” Information Processing & Management, vol. 56, no. 6, p. 102 082,
2019.

[32] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[33] M. Ellmann, “Same-same but different: On understanding duplicates in Stack
Overflow,” Informatik Spektrum, vol. 42, no. 4, pp. 266–286, 2019.

[34] R. Epp, D. Lin, and C.-P. Bezemer, “An empirical study of trends of popular
virtual reality games and their complaints,” IEEE Transactions on Games,
pp. 1–12, 2021.

[35] C. Fang and J. Zhang, “Users’ continued participation behavior in social
Q&A communities: A motivation perspective,” Computers in Human Behav-
ior, vol. 92, pp. 87–109, 2019.

117

[36] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and S. Fahl,
“Stack Overflow considered harmful? The impact of copy&paste on android
application security,” in 2017 IEEE Symposium on Security and Privacy (SP),
IEEE, 2017, pp. 121–136.

[37] S. J. Fisher and A. Harvey, “Intervention for inclusivity: Gender politics and
indie game development,” Loading..., vol. 7, no. 11, 2013.

[38] D. Ford, K. Lustig, J. Banks, and C. Parnin, ““we don’t do that here” how
collaborative editing with mentors improves engagement in social Q&A com-
munities,” in Proceedings of the 2018 CHI conference on human factors in
computing systems, 2018, pp. 1–12.

[39] M. Foxman, “United we stand: Platforms, tools and innovation with the Unity
game engine,” Social Media+ Society, vol. 5, no. 4, p. 2 056 305 119 880 177,
2019.

[40] H. Fu and S. Oh, “Quality assessment of answers with user-identified criteria
and data-driven features in social Q&A,” Information Processing & Manage-
ment, vol. 56, no. 1, pp. 14–28, 2019.

[41] T. Guan, L. Wang, J. Jin, and X. Song, “Knowledge contribution behavior in
online Q&A communities: An empirical investigation,” Computers in Human
Behavior, vol. 81, pp. 137–147, 2018.

[42] J. Han, E. Shihab, Z. Wan, S. Deng, and X. Xia, “What do programmers
discuss about deep learning frameworks,” Empirical Software Engineering,
vol. 25, no. 4, pp. 2694–2747, 2020.

[43] F. M. Harper, D. Raban, S. Rafaeli, and J. A. Konstan, “Predictors of answer
quality in online q&a sites,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2008, pp. 865–874.

[44] R. Harrap, D. Hutchinson, Z. Sala, M. Ondercin, and P. DiFrancesco, “Our
GIS is a game engine: Bringing Unity to spatial simulation of rockfalls,” in
GeoComputation, 2019.

[45] A. Harvey, “Becoming gamesworkers: Diversity, higher education, and the fu-
ture of the game industry,” Television & New Media, vol. 20, no. 8, pp. 756–
766, 2019.

[46] A. Hindle, A. Alipour, and E. Stroulia, “A contextual approach towards more
accurate duplicate bug report detection and ranking,” Empirical Software En-
gineering, vol. 21, no. 2, pp. 368–410, 2016.

[47] A. Hindle and C. Onuczko, “Preventing duplicate bug reports by continuously
querying bug reports,” Empirical Software Engineering, vol. 24, no. 2, pp. 902–
936, 2019.

[48] Y. Homma, S. Sy, and C. Yeh, “Detecting duplicate questions with deep learn-
ing,” in Proceedings of the International Conference on Neural Information
Processing Systems (NIPS), 2016.

118

[49] Z. Hong, Z. Deng, R. Evans, and H. Wu, “Patient questions and physician
responses in a Chinese health Q&A website: Content analysis,” Journal of
Medical Internet Research, vol. 22, no. 4, e13071, 2020.

[50] D. Hoogeveen, A. Bennett, Y. Li, K. M. Verspoor, and T. Baldwin, “Detecting
misflagged duplicate questions in community question-answering archives,” in
Twelfth international AAAI conference on web and social media, 2018.

[51] H. Hu, S. Wang, C.-P. Bezemer, and A. E. Hassan, “Studying the consistency
of star ratings and reviews of popular free hybrid android and ios apps,” Em-
pirical Software Engineering, vol. 24, no. 1, pp. 7–32, 2019.

[52] Z. Imtiaz, M. Umer, M. Ahmad, S. Ullah, G. S. Choi, and A. Mehmood,
“Duplicate questions pair detection using siamese MaLSTM,” IEEE Access,
vol. 8, pp. 21 932–21 942, 2020.

[53] P. Jaccard, “The distribution of the flora in the alpine zone. 1,” New phytolo-
gist, vol. 11, no. 2, pp. 37–50, 1912.

[54] H. Jelodar, Y. Wang, C. Yuan, X. Feng, X. Jiang, Y. Li, and L. Zhao, “Latent
dirichlet allocation (lda) and topic modeling: Models, applications, a survey,”
Multimedia Tools and Applications, vol. 78, no. 11, pp. 15 169–15 211, 2019.

[55] J. Jin, Y. Li, X. Zhong, and L. Zhai, “Why users contribute knowledge to
online communities: An empirical study of an online social Q&A community,”
Information & management, vol. 52, no. 7, pp. 840–849, 2015.

[56] A. Kamath, S. Gupta, and V. Carvalho, “Reversing gradients in adversarial
domain adaptation for question deduplication and textual entailment tasks,” in
Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, 2019, pp. 5545–5550.

[57] A. Kamienski and C.-P. Bezemer, “An empirical study of Q&A websites for
game developers,” Empirical Software Engineering, 2021.

[58] C. M. Kanode and H. M. Haddad, “Software engineering challenges in game
development,” in 2009 Sixth International Conference on Information Tech-
nology: New Generations, IEEE, 2009, pp. 260–265.

[59] I. Koksal, Video gaming industry & its revenue shift, Accessed: August 14,
2020, 2019. [Online]. Available: https://www.forbes.com/sites/ilkerkoksal/20
19/11/08/video-gaming-industry--its-revenue-shift/#12d74894663e.

[60] Q. Le and T. Mikolov, “Distributed representations of sentences and doc-
uments,” in International conference on machine learning, 2014, pp. 1188–
1196.

[61] Z. Li, G. Yin, Y. Yu, T. Wang, and H. Wang, “Detecting duplicate pull-
requests in GitHub,” in Proceedings of the 9th Asia-Pacific Symposium on
Internetware, 2017, pp. 1–6.

[62] Z. Li, Y. Yu, M. Zhou, T. Wang, G. Yin, L. Lan, and H. Wang, “Redundancy,
context, and preference: An empirical study of duplicate pull requests in OSS
projects,” IEEE Transactions on Software Engineering, 2020.

119

https://www.forbes.com/sites/ilkerkoksal/2019/11/08/video-gaming-industry--its-revenue-shift/#12d74894663e
https://www.forbes.com/sites/ilkerkoksal/2019/11/08/video-gaming-industry--its-revenue-shift/#12d74894663e

[63] D. Liang, F. Zhang, W. Zhang, Q. Zhang, J. Fu, M. Peng, T. Gui, and X.
Huang, “Adaptive multi-attention network incorporating answer information
for duplicate question detection,” in Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, 2019, pp. 95–104.

[64] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, and M. Lanza, “Pattern-based
mining of opinions in Q&A websites,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), IEEE, 2019, pp. 548–559.

[65] M. Linares-Vásquez, G. Bavota, M. Di Penta, R. Oliveto, and D. Poshyvanyk,
“How do API changes trigger Stack Overflow discussions? A study on the An-
droid SDK,” in proceedings of the 22nd International Conference on Program
Comprehension, 2014, pp. 83–94.

[66] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk, “An exploratory analysis
of mobile development issues using stack overflow,” in 2013 10th Working
Conference on Mining Software Repositories (MSR), IEEE, 2013, pp. 93–96.

[67] D. P. Lopresti, “Models and algorithms for duplicate document detection,” in
Proceedings of the Fifth International Conference on Document Analysis and
Recognition. ICDAR’99 (Cat. No. PR00318), IEEE, 1999, pp. 297–300.

[68] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization using la-
tent dirichlet allocation,” Information and Software Technology, vol. 52, no. 9,
pp. 972–990, 2010.

[69] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann, “Design
lessons from the fastest Q&A site in the west,” in Proceedings of the SIGCHI
conference on Human factors in computing systems, 2011, pp. 2857–2866.

[70] H. B. Mann and D. R. Whitney, “On a test of whether one of two random
variables is stochastically larger than the other,” The annals of mathematical
statistics, pp. 50–60, 1947.

[71] F. Messaoudi, A. Ksentini, G. Simon, and P. Bertin, “Performance analysis of
game engines on mobile and fixed devices,” ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), vol. 13, no. 4, pp. 1–
28, 2017.

[72] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[73] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Advances
in neural information processing systems, 2013, pp. 3111–3119.

[74] Y. Mizobuchi and K. Takayama, “Two improvements to detect duplicates in
Stack Overflow,” in 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), IEEE, 2017, pp. 563–564.

120

[75] M. R. Morris, J. Teevan, and K. Panovich, “What do people ask their social
networks, and why? a survey study of status message q&a behavior,” in Pro-
ceedings of the SIGCHI conference on Human factors in computing systems,
2010, pp. 1739–1748.

[76] D. Movshovitz-Attias, Y. Movshovitz-Attias, P. Steenkiste, and C. Faloutsos,
“Analysis of the reputation system and user contributions on a question an-
swering website: StackOverflow,” in 2013 IEEE/ACM International Confer-
ence on Advances in Social Networks Analysis and Mining (ASONAM 2013),
IEEE, 2013, pp. 886–893.

[77] S. Nadi and C. Treude, “Essential sentences for navigating Stack Overflow
answers,” in 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), IEEE, 2020, pp. 229–239.

[78] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming Q&A in StackOverflow,” in 2012
28th IEEE International Conference on Software Maintenance (ICSM), IEEE,
2012, pp. 25–34.

[79] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu, “Using of
Jaccard coefficient for keywords similarity,” in Proceedings of the international
multiconference of engineers and computer scientists, 2013, pp. 380–384.

[80] O. P. Omondiagbe, S. A. Licorish, and S. G. MacDonell, “Features that pre-
dict the acceptability of Java and JavaScript answers on Stack Overflow,” in
Proceedings of the Evaluation and Assessment on Software Engineering, 2019,
pp. 101–110.

[81] S. Overflow, Stack Overflow’s 2020 developer survey, Accessed: August 14,
2020, 2020. [Online]. Available: https://insights.stackoverflow.com/survey/2
020.

[82] S. Overflow, About Stack Overflow, https : / / stackoverflow . com/company,
Accessed: July 25, 2021, 2021.

[83] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd documenta-
tion: Exploring the coverage and the dynamics of API discussions on Stack
Overflow,” Georgia Institute of Technology, Tech. Rep, vol. 11, 2012.

[84] L. Pascarella, F. Palomba, M. Di Penta, and A. Bacchelli, “How is video game
development different from software development in open source?” In 2018
IEEE/ACM 15th International Conference on Mining Software Repositories
(MSR), IEEE, 2018, pp. 392–402.

[85] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

121

https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020
https://stackoverflow.com/company

[86] N. Poerner and H. Schütze, “Multi-view domain adapted sentence embeddings
for low-resource unsupervised duplicate question detection,” in Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 2019, pp. 1630–1641.

[87] M. F. Porter et al., “An algorithm for suffix stripping.,” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[88] D. A. Prabowo and G. B. Herwanto, “Duplicate question detection in question
answer website using convolutional neural network,” in 2019 5th International
Conference on Science and Technology (ICST), IEEE, vol. 1, 2019, pp. 1–6.

[89] T. B. Procaci, B. P. Nunes, T. Nurmikko-Fuller, and S. W. Siqueira, “Finding
topical experts in question & answer communities,” in 2016 IEEE 16th In-
ternational Conference on Advanced Learning Technologies (ICALT), IEEE,
2016, pp. 407–411.

[90] T. B. Procaci, S. W. Siqueira, B. P. Nunes, and T. Nurmikko-Fuller, “Mod-
elling experts behaviour in Q&A communities to predict worthy discussions,”
in 2017 IEEE 17th International Conference on Advanced Learning Technolo-
gies (ICALT), IEEE, 2017, pp. 291–295.

[91] M. M. Rahman and C. K. Roy, “An insight into the unresolved questions at
Stack Overflow,” in 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories, IEEE, 2015, pp. 426–429.

[92] M. S. Rakha, C.-P. Bezemer, and A. E. Hassan, “Revisiting the performance
evaluation of automated approaches for the retrieval of duplicate issue re-
ports,” IEEE Transactions on Software Engineering, vol. 44, no. 12, pp. 1245–
1268, 2017.

[93] M. S. Rakha, C.-P. Bezemer, and A. E. Hassan, “Revisiting the performance
of automated approaches for the retrieval of duplicate reports in issue track-
ing systems that perform just-in-time duplicate retrieval,” Empirical Software
Engineering, vol. 23, no. 5, pp. 2597–2621, 2018.

[94] J. Ramos et al., “Using tf-idf to determine word relevance in document queries,”
in Proceedings of the first instructional conference on machine learning, Cite-
seer, vol. 242, 2003, pp. 29–48.

[95] S. Ravi, B. Pang, V. Rastogi, and R. Kumar, “Great question! question quality
in community q&a,” in Proceedings of the International AAAI Conference on
Web and Social Media, vol. 8, 2014.

[96] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of pro-
gramming languages and code quality in github,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2014, pp. 155–165.

[97] R. Řeh̊uřek, Gensim: Topic modelling for humans, https://radimrehurek.com
/gensim, Accessed: September 5, 2021, 2021.

122

https://radimrehurek.com/gensim
https://radimrehurek.com/gensim

[98] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using
siamese BERT-networks,” in Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing, Association for Computational
Linguistics, Nov. 2019. [Online]. Available: https://arxiv.org/abs/1908.10084.

[99] L. Richardson, Beautiful soup, https://www.crummy.com/software/Beautifu
lSoup, Accessed: September 5, 2021, 2020.

[100] A. Rochette, Y. Yaghoobzadeh, and T. J. Hazen, “Unsupervised domain adap-
tation of contextual embeddings for low-resource duplicate question detec-
tion,” arXiv preprint arXiv:1911.02645, 2019.

[101] J. Rodrigues, C. Saedi, V. Maraev, J. Silva, and A. Branco, “Ways of asking
and replying in duplicate question detection,” in Proceedings of the 6th joint
conference on lexical and computational semantics (SEM), 2017, pp. 262–270.

[102] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, and L. Devine, “Ex-
ploring methods for evaluating group differences on the nsse and other surveys:
Are the t-test and cohen’sd indices the most appropriate choices,” in annual
meeting of the Southern Association for Institutional Research, Citeseer, 2006,
pp. 1–51.

[103] C. Rosen and E. Shihab, “What are mobile developers asking about? A large
scale study using Stack Overflow,” Empirical Software Engineering, vol. 21,
no. 3, pp. 1192–1223, 2016.

[104] A. Rücklé, N. S. Moosavi, and I. Gurevych, “Neural duplicate question detec-
tion without labeled training data,” arXiv preprint arXiv:1911.05594, 2019.

[105] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate defect
reports using natural language processing,” in 29th International Conference
on Software Engineering (ICSE’07), IEEE, 2007, pp. 499–510.

[106] C. Sadowski, K. T. Stolee, and S. Elbaum, “How developers search for code:
A case study,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, 2015, pp. 191–201.

[107] C. Saedi, J. Rodrigues, J. Silva, A. Branco, and V. Maraev, “Learning profiles
in duplicate question detection,” in 2017 IEEE international conference on
information reuse and integration (IRI), IEEE, 2017, pp. 544–550.

[108] T. Santos, K. Burghardt, K. Lerman, and D. Helic, “Can badges foster a more
welcoming culture on Q&A boards?” In Proceedings of the International AAAI
Conference on Web and Social Media, vol. 14, 2020, pp. 969–973.

[109] D. J. Shah, T. Lei, A. Moschitti, S. Romeo, and P. Nakov, “Adversarial domain
adaptation for duplicate question detection,” arXiv preprint arXiv:1809.02255,
2018.

[110] X. Shen, A. L. Jia, S. Shen, and Y. Dou, “Helping the ineloquent farmers:
Finding experts for questions with limited text in agricultural Q&A commu-
nities,” IEEE Access, vol. 8, pp. 62 238–62 247, 2020.

123

https://arxiv.org/abs/1908.10084
https://www.crummy.com/software/BeautifulSoup
https://www.crummy.com/software/BeautifulSoup

[111] R. F. Silva, K. Paixão, and M. de Almeida Maia, “Duplicate question detection
in Stack Overflow: A reproducibility study,” in 2018 IEEE 25th international
conference on software analysis, evolution and reengineering (SANER), IEEE,
2018, pp. 572–581.

[112] K. Somasundaram and G. C. Murphy, “Automatic categorization of bug re-
ports using latent dirichlet allocation,” in Proceedings of the 5th India software
engineering conference, 2012, pp. 125–130.

[113] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, “MPNet: Masked and permuted
pre-training for language understanding,” arXiv preprint arXiv:2004.09297,
2020.

[114] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate retrieval of
duplicate bug reports,” in 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), IEEE, 2011, pp. 253–262.

[115] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative model
approach for accurate duplicate bug report retrieval,” in Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering-Volume
1, 2010, pp. 45–54.

[116] J. Tabassum, M. Maddela, W. Xu, and A. Ritter, “Code and named entity
recognition in StackOverflow,” in Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics (ACL), 2020. [Online]. Avail-
able: https://www.aclweb.org/anthology/2020.acl-main.443/.

[117] U. Technologies, Unity technologies releases Unity 3.5, https://unity.com/ou
r-company/newsroom/unity-technologies-releases-unity-3-5, Accessed: June
28, 2021, 2021.

[118] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask and
answer questions on the web? (NIER track),” in Proceedings of the 33rd inter-
national conference on software engineering, 2011, pp. 804–807.

[119] C. Treude and M. P. Robillard, “Augmenting API documentation with insights
from Stack Overflow,” in 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), IEEE, 2016, pp. 392–403.

[120] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones,
R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Van-
derPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt,
and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scien-
tific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020. doi:
10.1038/s41592-019-0686-2.

[121] L. Wang, L. Zhang, and J. Jiang, “Detecting duplicate questions in Stack
Overflow via deep learning approaches,” in 2019 26th Asia-Pacific Software
Engineering Conference (APSEC), IEEE, 2019, pp. 506–513.

124

https://www.aclweb.org/anthology/2020.acl-main.443/
https://unity.com/our-company/newsroom/unity-technologies-releases-unity-3-5
https://unity.com/our-company/newsroom/unity-technologies-releases-unity-3-5
https://doi.org/10.1038/s41592-019-0686-2

[122] L. Wang, L. Zhang, and J. Jiang, “Duplicate question detection with deep
learning in Stack Overflow,” IEEE Access, vol. 8, pp. 25 964–25 975, 2020.

[123] Q. Wang, B. Xu, X. Xia, T. Wang, and S. Li, “Duplicate pull request detection:
When time matters,” in Proceedings of the 11th Asia-Pacific Symposium on
Internetware, 2019, pp. 1–10.

[124] S. Wang, T.-H. Chen, and A. E. Hassan, “Understanding the factors for fast
answers in technical Q&A websites,” Empirical Software Engineering, vol. 23,
no. 3, pp. 1552–1593, 2018.

[125] S. Wang, D. Lo, and L. Jiang, “An empirical study on developer interactions
in StackOverflow,” in Proceedings of the 28th Annual ACM Symposium on
Applied Computing, 2013, pp. 1019–1024.

[126] Y. Wang, “The price of being polite: Politeness, social status, and their joint
impacts on community Q&A efficiency,” Journal of Computational Social Sci-
ence, pp. 1–22, 2020.

[127] J. R. Whitson, “Voodoo software and boundary objects in game development:
How developers collaborate and conflict with game engines and art tools,” new
media & society, vol. 20, no. 7, pp. 2315–2332, 2018.

[128] F. Wilcoxon, “Individual comparisons by ranking methods,” in Breakthroughs
in statistics, Springer, 1992, pp. 196–202.

[129] W. Witkowski, Videogames are a bigger industry than movies and north amer-
ican sports combined, thanks to the pandemic, https://www.marketwatch.co
m/story/videogames-are-a-bigger-industry-than-sports-and-movies-combine
d-thanks-to-the-pandemic-11608654990, Accessed: July 4, 2021, 2020.

[130] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T.
Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma,
Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and
A. M. Rush, “Transformers: State-of-the-art natural language processing,” in
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Online: Association for Computational
Linguistics, Oct. 2020, pp. 38–45. [Online]. Available: https://www.aclweb.or
g/anthology/2020.emnlp-demos.6.

[131] Y. Wu, S. Wang, C.-P. Bezemer, and K. Inoue, “How do developers utilize
source code from Stack Overflow?” Empirical Software Engineering, vol. 24,
no. 2, pp. 637–673, 2019.

[132] B. Xu, T. Hoang, A. Sharma, C. Yang, X. Xia, and D. Lo, “Post2vec: Learning
distributed representations of Stack Overflow posts,” IEEE Transactions on
Software Engineering, 2021.

[133] Z. Xu and H. Yuan, “Forum duplicate question detection by domain adaptive
semantic matching,” IEEE Access, vol. 8, pp. 56 029–56 038, 2020.

125

https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

[134] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What security questions
do developers ask? a large-scale study of stack overflow posts,” Journal of
Computer Science and Technology, vol. 31, no. 5, pp. 910–924, 2016.

[135] M. Zahedi, R. N. Rajapakse, and M. A. Babar, “Mining questions asked about
continuous software engineering: A case study of stack overflow,” in Proceedings
of the Evaluation and Assessment in Software Engineering, 2020, pp. 41–50.

[136] H. Zhang, S. Wang, T.-H. Chen, and A. E. Hassan, “Reading answers on stack
overflow: Not enough!” IEEE Transactions on Software Engineering, 2019.

[137] H. Zhang, S. Wang, T.-H. P. Chen, Y. Zou, and A. E. Hassan, “An empirical
study of obsolete answers on Stack Overflow,” IEEE Transactions on Software
Engineering, 2019.

[138] W. E. Zhang, Q. Z. Sheng, J. H. Lau, and E. Abebe, “Detecting duplicate
posts in programming QA communities via latent semantics and association
rules,” in Proceedings of the 26th International Conference on World Wide
Web, 2017, pp. 1221–1229.

[139] W. E. Zhang, Q. Z. Sheng, J. H. Lau, E. Abebe, and W. Ruan, “Duplicate de-
tection in programming question answering communities,” ACM Transactions
on Internet Technology (TOIT), vol. 18, no. 3, pp. 1–21, 2018.

[140] W. E. Zhang, Q. Z. Sheng, Y. Shu, and V. K. Nguyen, “Feature analysis for
duplicate detection in programming QA communities,” in International Con-
ference on Advanced Data Mining and Applications, Springer, 2017, pp. 623–
638.

[141] W. E. Zhang, Q. Z. Sheng, Z. Tang, and W. Ruan, “Related or duplicate:
Distinguishing similar CQA questions via convolutional neural networks,” in
The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval, 2018, pp. 1153–1156.

[142] X. Zhang, S. Liu, X. Chen, et al., “Social capital, motivations, and knowledge
sharing intention in health Q&A communities,” Management Decision, 2017.

[143] Y. Zhang, T. Lu, C. W. Phang, and C. Zhang, “Scientific knowledge communi-
cation in online Q&A communities: Linguistic devices as a tool to increase the
popularity and perceived professionalism of knowledge contribution,” Journal
of the Association for Information Systems, vol. 20, no. 8, p. 3, 2019.

[144] Y. Zhang, D. Lo, X. Xia, and J.-L. Sun, “Multi-factor duplicate question detec-
tion in Stack Overflow,” Journal of Computer Science and Technology, vol. 30,
no. 5, pp. 981–997, 2015.

[145] J. Zhou, S. Wang, C.-P. Bezemer, and A. E. Hassan, “Bounties on technical
Q&A sites: A case study of Stack Overflow bounties,” Empirical Software
Engineering, vol. 25, no. 1, pp. 139–177, 2020.

[146] Q. Zhou, X. Liu, and Q. Wang, “Interpretable duplicate question detection
models based on attention mechanism,” Information Sciences, vol. 543, pp. 259–
272, 2021.

126

	Introduction and Background
	Introduction
	Q&A websites for game developers
	Thesis outline

	An Empirical Study of Q&A Websites for Game Developers
	Abstract
	Introduction
	Background and Related work
	Q&A communities
	Game development Q&A websites
	Topic modeling of Q&A websites

	Methodology
	Data collection
	Data preprocessing
	Text preprocessing
	Topic modeling
	Topic labeling
	Survey with game developers

	Results
	RQ1. How did the studied game development Q&A communities evolve in terms of user participation?
	RQ2. What topics are most frequently discussed by game developers on the studied Q&A websites?
	RQ3. What are the characteristics of posts from each topic?
	RQ4. How do game developers perceive the studied communities?

	Implications of our findings
	Threats to validity
	Construct validity
	Internal validity
	External validity

	Conclusion

	Analyzing Techniques for Duplicate Question Detection on Q&A Websites for Game Developers
	Abstract
	Introduction
	Background and related work
	Q&A websites
	Duplicate document detection on websites

	Methodology
	Data collection
	Data preprocessing
	Comparing questions
	Training supervised classifier models

	Results
	RQ1. What is the performance of unsupervised and pre-trained techniques for duplicate question detection on game development Q&A data?
	RQ2. How can we leverage labelled data to improve the performance of unsupervised techniques?

	Comparison with other studies
	Implications of our findings
	For the developers of Q&A websites for game development
	For researchers

	Threats to validity
	Internal validity
	External validity
	Construct validity

	Conclusion

	Conclusion & Future Work
	Conclusion
	Future work

	Bibliography

